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ABSTRACT

PRE-CLINICAL TRIAL TREATMENT OF HEPATOCELLULAR

CARCINOMA ON CIRRHOSIS IN A RAT MODEL

Hepatocellular carcinoma (HCC) is the second most common cause of

cancerrelated mortality worldwide. AKT pathway has been found activated in 50% of

HCC cases, making it promising target. Therefore we assess efficacy of the allosteric

AKT inhibitor or the combination of Sorafenib with AKT inhibitor compared to

untreated control and to standard treatment, Sorafenib, in vitro and in vivo. AKT

inhibitor blocked phosphorylation of AKT in vitro and strongly inhibited cell growth

and migration with significantly higher potency than Sorafenib. Similarly, apoptotic cell

was strongly increased by AKT inhibitor in vitro. To mimic human advanced HCC, we

used diethylnitrosamine-induced cirrhotic rat model with fully developed HCC. MRI

analyses showed that AKT inhibitor significantly reduced overall tumor size.

Furthermore, number of tumors was decreased by AKT inhibitor, which was associated

with increased apoptosis and decreased proliferation. Tumor contrast enhancement was

significantly decreased in the AKT inhibitor group. Moreover, on tumor tissue sections,

we observed a vascular normalization and a significant decrease in fibrosis in

surrounding liver of animals treated with AKT inhibitor. Finally, pAKT/AKT levels in

AKT inhibitor treated tumors were reduced, followed by down regulation of actors of

AKT downstream signalling pathway: pmTOR, pPRAS40, pPLCγ1 and pS6K1. In

conclusion, we demonstrated that AKT inhibitor blocks AKT phosphorylation in vitro

and in vivo. In HCC-rat model, AKT inhibitor was well tolerated, showed anti-fibrotic

effect and had stronger antitumor effect than Sorafenib. Our results confirm the

importance of targeting AKT in HCC.

Key words: HCC, Sorafenib, AKT inhibitor, PI3K/AKT/mTOR pathway,

target therapy, DEN, cirrhosis, rat, animal model.



VI

RESUME

Le carcinome hépatocellulaire (CHC) est l’un des cancers les plus courants dans le

monde entier avec la deuxième plus forte mortalité parmi tous les cancers.

PI3K/AKT/mTOR et MAPK/ERK sont les deux grandes voies de signalisation

reconnues comme cibles pour la thérapie du cancer du foie. Le Sorafenib, étant le seul

traitement systémique approuvé, cible plusieurs voies de signalisation conduisant à

l’inhibition de la voie MAPK. En revanche, une exposition long terme au Sorafénib

influence la voie PI3K et régularise positivement la phosphorylation de ses cibles en

aval, notamment AKT, qui provoque la résistance du CHC du Sorafénib. Ainsi, étant

une nouvelle stratégie thérapeutique, la combinaison du Sorafénib avec des inhibiteurs

AKT est étudiée dans un modèle de rats cirrhotiques induit par DEN développant le

CHC.

Nos résultats de IRM ont montré une faible progression tumorale, un nombre de

tumeurs réduit et une taille plus faible des tumeurs chez les rats traités avec une

nouvelle stratégie thérapeutique associant inhibiteur d’AKT et Sorafenib. En outre,

notre analyse western blot a montré une inhibition forte et sélective de la voie d’AKT

soit pour le seul inhibiteur d’AKT soit pour un traitement de combinaison, ce qui

indique la spécificité de cette molécule. En conclusion, nos résultats confirment

l’importance du ciblage d’AKT dans le développement et la progression du CHC.
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CHAPTER 1

INTRODUCTION

1.1. Cancer

Cancer is a disease that means abnormal cell growth with the potential to invade

or spread to other parts of the body. Normal cells grow, divide and die because they

have many control mechanisms. Cancer cells have disorders in control mechanisms that

manage how often they divide, and in the feedback systems that regulate these control

mechanisms (Evan and Vousden 2001). Cancer cell genotypes share six common traits

in cell physiology that govern the transformation of normal cells to cancer cells, as

shown in figure 1.1 (Hanahan and Weinberg 2000).

Figure 1.1. Acquired Capabilities of Cancer (Source: (Hanahan and Weinberg
2011)).

First hallmark of cancer is “sell-sufficiency in growth signal”. When normal

cells move from a quiescent state into an active proliferative state, they have need for

mitogenic growth signals. No type of normal cell can proliferate in the absence of such
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stimulatory signal. However, cancer cells do not require stimulation to grow from

external signal. Second hallmark of it is “insensitivity to antigrowth signals”. Multiple

anti-proliferative signals act to maintain cellular quiescence and tissue homeostasis

within a normal tissue. If cells are forced out of the active proliferative cycle into the G0

state or cells are induced to permanently abdicate their proliferative potential,

antigrowth signals can block proliferation. Cancer cells are usually resistant to these

signals. Third hallmark of it is “evading apoptosis”. Apoptosis is controlled by a

complex network of proliferation and survival genes that is frequently disrupted during

tumor evolution (Wendel, Stanchina et al. 2004). Cancer cells are able to be resistant to

this mechanism. For example, when p53 tumor suppressor gene is inactivated or the PI3

kinase–AKT/PKB pathway, which transmits antiapoptotic survival signal is activated,

cell cycle progression increases and control cell death decreases (Vivanco and Sawyers

2002). A fourth hallmark of it is “limitless replicative potential”. Cell populations that

have progressed through a certain number of doubling, stop growing— and end up in a

process termed senescence (Hayflick 1997). On the other hand, cancer cells have the

ability to divide indefinitely. Due to damage chromosomes, immortal cells can become

cancerous (Hanahan and Weinberg 2011). Fifth hallmark of cancer is “sustained

angiogenesis”. The oxygen and nutrients supplied by the vasculature are crucial for cell

function and survival. When a tissue is formed, the process of angiogenesis that is the

growth of new blood vessels is transitory and carefully regulated. During tumor

development, sustain angiogenesis seems to be acquired in a discrete step via an

“angiogenic switch” from vascular quiescence (Bergers and Benjamin 2003). Final

hallmark of cancer is “tissue invasion and metastasis”. Later during the development of

most of cancer, cancer cells move out, and invade adjacent tissue. They travel to distant

sites or organs, where they succeed in creating new colonies (van Zijl, Krupitza et al.

2011).

1.2. Liver Cancer

Liver is the largest glandular organ in the body and it is responsible for various

critical functions to keep the body free of toxins and harmful substances. Liver cancer

is classified primary cancer which begins in the cells of the liver and secondary cancer

that develops from cells from other organs that spread to the liver. Unfortunately, it is
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the second leading cause of cancer related mortality worldwide (Siegel, Miller et al.

2016). According to GLOBAL statistic, liver cancer is largely a problem of the less

developed regions and showed in table 1. Most primary liver cancers are classified as

hepatocellular carcinoma (HCC). Current evidence indicates that during

hepatocarcinogenesis, two main pathogenic mechanisms prevail: (1) cirrhosis

associated with hepatic regeneration after tissue damage caused by hepatitis infection,

toxins (for example, alcohol or aflatoxin) or metabolic influences, and (2) mutations

occurring in single or multiple oncogenes or tumor suppressor genes. Approximately 90

% of HCC are associated with underlying cirrhosis, which corresponds to the latest

stage of liver fibrosis (Shibata and Aburatani 2014). HCC is followed by intrahepatic

cholangiocarcinoma (IHCC) (Jemal, Bray et al. 2011).

Table 1. Estimated liver cancer cases, mortality and 5-year prevalence worldwide in
2012 for men and women.

Estimated numbers (thousands)

Men Women

Cases Deaths 5-year
prev. Cases Deaths 5-year

prev.

World 554 521 453 228 224 180

More developed regions 92 80 112 42 43 51

Less developed regions 462 441 341 186 182 129

WHO Africa region (AFRO) 25 24 17 14 13 9

WHO Americas region (PAHO) 40 35 35 23 23 18

WHO East Mediterranean region
(EMRO) 20 19 12 10 9 6

WHO Europe region (EURO) 47 44 42 23 25 20

WHO South-East Asia region
(SEARO) 55 52 33 25 24 15

WHO Western Pacific region
(WPRO) 368 347 314 133 129 112

IARC membership (24 countries) 120 104 135 56 55 60

United States of America 23 17 21 8 7 7

China 293 282 220 101 101 71

India 17 17 8 10 10 5

European Union (EU-28) 36 32 33 16 17 14
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Chronic liver damage, such as that caused by chronic hepatitis, liver cirrhosis

and fatty liver disease, is closely associated with the occurrence of liver cancer (Forner,

Llovet et al. 2012) (El-Serag 2012). Liver cirrhosis is the end-stage disease of chronic

liver injury. A growing number of studies show that cirrhosis is caused by different

factor such as hepatitis B and C, chronic alcoholism, or non-alcoholic steato-hepatitis

(NASH) due to dysmetabolism (Poynard, Bedossa et al. 1997). Besides this, parasites

such as liver fluke are associated with IHCC in Southeast Asian countries (Shaib and

El-Serag 2004). Interindividual variation of time span from normal liver to fibrotic and

cirrhotic stages suggested potential influence of congenital variations. Advances in

genotyping techniques allowed to identify the relation of liver fibrosis and cirrhosis to

different etiologies (Kitamoto, Kitamoto et al. 2013) (Zimmer and Lammert 2011).

Inflammation of the liver is also a cause of HCC (Haybaeck, Zeller et al. 2009).

HCC is the leading cause of death among patients with cirrhosis (Forner, Llovet

et al. 2012) (Siegel, Ma et al. 2014). Several pathways have been showed to be

involved in HCC pathogenesis (Figure 1.2.) (Shibata and Aburatani 2014), such as

PI3K/Akt/mTOR, EGFR, Ras/Raf/mitogen activated protein kinase

(MEK)/extracellular signal regulated kinase (ERK), and IGFR pathways (Finn 2013).

Figure 1.2. Oncogenic pathways in hepatocarcinogenesis (Source: (Shibata and
Aburatani 2014)).
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1.2.1. Signaling Pathways Involved in HCC Pathogenesis

HCC is highly vascularized tumor, and the central role of angiogenesis in its

initiation, growth, and subsequent dissemination to other tissues is well recognized.

Angiogenesis in HCC is dependent on endothelial cell activation, proliferation, and

migration, which occur in response to angiogenic cues (e.g., inflammation) and

involves several molecular effectors such as growth factors, extra-cellular matrix

proteins, and proteases (Sanz-Cameno, Trapero-Marugán et al. 2010).

HCCs usually have an intermediate number of mutations genome (Li and Mao

2013). TP53 is the top gene among recurrently mutated genes in HCC, and its mutation

frequency varies approximately 25.9% of HCCs (Hussain, Schwank et al. 2007). In

addition, upstream regulator of TP53 activation, ATM and target of TP53, CDKN1A

genes have also been reported as mutation genes (Shiloh and Ziv 2013). Moreover,

mutations of the IRF2 gene, which encodes a positive regulator of TP53 protein

expression, are mutually exclusive to the TP53 mutation with HCC (Guichard,

Amaddeo et al. 2012). Cell senescence is regulated by RB and CDKN2A. In HCC cases,

RB and CDKN2A genes mutations have been reported (Zhang, Guo et al. 2008).

Activation of telomerase (encoded by the TERT gene), which is physiologically

silenced in most normal cells, is required for infinite replication in cancer cells. TERT

promoter mutations have been seen in 54% of human HCCs and 25% of cirrhotic

preneoplastic nodules, and this case could be the earliest recurrent genetic event in

hepatocarcinogenesis (Nault, Mallet et al. 2013). WNT signalling is a driving molecular

event in a wide range of tumours, including liver cancers (Polakis 2000). CTNNB1, also

APC and AXIN1, which are tumour suppressor genes are frequently reported in HCC

(10.0−32.8% ) and hepatoblastoma (Oda, Imai et al. 1996) (Shibata and Aburatani

2014). The NFE2L2 gene encodes a sequence-specific transcript ional factor that

upregulates genes associated with oxidative stress and other metabolic pathways

(Taguchi, Motohashi et al. 2011). Activating mutations of this gene have been

recurrently reported in HCC (Guichard, Amaddeo et al. 2012). Protein-phosphorylation

enzymes are activated via binding of growth factors to their receptor proteins, thus

activating proliferative signaling pathway to transfer signals into the nucleus. Growth

factor, such as epidermal growth factor (EGF), transforming growth factor (TGF)-α/-β,

insulin-like growth factor (IGF) and vascular endothelial growth factor (VEGF), also
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function in liver regeneration after injury, while fibroblast growth factor (FGF) and the

platelet-derived growth factor (PDGF) family are involved in liver fibrosis and HCC

growth (Höpfner, Schuppan et al. 2008). The lost of the growth factor reseptor and

oncogenes include tyrosine kinase activity. The tyrosine kinases are classified into

transmembrane receptor tyrosine kinases such as the EGFR and VEGFR. However, Raf,

MAP kinase/ERK kinase (MEK) and mammalian target of rapamycin (mTOR) are

serine/threonine kinases. In general, the mitogen-activated protein kinase (MAPK),

phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathways, and the VEGFR

(VEGFR -1, -2, and -3) and PDGFR signaling cascades show altered activity in HCC.

These cascades is demonstrated in figure 1.3 (Whittaker, Marais et al. 2010).

Figure 1.3. Cellular signaling pathways implicated in the pathogenesis of HCC (Source:
(Whittaker, Marais et al. 2010))

1.2.2. MAPK Pathway (Ras/Raf/MEK/ERK)

Important intro-cellular signaling pathways that are involved in cell growth and

survival, and regulate cell differentiation, are upregulated in cancer cells. Due to these

properties, many researchers have studied MAPK pathway as a therapeutic target. The
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MAPK pathway is a common downstream pathway for the EGFR, PDGFR and

VEGFR, and is universally used for signal transduction downstream of cytokine

receptors, integrin complexes and G-protein receptors to Ras (Figure 1.4). Besides, the

MAPK pathway is responsible for HCC growth and survival (Llovet , Ricci et al.

2008). The downstream extracellular signaling-regulated kinase (ERK) is activated by

two upstream protein kinases, which are coupled to growth factor receptors by Ras

proteins. Ras, which is activated by ligand binding, activates Raf serine/threonine

kinases and MEK (MAP kinase/ERK kinase), while MEK phosphorylates and activates

ERK, which phosphorylates proteins involved in cell growth, apoptosis resistance,

extracellular matrix production and angiogenesis (Andersen, Spee et al. 2012). Raf

inhibitors such as Sorafenib, have been developed in HCC therapy. It exhibits strong

inhibitory activity against Raf-1 (C-Raf) kinase, B-Raf (wild-type B-Raf and mutant

V600E B-Raf) serine/threonine kinase, the pro-angiogenic receptor tyrosine kinases

VEGFR, PDGFR and FGFR1, and tyrosine kinases which are involved in tumor

progression and overall prognosis (Wilhelm, Adnane et al. 2008).
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Figure 1.4. Summary of MAP kinases pathway (Source: www. mycancergenome.
org)

1.2.3. PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway is a major intracellular signaling cascade

involved in the regulation of cell growth, proliferation, and survival. The activation of

the AKT/mTOR pathways is seen nearly in 50% of patients with HCC (Yuzugullu,

Benhaj et al. 2009). When the membrane lipid phosphatidylinositol 4,5-bisphosphate

(PIP2) is phosphorylated by phosphatidylinositol 3-kinase (PI3K), it converts into

phosphatidylinositol 3,4,5-triphosphate (PIP3). Then it binds and activates the

serine/threonin kinase AKT. The serine/threonine kinase mTOR is an important

http://www.mycancergenome.org)
http://www.mycancergenome.org)
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mediator in the PI3K/Akt pathway which is activated downstream of Akt; thus, both

molecules regulate protein synthesis (Zhai and Sun 2013). In addition to regulating

various transcription factors such as FOXO, activated Akt also phosphorylates several

cytoplasmic protein, most notables mTOR and BCL-2-assosiated death promoter (Avila,

Berasain et al. 2006). the activation of mTOR increases cellular proliferation and

inactivation of BCL-2-assosiated death promoter (BAD) not only decreases apoptosis

but also increases cell survival. This pathway is negatively regulated by the

phosphatase and tumor suppressor phosphatase on chromosome 10, PTEN which

targets the lipid products of PI3K for dephosphorylation in normal tissue. (Whittaker,

Marais et al. 2010). Anomalies PTEN function may lead to over-activation of the

PI3K/AKT/mTOR pathway in HCC. Importantly, downregulation of PTEN expression

has been shown to correlate with increased tumor grade, advanced disease stage with

HCC (Zhou, Liu et al. 2006).

The PI3K/AKT/mTOR signaling pathway can be overactivated by enhanced

stimulation of receptor tyrosine kinases, particularly the IGF receptor and EGFR.

Expression of both IGF and IGF receptor is upregulated in HCC and human cirrhotic

liver (Alexia, Fallot et al. 2004).

mTOR plays a pivotal role in HCC. mTORC1 and mTORC2 pathways,

including pRPS6, p-AKT, IGF-1R and RICTOR are up-regulated in 40-50% of HCC

(Matter, Decaens et al. 2014). mTOR pathway and its upstream pathways PI3K and

AKT occupy a central position in the network of deregulated signaling pathways in

HCC. mTORC1 induces the negative feedback loop, which in turn activates PI3K-AKT

with MAPK and RAS signaling and thus may actually increase growth of cancer cells

(Carracedo, Ma et al. 2008). PRAS40 and Deptor have been characterized as distinct

negative regulators of mTORC1 (Peterson, Park et al. 2009). Upon activation,

mTORC1 directly phosphorylates PRAS40 and Deptor, which reduces their physical

interaction with mTORC1 and further activates mTORC1 signaling (Wang, Zeng et al.

2007). mTORC2 also plays key roles in various biological processes, including cell

survival, metabolism, proliferation and cytoskeleton organization (Laplante and

Sabatini 2012). Ablation of various mTORC2 components specifically blocks Akt

phosphorylation at Ser473 and the downstream phosphorylation of some Akt substrates

(Guertin, Stevens et al. 2006). Inhibition of AKT following mTORC2 depletion reduces

the phosphorylation of, and therefore activates, the FOXO1 and FOXO3a transcription

factors (Salih and Brunet 2008).
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Overall, growing evidence shows that AKT as an essential actor in liver cancer

tumorigenesis, progression and a potential target in the management of HCC. Therefore,

we suggest that a therapy with an AKT inhibitor will be able to treat fully developed

HCC by inhibiting the PI3K/Akt/mTOR pathway (Figure 1.5). Moreover, it is thought

that AKT inhibitor may overcome Sorafenib resistance in HCC. Thus, the combination

of Sorafenib with Akt-inhibitor represents new therapeutic strategy which can improve

treatment effectiveness in HCC.

Figure 1.5. Major molecular pathway in HCC

1.3. Treatment of Liver Cancer _ HCC

Staging of HCC is essential to determine the treatment modality as well as the

prognosis. Tumor stage, liver function, factional status and patient’s symptoms should

be investigated. The Barcelona Clinic Liver Cancer (BCLC) classification system is

used worldwide, and takes into account all these variables (Ravi and Singal 2014).
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Apart from being extensively validated, this system connects between the staging and

treatment options, providing well-laid out algorithms for managing HCC (Figure 1.6).

Figure 1.6. Barcelona Clinic Liver Cancer staging system and treatment strategy.RF,
radiofrequency ablation; PEI, percutaneous ethanol injection; TACE,
transcatheter arterial chemoembolization. (Source: (Bruix and Sherman
2011)).

Surgery is used to diagnose, stage and treat cancer, and certain cancer-related

symptoms. Liver cancers are classified based on whether or not they can be removed.

Depending on the size and location of the tumor, part of liver can be removed. This

operation is considered for a single tumor that has not grown into blood vessels.

Unfortunately, most liver cancers can not be completed removed. Often the cancer is in

too many different parts of the liver, is too large or has spread beyond the liver. Also,

there are possible risks and side effects after surgery. As a lot of blood vessels pass

through the liver, blending may occur. Other possible problems are similar to those

seen with other major surgeries and can include infections, complications from

anesthesia, blood clots, and pneumonia. Besides these, new liver cancer can develop

(Ang, Ng et al. 2015).
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The other treatment of liver cancer is liver transplantation. Sometimes it can be

the best option for some people. Unfortunately, the opportunities for liver transplant are

limited. After transplantation, the patients are treated by drugs that help to suppress

their immune systems to prevent their bodies from rejecting the new organ. These drugs

increase risk of infection, can cause high blood pressure, high cholesterol, and diabetes;

can weaken the bones and kidneys; and can even lead to new cancer (Obed, Tsui et al.

2008) (Cillo, Vitale et al. 2004). Although surgery and liver transplantation are

considered the optimal curative treatment for diseases, there is a significant shortage of

organ donors, and surgical complications, recurrence and metastasis are common.

Transcatheter arterial chemoembolization (TACE) is another method for HCC

patients who are not convenient for surgery (Brown, Geschwind et al. 2006).

Chemotherapy drugs which are coated with small embolic particles are injected by

through a catheter into an artery directly supplying the tumor (Miraglia, Pietrosi et al.

2007). However, TACE is not suitable for big tumors and tumors with portal-systemic

shunt and patients with poor liver function.

Chemotherapy is a category of cancer treatment that uses one or more anti-

cancer drugs. Sorafenib, a multi kinase inhibitor, has been shown to improve the overall

survival (OS) of patients with advanced HCC and the time represented a breakthrough

in the clinical management of this cancer (Llovet , Ricci et al. 2008). Sorafenib is an

inhibitor of Raf serine/threonine kinases, inducing cell apoptosis and blocking tumor

angiogenesis (Liu, Cao et al. 2006) and receptor tyrosine kinases associated with

VEGFR2 and 3, platelet-derived growth factor receptor (PDGFR)-β, Flt-3 and c-Kit

(Wilhelm, Carter et al. 2004) and other pathways such as STAT3 that is a major kinase

independent target of Sorafenib (Jiang, Feng et al. 2015). In 2007, a pair of phase III

studies indicated that Sorafenib improved survival and the time to radiological

progression, leading to its approval for the treatment of advanced HCC (Llovet , Ricci

et al. 2008) (Cheng, Kang et al. 2009). However, benefits of Sorafenib are

unfortunately modest, with upfront (innate/intrinsic) and acquired (evasive/secondary)

drug resistance being major contributing factors (Li, Gao et al. 2015). The other

important problem is toxicity leading to a high rate of dose reductions and treatment

interruptions in patients (Gomez and Lacouture 2011). Therefore, the response rate of

Sorafenib is actually quite low and the median extension of survival is three months for

advanced HCC cases. Furthermore, this treatment often causes side effects altering the

quality of patient’s life. Moreover, long-term exposure to Sorafenib often results in
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reduced sensitivity of the tumor cells, leading to acquired resistance. Interestingly,

Sorafenib has been demonstrated to activate AKT kinase and upregulate the

phophorylation of its downstream targets, such as mTOR (Figure 1.5). This over-

activation of Akt pathway is considered to be the main mechanisms of resistance to

Sorafenib (Zhai, Hu et al. 2014).

1.3.1. Inhibitor of PI3K/AKT/mTOR pathway

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is one of the most

frequently dysregulated signaling cascades in human malignancies (Weigelt and

Downward 2012). Since the activation of PI3K pathway in cancer plays crucial role in

cell growth and survival, this pathway is attractive target for pharmacological

intervention. The first PI3K pathway-target agents approved for the treatment of cancer

were the Rapamycin Analogs Everolimus and Temsirolimus, which allosterically

inhibit mTORC1 (Wallin, Edgar et al. 2011).

Dienstmann et all. summarized all the target agents which inhibit to

PI3K/AKT/mTOR pathway in table 2 (Dienstmann, Rodon et al. 2014).
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Table 2. A summary of PI3K/AKT/mTOR pathway inhibitors in clinical
development (Source: (Dienstmann, Rodon et al. 2014)).

(cont. on next page)
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Table 2 (cont).

Currently, allosteric and catalytic AKT inhibitors are being investigated as an

advances in drug design in clinical studies (Josephs and Sarker 2015). The allosteric

inhibitor (ARQ 092 or ARQ 751) bind to both the active and inactive forms of AKT.

They appear to suppress AKT activation of active form and block the cell cycle

progression and proliferation, cell metabolism, cell survival and protein translation and

growth and also suppress the AKT activation of in active form by disrupting membrane

translocation in shown figure1.7 (Yu, Savage et al. 2015).
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Figure 1.7. AKT pathway inhibition by ARQ inhibitors: ARQ 092 and ARQ 751
(Source: (Yu, Savage et al. 2015)).

1.4. Animal model of hepatocellular carcinoma

To gain better functional insight into the molecular mechanisms of

hepatocarcinogenesis, several studies were performed using human HCC tissue. On the

basis of these studies, a collection of genetic and epigenetic alterations, chromosomal

aberrations, gene mutations and altered molecular pathways were described (Zender,

Villanueva et al. 2010). However, in many cases, it was difficult to consider whether

these variations depicted a correlative occurrence or if they were causally linked to

HCC pathogenesis. From this perspective, animal models of HCC offer a unique

possibility to study mechanistic and cellular aspects of tumor biology, including the

genetics of tumor initiation and promotion, tumor progression and metastasis in vivo.

Moreover, animal models also represent a valuable tool to test wide spectrum of

therapeutic compounds for their efficacy to inhibit particular signaling pathways and

thus to prevent or decelerate HCC development and growth (Vucur, Roderburg et al.

2010).
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Several rodent HCC models have been developed to investigate the pathogenesis,

treatment and prevention of liver cancer (HCC), which can be broadly divided into (1)

xenograft models, (2) chemically induced models and (3) genetically modified mouse

models (Heindryckx, Colle et al. 2009). Whereas, tumors are formed by injecting

human cancer cells into immune deficient mice in xenograft models, HCC in chemically

induced and genetic models arise in their natural cellular and intercellular context,

allowing researchers to study molecular mechanisms and cellular interactions during

tumor initiation. Xenograft models are, in fact, used in 90% of cases. Chemically-

induced hepatocarcinogenesis provides a valuable model for investigating the molecular

biology of hepatocarcinogenesis, particularly in its early stages, for various reasons

cited previously (Ogawa 2009). Diethylnitrosamine (DEN) is a potent

hepatocarcinogenic dialkyl nitrosamine used in animal models of HCC. Among several

chemically induced, genetically modified mice, DEN-induced HCC was most similar to

the expression patterns of the poor survival group of human HCCs (Lee, Chu et al.

2004). Firstly, it can be easily administered to mice/rats from different genotypes.

Second, it has a high HCC incidence and is highly reproducible (Heindryckx, Colle et al.

2009) (Lim 2002) (Hann and Balmain 2001). Importantly, this model is extremely well-

tolerated by rodents and is not associated with serious side effects.

As fibrosis/cirrhosis modifies liver vascularization, extracellular matrix

composition, and drugs metabolism, it is essential to use a cirrhotic animal model to test

drugs for advance HCC, in order to test efficacy on tumors but also tolerance of the

treatment. Indeed most of HCC models have background of normal surrounding liver or

moderately fibrotic liver. The animal that is mostly used is mouse but mice are not able

to develop severe fibrosis or cirrhosis. Here we have chosen a rat model because rats are

able to develop extensive fibrosis, compensated cirrhosis, decompensated cirrhosis and

HCC after chronic administration of DEN (Schiffer, Housset et al. 2005). In fact, in

male Fischer 344 rats (150-170g), chronic weekly intra-peritoneal injection of 50 mg/kg

of DEN induces moderate (F2) fibrosis after 8 weeks, fully developed cirrhosis (F4)

after 12 weeks, and decompensated cirrhosis with ascites and HCC after 14 weeks.

On the basis of the currently limited treatment options for liver cancer, DEN-

induced cirrhotic rat model with HCC is essential to test novel drug-targeting

approaches that might help to reduce the global challenges associated with advanced

HCC.
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1.5. ARQ 092 & ARQ 751

ArQule is a biopharmaceutical company engaged in the research and

development of targeted therapeutics to treat cancers and certain rare diseases. This

company develops and commercializes novel small molecule drugs. To date, five drug

candidates were synthesized, all of which are in targeted, biomarker-defined patient

populations, making ArQule a leader in precision medicine. We have studied two of

them; ARQ 092 and ARQ 751.

ARQ 092 and next generation of ARQ 092 which is ARQ 751 are synthesized

by ArQule, Inc. as highly potent and selective allosteric inhibitors of AKT (Yu, Savage

et al. 2015) and general chemical structure is shown in figure 1.8 (Yu, Savage et al.

2015). the difference between ARQ 092 and ARQ 751 differs R1, R2 and R3 groups.

Figure 1.8. Chemical structure of the core moiety of ARQ 092 and ARQ 751
(Source: (Yu, Savage et al. 2015)).

It has been recently reported the preclinical characterization of ARQ 092 and it

showed strong affinity for unphosphorylated full-length AKT1 and potently inhibited

the phosphorylated form of full-length AKT isoforms.Thus, it showed potent

antiproliferative activity also exhibited strong anti-tumor activity and the desirable

pharmacokinetic properties of ARQ 092 which is under investigation in clinical trials

targeting advanced solid tumors. Previously studies demonstrated that AKT activation
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entails the translocation of the protein to the cell membrane and the binding of the PH

domain of AKT to phosphoinositides, upon which a conformational change permits the

phosphorylation of Thr308 (for AKT1) in the activation loop by

phosphoinositidedependent kinase 1 (PDK1) (Scheid and Woodgett 2003). For full

activation of AKT, Ser473 in the hydrophobic motif (HM) domain is phosphorylated

by the mTORC2 complex (Yang, Qiao et al. 2010). ARQ 092 binds to between the

allosteric pocket formed by the kinase and PH domains. Cocrystal structure

demonstrates in figure 1.9 (Lapierre, Eathiraj et al. 2016).

Figure 1.9. Cocrystal structure of ARQ 092 with AKT1 (Source: (Lapierre, Eathiraj et
al. 2016)).

ARQ 092 is an oral selective and potent pan-AKT inhibitor that inhibits both

wild-type and mutantAKT1, 2 and 3 isoforms. The drug is currently in phase 1b clinical

trial.

ARQ 751 is an orally available, selective, next generation pan-AKT inhibitor

that potently inhibits AKT1, 2 and 3 isoforms. It is diversified portfolio of AKT

inhibitors might provide us the opportunity to best address oncology. Pre-clinical profile

for ARQ 751 defines a highly potent and highly selective molecule. ARQ 751 is in pre-

clinical trial.
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1.6. Aim of Study

The objective of this project is to compare the efficacy of two allosteric

inhibitors of AKT i.e. ARQ 092, ARQ751 and combination treatment (Sorafenib plus

ARQ 092) with Sorafenib and Control, through in vitro and in vivo studies, in a

cirrhotic rat model with HCC.

Sorafenib molecular side effects might reside, in AKT activation. Targeting

AKT signaling in combination seems very promising. The combination of Sorafenib

with Akt-inhibitor could represent new therapeutic strategy which can improve

treatment effectiveness and overcome Sorafenib resistance in HCC.
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CHAPTER 2

MATERILAS &METHODS

2.1. In Vitro

2.1.1. Cell Lines

Three different human HCC cell lines (Hep3B, Huh7, and PLC/PRF/5) and

hepatoblastoma cell line (HepG2) were used in this study. HepG2 (p53 wild type, ras

mutant) and Hep3B (p53 deleted and ras wild type) cells were cultured in Minimum

Essential Medium (MEM, GIBCO TM, Life Technologies), with GlutaMAX™

Supplement. Huh7 cells (p53 mutant, ras wild type) were incubated in Dulbecco's

Modified Eagle Medium (DMEM, GIBCO TM, Life technologies), with high glucose,

and GlutaMAX TM supplement. PLC/PRF/5 cells (p53 mutant, ras wild type) were

cultured in DMEM supplemented with 1% of sodium pyruvate (GIBCO TM, Life

technologies).

2.1.2. Treatments

ARQ molecules ARQ 092, ARQ 751 were kindly provided by ArQule Inc

(Woburn, MA, USA).

For in vitro studies, ARQ compounds and Sorafenib tosylate (Bay 43-9006,

Sigma-Aldrich, Germany) were dissolved in pure dimethyl sulfoxide (DMSO, Sigma-

Aldrich). 5 mM stock solutions of these agents were stored at - 20°C temperature and

protected from light. The maximum tolerated DMSO percentage used in cell culture

was 1%.
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2.1.3. Cell Viability Assay

Cell viability was examined by MTT colorimetric assay. MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a yellow tetrazole and used

for assessing cell metabolic activity. Tetrazolium dye reduction depends on the cellular

metabolic activity due to NAD(P)H flux. Cells with a low metabolism reduce very little

MTT while rapidly dividing cells exhibit high rates of MTT reduction (Mosmann 1983).

For this study, four different cell lines Hep3B, HepG2, HuH7 and PLC/PRF

were used. These cell lines were treated with Sorafenib alone, ARQ 092 alone, ARQ

751 alone and combination of Sorafenib and ARQ 092. Firstly, 5000 cells were seeded

in 96-well plates and incubated of 24h. After that, ARQ 092, ARQ 751 and Sorafenib at

different concentrations (0.01µM – 50µM) were given to cells for 48h. After incubation

time, 10 % MTT was added to every well for 4h at 37°C and then medium was removed

and replaced by 100µL DMSO. 96-well plates were gently shaken during 15 minutes

for an optimal solubilization of Formazan crystals, and absorbance was measured using

a multilabel plate reader (Victor 3 1420-014 Multilabel Plate Reader, Perkin Elmer Inc.)

at a 544 nm wavelength. As a negative control, cells were incubated in the same

medium with 1 % DMSO. For single treatment values of inhibition concentration (IC)

20 and IC50 were calculated.

For combination study (i.e. Sorafenib and ARQ 092), different concentrations of

same IC50:IC50 ratio values of Sorafenib and ARQ 092 were used in order to determine

the Combination Index (CI) values. Cells were exposed to 11 different concentrations

(IC50/1000, IC50/500, IC50/200, IC50/100, IC50/50, IC50/20, IC50/10, IC50/5, IC50/2,

1xIC50, 2xIC50) during 48h. CI values were calculated using CompuSyn software as

described previously (Chou 2006). Each sample was analyzed on three replicates and all

experiments were repeated three times.

2.1.4. Apoptosis Analysis

Hep3B, HepG2, HuH7 and PLC/PRF/5 cell lines treated with 2 different

concentrations of ARQ 092, ARQ 751 or Sorafenib (IC50 and IC20). For combination

study two concentrations of ARQ 092 and Sorafenib (IC50/200 and IC50/10) were

chosen. Cells (5x105/well) were first incubated 24h alone in 6-well plates with 1.8 mL
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of the adequate growth medium per well during 24h. Then, drug was added and cells

were treated during 48h. Cells without drug and with 1% DMSO were used as negative

control. After the incubation time, cells were detached from wells by using Trypsin-

EDTA solution (Gibco ®, Life Technologies), and were centrifuged. The supernatant

was removed and the pellet was washed with Dulbecco's phosphate-buffered saline

(DPBS, VGibco ®, Life technologies), and resuspended in 300 µL of binding buffer. 3

µL of annexin V conjugated to fluorescein isothiocyanate (FITC) as a marker of early-

stage apoptosis (Blankenberg and Strauss 2001). and 7-AAD (7-amino-actinomycin D)

as a marker of cell membrane integrity and cell viability, were added. The stained cells

were incubated for 15 min at room temperature (25 °C) and then samples were analyzed

by flow cytometry (BD Accuri C6, Becton, Dickinson) to quantify annexin V-FITC and

7-AAD positive/negative apoptotic cells.

2.1.5. Cell Migration

Cell migration assay was assessed in Huh7, Hep3B, HepG2 and PLC/PRF by

performing a scratch assay (Hulkower and Herber 2011). For each cell line, cells were

seeded in 24-well plates and incubated under normal growing conditions in order to

obtain a confluent monolayer. After obtaining monolayer a 200 microliter-tip was then

used to scratch and remove the cells to form 2 perpendicular straight fine lines in each

well. After that, medium was replaced with the new medium in control or with medium

mixed with drug of IC20 and IC50 values for Sorafenib, ARQ 092 and ARQ 751,

IC50/200 and IC50/10 values for combination. Images of 24 well-plates were captured

every hour by time-lapse microscopy at 37°C, 5% CO2 with Zeiss AxioVert 100M

(Zeiss) connected to a MicroMAX B/W (6.7x6.7 µm, -15, ~ 3 im/s) camera using

acquisition software MetaMorph (Universal Imaging). The width of the wound was

quantified at 0h, 24h, 48h and 72h by ImageJ software (NIH, USA). Data are presented

as relative percentage of closed-wound. The experiments were performed with at least

three replicates.
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2.1.6. Immunoblot Assay

For immunoblot assay, 1x106 human HCC cell lines (HepG2, Hep3B, Huh7, and

PLC/PRF/5) were seeded per each Petri dish with suitable medium and incubated for

24h. After 24h, medium in the Petri dish with cells was replaced by the medium

combined with drug (Sorafenib alone, ARQ 092 alone, ARQ 751 alone and combination

of Sorafenib and ARQ 092) and incubated for 2h, 24h or 48h. After incubation, medium

with drug in Petri dishes were removed and cells were scratched with scrapper in RIPA

buffer (50 mM Tris; 1% NP40; 0.5% deoxycholic acid sodium salt; 150 mM NaCl; 1

mM EGTA) containing Protease and Phosphatase Inhibitors, and proteins were

quantified with NanoDrop ® (Thermofisher scientific). Proteins were then denatured in

Laemmli Sample Buffer (Bio-Rad) containing 10% β-mercaptoethanol and separated by

gel (Mini Protean Gels ®, Bio-Rad) and transferred to polyvinylidene difluoride (PVDF;

Bio- Rad) membranes using a wet blot method. Membranes were blocked in TBS-

Tween solution with 5% BSA for 1 h at 4 °C. Primary antibodies against AKT and

phosphorylated AKT (p-AKT (Ser473), AKT (pan)), ERK and phosphorylated ERK (pERK
(Thr202/Tyr204), ERK (p44/42 MAPK)), β-actin (all Cell Signaling Technology, USA) were

incubated at 4°C overnight under shaking conditions. Incubation with the secondary

antibody (HRP-anti rabbit IgG, 1:2000; Cell Signaling) was performed under shaking

conditions for 1 h. Detection was achieved with Clarity™ Western ECL Blotting

Substrate (Bio-Rad) using a ChemiDoc™ MP Imaging System (Bio-Rad).

Densitometric quantification of the bands was performed using the Image Lab™

Software (Bio-Rad).

2.1.7. Immunocytochemsitry

Cells on Lab-Tek® 8-well Chamber slides were treated with IC50 concentration

of ARQ 092 or Sorafenib during only 2h to avoid false positive signal from apoptotic or

dead cells. After, cells were fixed with 2% paraformaldehyde and permeabilized with

0.5% Triton X-100. After fixation, cells were blocked with 10% normal goat serum in

PBS. Monoclonal rabit p-Akt (Ser473) antibody was applied overnight at 4°C, followed

by goat anti-rabbit Alexa 546 (Life Technologies, Carlsbad, CA, USA). Fluorescent

images were obtained using ApoTome microscope (Zeiss) with a 20x magnification.
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2.2. In vivo

2.2.1. Animal Model

8-week-old Fischer 344 male rats (Charles River Laboratories, France) were

housed in the animal facility of Plateforme de Haute Technologie Animale (Jean Roget,

University of Grenoble-Alpes, France). They were treated weekly with intra-peritoneal

injections of 50mg/kg diethylnitrosamine (DEN) (Sigma-Aldrich, Germany), diluted in

pure olive oil in order to obtain a fully developed HCC on a cirrhotic liver after 14

weeks (Schiffer, Housset et al. 2005). Figure 2.1. A represents normal rat liver and

figure 2.1. B shows rat liver with DEN induced HCC. To perform oral gavages and MRI

analyses, rats were transported to the Grenoble Institute of Neuroscience (GIN,

INSERM, U1216, University of Grenoble-Alpes, France) equipped by Grenoble MRI

facility IRMaGE.

Figure 2.1. Representative pictures of rat liver A) Normal rat liver and B) rat liver
with DEN induced HCC.

2.2.2. Preparation of Treatment

For in vivo study, 200 mg Sorafenib tosylate tablets (Nexavar®, Bayer

HealthCare, Germany) were used. The sugar coating was first dissolved in DMSO and

Sorafenib was mixed with 1 mL of poly-oxyl castor oil (Cremophor® EL, Sigma-

Aldrich) and 1 mL of 95% ethanol per tablet to emulsify and to solubilize it (Liu, Cao et
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al. 2006) (Wilhelm, Carter et al. 2004). To finish, the emulsion was diluted in purified

water to obtain a 10 mg/mL solution of Sorafenib suitable for oral gavages.

The dose strategy for ARQ 092 was based on a previous toxicity study. ARQ

092 was dissolved in a 0.01M phosphoric acid solution to obtain a 15 mg/mL ARQ

solution suitable for oral gavages with a final pH of 2.25 ± 0.15. For each drug, fresh

solution was prepared every week and stored at room temperature, protected from light.

Combination was prepared by mixing the same volume of each drug just before

oral gavages.

2.2.3. Treatment of Protocol

After 14 weeks, for the first project, rats were randomized in three different

groups as follows: 10 in ARQ 092 group, 10 in Sorafenib group and 6 in the control

(untreated) group which is illustrated in figure 2.2.

Both treatments were dispensed by daily oral gavage during six weeks. ARQ 092 was

administered for 7 days on 7 days off ( for a total of 3 weeks of treatment) at a dose 15

mg/kg/day as recommended by ArQule Inc. However, Sorafenib was administered at a

dose of 10 mg/kg/day every days. In fact,during the first week, the dose of Sorafenib

was used 20 mg/kg/days but it was immediately reduced to the dose of 10 mg/kg/days

due to its toxic effects. From second week, the dose of 10 mg/kg/days of Sorafenib was

administered and no adverse effects were observed. For the second project, rats were

randomized to 4 groups as follow: ARQ 092 group, Sorafenib group, Combination

group (Sorafenib plus ARQ 092) and control group (n= 7 rats /group), which is

illustrated in figure 2.3. ARQ 092 alone, Sorafenib alone and Combination (Sorafenib

plus ARQ 092) treatments were dispensed by oral gavage for a period of six weeks.

ARQ 092 treatment was given during 5 days on 9 days off, at the dose of 15 mg/kg/day

as recommended by the ArQule Inc. Sorafenib was administered continuously at the

dose of 10 mg/kg/day. Control group was not treated.

For both projects, all rats were daily weighed to monitor the nutritional state and

to adapt treatment doses. Protein-rich nutrition was added to the standard food in cages,

when a loss of weight was observed. All animals received humane care in accordance

with Guidelines on the Humane Treatment of Laboratory Animals, and experiments

were approved by the GIN animal Ethic Committee.
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2.2.4. MRI Studies
All rats were subjected to three MRI scans. MRI1 was performed before

randomization. MRI2 and MRI3 were respectively done after three weeks and six

weeks of treatment, which is illustrated in figure 2.2 and 2.3.

Figure 2.2. In vivo treatment protocol. After 14 weeks, DEN injected rats were
randomized into 3 groups. Single treated-group Sorafenib (n=10), ARQ
092 (n=10) and control group (n=6). Three MRI scans were performed.

Figure 2.3. In vivo treatment protocol. After 14 weeks, DEN injected rats were
randomized into 4 groups (n=7) and treated with drugs.. Three MRI
scans were performed.

Imaging study was performed with a 4.7 Tesla MR Imaging system (BioSpec

47/40 USR, Bruker Corporation, Germany) and Transmit/Receive Volume Array. Coil

for rat body 8x2 (Bruker Corporation, Germany) in the Grenoble MRI facility IRMaGE.

Rats were fitted in ventral decubitus position and anesthetized with isoflurane inhalation



28

(Forane®, Abbott, USA), breathing was continuously monitored to maintain a

respiratory rate between 35 and 45 breaths per minute and body temperature was

maintained around 37°C.

We used Turbo rapid acquisition with relaxation enhancement T2-weighted

(Turbo-RARE T2) sequence (repetition time (TR): 1532.9 msec, echo time (TE): 27.4

msec, flip angle (FA): 180°) and a dynamic contrast enhanced T1-weighted (DCE-MRI)

sequence (TR: 265 msec, TE: 4.4 msec, FA: 60°, 20 repetitions). Both sequences had a

field of view (FOV) of 55 x 55 mm, 20 slices, a thickness and a slice separation of 2

mm, and were realized with a respiratory triggered acquisition to reduce artefacts.

Gadoterate meglumine (Dotarem®, Guerbet, France) was used for the

enhancement at the dose of 0.2 mmol/Kg. Injection was performed 3 min after the

beginning of the acquisition through a lateral tail vein catheter.

MRI parameters adjustment and image acquisition were realized by using

Paravision 5.1 software.

A morphological analyzes was realized based on the TurboRARE T2 sequences

and according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria.

Five liver tumors were selected and measured on MRI1, 2 and 3. Estimated tumor size

corresponded to the sum of the largest diameter of these 5 lesions. For each rat, MRI1

was considered as the baseline (i.e.: 0%) and tumor progression corresponded to the

comparison between MRI2 or 3 and the baseline, (i.e: “(tumor size MRI2/3 - tumor size

MRI1) / tumor size MRI1 ).

Perfusion analysis was realized based on DCE-MRI sequences. Three tumors

were analyzed per rat. The enhancement of one tumor corresponded to the difference

between the baseline of the enhancement curve and the maximal value obtained after

injection divided by the baseline. Baseline corresponded to the mean of values obtained

before injection of the contrast agent and the maximal value of the curve was obtained

after realization of a smoothing by a moving average every 3 consecutive values in

order to reduce biases due to artefacts. In each rat, every tumor enhancement was

normalized on the skin enhancement as a ratio “tumor enhancement / skin

enhancement” to reduce biases due to contrast agent injection variations between rats. 5

rats were analyzed by group, i.e. 15 tumors and tumor enhancement were compared

between MRI1 and 3 in each group to assess the antiangiogenic effect of drugs.
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2.2.5. Histopathological and Morphological Analyses

After the third MRI scan, all rats euthanized with intracardiac blood sampling

for haematologic and biochemical analyses. Serum and plasma were taken in order to

test biological safety and efficacy parameters. Each liver was weighted, the number of

tumors larger than 1 mm at the surface of livers was counted and the largest diameter

of the five largest tumors was measured. The sum of these 5 diameters was calculated

in order to obtain a histopathological estimation of the tumor size.

2.2.6. Measurement of Liver Triglicerides

Frozen liver fragments (~50 mg) were digested in 0.15 ml of 3 M alcoholic

potassium hydroxide (70 °C, 2 h), diluted seven times in distilled water. Amount of

liver triglycerides was measured by Triglycerides kit (Erba Mannheim, Czech Republic)

and sample absorbance was measured by spectroscopy at 505 nM.

2.2.7. Histopathological, Immunohistochemical and

Immunofluorescence Analyses

Liver tissues were fixed in 10% formalin solution neutral buffered (Sigma-

Aldrich). Paraffin-embedded four-micrometer sections were then stained with

Hematoxylin/Eosin.

In order to detect proliferating cells, paraffin-embedded sections were incubated

overnight at 4°C with the primary anti Ki67 antibody (Rabbit, clone SP6, Thermofisher

scientific, USA), followed by incubation with the peroxidise-conjugated bovine anti-

rabbit IgG (Jackson ImmunoResearch, USA). DAB was used as the chromogen for

Ki67 immunodetection. For Ki67+ cells, data are presented as positive cell nuclei per

area (high-power fields; 20x magnification).

DNA fragmentation and apoptotic signaling can be detected by TUNNEL (Lozano,

Bejarano et al. 2009). Slides were analyzed by ApoBrdU-IHC DNA Fragmentation

Assay Kit (Biovision, USA) and methyl green solution was used to counter staining the
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cells. Data are presented as apoptotic cells per area (high-power fields; 20x

magnification).

To detect vascularisation, paraffin-embedded sections were blocked by 10%

donkey serum and then incubated overnight at 4 °C with anti-rat CD34 antibody (Goat,

AF4117, R&D Systems; Minneapolis, USA), followed by incubation with Alexa 647-

conjugated donkey anti-goat IgG (Life Technologies, Carlsbad, CA, USA). Images were

captured using ApoTome microscope (Zeiss) equipped with a camera AxioCam MRm

and collected by AxioVision software. Positive area was quantified using ImageJ

software on 15 randomly selected fields/section (10x magnification).

Collagen, it was detected on paraffin-embedded sections with Picro-Sirius red

stain solution (Sigma-Aldrich) and staining was subsequently quantified by MetaMorph

® software in 10 randomly selected fields/section (10x magnification).

Oil Red O staining was performed on 7m cryosections, prepared from formalin

pre-fixed liver samples. Sections were stained with freshly prepared Oil Red O in

isopropanol. Oil Red O staining provides chromogenic as well as fluorescent signals,

therefore we used red channel to detect staining as described previously (Macek Jilkova,

Afzal et al. 2016). Images were captured using ApoTome microscope equipped with a

camera AxioCam MRm, collected by AxioVision software and quantified using ImageJ

software. For Oil Red O+ liver area, data are presented as Oil Red O positive area in

percent of total tissue area. Six random areas per each liver section were analyzed.

2.2.8. Immunoblot Analysis

Liver homogenates were prepared in RIPA buffer (50 mM Tris; 1% NP40; 0.5%

deoxycholic acid sodium salt; 150 mM NaCl; 1 mM EGTA) containing Proteins were

then denatured in Laemmli Sample Buffer (Bio-Rad) containing 5% β-mercaptoethanol

and separated by gel electrophoresis (Mini Protean Gels ®, Bio-Rad) and transferred to

polyvinylidene difluoride (PVDF; Bio-Rad) membranes using a wet blot method.

Membranes were blocked in TBS-Tween solution with 5% BSA for 1 h at 4 °C.

Primary antibodies against p-Akt (Ser473), Akt (pan), pERK (Thr202/Tyr204), ERK (p44/42 MAPK), β-

actin (all Cell Signaling Technology, USA) were incubated at 4 °C overnight under

shaking conditions. Incubation with the secondary antibody (HRP-anti rabbit IgG,

1:2000; Cell Signaling) was performed under shaking conditions for 1 h. Detection was
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achieved with Clarity™ Western ECL Blotting Substrate (Bio-Rad) using a

ChemiDoc™ MP Imaging System (Bio-Rad). Densitometric quantification of the bands

was performed using the Image Lab™ Software (Bio-Rad)

2.2.9. Real-Time Polymerase Chain Reaction (qPCR)

Total RNA was extracted from frozen rat liver tissue samples. RNA purification

was performed with RNeasy Mini Kit ® (Qiagen, USA). Reverse transcription was

realized with Transcriptor First Strand cDNA Synthesis Kit ® (Life science, Roche),

and amplification reactions were performed in a total volume of 20µL by using a

Thermocycler sequence detector (BioRad CFX96, USA) with qPCR kit Mesa Green

qPCR MasterMix Plus for SYBR Assay ® (Eurogentec, Belgium).

GADPH was used as housekeeping gene. Primers were designed with Primer 3

software (version 4.0.0) and verified on BLAST. Oligonucleotide sequences were

synthesized by Eurofins Genomics ® in 0.01µmol scale, with a Salt Free level of

purification. Every analysis was done in duplicates.

2.2.10. Phospho-Kinase Antibody Array Analysis

Extracts from frozen liver tissues from two controls and three ARQ 092 treated rats

were analyzed by human phosphokinase antibody array kit (Catalog ARY003B, R&D

System, USA) accordingly to the protocol provided by the manufacturer. Dot densities

were quantified using Protein Array Analyzer programmed in ImageJ software. Values

are expressed as the mean intensity relative to mean intensity of control dots of the

respective membrane.

2.3. Statistical Analysis

All comparisons of means were calculated by using ANOVA tests with Tukey HSD

correction for multiple means comparisons, and independent T-test only when two

means were compared. A p-value of <0.05 was regarded as statistically significant and

data are presented as mean values ± standard error mean (SEM). Statistical analyses

were performed using Prism 6 (GraphPad Software Inc., CA, USA).
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CHAPTER 3

RESULTS

3.1. First Study: Efficacy of AKT Inhibitor ARQ 092 Compared

with Sorafenib in a Cirrhotic Rat Model with HCC

3.1.1. ARQ 092 Decreased Cell Viability

In this part, the cell viability was analyzed by MTT assay ising Hep3B, HepG2,

HuH7 and PLC/PRF/5 cell lines. Incubation of cells with ARQ-092 or Sorafenib

during 48h showed a dose-dependent decreased of cell-viability in these cell lines as

shown in figure 3.1.

Figure 3.1. MTT assay determining the viability of Hep3B, HepG2, HuH7, PLC/PRF
cells treated with different concentrations of Sorafenib (cont. on next page)
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ARQ 092 incubated during 48 hours. (A) ARQ 092; (B) Sorafenib single
treatment on mentioned cell lines. All experiments were done in triplicates
and repeated three times. Data are presented as mean ± SD (n=9).

Figure 3.1 (cont.).

From figure 3.1, we can observe that cell viability decreased with increasing

concentration of the treatment. Figure 3.1. A represents the single treatment of ARQ

092 and figure 3.1. B represents the single treatment of Sorafenib. Values of IC20

(Inhibitory Concentration 20) were calculated as a growth inhibition 20, where cell

viability was 80 % followed by 20 % cell death and IC50 (Inhibitory Concentration 50)

as a growth inhibition 50, where cell viability was 50 % followed by 50 % cell death.

As expected, when concentration of drugs increased, cell viability of all cell lines

decreased.

IC20 and IC50 values of the treatments after 48 hours of incubation are shown in

table3.
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Table 3. Inhibitory Concentration (IC) 20 and 50 values of Hep3B, HuH7, HepG2 and
PLC/PRF cells treated with of ARQ 092 and Sorafenib alone. Values are
expressed as the mean ± SD of three independent experiments performed in
triplicates.

3.1.2. ARQ 092 Induced Apoptosis

Annexin V FITC and 7AAD staining was used to quantify the apoptosis rate in

Hep3B, HepG2, HuH-7 and PLC/PRF cells. The plot has four quadrants: upper left

quadrant (Q1-UL) shows necrotic cells (Annexin -, 7AAD+), upper right quadrant (Q1-

UR) shows late apoptotic cells (Annexin +, 7AAD+), lower left quadrant (Q1-LL)

shows live cells (Annexin -, 7AAD-) and lower right quadrant (Q1-LR) shows early

apoptotic cells (Annexin +, 7AAD-) (Figure 3.2).
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Figure 3.2. Represantative pictures for flow cytometry analysis of cell apoptosis using
Annexin V-FITC and 7AAD stainings.

Flow cytometry analysis revealed that ARQ 092 had a dose-dependent effect on

apoptosis induction as shown in figure 3.3. Its effect on apoptosis induction was

superior to Sorafenib in every cell lines and this superiority was always significant at

IC50 concentration as illustrated by figure 3.3.
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Figure 3.3. Dose-dependent effects of Sorafenib and ARQ 092 on apoptosis in Hep3B
(upper left), HepG2 (upper right), Huh-7 (lower left), PLC/PRF (lower right)
af ter 48h of exposure. Values are expressed as means ± SD of three
independent experiments performed in duplicates. *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001 vs. control.

3.1.3. ARQ 092 Inhibited Cell Migration

By wound healing assay, we investigated whether ARQ 092 affect migratory

behavior of human HCC cells. Cells were monitored every 24 hours for three days to

evaluate the rate of migration into the scratched ares. After 24h incubation times, both

IC20 and IC50 concentrations of ARQ 092 strongly reduced migration of Hep3B while

Sorafenib had significant effect at IC50 only (Figure 3.4). ARQ 092 or Sorafenib
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reduced migration of these cells compared to control with high statistical differences

between the groups as illustrated by figure 3.4.

Figure 3.4. Effects of Sorafenib and ARQ 092 on migration of HCC cells. (A)
Representative pictures of wound-healing assay at baseline, after 24h, 48h
and 72h on Hep3B cell line. (B) Quantification of migration (decrease of
width of the wound after first 24h) in Hep3B (upper left), HepG2 (upper
right), PLC/PRF (lower left) and Huh-7 cell lines (lower right). Control was
se t a s 100% , va l u e s a r e ex p r e s s e d a s me an s ± SEM fr om th r e e
independent determinations. (cont. on next page)
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Figure 3.4. (cont.).

3.1.4. Pathway Analysis

Western blot analysis of following proteins, AKT, phosphorylated AKT (pAKT)
(Ser473) and β actin, was performed on cell lysates of Hep3B, HepG2, HuH7 and

PLC/PRF human cell lines. ARQ 092 treatment completely blocked phosphorylation of

AKT as observed at two concentrations of IC20 and IC50 shown in figure 3.5. To

statistic analysis, not only IC50 concentration but also IC20 concentration were found

significantly decreased phosphorylation of AKT compared to control and sorafenib

group for Hep3B and HepG2 cell lines, compered to control for HuH7 and PLC/PRF

cell lines.
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Figure 3.5. Effects of Sorafenib and ARQ 092 on AKT phosphorylation. A) Protein
levels of pAKT(Ser473) and AKT after 24 h exposure. Same results were
obtained after 2 h and 48 h of exposure - data not shown. B) Quantification
of pAKT/AKT ratio in Hep3B (upper left), PLC/PRF (upper right), HepG2
(lower left) and Huh-7 cell lines (lower right). Control was set as 100%,
values are expressed as means ± SEM from three independent experiments.
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs. control.
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3.1.5. Immunofluorescence Staining

In order to confirm western blot analysis, the p-AKT expression in Hep3B,

HepG2, HuH7 and PLC/PRF cell lines was investigated. Immunofluorescence stainings

of p-AKT showed no expression or lower expression in ARQ 092 treated cells than

Sorafenib treated and untreated cells in demonstrated figure 3.6.

Figure 3.6. Effects of Sorafenib or ARQ 092 on phosphorylation of AKT(Ser473).

3.1.6. Treatment Tolerance

We made three groups of rats: one of them was Sorafenib treated group, the

other one was ARQ 092 treated group and third one was untreated group (control).

During six week, all the rats were monitored. In the Sorafenib group, dose was reduced

to 10 mg/kg/day from 20 mg/kg/day for each rat after one week of treatment because of

a significant loss of weight, 6.8% of their initial body weight, and signs of severe
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toxicity in two rats with a loss of their initial body weight and with adverse events as

diarrhea, strong asthenia, and modifications of their behavior considered as hepatic

encephalopathy. They died after 17 and 11 days and their death was considered due to

toxicity of the treatment. Sorafenib was also stopped in a third rat after 11 days of

treatment because of the same adverse events with a loss of weight . It was

reintroduced 7 days later, because of an increase of its weight and a disappearance of

signs of toxicity, but it was stopped again 3 days after the reintroduction because the

same adverse events reappeared. At the end of the study, the mean loss of weight was

5.8% in the Sorafenib group compared to a gain of 5.9% in the control group. In

addition, during treatment, 4 rats (40%) presented episode of diarrhea, 3 rats (30%)

presented signs of hepatic encephalopathy and 2 (20%) died due to a severe toxicity as

resumed in table 4. In the ARQ-092 group, the mean loss of weight was 0.8% at the

end of study. Seven rats (70%) presented a temporary loss of weight superior to 10% as

described in table 4. This was rapidly reversible during the week without treatment, and

after intensification of the nutritional care. No treatment was stopped and no toxic

death occurred. Two rats died after 29 and 35 days because of an intraperitoneal

tumoral bleeding from an exophytic hepatic tumor despite a mild radiological tumor

progression. At the end of study, the mean weight loss was 5.8 ± 5.5% in the Sorafenib

group and 0.8 ± 0.6% in ARQ 092 group compared to a gain of 5.9 ± 3.1% in the

control group (p=0.164), table 4.

Table 4. Adverse events in Sorafenib, ARQ-092 and control groups.



42

Blood sample analysis (Table 5) revealed better liver function in ARQ 092 and

Sorafenib groups compared to control group, with a significantly lower total bilirubin

level (ARQ 092: p=0.0007, Sorafenib: p=0.0002), albumin level was significantly

higher in ARQ 092 compared to non-treated rats (p=0.0170) and Sorafenib group

(p=0.0098). There was no statistical difference in transaminases, ALP and GGT levels,

but serum levels of AFP were significantly decreased by ARQ 092 treatment compared

to control (p=0.0328). Glucose, cholesterol and triglyceride blood concentrations were

similar to the control group. Assessment of triglycerides in liver and Oil Red O staining

did not show any significant difference between groups (p=0.467, p=0.355) (Table 5)

(Figure 3.7). Therefore, our results showed that ARQ 092 treatment does not interfere

with lipid metabolism and improves liver function.

Table 5. Clinical and Biological Analyses
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AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline

phosphatase; GGT, Gamma-glutamyl transpeptidase; AFP, alphafetoprotein; Values

are means ± SE, significant difference compared to control; *: p<0.05 ; **: p<0.01 ;

***: p<0.001 ; ****: p<0.0001. Significant difference between ARQ 092 and

sorafenib; ##: p<0.01.

Figure 3.7. Representative pictures of lipids accumulations in rat livers after Oil Red
O staining.

3.1.7. Anti-tumor Efficacy

3.1.7.1. Morphological Analysis

On the first MRI (n=26), tumor sizes were comparable between groups with

21.3 ± 1.7 mm, 18.0 ± 1.2 mm and 20.6 ± 2.0 mm in control, Sorafenib and ARQ-092

groups (p=0.424), respectively. As illustrated by Figure 3 8, on the second MRI (n=24),

tumor progression was significantly reduced in the Sorafenib (+ 28.5 ± 3.0%; p<0.0001)

and ARQ 092 (+ 20.9 ± 3.8% ; p<0.00001) groups compared to control (+ 69.6 ± 9.0%).

No statistical difference was found between Sorafenib and ARQ 092 groups (p=0.38) on

the third MRI (n=22) where the tumor progression rate was + 57.0 ± 8.1% in ARQ 092

group compared to + 80.2 ± 9.3%, in Sorafenib group (p=0.273) and + 155.3 ± 16.0% in

the control group, (p<0.0001) (Figure 3.8). Tumor progression was lower in ARQ-092

group than in Sorafenib group but without statistical difference.
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Figure 3.8. Effect of ARQ 092 and Sorafenib on tumor progression and proliferation.
MRI morphological analysis with representative T2 turboRARE images and
tumor progression assessment by comparison of tumor size on MRI 1, 2 and
3 in control, Sorafenib and ARQ 092 groups (MRI 1 was considered as the
baseline in each group and MRI2 and 3 were expressed as a percentage of
MRI1).

3.1.7.2. Histopathological Analyses

It was further confirmed by macroscopic examination of the liver as showed

Figure 3 9. After the third MRI, rats were euthanized and liver were removed, weighed

and macroscopically inspected. Mean tumor volume represented by the sum of

diameters of the 5 largest tumors were 28.8 ± 1.8 mm in the ARQ 092 group compared

to 37.9 ± 3.1 mm in Sorafenib group (p=0.092) and 62.7 ± 4.4 mm in control group

(p<0.0001) by illustrated figure 3.9.

Rats from the group treated with ARQ 092 also displayed a significantly lower

number of tumors (53.9 ± 7.0 tumors) when compared to Sorafenib-treated animals

(96.3 ± 13.5 tumors, p=0.021) and controls (96.8 ± 9.4 tumors, p=0.031) and shown in

figure 3.9.
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ARQ-092 showed a statistically greater efficiency in the control of tumoral

initiation and progression.

Figure 3.9. Macroscopic examination of livers with assessment of tumor number (upper
bar chart) and tumor size (sum of diameter of the five largest tumors) (lower
bar chart) at the surface of livers.

3.1.7.3. Immunohistochemical Analyses

Cell proliferation and apoptosis were monitored by Ki67 and TUNEL

immunostainings. Figure 3.10 shows that only ARQ 092 significantly decreased

proliferation (41.1 ± 13.3 % of control, p=0.042) and induced apoptosis (148.6 ± 7.7%

of control, p=0.045), while Sorafenib shows no statistical significance with these

parameters (Ki67: 56.9 ± 19.6 % of control, p=0.160 ; TUNEL: 144.2 ± 16.5% of

control, p=0.072).
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Figure 3.10. (A) Representative pictures of tumor proliferation (Ki67 marker) and
apoptosis (TUNEL- staining), respectively. (B) Immunohistochemistry
analysis of tumor proliferation (left bar chart), and apoptosis induction
(right bar chart) with Ki67 and TUNEL immunostainings, respectively.

3.1.8. Level of Alpha Feto Protein (AFP)

Alpha-fetoprotein (AFP) is a major plasma protein that is produced by the yolk

sac and the liver (Lee, Chang et al. 1989). Very high level of APF has been associated

to liver damages and hepatocellular carcinoma (Ertle, Heider et al. 2013). Thus, level of

AFP was investigated level of AFP in serum. Levels of AFP were significantly

decreased by ARQ 092 treatment compared to control (p=0.041) as shown table 5.

A

B
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Besides this, qPCR analysis of AFP gene expression in tumor liver samples was

performed. ARQ 092 treated group significantly decreased the expression of AFP gene.

On the other hand, Sorafenib treated group did not show significant decrease (Figure

3.11).

Figure 3.11. RT-qPCR analysis of alpha fetoprotein (AFP) gene expression in tumor
liver samples.

3.1.9. Anti-angiogenic Effect

In order to investigate anti-angiogenic effect, dynamic contrast enhanced (DCE)

MRI was assessed, as illustrated figure 3.12. At the baseline, i.e.the first MRI, tumor

enhancement was comparable between the groups shown in figure 3.13.
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Figure 3.12. Dynamic contrast enhanced (DCE) MRI pictures of a control rat before
(left picture) and after (right picture) injection of contrast agent with a
typical enhancement curve obtained by analysis of signal intensity on the
tumor area illustrated by previous pictures.

On MRI3, tumor enhancement was significantly different between the groups

with significantly less tumor enhancement in ARQ 092 group compared to the

Sorafenib group. In each group of treatment, comparison between baseline and the end

of the treatment (MRI1 and MRI3), revealed that only ARQ 092 treatment was

associated with a significant decrease of tumor enhancement (p=0.012; Figure 3.13).
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Figure 3.13. Comparison of MRI1 (left) and MRI3 (right) tumor enhancement of ARQ
092, Sorafenib and control groups. Control group was set as 1, ARQ 092
and Sorafenib groups are expressed as a percentage of control.

Secondly, to prove anti-angiogenic effect, tumor vascularization was studied by

using a rat specific anti-CD34 antibody to perform immunofluoresence staining of liver

tissues. While structural abnormalities of the tumor vasculature were numerous in

control animals, normalization of vasculature was observed in both treated groups

(Figure 3.14A). The quantification of vascular density revealed that Sorafenib decreased

vascular density by 46 % (p=0.0008) and ARQ 092, by 68 % (p<0.0001) of non-treated

rats (Figure 3.14B).

Therefore, MRI results and CD34 staining demonstrate that treatment by ARQ

092 leads to vascular normalization and inhibition of tumor angiogenesis.
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F

Figure 3.14. (A)Representative pictures of CD34 staining of liver tissue. (B)
Quantification of CD34 immunostaining. Control was set as 100%,
valuesare means ± SE. **: p<0.01 ; ***: p<0.001 vs. control.

A

B
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3.1.10. Liver Fibrosis Assessment

Sirius red staining is used to observe fibrosis that is known to be increased in

cases of inflammation and cancer. Thus, in order to investigate liver fibrosis, sirius red

staining was performed. According to figure 3.15, liver fibrosis was significantly

reduced in ARQ 092 group compared to the control group (p=0.001) and to the

Sorafenib group (p=0.021). Difference between Sorafenib and ARQ 092 groups was

not significant (p=0.348).

Figure 3.15. (A) Representative histological images of livers stained with Sirius red
from control, Sorafenib or ARQ 092 rats,10x magnification. (B)
Quantification of fibrosis on 10 random fields/ slide, 1 slide per animal
(Sirius red staining area per total area; control was set as 100%).

Improvement of liver fibrosis by ARQ 092 treatment was confirmed by qPCR

analysis figure 3.16. The expression of fibrosis markers was downregulated in non-

tumor liver samples of ARQ 092 group compared to the control group with significant

differences for alpha actin (ACTA)1. (31.7 ± 10.9% of control, p=0.029) and collagen 1

(9.9 ± 2.9% of control, p=0.007), but no significant difference for transforming growth

A B



52

factor (TGFβ1) (40.1 ± 15.9% of control, p=0.115) was observed. For Sorafenib group,

collagen 1 was the only significantly downregulated fibrosis marker (23.0 ± 12.3% of

control, p=0.02).

Overall, ARQ 092 significantly decreased hepatic collagen deposition and

improved liver fibrosis in DEN-induced cirrhotic rat model of HCC.

Figure 3.16. Relative gene expression of Actin alpha (ACTA)1, Collagen 1 (COL1)
and Transforming growth factor (TGF)β1 in non-tumor liver tissues (n=5).
Control was set as 1, values are means ± SE. **p <0.01 vs.

3.1.11. Pathway Analyses

Western blot analyses demonstrated an effect on the AKT pathway as ARQ 092

inhibited phosphorylation of AKT(Ser473) in both tumor and non-tumor liver tissues,

(Figure 3.17) with a pAKT/AKT ratio of 29.5 ± 2.27% of control (p=0.002) in tumor

samples and 17.2 ± 2.33% of control (p=0.034) in surrounding liver samples.

Interestingly, Sorafenib treatment significantly increased pAKT/AKT ratio in tumor

samples (p<0.0001) compare to the control group.
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Figure 3.17. Effect of ARQ 092 and Sorafenib on AKT and ERK pathways. Western
blot analysis of pAKT/ AKT and pERK/ERK in tumor (above) and
non-tumor (below) liver tissue and the quantification of its.

By profiling kinases phosphorylations, it was found that the levels of

phosphorylated mTOR, proline-rich Akt/PKB substrate 40 kDa (PRAS 40),

phospholipase C (PLC)γ1 and Ribosomal protein S6 kinase (S6K1) were significantly

decreased in tumor tissues after ARQ 092 treatment compared to the control (Figure

3.18).
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Figure 3.18. Phospho-protein analysis of downstream kinases of AKT pathway in
tumor tissue.

As expected, qPCR analyses did not show a significant difference in AKT gene

expression, but confirmed that ARQ 092 downregulated AKT pathway downstream

actors such as mTORC1 (44.2 ± 11.4% of control, p=0.005) or S6K1 (54.6 ± 11.9% of

control, p=0.142), as shown in figure 3.19.

Figure 3.19. RT-qPCR analysis of gene expression in tumor (cont. on next page)
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(above)and non-tumor (below) liver samples. Control was set as 1, values
are means ± SE,*p≤ 0.05, **p≤0.01, ***p ≤ 0.001 vs. control.

Figure 3.19. (cont.).

On the other hand, regarding the ERK pathway, western blot analyses did not

show significant differences in pERK/ERK ratio between the groups. Accordingly, no

difference was observed between the groups in gene expression of ERK in tumor

samples. Interestingly, the gene expression of ERK was downregulated in non-tumor

tissues of both, ARQ 092 and Sorafenib-treated groups compared to the non-treated

group (p=0.029 and p=0.039).
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3.2. Second Study: Combination Treatment by AKT Inhibitor

ARQ 092 and Sorafenib in a Cirrhotic rat model with HCC

3.2.1. Combination Treatment Decreased Cell Viability

In order to determine cell viability of combination treatment of ARQ 092 plus

Sorafenib, MTT assay on Hep3B, HepG2, HuH-7 and PLC/PRF/5 cell line was

performed. Different concentrations of IC50 values of Sorafenib and IC50 values of

ARQ 092 were used, i.e. always same ratio of IC50:IC50 as shown figure 3.20.

Figure 3.20. MTT assay was used to determine viability of Hep3B, HepG2, HuH7 and
PLC/PRF cells treated with combination of different concentrations of IC50
values of Sora fen ib and ARQ 092 incuba ted dur ing 48 hours . Al l
experiments were done in triplicates and repeated three times. Data are
presented as mean ± SD. (cont. on next page).
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Figure 3.20 (cont. on next page).
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Figure 3.20 (cont.)

Calculated concentrations of IC50 values by the CompuSyn.exe software of

Combination treatment (Sorafenib plus ARQ 092) with combination index (CI) values

are summarized in the table 6. CI values for combination therapy are lower than 1 which

shows strong synergistic effect of combination of Sorafenib and ARQ 092 on inhibition

of cell growth in all cancer cell lines.

Table 6. Combination Index values of cell lines treated with combination of different
concentrations of IC50 values of Sorafenib and ARQ 092. Three independent
experiments were performed in triplicates.
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3.2.2. Combination Treatment Induced Apoptosis

Annexin V FITC and 7AAD staining was used to quantify the apoptosis rate in

Hep3B, HepG2, HuH-7 and PLC/PRF cancer cells. The ARQ 092 plus Sorafenib were

attempted as a combination study. According to the MTT results, two different

concentration IC50/200 (approximately 80% alive cell for all cell lines) and IC50/10

(approximately 50% alive cell for all cell lines) were chosen for apoptosis analysis and

figure 3.21 was obtained.

Figure 3.21. Dose-dependent effects of Sorafenib and/or ARQ 092 on apoptosis in
Hep3B , HepG2 , Huh-7, PLC/PRF after 48 h exposure. (cont. on next
page).
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Figure 3.21 (cont. on next page).
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Figure 3.21 (cont.).

In regard to this results, we observed additive effect of combination treatment on

the decrease of cell viability in all tested cell lines and on the increase of early apoptotic

cells in Hep3B treated by combination IC50/10 compared to IC50 single treatments

(Figure 3.21).

3.2.3. Cell Migration Analysis

The migratory behavior of human HCC cell lines was analyzed by scratch assay.

After 24h, ARQ 092 and Sorafenib reduced migration of Hep3B, HepG2, HuH7 and

PLC/PRF cell lines compared to control with high statistical differences between the

groups (Anova p < 0.0001) and shown in figure 3.22.
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Figure 3.22. Effects of Sorafenib or/and ARQ 092 on migration of HCC cell lines. A)
Representative pictures of wound-healing assay at baseline, after 24 h, 48h

B
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and 72 h on Hep3B cell line. B) The quantification of migration (decrease
of width of the wound after first 24 h) in all cell lines. For statistical
analyses, Anova was used to compare all groups (p value is shown in the
corner of each graph) and similarly, IC50 groups were compared by
Anova test - p values are shown in graphs.

According to these results, the combination of ARQ 092 and Sorafenib treatments

further decreased migration in additive manner compared to single treatments.

3.2.4. Pathway Analysis

Western blot analysis of following proteins, AKT and phoshoylated AKT

(pAKT) (Ser473), ERK and phosphorylated ERK (pERK) and β-actin were performed

in cell lysates of Hep3B, HepG2, HuH7 and PLC/PRF/5 human cell lines. ARQ 092

treatment completely blocked phosphorylation of AKT as observed in two

concentrations of IC20 and IC50 (Figure 3.23). For combination treatment (ARQ 092

and Sorafenib), although low concentration of ARQ 092 (IC50/200 or IC50/10) was

used, similar results was found like in single treatment groups. All together,

combination treatment completely inhibited phosphorylation of AKT demonstrated in

figure 3.23.
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Figure 3.23. Western blot analysis of pAKT, AKT, pERK,ERK and Actin in four
different human cell lines. Effect of ARQ 092, Sorafenib and combination
of ARQ 092 and Sorafenib on these proteins.

3.2.5. Clinical Safety

In this part, the effect of Sorafenib, ARQ 092 and combination of both

treatments on body weight (Figure 3.24A) and liver weight (Figure 3.24B) of rats was

investigated.
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Figure 3.24. Effect of ARQ 092, Sorafenib and Combination of both treatment on (A)
body weight (B) liver weight in term of percentage of body weight (BW).

These results showed that there is no major body weight loss during the

treatment. Considering liver weight, a significant decrease in liver weight in ARQ 092

(p=0.0095) and Combination (p= 0.0034) treatment when compared to control was

observed.

A

B
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3.2.6. In vivo Efficacy

3.2.6.1. Morphological Analysis

The effect of ARQ 092, Sorafenib and the Combination of both treatments was

studied on tumor progression and tumor development. As shown in figure 3.25, tumor

progression was significantly reduced in the Sorafenib (33.0 ± 10.3% ; p=0.005) and

ARQ 092 (33.8± 10.6% ; p=0.005) groups compared to control. Interestingly, the

greatest decrease in tumor progression rate was observed in combination group when

compared with control (66.6 ± 10.6%; p<0.0001), Sorafenib (50.1± 13.3%; p=0.006)

and ARQ 092 group (49.6 ± 14.1%; p=0.010). No statistical difference was found

between Sorafenib and ARQ 092 groups (p=0.9998).

Figure 3.25. Effect of ARQ 092, Sorafenib and combination of both treatments on

A

B
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tumor progression. (A) representative picture of MRI morphological
analysis and (B) tumor progression assessment by comparison of tumor
size on MRI 1, 2 and 3 in control, Sorafenib, ARQ 092 and combination
group.

3.2.6.2. Histopathological Analyses

It was further confirmed by macroscopic examination of the liver which

revealed a tumor size of 9.9 ± 1.1 mm in control compared to 6.3 ± 0.8 mm in Sorafenib

(p=0.0092), 6.2 ± 0.8 mm in ARQ 092 (p=0.0101) and 3.0 ± 1.1 mm in the combination

group (p<0.0001). Tumor size in combination group was significantly reduced when

compared with Sorafenib and ARQ 092 single treatment (p=0.0187 and p=0.0308). No

statistical difference was found between Sorafenib and ARQ 092 treated groups (Figure

3.26A).

Furthermore, rats in the group treated with ARQ 092 and combination displayed

a significantly lower number of tumors (31.5 ± 14.8 and 21.21± 14.5 tumors

respectively) when compared to Controls (109.5 ± 14.5 tumors, p<0.0001 and <0.0001

respectively) and compared to Sorafenib-treated animals (69.21 ± 11.5 tumors,

p=0.0188 and 0.0016 respectively, Figure 3.26B).
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Figure 3.26. Effect of ARQ 092, Sorafenib and combination on tumor proliferation.
(A) Representative picture of liver. Macroscopic examination of livers with
assessment of (B) tumor size (average of diameter of the five largest
tumors) and tumor number at the surface of livers (n=7/group).

Thus, the combination of Sorafenib and ARQ 092 significantly reduced tumor

progression and proliferation in DEN induced HCC, and was clearly more effective than

Sorafenib and/or ARQ 092 single treatment.

3.2.6.3. Immunohistochemical Analyses

Immunohistochemical analyses were performed by Ki67 immuno-stainig to

analyze the HCC proliferation rate and tunnel kit to analyze induced apoptosis. Ki67
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protein is associated with cell proliferation. Cell with Ki67 positive nucleus were

significantly reduced in combination group (Sorafenib plus ARQ 092) (p= 0.0206) and

ARQ 092 group (p= 0.0421) compared to control group. Combination treatment

significantly reduced proliferation compared to Sorafenib group (p= 0.0487) as shown

figure 3.27.

Figure 3.27. (A) Representative histological images of livers stained with Ki67
antibody. Nuclear Ki-67 staining (arrow), 20x magnification (B)
quantification of Ki67 staining per high power field (HPF).
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In our study, TUNEL immunostaining (Figure 3.28) showed that only

combination group significantly induced apoptosis (p=0.0272).

Figure 3.28. Quantification of TUNNEL immuno staining per high power field (HPF).

3.2.7. Alpha Feto Protein Level (AFP)

To investigate the level of AFP, gene expression of APF was quantified.

According to figure 3.29, all treated groups displayed a reduced expression of APF gene.
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Figure 3.29. qPCR analysis of alpha-feto protein (AFP) gene expression in tumor liver
samples. Control was set as 1, values are means ± SE.

3.2.8. Anti-angiogenic Effect

To understand anti angiogenic effect of ARQ 092 or/and Sorafenib, specific

anti-rat anti-CD34 antibody was used to perform immunoflorescence staining of liver

tissue. While structural abnormalities of the tumor vasculature were numerous in control

animals, normalization of vasculature was observed in both treated groups (Figure

3.30A). Quantification of vascular density revealed that combination treatment was

associated with a significant decrease of angiogenesis. Sorafenib decreased vascular

density by 30 % (p=0.0012), ARQ 092 by 58 % (p<0.0001) and combination by 75%

(p<0.0001) compared to non-treated rats (Figure 3.30B).
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Figure 3.30. Anti-angiogenic effect. (A) Representative pictures of CD34
immunofluorescence staining of liver tissue control, Sorafenib, ARQ 092
and combination, respectively and (B) Quantification of CD34
immunostaining. Control was set as 100, values are means ± SE.

The transcription factor HIF plays an important role in cellular response to

systemic oxygen levels in mammals (Brennan, Rexius-Hall et al. 2015) and HIF induces
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biological processes such as angiogenesis (Roberts and Der 2007). Thus, the gene

expression of HIF was also investigated. To figure 3.31, ll treated groups have a

reduced gene expression of HIF with the highest reduction in combination group.

Figure 3.31. RT-qPCR analysis of hypoxia induced factor (HIF) gene expression in
tumor an non-tumor liver samples. Control was set as 1, values are means ±
SE.

3.2.9. Anti Fibrotic Analysis

Liver fibrosis was analyzed by Sirius red staining. Sirius red stain the collagen

of the tissue which is formed due to the accumulation of the extra cellular matrix. Liver

fibrosis was significantly reduced in Combination group (Sorafenib plus ARQ 092) (p=

0.0001) and ARQ 092 group (p= 0.0004) compared to control group and to Sorafenib

group (p=0.0174 & p= 0.0495), demonstrated in figure 3.32A&B. Furthermore, qPCR

results showed that all treated group significantly reduced the gene expression of

fibrosis markers called ACTA1, Collagen1 and also the expression of TGFβ1,

illustrated in figure 3.32C.
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Figure 3.32. Anti-fibrotic effect. (A) Representative histological images of livers stained
with Sirius red f, 20x magnification (B) Quantification of fibrosis (C) RT-
qPCR analysis of the expression of genes.
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3.2.10. Pathway Analyses

Western blot analysis of pAKT/AKT and pERK/ERK were performed on tumor

and non-tumor tissues. Western blot analysis showed that ARQ 092 and its

Combination with Sorafenib inhibited phosphorylation of AKT in both, tumor and non-

tumor tissues (Figure 3.33A&B). Regarding the ERK pathway, western blot analyses

did not show significant differences in pERK/ERK ratio between the groups (Figure

3.33A&B).

In this study, qPCR analyses also showed significant difference in AKT gene

expressions, and confirmed that ARQ 092 down regulates AKT pathway downstream

actors such as mTORC1 or S6K1 in both tumor and non-tumor tissues. On the other

hand, MAPK1 gene expression was not found any significant decreased as shown figure

3.33C and D.

Figure 3.33. Effect of ARQ 092, Sorafenib and their combination on AKT and ERK
pathways. Western blot analysis of pAKT/ AKT and pERK/ERK in (A)
tumoral and (B) nontumoral liver tissues and the quantification of western
blots. RT–qPCR analysis of the expression of AKT, MAPK, mTOR,
S6K1 (C) tumoral and (D) nontumoral liver tissue. All of the qPCR results
were normalized to the expression of GAPDH and compared with the
samples. (cont. on next page).
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Figure 3.33 (cont. on next page).
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Figure 3.33 (cont.).
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3.3. Third Study: Efficacy of AKT Inhibitor ARQ 751 Compared with

Sorafenib in Liver Cancer Cells

3.3.1. In vitro Cell Viability Analysis

MTT assay was used to analyze the cell viability of Hep3B, HepG2, Huh-7 and

PLC/PRF cell-lines treated with next generation of AKT inhibitor, ARQ 751 or

Sorafenib, as shown in figure 3.34. IC20 and IC50 values of ARQ 751 and Sorafenib

were calculated by Graph Prism software. IC values and potential ratio between IC50

values of ARQ 092, ARQ 751 and Sorafenib are summarize in table 7.

Figure 3.34. MTT assay was used to determine viability of cells treated with different
concentrations of ARQ 751 alone incubated during 48 hours. All
experiments were done in triplicates and repeated three times. Data are

presented as mean ± SD.
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Table 7. IC50 values of Hep3B, HepG2, HuH7 and PLC/PRF cells treated with of
Sorafenib, ARQ 092 and ARQ 751 alone and potency ratio of Sorafenib/ARQ
092, Sorafenib/ARQ751 and ARQ 092/ARQ 751 after 48 hours of incubation.
Values are expressed as the mean ± SEM of three independent experiments
performed in triplicate.

According to table 7, potential ratio of ARQ 751 was found much higher than

ARQ 092. It is thought that next generation of allosteric AKT inhibitor ARQ 751 may

bind to PH and kinase domain more strongly.

3.3.2. Apoptosis Analysis

Flow cytometry analysis revealed that ARQ 751 had a dose-dependent effect on

apoptosis induction as shown in figure 3.35. Its positive effect on apoptosis induction

was superior to Sorafenib in every cell lines and this superiority was always significant

at IC50 concentration as illustrated by figure 3.35.
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Figure 3.35. Dose-dependent effects of Sorafenib or ARQ 751 on apoptosis in Hep3B
(upper left), HepG2 (upper right), Huh-7 (lower left), PLC/PRF (lower
righ) after 48 h exposure.

3.3.3. Cell Migration

The migratory behavior of human HCC cell lines was determined by scratch

assay. After 24h, ARQ 751 or Sorafenib reduced migration of Hep3B, HepG2, HuH7

and PLC/PRF cell lines compared to control with high statistical differences between

the groups (Anova p0.0001), illustrated in figure 3.36.
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Figure 3.36. Effects of Sorafenib or ARQ 751 on migration of cells. (A) Representative
pictures of wound-healing assay at baseline, after 24 h, 48 h and 72 h on
Hep3B cell line. (B) The quantification of migration (decrease of width of

the wound after first 24 h) in Hep3B (upper left), HepG2 (upper right),
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HuH7 (lower left) and PLC/PRF (lower right).

3.3.4. Pathway Analysis

Western blot analysis of following proteins: AKT and phosphorylated AKT

(pAKT), ERK and phosphorylated ERK (pERK) and β-actin were performed in cell

lysates of Hep3B, HepG2, HuH7 and PLC/PRF human cell lines. ARQ 751 treatments

completely blocked phosphorylation of AKT as observed at two concentrations of IC20

and IC50 (Figure 3.37) as expected. Sorafenib inhibited phosphorylated ERK, only in

Hep3B cell line but, it did not blocked phosphorylation of ERK in other cell lines.

Figure 3.37. Western blot analysis of pAKT/ AKT and pERK/ERK in four different
human cancer cell lines. Effect of ARQ 751 and Sorafenib on AKT and
ERK pathway.
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CHAPTER 4

DISCUSSION

Hepatocellular carcinoma (HCC) is the most common type of primary liver

cancer and occurs predominantly in patient with underlying chronic liver diseases and

cirrhosis. Since this type of liver tumors are very aggressive and represent the second

leading cause of cancer deaths, HCC therapy is a growing challenge. Currently, the only

approved systemic treatment for HCC is Sorafenib, a multitargeted tyrosine kinase

inhibitor showing a modest improvement in overall survival from 7.9 months to 10.7

months (Llovet and Bruix 2008). Unfortunately, it is only a very short period and

furthermore, this treatment often causes side effects altering the quality of patient’s life.

Therefore, there is an urgent need for new, effective and safe therapies.

PI3K/AKT/MTOR signaling pathway plays an important role in hepatocarcinogenesis

(Shen, Hsu et al. 2010). Because of this, it is an attractive candidate as an anticancer

drug target for HCC treatment (Reataza and Imagawa 2014) (Courtney, Corcoran et al.

2010). PI3K/AKT/MTOR pathway increases indifferent type of human cancer,

including HCC (Kunter, Erdal et al. 2014) supporting the idea of inhibition of this

pathway to treat HCC.

AKT is considered as an attractive target for cancer therapy and multiple

attempts to identify specific inhibitors with acceptable pharmaceutical properties have

been pursued (Nitulescu, Margina et al. 2016). Selectivity is a key issue for many ATP-

competitive AKT inhibitors, particularly towards the AGC kinase family. ATP-

competitive AKT inhibitors are manly isoquinoline-5-sulfonamides, azepane derivatives,

aminofurozans, heterocyclic rings, phenylpyrazole derivatives, thiophenecarboxamide

derivatives (Mattmann, Stoops et al. 2011). On the other hand, ATP-competitive

inhibitors are non-selective against AKT isozymes, and poorly selective against closely

related kinases, as the catalytic domain is highly similar. Efforts to identify AKT-

specific and isoform-selective inhibitors have resulted in the discovery of allosteric

inhibitors (Wu, Voegtli et al. 2010). Allosteric modulators offer distinct advantages

compared to orthosteric ligands that target to active sites, such as greater specificity,

reduced side-effects and lower toxicity (Lu, Li et al. 2014). Allosteric AKT inhibitors
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are mainly 2,3-diphenylquinoxaline analogues, alkylphospholipids, indole-3-carbinol

analogues, sulfonamide derivatives, thiourea derivatives, purine derivatives and other

derivatives (BAY 1125976, 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-

(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol, 3-oxo-tirucallic acid, 3α- and 3β-

acetoxy-tirucallic acids, acetoxy-tirucallic acid) (Nitulescu, Margina et al. 2016).

In order to identify specific adverse effects that could be related to the

background of cirrhosis, the newly developed drugs should be preclinically tested in an

appropriate animal model. One of the models that most faithfully reproduces human

cirrhosis is dietary nitrosamine injured rats (DEN). While most of HCC models have

background of normal surrounding liver or moderately fibrotic liver, we used a rat

model that develops extensive fibrosis, compensated cirrhosis, decompensated cirrhosis

and HCC after chronic administration of diethly nitrosamin (DEN) (Schiffer, Housset et

al. 2005).

ARQ 092 and the next generation compound ARQ 751 are potent and highly

selective allosteric AKT inhibitors (Yu, Savage et al. 2015). ARQ 092 was identified

searching for inhibitors which use the intrinsic negative regulatory function of

hydrophobic clusters in the ATP-binding cleft. ARQ 092 binds to inactive,

unphosphorylated AKT1 with subnanomolar affinity and inhibits all three isoforms.

ARQ 092 and its congener, ARQ 751, have been shown to inhibit proliferation across

multiple tumor types and were most potent in cancer cells (Nitulescu, Margina et al.

2016).

In the present study, ARQ 092 and ARQ 751 were investigated not only in vitro

but also by in vivo analyses.

We performed in vitro analysis with AKT inhibitors -ARQ 092, ARQ 751 and

combination of ARQ 092 and Sorafenib on four different human cell lines Hep3B,

HepG2, HuH7 and PLC/PRF. Our results showed a high potency ratio for AKT

inhibitor ARQ 092 and ARQ 751 compared to Sorafenib (Table 7) in cell viability

analysis by MTT assay. ARQ 092 was highly efficient in these cell lines with a 2 to 6

times, ARQ 751 a 10 to 30 times more potent effect on cell viability than Sorafenib.

Combination of ARQ 092 and Sorafenib based on the potency ratio showed a strong

synergistic effect in cell viability analysis by MTT assay (Table 6). Similarly, the cells

treated with ARQ 092 or ARQ 751 induced apoptosis more than Sorafenib (Figure 3.3

& 3.35). After treatment with combination of ARQ 092 and Sorafenib more apoptotic

cells were found as compared to single treatments (Figure 3.21). Interestingly, even
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lower concentrations of combination treatment showed strong tumor grown inhibition.

In accordance with our results, the combination of Sorafenib with another AKT

inhibitor (non-specific AKT-inhibitor Bufalin) has been already tested in vitro by Zhai

et al. and showed synergistic effects (Zhai, Hu et al. 2015). By migration analysis, we

confirmed that ARQ 092, ARQ 751 and combination of ARQ 092 and Sorafenib

significantly decreased cell migration compared to control and was more effective than

Sorafenib.

In these studies, we used DEN-induced cirrothic rat model with HCC to test

safety and efficacy of a new allosteric inhibitors (ARQ 092&ARQ 751) and

combination of AKT inhibitor (ARQ 092) and Sorafenib compared with Sorafenib and

control (not treated). AKT inhibitor showed anti-tumor, anti-angiogenic and anti-

fibrotic effects with significantly better efficacy than Sorafenib in terms of tumor

number, as well as tumor contrast enhancement, and the level of liver fibrosis.

For the first study, ARQ 092 was easily managed in rats with a mean weight loss

of only 0.8 % at the end of first study. The most frequent side effects of mTOR

inhibitors are diabetes and hyperlipidemia. In our hands, with ARQ 092, there was only

small and not significant increase in glucose, and no differences in cholesterol and

triglyceride blood levels as well as liver triglyceride levels compared to control and

Sorafenib-treated rats (Table 5).

The dose strategy for ARQ 092 in the first in vivo study was based on a previous

toxicity study (unpublished data). The “one week ON/one week OFF” schedule

probably contributed to the good tolerability of the tested regimen. In the second study,

where combination with Sorafenib was tested, 5 days ON/9 days OFF schedule was

used for ARQ 092 treatment, to decrease possible side effects of treatment. This

difference in dosage may explain the slight differences in anti-tumor effect of single.

ARQ 092 treatment that were observed between first and second study. In fact,

ARQ 092 single treatment was more intensive in first study and therefore the anti-tumor

effect was stronger in comparison with the single treatment of ARQ 092 in the second

study. Another difference in treatment, that may affect our results, was the start of

treatment. In the first study, ARQ 092 treatment started with one week ON and finished

with one week OFF. Therefore, we observed only modest effect of treatment on gene

expression, as rats were not treated for one week before the euthanasia. In the second

study, ARQ 092 treatment started with one week OFF and finished with week ON. This
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may account for our observation of a very strong effect of ARQ 092 treatment on gene

expression in the second study as compared to first study.

Previous publications have demonstrated the effect of Sorafenib on HCC in noncirrhotic

rats with a good tolerability at doses between 10 mg/Kg in association with another drug

(Sieghart, Pinter et al. 2012) and 30 mg/Kg when given alone (Gu, Li et al. 2011) (Yan,

Tan et al. 2013). With the cirrhotic rat model, we initially tested a 20 mg/Kg Sorafenib

dose, but due to an important weight loss and other symptoms after first days of

Sorafenib administration, we had to stop the study. Therefore, we decreased to 10

mg/Kg for Sorafenib. This underlines that new HCC-drugs have to be tested in

fibrotic/cirrhotic animal models to better assess side effects of treatment that can be

very different between noncirrhotic and cirrhotic livers. Therefore, for the second study,

we retained 10 mg/kg Sorafenib treatment.

Another particularity of this study consists in the observation of the kinetic of

tumor progression through three sequential MRI scans per individual rat. The dramatic

increase of tumor size after 6 weeks in control rats (+ 155.3 ± 16.0%) confirmed the

high level of aggressiveness of the DEN-model. Similar results were obtained in both

studies. Tumor progression between MRI 1 and MRI 3 was significantly reduced in all

groups of treatment compared to control and was the lowest in combination group.

Similarly, according to histological examination, both Sorafenib and ARQ 092

significantly reduced the tumor size compared to the control, but combination treated

rats displayed the smallest tumor size. However, only ARQ 092 and combination treated

rats displayed a significantly lower number of tumors at the surface of the liver. This

suggests that ARQ 092 and combination treatments inhibit the development of new

tumors. To be confirmed, this hypothesis needs further experiments with an earlier

introduction of ARQ 092 and/or combination treatment that should be performed during

the DEN-induction phase. Such an experiment could demonstrate inhibiting effect of

ARQ 092 and combination treatment on tumor initiation in context of advanced fibrosis

and cirrhosis.

To confirm anti-tumor activity of AKT inhibition on the liver tissue, we

performed Ki67 and TUNNEL immunostainings. The inhibition of AKT by ARQ 092

and combination treatments induced basal apoptotic machinery in liver tissue and

reduced number of Ki67+ cells compare to Sorafenib and control.

The anti-angiogenic effect of ARQ 092 treatment demonstrated by dynamic

contrast enhanced MRI2 showed that ARQ 092 induced significantly a lower tumor
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enhancement. Besides this, CD34 immunofluorescence staining demonstrated

normalization of vasculature in treated groups.

In hepatic fibrosis, excessive connective tissue accumulates in the liver; this tissue

represents scarring in response to chronic, repeated liver cell injury. Commonly, fibrosis

progresses, disrupting hepatic architecture and eventually function, as regenerating

hepatocytes and usually occur cirrhosis then HCC (Bataller and Brenner 2005). Thus,

anti-fibrotic effect of ARQ 092 is important to treat HCC. Sirius red staining indicated

that liver fibrosis significantly decreased in ARQ 092 and combination groups compare

to control and Sorafenib groups. Improvement of liver fibrosis by ARQ 092 and

combination groups was confirmed by qPCR analysis. The expression of fibrosis

markers such as ACTA 1, TGFβ 1 and Collagen 1, were down-regulated in tumor

samples of ARQ 092 and combination group compare to Sorafenib and control.

Our in vivo and in vitro analyses showed that ARQ 092 and combination

treatments strongly and selectively affects AKT pathway. In fact, ARQ 092 is a highly

selective allosteric inhibitor that suppresses pan-AKT activity by blocking its

phosphorylation and by preventing the inactive form from localizing into plasma

membrane which together leads to strong and specific downregulation of downstream

targets of AKT (Yu, Savage et al. 2015). Such high specificity was missing in action of

catalytic AKT inhibitors that have been previously developed (Rodon, Dienstmann et al.

2013).

However, in Sorafenib-treated rats, the absence of downregulation of the ERK

pathway on qPCR and western blot analyses can be surprising, since it has been

previously shown that Sorafenib downregulates pERK in rat HCC (Sieghart, Pinter et al.

2012).

This observation is probably due to the DEN-induced strongly aggressive type of HCC

and also multiple resistance mechanisms in this model. Higher pAKT in this group is a

surrogate marker of such resistance.

In summary we have indicated that two allosteric inhibitor (ARQ 092 and ARQ

751) alone or in combination with Sorafenib potently inhibit AKT pathway both in vitro

and in vivo. Despite difficult conditions with an aggressive model of cancer in cirrhotic

rats, single treatment ARQ 092 showed its efficacy in controlling tumor progression,

and demonstrated a good safety profile that makes this experimental drug promising in

the treatment of HCC in cirrhotic patients. Moreover, the combination with Sorafenib



88

further increased antitumor efficacy of treatment and can be considered as novel

combination strategy of HCC treatment.

As a conclusion, the results presented here confirm the importance of

targeting AKT in HCC development and progression. The high potency and high

selectivity of these compound warrant further clinical investigation in patient with HCC.
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APPENDIX A

MEDIAS

A.1. MEM Growth Medium

Minimum Essential Medium Eagle growth medium, fethal bovine serum (FBS)

and gentamicine sulfate were obtained from Gibco, BRL.

500 ml MEM was added 50 ml FBS (~10% of all volume)

mixed 50 µg/ml gentamicine sulfate (~1%)

A.2. DMEM Growth Medium

Dulbecco’s modified Eagle’S medium (DMEM) growth medium, fethal bovine

serum (FBS) and gentamicine sulfate were obtained from Gibco, BRL.

500 ml DMEM was added 50 ml FBS (~10% of all volume)

mixed 50 µg/ml gentamicine sulfate (~1%)
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APPENDIX B

CHEMICALS, REAGENTS AND SOLUTIONS

B.1. Cell Lines

Hep3B, HepG2, HuH7 and PLC/PRF cell lines were provided by Prof. Dr.

Thomas Deacen in Institute for Advance Biosciences, Grenoble/France.

Table.1.B. Chemicals and Reagents Used in Experiments

No CHEMICALS COMPANY

1 Dimethly Sulfoxide (DMSO) Sigma

2 Trypan Blue Dye Sigma

3 Phosphate Buffered Saline

(PBS)

Invitrogen

4 Gentamicine Sulfate Gibco

5 Fetal Bovine Serum (FBS) Gibco

6 MTT Reagent Sigma

7 0,5M Tris-HCl, pH 6,8 AppliChem

8 Annexin-V Apoptosis

Detection Kit I

BD Pharmingen

9 Bovine Serum Albumine

(BSA)

Sigma

(cont. on next page)
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Table1.B. (cont.)

10 Coomassie Brilliant Blue G-

250

AppliChem

11 Absolute Ethanol AppliChem

12 Phosphoric Acid AppliChem

13 Ethylenediaminetetraacetic

acid (EDTA)

Sigma

14 Protease inhibitor Roche

15 Glycerol AppliChem

16 Bromophenol Blue (%0.5) AppliChem

17 CHAPS (%2) AppliChem

18 Marcaptoethanol AppliChem

19 SDS AppliChem

20 phosphoric acid AppliChem

21 Acrylamide AppliChem

22 Bisacrylamide AppliChem

23 1.5 M Tris – HCl pH = 8.8 AppliChem

24 Ammoniun Persulfate (APS) Sigma

25 Tetramethylethylenediamine

(TEMED)

Sigma

(cont. on next page)
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Table1.B. (cont.)

26 Trypsin Sigma

27 Triton X-100 Sigma

28 RNase Thermo
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