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Résumé de la Thèse

Ma thèse de doctorat traite de l’étude théorique des phénomènes électriques

et thermiques qui se produisent dans des nanostructures supraconductrices qui

sont l’objet de plusieurs lignes de recherche de la physique de la matière con-

densée. Nous nous focalisons sur quatre dispositifs basés sur les supraconduc-

teurs et de minces barrières isolantes où le transport de la charge et de la chaleur

est gouverné par l’effet tunnel quantique.

Nous commençons par analyser une jonction métal Normal-Isolant-Supracon-

ducteur (N-I-S). En principe, aucun courant à une particule ne peut s’écouler dans

ce circuit quand le voltage de polarisation est en dessous du gap d’énergie de

S. Pourtant, un courant de fuite en dessous du gap est observé dans la courbe

caractéristique courant-voltage (I-V) expérimental de ce dispositif, même à très

basses températures. Nous montrons que l’absorption de photons de l’environne-

ment électromagnétique à haute température connecté à la jonction est une origine

possible du processus de tunnel à un électron en dessous du gap. Nous considérons

une jonction N-I-S connectée à l’environnement soit directement soit indirecte-

ment au moyen d’une ligne de transmission résistif à basse température. Nous

analysons analytiquement et numériquement le courant en dessous du gap dans

ces deux circuits.

Ensuite nous considérons un transistor hybride à un électron (SET) constitué

d’une ı̂le de métal normal N contrôlée avec une tension de grille et connectée, au

moyen de deux jonctions à effet tunnel, à deux fils supraconducteurs S polarisés

en tension (S-I-N-I-S). Lorsque l’on fait varier le voltage de N correctement dans

le temps, un courant contrôlable à un électron s’écoule entre les deux supracon-

ducteurs. En principe, la réflexion d’Andreev, c’est-à-dire l’effet tunnel à deux

électrons de N à S, peut être interdite. Expérimentalement, ce processus à deux

particules contribue aussi au courant total à travers le SET. Nous montrons que

l’échange de photons entre ce dispositif et l’environnement électromagnétique où

il est disposé rend la réflexion d’Andreev énergétiquement possible. De plus,

nous discutons comment cet effet limite la précision du processus de tunnel à un

électron nécessaire pour les applications métrologiques.

Ensuite nous nous focalisons sur les caractéristiques thermodynamiques des

jonctions supraconductrices à effet tunnel. Nous discutons d’abord des capacités

de refroidissement électronique des dispositifs à double jonction S1-I-N-I-S1 et

S2-I-S1-I-S2, où les supraconducteurs S2 et S1 ont un gap d’énergie différent.

Aprés nous étudions le design et le fonctionnement d’un nanoréfrigérateur électro-

xiii



xiv Résumé de la Thèse

nique à cascade basé sur une combinaison de ces deux structures. Nous montrons

numériquement que une ı̂le de métal normal peut être réfrigérée au dessous de 100

mK à partir d’une température de 500 mK. Nous discutons ensuite de la réalisation

pratique et des limitations d’un tel dispositif.

Enfin, nous considérons la dynamique d’une jonction à sauts de phase quan-

tique (QPSJ) connectée à une source de micro-ondes. En ce qui concerne une

jonction Josephson ordinaire, une QPSJ peut montrer des marches de Shapiro du-

als, c’est-à-dire des plateaux de courant bien définis situés à des multiples entiers

de la fréquence des micro-ondes dans la courbe caractéristique I-V. Aucune obser-

vation expérimentale n’a abouti jusqu’à maintenant. Les fluctuations thermiques

et quantiques peuvent nettement étaler la courbe I-V. Pour comprendre ces ef-

fets, nous déterminons la caractéristique I-V d’une QPSJ polarisée en courant,

irradiée avec des micro-ondes et connectée à un environnement résistif et induc-

tif. Nous montrons que l’effet de ces fluctuations est gouverné par la résistance de

l’environnement et par le rapport entre l’énergie de phase-slip et l’énergie induc-

tive. Nos résultats sont importants pour les expériences qui visent à l’observation

des marches de Shapiro duals dans les QPSJ pour la définition du courant quan-

tique standard.
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Introduction

General Scientific Context

Miniaturization of solid state electronic components has known a fast growth

during the last 25 years. The constant improvement of the lithographic techniques

allows the fabrication of devices at the nanometric scale with a wide range of

possible applications. Nowadays, such nanostructures are the building blocks of

most of the electronic equipment commonly used in science, in the industry as

well as in the daily life. For instance, the central processing unit (CPU) of a mod-

ern computer is an integrated circuit containing billions of nanosized transistors,

distributed over a surface of a hundred of squared millimeters.

The development of nanoelectronics proceeded in parallel with the enhance-

ment of the efficiency of the refrigeration techniques. The possibility to rou-

tinely achieve cryogenic temperatures, even well below a Kelvin, allowed to de-

crease significantly the thermal noise in the electrical circuits and to create new

nanoscale devices, such as very accurate nano-sensors and Carnot-type nano-

machines, thereby widening the range of applicability of nanoelectronics.

In this context, the progressive reduction of the size of the solid state elec-

tronic components together with the use of very low temperatures gave rise to a

wealth of phenomena related to the quantum mechanical nature of the electrons

in the nanoscale systems. To design the cryogenic electronic nanostructures and

to understand and improve their functioning one has to face up to new fundamen-

tal quantum effects, typically related to the nanometric size and to the particle-

particle interactions. The quantized conductance observed in quantum point con-

tacts and the weak localization in disordered nanostructures are two examples of

quantum phenomena caused by the nanoscale size of the devices. These two quan-

tum mechanical effects show up when the wave-length and the phase-coherence

length, respectively, of the electrons are comparable with the size of the involved

conductors. On the other hand, interaction effects give rise, for instance, to the

Coulomb blockade phenomenon, which is related to the discreteness of the elec-

tric charge.

More recently, it has been realized that the energy transfer and relaxation pro-

cesses in nanostructured electronic devices are not only determined by phonons.

Rather, the black body radiation produced by the external electromagnetic en-

vironment, where the nanostructures are embedded, can play an important role,

xvii



xviii Introduction

especially at subkelvin temperatures. Understanding and controlling this kind of

interaction is crucial for the thermoelectric applications of the nanoscale circuits.

The exchange of energy by means of photons between the main system and the

environment can be detrimental, limiting the performances of the nanostructured

devices. On the other hand, a properly engineered environment can be fundamen-

tal in the implementation of a certain particular function arising from the interplay

between the electronic nanostructure and the environment itself.

The use of superconducting metals in the fabrication of nanoelectronic de-

vices has opened the road for new technological possibilities. The peculiarity of

this kind of materials is that they show quantum properties also at the macro-

scopic scale. The dissipationless current of Cooper pairs and the presence of the

energy gap in the density of states of a superconductor are fundamental for the

realization of a huge number of applications. New quantum mechanical features

can be accessed and are expected when their size is decreased till the nanoscale,

e.g., the observation of both phase-slip tunneling events and energy filtering ef-

fects. Particularly interesting is the combination of nanostructured superconduc-

tors with normal metals which allows to build devices aimed to have accurate

charge (metrology) and heat (nanorefrigeration) transfer.

Summary

The aim of this Ph.D. thesis is to study, from a theoretical point of view, the

electric and thermal phenomena occurring in some superconducting nanostruc-

tures which are the object of various research lines in condensed matter physics.

Specifically, we focus on four different devices based on superconductors and in-

sulating tunnel barriers where both charge and heat transport are governed by the

quantum tunneling effect.

In the first chapter, we start by considering a voltage-biased Normal metal-

Insulator-Superconductor (NIS) tunnel junction. No single-particle current is ex-

pected to flow in this circuit when the applied voltage V is below the superconduct-

ing energy gap ∆ of S, |eV | < ∆. However, in real experiments, a subgap leakage

current is observed in the current-voltage characteristic of the NIS junction, even

at very low temperatures. Such a current limits the applications of this supercon-

ducting device based on the existence of the energy gap. We show that the absorp-

tion of photons from the high-temperature external electromagnetic environment

connected to the junction is a possible origin of the single-particle tunneling be-

low the gap. Specifically, we first consider a NIS junction directly coupled to

the environment and then we focus on a circuit where a low-temperature lossy

transmission line is inserted between them. For both these circuits, we analyze

analytically and numerically the subgap leakage current by means of the so-called
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P(E) theory developed by G.-L. Ingold and Yu. V. Nazarov [1]. In particular, we

find that such an environment-assisted current is exponentially suppressed as the

length and the resistance per unit length of the line are increased. These results

have been obtained in close collaboration with Prof. J. P. Pekola and Dr. V. F.

Maisi from the “Low Temperature Laboratory” of the Aalto University (Finland)

and published in Physical Review B, vol. 88, p. 174507 (2013).

In the second chapter, we go beyond the single NIS junction considering a

hybrid single-electron transistor (SET) constituted by a gate-controlled normal-

metal island (N) connected to two voltage-biased superconducting leads (S) by

means of two tunnel junctions (SINIS). In the Coulomb blockade regime, this

device is expected to work as a perfect charge pump: a controlled single-electron

current flows between the two superconductors by properly changing in time the

gate potential of N. In principle, the Andreev reflection, i.e., the tunneling of two

electrons from N to S can be ideally suppressed when the charging energy EC of N

is larger than the energy gap ∆ of S. Actually, in real experiments, this two-particle

tunneling process also contributes to the total current trough the SET, even though

the condition EC > ∆ holds. We show that the exchange of photons between the

SINIS device and the high-temperature electromagnetic environment where it is

embedded makes the Andreev reflection energetically possible. We discuss how

this effect limits the single-electron tunneling accuracy needed for metrological

applications. Also the achievement of these results has been possible thanks to

the fruitful collaboration with Prof. J. P. Pekola and Dr. V. F. Maisi. A paper

about this project is in preparation and will be soon submitted to a peer reviewed

international journal, such as Physical Review B.

In the third chapter, we focus on the thermodynamical features of the super-

conductor-based tunnel junctions. We start by describing the electronic cooling

capabilities of the S1INIS1 and S2IS1IS2 double-junction devices, where S2 and

S1 are different superconductors with energy gaps ∆2 > ∆1. We then study the

design and operation of an electronic nanorefrigerator based on a combination of

these two structures, namely the S2IS1INIS1IS2 device. Thanks to the cascade ex-

traction of hot-quasiparticles, we show numerically that the normal-metal central

electrode N can be cooled down to about 100 mK starting from a bath tempera-

ture of 500 mK. We discuss the practical implementation, potential performance

and limitations of such a device, proving that it is more efficient than a S1INIS1

cooler. This project has been carried on in collaboration with Dr. F. Giazotto and

M. Camarasa-Gomez from the “NEST Laboratory” of “Scuola Normale Superi-

ore” of Pisa (Italy), and with Prof. H. Courtois and Dr. C. B. Winkelmann from

“Institut Néel” of Grenoble. Our findings have been published in Applied Physics

Letters, vol. 104, p. 192601 (2014).

In the forth chapter, we consider the dynamics of a quantum phase-slip junc-

tion (QPSJ) – a dual Josephson junction – connected to a microwave source with
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frequency ωmw. With respect to an ordinary Josephson junction, a QPSJ can sus-

tain dual Shapiro steps, consisting of well-defined current plateaus at multiple

integers of eωmw/π in the current-voltage (I-V) characteristic. The experimental

observation of these plateaus has been elusive up to now. We argue that ther-

mal as well as quantum fluctuations can smear the I-V characteristic considerably.

In order to understand these effects, we derive, by means of the Keldysh for-

malism, the I-V curve of a current-biased QPSJ under microwave irradiation and

connected to an inductive and resistive environment. We find that the effect of

these fluctuations is governed by the resistance of the environment and by the ra-

tio of the phase-slip energy and the inductive energy. Our results are of interest

for experiments aiming at the observation of dual Shapiro steps in QPSJ devices

for the definition of the quantum current standard. In this project, the supervision

of Dr. G. Rastelli from the “Quantum Transport Group” of the University of Kon-

stanz (Germany) has been essential. The obtained results are presented in a paper

available in arXiv.org (1502.04878). We have also submitted the manuscript to

Physical Review B.

In the fifth chapter, we finally list our main findings and in the appendices

at the end of the manuscript provide the details of some derivations/calculations

discussed in the first four chapters. The latter and the corresponding appendices

are independent. Consequently, the physical meaning of the used symbols may

change.



CHAPTER 1
Leakage Current of a

Superconductor-Normal Metal Tunnel

Junction Connected to a

High-Temperature Environment

Introduction

The peculiar nature of single-particle electronic transport through a normal

metal-insulator-superconductor (NIS) junction is at the origin of several interest-

ing applications [see Fig. 1.1(a)]. Such junctions are widely used in experiments

of mesoscopic physics as a spectroscopic tool [2,3], as a very sensitive thermome-

ter [4–6] and as a key element in nano-refrigeration [4, 7, 8]. Furthermore, NIS

junctions are currently investigated in view of achieving a high accuracy when

controlling the current through a single-electron SINIS turnstile. Such a device

is one of the interesting candidates for the completion of the so-called quantum

metrological triangle, i.e., it can be used to obtain a precise realization of cur-

rent [9, 10]. These applications are all based on the existence of the Bardeen-

Cooper-Schrieffer (BCS) energy gap ∆ in the density of states (DoS) of the su-

perconductor [11]. Ideally one would expect no single-electron current to flow

through a NIS junction at low temperature as long as the bias voltage V satisfies

the inequality −∆ < eV < ∆ , see Fig. 1.1(b).

In practice, the subgap current is different from zero. This is a central prob-

lem which limits the performance of applications based on energy-selective single-

particle transport in NIS junctions. The presence of unwanted accessible states in

the subgap region manifests itself as a smearing of the junction’s current-voltage

(I-V ) characteristic as well as of its differential conductance. Giaever was the first

to experimentally study the NIS junction. He noticed that this deviation from the

ideal behavior was present even if the junction was kept at a temperature much

1
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Figure 1.1: (a) Optical microscope picture (left; colored) and scanning electron

micrograph (right; black and white) of a NIS junction made of aluminum (low

contrast) and copper (high contrast), the superconductor and the normal metal

respectively [16]. (b) Plot of the current-voltage characteristic of an ideal NIS

junction for different values of its temperature, kBTjun/∆: 0 (blue thick line), 0.1

(red), 0.2 (green), 0.4 (purple), 0.6 (orange), 0.9 (cyan). The black dashed line is

V = RT IJ. The inset shows the zero-temperature BCS density of states NS(E) as

a function of the rescaled energy E/∆.

lower than the critical one Tc of the superconductor [12]. A possible source of

subgap leakage currents is the occurrence of many-electron tunneling processes,

such as Andreev reflection [13–15]. However, these many-electron processes are

strongly suppressed if the tunnel resistance RT of the junction is chosen high

enough and do not account for the observed residual subgap transport either.

Dynes modified the BCS superconducting DoS introducing a single phe-

nomenological dimensionless parameter, γDynes , in order to fit the behavior of the

subgap quasi-particle tunneling current through a Josephson junction [17]. The

modified DoS, normalized to the corresponding normal-state DoS at the Fermi

energy, is given by

N
Dynes
S (E) =

∣
∣
∣
∣
∣
ℜe

[

E/∆+ iγDynes
√

(E/∆+ iγDynes)2 −1

]∣
∣
∣
∣
∣
. (1.1)

It can be seen that γDynes indeed accounts for the broadening of the DoS around

∆ and the occurrence of states within the gap, see Fig 1.2. This expression is

frequently used in both numerical and analytical calculations [18], but concerning

the microscopic origin of the Dynes parameter γDynes , for temperatures far below
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Figure 1.2: (a) Plot in logarithmic scale of the Dynes DoS Eq. (1.1) as a function

of the rescaled energy E/∆ for different values of γDynes: 10−6 (blue), 10−4 (red),

10−2 (green), 10−1 (purple). Notice that N
Dynes
S (0) ≃ γDynes and N

Dynes
S (±∆) ≈

1/2
√

γDynes. Also shown is the ideal BCS DoS, NS(E), (yellow thick line). (b)

Close view of the subgap region of the zero-temperature I-V characteristic for

different Dynes parameters. From the flatter to the steeper curve, γDynes is equal

to 0 (blue), 10−5 (red), 10−4 (green), 10−3 (purple), 10−2 (orange).

Tc , relatively little is known. In general, the smearing of the DoS can be energy-

dependent.

Recently it was realized that the exchange of energy between the NIS junc-

tion and its surrounding electromagnetic environment may be one of the causes of

the smearing of the BCS DoS [16, 19]. Indeed, under certain conditions, energy

absorption from such an environment enables the crossing of the tunnel barrier

by single electrons even for |V | much less than ∆/e . Within this framework an

analytical expression for γDynes has been obtained in terms of the parameters char-

acterizing the NIS junction’s environment [16]. In this particular case, the Dynes

parameter found describes the smearing at all energies.

Following the idea of photon-assisted tunneling demonstrated in Ref. [16],

we generalize the approach here for an external circuit characterized by an ar-

bitrary impedance Z(ω) , kept at a temperature Tenv that is not necessarily the

temperature Tjun of the NIS junction, see Fig. 1.3(a). We obtain expressions for

the subgap leakage current and the subgap Dynes parameter γsub
Dynes , valid for en-

ergies smaller than the gap ∆ . Then we turn our attention to the circuit depicted

in Fig. 1.3(b), where we study the effects of the insertion of a lossy transmission

line, meant to act as a frequency-dependent filter, between the cold junction and
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Figure 1.3: Circuit representation of the two studied configurations. (a) A NIS

junction at temperature Tjun is connected in parallel to its capacitance C and to an

impedance Z(ω) which represents the high-temperature environment at temper-

ature Tenv ≫ Tjun . The whole circuit is biased by the constant voltage V . (b) A

transmission line of length ℓ is inserted between the junction and the impedance

Z(ω) of circuit (a). It is described by the parameters R0 , C0 and L0 , the resistance,

the capacitance and the inductance per unit length, respectively, as well as by its

temperature Tline which is assumed equal to Tjun .

the high-temperature external impedance Z(ω) . In particular we use our results to

understand under which conditions the transmission line will behave as a filter ca-

pable of reducing the photon-assisted tunneling induced by the high-temperature

external impedance and thus reducing γsub
Dynes to values that are compatible with

the accuracy requirements for applications such as the SINIS turnstile.

1.1 NIS junction coupled to a high-temperature

environment

1.1.1 Single-particle current

We start by considering the basic circuit illustrated in Fig. 1.3(a) where a

NIS junction is connected in series to an effective high-temperature impedance

Z(ω) . The junction itself is characterized by a tunnel resistance RT in parallel

with a capacitance C . The entire circuit is voltage biased. This constitutes a min-

imal model for a junction embedded in an external electromagnetic environment

at temperature Tenv , which can be much higher than the temperature Tjun of the

junction.

According to the so-called P(E) theory [1], the single-particle tunneling cur-
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(a) (b)

Figure 1.4: NIS junction connected to an external electromagnetic environment.

(a) The exchange of the energy E = h̄ω between the junction and the effective

impedance Z(ω) occurs by means of a certain number of photons. (b) The absop-

tion of just one photon with frequency (∆− eV )/h̄ allows one electron to over-

come the insulating barrier even if the bias voltage eV is below the energy gap

∆.

rent through a NIS junction coupled to an external environment is given by

INS(V ) =
1

eRT

∫

dE

∫

dE ′ NS

(
E ′)
[

1− f
(
E ′)
]

×
{

f
(
E − eV

)
− f
(
E + eV

)

}

P
(
E −E ′) . (1.2)

Here, the energy E refers to the electrons of the normal metal, E ′ is the energy

of the superconductor quasi-particles, NS(E
′) is the BCS density of states of the

superconducting wire divided by the normal-metal DoS at the Fermi level and

f (E) = [eβjunE +1]−1 is the Fermi-Dirac distribution with βjun = 1/kBTjun the in-

verse temperature of the junction. Expression (1.2) does not take into account the

higher order processes in tunneling which will be ignored throughout this chapter.

The validity of this assumption will be discussed in Sec.1.3.

The function P(E) in Eq. (1.2) is the probability density that the tunneling

electron exchanges an amount of energy E with the environment. This process

takes place through the emission or absorption of photons [see Fig 1.4]. It is

defined as

P(E) =
1

2π h̄

∫ +∞

−∞
dt eiEt/h̄ eJ(t) , (1.3)
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i.e., it is the Fourier transform of the exponential of the correlation function

J(t) = 2

∫ +∞

0

dω

ω

ℜe
[
Ztot(ω)

]

RK

×
{

coth
(1

2
βenvh̄ω

)[

cos
(
ωt
)
−1
]

− isin
(
ωt
)

}

. (1.4)

Here Ztot(ω) is the total impedance seen by the junction, resulting from the con-

nection in parallel of C and Z(ω) , RK = h/e2 is the quantum resistance and

βenv = 1/kBTenv .

The function J(t) determines the strength of the coupling between the NIS

junction and the environment. Indeed if J(t) = 0, the probability density P(E)
is equal to a Dirac delta δ (E) and the single-particle tunneling current is elas-

tic. Expression (1.2) then reduces to the standard expression for single-particle

tunneling in NIS junctions valid in the absence of environment. The environment-

induced inelastic tunneling processes occur only when J(t) 6= 0. In general, the

time intervals where the inelastic effects are important are related to the energy

ranges where P(E) 6= 0. The order of magnitude of J(t) sets the number of pho-

tons responsible for the single-particle tunneling. Depending on this number, the

coupling between the NIS junction and the multi-mode environment can be con-

sidered weak or strong. We will treat both regimes of weak and strong coupling

in more detail.

In order to analyze the smearing of the NIS junction’s I-V characteristic due

to the presence of the high-temperature environment, we will ignore the thermal

smearing induced by finite temperature of the N and S electrodes. This is an ade-

quate approximation under standard experimental conditions where Tjun ≪ ∆/kB .

Hereafter we will set the temperature of the junction Tjun to zero. Under this as-

sumption the single-particle current (1.2) becomes

INS(V )≃ 1

eRT

∫ +eV

−eV
dE

∫ +∞

∆
dE ′ NS

(
E ′) P

(
E −E ′) . (1.5)

We furthermore will focus on the subgap region of the I-V curve considering

|eV | ≪ ∆ . As a result, the integration variables |E| ≪ E ′ in (1.5), and we can

approximate P(E−E ′)≈P(−E ′) . The resulting integral over E can be performed

immediately to yield

Isub
NS (V )≃ γenv

V

RT
, (1.6)

where the factor γenv is given by the integral

γenv = 2

∫ +∞

∆
dE ′ NS

(
E ′) P

(
−E ′) . (1.7)
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We see that for the parameter γenv , Eq. (1.7), and hence the subgap current given

by Eq. (1.6) to be nonzero, the function P(E) should be nonzero for energies

E ≤ −∆ . This reflects the fact that under subgap conditions eV,kBTjun ≪ ∆ , a

nonzero single-particle current occurs only if the tunneling electrons absorb an

energy & ∆ from the environment. For instance, γenv = 0 for elastic tunneling in

the absence of an environment, when P(E) = δ (E) . We also expect γenv to vanish

when the temperature of the environment kBTenv is much less than the energy gap

∆ . Indeed, due to detailed balance [1], P(−E) = e−E/kBTenvP(E) , the function

P(E) is strongly suppressed for negative energies E < −kBTenv . This means that

the integral in (1.7) will vanish unless the environment is sufficiently hot, kBTenv &

∆ .

In order to make a connection with the aforementioned approach due to

Dynes, we linearize the usual expression for elastic single-particle tunneling in

a NIS junction, using the Dynes DoS (1.1) to characterize the superconducting

electrode:

ID
NS(V ) =

1

eRT

∫ +∞

−∞
dE ′ N

Dynes
S

(
E ′)
[

1− f
(
E ′)
]
{

f
(
E ′− eV

)
− f
(
E ′+ eV

)

}

.

By means of this expression, one obtains the linear subgap current-voltage rela-

tionship

Isub
NS (V ) =

√
√
√
√

γ2
Dynes

γ2
Dynes +1

V

RT
.

Comparing this result with Eq. (1.6) above, we conclude that, in the linear regime,

γenv can be related to the Dynes parameter in the subgap region, γsub
Dynes , according

to γenv =
√

γsub
Dynes

2
/(γsub

Dynes

2
+1) . We see in particular that the two parameters

coincide γsub
Dynes = γenv whenever γenv,γ

sub
Dynes ≪ 1. This shows that fluctuations

of a high-temperature electromagnetic environment constitute a possible micro-

scopic source of the phenomenological Dynes parameter, at least under subgap

conditions, eV,kBTjun ≪ ∆ .

1.1.2 Weak and strong coupling regimes

As we have seen above, the strength of the coupling between the NIS junction

and the environment is determined by the function J(t) . Let us assume that this

function is small, in a sense to be detailed below. Expanding the exponential

function exp[J(t)] up to the first order in J(t) , Eq. (1.3) becomes

P(E)≃ 1

2π h̄

∫ +∞

−∞
dt eiEt/h̄

[

1+ J(t)
]

. (1.8)
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The evaluation of the integral over time in (1.8) gives1

P(E) ≃ δ
(
E
)
+

1

h̄

∫ +∞

0

dω

ω

ℜe
[
Ztot(ω)

]

RK

×
{ [

coth
(1

2
βenvh̄ω

)

−1

]

δ
(E

h̄
+ω

)

+

[

coth
(1

2
βenvh̄ω

)

+1

]

δ
(E

h̄
−ω

)

− 2h̄ coth
(1

2
βenvh̄ω

)

δ
(
E
)

}

. (1.9)

We see that the function P(E) has an elastic contribution and an inelastic one in-

volving the exchange of exactly one photon between the junction and the environ-

ment. In fact the first and the fourth terms represent the elastic tunneling involving

zero and one virtual photon, respectively. The second and third terms are related

to the process of absorption and emission of one real photon, respectively. We

define this one-photon regime as weak coupling. On the other hand, the coupling

becomes strong whenever the single-photon exchange between the junction and

the environment is no longer the dominant effect. In this case, the higher-order

terms cannot be neglected in the series expansion of exp
[
J(t)

]
, indicating that

multi-photon processes have to be taken into account.

We proceed by determining the time interval where the expansion (1.8) holds.

Given the fact that J(t = 0) = 0, we expect this to be the short time interval [1].

We set Z(ω) = R for simplicity and introduce the dimensionless time τ = t/RKC

as well as the ratio ρ = R/RK . The quantity exp
{

ℜe
[
J(τ,ρ)

]}
decays monoton-

ically with increasing time τ , starting from unity at τ = 0, see Figs. 1.5(a) and

1.5(b). The rate at which it decays depends on ρ : the larger ρ , the faster it decays,

in agreement with Ref. [1]. We determine the relevant short time interval by de-

termining the characteristic time τ10% , at which the quantity exp
{

ℜe
[
J(τ,ρ)

]}

dropped by 10%.2 Figure 1.5(c) shows τ10% as a function of the parameter ρ ,

keeping Tenv and C fixed. The line τ10%(ρ) separates the weak coupling regime

found at short times from the strong coupling regimes reached for longer times.

As expected [1], with increasing ρ , the separatrix τ10%(ρ) decreases as 1/ρ , and

then saturates at a value τS ∼
√

h̄/kBTenvRKC for ρ > ρth ∼ τS . As shown in

Fig. 1.5(d), the curve τ10%(ρ) shifts up when decreasing the temperature of the

1note that the function P(E) given by Eq. (1.9) is normalized
2we consider the real part of J(t) because (i) it is responsible for the decay of the function P(E)

and (ii) typically ℜe[J(t)]& ℑm[J(t)] in the time interval τe < τ < τ∆ where the photon-assisted

tunneling is relevant.
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environment, Tenv , thereby increasing the time interval where the expansion (1.8)

holds.

We now return to the inelastic tunneling of single electrons through the NIS

junction. Under subgap conditions kBTjun,eV ≪ ∆ , the energy E relevant for

the photon-assisted tunneling processes is in the interval ∆ . E . kBTenv . The

upper bound corresponds to the largest energy the junction can absorb from the

environment. In time domain, we thus have to consider the interval τe < τ < τ∆

where τ∆ = h̄/∆RKC and τe = h̄/kBTenvRKC . This interval is represented by the

colored strip in Fig. 1.5(c). Note that on the logarithmic scale used here, the lower

bound τe almost coincides with the value τS at which the separatrix saturates for

large values of ρ . The intersection between τ∆ and the 10% curve τ10%(ρ) defines

the characteristic resistance ρ∆ separating the weak and strong coupling regimes.

When ρ < ρ∆ , coupling is weak and only single-photon absorption processes

occur (green area); if ρ ∼ ρ∆ both single- and multi-photon processes occur during

single-electron tunneling (yellow-orange area); as soon as ρ ≫ ρ∆ , multi-photon

processes become dominant (red area). In particular, the two limiting cases ρ ≪
ρ∆ ,ρth and ρ ≫ ρ∆ ,ρth are equivalent to the conditions R/RK ≪ ∆/kBTenv and

R/RK ≫ ∆/kBTenv respectively.

1.1.3 Subgap leakage current: weak coupling

We start by dealing with the weak coupling case. Since we are interested

in the subgap region of the I-V characteristic, kBTjun,eV ≪ ∆ , the behavior of

the function P(E) at energies E > −∆ is irrelevant. Therefore we can ignore

the elastic contributions in Eq. (1.9). Evaluating the integral over frequencies in

Eq. (1.9), the relevant contribution to the function P(E) for energies E 6= 0 reads

P(E)≃ 2
ℜe
[
Ztot

(
E/h̄

)]

RK

(

1+n
(
E
)

E

)

. (1.10)

Here n(E) = [eβenvE −1]−1 is the Bose-Einstein distribution of the photons of the

environment.

The probability density (1.10) can be used to get a limiting expression for

γenv ,

γenv = 4

∫ +∞

∆
dE NS(E)

ℜe
[
Ztot

(
E/h̄

)]

RK

n
(
E
)

E
. (1.11)

Let us apply this result to the example of a purely resistive external environment.

This model has been used before to study devices based on tunnel junctions in con-

nection with experiments [16, 20, 21]. Replacing the external impedance Z(ω) of

the circuit of Fig. 1.3(a) by a pure resistance R , the real part of the total impedance
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Figure 1.5: (a) Plot of exp{ℜe[J(τ,ρ)]} versus the dimensionless time τ = t/RKC

for different values of the dimensionless resistance ρ = R/RK : 0.001 (black),

0.005, (purple), 0.01 (blue), 0.05 (green), ∞ (red). Each curve is obtained using

Tenv = 5 K, and C = 10 fF . Also shown are the thresholds ±τe =±h̄/kBTenvRKC

(red dashed line) and ±τ∆ = ±h̄/∆RKC (dark green dashed line). The latter time

refers to Aluminum with ∆ ≃ 200 µeV. The horizontal magenta dashed line indi-

cates exp{ℜe[J(τ,ρ)]}= 0.9. (b) Close view of the plot in panel (a). (c) - (d) Plot

of the separatrix τ10%(ρ) as a function of ρ = R/RK , defined as the solution of the

equation exp
{

ℜe
[
J(τ10%,ρ)

]}
= 0.9 with C fixed. Both plots are in double loga-

rithmic scale. (c) For a fixed value of Tenv , τ10%(ρ) separates the weak and strong

coupling regions (black thick line). The colored strip indicates the time interval

bound by τ∆ (dark green dashed line) and τe (red dashed line). The intersection

between τ∆ and the separatrix τ10%(ρ) defines the resistance ρ∆ . The asymptotic

expression for τ10%(ρ) valid for ρ → 0 and proportional to 1/ρ is also shown (blue

dashed line). Its intersection with the line corresponding to τS ∼
√

h̄/kBTenvRKC

defines the threshold resistance ρth . On the logarithmic scale used here, τS almost

coincides with τe. (d) As the temperature of the environment, Tenv , is decreased,

the curve τ10%(ρ) moves up, thereby increasing the weak coupling region.
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Figure 1.6: (a) Plot of the rescaled function RKP(E)/R, Eq. (1.10), versus the en-

ergy E/∆ for different values of the ratio ∆RC/h̄. (b) Plot of the rescaled param-

eter RKγenv/R as a function of kBTenv/∆ for different values of the ratio ∆RC/h̄.

Solid lines are obtained by a numerical integration of Eq. (1.11) using Eq. (1.12).

Dashed lines refer to the asymptotic γenv given by Eq. (1.13).

is

ℜe
[
Ztot(ω)

]
=

R

1+(ωRC)2
. (1.12)

Numerical integration of Eq. (1.11) using Eq. (1.12) is straightforward. Results for

RKγenv/R as a function of kBTenv/∆ are shown in Fig. 1.6(b) for various values of

the parameter ∆RC/h̄. We see that γenv increases monotonically with temperature.

Also shown is the asymptotic linear temperature dependence of γenv reached for

temperatures kBTenv ≫ ∆ ,

γenv ≃ 2π
R

RK

kBTenv

∆

[

1− ∆RC/h̄
√

1+(∆RC/h̄)2

]

. (1.13)

This high-temperature expression is correct up to a constant shift≈∆/kB along the

temperature axis (see Fig. 1.6(b)). From Fig. 1.6(b) we see that as the parameter

∆RC/h̄ is increased, the slope characterizing the limiting dependence decreases:

photon-assisted inelastic tunneling is effectively reduced by increasing the junc-

tion capacitance. Note that in the limit ∆RC/h̄ ≪ 1 the result (1.13) tends to

γD
env = 2π(R/RK)(kBTenv/∆) . This formula has been already obtained in Ref. [16]

using P(E) theory under similar conditions, but for any bias voltage, using a high-

temperature expansion for the environment, see also Ref. [22]. Consequently, the

subgap parameter γD
env coincides with the Dynes parameter γDynes . In other words,

within this limiting case, the thermal energy kBTenv determines the NIS junction’s

I-V characteristic even around the superconducting gap, e|V | ∼ ∆ , as illustrated

in Ref. [16].
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1.1.4 Subgap leakage current: strong coupling

We do not aim to present a general analysis in the strong coupling limit. In

the particular case where ℜe[Ztot(ω)] is strongly peaked around ω = 0, the prob-

ability density P(E) can be calculated explicitly [1] and results for the parameter

γenv obtained. Let us illustrate this by considering a purely resistive environment.

When the resistance is big, R≫ RK∆/kBTenv (see Sec.1.1.2), the impedance (1.12)

becomes

ℜe[Ztot(ω)]≃
(

π

C

)

δ (ω) . (1.14)

As a result, the function P(E) is given by

P(E)≃ 1√
4πkBTenvEC

exp




−

(

E −EC

)2

4kBTenvEC




 . (1.15)

Here we defined the charging energy EC = e2/2C . Inserting the function (1.15)

in equation (1.7), we find

γenv =
1√

πECkBTenv

∫ +∞

∆
dE NS(E) exp




−

(

E +EC

)2

4ECkBTenv




 . (1.16)

Note that this result depends on R implicitly only, through the requirement R ≫
RK∆/kBTenv . Direct numerical integration of (1.16) yields γenv as a function of

kBTenv/∆ and EC/∆ , as shown in Figs. 1.7(a) and 1.7(b). Some remarks are in

order at this point. First of all, for EC ≪ ∆ , the integral in Eq. (1.16) can be

evaluated approximately, γenv ≃ e−∆2/kBTenvEC . As in the weak coupling regime,

large values of the capacitance lead to a reduction of the parameter γenv . Upon

increasing the ratio EC/∆ , γenv will first increase, then it decreases again when

EC/∆ > 1, which is a manifestation of the Coulomb blockade. As a function of

temperature, γenv increases monotonically, similarly to the weak coupling limit.

However, rather than reaching an asymptotic linear dependence, γenv saturates at

γenv = 1 for temperatures kBTenvEC ≫ ∆2 : the noise is so strong that features of

the order of the gap ∆ are washed out.

1.2 NIS junction coupled to a high-temperature

environment by means of a transmission line

In the previous section we have studied the subgap leakage current in a NIS

junction which is directly coupled to the external environment Z(ω) . We have
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Figure 1.7: (a) Plot of the parameter γenv as a function of kBTenv/∆ obtained con-

sidering the numerical integration of Eq. (1.16). Each curve refers to a certain

fixed value of the ratio EC/∆ (see legend). (b) Numerical plot of the same quan-

tity, Eq. (1.16), as a function of EC/∆ for different values of the ratio kBTenv/∆ ,

as indicated.

seen that a reduction of the subgap leakage current is possible when the capaci-

tance of the junction, C , is increased and/or the resistance of the environment, R ,

is decreased. Unfortunately, in real experiments R , and in particular C , cannot

be chosen arbitrarily and one needs other means to achieve the accuracy require-

ments for the aforementioned NIS junction’s applications. We therefore consider

the circuit of Fig. 1.3(b) where the junction is indirectly coupled to the external

noisy impedance Z(ω) via a low-temperature, lossy transmission line acting as a

frequency-dependent filter.

1.2.1 Voltage fluctuations in the presence of a transmission line

In order to find the correlation function J(t) in the presence of the transmis-

sion line, we follow the method developed in Ref. [23] to solve the intermediate

problem of the propagation of the noise generated by the high-temperature envi-

ronment with impedance Z(ω) through the line towards the junction, as shown in

Fig. 1.8. The line has a length length ℓ and is described by the parameters R0 ,

C0 and L0 , the resistance, the capacitance and the inductance per unit length re-

spectively. We ignore the thermal noise produced by the impedance ZJ(ω) and by

the line, assuming both components at zero temperature. The high-temperature

element produces current noise δ I which in turn induces voltage noise δV .

To understand how the potential drop δVJ across ZJ(ω) is connected to

δV = Z(ω)δ I , we start considering the potential V (x) and the current I(x) at a

given point x along the transmission line. They satisfy the two partial differential
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δVδVJ δIZJ(ω)

R0 , C0 , L0

Tenv

Z(ω)

x
ℓ0

Figure 1.8: Sketch of the circuit discussed in Sec. 1.2.1.

equations,

∂V (x)

∂x
=−I(x)

[

R0 − iωL0

]

,
∂ I(x)

∂x
= iωC0 V (x) .

Combining them one obtains the wave equation

∂ 2V (x)

∂x2
=−K2(ω) V (x) , (1.17)

where K2(ω) = ω2L0C0 + iωR0C0 is the wave vector squared of the signal which

propagates along the line. A general solution of Eq. (1.17) is given by

V (x) = A eiK(ω)x +B e−iK(ω)x . (1.18)

Consequently the current along the line is

I(x) =
1

Z∞(ω)

[

AeiK(ω)x −Be−iK(ω)x
]

, (1.19)

with Z∞(ω) = i
(
R0 − iωL0

)
/K(ω) . The parameters A and B can be determined

by means of the boundary conditions

V (ℓ) = Z(ω)
[

I(ℓ)+δ I
]

= Z(ω) I(ℓ)+δV

V (0) =−ZJ(ω) I(0) ,

assuming that the current flows in the counter-clockwise direction in the circuit of

Fig. 1.8. After some algebra, one obtains

A = −λ2(ω) B

B =

(
Z∞(ω) δV

Z∞(ω)+Z(ω)

)
1

e−iK(ω)ℓ−λ1(ω) λ2(ω) eiK(ω)ℓ
,

where

λ1(ω) =
Z∞(ω)−Z(ω)

Z∞(ω)+Z(ω)
λ2(ω) =

Z∞(ω)−ZJ(ω)

Z∞(ω)+ZJ(ω)
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are the reflection coefficients. As a result, the potential drop δVJ =V (0) = A+B

across the impedance ZJ(ω) depends on the noise δV according to the relation

δVJ = T (ω) δV . (1.20)

In this last equation we introduced T (ω) , the transmission function

T (ω) =
2 Z∞(ω) ZJ(ω)

[

Z∞(ω)+Z(ω)
][

Z∞(ω)+ZJ(ω)
]

1

e−iK(ω)ℓ−λ1(ω) λ2(ω) eiK(ω)ℓ
.

(1.21)

Assuming that the potential δV satisfies the quantum fluctuation-dissipation the-

orem,
〈

δV (t) δV (0)
〉

ω
= 2h̄ω

ℜe
[
Z(ω)

]

1− e−βenvh̄ω
,

the spectral density function of the potential (1.20) is

〈

δVJ(t) δVJ(0)
〉

ω
=
∣
∣
∣T (ω)

∣
∣
∣

2

2h̄ω
ℜe
[
Z(ω)

]

1− e−βenvh̄ω
. (1.22)

This expression describes the propagation of the noise from Z(ω) to the noiseless

impedance ZJ(ω) through the noiseless transmission line. The voltage-voltage

correlation function (1.22) is in agreement with the general formula given in

Ref. [23].

1.2.2 Correlation function for the transmission line circuit

We use Eq. (1.22) to calculate the modified correlation function JT (t) which

appears in Eq. (1.3). According to Ref. [1], J(t) is defined as the correlation

function

J(t)≡
〈

ϕJ(t)ϕJ(0)−ϕJ(0)ϕJ(0)
〉

, (1.23)

where the phase ϕJ(t) is the time integral of the potential δVJ(t) across the NIS

junction,

ϕJ(t)≡
e

h̄

∫ t

−∞
δVJ(τ) dτ .

In other words,

〈

ϕJ(t) ϕJ(0)
〉

ω
=
(e

h̄

)2 1

ω2

〈

δVJ(t) δVJ(0)
〉

ω
. (1.24)

Using the fluctuation-dissipation relation (1.22) in (1.24), we rewrite Eq. (1.23) as

a function of T (ω) , Z(ω) and Tenv . Taking the impedance ZJ(ω) to be the one of
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a capacitance C , the modified function JT (t) reads

JT (t) = 2

∫ +∞

0

dω

ω

∣
∣
∣TC(ω)

∣
∣
∣

2 ℜe
[
Z(ω)

]

RK

×
{

coth
(1

2
βenvh̄ω

)[

cos
(
ωt
)
−1
]

− isin
(
ωt
)

}

. (1.25)

Here TC(ω) is the function T (ω) , Eq. (1.21), with ZJ(ω) = ZC(ω) = −1/iωC .

Since the transmission line is considered noiseless, its temperature Tline should be

low, Tline ≪ ∆/kB . In what follows we set Tline = 0.

1.2.3 The transmission function

In order to understand the effect of the insertion of the transmission line in

the circuit of Fig. 1.3(a), a discussion about the general behavior of TC(ω) is

necessary. In general, the modulus squared of the transmission function (1.21) is

characterized by a series of resonance peaks, whose properties depend on ℓ , R0 ,

C0 , and L0 as well as on the external impedance Z
(
ω
)

. To have an idea of the

behavior of
∣
∣TC(ω)

∣
∣2 , let us consider the case of a purely resistive environment,

Z
(
ω
)
= R .

Figure 1.9 illustrates the behavior of
∣
∣TC(ω)

∣
∣2 as a function of ωRC for dif-

ferent values of the dimensionless parameters z0 =
√

L0/C0/R , c0 = ℓC0/C and

r0 = ℓR0/R . Also shown is the Lorentzian result

∣
∣TC(ω)

∣
∣2 = 1/[1+(ωRC)2] (1.26)

found for ℓ = 0, i.e., in the absence of the transmission line. In other words,

Eq. (1.26) describes the spectrum of the transmitted signal through a lumped RC

low-pass filter. In order for the line to be an efficient filter, we require
∣
∣TC(ω)

∣
∣2 to

be below this Lorentzian curve in the relevant frequency ranges. We see that both

the position and the width of the resonance peaks are proportional to π/2c0z0 :

the longer is the transmission line, the denser around zero and the sharper are

the peaks. Their height decreases rapidly as the dimensionless frequency ωRC is

increased. This can be seen in particular when the line has no losses, r0 = 0, see

Figs. 1.9(a) – 1.9(d). Although the Lorentzian curve is approached for lossless

lines when c0 or z0 is reduced, we observe no real reduction below it.

A significant reduction of the height of the peaks is possible if the line which

connects the NIS junction and the environment is lossy, r0 6= 0. Indeed, we see

from Figs. 1.9(e) and 1.9(f) that the bigger is r0 the smaller are the local maxima of
∣
∣TC(ω)

∣
∣2 . Moreover, the transmission function is even much smaller than 1/

[
1+
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Figure 1.9: Plots of the transmission function
∣
∣TC(ω)

∣
∣2 as a function of the di-

mensionless variable ωRC. Each panel corresponds to a different set of the pa-

rameters z0 , c0 , and r0 : (a) r0 = 0, c0 = 1, z0 = (7,5,4,3) ; (b) r0 = 0, z0 = 5,

c0 = (10,7,5,3) ; (c) r0 = 0, c0 = 1, z0 = (0.8,0.6,0.5,0.3) ; (d) r0 = 0, z0 = 0.7,

c0 = (10,7,5,3) ; (e) z0 = 10, c0 = 1, r0 = (1,2,3,4) ; (f) z0 = 10, c0 = 1,

r0 = (7,9,10,12) .
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Figure 1.10: Plot of the transmission function
∣
∣TC(ω)

∣
∣2 as a function of the di-

mensionless variable ωRC for different values of the parameter r0. The other

parameters are: c0 = 1, z0 = 0.7. Also shown is the Lorentzian corresponding to

the function
∣
∣TC(ω)

∣
∣2 in the limit ℓ→ 0, given by Eq. (1.26).

(
ωRC

)2]
when the condition r0 ≫ z0 is satisfied, as is seen in Figs. 1.9(f) and 1.10.

Therefore, within this particular limit, the insertion of a resistive transmission line

may be convenient.

1.2.4 Subgap leakage current: weak coupling

We expect that the single- and multi-photon regimes, weak and strong cou-

pling respectively, are strongly related to the resistance per unit length, R0 . Let us

analyze the situation proceeding as in Sec.1.1.2. We consider the function τ10%(ρ)
for a purely resistive environment. In Fig. 1.11 we plot τ10%(ρ) as a function of

the dimensionless resistance ρ for different values of R0 . We see that the lossier

the transmission line is, the more the weak coupling region spreads out. The resis-

tance ρ∆ , given by the intersection between τ10%(ρ) and the line corresponding to

the dimensionless time τ∆ = h̄/∆RKC , significantly shifts towards higher values

of ρ as R0 is increased; the lossy line indeed protects the junction from the high-

temperature external environment. Hereafter, we will therefore focus on a highly

resistive transmission line and only the weak coupling regime will be treated.

With the help of Eq. (1.25), the function P(E) for the circuit of Fig. 1.3(b)

can be obtained in the weak coupling regime. Proceeding as in Sec. 1.1.3, we find

P(E)≃ 2

∣
∣
∣TC(E/h̄)

∣
∣
∣

2 ℜe
[
Z
(
E/h̄

)]

RK

(

1+n
(
E
)

E

)

. (1.27)

Evaluating the relation (1.27) for negative energies and inserting the result into
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Eq. (1.7), the parameter γenv can be written as

γenv = 4

∫ +∞

∆
dE NS(E)

∣
∣
∣TC(E/h̄)

∣
∣
∣

2 ℜe
[
Z
(
E/h̄

)]

RK

n
(
E
)

E
. (1.28)

We next specialize to the case of large resistance per unit length, R0 . In order

to obtain a limiting expression for
∣
∣TC(ω)

∣
∣2 for R0 → ∞ , let us assume that the

inductive properties of the line are negligible compared to R0 . Since the relevant

frequency scale is given by ∆/h̄ , this means that the condition R0 ≫ L0∆/h̄ should

hold. Within this RC limit, we find that the wave vector K(ω) of the signal prop-

agating through the transmission line has an imaginary part equal to
√

ωR0C0/2.

As a result, the amplitude of the noise is exponentially attenuated along the line

(see Eqs. (1.18) and (1.19)) being proportional to exp
[
− ℓ

√
2ωR0C0

]
. We see

that the bigger ℓ and R0 are, the smaller is the voltage noise which reaches the

junction. In particular, an exponential suppression of the propagating signal is

achieved when the inequality ℓ
√

2∆R0C0/h̄ ≫ 1 is valid as well. This additional

condition allows us to write the equation3

∣
∣
∣e

−iK(ω)ℓ−λ1(ω)λ2(ω) eiK(ω)ℓ
∣
∣
∣

2

= eℓ
√

2ωR0C0

{

1+ |λ1λ2|2 e−2ℓ
√

2ωR0C0

− 2ℜe
[

λ1λ2 eiℓ
√

2ωR0C0

]

e−ℓ
√

2ωR0C0

}

≃ 4 eℓ
√

2ωR0C0 . (1.29)

Then the modulus squared of the transmission function TC(ω) becomes

∣
∣
∣TC(ω)

∣
∣
∣

2

≃

∣
∣
∣
∣
∣
∣

Z∞(ω) ZC(ω) e−ℓ
√

2ωR0C0/2

[

Z∞(ω)+Z(ω)
][

Z∞(ω)+ZC(ω)
]

∣
∣
∣
∣
∣
∣

2

(1.30)

where Z∞(ω)≃ (1+ i)
√

R0/2ωC0 for a line in the RC limit. Combining the two

conditions used so far, we find that the approximated function (1.30) holds when

the resistance of the transmission line, ℓR0 , is much bigger than its characteristic

impedance Z∞ =
√

L0/C0 .

Increasing the resistance per unit length, R0 , one also expects that interfer-

ence effects become negligible. Indeed, when R0 is very big, the amplitude of

the signal across the junction is much smaller than its starting value and its re-

flected counterpart vanishes rapidly before reaching the noise source again. In

terms of our description of the transmission line given in Sec. 1.2.1, this hap-

pens when the reflection coefficients λ1(ω) and λ2(ω) tend to 1. In fact, in this

3approximating the expression inside the braces with the factor 4 guarantees that TC(0) = 1.
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Figure 1.11: Plot of the dimensionless time τ10%(ρ) as a function of the dimen-

sionless resistance ρ = R/RK for different values of the resistance per unit length,

R0 , of the transmission line (see legend). Also shown is the curve τ10%(ρ) , valid

for the circuit of Fig. 1.3(a) (black dashed line). The value of the other parameters

are: ∆ ≃ 200 µeV (energy gap of Aluminum), Tenv = 5 K, C = 10 fF, C0 = 6ε0 ,

L0 = µ0 , ℓ= 10 µm.

limit, the potential drop (1.18) tends to 0 across the junction and to δV across the

impedance Z(ω) . For a purely resistive environment, this regime is reached when

R0 is such that the two inequalities R2 ≪ h̄R0/2C0∆ and ∆R0C2/h̄C0 ≫ 2 hold,

in other words, when the resistance of the environment, R , is much smaller than

R0C/2C0 . Equation (1.30) then reduces to the asymptotic expression

∣
∣
∣TC(ω)

∣
∣
∣

2

= e−ℓ
√

2ωR0C0

[

1+

(

2+
RC0

R0C

)

(ωRC)+

(

1+
R0

ωC0R2

)

(ωRC)2

+

(
1

R
+

2C0

R0C

)

(ωRC)2

√
R0

2ωC0
+

(
1

R
+

C0

R0C

)

(ωRC)

√
R0

2ωC0

]−1

≃ e−ℓ
√

2ωR0C0

1+ωR0C2/C0
. (1.31)

Unlike the lumped RC low-pass filter described by the 1/ω−decaying Eq. (1.26),

in this case we see that the amplitude of the transmitted frequencies relevant for

the photon-assisted tunneling is exponentially suppressed as the length, ℓ, and the

resistance per unit length, R0, of the line are increased. By means of Eq. (1.31),

the integral in Eq. (1.28) can be evaluated approximately with the result4

γenv ≃ 4
R

RK

1

e∆/kBTenv −1

√

π

ℓ
√

2∆R0C0/h̄

e−ℓ
√

2∆R0C0/h̄

1+∆R0C2/h̄C0
. (1.32)

4when ℓ and R0 are large, ℓ
√

2∆R0C0/h̄ ≫ 1, the main contribution to the integral Eq. (1.28)

is obtained for E ≃ ∆. Then the following approximations hold:
√

E2 −∆2 ≈
√

2∆
√

E −∆;

exp[E/kBTenv]≈ exp[∆/kBTenv];
√

E/∆ ≈ 1/2+E/2∆.
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Figure 1.12: Plot of the parameter γenv , Eq. (1.28), as a function of the length of

the transmission line ℓ . The red solid line is obtained by means of the numerical

integration of Eq. (1.28) for a purely resistive environment. The blue dashed line is

the plot of the asymptotic parameter given by the Eq. (1.32). These two curves are

plotted for different values of the resistance per unit length R0 (Ω/m) (as indicated

in the graph). All the plots are obtained considering the gap parameter of the

aluminum, ∆ ≃ 200 µeV . The other parameters are: Tenv = 5 K, C = 10 fF , R =
10 Ω , C0 = 6ε0 , L0 = µ0 .

We notice that also the asymptotic parameter γenv decreases exponentially in terms

of ℓ and R0 ; the dependence on the junction capacitance C is rather weak. The

insertion of a highly resistive and noiseless transmission line between the NIS

junction and the high-temperature environment indeed helps to suppress the sub-

gap leakage current. The plot of Fig. 1.12 shows the exponential decay for a set

of values of R0 and ℓ that can be used in real experiments. Particularly interest-

ing is the region where 108 Ω/m . R0 . 1010 Ω/m and 10 µm . ℓ . 102 µm .

A transmission line with these values of R0 and ℓ allows one to go far below

γenv ≃ γsub
Dynes ∼ 10−7 , i.e., a value of γenv which guarantees the achievement of the

accuracy requirements for the superconducting gap-based technological applica-

tions of the NIS junction [10].

1.3 Multi-particle tunneling

Our analysis focuses on the single-particle subgap current through the NIS

junction. We ignore the contribution due to higher order processes in tunneling,

such as Andreev reflection [13–15]. Hence, in order to establish the validity of our

single-particle tunneling assumption, one has to compare the parameter γenv char-

acterizing the leakage current with the dimensionless Andreev subgap conduc-

tance gA = GART . In ballistic junctions, second-order perturbation theory yields
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the standard two-particle subgap conductance

GA ≃ RK/[R
2
T (k

2
FS)] , (1.33)

where k2
FS is the number of conduction channels in the tunnel barrier. Two-

electron tunneling can be ignored as long as γenv > RK/RT k2
FS . Typical esti-

mates [15] yield RK/RT k2
FS ∼ 10−7 .

On the other hand, in the diffusive case the electrons reflected by the barrier

are backscattered by the impurities randomly situated close to the barrier in the

normal metal. Interference between the electrons in a region characterized by the

coherence length ξN =
√

h̄D/max{eV,kBTjun} , where D is the diffusion coeffi-

cient, affects the two-particle tunneling probability [24, 25]. As a result, GA is

given by

GA ≃ RN/R2
T (1.34)

where RN is the resistance of the diffusive normal metal over a length ξN . General

estimates are hard to give in this situation, since the result is strongly geometry-

dependent; the condition γenv > RN/RT will be more stringent than the one for the

ballistic case, especially under subgap conditions where ξN and hence RN can be

large.

Should Andreev reflection become dominant, one can always suppress it ef-

ficiently using the Coulomb blockade feature [15] that suppresses two-particle

tunneling more strongly than single-particle tunneling.

1.4 Conclusions

In conclusion, we studied the single-particle tunneling current through a

voltage-biased NIS junction. Due to the presence of the superconducting energy

gap ∆ in the BCS density of states, when the junction is kept at the temperature

Tjun ≪∆/kB no current is expected to flow within the subgap region −∆< eV <∆ .

Actually, even if the higher order tunneling processes are suppressed, a small sub-

gap current is still measured experimentally. This leakage current limits the accu-

racy in applications involving NIS junctions. The origin of the leakage current is

the exchange of energy exceeding the gap ∆ between the junction and the external

high-temperature environment in which it is embedded. We studied this mecha-

nism analytically and numerically. In particular, we found that a low-temperature

and lossy transmission line inserted between the junction and the environment re-

duces exponentially the subgap leakage current acting as a frequency-dependent

filter. This indirect configuration helps to achieve the required suppression of

noise.



CHAPTER 2
Effect of Photon-Assisted Andreev

Reflection in the Accuracy of a

SINIS Turnstile

Introduction

The experimental realization of a quantum electric current standard is one

of the scientific and technological challenges of the present time. This is a key

goal in metrology because it would lead to a modern definition of Ampere as

well as to the most accurate comparison of the fundamental constants RK = h/e2

and KJ = 2e/h [26]. Among the devices proposed until now [27–32], the hybrid

SINIS single-electron transistor (SET) depicted in Fig. 2.1 is one of the most in-

teresting candidates [33]. Such a device is formed of a normal-metal (N) island

joined to two superconducting (S) electrodes via two tunnel junctions with capaci-

tances CS for the source (S) and CD for the drain (D). The entire structure is biased

with a constant voltage VD −VS = V . The amount of electric charge localized on

the island is controlled using a gate potential Vg(t), capacitively coupled to N by

means of a gate with capacitance Cg. Typically, the charging energy of the island

EC = e2/2CΣ, with CΣ = CS +CD +Cg, governs the tunneling processes in the

SET, i.e., the system works in the Coulomb blockade regime. Additional energy

filtering is provided by the two outer superconductors which protect the device

against unwanted tunneling events. In this context, if the single-electron tunnel-

ing is the dominant process, a periodic Vg(t) signal with frequency f generates an

electric current I through the SET which is equal to e f . In other words, the SET

is a frequency-to-current converter. However, high-order tunneling events occur

in addition to the single-particle ones. They limit the conversion accuracy of this

electronic turnstile thereby acting as error sources. The main contribution to the

total error is usually provided by elastic and inelastic cotunneling [34, 35] as well

as Andreev reflection and Cooper-pair cotunneling [36, 37]. From the theoreti-

23
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cal point of view, it has been shown that all these processes may be eliminated

efficiently thereby reaching the metrological requirements [36]. Nevertheless,

in real experiments the achievement of the accuracy needed for the completion

of the so-called quantum metrological triangle remains a difficult task. In par-

ticular, a residual Andreev tunneling current affects the I-V characteristic of the

SET turnstile although the increase of the charging energy EC, with respect to the

gap parameter ∆ of the superconductors leads to a decrease of Andreev reflection

probability [37]. Such a two-electron current noise may be due to the effect of the

high-temperature electromagnetic environment the SINIS device is coupled with.

The energy provided by such an external thermal bath to the SET via the exchange

of photons can promote tunneling of particles through the single junction [16,38].

In this chapter, we show that, indeed, the environment-assisted Andreev reflection

limits the turnstile accuracy, unless it is properly taken care of.

SS N

VD =V/2

Vg

Cg

CS CD
source island drain

VS =−V/2

Figure 2.1: Hybrid SINIS single-electron transistor (SET). The black parts stand

for the insulating barriers of the tunnel junctions.

2.1 Electronic transport in a SINIS turnstile

In the Coulomb blockade regime, the electronic transport in the SINIS device

of Fig. 2.1 is determined by the charging energy EC. For a symmetric device,

CS = CD = C, assuming that initially the excess electric charge localized on the

island is −ne, with n an integer, the energy cost to add (+N, in) or remove (−N,

out) N extra-electrons to or from the central normal-metal electrode is given by

E in/out
D (n,N) ≡ ED

island(n±N)−ED
island(n) =

= ECN2 ± 1

2
eV N ±2EC(n−ng)N , (2.1)

if the tunneling process occurs through the drain (D), and

E in/out
S (n,N) ≡ ES

island(n±N)−ES
island(n) =

= ECN2 ∓ 1

2
eV N ±2EC(n−ng)N , (2.2)
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Figure 2.2: Close view of the overlapping region between the Coulomb diamonds

for n = 0 and n = 1 obtained using (a) EC/∆ = 1, (b) EC/∆ = 0.6, and (c) EC/∆ =
2. Also shown are the single- (dashed blue lines) and two-particle (dashed red

lines) thresholds and the optimal loop (solid black lines) at eV ≃ ∆ from ng = ng,1

to ng = ng,2.

when the insulating barrier of the source (S) is overcome (see Appendix A). In

Eqs. (2.1), and (2.2), the total energy of the island E i
island(n±N), with i = S,D,

is the difference between the electrostatic energy due to the Coulomb interactions

involving also the induced charge, and the work done by all the voltage sources

to increase or decrease n with the tunneling of N particles through one of the

insulating layers; ng =CgVg/e is the gate-induced charge [1, 39].

2.1.1 Single-electron tunneling

Due to the energy gap in the BCS density of states of a superconductor,

single-electron tunneling events (N = 1) are energetically allowed above the gap,

i.e., when the changes in energy Eqs. (2.1), and (2.2) are smaller than −∆. On the

contrary, above −∆ the excess charge −ne of the island remains fixed to its initial
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value. Per each n, the threshold conditions E in/out
D (n,1) = −∆ and E in/out

S (n,1) =
−∆ give rise to four crossing lines in the plot of the total bias voltage V as a func-

tion of the gate-induced charge ng. The four intersection points between these

lines are the edges of the so-called Coulomb diamond which is a stability region

for the system. This means that no single-electron tunneling process can occur

for the values of V and ng within its area. Unlike the case of a fully normal SET,

NININ, the Coulomb diamonds for a SINIS device corresponding to different n

overlap (see Appendix A). Specifically, when EC ∼ ∆, the stability region for a

given n shares two distinct portions of the V vs ng plane with the n+1 and n−1

diamonds, i.e., in each overlapping area at most two different values of n are sta-

ble. This feature is at the basis of the generation of a controlled and synchronized

single-electron current through the hybrid single-island structure of Fig. 2.1. In

this regard, let us consider, for instance, the plot of Fig. 2.2(a) where a close view

of the Coulomb diamonds corresponding to n = 0 and n = 1 and their shared part

are shown. In principle, to have a cycle corresponding to a single-particle transfer

from the source to the drain, ng has to move along a closed path in the V vs ng

plane which connects the diamonds where n = 0 and n = 1 are stable. Thanks

to the presence of the overlapping region, this kind of connection can be realized

avoiding the part of the plane where both n= 0 and n= 1 are unstable. As a result,

each single-electron tunneling event to/from the central island can be controlled

by means of the gate potential Vg. During each cycle of ng along the working loop,

the bias voltage V is usually kept fixed close to ∆/e. For this optimal value, the

superconducting energy gap ∆ guarantees an efficient suppression of thermally-

activated tunneling events and quasi-particle excitations as well as elastic and in-

elastic cotunneling processes [33, 36]. A typical loop used in real experiments

with these features is shown in Fig. 2.2(a). Starting from ng = ng,1, the number of

excess electrons localized on island, whose initial value is n = 0, remains constant

until the threshold Sin(0,1), defined by the equation E in
S (0,1) = −∆, is crossed.

At that point one electron can enter in the central electrode via the source junction

and n passes from 0 to 1. Once ng = ng,2 is reached, the closed path is covered

backward. The extra electron on the island can tunnel out through the drain only

after overcoming the threshold Dout(1,1), given by the equation Eout
D (1,1) =−∆.

When ng is again equal to ng,1, the island is back in its initial state and a new

cycle can start. Since per each cycle exactly one electron is transferred from the

source to the drain, driving ng from ng,1 to ng,2 and back to ng,1 with a signal with

frequency f allows to generate the single-electron current I = e f .
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2.1.2 Andreev reflection and higher-order processes

In addition to single-electron tunneling events, the current flowing through

a SINIS transistor is, in general, also affected by the Andreev reflection, i.e., the

transfer of two-electrons per unit of time inside or outside the island [13,40]. This

second-order tunneling process is insensitive to the energy barrier provided by the

superconducting gap. This means that the rate of the transitions n → n± 2 can

be relevant although the device is working at the optimal bias, eV ≃ ∆. As a re-

sult, the Coulomb diamonds for the Andreev reflection events are obtained just

imposing that the energies Eqs. (2.1) and (2.2) for N = 2 are smaller than zero

(see Appendix A). However, as shown in Figs. 2.2(b) and 2.2(c), the energy ∆,

together with the charging energy EC, plays an important role in the determination

of the two-electron tunneling probability. If the ratio EC/∆ is smaller than 1, the

Andreev diamonds are contained within the single-particle stability regions. In

this case, we see from Fig. 2.2(b) that the optimal loop crosses the two-particle

threshold Sin(0,2), given by the equation E in
S (0,2) = 0, before the single-electron

line Sin(0,1), while going from ng,1 to ng,2. When ng is decreased back to ng,1,

the closed path overcomes Dout(1,1) after Dout(1,2), the line corresponding to

Eout
D (1,2) = 0. It follows that, in this regime, the control of single-electron tun-

neling is compromised by the Andreev transitions 0 → 2 and 1 → −1. On the

other hand, when EC/∆ > 1, the single-particle diamonds are smaller than the

ones for Andreev reflection. Now, the two-particle thresholds can be avoided, as

shown in Fig. 2.2(c), thereby suppressing the probability to increase/decrease the

charge of the island by two electrons per each tunneling event (see Appendix A

for more details).

However, higher-order processes, such as the cotunneling of one electron and

one Cooper-pair [36], can occur while ng covers the loop of Fig. 2.2(c). They can

limit the single-electron transfer accuracy even if EC/∆ > 1. In particular, the

more the system stays in the overlapping region where more than one charge state

is stable, the bigger the effect of unwanted transitions would be. To decrease the

influence of the higher-order error events, the signal ng(t) which is usually used to

go from ng,1 to ng,2 and back to ng,1 is a square-wave. This choice guarantees that

the time spent in between ng,1 and ng,2 is minimized. On the other hand, the period

τ = 1/ f of ng(t) has to be long enough in order for the single-particle tunneling

processes to take place. If the number n changes by one electron with the rate Γ1e,

then the tunneling error or probability that the charge of the island remains the

same is ε ∼ exp(−Γ1e/2 f ). In particular, the requirement ε . εmetr = 10−8 has

to be satisfied for the definition of the quantum current standard. This means that

the operation frequency has to be f ≃ 20 MHz in order to have the metrological

current I = eΓ1e ≃ 100 pA [36].
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2.2 Environment-assisted Andreev reflection

2.2.1 The effect of the electromagnetic environment on the

electronic transport

As discussed in the previous section, the tunneling processes involving more

than one electron may be reduced biasing the SINIS turnstile at the optimal value

eV ≃∆, considering EC/∆> 1 and using for ng(t) a square-wave-like signal which

oscillates with frequency f between the two induced gate charges ng,1 and ng,2 of

Fig. 2.2(c). Under these conditions, one expects to measure the current I = e f

with a relatively high accuracy. In principle, it should be possible even going

below the relative error εmetr required by the metrological applications. However,

in real experiments, the achievement of the accuracy needed for the definition of

the quantum current standard still remains a difficult task.

The coupling of the hybrid turnstile with its surrounding high-temperature

electromagnetic environment may be a detrimental source of error [16]. Indeed, as

discussed in Chapter 1, the absorption/emission of energy from/to such a thermal

bath allows the tunneling of electrons, even when the overcoming of the insulating

barrier results to be energetically forbidden for a well isolated SET. Nevertheless,

the environment-assisted tunneling of quasi-particles can be efficiently suppressed

using, for instance, an on chip capacitively coupled ground plane [16] and/or by

means of a highly-resistive transmission line [38]. The main contribution to the

leakage current observed in the I-V characteristic is typically due to the Andreev

reflection. Although large charging energies, EC > ∆, should reduce the probabil-

ity for this two-particle process to occur, the tunneling of Cooper-pairs still can

have a strong influence on the current flowing through the transistor [9, 37]. The

enhancement of the Andreev tunneling events due to the coupling of the system

with the external bath may account for this behavior. To understand under which

conditions the environment-assisted Andreev reflection can be relevant, we con-

sider the circuit of Fig. 2.3 where we introduce the effective impedances Z1(ω),
Z2(ω) and Zg(ω) to model the thermal bath. We assume also that the two junc-

tions in the system have the same tunnel resistance RT .

2.2.2 Single-photon-assisted two-electron tunneling rate

In order to find the tunneling rate of the Andreev reflection process under the

effect of the electromagnetic environment, we start by considering the tunneling

Hamiltonian

ĤT = eiϕ̂env ∑
k,p,σ

tk,p

(

upγ̂†
p,σ + vpγ̂−p,−σ

)

âk,σ +h.c. , (2.3)
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Figure 2.3: Circuit representation of the hybrid S-I-N-I-S single-electron transis-

tor (SET). The two NIS junctions constituting the device have the same capaci-

tance C and tunnel resistance RT and are connected to the source VS =−V/2 and

drain VD = V/2 voltages via the impedances Z1(ω) and Z2(ω) respectively. The

normal metal island is controlled by means of the gate voltage Vg via the capac-

itance Cg. The gate impedance Zg(ω) together with Z1(ω) and Z2(ω) represent

the electromagnetic environment at temperature Tenv.

which accounts for the transfer of two electrons between the normal-metal island

and one of the superconducting electrodes of the SINIS SET of Fig. 2.3. Equation

(2.3) is written in terms of the creation γ̂†
p,σ (â

†
k,σ ) and annihilation γ̂p,σ (âk,σ )

operators of quasiparticles (electrons) in S (N) with wave vector p (k) and spin

σ =↑,↓. The tunnel matrix elements tk,p, in general, depend on p and k. The BCS

coherence factors up and vp are spin-independent and satisfy the relations

u2
p = 1− v2

p =
1

2

(

1+
ξp

εp

)

, upvp =
∆

(ε2
p −∆2)1/2

, (2.4)

where ξp is the energy of an electron in S with momentum p measured with re-

spect to the Fermi level, and εp = (ξ 2
p +∆2)1/2 is the quasiparticle energy. The

translation operator eiϕ̂env in Eq. (2.3) accounts for the change of the charge of the

electrodes due to the environment-assisted tunneling of one electron. Consider-

ing the environment as an infinite ensemble of quantum harmonic oscillators with

temperature Tenv (Caldeira-Leggett model [41–43]), the fluctuating phase ϕ̂env can

be written as

ϕ̂env = ∑
λ

ϕ̂λ = ∑
λ

ρλ

(

ĉ
†
λ + ĉλ

)

(2.5)

where the phase ϕ̂λ represents the position operator of the harmonic oscillator λ
with mass Cλ and characteristic frequency ωλ = 1/

√
LλCλ . The coupling term

is ρλ = (e/h̄)
√

h̄/2Cλ ωλ , and the operators ĉ
†
λ

and ĉλ create and annihilate one

photon with energy h̄ωλ (see Appendix B). Hereafter, we assume that the cou-

pling of the SINIS with the environment is weak, meaning that at most a single
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photon is involved in the exchange of energy between the system and the thermal

bath [38]. In other words, we consider the limit where ρλ ≪ 1 and the series ex-

pansion of the charge translation operator Eq. (2.5) in ĤT can be truncated at the

first order, i.e., eiϕ̂env ≃ 1+ iϕ̂env. The validity of this assumption will be discussed

in the following.

Let us focus on the Andreev process 1 →−1, characterized by the transfer of

two electrons from the normal metal island to the superconducting drain electrode

as a Cooper pair. According to perturbation theory in ĤT , the total probability

amplitude to have such a second-order event in the system of Fig. 2.3 is given by

Aλ
k1,k2

= ∑
mλ

〈
fλ |ĤT |mλ

〉〈
mλ |ĤT |iλ

〉

ζmλ
−ζiλ + iη

, (2.6)

for fixed values of the environmental index λ , and of the initial wave vectors k1

and k2. Here the initial state is

|iλ 〉= |k1 ↑,k2 ↓〉N ⊗|npairs,✓✓❙❙p〉S ⊗|nλ +1〉env , (2.7)

with two electrons in N with opposite spin and momenta k1 and k2, npairs Cooper

pairs in S and no quasiparticle excitations, and nλ + 1 photons with energy h̄ωλ

in the environment. On the other hand, the final state is

| fλ 〉= |✟✟✟❍❍❍k1 ↑,✟✟✟❍❍❍k2 ↓〉N ⊗|npairs +1,✓✓❙❙p〉S ⊗|nλ 〉env , (2.8)

with an additional Cooper pair in S, two less electrons in N and one less photon in

the Caldeira-Leggett bath. The transition from the state (2.7) to the state (2.8) is

determined by all the possible intermediate virtual states |mλ 〉 such that a quasi-

particle with momentum p is created in S after the annihilation of one of the two

electrons in N. As illustrated in Fig. (2.4), only one of the two tunneling electrons

can absorb the energy of the only available photon, in the weak coupling limit. As

a result, for a fixed wave vector p of the virtual quasiparticle in S, only the four

intermediate states

|1λ 〉 = |k1 ↑,✟✟✟❍❍❍k2 ↓〉N ⊗|npairs,p〉S ⊗|nλ +1〉env ,

|2λ 〉 = |k1 ↑,✟✟✟❍❍❍k2 ↓〉N ⊗|npairs,p〉S ⊗|nλ 〉env ,

|3λ 〉 = |✟✟✟❍❍❍k1 ↑,k2 ↓〉N ⊗|npairs,p〉S ⊗|nλ +1〉env ,

|4λ 〉 = |✟✟✟❍❍❍k1 ↑,k2 ↓〉N ⊗|npairs,p〉S ⊗|nλ 〉env , (2.9)

can give a non-zero contribution to Aλ
k1,k2

. The difference between the energies

ζmλ
of these virtual states and the energy ζiλ − iη of the initial state |iλ 〉 deter-

mine the amplitude Eq. (2.6). The imaginary part η = h̄Γ1→0/2 accounts for the
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Figure 2.4: Feynman diagrams of the two possible single-photon absorption pro-

cesses giving rise to the environment-assisted Andreev reflection.

lifetime broadening of |iλ 〉 due to the competing single-electron tunneling pro-

cesses occurring with rate Γ1→0. According to perturbation theory in the tunnel-

ing Hamiltonian ĤT , the first-order rate, describing one electron going out of the

island through the drain, can be written as

ΓDynes

1→0 =
1

2π

∆

h̄

RK

RT

∫ |Eout
D (1,1)|

0

N
Dynes

S (E/∆)

∆
dE (2.10)

in terms of the Dynes density of states of a superconductor [17],

N
Dynes

S (E/∆) =

∣
∣
∣
∣
∣
ℜe

[

E/∆+ iγDynes
√

(E/∆+ iγDynes)2 −1

]∣
∣
∣
∣
∣
, (2.11)

which depends on the phenomenological Dynes parameter γDynes (see Chapter 1).

In Eq. (2.10), Eout
D (1,1) = 2EC(ng − 1/2)− eV/2 is the energy cost that has to

be payed by the voltage sources in order for the transition 1 → 0 to occur [see

Eq. (2.1)]; RK = h/e2 is the resistance quantum. The Dynes rate Eq. (2.10) is

valid in the zero-temperature limit, kBTSINIS ≪ ∆, and takes into account the most

relevant single-electron error sources, such as the environment.

Using Eqs. (2.7), (2.8), and (2.9), the amplitude Eq. (2.6) reads

Aλ
k1,k2

= i t2
0

√

fk1

√

fk2
ρλ

√
nλ ∑

p

(
upvp

)
Sp,λ , (2.12)

for a low-temperature hybrid single-electron transistor, kBTSINIS ≪ ∆, and as-

suming constant tunneling matrix elements, tk,p = t∗k,p = t0 (point tunnel junc-

tion). In Eq. (2.12), we introduced the Fermi-Dirac distribution function fk =
[exp(ξk/kBTSINIS)+1]−1 for the normal metal electrons and the sum of the interm-

ediate-state denominators

Sp,λ ≡ 1

εc
p −ξk1

+ iη
+

1

εc
p −ξk2

− h̄ωλ + iη

+
1

εc
p −ξk2

+ iη
+

1

εc
p −ξk1

− h̄ωλ + iη
. (2.13)
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Here εc
p ≡ εp+Eout

D (1,1) is the virtual state energy and ξk is the energy of an elec-

tron in N with momentum k measured with respect to the Fermi level. Summing

over all the possible initial states and considering the spin degeneracy, one obtains

the total rate

Γ env
AR =

4π

h̄
∑

k1,k2

∑
λ

∣
∣
∣A

λ
k1,k2

∣
∣
∣

2

δ
(
ξ c

k1,k2
+ h̄ωλ

)
, (2.14)

where ξ c
k1,k2

≡ ξk1
+ξk2

−Eout
D (1,2) is determined by the energy cost Eout

D (1,2)=
4ECng−eV needed for the second-order transition 1→−1 to occur [see Eq. (2.1)].

The environment-assisted Andreev rate Eq. (2.14) is written in terms of the prob-

ability
∣
∣
∣A

λ
k1,k2

∣
∣
∣

2

= t4
0 fk1

fk2
ρ2

λ nλ ∑
p,p′

(
upvp

)(
up′vp′

)
Sp,λ S∗p′,λ .

Approximating the sums over k1, k2, p and p′ by the corresponding integrals, as-

suming that nλ is given by the Bose-Einstein distribution, nBE(ωλ ) = [exp(h̄ωλ/
kBTenv)−1]−1, and using the properties of the Dirac delta function, Eq. (2.14) can

be written as

Γ env
AR ≃ 1

2h̄

1

(2π)3

(
RK

RT

)2 ∫ +∞

−∞
dξk1

dξk2

∫ +∞

−∞
dξp dξp′

× fk1
fk2

(
upvp

) (
up′vp′

)
nBE

(
−ξ c

k1,k2

) (
−ξ c

k1,k2

)−1

×
(

Sp S∗p′

)

∑
λ

ρ2
λ ωλ δ

(
ξ c

k1,k2
+ h̄ωλ

)
. (2.15)

Here Sp and S∗p′ are Sp,λ and S∗
p′,λ evaluated for h̄ωλ = −ξ c

k1,k2
. As shown in

the Appendix B, the sum over λ in Eq. (2.15) can be related to the effective total

impedance of the electromagnetic environment Ztot(ω), resulting from the con-

nection in parallel of CΣ and Z(ω) = Z1(ω)+ Z2(ω)+Zg(ω), by means of the

fluctuation dissipation theorem. It follows that Eq. (B.8) allows to recast Γ env
AR in

the form

Γ env
AR ≃ 1

(2π)3

∆2

h̄RKN

(
RK

RT

)2 ∫ 0

−∞
dξk1

dξk2

∫ +∞

∆
dεp dεp′

×
(√

ε2
p −∆2

√

ε2
p′ −∆2

)−1 (
−ξ c

k1,k2

)−1
(

Sp S∗p′

)

× nBE

(
−ξ c

k1,k2

)
ℜe
[
Ztot

(
ξ c

k1,k2
/h̄
)]

. (2.16)

In this last expression, we used the BCS relation for upvp given in Eq. (2.4) and

the quasiparticle energies εp and εp′ as integration variables. We also introduced

the number of conducting channels N of the junctions. The environment-assisted

Andreev rate Eq. (2.16) is valid in the single-photon regime, ρλ ≪ 1. For a purely
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resistive environment, Z(ω) = R, this condition corresponds to (R/RK)(kBTenv/∆)
≪ 1 (see Chapter 1).

Assuming that the system is working at the optimal point, eV = ∆, and the

charging energy is large, EC > ∆, Eq. (2.16) becomes

Γ env
AR ≈ γD

env

∆2

(2π)4

∆

h̄N

(
RK

RT

)2∫ 0

−∞
dξk1

dξk2

∫ +∞

∆
dεp dεp′

×
(√

ε2
p −∆2

√

ε2
p′ −∆2

)−1 (
ξ c

k1,k2

)−2
(

Sp S∗p′

)

. (2.17)

in the high-temperature limit, kBTenv ≫ Eout
D (1,2) = 4ECng−∆ with (1/4). ng .

(3/4), and for

ℜe [Ztot (ω)] =
R

1+(ωRCΣ)
2
. (2.18)

The last equation is ≈R under the conditions we are considering. In Eq. (2.17), we

introduced the high-temperature Dynes parameter γD
env = 2π(R/RK)(kBTenv/∆) [16,

38], which is the only term of Γ env
AR which depends on the parameters characteriz-

ing the environment, R and Tenv.

2.2.3 Results

Using Eq. (2.18), the numerical integration of Eq. (2.16) is relatively straight-

forward. Figure 2.5(a) shows the photon-assisted Andreev rate, Eq. (2.16), as a

function of the gate-induced charge ng, for a single-electron transistor biased at

the optimal voltage, eV = ∆, and with charging energy EC > ∆. Each curve is ob-

tained for different values of the temperature of the environment Tenv. The other

parameters are fixed to the values of sample S3 of Ref. [37], as indicated in the

figure. We see that the probability to have the tunneling of a Cooper-pair can

be different from zero also away from the two-particle tunneling threshold, un-

like the case without environment. In particular, the exchange of energy with the

thermal bath in which the SET is embedded can make the Andreev reflection rele-

vant even around the single-particle threshold. As a result, although the boundary

of the Coulomb diamond corresponding to the transition 1 → −1 is avoided by

means of the loop of Fig. 2.2(c), a Cooper pair can tunnel through the barrier of

the drain, while ng goes back to ng,1, before crossing the 1 → 0 line. The de-

crease of Tenv leads to smaller values of Γenv
AR [see Fig. 2.5(a)], as well as the use

of an electromagnetic environment with a smaller resistance R [see Fig. 2.5(b)].

Whereas, in the latter case, the whole Andreev rate curve is shifted down propor-

tionally to the ratio between initial and final resistances, the modulus of the first

derivative of Eq. (2.16) for ng > ∆/4EC increases proportionally to Tenv.



34 Effect of Photon-Assisted Andreev . . .

0.1 0.2 0.3 0.4 0.5
10-12

10-8

10-4

1

104

108

ng

G
A

R
en

v
H1
�s
L

(a)

0.1 0.2 0.3 0.4 0.5
10-4

0.1

100

105

108

ng

G
A

R
en

v
H1
�s
L

(b)

0.1 0.2 0.3 0.4 0.5
10-12

10-8

10-4

1

104

108

ng

G
A

R
en

v
H1
�s
L

(c)

Figure 2.5: Photon-assisted Andreev rates, given by the numerical evaluation of

Eq. (2.16), as a function of the gate-induced charge ng with ∆ = 210 µeV (Alu-

minum), RT = 430 kΩ, N = 100, and γDynes = 10−5. In panel (a), for each rate

R = 1100 Ω and EC/∆ = 1.4; the values of Tenv are: 70 mK (red), 140 mK (blue),

780 mK (green), 1.5 K (orange), 3 K (purple), 4.2 K (gray); the dashed black

line is the Andreev rate valid in the absence of environment (see Ref. [36]). In

panel (b), for each curve Tenv = 1.5 K and EC/∆ = 1.4; the resistances R are:

1100 Ω (red), 10 Ω (blue), 0.1 Ω (green), 0.001 Ω (orange). In panel (c), for fixed

R = 1100 Ω, the curves with the same color are obtained using the same charg-

ing energy, EC/∆: 1.4 (red lines), 1.8 (blue lines), 2.5 (green lines); the values of

Tenv are: 4.2 K (solid curves), 500 mK (dashed curves), and 100 mK (dot-dashed

curves). In all the three panels, also shown are the single- and two-particle thresh-

olds, 1/2−∆/4EC (light blue vertical dotted lines), and ∆/4EC (light red vertical

dotted lines) respectively.
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The dependence of the photon-assisted Andreev rate, Eq. (2.16), on the charg-

ing energy EC is shown in Fig. 2.5(c). The increase of the ratio EC/∆ > 1 allows

to reduce the effect of the two-particle tunneling on the total electric current sus-

tained by the SINIS turnstile. In particular, the lower is the effective temperature

of the environment with respect to the critical temperature of the superconductor,

the larger is the reduction of Γenv
AR upon increasing EC/∆. Notice that the main

effect of the change of the charging energy EC is the shifting of the environment-

assisted Andreev rate along the induced-gate charge axis by the difference be-

tween the initial and final inverse ratios ∆/4EC.

Assuming that the number of electrons of the metallic island of the circuit

of Fig. 2.3 decreases because of the tunneling of quasi-particles and Cooper pairs

only, the total rate can be written as

Γtot ≃ ΓDynes

1→0 +2Γenv
AR .

As a result, the error εacc ≡ 2Γenv
AR/ΓDynes

1→0 determines how much the environment-

assisted Andreev reflection affects the charge transport in the SINIS transistor.

In particular, the condition εacc < 10−8 is required for the metrological applica-

tions [26]. Figure (2.6) shows the ratio εacc obtained from a numerical evalua-

tion of Eqs. (2.16) and (2.10), as a function of ng. We see that εacc is a non-

monotonic function of ng. Starting from the two-particle threshold occurring for

ng = ∆/4EC, this error first decreases exponentially as ng is increased. Then,

close to the single-particle threshold, it rises up again reaching a local maximum

value around ng = 1/2−∆/4EC. For larger ng it tends exponentially to zero. Be-

cause of this kind of behavior, εacc can be smaller or of the order of 10−8 when

∆/4EC < ng < 1/2−∆/4EC, and, at the same time, much larger than the value re-

quired by metrology around the single-particle threshold. Consequently, the time

spent by the signal used to drive ng around ng = 1/2−∆/4EC has to be as small

as possible in order to minimize the environment-assisted Andreev reflection.

From the experimental point of view, the determination, with a relatively

high accuracy, of the values of the effective parameters of the environment, R

and Tenv, is a tough challenge. The use of the Dynes parameter γDynes, which in

general depends also on R and Tenv, is preferred because it can be determined from

the measured current-voltage characteristic of the SINIS turnstile. In this regard,

the high-temperature two-particle tunneling rate Eq. (2.17) allows to study the

photon-assisted Andreev reflection in terms of γDynes only. In Fig. 2.6(d), we plot

the error εacc obtained using Eq. (2.17) as a function of ng. We see that the Dynes

parameter, which typically ranges from 10−4 to 10−7, strongly affects Γ env
AR in the

range ∆/4EC < ng < 1/2−∆/4EC. On the contrary, γDynes plays a minor role in the

reduction of εacc when ng is close to the single-particle threshold.
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Figure 2.6: Plot of the ratio εacc as a function of the gate-induced charge ng with

∆ = 210 µeV (Aluminum), RT = 430 kΩ, and N = 100. In panel (a), for each

rate γDynes = 10−5, R = 10 Ω and EC/∆ = 1.4; the values of Tenv are: 70 mK (red),

140 mK (blue), 350 mK (green), 780 mK (orange), 1.5 K (purple), 4.2 K (gray).

In panel (b), for each curve γDynes = 10−5, Tenv = 1.5 K and EC/∆ = 1.4; the re-

sistances R are: 1100 Ω (red), 10 Ω (blue), 0.1 Ω (green), 0.001 Ω (orange). In

panel (c), for fixed γDynes = 10−5 and R = 10 Ω, the curves with the same color are

obtained using the same charging energy, EC/∆: 1.4 (red lines), 1.8 (blue lines),

2.5 (green lines); the values of Tenv are: 1.5 K (solid curves), and 500 mK (dashed

curves). In panel (d), the Dynes parameter γDynes is equal to 10−4 (solid lines) and

10−7 (dashed lines). The curves with the same color are obtained using the same

charging energy, EC/∆: 1.4 (red lines), 1.8 (blue lines), 2.5 (green lines). In all

the four panels, the single- and two-particle thresholds, 1/2−∆/4EC (light blue

vertical dotted lines), and ∆/4EC (light red vertical dotted lines) respectively are

also shown.
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2.3 Conclusions

In this chapter, we studied the environment-assisted Cooper pair tunneling

in a SINIS turnstile working in the Coulomb blockade regime. Specifically, we

derived the Andreev reflection rate when only a photon of the thermal bath is

involved in the process. We found that the single-photon absorption enhances

the two-electron tunneling from N to S. In particular, the probability per unit of

time to have Andreev events is different from zero even for values of the induced

gate charge ng close to the single-particle threshold 1/2−∆/4EC. As a result, the

single-electron current, which is expected to be the dominant one in the device

when ng follows the loop shown in Fig. 2.2(c), is also affected by the tunneling

of Cooper pairs due to the environment. The influence of this source of error

on the total current can be reduced by decreasing the effective resistance R and

temperature Tenv of the environment or, equivalently, the Dynes parameter γDynes.

The achievement of the metrological accuracy is also possible with the increasing

of the charging energy EC with respect to the superconducting energy gap ∆.

However, the effect of the photon-assisted Andreev reflection can be relevant

close to the single-particle threshold, although the error at the extreme points of

the loop of Fig. 2.2(c) is below the value required by metrology. This means that

the time spent by ng(t) around 1/2−∆/4EC while covering the optimal loop has

to be as small as possible. As discussed in Ref. [36], the use a square-wave signal

to drive the gate voltage Vg(t) seems a promising solution for this problem.

On the basis of the results presented in Chapter 1, further reduction of the

Andreev rate is expected when a zero-temperature and highly-resistive transmis-

sion line is inserted between the environment and the SINIS turnstile. Additional

work is required in this direction.
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CHAPTER 3
Design of an Efficient

Superconducting Junctions-Based

Cascade Electron Refrigerator

Introduction

Electronic heat transport at the mesoscopic scale has been in the spotlight

during the last few years [4]. In particular, efforts have been made to develop dif-

ferent types of solid-state electronic refrigerators based on superconducting tun-

nel junctions [44]. Unlike Peltier coolers which are typically used to decrease the

temperature T of a certain object from room temperature, T ∼ 300 K, down to

T ∼ 170 K [45], superconducting refrigerators can efficiently work in the cryo-

genic or subkelvin region, T < 1 K [7]. On the other hand, thanks to their meso-

scopic size, these superconducting devices allow to realize the cooling directly on

the chip, thereby giving the possibility to avoid the use of relatively macroscopic

and costly coolers like the traditional adiabatic-demagnetization and dilution re-

frigerators. As a result, they are suitable, for instance, to cool down the thin-film

sensors of the calorimeters and bolometers used for astronomical observations,

which typically require temperatures ∼ 100 mK and are embedded in space satel-

lites, see Fig. 3.1(a).

Among the proposed devices since the first observation of the electronic cool-

ing in the normal metal-insulator-superconductor (NIS) tunnel junction [7], the

SINIS and S2IS1IS2 double-junction structures have been widely used for cooling

microscopic as well as macroscopic objects, see Fig. 3.1 [8, 46–48]. Applying a

voltage bias across these two devices, the hot electrons/quasiparticles can be ex-

tracted from the normal metal N or the small-gap superconductor S1 and injected

into the outer superconductor S or the large-gap superconductor S2 respectively.

Consequently, the electronic temperatures of N and S1 can become smaller than

the bath temperature Tbath at which S and S2 are kept. In both cases, the energy

39



40 Superconducting Cascade Electron . . .

(a) (b)

V1−V1

R1R1

T1 T1
TN

S1S1 N

(c)

V2−V2

R2R2

T2 T2
T1

S2S2 S1

(d)

Figure 3.1: (a) Micrograph of a typical x-ray bolometer constituted by a squared

thin bilayer of molybdenum and copper (sensor) supported by a silicon nitride

membrane. Four “Y”-shaped fingers connects the membrane to four NIS refriger-

ators [49]. (b) Scanning electron microscope picture of a silicon nitride membrane

cooled by four pairs of NIS refrigerators. One of them is indicated with a circle.

A “cube” of neutron transmutation doped germanium is glued on top of the mem-

brane and refrigerated [46]. (c) - (d) Sketch of a S1INIS1 (c) and a S2IS1IS2 (d)

double junction refrigerators. The indicated quantities are the voltage biases (V1

and V2), the temperatures of the electrodes and of the central islands (T1, T2 and

TN), and the tunnel resistances of the junctions (R1 and R2).

gap in the BCS density of states of the outer involved superconducting metals can

make the cooling powers or heat currents Q̇N1 and Q̇12 of N and S1 positive func-

tions in a certain voltage range [4,8]. In other words, S and S2 act as energy filters,

allowing the efficient evacuation of the most energetic electrons from N and S1.

For a SINIS refrigerator, by exploiting aluminum (Al) as superconducting

material (S) with critical temperature Tc ≈ 1 K and copper (Cu) as normal metal

(N), the cooling of the electrons in N down to the temperature TN ≈ 100 mK can

be routinely achieved starting from TS,N = Tbath = 300 mK [8, 44]. The decrease

of the electronic temperature of a superconductor by quasiparticle tunneling in a

S2IS1IS2 configuration has also been demonstrated using aluminum (S2) and tita-

nium (S1) [50]. In that case, a titanium strip with Tc ≈ 510 mK was cooled from
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Figure 3.2: Sketch of the S2IS1INIS1IS2 cascade cooler discussed in this chap-

ter. The optional elements contained into the two dashed boxes enable to reach

precisely the optimum bias in both the NIS1 and the S2IS1 junctions.

Tbath ≈ 520 mK to T1 ≈ 320 mK. In order to operate over a wider temperature

range, the use of alternative superconducting materials and/or architectures is re-

quired. For instance, a S2IS1IS2 nanorefrigerator based on vanadium (V) as outer

superconductor with a critical temperature of about 4 K was used to efficiently

cool down electrons in an Al island from 1 K to about 0.4 K [48]. On the basis

of these experimental results, one may expect that a certain combination of the

SINIS and S2IS1IS2 coolers should be capable to reach a temperature ∼ 100 mK

when the initial one is 1 K.

In this chapter, we theoretically and numerically discuss the feasibility and

performances of a multistage superconducting refrigerator, hereafter called cas-

cade cooler, resulting from a sort of merging of the SINIS and S2IS1IS2 devices,

arranged in a symmetric configuration, see Fig. 3.2. By using suitable materials

and values of the involved parameters, we show that it is possible to cool down

a normal metal island with improved performances with respect to more conven-

tional SINIS refrigerators.

3.1 Superconducting electron refrigerators

We first discuss the behavior of the single NIS1 and S2IS1 junctions con-

stituting the cascade cooler of Fig. 3.2. Specifically, we focus on the cooling

capabilities of the S1INIS1 and S2IS1IS2 double-junction refrigerators sketched in

Figs. 3.1(c) and 3.1(d).
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Figure 3.3: Dimensionless charge current eR1IN1/∆1 (a) and cooling power

e2R1Q̇N1/∆2
1 (b) of a NIS1 junction, with resistance R1, as a function of the di-

mensionless applied bias voltage eV1/∆1. The curves in (a) and (b) are obtained

by the direct numerical integration of Eqs. (3.1) and (3.2) respectively using the

following bath temperatures: 0.3 K (green dotted), 0.6 K (red dashed), and 1.1 K

(blue solid). For both panels (a) and (b) the superconductor S1 is aluminum with

energy gap ∆1 = 200 µeV, and the Dynes parameter is γ1 = 10−6.

3.1.1 (SI)NIS cooler

The charge current IN1 and the heat current Q̇N1 flowing from N to S1 through

a NIS1 junction, biased with the voltage V1, are given by [4]

IN1 =
1

eR1

∫ +∞

−∞
dE N1(E − eV1) [ f1(E − eV1)− fN(E)] , (3.1)

Q̇N1 =
1

e2R1

∫ +∞

−∞
dE E N1(E − eV1) [ fN(E)− f1(E − eV1)] . (3.2)

Here fN = fN(E,TN), and f1 = f1(E,T1) are the quasiparticle energy distribution

functions in N, and S1 at temperatures TN and T1 respectively. By assuming that

the inelastic electron-electron interaction drives each individual part of the junc-

tion into a quasi-equilibrium regime, both fN and f1 can be considered equal to

the corresponding Fermi-Dirac distributions, fN,1 = [exp(E/kBTN,1)+1]−1
. The

charge and heat currents IN1 and Q̇N1 are also determined by the energy depen-

dence of the function N1(E), i.e., the dimensionless density of states (DOS) of S1.

For a realistic description of the NIS1 junction, N1(E) is given by the Bardeen-

Cooper-Schrieffer (BCS) DOS smeared by the Dynes parameter γ1 [51],

N1(E,T1) =

∣
∣
∣
∣
∣
∣

ℜe




E + i γ1 ∆1(T1)

√

[E + i γ1 ∆1(T1)]
2 −∆1(T1)





∣
∣
∣
∣
∣
∣

, (3.3)
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where the energy gap ∆1 of S1 is a function of T1. A non-zero γ1 for S1 induces

heating in N because of the available quasiparticle states inside the energy gap. In

other words, the broadening of the BCS DOS given by the Dynes parameter limits

the energy filtering provided by the energy gap of an ideal BCS superconductor.

As a result, the cooling vanishes at an electron temperature TN ≃ 2.5 Tc γ
2/3
1 . In

practice, γ1 ranges typically from 10−2 to 10−7 [16].

Figure 3.3 shows the voltage bias dependence of the charge and heat currents

in a NIS1 junction given by Eqs.(3.1) and (3.2). For subgap bias, |V1| < ∆1/e,

we see that the heat current Q̇N1 is positive, meaning heat removal from N into

S1. At low temperatures, kBTN,1 ≪ ∆1, the maximum cooling power occurs when

e|V1| ≃ ∆1 −0.66 kBTN [44,52]. At this optimum value, the corresponding charge

current reads

IN1,opt ≈ 0.48

√
kBTN ∆1

eR1
. (3.4)

As every tunneling event removes an energy of about kBTN , the related heat current

Q̇N1,opt is about (IN1,opt/e)kBTN . In general, Q̇N1,opt is a non-monotonic function

of the bath temperature, and reaches its maximum value when Tbath ≃ 0.44Tc [4].

On the other hand, when e|V1|> ∆1, Eq. (3.2) becomes negative and the electrode

N is heated with a power −Q̇N1 close to IV1/2. On the contrary, for any value of

the bias voltage V1, the superconductor S1 receives the heat −Q̇1N = IV1+ Q̇N1 >
0, with

Q̇1N =
1

e2R1

∫ +∞

−∞
dE (E − eV1) N1(E − eV1) [ f1(E − eV1)− fN(E)] ,

which is lost in the bath.

From Fig. 3.3(b), we also see that the cooling power Eq. (3.2) is an even

function of the applied bias voltage V1. This means that both positive and negative

values of V1 allow to remove, in the same way, the most energetic electrons which

lie above the Fermi level. Such a symmetry of Q̇N1 is a peculiar feature of the

NIS1 junction, and can be exploited in the symmetric S1INIS1 device. Indeed,

in the double-junction structure of Fig. 3.1(c), the heat can go out of the normal

metal island through both junctions thereby increasing the cooling power, whereas

the charge current can flow only in a well defined direction for a given V1. As a

result, the SINIS configuration is more efficient than a single NIS junction [8].

At the thermal equilibrium, the heat balance for the central island in the

S1INIS1 cooler is

2Q̇N1 +PN
e-ph = 0 . (3.5)

Here the factor 2 accounts for the fact that the heat is removed simultaneously

through both junctions, see Fig. 3.1(c). In writing Eq. (3.5), we also take into
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Figure 3.4: Calculated temperature TN of the normal metal island for an Al-Cu

SINIS refrigerator (see Fig. 3.1(c)) as a function of the dimensionless bias voltage

eV1/∆Al for different values of the bath temperature Tbath: 1.0 K (solid blue), 0.7 K

(dashed red), 0.5 K (dotted green), 0.3 K (dot-dashed purple). The values of the

other parameters are [8]: ∆Al = 180 µeV, R1 = 1 kΩ, ΣCu = 4×109 Wm−3K−5,

ΩCu = 5.25×10−2 µm3, and γ1 = 10−5.

account the exchange of energy between the electrons and the phonons in N by

introducing the power [53]

PN
e-ph = ΣN ΩN

(

T 5
N −T 5

bath

)

, (3.6)

where ΣN and ΩN are the material-dependent electron-phonon coupling constant

and the volume of the normal metal respectively. The energy rate Eq. (3.6) starts to

be relevant as soon as TN 6= Tbath. In particular, when TN < Tbath,1 PN
e-ph is negative,

meaning that the phonons transfer energy to the electrons, thereby increasing their

temperature TN and reducing the cooling efficiency of the S1INIS1 structure. In

other words, the interplay between 2Q̇N1 and PN
e-ph determines the smallest TN

that can be achieved. Keeping fixed the value of the parameters T1 = Tbath, ∆1,

γ1, R1, ΣN, ΩN and V1, the integral equation (3.5) can be solved numerically and

the temperature of the normal metal TN obtained. Figure 3.4 shows the trend of

the calculated TN as a function of the bias voltage V1 for a S1INIS1 refrigerator

based on Al (S1) and Cu (N). Starting from V1 = 0, we see that the temperature

of the central island drops as V1 is increased, eventually reaching the minimum

value TN,min when eV1 ≈ 2∆Al.
2 The smallest temperature which can be achieved

depends on Tbath. For instance, choosing the parameters of the system as in the

experiment reported in Ref. [8], when Tbath = 1 K, no cooling occurs, see Fig 3.4.

On the contrary, the copper island reaches the temperature 123 mK while keeping

1this condition is typically satisfied when cooling occurs.
2the factor 2 is related to the presence of two junctions in the SINIS structure.
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Figure 3.5: Dimensionless charge current eR2I12/∆1 (a) and cooling power

e2R1,2Q̇N1,12/∆2
1 (b) of a S1IS2 tunnel junction, with resistance R2, as a function

of the dimensionless applied bias voltage eV2/(∆2−∆1). The curves in (a) and (b)

are obtained by the direct numerical integration of Eq. (3.7) and (3.8) respectively

using the following bath temperatures: 0.8 K (green dotted), 1.3 K (red dashed),

and 1.6 K (blue solid). For both panels (a) and (b) the superconductor S1 is alu-

minum, with energy gap ∆1 ≃ 200 µeV, and the superconductor S2 is vanadium

with energy gap ∆2 ≃ 821 µeV, i.e., ∆2/∆1 is 4.105. The Dynes parameters are

γ1,2 = 10−6.

the aluminum electrodes at the bath temperature Tbath = 300 mK. Biasing the

S1INIS1 cooler with a voltage higher than 2∆Al, the normal metal N heats and

eventually overcomes Tbath.

3.1.2 (SI)SIS cooler

In a S1IS2 junction biased with a voltage V2, the charge current I12 and heat

current Q̇12 flowing from S1 to S2 can be written as [50, 54, 55]

I12 =
1

eR2

∫ +∞

−∞
dE N1(E) N2(E − eV2) [ f2(E − eV2)− f1(E)] , (3.7)

Q̇12 =
1

e2R2

∫ +∞

−∞
dE E N1(E) N2(E − eV2) [ f1(E)− f2(E − eV2)] . (3.8)

Similarly to Eqs. (3.1) and (3.2), in the quasi-equilibrium regime, f1 = f1(E,T1)
and f2 = f2(E,T2) are the Fermi-Dirac distribution functions of the electrons in S1

and S2 at temperatures T1 and T2 respectively. On the other hand, the DOSs N1(E)
and N2(E) are given by Eq. (3.3) with energy gaps ∆1,2 and Dynes parameters γ1,2

respectively. In Fig. 3.5, we show the trend of Eqs. (3.7) and (3.8) as a function

of the applied bias voltage V2. We note the sharp maximum occurring at the

difference between the energy gaps, e|V2| = ∆2 −∆1. This peak shows up only
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at non-zero temperatures and corresponds to electrons occupying states above the

gap ∆1 in S1 which tunnel to the empty states above the gap ∆2 in S2. Besides

the dependence on temperature, the height of the peak is strongly affected by

the Dynes parameters γ1,2 as well. Indeed, the DOSs N1,2(E) in Eqs. (3.7) and

(3.8) are ≈ (2
√

γ1,2)
−1 for energies E close to the superconducting gaps ∆1,2. In

particular, we have calculated the charge current to be

I12,opt ≈
−
√

∆1∆2

eR2
e−∆1/kBT1 ln

(√
γ1 +

√
γ2

)
, (3.9)

when e|V2|=∆2−∆1 and under the condition ∆2/∆1 >Tbath/T1 > 1. The details of

the derivation of Eq. (3.9) are in Appendix C. It is worth emphasizing that I12,opt

depends logarithmically on γ1 and γ2. Compared to Eq. (3.4) which is valid for the

NIS1 case, the charge current Eq. (3.9) is smaller by a factor ∼ exp(−∆1/kBT1).
3

The related heat current is about ∆1(I12,opt/e) (see Appendix C), meaning that

every tunneling event removes a heat ∆1 from S1. This is the maximum amount

of heat Q̇12 that can be extracted from S1.

In addition to the optimal value e|V2|= ∆2−∆1, the heat current Eq. (3.8) is a

positive function whenever e|V2|<∆2+∆1 and negative otherwise, see Fig. 3.5(b).

On the contrary, the energy current from S2 to S1,

Q̇21 =
1

e2R2

∫ +∞

−∞
dE (E − eV2) N1(E) N2(E − eV2) [ f2(E − eV2)− f1(E)] ,

is always less than zero, i.e., the superconducting electrode S2 can not be cooled.

As for the NIS1 case, Q̇12 is a symmetric function of the bias voltage with

respect to the vertical axes [see Fig. 3.5(b)]. Then the cooling power of S1 can

be increased by means of the S2IS1IS2 double junction configuration depicted in

Fig. 3.1(d). When this system reaches the thermal equilibrium, the heat balance

for the inner superconductor S1 can be written as

2Q̇12 +PS
qp-ph = 0 . (3.10)

In this case, the quasi-particles in S1 exchange energy with the phonons of the

3note that the order of magnitude of Eq. (3.9) is determined by exp(−∆1/kBT1). The latter can

be much smaller than the logarithmic factor | ln
(√

γ1 +
√

γ2

)
| if the parameters γ1,2, ∆1 and T1

are equal to the values typically measured in real experiments. Indeed, | ln
(√

γ1 +
√

γ2

)
| remains

bound to ∼ 1 for 10−7 6 γ1,2 6 10−2, whereas exp(−∆1/kBT1) ranges from 10−4 to 10−1 when S1

is aluminum, ∆Al = 200 µeV, and its temperature 0.3 K 6 TAl 6 1 K.
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Figure 3.6: Calculated temperature T1 of the superconducting island S1 for a V-Al

SISIS refrigerator (see Fig. 3.1(d)) as a function of the dimensionless bias voltage

eV2/∆Al for different values of the bath temperature Tbath: 1.0 K (solid blue), 0.7 K

(dashed red), 0.5 K (dotted green), 0.3 K (dot-dashed purple). The values of the

other parameters are [48]: ∆V/Al = 580 µeV, ∆Al = 200 µeV, R2 = 2 kΩ, ΣAl =
0.2×109 Wm−3K−5, ΩAl = 1.08×10−2 µm3, and γ2 = 10−5.

lattice with the power [56]

PS
qp-ph = − ΣS ΩS

96 ζ (5) k5
B

∫ +∞

−∞
dE E

∫ +∞

−∞
dε ε2sign(ε) N1(E) N1(E + ε)

×
(

1− ∆2
1(T1)

E(E + ε)

){

coth

(
ε

2kBTbath

)[

F1(E)−F1(E + ε)

]

− F1(E) F1(E + ε)+1

}

. (3.11)

Here ΣS and ΩS are the material-dependent electron-phonon coupling constant

and the volume of the superconductor S1 respectively. We also introduced the

function F1(ε) = f1(−ε,T1)− f1(ε,T1). At Tbath ≪ T1 ≪ ∆/kB, one obtains that

the power exchanged between quasiparticles and phonons, Eq. (3.11), is reduced

by a factor of 0.98exp(−∆/kBT1) with respect to that of the normal state [56].

In other words, in a superconductor, the energy gap around the Fermi level sup-

presses the efficiency of the electron-phonon coupling.

Solving numerically the integral equation Eq. (3.10) for fixed values of the

parameters T2 = Tbath, ∆1,2, γ1,2, R2, ΣS, ΩS and V2, one can obtain the temper-

ature T1 of the inner superconductor S1 as a function of the applied bias voltage

V2. In Fig. (3.1.2), we plot the calculated T1 vs V2 for a S2IS1IS2 cooler based

on V/Al (S2) and Al (S1) [48], for different bath temperatures. We see that T1

decreases upon increasing V2 and reaches its minimum value T1,min when eV2 ≈
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2(∆V/Al −∆Al). Depending on Tbath, the smallest temperature T1,min changes. In

particular, considering Tbath = 1 K, the inner superconductor can be cooled down

to ≈ 400 mK, as it has been also verified experimentally [48].

3.2 Superconducting cascade electron refrigerator

3.2.1 System and thermal equilibrium equations

We consider now an electron cooler based on tunnel junctions arranged in

a symmetric configuration, i.e., S2IS1INIS1IS2, as displayed in Fig. 3.2. The

structure includes two superconductors S1 and S2 with respective energy gaps ∆1,2

so that ∆1 < ∆2. R1 and R2 denote the normal-state resistances of the individual

S1IN and S2IS1 junctions, respectively. The present structure actually consists of a

SINIS micro-cooler to which one superconducting tunnel contact has been added

at each end. In the following, the cascade cooler S2 electrodes are voltage-biased

at a voltage ±V , so that the inner superconducting islands (S1) reach a voltage

±V1. Here, we also assume that inelastic electron-electron interaction drives each

individual part of the the system into a quasi-equilibrium regime. Therefore, the

electron populations in N and S1 can be respectively described by a Fermi-Dirac

energy distribution function at temperatures TN and T1, which can largely differ

from the bath temperature Tbath. The outer superconductor S2 is considered at

thermal equilibrium with the phonon bath so that T2 = Tbath.

In the series configuration that we first consider, the charge currents flowing

through all junctions are necessarily equal,

IN1 = I12. (3.12)

The thermal balance in N reads

2Q̇N1 +PN
e-ph = 0, (3.13)

the factor 2 coming from the presence of two symmetric cooling NIS junctions.

On the other hand, the thermal balance in each S1 reads

Q̇12 + Q̇1N +PS
qp-ph = 0, (3.14)

where we have taken into account the heat −Q̇1N > 0 deposited by the S1IN junc-

tion into the superconductor 1. The behavior of the cascade cooler is governed

by the above three non-linear integral equations. It depends strongly on differ-

ent parameters such as the dimensionless Dynes parameters γ1,2, the N and S1

volumes VN,1, the choice of the materials, the bath temperature, and the junction

resistances R1,2. As for the latter, it is crucial that the two cooling junctions NIS1
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Figure 3.7: Calculated temperature of the normal metal, TN (solid line), and of

the superconductor S1, T1 (dotted lines), for a V-Al-Cu cascade cooler and for

an Al-Cu SINIS refrigerator (dashed lines) as a function of eV/∆Al, at a bath

temperature Tbath = 1 K (blue curves), 0.7 K (red), 0.5 K (green), and 0.3 K (pur-

ple). The parameters are γ1,2 = 10−5, R1 = 500 Ω, R1/R2 = 100, V 1 = VN =
10−2 µm3, ∆Al = 200 µeV, ∆V = 821 µeV, ΣAl = 0.2 × 109 Wm−3K−5, and

ΣCu = 2×109 Wm−3K−5.

and S1IS2 reach together their optimum cooling point at a given global bias V . A

first naive assumption would be to assume that the currents at the optimum bias

point are close to the Ohm’s law value, so that the resistance balance would read

(∆2−∆1)/R2 = ∆1/R1. This is actually incorrect, as the current through the S2IS1

junction is far from being Ohmic and depends strongly on the Dynes parameters.

In order to be more specific, let us consider as a first combination of mate-

rials vanadium, aluminum and copper. Based on its critical temperature of about

4 K, vanadium brings a good efficiency for electronic cooling from a bath tem-

perature around 1 K [48]. An aluminum island cooled in this way can reach a

temperature close to the operation range of usual aluminum-based SINIS cool-

ers. A cascade combination of V-Al2O3-Al and Al-Al2O3-Cu junctions therefore

seems promising. Figure 3.7 compares the behavior of a Al-Cu SINIS refrigerator

(dashed lines) to a V-Al-Cu cascade cooler (solid lines) with usual parameters val-

ues, a common tunnel resistance R1 = 500 Ω and a resistance ratio R1/R2 = 100,

close to the optimum (see below). From Fig. 2, the electronic cooling of the N

island (full lines) is more efficient in the cascade system, which performs well

up to 0.7 K, whereas the SINIS refrigerator (dashed lines) is little efficient. At a

bath temperature of 1 K, the SIN stage is inefficient, while the SIS stage operates

well. The capability of the cascade refrigeration scheme is illustrated by the large

quasiparticle cooling obtained in S1 at every bath temperature below 1 K (dotted

lines).
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Figure 3.8: (a) Calculated minimum temperature of the normal metal TN,min (red

triangles) and the related temperature of low-gap superconductor T1 (purple disks)

of a V-Al-Cu cascade cooler at its optimum bias point as a function of the ratio

R1/R2 for a bath temperature Tbath = 0.5 K. (b) Related dimensionless voltage

drops eV1,opt/∆Al (blue; left axis) and eV2,opt/∆V,Al = eV2,opt/(∆V −∆Al) (green;

right axis) across the S1IN and S2IS1 junctions, respectively, as a function of

R1/R2. The bath temperature considered here is 0.5 K. The other parameters

are identical to the ones of Fig. 3.7. Also shown are the predictions eV1,opt =
∆1(T1)− 0.66 kBTN (dashed blue line) and eV2,opt = ∆2(Tbath)−∆1(T1) (dashed

green line).

3.2.2 The role of the tunnel resistance ratio

Still in the case of a V-Al-Cu device, Figure 3.8 displays the minimum achiev-

ed electronic temperature in N (TN) [panel (a)] and the voltage drops V1,opt and

V2,opt [panel (b)] across the two S1IN and S2IS1 junctions at the minimum temper-

ature TN versus the junctions’ resistance ratio R1/R2. A bath temperature Tbath of

0.5 K and a fixed resistance R1 of 500 Ω is considered here. At large R1/R2 value,

the S1IN junctions dominate and the optimum cooling is obtained at a voltage

drop V1 close to the expected value (∆1 −0.66 kBTN)/e. At small R1/R2 value, it

is the S2IS1 junctions that dominate, and the optimum cooling is obtained at V2

close to the expectation (∆2 −∆1)/e. Overall, the best performance is obtained

in the region where the two kinds of junctions can operate close to the optimum.

Here, the parameters are γ1,2 = 10−5 and 10−4 and VN = 10−2 µm3. We have used
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Figure 3.9: Calculated normal metal temperature TN in a cascade cooler for

Tbath = 0.5 K as a function of the dimensionless bias voltage eV/∆Al, in different

cases: Al-Cu one-stage cooler (orange), V-Al-Cu (dotted red) with identical vol-

umes for N and S1, V-Al-Cu (blue) and Nb-Al-Cu (green) with volumes adapted

to the resistances’ ratio so that V1/VN = R1/2R2. The ratio R1/R2 is set at the op-

timal value in every case: 100 (V-Al-Cu), 30 (Nb-Al-Cu), 80 (V-Al-Cu, adapted

volumes’ ratio) respectively. We use ∆Nb = 1407 µeV, R1 = 1 kΩ. The other

parameters are identical to Fig. 3.7, including VN = 10−2 µm3.

the well-accepted material-specific values ΣAl = 0.2× 109Wm−3K−5 and ΣCu =

2× 109Wm−3K−5. In this case, we achieve a good and somewhat constant per-

formance for a resistance ratio between 10 and 200. This order of magnitude is

consistent with the factor exp(∆1/kBT1) between the currents IN1,opt and I12,opt at

an identical junction resistance R1,2. The relatively large span of this region stems

from the existence of the singularity in the electric current as a function of the bias

voltage. This rectifies any imbalance that might occur in the structure, similarly

to what happens for an asymmetric pair of NIS junctions in series [57]. At higher

bath temperature, the window for optimal resistance ratio gets narrower, and is

slightly shifted towards lower values.

Let us now discuss practical issues in a cascade cooler’s design. As stated

above, the performance of the cascade cooler configuration strongly depends on

the value of the ratio R1/R2. Due to the smaller value of the current I12 through

a S1IS2 junction compared to the current IN1 through a S1IN junction of com-

parable normal-state conductance, the resistance R2 has to be made significantly

smaller than R1 in order to get an efficient cascade cooler. Optimal values of the

R1/R2 ratio for bath temperatures and material configurations of experimental in-

terest therefore lie in the range ∼ 15− 150, while depending strongly on subtle

parameters like the Dynes parameters of S1,2. From the fabrication point of view,

it might be difficult to tune the R1/R2 ratio at its optimum with a good degree of
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precision. This leads to the practical necessity of tuning the voltage V1 indepen-

dently from the the main bias voltage V . One possible solution to this problem is

to tunnel-couple to each S1 electrode an additional superconductor S′
2, as shown

in Fig. 3.2. Biasing with a second positive (negative) voltage U these two tuning

junctions would enable to add (subtract) some current in the S1IS2 junctions com-

pared to the S1IN ones. The S1INIS1 current can then be tuned from zero to the

double of its value at zero bias U . The latter limitation comes from the fact that

the voltage U needs to be always sub-gap in order to prevent any extra heating of

the S1 electrode.

3.2.3 Different materials and volume ratios

For practical sample fabrication issues, one would preferably use the same

tunnel barrier characteristics (in particular transparency) for the two tunnel barri-

ers between S1 on one side, and N or S2 on the other side. Sticking to a particular

value of the tunnel resistance ratio, and using similar thicknesses for N and S1,

thus leads to a volume ratio V1/VN between the superconductor S1 and the nor-

mal metal N approximately equal to half the inverse of the resistance ratio R1/R2.

Furthermore, the values of the two superconductors’ gaps can also be varied, for

instance replacing vanadium with niobium (Nb). Figure 3.9 shows the results for

the electron temperature TN obtained with the two materials’ choices V-Al-Cu, and

Nb-Al-Cu, at Tbath = 0.5 K, relating or not the volumes’ ratio to the resistances’

ratio. The optimal resistance ratios were adjusted in every case to, respectively,

30 for Nb-Al-Cu, 80 for V-Al-Cu when the volume ratio is adapted to the resis-

tance ratio, and 100 for V-Al-Cu with identical volumes V1 and VN . Imposing a

larger volume V1 affects only slightly the performance of the whole device, with

a minimum electronic temperature rising from 134 to 138 mK for the V-Al-Cu

material combination. This value increases to 147 mK when V is replaced by Nb.

A larger gap value does not necessarily provide an improved cooling, because it

also reduces the available heat current in the S1IS2 junction.

3.2.4 Quasiparticle thermalization

Another crucial issue for the present cascade electronic cooler resides in a

proper quasiparticle thermalization in the intermediate superconductor S1. It is

well known that superconducting-based electronic refrigerators generally suffer

from poor evacuation of highly-energetic quasiparticles in the superconducting

electrodes [58]. To this end, quasiparticle traps of various kinds have been envis-

aged in order to allow their evacuation into nearby-connected normal metal lay-

ers [59, 60]. In the present design, the outer superconductor S2 actually plays this

role, with an increased efficiency thanks to its singularity in the density of states.
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An incomplete quasiparticle energy relaxation in the superconductor S1 should

actually not hinder the cooling in the low-gap superconductor S1 compared to

the present quasi-equilibrium calculations. The cascade cooler appears as rather

immune against poor electronic equilibration in S1. Finally, the outer supercon-

ducting electrodes S2 can be efficiently thermalized through quasiparticles traps,

just as it is done in the case of conventional superconducting refrigerators [4].

3.3 Conclusions

In conclusion, we have discussed a kind of electronic cooler based on hy-

brid superconducting tunnel junction, i.e., the S2IS1INIS1IS2 cascade cooler. The

cascade geometry allows to cool a first superconducting stage, which is used as a

local thermal bath in a second stage. The correct operation of the device strongly

depends on the matching between the resistances of the the two kinds of tunnel

junctions. The resulting constraint can be easily implemented in a practical de-

vice, using of a set of two additional tunnel junctions. Decoupling of local phonon

population from the thermal bath [61] in a suspended metal geometry [62] would

improve performances compared to the situation considered here.
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CHAPTER 4
Quantum Phase-Slip Junction Under

Microwave Irradiation

Introduction

The Josephson junction (JJ) is one of the most used superconducting de-

vices in low-temperature condensed matter experiments. A single JJ is the build-

ing block of various sensors and electronic components [39, 63–66] and plays

an important role in quantum computation and information [67–70]. On a more

fundamental level, JJs with small capacitance have become paradigmatic sys-

tems for studying decoherence and dissipation of a quantum particle coupled

to the external world and for analyzing the transition from quantum to classical

states [41–43, 71–77].

Many of the JJ applications are based on the Josephson effect: a Cooper-

pair tunneling current IJ can flow through a JJ in the absence of an applied bias

voltage. The amplitude of this supercurrent is a non-linear function of the phase

difference ϕ between the two superconductors of the junction, IJ = Ic sin(ϕ). The

critical current Ic is the maximum Cooper pair current that can be carried by the

junction. A voltage drop VJ = (h̄/2e)dϕ/dt appears across the junction when ϕ
changes as a function of time. The classical dynamics of ϕ is ruled by the equa-

tions of motion for a fictitious particle moving in a tilted washboard potential.

In particular, a phase-locking effect can occur when the JJ is irradiated with mi-

crowaves of frequency ωmw [78]. Then the so-called Shapiro steps of constant

voltage VJ,m = m(h̄/2e)ωmw, with m integer, appear in the current-voltage charac-

teristic in addition to the zero-voltage supercurrent state [79, 80]. These steps are

related only to the fundamental constants of physics (the Planck constant h̄ and the

electron charge e) and are used in metrology to define the quantum voltage stan-

dard [26,81–83]. The necessary metrological accuracy is reached at low tempera-

tures and using junctions with large Josephson energy EJ =Φ0Ic/(2π)∼ 100 meV

(Φ0 = h/(2e) is the superconducting flux quantum) and small charging energy

EC = e2/2C ∼ 10 neV, where the capacitance of the junction C plays the role of

55
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the inertial mass in the dynamics of the phase. Moreover, the JJ is typically em-

bedded in a circuit whose resistance R . RQ , with RQ = h/(4e2) = 6.45 kΩ the

superconducting resistance quantum. Under these conditions, thermal and quan-

tum fluctuations of the phase ϕ are suppressed efficiently [78, 84].

The Josephson junction has an exact dual counterpart, the so-called quan-

tum phase-slip junction (QPSJ) [85–93]. Physical realizations of QPSJ that have

been discussed in the literature are a single Josephson junction with a finite ca-

pacitance [85–88, 93] or a linear chain of such Josephson junctions [93–97], and

a narrow superconducting nanowire [98–104]. With respect to an ordinary JJ, the

role of the phase and the charge in a QPSJ is interchanged. Specifically, Cooper-

pair tunneling is replaced by its dual process, i.e., the slippage by 2π of the phase

difference between two well-defined superconducting regions of the device. As a

consequence, the relations governing the behavior of a QPSJ are exactly dual to

the usual Josephson relations. The voltage VJ =Vc sin(πq/e) across the QPSJ is a

non-linear function of the charge variable q, where the critical value Vc is the max-

imum voltage that the junction can sustain. The Cooper-pair current IJ = dq/dt

is different from zero only for time-dependent q. As a consequence, under mi-

crowave irradiation, a QPSJ should sustain a set of current steps, i.e., the dual

Shapiro steps IJ,m = meωmw/π .

However, experimental evidence for the existence of dual steps has been elu-

sive so far. Indeed, the dual Josephson relations pertain to a QPSJ with a rela-

tively well defined charge q, achieved when phase-slips are produced at an ap-

preciable rate, a condition which is not easily compatible with the existence of a

well-defined underlying superconducting state. Actual realizations of a QPSJ are

typically operated in a regime where Vc is not large, so that charge fluctuations are

important, and may well mask the dual Shapiro steps.

In this chapter, we study the role of both thermal and quantum fluctuations

of charge on the properties of the dual Shapiro steps. We present the results of a

combined analytical and numerical analysis of a QPSJ irradiated with microwaves

and embedded in a resistive (R) and inductive (L) electromagnetic environment.

We will see, in particular, that an important role is played by the inductance L, the

quantity dual to the capacitance C of a usual Josephson junction. By duality, we

expect that the fluctuations of the charge q are governed by the ratio U0/EL of the

characteristic phase-slip energy U0 = 2eVc/(2π), dual to the Josephson coupling

energy EJ , and the inductive energy EL =Φ2
0/(2L), dual to the charging energy EC

of a Josephson junction [91]. The larger L, the smaller EL and the larger the ratio

U0/EL, thus favoring a well-defined charge state of the QPSJ. Recent experiments

on nanowires [101, 104] and chains of Josephson junctions [97] typically achieve

U0/EL ratios that are of the order of 10−2÷10−1. We will analyze the microwave

response of a QPSJ in this regime in detail and study in particular the resolution

and accuracy of the dual Shapiro steps.
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Figure 4.1: (a) Circuit of a voltage-biased QPSJ with phase-slip energy U0 =
eVc/π in series with a resistance R and an inductance L. The voltage source has

a DC component V0 and an AC one Vmw(t). (b) Circuit of a current-biased QPSJ

embedded in a resistive (R) and inductive (L) electromagnetic environment. The

total bias current is the sum of a DC component I0 and an AC one Imw(t). This

circuit is related to the voltage-biased one in (a) by the Thévenin-Norton theorem

setting I0 =V0/R and |Imw|= |Vmw|/
√

R2 +L2ω2
mw (see Appendix D).

4.1 Qualitative discussion of the main results

The observation of the dual Shapiro steps is expected in the current-voltage

characteristic (IJ-VJ) of a voltage-biased QPS junction in series with an induc-

tance L and an impedance Z(ω) [91], which hereafter we assume to be frequency

independent, i.e., Z(ω) = R [see Fig. 4.1(a)]. However, in this chapter, we will

focus on the equivalent current-biased circuit shown in Fig. 4.1(b) where a QPSJ

is connected in parallel to a resistive (R) and an inductive (L) electromagnetic en-

vironment and is driven by both a DC current source, I0, and an AC one Imw(t) =
Imw cosωmwt with amplitude Imw and microwave frequency ωmw. The equivalence

between the two circuits in Fig. 4.1 is provided by the Thévenin-Norton theorem,

as shown in Appendix D. The results for the IJ-VJ curve of the QPSJ of Fig. 4.1(b)

that will be discussed in the following are independent of the specific choice of

the external bias.

Let us first discuss the case when the environment is absent, R → ∞, in the

circuit of Fig. 4.1(b).1 Then the dual Josephson relations describing the current-

biased QPSJ can be straightforwardly integrated. Indeed, from the relation dq/dt =
IJ = I0 + Imw(t), we obtain q(t) = q0 + I0t +(Imw/ωmw)sinωmwt, where q0 is the

charge on the QPSJ at time t = 0. Substituting this result into the second relation,

1considering this limit in the voltage-biased circuit shown in Fig.4.1(a) leads to an effective

current-biased QPSJ.
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Figure 4.2: Dual Shapiro steps corresponding to m = 0, 1, 2, and 3 for a

QPSJ in the absence of environment. The other parameters are: α = 1.4 and

h̄ωmw/2πU0 = 1.

VJ =Vc sin(πq/e), we find

V
(mw)
J (ωB) =Vc

+∞

∑
m=−∞

Jm(α)sin(χ0 +ωBt +mωmwt) , (4.1)

where Jm is a Bessel function of the first kind. We defined the parameters α =
πImw/(eωmw) and ωB = πI0/e as well as the dimensionless charge χ0 = πq0/e.

From this result we see that whenever ωB =mωmw, the QPSJ will sustain a charge-

dependent DC voltage VJ,m = VcJm(α)sinχ0. In other words, whenever the DC

bias current I0 equals meωmw/π , phase-locking occurs, which leads to the ap-

pearance of a dual Shapiro step, located at IJ,m = meωmw/π in the DC current-

voltage characteristic of the QPSJ. The width of this step in voltage VJ is given by

2VcJm(α). Note that the parameter α acts as the microwave coupling strength: the

effect of the microwaves disappears as α → 0. Figure 4.2 shows the dual Shapiro

steps corresponding to m = 0,1,2,3 for moderate microwave intensity, α = 1.4,

and microwave frequency h̄ωmw/2πU0 = 1.

We next turn to the case when the resistance R of the environment is finite.

In this case, the total current IJ will contain two additional components. The first

is the current flowing though the resistive-inductive branch of the circuit; it equals

IRL(t) =
∫

dt ′Y (t − t ′)VJ(t
′), where VJ(t) =Vc sin [πq(t)/e] and Y (t) is the inverse

Fourier transform of the admittance

Y (ω) = 1/(R− iωL) , (4.2)
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of the branch. The second component is a fluctuating current δ I(t) of zero average

and the Fourier components of which satisfy the fluctuation-dissipation theorem

〈δ I(ω)δ I(ω ′)〉= 2π δ (ω +ω ′) h̄ω ℜe[Y (ω)] coth

(
h̄ω

2kBT

)

, (4.3)

where T is the temperature of the environment. As a result the charge q on the

QPSJ satisfies the Langevin equation

dq/dt = I0 + Imw(t)− IRL(t)+δ I(t) . (4.4)

In particular, the charge acquires a fluctuating component that will affect the shape

of the current-voltage characteristic.

The effect of charge fluctuations as described by Eq. (4.4) has been analyzed

in detail before in the case where microwaves are absent [85,88,92]. When Imw =
0, Eq. (4.4) reduces to the well-known Langevin problem of the quasi-charge

dynamics in the overdamped regime. The DC current-voltage characteristic of

such a junction has been calculated before in various limits; we briefly recall some

of the results here, focusing on the experimentally relevant limit U0/EL < 1, see

also Fig. 4.3 .

Let us first neglect the fluctuating component, δ I(t) = 0. As long as the

resistance R is large but finite, so that the dimensionless conductance of the en-

vironment, defined as g = RQ/R, is still small, the DC current-voltage charac-

teristic of the QPSJ is a so-called Bloch nose, in the absence of microwaves. It

consists of a zero-current branch at finite voltage up to Vc, which bends back to

a low-voltage, finite current branch. Setting δ I = 0 and considering the limit

gU0/EL ≪ 1, Eq. (4.4) can be integrated directly [92] to yield the DC voltage

V
(δ I=0)
J =

RQI0

g
−θ

(
RQI0

g
−Vc

)
√
(

RQI0

g

)2

−V 2
c , (4.5)

where θ(V ) is the Heaviside step function. The corresponding current-voltage

characteristic is shown in the inset of Fig. 4.3.

However, finite charge fluctuations, δ I(t) 6= 0, prevent the formation of a

sharp feature in the I-V characteristic, even for small g: they give rise to a finite

slope at low current and reduce the maximum voltage to a value lower than Vc, thus

smearing the corresponding current-voltage characteristic. When the resistance R

is reduced further so that g > 1, the effect of the environment is stronger. The

Bloch nose is smeared into a smooth curve with a maximum voltage at finite

current. For very large values of g, the current IJ at which the QPSJ sustains

the largest voltage approaches the value Φ0/2L. This phenomenon is dual to

the phenomenon of Coulomb blockade found in a Josephson junction in a highly



60 Quantum Phase-Slip Junction Under . . .

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

10

20

30

40

VJ � Vc

I J
R

Q
�

V
c

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

g = 0.2

g = 4.2

g = ¥

Figure 4.3: Low-temperature current-voltage characteristics, kBT/U0 = 0.25, of a

QPSJ with U0/EL = 0.013, embedded in an inductive-resistive environment in the

absence of microwaves. Curves from bottom to top correspond to g = 0.2, 4.2,

and ∞. The inset shows the case without fluctuations.

resistive environment, where the voltage at which the Josephson junction sustains

the largest current approaches the value 2e/2C.

We summarize this behavior in the main panel of Fig. 4.3 where we plotted

the QPSJ’s current-voltage characteristic for various values of g at low temper-

ature, kBT/U0 = 0.25, and for small U0/EL = 0.013. We stress that the behav-

ior shown in Fig. 4.3 is essentially nonperturbative in the coupling strength g

characterizing the environment. Indeed, it is well-known that perturbation the-

ory in either g or 1/g is plagued by divergences and describes at best only parts

of the current-voltage characteristic. The complete current-voltage characteristic

can only be obtained including the relevant contributions to all orders.

We are now in a position to state the main results of this chapter, where

we study the combined effect of the application of microwaves and the presence

of charge fluctuations induced by the resistive-inductive environment. We use

an approach that is non-perturbative in both the environmental coupling strength

g and the microwave coupling strength α . As we will see below, this implies

that analytical results can only be obtained in the limit U0/EL < 1. On the other

hand, this corresponds to the relevant experimental situation where QPSJs are

studied with relatively low phase-slip rates and not too large inductances. In the

limit U0/EL < 1, we find that, at the first order in U0, the QPSJ’s current-voltage

characteristic in the presence of microwaves can be straightforwardly obtained
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Figure 4.4: IJ-VJ characteristic obtained from the numerical evaluation of

Eq. (4.38) in the low-conductive regime, g = 0.2. Here, kBT/U0 = 0.25 and

α = 1.4. The dimensionless frequency of the microwaves h̄ωmw/2πU0 is equal

to 1. The three curves are obtained using three different values of the inductance

of the environment such that U0/EL = 0.013 (red dashed line), U0/EL = 0.051

(blue solid line), U0/EL = 0.141 (green dotted line). The inset shows the relative

deviation δ Im = πIJ/meωmw −1 for the first Shapiro step, m = 1.

from the DC result without microwaves,

V
(mw)
J (ωB) =

+∞

∑
m=−∞

J2
m (α) V

(DC)
J (ωB +mωmw) , (4.6)

in agreement with a general result recently demonstrated in Ref. [105]. Here V
(DC)
J

is given by Eqs. (4.32) and (4.33). Specifically, this result implies that the current-

voltage characteristic of a QPSJ with U0/EL < 1 under microwave irradiation is

obtained by replicating the known, DC characteristic of the QPSJ in the absence

of microwaves at the positions of the current plateaus, IJ,m =meωmw/π , which are

expected for a QPSJ in the absence of the external electro-magnetic environment.

We focus on the case g < 1, for which dual Shapiro steps are expected. Fig-

ure 4.4 displays a typical current-voltage characteristic obtained in this situation,

taking again g = 0.2, kBT/U0 = 0.25, a microwave frequency h̄ωmw/2πU0 = 1

and α = 1.4. We see that the current-voltage characteristics are strongly modified

in the simultaneous presence of microwaves and charge fluctuations induced by

the environment, combining features of both Fig. 4.2 and 4.3.

Rather than being a set of discrete steps, the current-voltage characteristic is

a continuous curve, connecting subsequent steps, bending back towards a zero-

voltage state in between them. In other words, in the presence of microwaves,
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a replica of the Bloch nose is indeed found for each dual Shapiro step. As ex-

pected, in the presence of charge fluctuations, the width of the steps is smaller

than the value 2VcJn(α), found for g = 0; also, the dual steps are no longer strictly

horizontal but acquire a small but finite linear slope. Note the role played by the

inductance L, which limits the effects of the charge fluctuations. As is clearly

seen in Fig. 4.4, the larger L, the larger the width of the steps and the smaller their

slopes. This can be seen in particular in the inset of Fig. 4.4, which presents the

relative accuracy δ Im = πIJ/meωmw−1 for the first Shapiro step, m= 1. The inset

also shows that the accuracy of the dual step is not only limited by charge fluc-

tuations but also by a systematic shift of the step position, down by about 0.0015

in relative accuracy. This is due to the finite overlap of the various replicas. The

shift can be reduced by increasing the microwave frequency so that the replicas

are more separated along the IJ-axis, thus reducing their overlap.

4.2 Current-biased QPSJ

4.2.1 QPSJ Hamiltonian

The Hamiltonian of the current-biased QPSJ in the circuit depicted in Fig. 4.1(b)

is given by

Ĥ=−U0 cos
[π

e

(
q̂+ Q̂RL

)]

− h̄I(t)

2e
ϕ̂ + Ĥenv

[
{Q̂λ},{ϕ̂λ}

]
, (4.7)

(see Appendix D). Here the charge and phase operators q̂ and ϕ̂ are canonically

conjugate, satisfying the commutation relation [ϕ̂, q̂] = 2ie. As a consequence, q̂

satisfies the equation of motion ˙̂q = I(t) and thus corresponds to the total charge

injected into the parallel combination of the QPSJ and the L− R environment.

The first term in Eq. (4.7) describes the nonlinear QPSJ with phase-slip energy

U0, which carries the charge q̂+ Q̂RL, where the charge variable Q̂RL = ∑λ Q̂λ

accounts for the charge of the dissipative R-L environment. We thus model it using

an infinite ensemble of harmonic oscillators (Caldeira-Leggett model) [41, 42],

described by the third term of Hamiltonian (4.7),

Ĥenv = Ĥenv

[
{Q̂λ},{ϕ̂λ}

]
=

+∞

∑
λ=1

[

Q̂2
λ

2Cλ
+

1

2Lλ

(
h̄ϕ̂λ

2e

)2
]

. (4.8)

The charge Q̂λ and the phase ϕ̂λ represent the momentum and position, respec-

tively, of the λ -oscillator with characteristic frequency ωλ = 1/
√

LλCλ . Accord-

ing to the fluctuation-dissipation theorem,

1

2
〈[ÎRL(t), ÎRL(0)]+〉ω = h̄ω ℜe[Y (ω] coth

(
h̄ω

2kBT

)

,
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where ÎRL = ˆ̇QRL is the fluctuating current in the R-L environment and [..., ...]+
denotes the anticommutator. This yields the relation

ℜe[Y (ω)] = πω2 ∑
λ

√

Cλ

Lλ
δ (ω2 −ω2

λ ) , (4.9)

linking the parameters of the Caldeira-Leggett bath with the environmental ad-

mittance. Finally, the coupling between the charge operator q̂ and the bias current

I(t) is given by the second term in (4.7).

Hamiltonian (4.7) has been used to describe QPSJs based on nanowires [91],

Josephson junctions [92] and chains of Josephson junctions [93]. In Appendix

D, we show how Hamiltonian (4.7) can be obtained starting from the well-known

Hamiltonian of a current-biased single Josephson junction embedded in an R-L

environment.

4.2.2 Current-voltage characteristic

The DC current IJ flowing through the QPSJ element is given by the dif-

ference between the total DC current I0 and the current flowing through the R-L

impedance of the circuit of Fig. 4.1(b),

IJ = I0 −VJ/R . (4.10)

Here VJ is the DC component of the voltage drop across the QPSJ element. Using

the Josephson relation between ϕ̂ and VJ and the Heisenberg equation of motion

for the operator ϕ̂ generated by the Hamiltonian Ĥ, this potential reads (see Ap-

pendix D)

VJ =
h̄

2e

〈
dϕ̂

dt

〉

DC

=Vc

〈

sin
[π

e

(
q̂+ Q̂RL

)]〉

DC
. (4.11)

The symbol 〈. . .〉 denotes the quantum statistical average for the system described

by the Hamiltonian Ĥ, Eq. (4.7).

Dual Shapiro steps in the absence of environment

By setting Q̂RL = 0 in Eq. (4.7), the coupling with the environment vanishes

and the system corresponds to an ideal current-biased QPSJ whose Hamiltonian

Ĥ0 contains only the first two terms of Ĥ. Introducing a complete set of discrete

phase-states for the QPSJ, |φn〉= 2π |n〉 with n integer, we can express Ĥ0 as

Ĥ0 =−U0

2
∑
n

(|n〉〈n+1|+h.c.)− h̄I(t)

2e
∑
n

2πn |n〉〈n| . (4.12)
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Figure 4.5: Wannier-Stark ladder. The tilt provided by the bias current I0 in-

duces an energy separation h̄ωB between adjacent phase states indicated by red

horizontal bars. Phase-locking occurs when the resonant condition ωB = mωmw is

satisfied. For m= 1, a photon with energy h̄ωmw is exchanged with the microwave

source.

in the phase representation. When Imw = 0, Eq. (4.12) corresponds to the well-

known Wannier-Stark ladder problem for a particle moving in a tilted tight-binding

lattice, see Fig. 4.5. The tilt I0 provides an energy difference equal to h̄ωB between

two adjacent phase states. The term proportional to U0 induces transitions between

adjacent phase-states, i.e., phase-slip events. In the absence of microwaves or a

coupling to the environment, we have only coherent Bloch oscillations and the

associated energy difference h̄ωB can not be accommodated by the system. Hence

no finite DC component is found for the voltage VJ in this case.

Switching on the microwave field, the tilted lattice acquires an additional,

oscillatory slope with amplitude Imw 6= 0. For this problem, the unitary evolution

operator can be evaluated exactly and it reads

Û(t) = eiQ(t)n̂ei
U0
2h̄

∫ t
0 dt ′[K̂ exp(iQ(t ′))+K̂† exp(−iQ(t ′))] , (4.13)

in which we set

Q(t) = ωB t +α sin(ωmwt) . (4.14)

In Eq. (4.13), we also introduced the number operator n̂ = ∑n n |n〉〈n| and the

ladder operator K̂ = ∑n |n〉〈n+1|. After some algebra, the expectation value of

the voltage operator in Eq. (4.11) on the state Û(t) |q0〉, the time evolved initial
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quasi-charge state |q0〉, is

V
(mw)
J (t) = Vc sin [χ0 +Q(t)]

= Vc

+∞

∑
m=−∞

Jm (α)sin(χ0 +ωBt +mωmwt) . (4.15)

Equation (4.15) coincides with Eq. (4.1) and describes the ideal dual Shapiro

steps: a non-vanishing DC-voltage now appears each time the bias-current I0 = IJ

satisfies the condition IJ = meωmw/π , as shown in Fig. 4.2. The dual Shapiro

steps, labeled with the index m = 0,±1, . . . , are replicas of the zero-voltage state

obtained with m = 0 and α = 0, rescaled with the corresponding Bessel function

of the first kind Jm(α). The coherent emission/absorption of microwave photons

with energy h̄ωmw is at the origin of this phenomenon, the well known phase-

locking effect. The local phase states undergo a coherent quantum tunneling upon

exchanging the energy h̄ωmw with the microwave field, see Fig. 4.5.

Perturbation theory

We next analyze the current-voltage characteristic of the QPSJ in terms of

perturbation theory in microwave interaction α and dissipative coupling g. We

show that this approach systematically leads to divergent behaviour. For simplic-

ity, we assume the bath to be at zero temperature.

Applying the unitary transformation Ûenv = exp
[
−iϕ̂Q̂RL/2e

]
to Hamilto-

nian (4.7), we obtain the QPSJ Hamiltonian in the form Ĥ
′
s = Ĥ0 + Ĥint in which

we consider as the unperturbed Hamiltonian

Ĥ0 =−U0 cos
(π

e
q̂
)

− h̄I0

2e
ϕ̂ , (4.16)

and the interaction term

Ĥint =− h̄Imw

2e
cos(ωmwt)ϕ̂ + Ĥenv

[
{Q̂λ},{ϕ̂λ + ϕ̂}

]
. (4.17)

In this canonical form, the voltage operator is given by

VJ =Vc

〈

sin
(π

e
q̂
)〉

DC
. (4.18)

Using the interaction picture, we expand the unitary time evolution operator in

terms of Ĥint , Eq. (4.17), to calculate VJ , Eq. (4.18). After some algebra, for

vanishing microwave strength α = 0, we obtain for the DC component of the

voltage

V
(DC)
J =

gV 2
c

2RQ I0
. (4.19)
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Figure 4.6: Wannier-Stark ladder in the presence of both microwave and environ-

mental photons with energies h̄ωmw and ∆E respectively.

This result is indeed linear in g and corresponds to the first order expansion of

the classical solution (4.5). Its validity requires VJ/Vc ≪ 1, hence I0 ≫ gVc/RQ.

We conclude that perturbation theory breaks down in the limit of vanishing DC

current bias.

In the presence of microwaves, α 6= 0, the result (4.19) generalizes to

V
(mw)
J =

gV 2
c

2RQ

+∞

∑
m=−∞

J2
m(α)

I0 +meωmw/π
, (4.20)

which shows that the divergent behavior found for I0 → 0 is repeated at the posi-

tions I0 → meωmw/π at which the dual Shapiro steps are expected.

Although the perturbative approach is divergent and is inappropriate to de-

scribe the dual Shapiro steps in the presence of dissipation, it is useful for giving a

simple picture of the QPSJ’s dynamics: the incoherent tunneling of the localized

phase states in the Wannier-Stark ladder generally occurs via the combined emis-

sion and/or absorption of a certain number of photons with energy h̄ωmw of the

microwave source and the exchange of an amount of energy ∆E with the thermal

bath, see Fig. 4.6. One expects that the interplay between the photon-assisted and

environment-assisted phase-slippage causes the smearing of the ideal dual Shapiro

steps. Indeed, the sharp resonance condition h̄ωB = h̄ωmw associated to the single

microwave photon emission can not be fulfilled anymore as the QPS junction can

now dissipate the energy h̄ωB at any bias current because the energy difference

∆E = h̄(ωB −ωmw) is emitted in the environment, see Fig. 4.6.
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4.3 Dual Shapiro’s steps: non-perturbative formal

approach

We now develop a theory to describe the combined effect of charge fluctua-

tions induced by the environment on one hand and microwave irradiation on the

other hand, which is non-perturbative in both g and α . To determine the current-

voltage characteristic of the QPSJ by means of Eq. (4.10), we need the DC compo-

nent VJ of the potential across the QPSJ given by Eq. (4.11). The quantum statis-

tical average in the r.h.s. of Eq. (4.11) can be calculated by means of the Keldysh

formalism (see Appendix E for a more detailed derivation) [22, 92, 106, 107]. In-

troducing the so-called Keldysh closed time-contour Ck which goes from t =−∞
to t = t0 and back to t = −∞ and treating the cosine term in Eq. (4.7) as a per-

turbation, one can obtain an exact series expansion in terms of the QPSJ energy

U0. In this expansion, the contribution of the oscillators forming the harmonic

bath decouples from the contribution of the QPSJ charge q so that one can eval-

uate the quantum statistical averages exactly to each order. We have generalized

this solution taking into account the presence of the microwave signal. The time-

dependent voltage across the QPSJ reads

VJ(t0)

Vc

=
+∞

∑
n=0

(−1)n

2i

(
U0

h̄

)2n+1

∑
{ηk}

∫ t0

−∞
dt1. . .

∫ t2n

−∞
dt2n+1Fenv Fq , (4.21)

where the term Fenv,

Fenv = e∑2n+1
k=1 ∑k−1

k′=0
ηkηk′M(tk′−tk)

2n+1

∏
k=1

sin

[
k−1

∑
k′=0

ηk′ A(tk′ − tk)

]

, (4.22)

accounts for the environment-assisted phase-slip events and Fq,

Fq = ei∑2n+1
k=0

Q(ηktk) = exp

{

i
2n+1

∑
k=0

[ωBηktk +α sin(ωmwηktk)]

}

, (4.23)

is related only to the free dynamics of the charge q as given by Eq. (4.14). The

dichotomic variables ηk = ±1, with k = 0,1, . . . ,2n + 1, satisfy the constraint

∑2n+1
k=0 ηk = 0 and the sum ∑{ηk} over all the possible configurations of ηk stands

for the product of the 2n+2 sums ∑η1=± · · ·∑η2n+1=±.

The functions of time M(t) and A(t) in Eq. (4.22) describe the exchange of

energy between the QPSJ and the external electromagnetic environment. They

determine

J(t) =−M(t)− i sign(t)A(t) , (4.24)
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i.e., the charge-charge correlation function

J(t) = ∑
λ

〈
Q̂λ (t)Q̂λ (0)− Q̂2

λ (0)
〉
, (4.25)

which quantifies the fluctuations of the tunneling phase due to the thermal bath [1,

108]. In particular, J(t) gives the coupling strength between the QPSJ and the

environment. For the current-biased configuration of Fig. 4.1(b), we have

J(t) = 2RQ

∫ +∞

−∞

dω

ω
ℜe[Y (ω)]

(
e−iωt −1

1− e−h̄ωβ

)

, (4.26)

where Y (ω) is the admittance (4.2) of the circuit and β = 1/kBT the inverse tem-

perature. An exact calculation yields [22, 92]

A(t) = πg
(

1− e−ωRL|t|
)

, (4.27)

M(t) = 2g
π |t|
h̄β

−A(t)cot

(
h̄ωRLβ

2

)

+2g
+∞

∑
n=1

1

n

1− e−νn|t|

1− (νn/ωRL)2
. (4.28)

Here νn = 2πn/h̄β is the n-th Matsubara frequency, and ωRL = R/L is the fre-

quency scale characterizing the environment fluctuations at vanishing tempera-

ture.

The Jacobi-Anger expansion exp[iα sin(x)] = ∑+∞
m=−∞ Jm(α)exp[imx] allows

to cast Fq in terms of the Bessel functions of the first kind Jm(α),

Fq=
+∞

∑
m0=−∞

Jm0
(α). . .

+∞

∑
m2n+1=−∞

Jm2n+1
(α)exp

[

i
2n+1

∑
k=0

(ωB +ωmwmk)ηktk

]

. (4.29)

Performing the change of variables τk = tk−1 − tk, each time tk can be expressed

as tk = t0 −∑k
h=1 τh with k ≥ 1. Then Eq. (4.29) becomes

Fq = ∑
{mk}

(

∏
mk

Jmk

)

exp

(

iωmwt0

2n+1

∑
k=0

ηkmk

)

× exp

[

−i
2n+1

∑
k=0

(ωB +ωmwmk)ηk

k

∑
h=1

τh

]

(4.30)

where we used the sum rule ∑k ηk = 0. Unlike the functions M(tk′−tk) and A(tk′−
tk) in Eq. (4.22) which depend only on the time difference tk′ − tk = ∑k

h=1 τh −
∑k′

h′=1 τh′ , Eq. (4.30) is a function of the time t0 at which we calculate the volt-

age across the QPSJ. From Eq. (4.30) we observe that the frequency spectrum of
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Eq. (4.21) at the time t0 involves integer components of the single fundamental

frequency ωmw applied to the dual junction. This frequency mixing is due to the

QPSJ which operates as a non-linear capacitance, i.e., it is related to the cosine

dependence of the QPSJ energy as a function of the charge q. Thus, in the steady

state regime, we can extract the DC component by considering the time average

of the general signal as f (t) = (1/Tmw)
∫ ti+Tmw

ti
dt f (t) over a microwave period

Tmw = 2π/ωmw where ti is an arbitrary initial time. Then, the DC voltage reads

VJ

Vc
=

V (t0)

Vc
= . . .Fq(t0) = . . .

1

Tmw

∫ ti+Tmw

ti

dt0 eiωmwt0 ∑
2n+1
k=0 ηkmk . (4.31)

The latter quantity is different from zero only if the sum rule ∑2n+1
k=0 ηkmk = 0 is

satisfied for each arbitrary configuration of the variables {ηk} at given set of the

integers {mk} associated to the expansion of the Bessel functions.

4.4 Lowest order results

A general analysis of the U0-expansion Eq. (4.31) is only possible in limiting

cases. We focus here on the experimentally most relevant limit of relatively small

QPSJ energy U0, typically encountered in Josephson junction-based QPSJs. Then

Eq. (4.31) can be approximated with its first term. We discuss the range of validity

of this approximation below. Considering n = 0 only, the non-zero dichotomic

variables are η0 =± and η1 =±. Since they have to satisfy the constraint ∑k ηk =
η0+η1 = 0, it follows that the allowed configurations {ηk}= (η0,η1) are (−,+)
and (+,−), i.e., η0 and η1 have opposite sign. This means that the time-average

given by Eq. (4.31) is different from zero if the indices m0 and m1 of the two

possible sums of Bessel functions in Eq. (4.29) are equal.

4.4.1 DC-current-biased QPSJ

Let us first consider the case without microwave irradiation. Setting α = 0

in Eq. (4.31), and retaining the term n = 0 only, the voltage drop on the QPSJ as a

function of ωB reads

V
(DC)
J

Vc
(ωB)≃

π

2
U0 [P(h̄ωB)−P(−h̄ωB)] , (4.32)

where we defined the function [1, 92]

P(∆E)≡ 1

2π h̄

∫ +∞

−∞
dτ eJ(τ) e

i
h̄

∆Eτ . (4.33)
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ÑΩB
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Figure 4.7: Environment-assisted transitions between adjacent states in the

Wannier-Stark ladder lead to the appearance of a finite voltage across the QPSJ

element.

The function P(∆E) represents the probability density that the QPSJ absorbs

(∆E > 0) or emits (∆E < 0) an amount of energy |∆E| from or to the external envi-

ronment respectively during a phase-slip event. It is dual to the well-known func-

tion P(E) used to describe charge tunnelling in the presence of an environment [1].

We see that an incoherent phase slippage by ∆ϕ = 2π in the Wannier-Stark Ladder

takes place only if the system exchanges the energy ∆E = h̄ωB = (∆ϕ)h̄I0/(2e)
with the environment, see Fig. 4.7. As the energy spectrum of the bath is contin-

uous, the QPSJ has a dissipative behavior for any value of the applied DC-current

I0.

The validity of Eq. (4.32) is given by the condition V
(DC)
J /Vc ≪ 1, yield-

ing U0max[P(h̄ωB)] ≪ 1 [108]. The current-voltage characteristics displayed in

Fig. 4.3 have been obtained from Eqs. (4.32) and (4.33) by direct numerical inte-

gration, using the correlation function Eq. (4.26). However, analytical results are

available, for instance, in the limit of low temperature and small conductance so

that βEL/2π2g ≫ 1 and βEL/2π2g2 ≫ 1. Then

V
(DC)
J

Vc
(ωB)≃ u

|Γ(g+ iβ h̄ωB/2π)|2
Γ(2g)

sinh(β h̄ωB/2) , (4.34)

where u = (βU0/4π)(βELeγ/2π2g)−2g with γ = 0.577 . . . the Euler constant.

Hence we find a linear conductance G0 at vanishing current IJ and voltage VJ
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(h̄ωBβ/2π ≪ 1), given by

G0RQ ≈ 4(U0β )2(g−1)

(
EL

U0

)2g(
1

2π2g

)2g Γ(2g)

Γ2(g)
e2gγ −g . (4.35)

We note that G0 ∼ T 2−2g and thus decreases with decreasing temperature; simi-

larly G0 ∼ E
2g
L ∼ 1/L2g and thus decreases with increasing inductance. Moreover,

G0 decreases with decreasing g.2

Increasing ωB till ωmax
B ≈ 2πg/(h̄β ), we reach the back-bending point cor-

responding to the maximum value

(

V
(DC)
J

Vc

)

max

≈ π u =
1

4
(βU0)

1−2g

(
U0

EL

)2g

(2π2g)2ge−2γg , (4.36)

for g ≪ 1. We see that the lower the temperature T , the larger is the inductance

L and the smaller the conductance g, the closer VJ,max is to the maximum value

Vc. Beyond the back-bending point, the system enters into the Bloch oscillation

branch where the bias energy h̄ωB becomes dominant with respect to both quan-

tum and thermal fluctuations and the DC-voltage VJ vanishes exponentially.

Another interesting limit is the high-conductance regime g ≫ 1. In this limit,

the QPSJ is strongly coupled to the external electromagnetic dissipative environ-

ment and

P(∆E)≃ 1√
4πELkBT

exp{−(∆E −EL)
2/(4ELkBT )} . (4.37)

As a result, the Bloch nose broadens into a Gaussian with a width
√

ELkBT and

peaked at the inductive energy EL, as can be seen in Fig. 4.3. Lowering the tem-

perature such that βEL ≫ 1, P(∆E)→ δ (∆E −EL). As a result, phase-slip events

in a current-biased QPSJ can only occur if the energy h̄πI0/e exchanged with the

inductive environment equals EL. This is the phenomenon dual to the Coulomb

blockade of Cooper pair tunneling in a voltage-biased Josephson junction em-

bedded in a highly resistive environment, where the transfer of Cooper pairs is

possible only if the energy 2eV exchanged with the environment equals to the

charging energy EC.

2the conductance G0 can become negative, signalling the breakdown of the lowest order result

(4.32).
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4.4.2 Microwave irradiated QPSJ

In the presence of the microwave source, the n = 0 term in the time-averaged

expansion Eq. (4.31) can be written as

V
(mw)
J (ωB) =

+∞

∑
m=−∞

J2
m (α)V

(DC)
J (ωB +mωmw) . (4.38)

Comparing Eq. (4.38) with Eq. (4.32), we see that, under the effect of the mi-

crowave radiation, the first-order voltage across the QPS junction is the super-

position of an infinite number of zero-microwave potentials shifted by an integer

multiple m of ωmw. Unlike Eq. (4.15), the weight of the m-th term in Eq. (4.38)

is determined by the squared first-kind Bessel function of the m-th order, J2
m(α).

This result is in agreement with the general theorem proved in Ref. [105]. Since

the sum rule ∑+∞
−∞ J2

m (α) = 1 holds, the larger is α the smaller is the amplitude of

the voltage corresponding to m = 0 and consequently the more important is the

contribution of the higher-order terms. In other words, changing the amplitude α ,

the constant total weight re-distributes among the infinite terms of Eq. (4.38).

Using Eq. (4.10) in combination with Eq. (4.38), we find that the IJ-VJ char-

acteristic of the QPSJ consists of (mωmw)-shifted and rescaled copies of the QPSJ’s

characteristic in the absence of microwaves, Eq. (4.32), obtained for Imw = 0.

These features occurring at IJ,m = meωmw/π represent the dual or current Shapiro

steps smeared by quantum and thermal fluctuations induced by the thermal bath.

These results are shown in Fig. 4.4, obtained by direct numerical evaluation of

Eq. (4.32) in combination with Eq. (4.38) for g < 1. The plotted smeared IJ-

VJ curves result from the competition and interference between the environment-

assisted phase slippage and the pure photon-assisted tunneling of the phase in-

duced by the microwave field. In order for these features to be resolved, the

microwave frequency ωmw has to be much larger than ωmax
B ≈ 2πg/(h̄β ), the bias

current corresponding to the back-bending point (V
(DC)
J /Vc)max, see Eq. (4.36).

When g > 1, the current-voltage characteristics of the microwave-irradiated

QPSJ typically look like the ones plotted in Fig. 4.8. We find that they consist of

replicas of the smeared current-voltage characteristics for g > 1 and Imw = 0, see

Fig. 4.3, centered around the positions of the ideal Shapiro steps shown in Fig. 4.2.

Since the IJ-VJ characteristics for g > 1 are more smeared than the ones found in

the low-conductive case, a higher microwave frequency h̄ωmw/2πU0 = 20 has

been used to resolve the various replicas and obtain Fig. 4.8. When increasing the

inductance L for g > 1, the smearing effects are reduced. The inset of Fig. 4.8

shows the relative accuracy δ Im = πIJ/meωmw−1 of the structure found at m = 1

when compared to a perfect dual Shapiro step. We see that the high conductance

case does not produce single dual Shapiro steps, but rather a doublet of two steps,
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Figure 4.8: IJ-VJ characteristics obtained from the numerical evaluation of

Eq. (4.38) in the high-conductive regime, g = 4.2. Here kBT/U0 = 0.25 and

α = 1.4. The dimensionless frequency of the microwaves h̄ωmw/2πU0 is equal

to 20. The three curves are obtained using three different values of the induc-

tance such that U0/EL = 0.013 (red dashed line), U0/EL = 0.051 (blue solid

line), U0/EL = 0.141 (green dotted line). The inset shows the relative deviation

δ Im = πIJ/meωmw −1 of the structure found for m = 1 with respect to a perfect

first Shapiro step.

located symmetrically around the value meωmw/π . Combining Eq. (4.38) and

the asymptotic result (4.37), we expect the positions of the steps of the doublets to

approach their asymptotic values meωmw/π±Φ0/2L with increasing conductance

g. Eventually, a single dual Shapiro step is recovered for L → ∞.

4.4.3 Accuracy of the current Shapiro steps

The reduction of quantum and thermal fluctuations affecting the dual Shapiro

steps is crucial for their experimental observation as well as their potential applica-

tions, such as in metrology. In this respect, it is important to analyze the accuracy

of the dual steps. We focus on the relevant regime of low conductance, g < 1,

where actual well-defined dual Shapiro steps are found and examine the smear-

ing of the m-th step by considering the relative deviation δ Im = πIJ/meωmw −1.

Based on the asymptotic results of Eqs. (4.35) and (4.36), we expect a minimal

smearing when T and g are chosen as small as possible and L large.

The behavior of δ Im as a function of some of the relevant system parameters

is studied numerically in Fig. 4.9 and Fig. 4.10 for the first dual Shapiro step, m =
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Figure 4.9: Relative deviation δ Im for the first Shapiro step m = 1, for kBT/U0 =
0.1 and h̄ωmw/2πU0 = 0.16. The panel (a) corresponds to U0/EL = 0.0032 and

the panel (b) to U0/EL = 0.013. The lines correspond to three different microwave

strengths, α = 1.4, 2.2, 3.2 are for, respectively, the (red) dashed, the (blue) solid

and the(green) dotted line. It is also shown the (blue) dashed-dotted line for the

behavior for the unperturbed Shapiro step for α = 2.2 (see text).

1. In these figures, the solid, dashed and dotted lines correspond to three different

microwave strengths α = 1.4, 2.2, and 3.2. Also shown (dashed-dotted line) is

the behaviour of the unperturbed dual Shapiro step for α = 2.2, i.e., J2
1(2.2)×

V
(DC)
J (ωB −ωmw), obtained by subtracting the contributions from all the other

steps corresponding to m 6= 1 from the signal.

One sees that two phenomena generally limit the accuracy of the steps: (i)

they are smeared around the actual plateau value and (ii) their position is offset

with respect to the expected one. The latter phenomenon is absent for the unper-

turbed step: indeed the shift of the step position is due to the finite overlap of the

m = 1 replica of the Bloch nose with all the other replicas m 6= 1. This suggests

that increasing the microwave frequency should yield a better accuracy of the step

position as it separates the replicas more, thereby reducing their overlap and, at

the same time, improving their individual resolution. The result of an increasing

of ωmw on the step position can be seen by comparing Fig.4.9(b) with Fig.4.10.

We notice, for instance, that when α = 2.2 the relative offset reduced from about

0.02 in the former to about 0.0004 in the latter by increasing ωmw by a factor of

10.

It is interesting to investigate why the curve for α = 2.2 is less affected by

the offset than the one for α = 1.4, although the step size is the same for both
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Figure 4.10: Relative deviation δ Im for the first Shapiro step m = 1, for kBT/U0 =
0.1, h̄ωmx/2πU0 = 2 and U0/EL = 0.013. The lines correspond to three different

microwave strengths, α = 1.4, 2.2, 3.2 are for, respectively, the (red) dashed, the

(blu) solid and the(green) dotted line. It is also shown the (blue) dashed-dotted

line for the behaviour for the unperturbed Shapiro step for α = 2.2 (see text).

curves. Indeed, the value of the squared Bessel functions J2
1(α) determining the

m = 1 step width is almost equal for the two curves. However the value J2
0(α)

is very different: J2
0(2.2) ≈ 0.01 whereas J2

0 (1.4) ≈ 0.32. In other words, the

m = 0 Shapiro step will strongly influence the step m = 1 for α = 1.4, leading to a

large offset, whereas it influences the m = 1 step much less for α = 2.2. The step

corresponding to α = 3.2 is more or less structureless, as its weight is very small,

J2
1(3.2)≈ 0.07.

As far as the smearing is concerned around the actual plateau position, a

comparison between Fig. 4.9(a) and Fig. 4.9(b) shows the effect of the inductance.

Increasing the inductance by a factor of 4 reduces the relative width of the step

from about 0.1 in Fig. 4.9(a) to about 0.05 in Fig. 4.9(b).

4.4.4 The effect of Joule heating

In this section, we discuss an important aspect related to the experiment

aimed to detect dual Shapiro steps, namely the effect of Joule heating in the I-

V characteristic of the QPSJ [97, 101, 103, 104].

As we have seen above, we expect to approach the ideal dual Shapiro steps of

Fig. 4.2 under the condition g ≪ 1. This means that the QPSJ is ideally embedded

in a highly-dissipative environment. Such an environment is expected to produce
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Figure 4.11: Effect of Joule heating on the dual Shapiro steps obtained from the

numerical evaluation of Eq. (4.38) in the low-conductive regime, g = 0.2. For

the red dashed IJ-VJ curve the temperature is fixed to kBT/U0 = 0.25, and the

inductance of the environment is such that U0/EL = 0.141, as for the green dotted

line in Fig. 4.4. On the other hand, the blue curve has been determined using the

effective temperatures Teff which are solution of Eq. 4.39 with kBTph/U0 = 0.25,

and U0/h̄ = 4 GHz. We set the parameters Σ = 109 Wm−3K−5 and Ω = 10−19 m3

in agreement with the recent experiments discussed in Ref. [103]. The inset shows

the rescaled effective temperature Teff/T as a function of the current through the

QPSJ.

also unwanted Joule heating which in turn would enhance the smearing of the

steps. Indeed, in the low-conductance limit, R ≫ RQ, quantum effects due to

the external bath become small, whereas thermal ones induced by heating may

become dominant. In this context, the effective electronic temperature Teff of the

R-L series can be much larger than the phonon temperature Tph. For the circuit of

Fig. 4.1(b), the current flowing through the R-L branch is VJ/R, then the power

dissipated by the resistance is PJ =V 2
J /R, where VJ is a function of the temperature

(see Eq. 4.38). It follows that the effective temperature Teff can be determined by

the self-consistent equation [53]

T 5
eff = T 5

ph +
V2

J (Teff,ωB)

R ΣΩ
. (4.39)

In this last relation, Σ is the material-dependent electron-phonon coupling con-

stant, and Ω the volume of R.

Figure 4.11 shows the I-V curve of a QPSJ embedded in an environment

with g ≪ 1 and fixed temperature, kBT/U0 = 0.25, where the Joule heating is not
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taken into account, together with the dual Shapiro steps smeared by the voltage-

dependent effective temperature Eq. 4.39 which accounts for the exchange of en-

ergy between the electrons and the phonons in the resistance R. We notice a

reduction of the width of the steps, as one expects, which compromise their ex-

perimental observation. However, this problem can be overcome by increasing

the inductance L of the environment rather than the resistance R. Indeed, L plays

the same role of R in the reduction of the fluctuations, as shown previously. As

the dual Shapiro steps are replicas of the I-V characteristic at low current, we can

estimate the leading dependence for the smearing by considering Eq. 4.35. We

obtain the slope

G0RQ ≈ 2g

(
kBT

U0

)2(
EL

U0

)2g

, (4.40)

for g ≪ 1. We observe that the smearing due to the temperature can partially be

compensated by increasing the inductance of the environment.

4.5 Conclusions

In this chapter, we discussed the microwave response of a QPSJ embedded in

an inductive-resistive environment. We focused on the regime of relatively small

ratio of phase-slip energy U0 over inductive energy EL. The response consists of a

series of well-defined current Shapiro steps, located at multiples of eωmw/π , if the

environmental resistance is sufficiently large, such that the dimensionless conduc-

tance g < 1. These steps are in fact replicas of the QPSJ’s Bloch nose, observed

in the absence of microwaves. Charge fluctuations induced by the environment

smear the steps. This smearing can be reduced by decreasing the dimensionless

environmental conductance g, decreasing the dimensionless temperature kBT/U0

and increasing the ratio U0/EL, which can be achieved by increasing environmen-

tal inductance L. Finally, we showed that the conductance g can not be decreased

indefinitely, as heating effects may develop in the environment.

The results presented in this chapter are relevant for recent experiments on

Josephson junction chains [97] and nanowires [101, 104]. In these works, typical

phase-slip energies U0 are in the range of 1÷10 GHz, whereas the environmental

inductances L are 50÷ 500 nH. This motivated the parameter choices used in

this chapter: U0/EL ranges from 0.001÷ 0.1; at typical cryostat temperatures

kBT/U0 ∼ 0.1÷ 0.2. We found that, although dual Shapiro-like features could

be visible experimentally for these parameters, their relative accuracy remains

limited to about 0.001 by fluctuation effects.

To date, a systematic evidence for the existence of dual Shapiro steps is still

lacking. The reason for this might well be that fluctuation effects have so far

masked the steps for QPSJs with intermediate ratios of the parameter U0/EL and
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not too small conductance g. Work on nanowire-based QPSJs with larger values of

the ratio U0/EL and lower conductances g [102,109] seems promising; at the same

time these systems suffer from substantial heating effects [103]. We conclude that

further work is necessary, both on nanowires and on Josephson junction chains.



CHAPTER 5
Conclusions

In conclusion, we have theoretically studied some phenomena concerning

the electronic charge and heat transport in four different superconducting nanos-

tructures based on tunnel junctions: a single NIS junction, a SINIS turnstile, a

cascade electron refrigerator, and a quantum phase-slip junction. Our main find-

ings, discussed in details in the four previous chapters of this PhD thesis, are the

following:

• first chapter – evaluation of the subgap leakage current observed in the

current-voltage characteristic of a NIS junction and its connection with the

phenomenological Dynes parameter; such a subgap current can be reduced

exponentially and the metrological accuracy reached by means of a highly-

resistive transmission line.

• second chapter – derivation of the photon-assisted Andreev rate in a SI-

NIS turnstile; the single-electron tunneling accuracy in this device can be

increased up to the metrological requirement upon decreasing the Dynes

parameter γDynes and increasing the charging energy EC.

• third chapter – study of the operation of an electronic cooler based on a

combination of superconducting tunnel junctions; this device allows to cool

a normal metal island down to about 100 mK starting from a bath tempera-

ture of 500 mK and it is more efficient than the simpler SINIS nanorefrig-

erator.

• forth chapter – determination of the smeared current-voltage characteristic

of a current-biased quantum phase-slip junction under microwave irradia-

tion and connected to an inductive and resistive environment; the smearing,

due to thermal and quantum fluctuations, can be decreased upon increas-

ing the inductance of the environment, thereby allowing the experimental

observation of the dual or current Shapiro steps.
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APPENDIX A
Electron Tunneling in a SINIS

Turnstile

Introduction

In this Appendix, we derive the energy costs Eqs. (2.1) and (2.2) and the

threshold voltages which determine the Coulomb diamonds for single- and double-

electron tunneling processes in a SINIS turnstile.

A.1 Energy of a single-island circuit

Let us consider a single metallic island (ISL) capacitively connected to MS

voltage sources via MJ tunnel junctions [see Fig. A.1(a)]. The total energy E of

such a common electrode consists of the difference between two terms [39]. The

first one is the electrostatic energy U due to the Coulomb interactions in terms of

the n excess charges on the island. In terms of the potential VI of ISL, U can be

written as

U =
1

2

MS

∑
i=1

Ci (VI −Vi)
2 , (A.1)

where Vi is the voltage source connected to the i-th junction with capacitance Ci.

Since the total charge Q = −ne of the island is the sum of the charges on all the

capacitors C1, . . . ,CMJ
,Cg1

, . . . ,Cgk
of the system,

Q(n) =
MS

∑
i=1

Ci (VI −Vi) =−ne ,

the voltage VI reads

VI(n) =
1

CΣ

(
MS

∑
i=1

CiVi −ne

)

, (A.2)
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where CΣ = ∑iCi is the total capacitance. The insertion of this last expression in

Eq. (A.1) yields

U(n) =
1

2CΣ

MS

∑
i=1

MS

∑
j>i

CiC j

(
Vi −Vj

)2
+

(ne)2

2CΣ
, (A.3)

after some algebra. Now the electron number n appear explicitly in U(n).
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Figure A.1: (a) Sketch of a metallic island connected to MJ voltage sources via MJ

tunnel junctions with capacitances C1, . . . ,CMJ
and to k = MS −MJ gate voltages

by means of the capacitors Cg1
, . . . ,Cgk

. (b) Sketch of a single-electron transistor

(SET) constituted by a drain electrode, a source electrode. The voltage gate Vg

induces the charge ng =CgVg/e on the central island.

The energy cost for changing n via tunneling events is the other contribution

to the total energy of the island E. If one electron tunnels through the j-th junction,

then the potential of the island changes by ∆VI =VI(n+1)−VI(n) =−e/CΣ [see

Eq.(A.2)]. This means that the charge Ci∆VI =−eCi/CΣ is added to each capacitor

in order to redistribute the tunneled particle −e. As a result, the work done by all

the voltage sources is

Wj =−eVj +
MS

∑
i=1

Vi
eCi

CΣ
=

e

CΣ

MS

∑
i=1

Ci

(
Vi −Vj

)
,

which contains the energy related to the tunneling of the electron, −eVj, as well

as the energy cost to have an increment of the charge equal to +eCi/CΣ across the

capacitance Ci. Summing up over all the tunnel junctions MJ , the total work is

W =
MJ

∑
j=1

n jWj (A.4)
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where n j is the number of charges which overcome the j-th junction.

The total energy of the island, with n charges −e localized on it, is then given

by the Gibbs free energy

E(n) =
1

2CΣ

MS

∑
i=1

MS

∑
j>i

CiC j

(
Vi −Vj

)2
+

(ne)2

2CΣ
− e

CΣ

MJ

∑
j=1

n j

MS

∑
i=1

Ci

(
Vi −Vj

)
. (A.5)

i.e., the difference between the energy stored into the ISL, Eq.(A.3), and the en-

ergy involved in the change of the number of the extra-charge, Eq.(A.4), acting as

a chemical potential.

A.2 The single-electron transistor (SET)

We describe here the operation of the so-called single-electron transistor

(SET). Using the results derived in the previous section, we discuss under which

conditions a single-electron current can flow through such a device.

A.2.1 Energy cost

We start by applying Eq.(A.5) to the SET illustrated in Fig. A.1(b). Such

a device is constituted by a single metallic island connected to the source (S)

and the drain (D) metallic electrodes, kept at the voltages VS = −V/2 and VD =
+V/2 respectively, via two tunnel junctions with capacitances CS and CD. The

island is also connected to a gate voltage Vg by means of the capacitance Cg.

Tunneling events are forbidden through Cg, meaning that Vg is used only to control

the potential of the island. With MS = 2 and MJ = 1, the total energy (A.5) for this

system reads

ESET(n) = EC (n−ng)
2 +

eV

CΣ

[

nD

(

CS +
Cg

2

)

−nS

(

CD +
Cg

2

)]

+Ũ . (A.6)

Here we introduced the energy Ũ ,

Ũ =
1

2CΣ

[

CSCDV 2 +CSCg

(
V

2
+Vg

)

+CDCg

(
V

2
−Vg

)]

−ECn2
g ,

which is independent of n, the charging energy EC = e2/2CΣ, the gate-induced

charge ng = VgCg/e and the number of tunneled electrons nD and nS through D

and S respectively. For a symmetric device, CD =CS =C, Eq.(A.6) gives

ESET(n) = EC

(
n−ng

)2
+

1

2
eV
(
nD −nS

)
+Ũ

′
, (A.7)
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where Ũ
′

is Ũ with CD =CS =C. From Eq.(A.7), it follows that the energy cost

to add (+N, in) or remove (−N, out) N extra-electrons to or from the island is

E in/out
D (n,N) = ED

SET(n±N)−ED
SET(n) =

= ECN2 ± 1

2
eV N ±2EC(n−ng)N , (A.8)

if the tunneling process occurs through the drain (nD → nD ±N), and

E in/out
S (n,N) = ES

SET(n±N)−ES
SET(n) =

= ECN2 ∓ 1

2
eV N ±2EC(n−ng)N , (A.9)

when the source channel is involved (nS → nS ±N). The energy costs Eqs.(A.8)

and (A.9) determine completely the electronic transport in a single-electron tran-

sistor. Since, in real experiments, the main contributions to the charge current

through a SET are given by single- and two-particle tunneling processes, below

we treat the cases N = 1 and N = 2 in more details.

A.2.2 Single-electron tunneling

According to Eqs.(A.8) and (A.9), the change of the energy of the island

caused by the transfer of one electron (N = 1) through the insulating barriers of D

and S is given by the relations

E in/out
D (n,1) = EC ± 1

2
eV ±2EC(n−ng) , (A.10)

and

E in/out
S (n,1) = EC ∓ 1

2
eV ±2EC(n−ng) , (A.11)

respectively. Tunneling events occur only if the energy of the island is minimized.

Namely when the bias voltage V = VD −VS and the gate-induced charge ng are

such that Eqs. (A.10) and (A.11) are negative. The ensemble of values of the

two parameters V and ng which make the charge flow possible depends on the

electronic properties of the metallic electrodes as well as of the island.

Let us first consider a SET entirely fabricated using normal metals, i.e., the

NININ double junction. Imposing E in/out
D (n,1) < 0 and E in/out

S (n,1) < 0, we see

that the charge of the island changes by one electron if V is larger or smaller than
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Figure A.2: (a) Coulomb diamonds for a SET with normal-metal electrodes. The

stability regions for n = −1, n = 0, n = 1, and n = 2 are in yellow, red, green,

and blue respectively. The white diamonds are the regions which are unstable for

the indicated values of n. (b) Sketch of a Coulomb diamond for an island with n

electrons. In each side of the diamond are indicated the name of the thresholds

(outside) and the increase/decrease of n (inside). S (source) and D (drain) indi-

cates which electrode of the SET is involved in the tunneling in/out of the island.

the threshold potentials

eV < eV
D,in
th (n,1) = 4EC

(

ng −n− 1

2

)

,

eV > eV
D,out
th (n,1) = 4EC

(

ng −n+
1

2

)

,

eV > eV
S,in
th (n,1) =−4EC

(

ng −n− 1

2

)

,

eV < eV S,out
th (n,1) =−4EC

(

ng −n+
1

2

)

. (A.12)

Here the superscript of each voltage indicates which channel is involved in the

tunneling, drain (D) or source (S), and the direction of the transferred electron,

going inside (in) or outside (out) the island. For a fixed value of the charge settled

on the central electrode, Q = −n∗e, Eqs. (A.12) are crossing lines in the Carte-

sian plane V vs ng. The resulting four intersection points are the edges of the

so-called Coulomb diamond corresponding to n = n∗. According to the inequali-

ties Eqs. (A.12), single-electron tunneling is forbidden for the values of V and ng

belonging to the area of such a n∗-diamond. The charge particle can overcome the

tunnel barrier only if the bias and gate voltages are outside such a stability region

for n = n∗. Figure A.2(a) shows the Coulomb diamonds for different values of n.
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We see that the n-diamond shares only one point with the n± 1-diamond. Such

a common value results from the crossing of four threshold lines occurring when

V = 0 and ng = n±1/2. As a result, the one-electron tunneling can be controlled

by means of the gate voltage Vg. However, since V = 0, the direction of the cor-

responding single-particle current is random and its time average is zero, as it can

be seen with the help of Fig. A.2(b). In other words, if ng oscillates in time with

the frequency f , the resulting current through the normal-metal transistor is non-

synchronized with the variation of the gate voltage Vg and even almost frequency

independent [1, 33]. As a result, the control of the single-electron tunneling be-

comes a difficult task. On the other hand, considering V 6= 0 fixed and changing ng

in such a way that the system goes from the n-diamond to the n±1-diamond, the

instability regions where more than one value of n become accessible and an un-

controlled single- or multi-electron current can flow through the NININ SET. The

increase of the number of islands and voltage gates helps to overcome this prob-

lem, but the system becomes more complex and more difficult to control [9, 27].

Figure A.3: Scanning electron micrograph of a SINIS turnstile [9].

When superconducting materials are used in the fabrication of the SET, a

single-island device can sustain a single-electron current [9]. Excluding a double

tunnel junction device completely superconducting, SISIS, where the Cooper-pair

current represents an unavoidable and relevant source of error, we focus here on

the hybrid SINIS structure of Fig. 2.1 where single-electron transport is usually

dominant. Figure A.3 shows an image of the SINIS device used in Ref. [9].

Since tunneling events occurs only if the energy gap ∆ of the superconduc-

tor(s) is overcome, the transfer of charge inside or outside the island is energeti-

cally favorable for E in/out
D (n,1) < −∆ and E in/out

S (n,1) < −∆. Then, in this case,
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the threshold voltages reads

eV < eV
D,in
th,SC(n,1) = 4EC

(

ng −n− 1

2

)

−2∆ ,

eV > eV
D,out
th,SC (n,1) = 4EC

(

ng −n+
1

2

)

+2∆ ,

eV > eV
S,in
th,SC(n,1) =−4EC

(

ng −n− 1

2

)

+2∆ ,

eV < eV
S,out
th,SC(n,1) =−4EC

(

ng −n+
1

2

)

−2∆ . (A.13)

Figure A.4 shows the Coulomb diamonds arising from Eqs. (A.13). In comparison

with Fig. A.2(a), the stability regions are wider and overlap. In the overlapping

region, two different charge state are stable. Its area decreases as the charging

energy is increased and it reduces to a single point as in Fig. A.2(a) in the limit

EC ≫ ∆, i.e., when the superconducting gap becomes irrelevant.

A.2.3 Two-electron tunneling

When two electrons per unit of time, N = 2, enter or leave the central elec-

trode of a SET through one of the two insulating barriers, the change of energy of

the island, according to Eqs.(A.8) and (A.9), reads

E in/out
D (n,2) = 4EC ± eV ±4EC(n−ng) , (A.14)

or

E in/out
S (n,2) = 4EC ∓ eV ±4EC(n−ng) , (A.15)

depending on which side of the SET is involved, the drain D with VD =V/2 or the

source S with VS =−V/2 respectively. Like the single-electron case discussed in

the previous section, imposing that Eqs. (A.14) and (A.15) are negative, we obtain

the threshold conditions and voltages

eV < eV
D,in
th (n,2) = 4EC

(

ng −n−1
)

,

eV > eV D,out
th (n,2) = 4EC

(

ng −n+1
)

,

eV > eV
S,in
th (n,2) =−4EC

(

ng −n−1
)

,

eV < eV S,out
th (n,2) =−4EC

(

ng −n+1
)

, (A.16)

which define the Coulomb diamonds or stability regions, upon changing the num-

ber of extra electrons n, when the two-electron tunneling can occur. Equations
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Figure A.4: Coulomb diamonds for a SINIS hybrid SET with (a) EC = 0.3∆,

(b) EC = ∆, and (c) EC = 2∆. Note that increasing the charging energy EC the

diamonds become thinner along ng and larger along eV/∆.

(A.16) hold for both the normal, NININ, and the hybrid, SINIS, structures. In-

deed, the energy cost for the two-particle tunneling process between a normal

metal and a superconductor, the so-called Andreev reflection, does not depend on

the superconducting energy gap ∆.

To analyze in details the interplay between single- and two-particle tunnel-

ing events, we focus here again on the SINIS turnstile. How relevant can be

the Andreev reflection in the determination of the total current flowing through

this superconducting device strongly depends on the ratio between the charging

energy EC and ∆. Let us start by considering EC < ∆. In this regime, the Andreev-

tunneling diamonds are smaller than the single-electron ones [see Fig. A.5(a)].

For the optimal bias voltage eV ≃ ∆, the Andreev reflection always affects the
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Figure A.5: Coulomb diamonds for one- (blue solid line) and two-electrons (red

dashed line) tunnel processes in an SINIS hybrid SET. (a) When EC < ∆ the

threshold for the single-particle tunneling is crossed before the two-particle one.

(b) On the contrary, for EC >∆ Andreev reflection occurs before the quasi-particle

tunneling.

single-electron current. A loop crossing the two single-electron thresholds and

passing over the overlapping region, like the one shown in Fig. A.5(b), inevitably

touches the Andreev lines as well. Although these two-particle tunneling thresh-

olds could be avoided in the limit EC ≪ ∆, under this condition in the overlapping

region also the charge states with n 6= 0,1 would be stable, and consequently the

possibility to have only the single-electron tunneling would be compromised. Go-

ing back to the loop of Fig. A.5(b), we see that in the forward direction (increasing

ng) the threshold 0 → 2 is crossed before 0 → 1. As a result, the probability that

the charge of the island goes from 0 to 1 before ng,2 is different from zero. A

similar situation occurs when ng is driven backward (decrease of ng), namely the

1→ 0 transition can take place when the loop overcomes the Andreev line 1→−1

rather than the single-particle one.

On the other hand, for EC > ∆ the two-particle tunneling stability regions

contain the diamonds determined by Eqs. (A.13) [see Fig. A.6(a)]. In this case,

we can have two possible loops for eV ≃ ∆, as shown in Fig. A.6(b). We first

consider L1. Increasing the induced gate charge starting from ng,1 > 0 and with

n = 0, we observe that the 0 → 1 transition occurs before the two-electron one

0 → 2. In principle, Andreev reflection is suppressed. However, if the tunneling

of one electron into the island through the source junction is slower than the time

needed for ng(t) to reach the 0 → 2 threshold, then the localized charge can be-

come −2e, rather than −1e. Eventually, this can affect the total current flowing
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Figure A.6: Coulomb diamonds for one- (blue solid line) and two-electrons (red

dashed line) tunnel processes in an SINIS hybrid SET. (a) When EC < ∆ the

threshold for the single-particle tunneling is crossed before the two-particle one.

(b) On the contrary, for EC > ∆ Andreev reflection occurs before the quasi-particle

tunneling.

through the SINIS. Indeed, one of the two added electrons can go out through

the drain even before going back to ng,1 because at ng,2 the charge state n = 2 is

unstable. Decreasing ng from ng,2 to ng,1, similar tunneling events occur. As a re-

sult, the maximum value of the frequency of the oscillating voltage gate Vg(t) and

consequently the maximum amplitude of the total current I = e f can be limited

by the tunneling time. In other words, for L1 the control of the single-electron

tunneling can be tough. To overcome these issues, it is convenient to consider the

loop L2 of Fig. A.6(b) where the Andreev-tunneling thresholds are avoided. In-

deed, in this case, one expects to have an efficient single-electron hybrid turnstile

where Andreev reflection can be suppressed.



APPENDIX B
Caldeira-Legget Model and

Fluctuation-Dissipation Theorem

According to the Caldeira-Legget model, the impedance Z(ω) of an electric

circuit can be modeled as an ensemble of infinite quantum harmonic LC oscillators

with Hamiltonian

Ĥenv = ∑
λ

[

Q̂2
λ

2Cλ
+

1

2
Cλ ω2

λ

(
h̄

e
ϕ̂λ

)2
]

.

The charge Q̂λ and phase (h̄/e)ϕ̂λ operators play the role of the momentum and

position respectively of the particle/oscillator λ with mass Cλ and characteristic

frequency ω2
λ = 1/LλCλ . Each oscillator λ of the ensemble/environment affects

both the charge Q̂ and phase ϕ̂ of the circuit. In particular, the total phase fluc-

tuation ϕ̂env of ϕ̂ due to Z(ω) is given by the superposition of all the phases of

the oscillators of the environment, i.e., ϕ̂env = ∑λ ϕ̂λ . Since ϕ̂λ is the position

operator of an harmonic oscillator, ϕ̂env can be written as

ϕ̂env = ∑
λ

ρλ

(

ĉ
†
λ + ĉλ

)

, (B.1)

in terms of the creation ĉ
†
λ and annihilation ĉλ operators of one photon. In Eq. (B.1),

we introduced the coupling term ρλ = (e/h̄)
√

h̄/2Cλ ωλ . In the Heisenberg pic-

ture, ϕ̂env depends explicitly on time, with ĉ
†
λ (t)= e+iωλ t ĉ

†
λ and ĉλ (t)= e−iωλ t ĉλ .

The first time-derivative of Eq. (B.1) gives the fluctuating voltage operator

V̂env(t) =
h̄

e

dϕ̂env(t)

dt
=

h̄

e
∑
λ

ρλ iωλ

[

ĉ
†
λ (t)− ĉλ (t)

]

, (B.2)

whose mean value over the eigenstates of Ĥenv is zero. On the other hand, the

voltage-voltage correlation function δV̂env(t,0) =
〈{

V̂env(t),V̂env(0)
}〉

is

δV̂env(t,0) =

(
h̄

e

)2

∑
λλ ′

ρλ ρλ ′ (iωλ ) (iωλ ′) Cλ (t,0) , (B.3)

93



94 Caldeira-Legget Model and Fluctuation- . . .

with

Cλ (t,0)≡
〈{[

ĉ
†
λ
(t)− ĉλ (t)

]

,
[

ĉ
†
λ
(0)− ĉλ (0)

]}〉

. (B.4)

The symbols {,} and 〈. . .〉 in Eq. (B.4) indicate the anti-commutator and quantum

mean value over the eigenstates of Ĥenv respectively. Assuming that the number

of photons of the environment is infinite, the terms in Eq. (B.3) which create or

destroy more than one photon can be neglected. Consequently, the correlation

function δV̂env(t,0) becomes

δV̂env(t,0) ≃
(

h̄

e

)2

∑
λ

ρ2
λ ω2

λ

(
eiωλ t + e−iωλ t

)
(1+2nλ ) , (B.5)

where nλ is the mean value of photons with frequency ωλ ; Tenv is the temperature

of the environment. The Fourier transform of Eq. (B.5) gives the spectral density

function of the thermal bath,

[
δV̂env(t,0)

]

ω
≃

(
h̄

e

)2

∑
λ

ρ2
λ ω2

λ coth

(
1

2

h̄ωλ

kBTenv

)

× 2π [δ (ω −ωλ )+δ (ω +ωλ )] . (B.6)

To obtain Eq. (B.6) we assumed that nλ is given by the Bose-Einstein distri-

bution function nBE(ωλ ) = [exp(h̄ωλ/kBTenv)− 1]−1 which satisfies the relation

1+2nBE(x) = coth(x/2).
On the other hand, the Fourier-transformed correlation function

[
δV̂env(t,0)

]

ω
satisfies the quantum fluctuation-dissipation relation

[
δV̂env(t,0)

]

ω
= 2h̄ω ℜe

[
Z(ω)

]
coth

(
1

2

h̄ω

kBT

)

. (B.7)

Comparing Eq. (B.6) with Eq. (B.7), we finally get the expression

ℜe [Z(ω)] =
RK

2
∑
λ

ρ2
λ ωλ [δ (ω −ωλ )+δ (ω +ωλ )] , (B.8)

which allows to relate the macroscopic impedance Z(ω) with the microscopic

quantities characterizing the environment.



APPENDIX C
Current and Heat Peak in a S1IS2

Josephson Junction

Introduction

In this appendix we show how to estimate the charge and heat currents flow-

ing through a S1IS2 Josephson junction with energy gaps ∆1 and ∆2 > ∆1 when

the bias voltage is equal to (∆2 −∆1)/e, i.e., we derive the optimal current I12,opt ,

Eq. (3.9), and the corresponding cooling power Q̇12,opt ≈ ∆1(I12,opt/e).

C.1 Current peak

We start by considering Eq. (3.7). Rescaling the energy variable E with ∆1

and imposing that eV2 = ∆2 −∆1, we get

I12,opt =
∆1

eR2

∫ +∞

−∞
dx N1(x) N2

(

x− ε

∆1

) [

f2

(

x− ε

∆1

)

− f1(x)

]

, (C.1)

where we introduced the new variable x = E/∆1 and the energy difference ε =
∆2 −∆1. The BCS density of states in Eq. (C.1) are

N1(x) =
|x|√

x2 −1
, N2

(

x− ε

∆1

)

=

∣
∣
∣x− ε

∆1

∣
∣
∣

√
(

x− ε
∆1

)2

−
(

∆2

∆1

)2
, (C.2)

and the Fermi-Dirac distribution functions read

f1(x) =
[

e(∆1/kBT1)x +1
]−1

, f2

(

x− ε

∆1

)

=
[

e(∆1/kBT2)(x−ε/∆1)+1
]−1

.

(C.3)

Figure C.1 shows the plots of Eqs. (C.2) and (C.3) as well as the product N1(x)
N2 (x− ε/∆1) and the difference f2 (x− ε/∆1)− f1(x). In particular, we see from
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Figure C.1: (a) Plot of the density of states Eqs. (C.2): N1(x) (red dotted

line) and N2 (x− ε/∆1) (blue dashed line). It is also shown their product,

N1(x)N2 (x− ε/∆1) (green solid line). (b) Plot of the Fermi-Dirac distribution

functions Eqs. (C.3): f1(x) (red dotted line) and f2 (x− ε/∆1) (blue dashed

line). The green solid line is the difference f2 (x− ε/∆1)− f1(x). In both pan-

els δ = 2(∆2/∆1)−1.

Fig. C.1(a) that the integral Eq. (C.1) can be different from zero only when x 6−1

and x > δ ≡ 2(∆2/∆1)−1. As a result, the current at the peak can be written as

I12,opt = I<0
12,opt + I>0

12,opt

=
∆1

eR2

∫ −1

−∞
dx . . . +

∆1

eR2

∫ +∞

δ
dx . . . , (C.4)

i.e., the sum of two integrals, I<0
12,opt and I>0

12,opt , involving negative and positive

values of x respectively.

C.1.1 Positive energies

Let us first consider I>0
12,opt . Assuming that N1(x)≈ 1 when x > δ , namely the

ratio ∆2/∆1 is large enough,1 and that the temperatures are small, kBT1 6 kBT2 <
∆1, then one finds

I>0
12,opt ≃

∆1

eR2

∫ +∞

δ
dx N2

(

x− ε

∆1

) [

e−(∆1/kBT2)(x−ε/∆1)− e−(∆1/kBT1)x
]

. (C.5)

1this approximation is valid, for instance, when S2 is Vanadium and S1 is Aluminum with

∆2/∆1 ≈ 4.
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We see that only the exponentially-decaying tails of the Fermi functions (C.3)

contribute to the current Eq. (C.5). It follows that the order of magnitude of the

integral I>0
12,opt is determined by the divergence of N2[x− (ε/∆1)] occurring for

x = δ [see Fig. C.1(a)]. Then, Eq. (C.5) can be written as

I>0
12,opt ≃

∆1

eR2

√
∆2

2∆1

∫ +∞

δ
dx

1√
x−δ

[

e−(∆1/kBT2)(x−ε/∆1)− e−(∆1/kBT1)x
]

, (C.6)

using the approximation
√

x2 −a2 ≈
√

2a
√

x−a. The integral Eq. (C.6) can be

calculated by means of the formula

∫ +∞

a
dx

e−bx

√
x−a

=

√
π

b
e−ab .

We finally obtain the current

I>0
12,opt ≈

∆1

eR2

√
π

2

√
∆2

∆1

[

e−(∆1/kBT2)(∆2/∆1)

√

kBT2

∆1
− e−(∆1/kBT1)δ

√

kBT1

∆1

]

.

(C.7)

C.1.2 Negative energies

We now estimate I<0
12,opt . Let us take into account the actual smearing of the

density of states by shifting Eqs. (C.2) by the Dynes parameters γ1,2 ≪ 1,

Ns
1(x) =

|x− γ1|
√

(x− γ1)2 −1
, Ns

2

(

x− ε

∆1

)

=

∣
∣
∣x− ε

∆1
− γ2

∣
∣
∣

√
(

x− ε
∆1

− γ2

)2

−
(

∆2
∆1

)2
.

(C.8)

As for the derivation of Eq. (C.6), if kBT1 6 kBT2 < ∆1 we can use the approxima-

tion
√

x2 −a2 ≈
√

2a
√

x−a because the Fermi-Dirac functions Eqs. (C.3) provide
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an exponential decay to I<0
12,opt with the increasing of |x|. As a result, we can write

I<0
12,opt ≈ ∆1

eR2

∫ −1

−∞
dx

|−1− γ1|√−1− γ1 −1

1√
x− γ1 +1

×

∣
∣
∣−1− ε

∆1
− γ2

∣
∣
∣

√

−1− ε
∆1

− γ2 − ∆2
∆1

1
√

x− ε
∆1

− γ2 +
∆2
∆1

×
[

1− e(∆1/kBT2)(x−ε/∆1)−1+ e(∆1/kBT1)x
]

=
∆1

eR2

∫ −1

−∞
dx

1√
−2

1√
x+1− γ1

∣
∣
∣−∆2

∆1
− γ2

∣
∣
∣

√

−2∆2
∆1

− γ2

1√
x+1− γ2

×
[

e(∆1/kBT1)x − e(∆1/kBT2)(x−ε/∆1)
]

=
∆1

eR2

1√
2

√
∆2

2∆1

∫ +∞

1
dx

1√
x−1+ γ1

1√
x−1+ γ2

×
[

e−(∆1/kBT1)x − e−(∆1/kBT2)(x+ε/∆1)
]

. (C.9)

The integral Eq. (C.9) is of the form
∫ +∞

1
dx

e−cx

√
x−a

√
x−b

= A+B (C.10)

where

A = −e−c ln
[

2− (a+b)+2
√

ab+1− (a+b)
]

(C.11)

B = c

∫ +∞

1
dx e−cx ln

[

2x− (a+b)+2

√

x2 − (a+b)x+ab

]

(C.12)

are obtained integrating by parts. A further integration by parts of Eq. (C.12)

allows to write B = B1 +B2 with

B1 = c e−c

{

−
√

ab+1− (a+b)+

[

1− 1

2
(a+b)

]

× ln
[

2− (a+b)+2
√

ab+1− (a+b)
]
}

(C.13)

B2 = c2
∫ +∞

1
dx e−cx

{

−
√

x2 − (a+b)x+ab+

[

x− 1

2
(a+b)

]

× ln

[

2x− (a+b)+2

√

x2 − (a+b)x+ab

]}

. (C.14)
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In other words, A and B1 are first and second order terms of the series expansion

of Eq. (C.10). Imposing that a = 1− γ1 and b = 1− γ2, Eqs. (C.11) and (C.13)

become

A = −e−c ln(γ1 + γ2 +2
√

γ1γ2) (C.15)

B1 = c e−c

[

−√
γ1γ2 +

1

2
(γ1 + γ2) ln(γ1 + γ2 +2

√
γ1γ2)

]

≈ c e−c 1

2
(γ1 + γ2) ln(γ1 + γ2 +2

√
γ1γ2) .

Their ratio,
|A|
|B1|

≈ 2

c(γ1 + γ2)
∼ 1

γ1 + γ2
≫ 1

is much larger than 1 because the Dynes parameters γ1,2 ≪ 1. It turns out that A,

Eq. (C.15), is the leading term and Eq. (C.9) can be written as

I<0
12,opt ≈ ∆1

eR2

1

2

√

∆2

∆1

[

e−∆1/kBT1 − e−(∆1/kBT2)(∆2/∆1)
]

×
[

− ln(γ1 + γ2 +2
√

γ1γ2)
]

. (C.16)

C.1.3 Total charge current

The total charge current is given by the sum of Eqs. (C.7) and (C.16). How-

ever, the leading term is I<0
12,opt because of its logarithmic dependence on γ1,2 ≪ 1.

Assuming ∆2/∆1 > T2/T1 > 1, then we find

I12,opt ≈ I<0
12,opt ≈ ∆1

eR2

1

2

√

∆2

∆1
e−∆1/kBT1

[

− ln(γ1 + γ2 +2
√

γ1γ2)
]

= − ∆1

eR2

1

2

√
∆2

∆1
e−∆1/kBT1 ln

[

(
√

γ1 +
√

γ2)
2
]

= −
√

∆1∆2

eR2
e−∆1/kBT1 ln

(√
γ1 +

√
γ2

)
.
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C.2 Heat peak

We consider now the heat Eq. (3.8). We write it in terms of the dimensionless

variable x = E/∆1 and evaluate it for eV2 = ∆2 −∆1:

Q̇12,opt =
∆2

1

e2R2

∫ +∞

−∞
dx x N1(x) N2

(

x− ε

∆1

) [

f1(x)− f2

(

x− ε

∆1

)]

. (C.17)

As for Eq. (C.1), the functions N1(x), N2 (x− ε/∆1), f1(x) and f2 (x− ε/∆1) are

given by Eqs. (C.2) and (C.3). Due to the trend of the densities of states of S1 and

S2, see Fig. C.1(a), the heat current Eq. (C.17) is the sum of two contributions,

Q̇12,opt = Q̇<0
12,opt + Q̇>0

12,opt

=
∆2

1

e2R2

∫ −1

−∞
dx . . . +

∆2
1

e2R2

∫ +∞

δ
dx . . . , (C.18)

which involve negative and positive energies. Proceeding as in the previous sec-

tion, we estimate Q̇>0
12,opt and Q̇<0

12,opt to be

Q̇>0
12,opt ≈ ∆2

1

e2R2

√
π

2

√
∆2

∆1

{ [
1

2

kBT1

∆1
+δ

]

e−(∆1/kBT1)δ

√
kBT1

∆1

−
[

1

2

kBT2

∆1
+δ

]

e−(∆1/kBT2)(∆2/∆1)

√
kBT2

∆1

}

, (C.19)

and

Q̇<0
12,opt ≈ ∆2

1

e2R2

1

2

√
∆2

∆1

[

e−∆1/kBT1 − e−(∆1/kBT2)(∆2/∆1)
]

×
[

−√
γ1γ2 − ln(γ1 + γ2 +2

√
γ1γ2)

]

. (C.20)

We obtained Eqs. (C.19) and (C.20) by means of the formulas

∫ +∞

a
dx

x e−bx

√
x−a

=

(
1

2b
+a

)

e−ab

√
π

b
,

and
∫ +∞

1
dx

x e−cx

√
x−a

√
x−b

≃ A+B1 ,
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with

A = −e−c

{
√

(1−a)(1−b)+(a+b) ln
[√

1−a+
√

1−b
]
}

= −e−c

{

√
γ1γ2 +(2− γ1 − γ2) ln

(√
γ1 +

√
γ2

)

}

B1 = −c e−c 1

4

{

(−3a−3b+2)
√

(1−a)(1−b)

+
(
−3a2 −3b2 −2ab+4a+4b

)
ln
[√

1−a+
√

1−b
]
}

≃ −c e−c 1

4

{

(−4+3γ1 +3γ2)
√

γ1γ2 +4(γ1 + γ2) ln
(√

γ1 +
√

γ2

)

}

,

respectively. Comparing Eqs. (C.19) and (C.20), we see that the total heat current

Q̇12,opt is determined by Q̇<0
12,opt . If ∆2/∆1 > T2/T1 > 1, we finally find

Q̇12,opt ≈ Q̇<0
12,opt ≈ − ∆2

1

e2R2

√

∆2

∆1
e−∆1/kBT1 ln(

√
γ1 +

√
γ2)

=
∆1

e
I12,opt .



102 Current and Heat Peak in a S1IS2 . . .



APPENDIX D
QPSJ Hamiltonian for an

Underdamped Josephson Junction

Introduction

In this appendix, we will show how to obtain the Hamiltonian Eq. (4.7) of the

current-biased quantum phase-slip junction (QPSJ) of Fig. 4.1(b) from that one of

the Josephson junction of Fig. D.1(a) and we will prove that the two circuits of

Fig. 4.1 are equivalent.

D.1 Current-biased representation

D.1.1 The QPSJ Hamiltonian

We start by considering the circuit depicted in Fig. D.1(a). Neglecting the

contribution of the quasi-particle excitations, the Hamiltonian of a Josephson

junction (JJ) biased by a time-dependent current I(t) = I0 + Imw cos(ωmwt), in

parallel with a capacitance C and an R-L environment is given by the sum of the

charging energy, the non-linear Josephson energy and the energy of the environ-

ment [see Eq. (4.8)],

Ĥs =
1

2C

[∫ t

−∞
dt ′I(t ′)+ Q̂RL + Q̂

]2

−EJ cos(ϕ̂)+ Ĥenv . (D.1)

The phase operator ϕ̂ is the phase difference between the two superconductors

forming the junction and Q̂ is its conjugate charge operator
[
ϕ̂, Q̂

]
= 2ei, i.e., the

charge tunneling through the junction. In Eq. (D.1), we also introduced Q̂RL =

∑λ Q̂λ which accounts for the charge noise produced by the R-L environment, as

discussed in Sec. 4.2.

The equivalence between Hamiltonian (D.1) and the QPSJ Hamiltonian (4.7)

can be demonstrated through the following steps. First, we apply the gauge and
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C EJ

L

R

Imw(t)I0

(a)

R L

Vmw(t)

V0

C EJ

(b)

Figure D.1: Current-biased (a) and voltage-biased (b) Josephson junction with

Josephson energy EJ in parallel with a capacitance C and embedded in a resistive

(R) and inductive (L) electromagnetic environment. In both circuit, the total bias

is the sum of a DC component, I0 (a) and V0 (b), and an AC one, Imw(t) (a) and

Vmw(t) (b).

the unitary transformations

Ûg(t) = exp

[

−iϕ̂

∫ t

−∞
dt ′I(t ′)/2e

]

and Ûenv = exp
[
−iϕ̂Q̂RL/2e

]

respectively to Eq. (D.1) and we get

Ĥ
′
s =

Q̂2

2C
−EJ cos(ϕ̂)− h̄I(t)

2e
ϕ̂ + Ĥenv

[
{Q̂λ},{ϕ̂λ + ϕ̂}

]
. (D.2)

Here the first and second term correspond to the standard Hamiltonian ĤJ of an

isolated JJ, where Q̂ gives now the charge localized across the capacitance of

junction C. In the tight-binding regime, EJ ≫ EC, Ĥ
′
s becomes

Ĥ
′′
s =−U0 cos

(π

e
q̂
)

− h̄I(t)

2e
ϕ̂ + Ĥenv

[
{Q̂λ},{ϕ̂λ + ϕ̂}

]
. (D.3)

where q̂ is the quasi-charge operator of the QPSJ and

U0 = 8

√

EJ h̄ωp/π exp(−
√

8EJ/EC) = 2eVc/2π (D.4)

the half-bandwidth of the first Bloch band of ĤJ. Within this limit, an energy gap

of the order of the plasma frequency h̄ωp =
√

8EJEC separates the first from the

second Bloch band. We neglect the possibility of inter-band Landau-Zener transi-

tions assuming the low temperature and bias current limit (kBT, h̄I0/2e, h̄Imw/2e)
≪ h̄ωp as well as considering an off-resonance microwave field, ωmw ≪ ωp.

Finally, we apply the inverse unitary transformation Û−1
env to Eq. (D.3) and we

obtain the effective low-energy Hamiltonian

Ĥ =−U0 cos
[π

e

(
q̂+ Q̂RL

)]

− h̄I(t)

2e
ϕ̂ + Ĥenv

[
{Q̂λ},{ϕ̂λ}

]
. (D.5)
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This is the energy operator (4.7) introduced in Sec. 4.2, describing a current-biased

quantum phase-slip junction coupled to an external R-L electromagnetic environ-

ment, as depicted in Fig. 4.1(b).

D.1.2 The quasi-charge equation of motion

According to the Heisenberg picture, the Hamiltonian operator (D.5) gener-

ates the following first order differential equations for the time-dependent observ-

ables q̂, ϕ̂ , Q̂λ , and ϕ̂λ :

dq̂

dt
= I(t) , (D.6)

h̄

2e

dϕ̂

dt
= Vc sin

[π

e
(q̂+ Q̂RL)

]

, (D.7)

dQ̂λ

dt
= − 1

Lλ

(
h̄ϕ̂λ

2e

)

, (D.8)

h̄

2e

dϕ̂λ

dt
= Vc sin

[π

e
(q̂+ Q̂RL)

]

+
Q̂λ

Cλ
. (D.9)

Here we used the commutation relation [ϕ̂, q̂] = 2ei. In general, the dynamics of

the quasi-charge operator q̂ appearing in the non-linear potential −U0 cos(πq̂/e)
contained in its Hamiltonian determines the IJ-VJ characteristic of a QPSJ. If we

describe the circuit of Fig. 4.1(b) by means of Eq. (D.5), then q̂ = q̂+ Q̂RL. As

a result, the potential VJ across the QPS junction in Fig. 4.1(b) is Vc sin[π(q̂+
Q̂RL)/e] and is related to the phase difference ϕ̂ between the two superconductors

of the JJ [see Eq. (D.7)]. On the other hand, the time derivative of q̂,

dq̂

dt
=

dq̂

dt
+

dQ̂RL

dt
= I(t)+∑

λ

dQ̂λ

dt
, (D.10)

represents the current IJ flowing through the QPS junction rather than dq̂/dt,

which gives the total bias current [see Eq. (D.6)].

In order to derive the equation of motion of q̂, we start by considering the

relation

L
d2q̂(t)

dt2
= L

dI(t)

dt
+L∑

λ

d2Q̂λ

dt2
, (D.11)

obtained from Eq. (D.10) by multiplying by L and deriving with respect to time.

Here the momentum Q̂λ (t) of the oscillator λ satisfies the differential equation

d2Q̂λ

dt2
=−ω2

λ Q̂λ − 1

Lλ
VJ [q̂(t)] , (D.12)
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according to Eqs. (D.8) and (D.9), with VJ[q̂(t)] = Vc sin[πq̂(t)/e]. The solution

of Eq. (D.12) can be written as

Q̂λ (t) = Q̂
(0)
λ −

∫ t

−∞
dt ′

sin [ωλ (t − t ′)]
ωλ Lλ

VJ

[
q̂(t ′)

]

and the corresponding first and second derivatives respect to the time t are

dQ̂λ

dt
=

dQ̂
(0)
λ

dt
−
∫ t

−∞
dt ′

cos [ωλ (t − t ′)]
Lλ

VJ

[
q̂(t ′)

]
, (D.13)

d2Q̂λ

dt2
=

d2Q̂
(0)
λ

dt2
− 1

Lλ
VJ

[
q̂(t ′)

]

−
∫ t

−∞
dt ′ (−ωλ )

sin [ωλ (t − t ′)]
Lλ

VJ

[
q̂(t ′)

]
, (D.14)

where Q̂
(0)
λ
(t) is the homogeneous solution. Introducing the admittance

Y
(
t − t ′

)
≡ θ

(
t − t ′

)

∑
λ

cos [ωλ (t − t ′)]
Lλ

, (D.15)

and assuming that its Fourier transform is Y (ω) = 1/(R− iωL), one finds that

∑
λ

cos [ωλ (t − t ′)]
Lλ

=
1

L
e−

R
L (t−t ′)

whose time derivative gives

−∑
λ

ωλ
sin [ωλ (t − t ′)]

Lλ
=−R

L

1

L
e−

R
L
(t−t ′) =−R

L
∑
λ

cos [ωλ (t − t ′)]
Lλ

. (D.16)

Inserting Eq. (D.13) in Eq. (D.10), one finds that

∑
λ

∫ t

−∞
dt ′

cos [ωλ (t − t ′)]
Lλ

VJ

[
q̂(t ′)

]
= I(t)+δ I(t)− dq̂

dt
, (D.17)

where we introduced the current noise

δ I(t)≡ ∑
λ

dQ̂
(0)
λ

dt
=

dQ̂RL

dt

produced by the R-L environment. Combining Eqs. (D.16) and (D.17) with Eqs. (D.14)

and (D.11), we finally obtain the equation of motion for the quasi-charge operator

q̂(t),

L
d2q̂(t)

dt2
+R

dq̂(t)

dt
+VJ [q̂(t)] =VI(t)+δVI(t) , (D.18)
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written in terms of the potential and the voltage noise

VI(t)≡
[

L
dI(t)

dt
+RI(t)

]

and δVI(t)≡
[

L
dδ I(t)

dt
+Rδ I(t)

]

.

From Eq. (D.18) we see that the time evolution of q̂ in the circuit of Fig. 4.1(b) is

equivalent to the damped dynamics of a quantum phase-particle with mass L and

position q̂ moving in the periodic potential −U0 cos(πq̂/e) under the effect of the

time-dependent and aleatory external force VI(t)+δVI(t).

D.2 Voltage-biased representation

D.2.1 The QPSJ Hamiltonian

We now focus on the circuit depicted in Fig. D.1(b) where a Josephson junc-

tion is connected in series to a resistance R and an inductance L and is biased with

the voltage V (t) =V0 +Vmw(t) which is the superposition of a DC component V0

and a time-dependent term, Vmw(t) = Vmw sin(ωmwt), oscillating with frequency

ωmw. Considering only R as external electromagnetic environment,1 the Hamilto-

nian of such a system can be written as [93]

ĤV
s = ĤJ + ĤL + ĤV

env . (D.19)

In other words, ĤV
s is the sum of the ordinary JJ energy, ĤJ = Q̂2/2C−EJ cos(ϕ̂),

the inductive energy

ĤL =
1

2L

(
h̄

2e

)2[
2e

h̄

∫ t

−∞
dt ′V (t ′)+ ϕ̂R − ϕ̂

]2

(D.20)

depending on the phase difference noise ϕ̂R = ∑µ ϕ̂µ generated by R, and the

Caldeira-Legget Hamiltonian

ĤV
env =

+∞

∑
µ=1

[

Q̂2
µ

2Cµ
+

1

2Lµ

(
h̄ϕ̂µ

2e

)2
]

, (D.21)

describing R as an ensemble of harmonic oscillators. The charge Q̂µ and phase

h̄ϕ̂µ/2e operators are the momentum and position respectively of the oscillator µ
with mass Cµ and characteristic frequency ω2

µ = 1/LµCµ .

1note that in the current-biased case we assumed that the external environment was formed by

both R and L.
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For EJ ≫ EC = e2/2C, the JJ is in the tight-binding limit and its Hamiltonian

ĤJ becomes

ĤJ ≃ ĤTB
J =−U0 cos

(π

e
q̂
)

(D.22)

where q̂ is the quasi-charge operator and U0 the half-bandwidth of the first Bloch

band of ĤJ [see Eq. (D.4)]. Within this approximation, the Hamiltonian (D.19)

gives the energy of a voltage-biased QPSJ coupled to a resistive dissipative bath

[see Fig. D.1(b)]. This statement becomes evident if two unitary transforma-

tions are applied to the tight-binding version of Eq. (D.19). The first one is the

gauge transformation ÛV
g = exp

[
−iq̂

∫ t
dt ′V (t ′)/h̄

]
. It acts only on the Hamil-

tonian (D.20) eliminating the term
∫ t

dt ′V (t ′) from it. Since ÛV
g depends on

time, the term −V (t)q̂ appears in the new Hamiltonian as well. The second

one is a unitary transformation involving the operators of the environment, i.e.,

ÛV
env = exp [−iq̂ϕ̂R/2e]. On one side it cancels the phase ϕ̂R from the Eq. (D.20).

On the other side, it shifts the charge Q̂µ in Eq. (D.21) by −q̂. As a result, one

finally gets

ĤV =
1

2L

(
h̄ϕ̂

2e

)2

−U0 cos
(π

e
q̂
)

−V (t)q̂+ ĤV
env[{Q̂µ − q̂},{ϕ̂µ}] (D.23)

where the first three terms give the Hamiltonian of a voltage-biased ideal QPSJ

and

ĤV
env[{Q̂µ − q̂},{ϕ̂µ}] =

+∞

∑
µ=1

[(
Q̂µ − q̂

)2

2Cµ
+

1

2Lµ

(
h̄ϕ̂µ

2e

)2
]

.

The Hamiltonian (D.23) describes the non-coherent tunneling of the phase through

a tilted cosine potential.

D.2.2 The quasi-charge equation of motion

Considering the Hamiltonian (D.23), we see that, in this case, only the quasi-

charge operator q̂ determines the IJ-VJ characteristic of the QPSJ in the voltage-

biased circuit of Fig. 4.1(a). In order to derive the equation of motion for this

observable, let us first write the corresponding Heisenberg equations for the oper-
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ators q̂, ϕ̂ , Q̂µ , and ϕ̂µ :

dq̂

dt
= − h̄

2e

ϕ̂

L
, (D.24)

h̄

2e

dϕ̂

dt
= Vc sin

[π

e
q̂(t)

]

−V (t)−∑
µ

(

Q̂µ − q̂

Cµ

)

, (D.25)

dQ̂µ

dt
= − h̄

2e

ϕ̂µ

Lµ
, (D.26)

h̄

2e

dϕ̂µ

dt
=

Q̂µ − q̂

Cµ
. (D.27)

In this case, Vc sin [π q̂(t)/e] and dq̂/dt are the potential VJ [q̂(t)] and the cur-

rent IJ of the QPS junction. Combining the time-derivative of Eq. (D.24) with

Eqs. (D.25) and (D.27) and multiplying both sides by L, one gets

L
d2q̂

dt2
=V (t)−VJ [q̂(t)]+∑

µ

(
h̄

2e

dϕ̂µ

dt

)

. (D.28)

On the other hand, inserting Eq. (D.26) into the the time derivative of Eq. (D.27),

we obtain the second order differential equation

h̄

2e

d2ϕ̂µ

dt2
=−ω2

µ

h̄ϕ̂µ

2e
− 1

Cµ

dq̂

dt
. (D.29)

The solution of Eq. (D.29) and its first time-derivative read

h̄ϕ̂µ

2e
=

h̄ϕ̂
(0)
µ

2e
−
∫ t

−∞
dt ′

sin
[
ωµ (t − t ′)

]

ωµCµ

dq̂

dt ′
,

h̄

2e

dϕ̂µ

dt
=

h̄

2e

dϕ̂
(0)
µ

dt
−
∫ t

−∞
dt ′

cos
[
ωµ (t − t ′)

]

Cµ

dq̂

dt ′
, (D.30)

where h̄ϕ̂
(0)
µ (t)/2e is the homogeneous solution of Eq. (D.29). Inserting Eq. (D.30)

into Eq. (D.28), imposing that

θ
(
t − t ′

)

∑
µ

cos
[
ωµ (t − t ′)

]

Cµ
= Z

(
t − t ′

)
= R δ

(
t − t ′

)
,

i.e., the Fourier transform of the impedance Z (t − t ′) of the environment is equal

to the resistance R, and defining the voltage noise as

δV (t)≡ ∑
µ

h̄

2e

dϕ̂
(0)
µ

dt
=

h̄

2e

dϕ̂R

dt
,
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we finally obtain the quasi-charge equation of motion

L
d2q̂

dt2
+R

dq̂

dt
+VJ [q̂(t)] =V (t)+δV(t) , (D.31)

which is similar to Eq. (D.18). Indeed, thanks to the Thévenin-Norton equiva-

lence relations, V (t) and δV (t) are equal to the voltages VI(t) and δVI(t) of the

current-biased representation discussed in the previous section. As a result, the

dynamics of the quasi-charges q̂ and q̂ is determined by the same equation in both

representations. In other words, the circuit of Fig. 4.1(a) is equivalent to the circuit

of Fig. 4.1(b).



APPENDIX E
Voltage Across a Microwave Irradiated

Quantum Phase-Slip Junction

Introduction

In this appendix, we give a more detailed derivation of the main results pre-

sented in Secs. 4.3 and 4.4 of Chap. 4 about the voltage across a current-biased

QPSJ, irradiated with microwaves and connected to a resistive (R) and inductive

(L) electromagnetic environment [see Fig. 4.1(b)].

E.1 Perturbative expansion at all orders in U0:

Keldysh formalism

The IJ-VJ characteristic of the current-biased QPSJ in the circuit of Fig. 4.1(b)

is determined by the equations

IJ = I0 −
VJ

R
,

VJ =
〈
V̂J(t)

〉

DC
=

〈

Vc sin

[

π

e

(

q̂(t)+∑
λ

Q̂λ (t)

)]〉

DC

, (E.1)

i.e., by the time-average (DC component) of the quantum mean value 〈. . .〉 of the

voltage operator V̂J(t) over the states of the Hamiltonian of the system,

Ĥ =−U0 cos

[

π

e

(

q̂+∑
λ

Q̂λ

)]

− h̄I(t)

2e
ϕ̂ +∑

λ

[

Q̂2
λ

2Cλ
+

1

2Lλ

(
h̄ϕ̂λ

2e

)2
]

. (E.2)

We calculated VJ using the Keldysh formalism [110–112] which is based on the

time evolution of V̂J(t) in the interaction picture along the so-called Keldysh

closed contour CK, going forward and then backward in time, from t = −∞ to

111
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−∞

−∞ s =+

s =−

t0

t

Figure E.1: Keldysh closed time-contour CK. The forward/backward branch is

indicated with the Keldysh index s =+/−.

a certain time t0 and then back to t =−∞ [see Fig. E.1]. Writing the Hamiltonian

as Ĥ = Ĥ0+Ŵ where Ŵ plays the role of the perturbation, the quantum statistical

average of the generic operator Ôi(t0) in interaction picture can be written as

〈
Ôi(t0)

〉

Ĥ
=

〈

TCK

[

exp

(

− i

h̄

∮

CK

dt ′ Ŵi(t
′)
)

Ôi(t0)

]〉

Ĥ0

. (E.3)

Here TCK
is the time-ordering operator on the Keldysh contour CK, Ôi(t)=U

†
0 (t)Ô

U0(t) and Ŵi(t) =U
†
0 (t)Ŵ U0(t) with

U0(t) = T

[

exp

(

− i

h̄

∫ t

tin

dt ′ Ĥ0(t
′)

)]

, (E.4)

time evolution operator generated by the unperturbed Hamiltonian Ĥ0. The use of

the contour CK corresponds to switching adiabatically on and off the perturbation

Ŵ in such a way that the initial and final states are the same.

Assuming that the unperturbed Hamiltonian and the perturbation are

Ĥ0 = − h̄I(t)

2e
ϕ̂ +∑

λ

[

Q̂2
λ

2Cλ
+

1

2Lλ

(
h̄ϕ̂λ

2e

)2
]

, (E.5)

Ŵ = −U0 cos

[

π

e

(

q̂+∑
λ

Q̂λ

)]

, (E.6)

respectively, and rewriting the potential operator V̂J(t) in Eq. (E.1) using the rela-

tion sin(x) = ∑η0=±[(η0/2i)exp(ixη0)],

V̂J(t) =Vc ∑
η0=±

η0

2i
exp

[

i
π

e

(

q̂(t)+∑
λ

Q̂λ (t)

)

η0

]

,

the quantum mean value of the voltage across the QPSJ evaluated at the time t = t0
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reads

VJ(t0)

Vc
= ∑

η0=±

η0

2i

〈

TCK
exp

{

− i

h̄

∮

CK

dt ′ (−U0)cos

[

π

e

(

q̂(t ′)+∑
λ

Q̂λ (t)

)]}

× exp

[

i
π

e

(

q̂(t0)+∑
λ

Q̂λ (t0)

)

η0

]〉

Ĥ0

,

according to Eq. (E.3). Using the definition of the time-ordered evolution oper-

ator on the Keldysh contour and expressing the cosine function in terms of the

dichotomic variable η = ±, cos(x) = ∑η=±(1/2)exp(ixη), this last expression

becomes

VJ(t0)

Vc
=

+∞

∑
n=0

1

n!

(
iU0

2h̄

)n

∑
η0=±

∑
η1=±

∑
η2=±

· · · ∑
ηn=±

∮

CK

dt1

∮

CK

dt2 . . .

∮

CK

dtn

× η0

2i

〈

TCK
exp

{

i
π

e

n

∑
k=0

ηk

[

q̂(tk)+∑
λ

Q̂λ (tk)

]} 〉

Ĥ0

. (E.7)

At this point, let us introduce the Keldysh index sk = +/− which refers to the

forward/backward branch of the closed contour CK. Then, the k-th integral in

Eq. (E.7) can be written as
∮

CK

dtk =
∮ tk−1

−∞
dtk =

∫ tk−1

−∞
dt+k +

∫ −∞

tk−1

dt−k

=
∫ tk−1

−∞
dt+k −

∫ tk−1

−∞
dt−k = ∑

sk=±
sk

∫ tk−1

−∞
dtk ,

where t
+/−
k = t

sk

k is the time variable referring to the forward/backward branch.

As a result, the time-ordering operator TCK
is replaced by sk and Eq. (E.7) can be

recast in the form

VJ(t0)

Vc
=

+∞

∑
n=0

(
iU0

2h̄

)n

∑
{ηk}

η0

2i

∫ t0

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn

× ∑
{sk}

s1 . . .sn

〈

exp

{

i
π

e

n

∑
k=0

ηk

[

q̂(t
sk

k )+∑
λ

Q̂λ (t
sk

k )

]} 〉

Ĥ0

,(E.8)

for a given time ordering, for instance |tn|< |tn−1|< · · ·< |t1|< |t0|. In Eq. (E.8),

we introduced the sums over all the possible configurations of ηk and sk,

∑
{ηk}

= ∑
η0=±

∑
η1=±

∑
η2=±

· · · ∑
ηn=±

∑
{sk}

= ∑
s1=±

∑
s2=±

· · · ∑
sn=±

.
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Since the operators q̂ and Q̂λ commute, the mean value in Eq. (E.8) is equal to the

product of two terms. The first one,

Fq ≡
〈

exp

{

i
π

e

n

∑
k=0

ηk q̂(tsk

k )

} 〉

Ĥ0

, (E.9)

describes an ideal QPS junction. Whereas the second one,

Fenv ≡
〈

exp

{

i
π

e

n

∑
k=0

ηk

[

∑
λ

Q̂λ (t
sk

k )

]} 〉

Ĥ0

, (E.10)

accounts for the effect of the external electromagnetic environment. In the follow-

ing, we calculate these two mean values for a fixed value of n.

E.1.1 The mean value Fq

The time evolution operator for q̂ in the interaction picture is

U
(1)
0 (t) = exp

{

− i

h̄
ϕ̂

∫ t

tin

dt ′
(

− h̄I(t ′)
2e

)}

,

see Eqs. (E.5) and (E.4), where we omitted the part depending on the operators

of the environment Q̂λ and ϕλ because they commute with q̂. The time operator

U
(1)
0 (t) is the translation operator for q̂. Since [ϕ̂, q̂] = 2ei, we have

q̂(t) = U
†(1)
0 (t) q̂ U

(1)
0 (t) = q̂+

∫ t

tin

dt ′ I(t ′)

= q̂+
∫ t

ti

dt ′
[
I0 + Imw cos

(
ωmwt ′

)]

= q̂+ I0t +
Imw

ωmw
sin(ωmwt)+qin .

Here we introduced the constant quasi-charge qin determined by means of the

initial conditions. Using this last result, Eq. (E.9) becomes

Fq =

〈

exp

{

i
π

e
q̂

n

∑
k=0

ηk

}〉

Ĥ0

exp

{

i
π

e

n

∑
k=0

ηk

[

I0t
sk

k +
Imw

ωmw
sin
(
ωmwt

sk

k

)
+qin

]}

.

Assuming that q0 the mean value of the quasi-charge in the ground state of Ĥ0,

we finally get

Fq = exp

{

i
π

e
(q0 +qin)

n

∑
k=0

ηk

}

exp

{

i
π

e

n

∑
k=0

ηk

[

I0t
sk

k +
Imw

ωmw
sin
(
ωmwt

sk

k

)
]}

.

(E.11)
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E.1.2 The mean value Fenv

Assuming that the external bath is an ensemble of independent harmonic

oscillators, and introducing the creation, b
†
λ , and the annihilation, bλ , operators

for a fixed value of the quantum number λ , the conjugated variables ϕ̂λ and Q̂λ

can be written as

ϕ̂λ = γλ

(

b
†
λ +bλ

)

, Q̂λ =
ie

γλ

(

b
†
λ −bλ

)

,

with γλ =
√

2e2/Cλ h̄ωλ , ω2
λ = 1/LλCλ ,

[
bλ ,b

†
λ

]
= 1 and

[
ϕ̂λ , Q̂λ

]
= 2ei . Con-

sequently, the Hamiltonian of the environment is

Ĥenv =
+∞

∑
λ=1

[

Q̂2
λ

2Cλ
+

1

2Lλ

(

h̄

2e

)2

ϕ̂2
λ

]

=
+∞

∑
λ=1

h̄ωλ

(

b
†
λ bλ +

1

2

)

.

The operator Q̂λ in the interaction picture evolves in time according to

U
(2)
0 (t) = exp

{

− i

h̄
t

+∞

∑
λ=1

h̄ωλ

(

b
†
λ bλ +

1

2

)}

meaning that

Q̂λ (t) =U
†(2)
0 (t) Q̂λ U

(2)
0 (t) =

ie

γλ

(

b
†
λ

eiωλ t −bλ e−iωλ t

)

. (E.12)

Before using this relation, let us first rewrite Eq. (E.10) in the form

Fenv =
+∞

∏
λ=1

〈

exp

{

i
π

e

n

∑
k=0

ηkQ̂λ (t
sk

k )

}〉

Ĥ0

,

since the environment is an ensemble of independent harmonic oscillators, [Q̂λ ,
Q̂λ ′] = 0. In addition, Wick’s theorem allows to recast Fenv in the form

Fenv =
+∞

∏
λ=1

exp

{

− 1

2

(

π

e

)2〈
n

∑
k=0

n

∑
k′=0

ηk ηk′ Q̂λ (t
sk

k ) Q̂λ (t
sk′
k′ )

〉

Ĥ0

}

. (E.13)

In order to evaluate Fenv we need the mean value of the product of two charge

operators Q̂λ (t) at different times, namely the correlation function
〈

n

∑
k=0

n

∑
k′=0

ηk ηk′ Q̂λ (tk) Q̂λ (tk′)

〉

Ĥ0

=
n

∑
k=0

n

∑
k′=0

ηk ηk′

〈

Q̂λ (tk) Q̂λ (tk′)

〉

Ĥ0

.

(E.14)
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Such a thermal average satisfies the symmetry relation
〈
Q̂λ (tk)Q̂λ (tk′)

〉
=
〈
Q̂λ (tk′)Q̂λ (tk)

〉
.

It follows that the substitution

n

∑
k=0

n

∑
k′=0

... −→ 2
n

∑
k=0

k

∑
k′=0

...= 2
n

∑
k=1

k−1

∑
k′=0

...

can be used to rewrite Eq. (E.13). Note that the index k′ is always smaller than

k meaning that |tk′| > |tk|, assuming valid the time ordering |tn| < |tn−1| < ... <
|t1|< |t0|. When tk 6= tk′ , one gets

〈

Q̂λ (tk)Q̂λ (tk′)
〉

H0

=
e2

γ2
λ

{
[

1+nB

(
ωλ

)]

e
−iωλ

(
tk−tk′

)

+nB

(
ωλ

)
e

iωλ

(
tk−tk′

)
}

(E.15)

using Eq. (E.12), the mean values
〈

bλ (tk)bλ (tk′)
〉

Ĥ0

= 0
〈

b
†
λ (tk)b

†
λ (tk′)

〉

Ĥ0

= 0

and imposing that the environment is at the thermal equilibrium, i.e.,
〈

b
†
λ (tk)bλ (tk′)

〉

Ĥ0

= nB

(
ωλ

) 〈

bλ (tk)b
†
λ (tk′)

〉

Ĥ0

= 1+nB

(
ωλ

)
,

where nB

(
ωλ

)
= [exp(h̄ωλ/kBT )− 1]−1 is the Bose-Einstein distribution func-

tion. In particular, Eq. (E.15) gives

〈

Q̂λ (0)Q̂λ (0)
〉

H0

=
〈

Q̂2
λ (0)

〉

H0

=
e2

γ2
λ

[

1+2nB

(
ωλ

)]

(E.16)

for tk = tk′ . At this point, let us define the function

fλ

(
tk − tk′

)
≡
〈

Q̂λ (tk)Q̂λ (tk′)− Q̂2
λ (0)

〉

Ĥ0

.

Using Eqs. (E.15) and (E.16), it reads

fλ =
e2

γ2
λ

{
[

1+nB

(
ωλ

)][

e
−iωλ

(
tk−tk′

)

−1
]

+nB

(
ωλ

)[

e
iωλ

(
tk−tk′

)

−1
]
}

=
e2

γ2
λ

{
[

2nB

(
ωλ

)
+1
][

cos
[
ωλ

(
tk − tk′

)]
−1
]

− isin
[
ωλ

(
tk − tk′

)]

}

.

(E.17)

We see that it depends on the difference between tk and tk′ . Depending on the

position of tk and tk′ on the Keldysh contour CK, the difference tk − tk′ can be

positive or negative. Four cases are possible considering |tk′|> |tk| :
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1.
[

tk = t+k , tk′ = t+
k′

]

⇒
〈

Q̂λ (tk′)Q̂λ (tk)− Q̂2
λ (0)

〉

H0

= fλ

[
+
(
tk′ − tk

)]

2.
[

tk = t+k , tk′ = t−
k′

]

⇒
〈

Q̂λ (tk′)Q̂λ (tk)− Q̂2
λ (0)

〉

H0

= fλ

[
+
(
tk′ − tk

)]

3.
[

tk = t−k , tk′ = t+
k′

]

⇒
〈

Q̂λ (tk)Q̂λ (tk′)− Q̂2
λ (0)

〉

H0

= fλ

[
−
(
tk′ − tk

)]

4.
[

tk = t−k , tk′ = t−
k′

]

⇒
〈

Q̂λ (tk)Q̂λ (tk′)− Q̂2
λ (0)

〉

H0

= fλ

[
−
(
tk′ − tk

)]

As a result, fλ can be expressed in terms of the Keldysh index sk , i.e., fλ =
fλ

[
sk

(
tk′ − tk

)]
.

Adding and subtracting the quantity ∑k,k′ ηkηk′
〈
Q̂2

λ (0)
〉

, Eq. (E.14) then be-

comes

n

∑
k=0

n

∑
k′=0

ηk ηk′

〈

Q̂λ (t
sk

k ) Q̂λ (t
sk′
k′ )

〉

Ĥ0

=

= 2
n

∑
k=1

k−1

∑
k′=0

ηkηk′ fλ

[
sk

(
tk′ − tk

)]
+

(
n

∑
k=0

ηk

)2
〈

Q̂2
λ (0)

〉

Ĥ0

.

Inserting this last formula into Eq. (E.13) and reintroducing the sum over λ we

get

Fenv = exp

{

− 1

2

(

π

e

)2[

2
n

∑
k=1

k−1

∑
k′=0

ηkηk′
+∞

∑
λ=1

fλ

[
sk

(
tk′ − tk

)]
+

+

(
n

∑
k=0

ηk

)2
+∞

∑
λ=1

〈

Q̂2
λ (0)

〉

H0

]}

. (E.18)

Let us first focus on the sum over λ of the function fλ in this last expression.

Equation (E.17) gives

1

2

(

π

e

)2

2
+∞

∑
λ=1

fλ

[
sk

(
tk′ − tk

)]
=

+∞

∑
λ=1

1

2

(

π

e

)2

2
e2

2e2

(

Cλ h̄ωλ

)

×
{
[

2nB

(
ωλ

)
+1
][

cos
[
sk ωλ

(
tk′ − tk

)]
−1
]

− isin
[
sk ωλ

(
tk′ − tk

)]

}

(E.19)
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taking also into account the constants which appear in the exponent of Eq. (E.18)

and the definition of γλ . Since Cλ h̄ωλ = h̄/ωλ Lλ and
∫ +∞
−∞ dω δ

(
|ω|−ωλ

)
/2 =

1, we rewrite Eq. (E.19) as

h̄

2

(

π

e

)2
+∞

∑
λ=1

1

ωλ Lλ

∫ +∞

−∞

dω

2
δ
(

|ω|−ωλ

)

⊗

⊗
{
[

2nB

(
ωλ

)
+1
][

cos
[
sk ωλ

(
tk′ − tk

)]
−1
]

− isin
[
sk ωλ

(
tk′ − tk

)]

}

and using the properties of the Dirac delta function we obtain

1

2

h̄

2

(

π

e

)2 ∫ +∞

−∞

dω

ω

{
[

2nB

(
ω
)
+1
][

cos
[
sk ω

(
tk′ − tk

)]
−1
]

−

− isin
[
sk ω

(
tk′ − tk

)]

}
+∞

∑
λ=1

1

Lλ
δ
(

|ω|−ωλ

)

.

Introducing the admittance of the environment

ℜe
[
Y
(
ω
)]

=
π

2

+∞

∑
λ=1

δ
(
|ω|−ωλ

)

Lλ
,

i.e., the real part of the Fourier transform of Eq. (D.15),1 we finally obtain the

charge-charge correlation function

J
[
sk

(
tk′ − tk

)]
= RQ

∫ +∞

−∞

dω

ω
ℜe
[
Y
(
ω
)]

⊗

⊗
{
[

2nB

(
ω
)
+1
][

cos
[
sk ω

(
tk′ − tk

)]
−1
]

− isin
[
sk ω

(
tk′ − tk

)]

}

(E.20)

with RQ = h/4e2 the resistance quantum.

On the other hand, the other sum over λ in Eq. (E.18) involving the opera-

tor Q̂2
λ (0) is divergent. Indeed, if, for instance, the external environment can be

described by means of an effective resistance R and an effective inductance L in

parallel with the QPS junction, the admittance is

ℜe
[
Y
(
ω
)]

= ℜe

[

1

R+ iωL

]

=
1

R

(

1

1+ω2τ2
L

)

with τL =
L

R

1note that the same expression of ℜe
[
Y
(
ω
)]

can be also obtained imposing that the noise

current ÎRL = dQ̂RL/dt satisfies the quantum fluctuation-dissipation theorem, see Eq. (4.9).
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and consequently

Fdiv ≡ 1

2

(

π

e

)2
+∞

∑
λ=1

〈

Q̂2
λ (0)

〉

H0

=
1

2

(

π

e

)2
+∞

∑
λ=1

e2

γ2
λ

[

1+2nB

(
ωλ

)]

=
RQ

2

∫ +∞

−∞

dω

ω
ℜe
[
Y
(
ω
)]

coth

(

h̄ω

2kBT

)

=
RQ

2R

∫ +∞

−∞

dω

ω

1

1+ω2τ2
L

coth

(

h̄ω

2kBT

)

, (E.21)

which diverges. As a result, since Fdiv is time independent, Fenv and consequently

VJ(t0) tend to zero. However, if we focus only on the configurations of ηk such

that
n

∑
k=0

ηk = 0 , (E.22)

then Fenv 6= 0 as well as Eq. (E.8). The final expression of Fenv is

Fenv = exp

{

−
n

∑
k=1

k−1

∑
k′=0

ηk ηk′ J
[
sk

(
tk′ − tk

)]

}

, (E.23)

as long as Eq. (E.22) is satisfied.

E.1.3 Final formula

Once we obtained Eqs. (E.11) and (E.23), the potential across the junction

(E.8) becomes

VJ(t0)

Vc
=

+∞

∑
n=0

1

2i

(

iU0

2h̄

)2n+1

∑
{ηk}

′
∑
{sk}

η0

∫ t0

−∞
dt1

∫ t1

−∞
dt2 ...

∫ t2n

−∞
dt2n+1

× exp

{

i
π

e

2n+1

∑
k=0

ηk

[

I0tk +
Imw

ωmw
sin
(
ωmwtk

)

]}

×
(

2n+1

∏
k=1

sk

)

exp

{

−
2n+1

∑
k=1

k−1

∑
k′=0

ηk ηk′ J
[
sk

(
tk′ − tk

)]

}

, (E.24)

if the sum rule (E.22) is used in Eq. (E.18). To get Eq. (E.24) we replaced the

index n with 2n+1 because

n

∑
k=0

ηk =±1 ±1 ... ±1
︸ ︷︷ ︸

n+1 elements

= 0 ⇐⇒
(

n is odd
)

.
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Note that we used the prime ′ symbol in the sum over all ηk configurations in order

to indicate that Eq. (E.22) holds.

Equation (E.24) can be recast further as follows. First let us consider the

correlation function −J(t) . As can be noticed from Eq. (E.20), it is the sum of an

even real part and an odd imaginary part:

−J(t) = ℜe
[
− J(t)

]

︸ ︷︷ ︸

even

+i ℑm
[
− J(t)

]

︸ ︷︷ ︸

odd

= M(t)+ isign(t)A(t)

with

M(t) = ℜe
[
− J(t)

]
and A(t) =

∣
∣
∣ℑm

[
− J(t)

]
∣
∣
∣ .

Writing J(t) in this way, the following relation holds:

−
2n+1

∑
k=1

k−1

∑
k′=0

ηk ηk′ J
[
sk

(
tk′ − tk

)]
=

2n+1

∑
k=1

k−1

∑
k′=0

ηk ηk′
[

M
(
tk′ − tk

)]

+
2n+1

∑
k=1

i sk ηk gk .

(E.25)

To get this expression we used the relation sign
[
sk

(
tk′ − tk

)]
= sign(sk) = sk and

we defined the function gk as

gk = g(tk) =
k−1

∑
k′=0

ηk′ A
(
tk′ − tk

)
. (E.26)

We see from Eq. (E.25) that the Keldysh index sk appears only in the sum con-

taining gk . As a result, Eq. (E.24) contains the term

∑
{sk}

(
2n+1

∏
k=1

sk

)

exp

{

i
2n+1

∑
k=1

sk ηk gk

}

=

= ∑
s1=±

... ∑
s2n+1=±

(

s1 · · · ·s2n+1

)

ei s1 η1 g1 · · · ·ei s2n+1 η2n+1 g2n+1 .

This last relation is the product of 2n+1 decoupled elements. Each of them is a

sine function:

∑
sk=±

sk ei sk ηk gk = eiηk gk − e−iηk gk = 2 i sin
[
ηk gk

]
.
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Therefore we arrive at the equation

∑
{sk}

(
2n+1

∏
k=1

sk

)

exp

{

i
2n+1

∑
k=1

sk ηk gk

}

=
(
2 i
)2n+1

2n+1

∏
k=1

sin
[
ηk gk

]

=
(
2 i
)2n+1 1

η0

(
2n+1

∏
k=0

ηk

)(
2n+1

∏
k=1

sin
[
gk

]

)

=
(
2 i
)2n+1 1

η0

(
−1
)n+1

(
2n+1

∏
k=1

sin
[
gk

]

)

.

Inserting it into Eq. (E.24), we finally obtain the series expansion

VJ(t0)

Vc
=

+∞

∑
n=0

(
−1
)n

2i

(

U0

h̄

)2n+1

∑
{ηk}

′
∫ t0

−∞
dt1

∫ t1

−∞
dt2 ...

∫ t2n

−∞
dt2n+1

×
(

2n+1
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k=1

sin
[
gk

]

)

exp

{
2n+1

∑
k=1

k−1

∑
k′=0

ηk ηk′ M
(
tk′ − tk

)

}

× exp

{

iωB

2n+1

∑
k=0

ηk tk

}

exp

{

iα
2n+1

∑
k=0

sin
(
ωmw ηk tk

)

}

. (E.27)

where ωB = π I0/e and α = π Imw/eωmw . Equation (E.27) is exact at all orders

in U0.

E.2 First-order term

In this section, we focus on the first-order term of the quantum mean value

Eq. (E.27) and calculate its time average. For n = 0, η0 = ± and η1 = ± are

the only dichotomic variables different from zero. The configurations such that

η0 +η1 = 0 [see Eq. (E.22)] are two:

{
ηk

}
=
{(

η0 =− , η1 =+
)

;
(

η0 =+ , η1 =−
)}

.

It follows that Eq. (E.27) gives

V
(0)
J (t0)

Vc
=

1

2i

(

U0

h̄

)

∑
{ηk}=2

′
∫ t0

−∞
dt1 sin

[
g1

]
exp
{

η0 η1 M
(
t0 − t1

)}
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× exp
{

iωB

(

η0 t0+η1 t1

)}

exp
{

iα
[

η0 sin
(
ωmw t0

)
+η1 sin

(
ωmw t1

)]}

.

(E.28)

Here g1 = η0 A
(
t0 − t1

)
[see Eq. (E.26)]. If we first write sin

[
η0 A

(
t0 − t1

)]
in

terms of the complex exponential functions, then sum over η0 = ± and η1 = ±
and finally put in evidence exp

[
± iA

(
t0 − t1

)]
, Eq. (E.28) can be written as

V
(0)
J (t0)

Vc
≃
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U0

4h̄

)
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−∞
dt1 e
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sin
(
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−sin
(
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−h.c.

]

+

(
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4h̄

)
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dt1 e
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(
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e
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(
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)

e
−iα
[

sin
(

ωmw t0

)
−sin
(

ωmw t1

)]

−h.c.

]

, (E.29)

i.e., as the sum of two integrals, one the complex conjugate of the other. This last

expression can be further recast making the change of variable τ = t0 − t1 in the

first integral and τ = −
(
t0 − t1

)
in the second one. Finally we get the first-order

quantum mean value

V
(0)
J (t0)

Vc
=

(

U0

4h̄

)
∫ +∞

−∞
dτ eJ(τ)

{

eiωB τeiα τmw −h.c.

}

(E.30)

with

τmw = sin
[
ωmw

(
τ − sign(τ) t0

)]
+ sign(τ)sin

[
ωmw t0

]
.

When the microwave signal is switched off, Imw = 0, Eq. (E.30) gives

V
(0)
J (t0)

Vc

∣
∣
∣
∣
∣
Imw=0

=
V
(DC,0)
J

Vc

(
ωB

)
=

(

U0

4h̄

)
∫ +∞

−∞
dτ

{

eJ(τ)eiωB τ − eJ(τ)e−iωB τ

}

.

(E.31)

We see that the voltage across the QPSJ is independent of the specific choice of the

time t0 and is determined by the difference between the Fourier transforms of the

charge-charge correlation function J(τ) [see Eq. (E.20)] for positive and negative

bias energy h̄ωB respectively. This result is dual to the well-known expression

of the Cooper-pair current through a Josephson junction in the presence of an

external environment [1].
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On the other hand, if Imw 6= 0, the DC component of Eq. (E.30) can be ob-

tained calculating the integral

1

Tmw

∫ t ′+Tmw

t ′
dt0 exp

{

iα sin
[
ωmw

(
τ − sign(τ) t0

)]
+ iα sign(τ)sin

[
ωmw t0

]

}

,

namely the time average over one period of the microwave signal Tmw = 2π/ωmw,

with t ′ an arbitrary initial time. In this last expression, the exponential function

can be rewritten in terms of the Bessel functions of the first kind Jm(x) using the

Jacobi-Anger expansion,

eia sin(x) =
+∞

∑
m=−∞

Jm(a)eimx .

We straightforwardly find

+∞

∑
m=−∞

+∞

∑
m′=−∞

Jm(α)Jm′(α)eimωmw τ 1

Tmw

∫ t ′+Tmw

t ′
dt0 e

iωmw t0 sign(τ)
(

m′−m
)

. (E.32)

The integral in Eq. (E.32) is equal to 0 if m′ 6=m and to 1 when m′=m . As a result,

the first-order potential across a current-biased QPS junction under microwave

irradiation and embedded in an external electromagnetic environment is

V
(mw,0)
J

Vc
(ωB) =

(

U0

4h̄

)
+∞

∑
m=−∞

J2
m(α)

∫ +∞

−∞
dτ
[

eJ(τ)eiωB τeimωmw τ −h.c.
]

. (E.33)

Using Eq. (E.31), the voltage Eq. (E.33) becomes

V
(mw,0)
J

Vc
(ωB) =

+∞

∑
m=−∞

J2
m(α)

[

V
(DC,0)
J

Vc

(
ωB +mωmw

)

]

. (E.34)
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