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Chapter 1

Introduction

One original thought is worth a thousand mindless quotings.

Attributed to Diogenes of Sinope in: William Safire (2001), Let a
simile be your umbrella.

The visible world seems essentially made of neutral matter, for which gravitational
force is the only one at play. But at astrophysical scale, most of the visible matter in the
universe is made of a charged particles called plasma, where electromagnetic force play
a leading role in its dynamics. Even though plasmas could be seen by mankind since its
origin (the Sun or lightning), their study is a relatively recent field of study since the first
scientific description of such state comes from the second part of the nineteenth century.
Plasma physics has since been the object of numerous studies, ranging from the study of
astrophysical processes to nuclear fusion for energy production.

In plasma physics, because of the coupling between the constituent charged particle
and the electromagnetic fields, there exist a very wide range of plasma waves. Further-
more, in the presence of a source of free energy (bulk velocity, temperature anisotropy,
density gradient...), these waves can be unstable. Plasma instabilities are very common
in both natural and laboratory plasmas. Their study is an important research topic with
wide ranging applications from astrophysical plasmas, fusion devices to electric discharges.

The magnetic streaming instability arises when two magnetized plasmas stream into
each other with a relative velocity higher than the local Alfvén speed. Under such con-
ditions, the electromagnetic normal modes (waves) of the plasma are unstable and their
amplitude grows exponentially. The kinetic energy of the streaming particles feeds the
growing waves, which react by scattering the particles. Their direct ordered motion is
thus randomized, leading to a decrease of the relative streaming velocity of the plasmas,
and finally to the saturation of the instability.

The magnetized streaming instability has many applications in the space and astro-
physical plasmas, where most of these plasmas are bathed in a magnetic field (whether
it comes from a near star, a planet or a galaxy). As an example, the instability is
thought play a key role in the development of low-frequency electromagnetic modes that
are driven by unstable ion beams upstream of the Earth bow shock (see Onsager, Winske,
and Thomsen 19911991), which are self-generated by the shock itself. One of the numerous
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applications of the magnetic streaming instability lies in the interaction of cosmic rays
with the interstellar medium. Cosmic rays are high energy particles (from MeV to ZeV)
essentially of galactic origin (see Zweibel 20132013). First observed at the beginning of the
20th century, they were initially thought to be energetic photons, but were later iden-
tified as charged particles. The original name, however, sticked and we still call cosmic
rays these energetic particles. The acceleration mechanisms that allow the cosmic rays to
reach very high energies (above 1010 eV) is still a current topic of study, and the scientific
community currently believes that a variety of acceleration mechanisms are at play in
different sources and generate cosmic rays of different energies. One of these acceleration
mechanisms require strong magnetic fields at supernovae shocks, that bounce cosmic rays
across the shock like a ball in a tennis game (see Marcowith et al. 20162016). The generation
of these strong magnetic fields also involve the work of the magnetic streaming instability.

The interstellar medium is the tenuous gas that fills the galaxy between the stellar sys-
tems. The term interstellar medium gather a vast number of different physical conditions,
from the dense and cold molecular clouds to the hotter and tenuous medium (see Ferrière
20012001). This medium bathes in a galactic magnetic field, whose origin is still debated
in the scientific community since its discovery in 1949. In this interstellar medium, the
cold molecular clouds are the place of star formation. In order to allow the gravitational
collapse to take place, the medium need to not be too coupled to the magnetic field, oth-
erwise the magnetic pressure would oppose the collapse. This uncoupling can be achieved
by regulating the ionization of the molecular clouds, and cosmic rays are believed to play
an important role in this regulation (see Padovani et al. 20142014).

Cosmic rays streaming through the interstellar medium can trigger the magnetic
streaming instability. This is a source of energy exchange that transfers the kinetic energy
of the cosmic rays to the background. This generates an enhanced wave activity, which
confines the (low energy) cosmic rays to low, bulk streaming velocities (see Padoan and
Scalo 20052005). Cosmic rays are in fact believed to play an important role in the ionization of
molecular clouds. Because of the increase of the collision cross section with particle energy,
this ionization process is effective for cosmic rays with energy ranging from 10 to 100 MeV.

By their very definition, plasmas dynamics is largely dominated by collective effects
due to electromagnetic effects. Indeed, any gas will statistically contain a number of
charged particles, but this portion is so low that the charged particles will have practi-
cally no effect on the general dynamics of the system. When a neutral gas starts to carry
a large enough number of charged particles, they start to experience collective effects due
to electric and magnetic fields. In such a plasma state, we can distinguish two forms of
electromagnetic fields: the one externally applied or induced by the general behaviour
of the plasma like the waves, and that we call macroscopic field, and the one generated
by individual particles that we call microscopic field. At small scale, the dynamics of a
charged particle can be modified by another charged particle in a close neighbourhood,
which makes a Coulomb collision. At larger scale, the shielding resulting from other par-
ticles soften the associated electric force. The scale length associated to the limit between
these two behaviours is the Debye length, meaning that particle collisions occur at smaller
scales, inside the Debye sphere (see Trubnikov 19651965). In many plasmas, such as the solar
wind, the dynamics is totally determined by the macroscopic fields, the collision mean
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free path being of the order of the Sun-Earth distance. But in dense enough plasma, mi-
croscopic fields due to the charge of the particles play an important part in the dynamics,
by modifying the trajectory of particles entering the Debye sphere of another particle.
These Coulomb collisions are an efficient way to scatter particles in phase space, hence
modifying their velocity and pitch-angle.

The context of this work came from a growing collaboration between Roch Smets and
Andrea Ciardi on the interaction of low energy cosmic rays with the interstellar medium in
2009. After Andrea joined the LERMA, they decided to resume this study by proposing
a thesis topic, to which I applied at the end of my master in Paris. I then started to work
at LERMA beside a team working on the simulation of scalable laboratory experiments
to study the processes happening during early stages of a star formation (such as the
accretion of matter by stars or the emission of jets). Benjamin Khiar studies accretion
shocks using a MHD code that was developed by Andrea during his thesis, and also par-
ticipated to a collaboration with an experimental team of the LULI (another laboratory
specialized in the manipulation of high power lasers) to reproduce astrophysical jets in
laboratory. Julien Guyot also uses this MHD code and works on implementing a PIC
module to study the acceleration of cosmic rays in astrophysical shocks. Beside my time
passed in LERMA, I also had the opportunity to discuss with people in the LPP that
work on numerical simulations. This field of study gathers peoples from the different
teams of the lab, from magnetic fusion to cold plasma, including space plasmas.

In this thesis we study the magnetic streaming instability in both the collisionless and
collisional limits using the PIC-hybrid code HECKLE, for which I have developed a Monte
Carlo collision module. While the instability has been studied in the collisionless case,
both analytically (in Gary 19911991, Gary 19931993) and numerically with kinetic codes (Winske
and Leroy 19841984, Wang and Lin 20032003), no work exist in the literature for the collisional
case. Based on these previous works, we can simulate the instability both in collisionless
and collisional cases to compare and identify the effects of the collisions on it.

The work presented in this manuscript is articulated as follow. Chapter 22 gives an
overview of the context of the magnetic streaming instability, including some applications
to astrophysical plasmas. It also gives some elements on analytical results showing that
the instability makes electromagnetic waves grow with a certain growth rate. Chapter 33
presents the numerical model we use in this study to simulate the plasma, as well as a
detailed presentation of the collision module included during this work (based on Takizuka
and Abe 19771977). Chapter 44 presents numerical results of the magnetic streaming instability
in the collisionless case, and shows the presence of three different modes, associated with
different kind of waves. Chapter 55 gives results of the magnetic streaming instability in
several collisional regimes, and shows that the presence of collisions have a quenching
effect on the produced waves. More precisely, the beam gives part of its kinetic energy to
the background plasma through collisions, which leaves less energy for the electromagnetic
waves. Finally, chapter 66 gives a summary of the results and a discussion about some
future works that could be done on this topic.
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Chapter 2

Elements on the magnetic streaming
instability

Welcome...to the desert of the real.

Morpheus - The Matrix (1999), The Wachowski.
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Counter-streaming plasmas can drive waves unstable under some conditions, feeding
off the kinetic energy available to produce electrostatic or electromagnetic waves that grow
in time before saturating in a nonlinear phase. The drift velocity is thus reduced and the
energy redistributed to relax to a more stable configuration. This type of mechanism
is ubiquitous in space and astrophysical plasmas, showing a wide variety of processes
under a wide variety of conditions. This chapter presents some introductory elements on
streaming instabilities, then discusses some of the conditions where it can be of importance
before presenting the physical processes involved in the particular instability which is the
focus of this present work as well as some elements of analytical theory applied to this
instability.

2.1 Streaming instabilities
We need to distinguish the two populations at play in such instability as the particles

of each of these populations are playing a different role ; we callmain (referred to with the
subscriptm) the core of the plasma, and beam (with the subscript b) the other population
subject to a drift motion relative to the main. As instabilities have often the effect of
rearranging the way energy is distributed in a system, their study is very important to
the understanding of many systems, and as the streaming instabilities are ubiquitous in
many environments in astrophysics (as will be seen later), this study integrates a wide
field of study which tends to explain phenomena such as production of ultra-relativistic
particles or early star formation. There is a wide zoology of modes and processes that are
involved in a streaming configuration (whether the beam or the main are ions or electrons,
with or without a magnetic field, electrostatic or electromagnetic modes...) discussed in
Gary 19931993 and Marcowith et al. 20162016 and we will now quickly present some of them and
especially the one we are interested in presently in order to put it in its context.

2.1.1 Electrostatic modes
The most simple situation is that of two homogeneous, counter-streaming plasmas

where no magnetic field plays a role. When a beam of electrons streams in a plasma,
this case can give rise to two electrostatic instabilities, the first being a Langmuir beam
instability (as referred to by Gary 19931993) in the condition:

(
Vb
vT,b

)3(
nb
n0

)
< 1 (2.1)
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2.1 Streaming instabilities

with Vb and vT,b the beam mean velocity and thermal velocity (with the thermal energy
Tb =mbv

2
T,b), nb the beam density and n0 the total electron density. In that case the wave

satisfy the dispersion relation:

ω2(k) = ω2
p,e+ 3k2v2

T,e (2.2)

ωp,e =
√
nee2

ε0me
(2.3)

with ω and k the frequency and wave number of the wave, ne is the electron density of
the medium, e the electronic charge, ε0 the permittivity of free space and me the electron
mass. This type of wave is observed in the Earth foreshock and generated by type 3 solar
bursts (see Cairns and Robinson 19991999). On the other hand, when the condition below is
satisfied: (

Vb
vT,b

)3(
nb
n0

)
≥ 1 (2.4)

the electron/electron beam instability is triggered and the waves obey the relation:

ω = kVb (2.5)

According to Tsurutani and Lakhina 19971997, this corresponds to an inverse Landau damping,
where the waves gain energy from particles faster than its phase velocity, as opposite to
the Landau damping where the particles slower than a wave phase velocity gain energy
from them, damping the waves in the process.

When the beam is made of ions of mass mi and thermal energy less than the electrons
Ti � Te, an ion/ion acoustic instability occurs, provided that its drift speed is higher
than the ion thermal velocity, that slows down the beam and generates waves with phase
speed:

ω

k
≈ cs

(
nm−nb
ne

)
(2.6)

cs =
(
Te+ 3Ti
mi

)1/2
(2.7)

where cs is the ion acoustic velocity. These modes are present not only in space plasmas
(see Feldman et al. 19731973) but also in the laboratory, like for example in low pressure
electric discharges (Sydorenko et al. 20072007).

2.1.2 Electromagnetic modes
Beside electrostatic modes, particle beams or counter-streaming plasmas can drive

several electromagnetic instabilities, depending on the existence of a DC magnetic field,
and of the direction of the wave vector relative to this magnetic field. The stability of such
systems usually depends on the drift speed of the beam and in the presence of a magnetic
field, one of the conditions for the development of certain instabilities is for the relative
streaming velocity to be above the Alfvén speed of the background plasma VA = B√

µ0nimi
.
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When a beam of electrons is drifting in a plasma along a magnetic field, this triggers a
filamentary instability and produces electromagnetic waves with frequency of the order of
the electron plasma frequency, propagating perpendicular to the initial magnetic field. If
the beam is made of ions, the instability develops on the time and length scales of the ion
cyclotron frequency ΩC,s = qsB/ms. These are much larger than those of the electrons,
and it is often the case that the electrons can be treated as a mass-less, neutralizing fluid.
These instabilities, referred to in Gary 19931993 as ion/ion electromagnetic instabilities, are
the focus of the present work, and we shall refer to the different modes as magnetic
streaming instability.

2.1.3 Anisotropy instabilities
Instabilities can also be driven by an anisotropy in the temperatures parallel and

perpendicular to the magnetic field. These are often placed in the class of streaming
instability, even though the growing perturbations are not fed by the kinetic energy asso-
ciated with the relative streaming velocity between two populations, but by the anisotropy
in the temperature of one or several plasma components.

The Weibel instability (see Weibel 19591959, Medvedev et al. 20042004) takes place when the
electron perpendicular temperature exceeds the parallel one (T⊥,e > T‖,e), which creates
electromagnetic waves propagating along the magnetic field, as explained in Cottrill et al.
20082008, and restore isotropy in phase space. The firehose instability occurs when the parallel
temperature is larger than the perpendicular temperature and when the parallel thermal
pressure exceeds the magnetic pressure (T‖ > T⊥ and β‖ > 1) and produces waves propa-
gating along the magnetic field, relaxing the distribution to a more isotropic temperature.
As opposite the mirror instability happens when the perpendicular temperature is higher
than the parallel temperature, producing electromagnetic waves propagating across the
magnetic field lines and also relaxing the plasma to an isotropic distribution.

2.2 Astrophysical context
Magnetic streaming instabilities are ubiquitous in many environments in space and

astrophysical plasmas, and show a wide variety of conditions. In this section we approach
some of the cases where this instability takes an important role in the physics of the
system.

2.2.1 Earth bow shock
The interest in ion/ion-driven electromagnetic streaming instabilities in space plasmas

started with satellites observation, such as the Explorer 34 mission studies in Fairfield
19691969, which detected waves at about 0.01− 0.05 Hz upstream of the Earth bow shock,
or in Russell, Childers, and Coleman 19711971, who reported observations with Ogo 5 of
left-handed polarized waves. These waves were originally believed to originate from ion-
cyclotron resonances. However, they were instead later identified as right-hand polarized
waves (once the Doppler effect on the very low frequency waves was taken into account
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by considering the high speed of the spacecraft compared to the phase speed of the
waves as explained in Hoppe et al. 19811981) and they were proposed to originate from a
population of back-streaming ions reflected by the Earth bow shock. This creates a
double component plasma with the reflected ions and the incoming solar wind ions, along
the solar magnetic field. This two-components ion distribution was later observed in the
solar wind by Feldman et al. 19731973, thus confirming the idea that back-streaming ions in
the Earth bow shock may be responsible for the observed wave activity, as well as the
enhanced interplanetary magnetic fields reported by Tsurutani et al. 19871987. The ISEE
mission (Bonifazi et al. 19801980) also confirmed the presence of different ion populations in
the fore-shock region shock: (i) solar wind ions with a bulk speed of the order of VSW =
300km.s−1 and a density of 5cm−3; (ii) reflected ions with a density around nD = 0.26cm−3

speed VD = 541km.s−1 and a thermal speed vT,D = 222km.s−1; (iii) diffuse ions with a
density nD = 0.29cm−3 speed VD = 400km.s−1 and a thermal speed vT,D = 776km.s−1.
All those components are contained in a magnetic field of ∼ 10 nT.

Reflected ions are shown to drive unstable both right-hand resonant and non-resonant
modes when both plasmas are homogeneous, and the relationship between the observed
waves and the ion component presented above was first investigated in Winske and Leroy
19841984, who studied the generation of right-hand polarized waves due to the ion/ion-driven
electromagnetic streaming instability. Their numerical simulations also showed that the
observed diffuse ion population component could be explained as being the result of
the isotropization of the beam (reflected ions) by the instability. According to Onsager,
Winske, and Thomsen 19911991, the plasma and especially the beam, in the case of the bow
shock, are not necessarily uniform unlike in the previous studies, so he studied the effects
of the finite length of the beam and showed that the right-hand is more important than
in the homogeneous case, because of the direction of propagation of the generated waves
and the time the waves are in contact with the beam to interact.

2.2.2 Cometary environment
The solar wind can also interact with an ion population around comets which happen

to have a distribution function relevant to the streaming instability. Such distributions
were observed in the vicinity of Comet Halley in Mukai et al. 19861986 by the Suisei probe,
where a population of cometary ions is responsible for the generation of turbulence when
interacting with the solar wind, creating a population of scattered ions called "pickup
ions". An analytical model of this situation has been developed in Gary and Madland
19881988 and in Yoon 19901990. In this context the direction between the incoming solar wind
and the solar magnetic field can vary and this was addressed by Wang and Lin 20032003 where
numerical simulations were carried out to study the effect of this angle. They showed that
the generated waves mainly propagate along the magnetic field and in the same direction
as the beam, even though oblique waves can propagate as well.

2.2.3 Interstellar medium
The interstellar medium corresponds to 10-15% of the galactic mass and shows a wide

range of conditions in density and temperature, from the cold molecular clouds, with a
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medium n T B

molecular cloud 108−1012m−3 10K 10−10−10−9T
hot ionized gas 103m−3 106K 10−9T
solar wind at the Earth 5.106m−3 106K 10−9−10−8T
cometary environment 105m−3 108K

Table 2.1: Physical conditions in the different situations.

temperature around 10 K and a density up to 106cm−3, to relatively hot ionized gas, with
a temperature around 106 K and a density of the order of 10−3cm−3 (see Ferrière 20012001,
which gives an overview of the different conditions in the interstellar medium, including
the cosmic rays and their role in the dynamics of this matter). It is mainly composed of
hydrogen (90%) and is immersed in an ambient magnetic field, which was first indirectly
observed by Hall 19491949 with the polarized light of stars, whose magnitude ranges from
tenths to few nT. Table 2.12.1 gives the physical conditions for some of the situations seen
in this chapter.

2.2.4 Cosmic rays

Cosmic rays (CR) are energetic particles (mostly protons) travelling throughout the
galaxy. They cover a huge range of energies, from a few MeV (106 eV) up to few ZeV
(1021 eV). Figure 2.12.1 shows the spectrum of cosmic rays, made with both Earth and
spaced based detectors. Below the GeV-energies, the magnetosphere and the solar wind
make it difficult to clearly identify the origin of the observed particles. At 106 GeV, the
slope steepens and this first discontinuity is called the "knee", then the slope flattens
after the "ankle" at 109 GeV and a cutoff happens around 1011 GeV, above which no CR
were observed (although particles at these energies are difficult to observe with the actual
detectors). The presence of several slopes in the spectrum, seems to indicate different
acceleration mechanisms that are reviewed in Castellina and Donato 20112011, giving a model
for each energy domain: CR up to the knee at 106 GeV are accelerated by a process called
diffusive shock acceleration (discussed in the next section) at supernova remnants (SNR);
between the knee and the ankle, the acceleration of cosmic rays is still in debate, but
the possibility of a subset of SNRs that can accelerate particle to higher energy than the
knee due to exceptionally energetic supernovae explosions is considered (see Parizot 20142014);
finally above the ankle (109 GeV), CRs are believed to have an extra galactic origin and
therefore accelerated outside our galaxy. Recent reviews of observation and the physical
mechanism involved in cosmic ray transport in the interstellar medium and acceleration
mechanisms are given in Blandford, Simeon, and Yuan 20142014, Zweibel 20132013 and Marcowith
20142014.
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Figure 2.1: Energy spectrum of the observed cosmic rays using many experimental data.
The figure is adapted from Zweibel 20132013. The low energy cosmic rays (LECR, below the
GeV, in the red circle) do not appear on this spectrum.
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2.2.5 Supernovae shocks
The processes responsible for the acceleration of cosmic rays to the energy mentioned

before need to be of high efficiency. One of these processes is thought to happen in
supernovae remnant shock through a process called diffusive shock acceleration, or first-
order Fermi acceleration. As explained for example in Gargaté and Spitkovsky 20122012, this
happens when a particle crosses many times the shock front, being reflected every time
by the magnetic turbulence and gaining energy at each crossing. It can explain the first
part of the CR spectrum in figure 2.12.1, before the knee (up to 106 GeV), and requires
a strong magnetic turbulence and generates an energy spectrum for the particles that
depends on the compression of the shock. To generate such strong magnetic field, CR are
also involved trough a current-driven instability presented in Bell 20042004, who developed
a model to explain such a non-resonant instability. As explained in Bell et al. 20132013,
CR escaping from the supernovae remnant drive this instability through their current,
which is able to generate magnetic fields up to hundreds of µG, and Stroman, Pohl, and
Niemiec 20092009 made some simulations and showed that this instability is able to amplify
the initial magnetic field up to 20 times. This modifies the structure of the shock, and
can explain the magnetic fields needed for the first-order Fermi acceleration to take place,
which happens to generate a power-law spectrum consistent with the one of the CR up
to the knee.

2.2.6 Cosmic rays in the interstellar medium
Low-energy cosmic rays (LECR, in the red area at 10-100 MeV on figure 2.12.1) stream-

ing in molecular clouds in the interstellar medium (ISM) along the galactic magnetic field
create a population that can interact with this medium trough the magnetic streaming
instability. This transfers part of their energy in their surroundings in the form of thermal
energy and slows down the CR in the densest parts of the molecular clouds (Padoan and
Scalo 20052005), which can explain the confinement time of CRs in the Galaxy of millions of
years as explained in Amato 20112011. Moreover, as discussed in Padovani, Galli, and Glass-
gold 20092009, these CR have an important effect on the chemistry of the molecular clouds
since they are a strong source of ionization for the di-hydrogen molecules. Padovani, Hen-
nebelle, and Galli 20142014 summarizes the chemical processes involving the CR and shows
that when increasing the magnetic field (due to the streaming instability as proposed by
Morlino and Gabici 20152015), the ionization decreases, which has the effect of decoupling
the cloud with the magnetic field as seen in Padovani and Galli 20132013. This decoupling,
together with the heating of the molecular clouds, are conditions that favor the formation
of stars in protostellar disks. In a review, Bykov et al. 20132013 mentions the different insta-
bilities suspected to be responsible for the cosmic rays confinement, especially the Bell’s
instability (Bell 20042004) along with a resonant mode.

2.3 Lab experiments
As the processes in astrophysics mostly happen on very long times compared to human

timescales (the typical growth of a supernova remnant happens overs ∼ 106 years and the
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characteristic cosmic ray lifetime is about 107 years as discussed in Ferrière 20012001) and
length-scales, they are difficult to observe. Thus, there have been discussions about how
to reproduce these phenomena in controlled experiment in laboratory. In 1964, Dawson
19641964 proposed a way of producing plasma by shooting a solid or liquid target with a high
power laser. This was a setup already considered for thermonuclear fusion experiment
and he proposed to use it for astrophysical studies. The use of laser-produced high energy
density plasmas for studying astrophysical shocks is now widely used, as in Kuramitsu
et al. 20112011 who reproduced cosmic rays acceleration using a laser pulse, or Fox et al.
20132013 who studied Weibel-like instabilities in the context of astrophysical shocks. Weidl
et al. 20162016 presented simulations of laser experiments on the Large Plasma Device (with
magnetic fields of 200 G, main density of 6.1012cm−3 and temperature of 1eV) in order
to produce an ion beam in a plasma along a magnetic field and showed evidence of the
magnetic streaming instability in such conditions.

In many of the astrophysical cases presented before, Coulomb collisions between ions
in the plasmas are negligible. However in some of them (interstellar medium) and in
laboratory experiments, such collisions cannot be neglected. That is why we are presently
interested in the effects of this kind of interaction on the magnetic streaming instability.

2.4 Collisions in a plasma
Collisions in plasmas can be due to neutral components in the plasma, but also to long-

ranged Coulomb forces (in very ionized plasmas), which make them collective as the effects
of many small-angle collisions overcome the effects of a few strong collisions. As these
collisions are negligible in the heliosphere, all previous studies about magnetic streaming
instabilities were made using the collisionless plasma hypothesis when considering kinetic
models because they applied mostly to this environment. However in some cases such
as high density shocks or laboratory experiments, Coulomb collision become important
and must be taken into account. Collisional effects have, however, been studied for other
instabilities, as in Mamun and Shukla 20002000, who studied electrostatic modes and showed
a damping of a dust-acoustic mode due to collisions with neutral dusts, or in Cottrill et al.
20082008, who performed analytical studies of a collision operator in the context of the fast
ignition and showed that the collision have a damping effect on the electrostatic instability
but also the ability to enhance some electromagnetic instabilities. For the purpose of this
work, we study the effects of Coulomb collisions on the previously studied collisionless
instability, using a Monte-Carlo method presented in section 3.53.5 as a numerical collision
operator.

2.5 Non-Maxwellian distribution
In the conditions where collisions are not dominant, the distribution function of the

plasma can be non-Maxwellian, as observed in the near-Earth environment (see Lazar
et al. 20082008). Lazar et al. 20082008 analytically investigated the influence of kappa distribu-
tion function (the kappa distribution is a power law instead of an exponential for the
Maxwellian) on the magnetized streaming instability and showed that the growth rate is
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strongly influenced by the shape of the distribution and that in the case of a kappa func-
tion, the growth rates are lower than in the Maxwellian case. However, as most studies in
magnetized case were made with Maxwellian equilibrium distributions, and since we are
presently interested in the effects of collisions on the instability and that collisions are ex-
pected to suppress any deviation from a Maxwellian (see section 3.63.6), we use Maxwellians
as initial distribution functions for the ions in the simulations.

2.6 Physics of the magnetic streaming instability

During the early stage of the instability (the linear phase) the electromagnetic pertur-
bation growth exponentially with growth rate γ (B(t)∝ eγt), then it reaches a saturation
with a maximum value of the perturbation Bmax and finally relaxes to a lower amplitude
steady-state. During the linear stage, the bulk energy of the beam (associated with the
bulk fluid velocity of the beam) is partially transferred to the waves and the rest in the
perpendicular velocity of the particles of the beam, which is called the pitch-angle scat-
tering. This section presents some main results of the linear theory as well as qualitative
explanations of the processes involved in the instability.

2.6.1 Linear theory

Linear theory uses the Vlasov equation with the first-order perturbation method to
calculate the dispersion relation (relationship between the complex frequency ω (including
the real frequency and the growth-rate) and the real wave number k of the produced
waves) for the generated waves. It is valid for small perturbations and shows that the
initial perturbation grows at a rate that depends on the wave vector γ(k) (see section
2.72.7 for more details), as well as the presence of a maximum in the growth rate γmax,
associated with a specific value of the wave vector kmax. More details about linear theory
can be found in section 2.72.7.

We shall now focus on the current status of research of ion/ion-driven magnetic stream-
ing instability with propagation parallel to the magnetic field, as it has been shown that
they are the fastest growing (see Wang and Lin 20032003). Linear theory (Gary 19911991) has
shown that there are essentially three different modes, with different polarization and
corresponding to different, unstable magnetosonic waves. There are two ion-cyclotron
resonant modes, with right-hand and left-hand polarization, and one non-resonant mode
which is right-hand polarized, but counter-propagating with respect to the driving beam
direction. Both resonant modes and the non-resonant mode are electromagnetic in na-
ture, and only occur in the presence of a magnetic field. Each of these modes originate
from a distinct normal mode that is found when the beam has no drift velocity.

Here we will present the two different kind of modes that are generated by the mag-
netic streaming instability and appear in the linear theory. A current-driven picture for
both resonant and non-resonant modes was proposed by Schure et al. 20122012, where both
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2.6 Physics of the magnetic streaming instability

mechanisms are driven by the Lorentz force j×B induced by the beam, which first-order
component writes:

j1×B0 + j0×B1 (2.8)
The first term is at the origin of the two resonant modes, the second is at the origin

of the non-resonant mode.

2.6.2 Resonant modes
The resonant mode, driven by the component j1×B0 of the Lorentz force, occurs when

a sufficient number of particles resonate with the waves, fulfilling the resonance condition:

ω−k‖v‖±ΩC = 0 (2.9)
where ω and k‖ are the frequency and wave number parallel to the magnetic field of the
wave, v‖1 the parallel component of the resonating particle and ΩC = qB/m the cyclotron
frequency of the particle of mass m and charge q. The ± sign depends on the polarization
of the wave and shows the presence of two different modes, oppositely polarized, that
will be investigated in the following chapters. ω− kv‖ is the frequency of the wave as
seen by the particle considering the Doppler effect, and when it is equal to the particle
cyclotron frequency, the particle always experiences the same electromagnetic field and
the resonance takes place. This is illustrated in figure 2.22.2, representing the motion of a
particle (red) around a magnetic field line (green) following the electromagnetic field in
the frame of a wave (blue). Tsurutani and Lakhina 19971997 give a more general resonance
condition:

ω−k‖v‖+nΩC = 0 (2.10)
with n a positive or negative integer. The case n= 0 corresponds to the Landau resonance
and the cases n= 1 and n=−1 are respectively the right and left fundamental resonance
conditions that we will consider in this paper. The right-hand resonant mode (n= 1) has
been widely studied and is believed to be responsible for the waves observed in the solar
wind and mentioned in section 2.2.12.2.1 (see Winske and Leroy 19841984)

2.6.3 Non-resonant mode
The non-resonant mode, contrary to the resonant modes, does not require a resonance

condition to be fulfilled. It was referred by Gary 19911991 and Winske and Leroy 19841984 as
"firehose-like", which happens when a strong temperature anisotropy along a magnetic
field T‖/T⊥ > 1, with a parallel pressure exceeding the contributions of the perpendicular
and the magnetic pressures β‖ > 1. In the case of the streaming instability, they believed
that the role of the pressure was played by the bulk pressure of the beam, associated with
its mean velocity.

According to Malovichko, Voitenko, and De Keyser 20142014, this instability actually has
a current-driven origin which was not identified at the time by Winske and Leroy 19841984
and it is identical to the instability described by Bell (Bell 20042004). As shown in figure 2.32.3
(taken from Zirakashvili, Ptuskin, and Völk 20082008), the driving force is j0×B1 (in red),
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Figure 2.2: Scheme of the resonant mode. The particle trajectory (red) around the
magnetic field (green) follows the polarized electromagnetic field of the waves (blue).

which acts on the beam-induced current, and the reaction to this force (blue) increases
the magnetic perturbation, creating a feedback that enhances the driving force. This
mode does not require an ion-cyclotron resonance to take place. It was in fact initially
studied within a fluid approach in Bell 20042004, and only later re-derived within a fully
kinetic description by Amato and Blasi 20092009.

2.7 Analytical results
To study analytically the development of the instability we use the linear theory from

the Vlasov equation, which applies while the perturbation is still relatively small (in the
first moments of its development). In this section we present the main equations and
results as well as the underlying hypothesis. The detailed development of these equations
can be found in Montgomery et al. 19761976 (original development), Gary 19911991 (review of
previous theoretical works) and Gary 19931993 (book that summarizes the linear developments
of most of the streaming configurations).

2.7.1 Dispersion relation in the general case
In heliospheric plasma, Gary 19911991 focused the linear development of the Vlasov equa-

tions for a collisionless magnetized plasmas. The Vlasov equation then writes:

∂f

∂t
+ v · ∂f

∂x
+ q

m
(E + v×B) · ∂f

∂v
= 0 (2.11)

with f = f(x,v, t) the particle distribution function. For a homogeneous plasma, the
dependence in space vanishes (f = f(v, t)). Furthermore, the plasma we consider is gy-
rotrop, which means that the 2 directions in the perpendicular plan are equivalent. In
such a case, the distribution function only depends on the parallel and perpendicular com-
ponent of the velocity f(v‖,v⊥, t). On the distribution function we apply the perturbation
theory, considering the distribution function to be f(x,v, t) = f0(v‖,v⊥) +f1(x,v, t) with
f1� f0, f0 being the equilibrium distribution function, that does not depend on time nor
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2.7 Analytical results

Figure 2.3: Scheme for the non-resonant mode. The perturbed magnetic field (green) acts
on the current with the Lorentz force (red) and there is a reaction on the background
that amplifies the waves (red).

space and f1 the perturbation. The perturbation is of the form

f1(x,v, t) = f1(v)eı(k.x−ωt)

with ω = ωr+ ıγ, ωr being the frequency of the wave and γ its growth (or damping) rate.
When γ > 0, the modes is unstable (f1∝ eı(k.x−(ωr+ı|γ|)t) = eγteı(k.x−ωrt)), and when γ < 0,
the modes is damped. The general solution then writes:

ω2−k2c2−k2c2
∑
s

ω2
p,s

2k2c2ns

∫
v⊥

(
k‖v⊥

∂fs,0
∂v‖

+
(
ω−k‖v‖

) ∂fs,0
∂v⊥

)(
k‖v‖−ω∓ΩC,s

)−1
= 0

(2.12)
where the sum is over all species. This expression can be simplified by considering
Maxwellian equilibrium distribution functions. Such an assumption enables a simpler
study of the dispersive properties of our system. Using such distributions for f0:

f0(v‖,v⊥) = n0
(2πv2

T )3/2 exp
[
−
m(v‖−Vb)2

2kBT‖
− mv2

⊥
2kBT⊥

]
(2.13)

Here kBT =mv2
T is the thermal energy, and T‖ and T⊥ are the temperatures parallel and

perpendicular to the magnetic field. Considering only electromagnetic modes propagating
parallel to the initial magnetic field k ‖B0 we get the dispersion relation:

1−
(
kc

ω

)2
+
∑
s

(
ωp,s
ω

)2
ζsZ

(
ζ±s
)

= 0 (2.14)
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where the sum is over all the species and ωp,s the plasma frequency. ζ, ζ± and Z (the
plasma dispersion function or Fried and Conte function, Fried and Conte 19611961) are defined
as:

ζs = ω−kVs
kvT,s

(2.15)

ζ±s = ω−kVs±ΩC,s

kvT,s
(2.16)

Z(ζ) = π−1/2
∫ ∞
−∞

e−t
2

t− ζ
dt= ı

√
πe−ζ

2
erfc(−ıζ) (2.17)

where ΩC,s is the cyclotron frequency, ω and k are the frequency and wave vector of the
wave, Vs and vT,s are the fluid and thermal velocities of the population s. The ± sign
depends on the helicity of the perturbation, meaning the sense of rotation of the field in
space at a given time (contrary to the polarization which is the sense of rotation of the
field in time at a given space, this difference will be discussed in more details in chapter 44.
In this case, the + sign being positive helicity (left rotation) and − being for the negative
helicity (right rotation).

We consider three populations: the main plasma m, the beam b and the electrons e,
with Ve = 0 (frame of the electrons). We focus on low frequency modes (below the proton
gyrofrequency). At these frequencies, electrons are so fast they can be considered to move
instantaneously to follow the evolution of the ions. We get the dispersion relation:

1−
(
kc

ω

)2
+
(
ωp,m
ω

)2
ζmZ

(
ζ±m
)

+
(
ωp,b
ω

)2
ζbZ

(
ζ±b
)

+
(
ωp,e
ω

)2 ω

kvT,e
Z
(
ζ±e
)

= 0 (2.18)

In order to solve equation 2.182.18 numerically, we developed a code that uses a complex
solver (in a python library) to find the roots of this equation for a given value of k. This
gives an approximation of the complex value of ω, and iterating this process for a number
of values of k gives the ω and γ values as a function of k. Figure 2.42.4 shows the growth
rate γ represented in red and the real frequency in blue, using this code. ΩC is the proton
cyclotron frequency and c/ωp is the proton inertial length. The growth rate shows a
maximum γmax at the value kmax, which is the fastest growing mode that we are the
most likely to observe in a simulation or in an experiment. However, there is a range of k
that is unstable (γ > 0), which extends from k= 0 to k c/ωp≈ 1.7 (ωp is the proton plasma
frequency and c the speed of light) and this range gives the limit values of the length and
resolution of the spatial domain for the simulation so we can observe these waves. For
the negative part of the graph and for wave numbers above this range (k c/ωp > 1.7), the
waves are stable. The graph can be separated in two domains, the domain with k > 0
corresponding to waves that propagate in the same direction as the beam and with k < 0
for the waves propagating against the beam. Here the waves propagate in the positive
direction, and since the equation was solved for the left helicity (+ sign in equation 2.182.18),
we can conclude that the observed mode is the right-hand resonant mode discussed in
2.6.22.6.2. Around k c/ωp ≈ 0.15, the real frequency curve shows a local maximum, that is
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actually the mark of a splitting of this curve into two branches, of which only one is shown
here but other graphs in the following parts will show both of them.
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Figure 2.4: A dispersion graph (ω(k)) for the conditions f = nb/nm = 0.01, Vb = 10VA and
vt,m = vT,b = VA (which gives a plasma β of ≈ 2 and can be directly compared to previous
works), with the real wave frequency ωr in blue and the growth rate γ in red. It is a case
we will use in the next chapters. The Larmor radius of the beam particle is ρL = 2 c/ωp

2.7.2 Cold case
When dealing with cold plasmas, vT,j → 0 (the thermal velocity is small compared to

the Alfvén speed) and we have the limit for the previous expressions:

vT,s→ 0⇒ ζ±s = ω−kVs±ΩC,s

kvT,s
→∞ (2.19)

The limit for the plasma dispersion function for large ζ with ζ = x+ ıy and x > 0:

lim
ζ→∞

Z(ζ)≈ ı
√
πσe−ζ

2
− ζ−1

[
1 + 1

2ζ2 + · · ·
]

(2.20)

where σ = 0,1,2, depending on the sign of the imaginary part of ζ. Considering the
three populations, given that Ve = 0 (we are in the frame of the electrons), mp = 1836me

and ω� ΩC,e, this gives the dispersion relation in the cold plasma limit:

ω2−k2c2−
ω2
p,m(ω−kVm)
ω−kVm+ Ωm

−
ω2
p,b(ω−kVb)
ω−kVb+ Ωb

+ nee

ε0B
ω = 0 (2.21)

Equation 2.212.21 can be solved as well, and we can compare this solution to the one given
by the general equation 2.182.18 with very low temperatures. Figure 2.52.5 (a) shows the same
as in figure 2.42.4 with thermal velocities of about 105VA. We can observe at first that the
maximum growth rate in the cold case, which is about γmax ≈ 0.17ΩC is higher than for
figure 2.42.4 (that had thermal velocity of vT ≈ VA) which is around γmax ≈ 0.15ΩC , this
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Figure 2.5: Dispersion graph (ω(k)) for the conditions f = 0.01 and Vb = 10VA, with the
real wave frequency ωr in blue and the growth rate γ in red. (a) was obtained solving
equation 2.182.18 with very low temperatures and (b) solving equation 2.212.21.

effect will be addressed in chapter 44. Figure 2.52.5 (b) plots the solution of equation 2.212.21, and
we can see that both solutions are very close, and we use the same equation to plot figure
2.62.6, which shows a different situation, with a density ratio (noted f) f = nb/nm = 0.1 and
Vb = 10VA, another case we will use in the following chapters.
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Figure 2.6: A dispersion graph (ω(k)) for the conditions f = 0.1 and Vb = 10VA in the
cold plasma approximations (equation 2.212.21), with the real wave frequency ωr in blue and
the growth rate γ in red. It is a case we will use in the next chapters.

We can identify the presence of two different modes in the negative (left) and positive
(right) part of the dispersion graph, both having approximately the same γmax. Both
modes can thus coexist and be observed in the same conditions, producing different kind
of waves. These mode are identified as:

• k > 0: the right-hand resonant modes (RHR), that will be treated in 4.2.24.2.2 and that
is also the one mode we see in figure 2.42.4. The waves travel in the same direction as
the beam and right-hand polarized.
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• k < 0: the non-resonant mode (NR), will be addressed in section 4.34.3. The waves
travel in the opposite direction of the beam and are right-hand polarized as well.

The differences between these modes will be investigated in more details in chapter 44.
We have γ(NR)

max = 0.44ΩC for the NR mode and γ(RHR)
max = 0.38ΩC for the RHR mode, and

the corresponding wave numbers k(NR)
max c/ωp = −0.54 and k

(RHR)
max c/ωp = 0.14. Solving

equation 2.212.21 does not allow to find the left-hand resonant mode, as this instability only
appears when the beam has a very high temperature, therefore is not included in the
hypothesis used to derive the equation.

2.8 Heavy elements
All previously shown dispersion relations are for hydrogen plasmas (with mm =mb =

mp and qm = qb = e), but in some cases, the plasma can be of more complex composition
(interstellar medium, laboratory experiments) and effects due to a higher mass of one of
the populations must be taken into account. In this section we are then interested in
the influence of these parameters on the dispersion relation, using the same method as
in section 2.7.22.7.2 and varying the species mass to study the effects on γmax and kmax. A
theoretical study has been done in Wang, Gary, and Liewer 19991999, who studied the effects
of the mass of the beam ions on the RHR and the NR modes, and showed the presence of
an heavy-ion/proton instability. We use a situation similar to the one presented in figure
2.62.6, with a coexistence of the right-hand resonant mode and the non-resonant mode at
approximately the same γmax (f = 0.1 and Vb = 10VA), and vary either the mass of the
main plasma mm while keeping mb =mp (mp being the proton mass) or the mass of the
beam mb while keeping mm =mp.

Figure 2.72.7 (a) shows in red the maximum growth rate for the RHR (γ(RHR)
max , in solid

line) and non-resonant (γ(NR)
max in dashed line) modes and the associated kmax in blue as a

function of the main mass mm/mp. We can observe that, when increasing the mass of the
main plasma, the non-resonant mode become much less important while the right-hand
resonant mode remains approximately at the same level. The wavelength, however, stays
constant for the NR mode and decreases a bit for the RHR mode. This may be linked to
the component of the driving force involved in each of these instabilities: increasing the
magnetic perturbation is more difficult with a heavier background as the ions have more
inertia, and since the driving force of the NR mode depends on the amplitude of these
perturbations for NR mode, this makes it more difficult to grow when increasing mm. On
the contrary, the main mass has no such effect on the current perturbation, and therefore
does not constraint the RHR mode in the same way.

On the other hand, figure 2.72.7 (b) plots the evolutions of the maximum growth rate for
the RHR (γ(RHR)

max , in solid line) and non-resonant (γ(NR)
max in dashed line) modes and the

associated kmax as a function of the beam mass mb/mp and shows a strong dependence of
the RHR mode that decreases strongly when the beam gets heavier while the NR mode
is barely affected, which is consistent with the result found in Winske and Quest 19861986
for the same case. We can see that the RHR mode is impacted, while the NR instability
remains almost unchanged. Again, thinking in term of inertia, this can be explained in
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Figure 2.7: Evolution of the maximum growth rate γmax (red) and the associated
wavenumber kmax (blue) for the RHR (plain) and the NR (dashed) modes with the
mass of the main plasma mm for panel (a) and the mass of the beam for panel mb. Here
li = c/ωp is the proton inertial length.

the fact that the Lorentz force has more difficulties to accelerate heavier ions of the beam,
thus reducing the growth of the current perturbation. As the resonant mode rely on this
first-order component of the current, these modes are less likely to develop in the presence
of a heavier beam.

2.9 Numerical model
Although instabilities can be studied analytically within the framework of linear the-

ory, which applies when the perturbation from an equilibrium state is relatively small in
amplitude, time-dependent numerical simulations are necessary to follow the instability
from its onset into the non-linear phases, and to study its saturation mechanisms. Such
numerical simulations allows us to take advantage of the massive computational power
available with the computers to solve the equations of the model beyond the linear stage.
As the very heart of the instability lies in the form of the distribution function, as in the
resonant modes where we need to treat wave-particle interactions, a MHD (that consider
the plasma as a single fluid, including both ions and electrons) model would not be able to
capture the physics involved in this phenomenon. We thus need a kinetic description. For
the instabilities involving electron time and length scales, a full PIC model (that treats
both ions and electrons with a kinetic model) is needed but in the case of the magnetic
streaming instability, we are looking at scales of the order of the ionic gyrofrequency and
inertial length of the ions. Therefore we can consider the electrons as a massless fluid since
their mobility can then be considered as infinite, so the calculation time will be shorter,
and only the ions will get a kinetic description and be modelled as macroparticles. The
model we use is described in section 33.

We have seen in this chapter that there is a wide variety of streaming instabilities in
plasmas, and discussed few of them, like some electrostatic, electromagnetic or anisotropy
instabilities. We have also seen that these kind of instabilities are found in many places
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in the universe in a broad diversity of physical conditions. Focusing on a particular
case, we proposed a physical explanation for the phenomena occurring in this instability,
and presented some main analytical results related to it. In the following sections, we
will investigate in more details the mechanisms of this instability in the collisionless case
(chapter 44) and collisional case (chapter 55) using the model presented in chapter 33.
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Chapter 3

Presentation of the numerical model

I have merely shown that mathematical analysis is possible; I have not
shown it to be practical.

Hari Seldon - Prelude to Foundation (1988), Isaac Asimov.
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Presentation of the numerical model

Linear theory provides no information on the saturation while quasi-linear theory
provides some information on the saturation but none on the non-linear behaviours of
the instability. However, these non-linear behaviours are important to understand the
complete evolution of the instability. To move beyond the approximations of linear and
quasi-linear theories, it is however necessary to solve the full time-dependent Vlasov equa-
tion numerically, without the restrictions of linear theory, such as small perturbations,
early times, etc.

In this chapter, we present the model we use for the simulations of the magnetic
streaming instability and the inclusion of ion-ion collisions. Section 3.13.1 presents a basic
overview of different plasmas models and their specificities, section 3.23.2 will present in
details the model we use in the present work, section 3.33.3 presents some elements of
collisions in plasmas in analytical calculations while section 3.43.4 gives a more detailed
approach to the physics of Coulomb collisions. In section 3.53.5 we present the collision
module that was implemented in the numerical code, while section 3.63.6 presents some
benchmarks that were made to test this collision module. Finally section 3.83.8 present the
numerical setup we use throughout our study.

3.1 Plasma models
The complexity of many plasma processes makes it difficult to describe them using only

analytical calculations. This largely motivates the use of numerical simulations which take
advantage of the computational power available nowadays on the many, easily accessible
supercomputers. Depending on the time and length scales we are considering, and to
be as efficient as possible in the description of a given phenomenon, different kind of
plasma models are at our disposal. For example, there is no need to use a full description
of each particle interactions (N-body problem) when the timescales are such that the
plasma are always in a Maxwellian form due to collisions between the particles. Instead
one may be content to manipulate the macroscopic quantities that are the first moments
of the distribution function, such as the density, the fluid velocity or the pressure of the
plasma. In this section we present the the principal features of the main types of models
for plasmas, starting with the kinetic approach, then moving on with the fluid models,
and finally giving a description of hybrid models.

3.1.1 Kinetic models
The kinetic description for a plasma comes from the solution of the Vlasov equation.

There are several ways to solve Vlasov equation numerically (equation 2.112.11). One of
the most widely used methods is the Particle-In-Cell approach, which consists in solving
the Vlasov equation for discrete parts of the distribution function, represented by so-
called "macroparticles". The electromagnetic fields are then updated on the grid using
the information inferred from the "macroparticle" position.
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3.1 Plasma models

Macroparticles are computational particles that represent a large number of real par-
ticles. The position and velocity of this macroparticles are then the average position
and velocity of an ensemble of real particles. In PIC methods, each macroparticle has a
finite size analytically described by a shape factor (see e.g. Birdsall and Langdon 19911991
or Lapenta 20122012) . These "shape functions" are used to interpolate the density in any
position in space x and velocity space v depending on the position and velocity of the
macroparticle xp and vp. The distribution function produced by a macroparticle is given
by:

fp(x,v, t) =NpSx (x−xp(t))Sv (v−vp(t)) (3.1)
where Np is the number of real particles represented by a macroparticle and Sx and Sv
are the shape functions in the real and velocity spaces. The total distribution function in
the 6 dimensional space (3 for the real space and 3 for the velocity space) is thus the sum
of all contribution of the macroparticles. The shape function in a given dimension can be
of order 0 (rectangle function), order 1 (triangle function) or of higher orders.

The second and third terms of the Vlasov equation are used to solve the equations
of motion (in our case, in the nonrelativistic regime) for the macroparticles with mass m
and charge q:

m
dvp
dt

= q (E + vp×B) (3.2)
dxp
dt

= vp (3.3)

To calculate the electric and magnetic fields E and B, PIC codes use Maxwell’s equa-
tions:

∇×E = −∂B
∂t

(3.4)

∇×B = µ0ε0
∂E
∂t

+µ0J (3.5)

∇·E = ρ

ε0
(3.6)

∇·B = 0 (3.7)

where ρ and J are the total charge density and current density on a grid, calculated from
the macroparticles.

In full-PIC codes, both electrons and ions are described as macroparticles. However, as
the electrons are much lighter than ions, their characteristic time-scales (e.g. Ω−1

C,e or ω−1
p,e)

are much smaller than those associated with the response of the ions. For large, multi-
dimensional systems with hundreds of millions of particles, this can lead to prohibitive
time-steps. To solve this problem, one approach in many PIC codes is to use an artificially
low mass ratio for the ions and the electrons. For example, this ratio can be as low as
mi/me ≈ 100, and still be tolerable to describe accurately many processes (see Birdsall
and Langdon 19911991).

While kinetic models have the advantage of providing an accurate description of the
plasma, and obviously kinetic effects such as particle resonances, they remain computa-
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tionally very time-consuming. In general they are limited to spatial and temporal scale
not too large with respect to the Debye length and the inverse of the plasma frequency,
which are well below those that can be afforded by fluid models.

3.1.2 Fluid models
When the description of a phenomenon does not require the kinetic description of the

plasma, a fluid model is appropriate. It is usually interesting when the time scales of the
study are large enough for the particles in a plasma to relax to a Maxwellian (through
collisions or interactions with magnetic turbulence, for instance) at all time, but can also
work for example with Lorentzian distribution. In a fluid model, only the real space is
discretized and the fluid equations are solved on the grid at each timestep. This allows
to disregard the motion of individual particles (or rather macroparticles in the case of a
PIC code), and simulate very large domains in multi-dimensions.

The transition from a kinetic to a fluid description of a specie in a plasma comes
from the reduction of its distribution function to its moments. The fluid variables are
thus these moments for each species s. Usually the first three are used: the density
ns, the fluid velocity Vs and the pressure tensor Ps. When considering several species
(for example two species of ions and one specie of electrons), we can use a multi-fluid
description, where each of the species are described as a different fluid. A particular case
of multi-fluid model is the two-fluid, where the two species considered are the electrons
and the ions. A variation of the two-fluid model is the widely used single fluid MHD
model where all the plasma, electrons and ions, are treated as a single fluid. In the non-
relativistic regime (V/c� 1 with V the typical velocity of the system), low-frequency
limit (ω� ωp,e where ωp,e is the plasma frequency) and under the assumption that the
ion Larmor radius is negligible compared to the size of the system (ρL,s� L), the MHD
model is then described by the following set of equations (see Krall and Trivelpiece 19731973):

• the continuity equation:
∂ρm
∂t

+∇·ρmV = 0 (3.8)

with ρm = neme+nimi the total mass density and V =meVe+miVi/(me+mi);

• the momentum transport:

ρm

(
∂V
∂t

+ (V ·∇)V
)

= J×B−∇p (3.9)

with p the pressure of the plasma, reduced to a scalar under the assumption that
the collision frequency between ions and electrons is high compared to the cyclotron
frequency (νei�ΩC,i), and J the current density of the plasma. This reduction can
also be done under the assumption that the typical length scales of the system are
high compared to the ion Larmor radius;

• the electron equation of motion is replaced by the Ohm’s law:

E + V×B = ηJ (3.10)

34



3.1 Plasma models

with η the resistivity reduced to a scalar for the same reason as the pressure;

• the Maxwell’s equations for the electric and magnetic fields E and B, neglecting the
displacement current:

∇×E = −∂B
∂t

(3.11)

∇×B = µ0J (3.12)

Some variations of this set of equations can be found under different assumptions,
usually by adding terms to the equations (for example, the Hall term in the Ohm’s
law). This set of equation needs a closure equation that usually relate the last and first
moments (the pressure and the density). For instance, we can use the adiabatic fluid
closure relation:

d

dt

[
pρ−γm

]
= 0 (3.13)

with γ the adiabatic index. We can also use the isothermal fluid assumption:

d

dt

[
p

ρm

]
= 0 (3.14)

3.1.3 Hybrid model

Hybrid models mix kinetic and fluid aspects within the same description of a plasma.
Hybrid-PIC are a compromise between the precision of a fully kinetic model and the
computational efficiency of a fluid description. In hybrid-PIC models the electrons are
modeled as a massless fluid while the ions are treated with a kinetic description. Because
the electrons have an infinite mobility, they move instantaneously over the characteristic
timescales of the ions, which is of the order of the inverse of the ion gyro-frequency.
Consequently, the high-frequency, small length scales associated with the electron are
removed, and larger time-steps can be taken in the computations. Clearly processes
such as the dissipation of energy at the electron scales or high frequency waves such as
the electron Langmuir waves are not described by this model. This type of model is
very popular in studying the magnetic streaming instability (see Winske and Quest 19861986,
Wang and Lin 20032003), and it is the one we employ in the present study. The details of our
model along with the equations are presented in section 3.23.2.

Another kind of hybrid model is given by coupling a MHD model to a kinetic de-
scription for one or more species. When the kinetic particles do not interact with the
MHD fluid, we have the so-called "test particle" model. On the contrary, in MHD-PIC,
the kinetic particle may interact directly with the fluid (for example via collisions) or
couple to the background by generating electromagnetic fields. This type of model has
been successfully used in describing the non-resonant mode of the magnetic streaming
instability in the case of cosmic-ray acceleration in shocks (with a kinetic description of
the cosmic rays and a MHD model for the background plasma, see Bai et al. 20152015).
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In this work, we use a hybrid code to simulate the interaction of a streaming beam of
ions in a plasmas. The next section presents the hypothesis and equations of the model
as well as the unit system we use.

3.2 Presentation of the numerical hybrid model
In this section we present the equations employed in the model, the assumptions made,

as well as the setup we use for the simulations. As shown in previous works, the instability
is essentially kinetic at the scales of the ions, and the use of a kinetic treatment for the
ions, but not for the electrons, is well justified. In our hybrid-PIC model, the ions are
treated as macroparticles within a PIC framework, and the electrons are treated as a
massless fluid. The macroparticles (which we will also refer to as particles hereafter),
which are discrete parts of the distribution function and represent a given density of real
particles, have a shape function of order 1 (see Birdsall and Fuss 19691969 and Lapenta 20122012).
Which means that their velocity and mass density are linearly interpolated to the grid
points where the fields are evaluated. The code is called Heckle, is fully 3D and MPI
parallelized. Particle motions are integrated in time using a Boris pusher and a leap-frog
scheme, and the electromagnetic fields are integrated using a predictor-corrector scheme
(Harned 19821982); the main algorithm is described in Winske and Quest 19861986.

Macroparticles experience the classical equations of motion for particles of mass m
and charge q:

m
dvp
dt

= q (E + vp×B) + Fcoll (3.15)
dxp
dt

= vp (3.16)

where vp and xp denote the particle velocities and position, E and B are the electric
and magnetic fields, and Fcoll is the force due to the collisions. Maxwell equations are
used for the induced magnetic field and current density, and are simplified by neglecting
the transverse component of the displacement current:

∂B
∂t

= −∇×E (3.17)

µ0J = ∇×B (3.18)

where J is the current density (transverse component). The electric field comes from an
Ohm’s law where the electrons inertia is neglected since the electrons are considered as a
fluid:

E = −Vi×B + 1
qNe

(J×B−∇Pe) +ηJ (3.19)

In this expression Vi is the ion fluid velocity, Pe is the scalar electron pressure, Ne is
the electron density, equal to the total ion density by imposing quasi-neutrality, and η
the resistivity of the plasma. To calculate the electronic pressure, we use an isothermal
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3.3 Collisions in analytical calculations

closure relation:
Pe =NekBTe (3.20)

with Te the constant and uniform electronic thermal energy.
We define n0 and B0 as the initial unperturbed uniform plasma density and magnetic

field. The associated Alfvén velocity V0, gyrofrequency Ω0 and ion inertial length l0 are
given by:

V0 = B0√
µ0n0mp

(3.21)

Ω0 = eB0
mp

(3.22)

l0 = V0
Ω0

=
√

mp

µ0n0e2 (3.23)

where mp is the proton mass and e the elementary charge
To model Coulomb collisions we use the algorithm developed by Takizuka and Abe

19771977, which pairs macro-particles, within a given cell and at each time-step, to calculate
the change of velocity via a Monte-Carlo method. The details of this method are given
in section 3.53.5, along with the definition of several new quantities that are used in the
calculation of the collisional scattering of macro-particles.

3.3 Collisions in analytical calculations
Plasmas are composed of ions and electrons, and in partially ionized plasmas they can

also include neutral species. All these different populations can interact through collisions,
which in general occur over very different timescales. Coulomb collisions between charged
particle take place because of the microscopic electric force arising from the particle’s
charge. Collisions in partially ionized plasmas also include those between neutral atoms
(or molecules) and ions and electrons; this is often the case in the cold interstellar medium.

Within the framework of kinetic theory, collisions in a plasma are modelled by a
collision operator in Vlasov equation. For the distribution function of species a, Vlasov
equation is:

∂fa
∂t

+ v · ∂fa
∂x

+ q

m
(E + v×B) · ∂fa

∂v
= Ca (3.24)

The Ca collision operator gives the change in the distribution function of species a due
to collisions, and is equal to zero in the collisionless case. The collision operator is the
sum of the collisions acting on a given specie by all other species present in the plasma,
that is Braginskii 19651965:

Ca =
∑
b

Cab(fa,fb) (3.25)

The sum is made over all species in the plasma (including a) and Cab(fa,fb) is the collision
operator of the specie b on the specie a.
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Works such as those of Cottrill et al. 20082008 or Hao et al. 20092009, looked at the effects of
collisions on various instabilities using a Vlasov-Krook operator of the form:

Ca =−ν (fa−fa,0) (3.26)

with fa,0 an equilibrium distribution (usually Maxwellian) of fa and ν the Krook collision
frequency, usually identified with the Coulomb collision frequency. This operator does
not capture the full physics of Coulomb collisions and it is essentially a phenomenological
operator, however it has the advantage of being much simpler to manipulate in calculations
than the Landau operator that we will detail later. Nevertheless, this operator has the
defect of not conserving explicitly the charge. Thus more sophisticated variations of this
model were developed (see Bhatnagar, Gross, and Krook 19541954). In Fried, Kaufman, and
Sachs 19661966, an operator that conserves explicitly the energy was developed and it was
then used in Opher, Morales, and Leboeuf 20022002 to calculate susceptibilities in plasmas.

Another collision operator is the Landau operator developed in Braginskii 19651965 that
we present in section 3.43.4. This operator considers Coulomb collisions and is much more
difficult to manipulate in calculations than a Krook-like operator, hence the need of
implementing it in self-consistent computer simulations. Once integrated the Landau
operator takes the form:

Cab = 4πe2
ae

2
bΛ

2m2
a

∂

∂vα

(
Dbαβ

∂fa
∂vβ
−ma

mb
fa

∂

∂vβ
Dbαβ

)
(3.27)

Dbαβ =
∫
v′f ′b

u2δαβ−uαuβ
u3 d3v′ (3.28)

with Dbαβ being the diffusion tensor. This is the Fokker-Planck operator, the first term
representing diffusion and the second the dynamical friction. Such operator (in the Lan-
dau form) was used in Baalrud, Hegna, and Callen 20092009 to show evidences of instability-
enhanced collisional frictions, that were observed experimentally in Hershkowitz, Yip, and
Severn 20112011 and showed good agreement with theory. Another example is the effect of
Coulomb collisions on the dispersion relation for the Weibel instability that were investi-
gated by Ryutov et al. 20142014 in the context of laser-generated plasma streams.

We have seen that the inclusion of collisions in Vlasov equation may take several forms.
Krook operators are the most simple and convenient ones to manipulate in analytical
theory but they do not describe with a very good accuracy processes such as Coulomb
collisions. Landau operator, in the other hand, has a much more complex form but is more
precise in describing collisional processes. It is difficult to include in analytical calculations
but can be approximated in self-consistent numerical simulations, and we will use such
operator to study the effects of Coulomb collisions on the magnetic streaming instability.
We now present some basic results on Coulomb collisions in a plasma and then introduce
the collision module developed in the code.
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Figure 3.1: (a): drawing of the path (red) of a particle experiencing a scattering angle θ
after some collisions with neutrals. (b): drawing of the path of a particle experiencing a
scattering due to Coulomb collisions in a plasma.

3.4 Physics of Coulomb collisions

In collisionless plasmas, particle dynamics is driven by the interaction with macro-
scopic electromagnetic fields that are externally applied or self-induced by the distri-
bution of particle’s charge and current density. However, particle-particle interactions
(collisions) due to the microscopic electric field generated by their charge are important
in many plasmas. Because of their Coulomb nature, these collisions are long-range in-
teractions: a given particle continuously interact with the electric field of many particles
(within a Debye sphere) and generally undergoes many small deflections. Indeed close
approaches between particles, and thus large-angle scattering are very rare in plasma.
This is not the case for neutral collisions, where collisions produce overwhelmingly large-
angle deflections. These ideas are schematically represented in Figure 3.13.1, which shows
the path (in red) followed by a particle in these two different cases. Panel (a) shows the
path followed by a particle experiencing collisions with neutral particles. The collisions
are mostly binary (involving only two particles), and over a characteristic mean free path
the particle moves along an unperturbed trajectory. On the other hand, panel (b) shows
the path of a charged particle in a plasma, which is also experiencing a total scattering
angle θ after some time. However in this case the Coulomb collisions produce mostly
small angle deviations.

In this chapter, we present some elements of physics to describe the collisional processes
inside a plasma, starting with the description of a two-body collision, then applying it to
a plasma, which leads to define different collision frequencies relevant to the system. A
more detailed development of these calculations can be found in Fitzpatrick 20142014, and we
here present only some of the main steps.
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Figure 3.2: Drawing of the scattering of a pair of particles. The particle 1 approaching
the particle 2 with the impact parameter b experiences a scattering of angle χ of its initial
velocity v0. The relative velocity experiences a scattering of total angle Θ.

3.4.1 Binary collisions

We consider an elastic collision between two charged particles approaching each other,
as shown in figure 3.23.2. A particle 1 with mass m1 and charge q1 approaches with velocity
v0 another particle 2 with m2 and q2 that remains fixed at the origin O. The frame
of reference is such that the velocity is along the x-axis (v0 = v0x), and the particle 2
is at the origin. After the collision, the particle experiences a scattering of angle χ of
its velocity, and meanwhile the relative velocity between the two particles experiences a
scattering by an angle Θ.

We define r = r1− r2 the relative position vector where r1 and r2 are the positions
of the particles 1 and 2 and the relative velocity ṙ = ṙ1− ṙ2 (we note with a dot the
time derivative of a quantity). The initial kinetic energy of the center of mass (when
the distance between particles is large enough so there are no interacting forces between
them) is associated with the initial value of the relative velocity ṙ = u:

E = 1
2µ12u

2 (3.29)

µ12 = m1m2
m1 +m2

(3.30)

with µ12 the reduced mass. The relative position vector experience the electrostatic force:

µ12r̈ = q1q2
4πε0

r
|r|3

(3.31)

40



3.4 Physics of Coulomb collisions

and the total energy is the sum of the kinetic energy, the angular momentum energy and
the electrostatic energy and writes:

E = 1
2µ12

(
ṙ2 + r2θ̇2

)
+ q1q2

4πε0r
(3.32)

Now we define z = r−1, and θ as the angle between r and the x axis at a given time. We
can show that the relative velocity also writes:

ṙ =−hdz
dθ

(3.33)

where h= |h|= r2θ is the modulus of the angular momentum. It follows that the energy
can be expressed as:

E = 1
2µ12

(
r2θ̇

)2
(dz

dθ

)2
+ z2

+ q1q2
4πε0

z (3.34)

The impact parameter b= h/u is the distance of closest approach of the two particles in
the absence of any force (the particle would then go straight). In figure 3.23.2, it corresponds
to the initial y-coordinate y0 of the particle 1. Equation 3.343.34 then gives:

b2
(
dz

dθ

)2
= 1− b2z2−

(
q1q2

4πε0E

)
z (3.35)

At closest approach where the relative vector reaches its minimum value r = rmin so
z = zmax = 1/rmin, we can show that (dz/dθ)zmax

= 0 which gives:

1− b2z2
max−

(
q1q2

4πε0E

)
zmax = 0 (3.36)

Θ is the total scattering angle of the relative velocity at the end of the collisions. It
can be found by integrating the θ angle as:

Θ =
∫ zmax

0

dθ

dz
dz =

∫ zmax

0

b√
1− b2z2− q1q2z

4πε0E

(3.37)

This integration gives:

Θ = π

2 − sin−1

 q1q2

4πε0Eb

√
4 +

(
q1q2

4πε0Eb

)2

 (3.38)

The Coulomb force being reversible, by symmetry we can show that:

χ= π−2Θ (3.39)
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from which we deduce the expression for the scattering angle of the particle 1:

tan
(
χ

2

)
= q1q2

4πε0µ12u2b
(3.40)

3.4.2 Rutherford cross-section and Landau operator

If a particle of species 1 streams with velocity u into a density n2 of particles of species
2, the probability p1 for the particle to experience be scattered by an angle Ω<χ<Ω+dΩ
is:

p1(Ω)dΩ = n2u
dσ

dΩdΩ (3.41)

where dσ/dΩ is the differential scattering cross-section. It can be shown that this differ-
ential scattering cross-section is given by:

dσ

dΩ = 1
2

(
q1q2

4πε0µ12u2

)2 1
sin4 (χ/2)

(3.42)

We can see that the differential scattering cross-section becomes very large when sin(χ/2)
becomes small, showing the dominance of small-angle scattering in a plasma. Let’s now
consider the Boltzmann collision operator between species 1 and 2:

C12(f1f2) =
∫ ∫ ∫

u
dσ

dΩ
(
f ′1f
′
2−f1f2

)
d3v2dΩ (3.43)

where f1 and f2 are the distribution functions before the collision and f ′1 and f ′2 are the
distributions after collision. The fact that small-angle scatterings dominate the Coulomb
collisions allows some simplifications for C12. In order to perform the integration, we will
need to identify bounds for the scattering angle χmin and χmax, above and below which
no collision can occur. This comes to identify bounds for the value of b, bmin and bmax,
as both values are linked by equation 3.403.40.

The lower limit, bmin, corresponds to the maximum scattering χmax. It is given by
the closest approach possible between particles, that is the distance at which the initial
kinetic energy equals the electrostatic energy. In the case of a two-body collision with
relative velocity u, this is:

1
2µ12u

2 = q1q2
4πε0bmin

(3.44)

bmin = q1q2
2πε0µ12u2 (3.45)

In the case of a distribution function, we can estimate the relative velocity assuming both
colliding populations to have the same temperature and by taking the thermal velocity
vT =

√
kBT/µ12. In this conditions we write the distance of closest approach as:

bmin = rc = q1q2
2πε0kBT

(3.46)
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For the upper limit, we need to consider the Debye shielding of the charges outside
the Debye sphere. In a simple way, at distances above the Debye radius from a given
charged particle, the ambient charges have the effect of neutralizing the electric field of
this particle. Thus particle 1 will not experience a collision with 2 if it does not get closer
than the Debye length:

bmax = λD =
√
ε0kBT

n0e2 (3.47)

where T is the thermal energy of the plasma and n0 its density. We can now define the
Coulomb logarithm Λ.

Λ = lnλc = ln
(
bmax
bmin

)
= ln

(
λD
rc

)
(3.48)

With some calculations and the newly defined Coulomb logarithm, we can now write
the Landau collision operator as:

CL12 =− 1
m1

∂

∂v1

q2
1q

2
2Λ

8πε0

∫ [δjk
u
− ujuk

u3

][
f1
m2

∂f2(v′)
∂v′k

− f2(v′)
m1

∂f1
∂vk

]
(3.49)

This is the form of the Landau operator that is implemented in the code through an
approximate Monte-Carlo collision model.

3.4.3 Collision frequencies

Collisions between particles are generally characterized by variety of collision frequen-
cies, which we now briefly derive. Let’s begin by assuming the population s of mass ms,
density ns has a Maxwellian distribution function:

fs(v) = ns

(
ms

2πkBTs

)3/2
exp

[
−ms(v−Vs)

2kBTs

]
(3.50)

In the equation above Vs is the fluid velocity of the population s and Ts the thermal
energy of the plasma. If we consider two populations with the same temperature and a
relative velocity (say, the population 1 has a drift velocity and the population 2 does not,
V2 = 0), there is a force acting on these populations due to collisional friction that tends
to reduce the relative drift. This force F12 acting on the population 1 from the population
2 is:

F12 =
∫
m1vCL12d

3v (3.51)

After some calculations and under the assumption that the drift speed it smaller than the
thermal speed vT,s =

√
2kBT/ms, it can be written as:

F12 =−m1n1
τ12

V (3.52)
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where τ12 is the time it requires for the population 2 to decelerate the population 1 through
collisional processes. This timescale takes the form:

τ12 = 6
√

2π3/2ε2
0m1(kBT )3/2

Λm1/2
12 q

2
1q

2
2n2

(3.53)

m12 = m1m2
m1 +m2

(3.54)

ν12 = 1
τ12

= Λm1/2
12 q

2
1q

2
2n2

6
√

2π3/2ε2
0m1(kBT )3/2 (3.55)

τ12 also corresponds to the mean time required for a particle 1 to experience a scattering
of π/2 due to collisional interactions with a field of particles 2. As Coulomb interactions
only affect charged particles, the different kind of collisions are the ion-ion collision νii, the
electron-electron collisions νee, the ion-electron collisions νie and the electron-ion collisions
νei which are:

νii = ΛZ2
i1Z

2
i2e

4ne

12
√

2π3/2ε2
0m

1/2
i (kBT )3/2

(3.56)

νee = Λe4ne

12
√

2π3/2ε2
0m

1/2
e (kBT )3/2

(3.57)

νie = ΛZ2
i e

4nem
1/2
e

6
√

2π3/2ε2
0mi(kBT )3/2 (3.58)

νei = ΛZ2
i e

4ne

6
√

2π3/2ε2
0m

1/2
e (kBT )3/2

(3.59)

In general we have the following ordering between all these collision frequencies, provided
that Zi is not too big:

τee ∼ τei ∼
(
me

mi

)1/2
τii ∼

(
me

mi

)
τie (3.60)

νee ∼ νei ∼
(
mi

me

)1/2
νii ∼

(
mi

me

)
νie (3.61)

as can be seen, the time it takes for electrons to scatter between them or for a field of
ions to scatter electrons is much shorter than the collision time between the ions, which
itself is much shorter than the time it takes for a field of electrons to scatter an ion:

τee ∼ τei � τii� τie (3.62)
νie� νii � νei ∼ νee (3.63)

Over the time-scales of ion-ion collisions, the electrons can then be considered as a fluid,
with collisions so frequent between the electrons that they are also expected to relax to
a Maxwellian distribution faster than any of the processes we are interested in. The
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3.5 Numerical implementation of binary collisions

frequency ordering also shows that the scattering time of ions by electrons is much larger
than that between ions, justifying the fact that we take only into account the ion-ion
collisions.

These times are essentially equilibration times. Trubnikov 19651965 gives an ordering for
the slowing down times of a flux of particles 1 in a background of particles 2. In the case
of a high energy flux, for a kinetic energy much higher than the thermal energy:

Ek
ET

m2
m1
� 1 (3.64)

the ordering for ions and electrons populations is:

τee ∼ τei ∼
√
me

mi
τii ∼

√
mi

me
τie (3.65)

In this case we have τie � τii, but this is valid only when Ek,ime � ET,emi. So for
"superfast" ions, the energy exchange is mostly made with electrons. In the case of
thermal ions (Ek ∼ET ), the ordering becomes the same as in equation 3.603.60. This section
focused on Coulomb collisions. Collisions with neutrals will be addressed in section 3.73.7.

3.5 Numerical implementation of binary collisions

Several methods have been developed to include Coulomb collisions in PIC/hybrid
codes. Two of the most efficient and widely used methods to simulate the Landau operator,
were developed by Takizuka and Abe 19771977 and Nanbu 19971997. These Monte Carlo methods
were compared in Wang et al. 20082008, who showed Nanbu’s method to be slightly more
accurate, especially for small time steps. More recently, Dimarco et al. 20152015 also presented
a method for solving the Vlasov-Landau operator, using spectral methods, and found it
to be in good agreement with analytical theory. We also note that for a hybrid model (as
in the present study) collisions between the PIC ions and the electron fluid may also be
included, for example by using the method detailed in Sherlock 20082008. In the present work
we implemented the method developed by Takizuka and Abe 19771977 in our code Heckle.
The essence of the method is based on the random pairing of macroparticles within a given
computational cell and then calculating the scattering angle and their new velocities due
to their collision. The following sections are devoted to present in detail this method
and our implementation of it. We begin by describing the equations for calculating the
scattering angle (section 3.5.13.5.1), how to apply this scattering to the macroparticles (section
3.5.23.5.2), and finally in section 3.5.33.5.3 we present the details of a correction developed in Nanbu
and Yonemura 19981998 to take into account collisions between particles of different statistical
weights.
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3.5.1 Calculation of the scattering angle
By including the collisions in the hybrid model, we essentially need to solve the mod-

ified Vlasov equation (for the ions):

∂fα
∂t

+ v · ∂fα
∂x

+ e

mα
(E + v×B) · ∂fα

∂v
=
(
δfα
δt

)
c

(3.66)

where the right-hand side of the equation represents the effects of collisions. This collision
operator is the Landau-Fokker-Planck operator ((see equation 3.493.49); Landau 19651965, Wang
et al. 20082008), and it is approximated in our hybrid code with the Monte Carlo method
developed by Takizuka and Abe 19771977.

The first step of the algorithm is to make random pairs of particles within a given
computational grid cell, and calculate a scattering angle. As we can deal with several
ion populations, we need to distinguish two types of collisions: the collisions inside a
given population (intra-specie collisions) and the collisions between particles of different
populations (inter-species collisions).

For the intra-species collisions, there are two cases:

• if the cell contains an even number of particles, pairs are made such that each
particle are in one and only one pair;

• if there is an odd number N of particles in the cell, we proceed as explained before
in the even case for the N −3 first particles, and make three pairs out of the three
remaining particles, each one being paired with the other two and experiencing with
them half-a-collision, that is a collision on half a time step.

For the inter-species collisions, there can be a large difference in the number of particles
between the populations in a cell. Let us denote N1 and N2 the number of particles of
the colliding species 1 and 2, and let’s assume N1 > N2, with N1/N2 = i+ r, where i an
integer and 0≤ r < 1. We divide the populations into two groups:

• the first group composed of (i+ 1)rN2 particles 1 and rN2 particles of specie 2.
Each particle 2 is paired with i+ 1 particles of specie 1;

• the second group composed of i(1−r)N2 particles of specie 1 and (1−r)N2 particles
of specie 2. Each particle of specie 2 is taken i times in a pair with a particle 1.

Once the pairs of colliding macroparticles have been identified and their relative ve-
locity u calculated, we can then proceed to determine the scattering angle via a Monte
Carlo algorithm. We consider the frame in which the relative velocity before collision is
along the z-axis, as shown in figure 3.33.3. Since the norm of the vector does not change
in an elastic collision, we can then identify the post-collision velocity u(t+ ∆t) using the
angles Θ and Φ. The computation of the angle Φ is done by sampling uniform random
distribution with 0<Φ< 2π. The scattering angle, Θ, of the relative velocity of a pair of
particles is calculated from a Gaussian distribution of the variable δ, defined as:

δ ≡ tan(Θ/2) (3.67)
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3.5 Numerical implementation of binary collisions

Figure 3.3: Spherical set of coordinate used to define the scattering angle. The initial
relative velocity at time t u(t) is along the z-axis and the post-collision velocity u(t+∆t)
is deviated of an angle Θ and located with the angle Φ.

The variable has mean zero and variance:〈
δ2
〉

= ναβ∆t (3.68)

with ναβ the collision frequency associated with the pair of macroparticles and ∆t the
numerical time step of the simulation. Figure 3.43.4, shows the probability distribution of
the variable δ. It describes the collisionality of two macroparticles based on the time step
during which they experience the collision and a frequency, which is defined as

ναβ =
q2
αq

2
βnLΛ

8πε2
0m

2
αβu

3 (3.69)

In the equation above one particle of species α with mass mα and charge qα collides with
a macroparticle of specie β. The other symbols are, Λ the Coulomb logarithm, nL the
lowest density between nα and nβ and mαβ =mαmβ/(mα+mβ) the reduced mass. The
following relations help calculating the velocity changes using the variable δ:

sinΘ = 2δ
(1 + δ2) (3.70)

1− cosΘ = 2δ2

(1 + δ2) (3.71)

Before presenting the method to calculate the post-collision velocities from the scatter-
ing angles (next section) we discuss here the normalization used in Heckle. We remind
from section 3.23.2 that the code uses a set of units that can be fully described by mp, e, B0
and n0. mp and e are physical constants and B0 and n0 are respectively a magnetic field
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Figure 3.4: Distribution function of the δ parameter. The mean is zero and the variance〈
δ2
〉

= ναβ∆t.

and a density used for normalization.

The collision force has a simple expression in which the collision frequency is the only
needed parameter. From the Rutherford scattering expression given by equation 3.693.69,
this should be straightforwardly implemented in the hybrid PIC code. But as previously
detailed, the Heckle code is using dimensionless quantities. However, the expression of
the collision frequency involves the permittivity ε0 that is not known by the dimension
system used in Heckle. In other words, the collision frequency can not be reduced to
a combination of the units that are the proton mass, the elementary charge, the Alfvén
speed and the ion cyclotron frequency. To solve this problem, we feed the algorithm a
parameter used to calculate the collision frequency from the other dimensionless quantities
manipulated in the code. This parameter is called σ0 and writes:

σ0
Ω0

= e4n0
8πε2

0m
2
pV

3
0

= e4n0 (µ0mpn0)3/2

8πε2
0m

2
pB

3
0

(3.72)

σ0 is expressed in units of Ω0 because it is the unit of frequency used in the code. As
we can see, fixing σ0 comes to artificially fixing the value of ε0 with respect to the unit
density and magnetic field. Thus, increasing the σ0 parameter can mean increasing the
density of the plasma we consider or decreasing the magnetic field in the system. There is
a similar problem in the definition of the Coulomb logarithm. Indeed, Coulomb logarithm
depends on the ratio between the Debye length and the Landau length. Both of these
lengths are associated to micro-physical processes involving departure from neutrality and
their associated force. Because of the quasineutrality hypothesis, all these effects are not
taken into account in the hybrid model. Here again we use a parameter Ψ0 to calculate
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Figure 3.5: The relative velocity u of the pair of particles in the laboratory frame, located
by the angle θ and φ in a spherical coordinate set.

the Coulomb logarithm, that is defined as follow:

Ψ0 = log
4π (kBT0ε0)3/2

e3√n0

 (3.73)

where kBT0 = mpV
2

0 . We thus need to fix a numerical value for these parameters from
the physical values obtained in laboratory plasmas or in the interstellar medium.

The collision frequency is thus calculated using σ0 and Ψ0 as:

ναβ = σ0
q̃2
αq̃

2
βñL

m̃2
αβũ

3

Ψ0− log

 q̃αq̃β
(
m̃α+ m̃β

)
m̃βkBT̃α+ m̃αkBT̃β

 ñαq̃2
α

kBT̃α
+
ñβ q̃

2
β

kBT̃β

1/2
 (3.74)

where q̃s = qs/e, ñ= n/n0, m̃s =ms/mp, ũ= u/V0 and kBT̃s = m̃sṽ
2
T,s where ṽT,s = vT,s/V0

is the thermal velocity of the specie s. The term between brackets corresponds to the
Coulomb logarithm (Λ in equation 3.693.69).

3.5.2 Changes of velocities
Following a collision, the relative velocity of a pair of particles u = (ux,uy,uz) ex-

periences a change of velocity. We define θ and φ the spherical angles locating u in the
laboratory frame (as showed in figure 3.53.5) and Θ and Φ are the spherical scattering angles
as previously defined and showed in figure 3.33.3.

The particles α and β experience a binary collision. Their velocity change is given by:

v′α = vα+ mαβ

mα
∆u (3.75)

v′β = vβ−
mαβ

mβ
∆u (3.76)
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where ∆u = (∆ux,∆uy,∆uz) = vα−vβ is calculated in the relative velocity frame with
the scattering angles Θ and Φ (see figure 3.33.3). We can see that the equations explicitly
conserves the total momentum. The change in velocity ∆u in the initial relative velocity
frame can be found using a rotation vector with angles Θ and Φ:

u(t) = u

0
0
1

 (3.77)

u

sinΘcosΦ
sinΘsinΦ

cosΘ

 = u(t+ ∆t) (3.78)

∆u = u(t+ ∆t)−u(t) =

sinΘcosΦ
sinΘsinΦ
(cosΘ−1)

 (3.79)

The relative velocity in the laboratory frame is located with the angles θ and φ (see
figure 3.53.5). Thus, to calculate the change of velocity in the laboratory frame we need to
apply a rotation matrix to the change of velocity calculated before:cosθ cosφ −sinφ sinθ cosφ

cosθ sinφ cosφ sinθ sinφ
−sinθ 0 cosθ

u
sinΘcosΦ

sinΘsinΦ
(cosΘ−1)

=

∆ux
∆uy
∆uz

 (3.80)

with u= |u|. This gives the three components of the change in the relative velocity:

∆ux = cosφucosθ sinΘcosΦ− sinφusinΘsinΦ−usinθ cosφ(1− cosΘ) (3.81)
∆uy = sinφucosθ sinΘcosΦ + cosφusinΘsinΦ−usinθ sinφ(1− cosΘ) (3.82)
∆uz = −usinθ sinΘcosΦ−ucosθ (1− cosΘ) (3.83)

We define the following quantities (see figure 3.53.5):

u⊥ = usinθ (3.84)
ux = u⊥ cosφ= usinθ cosφ (3.85)
uy = u⊥ sinφ= usinθ sinφ (3.86)
uz = ucosθ (3.87)

With u⊥ =
√
u2
x+u2

y and u = |u|. We get the following expressions for the change of
relative velocity in the laboratory frame:

∆ux = (ux/u⊥)uz sinΘcosΦ− (uy/u⊥)usinΘsinΦ−ux (1− cosΘ) (3.88)
∆uy = (uy/u⊥)uz sinΘcosΦ + (ux/u⊥)usinΘsinΦ−uy (1− cosΘ) (3.89)
∆uz = −u⊥ sinΘcosΦ−uz (1− cosΘ) (3.90)
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3.5.3 Correction for particle weightings
The algorithm of Takizuka and Abe 19771977 that we presented only works for particles

of the same statistical weight, Ws,i, which for the specie s and the particle i, is defined
as:

ns =
∑

i=1...Ns

Ws,i (3.91)

However, it is often the case that different species have disparate densities (or masses) for
example. It is thus more convenient, from a computational perspective, to use different
statistical weights for the particles. When two particles involved in a collision have dif-
ferent weights, a correction needs to be made to Takizuka’s algorithm. This correction is
detailed in Miller and Combi 19941994 and Nanbu and Yonemura 19981998, and we here present
the necessary modification to the method outlined earlier.

The first part of the correction consists in a modification of the δ parameter presented
in equation 3.683.68: for the particles of species α and β with number of macroparticles Nα
and Nβ and weights Wα and Wβ (every particles in a given specie has the same weight),
the corrected parameter δcorr is given as follow:

• when Nα >Nβ, δ is multiplied by the factor:

δcorr = δ
max(Wα,Wβ)

Wβ

• when Nα <Nβ, δ is multiplied by the factor:

δcorr = δ
max(Wα,Wβ)

Wα

The second part of the correction is to introduce a probability for the particles to expe-
rience a scattering after a collision so that a "heavier" particle experience less scatterings
than a "lighter" one:

• for Wα >Wβ, the probability is Wβ/Wα for the particle α and 1 for the particle β;

• for Wα <Wβ, the probability is Wα/Wβ for the particle β and 1 for the particle α.

We stress that because of this correction, the explicit conservation of energy breaks down.
However, energy is still conserved on average for a large number of particles and time
steps.

3.6 Benchmarks for the collision module
In order to test the collision module, we carry out a number of benchmarks tests.

These correspond to some common physical situation where analytical results or pub-
lished numerical results exist for comparison. For testing purposes, we use a 0D-model
that takes in account only the velocity components of the particles and not their spatial
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position. The tests are thus equivalent to the algorithm being applied to a single cell of
the computational domain. For the tests, the particles are initialized randomly with a
given distribution function, using either a Box and Muller algorithm (used to generate
random velocities according to a Maxwellian distribution) or an uniform random number
generator (for a step function). In this case, the collision frequency is calculated as well
as in the Heckle code, using a given set of the two parameters σ0 and Ψ0. The tests
carried out are:

• Temperature anisotropy relaxation;

• Temperature equilibration of two populations;

• Relaxation to a Maxwellian and energy conservation;

• Collisional beam scattering.

For each of these situations we run convergence tests by varying the number of particles
and/or the time step.

3.6.1 Temperature anisotropy relaxation
We start with a distribution in velocity that is anisotropic such that Tx = T‖ > Ty =

Tz = T⊥. The initial temperature difference, (T‖−T⊥)/T‖� 1. Collisions are expected
to make the system relax to an isotropic distribution (T‖ = T⊥). This is shown in figure
3.63.6 (a), where we can see the temperature in different directions relax to the same value.
The temperature difference ∆T =

∣∣∣T⊥−T‖∣∣∣ obeys the following equation (see Trubnikov
19651965):

dT⊥
dt

=−ναT (T⊥−T‖) (3.92)

with

ναT =
e2
αe

2
βnαΛ

8π3/2ε2
0mαT 3/2A

−2

−3 + (A+ 3)
arctan

(
A1/2

)
A1/2

 (3.93)

A =
(
T⊥
T‖

)
−1 (3.94)

We now present the numerical results of the relaxation of a distribution with an initial
anisotropic temperature and compare it to theoretical predictions. In order to study a
substantial statistical sample, we perform 160 runs for each situations and take the mean
of the temperatures over all the simulations. Figure 3.63.6 (b) shows the evolution of the
temperature anisotropy: (

∆T (t)
∆T (0)

)
‖/⊥

=
T‖(t)−T⊥(t)
T‖(0)−T⊥(0) (3.95)

for different numerical timesteps: ∆t σ0 = 0.005, ∆t σ0 = 0.002 and ∆t σ0 = 0.001. As
expected, decreasing the timestep improves the numerical solution, and we find good
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Figure 3.6: (a): evolution of anisotropic temperatures (temperatures parallel and perpen-
dicular T‖ and T⊥ to the magnetic field) with time due to collisions. (b): temperature
anisotropy ((∆T )‖/⊥ = T‖− T⊥ normalized to its initial value) relaxation for different
timesteps ∆t σ0. The analytical solution is shown in black.

agreement for ∆t σ0 = 0.001. Figure 3.73.7 (a) shows the evolution of the anisotropy for
different number of particles: a small number case, with an even and odd number of
particles, and a high number case, again with an even and odd number of particles. The
evenness of N needs to be tested because this case goes into a different loop in the code,
that also needs a benchmark trial. We can see that changing the number of particles
in a cell (in that case, multiplied by 8) does not significantly change the solution, only
the solution fluctuates a lot in time. This is consistent with the results found in Wang
et al. 20082008 for the Takizuka and Abe algorithm, and shows that once the number of
macroparticles is high enough (meaning that the sampling of the distribution function is
good enough), there is no better accuracy on collisional processes when increasing this
number.

Finally, in figure 3.73.7 (b) we show the same anisotropic temperature test case, but
implemented in the full code, that is including the particle pusher and the electromagnetic
field solvers. The blue line corresponds to the case with collisions and the green line is with
for the case where collisions are disabled. The numerical solution recovers the analytical
prediction when collisions are present, and there is no isotropization when the module is
not activated. This shows that the collision module integrates well within the code and
that there are no spurious effects.

3.6.2 Temperature equilibration of two populations

We start with two populations 1 and 2 that have a different isotropic temperature.
We expect both plasma to relax to a single temperature obeying the equation:

dT1
dt

= ν1/2
ε (T2−T1) (3.96)
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Figure 3.7: (a): temperature anisotropy ((∆T )‖/⊥ = T‖− T⊥ normalized to its initial
value) relaxation for different numbers of particles: N = 200 (blue), N = 201 (green),
N = 1600 (red), N = 1601 (cyan). The timestep is ∆t σ0 = 10−2. (b): temperature
anisotropy relaxation in the Heckle code. The black line corresponds to the analytical
solution.

with ν1/2
ε the thermal relaxation rate defined as:

ν1/2
ε =

e4Z2
αZ

2
β
√
m1m2ni lnΛ

8ε2
0(m1kBT1 +m2kBT2)3/2 (3.97)

Zs is the charge state of the specie: qs = Zse.
As done previously, we vary the time step and the number of particles, and compare

with the theoretical solution. We take the average of the temperature over 160 simulations.
For these simulations, we take two populations, one corresponding to the electrons and
the other to the ions, with a mass ratio of m2/m1 = 10, and having opposite charges. The
initial temperatures are T1 = 0.1 and T2 = 0.075.

Figure 3.83.8 (a) plots the relaxation of a temperature difference:(
∆T (t)
∆T (0)

)
1/2

= T1(t)−T2(t)
T1(0)−T2(0) (3.98)

for different timestep, when both populations have the same number of particles N1 =
N2 = 1000, the black line is the theoretical expectation. As we decrease the timestep, the
module recovers well the theoretical solution for a ∆t σ0 = 0.0001.

Figure 3.83.8 (b) shows the thermalization for ∆t σ0 = 10−3 and different number of
particles, with still an equal number of particles for both species, N1 = N2. This shows
that the number of particles does not change the numerical solution. Again, as in the
previous section, this means that once there are a sufficient number of macroparticles
experiencing collisions, there is no accuracy to gain by increasing it. We can also see
that the number of needed particles to achieve sufficient precision is not very high (less
than 100 in the case of figure 3.83.8 (b)) and such number is anyway needed to observe the
magnetic streaming with a sufficient accuracy.
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Figure 3.8: (a): relaxation of a temperature difference (T1−T2)/(T1(0)−T2(0)) with
time for different timesteps: ∆t σ0 = 0.002 (blue line), ∆t σ0 = 10−3 (green line) and
∆t σ0 = 10−4 (red line), the analytical solution being plotted in black. N1 = N2 = 1000.
(b): relaxation of a temperature difference with time for different number of particles
with N1 =N2: N = 1000 (blue line), N = 1001 (green line), N = 100 (red line), N = 101
(blue line). Here ∆t σ0 = 10−3.

We now test the correction of the collision algorithm due to the use of different particles
weightings. Figure 3.93.9 (a) shows the temperature difference as a function of time for
∆t σ0 = 10−3 and different particle weight for the species 2. This means that for the same
number of particles for the specie 1, N1 = 1000, we vary the number of particles of the
specie 2 with the same physical density. The statistical weight W of the macroparticles
will then vary, with W1 <W2 when N1 > N2, and W1 >W2 when N1 < N2. It is clear
from the figure that solution is not affected by the change in particle weighting and that
the correction works well for this case. Figure 3.93.9 (b) plots the thermalization of two
populations in the Heckle code with and without the collisions. Again, the temperature
difference relaxes only in the presence of collisions and it is not present when those are
off.

3.6.3 Relaxation to a Maxwellian and energy conservation
In this test, we verify the relaxation of a non-Maxwellian particle distribution towards

a Maxwellian distribution. We initialize a single population with a step function velocity
distribution function. It is a constant distribution for −a < v < a and zero elsewhere,
with a =

√
3kBT/m and T being the equivalent temperature of the population. Figure

3.103.10 shows the evolution of the distribution function with time (t σ0 = 0,2,100), starting
with a step function. We can see that the initial distribution relaxes to a Maxwellian
distribution (the black curve). If we calculate the total energy in the system (∑pmpv

2
p/2)

at every time step, we can check the conservation of energy by the algorithm.
Figure 3.113.11 shows the evolution of the total kinetic energy of the particles with time,

calculated from the standard deviation of the distribution function at each time, ∑p

〈
v2
p

〉
,

for different number of particles in the simulation. The energy is conserved in average,
but large statistical fluctuations are seen for a low number of macroparticles. These
fluctuations get less important as we increase the number of particles N in the simulation.
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Figure 3.9: (a): relaxation of a temperature difference (((∆T )1/2 = T1−T2 normalized
to its initial value)) for different particle weights W . Here ∆t σ0 = 10−3 and N1 = 1000.
(b): temperature relaxation in the Heckle code with (blue) and without (green) the
collision enabled. The black line corresponds to the analytical solution.
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Figure 3.10: Relaxation of a step distribution function to a Maxwellian. In this figure
∆t σ0 = 10−6 and N = 50000 to get a sufficient statistical sampling of the initial distri-
bution. The curves are for times t= 0 (blue), t σ0 = 2 (green) and t σ0 = 100 (red). The
black line is the corresponding Gaussian function.
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Figure 3.11: (a): random variations of the energy during the relaxation of a step function
to a Maxwellian for different number of macroparticles: N = 10,100,104. (b): evolution
of the variance of the noise in the energy produced by the relaxation to a Maxwellian with
the number of used particles

√
〈E2〉. The theoretical line is plotted in green.

We can measure how important these variations are by calculating the standard deviation
of the energy

√
〈E2〉 for a given simulation. Provided that the error on the relative velocity

changes, is a random variable with a normal distribution, the standard deviation of the
distribution of the variances of this variable (that we note

√
〈E2〉) has the dependence√

〈E2〉 ∝ 1/
√
N according to the central limit theorem. This means that as we increase

the number of particles the fluctuation of the total energy decrease in amplitude. This is
indeed the case, as shown in figure 3.113.11 (b),

√
〈E2〉 as a function of N (blue curve) and

the −1/2 power law dependence (green line) predicted by the theory, together with the
numerical results.

3.6.4 Collisional beam scattering
When a test particle of speed v0 goes through a background plasma it experiences a

scattering and a slowing down due to the collisions (see section 3.43.4). This slowing down
is analytically expressed as:

v‖(t) = v0e
−ν‖t (3.99)

with the following expressions for the collisional slowing down (see Trubnikov 19651965):

ν‖ = −
(

1 + me

mi

)
ν0 (3.100)

ν0 = e4Z ∗2 ni lnΛ
4πε2

0m
2
ev

3
e

(3.101)

Here we run zero-dimensional simulation of a beam of electrons going through a back-
ground of ions with velocity v0 = 10 with mi/me = 10. Similar results are obtained with
an ion beam. Figure 3.123.12 shows the evolution of the electron parallel (blue) and perpen-
dicular (red) velocities and the ion parallel velocity (green) when the electrons initially
have a drift velocity. The theoretical solution for the electron parallel velocity is shown in
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Figure 3.12: Evolution of the particle test velocity parallel (blue) and perpendicular (red)
components to the initial velocity and the background parallel velocity (green) due to
collisions. The black line corresponds to the theoretical solution for the slowing down of
the beam.

black, and we can see that is corresponds well to the numerical solution, especially at early
times. We can see that the collisions have the effects of scattering the beam, transferring
the initial directed energy into perpendicular energy. The ion are accelerated, although
only slightly because of their high inertia, and the total momentum is conserved.

In summary, we have tested the numerical model for the collisions on a variety of
test cases. The results correspond well to the analytical predictions. More precisely,
the numerical solution tends to converge to the theoretical one when increasing the time
resolution. We find that using a timestep of about ∆t Ω0 ≈ 10−3 is enough to achieve
a good resolution for the collisions. We found that the number of particles necessary to
achieve a good accuracy of the collisional processes (less than 50) is much less than the
number of particles necessary to properly describe the instability processes. There is thus
no limit in that way coming from the introduction of collisions in the simulations.

3.7 Collisions with neutrals
In addition to Coulomb collisions, charged particles in a plasma can interact with some

neutrals when the plasma is not fully ionized. In that case, as opposite to the Coulomb
collision, the electrostatic force is not involved and the physics of the collision is quite
different. A particle can interact with a neutral when experiencing a hard-sphere kind of
collision with it, as it happens all the time and even dominates the dynamics in neutral
gases. In that case, the deviation angle θ only depends on the impact parameter b (see
section 3.43.4) and on the radius of the sphere a only if b < a as (see Rax 20052005):

cos θ2 = b

a
(3.102)

If we consider mainly interactions with atoms, the typical cross section for this type of
collisions is of the order of the section of an atom, the Bohr cross section σB = πa2

0 where
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a0 = 0.529.10−10 m is the Bohr radius of the hydrogen atom. This collision is similar to the
one experienced by two billiard balls and the scattering angle is calculated geometrically.

In weakly ionized plasmas, the collision frequency between a charged particle a and
neutral is:

νa = n0σ
a/0
s

(
kBTa
ma

)1/2
(3.103)

with n0 the neutral density, σa/0s the cross section of the order of σa/0s ≈ 5.10−17cm−2.
(kBTa/ma)1/2 is the thermal velocity of the charged population, and needs to be higher
than the thermal velocity of the neutrals: (kBTa/ma)1/2 > (kBT0/m0)1/2.

Beside the scattering that happens during a collision with a neutral particle, some
other processes occur such as the ionization of the particle, its excitation, or a charge
exchange between the two particles. To account for the charge exchange, Nanbu and
Kitatani 19951995 developed a model of ion-neutral collision and checked its validity for a
number of different populations. These collisions are inelastic because the total kinetic
energy is not conserved, some of it being used up in atomic processes, such as excitation.
Interactions with neutrals are often included in simulations of cold plasmas such as in
electric discharges Vahedi and Surendra 19951995.

3.8 Numerical setup
In section 3.23.2 we have presented the hybrid-PIC code Heckle, the collision module

was then detailed in section 3.53.5 and tested in section 3.63.6. In this sections, we introduce
the numerical set up used in the simulations whose results are presented in the rest of
thesis.

We simulate two homogeneous Maxwellian ion populations (themain plasma, referred
to with the subscript "m", and the beam , referred to with the subscript "b") on a 1D
computational domain. Winske and Quest 19861986 performed a comparison between 1D and
2D simulations of this instability and showed that a 1D description is adequate to study
this type of electromagnetic instability when limiting to parallel modes. Indeed Wang
and Lin 20032003 showed similar results are obtained with 2D simulations.

The first component, the main plasma, has zero mean velocity, density nm = n0 and
thermal energy Tm, and the other component, the beam has a mean velocity Vb, a density
nb and a thermal energy Tb. The computational domain has periodic boundary conditions.
Most of the simulation are performed with hydrogen ions, so that ms =mp and qs = e.

The domain is set along the x-direction and has grid step ∆x = 1l0. We performed
simulations with a domain length of L= 1000l0 or L= 104l0. This gives a spatial Fourier
domain ranging from kmin l0 = 2π/(2L) = 2π.10−3 or kmin l0 = 2π/(2L) = 2π.10−4 to
kmax l0 = 2π/(2∆x) = π, which covers the most unstable wavenumbers (Wang and Lin
20032003). Because of the CFL condition on particles and electromagnetic fields, we use a
timestep ∆t= 0.001Ω−1

0 , which provides a good balance between accuracy and computa-
tional time. There are approximately one hundred particles per cell and per component
initially. The initial magnetic field B0 is in the x-direction. The setup allow us to study
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Figure 3.13: Convergence test of an unstable case while varying (a): the timestep ∆t and
(b): the number of macroparticles per cell N . (a): ∆t Ω0 = 10−2 (blue), ∆t Ω0 = 2.10−2

(green), ∆t Ω0 = 10−3 (cyan) and ∆t Ω0 = 2.10−4 (black), with ∆x= l0 and N = 50. (b):
N = 10 (blue), N = 50 (green), N = 100 (cyan) and N = 500 (black), with ∆x = l0 and
∆t Ω0 = 10−3.

modes propagating parallel to the ambient magnetic field (k×B = 0), which have been
shown to be the fastest growing modes (see Wang and Lin 20032003). We have also run an
extensive set of simulations with increasing spatial and temporal resolution, as well as a
larger number of particles per cell, to establish the optimum range of parameters.

Figure 3.133.13 displays the evolution of a simple case of instability that will be presented
in chapter 44 when varying the timestep (panel (a)) and the number of particle (panel
(b)). We can see that when changing the timestep, there is a jump before ∆t Ω0 = 10−3.
Before this value, the solution is unchanged by the timestep, then changes at this value to
remain also the same with higher time resolution. When changing the number of particles,
the solution is noisy and very different for N = 10 compared to the other cases. When
N ≥ 50, the value of the growth rate as well as the magnetic saturation does not change,
only the initial noise is lower when increasing N , making the instability develop later in
time. Figure 3.143.14 shows the same case when varying the grid step ∆x. We can see that
the solution converges when ∆x≤ l0, and the saturation as well as the growth rate is the
same for higher spatial resolution. For ∆x > l0, the solution becomes more different when
increasing the grid step, with a lower level of saturation and growth rate. This means that
for these values, the waves are not properly resolved and the instability is not correctly
described. When decreasing ∆x, the initial noise is also lower but this can be explained
by the fact that there are more cells in the domain, thus more macroparticles, and this
refers to the explanation of figure 3.133.13 (b). We can see that the optimal values for these
numerical parameters that we will use is ∆t Ω0 = 10−3, N = 100 and ∆x= l0.

For the collisional cases, only the value of the collision frequency (parameter σ0) is
varied, the Ψ0 parameter is kept to 25, which is representative of many plasmas. Because
of the presence of the log, this parameter is a very weak function of n0 and T0, and does
not change appreciably the expression of the collision frequency. For example, in the solar
wind, where n0≈ 100cm−3 and B0≈ 10−9T , we have Ψ0≈ 15. In laboratory experiments,
where n0 ≈ 1023m−3 and B0 ≈ 20T , we have Ψ0 ≈ 17. To apply the simulation results to
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Figure 3.14: Convergence test of an unstable case while varying the grid step ∆x: ∆x=
10l0 (blue), ∆x = 5l0 (red), ∆x = 1l0 (cyan) and ∆x = 0.1l0 (black) with ∆t Ω0 = 10−3

and N = 50.

environments with a lower or higher Coulomb logarithm, requires a small multiplicative
factor to be applied to the general collision frequency.

61



Presentation of the numerical model

62



Bibliography

Birdsall, C. K. and A. B. Langdon (1991). Plasma Physics via Computer Simulation (cit.
on p. 3333).

Lapenta, G. (2012). “Particle simulations of space weather”. In: Journal of Computational
Physics 231, pp. 795–821 (cit. on pp. 3333, 3636).

Krall, N. A. and A. W. Trivelpiece (1973). Principles of plasma physics (cit. on p. 3434).
Winske, D. and K. B. Quest (1986). “Electromagnetic ion beam instabilities - Compar-

ison of oneand two-dimensional simulations”. In: Journal of Geophysics Research 91,
pp. 8789–8797 (cit. on pp. 3535, 3636, 5959).

Wang, X. Y. and Y. Lin (2003). “Generation of nonlinear Alfvén and magnetosonic waves
by beam-plasma interaction”. In: Physics of Plasmas 10, pp. 3528–3538 (cit. on pp. 3535,
5959, 6060).

Bai, X.-N. et al. (2015). “Magnetohydrodynamic-particle-in-cell Method for Coupling Cos-
mic Rays with a Thermal Plasma: Application to Non-relativistic Shocks”. In: Astro-
physical Journal 809, 55, p. 55 (cit. on p. 3535).

Birdsall, C. K. and D. Fuss (1969). “Clouds-in-clouds, clouds-in-cells physics for many-
body plasma simulation”. In: Journal of Computational Physics 3, pp. 494–511 (cit. on
p. 3636).

Harned, D. S. (1982). “Quasineutral hybrid simulation of macroscopic plasma phenom-
ena”. In: Journal of Computational Physics 47, pp. 452–462 (cit. on p. 3636).

Takizuka, T. and H. Abe (1977). “A binary collision model for plasma simulation with a
particle code”. In: Journal of Computational Physics 25, pp. 205–219 (cit. on pp. 3737,
4545, 4646, 5151).

Braginskii, S. I. (1965). “Transport Processes in a Plasma”. In: Reviews of Plasma Physics
1, p. 205 (cit. on pp. 3737, 3838).

Cottrill, L. A. et al. (2008). “Kinetic and collisional effects on the linear evolution of fast
ignition relevant beam instabilities”. In: Physics of Plasmas 15.8, 082108, p. 082108
(cit. on p. 3838).

Hao, B. et al. (2009). “Relativistic collisional current-filamentation instability and two-
stream instability in dense plasma”. In: Physical Review E 79.4, 046409, p. 046409
(cit. on p. 3838).

Bhatnagar, P. L., E. P. Gross, and M. Krook (1954). “A Model for Collision Processes
in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Sys-
tems”. In: Physical Review 94, pp. 511–525 (cit. on p. 3838).

Fried, B. D., A. N. Kaufman, and D. L. Sachs (1966). “Low-Frequency Spatial Response
of a Collisional Electron Plasma”. In: Physics of Fluids 9, pp. 292–298 (cit. on p. 3838).

63



BIBLIOGRAPHY

Opher, M., G. J. Morales, and J. N. Leboeuf (2002). “Krook collisional models of the
kinetic susceptibility of plasmas”. In: Physical Review E 66.1, 016407, p. 016407 (cit.
on p. 3838).

Baalrud, S. D., C. C. Hegna, and J. D. Callen (2009). “Instability-Enhanced Collisional
Friction Can Determine the Bohm Criterion in Multiple-Ion-Species Plasmas”. In:
Physical Review Letters 103.20, 205002, p. 205002 (cit. on p. 3838).

Hershkowitz, N., C.-S. Yip, and G. D. Severn (2011). “Experimental test of instability
enhanced collisional friction for determining ion loss in two ion species plasmas a)”.
In: Physics of Plasmas 18.5, 057102, p. 057102 (cit. on p. 3838).

Ryutov, D. D. et al. (2014). “Collisional effects in the ion Weibel instability for two
counter-propagating plasma streams”. In: Physics of Plasmas 21.3, 032701, p. 032701
(cit. on p. 3838).

Fitzpatrick, R. (2014). Plasma Physics: An Introduction. CRC Press. isbn:
9781466594272. url: https://books.google.fr/books?id=5HbSBQAAQBAJhttps://books.google.fr/books?id=5HbSBQAAQBAJ (cit. on
p. 3939).

Trubnikov, B. A. (1965). “Particle Interactions in a Fully Ionized Plasma”. In: Reviews
of Plasma Physics 1, p. 105 (cit. on pp. 4545, 5252, 5757).

Nanbu, K. (1997). “Theory of cumulative small-angle collisions in plasmas”. In: Physical
Review E 55, pp. 4642–4652 (cit. on p. 4545).

Wang, C. et al. (2008). “Particle simulation of Coulomb collisions: Comparing the methods
of Takizuka & Abe and Nanbu”. In: Journal of Computational Physics 227, pp. 4308–
4329 (cit. on pp. 4545, 4646, 5353).

Dimarco, G. et al. (2015). “Numerical methods for plasma physics in collisional regimes”.
In: Journal of Plasma Physics 81.1, 305810106, p. 013006 (cit. on p. 4545).

Sherlock, M. (2008). “A Monte-Carlo method for coulomb collisions in hybrid plasma
models”. In: Journal of Computational Physics 227, pp. 2286–2292 (cit. on p. 4545).

Nanbu, K. and S. Yonemura (1998). “Weighted Particles in Coulomb Collision Simulations
Based on the Theory of a Cumulative Scattering Angle”. In: Journal of Computational
Physics 145, pp. 639–654 (cit. on pp. 4545, 5151).

Landau (1965). “The transport equation in the case of Coulomb In-
teractions”. In: Collected Papers of L.D. Landau. Ed. by D. TER
HAAR. Pergamon, pp. 163 –170. isbn: 978-0-08-010586-4. url:
http://www.sciencedirect.com/science/article/pii/B9780080105864500298http://www.sciencedirect.com/science/article/pii/B9780080105864500298
(cit. on p. 4646).

Miller, R. H. and M. R. Combi (1994). “A Coulomb collision algorithm for weighted par-
ticle simulations”. In: Geophysical Research Letters 21, pp. 1735–1738 (cit. on p. 5151).

Rax, J. M. (2005). Physique des plasmas - Cours et applications:
Cours et applications. Physique. Dunod. isbn: 9782100527878. url:
http://books.google.fr/books?id=NIxAWzy4T9oChttp://books.google.fr/books?id=NIxAWzy4T9oC (cit. on p. 5858).

Nanbu, K. and Y. Kitatani (1995). “An ion-neutral species collision model for particle
simulation of glow discharge”. In: Journal of Physics D Applied Physics 28, pp. 324–
330 (cit. on p. 5959).

Vahedi, V. and M. Surendra (1995). “A Monte Carlo collision model for the particle-
in-cell method: applications to argon and oxygen discharges”. In: Computer Physics
Communications 87, pp. 179–198 (cit. on p. 5959).

64

https://books.google.fr/books?id=5HbSBQAAQBAJ
http://www.sciencedirect.com/science/article/pii/B9780080105864500298
http://books.google.fr/books?id=NIxAWzy4T9oC


Chapter 4

Collisionless magnetic streaming
instability

Reality is that which, when you stop believing in it, doesn’t go away.

Philip K. Dick - I Hope I Shall Arrive Soon (1985), Philip K. Dick.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6666

4.1.1 Linear and quasilinear theory . . . . . . . . . . . . . . . . . . . 6666
4.1.2 Previous numerical results . . . . . . . . . . . . . . . . . . . . . 6767
4.1.3 Method to separate the polarizations . . . . . . . . . . . . . . . 6868

4.2 Numerical results for the resonant modes . . . . . . . . . . . . 7171
4.2.1 Introduction to resonant modes . . . . . . . . . . . . . . . . . . 7171
4.2.2 Right-hand resonant mode . . . . . . . . . . . . . . . . . . . . . 7272

4.2.2.1 Time evolution of the instability . . . . . . . . . . . . 7575
4.2.2.2 Energy budget . . . . . . . . . . . . . . . . . . . . . . 7878
4.2.2.3 Results for two dimensional simulations . . . . . . . . 8080

4.2.3 Left-hand resonant mode . . . . . . . . . . . . . . . . . . . . . 8181
4.3 Numerical results for the non-resonant mode . . . . . . . . . 8686
4.4 Mixed case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9090
4.5 Influence of the plasma temperatures on the instability . . . 9393

4.5.1 Effects of the beam temperature . . . . . . . . . . . . . . . . . 9393
4.5.2 Effects of the main temperatue . . . . . . . . . . . . . . . . . . 9494

4.6 Influence of the particle mass on the instability . . . . . . . . 9595
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9696

65



Collisionless magnetic streaming instability

As explained in chapter chapter 22, instabilities can arise in magnetized plasmas when
different plasma populations are streaming through each other. These instabilities feed on
the beam kinetic energy to drive the non-linear growth of electromagnetic perturbations,
resulting in enhanced wave activity and heating of the plasma.

In this chapter, we first present an introduction to previous studies about the mag-
netic streaming instability, then we present numerical results of the magnetic streaming
instability in different cases. Section 4.24.2 will present numerical results for the resonant
cases, section 4.34.3 will address the non-resonant case, section 4.44.4 will investigate a case
with a mix of two competing modes. Section 4.54.5 investigates the effects of the plasma
temperature on the instability and in section 4.64.6 we study the influence of the particle
mass. Finally in section 4.74.7 we discuss the results presented in the chapter.

4.1 Introduction
Previous studies on magnetic streaming instability showed the effects of the instability

through both analytical and numerical work. See for example Gary 19911991 for a review of
the analytical works and Gary 19931993 for a detailed calculation of the linear theory for
all the configurations of streaming instabilities: electrostatic and electromagnetic modes,
propagation parallel and perpendicular to the ambient magnetic field, electronic and ionic
modes. Winske and Leroy 19841984 performed a comparison between numerical simulations
and analytical results, and Wang and Lin 20032003 focused on the separation of the evolution
of the instability into different phases and their specificities, using computer simulations
similar to those presented here. During the early stage of the instability, described by
the linear theory (section 2.6.12.6.1 that gives some of these results), a perturbation in the
magnetic field B1 grows exponentially as B1(t) ∝ expγt with γ the growth rate. During
this period, the particles of the beam experience pitch-angle scattering, that transforms
particle velocity parallel to the magnetic field into perpendicular velocity. A quasi-linear
theory has been developed that gives some informations about the energy exchanges rates
during this stage of the instability. After the linear stage, the perturbed magnetic field
saturates reaching a maximum, and then stabilizes to lower amplitude waves.

4.1.1 Linear and quasilinear theory
Linear theory as presented in section 2.72.7 deals with the early stage of the instabil-

ity and gives information about the excited wavelengths k and the growth rate of the
instability γ(k) by solving the dispersion relation (equation 2.182.18). For reference, figures
2.42.4 and 2.62.6 show the solution of this equation under different conditions. Although a
range of k is unstable (with a γ > 0), there is for each mode a specific wavenumber kmax
that maximizes the growth rate given by γmax. Winske and Leroy 19841984 provides simple
approximated expressions for γmax and kmax. The analytical results show the presence
of three different unstable modes, corresponding to different kind of MHD waves and
having specific polarization and direction of propagation. We will use the terminology
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first employed by Gary 19911991 to distinguish these modes. There are two resonant modes,
that are either right-hand polarized (right-hand resonant, RHR) or left-hand polarized
(left-hand resonant, LHR). These are presented in details in section 4.2.24.2.2) and section
4.2.34.2.3 respectively.

The other mode is non-resonant (NR) (section 4.34.3) and it is also described as "fluid-
like" in some of the literature. It originates from the force between the current driven
by the beam and the magnetic field (see Bell 20042004). Depending on the physical plasma
conditions, these modes can either coexist and compete or one of the modes may dominate
the dynamics.

While the linear theory was found by keeping only the first order terms in the lin-
earization of the Vlasov equation, quasilinear theory (or second order theory, developed
in Gary and Feldman 19781978) keeps the second order terms for the perturbed quantities and
focuses on the evolution of spatially averaged quantities (such as temperature, momen-
tum, etc). Quasi-linear theory provides expressions of the momentum ps and energy Es
exchanges (with s = m,b,e,f for respectively the main, the beam, the electrons and the
electromagnetic field) and it is valid under the same conditions as linear theory. Results
of quasi-linear theory were compared with computer simulation, for example by Gary and
Tokar 19851985. In addition Winske and Leroy 19841984 gives simple expressions of some results
of this theory for the RHR and the NR modes in the cold plasma approximation. In the
following we summarize some of these results. We note ps the plasma momentum, Es the
total energy, E‖,s the energy in the direction parallel to the magnetic field and E⊥,s the
perpendicular energy for a given species s.

For the RHR mode the beam momentum is transferred mostly to the main plasma, and
not to the waves or to the electrons (ṗm ≈−ṗb). Also, the beam loses little energy during
the quasilinear phase, instead the energy goes primarily in the perpendicular direction
(Ėb,‖ ≈−Ėb,⊥), which corresponds to a pitch-angle scattering, and the energy gained by
the main plasma also goes mainly in the perpendicular direction (Ėm≈ Ėm,⊥ as Ėm,‖≈ 0)

For the NR mode, the beam momentum also goes to the momentum of the main
plasma (ṗm ≈−ṗb), but its kinetic energy is largely transferred to the parallel direction
(Ėb,‖ 6=−Ėb,⊥), which means there is little or no pitch-angle scattering for the NR mode.
The main plasma, as in the RHR case, is energized in the perpendicular direction (Ėm ≈
Ėm,⊥) and the amount of energy going into the main plasma is comparable to the amount
of energy that drive the growth of the electromagnetic fields (Ėm≈ Ėf ). Winske and Leroy
19841984 also showed that the NR mode is less able to disrupt the beam for a given wave
amplitude, and that the compression of the plasma due to the instability is expected to
be more important in the NR mode than in the RHR.

4.1.2 Previous numerical results
Linear and quasi-linear theory provide very little or no information on the saturation

of the instability and its non-linear evolution. To move beyond linear and quasi-linear
theory, it is therefore necessary to solve the full time-dependent Vlasov equation numeri-
cally. There are several ways to solve the Vlasov equation numerically. One of the most
widely used methods is the Particle-In-Cell approach (see 3.1.13.1.1 and Lapenta 20122012), which
consists in solving the Vlasov equation for discrete parts of the distribution function, rep-
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resented by so-called "macroparticles". For them one then solves the equations of motion,
corresponding to the second and third terms of the Vlasov equation. The electromagnetic
fields are then updated on the grid using the information inferred from the "macroparticle"
position.

Works such as Winske and Leroy 19841984, Onsager, Winske, and Thomsen 19911991 or Wang
and Lin 20032003 performed numerical simulations with hybrid codes (such as the one pre-
sented in section 3.23.2) to compare the linear phase with theoretical predictions, such as the
instability growth rate or the wavelengths of maximum growth. As predicted, an initial
perturbation, which can be either provoked by numerical noise due to the finite number
of macroparticles, or imposed, grows exponentially at the values of k close to the ones
given by the dispersion relation.

Akimoto et al. 19931993 performed a comparative study of the nonlinear effects of the RHR
and the NR modes using computer simulations and found that after the linear growth, the
perturbation saturates at a certain level Bmax, then relaxes to a lower level of perturbation
in a steady-state. During this saturation, electromagnetic fields become high enough for
the energy to be exchanged with the particles and the beam then experiences a strong
slowing down as well as a heating. This chapter presents our own numerical results for
different plasma conditions.

4.1.3 Method to separate the polarizations

As there are cases where several modes can coexist, sometimes with very similar growth
rates (see figure 2.62.6), we need a way to distinguish and possibly study the effects of each
mode separately. Each mode has either a different polarization or a different direction
of propagation (sense of rotation of the magnetic field in time) than the other modes, so
separating the polarizations can allow us to identify these modes. To separate differently
polarized transverse waves, we use a method developed in Terasawa et al. 19861986 that we
present in this section.

In the following, we consider an electromagnetic wave travelling along a mean magnetic
field B0 that is set along the x axis (B0 =B0x), with transverse magnetic field components
By and Bz. According to the terminology used in Gary 19911991, we call magnetic helicity
(hereafter just helicity) the sense of rotation of the transverse magnetic field in space at
a given time (the "twist" of the magnetic field) and polarization the sense of rotation in
time at a given point. We thus distinguish the positive helicity with:

By
Bz

= ı (4.1)

and the negative helicity with:
By
Bz

=−ı (4.2)

However helicity and polarization are not independent and can be linked through the
direction of propagation of the wave for linear modes: two waves with the same polar-
ization, but propagating in opposite directions will have opposite helicities. Similarly,
two wave propagating in the same direction but with different polarization will also have
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vφ > 0 (k‖ > 0) vφ < 0 (k‖ < 0)
Positive helicity right pol. left pol.
Negative helicity left pol. right pol.

Table 4.1: Summary of the polarizations relative to the helicities and directions of prop-
agation.

Figure 4.1: (a): draw of a negative helicity: when propagating in the positive direction
(phase value vφ > 0, red) it gives a left polarization, and when propagating in the negative
direction (phase value vφ < 0, blue) a right polarization. (b): draw of a positive helicity:
when propagating in the positive direction (phase value vφ > 0, red) it gives a right
polarization, and when propagating in the negative direction (phase value vφ < 0, blue) a
left polarization.

different helicities. This is illustrated in figure 4.14.1. Figure 4.14.1 panel (a) shows in black a
wave with negative helicity. When propagating in the positive direction (with a positive
phase speed vφ > 0) it induces a left polarization (shown in red), and when propagating
in the negative direction (vφ < 0, shown in blue) it induces a right polarization. Similarly,
figure 4.14.1 panel (b) shows that a wave with positive helicity, that induces a right polariza-
tion when vφ > 0 (red) and a left polarization when vφ < 0 (blue). Table 4.14.1 summarizes
these relationships. In the following sections, the real part of the frequency will always be
positive (ω > 0) so that when vφ = ω/k‖ > 0 then k‖ > 0 and consequently when vφ < 0
then k‖ < 0. We now describe in more details the method we have used to separate the
different helicities at a given time.

For a transverse wave propagating in the x direction (k = kxx), the perturbation is in
general a combination of right-hand and left-hand polarized waves. From 4.14.1 and 4.24.2 we
write the expressions of the complex magnetic profiles associated with the positive (B+)
and negative (B−) helicities:

B+(x) = By(x) + ıBz(x)
2 (4.3)

B−(x) = By(x)− ıBz(x)
2 (4.4)
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and since e−ıkx = cos(kx)− ısin(kx) we get:

B̂(k) =
∫
B(x)e−ıkxdx (4.5)

=
∫
B(x) [cos(kx)− ısin(kx)]dx (4.6)

=
(∫

B(x)cos(kx)dx
)
− ı

(∫
B(x)sin(kx)dx

)
(4.7)

= B̂c(k)− ıB̂s(k) (4.8)

where B̂ is the Fourier transform of the B component of the magnetic field, and B̂c and
B̂s are respectively the cosine and sine transforms of the magnetic profile B. From these
equations we get:

B̂+(k) = B̂y(k) + ıB̂z(k)
2 (4.9)

= 1
2
[(
Bc
y(k)− ıBs

y(k)
)

+ ı(Bc
z(k)− ıBs

z(k))
]

(4.10)

= 1
2
[(
Bc
y(k) +Bs

z(k)
)

+ ı
(
Bc
z(k)−Bs

y

)]
(4.11)

where Bs
y(k), Bc

y(k), Bs
z(k) and Bc

z(k) are the sine (s upper-script) and cosine (c upper-
script) transforms of both transverse components (By(x) and Bz(x)) of the magnetic field
profile. The same goes for the negative helicity so that:

B+(k) = 1
2
[(
Bc
y(k) +Bs

z(k)
)

+ ı
(
Bc
z(k)−Bs

y(k)
)]

(4.12)

B−(k) = 1
2
[(
Bc
y(k)−Bs

z(k)
)

+ ı
(
Bc
z(k) +Bs

y(k)
)]

(4.13)

which is the method developed in Terasawa et al. 19861986 used to separate the helicities. We
then use the Fourier modes to recreate both profile profiles containing either only positive
or negative helicity:

B+(x) =
kmax∑
k=0

[
Br(k)eıkx

]
(4.14)

B−(x) =
kmax∑
k=0

[
Bl(k)e−ıkx

]
(4.15)
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The real and imaginary parts of these expressions then correspond to respectively the By
and Bz components of the profiles:

B+
y (x) = Re

(
B+(x)

)
(4.16)

B+
z (x) = Im

(
B+(x)

)
(4.17)

B−y (x) = Re
(
B−(x)

)
(4.18)

B−z (x) = Im
(
B−(x)

)
(4.19)

Since we deal with electromagnetic waves having different characteristics (polarization and
direction of propagation), we will be able to separate the effects of each mode on the waves
using this method. In particular, we will be able to separate two modes propagating in
the same direction and have opposite polarizations, or the same polarization but different
direction of propagation. However we will not be able to separate modes that have
opposite polarizations and opposite directions of propagation at the same time, since
they correspond to the same helicity. As there is no way of separating the effects of the
modes on the particles (such as the compression of the waves, or the energy exchanges),
it remains interesting to study cases where each mode largely dominates.

4.2 Numerical results for the resonant modes
In this chapter, we will present the results of numerical simulations performed within

the framework of a collisionless plasma. These results will be compared to and will also
help to better understand the simulation results presented in the next chapter where ion-
ion collisions are included. We initialize the computational domain with parameters such
that one of the modes (RHR, LHR or NR) dominates so it can be studied alone, and also
present a simulation with a coexistence of the RHR and the NR modes. These parameters
are summarized in table 4.24.2. For each mode, a comparison with linear theory is presented
and the main features of the modes are explained. In particular, we will identify the kmax
and γmax for each mode and compare it to linear theory. The theoretical values are taken
from the analytical expressions given in Winske and Gary 19861986, the dispersion relation
in the cold plasma approximation (Winske and Gary 19861986) and the dispersion relation in
the general case.

4.2.1 Introduction to resonant modes
Resonant modes originate from the cyclotron resonance between the particles of the

beam and the waves propagating in the main plasma. As explained in 2.6.22.6.2 and Schure
et al. 20122012, the driving force of this instability comes from the first-order component of
the current density j1×B0. Tsurutani and Lakhina 19971997 gives an illustrated explanation
of the resonant process with application to solar wind particles in the earth magnetic field.
For a given drift velocity of the beam, there are two different possible resonances which
have opposite polarization, depending if the wave propagates faster or slower than the bulk
velocity of the beam, according to the Doppler shift applied to the frequency: ω−kv‖=ω∗
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case nb/nm Vb/V0 vT,b/V0 vT,m/V0 mm/mp mb/mp βb βm
RHR (4.2.24.2.2) 0.01 10 1 1 1 1 0.02 2
LHR (4.2.34.2.3) 0.01 10 60 1 1 1 72 2
NR (4.34.3) 0.016 57 1 1 1 1 0.032 2
mixed (4.44.4) 0.1 10 1 1 1 1 0.2 2
mixed (4.5.14.5.1) 0.1 10 0.1 - 10 1 1 1 2
mixed (4.5.24.5.2) 0.1 10 1 0.1 - 10 1 1 0.2
mixed (4.64.6) 0.1 10 1 1 1 - 20 1 0.2 2
mixed (4.64.6) 0.1 10 1 1 1 1 - 20 0.2 2

Table 4.2: Parameters used for the different cases in the collisionless study. Here vT,s =√
βsB2/(2nsms).

where ω and k are the frequency and wavenumber of the wave in a given frame, v‖ the
particle velocity component parallel to k in this frame and ω∗, is the frequency experienced
by this particle. A wave with positive helicity propagating slower than the beam will be
experienced as propagating backward by the particles of the beam, and therefore they
will see it as left polarized (as explained in figure 4.14.1 (b)). In the opposite case, a wave
with negative helicity and phase speed higher than the beam velocity will by seen as left
polarized by the particles of the beam (see figure 4.14.1 (a)). In both cases, the particles
experience a left polarization, and since it corresponds to the cyclotron motion of the ions
around the magnetic field, they are able to resonate with the waves.

The dispersion relation 2.142.14 gives a condition involving waves and particles that must
be fulfilled for the resonance to take place:

ω−k‖v‖±ΩC = 0 (4.20)

where ω and k‖ are respectively the frequency and the wave vector parallel to the magnetic
field, v‖ the speed of a particle and ΩC the cyclotron frequency, with the frequency of
the wave being negligible compared to the cyclotron frequency (ω�ΩC). This condition
states that the frequency experienced by the particle in its frame considering the Doppler
correction (ω−k‖v‖) must be equal to the cyclotron frequency. The sign ± depends on
the polarization of the mode, giving birth to two modes that are oppositely polarized
(the right and left-hand modes). These two modes produce waves that travel in the same
direction of the beam: k.B > 0⇒ k‖ > 0. The following sections will describe the right
(subsection 4.2.24.2.2) and left (subsection 4.2.34.2.3) resonant mode, focusing on their specificities.

4.2.2 Right-hand resonant mode
We present here results for the RHR mode. This mode produces right-hand polarized

waves that propagate in the same direction as the beam. It comes from a cyclotron
resonance between the waves and the particles of the beam, and arises when the beam is
relatively cold, meaning, its thermal speed is much lower than its drive speed: vT,b� Vb.
This is shown schematically in figure 4.24.2, for a typical initial distribution function f(v‖),

72



4.2 Numerical results for the resonant modes

−5 0 5 10 15
v‖/V0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
f

(v
‖) main

beam

Vb

vT,m

vT,b
(
ωmax
kmax

)

RHR

Figure 4.2: Distribution function f(v‖) associated to the RHR mode, integrated over the
space and the perpendicular velocities. The blue population is the main plasma and the
red one, shifted of a velocity Vb is the beam. The beam is relatively cold, with vT � Vb.

which has been averaged over space and the velocity perpendicular to the initial magnetic
field. In the figure, the beam is shown in red and the main plasma is in blue. This
mode follows the right-hand resonance condition (+ sign) written in equation 4.204.20 and
corresponds to magnetosonic branch of the dispersion relation when there is no drift. It
dominates for very low densities of the beam.

A particle is able to resonate with a right-hand polarized wave when it moves in a frame
where the magnetic field is rotating in the same direction and at the same frequency as its
cyclotron motion. In that case, the plasma dispersion function in the cold case (equation
2.212.21) has a singularity when the resonance condition is satisfied. The resonance condition,
when considering waves propagating along the initial magnetic field, is given by:

ω−k‖v‖+ ΩC = 0 (4.21)

where ω and k the frequency and wave number of the wave and v‖ the velocity of the
resonating particle parallel to the magnetic field. The electromagnetic field experienced
by the particle is thus the phase speed of the wave Doppler shifted by the cyclotron
frequency which writes:

ω+ ΩC

k‖
= v‖ (4.22)

and we can calculate the actual phase speed of the resonating wave as:

ω

k
= v‖−

ΩC

k
= v‖−

ΩC

k
< v‖ (4.23)

We can check that, as explained before, the wave propagates more slowly than the particle
it resonates with. We consider a situation in which this mode largely dominates, as
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presented in section 2.7.12.7.1. The simulation parameters are nb/nm = f = 0.01 and Vb/V0 =
10, and the thermal speeds are the Alfvén speed for both species: vT,m/V0 ≈ vT,b/V0 ≈ 1.
In figure 2.42.4 we can identify the values of ω and k that maximize γ (respectively ωmax
and kmax that give γmax), which are the characteristics of the wave resonating with the
maximum of beam particles:

kmax li ≈ 0.11 (4.24)
ωmax
ΩC

≈ 0.3 (4.25)
ωmax
kmax

≈ 2.7VA (4.26)

ωmax+ ΩC

kmax
≈ 11.8VA ≈ Vb (4.27)

As we can see, the phase speed of the wave with a shift due to cyclotron motion
approximately corresponds to the fluid velocity of the beam Vb. This could be expected
as the maximum growth rate γmax happens for the wave resonating with the bulk of
particle distribution: the particles found in the center of the beam distribution function
with a parallel velocity close to the beam fluid velocity v‖ ≈ Vb.

We now present typical simulation results for this mode. Figure 4.34.3 (a) shows the
spatial profile of magnetic field perpendicular to B0 (By) at different times. From the
first panel, we can see that the magnetic perturbation "noise" see at ∼ 5 Ω−1

0 rapidly grows
and saturate by ∼ 40Ω−1

0 , to stabilize at later time as lower amplitude waves from around
t = 80Ω−1

0 . The magnetic perturbation is also shown in Figure 4.44.4 which represents in
3D both components of the transverse perturbation at different times, separated using
the method described before, with the positive helicity in blue and the negative in red.
We can see that the perturbation has essentially a positive helicity, which, as expected
for this mode, is consistent with the resonance process explained in section 4.24.2. We note
that negative helicity perturbations, on the other hand, remain at the same level as the
initial noise. Indeed no other mode is expected to develop for the those plasma conditions,
consistently with the dispersion relation in 2.42.4.

Figure 4.34.3 (b) shows the profiles of the beam (red) and main (blue) plasma relative
densities at the same times as the magnetic profiles. We can see that the beam den-
sity presents large fluctuations, following the same evolution as the magnetic field with
relative density perturbations up to δnb/nb ≈ 0.4. The main plasma remains essentially
unperturbed, with δnm/nm < 0.05. Figure 4.54.5 shows the deformation of the distribution
functions (initially Maxwellian at t= 0, on the top panel), and more precisely the integral
over the computational domain of the distribution function f(x,v, t), giving the function
f(v‖,v⊥, t) where v‖ and v⊥ are the parallel and perpendicular components of the veloc-
ity with respect to the local magnetic field.The beam’s particles experience pitch-angle
scattering that mostly transfers parallel velocity into perpendicular velocity, creating a
strong anisotropy for the beam. Pitch-angle scattering is a process that diffuses the pitch
angle of the particle µ, defined as the scalar product between the particle velocity and the
local magnetic field µ= (v ·B)/(|v||B|) = cosθ where θ is the pitch-angle. After a while,
during the steady-state, the beam forms a shell-like distribution which tends to a zero
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Figure 4.3: (a): magnetic perturbation of one of the components perpendicular to the
initial magnetic field (By) profiles at different times (start of the instability t Ω0 = 5, end
of linear stage t Ω0 = 40, end of the second phase t Ω0 = 80, last stage t Ω0 = 200). (b):
relative density (δn/n) perturbation profiles for the main plasma (blue) and the beam
(red) at the same times as panel (a).

mean velocity. We can observe that the beam doesn’t populate the center of the plane
where the main plasma is (an effect which we have not understood yet), and that the
main plasma distribution experiences little change during the instability. Indeed we see
no heating and no development of anisotropy for the main plasma, which suggests that
there is very little energy exchanged between both populations, at least in the absence of
collisions.

4.2.2.1 Time evolution of the instability

We can identify more precisely the different phases of the evolution of the instability.
Figure 4.64.6 (a) shows the the magnetic perturbation perpendicular to the initial magnetic
field B⊥ averaged over the domain as a function of time. We distinguish three different
phases for the evolution of the perturbation:

1. The first stage (from t = 0 to t Ω0 = 32) is the linear phase, where linear theory
applies. During this phase, the ions of the beam experience a cyclotron resonance
with some of the waves and are then able to exchange energy with them. The initial
magnetic field perturbations, which are due to the noise created by the finite number
of macroparticles, grow exponentially with a rate γ, and saturate to a maximum
level Bmax before reaching a steady level of fluctuation amplitude. According to
linear theory, a range of wave numbers, k, are unstable and experience exponential
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Figure 4.4: Perturbed magnetic field components (By, Bz) as a function of x for the
positive (blue) and negative (red) helicities (the blue line thus corresponds to the RHR
mode), for the times: start of the instability (t Ω0 = 5), linear phase (t Ω0 = 30), saturation
(t Ω0 = 40), steady-state (t Ω0 = 200).
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Figure 4.5: Contours of the distribution function integrated over the domain f(v‖,v⊥) in
the plane v‖/v⊥, velocities parallel and perpendicular to the local magnetic field for the
RHR case. The blue color scale is the main plasma and the red one corresponds to the
beam. The different panels correspond to different stages of the instability: the initial
state (t Ω0 = 0), the end of linear phase (t Ω0 = 40) and steady-state (t Ω0 = 200).
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growth. In the resonant case, this range is narrow and shows a kmax with a maximum
growth rate γmax. As shown in Winske and Leroy 19841984, the expected growth rate
for the resonant mode can be estimated by:

γRHRmax

Ω0
=

(
f

2

)1/3
(4.28)

kRHRmax

l0
= V0

Vb
(4.29)

This gives γ(th)
R,max/Ω0 ≈ 0.17 for a cold plasma, which is close to the value obtained

from the numerical simulations γ(num)
R /Ω0≈ 0.10. The numerical growth rate γ(num)

is calculated from the evolution of the magnetic perturbation as

γ(num) = log(B(t2)/B(t1))
t2− t1

(4.30)

where t1 and t2 are the start and end of the linear phase. Figure 4.64.6 (b) shows
Fourier transforms of the profiles presented in figure 4.64.6 (a). The magnetic spectral
energy densities ((By(k)/B0)2) are shown for several times. The initial energy (blue
line) is seen to evolve (red line) to favour wavenumbers close to the fastest growing
value predicted by linear theory kmax c/ωp = 0.10. We note that the energy at
late times, well after the linear phase (green curve), indicates that the perturbed
magnetic energy is still mostly concentrated in waves with wavenumbers close to
kmax and then it rapidly decreases for shorter wavelengths.

2. The second phase of the instability, which roughly corresponds to the interval t Ω0 =
32 to t Ω0 = 80) includes the saturation of the perturbation to its maximum value
Bmax = δB⊥/B0 ≈ 0.42 and the initial relaxation towards the third phase. During
this phase the peak in energy observed in the spectral energy decreases by about a
factor ten to about the level seen in figure 4.64.6 (b) for later times.

3. In the last phase (after t Ω0 = 80) the amplitude of the perturbed magnetic field
decreases until the end of the simulation. During this phase, the beam particles
keep populating the region around the main plasma empty of beam particles.

4.2.2.2 Energy budget

We now look in more details at the temporal evolution of the different energies present
in the system. Before presenting the results, we give their definitions:

(i) magnetic energy

EB(t) = 1
2µ0

[∫
B(x, t)d3x

]2
(4.31)
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Figure 4.6: (a): evolution of the magnetic perturbation B⊥/B0 with time with the sepa-
ration of the three stages of the instability: 1 - the linear stage, 2 - the saturation, 3 - the
asymptotic stage. We can see the value of the saturation Bmax and the slope in the linear
stage (in red) that corresponds to the linear growth rate γ. (b): Fourier transforms of the
magnetic profiles of figure 4.34.3 (a) (spectral energy densities, (δBy(kx)/B0)2. The lines
are smoothed with a Gaussian profile which variance increases linearly with the value of
k.

(ii) kinetic energy of species s

Ek,s = ms

2

[∫
vfs (x,v, t)d3vd3x

]2
(4.32)

(iii) thermal energy of species s

ET,s = ms

2

∫
(v−Vs)2 fs (x,v, t)d3vd3x (4.33)

= ET,‖,s+ET,⊥,s (4.34)
= kBTs = kBT‖,s+kBT⊥,s (4.35)

(iv) parallel component of the thermal energy

ET,‖,s = ms

2

∫
[(v−Vs) ·b]2 fs (x,v, t)d3vd3x (4.36)

= ms

2

∫ (
v‖−V‖,s

)2
fs (x,v, t)d3vd3x (4.37)

(v) perpendicular component of the thermal energy

ET,⊥,s = ms

2

∫
[(v−Vs) · (I−b)]2 fs (x,v, t)d3vd3x (4.38)

= ms

2

∫ (
v⊥−V⊥,s

)2
fs (x,v, t)d3vd3x (4.39)

where b = B/|B| is the unit vector directed along the local magnetic field, and v‖ and
v⊥ are the velocities respectively parallel and perpendicular to b. Figure 4.74.7 panel (a)
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shows these energies as a function of time. We stress, that the total energy is conserved
accurately throughout the simulation (less than 10−2% of total energy loss).

As we can see, the beam speed decreases strongly, giving its kinetic energy to the
thermal energy of the beam for the most part and to the magnetic field. The energy first
goes into the waves, then contributes to heat the beam after the linear phase through
wave-particle interactions. A few percent of the beam energy goes into the heating of
the background plasma as already observed in figure 4.54.5 where no significant deformation
of the main distribution function is observed. This agrees with quasilinear theory (see
Winske and Leroy 19841984) which predicts that there is very little energy lost by the beam.
This is mainly transferring velocity parallel to the magnetic field to the perpendicular
direction (see section 4.1.14.1.1, Ėb,‖ ≈−Ėb,⊥). At late times, well after saturation, the beam
and main plasmas relax to the same kinetic energy. However, because of its larger density,
the main plasma undergoes little acceleration and remains almost stationary. The drift
velocity essentially corresponds to the beam velocity, and it is ≈ 3V0, and this value
corresponds to a threshold according to Winske and Leroy 19841984, which found that the
RHR growth rate drops between 3> Vb/V0 > 2 and that the mode becomes stable under
Vb = 2V0 (this is valid for a density ratio f = 0.1, but the same study shows that the
growth rate does not depend much on this quantity in that case).

Looking more closely at the anisotropy in the distribution function induced by the
RHR mode, figure 4.74.7 (b) shows the evolution of the temperature anisotropy T‖,s/T⊥,s for
the main plasma (blue) and the beam (red). For the main plasma a small anisotropy (T⊥>
T‖) appears at a time corresponding to the growth of the magnetic field perturbation. This
is consistent with the predictions of quasilinear theory that the main ions are energized
preferentially in the perpendicular direction. The anisotropy however quickly disappears
at later times. The beam, on the contrary, rapidly develops a much more pronounced
anisotropy (with T‖/T⊥ ≈ 0.2 ), which is the symptom of the pitch-angle scattering. The
particles form a shell in the velocity space, and the relaxation of this anisotropy takes
very long; indeed T‖,s/T⊥,s is still less than one at the end of the simulations. As we shall
see later, the inclusion of collisions will tend to reduce the temperature anisotropy and
relax the shell-like distribution function to a Maxwellian.

4.2.2.3 Results for two dimensional simulations

In order to compare the 1D and 2D cases, we ran simulations with the same physical
parameters and compare the results. The 2D simulations have the same numerical pa-
rameters as for the 1D case, except the domain has length 1000×100. Figure 4.84.8 displays
the evolution of the different energies for the 1D case (dashed lines) and the 2D case (solid
lines). We can see that in 2D, the heating of the beam is almost identical to the 1D case,
and that the heating of the main is slightly higher, although not in a very significant way.
The magnetic field shows the same features in both cases, even if the saturation is a bit
lower in the 2D case and happens a bit later. In the slowing of the beam, we can see
that the 2D case does not show the plateau we observe in the 1D case, but the general
trend and timescales of the development of the instability remain the same in th 1 and
2D cases. This is consistent with the work of Winske and Gary 19861986, which shows that
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Figure 4.7: (a): evolution of the different energies with time (magnetic energy EB (blue),
main plasma kinetic Ek,m (magenta) and thermal ET,m (red) energies and beam kinetic
Ek,b (green) and thermal ET,b (cyan) energies) normalized with the initial beam kinetic
energy Ek,b. (b): evolution of the temperature anisotropies (T‖/T⊥ with T‖ the tempera-
ture parallel to the local magnetic field and T⊥ the perpendicular temperature) with time
for the RHR case. The blue line corresponds to the main plasma and the red line is the
beam.

2D simulations give the same results as the 1D when studying parallel propagating modes.

In conclusion, we studied the RHR mode and found that the simulation results agree
well with linear and quasi-linear theory, and previous numerical work. The general de-
velopment of the instability is similar for LHR and NR modes, and we shall focus in the
next section on the peculiarities of those modes and their comparison to the RHR mode
presented here.

4.2.3 Left-hand resonant mode
According to linear theory, particles of the beam can resonate and drive unstable left-

hand polarized waves that propagate in the same direction as the beam (Rogers, Gary,
and Winske 19851985, Gary and Tokar 19851985). In the absence of a beam these are Alfvén waves.
Because the resulting waves are left-hand polarized, it is possible to separate the effects
of both RHR and LHR modes on the magnetic field as explained in 44: since they have
similar direction of propagation but opposite polarization, they have opposite helicities.

Contrary to the RHR mode, the LHR mode occurs for very hot beams, meaning that
the beam thermal velocity is very high compared to its drift velocity vT,b� Vb. This is
shown schematically in figure 4.94.9, which shows the beam (red) and main (blue) plasmas
distribution functions in the direction parallel to the initial magnetic field. Under these
conditions, a non negligible portion of the beam particles are able to resonate with left-
hand polarized waves. This mode is relevant for the interstellar medium for instance (as
explained in Wentzel 19741974, where the confinement of low energy cosmic rays in the galaxy
at long timescales is investigated by considering their cyclotron resonance with waves),
where even the low energy drifting cosmic rays can be very energetic. The LHR mode is
described by the minus sign in the general resonance condition 4.204.20, which gives:
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Figure 4.8: Evolution of the energies (magnetic energy EB in blue, main plasma thermal
ET,m (red) energy and beam kinetic Ek,b (green) and thermal ET,b (cyan) energies) in 1D
(dashed) and 2D (plain lines). The energies are normalized to the initial beam kinetic
energy Ek,b(0).
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Figure 4.9: Distribution function f(v‖) associated to the LHR mode, integrated over the
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Figure 4.10: A dispersion graph (ω(k)) relevant for the LHR mode with the conditions
f = 0.01, Vb = 10 and vT,b = 60 V0, with the real wave frequency ωr in blue and the growth
rate γ in red. It is a case we will use in section 4.2.34.2.3.

ω−k‖v‖−ΩC = 0 (4.40)
ω−ΩC

k‖
= v‖ (4.41)

ω

k
= v‖−

ΩC

k
= v‖+ ΩC

k
> v‖ (4.42)

where ω and k the frequency and wave number of the wave and v‖ the velocity of the
resonating particle parallel to the magnetic field. We can see that the resonant wave has a
phase speed higher than the velocity of the particles it resonates with. Figure 4.104.10 shows
the dispersion graph found solving equation 2.182.18 with the minus sign, with the growth
rate in red and the real frequency in blue, for a case where the LHR mode is present,
with f = 0.01, Vb = 10V0 and vT,b = 60V0. It give the characteristic of the fastest growing
mode ωmax and kmax.

kmax li ≈ 0.058 (4.43)
ωmax
ΩC

≈ 0.03 (4.44)
ωmax
kmax

≈ 0.517 VA (4.45)

ωmax−ΩC

kmax
≈ −16.7 VA < 0 (4.46)

As we are considering low frequency waves with ω < ΩC , we have ω−ΩC
k < 0 which

means that the resonating particles travel backward with respect to the beam, and that
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is why the beam has to be very hot to excite this mode: by increasing the variance of
its distribution function we increase the population in v‖ < 0 and thus the amount of
particles able to have a resonance with a negative helicity. In this case we see that the
resonating waves can mostly interact with particles of the beam, and the growth rate of
the LHR mode is increased by increasing the temperature of this population.

To study this mode, we run a simulation with vT,b� Vb (vT,b = 60V0), and the other
parameters (f = 0.01, Vb = 10V0 and vT,m = 1) similar to the RHR mode. Under such
conditions, both right and left-hand resonant modes are potentially present, however the
left-hand has the fastest growth and dominates. In order to extract the evolution of the
left-hand mode alone, we separate the polarizations with the method developed in Tera-
sawa et al. 19861986 and presented in section 44. For this case we expect the wavelengths to be
larger that for the other modes according to figure 4.104.10, so we use a longer computational
domain: L/l0 = 104.

Figure 4.114.11 (a) shows the evolution of the magnetic field perturbation averaged over
the domain for the left-hand 〈BL〉 (negative helicity, in red) right-hand 〈BR〉 (positive
helicity, in blue) and the sum for both helicities 〈BL+BR〉 (black). For the plasma
conditions modelled, it is indeed the left-hand mode that drives the growth of the magnetic
field. At late times the asymptotic value of the perturbation is similar for both left-hand
and right-hand polarized waves. We stress however, that there is no evidence that the
right-hand polarized perturbation are produced by the growth of the RHR mode. We find
that the theoretical kmax and γmax taken from the dispersion graph are kthmaxl0 ≈ 0.058
and γthmax ≈ 0.042 Ω0 and the numerical ones obtained from the simulations and plotted
in figure 4.114.11 (b) are knummax l0 ≈ 0.043 and γnummax ≈ 0.022 Ω0.

Figure 4.124.12 shows the relative density profiles (δn/n where n is averaged over the
domain) at several times. We find no evidence of significant compression during the
simulations, which is consistent with the expectation that the LHR mode produces Alfvén
waves, that are non-compressional.

If we take a look at the energies, figures 4.134.13 (a) shows the evolution of the variations of
the different energies to their initial value as a function of time (〈E(t)〉−〈E(0)〉 averaged
over the domain). As in figure 4.74.7, we can see that the beam kinetic energy decreases and
is transferred to the other energies. The kinetic energy is associated with a drift speed of
the beam (Ek,b = 1/2nbmbV

2
b ) and as in the RHR case, the final value of this velocity is

Vb = 3V0. We can also see that the kinetic energy of the beam is mainly transferred during
the linear phase to the thermal energy of the beam. The main plasma, however, gains
energy at a constant rate, through interactions with the produced waves. The energy
gained from the main first comes from the beam kinetic energy, then after the linear stage
it comes from the beam thermal energy that slowly decreases.

Figure 4.134.13 (b) plots the evolutions of both main (blue) and beam (red) temperature
anisotropies that develops during the instability. We can see that the beam develops a
very small anisotropy with T‖ > T⊥, which is unlike the RHR case where the anisotropy
favoured the perpendicular temperature. This shows that the pitch-angle scattering effect
is less pronounced than in the RHR case. On the other hand, the main plasma experi-
ences an anisotropy that has two stages. In the first stage, during the development of
the instability, the perpendicular temperature increases, creating an anisotropy that is
comparable to the RHR mode at the same level of anisotropy (T‖/T⊥ ≈ 0.8). After the
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Figure 4.11: (a): evolution of the magnetic perturbation with time in the LHR mode, with
both helicities separated: the red line corresponds to the LHR mode (negative helicity)
and the blue line is the positive helicity, both are averaged over the whole domain. The
black line is the average of the sum of both modes (it does not correspond to the sum of
the other two lines). (b): magnetic spectral energy at different times for the left-hand
instability (start of the instability t Ω0 = 5, end of linear stage t Ω0 = 40 and final phase
t Ω0 = 200). The lines are smoothed with a Gaussian profile which variance increases
linearly with the value of k.
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Figure 4.12: Relative density (δn/n) perturbation profiles for the LHR case at different
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Figure 4.13: (a): evolution of the different energy gains/losses (time variation of the
energy minus its initial value E(t)−E(0)) with time (magnetic energy EB (blue), main
plasma kinetic (magenta) and thermal (red) energy Ek,m and ET,m and the beam kinetic
(green) and thermal (cyan) energy Ek,b and ET,b). (b): evolution of the temperature
anisotropies (T‖/T⊥ with T‖ the temperature parallel to the local magnetic field and T⊥
the perpendicular temperature) for the LHR case. Again the blue line corresponds to the
main plasma and the red line is the beam.

relaxation of this anisotropy T⊥>T‖, which also corresponds to the relaxation of the mag-
netic perturbation, this anisotropy reverses and the temperature parallel to the magnetic
field increase during the last stage to reach asymptotically a value of about T‖/T⊥ ≈ 1.2.
This could come from a mode that is driven unstable by the anisotropy of the main, but
this should be investigated in more details in order to identify the process responsible for
the increase of the parallel temperature after the development of the LHR mode.

4.3 Numerical results for the non-resonant mode
The final parallel mode predicted by theory is a non-resonant one. It produces right-

hand polarized waves that propagate in the direction opposite to the beam. This mode
is known to be driven by the current induced by the beam from Bell 20042004, which studied
this mode in the context of cosmic rays in supernovae remnants shocks. In that case,
the cosmic rays play the role of the beam and the shock makes the background, and the
mode is driven by the current induced by the cosmic rays jCR through the Lorentz force
jCR×B. The reaction of this force makes the magnetic field grow, which increases the
driving force of the instability.

In contrast to the resonant case, this mode does not need a full kinetic description
to be studied and can be approached using an fluid model, as was done in Bell et al.
20132013 that derived the instability using a modified version of the MHD equations. Amato
and Blasi 20092009 made the calculation using a kinetic model and found consistent results
(growth rate, wavelength) with the mode in Bell 20042004. In the framework of the MHD,
the instability can be understood with a simple explanation involving the Lorentz force
acting on the background plasma, as explained in Schure et al. 20122012 and illustrated in
Zirakashvili, Ptuskin, and Völk 20082008 and in figure 2.32.3.
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Indeed, for a polarized perturbation, let us consider a cylindrical coordinate set
(
ρ̂, θ̂, ẑ

)
.

A zeroth order current carried by a beam of ions in a background goes in the positive
z direction j = jẑ, and a first-order magnetic perturbation (perpendicular to the zeroth-
order magnetic field) is oriented along the θ direction B1 = B1θ̂. This magnetic per-
turbation can either have a positive or negative helicity, respectively B⊥ = −|B⊥|θ̂ and
B⊥ = |B⊥|θ̂, keeping in mind that this is a simplified model and that the magnetic field
is usually a combination of these two helicities. In that case the Lorentz force FL is
the force created by the magnetic field acting on the beam of ions FB→j and writes:
FL = FB→j = j×B1 = jB1

(
ẑ× θ̂

)
= −jB1ρ̂. Bai et al. 20152015, who made this calculation

within a fluid framework, showed that this force FL results in a reaction force acting
on the background Fj→B =−FB→j =−FL that writes Fj→B = jB1ρ̂. For a positive he-
licity (B⊥ = −|B⊥|θ̂) we get FR

j→B = −jB1ρ̂ and for a negative helicity (B⊥ = |B⊥|θ̂)
FL

j→B = jB1ρ̂. We can see that this reaction to the Lorentz force has an unstable effect
only on negative helicities as it expands the magnetic field. According to 4.14.1 (a), this
corresponds to a right polarization when the wave propagates in the negative direction,
which is consistent to Gary 19911991 and the Bell instability.

The non-resonant mode can compete and then dominate the resonant mode for faster
or denser beams, that is, for a higher kinetic energy of the beam. The cases where current
induced by the beam is high, is relevant for example in astrophysical shocks Bell et al.
20132013. We present here some results of simulations where this mode dominates. The
parameters chosen are a density ratio nb/nm = 0.016, a beam fluid velocity Vb/V0 = 57
and "cold" beam with a thermal speed of the order of the Alfvén speed. The evolution of
the instability follows the same phases as for the two resonant modes, with a linear phase
where magnetic field perturbations grow exponentially, the non-linear saturation of the
mode and the relaxation to an asymptotic constant value of magnetic field perturbation,
which for the conditions modelled is of the order of the initial magnetic field (δB/B0 ∼ 1).
Regarding the growth rates and the fastest growing wave numbers, linear theory (see
Winske and Leroy 19841984) gives the simplified expressions, valid for f � 1, fVb < 1 and
fV 2

b � 1:

γNRmax
Ω0

= 1
2

f

(1−f)3/2
Vb
V0

(4.47)

kNRmax
l0

= −fVb
2V0(1−f) (4.48)

From the simulations, we find γ ≈ 0.22 Ω0 which compares well with the approximate
theoretical value γ(th)

max ≈ 0.46 Ω0; similarly (By(k)/N0)2 shows that the fastest growing
wave number is |kmax| l0 = 0.40 at t Ω0 = 10, the theoretical one being k(th)

max l0 ≈−0.46.
The perturbation reaches a maximum of B(max)

⊥ ≈ 4.57B0. Figure 4.144.14 shows the magnetic
perturbation for a field line in 3D for both negative (red) and positive (blue) helicities at
different times. As expected this shows a strong dominance of the negative helicity until
the later stages, where both modes are then of comparable amplitude.

We now focus on the energy exchanges between the different components of the plasma
and the magnetic field. Figure 4.154.15 (a) shows the evolutions of the different energies
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Figure 4.14: Perturbed magnetic field components (By, Bz) as a function of x for the
positive (blue) and negative (red) helicities (the red line thus corresponds to the NR
mode), for the times: start of the instability (t Ω0 = 5), linear phase (t Ω0 = 10), saturation
(t Ω0 = 20), final stage (t Ω0 = 200).

88



4.3 Numerical results for the non-resonant mode

normalized to the initial beam kinetic energy. During the linear phase, the energy goes
primarily into the thermal energy of the main plasma and the magnetic field. This agrees
with quasilinear theory which predicts that the total energy gained by the main plasma
and the magnetic field are comparable. The latter is seen to quickly relax to a level close to
the its initial value. We find that, as well as in the RHR mode, the beam experiences large
density fluctuations of the order of δnb/nb ≈ 0.6. This is consistent with the quasilinear
result in Winske and Leroy 19841984, which says that the beam is less disrupted in the NR case
for a given amplitude of the waves, and consequently that a similar compression of the
beam requires a higher level of magnetic perturbation. The beam density perturbation
(δnb/nb ≈ 0.6) is comparable to the one found in the RHR case (δnb/nb ≈ 0.4), but the
level of magnetic perturbation is much higher in the NR case (about B(max)

⊥ ≈ 4.7B0

against B(max)
⊥ < 0.45B0 in the RHR case).

We also find that heating of the main plasma is associated with large fluctuations
of its density δnm/nm ≈ 0.5. This behaviour is different from the RHR mode, where
the density perturbations of the main plasma was negligible. This can be explained
considering that the amplitude of the produced waves is much higher in the NR case
(about B(max)

⊥ ≈ 4.7B0) than in the RHR case (B(max)
⊥ < 0.45B0, so ten times lower).

Goldstein 19781978 studied a coupling process in which such Alfvén wave decays by producing
daughter waves, of which one is electrostatic (hence, compressional). A higher level of
magnetic perturbation would then result in the production of a higher level compressional
waves, explaining the level of observed density perturbation. The heating of the main
plasma is much higher than in the RHR case, with most of the initial beam kinetic energy
going into ET,m. We note that the beam and the main plasmas remain out of thermal
equilibrium: the energy density ratio in the last phase is ET,b/ET,m ≈ 0.33, and if both
populations were at thermal equilibrium we would expect it to be the the same as the
density ratio f = 0.016. In the collisional case, we expect this characteristic to disappear
and the system to relax to thermal equilibrium.

Figure 4.154.15 (b) plots the temperature anisotropy, T‖/T⊥, as a function of time for
the beam (red) and the main plasma (blue). It shows a strong anisotropy (T⊥ ≈ 5T‖) for
both the beam and the main plasma, that was not present in the resonant cases. Again,
this result agrees with quasilinear theory in the fact that the main ions take the energy
mainly in the perpendicular direction (hence the strong anisotropy). However, as seen
previously, the anisotropy around t Ω0 = 16 is not truly relevant as the distribution is too
far from a maxwellian. To sum it up, the NR mode is present for more energetic beams
and generates negative helicity waves, that are able to disturb a lot more the main plasma
than the resonant modes by inducing density perturbations and strong anisotropy.

We are now interested in the effects of the NR mode on the particle distribution
function. Figure 4.164.16, plots the distribution function of the beam (red scale) and the main
plasma (blue scale) in the plane v‖-v⊥ at different times. In the first panel (t Ω0 = 10)
of the figure, we can see that the beam experiences strong pitch-angle scattering, only
transferring very little (less than 2%) of its kinetic energy to the main plasma and to
the waves. When the magnetic field starts to grow (t Ω0 = 15), the beam kinetic energy
decreases sharply and the main plasma experiences a strong heating as seen in figure
4.154.15, which is consistent with the quasilinear theory as developed in Winske and Leroy
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Figure 4.15: (a): evolution of the different energies with time for the NR case (mag-
netic energy EB (blue), main plasma kinetic (magenta) and thermal (red) energy Ek,m
and ET,m and the beam kinetic (green) and thermal (cyan) energy Ek,b and ET,b) nor-
malized with the initial beam kinetic energy Ek,b(0). (b): evolution of the temperature
anisotropies (T‖/T⊥ with T‖ the temperature parallel to the local magnetic field and T⊥
the perpendicular temperature) for the NR case. Again the blue line corresponds to the
main plasma and the red line is the beam.

19841984 under some approximations (cold plasmas), which gives that in the NR mode, the
beam undergoes a deceleration as its loss of energy mainly comes from its parallel energy.
However the quantities in that paper are not clearly defined, which makes their results
difficult to interpret.

By t Ω0 ≈ 16 (figure 4.164.16 second panel), the distribution of the beam shows inho-
mogeneities due to particle bunching induced by the strong electromagnetic fluctuations
that are generated by the instability itself. During this stage, we need to keep in mind
that the beam distribution is too far from a Maxwellian for the notion of temperature
to be truly relevant. At the same time, the main plasma develops a strong temperature
anisotropy with most of the energy going in the direction perpendicular to the magnetic
field (T‖/T⊥ < 1), as observed in figure 4.154.15 (b). Between t Ω0 = 16 and t Ω0 = 20 (sec-
ond and third panels), this inhomogeneous structure completely collapses and both the
beam and the main distributions reach their most anisotropic form, while a strong energy
exchange occurs between the beam and the main plasma. In the last panel (at t Ω0 = 50),
the beam forms a bean-like distribution, with the center of the (v‖,v⊥) space empty of
particles as for the RHR mode (see figure 4.54.5) and the main plasma relaxes to an isotropic
Maxwellian.

4.4 Mixed case
Some of the results and peculiarities of each mode presented in the previous sections

(such as the quantities of energy exchanged) can be linked to the differences in the initial
kinetic energy of the beam. This, as well as other parameters, were changed to be in a
plasma regime where each mode could be studied separately. However it is also useful
to study these modes under the same conditions in order to compare their effects more
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Figure 4.16: Contours of the distribution function integrated over the spatial domain
f(v‖,v⊥) in the plane v‖/v⊥, velocities parallel and perpendicular to the local magnetic
field for the NR case. The blue color scale is the main plasma and the red one corresponds
to the beam. The different panels correspond to different stages of the instability: the
end of linear phase (t Ω0 = 10), the saturation (t Ω0 = 20) and final state (t Ω0 = 50).
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directly. In addition, in many realistic plasma we expect different modes to coexist and
compete. We present here a case where the RHR and the NR modes have approximately
the same growth rates. The simulations are done with a ratio of beam to main density
f = nb/nm = 0.1, Vb = 10 and both thermal velocities of the order of the Alvfén speed.
The dispersion relation relevant for this case is presented in figure 2.62.6 for the cold plasma
case.

Figure 4.174.17 shows the evolution in time of the magnetic perturbation in the mixed case
for both RHR (positive helicity, blue) and NR (negative helicity, red) cases, with the sum
of both modes in black and the total magnetic perturbation in green. As we can see, the
total magnetic perturbation corresponds well to the sum of both modes, as expected. We
can see that both modes grow to approximately the same level of perturbation and have
similar growth rates. The RHR mode takes a slightly longer than the non-resonant mode
to start growing. Again we find good agreement with linear theory for the cold plasma
case, which gives k(th)

maxl0 ≈ 0.14 and γ(th)
max ≈ 0.38Ω0, while the numerically measured are

k
(num)
max l0 ≈ 0.18 and γ(num) ≈ 0.31Ω0 for the RHR mode, which shows a good agreement

for both k and γ. We can see that, while the growth rate does not depend much on the
density (increasing the density by 10 only increases γ by 2 or 3), the resonant wavenumber
is barely affected, which confirms that k mainly depends on Vb for the RHR case (see
Winske and Leroy 19841984). For the NR mode we get k(th)

maxl0 ≈ −0.54 and γ
(th)
max ≈ 0.44Ω0

while the numerically measured are k(num)
max l0 ≈ 0.38 and γ(num) ≈ 0.20Ω0. We verify that

both RHR and NR modes have similar growth rates, and the magnetic energy is expected
to develop at both k(RHR)

max and k(NR)
max . All these values along with the other cases (sections

4.24.2 and 4.34.3) are summarized in table 4.34.3.
There is a delay between the saturation of the two modes, so the magnetic spectral

energy shows alternatively a maximum at k(NR)
max and then k(RHR)

max . During a first phase
the total magnetic perturbation is mostly due to the NR mode. In the last stage, the
situation in inverse since the NR stabilizes at a level less important than the RHR mode
(the NR stabilizes at a level half the one of the RHR mode), the perturbation then
comes mainly from the resonant mode. Indeed the RHR saturates at B(max)

⊥ ≈ 1.17B0

and has a perturbation level of B(end)
⊥ ≈ 0.61B0 in the final stage (which makes a ratio of

B
(max)
⊥ /B

(end)
⊥ ≈ 2), while for the NR mode the magnetic perturbation goes from B

(max)
⊥ ≈

1.32B0 to B(end)
⊥ ≈ 0.21B0 (which makes a ratio of B(max)

⊥ /B
(end)
⊥ ≈ 6.3). This means that

the waves produced by the NR mode (with negative helicity) are better reabsorbed by
the plasma than the waves produced by the RHR mode (with positive helicity) during
the final stage.

Figure 4.174.17 (b) plots the evolution of the energies with time for the mixed case,
normalized with the initial beam kinetic energy. Again we observe that the beam kinetic
energy almost goes to zero after the second phase, and that most of the energy goes into
the heating of both the beam and main ions. As in the NR case, the populations are not
at thermal equilibrium, but here the heating of the beam is higher in that case. As we saw
the NR mode induces a stronger heating of the main, associated with a compression, and
a sharper slowing down of the beam. The heating of the main that we observe in figure
4.174.17 (b) is thus due to the NR mode. On the other hand, the RHR have been shown
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Figure 4.17: (a): evolution of the total magnetic perturbation (green), the decomposition
to the RHR (blue), the NR (red), the sum of the two modes (black) for the mixed case.
(b): evolution of the different energies with time for the mixed case (magnetic energy
EB (blue), main plasma kinetic (magenta) and thermal (red) energy Ek,m and ET,m and
the beam kinetic (green) and thermal (cyan) energy Ek,b and ET,b) normalized with the
initial beam kinetic energy.

to be more effective in converting the beam kinetic energy into beam thermal energy: in
the RHR case (figure 4.74.7 (a)), 80% of Ek,b is transferred in ET,b while in the NR case
(figure 4.154.15), only 30% of Ek,b went in Ek,b. So the smaller gap between ET,m and ET,b
in figure 4.174.17 (b) compared to figure 4.154.15 is imputable to the RHR mode. As well, the
waves generated by the RHR have more energy in the final stage than those associated
with the NR mode.

4.5 Influence of the plasma temperatures on the in-
stability

We are now interested in the impact of the plasma temperature on the development
of the instability. As we already saw, the LHR mode is only present when the beam is
very hot compared to its drift speed (vT,b� Vb). To study the effects of the main and
beam temperature on the RHR and the NR, we use the mixed case presented in section
4.44.4 and run simulations varying either vT,m or vT,b. Subsection 4.5.14.5.1 presents the effects
of the beam temperature and 4.5.24.5.2 shows the influence of the main temperature on the
instability.

4.5.1 Effects of the beam temperature
As explained in section 4.2.34.2.3, increasing the temperature of the beam can lead to the

development of a LHR mode for sufficiently high temperatures. In this section we are
interested in studying how the beam temperature affects the evolution of the RHR and
the NR modes only. Therefore, we chose initial conditions (vT,b<Vb) such that the growth
rate of the LHR mode remains very low; the thermal velocity of the main plasma is kept
at vT,m = V0. Figure 4.184.18 (a) shows the maximum value of the magnetic perturbation
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Figure 4.18: Level of magnetic saturation 〈B⊥〉(max) /B0 as a function of the the beam
thermal velocity vT,b =

√
βbB

2
0/2nbmb (panel (a)) and vT,m =

√
βmB2

0/2nmmm (panel
(b)) for the mixed cas, the RHR (positive helicity, blue) and NR (negative helicity, red)
modes being separated. Each dot correspond to a simulation with a given thermal velocity.

〈B⊥〉(max) /B0 of both RHR (blue) and NR (red) modes as a function of the beam thermal
velocity. Their contribution is separated as previously explained in 4.1.34.1.3. Our simulations
show that for the values of vT,b simulated here, the level of magnetic field perturbations
generated by the RHR mode decreases with increasing beam temperature, and levels off
at about half of the value for a nearly zero-temperature beam.

This behaviour can be understood by considering the spread of the beam distribution
function when increasing its temperature. The variance of the beam distribution (v2

T,b)
gets higher so the bulk of the distribution becomes less populated, and less particle fulfill
the resonance condition ω− kv‖+ ΩC = 0 as seen in 4.2.24.2.2. Since the energy exchange
comes from this resonance, less particles are able to resonate, which means less energy
going into the magnetic field.

On the contrary, we can see that the maximum level of magnetic field perturbations
driven by the non-resonant mode is largely unchanged by the increasing beam tempera-
ture. This is consistent with the mode being driven by the unperturbed component of the
current that is generated by the beam (see Schure et al. 20122012) and which is unaffected by
its temperature.

4.5.2 Effects of the main temperatue

We are now interested in the influence of the main plasma temperature on the in-
stability. Unlike the case described in the previous section, where increasing the beam
temperature can lead to the development of the LHR mode, increasing the main plasma
temperature does not excite a new unstable mode. For the simulations presented here the
initial beam thermal velocity is kept constant vT,b = V0 and only the RH and NR modes
are present. Figure 4.184.18 (b) plots the level of saturation B(max)

⊥ generated by the RHR
(blue) and the NR (red) modes as a function of the main plasma thermal velocity. The
effects of the modes are separated as detailed in section 4.1.34.1.3.
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We observe that the maximum level of the perturbed magnetic field decreases for
NR mode with increasing main plasma temperature, while the RHR mode is barely af-
fected (its saturation goes from 〈B⊥〉(max) /B0 ≈ 1.1 at vT,m = V0 to 〈B⊥〉(max) /B0 ≈ 0.8
at vT,m = 10V0). The non-resonant mode is quickly damped as we increase the main
temperature and goes from 〈B⊥〉(max) /B0 ≈ 1.8 at vT,m = V0 to 〈B⊥〉(max) /B0 < 0.4 at
vT,m = 3V0. This gives us a clue about the process involved in the growth of this mode. In-
deed, as we increase the thermal velocity of the main plasma, we also increase the plasma
parameter βm which is the ratio between the thermal pressure to the magnetic pressure.
Thus we increase the pressure it applies to the rest of the plasma. As the instability
develops, the magnetic field starts to grow and distort. This results shows that the main
pressure opposes this distortion of the magnetic field, probably by applying a counter
force that keeps the magnetic pressure from increasing too much, hence the development
of the NR mode is reduced. This effect is thus not relevant to the case seen in the previous
section and can mostly be seen when changing the temperature of the main component.
This effect needs further investigation, for example in 2D or 3D simulations, to evaluate
the validity of this explanation.

4.6 Influence of the particle mass on the instability
As in section 2.82.8 we are interested in the effects of heavier ions on the evolution of the

instability. Winske and Gary 19861986 studied the influence of the mass of the beam particles
mb on the growth rate of both RHR and NR instabilities, and showed that the RHR mode
have a smaller growth rate when increasing mb while the NR growth rate is unaffected.
This is also shown in figure 2.72.7 (b). As in the earlier section, and in order to study the
effects of the ion mass on both modes simultaneously, we simulate here the mixed RHR
and NR case with a density ratio f = 0.1, a drift velocity Vb = 10V0 and thermal velocities
of vT,b = vT,m = V0 (the parameters are found in table 4.24.2).

Figure 4.194.19 (a) plots the growth rate γ as a function of main ion mass mm, for the
RHR (blue) and NR (red) modes. The growth rate is calculated from the simulated data
as γ = log(B⊥(t2)/B⊥(t1))/(t2− t1) where t2 and t1 and the times bounding the linear
phase. The first important result is that the NR mode experiences a strong decrease of
its growth rate when increasing the mass of the ions of the main plasma (γ(NR) < 0.05Ω0
when mm > 5mp), which is consistent with figure 2.72.7 (a). However, the RHR growth rate
also decreases when increasing mm, and although the difference is not so significant as for
the NR mode, it is not negligible (from γ(RHR)≈ 0.3Ω0 whenmm =mp to γ(RHR)≈ 0.2Ω0
when mm = 15− 20mp) and does not appear in figure 2.72.7 (a). This decrease in the NR
growth rate can be seen as an inertial effect. Indeed, in Bell et al. 20132013 the mode is
reproduced using a modified version of the momentum MHD equation:

ρ
du

dt
=−∇P − 1

µ0
B× (∇×B)− jb×B (4.49)

In this equation, u is the fluid velocity of the background plasma, ρ is the mass density
and jb×B is the added term that drives the NR mode and generated by the current
of the beam. We can see that for a given force per unit volume jb×B, an increase of
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Figure 4.19: Instability growth rate γ as a function of the main mass mm (panel (a)) and
the beam mass mb (panel (b)) for the RHR (blue) and the NR (red) modes. Each dot
corresponds to a simulation with the corresponding mass. In this case we have f = 0.1,
Vb = 10V0 and the initial thermal velocities are kept to 1V0.

the mass density leads to a decrease of the acceleration of the plasma. This means that
the instability has more difficulties to develop when the mass of the fluid to accelerate is
higher. Thus the instability needs more energy to disturb the system so the mass acts as
a stabilizer of the system.

Figure 4.194.19 (b) plots the magnetic saturation value as a function of the beam particle
mass. It shows, an increase of both modes energy, especially for the NR case. This could
be explained at first by the fact that the beam contains more kinetic energy when it is
heavier. We know from Winske and Leroy 19841984 an estimate for the level of magnetic
saturation using the quasilinear theory:

(
B⊥
B0

)(max)
∝ f1/2Vb

V0
∝
√
Ek,b(0) (4.50)

In this equation, we see that the magnetic saturation is proportional to the square root of
the beam kinetic energy. This study was done for proton plasmas, so withmm =mb =mp.
When increasing the mass of the beam, we increase its kinetic energy and thus the energy
available to distribute to the system, and in particular to the electromagnetic waves. This
dependence should be investigated further to check the link between the NR saturation
and the beam particle mass.

4.7 Discussion
We have presented the main features of the three different modes that are generated

by the ion-ion magnetic streaming instability in the collisionless case. The evolution of the
plasma can be described by three phases: the linear stage of the instability, its saturation
and the relaxation towards a steady level of wave activity. During the first phase, we
observe a pitch-angle scattering of the particles of the beam, where these particles lose
little energy and are mostly scattered, transferring their velocity parallel to the magnetic
field to the perpendicular component, and forming a shell distribution in the velocity space
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around the main plasma. The energy is then redistributed to both the beam and the main
plasma in the form of thermal energy. The mechanism of the instability is summarized in
figure 4.204.20 where we can see the beam (red) kinetic energy used to enhance electromagnetic
waves (B), and then this energy being partially returned to both plasmas in the form of
thermal energy through wave-particle interactions. We can see that the waves act as a
bridge for the kinetic energy of the beam to be redistributed to the ions, increasing the
entropy of the system.

In conclusion, we have also identified several modes: the right-hand resonant, the left-
hand resonant and the non-resonant modes. By looking at the polarization, we are able
to distinguish these different modes. The dominance or coexistence of the modes depend
on the density ratio between the beam and the main and on the drift speed of the beam.
Each mode corresponds to a different kind of waves, and they do not disturb the densities
the same way. The efficiency to transfer energy to both the beam and the main is also a
characteristic of each mode. We were able to compare some theoretical results, from both
linear and quasilinear theory, with the numerical observations from the simulations. The
agreement were found to be good and is summarized in table 4.34.3.

In this chapter, we identified some main features of the magnetic streaming instability
in the collisionless regime:

• three different modes can develop. Depending on the plasma conditions, they can
either compete or dominate;

• the development of the instability is independent of the mode and follows a three-
stage evolution, with the linear stage, the saturation and the asymptotic relaxation
to a stable situation;

• the pitch-angle scattering is present in both RHR and NR modes but less so in the
LHR;

• the RHR mode can be separated from the NR or the LHR modes as they generate
waves with different helicities;

• the resonant modes are effective at heating the beam, while the NR is more effective
at heating the main plasma;

• the RHRmode is strongly affected by the beam temperature and its energy decreases
when increasing the beam thermal velocity;

• the NR mode shows a strong influence of the main temperature: when increasing
the main pressure, this has the effect of decreasing the development of the NR mode.

All results shown in this section are for the case of a collisionless plasma. In the next
chapter we will present simulation results including Coulomb collisions (using the module
described in section 3.53.5) and discuss their effect on the development of the instability.

97



Collisionless magnetic streaming instability

kexprmax kcoldmax khotmax knummax γexprmax γcoldmax γhotmax γnummax

RHR case 0.10 0.11 0.11 0.11 0.17 0.17 0.16 0.10
LHR case X X 0.06 0.04 X X 0.04 0.02
NR case −0.46 −0.45 0.40 0.47 0.43 0.22

Mix case (RHR) 0.10 0.14 0.14 0.18 0.37 0.38 0.37 0.31
Mix case (NR) −0.56 −0.54 0.38 0.59 0.44 0.20

Table 4.3: Summary of the values of the maximum growth rate γmax and associated
wavenumber kmax obtained with the different theories and the numerical values. The
expressions in Winske and Leroy 19841984 give kexprmax and γexprmax , the solution of the dispersion
relation gives kcoldmax and γcoldmax for cold plasmas and khotmax and γhotmax in the general case, and
the numerical simulations give knummax and γnummax .

Figure 4.20: Schematic view of the behaviour of the instability. The circled red and blue
populations represent respectively the beam and the main plasma, the B represents the
magnetic field. The arrows represent the energy exchanges associated with the effects on
the plasma (slowing down of the beam Vb↘, increase of the beam or main temperature
T ↗).
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Chapter 5

Collisional magnetic streaming
instability

Science is a way of trying not to fool yourself. The first principle is
that you must not fool yourself, and you are the easiest person to fool.

Richard Feynman - Lecture at the Galileo Symposium in Italy, (1964),
Richard Feynman.
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case nb/nm Vb/V0 vT,b/V0 vT,m/V0 σ0/Ω0 βb βm
RHR (5.25.2) 0.01 10 1 1 0−0.6 0.02 2
NR (5.3.15.3.1) 0.016 57 1 1 0−300 0.032 2
mixed (5.3.25.3.2) 0.1 10 1 1 0−2 0.2 2
RHR (5.6.15.6.1) 0.01 10 1 1 0−108 0.02 2
NR (5.6.25.6.2) 0.016 57 1 1 0−100 0.032 2

Table 5.1: Parameters used for the different cases. Here vT,s =
√
βsB2/(2nsms)

Chapter 44 presented numerical results of the streaming instability in the collisionless
case. Energy exchanges then occurred only through the interaction between particles
and the associated self-consistent, macroscopic electromagnetic fields. In this chapter we
focus on the effects of Coulomb collision between the ions of the plasmas. In such a case,
particles can directly exchange energy between themselves through short-range electric
fields.

In this chapter, we present the results of simulations performed for plasma conditions
as those used presented in chapter 44, but including ion-ion collisions. In section 5.15.1 we
present general considerations about the effects of collisions on the instability, with an
explanation of the methods we use. Results of the RHR case in the collisional case are
presented in section 5.25.2, with detailed comparisons with the collisionless case. The specific
cases of the NR and mixed cases are presented in section 5.35.3. In section 5.45.4 we describe the
influence of the different types of collisions on the instability. Section 5.55.5 deals with the
effects of varying the collision frequency on the different modes. In section 5.65.6 we present
two specific phenomena that are present in the RHR and NR cases in the collisional case.
Finally in section 5.75.7 we summarize and discuss the results of this chapter.

5.1 Introduction to the collisional magnetic stream-
ing instability

In the streaming instability, two population are at play: the main plasma, indicated
by the subscript m, and the beam plasma, indicated by the subscript b. In general, we can
distinguish three kinds of collision, depending on the nature of the colliding particles (i.e,
the populations involved). Their associated collision frequency are: (i) collisions between
particles of the beam (beam-beam collisions with a frequency νbb); (ii) collisions between
particles of the main plasma (main-main collisions with a frequency νmm); (iii) collisions
between particles of the main and the beam (main-beam collisions with frequency νmb).
The two former types of collision are "intra-species" collisions, while the latter is "inter-
species" collisions. As we saw in equation 3.693.69, the collision frequency depends on the
relative speed between the particles. From Fitzpatrick 20142014 and section 3.4.33.4.3, we can give
an ordering between these collision frequencies. Because we deal with cold plasmas, with
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5.1 Introduction to the collisional magnetic streaming instability

the initial relative drift speed much higher than the initial thermal velocities (Vb,0� vt,0,
with 0 the initial value of the collision frequency), we have the initial frequency of the
main-beam collisions much lower than the other two frequencies. Moreover, the initial
beam-beam collision frequency is lower than the main-main frequency because they have
the same thermal velocity but the beam is less dense. Thus we have:

νmb,0� νbb,0� νmm,0 (5.1)

The collisions being binary and calculated from a Monte-Carlo method, any anisotropy
will relax for a sufficiently high value of the σ0 parameter, which we introduced in equation
3.723.72. As a result, the temperature anisotropies observed in figure 4.74.7 where the perpen-
dicular temperature of the beams gets larger than the parallel one should be decreased or
quenched because of collisions. Further, the energy gap observed in 4.74.7 between the beam
and the main plasma, where the beam is heated much more than the main, should relax
to a Maxwellian distribution as illustrated in figure 3.83.8 and 3.103.10. The relative velocity
between populations should then fade out with time. The associated collision timescales
depend on the value of the σ0 parameter.

Ion-ion collisions are included in the code with the Monte-Carlo algorithm presented in
3.53.5. The level of collisionality between ions is controlled in the code by the two parameters
σ0 and Ψ0. We remind here their expressions:

σ0 = e4n0
8πε2

0m
2
pV

3
0

(5.2)

Ψ0 = log
4π (kBT0ε0)3/2

e3n
1/2
0

 (5.3)

In this equation, n0 is the uniform initial density of the system and kBT0 = mpV
2

0 . The
collision frequency between two particles linearly depends on σ0: the larger σ0, the larger
the collision frequency for a given pair of particles.

The Ψ0 parameter is needed in the calculation of the Coulomb logarithm: the larger
Ψ0, the larger the collision frequency for a given pair of particles. Since it is a logarithmic
dependence, we do not expect Ψ0 to vary much so we keep it at a constant value of
Ψ0 = 25. This value is close to the one relevant in the Earth bow shock for example (for
a magnetic field B0 ≈ 10 nT and a density of about n0 ≈ 107m−3 we get Ψ0 ≈ 27). For
laser experiments, where B0 ≈ 20 T and n0 ≈ 1023m−3 we get Ψ0 ≈ 17, which is a smaller
value but not significantly enough to make a big difference.

As well as in chapter 44, we start with a detailed study of a case where the RHR
largely dominates and compare it to the collisionless case. Then we will present the
specific features observed in the NR case.
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Collisional magnetic streaming instability

5.2 Effects of the collisions on the right-hand reso-
nant mode

We now consider the RHR case, which for the collisionless case was detailed in section
4.2.24.2.2. The density ratio is f = 0.01, the bulk speed of the beam is Vb = 10V0 and the ther-
mal velocities are vT,m = vT,b = V0. All parameters used in this chapter are summarized in
table 5.15.1. The associated theoretical growth rate is γ(th)

max ≈ 0.17 Ω0 and the numerical one
is γ(num) ≈ 0.096 Ω0 at kmaxl0 ≈ 0.11 as presented in section 4.2.24.2.2. We use the same pa-
rameters in the collisional case with σ0 = 0.2 Ω0. Under those conditions, the RHR mode
is the only one that can develops. Figure 5.15.1 (a) shows the evolution of the normalized
magnetic perturbation, B⊥(t)/B0, as a function of time. It presents the comparison of
for collisionless (dashed line) and collisional cases. One can observe that in the collisional
case, the magnetic field reaches a lower saturation level (B(max)

⊥ / ≈ 0.16B0) than in the
collisionless case (B(max)

⊥ ≈ 0.44 B0). In addition, the magnetic energy associated with
the waves in the final stage is smaller by a factor of 2 in the collisional case, compared to
the collisionless one. The slope of B⊥(t) is also lowered in the collisional case, meaning
that the growth rate is also slower.

Figure 5.15.1 (b) displays the evolution of the density perturbation δn(t)/n0 for the col-
lisionless and collisional cases. For both cases density fluctuations of the main population
are negligible. However, in the collisional case, the level of density fluctuations for the
beam plasma is lowered by a factor of three in the saturation phase of the instability:
δn

(max)
b ≈ 0.14 n0 in the collisional case, while δn(max)

b ≈ 0.40 n0 in the collisionless case.
This can be understood by considering that the waves created by the RH mode are

compressional, thus the smaller the magnetic fluctuations (in the collisional case) the
smaller the density fluctuation. Nevertheless, at late times, the density fluctuations of
the beam decrease to their lowest observable value, and are the same for both modes.
The level being a consequence of the fluctuation of the number of particles per cell.
Importantly, the level of magnetic fluctuations is different and relatively constant for
both modes, meaning that the nature of the waves is changing from a compressional
mode to a non-compressional one. This is one of the main result of Wang and Lin 20032003
who put forward the idea that the RHR mode associated to the streaming instability,
converts to Alfven-like waves in the asymptotic phase.

Figure 5.25.2 depicts the distribution functions in the
(
v‖,v⊥

)
space, at t Ω0 = 10, t Ω0 =

40 and t Ω0 = 100, from top to bottom. At t Ω0 = 10 (during the linear growth of
the instability), the pitch angle scattering is at play as in the collisionless case, but a
strong diffusion in velocity space is observed, resulting in heating of the beam coupled
to a decrease of its bulk velocity. As a direct consequence of collisions, the energy gap
observed in figure 4.54.5 in the collisionless case is filled, essentially by the particles of the
beam.

We now focus on the effects of collisions on the fastest growing wave-numbers. Figure
5.35.3 shows the spatial Fourier spectral energy density of the magnetic perturbation for the
RHR case at the end of the linear stage (t Ω0 = 40), for σ0 = 0 (dashed) and σ0 = 0.2 Ω0
(plain). This is the time when the magnetic energy reaches a maximum for both cases
(see figure 5.15.1). Both curves exhibit a peak at approximately the same kmaxl0 ≈ 0.11,
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Figure 5.1: (a): evolution of the magnetic perturbation 〈B⊥(t)/B0〉 and (b): evolution
of the relative density perturbation 〈δn/n(t)〉 for the beam (red) and the main plasma
(blue) in the cases σ0 = 0 (dashed) and σ0 = 0.2Ω0 (plain).

with as expected from the previous discussion, a smaller value of the maximum of the
spectral energy density in the collisional case. This results indicates that the mechanism
involved in the instability (the j1×B0 force) is not affected by the collisions, other than
the amount of energy the magnetic field is able to gain from the beam.

5.2.1 Effects on the energies
Figure 5.45.4 shows the time evolution of the energies in the collisionless (dashed lines)

and collisional cases (plain lines, with σ0 = 0.2 Ω0), normalized to the initial beam kinetic
energy E0

k,b. Panel (a) plots the evolution of the thermal energies for the beam (blue line)
and the main (red line) in the collisional case (solid lines) and collisionless case (dashed
line). An important outcome of the simulations is the demonstration that main plasma
is substantially heated in the collisional case: its thermal energy increases from ET,m ≈ 3
E0
k,b to ET,m ≈ 3.9 E0

k,b, which is equivalent to 90% of the initial beam kinetic energy.
Although the beam is initially heated at early times (to reach a value of ET,b ≈ 0.33
E0
k,b), it then relaxes via collisions with the main plasma to reach ET , b ≈ 0.04 E0

k,b.
This is related to the observation made in chapter 44 for the collisionless case that the
beam and main plasmas are not in thermal equilibrium after the development of the
instability (see figure 4.74.7 and 4.154.15). Coulomb collisions result in an energy exchange and
relaxation process for all particles (whatever their population) to a thermal equilibrium
(see section 3.83.8). As a consequence, the beam and the main are relaxed to thermal
equilibrium as soon as the inter-species collisions become important. We observe that
by the end of the simulation, the ratio between the beam and the main energy densities
is ET,b/ET,m ≈ 0.01 = f = nb/nm, which means that both populations are at thermal
equilibrium. This thermalization takes place after an increase in ET,b, which is due to the
strong heating induced by the instability, both in the collisionless as well as the collisional
case. Relating to figure 5.15.1 (b), we can see that, although there is a strong heating of the
main due to collisions, there is no evidence of significant density perturbation of the main
plasma. This means that this heating is probably only due to the collisional relaxation
to thermal equilibrium. The fact that the beam experiences a relatively strong heating
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Figure 5.2: Contours of the distribution function f(v‖,v⊥) in the plan v‖/v⊥, velocities
parallel and perpendicular to the local magnetic field for the RHR case with σ0 = 0.2Ω0.
The distribution is integrated over the computational domain. The blue color scale is the
main plasma and the red one corresponds to the beam. The different panels correspond
to different stages of the instability: the initial state (t Ω0 = 10), the end of linear phase
(t Ω0 = 40) and third stage (t Ω0 = 100).
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Figure 5.3: Magnetic spectral energy (By(kx)/B0)2 in the RHR case with σ0 = 0 (dashed)
and σ0 = 0.2Ω0 (plain). This is for t Ω0 = 40, when the magnetic field is close to its
saturation according to figure 5.15.1.
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Figure 5.4: Evolution of (a): thermal energies (main ET,m (red) and beam ET,b (cyan))
and (b): beam kinetic energy Ek,b in the cases σ0 = 0 (collisionless) in dashed lines and
σ0 = 0.2Ω0 in solid lines. The energies are normalized by the initial beam kinetic energy
Ek,b(0). The black line Ecoll corresponds to the collisional slowing down in a 0D model.

before the instability has time to develop also leaves less particles to resonate with the
waves, which explains the reduction of the growth rate observed in figure 5.15.1 (a).

Figure 5.45.4 (b) depicts (green line) the time evolution of the kinetic energy of the beam
in the collisional (solid line) and collisionless (dashed line) cases. It can be seen that it
takes about 20Ω−1

0 for the instability to start slowing down the beam in the collisionless
case, while the velocity decreases from the beginning in the collisional case. In this panel,
the black line represents the expected slowing down from a simplified simulation in 0D
that only includes collisions (see section 3.63.6). The slowing down of the beam when the
instability is present is less severe than in the case where only collision where present,
indicating that effects due to the instability, such as the heating of the main and the
beam, play indeed an important role in the evolution of the plasma.

From figure 5.45.4 we saw that in the collisional case, the thermal energy of the beam is
transferred, after a initial growth, to the main plasma. More details on temperature of
the beam and main plasma are shown in figure 5.55.5. There the temperature anisotropies,
T‖/T⊥ of the main (blue) and the beam (red), are shown for the cases σ0 = 0 (dashed
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Figure 5.5: Evolution of the temperature anisotropies T‖/T⊥ for the cases σ0 = 0 (dashed)
and σ0 = 0.2Ω0 (plain). The blue line corresponds to the main plasma and the red to the
beam.

line) and σ0 = 0.2 Ω0 (solid line). Focusing on the main population, collisions can be
seen to essentially erase the anisotropy that develops in the collisionless case. This is a
clear consequence of the high level of collisions between particles of the main, as initially
νmm = 100Ω0. On the other side, the strong anisotropy (T‖/T⊥ < 0.2) for the beam in the
collisionless case does not vanish in the same way with collisions, although it is decreased.
This is because the beam-beam collision frequency responsible for the relaxation of this
anisotropy is not high enough at this value of σ0. Instead, we can see that before the
instability has time to develop (between 0< tΩ0 < 10), the beam shows a sharp increase in
its perpendicular temperature, as well as a relatively strong relaxation of the anisotropy
after the linear stage, both due to the main-beam collisions. The early heating of the
beam observed in figure 5.45.4 (a) thus goes primarily in the direction perpendicular to the
magnetic field, creating this strong anisotropy that we observe here.

5.2.2 Evolution of the collision frequencies
As previously said, the two populations (main and beam) results in three types of col-

lisions: the main-main collisions, the beam-beam collisions and the main-beam collisions,
with their associated collision frequencies, νmm, νbb and νmb, respectively. The collision
frequency depends on the local value of the density and relative velocity, this value will
evolve with time as the instability develops. To quantify the relative importance of these
collisions, we define using equation (3.693.69) a mean value of the collision frequency. For a
given pair of particles, this collision frequency is:

ναβ = σ0
q̃2
αq̃

2
βñL

m̃2
αβ(ṽα− ṽβ)3λ (5.4)

with q̃s = qs/e, m̃s =ms/mp, m̃αβ =mαmβ/(mα+mβ), ṽs = vs/V0, ñs = ns/n0 and ñL is
the lowest density between nα and nβ. λ is the Coulomb logarithm as defined in section
3.43.4. The charge and mass would be those of the two particles and the density would
be the lowest of both. For intra-species collisions (νmm and νbb), the relative velocity of
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5.2 Effects of the collisions on the right-hand resonant mode

a random pair of particle in the distribution function is statistically of the order of the
thermal speed. For the inter-species collisions there are we can either use the thermal
velocity when the bulk velocity is of the order of the thermal velocity, or the bulk velocity
when this is large compared to the thermal speed. In order to satisfy these conditions,
the following expressions are proposed:

νmb = νbm = σ0
q̃2
mq̃

2
b ñL

m̃2
mb

[(
Ṽb− Ṽm

)2
+ ṽ2

T,m

]3/2λ (5.5)

νmm = σ0
q̃4
mñm

(m̃m/2)2(ṽT,m)3λ (5.6)

νbb = σ0
q̃4
b ñb

(m̃b/2)2(ṽT,b)3λ (5.7)

These expressions correspond to the typical collision frequencies. However we need to
take in account the correction of Nanbu and Yonemura 19981998 for particles having different
statistical weights as presented in section 3.5.33.5.3. For all the simulations of this thesis,
we use the same number of macroparticles for both species. As a consequence, the ratio
between the statistical weights equals the density ratioWb/Wm = nb/nm = f . This means
that in the RHR case for which f = 0.01, each particle of the main weights one hundred
times more than a particle of the beam, so the main-beam collision frequency has to
be multiplied by this factor nm/nb. In the rest of the section, this correction will be
accounted for. For the parameters used in this section for the RHR case, the initial
collision frequencies are then νmb = 0.02 Ω0, νmm = 20 Ω0 and νbb = 0.2 Ω0

The left panel of figure 5.65.6 displays the time evolution of the collision frequencies
averaged over all pairs of particles for νmb (blue), νmm (green) and νbb (red) (for a simu-
lation with σ0 = 0.2 Ω0). The spikes observable on these curves are associated to the very
small value of the relative velocity for given pairs of particles, resulting in the divergence
of the associated collision frequency. We see that the inter-species collisions frequency,
although very low at early times compared to the main-main collision frequency, quickly
increase to become comparable to νmm. This is a consequence of the significant slowing
down of beam and a rapid decrease of the relative speed between both populations. Since
νmb is very sensitive to this value, a rapid slowing down of the beam results in a strong
increase of the inter-species collisions. At late times, the relative velocity tends to zero
((Vb−Vm)→ 0) and the thermal velocities of both populations are getting close, so the
denominator in the expression of νmb becomes m2

mbv
3
T,m. As the main and the beam

have the same mass, the inter-species collision frequency becomes equal to the main-main
frequency (νmb(t)→ νmm(t)), which explains why both curves share the same asymptotic
value.

Right panel of figure 5.65.6 displays the time evolution of the smoothed values of the
collision frequencies, for σ0 = 0.2 Ω0. We use the same color code as in the left panel. We
over-plotted the collision frequencies given by equations 5.75.7: νthmb(t) in cyan, νthmm(t) in
yellow and νthbb (t) in magenta. These curves show a quite good agreement, meaning that
the statistical estimation make sense. The beam-beam collision frequency experiences
a decrease during the growth of the magnetic field, then relaxes to a value close to the
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Figure 5.6: (a): evolution of the collision frequencies (the inter-species (main-beam)
collision frequency νmb in blue, the beam-beam frequency νbb in red and the main-main
frequency νmm in green) calculated in the code with time for the RHR case with σ0 =
0.2Ω0. (b): evolution of the collision frequencies in the same case, with the lines smoothed
in order to focus on the trend. The corresponding analytical expression 5.75.7 are also
plotted: ν(th)

mb in cyan, ν(th)
bb in magenta and ν(th)

mm in yellow.

initial one. This decreases is the consequence of the spread of the beam distribution
function during the linear stage (especially due to the pitch-angle scattering), that tends
to increase the relative speed between the beam particles, hence to reduce νbb.

5.3 The effects of collisions on the non-resonant and
mixed cases

The NR mode shows significant differences with the RHR mode, for example the level
of density perturbation or in energy exchanges. We focus in this section on the NR mode
as well as what we call the "mixed case", where both RHR and NR modes can coexist. We
will try to identify more clearly the specificities of each modes and the effects of collisions
on them.

5.3.1 Non-resonant mode
We study the non-resonant mode with f = 0.016 and Vb = 57V0. As detailed in section

4.34.3, this mode needs a very large value of the bulk velocity to grow. With such parameters,
simulations in the collisionless case (see section 4.34.3) give γ ≈ 0.22Ω0. As for the RHR
mode, we choose a value of the σ0 parameter which allows to see a significant effect on
the mode development. In that case, the main-beam collision frequency is lower because
of the highest drift speed of the beam. We take σ0 = 50Ω0, which allows us to observe a
substantial reduction of the magnetic field. The associated initial values for the collision
frequencies are then νmb ≈ 0.027 Ω0, νmm ≈ 5000 Ω0 and νbb ≈ 80 Ω0. In this case, while
the inter-species collisions have approximately the same frequency as in the RHR case,
the beam and the main are much more collisional here.
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Figure 5.7: Magnetic (panel (a)) and relative density (panel (b)) perturbations for σ0 = 0
(dashed) and σ0 = 50Ω0 (plain). In panel (b), the red line is the beam and the blue is
the main plasma.

5.3.1.1 Development of the NR mode

Figure 5.75.7 (a) plots the magnetic perturbation as a function of time for the NR case
with (plain line) and without (dashed line) collisions. As in figure 5.15.1 we can see that
the value of the magnetic fluctuation at saturation is reduced as well as its asymptotic
value. The magnetic fluctuation at saturation for σ0 = 0 is B(max)

⊥ ≈ 4.7 B0 while it is
only B(max)

⊥ ≈ 2.5B0 with σ0 = 50 Ω0. For the RHR mode, σ0 = 0.2 Ω0 was enough to
reduce the saturation level of the magnetic field by a factor three, while for the NR mode,
σ0 = 50 Ω0 "only" results in a reduction by a factor of two. Moreover the reduction of
the magnetic saturation is not associated with a reduction of the instability growth rate.
Instead, the saturation only happens earlier in time, which explains why is it lower in the
collisional case.

Figure 5.75.7 (b) shows the relative density perturbation, δn/n as a function of time for
the beam (red) and the main plasma (blue). The figure shows the collisionless case with
a dashed line and the collisional case with a solid line. We see that the maximum levels
of density fluctuations in the collisionless case for both the beam (around δnb/nb ≈ 0.65)
and the main (δnm/nm ≈ 0.5) are severely reduced when collisions are present. In the
latter we find peak values of δn/n ∼ 0.1− 0.2 for both populations. A reduction that is
consistent, but somewhat smaller, than that of the magnetic field saturation level.

5.3.1.2 Energies exchanges in the collisional NR mode

We are now interested in the impact of collisions on the particles in the NR case.
Figure 5.85.8 (a) plots the evolution in time of the energies for the collisionless (dashed) and
collisional cases with σ0 = 50Ω0 (plain). Again as previously seen, the main difference
lies in the fact that the populations are relaxed to thermal equilibrium in the presence
of collisions, which gives a much bigger gap between the beam and main thermal energy
density in the final phase. Another important difference is that, while in the collisionless
case the beam kinetic energy takes some time before starting to decrease (about 10Ω−1

0 ),
this slowing down is much more rapid in the collisional case. And so are the heatings of
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Figure 5.8: (a): evolution of the energies (main plasma thermal energy ET,m (red) and
beam kinetic (green) and thermal (cyan) energy Ek,b and ET,b) in the NR cases for σ0 = 0
(collisionless) in dashed lines and σ0 = 50Ω0 in solid lines. The energies are normalized
by the initial beam kinetic energy Ek,b(0). (b): temperature anisotropy T‖/T⊥ in the
NR case for the main (blue) and the beam (red) and for σ0 = 0 (dashed) and σ0 = 50Ω0
(plain).

the main and the beam. Again, this difference is due to the main-beam collisions, which
slow down the beam to transform the corresponding bulk kinetic energy into heating both
the beam and the main.

Figure 5.85.8 (b) presents the evolution of the temperature anisotropy for the beam
(red) and the main (blue) in the collisionless (dashed lines) and σ0 = 50Ω0 (plain) cases.
As in the RHR case, we see that the main-main collision suppress any main anisotropy
because of its high frequency (in that case νmm,0 = 5000Ω0), as already seen in the RHR
case. The sharp heating in the perpendicular direction is present as well, that decreases
during the linear stage of the instability. We can see that the beam anisotropy (T⊥ < T‖)
created by the instability is reduced by the beam-beam collision (νbb = 80Ω0), and there
is a relatively strong anisotropy with T‖ > T⊥ that is created between 30 < tΩ0 < 70.
We distinguish three different parts: the first increase of the perpendicular temperature
for 0 < tΩ0 < 20, the reduction of the anisotropy compared to the collisionless case for
10 < tΩ0 < 30 and the increase of the parallel temperature in 30 < tΩ0 < 70. The first
part was already investigated in section 5.25.2, with a strong heating of both the beam and
the main before the instability can develop, and this thermal energy is going mainly in
the perpendicular direction. The second part can be explained by the presence of beam-
beam collisions, and the third part is directly linked to the second. Indeed, the non-linear
collisionless processes that make the anisotropy relax to 1 after the linear stage actually
increase the parallel temperature. In the presence of collisions, this process is still present
and parallel temperature is still increased but the anisotropy is not so important, which
creates this situation with T‖ > T⊥ during the last phase. This anisotropy finally relaxes
from tΩ0 ≈ 40 because of the beam-beam collisions.

Figure 5.95.9 (a) and (b) show the distribution function for the main (blue colors)
and the beam (red) at different times for two cases with different levels of collisionality.
These are respectively σ0 = 10Ω0 and σ0 = 50Ω0. We can observe that as we increase the
collision parameter, while the pitch-angle scattering is still present (as it is a consequence
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of the development of the instability), the shape of the distribution becomes less and less
anisotropic, with a parallel temperature higher when increasing σ0. Collision have, as
we know, the effect of redistributing the energy to all directions and in that case, that
means that the shell observed in the collisionless case becomes broader and broader as
we increase the collision frequency. Also the very distorted shape that we observed in
the collisionless case (figure 4.164.16, second panel, with a very low density around v⊥ =
0 and strong inhomogeneities in the distributions function) is no longer here. These
distinctive features are completely suppressed by the collisions that "fill the holes" in the
distribution. As expected, any remaining relative velocity is removed when activating
collisions. In the last two panels of the two figures, we observe the emergence of a two-
population distribution for the beam (in red-orange): the main part, with the bean-like
shape, following the normal evolution of the instability, and a population is situated in
the same place as the main plasma distribution in the (v‖,v⊥) space, created by the main-
beam collisions as they make particles of the beam and of the main "attract" each other
in the velocity space (this effect being more important as we increase σ0). Since the main
has a higher density, it has more inertia in this process, which make the beam particles
being attracted to the center of the velocity space, creating this secondary population in
the beam distribution function.

5.3.2 Mixed case

In the following section we use the case presented in 4.44.4 to study the effects of the
collisions on both the right-hand resonant and the non-resonant modes simultaneously,
with f = 0.1 and Vb = 10V0. Again, we will use a specific value for the parameter σ0 =
0.4Ω0, which gives νmb,0 = 0.4Ω0, νmm,0 = 40Ω0 and νbb,0 = 4Ω0. We check that for the
three cases that we study here, we always have the ordering νmb,0� νbb,0� νmm,0, which
is to be expected as we deal with cold populations (with a drift velocity much lower than
the thermal speed of both species Vb� vT ).

Figure 5.105.10 (a) plots the magnetic perturbation of both RHR (blue) and NR (red)
modes for σ0 = 0 and σ0 = 0.4Ω0 separated using the method discussed in section 4.1.34.1.3. We
see that the magnetic saturation is reduced of a factor 2.33 for the NR mode (B(max)

⊥ /B0≈
1.31 for σ0 = 0 and B(max)

⊥ /B0 ≈ 0.56 for σ0 = 0.4Ω0) and of a factor 2.51 for the RHR
mode (B(max)

⊥ /B0 ≈ 1.18 for σ0 = 0 and B(max)
⊥ /B0 ≈ 0.47 for σ0 = 0.4Ω0). The values are

quite close, which means that it takes the same values of σ0 to reduce both RHR and NR
modes in equal proportion. This makes a difference with the previous observation made
in section 5.3.15.3.1 that we need a higher value of this parameter to reach the same decrease
in the saturation. This suggests that the difference is not due to the mode itself but to
the condition simulated. In the simulations of the RHR and NR cases, there was mainly
a large difference in the drift velocity of the beam.

Figure 5.105.10 (b) shows the energy evolution for the collisional case with σ0 = 0.4Ω0
(plain lines) and the collisionless case (dashed lines), normalized with the initial beam
kinetic energy E(0)

k,b . While in the collisionless case, we observed a stronger heating of the
beam than of the main plasma (with ET,b≈ 0.5E(0)

k,b and ET,m≈ 0.7E(0)
k,b in the third stage),
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Figure 5.9: Contours of the distribution function f(v‖,v⊥) in the plan v‖/v⊥, velocities
parallel and perpendicular to the local magnetic field integrated over the spatial domain
for the NR case and σ0 = 10Ω0 (panel (a)) and σ0 = 50Ω0 (panel (b)). The blue color
scale is the main plasma and the red one corresponds to the beam. The different panels
correspond to different times of the instability: t Ω0 = 10, t Ω0 = 16, t Ω0 = 20 and
t Ω0 = 50.
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Figure 5.10: (a): evolution of the magnetic perturbation for RHR (blue) and NR (red)
modes and (b): evolution of the thermal energies (main plasma ET,m (red) and beam
thermal ET,b (cyan)) in the mixed case for σ0 = 0 (collisionless) in dashed lines and
σ0 = 0.4Ω0 in solid lines. Energies are normalized by the initial beam kinetic energy
Ek,b(0).

the collisional case shows a much higher heating of the background plasma (ET,m≈ 1.1E(0)
k,b

in the end) to the detriment of the beam thermal energy, that relaxes to a very low
energy (ET,b≈ 0.11E(0)

k,b ). Again this is explained by the relaxation to thermal equilibrium
induced by the collisions.

5.4 Effects of each type of collision frequency
As explained before, there are three types of collisions in the plasmas we study (νmb,

νmm and νbb) and the effects of collisions inside the plasma are the sum of these three
different kind of interactions. Situations where some collisions are "artificially" turned
off are obviously not physical, as they only partially describe the collisional processes.
However the results can helps us to gain a better understanding on the physical processes
at play in the instability. Practically, this is done in the code by turning off one or more
of these inter- or intra-species collisions (νmm, νbb and νmb). In this section we use the
mixed case, as presented in section 5.3.25.3.2, as it provides sufficiently general information
on the effects of each collisions.

As previously seen, when the RHR and NR modes are competing, they are similarly
quenched by collisions. Furthermore the strong ordering between the initial values of the
collision frequencies, and the fact that those two modes are reduced in the same range
of σ0, suggest that they are affected by the same type of collisions. However, we would
expect the resonant modes to be more affected by beam-beam collisions, which would
prevent particles from resonating. In contrast, the NR mode would be expected to be
more affected by the main-beam collisions since the driving force of this mode is due to
the first-order current, which is not affected by the intra-species collisions (also, since it
can be described by a fluid model, the only collisions that could affect this mode are the
inter-species collisions). We begin by identifying the type of collisions involved in the
reductions of magnetic field saturation level that we observed in the previous sections.
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νmb νmm νbb
νmb C1 C1 C1
νmm C2 C2
νbb C0

Table 5.2: Summary of the different collisional cases.

Considering the three kind of collisions (νmm, νbb and νmb), there are eight different
cases corresponding to different combinations of collisions that we note Ci with i noting
which type of collisions that are included:

1. collisionless case: C0;

2. fully collisional case with all collisions enabled: Call;

3. without inter-species collisions, main-main and beam-beam enabled: Cmmbb;

4. without beam-beam collisions, main-main and main-beam enabled: Cmmmb;

5. without main-main collisions, beam-beam and main-beam enabled: Cbbmb;

6. only inter-species collisions enabled: Cmb;

7. only beam-beam collisions enabled: Cbb;

8. only main-main collisions enabled: Cmm.

Some of these cases behave the same way and we can distinguish three different kind
of behavior and group the cases accordingly:

• C0 includes the collisionless (C0) case and the case with only the collisions inside
the beam (Cbb) activated;

• C1 includes all cases with the inter-species collisions enabled: Call, Cmb, Cbbmb,
Cmmmb;

• C2 contains the cases Cmm and Cmmbb;

these categories are summarized in table 5.25.2.
By exploring the different configurations, we can identify more precisely the type of

collisions responsible for each of the effects that we observed until now. Figure 5.115.11 (a)
shows the evolution of the magnetic perturbation for the mixed case, with the contribution
by the RHR (blue) and NR (red) modes extracted from the data. The cases C0, C1 and C2
are shown. More precisely, the dashed line corresponds to the case Cbb where only beam-
beam collisions are enabled, and we can check that it corresponds to the collisionless case.
So the collisions inside the beam have no effect on both modes in this set of parameters.
The case C1 is similar to the case with all collisions enabled. All cases that include inter-
species collisions have the same behaviour. We can see that for both the cases C0 and
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Figure 5.11: (a): magnetic perturbations (RHR in blue and NR mode in red) and (b):
relative density perturbation (main in blue and beam in red) in the mixed for C0 (dashed),
C1 (solid) and C2 (dotted-dashed).

C2, there is no observed reduction of the saturation for 0< σ0/Ω0 < 1. These cases have
in common the absence of inter-species (main-beam) collisions. The fact that it is the
inter-species collisions which are responsible for the observed quenching of these modes,
explains why both modes are reduced at the same values of σ0. It also confirms the
fact that both modes are affected in the same way. In the case C2 (without main-beam
collisions but with main-main collisions), we observe an increase in the saturation of the
NR mode. This effect will be investigated in a later section (see 5.65.6).

Now looking at the effects of the collisions on the density perturbations, figure 5.115.11 (b)
shows the evolution of the relative density variation with time (δn(t)/n), with the cases
C2 (dashed-dotted lines) and C1 (plain lines). The case C2, in which the inter-species
collisions are disabled, has the same level of density perturbations than in the collisionless
case, while the fully collisional case (C1) shows a complete suppression of main plasma
density fluctuations. The beam density is still perturbed, although at a much lower level.

Now that we have identified which type of collisions affect the evolution of the mag-
netic field and energy, we can draw a broader picture of the mechanisms affecting the
magnetic streaming instability when adding collisions. Initially, the growing magnetic
field fluctuations, driven by the instability, are very effective in slowing down the beam.
However, although the main-beam collisions are initially negligible, their steep dependence
on the beam’s bulk speed, νmb∝ v−3

beam, means that the slowing down of the beam actually
leads to a huge increase of the main-beam collisionality. These collisions can then further
decelerate the beam, reducing the free energy available for the instability to grow. The
perturbed magnetic field indeed saturates at lower levels, while the main-beam collisions
continue to tap into the beam’s bulk kinetic energy to provide an efficient heating of the
main and beam plasma.
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5.5 Dependence of the level of magnetic field satura-
tion on the collision frequency

Now that we have identified the main effects of collisions on the instability and that
inter-species collisions are largely responsible for the differences with the collisionless
case, we investigate the dependence of the magnetic field saturation level on the collision
frequency. Indeed, we already noticed for the RHR and NR cases (sections 5.25.2 and 5.3.15.3.1),
that the saturation is reduced for a very different range of σ0. We also saw that in the
mixed case, the same two modes were affected by the same level of collisionality. In order
to study the quenching of the instability by collisions, we increase the σ0 parameter and
look at the level of saturation of the instability B(max) reached during phase two (that
gives the amount of energy that goes into the electromagnetic waves), or at the growth
rate γ of each mode.

Figure 5.125.12 (a) shows the magnetic field saturation 〈B⊥〉(max) /B0 versus the σ0 pa-
rameter (collisionality) for the mixed case. The two modes are shown for different types
of collisions enabled, the right-hand resonant mode is shown with a solid line, while the
non-resonant mode is shown with a dashed line. In addition we colour code, the case with
all collisions enabled (C1 in black), the C0 collisionless case in red, and the main-main
collisions only (C2) case in blue (see Table 5.25.2). As we increase the collision frequency
(the σ0 parameter), we observe for the "standard" case with all collisions enabled (C1),
a decrease of maximum perturbed magnetic field B(max)

⊥ , from B
(max)
⊥ /B0 ≈ 1.2 with no

collisions to a very low level of saturation (B(max)
⊥ /B0 ≈ 0.2). We consider the insta-

bility to be completely suppressed at this level of saturation. The results show that in
a system where both modes are excited, collisions will affect the RHR and NR modes
similarly, with lower energy in the saturated magnetic field over the same range of σ0.
The saturation is half of that of the collisionless case for σ0 ≈ 0.3Ω0 and the instability
is completely suppressed when σ0 ≈ 0.8− 1Ω0. Looking at the C0 and C2 cases, where
no inter-species collisions are present, we can confirm that quenching of the instability
comes from the presence of inter-species collisions. Interestingly, looking at the case with
main-main collisions only (C2), we observe an increase in the saturation of the NR mode
while the RHR remains unchanged. This effect was also observed in the previous section
in figure 5.115.11 and will be discussed in the next section.

Figure 5.125.12 (b) shows the growth rate γ, extracted from the simulations, as a function
of σ0. The figure shows the RHR (solid lines) and the NR (dashed) modes, again for the
mixed case. As in panel (a) the black line corresponds to the "standard" fully collisional
case (C1) and the blue line to the case with main-main collisions only (C2). First of all we
point out that the increase of B(max)

⊥ for the NR mode, for the case C2, is not associated
to a change of its growth rate. Indicating that main-main collisions tend to modify the
saturation mechanism of NR mode (the temperature anisotropy of the main plasma) and
not its initial development. We shall see this in more details later. Focusing now on the
fully collisional case C1, the results show that the decrease of the maximum perturbed
magnetic field for the RHR mode is associated with a progressive reduction of its growth
rate, while the decrease of B(max)

⊥ for the NR mode is not (which is also consistent
with figures 5.15.1 and 5.75.7). The decrease in the RHR growth rate can be understood by
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Figure 5.12: (a): maximum values of the magnetic perturbation 〈B⊥〉(max) /B0 and (b):
growth rates in the mixed case versus σ0 for the different cases C0 (only beam-beam
collisions) in red, C1 (all collisions enabled) in black and C2 (main-main collisions) in
blue. The solid line represents the RHR mode (positive helicity) and the dashed line
corresponds to the NR mode (negative helicity), and all marker represent one simulation.

considering the heating of the beam that occurs right from onset of the instability in
the collisional case (see section 5.25.2). In the mixed case presented here, the non-resonant
mode grows first (see for example figure 5.105.10), leading to a substantial heating of the beam
plasma. This means that when the RHR starts developing, at t Ω0 = 12, the beam has
an effective thermal speed which is much higher than the initial one. At the start of the
simulations we have vt,b(0) = V0, while by the time the RHR starts to grow vT,b ≈ 2.8V0.
The consequence of heating the beam was discussed in section 4.5.14.5.1, where we saw that
increasing the temperature of the beam leads to a decrease of the growth rates of the RHR
mode. The spreading of the beam distribution function means that fewer particles are
able to resonate. On the other hand, the NR growth rate is affected mainly by the main
plasma temperature (see section 4.5.24.5.2). Because the NR grows almost immediately, it does
not feel the relatively small, initial heating of the main plasma induced by main-beam
collisions. Its growth rate therefore remains constant even when the collision frequency is
increased. However, we saw earlier that the collisions between main and beam ions then
rapidly become important because of the slowing down of the beam. Thus effectively
quenching the instability over a shorter time scale. An effect that is further exacerbated
by increasing σ0.

Figure 5.135.13 shows the level of saturation as a function of σ0 for the cases where
either the RHR (panel (a)) or the NR modes (panel (b)) dominate. These were studied
respectively in sections 5.25.2 and 5.3.15.3.1. Furthermore, as it was done for figures 4.44.4 and 4.144.14,
we can check that both modes have opposite helicity, and we colour code the positive
helicity in blue and the negative helicity in red. Consistent with the results shown in
figure 5.125.12 for the mixed case, the magnetic saturation decreases as we increase σ0, albeit
this time for a different range of values depending on the mode. The RHR is completely
quenched at about σ0 = 0.5Ω0 while it takes σ0 = 150Ω0 to get the same result for the
NR case.

As seen before, the inter-species collisions are responsible for a decrease of the energy
going into the waves. The direct collisional interactions between the beam and the main
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is more effective than the wave-mediated energy exchange. In the present case, the higher
value of the beam drift velocity (Vb = 57V0 against Vb = 10V0 in the other cases) make the
inter-species collisions initially much less frequent, which is why it takes a higher value
of the σ0 parameter to achieve the same reduction of the saturation level as in the mixed
case. Using equation 5.75.7, we have initially for the RHR and mixed cases ν(RHR)

mb,0 = 0.1σ0

and for the NR case ν(RHR)
mb,0 = 5.10−4σ0.

By plotting the magnetic saturation as a function of σ0 B(max)(σ0)/B0 in a log scale for
the y-axis as in figure 5.135.13 panel (b), we can see that B(max)

⊥ (σ0)/B0 follows a decreasing
exponential law given by B(max) ∝ eΓσ0 with the rate Γ < 0, at least until reaching the
lowest level of saturation. The RHR and mixed cases follow the same trend (figures 5.125.12
(a) and 5.135.13 (a)) and we can calculate the value of Γ for each of these cases. This provides
useful informations on the required value of σ0 is to reduce the instability for a given set
of parameters. For the NR mode we find Γ≈−0.015, for the RHR mode Γ≈−4.68 and
for the mixed case Γ(Mix) ≈−2.3 for both modes.

Given that the observed reduction is due to the main-beam collisions νmb, we compare
the values of Γ to the initial value of this collision frequency. The ratio Γ/(νmb,0/σ0) for
each case gives:

Γ(RHR)σ0

ν
(RHR)
mb,0

≈ −4.68
0.1 ≈−46.8 (5.8)

Γ(NR)σ0

ν
(NR)
mb,0

≈ −0.015
5.10−4 ≈−30 (5.9)

Γ(Mix)σ0

ν
(Mix)
mb,0

≈ −2.3
0.1 ≈−23 (5.10)

We can see that the values of the three ratio are quite close, of the same order of magnitude.
This confirms that the magnetic saturation strongly depends on the main-beam collision
frequency. As the inter-species collision frequency increases, collisional effects leave less
energy for the magnetic field to grow and the magnetic saturation decreases. When the
initial main-beam collision frequency is lower (for example, when the relative drift is
higher, as in the NR case), it takes a higher value of the σ0 parameter to reach the same
level of quenching of the instability.

5.6 Other effects on the RHR and NR modes

In the previous sections, we identified the main-beam collisions as being largely re-
sponsible for modifying the instability. The results presented were restricted to the range
of σ0 where those effects were most important. However we also observed some other
interesting effects, such as an increase of saturation level for NR mode when including
the main-main collisions and not the main-beam collisions. In the next section, we will
address two of these effects, both occurring without inter-species collisions. This kind
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Figure 5.13: Level of saturation 〈B⊥〉(max) /B0 depending on the σ0 parameter in the
RHR case (panel (a)) and the NR case (panel (b)) for the helicities corresponding to
the resonant mode (positive helicity, blue) and the one corresponding to the non-resonant
mode (negative helicity, red). Each dot corresponds to a simulations. The black line in
the panel (b) corresponds to the decreasing rate of the saturation with σ0.

of situations are not physical, but again they help us understand better the processes
involved in the evolution of the magnetic streaming instability.

5.6.1 Quenching of the resonant mode with beam-beam colli-
sions only

We have seen that inter-species (main-beam) collisions induce a damping of both right-
hand resonant and non-resonant modes. We now investigate, in idealized simulations, the
case when only intra-species collisions are present. This is the case referred previously as
Cbb). We present results for two cases: (i) the mixed case presented in 4.44.4 and 5.3.25.3.2 with
f = 0.1, Vb = 10 (νbb,0 = 10σ0); (ii) the RHR case (see 4.2.24.2.2 and 5.25.2) with f = 0.01, Vb = 10
(νbb,0 = σ0). We are interested in the evolution of the maximum perturbed magnetic en-
ergy when increasing σ0 over the range 0.1<σ0/Ω0 < 108, which is well beyond the values
where the instability is quenched by the inter-species collisions. Although non-physical,
the results presented here provide crucial information on the physical mechanisms at play,
and a confirmation of the expected behaviour in such regimes.

Figure 5.145.14 (a) shows the evolution of the saturation level 〈B⊥〉(max) /B0 for different
σ0 for the case with beam-beam collisions only (Cbb) The RHR mode in shown with solid
lines and the NR mode in dashed lines; the colour coding refers to the simulations for the
mixed case (black) or for the case where only the RHR mode is present (blue). We point
out that to see any effect due to the beam-beam collisions requires a range of σ0 which is
very different from the range we studied until now. That is, the modes are affected only
for very large beam-beam collision frequencies. The results were checked for convergence
with different numerical parameters (smaller time step and longer computational domain).

First of all, we find that beam-beam collisions essentially only affect the RHR mode,
whether in the mixed case or in the case where it dominates. Indeed, the NR mode is
practically unaffected by a variation of more than eight orders of magnitude of σ0. The
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Figure 5.14: (a): magnetic saturation 〈B⊥〉(max) (σ0)/B0 and (b): Growth rate of the
magnetic perturbation γ(σ0)/Ω0 versus σ0 for the case with only beam-beam collisions
Cbb. The blue line corresponds to RHR cases studied in section 5.25.2 (f = 0.01, Vb = 10V0)
and the black to mixed cases studied in section 5.35.3 (f = 0.1, Vb = 10V0). The solid line
corresponds to the RHR (positive helicity) and the dashed line to the NR mode (negative
helicity).

growth rate is seen to remain constant (fig, 5.145.14 (b)), while the saturation 〈B⊥〉(max) /B0
only experiences a small decrease (about 11% of its initial value).

The maximum level of saturation for the RHR mode experiences a larger decrease
(34% of the initial magnetic saturation for the RHR case (blue) and 78% for the mixed
case (black)) over a broad range (10< σ0/Ω0 < 105, which explains why this effect could
not be seen in section 5.25.2) where σ0 was 0.2Ω0. Contrary to the NR mode, this reduction
of the saturation is associated with a reduction in the growth rate γ. This shows a de-
crease in γ that follows the decreases of the magnetic saturation in the same range of σ0,
indicating that the second is induced by the former. The RHR instability is completely
damped for σ0 = 106Ω0 for both cases, giving νbb,0 = 106− 107Ω0. At that level of colli-
sionality there is no evidence of any pitch-angle scattering that would reveal the presence
of wave-particle interactions. Collisions keep the particles from resonating properly by
ceaselessly displacing them in velocity space from a point to another, and thus stopping
them from following waves coherently for times longer than ∼ 10−6Ω−1

0 . Although this
"demagnetization" of the particles by beam-beam collisions is expected, the level of colli-
sionality needed shows that resonant wave-particle interactions are very effective even for
episodic events of very short duration.

5.6.2 Enhancement of the non-resonant mode with main-main
collisions only

Looking at the graph 〈B⊥〉max (σ0)/B0 in the mixed case (figure 5.125.12 (a)), we see
that in the absence of main-beam collisions but in the presence of main-main collisions
(case C2), the non-resonant mode (blue dashed curve) experiences an increase in energy
that is due to the main-main collisions νmm. We now investigate this further, in idealized
simulations, the case where the NR mode is the dominant mode. Figure 5.155.15 (a) shows
the magnetic saturation as a function of σ0 for the case C2 (in black) and C0 (blue) in
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the NR case (density ratio f = 0.016 and drift speed Vb = 57V0). Indeed, we observe a
similar behaviour to the mixed case, with an increase of the saturation of NR mode over
a range of σ0.

This effect is present whether the beam-beam collisions are included or not, demon-
strating that it is the main-main collisions that are responsible. The impact of these
collisions on the distribution functions is to isotropize the main plasma. However, as
discussed in section 4.34.3, the non-resonant mode drives a strong anisotropy in the main
plasma population. This is shown in figure 5.155.15 (b), where the evolution of the temper-
ature anisotropy T‖/T⊥ for the beam (red) and the main plasma (blue) are plotted as a
function of time. The figure shows the collisionless case for σ0 = 0 (dashed line) and the
case with only main-main collisions present, Cmm, (solid line). The beam anisotropy is
obviously unchanged because of the lack beam-beam collisions, however even if included,
it’s the anisotropy in the main plasma that affects the instability. Indeed, we see that
main-main collisions reduce the level of anisotropy experienced by the main plasma dur-
ing the growth of the instability. We also see evidence of a relatively small increase in
the anisotropy between 25 < tΩ0 < 40 above one. After the saturation of the instability
(around tΩ0 ≈ 20), a transfer of perpendicular thermal energy to parallel thermal energy
relaxes the anisotropy in both cases.

We can see here that the increase in the magnetic saturation and the instability growth
rate is probably related to the reduction in anisotropy induced by the main-main collisions.
This result thus leads us to think that the reduction of the main anisotropy during the first
and second stages increase the nonresonant mode. As we saw in section 4.5.24.5.2, increasing
the main temperature has the effect of reducing the saturation of this mode through an
opposition of the magnetic pressure by the thermal pressure. The main thermal pressure
acts as a force that counter the development of the instability, reducing its growth rate
when increasing βm. Now, the anisotropy T⊥ > T‖ is reduced when including the main-
main collisions, which increases the growth rate of the NR mode.

So the NR mode is increase when reducing vT,m, and for a given vT,m when reducing
T⊥. We can deduce that the force that acts against the development of this mode when
increasing the main temperature comes from the perpendicular component to the local
magnetic field of the main thermal velocity. The expansive motion of the electromagnetic
wave is thus slowed down by the perpendicular force due to the thermal pressure that
acts as a reducer to the development of the non-resonant mode, reducing its growth
rate and therefore its level of saturation. By increasing T⊥ during the linear stage, the
non-resonant mode thus generates its own counter (the temperature anisotropy T⊥ > T‖)
feedback, and introducing the main-main collisions reduces this feedback, allowing the
non-resonant mode to grow faster and reach a higher level of saturation.

5.7 Discussion
We investigated the effects of Coulomb collisions on the magnetic streaming instability,

for both the right-hand resonant and the non-resonant modes. In section 5.3.25.3.2 we showed
that both modes experience a decrease in their saturation level, which is directly related
to the amount of magnetic energy generated by the instability as it feds on the bulk
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Figure 5.15: (a): level of saturation with σ0 for the NR case with the C2 case (black) and
the C0 case (blue). (b): temperature anisotropies T‖/T⊥ in time for the beam (red) and
the main (blue) with σ0 = 0 (dashed lines) and σ0 = 0.1Ω0 and only νmm 6= 0 (solid lines)
in the NR case.

kinetic energy of the beam. In the case of the RHR mode, the decrease in the saturation
level is associated with a reduction of the instability growth rate, which is due to the
strong heating of the beam in collisional cases. For the non-resonant mode, the growth
rate remains approximately constant, because the instability develops too quickly to sense
any significant change in the plasma temperature. To identify which type of collisions
were responsible for this behaviour, we run idealized simulation where the effects inter-
species collisions (main-beam) and intra-species collisions (main-main and beam-beam)
were studied separately for. These simulations demonstrated that both mode are affected
by inter-species (main-beam) collisions, and that those are largely responsible of the
quenching of the modes. The overall effect of collisions is schematically summarized in
figure 5.165.16. As the beam is slowed down by the onset of the instability, intra-species
collisions rapidly become dominant. These collisions can then transfer the momentum
and bulk kinetic energy of the beam directly to the main plasma, creating a more efficient
energy-transfer channel than the magnetic field, and thus leaving less energy for the waves
to grow. Finally, over longer times, both populations relax to a thermal equilibrium.

We identify here some of the key results presented in this chapter:

• collisions lower the energy going into the waves, reducing the maximum magnetic
field perturbations (saturation level) and the final amplitude of magnetic energy
fluctuations;

• the reduction in the energy of the waves is associated with a reduction in the level
of density perturbation;

• the collisions do not modify the most unstable wavelengths, only the amount of
energy going into these waves;

• the type of collisions responsible for most of these effects is the intra-species colli-
sions, even if their initial frequency is low compared to the other frequencies;
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5.7 Discussion

Figure 5.16: Schematic view of the behaviour of the instability in the presence of collisions.
The blue and red area represent the beam and the main plasmas, B the electromagnetic
waves, νmb the effects of inter-species collisions and the arrows represent the energy ex-
changes, associated with the effects on the plasmas (slowing down, heating).

• the decrease of the magnetic field saturation with σ0 is directly linked to the initial
value of the main-beam collision frequency. This is a common point between all the
different cases we examined;

• idealized simulations with only beam-beam collisions present, show that at very high
frequency they indeed reduce the RHR mode, by impeding the particle to resonate,
while they do not affect the ’fluid-like’ NR mode;

• main-main collisions tend to increase the saturation level of the NR mode. This led
us to identify a feedback mechanism created by the anisotropy of the main plasma
on the development of this instability.

The case of the left-hand resonant (LHR) mode was not addressed in this work because
we could not highlight effects of the collisions on the development of the instability.
Indeed, as soon as there were collisions involved, there was mostly a strong heating of the
background and it was difficult to observe a growth of electromagnetic waves. However
it can be interesting to stress some features that can be expected for this mode in the
collisional case. One of the main differences in the LHR case is that this happens for a
very hot beam (with vT,b� Vb), which means that the ordering we saw in equation 5.15.1
is no longer valid since the beam-beam collision frequency is expected to be much lower
than the other ones. Also, the expression for the main-beam collisions in equation 5.75.7 is
no longer valid either since the highest velocity between the drift and the thermal speeds
is no longer the drift speed. That means, as can be seen in the associated distribution
function in figure 4.94.9, that a non-negligible portion of beam particles are close to the main
in the velocity space from the start of the simulation. This makes a big difference as the
main-beam collisions would then act as a very effective medium to relax both plasmas to
thermal equilibrium. Also, since a very important part of the energy lies in the thermal
energy of the beam, this situation would mainly lead to a heating of the main, at the
expense of the development of the instability.
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Chapter 6

Conclusion

We don’t need no education
We don’t need no thought control
No dark sarcasm in the classroom
Teachers leave them kids alone

Another Brick in the Wall, Part 2 (1979), Pink Floyd.

The interaction of cosmic rays streaming in the magnetized interstellar medium is
associated to processes of a major importance for solving several questions such as the
long-time confinement of these cosmic-rays in the galaxy or the heating of the medium
at local scales. This interactions has many aspects, among which the amplification of
the interstellar magnetic field through the magnetic streaming instability. One can study
this instability in laboratory, and in some conditions, collisions play an important part
in its evolution. In this work, I was interested in the effects of Coulomb collisions on the
development of the magnetic streaming instability.

In chapter 44, I studied the magnetic streaming instability for plasmas under different
conditions, using the numerical hybrid-PIC model presented in chapter 33. I observed
the presence of three different of modes that can either dominate or coexist depending
the physical conditions. These are the right-hand resonant, left-hand resonant and non-
resonant modes. In particular, I have been able to reproduce the left-hand resonant
instability in our simulations, which, to the best of my knowledge, has not been studied
before in numerical simulations. I also observed the mechanisms of wave growth predicted
by analytical theory and verify some of its results. I compared my numerical results with
previous analytical (Gary 19911991) and numerical (Winske and Leroy 19841984, Wang and Lin
20032003) works, and found them to be consistent.

I developed a module, based on the works of Takizuka and Abe 19771977 and Nanbu and
Yonemura 19981998, to simulate a Landau collision operator in order to study the effects of
Coulomb collisions on the evolution of the magnetic streaming instabilities. I saw that
collisions can quench the instability. Although interspecies collisions are the lowest com-
pared to the other types of collisions, they have the most important role in the dynamics
of the instability. Indeed, these collisions compete with electromagnetic field to redis-
tribute the beam kinetic energy to the plasma, mainly in the form of thermal energy.
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Collisions can thus be seen as a channel for the energy to flow between the populations
in the plasma, in a much more effective way than the growth of the magnetic streaming
instability.

Among the results I obtained in the collisionless and collisional cases for the magnetic
streaming instability, the most important are:

• there are three distinct electromagnetic parallel mode in the magnetic streaming
instability: the right-hand resonant (RHR), left-hand resonant (LHR) and non-
resonant (NR);

• the RHR mode is more efficient to heat the beam, while the NR heats more the
main plasma;

• the NR mode is more efficient than the others to generate strong magnetic field
fluctuations;

• both RHR and NR modes are reduced when adding collisions in the system, and
they are affected by the same kind of collisions: the interspecies collisions;

• interspecies collision can influence the instability even when the initial collision
frequency is much smaller than growth rate;

• a big difference between the collisionless and collisional cases is that in the latter,
the plasma reaches thermal equilibrium, where both the main plasma and the beam
have the same temperature;

• the component of the main plasma pressure perpendicular to the magnetic field acts
against the development of the NR mode and reduces the magnetic field saturation
level.

On the energy point of view, it may be interesting to consider both the magnetic field
and the collision as channels that guide the energy between the beam, the main and the
magnetic field. In this case, this channel takes the beam kinetic energy and redistribute
it to both the beam and the main in the form of thermal energy. With that perspective
one can see that the collisions are much more effective than the instability to channel the
energy, as they do not involve the generation of electromagnetic waves. The instability,
in the other hand, takes some time before being truly effective. This point of view has its
limits, however, as the effects of the instability is not limited to the transfer of energy.

The interaction of an ion beam with a charged background can be studied in laboratory,
for instance with the help of a high power laser installation. Indeed, if one can manage to
produce a ionized gas (for instance with a laser) and a strong enough magnetic field, one
can use a beam of ions to induce the magnetic streaming instability and observe its effects.
The experiments mentioned in Weidl et al. 20162016 can give an experimental observation of
the streaming instability, and support or refute the characteristics that I could observe
in the numerical simulations. For instance, in some experimental installations, a beam
of ions is produced by shooting a solid target with a laser. A magnetic field is generated
in the background plasma using a Helmholtz coil. Then it is possible to measure the
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energy spectrum of the particles or the amplitude of the magnetic field, which could give
us informations about the efficiency of the instability to generate magnetic fields and heat
the plasma.

In this study, I focused on the effects of Coulomb collisions on the magnetic streaming
instability, and in particular the effects of ion-ion collisions. In some cases such as in the
interstellar medium, the background is weakly ionized and the neutral atoms density (or
molecules) is much higher. As a result, collisions between ions and neutrals are potentially
very important. The associated complex chemistry that can occur with molecules and
neutrals, as well as the ionization processes can also play an important role in the dynamics
of the interstellar medium (see Padovani, Hennebelle, and Galli 20142014). The full process
of heating and ionization of the interstellar medium by cosmic rays, mentioned in chapter
2.22.2, need the inclusion of all these processes (ionization, excitation, recombination) in the
model to be properly understood.

As discussed in section 3.43.4, the electrons are not expected to play a significant role in
the dynamics of the beam in the range of parameters I used. However, for very high energy
particles, or for much longer times, collisions with the electrons can become important.
These can be included in the code using the method presented in Sherlock 20082008 to account
for collisions with a fluid background (such as the electrons) in a hybrid model.

While I only consider Maxwellian distribution functions (for the initial states) in this
work, some astrophysical plasmas, such as cosmic rays, can have a very different distribu-
tion, like power-law spectrum as detailed in Zweibel 20132013 (see section 2.22.2). Such difference
can have a strong impact on the development or even the existence of a magnetic (and
even electrostatic) streaming instability. Such difference should be investigated further as
well. A distribution with a Lorentzian law or a kappa law, for example, could differ from
the Maxwellian case I studied here. To get in a situation closer to the one of the cosmic
rays, one also could investigate the influence of a power-law spectrum as a distribution
function on the instability.

In the present study, I used mainly parameters with relatively high beam to main
density ratio (the lowest being 1%), and beam drift velocities of a maximum of 57 Alfvén
speeds. These conditions, although they allow an easy study of the different modes gen-
erated by the instability, can be very different than the ones one can find in astrophysical
situations such as the interstellar medium or some supernovae shocks. It can be a good
track to try to simulate parameters closer to the actual conditions of the cosmic rays in
the interstellar medium. This way, one could be able to better identify the dominating
modes involved in the confinement of these energetic particles.

Further, as explained in Padoan and Scalo 20052005, large scale inhomogeneities in the
density of the interstellar medium can lead to a confinement of the cosmic rays due to the
magnetic streaming instability. Simulations of such inhomogeneous medium could allow
a more precise description of the conditions needed to observe such confinement.
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Abstract:
When a beam of energetic ions streams in a magnetized plasma background with a bulk

velocity higher than the local Alfvén speed, it can drive electromagnetic waves unstable.
The result is enhanced magnetic field fluctuations, the slowing down of the beam and
plasma heating. This so-called magnetic streaming instability is commonly present in
space plasma, such as streaming cosmic rays in the interstellar medium or reflected ions
at shocks, as well as in laboratory plasmas. Under certain physical conditions, Coulomb
collisions between ions can influence and even suppress the development of the instability.
This work provides the first investigation of such effects. We study the magnetic streaming
instability numerically with a hybrid-PIC code with a newly developed Monte Carlo ion-
ion Coulomb collision module. Our results for the collisionless regime confirm previous
studies related to the existence of resonant and non-resonant modes, and provide the
groundwork for the comparison with the collisional cases. We find that collisions generally
lower the amplitude of the magnetic field fluctuations, and we identify several regimes
which are characterized by the competition between the growth of the instability and
collisions. Even in weakly-collisional plasmas, the slowing down of the beam can actually
induce a rapid increase of collisional energy exchanges, which leave less free energy for the
non-linear growth of the magnetic field fluctuations and cause a more efficient heating of
the plasma. For the resonant mode the enhanced heating of the beam reduces the number
of particles resonating with the waves and leads to a reduction of its growth rate.

Key words: Streaming instability, Cosmic rays, Hybrid model, Polarized waves, Colli-
sions, Resonance

Résumé :
Quand un faisceau d’ions énergétiques traverse un plasma magnétisé plus rapidement

que la vitesse d’Alfvén, il peut rendre instables des modes électromagnétiques. Cela résulte
en une augmentation des fluctuations magnétiques, un ralentissement du faisceau et un
chauffage du plasma. Cette instabilité faisceau-plasma magnétisée est commune dans des
environnements comme les rayons cosmiques dans le milieu interstellaire, les ions réfléchis
au choc d’étrave terrestre, ou dans des plasmas de laboratoire. Sous certaines conditions,
les collisions coulombiennes entre les ions peuvent avoir une influence et même suppri-
mer le développement de l’instabilité. Ce travail fournit les premières recherches sur le
sujet. Nous étudions l’instabilité numériquement avec un code hybride-PIC intégrant un
module de collision Monte-Carlo nouvellement développé. Nos résultats pour le régime
sans collision confirment les études précédentes sur la présence de modes résonants et
non-résonant, et fournissent une base de comparaison pour le cas collisionnel. Nous trou-
vons que les collisions diminuent l’amplitude des fluctuations magnétiques, et identifions
plusieurs régimes caractérisés par la compétition entre l’accroissement de l’instabilité et
les collisions. Même en régime faiblement collisionnels, le ralentissement induit une aug-
mentation rapide des échanges d’énergie collisionnels, ce qui laisse moins d’énergie libre
pour l’amplification non-linéaire des fluctuations magnétiques et cause un chauffage plus
efficace du plasma. Pour le mode résonant, l’augmentation du chauffage du faisceau réduit
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le nombre de particules en résonance avec les ondes, réduisant du même coup son taux
d’accroissement.

Mots-clés : Instabilité faisceau-plasma, Rayons cosmiques, Modèle hybride, Onde pola-
risée, Collisions, Résonance
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