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Summary 

Light utilization in microalgae: the marine diatom Phaeodactylum tricornutum and the 

green algae Chlamydomonas reinhardtii. 

 

Microalgae have developed distinct approaches to modulate light absorption and utilization by their 

photosystems in response to environmental stimuli. In this Ph.D Thesis, I characterised different 

strategies employed by freshwater (Chlamydomonas reinhardtii) and marine algae (Phaeodactylum 

tricornutum) to optimise their acclimation to the environment.  

In the first part of this work, I used spectroscopic, biochemical, electron microscopy analysis and 3-

dimentional reconstitution to produce a model of the entire cell of the marine diatom 

Phaeodactylum tricornutum. This model has been used to address the following questions: i. how 

the cellular organelles interact to optimise CO2 assimilation via ATP/NADPH exchanges? ii. how is a 

secondary chloroplast structured to facilitate exchanges with the cytosol via its four membranes 

envelope barrier? and iii. how have diatoms shaped their photosynthetic membranes to optimise 

light absorption and downstream electron flow?  

In the second part, I have focused on the regulation of light harvesting and dissipation in C. 

reinhardtii by studying the role of perception of light colour and metabolism on excess light 

dissipation via the Non-Photochemical Quenching of energy (NPQ). Using biochemical and 

spectroscopic approaches, a molecular link between photoreception, photosynthesis and 

photoprotection was found in C. reinhardtii via the role of the photoreceptor phototropin on excess 

absorbed energy dissipation (NPQ). I also demonstrated that besides light, downstream metabolism 

can also affect this acclimation process.  

Overall this Ph.D work reveals the existence and integration of different signal pathways in the 

regulation of photoprotective responses by microalgae living in the ocean and in the land. 
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Résumé 

L'utilisation de la lumière chez les microalgues : la diatomée marine Phaeodactylum  

tricornutum et l'algue verte Chlamydomonas reinhardtii. 

 

Les microalgues ont développé des approches distinctes pour moduler l'absorption de la lumière et 

son utilisation par leurs photosystèmes en réponse à des stimuli environnementaux. Dans ce 

rapport de Thèse je présente les différentes stratégies employées par une algue d'eau douce 

(Chlamydomonas reinhardtii) et une algue marine (Phaeodactylum tricornutum) pour optimiser leur 

acclimatation à l'environnement. 

Dans la première partie de ce rapport, je propose un modèle de cellules entières de la diatomée 

marine Phaeodactylum tricornutum obtenue par analyses spectroscopiques et biochimiques ainsi 

que par l’obtention d’images par microscopie électronique et reconstitution 3-D. Ce modèle a été 

utilisé pour répondre aux questions suivantes i. comment les chloroplastes et les mitochondries sont 

organisés pour optimiser l'assimilation du CO2 par échange ATP / NADPH ii. comment est structuré 

un chloroplaste secondaire pour faciliter les échanges avec le cytosol à travers les quatre 

membranes qui le délimitent et iii. comment sont structurées les membranes photosynthétiques 

afin d’optimiser l'absorption de lumière et le flux d'électrons. 

La deuxième partie de ce rapport porte sur la régulation de la lumière et de sa dissipation chez C. 

reinhardtii grâce à l'étude d'une part du rôle de la perception de la couleur de la lumière et d'autre 

part du métabolisme sur la dissipation de l'excès de lumière par quenching non photochimique 

(NPQ). En utilisant des approches biochimiques et spectroscopiques, on a mis en évidence un lien 

moléculaire entre la photoréception, la photosynthèse et la photoprotection chez C. reinhardtii via 

le rôle du photorécepteur phototropine, démontrant ainsi que le métabolisme, en plus de la 

lumière, peut aussi affecter ce processus d'acclimatation. 

En conclusion, ce travail de thèse révèle l'existence et l'intégration des différentes voies de 

signalisation dans la régulation des réponses photoprotectrices mises en place chez les microalgues 

marines et d'eau douce. 
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1.1 Introduction  

I realized my Ph.D thanks to a Marie Curie ITN grant in the frame of the AccliPhot network. The main 

aim of the AccliPhot consortium was to investigate and understand short-term acclimation 

mechanisms in photosynthetic organisms integrating theoretical and experimental research from 

academia and industry. My Ph.D program took place in the Cell and Plant Physiology Laboratory 

(LPCV, BIG) at CEA Grenoble. The experimental work, divided into two main tasks, aimed at 

understanding how the different processes linked to photosynthesis (light absorption, dissipation 

electron flow and carbon assimilation for metabolism) are regulated to allow microalgae to 

successfully acclimate to their environment. 

 

1.2 From light perception to light utilization 

Microalgae are an ensemble of marine and freshwater organisms adapted to live in differentiated 

aquatic environment and are at the basis of the trophic network. Although they represent only a 

small percentage of the biomass on Earth, these organisms (also called “primary producers”) 

contribute significantly to the global primary productivity (Field et al., 1998). Their activity influences 

the major biogeochemical cycles, playing a crucial role in CO2 sequestration from the atmosphere 

(through the so-called biological pump). Via photosynthesis, they can alter CO2 concentrations 

enriching the surrounding environment with oxygen, thereby influencing global climate. Under 

favourable conditions, light can trigger exponential growth mechanisms called "algal blooms" in 

which the density of these species can reach several millions cells per milliliter. In aquatic 

environment, microalgae undergoes strong variations of incident irradiance due to its transport 

along the water column and to the effect of water mixing (induced by wind or currents). Light 

variability can influence photosynthetic organisms, which must regulate their photosynthetic 

apparatus in order to adapt to the limiting, saturating or over-saturating light input. Acclimation to 

low irradiance requires an increased efficiency in light-harvesting achieved by de novo synthesis of 

photosynthetic pigments (Sukenik et al., 1987). On the other hand, oversaturating irradiance leads 

to damaged photosynthetic apparatus (Bowler et al., 1992; Osmond et al., 1997; Anderson et al., 

1998) resulting in the redirection of the energy into dissipative processes with an overall reduction 

in the photosynthetic yield.  

When light excites a chlorophyll (Chl) molecule, it enters in a fist singlet-state excitation (1Chl*). This 

“energy rich” state i. can be used to drive photosynthesis (qP, Figure 1.1), ii. can relax into the 

ground state via chlorophyll fluorescence (Figure 1.1) or iii. can be dissipated in the form of heat 
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(through non radiative thermal emission, in a process that is the basis of Non-Photochemical 

Quenching, NPQ, Figure 1.1). In both plants and microalgae, the rapid regulation of these 

mechanisms is an essential component for the successful acclimation to their environmental niche.  

 

 

1.3 The photosynthetic process 

The first route, and the most advantageous one, is the use of this energy to drive photochemistry, 

i.e. shuttling electrons through the photosynthetic electron transport chain. In photyosynthetic 

eukaryotes, this process occurs in a specific organelle, the chloroplast, which contains a membrane 

system (the thylakoids), which are the sites of photosynthetic electron transport and an aqueous 

matrix (the stroma), where CO2 is assimilated into carbohydrates.  

While some phototrophic prokaryotes (Béjà et al., 2000; Kolber et al., 2000) perform an ancestral, 

anoxygenic type of photosynthesis (Whitmarsh, 1999), most photosynthetic organisms use water 

as an electron donor to reduce CO2 and produce carbohydrates generating oxygen as secondary 

product. Consistent with this event, photosynthesis permits the proliferation of life on Earth and 

the overall process can be represented as follows (Figure 1.2). 

Figure 1.2 – Representation of the oxygenic photosynthesis 

nH2O + nCO2 + Light → (CH2O)n + 

nO2 

Figure 1.1 – Fate of the excited chlorophyll. Representation of the possible relaxation pathways of the singlet excited state of 

chlorophyll (1Chl*). (1) fluorescence (2) photochemistry (qP) or (3) dissipation as heat (or NPQ; from Muller et al., 2001). 
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The major players in the photosynthetic process are two multiproteic complexes called 

photosystems I (PSI) and II (PSII). Their structure is design into two distinct units, one devoted to the 

light-harvesting processes (the antenna complexes) and one (the core-complexes) the site of 

photochemical reactions. PSI and PSII are structurally different, however they share common 

features like some chlorophyll binding proteins, responsible for light absorption and special 

chlorophylls pair located in the core complexes, which drive electron transport.  

Photosynthetic organisms belonging to viridiplantae (plants and green algae) possess the antenna 

complexes composed by proteins members of the light-harvesting complexes (LHC) superfamily. 

These proteins binds a high concentration of light-harvesting pigments (chlorophylls a and b and 

carotenoids) at various stoichiometries as a consequence of adaptation to different environmental 

conditions (Green & Durnford, 1996; Nelson & Ben-Shem, 2005). These antenna complexes are 

encoded by the nuclear genome and they are associated with photosystems I (LHCI or LHCA) and 

with photosystems II (LHCII or LHCB). In the model plant Arabidopsis thaliana four isoforms are 

associated with PSI (LHCA1-4) and six with PSII (LHCB1-6; Jansson, 1999). Microalgae, on the other 

hand, possess a more complex organization of LHC. In the model organism Chlamydomonas 

reinhardtii, the LHCI antenna is larger than plants with nine LHCAs subunits (Büchel, 2015) and nine 

genes encode for the LHCII. In diatoms, the peripheral antennae are mainly composed of 

fucoxanthin chlorophyll proteins (FCP), which bind chlorophyll c instead of b and fucoxanthin 

instead of lutein. Due to the homology of FCP genes with LHC genes of higher plants (Apt et al.,1994; 

Eppard & Rhiel, 1998), the FCP are commonly placed into the CBP family (Chlorophyll Binding 

Proteins, Dittami et al., 2010).  However, the specific characterization of these LHC complexes to 

photosystem I or II in diatoms is still matter of debate (for a recent review see Büchel, 2015). 

The photosystems core-complexes include reaction centres and internal (core) antennae. These 

proteins are well conserved during evolution and present only small differences between organisms. 

The PSII core-complex for example, contain two similar proteins (D1 and D2) which directly bind 

pigments (special pair of chlorophyll a, P680), electron transport cofactors (2 pheophytins, 2 

plastoquinones and a non-heme iron) and two proteins of the internal antenna (CP43 and CP47). In 

viridiplantae, the PSI core complex contains 14 subunits. The “central” part is composed by the 

subunits PsaA, B and C (three large proteins associated with the cofactors A0, A1, FX, FA and FB) and 

special pair of chlorophylls (P700) responsible for the photochemical conversion (Nelson & Yocum, 

2006).  
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The light phase of photosynthesis starts with the absorption of photons by the antenna complexes 

of the photosystems (LHCI and LHCII). Once a photon is captured by this “net-trap” the energy is 

transferred in a down-hill reaction to specific Chl a molecules in the PSs core complexes (P700 and 

P680, respectively for PSI and PSII) thanks to the specific arrangement of pigments within the 

antennas. When these pigments become excited, they perform charge separation to feed a chain of 

redox reactions. This ultimately generates reducing power in the form of nicotinamide adenine 

dinucleotide phosphate (NADPH) molecules. At the same time, charge separation (in PSI and PSII) 

and the protonation/deprotonation reactions that occur on the two side of the thylakoid 

membranes during electron transfer, lead to the generation of an electro-chemical potential 

gradient (pH) between the stroma and the lumen (internal aqueous space) side of the thylakoid 

membranes. This gradient is used to synthesize adenosine triphosphate (ATP), according to the 

Mitchell’s theory. A schematic representation of the pathway for photosynthetic electron flow is 

presented in Figure 1.3.  

  

Figure 1.3 – Schematic representation of the pathway for the photosynthetic linear electron flow. Black rows represent the 

electrons pathway through the major components of the photosynthetic electron flow chain: photosystem II (PSII), the 

plastoquinone (PQ) the cytochrome b6f complex (Cyt b6f) the plastocyanin (PC), the light harvesting complex of the photosystems 

I (LHCI), the photosystems I (PSI), the ferredoxin (Fd), the enzyme Fd-NADP+-oxidoreductase (FNR) and the  ATP synthase. Red 

rows represent the protons pathway. 
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At the level of PSII, excited P680 transfers an electron to a pheophytin, the primary electron 

acceptor molecule. Afterwards, the electron is delivered to secondary quinone acceptors (QA and 

QB), and is carried through a chain of transporters molecules (according to their redox potential). In 

parallel, excitation of the primary electron donor of PSI (P700) transfers  an electron to the primary 

PSI acceptors A0, and then again to a chain of electron transporters (A1, ferredoxin (Fd) and the 

enzyme Fd-NADP+-oxidoreductase, FNR), ultimately leading to the reduction of NADP+ to NADPH 

on the stroma side. Electrons flow between PSII to PSI occurs via two soluble electron carriers PQ 

and PC, which reduce and oxidize the Cyt b6f complex, respectively, during the so called “Z-scheme” 

(Hill & Bendall, 1960). 

The ATP and NADPH provided by the light phase are used during the light-independent phase 

(erroneously described dark phase). This stage (where the light is not directly needed) comprise a 

series of reactions indicated with the name Calvin-Benson-Bassham Cycle (CBB, Benson & Calvin, 

1950; Benson, 2002; Bassham, 2003) in which atmospheric CO2 is reduced to carbohydrates to 

sustain cellular metabolism. The synthesis of the 3-carbon molecule (glyceraldehyde 3-phosphate, 

GAP) is catalyzed by the enzyme Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCo) 

located in the stroma of the chloroplast. Thanks to the uptake of CO2 the Ribulose-5-phosphate 

(Ru5P) is regenerated at the end of the process to preserve the cyclic characteristic of the CBB cycle. 

This process requires ATP and NADPH in a stoichiometry of 1.5. However, the linear electron flow 

described above produces ATP at lower amounts (likely 1.3, e.g. Allen 2002; Petersen et al., 2012). 

Therefore, photosynthetic organisms must adjust and optimize the ATP/NADPH ratio in order to 

produce biomass. In viridiplantae, it is believed that the higher demand for ATP than for NADPH, 

leads to the rerouting of photosynthetic electrons around PSI in a cyclic electron flow. This process 

involves the transfer of electrons from the ferredoxin back to the Cyt b6f complex, producing a 

proton gradient (and thus ATP) during the reduction of PC. PSII is not involved in this process and as 

consequence, this alternative pathway does not lead to the production of NADPH or O2. On the 

other hand, in diatoms, our recent results (see section 2.5) show that optimization of the 

photosynthetic ATP/NADPH ratio is achieved through an extensive interaction between the 

photosynthetic and the respiratory process, which occurs in the mitochondria. 
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1.4 “Too much of a good thing…”  

Citing Barber & Anderson, 1992 “light can be bad for photosynthesis”. Indeed, as mentioned above, 

the excited Chl a has several ways to relax to its ground state, one of them is fluorescence. 

Fluorescence consists in the emission of an energy photon at longer wavelength (and lower energy) 

than the absorbed photon. Changes in the quantum yield of fluorescence allow calculating the 

capacity of PSII reaction centres to drive photosynthesis (Genty et al., 1989) and nowadays these 

parameters are a common proxy used to evaluate photochemical efficiency. The three fates of light 

described by Muller and coworkers are in competition and the relative yield of fluorescence is 

dependent on the efficiency of the other two pathways (qP and NPQ; Niyogi, 1999; Muller et al., 

2001). Using in vivo fluorometers (called pulse amplitude modulation, PAM) changes in fluorescence 

emission in dark adapted and illuminated cells can be measured providing information on changes 

in the efficiency of photochemistry (qP) and heat dissipation (Non photochemical quenching; NPQ). 

The PAM principles are based on the selective amplification of the fluorescence signal emitted by 

the Chl a after excitation using different light sources and modulated light frequency pulses (Baker, 

2008). Measuring the progressive reduction of chlorophyll fluorescence in response to illumination 

we can have information about the activation of NPQ mechanisms. The analysis starts with dark-

adapted cells and a short (200 ms long) saturating pulse. During this condition, cells, as consequence 

of the transient reduction of QA, re-emit the maxium amount of absorbed energy in the form of 

fluorescence (Fm; maximal fluorescence of dark-adapted cells). Then saturating pulses are applied 

in parallel with illumination. After each pulse, the maximal fluorescence of light-adapted cells (Fm’) 

is recorded. The activation of thermal dissipation mechanisms (NPQ) can be quantified by the 

decrease of Fm’. The amplitude of NPQ, according to Bilger and Björkman (1990), is related to the 

differences between these two conditions (dark- versus light-adapted cells) and calculated as: (Fm/ 

Fm') – 1).  
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1.5 Photoprotection  

The highly variable nature of the environment surrounding photosynthetic organisms exposes them 

to possibly dangerous situations. In particular, light, which is the driving force for life strongly affects 

the performance and growth of photosynthetic organisms. While low light can limit growth by 

limiting the photosynthetic performances, excess light can led to the production of reactive oxygen 

species (see e.g. Niyogi & Truong, 2013; Finazzi & Minagawa, 2014). Plants and algae can optimize 

energy capture and conversion efficiency under different light conditions by adapting their 

photosynthetic apparatus thanks to a variety of short and long-term responses.  

Short-term responses act in the timescale of seconds to minutes and allow reversible responses of 

the photosynthetic machinery. Under high light exposure, excessive photon flux leads to the over-

excitation of the light-harvesting complexes. This increases the possible accumulation of chlorophyll 

triplets (Chl*), which in turn trigger the production of reactive oxygen species (ROS; Krieger-Liszkay 

et al., 2008), i.e. dangerous compounds for the cell. To reduce this risk, photosynthetic organisms 

can increase the thermal dissipation of the excess light. This is typically achieved via NPQ, which 

represents a major strategy for rapid regulation of photosynthesis. 

On the other hand, long-term responses are also observed and involve ultrastructural changes in 

the cell and in most cases de-novo synthesis or breakdown of proteins, pigments and redox 

cofactors. For instance, during limiting light conditions, photosynthetic cells tend to increase their 

light-harvesting capacity to maximize light capture. This requires an increased biosynthesis of 

photosynthetic pigments (Sukenik et al., 1987), as well as the increased expression of the genes 

encoding for the light harvesting proteins (LHC in plants). Conversely, plants tend to decrease the 

size of the LHC proteins in high light (Anderson et al., 1995) to avoid absorption of excess light. This 

leads to a feedback regulation, where the level of irradiance regulate the antenna size of 

photosystems on the long-term scale of several hours/days (Smith et al., 1990; Melis, 1991; 

Ballottari et al., 2007).  In the following, I will shortly describe the molecular mechanisms of both 

the short and long-term responses.  
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1.6 Short-term responses 

1.6.1 Non-photochemical quenching  

The NPQ is the major fast responses to light stimuli. In plants, it has been reported that three NPQ 

components can be distinguished based on their different relaxation kinetics (Horton et al., 1996; 

Dall’Osto et al., 2005; Joliot & Finazzi, 2010). The fastest component is the energy-dependent 

component, qE. In plants qE relax in around one minute. The next one is state transitions qT, which 

relaxes within minutes. Finally, the photoinhibitory quenching qI, shows the slowest relaxation 

kinetics. The exact contribution of each component can vary depending on photosynthetic 

organisms and environmental conditions. As a general rule, qE is the major component from 

moderate to high light conditions, development of qT is supposed to play a role in balancing light 

quality excitation between the two photosystems. Therefore, this process is prominent under low 

light, where photosynthesis is limited by absorption. Finally, qI becomes predominant when light is 

oversaturated and exceeds the photosynthetic capacity.  

 

1.6.1.1 Energy-dependent quenching qE 

The major process contributing to the non-photochemical quenching of the chlorophyll 

fluorescence is qE. This process mostly occurs at the level of the LHC of photosystem II (LHCII, Horton 

et al., 1996). qE is triggered by i. the acidification of the lumenal space, because the saturated 

electron flow leads to the building of a large pH gradient across the thylakoid membranes ii. changes 

in pigment composition in the LHCII (through the xanthophyll cycle, XC) and iii. activation of specific 

qE protein effectors (Niyogi & Truong, 2013). The exact role of each component is still matter of 

debate and can vary within autotrophs.  

 

i. During photosynthesis, the activation of the electron transport chain generates a 

transmembrane ∆pH across the thylakoid membranes. The lumen becomes acidic, while the 

the stroma of the chloroplast becomes slightly basic. In high light, when the absorption of light 

exceeds the actual capacity for carbon fixation, the acidification of the thylakoid lumen 

immediately switches a signal for the feedback regulation of light harvesting.  

ii. When the lumen pH drops below 6, it activates specialized enzymes which can convert specific 

pigments (oxygenated carotenoids called xanthophylls) into a closely related de-epoxidated 

one. This conversion occurs on a timescale of minutes and is supposed to facilitate a 

conformational change in the LHCII, switching the PSII into a quenched state.  
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iii. The decrease in lumenal pH also results in the protonation of specific PSII-proteins that vary 

within organisms and evolution.  

 

1.6.1.1.1 Xanthophyll cycle and its variants 

As mentioned above, the pigments contained in the light harvesting complexes are extremely 

variable between organisms. Carotenoids are key players in acclimation/regulation processes 

because they can directly contribute to both light harvesting (between 350 and 750 nm of the visible 

spectrum) and photoprotection, through the xanthophyll cycle. In plants, light-harvesting proteins 

binds lutein, neoxanthin, violaxanthin (Vx) and β-carotene. During NPQ, the violaxanthin de-

epoxidase enzyme (VDE) converts violaxanthin to zeaxanthin (Zx) through antheraxanthin; whereas 

under low light intensities the conversion of Zx again into Vx is catalyzed by a zeaxanthin epoxidase 

(ZEP; Hager, 1967). Diatoms LHC antennae (FCP) bind different pigments like fucoxanthin, 

chlorophyll a/c (Beer et al., 2006) and xantophylls (Büchel & Wilhelm, 1993; Hiller et al., 1993). 

These microalgae possess not only the Vx/Zx cycle but also the diadinoxanthin cycle (Lohr, 2011) 

which comprises a one-step de-epoxidation that converts diadinoxanthin (Dd) into diatoxanthin (Dt) 

through the activity of the enzyme diadinoxanthin de-epoxidase (DDE, active at low pH). It was 

demonstrated by Goss and coworkers in 2006 that the accumulation of the photoprotective 

pigment diatoxanthin is linearly correlated with the extent of qE in diatoms. The reverse reaction is 

catalysed by the diatoxanthin epoxidase enzyme (DTE) and consists in the back conversion of Dt into 

Dd activated under low light conditions.  
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1.6.1.1.2 Light-harvesting complex protein superfamily and its variants 

Another essential component of qE is the presence of specific proteins effectors present in all 

eukaryotic photoautrophs. These nuclear encoded proteins possess a core structure composed by 

transmembrane alpha-helices, which are located in the thylakoid membranes. While “genuine” light 

harvesting complexes proteins contain conserved residues that bind chlorophylls and carotenoids, 

some of the qE effector proteins do not bind pigments. This is typically the case of the PSBS 

(photosystem II subunit S) protein (Bonente et al., 2008), which contains four-helices (at variance 

with the three found in the LHCII). Genetic analysis, in the model plant Arabidopsis thaliana has 

demonstrated that this protein is an essential component of the qE response (Li et al., 2000; Figure 

1.4 A). PSBS acts as sensor of lumenal pH. It is generally accepted that the protonation of acidic 

residues in the lumenal site of the PSBS promotes the rearrangement of the LHCII-PSII supercomplex 

(Betterle et al., 2009; Goral et al., 2012) leading to the activation of qE. Because of its role in 

photoprotection (Li et al., 2000) PSBS is needed for plant survival under fluctuating light conditions 

in the field (Külheim et al., 2002). On the other hand, a different qE type machinery is found in algae. 

In the chlorophyte Chlamydomonas reinhardtii the PSBS gene is present (Anwaruzzaman et al., 

2004) but the protein is not expressed in qE promoting conditions (Bonente et al., 2008). Conversely, 

two light-harvesting complex stress-response proteins are present in the genome of this alga 

(LHCSR1 and LHCSR3; Peers et al., 2009; Tokutsu & Minagawa, 2013), which actively participate in 

the NPQ response. The two LHCSR isoforms possess similar promoter regions followed by an almost 

identical polypeptide sequence (Maruyama et al., 2014). At difference with PSBS, LHCSR shares the 

typical three helix protein motif and the pigment binding capacity of a true LHCII protein (Bonente 

et al., 2011; Figure 1.4 B). LHCSR3 binds pigments like: chlorophyll a /b, lutein, violaxanthin and 

zeaxanthin (Bonente et al., 2011) and presumably acts also as a quenching site (Tokutso & 

Minagawa, 2013). Moreover, LHCSR3 also acts as a sensor of luminal acidification, with several 

residues (aspartate and glutamate) being essential for NPQ induction (Ballottari et al., 2016). 

However, LHCSR proteins are not constitutively present in the chloroplast of C. reinhardtii, and 

require high light (Allorent et al., 2013) an active photosynthetic electron flow (Petroutsos et al., 

2011; Maruyama et al.,2014) Ca2+ signalling and the calcium Ca2+ binding protein CAS (Petroutsos et 

al., 2011) to accumulate in the thylakoids. While the LHCSR proteins are not found in the plant 

genomes, they are present in all the algal genomes investigated so far, as well as in mosses (Alboresi 

et al., 2010). In diatoms, these proteins (named LHCX) play a similar role in the activation of qE 

(Bailleul et al., 2010; Zhu & Green, 2010; Lepetit et al., 2013). In this group of microalgae the 
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induction of some LHCX isoforms is strongly correlated with light changes (Bailleul et al., 2010; 

Lepetit et al., 2013; Nymark et al., 2013). However, amongst the four isoforms identified in the 

genome of the pennate diatom P. tricornutum (Bowler et al., 2008) only three are inducible (Taddei 

et al., 2016) while one, LHCX1, is constitutively expressed and contributes to a constant qE capacity 

(Bailleul et al., 2010).  

 

1.6.1.2 State transitions, qT 

Another component of the non-photochemical quenching is state transitions, a mechanism that 

redistributes the excitation energy between photosystems (Allen, 1992). In plants and green algae, 

the physical segregation of PSII and PSI imposes the existence of different antennae systems, which 

excite the two photosystems independently. State transitions optimize the relative absorption 

capacity of PSs via a redox regulated migration of antenna complexes between the two PSs. In 

particular, under light conditions that promote a preferential excitation of PSII (compared to PSI) 

the reduced state of the PQ pool will activate a protein kinase (Stt7/STN7) via its binding to the Cyt 

b6f complex. The kinase phosphorylates some light-harvesting complex of PSII (LHCII), which migrate 

laterally towards PSI increasing its absorption capacity during the so called state 1 to state 2 

transition. The reverse reaction is driven by a protein phosphatase (PPH1/TAP38) that 

dephosphorylates the LHCII associated with PSI and allows its re-association with PSII (state 2 to 

state 1 transition). This mechanism, is absent in diatoms (Owens, 1986), of moderate amplitude in 

plants (Niyogi, 1999) and it represents a much larger component in the green algae C. reinhardtii, 

where it can reallocate up to 80% of its mobile antenna between photosystems (Delosme et al., 

1996; Figure 1.5). While in plants, state transitions only plays the role of optimizing light absorption 

Figure 1.4 – Schematic representation of the structure of Lhc proteins. (A) PSBS protein in Arabidopsis thaliana (modified from 

Li et al., 2002). (B) LHCSR3 protein in C. reinhardtii (from Maruyama et al., 2014).  

 

A B
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in low light, in Chamydomonas this process also contributed to photoprotection in high light 

(Allorent et al., 2013) and it is still debated whether it involves a different mechanism than the 

simple physical displacement of LHCII between the two photosystems (Nawrocki et al., 2016; Ünlü 

et al., 2014; Nagy et al., 2014). 

 

In other organisms, such as red algae and cyanobacteria, different NPQ mechanisms are observed, 

which reflect the specific features of the light harvesting complexes of these organisms (the 

phycobilisomes, PBS). In these peculiar situation another mechanisms of PSII fluorescence 

quenching called energy spillover seems to play a major photoprotective role (Kowalczyk et al., 

2013).  

 

1.6.1.3 Energy spillover as photoprotective mechanism 

In red algae and cyanobacteria, the “classic” NPQ effectors (i.e. the xanthophyll cycle and PSBS 

proteins) are missing. Therefore, these organisms possess peculiar responses to cope with a 

changing light environment. Cyanobacteria contain specific stromal-exposed antennae called 

phycobilisomes, which bind an orange carotenoid protein (OCP; Kirilovsky & Kerfeld, 2012) shown 

to be an essential component of NPQ in this group. In red algae (which also possess the PBSs, but 

lack the PSBS or OCP proteins) most of the energy absorbed by the PBS is transferred from 

photosystem II to photosystem I through the energy spillover (direct energy transfer). Kowalczyk 

and coworkers demonstrated that the excitonic flux at PSII level controls the amount of energy 

transfer toward PSI via a still unknown mechanism. Overall, despite the fact that all these 

photosynthetic organisms are able to dissipate excess light at the level of PSII, the molecular 

mechanisms differ significantly between cyanobacteria, red alga, green algae and plants.  

Figure 1.5 – LHCII fractions in C. reinhardtii. EM picture of the purified thylakoid membranes obtained after sucrose gradient 

fractionation during state 1 (A). State 2  condition (B), in this picture large aggregates are visible (Iwai et al., 2010).  

A B
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In diatoms, the two photosystems share similar antennas (FCPs), although recent data suggest that 

the two photosystems could contain specialized antennae pools (Veith et al., 2009). The similarity 

between FCPs translates into a more homogeneous absorption spectrum of the two photosystems 

than in plants. Thus, diatoms do not perform light driven state transitions (Owens, 1986), and have 

succeeded in optimizing light utilization achieving an efficient excitation energy balance at both 

limiting and saturating light conditions. Consistent with the peculiar structure of their thylakoids, 

which is intermediate between the unstructured situation seen in cyanobacteria (and red algae) and 

the highly structured one observed in plants (and green algae) the possible photoprotection of PSII 

via energy spillover was tested in this project of thesis (see section 2.5).  

 

1.6.1.4 Photoinhibition, qI 

The slowest contribution of the non-photochemical quenching is attributed to photoinhibition of 

the photosystems due to prolonged overexcitation of the photosynthetic machinery. This process 

describes the degradation and disassembly of the core subunit of the photosystem II (PsbA or D1 

protein; Aro et al., 1993; Barber & Andersson, 1992) leading to a general decrease of its 

photosynthetic quantum yield (Krause, 1988). Overall, the extent of photoinhibition depends on the 

balance between PSII photodamage and repair (Murata et al., 2007). Despite the fact that the 

degradation of the D1 proteins is a fast process (Neidhardt et al., 1998; Sundby et al., 1993), high 

amounts of reactive oxygen species (ROS) can enhance the degradation of this protein (Murata et 

al., 2007) leading to a decrease in photosynthetic quantum yield in excess light. 

 

1.7 Long-term responses  

Prolonged stress exposure plants and algae leads to multiple responses that modify and fine tune 

the photosynthetic apparatus. Long-term photoprotective responses involve the expression and/or 

repression of nuclear and chloroplast specific genes, with the ultimate goal of preventing 

photoinihibition in chronic high light or enhancing absorption in a shade environment. 

To mention only a few examples, multiple signal cascades control the accumulation of light-

harvesting antennae complexes, chloroplast movement, changes in the PSII/PSI ratios and in 

proportion of stacked and unstacked thylakoids membranes. These responses are mainly mediated 

by the de-novo synthesis and/or degradation of the protein complexes involved in the light 

harvesting and electron flow processes (Falkowski & LaRoche 1991; Raven & Geider, 2003). 
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1.8 AIM of the thesis 

In nature, photosynthetic organisms need to optimize energy capture and conversion efficiency 

adjusting their photosynthetic apparatus in response to environmental stimuli. In particular 

microalgae have developed distinct approaches to modulate light absorption and utilization 

capacity of their photosystems. During my Ph.D thesis I aimed to investigate the mechanisms of light 

utilization in two algal model organisms: the marine diatom Phaeodactylum tricornutum and the 

freshwater green alga Chlamydomonas reinhardtii. In the first project, I focused on the structure/ 

function relationship using the pennate species Phaeodactylum tricornutum as a model. Due to the 

simplified structure of its chloroplast, with no apparent structural segregation between PSII and PSI 

(see Chapter 2) we tested the possibility of the existence of the energy spillover. Using several 

complementary approaches (spectroscopy, biochemistry, immunolabelling and three-dimentional 

(3D) reconstitution) we generate a comprehensive 3D map of the photosynthetic membranes and 

complexes. This multidisciplinary study reveals i. how diatoms regulate exchanges of ATP/NADPH 

between chloroplast and mitochondria (see section 2.3). ii. how the external membranes system 

(the envelope) organized and operate for the transfer of compounds produced in other intracellular 

compartments (see section 2.4). iii. how these organisms have adapted their internal membrane 

system (the thylakoids) in order to optimize photosynthesis (see section 2.5).  

In the second project, novel insights into the regulation of photoprotection mediated by both 

perception of light colour and metabolism in the green alga Chlamydomonas reinhardtii were 

obtained (see Chapter 4). We first showed the existence of a molecular link between 

photoreception, photosynthesis and photoprotection. Our data show that Chlamydomonas is able 

to detect changes in light wavelength thanks to photoreceptors, and this also affects photorotection 

via the regulation of the induction of the protein LHCSR3 (see section 4.3).  Moreover, we 

demonstrate that besides light, downstream metabolism can affect the NPQ capacity of C. 

reinhardtii, via negative feedback of the LHCSR3 accumulation in the thylakoids (see section 4.4).  

Overall, these projects underline how the different processes linked to photosynthesis (light 

absorption, dissipation electron flow and carbon assimilation for metabolism) are tightly 

interconnected to achieve a successful acclimation to the environment of microalgae.  
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2.1 Introduction 

This chapter is organized in four sections. In the first section (section 2.2), I will give an introduction 

and on the chloroplast origin and on the structural arrangements of the photosynthetic membranes 

(the thylakoids) in the chloroplast. In the second section (section 2.3) the article “Energetic Coupling 

Between Plastids and Mitochondria Drives CO2 Assimilation in Diatoms” will be presented. 

Afterwards, in the third section (section 2.4) I will introduce the article “Ultrastructure of the 

Periplastidial Compartment of the Diatom Phaeodactylum tricornutum”. Finally (in section 2.5) the 

manuscript in preparation “Chloroplast thylakoid architecture optimizes photosynthesis in diatoms” 

will be presented.  

 

2.2 The chloroplast  

The chloroplast is a specific organelle of plants and algae. It contains the molecular machinery that 

performs photosynthesis. Chloroplasts represent a particular form of plastids, which are dynamic 

organelles that can differentiate in response to environmental stimuli and developmental stage. The 

typical plastids found in plants are (Figure 2.1) i. the undifferentiated form called proplastid ii. the 

etioplast, i.e. the progenitor of the chloroplast iii. the chloroplast, the photosynthetic organelle iv. 

the chromoplast, mostly containing carotenoids v. the gerontoplast, the senescent form of the 

chloroplast vi. the amyloplast, the starch storage reservoir and vii. the elaioplast, the lipids storage 

plastid. 

 

Figure 2.1– Representation of the principal plastids found in plants.  The proplastid, etioplasts, chloroplasts, 

chromoplasts, gerontoplasts, amyloplasts and elaioplasts are represented. Grey lines show possible route of plastids 

differentiation (modified from https://commons.wikimedia.org/w/index.php?curid=28879042). 
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The chloroplast originated between 1.6 and 0.6 billion years ago (Yoon et al., 2004; Cavalier-Smith, 

2006; Figure 2.2 A) when a cyanobacterial type of organism (α-proteobacterium-like ancestor) was 

engulfed by a eukaryote host. This endosymbiosis led to primary plastids characterized by two 

limiting membranes derived from the inner and outer membranes of the gram-negative 

cyanobacterium (Jarvis & Soll, 2001). These membranes control the exchanges between the plastid 

and the rest of the cell. This symbiotic event permitted the evolution of autotrophic organisms and 

the proliferation of oxygenic life on Earth. Primary plastids are found in three major lineages: 

Glaucophytes, red algae (Rhodophytes) and green algae (like Chlorophytes and Charophytes; 

Keeling, 2004). The latest is believed to be the progenitor of modern plants. During evolution both 

the red (Figure 2.2 B) and green lineage have been engulfed independently by another eukaryotic 

cell leading to the origin of secondary plastids between 1.2 and 0.55 billion years ago (Yoon et al., 

2004; Cavalier-Smith, 2006; Figure 2.2 B). Over time, the engulfed host cell was reduced to a multiple 

membrane-bound plastid. In fact, these membranes represent i. the remaining of the phagocytosis 

of the primary alga plus ii. the two previous membranes of the  gram-negative cyanobacterium. 

Seven major lineages possess secondary plastids: Euglenids, Chlorarachniophytes, Cryptomonads, 

Haptophytes, Heterokonts (diatoms), Dinoflagellates and Apicomplexa (Keeling, 2004).  

 

Figure 2.2 – Schematic representation of primary and secondary symbiosis. (A) Primary endosymbiosis. (B) Secondary 

endosymbiosis.  

A B 
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In general, the chloroplast structure is about 3–5 μm in diameter and contains three distinct sub-

compartments: 

i. The chloroplast envelope (Figure 2.3 A) is the site of the synthesis and translocation of many 

components (ions and metabolites) between the cytosol and the chloroplast. In primary 

plastids, the envelope is formed by two layers which surround the organelle. These 

membranes (the inner and outer membranes) are reminiscent of the symbiont's host.  

ii. The stroma (Figure 2.3 B) is the soluble phase contained in the chloroplasts where most of 

the enzymes required for carbon fixation, amino acids or vitamins synthesis are located. It 

also contains the chloroplast DNA and the ribosomes for protein synthesis.  

iii. The thylakoids (from the greek word thylakoides = sac; Menke, 1962) is a network of internal 

membranes, which hosts the proteins performing the light-phase of photosynthesis. 

Thylakoids form one continuous compartment within the chloroplast (Mustárdy & Garab, 

2003; Staehelin, 2003). These membranes, typically enriched in galactolipids, present a 

lateral heterogeneity, already noticed in 1960 by Menke. He introduced two distinct terms 

to describe the sub-compartments of the chloroplast in plants: the “sac-like” appressed 

thylakoids and the large thylakoids. The first one, now called grana (singular granum) are 

made of stacks of thylakoid membranes with a diameter of 300-600 nm and a thickness of 

~4 nm (Kirchhoff et al., 2011; Figure 2.3 C). The second term is referred to the connecting 

membranes now called stroma lamellae (Figure 2.3 D). Every single thylakoid vesicle contains 

an aqueous space that is named the lumen. The diameter of this space can vary depending 

on the conditions (Kirchhoff et al., 2011).  
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The exact three-dimensional architecture of the grana in plant is still a matter of debate and several 

models have been proposed to interpret the structural arrangements of thylakoid in plant 

chloroplasts (reviewed in Daum et al., 2011). The first one, the fork model (Arvidsson & Sundby, 

1999; Figure 2.4 A) considers that grana as repetitive units of three disks formed by symmetrical 

invaginations of a thylakoid pair. The second (Shimoni et al., 2005; Figure 2.4 B) considers grana as 

formed by paired membranes emerging from bifurcations of stroma lamellae connected by 

membranes upwards and downwards. Finally the helix model, probably the most correct one, 

proposes that stroma lamellae rotate around the grana stacks as a right-handed helix, connecting 

every granum with multiple stroma lamellae (Paolillo et al., 1967; Paolillo, 1970; Mustardy & Garab 

2003; Mustardy et al., 2008; Daum et al., 2011; Austin & Staehelin, 2011; Ruban & Johnson, 2015; 

Figure 2.4 C).  

  2 µm 

Figure 2.3 – Chloroplast details of Arabidopsis thaliana. (A) the envelope, (B) the stroma, (C) a grana and (D) stroma 

lamellae. The thylakoid lumen is not visible at this magnification. 
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These membranes are densely populated by proteins, which occupy up to 70% of the total 

membrane area (Kirchhoff et al., 2002). These proteins are the key players of photosynthesis (see 

section 1.3): the photosystem II (PSII), the cytochrome b6f complex (Cyt b6f), the photosystem I (PSI) 

and the ATP-synthase. In plants, extensive biochemical, fractionation and immunolocalisation 

studies have shown that PSI and the ATP synthase complexes accumulate preferentially in the 

stroma exposed membrane (the stroma lamellae and the grana margins) due to the steric hindrance 

of their stromal protrusions (Dekker & Boekema, 2005; Amunts et al., 2008; Junge et al., 2009). 

Conversely, PSII which has flat stromal surfaces, is mostly localized in the grana, while the 

cytochrome b6f complex, which functionally connects PSI and PSII, has a more homogeneous 

localization in these compartments (reviewed in Albertsson, 2001; Kouřil et al., 2012; Figure 2.5). 

This heterogeneous distribution of photosynthetic complexes has deep consequence on light 

harvesting and electron flow. Most likely, the main reason for segregating the photosystems in two 

different domains of the membranes is to prevent a physical contact beween them, which will lead 

to excitation energy spillover (section 1.6.1.3) from PSII (which has the photochemical trap of the 

higher energy) to PSI (which has a lower energy trap). 

Figure 2.4 – Current models of the structural arrangements of thylakoids in plant chloroplast. (A) the fork model of Arvidsson &Sundby, 

1999. (B) the bifurcated model of Shimoni et al., 2005 (picture from Daum et al. 2011). (C) the right-handed helix model predicted by 

Paolillo 1970 (picture from Ruban & Johnson, 2015). 

A B C 



32 
 

A second reason for the formation of stacked grana in plants is the necessity to increase the light 

harvesting capacity of the chloroplast (Barber, 1980) creating extreme folding surfaces to 

concentrate the maximum amount of antenna complexes in the smallest volume. Consistent with 

this idea, changes in light intensity can largely affect the spatial organization of thylakoid 

membranes. This flexible interconnected networks can rapidly vary its architectural organization 

adjusting the number of layers within the grana stacks under low light conditions (Anderson, 1986), 

or increment the unstacking of grana discs under high light conditions (Fristedt et al., 2009; Khatoon 

et al., 2009; Herbstova et al., 2012). These structural rearrangements, in plants, tend also to 

facilitate light harvesting but also photoprotective mechanisms like turnover of photodamaged D1 

(Herbstova et al., 2012; Kirchhoff, 2013) or state transitions (see section 1.6.1.2).  

 

 

One of the main goal of this Ph.D thesis was to understand the structure of a secondary chloroplast 

and to investigate the functional consequences of this structure on the photosynthetic light 

absorption, electron flow and ATP and NADPH synthesis and consumption. Our structural, 

biophysical and biochemical results unveil for the first time these complex structures in diatoms 

using the model organism Phaeodactylum tricornutum.  

 

  

Figure 2.5 – Representation of the thylakoid membranes in plants. (A) the grana stack mostly enriched in PSII (B) the stroma 

lamellae enriched in PSI. The Cyt b6f is equally distributed between the two regions. 
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2.2.1 Case of study Phaeodactylum tricornutum (Bohlin, 1897) 

Phaeodactylum tricornutum is a pennate diatom (Heterokonts) wich displays different 

morphotypes, i.e. fusiform, triradiate and oval (Figure 2.6). Cells of this pleiomorphic species are 

∼10 μm in diameter and a large part of their volume is occupied by a single chloroplast (3-9 μm).  

 

 

 

Within this plastid the three classical main subcompartments (Figure 2.7 A) can be easily identified: 

i. the envelope ii. the stroma and iii. the thylakoids. However, diatom chloroplast exhibit peculiar 

differences. 

i. The envelope system is formed by two internal membranes the inner and the outer envelope 

membranes (iEM and oEM, Botte & Marechal, 2014; Petroutsos et al., 2014; Figure 2.7 B; 1-

2) of the secondary symbiont's chloroplast, sourrounded by the periplastidial membrane 

(PPM, Figure 2.7 B; 3) and the chloroplast endoplasmic reticulum membrane (cERM, Figure 

2.7 B; 4). Between the PPM and oEM lies a minimized symbiont cytoplasm, the periplastidial 

compartment (PPC, Grosche et al., 2014; see section 2.3).  

  

Figure 2.6 – Morphotypes of P. tricornutum. (1) Fusiform, (2) oval and (3) triradiate. 

1 

2 

3 

  10 µm 
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ii. The chloroplast stroma containing most of the enzymes needed for carbon fixation (as the 

RuBisCO). In algae, this essential enzyme is concentrated in a specialized region called the 

pyrenoid (Holdsworth, 1971; Lacoste-Royal & Gibbs, 1987; Borkhsenious et al., 1998; Figure 

2.7 D). Moreover, the stroma also contains the chloroplast DNA and the ribosomes for 

protein synthesis. 

iii. Unlike higher plants, diatoms thylakoids do not possess a clear distinction between grana 

and stroma lamellae. Their membranes are generally organized in stacks of three lipid 

bilayers oriented parallel to the envelope membranes (Figure 2.7 A,B,C). A single stack of 

thylakoids forms the girdle lamella that encircles the whole structure (Figure 2.7 C). Only 

near the pyrenoid region we found that the tips of thylakoids from multiple stacks merged, 

oriented perpendicularly towards the envelope (Figure 2.7 A, B, C). 

 

 

  

A 

B 

C 

D 

Figure 2.7 – Chloroplast details of P. tricornutum. (A) Whole cell view, the envelope is highlighted in red, the thylakoids in 

white and the stroma space in black. (B) Details of the envelope. in this picture the four membranes are visible. (C) Detail of 

the girdle lamella which surround the chloroplast (D) Pyrenoid region with the typical enlarged 2 lipid bilayers in the center.  
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As explained above, the main reasons to investigate the the structural organization of secondary 

plastids were to understand: 

i. how diatoms regulate exchanges of ATP/NADPH between chloroplast and mitochondria 

(see section 2.3).  

ii. how external membranes system (the envelope) are organized and operate for the transfer 

of compounds produced in other intracellular compartments (see section 2.4).  

iii. how these organisms have adapted their internal membrane system (the thylakoids) in 

order to optimize photosynthesis (see section 2.5). 

Thanks to a multidisciplinary approach, we provide relevant information to answer these questions. 
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2.3 Energetic interactions between chloroplasts and mitochondria  

2.3.1 Preface  

The article Bailleul et al., 2015 presented in this section represents my first contribution to the 

characterization of the model diatom Phaeodactylum tricornutum. This work is part of a 

collaboration between different laboratories in Europe, which was coordinated by my host 

laboratory. 

In photosynthesis, the efficient conversion of CO2 into organic matter requires the optimization of 

the ATP/NADPH ratio (Allen, 2002). In most photosynthetic organisms (i.e. viridiplantae), this 

optimization relies principally on processes localized within the plastid (for more information see 

Shikanai, 2007; Allen, 1975; Asada, 2000; Cardol et al., 2008; Ort & Baker, 2002). However, in 

diatoms, all the mechanisms described so far, seems to be not relevant to balance this ratio.  Thus, 

the main question addressed in this project was how diatoms regulate photosynthetic process being 

one of the most successful group of microalgae in the ocean.  

In the article below, we were able to show that diatoms regulate ATP/NADPH ratio through 

energetic interactions between plastids and mitochondria. The hypothesis proposed in this study 

explain the optimization of carbon fixation through the re-routing of reducing power (NADPH) 

generated in the plastid towards mitochondria (the site of respiration) and the import of 

mitochondrial ATP into the chloroplast. These extensive exchanges are mediated by the physical 

contacts between the two organelles, which I was able to document by studying the structure of 

chloroplast and mitochondria in intact P. tricornutum cells. The interesting results here obtained 

convinced me to pursue the structural characterization of the chloroplast membranes, which will 

be presented in the two following sections. In conclusion, the cross-talk chloroplast-mitochondria 

in diatoms facilitate the optimization of carbon fixation demonstrating the high photosynthetic 

efficiency achieved by these organisms worldwide.  
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2.3.2 Energetic coupling between plastids and mitochondria drives CO2 assimilation in 

diatoms  
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Abstract 

Over the past ~ 35 million years, diatoms have been one of the most successful classes of 

photosynthetic marine eukaryotes, and are believed to have contributed to climate cooling by 

absorbing carbon dioxide from the atmosphere and sequestering it via the biological carbon pump 

(Falkowski, 2004). Today the proportion of planetary primary production performed by diatoms is 

equivalent to that of terrestrial rainforests (Field et al., 1998). In photosynthesis, the efficient 

conversion of CO2 into organic matter requires a tight control of the ATP/NADPH ratio which, in 

other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating 

processes (Shikanai, 2007; Asada, 2000; Cardol, et al., 2008; Ort & Baker, 2002). Here we show that 

diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and 

mitochondria. This interaction comprises the rerouting of reducing power generated in the plastid 

towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for 

optimized carbon fixation and growth. We propose that the process may underlie the ecological 

success of diatoms in the ocean. 

 

In oxygenic photosynthesis, light drives a linear electron flow from water to NADPH by the two 

photosystems (PSI and PSII), and the generation of an electrochemical proton gradient (or proton 

motive force, PMF) across the thylakoid membranes which fuels ATP synthesis by an ATP synthase. 

Although the ratio of ATP/NADPH generated by linear electron flow is not entirely resolved 

(Petersen et al., 2012; Allen, 2002), it is considered to be insufficient to fuel CO2 import into the 

plastid and assimilation by the Calvin cycle (Allen, 2002; Lucker et al., 2013). Additional ATP must 

therefore be produced by alternative electron pathways, i.e., electron flow processes that generate 

a PMF without net NADPH synthesis. In Viridiplantae (including green algae and higher plants), these 

alternative electron pathways are mostly chloroplast localized and comprise cyclic electron flow 

(CEF) around PSI (Shikanai, 2007) and/or the water-to-water cycles (Allen, 1975), i.e., flows of 

electrons resulting from the oxidation of water at PSII and rerouted to an oxidase activity. The latter 

oxidases include the Mehler reaction at the PSI acceptor side (Asada,2000; Radmer & Kok, 1976; 

Badger, 1985), the activity of the plastoquinone terminal oxidase downstream of PSII (Cardol et al., 

2008), and the oxygenase activity of RuBisCO (photorespiration; Ort & Baker, 2002). Although genes 

encoding the majority of components for these processes appear to be present in diatoms (Prihoda 

et al., 2012; Bowler et al., 2008; Grouneva, et al., 2011), it is currently unknown what mechanisms 
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are utilized to balance the ATP/NADPH ratio. We therefore investigated the question using the 

model species Phaeodactylum tricornutum. 

 

2.3.2.1 Results 

The PMF generated across thylakoid membranes comprises an electric field (ΔΨ) and a proton 

gradient (ΔpH). The ΔΨ can be probed in vivo by measuring the Electro-Chromic Shift (ECS) of 

photosynthetic pigments, i.e., a modification of their absorption spectrum caused by changes in the 

transmembrane electrical field in the plastid (Witt, 1979). An ECS signal is present in P. tricornutum 

(Figure 2.8 A), and an analysis of the ECS signal relaxation after light exposure (Supplementary Figure 

2.13) reveals that it comprises two components displaying different spectra (Figure 2.8 A). One 

follows a linear dependence on the amplitude of the ΔΨ whereas the other follows a quadratic 

relationship (Figure 2.8 B). The existence of a “quadratic ECS” is predicted by theory (Witt, 1979) 

but has only been observed so far in mutants of green algae with altered pigment composition (Joliot 

& Joliot, 1989).  The peculiar existence of two different ECS probes in wild-type P. tricornutum cells 

allows an absolute quantification of the electrical field, providing a valuable tool to analyze the PMF 

in a living cell (see methods).  

We plotted the amplitude of the quadratic vs linear ECS signals during the relaxation of a light-

induced PMF and obtained, as expected, a parabola (Figure 2.8 C, D and Supplementary Figure 2.13). 

However, the ECS signals did not reach the minimum of the parabola in the dark, but rather 

remained positive. This indicates that a PMF is maintained across the thylakoid membrane of 

diatoms even without illumination (ΔΨd, Figure 2.8 C). The ΔΨd can be dissipated  with an uncoupler 

(FCCP), but also by anaerobiosis or inhibition of mitochondrial respiration by Antimycin A (AA) to 

block Complex III in the so-called cyanide-sensitive respiratory pathway, combined with 

salicylhydroxamic acid (SHAM) to inhibit the alternative oxidase (AOX) in the cyanide-insensitive 

respiratory pathway (Figure 2.8 D). These results suggest that the PMF present in the diatom plastid 

in the dark is generated by the chloroplast ATPase by hydrolysis of ATP derived from mitochondria 

(Figure 2.8 E; Diner & Joliot, 1976). Furthermore, the extent of the ΔΨd observed in P. tricornutum 

is larger than that previously reported in green algae (Finazzi & Rappaport, 1998), suggesting that 

the ATP exchange could be more efficient in diatoms.  
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Figure 2.8 – ECS allows measuring the proton motive force in P. tricornutum. (A) Deconvolution of the experimental Electro-

Chromic Signal (ECS) spectrum (black) into linear (blue) and quadratic (red) spectral components, as described in Methods. (B) 

Schematic representation of polar and polarizable pigments, and theoretical dependencies of their associated ECS responses 

upon the electric field. Green “+” and “-“: ΔΨ. Blue and red “+” and “-“: pigment dipoles. Red arrows: pigment polarization 

induced by ΔΨ. (C,D) Relationship between quadratic and linear ECS in control (C) and in uncoupler (8 nM FCCP, black squares), 

anaerobic (red circles), and respiratory inhibitors (AA, 5 µM, and SHAM, 1 mM, blue circles) treated cells (D). Green arrow: value 

of the dark electric field (ΔΨd). (E) Schematic representation of the plastid-mitochondria energetic interactions in the dark. Red 

arrows: respiratory electron flows. Green dashed line: putative ATP/ADP exchange pathway between the organelles. PS = 

photosystem, b6f = cytochrome b6f, ATPase = ATPase/synthase, I/ III/ IV = respiratory complexes I, III and IV, and AOX = 

Alternative Oxidase.  
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To evaluate what mechanism regulates ATP/NADPH in the light in P. tricornutum, we first used the 

linear ECS to probe the CEF capacity. CEF turned out to represent only a very low fraction of the 

maximum electron flow capacity (Figure 2.9 A and Supplementary Figure 2.14 A, C) and was 

insensitive to changes in the photosynthetic flux (Figure 2.9 A). Thus, it appears very unlikely that 

CEF could regulate ATP/NADPH levels. Next we explored the water-to-water cycle using membrane-

inlet mass spectrometry (MIMS) on cells incubated with O2 (Diner & Joliot, 1976). O2 consumption 

increased with light, being ~2.5-fold higher at saturating light intensities than in the dark 

(Supplementary Figure 2.14 B, D). We also found that the light-stimulated O2 consumption was 

blocked by DCMU, which inhibits O2 production by PSII (Supplementary Figure 2.14 B, D), indicating 

that this process is fed by electrons generated by PSII. O2 consumption increased linearly with O2 

production, in agreement with earlier findings in another diatom species (Waring et al., 2010), 

indicating that a constant proportion (~10%) of the electron flow from PSII is rerouted to an O2 

consuming pathway, regardless of light intensity (Figure 2.9 B).  

To test whether the O2 consuming pathway occurs in the plastid or relies on mitochondrial activity, 

we used increasing concentrations of mitochondrial inhibitors to titrate respiration and tested 

possible consequences on photosynthesis. We reasoned that if mitochondrial respiration consumes 

reducing equivalents generated in the plastid to generate additional ATP, any mitochondrial 

dysfunction should negatively impact photosynthesis. We found that this was indeed the case, as 

photosynthetic electron transfer rates (ETRPSII) linearly followed changes in respiration (Figure 2.9 C 

and Supplementary Figure 2.15). We conclude that a partial rerouting of the photosynthetic flow 

towards mitochondrial respiration rather than CEF optimizes photosynthesis in diatoms, providing 

commensurate ATP per NADPH at all irradiances (Figure 2.9 D). 
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The increasing sensitivity of photosynthesis to alternative oxidase (AOX) inhibitor with light (Figure 

2.10 A) suggests that the cyanide-insensitive respiration becomes prominent in high light. This 

prompted us to generate AOX knockdown cell lines of P. tricornutum. Two independent clones were 

selected based on reduced AOX protein accumulation (Figure 2.10 B) and decreased activity 

(measured as the SHAM-sensitive, AA insensitive component of respiration; Supplementary Figure 

2.16 A). The AOX contribution, representing ~50% of dark respiration in wild-type cells 

(Supplementary Figure 2.15 E), was decreased 2-fold in the two knockdown lines. Confocal 

microscopy confirmed the mitochondrial localization of the targeted gene product (Supplementary 

Figure 2.17 A). The reduced AOX activity in the knockdown lines paralleled a diminished PMF in the 

Figure 2.9 –Mitochondria-plastid energetic interactions in P. tricornutum. (A) Relationship between CEF capacity and total 

electron flow (TEF). (B) Relationship between oxygen uptake (U0) and gross photosynthesis (E0) as measured by MIMS. (C) 

Dependency of photosynthetic activity (ETRPSII) on respiration rates. Closed circles: SHAM + AA; open circles: SHAM + 

Myxothiazol treatments (see Methods). (D) Schematic representation of possible plastid-mitochondria metabolic interactions 

in the light. Same as in Figure 2.8 E + Blue lines: photosynthetic linear (light blue arrow), and cyclic (dark blue dashed line) flows. 

Yellow dashed arrow: exchange of reducing equivalents between the organelles. 
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dark (ΔΨd), despite the fact that overall dark respiration was slightly higher (Supplementary Figure 

2.16 B). This effect was strongly enhanced by addition of AA (Supplementary Figure 2.16 B). The 

decreased AOX activity also correlated with a decreased photosynthetic capacity, especially under 

high light intensities (similar to SHAM-treated wild-type cells; Figure 2.10 A), and a diminished 

growth rate (Figure 2.10 C), which was exacerbated further by inhibiting Complex III using AA 

(Supplementary Figure 2.16 C). The growth and photosynthetic phenotypes were not due to 

changes in the accumulation of the photosynthetic complexes, for which we detected comparable 

levels of representative proteins in all cell lines (Figure 2.10 B). The only exception was a small 

decrease in the Cytochrome b6f content in the knockdown cell lines, which nonetheless did not 

decrease its catalytic efficiency (Supplementary Figure 2.18). 

 

 

  

Figure 2.10 – Phenotypic traits of AOX mutants in P. tricornutum. (A) Relative sensitivity of photosynthesis (ETRPSII) to the 

presence of inhibitors of respiration: AA (blue), SHAM (red) and AA+SHAM (black) (n = 2 ± S.E), or to the knock-down of AOX (n 

= 5 ± S.D.). Green and magenta are used for kd-c5 and kd-c9, respectively, in all panels. (B) Western blot analysis of 

photosynthetic and respiratory complexes. (C) Growth rates of the wild type (dark blue) and AOX mutants (n = 7 ± S.D.). (D) In 

vivo assessment of NADPH redox changes as a function of irradiance, in wild-type and AOX mutants (n = 3 ± S.D.). (E) In vivo 

31P-NMR evaluation of the NTP content in wild-type and AOX mutants, in the dark or in low light (with or without AA).  
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Our working model presented in Figure 2.9 D predicts that disruption of the plastid-mitochondria 

interaction in the knockdown cell lines should lead to the accumulation of NADPH and a decreased 

cellular content of ATP in the light. In vivo assessments of the pools of NADPH and ATP in wild-type 

and knockdown cell lines indeed confirmed an increase in the NADPH/NADP+ ratio with light 

intensity (Figure 2.10 D and Supplementary Figure 2.19 A) accompanied by a net decrease of cellular 

ATP levels (Figure 2.10 E  and Supplementary Figure 2.19 B), both of which were more drastic in AOX 

knockdown cells compared to wild-type cells. These observations confirm that mitochondrial 

respiration is directly involved in the adjustment of the ATP to NADPH ratio in the plastid.  

We then examined the generality of our findings in other diatom species. The similar ECS features 

(linear and quadratic components) in Thalassiosira pseudonana and Thalassiosira weissflogii, 

Fragilaria pinnata and Ditylum brightwelii (Figure 2.11 A) were used to confirm the presence of a 

PMF in the plastids in the dark at the expense of hydrolysis of ATP supplied by the mitochondria in 

all cases (Figure 2.11 B). Moreover, a negligible contribution of CEF (Supplementary Figure 2.20) and 

a significant involvement of mitochondrial respiration to photosynthesis (Supplementary Figure 

2.21) were found in all these species. The involvement of mitochondrial respiration in the 

optimization of photosynthesis therefore appears be a general and conserved feature in diatoms. 

Figure 2.11 – ATP transfer from mitochondria to plastid in representative diatoms. (A) Spectra of the linear (blue) and quadratic 

(red) ECS probes in T. weissflogii (black), T. pseudonana (blue), F. pinnata (red), and D. brightweli (green). Blue and red vertical 

dashed lines represent the wavelengths used for linear and quadratic ECS, respectively. (B) Relationship between the quadratic 

and the linear ECS in control conditions (open green squares) and in the presence (closed green circles) of respiratory inhibitors 

AA and SHAM (representative of at least 3 independent experiments for each diatom). ΔΨd is represented as a horizontal arrow.  
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2.3.2.2 Conclusions  

We conclude that ATP limits photosynthetic carbon assimilation in diatoms, as suggested in other 

photosynthetic organisms (Allen, 2002), but that at variance with the Viridiplantae, optimization of 

diatom photosynthesis does not rely on plastid-localized processes. Instead, constitutive energetic 

interactions between diatom mitochondria and plastids ensure the sharing of reducing equivalents 

and ATP to fuel CO2 assimilation in the light (Figure 2.9 D). While the process we have uncovered 

has some similarities to the export of reducing equivalents from the plastids towards mitochondria 

in plants and green algae, the fundamental difference is that in these latter organisms the process 

serves as a valve to dissipate excess electrons (Kinoshita et al., 2011), and can only participate in the 

regulation of ATP/NADPH ratio when the chloroplast capacity to make extra ATP is genetically 

disrupted (Dang et al., 2014; Lemaire et al., 1988; Cardol et al., 2009). We propose that the presence 

of triose phosphate transporters such as the malate shuttle (Kinoshita et al., 2011), which are 

encoded in diatom genomes (Prihoda et al., 2012), as well as the very tight physical interactions 

observed in diatoms between plastids and mitochondria (Supplementary Figure 2.17 B), may make 

these energetic interactions possible between the two organelles. Because diatom plastids are 

surrounded by four membranes, rather than two as in Viridiplantae (Bowler et al., 2008) it will be 

of interest to elucidate the configuration of such transporters. More generally, the coupling of 

respiratory and photosynthetic activities in diatoms should be explored in the context of resource 

utilization in the ocean and as a means to boost the production of useful metabolites for 

biotechnology.  
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Supplementary Figures 

  

Supplementary Figure 2.12 – Deconvolution of the quadratic and linear ECS in P. tricornutum. (A) Absorption difference (ΔI/I) 

kinetics followed at different wavelengths in P. tricornutum, after a series of six saturating laser flashes, in anaerobic conditions. 

Solid lines correspond to the global fit of the experimental data with a sum of two exponential decays, with time constants t and 

2t respectively, as expected for linear and quadratic dependencies (see Methods). (B) ΔI/I spectra are shown at different times 

during ECS relaxation. All spectra were normalized to 1 at 520 nm for better comparison. The observation that the blue and green 

parts of the spectrum are homothetic during relaxation, while changes are seen in the red most part of it, reflects the presence 

of the two ECS components, having different relaxation kinetics.  

 

Supplementary Figure 2.13 – Separation of c-type cytochromes signals, and linear and quadratic ECS signals in P. tricornutum. 

(A) Kinetics of ΔI/I changes at 520, 554 and 566 nm during a ~10ms pulse of saturating red light (4500 µmol. quanta.m-2.s-1) 

and the subsequent dark relaxation (top: control conditions, bottom: AA+SHAM). (B) Kinetics of of ecslin, ecsquad changes and 

c-type cytochrome redox state, from kinetics in panel a, after deconvolution as explained in Methods. (C, D) Relationship 

between the quadratic and the linear ECS, before (ecslin, ecsquad, panel c) and after (ECSlin, ECSquad, panel D) correction for 

the dark electric field (see Methods). Dark yellow and magenta circles correspond to control and AA+SHAM conditions, 

respectively. The green arrow indicates the value of the ΔΨd in control conditions. 
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Supplementary Figure 2.14 – Cyclic electron flow and water-to-water cycles in P. tricornutum. (A) Representative traces 

of changes in linear ECS (normalized as explained in Methods) to evaluate linear and cyclic electron flow. Cells were 

illuminated with 1870 µmol quanta.m-2.s-1 of red light, in absence (closed circles) and presence (open circles) of DCMU 

and then transferred to the dark. Traces represent changes in the linear ECS. (B) Representative traces of the 16O2 and 

18O2 concentrations at the offset of a 280 µmol quanta/m2/s blue light. In panels A and B, light and dark periods are 

represented by white and black boxes, respectively. (C) The photochemical rate corresponding to TEF and CEF can be 

estimated by measuring the initial slope of the ECS decay, as explained above25 (see Methods) at difference irradiances 

(n = 2-4 ± S.D.). (D) Light- dependencies of oxygen uptake (U0, open circles) and gross photosynthesis (E0, closed circles) 

in control conditions (dark) and in the presence of DCMU (red) (n = 2 ± S.E.). 
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Supplementary Figure 2.15 – ΔΨd and photosynthesis under respiratory inhibition. (A,B,C) Dependency of the ETRPSII (A), ΔΨd 

(B) and dark respiration (C), expressed as a % of the values measured in untreated P. tricornutum wt cells, and following inhibition 

of the cyanide sensitive respiratory pathway with different concentrations of Antimycin A, in the presence of saturating SHAM 

(1 mM). Experimental data were fitted with a monoexponential decay function. (D,E) Effect of AA, SHAM and AA+SHAM on 

ETRPSII (D), ΔΨd and dark respiration (E), expressed as % of control, in wild-type cells of P. tricornutum. [SHAM]: 1mM. [AA]: 

5µM. (n = 2-4 ± S.D.). (F) Relationship between ΔΨd and mitochondrial respiration in samples poisoned with increasing 

concentrations of AA in the presence of SHAM (from panels B and C).  
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Supplementary Figure 2.16 – Dark respiration, PMF and growth in AOX mutants in P. tricornutum. (A) Respiratory activity of 

wild type and AOX knockdown lines. Total respiration rate (red bars) and the contribution of the AOX capacity (white bars, see 

Methods) were normalized to wild-type values. (n = 5 ± S.D.). (B) ECS-based measurements of ΔΨdark in wild type and AOX 

knockdown lines, in control conditions (dark), in the presence of AA (grey), and in the presence of AA+SHAM (white). (n = 2-3 ± 

S.D.). (C) Growth curves of wild type and AOX knockdown cell lines in the presence/absence of AA (2µM). AA was added every 

day and cells were grown in continuous light to prevent them from dying in the dark because of lack of respiration. (n = 3 ± S.D.).  



50 
 

Supplementary Figure 2.17 – Subcellular localization of AOX in P. tricornutum and plastid-mitochondria interaction in P. 

tricornutum wild-type cells. (A) Subcellular localization of AOX. Cells were treated with an anti-AOX antibody and then with a 

secondary Alexa Fluor 488 antibody (see Methods). Positions of plastid and nuclei are indicated by chlorophyll a 

autofluorescence (red) and DAPI staining (blue), respectively. The pattern of AOx localization is similar to what was observed 

with a mito-tracker. (B) EM pictures of the plastid-mitochondria juxtaposition in P. tricornutum. Arrows indicate possible 

physical contacts between the plastid and mitochondrial membranes. 
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Supplementary Figure 2.18 – Cytochrome b6f turnover in Pt1 and AOX mutants. (A) Schematic representation of the electron 

flow reaction steps in the cytochrome b6f complex, which can be evaluated by spectroscopic measurements. (B) Slow phase of 

ECSL indicating cytochrome b6 (blue) and time resolved redox changes of cytochrome c/f (red) in wild type Pt1 and AOX 

knockdown mutants. P. tricornutum cells were exposed to saturating single turnover laser flashes given 10 s apart. Data were 

normalized to the amplitude of the fast phase of the ECSlin signal. Cyt. c and ECSlin were deconvoluted as explained in Methods. 

(n = 4 ± S.D.). Cell concentration was 2. 10 7 cells mL-1. Note that both the slow phase of the ECSlin and reduction of cytochrome 

c/f were completely abolished by the plastoquinone competitive inhibitor DBMIB 10 µM (black arrow). 

 

 



52 
 

 

Supplementary Figure 2.19 – In vivo changes in the NADPH redox state and ATP in wild type and AOX knockdown mutants. 

(A) Changes in NADPH at different light intensities. Light and dark periods are represented by white and black boxes, 

respectively. Light intensities were 50, 100, 200 and 400 µmol. quanta m-2 s-1 (green, blue, red, and black traces, respectively). 

Chl concentration was ~5 µg mL-1. (B) Representative spectra from cells of wild type (left panel) and AOX knockdown C5 (middle 

panel) and C9 (right panel) in the dark (red), light (green) and light + AA (blue) conditions are shown, with normalization to the 

internal standard (methylenediphosphonate; pH 8.9). The positions of the α, β and γ phosphates of NTPs are shown. Inserts 

show the quantification of the NTP content in wild-type and AOX knockdown mutant cells, as reported in Supplementary Figure 

2.14 E (± S.D.). 
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Supplementary Figure 2.20 – Cyclic electron flow in representative diatoms. (A) Linear (closed circles) and cyclic (in the presence 

of DCMU) electron flows were measured at different light intensities, as in Supplementary Figure 2.13, in Thalassiosira weissflogii 

(black), Thalassiosira pseudonana (blue) and Fragilaria pinata (red). (B) CEF was plotted against LEF. The red line corresponds to 

CEF = 5% of the maximal total electron flow. (n = 3-5 ± S.D.). 
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Supplementary Figure 2.21 –ΔΨd and photosynthesis under conditions of respiratory inhibition in representative 

diatoms. Dark respiration (A,B,C,D), ΔΨd (E,F,G,H) and ETRPSII (I,J,K,L ), in conditions of different levels of inhibition of 

the respiratory pathway with saturating Antimycin A, and/or saturating SHAM. Panels a, e and i: T. weissflogii (black). 

Panels B, F and J: T. pseudonana (blue). Panels C, G and K: F. pinnata (red). Panels D, H and l: D. brightwelii (green). ( 

n= 2-6 ± S.D.). 
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2.3.2.3 Materials and methods 

Growth conditions: Wild type and AOX transformant lines of Phaeodactylum tricornutum Pt1.86 

(CCMP 2561) were grown in artificial sea water (ASW; Vartanian et al., 2009). Thalassiosira 

pseudonana (CCMP 1335), Thalassiosira weissflogii (CCMP 1336), Fragilaria pinnata (CCAP 1029/2) 

and Ditylum brightwelii (CCMP 359) were grown in F/2 medium, supplemented with silica (Guillard, 

1975). All strains were grown at 19 ± 1 °C, in semi-continuous batch culture with moderate shaking. 

The photoperiod was 12 h light/12 h dark, and light irradiance was 70 µmol quanta m-2 s-1. Cell 

concentration was determined daily with a Z2 Coulter Counter analyzer (Beckman Coulter), to 

ensure all the experiments were performed with cells in exponential phase. For biophysical 

measurements, cells were concentrated by centrifugation and resuspended in their growth medium 

(supplemented with 10% w/v Ficoll to prevent cell sedimentation), and kept in the dark at least 30 

minutes before measurements.  

 

Inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU), Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP), Antimycin A (AA), Myxothiazol and salicylhydroxamic 

acid (SHAM) (Sigma-Aldrich, Munich, Germany) were dissolved in ethanol, whereas Hydroxylamine 

(HA), glucose, glucose oxidase and catalase (Sigma-Aldrich, Munich, Germany) were dissolved in 

deionized water. FCCP was used at a very low concentration (8 nM, Figure 2.9 B) to allow the 

disruption of the dark PMF without preventing the light-induced generation of PMF needed to 

quantify the ΔΨd. AA and Myxothiazol were used at 5µM, unless otherwise stated (Figure 2.9 B and 

Supplementary Figure 2.15). DCMU was used at a concentration of 15µM. In every measurement 

involving HA or SHAM, the lowest inhibitor concentration to induce a full inhibition of PSII activity 

or maximum inhibition of respiration, respectively, was used. The range of concentrations used was 

30-100µM and 500-1000µM for HA and SHAM, respectively. Anaerobic conditions were obtained 

through incubation with catalase (1000 U/mL), glucose (10 mM) and glucose oxidase (2 mg/mL). 

Note that AA has been described as an inhibitor of cyclic electron flow, affecting the NDH-related 

pathway (Joët et al., 2001). However, this potential effect was ruled out in diatoms, where no 

change in cyclic electron flow was noticed upon addition of AA, consistently with the fact that genes 

encoding for the NDH complex are invariably lacking in diatom chloroplast genomes. AA and 

Myxothiazol were preferred to potassium cyanide to block the cyanide sensitive pathway of 

respiration, because potassium cyanide also affects RuBiCO activity (Wishnick & Lane, 1969), 

ascorbate peroxidase (Nakano & Asada, 1987) and Cu/Zn superoxide dismutase (Asada et al., 1974).  
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Deconvolution of linear and quadratic ECS components: To deconvolute the linear and quadratic 

contributions to the ECS signals, cells were left for an hour in the cuvette to reach complete 

anaerobiosis. In these conditions, the ATP synthase activity is slowed down, and long-living ECS 

signals are no longer contaminated with other light-induced absorption changes (principally c-type 

cytochromes redox change signals). Light stimulation of cells was achieved with a series of 6 laser 

single turnover (duration ~7 ns) saturating flashes, provided by a laser dye (LDS 144 698) pumped 

by a double frequency Nd-YAG laser (Quantel, Brilliant, France). We considered that the relaxation 

of the electric field generated by the light stimulus is described by the exponential function: ΔΨ= 

ΔΨ0 .exp(-t/t), where t is time, ΔΨ0 is the initial electric field generated by the light, and t  is the 

electric field decay lifetime. The linear and quadratic components of the ECS are theoretically 

proportional to ΔΨ and ΔΨ2 respectively.  Therefore, the ΔI/I spectro- temporal matrixes (from 460 

to 600 nm) can be described by a sum of two exponentials: y (λ ,t) = A(λ).exp(-t/t) + B(λ).exp(-2.t/t) 

+ C(λ). The kinetics of ECS relaxation were fitted by a global routine, which considers the lifetime t 

as a global (wavelength independent) variable, and the amplitudes of linear and quadratic 

components (A and B, respectively) as local (wavelength dependent) variables. A non-decaying 

component (C) was also included in the fit to account for a small fraction of residual signal at long 

delay times. The plot of the A and B amplitudes as a function of the wavelength provides the Decay 

Associated Spectra of the linear and quadratic contributions to the ECS signal, respectively, which 

are reported in Figure 2.17 A. The fit was performed using a home-made software, which uses the 

MINUIT package, developed and distributed by CERN, Geneva, Switzerland, implemented in 

FORTAN77. It minimizes the reduced sum of squared residues between the model function and the 

experimental data, employing a two-steps protocol involving an initial search that utilises the 

Simplex method (Nelder-Mead algorithm) and a refined search using the Levenberg-Marquardt 

algorithm as described in Santabarbara et al., 2009. The quality of the fit description was judged on 

the basis of reduced sum of squared residues statistics, visual inspection of the fit residuals, 

residuals autocorrelation and stability of the solutions upon random perturbation of the best-fit.  

 

Measurements of c-type cytochromes and linear and quadratic ECS: Absorption difference signals 

were measured at different wavelengths with a Joliot-type spectrophotometer (JTS-10, Biologic, 

France), equipped with a white probing LED and the appropriate interference filters (3 to 8 nm 

bandwidth). For ΔΨd measurements, the PMF was increased using a ~10ms pulse of saturating (4500 

µmol quanta.m-2.s-1) red light (see Supplementary Figure 2.14 for representative ECS kinetics). For 
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P. tricornutum, ECS signals were evaluated using 3 wavelengths, to eliminate contribution from c-

type cytochromes (see Supplementary Figure 2.14). The latter was calculated as Cyt. c = [554]-

0.4.[520]-0.4.[566], where [554], [520] and [566] are the absorption difference signal at 554 nm, 

520 nm and 566 nm, respectively. The very similar relaxation of c-type cytochromes in aerobic and 

anaerobic conditions, despite very different ECS relaxations (Supplementary Figure 2.14 B), 

demonstrates the validity of the Cyt. c deconvolution procedure. Then ecslin and ecsquad (ECS signals 

before correction for the ΔΨd) were estimated form the following relationships: ecslin=[520]-

0.25.Cyt. c and ecsquad=[566]+0.15.Cyt. c. For the other diatoms, appropriate wavelengths were 

chosen for calculating ecslin and ecsquad (red and blue lines in Figure 2.11) to minimize the 

cytochrome contributions. ECS data were then normalized to the ecslin increase upon a saturating 

laser flash (i.e., 1 charge separation per photosystem, see Melis, 1982). The relationships between 

ecsquad and ecslin were fitted with the parabolic equation ecsquad+ a. ΔΨd 2 = a.(ecslin+ ΔΨd)2, where 

ΔΨd is the electric component of the PMF in the dark (expressed in charge separation per PS) and a 

is constant for all the experiments related to a diatom species (see Supplementary Figure 2.14 C). 

The ecslin and ecsquad values represent ECS changes relative to dark values. Therefore, we corrected 

them for the dark electric field. This leads to ECSlin = ecslin + ΔΨd, and ECSquad = ecsquad + a.ΔΨd
2, i.e. 

absolute values of the ECS signals. This simply corresponds to a shift of the x and y axis to allow the 

minimum of the parabola to coincide with the origin of the axes (see Supplementary Figure 2.15 D), 

and leads to ECSquad = a.ECSlin
2. This leads to evaluation of ΔΨd as the minimal ECSlin value of the 

experimental data (for example, the ΔΨd in P. tricornutum as ~ 5 charge separations by PS, i.e., 100 

mV12 , Figure 2.8 C and Supplementary Figure 2.14 D). The presence of linear and quadratic ECS 

components allows measuring the absolute value of the ΔΨ in the dark (ΔΨd). Indeed the amplitude 

of the linear ECS response (ecslin) observed upon a light stimulus increasing the ΔΨ is constant, i.e. 

independent on the value of the field pre-existing the illumination (ΔΨd). Conversely, the amplitude 

of the quadratic ECS response (ecsquad) is a function of the value of the ΔΨd. Therefore, plotting the 

amplitude of the ecsquad vs ecslin allows quantifying the absolute value of the electric field in the dark 

(ΔΨd). 

Cyt b6f turnover was measured though the slow phase (phase B; Joliot & Delosme, 1974) of the 

linear ECS, which reflects b6f-catalysed charge transfer across the membranes, and through the 

reduction rate of the c-type cytochromes (c6/f), using the 3 wavelengths deconvolution procedure 

described above. Measurements were performed after a saturating laser flash.  
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Measurements of photosynthetic flows: For calculation of the total electron flow (TEF, the sum of 

linear and cyclic electron flows) and cyclic electron flow (CEF) capacities, we measured the 

photochemical rates in the absence and presence, respectively, of DCMU. In brief, under steady 

state illumination conditions, the ECS signal results from concomitant transmembrane potential 

generation by PSII, the cytochrome b6f complex and PSI and from transmembrane potential 

dissipation by the plastid ATP synthase When light is switched off, PS activities stop immediately, 

while ATP synthase and cytochrome b6f complex activities remain (transiently) unchanged. 

Therefore, the difference between the slopes of the linear ECS signal (ECSlin) measured in the light 

and after the light is switched off (sD-sL) is proportional to the rate of PSI and PSII photochemistry 

(i.e. to the rate of “total” electron flow, Supplementary Figure 2.13 A). Because the linear ECS has 

been normalized to the amplitude of the linear ECS signal induced by a saturating laser flash (Nakano 

& Asada, 1987; see above), the difference of slopes evaluates the number of charge separations per 

photosystem and per second. The rate of CEF can be evaluated using the same approach under 

conditions where PSII activity is inhibited by DCMU, and dividing this slope by the linear ECS signal 

induced by a saturating laser flash in the presence of PSII inhibitors (1 charge separation per PSI; 

Bailleul et al., 2010). This was done using saturating concentrations of DCMU, which block PSII 

oxidation by PSI and of hydroxylamine, to avoid charge recombination within PSII. 

 

Fluorescence-based measurements: Fluorescence-based photosynthetic parameters were 

measured with a fluorescence imaging setup described in Johnson et al., 2009. Photosynthetic 

electron transfer rate ETRPSII and NPQ were calculated, respectively, as (Fm’-F)/Fm’.I and (Fm-

Fm’)/Fm’, where F and Fm’ are the steady state and maximum fluorescence intensities in light 

acclimated cells (respectively), Fm is the maximal fluorescence intensity in dark-adapted cells, and I 

is the light irradiance in µmol quanta.m-2.s-1 (Genty et al., 1989; Bilger & Björkman, 1990). The light 

saturation curves of ETRPSII were fitted with the exponential rise function P = Pmax (1- exp(E/Ek)), 

where Pmax is the maximal photosynthetic electron transport rate and Ek is the optimal light. 

ΔETR/ETR (Figure 2.10 A) was calculated as (ETRref-ETR).100/ ETRref, the reference being the wt in 

control conditions.  

 

Membrane inlet mass spectrometer (MIMS) measurements: Samples were introduced in a 3 mL 

thermostated cuvette, which was connected to a Quadrupole Mass Spectrometer (QMS 200, 

Pfeiffer Vacuum Prisma, Asslar, Germany) by a stainless steel vacuum tube (0.125 inch) passing 
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through a water trap filled with ethanol and dry ice. The sample was separated from the tube via a 

gas permeable inlet system (PTFE membrane). 18O2 was added as a bubble to the algal suspension, 

and the bubble was removed prior to the experiment. The measurements of the partial pressure of 

16O2 (P16O2, m/z = 32), 18O2 (P18O2, m/z =36) and Argon (m/z =40) were performed after the cuvette 

was sealed. A blue LED source was connected to the cuvette, and the light irradiance was manually 

adjustable in the 0 to ~800 µmol quanta.m-2.s-1 range. The temperature was kept at 19 ± 1 °C in the 

cuvette during the experiment. 

To calculate gross O2 production (E0) and uptake (U0), respectively, production and consumption by 

the cells, we adapted the equations from Peltier & Thibault, 1985: 

U0 = (Δ[18O]/Δt + k[18O]).([18O]+[16O]/[18O]) 

E0 = (Δ[16O]/Δt + k[16O]) + U0.([18O]+[16O]/[16O]) 

Where k is the rate constant of O2 decrease measured in the absence of algae. We normalized O2 to 

Argon- a biologically inert gas with very similar solubility properties, which decreases the sensitivity 

of O2 measurements to fluctuations by ~80% (Kana, 1994). The gas concentrations were calibrated 

by measuring air-equilibrated O2 concentration (stirring deionized water in the open cuvette for at 

least 5 hours) and background O2 (bubbling with N2). 

 

Respiration rates were measured as O2 exchange rates using a Clark-type oxygen electrode at 19°C 

(Hansatech Instrument, King’s Lynn, UK). AOX capacity was measured as SHAM-sensitive respiration 

in conditions where the cyanide-sensitive pathway was beforehand inhibited (AA, 5µM). 

 

ATP/NADPH in vivo measurements: NADP+/NADPH redox changes were followed in living cells 

using a dual PAM (Walz, Germany). NADPH fluorescence was measured at 460 nm, upon excitation 

in the near UV. Chlorophyll a concentration was ~ 5 µg. mL-1. ATP content was measured using an 

in vivo (Santabarbara et al., 2009) P- AMX 400 NMR spectrometer equipped with a 25-mm 

multinuclear probe tuned at 161.9 MHz, and a home-made lighting system, as described in 

Rivasseau et al., 2009. The relative ATP content was estimated in vivo from the surface of α-, β- and 

γ-phosphorus resonance peaks corresponding to the three phosphates of NTPs, which dominate the 

NMR spectra with inorganic phosphate and polyphosphates (Bligny & Douce, 2001).  

 

Western blots and immunolocalization: Protein samples (5-10 µg) were loaded on 13%  SDS-

PAGE gels and blotted to nitrocellulose. Primary AOX antibody was customly designed (Sdix, USA, 
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1:4000 dilution). All other antisera used were obtained from Agrisera (Vännäs, Sweden). The blots 

were developed with ECL detection reagent and images of the blots were obtained using a CCD 

imager (Chemidock MP Imaging, Bio-Rad). Immunolocalization of AOX was generally done as 

described in (Bailleul et al., 2010). Briefly, cells were fixed with 2% formaldehyde in culture media for 

20 minutes, washed 3 times with marine phosphate buffer (mPBS, see Van de Meene & Pickett-

Heaps, 2004) and premeabelized by 1% Triton X-100 in mPBS for 10 minutes. The cells were washed 

again, blocked for 30 minutes in 1% BSA in mPBS and incubated over night at room 

temperature with anti-AOX antibody from rabbit (custom design, Sdix, USA, 1:200 dilution in mPBS). 

The cells then were rinsed with mPBS and incubated with donkey Alexa 488-conjugated anti-rabbit 

IgG antibody (Life Technologies, USA, at 1:100 dilution in mPBS) for 2 h at room temperature. Cells 

were then stained with 0.5µg/ml DAPI (4’,6’-diamidino-2-phenylindole, Life technologies) for 10 min 

and mounted with Vectashield (Vector Laboratories, Inc., USA) after a rinse. Finally the cells were 

observed using a Leica SP5 confocal microscope (Leica Microsystems, Germany).  

 

Electron microscopy: For transmission electron microscopy (TEM), P. tricornutum cells were fixed 

in 0.1 M cacodylate buffer (Sigma-Aldrich) pH 7.4 Containing 2.5% glutaraldehyde (TAAB), 2% 

formaldehyde (Polysciences, Inc.) for one hour at room temperature and then prepared according 

to a modified protocol from Deerinck et al. (http://ncmir.ucsd.edu/ sbfsem-protocol). After the 

dehydration steps, the cells were infiltrated with ethanol/Epon resin mixture (2/3-1/3 for one hour 

and 1/3-2/3 for one hour) and finally embedded in Epon in a 60°C oven for 48 hours or longer. 

Ultrathin sections (60 nm) were prepared with a diamond knife on an UC6 Leica ultramicrotome and 

collected on 200 µm mesh nickel grids before examining on a JEOL 1200 EX electron microscope. 
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2.3.3 Perspectives  

The presented work discloses the energetic interactions between chloroplast and mitochondria that 

are required for optimization of photosynthesis in diatoms. Since its publication I have performed 

new structural studies, taking advantage of the FIB-SEM technology, thereby addressing new 

questions. According to literature, the number and size of mitochondria, in this group of algae, 

remain a mystery. Round and collaborators in 1990 proposed that its morphology follow a long 

structure localized in the cytoplasm. The lacking of comparative studies on mitochondria structure 

in diatoms switched on our curiosity and comprehensive studies have been performed. Our recent 

3D reconstitution of an intact cell of P. tricornutum indicate that every cell contain a single 

chloroplast, but also a single mitochondrion, which is highly ramified and sits on the chloroplast. 

This mitochondria is partially sandwiched between the chloroplast and the nucleus and reinforces 

our conclusion about the physical exchanges between the two organelles but also raises the 

important question on the mechanism of these exchanges. The optimization of protocols for 

scanning electron microscopy should address this question. One approach to move a step forward 

will be the improvement of the 3D reconstitution of Phaeodactylum tricornutum cells enhancing the 

resolution of the chloroplast and mitochondria-fused membranes. Furthermore, an interesting 

point will be to visualize these “fusion junction” and elucidate the configuration of the transporters 

that underline the energetic exchanges reported in the paper presented here. A promising strategy 

is the use of cryo-EM tomography linked with the correlative light EM (CLEM), to localize the carriers 

within the fusion membranes. Combining molecular and structural techniques, in a comprehensive 

approach, will be possible to identify these transporters and finally unravel the structural 

arrangement of the machineries that optimize photosynthesis in diatoms. 
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2.4 Phaeodactylum periplastidial compartment 

2.4.1 Preface 

The article presented in this section focuses on the periplastidial compartment of the model 

organism Phaeodactylum tricornutum.  

Diatoms plastids derives from the engulfment of a red alga by another eukaryotic cell, followed by 

reduction of symbiont cell structures. In the pennate diatom Phaeodactylum tricornutum, like in all 

the other photosynthetic organisms studied so far, most plastid proteins are encoded in the nucleus 

and imported through these membranes. However, consistent with the fact that four membranes 

(instead of two in plants and green algae) constitute the chloroplast envelope of diatoms, the 

translocation of many components between the cytosol and the chloroplast should require a 

different transport machinery. So far it is not clear if transport through the periplastidial 

compartment (PPC) could occur via membrane translocators or via unknown vesicular trafficking 

systems. Consistent with the latter, a vesicular network (VN) was observed in the PPC of 

Ochromonas danica (Gibbs, 1979), a Chrysomonad close to, but distinct from diatoms. 

Ultrastructural studies also support the existence of a VN in the PPC in diatoms (Bedoshvili et al., 

2009) but their location within the cell has not been assessed so far. Taking advantage of ultrathin 

sections of disrupted P. tricornutum cells obtained using the focus ion beam-scanning electron 

microscopy (FIB-SEM; see section 3.4.2) we revealed the presence of a vescicular network in the 

PPC of Phaeodactylum tricornutum. This network represents a potential candidate for the trafficking 

process mentioned above. Moreover, we saw direct membrane contacts between the periplastidial 

membrane (PPM) and the nuclear inner envelope membrane at the level of the chloroplast-nucleus 

isthmus. Overall, this study not only provides insights into the subcellular organization of membrane 

compartments in diatoms, but also allows corroborates previous hypotheses for the protein import, 

i.e. a process that is fundamental to understand the function, biogenesis and dynamics of secondary 

plastids, at the structural level.  
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Abstract 

Diatoms contain a secondary plastid that derives from a red algal symbiont. This organelle is limited 

by four membranes. The two outermost membranes are the chloroplast endoplasmic reticulum 

membrane (cERM), which is continuous with the host outer nuclear envelope, and the periplastidial 

membrane (PPM). The two innermost membranes correspond to the outer and inner envelope 

membranes (oEM and iEM) of the symbiont’s chloroplast. Between the PPM and oEM lies a 

minimized symbiont cytoplasm, the periplastidial compartment (PPC). In Phaeodactylum 

tricornutum, PPC-resident proteins are localized in “blob-like-structures”, which remain associated 

with plastids after cell disruption. We analyzed disrupted Phaeodactylum cells by focused ion beam 

scanning electron microscopy, revealing the presence of a vesicular network (VN) in the PPC, at a 

location consistent with blob-like structures. Presence of a VN in the PPC was confirmed in intact 

cells. Additionally, direct membrane contacts were observed between the PPM and nuclear inner 

envelope membrane at the level of the chloroplast-nucleus isthmus. This study provides insights 

into the PPC ultrastructure and opens perspectives on the function of this residual cytoplasm of red 

algal origin. 
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Diatoms constitute a major group of phytoplankton in oceans and freshwater ecosystems, and are 

so ecologically successful that they are responsible for up to one fourth of global primary 

productivity (Field et al., 1998). Based on comprehensive surveys of oceanic biodiversity, diatoms 

are spread globally and are the most diverse photosynthetic eukaryotic lineage (de Vargas et al., 

2015; Massana et al., 2015). A striking feature of diatoms is their sophisticated ultrastructure, inside 

highly packed cells, including a chloroplast bounded by four membranes, known as a ‘secondary’ or 

‘complex plastid’. Our understanding of the structure of this organelle and its relationship with the 

rest of the cell is fragmentary. Plastid-mitochondrion metabolic interactions were recently shown 

to optimize bioenergetic coupling, being one of the reasons for diatoms’ performance in ecosystems 

(Bailleul et al., 2015; see section 2.3). The stroma of diatoms’ chloroplast is also the site of 

production of fatty acids, which are precursors for the biosynthesis of all membrane and storage 

glycerolipids, but it is still unknown how these fatty acids and glycerolipids can traffic across and 

inside subcellular membranes to reach their final destination (Abida et al., 2015). Important 

shuttling of proteins, lipids and other metabolites is therefore expected to occur through the four 

membranes limiting the plastid. Diatom glycerolipids are considered a promising feedstock for 

biofuels and other lipid-derived chemicals (Levitan et al., 2014). It is therefore essential, but 

challenging, to advance knowledge on the subcellular organization and connectivity of membranes 

within diatom cells.  

The secondary plastid derives from the engulfment of a red alga by another eukaryotic cell, followed 

by the reduction of the symbiont subcellular structures (Cavalier-Smith, 2003; McFadden, 2014; 

McFadden & van Dooren, 2004; Nisbet et al., 2004). Such secondary plastids are found in groups 

that are distant from diatoms (Heterokonta), like Cryptophyta, Haptophyta, Chromerida or 

Apicomplexa (Cavalier-Smith, 2003; Dorrell & Smith, 2011; Gibbs, 1962a, b, c, 1979, 1981; Maréchal 

& Cesbron-Delauw, 2001; Petroutsos et al., 2014). Secondary plastids are therefore chimeric 

organelles, combining host and symbiont-derived structures. The outermost membrane, termed the 

‘chloroplast endoplasmic reticulum membrane’ (cERM, Figure 2.22; Gibbs, 1979) is supposed to 

derive from the host phagocytic membrane (Cavalier-Smith, 2003; McFadden & van Dooren 2004; 

Nisbet et al., 2004) and is therefore expected to be phospholipid rich (Abida et al., 2015; Petroutsos 

et al., 2014).  



65 
 

In diatoms, the cERM is directly connected to the host outer nuclear envelope membrane (oNE) and 

the ER (Bouck, 1969; Kroth et al., 2008). In other groups, like Apicomplexa, the cERM and the 

endomembrane system are not continuous and transfers of material occurs via vesicular trafficking 

(Heiny et al., 2014; van Dooren et al., 2001; van Dooren et al., 2000). Underneath, the ‘periplastidial 

membrane’ (PPM, Figure 2.22) is considered to derive from the symbiont plasma membrane 

(Grosche et al., 2014), although an alternative origin from the host ER has been recently proposed 

(Gould et al., 2015). The nature of the two innermost membranes of the chloroplast is not debated, 

being reminiscent of the galactolipid-rich chloroplast envelope of the symbiont, called the ‘outer’ 

and ‘inner envelope membranes’ (oEM and iEM, Figure 2.22; Botté & Maréchal, 2014; Petroutsos 

Figure 2.22 – Chimeric organization of the secondary plastid in diatoms. The scheme shows a fusiform cell of Phaeodactylum. 

The plastid is limited by 4 membranes. The chloroplast endoplasmic reticulum membrane (cERM), shown in blue, is continuous 

with the outer nuclear envelope membrane. The periplastidial membrane (PPM) is shown red. The outer and inner envelope 

membrane (oEM and iEM), shown in light green, are tightly apposed. The presence of a specific periplastidial compartment (PPC) 

is based on the detection of blob-like structures observed by confocal microscopy, in which protein precursors fused to GFP and 

crossing only the cERM and the PPM reside. The presence of VN in this PPC is addressed here. C, chloroplast; N, nucleus; M, 

mitochondrion.  
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et al., 2014). Between the PPM and oEM lies a minimized symbiont cytoplasm, the ‘periplastidial 

compartment’ (PPC, Figure 2.22; Grosche et al., 2014). The cytoplasmic remains of the red algal 

symbiont show different degrees of reduction. Cryptophytes like Guillardia theta contain a 

minimized version of the nucleus in the PPC, called the nucleomorph (Curtis et al., 2012), whereas 

other groups including diatoms have completely lost the symbiont nucleus.  

Phaeodactylum tricornutum is by far the most studied pennate diatom, following the complete 

sequencing and annotation of its genome (Bowler et al., 2008), the development of molecular tools 

for gene expression and functional characterizations (Apt et al., 1996; De Riso et al., 2009; Falciatore 

et al., 1999; Siaut et al., 2007) and the production of reference data for membrane lipidomic studies 

(Abida et al., 2015). P. tricornutum is pleiomorphic, with three major morphotypes, i.e. fusiform 

(shown in Figure 2.22), triradiate and oval. A series of axenic strains have been collected in various 

marine environments worldwide, including Pt1, which has been analyzed here (De Martino et al., 

2007). Subcellular localization of proteins in the secondary plastid of P. tricornutum relies on 

confocal imaging of cells expressing the green fluorescent protein (GFP) fused to various addressing 

sequences (Gould et al., 2006; Grosche et al., 2014; Gruber et al., 2007; Hempel et al., 2009; Kilian 

& Kroth, 2005; Moog et al., 2011; Peschke et al., 2013; Sommer et al., 2007). 

Most plastid proteins in P. tricornutum are nuclear encoded: their sequences contain a bipartite 

topogenic signal (Bts), comprising an N-terminal signal peptide (Sp), a chloroplast-like transit 

peptide (Ctp) and an amino acid motif at the cleavage site of the Sp, termed the ASAFAP motif 

(Gould et al., 2006; Gruber et al., 2007; Kilian & Kroth, 2005; Moog et al., 2011). Three major 

translocating systems are involved to import plastid proteins harboring a Bts (Supplementary Figure 

2.29). Firstly, a sec61 complex operates by co-translational mediation of pre-proteins across the cER  

(Bolte et al., 2009). Secondly, the symbiont endoplasmic reticulum-associated degradation (ERAD) 

machinery has evolved to give rise to a translocon called the ‘symbiont-specific ERAD-like 

machinery’, or SELMA (Felsner et al., 2011; Hempel et al., 2007; Hempel et al., 2009; Lau et al., 2015; 

Sommer et al., 2007; Stork et al., 2012; Stork et al., 2013). Thirdly, transport across the oEM and 

iEM involves components related to the classic chloroplast translocon, i.e. TOC and a TIC 

respectively (Bullmann et al., 2010; Heinz & Lithgow, 2014; Schleiff & Becker, 2011; Schleiff et al., 

2011; Sommer et al., 2011; Stork et al., 2013; Wunder et al., 2007).  

Following docking of ribosomes at the surface of the secondary plastid, the Sp determines the 

targeting via the cERM and PPM (Supplementary Figure 2.29). The presence of a phenylalanine (F) 

or an aromatic residue at position +1 of the Ctp determines the transport across the oEM and the 
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iEM. In the absence of such aromatic amino acid, proteins remain resident in the PPC (Gould et al., 

2006; Gruber et al., 2007; Kilian & Kroth 2005; Moog et al., 2011). A recent study has shown that 

pre-proteins could be N-glycosylated prior their transport through the PPM (Supplementary Figure 

2.29), probably by the action of an oligosaccharide transferase (OST; Peschke et al., 2013). An 

important question is then posed by this discovery, regarding the possibility to import some of the 

plastid proteins, most notably folded glycoproteins, via membrane translocators or via unknown 

vesicular trafficking systems. 

The evidence for a protein to reside (or be blocked) inside the PPC lies on the detection of GFP 

fusions inside single spot-like structures at the periphery of the plastid, called “blob-like-structures’ 

(Gould et al., 2006; Gruber et al., 2007; Kilian & Kroth, 2005; Moog et al., 2011). The presence of 

membrane vesicles in blob-like structures was considered as possible based on the arrest of protein 

import by treatment with Brefeldin A (Kilian & Kroth, 2005), however in following studies, this 

hypothesis was never confirmed. Consistently with the absence of vesicles, no PPC-specific 

component involved in vesicular lipid trafficking, such as Rabs, SNAREs, COPI, COPII, chlathrin, 

calveolin, ESCRT, GEFs or GAPs could be predicted (Moog et al., 2011).  

In a comprehensive electron microscopy study of the chrysomonad Ochromonas danica, a vesicular 

network (VN) was observed in the PPC (Gibbs, 1979). This VN has been initially called a periplastidial 

reticulum (Gibbs ,1979). This network did not extend around the whole chloroplast of O. danica, but 

was found restricted to particular locations, close to the nucleus (Gibbs, 1979). Apparent increase 

of this VN after treatment with cycloheximide and disappearance after treatment with 

chloramphenicol suggested a relation with protein import (Gibbs, 1979). This study is often 

considered a reference to suggest that the PPC of diatoms may contain a VN, but the detection of 

membrane translocators and the lack of putative PPC proteins acting in lipid trafficking have been 

repeatedly used as an argument to consider the presence of vesicles as unlikely, or generated by 

unknown components (Gould et al., 2006; Moog et al., 2011; Peschke et al., 2013; Sommer et al., 

2007). Ultrastructural study of chloroplasts in diatoms other than Phaeodactylum has supported the 

existence of a VN in the PPC (Bedoshvili et al., 2009), but location within the cell and conservation 

in the diatom phylum have not been assessed. The ultrastructure of the PPC needs therefore to be 

characterized in P. tricornutum. We analyzed by electron microscopy series of ultrathin sections of 

P. tricornutum cells, revealing the presence of a VN in the PPC, at a location corresponding to blob-

like structures. 
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2.4.2.1 Results and Discussion 

Since blob-like structures remain associated to chloroplasts after cell disruption (Kilian & Kroth, 

2005), we took advantage of this property and analyzed by electron microscopy series of ultrathin 

sections of disrupted P. tricornutum cells (Figure 2.23 A and B). Series of thin sections allow the 

detection of membrane connectivity in the three dimensions. Here, the thickness of section slices 

was 4 nm, and 200 to 600 sections were collected per sample, allowing the ultrastructure scanning 

of single organelles (chloroplast, mitochondrion or nucleus) from tangential sections (edges) to 

cross sections (Figure 2.23 C).   

Figure 2.23 – (A) Electron micrograph of an intact Phaeodactylum cell. (B) Disrupted cell. (C) Lateral view of the serial scanning 

method. Slices or section are 4 nm-thin, and allow the detection of membrane continuity between successive cross sections. For 

200 sections, the depth of the scanning is 1 µm. In the disrupted cell shown in Figures 2.10, 2.11 and 2.12, the tangential view of 

the nucleus is in section 1, and that of the chloroplast is in section 136. C, chloroplast; M, mitochondrion; N, nucleus; Pyr, pyrenoid; 

Thyl, thylakoids. 
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Focusing on a disrupted unpacked cell, the scanning of the region between a nucleus and a 

secondary plastid is shown in Figures 2.24, 2.25 and 2.26. In these series, the identity of the 

membranes is assessed by the connectivity in the two dimensions of the sections and the 

conservation from one section to the following, i.e. the third dimension. To help trace membrane 

identity and connectivity between sections, schematic representations are also shown: sections 1’, 

48’, 140’, 145’, 152’, 178’, 184’ and 208’. 

Firstly, Figure 2.24 shows the most tangential region of the nucleus. Section 1 corresponds to the 

edge of this organelle, i.e. a tangential view of the oNE. Section 16 shows the tangential view of the 

iNE. The following sections, e.g. 30, 44 or 48, are transverse views of the nucleus, containing the 

chromatin, and allowing the visualization of nuclear pores (Figure 2.24, section 48, NP). The 

uncondensed chromatin indicates that the cell is in interphase. In section 120, the cross section of 

the nuclear envelope is slightly irregular and shows a constricted area (Figure 2.24, section 120, 

dashed circle). In this constricted region of the nucleus the oNE is connected to the cERM (Figure 

2.24, sections 136, bold dark arrows). In section 140, this oNE-cERM isthmus gets larger (Figure 2.24, 

sections 140, bold dark arrows) and irregular tangential sections of the PPM are visualized facing 

directly the iNE. Here, and in following sections, the oEM and the iEM appear as closely apposed 

membranes. 
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Figure 2.24 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level of the cERM–oNE isthmus. The 

outer nuclear envelope is shown in blue from a tangential section (1) to the level of sub-spherical nucleus (48 and 48’), where it 

is lined with the inner nuclear envelope (iNE) shown in purple. The nucleus then forms a constricted area shown in dashed lines 

(120). In the vicinity of the chloroplast, the oNE becomes continuous with the chloroplast endoplasmic reticulum membrane 

(cERM). The edges of the isthmus are shown with arrows. M, mitochondrion; N, nucleus; NP, nuclear pore. 
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Secondly, Figure 2.25 shows a focus in the region where the iNE faces directly the PPM. In sections 

142, 144 and 145 the PPM is less irregular and shows an increased apposition with the iNE. A 

vesicular network (VN) appears between the PPM and the oEM/iEM. The PPM/iNE membrane 

contact site expands from sections 148 to 152, becoming as large as the oNE-cERM isthmus.  

 

  

Figure 2.25 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level of the iNE-PPM membrane contact. 

The outer nuclear envelope (oNE) is shown in blue in continuity with the cERM. The inner envelope membrane (iNE) is shown in purple 

and gets in very tight contact with the irregular periplastidial membrane (PPM; from 142 and further). A vesicular network (VN) fills the 

space between the PPM and the two innermost membranes of the chloroplast, the outer and inner envelope membranes (oEM and 

iEM, respectively), shown in light green. C, chloroplast; M, mitochondrion; N, nucleus; Thyl, thylakoids. 
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Thirdly, Figure 2.26 allows visualizing the expansion of the VN in regions where the oEM and cERM 

are not connected. From sections 158 to 160 and 162, the oNE-cERM isthmus and the PPM/iNE 

membrane contact site are clearly visible, whereas section 174 shows disconnected cross sections 

of the chloroplast and the nucleus (Figure 2.26, sections 174, star). The VN is still visible, indicating 

that the VN is close, but not strictly dependent on the nucleus-chloroplast isthmus. In sections 176 

and 178, direct connections between the VN and the PPM are visible (Figure 2.26, section 178/178’, 

bold arrow), whereas no link between the VN and the oEM could be detected. The VN is visible in 

sections 188, 192 and is tangentially observed in section 200. Section 208 shows a second 

connection between the nucleus and the chloroplast (Figure 2.26, section 208/208’, bold arrows), 

but this time without any VN. 

Thus this series illustrates that at the level of a large cERM-oNE isthmus a PPM/iNE membrane 

contact site is established and a VN appears between the PPM and the oEM, connected to the PPM 

but not to the oEM. The VN in the PPC is therefore at a location corresponding to that of blob-like 

structures observed by confocal microscopy in Phaeodactylum cells broken by osmotic shock, and 

initially reported to possibly contain membrane vesicles (Kilian & Kroth, 2005). 
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Figure 2.26 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level of the periplastidial 

compartment. The outer nuclear envelope (oNE) is shown in blue in continuity with the cERM. The inner envelope membrane 

(iNE) is shown in purple in tight contact with the periplastidial membrane (PPM) at the level of the nucleus-chloroplast contact 

zone. The vesicular network (VN) fills the space between the PPM and outer envelope membranes (oEM), shown in light green. 

The VN is also present in regions where the chloroplast and the nucleus are not connected (star in 174, and further). The VN 

shows continuity with the PPM (178) but not with the oEM. Additional direct connections between the oNE and cERM are visible 

in regions where no VN can be observed (208). C, chloroplast; M, mitochondrion; N, nucleus; Thyl, thylakoids. 
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Based on this analysis of disrupted and unpacked cells, we sought to establish whether the VN could 

be detected in intact cells. Figure 2.27 shows three examples. In cell 1, the VN lies within a groove 

between the PPM and the oEM, and appears therefore at two opposite locations of the chloroplast 

periphery in the vicinity of the nucleus (Figure 2.27 A, sections 203, 320 and 332, black arrows), in 

particular at the level of the nucleus-choroplast isthmus (sections 332, star). In cell 2, the VN appears 

more distant from the nucleus (Figure 2.27 B, sections 235, 330 and 378, black arrow). In cell 3, the 

VN appear close to the nucleus, but not in the area where the chloroplast-isthmus occurs. Overall, 

the VN is therefore most often present close to the chloroplast-nucleus isthmus, where it might play 

a functional and structural role, although other locations are possible. Using the complete set of 

sections of cell 1 (Figure 2.27 A) we used the volume viewer of Fiji image analysis tools (Schindelin 

et al., 2012) to reconstitute cross sections perpendicular to the main axis of the cell (Figure 2.27 D).  
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Figure 2.27 – Serial electron micrograph scanning of Phaeodactylum intact cells at the level of the periplastidial compartment. 

Three cells are shown (cell 1, 2 and 3) in A, B and C. (A) magnified cross-section of cell 1 is shown in (D) corresponding to the video 

provided in supplementary data. The vesicular network (VN) within the periplastidial compartment is shown with arrows. Ch, 

chloroplast; m, mitochondrion; N, nucleus; ob, oil body. 
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The three-dimensional organization of the VN can thus be viewed in Supplementary Materials Video 

A (http://dx.doi.org/10.1016/j.protis.2016.04.001). The ultrastructure of the VN in Phaeodactylum 

is therefore similar to that of the VN observed in the Ochromonas, although in this chrysomonad, 

the VN was only located close to the nucleus and appeared to have some direct connection with the 

oEM in addition to the PPM (Gibbs, 1979).  

We also examined previously published Phaedoctylum electron micrographs. In most cases, it is 

barely possible to identify the limiting membranes of the chloroplast. In the in-depth study of 

dividing cells published recently (Tanaka et al., 2015), one can see in some of sections, membrane 

vesicular or reticulated structures in the periphery of the chloroplast, the precise nature of which 

could not be assessed at that time, and which might be a VN within the PPC. In other diatoms like 

Thalassiosira proshkinae, Attheya ussurensis, Chaetoceros muelleri, Aullacoseira baicalensis, 

Synedra acus, a similar VN structure could be observed at the periphery of chloroplasts (Bedoshvili 

et al. 2009). A PPM/iNE direct contact could also be observed in Thalassiosira proshkinae and 

Chaetoceros muelleri (Bedoshvili & Likhoshvai, 2012). Thus, the organization of the PPC 

characterized here in Phaeodactylum is likely conserved in both pennate and centric diatoms. 

Probably the most important result of this study is that the PPC of diatoms is not empty. A residual 

cytoplasm exists, containing vesicles. None of the proteins that were reported to reside, or possibly 

reside, in the PPC could be predicted to act in vesicle formation, like SNAREs, Rabs, COPI, COPII, 

chlathrin, calveolin, ESCRT, GEFs or GAPS (Moog et al., 2011). The VN must therefore be generated 

by an unknown process. The identification of the proteins generating the VN in the PPC represents 

therefore an important challenge for future works. 

The glycerolipid composition of each of the four membranes that surround the plastid is unknown, 

but the present study will be also crucial in future investigation related to membrane lipid 

biogenesis. It is difficult to speculate on the location of the classical lipids found in the envelope of 

primary chloroplasts in secondary plastids i.e. galactoglycerolipids (monogalactosyldiacylglycerol, 

MGDG and digalactosyldiacylglycerol, DGDG), sulfoquinovosyldiacylglycerol (SQDG) and 

phosphatidyldiacylgycerol (PG; Abida et al., 2015; Boudiere et al., 2014; Petroutsos et al., 2014) or 

if phospholipids of the ER or nuclear envelope are also present and in the same proportions in the 

cERM. Lipid composition of the PPM could be related to that of the cERM, by importing 

phosphoglycerolipids, or to that of the oEM, by importing chloroplast lipids. In photosynthetic 

organisms, it is usually considered that in standard conditions phospholipids are mostly present in 

the endomembrane system, whereas non-phosphorus glycolipids are in the plastid. The analysis of 
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isolated secondary plastids has been possible in Apicomplexa, which is non-photosynthetic and 

disconnected from the nucleus (Botte et al., 2013) and in that peculiar case, presence of 

galactoglycerolipids could not be shown (Botté et al., 2008; Botte & Marechal, 2014; Botte et al., 

2013), whereas plastid membranes were clearly enriched in phosphoglycerolipids and even sterols 

(Botte et al., 2013). Galactolipids could be detected in the photosynthetically active secondary 

plastid of a Chromerida by immunofluorescence confocal imaging (Botte et al., 2011). The 

comprehensive analysis of the lipidome of Phaeodactylum has shown the presence of MGDG, 

DGDG, SQDG and even a form of SQDG acylated on its polar head (Abida et al., 2015). Based on our 

observations, we speculate that galactoglycerolipids are present in the iEM and oEM and that 

phosphoglycerolipids and betaine lipids are likely present in the cERM and the PPM. Membrane lipid 

transfers might occur at the level of membrane contact sites, such as that observed here between 

the PPM and the INE, or via dedicated platforms, such as the VN, or by other non-vesicular systems 

between adjacent membranes. 

The continuity between the PPM and the VN suggests that the biogenesis of the VN depends on the 

PPC and not on the oEM. A summary of a possible scenario for the origin of the PPM and VN is thus 

given in Figure 2.28.  
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Figure 2.28 – Stepwise reduction of the symbiont cytosol following secondary endosymbiosis in the diatom lineage. (A) 

The host cell and red algal symbiont. (B) Engulfment of the red alga. (C) Residence and transmission of the red alga within 

the phagotrophic membrane. (D) disappearance of symbiont organelles, including the nucleus, and cytosolic structures. 

(E) Present status. C, chloroplast; cERM, chloroplast endoplasmic reticulum membrane; iEM, inner envelope membrane; 

iNE, inner nuclear envelope; M, mitochondrion; N, nucleus; oEM, outer envelope membrane; oNE, outer nuclear envelope; 

PPC, periplastidial compartment; PPM, periplastidial membrane; Thyl, thylakoid, VN, vesicular network. 

iNE – PPM contact site 
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Important questions raised by the present study lie in the molecular organization and the function 

of the membrane compartments we have unraveled. Are there structural proteins involved in the 

opening of a circular isthmus connecting the oNE and the cERM? What are the components 

maintaining the iNE and the PPM closely apposed inside the opened oNE-cERM isthmus? Is the 

iNE/PPM membrane contact site involved in the exchange of metabolites, ions, proteins or nucleic 

acids? The plastid of diatoms seem to encode its required set of tRNAs and rRNAs (Oudot-Le Secq 

et al., 2007), but other transfers of RNAs might occur. Retrograde signaling from the chloroplast to 

the nucleus (Lepetit et al., 2013) might also occur at the level of this chloroplast-nucleus isthmus. 

What are the proteins involved in the elaboration of the VN? How are the PPM and VN physically 

connected? What is the function of the VN? The VN could be an important platform for the import 

of some protein precursors, most importantly those that are folded and glycosylated after crossing 

the cERM and PPM (Peschke et al., 2013). Protein transport from the VN to the oEM would therefore 

need a non-vesicular process. This study provides therefore novel insights into the PPC 

ultrastructure, opening fascinating perspectives to comprehend the origin of the secondary plastid 

in diatoms, its protein and membrane lipid biogenesis and its sophisticated relationship with other 

cell compartments.  
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Supplementary Figure  

Supplementary Figure 2.29 – Protein import across the four chloroplast limiting membrane and via the 

periplastidial compartment. Following mRNA transcription (1) and translation (2), plastid protein precursors 

harbor a bipartite topogenic signal (Bts). A sec61 complex operates very early by co-translational mediation of 

pre-proteins across the cERM (3) and release an unfolded protein precursor in the lumen of the chloroplast ER 

(cER). This unfolded protein can be directed to the next membrane (4). Pre-proteins can also be N-glycosylated 

prior their transport through the PPM (5), probably by the action of an oligosaccharide transferase (OST). A 

translocon called the ‘symbiont-specific ERAD-like machinery’ (SELMA) is located in the PPM. In the SELMA, Derlin 

proteins, sDer1-1 and sDer1-2, interact together and with the Bts. Components of a symbiont ERAD machinery, 

i.e. sCdc48 ubiquitin-dependent AAA-ATPases, and their cofactors sUfd1 and sNP14, reside in the PPC. In the 

absence of an aromatic amino acid at position +1 of the Ctp (+1=X), proteins remain resident in the PPC. Presence 

of a phenylalanine or an aromatic residue (+1=F) determines the transport across the oEM and the iEM. Transport 

across the oEM and iEM involves components related to the chloroplast translocon, i.e. TOC and a TIC 

respectively. The TOC core component derives from a prokaryotic Omp85 sequence. Important TIC subunits well 

characterized in plant and alga chloroplasts are conserved in the iEM, i.e. Tic20, Tic22, Tic62 and Tic110. Cleavage 

of the Bts (8) by a transit peptide peptidase (TPP) releases mature proteins in the stroma (9). In this scheme the 

transfer of folded proteins is not deciphered. Possible routes via a vesicle network (VN) in the PPC are shown. 
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2.4.2.2 Materials and methods  

Phaeodactylum tricornutum cultivation: The Pt1 Phaeodactylum tricornutum strain (CCAP 1055/3) 

was obtained from the Culture Collection of Algae and Protozoa, Scottish Marine institute, UK. 

Culture was grown in exponential phase in ESAW (Enriched Seawater, Artificial Water) medium, 

using 50 mL single-use flasks with 100 rpm shaking (Certomat BS-1 incubator; Sartorius stedim 

biotech), a low light intensity of 20 µmol photon m-2.s-1 and a 12/12 hour light/dark photoperiod at 

19°C. 

 

Sample preparation for electron microscopy: Cells of P. tricornutum were harvested at logarithmic 

phase before the offset of the light period at 5000 x g, 10 min, 4 °C. Cells were then fixed in 0.1 M 

cacodylate buffer (Sigma-Aldrich), pH 7.4, containing 2.5% glutaraldehyde (TAAB), 2% formaldehyde 

(Polysciences) for 1 h at room temperature and prepared according to a modified protocol from T. 

J. Deerinck (http://ncmir.ucsd.edu/sbem-protocol). 

 

Focused ion beam – scanning electron microscopy (FIB-SEM): Focused ion beam (FIB) tomography 

has been realized in a Zeiss NVision 40 dual-beam microscope. In this technique, the Durcupan 

embedded cells of P. tricornutum were cut in cross-section, slice by slice, with a Ga+ ion beam (of 

700 nA at 30 kV), and each slice was imaged in scanning electron microscopy (SEM) at 5 kV using 

the in-column EsB back-scatter detector. For each slice, a thickness of 4 nm has been removed, and 

the SEM images are recorded with a pixel size of 4 nm. The image stack is then registered by cross-

correlation using the StackReg plugin in the Fiji software.  This procedure gives us directly an image 

the 3D structure of the sample with an isometric voxel size of 4x4x4 nm3. 

 

Video A - The three-dimensional organization of the vesicular network (arrow) in cross sections of 

Phaeodactylum tricornutum. (http://dx.doi.org/10.1016/j.protis.2016.04.001). 
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2.4.3 Perspectives  

The presence of a specific periplastidial compartment (PPC) was deduced based on confocal 

microscopy. In particular, GFP-fused protein precursors able to cross only the cERM and the PPM 

membranes were found in blob-like structures, which were identified as the PPC space. Taking 

advantage of an innovative technique used in EM, this study provides new insights into the 

subcellular organization of membrane compartments in diatoms unveiling the presence of a 

vesicular network, opening new perspectives on the mechanisms for protein import in secondary 

plastids. Although our knowledge on these organisms has been improved in recent years, our 

understanding on the dynamics of secondary plastids is still limited. Nevertheless, additional 

biochemical and structural techniques should be applied to provide more details on chloroplast 

structure, proteins and metabolites transport across the four envelope membranes. Overall this 

article represents a proof of concept of the use of new technologies to address previously 

unanswered questions. Another interesting challenge in this field would be to identify the proteins 

generating the vescicular network in the periplastidial compartment. To achieve this goal, 

correlative light electron microscopy (CLEM) can be a good strategy by combining the recognition 

of specific targets labelled with the green fluorescent protein (GFP) with the high resolution of 

images obtained by electron microscopy and possibly with the 3-Dimenstional reconstruction. 

Although the optimization of this technique is both time and technically demanding, it will open 

new opportunity to analyze transport pathways in organisms originated by different endosymbiosis 

events.  
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2.5 Ultrastructure of diatoms photosynthetic membranes  

2.5.1 Preface  

This article (Flori et al., 2016 manuscript in preparation) represents a significant part of my Ph.D  

work and focuses on the ultrastructure of the chloroplasts in the model organism Phaeodactylum 

tricornutum. In particular, this study addresses the question of how thylakoid membranes are 3-

dimentionally structured in their native environment.  

Unlike plants, photosynthesis in diatoms occurs within chloroplasts originated by a secondary 

endosymbiosis event, where no differentiation in the photosynthetic membranes between 

appressed regions (Grana= rich in photosystem II) and non-appressed regions (Stroma lamellae= 

rich in photosystem I) was reported. The more homogeneous thylakoid structure in diatoms, should 

promote mixing of the photosynthetic complexes, physical interaction between them and 

consequent energy spillover from PSII to PSI, ultimately impacting light capture and photosynthetic 

electron transport. In both higher plants and microalgae, light harvesting and electron flow rely on 

chloroplast's architecture. The completely different structural features of diatoms photosynthetic 

membranes could have deeply modified the light responses and electron flow properties in these 

organisms. So far, none of the existing model for plants chloroplast topology can interpret the 

available pictures of thylakoids in diatoms. In this comprehensive study, the 3D structure of 

Phaeodactylum tricornutum plastid reveals how secondary endosymbiosis algae have optimally 

shaped light harvesting and photosynthetic electron flow. Using in vivo absorption spectroscopy, 

limited energy spillover was found, suggesting that photosystems are largely segregated in the 

thylakoids. Biochemical and immunolocalization analyses support this conclusion revealing a refined 

compartmentation of photosystems between the external and the innermost thylakoid membranes. 

The model here proposed explains how absorbed light can be partitioned between the 

photosystems without generating restricted diffusion domains limiting electron transfer, as 

required for optimum photosynthesis. Thus, this study provides insights into structural and 

functional features of diatoms challenging the common view that photosynthetic membranes are 

loosely organized in chloroplasts derived form a secondary endosymbiosis. 
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Abstract 

Photosynthesis allowed open ocean colonisation by phytoplankton and plant establishment on the 

land. Unlike plants, we are still unlocking the mechanisms evolved by phytoplankton to optimize 

their photosynthesis. Here, we reveal the unexpected complexity of plastid structure in diatoms, 

prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of 

photosystems (PSs) in the loosely stacked thylakoid membranes typical of secondary plastids. 

Isolation of PSs within subdomains minimize physical contacts between them, thus optimizing their 

light utilization. However, 3D tomography shows that these domains are connected by intermingling 

thylakoids, to ensure fast equilibration of electron carriers and improve photosynthetic electron 

flow. Overall, we propose a revised topology of diatom plastid that accounts for optimum 

performances of secondary endosymbiotic algae in modern oceans. 
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Photosynthesis is the unique process converting sunlight energy into organic matter, feeding  the 

entire planetary food chain. Photosynthesis is nearly equally accomplished on the land, which is 

dominated by plants, and in the ocean, which is mostly colonised by microbial phototrophs. Plant 

chloroplasts are derived from a cyanobacterium-like organism via primary endosymbiosis, while the 

majority of phytoplankton chloroplasts derive from a red eukaryotic microalgae via secondary 

endosymbiosis. The different phylogenetic origins have led to distinct structural chloroplast designs. 

Primary plastids contain a two membranes envelope, while four membranes are generally found in 

secondary plastids (Cavalier-Smith, 2003). Primary plastids also contain differentiated thylakoid 

domains where the two PSs, which are responsible for light photochemical utilization, are localized. 

PSII is in the appressed grana stacks, while PSI is found in the non-appressed stroma lamellae. The 

physical segregation of PSI and PSII avoids energy withdrawal from PSII via the thermodynamically 

unavoidable transfer to PSI (energy spillover; Dekker & Boekema, 2005). In turn, the physical 

confinement of the two PSs imposes the need for long-range diffusionof intermediary electron 

carriers (plastoquinones, plastocyanins or soluble cytochromes) within the crowded thylakoid 

membranes and restricted luminal space. The constraints on diffusion capacity is kinetically limiting 

maximum photosynthetic electron flow (Kirchhoff et al., 2004, 2011). No thylakoid subdomains are 

visible in secondary plastids, where available electron micrographs show loose stacks of three 

thylakoids with few anastomoses in some species (Bedoshvili et al., 2009). The mechanisms for 

optimizing light absorption and downstream electron flow in these marine algae has not been 

rigorously studied, despite them contributing ~20% of the planetary photosynthesis (Field et al., 

1998). Here we combine functional analyses with 3D ultrastructural imaging to unveil a 

sophisticated thylakoid membrane network, which orchestrates photosynthesis via subtle 

subthylakoid segregation of the PSs.  

 

2.5.2.1 Results and discussion 

In diatoms, the reported loose thylakoid structure should result in random distribution of PSII and 

PSI, thereby favoring energy spillover via physical contacts. We tested this hypothesis by measuring 

changes in the absorption capacity of PSI upon inhibition of PSII photochemistry in the pennate 

diatom Phaeodactylum tricornutum. We reasoned that if PSI and PSII are in contact (Figure 2.30 A), 

inhibition of PSII photochemistry should increase utilization of PSII absorbed light by PSI, thus 
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enhancing its activity. Consistent with this idea, a faster PSI activity was observed in red algae upon 

inhibition of PSII (Ley & Butler, 1977; Kowalczyk et al., 2013), and interpreted as a signature of 

spillover in these organisms, which are considered as the ancestors of secondary plastids. 

Conversely, no change in activity is expected if PSI and PSII are physically separated and do not share 

their excitation energy, as in plants (Figure 2.30 B).  

We found that in P. tricornutum the inhibition of PSII with 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

(DCMU) and hydroxylamine (HA, Figure 2.30 C) did not accelerate significantly the rates of PSI 

(Figure 2.30 E), as revealed by the very mild increase in the oxidation rate of P700 (the primary 

electron donor to PSI, Figure 2.30 D) and, ultimately, of  the total PSI donors pool. (Figure 2.30 E).  

  

Figure 2.30 - Experimental design to assess energy spillover in diatoms. (A) Consequences of energy spillover from PSII to PSI on 

PSI activity: common antenna case. (B) Consequences of energy spillover from PSII to PSI on PSI activity: independent antenna case. 

(C) Fluorescence emission kinetics confirm full inhibition of PSII by DCMU and HA. (D) Kinetics of P700 oxidation in the light. (E) 

Kinetics of cyt c oxidation in the light. (F) Kinetics of oxidation of the entire pool of PSI electron donors in the light. A cyt c/PSI ratio 

of 3 was assumed (Supplementary Figure 2.34). Light intensity was 1100 µmol photons m-2 s-1. Solid blue squares: control; empty 

red circles: DCMU 40µM, blue tringles: DCMU 40µM + HA 0.2 mM. Mean ± SEM (n = 6, for 3 biological samples). FCP: Fucoxanthin 

Chlorophyll light harvesting antenna Protein. F0: mimimum fluorescence emission (active PSII). Fm: maximum fluorescence emission 

(inactive PSII). 
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Similar results were found in cells exposed to limiting or saturating light intensities (Supplementary 

Figure 2.35). The observed increase (less than 15 %) is much smaller than the two-fold effect 

reported in red algae (Kowalczyk et al., 2013), suggesting that, although detectable (Yokono et al., 

2015), spillover is limited in P. tricornutum. Two possibilities can account for this finding: i. the 

existence of interaction barriers (due to lipid/biochemical surroundings) preventing energy 

exchange between the PSs or ii. the physical segregation of PSI and PSII in different thylakoid 

domains. To distinguish between them, we immunolocalized the two PSs in intact cells prepared 

with the Tokuyasu protocol (Tokuyasu, 1973), an optimal method to preserve membrane structures 

(Supplementary Figure 2.36). We found that PSI was preferentially localized in the “peripheral” 

stromal-facing thylakoid membranes (Figure 2.31 A and Figure 2.31 C, green sectors). Conversely, 

PSII was mostly found in the “core” thylakoid membranes (Figure 2.31 B and Figure 2.31 C, violet). 

These findings were substantiated by a statistical analysis (principal component analysis) of 149 

images (Figure 2.31 D, E and F, Table S1, Table S2).  

  

Figure 2.31 - Immunolocalization of PSI and PSII in the thylakoid membranes of P. tricornutum. (A) Localization of PSII 

using an antibody against the PsbA (D1) subunit. (B) Localization of PSI using an antibody against the PsaC subunit. (C) EM 

picture of P. tricornutum thylakoid membranes; showing four areas: the internal part (CORE, violet) the external, peripheral 

one (PERIPH., green), the pyrenoid (Orange) and the envelope (blue). (D), (E), (F) Principal Component Analysis of PSI and 

PSII immunolocalization. Analysis was performed on 149 images (violet dots: localization of PSII; green triangles: 

localization of PSI). The first two components represent more than 93% of the variance (Table S1). See methods for further 

explanation. Green arrow: peripheral variable. Violet arrow: core variable. Orange arrow: Pyrenoid variable. Blue arrow: 

envelope variable. 
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We complemented the immunolocalization analyses with biochemical fractionation. In grana-

containing thylakoids (see e.g. Berthold et al., 1981), PSI is located in the stromal-exposed thylakoid 

lamellae and more accessible to mild detergents than PSII, which is contained in the appressed 

membranes of the grana. Chloroplasts isolated from P. tricornutum cells were solubilized using 

increasing concentration of the mild detergent digitonin. Supernatant and pellet were recovered 

after centrifugation, and analyzed for PSII and PSI by immunoblotting. We found (Supplementary 

Figure 2.37) that the detergent concentration required to solubilize PSI was lower (0.2%) than that 

needed to extract PSII (0.5%), supporting their differing locations in stroma-accessible and less 

accessible membranes of the diatom chloroplasts, respectively.  

Since it optimally preserves membrane structures, the Tokuyasu method allowed us to observe 

unexpected, and previously undescribed features of the P. tricornutum thylakoids. We detected 

regions where membranes are apparently interconnected (Supplementary Figure 2.38, A and B) and 

regions where additional layers abruptly “disappear” in cross sections (Supplementary Figure 2.38 

C, red arrows) as if tilting out of the micrograph plane. These pictures suggested the existence of a 

more complex 3D thylakoid network than the simple layout of 3 loosely juxtaposed thylakoids 

proposed so far. We thus collected 1200 ultrathin sections with focused ion-beam scanning electron 

microscopy (FIB-SEM) to reconstruct the 3D structure of the entire P. tricornutum cell (Figure 2.32 

A, Video B). We first observed the organelles and their interactions (Supplementary Figure 2.39): 

the mitochondrion (red) appears as a continuous network of membranes sitting on the chloroplast 

(green, Supplementary Figure 2.39 A). The mitochondrion is partially sandwiched between the 

plastid and the nucleus (blue, Supplementary Figure 2.39, A and B), the two latter directly in contact 

at a single point (Supplementary Figure 2.39 C, Video C). We confirmed the presence of parallel 

layers of thylakoids in the plastid, but also revealed the presence of connecting thylakoids (green) 

linking the different thylakoid layers (Figure 2.32 B violet). These “bridging” thylakoids were distinct 

from the chloroplast lipoprotein particles, the plastoglobules (Supplementary Figure 2.40).  
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Figure 2.32 - Three-dimensional organisation of thylakoid membranes in P. tricornutum cells. (A) 3D reconstruction of an 

intact P. tricornutum cell, based on FIB-SEM images. (B) Reconstruction of thylakoid membranes in the region indicated by 

the yellow box in (A). (C) Magnification of the region indicated by the yellow box in B. The greater depth in the “z” direction 

highlights the presence of several connecting thylakoids. Data are representative of three different tomograms. 
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Unlike plants (Kirchhoff et al., 2004, 2011), the continuum of both the lipid and luminal 

compartments would prevent isolation of the two PSs in slow diffusion domains. To assess their 

presence in P. tricornutum, we used a previously employed functional approach (Kirchhoff et al., 

2004). We first evaluated the theoretical equilibrium constants between PSI and its electron donor 

(Kth = 16) from the redox potentials of cyt c6 (349 mV, Akazaki et al., 2009) and of P700 (420 mV, Witt 

et al., 2003; Nakamura et al., 2005). We then compared Kth with the experimental equilibrium 

constant (Kexp). The latter was calculated (using eq. 2, see methods) from an ‘equilibration plot’ 

(Figure 2.33 A), i.e. the relationship between oxidized P700 and oxidized c-type cytochromes (cyt c+) 

during dark re-reduction after illumination (Supplementary Figure 2.41, B and C). In the absence of 

diffusion domains, Kexp = Kth. In this case P700
+ is almost entirely reduced prior to c-type cytochromes, 

owing to the high Kth value (Supplementary Figure 2.34). Conversely, deviation from thermodynamic 

equilibrium (Kexp < Kth) is expected if electron flow is limited by diffusion domains. In this case, the 

fate of PSI and cyt c is determined by their relative stoichiometry in every domain. In compartments 

with a low PSI/cyt c ratio (e.g. domain 2 in Figure 2.33 B), a complete reduction of P700
+ and a partial 

reduction of cytochromes is predicted. At the same time, P700
+ reduction is incomplete in domains 

with a high P700/cyt ratio (e.g. domain 1 in Figure 2.33 B), leading to P700
+ accumulation. Because the 

equilibration plot averages the redox state of P700 and cyt c in all domains, the concomitant 

presence of P700
+ (in domains 1) and of reduced cyt c (in domains 2) will lead to a Kexp value lower 

than Kth. We generated several equilibration plots by poisoning electron flow with increasing 

concentrations of DCMU (Figure 2.33 A and Supplementary Figure 2.41 D), and found that diffusion 

is restricted (i.e. Kexp < Kth), when PSII generates more than 150 electrons per seconds (Figure 2.33 

A, blue and green data points). However, thermodynamic equilibration is achieved when this rate is 

lowered below 100 electrons s-1 (Figure 2.33 A, red points). We conclude that compartmentation of 

PSI and PSII in different thylakoid domains also generates diffusion domains in diatoms (Figure 2.33 

B). However, their equilibration time (100 s-1 or 10 ms) is much faster than in plants (7 s-1 ca or 150 

ms, Kirchhoff et al., 2004), likely reflecting the lower degree of structural heterogeneity of diatoms 

thylakoids. 
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Figure 2.33 - Structural arrangement of the photosynthetic membranes in P. tricornutum. (A) Equilibrium plots for the 

components of the high potential chain. Redox signals of cyt c and P700 in the light were plotted against each other. The 

dotted lines represent simulations corresponding to different values of the equilibrium constant. The rate of electron flow 

is calculated from data in Supplementary Figure 2.40. (B) Cartoon representing a possible arrangement of the photosynthetic 

complexes in a likely 3 thylakoid layers arrangement of the photosynthetic membranes in P. tricornutum. The different PSI 

and PSII localization within the peripheral (green) and the core membranes (violet) is shown. PSI: photosystem 1; PSII: 

photosystem 2, FCP: fucoxanthin chlorophyll antenna protein, Cytb6f: cytochrome b6f complex.   
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2.5.2.2 Conclusions 

Overall, our 3D reconstruction of P. tricornutum with FIB-SEM reveals an intricate network of the 

photosynthetic membranes (Figure 2.32, Supplementary Figure 2.40), reversing previous ideas 

(Spetea et al., 2012) that photosynthetic membranes of secondary endosymbiosis chloroplasts are 

loosely structured. Biochemical and immunolocalization analyses further reveal a subtle 

compartmentation of the PSs between the peripheral and core thylakoid membranes (Figure 2.33 

B). Their location is compatible with the proposed lipid composition of the two fractions, because 

the core membranes are apparently enriched in lipids that favor PSII stability and function (Lepetit 

et al., 2012). The observed thylakoid structure accounts for optimum partitioning of absorbed light 

between the photosystems (very limited spillover), thus providing a rationale for the previously-

observed high capacity of PSII to dissipate excess light thermally (Lavaud et al., 2002). Indeed, no 

such response is expected if surplus energy in PSII were to be dissipated via spillover to PSI, as in 

red algae (Kowalczyk et al., 2013). Moreover, the thylakoid structures avoid restriction of electron 

flow. On one side, the inter-thylakoid membrane bridges (Figure 2.32, Supplementary Figure 2.40) 

provide a continuum of the membranous and luminal compartments, avoiding diffusional 

limitations. On the other side, possibly because of the loose thylakoid stacking, the size of the 

thylakoid lumen (7.1 ± 15 nm, average of 100 estimates from 6 different preparations) is much larger 

than in plants (4.5 nm, Kirchhoff et al., 2011), where it is equal to that of plastocyanin, and thus 

limits its diffusion between PSI and the cyt b6f (Kirchhoff et al., 2004). Conversely the lumen size in 

diatoms is twice larger than the size of the soluble electron carrier, cyt c6 (~ 33 x 23 Å, Akazaki et al., 

2009). This should facilitate diffusion of this redox carrier, and contribute to the very fast redox 

equilibration in diatoms. Consistently, lumen widening (up to values similar to those measured in 

diatoms), has been shown in high light exposed plants to facilitate electron flow and reduce 

photodamage (Kirchhoff et al., 2011). Overall, optimal absorption with no kinetic limitation of 

photosynthesis likely represents the strategy evolved in diatoms to implement their photosynthetic 

performances in the ocean. 

Our data also show the intimate physical contacts between all the organelles. This not only reveals 

the cellular framework for the extensive energetic exchanges between chloroplast and 

mitochondria recently reported (Bailleul et al., 2015), but also pinpoints a site at which redox 

signalling between the plastid and the nucleus could occur (e.g. Lepetit et al., 2013). In line with this 

hypothesis, recent results in plants suggest that chloroplast evaginations (i.e. stromules) transiently 
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connect to the nucleus for metabolic exchanges and retrograde signalling between these 

compartments (Dietz et al., 2016).  

 

2.5.2.3 Materials and Methods  

Phaeodactylum tricornutum cultivation. The Phaeodactylum tricornutum Pt1 strain (CCAP 1055/3) 

was obtained from the Culture Collection of Algae and Protozoa, Scottish Marine institute, UK. Cells 

were grown in the ESAW (Enriched Seawater, Artificial Water) medium ( Berges et al., 2001), in 50 

mL flasks in a growth cabinet (Certomat BS-1, Sartorius Stedim, Germany), at 19°C, a light intensity 

of 20 µmol photon m-2.s-1, a 12/12 hours light/dark photoperiod and 100 rpm shaking . Cells were 

collected in exponential phase, concentrated to a density of 2 * 107 cells mL-1 and used for 

experimental characterization.  

 

Spectroscopic measurements. Spectroscopic analysis was performed at room temperature, using a 

JTS-10 spectrophotometer (Biologic France). To assess energy spillover from PSII to PSI, redox 

changes of P700 and of its electron donor pool were followed. In diatoms, a c-type cytochrome is the 

PSI electron donor, replacing plastocyanin as the electron donor to PSI. We will refer to the latter as 

cytochrome c6 (as in Inda et al., 1999), instead of alternative nomenclatures proposed earlier (e.g. 

cytochrome cx, Weigel et al., 2003; cytochrome c6A, Howe et al., 2006). We will also define the pool 

of photosynthetic type proteins (cyt c6 + cyt f of the cytochrome b6f complex) as “cyt c”. Indeed, due 

to the absorption features, it is not possible to distinguish spectroscopically cyt c6 form cytochrome 

f. Because of the high equilibrium constant between P700 and the cytochrome pool, kinetic analysis 

was extended also to the latter, to quantify the whole amount of electrons that was delivered to PSI 

in the presence and absence of PSII activity. P700 redox changes were measured at 705 nm. To verify 

that the possible contribution of fluorescence emission was not interfering with the measurements, 

experiments were repeated at 820 nm (where fluoresce emission is not detected). Similar results 

were obtained at both wavelengths, indicating that interference from fluorescence emission was 

negligible. Cyt c was calculated as [554]-0.4.[520]-0.4.[566], where [554], [520] and [566] are the 

absorption difference signals at 554 nm, 520 nm and 566 nm, respectively (Bailleul et al., 2015). 

Indeed, due to the absorption features, it is not possible to distinguish spectroscopically cyt c6 form 

cytochrome f.  

Kinetics of oxidation of P700, cyt c and of the total donors to PSI oxidation result from concomitant 

electron injection by PSII and withdrawal by PSI. Therefore, to calculate the true PSI oxidation rates, 
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we calculated first their respective reduction rates, which were evaluated as the slope of signal 

relaxation upon switching the light off (Supplementary Figure 2.34 B, SD slope). By adding this slope 

to the apparent oxidation rates, which we evaluated from the slope in the light (Dl), we obtained 

the absolute oxidation kinetics (see Supplementary Figure 2.34 for an example in the case of the 

total PSI electron donors pool). This procedure is needed because, by inhibiting PSII activity, DCMU 

modifies the reduction rates of cyt c and P700, This leads to an apparent increase of the PSI and cyt 

c oxidation rates, which mimics the occurrence of energy spillover.  

Inhibition of PSII by DCMU and HA was probed measuring the changes in chlorophyll emission from 

F0 (minimum fluorescence level in which QA, the primary quinone acceptor of PSII is oxidized) to the 

Fm level, in which QA is fully reduced because PSII activity is blocked. As shown in Figure 2.30 C and 

Supplementary Figure 2.35 A, addition of DCMU alone cannot fully reduce QA in the short time (4 

ms) employed to measure oxidation of P700 and of cyt c, expecially at low light. Because induction 

of spillover required the full reduction of QA, this inhibitor alone could not be sufficient to probe 

energy spillover in all the experimental conditions employed in this work (e. g. low light in 

Supplementary Figure 2.35). On the other hand, complete reduction of QA is achieved in the 

presence of HA, because this inhibitor prevents reoxidation of reduced QA in PSII (Cheniae & Martin, 

1971). By ensuring QA reduction (Fm level) at the beginning of illumination (Figure 2.30 C, 

Supplementary Figure 2.35 B and C, dark), HA ensures optimum condition to evaluate spillover even 

in low light (Supplementary Figure 2.35 A). 

 

To evaluate the equilibrium constants between cytochrome c and P700 the following equation was 

used to relate redox changes of P700 and of cyt c to the equilibrium constant K: 
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where [cytc], [cytcox], [P700] and [P700
ox] represent the concentration, at equilibrium, of the oxidized 

and reduced form of the cyt c and P700 pools.  

From equation [1] the relationship between the relative amount of oxidized P700 and of cyt c can be 

derived as: 
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Chloroplast purification. To purify intact chloroplasts from P. tricornutum, cells were harvested by 

centrifugation at 5000 g, 10 min, 4 °C allowing to get a pellet, which was then resuspended gently 

with 10 mL of isolation buffer (0.5 M Sorbitol; 50 mM Hepes-KOH; 6 mM EDTA; 5 mM MgCl2; 10 mM 

KCl; 1 mM MnCl2; 1% Poly Vinyl Pyrrolidone 40 [K30]; 0.5% BSA; 0.1% cysteine, pH 7.2-7.5) and 

passed slowly through a French Press at 9,000 bars. Ten milliliters of the isolation buffer were added 

to the mixture of broken cells on ice in the dark before centrifugation at 300 g for 8 min to remove 

intact cells. The supernatant was collected and centrifuged at 2,000 g for 10 min at 4 °C. The pellet 

was gently dissolved with a soft paint-brush in 2 ml of washing buffer (0.5 M Sorbitol; 30 mM Hepes-

KOH; 6 mM EDTA; 5 mM MgCl2; 10 mM KCl; 1 mM MnCl2; 1% PVP 40 [K30]; 0.1% BSA, pH 7.2-7.5) 

and loaded on a discontinuous Percoll gradient (10%, 20%, 30%) in the same buffer. The mixture of 

broken cells and plastids was centrifuged in an ultracentrifuge (with SW41Ti rotor) at 10 000 g for 

35 min. The chloroplast fraction accumulated in the 20 % layer of the Percoll gradient. The band was 

collected and diluted in the washing buffer (without BSA) and centrifuged again at 14,000 g for 10 

min at 4°C. Chloroplasts intactness was tested with a Clark electrode (Hansatek, UK) using sodium 

ferricyanide as an electron acceptors. Oxygen evolution in saturating light was measured before and 

after an osmotic shock (induced by incubation for 5 min in the washing buffer without sorbitol). The 

ratio between the two rates was used to evaluate intactness, which turned out to be > 80% in our 

case. 

 

Membrane solubilization and immunoblot analysis. To solubilize the two different chloroplast 

compartments (INTERNAL and EXTERNAL), digitonin (C56H92O29, Sigma Aldrich) was prepared at 

different concentrations (0.2-0.5-1.5%). Chloroplasts were incubated for up to 30 min at 4°C with 

the detergent and centrifuged at 11,000 g for 5 min (Beckmann rotor TLA-100). Both the 

supernatant and the pellet were collected and their protein content evaluated by immunoblot 

analysis. Samples (0.75 µg of protein) were loaded on 7% or 13% SDS-PAGE gels and blotted onto 

nitrocellulose membranes. Antisera against PSI (PsaC, PSI-C core subunit of photosystem I, Agrisera, 
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Sv) and PSII (PsbA, D1 protein of PSII, Agrisera, Sv) were detected by ECL using a CCD (charge-

coupled device) imager (Chemidock MP Imaging, Bio-Rad, USA).  

 

Sample preparation for immunolocalization using the Tokuyasu protocol. Cells of P. tricornutum 

were fixed in a double-strength fixative (4% (w/v) formaldehyde, 0.4% (v/v) glutaraldehyde) in 

PHEM buffer (PIPES 60 mM, HEPES 25 mM, EGTA 10 mM, MgCl2 2  mM; pH 7) in an equal volume to 

the culture medium (ESAW), and then diluted into a standard strength fixative (2% (w/v) 

formaldehyde (EMS, USA) and 0.2% (v/v) glutaraldehyde (EMS, USA)). After 15 min, fresh standard 

strength fixative was replaced and fixation proceeded for 30 min at room temperature, under 

agitation. Cells were washed 3 times with 50 mM glycine in PHEM buffer and after centrifugation 

were embedded in 12% gelatin in PHEM. The gelatin-embedded blocks were cryo-protected in 2.3 

M sucrose in rotating vials at 4°C (overnight). Samples vitrification was obtained in liquid nitrogen 

following the plunge and freezing technique (9). Thin sections (80 nm) were prepared at -110°C with 

a diamond knife (Diatome) and the blocks were prepared with an ultracryomicrotome (UC7, Leica 

Microsystems, Germany). Ribbons were picked-up with a drop of 1% (w/v) methylcellulose/1.15 M 

sucrose in PHEM buffer. Sections were thawed and transferred to Formvar carbon-coated nickel 

grids. 

Immunolabelling was performed using an automated system (Leica microsystems EM IGL). The 

sucrose/methyl cellulose mixture was removed washing the grids with PBS 3 times for 2 min. Then 

the free aldehyde groups were inactivated on phosphate buffer saline solution (PBS) + 0.05 M 

glycine, pH 7.4, 15 min. The hydrophobic areas were blocked with the Aurion blocking solution for 

30 min before washing three times in PBS + 0.1% BSA-c pH 7.4 for 2 min. The grids were incubated 

for 60 to 90 min in the diluted primary antibody (1-5 μg/ml in PBS + 0.1% BSA-c pH 7.4). Negative 

controls were incubated only with BSA-c buffer. After six washing steps (PBS + 0.1% BSA-c pH 7.4 

for 5 min) the grids were incubated for 90 to 120 min in the diluted secondary antibody coupled to 

ultrasmall 6 nm gold particles in PBS (1:20 in PBS + 0.1% BSA-c pH 7.4). The grids were then 

extensively washed (6 times for 5 min in PBS + 0.1% BSA-c pH 7.4 and 6 times for 2 min in PBS, pH 

7.4). Samples were post-fixed with 2% glutaraldehyde in PBS, pH 7.4, for 5 min and finally washed 

(3 times in PBS, pH 7.4, for 2 min and 6 times with deionized water for 2 min). Sections were 

enhanced with silver (Aurion R-Gent SE-EM) for 25 min and again washed on deionized water (6 

times for 2 min). Finally, samples were contrasted with heavy metal treatment (4% neutral uranyl 

acetate for 5 min followed by 0.4% uranyl acetate in 2% methylcellulose for 5 min at 0°C), then 



97 
 

washed on liquid droplets (PBS, pH 7.4) and dried. For observation, grids were incubated 5 min on 

2% uranyl oxalate (pH 7) and transferred to a mixture of 1.6% methyl cellulose and 0.4% uranyl 

acetate on ice, the excess of the viscous solution was drained away and the grids were let to dry. 

Grids were examined in an electron Tecnai 12 microscope (FEI, USA). 

 

FIB-SEM analysis. P. tricornutum cells were fixed in 0.1 M cacodylate buffer (Sigma-Aldrich), pH 7.4, 

containing 2.5% glutaraldehyde (TAAB), 2% formaldehyde (Polysciences) for 1 h at room 

temperature and prepared according to a modified protocol from (https://ncmir.ucsd.edu/sbem-

protocol). Focused ion beam (FIB) tomography was performed with a Zeiss NVision 40 dual-beam 

microscope. In this technique, the Durcupan (Sigma-Aldrich) resin embedded cells of P. tricornutum 

were cut in cross-section, slice by slice, with a Ga+ ion beam (of 700 nA at 30 kV), and each slice was 

imaged in scanning electron microscopy (SEM) at 5 kV using the in-column EsB back-scatter 

detector. For each slice, a thickness of 4 nm was removed, and the SEM images were recorded with 

a pixel size of 4 nm. The image stack is then registered by cross-correlation using the StackReg plugin 

in the Fiji software. For 3D reconstitution a stack of 600 images were analyzed with FIJI Image J 

software and projected in 3-dimension (x,y,z axis) using the AVIZO (FEI, USA) and CHIMERA 

softwares (https://www.cgl.ucsf.edu/chimera/, UCSF, USA). 

 

Principal components analysis (PCA). The principal components analysis (PCA) is an exploratory 

technique that is used both to describe the structure of high dimensional data by reducing its 

dimensionality (Lebart et al., 2000) and to detect any groupings in the data set (Takeuchi et al., 

2003). It is a linear transformation that converts n original variables (here, the localization) into n 

new variables (the principal components), which (i) are ordered by the amount of variance explained 

(ii) are uncorrelated and (iii) explain all variation in the data. We performed PCA considering four 

possible subcellular compartments for our antibodies: the internal and external thylakoid 

membranes, as well as the pyrenoid and the envelope, to account for possible aspecific labelling. 

This led to a 4-dimension localization space (INTERNAL, EXTERNAL, PYRENOID and ENVELOPE) of the 

149 images where values are the number of immunolabeling in the given localization. First, the 

localization space of each of the 149 images is normalized, by subtracting the mean and dividing by 

the standard deviation of values for each localization. 

To represent the distribution of these normalized dimensional data for the 149 images, the direction 

(a 4-dimensional vector) giving the largest possible variance of the distribution (that is, accounts for 
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as much of the variability in the data as possible) is selected as the direction for the first principal 

component. Then, the direction (another 4-dimensional vector) orthogonal to the previous one(s) 

giving the largest possible variance of the distribution is selected as the direction for the second 

principal component. The repetition of this procedure automatically selects vectors representing 

the scatter of the distribution from major ones to minor ones. Based on singular values 

decomposition, PCA is a principal axis rotation of the original variables that preserves the variation 

in the data. Therefore, the total variance of the original variables is equal to the total variance of 

the principal components. The principal component coefficients correspond to the percentage of 

explained variance. All statistical analysis has been done with the R software (R Development Core 

Team, 2008). 

 

Logistic regression. The logistic regression is the appropriate regression analysis to conduct when 

the dependent variable is dichotomous and is assumed to be a stochastic event. Logistic regression 

is used to describe data and to explain the relationship between one dependent binary variable and 

one or more independent variables. The two major assumptions are: (i) that the outcome must be 

discrete, otherwise explained as, the dependent variable should be dichotomous in nature (ii) there 

should be no high intercorrelations (as demonstrated by Tabachnick & Fidell, 2012), the assumption 

is met for values less than 0.9) among the predictors.  

The two type of antibody are variables that can have only two possible discrete values: PsaC=PSI or 

PsbA=PSII. We use a model dose-response relationship where the predictors are the multiple 

continuous variables: number of immunolabeling in the different localizations (INTERNAL, 

EXTERNAL, PYRENOID and ENVELOP). Since probabilities have a limited range and regression models 

could predict off-scale values below zero or above 1, it makes better sense to model the probabilities 

of getting a given antibody on a transformed scale; this is what is done in logistic regression analysis 

(Hosmer et al., 2013). A linear model for transformed probabilities can be set up as 

kk xxpit   ...)(log 110  in which )
1

log()(log
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
 is the log odds. Each xi is the number 

of gold beads in the localization i and statistics about the coefficients alphai will provide insight 

about the impact of the localization I on the probability to get a given antibody. The analysis of 

deviance table and the Akaike information criterion allows the identification of the relevant 

predictors  (Dalgaard, 2002).  
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The table of correlations shows that there are no strong intercorrelations between the variables 

(supplementary materials). Starting from a complete model (supplementary materials) and based 

on the variables coefficients p-values (Pr(>|z|)), we see that we can recursively delete the two 

variables ENV and PYR without significantly reduce the Akaike information criterion (AIC; Akaike, 

1974) which is a common measure of the relative quality of a statistical model for a given set of 

data. The final model demonstrates that the relevant variables to predict the antibody are the 

number of immunolabeling in INTERNAL (p-value=5.54e-06) and EXTERNAL (p-value<0.0032) area. 

Bootstrap procedure allows the evaluation of the average percentage of wrong prediction: 9.4% of 

the image will have a wrong immunolabeling (Table S2).  

 

Appendix: output results of the Logistic regression from the R software.  

Original model: Antibody = CORE = PERIPHERAL + ENVELOP + PYRENOID 
   > summary(glm(ANTIBODY~INT+EXT+ENVELOP+PYRENOID,binomial)) 
Call: 
glm(formula = ANTIBODY ~ CORE + PHERIPHERAL + ENVELOP + PYRENOID, family = binomial) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.0638  -0.4587   0.2385   0.6176   3.1801   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  1.99757    0.96646   2.067   0.0387 *   
CORE         -0.07048    0.01541  -4.574 4.79e-06 *** 
PERIPHERAL          0.04284    0.01628   2.632   0.0085 **  
ENVELOP     -0.01526    0.03754  -0.407   0.6843     
PYRENOID    -0.01797    0.02578  -0.697   0.4858     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 205.42  on 148  degrees of freedom 
Residual deviance: 114.74  on 144  degrees of freedom 
AIC: 124.74 
Number of Fisher Scoring iterations: 5 
  > glm1 <- glm(ANTIBODY~CORE+PERIPHERAL+ENVELOP+PYRENOID,binomial) 
>  
> glm2 <- glm(ANTIBODY~CORE+PERIPHERAL+PYRENOID,binomial) 
>  
> anova(glm1,glm2,test="Chisq") 
Analysis of Deviance Table 
Model 1: ANTIBODY ~ CORE + PERIPHERAL + ENVELOP + PYRENOID 
Model 2: ANTIBODY ~ CORE + PERIPHERAL + PYRENOID 
  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
1       144     114.74                      
2       145     114.90 -1  -0.1633   0.6861 
 
Second model: Antibody = CORE = PERIPHERAL + PYRENOID 
> summary(glm2) 
Call: 
glm(formula = ANTIBODY ~ CORE + PERIPHERAL + PYRENOID, family = binomial) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.0994  -0.4713   0.2454   0.5992   3.1901   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  1.91291    0.93737   2.041  0.04128 * 
CORE         -0.06995    0.01530  -4.573  4.8e-06 *** 
PERIPHERAL          0.04323    0.01618   2.672  0.00754 **  
PYRENOID    -0.01621    0.02531  -0.640  0.52194     
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 205.42  on 148  degrees of freedom 
Residual deviance: 114.90  on 145  degrees of freedom 
AIC: 122.9 
Number of Fisher Scoring iterations: 5 
> drop1(glm2,test="Chisq") 
Single term deletions 
Model: 
ANTIBODY ~ CORE + PERIPHERAL + PYRENOID 
         Df Deviance    AIC     LRT  Pr(>Chi)     
<none>        114.90 122.90                       
CORE       1   143.08 149.08 28.1799 1.105e-07 *** 
PERIPHERAL       1   122.73 128.73  7.8320  0.005133 **  
PYRENOID  1   115.32 121.32  0.4215  0.516171     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
>  
Final model: Antibody = CORE + PERIPHERAL 
> glm3 <- glm(ANTIBODY~INT+EXT,binomial) 
>  
> anova(glm2,glm3,test="Chisq") 
Analysis of Deviance Table 
Model 1: ANTIBODY ~ CORE + PERIPHERAL + PYRENOID 
Model 2: ANTIBODY ~ CORE + PERIPHERAL 
  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
1       145     114.90                      
2       146     115.32 -1 -0.42154   0.5162 
>  
> summary(glm3) 
Call: 
glm(formula = ANTIBODY ~ CORE + PERIPHERAL, family = binomial) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.0857  -0.4916   0.2485   0.5906   3.2036   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  1.67779    0.86027   1.950  0.05114 .   
CORE         -0.06803    0.01497  -4.543 5.54e-06 *** 
PERIPHERAL          0.04612    0.01562   2.953  0.00315 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 205.42  on 148  degrees of freedom 
Residual deviance: 115.32  on 146  degrees of freedom 
AIC: 121.32 
Number of Fisher Scoring iterations: 5 
> drop1(glm3,test="Chisq") 
Single term deletions 
Model: 
ANTIBODY ~ CORE + PERIPHERAL 
       Df Deviance    AIC     LRT  Pr(>Chi)     
<none>      115.32 121.32                       
CORE     1   143.52 147.52 28.2010 1.093e-07 *** 
PERIPHERAL     1   125.06 129.06  9.7361  0.001807 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
>  
>  
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Supplementary Figures 

 

 

Supplementary Figure 2.34 - PSI/cytochrome c stoichiometry and oxidation kinetics in P. tricornutum. Cyt c/PSI 

stoichiometry. Cells were exposed to a saturating single turnover laser flash to generate 1 turnover per PSI and the amount 

of oxidized c-type cytochrome was calculated 300µs after the flash (i.e. when P700 is fully rereduced by the cytochromes) 

This amount was normalized to the total amount of cyt c oxidized in continuous light in the presence of DCMU (20µM). 

Because the flash oxidizes 33% of the cyt c type cytochromes, we conclude there are ~3 c-type cytochromes per PSI. (B) 

procedure employed to evaluate the rates of PSI oxidation in the light in the case of the total donors to PSI pool. Open bar: 

light on. Closed bar: light off. The slope measured after the light is switched off (SD) allows calculating the dark rereduction 

rates of the PSI donor pool in the control (closed blue squares), DCMU treated samples (closed red circles) and DCMU + HA 

treated samples (closed green triangles). The sum of this rate plus the apparent oxidation rate in the light (SL) .provides the 

real rate of oxidation of the total donors to PSI oxidation kinetics, (open symbols). See methods for further description.  
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Supplementary Figure 2.35 - Light energy spillover in P. tricornutum cells exposed to different light intensities. (A) 

Fluorescence emission kinetics in the presence of DCMU 40 µM and HA 0.2 mM. Squares: control, triangles: DCMU; circles: 

DCMU and HA; open symbols 150 µm photons m-2 s-1; closed symbols: 300 µm photons m-2 s-1. (B) Fluorescence emission 

kinetics in the presence of DCMU 40 µM and HA 0.2 mM. Squares: control, triangles: DCMU; circles: DCMU and HA; open 

symbols: 590 µm photons m-2 s-1; closed symbols: 1100 µm photons m-2 s-1 (C) Kinetics of oxidation of the entire pool of PSI 

electron donors at a light intensity of 150 µm photons m-2 s-1. (D) Kinetics of oxidation of the entire pool of PSI electron 

donors at a light intensity of 300 µm photons m-2 s-1in the light. (E) Kinetics of oxidation of the entire pool of PSI electron 

donors at a light intensity of 590 µm photons m-2 s-1. (F) Kinetics of oxidation of the entire pool of PSI electron donors at a 

light intensity of 1100 µm photons m-2 s-1Solid blue squares: control; empty red circles: DCMU 40µM, blue tringles: DCMU 

40µM + HA 0.2 mM.  Mean ± SEM (n = 2). FCP: Fucoxanthin Chlorophyll light harvesting antenna Protein. F0: mimimum 

fluorescence emission (active PSII). Fm: maximum fluorescence emission (inactive PSII). Closed bar: actinic light off. Open 

bar: actinic light on. 
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Supplementary Figure 2.36 - Tokuyasu preparation enhances the resolution of EM pictures of P. tricornutum thylakoid 

membranes. EM images of P.tricornutum from a sample fixed in resin (A) and using the Tokuyasu technique (B). 

 

Supplementary Figure 2.37 - Biochemical evidences for a different localization of PSI and PSII in thylakoid domains in P. 

tricornutum. Solubilization of P. tricornutum thylakoid membranes with increasing concentration of digitonin (0.2, 0.5, 

1.5%). Pellet (P) and supernatants (S) were analyzed by western blotting with the same anti PSI and anti PSII antibodies  
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Supplementary Figure 2.38 - Peculiar structural features of thylakoid membranes in P. tricornutum cells fixed using the 

Tokuyasu technique. (A) EM images of P.tricornutum using the Tokuyasu technique reveal the existence of crosspoints between 

the thylakoid layers. (B) Magnification of the thylakoid layers intersections in the region indicated by the yellow box in A. (C) 

“Truncated” thylakoid membranes are observed in P. tricornutum cells prepared with the Tokuyasu technique. Red arrows point 

thylakoid layers that comprise an additional fourth membrane, which abruptly disappears, suggesting the existence of 3D 

interconnection between different layers of thylakoids 
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Supplementary Figure 2.39 - Physical contacts between the organelles in P. tricornutum cells. The chloroplast (green), 

mitochondrion (red), and nucleus (blue) structures, obtained from 3D reconstruction of intact diatom cells, are shown under 

different rotation angles (A to C), to highlight the physical contact between the organelles 

 

Supplementary Figure 2.40 - 3D structure of the thylakoid membranes in P. tricornutum cells. Same colour code as in Figure 

2.31. Note that the linking membranes (red arrows) can be clearly differentiated form the plastoglobules (black arrows), which 

appear as globular structures. 
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 Comp. 1 Comp. 2 Comp. 3 Comp. 4 

Standard 

deviation 

10.9997641 9.8433476 3.64706862 1.67398543 

Proportion of 

Variance 

0.5170947 0.4140845 0.05684487 0.01197586 

Cumulative 

Proportion 

0.5170947 0.9311793 0.98802414 1.00000000 

Supplementary Figure 2.41 - Spectroscopic features of the cytochrome c6 and P700 components of the electron flow chain 

in P. tricornutum cells. (A) Fluorescence induction kinetics in the absence and in the presence of increasing DCMU 

concentrations. The progressive inhibition of PSII is highlighted by the increased rate of fluorescence rise. (B) Redox 

kinetics of P700 upon illumination. (C) Redox kinetics of cyt c6 upon illumination. The rate of electron transfer were changed 

by addition of increasing concentrations of DCMU as in (A). Closed bar: actinic light off. Open bar: actinic light on. 

Table S1 - Principal Component Analysis Results. The first two components represent more than 93% of the variance 
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Video B - Focus Ion Beam Scanning Electron Microscopy (FIB-SEM) based 3D reconstitution of a 
whole cell of P. tricornutum. 

Video C - 3D structure of the chloroplast (green) mitochondrion (red) and nucleus (blue) in P. 
tricornutum cells. 

  

 INT EXT ENVELOP PYRENOID 

INT 1.00000000 0.099003554   0.200634040 -0.01200587 

EXT 0.09900355 1.000000000 0.005308018 0.15697362 

ENVELOP 0.20063404 0.005308018 1.000000000 -0.03471890 

PYRENOID -0.01200587 0.156973620 -0.034718900 1.00000000 

Table S2 - Correlation table of the number of immunolabeling in the four possible localizations 
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2.5.3 Perspectives 

The model proposed here provides a rationale for several observations concerning photosynthesis 

in Phaeodactylum tricornutum, opening new stimulating questions on the ecological success of 

diatoms worldwide. 

The first question I would like to answer is whether this structural arrangement is conserved in 

different diatoms: are the thylakoid membranes always structured as in P. tricorntum? Is the 

mitochondrion always sitting on the chloroplast, with physical contacts? 

Diatoms grow in very different environments, characterized by changing light and nutrient 

conditions. Therefore, it is conceivable that the situation observed in P. tricornutum grown in 

laboratory conditions might not represent a real paradigm for diatoms. Consistent with this 

possibility, I have sometimes observed that the Fv/Fm parameter can drop below 0.5 in P. 

tricornutum cultures. The quantum yield of PSII could simply reveal that some photodamage has 

occurred to this complex (e.g. by nutrient starvation) but could also reveal the occurrence of a larger 

spillover to PSI. A systematic analysis of cultures grown under different conditions could help solving 

this problem. 

Another important question is the role of membrane compartmentation of the PSs in the physiology 

of the algae. Previous work has underlined that the observed variability in the NPQ response of 

diatoms (Lavaud & Lepetit, 2013) is inversely proportional to their capacity to recover from 

photoinhibition via the synthesis of the D1/D2 subunits of PSII (Lavaud et al., 2016). In plants, the 

PSII repair cycle requires the re-location of this complex in the stroma exposed unstacked lamellae 

to enhance its accessibility of proteases (Nath et al., 2013). Assuming a similar mechanisms in 

diatoms, one would expect the migration of PSII from the inner thylakoid membranes to the outer 

ones to be a committed step of the repair process. It is tempting to speculate that possible 

differences in the PSII and PSI localization within the membranes could hinder or facilitate PSII repair 

after photoinhibition, thereby directly modulating photoprotection and consequently 

photoacclimation responses via NPQ. A comparative analysis of diatom species with a different NPQ 

capacity and or PSII repair could help solving this problem. 

Then, particular attention should be given to the pyrenoid region. As recently shown in 

Chlamydomonas reinhardtii (Engel et al., 20015) the photosynthetic membranes form a peculiar 

array within this structure, possibly to facilitate the CO2 assimilation. Our 3D structure of the 

chloroplast form P. tricornutum also reveal interesting features of the pyrenoid, which however 

cannot be entirely solved because of the low resolution of this structure. The possibility to increase 
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3D resolution by lower the voxel size to 2 nm should help answering the question of the 

arrangement of photosynthetic membranes around the pryrenoid in chloroplasts issued form a 

secondary endosymbiosis. 

Finally, our analysis also pinpoints the existence of a physical connection between the chloroplast 

and the nucleus. This interaction reminds the transient connections observed in higher plants, which 

are mediated by stromules. It is possible therefore to speculate that this junction could play a similar 

role (i.e. the exchange of signals and proteins). In the previous work (see section 2.4) we highlight 

the presence of a chloroplast-nucleus isthmus in which the inner nuclear envelope (iNE) is in contact 

with the periplastidial membrane (PPM). In this area, the vesicular network (probably the machinery 

involved in the trafficking of proteins and other metabolites) appear to be close to the nucleus, but 

not in the area where the chloroplast-isthmus occurs. Further investigation is needed to understand 

the functional and structural role of this “bridge”. An example is to test high-light stress conditions 

which can enhance the plastid-to-nucleus retrograde signalling (as in Lepetit et al., 2013).  
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3.1 Protocols 

In this chapter, the optimization and development of protocols used for the experiences described 

in the above manuscripts are presented. Using the model organism Phaeodactylum tricornutum we 

investigate chloroplast’s architecture taking advantage of different microscopic techniques. These 

experiences have required the optimization of the following protocols and analysis:  

 Electron microscopy samples preparation  

 Immunolabeling protocol 

 Immunolabeling protocol through Tokuyasu technique  

 Tomographic studies 

 The Gatan 3View2XP analysis 

 Focused Ion Beam – Scanning Electron Microscopy (FIB-SEM) analysis 

 Data processing and 3-Dimentional reconstruction  

 3-Dimentional analysis of the thylakoid membranes   

 The Atomic Force Microscopy analysis (AFM) 

 Thylakoid membranes preparation for AFM analysis 

 Protocol for the purification of intact chloroplasts of P. tricornutum  

 Improved protocol of isolated thylakoid membranes preparation  

 Experimental procedure INSERM Marseille for AFM analysis 

 Experimental procedure SSL Grenoble for AFM analysis 

 

3.2 Electron microscopy samples preparation  

Cells of P. tricornutum in exponential phase were harvested before the offset of the light period at 

5000 xg, 10 minutes, 4 °C and then fixed in 0.1 M cacodylate buffer (Ted Pella Inc., Redding, CA), pH 

7.4, containing 2.5% glutaraldehyde (Electron Microscopy Sciences, Hartfield, PA), 2% formaldehyde 

(EMS) for 1 hour at room temperature and prepared according to a modified protocol from “NCMIR 

METHODS FOR 3D EM: A NEW PROTOCOL FOR PREPARATION OF BIOLOGICAL SPECIMENS FOR 

SERIAL BLOCK FACE SCANNING ELECTRON MICROSCOPY” T. J. Deerinck and M. H. Ellisman, in the 

Center for Research in Biological Systems and the National Center for Microscopy and Imaging 

Research, University of California, San Diego, La Jolla, CA, USA (https://ncmir.ucsd.edu/sbem-

protocol). The cells were washed 3 times for 3 minutes at 1000 xg in cold 0.1 M cacodylate buffer 

containing 2mM CaCl2 and then incubated in a solution of 3% potassium ferrocyanide in 0.1 M 
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cacodylate buffer and 4mM CaCl2 with an equal volume of 4% aqueous osmium tetroxide (EMS) for 

1 hour, on ice. Then the cells where washed 3 times for 3 minutes at 1000 xg with ddH2O and 

incubated for 20 minutes, at room temperature in a fresh filtered thiocarbohydrazide (TCH) solution 

(0.1 g thiocarbohydrazide in 10 ml ddH2O gently swirling at 60° C in the oven for 1 hour). The cells 

were then rinsed 3 x 3 minutes 1000 xg in ddH2O at room temperature and placed in 2% osmium 

tetroxide in ddH2O for 30 minutes, at room temperature. After 3 washing steps of 3 minutes at room 

temperature in ddH2O the cells were transferred in 1% aqueous uranyl acetate overnight at 4°C. The 

next day cells of P. tricornutum were then washed 3 x 3 minutes 1000 xg in ddH2O at room 

temperature. In the meantime a solution containing 0.066 g of lead nitrate in 10 ml of aspartic acid 

solution (dissolving 0.998 g of L-aspartic acid (Sigma-Aldrich) in 250 ml of ddH2O) was prepared 

adjusting the pH to 5.5 with 1N KOH.  The lead aspartate solution was then placed in the oven at 

60°C for 30 minutes. The cells were then transferred in the lead aspartate solution and returned in 

the oven for 30 minutes. The heavy metal contrast performed on P. tricornutum’s cells was 

controlled at the optical microscope (Figure 3.1 A). After a washing step with ddH2O cells were 

dehydrated 20-30 minutes at 20%, 50%, 70%, 90%, 100%, 100% ethanol (anhydrous) and then 

placed in anhydrous ice-cold acetone and left at room temperature for 30 minutes. Inclusion of resin 

was performed after a centrifugation to remove the supernatant. The Durcupan ACM resin (EMS) 

was prepared mixing 11.4 g part A with 10 g part B for 2 hours then adding 0.3 g of part C for 1hour 

and finally with 0.05-0.1 g of part D for 1 hour. After the dehydration steps, the cells were infiltrated 

with acetone/Durcupan resin mixture (2/3–1/3 two times for 1 h and 1/3–2/3 for 1 h) and 

embedded in 100% Durcupan 2 times for 2 hours and finally into fresh 100% Durcupan in the oven 

at 60°C for 48 hours (Figure 3.1 B). Ultrathin sections (60 nm) were prepared with a diamond knife 

on an UC6 Leica ultramicrotome and collected on 200 mM mesh nickel grids before examining on a 

JEOL 1200 EX electron microscope in collaboration with Denis Falconet (LPCV).   

A B

Figure 3.1 – Samples preparation for EM. (A) Heavy metal contrast on P. tricornutum’s cells. (B) Final specimen embedded in 

resin. 
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3.2.1 Results and discussion  

The optimization of the procedure of sample preparation has required extensive effort due the 

scattered character and the not exhaustive amount of information available in literature. Different 

staining conditions (uranyl acetate, osmium tetroxide, potassium ferrocyanide) resins (epon, 

durcupan, LR-white) were tested starting from protocols for mammalian cells or plants. Overall, the 

final protocol, which combines sample fixation, heavy metal staining, dehydration steps and 

embedding in resin, has led to good contrast and high lateral resolution as visible in Figure 3.2.  

1µm 

Figure 3.2 – P. tricornutum during cell division 



116 
 

3.3 Immunolabeling protocol 

In order to understand the localization of the photosynthetic complexes in the thylakoid membranes 

of the model organism Phaeodactylum tricornutum different experiments were performed to 

optimize the dilution factor of the antibodies and the thickness of the gold marbles. 

Starting from a protocol described in Vardi et al., 2008 we used sections of the specimen placed in 

grids with different dilutions of primary antibodies: anti PsaC | PSI-C core subunit of photosystem I 

(1:30/1:100) and anti PsbC | CP43 protein of PSII (1:10/1:50) in Phosphate Buffered Saline (PBS)–

5% and Bovine Serum Albumin (BSA). Then grids were incubated for 90 min with the secondary 

antibody anti rabbit IgG (1:20) AURION Immunogold Reagents, with 25 nm nanogold particles. 

Where the antibody binds, electrons from the microscope are scattered by the gold, leaving a black 

spot visible in the picture (Figure 3.3 A).  

 

3.3.1 Immunolabeling protocol through Tokuyasu technique  

Using the facilities of the integrated structural biology platform (IBS) in Grenoble we used an epoxy-

free procedure to enhance antibody accessibility and prevent distortion effect, called Tokuyasu 

(Tokuyasu, 1973). This technique allows the study of the thylakoid membranes directly in their 

biological environment after a rapid and in situ vitrification (Figure 3.3 B). Cells of P. tricornutum 

were fixed in a double-strenght fixative (4% (w/v) formaldehyde, 0,4% (v/v) glutaraldehyde) in 

PHEM buffer (PIPES 60 mM, HEPES 25 mM, EGTA 10 mM, MgCl2 2mM; pH 7) in an equal volume to 

the culture medium (ESAW), and then diluted into a standard strength fixative (2% (w/v) 

formaldehyde (EMS) and 0,2% (v/v) glutaraldehyde, (EMS)). After 15 minutes, fresh standard 

strength fixative was replaced and fixation proceeded for 30 minutes at room temperature, under 

agitation. Cells were washed 3 times with 50 mM glycine in PHEM buffer and after centrifugation 

were embedded in 12% gelatin in PHEM. The gelatin-embedded blocks were cryo-protected in 2,3M 

sucrose in rotating vials at 4°C (overnight). Samples vitrification was obtained in liquid nitrogen 

following the plunge and freezing technique. Thin sections (80 nm) were prepared at -110°C with a 

diamond knife (Diatome) and the the blocks were prepared with an ultracryomicrotome (UC7,Leica, 

Microsystems). Ribbons were picked-up with a drop of 1% (w/v) methylcellulose/1,15 M sucrose in 

PHEM buffer. Sections were thawed and transferred to Formvar carbon-coated nickel grids. 

The immunolabelling was performed using an automated system (Leica EM IGL). The 

sucrose/methyl cellulose mixture was removed washing the grids with PBS 3 times for 2 minutes. 

Then the free aldehyde groups were inactivated on PBS + 0.05 M glycine, pH 7.4, 15 minutes. The 
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hydrophobic areas were blocked with the Aurion Blocking Solution for 30 minutes. Then three 

washing steps on PBS + 0.1% BSA-c pH 7.4 for 2 minutes were performed. The primary antibody was 

diluted 1-5 μg/ml in PBS + 0.1% BSA-c pH 7.4 and the grids were incubated for 60 to 90 minutes. 

Negative controls were incubated only with BSA-c buffer. Then six washing steps on PBS + 0.1% BSA-

c pH 7.4 for 5 minutes were performed. The secondary antibody with ultrasmall 6 nm gold particle 

was diluted in PBS (1:20) + 0.1% BSA-c pH 7.4 and grids were incubated for 90 to 120 minutes. Then 

six washing steps on PBS + 0.1% BSA-c pH 7.4 for 5 minutes and additional six washing steps on PBS 

pH 7.4 for 2 minutes were realized. After a post fixation with 2% glutaraldehyde in PBS pH 7.4 for 5 

minutes, three washing steps on PBS pH 7.4 for 2 minutes and six wash with deionized water for 2 

minutes were performed. Sections were enhanced with silver (Aurion R-Gent SE-EM) for 25 minutes 

and again washed on deionized water six times for 2 minutes. Subsequently, a first heavy metal 

contrast was performed on 4% neutral uranyl acetate for 5 minutes followed by another heavy 

metal contrast with 0.4% uranyl acetate in 2% methylcellulose (on ice) for 5 minutes. Grids were let 

dry, using a loop and filter paper, after switching to a fresh droplet of PBS pH 7.4. Before 

observation, grids were left 5 minutes on 2% uranyl oxalate (pH 7) and transferred to a mixture of 

1,6% methyl cellulose and 0,4% uranyl acetate on ice, the excess of the viscous solution was drained 

away and the grids were let to dry. Grids were examined in an electron Tecnai 12 microscope (FEI). 
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3.3.2 Results and discussion 

The traditional EM technique used for immunolocalization show a limited bind affinity with the 

incubated antibody (Figure 3.3 A) while the images obtained using the “clean” procedure Tokuyasu 

(Figure 3.3 B), displayed a reduced distortion effect, and an enhanced antibody accessibility. As 

shown in the pictures below (Figure 3.3 C) the incubated antibody is more often detected inside the 

thylakoid membranes leaving numerous black spots in the EM picture. The analysis was performed 

using the epoxy-free technique and the automated system for immunolabeling on more than 300 

images and 10.000 gold particles were counted on the thylakoids of Phaeodactylum tricornutum. 

 

  

C

A B

Figure 3.3 – Immunolocalization protocols.  (A) Classic technique of immunolocalization using intact cells of P. tricornutum. 

(B) Tokuyasu technique (C) Tokuyasu technique of immunolocalization using intact cells of P. tricornutum. 
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3.4 Tomographic studies 

This method was adopted to fill the “2D-3D gap” limited by the thickness of the samples. Image 

stacks were acquired automatically at high lateral resolution using two different techniques. 

A first analysis was performed at the Technische Hochschule Zürich (ETH) using the Gatan 3View2XP 

within the I.T.N. Marie Curie in collaboration with Samuel Zeeman and Simona Eicke. 

A second analysis was performed in the Laboratoire d'Etudes des Matériaux par Microscopie 

Avancée LEMMA of CEA Grenoble using a Focused ion beam scanning electron microscopy (FIB-

SEM) in collaboration with Pierre-Henri Jouneau.  

Durcupan embedded cells of Phaeodactylum tricornutum were analysed using the following 

techniques. 

 

3.4.1 The Gatan 3View2XP analysis 

The Gatan 3View2XP Microscope is an electron microscopy (Figure 3.4 A) equipped with an 

automatic diamond knife which develops serial block-face sections using a beam of electrons to scan 

across a surface (Figure 3.4 B) and reconstruct the different section to generate a high-resolution 

tomogram. All the images resulted (Figure 3.4 C) were optimized with specific software (FIJI ImageJ) 

and the three-dimensional reconstruction were performed with AMIRA® software (Figure 3.4 D). 

 

  

Gatan 3View2XP Microscope in Zurich 

B A C D 

Figure 3.4 – The Gatan 3View2XP procedure. (A)  Gatan 3View2XP Microscope in Zurich.  (B) Image acquisition. (C) Automatic 

2D images stack acquisition. (D) 3D reconstruction.  
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3.4.1.1 Results and discussion 

This study reports the recording of several tomograms of intact cells of Phaeodactylum tricornutum. 

The analysis of approximately 2000 slice images reveal a complex interconnected networks of 

thylakoids membranes. Unfortunately, despite repetitive analysis the four acquired tomograms 

were not satisfying for the following segmentation and 3-D reconstruction analysis. Nevertheless a 

pioneering collaboration was establish in the laboratory of advance microscopy for the study of new 

materials in nanotechnology at CEA Grenoble using the Focused Ion Beam – Scanning Electron 

Microscopy (FIB-SEM) to characterize the connections between thylakoids and reveal the real 

chloroplast architecture in diatoms. 

 

3.4.2 Focused Ion Beam – Scanning Electron Microscopy (FIB-SEM) analysis 

Focused ion beam tomography has been realized using a Zeiss NVision 40 dual-beam microscope 

(Figure 3.5 A) which possess a Ga+ ion beam (of 700 nA at 30 kV). The main devices composing this 

system are an ion column, an electron optic column and a field emission gun. After protecting an 

area of the specimen with a layer of platinum or carbon, a section is abrade by the FIB to expose a 

face of the sample free of artefact associated to mechanical sectioning. Then a cascade of Ga+ ions 

is focused through to a needle tip that starts to erode a limited area of the sample and the newly 

layer exposed is imaged by a SEM (Figure 3.5 B). Each slice was imaged in a scanning electron 

microscopy (SEM) at 5 kV using the in-column EsB back-scatter detector. For each slice, a thickness 

of 4 nm has been removed and the SEM images were recorded with a pixel size of 4 nm. The images 

stack (Figure 3.5 C) is then registered by cross-correlation using the StackReg plugin in the Fiji 

software. This procedure gives us directly an image in 3D with an isometric voxel size of 4x4x4 nm. 

For the projection in 3-Dimension (x,y,z axis) different software were used (Figure 3.5 D).  
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3.4.2.1 Results and discussion 

During this investigation, three tomograms of intact cells of Phaeodactylum tricornutum were 

recorded. The first analysis was performed on a broken cell; this event led us to discover some 

particular features concerning the periplastidial reticulum in P. tricornutum (section 2.3). The 

second analysis of approximately 600 images revealed a complex and highly structured network of 

membranes (section 2.3 and 2.4). The third tomogram was performed to reduce the thickness of 

the slices at 2 nm, the resulted images were recorded with pixel size of 2 nm. The implemented 

voxel size didn’t improve the resolution of the thylakoid membranes in the pictures that appeared 

blurred probably due to the affinity of these membranes to bind the heavy-metal ions of the 

osmium. Nevertheless combining other techniques for sample preparation (like the freeze fracture 

technique) it is possible to reduce the risk of distort information due to invasive steps (chemical 

fixations, dehydration, etc) providing more details for the 3-D analysis of the chloroplast structure.  

 

  

FIB-SEM microscope 

B A C D 

Figure 3.5 – The FIB-SEM procedure. (A) The Zeiss NVision 40 dual-beam microscope http://www.southampton-

nanofab.com/fabrication/fib.php. (B) Image acquisition. (C) Automatic 2D images stack acquisition. (D) 3D 

reconstruction.  

http://www.southampton-nanofab.com/fabrication/fib.php
http://www.southampton-nanofab.com/fabrication/fib.php
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3.5 Data processing and 3-Dimentional reconstruction  

For the alignment and treatment of the second stack of P. tricornutum images FIJI image J software 

was used. Subsequently the segmentation was achieved semi-automatically using the open source 

software Ilastik and the 600 images were corrected manually. The 3-Dimentional reconstruction and 

the final movie were performed with Avizo® software.  

 

3.5.1 Results and discussion 

The 3-Dimentional reconstruction of the chloroplast (in green), the mitochondria (in red) and the 

nucleus (blue; Figure 3.6) led us to understand for the first time the connection between these 

essential component of the cell in Phaeodactylum tricornutum. 

 

 

  

A B

C D E

Figure 3.6 – 3D segmentation of P. tricornutum. (A) Image reconstruction of the chloroplast (in green), the 

mitochondria (in red) and the nucleus (in blue) xy-view. (B) xz-view of the reconstruction. (C) yz-view of the 

reconstruction. (D) Frontal view of the connection between the chloroplast (in green) and the mitochondria (in red). 

(E) Lateral view of the connection between the chloroplast (in green) and the nucleus (in blue). 



123 
 

3.6 Three-Dimentional analysis of the thylakoid membranes   

The second stack of acquired images of P. tricornutum was also used to unveil the 3-Dimentional 

architecture of the photosynthetic membranes. The analysis (represented in Figure 3.7) was 

performed following these steps: the alignment and treatment of the 600 images was performed 

with the software FIJI image J and then converted in .ccp4 files (.ccp4 is the abbreviation for 

collaborative computational project number 4 and is the file format of electron density data used in 

structural biology) for the subsequent volumetric analysis with CHIMERA software.  

 

3.6.1 Results and discussion 

The 3-D analyses performed with CHIMERA software disclose for the first time the complex dynamic 

structure of the thylakoid membranes in P. tricornutum. The study leads to a completely different 

opinion of the undifferentiated plastid issued by a secondary endosymbiosis. The connecting 

membranes founded between the thylakoid layers (Figure 3.8 A) form a basket structure near the 

pyrenoid region (Figure 3.8 B). So far, much of our understanding of P. tricornutum comes from 

conventional transmission electron microscopy (TEM) studies. Analyzing microalgae ultrastructure 

with these innovative techniques led us to scratch just the surface like Paolillo did in 1970 with serial 

section of EM pictures revealing the presence of right-handed lamellae in the thylakoids of plants. 

If we consider that nowadays the exact three-dimensional architecture of the grana in plant (for 

review Daum et al., 2011) is still matter of debate, we are just at the beginning.  
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Figure 3.7 – Sequential images analysis. From the whole segmentation on the left (with the chloroplast, the mitochondria 

and the nucleus) to the study of the photosynthetic membranes of P. tricornutum (in violet) on the right. 
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A

B

Figure 3.8 – Images analysis with CHIMERA software. (A) Detail of the thylakoid membranes. The violet areas 

correspond to the internal membranes while the green areas correspond to the external membranes. (B) Sequential 

images analysis of the “basket” structure near the pyrenoid region of P. tricornutum. Similar to the stroma lamellae of 

plants, these structures connect different layers of the thylakoids and differ from the plastoglobules present in these 

pictures. 
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3.7 The Atomic Force Microscopy (AFM) 

This method was chosen to better understand the topology of the thylakoid membranes and to 

improve the resolution at nanoscale level of the organization of photosynthetic complexes, in non 

fixed membranes.  

The heart of the AFM (Figure 3.9 A) is a sharp tip attached to a flexible Si3N4 cantilever that scans 

the sample. During the scan, the probes touch the sample, controlled by the piezoelectric material 

that apply a force on the cantilever base and makes it vibrate. The movements of the probe over 

the surface, thanks to the laser focused on the cantilever give back a signal that is reflected to a 

detector (Figure 3.9 B). As result the vertical bending (deflection) of the cantilever gives us a 

measurement of the movement of the probe and, consequently, information about the surface of 

the sample. Different techniques allow studying the topography of membranes proteins directly in 

their biological environment (contact mode, tapping mode and noncontact mode). For the analysis 

we used the contact mode (CM-AFM) where the force between the tip of the cantilever and the 

probe is constant, commonly used for analysis of flat membranes (for more information see Liu & 

Sheuring, 2013) and Tapping Mode where the tip touch the sample only intermittently reducing 

dragging forces during the scanning (Tamayo & Garcia, 1996). The samples were deposited on a 

mica holder, due to the fact that the tip and the samples are immersed in a buffer solution the mica 

surface is attached to a teflon plate and subsequent to a metal plate (Figure 3.9 C).  

 

 

Cyper AFM in the Science Surface Laboratory  

A B C 

Components of the AFM  Details of the sample holder 

Figure 3.9 – The AFM procedure. (A) The Cyper AFM Microscope in the Science Surface Laboratory.  (B) Major component 

of the AFM technique (laser, focus lens, sample, x y z piezo scanner, tip, cantilever, mirror, detector, controller amplifier 

and computer). (C) Details of the samples holder (from the bottom to the top: metal plate, teflon plate, mica holder and 

the sample).  

http://en.wikipedia.org/wiki/Piezoelectricity#Actuators
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A first investigation was performed at the Institut National de Santé et de la Recherche Médicale 

INSERM Marseille in collaboration with Simon Scheuring and Nikolay Buzhynskyy. 

A second investigation was performed in the SSL (Science Surface Laboratory) of the European 

Synchrotron Radiation Facility (ESRF) of Grenoble in collaboration with Luca Costa.  

Isolated thylakoid membranes of Phaeodactylum tricornutum were analysed using the following 

techniques. 

 

3.7.1 Thylakoid membranes preparation for AFM 

Different procedures were taken into consideration to prepare isolated thylakoid membranes for 

atomic force microscopy analysis. A first set of experiments was set up with a technique created in 

1998 by Wittpoth and collaborators. This protocol was designed for two marine centric diatoms 

Odontella sinensis and Coscinodiscus granii with a silicified cell wall and as expected, some 

difficulties had emerged. In fact, this protocol was not adequate to open cells of P. tricornutum. To 

solve this problem, different setups, pressures and centrifugation steps were tested to improve the 

quality of the obtained memebranes. Unfortunately no substantial improvements were achieved 

and a second set of experiments was established according to Martinson et al., 1998 (Figure 3.10 

A). The procedure was the followed. Cells were harvested and concentrated at 2000 xg for 10 

minutes (Multifuge X1R Thermo Scientific) and then resuspended in buffer 1 (2 M sorbitol, 20 mM 

MES-NaOH (pH 6), 5 mM ε-aminocaproic acid (ACA), 1 mM benzamidine (BAM), 1 mM MgCl2). 

Afterwards, the following sequence of sonication (15 sec burst, 30 sec cool, 15 sec burst at 105 W) 

and centrifugation (750 xg for 5 minutes) were realized 6 times. The supernatants were collected 

and centrifuged for 15 minutes at 12400 rpm in a Sorvall RC5 centrifuge with a SS-34 rotor in 50 mL 

polycarbonate tubes. The crude membrane pellets were resuspended in buffer 2 (2 M sorbitol, 20 

mM MESNaOH (pH 6), 5 mM ACA, 1 mM BAM) homogenised and centrifuged again. Pellets were 

resuspended homogenised and gently transferred into four 13 ml ultracentrifuge tubes SW32Ti 

Beckman and overlaid with the gradient buffers 3 (5 mM MES-NaOH (pH 6), 5 mM ACA, 1 mM BAM, 

with sorbitol at 3.2M and 2.5 M). Thylakoids were purified by flotation in Beckman SW32Ti swinging 

bucket rotor after one hour at 32000 rpm, recovered, diluted in the washing buffer 6 (containing: 5 

mM MES-NaOH (pH 6), 5 mM ACA, 1 mM BAM) and centrifuged for 15 minutes at 12400 rpm in a 

Sorvall RC5 centrifuge with a SS-34 rotor in 50 mL polycarbonate tubes. Pellets were frozen at -80°C 

and used for the first analysis with the AFM. 
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3.7.2 Protocol for the purification of intact chloroplasts of P. tricornutum  

In order to improve the preparation of isolated thylakoid membranes first of all we developed a 

protocol for the purification of intact chloroplasts of P. tricornutum which was combined with the 

protocol for the fractionation of Arabidopsis thaliana chloroplasts (Salvi et al., 2004) following the 

procedure highlighted in Figure 3.10 B. Cells were harvested (2*106 cells/mL) before the offset of 

the light period at 5000 xg, 10 min, 4 °C, and then concentrated at 2500 xg, 10 min, 4 °C. The pellet 

was resuspended gently with 10 mL of Isolation buffer (0.5 M Sorbitol; 50mM Hepes -KOH ph8; 

6mM EDTA; 5mM MgCl2; 10mM KCl; 1mM MnCl2; 1% PVP 40 (K30); ph 7,2-7,5. And fresh 0,5% BSA; 

0,1% Cystein) and passed slowly through a French Press 700 scale parts (9000 bar). The mixture of 

broken cells was fill up with additional 10 mL of Isolation buffer on dark and ice and centrifuged at 

300 xg for 8 minutes. Only the supernatant was collected and centrifuged at 2000 xg, 10 min, 4 °C. 

Using a soft paint-brush the pellet was gently dissolved into 2 ml of washing buffer (0,5 M Sorbitol; 

30mM Hepes-KOH ph8; 6mM EDTA; 5mM MgCl2; 10mM KCl; 1mM MnCl2; 1% PVP 40 (K30); ph 7,2-

7,5. And fresh 0,1% BSA) and loaded (max 2mL) to one Percoll gradient (0,5 M Sorbitol; 30mM 

Hepes-KOH ph8; 6mM EDTA; 5mM MgCl2; 10mM KCl; 1mM MnCl2; 0,1% PVP 40 (K30); ph 7,2-7,5. 

Percoll at desired concentration 10%, 20%, 30%). The mixture of broken cells and plastids was 

centrifuged in a Ultra-centrifuge (with SW41Ti rotor) at 9000 rpm 35 min. The two bands resulted 

were collected and dissolved in the washing buffer (without BSA, 5-6 mL each) centrifuging at 9000 

rpm, 10 min, 4°C. The resulted pellet was then resuspend in a hypotonic buffer (10mM MOPS-NaOH 

pH 7.8; 4mM MgCl2; 1mM PMSF; 1mM benzamidine; 0.5mM ε-aminocaproic acid) and loaded in a 

sucrose gradient (10mM MOPS-NaOH pH 7.8; 4mM MgCl2 with sucrose at 0.93 M, 0.6 M and 0.3 M) 

and centrifuge it at 20000 rpm for 1.10 hours. The bottom fraction resulting from the sucrose 

gradient was washed (max 4-5 mL of washing buffer) at 25000 rpm for 1.10 hours and collected for 

the subsequent analysis at INSERM of Marseille.  
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3.7.3 Improved protocol of isolated thylakoid membranes preparation  

In collaboration with Nikolay Buzhynskyy we improved the protocol previous developed adding 

another step of French press (Figure 3.10 C). The resulting sucrose gradient performed contained 3 

fractions:  the upper fraction corresponding to light membrane fragments, the middle fraction 

which is supposed to contain stack of thylakoids and the bottom fraction of intact chloroplasts. The 

aliquot of the middle fraction was additionally homogenized to create isolated membrane stacks. 

This sample were directly transferred and analyzed at the INSERM of Marseille. 

  

A B C 

Figure 3.10 – Experimental protocols for sample preparation for AFM analysis. (A) Thylakoid membranes preparation 

following the protocol of Martinson et al., 1998. (B) Developed protocol for the purification of intact chloroplasts of P. 

tricornutum. (C) Improved protocol of isolated thylakoid membranes preparation.  
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3.7.4 Experimental procedure INSERM Marseille 

The AFM analysis was performed according to Scheuring & Sturgis, 2009. Membranes were initially 

diluted 50 times with the adsorption buffer (10 mM Tris buffer 150 mM KCl and 25 mM MgCl2). 

Afterwards, 40 µl of the solution were deposited on mica surface (freshly cleaved) and incubated 

for 30 minutes. Non-bound membranes were washed away with recording buffer (10 mM Tris-HCl 

buffer 150 mM KCl pH 7.5). The acquisition of the data were performed with a commercial 

Nanoscope-E contact-mode AFM (from Digital Instruments, Santa Barbara, CA, USA) equipped with 

a low-noise laser, and a 160 lm scanner (J-scanner) using oxide-sharpened Si3N4 cantilevers with a 

length of 100 lm (k = 0.09 N/m; Olympus Ltd., Tokyo, Japan). 

 

3.7.4.1 Results and discussion 

During this investigation several analyses were performed. The first one has provided details of 

thylakoid membranes revealing the presence of some flat zones (attributable to lipid membranes) 

surrounded by protruding and corrugated areas where small fragments are attached forming dense 

aggregates (Figure 3.11 A). The second analysis with the improved protocol (protocol for the 

purification of intact chloroplasts of P. tricornutum) reveals membranes on mica surface carrying a 

number of protruding elements (potentially assigned to the protein complexes of interest, Figure 

3.11 B). During the third analysis, the sample (prepared with the improved protocol of isolated 

thylakoid membranes) shows membranes patch carried protruding corrugations probably 

constitute of protein domains (10-20 nm in size, Figure 3.11 C). However, despite several tests, the 

continuous scanning of the tip led to the gradual destruction of the membranes probably related to 

the quality of the samples. Indeed to avoid potential damage of the thylakoid membranes during 

the transport, we establish another collaboration in Grenoble at the Science Surface Laboratory.  
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3.7.5 Experimental procedure SSL Grenoble 

During the second investigation fresh samples obtained with the developed protocol were diluted 

50 times in the adsorption buffer (10 mM Tris buffer 150 mM KCl and 25 mM MgCl2). Then, ~30µl 

of the solution were deposited on mica surface (freshly cleaved) and incubated for 30-45 minutes. 

Non-bound membranes were washed away with recording buffer (10 mM Tris-HCl buffer 150 mM 

KCl pH 7.5). Buffers at pH 7.4 and pH 8 were also tested. The analyses were performed in Contact 

Mode and in Tapping Mode (see Hansma et al., 1994). The acquisition of the data was performed 

with a Cypher AFM (Asylum Research, Santa Barbara, CA, USA) in Amplitude-Modulation mode AFM 

(one of the most common technique) using BL-AC40 (BL-AC40 Olympus Ltd. Tokyo, Japan), Si3N4 

cantilevers with nominal stiffness of 0.150 N/m.  

 

3.7.5.1 Results and discussion 

During this analysis we achieved to have fresh preparation of thylakoids membranes and it was 

possible to identify three different regions: lipid bilayer, debris of membranes and packed 

membranes (Figure 3.12 A 1,2,3, respectively). After many tests, several interesting structures were 

observed at nm scale, probably protein domains organized in filaments with a regular orderliness 

A B C 

Figure 3.11 – Results procedure INSERM Marseille. (A) First analysis of the sample prepared with the protocol of 

Martinson et al., 1998. (B) Second analysis of the sample prepared with the developed protocol for the purification of 

intact chloroplasts of P. tricornutum. (C) Sample analysis prepared with the improved protocol of isolated thylakoid 

membranes.  
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(Figure 3.12 B). Nevertheless, as verified in different occasions, the continuous scanning of the tip 

damaged the delicate membranes. 

 

 

Overall, we concluded that the study with the Atomic Force Microscopy was not adequate for our 

purposes. The development of the procedure for sample preparation has required extensive effort 

due to the different organization of the thylakoid membranes in diatoms which has deeply modified 

the starting procedure (for review see Scheuring & Sturgis, 2009) adding repetitive purification 

steps. We consider that these additional steps might modify the natural assembly of the proteins in 

their natural environment. However, the advantage of this technique to study protein complexity 

and assembly in native membranes opens many possibilities for the future. The AFM should be 

employed as a supplementary tool to study the natural supramolecular organization of membranes. 

A future perspective can consider the application of the protocols here developed to plan new 

experiments and implement the knowledge on this technique.  

 

 

 

B A 

1 2

 

3 

Figure 3.12 – Results procedure SSL Grenoble. (A) First analysis showing three different regions in the thylakoid 

membranes: (1) lipid bilayer (2) debris of membranes (3) packed membranes. (B) Details of the photosynthetic membranes 

of P. tricornutum showing ordered protein domains.  
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4.1 Introduction 

This chapter is organized in three sections. In the first one (section 4.2) I will introduce the model 

organism Chlamydomonas reinhardtii and present some specific features of this alga. In particular, 

I will focus on the protein LHCSR3 (Light Harvesting Complex-Stress Related 3) which is the effector 

of the qE component of NPQ. I wil also describe acetate assimilation in C. reinhardtii and finish with 

a description of the nature and function of photoreceptors. In the second section (section 4.3) the 

article “A Blue Light Photoreceptor Mediates the Feedback Regulation of Photosynthesis” will be 

presented. In the third section (section 4.4), I will present data about the metabolic regulation of 

NPQ and LHCSR3 in Chlamydomonas reinhardtii.  

 

4.2 Chlamydomonas reinhardtii  

The model organism studied in this part of my Ph.D manuscript is the unicellular green alga 

Chlamydomonas reinhardtii (Greek chlamys: cloak and monas: solitary) belonging to the phylum 

Chlorophyta. It is a 10 µm fresh-water biflagellate that became one of the most widely studied 

photosynthetic unicellular organism thanks to its easily synchronization, rapid growth (doubling 

time ~ 8-12 hours), sequenced genome (Merchant et al., 2007) and the availability of numerous 

strains and mutants (http://www.chlamycollection.org/). C. reinhardtii possesses two equal apical 

flagella that allow it to swim and a cell wall composed by glycoproteins. A single chloroplast occupies 

a large volume of the cytoplasm (up to 50%, Figure 4.1). Unlike plants, the chloroplast of C. 

reinhardtii shows poorly stacked thylakoid membranes (Figure 4.1; see Engel et al., 2015 for a recent 

publication). The pyrenoid is also visible at the periphery of the chloroplast. Near the chloroplast, a 

primitive eye, the eyespot, recognizable as an orange spot (rich of carotenoids) mediates the 

perception of the light. This eye is essential for phototaxis (the ability to swim toward or away from 

a light source). C. reinhardtii is a widespread freshwater species, commonly found in temporary soil 

pools, eutrophic lakes, etc.  In these habitats, the cells can experience drastic changes in light 

intensity (from total darkness to excessive photon flux intensities within few minutes). To cope with 

light fluctuations, C. reinhardtii has evolved a series of physiological photoacclimatative mechanisms 

to adjust its photosynthetic rate and to survive.  
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4.2.1 LHCSR 

As mentioned earlier (section 1.6.1.1) the qE component of non-photochemical fluorescence 

quenching (NPQ) is the most efficient and rapid mechanism to regulate photosynthesis under 

excessive photon flux densities. In the green alga Chlamydomonas reinhardtii qE induction requires 

the nuclear-encoded chloroplast localized proteins LHCSRs (Ligh-Harvesting Complex Stress Related 

proteins, previously called Li818 Light Induced protein 818; Peers et al., 2009). Three genes encoding 

two LHCSRs isoforms are present in the genome of C. reinhardtii (Merchant et al., 2007). The 

LHCSR3.1 (Cre08.g367500) and LHCSR3.2 (Cre08.g367400) genes, which are 99% identical (775 out 

of the 780 base pairs) encode for the same 259 amino acid polypeptide LHCSR3, while the LHCSR1 

gene (Cre08.g365900) encodes for the LHCSR1 isoform. The proteins LHCSR1 and LHCSR3 have more 

than 80% identity (Bonente et al., 2011).  In 2009, Peers and colleagues demonstrated that knock-

out mutants of LHCSR3.1 and LHCSR3.2 have a largely reduced qE (Peers et al., 2009), concluding 

that LHCSR3 is the main qE effector protein in C. reinhardtii. In the double mutant of LHCSR3 and 

LHCSR1 no qE is detectable (Berteotti et al., 2016). LHCSR3 is a three helix protein located in the 

thylakoid membranes, which possess chlorophylls (Chl a/b) and carotenoids binding motifs (lutein, 

violaxanthin and zeaxanthin; Bonente et al., 2011). At variance with PSBS (the qE protein effector in 

higher plants; Li et al., 2000), which is contitutively accumulated in the thylakoids, LHCSR3 is induced 

by high light (Gagné & Guertin, 1992). However, LHCSR3 transcripts accumulate under 

environmental conditions inducing photo-oxidative stress, limitation of carbon dioxide (Miura et al., 

2004), sulphur (Zhang et al., 2004) or iron (Naumann et al., 2007), as well as high light (Ledford et 

Figure 4.1 – EM picture of Chlamydomonas reinhardtii. In green the chloroplast of Chlamydomonas is highlited (modified from 

http://remf.dartmouth.edu/imagesindex.html).  
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al., 2004). Accumulation of LHCSR3 also requires active photosynthesis together with the Ca2+ 

binding protein CAS and Ca2+ signaling events (Petroutsos et al., 2011). This was later confirmed at 

the transcript level by Maruyama et al., 2014 who carefully studied the expression of LHCSR1, 

LHCSR3.1 and LHCSR3.2 at low and high light in the absence and presence of photosynthetic and 

Ca2+ signaling inhibitors. Yamano et al. (2008) showed that the transcription of LHCSR1 was 

repressed by low CO2 while LHCSR3.2 and LHCSR3.1 were induced under low CO2. LHCSR1 

transcriptional repression by low CO2 was confirmed by Brueggemann et al., 2012 in a RNAseq study 

of cells shifted from high to low CO2 conditions. Similarly, Fang et al., 2012 found that transcription 

of both LHCSR3.1 and LHCSR3.2 is upregulated in low CO2 conditions and is under control of the 

CIA5 transcription factor that regulates transcription of genes for acclimation to low CO2 such as 

inorganic carbon transporters and carbonic anhydrases.  

LHCSRs proteins in C. reinhardtii possess a dual role acting as sensors of lumen acidification and as 

quenching site. Indeed LHCSR3 contains residues sensing luminal acidification (Ballottari et al., 

2016), like PSBS. However, unlike PSBS, it also possess several pigment molecules (Bonente et al., 

2011) and presumably act as a direct site of high light quenching (Tokutso & Minagawa, 2013; Ahn 

et al., 2008).  

 

4.2.2 A facultative acetate flagellate 

Chlamydomonas ability to survive in adverse conditions relies also to its metabolic flexibility and in 

particulal to its capacity to use organic carbon source via respiration in the dark (heterotrophy), to 

use inorganic carbon consuming CO2 (photoautotrophy) or to combine the two carbon sources 

(mixotrophy). Depending on the prevailing mode of carbon assimilation, this versatile unicellular 

microalga is able to adjust its photosynthetic efficiency. It is well known, that the combination of 

both inorganic (CO2) and an external organic carbon substrates leads to a synergetic effect of the 

two processes that enhances the productivity and growth of microalgae (Bhatnagar et al., 2010). 

For this reason, the central carbon metabolism play a crucial role balancing the production of 

energetic compounds (i.e carbohydrates and lipids) and photosynthetic efficiency. 

The tricarboxylic acid  cycle (TCA, also called Krebs cycle or citric acid cycle) is a key component of 

the central carbon metabolism, in which organic molecules are break down to produces reducing 

equivalents (NADH and FADH2 ) to fuel the electron transport chain for cellular respiration.  
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The acetate metabolism in C. reinhardtii proceeds following its entry into the glyoxylate and the TCA 

cycle pathways. The conversion of fixed carbon into either carbohydrates or lipids involves different 

compartments of the cell: the chloroplast, the mitochondria and the cytosol. The TCA cycle takes 

place in mitochondria. Fuelled by ATP, the enzyme acetyl-CoA synthetase (ACS) converts acetate 

into acetyl-CoA a key metabolic compound involved in several physiological processes (i.e fatty acid 

and amino acid synthesis, the TCA and glyoxylate pathways, etc. Figure 4.2).  

 

 

Acetate can also enter in the TCA cycle in a multiple-step reaction operated by two enzymes: the 

acetate kinase (ACK) and phosphate acetyltransferase (PAT; Wolfe, 2005; Ingram-Smith et al., 2006). 

This alga possess two parallel ACK-PAT pathways (ACK1-PAT2 localized in chloroplasts and ACK2-

PAT1 localized in the mitochondria; Atteia et al., 2006, 2009; Terashima et al., 2010). Both ACKs and 

PATs are almost identical at amino acid sequences (similar for more than 70%; Yang et al., 2014). 

When one molecules of Acetyl CoA enters this cycle, it starts a series of oxidation-reduction 

reactions. The four-carbon molecule, oxaloacetate, is the first player of the cycle participating in the 

oxidation of the acetyl group (and also the last player because at the end of each cycle is 

regenerated). The overall pathway of the TCA cycle is represented in Figure 4.3 A. The enzymes 

involved in the cycle are: citrate synthase, aconitase, isocitrate dehydrogenase, α-ketoglutarate 

dehydrogenase, succinyl CoA synthetase, succinate dehydrogenase, fumarase and malate 

dehydrogenase. For every molecule of Acetyl-CoA that enter in the cycle 3 molecules of NADH, 1 

molecule of FADH2, 2 molecules of both ATP and CO2 are produced (Johnson & Alric, 2013). The 

reduced compounds (NADH and FADH2) are cosumed by the mitochondrial electron-transport chain 

generating a proton gradient across the membranes, which in turn fuels ATP synthesis. 

Alternatively, acetate can be metabolised via the glyoxylate cycle providing this microalga with 

Figure 4.2 – The central role of the Acetyl-CoA in central metabolism. Representation of the physiological processes, which 

involves Acetyl-CoA (from Wolfe, 2015). 
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additional metabolic versatility. The glyoxylate cycle, is a five-steps reactions in which two enzymes 

(isocitrate lyase and malate synthase) bypass the two decarboxylation steps in the TCA cycle and 

permit the direct assimilation of carbon from Acetyl-CoA (Figure 4.3 B). 

Starting from the initial observation that C. reinhardtii cells grown in presence of light and acetate 

(TAP medium) show no NPQ capacity (Finazzi et al., 2006), we have reinvestigated the link between 

acetate and photoprotection, as described in section 4.4  

  

A

 

B 

Figure 4.3 – Schematic representation of acetate assimilation in Chlamydomonas reinhardtii. (A) The tricarboxylic 

acid cycle. (B) the glyoxylate cycle. 
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4.2.3 Photoreceptors 

Light is a crucial factor for photosynthetic organisms and its variability in time and space establishes 

their survival and performance in their natural environment. Its triple role can be briefly summarized 

as i. energy source for photosynthesis ii. environmental information converted by photoreceptor 

proteins into biological signals and iii. potential damage, when light absorbed overcomes the 

capacity for CO2 fixation. Photosynthetic organisms evolved different strategies to cope with light 

fluctuating environments, which rely on sophisticated light-sensing system:  the photoreceptors. A 

photoreceptor is a molecule that absorbs light and transduce its energy  into a biological signal 

(Shropshire Jr. & Mohr, 1983). Typically, five types of photoreceptors (Figure 4.4) exist in plants: the 

UV Resistence locus 8 that absorb in the UV-B region at around 280-315 nm (Jenkins, 2014); the 

cryptochromes, that mediate the blue region (390-500 nm; Chaves et al.2011) as the phototropins 

(PHOT; Christie, 2007) and the members of the Zeitlupe protein family (Suetsugu & Wada, 2013); 

and finally the phytochromes, capable of absorbing the red (600–700 nm) and far-red regions (700–

800 nm, Chen & Chory, 2011). 

 

 

  

Figure 4.4 – Photoreceptor proteins. Scheme of the five types of photoreceptors found in plants (Heijde & Ulm, 2012)  



141 
 

4.2.3.1 Phototropin 

In C. reinhardtii, phytochromes are missing (Figure 4.5) and the blue light responses are mediated 

by chryptochromes (Small et al., 1995) and phototropin (Huang et al., 2002). In this section, I will 

focus on the light-sensing perception operated by the blue-light photoreceptor phototropin in C. 

reinhardtii and on its link to photoprotection. 

 

In C. reinhardtii, phototropin is involved in the regulation of the cell cycle (Huang & Beck, 2003), in 

the eyespot development and phototactic behavior (Trippens et al., 2012) as well in the expression 

of light-regulated genes involved in chlorophyll and carotenoid biosynthesis (Im et al., 2006). 

Phototropins possess a serine-threonine kinase protein domain (PDK) at the C-terminus, and a 

photosensory region with two blue-light sensitive domains (called light oxygen and voltage domains, 

LOV1 and LOV2; Figure 4.6) at the N-terminus. The LOV domains are almost structurally identical 

and formed by a fold of ~110 amino acids tightly binding a flavin mononucleotide (FMN) cofactor, 

which acts as a chromophore (Tokutomi et al., 2008). While both LOV1 and LOV2 sense light, they 

probably do this in two different ways, as revealed by the findings that their quantum efficiency and 

photochemical reaction kinetics are different (Kasahara et al., 2002; Salomon et al., 2000). LOV1 is 

thought to be important for protein dimerization and acts as attenuator of phototropin activity 

(Matsuoka et al., 2007), whereas LOV2 has a central role in photoreceptor light activation and in the 

regulation of the kinase activity (Demarsy & Fankhauser, 2009). The PDK domain located at the C-

terminus of the protein belongs to the AGC kinases family (cAMP-dependent protein kinase A, 

cGMP-dependent protein kinase G and phospholipid dependent protein C). This domain plays a 

crucial role in many biological processes, including cell growth, gene transcription and protein 

synthesis. The activation mechanism of phototropin by light involves i. blue-light sensing by the 

Figure 4.5 – Photoreceptor proteins in Chlamydomonas reinhardtii. Photoreceptors found in Chlamydomonas 

reinhardtii (Modified scheme from Heijde & Ulm, 2012). 

 

Perceived light 

Photoreceptors 
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LOV2 domain ii. conformational change and iii. autophosphorylation (Pfeifer et al., 2010) of several 

serine residues on the kinase domain (Christie, 2015). At variance with plants, where two PHOT 

exists, only a single phototropin has been identified in C. reinhardtii (Huang et al., 2002). The gene 

product is found in the plasma membrane of the cell body and in flagella (Huang et al., 2004). 

Proteomic studies also reveal its presence in the eyespot proteome (Schmidt et al., 2006).  

 

4.2.4 Okazaki large spectrograph  

So far, no information was available on the possible link between light sensing and high light 

protection. In order to investigate this phenomenon, we employed the Okazaki Large Spectrograph 

(OLS, Ushio Inc., Tokyo, Japan) the largest spectrograph in the world used to measure the spectrum 

of NPQ in vivo (Figure 4.7 A). Equipped with light sources, a monochromator, and sample holders 

capable of exposing algae to a very monochromatic light (FWHM 1 nm) this instruments represented 

the state of the art choice for our purpose. So far, several photobiological experiments have been 

conducted on living organisms, biological molecules, and artificial organic molecules at the OLS 

(Watanabe et al., 1982; Otsuna et al., 2014). Using a 30 kW Xenon short arc lamp, the spectrograph 

projects (10 m in length) a spectrum of wavelengths ranging from 250 nm (ultraviolet) to 1000 nm 

(infrared, Figure 4.7 B) at light intensities up to 2000 μE m-2 s-1 with elevated specificity superior to 

regular spectrographs.    

Figure 4.7 – The largest spectrograph in the world. (A) Picture of the Okazaki Large Spectrograph (OLS) 

http://www.nibb.ac.jp (B) Wavelength covered (modified from Otsuna et al., 2014). 

 

A B

Figure 4.6 –  Structure of the phototropin. Schematic representation of the phototropin with at the N-terminal the two blue-

light sensitive domains (LOV1 and LOV2) and at the C-terminal a serine-threonine kinase protein.  
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4.3 Blue light perception by phototropin mediates regulation of photosynthetic light 

harvesting 

4.3.1 Preface 

The article presented in this chapter (Petroutsos et al., under revision in Nature) focuses on the 

model organism C. reinhardtii. In this section, we want to understand if besides light intensity, is 

there a role of the light quality in the induction of qE and LHCSR3?  

This article clearly describe how the blue light perceived by the photoreceptor phototropin (PHOT) 

controls photoprotection by inducing the expression of the qE effector protein LHCSR3 in high light. 

More in detail, this control occurs via two steps: first, blue light is perceived by the photosensory 

regions (LOV domains) of this photoreceptor, probably activating PHOT via a conformational 

change. Then, a signal is transduced via the kinase domain of the activated PHOT. LHCSR3 induction 

by PHOT results in light dissipation in photosystem II, indicating that light sensing, utilization, and 

dissipation is a linked process in C. reinhardtii. 
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Abstract 

In plants and algae, light serves both as the energy source for photosynthesis and as a biological 

signal triggering cellular responses via specific sensory photoreceptors. Red light is perceived by 

bilin-containing phytochromes, blue light by the flavin-containing cryptochromes (CRYs) and/or 

phototropins (PHOTs; Jiao et al., 2007),the latter containing two photosensory LOV (light, oxygen, 

or voltage) domains (Christie, 2007). Photoperception spans several orders of light intensity (Briggs, 

2014) ranging from far below the threshold for photosynthesis to values beyond the capacity of 

photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death unless it is 

prevented by enhanced thermal dissipation (energy quenching, qE), a key photoprotective response 
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(Li et al., 2009). Here, we show the existence of a molecular link between photoreception, 

photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that 

PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (Light-Harvesting 

Complex Stress-Related Protein3) in high light. This control requires blue light perception by LOV 

domains, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. 

phot mutants display severely reduced fitness under excessive light conditions, indicating that light 

sensing, utilization, and dissipation is a concerted process playing a vital role in microalgal 

acclimation to environments of variable light intensities.  

 

In oxygenic photosynthesis, light absorption by pigments (chlorophylls and carotenoids) embedded 

in the light harvesting complexes (LHCs) transfers energy to reaction centres, triggers electron flow 

from H2O to NADPH, and generates a proton motive force across the chloroplast thylakoid 

membranes that is used for ATP synthesis. The generated ATP and NADPH molecules are consumed 

for CO2 fixation in the Calvin-Benson cycle (Eberhard et al., 2008). Whenever light is absorbed 

beyond the CO2 assimilation capacity, over-excitation of the photosystems leads to photodamage 

and possibly to cell death. Such negative consequences are prevented by non-photochemical 

quenching (NPQ), an intricate photoprotective process that dissipates excess absorbed energy. The 

major component of NPQ is high energy quenching (qE), which occurs at the LHCs of photosystem 

II (Horton et al., 1996). qE is driven by lumenal acidification under excess light, which modifies the 

LHCII pigment composition via the xanthophyll cycle and activates specific qE protein effectors 

(Niyogi & Truong, 2013). In the active state, these protein effectors (PSBS in plants and the light-

harvesting complex stress-related (LHCSR) proteins in green algae; Peers et al., 2009; Tokutsu & 

Minagawa, 2013) increase the energy dissipation capacity of LHCII via a still unresolved mechanism 

(Ruban et al., 2007; Ahn et al., 2008). While plants constitutively express PSBS, the green alga 

Chlamydomonas reinhardtii only accumulates LHCSR3 (the major qE effector) following 

environmental stresses, including excess light and nutrient starvation (Finazzi & Minagawa, 2014). 

LHCSR3 induction requires Ca2+ signalling and active photosynthesis (Petroutsos et al., 2011; 

Maruyama et al., 2014) but the molecular mechanism behind this process is largely unknown.  
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4.3.2.1 Results and discussion 

To gain insight into how LHCSR3 induction is regulated, we measured the light colour dependency 

(action spectrum) of qE induction in C. reinhardtii. Low light-acclimated cells were exposed for 4 

hours to highly intense monochromatic light at different wavelengths between 400 and 720 nm, 

provided by the Okazaki Large Spectrograph (Watanabe et al., 1982), to induce LHCSR3. Then, 

kinetics of NPQ development were followed under saturating white light for 5 min (Figure 4.8 A). 

The extent of NPQ observed at the end of illumination was used to evaluate the action spectrum of 

qE (Figure 4.8 B) corresponding to the fraction of NPQ that is rapidly reversible in the dark. This 

spectrum was comparable to the spectrum of LHCSR3 accumulation (Figure 4.8 C), confirming the 

tight link between energy dissipation and LHCSR3 induction in this alga (Peers et al., 2009). We found 

that blue light was more effective than red light in inducing the qE response (Figure 4.8 A and B) and 

LHCSR3 accumulation (Figure 4.8 C), although the cells absorbed both almost equally (Figure 4.8 B, 

grey area). This finding suggests that a blue light-absorbing molecule (likely a blue light receptor) is 

involved in LHCSR3 accumulation in high light. To test this hypothesis, we compared NPQ kinetics 

(Figure 4.8 A), the action spectra of qE (Figure 4.8 B) and the induction of LHCSR3 (Figure 4.8 C) in 

wild-type (WT) and mutant C. reinhardtii cells lacking blue light receptors, either the animal-like 

cryptochrome (aCRY; Beel et al., 2012), or phototropin (PHOT; Zorin et al., 2009). acry cells 

(Supplementary Figure 4.12 A) showed WT levels of qE (Figure 4.8 B) and LHCSR3 accumulation 

(Figure 4.8 C) throughout the entire light spectrum, including red light, where aCRY acts (Beel et al., 

2012) in the absence of phytochromes in C. reinhardtii (Merchant et al., 2007). Conversely, phot cells 

(Supplementary Figure 4.12 B) specifically lacked blue light induction of qE (Figure 4.8 B) and LHCSR3 

accumulation (Figure 4.8 C), and therefore were more prone to photodamage (Figure 4.8 D). phot 

cells also showed a largely compromised induction of LHCSR3 and NPQ in high intensity white light 

at variance with WT and acry cells (Supplementary Figure 4.12 C, D and E). Their ability to 

accumulate photoprotective carotenoids via the xanthophyll cycle was, however, similar to that of 

WT and acry cells (Supplementary Figure 4.12 F and G). The phenotype of phot was similar to that 

of npq4 (Figure 4.8 B and D), a deletion mutant of LHCSR3 (Peers et al., 2009) that we used as a qE 

lacking strain. PHOT-mediated blue light control of LHCSR3 accumulation was highly specific. 

Accumulation of representative subunits of the major photosynthetic complexes was comparable 

in all cell lines and wavelength-insensitive (Supplementary Figure 4.13). The photosynthetic electron 

transport rate (ETR) was somewhat reduced in phot cells, especially upon high light exposure 

(Supplementary Figure 4.12 H and I). Since photosynthesis is required for proper LHCSR3 
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accumulation (Petroutsos et al., 2011; Maruyama et al., 2014) the lower electron flow capacity of 

phot cells could diminish LHCSR3 induction. To evaluate this hypothesis, we titrated ETR in WT cells 

using variable concentrations of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 

which inhibits electron transfer in photosystem II. Addition of DCMU progressively reduced the ETR 

to a much lower extent in WT cells than in DCMU-free phot cells (Supplementary Figure 4.10 A). 

However, accumulation of LHCSR3 remained larger in DCMU-treated WT cells than in DCMU-

untreated phot cells (Supplementary Figure 4.14 B). We therefore excluded the possibility that the 

diminished ETR observed in phot cells was the cause of the impaired LHCSR3 accumulation. We 

concluded instead that the impaired photoprotection in phot was the cause of the reduced ETR 

(Supplementary Figure 4.12 I) and enhanced photosensitivity (Fig 4.8 D), indicating that PHOT is a 

central actor of photoprotection in this alga.  

 

  

Figure 4.8 – PHOT controls induction of LHCSR3 and qE and is crucial for survival in high light in C. reinhardtii. (A) 

Development of NPQ in WT (137c), phot and acry mutants during illumination with high intensity white light (750 µmol 

photons m-2 s-1). Before the measurements, cells were exposed for 4 h to different wavelengths of actinic light (250 µmol 

photons m-2 s-1) provided by the Okazaki Large Spectrograph (Watanabe et al., 1982) to induce LHCSR3, and dark acclimated 

for 30 min. (B) Action spectra of qE induction in WT (black), acry (green) npq4 (blue) and phot (red) strains by 4h illumination 

with different wavelengths of actinic light (250 µmol photons m-2 s-1). Grey area, absorption spectrum of WT cells. Data 

shown as mean ± SD (n = 3). (C) Immunoblot analysis of LHCSR3 accumulation. ATPB was used as loading control. (D) 

Erlenmeyer flasks containing WT, acry, phot and npq4 after 16 h of light of 20, 200 and 750 µmol photons m-2 s-1.  
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Phototropins are ubiquitous in plants and algae, and their function in light perception involves two 

structurally similar LOV domains (LOV1 and LOV2) at the N terminus and downstream signalling via 

a C-terminal Ser/Thr kinase domain (Christie, 2007). We dissected the role of the different PHOT 

domains in LHCSR3 induction using existing mutants (Trippens et al., 2012; Figure 4.9 A). 

Complementation of phot with the full-length cDNA of PHOT (strain PPHOT) restored PHOT protein 

(Supplementary Figure 4.15 A), LHCSR3.1 and LHCSR3.2 transcripts (both encoding for LHCSR3, 

Peers et al., 2009, Figure 4.9 B) and LHCSR3 protein (Figure 4.9 C) to a certain extent, which was 

nonetheless sufficient to largely rescue resistance to high light stress, (Figure 4.9 D and 

Supplementary Figure 4.15 B). Moreover, introduction of the LHCSR3.1 gene into phot under the 

control of the strong, PHOT-independent PsaD promoter (strain PLHCSR3) also rescued qE and 

LHCSR3 levels (Supplementary Figure 4.16). Thereby, the univocal relationship between PHOT, 

LHCSR3 and photoprotection was confirmed. Conversely, complementation of phot with the 

truncated gene carrying only the photosensory domains LOV1 and LOV2 (strain PLOV) did not rescue 

either the protein or photosensitivity (Figure 4.9 C, D and Supplementary Figure 4.15 B). Finally, 

complementation with the kinase domain (strain PKIN) fully restored expression of LHCSR3 and 

photoprotection (Figure 4.9 C, D and Supplementary Figure 4.15 B).  

 

  



149 
 

 

  

Figure 4.9 – Role of the different PHOT domains in controlling LHCSR3. (A) Schematic drawings of constructs used for the 

complementation of phot mutant. BLE, bleomycin resistance cassette; LOV, the light, oxygen, or voltage photosensory 

domain and KINASE, and the kinase domain of the PHOT gene.  (B) LHCSR3.1 and LHCSR3.2 mRNA accumulation in WT (cw15-

302), phot, and phot complemented with full-length PHOT (PPHOT), with the photosensory domains (PLOV) or with the kinase 

domain (PKIN) in low light (LL) or high light (HL). Mean values relative to an endogenous control gene encoding G protein 

subunit-like protein (GBLP) are calculated from three biological replicates and normalized to WT HL samples and shown as 

mean ± SD (n = 3). (C) Immunoblot analysis of LHCSR3 accumulation in the WT control and in the different phot mutants. 

ATPB was used as loading control. (D)  Erlenmeyer flasks containing WT, phot, PPHOT, PLOV and PKIN after 20 h exposure to 

light of 20, 200 or 750 µmol photons m-2 s-1.  
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In this line, however, LHCSR3 accumulation became light-color-independent (Figure 4.10 A and B), 

at variance with the WT (Figure 4.8 A, C) and the PPHOT strain (phot complemented with full-length 

PHOT; Figure 4.10 A and B). This indicates that removal of the LOV domains fully unleashed 

inhibition of the kinase activity as previously reported in plants (Kong et al., 2007). Deregulation of 

the PHOT kinase activity (PKIN) or removal of the kinase domain (phot, PLOV) did not alter LHCSR3 

phosphorylation levels (Supplementary Figure 4.17), ruling out any link between PHOT and LHCSR3 

phosphorylation. We also found that LHCSR3 accumulation remained light intensity-dependent in 

the PKIN strain (Figure 4.10 C, D), suggesting that in addition to PHOT, high light photosynthesis was 

required for accumulation of LHCSR3. In agreement with this interpretation, in another mutant 

generated by inserting an additional copy of the kinase domain into WT C. reinhardtii cells (WTKIN, 

Supplementary Figure 4.18) LHCSR3 accumulation also became largely wavelength-independent but 

was still light intensity-sensitive. Moreover, accumulation of LHCSR3 was fully blocked upon 

inhibition of photosynthesis by DCMU in the PKIN and WTKIN strains (Figure 4.10 C, D, 

Supplementary Figure 4.18 E). Additionally, LHCSR3 was not accumulated in the far-red part of the 

spectrum in all cell lines (720 nm; Figure 4.8 C, Figure 4.10 A, B, Supplementary Figure 4.18 C, D). 

This light is not absorbed by C. reinhardtii cells (Figure 4.8 B, grey area) and therefore does not 

activate photosynthesis.  
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Figure 4.10 – PHOT-dependent control of LHCSR3 expression requires blue light perception by LOV, signal transduction by 

the C-terminal kinase domain of PHOT and photosynthesis. (A) Action spectrum of LHCSR3 accumulation in PPHOT (phot 

complemented by full-length PHOT) and PKIN (phot complemented by the kinase domain of PHOT). ATPB was used as loading 

control. (B) Densitometric quantification of LHCSR3 accumulation in PPHOT and PKIN (data normalized with ATPB) of Figure 

4.10 A. Values are normalized to 475 nm and shown as mean ± SD (n = 3). (C) LHCSR3.1 and LHCSR3.2 mRNA accumulation 

in PKIN at LL and HL in the presence and absence of the PSII inhibitor DCMU. Values are normalized to HL and shown as mean 

± SD (n = 3). (D) LHCSR3 protein accumulation in PK in LL and HL in the presence or absence of DCMU for 4h. 
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In Arabidopsis, PHOTs regulate the blue light-induced increase in cytosolic free Ca2+ (Harada et al., 

2003; Babourina et al., 2002). Since PHOT controls LHCSR3 expression in C. reinhardtii (Figure 4.8) 

and Ca2+ is required for the accumulation of LHCSR3 (Petroutsos et al., 2011), a link between PHOT, 

Ca2+, and LHCSR3 can be conceived. However, a ten-fold elevation of extracellular Ca2+ to 3.4 mM 

did not restore LHCSR3 accumulation in the phot mutant (Supplementary Figure 4.19 A). This finding 

led us to conclude that Ca2+ signalling is not modulating LHCSR3 in the absence of PHOT. We 

hypothesise that other second messengers (the cyclic nucleotides cAMP or cGMP) act as signalling 

molecules downstream of PHOT. We tested this hypothesis using a pharmacological approach and 

found that treatment of phot cells with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of 

cAMP/cGMP-phosphodiesterases, rescued LHCSR3 expression (Figure 4.11 A and Supplementary 

Figure 4.19 B). We confirmed this effect by incubating phot cells with dibutyrylated cGMP and cAMP 

(db-cGMP and db-cAMP; Figure 4.11 A), suggesting that in C. reinhardtii, cyclic nucleotides are not 

only critical in mating and phototaxis (Merchant et al., 2007) but are also involved in 

photoprotection through regulating LHCSR3 expression. On the other hand, induction of LHCSR3 in 

IBMX-treated WT or phot cells remained light intensity-dependent (Figure 4.11 A), implying that 

cAMP/cGMP require a high-light-photosynthesis-related signal to be effective on LHCSR3 

accumulation. 

While extensive research has focused on the nature and functions of the molecular actors involved 

in the sensing (photoreceptors) and utilization (photosynthetic complexes) of environmental light, 

the present work uncovers the molecular linkage between these two essential functions of 

photosynthetic organisms (Figure 4.11 B). Blue light perceived by phototropin controls 

photoprotection of the photosynthetic machinery (qE) in a green alga. The LOV domain of PHOT 

provides blue light sensitivity while its kinase domain performs signal transduction, possibly via a 

cyclic nucleotides monophosphate-signalling cascade. At some point downstream of PHOT, this 

signal integrates with another regulatory signal from the chloroplast that carries information about 

the amount of absorbed light that is not used by photosynthesis. This signal relies on photosynthetic 

electron transfer (Petroutsos et al., 2011; Maruyama et al., 2014) via an unknown mechanism. The 

integrated signal affects accumulation of LHCSR3.1/LHCSR3.2 transcripts (Figure 4.9 B), mainly due 

to activation of transcription and partially due to stabilisation of the transcripts (Supplementary 

Figure 4.20). This contrasts with plant PHOTs that have been suggested to destabilize transcripts 

(Folta & Kaufman, 2003) while little evidence exists for their role in activation of transcription 
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(Christie, 2007). The LHCSR3 polypeptide is then imported into the chloroplast thylakoids, where it 

modulates qE (Figure 4.11 B).  

 

 

  

Figure 4.11 – Possible signal transduction pathway for HL-induced expression of LHCSR3. (A) Immunoblot analyses of LHCSR3 

accumulation in WT (cw15-302) cells and in phot cells treated with the phosphodiesterase inhibitor IBMX, db-cAMP or db-cGMP 

after exposure to LL or HL for 20 h. (B) Schematic representation of the negative feedback regulation of photosynthesis 

(photoreception–photosynthesis–photoprotection link) in C. reinhardtii. cp, chloroplast; cNMP: cyclic nucleotides mono 

phosphate (cAMP or cGMP); ET, electron transport; nuc, nuclear; PSII, photosystem II. 
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4.3.2.2 Conclusions 

Because LHCSR3 is “an ancient light harvesting protein” (Peers et al., 2009) found only in “lower 

plants” including green unicellular eukaryotic algae (chlorophytes), and mosses (Niyogi & Truong, 

2013) as well as in  Chromalveolata (algae derived by secondary endosymbiosis ) we hypothesise 

that the molecular link for photoreception-photosynthesis-photoprotection discovered in this study 

has evolved in the environment in which photosynthesis started during evolution, namely the water 

columns, where blue light dominates the available spectrum. Consistent with this hypothesis, 

photoprotection in cyanobacteria, which are thought to share a common ancestry with chloroplasts, 

also relies on blue light. The cyanobacterial NPQ protein effector OCP (Orange Carotenoid Protein) 

binds a single blue light-absorbing carotenoid, and NPQ in cyanobacteria is also triggered by high 

intensity blue light (Kirilovsky & Kerfeld, 2013). Evidences also show a link between blue light and 

photoprotection in diatoms (Costa et al., 2013) via a still uncharacterised mechanism. On the other 

hand, the blue light-dependent control of photoprotection was apparently lost during colonisation 

of the land, where a new qE process evolved, which is based on a constitutively expressed protein 

(PSBS; Li et al., 2009). Land plants, however, seem to carry a remnant of ancestral qE control by blue 

light, called ‘qM’, because blue light still affects NPQ in these organisms, but only via the PHOT-

triggered chloroplast movements that avoid high light (Cazzaniga et al., 2013).   

The transition from water to the land was paralleled by the emergence of a second PHOT gene. Seed 

plants contain PHOT1, responding to low intensity blue light signals, and PHOT2, triggering high 

intensity blue light responses. Unicellular green algae, like Chlorella variabilis, Ostreococcus tauri, 

and C. reinhardtii, only contain one PHOT gene, which is the ortholog of PHOT2 (Galván-Ampudia & 

Offringa, 2007). However, in C. reinhardtii blue light triggers different biological responses 

depending on the photon fluence rate. Low intensity blue light (e.g. 1 µmol photons m-2 s-1) triggers 

gametogenesis at low nitrogen abundance (Huang & Beck, 2003) and gene expression (Im et al., 

2006) whereas blue light at higher intensities desensitizes the eyespot (Trippens et al., 2012) and 

induces LHCSR3 expression (e.g. 60 μmol photon m-2 s-1, Supplementary Figure 4.21). Thus, we 

conclude that the same PHOT that ensures low light responses can trigger higher light signalling 

when acting in synergy with the photosynthetic signal. We propose that while the transition from 

the motile life form of algae to the sessile character of land plants led to an increased specialisation 

of the function of photoreceptors, this process occurred at the expense of some essential functions 

in water, likely the regulation of photoprotection reported here. 
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4.3.2.3 Materials and methods 

Chemicals: Chemicals were purchased from Sigma (DCMU) and Enzo (3-isobutyl-1-methylxanthine 

(IBMX), dibutyryl cyclic AMP (db-cAMP), and dibutyryl cyclic GMP (db-cGMP)). Stock solutions of 

DCMU were prepared in ethanol (40 mM) or H2O (40 µM); IBMX was dissolved in DMSO at 250 mM; 

db-CAMP and db-GMP were dissolved in H2O. 

 

Strains and conditions: C. reinhardtii strains were grown under 20 µmol photons m-2 s-1 in Tris-

acetate-phosphate (TAP) media (Gorman & Levine, 1965) at 23 oC. In all experiments cells were 

transferred to Sueoka's high salt medium (Sueoka, 1960) at 2 million cells/mL and exposed to light 

intensities as described in the text and figure legends. Two C. reinhardtii WT strains, the cw15-302 

and 137c, were used as indicated in the Figure legends. The phot mutant was previously generated 

using a homologous recombination strategy (Zorin et al., 2009). For the different complemented 

lines of phot, PsaD promoter and terminator were used for the expression of full-length PHOT cDNA 

(strain PPHOT; clone PPHOT3 or PPHOT4), the LOV domains (strain PLOV; clone PLOV1) and the 

kinase domain (strain PKIN; clone PKIN1), N-terminally fused to the Zeocin resistance marker sh-Ble, 

(Trippens et al., 2012). Using the same strategy, overexpression of the PHOT kinase domain in the 

WT background resulted in the strain WTKIN (Trippens et al., 2012). For the PHOT-independent 

expression of LHCSR3, the PsaD promoter and terminator were fused to a full-length genomic 

LHCSR3.1 gene. The generated construct with the aphVII marker gene was introduced into phot by 

electroporation with NEPA21 Super Electroporator (NEPAGENE, Japan). The transformants, 

PLHCSR3(B5) and PLHCSR3(G6), were screened for their resistance to 10 μg/mL hygromycin. The 

acry mutant, originally delivered in a SAG73.72 genetic background (Beel et al., 2012), was back-

crossed three times to WT strain 137c. Unless otherwise stated, LL conditions corresponded to 20 

µmol photons m-2 s-1 while HL conditions corresponded to 250 µmol photons m-2 s-1 of white light. 

All experiments were repeated three times to verify their reproducibility, unless otherwise stated. 

 

Pigment and mRNA quantification: Extraction and quantification of chlorophyll and xanthophylls, 

calculation of the de-epoxidation state DES, and mRNA quantification by quantitative PCR were 

performed as described previously (Maruyama et al., 2014; Allorent et al., 2013). A gene encoding 

G protein subunit-like protein (GBLP; Schloss, 1990) was used as the endogenous control, and 

relative expression values relative to GBLP (Figure 2b and 3c) were calculated from three biological 

replicates, each of which contained three technical replicates. The primers used were LHCSR3.1 (5'-
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CACAACACCTTGATGCGAGATG-3' and 5'- CCGTGTCTTGTCAGTCCCTG-3'), LHCSR3.2 (5'-

TGTGAGGCACTCTGGTGAAG-3' and 5'-CGCCTGTTGTCACCATCTTA-3'), GBLP (5'-

CAAGTACACCATTGGCGAGC-3' and 5'-CTTGCAGTTGGTCAGGTTCC-3'), and 18S rRNA (5’-

AGCATGAGAGATGGCTACCACATC-3’ and 5’-CATTCCAATTACCAGACGCGAAGC-3’). The mRNA 

stability experiments were performed in the presence of the transcription inhibitor actinomycin D 

(Wako, Japan) at 160 µg/mL (Gera & Baker, 1998). RT-PCR was performed using Light cycler 96 

(Roche) with AptaTaqDNA GM with ROX (Roche). 

 

Immunoblotting: Protein samples of whole cell extracts (0.5 µg chlorophyll, unless stated 

otherwise) were loaded on 7% or 13% SDS-PAGE gels and blotted onto nitrocellulose membranes. 

Antisera against D1, D2 and ATPB were from Agrisera (Vännäs, Sweden); previously described were 

antisera against C. reinhardtii aCRY (Beel et al., 2012), PHOT (LOV1 domain; Zorin et al., 2009), and 

all others (Takahashi et al., 2006; Iwai et al., 2010). ATPB was used as a loading control. An anti-

rabbit horseradish peroxidase–conjugated antiserum was used for detection. The blots were 

developed with ECL detection reagent, and images of the blots were obtained using a CCD imager 

(ChemiDoc MP System, Bio-Rad). For the densitometric quantification of LHCSR3 data were 

normalized with ATPB. LHCSR3 appears as a double band in some of the western blots (i.e. Figure 

4.10 and Supplementary Figures 4.13, 4.15, 4.17, 4.18, 4.19). The upper band represents the 

phosphorylated form of LHCSR3 (see Supplementary Figure 4.17). The extent of LHCSR3 

phosphorylation was determined using a Phos-tag-based method as described (Longoni et al., 

2015). For the de-phosphorylation of LHCSR3 whole cell extracts (1 µg total chlorophyll) were 

treated with either 20 U of calf intestine phosphatase (Promega) or 200 U of lambda protein 

phosphatase (New England Biolabs) in the presence of 0.05 (v/v) Triton X-100, at 30oC for 1h. 

 

Fluorescence-based measurements: Fluorescence-based photosynthetic parameters were 

measured with a fluorescence imaging setup previously described (Johnson et al., 2009). The 

photosynthetic electron transfer rate (ETR) was calculated as (Fm’-F)/Fm’ * 0.84 * 0.5 * I (Petroutsos 

et al., 2009). qE was estimated as the fraction of NPQ that is rapidly inducible in the light and 

reversible in the dark, using the following equation: (Fm-Fm’)/Fm’. F and Fm’ are the fluorescence 

yields in steady state light and after a saturating pulse in the actinic light, respectively, Fm is the 

maximal fluorescence yield in dark-adapted cells, and I is the light irradiance in µmol photons m-2 s-

1 (Petroutsos et al., 2009). Before NPQ measurements cells were exposed to high intensity light for 
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4 h unless otherwise mentioned to induce LHCSR3 and dark acclimated for 30 min. For NPQ 

measurements actinic light was set at 750 µmol photons m-2 s-1. For action spectra measurements, 

5 mL of concentrated cells (2 * 107 cells mL-1) were placed in a petri dish and exposed to intense 

(250 µmol photons m-2 s-1) monochromatic light (The spectral half width is 5.5 nm or less), provided 

by the Okazaki Large Spectrograph (Watanabe et al., 1982) for 4 h. Samples were then collected and 

subjected to immunoblotting (0.1 mL) as well as qE measurement (0.2 mL) with a fluorescence 

video-imaging system (Fluorocam, Photon System Instruments, Bruno, Czech Republic).   
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Supplementary Figures 

 

Supplementary Figure 4.12 – Photosynthetic properties of acry and phot mutants. (A) Immunoblot analysis of aCRY accumulation 

in WT (137c) and acry cells. The two strains were grown as described previously (Beel et al., 2012). Cells were harvested at the 

beginning of the light phase (LD2 phase; Beel  et al., 2012). Whole cell samples with 2 µg of chlorophylls were loaded on each 

lane. (B) Immunoblotting analysis of PHOT in WT (cw15-302) and phot after 4 h exposure to high intensity white light. (C) 

Immunoblot analysis of LHCSR3, and ATPB in WT (137c), phot and acry in LL and after 4 h exposure to high intensity white light 

(HL). ATPB was used as loading control. (D)  and (E), NPQ induction kinetics of WT (137c) and acry (D) and WT (cw15-302) and 

phot (E) after 4 h exposure to high intensity white light. qE was recorded for 16 min upon illumination with 440 µmol photons m-

2 s-1 (white bar) followed by 2 min of darkness (black bar), to follow qE relaxation. f and g, Xanthophyll cycle de-epoxidation state 

(DES) indicating the ratio ([zeaxanthin] + 1/2 [antheraxanthin])/([zeaxanthin] + [antheraxanthin] + [violaxanthin]) in WT (137c) 

and acry (f) and WT and phot (g) cells after exposure HL for 4 h. (H)  and (I), Electron transfer rate (ETR) of WT (137c) and acry (h) 

and WT (cw15-302) and phot (i) cells exposed at 20, 240 and 750 µmol photons m-2 s-1 for 10 h. ETR (µmol photons m-2 s-1) was 

measured at actinic illumination of 41 µmol photons m-2 s-1. Mean ± SD (n = 3).  
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Supplementary Figure 4.13 –Accumulation of major photosynthetic complexes is unaltered in the phot cells upon exposure 

to different wavelengths of visible light. (A) Immunoblot analyses of ATPB, PsaA/B, D1, D2 and CP26 accumulation in WT 

(137c), phot and acry cells after 4 h exposure at 250 µmol photons m-2 s-1 of monochromatic light at the different wavelengths 

of the visible spectrum. (B) Immunoblot analyses of major photosynthetic complexes of PSII, Cyt b6f and PSII in WT, phot and 

acry after 4 h exposure at 250 µmol photons m-2 s-1 of white light. 

Supplementary Figure 4.14 – Diminished LHCSR3 induction in phot is not caused by diminished photosynthesis. (A) 

Comparison of ETR in DCMU-titrated WT cells and DCMU-untreated phot cells exposed to HL for 3 h. ETR (µmol photons m-2 

s-1) was measured upon exposure to light of 170 µmol photons m-2 s-1. Mean ± SD (n = 3). (B) Immunoblotting analysis of 

LHCSR3 accumulations in the WT and phot samples described in Extended Data Figure 4a. ATPB was used as a loading control. 
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Supplementary Figure 4.15 – PHOT protein levels pigment content in phot mutants. (A)  Immunoblotting analyses of PHOT 

accumulation in WT (cw15-302) and the PPHOT (phot complemented by a full-length PHOT). PPHOT expresses a fused PHOT-

BLE protein, which has a higher molecular weight than the WT PHOT protein. (B) Total cellular chlorophyll (a+b) content in 

WT, phot, PPHOT, PLOV and PKIN cells exposed to light of 20, 200 or 750 µmol photons m-2 s-1 for 20 h as in Figure 4.9 D. 

Diminished chlorophyll content is a signature of pigment bleaching following photo-damage. 

Supplementary Figure 4.16 – PHOT-independent LHCSR3 expression restores photoprotection in the phot mutant. Relative 

qE and LHCSR3 expression in WT (cw15-302), phot, and two phot transformant lines expressing the LHCSR3.1 gene under the 

control of the PsaD promoter (PLHCSR3(B5) and PLHCSR3(G6)) in LL and HL conditions. ATPB was used as loading control. qE 

values were normalized to WT cells in HL conditions, and shown as mean ± SD (n = 3). 
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Supplementary Figure 4.17 – Phosphorylation levels of LHCSR3 in phot, PPHOT, PLOV, PKIN, stt7 and WT. Assessment of the 

phosphorylation levels of LHCSR3 in WT (cw15-302), phot and in the different complemented lines (PPHOT, PLOV, PKIN) by a 

mobility shift detection of phosphorylated proteins (phos-tag). The upper and lower bands correspond to the phosphorylated 

and non-phosphorylated forms of LHCSR3 (“P-LHCSR3” and “LHCSR3”), respectively, which was confirmed by treatment of 

the samples with either calf intestinal phosphatase (CIP) or lambda protein phosphatase (λPP). The stt7 mutant (Depège et 

al., 2003) was used to test the involvement of the chloroplastic serine/threonine kinase STT7 in the LHCSR3 phosphorylation. 

In this mutant LHCSR3 was mostly in the non-phosphorylated form while a STT7-independent phosphorylation was also 

evidenced in agreement with recent findings (Bergner et al., 2015). 

Supplementary Figure 4.18 – Phenotypic traits of the WTKIN genotype. (A) Immunoblot analyses of LHCSR3 accumulation 

after exposure to 240 µmol photons m-2 s-1 of white light for 20 h in WT (137c) and WTKIN cells and schematic drawings of 

the PHOT gene constructs in the two lines. ATPB was used as loading control. (B) Erlenmeyer flasks containing WT and WTKIN 

(expressing the kinase domain of PHOT in the WT background) after 20 h exposure to white light of 20, 200 and 750 µmol 

photons m-2 s-1. (C) Action spectrum of LHCSR3 accumulation in WT and WTKIN. ATPB was used as a loading control. (D) 

Densitometric quantification of LHCSR3 accumulation in WT (137c) and WTKIN (data normalized to ATPB). (E) LHCSR3 protein 

accumulation in WTKIN at LL and HL in the absence and presence of the PSII inhibitor DCMU. 
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Supplementary Figure 4.19 – Second messengers involved in the PHOT-dependent regulation of LHCSR3 expression. (A) 

Immunoblotting analyses of LHCSR3 accumulation after exposure to high intensity of white light for 20 h in WT (cw15-302) 

and phot cells under control conditions (0.34 mM Ca2+) or in the presence of increased Ca2+ concentration (3.4 mM Ca2+). (B) 

Statistical analyses of LHCSR3 accumulation in high-light treated (HL) WT or phot cells in the absence (control) and presence 

of IBMX, db-cGMP and db-cAMP (see conditions as in Figure 4.11 A). Data are normalized to LHCSR3 levels of WT control 

cells). Mean ± SD (n = 3-6). Asterisks indicate statistical significant difference from WT control cells. 

Supplementary Figure 4.20 – LHCSR3.1 and LHCSR3.2 transcripts stability in WT and phot cells.Relative amounts of LHCSR3.1 

and LHCSR3.2 mRNA in WT (cw15-302; black) and in phot (red) were quantified by quantitative PCR. Cells exposed for 20 h to 

470 nm LED light at 100 μmol photons m-2 s-1 were transfered to darkness at t=0 and treated with actinomycin D to stop 

further mRNA synthesis.  mRNA samples were collected at 0, 0.25, 0.5, 1, 2, and 4 h after transition to darkness.  LHCSR3.1 

and LHCSR3.2 transcript amounts were normalised to the amounts of 18S rRNA as the endogenous control and their values 

were set at 100% at t=0  (n=3, mean ± s.d.).  
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Supplementary Figure 4.21 – qE and LHCSR3 induction requires high light in C. reinhardtii. (A) Action spectrum of qE 

induction in WT cells as a function of the light intensity. (B) Immunoblot analysis of LHCSR3 accumulation in darkness (D) and 

under white (WL), blue (470 nm) and red (660 nm) light of low (LL; 20 µmol photons m-2 s-1) and high intensity (HL; 250 µmol 

photons m-2 s-1). ATPB was used as loading control. 
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4.3.3 Perspectives 

Light is an essential factor for microalgae not only because it fuels carbon assimilation via the Calvin-

Benson-Bassham cycle, but also because it acts as a signal in several processes related to growth 

and environmental responses. In this work, we have addressed the double role of light in regulating 

the photoprotective responses in C. reinhardtii. By using biochemical and spectroscopic approaches 

coupled with genetic analysis we have identified the molecular actors for this regulation revisiting 

the fundamental concepts of photoprotection in microalgae. Based on these promising results we 

hypothesized that other signals could exist which link light utilization for metabolism and light 

dissipation via NPQ. This was the starting point for the investigation presented in the following 

section. 
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4.4 Carbon metabolism controls photoprotection in Chlamydomonas via the light 

harvesting complex stress response protein LHCSR3 

Flori et al., Manuscript in preparation. 

 

4.4.1 Introduction 

Photosynthesis is one of the most highly integrated and regulated process to efficient use of 

sunlight, while minimizing the damaging effects of excess light (Paul & Foyer, 2001). Among other 

photosynthetic organisms, Chlamydomonas reinhardtii, a member of the green algal lineage, has 

served as a model organism to study photosynthesis, mainly due to its ability, when grown 

heterotrophically in the dark, to maintain a normal green chloroplast that retains the capacity to 

perform oxygenic photosynthesis when illuminated. This has allowed the isolation of several  

photosynthetic mutants that would otherwise not be viable under phototrophic conditions 

(Grossman et al., 2007). Besides heterotrophic growth with acetate, Chlamydomonas may use 

carbon dioxide (CO2) for photoautotrophy, and both carbon sources for mixotrophic growth (Harris, 

1989). CO2 is fixed via the Calvin-Benson-Bassham cycle in Chlamydomonas (Bassham et al., 1950). 

However like other aquatic phototrophs, this alga is often exposed to restricted CO2 supplies 

because CO2 diffusion is slower in water than in air. To overcome this problem Chlamydomonas 

possesses a CO2-concentrating mechanism (CCM), that combines a series of carbonic anhydrases 

(CAs) to interconvert CO2 and HCO3- with a complex series of ion pumps to actively transport HCO3-

concentrating CO2 at the site of fixation by RuBisCo within the pyrenoid (reviewed in Wang et al., 

2015).  

Acetate is incorporated into acetyl-CoA either as a one-step reaction, catalyzed by acetyl-CoA 

synthetase (ACS), or in two steps via acetate-phosphate, a reaction catalyzed by acetate kinase 

(ACK) and phosphate acetyltransferase (PAT; Wolfe, 2005). Chlamydomonas possess two parallel 

ACK-PAT pathways. Proteomic analyses have indicated that ACK1-PAT2 is localized in chloroplasts 

while ACK2-PAT1 is found in the mitochondria (Atteia et al., 2009; Terashima et al., 2010). Their 

localization was recently confirmed by their expression in Chlamydomonas as Venus fusion proteins 

(Yang et al., 2014). After binding to CoA, acetate reacts with oxaloacetate in the first step of the 

tricarboxylic acid (TCA) cycle and is then completely metabolized by this pathway, to generate 3 

molecules of NADH, 1 molecule of FADH2, 2 molecules of both ATP and CO2. The reduced 

compounds (NADH and FADH2) are consumed by the mitochondrial electron-transport chain 
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generating a proton gradient across the membranes, which produces additional ATP. Alternatively, 

acetate is metabolized by the glyoxylate cycle, as originally proposed by Kornberg and Krebs in 1957 

to explain microbial growth on two-carbon compounds as the sole carbon source (Kornberg & Krebs, 

1957). Three of the five enzymes that make up the pathway (citrate synthase, aconitate hydratase 

and malate dehydrogenase) are also found in the TCA cycle. The concerted action of the other two 

enzymes, isocitrate lyase and malate synthase, specific to the glyoxylate cycle, bypasses the two 

oxidative steps in which CO2 is evolved, and explains formation of C4 acids from acetate. The C4 

acids may then enter the gluconeogenesis cycle via phosphoenolpyruvate carboxykinase (Plancke 

et al., 2014). With the exception of the cytosolic isocitrate lyase all other enzymes of the glyoxylate 

cycle are localized in peroxisomal microbodies (Lauersen et al., 2016). 

In Chlamydomonas both acetate assimilation and the induction of CCM triggered by inorganic 

carbon limitation are ATP-demanding processes. Therefore, alternative electron flow processes are 

switched on during phototrophic and mixotrophic growth conditions, to provide the extra ATP 

needed. This is typically the case of cyclic electron flow (CEF) around PSI, which is enhanced under 

low Ci, acetate assimilation (Lucker & Kramer, 2013). CEF starts from electrons accumulated at the 

acceptor side of PSI (reduced ferredoxin or NADPH), because of the ATP shortage. It recycles these 

electrons towards the intersystem electron transport chain, namely, the PQ pool or the cytochrome 

b6/f complex. By generating a thylakoid trans-membrane proton gradient, CEF produces the “extra” 

ATP for CO2 assimilation (Allen, 2002) and is also involved in the establishment of nonphotochemical 

quenching (NPQ; Munekage et al., 2002). 

NPQ is a photoprotective mechanism that dissipates absorbed light energy whenever absorbed 

beyond the CO2 assimilation capacity (Li et al., 2009). The major component of NPQ is high energy 

quenching (qE), which mainly occurs at the light harvesting complexes of photosystem II (Horton et 

al., 1996). qE is driven by lumenal acidification under excess light, which modifies the LHCII pigment 

composition via the xanthophyll cycle and activates specific qE protein effectors (Niyogi & Truong, 

2013). In vascular plants qE is modulated by the constitutively expressed protein PSBS (Li et al., 

2000), while in Chlamydomonas qE requires the Light Harvesting Complex Stress-Response protein 

3 (LHCSR3), a nucleus-encoded, chloroplast localized, inducible protein (Peers et al., 2009). LHCSR 

was originally identified as a light-induced transcript (called Li818; Gagné & Guertin, 1992). LHCSR3 

transcripts accumulate under conditions known to induce photo-oxidative stress, including 

deprivation of carbon dioxide (Miura et al., 2004), sulphur (Zhang et al., 2004) or iron (Naumann et 

al., 2007), as well high light (Ledford et al., 2004).  LHCSR3 induction requires Ca2+ signalling and 
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active photosynthesis (Petroutsos et al., 2011; Maruyama et al., 2014), but the molecular 

mechanism behind this process is largely unknown. As discussed above LHCSR3 transcription is 

under the control of the blue-light photoreceptor (see section 4.3). 

Several biological processes have been described to be under nutritional control in Chlamydomonas, 

as exemplified by the control of sexuality by nitrogen (Sager & Granick, 1954), and the modulation 

of lipid biosynthesis by nitrogen, phosphorus or iron availability (Urzica et al., 2013). The metabolic 

status of the cells also defines different biological responses, as evidenced by the different strategies 

of acclimation of Chlamydomonas to Fe deficiency followed under phototrophic or mixotrophic 

conditions (Höhner et al., 2013). Because of its role in controlling the ATP cellular demand, acetate 

should deeply also affect photosynthetic responses (CO2 assimilation, CEF and consequently NPQ) 

in Chlamydomonas. In this work we investigated the role of acetate and, more generally, of carbon 

metabolism in regulating photoprotection in this alga. We found that acetate is a potent inhibitor 

of NPQ, via a direct transcriptional control on the expression of the LHCSR3. 

 

4.4.2 Results 

LHCSR3 accumulation and NPQ capacity in Chlamydomonas are affected by acetate. 

Previous results have indicated a very low NPQ capacity in Chlamydomonas cells grown in low light 

in the presence of acetate (Finazzi et al., 2006) at variance with the high NPQ observed in cells  

exposed to high light in minimal medium without acetate (Niyogi et al., 1997). Because the NPQ 

capacity relies on the slow (t1/2 of about two hours, Allorent et al., 2013) accumulation of LHCSR3 

(the protein effector of the qE; Peers et al., 2009), we considered the possibility that acetate could 

exert a regulatory role on LHCSR3 itself. To test this possibility, we incubated Chlamydomonas cells 

overnight in HSM (in the absence and presence of acetate 20 mM) in LL (20 µmol photons m-2 s-1) 

and shifted them to HL (250 µmol photons m-2 s-1) for 4h. After 4 hours cells were collected and 

analyzed for their cellular LHCSR3 content and NPQ capacity.  

We found that acetate largely repressed NPQ in HL-treated cells (Figure 4.22 A) and this correlated 

with a complete inhibition of LHCSR3 accumulation (Figure 4.22 B). Interestingly the presence of 

acetate abolished even the very low steady state NPQ observed in LL adapted cells (Figure 4.22 A). 

Since active photosynthetic electron flow is required for proper expression of LHCSR3 at the protein 

(Petroutsos et al., 2011) and transcript level (Maruyama et al., 2014) it was important to investigate 

if inhibition of LHCSR3 by acetate was due to a cease of photosynthesis in the presence of acetate 

or due to a more direct role of this metabolite on LHCSR3. We measure photosynthetic electron 
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transfer rate (ETR) in the presence and absence of acetate (Figure 4.22 C) and found that in LL 

conditions acetate had no impact on the photosynthetic performance of the cells whereas under HL 

conditions acetate grown cells had an ETR of ca. 35% lower compared to the phototrophic grown 

ones. This drop of photosynthetic activity in the presence of acetate is in agreement with previous 

findings (Fett & Coleman, 1994b) but cannot justify the complete abolishment of LHCSR3 expression 

since even a maintenance of 15% of ETR under high light is sufficient for proper accumulation of 

LHCSR3 (see section 4.3, Supplementary Figure 4.14 A).  

In order to investigate if the inhibition of LHCSR3 by acetate occurs at the transcriptional level we 

used a strain that expresses the firefly luciferase under control of the LHCSR3.1 promoter in the WT 

background. This strain exhibits a WT-like NPQ induction (Figure 4.22 D) and LHCSR3 accumulation 

(Figure 4.22 E) after 4h exposure to HL in minimal medium. A LL to HL shift experiment revealed that 

luminescence (i.e. the accumulation of luciferase, which is in turn reflects LHCSR3 gene induction) 

was largely increased (here 46 fold induction) with fast kinetics, being complete after 1 hour of high 

light exposure. This time lenght is consistent with previous data obtained by measuring LHCSR3 

mRNA accumulation in the WT (section 4.3). A comparison of luciferase activity levels in control (in 

minimal medium) and acetate-treated cells (Figure 4.22 G) indicates that acetate almost completely 

inhibits LHCSR3 expression similar to DCMU. Its effect was almost identical to that of DCMU, a 

photosynthesis inhibitor that was used as a positive control. Indeed this herbicide was previously 

shown to block LHCSR3 gene expression by qPCR (Maruyama et al., 2014).   
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Figure 4.22 – Acetate inhibits NPQ and LHCSR3 induction. (A) NPQ induction kinetics of WT cells after overnight incubation 

in minimal medium at LL (20 µmol photons m-2 s-1) or after 4 h exposure to HL (250 µmol photons m-2 s-1) in the presence 

and absence of acetate. NPQ was recorded for 16 min upon illumination with 440 µmol photons m-2 s-1 (white bar) followed 

by 4 min of darkness (black bar), to follow NPQ relaxation. (B) Immunoblot analysis of LHCSR3, and ATPB of the samples 

described in (A). ATPB was used as loading control. (C) Electron transfer rate (ETR) of the samples described in (A). ETR 

(µmol photons m-2 s-1) was measured at actinic illumination of 41 µmol photons m-2 s-1. Mean ± SD (n = 3). (D) NPQ induction 

kinetics of LHCSR3 Prom::Luc cells after 4h exposure to HL (250 µmol photons m-2 s-1). (E) Immunoblot analysis of LHCSR3, 

and ATPB of LHCSR3 Prom::Luc cells after 4h exposure to HL. ATPB was used as loading control. (F) Luminescence kinetics 

of LHCSR3 Prom::Luc cells exposed to HL. (G) Fold induction of LHCSR3 based on luminescence measurements of LHCSR3 

Prom::Luc cells exposed to HL for two hours in minimal medium (control), acetate-containing medium or poisoned by 

DCMU. Data are normalized to the fold induction of control cells. Figure summarizes data of three to five experiments 

(average, SD). 
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In a different approach, we pre-incubated cells overnight in HL minimum medium to reach full 

accumulation of LHCSR3. We then added acetate and followed the kinetics of NPQ and LHCSR3 while 

keeping the cells in HL. Despite the exposure to HL, a condition that favors NPQ and LHCSR3 

induction in control cells, acetate was still able to decrease NPQ (Figure 4.23 A) and photosynthetic 

activity measured as ETR (Figure 4.23 B). The decreased NPQ capacity was progressive and 

paralleled by a reduction of the cellular LHCSR3 content (Figure 4.23 C and D). The effect of acetate 

on LHCSR3 was specific as evidenced by the fact that another component of PSII, the D1 protein 

levels remain unaltered even 24 h after acetate was added, i.e. when most of the LHCSR3 had 

already disappeared.  

  

Figure 4.23 – Acetate triggers LHCSR3 degradation in HL. WT cells were incubated overnight in minimal (control) medium 

in HL (250 µmol photons m-2 s-1) to reach the maximum accumulation of LHCSR3. Acetate was added (20 mM) and cells 

remained to HL for another 24h. (A) NPQ capacity (NPQ max) and (B) ETR kinetics in cells remaining in minimal (control) 

medium or having received 20 mM acetate. (C) Immunoblot analysis of LHCSR3, D1 and ATPB of cells described in (A). ATPB 

was used as loading control. (D) Densitometric analyses of LHCSR3 normalised to ATPB (1 = LHCSR3 in control conditions at 

t=0).   
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Previous data have shown that LHCSR3 gene expression stops abruptly after a HL to LL transition 

(t1/2 < 0.5 hour). Because LHCSR3 is absent in LL treated cells, we reasoned that the decline of NPQ 

and LHCSR3 during the HL to LL transition could offer an excellent opportunity to investigate LHCSR3 

protein turnover. We started from cells that were we pre-loaded with LHCSR3 thanks to an 

overnight incubation in HL. After transferring them in LL conditions, samples were collected for 24 

hours and LHCSR3 levels and NPQ capacity were measured (Figure 4.24 A and B). We found that 

LHCSR3 is a relatively stable protein that degrades slowly (t1/2 > 8h). Moreover, its degradation 

turned out to be independent in the presence of acetate. Interestingly even after 24 h after the shift 

to LL phototrophic cells (control) still retain a significant NPQ capacity (ca 50%) which is however 

abolished by acetate (Figure 4.24 C), despite the fact that this compound did not impact the 

photosynthetic performance of the cells (Figure 4.24 D).  

  

Figure 4.24 – Acetate is not involved in LHCSR3 protein stability. Cells acclimated to LL (20 µmol photons m-2 s-1; t = -16h) 

were shifted to HL (250 µmol photons m-2 s-1) overnight to reach the maximum accumulation of LHCSR3. Acetate was added 

(20 mM) and cells were transferred back to LL for another 24h. (A)  Immunoblot analysis of LHCSR3, and ATPB of cells 

described in (B). ATPB was used as loading control. (B) Densitometric analyses of LHCSR3 normalised to ATPB (1 = LHCSR3 

in control conditions at t=0). (C) NPQ capacity (NPQ max) and (D) ETR kinetics in cells remaining in minimal (control) medium 

or having received 20 mM acetate.   
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Acetate modulation of LHCSR3 reveals a metabolic control of NPQ in Chlamydomonas.  

The data shown above indicate that acetate is a potent inhibitor of photoprotection in 

Chlamydomonas, because it reduces the expression of the LHCSR3 gene. This impacts LHCSR3 

protein accumulation during LL to HL transitions (Figure 4.22) but also during HL conditions (Figure 

4.23). Overall, these data show that LHCSR3 and NPQ are under control of acetate metabolism by 

the cell. To gain further insights into the link between acetate metabolism we tested the effect of 

this metabolite in the following mutants with altered acetate metabolisms: (i) dum11, defective in 

complex III (ubiquinol cytochrome c oxidoreductase) and thus unable to oxidize the reducing power 

produced by glycolysis, the pentose phosphate pathway and/ or TCA. This mutant can still produce 

some ATP via electron transport mediated through complex I (NADH dehydrogenase) and the 

alternative oxidase (AOX). The low ATP production in this mutant may be responsible for the 

absence of growth under heterotrophic conditions and the slower growth under mixotrophic 

conditions (Colin et al., 1995). (ii) icl, is a mutant lacking isocitrate lyase, a key enzyme of the 

glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for 

gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which 

CO2 is evolved. Although its respiratory complexes are unaltered, the icl mutant cannot grow on 

acetate in the dark while it shows reduced acetate assimilation and respiration in the light (Plancke 

et al., 2014). (iii) ack1, ack2 and the double mutant ack1ack2 lack either the chloroplastic (ACK1) or 

the mitochondrial (ACK2) or both the acetate kinases respectively. Acetate kinase catalyzes the 

phosphorylation of acetate to acetyl-P which is further converted to acetyl-CoA by phosphate 

acetyltransferase.  

We found (Figure 4.25 A) that acetate was not able to inhibit LHCSR3 induction in the dum11 and icl 

mutants in LL to HL shift experiments, indicating that impaired respiration of this compound was 

enough to make it ineffective. Moreover, no LHCSR3 degradation was observed when acetate was 

added in HL acclimated cells at variance with the WT (Figure 4.25 B). On the other hand, the three 

ack mutants tested showed a WT-like phenotype (Figure 4.25 A) suggesting that acetate entry via 

the acetyl CoA synthase was probably sufficient to promote its metabolism and therefore the 

control over LHCSR3 gene induction. 
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Figure 4.25 – Differential response of LHCSR3 to acetate in selected metabolic mutants. (A) WT and mutant cells 

acclimated to LL (20 µmol photons m-2 s-1) were shifted to HL (250 µmol photons m-2 s-1) for 4h in the presence and absence 

of acetate. Immunoblot analysis of LHCSR3, and ATPB.  (B) WT and mutant cells were incubated overnight in minimal 

(control) medium in HL (250 µmol photons m-2 s-1) to reach the maximum accumulation of LHCSR3. Acetate was added (20 

mM) and cells remained to HL for another 24h. The figure shows the immunoblot analyses of LHCSR3 and ATPB at the 

indicated time points.   
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A key role of CO2 and CCM in the regulation of the LHCSR3 gene  

Overall, the data of Figure 4.25 indicate that acetate controls LHCSR3 accumulation via a metabolic 

control, which involves respiration. Indeed, in both the icl and the dum11 LHCSR3 accumulation in 

HL becomes acetate-insensitive. In these mutants respiration is compromised and therefore ATP 

levels are low, explaining their inability to grow heterotrophically on acetate. However they do grow 

on acetate mixotrophically, although their growth rates are compromised (Plancke et al., 2014; Colin 

et al., 1995). Therefore, acetate enters the cell in the mutants, suggesting that this metabolite per 

se is not the signaling molecule that triggers the inhibition of LHCSR3 transcription. Because acetate 

assimilation rate in icl and dum11 mutants is slow, respiratory CO2 released by these mutants should 

be lower in these mutants. The low CO2 concentration could explain the differential response of 

LHCSR3 in WT and icl and dum11 mutants. Indeed, the promoter region of LHCSR3.1 contains a 

conserved sequence motif termed EEC, an enhancer element for low CO2 responses (Maruyama et 

al., 2014) also present in other low CO2-inducible gene promoters in C. reinhardtii (Kucho et al., 

2003; Yoshioka et al., 2004).  In order to test this hypothesis, we performed LL to HL shift 

experiments in WT and the mutants icl, dum11, ack1, ack2, ack1ack2 in control medium (minimal) 

and in medium supplemented with 2.5 mM bicarbonate. We found that NaHCO3 suppressed LHCSR3 

accumulation not only in WT and ack mutants but also in the acetate-insensitive in icl and dum11 

(Figure 4.26) pointing a control of CO2 on LHCSR3 either direct or via CCM.  

  

Figure 4.26 – Bicarbonate inhibits LHCSR3 expression in WT and metabolic mutants. WT and mutant cells acclimated to 

LL (20 µmol photons m-2 s-1) were shifted to HL (250 µmol photons m-2 s-1) for 4h in the presence and absence of 2.5 mM 

NaHCO3. The figure shows the immunoblot analysis of LHCSR3, and ATPB.  
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We tested the effect of CO2 on LHCSR3 expression in the LHCSR3 Prom::Luc strain in LL to HL shift 

experiments for 2h where the culture medium was supplemented with saturating concentration of 

bicarbonate (2.5 mM NaHCO3) and we saw that transcription of LHCSR3 is inhibited by NaHCO3 

(Figure 4.27 A) to a similar extend of DCMU- or acetate-triggered inhibition (Figure 4.22 G). The shift 

from LL to HL induces the mitochondrial carbonic anhydrases CAH4/5 indicating an activation of 

CCM under HL conditions (Figure 4.27 B). Accumulation of protein levels of CAH4/5 perfectly follow 

the accumulation pattern of LHCSR3 protein, i.e. no expression in LL, high expression in HL, 

suppression in HL by acetate and bicarbonate (Figure 4.27 B). Moreover the mutant cia5, lacking a 

master regulator of CCM (Moroney et al., 1989; Fukuzawa et al., 2001) is unable to accumulate any 

detectable protein levels of either LHCSR3 or CAH4/5 (Figure 4.27 B). These data show a close 

interconnection  of LHCSR3 and CCM which is further supported by earlier findings that CCM is 

inhibited by acetate (Fett & Coleman, 1994b; Moroney et al., 1987). Based on the above-mentioned 

reasoning we hypothesized that acetate-metabolism-derived intracellular CO2 inactivates CCM and 

blocks LHCSR3 transcription. 

 

  

Figure 4.27 – LHCSR3 is under control of CCM. (A) Fold induction of LHCSR3 based on luminescence measurements of 

LHCSR3 Prom::Luc cells exposed to HL for two hours in minimal medium (control) and NaHCO3-containing medium. Data 

are normalized to the fold induction of control cells. Figure summarizes data of three to five experiments (average, SD). (B) 

Immunoblot analyses of LHCSR3, CAH4/5 and ATPB in WT and cia5 cells shifted from LL (20 µmol photons m-2 s-1) to HL (250 

µmol photons m-2 s-1) in the absence (control) and presence of acetate (20 mM) or NaHCO3 (2.5 mM).   
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4.4.3 Materials and methods 

Chemicals: Stock solutions of DCMU were prepared in ethanol (40 mM). DCMU was used at a final 

concentration of 40 µM.  

 

Strains and conditions: C. reinhardtii strains were grown under 20 µmol photons m-2 s-1 in Tris-

acetate-phosphate (TAP) media (Gorman & Levine, 1965) at 23 oC containing 17.5 mM acetate. In 

all experiments cells were transferred to Sueoka's high salt medium (Sueoka, 1960) at 2 million 

cells/mL and exposed to light intensities as described in the text and figure legends. The strain 137c 

was used as wild type strain of C. reinhardtii. The mutants icl, dum11, ack1, ack2 and ack1ack2 are 

described in the text. We used a pgrl1 strain backcrossed four times with the wild-type strain CC124 

(Kukuczka et al., 2014). The 137c expressing the firefly luciferase under control of LHCSR3.1 

promoter (LHCSR3 Prom::Luc) was kindly provided by the lab of Jun Minagawa (Okasaki, Japan). 

Unless otherwise stated, LL conditions corresponded to 20 µmol photons m-2 s-1 while HL conditions 

corresponded to 250 µmol photons m-2 s-1 of white light. 

 

Immunoblotting: Protein samples of whole cell extracts (0.5 µg chlorophyll) were loaded on 4-20% 

SDS-PAGE gels and blotted onto nitrocellulose membranes. Antisera against D1, CAH4/5, ATPB were 

from Agrisera (Vännäs, Sweden). Anti-LHCSR3 was a kind gift from M. Hippler (University of 

Muenster). An anti-rabbit horseradish peroxidase–conjugated antiserum was used for detection. 

The blots were developed with ECL detection reagent, and images of the blots were obtained using 

a CCD imager (ChemiDoc MP System, Bio-Rad). LHCSR3 appears as a double band in some of the 

western blots. The upper band represents the phosphorylated form of LHCSR3. 

 

Luminescence measurements: For the firefly luciferase activity measurements, 100 µL of cell 

suspension at 2 million cells/mL was mixed with 100 µL ONE-Glo™ Luciferase Assay mixture 

(Promega) containing luciferin, the substrate of firefly luciferase. Luminescence was recorded after 

20 minutes of incubation with the Luciferase Assay mixture using a Spark® 10M luminescence 

microplate reader (Tecan). 

 

Fluorescence-based measurements: Fluorescence-based photosynthetic parameters were 

measured with a fluorescence imaging setup previously described (Johnson et al., 2009). The 

photosynthetic electron transfer rate (ETR) was calculated as (Fm’-F)/Fm’ * 0.84 * 0.5 * I (Petroutsos 
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et al., 2009). NPQ was calculated using the following equation: (Fm-Fm’)/Fm’. F and Fm’ are the 

fluorescence yields in steady state light and after a saturating pulse in the actinic light, respectively, 

Fm is the maximal fluorescence yield in dark-adapted cells, and I is the light irradiance in µmol 

photons m-2 s-1 (Genty et al., 1989).  

 

4.4.4 Discussion 

Photoprotection in Chlamydomonas largely relies on the expression of the qE effector protein 

LHCSR3. At variance with the situation in plants, where the qE effector protein PSBS is constitutively 

expressed, LHCSR3 is an inducible protein. Induction of LHCSR3 requires exposure to high light 

intensities (Peers et al., 2009), active photosynthetic electron flow and calcium signaling (Petroutsos 

et al., 2011; Maruyama et al., 2014). The data presented here unveils the existence of a metabolic 

regulation in the expression of LHCSR3, since acetate inhibits transcription of LHCSR3 and NPQ 

capacity of Chlamydomonas (Figures 4.22).  

LHCSR3 transcripts accumulate under environmental conditions known to induce photo-oxidative 

stress, including deprivation of sulphur (Zhang et al., 2004), of iron (Naumann et al., 2007) but also 

of carbon dioxide (Miura et al., 2004). Under low external inorganic carbon (Ci; CO2 or HCO3-) 

conditions Chlamydomonas cells activate the CO2 concentrating mechanism (CCM), that enables 

survival and proliferation when the CO2 concentration limits photosynthesis. These mechanisms 

mostly comprises Ci transporters and carbonic anhydrases (CAs), which catalyze interconversion of 

CO2 and HCO3- (Wang et al., 2015). Most of the Ci transporters and CAHs are under control of a zinc-

finger type transcription regulator  named CIA5 (or CCM1; Moroney et al., 1989; Fukuzawa et al., 

2001), which is localized in the nucleus (Xiang & Weeks, 2001) and controls transcription of CO2 

responsive genes. Recently, a genome-wide transcriptomics study indicated that both LHCSR3.1 and 

LHCSR3.2 are under control of CIA5 (Fang et al., 2012), whereas the promoter region of LHCSR3.1 

has been found to contain a conserved sequence motif termed EEC, an enhancer element for low 

CO2 responses (Maruyama et al., 2014) also present in other low CO2-inducible gene promoters in 

C. reinhardtii (Kucho et al., 2003; Yoshioka et al., 2004).  

Exogenous addition of acetate boosts respiration (Matsuo & Obokata, 2006; Fett & Coleman, 

1994a), induces expression of genes of the glyoxylate cycle incuding  ICL (Hayashi et al., 2015) 

(Hayashi et al., 2015; Matsuo et al., 2011) and increases the number of peroxisomes (Hayashi et al., 

2015) which has been identified as the site where the glyoxylate cycle takes place (Lauersen et al., 

2016). This is why we selected metabolic/respiratory mutants to further pursue the study of acetate-
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triggered inhibition of LHCSR3 (Figure 4.25). The acetate-insensitive phenotype of icl and dum11 in 

terms of LHCSR3 induction allows excluding the possibility that acetate acts as a signal per se 

because both icl and dum11 do assimilate acetate but at slow rates. The hypothesis that metabolic 

CO2 produced by acetate assimilation inhibited LHCSR3 via intracellular gas exchanges sounded 

more plausible. A remote control of photosynthetic genes by the mitochondrial respiratory chain 

had been demonstrated in Chlamydomonas for the case of psaE mRNA (Matsuo & Obokata, 2006). 

Similarly, acetate repressed the expression of the genes encoding the small and large Rubisco 

subunits (Goldschmidt-Clermont, 1986). Acetate also inhibited CCM and carbonic anhydrases 

expression and it had been suggested that this could be due to respiratory CO2 produced by acetate 

assimilation mimicking high CO2 conditions in the cell (Eriksson et al., 1998; Fett & Coleman, 1994a). 

This could also explain the sensitivity of LHCSR3 to acetate. Indeed several lines of evidence already 

existed supporting a very tight interconnection of LHCSR3 and CCM: i. LHCSR3 gene is induced under 

low CO2 (Miura et al., 2004), ii. a genome-wide transcriptomics study identified both LHCSR3.1 and 

LHCSR3.2 as being under control of CIA5, the master regulator of CCM genes (Fang et al., 2012), iii. 

the promoter region of LHCSR3.1 contains an enhancer element for low CO2 responses (Maruyama 

et al., 2014) also present in other low CO2-inducible gene promoters in C. reinhardtii (Kucho et al., 

2003; Yoshioka et al., 2004). Our data confirmed this close interconnection of LHCSR3 and CCM 

because NaHCO3 transcriptionally inhibits LHCSR3 (Figure 4.26 A), the mitochondrial CAH4/5 

perfectly co-expresses with LHCSR3 in LL to HL experiments in the presence and absence of acetate 

or bicarbonate and finally the mutant cia5 does not expressed LHCSR3 (Figure 4.26 B). Addition of 

bicarbonate in the acetate-insensitive mutants icl and dum11 rendered them WT-like because 

LHCSR3 was completely inhibited.  

Contrary to plants that are ready to perform NPQ any time they experience excess light conditions 

thanks to constitutive expression of the qE effector protein PSBS (Li et al., 2000) and to marine 

diatoms that perform NPQ due to the constitutively expressed LHCX1 protein (Bailleul et al., 2010), 

Chlamydomonas relies to the relatively slowly induced protein LHCSR3. That leaves a time window 

of approximately two hours during which cells need to freshly synthesize LHCSR3 and therefore are 

not efficiently photoprotected by qE. It has been demonstrated that state transitions, another 

component of NPQ, cover this photoprotective gap in Chlamydomonas (Allorent et al., 2013). 

However, our data show that, once expressed, LHCSR3 is fairly stable and gets slowly degraded with 

a t1/2 that exceeds 8 h (Figure 4.24 A, B). This means that the cells will be ready to perform NPQ 

when brought back to high light. Indeed, after 8h in LL the cells retain 75% of their NPQ capacity 
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which remains at 50% after 24 h in LL.  

When acetate is added to cells that have been acclimated to HL and cellular LHCSR3 levels are 

already at their maximum accumulation, the protein LHCSR3 starts getting degraded even though 

the cells still remain at HL conditions that would certainly benefit from efficient photoprotection 

(Figure 4.23). Nonetheless, no significant photoinhibition is detected, as evidenced by the finding 

that the D1 levels remained unaltered upon high light exposure in the presence of acetate (Figure 

4.23 C). This apparent contradiction can be explained by the suggestion (Roach et al., 2013) that 

acetate changes the energetics of PSII and that mixotrophic cells are less susceptible to 

photoinhibition because they produce less 1O2 compared to phototrophic cells. The drop in 

photosynthetic activity measured as ETR observed at the same conditions (Figure 4.22 B) could be 

an indication of enhancement of CEF in the presence of acetate, as has been suggested by others 

(Lucker & Kramer, 2013; Johnson & Alric, 2013). It seem therefore that acetate promotes a 

metabolic shift in Chlamydomonas (i.e. enhanced photoprotection capacity, modified redox 

potential of the PSI acceptor side, same as in Roach et al. 2013 and higher CEF) which reminds the 

situation described in photosynthetic anaerobic bacteria. In these organisms, the main purpose of 

photosynthesis is not to assimilate CO2 but rather to generate ATP for housekeeping purposes 

(Finazzi, 2005). This is a condition that can also be expected in this alga when grown in the presence 

of an environment rich in organic carbon, were light penetration and oxygen concentration could 

be relative low. 
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5.1 Concluding remarks  

The chloroplast likely represents the most sophisticated light-harvesting and energy collector 

systems in nature. This flexible “molecular machine” can optimally perform under extremely 

variable environments (changes in nutrients, temperature, light quality or quantity). Within the 

chloroplast, three main sub-compartments can be easily identified i. the envelope, a membrane 

system that control exchanges of metabolites and proteins with the rest of the cell ii. the stroma 

the soluble space which hosts the enzymes required for carbon fixation and iii. the thylakoids, the 

internal membrane network. The presence of these chloroplast subcompartments reflects the 

necessity to confine different photosynthetic steps (i.e. light-harvesting, electron flow, carbon 

assimilation) in different compartments with different physio-chemical properties (light absorbing 

pigments must work in a nonpolar environment while CO2 assimilation requires an aqueous space). 

A rapid and efficient interaction between these compartments is needed for optimum 

photosynthesis. My main contribution to the first part of this Ph.D project has been to investigate 

the physical strategies established by the diatom P. tricornutum to optimize the interaction between 

its different cells subcompartments.  

At the cellular level, we observe contact points between the nucleus and the chloroplast (see Flori 

et al., in preparation, Chapter 2), which likely mediate a direct exchange of metabolites and “signals“ 

as required for a proper dialog between the site where most of the photosynthetic genes are 

expressed (the nucleus) and the site where the gene products must operate (the chloroplast). 

Understanding the nature of these exchanges, as well as their possible involvement in retrograde 

signalling (i.e. signalling the redox state of the chloroplast to the nucleus to modify its gene 

expression profile) will constitute a major step in understanding cellular communication. 

We also see contacts between the chloroplast and the mitochondria, which likely facilitate the 

exchange of reducing equivalents and ATP between the two organelles to optimise CO2 assimilation 

in the light (Baileul et al., 2015). Investigating the nature of the protein exchangers present in these 

“junctions” by targeted proteomic analysis, will constitute a major achievement to elucidate the 

molecular mechanisms behind these energy exchanges. This is now possible thanks to the possibility 

to isolate intact chloroplast in P. tricornutum, which not only opens new stimulating opportunity of 

studying the different subcompartments of the chloroplast (envelope, thylakoids, etc.) still a 

mystery in diatoms, but also allow purifying patches of chloroplast envelope fused to mitochondrial 

memebranes. 
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At the subcellular level, we observe extensive contacts between the periplastidial membrane (PPM) 

and the inner nuclear envelope (iNE; Flori et al., 2016). A vesicular network (VN) fills the space 

between the PPM and the two innermost envelope membranes (oEM and iEM) and could be an 

important platform for the import of protein precursors to the chloroplast. The identification of the 

proteins generating the VN represents therefore an important challenge for future works. To 

achieve this goal a biochemical and structural approach should be applied through the correlative 

light electron microscopy technique (CLEM).  

Finally, we see “linking membranes” connecting the different thylakoid layers, which optimize 

electron flow by facilitating the diffusion of the soluble electron carriers between the two 

photosystems. Thanks to this rapid connection, the two photosystems can be kept apart, to avoid 

useless energy spillover between them.   

Overall, the major outcome of this part of my thesis was to reveal the sophisticated arrangement of 

the cellular compartment and to relate this structure to the global function and flexibility of a 

diatoms cell. A large spectrum of future investigations is possible. The new protocols I have 

developed during my Ph.D are now ready to be exploited to study cell grown in standard conditions 

and in conditions allowing rearrangements or modification of the cellular complexes (e.g. low light 

VS high light, nutrient starvation, etc.). In principle, it could be possible to use these findings to 

elucidate how microalgae interact with their environment and respond to stress conditions.  

In the second part of this project, I have focused more on the “biological” mechanisms of the 

signalling between the different cell compartments focusing on the green alga C. reinhardtii. By 

integrating action spectra, genetic screening and spectroscopic analysis, we explored that different 

signals are involved in the regulation of photoprotection in this widespread model organism. In the 

first study, addressing the question if light colour is involved in the regulation of NPQ in C. reinhardtii 

we highlight the link between light sensing and dissipation via the photoreceptor phototropin. 

We also reveal a feedback regulation between carbon assimilation for metabolism and 

photoprotection. In fact, depending on the prevailing mode of carbon assimilation (phototrophy vs 

mixotrophy, i.e. simultaneous utilisation of light and reduced carbon), this flexible microalga is able 

to adjust its photosynthetic machinery and to sustain growth under extreme and differentiated 

conditions. To obtain these results, I have established an innovative small-scale approach to 

investigate the regulation of photoprotective responses. Using the Biolog® microplates, I have been 

able to investigate the effect of 190 metabolites on growth, photosynthesis and photoprotection. 

This pioneering approach can open an interesting perspective for the future. In fact, the scale-up of 
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this metabolomic approach can confirm the experimental evidences obtained using the Biolog® 

technology. The selection, in liquid, of other central carbon metabolites involved in TCA and/or 

aminoacid metabolism was already tested, but due to the lack of time, the entire set of metabolites 

(190) was not verified entirely and this approach was not included in this manuscript of thesis. 

Furthermore, by combining these results with a data base reconstituting the metabolism in 

photosynthetic organisms (e.g. ChloroKB database) it will be possible to identify other key metabolic 

regulators of LHCSR3 and NPQ in Chlamydomonas reinhardtii. 
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5.2 List of acronyms 

AA Antimycin A  

ACS acetyl-CoA synthetase 

ACK Acetate kinase  

ADP Adenosine di-phosphate 

AFM Atomic force microscopy  

AIC Akaike information criterion 

AOX Alternative oxidase  

ATP Adenosine tri-phosphate 

CAs Carbonic anhydrases 

CBB Calvin-Benson-Bassham cycle  

CBP Chlorophyll binding proteins 

CCM CO2-concentrating mechanism  

CEF Cyclic electron flow 

cERM Chloroplast endoplasmic reticulum 

Chl Chlorophyll 

Cyt Cytochrome 

DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  

Dd Diadinoxanthin  

DDE Diadinoxanthin de-epoxidase  

DGDG Digalactosyl-diacyl- glycerol 

Dt Diatoxanthin  

DTE Diatoxanthin epoxidase  

ECS Electrochromic shift 

EM Electron microscopy 

ENV Envelope 

ER Endoplasmic reticulum 

ESAW Enriched Seawater medium 

ETR Electron transport rate 

FADH2 Flavin adenine dinucleotide 

FCCP (Trifluoromethoxy) phenylhydrazone 

FCP Fucoxanthin chlorophyll-a/c binding proteins  

Fd Ferredoxin  

FIB-SEM Focus ion beam-scanning electron microscopy 

FNR Fd-NADP+-oxidoreductase 

Fm Maximal fluorescence after dark acclimation  

Fm′ Maximal fluorescence in the light acclimated state  

Fv Variable Fluorescence after dark acclimation 

GAP Glyceraldehyde 3-phosphate 

HA Hydroxylamine  

HL High light  
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HSM High salt medium (Sueoka's buffer) 

IBMX 3-isobutyl-1-methylxanthine  

IEM Inner envelope membrane 

LEF Linear electron flow 

LHCI Light harvesting complex I 

LHCII Light harvesting complex II 

LHCSRs Light harvesting complex stress related proteins  

Li818 Light Induced protein 818 

LL Low light 

LOV Light oxygen and voltage domain 

MGDG Monogalactosyl-diacyl- glycerol 

NADH Nicotinamide adenine dinucleotide  

NADPH Nicotinamide adenine dinucleotide phosphate  

NPQ Non-photochemical quenching  

OCP Orange carotenoid protein  

OEM Outer envelope membrane 

OLS Okazaki large spectrograph  

PAM Pulse amplitude modulation 

PAT Phosphate acetyltransferase 

PBSs Phycobilisomes 

PC Plastocyanin  

PCA Principal components analysis  

PDK Serine-threonine kinase protein domain  

PG Phosphatidyldiacylgycerol  

PHOT Phototropin 

PMF Proton motive force 

PPC Periplastidial compartment 

PPM Periplastidial membrane  

PQ Plastoquinone 

PSI Photosystem I 

PSII Photosystem II 

PSBS PSII subunit S protein  

PYR Pyrenoid 

Q Quinone  

qP Photochemical quenching  

qE High-energy-state quenching  

qI Photoinhibitory quenching  

qT Quenching related to state transitions  

ROS Reactive oxygen species  

RuBisCo Ribulose-1,5-bisphosphate carboxylase/oxygenase 

Ru5P Ribulose-5-phosphate  

SDS-PAGE Sodium dodecyl sulphate - polyAcrylamide gel electrophoresis 
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SHAM Salicylhydroxamic acid 

SQDG Sulfoquinovosyldiacylglycerol  

TAP Tris-acetate phosphate buffer 

TCA Tricarboxylic acid cycle 

TEF Total electron flow 

TEM transmission electron microscopy 

VDE Violaxanthin de-epoxidase 

VN Vesicular network  

Vx Violaxanthin  

WT Wild type 

XC Xanthophyll cycle 

ZEP Zeaxanthin epoxidase  

Zx Zeaxanthin 

ΔΨ Electric field  

ΔpH Proton gradient  
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enriched in PSII. (B) the stroma lamellae enriched in PSI. The cyt b6f is equally distributed between 

the two regions……………………………………………………………………………………………………………………….……32 

 

Figure 2.6 – Morphotypes of P. tricornutum. (1) Fusiform, (2) oval and (3) triradiate……………....…33 

 

Figure 2.7 – Chloroplast details of P. tricornutum. (A) Whole cell view, the envelope is highlighted 

in red the thylakoids in white and the stroma space in black. (B) Details of the envelope. in this 

picture the four membranes are visible. (C) Detail of the girdle lamella which surround the 

chloroplast. (D) Pyrenoid region with the typical enlarged 2 lipid bilayers in the center……….……..34 

 

Figure 2.8 – ECS allows measuring the proton motive force in P. tricornutum. (A) Deconvolution of 

the experimental Electro-Chromic Signal (ECS) spectrum (black) into linear (blue) and quadratic (red) 

spectral components, as described in Methods. (B) Schematic representation of polar and 

polarizable pigments, and theoretical dependencies of their associated ECS responses upon the 

electric field. Green “+” and “-“: ΔΨ. Blue and red “+” and “-“: pigment dipoles. Red arrows: pigment 

polarization induced by ΔΨ. (C,D) Relationship between quadratic and linear ECS in control (C) and 

in uncoupler (8 nM FCCP, black squares), anaerobic (red circles), and respiratory inhibitors (AA, 5 

µM, and SHAM, 1 mM, blue circles) treated cells (D). Green arrow: value of the dark electric field 

(ΔΨd). (E) Schematic representation of the plastid-mitochondria energetic interactions in the dark. 

Red arrows: respiratory electron flows. Green dashed line: putative ATP/ADP exchange pathway 
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between the organelles. PS = photosystem, b6f = cytochrome b6f, ATPase = ATPase/synthase, I/ III/ 

IV = respiratory complexes I, III and IV, and AOX = Alternative Oxidase. …………………………………...…40 

 

Figure 2.9 – Mitochondria-plastid energetic interactions in P. tricornutum. (A) Relationship 

between oxygen uptake (U0) and gross photosynthesis (E0) as measured by MIMS. (B) Dependency 

of photosynthetic activity (ETRPSII) on respiration rates. Closed circles: SHAM + AA; open circles: 

SHAM + Myxothiazol treatments (see Methods). (C) Relationship between CEF capacity and total 

electron flow (TEF). (D) Schematic representation of possible plastid-mitochondria metabolic 

interactions in the light. Same as in Figure 2.9 e + Blue lines: photosynthetic linear (light blue arrow), 

and cyclic (dark blue dashed line) flows. Yellow dashed arrow: exchange of reducing equivalents 

between the organelles……………………………………………………………………………………………………………,…42 

 

Figure 2.10 – Phenotypic traits of AOX mutants in P. tricornutum. (A) Relative sensitivity of 

photosynthesis (ETRPSII) to the presence of inhibitors of respiration: AA (blue), SHAM (red) and 

AA+SHAM (black) (n = 2 ± S.E), or to the knock-down of AOX (n = 5 ± S.D.). Green and magenta are 

used for kd-c5 and kd-c9, respectively, in all panels. (B) Western blot analysis of photosynthetic and 

respiratory complexes. (C) Growth rates of the wild type (dark blue) and AOX mutants (n = 7 ± S.D.). 

(D) In vivo assessment of NADPH redox changes as a function of irradiance, in wild-type and AOX 

mutants (n = 3 ± S.D.). (E) In vivo 31P-NMR evaluation of the NTP content in wild-type and AOX 

mutants, in the dark or in low light (with or without AA)………………………………..…………………………...43 

 

Figure 2.11 – ATP transfer from mitochondria to plastid in representative diatoms. (A) Spectra of 

the linear (blue) and quadratic (red) ECS probes in T. weissflogii (black), T. pseudonana (blue), F. 

pinnata (red), and D. brightweli (green). Blue and red vertical dashed lines represent the 

wavelengths used for linear and quadratic ECS, respectively. (B) Relationship between the quadratic 

and the linear ECS in control conditions (open green squares) and in the presence (closed green 

circles) of respiratory inhibitors AA and SHAM (representative of at least 3 independent experiments 

for each diatom). ΔΨd is represented as a horizontal arrow…………………………………………………………44 

 

Supplementary Figure 2.12 – Deconvolution of the quadratic and linear ECS in P. tricornutum. (A) 

Absorption difference (ΔI/I) kinetics followed at different wavelengths in P. tricornutum, after a 

series of six saturating laser flashes, in anaerobic conditions. Solid lines correspond to the global fit 
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of the experimental data with a sum of two exponential decays, with time constants t and 2t 

respectively, as expected for linear and quadratic dependencies (see Methods). (B) ΔI/I spectra are 

shown at different times during ECS relaxation. All spectra were normalized to 1 at 520 nm for better 

comparison. The observation that the blue and green parts of the spectrum are homothetic during 

relaxation, while changes are seen in the red most part of it, reflects the presence of the two ECS 

components, having different relaxation kinetics………………………………………………………………………….46 

 

Supplementary Figure 2.13 – Separation of c-type cytochromes signals, and linear and quadratic 

ECS signals in P. tricornutum. (A) Kinetics of ΔI/I changes at 520, 554 and 566 nm during a ~10ms 

pulse of saturating red light (4500 µmol. quanta.m-2.s-1) and the subsequent dark relaxation (top: 

control conditions, bottom: AA+SHAM). (B) Kinetics of of ecslin, ecsquad changes and c-type 

cytochrome redox state, from kinetics in panel a, after deconvolution as explained in Methods. (C, 

D) Relationship between the quadratic and the linear ECS, before (ecslin, ecsquad, panel c) and after 

(ECSlin, ECSquad, panel D) correction for the dark electric field (see Methods). Dark yellow and 

magenta circles correspond to control and AA+SHAM conditions, respectively. The green arrow 

indicates the value of the ΔΨd in control conditions…………………………………………………………………….46 

 

Supplementary Figure 2.14 – Cyclic electron flow and water-to-water cycles in P. tricornutum. (A) 

Representative traces of changes in linear ECS (normalized as explained in Methods) to evaluate 

linear and cyclic electron flow. Cells were illuminated with 1870 µmol quanta.m-2.s-1 of red light, in 

absence (closed circles) and presence (open circles) of DCMU and then transferred to the dark. 

Traces represent changes in the linear ECS. (B) Representative traces of the 16O2 and 18O2 

concentrations at the offset of a 280 µmol quanta/m2/s blue light. In panels A and B, light and dark 

periods are represented by white and black boxes, respectively. (C) The photochemical rate 

corresponding to TEF and CEF can be estimated by measuring the initial slope of the ECS decay, as 

explained above25 (see Methods) at difference irradiances (n = 2-4 ± S.D.). (D) Light- dependencies 

of oxygen uptake (U0, open circles) and gross photosynthesis (E0, closed circles) in control 

conditions (dark) and in the presence of DCMU (red) (n = 2 ± S.E.)………………………………………………..47 

 

Supplementary Figure 2.15 – ΔΨd and photosynthesis under respiratory inhibition. (A,B,C) 

Dependency of the ETRPSII (A), ΔΨd (B) and dark respiration (C), expressed as a % of the values 

measured in untreated P. tricornutum wt cells, and following inhibition of the cyanide sensitive 
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respiratory pathway with different concentrations of Antimycin A, in the presence of saturating 

SHAM (1 mM). Experimental data were fitted with a monoexponential decay function. (D,E) Effect 

of AA, SHAM and AA+SHAM on ETRPSII (D), ΔΨd and dark respiration (E), expressed as % of control, 

in wild-type cells of P. tricornutum. [SHAM]: 1mM. [AA]: 5µM. (n = 2-4 ± S.D.). (F) Relationship 

between ΔΨd and mitochondrial respiration in samples poisoned with increasing concentrations of 

AA in the presence of SHAM (from panels B and C).…………………..………………………………………………….48 

 

Supplementary Figure 2.16 – Dark respiration, PMF and growth in AOX mutants in P. tricornutum. 

(A) Respiratory activity of wild type and AOX knockdown lines. Total respiration rate (red bars) and 

the contribution of the AOX capacity (white bars, see Methods) were normalized to wild-type values. 

(n = 5 ± S.D.). (B) ECS-based measurements of ΔΨdark in wild type and AOX knockdown lines, in 

control conditions (dark), in the presence of AA (grey), and in the presence of AA+SHAM (white). (n 

= 2-3 ± S.D.). (C) Growth curves of wild type and AOX knockdown cell lines in the presence/absence 

of AA (2µM). AA was added every day and cells were grown in continuous light to prevent them 

from dying in the dark because of lack of respiration. (n = 3 ± S.D.)………………………………..…………….49 

 

Supplementary Figure 2.17 – Subcellular localization of AOX in P. tricornutum and plastid-

mitochondria interaction in P. tricornutum wild-type cells. (A) Subcellular localization of AOX. Cells 

were treated with an anti-AOX antibody and then with a secondary Alexa Fluor 488 antibody (see 

Methods). Positions of plastid and nuclei are indicated by chlorophyll a autofluorescence (red) and 

DAPI staining (blue), respectively. The pattern of AOx localization is similar to what was observed 

with a mito-tracker. (B) EM pictures of the plastid-mitochondria juxtaposition in P. tricornutum. 

Arrows indicate possible physical contacts between the plastid and mitochondrial membranes….50 

 

Supplementary Figure 2.18 – Cytochrome b6f turnover in Pt1 and AOX mutants. (A) Schematic 

representation of the electron flow reaction steps in the cytochrome b6f complex, which can be 

evaluated by spectroscopic measurements. (B) Slow phase of ECSL indicating cytochrome b6 (blue) 

and time resolved redox changes of cytochrome c/f (red) in wild type Pt1 and AOX knockdown 

mutants. P. tricornutum cells were exposed to saturating single turnover laser flashes given 10 s 

apart. Data were normalized to the amplitude of the fast phase of the ECSlin signal. Cyt. c and ECSlin 

were deconvoluted as explained in Methods. (n = 4 ± S.D.). Cell concentration was 2. 10 7 cells mL-

1. Note that both the slow phase of the ECSlin and reduction of cytochrome c/f were completely 
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abolished by the plastoquinone competitive inhibitor DBMIB 10 µM (black arrow)………………………51 

 

Supplementary Figure 2.19 – In vivo changes in the NADPH redox state and ATP in wild type and 

AOX knockdown mutants. (A) Changes in NADPH at different light intensities. Light and dark periods 

are represented by white and black boxes, respectively. Light intensities were 50, 100, 200 and 400 

µmol. quanta m-2 s-1 (green, blue, red, and black traces, respectively). Chl concentration was ~5 µg 

mL-1. (B) Representative spectra from cells of wild type (left panel) and AOX knockdown C5 (middle 

panel) and C9 (right panel) in the dark (red), light (green) and light + AA (blue) conditions are shown, 

with normalization to the internal standard (methylenediphosphonate; pH 8.9). The positions of the 

α, β and γ phosphates of NTPs are shown. Inserts show the quantification of the NTP content in 

wild-type and AOX knockdown mutant cells, as reported in Figure 3e (± S.D.)……………………………..52 

 

Supplementary Figure 2.20 – Cyclic electron flow in representative diatoms. (A) Linear (closed 

circles) and cyclic (in the presence of DCMU) electron flows were measured at different light 

intensities, as in Supplementary Figure 2.34, in Thalassiosira weissflogii (black), Thalassiosira 

pseudonana (blue) and Fragilaria pinata (red). (B) CEF was plotted against LEF. The red line 

corresponds to CEF = 5% of the maximal total electron flow. (n = 3-5 ± S.D.)……………………………….55 

 

Supplementary Figure 2.21 –ΔΨd and photosynthesis under conditions of respiratory inhibition in 

representative diatoms. Dark respiration (A,B,C,D), ΔΨd (E,F,G,H) and ETRPSII (I,J,K,L ), in conditions 

of different levels of inhibition of the respiratory pathway with saturating Antimycin A, and/or 

saturating SHAM. Panels a, e and i: T. weissflogii (black). Panels B, F and J: T. pseudonana (blue). 

Panels C, G and K: F. pinnata (red). Panels D, H and l: D. brightwelii (green). ( n= 2-6 ± S.D.)………..53 

 

Figure 2.22 – Chimeric organization of the secondary plastid in diatoms. The scheme shows a 

fusiform cell of Phaeodactylum. The plastid is limited by 4 membranes. The chloroplast endoplasmic 

reticulum membrane (cERM), shown in blue, is continuous with the outer nuclear envelope 

membrane. The periplastidial membrane (PPM) is shown red. The outer and inner envelope 

membrane (oEM and iEM), shown in light green, are tightly apposed. The presence of a specific 

periplastidial compartment (PPC) is based on the detection of blob-like structures observed by 

confocal microscopy, in which protein precursors fused to GFP and crossing only the cERM and the 

PPM reside. The presence of VN in this PPC is addressed here. C, chloroplast; N, nucleus; M, 
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mitochondrion. ……………………………………………………………………………………………………………………….….65 

 

Figure 2.23 – (A) Electron micrograph of an intact Phaeodactylum cell. (B) Disrupted cell. (C) Lateral 

view of the serial scanning method. Slices or section are 4 nm-thin, and allow the detection of 

membrane continuity between successive cross sections. For 200 sections, the depth of the 

scanning is 1 µm. In the disrupted cell shown in Figures 2.10, 2.11 and 2.12, the tangential view of 

the nucleus is in section 1, and that of the chloroplast is in section 136. C, chloroplast; M, 

mitochondrion; N, nucleus; Pyr, pyrenoid; Thyl, thylakoids………………………………………………….………68 

 

Figure 2.24 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level 

of the cERM–oNE isthmus. The outer nuclear envelope is shown in blue from a tangential section 

(1) to the level of sub-spherical nucleus (48 and 48’), where it is lined with the inner nuclear envelope 

(iNE) shown in purple. The nucleus then forms a constricted area shown in dashed lines (120). In the 

vicinity of the chloroplast, the oNE becomes continuous with the chloroplast endoplasmic reticulum 

membrane (cERM). The edges of the isthmus are shown with arrows. M, mitochondrion; N, nucleus; 

NP, nuclear pore………………………………………………………………………………………………………………….………70 

 

Figure 2.25 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level 

of the iNE-PPM membrane contact. The outer nuclear envelope (oNE) is shown in blue in continuity 

with the cERM. The inner envelope membrane (iNE) is shown in purple and gets in very tight contact 

with the irregular periplastidial membrane (PPM; from 142 and further). A vesicular network (VN) 

fills the space between the PPM and the two innermost membranes of the chloroplast, the outer 

and inner envelope membranes (oEM and iEM, respectively), shown in light green. C, chloroplast; 

M, mitochondrion; N, nucleus; Thyl, thylakoids………………………………………………………………………..…..71 

 

Figure 2.26 – Serial electron micrograph scanning of a Phaeodactylum disrupted cell at the level 

of the periplastidial compartment. The outer nuclear envelope (oNE) is shown in blue in continuity 

with the cERM. The inner envelope membrane (iNE) is shown in purple in tight contact with the 

periplastidial membrane (PPM) at the level of the nucleus-chloroplast contact zone. The vesicular 

network (VN) fills the space between the PPM and outer envelope membranes (oEM), shown in light 

green. The VN is also present in regions where the chloroplast and the nucleus are not connected 

(star in 174, and further). The VN shows continuity with the PPM (178) but not with the oEM. 
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Additional direct connections between the oNE and cERM are visible in regions where no VN can be 

observed (208). C, chloroplast; M, mitochondrion; N, nucleus; Thyl, thylakoids………………………..….73 

 

Figure 2.27 – Serial electron micrograph scanning of Phaeodactylum intact cells at the level of the 

periplastidial compartment. Three cells are shown (cell 1, 2 and 3) in A, B and C. (A) magnified cross-

section of cell 1 is shown in (D) corresponding to the video provided in supplementary data. The 

vesicular network (VN) within the periplastidial compartment is shown with arrows. Ch, chloroplast; 

m, mitochondrion; N, nucleus; ob, oil body……………………………………………………………………………..……75 

 

Figure 2.28 – Stepwise reduction of the symbiont cytosol following secondary endosymbiosis in 

the diatom lineage. (A) The host cell and red algal symbiont. (B) Engulfment of the red alga. (C) 

Residence and transmission of the red alga within the phagotrophic membrane. (D) disappearance 

of symbiont organelles, including the nucleus, and cytosolic structures. (E) Present status. C, 

chloroplast; cERM, chloroplast endoplasmic reticulum membrane; iEM, inner envelope membrane; 

iNE, inner nuclear envelope; M, mitochondrion; N, nucleus; oEM, outer envelope membrane; oNE, 

outer nuclear envelope; PPC, periplastidial compartment; PPM, periplastidial membrane; Thyl, 

thylakoid, VN, vesicular network………………………………………………………………………………………….….....78 

 

Supplementary Figure 2.29 – Protein import across the four chloroplast limiting membrane and 

via the periplastidial compartment. Following mRNA transcription (1) and translation (2), plastid 

protein precursors harbor a bipartite topogenic signal (Bts). A sec61 complex operates very early by 

co-translational mediation of pre-proteins across the cERM (3) and release an unfolded protein 

precursor in the lumen of the chloroplast ER (cER). This unfolded protein can be directed to the next 

membrane (4). Pre-proteins can also be N-glycosylated prior their transport through the PPM (5), 

probably by the action of an oligosaccharide transferase (OST). A translocon called the ‘symbiont-

specific ERAD-like machinery’ (SELMA) is located in the PPM. In the SELMA, Derlin proteins, sDer1-

1 and sDer1-2, interact together and with the Bts. Components of a symbiont ERAD machinery, i.e. 

sCdc48 ubiquitin-dependent AAA-ATPases, and their cofactors sUfd1 and sNP14, reside in the PPC. 

In the absence of an aromatic amino acid at position +1 of the Ctp (+1=X), proteins remain resident 

in the PPC. Presence of a phenylalanine or an aromatic residue (+1=F) determines the transport 

across the oEM and the iEM. Transport across the oEM and iEM involves components related to the 

chloroplast translocon, i.e. TOC and a TIC respectively. The TOC core component derives from a 
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prokaryotic Omp85 sequence. Important TIC subunits well characterized in plant and alga 

chloroplasts are conserved in the iEM, i.e. Tic20, Tic22, Tic62 and Tic110. Cleavage of the Bts (8) by 

a transit peptide peptidase (TPP) releases mature proteins in the stroma (9). In this scheme the 

transfer of folded proteins is not deciphered. Possible routes via a vesicle network (VN) in the PPC 

are shown…………………………………………………………………………………………………………………………………….80 

 

Figure 2.30 - Experimental design to assess energy spillover in diatoms. (A) Consequences of 

energy spillover from PSII to PSI on PSI activity: common antenna case. (B) Consequences of energy 

spillover from PSII to PSI on PSI activity: independent antenna case. (C) Fluorescence emission 

kinetics confirm full inhibition of PSII by DCMU and HA. (D) Kinetics of P700 oxidation in the light. (E) 

Kinetics of cyt c oxidation in the light. (F) Kinetics of oxidation of the entire pool of PSI electron 

donors in the light. A cyt c/PSI ratio of 3 was assumed (Supplementary Figure 2.34). Light intensity 

was 1100 µmol photons m-2 s-1. Solid blue squares: control; empty red circles: DCMU 40µM, blue 

tringles: DCMU 40µM + HA 0.2 mM. Mean ± SEM (n = 6, for 3 biological samples). FCP: Fucoxanthin 

Chlorophyll light harvesting antenna Protein. F0: mimimum fluorescence emission (active PSII). Fm: 

maximum fluorescence emission (inactive PSII)…………………………………………………………………………..86 

Figure 2.31 - Immunolocalization of PSI and PSII in the thylakoid membranes of P. tricornutum. (A) 

Localization of PSII using an antibody against the PsbA (D1) subunit. (B) Localization of PSI using an 

antibody against the PsaC subunit. (C) EM picture of P. tricornutum thylakoid membranes; showing 

four areas: the internal part (CORE, violet) the external, peripheral one (PERIPH., green), the 

pyrenoid (Orange) and the envelope (blue). (D), (E), (F) Principal Component Analysis of PSI and PSII 

immunolocalization. Analysis was performed on 149 images (violet dots: localization of PSII; green 

triangles: localization of PSI). The first two components represent more than 93% of the variance 

(Table S1). See methods for further explanation. Green arrow: peripheral variable. Violet arrow: 

core variable. Orange arrow: Pyrenoid variable. Blue arrow: envelope variable…………………………….87 

 

Figure 2.32 - Three-dimensional organisation of thylakoid membranes in P. tricornutum cells. (A) 

3D reconstruction of an intact P. tricornutum cell, based on FIB-SEM images. (B) Reconstruction of 

thylakoid membranes in the region indicated by the yellow box in (A). (C) Magnification of the region 

indicated by the yellow box in B. The greater depth in the “z” direction highlights the presence of 

several connecting thylakoids. Data are representative of three different tomograms…………………..89 
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Figure 2.33 - Structural arrangement of the photosynthetic membranes in P. tricornutum. (A) 

Equilibrium plots for the components of the high potential chain. Redox signals of cyt c and P700 in 

the light were plotted against each other. The dotted lines represent simulations corresponding to 

different values of the equilibrium constant. The rate of electron flow is calculated from data in 

Supplementary Figure 2.40. (B) Cartoon representing a possible arrangement of the photosynthetic 

complexes in a likely 3 thylakoid layers arrangement of the photosynthetic membranes in P. 

tricornutum. The different PSI and PSII localization within the peripheral (green) and the core 

membranes (violet) is shown. PSI: photosystem 1; PSII: photosystem 2, FCP: fucoxanthin chlorophyll 

antenna protein, Cytb6f: cytochrome b6f complex…………………………………………………………………………91 

 

Supplementary Figure 2.34 - PSI/cytochrome c stoichiometry and oxidation kinetics in P. 

tricornutum. Cyt c/PSI stoichiometry. Cells were exposed to a saturating single turnover laser flash 

to generate 1 turnover per PSI and the amount of oxidized c-type cytochrome was calculated 300µs 

after the flash (i.e. when P700 is fully rereduced by the cytochromes) This amount was normalized 

to the total amount of cyt c oxidized in continuous light in the presence of DCMU (20µM). Because 

the flash oxidizes 33% of the cyt c type cytochromes, we conclude there are ~3 c-type cytochromes 

per PSI. (B) procedure employed to evaluate the rates of PSI oxidation in the light in the case of the 

total donors to PSI pool. Open bar: light on. Closed bar: light off. The slope measured after the light 

is switched off (SD) allows calculating the dark rereduction rates of the PSI donor pool in the control 

(closed blue squares), DCMU treated samples (closed red circles) and DCMU + HA treated samples 

(closed green triangles). The sum of this rate plus the apparent oxidation rate in the light (SL) 

.provides the real rate of oxidation of the total donors to PSI oxidation kinetics, (open symbols). See 

methods for further description………………………………………………………………………………………………….101 

 

Supplementary Figure 2.35 - Light energy spillover in P. tricornutum cells exposed to different light 

intensities. (A) Fluorescence emission kinetics in the presence of DCMU 40 µM and HA 0.2 mM. 

Squares: control, triangles: DCMU; circles: DCMU and HA; open symbols 150 µm photons m-2 s-1; 

closed symbols: 300 µm photons m-2 s-1. (B) Fluorescence emission kinetics in the presence of DCMU 

40 µM and HA 0.2 mM. Squares: control, triangles: DCMU; circles: DCMU and HA; open symbols: 

590 µm photons m-2 s-1; closed symbols: 1100 µm photons m-2 s-1 (C) Kinetics of oxidation of the 

entire pool of PSI electron donors at a light intensity of 150 µm photons m-2 s-1. (D) Kinetics of 

oxidation of the entire pool of PSI electron donors at a light intensity of 300 µm photons m-2 s-1in 
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the light. (E) Kinetics of oxidation of the entire pool of PSI electron donors at a light intensity of 590 

µm photons m-2 s-1. (F) Kinetics of oxidation of the entire pool of PSI electron donors at a light 

intensity of 1100 µm photons m-2 s-1Solid blue squares: control; empty red circles: DCMU 40µM, 

blue tringles: DCMU 40µM + HA 0.2 mM.  Mean ± SEM (n = 2). FCP: Fucoxanthin Chlorophyll light 

harvesting antenna Protein. F0: mimimum fluorescence emission (active PSII). Fm: maximum 

fluorescence emission (inactive PSII). Closed bar: actinic light off. Open bar: actinic light on……….102 

 

Supplementary Figure 2.36 - Tokuyasu preparation enhances the resolution of EM pictures of P. 

tricornutum thylakoid membranes. EM images of P.tricornutum from a sample fixed in resin (A) and 

using the Tokuyasu technique (B)……………………………………………………………………………………………….103 

 

Supplementary Figure 2.37 - Biochemical evidences for a different localization of PSI and PSII in 

thylakoid domains in P. tricornutum. Solubilization of P. tricornutum thylakoid membranes with 

increasing concentration of digitonin (0.2, 0.5, 1.5%). Pellet (P) and supernatants (S) were analyzed 

by western blotting with the same anti PSI and anti PSII antibodies……………………………………………103 

 

Supplementary Figure 2.38 - Peculiar structural features of thylakoid membranes in P. tricornutum 

cells fixed using the Tokuyasu technique. (A) EM images of P.tricornutum using the Tokuyasu 

technique reveal the existence of crosspoints between the thylakoid layers. (B) Magnification of the 

thylakoid layers intersections in the region indicated by the yellow box in A. (C) “Truncated” 

thylakoid membranes are observed in P. tricornutum cells prepared with the Tokuyasu technique. 

Red arrows point thylakoid layers that comprise an additional fourth membrane, which abruptly 

disappears, suggesting the existence of 3D interconnection between different layers of 

thylakoids…………………………………………………………………………………………………………………………………..104 

 

Supplementary Figure 2.39 - Physical contacts between the organelles in P. tricornutum cells. The 

chloroplast (green), mitochondrion (red), and nucleus (blue) structures, obtained from 3D 

reconstruction of intact diatom cells, are shown under different rotation angles (A to C), to highlight 

the physical contact between the organelles…………………………………………………………………………….105 
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Supplementary Figure 2.40 - 3D structure of the thylakoid membranes in P. tricornutum cells. Same 

colour code as in Figure 2.31. Note that the linking membranes (red arrows) can be clearly 

differentiated form the plastoglobules (black arrows), which appear as globular structures………105 

 

Supplementary Figure 2.41 - Spectroscopic features of the cytochrome c6 and P700 components of 

the electron flow chain in P. tricornutum cells. (A) Fluorescence induction kinetics in the absence 

and in the presence of increasing DCMU concentrations. The progressive inhibition of PSII is 

highlighted by the increased rate of fluorescence rise. (B) Redox kinetics of P700 upon illumination. 

(C) Redox kinetics of cyt c6 upon illumination. The rate of electron transfer were changed by addition 

of increasing concentrations of DCMU as in (A). Closed bar: actinic light off. Open bar: actinic light 

on……………………………………………………………………………………………………………………………………………….106 

 
Chapter 3 

Figure 3.1 – Samples preparation for EM. (A) Heavy metal contrast on P. tricornutum’s cells. (B) 

Final specimen embedded in resin……………………………………………………………………………………………...114 

 

Figure 3.2 – P. tricornutum during cell division……………………………………………………………………………115 

 

Figure 3.3 – Immunolocalization protocols.  (A) Classic technique of immunolocalization using intact 

cells of P. tricornutum. (B) Tokuyasu technique (C) Tokuyasu technique of immunolocalization using 

intact cells of P. tricornutum………………………………………………………………………………………………………118 

 

Figure 3.4 – The Gatan 3View2XP procedure. (A)  Gatan 3View2XP Microscope in Zurich.  (B) Image 

acquisition. (C) Automatic 2D images stack acquisition. (D) 3D reconstruction…………………………..119 

 

Figure 3.5 – The FIB-SEM procedure. (A) The Zeiss NVision 40 dual-beam microscope 

http://www.southampton-nanofab.com/fabrication/fib.php. (B) Image acquisition. (C) Automatic 

2D images stack acquisition. (D) 3D reconstruction……………………………………………………………………121 

 

Figure 3.6 – 3D segmentation of P. tricornutum. (A) Image reconstruction of the chloroplast (in 

green), the mitochondria (in red) and the nucleus (in blue) xy-view. (B) xz-view of the reconstruction. 
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