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Titre de la thése :
Intégration de contacts innovants pour dispositifs photoniques Ill/V-Si

Résumé :

Depuis les années 2000, en raison d’'une multitude de moyens de communication émergents, les besoins en
termes d’échange de données n’ont cessé d’augmenter. Ces modifications ont conduit a l'initiation d’une
transition depuis les technologies électroniques vers les technologies et interconnexions optiques. Entre
autres, ces nouvelles technologies nécessitent I'utilisation de composants émetteurs et récepteurs de photons
constitués de matériaux lll-V. De fagon a miniaturiser ces composants et a augmenter leurs performances tout
en diminuant leur colt de fabrication, un modéle d’intégration innovant consiste a intégrer directement les
sources llI-V sur le circuit photonique silicium 200 mm. Afin d’optimiser les performances du laser Ill-V tout en
respectant les contraintes liées a une salle blanche front-end / middle-end silicium, la réalisation d’une telle
intégration nécessite notamment le développement de contacts innovants sur n-InP et p-InGaAs.

Ces travaux de these sont ainsi centrés autour du développement d’une nouvelle architecture de contacts
répondant aux exigences d’une salle blanche front-end / middle-end silicium 200 mm, tout en optimisant les
performances du laser llI-V. Un schéma d’intégration innovant des contacts est tout d’abord présenté dans sa
globalité puis une optimisation des procédés d’intégration disponibles est proposée. Ceci permet de profiter de
I’'avantage économique que procure le fait d’utiliser I'expertise existante tout en préservant les surfaces III-V et
en optimisant les performances d’émission du laser. Une attention particuliere est portée sur le
développement de la métallisation de contact, elle-méme reposant sur la formation de composés
intermétalliques a linterface entre le métal déposé et le semi-conducteur. Une étude métallurgique
approfondie est ainsi conduite sur les systemes Ni/n-InP, Ni/p-InGaAs et Ti/n-InP dans le but d’identifier les
séquences de phases ainsi que des mécanismes mis en jeu et enfin leur stabilité thermique. Finalement,
I'ensemble de ces métallisations sont intégrées au sein de dispositifs dédiés au test électriques des contacts.
Les résistivités spécifiques de contacts associées sont ainsi extraites. Grace a I'ensemble de ces travaux, les
métallisations et procédés permettant d’optimiser les performances électriques des contacts intégrés tout en
garantissant leur stabilité sont finalement identifiés.

Mots clefs :
Contact Métal/n-InP, Contact Métal/p-InGaAs, Photonique sur Silicium, Laser IlI-V, Intégration, Réaction a I'état
solide, Caractérisation électrique, résistivité de contact.

Title:
Integration of innovative ohmic contacts for heterogeneous Il1-V/Silicon Photonic devices

Abstract:

Since the 2000s, the requirements in terms of data exchange never stopped rising owing to a multitude of
emerging communication means. These extensive modifications lead the signal processing and electrical
technologies to switch towards optical devices and interconnections. Among others, these new technologies
require the use of Ill-V-based emitters and receptors. In order to miniaturize these devices, to optimize the
performances and to minimize the fabrication cost of such a technology, an innovative manufacturing model
consists in integrating directly the Ill-V laser source onto the 200 mm Si photonics circuit. To enable the
development of contacts meeting the constraints of a front-end / middle-end Si-environment along with those
of an operating laser, one of the keys lies in the development of contacts on n-InP and p-InGaAs which are
necessary to electrically pump the IlI-V laser.

This Ph.D thesis therefore deals with the development of an innovative contact architecture fulfilling the
requirements of a front-end / middle-end Si-dedicated clean room environment while optimizing the
performances of the IlI-V laser. An integration scheme is firstly presented in its wholeness before optimizing
every available process that is required. This kind of development leverages the advantage of utilizing existing
infrastructures and processes while preserving the IlI-V surfaces and optimizing the performances of the IlI-V
laser. Special attention is devoted to the development of the contact metallization which relies on the
formation of intermetallic compounds at the interface between the deposited metal and the semiconductor.
Extensive studies are therefore conducted on the Ni/n-InP, Ni/p-InGaAs et Ti/n-InP systems in order to identify
the phase sequences, the involved mechanism and finally the thermal stability of the various phases.
Ultimately, these metallizations are integrated in structures dedicated to their electrical characterization. The
corresponding specific contact resistivities are thus extracted. Thanks to these studies, the metallizations and
processes allowing an optimization of the electrical performances of the integrated contacts while ensuring
their stability are finally identified.

Keywords:
Metal/n-InP contact, Metal/p-InGaAs contact, Si Photonics, IlI-V laser, Integration, Solid state reaction,
Electrical characterization, Contact resistivity.



Nothing is impossible,
The word itself says ‘I’'m possible’!

[Audrey Hepburn]
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GENERAL INTRODUCTION

Since the 2000s, the requirements in terms of data exchange never stopped rising owing to a
multitude of emerging communication means. These extensive modifications lead the signal
processing and electrical technologies to switch towards optical devices and interconnections.
Among others, these new technologies require the use of IlI-V-based emitters and receptors which
are traditionally processed in IlI-V dedicated clean rooms on 2" to 4" wafers before being packaged
in optoelectronic systems. In order to miniaturize these devices, to optimize the performances and to
minimize the fabrication cost of such a technology, an innovative manufacturing model consists in
integrating directly the Ill-V laser source onto the 200 mm Si photonics circuit. However, up to now
these 200 mm wafers were reduced to 100 mm wafers after the bonding of the IlI-V laser and
processed in IlI-V-dedicated clean rooms. In order to leverage the advantages of utilizing the silicon
expertise and the existing Si-compatible equipments, an innovative integration is being developed by
STMicroelectronics and the CEA-LETI in the frame of IRT Nanoelec Photonics programs. The latter
consists in fully integrating the 1lI-V laser on the 200 mm Silicon Photonics wafer and therefore in a
200 mm Si-compatible clean room after its bonding. In order to enable such an integration, one of
the keys lies in the development of contacts on n-InP and p-InGaAs which are necessary to
electrically pump the 1lI-V laser. Because the contacts that were classically used on IlI-V lasers up to
now are not compatible with a Si-compatible clean room in terms of integration and composition, a
deep overhaul is required. The latter must enable the development of contacts meeting the

constraints of a Si-environment along with those of an operating laser, i.e.:

e The contacts must be integrated on 200 or 300 millimeters-compatible equipments in a Si-
compatible clean room thanks to planar processes which exclude any lift-off or related
processes;

e All thermal budget must be minimized (T < 450 °C) in order not to degrade the active region
of the laser composed of multi quantum wells;

e The materials in contact with / close to the active region of the laser must not generate
important losses at the emitting wavelength of the laser;

e The contacts must be comprised of front-end compatible materials only, such as Ni, Ti and
their alloys;

o The metallization must be selected to form ohmic contacts with specific contact resistivities

lower than 5.10” Q.cm?.
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Within this framework and in order to satisfy the above mentioned requirements, this Ph.D thesis

was dedicated to the development of such innovative contacts.

After presenting the benefits offered by Silicon Photonics, Chapter 1 will present an overview of IlI-V
/ Si heterogeneous photonic integrated circuits. Several notions related to the integration and to the
functioning of the 1lI-V laser will be discussed in order to identify the critical parameters that could
affect its functioning. The contacts that were classically integrated on IlI-V lasers in IlI-V dedicated
clean rooms will then be presented in terms of composition and integration. This section will
highlight the incompatibility of such contacts with 200 mm or 300 mm Si-compatible clean rooms,

and therefore the need to develop innovative contacts.

Chapter 2 will thus be dedicated to the presentation of the innovative contacts’ integration scheme
that was fully developed in the 200 mm Si-compatible clean room. A special emphasis will be placed
on optimizing the contacts while fulfilling the requirements of such an environment and without

degrading the optical performances of the Ill-V laser.

After the overall presentation of the integration scheme, a particular attention will be paid to the
contact metallization which must be chosen to form thermally stable and ohmic contacts both on n-
InP and p-InGaAs. In order to develop fully Si-compatible contacts, the two metals that will be
assessed are the Ni and the Ti. In chapter 3, the as deposited an annealed Ni/InP, Ni/InGaAs and
Ti/InP systems will firstly be investigated thanks to metallurgical studies. The latter will enable an
identification of the system’s composition and morphology along with the related phase sequences

and involved mechanisms.

Finally, chapter 4 will focus on the corresponding electrical study. After a description of the current
transport mechanisms arising in a metal / semiconductor contacts, the Transfert Length Method
(TLM), classically used to extract contact resistivities, will be presented and discussed. After these
theoretical considerations, Si-compatible contacts presenting Ni and Ti-based metallizations will be
electrically characterized thanks to dedicated test structures. Finally, in order to further optimize the
electrical performances of these contacts, the effect of the dielectric encapsulation which is required

in the frame of the innovative integration scheme will be probed.

To conclude, a scheme enabling the integration of the contacts on a IllI-V laser in a Si-compatible
clean room will be displayed. The extensive studies conducted on the metallization will additionally
enable the identification of the most adapted metal and subsequent thermal treatment on n-InP and
p-InGaAs. Additional refinements will be proposed in order to further optimize the performances of

the contacts and therefore of the overall laser device.
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1.1 The information revolution

Over the past decades the computing power of Complementary Metal Oxide Semiconductor (CMQOS)
based devices has considerably increased. While the dimensions of the transistors were scaled down,
their integration density and switching speed never stopped rising. We have now reached a point
where the calculation capacity is less limited by the performances of the devices than by the rate at
which the data can be transferred. In this context, the electrical interconnects were identified as the
upcoming bottleneck in the International Technology Roadmap for Semiconductors (ITRS) [1, 2]. It
has become increasingly difficult for conventional metal based electrical interconnects to satisfy the
design requirements in terms of power, bandwidth, delay and delay uncertainty. To address this

issue, a transition from electrical to optical interconnects was proposed [1-5].

Optical interconnects offer various advantages ranging from wider bandwidths on longer distances
and lower sizes to their insensibility to the electromagnetic noise. However, because of the cost
advantage of their electrical counterparts, optical interconnects have usually ended up to be limited
to long-distance links where the attenuation in copper cables is too high for the electrical circuits to
compensate. Yet, their use becomes more and more required in the market of short distance links as
they can meet the requirements in terms of data rates (Figure 1.1). To enable such a transition,

optical technologies must be brought into the world of mass production.

100 km :
: Optical links
\700 . ShortTerm P
10 km \ 625 ”””” demand
O 3 -_———
1km 22 LARGE DAFACENTER Lt Term -
| demand
100 m S| DO S o ———
|
—_ hohe® o O\ N I I
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3
e Im L
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Data Rate (Gb/s)

Figure 1.1 : Distance versus data rates of commercial electrical and optical interconnects. Electrical links are bounded by
the 100 Gb/s-m bandwidth-distance product [6, 7].
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1.2 Silicon photonics

1.2.1 Why do we need silicon photonics?

Following the path of miniaturization and integration in electronics, the concept of Photonic
Integrated Circuit (PIC) emerged. The co-integration of several optical components on a chip opens
the way to a miniaturization, a lowering of the manufacturing costs along with an increase of the
complexity and performances of such devices. The integration of these optical components on Silicon
wafers was firstly proposed by R. Soref during the 80s [8, 9] and leverages the economic advantages

of utilizing existing infrastructures.

The important index contrast between silicon (n = 3.51) and its oxide (n = 1.45) makes Silicon On
Insulator (SOI) a suitable platform for the integration of most photonics components (multiplexers,
mirrors, resonant cavities...). Additionally, silicon being transparent at the wavelengths used for
optical communication transmission (1.3 — 1.55 um) SOl wafers are well adapted for optical
guidance. Finally, this kind of wafers is widely used in microelectronics, abundant and available in
large sizes (200 mm and 300 mm). The main issue lies in the fact that silicon cannot be used to
produce the totality of the functions in a photonics circuit. While it is well adapted for the making of
most active and passive components, its indirect band gap prevents it from being an efficient light
emitter. In this respect, one solution is to heterogeneously co-integrate silicon with I1l-V materials®
such as InGaAs, InP and InGaAsP. The latter are indeed widely used for the making of stand-alone

emitting devices such as laser diodes because of their direct bandgap.

The meeting point between the worlds of Silicon and optics is that of Silicon Photonics. The current
challenge is to identify and develop integration schemes on hybrid devices that would benefit from
the silicon expertise and meet the requisites of the emerging photonics applications. In this thesis, a
special attention will be paid to the development of CMOS-compatible contacts on lll-V-based laser

devices in this respect.

1.2.2 Description of a silicon photonics integrated circuit

In order to propagate the logical information from one hand of the device to the other, a silicon
photonics circuit is made of several elementary components that we are briefly going to describe in

the following section (Figure 1.2):

L 111-V materials are composed of with at least one group Il element and at least one group V element in the

periodic table.
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A photon source, such as a semiconductor-based laser diode, emits light at a defined

wavelength. One or several sources can be used in the case of a signal multiplexing. In this

case, the several lasers must emit at different wavelengths that will give rise to different

channels.

e A modulator converts the electrical information coming from the electronics circuit into an
optical signal. An example of modulator is a Mach-Zehnder?.

e A multiplexer is used to combine the several laser beams into one beam. The latter is
separated into several channels (not shown in Figure 1.2).

e A waveguide or an optical fiber carries the optical signal to the other hand of the photonics

circuit.

e A demultiplexer separates the various canals that where created by the multiplexer (not
shown in Figure 1.2).

e Finally, a photo-detector converts the optical information into an electrical signal which will

be processed in the CMOS circuit by the transistor afterwards.

Optical
fiber

Figure 1.2 : Schematic representation of an optoelectronic circuit.

% In a Mach-Zehnder interferometer a beam splitter divides the laser light beam into two paths, one of which
can be modulated in phase. The two beams are then recombined. Changing the electric field on the phase
modulating path will then determine whether the two beams interfere constructively or destructively at the
output, and thereby create logical 0 or 1.
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1.3 [ll-V heterogeneous integration on Silicon

Several integration schemes can be used for co-integrating the IlI-V devices with the Si ones. In the
following sections, we will discuss the most common techniques to achieve integration of IlI-V with

silicon.

1.3.1 Hetero-epitaxial growth of 1lI-V on silicon

Epitaxial growth of IlI-V materials on silicon might appear as the most fitted solution as it does not
involve any alignment procedure which is critical between the laser and the entrance of the optical
circuit. However, the lattice mismatch between silicon and IlI-V compounds is very important (8%
between Si and Indium Phosphide (InP) or Gallium-Indium Arsenide (Ing4;Gags3As, noted InGaAs in
the following). Their thermal expansion coefficients are also very different from one another
(05=2.6 x10° °CY, qypp = 4.6 x 10° °C?, Qneans = 5.66 x 10 °C?). Both characteristics result in an
important density of defects (dislocations, phase boundaries...) which are severely harmful in active
components as they act as non-radiative recombination sites®. A solution is to use buffer layers for
example combining InGaP, low temperature grown GaAs, InP and a superlattice of InP/InGaAs [10].
While these layers allow a confinement of the defects, they are very thick (several micrometers) and
therefore prevent an efficient evanescent coupling of the photons between the active device and the

waveguide.

The CELO (Confined Epitaxial Lateral Growth) technique was proposed to overcome these issues [11].
High quality and defects free InGaAs and InP layers were grown on SiO, thanks to this method. Based
on it, an integration scheme enabling an evanescent coupling between Ill-V layers and a silicon

waveguide was demonstrated [12].

1.3.2 Flip Chipping

Flip chipping is a mature process that consists in reporting the individually fabricated IlI-V active
device on top of the circuit. The interconnections are realized thanks to gold or gold-tin solder
bumps. The main advantage of the solution is that the two elements being independently developed,
they can be tested separately and the constraints linked to one do not affect the other. On the other
hand, the important alignment precision required between the laser and the optical entrance of the

circuit results in a slow and expensive alignment process. Moreover, the distance separating them

Non-radiative recombination is a process in semiconductors whereby charge carriers recombine without
releasing photons. A phonon is released instead. Non-radiative recombination in optoelectronics is an
unwanted process as it lowers the light generation efficiency and increases heat losses.
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typically corresponds to the thickness of the solder bumps, i.e., a few micrometers, and further
complicates the light coupling. Finally, the level of integration of such a technique is poor which

results in a low compactness and in an increase of the fabrication costs.

1.3.3 Bonding of IlI-V on silicon

The last integration solution consists in bonding the 1lI-V laser stack on a SOl wafer. The IlI-V carrier
substrate is then removed in order to reveal the laser stack (Figure 1.3). An etching of the IlI-V is
finally performed on top of the Si-based devices to form the T-shaped laser. As a consequence the
laser alignment precision is that of lithography, meaning that it is only of a few tens to a few
hundreds of nanometers. This integration method also provides a high crystalline quality leading to a

good emitting efficiency of the laser. Three main bonding techniques are available:

e Metallic bonding

The metallic bonding is based on the use of a metallic alloy as a bonding agent. The most commonly
used alloys are gold, tin and indium. The main advantage of this technique is that the bonding layer
can also be used to dissipate a great part of the heat produced by the functioning devices. The main
drawback is the important absorbency of such materials, leading to large losses in the case of

evanescent coupling between the IlI-V laser and the waveguide located in the SOl wafer.
e Polymer bonding

The polymer bonding uses the DVS-BCB (divinylsiloxane benzocyclobutene) as a bonding via. The
thickness of the BCB layer can be relatively small (down to 30 nm) and does not lead to any optical
losses [13]. This bonding technique is particularly adapted to surfaces that present particles and/or

roughness as both would be compensated by a deformation of the BCB.
e Direct bonding

The direct bonding utilizes the Van der Waals attraction that exists between two hydrophilic
surfaces. To do so, an oxide layer (about 200 nm-thick) is either deposited on the substrates and
planarized by chemical-mechanical planarization (CMP) or formed in an oxygen plasma. The two
substrates are then put in contact at room temperature leading to the formation of Van der Waals
bonds. A low temperature annealing process (T= 300 °C) converts these bonds into covalent ones.
When using this technique, one can choose to bond IlI-V wafers (up to 150 mm [14]) or millimeters
square dices to save the expensive llI-V material. The main advantage of this technique compared to

the polymer bonding is that oxide provides a better thermal conductivity than BCB (0gyqe = 1.2
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W/M.m ; 0gez = 0.3 W/M.m). This characteristic leads to a lower heating of the operating IlI-V laser
and then to better emission characteristics. However, the direct bonding requires flat and defect-free
surfaces (RMS roughness < 0.5 nm, bow < 10 um and [defects] < 100 cm™). Because they share a high
level of expertise in this field, the laser integration strategy followed by STMicroelectronics and the

CEA-LETI exploits the direct bonding of 1ll-V epitaxies on 200 mm SOI substrates.

— ???

I1I-V laser epitaxy l Direct bonding of ' Etching of the InP
on InP substrate I1I-V laser epitaxy dices carrier substrate

Figure 1.3 : Schematic representation of the direct bonding of IlI-V dices on Si substrates in the scope of Silicon Photonics.

1.4 The llI-V laser structure

1.4.1 The LASER effect

While several types of laser exist (e.g., the hybrid evanescent lasers developed by UCSB and Intel [15]
or the DFB lasers developed by the Tokyo Institute of Technology [16]) all of them are based on the
same physical principal: the stimulated emission of photons. This principal has its origins in quantum
physics and was described for the first time by Albert Einstein in 1917 [17]. The stimulated emission

is related to another quantum phenomenon: the stimulated absorption of photons.

The stimulated absorption of photons occurs when a photon is sent on an atom. The absorption of
this photon enables the transition of an electron to an upper energy level. The stimulated emission
takes place when a photon is sent on this excited electron. The latter being disturbed by the incident
photon, it goes back to its initial state releasing a second photon which is identical in all respects to
the first one (Figure 1.4). As a consequence, the emitted photon has the same propagation direction,
phase and polarity as the incident photon. The laser effect corresponds to the use of the cascaded
stimulated emission phenomenon which gives rise to a coherent amplification of the signal and then

to the LASER effect (Light Amplification by Stimulated Emission of Radiation).
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Figure 1.4 : lllustration of the electronic transitions that can occur between the conduction band and the valence band in
a semiconductor. The stimulated emission of photons gives rise to a coherent amplification of the signal.

1.4.2 The laser structure

All lasers are composed of four basic building blocks as detailed in Figure 1.5: The active region is the
zone where the stimulated emission of photons occurs. The latter relies on a population inversion
that requires the supply of external energy provided by a pumping system. In order to maximize the
probability of radiative recombination, the photons are forced to make round trips in the active
region thanks to a resonant cavity. Finally, the created photons are extracted from the cavity and

directed toward the waveguide by means of an optic coupler.

Pumping system

Resonant cavity

Active region

Figure 1.5: Schematic representation of the four elementary blocks constituting a laser: the active region, the
resonant cavity, the pumping system and the optic coupler.

Active region and resonant cavity

The active region of the laser corresponding to the zone where the photons are created, it must be
composed of semiconductors that present a direct band gap. The choice of the materials that
compose this region is a function of the targeted emission wavelength. For example, InGaAsP and
AlGalnAs are commonly used in the telecommunications where wavelengths range from 1.3 um to

1.55 um [18-24]. The amplification of the signal is maximized thanks to the use of quantum wells
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which confine the charge carriers. The probability of radiative recombination and thus the gain at a
given polarization are therefore increased. The thickness of the layers forming these quantum wells
can be decreased down to the De Broglie electrons wavelength, i.e., down to a few nanometers. The
photons must also be confined so that they can make round trips in the active region, once again
increasing the probability of stimulated emission. However, the wavelength of photons in the
infrared being in the range of a few micrometers, their confinement cannot be achieved thanks to
the quantum wells. This contradiction leads to the idea of a separate confinement heterostructure
(SCH). Several thin layers form the quantum wells where the electrons and holes are trapped, while
thick external layers, the separate confinement layers (SCL) guide the optical modes of photons [25]
(Figure 1.6).

Quantum wells
Charge carriers confinement

EC
SCL SCL
Photons Photons
confinement confinement

UL
— &, EL

z

Figure 1.6: Typical band diagram (energy of conduction band E. and valence band Ev versus growth direction) of
quantum wells in separate confinement laser heterostructure (SCH).

Pumping system

In order to obtain a net production of photons in the active region, the stimulated emission process
must dominate over the absorption. To do so, electrons must be promoted in the conduction band
and holes in the valence band for a given k. This phenomenon called population inversion requires
the use of degenerated semiconductors and the supply of external energy. The first requirement
restricts the quasi Fermi levels positions into the valence (p-doped semiconductor) and conduction
(n-doped semiconductor) bands and is described by the Bernard and Duraffourg inequality (Equation

1.1) [26].

eV=Ec-Ey>hv=E Equation 1.1
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To meet the second requirement and supply the laser with energy, two main means are available:
the optical and the electrical pumping. In the first case an external laser is used; its emitting energy
must be higher than the band gap energy of the materials composing the active region. In this way,
the atoms can be excited and emit photons when going back to their equilibrium state. When using
the electrical pumping, the population inversion is achieved by integrating the quantum wells and
SCH in a P-N junction. The polarization of the junction gives rise to the so called inversion zone. A
subsequent voltage increase extends the width of this zone in the k space and increases as a
consequence the radiative radiations as represented in Figure 1.7. We will see in the following
sections that the lasers that we are dealing with in the frame of this PhD are electrically pumped, and

therefore require the integration of innovative and efficient contacts.

E
Th | ilibri Di larizati High injection |
ermal equilibrium irect polarization (population inversion) A

Figure 1.7: Schematic representation of the obtaining of the so called population inversion obtained thanks to a polarized
P-N junction.

Resulting laser structure

When combining these elementary components, the resulting laser structure is composed of an InP-
based P-N junction in which the multi quantum wells and SCL are placed. In STMicroelectronics and
CEA-LETI’s devices, this active region is composed of InGa,As; P, layers emitting between 1.3 and
1.55 um. Metallic contacts are integrated on each side of the P-N junction in order to electrically
pump it. In this respect and to favor the formation of ohmic contacts (®y, > ®sc, where @y, and Osc
are respectively the work function of the metal and of the p-doped semiconductor), an additional p-
InGaAs layer is epitaxially grown on top of the p-InP (®pp = 5.65 eV and @Op.jneans = 5.29 eV). Finally,
an InP/InGaAsP super lattice and an InP layer are added at the base of the laser to facilitate the

bonding process. The arising laser structure is schematized in Figure 1.8.
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Figure 1.8: InP/InGaAsP-based laser structure used in STMicroelectronics and in the CEA-LETI. Note that the laser length
is about 500 um.

Optic coupler

Once the photons have been created in the IlI-V laser, an optic coupler must be used in order to
couple the modes from the active region to the waveguide located in the SOI region. To do so, three
options are available, keeping in mind that the optic modes are guided by the highest refraction
index layers and that this parameter increases rapidly with the width of the waveguide before

stabilizing [27].

e |lI-V guided mode

The first strategy consists in utilizing a 1ll-V waveguide which presents a high effective index (index
seen by the modes if the wave moved along a straight line in the waveguide) compared to that of Si.
In this way, the fundamental mode is guided by the IlI-V and only the evanescent queue is located in
the Si waveguide as represented in Figure 1.9a. The main advantage of this structure is that the gain

is optimal but the coupling is weak.

e Si-guided mode

Contrary to the first solution, in this case the Si waveguide’s index is higher than that of the llI-V. The
mode is then guided by the Si and only its evanescent queue is located in the IlI-V region (Figure
1.9b). As a result, the coupling of this kind of structure is optimized at the expense of the gain. When
choosing this option, the thickness of the bonding layer must be minimized (t < 100 nm) as the mode

overlapping exponentially decays with the distance between the two waveguides.

e Optic coupling between the IlI-V and the SOI
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The third option consists in adiabatically coupling the optical mode between the IlI-V and the Si. To
do so, the effective refractive index of the lll-V and the Si are modified thanks to a taper which is a
waveguide, here in the Si, composed of three different widths (Figure 1.9c). The effective refractive
index decreasing rapidly when narrowing the waveguide, such a design allows converting gradually
the first-waveguide mode into the second and reciprocally [28]. As a consequence such a structure is
composed of a gain zone where the mode is confined in the IlI-V (thin Si guide), of a coupling zone
allowing the transfer of the mode from the IlI-V to the Si (width of the Si guide that increases
progressively), and finally of a passive zone where the mode is guided by the Si (wide Si region). In
this way, both gain and coupling are optimized. Because this option allows an optimization of both

the gain and the coupling, it was retained by STMicroelectronics and the CEA-LETI.

a) b)

Gain : Adiabatic coupling . Passive zone

Figure 1.9: Modes coupling between the 1lI-V and the Si waveguides. (a) Ill-V guided mode, (b) Si guided mode and (c)
adiabatic coupling between the 11I-V and the Si.
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1.5 The optical gain and losses

In a laser, stimulated emission and absorption are competitive phenomena. When electrically
pumped, the laser needs to be under a sufficient polarization to obtain a net production of photons.
However, other aspects have to be taken into account when designing this device to maximize the

gain and minimize the photon losses.

1.5.1 The optical gain

The optical gain of a semiconductor laser defines the light amplification rate per unit length and is
therefore expressed in cm™. It is positive when the stimulated emission of photons compensates
their absorption. In other words, the optical gain is a function of the electronic transitions that occur
between the conduction band and the valence band in the semiconductor. As described in section
1.4.1 and 1.4.2, the net production of photons can be obtained thanks to a polarized P-N junction in

which the active region and resonant cavity are placed.

In the resonant cavity, the photons make round trips, and during this journey, some will be produced
while others will be absorbed. The laser effect appears when the losses are exactly compensated by
the gain, that is when the intensity after a round trip is equal to the initial one as indicated in

Equation 1.2.

Iy x exp(gL).exp(—aL) x Ry x exp(gL) .exp(—al) x R, =1, Equation 1.2
With g the optical gain (cm™). This gain takes into account the intrinsic material gain and the
confinement factor;
o the absorption coefficient;
R4 and R, the reflection coefficient of the mirrors forming the resonant cavity;
L the length of the resonant cavity.

Equation 1.2 leads to the lasing threshold equation which defines the minimal gain which is

necessary to initiate the LASER effect.

_ 1 1 Equation 1.3
go = a+ 2L'ln (Rle)
Threshold gain coefficients for InGaAsP/InGaAs or InGaAs/GaAs quantum well structures are typically
of 500 cm™ while the corresponding maximum material gain coefficients range from 3 x 10° to

6 x 10° cm ' [29], [30], [31].
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1.5.2 The optical losses

The optical losses correspond to the attenuation of the wave amplitude throughout its propagation
and are therefore expressed in cm™. Generally speaking, these losses can be caused by internal
absorptions in the waveguide materials or by external factors such as roughness induced scattering
for example. In the following, we will discuss the main loss causes in the laser device that we will be

dealing with throughout this thesis, such as represented in Figure 1.10.

Arrays of metallic plugs
p-InGaAs

T . Active region (MQW)._ .
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n-contact
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Figure 1.10: Schematic representation of a laser device with integrated contacts.

Internal absorption loss

In a direct band semiconductor several charge carriers’ transitions lead to the absorption of photons
(Figure 1.11) [31]:

e The Direct Band to Band (DBB) and Indirect Band to Band (IBB) absorptions;

e The Intra Conduction Band Valley absorptions (ICV);

e The Intra Conduction Band (ICB) absorptions corresponding to the transition of an electron
from the bottom to the top of the conduction band;

e The Inter Valence Band (IVB) absorptions which correspond to the transition of a hole from a

lower valence band to a higher one.
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L

Figure 1.11: Intra and Inter band transitions in a direct band gap semiconductor leading to internal absorption losses.

The intensity of these mechanisms strongly depends on the wavelength. For A < A, the DBB and IBB
transitions are favored while they exponentially decay for higher wavelengths. In this case, the
absorption phenomenon is dominated by the free carriers induced losses (ICB, IVB and ICV). The
corresponding absorption coefficient can be approximated by a linear function of the carriers’

concentration:
ap =kp.n+ky.p Equation 1.4

Where n and p are the electrons and hole concentration and k, and k, the corresponding

absorption coefficients.

The holes’ absorption is particularly important in the InP, GaAs and InGaAs-based devices operating
at the telecommunication wavelengths (1.3 - 1.55 um) [31]. In these cases, the energy difference
between the valence bands corresponds to the photon energy resulting in high a coefficients ranging
from 13 cm™ to 25 cm™ for these three materials [32]. The intra conduction band transitions are
responsible for a less important absorption in these materials (@ = 1.5 cm™ in InGaAsP/InP
waveguides [33, 34]). The absorption induced by the p-type layers is then much more important than
the one induced by n-type layers. Thus, it seems reasonable to evaluate the feasibility of an
innovating integration where p-type layers would be replaced by n-type ones. In this respect designs
integrating tunnel junctions coupled to n-type layers were proposed and allowed to reduce by half

the generated losses in a 500 nm thick laser epitaxy [35].

Scattering loss

When propagating in a waveguide, light can suffer from losses caused by the defects it encounters.
For example microscopic variations in the material density, compositional fluctuations, structural
inhomogeneity and manufacturing defects can lead to important scattering losses. The latter can also
be induced by the roughness the photons might encounter on the sidewalls of the waveguide. As a

consequence, the manufacturing of the SOl waveguide is crucial to minimize the scattering losses.
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Similarly, the etching of the IlI-V laser requires special attention in order to minimize the sides’

roughness and the resulting losses.

Metal and dielectric absorption loss

Aside from the losses generated in the materials where the light propagates, some might be caused
by the surrounding materials. Generally speaking the absorption of a material is described by the
imaginary part of its complex refractive index: N =n + ik. When k is positive, the material is
absorbent; when k is equal to zero, the material is transparent; when k is negative, the material is
amplifier. As a result, the absorption coefficient of a given material can be calculated directly based

on the imaginary part of its complex refractive index:

4rk Equation 1.5

The table below lists the real and imaginary parts of the refractive index of the most commonly used

metals as contacts on both InP and InGaAs as well as the corresponding absorption coefficients at

A=1.5pum.

Table 1.1: Real and imaginary parts of the refractive index of the most commonly used metals as contacts on both InP
and InGaAs along with the corresponding absorption coefficients at A = 1.5 um [36-38]

Ti Au Ni Pd Pt
n 3.68 0.36 3.49 2.91 5.31
k 4.54 10.40 7.02 8.15 7.04
a(cm™) 3.8x10° 8.7 x 10° 5.9x 10° 6.8 x 10° 5.7 x 10°

The listed absorption coefficients are on average two orders of magnitude greater than the material
gain coefficient of a 6 quantum-wells-InGaAsP based diode [29]. For this reason metallic contacts
must be placed as far away as possible from the active region of the laser and from the waveguides.
The lower contacts being placed aside from the active region, their influence is negligible. However,
the influence of the upper contact can be important in case of thin epitaxies as the optical mode
intensity is mainly located underneath the contact. In this case, the use of contacts located on the

top edges is a promising solution.

As represented in Figure 1.10 and detailed in Chapter 2, the CMOS-compatible integration of the

contacts is enabled by a dielectric encapsulation of the laser. Just like metallic contacts, these
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dielectric compounds can generate absorption losses because of their vicinity from the active region
of the laser. As taking them away from the quantum wells is not possible, section 2.4 will be

dedicated to their optical characterization and selection.

Radiation loss

Aside from the absorption loss, the dielectric compounds can be responsible for the so called
radiation loss. More precisely, in this case, the refractive index difference between these materials
and the IlI-V generate losses. The latter appear when a material with a higher refractive index than
that of the region where the optical modes are located is placed next to it. Let’s consider for example
a 300 nm thick waveguide composed of InP (n =3.16 @ 1.3 - 1.55 um) bonded to a Si substrate (n =
3.5 @ 1.3-1.55 um) thanks to a SiO, layer (n=1.44 @ @ 1.3 - 1.55 um). Non negligible losses are
generated by the vicinity of the Si from the InP waveguide. It was demonstrated that a SiO, bonding

layer thickness of at least 550 nm is necessary to minimize these losses down to 1 cm™ [35].

1.6 The electrical pumping of the laser: contacts to n-InP and p-InGaAs

1.6.1 State of the art about contacts to IlI-V materials

In order to enhance the performances of the laser, the above detailed losses must be minimized
while the gain must be maximized for a given polarization. Because the laser devices that are used by
STMicroelectronics are electrically pumped, one of the most important developments therefore
concerns the contacts that are integrated on each side of the P-N junction. Indeed, as explained in
section 1.4.2, the polarization of the junction determines the width of the inversion zone, and

therefore the intensity of the radiative radiations.

As a consequence, just like electronics, photonics require the use of high quality contacts to provide
both short and long term performances and reliability. In this respect, contacts to lll-V surfaces have
been developed over the past decades taking into account several expectations as listed below
whatever the targeted application. Note that these contacts will be referred to as classical contacts
in the following, as opposed to the Si-compatible innovative contacts whose development is the

heart of the present thesis.

e The metallization must be selected to form ohmic contacts (see Chapter 4 for a detailed
definition) and must present the lowest sheet resistance, therefore limiting their

contribution to the overall resistance;
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e The deposition temperature and the subsequent annealing treatments must be carefully
chosen to form interfacial products that lower the contact resistivity while limiting the
induced stress;

e The compounds along with their microstructure must be stable over a large range of
processing temperatures;

e The number of lithography in the integration scheme must be minimized in order to lower

the overall production cost.

To this end contacts to IlI-V surfaces have been extensively studied over the past decades.
Generally speaking, classical contacts to n-InP and p-InGaAs are comprised of a multitude of
layers which were added over the years to address encountered issues or to push back the limits
in terms of specific contact resistivity lowering. In the following, we provide non-exhaustive lists
of the classical stacks, annealing treatment conditions, IlI-V doping level and resulting specific
contact resistivity both on n-InP (Table 1.2) and p-InGaAs (Table 1.3). Note that the nomenclature
convention that will be used throughout this chapter is as follows: the contacts’ stacks will be

noted A/B/C, where C is the layer in contact with the semiconductor.
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Classical contacts to n-InP

Table 1.2: Classical contacts stacks, annealing treatment conditions, IlI-V doping level and resulting specific contact

resistivity on n-InP surfaces

Metallization Annealing treatment InP dopurfsg pc [Q.cm?] Reference
level [cm™]
AuGe 480°C-90s 1x10% 4.0x107 [39]
Ni/AuGe 440°Cor480°C-90s 1x10% 1.3x 107 [39]
Pd/Ge 300 °C — 30 min 5.3x 10* 1.3x10° [40]
Pd 300 to 350 °C — 2 min 1.8x 10" 5.0x 107 [41]
Au/Ge/Pd 350°C-320s 1x 10" 2.5x10° [42]
Al/W/Pd/Ge/Pd 450°C—-30s 3x10™ 7.2x10° [43]
Ge/Pd 400t0 450 °C-<10 min 1x10Y 4.2x10° [42]
Ge/Pt 450 °C — 10 min 2x10% 2.0x10° [44]
Ge/Pt/Ge/Pt 500°C—-30s 2x 10" 7.7x10° [44]
Pt/Ti As deposited 5x 10" 1.1x 10" [45]
Pt/Ti 450°C-30s 5x 10" 8.0x 10~ [45]
Au/Pt/Ti 450°C-30s 1x10% 8x10° [46]
WSi RT to 600 °C — 2 min 1.4 x 10%° 1.0x 10° [47]
Ag 400 °C -3 min 1.7 x 10" 2x10° [48]

One of the most conventional contacts to n-InP is based on the eutectic compound AuGe, classically
used on GaAs surfaces. While very low specific contact resistivities are obtained with it (p. < 5.10°
7 Q.cm?), its low fusion temperature (361 °C) leads to important thermal instabilities of the contacts
and poor interfacial morphology [49]. The introduction of a top Ni layer acting as a wetting agent
suppressed the agglomeration of the AuGe [50]. The latter presents a double advantage as it also
reacts with the InP substrate to form binary compounds that seem to be electrically favorable [51-
53]. Although the addition of this layer improved the morphology over AuGe, this stack still suffers
from a propensity to spike and to be thermally unstable. This is attributed to the diffusion of Au and
can be limited by the addition of a Ni layer at the interface between the AuGe and the semiconductor

leading to a final Ni/AuGe/Ni stack [54].
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Similarly, other conventional contacts to GaAs have been adapted to InP surfaces. These include solid
phase regrowth techniques-based contacts. Among them, the Ge/Pd and Ge/Pt-based contacts are
particularly interesting because of their high thermal stabilities [42, 44]. For example, the
Ge/Pt/Ge/Pt stack still presents a contact resistivity of 9.15 x 10°° Q.cm? after a 20h-long aging at 400
°C [44]. Aside from these stacks, we can also cite the gold-free contacts such as Pt/Ti for which the
contact resistivity decreases substantially to 8.0 x 10”7 Q.cm? after a rapid thermal processing (RTP) at
450 °C [45]. One of the most remarkable stacks was developed by UCSB and Intel. Combining Al, W,
Pd, Ge and Pd the contact resistivity was lowered down to 7.2 x 10® Q.cm? after a 60 s-thermal

treatment at 450 °C [43].
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Classical contacts to p-InGaAs

Table 1.3: Classical contacts stacks, annealing treatment conditions, 1lI-V doping level and resulting specific contact
resistivity on p-InGaAs surfaces. When encountered, N/A stands for Not Available

InGaAs doping

Metallization Annealing treatment level [cm™] pc [Q.cm?] Reference
AuGe N/A 2.2x10% 8.0x10° [55]
Pd/AuGe N/A 4x10% 4.0x10° [55]
Pd/Ge 400 °C - 30 min 1.8 x 10" 2.3x10° [40]
Pt/Ti As deposited 1.5 x 10" 3.0x10™ [56]
Pt/Ti 450°C-30s 1.5x 10" 3.4x10% [56]
Au/Pd/Ti 450 °C - 20s 1x10" 9.1x10° [57]
Au/Pt/Ti 450 °C - 30s 5x 10" 5.5x 10~ [46]
Al/W/Ti 450 °C - 30s 2x 10" 3.3x10° [43]
w 400 °C - 30s 2.5x10% 3.8x10° [58]
W2zZn 500°C-10s >1x10% 5.0x10° [59]
Au/Pt/Ti/Pt 400°C-25s 2x 10" 1.1x 107 [60]
Au/Pd/Ti/Pd 400 °C - 20s 1x10% 1.7x10° [57]
Al/Ti/Ge/Pd 405 °C - 60s 2x 10" 3.1x10° [61]
Al/W/Pd/Ge/Pd 450 °C-30s 2x 10" 2.1x10° [43]
Au/Ir/Pd 400°C—-25s 2x10% 2.1x10° [60]
Au/Pt/Si/Gd 300 °C -1 min 2x 10" 5.6x10° [60]
Pt/Si/Gd 300 °C— 1 min 2x10" 44x10° [60]

As in the case of contacts to n-InP, a wide range of metallizations were investigated on p-InGaAs
surfaces. The classical AuGe-based contact presents the same positive electrical characteristics on p-
InGaAs as it does on n-InP but also tends to present a poor morphology, to spike and to be thermally
unstable. Similarly, Pt/Ti contacts give access to resistivity as low as 3.4 x 10 Q.cm? on p-InGaAs
surfaces after 30 seconds-RTP at 450 °C but are degraded at temperatures higher than 500 °C [56].
The resistivity decrease is attributed to the diffusion of Ti leading to the formation of binary and

ternary Ti-In-As-based compounds. Adding Au or W layers does not help decrease the specific
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contact resistivity as it seems completely driven by the Ti/p-InGaAs interface. Aside from these Ti-
based metallizations, other gold-free contacts were reported. The latter include Pd, Ge and Pt inter-
layers and provide resistivities in the range of 10° Q.cm2. Among those, the Al/W/Pd/Ge/Pd stack
developed by UCSB and Intel is again particularly outstanding as it opens the possibility of integrating

a unique metallization with low contact resistance both on n-InP and p-InGaAs [43].

Integration of classical contacts on IlI-V surfaces

Whatever the chosen metallization, the classical contacts usually rely on similar integration schemes.
The latter consist in depositing a resist on the llI-V surfaces and in patterning it to open contact
regions. After a IlI-V surface preparation, the above-listed stacks are deposited for example by
physical vapor deposition (PVD) or by e-beam evaporation. The lift-off of the resin is then carried out,

leaving defined metallic pads on InP or InGaAs as schematically represented in Figure 1.12.

R

Figure 1.12: Schematic representation of a lift-off integration of contacts.

1.6.2 Transition towards CMOS-compatible contacts

General considerations

Photonics systems could benefit from coupling with silicon substrates but several impediments to a
heterogeneous integration exist, especially concerning the contacts. Most of the stacks listed in Table
1.2 and Table 1.3 are comprised of gold which is banned from Si-based CMOS-compatible
environments as it acts as a deep-level trap in silicon, therefore hindering the conduction [62].
Because of the additional thermal instability of gold-based metallizations, great efforts were made to
develop gold-free contacts. The latter are usually comprised of noble metals which are either
prohibited from frond-end microelectronics environments or too expensive to be brought into the
world of mass production. Most of them present stacks combining a multitude of layers (up to five)
which further complicates their integration. Moreover, most of the above listed contacts require high
temperature thermal treatments (T = 450 °C) which would be harmful to the quantum wells of the
laser’s active region. Finally, the integration scheme of the classical contacts requires the use of non-
planar processes such as the lift-off because of the difficulty to etch and to chemically-physically
polish most noble metals. As a consequence, both the composition and the integration scheme of

the classical contacts appear to be unsuitable to a front-end microelectronics environment.
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The combination of these various assessments clearly highlights the fact that the classical contacts
are not adapted to a front-end silicon microelectronics environment. Thus, the enabling of 11I/V-Si
heterogeneous integration requires the development of innovative contacts, both in terms of
integration and composition. A few studies were initiated in the CEA-LETI to develop such contacts in
the late 2000’s [63-65]. The corresponding contacts were free from any gold, based on Al(Cu), Ni and
Ti metals and presented specific contact resistivities ranging from 2 x 10° to 1 x 10* Q.cm®. However,
numerous developments concerning the integration and the optimization of such contacts were still

necessary to enable the co-integration of IlI-V lasers and Si-photonics circuits.

The IRT Photonique project

The IRT Photonique project, in the frame of which this PhD was conducted, aims to develop fully
integrate I1I-V / Si heterogeneous photonic devices. More precisely, the purpose of this project is to
enable the integration of IlI-V lasers on the patterned Si-photonics wafers, firstly in 200 mm and
ultimately in 300 mm. As already mentioned, permitting the co-integration of 1lI-V active devices with
silicon passive ones requires the fulfillment of both a photonics platform’s requirements and those of
a front-end silicon environment. Among others, because of the incompatibility of classical contacts
with a Si-microelectronics environment, innovative contacts must be developed. On top of the
requirements already detailed in section 1.6.1, these innovative contacts must meet the following

requisites to be integrated on Si-photonics devices:

e Contacts must be integrated thanks to Si-microelectronics compatible and planar processes
which exclude any lift-off or related processes;

e Contacts must be integrated thanks to 200 or 300 millimeters-compatible equipment’s;

o Stacks must be comprised of front-end compatible materials only, such as Ni, Ti and their
alloys;

e All thermal budget must be minimized (T < 450 °C) in order not to degrade the active region
of the laser composed of multi quantum wells (MQW);

e The metallization must be selected to form ohmic contacts (see Chapter 4 for a detailed
definition) and must present the lowest sheet resistance, therefore limiting their
contribution to the overall resistance. Limit values of series resistance in the overall laser
device are about 5 Q, which induces a maximum of 0.5 to 1 Q for each contact to minimize
the Joule effect and the power consumption. Given the dimensions of the contacts detailed
in Figure 1.8, the corresponding specific contact resistivities must be lower than 5.10° Q.cm2.
A higher contact resistivity would cause a local heating of the laser that may give rise to a

wavelength shift of the produced photons [66-69].
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Taking into account the intrinsic limitations linked to the electrical performances of the contacts as
well as those linked to the functioning of the laser, this PhD thesis will be dedicated to the
development of front-end Si-microelectronics compatible contacts to p-InGaAs and n-InP. Chapter 2
will present the development of the corresponding integration scheme while a particular focus will
be paid to the metal in intimate contact with the 1lI-V semiconductor, i.e., the metallization in the
following chapters. The metallization will indeed be metallurgically studied in Chapter 3 while the

electrical properties of the integrated contacts will be presented in Chapter 4.

1.7 Conclusion

In this chapter, we presented the benefits of using optic links and photonics, and how they can
answer the new communication needs in terms of delay, power, bandwidth and delay uncertainty.
We also highlighted the fact that co-integrating IlI-V compounds with Si is the key to benefit from
both the active properties of the IlI-V compounds and from the thorough knowledge of silicon
technologies and processes. While the majority of the components are patterned in a SOI wafer, the
emitting device is composed of IlI-V materials. As a consequence, this laser must be integrated on
top of the SOI wafer, in front of the optical entrance of the circuit. Although several techniques are
available, ST Microelectronics and the CEA-LETI chose to directly bond it because of their high level of
expertise concerning this technique. The functioning of the laser being based on the stimulated
emission of photons, one must be very careful about the losses that could be generated. The LASER
effect exists as long as the gain, i.e. the light amplification, is higher than these losses. To maximize
the gain, charge carriers and photons are trapped thanks to quantum wells and thicker layers in a
separated confinement heterostructure. The optical losses sources, however, are numerous and
range from internal absorption loss and scattering loss to metal or radiation loss. Their minimization
can only be achieved by carefully choosing the materials, i.e. metals and dielectrics, that surround
the 1lI-V laser and by optimizing the integration processes. In order to maximize the laser yield, the
contacts which are used to electrically pump it are determining. Unfortunately, the contacts that
were classically used up to now are not compatible with a Si-compatible environment and thus with
the overall integration chosen by STMicroelectronics and the CEA-LETI. As a consequence, it is of
crucial importance to develop innovative contacts that meet the requirements of such an

environment while optimizing the performances of the laser device.
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In the previous chapter we explained the need of external energy supply for the production of
photons in the active region of the laser along with issues related to the integration of classical
contacts in llI/V-Si heterogeneous devices. In this chapter, we will propose alternative solutions for

the integration of contacts on each side of the P-N junction, i.e. on both n-InP and p-InGaAs surfaces.

2.1 CMOS-compatible contacts integration to IlI-V surfaces

The classical contacts presented in section 1.6.1, often composed of noble metals and relying on non-
planar processes must be replaced in order to develop fully integrated III-V / Si heterogeneous
photonic devices. Therefore, innovative contacts meeting the requirements of a functioning laser

device and those of a front-end Si-microelectronics clean room must be developed. As a reminder:

e Contacts must be integrated thanks to Si-microelectronics compatible and planar processes
which exclude any lift-off or related processes;

e Contacts must be integrated thanks to 200 or 300 millimeters-compatible equipments;

e Stacks must be comprised of front-end compatible materials only, such as Ni, Ti and their
alloys;

e All thermal budget must be minimized (T < 450 °C) in order not to degrade the active region
of the laser composed of multi quantum wells (MQW);

e The deposition temperature and the subsequent annealing treatments must be carefully
chosen to form interfacial products that lower the contact resistivity while limiting the
induced stress;

e The compounds along with their microstructure must be stable up to 450 °C;

e The number of lithography in the integration scheme must be minimized in order to
minimize the overall production cost;

e The metallization must be selected to form ohmic contacts with specific contact resistivities

lower than 5.10” Q.cm?.

The development of such contacts requires the implementation of characterization tools. Therefore,
in order to determine the electrical and morphological impact of the various processes on the

contacts, two different masks were developed as detailed in Table 2.1.
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Table 2.1: Recapitulative table of the two masks that were designed in order to characterize and develop the Si-
microelectronics compatible contacts to IlI-V surfaces

MELT TASP

Mesures Electriques sur structures

TLM
. TLM structures on As and P-based surfaces
Meaning (Electrical measurements on TLM
structures)
Wafer
50 mm to 100 mm 200 mm
diameter
[1I-V epitaxy (50 mm) bonded on Si wafer
Type of llI-V Bulk lI-V substrate (50 mm)

(200 mm)

Both masks are composed of 3 different levels of lithography:

e ACTIVE level, used to pattern the IlI-V stacks and provide electrical isolation of the electrical
test structures;

e CONTACT level, used to pattern the contact cavities were the Si-microelectronics compatible
metallization is integrated;

e METAL level, used to integrate metallic pads necessary to polarize the contact test structures

during the electrical characterization.

While they are quite different from one another, both masks enable the integration of morphological
and electrical test structures on IlI-V surfaces. While the two masks were used to electrically
characterize the contacts, the development of the Si-compatible integration scheme and processes
presented in this chapter was made solely thanks to the mask TASP. Indeed, only the latter enables
the integration of the contacts in a 200 mm-platform, and therefore on 200 mm Si wafers. The
corresponding morphological test structures consist in an array of squared contact cavities (5 um x 5

um) as shown in the SEM image presented in Figure 2.1.
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X1.58K 28.08rm

Figure 2.1: Scanning electron microscope (SEM) image of the morphological test structures integrated either on n-InP or
p-InGaAs surfaces to develop the CMOS-compatible integration of the contacts.

Because they tend to react very differently, these researches were conducted separately on n-InP
and on p-InGaAs surfaces. For the sake of consistency, the stacks that were used for these studies
were similar to those present underneath the contacts’ regions in the laser (alternating of InP,
InGaAsP and InGaAs layers as schematized in Figure 1.8). The resulting epitaxies are displayed in

Figure 2.2.

(a) (b)

p-InGaAs (N, = 3.10%° cm-3)

InGaAs

InGaAs

Figure 2.2: Schematic representation of the Ill-V stacks used for the development of Si-compatible contacts (a) to n-InP
and (b) to p-InGaAs surfaces.

These IlI-V stacks were epitaxially grown on two-inches llI-V substrates that were bonded onto
200 millimeters silicon substrates therefore enabling the processing of the wafers in the CEA-LETI’s
R&D 200 millimeters fab line. The process flow related to the proposed and reviewed integration
flow is schematically shown on a laser device in Figure 2.3. In the latter, the contacts are integrated
sequentially, starting with those on n-InP. One could also imagine to start with the integration of the
contact on p-InGaAs, or to simultaneously integrate the contacts on both surfaces. These different

solutions are strongly linked to process conditions such as dry etching, surface cleaning, thermal
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budget... In the following sections, we will detail the integration steps, the associated constraints and

the proposed solutions which were developed thanks to the morphological test structures [1]".

! Note that some details about the process will not be given in this thesis for the sake of confidentiality.
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Figure 2.3: Si-compatible process flow for the integration of the contacts on a IlI-V laser in the framework of Silicon
Photonics. Note that the width of the laser is about 100 um while its longitudinal dimension is approximately 500 um.
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2.2 Transfer of the lll-V stack on the silicon substrate

In STMicroelectronics and in the CEA-LETI, the IlI-V wafers are transferred on oxidized silicon wafers
thanks to the direct bonding process described in section 1.3. To do so, the Ill-V substrates are

carefully chosen as they must present the following characteristics:

e RMSroughness<0.3nmonalumx1pumscan;
o  Wafer’'s bow < 10 um;
e Concentration of defects < 100 cm™;

o Absence of defects longer than 100 nm.

An oxidation of the silicon substrate is made in order to form a 200 nm thick SiO, bonding layer. A
succession of surface preparations combining wet and plasma treatments are then carried out both
on lll-V and silicon. The silicon wafer is firstly cleaned in ozonated deionized water to remove the
hydrocarbon compounds and make the surface hydrophilic while the 1lI-V wafer is exposed to an
ozonated environment. The IlI-V and SiO, surfaces are then exposed to an O, plasma which increases
the post annealing bonding energy and the IlI-V wafer is cleaned in deionized water. The two wafers
are finally put in contact and a strengthening thermal treatment is carried out at 300 °C for 2 hours
under a N, atmosphere. The latter converts the Van der Walls bonds into covalent ones between the
[1I-V and the SiO,. For this study, 2-inches IlI-V substrate were bonded to 200 mm Si ones as shown in

Figure 2.4 (a) along with the corresponding schematic cross sections.
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(a)

InGaAs

p-InGaAs (N, = 3.10%° cm™®)

(b)

p-InGaAs (N, = 3.10%° cm)

Figure 2.4: Pictures of a 2 inches IlI-V substrate along with the n-InP and p-InGaAs-based stacks (a) after its bonding to a
200 millimeters oxidized silicon substrate and (b) after the etching of the IlI-V carrier substrate and of the sacrificial
layers.

The ll-V carrier substrate is then etched up to the active layers, i.e. n-InP or p-InGaAs, thanks to
consecutive wet etchings. For this purpose concentrated HCl solutions combined with H3PO, are well
adapted to the etching of InP while a mixed solution of H,SO, and H,0, is used to remove InGaAs
layers. The final stacks along with the corresponding bonded wafer picture are displayed in Figure 2.4
(b). Note that when reporting full two-inch substrates a great surface of the expensive Ill-V stack is
lost during the subsequent patterning step. In order to minimize the material loss, a solution consists

in bonding millimeter-scale dies on the SOl substrate thanks to dedicated holders.

2.3 Etching of the IlI-V stack via a SiN hard mask

(a) (b)

Bondini Iaier Bonding layer

Figure 2.5: Schematic representation of the IlI-V etching (a) on the IlI-V laser (b) on the morphological test structures.

After its bonding, the IlI-V stack is etched to define either electrically isolated squared patterns on

the morphological and electrical tests structures or to define the T-shaped laser on the actual devices
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(Figure 2.5). The isotropic property of wet chemical etchings makes them unsuitable for this kind of
structure patterning. On the contrary directional plasma etchings are well adapted. This kind of
process requires the use of a hard mask which acts as a protecting and sacrificial layer during the
patterning of the Ill-V. To fulfill this role, its etching rate must be much smaller than that of the IlI-V

compounds.

Choice of the hard mask

SiN layers are often used as hard masks and must be carefully chosen in order not to deteriorate the
surfaces on which the contacts will be integrated afterwards. Additionally, in order not to degrade
the active region of the laser, all processes temperatures must not exceed 450 °C. Keeping in mind
these restrictions, several types of SiN that are available in the CEA-LETI clean room were selected as

listed in Table 2.2.

Table 2.2: Deposition technique and temperature, stress and etching selectivity towards I11-V compounds of the available
SiN hard masks in the CEA-LETI clean room

Deposition technique Deposition temperature Stress [MPa]
Conformal SiN PECVD 300 °C 118
Conformal SiN PECVD 400 °C -75
Low stress SiN PECVD 300 °C -60

While the low stress SiN offers the lowest deposition temperature and intrinsic stress, its availability
comes as an issue. For the time being, in the CEA-LETI, its deposition can only be performed in an
equipment located in a clean room dedicated to MEMs devices were the contamination level is high
compared to that of the CMOS-dedicated clean room, and therefore compared to our application
standards®. The aim of these studies being to develop a fully CMOS-compatible integration, the use
of this low stress SiN was thus not possible during this study. Nevertheless, because of its strong
assets we decided not to renounce this option and assessed it optically and electrically in sections 2.4
and 4.6). The two other solutions include conformal SiN deposited either at 300 °C or at 400 °C by
plasma enhanced chemical vapor deposition (PEVCD). However, llI-V surfaces are known to be
sensitive to high temperatures. Thus, to discriminate these two processes and select the most
adapted deposition temperature, AFM measurements were performed before and after SiN

depositions at 300 °C and 400 °C on InP and InGaAs surfaces (Figure 2.6).

® The deposition of the low stress SiN should be available in the CMOS-dedicated clean room at the beginning
of 2017.
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Figure 2.6: AFM scans (5 um x 5 um) of InP and InGaAs surfaces before and after deposition of conformal SiN at 300 °C

and 400 °C. The deterioration of InP surfaces at 400 °C is highlighted by the sharp increase of the RMS roughness.

While InGaAs surfaces are not altered by this process, depositing the conformal SiN at 400 °C results

in a strong deterioration of InP surfaces. Thus, depositing the hard mask at 400 °C is not adapted to
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such surfaces. On the contrary, the 300 °C deposition process does not induce any morphological

deterioration of InP and InGaAs surfaces.

Because of the unavailability of the low stress SiN and the deterioration of the surfaces caused by the
400 °C process, the conformal SiN deposited at 300 °C was ultimately retained as the most adapted
hard mask for the etching of InP and InGaAs surfaces. In the following, this selected material will be

noted conformal SiN.

111-V plasma etching

An inductively coupled plasma process (ICP) is used for the patterning of the IlI-V stack. This kind of
plasma etching provides high etching rates (260 to 360 nm/min) which are necessary in the case of
the several micrometers thick IlI-V laser stack (Figure 2.3.A). As highlighted by the scanning electron
microscope (SEM) image displayed in Figure 2.7 it also leaves smooth and vertical IlI-V sidewalls. The
minimization of the roughness is essential not to induce scattering losses and therefore not to
decrease the emission efficiency of the laser (see section 1.5.2). Consequently, it appears that the
use of an ICP process combined with a conformal SiN hard mask deposited at 300 °C are well adapted
for the patterning of the III-V stacks in terms of process efficiency and in terms of photon loss

minimization.

~ SiN hard mask

Sio,

Carrier silicon substrate
Tit |E-Beam| Det

500 nm

Figure 2.7: SEM (Scanning Electron Microscope) image of a llI-V stack (n-InP top layer) after its dry etching via a SiN hard
mask prepared using FIB (Focused lon Beam). The black dots that are present in the InP layer are caused by the SEM
characterization and must be disregarded. Note that the TEOS (Tetraethyl orthosilicate) and W were used to protect the
structure during the FIB etching.
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2.4 Dielectric encapsulation

(a) (b)

p-InGaAs
I ———————
Bondini Iaier Bonding layer

Figure 2.8: Schematic representation of the dielectric encapsulation (a) on the IlI-V laser and (b) on the morphological
test structures.

The planar integration of the contact regions is made possible by an initial dielectric encapsulation of
the whole structure. However, the choice of the dielectric nature is crucial because of its vicinity
from the laser’s active region in the device. In the following sections we will present the optical and
thermal characteristics of the dielectric candidates allowing us to determine the best available

options for the laser encapsulation.

2.4.1 Criteria for the selection of the candidates

When photons are close to a material which presents a high optical absorbance, they can be
extracted from where they are to be absorbed by the second material (see section 1.5.2). In the case
of the laser, photons are located in the active region of the Ill-V laser which is itself contiguous with
the dielectric encapsulation as schematized in Figure 2.8. If the latter presents an absorption
coefficient higher than the gain coefficient of the laser (typically 3 x 10* cm™ to 6 x 10° cm™ for
InGaAsP/InGaAs or InGaAs/GaAs quantum well structures [2-4]), the losses would become
predominant. To minimize them, it is therefore necessary to choose one or several dielectric

compounds with a low absorbance at the emitting wavelength of the laser (1.3 — 1.55 um).

Important losses can additionally be generated by the presence of a high refractive index-material
close to the region where photons are located. These are the so called radiation losses described in
section 1.5.2. In order to minimize them, the dielectric materials surrounding the IlI-V active region
must present a refractive index lower than that of the IlI-V stack. The refractive index of InP, InGaAs
and InGaAsP being in the range of 3.16 to 3.56, the chosen dielectrics’ indexes shall therefore be

lower than 3.16 [5-8].
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Aside from the optical properties of the dielectric compounds, their propensity to evacuate the heat
produced by the operating laser must be considered. When functioning, the device locally warms up
which might result in a performance degradation of the laser as well as a wavelength shift of the
produced photons [9-12]. The thermal conductivity of the chosen dielectric compounds must
therefore be as high as possible. Finally, because a damascene CMP approach is used in this

innovative integration scheme, the chosen dielectric compound(s) must be planarizable by CMP.

Based on these criteria, several dielectrics were selected for this study, as summarized in Table 2.3.
First of all, the low stress and conformal SiN that were presented as potential hard mask candidates
could act as encapsulation materials by increasing their thicknesses. Silicon dioxides (SiO,) were also
selected as their refractive index is known to range from 1.45 to 1.54 (A = 1.3 — 1.55 um), and
therefore should not be responsible for any radiation loss [13-16]. In the CEA-LETI clean room, SiO,
layers can be deposited by PEVCD either at 300 °C or at 400 °C. However, we showed in the previous
section that the underlying SiN is deposited at 300 °C. Therefore, for the sake of consistency and not
to induce any degassing of the SiN, the SiO, deposition must be performed at 300 °C. Finally,
aluminum oxide (Al,O3) which refractive index ranges between 1.57 and 1.7, was primarily selected
because of high thermal conductivity values (K>40 W.m™.K"') reported in the literature for
crystalline alumina [16-19]. It is important to note that the ultimate dielectric stack might be
composed of a combination of several dielectric compounds in order to benefit from all offered

advantages.

Table 2.3: Deposition technique, temperature, rate and thicknesses of the four dielectric compounds that are candidate
for the encapsulation of the IlI-V stacks

Deposition  Thickness

Dielectric Deposition Deposition
Power rate of the layer

nature technique temperature
[nm / min] [nm]
Low stress SiN PECVD Single frequency 300 °C 760 2000
Conformal SiN PECVD Mixed frequency 300 °C 60 200
Sio, PECVD Single frequency 300 °C 690 2000

Room

Al,03 PVD - 1.9 800

Temperature (RT)
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2.4.2 Optical characteristics of the dielectric compounds

Transmittance, Reflectance and Absorbance of the dielectric compounds

The transmittance (T), reflectance (R) and absorbance (A) of the selected dielectrics compounds were
measured thanks to a classical setup detailed in Appendix Al. Four wafers were prepared for this
experiment with low stress SiN, conformal SiN, SiO, and Al,O; deposited layers on 200 mm Si
substrates. To minimize the associated error, the corresponding thicknesses were maximized but
vary from one dielectric to another because of multiple reasons. The stress of the conformal SiN
induces an important strain that could result in a delamination of the layer for a too important
thickness. For this reason we decided not to deposit more than 200 nm of this compound. The Al,O;
presents a very low deposition rate and not less than 7 hours were necessary to deposit the 800 nm
thick layer. The two other dielectrics’ depositions don’t present any limitation and thicknesses of

2000 nm were deposited. A summary of these details is present in Table 2.3.

Utilizing the setup described in Appendix Al, the reflectance and transmittance coefficients, i.e.
respectively R and T, were measured for the four dielectrics. Based on these results and on Equation

2.1, the absorbance (A) was calculated.

A=100—-T —R [%] Equation 2.1

The thicknesses of the layers being very different from one another, the direct comparison of the
parameter A would not be relevant. To account for this difference, the absorption coefficient, noted

a, must be calculated for each dielectric/Si couple:

A Equation 2.2

Agiel/si = e/—@ [em™1]
cos

With A the absorption parameter [%)],
e the thickness of the considered layer [cm],
0 the angle of incidence, equal to 7° in our experimental setup [°].

This parameter is plotted as a function of the wavelength for the four probed dielectric compounds
in Figure 2.9(a) and (b). As detailed in appendix Al, the Si substrate is absorbent for wavelengths
lower than 1.13 um and transparent for higher wavelengths. Therefore, it does not lead to any

photon absorption in the range of the telecommunication wavelengths (1.3 — 1.55 um). However, the
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reflection phenomena are quite complex and might be modified by the presence of a dielectric/Si
interface. Therefore, all these experiments were conducted on similar wafers in order not to induce
any variability. The absorption coefficient calculated between 1.3 and 1.55 pum for all the dielectric
compounds deposited on Si substrates are presented in Figure 2.9 (c). The low stress SiN, SiO, and
Al,0; present absorption coefficients in the range of 500 to 1500 cm™ while the conformal SiN
appears to be much more absorbent (4900 cm™ < Qconformal siv < 6700 cm™) between 1.3 and 1.55 pm.
As explained before, these absorption coefficients need to be low enough not to compensate the
production of photons in the active region of the laser. Considering the fact that typical maximum
gains of InGaAsP-based laser devices range from 3000 cm™ to 6000 cm™, the use of the conformal
SiN is not optimal for the encapsulation of the IlI-V active device. On the other hand, concerning the
absorbance properties of the dielectrics, the low stress SiN, SiO, and Al,O; would be suitable for this

encapsulation.
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Figure 2.9: Optical absorbance coefficients (o) of low stress SiN, conformal SiN, SiO, and Al,03 (a) @0.8 — 1.6 um, (b)
zoom on the 1.3-1.55 um range and (c) comparison of the oy values with the maximum gain of a InGaAsP/InGaAs
quantum wells structure @1.3 - 1.55 pm.
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Refractive index of the dielectric compounds

The refractive indexes of the dielectric compounds, noted N, are crucial parameters as they could
generate radiation losses if they were superior to those of the Ill-V active stack. These indexes are a
function of the wavelength and of the various characteristics of the considered material such as its
crystallography or its dielectric properties. The refractive indexes of the four dielectric compounds
were determined thanks to a spectroscopic ellipsometry characterization described in Appendix A2
[20-22]. Such a technique, combined with an additional step of regression, gives access to the optical
characteristics of the samples. The experimental results are compared to theoretical models allowing
the determination of the complex refractive index of the compound and of layer(s) thickness(es). In
the case of absorbent dielectric compounds, the Tauc-Lorentz model is used [23]. As explained in
appendix A2, this model presents some limitations which lead us to consider exclusively the real part

of the dielectric compounds’ refractive index.

In Figure 2.10(b), these refractive indexes are reported and compared to the IlI-V active stack’s ones.
The four of them appear to be lower than those of the IlI-V stack. Therefore, the difference being
important enough, none of the dielectric compounds that were probed should generate any

radiation loss.
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Figure 2.10: Real refractive index of low stress SiN, conformal SiN, SiO, and Al,O; (a) plotted as a function of the
wavelength between 0.8 and 1.6 um and (b) between 1.3 and -1.55 um and comparison with the refractive indexes of
the llI-V laser stack.

2.4.3 Thermal characteristics of the dielectric compounds

As explained before, while the optical characteristics of the dielectric compounds are of crucial
importance, their ability to evacuate the heat produced by the operating laser is also fundamental.
To evaluate this point, a bibliographical research was conducted. As the deposition technique

strongly influences the thermal conductivities of the materials, a particular attention was given to
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this point. The thermal conductivities that are presented in Figure 2.11 therefore correspond to

PEVCD - SiN, representing the low stress and conformal SiN, and PECVD - SiO, and PVD - Al,O; layers.
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Figure 2.11: Thermal conductivity of PECVD - SiN (corresponding to both conformal and low stress SiN) [24-27], PECVD -
Si0, [28-37]and PVD - Al,O, [16, 38, 39]

While the Al,0; was primarily selected because high thermal conductivities (K > 40 W.m™.K") were
reported in the literature, Figure 2.11 does not display such a characteristic [16-19]. Indeed, these
high values were reported for crystalline alumina (a-Al,03) while additional characterizations on our
films showed that they are amorphous. Therefore, the thermal conductivities that are reported in
Figure 2.11 correspond to amorphous Al,O; deposited by PVD. A recrystallization of the dielectric
compound could be made thanks to a thermal treatment after the Al,0; deposition. However,
studies report a crystallization temperature above 800 °C to which the laser could not be submitted
without being deteriorated [40-42]. Taking into account this restriction, it appears that the available
SiN, SiO, and Al,03 present comparable and reasonable thermal conductivities. As a consequence,

the three compounds would be suitable for the evacuation of the heat produced by the laser.

2.4.4 Summary of the results

The optical and thermal characteristics of low stress SiN, conformal SiN, SiO, and Al,O; were
reported. It appears that the conformal SiN presents a high absorbance coefficient between 1.3 and
1.55 um. This feature would lead to an important loss of the produced photons and must thus be
avoided for the encapsulation of the IlI-V laser. Aside from the absorbance coefficients, the refractive
indexes of the dielectric compounds were measured. None of the scanned materials would generate

radiation losses as all of their refractive indexes are lower than those of the Ill-V active region. Thus,
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concerning the optical properties, the suitable candidates for the encapsulation of the IlI-V laser
would be the low stress SiN, the SiO, and the Al,O;. The consideration of the thermal characteristics
did not restrain the list of candidates as the three of them present similar and suitable thermal
conductivities. Because of the present topography on the laser device, a flattening of the dielectric
surface must be made thanks to a chemical-mechanical polishing. Unfortunately the planarization of
Al,O; can be very challenging and is not controlled yet in many clean rooms, including that of CEA-
LETI and STM Crolles. Eventually, because of the additional limitations linked to the restricted
availability of low stress SiN, the SiO, was selected, for the time being, as the most suitable option for

the encapsulation of the laser device.

2.5 Contact cavities opening
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Figure 2.12: Schematic representation of the contact cavities opening (a) on the IlI-V laser and (b) (b) on the
morphological test structures.

Once the IlI-V stack is encapsulated, the contact cavities have to be opened in the dielectric stack
down to the IlI-V surfaces. This step is one of the most sensitive in this integration flow as it must not
deteriorate the n-InP or p-InGaAs surface where the ohmic contacts will be formed afterwards. The

corresponding requirements are the following ones:

e The dry etchings must not increase the roughness of the surfaces (RMS roughness < 0.3 nm);
e The surface stoichiometry must not be altered;

e The dry etching process must not leave any residues on the semiconductor surfaces.

Similarly to the etching of the IlI-V, several micrometers of dielectric have to be removed during this
process. Consequently, it requires the use of a hard mask. In order to be coherent in terms of
processes and temperatures, and because it appears to be very efficient, the conformal SiN
deposited at 300 °C is used. At this point of the integration, the dielectric stack is thus composed of
conformal SiN / SiO, / conformal SiN / n-InP or p-InGaAs. The top SiN and SiO, are firstly etched down
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to the bottom SiN etch stop layer. Because of the several micrometers that separate the p-InGaAs
and n-InP layers a simultaneous opening of all cavities would require the use of very thick hard masks
(t > 1.2 um). As a consequence, a sequential integration of both contacts might be favored, as
represented in Figure 2.3. In any case, while the etchings of SiN/SiO2 are not problematical, the
etching of the bottom SiN is very delicate as it could modify the InP and InGaAs surface states. For
this purpose, plasma etchings classically used to etch SiN layers on Si or lll-V surfaces were selected.
Studies were conducted on InP and InGaAs surfaces after the etching processes to determine the
most appropriate plasma composition. More precisely, their impact on the surfaces’ roughness and

stoichiometry were probed thanks to AFM and XPS measurements.

The first tested plasma is a well-known fluoro-carbonated (CH,F,) SiN etching usually used on Si
surfaces. However, a roughening of the surface along with an increase of the corresponding contact
resistance due to residual carbon-containing residues was reported with this plasma [43-45]. As a
consequence, a SFg plasma, that was proven to etch selectively SiN hard masks on InP surfaces was
also tested [46]. While it is often coupled with O, to increase the etching rate, we chose to use it on
its own not to induce an oxidation of the Ill/V surface which would degrade the contact resistance

[47].

The measurement of InP and InGaAs surfaces’ roughness before and after their exposition to the
plasma treatments are displayed in Figure 2.13. As indicated by these RMS roughness measurements,
the CH,F, plasma does not lead to a deterioration of the surface morphology. The roughness of the
InP and InGaAs surfaces are constant or even smaller after the plasma treatment. On the other hand,
the SF6 plasma leads to an important increase of the roughness of InGaAs surfaces which is

multiplied by three.
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Figure 2.13: AFM measurements (1 um x 1 um) of InP and InGaAs surfaces before their exposition to any plasma, after
their exposition to a SFg plasma and after their exposition to a CH,F, plasma.

The compositions of InGaAs and InP surfaces were also determined thanks to XPS measurements,

before and after the plasma treatments. Based on these results, the V/IlI ratios were calculated and

are displayed in Figure 2.14. While both plasma have different effects on the surfaces’ morphologies,

they tend to modify the stoichiometry in a similar way. The V/IlI ratios strongly decrease because of

important P and As depletion respectively on InP and InGaAs surfaces. This effect is not surprising as

the dry etching processes remove atoms thanks to a physical bombardment of the surfaces. This

action is very traumatic for IlI-V surfaces and especially for the light and volatile P and As atoms.
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Figure 2.14: V/Ill ratio of (a) InP and (b) InGaAs surfaces measured by XPS before and after their exposition to CH,F, and
SFg plasma.

Considering the fact that both available plasma treatments induce a similar change of stoichiometry,
but that only the CH,F, does not degrade the surfaces’ roughness, the latter was chosen to perform
the etching of the bottom SiN. However, additional studies will have to be conducted in order to
develop innovative SiN etchings processes that would be less invasive on IlI-V surfaces. Whatever the
plasma composition, the dry etching processes are very traumatic for surfaces as sensitive as InP and
InGaAs. One solution might be to use a wet etching keeping in mind that its isotropic property would
cause a lateral over-etching of the contact cavities. A compromise would therefore consist in etching
most of the bottom SiN thanks to a dry etching process, and then remove the last nanometers thanks

to a wet etching, for example composed of diluted hydrofluoric acid (HF).

A cross sectional SEM image of a squared contact cavity (5 um x 5 um) defined thanks to the dry
etching of the SiN / SiO, / SiN dielectric stack is shown in Figure 2.15. In order to ensure the complete
removal of the SiN layer, the duration of the etching is calculated (duration = etching rate x
thickness) and several seconds are added: this additional time is called the overetching. One can see
in Figure 2.15 that in spite of this overetching, no IlI-V was removed during the process meaning that

the CH,F,-based process is highly selective towards the IlI-V compounds.



CONTACT CAVITIES OPENING 57

Carrier silicon substrate

Figure 2.15: FIB/SEM image of a contact cavity (5um x 5 um; p-InGaAs top layer) after the dry etching of the SiN/SiO,/SiN
dielectric stack. The white dots that are present in the InP layer are only caused by the SEM characterization. Note that
the TEOS and W were used for the FIB etching only.

However, an additional SEM characterization in top view highlighted the presence of SiN residues on
the IlI-V surface Figure 2.16(a). The removal of this kind of residues has been extensively studied and
HF solutions are generally very efficient [48-51]. Therefore we chose to use a highly diluted HF
solution in order not to induce any etching of the SiN present in the walls which would increase the
lateral dimensions of the cavities. As shown in Figure 2.16, all the SiN residues were efficiently

removed from the IlI-V thanks to a 60-seconds HF (0.1 %) wet treatment.

Figure 2.16: SEM image of a contact cavity opened down to an InGaAs surface thanks to a CH,F, dry etching (a) before a
wet treatment (b) after a wet treatment in diluted HF (0.1 %) for 60 s.
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2.6 lll-V surface preparation and CMOS-compatible contact

metallization
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Figure 2.17: Schematic representation of the integrated contact metallization (a) on the IlI-V laser and (b) (b) on the
morphological test structures.

The contact cavities being etched down to the IlI-V surfaces, i.e., n-InP or p-InGaAs, the CMOS-
compatible metallization can be integrated. In order to minimize the resulting contact resistivity, this
integration is decomposed in two main steps: a surface preparation is carried out in order to
suppress all contaminants and oxides from the InP and InGaAs before the deposition of the CMOS-
compatible metals forming the contact. In the frame of this innovative integration scheme, it was
chosen to differentiate the integration of the metal in contact with the semiconductor (i.e. the
metallization) and the filling metal used to bring the current down to the interface (i.e. the plug). By
doing so, the tuning of the interface metallurgical and electrical properties is facilitated as fewer
processes and materials interfere. In the following sections we will firstly detail the surface
preparation that we developed along with the various strategies that were identified for the

integration of the metals that compose the contact.

2.6.1 llI-V surface preparation

The IlI-V surface being very reactive when exposed to oxygen, a two-step surface preparation is
carried out to suppress contaminants and oxides. The first step consists in a wet surface preparation
and the second in a plasma treatment. The latter is carried out in the equipment were the
metallization is deposited, therefore avoiding any air break and as a consequence preventing any

oxide regrowth.
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Wet surface preparation

The wet preparation of llI-V surfaces is well referenced in the literature. While various chemical
compositions were tested and reported, the criteria used to determine whether a wet treatment is

suitable or not are the following [52]:

e The wet treatments must be ESH (Environment, Security, Health)-compatible;

e The wet treatments must not increase the roughness of the surfaces (RMS
roughness < 0.3 nm);

o The particles and metallic contamination must be removed;

e The oxides must be removed either without etching the IlI-V compounds or by means of a
controlled etching of the surface;

e The surface stoichiometry must not be altered.

In order to meet the previously listed requisites and based on literature, two HCl-based wet

treatments were tested both on n-InP and p-InGaAs surfaces [52-55]:

e HCI(37 %) :H,0=1:2([HCI] = 6 M), referred to as concentrated HCl in the following;
e HCI(37%):H,0=1:10 ([HCI] = 1.2 M), referred to as diluted HCl in the following.

While the use of concentrated and diluted HCl was proven to be efficient for the removal of oxides
without inducing any damage on InGaAs surfaces, the preparation of InP appears to be more delicate
[52-56]. As a consequence, a particular focus was put on the wet preparation of these surfaces to
determine whether or not the above listed wet solutions are adapted. To do so, InP samples were
dipped in the two solutions and the surfaces’ roughnesses were measured thanks to an AFM

characterization (Figure 2.18).

Reference HClI:H,0=1:2 HCl: H,0=1:10

500.0 pm 500.0 pm

B -<00.0 pm H -<00.0 pm

RMS roughness RMS roughness RMS roughness

<0.2nm =1.7 nm <0.2 nm

Figure 2.18: AFM scans of an InP surface (a) before and after a wet surface preparation in (b) HCI:H,0 (1:2) and
(c) HCI:H,0 (1:10).
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As highlighted by the important roughness increase, the use of concentrated HCl severely
deteriorated the InP surfaces. The appearance of the characteristic boat-shaped roughness was
reported in several studies [52, 53]. For concentrations higher than 2 M, the HCl molecules
anisotropically etch the InP as the etching rate depends on the crystalline orientation, the (111)-In
planes acting as etch stop. As a consequence, the concentrated HCl is not adapted to the wet surface

preparation of InP surfaces

Eventually, diluted HCl being efficient and nondestructive on both InP and InGaAs, it was selected for

the pre metallization wet surface preparation of the IlI-V.

Plasma treatment

Because the wet preparation of the surfaces and the deposition of the metallization are carried out
in different equipments, an oxide regrowth always occurs. Obviously the latter is very harmful for the
formation of ohmic contacts as it would significantly increase the specific contact resistivity and
might inhibit the solid state reactions in the case of intermetallic compounds formation (see next
section). To remedy this, an additional surface preparation which consists in a plasma treatment is
made in the deposition tool. Various plasma are available in the CEA-LETI clean room and were
tested in our group [56-58]. In these studies, the beneficial effect of Ar or He plasma treatments on
InGaAs surfaces is reported. Both of them allow an efficient removal of native oxides without
damaging the InGaAs surface morphology and composition. However, the preparation of InP surfaces
is more delicate as Ar preclean removes efficiently the oxides present on such surfaces but modifies
their crystallinity and stoichiometry (see section 3.4.2) [56, 59]. Similar trends can be found in the
literature were it is explained that the Ar” ions firstly stretch the In-P atomic bonds before breaking
them [60-62]. Similar studies were carried out with He plasma preclean processes. The latter remove
efficiently the oxides while having a lower impact on the InP surfaces [56]. However, while the Ar
preclean is very common, the He one is rarer in the deposition equipments. As a consequence, while
the use of the He preclean seems to be a more adapted compromise for the preparation of IlI-V

surfaces, we were bound to use the Ar preclean in our first experiments.

2.6.2 CMOS-compatible metallization

In the frame of silicon photonics, the formation of ohmic contacts relies not only on the absence of
oxides on the semiconductor surface, but also on the integration of Si-compatible materials. To do
so, after the two-step surface preparation described above, the wafers are transferred in a
deposition chamber. As explained in the introduction of section 2.6, the metal in contact with the

semiconductor (i.e. the metallization) is differentiated from the filling metal (i.e. the plug) in this
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innovative integration scheme. This choice allows a more precise tuning of the
metal / semiconductor interface as the nature of the layer covering the InP and InGaAs surfaces is
crucial for the formation of ohmic contacts with low contact resistivity (pc). In this respect, the

integration of the metallization can be achieved thanks to two strategies:

e One can choose to deposit directly the metal(s) or the intermetallic compound(s) of interest
on the llI-V surface. The stabilization of the phase(s) is achieved by mean of an annealing
process.

e One can also choose to deposit a metal and to perform a thermal treatment for the purpose
of forming one or several intermetallic compound(s) at the interface by solid state reaction

with the IlI-V.

Each phase that is deposited or that arises from the solid state reactions offers various electrical
properties (resistivity, work function, Schottky barrier height, interface and gap defects...) and
thermo-kinetic properties (dopant and/or element distribution, growth kinetics, thermal stability,
texture...). As a consequence, the identification of the phase formation sequence, of the driving
forces and finally of the existing range of each arising compound is key to form stable and
reproducible ohmic contacts. The nature of the metal that is deposited must be carefully chosen to
form ohmic contacts on n-InP and p-InGaAs surfaces while being available in a front-end silicon
microelectronics environment. In this respect, Ti which is a very common metal such an environment
was firstly selected. Indeed, the Ti-based contacts reported in Table 1.2 and Table 1.3 give access to
ohmic contacts with low specific contact resistivities on n-InP and p-InGaAs. Similarly, based on Table
1.2, the Ni-based metallizations were considered as potential candidates. More precisely, the Ni-Au-
Ge-based contacts exhibit interesting electrical behavior with specific contact resistivities as low as
1.3 x 107 Q.cm?. It has been suggested by several groups that Au and Ge only play a minor role in the

performances of these contacts while the presence of Ni might be determining [63-65].

Although the primary selection of the metal was made based on literature, extensive studies were
then carried out on n-InP and p-InGaAs. In order to identify the metallurgical properties of metal /
semiconductor systems along with the driving forces responsible for the formation of the observed
intermetallic compounds, metallurgical studies were conducted (see chapter 3). The identification of
the available levers for the lowering of the contact resistance will be presented tanks to the theory of
conduction modes in metal/semiconductors systems in chapter 4. The latter will also be dedicated to
the electrical characterizations of the contacts over a wide range of annealing temperatures. Finally,
by crossing these studies, we will be able to select the most accurate metallization(s) and process

window(s) for the formation of Si-compatible ohmic contacts both on n-InP and p-InGaAs.
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2.7 Metallization encapsulation and Plug integration
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Figure 2.19: Schematic representation of the integrated contact metallization and plug contacts (a) on the IlI-V laser and
(b) (b) on the morphological test structures.

In order to electrically connect the metallizations that are located at the bottom of the contact
cavities, plugs must be integrated. The planar integration of these plugs is enabled thanks to a
damascene CMP?. This process is highly dependent on the density and dimensions of the plugs. A too
high density would lead to a metal over polishing due to an erosion phenomenon; too important
dimensions (> 5 - 10 um) would lead to an important mechanical metal over polishing called dishing
[66]. Thus, on the laser while the metallization is deposited in contact cavities that measure 40 pm x
500 um on n-InP and 5 um x 500 um on p-InGaAs, the plug integration requires smaller cavities. To
enable such a dual integration, after its deposition, the metallization is encapsulated by a dielectric
stack. The layer deposited in the first place will be used as an etch stop and is composed of the
conformal SiN deposited at 300 °C. Because this dielectric stack is located close to the active region
of the laser, it must present the same optical and thermal characteristics as the laser’s encapsulation.
Moreover, the chosen dielectric must be easily planarized after its deposition, leading to the choice
of SiO, for the encapsulation of the metallizations. A hard mask composed of the conformal SiN can
finally be deposited on top of this stack. Subsequently to the dielectric stack deposition, cavities
measuring a few micrometers squared are opened down to the SiN ecth stop layer and then down to

the metallization.

The filling of the contact cavities can be realized thanks to various metals, such as Cu, Al and W.

However, it must meet several requirements in terms of integration and electrical properties:

e The filling metal must present a low resistivity (< 10.10° Q.cm);

e The nucleation of the filling metal must be possible in small cavities (from 1 um);

* Damascene CMP was firstly developed to electrically isolate Cu interconnect plugs because of the difficulty to
pattern this material thanks to conventional etching techniques [70].
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o The filling metal must be compatible with a chemical-mechanical polishing which excludes
the noble metals;

e The related deposition and polishing processes must be known and available.

Based on these criteria, it appears that the Al would not be suitable as its polishing is highly
challenging. This kind of metal is therefore used in non-planar steps, which excludes a damascene
integration. The Al also presents some issues related to the non-negligible electromigration that
occurs when a current flows through it [67]. Concerning Cu, while it is widely used in metallic lines, it
is not the most adapted for vias. Indeed, the Cu is known to strongly diffuse thought the underlying
metallization and into the semiconductor, therefore inducting strong degradations of the interfacial
region [68]. Finally, the Cu does not answer the requirements of middle-end of line (MEOL)" in terms
of contamination and is thus dedicated to back-end of line (BEOL)? integration steps. Therefore, the
filling metal that was ultimately retained in our integration is a W deposited by CVD. The precursor
that is used for its deposition is composed of WFg leading to the presence of some F in the plugs.
Moreover, the W requires a seed layer to enable its nucleation. As a consequence, a seed layer also
acting as diffusion barrier to F must be deposited on the walls of the cavities before the filling metal.

Usually, it is composed of Ti / TiN deposited by CVD as displayed in Figure 2.20.
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Figure 2.20: FIB/SEM image of a contact cavity on InGaAs displaying the Ni-InGaAs intermetallic compound encapsulated
by a TiN layer, the classical Ti/TiN diffusion barrier and the W plug filling before the damascene CMP. Note that the
morphological test structures’ contact cavities measure 5 um x 5 um and that the plug was therefore directly deposited
on the metallization.

An innovative alternative to TiN is currently being developed within the framework of collaboration

with Applied Materials: the F-less W liner [69]. While the latter is not yet fully mature, the electrical

* The front-end-of-line (FEOL) is the first portion of the integrated circuit fabrication where the individual
devices are patterned in the semiconductor. The middle end of line (MEOL) then covers the steps dedicated to
the metallization and plug integration. Finally, the back end of line (BEOL) corresponds to the interconnection
of the individual devices with wiring on the wafer.
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properties of both available liners were probed. To do so, thin layers of TiN and F-less W liners were
deposited on oxidized Si wafers and the corresponding resistivities were measured. The
corresponding results are plotted as a function of the films thicknesses in Figure 2.21. It appears that
the F-less W resistivity is at least two times less important than that of the classical TiN liner which
opens the way for lowering the plug resistivity and therefore to a minimization of the overall

resistance.
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Figure 2.21: Resistivity of CVD-TiN and CVD F-less W as a function of the films thicknesses.

Finally, thanks to the planar nature of these structures, an additional metal level can be integrated on
top of the contact cavities. This level can be used in electrical test structures as a probing layer or on
the actual devices as an interconnection level. Generally speaking, it is composed of a diffusion
barrier and of a filling metal which are respectively composed of Ti/TiN and AICu in the case of the

present integration. The resulting structure is presented in cross section in Figure 2.22.
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Figure 2.22: FIB/SEM cross section of a fully integrated Ni,P-based contact on n-InP. Note that the morphological test
structures’ contact cavities measure 5 um x 5 um and that the plug was therefore directly deposited on the metallization.

2.8 Conclusion

In this chapter we addressed the problematic of contacts’ integration to Ill-V surfaces in the frame of
Silicon Photonics. Taking into account the restrictions linked to a functioning laser device and that of
a Si-compatible enforcement, new contacts’ compositions and integration scheme were proposed as
summarized in Figure 2.23. Thanks to morphological, compositional and optical characterizations we
were able to optimize the contacts’ integration scheme while minimizing the optical losses of the
laser device. By doing so, we were also able to propose potential solutions to further improve this
integration scheme in the future. In the following chapters, particular focus will be put on the
metallurgical study of the contact metallization and on the electrical study of the integrated contacts.
Combining these studies, we will be able to provide further insight concerning the effect of the
dielectric encapsulation and of the metallization (metal + subsequent thermal budget) on the

electrical characteristics of the contacts and on their thermal stability.
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1 - Bonding of the IlI-V on the Si substrate
Direct bonding of the IlI-V laser on oxidized SOI
wafer

2 - Etching of the IlI-V

SiN hard mask composed of conformal SiN
deposited at 300 °C (upgrade = Low stress SiN
deposited at 300 °C)

ICP plasma etching

3 — Dielectric encapsulation

SiN and SiO, deposited by PE-CVD at 300 °C
Rlucza Planarization of the dielectric stack by CMP

4 - Etching of the contact cavities

SiN hard mask composed of conformal SiN

- deposited at 300 °C (upgrade = Low stress SiN
deposited at 300 °C)
Dry etching of the dielectric stack (SiO, +
majority of SiN) thanks to a CH,F, plasma
Finalization of the SiN etching thanks to diluted
HF
5 — Surface preparation
Combination of diluted HCI : H,O (1 : 10; [HCI] =
1.2 M) and in situ He pre clean
6 — CMOS-compatible metallization
Deposition of Ni or Ti and thermal treatment to
stabilize the deposited phases or to form

intermetallic compound(s) (electrical and

metallurgical studies in chapters 3 and 4)

p-InGaAs

7- Encapsulation of the metallization

SiN and SiO, deposited by PE-CVD at 300 °C

Planarization of the dielectric stack by CMP
A s

Dry etching of the dielectric stack (SiO, + SiN)
thanks to a CH,F, plasma

Ti/TiN liner (upgrade = F-less W liner) and W fill

Figure 2.23: Summary of the developed steps for the integration of Si-microelectronics compatible contacts on a llI-V
laser in the framework of Silicon Photonics.
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The formation of ohmic contacts with low specific resistivity is the key to form efficient and reliable
electronic and photonic devices. The light source of a Silicon Photonics circuit, i.e. the laser, is not an
exception to this rule. In the previous chapter, we mentioned the advantage of performing thermal
treatments after the metal deposition. Indeed, the latter can either stabilize the deposited phases or
lead to the formation of intermetallic compounds at the interface between the metal and the
semiconductor. In any case, it is of great importance to characterize the morphology and the
composition of the annealed systems. Forming low resistance, stable and reproducible contacts
requires the identification of the phase sequences and the existing range of each phase in terms of
thermal budget. In this chapter we will present metallurgical studies that were carried out for this
purpose. After an introduction to the formation of intermetallic compounds in the case of thin films,
we will present the research conducted on the Ni-based metallizations and the results obtained with

Ti-based metallizations.

3.1 Formation of intermetallic compounds in the case of thin films

Intermetallic compounds have been widely studied and used on Si-based devices over the past
decades [1-8]. The so-called silicidation process allows the formation of low resistance contacts that
are also thermally stable. Rapidly, the formation of intermetallic compounds has been transferred on
[1I-V semiconductors such as GaAs, InGaAs and InP to take advantage of its numerous benefits [9-29].
Regardless of the semiconductor’s nature, the formation of such contacts relies on four main steps.
The solid-state reactions being very sensitive to oxides or contaminants, the semiconductor surfaces
are firstly cleaned in a wet solution, rinsed in deionized water and blown dry. The wafers are
immediately transferred in a deposition tool were a plasma pre-clean removes all oxides that could
have regrown during their transfer. These precautions are essential to ensure the repeatability of the
intermetallic compounds’ formation. The metal is deposited on the semiconductor at room
temperature or at higher temperature (T < 150 °C). Finally, an annealing process is conducted, either
in a traditional furnace or by rapid thermal annealing (RTA) to form the intermetallic compounds.
This thermal treatment is generally performed under low background concentration of oxygen to
limit the oxidation of the metal and of the interface during the intermetallic formation (see section
3.1.4). Because every semiconductor reacts differently to these steps, the latter are adapted to

optimize the final integrated contact, i.e., to meet the requisites randomly listed below [8].
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Table 3.1: Requisites linked to the use of intermetallic compounds on semiconductors [8]

1. Low resistivity

2. Good adhesion to semiconductor

3. Low contact resistance to semiconductor

4. Appropriate Schottky barrier height or ohmic
behavior with heavily doped semiconductor (n*

or p*) over the targeted range of polarization
5. Thermal stability

6. Appropriate morphology for subsequent

lithography and etching processes

7. High corrosion resistance

8. Oxidation resistance

9. Good adhesion to and minimal reaction with
the surrounding materials (other than the

semiconductor)

10. Low stress

11. Compatibility with other processing steps
such as lithography and etching

12. Minimizing metal diffusion

13. High electromigration resistance

14. Formability at low temperature

Generally speaking, the formation of intermetallic compounds can rely on different driving forces and
can be sensitive to the presence of defects and impurities. The next sections will be dedicated to the
presentation of these mechanisms and will therefore give relevant insights for the integration of the

Si front-end compatible metallization.

3.1.1 Formation of intermetallic compounds - Generalities

When two materials, called A and B, are put in contact, a sharp A/B interface is created. Generally
speaking, this kind of system is not thermodynamically stable and will therefore evolve towards a less
energetic state. Most of the time, this evolution is enabled by the supply of external energy, i.e.
thermal budget, stress or polarization for example, and is always well described by the A/B
equilibrium phase diagram. This reactive diffusion theory was firstly proposed by Gas and d’Heurle

and Zhang and d’Heurle [1, 30].

The evolution of this A-B system can strongly differ, depending on the initial compounds miscibility. If
A and B are totally miscible, the system evolves toward the formation of a solid solution between A
and B ranging from pure A to pure B and displaying a unique crystallographic structure. If the system

tends to a demixion, two solid solutions (A-rich and B-rich) appear at the A/B interface which



FORMATION OF INTERMETALLIC COMPOUNDS IN THE CASE OF THIN FILMS 77

becomes a A(B) / B(A) interface. Most cases lie somewhere in between these two extrema and N
intermediate phases described by the equilibrium diagram coexist between A and B at a given
temperature. The unique A/B interface is thus replaced by N+1 interfaces as illustrated in Figure 3.1.
These evolutions and the temperature at which they occur strongly depend on the thickness of the
layers; a system composed of “thin” films (~ 100 nm) generally presents a rapid kinetics of formation
compared to the corresponding bulk system. Some phases that were described as stable in the bulk
system might also not appear in thin films. In any cases, the reactive diffusion theory well describes

the appearance of new phases / intermetallic compounds.

(a) (b) T
A

=\

Figure 3.1: Schematic representation of (a) an hypothetic diffusion profile corresponding to the element Aina A/B
diffusion couple submitted to a thermal treatment and (b) of the corresponding binary A-B equilibrium phase diagram.

3.1.2 Thin films reactive diffusion

Growth of a single phase

Let’s consider a system composed of two materials, A and B, which undergoes a thermal treatment.

The growth of a new phase, noted A,B,, between A and B requires three steps:

e The formation of a new interface;
e The diffusion of A (and/or B) through the new interface;
e The chemical reaction between A and B at the interfaces (A/AB, and/or A,B,/B) leading to

the formation of the intermediate compound: x.A +y.B > A,B,.

In the early stages of the reaction, the thickness of the intermediate compound is small and both A
and B are available at the interfaces. The growth of the compound A,B, is therefore only limited by
the rate at which the reaction between A and B can occur. In this case, the thickness of the new

phase, L, increases linearly with time (t):
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L(t) = K,.t Equation 3.1
Where K, [cm.s™'] is a constant characteristic of reactions that occur at the interface.

When the intermetallic compound grows, its thickness increases. Therefore, the path that the various
species have to travel before reaching the interfaces becomes more important. At some point, the
growth of the new phase(s) is no more limited by the interfacial reactions but by the flux of atoms
that reach the interface. The evolution of the interfacial product thickness does not vary linearly with

time anymore but according to the following expression:

L(t) = JK.t Equation 3.2

Where K, [cm?.571] is related to the diffusivity of the dominant moving species involved in the

reaction.

The concatenation of this two regimes results in the “linear parabolic growth” which is well
represented by the formation of silicon dioxide [31], [32]. It was demonstrated for the first time in
2005 that the sequential growth of the Ni,Si and NiSi silicides are ruled by this law as well [33]. The

change of regime occurs when the limit thickness L1/2 is reached.

K Equation 3.3
L1/2 = d/Kr

Simultaneous growth of several phases

When two or more phases grow simultaneously, this simple vision is slightly modified. Each
compound’s growth is determined by the interface reactions and diffusion coefficient of this
particular phase, but also of the other phases that are present in the system. For example, let’s
consider a hypothetical A/B system where two phases AB and A,B grow simultaneously and where A
is the only mobile species in both phases (Figure 3.2). In these conditions, the A,B phase can only
grow at the A,B/AB interface (A + AB > A,B) while the AB phase can grow at both A,B/AB (A,B > A +
AB) and AB/B interfaces (A + B = AB). By defining the fluxes in A,B and AB respectively as J; and J,,

one can express the growth velocity of both phases:

dLy/dt =], =],
Equation 3.4
dLy/dt =2.J, — ]
This couple of equations highlights the interdependence of the different phases’ growth rates. As

both of them can be determined by the interfacial reactions and by the diffusion of the species, one
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can easily imagine the complexity of such a system. However, metal - semiconductor reactions are
generally ruled by two different mechanisms and can therefore easily be divided into two categories:

the diffusion and the nucleation controlled kinetics.

A,B AB
A
J,— J, ——
L

|‘1 2

Figure 3.2: Schematic representation of the simultaneous formation of two phases by solid state reaction between two
compounds (A and B), where A is the only diffusing species.

3.1.3 Kinetics of phase(s) formation

Diffusion controlled kinetics

The diffusion controlled kinetics occurs when the formation of the phases is limited by the supply of
species, i.e., when the interfacial reactions occur faster than the arrival of atoms at the interface.
Such a kind of kinetics is quite similar for bulk and thin films reactions, but the contribution of the
grain boundaries in the latter case increases the diffusivity of the species. Plotting the square of the
interfacial layer’s thickness as a function of time allows analyzing the kinetics into more details.
Indeed, for diffusion limited kinetics, and if the formation of the various phases is sequential, this
kind of plot gives rise to a series of straight lines. Their slopes for a given temperature allow
determining the rate of formation which is itself directly related to the diffusivity of the dominant
diffusing species (Equation 3.2). Similarly, the Arrhenius law, which was proposed by Svante
Arrhenius in 1889 can provide further insights concerning the kinetics of formation. The latter gives
the dependence of the rate constant of a chemical reaction, K, on the absolute temperature T
(Equation 3.5). Taking the natural logarithm of this equation gives rise to Equation 3.6 which is used

in the traditional Arrhenius plots to access the activation energy for diffusion / growth, E,,.

_Ea/ .
K=A.e RT Equation 3.5

—F 1
In(k) = —*. (T) +In(A) Equation 3.6

Nucleation controlled kinetics

Contrary to the diffusion controlled growth, the nucleation controlled kinetics requires a minimal
temperature to be initiated. As explained in section 3.1.1, the formation of one or several new

phase(s) requires the creation of additional interfaces. When the cost in energy related to this
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process, i.e. the surface energy (o), is higher than the gain in free energy due to the formation of the
new products (AGy), additional supply of energy is required to initiate the reaction. Therefore, high
temperatures are necessary to induce the formation of the additional interfaces, i.e., to nucleate the
new phase(s). At this point, since the diffusion is not limiting, the formation of the new compound(s)
occurs rapidly once the critical nucleation temperature is reached. The nucleation of these phases is
therefore ruled by the competition between the gain in free energy (AGy) and the surface energy
caused by the formation of new interfaces (o). A nucleus of radius r is characterized by a free energy

by unit volume:
— 73 2
AGn = ar AGV +brc.o Equation 3.7

Where a and b account for the geometrical shape of the nucleus (for example, in the case of a
spherical nucleus, a = 4/3.mw and b = 4.7 ). Increasing the radius of the nucleus firstly increases the
corresponding total energy because of the increase in surface energy. At some point, a critical radius
is reached and the cost of surface energy is compensated by the gain in free energy as represented in
Figure 3.3. Nuclei smaller than this critical grain size tend to dissolve while the other tend to grow to

minimize the system’s energy. The rate of nucleation is given by:

. AG,” Q
p"=K.exp TRT .eXp(—k—T Equation 3.8

Where K is a constant, AG,," is the free energy of the critical nuclei which is proportional to 1/T?2 and
Q is related to the activation energy for diffusion. Thus, the nucleation rate is proportional to
exp(—1/T3) and is therefore a process that occurs in a limited range of temperature. Below the

critical temperature, no nucleation takes places; above it the nucleation of new phases is fast.
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Figure 3.3: Free energy of a nucleus as a function of its radius showing the contribution of the surface, volume and their
sum.

Because the nucleation limited kinetics results from a competition between the gain in free energy
(AGy) and the surface energy required to form new interfaces (o), it is generally observed when the
gain in free energy (AGy) is small. Let’s consider the hypothetical case schematized in Figure 3.4
dealing with the free energies G, associated to a A/B system. The formation of the phase AB
between A and B strongly decreases the volume free energy (AGy1) compared to the case where A is
in contact with B. Therefore, because the gain in free energy associated to this transformation is
important, it will most likely compensate the energy required to form the new interfaces, namely o.
It is therefore very probable that this phase will be formed in the early stages of the reaction, even at
low temperature. The free energy G, of the system could be further minimized by forming an
additional AB, phase. However, the free energy gain associated to this transformation (AGy,) is quite
low. It might even be lower than the energy required to form new interfaces. In this case, the
formation of the phase AB, would thus be limited by the nucleation and would require the supply of
external energy. As a consequence, even if the formation of the phase AB, would enable a lowering
of the overall system’s energy, it might only occur at high temperatures, where the nucleation barrier

is overcome.
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Figure 3.4: Variation of the free energy G, associated to the formation of binary phases in a hypothetical A/B system. p,
and pg correspond to the chemical potential of the compounds A and B.

It is important to note that the gap between diffusion and nucleation controlled kinetics might be
small, as illustrated in section 3.4 which deals with Ni/InP intermetallic compounds. If the
temperature required to initiate the nucleation is quite low, both the nucleation and the diffusion

can limit the growth of the phase(s).

3.1.4 Impact of defects on intermetallic formation

In order to fully identify the mechanisms limiting or enhancing the formation of intermetallic
compounds, one must additionally consider the defects and impurities that can be present on
semiconductor surfaces. The effect of the latter can significantly vary depending on their nature and
can therefore inhibit or enhance the formation of intermetallic compounds [34-36]. Among others,
the presence of a native oxide at the surface of the semiconductor surface generally has a
detrimental effect as it limits / prevents the reaction. To avoid this kind of problem, the
semiconductor surfaces are always subjected to wet and/or dry preparations for the purpose of
suppressing the contaminants and oxides. For example, in the integration scheme presented in
Chapter 2, InGaAs and InP surfaces are always dipped in HCl solutions before undergoing Ar or He

plasma treatments. On the contrary, the presence of nitrogen in the annealing ambient during the
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intermetallic formation can be beneficial as it purges the systems from detrimental impurities such as

oxygen [37, 38]".

3.1.5 Thermal stability of the intermetallic compounds

Once formed, the intermetallic compounds must be stable, often over a large range of temperatures.
Indeed, the processes to which the systems are subjected after the intermetallic formation might
require high temperatures. It is therefore crucial to stabilize the phase(s) of interest or a least to
identify the range of temperatures in which they are stable before conducting any other process.
This knowledge prevents any deterioration of the stoichiometry, the morphology, and the electrical

properties of the compound(s).

3.2 Experimental procedure and characterization techniques

As detailed in the previous sections, the integration of the contact metallization, i.e., the metallic
compound in contact with the semiconductor, relies on various mechanisms and driving forces. In

the integration scheme presented in Chapter 2, two different paths were mentioned:

e The deposition of a metallic compound followed by an annealing treatment that aims to
stabilize the deposited phase;
e The deposition of a metal followed by an annealing treatment for the purpose of forming

one or several intermetallic compound(s) at the interface with the semiconductor.

Whatever the path chosen, we explained in the previous sections that the integration of the
metallization is the key to lower the specific contact resistivity. Therefore, extensive metallurgical
and morphological studies were conducted on n-InP and p-InGaAs in order to optimize the

integration of the metallization on both surfaces.

3.2.1 Experimental procedure

The metallurgical and morphological studies were carried out on dedicated blanket samples. The
latter are composed of 2 inches semi-insulating (001) InP substrates on top of which a 300 nm thick
epitaxial layer was grown. These epitaxial layers are composed either of Si doped InP (Np = 3.10™ cm’

*) or of Zn doped InGaAs (Na = 3.10™ cm™). Because the presence of oxides and contaminants on the

! In the case of a Ti-based metallization, the nitridation of Ti during the annealing treatment can also be used to
form the TiN nucleation layer and diffusion barrier for the subsequent integration of a W plug [67, 68].
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semiconductor surface can be severely detrimental, all substrates were firstly dipped into HCI
solutions (HCI : H,0 = 1 : 2). This high HCl concentration was ultimately proven to modify the InP
surface (cf Chapter 2), which was unfortunately not already known during the manufacture of these
samples. The subsequent metal deposition being conducted in different equipment, an air break is
unavoidable after the wet surface preparation. Therefore, the wafers are exposed to a direct Ar’
plasma etching in the deposition tool prior to the metal deposition process. As a reminder, the first
two selected metallizations are the Ti and the Ni. Indeed, these two metals are very common in a
front-end silicon microelectronics environment and, when used in classical contacts, both of them
present very low specific contact resistivities (see Table 1.2 and Table 1.3). The 20 nm thick Ni or Ti
films were deposited by DC Ar sputtering respectively at room temperature and 100 °C. All films were
capped by a 7 nm thick TiN film deposited at 100 °C to protect them from any atmospheric
contamination and/or oxidation. Some samples were kept as deposited while some other underwent
annealing treatments in order to form intermetallic compounds at the interface between the metal
and the IlI-V semiconductor. The majority of the samples were subjected to rapid thermal annealing
(RTA/RTP) under N, ambient for 60 seconds at temperatures ranging from 250 °C to 550 °C. For some
others, and more particularly for the Ni/InP system, isochronal long time annealing treatments
consisting in a ramp up either from 50 °C to 250 °C or from 50 °C to 340 °C (1.5 °C / min) were also

carried out under vacuum at 10° mbar.

3.2.2 Characterization techniques

In order to fully characterize the as deposited and the reacted films, several techniques were always
coupled. The classical X-Ray Reflectometry (XRR) was mainly used to determine the thicknesses of
the stacks while X-Ray diffraction (XRD) enabled the ascertainment of their composition. These
characterizations were often coupled with Atomic Force Microscopy (AFM), Scanning Electronic
Microscopy (SEM) and Transmission Electronic Microscopy (TEM) to check the morphology of the
layers and the potential presence of amorphous compounds. In the case of non-homogeneous
morphologies, localized Energy-dispersive X-ray spectroscopy (EDS) enabled the determination of the
systems’ compositions. Finally, thanks to High Resolution TEM (HRTEM) and Fast Fourier Transform
(FFT) of the corresponding images, the crystallographic structure of the compounds could be
determined. On top of these well-known characterizations, some less common technics described

below were used.
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X-Ray diffraction (XRD) - Detexturation

The X-ray diffraction is a non-destructive type of characterization based on the interaction of X-rays
with matter. It allows the determination of the crystallographic structure of phases and relies on the

Bragg’s law [39]:

nai=2. dhkl' Sln(e) Equation 3.9

A is the wavelength of the incident beam wavelength, 6 is the incident angle, dpy;. is the inter-
reticular distance, i.e. the distance between two planes that belong to the same {hkl} family, and n is

an integer.

Incident Scattered
beam beam
i
—@ hkl planes
—@ L L *—

Figure 3.5: Schematic representation of diffraction of an incident X-Ray beam on atomic planes.

This equation reflects the fact that a given set of 4, 8 parameters, only one family of hkl planes, i.e.,
one crystallographic orientation gives rise to constructive interferences and therefore to a diffracted
beam. When this condition is fulfilled, a peak intensity is collected by the detector. Therefore, the
scanning of a large range of incident angles gives access to the crystallographic orientations

represented in the compounds along with the corresponding inter-reticular distance.

However, this kind of XRD setup called Bragg-Brentano (8/20) only gives access to the planes that are
parallel to the surface. In this work, we deal with thin films that are often strongly textured and
therefore require the use of another configuration, namely the XRD detexturation. This kind of XRD
consists in acquiring 6/20 diffractograms at several x angles thus giving access to crystallographic
orientations that are not necessarily parallel to the surface (see Figure 3.6). The sum of these
diffractograms finally represents an extensive overview of the compounds crystallographic
characteristics. Note that the all detexturated patterns were acquired with a 2° offset on the 28 angle
to minimize the contribution of the substrate. These final diffractograms were always firstly fitted
using the software Highscore in order to determine the precise position of the peaks and the
potential corresponding candidates. A manual fine tuning was then carried out to identify

consistently and precisely the actual diffracting phases and orientations.
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Figure 3.6: Schematic representation of an XRD setup.

The reader can refer to several books to find further precisions concerning this characterization

technique [40-43].

Auger Electron Spectroscopy (AES) combined with Ar sputtering

The Auger Electron Spectroscopy (AES) is generally used to determine the surface composition of
samples (around 5 nm are probed in depth). To do so, primary high-energy electrons are sent on the
sample and excite the various atoms. The latter can subsequently relax thanks to the emission of
Auger electrons. The kinetic energies of these emitted electrons are characteristic of the elements
present in the surface of the sample. When combined with Ar® sputtering to abrade the sample’s
surface, such a technique gives access to the in-depth composition of the samples. In the
experiments presented in this chapter, the AES analysis used 5 keV primary electron energy, 20 nA
beam current with a diameter of 40 um. For the depth profiling Ar" plasma of 1 keV energy was
applied with a grazing angle of incidence with respect to the surface’s normal of 80°. All specimens
were rotated during sputtering and the Ar pressure was 2.5 x 107 torr. After acquiring raw intensities
corresponding to each investigated element, the corresponding concentrations are calculated.
Various input parameters are necessary to do so, and among them the sputtering yields of the
elements is crucial. The latter strongly varies with the angle of incidence in this range and corrections
must therefore be applied thanks to standards. For example, in the case of samples integrated on InP
wafers, the substrate is an ideal standard since it provides the Auger signals recorded using the very
same parameters. To have this standard the profile should run as long as it reaches the substrate and
the intensities reach stationary values. It is evident that evaluation of the substrate should result in
50 at% concentration of In and 50 at% concentration of P. Generally speaking the correction is lower

than 10-15%; if it happens to be larger, the cause should be identified.
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Atom probe tomography (APT)

The atom probe tomography is a characterization technique giving access to the atomic composition
of samples. To perform such a characterization, the samples are shaped into a sharp tip thanks to a
Focused lon Beam (FIB) etching. The tip is cooled down and biased at high voltage (3-15 kV) which
induces a very high electrostatic field (tens V/nm) at the tip surface, just below the critical point of
atom evaporation. Thanks to additional laser pulses, atoms are evaporated from the surface and 36
to 50 % of them are gathered by a 2D detector. The measurement of each atoms’ time of flight (TOF)
gives access to the mass over charge (m/q) ratio and therefore to the nature of the atoms. The
additional analysis of their impact position and arrival order on the detector allows a reconstruction
of the surface atom by atom. Repeating this sequence, the whole tip is progressively evaporated and

reconstructed.

Time-of-flight measurement

Laser pulses

Local electrode

".Tip"

High Voltage

Detector

Figure 3.7: Schematic representation of the Atomic Probe Tomography (APT) setup.

Thanks to the combination of all these characterizations techniques, extensive metallurgical studies
were performed. In the following sections, we will present the state of the art along with the
metallurgical studies conducted on Ni/InP, Ni/InGaAs and Ti/InP systems. The reader interested in

results concerning the Ti/InGaAs system can refer to Appendix A3.

3.3 State of the art about Ni-based metallizations on InP

Few studies have been reported on the formation of Ni-based intermetallic compounds on InP

surfaces over the years. However, they mainly emanate from various groups, therefore offering very
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different perspectives. As a result, the phase sequences related in the literature present

discrepancies that will be detailed in the following section and summarized in Table 3.2 [10, 15-21].

Fatemi et al and Weizer et al report the formation of binary Ni-P phases during annealing processes
lasting from 1 to 40 minutes at 400 °C [16, 19]. More precisely, after annealing treatments of a few
minutes, a stack combining In, Ni,P and Ni;P, the latter being in contact with the InP substrate was
evidenced by Energy Dispersive Spectroscopy (EDS/EDX) and AES. When this duration is extended to
40 min, they report a total consumption of the NisP phase and therefore a stack composed of
In/Ni,P/InP. It is worth noticing at this point that the authors made a non-negligible assumption
when determining the composition of the phases thanks to the AES profile. Indeed, they assumed
that the totality of the In signal and the corresponding proportion of P coming from the region close

to the interface actually emanated from the InP substrate.

Appelbaum et al report the formation of a uniform and amorphous Ni-In-P layer during the Ni
deposition [20]. This amorphous layer is stable during annealing treatments at temperatures lower
than 250 °C. For temperatures exceeding 250 °C, they report the non-uniform formation of a layered
structure composed of binary compounds Ni/Ni-In/Ni,P/InP without specifying the exact composition
of both binary phases. However, their findings differ from those of Fatemi et al and Weizer et al as
they report the stabilisation of the Ni;P phase (24 at% P and 74 at% Ni) at temperatures higher than
400 °C. Fatemi et al affirm in their paper that this difference is only an apparent one [16]. Indeed, by
applying their AES treatment method to the AES profile of Appelbaum et al, they find that the layer
in contact with InP after the 400 °C annealing process is actually Ni,P (35 %at P). This kind of
intermetallic compound actually provided low contact resistivities on both n-InP and p-InGaAs and

was therefore further studied [44].

Other studies from Ivey et al and Yamagu et al describe the formation of both binary and ternary
phases [18, 21]. They first evidence the presence of an amorphous compound after Ni deposition,
NisInP, which they assume is the same as the one observed by Appelbaum et al. They report a
laterally non-uniform crystallization from 250 °C to 300 °C leading to a sample composed of different
regions where the amorphous Nis;InP compound and the crystalline Ni,InP coexist along with the
binary Ni,P phase. Some In is also present and oxidized at the surface leading to the presence of
In,0s. After a 500 °C annealing treatment, they report the decomposition of the Ni,InP phase into
Ni,P and In along with the oxidation of the latter compound. Yamagu et al also observed the
amorphous compound for temperatures lower than 300 °C with a slightly different composition, i.e.
Ni, ;InP [18]. Similarly to the previous study, this compound is decomposed and a mixture of Ni,InP,

Ni,P and In is favored above 300 °C. The metallic In rapidly diffuses in the unreacted Ni layer and
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segregates in this film and at the surface. However, in this paper the three phases are found to

coexist even after a 2 minutes-long annealing treatment at 500 °C.

Contrariwise, Sands et al and Persson et al do not report the formation of binary compounds. They
observe the formation of a uniform NinP (x = 2.7 and 3) phase for temperatures as low as 200 °C
and 250 °C respectively [45]. This amorphous phase is shown to start crystallizing at higher
temperatures, i.e. from 300 °C to become a hexagonal NinP phase (3 2 x 2 2). This compound finally
evolves towards a fully crystallized Ni,InP phase with a monoclinic structure after a 60-minutes
thermal treatment at 360 °C. The authors precise that this phase presents a strong crystallographic
texture ([001]] |[100],.s). When capped with a SiO, layer to prevent any P sublimation, and / or under
vacuum, this compound is found to be stable up to 500 °C. Again, these authors compare their
findings with the work of Appelbaum et al [20]. They justify the observed discrepancies by the
difference in annealing ambient between the two studies. They conclude that the formation of
binary compounds such as Ni,P and Ni,In is favored in uncapped Ni/InP systems exposed to He
ambient while ternary compounds appear in capped samples. Ultimately, they come to the

conclusion that the Ni-InP reactions are extremely sensitive to the annealing ambient.

In order to investigate these differences, Mohney et al studied bulk and thick diffusion couples
(300 nm and 500 nm thick), also modifying process parameters such as the InP surface preparation
and the annealing ambient [10]. Overall, they report the formation of a uniform and amorphous
Ni(InP) (2 <x<3) layer in the early stages of the reaction, at temperatures as low as 250 °C
consistently with the findings of Sands et al, Persson et al, Yamagu et al and Ivey et al [15, 17, 18, 21].
After thermal treatments at higher temperatures however, i.e. from 300 °C to 450 °C, a phase
demixing associated to the formation of Ni,P and Niln is observed. In this range of temperatures, the
Ni being partially consumed, the stack is therefore composed of Ni/Niln/Ni,P/InP. More severe
annealing treatments lead to the total consumption of Ni and to the formation the monoclinic
Ni,(InP) phase already observed for example by Sands et al and lvey et al [17, 21]. Two annealing
ambient, i.e. purified Ar gas or a mixture of Ar and H, (Ar-10 % H,), were tested from 300 °C to 450 °C
and did not induce any variation in the observed Ni/InP reactions. Changing the wet treatment from
[H,SO,4 (96 %) : H,0, (30 %): DI H,0 = 5 :1: 1] to [HF (49 %):DI H,0 = 1 : 10] did not lead to any
modification either. Bulk diffusion couples were finally annealed from 470 to 600 °C for durations of
a few hours to several months. All of them presented the Ni/Niln/Ni,P/InP layer sequence with no
evidence of ternary phase formation. The authors explain that the formation of these binary phases
is therefore an intermediate stage of the overall reaction and that the ternary phase only appears

when all the Ni is consumed consistently with the ternary phase diagram presented in Figure 3.8.
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They precise that the ternary Ni,InP compound should be stable on the InP substrate up to its

melting temperature, i.e. 526 °C [46].

In the light of the previously reported results, these conclusions seem questionable. Indeed, some
authors do not observe the formation of ternary phases even when the Ni is entirely consumed, but
only evidenced the presence of binary compounds [16, 19-21]. Some others do not observe a
sequential appearance of the binary and ternary phases but highlight their coexistence at high
temperatures [18]. It thus appears that the Ni/InP system is very complex, and might be influenced
by any changes such as the Ni thickness, the thermal budget and the presence of a capping layer for
example. In the following section we will present the results obtained on the Ni/InP system in our
clean room and a particular focus will be made on the identification of the driving forces involved in

formation of the various observed phases.

- AR AT A AR KR
liquid Niging Niln Nialng Nigin Nigln

Figure 3.8: Ni-In-P ternary phase diagram at 470 °C extracted from [46]. The Ni-rich comer (dashed tie-lines) is based on a
limited number of samples at 470 ° and extensive investigation at 600°C. The tie-lines to the In-rich liquid are dashed
because the exact composition to which they should extend was not determined. The tie-lines to NisP,, and NiP, are

inferred from the phase rule.
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Table 3.2: Non exhaustive recapitulative table of the phase sequences observed in the literature - Ni/InP system (When

encountered, N/A stands for Not Available)
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3.4 Metallurgical study of Ni-based metallizations on InP

3.4.1 Analysis of the as deposited samples

Cross sectional transmission electron microscope (TEM) samples were prepared from the as
deposited Ni/InP sample by focused Ga*-ion beam (FIB) and Ar*-ion milling. Figure 3.9 shows the
corresponding bright field TEM images on which the Ni film appears rough. This roughness was
confirmed by an additional AFM characterisation where the measured height difference between the
hills and valleys ranges from 15 to 20 nm (Figure 3.10). The film is polycrystalline and exhibits 50 nm
wide Ni grains. The latter do not show any specific texture, but are randomly oriented as confirmed
by the corresponding XRD pattern indexation presented in Figure 3.11. Note that the TiN is not
observed on this 8/26 diffractogram because it is highly textured. While some of the Ni grains are not
perfectly touching each other, the TiN cap layer is primarily continuous and follows the surface
topography, therefore preventing the lower layers from any contamination during samples’ transfers
and anneals. Additionally, an approximately 6 nm thick amorphous layer (noted a-Ni-In-P) was
identified at the interface between the Ni film and the InP substrate. This observation is consistent
with the findings of Ivey et al who also identified the presence of an amorphous compound after Ni

deposition identified as NisInP [21].

“TiN

20 1
e

Figure 3.9: Bright field TEM image of an as deposited TiN (7 nm)/Ni (20 nm)/InP sample. The dark spots present in the InP
substrate are artifacts, created during ion milling and must therefore be disregarded.
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Figure 3.10: AFM images in tapping mode of the as deposited TiN(7 nhm)/Ni(20 nm)/InP surface (a) 5 um x 5 um image
area and (b) 200 nm x 200 nm scan.
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Figure 3.11: 6/206 X-Ray diffraction pattern of the as deposited TiN (7 nm)/Ni (20 nm)/InP sample. A TiN (7 nm)/Ni (80
nm)/InP sample was also measured in order to maximize the intensity of the diffracting crystallographic orientations.

An additional AES characterization coupled with an Ar sputtering was conducted on this sample in
order to determine its in depth composition (Figure 3.12). The corresponding profile is presented as a
function of the sputtering time and not as a function of the depth because of the important film’s
roughness. Nonetheless and although it is slightly smeared by the surface roughness, this profile
highlights a change of composition within this reaction product as the In/P ratio is not constant
throughout the depth (Figure 3.12 (b)). The top of the layer appears to be Indium-rich whereas its

bottom is Phosphorus-rich. In order to further understand this system, the next section will be
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dedicated to the study of this amorphous layer and to the identification of the process causing its

appearance.
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Figure 3.12: (a) TEM and (b) AES characterization of the as deposited TiN (7 nm)/Ni (20 nm)/InP sample. The grey box
highlights the amorphous reaction product which is P-rich at its bottom and In-rich at its top.

3.4.2 Study of the amorphous layer on InP surfaces
In order to determine if the deposition processes were responsible for the appearance of this
amorphous layer, various parameters were modified as detailed in Table 3.3.

Table 3.3: Recapitulative table of the modified parameters during the deposition of Ni and TiN (when encountered, RT
stands for Room Temperature)

Modified parameter Nature of the modification

A Ni thickness, i.e. duration of the Ni deposition Divided by a factor 4
(changed from 20 nm to 5 nm)

B Deposition rate of Ni Multiplied by 3
(changed from 1.3 nm.s™ to 4 nm.s™)

C Substrate temperature during the Ni deposition Changed from RT to 150 °C

D TiN capping layer deposited at 100 °C Suppressed

The corresponding TEM images and AES profiles are presented in Figure 3.13. In spite of these
modifications, the amorphous product along with the compositional gradient are still observed on all
the samples. No amorphous layer’s thickness can be extracted from the AES profiles because of the

important roughness that once again smears the transitions. However, the available TEM cross
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sections (samples C and D) feature amorphous layers of about 6 nm, just like it was initially observed
before any process modification in Figure 3.12. Therefore, it appears that modifying the deposition

temperature, rate and duration does not impact the amorphous layer.
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Figure 3.13: TEM images and AES profiles corresponding to the TiN/Ni/InP samples with (A) a thickness reduced to 5 and
10 nm, (B) a deposition temperature of 150 °C and (C) no TiN encapsulation.
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However, as already mentioned in section 2.6.1, it has been reported in the literature that the Ar*
plasma pre-clean modifies the substrate surface by changing the In-P bonds. According to these
studies; the latter are firstly stretched and then broken, which ultimately results in P depletion of the
InP surface [47-50]. Therefore, additional splits were made to investigate the effect of the Ar pre-
clean on the InP surface as detailed in Table 3.4. In order to avoid Ni and InP intermixing in the
amorphous layer, no Ni layer was deposited. However, a 7 nm-thick TiN layer was deposited on the
samples after the dry surface preparation to prevent any parasitic oxidation and contamination of

the surface.

Table 3.4: Recapitulative table of the modified parameters in the plasma pre clean

Wet surface preparation Dry surface preparation
D HCl:H,0=1:2 Arin situ plasma treatment
E HCl:H,0=1:2 He in situ plasma treatment
F HCl: H,0=1:2 None

All samples were characterized by TEM and AES and the corresponding images are presented in
Figure 3.14. The TEM image corresponding to the sample which was subjected to the He preclean
(Figure 3.14 (E)) features an important roughness, similarly to the one observed after the Ar preclean
(Figure 3.14 (D)). The TiN film is therefore discontinuous and its morphology is determined by the
individual TiN grains. An amorphous layer of about 10 nm, similar to the one observed after an Ar
plasma can also be identified in this case. Because of the important roughness, the corresponding
AES depth profile is highly smeared and the signals emanating from the InP, the amorphous layer and
the TiN top layer are not clearly distinct. Nonetheless, a clear compositional gradient can be
observed on the profile. It appears therefore that this kind of plasma also leads to a phosphorus
depletion of the InP surface consistently with what was previously reported in the literature [47, 49,
50]. One can notice an O signal emanating from the top region of the sample. Because of the
important roughness, it would not be possible to assert if it comes from the original InP surface or
from an oxidation occurring afterwards because of the TiN layer discontinuity. However, studies
conducted in our group showed the efficiency of this kind of InP surface preparation and are
therefore in favour of the second hypothesis [51]. When no plasma treatment is conducted, the
morphology of the layers drastically changes (Figure 3.14(F)). The TiN layer observed in this case is
continuous and homogeneous which results in a net AES profile. On the latter, the various layers can
be clearly distinguished from one another. Particularly, the presence of an oxide on the InP surface
comes as no surprise because of the absence of in situ surface preparation before the metal

deposition. This native oxide, which is 2 to 3 nm thick can be seen on the corresponding TEM cross
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section. A slight compositional gradient is also observed within this native oxide but is much less
pronounced than the one observed after an in situ preclean. It appears therefore that the wet
surface preparation conducted before the in situ pre clean starts to deplete P from the InP surface.
This assumption is in accordance with the findings of Cuypers et al who showed that, at high
concentrations ([HCI] = 2 M), the HCI molecule is not dissolved within the solution and anisotropically
etches the InP surface [52]. This etching process results in the formation of terraces which are
preferentially In-terminated. Therefore, the P depletion from InP surfaces is firstly induced by
concentrated HCl solutions and strongly emphasized by in situ Ar and He-based plasma treatments.
During the subsequent Ni and/or TiN deposition, which are respectively performed at room

temperature and 100 °C, metal/Ill-V intermixing occurs and leads to the observed AES profile.
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Figure 3.14: Bright field TEM images and corresponding AES profiles of TiN(7nm)/InP samples (D) with an Ar plasma
preclean, (E) with an He plasma preclean and (F) without any plasma preclean.
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3.4.3 Analysis of the annealed samples

In order to identify the intermetallic compounds that would be formed at the interface between the
Ni film and the InP substrate, several annealing treatments were conducted. The latter firstly
consisted in RTP lasting for 60 seconds at temperatures ranging from 250 °C to 550 °C. All the
samples were characterized by XRD in detexturation mode, therefore giving access to the
identification of the crystalline compounds (Figure 3.15). On the pattern corresponding to the
mildest annealing condition tested, i.e. 250 °C for 60s, the presence of Ni was confirmed and no
other crystalline compound was evidenced. In order to identify the thicknesses of the layers, and
therefore to check the presence of any amorphous compound, an X-Ray reflectometry
characterization was performed. The latter revealed a stack with a total thickness of 34 nm, most
likely corresponding to the already observed stack just after the metal deposition: TiN(7 nm) / Ni(20
nm) / a-Ni-In-P (6 nm) / n-InP. This finding is consistent with the works of Appelbaum et al, Ivey et al,
Mohney et al, Persson et al, Sands et al and Yamagu et al who observed the presence of the

amorphous Ni, ;InP layer after thermal treatments conducted a 250 °C [10, 15, 17, 18, 20, 21].
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Figure 3.15: 6/20 XRD patterns of the Ni/InP samples annealed at 250 °C, 300°C, 340°C, 350 °C, 450 °C and 550 °C for 60
seconds (RTP). A 2° offset on the incident beam was applied in order to minimize the InP substrate contribution.

The RTP conducted at 300 °C lead to major modifications of the system. Indeed, it resulted in the

consumption of the Ni while binary and ternary compounds, namely the hexagonal Ni,P, the
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tetragonal NisP and the monoclinic Ni,(InP), were formed (Figure 3.15). It is to note that while some
peaks are unique for each phase, Ni,P (44.7°, 47.3°), NisP (27.9°, 46.6°, 57.6°), Ni,(InP) (21.6°, 45.7°,
48.6°), others may be attributed to a combination of two compounds (for example at 42.4° and
50.6°). No modification of the observed composition was brought by increasing the annealing
temperature up to 340 °C. However, an augmentation of the peak intensities at 350 °C highlighted
the growth of the three compounds. Meanwhile, several peaks were attributed to the tetragonal In
phase (32.9°, 36.3°, 39.1°, 56.6°), revealing the presence of crystalline In at this temperature. In order
to further characterize this sample a bright field TEM analysis was conducted along with a mapping
of the Ni. These characterisations where conducted on two parts of the same sample glued together
face to face. The corresponding cross-section presented in Figure 3.16 (a) indicates the presence of a
60 nm thick layer which is fully crystalline. As a consequence, accordingly with the literature, it
appears that the amorphous layer was consumed or crystallized during the binary and ternary phases
formation at 350 °C [10, 15, 17, 21]. However, the two analysed parts of the sample exhibit very
different morphologies. Indeed, while one presents a uniform and continuous layer, the other
presents isolated grains. The corresponding mapping shows that the Ni is only contained in either
layer or the grains while the other regions are Ni-free (Figure 3.16(b)). Analysing this sample thanks
to an AFM measurement gave access to the morphology of the overall surface (Figure 3.17). It
appears that the surface presents an important roughness with elongated, “boat-shaped” Ni-
containing agglomerates. This kind of morphology most likely has its origins in the wet surface
preparation of the InP surface. Indeed, the studies that we presented in section 2.6.1, evidenced a
similar InP surface morphology after being dipping in a HCI:H,0 = 1:2 solution. Therefore, it is very
probable for the thermal treatment to reveal the substrate surface morphology up to the metallic
layers. The resulting cross sections display continuous layers when the protrusions are cut along their

long-axis, and individual grains when they are cut along their short-axis.
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Figure 3.16: (a) Cross sectional bright field TEM image of the Ni/InP sample after a 60-second RTP at 350 °C and (b)
corresponding Ni mapping.
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Figure 3.17: AFM measurement in tapping mode of the sample TiN(7 nm)/Ni(20 nm)/InP annealed at 350 °C for 60
seconds (image area is 5 um x 5 um).

When the temperature of the annealing treatment is brought up to 450 °C, the Ni,(InP) as well as the
NisP phases are partially consumed while In (32.9°, 36.3°, 39.1°, 56.6°), and Ni,P (26.4°, 44.7°, 47.3°)
start to prevail. This behaviour was enhanced by the increase of the temperature as the system was
composed of Ni,P and In after the 550 °C RTP. A bright field TEM image of this sample combined with
an EDS analysis confirmed this conclusion and showed that the Ni,P is agglomerated and surrounded
by the In phase at this temperature (Figure 3.18 (a) and (b)). It is important to note that the spatial
resolution of the EDS analysis does not allow a perfect distinction of the In lobes which explains the
presence of some In and P peaks in the corresponding spectrum. Agglomerates similar to the one
presented in Figure 3.18 are distributed all over the InP surface and are generally separated from one
another by a gap of 400 to 600 nm. Finally, the In which is present all around the Ni,P agglomerate
looks like it went through liquid state during this RTP.
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Figure 3.18: (a) Cross sectional bright field TEM image of the Ni/InP sample after a 60-second RTP at 550 °C; (b) EDS
spectra of the the central Ni,P grain and the two In lobes.

The phase sequence that was identified thanks to RTP annealing treatments is recapitulated in Figure

3.19 in bold colours. For temperatures that were not investigated, trends on the phases’ evolution

are displayed with a light filling.
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Figure 3.19: Recapitulative chart of the observed (bold filling) phases on Ni/n-InP layers as a function of the annealing
temperatures (duration = 60 s). The light fillings correspond to temperatures that were not investigated and for which
only trends on the phases’ evolution are displayed.
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3.4.4 Discussion

The formation of reliable and reproducible ohmic contacts relies on the understanding of the driving
forces responsible for the formation of the observed compounds. Particularly, it is of great interest to
identify if the formation of the various phases is simultaneous or sequential. In the latter case,
determining the order of appearance of the phases is relevant as it opens the possibility to promote
the electrically favourable compounds by adjusting the duration and the temperature of the
annealing treatment. In order to determine the order of appearance of the phases and the
associated mechanisms, additional longer anneals were performed. The latter consisted in a ramp up

from room temperature to 340 °C with a slope of 1.5 °C per minute.

In situ XRD characterizations

First of all, classical /20 XRD characterizations were performed during this annealing treatment
every 1.5 °C, therefore enabling the identification of the sample’s compositions at each temperature.
The resulting 2D projection is presented in Figure 3.20. The latter highlights the partial consumption
of the Ni phase from 170 °C along with its total consumption at 270 °. The absence additional peaks
corresponding to intermetallic compounds in this range of temperatures can be attributed to an
amorphous nature of these compounds, or to crystalline compounds presenting a volume too low to
generate observable diffraction peaks. However, from 270 °, the pattern features peaks that can be
attributed to the binary and ternary phases NisP, Ni,P and Ni,InP. However, while some peaks allow a
confident identification of the Ni;P phase (57.7 °, 27.8 °) some other can be attributed to two
different phases (42.4 °, 40.7 °). Moreover, the number of diffraction peaks is very low compared to
the patterns obtained thanks to the XRD detexturation at comparable temperatures (Figure 3.15). It
is therefore highly probable that the compounds present in the sample are textured and do not
diffract in a classical 6/206 XRD mode. As a consequence, the identification of the sample’s
composition at each temperature was not enabled by this kind of setup and XRD detexturations
appeared to be a necessity. However, such measurements are very long as they often last for 10
hours and therefore could not be performed during the annealing treatment. To address this issue
two samples were submitted to the same annealing treatments, either up to 250 °C or to 340 °C and
were characterized thanks to ex situ XRD detexturation. The corresponding XRD patterns are
presented and compared to the ones obtained after the RTP respectively in Figure 3.21 and Figure

3.22.
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Figure 3.20: 2D projection of the 6/20 diffractograms obtained during an isochronal annealing treatment from RT to
340 °C. Diffractograms were acquired every 1.5 °C and the total duration of the ramp up was 7 hours.

Formation of the binary and ternary phases

As shown in Figure 3.21, increasing the annealing duration at 250 °C resulted in a strong modification
of the observed composition. While the Ni containing layer was still present after the 250 °C — 60 s
RTP, it had disappeared after the long-time annealing process (5 hours). The latter resulted in the
formation of the binary and ternary compounds, namely Ni,P (47.3°), NisP (e.g. at 27.9°, 57.6°) and
Ni,(InP) (e.g. at 32.7°, 33.4°, 44.4°). Thus, it appears that the formation of this compounds is not
limited by the supply of thermal energy and therefore by the overcoming of any nucleation energy
barrier. On the contrary, it only requires a duration long enough for the reactions to occur. As
detailed in section 3.1.2, this means that the kinetics are controlled by the speed at which the
interfacial reactions actually occur and by the speed at which the species can reach the interface, i.e.
by the diffusion. As it was already observed for the silicides Ni,Si and NiSi in [33], the formation of

Ni,P, NisP and Ni,InP is therefore ruled by the linear-parabolic law.

Additionally, while the initial system was composed of Ni and an amorphous a-Ni-In-P layer, the long-
time annealing process resulted in the formation of two binary Ni-P phases, Ni,P and Ni;P, and one

ternary phase, Niy(InP) that conserves the substrate stoichiometry. As the overall composition must
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be conserved through the metallurgical reactions, the formation of these binary and ternary phases
must be associated to some atomic In release. Because the corresponding diffractogram does not
feature any In peak, this compound must be directly rejected in the lattice during the formation of
the intermetallic compounds. At this point, two hypotheses can be made: (i) the In can be
nanocrystallized with a diffracting volume too small to be detected by the XRD and (ii) the In can be
dissolved and distributed in the lattice without nucleating. Further studies concerning the
appearance of the In phase at 350 °C during RTP treatments will be presented in the following
section and lead us to exclude the first hypothesis as the nucleation of In at 250 °C is highly
improbable. Therefore, it is very likely that the In is partitioned in the lattice during the formation of

the different for temperatures lower than 350 °C.
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Figure 3.21: 6/20 XRD pattern after the 60-second RTP and XRD detexturation pattern after the long-time anneal up to
250 °C (ramp up duration = 5 hours) of the Ni/InP system.

In distribution during Ni/InP reactions

However, at 350 °C the XRD pattern displayed in Figure 3.15 indicates the signs of a nucleated and
crystalline In phase. To investigate the driving forces involved in this process, an additional 7 hours-
long thermal treatment was conducted at 340 °C. The XRD detexturation patterns corresponding to
this sample and to the ones annealed at 340 °C and 350 °C for 60 seconds are presented in Figure
3.22. As indicated by the indexation of the peaks, increasing the annealing duration from 60 seconds

to 7 hours at 340 °C led to the promotion of the Ni,(InP) phase. However, the longer annealing
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duration did not have any impact on the In behaviour as the system does not show any sign of
crystalline In at this temperature. On the contrary, a 10 °C rise led to the appearance of In peaks
(32.9°, 36.3°, 39.1°, 56.6°) on the XRD pattern. Based on these observations two hypotheses can be
made to explain the appearance of these peaks: the In might go through (i) a melting/solidification

process or (ii) a precipitation process at 350 °C.

(i) As indicated in Figure 3.22, increasing the duration of the heat treatment at 340 °C favoured the
growth of the Niy(InP) phase while the binary phases seem more or less stable. On the contrary,
increasing the temperature to 350 °C led to the growth of two phases (Ni,P and NisP) at the expense
of the Ni,(InP) phase in which case a larger amount of In is released. When the quantity of In is
important enough, and since the In melting temperature is exceeded (Ty, = 156 °C), it might start
melting. Then, during RTA quenching, the In solidification process takes place and leads to the
formation of In agglomerates. Consequently, it would mean that Ni,P and N;P kinetics are too slow at
340 °C and limit both phases’ growth as well as In release. Therefore In concentration remains too
low to melt until the system reaches 350 °C. The limitation to this theory is that one would expect to
see the In phase with a rounded shape (coming from the liquid phase) or at least a non-homogenous
layer on the corresponding TEM cross section while none of these two features can be observed

(Figure 3.16).

(ii) A second hypothesis can explain the appearance of In peaks at 350 °C. As in theory (i), In must be
redistributed/partitioned in the lattice during the formation of the binary and ternary phases. At
temperatures lower than 350 °C and even if the amount of released In is large enough, the thermal
energy may not be important enough to enable the nucleation of In precipitates. On the contrary, for
temperatures equal to or greater than 350 °C, nucleation may occur therefore leading to the
formation of diffracting In precipitates. In this second hypothesis, the kinetics of In phase formation

would then be limited by the nucleation in which case the In would not go through a liquid phase.
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Figure 3.22: /20 XRD pattern after the 60-second RTP at 340 °C and 350 °C and XRD detexturation pattern after the long-
time anneal up to 340 °C (ramp up duration = 7 hours) of the Ni/InP system.

3.4.5 Summary of the results

We demonstrated that the InP substrate cleaning procedure, which includes an Ar" plasma in situ
pre-clean prior Ni deposition results in the modification of the surface by creating a non-
homogeneous a-Ni-In-P amorphous layer. After 60 s-RTP on Ni (20 nm) / InP, we showed that the
phase sequence involves the coexistence of binary and ternary phases (Ni,P, NisP and Ni,(InP)) which
formation must be associated with some In partitioning in the early stages of the reaction. We
assume that the Ar® plasma pre-clean could play an important role in this phase sequence as it
results in P depletion of the substrate’s surface. We also demonstrated that for a short annealing
duration (60 seconds) the binary Ni,P phase grows at the expense of NisP and Niy(InP) as the
annealing temperature increases. This process is accompanied by In precipitation or melting /
solidification for temperatures equal to or greater than 350 °C. The various characterisations
highlight the fact that the making of the binary and ternary compounds is not controlled by the
nucleation but by the diffusion and/or by the interfacial reaction. Finally, we evidenced the
formation of In clusters from 350 °C and we discussed two different hypotheses to explain their
appearance: In melting/solidification or In precipitation controlled by the nucleation. These results

are summarized in Figure 3.23.
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Figure 3.23: Summary of the metallurgical study conducted on the Ni/InP system. The light fillings correspond to
temperatures that were not investigated and for which only trends on the phases’ evolution are displayed.

3.5 State of the art about Ni-based metallizations on InGaAs

The properties of Ni-(In)GaAs contacts have been studied over the years for the purpose of forming
self-aligned contacts that could be integrated on IlI-V MOSFETs devices [11-13, 22-29]. Most studies
report the formation of quaternary coumpounds for temperatures as low as 250 °C. However, up to
the 2010’s, metallurgical studies were mainly focused on the Ni/GaAs system and there was a lack
concerning the Ni/InGaAs system. Because understanding the material properties such as the crystal
structure, the lattice parameters and the epitaxial relationship with the underlying InGaAs is
imperative, extensive studies were conducted in the past few years. The latter also deal with the
ratio of Ni to Ni-InGaAs thicknesses and the thickness uniformity of the reaction product that are key
parameters to decrease the resulting series resistance in the devices. A summary of the phase

sequences reported in the literature can be found in Table 3.5.

Zhang et al studied the as deposited and annealed Ni/InGaAs systems through XRD and TEM cross
sections [11]. Thanks to these characterizations, they were able to identify the polycrystalline nature

of the 30 nm thick Ni film deposited by sputtering. The latter appears to be stable at least up to
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200 °C. However, after a thermal treatment lasting for 60 seconds at 250 °C, they observed the total
consumption of the Ni and the formation of a crystalline quaternary compound. The latter was found
to be uniform and 45 nm thick. Thanks to localized EDX measurements, the composition of the layer
was identified as Ni:In:Ga:As = 51:12:14:23. On top of this metallurgical study conducted on blanket
wafers, the authors integrated this compound on actual MOSFETs devices in other studies [22-24].
The additional steps necessary for the patterning of the devices did not seem to affect the nature of
the layer which was still composed of the same intermetallic compound (Ni:In:Ga:As = 51:13:15:21).
One interesting attribute lies in the fact that the authors were able to selectively remove the
unreacted Ni thanks to an HCI solution [53]. This feature strongly facilitates the overall contact

integration as it opens the way to a self-aligned metallization.

Shekhter et al and Mehari et al report the formation of a similar compound at 250 °C. Thanks to EDS
and XRD characterizations, they were able to identify this compound as being the hexagonal
NisIngs3Gag47As (Ni:In:Ga:As=4:1:1:2) [12, 13]. According to their findings, the initial 6 nm of Ni give

rise to a 12 nm thick Ni-InGaAs layer which is in epitaxial relationship with the underlying substrate.

The most complete study probably comes from lvana et al [28]. In the latter, the Ni films are
deposited and subjected to annealing treatments at various temperatures (from 200 °C to 350 °C) for
various durations (20 to 60 seconds). A very thin intermixed region is identified right after DC
sputtering deposition at the interface between the Ni and the InGaAs. A SIMS characterization
showed that the latter is thickened by an annealing treatment conducted at 200 °C for 60 seconds.
However, no crystalline compound other than the Ni was identified at this temperature by XRD.
Increasing the temperature up to 250 °C lead to the total consumption of Ni and to the formation of
a quaternary compound for durations as low as 20 seconds. The thickness ratio between the
deposited Ni and the Ni-InGaAs reaction product was found to be 1:1.7. Moreover, this product was
identified by XRD, EDX and XPS as being Ni;InGaAs, with a B8 hexagonal structure. Selected Area
Diffraction (SAD) showed that this compound is highly textured and presents an epitaxial relationship
with the InGaAs. It is important to note that the authors do not exclude the fact that the quaternary
compound’s formation might be initiated at temperature comprised between 200 °C and 250 °C.
Anyhow, the authors assume that the mechanism involved in the reaction between Ni and InGaAs
might be comparable to that of Ni/GaAs. This means that Ni atoms would predominantly diffuse
through interstitial sites in the Ni-InGaAs phase to reach the Ni-InGaAs/InGaAs interface where the
solid state reactions take place. According to them, this process probably involves breaking In (or
Ga)-As bonds and forming In (or Ga)-Ni bonds and As-Ni bonds. At 300 °C, two additional diffraction
peaks attributed to NisInGaAs, appear on the XRD pattern. The latter suggest that the orientation of

the intermetallic compound is slightly modified between the two temperatures. However, at 350 °C
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the intermetallic compounds’ composition probably slightly changes and a new phase which

composition is not reported appears.

For the first time, Chen et al conducted a similar metallurgical study in fin structures in 2015, i.e.
under scaled-down dimensions (from 30 to 500 nm) [27]. While the kinetics seem to be influenced by
the dimensions of the contacts, the compound ultimately observed between 250 °C and 300 °Ciis still
the hexagonal NisInGaAs,. In accordance with Mohney et al, the Ni is found to be the main diffusing

species during the formation of the Ni-InGaAs intermetallic compound.

Even though a unique phase sequence was observed in the above mentioned studies, Zhiou et al
report original results [29, 54]. The authors conducted extensive XRD characterizations and pole
figures measurements from which they extract the phases’ crystallographic structures and
stoichiometries. Unlike the other authors, Zhiou et al did not observe the reaction of the 20 nm thick
Ni film at 250 °C which requires a temperature of 300 °C to be initiated. After the latter annealing
treatment, they showed that the c/a ratio corresponds to the Nislngs3GagssAs phase. The already
observed Ni,Ings3GagssAs is only present after the annealing treatment conducted at 450 °C and is
not stable at higher temperatures. Indeed, the formation of a NiAs-like phase is observed at 550 °C as
the intermetallic tends to expel Ga and In atoms at high temperatures. On top of that, thanks to in
situ measurements, the authors showed that although the transition from Nislngs3GagasAs to
NisIng53Gag 47As is accompanied with a modification of the diffracting peaks’ position (shift > 2°), the
transition from Ni,Ings3Gag47As to NiAs only results in a small shift linked to the distortion of the

lattice (shift < 0.3°) [54].

As a consequence, similarly to the Ni/InP system, no consensus is reached concerning the phase
sequence observed in the Ni/InGaAs system. However, the authors agree on the fact that the Ni
diffusion is responsible for the appearance of the observed intermetallic compounds at low
temperatures. In the following we will present similar metallurgical studies conducted on blanket

wafers along with the obtained results.
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Table 3.5: Non exhaustive recapitulative table of the phase sequences observed in the literature - Ni/InGaAs system

(When encountered, N/A stands for Not Available)
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3.6 Metallurgical study of Ni-based metallizations on InGaAs

3.6.1 Analysis of the as deposited Ni/InGaAs

The as deposited Ni/InGaAs sample was firstly characterized by XRD in order to determine its
composition along with the crystallographic orientation(s) of the compounds. The corresponding XRD

pattern is presented in Figure 3.24.
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Figure 3.24: 6/20 X-Ray diffraction pattern of the as deposited TiN (7 nm)/Ni (20 nm)/InGaAs sample. A TiN (7 nm)/Ni (80
nm)/InGaAs sample was also measured in order to maximize the intensity of the diffracting crystallographic orientations.

The as deposited Ni film appears to be polycrystalline on InGaAs just like it was on InP substrates.
The XRD patterns do not indicate the formation of any other crystalline compound during the
deposition of the Ni and TiN layers, respectively conducted at room temperature and 100 °C. The
corresponding TEM cross section seems to confirm this hypothesis as it highlights the presence of
continuous and homogeneous Ni and TiN layers separated by flat and sharp interfaces (Figure
3.25(a)). The measured thicknesses also correspond to the deposited ones as the Ni and TiN layers
are respectively 20 and 7 nm tick. However, in spite of the very sharp interfaces, the corresponding
AES characterization displays diffusion profiles both at the bottom and at the top of the Ni layer
(Figure 3.25(b)). The artificial broadening of interfacial profiles being one of the most common
artifacts in AES, it was firstly necessary to check if the profiles were actually representative of the

samples. As detailed in section 3.2.2, many precautions were taken in order to limit this artifact:
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e A grazing angle of incidence (80 °) was used during the ion bombardment;

e The samples were rotated during milling which enables an averaging of the angle with
respect to the crystallographic directions in the sample and thus reduces the ion beam
induced roughening. It should be mentioned that the roughening scales with the removed
layer thickness and is thus is generally negligible at the beginning of the profiling;

e The applied ion energy was 1 keV which is appropriate for obtaining depth resolution in the

range of 1 nm.

Thanks to this setup, the obtained depth resolution on flat interfaces is of 1-2 nm [55-57]. As a
consequence, the interface between the Ni and the TiN therefore appears to be composed of an
approximately 3 nm thick interlayer where both Ni and TiN inter-diffuse. A similar trend can be
observed under the Ni layer where Ni, In, Ga and As co-exist over a depth of approximately 25 nm. It
is important to note that the initial substrate stoichiometry is conserved within this interlayer,
suggesting that it was formed by the diffusion of some Ni atoms into the InGaAs top surface. As a
result, while all interfaces look very flat and sharp on the TEM cross section, interdiffusion is initiated

during the deposition of the metallic layers on the InGaAs surface.

Finally, it is worth noticing that contrary to the case of InP surfaces, no amorphous layer is present on
InGaAs submitted to Ar" plasma pre clean. This observation comes as no surprise as extensive studies
conducted in our group highlighted the fact that the InGaAs is way less sensitive to wet and dry
surface preparations than InP [51, 58]. Contrary to InP, InGaAs surfaces can therefore be dipped into
concentrated HCl solutions (HCl : H,O = 1 : 2) and submitted to Ar’ pre clean without being impacted

in terms of morphology and / or stoichiometry.
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Figure 3.25: (a) TEM and (b) AES characterization of the as deposited TiN (7 nm)/Ni (20 nm)/InGaAs sample.

3.6.2 Analysis of the annealed samples and discussion

After analyzing the as deposited samples, they were annealed thanks to RTP treatments at
temperatures ranging from 250 °C to 550 °C for 60 seconds. The resulting systems were first of all
characterized by XRD in order to determine the phases in presence. The corresponding XRD patterns

are presented in Figure 3.26.
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Figure 3.26: 6/20 XRD patterns of the Ni/InGaAs samples annealed at 250 °C, 350 °C, 450 °C and 550 °C for 60 seconds
(RTP). A 2° offset on the incident beam was applied in order to minimize the substrate contribution.

As indicated by the peak indexation, the RTP conducted at 250 °C did not result in the formation of
new crystalline phases. At this temperature, the Ni is still the only diffracting species along with the
TiN encapsulation. An additional XRR characterization confirmed that the sample is still composed of
the deposited 20 nm thick Ni film encapsulated by the TiN (7 nm) at 250 °C. This conclusion is in
accordance with the findings of Zhiou et al who characterized identical samples thanks to 3D-RSM
and highlighted the absence of reaction at this temperature [29]. However, increasing the
temperature up to 350 °C resulted in the total consumption of the Ni phase to form new
intermetallic compound(s). Unfortunately, the identification of the corresponding diffraction peaks
was not enabled by the available Powder Diffraction Files (PDF) as no indexed compound would
match the diffracting positions. Nevertheless, as already mentioned in section 3.5, Seifeddine Zhiou
reported original results on the Ni/InGaAs system by observing the appearance of the phases
Nislngs3GagasAs, Nirlngs3Gags;As and NiAs [29, 54]. Thanks to theoretical calculations, the
crystallographic parameters along with the theoretical diffracting positions corresponding to these
phases were determined®. The latter which are summarized in Table 3.6 were used to index the

diffractograms corresponding to the annealed samples (Figure 3.26).

2 As a reminder, in the study reported by Seifeddine Zhiou, while the transition from NisInGaAs to Ni,InGaAs is
accompanied by a modification of the diffracting position (shit > 2 °), the transition from Ni,InGaAs to the NiAs-
like compound is only linked to a small shit (shit < 0.3 °) [29]. As a consequence, the second transition cannot
be identified thanks to classical 6/26 characterizations.
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Table 3.6: Theoretically calculated diffracting positions corresponding to the Ni;InGaAs and Ni,InGaAs / Ni-As phases

Compound Crystallographic orientation

(100) (101) (111) (202) (211)

Ni3(Ing.s3Gag.47As)

a=3.85A
26.71° 31.71° 50.41° 66.25° 77.85°
c/a=1.37
Niz(Ino.s3Gag.47As) / NiAs
a=3.6A-3.70A 27.81° 32.83° 52.47° 68.83° 81.54°
28.44° 33.13° 53.41° 69.53° 83.49°

c/a=1.4-1.45

It appears that the annealing conducted at 350 °C resulted in a total consumption of the Ni which
reacted with the InGaAs to form a unique Nizlngs3Gag4,As phase. Increasing the temperature up to
450 °C lead to a partial consumption of this intermetallic compound as indicated by the
corresponding peaks’ intensity decrease. In the meantime, a new compound corresponding to the
Ni,(Ing.47Gags3)As and/or NiAs-like was formed. This trend is confirmed at 550 °C as this annealing
process resulted in further consumption of the Nislng4;GagssAs along with the promotion of the
Ni,(Ing.47Gags3)As and/or NiAs-like phases. As a consequence, the indexation of the XRD patterns
indicates the formation of Nis(Ing4;Gags3)As at 350 °C contrary to most studies which report a unique
NisInGaAs,, also noted Ni,Ings53Gag 47As, phase around this temperature [11-13, 27, 28]. Therefore, in
order to further identify the composition of the systems along with their morphology, additional

characterizations were conducted on the systems annealed at 350 °C and 550 °C.

Sample annealed at 350 °C for 60 seconds

SEM and TEM lamellae were prepared from the sample annealed at 350 °C for 60 seconds in order to

characterize its morphology. The corresponding cross sections are presented in Figure 3.27.



120 METALLURGICAL STUDIES OF SI-COMPATIBLE METALLIZATIONS ON N-INP AND P-INGAAS

e —— Ni-InGaAs
i-InGaAs
'

InGaAs

InP

$5500 5.0kV x50.0k SE 1.00um

Figure 3.27 (a): SEM and (b) Bright field TEM image of the TiN (7 nm)/Ni (20 nm)/InGaAs sample annealed at 350 °C for
60 seconds.

Both characterizations evidence the presence of a uniform and polycrystalline layer on the InGaAs
surface while literature reported an epitaxial relationship between the reaction product and the
substrate. The resulting interface is not plane but is determined by the crystallographic orientation of
the intermetallic compound’s columnar grains. Furthermore, while only 20 nm of Ni were deposited,
the thickness of the compound resulting from the reaction of Ni with InGaAs oscillates between 45
and 65 nm. Therefore, contrary to the literature that mainly reported thickness ratio Ni/Ni-InGaAs of

about 1.7, it appears to be comprised between 2.2 and 3.2 in our case.

The crystallography of the observed compound was further studied thanks to High Resolution TEM
(HRTEM). Both the overall cross section and the Fast Fourier Transform (FFT) corresponding to grain
2 are presented in Figure 3.28. It is important to note that the latter was treated using the method

described in [60]°.

* The indexation of FFT patterns is similar to that of diffraction patterns. The latter requires the use of the two
spots (i.e. two reciprocal lattice vectors) that are the closest to the center of the FFT pattern. Clicking on them

allows the calculation of their modulus (|Gpy| = d—n where dyy; is the interreticular distance defined in
hkl

Figure 4.4) and the angle that separates them by the software. Then, suggested individual indexing solutions
are proposed based on the results for each diffraction pattern.
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Figure 3.28: (a) HRTEM image of the interface between 3 grains and the InGaAs in the TiN(7nm)/Ni(20Nm)/InGaAs after
the 60s-RTP at 350 °C and (b) FFT pattern of grain 2.

Allowing a tolerance on the d value, the FFT pattern was indexed with the crystallographic
parameters of the hexagonal Ni;InGaAs, phase reported by Ivana et al [28]. Although the three
observed grains are very differently oriented, all FFT patterns were indexed in the same way.
However, having to allow a tolerance on the d parameter most likely reflects the fact that the phase
in presence has a crystallographic structure close to that of NisinGaAs, but is not strictly this phase.
Several Ni-InGaAs phases might therefore be arranged along the same crystallographic structure, but
present different stoichiometry as it was reported for the Ni/GaAs system. Indeed, Guérin and
Guivarc’h demonstrated that all of the ternary Ni-GaAs phases crystallize in comparable hexagonal
structures [61, 62]. Therefore, combining this crystallographic characterization with a compositional
one appeared to be a necessity in order to determine the exact stoichiometry of the phase. Thus, this
sample was characterized thanks to AES and APT measurements which allow a precise identification

of the compound’s composition.

The corresponding AES profile is presented in Figure 3.29.
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Figure 3.29: (a) AES profile of the TiN(7nm)/Ni(20nm)/InGaAs sample annealed at 350 °C for 60 seconds and (b) zoom on
the top of the interfacial reaction zone.

The sample’s roughness being very low, the transition between the layers is sharp, therefore
enabling a clear identification of the various compounds. Figure 3.29 highlights the presence of a
60 nm-thick intermixed layer containing all the Ni present in the stack. The composition of this layer
appears to be homogeneous throughout the depth. However, as hypothesized thanks to the XRD and
the FFT indexation, the phase does not seem to correspond to the NisinGaAs,. Indeed, the ratios
indicate that the layer’s composition is Ni:In:Ga:As = 66:8:8:18, therefore corresponding to the

Nis(Ing s3Gag.47)As phase already observed by Zhiou et al at the same temperature.

This conclusion was supported by the APT characterization conducted on a similar sample [59]. It is
important to precise that the initial Ni layer thickness had to be brought up to 80 nm to enable this
kind of characterization. After conducting the thermal treatment, a tip was made from the sample,
evaporated and analyzed. The tip reconstruction is presented in Figure 3.30 along with the

corresponding 1D concentration profiles.
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Figure 3.30: (a) Reconstructed 3D volume and (b) corresponding 1D profile showing the at % along the depth of the
TiN(7 nm)/Ni(20 nm)/InGaAs sample annealed at 350 °C for 60 seconds.
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The reconstructed 3D volume exhibits a uniform composition that was deduced from the mass
spectrum as explained in section 3.2.2. The chemical composition averaged over the whole volume is
58.6 at% Ni, 20.9 at% As, 11.0 at% In and 9.5 at% Ga. Therefore, the phase identified thanks to APT
appears to be Nis(Ings3Gag47)As which indicates that the nominal proportions of In, Ga and As of the
substrate are kept in the reaction product. This observation suggests the fact that, as reported in the
literature, the Ni-InGaAs intermetallic compound is formed thanks to the diffusion of Ni atoms. The
corresponding 1D profile extracted from a cylindrical region perpendicular to the interface and
having a diameter of 30 nm is presented in Figure 3.30(b). The latter highlights a non-negligible Ni
gradient, i.e. 0.03 at%.nm™, which is compensated by an inverse Ga gradient along the depth of the
intermetallic compound. Because Ni and Ga atoms do no occupy the same crystallographic positions,
this suggests the fact that the Niz(Ings3Gag47)As accepts a stoichiometry deviation. Even though the
overall phase appears to be uniform, the In atoms present a non-homogeneous distribution as
depicted in Figure 3.31. Contrary to the Ni, Ga and As atoms, the In is accumulated on the grain
boundaries (GB). This accumulation might not be significant at this temperature but might become
problematic with the increase of temperature. Indeed, if this phenomenon is heightened it might
result in the formation of the In phase as it was observed in the Ni/InP system which may lead to a

performance variability of the contacts.

Figure 3.31: Cross sectional view of a 10 nm-tick slice (xz plane) extracted from the 3D volume showing the distribution of
(a) the Ni, Ga and An and (b) the In.

In conclusion, every compositional characterization conducted on the Ni/InGaAs system annealed at
350 °C for 60 seconds highlighted the presence of a uniform hexagonal Nis(Ings3Gag47)As phase. This
phase could be indexed as the NisjnGaAs, on the SAED pattern because the crystallographic
arrangements of the two phases are very close from one another. Both of them crystallize under a B8

hexagonal structure as reported by Ilvana et al and Zhiou et al [28, 29].
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Sample annealed at 550 °C for 60 seconds

The highest thermal budget applied on the Ni/InGaAs system corresponds to a 60 seconds treatment
at 550 °C. Because such a high temperature might have undesirable effects on the morphology and

the chemistry of the system, it was firstly characterized by SEM and TEM (Figure 3.32).
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Figure 3.32: (a): SEM and (b) Bright field TEM image of the TiN (7 nm)/Ni (20 nm)/InGaAs sample annealed at 550 °C for
60 seconds.

The corresponding cross sections highlight a pronounced agglomeration of the film. While the film
was initially 20 nm thick, the agglomerates reach depths of a few hundreds of nanometers. The
biggest ones, as featured by Figure 3.32(b) even reach the bottom of InGaAs epitaxy, i.e. the carrier
InP substrate. In order to determine the localized repartition of the elements in the grains and in the

surrounding areas, EDS measurements were performed (Figure 3.33).
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Figure 3.33: EDS characterization of (a) agglomerates and (b) surrounding areas present in the
TiN(7nm)/Ni(20nm)/InGaAs sample annealed at 550 °C.

The latter indicate that the integrality of the Ni present in the system is contained in the
agglomerates while the surrounding areas are composed of pure InGaAs. In order to characterize

more precisely the composition of these agglomerates, additional AES and APT characterizations
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were conducted at this point. However, the important inhomogeneity of the sample resulted in an
averaging of the signals emanating from the various regions therefore hindering the treatment of the
AES data. As a consequence, only the results extracted from the APT experiment will be presented in

the following.
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Figure 3.34: (a) SEM image of the APT tip fabricated from the TiN(7nm)/Ni(20nm)/InGaAs sample annealed at 550 °C and
(b) 3D reconstructed volume of a region containing only the Ni-InGaAs compound.

The SEM image of the fabricated tip is shown in Figure 3.34(a). One can observe the Ni-InGaAs
agglomerates surrounded by the InGaAs at the top of the tip. The reconstructed 3D volume
corresponds to a zone containing only the Ni-InGaAs compound and displays a uniform repartition of
the atoms in the phase present at this temperature. Only one singularity corresponding to a Ga-rich
grain boundary can be observed in the whole tip. The overall composition determined from three
different experiments is Ni:In:Ga:As = 52:12:4:32. Therefore, it appears that almost no Ga is present
in the compound which is mainly Ni and As-rich. This finding is in accordance with the study of Zhiou

et al who report the formation of a NiAs-like phase at 550 °C.

3.6.3 Summary of the results

In conclusion, it appears that the as deposited Ni/InGaAs is not modified by an annealing treatment
conducted at 250 °C for 60 seconds. However, increasing the temperature up to 350 °C is sufficient to
cause the total consumption of the Ni and the formation of a unique and uniform Niz(Ings3Gag.47)As
phase. Allowing a tolerance, the latter can be indexed using the crystallographic parameters of the
NisInGaAs, phase reported by Ivana et al as both phases are arranged in a B8 hexagonal structure
[28, 29]. At 550 °C however, the Ni-containing compound is fully agglomerated and depleted in Ga
and In. The phase formed at this temperature corresponds to a NiAs-like phase containing a small

amount of In and Ga. In spite of this drastic change of stoichiometry, the crystallographic structure is
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not modified during the annealing treatments conducted at various temperatures and is still

hexagonal.
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Figure 3.35: Summary of the metallurgical study conducted on the Ni/InGaAs system. The light fillings correspond to
temperatures that were not investigated and for which only trends on the phases’ evolution are displayed.

3.7 State of the art about Ti-based metallizations on InP

Ti is a widely used metal in the classical Ti/Pt/Au contacts both on n- and p-type semiconductors
where it provides the primary role of improved metallization adhesion. As a result, Ti is the metal in
contact with the semiconductor and mainly rules the electrical properties of these contacts.
Therefore, in the scope of forming noble materials-free contacts, Ti was more particularly studied on

its own.

Persson et al report the initiation of a reaction during the Ti deposition [15]. Although no binary or
ternary crystalline phase was detected by XRD at this point, some In was released probably indicating
the formation of Ti-P phases. They did not observed any modification at 250 °C but strong diffraction
signals from TiP were observed at 350 °C. The diffraction patterns indicated the presence of TiP and
In up to 600 °C, where TiP is the dominating compound. The authors conclude that the formation of
the TiP phase is initiated at low temperatures and that this compound acts as a diffusion barrier

which inhibits further reaction afterwards. Therefore, even at 500 °C, the reaction seems incomplete.

A similar phase sequence is observed by Takeyama et al who identified the presence of an

intermixed Ti-P layer along with some In release after the Ti deposition [9, 63]. The authors found out
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that the intermixed layer is converted into stable binary Ti-P compounds after annealing treatments
from 300 °C to 600 °C. The latter is associated with some In outdiffusion and segregation, therefore
leading to a Ti/In/Ti-P/InP stack. However, they do not precise the nature of the binary Ti-P phase
which could be composed of TiP or TisP3; according to them. This founding agrees with that of Wang
and Ivey (see below) except for the behavior of the segregated In atoms that are piled up at the Ti-
P/InP interface in their study [64]. The authors attribute this difference to the fact that their system
was capped with an Al layer contrary to that of Wang et al where the uncapped Ti layer is directly

affected by the oxidation.

Kendelewicz et al studied more particularly the reactions occurring during the Ti deposition at room
temperature and showed the initiation of the reaction after the deposition of only 0.2 A of Ti [65].
They highlighted the formation of a Ti-In alloy along with two different Ti-P phases, without further
detail on the composition of the phases. At higher coverage, In is found to outdiffuse and segregate
in the reaction product (t < 18 A) before being diluted (t > 18 A). Chassé et al conducted a similar
study and also showed that the formation the TiP phase is initiated during the deposition process,
without any critical minimum coverage. This reaction is associated with removal of In from the
substrate which arranges in metallic form in the surface region and/or in the reacted layer. When the
deposition is carried on (t > 19 A), the In is diluted in the reacted compound and a Ti layer grows on
top of it, probably in the form of islands. This indicates that the TiP acts as a diffusion barrier which
inhibits further formation of the reaction products. Additional studies conducted on annealed
samples highlighted a broadening of the reaction product from 150 °C along with a consumption of

the Ti.

On the contrary, Wang and Ivey [64] did not analyze the as deposited sample but identified the first
signs of reaction at 325 °C while lower temperatures were probed. At this temperature, they
identified two different regions at the Ti/InP interface, i.e., an In-rich region and a region containing
Ti and P. At 350 °C, they identified the phases in presence, leading to the following stack: Ti/Ti-
P/In/InP. Again, based on Selected Area Diffraction (SAD) data, the authors mention the fact that the
Ti-P containing layer could actually be composed of TiP, TisP; or a combination of both phases. From
their findings however, even if both phases coexist, the TiP appears to be predominant. A similar
characterization conducted after a thermal treatment at 450°C for 1.5 hours allowed the
identification of the phase as TiP. Increasing the temperature also lead to a decrease of the In layer’s
thickness which is found to diffuse at the top of the stack where it is oxidized. This In,03/Ti/TiP/In/InP

stack appears to be stable up to temperatures as high as 550 °C.

The phase sequences reported in these studies are summarized in Table 3.7.
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Table 3.7: Non exhaustive recapitulative table of the phase sequences observed in the literature - Ti/InP system (When

encountered, N/A stands for Not Available)
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3.8 Metallurgical study of Ti-based metallizations on InP

3.8.1 Analysis of the as deposited samples

After the wet and dry surface preparations conducted respectively in a concentrated HCI solution
and under an Ar’ plasma, the 20 nm-thick Ti films were deposited at 100 °C and were capped by a TiN
layer (7 nm) deposited at the same temperature. In order to determine the composition of the
systems, the samples were firstly analyzed thanks to XRD detexturation. Several Ti thicknesses

ranging from 20 nm to 50 nm were probed as displayed in Figure 3.36.
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Figure 3.36: XRD detexturation pattern of the as deposited TiN (7 nm)/Ti (20 nm, 35 nm and 50 nm)/InP samples.

In accordance with most results reported in literature, the XRD patterns highlight the initiation of the
reaction between Ti and InP during the deposition process [9, 15, 63, 65, 66]. This reaction appears
to be incomplete as several peaks corresponding to the Ti are still observed, even when only 20 nm
of metal were initially deposited. The XRD patterns highlight the formation of at least two binary and
crystalline phases, the hexagonal TiP and the tetragonal Ti,Ins. While the formation of the first phase
is largely reported in literature, the second has not been observed yet. It is important to note that
some In might also be present in these systems as one peak might be attributed to this phase
(28 = 33°). However, this assumption could hardly be affirmed solely thanks to the XRD as this peak

could also be attributed to TiP. Therefore, in order to identify more precisely the nature and the
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repartition of the various phases, additional TEM combined with AES characterizations were

conducted on the TiN(7 nm)/Ti(20 nm)/InP and TiN(7 nm)/Ti(50 nm)/InP systems.

(a) (b)

Layer-2

_a—Layer-1

Ti-containing stack

Figure 3.37: Bright field TEM cross section of (a) the TiN(7 nm) / Ti (20 nm) / InP sample in low magnification and (b) the
TiN(7 nm) / Ti (50 nm) / InP sample in high magnification highlighting the presence of four different layers in the system.

The low magnification TEM images highlight the homogeneity and the continuity of the layers
present on the InP (Figure 3.37(a)). Increasing the magnification reveals the presence of two different
layers underneath the Ti whose grains are about 40 nm wide (Figure 3.37(a)). Although both layers’
thicknesses are not perfectly homogeneous within each system, they are independent from the

initially deposited Ti thickness:

e The thickness of layer 1 ranges from 3 nm to 8 nm within each sample;

o The thickness of layer 2 ranges from 7 nm to 15 nm within each sample.

Additional AES characterizations were conducted in order to determine the composition of both
layers. Because they are very similar, Figure 3.38 displays solely the results corresponding to the

system TiN(7 nm) / Ti (20 nm) / InP.
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Figure 3.38: AES profile corresponding to the as deposited TiN(7 nm)/Ti(20 nm)/InP system.

As supported by the AES profile, the two layers present very different compositions. While the layer
in contact with the Ti (layer — 2) is composed of a mixture of Ti and In, the layer in contact with the
InP (layer — 1) is comprised of Ti and P. By linking these results with the XRD characterization, one
must reasonably assume that these two layers are respectively composed of Ti,Ins and TiP. As a
consequence, the Ti reacts with the InP during the deposition process conducted at 100 °C to form

the layered structure: TiN(7 nm)/Ti/Ti,Ins(7 nm to 15 nm)/TiP(3 to 8 nm)/InP.

3.8.2 Analysis of the annealed samples

In order to determine the evolution of the structure identified after deposition, additional
characterizations were conducted on samples annealed thanks to RTP processes at temperatures
ranging from 250 °C to 550 °C. The XRD detexturation patterns corresponding to these samples are

presented in Figure 3.39 and Figure 3.40 respectively for initial Ti thicknesses of 20 nm and 50 nm.
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Figure 3.39: XRD detexturation patterns of the TiN (7 nm)/Ti (20 nm)/InP samples annealed at 250 °C, 350 °C, 450 °C and
550 °C for 60 seconds (RTP). A 2° offset on the incident beam was applied in order to minimize the InP substrate

contribution.
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Figure 3.40: XRD detexturation patterns of the TiN (7 nm)/Ti (50 nm)/InP samples annealed at 250 °C, 350 °C, 450 °C and
550 °C for 60 seconds (RTP). A 2° offset on the incident beam was applied in order to minimize the InP substrate

contribution.
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When only 20 nm of Ti are initially deposited, the diffractograms highlight the coexistence of the
three phases already observed, i.e., Ti, Ti,Ins and TiP, at temperatures up to 450 °C (Figure 3.39).
Furthermore, the intensity of every diffraction peak is constant throughout the annealing
temperatures and, thus, do not indicate the evolution of the phases in this range. However,
increasing the initial Ti thickness leads to a modification of the peaks’ behavior (Figure 3.40). Indeed,
peaks corresponding to the TiyIns and the TiP are not present on all the samples, and most
importantly seem to disappear at some temperatures. For example, one of the most intense TiP peak
(26 = 30.3°) is absent at 250 °C while the XRD conducted after deposition and at higher temperatures
indicate the presence of this compound in the corresponding systems. Similarly, all the peaks
corresponding to the TiyIns at angles ranging from 45° to 65° are absent on the patterns acquired
after annealing treatments conducted at 250 °C and 450 °C while they are present at 350 °C.
Therefore, the extinction of some peaks seems to be uncorrelated with the actual composition of the
systems and may be attributed to the crystallographic texture of these compounds. Indeed, even
though diffractograms were acquired at several x angles to give rise to the summed patterns
presented above, no rotation was performed around the ¢ angle in this configuration. Therefore,
some orientations might be extinguished depending on the initial positioning of the sample / wafer
with respect to the X-Ray beam. In order to confirm or deny this hypothesis, TEM and AES
characterizations were conducted on the system presenting an initial Ti thickness of 50 nm annealed

at 450 °C (Figure 3.41).
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Figure 3.41: (a) TEM cross section of the TiN(7nm)/Ti(50nm)/InP system annealed at 450 °C and (b) corresponding AES
profile.

The TEM cross section along with the AES profile feature the presence of four distinct layers which
are very similar to the ones observed after deposition in terms of morphology and thicknesses. The

Ti-P layer in contact with the InP substrate is still about 3-8 nm thick while the thickness of the Ti-In
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layer still ranges from 7 nm to 15 nm” . Although the roughness seems to be increased by this
thermal treatment, the various compounds are still arranged in the layered structure already
observed after deposition: TiN(7 nm)/Ti/Ti,Ins(7 nm to 15 nm)/TiP(3 to 8 nm)/InP. As a consequence,
the modification of the diffractograms from 250 °C to 450 °C is most likely linked to a texture of the
observed compounds rather than to an actual modification of the systems’ composition. For initially
deposited Ti thickness ranging from 20 nm to 50 nm, the TiP and the Ti,Ins are formed during the
deposition process and are stable in terms of composition and thicknesses at temperatures as high as

450 °C.

However, contrary to the observations made in this range of temperature, a drastic change of
composition is brought by an increase of the temperature to 550 °C. At this point, a complete
redistribution of the species present in the sample lead to the total consumption of the Ti and of the
Ti,Ins. The latter are replaced by the already observed TiP phase. The stoichiometry conservation

leads to some In release as confirmed by the corresponding XRD patterns.

3.8.3 Discussion

In the previous section, thanks to the combined results emanating from XRD, TEM and AES, the
composition of Ti(20 nm to 50 nm) / InP systems was determined from deposition temperature to
550 °C. It was found that a layered structure composed of Ti, Ti,Ins and TiP is formed during the
deposition process conducted at 100 °C and is stable up to 450 °C. However, further increasing the

temperature up to 550 °C leads to a consumption of the Ti and the Ti,Ins; to promote the TiP and In.

The initial appearance of Ti-In phases along with Ti-P phases has not been reported yet in this kind of
systems. Because it might modify their electrical properties or their thermal stability, the phenomena
responsible for the appearance of the Ti,Ins are worth identifying. Similar discrepancies observed on
other systems such as the Ni/InP where extensively discussed in the literature and several hypothesis
were provided. For example, Appelbaum et al and Fatemi et al did not report the formation of the
same stable compound on the InP substrate after annealing treatments. However, the authors
explained that this difference is only an apparent one as it is due to different AES data treatments. In
our case, the identification of the phases could hardly be questioned as a multitude of diffracting

peaks confirms the indexation of each phase in Figure 3.39 and Figure 3.40.

* Note that the roughness present in this system results in transitions that are less net on the corresponding
AES profile. As a consequence, the layer’s thicknesses are somewhat overestimated on this profile compared to
the ones actually measured on the corresponding TEM cross sections and presented in this section.
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However, as detailed in in section 3.2.1, all samples were dipped into a concentrated HCl solution
and subjected to an Ar" pre clean before the metallization deposition in order to remove the native
oxides and contaminants from the InP surface. Extensive studies concerning the effect of these
surface preparations showed that both treatments modify the InP surface’s stoichiometry (see
section 3.4.2). Therefore, next section will be dedicated to the study of the observed phase sequence

and to the presentation of the mechanisms responsible for the appearance of each observed phase.

Mechanisms involved in the phase sequence

As mentioned in the previous sections, the samples systematically undergo two types of surface
preparation, both of them leading to a modification of the initial InP stoichiometry. In order to
further understand the individual effect of both the wet and the dry preparation, additional
characterizations were conducted. A sample was thus prepared suppressing the Ar’ pre clean and
then characterized thanks to XRD (Figure 3.42). Note that although the suppression of the wet
surface preparation would seem relevant from a theoretical perspective, in practice it would lead to
unwanted phenomena. Indeed, it would result in the presence of a thick native oxide layer which
would inhibit any kind of reaction between the Ti and the InP. As a consequence, Figure 3.42 displays
the XRD detexturation corresponding to samples with an initial Ti thickness of 20 nm which did and

did not undergo an Ar” pre clean treatment.
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Figure 3.42: XRD detexturations of the as deposited TiN(7 nm)/Ti(20 nm)/InP sample with and without Ar" preclean.
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The XRD detexturations highlight the formation of the two already observed phases, i.e. TiP and
Ti,Ins, both in the presence and in the absence of the Ar® pre clean. Therefore, it appears that
suppressing solely the Ar’ preclean is not sufficient to modify the observed phase sequence.
However, in accordance with literature, we showed in section 3.4.2 that the concentrated HC| used
for the wet surface preparation anisotropically etches the InP leaving the surface In-rich [52]. During
the subsequent Ti deposition which is conducted by PVD, the atoms are deposited on this modified
surface. A non-negligible portion of the atoms also reaches the InP situated below this In-rich layer
either thanks to their kinetic energy and/or thanks to a diffusion process. The compositional gradient
present in the InP leads to the formation of two distinct layers, the Ti,Ins in the In-rich region and the
TiP below. This situation is schematically represented in Figure 3.43.

Ti Ti Ti

[ ] [ ] [ ] [ ]
In-rich InP ] ]
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Figure 3.43: Schematic representation of the formation of the Ti,Ins and TiP phase during the deposition process.

In order to identify more precisely the involved mechanisms, one must additionally consider the
results presented in literature. In most studies, no extensive details are given concerning the surface
preparation, with the exception of Takeya et al who dipped their InP substrates into HF solutions [9,
63]. It is therefore consistent to assume that the InP surfaces used in these studies have not been
modified and are thus composed of 50 at% of In and 50 at% of P. As a consequence, it appears that
when the InP surface’s stoichiometry is not modified, the formation of Ti-P phases is favored at

temperatures as low as 20 °C. This observation leads to two conclusions:

(i) The gain in free energy (AGy) associated to the formation of TiP on unmodified InP is so important
that it compensates the increase of surface energy (o) linked to the nucleation of the phase at
temperatures as low as 20 °C (see section 3.1.3). Therefore, the formation of this compound is not

limited by the nucleation on intact InP and is thermodynamically favorable on this kind of surface.

(ii) The overall gain in free energy (AG,) associated to the formation of TiP when Ti and unmodified

InP are brought in contact is more important than the one associated to the formation of Ti,Ins. Note
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that AG, takes into account the gain in free energy associated to the formation of the binary phase

(AGy) and the surface energy required to form the new interfaces (o).

On the other hand, when the InP surface is modified by the surface preparation and becomes In-rich,
these considerations are no longer verified. The kinetic energy due to the PVD deposition bring Ti
atoms close to / into the modified layer. In this case, even if the free energy gain would have been
maximized by forming the TiP phase, the Ti,Ins phase is favored because of the available In excess.
Just like TiP, the gain in free energy associated to the formation of Ti,Ins compensates the surface
energy required to form the nuclei at temperatures as low as 100 °C. The appearance of this phase is
therefore not limited by the nucleation process. However, because the TiP phase is
thermodynamically more stable on intact InP surfaces, the system tends to form this phase in the
regions where the nominal InP stoichiometry is conserved, i.e., below the top few InP nanometers.
The formation of Ti-P phases is even more favored in the present case as a P-rich region is present
right below the In-rich layer (see Figure 3.14.F). These mechanisms are in accordance with the
layered structure which is observed, where the P-rich phase lays below the In-rich one. Furthermore,
the formation of the Ti,Ins and TiP must occur simultaneously. The P release associated to the
appearance of the Ti,Ins therefore helps the formation of the TiP; similarly, the In released during the
formation of the TiP is at least partially consumed to form the Ti,Ins. Once continuous TiP and Ti,Ins
layers are formed, at least one of them acts as a diffusion barrier (bulk and / or grain boundary
diffusion) therefore inhibiting further reaction up to 450 °C. It is important to note that even though
both layers can inhibit the diffusion, based on literature, the TiP probably plays the most important
role. Additionally, P-free “pockets” are observed below the TiP layer as displayed in Figure 3.44. One
can reasonably assume that these pockets appear during the formation of the TiP layer. As
mentioned above, when the Ti and the InP react together to form the TiP, some In must be released.
A certain proportion of the In participates to the formation of the Ti,Ins provided that it is not
blocked by the TiP diffusion barrier. However, the proportion of In that is released underneath this
TiP layer cannot diffuse and is therefore constrained to stay at/below the TiP/InP interface. These
pockets must therefore be composed of pure In whose peaks are observed on the corresponding
diffractograms. One can notice that these pockets generate an important stress in the InP that might

deteriorate the adhesion of the metallic layers on the substrate.
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(a)

P-free pocket

InP

Figure 3.44: TEM cross section of the as deposited TiN(7 nm) / Ti (20 nm) / InP system showing the presence of P-free
pockets below the TiP layer.

As a consequence, it appears that the Ti,Ins and the TiP are most probably formed simultaneously
during the deposition process by reaction between the Ti and the InP surface submitted to the two
steps surface preparation. Once the TiP layer is thick enough to be continuous, the reaction is
inhibited and the system is stable up to 450 °C. At higher temperatures however, i.e. at 550 °C, a
drastic change of composition is observed as the system is only composed of TiP and In. Therefore,
during this annealing process, the Ti,Ins is decomposed into In which strongly diffracts and into
additional Ti. This additional Ti along with the originally deposited one must meet the P contained in
the substrate in order to enable the growth of the TiP. Therefore, a path must be created during this
annealing process in order to allow the various species to move and meet. At this point, several

hypotheses can be formulated.

(i) The increase in temperature might enhance the diffusion of the various compounds, therefore
enabling them to diffuse fast enough through the TiP layer (Figure 3.45 (A)). This diffusion can occur
in the bulk phase, via interstitial and/or substitutional sites or thanks to the grain boundaries.
Depending on the diffusion coefficient associated to the Ti and P in this phase, the growth of this
phase can occur at the Ti,Ins/TiP interface, therefore limiting the length over which Ti would have to
diffuse and/or at the TiP/InP interface, therefore limiting the length over which P would have to
diffuse.

(i) The second hypothesis that can be formulated lies on the assumption that the diffusion of the
various species through the TiP layer is still too slow to enable any reaction. This layer must therefore

become discontinuous / agglomerated at 550 °C in order to allow the Ti and P to interact’ (Figure

> This situation would actually be similar to what was observed in the Ni/InP and Ni/InGaAs systems in which
the intermetallic compounds are fully agglomerated at this temperature.
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3.45 B). Note that the Ti,Ins layer might also be agglomerated as represented in Figure 3.45B’. In
both cases, once the Ti and the InP are in contact, the system tends to minimize its energy. As
already mentioned, all the studies present in the literature report the formation of the TiP phase on
intact InP surfaces, indicating the fact that this phase is the most stable on InP. As a consequence,
because the few In-rich nanometers that were initially present on the InP have been consumed, the
formation of the TiP phase is favored and associated to some In release to conserve the overall

stoichiometry.

(B) (B')

P InP P InP InP

Figure 3.45: Schematic representation of the three situations that could enable the species to interact during the
annealing treatment conducted at 550 °C. Note that these diagrams represent intermediate states occurring throughout
the annealing process.

The second hypothesis appears to be the most likely firstly because the mechanisms related to the
first one depend on the Ti thickness. The diffusion of the various species should indeed require much
more time when 50 nm of Ti were deposited compared to the case were only 20 nm were initially
present. Yet, the “Ti-20 nm” and “Ti-50 nm” seem to evolve similarly at 550 °C. Secondly, the
electrical characterizations conducted on this system (see section 4.5.5) highlight a strong
degradation of the electrical properties of this contact at 550 °C. The agglomeration of the layers at

this temperature is therefore highly probable.

3.8.4 Summary of the results

In conclusion, we demonstrated that the reaction between Ti and the underlying InP substrate is
initiated during the deposition process conducted at 100 °C. This reaction gives rise to the
simultaneous formation of two binary phases, namely Ti,Ins and TiP. While the latter is largely
reported in the literature, the first one had never been observed. We attribute the simultaneous
formation of both phases to a compositional gradient induced in the InP by the wet surface
preparation conducted in a concentrated HCl solution and enhanced by an in situ Ar’ pre clean. In
accordance with literature, the TiP layers is found to act as a diffusion barrier inhibiting further

reaction up to 450 °C in spite of the presence of an important Ti reservoir. In this configuration, all
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observed phases, i.e. Ti,Ins, P, TiP and In, therefore coexist at temperatures up to 450 °C. Because the
promotion of the TiP is thermodynamically more favorable, the Ti,Ins tends to be consumed in order
to promote the TiP. However, this transition requires the appearance of a diffusion path within the
TiP layer that is only be achieved at high temperature, i.e. at 550 °C. The growth of this phase is
accompanied by an In release and a total consumption of the Ti,Ins and Ti. Therefore, at 550 °C the
reaction is enabled either by the enhancement of the species diffusion through the TiP layer or by its
agglomeration. This phase sequence along with the associated mechanisms is summarized in Figure

3.46.

Growth of the TiP and In phases at T =
550 °C thanks to the enhancement of the
Ti and P diffusion through the TiP layer or

P! N | |  tenks o s aggomeraon

Simultaneous formation of binary
phases during the deposition process
by the interaction of the Ti with In-
rich and P-rich InP regions
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\

P-free pocket

InP

Figure 3.46: Summary of the metallurgical study conducted on the Ti/InP system. The light fillings correspond to
temperatures that were not investigated and for which only trends on the phases’ evolution are displayed.

3.9 Conclusion

This chapter was dedicated to the metallurgical study of Si-microelectronics compatible contacts to
n-InP and p-InGaAs. Three different systems were morphologically and compositionally studied from

deposition temperature to 550 °C.

First of all, the effect of the InP surface cleaning procedure including a dipping in a concentrated HCI
solution (HCl : H,0 =1 : 2) and an Ar" plasma pre-clean was studied. It appears that both processes
result in the formation of a compositional gradient within the InP which is finally In-rich at its surface

and P-rich underneath.
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When a Ni layer is subsequently deposited by PVD, some Ni atoms interact with these modified
regions to create a non-homogeneous a-Ni-In-P amorphous layer. After 60 s-RTP on Ni (20 nm) / InP,
the phase sequence involves the coexistence of binary and ternary phases (Ni,P, NisP and Ni,(InP))
which formation must be associated with some In partitioning in the early stages of the reaction. It is
reasonable to assume that the Ar* plasma pre-clean plays an important role in this phase sequence
as it results in P depletion of the substrate’s surface. For short annealing durations (60 seconds) the
binary Ni,P phase grows at the expense of Nis;P and Ni,(InP) as the annealing temperature increases
and is coupled with an In precipitation or melting / solidification from 350 °C. At high temperature,
i.e. at 550 °C, the layers are found to be fully agglomerated. Finally, it was found that the making of
the binary and ternary compounds is controlled by the diffusion and/or by the interfacial reaction.
On the contrary, the formation of In agglomerates from 350 °C is either linked to a

melting/solidification process or to the precipitation of this compound controlled by the nucleation.

A similar study was conducted on p-InGaAs surfaces. It appears that the as deposited Ni/InGaAs is
not modified by an annealing treatment conducted at 250 °C for 60 seconds. However, increasing the
temperature up to 350 °C is sufficient to cause the total consumption of the Ni and the formation of
a unique and uniform hexagonal phase which is Niz(Ings3Gag47)As. The Ni was found to be the main
diffusing species during the formation of this compound as highlighted by the conservation of the
initial Ings3Gag47As stoichiometry. On the contrary, at 550 °C, the Ni-containing compound is fully
agglomerated and depleted in Ga and In. The phase formed at this temperature corresponds to a
NiAs-like phase containing a small amount of In and Ga. In spite of this drastic change of
stoichiometry, the crystallographic structure is not modified during the annealing treatments

conducted at various temperatures.

Finally the investigation conducted on the Ti/InP system highlighted the initiation of a reaction
between the Ti and the underlying InP during the deposition process conducted at 100 °C. The
simultaneous formation of two binary phases, namely TiIns and TiP, is attributed to the
compositional gradient induced in the InP by the wet surface preparation and enhanced by the
subsequent in situ Ar" pre clean. Once formed, the TiP layer acts as a diffusion barrier inhibiting
further reaction up to 450 °C in spite of the presence of an important Ti reservoir. However, at higher
temperature, the TiIns tends to be consumed in order to promote the thermodynamically more
favorable TiP. This transition requires the appearance of a diffusion path within the TiP layer that is
only achieved at high temperature, i.e. at 550 °C. Therefore, at 550 °C the reaction is enabled either
by the enhancement of the species diffusion through the TiP layer or by its agglomeration. The
growth of this phase being accompanied by an In release and a total consumption of the Ti,Ins and Ti,

the system is solely composed of TiP and In at 550 °C.
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In the following chapter, the electrical properties of these systems will be probed. Thanks to the
combined conclusions emanating from both chapters, we will be able to identify the most suitable
metallization(s) for the formation of stable contacts with low specific contact resistivity on n-InP and

p-InGaAs.
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In the previous chapters we presented an innovative contact integration scheme to IlI-V materials in
the context of Silicon Photonics. Among other things, we explained the need to study new
metallurgies that would form ohmic contacts on n-InP and p-InGaAs while being available in a front-
end silicon microelectronics environment. To answer this need, two metals were selected: Ni and Ti.
While one can choose to directly deposit the metal on the semiconductor, the silicidation process
can also be transposed to IlI-V materials, therefore giving access to a wide range of phases. In this
chapter we will theoretically present the electrical advantages of such an approach based on Metal /
Semiconductor (abbreviated as M/SC) band diagrams. After that, we will present the electrical results
obtained with Ni and Ti-based Si-compatible metallizations on n-InP and p-InGaAs. By linking the
electrical results to the metallurgical ones presented in chapter 3, we will be able to propose the
most suitable combination(s) for the formation of stable contacts lowering of the specific contact
resistivity on n-InP and p-InGaAs. Finally, we will probe the impact of the various dielectric
encapsulations that were presented in section 2.4 on the electrical performance of the contacts.
Thanks to this overall study, we will be able to determine the most suitable dielectric encapsulation

and metallizations on n-InP and p-InGaAs.

4.1 Metal / Semiconductor band diagrams and transport mechanisms

The specifications of the Silicon Photonics require the integration of contacts on the IlI-V laser with
low specific contact resistivity (p.). As presented in chapter 1, limit values of series resistance in the
overall laser device are about 5 Q, which induces a maximum of 0.5 to 1 Q for each contact to
minimize the Joule effect and the power consumption. The metallization(s) must therefore be
selected to form ohmic contacts with specific contact resistivities lower than 5.10” Q.cm?. To fulfill
this requirement, several technological solutions are available. In the following we will draw the
M/SC band diagrams in order to theoretically explain how the conduction of such systems can be

optimized [1-4].

4.1.1 Metal / Semiconductor band diagrams

The repartition of the charge carriers in metals and semi-conductors is commonly represented thanks
to band diagrams. The latter depict the valence and conduction band-edge profiles derived from the
alignment of the Fermi levels and are commonly used to predict the electrical behavior of M/SC

contacts.
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The theory of contacts between semiconductors and metals was developed by Mott and Schottky in
1938 [5, 6]. In the following we will deal with two M/SC contact limit cases. The first one is
constituted by a metal and a semi-conductor, arbitrarily n-type, which does not present any
interfacial states. The second case will be that of a contact presenting a non-zero density of surface

states in the semiconductor, and a thin interfacial layer.

“Ideal contact” limit case

Metal Vacuum /| Semiconductor Metal Semiconductor

Figure 4.1: Simplified band diagrams of a M/n-SC system in the perfect limit case (a) before and (b) after contact.

Figure 4.1 depicts the band diagram of a M/SC system free from any interfacial states. Before
contacting the metal and the semiconductor, the vacuum level E, is horizontal and the Fermi levels
are distributed according to the work functions of each material, i.e., ®y and Qs (Figure 4.1(a)). The
latter correspond to the energy required to remove an electron from the level of the chemical
potential (Ef) and give it enough energy to escape to infinity, arriving there with zero energy. When
the metal and semi-conductor are put in contact, electrons can lower their energy by flowing from
the semiconductor to the metal, therefore generating energetic modifications in both materials
Figure 4.1(b). In the semiconductor, the ionized donors Np* are no longer compensated by the
electrons which create a positively charged region in the semiconductor close to the interface called
the space charge region. In the case depicted in Figure 4.1, it is more precisely a depletion region of
width Wy, where the bands are bent upwards. Similarly, a negatively charged region is created in
the metal by the incoming electrons. This charge difference is responsible for the appearance of an
electric field between the metal and the semiconductor. The equilibrium is reached when the
diffusion of electrons from the semiconductor to the metal is compensated by the electric field-
induced drift of electrons from the metal to the semiconductor. This equilibrium is characterized by a
constant Fermi level throughout the structure (Eqy= Egsc). The equilibrium Schottky barrier height
(SBH) for electrons (®y,) resulting from the band bending is exclusively determined by the metal

work function (®,,) and by the semiconductor electron affinity (x):
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bon = bm — X Equation 4.1

A similar computation can be applied to p-doped semiconductors and the resulting Schottky barrier

height is:
bop = Egtex—edn Equation 4.2

Case of the contact with surface states

The reality is that the interfaces are never perfect and free of surface states. The latter are therefore
always present and can be intrinsic or extrinsic [7, 8]. The intrinsic phenomenon, called Defect-
Induced Gap States (DIGS), results from a crystalline lattice periodicity break close to the surface.
While every atom situated in the volume is linked to all is neighbors, the bonds are only made on a
half-plane close to the surface. Dangling bonds are thus generated, and the surface states are
different from the volume ones. Therefore, the electronic wave functions that were considered as
infinite in the bulk material are disturbed and states that were forbidden in the bulk gap are allowed
in the surface’s one. Quite similarly, extrinsic surface states can be generated by the presence of
metallic adatoms on the surface of the semiconductor and are called MIGS (Metal Induced Gap
State)l. In this case, the electronic wave function in the semiconductor must match that of an
electron in the metal. Because the Fermi levels are aligned at thermal equilibrium, some states
coming from the metal must decay into the semiconductor, allowing states in the gap at the
interface. Finally, the presence of an interfacial layer such as a native oxide of thickness & must be

taken into account in most of the cases.

In the case of a system presenting surface states, the junction behavior is not ruled by the properties
of the bulk materials but by those of the interface. This strong influence is due to the states that are
present in the forbidden gap of the semiconductor. An energy level, @, corresponding to the
position of the Fermi level for an electrically neutral surface is defined. The surface is electrically
neutral if all the states situated below @, are filled with electrons while all the states situated above
it are filled with holes. As a consequence, as soon as the Fermi level is not aligned with @, the
surface is electrically charged. This results in the appearance of an electric field and therefore in a
bending of the bands before contacting the metal with the semiconductor ({y,;). Figure 4.2 shows the
band diagram of a metal semiconductor contact with a thin interfacial layer (8), for e.g. a native
oxide, and a large density of states. In this case, the semiconductor surface is already depleted in

electrons before the realization of the contact (Figure 4.2(a)).

! Note that the MIGS are generated even in the presence of a thin interfacial layer between the metal and the
semiconductor.
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b)

Figure 4.2: Simplified band diagrams of a M/n-SC system of a system with a thin interfacial layer and a non-zero density
of states (a) before and (b) after contact.

Generally speaking, taking into account the presence of surface states, and respectively for n-doped

and p-doped semiconductor, the Schottky barrier height can be written as [9]:
e.Ppn =v(epm —ex) + (1 —y)(Ey — edy) Equation 4.3
e.¢ppp = y(Eg +ey— e¢m)) + (1 —y)epy Equation 4.4

The parameter y = de¢, /ded,, is specific to the considered metal / semiconductor couple and
measures the sensibility of the Schottky barrier to the metal work function. If y = 1, the metal work
functions completely drives the Schottky barrier height; if y = 0, the surface states are ruling the
shape of the barrier and the Fermi level is said to be pinned. This parameter was shown to be
strongly dependent on the type of bonds (covalent or ionic) of the semiconductor [2-4]. Its evolution
is plotted as a function of the iconicity of the semiconductor, and more precisely as a function of
electronegativity difference of the semiconductor constituents in Figure 4.3. One can notice that the
InP and (In)GaAs compounds present an intermediate y parameter which enables a barrier height

tuning thanks to the nature of the metallic compound.
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Figure 4.3: Variation of the parameter y as a function of the electronegativity difference A of the semiconductor
compounds.

The Schottky effect, or image force

When considering a practical contact, one must take into account an additional phenomenon: the
Schottky effect, also known as the image force. The latter corresponds to a lowering of the barrier
height caused by a force applied on the carriers in the presence of an electric field. More precisely,
image charges build up in the metal electrode as carriers approach the metal-semiconductor
interface. Indeed, when an electron is located at a distance x away from the metal, a positive charge
of identical absolute value is generated at a distance —x with respect to the metal surface. The
presence of two opposite charges with equal intensity creates an attraction which is called the
image-force, given by:

—e? Equation 4.5

Fix) = ————
) 16.1. &y. x?

The work done by an electron during its path from infinity to the point x is given by:

e? Equation 4.6

X

F(x).dx = ——
_L 16.7. &y. x2
This energy corresponds to the potential energy of the electron at a distance x from the metal
surface. In presence of an electric field E, the resulting potential energy is given by:

2 Equation 4.7

>+ e E.x[]]

e
E,(x)= ———
() 16.7m.5y.x

The Schottky barrier lowering (or image force lowering) A® and its location along the x axis, x,,,, are

given by the condition d[Ep (x)]/dx = 0, and therefore:
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Equation 4.8

Equation 4.9

The equations listed above are applicable to M/SC systems provided that the permittivity of free
space is replaced by that of the semiconductor. The value of the electric field must also be replaced

by that of the maximum electric field at the interface.

This barrier reduction is of interest since it depends on the applied voltage and leads to a voltage
dependence of the reverse bias current. This Schottky lowering of the barrier is schematically

represented in Figure 4.4.

Metal X Vaccum

e.AD - Image potentiel energy

e.d, | |;

\\\,/eIElx

Figure 4.4: Energy band diagram between a metal surface and vacuum under an applied electric field E. The total
potential energy of an electron in vacuum at a distance x from the metal surface is displayed taking into account the
image force.

The resulting Schottky barrier height for electrons transiting from metal to n-doped and p-doped

semiconductors is given by:
e.ppn = v(edpm —ex — AP) + (1 — y)(Ey — edy) Equation 4.10
e.dpp =Y(Eg + ex — ey — AP) + (1 — y)eg Equation 4.11

4.1.2 Current transport mechanisms

The presence of this barrier in M/SC systems results in the existence of various conduction modes

that mainly rely on the majority carriers. These processes, listed below, will be qualitatively detailed
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in the following section while the corresponding equations will be presented in Appendix A4. Note

that both will arbitrarily deal with M/n-doped semiconductor systems.

1. The thermionic emission (TE) corresponds to the transport of electrons from the
semiconductor to the metal, and vice versa, above the barrier;

2. The diffusion of electron corresponds to a displacement of the charge carriers from the bulk
semiconductor to the space charge region;

3. The field emission (FE and TFE) corresponds to the tunneling of the electrons through the
barrier;

4. Electron / hole pairs can be recombined in the space charge region;

5. The electron / hole pairs can also be recombined in the neutral region, which corresponds to

a diffusion of the holes from the metal in the semiconductor (hole injection).
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Figure 4.5: Schematic representation of the five current transport mechanisms across a M/n-SC junction under forward
bias. Note that the bias is applied on the semiconductor, the reference being the position of the metal Fermi level
derived from the metal work function, @,

Emission over the barrier

The transit of electrons above the Schottky barrier can be realized thanks to two different
mechanisms, which are actually the two limit cases of this phenomenon. In the case of high mobility
semiconductors, the transport can be described by the thermionic emission (TE) while the dominant
mechanism for low mobility semiconductors is the diffusion. Practically these two phenomena are

combined and the true conduction behavior lies somewhere in between these extrema.

The diffusion theory was firstly proposed by Schottky in 1938 [5]. Generally speaking, the current
fluxes result from the displacement of charge carriers under a force. In the case of the drift /

diffusion theory, the latter can be due to the presence of an electric field E(x) (drift) and/or from a
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concentration gradient (diffusion). Whatever the driving force, the drift-diffusion rules the way the

charge carriers manage to reach the interface.

The thermionic emission (TE) corresponds to the transit of the charge carriers from the
semiconductor to the metal above the barrier and was firstly theorized by Bethe [2, 10, 11]. In this
case, the shape of the barrier is unimportant as the current flux only depends on its height.
Therefore, if the thermal energy is important enough, it enables the transit of electrons above the
barrier. When the thermal equilibrium is reached, the electron flux from the semiconductor to the
metal exactly compensates that from the metal to the semiconductor. The resulting current density
(J) across the barrier is equal to zero. The forward polarization (V¢ > 0) of the contact results in an
upward shift of the semiconductor’s Fermi level of magnitude e.Vi. As a result, the barrier height
seen by the electrons flowing from the semiconductor to the metal is lowered by the same quantity
and the current density in forward direction (SC = M) is larger than it is in reverse direction (M >
SC). A reverse polarization (Vg < 0) lowers the semiconductor Fermi level which results in a
displacement of the charge carriers from metal to semiconductor. These situations are schematically
represented in Figure 4.6.

a) b)

Metal Semiconductor Metal Semiconductor

Figure 4.6: lllustration of the TE conduction mode in a M/n-SC contact under (a) forward bias and (b) reverse bias.

General description of the FE and TFE conduction modes

In the previous paragraphs we presented the conduction modes in which the charge carriers go from
one side of the barrier to the other by getting over it. This kind of approximation is well adapted for
moderately doped semiconductors in forward bias where the TE mode is dominant. However, in
many cases, and especially under reverse bias, a non-negligible part of the charge carriers tunnel
through the barrier. This process allows the electrons that have energy lower than that of the barrier
top to cross it. Two main situations can arise in that case under forward and reverse bias, and are

schematically represented in Figure 4.7.
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EFSC

Figure 4.7: lllustration of the FE and TFE conduction modes in a M/n-SC contact under (a) forward bias and (b) reverse
bias

In highly doped semiconductors, i.e. in degenerate semiconductors, and in forward polarization, the
current mainly results from the tunneling of electrons with energies lower than the Fermi level of the
semiconductor. This process corresponds to the field emission (FE) as described in Figure 4.7. The
ohmic characteristic of I(V) curves (linear dependence of | as a function of V) of contacts to heavily
doped semiconductors often results from an important tunneling across a Schottky barrier. When
increasing the temperature, some electrons are promoted in higher energy levels. Because of the
quasi-triangular shape of the barrier, the probability of tunneling increases for these charge carriers
as the barrier gets thinner. This phenomenon, called thermionic field emission (TFE) is schematically
represented in Figure 4.7. If the temperature is further raised, some charge carriers might even reach

an energy high enough to go over the barrier (TE).

4.2 From Metal / Semiconductor band diagram to the specific contact

resistivity

4.2.1 Definition of the contact resistance and resistivity

As explained in the previous sections, the transport of current from metal to semiconductor (and vice
versa) relies on, and is limited by various transport mechanisms both in the presence of positive and
negative Schottky barrier. In the latter case, the various conduction modes enabling the charge
carriers to go through or above the barrier, i.e. FE, TFE and TE, depend on the applied voltage. As a

consequence, in the general case the resulting density of current might depend on the applied bias,
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therefore giving rise to non-linear I(V) characteristics. In order to account for all possible cases, the

general definition of the contact resistivity is:

] )—1 Equation 4.12
V=0

pc [ohm.cm?] = (W

With J the current density and V' the polarization of the contact.

Taking into account the dimensions of the contact, the value of the contact resistance can be derived

as:

R = ZTC [0hm] Equation 4.13

Where A is the area through which the charge carriers cross the M/SC interface.

4.2.2 Metal / Semiconductor system presenting a negative barrier

To lower the contact resistivity, the formation M/SC systems presenting negative Schottky barriers
would be the most efficient solution. In this case, the charge carriers would flow from metal to
semiconductor, and vice versa, in the same way. This situation is schematically represented on n- and

p-type semiconductors in Figure 4.8.

Figure 4.8: lllustration of ohmic contacts (a) to an n-doped semiconductor (b) to a p-doped semiconductor at V=0 .

Under the assumption that the Fermi level is not pinned, the formation of such contacts requires the

use of metals such as:

e For n-type semiconductors: ¢ < ¢sc

e For p-type semiconductors: ¢y > ¢
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This simple consideration highlights the fact that the formation of negative barriers on p-InGaAs
(Pp—inGaas = 529 eV) would require the use of metals with high work functions. Among the
common metals, only the Pt presents a suitable work function (¢p; = 5.3 eV/) but the difference is
poor and might not result in good electrical characteristics. In any cases, the realization of Pt-based

contacts would also be too expensive to be industrialized.

The ideal case of negative barrier is thus strongly compromised by the limited amount of suitable
metals, especially on p-doped semiconductors. Therefore, in most M/SC systems, a positive Schottky
barrier is present at the interface. However, we highlighted in section 4.1.2 that while this barrier
slows down the conduction it does not necessarily cease it. In the following we will present the

available levers to enhance the conduction modes in the presence of a Schottky barrier.

4.2.3 Enhancement of the conduction above and through the barrier

These conduction modes, namely TE, FE and TFE, are schematically represented in Figure 4.9

arbitrarily for M / n-type SC systems.

a)

EFSC

C

Figure 4.9: Schematic representation of the TE, FE and TFE conduction modes in a M/n-SC system (a) under forward bias
and (b) under reverse bias.

Enhancement of the field effect
The improvement of the conduction through a Schottky barrier can firstly be achieved by favoring

the tunneling processes, i.e. the FE and TFE modes. Increasing the tunneling probability requires a

thinning of the barrier, i.e. of the space charge region whose width is inversely proportional to the



164 SI-COMPATIBLE OHMIC CONTACTS TO N-INP AND P-INGAAS: THEORY AND ELECTRICAL CHARACTERIZATION

doping level of the semiconductor’. As a consequence, the semiconductors’ doping levels are
generally high in M/SC systems, and reach, in our case, Np= 5.10® cm?®in n-InP and Na = 3.10% cm?
p-InGaAs. Directly doping the epitaxy offers a double advantage as it also allows decreasing the
semiconductor sheet resistance (Rsy) were electrons and holes flow before reaching the contact

region. On top of that the additional use of localized doping techniques is of great interest because:

e The width of the depletion layer is mainly affected by the doping level of the semiconductor
surface;

e The bulk doping levels remain limited by the solubility limit of the doping species;

e A high concentration of ionized atoms underneath the active region of the laser would

generate optical losses.

As a consequence, the semiconductor epitaxies are generally doped during their growth and
localized dopings can be performed afterwards. For example, in the case of the laser where the n-InP
and p-InGaAs epitaxies are respectively doped at Np = 5.10'® cm™ and N, = 3.10" cm™, one could
imagine to realize an ion implantation after the contact cavities opening [12-14]. However, this
solution firstly amorphizes the semiconductor surface and requires the use of a thermal treatment to
recover the crystallinity. The latter is often performed at high temperature (T > 600 °C) which could
compromise its use on a laser. A more gentle solution, the gas immersion laser doping (GILD), was
also developed on Si surfaces where it allows reaching doping concentrations above the solubility

limit [15-17].

Lowering of the Schottky barrier height

Secondly, one must consider the TE conduction mode whose amplitude depends on the Schottky
barrier height ®y, or ®y, (cf Equation 4.10 and Equation 4.11). The latter can be tuned by changing
the metal in contact with the semiconductor provided that the Fermi level is not pinned by the
surface states. As presented in section 4.1.1 and more precisely in Figure 4.3, it is the case for InP and
InGaAs where surface states play an important role but where the Fermi level is not completely
pinned. Therefore, on these semiconductors, the metallic compound in contact with the

semiconductor modifies the resulting Schottky barrier height.

One can thus choose to deposit an appropriate metal on the semiconductor surface. However, this

solution can be delicate as:

e The quantity of available metals is limited;

? Because of the quasi-triangular shape of the Schottky barrier, lowering its height is also beneficial for the
enhancement of the FE and TFE modes. The solutions available to lower this maximum energy are presented in
the next section entitled “Lowering of the Schottky barrier height”.
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e The semiconductor’s surface condition is of crucial importance. For example, it must not be
deteriorated by the surface preparation or the metal deposition process and must not
present any oxide or contaminant;

e The thermal stability of the deposited phase(s) might be poor and the resulting system might

be altered by the thermal budgets applied during the overall integration of the device.

To overcome the last restriction, one can choose to deposit the phase(s) of interest and to stabilize it
(them) thanks to an annealing process. However, this solution does not lower the impact of the
semiconductor surface condition on the resulting resistance and gives access to a limited range of
compounds. To overcome these restrictions, one can choose to form intermetallic compounds by
solid state reaction with the semiconductor. Tuning the deposited metal, the annealing temperature
and duration leads to a significant variation of the phases’ nature. This kind of process therefore
gives access to a wider range of metal work functions and then to a potential lowering of the
Schottky barrier height. Moreover, the formation of intermetallic compounds often consumes
contaminants and defects at the original metal/semiconductor interface, therefore limiting their
impact. Although it has not been proved, we assume that this process might as well reduce the DIGS

by creating a graduate transition from metal to semiconductor.

Consequently, coupling the thinning of the Schottky barrier by means of a high doping with its height
lowering thanks to the adaptation of the metal work function are key to enhance the TE, FE and TFE

conduction modes, and therefore to lower the specific contact resistivity.

4.2.4 Resulting I(V) characteristics

Enhancing the conduction modes in a M/SC system allows the charge carriers to flow in a similar way
from metal to semiconductor and the other way around over a certain range of applied voltage
around 0 V. Therefore, over this range of voltage, the resistance that they encounter does not

depend on the applied voltage and the resulting I(V) curve respects the Ohm’s law, i.e. is linear.

On the contrary, in a Schottky contact the conduction from metal to semiconductor (reverse current)
and from semiconductor to metal (forward current) are very different from one another. The
resulting (V) curve is that of a diode and is therefore asymmetrical. Both configurations are

schematically represented in Figure 4.10.
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Figure 4.10: Schematic representation of the I(V) curves in the case of (a) a ohmic contact and (b) a Schottky contact

4.3 The Transfer Length Method (TLM)

4.3.1 Measurement principle

The contact resistance, R, and resistivity, p., being key parameters to evaluate the electrical
performances of contacts, various experimental setups and methods allowing their extraction are
available. One of the most common relies on the use of the Transmission Line Model and on the
Transfer Length Method (both abbreviated as TLM)®. The latter were independently proposed by
Berger et al and Murrmann et al in 1969 [18, 19]. Although these theories give a first qualitative
insight, they were largely discussed over the years [20, 21]. The specific contact resistivity was indeed
extracted by subtracting two large quantities, therefore leading to a non-negligible uncertainty. The
TLM experiment was thus refined over the years including additional inputs from Shockley et al [22-
25]. The resulting data extraction enables a decorrelation of the actual contact’s contribution from
that of the underlying semiconductor thanks to an array of identical contacts separated by an

increasing distance (Figure 4.11).

* The transmission line model applied to the case of M/SC contacts comprises the current and voltage
equations describing the conduction in such systems. The Transfert Length Method capitalizes this model in
order to extract contact resistances and resistivities thanks to a three-terminal resistor structure.
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Figure 4.11: Schematic representation of a TLM structure. All contacts are identical (width W and length a, and separated
by an increasing distance /.

Thanks to a four probe measurements, the I(V) curves corresponding to each couple of adjacent
contacts are acquired. The probed voltage range is chosen to cover the operating point of the

targeted device. At this point, a first stage of selection must be realized:

e If the contacts are Schottky, the I(V) curves are not linear. The resistance varies with the
applied voltage and a quantitative extraction of the contact resistance R is thus impossible.
e If the contacts are ohmic, the I(V) curves are linear. In this case, the inverse of the slope gives

access to the resistance R;,;.

It is important to note that the measured resistance (R;.;) results from the contribution of not only
the probed contacts (R.), but also of the underlying substrate (Rg,;) as represented in Figure 4.12.
The metallic pads presenting a sheet resistance at least two orders of magnitude lower than that of
the semiconductor, they will be considered as constant potential planes in the following.

l; Equation 4.14
RtOt = Z.RC + RSH.W

With Rgy the sheet resistance of the underlying semiconductor.
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Figure 4.12: Schematic representation of the resistances contributing to the overall measured resistance in a TLM. Note
that the contacts are considered as ohmic in this diagram.

The resistance corresponding to the substrate (Rg,;) is always constant and might cover up the
variations of the contact resistance with the applied voltage in the case of a Schottky contact.
Therefore, in order to maximize the contribution of the contacts with respect to that of the

substrate, the first selection step must be realized on small spacings, i.e. on spacings lowering the
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substrate’s contribution compared to that of the contacts. If the corresponding I(V) curve is linear,
the contacts are most likely ohmic and a quantitative extraction of the specific contact resistivity can

be conducted®.

4.3.2 Important definitions

The quantitative extraction of the specific contact resistivity thanks to the TLM requires the

definition of key parameters that we will detail in the following section.

Current crowding

The current flowing from one metallic pad to the other might deviate from a linear trajectory. This
effect is called the crowding effect and leads to important measurement errors. To force the current
lines to stay linear and parallel to one another, the semiconductor is patterned close to the metallic
pads edges as represented in Figure 4.13. This etching corresponds to the definition of the so called
mesa. The confinement of the charge carriers in the vertical direction is achieved by thinning the
semiconductor layer. However, the final thickness must not be too thin to limit the parasitic

resistance linked to the constriction effect.

b)

Figure 4.13: lllustration of (a) the crowding effect and (b) the current lines in the case of a patterned structure.

Transfer length, Ly

When flowing from one metallic pad to another, the charge carriers have to cross the first M/SC
interface, travel through the doped semiconductor before crossing the second SC/M interface. The
position where the current actually crosses the M/SC interfaces results from a competition between

the contact resistivity (pc) and the semiconductor’s sheet resistance underneath the contact region

4 Unfortunately, when acquiring I(V) characteristics thanks to the TLM method, one must be aware that the
substrate’s contribution might participate to the linearity of the curve. Lowering the spacing is necessary to
limit this contribution but does not suppress it. In order to optimize this data treatment, cross bridge kelvin
resistors were integrated on the layout of the second mask that was developed (TASP) and will enable an
accurate determination of the contacts’ I(V) characteristics.
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(Rgy or Rgg, see below). This phenomenon is represented by the transfer length, noted Lt as

represented in Figure 4.14 and defined in Equation 4.13.

Equation 4.15

Pc
RS K

LT=

Figure 4.14: lllustration of the transfer length in the case where (a) Ly ~a and (b) Ly < a .

Sheet resistance of the semiconductor

Another important parameter to consider is the sheet resistance of the semiconductor. Indeed, while
it might be constant throughout the path of the charge carriers (Rsy), applied thermal budgets might
also modify it locally underneath the contacts (Rgg). This can for example result from segregation or
accumulation (snow plow) of the doping species below the intermetallic compound(s) [26-28]. This
situation, schematically represented in Figure 4.15, directly impacts the value of the transfer length
Lr.

Metal

Intermetallic
compound

SC

Figure 4.15: Schematic representation of the modification of the semiconductor’s sheet resistance underneath the
contact.

4.3.3 Extraction of the specific contact resistivity — general case

The general terms being defined, the specific contact resistivities can be extracted on contacts
featuring an ohmic behavior [24, 25]. To do so, the resistances corresponding to all spacings are
extracted and plotted as a function of the latter. The resulting plot should feature a linear trend as

represented in Figure 4.16.
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Figure 4.16: Schematic representation of the R,y(l;) plot used to extract the specific contact resistivity in the case of a
TLM experiment.

Thanks to it, the various parameters electrically characterizing the contact can be extracted. First of
all, the sheet resistance of the bulk semiconductor Rgy can be directly derived from the slope of the

curve.
R¢y = slope . W Equation 4.16

In the case of a non-alloyed contact, Rgy and Rgg are identical. The extrapolation of the curve to

y = 0, noted L,, therefore gives access to the transfer length L.

L Equation 4.17
Ly = x/

Finally, the intercept of the curve represents the case where the substrate’s contribution is

suppressed. As a consequence, the corresponding resistance is twice the contact resistance.
Intercept = 2. R, Equation 4.18
The specific contact resistivity can be directly extracted from these parameters:
Pc =Rc.A Equation 4.19

where A is the contact area crossed by the charge carriers. Taking into account the transfer length

defined in the previous section, Equation 4.19 becomes:
pc =Rc.Ly. W Equation 4.20

An additional correction directly derived from the transmission line model is applied (the reader

interested in the overall computation can refer to Appendix A5). The latter allows taking into account
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the current crowding that can occur between the two probed contacts. The resulting and final

expression of the contact resistance and specific contact resistivity is:

Rgg. Lt a Equation 4.21
R, = .cth(—
c T (LT
_ Re.Lp. W Equation 4.22
pc = cth(%/,, )

4.3.4 Extraction of the specific contact resistivity — alloyed contacts

In the case of alloyed contacts, the extraction of the specific contact resistivity is very similar.
However, because Rgy and Rgxy might differ, the computation of the transfer length requires
additional steps [24, 25, 29-31]. For this purpose, the end resistance, noted Ry and corresponding to

the drop of voltage occurring at the end of the contacts was introduced [23]°. The latter is defined as:

(%) Equation 4.23
RE - -

il i2=0
Where v, corresponds to the drop of voltage between the contacts C, and C; when a current i; is
injected between the contacts C; and C, (Figure 4.17). Because of the infinite input impedance of the
voltmeter, this drop of voltage theoretically occurs solely in the second contact, and therefore

corresponds to R, i.e. to Rg.
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Figure 4.17: Experimental setup used for the determination of the end resistance (Setup A).

Based on Equation 4.23 and on the Transfer Length Method detailed in appendix A5, one can express

the end resistance as:

> Oddly enough, the notion of end resistance was originally introduced by Shockley et al/ [23] to address the
electrically short contacts (d < L;) with no reference to the alloyed contacts.



172 SI-COMPATIBLE OHMIC CONTACTS TO N-INP AND P-INGAAS: THEORY AND ELECTRICAL CHARACTERIZATION

Rgg. Lt 1 Equation 4.24
W  “sinh(a/Ly)

RE =
Finally, the ratio between R, (Equation 4.21) and Ry (Equation 4.24) allows a determination of the
transfer length:

R; a Equation 4.25
— = cosh(—
Rg Ly

The specific contact resistivity can therefore be calculated based on Equation 4.22.

Another experimental setup was proposed to determine the value of the end resistance as

schematically represented in Figure 4.18.
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Figure 4.18: Experimental setup used for the determination of the end resistance (Setup B).

The extraction of Ry thanks to this setup is achieved by measuring the resistances R, , R, and R;

thanks to the classical four probes experiment.

Rl = RCl + Rsubl + RCZ Equation 4.26
Ry, = Rey + Rgypo + Res Equation 4.27
R3; = Rc1+ Rgup1 + Reupz + Res Equation 4.28

Then, the experimental value of Rg corresponding to the drop of voltage in C,, it is given by:

1 Equation 4.29
Rp = E-(R1 + R, — R3)

Whatever the method used for the extraction of the end resistance, the transfer length is always

calculated thanks to Equation 4.25 in the case of alloyed contacts.
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4.3.5 Limitation of the TLM method

While the TLM method is well adapted for the determination of the specific contact resistivity in the
case of ohmic contacts, it presents some limitations when it comes to independently and fully
characterizing Schottky contacts. To understand the origin of these restrictions, one must consider
the electrical diagram corresponding to the TLM measurements in the case of Schottky contacts
(Figure 4.19).

Rl
Metal l
| tallic
ntermetalli
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1
SC (n-type)
Ry Rc2
i
VW
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Figure 4.19: Schematic representation of the electrical diagram corresponding to the TLM measurements in the case of
Schottky contacts.

While the latter can be considered as pure resistances when they are ohmic (linear (V) relationship),
they behave like diodes coupled with resistances when they are Schottky (cf section 4.2.4). Because
both contacts are identical, the TLM’s I(V) acquisition is carried out in a “back to back” diodes
configuration. As a consequence, whatever the polarization, the current flowing through the overall
structure is always limited by the diode operating in reverse mode. In fact, this attribute is exploited
by E. Dubois and G. Larrieu to reproduce and characterize the reversed biased junction of a Schottky
MOSFET [32]. To summarize, the wholeness of the I(V) characteristic cannot be extracted thanks to
this kind of measurement when the contacts are Schottky. The current is underestimated to a certain

extent as it corresponds to the reverse part of the I(V) characteristic.

In spite of these limitations, the TLM setup is an easy to integrate and powerful tool enabling the
characterization of ohmic contacts. In order to take the most out of it, one must consider the above

mentioned limitation and take it into account when exploiting the extracted data.
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4.4 Description of the experimental electrical test structures

4.4.1 General presentation of the adopted strategy

As already mentioned, the metallization selected in the frame of the Silicon Photonics must form
ohmic contacts with specific contact resistivities lower than 5.10° Q.cm? on n-InP and p-InGaAs.
While the developments of an innovative contact integration and the associated metallurgical studies
have already been covered in chapters 2 and 3, their electrical characterization is yet to be
presented. Thus, the following sections will be dedicated to this electrical study thanks to TLM

structures, which is itself divided into two main axes, namely:

e The identification of the most suitable Ni and Ti-based metallization(s), i.e. deposited metal
and subsequent annealing treatment, for the formation of ohmic contacts with low resistivity
on n-InP and p-InGaAs;

e The study of the impact of the various dielectric encapsulations presented in section 2.4 on

the electrical performances of the contacts.

In order to cover these two axes, the newly developed masks mentioned in chapter 2 and comprising
numerous electrical test structures, i.e. MELT and TASP, were used. While the two masks address
different wafer sizes (respectively 50 to 100 mm and 200 mm), the two of them are comprised of

three levels of integration:

e ACTIVE level, used to pattern the semiconductor, i.e. the IlI-V stacks, and limit the crowding
effect;

e CONTACT level, used to pattern the contact cavities were the Si-microelectronics compatible
metallization is integrated;

e METAL level, used to integrate metallic pads necessary to polarize the contact test structures

during the electrical characterization.

The mask TASP was mainly used to develop the integration of the contacts in a 200 mm Si-
compatible clean room presented in Chapter 2. The development of this integration scheme required
numerous sub-studies, and thus lasted not less than 2 years. Because the fact that this development
would require several years was known, a second mask, MELT, was developed to conduct upstream

electrical characterizations. This approach presents various advantages:
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e The integration scheme used with the mask MELT is similar to TASP’s but is simplified. The
time needed to perform the overall integration is therefore less important and a wide range
of metallizations and dielectric compounds can be probed.

e A first electrical characterization of the contacts could be performed in parallel to the
development of the integration scheme in the 200 mm Si-clean room. As a consequence, the
most suitable candidates, i.e. nature of the deposited metal and subsequent thermal
budget, were selected thanks to MELT before being implemented on the 200 mm-wafers.

e The integration of the contacts thanks to the mask MELT could be realized on samples
(quarters of 2-inches wafers for example) rather than on wafers. Because the IlI-V materials
are quite expensive, this attribute is of great interest in the first stages of the materials’

selection.

Therefore, the results presented in this section will correspond exclusively to the ones obtained with
the mask MELT.

4.4.2 Description of the electrical test structures (MELT)

As already mentioned, the mask MELT is dedicated to the patterning of electrical test structures on
I1I-V wafers whose diameters range from 50 mm to 100 mm. The electrical test structures present on
this mask are exclusively composed of TLM, either linear or circular (CTLM). The layout corresponding

to the three lithography levels stacked is presented in Figure 4.20.
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Figure 4.20: Layout of the mask MELT displaying the three levels of integration. The black rectangle highlights the linear
TLM structure used for the extraction of the results presented in this chapter.

The black rectangle frames the linear TLM used for the extraction of the results presented in this

chapter. The latter is composed of squared contacts (a = W = 200 um) separated by spacings ranging

from 20 um to 120 um as detailed in Figure 4.21.
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Figure 4.21: Zoom-in of the TLM structure used for the extraction of the electrical results presented in this chapter — (a)
top view and (b) cross section.

The measurement procedure corresponds to the one detailed in section 4.3: the adjacent contacts
are probed thanks to a four probes setup to extract the corresponding I(V) characteristics. More
precisely, a current generator provides the intensity required to obtain a drop of voltage ranging
from about -1 V to +1 V in the overall structure. In the meantime, a voltmeter measures the actual
drop of voltage as the latter can differ from the targeted value. This situation occurs when the
current compliance used to limit the DC current, and therefore prevent any damage to the
structures, is reached. Note that this step of data acquisition and the following resistance extraction
are always repeated on nine different chips in order to test the reproducibility of the results. In the
case of non-linear relationship between the voltage and the current, the contact is declared as being

Schottky; otherwise, the corresponding resistance is extracted thanks to two different methods?®.

(i) The first method consists in calculating the resistance corresponding to each probed point, i.e. to
each probed I-V couple. These calculations are conducted for the five spacings, and always repeated
on nine chips. To do so, a first filter is applied to eliminate the measurement errors that often occur
when the current and the drop of voltage are too small. This filter consists in suppressing the
negative resistances along with the ones that are way higher than the mean value (for example,

when the mean value is of 10 Q, all resistances below 0 Q and above 100 Q are not taken into

® Note that in order to determine if the contacts were ohmic or Schottky, additional I(V) extractions were
conducted on CTLM structures. Indeed, the latter enable a minimization of the substrate’s contribution
compared to the linear TLM on MELT as they present lower spacings.
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account). The filtered mean value is then calculated along with the corresponding standard

deviation.

(ii) The second method exploits the plotting of the I(V) curves. By taking the inverse of their slope,
one can access the mean value of the resistance, therefore disregarding the measurement errors

provided that the correlation coefficient is close to 1.

The two methods have always been used for the extraction of the specific contact resistivities and
gave very close results. Therefore, for the sake of simplicity and because it does not take into
account isolated measurement errors, the results presented in the following will be solely based on

the second method.

4.5 Electrical characterization of the Si-compatible Ni and Ti-based

metallizations

As briefly detailed in the previous section, the electrical characterization of the contacts covers two
main axes, the first one of them being the study of the Ni and Ti-based Si-compatible metallizations
presented in Chapter 3. This electrical study aims to determine which metallization(s) and
subsequent thermal treatment(s) is/are the most suitable on both surfaces of interest, i.e., n-InP and

p-InGaAs.

4.5.1 Experimental procedure

The experimental procedure followed for the integration of these systems firstly includes a IlI-V
surface preparation in a diluted HCI solution (HCI : H,O = 1 : 10). In order to be consistent with the
contacts’ integration presented in Chapter 2, a layer corresponding to the hard mask used for the
patterning of the Ill-V is then deposited. The latter is composed of the conformal SiN and is 50 nm
thick. Again, similarly to Chapter 2, the 150 nm-thick top layer is composed of SiO, deposited at
300 °C. The contact lithography level is then used in order to pattern contact cavities in this dielectric
stack. The etching of these compounds down to the IlI-V surfaces is achieved thanks to a dry SFe-
based plasma. After the definition of the contact cavities, the IlI-V wafers are once again dipped into
the diluted HCI solution in order to remove all particles and oxides from the surface. Because an air
break is inevitable, an Ar" plasma pre clean is conducted right before the deposition of the various
metallizations. Some samples were deliberately not submitted to this Ar’ preclean in order to probe
the impact of its presence / absence on the electrical characteristics of the contacts. The 20 nm —

thick Ni and the Ti layers are both deposited by PVD respectively at room temperature and 100 °C on
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separated samples. Additionally to these two metals, a Ni,P target was specially designed and
ordered for this study. Indeed, very good results were reported in the literature with this
metallization on n-InP (pc= 3 x 10° Q.cm?) and p-InGaAs (pc= 2 x 10®° Q.cm?) while we showed in
section 3.4 that is very unlikely to isolate this compound when formed by reaction between a Ni film
and the InP substrate [33-35]. All samples are finally encapsulated by a 7 nm-thick TiN capping layer
deposited at 100 °C and by a probing layer composed of Au. In order to enable the creation of
intermetallic compounds, some sample underwent RTP thermal treatments under N, ambient. The
annealing temperatures and durations were chosen in the light of the various results reported in
Chapter 2 and are detailed in Table 4.1. At this point, the metallization is patterned down to the
dielectric stack thanks to the metal lithography level. The final integration step consists in patterning
the IlI-V active epitaxy in order to confine the current streamlines and therefore limit the crowding
effect. This patterning requires the localized removal of the dielectric stacks thanks to the SF¢-based
dry etching and the etching of the IlI-V stacks thanks to wet solutions. The latter are composed of a
mixture of HCl and H;PO, for InP layers while they are composed of H,S0,, H,0, and H,0 when it

comes to etch InGaAs epitaxies.

The samples that were fabricated for the purpose of this study are summarized in Table 4.1.

Table 4.1: Recapitulative chart of the samples fabricated for the electrical study of the Si-compatible metallizations on n-
InP and p-InGaAs.

n-InP X X X
Active epitaxy
p-InGaAs X
Integration Planar X X X X X
In situ Ar* pre clean X X
Ni X X
Depos!ted' Ti X X
metallization
Ni,P X
None X X X X X
250°C-60s X X
300 °C—-3 min X
Thermal treatment 340°C -60s X
350°C -60s X X X X X
450°C-60s X X
550°C-60s X X X

When experimentally extracting the specific contact resistivity on these samples, three limit and
characteristic cases were encountered. For the sake of clarity, the latter will be presented in the

following based on three representative samples: (i) the Ti/InP system annealed at 550 °C for 60
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seconds, (ii) the as deposited Ni,P/InP and finally (iii) the Ni/InGaAs system annealed at 350 °C for 60

seconds.

4.5.2 Experimental extraction of the specific contact resistivity —

Schottky contact

As described above, the first step of these experiments always consists in acquiring the I(V) curves
corresponding to each spacing on nine different chips. Figure 4.22 presents the I(V) curves

corresponding to one chip of the Ti/InP system annealed at 550 °C for 60 seconds.
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Figure 4.22: I(V) curves corresponding to each spacing of the Ti/InP system annealed at 550 °C for 60 seconds.

One can notice that the I(V) characteristics do not display a linear trend, therefore highlighting the
Schottky nature of the contacts. As theoretically expected, the curves tend to recover a linear trend
when the contribution of the substrate is maximized, i.e. when the spacing increases. Anyhow,
because the contacts are Schottky, their resistance depends on the applied voltage and no

guantitative extraction is conducted on this first type of system.
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4.5.3 Experimental extraction of the specific contact resistivity — Non-

alloyed ohmic contact

The second typical data treatment corresponds to the case of the as deposited Ni,P/InP system.
Figure 4.23 displays the I(V) curves corresponding to every spacing present on one chip. One can
notice the linear behavior of all the characteristics, and most importantly, of the one corresponding
to the smallest spacing. As expected, the resistance increases with the distance as the contribution of

the semiconductor, R,,;, becomes more and more important.
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Figure 4.23:1(V) curves corresponding to each spacing of the as deposited Ni,P/n-InP system.

Contrary to the above mentioned case, these contacts therefore exhibit an ohmic behavior and a
guantitative extraction of the specific contact resistivity can be conducted. To do so, the nine
resistances corresponding to each spacing are calculated, averaged and plotted as a function of the
spacings (Figure 4.24). The linear trend displayed on this plot reflects an efficient confinement of the

current streamlines within the active semiconductor region, and therefore a very limited crowding
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effect. Moreover, the errors bars displayed on the chart’ highlight the small deviation existing

between the nine chips, and therefore the suitable reproducibility of the measurements.
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Figure 4.24: Plot of the total resistance measured thanks to the TLM setup as a function of the spacings for the as
deposited Ni,P/n-InP.

The contacts being non-alloyed, no end resistance extraction was necessary and thus conducted. The
transfer length, the contact resistance and finally the specific contact resistance are respectively
extracted thanks to Equation 4.17, Equation 4.18 and Equation 4.22. The corresponding results are

summarized in Table 4.2.

Table 4.2: Recapitulative table of the results obtained on the as deposited Ni,P/n-InP system

Parameter Extracted Value
Transfer length Ly 3.55 um

Contact resistance R¢ 0.61Q

Specific contact resistivity pc 4.31x10°Q.cm?

’ The error bars are actually contained in the points displayed on the chart. Note that the dispersion mainly
emanates from the multiplication of the measurements and not from the actual | and V acquisition themselves.
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4.5.4 Experimental extraction of the specific contact resistivity —

Alloyed ohmic contact

The last case presented here corresponds to the Ni/InGaAs sample annealed at 350 °C for 60
seconds. The latter displays linear (V) curves which enables a quantitative extraction of the specific

contact resistivity (Figure 4.).
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Figure 4.25: I(V) curves corresponding to each spacing of the Ni/InGaAs system annealed at 350 °C for 60 seconds.

However, according to literature, because this sample underwent a thermal treatment the data
extraction should be adapted. As detailed in section 4.3.4, the formation of the intermetallic
compounds at the metal/semiconductor interface might modify the electrical properties of the
semiconductor beneath the contact region. As a consequence, Rgy and Rgy differ and the transfer
length cannot be extracted graphically. As a consequence, the end resistance, Ry, must be
determined and the actual transfer length calculated (see section 4.3.4). Apart from this additional

step, the specific contact resistivity extraction is identical to the one described above.

The determination of the end resistance was conducted thanks to the two setups described in

section 4.3.4.
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e The first one, consisting in injecting a current between the first two pads and measuring the
resulting drop of voltage between the second and the third pads will be noted “setup A”
(Figure 4.17).

e The second one, which consists in measuring the resistances corresponding to three adjacent

pads, R;, R, and R will be noted “setup B” (Figure 4.18).

Extraction of the end resistance thanks to Setup A

Setup A was firstly used for the extraction of the end resistance on the Ni/InP sample annealed at
340 °C for 60 seconds. In order to test this measurement configuration, several sets of contacts were
probed: a first set of measurements was performed by injecting the current between contacts 1 and
2 and measuring the drop of voltage between pads 2 and 3; a second was similarly performed

between pads 3, 4 and 5 (Figure 4.26).

6 =120 um ¢, =80 um =60pum  £4,=40pum ¢ =20 pum
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—
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Figure 4.26: Layout of the TLM structure used for the end resistance measurements.

Unfortunately, this kind of measurement provided unreliable results. Indeed, while several
measurements were performed on the same set of contacts, the obtained results were not
reproducible from one chip to another. Moreover, changing the set of contacts that were probed led
to a modification of the extracted value, indicating that not only the end resistance was measured.
Oddly enough, these kinds of limitations are not discussed in articles dealing with linear TLM while
they are mentioned in the case of Circular TLM (CTLM) [36-39]. Yet, the final measurement

configuration is the same when observed in cross section, as represented in Figure 4.27.
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Figure 4.27: (a) Schematic representation of the end resistance extraction on CTLM and (b) corresponding electrical
diagram.
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In order to identify the origins of these parasitic resistances, one must consider the basis of this data
extraction. The determination of the end resistance relies on the fact that no current is flowing from
point B to point C. Thus, the measured drop of voltage should correspond solely to the one occurring
in contact C,, i.e. between points B and B’. However, in practice this hypothesis might not be
respected. Alok et al and Connelly et al showed that a drop of voltage actually occurs between points
B’ and C’ when a current is flowing between contacts C; and C, (Figure 4.28) [37, 40]. Therefore, the
overall drop of voltage measured thanks to this setup results not only from the end resistance, but
also from the contribution of the semiconductor located between C, and C;. To minimize the latter
contribution, a diminution of its thickness compared to the spacings is necessary. Thanks to this
precaution, a confinement of the isopotential lines is achieved vertically and as a consequence
laterally. Nonetheless, this kind of measurement is only valid if the sheet resistance of the
semiconductor is low compared to the value of the end resistance, i.e. if the transfer length is
important enough. Otherwise, the actual value of the end resistance is entirely hidden by the
substrate’s contribution. As a consequence, because the experimental results were found as being

unreliable, as supported by literature, the second measurement method was probed.
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Figure 4.28: (a) Current distribution in the case of a bulk semiconductor region obtained using numerical simulation [37]
and (b) Schematic cross section of a metal/n-type Si junction structure highlighting the presence of isopential lines
between two contacts that are not polarized [40].

Extraction of the end resistance thanks to Setup B

The second method relies on the measurement of three different resistances thanks to a four probe
setup (Figure 4.18). Here again, several measurements were conducted on several set of contacts in
order to test the reproducibility of the end resistance extraction. In Table 4.3, the results obtained on
the Ni/InP sample annealed at 340 °C for 60 seconds are listed for the three sets of contacts that

were probed.
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Table 4.3: Values of Ry, R,, R; and R; extracted using setup B on the Ni/InP sample annealed at 340 °C for 60 seconds

Set of contacts probed R, R, R; Re
Contacts 12 3 6.38Q 10.11 Q 16.38 Q 0.06 Q
Contacts 345 13.76 Q 17.40 Q 31.47Q -0.15Q
Contacts 456 17.40 Q 24.47Q 42.02Q -0.07 Q

As displayed, the values of R strongly depend on the set of contacts that are probed. Even more
surprisingly, two out of the three sets lead to negative end resistance values. Obviously, this kind of
result is physically impossible and highlights a weakness in this extraction process. Although no such
theory has already been reported, the drawing of the electrical diagram, taking into account the

transfer length, gives an insightful perspective (Figure 4.29).

Metal

SC

Figure 4.29: Electrical diagram corresponding to the setup used for the extraction of R; taking into account the transfer
length.

As schematized in Figure 4.29, considering the transfer length modifies the equations classically used
for the extraction of the end resistance (Equation 4.26 to Equation 4.29). Indeed, in this case, the
sum of the contributions Ry,;1 and R, is not equal to R, p3. In this case, if Ly is small compared
to the lateral dimension of the contact a, the end resistance calculated from Equation 4.29 is
negative, as observed in the Ni/InP sample annealed at 340 °C for 60 seconds. Therefore, in order to

take into account the contribution of the portion represented in red, Equation 4.29 becomes:
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_ (R1 + Rz - R3) RSH' (a — 2. LT) 8 Equation 4.30
B 2 2.W

The extraction of the transfer length is achieved by equalizing the expressions of R extracted from

Equation 4.25 and Equation 4.30:

RC _ (R]_ + Rz - R3) RSH' (a — 2. LT) Equation 4.31
cosh(a/LT) B 2 2.W

Note that the sheet resistance of the semiconductor is determined graphically thanks to the R;,: (L)

plot, the slope of the curve being equal to RSH/W.

This data treatment was applied to several annealed samples’ and provided without exception the
same result. The transfer length always oscillates between 98 um and 99 um while the resulting
specific contact resistivity ranges from 1x10™ Q.cm” to 3.5x10™* Q.cm? The similarity of all these
results, yet obtained on very different samples raised questions about the validity of these
extractions. In order to further test this method, it was applied to the as deposited Ni,P/InGaAs
sample, the aim being to compare these results to the ones obtained with the extraction method
classically used for non-alloyed systems. Figure 4.30 shows the TEM cross sections corresponding to
this sample along with the spatial repartition of the elements. The latter indicates that the layers are
fully intact and that no interdiffusion occurred. Therefore, one can reasonably assume that the sheet
resistance of the semiconductor is not modified underneath the contact regions and that the two

extraction methods should provide comparable results.

® Note that, depending on the path followed by the charge carriers, Rgymight have to be replaced by Rgg. This
path for example depends on the redistribution of the doping species underneath the contact region (depletion
/ accumulation).

° The updated extraction was applied to the Ni/InP sample annealed at 340 °C and 350 °C, the Ni,P/InP system
annealed at 300 °C and 350 °C and the Ni/InGaAs sample annealed at 350 °C and 450 °C.
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Figure 4.30: (a) TEM cross section of the as deposition Ni,P/InGaAs and (b) spatial repartition of the elements present in
the system.

Yet, both methods provide very different results as displayed in Table 4.4. The most remarkable point
concerns the fact that the ones obtained thanks to the updated setup B are once again similar to the

ones extracted for all the annealed samples.
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Table 4.4: Recapitulative table of the results obtained on the as deposited Ni,P/InGaAs sample

Ly Pc
“Non-alloyed” extraction method 3.29 um 1.23x 10° Q.cm?
Updated setup B for alloyed contacts 99.87 um 3.56x 10" Q.cm?

Based on these various results, it seems the extraction of the end resistance Ry is far from being
trivial. Even in its updated version, setup B presents some limitations that could be linked to several

phenomena®.

First of all, in Equation 4.31, we assume that the charge carriers travel solely through the bulk
semiconductor once they have passed the contact interface. However, the end resistance extraction
is conducted for the only purpose of taking into account the modification of the semiconductor’s
sheet resistance underneath the contact region. To counteract this approximation, one could
partially substitute the value Rsy by Rgg. The difficulty lies in the determination of the path followed
by the current and therefore the distances over which the sheet resistance is equal to Rgy and to
Rgi. Two extreme situations can occur, as represented in Figure 4.31. In the case depicted in Figure
4.31(a), the distance over which the semiconductor’s sheet resistance is equal to Rgg is roughly twice
the transfer length. However, if the modified sheet resistance, Rgg, is less important than the bulk
one, Rqy, the charge carriers might modify their path underneath C, as represented in Figure 4.31(b).
In this case, because the region where the sheet resistance is equal to Rgg is thinner than the bulk
semiconductor, a shrinking resistance might appear. The path ultimately followed by the charge
carriers will then result from a competition between the specific contact resistivity, the bulk and
modified sheet resistance of the semiconductor and the potential shrinking resistance. It is therefore

very complicated if not impossible to evaluate it without additional theoretical simulations.

1% Note that the list provided along with the associated explanation might not be exhaustive.
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Figure 4.31: Schematic representation of the path that can be followed by the charge carriers during the measurement of
R3-

On top of that, utilizing this updated extraction method is efficient over a limited range of contact
resistance versus semiconductor sheet resistance ratio. Indeed, in systems presenting very small
transfer lengths compared to the dimensions of the contacts, the charge carriers might go back in
contact C, during the measurement of R3. This attribute is for example exploited by Yu et al. for the
determination of ultralow contact resistivities (pc < 10® Q.cm?) thanks to a multiring CTLM setup [41].
If this situation actually occurs, the value of the end resistance cannot be extracted thanks to this
setup. The whole issue lies in the determination of the critical transfer length from which the charge
carriers would benefit from going back in C, rather than staying in the semiconductor during the
measurement of Rs. If one considers only the definition of the transfer length, one would expect this
situation to occur as soon as L is smaller than the length of the contact a. However, because the
contact C, is not polarized during the measurement of R3, theoretical simulations would be once
again of great interest to predict the path actually followed by the charge carriers during this

measurement.

Considering these results, it seems that this kind of measurement presents strong limitations even in
its upgraded version when arrays of contacts are probed'’. Unfortunately, the reliability of the
obtained results appears to be highly questionable. As a consequence, the results presented in the
next section will exclusively emanate from the extraction method classically used for non-alloyed
systems. Even though the contact resistivities might be somehow underestimated for the annealed
samples, they will provide an accurate trend allowing us to identify the most suitable metallizations

and thermal treatments.

" In order not to encounter the above mentioned restrictions, optimized and decoupled structures were
implemented on the 200 mm mask that was developed (TASP). The values of R;, R, and R; can be
independently measured on three separated sets of contacts thanks to these structures.
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4.5.5 Electrical characterization of Si-compatible metallizations on n-InP

The extraction method described in section 4.5.3 was therefore applied to the integrality of the
samples presented in Table 4.1. For the sake of clarity, the results obtained on n-InP and p-InGaAs
will be presented and discussed separately. The next section will be therefore dedicated to those
obtained on n-InP surfaces (Np = 3 x 10*®%cm™), the latter being summarized in Figure 4.32. Taking into
account the uncertainties arising from the (V) measurement itself, from the measurement of the
contacts’ dimensions, from the linear regressions and from the reproducibility of the measurements

on the nine chips, the error linked to the extracted was calculated. All results presented in the next

sections are therefore given with the precision Apc/pc = 3.1072
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Figure 4.32: Specific contact resistivities of Ni and Ti-based metallizations to n-InP (N, = 3 x 10" cm'3). When
encountered, PC stands for in situ Ar" pre clean.

It appears that most the of metallizations present specific contact resistivities meeting the target in
terms of specific contact resistivity which is fixed at 5 x 10° Q.cm?. Moreover, the great majority of

them present better electrical characteristics than the classical Au/Pt/Ti metallization which is
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Schottky on n-InP when integrated thanks to a Si-compatible integration scheme. However, while
some thermal treatments lead to an enhancement of the conduction through the
metal/semiconductor, some strongly deteriorate it. These electrical evolutions being linked to the
modification of the composition and morphology of the systems, a particular attention will be paid to

link these various characteristics.

While the as deposited Ni does not provide satisfying results, the specific contact resistivity drops
under the target after an annealing treatment conducted at 340 °C for 60 seconds. In section 3.4,
XRD characterizations conducted on this system highlighted the co-existence of binary and ternary
phases at this temperature, namely Ni,P, NisP and Ni,InP, while the as deposited sample was only
composed of crystalline Ni and of an amorphous a-Ni-In-P layer. Therefore, it appears that the
formation of these three phases is electrically favorable on n-InP. Moreover, the XRD also featured
the appearance of the In phase consequently to a 10 °C temperature rise. The associated TEM cross
sections however did not feature the presence of isolated In grains, suggesting that this phenomenon
might only be initiated at 350 °C. In order to observe if the appearance of the In phase had an impact
on the electrical properties of the contact, the corresponding system was probed. However, it seems
that the contact resistivity is not much impacted as it only increases from 2.3 x 10° Q.cm?® to 2.6 x 10
> 0.cm’. On the contrary, a 100 °C increase in temperature lead to an important degradation of the
contacts that became Schottky at 450 °C. We saw in section 3.4 that the samples feature comparable
compositions from 300 °C to 450 °C. As a consequence, the nature of the phases which initially lead
to an improvement of the electrical properties of the contact does not seem to be responsible for
this degradation. It is therefore reasonable to hypothesize that the thermal treatment conducted at
450 °C resulted in the initiation of the layers’ morphology degradation and/or to an agglomeration of
the compounds. This hypothesis is supported by the TEM cross section conducted at 550 °C on which
the Ni,P was found to be fully agglomerated and surrounded by the In phase. In conclusion, in order
to minimize the specific contact resistivity while avoiding the formation of the In phase which might
lead to non-reproducible results, the formation of Ni-based contacts to n-InP surfaces must be

realized at temperatures that do not exceed 340 °C.

The Ti metallization presents even more strict restrictions concerning the maximum acceptable
temperature. Indeed, while it is perfectly ohmic after deposition and after a thermal treatment at
250 °C, a degradation of the electrical properties occurs at higher temperatures. The contact
resistivity starts to increase at 350 °C and the contact displays a marked Schottky behavior after the
annealing treatment conducted at 550 °C as displayed in Figure 4.33. However, it seems that this
change of behavior initiated at 350 °C is not linked to a modification of the system’s composition.
Indeed, the corresponding XRD characterizations (see section 3.8) showed that the composition of

the systems is stable from deposition to 450 °C (co-existence of Ti,Ins, TiP and Ti). Therefore, once
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again, the modification of the electrical properties is at least partially linked to a degradation of the
system’s morphology from 350 °C. It is important to note that annealing treatment conducted at
550 °C is electrically unfavorable, most probably because of a degradation of the system’s
morphology. As a consequence, in order to form Ti-based ohmic contacts with low specific contact

resistance, the intermetallic phases must be formed at low temperature (T < 350 °C).
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Figure 4.33: I(V) curves corresponding to the lowest spacing (20 um) of the Ti/n-InP system after deposition and after
thermal treatment at 250 °C, 350 °C and 550 °C for 60 seconds.

Finally, the Ni,P metallization was probed and provided very good and thermally stable results when
its deposition is preceded by an in situ Ar’ pre clean. From deposition to 350 °C, the specific contact
resistivity oscillates between 4.3 x 10° Q.cm? and 7.3 x 10° Q.cm”. However, when the dry pre clean
is suppressed, the contact becomes Schottky. This result might be surprising as we demonstrated in
section 3.4.2 that this kind of in situ treatment strongly degrades the surface morphology when
applied to InP. Yet, it allows a suppression of the oxides that regrow during the wafers transfer.
Figure 4.32 clearly highlights the fact that the presence of a native oxide is way more detrimental for
the electrical performances of the contacts than the modification of the InP surface state. It is
important to note that, without pre clean, the specific contact resistivity tends to be lowered
subsequently to a thermal treatment. We attribute this to a rearrangement of the species that might
occur at Ni,P/InP interface. Thanks to this mechanism, the oxide layer must become discontinuous if
not dissolved into the compounds. Even though the nominal value obtained when a pre clean is
conducted is not recovered, these results experimentally highlight the advantages of performing
thermal treatments in order to lower the impact of the semiconductor surface state. This kind of

solution is therefore of great interest when the semiconductor surface cannot be properly cleaned
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right before the deposition process thanks to in situ pre cleans. Note however that a first step of wet
cleaning is necessary to limit the thickness of the native oxide on the semiconductor as a too thick

layer would inhibit any reaction even during thermal treatments.

Overall, it seems that the Ni,P metallization combined with an in situ Ar* preclean represents the
most suitable available solution for the formation of ohmic contacts with a specific contact resistivity
as low as 4.3 x 10° Q.cm? on n-InP. The latter additionally presents the advantage of being stable at

least up to 350 °C and could therefore withstand additional processes conducted at this temperature.

4.5.6 Electrical characterization of Si-compatible metallizations on p-

InGaAs

Similarly, the above mentioned metallizations were deposited and electrically characterized on p-

InGaAs (N, = 3 x 10" cm™). The resulting contact resistivities are displayed in Figure 4.34
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Figure 4.34: Specific contact resistivities of Ni and Ti-based metallizations to p—InGaAs (N, = 3 x 10" cm'3). When
encountered, PC stands for in situ Ar" pre clean.
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Once again, it appears that most of the metallizations provide electrical characteristics meeting the

requirements of the Silicon Photonics requirements (pc < 5 x 10®° Q.cm?).

First of all, the as deposited Ni on p-InGaAs presents one of the lowest specific contact resistivities
presented in this study on this kind of semiconductor, i.e. pc = 7.5 x 10° Q.cm?. Conducting an
annealing treatment at 350 °C for 60 seconds lowers even more this value that reaches 5.6 x 10°®
Q.cm®. These results are particularly notable as most studies reported in the literature notify the
Schottky nature of the Ni/InGaAs contacts after deposition and after RTP [42-44]. As a consequence,
contrary to literature, both the as deposited Ni and the intermetallic compound NiginGaAs, are
electrically very favorable on p-InGaAs. However, these characteristics are degraded from 450 °C
where the specific contact resistivity sharply increases. This degradation is confirmed by a transition
toward Schottky behavior at 550 °C. This evolution comes as no surprise given the fact that the Ni-

InGaAs compound is fully agglomerated at this temperature.

Contrary to all the above mentioned systems, the Ti metallization on p-InGaAs requires temperatures
equal to or higher than 350 °C to become ohmic. Right after deposition, the I(V) characteristics
present an important curvature that tends to be reduced, along with the associated resistances after
the RTP at 250 °C (see Figure 4.35). This positive evolution linked to an increase of the temperature is
confirmed by the sample annealed at 350 °C. The latter presents a fully ohmic behavior with a
specific resistivity of pc = 8.8 x 10° Q.cm” *>. The XRD characterizations presented in appendix A3
highlighted the initiation of a reaction at 250 °C which is enhanced at 350 °C. As a consequence,
although the nature of the compound(s) present from 250 °C to 350 °C could not be determined,
they allow the formation of ohmic contacts and are therefore electrically favorable. The formation of
the TiAs phase at higher temperatures (T > 450 °C) associated with an In release similarly enables to
reach low resistivity values. Although the latter slightly increases after the annealing treatment
conducted at 550 °C, it still meets the requirements of the Silicon Photonics (pc= 1.9 x 10®° Q.cm?).
The most remarkable attribute of this result lies in the thermal stability of this system which presents
a low specific contact resistivity at temperatures as high as 550 °C. This important thermal stability is
of great interest, especially considering the fact that the subsequent integration steps might be

realized at temperatures as high as 440 °C (see section 2.7).

2 Note that when fully integrating the contacts thanks to the innovative scheme presented in Chapter 2, this
value is lowered down to 1.7 x 10° Q.cm”. This first result opens the way towards further lowering the specific
contact resistivities thanks to the optimized integration conducted on 200 mm wafers in the Si-compatible
clean room.
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Figure 4.35: (V) curves corresponding to the lowest spacing (20 um) of the Ti/p-InGaAs system after deposition and after
thermal treatment at 250 °C, 350 °C and 550 °C for 60 seconds.

Finally, the Ni,P metallization was probed and provided very interesting results when coupled to an
Ar® preclean, just like it did when deposited on the n-InP surface. Here again, the specific contact
resistivity is stable from deposition to 350 °C where it ranges from 121 x 10° Q.cm” to 1.8 x 10°
> Q.cm”. However, when the in situ preclean is suppressed, the resistivity strongly increases because
of the presence of a native oxide at the interface between the metal and the semiconductor.
Performing a thermal treatment leads to a diminution of the contact resistivity indicating the

lowered impact of this oxide layer that might become discontinuous.

Overall, the metallizations that would optimize the electrical performances of Si microelectronics

compatible contacts to p-InGaAs are:

e The Ni after a thermal treatment conducted at 350 °C for 60 seconds, i.e. the NigInGaAs,
phase;

e The Ti after a thermal treatment conducted at 350 °C for 60 seconds;

e The Ni,P combined with an in situ Ar" preclean, this system providing similar results after
deposition and after thermal treatments conducted at 300 °C for 3 minutes or at 350 °C for

60 seconds.

4.5.7 Conclusion on the choice of the metallization

Based on the above mentioned results, it appears that many of the probed metallizations could be
used to electrically pump the I1lI-V laser. However, the electrical study combined with the

metallurgical one give us a very good insight in order to reduce the choices to only a few. The
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integration of the contacts can be conducted in two different ways: the integration of the

metallization on n-InP and p-InGaAs can be (i) sequential or (ii) simultaneous.

A simultaneous opening of both cavities would drastically reduce the number of integration steps. In
this case, a unique metallization must be integrated on both n-InP and p-InGaAs. If this solution is
ultimately retained, based on the results emanating from Chapter 3 and Chapter 4, the Ni,P
combined with an in situ pre clean must be used. Indeed, the latter provides the best solution with
specific contact resistivities of 4.3 x 10° Q.cm? and 1.2 x 10” Q.cm” respectively on n-InP and p-
InGaAs right after deposition. This type of metallization also presents the advantage of being
thermally stable at least up to 350 °C on both surfaces, therefore enabling the application of thermal

budgets during the subsequent integration steps.

However, as already discussed in section 2.5, the n-InP and p-InGaAs surfaces are separated by
several micrometers in the IlI-V laser laser device. Therefore, a simultaneous opening of both cavities
would require the use of thick hard masks (t > 1.2 um) and etching stop layers. While this solution is
not unfeasible, one might consider a sequential opening of the cavities. In this case, the
metallizations can be differentiated but one must take into account the thermal stability of the
compounds in order to determine which semiconductor should be contacted first. Based on the
specific contact resistivity values, and on the results presented in Chapter 3, it appears that while the
Ni,P combined with an Ar" preclean is the most suitable solution on n-InP, the Ni would minimize the
contact resistivity to p-InGaAs surfaces. Both metallizations can be used as deposited in which case
integrating the metallization on n-InP or on p-InGaAs first would not matter. One could also choose
to use the as deposited Ni,P on n-InP and to conduct a thermal treatment on the Ni/InGaAs system in
order to further decrease the associated resistivity. In this case, the contact on p-InGaAs must be
integrated first in order to fully optimize both contacts. This integration would give access to
resistivities as low as 4.3 x 10°® Q.cm” and 5.6 x 10° Q.cm? respectively on n-InP and p-InGaAs. In
order to fully complete this study, it would be of great interest (i) to probe additional annealing
temperature and durations on the relevant systems in order to further decrease the contact
resistivity and (ii) to simulate the thermal budget to which the integrated metallizations are
subjected during the subsequent integration steps. Metallurgical and electrical characterizations
conducted after additional thermal treatments would provide an insightful indication of the
integrated metallizations’ thermal stabilities. Finally, integrating the contacts thanks to the
innovative integration scheme presented in Chapter 2 will enable the contact resistivity to be further

decreased (see results obtained on the Ti/InGaAs system annealed at 350 °C).
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4.6 Impact of the dielectric stack on the contact resistivity

4.6.1 Experimental procedure

As briefly detailed previously, the second axis of the present electrical study aims to probe the
impact of the dielectric encapsulation on the specific contact resistivity. Because the dielectric
compounds are deposited and then etched on the IlI-V surfaces were the metallizations are
integrated, they might modify the electrical properties of these regions. In order to study this point,

classical contact stacks were used:

e Au (250 nm) / Pt (75 nm) / Ti (25 nm) on n-InP (Np= 3.10"® cm?®) and p-InGaAs
(Na=3.10” cm?);
e Au (250 nm) /Pt (75 nm) on p-InGaAs (Na= 3.10"° cm™).

The considered dielectric compounds are the ones that were presented in section 2.4, i.e., the
conformal SiN deposited at 300 °C, the low stress SiN, the SiO, and finally the Al,O;. Because the
integration scheme presented in Chapter 2 requires the presence of a SiN hard mask on the IlI-V
surface, all stacks probed in this study present a SiN layer at their bottom. The resulting dielectric

stacks are therefore:

e Low stress SiN (200 nm);

e Conformal SiN (200 nm);

e Si0, (150 nm) / conformal SiN (50 nm);

e Conformal SiN (50 nm) / Al,O3 (100 nm) / conformal SiN (50 nm).

The samples manufacture, which is very similar to the previous one, includes a wet surface
preparation in a diluted HCI : H,O (1 : 10). After this step, the Ill-V wafers are transferred in the
dielectric deposition chambers were the above mentioned stacks are deposited. The contact
lithography level then enables the patterning of the contact cavities thanks to a SFs-based dry etching
down to the InP or InGaAs surfaces. In order to suppress the oxides and contaminants before the
integration of the metallization, the samples are once again dipped into a diluted HCl : H,O solution
and rinsed in deionized water. The classical stacks are then deposited by sputtering at a temperature
lower than 100 °C and etched thanks to the metal lithography level down to the top of the dielectric
stack. Finally, the lll-V active epitaxy is patterned in order to confine the current streamlines thanks

to the wet etchings (see details in section 4.5.1).
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Additionally to these samples, reference ones were also fabricated. The latter involve a lift-off
integration, and therefore do not include any dielectric compound. The procedure followed for their
integration firstly includes the wet llI-V surface preparation. Then, a photoresist is deposited and
patterned before a new surface preparation and the deposition of the metal stacks. At this point, the
resist is lifted off which results in the definition of isolated metallic pads. Finally, the IlI-V stacks are

patterned in order to limit the current crowding.

The samples fabricated for this study are summarized in Table 4.5.

Table 4.5: Recapitulative chart of the samples fabricated for the study of the dielectric encapsulation’s impact on the
electrical performances of the contacts.

Active n-InP XIX|X]|X

epitaxy p-InGaAs XXX [ X[X[X]X|X|X|X
Lift-off

Integration
Planar XX [X|X X|X[X|X XIX|X|X

Metallic Au (250 nm) / Pt (75 nm) / Ti (25 nm) XX XXX XXX | X

stack Au (250 nm) / Pt (75 nm) X[ X|X[X|X
Low stress SiN (200 nm) X X
Conformal SiN (200 nm) X X X

Dielectric

stack SiO, (150 nm) / conformal SiN (50 nm) X X X
Conformal SiN (50 nm) / Al,O, (100 X X X
nm) / conformal SiN (50 nm)

4.6.2 Experimental results

The data treatment procedure followed on all the samples presented in Table 4.5 corresponds to the
one adapted to non-alloyed contacts. The (V) characteristics were either non-linear, in which case
the contact was declared as being Schottky, or linear in which case the corresponding specific contact
resistivities were extracted. The obtained results are displayed in Figure 4.36. Note that the
Au/Pt/Ti/n-InP sample presenting the low stress SiN unfortunately provided inoperable results

because of important defects present in the metallization stack.



200 SI-COMPATIBLE OHMIC CONTACTS TO N-INP AND P-INGAAS: THEORY AND ELECTRICAL CHARACTERIZATION

o
8E-5 o
] ~
— o~
L 7E-5 "
s 1 ¢
Eos| G 0 0
9. J o L L
e © ©
2 BE5+ - Koo 77 B itk ~-
= ] %) ]
.g 4E-5 5 7
o 1 = 0
LLl
5 3E-5- - S
s | m oW
g oE-5 4 w é > © %
S22 g EE © @ W |-
2 __lmme 5 6 S RS
Al HEERIE N (1R
n ) n %% o)
Au/PtTi/n-InP | Au/Pt/Tilp-InGaAs | Au/Pt/p-InGaAs

Reference v SiO2 / SiN
V222 Low stress SiN vz
v -.—-.- TARGET

Figure 4.36: Specific contact resistivities extracted thanks to the TLM method highlighting the impact of the dielectric
encapsulation on the electrical performances of the classic contacts on n-InP and p-InGaAs.

Generally speaking, and no matter the nature of the semiconductor and that of the metallization, the
planar integration of the contacts leads to a degradation of their electrical performances. On n-InP,
while the Au/Pt/Ti contact is ohmic when integrated thanks to a lift-off method, it constantly
becomes Schottky when a dielectric stack is used. Deterioration is also observed on p-InGaAs
surfaces with both metallizations. However, the latter does not change the nature of the contacts

that are still ohmic but leads to an increase of the specific contact resistivities.

These deteriorations can be linked to several factors, if not to a combination of them. Contrary to the
lift-off integration, the planar one involves steps that can modify the IlI-V surface where the contacts
are integrated. Indeed, while the first kind of integration only requires the deposition and the lift-off
of a resist, the second one involves the deposition of a dielectric stack along with its removal thanks
to a dry etching. First of all, we saw in section 2.4 that the various dielectric compounds are
deposited by PE-CVD. The latter requires the use of hydrogenated plasmas and might therefore lead
to some H incorporation in the IlI-V compounds. Unfortunately, the presence of H in doped epitaxies

can be responsible for a passivation of the doping species therefore leading to a deterioration of the
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electrical performances of the contacts [45, 46]. Additionally, we demonstrated that the etching of
the dielectric stack down to the IlI-V thanks to a SFs-based plasma modifies both the roughness and
the stoichiometry of InP and InGaAs surfaces. Therefore, this integration step having a direct impact
on both the morphology and the composition of the IlI-V, it might as well modify the electrical
properties of the contacts integrated on these surfaces. However, even if this process most likely
participates to the observed modifications between the two types of integration, it does not explain
the differences present between the various dielectric stacks. Indeed, as displayed in Figure 4.36, the
specific contact resistivity strongly depends on the nature of the dielectric stack. Yet, the layer in
contact with the Ill-V is consistently composed of SiN. Therefore, it is very unlikely that the observed
differences are due to an interaction of this layer with the InP or InGaAs. One must therefore
consider an additional intrinsic parameter varying from one dielectric stack to another and that could

influence the contact resistance, i.e., the stress of the various compounds (Figure 4.37).
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Figure 4.37: Measured stresses of the low stress SiN, conformal SiN, SiO, and Al,03.

In first instance the direct impact of the stress on the specific contact resistivity might come as a
surprise as the dielectric stack is actually opened and therefore absent in the metal / semiconductor
contact regions. Yet, similar results were reported in the literature in Aly,GagsAs/GaAs
heterostructures contacted with Au/Ni/Au/Ge/Ni stacks [47]. Note that the following theories will be
developed in the general case. The related effects strongly depend on the nature of the stress
(compressive of tensile) but also on the crystalline direction over which it is applied. Unfortunately,
because of the smallness of the samples, some of our TLM structures were patterned in the [100]
direction while others were patterned in the [010] direction. The direction and the sign of the stress
both varying from one sample to another, a direct extraction of their isolated impact is thus not
possible. Nonetheless, it is clear that the stress of the dielectric overlayers impacts the contact
resistance. In order to identify the physical phenomena that could be responsible for this evolution,

one must consider the repartition of the stress in TLM structures. As already mentioned, the latter
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are composed of cavities opened in a dielectric stack and filled with metal. Therefore, the dielectric
stack is not continuous, and the discontinuities are located at the edges of the contact regions. The
repartition of the stress in comparable situations was studied and reported in the literature, mostly
on GaAs substrates [48-50]. It was shown that when windows are opened in dielectric stacks, the
edges exert a force on the underlying semiconductor which results in the appearance of a stress field
building up to high stress values beneath the edges of the dielectric. While the values reported in the
literature somehow vary, most authors report the fact that the stress transmitted in the
semiconductor is non-negligible in a region within six to ten layers thicknesses from the edge of the
window. Note that this region might correspond to a non-negligible portion of the transfer length,
i.e., of the surface over which the charge carriers transit. This stress gives rise to a strain / to a

distortion of the lattice, among other calculated and represented in [49] (Figure 4.38).

Figure 4.38: Tensile strain in GaAs beneath a 300 nm thick and (a) 20 um wide or (b) 2.5 um wide oxide stripes (stress
between 100 and 1000 MPa). The contour lines are marked in unit of strain of 10™. Note that T stands for tension and €
for compression [49].

It was demonstrated in literature that the presence of stress and strain underneath the dielectric
openings leads to a modification of the electrical properties of the contacts [47]. However, the

origins of these variations can be linked to several mechanisms that will be detailed in the following.

A first hypothesis that can be formulated concerns the spatial distribution of the doping species
underneath the contact region. It was theorized and experimentally demonstrated that under a
stress, the doping species present in a semiconductor might be redistributed [51-53]. Under the
theory of dopant diffusion mediated by point defects, i.e. interstitial sites and vacancies, this
mechanism is attributed to a variation of these point defects’ concentration with the applied stress.
It was shown that under positive stress (tensile), the enthalpy of formation of interstitial sites

increases while that of vacancies decreases by quantities that are proportional to the applied stress.
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The opposite effect was also observed under compressive stress. The stress therefore results in point
defects movement which constitutes the driving force for the dopant diffusion where the point
defects population is increased. Therefore, one would expect the doping species to diffuse
preferentially in the stressed regions of the TLM structures, i.e., at the edges of the contact cavities.
However, this theory is highly questionable in our experiments as one would expect this mechanism
to enhance the conduction and thus to decrease to contact resistivity. Although the absence of this
phenomenon in our structures cannot be affirmed, it seems reasonable to assume that it is at least of

minimal influence compared to the following mechanisms.

The application of a stress also directly impacts the band diagrams of the metal / semiconductor
system. More precisely, under a stress, the band bending along with the energy-band edges change
in the various valleys of the semiconductor’s band diagram [54, 55]. The effective masses of the
charge carriers being inversely proportional to the band bending, the application of a stress therefore
modifies them. Ultimately, the way the charge carriers manage to get to and go through the barrier is
impacted as it depends on these effective masses [56]. As a consequence, applying a stress on a
junction (heterojunction [54], metal / semiconductor...) might modify the conduction of the majority

charge carriers through the barrier and therefore the resulting contact resistivity.

Finally, the InP and InGaAs are non-Centro symmetric crystals and exhibit a piezoelectric behavior
that must be considered. Several studies relate this kind of behavior as well as its impact on the
electrical performances of FETS and AlGaAs/GaAs heterostructures [47, 50, 57]. In their paper,
Asbeck et al calculated the piezoelectric charge density in GaAs located under an opened window of

SisN, [57] Figure 4.39.

Figure 4.39: Calculated piezoelectric charges density (normalized) extracted from [57]. The dielectric layer is composed of
SizN, whose stress is equal to 500 MPa. The layer is 200 nm-thick and the window is 1 pm wide [57].

These piezoelectric charge densities add up to the already established charge densities due to the

doping of the semiconductor. Note that the spatial repartition of the charges strongly depends on
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the orientation of the stress. If a device or a TLM structure is oriented along a direction or at 90 °
from it, the resulting densities are of identical magnitude, but of opposite sign. As a consequence,
the piezoelectric effect can strongly affect and modify the electric performances of the contacts by
changing the charge densities in the stressed regions. Close to the metal/semiconductor interface
these regions representing a non-negligible portion of the transfer length, this effect might result in

non-negligible modification of the contact resistance.

4.6.3 Conclusion on the impact of the dielectric encapsulation

The integration of the contacts on the laser structures in a silicon-compatible fab-line requires the
suppression of the lift-off processes and the use of planar processes only. In chapter 2, we saw that,
in order to enable such integration, a dielectric stack is deposited on the IlI-V surfaces and patterned
to define contact cavities. In this section, we demonstrated that this planar integration has a negative
impact on the specific contact resistivities which are, without exception, always degraded compared
to those obtained on the lift-off references. This deterioration of electrical performance can be
attributed in first instance to the modification of the IlI-V surface state by the dielectric deposition
itself and by its subsequent dry etching. Indeed, the hydrogenated plasma used for the deposition of
most dielectric compounds most likely leads to some H incorporation and thus to a decrease of the
active doping species concentration. Additionally, the SFs-based plasma used for the opening of the
cavities was proven to increase the InP and InGaAs roughness and to modify their stoichiometry (see
section 2.5). On top of that, while the layer in contact with the IlI-V is always composed of SiN
deposited at 300 °C, additional variations are observed when the nature of the dielectric over-layers
are modified. These modifications are imputed to the dielectric compounds’ intrinsic stresses that
are transmitted in the semiconductor in the contact regions. Several phenomena modifying the

charge carriers repartition can indeed occur in a stressed Ill-V semiconductor as listed below:

e The doping species can be redistributed in the semiconductor under a stress due to a
modification of the vacancies and interstitial sites concentration;

e The band diagrams can be distorted which leads to a modification of the current transport
mechanisms and therefore of the electric properties of the metal / semiconductor junction;

e The stress can give rise to a piezoelectric effect and therefore to additional charge densities

in the contact region.

It is important to note that the stress in the semiconductor is concentrated in a region within six to
ten layers thicknesses from the edge of the dielectric window. Therefore, the maximum intensity of
the above listed mechanisms occurs within a non-negligible portion of the transfer length. As a

consequence, these phenomena directly impact the shape of the Schottky barrier present at the
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metal / semiconductor interface and therefore the specific contact resistivity. An additional study
decoupling the effects of the applied stress’s nature and orientation would be of great interest to
identify which dielectric stack is the most favorable, and along which crystalline direction the

contacts should be integrated.

4.7 Conclusion

This chapter was dedicated to the electrical study of Ni and Ti based Si-compatible contacts. In first
instance, thanks to M/SC band diagrams the origins of the contact resistance / resistivity were
described. Based on the description of the various conduction mechanisms and of the associated
equations, we were able to identify the levers available to decrease the contact resistance.
Additionally to the doping of the semiconductor which enhances the FE and TFE conduction modes,
one can tune the Schottky barrier height by changing the metallization in contact with the
semiconductor (TE conduction mode). In this scope, the deposition or the formation of intermetallic
compounds is of great interest as it gives access to a wide range of phases and therefore work

functions, and because it allows decreasing the impact of the original semiconductor surface state.

Additionally to these theoretical considerations, we presented and reviewed one of the most
classical setup used for the extraction of the specific contact resistivity, namely the TLM. Among
others, we highlighted the limitations of the methods described in the literature used to account for
the modification of the semiconductor sheet resistance under the contact area after thermal
treatments. The latter requires the determination of the so called end resistance that can be
performed thanks two different setups. Unfortunately both lead to unreliable results, mainly because
of parasitic effects that cover up the actual end resistance value. Even though upgrades were
proposed and implemented, an accurate determination of this parameter was not enabled in an
array of contacts. As a consequence, although it might somewhat underestimate the actual contact

resistivity, the classical TLM extraction was used for every sample probed in this electrical study.

The Silicon photonics requiring the formation of ohmic contacts with specific contact resistivities
lower than 5 x 10®° Q.cm?, the first focus was placed on the determination of the most accurate Si-
compatible metallization(s) on n-InP and p-InGaAs. Overall, because the integration of both contacts
can be (i) simultaneous or (ii) sequential on the laser, two main options are available. (i) In the first
case, the Ni,P combined with an optimized in situ preclean provides the best compromise on both
semiconductor. Indeed, the latter enables reaching specific contact resistivities of 4.3 x 10° Q.cm’
and 1.2 x 10°Q.cm? respectively on n-InP and p-InGaAs right after deposition. This type of

metallization additionally presents the advantage of being thermally stable at least up to 350 °C on
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both surfaces, therefore enabling the application of thermal budgets during the subsequent
integration steps. (ii) In the second case, both contacts can be individually optimized. From this
perspective, the contact on p-InGaAs should be integrated first thanks to a Ni metallization annealed
at 350 °C for 60 seconds. This annealing treatment leads to the formation of the electrically favorable
NigInGaAs, compound therefore decreasing the contact resistivity down to 5.6 x 10° Q.cm® The
contact on n-InP should be composed of Ni,P preceded by an in situ surface preparation. This
metallization provides resistivities as low as 4.3 x 10° Q.cm?® and presents the advantage of being

stable up to 350 °C where the contact resistivity only increases up to 7.3 x 10° Q.cm”.

Finally, the impact of the dielectric encapsulation required for the planar integration of the contacts
was probed. It was shown that, without exception, the latter tends to degrade the contact resistivity
compared to lift-off based references. In first instance this contact resistivity increase is attributed to
the deposition and subsequent etching of the dielectric stack. The latter was indeed proven to
increase the InGaAs and InP roughness while incorporating some H and modifying their
stoichiometry. Additionally, while the layer in contact with the semiconductor was always composed
on SiN, variations of the electrical parameters were observed from one dielectric stack to another.
These differences are attributed to the stress of these compounds that is transmitted in the
semiconductor underneath the edges of the contact cavities. The latter can give rise to various
phenomena that modify the conduction of the charge carriers: (i) a redistribution of the doping
species can occur in the semiconductor, (ii) the band diagram and therefore the Schottky barrier can
be distorted under the effect of the stress and (iii) piezoelectric charges can add up to the already
present doping densities in the InP and InGaAs. Therefore, encapsulating the laser has a direct impact
on the electrical performances of the integrated contacts. In order to take the most out of these
mechanisms, further characterizations decoupling the nature of the stress (compressive or tensile)

from the crystalline orientation over which it is applied would be of great interest.
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GENERAL CONCLUSION

Because our needs in terms of data exchange never stopped rising over the past decades, a switch
from electronical towards optical devices and interconnections was initiated. In order to miniaturize
these optoelectronic devices, to optimize their performances and to minimize their fabrication cost,
the lI-V laser source must be directly integrated onto the 200 mm Si photonics circuit. However, up
to now these 200 mm wafers were brought back to 100 mm wafers in order to be processed in IlI-V
dedicated clean rooms once the Ill-V laser was bonded. The great loss generated by this kind of
solution lead STMicroelectronics and the CEA-LETI to develop a new scheme enabling the processing
of the wafers in 200 mm Si-compatible clean rooms even after the IlI-V laser bonding. In order to
enable this integration, one of the keys lies in the development of Si-compatible contacts on n-InP
and p-InGaAs which are necessary to electrically pump the IlI-V laser. In order to appropriately fulfill
this function, the contacts must additionally be ohmic and present specific contact resistivities lower

than 5 x 10 Q.cm”.

The studies conducted in the frame of this Ph.D thesis consisted in developing a fully Si-compatible
integration scheme for the contacts on p-InGaAs and n-InP. To do so, the processes traditionally used
on Si surfaces were probed on IlI-V surfaces and adapted to them. A particular attention was also
paid to the optical properties of the materials which would be situated close to the active region of
the laser in order not to generate photon losses. More precisely, the integration scheme that was
developed firstly requires the direct bonding of the Ill-V stack onto the 200 mm Silicon Photonics
wafer. The T-shaped laser is then patterned into this stack thanks to a SiN hard mask whose nature
must be carefully chosen in order not to degrade the IlI-V surfaces. Thanks to AFM measurements we
were able to show that its deposition temperature must not exceed 300 °C and that, while the
conformal SiN deposited by PE-CVD at 300 °C constitutes a first appropriate solution, the low stress
SiN would further improve the protection of the InP and InGaAs surfaces. Thanks to electrical
characterizations conducted on the integrated contacts, it was shown that the latter additionally
lowers the specific contact resistivity compared to the conformal SiN. In order to perform a planar
integration of the contacts, a damascene approach was then selected. The latter requires a dielectric
encapsulation of the laser which will be contiguous to the active region. This encapsulation must
therefore enable a proper evacuation of the heat produced by the operating laser and must not
generate optical losses at the emitting wavelength of the laser (A = 1.3 — 1.55 um) while being
compatible with CMP processes. Taking into account these requirements, the low stress SiN along

with the SiO, were selected as the most appropriate candidates for this encapsulation. The
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subsequent contact cavities opening is achieved thanks to a dry etching and requires the use of a top
SiN hard mask. While the etching of the top SiN and SiO, are not problematical, the etching of the
bottom SiN is very delicate as it must not increase the semiconductor surfaces roughness, alter their
stoichiometry or leave any residues. In order to fulfill the entirety of these requirements, the bottom
SiN layer must be etched thanks to a combination of two steps. The first one consists in partially
etching the SiN thanks to a CH,F,-based dry process. Then, in order to preserve the InP and InGaAs
surfaces and to remove potential residues, the last SiN nanometers must be removed thanks to a wet
etching, for example composed of diluted hydrofluoric acid. Before integrating the contact
metallization, a proper surface preparation must be conducted in order to remove any contaminants
and oxides. A scheme combining diluted or concentrated HCl and Ar* or He plasma treatment is well
adapted for the preparation of InGaAs surfaces while the preparation of InP surfaces is more delicate
and requires the use of diluted HCl combined with an He plasma treatment. Once the surfaces are
clean, two strategies can be followed to integrate the contact metallization: (i) One can choose to
deposit directly the metal(s) or the intermetallic compound(s) of interest on the IlI-V surface. The
stabilization of the phase(s) is achieved by mean of an annealing process. (ii) One can also choose to
deposit a metal and to perform a thermal treatment for the purpose of forming one or several
intermetallic compound(s) at the interface by solid state reaction with the IlI-V. Thanks to electrical
characterizations, we showed that performing a thermal treatment is of great interest when the
surfaces cannot undergo in situ plasma treatments as it allows decreasing the impact of the thin
oxides layers that can be present on the semiconductor surface. Anyway, the integration of the
contacts on the laser can be (i) simultaneous or (ii) sequential because of the important topography
existing between the n-InP and p-InGaAs surfaces on the laser. (i) In the first case, the Ni,P combined
with an optimized in situ preclean provides the best compromise on both semiconductors. Indeed,
the latter enables reaching specific contact resistivities of 4.3 x 10° Q.cm” and 1.2 x 10°Q.cm?
respectively on n-InP and p-InGaAs right after deposition. This type of metallization additionally
presents the advantage of being thermally stable at least up to 350 °C on both surfaces, therefore
enabling the application of thermal budgets during the subsequent integration steps. (ii) In the
second case, both contacts can be individually optimized. From this perspective, the contact on p-
InGaAs should be integrated first thanks to a Ni metallization annealed at 350 °C for 60 seconds. This
annealing treatment leads to the formation of the electrically favorable NiginGaAs, compound
therefore decreasing the contact resistivity down to 5.6 x 10°® Q.cm”. The contact on n-InP should be
composed of Ni,P preceded by an in situ surface preparation. This metallization provides resistivities
as low as 4.3 x 10°° Q.cm” and presents the advantage of being stable up to 350 °C where the contact
resistivity only increases up to 7.3 x 10 Q.cm®. In order to electrically connect the metallizations that
are located at the bottom of the contact cavities, plugs are finally integrated. Here again, their planar
integration is achieved thanks to a damascene approach requiring a new dielectric encapsulation. To

enable the subsequent plugs polishing, cavities that are about 5 to 10 um wide are opened in this
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encapsulation thanks to a dry etching. The plugs are then composed of a F-diffusion barrier that also
acts as a nucleation layer for the filling metal which is composed of W. The liner can be composed of
CVD-deposited Ti/TiN but an innovative solution consisting in depositing a F-less W is being
developed. It appears that the F-less W resistivity is at least two times less important than that of the
classical TiN liner which opens the way for lowering the plug resistivity and therefore to a

minimization of the overall resistance.

In this Ph.D thesis, a first generation of Si-compatible contacts was therefore developed on n-InP and
p-InGaAs surfaces. The results obtained being in accordance with the specifications of the Silicon
Photonics, these contacts will soon be integrated onto actual laser devices. However, these studies
also underlined the impact of each and every one processing step on the morphological and electrical
characteristics of the contacts. It was for example shown that the specific contact resistivity obtained
on the Ti/p-InGaAs system integrated thanks to the fully Si-compatible integration (TASP) is almost
one order of magnitude lower than the one obtained on same contact integrated thanks to the
simplified integration (MELT). It is also important to note that some of the recommendations that
were given throughout this Ph.D thesis could not always be implemented in the Si-compatible
integration scheme because of their unavailability during the processing of the wafers. Some of them
are however now available, such as the low stress SiN, and will enable a substantial improvement of
the electrical and morphological properties of the contacts. In order to go even further in this
optimization, it would be of great interest to probe the impact of the dry etching and of the various
surface preparations on the electrical properties of the contacts. Because some surface preparations
modify the stoichiometry of InP surfaces, they might have a non negligible impact on the phase
sequences and therefore on the electrical properties of the contacts. Additionally, the metallization
in contact with the n-InP and p-InGaAs being determining, testing additional thermal treatment
temperatures and durations would also be very relevant. In the case of intermetallic compounds’
formation, once the nature of the metallization is fixed, it will be of great interest to develop
selective etchings in order to remove the metal that did not react. Finally, some effects such as the
link between the nature of the dielectric encapsulation and the specific contact resistivity would be
worth further investigating in order to extensively identify the mechanisms responsible for the

observed variations.
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Al. Determination of the Transmittance, Reflectance and

Absorbance of the dielectric compounds [Chapter 2]

The transmittance (T), reflectance (R) and absorbance (A) of the selected dielectrics compounds were
measured thanks to a classical setup schematized in Figure Al. 1. An incident beam (lo) is sent on a
silicon wafer on which a dielectric layer is deposited. When it encounters the wafer, this beam is split
up into two components, the transmitted (I;) and the reflected (Iz) beams that are collected by two
detectors. The maximization of the dielectric layer’s thickness is essential as it allows decreasing the
uncertainty of measurement. The calculations of the T, R and A coefficients are made thanks to

Equation Al. 1 to Equation Al. 3.

Figure Al. 1: Optical setup used for the measurement of R and T parameters of low stress SiN, conformal SiN, SiO, and
AlL,O; @ 0.8-1.6 um.

It Equation Al. 1
T =—.100 [%]
Iy
I Equation Al. 2
R =-=2.100 [%] ue
IO
A=100—-T —R [%] Equation Al. 3

The chosen incident beam wavelengths range from 0.8 um to 1.6 um to cover properly the
wavelength range of interest, i.e. 1.3 to 1.55 um. Generally speaking, the Si substrate which is 725
pum thick might account for a non-negligible part of the absorption phenomenon that is ruled as

following:

e For E < Egap, Or A > Agap, the absorption does not occur;

o For E > Egap, OF A < Agap, the absorption occurs and its intensity is a function of the

wavelength.
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As a result, Si, which bandgap energy is equal to 1.1 eV (Agap = 1.13 um) will strongly absorb from
0.8 um to 1.13 um and will be transparent for higher wavelengths. Its contribution is complex as the
various interfaces significantly influence the global result by modifying the reflection coefficient.
Therefore, all measurements were performed with the same substrates in order not to induce any
variability. Similarly, comparing the performed R, T and A measurements with the literature does not

seem appropriate.

The three parameters are plotted as a function of the wavelength for the reference Si wafer and for

the four dielectric compounds in Figure Al. 2.
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Figure Al. 2: Measured R and T and calculated A coefficients @ 0.8 — 1.6 um for reference Si, low stress SiN, conformal
SiN, Si02 and A|203.

One can notice that the absorption coefficient of all stacks is high for wavelengths ranging from

0.8 um to approximately 1.1 um, and sharply decreases afterwards. As we explained before, the
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band gap wavelength of Si being of 1.13 um, it is absorbent for A < 1.13 um. Therefore, the calculated
A coefficient is almost completely due to the presence of Si in the stack for this range of wavelengths.
On can also observe the presence of fringes that are generated by interferences that occur in the
dielectric compounds, and that are therefore absent in the Si reference wafer. These interferences
can be constructive or destructive which leads to an oscillation of the R, T and A values as a function

of the wavelength. For example, considering the SiO, sample leads to the following observations:

e The transmission minimum of the SiO,/Si system corresponds to that of Si

e The reflection maximum of the SiO,/Si system corresponds to that of Si

In other words, adding a SiO, layer on top of a Si substrate will, counter-intuitively, increase the
transmission (T) of the global system. This phenomena is directly linked to the modification of the
interfaces, and more precisely to the suppression of the air/Si interface where an important

reflection occurs (high R coefficient).
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A2. Determination of the refractive index of the dielectric

compounds [Chapter 2]

In order to measure the refractive indexes of the four dielectric compounds, a spectroscopic

ellipsometry characterization was performed on the stacks described in Table 2.4 [1, 2].

Ellipti Li
Reflected pie i

Light Light

Surface

Figure A2. 1: Schematic representation of a spectroscopic ellipsometry setup used for the determination of the refractive
indexes of low stress SiN, conformal SiN, SiO, and Al,0; @1.3 — 1.55 um [3].

As schematized in Figure A2. 1, a linearly polarized light is sent on the wafer. Part of it is transmitted
through the sample while another part is reflected. The electric field of the incident (i), refracted (t)
and reflected (r) beams can be described as the sum of two contributions: a polarization parallel to
the incidence plane, noted E,,, and an orthogonal polarization, noted E,;. The complex coefficients

corresponding the reflection, r,and r,, are calculated as follows:

E . Equation A2. 1
r,=—r = |1|- 7% d
p E. Pl
ip
E,s is Equation A2. 2
Ts =E_= |75]. €7
is

With |rp| and |r;| the modulus and &,, and &, the phases of 13, and 5.

When it interacts with the sample, the beam polarization changes to become elliptic. The

ellipsometry consists in characterizing this ellipse thanks to the ratio p:

T 1, . .
p= P _ |2 i(6p=55) Equation A2. 3
Ts Ts
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Also noted p = tan(y).e/?

Where ¥ and A are the ellipsometric angles and are the measured parameters in an ellipsometry
characterization. While they can give access to the optical characteristics of the samples an
additional step of regression is compulsory. The experimental results are compared to theoretical
models allowing the determination of the complex refractive index of the compound and of layer(s)
thickness(es). In the case of absorbent dielectric compounds, the Tauc-Lorentz model is used [4]. An
example of measurement and fit of the angles i and A is presented in Figure A2. 2 for one incident
angle (65°). It is to note that three different incident angles are always probed in order to suppress

the errors linked to potential correlations between the variables during the regression step.

401 —— Model fit (Incident angle = 65°) 4007 — Model fit (Incident angle = 65°)
—— Experimental data (Incident angle = 65°) 350 Experimental data (Incident angle = 65°)
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Figure A2. 2: Experimental data and corresponding fits using the Tauc-Lorentz model of 1 and A angles.

While the combination of an ellipsometry measurement with the Tauc-Lorentz model gives good

results, it presents 2 limitations:

e Generally speaking, the ellipsometry is not sensitive to low k values (< 10° cm™) [5];
e In the Tauc-Lorentz model, k is equal to zero for energies lower than the band gap meaning

that the intra-band absorptions are not taken into account.
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In our systems, the measured absorption coefficient are always lower than the critical value, i.e.
3000cm™ (see Figure 2.9). Moreover, the incident wavelengths used for the measurements range
from 800 nm to 1.6 um which corresponds to energies of 0.77 eV to 1.55 eV, while the band gaps of
SiN, Al,O; and SiO, reported in the literature ranging from 2.6 to 9.3 eV [6, 7, 8]. As a consequence,
the k values cannot be determined thanks to the ellipsometry technique and only the measurements
of the real refractive index are presented in section 2.5.2. The absorption coefficients are thus only

determined thanks to the R, T, A characterization presented in Appendix Al.
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A3. Metallurgical study of the Ti/InGaAs system:

determination of the phase sequence [Chapter 3]

The Ti/InGaAs system was studied by means of XRD characterization, therefore allowing the
identification of the phase sequence. Similarly to all systems studied in Chapter 3, the metallurgical
studies were carried out dedicated blanket samples. The latter are composed of 2 inches semi-
insulating (001) InP substrates on top of which a 300 nm thick InGaAs epitaxial layer was grown. All
substrates were dipped into HCl solutions (HCI : H,0 = 1 : 2) and exposed to a direct Ar" plasma
etching in the deposition tool prior to the metal deposition process. The 20 nm thick Ti films were
deposited by DC Ar sputtering respectively at 100 °C and were capped by a 7 nm thick TiN film
deposited at the same temperature. Some samples were kept as deposited while some other
underwent annealing treatments in order to form intermetallic compounds at the interface between
the metal and the IlI-V semiconductor. These thermal treatments consisted in a rapid thermal
annealing (RTA) under N, ambient for 60 seconds at temperatures ranging from 250 °C to 550 °C. All
Ti/InGaAs samples were finally characterized by XRD detexturation, therefore allowing the

identification of the phase sequence. The corresponding patterns are presented in Figure A3. 1.
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Figure A3. 1: XRD detexturation patterns of the TiN (7 nm)/Ti (20 nm)/InGaAs samples as deposited and annealed at
250 °C, 350 °C, 450 °C and 550 °C for 60 seconds (RTP). A 2° offset on the incident beam was applied in order to minimize
the substrate contribution.

The characterization suggests the fact that no reaction was initiated during the deposition of the

metallic layers as only the Ni and TiN diffract. However, at 250 °C and 350 °C the additional



APPENDIX A3 227

appearance of In peaks indicates that a reaction took place. Unfortunately, several peaks (27.4 °, 36.1
°, 40.8 °) could not be indexed as no referenced compound would match their diffracting positions.
Therefore, although the decrease of the Ti peaks’ intensity along with the appearance of In peaks
highlight a reaction, we were not able to identify the formed compounds. However, increasing again
the temperature up to 450 °C and 550 °C lead to the complete consumption of the Ti and to the
formation of the binary TiAs phase. In order to conserve the overall stoichiometry, this reaction is
associated with some In release which strongly diffracts at this temperature. Similarly to the Ni/InP
and Ti/InP systems, the In probably underwent a fusion / solidification process or a precipitation
process leading to the formation of the In phase. One would expect to see a similar behaviour of the
Ga but no diffraction peak could be attributed to this phase. Several hypothesis could explain the
absence of Ga peaks on the diffractogram: (i) the Ga can be amorphous and (ii) the Ga can be
distributed in the TiAs lattice (iii) the Ga can have crystallized under the form of nano-grains. The
phase sequence observed thanks to the XRD characterization on the Ti/InGaAs system is

schematically summarized in Figure A3. 2.

TiAs - I
" | e
Unidentified phase - _
T | ——

T T T T T T T T T T
0 100 200 300 400 500
RTP annealing temperature (°C)

Figure A3. 2: Recapitulative chart of the phase sequence observed by XRD on the Ti/InGaAs system from deposition to
RTA at 550 °C. The light fillings correspond to temperatures that were not investigated and for which only trends on the
phases’ evolution are displayed.
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A4, Current transport mechanisms in a M/SC system

[Chapter 4]

The presence of a barrier in M/SC systems results in the existence of various conduction modes that
mainly rely on the majority carriers. In the following we will detail these processes based on a

contact between a metal and an n-doped semiconductor. These processes are:

1. The thermionic emission (TE) which corresponds to the transport of electrons from the
semiconductor to the metal, and vice versa, above the barrier;

2. The diffusion of electron from the bulk semiconductor to the space charge region;

3. The field emission (FE and TFE) which corresponds to the tunneling of the electrons through
the barrier;

4. The recombination of electron / hole pairs in the space charge region;

5. The recombination of the electron / hole pairs in the neutral region, corresponding to a

diffusion of the holes from the metal in the semiconductor (hole injection).
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Figure A4. 1: Schematic representation of the five current transport mechanisms across a M/n-SC junction under forward
bias. The quasi-Fermi level is represented according to TE theory (dashed fermi level) and diffusion theory (dotted fermi
level). Note that the bias is applied on the semiconductor, the reference being the position of the metal Fermi level
derived from the metal work function, ®,,,.

Emission over the barrier

The transit of electrons above the Schottky barrier can be realized thanks to two different
mechanisms, which are actually the two limit cases of this phenomenon. In the case of high mobility
semiconductors, the transport can be described by the thermionic emission while the dominant
mechanism for low mobility semiconductors is the diffusion. Practically these two phenomena are

combined and the true conduction behavior lies somewhere in between these extrema.
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Thermionic emission (TE)

The thermionic emission was firstly theorized by Bethe and is valid under the following assumptions

[9, 10, 11]:

e The Schottky barrier height e. ¢pp,, must be larger than kT, where k is the Boltzmann constant
and T the absolute temperature (kT = 26meV @ 300 K);

e The thermal equilibrium is established at the plane that determines emission;

e The existence of a net current flow does not affect this equilibrium: the two current fluxes,
one coming from the semiconductor, the other from the metal, can be superimposed;

e The current limiting process is the actual transfer of electrons across the interface between
the semiconductor and the metal;

e The width of the region over which a kT drop in potential energy occurs at the barrier must

be smaller than the electron mean free path.

Once these assumptions are verified, the shape of the barrier is unimportant; the current flux only
depends on its height. Therefore, if the thermal energy is important enough, it will enable the transit
of electrons above the barrier. When the thermal equilibrium is reached, the electron flux from the
semiconductor to the metal exactly compensates that from the metal to the semiconductor. The
resulting current density (J) across the barrier is equal to zero. The forward polarization (V¢ > 0) of the
contact results in an upward shift of the semiconductor’s Fermi level of magnitude e.V¢. As a result,
the barrier height seen by the electrons flowing from the semiconductor to the metal is lowered by
the same quantity and the current density in forward direction (SC > M) is larger than it is in reverse
direction (M = SC). A reverse polarization (Vg < 0) lowers the semiconductor Fermi level which
results in a displacement of the charge carriers from metal to semiconductor. These situations are

schematically represented in Figure A4. 2.

The current density from the semiconductor to the metal Jsc  wis given by:

e-¢bn

AT ( eV Equation A4. 1
Jscom = exp kT ) exp( kT

Where A* is the effective Richardson constant for thermionic emission defined as:

. 4mem'k? Equation Ad4. 2
A=

The corresponding flux from the metal to the semiconductor is given by:
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e.Opn ) Equation A4. 3

- = _A*TZ (—
Im-sc exp T

As a consequence, the net current density is:

Jn = Jscom + Jussc = [A*TZ exp (— e':;fm )] [exp (i—;{) - 1]

Equation A4. 4

In =JrE [EXP (%) - 1]

EFSC

EC

Figure A4. 2: lllustration of the TE conduction mode in a M/n-SC contact under (a) forward bias and (b) reverse bias.

The Drift / Diffusion theory

The diffusion theory was firstly proposed by Schottky in 1938 and is derived from the following

assumptions [12]:

e The Schottky barrier height e. ¢pp;,, must be larger than kT, where k is the Boltzmann constant
and T the absolute temperature (kT = 26meV @ 300 K);

e The effect of electron collisions within the depletion region is included;

e The carrier concentration at x = 0 and x = Wy, are not affected by the current flow (they
have their equilibrium value);

e The impurity concentration of the semiconductor is non degenerate.

Generally speaking, the current fluxes result from the displacement of charge carriers under a force.
In the case of the drift / diffusion theory, the latter can be due to the presence of an electric field E(x)
(drift) and/or from a concentration gradient (diffusion). According to this theory, the current density

in the space charge region is given by:
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on Equation A4. 5
Jn = e up.n(x).E(x) + e.Dna—
x
The use of this equation is valid under the assumption that the mobility of the charge carriers and

the diffusion coefficient are independent from the electric field.

Using the Einstein relation (i—”z%T) and the expression that links the electric field to the
polarization (ﬁ = —V)V), Equation A4. 5 can also be written as:
D [ en(x) dV(x) on Equation A4. 6
= e — i -
Jn n kT ox  0x

The integration of Equation A4. 6 over the space charge region (between 0 and Wge,) using

ev . .
[exp (— ﬁ) - 1] as an integrating factor leads to:

eV Equation A4. 7
e.Nc.D, [exp (ﬁ) - 1]/ , quation
fOWde” exp [— € kg"X)] .dx

n

For a Schottky barrier, neglecting the image-force, the potential is:

V(x) = e.Np

x2 Equation A4. 8
Wdep-x - 7 - ¢bn

S

With Wy, the width of the depletion layer:

2.& kT

Combining Equation A4. 7, Equation A4. 8 and Equation A4. 9 gives access to the drift/diffusion

Equation A4.9

current expression:

_ eZ_Dn.Nc . [6. (Vi = V)2 ND]l/Z .exp (— & d)bn) . [€XP (e. V) - 1]

Jn= "r & kT

Equation A4. 10
J = Jp-|exp (77

This current density expression is very similar to the thermionic one (Equation A4. 4). However,

contrary to the saturation current density in the case of the thermionic theory, J, Jp depends on the
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applied voltage. The latter also varies less rapidly with the temperature than its thermionic

counterpart.

The combined thermionic emission / diffusion theory

The main difference between the thermionic emission and the diffusion lies in the behavior of the
quasi-Fermi level of electrons. In the diffusion theory, the charge carriers’ concentration of the
semiconductor immediately adjacent to the interface is assumed not to be modified by the
polarization. This is similar to implying that the semiconductor quasi-Fermi level corresponds to that
of the metal at the interface. In this case, it must decrease in the space charge region as represented
by the dots in Figure A4. 1. On the contrary, the thermionic theory relies on the hypothesis that the
Fermi level is constant in the space charge region all the way to the interface. In this case, the
electrons situated in the semiconductor are not in equilibrium with those of the metal as their
energy is higher. They are therefore considered as hot electrons. When the latter penetrate the
metal, they get rid of their excess energy thanks to the collisions they undergo with the other
conduction electrons and with lattice of the metal. Thanks to this process they reach equilibrium
with the electrons of the metal and the two Fermi levels are aligned. This situation is schematically

represented in Figure A4. 1 by the dashed line.

In sum, the gradient of the quasi-Fermi level providing the driving force for electrons to move, both
theories rely on very different assumptions. In the case of the drift / diffusion theory, the main
limitation for the current flow stands in the combined effects of drift and diffusion in the charge
space region. On the contrary, according to the thermionic emission theory, the limiting process is

the emission of electrons into the metal.

As a matter of fact the behavior of the charge carriers can be described by a combination of both
theories: the thermionic emission / diffusion theory (TE-D). It was well described by Crowell and Sze,
and taking into account the backscattering, quantum mechanical tunneling and reflection processes,

the complete J-V characteristics is [13], [9]:

J(V) = A*.T?. exp ( — e'l:b;fm) : [exp (%) - 1]

fprA*

A** —
14+ fprvr
Va

Equation A4. 11

e.V

J) = Jrep. exp () 1]
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The term f,, = exp(— x,,/A) represents the probability of electron emission over the barrier where
X is the position of the potential maximum from the interface and 1 is the electron mean free path.
The term f, represents the ratio of current flow taking into account the quantum mechanical

tunneling and reflection to the current flow neglecting these effects.

Field-Effect emission (FE, TFE)

General description of the FE and TFE conduction modes

In the previous section we presented the conductions modes in which the charge carriers go from
one side of the barrier to the other by getting over it. This kind of processes are well adapted for
moderately doped semiconductors in forward bias were the TE mode is dominant. However, in many
cases, and especially under reverse bias, a non-negligible part of the charge carriers tunnel through
the barrier. This process allows the electrons that have an energy lower than that of the barrier to
cross it. Two main situations can arise in that case under forward and reverse bias, and are

schematically represented in Figure A4. 3.

a)

EFSC

Figure A4. 3: lllustration of the FE and TFE conduction modes in a M/n-SC contact under (a) forward bias and (b) reverse
bias.

In highly doped semiconductors, i.e. in degenerate semiconductors, and in forward polarization, the
current mainly results from the tunneling of electrons with energies lower than the Fermi level of the
semiconductor. This process corresponds to the field emission (FE) as described in Figure A4. 3. The
ohmic characteristic of (V) curves (linear dependence of | as a function of V) of contacts to heavily
doped semiconductors often results from an important tunneling across a Schottky barrier. When
increasing the temperature, some electrons are promoted in higher energy levels. Because of the
quasi-triangular shape of the barrier, the probability of tunneling increases for these charge carriers

as the barrier gets thinner. This phenomenon, called thermionic field emission (TFE) is schematically
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represented in Figure A4. 3. If the temperature is further raised, some charge carriers might reach an

energy high enough to go over the barrier (TE).

Discrimination of the dominant conduction mode

Models were established to discriminate the dominant transport mechanism considering that the
electron flow can always be described by one of them [14], [15]. To do so, the quantity Eqy was

introduced:

Equation A4. 12
E e.h Nd q
00 = 5~ *
2 |mp.&

e FEyo K kT, the TE is considered as the dominant mechanism;
o Eyo > KT, the FE is considered as the dominant mechanism;

o Eyo = kT, TFE is considered as the dominant mechanism.

Forward bias (V¢)

Under forward bias, the FE current can be expressed as:

_A™.T.m.exp[—e(Pppn — V§)/Eool 1 V] Equation A4. 13
Jre = c;.k.sin(c;mkT) ' exp(=ci.e.Vr
With
1 4(Ppn — Vr Equation A4. 14
L= .lo [—]
2EOO _¢n

Note that the quantity ¢,, is negative in the case of a degenerate semiconductor such as represented

in Figure A4. 3.

The TFE current can be expressed as:

_ A**T\/T[ EOOe(¢bn — (.bn + VF) [ ed)n e((pbbn _ ¢n)] (e. VF) Equation A4. 15
Jre = k. cosh(Eqq/KT) P T T E, P,
With
Eoo Equation A4. 16
Ey = Eqy. coth (—)
0 00- €O kT

Under reverse bias (Vg)

The FE current is given by:
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3/2 .
- (@)2 (¢bn + VR) exn Ze¢br/l Equation A4. 17
. k Pon 3Eooy Pon + Vi
And the TFE current is given by:
Equation A4. 18
AT e. e.V
]TFE = T[.Eoo.e. VR +LTLE. .eXp (_ d)bn).exp( ,R)
k cosh? (ﬁ) Eo 3
With
r_ EOO Equation A4. 19
& T Eoo/kT — tanh(Eoo/kT)
Discussion

The above mentioned equations give a very interesting qualitative insight but appear to be limited
for a quantitative approach. Indeed, plotting the I(V) curves thanks to them reveals a computation
problem in Padovani and Stratton’s model. As pointed out by Crowell, the reverse bias expression
does not go through zero at V=0 which results in the fact that the forward and the reverse bias do

not connect [14].

Moreover, it was demonstrated that the comparison of Ey, and kT presents strong limitations for the
determination of the dominant transport mode [14]. Indeed, considering that the overall conduction
is only due to one of the modes is an important approximation as it often results from a combination
of all of them [16]. For example, L. Hutin showed that the proportion of tunneling current in a
contact presenting a Schottky barrier height of 0.25 eV to p-Si doped at 2.10*° cm™ (Vi = -1 V) is only
of 61 % [16].
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A5. Transmission Line Model (TLM) and specific contact

resistivity extraction [Chapter 4]

TLM equations transposed to a contact

The Transmission Line Model presented in this appendix is that of Berger et al [17]. Based on

transmission line equations the electrical behavior of contacts is described [18, 19, 20].

The original transmission line equations can be expressed in the frequency domain:

av _ WL+ R).1 Equation AS5. 1
I (Gw .
dl WC + ).V Equation A5. 2
i (Gw .

with L the distributed inductance, R the distributed resistance, C the capacitance and G the

conductance.

A comparison between a transmission line and the contact, as represented in Figure A5. 1 leads to

the following assumptions:

e The semiconductor layer corresponds to the series resistance R’ of the transmission line;
e The interface resistance is the counterpart of the parallel shunt line conductance G’;
e No inductance is considered, the latter being negligible compared with the series resistance

even at high frequencies.
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Figure A5. 1: Comparison of the contact region with a transmission line.

In this case, the line equations describe the current and voltage distribution along the contact:
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V(x) = V; cosh(yx) — I;.Z sinh(yx) Equation A5. 3

I(x) = I, cosh(yx) — V;/Z . sinh(yx) Equation A5. 4
With Z the characteristic impedance Z = \/g = %,/RSK.pC.m
v w.C".pc

. . Rsk T
Andy th t tanty = = /R.G= /—.,/1 w.C* pc.
nd y the propagation constanty = a + jf G e +Jjw Pc

where w is the pulsation, w = 2m. f,

C* is the capacitance per unit area,

pc is the specific contact resistivity,

Rg is the sheet resistance of the semiconductor underneath the contact.

In the case of a DC-polarization (w — 0), these equations can be written:

v(x) = v, cosh(ax) — iy.Z.sinh(ax) Equation A5. 5
i(x) = iy cosh(ax) — v,/Z.sinh(ax) Equation AS5. 6

With
1 Equation AS5. 7

Equation A5. 8

Where Ly is the transfer length.

Expression of the contact resistance

In the case of a TLM experiment, (see section 4.3. The Transfer Length Method) the total resistance

between two probed contacts is:

l; Equation A5. 9
RtOt - ZRC + RSH.W
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Where R, is the contact resistance and Rgy is the sheet resistance of the bulk semiconductor.
Provided that the underlying semiconductor has been patterned in order to limit the crowding effect,
the integrality of the injected current goes through the contact. Then, the contact resistance can be

defined as:

141 Equation A5. 10
R. = —

b i,=0
Therefore, combining Equation A5. 10, Equation A5. 5and Equation A5. 6:
R. = Z.cth(aa) Equation A5. 11
Finally, replacing Z and a by their expressions:

Equation A5. 12

VRsk-pc a

R, = ———.cth(—
Rgg. Lt a Equation AS5. 13

R, = .cth(—

= Ty et

Expression of the specific contact resistivity

The extraction of the specific contact resistivity requires the use of a mathematical trick on Equation

A5. 13. The latter leads to:

Rgg.Lp. Ly
W.Lp

Equation A5. 14

a
R. = eth()

Using the fact that Rgx. L1% = p¢, Equation A5. 14 can be written:

Pc
W.Lrp

Equation A5. 15
R, = d

th(—
.C (LT

As a consequence, one can express the specific contact resistivity:

Rc. L. W Equation A5. 16

Expression of the end resistance

The end resistance R is defined as the drop of voltage v, = v(a) divided by the input current i; for

i2=0.
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2] Equation A5. 17
RE - -

il i2=0
Combining Equation A5. 4, Equation A5. 5 and Equation A5. 17:

VA Equation AS5. 18

Re = sinh(aa)

Finally, replacing Z and a by their expressions:

Rsk. Lt 1 Equation AS5. 19

Rp = .
E W “sinh(a/L7)

The relation linking Ry and R is finally:

R¢ n( a ) Equation A5. 20
— = cosn(—
Rg Ly
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Avertissement : Le résumé en francais qui suit reprend les principales conclusions énoncées dans le

manuscrit écrit en anglais et ne saurait donc étre exhaustif.

CHAPITRE 1 INTRODUCTION A LA PHOTONIQUE SUR
SILICIUM

1.1 Introduction générale

Depuis les années 2000, en raison d’'une multitude de moyens de communication émergents, les
besoins en termes d’échange de données n’ont cessé d’augmenter. Ces modifications ont conduit a
Iinitiation d’une transition depuis les technologies électroniques vers les technologies et
interconnexions optiques. Entre autres, ces nouvelles technologies nécessitent I'utilisation de
composants émetteurs et récepteurs de photons constitués de matériaux IllI-V. Ces derniers sont
traditionnellement fabriqués et intégrés dans des salles blanches dédiées aux IlI-V pouvant traiter
des plaques de 50 mm a 100 mm de diameétre avant d’étre conditionnés dans des systémes
optoélectroniques. De fagcon a miniaturiser ces composants et a augmenter leurs performances tout
en diminuant leur colt de fabrication, un modele d’intégration innovant consiste a intégrer
directement les sources IlI-V sur le circuit photonique silicium 200 mm. Jusqu’a maintenant, ce type
de plaquette était alors détouré consécutivement au report du laser IlI-V de fagon a recouvrer un
diametre de 100 mm maximum, et ainsi pouvoir étre traité dans les salles blanches dédiées aux
matériaux llI-V. Dans le but de bénéficier de I'avantage économique que procure l'utilisation de
I’expertise existant autour des technologies silicium, et ainsi de ne pas avoir a détourer les plaques,
une intégration innovante est en cours de développement au sein de STMicroelectronics et du CEA-
LETI dans le cadre de projets IRT Nanoelec. Ce tournant consiste a réaliser l'intégralité de
I'intégration du laser IlI-V dans une salle blanche silicium 200 mm aprés son report sur le circuit
photonique silicium. Afin d’optimiser les performances du laser IlI-V tout en respectant les
contraintes liées a une salle blanche front-end / middle-end silicium, la réalisation d’une telle
intégration nécessite notamment le développement de contacts innovants sur n-InP et p-InGaAs

(Figure 1.1).
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Figure 1.1 : Structure laser 111-V utilisée par STMicroelectronics et le CEA-LETI. La dimension longitudinale du laser est de
500 um.

Nous verrons par la suite que les contacts classiquement utilisés sur les lasers IlI-V jusqu’a présent ne
sont pas compatibles avec un environnement silicium de par leur composition et leur intégration. De
fait, une profonde refonte de ces contacts est nécessaire. Afin de pouvoir étre intégrés au sein d’une
plateforme silicium, tout en respectant les contraintes liées a un laser en fonctionnement, ces

derniers doivent :

e Etre intégrés sur des équipements compatibles silicium et pouvant traiter des plaques de
200 mm ou 300 mm de diametre. Les procédés utilisés doivent permettre une intégration
planaire des contacts, ce qui exclut tout procédé de type « lift-off » par exemple ;

e Le nombre d’étapes nécessaires a l'intégration des contacts doit étre minimisée afin de
minimiser de co(t global de fabrication des composants ;

e Les contacts doivent étre composés de matériaux compatibles avec un environnement
silicium front-end / middle-end, comme par exemple Ni, Ti et leurs alliages ;

e L’ensemble des budgets thermiques doivent étre minimisés (T < 450 °C) de fagon a ne pas
dégrader la région active du laser qui est composée de puits quantiques ;

e Les matériaux en contact avec / proches de la région active du laser ne doivent pas générer
de pertes optiques trop importantes a la longueur d’émission du laser (A=1,3 — 1,55 um) ;

e Les métallisations doivent étre sélectionnées de fagon a former des contacts présentant des

résistivités spécifiques inférieures a 5.10° Q.cm®.

L'objectif de cette thése est de développer des contacts innovants sur n-InP et p-InGaAs qui
respectent I’'ensemble de ces prérequis. Pour cela, il est tout d’abord nécessaire d’identifier sur quels

principes de base repose le fonctionnement d’un laser IlI-V.
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1.2 Le gain et les pertes optiques

La production de photons dans le laser IlI-V est basée sur I'’émission stimulée de photons. Dans le cas
du laser présenté en Figure 1.1, cette derniére est rendue possible grace a la jonction P-N qui
entoure la région active du laser, i.e. les puits quantiques. Par le biais d’'un pompage électrique
réalisé a I'aide des contacts qui sont repris de part et d’autre de la structure laser, I'’émission de
photons est réalisée. Cette derniere est initiée dés lors que le gain généré dépasse les pertes, c'est-a-
dire des lors que le gain seuil est atteint. Dans le cas de structures comprenant des puits quantiques
composés de InGaAsP/InGaAs ou InGaAs/GaAs, le gain seuil est typiquement de 500 cm™ alors que le

gain maximum est de I'ordre de 3x 10°cm™ a6 x 10> cm™.

Les pertes optiques quant a elles peuvent étre dues a des phénomeénes intrinséques ou extrinseques.

On compte parmi elles :

e Les pertes par absorptions internes, qui correspondent a I'absorption de photons lors de
transitions effectuées par les porteurs de charge ;

e Les pertes par dispersions, qui sont générées par les défauts rencontrés par les photons
lorsqu’ils se propagent ;

e Les pertes générées par les matériaux métalliques et diélectriques se trouvant proches de la
région active du laser ;

e Les pertes par radiations qui sont également générées par les matériaux diélectriques se
trouvant proches de la région active du laser. Plus précisément, si les matériaux diélectriques
présentent un indice de réfraction plus important que celui de la région active du laser, ils

vont avoir tendance a extraire les photons de cette région et donc a générer des pertes.

1.3 Le pompage électrique du laser : les contacts repris sur n-InP et p-
InGaAs

De facon a optimiser les performances du laser IlI-V, 'ensemble de ces pertes doit é&tre minimisé
alors que le gain doit lui, étre maximisé a polarisation donnée. Les lasers étant utilisés par
STMicroelectronics et le CEA-LETI étant pompés électriquement, I'un des développements cruciaux
concerne les contacts qui sont intégrés de part et d’autre de la jonction P-N. De fait, comme
I’électronique, la photonique requiert |'utilisation de contacts fiables et de qualité assurant des
performances optimales a moyen et long terme. Dans ce cadre, les contacts sur IlI-V ont longuement
été étudiés au cours des dernieres décennies. Cependant, ces contacts que nous caractériserons de
classiques, en opposition aux contacts innovants dont le développement fait I'objet de cette thése,
présentent de nombreuses limitations. La majorité d’entre eux requiert en effet des températures de

recuit élevées (T = 450 °C) ce qui aurait pour conséquence de dégrader la région active du laser et
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donc de détériorer ses performances. De plus, outre les considérations purement liées au
fonctionnement du laser, la co-intégration 1llI-V / Si augmente considérablement le nombre de
restrictions. En effet, alors que de nombreux contacts classiques sont constitués d’au moins une
couche d’Au, ce composé est prohibé des salles blanches front-end / middle-end Si. Bien que des
efforts aient été fournis afin de développer des contacts dépourvus d’Au, ils restent bien souvent
composés de métaux nobles qui sont soit prohibés des salles Silicium front-end, soit trop couteux
pour étre implémentés dans l'industrie de masse. La majorité de ces contacts est également
composée d’'une multitude de matériaux (jusqu’a cinq pour certains) ce qui rend leur intégration
complexe. Enfin, le schéma d’intégration de ces contacts classiques requiert I'utilisation de procédés
non planaires tels que le lift-off a cause de la difficulté a polir et graver les métaux nobles. En
conséquence, il apparait que les contacts classiques sont incompatibles avec un environnement
front-end / middle-end Si de par leur composition et leur intégration. De fait, cette thése est dédiée
au développement de contacts innovants sur matériaux IlI-V. Le chapitre 2 présente ainsi le
développement du schéma d’intégration de ces contacts sur n-InP et p-InGaAs au sein de salle
blanche 200 mm du CEA-LETI dédiée aux technologies Si. La métallisation de contact, i.e., la région ou
le métal est en contact intime avec le semi-conducteur étant déterminante pour la réalisation de
contacts ohmiques stables et reproductibles, les chapitres suivants lui sont dédiés. Le chapitre 3
traite ainsi tout d’abord de I'optimisation de cette métallisation de contact d’'un point de vue
métallurgique. Finalement, le chapitre 4 est dédié a I'étude électrique des contacts intégrés et plus
précisément a I'impact de la nature de la métallisation en contact avec le llI-V, ainsi qu’a I'impact de

I’encapsulation diélectrique nécessaire a I'intégration planaire des contacts.
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CHAPITRE 2 LE POMPAGE ELECTRIQUE DU LASER
[11-V : COMMENT INTEGRER LES CONTACTS DANS UN
ENVIRONNEMENT COMPATIBLE SILICIUM ?

2.1 Intégration des contacts sur lll-V au sein d’une salle blanche Si
200 mm

Comme nous l'avons expliqué précédemment, la co-intégration Si-lll/V requiert le développement
d’un schéma d’intégration pour les contacts au sein d’une salle blanche Si traitant des plaquettes de
200 mm de diametre. Pour cela, nous avons mis en place différents outils de caractérisation qui sont
plus précisément de nouveaux masques, dont le masque TASP (TLM on Arsenide and Phosphorus-
based surfaces) qui permet I'intégration de contacts sur matériaux IlI-V exclusivement grace a des
équipements 200 mm. Ce masque embarque entre autres des structures de tests morphologiques

qui ne sont autres que des réseaux de contacts de 5 um x 5 um tels que présentés en Figure 2.1.

X1.586K 28.8rm X11.8K 2.73#m

Figure 2.1 : Image MEB des structures morphologiques implémentées sur le masque 200 mm utilisé pour le
développement du schéma d’intégration des contacts (TASP).

Les deux surfaces d’intérét, i.e. n-InP et p-InGaAs se comportant de fagon trés différente les
développements ont tout d’abord été conduits de fagon indépendante. En revanche, dans un souci
de cohérence, les empilements situés a 'aplomb de ces deux surfaces sont similaires a ceux présents

dans le laser IlI-V et sont ainsi composés d’une alternance de couches d’InP, d’InGaAsP et d’InGaAs.

Le schéma d’intégration proposé et développé au cours du chapitre 2 est représenté

schématiquement dans la Figure 2.2.
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Figure 2.2 : Représentation schématique de I'intégration de contacts sur un laser IlI-V dans le cadre de la photonique sur
Silicium.

p-InGaAs
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2.2 Détail des optimisations réalisées

L’'ensemble de ces étapes a été optimisé afin de les adapter a des surfaces lll-V qui réagissent tres
différemment du Si. L'ensemble des matériaux a également été choisi de fagcon a ne pas détériorer
ces surfaces, mais aussi de facon a ne pas générer de pertes de photons qui pourraient altérer le

rendement du laser.

2.2.1 Report de I'empilement llI-V sur le substrat de Si

La premiére étape de l'intégration consiste a reporter I'empilement 1lI-V sur le substrat Si 200 mm.
Cette étape peut étre réalisée a partir de plaques IlI-V de 50 mm ou 100 mm de diametre. En
revanche, a cause de I'importante perte de matiére engendrée par cette solution, le report de puces
millimétriques est a privilégier. Quelle que soit la voie choisie, ce report est réalisé par collage direct
entre le IlI-V et une surface de Si oxydée au sein de STMicroelectronics et du CEA-LETI (Figure 2.3(a)).
Le substrat d’InP qui servait a supporter I'épitaxie laser est alors retiré par voie chimique grace a un

mélange de HCl et de H;PO, (Figure 2.3(b)).

(a) (b)

Figure 2.3 : Photographie d’une plaque 111-V (50 mm) reportée sur une plaque Si (200 mm) (a) apres collage et (b) aprés
retrait du substrat d’InP.

2.2.2 Gravure du laser IlI-V

Dés lors que I'empilement laser est reporté sur la plaque de Si 200 mm, le laser IlI-V doit étre défini
(cf Figure 2.2, étape A). Plusieurs micrometres de Ill-V devant étre gravés pour révéler les surfaces
d’InP sans dégrader I'InGaAs, cette étape nécessite I'utilisation d’un masque dur dont la composition
et les conditions de dép6t doivent étre choisies avec précaution. En effet, ce dernier est déposé sur
les surfaces ol les contacts vont par la suite étre intégrés, et ne doit donc engendrer aucune
détérioration du lll-V. En ne déposant que quelques nanometres des différents candidats disponibles,
les études menées ont permis de démontrer que I'utilisation d’un masque dur composé de SiN
conforme déposé par PE-CVD a 300 °C est tout a fait adaptée. Dés lors qu’il sera disponible dans la
salle blanche front-end du CEA-LETI, un SiN low stress également déposé par PE-CVD a 300 °C

permettra une amélioration additionnelle de cette étape d’intégration.
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Comme nous l'avons déja mentionné, la définition du laser en forme de T requiert la gravure de
plusieurs micromeétres de matiere sur les flancs de 'empilement. De fait, |'utilisation de procédés de
gravure anisotropes présentant de surcroit de hautes vitesses de gravure est nécessaire. Une gravure
par voie chimique, qui présente un caractere isotrope serait donc tout a fait inadaptée. En revanche,
il a été démontré qu’un plasma a couplage inductif (ICP) permet d’obtenir de hautes vitesses de
gravure (260 a 360 nm/min) tout en générant des flancs verticaux et non rugueux. Ces attributs sont
d’une importance primordiale dans le cadre du laser afin de ne pas générer des pertes par dispersion

mentionnées dans le résumé du chapitre 1.

2.2.3 Encapsulation diélectrique

Dés lors que le laser est défini, une encapsulation diélectrique est requise afin de permettre une
intégration planaire des contacts. Une premiére couche de diélectrique est tout d’abord déposée sur
les surfaces Ill-V afin de constituer une couche d’arrét a la gravure lors de I'ouverture des cavités de
contact et ainsi de les protéger. Comme mentionné dans la section précédente, les études ont
montré I'intérét du SiN conforme déposé a 300 °C, ainsi que du SiN Low stress déposé a la méme
température. Dés lors, le choix du/des matériaux constituant le reste de I’encapsulation est
primordial afin de ne pas générer de pertes optiques et afin de permettre une évacuation de la
chaleur produite par le laser en fonctionnement. Le matériau sélectionné doit également étre
planarisable par CMP a cause de l'importante topographie que présente le laser IlI-V. Différents
matériaux, i.e. SiN low stress, SiN conforme, SiO, et Al,O;, ont été caractérisés par le biais de la
mesure de leur indice optique, de leur coefficient d’absorption a la longueur d’onde d’émission du
laser (A = 1,3 — 1,55 um) et de leur conductivité thermique. La prise en compte de tous ces
parametres a conduit a la sélection du SiO, déposé par PE-CVD pour I'encapsulation diélectrique du

laser.

2.2.4 Quverture des cavités de contact

Afin d’ouvrir les cavités de contact dans cet empilement diélectrique jusqu’au Ill-V, une gravure
anisotrope doit de nouveau étre utilisée. Alors que la gravure du SiO, n’est pas problématique, celle
du SiN se trouvant a la base de I'empilement, et donc a la surface des matériaux IlI-V est délicate. En
effet, cette gravure débouchant sur les llI-V sur lesquels la métallisation de contact sera intégrée par
la suite, elle ne doit pas dégrader leur état de surface. Les deux gravures seches classiquement
utilisées pour graver du SiN se trouvant a la surface d’une plaquette de Si, i.e. le CH,F, et le SF¢, ont
été testées sur InP et InGaAs. Il s’avére que toutes deux ont tendance a dépléter les surfaces d’InP et

d’InGaAs respectivement en P et As. Le SFg induit additionnellement une augmentation de la rugosité
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de surface de I'InGaAs alors que le CH,F, n’a aucun impact sur la rugosité des deux surfaces. La
solution proposée est donc de graver la majorité du SiN grace a un plasma de CH,F, qui s’avere étre
le moins invasif, et de terminer cette ouverture par une gravure chimique a base de HF dilué (0,1 %).
Il est important de noter que cette gravure chimique présente un caractéere isotrope et qu’elle ne
devra donc étre utilisée que pour graver les derniers nanometres de SiN et ainsi préserver les

surfaces llI-V sans augmenter les dimensions des contacts.

2.2.5 Préparation de surface lll-V et intégration de la métallisation de

contact

Suite a I'ouverture des cavités, la métallisation de contact peut étre intégrée sur le IlI-V ainsi révélé.
Afin de supprimer les éventuels contaminants, particules et oxydes qui pourraient se trouver sur les
[lI-V, une préparation de surface est conduite. Cette derniére est composée de deux étapes : une
premiere préparation est réalisée par voie chimique ; une seconde préparation est réalisée grace a
un plasma, directement dans I'équipement de dépot afin d’éviter toute remise a I'air et donc toute
recroissance d’oxyde. Les études menées ont permis de montrer que l'utilisation d’une solution de
HCI concentrée (HCl: H,0 =1 : 2) ou diluée (HCI : H,0 = 1 : 10) couplée a un plasma d’Ar ou d’He est
tout a fait adaptée a la préparation de I'InGaAs. En revanche, les surfaces d’InP sont beaucoup plus
sensibles et requierent |'utilisation d’une solution de HCI diluée et d’'un plasma d’He afin de ne pas

étre dégradées.

Dés lors, la métallisation de contact peut étre intégrée. Deux stratégies peuvent étre suivies pour

cela:

e La métallisation de contact (métal ou composé intermétallique) peut étre directement
déposée sur le matériau lll-V et stabilisée par le biais d’un traitement thermique ;
e Un métal peut étre déposé sur le IlI-V et soumis a un traitement thermique dans le but de

former des composés intermétalliques par réaction avec le matériau llI-V.

Chaque phase ainsi déposée / formée possédant des propriétés métallurgiques et électriques
différentes, ces solutions ouvrent la voie a une optimisation des performances électriques des
contacts intégrés. Comme cela a déja été mentionné, du fait de leur disponibilité dans les salles
blanches front-end / middle-end, les métallisations a base de Ni et de Ti ont été étudiées au cours de
ces travaux de recherche. Des études approfondies concernant ces métallisations de contacts seront
présentées dans les résumés des chapitres 3 et 4, respectivement en ce qui concerne leurs aspects

métallurgiques et électriques.
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2.2.6 Encapsulation de la métallisation et intégration des plugs

Afin de contacter électriguement les métallisations se trouvant en fond de cavités, des plugs sont
finalement intégrés. L'intégration planaire de ces plugs est réalisée grace a une étape de CMP dite
damascene. Ce procédé est hautement dépendant de la dimension des contacts et de leur densité :
une densité trop importante générerait un phénomene d’érosion et des dimensions trop
importantes ( > 5 — 10 um) donneraient lieu a un sur-polissage appelé dishing. Les contacts mesurant
40 um x 500 um sur n-InP et 5 um x 500 um sur p-InGaAs, l'intégration des plugs requiert de
nouvelles cavités, plus petites. De fait, une nouvelle encapsulation diélectrique est réalisée en SiO,
suite a quoi de nouvelles cavités sont ouvertes jusqu’a la métallisation de contact. Une fois ces
cavités ouvertes, une couche de nucléation agissant également en tant que barriére a la diffusion du
F est déposée. Cette derniére est classiquement composée de Ti/TiN déposée par CVD, mais une
solution innovante consiste a déposer une fine couche de W dépourvu de F. Cette solution permet de
diminuer la résistivité de la couche en question de 50 % a 60 % et ouvre ainsi la voie a une diminution
de la résistance globale du contact intégré. Des lors que ce liner est déposé sur les flancs et au fond

des cavités, le métal de remplissage composé de W est déposé par CVD.

Un exemple de contact entiérement intégré grace a ce schéma innovant est donné en Figure 2.4.

sio,
Ti/TiN/AICu/TiN/Ti { SiN
W (plug) 11I-V stack
Ni,P

Carrier silicon substrate

Figure 2.4: Image MEB d’un contact intégré sur n-InP avec une métallisation Ni,P. La dimension de la cavité de contact
présentée est de 5 x 5 um et a donc permis une intégration directe du plug W sur la métallisation.
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CHAPITRE 3  ETUDE METALLURGIQUE DES
METALLISATIONS COMPATIBLES SILICIUM SUR N-INP
ET P-INGAAS

Comme mentionné précédemment, la métallisation de contact est déterminante pour la formation
de contacts ohmiques, stables en température et reproductibles. De fait, le chapitre 3 est dédié a

I’étude métallurgique de cette région.

3.1 Procédure expérimentale

Au cours de ce chapitre, la formation de composés intermétalliques par réaction a I’état solide entre
un métal et un semi-conducteur lI-V est étudiée, avec plus précisément les systémes suivants : Ni/n-
InP, Ni/p-InGaAs et Ti/n-InP. Les substrats utilisés sont constitués d’une épitaxie de 300 nm d’InP
(dopée Si: Np =3 x 10" cm™) ou d’InGaAs (dopée Zn : N, = 3 x 10" cm™®) située sur un substrat d’InP
non dopé. Aprés avoir conduit une préparation de surface en deux temps (HCl concentré + pre-clean
Ar®), les couches de Ni ou de Ti (20 nm) sont déposées par PVD respectivement & température
ambiante et a 100 °C. Les couches sont systématiquement capées par du TiN (7 nm) déposé par PVD
a 100 °C afin d’empécher toute contamination du film. Par la suite, les systémes sont recuits soit par
recuit rapide sous N, (RTP — 60 secondes) a des températures allant de 250 °C a 550 °C, soit par des
recuits longs sous vide (plusieurs heures) composés de montées en températures jusqu’a 250 °C ou
340 °C (1,5 °C/min). Les systémes ont par la suite été caractérisés en termes de morphologie et de
composition de fagon a identifier les séquences de phases ainsi que les mécanismes associés a

I’apparition des différents composés intermétalliques.

3.2 Etude métallurgique du systéme Ni/InP

L’étude menée sur le systeme Ni(20 nm)/n-InP a permis de montrer que la préparation de surface
comprenant une solution concentrée de HCl (HCl: H,0O = 1: 2) et un pre-clean Ar’in situ modifie
I’état de surface de I'InP. Une couche amorphe présentant un gradient de concentration est ainsi
créée a la surface de I'InP. Cette derniére est riche-In sur quelques nanometres, riche P sur les
nanometres suivants avant de recouvrer sa stoechiométrie initiale. Apres des recuits rapides et des
300 °C, la séquence de phase identifiée met en jeu la coexistence de phases binaires et ternaires
(Ni,P, NisP et Ni,InP) dont la formation est associée a un rejet d’'indium afin de conserver la
stoechiométrie globale du systéme. L'augmentation de la température a pour effet de promouvoir la
phase Ni,P au dépend des phases NizP et Ni,InP. Ce phénomene est accompagné par I'apparition de
la phase In cristalline dés 350 °C. Finalement, a 550 °C la morphologie des couches est extrémement

dégradée, le Ni,P étant complétement aggloméré et entouré par la phase In a cette température. Les
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différentes caractérisations mettent en exergue le fait que la formation des composés binaires et
ternaires n’est pas contrdlée par la nucléation mais par la diffusion des différents composés et/ou
par les réactions interfaciales. Au contraire, la formation de la phase In requiert une température
minimale de 350 °C et est ainsi contrdlée soit par la nucléation soit par un phénoméne de fusion /

solidification, la température de fusion de I'In ayant largement été dépassée (T = 156 °C).

L’ensemble des résultats concernant le systéme Ni/InP est résumé schématiquement dans la figure

Figure 3.1.

Formation de clusters d’In controlée

In 1 _ ]— par la précipitation ou par un

phénomeéne de fusion / solidification

N | N | @ 7:3%0°C
Formation de phases binaires

Ni3P _ et ternaires contrélée par la

diffusion et/ou les réactions

Ni,InP 1 _ interfaciales
a-Ni-In-P - _ :l__ Couche amorphe créée durant le pre-clean Ar* et le
dépdt des couches métalliques par PVD

Ni 1

Figure 3.1 : Résumé graphique des principaux résultats obtenus sur le systeme Ni/InP.

3.3 Etude métallurgique du systéme Ni/InGaAs

Une étude similaire menée sur le systéeme Ni/InGaAs a également permis d’identifier la séquence de

phases, qui s’avere différente de la plupart des résultats reportés dans la littérature.

Tout d’abord, il apparait que contrairement aux surfaces d’InP, I'InGaAs n’est pas altéré par la
préparation de surface conduite (HCI : Ar’) et conserve ainsi son état initial. Le dép6t des couches de
Ni et de TiN respectivement a température ambiante et 100 °C n’engendre pas la formation de

composé cristallin. En revanche, deux régions ol les espéeces ont inter-diffusé ont été identifiées :

e Le NietleTiN coexistent sur une fiche couche d’environ 3 nanomeétres ;

o Le NietI'InGaAs coexistent dans une région d’environ 25 nanometres.
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Il est important de noter que la stoechiométrie initiale de I'lnGaAs est conservée dans cette seconde
couche, ce qui suggere le fait qu’une réaction est initiée lors du dép6t grace a la diffusion du Ni dans
I'InGaAs. Par la suite, ce systeme est stable jusqu’a une température de 250 °C ol aucun nouveau
composé cristallin n’est identifié. En revanche, dés 350 °C, le Ni est entierement consommé et une
phase unique et uniforme est ainsi formée. Contrairement a la littérature qui reporte la formation du
composé Ni,(Ings3Gagay)As, aussi noté NisnGaAs,, nous observons la formation de la phase
hexagonale Nis(Ings3Gags7)As. Comme cela avait déja été observé aprés dépot, la conservation de la
stoechiométrie initiale de I'lng53Gag47As dans ce composé met en avant le fait que le Ni est I'espece
diffusante lors de la formation de cette phase. Une nouvelle augmentation de la température tend a
dépléter cette phase en In et Ga, ce qui a pour effet de créer une phase NiAs-like a 550 °C qui est de
surcroit complétement agglomérée a cette température. En revanche, malgré ce changement

drastique de composition, le composé possede toujours une structure hexagonale.

L'ensemble des résultats concernant le systéme Ni/InGaAs est résumé schématiquement dans la

figure Figure 3.2.

. Formation des composés Ni,In, 55Gag 47As
Ni,Ing 53Gag 47As } et NiAs-like par explusion des atomes de
et NiAs - like 4 Ni et Ga de la maille

NisIng 55Gag 47AS ‘ Formation de NisIn, 5;Gag 4,As

par diffusion de Ni dans Ing 53Gag 4,As
Ni

T T T T T
0 100 200 300 \ 400 500
Température de recuit (°C)

\

Ni-InGaAs

“— Ni-InGaAs

InGaAs

Figure 3.2 : Résumé graphique des principaux résultats obtenus sur le systeme Ni/InGaAs.

3.4 Etude métallurgique du systéme Ti/InP

Finalement, I’étude conduite sur le systéme Ti/InP a permis de mettre en exergue l'initiation d’une
réaction entre le Ti et I'InP dés le dépot des couches métalliques conduit a 100 °C. La formation
simultanée de deux composés binaires, le TiP et le Ti,ln;, est ainsi observée. Alors que le premier
composé est largement reporté dans la littérature, le second n’avait encore jamais été observé. Nous
attribuons cette différence au gradient de composition créé dans I'InP par la préparation de surface

conduite en deux temps, avec tout d’abord une solution de HCI concentrée puis avec un pre-clean in
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situ d’Ar”. Grace a leur énergie cinétique éventuellement combinée a un phénoméne de diffusion, les
atomes de Ti atteignent les zones riche-In et riche-P présentes a la surface de I'InP. De fait, une
structure composée de couches distinctes est observée : TiN / Ti / Ti,Ins (7 a 15 nm) /TiP (3a 8 nm) /
InP. Il est important de noter que les épaisseurs des couches de TiyIn; et de TiP ne sont pas
parfaitement constantes au sein méme d’un systeme, mais qu’elles sont entierement indépendantes
de I'épaisseur de Ti déposée. Des lors que le TiP et le Ti,Insforment des couches continues, au moins
I'une d’entre elles agit en tant que barriére de diffusion empéchant de fait toute réaction jusqu’a
450 °C, bien qu’un important réservoir de Ti soit disponible. En accord avec la littérature, il est tres
probable que le TiP joue le rble le plus important dans cette absence de réaction. Dans cette
configuration, le Ti, le TiIns et le TiP coexistent donc jusqu’a une température de 450 °C sous la
forme de couches continues et distinctes. En revanche, un recuit conduit a 550 °C engendre la
consommation compléte du Ti et du Ti,Ins pour promouvoir le TiP ainsi que la phase In nécessaire a la
conservation de la stoechiométrie du systeme. Cette réaction est rendue possible par la création d’'un
chemin de diffusion permettant au Ti et au P de se rencontrer, soit par la promotion de la diffusion

des espéces a travers la couche de TiP ou par I'agglomération de cette couche.

L'ensemble des résultats concernant le systéme Ti/InP est résumé schématiquement dans la figure

Figure 3.3.

Croissance des phases TiP etIn a
T =550 °C grace a I'accroissement de la
diffusion de Ti et P a travers la couche de

P! N | | TP ouoce s sonsogomeraton

Formation simultanée des phases
binaires au cours du dépdt métallique
par l'interaction du Ti avec les
régions riche In et riche P présentes

x T T T T T T T T 3
0 10p 200 300 400 500 dans 'InP

Température de recuit (°C)

P-free pocket

InP

Figure 3.3 : Résumé graphique des principaux résultats obtenus sur le systéme Ti/InP.
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CHAPITRE4 CONTACTS COMPATIBLES SILICIUM
SUR N-INP ET P-INGAAS: CARACTERISATION
ELECTRIQUE

Le chapitre 4 est finalement dédié a I'étude électrique des contacts intégrés grace a I'utilisation de
structures de type TLM. Dans le cadre de la photonique sur Silicium, les contacts intégrés sur le laser
IlI-V doivent étre de type ohmiques entre -1.5 V et + 1.5 V et doivent présenter une résistivité

spécifique de contact pc < 5 x 10° Q.cm™.

4.1 Extraction de la résistivité spécifique de contact - Structures TLM

Afin d’extraire les résistivités spécifiques des contacts intégrés, des structures de type TLM (Transfer
Length Method) sont utilisées. Elles sont constituées d’une série de contacts dont les dimensions

sont constantes mais dont I'espacement augmente, comme représenté sur Figure 4.1.

Figure 4.1 : Représentation schématique d’une structure de test TLM.

Chaque couple de contact adjacent est caractérisé grace a une mesure 4 pointes permettant
d’extraire la caractéristique (V) correspondante. Par la suite, si les caractéristiques sont linéaires, i.e.
si les contacts sont ohmiques, la résistance correspondant a chaque espacement est extraite et

tracée en fonction des espacements correspondants comme représenté dans la Figure 4.2.

Rtot
B w
_ 2.Rsg. Ly Spacing
*7 Rsy

cadre d’une mesure TLM.
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Dans le cas de contacts non-alliés, la résistivité du semi-conducteur bulk (Rsy) et celle du semi-
conducteur situé sous le contact (Rsk) sont considérées comme étant égales. Dans ce cas, I'extraction
de la résistivité spécifique de contact est immédiate a partir de ce tracé. En revanche, dans le cas de
contacts alliés, une correction peut étre appliquée afin de prendre en compte une éventuellement
modification de la résistivité du semi-conducteur situé a I'aplomb du contact. Dans ce cas, des
mesures supplémentaires sont nécessaires afin d’extraire un parameétre appelé résistance de fin (Rg).
Dans ce chapitre, les limitations associées aux techniques d’extraction décrites dans la littérature
sont largement discutées. Les deux méthodes disponibles reposent sur des hypothéses décrivant le
chemin emprunté par les porteurs de charge, ainsi que sur la localisation des isopotentielles qui
s’averent non vérifiées. De fait, ce type d’extractions engendre des erreurs conséquentes lorsqu’elles
sont utilisées au sein de réseaux de contacts sans plus de corrections. Par conséquent, il a été décidé
d’appliquer la méthode dédiée aux contacts non alliés pour extraire I'ensemble des résistivités

spécifiques de contact présentées dans ce chapitre, cette derniere étant beaucoup plus fiable.

4.2 Etude des métallisations compatibles avec un environnement

front-end middle-end Si

Tout d’abord, les métallisations a base de Ni et de Ti étudiées dans le chapitre 3 ont été caractérisées
électriquement. Une métallisation supplémentaire, le Ni,P a été directement déposé sur chacun des
substrats d’intérét. Les résistivités spécifiques de contact obtenues sur n-InP et p-InGaAs sont

présentées respectivement dans la Figure 4.3 et dans la Figure 4.4.



262 INTEGRATION DE CONTACTS INNOVANTS POUR DISPOSITIFS PHOTONIQUES 111-V/SI

o
W
S
6E-5 %
T / TARGET
§ 5E5--- /- --------------------------------
IS
c
O, 4E5-
>
£ A
@ L
2 3E-54 do© B 0
e ] o A o)
£ 2654 - ol
o T '’ ®
o X X -
S sl E 5
5 1B°1 o o
SR 5
n D D
T T T L L T T T
\g é\@é S FE LTSS R

P P O e P
Q_&\ 6Q)Q O O O QOO

Q Q \} (SN Q )
\>\ ?g, o_)b( nga Na Yg, ﬁfa rga ,(06
< R’ Q R’ < R L
S AT N &S
0\069 %‘\\ é\\ é\\ é\\ \\ PP S‘@
4
.Q\\Q &

Figure 4.3: Résistivités spécifiques de contact obtenues avec des métallisations a base de Ni et Ti sur n-InP
(Np=3x 10" cm'a). Quand rencontré, PC signifie pre-clean Ar" in situ.
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Figure 4.4: Résistivités spécifiques de contact obtenues avec des métallisations a base de Ni et Ti sur p-InGaAs
(Na=3x 10" em™). Quand rencontré, PC signifie pre-clean Ar” in situ.
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Les résultats présentés ci-dessus mettent en avant le fait que la grande majorité des métallisations
étudiées présentent de meilleures caractéristiques que les métallisations classiques sondées, et
gu’elles pourraient tout a fait étre implémentées sur des lasers IlI-V. Cependant, cette étude
électrique combinée avec I'étude métallurgique présentée dans le chapitre 3 nous donne acces a une
vue d’ensemble permettant de restreindre les choix aux plus pertinents. Pour cela, il est important
de noter que l'intégration des contacts sur n-InP et p-InGaAs dans le laser peut étre (i) séquentielle

ou (ii) simultanée.

Dans le cas d’une ouverture simultanée des deux niveaux de contacts, le nombre d’étapes
d’intégration serait drastiquement réduit. Si cette solution est finalement retenue, une métallisation
unique doit étre intégrée sur les deux semi-conducteurs d’intérét. Afin d’obtenir le meilleur
compromis, il convient réaliser un pre-clean in situ d’Ar’, ou d’He lorsque ce dernier est disponible, et
de déposer du Ni,P. Cette solution permet ainsi d’atteindre des résistivités de contact de 4.3 x 10
®Q.cm? and 1.2 x 10 Q.cm? respectivement sur n-InP et p-InGaAs. Ce type de métallisation présente
également I'avantage d’étre stable thermiquement au moins jusqu’a 350 °C sur chacun des semi-
conducteurs, ce qui permet de fait a la métallisation de supporter les budgets thermiques appliqués

au cours des étapes d’intégration suivantes.

Cependant, I'importante topographie présente entre les surfaces d’InP et d’'InGaAs dans le laser rend
cette intégration simultanée difficile. De fait, une intégration séquentielle des contacts est a
envisager. Dans ce cas, chacune des deux métallisations peut étre indépendamment optimisée, en
faisant néanmoins extrémement attention aux budgets thermiques requis afin de ne pas dégrader la
premiere métallisation lors de I'intégration de la seconde. Dans ce cas, alors que le Ni,P combiné a
un pre-clean in situ d’Ar’, ou d’He dans sa version optimisée, est le plus adapté a une surface de n-
InP, I'utilisation du Ni minimiserait la résistivité de contact sur p-InGaAs. Chacune des métallisations
peut étre utilisée sans recuit, auquel cas l'ordre dans lequel elles sont intégrées n’aurait pas
d’importance. En revanche, afin de minimiser autant que possible les résistivités de contacts sur
chacun des semi-conducteurs, I'utilisation du Ni,P tel que déposé sur n-InP et du Ni recuit a 350 °C
pendant 60 secondes sur p-InGaAs constituerait la meilleure solution. Dans ce cas, il convient
d’intégrer tout d’abord les contacts sur p-InGaAs et ensuite ceux sur n-InP. Cette solution permettrait
d’atteindre les valeurs de pc= 4.3 x 10° Q.cm? et pc= 5.6 x 10°° Q.cm? respectivement sur n-InP et p-

InGaAs.

4.3 Impact de I'encapsulation diélectrique

Finalement, aprés avoir déterminé les métallisations les plus adaptées sur chacun des semi-
conducteurs d’intérét, I'impact du diélectrique nécessaire a I'intégration planaire des contacts a été

caractérisé. Pour cela, des empilements classiques ont été utilisés et les diélectriques mentionnés
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dans le chapitre 2 ont été déposés. De plus, I'intégration présentée dans le chapitre 2 nécessitant
I"utilisation d’une couche d’arrét a la gravure protégeant les IlI-V et étant composée de SiN, une telle
couche a toujours été déposée dans les empilements étudiés dans cette section. Les cavités de
contact ont alors été ouvertes jusqu’aux matériaux Ill-V grace a une gravure seche a base de SF. Les
métaux constituants les empilements classiques ont alors été déposés par PVD a des températures
n’excédant pas 100 °C. Trois échantillons supplémentaires constituants les références ont été
intégrés de facon classique, c'est-a-dire sans diélectrique et grace a des procédés de type lift-off.

L'ensemble des résistivités spécifiques de contacts obtenues est présenté dans la Figure 4.5.
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fonction des encapsulations diélectriques utilisées.

Il s’avére que l'intégration planaire nécessitant le dépét et la gravure d’un empilement diélectrique
dégrade sans exception les performances électriques des contacts par rapport a celles obtenues avec
une intégration basée sur le lift-off. Ces détériorations peuvent étre attribuées en premiére instance
a l'incorporation d’H dans les semi-conducteurs au cours du dépot par PE-CVD du SiN utilisé en tant
qgue couche d’arrét a la gravure. En effet, la présence d’H dans les épitaxies dopées a pour effet de
diminuer la concentration d’espéces dopantes actives. De plus, l'utilisation d’'une gravure seche
basée sur un plasma de SFga tendance a modifier I'état de surface de I'InP et de I'InGaAs en altérant

leur stcechiométrie et leur rugosité. En revanche, ces hypothéses ne suffisent pas a expliquer les
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différences observées lorsque la nature du diélectrique situé au-dessus de cette couche de SiN est
modifiée. Ces variations peuvent cependant étre attribuées au stress intrinséque de ces composés
diélectriques qui semblent avoir un impact direct sur les résistivités de contact extraites. Différents
phénomeénes peuvent en effet modifier la répartition des porteurs de charges situés proches

d’ouvertures réalisées dans des empilements diélectriques contraints :

e Les dopants peuvent étre redistribués dans le semi-conducteur a cause de la modification de
la concentration des sites interstitiels et des lacunes dans la maille cristalline sous I'effet
d’une contrainte ;

e Les diagrammes de bandes peuvent étre déformés sous I'effet d’une contrainte ce qui a pour
effet de modifier les mécanismes responsables du transport des porteurs de charges au sein
de la jonction métal / semi-conducteur ;

e La présence d’une contrainte peut donner lieu a un effet piézoélectrique dans les matériaux

[lI-V et ainsi générer une densité de charges additionnelle dans la région du contact.
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CONCLUSION GENERALE

Au cours de cette thése, les problématiques liées a l'intégration de contacts sur llI-V dans un
environnement front-end / middle-end Si 200 mm ont été discutées et des solutions ont été
proposées. Pour cela, un schéma d’intégration de contacts sur n-InP et p-InGaAs a été développé au
sein d’une telle salle blanche. Ce schéma requiert tout d’abord le report d’'un empilement IlI-V sous
forme de plaquette ou de puces par le biais d’un collage direct InP / SiO,. Par la suite, le laser est
défini dans cet empilement grace a une gravure seche réalisée avec un plasma a couplage inductif
(ICP). Afin de protéger I'InGaAs, cette étape nécessite le dépbdt d’'un masque dur composé de SiN
conforme déposé par PE-CVD a 300 °C, ou de SiN Low stress déposé de la méme facon dans sa
version optimisée. Les caractérisations métallurgiques et électriques ont montré que ce dernier
permet de préserver les surfaces IlI-V tout en optimisant les performances électriques des contacts
intégrés de facon planaire. Ce type d’intégration requiert alors une encapsulation diélectrique du
laser afin de réaliser par la suite une CMP de type damascéne. La nature de cette encapsulation
diélectrique doit étre choisie avec précaution afin de ne pas générer de pertes optiques a la longueur
d’onde d’émission du laser (A =1,3 — 1,55 um), afin de permettre une évacuation de la chaleur
produite par le laser en fonctionnement et afin d’étre planarisable par CMP. En prenant en compte
I’ensemble de ces restrictions, le SiN low stress couplé avec du SiO,tous deux déposés par PE-CVD
ont été sélectionnés. L'ouverture des cavités de contact dans cette encapsulation diélectrique est
alors réalisée par le biais d’une gravure seche. Alors que la gravure du SiO, n’est pas problématique,
celle du SiN doit étre réalisée avec beaucoup de précautions afin de ne pas dégrader les surfaces IlI-V
sur lesquelles les contacts sont intégrés par la suite. Cette gravure séche est alors réalisée grace a un
plasma de CH,F, couplé a une solution de HF (0,1 %), cette derniére étant utilisée pour graver les
derniers nanomeétres de SiN. La préparation de surface alors conduite afin de supprimer toute trace
de contaminants, particules et oxydes est composée d’une succession de deux étapes. Sur InGaAs,
I"'utilisation d’une solution de HCl concentrée ou diluée combinée avec un plasma d’Ar ou d’He est
tout a fait adaptée, alors que la préparation de I'InP requiert 'utilisation d’une solution de HCI diluée
combinée avec un plasma d’'He. Dés lors, la métallisation de contact peut étre intégrée (i)
simultanément sur n-InP et p-InGaAs ou (ii) séquentiellement. (i) Dans le cas d’une intégration
simultanée, I'utilisation de la métallisation Ni,P précédée d’'un pre-clean in situ optimisé permet
d’obtenir le meilleur compromis sur chacun des deux semi-conducteurs. Les résistivités de contact
ainsi atteintes sont de 4.3 x 10°Q.cm” and 1.2 x 10°Q.cm” respectivement sur n-InP and p-InGaAs.
Cette métallisation présente également I'avantage d’étre stable thermiquement au moins jusqu’a
350 °C. (ii) Dans le cas d’une intégration séquentielle des deux types de contacts, chacun peut étre
indépendamment optimisé. Le contact sur p-InGaAs doit alors étre intégré le premier avec une

métallisation Ni ayant subi un traitement thermique a 350 °C pendant 60 secondes. Ce type de
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traitement thermique meéne a la formation d’un phase unique et uniforme de Nis(Ings3Gaga7)As
permettant de diminuer la résistivité de contact jusqu’a pc= 5.6 x 10° Q.cm® La métallisation de
contact utilisée sur n-InP doit quant a elle étre composée de Ni,P, cette derniere donnant accés a
une résistivité de contact de 4.3 x 10° Q.cm” aprés dépot et de 7.3 x 10° Q.cm? aprés un traitement
thermique conduit a 350 °C. Ces métallisations étant situées en fond de cavités, des plugs sont alors
intégrés. Les cavités de contacts mesurant 40 um x 500 um sur InP et 5 um x 500 um sur InGaAs, de
nouvelles cavités, plus petites, doivent étre définies pour permettre la CMP damascene des plugs. De
fait, une nouvelle encapsulation diélectrique composée de SiN et SiO, est réalisée et des cavités de
quelques pm?sont ouvertes jusqu’a la métallisation de contact. Dés lors, une couche de nucléation
servant également de barriére a la diffusion du F est déposée. Alors qu’elle est traditionnellement
composée de Ti/TiN déposés par CVD, une solution innovante consiste a déposer du W dépourvu de
F. Enfin, le métal de remplissage qui n’est autre que du W est déposé et une CMP damascene finale

est conduite afin d’isoler électriquement les contacts les uns des autres.
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