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Résumé :

Les théories supersymétriques, telles que le Modèle Standard Supersymétrique Minimal, con-
stituent des extensions très populaires du Modèle Standard de physique des particules, et sont
activement recherchées au Large Hadron Collider (LHC). Dans cette thèse, nous nous concen-
trons sur deux aspects de la phénoménologie des théories supersymétriques aux collisionneurs
hadroniques de haute-énergie, à savoir les collisions polarisées, et les calculs de précision. Dans
un premier temps, nous réalisons une étude au Leading Order (LO), dans laquelle nous mon-
trons comment la présence de faisceaux polarisés (longitudinalement) pourrait nous aider à
différencier des modèles de Nouvelle Physique présentant la même signature à l’état final. A
titre d’exemple, nous considérons le cas d’une classe particulière de scénarios, menant à la pro-
duction de monotops, qui correspondent à la production d’un quark top en association avec de
l’énergie transverse manquante. Nous présentons nos résultats pour un LHC polarisé à 14 TeV,
et pour le récemment proposé Futur Collisionneur Circulaire (FCC), supposé opérer à 100 TeV.
Par la suite, nous nous concentrons sur la réalisation de prédictions de précisions pour la pro-
duction de paires squark-antisquark, de sgluons, et de gluinos au next-to-leading order (NLO)
en QCD supersymétrique, avec ou sans violation non-minimale de saveur, et avec ou sans Par-
ton Shower (PS). Plus particulièrement, nous fournissons les premiers résultats (préliminaires)
pour la production de squark-antisquark au NLO en SUSY-QCD avec violation non-minimale
de saveur, dans le cas d’un calcul à ordre perturbatif fixe, et considérons dans le contexte de
modèles simplifiés la production par paires de particules colorées de type scalaire (stops et
sgluons), et Majorana (gluinos) au NLO avec PS via l’environnement de travail automatisé
MadGraph5_aMC@NLO.

Abstract :

Supersymmetric theories, such as the Minimal Supersymmetric Standard Model (MSSM), con-
stitute very popular extensions of the Standard Model of particle physics, and are extensively
searched for at the Large Hadron Collider (LHC). In this thesis, we focus on two specific aspects
of the phenomenology of supersymmetric theories at high-energy hadron colliders, namely po-
larized collisions and precision calculations. First, we perform a Leading Order (LO) study, in
which we show how the availability of (longitudinally) polarized proton beams could help us to
disentangle various Beyond the Standard Model (BSM) scenarios exhibiting the same final-state
signature. For the sake of illustration, we focus on the case of one particular class of scenarios
leading to monotop production, which corresponds to the production of a top quark in associ-
ation with missing transverse energy. We present our results for a polarized LHC at 14 TeV,
and for the recently proposed Future Circular Collider (FCC), supposed to operate at 100 TeV.
Then, we concentrate on predictions for squark-antisquark, sgluon, and gluino pair production
at next-to-leading order (NLO) in supersymmetric QCD, with or without Non-Minimal Flavour
Violations (NMFV), and with or without matching those predictions with Parton Showers (PS).
More specifically, we provide the first preliminary results for squark-antisquark hadroproduction
at NLO in SUSY-QCD with NMFV, in the context of a fixed order calculation, and consider,
in the context of simplified models, the pair production of coloured scalar (stops and sgluons)
and coloured Majorana (gluinos) particles at NLO matched with PS within the automated
MadGraph5_aMC@NLO framework.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1] is a theory that describes fundamental inter-
actions between elementary particles. More precisely, it is a renormalizable local quantum field
theory (QFT) invariant under the non-abelian gauge group SU(3)C × SU(2)L × U(1)Y , which
provides a microscopic description of the electroweak and strong interactions between quarks
and leptons, and accounts for the dynamics of the gauge fields. This theory is made out of two
pieces. The first one, based on the gauge group SU(3)C , is called Quantum ChromoDynamics
(QCD) [2–15], and describes the dynamics of the strong interactions (responsible e.g. for binding
protons and neutrons together into atomic nuclei). The second one, built on SU(2)L × U(1)Y ,
is called the electroweak Standard Model [16–18], and describes within a unified framework,
electromagnetic as well as weak interactions (responsible for nuclear β-decays).

For more than forty years, this refined theoretical edifice has withstood all attempts at
falsification. Tested with an ever increasing degree of precision, the Standard Model has revealed
itself fully compatible and consistent with a wide class of experiments. It has successfully
predicted the existence and the form of the electroweak interactions, the mass of the W and
Z boson [17, 18], the existence of the charm quark as required by the Glashow-Illiopoulos-
Maiani (GIM) mechanism [19], and the top quark mass with a O(10) GeV accuracy [20], even
before it was discovered at Fermilab in 1995 [21, 22]. However, the greatest achievement of
the Standard Model most certainly remains the Brout-Englert-Higgs-Guralnik-Hagen-Kibble
mechanism [23–28], which describes the spontaneous breaking of the electroweak symmetry
thanks to which it is possible for all the elementary particles to acquire a mass. This mechanism,
theorized fifty years ago, was experimentally confirmed in 2012 by the ATLAS [29] and CMS [30]
collaborations at the Large Hadron Collider (LHC), after the observation of a particle whose
properties are consistent with a 125 GeV Standard Model-like Higgs boson [31–33].

In addition to all the aforementioned virtues, the Standard Model (supplemented with mas-
sive neutrinos) can also account for neutrino oscillations [34, 35], a phenomenon for which we
now have strong experimental evidences [1], and therefore seems to provide a particularly con-
sistent and relevant description of Nature, so far in perfect agreement with (almost) all data
collected at collider-based experiments. Nevertheless, despite its really impressive phenomeno-
logical successes, the SM still exhibits conceptual and experimental shortcomings that leave
many fundamental questions unanswered.

1.1 Conceptual and æsthetical flaws of the Standard Model

From a theoretical point of view, the first, and certainly the most severe design flaw of the SM is
that it does not include gravity, which is described at the classical level by the theory of general
relativity (GR). The Standard Model of particle physics and general relativity are two pillars
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Figure 1.1: Physical contributions to the Higgs mass corrections at one-loop, in the Feynman
gauge, with loops containing in order, Dirac fermions, W bosons, Z bosons, Higgs bosons, a
quartic h/W coupling, a quartic h/Z coupling, and a Higgs quartic coupling.

of modern physics, yet those two pillars cannot be consistently merged into a unified picture
of interactions due to their vastly different nature1. One possibility to merge gravity with the
other forces at high energies would be to formulate a quantum theory of gravity. No satisfactory
answer to this problem has however been found so far. Building a quantum field theory of
gravity is indeed far from being trivial, especially because such a theory is perturbatively non-
renormalizable, i.e. loop corrections containing gravitons diverge faster and faster as the order
of the perturbative series expansion increases. At TeV colliders like the LHC, quantum effects
of gravity should stay out of reach2, seeing that at such energy scales the strength of the
gravitational interaction is much weaker than all the other ones. Yet, at energies of the order
of the Planck scale Mp ∼ 1019 GeV, the strength of the gravitational force is expected to
become comparable to the other ones, and thus quantum effects of gravity should become non-
negligible. Due to its intrinsic inability to describe quantum effects of gravity, the Standard
Model is therefore expected to break down (at least) at energies of the order of the Planck scale.

There are however other reasons to think that the Standard Model could cease to be valid
even before the Planck scale. The first one is connected to the Higgs sector. In the SM,
mass parameters originate from a non-vanishing vacuum expectation value (vev) of the Higgs
field spontaneously breaking the electroweak symmetry SU(2)L × U(1)Y down to the gauge
group of electromagnetism U(1)Q. Experimentally, this vev is known to be approximately3

v = 246 GeV [37–39]. Understanding why this vev is so small compared to the Planck scaleMp of
O(1019) GeV, is usually referred to as the naturalness/hierarchy problem in the literature [40–44].

Hierarchy problem

The hierarchy problem is widely believed to be one of the most severe conceptual issue of
the Standard Model, and essentially arises when assuming that the SM is not the final theory
of Nature, but rather a low-energy Effective Field Theory (EFT) of a more fundamental one
emerging in between the electroweak and the Planck scale. The reason why we have a hierarchy
problem in the Standard Model is deeply connected to the scalar nature of the Higgs boson.
More specifically, unlike fermions and gauge bosons whose masses are respectively protected
by means of chiral, and gauge symmetry, the Higgs mass is not protected from large radiative
corrections by any symmetry in the SM. This lack of symmetry affecting the mass of the Higgs
boson reflects itself in the fact that the latter receives radiative corrections which quadratically

1The SM is a quantum field theory, while GR is a classical field theory.
2Assuming that known laws of gravity are valid at all scales and that the space-time remains four-dimensional.

Otherwise effects of extra-dimensions could lower the scale at which quantum effects of gravity would kick in [36].
3According to our normalization conventions for the vev.
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Figure 1.2: Unphysical contributions to the Higgs mass corrections at one-loop, in the Feyn-
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depend on the cut-off/New Physics scale4 Λ, and thus are naturally of O(Λ2). If we explicitly
calculate in the broken phase the full one-loop corrections to the Higgs mass in the SM (cf.
Fig. 1.1 and Fig. 1.2), we obtain the following expression for its quadratically divergent part5

δm2
h = 3Λ2

16π2v2

[
2m2

W +m2
Z +m2

h −
∑
f,i

4nfc
3 m2

f,i

]
, (1.1)

where mW , mZ , mh, mf,i, nfc , v and Λ are respectively, the W boson mass, the Z boson mass,
the Higgs boson mass, the fermion masses, the number of colours, the vev of the Higgs field,
and the new physics scale/cut-off regulating loop-integrals in the Ultra-Violet (UV) limit. This
expression matches with results already available in the literature [46,47].

The problem with (1.1) is that if Λ is significantly higher than the electroweak scale, i.e. if the
SM remains valid up to very high scales, the O(Λ2) corrections of δm2

h become particularly large,
and naturally drive the Higgs mass to the New Physics scale Λ. This is in clear contradiction
with i) our expectations of a O(100) GeV Higgs boson which stems from both theoretical reasons
(such as unitarity of WW scattering), and precision measurements in the electroweak sector,
ii) the direct observation of a 125 GeV Standard Model-like Higgs boson at the LHC. There are
in principle several options at hand to stabilize the hierarchy between the electroweak and the
Planck scale, and to keep the physical mass of the Higgs boson at the electroweak scale.

The first one is to enforce the cancellation of the O(Λ2) corrections by performing a fine
adjustment between the bare Higgs mass and its quadratic one-loop corrections δm2

h (at the
level of one part in 1032 if Λ = Mp), so that it is in fine possible to recover a physical Higgs
mass of O(100) GeV. The main problem with this first option is that there is probably too
much arbitrariness in adjusting very precisely the parameters of a theory so that its predictions
can match with observations. In other words, such a fortuitous and spectacular cancellation,
although not logically excluded, seems highly contrived [48]. This problem is closely connected
to the hierarchy problem, and usually referred to as the fine-tuning problem [49, 50]. It should
be noted for completeness that accepting the enormous amount of fine-tuning in the Higgs sector

4If we use the momentum cut-off regularization technique.
5Assuming a common cut-off Λ regulating both fermion and boson loops [45].
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still remains a possible option. This option has been studied especially in the context of the
multiverse framework (like the string theory landscape) where one assumes the existence of a
vast landscape of vacua, among which one is selected according to an anthropic principle.

The second option at hand consists in imposing a specific relationship between masses (or
dimensionless parameters) of the Standard Model in order to enforce the exact cancellation
of the quadratic divergences, whatever the value of the New Physics scale Λ is. This strictly
amounts to enforcing the following condition at the one-loop level in the broken phase:

2m2
W +m2

Z +m2
h −

∑
f,i

4nfc
3 m2

f,i = 0 . (1.2)

The first problem with this so-called Veltman condition [43] is that it requires at the one-loop
level a ∼ 315 GeV Higgs boson, which is in clear conflict with experimental data. The second
problem with the Veltman condition is that it is not an all-order result, and therefore even if the
Veltman condition were satisfied at the one-loop level, this would not automatically imply that
the Standard Model would be two-loop natural6. More precisely, at all orders, the quadratically
divergent Higgs mass loop corrections would take the following generic form

δm2
h = Λ2

+∞∑
n=0

cn(λi) lnn (Λ/mh) , (1.3)

and would de facto require an infinite number of Veltman-like constraints of the type cn(λi) = 0
to ensure the absence of quadratic divergences at all orders in perturbation theory [51]. This set
of independent conditions would however vastly over constrain the value of the input parame-
ters λi seeing that there would be infinitely many independent constraint equations for only a
finite number of input parameters. The system of equations would hence have no solution [47],
thus making the exact cancellation of quadratic divergences impossible. For complementary
discussions on the Veltman condition, the reader is referred to [47,52].

The third (and next-to-last7) option to stabilize the hierarchy between the electroweak and
the Planck scale consists in assuming that a new symmetry would protect the Higgs mass from
receiving too large radiative corrections, order by order in perturbation theory [54, 55]. Super-
symmetric theories, extra-dimensions, and Little Higgs models, are precisely implementations of
this very simple idea. For most of them, such theories invoke New Physics at a rather low-scale,
typically Λ ∼ O(1) TeV, in order to achieve the cancellation of quadratic divergences between
the bare Higgs mass and the one-loop corrections with a "reasonable" amount of fine-tuning8.
In this thesis we will exclusively focus on supersymmetric extensions of the Standard Model.

Since its original formulation in the early eighties by Susskind [41], ’t Hooft [42] and Veltman
[43], the naturalness/hierarchy problem has been one of the major guiding principles for physics
Beyond the Standard Model (BSM), and most certainly remains one of the strongest motivation
for New Physics at the TeV scale. It should however be kept in mind that this problem first and
foremost remains a problem of æsthetical nature, and whether the naturalness criterion should be
considered as a guiding principle for particle physics is stricto sensu a matter of taste. As such, it
is indeed perfectly acceptable to give-up on the hierarchy problem9, yet it should be emphasized
that choosing this option would directly imply (putting aside cosmological constraints coming

6Natural in the sense of Veltman, meaning that radiative corrections to a given physical observable are supposed
to be of the same order (or much smaller) than the actually observed values [43].

7A fourth solution called cosmological relaxation which involves a QCD axion, and an inflation sector has been
developed during the redaction of this manuscript, for more details see [53].

8A reasonable amount of fine-tuning remains a highly subjective notion though.
9The hierarchy problem could even be solved at the Planck scale by the same (yet unknown) mechanism in

charge of solving the cosmological constant problem (which is also a fine-tuning problem).
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from dark matter relic density discussed later in this chapter) that we would have no clue on
what could be the scale where New Physics would take over. As a final remark, let us just
note that if the extreme sensitivity of the Higgs mass to high scales is made manifest by the
cut-off regularization technique (which breaks translational and gauge invariance by the way),
an equivalent result can be obtained using dimensional regularization. As a matter of fact, if we
assume the existence of new heavy particles of mass M coupling to the Higgs field, the Higgs
mass automatically receives from them one-loop corrections of O(M2 ln (M2/µ2

R)) even after
having subtracted the poles at the renormalization scale µR. If M is then taken significantly
higher than the electroweak scale, the O(M2 ln (M2/µ2

R)) corrections of δm2
h become particularly

large, and once again naturally drive the Higgs mass to the typical scale of New Physics, namely
M . So, no matter what regularization scheme we choose, the hierarchy problem still remains.
Moreover, even if those new heavy particles were not directly coupling to the Higgs field, but
only to SM fermions, or gauge bosons, they would most likely re-introduce the same problem at
the two-loop level (and beyond).

Gauge group of the Standard Model and gauge couplings unification

Another series of reasons why the Standard Model could cease to be valid before the Planck
scale actually originate from the intricate structure of the SM gauge group. The SM gauge group
SU(3)C×SU(2)L×U(1)Y is a complicated and quite unnatural direct product of three different
gauge groups10, where the gauge factors SU(3)C and SU(2)L × U(1)Y (respectively describing
the strong and the electroweak interactions) are completely decoupled one from another, and
quite inelegantly remain un-unified. Two comments are in order at this stage. First, if the
Standard Model seems to provide an accurate description of data collected at collider-based
experiments, it still does not tell us why the symmetry of the theory has to be the complicated
direct product SU(3)C × SU(2)L × U(1)Y , and not something simpler.

Second, if we take the values of the SM gauge couplings at low-energy, i.e. O(100) GeV,
and evolve them to high energies by means of the Renormalization Group Equations (RGEs),
we notice that they nearly meet at scales of O(1014 − 1016) GeV, as depicted in Fig. 1.3. The
running of the gauge couplings may hence suggest a possible unification at high energies of the
SM gauge groups into a larger symmetry group (with only one coupling constant). This apparent

10Each coming with its own energy-dependent gauge coupling.
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Figure 1.4: The particle content of the Standard Model re-organized in terms of the properties
of its fundamental building blocks.

convergence of the SM gauge couplings at high scales might still be purely accidental, but just
like the electromagnetic and weak interactions (partially) unify in the Standard Model, it is
tempting to think that all gauge interactions could unify into a larger symmetry group at high
energies. Such a framework is usually referred to as a Grand Unified Theory (GUT) [57–60].
Just like for the hierarchy problem, those issues related to the gauge group of the Standard
Model are of æsthetical nature, and whether unification of the gauge groups should be deemed
a guiding principle for New Physics is once again a matter of taste.

Flavour puzzle and mixing pattern

Besides unification and the hierarchy problem, there are also other æsthetical reasons to consider
the Standard Model unsatisfactory from a conceptual point of view, especially in the fermion
sector. First of all, almost all matter on Earth is made out of fermions of the first family (νe,
e, u and d), yet laboratory experiments show that there are two additional heavier replicas of
the first chiral generation, namely (νµ, µ, c and s) and (ντ , τ , t and b) [61]. The Standard
Model neither accounts for the number of fermion generations, nor for the role of the heavier
families. In addition, unlike gauge bosons masses which are entirely fixed by the value of the
gauge couplings and the vev of the Higgs field, there are no direct predictions for the fermion
masses in the Yukawa sector.

This sector actually introduces a substantial number of free parameters in the Standard
Model. More specifically, out of the 26 free parameters of the SM, 12 of them are Yukawa
couplings. Even worse, the SM cannot account for the large hierarchy between the Yukawa
couplings which intriguingly span over six orders of magnitude (the top Yukawa coupling yt is
of O(1)11, while the one of the electron, ye, is of O(10−6)). Naively, we would expect all the
Yukawas to be of O(1), experimentally this is not the case. Things are getting even worse when
the SM is supplemented with massive neutrinos, inasmuch as neutrino masses are found to be
extremely tiny. This peculiarity often referred to as the flavour puzzle might well stem from
some new flavour dynamics coming into play at high energy scales.

In addition to the previous points, the Standard Model gives no hint on the origin of the
observed mixing pattern in the Cabibbo-Kobayashi-Maskawa (CKM) [62, 63], and Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrices [34,35]. The structure of those mixing matrices is not

11It is the only natural Yukawa coupling of the theory.
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Figure 1.5: The abundances of 4He, D, 3He, and 7Li as predicted by the Standard Model
of Big-Bang nucleosynthesis. The bands show the 95% CL range. Yellow boxes indicate the
observed light element abundances. The narrow vertical band indicates the Cosmic Microwave
Background (CMB) measure of the cosmic baryon density (multiplied by 1010), while the wider
band indicates the BBN concordance range (both at 95% CL). Taken from [1].

predicted by the SM, but has to be derived from experiments, and introduces as well a substantial
number of free parameters in the theory. As a matter of fact, out of the 26 free parameters of the
Standard Model, 8 of them are related to the CKM and PMNS mixing matrices, 2×(3 angles +
1 CP-violating phase12). In summary, this means that out of the 26 parameters of the SM, 20 of
them are related to the fermion sector, while there are only 3 free parameters in the gauge sector,
namely the gauge couplings gs, g and g′, and 2 free parameters in the Higgs sector, namely the
vev v of the Higgs field, and the quartic coupling λ of the Higgs potential. The Standard Model
does not explain at all why there is so much arbitrariness and so many free parameters in the
Yukawa sector, and this is particularly intriguing.

1.2 Observational problems with the Standard Model
If the Standard Model of particle physics exhibits so far no statistically significant deviation
from data collected at collider-based experiments, there are still facts at the astrophysical and
cosmological level that the SM cannot explain in its current form, like for instance the observed
imbalance between matter and anti-matter in the Universe, which is usually referred to as Baryon
Asymmetry in the Universe (BAU).

Baryon Asymmetry in the Universe

Experimentally, it is observed that we are living in a matter-antimatter asymmetric world. The
latest measurements performed by the Planck collaboration [64,65] are consistent with the ones
obtained from WMAP [66], and Big Bang Nucleosynthesis (BBN) (cf. Fig.1.5), and confirm
the existence of a tiny excess of matter over antimatter. The most up-to-date value for the
baryon-to-photon ratio η obtained from [65] reads as follows

η = nB − nB̄
nγ

= (6.0965± 0.0439)× 10−10 , (1.4)

12One CP-violating phase if neutrinos are Dirac fermions, three if they are Majorana fermions.
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where nB, nB̄, and nγ are the number densities of baryons, antibaryons, and CMB photons
respectively. It is thus widely accepted that at least the observable part of our Universe must have
developed an excess of particles over anti-particles at some point in the cosmological history [67].
One possible mechanism for generating this BAU is called ElectroWeak Baryogenesis (EWBG)
[68, 69]. This mechanism aims at dynamically generating a net baryon asymmetry during the
Electroweak Phase Transition (EWPT), starting out from a baryon symmetric universe13.

A successful baryogenesis requires three necessary ingredients often referred to as the Sakharov
conditions [70]. These conditions are i) baryon number violation (BNV) ii) C and CP violation
iii) departure from thermal equilibrium. All three ingredients are (in principle) already present
in the Standard Model.

The first criterion is possibly fulfilled thanks to non-perturbative processes called sphalerons
[71–73]. Sphalerons are static saddle-points solutions to the classical SU(2)L field equations,
sitting at the top of the configuration ridge between degenerate electroweak vacua. Those
processes allow for transition between topologically different SU(2)L vacua [74], violate B + L,
and conserve B−L. More specifically, sphalerons violate baryon and lepton number by 3 units,
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Figure 1.6: Sphaleron process. The quantum numbers of the initial state are L = 3 and B = 0.
The quantum numbers of the final state are L = 0, B = −3. Taken from [68].

and amount to converting three left-handed leptons (one from each generation), into nine left-
handed antiquarks (one from each generation, each of them coming in three different colours) as
depicted in Fig. 1.6. These processes have so far never been observed experimentally, because
at zero temperature their rates are expected to be exponentially suppressed. However at higher
temperatures, sphalerons could play a significant role [75], inasmuch as the thermal energy
available could potentially ease transitions between degenerate vacua by allowing the system to
overcome the associated energy barriers instead of just proceeding through quantum tunnelling
(see [76,77] and references therein).

The second criterion could be fulfilled thanks to the CP-violating phase of the CKM matrix,
which is usually considered as the only source of CP violation in the Standard Model (without
massive neutrinos). The amount of CP violation of a given theory is usually quantized in a
phase-convention-independent way by means of the following invariant

JCP =
∏

qu∈{u,c,t}>q′u

(m2
qu −m

2
q′u

)
∏

qd∈{d,s,b}>q′d

(m2
qd
−m2

q′
d
) Im

(
ViiVjjV

∗
ijV
∗
ji

)
with i 6= j , (1.5)

where Im
(
ViiVjjV

∗
ijV
∗
ji

)
is the Jarlskog invariant, also noted J [78], which is defined such that

J = c12c23c
2
13s12s23s13 sin δKM with Im

(
VijVklV

∗
ikV
∗
jl

)
= J

∑
m,n

εikmεjln . (1.6)

Normalizing JCP over the typical critical temperature of the EWPT, namely Tc = 100 GeV, one
13Any pre-existing baryon asymmetry would be erased in a scenario including an inflationary epoch.
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Figure 1.7: Left: Rotation curve of NGC 3198. The line marked “disk” shows the expected
rotation curve if the only mass in the galaxy were that in the visible stars. The line marked
“halo” corresponds to the rotation curve of the extra dark matter halo only (the two curves are
not additive). Taken from [82]. Right: The Planck 2015 temperature power spectrum of the
CMB. Taken from [65].

obtains the following dimensionless quantity dCP

dCP = JCP
T 12
c

∼ 10−19 , (1.7)

which gives a rough estimate of the amount of CP-violation induced by the CKM complex phase,
and has to be compared with the measured baryon-to-photon ratio η of (1.4). Comparing (1.4)
to (1.7), it appears that CP-violation in the Standard Model is too weak (by nine orders of
magnitude) to explain the measured baryon-to-photon ratio. New sources of CP-violation hence
seem to be required to correctly describe data.

The third and last criterion, namely departure from thermal equilibrium, is possibly provided
by a strongly first-order Electroweak Phase Transition. Lattice calculations however show that
a strongly first order phase transition requires a Higgs mass below 75 GeV [79–81], which is at
odds with present observations. For a 125 GeV Standard Model-like Higgs boson, only a cross-
over between the broken and the unbroken phase is possible. Consequently bubbles of broken
phase cannot nucleate within the symmetric phase, no loss of thermal equilibrium is possible,
and hence no net baryon asymmetry can ever be transmitted to the broken phase. So either
New Physics has to increase the value of the Higgs mass up to which a strongly first-order phase
transition is still allowed, or some alternative mechanism has to generate BAU.

Dark matter

More data supporting the idea that the Standard Model is not the ultimate theory of Nature
comes from astrophysics, with the so-called Dark Matter problem. The first experimental hint
pointing toward the existence of Dark Matter (DM) goes back to a study of Fritz Zwicky in
1933 related to dispersion velocities of galaxies within the Coma cluster [83]. In this study,
Zwicky pointed out the fact that the outer members of the Coma clusters were moving signifi-
cantly faster than expected from predictions of classical Newtonian dynamics, by showing that
the gravitational mass of the cluster14 was O(100) times larger than its luminous mass. One

14Zwicky assumed pure gravitational interactions described by Newton’s theory, and then employed the Virial
theorem to infer the gravitational mass of the Coma cluster from dispersion velocities of the various galaxies.
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interpretation of this "missing mass" (without which the cluster would be torn apart) made by
Zwicky was that there could exist some kind of non-luminous matter (hence its name Dark Mat-
ter), interacting only gravitationally, which would constitute the main component of the mass
of the cluster, and would ensure its integrity. More than forty years later, a similar behaviour
was also observed at galactic scales in a series of studies [82,84] conducted on rotation curves of
stars within isolated galaxies. In those studies, it was shown that stars residing in the outermost
regions of the galaxy were also experiencing strong deviations from predictions of Newtonian
gravity as can be seen in Fig.1.7 on the left-hand panel. The velocity of stars in those regions
indeed seemed to be almost constant, no matter how far they were from the galactic center,
which was (and is still) in clear contradiction with the luminous matter disk profile exhibiting
a 1/
√
r suppression at large radius r. Once again assuming that standard laws of gravity were

valid at galactic scales, Rubin et al. suggested in [84] that such a startling feature could be
explained by a missing mass taking the form of a dark matter halo. As depicted on Fig.1.7, it
indeed seems that adding an hypothetical DM halo component to luminous matter produces a
curve whose shape and normalization perfectly fits to experimental data.

At the astrophysical and cosmological scales, there are still several other experimental facts
supporting the existence of Dark Matter, such as large scale structure formation, current ob-
servations in the Bullet Cluster, as well as CMB fluctuations (see right-panel of Fig. 1.7). The
latest results obtained by the Planck collaboration [65], which originate from a combination of
various cosmological observations, give the following hypothetical cold dark matter relic density

Ωch
2 = 0.1188± 0.0010 , (1.8)

where h is the reduced Hubble constant. This energy density represents approximatively 25% of
the energy content of the Universe, and is five times bigger than the contribution of the ordinary
baryonic matter Ωbh

2 = 0.02230± 0.00014. The main problem is that the Standard Model does
not provide any Dark Matter candidate with the desired properties, and therefore New Physics
seems to be required.

1.3 Organization of the thesis

If the previous arguments are the main motivations for Beyond the Standard Model (BSM)
physics, it should however be noted for completeness, that other reasons, such as the strong-CP
problem [85], also exist, yet for brevity they are not reviewed in the present manuscript. Among
all the possible BSM theories available in the literature, we consider in this thesis (almost)
exclusively supersymmetric extensions of the Standard Model, and more specifically concentrate
on the phenomenology of N = 1 supersymmetric theories15, for which we provide theoretical
predictions at leading order (LO), and next-to-leading order (NLO) in perturbation theory, at
polarized and unpolarized hadron colliders. The manuscript is organized as follows:

In Chapter 2, we provide a short introduction to N = 1 supersymmetry (SUSY), in which we
first recall some basic facts about SUSY (history, motivations, superalgebra and properties of the
supermultiplets), before introducing the superspace formalism and detailing the various steps
inherent to the construction of supersymmetric Lagrangians. In the second part of this chapter,
we focus on one particular implementation of N = 1 supersymmetry, namely the Minimal
Supersymmetric Standard Model (MSSM), which is repeatedly used in this manuscript, and fix
the notations and conventions used in the rest of the thesis.

15Supersymmetric extensions of the Standard Model with N ≥ 2 are not considered here, because in the
latter left- and right-handed fermions are part of the same supermultiplet. Left- and right-handed fermions have
consequently the same interactions, and therefore parity violation is not allowed in such theories.
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Chapter 3 is based on [86], in which we show how the availability of (longitudinally) polarized
beams at high-energy proton-proton colliders could help us to disentangle various BSM scenarios
with the same final-state signature. In this tree-level phenomenological study, we first discuss
in a model-independent way how this discriminating power arises from the differences between
polarized and unpolarized parton distribution functions. We then demonstrate how polarized
beams allow one not only to disentangle different production mechanisms giving the same final-
state signature, but also to obtain information on the parameters of the hypothetical new physics
sector of the theory. This is illustrated in the case of a particular class of scenarios leading to
monotop production, which corresponds to the production of a top quark in association with
missing transverse energy (/ET ). We consider three specific models that could produce a monotop
signature (one being the MSSM with R-parity violation) in unpolarized proton collisions, and
show how they could be distinguished by means of single- and double-spin asymmetries in
polarized collisions. Our results are presented for both the Large Hadron Collider operating
at a center-of-mass energy of 14 TeV and a recently proposed Future Circular Collider (FCC)
assumed to collide protons at a center-of-mass energy of 100 TeV.

Chapter 4 consists of a brief introduction to one-loop calculation techniques. In this chapter,
we first recall the various challenges of NLO calculations, before providing a constructive (and
mathematically consistent) definition of both Dimensional Regularization (DREG), and Dimen-
sional Reduction (DRED)16. Then, we detail how to evaluate scalar integrals that are frequently
encountered in the context of one-loop calculations, and introduce the Passarino-Veltman reduc-
tion scheme designed to decompose vector and tensor loop integrals into linear combinations of
simpler scalar integrals multiplied by Lorentz invariants. The last part of chapter 4 is dedicated
to the procedure of renormalization, which primarily aims at absorbing UV divergences into the
redefinition of all the bare fields and parameters of the original tree-level Lagrangian.

In Chapter 5, we apply the concepts reviewed in the previous chapter to the case of squark-
antisquark pair production at next-to-leading order in SUSY-QCD with Non-Minimal Flavour
Violation (NMFV), which has never been investigated before. In the first part of this chapter,
we detail the field content of the model, give the analytical expression of the tree-level matrix
element, and define the set-up employed to renormalize the theory at the one-loop level. In
the second part of this chapter, we concentrate on the derivation of the self-energies and vertex
corrections, and provide the analytical expression of all the Renormalization Constants (RCs)
that are needed for the process of our interest. In the third part of this chapter, we briefly discuss
the box contributions, and provide a short report on the status of this on-going calculation [87].

In Chapter 6, which is based on [88] and [89], we present for the first time the full automation
of collider predictions matched with parton showers at the next-to-leading accuracy in QCD
within non-trivial extensions of the Standard Model. As an application, we explore scenarios
beyond the Standard Model, where new coloured scalar (stops and sgluons), and Majorana
particles (gluinos) can be pair produced in hadron collisions. Using simplified models to describe
the new field interactions with the Standard Model, we present precision predictions for the LHC
within the MadGraph5_aMC@NLO framework.

Finally, in Chapter 7, we draw our conclusions and provide a short outlook. Note that some
technical details are relegated to the appendices.

16A variant of DREG designed for supersymmetric theories
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Chapter 2

Supersymmetry

Supersymmetric theories were not originally designed to solve any of the problems mentioned in
the previous chapter. They were constructed out of theoretical and æsthetical considerations in
the early seventies [90–96], and initially constituted an attempt to merge external and internal
symmetries into a larger symmetry group. It was only found later on that SUSY could address
a certain number of the Standard Model shortcomings. More than forty years after the seminal
work of Wess and Zumino, supersymmetry is now one of the most studied extensions of the
Standard Model, and is extensively searched for at the LHC [97,98]. In this chapter, we provide
a short introduction to N = 1 supersymmetry, and focus more specifically on one of its most
popular implementations, namely the Minimal Supersymmetric Standard Model (MSSM).

2.1 Motivations

The starting point for supersymmetry goes back to 1967 with the formulation of the Coleman-
Mandula "no-go" theorem [99], which demonstrates the impossibility of combining external
(space-time) and internal (gauge) symmetries in any but a trivial way, i.e. symmetries of
the S-matrix must be isomorphic to a direct product of the Poincaré group ISO(1, 3) with
any compact gauge group Gint. The story of supersymmetry would have stopped there if it
was not for the fact that the Coleman-Mandula theorem only holds for Lie algebras with the
commutator as a bilinear operation. Haag, Lopuzanski and Sohnius found a way to bypass the
previous restriction [96] by considering graded Lie algebras, which naturally include fermionic
(anticommuting) generators Q that can turn bosons into fermions and the other way around

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (2.1)

The fact that supersymmetry is the only known non-trivial extension of the Poincaré group in
four dimensions is per se not a motivation, but still remains one of its major theoretical assets.
As we are going to see now however, there exist other reasons to study supersymmetry.

As mentioned in the previous chapter when reviewing the hierarchy problem, a theory with
fundamental scalars should at least include a symmetry which protects them from large radiative
corrections. One symmetry that can play such a role is supersymmetry. In supersymmetry, each
Standard Model Weyl fermion is paired with a complex scalar superpartner coupling to the
Higgs with a strength λ

f̃
. The hierarchy problem is solved in this context by exploiting the

fact that fermion and boson loop contributions have opposite signs. More specifically, if the
couplings of the fermions and the scalars are related by supersymmetry such that λ

f̃
= |λf |2,

the quadratic UV divergences of Fig. 2.1 then exactly cancel one against the other, leaving only
sub-leading logarithmic corrections. If the masses of the scalar superpartners are moreover not

13
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h h

Figure 2.1: Representative Feynman diagrams contributing to δm2
h at the one-loop level. The

loops contain in order Dirac fermions f , and their supersymmetric partners f̃ .

too large, i.e. in the TeV range, the logarithmic corrections also remain small, and it is then
possible to keep the physical mass of the Higgs boson at the electroweak scale without too much
fine-tuning.

In the previous chapter we have seen that gauge couplings do not unify at high energies in
the SM. In the MSSM however this unification seems possible around 1016 GeV (cf. Fig. 2.2),
and is completely natural, meaning here that the model is not tailored to possess this feature,
which is genuinely due to the fact that the SUSY particles modify the RGEs of the theory.
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Figure 2.2: Running of gauge coupling constants αi in the Standard Model and in the MSSM,
at the one-loop level, and with α−1

i = (g2
i /4π)−1 [100].

At last, but not least, supersymmetric theories with conserved R-parity (which will be introduced
in detail in section 2.7 when discussing the MSSM) also provide a good candidate for Dark Matter
as the Lightest Supersymmetric Particle (LSP) appears in this case to be completely stable.

2.2 Supersymmetric algebra
An N = 1 supersymmetric algebra consists of a Z2-graded vector space g = g0 ⊕ g1, which is
spanned by the generators of the Poincaré and the internal symmetry algebra for its bosonic
part g0 = iso(1, 3) × gint, and by one Majorana spinor, g1 = {Qα, α = 1, 2} ⊕ {Q̄α̇, α̇ = 1, 2},
for its fermionic part. The supercharges Qα and Q̄α̇ are left- and right-handed Weyl spinors,
and respectively lie in the (2,1) and (1,2) representation of the Lorentz algebra. The N = 1
supersymmetry algebra reads as follows

[Mµν ,Mρσ] = i (−ηµρMνσ + ηµσMνρ + ηνρMµσ − ηνσMµρ)
[Mµν , P ρ] = i (ηνρPµ − ηµρP ν) ; [Pµ, P ν ] = 0

[Qα,Mµν ] = (σµν)α
β Qβ;

[
Q̄α̇,Mµν] = (σ̄µν)α̇ β̇ Q̄

β̇[
Pµ, Qα

]
= 0;

[
Pµ, Q̄α̇

]
= 0 (2.2)

{Qα, Q̄α̇} = 2σµαα̇Pµ; {Qα, Qβ} = 0; {Q̄α̇, Q̄β̇} = 0[
T a, T b

]
= ifabcT c;

[
T a, Pµ

]
= 0;

[
T a,Mµν] = 0 ,
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where T a, Mµν and Pµ are the generators of the internal, and the Poincaré symmetry group.

Representations of the Poincaré superalgebra

In this section we recall some basic properties of the supermultiplets in N = 1 supersymmetry.
1. All the particles belonging to the same irreducible supermultiplet must have exactly the

same mass. This statement is a direct consequence of the fact that PµPµ = m2 is a Casimir
operator, i.e. it commutes with every single generator of the Poincaré superalgebra. Irre-
ducible representations of the Poincaré superalgebra are characterized by the eigenvalues
of the Casimir operators. Therefore, all the members of the same supermultiplet must
have the same mass.

2. Supermultiplets contain an equal number of bosonic and fermionic degrees of freedom.
From (2.2), we can see that irreducible representations in SUSY contain both fermionic
and bosonic degrees of freedom (dofs). Let us consider a finite dimensional representation
of the supersymmetry algebra, and introduce a fermion number operator such that the
latter takes eigenvalues +1 and −1 for bosons and fermions respectively

(−1)N |B〉 = |B〉 , (−1)N |F 〉 = − |F 〉 . (2.3)

From (2.3), we obtain

Qα (−1)N |F 〉 = −|B〉 Qα (−1)N |B〉 = |F 〉
− (−1)N Qα|F 〉 = −|B〉 − (−1)N Qα|B〉 = |F 〉 ,

and thus deduce that

Qα (−1)N = − (−1)N Qα . (2.4)

If we now calculate

Tr
(
(−1)N

{
Qα, Q̄α̇

}) (2.4)= Tr
(
−Qα (−1)N Q̄α̇ +Qα (−1)N Q̄α̇

)
= 0

Tr
(
(−1)N

{
Qα, Q̄α̇

})
= 2σµαα̇Pµ Tr

(
(−1)N

)
,

we obtain the following equality

0 = Tr
(
(−1)N

)
=

nB∑
nB=0

〈B| (−1)N |B〉+
nF∑
nF=0

〈F | (−1)N |F 〉 = nB − nF ,

which proves that

nB = nF . (2.5)

Supermultiplets must therefore contain an equal number of fermionic and bosonic dofs.

3. A particle and its superpartner within a supermultiplet have different spins. The Pauli-
Lubanski operator Wµ is defined such that

Wµ = 1
2εµνρσP

νMρσ . (2.6)

This operator commutes with all the generators of the Poincaré superalgebra but the
fermionic generators Qα, and Q̄α̇, as can be seen from (2.2) with the non-zero commutators

[Qα,Mµν ] = (σµν)α
β Qβ, and

[
Q̄α̇,Mµν] = (σ̄µν)α̇ β̇ Q̄

β̇ . (2.7)

The Pauli-Lubanski operator is therefore not a Casimir operator of the SUSY algebra, and
thus all the members of a given supermultiplet are not required to have the same spin.
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2.3 Superspace formalism and superfields
In the previous section, we have seen that supersymmetric transformations alter the spin of the
fields on which they act, and hence can turn bosons into fermions, and the other way around. For
practical purpose (compact notations and easier calculations), it seems particularly desirable to
embed all the fields belonging to the same supermultiplet into a single object which manifestly
preserves supersymmetry. Such an object is called a superfield. A superfield is a function which
lives in a non-trivial extension of the ordinary space-time not only comprising the usual space-
time coordinates but also a set of new anticommuting spinor coordinates, called Grassmann
variables. Those Grassmann variables transform as two-component Weyl spinors with opposite
chirality, and form a Majorana spinor labeled (θ, θ̄). The standard Minkowski space augmented
with fermionic coordinates is called the superspace. A superfield is a function which explicitly
depends on the superspace coordinates, and can always be expanded as a Taylor series with
respect to θ and θ̄. All terms of this series containing more than two powers of θ and θ̄ vanish.
A generic scalar superfield Φg thus contains only a finite number of terms, and reads as follows

Φg(x, θ, θ̄) = φ(x) + θ.ψ(x) + θ̄.ϕ̄(x) + θ.θf(x) + θ̄.θ̄g(x) + θσµθ̄vµ(x) (2.8)
+ θ.θθ̄.ζ̄(x) + θ̄.θ̄θ.ξ(x) + θ.θθ̄.θ̄d(x) ,

where φ, f , g and d are complex scalar fields, ψ, ϕ̄, ζ̄ and ξ are complex Weyl fermions, and vµ
is a complex vector field. The fields φ, f , g, d, ψ, ϕ̄, ζ̄, ξ, and vµ form a supermultiplet and are
the so-called component fields of the superfield Φg. At this level, two comments are in order.
First, in (2.8) we have only considered the case where Φg is a scalar superfield. Superfields can
however carry a Lorentz, or a spinor index, as we will see later in this chapter. Second, the
generic scalar superfield Φg of (2.8) gives rise to a large number of degrees of freedom, 32 in
total (16 for its bosonic part and 16 for its fermionic part). This number is too large to match
with the one expected from an irreducible representation of a N = 1 supersymmetry algebra.
Not all the component fields of (2.8) are thus necessary to build an irreducible supermultiplet,
and therefore additional constraints are needed to reduce the number of component fields.

2.4 Supersymmetric transformations
Before constraining the superfield of (2.8), it is first necessary to define the action of the SUSY
generators in the superspace. The key idea motivating the use of the superspace formalism is to
represent supersymmetric transformations as generalized translations. Since Pµ is associated to
the usual space-time coordinates xµ, it seems reasonable to associate the supercharges (Qα, Q̄α̇)
to the Grassmanian coordinates (θα, θ̄α̇). Any point of the superspace is then parameterized by

G
(
x, θ, θ̄

)
= ei

(
xµPµ+θ.Q+Q̄.θ̄

)
. (2.9)

Knowing that[
θ.Q+ Q̄.θ̄, ε.Q+ Q̄.ε̄

]
= �����[

θ.Q, ε.Q
]

+
[
θ.Q, Q̄.ε̄

]
+
[
Q̄.θ̄, ε.Q

]
+�����[

Q̄.θ̄, Q̄.ε̄
]

= θα{Qα, Q̄β̇}ε̄
β̇ − εβ{Qβ, Q̄α̇}θ̄α̇ = −2i

(
εσµθ̄ − θσµε̄

)
∂µ ,

where εα and ε̄α̇ are spinorial parameters, and then using the Campbell-Baker-Hausdorff identity,
the most general supersymmetric transformation acting on the right reads as follows

G(x, θ, θ̄) G(0, ε, ε̄) = ei(x
µPµ + θ.Q + Q̄.θ̄) ei(ε.Q + Q̄.ε̄)

= ei
(
xµPµ + (θ+ε).Q + Q̄.(θ̄ + ε̄) + i

2

[
θ.Q+Q̄.θ̄, ε.Q+Q̄.ε̄

])
= ei

(
xµ−i(εσµθ̄−θσµε̄)

)
Pµ + i(θ+ε).Q + iQ̄.(θ̄+ε̄) .
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The infinitesimal supersymmetric transformations acting on the right are therefore given by

δRx
µ = −i

(
εσµθ̄ − θσµε̄

)
, δRθ

α = εα , δRθ̄
α̇ = ε̄α̇ . (2.10)

In a very similar manner, one can compute the effects of a supersymmetric transformation acting
on the left. One eventually obtains

δLx
µ = i

(
εσµθ̄ − θσµε̄

)
, δLθ

α = εα , δLθ̄
α̇ = ε̄α̇ . (2.11)

Until now, we have made a heavy use of the operator formalism, yet we still have to project the
supercharges QL,Rα and Q̄L,Rα̇ (mass dimension 1/2) on a suitable basis, so that we can associate
to these operators a differential representation. In the previous section, we have seen that any
point in the superspace is parameterized by the coordinates X =

(
xµ, θ, θ̄

)
. A natural choice

thus consists in parameterizing the differential representation in terms of the supercoordinates

QL,R α = aL,R
µ
α∂µ + bL,R

∂

∂θα
+ cL,Rαα̇

∂

∂θ̄α̇
, (2.12)

Q̄L,R α̇ = āL,R
µ
α̇∂µ + b̄L,R

∂

∂θ̄α̇
+ c̄L,Rα̇

α ∂

∂θα
. (2.13)

Note that for convenience, we will now use the abbreviations ∂̄α̇ and ∂α for ∂/∂θ̄α̇ and ∂/∂θα
respectively. Recalling moreover that ∂µ has mass-dimension 1, and that ∂α and ∂̄α̇ have mass-
dimension 1/2, we conclude that bL,R, b̄L,R, cL,Rαα̇ and c̄L,R

α
α̇ must be dimensionless, while

aL,R
µ
α and āL,Rµα̇ must have dimension −1/2. The latter coefficients take the form

aL,R
µ
α = aL,R

(
σµ
)
αα̇
θ̄α̇ ,

āL,R
µ
α̇ = āL,Rθ

α(σµ)
αα̇

.

Using (2.10) to constrain the right-handed supercharges, we have

δRx
µ = i

(
εαQRα + Q̄Rα̇ε̄

α̇)xµ = iaRε
ασµαα̇θ̄

α̇ + iāRθ
ασµαα̇ε̄

α̇ = −i
(
εσµθ̄ − θσµε̄

)
, (2.14)

δRθ
α = i

(
bRε

β∂β + c̄Rβ̇
β∂β ε̄

β̇)θα = εα , (2.15)

δRθ̄
α̇ = i

(
b̄R∂̄β̇ ε̄

β̇ + εβcRββ̇ ∂̄
β̇)θ̄α̇ = ε̄α̇ , (2.16)

which gives

aR = −1 , bR = −i , cβ̇Rβ = 0 , (2.17)

āR = 1 , b̄R = i , c̄β
Rβ̇

= 0 , (2.18)

and as a consequence of what we obtain

QRα = −i
(
∂α − iσµαα̇θ̄

α̇∂µ
)
, Q̄Rα̇ = −i

(
− ∂̄α̇ + iθασµαα̇∂µ

)
.

Analogously, one can compute the left-handed charges using the constraints (2.11). This gives

QLα = −i
(
∂α + iσµαα̇θ̄

α̇∂µ
)
, Q̄Lα̇ = i

(
∂̄α̇ + iθασµαα̇∂µ

)
.

Defining Q = QL, Q̄ = Q̄L, D = iQR, and D̄ = −iQ̄R, where Dα, and D̄α̇ are spinorial covariant
derivatives (also called superderivatives), one obtains

Qα = −i
(
∂α + iσµαα̇θ̄

α̇∂µ
)
, Q̄α̇ = i

(
∂̄α̇ + iθασµαα̇∂µ

)
, (2.19)

Dα = ∂α − iσµαα̇θ̄
α̇∂µ , D̄α̇ = ∂̄α̇ − iθασµαα̇∂µ , (2.20)



18 Chapter 2: Supersymmetry

for which we have

{Qα, Dβ} = {Qα, D̄β̇} = {Q̄α̇, Dβ} = {Q̄α̇, D̄β̇} = 0 , (2.21)
{Qα, Qβ} = {Dα, Dβ} = {Q̄α̇, Q̄β̇} = {D̄α̇, D̄β̇} = 0 , (2.22)
{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ , {Dα, D̄β̇} = −2σµ

αβ̇
Pµ . (2.23)

Using (2.19), the infinitesimal supersymmetric transformation δ can finally be rewritten as

δ = i
(
ε.Q+ ε̄.Q̄

)
= i

(
− iεα

[
∂α + iσµαα̇θ̄

α̇∂µ
]
− iε̄α̇

[
∂̄α̇ + iθασµαα̇∂µ

])
= εα∂α − ε̄α̇∂̄α̇ + i

(
εασµαα̇θ̄

α̇∂µ − θασµαα̇ε̄
α̇)∂µ . (2.24)

Applying (2.24) to (2.8) gives the following transformation laws for the various component fields

δφ = ε.ψ + ε̄.ϕ̄ , δψ = 2εf + σµε̄
(
vµ − i∂µφ

)
, δϕ̄ = 2gε̄− σ̄µε

(
vµ + i∂µφ

)
,

δvµ = − i2ε∂µψ − iεσνµ∂
νψ + i

2 ε̄∂µϕ̄− iε̄σ̄νµ∂
νϕ̄− ε̄σ̄µξ − ζ̄σ̄µε ,

δξ = −iσµε̄∂µg + i

2ε∂
µvµ −

i

2σ
µνεFµν + 2εd , (2.25)

δζ̄ = −iσ̄µε̄∂µf −
i

2 ε̄∂
µvµ + i

2 σ̄
µν ε̄Fµν + 2ε̄d ,

δf = i

2∂µψσ
µε̄ + ε̄.ζ̄ , δg = − i2εσ

µ∂µϕ̄ + ε.ξ , δd = i

2∂µξσ
µε̄ − i

2εσ
µ∂µζ̄ .

One important thing to note here is that the d-term of (2.8) transforms as a total derivative.
So, if the residual surface terms are omitted, the associated action is then invariant under
supersymmetric transformations. We will repeatedly make use of this property in the coming
sections when discussing and constructing supersymmetric Lagrangians.

2.5 Supersymmetric chiral Lagrangians
In section 2.3, we have seen that not all the component fields of Φg are necessary to build an
irreducible supermultiplet, and that additional constraints on (2.8) are in fine needed. The
goals of this section are i) to introduce a first type of constrained superfields Φ(x, θ, θ̄) called
chiral superfields which include a component for standard matter ii) to construct a kinetic term
describing the dynamics of the chiral superfields iii) to construct interaction terms between
different matter supermultiplets in the context of the Wess-Zumino model.

Chiral superfields

A chiral superfield Φ (respectively anti-chiral superfield Φ†) satisfies by definition

D̄α̇ Φ = 0 , Dα Φ† = 0 , (2.26)

where D̄α̇, and Dα are the superderivatives of (2.20). The constraint (2.26) is a first order
differential equation which can be solved by an appropriate change of space-time coordinates

xµ → yµ = xµ − iθσµθ̄ , (2.27)

where yµ has the following properties

Dαy
µ = (∂α − iσναα̇θ̄α̇∂ν)(xµ − iθσµθ̄) = −2iσµαα̇θ̄α̇ , (2.28)
D̄α̇y

µ = (∂̄α̇ − iθασναα̇∂ν)(xµ − iθσµθ̄) = 0 , (2.29)
Dαy

µ† = (∂α − iσναα̇θ̄α̇∂ν)(xµ + iθσµθ̄) = 0 , (2.30)
D̄α̇y

µ† = (∂̄α̇ − iθασναα̇∂ν)(xµ + iθσµθ̄) = −2iθασµαα̇ . (2.31)
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With the new space-time coordinates yµ, the solution to (2.26) takes the form of

Φ(y, θ) = φ(y) +
√

2θ.ψ(y) − θ.θF (y) , (2.32)

which is equivalent in the xµ set of coordinates to

Φ (x, θ) = φ (x) +
√

2θ.ψ (x)− θ.θF (x)− iθσµθ̄∂µφ (x)

+ i√
2
θ.θ∂µψ (x)σµθ̄ − 1

4θ.θθ̄.θ̄�φ (x) . (2.33)

Φ describes the association of a complex scalar field φ with a Weyl fermion ψ, and an auxiliary
complex scalar field F allowing for the SUSY algebra to close off-shell, as can be seen from the
transformation laws of φ, ψ and F

δφ =
√

2ε.ψ , δψα = −
√

2Fεα − i
√

2σµαα̇ε̄α̇∂µφ , (2.34)
δF = − i

√
2 ∂µ(ψσµε̄) ,

which are obtained by applying (2.24) to (2.33). Note for completeness that an on-shell SUSY
algebra contains a complex scalar field (two dofs), and a real two-components Weyl spinor (two
dofs), while an off-shell SUSY algebra includes a complex scalar field (two dofs), and a complex
Weyl spinor (four dofs). In order to restore equality between bosonic and fermionic dofs, an
additional auxiliary complex scalar field F is thus required.

At this stage, two observations regarding (2.34) can be made. First, the variation of the field
φ (resp. ψ) under supersymmetric transformation is proportional to its fermionic counterpart ψ
(resp. bosonic counterpart φ). Second, the F -term of (2.32) transforms as a total derivative. Its
action is therefore completely invariant under supersymmetric transformations (up to residual
surface terms). Those F -terms, which are of O(θ2) (resp. O(θ̄2) for anti-chiral superfields) are
consequently the terms we need to build Lagrangians invariant under SUSY transformations.

Kinetic terms for chiral superfields

The goal of the present subsection is to construct a kinetic term describing the propagation
of the various component fields of a set of chiral superfields {Φi}. The Φi are so far the only
building blocks of the theory, and therefore are an essential ingredient for the construction of the
kinetic Lagrangian, together with the requirement of invariance under SUSY transformations.
Using the fact that the product of two superfields is a superfield, and that d-terms transform
as total derivatives, we find that Φ†iΦi|θ2θ̄2 has all the properties required to be a good kinetic
term. After simplifications, the kinetic Lagrangian therefore reads as follows

Φ†iΦ
i|θ2θ̄2 = −1

4
(
φ†i�φ

i +�φ†iφ
i
)

+ F †i F
i + i

2
(
ψiσµ∂µψ̄i − ∂µψiσµψ̄i

)
+ 1

2∂
µφ†i∂µφ

i .

Integrating by parts the first term of the previous expression, and omitting the residual surface
terms we obtain

Φ†iΦ
i|θ2θ̄2 = ∂µφ†i∂µφ

i + i

2
(
ψiσµ∂µψ̄i − ∂µψiσµψ̄i

)
+ F †i F

i . (2.35)

The first term in (2.35) corresponds to the free Lagrangian of a massless complex scalar field.
The second one to the Lagrangian of a massless complex Weyl spinor. The fact that the last
term of (2.35) does not contain any space-time derivative ensures that the auxiliary fields do
not physically propagate. Their equations of motion give F i = 0, so they must vanish on-shell.
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Superpotential

In the Wess-Zumino model, non-gauge interactions are contained inW (Φ)|θ2 (W ∗(Φ†)|θ̄2), which
is a (anti)holomorphic function of the (anti)chiral superfields. The notationW (Φ)|θ2 here means
that in order to build the most general interaction Lagrangian invariant under SUSY transfor-
mations, we only consider terms of O(θ2) in the superpotential (the same way of reasoning
applies to W ∗(Φ†)|θ̄2). The superpotential can then be re-expressed in terms of the content of
the superfield by performing a Taylor expansion with respect to θ, such that

W (Φ) = W (φ+
√

2θ.ψ − θ.θF )

= W (φ) + (
√

2θ.ψi − θ.θF i)∂W (φ)
∂φi

+ 1
2(
√

2θ.ψi)(
√

2θ.ψj)∂
2W (φ)
∂φi∂φj

= W (φ) + (
√

2θ.ψi − θ.θF i)∂W (φ)
∂φi

+ θ.ψiθ.ψj
∂2W (φ)
∂φi∂φj

,

where i and j are the chiral superfield indices. The previous expression can be rewritten as

W (Φ) = W (φ) +
√

2θ.ψi∂W (φ)
∂φi

− θ.θ
(
F i
∂W (φ)
∂φi

+ 1
2ψ

i.ψj
∂2W (φ)
∂φi∂φj

)
.

Keeping only the θ.θ component of W (Φ) (resp. the θ̄.θ̄ component of W ∗(Φ†)), we obtain

W (Φ)|θ2 = −F i∂W (φ)
∂φi

− 1
2ψ

i.ψj
∂2W (φ)
∂φi∂φj

(2.36)

W ∗(Φ†)|θ̄2 = −F †i
∂W ∗(φ†)
∂φ†i

− 1
2 ψ̄i.ψ̄j

∂2W ∗

∂φ†i∂φ
†
j

. (2.37)

Let us just note for completeness that the Wess-Zumino superpotential could in principle include
terms of order higher than three in Φ. Yet, those terms would be non-renormalizable, and thus
would lead to severe complications at one-loop and beyond. In what follows, we thus consider
that the superpotential is at most a (holomorphic) cubic function of the chiral superfields.

Complete Wess-Zumino Lagrangian

After combining (2.35), (2.36), (2.37), and solving the equations of motion of the auxiliary fields
F i, one obtains the following Wess-Zumino Lagrangian for a theory with chiral superfields only

L = ∂µφ†i∂µφ
i + i

2
(
ψiσµ∂µψ̄i − ∂µψiσµψ̄i

)
− ∂W (φ)

∂φi
∂W ∗(φ†)
∂φ†i

−1
2ψ

i.ψj
∂2W (φ)
∂φi∂φj

− 1
2 ψ̄i.ψ̄j

∂2W ∗
(
φ†
)

∂φ†i∂φ
†
j

. (2.38)

2.6 Supersymmetric gauge theories
So far, we have considered supersymmetric theories involving only matter supermultiplets. The
latter contain exclusively Weyl fermions and scalar bosons, yet we know that fundamental in-
teractions are mediated by spin-1 particles, the gauge fields. The goal of this section are i) to
introduce a new type of constrained superfields V (x, θ, θ̄) called vector superfields which include
by definition a vector component ii) to construct gauge invariant kinetic terms describing the
propagation of the vector superfields (and consequently of their respective component fields)
iii) to construct gauge invariant interaction terms between chiral and vector supermultiplets.
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Vector superfield

Gauge bosons being real vector fields, a natural constraint for vector superfields is

V = V † . (2.39)

Under this reality condition, the most general vector superfield can be written as follows

V = C + iθ.χ − iθ̄.χ̄ + i

2θ.θ
(
M + iN

)
− i

2 θ̄.θ̄
(
M − iN

)
+ θσµθ̄vµ (2.40)

+ iθ.θθ̄.
(
λ̄ − i

2 σ̄
µ∂µχ

)
− iθ̄.θ̄θ.

(
λ − i

2σ
µ∂µχ̄

)
+ 1

2θ.θθ̄.θ̄
(
D − 1

2�C
)
,

where C, D, M and N are real scalar fields, (λ, λ̄) and (χ, χ̄) are real Majorana spinors, vµ is a
real vector field, and where the x dependence of all the aforementioned fields has been omitted
for brevity. In total, V has 16 degrees of freedom (8 for both its bosonic and fermionic part).
This number is still too large to match with the one expected from a vector supermultiplet. A
suitable supergauge choice can however remove all the unnecessary degrees of freedom as we
are going to see now. If Φ is a chiral superfield, then (Φ + Φ†) has to be a real superfield. The
following transformation therefore inherently preserves the reality condition of V

V → V + (Φ + Φ†) . (2.41)

This gives in practice

V + (Φ + Φ†) = C + iθ.χ − iθ̄.χ̄ + i

2θ.θ(M + iN) − i

2 θ̄.θ̄(M − iN) + θσµθ̄vµ

+ iθ.θθ̄.(λ̄ − i

2 σ̄
µ∂µχ) − iθ̄.θ̄θ.(λ − i

2σ
µ∂µχ̄) + 1

2θ.θθ̄.θ̄(D −
1
2�C)

+ φ +
√

2θ.ψ − θ.θF − iθσµθ̄∂µφ + i√
2
θ.θ∂µψσ

µθ̄ − 1
4θ.θθ̄.θ̄�φ

+ φ† +
√

2θ̄.ψ̄ − θ̄.θ̄F † + iθσµθ̄∂µφ
† − i√

2
θ̄.θ̄θσµ∂µψ

† − 1
4θ.θθ̄.θ̄�φ

† ,

and thus the following transformations laws

C → C + φ+ φ† , χ → χ − i
√

2ψ , λ → λ , D → D ,

vµ → vµ − i(∂µφ− ∂µφ†) , M + iN → M + iN + 2i F .

The transformation law of the vector field vµ exactly corresponds to an (abelian) gauge trans-
formation, which is why the transformation V → V + (Φ + Φ†) is usually considered as the
supersymmetric extension of an (abelian) gauge transformation. The fields C, M , N , χ, and
χ̄ can then be removed by means of a suitable gauge choice, the so-called Wess-Zumino gauge,
which is defined such that

C = −(φ+ φ†) , χ = i
√

2ψ , M + iN = −2i F . (2.42)

In the Wess-Zumino gauge, the vector superfield V can then be rewritten as

V = 1
2θ.θθ̄.θ̄D + iθ.θθ̄.λ̄− iθ̄.θ̄θ.λ+ θσµθ̄vµ , (2.43)

where V has the following properties

V 2 = θσµθ̄vµθσ
ν θ̄vν = 1

2θ.θθ̄.θ̄v
µvµ , V 3 = 0 . (2.44)
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In the Wess-Zumino gauge, the vector superfield includes (as expected) one real vector field
vµ , one Majorana fermion (λ, λ̄), and one non-propagating auxiliary scalar field D, necessary
to recover the equality between bosonic and fermionic dofs in the off-shell representation of the
SUSY algebra. Analogously to F -fields, D-fields are removed through their equations of motion,
and transform as a total derivative under supersymmetric transformations.

Spinor superfield: the abelian case

Now that the vector superfield has been introduced, we would like to construct a kinetic term
describing the propagation of its various component fields (including the spin-1 vector field). This
requires in practice the generalization of the concept of field strength tensor at the superspace
level. Such an object is called a superfield strength tensor. Superfield strength tensors are spinor
superfields which are defined as follows in a U(1) supersymmetric gauge theory,

Wα = −1
4D̄.D̄DαV , W̄α̇ = −1

4D.DD̄α̇V . (2.45)

Note for completeness that i)Wα and W̄α̇ are respectively chiral and anti-chiral by construction,
as D̄α̇D̄.D̄ = 0 and DαD.D = 0 ii) the superfield strength tensorWα and W̄α̇ are invariant under
supersymmetric gauge transformations, as can be seen below for Wα

Wα(V + Φ + Φ†) = Wα(V )− 1
4D̄.D̄DαΦ− 1

4D̄.D̄DαΦ† = Wα(V )− 1
4D̄.D̄DαΦ

= Wα(V ) + 1
4D̄

α̇D̄α̇DαΦ = Wα(V ) + 1
4D̄

α̇[−DαD̄α̇ + {Dα, D̄α̇}]Φ

= Wα(V ) + 1
4D̄

α̇(−2iσµαα̇∂µ)Φ = Wα(V ) .

The goal is now to obtain the analytical expressions of the superfield strength tensors in terms
of their component fields. The first step is to re-express the action of the superderivatives Dα

and D̄α̇ on the vector superfield (in the Wess-Zumino gauge), in the case where V depends on
the modified space-time coordinates yµ. Using the fact that

DαV (y, θ, θ̄) = Dαy
µ ∂V

∂yµ
+Dαθ

β∂βV +Dαθ̄
β̇ ∂̄β̇V ,

D̄α̇V (y, θ, θ̄) = D̄α̇y
µ ∂V

∂yµ
+ D̄α̇θ̄

β̇ ∂̄β̇V + D̄α̇θ
β∂βV ,

and recalling (2.28) and (2.29), one obtains{
DαV (y, θ, θ̄) = ∂αV − 2iσµαα̇θ̄α̇∂yµV ,

D̄α̇V (y, θ, θ̄) = ∂̄α̇V .

With the previous expressions, one finds that

DαV (x, θ, θ̄) = DαV (y + iθσθ̄, θ, θ̄)

= (∂α − 2iσµαα̇θ̄α̇∂µ)
(1

2θ.θθ̄.θ̄D + iθ.θθ̄.λ̄− iθ̄.θ̄θ.λ+ θσν θ̄vν + iθσρθ̄θσν θ̄∂ρvν

)
,

which gives after simplifications

DαV (y, θ, θ̄) = σµαα̇θ̄
α̇vµ −

i

2 θ̄.θ̄(σ
µσ̄νθ)αFµν − iθ̄.θ̄λα + 2iθαθ̄.λ̄− θ.θθ̄.θ̄σµαα̇∂µλ̄α̇ + θαθ̄.θ̄D .

As D̄α̇ = ∂̄α̇, after considering y instead of x, the spinor superfield Wα can be written as

Wα = −1
4 ∂̄.∂̄

[
σµαα̇θ̄

α̇vµ −
i

2 θ̄.θ̄(σ
µσ̄νθ)αFµν − iθ̄.θ̄λα + 2iθαθ̄.λ̄− θ.θθ̄.θ̄σµαα̇∂µλ̄α̇ + θαθ̄.θ̄D

]
.
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After applying twice the operator ∂̄ on the previous expression, only the O(θ̄2) terms remain,
such that

Wα = − i2(σµσ̄νθ)αFµν − iλα − θ.θσµαα̇∂µλ̄α̇ + θαD . (2.46)

Using the fact that Wα = εαβWβ, one can deduce the expression of Wα from (2.46), this gives

Wα = = i

2(θσµσ̄ν)αFµν − iλα + θ.θ(∂µλ̄σ̄µ)α + θαD .

The kinetic term of the vector superfield is given by the product WαWα, so

WαWα = [−iλα + θαD + θ.θ(∂µλ̄σ̄µ)α + i

2(θσρσ̄σ)αFρσ][−iλα + θαD + θ.θσµαα̇∂µλ̄
α̇ − i

2(σµσ̄νθ)αFµν ] ,

which finally reduces to

WαWα = −λ.λ− 2iλ.θD + θ.θ(D2 + 2iλσµ∂µλ̄−
1
2F

µνFµν −
i

4ε
µνρσFµνFρσ) .

The spinor superfields Wα, and W̄α̇ being respectively chiral and anti-chiral superfields, only
their F -terms can be used to build supersymmetric Lagrangians. For WαWα, we obtain

WαWα|θ2 = D2 + 2iλσµ∂µλ̄−
1
2F

µνFµν −
i

4ε
µνρσFµνFρσ . (2.47)

Note that a similar relationship holds for the hermitian conjugate W̄α̇W̄
α̇|θ̄2 . Introducing finally

an ad hoc normalization factor of 1/4, the free Lagrangian for a vector superfield reads,

LV = 1
4W

αWα|θ2 + 1
4W̄α̇W̄

α̇|θ̄2 ,

or equivalently in terms of the component fields

LV = 1
2D

2 + i

2(λσµ∂µλ̄− ∂µλσµλ̄)− 1
4F

µνFµν (2.48)

Abelian supersymmetric gauge theory

The last missing part of the theory consists of the interactions between matter and gauge
supermultiplets, the goal of the present subsection is precisely to find such a term. For simplicity
we first consider the particular case of the abelian gauge symmetry U(1)Q, which describes
electromagnetic interactions between electrically charged particles. Needless to say however
that this discussion can be extended to any U(1) group. In section 2.5, we have seen that
Φ†iΦi|θ2θ̄2 is a good candidate for the kinetic term of a collection of chiral superfields, yet in the
context of a supersymmetric gauge theory this term is not appropriate as it explicitly breaks
gauge invariance. This statement can be deduced from the following gauge transformation laws

Φ −→ e−2ieQΛ Φ , Φ† −→ Φ† e2ieQΛ† , (2.49)

where Q is the electric charge, e is the electromagnetic coupling constant, and where Λ is a
chiral superfield with Λ 6= Λ† by definition. Gauge invariance can however be restored in the
case where Φ†iΦi|θ2θ̄2 is replaced by Φ†ie−2eQV Φi|θ2θ̄2 , since one can impose that

Φ†e−2eQV Φ −→ Φ†e2ieQΛ†e−2eQV ′e−2ieQΛΦ = Φ†e−2eQV Φ ,
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such that the vector superfield must transform as

e−2eQV −→ e−2eQV ′ = e−2ieqΛ†e−2eQV e2ieQΛ , (2.50)

where e−2ieQΛ and e−2ieQΛ† are two unitary operators defined as

e2ieQΛe−2ieQΛ = 1 and e2ieQΛ†e−2ieQΛ† = 1 . (2.51)

Using the Campbell-Baker-Hausdorff formula, we obtain the following transformation law for V

δV = −i
(
Λ− Λ†

)
. (2.52)

Using the properties (2.44) of the Wess-Zumino gauge, it is possible to linearize the exponential
factor in Φ†ie−2eQV Φi|θ2θ̄2 , by performing a series expansion with respect to V , such that

Φ†ie
−2eQV Φi|θ2θ̄2 = Φ†iΦ

i|θ2θ̄2 − 2eQΦ†iV Φi|θ2θ̄2 + 2e2Q2Φ†iV
2Φi|θ2θ̄2 .

The first term on the right hand-side of the previous equation is known from (2.35), so only the
second and third terms need to be calculated. Using (2.43) and (2.44), we obtain

2eQΦ†iV Φi|θ2θ̄2 = eQφ†iDφ
i + eQψiσµψ̄ivµ + ieQ∂µφ

†
iv
µφi − ieQvµφ†i∂

µφi

− ieQ
√

2ψ̄i.λ̄φi + ieQ
√

2φ†iψ
i.λ ,

2e2Q2Φ†iV
2Φi|θ2θ̄2 = e2Q2φ†ivµv

µφi ,

which gives the following Lagrangian after solving the equation of motion for the auxiliary fields

L = − 1
4FµνF

µν + i

2(λσµ∂µλ̄− ∂µλσµλ̄) + (Dµφ)†i (D
µφi)

+ ieQ
√

2λ̄.ψ̄iφi − ieQ
√

2φ†iψ
i.λ− i

2(Dµψ̄iσ̄
µψi − ψ̄iσ̄µDµψ

i) (2.53)

− 1
2ψ

i.ψj
∂2W

∂φi∂φj
− 1

2 ψ̄i.ψ̄j
∂2W ∗

∂φ†i∂φ
†
j

−
[

1
2e

2Q2(φ†φ)(φ†φ) + ∂W

∂φi
∂W ∗

∂φ†i

]
,

with the covariant derivative Dµ = ∂µ − ieQvµ. This Lagrangian describes a supersymmetric
extension of QED, where the ψi and φ are respectively the charged fermions, and sfermions, and
where vµ and λ are respectively the photon and its supersymmetric partner, the photino.

Non-abelian supersymmetric gauge theory

The construction of non-abelian supersymmetric gauge theories is slightly more complicated
than in the abelian case. For simplicity, we set in what follows V = V aTa, with V a a collection
of vector superfields, and with Ta the generators of the Lie algebra associated to the non-abelian
gauge group. The reality condition (2.39) can thus be generalized, such that

V † = (V aTa)† = T †aV
a† = TaV

a = V . (2.54)

Generalizing the procedure detailed in the previous section for the abelian case, we find that

δV a = −i
(
Λa − Λa†

)
− gfabcV b(Λc† + Λc

)
. (2.55)
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Non-abelian spinor Superfield

The non-abelian version of the superfield strength tensor introduced in (2.45) is defined as

Wα = −1
4D̄.D̄e

2gVDαe
−2gV . (2.56)

Using (2.44), it is possible to linearize the exponential factors of the previous expression by
performing a series expansion with respect to V . This gives

e2gVDαe
−2gV = [1 + 2gV + 2g2V 2]Dα[1− 2gV + 2g2V 2]

= −2gDαV − 2g2[V,DαV ] ,

such that

Wα = −1
4D̄.D̄(−2gDαV − 2g2[V,DαV ]) , (2.57)

where the first term is similar to the abelian case, and where the second one gives

[V,DαV ] = −1
2 θ̄.θ̄(σ

µσ̄νθ)α[vµ, vν ] + iθ.θθ̄.θ̄(σµ[vµ, λ̄])α . (2.58)

The complete non-abelian superfield strength tensor therefore reads

Wα = g

2D̄.D̄DαV + g2

2 D̄.D̄(iθ.θθ̄.θ̄(σµ[vµ, λ̄])α −
1
2 θ̄.θ̄(σ

µσ̄νθ)α[vµ, vν ])

= g

2D̄.D̄(DαV + g

2 θ̄.θ̄(σ
µσ̄νθ)α[vµ, vν ]− igθ.θθ̄.θ̄(σµ[vµ, λ̄])α) .

After having introduced the non-abelian field strength tensor Fµν = ∂µvν − ∂νvµ − ig[vµ, vν ],
and the covariant derivative Dµ = ∂µ − igvµ, the previous expression can be reduced to

Wα = −2g(−iλα −
i

2(σµσ̄νθ)αFµν + θαD − θ.θ(σµDµλ̄)α) , (2.59)

Wα = −2g(−iλα + i

2(θσµσ̄ν)αFµν + θαD + θ.θ(Dµλ̄σ̄
µ)α) . (2.60)

After some practical manipulations, one can derive the following gauge kinetic terms

Tr(WαWα|θ2) = 4g2Tr(2iλσµDµλ̄+D2 − 1
2F

µνFµν −
i

4ε
µνρσFµνFρσ) . (2.61)

The generic Lagrangian for a renormalizable non-abelian supersymmetric gauge theories is thus

L = Φ†e−2gV Φ|θ2θ̄2 + 1
16g2τR

Tr(WαWα|θ2) + 1
16g2τR

Tr(W̄α̇W̄
α̇|θ̄2) +W (Φ)|θ2 +W ∗(Φ†)|θ̄2 ,

where τR = 1/2. In the component field formalism, this Lagrangian reads as follows

L = −1
4F

a
µνF

µν
a + i

2(λaσµDµλ̄a −Dµλ
aσµλ̄a) + (Dµφ)†(Dµφ)

+ig
√

2λ̄a.ψ̄Taφ− ig
√

2φ†Taψ.λa + 1
2D

aDa − gDaφ†Taφ (2.62)

+ i

2(ψσµDµψ̄ −Dµψσ
µψ̄) + F †i F

i − (F i∂W
∂φi

+ 1
2ψ

i.ψj
∂2W

∂φi∂φj
+ h.c.) .

When solving the equations of motion for the auxiliary fields, we find that
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Chiral superfield Scalars Fermions SU(3)C , SU(2)L, U(1)Y

(s)quarks QiL q̃iL = (ũiL d̃iL) qiL = (uiL diL) (3,2, 1
6)

(×3 generations) U iR ũi†R uicR (3̄,1,−2
3)

Di
R d̃i†R dicR (3̄,1, 1

3)

(s)leptons LiL
˜̀i
L = (ν̃iL ẽiL) `iL = (νiL eiL) (1,2,−1

2)

(×3 generations) EiR ẽi†R eicR (1,1, 1)

Up-type Higgs(ino) HU Hu = (H+
u H0

u) H̃u = (H̃+
u H̃0

u) (1,2, 1
2)

Down-type Higgs(ino) HD Hd = (H0
d H

−
d ) H̃d = (H̃0

d H̃
−
d ) (1,2,−1

2)

Table 2.1: Chiral superfield content of the MSSM. Scalar and fermion components are given
together with their representations under the gauge group SU(3)c × SU(2)L × U(1)Y . The
superscripts c and i = 1, 2, 3 respectively denote the charge conjugation operation, and the
fermion generation index. The name of the SUSY partner of the SM particle is given in brackets.



∂L
∂F i

= F †i −
∂W

∂φi
= 0 −→ F †i = ∂W

∂φi
,

∂L
∂F †i

= F i − ∂W ∗

∂φ†i
= 0 −→ F i = ∂W ∗

∂φ†i
,

∂L
∂Da

= Da − gφ†Taφ = 0 −→ Da = gφ†Taφ ,

and therefore that
1
2D

aDa = 1
2g

2(φ†T aφ)(φ†Taφ) , −gDaφ†Taφ = −g2(φ†T aφ)(φ†Taφ) ,

F †i F
i − F i∂W

∂φi
− F †i

∂W ∗

∂φ†i
= −∂W

∂φi
∂W ∗

∂φ†i
,

which ultimately gives the following master Lagrangian

L = − 1
4F

a
µνF

µν
a + i

2(λaσµDµλ̄a −Dµλ
aσµλ̄a) + (Dµφ)†(Dµφ)

+ ig
√

2λ̄a.ψ̄Taφ − ig
√

2φ†Taψ.λa −
i

2(Dµψ̄σ̄
µψ − ψ̄σ̄µDµψ) (2.63)

− 1
2ψ

i.ψj
∂2W

∂φi∂φj
− 1

2 ψ̄i.ψ̄j
∂2W ∗

∂φ†i∂φ
†
j

−
[

1
2g

2(φ†T aφ)(φ†Taφ) + ∂W

∂φi
∂W ∗

∂φ†i

]
.

2.7 The Minimal Supersymmetric Standard Model
The Minimal Supersymmetric Standard Model (MSSM) results from the direct supersymmetriza-
tion of the SM Lagrangian, and is minimal in the sense that it requires the smallest possible
number of superfields and new interactions to remain phenomenologically consistent. More
specifically, the supersymmetrization procedure of the SM Lagrangian consists in promoting
all Higgs and matter fields (Weyl fermions) to chiral superfields identically charged under
SU(3)C×SU(2)L×U(1)Y (see Tab. 2.1), and all gauge fields to vector superfields with the same
quantum numbers (see Tab. 2.2). In practice, each gauge field is then paired with a Majorana
fermion (a gaugino), each chiral fermion with a scalar field (a sfermion), and each Higgs field
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with a Dirac fermion (a Higgsino). The naming scheme in SUSY works as follows, the name of
the fermionic partners of the Higgses and the SM gauge bosons is obtained with the addition of
the suffix "-ino", and the name of the scalar partners of the SM chiral fermions is obtained with
the addition of the prefix "s-". Although they are just scalar particles, the sfermions also keep
track of the chirality of their fermionic counterpart with the addition of the subscript L/R.

Note that the Higgs sector requires in the MSSM the introduction of a second Higgs doublet.
This addition is made necessary for two reasons. First of all, Yukawa interactions are derived
from the superpotential, which is a holomorphic function of the chiral superfields, i.e. it cannot
depend on a chiral superfield Φi and its complex conjugate Φ∗i at the same time. Therefore, the
trick employed in the SM, which consists in taking the charge conjugate of the Higgs field in
order to give mass to both the upper and lower components of SU(2)L fermion doublets with
the same Higgs field, cannot be applied to the MSSM. Two Higgs doublets are hence needed to
give mass to both up-type and down-type fermions. The MSSM Higgs sector is, in this respect,
completely analogous to a Two-Higgs-Doublet Model (THDM) of type II. The second reason why
we need another Higgs supermultiplet in SUSY is that the fermionic superpartners of the Higgs
bosons, the Higgsinos, also contribute to chiral anomalies appearing in triangular diagrams with
axial current. A single Higgs(ino) doublet leads to non-vanishing gauge anomalies, and makes
the theory inconsistent at the quantum level. Adding a second Higgs(ino) doublet with opposite
hypercharge allows for the Higgsino contributions to chiral anomalies to cancel each other.

Once the chiral superfield content of the MSSM has been specified (see Tab. 2.1), one can
build the MSSM superpotential. Gauge invariance bounds the form of the possible renormal-
izable interaction terms of the MSSM superpotential. Following the conventions of [101], the
most general form of superpotential can be written as,

WMSSM = (Yu)ijQiL.HUU
j
R + (Yd)ijQiL.HDD

j
R + (Ye)ijLiL.HDE

j
R − µHD.HU +WRPV ,(2.64)

where QiL, U
j
R, D

j
R, LiL, and E

j
R, are chiral superfields, HD and HU are the Higgs superfields,

Yu, Yd and Ye are the 3 × 3 Yukawa matrices generating the quark and lepton masses after
electroweak symmetry breaking, i and j with i, j = 1, 2, 3 are the generation indices, µ is a
complex quantity of mass-dimension one called the Higgs/Higgsino mass parameter, and the
notation "." corresponds to the contraction of SU(2)L doublets. The last term of (2.64) is the
so-called R-Parity Violating (RPV) superpotential and reads as follows

WRPV = 1
2λijkL

i
L.L

j
LE

k
R + λ′ijkL

i
L.Q

j
LD

k
R + 1

2λ
′′
ijkU

i
RU

j
RD

k
R − κiL

i
L.HU , (2.65)

where i, j, k = 1, 2, 3 are the generation indices, λ, λ′, λ′′ are respectively 3×3×3 tensors in the
flavour space, and κ is a vector in the flavour space. The RPV superpotential violates explicitly
lepton number (L) and baryon number (B). More specifically, the first, the second and the last
term of (2.65) violate lepton number, while only the third term violates baryon number. The
simultaneous violation of B and L has serious phenomenological implications, e.g. fast proton
decay, which is why RPV interactions are usually forbidden by the introduction of a discrete
Z2-symmetry dubbed R-parity, and defined at the particle level by

R = (−1)3B+L+2S , (2.66)

where S conventionally denotes the spin. Standard Model particles have R = +1, while their
supersymmetric counterparts have R = −1. R being a multiplicative quantum number, super-
partners can only be pair produced (if R-parity is conserved). For the same reason, superpartners
can only decay into an odd-number of SUSY particles. The Lightest Supersymmetric Particle is
therefore completely stable in this case, and provides de facto a good candidate for Dark Matter.
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Vector superfield Gauge bosons Gauginos SU(3)C , SU(2)L, U(1)Y

B, bino VB B B̃ (1,1, 0)

W , winos VW W− W3 W+ W̃− W̃3 W̃+ (1,3, 0)

gluons, gluinos VG g g̃ (8,1, 0)

Table 2.2: Vector superfields content in the MSSM. Gauge bosons and gauginos components are
given together with their representations under the SU(3)c × SU(2)L × U(1)Y gauge group.

2.8 Supersymmetry breaking
At the beginning of this chapter we have seen that an exact supersymmetry dictates a mass de-
generacy between SM particles and their supersymmetric counterparts. Since no light superpart-
ners have been experimentally observed so far, supersymmetry has to be a broken symmetry. The
way supersymmetry is broken is currently not known, yet some possible candidate mechanisms
are, among others, Gauge-Mediated Supersymmetry Breaking (GMSB), Anomaly-Mediated Su-
persymmetry Breaking (AMSB), Gravity-Mediated Supersymmetry Breaking (SUGRA).

Most phenomenological analyses, however do not attempt to understand the genuine SUSY-
breaking mechanism, they rather parameterize its effects in the visible sector by explicitly adding
to the Lagrangian all the possible soft SUSY-breaking terms, i.e. the terms that do not spoil
the solution to the hierarchy problem by reintroducing quadratic UV divergences in δm2

h. All
possible soft SUSY-breaking terms have been identified and classified in [102]. These are i) the
gaugino mass terms ii) the scalar mass terms iii) the trilinear scalar interactions iv) the Higgs
bilinear term. The soft SUSY-breaking Lagrangian is chosen accordingly to [103] and reads

Lsoft = 1
2
[
M1B̃.B̃ + M2W̃

i.W̃i + M3g̃
a.g̃a + h.c.

]
−m2

Hd
H†dHd −m2

HuH
†
uHu

−(m2
ũ
)ij ũiRũ

j†
R − (m2

d̃
)ij d̃iRd̃

j†
R − (m2

ẽ
)ij ẽiRẽ

j†
R − (m2

q̃
)ij q̃i†L q̃

j
L − (m2˜̀)ij ˜̀i†L ˜̀jL (2.67)

−
[(
Tu
)
ij
q̃iL.Huũ

j†
R −

(
Td
)
ij
q̃iL.Hdd̃

j†
R −

(
Te
)
ij
˜̀i
L.Hdẽ

j†
R +BµHu.Hd + h.c.

]
.

The first term between brackets corresponds to the gaugino masses, where M1, M2 and M3 are
respectively the mass of the bino, winos and gluinos. The next seven terms are the scalar mass
terms, where m2

Hd
and m2

Hu
are the Higgs masses, and where m2

ũ
, m2

d̃
, m2

ẽ
, m2

q̃
and m2˜̀ are the

3 × 3 hermitian sfermion mass matrices living in the flavour space with i, j = 1, 2, 3. The first
three terms of the last line of (2.67) are the trilinear scalar interactions, where Tu, Td, and Te are
the 3 × 3 hermitian coupling strength matrices also living in the flavour space. Those trilinear
couplings are usually parameterized as (Tφ)ij = (Yφ)ijAφ, where the (Yφ)ij are the entries of the
Yukawa matrix for a field of type φ, and where Aφ consists of its associated soft SUSY-breaking
parameter. The last term of (2.67) finally corresponds to the off-diagonal bilinear Higgs term,
where B is a parameter responsible for triggering the electroweak symmetry breaking.

At the price of model-independence, the soft SUSY-breaking parameterization introduces in
the MSSM a significant number of free parameters that cannot be rotated away by field redefi-
nitions. More specifically, assuming that R-parity is conserved and that the neutrino/sneutrino
sector and the CP -violating QCD sector are decoupled from the theory, the MSSM with soft
terms exhibits in total 124 free parameters, out of which, 18 correspond to the Standard Model
ones, one is the Higgs mass originating from the second Higgs doublet, and 105 are new masses,
phases and real mixing angles introduced in the squark, slepton, and gaugino/Higgsino sectors.
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2.9 Higgs sector
Analogously to what happens in the Standard Model, we ultimately want to break the elec-
troweak symmetry in order to give mass to both SM fermions and W and Z gauge bosons. As
we have seen before, two Higgs doublets are required in the MSSM to enforce the cancellation
of chiral anomalies, and to account for both up- and down-type fermion masses. Knowing that
the electric charge Q, the hypercharge Y , and the third component of the weak isospin T3 are
linked by the Gell-Mann-Nishijima formula Q = T3 +Y , we obtain the following Higgs doublets

Hd =
(
H0
d

H−d

)
, Hu =

(
H+
u

H0
u

)
, (2.68)

by requiring the hypercharge of Hd and Hu to be respectively −1/2 and +1/2. Each doublet
contains four real degrees of freedom, and consists of one neutral and one charged component,
respectively H0

d and H−d for Hd, and H0
u and H+

u for Hu. In total, the Higgs sector exhibits
eight degrees of freedom. Just like in the Standard Model, three of them, namely the Goldstone
bosons G±, and G0, are "eaten" by theW± and Z0 gauge bosons, which thereby become massive,
and hence acquire a longitudinal polarization mode. The remaining five degrees of freedom mix
together after electroweak symmetry breaking and yield five physical Higgs bosons.

The Higgs potential receives contributions from the F -terms, theD-terms, and the soft-SUSY
breaking potential (through the Higgs bilinear and mass terms), and reads as follows

VHiggs = g2 + g′2

8
[
H0†
d H

0
d +H−†d H−d −H

0†
u H

0
u −H+†

u H+
u

]2
+ g2

2


(
H0†
d H

0
d +H−†d H−d

) (
H0†
u H

0
u +H+†

u H+
u

)
+
(
H−†d H+†

u −H
0†
d H

0†
u

) (
H0
dH

0
u −H−d H

+
u

)
 (2.69)

+
(
|µ|2 +m2

Hd

) (
H0†
d H

0
d +H−†d H−d

)
+
(
|µ|2 +m2

Hu

)
(
H0†
u H

0
u +H+†

u H+
u

)
+
(
Bµ
(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c.

)
.

After the two Higgs doublets have acquired a vev, we require the minimum of (2.69) to break the
electroweak symmetry SU(2)L×U(1)Y down to the gauge group of electromagnetism U(1)Q. At
this minimum, we always have the possibility to rotate away the vev of the charged component
of one of the two Higgs doublets by means of a SU(2)L gauge transformation. The minimization
condition associated to this charged component then directly imply that the vev of the charged
component of the second doublet also vanishes, which gives

〈Hd〉 = 1√
2

(
vd
0

)
, 〈Hu〉 = 1√

2

(
0
vu

)
, (2.70)

such that the U(1)Q symmetry is preserved1. Since the charged components of the Higgs doublets
do not acquire a vev, only the neutral part of (2.69) has to be minimized. The latter reads

Vneutral = g2 + g′2

8
[
H0†
d H

0
d −H0†

u H
0
u

]2
+
(
|µ|2 +m2

Hd

)
H0†
d H

0
d (2.71)

+
(
|µ|2 +m2

Hu

)
H0†
u H

0
u − Bµ

(
H0
uH

0
d +H0†

u H
0†
d

)
,

where Bµ, which is the only factor sensitive to complex phases in (2.71), has been chosen
to be real and positive by means of an appropriate phase redefinition of Hu and Hd. The

1Charged scalars cannot acquire a vev, otherwise electromagnetism is broken.
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Higgs potential is in this case CP-conserving at tree level. The generic minimization conditions
obtained from the previous equation are

∂Vneutral
∂H0

d

∣∣∣
vev

= 0 = g2 + g′2

8
(
v2
d − v2

u

)
+ |µ|2 + m2

Hd
− Bµ tan β (2.72)

∂Vneutral
∂H0

u

∣∣∣
vev

= 0 = g2 + g′2

8
(
v2
u − v2

d

)
+ |µ|2 + m2

Hu − Bµ cotanβ (2.73)

with

tan β = vu
vd

, cotanβ = vd
vu

, and 0 ≤ β ≤ π

2 . (2.74)

In order to spontaneously break the electroweak symmetry, the Higgs potential must be bounded
from below, whatever the values of the vevs are. For largely different vevs vd and vu this is always
the case, as the quartic term prevails over all the others, and stabilize the Higgs potential. Yet, in
the case where the two vevs are equal, the so-called "D-flat directions", the potential is bounded
from below only if the following condition is satisfied

2|µ|2 + m2
Hd

+ m2
Hu − 2Bµ > 0 . (2.75)

Moreover, in order to avoid the configuration where vd = vu = 0 is a minimum, one also imposes
that the determinant of the Hessian matrix M2

H

M2
H =

(
|µ|2 +m2

Hd
−Bµ

−Bµ |µ|2 +m2
Hu

)
, (2.76)

is negative such that (
|µ|2 +m2

Hd

)(
|µ|2 +m2

Hu

)
−
(
Bµ
)2

< 0 . (2.77)

Note that (2.75), and (2.77) cannot be simultaneously satisfied if mHd = mHu , which means in
other words that supersymmetry breaking is a necessary condition for electroweak symmetry
breaking to happen. Performing the following perturbative expansion around the ground-states

H0
d −→

1√
2

[
vd + Re

(
H0
d

)
+ i Im

(
H0
d

)]
,

H0
u −→

1√
2

[
vu + Re

(
H0
u

)
+ i Im

(
H0
u

)]
,

in the neutral part of the Higgs potential, we get

Vneutral = 1
2
(
Im
(
H0
d

)
Im
(
H0
u

))(Bµ tan β Bµ
Bµ Bµ cotanβ

)(
Im
(
H0
d

)
Im
(
H0
u

)) (2.78)

+ 1
2
(
Re
(
H0
d

)
Re
(
H0
u

))(M2
Z cos2 β +Bµ tan β −M2

Z cosβ sin β −Bµ
−M2

Z cosβ sin β −Bµ M2
Z sin2 β +Bµcotanβ

)(
Re
(
H0
d

)
Re
(
H0
u

)) ,

where we have used

M2
Z = 1

4
(
g2 + g′2

)(
v2
u + v2

d

)
, M2

W = 1
4g

2(v2
u + v2

d

)
, (2.79)

cos 2β = v2
d − v2

u

v2
d + v2

u

, tan β + cotanβ = 2
sin 2β , (2.80)

cosβ = vd√
v2
d + v2

u

≡ cβ , sin β = vu√
v2
d + v2

u

≡ sβ (2.81)

cos θW = g√
g2 + g′2

≡ cW , sin θW = g′√
g2 + g′2

≡ sW . (2.82)
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The first term in (2.78) corresponds to pseudo-scalar mass terms, and the second one represents
scalar mass terms. Both of them are expressed in terms of their gauge eigenstates, namely(
Im
(
H0
d

)
, Im

(
H0
u

))
and

(
Re
(
H0
d

)
, Re

(
H0
u

))
for the pseudo-scalar and scalar part respectively.

After electroweak symmetry breaking, gauge eigenstates with the same quantum numbers mix
one with another, it is thus necessary to diagonalize their respective mass matrix in order to
determine the true physical eigenstates and their associated mass eigenvalues.

CP-odd Higgs sector

The diagonalization of the pseudo-scalar 2× 2 mass matrix gives

G0 = − cosβ Im
(
H0
d

)
+ sin β Im

(
H0
u

)
, (2.83)

A0 = sin β Im
(
H0
d

)
+ cosβ Im

(
H0
u

)
, (2.84)

with

MG0 = 0 , (2.85)

M2
A0 = 2Bµ

sin 2β = 2|µ|2 +m2
Hd

+m2
Hu . (2.86)

CP-even Higgs sector

Using (2.86), it is possible to rewrite the scalar 2× 2 mass matrix as

M2
S =

(
M2
Z cos2 β +M2

A0 sin2 β −
(
M2
Z +M2

A0
)

cosβ sin β
−
(
M2
Z +M2

A0
)

cosβ sin β M2
Z sin2 β +M2

A0 cos2 β

)
.

The diagonalization leads to

H0 = cosα Re
(
H0
d

)
+ sinα Re

(
H0
u

)
, (2.87)

h0 = − sinα Re
(
H0
d

)
+ cosα Re

(
H0
u

)
, (2.88)

with

M2
H0 = 1

2

[
M2
Z +M2

A0 +
√(

M2
Z −M2

A0
)2 + 4M2

ZM
2
A0 sin2 2β

]
, (2.89)

M2
h0 = 1

2

[
M2
Z +M2

A0 −
√(

M2
Z −M2

A0

)2
+ 4M2

ZM
2
A0 sin2 2β

]
, (2.90)

tan 2α = tan 2β
M2
A0 +M2

Z

M2
A0 −M2

Z

, (2.91)

which gives the following sum rule when adding (2.89) and (2.90)

M2
H0 +M2

h0 = M2
Z +M2

A0 . (2.92)

The light Higgs mass in the decoupling limit

The decoupling limit is the limit for which MA0 �MZ . It is called the decoupling limit because
in this particular case the mass of the lightest Higgs Mh0 , can be re-expressed independently of
the mass of the pseudo-scalar MA0 . Starting from (2.90), it is possible to rewrite Mh0 such that

M2
h0 = 1

2
[
M2
Z +M2

A0 −
√
M4
Z +M4

A0 − 2M2
ZM

2
A0 + 4M2

ZM
2
A0
(
1− cos2 2β

)]
= 1

2
[
M2
Z +M2

A0 −
√(

M2
Z +M2

A0

)2
− 4M2

ZM
2
A0 cos2 2β

]
.
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Factorizing M2
A0 out of the previous equation gives

M2
h0 = 1

2M
2
A0

(
1 + M2

Z

M2
A0

)[
1−

√√√√1−
4M2

ZM
2
A0 cos2 2β

M4
A0
(
1 +M2

Z/M
2
A0
)2 ] . (2.93)

After performing a series expansion in terms of M2
Z/M

2
A0 , taking the limit MA0 � MZ , and a

few practical manipulations, we obtain for the light CP-even Higgs mass

M2
h0 ' M2

Z cos2 2β . (2.94)

Thus, at tree level in the MSSM one always has

M2
h0 . M2

Z cos2 2β . (2.95)

This theoretical upper bound on M2
h0 , which openly conflicts with the recent observation of a

125 GeV Higgs boson at the LHC, and older LEP constraints [104, 105], can still be evaded by
taking into account large one-loop corrections involving especially the stops (top superpartners).

Charged Higgs sector

Using a similar method, it is possible to derive the potential in the charged sector from (2.69).
Once again, we make use of (2.69), (2.79), (2.74), (2.80), (2.72), (2.73), and (2.86), and we yield
in the basis

(
H−†d H+

u

)
the following mass matrix for the charged Higgs bosons

M± =
( (

M2
W +M2

A0
)

sin2 β
(
M2
W +M2

A0
)

cosβ sin β(
M2
W +M2

A0
)

cosβ sin β
(
M2
W +M2

A0
)

cos2 β

)
.

The diagonalization gives

G− = − cosβH−d + sin βH+†
u , (2.96)

H− = sin βH−d + cosβH+†
u , (2.97)

G+ = − cosβH−†d + sin βH+
u , (2.98)

H+ = sin βH−†d + cosβH+
u , (2.99)

with

MH± = M2
W +M2

A0 = M2
W + 2|µ|2 +m2

Hd
+m2

Hu , (2.100)
MG± = 0 , (2.101)

where (2.100) is the equivalent of the sum rule (2.92) in the charged Higgs sector.

2.10 Gaugino and Higgsino sector
After the electroweak symmetry breaking, all the particles with the same quantum numbers mix
one with another. The electroweak gauginos, and the Higgsinos form a mixing system whose
mass eigenstates are collectively denoted as charginos and neutralinos. Charginos (χ̃±i ) are Dirac
fermions which consist of an admixture of the two charged winos (W̃±) and Higgsinos (H̃+

u , H̃−d ),
while neutralinos (χ̃0

i ) are Majorana fermions, and amount to a linear combination of the bino
(B̃), the neutral wino (W̃ 3) and the neutral Higgsinos (H̃0

u, H̃0
d), where in this notation the

chargino index i ∈ {1, 2}, and the neutralino index i ∈ {1, 2, 3, 4}.
The contributions to the gaugino and Higgsino mass terms originate from three distinct

sources, the Higgs-Higgsino-wino interactions, the Higgs/Higgsino bilinear term of the MSSM
superpotential, and the gaugino mass terms of the soft SUSY-breaking potential
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Higgs-Higgsino-wino interactions:

∆L1 = − i2gvd
(√

2H̃−d .W̃
+ + H̃0

d .W̃3
)

+ i

2g
′vdH̃

0
d .B̃

− i2gvu
(√

2H̃+
u .W̃

− − H̃0
u.W̃3

)
− i

2g
′vuH̃

0
u.B̃ + h.c. , (2.102)

Higgs/Higgsino bilinear term of the MSSM superpotential:

∆L2 = µH̃0
dH̃

0
u − µH̃−d H̃

+
u + h.c. , (2.103)

Gaugino mass terms of the soft SUSY-breaking potential:

∆L3 = 1
2M1B̃.B̃ + 1

2M2W̃
3.W̃3 + M2W̃

+.W̃− + 1
2M3g̃

a.g̃a + h.c. . (2.104)

As a final remark, let us note that since the SU(3)C gauge group remains unbroken in the MSSM,
the gluino g̃ (which is a color octet Majorana fermion) cannot mix with any other particle in
the theory, and thus is simultaneously a gauge and a physical mass eigenstate. The soft-SUSY
breaking gluino mass parameter M3 of (2.104) is in general complex and defined as

M3 = |M3| eiϕg̃ (with the gluino mass mg̃ = |M3|) , (2.105)

where ϕg̃ corresponds to the gluino phase.

Chargino sector

Extracting out of (2.102), (2.103), and (2.104), the charged winos and Higgsinos contributions,
one obtains the following tree level mass term for the charginos

Lχ± = − i2gvd
√

2H̃−d .W̃
+ − i

2gvu
√

2H̃+
u .W̃

− − µH̃−d H̃
+
u +M2W̃

+.W̃− + h.c.

= −
(
W̃− H̃−d

)( −M2
i
2gvu
√

2
i
2gvd
√

2 µ

)(
W̃+

H̃+
u

)
+ h.c. .

A factor of i can be absorbed into the redefinition of the charged winos [103] such that the tree
level chargino mass matrix only contains real entries. This gives

Lχ± = −
(
iW̃− H̃−d

)( M2
√

2MW sin β√
2MW cosβ µ

)(
iW̃+

H̃+
u

)
+ h.c. , (2.106)

which can be also re-expressed as

Lχ± = −1
2
((
ψ+)T (

ψ−
)T)( 0 XT

X 0

)(
ψ+

ψ−

)
+ h.c. , (2.107)

with

X =
(

M2
√

2MW sin β√
2MW cosβ µ

)
, and ψ± = (iW̃±, H̃±u,d)

T .

Since X is not symmetric, it must be diagonalized by two unitary matrices U and V satisfying

U∗X V −1 = diag
(
mχ̃±1

,mχ̃±2

)
, (2.108)



34 Chapter 2: Supersymmetry

where mχ̃±1
< mχ̃±2

are the masses of the charginos, and where the gauge eigenstates ψ± are
related to the physical mass eigenstates χ±i by

χ+
i = Vij ψ

+
j , χ−j = Uij ψ

−
j ,

with i, j = 1, 2. The mixing matrix V can be obtained after diagonalization of the hermitian
matrix X†X. From (2.108), one thus has

V X†XV −1 = diag(m2
χ̃±1
,m2

χ̃±2
) , (2.109)

which gives the following charginos masses after diagonalization

m2
χ̃±1 ,χ̃

±
2

= 1
2
[
M2

2 + 2M2
W + µ2 ±

√(
M2

2 + 2M2
W + µ2)2 − 4

(
M2µ+M2

W sin 2β
)2]

.

Neutralino sector

In a very similar manner, extracting out of (2.102), (2.103), and (2.104), the neutral bino, wino,
and Higgsinos contributions, one obtains the following tree level mass term for the neutralinos

Lχ0 = − i

2gvdH̃
0
d .W̃3 + i

2g
′vdH̃

0
d .B̃ + i

2gvuH̃
0
u.W̃3 −

i

2g
′vuH̃

0
u.B̃ + µH̃0

dH̃
0
u

+ 1
2M1B̃.B̃ + 1

2M2W̃
3.W̃3 + h.c.

= −1
2
(
B̃ W̃ 3 H̃0

d H̃0
u

)
−M1 0 − i

2g
′vd

i
2g
′vu

0 −M2
i
2gvd − i

2gvu
− i

2g
′vd

i
2gvd 0 −µ

i
2g
′vu − i

2gvu −µ 0



B̃

W̃ 3

H̃0
d

H̃0
u

 + h.c. .

Just like for the charginos, a factor of i can be absorbed into the redefinition of the neutral
gauginos [103], so that the tree level neutralino mass matrix only contains real entries

Lχ0 = −1
2

(
iB̃ iW̃ 3 H̃0

d H̃0
u

)
M1 0 −MZsW cβ MZsW sβ
0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ
MZsW cβ −MZcW sβ −µ 0



iB̃

iW̃ 3

H̃0
d

H̃0
u

 .

The neutralino mass matrix Mχ̃0 is moreover completely symmetric, which means that it can be
diagonalized with the help of only one unitary mixing matrix N , such that

N∗Mχ̃0N−1 = diag (mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) , (2.110)

where mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
are the neutralino masses, which are chosen real and positive

according to the Supersymmetry Les Houches Accord 2 (SLHA2) conventions, and where the
gauge eigenstates ψ0 are related to the physical mass eigenstates χ̃0 by

χ̃0
i = Nijψ

0
j , (2.111)

with i, j = 1, 2, 3, 4. Neutralinos are electrically-neutral and color-neutral, massive weakly inter-
acting particles. The lightest neutralino χ̃0

1 is usually assumed to be the Lightest Supersymmetric
Particle (LSP) and as a consequence provide a potentially viable candidate for Dark Matter, as
long as R-parity is preserved.
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2.11 Sfermion sector

After the electroweak symmetry breaking, the Higgsinos and the gauginos are not the only
states to form a mixing system, the right-handed and left-handed sfermions (with the same
quantum numbers) do mix as well. The squark and slepton mass eigenstates are obtained after
diagonalization of their respective mass matrix. In the most general case, i.e Non-Minimal
Flavour Violation (NMFV), this diagonalization requires the introduction of three 6× 6 unitary
matrices, namely Rũ, Rd̃ and Rẽ, respectively for the up-type squarks, down-type squarks, and
for the charged sleptons. In the super-CKM and super-PMNS basis, those mixing matrices,
which allow for rotations between gauge and physical mass eigenstates, are defined such that



ũ1
ũ2
ũ3
ũ4
ũ5
ũ6


= Rũ



ũL
c̃L
t̃L
ũR
s̃R
t̃R


,



d̃1
d̃2
d̃3
d̃4
d̃5
d̃6


= Rd̃



d̃L
s̃L
b̃L
d̃R
s̃R
b̃R


,



ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6


= Rẽ



ẽL
µ̃L
τ̃L
ẽR
µ̃R
τ̃R


,

(2.112)
Rũ M2

ũ R
ũ† = diag

(
ũ1, . . . , ũ6

)
, Rd̃ M2

d̃
Rd̃† = diag

(
d̃1, . . . , d̃6

)
,

Rẽ M2
ẽ R

ẽ† = diag
(
ẽ1, . . . , ẽ6

)
,

where ũi, d̃i, and ẽi, with i = 1, . . . , 6, denote sfermion mass eigenstates, and where the vectors
(ũL, c̃L, t̃L, ũR, c̃R, t̃R), (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), and (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R) respec-
tively contain up-type squarks, down-type squarks, and charged sleptons gauge eigenstates. By
convention, sfermion mass eigenstates are ordered from the lightest to the heaviest one,

mũ1
< . . . < mũ6

, m
d̃1

< . . . < m
d̃6
, mẽ1

< . . . < mẽ6
.

The generic 6×6 sfermion mixing matrices of (2.112) naturally induce inter-generational mixing.
This inter-generational mixing can in turn generate large Flavour Changing Neutral Currents
(FCNCs) which are tightly constrained from an experimental point of view. A possible solution
to avoid the appearance of large FCNCs consists in practice in imposing Minimal Flavour Vio-
lation (MFV), i.e. imposing that Yukawa couplings are the only source of flavour violation, and
neglecting inter-generational mixing. In this context, the three 6× 6 sfermion mixing matrices,
reduce to a set of nine 2× 2 unitary mixing matrices of the form,(

f̃1
f̃2

)
= S f̃

(
f̃L
f̃R

)
, with S f̃ =

(
cos θf sin θf
− sin θf cos θf

)
, (2.113)

where S f̃ is the flavour diagonal sfermion mixing matrix, where θf denotes the associated
sfermion mixing angle, and where f̃1, f̃2 and f̃L, f̃R are respectively the sfermion mass and
gauge eigenstates. In the MSSM, the sfermion mass terms originate from the F -terms, the
D-terms, and the soft SUSY-breaking potential (through scalar mass terms and trilinear scalar
couplings), such that

F -terms

VF = m2
f f̃Rf̃

†
R +m2

f f̃Lf̃
†
L − µ mf (tan β)−2T f3 f̃ †Lf̃R − µ mf (tan β)−2T f3 f̃Lf̃

†
R , (2.114)
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D-terms

VD = M2
Z cos 2β

(
T f3 −Qf sin2 θW

)
f̃ †Lf̃L +QfM

2
Z cos 2β sin2 θW f̃

†
Rf̃R , (2.115)

Soft SUSY-breaking potential

Vsoft = m2
Lf̃
†
Lf̃L +m2

Rf̃
†
Rf̃R +mfAf f̃Lf̃

†
R +mfAf f̃

†
Lf̃R . (2.116)

Putting together (2.114), (2.115), and (2.116), we obtain the following tree level mass matrix

(
f̃†L f̃†R

)m2
f +m2

L +M2
Z cos 2β

(
T f3 −Qf sin2 θW

)
mf

(
Af − µ(tan β)−2T f

3

)
mf

(
Af − µ(tan β)−2T f

3

)
m2
f +m2

R +QfM
2
Z cos 2β sin2 θW

(f̃L
f̃R

)
.

The off-diagonal terms of the 2× 2 sfermion mass matrix are proportional to the fermion mass
mf . The mixing between sfermions of the same type is therefore of particular significance for
the third generation in general, i.e. stops, sbottoms and staus, and even more important in the
case of the stops, as the top mass is much larger than any of the other SM fermion mass. If we
now introduce the compact notation

m2
f̃L

= m2
f +m2

L +M2
Z cos 2β

(
T f3 −Qf sin2 θW

)
,

m2
f̃R

= m2
f +m2

R +QfM
2
Z cos 2β sin2 θW ,

af = Af − µ(tan β)−2T f3 ,

we can rewrite the previous sfermion mass matrix as

M2
f̃

=
(
m2
f̃L

af mf

af mf m2
f̃R

)
. (2.117)

Using the sfermion mixing angle of (2.113) to diagonalize (2.117), we obtain the following results
for the sfermion mass eigenstates mf̃1

, mf̃2
, and the sfermion mixing angle

m2
f̃1,2

= 1
2

[
m2
f̃L

+m2
f̃R
∓
√(

m2
f̃L
−m2

f̃R

)2 + 4 a2
fm

2
f

]
, (2.118)

cos θf = − af mf√(
m2
f̃L
−m2

f̃1

)2 + a2
fm

2
f

(0 ≤ θf < π) (2.119)

Summary:
In this chapter, we have provided a short introduction to N = 1 supersymmetry, which con-
stitutes the theoretical basis of this manuscript. More specifically, we have first recalled some
basic facts about SUSY (history, motivations, superalgebra and properties of the supermulti-
plets), before introducing the superspace formalism, and detailing the various steps inherent to
the construction of supersymmetric Lagrangians. In the second part of this chapter, we have
then focused on one particular implementation of N = 1 supersymmetry, namely the Minimal
Supersymmetric Standard Model, for which we have described the mechanism of electroweak
symmetry breaking, and detailed the various sectors of the theory at tree level. In the coming
chapters, we are going to apply the concepts, and the notations, we have just introduced to the
case of phenomenological studies at leading order, and next-to-leading in perturbation theory.
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Leading Order phenomenology at
polarized hadron colliders

In this chapter, we intend to show how polarized proton beams colliding at 14 TeV and 100 TeV
could help us to disentangle various new physics models exhibiting the same final-state signature.
For the sake of illustration, we focus on the recently proposed monotop signature [106,107], which
corresponds to the production of a single top in association with missing transverse energy.
Monotops naturally appear in several extensions of the Standard Model, like for example in
the MSSM (discussed in the previous chapter) with R-parity violation (RPV), where they are
issued from the decay of a singly-produced top squark [108–111]. Besides this RPV mode,
monotops can also be produced in various dark matter models [112–115], where the monotop
state originates either from the decay of a vector resonance, or from tree-level flavour-changing
neutral interactions, with a particle giving rise to missing transverse energy. In the following,
we discuss how the measurements of single-spin and double-spin asymmetries at a polarized
LHC, or at a polarized FCC, would allow us to get additional information on the nature of the
initial partons at the origin of the monotop signal, and show how this could be used in order to
constrain the underlying new physics scenario.

This chapter is organized as follows: in Section 3.1, we review the status of new physics
searches at the LHC, and motivate the use of polarized beams at LHC-14, and at an hypothetical
FCC operating at 100 TeV. In Section 3.2, we perform a detailed study of the PDFs and the
parton luminosities for polarized proton-proton collisions at 14 TeV and 100 TeV, showing the
ability of spin asymmetries to discriminate among different initial states. Then, we assume
the observation of a monotop excess in unpolarized proton-proton collisions, and illustrate in
Section 3.3 how spin asymmetries would possibly allow one to get information on the new physics
scenarios that have yielded the signal. Finally, we draw our conclusions in Section 3.4.

3.1 Motivations

After 3 years of data-taking, no experimental evidence of New Physics has been found at the
LHC, while both the ATLAS and CMS collaborations have probed quite extensively energies up
to the TeV scale. The mass exclusion limits of several BSM particles have been pushed higher
and higher in energy, and this together with the discovery of a 125 GeV Standard Model-like
Higgs boson has lead to the exclusion of large fractions of the parameter space of many simplified
models. With the current Run II of the Large Hadron Collider, and its proposed high-luminosity
upgrade, searches for new phenomena, particles, and interactions, promise to survey an even
wider portion of the parameter space of a huge variety of BSM scenarios. If New Physics has to
be discovered in the coming years, the main goal of the high energy physics program will be to
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fully characterize the newly discovered degrees of freedom, i.e. to determine the mass, spin and
couplings of the latter.

In most studies performed at unpolarized hadron colliders such as the LHC, experimental
(and phenomenological) analyses are motivated by theoretical arguments implying some key new
final-state signatures that should be looked for. Those signatures are however neither typical
of a given theory, nor of a given benchmark scenario of a specific model. One of the most
famous example illustrating this fact is the case of the MSSM [44, 116] and Universal Extra
Dimensions (UED) [117], which both predict the pair production of Standard Model partners
followed by their cascade decay into a final state enriched in charged leptons and jets, and
containing in addition a large amount of missing transverse energy. Beyond discovery, the task
of disentangling BSM theories (and even different scenarios within a specific theory) that share
a common final-state signature is therefore known to be far from trivial.

In addition to the LHC, there is another high-energy hadron collider that has been providing
an impressive wealth of results. The RHIC collider at the Brookhaven National Laboratory
(BNL) has successfully operated in its polarized proton-proton mode at 200 GeV and 500 GeV,
collecting data with an integrated luminosity of more than 1 fb−1. Although these polarized
collisions are mainly dedicated to spin physics, pioneering BSM studies have shown the non-
negligible impact of beam polarization to get a handle on (some of) the model parameters of
specific theories [118–124]. In addition to the existing RHIC polarized proton collider, most
of the aforementioned studies have also considered possible polarization upgrades of both the
Tevatron [125] and the LHC. However, although those upgrades have been already discussed in
the past and are perfectly feasible [126,127], they are quite unlikely to be realized. In contrast,
first discussions on a Future Circular Collider (FCC) with a center-of-mass energy of 100 TeV are
now starting. Therefore, this is the right time to begin to present the physics cases motivating
different operating options of such a machine, including a possible polarized mode.

3.2 Spin asymmetries at polarized hadron colliders
As mentioned in the introduction, polarized beams at high-energy hadron colliders would provide
a unique opportunity to characterize any new physics signal that might have been previously
observed in unpolarized collisions. This appealing possibility relies on the fact that polarized
and unpolarized parton-parton luminosities show quite different behaviours for a given flavour
combination. Therefore, single- and double-spin asymmetries in polarized hadron collisions can
provide information on the initial partonic state of any given process, thus allowing one to
disentangle different BSM scenarios that lead to the same final state signatures.

In the next section, we will exploit these remarkable properties to distinguish between new
physics scenarios for monotop production at the LHC, characterized by different initial state
production mechanisms and thus by different single- and double-spin asymmetries in polarized
collisions. However, before discussing specific models, it is instructive to first evaluate a variety
of single- and double-spin asymmetries at the level of parton luminosities rather than at the full
hadronic cross section level. This approximation is useful since in many cases of interest the
polarized and unpolarized matrix elements are similar, and thus the spin asymmetries computed
from the partonic luminosities only already carry the bulk of the relevant physics which is
accessible experimentally via the hadron-level asymmetries.

First of all, we compare polarized and unpolarized PDFs. To fix the notation, we define
unpolarized and polarized parton distributions as usual,

fi/p(x,Q2) ≡ f↑i/p(x,Q
2) + f↓i/p(x,Q

2) , (3.1)

∆fi/p(x,Q2) ≡ f↑i/p(x,Q
2)− f↓i/p(x,Q

2) , (3.2)
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Figure 3.1: Comparison between unpolarized (left) and polarized (right) PDFs from the most
up-to-date sets of the NNPDF family, NNPDF3.0 and NNPDFpol1.1 respectively. PDFs have
been evaluated at a typical high-energy hadron collider scale of Q2 = 104 GeV2.

in terms of the two possible longitudinal polarization states of partons within the nucleon,

f↑i/p(x,Q
2) = fi/p(x,Q2) + ∆fi/p(x,Q2) , (3.3)

f↓i/p(x,Q
2) = fi/p(x,Q2)−∆fi/p(x,Q2) . (3.4)

In Figure 3.1, we present a comparison between the different PDFs of the most up-to-date
unpolarized and polarized sets from the NNPDF Collaboration1, NNPDF3.0 [128] and NNPDF-
pol1.1 [129,130] respectively. The various PDFs have been evaluated at a typical hadron collider
scale of Q2 = 104 GeV2 using the LHAPDF interface [131]. As an example, the source code that
has been used to generate the graphs of Figure 3.1 can be found in Appendix C.

There are various interesting features to remark in Figure 3.1. The first one is that polarized
PDFs are always smaller (in absolute value) than their unpolarized counterparts. This is a
consequence of the positivity condition of polarized PDFs [132], which at Born level reads,

|∆fi/p(x,Q2)| ≤ fi/p(x,Q2) . (3.5)

At next-to-leading order, similar relations hold but only for physical observables like polar-
ized structure functions. The second feature is that at small-x the growth of the polarized PDFs
x∆fi/p(x,Q2) is largely suppressed with respect to that of the unpolarized ones xfi/p(x,Q2) [133].
As will be shown below, these two features have the important implication that spin asymme-
tries will be sizable, and thus experimentally accessible, only for final states with large invariant
masses. This indeed probes the polarized PDFs at medium and large values of x, two regions
where their magnitude is comparable to the one of the unpolarized parton densities.

In addition, and this is of particular importance for the problem at hand, a specific flavour
leads to different qualitative behaviours for the polarized and unpolarized PDFs. For instance,
∆u and ∆d have the opposite sign, while u and d have both the same sign and the same
shape. This will translate into qualitatively different behaviours for the various spin asymmetries
depending on the underlying initial partonic state.

After comparing PDFs at the unpolarized and polarized level, we move to the study of
partonic luminosities [134] and the corresponding single- and double-spin asymmetries. We

1The polarized and unpolarized sets of parton densities NNPDFpol1.1 and NNPDF3.0 are available from the
webpage https://nnpdf.hepforge.org.
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define the partonic luminosity for the scattering of two partons i and j in unpolarized hadronic
collisions, leading to a final state of mass mX , as

Lij = 1
s

∫ 1

τ

dx

x

1
1 + δij

[
fi/p (x,mX) fj/p

(
τ

x
,mX

)
+ fi/p

(
τ

x
,mX

)
fj/p (x,mX)

]
, (3.6)

where the δij factor removes the double counting in the case of a same PDF combination i = j,
and the collider center-of-mass energy squared s = E2

cm enters through the variable τ = ŝ/s.
We can also define corresponding quantities involving polarized parton distributions and thus
relevant for polarized collisions. The partonic luminosity relevant for single-spin asymmetries is

LLij = 1
s

∫ 1

τ

dx

x

1
1 + δij

[
fi/p (x,mX) ∆fj/p

(
τ

x
,mX

)
+ fi/p

(
τ

x
,mX

)
∆fj/p (x,mX)

]
, (3.7)

while for double-spin asymmetries, we use

LLLij = 1
s

∫ 1

τ

dx

x

1
1 + δij

[
∆fi/p (x,mX) ∆fj/p

(
τ

x
,mX

)
+ ∆fi/p

(
τ

x
,mX

)
∆fj/p (x,mX)

]
.(3.8)

In our notation, the L and LL superscripts indicate that these luminosities enter the description
of single- and double-spin asymmetries in polarized collisions, respectively. We now define
unpolarized and polarized hadron-level cross sections by

σ0 = 1
4
[
σ↑↑ + σ↓↓ + σ↑↓ + σ↓↑

]
, (3.9)

σL = 1
4
[
σ↑↑ − σ↓↓ − σ↑↓ + σ↓↑

]
, (3.10)

σLL = 1
4
[
σ↑↑ + σ↓↓ − σ↑↓ − σ↓↑

]
. (3.11)

Here σ0 stands for the unpolarized cross sections and σL and σLL for singly and doubly-polarized
cross sections, respectively, where an up-arrow denotes a helicity h = +1 and a down-arrow a
helicity h = −1 of longitudinally polarized hadrons in the initial state. We recall that in the case
of singly-polarized cross sections, only one of the hadrons (the second one here) is polarized.
Experimentally, it is useful to consider ratios of these cross sections, or spin asymmetries, because
in this case systematic uncertainties are expected to cancel to a good degree. If a single beam
is polarized, the experimentally relevant quantity is the single-spin asymmetry, defined as

AL = σL
σ0

, (3.12)

whereas if both beams are polarized, the relevant quantity is the double-spin asymmetry

ALL = σLL
σ0

. (3.13)

Eqs. (3.9)–(3.11) define experimentally accessible observables since they are expressed in terms
of polarized hadrons. In order to compare data with theoretical predictions, in perturbative
QCD the factorization theorem allows one to write hadronic cross sections as convolutions of
parton distribution functions with parton level cross sections,

σ0 = fi/p ⊗ fj/p ⊗ σ̂0,ij = Lij ⊗ [ŝ σ̂0,ij ] , (3.14)
σL = fi/p ⊗∆fj/p ⊗ σ̂L,ij = LLij ⊗ [ŝ σ̂L,ij ] , (3.15)
σLL = ∆fi/p ⊗∆fj/p ⊗ σ̂LL,ij = LLLij ⊗ [ŝ σ̂LL,ij ] . (3.16)
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The polarized partonic cross sections are here defined in complete analogy to the polarized
hadron-level expressions of Eqs. (3.9)–(3.11), namely

σ̂0 = 1
4
[
σ̂↑↑ + σ̂↓↓ + σ̂↑↓ + σ̂↓↑

]
, (3.17)

σ̂L = 1
4
[
σ̂↑↑ − σ̂↓↓ − σ̂↑↓ + σ̂↓↑

]
, (3.18)

σ̂LL = 1
4
[
σ̂↑↑ + σ̂↓↓ − σ̂↑↓ − σ̂↓↑

]
, (3.19)

where now the helicities are those of the incoming quarks and gluons in the partonic collision.
Furthermore, a sum over all relevant partonic subprocesses is implied (i.e., over i, j) and we
refer to Eqs. (3.6)–(3.8) for the definition of the partonic luminosities.

For many cases of physical interest, the expressions in Eqs. (3.14)–(3.16) and consequently the
asymmetries in Eqs. (3.12) and (3.13) can be further simplified. Firstly, the dimensionless cross
sections ŝσ̂ij are often either constant far above the production threshold (see, e.g., Figure 70
in Ref. [134]), or in the case of a narrow s-channel resonance, they are peaked at threshold,
that is, ŝ ' m2

X . In the latter case, we end up having simple expressions of the hadron-level
asymmetries in terms of (ratios of weighted sums of) parton luminosities. Secondly, the absolute
values of the polarized and unpolarized parton-level matrix elements are often the same or very
similar, leading to further simplifications. In cases where there is a single dominant particular
sub-channel, the hadronic asymmetries are just simple ratios of parton luminosities, as can be
deduced from the single-spin and double-spin asymmetries of Eqs. (3.14)–(3.16),

AijL =
LLij
Lij

and AijLL =
LLLij
Lij

. (3.20)

In the rest of this section, we focus on results for single and double-spin asymmetries computed
from Eq. (3.20) for different initial state partonic sub-channels. We have calculated these asym-
metries for the LHC collider operating at a center-of-mass energy of 14 TeV (LHC 14 TeV),
assuming a possible future polarized upgrade, as well as for the polarized mode of an hypo-
thetical Future Circular Collider with a center-of-mass energy of 100 TeV (FCC 100 TeV). As
polarized PDFs we use the NNPDFpol1.1 [129, 130] and DSSV08 [135] sets, together with the
corresponding unpolarized counterparts, NNPDF2.3 [136] and MRST01 [137]. Comparing the
predictions of NNPDFpol1.1 with those of DSSV08 is useful in order to verify which features of
the spin asymmetries are generic irrespective of the specific details of the particular polarized
PDF set used.

It is clear from the definition of Eqs. (3.6)–(3.8) that to first approximation, luminosities
are invariant if the center-of-mass energy is modified,

√
S′ = k

√
S, provided that the final state

mass is also modified in the same way, m′X = kmX , since in this case the variable τ is invariant.
However, logarithmic corrections to the DGLAP evolution of the PDFs modify this picture,
though they should not change any qualitative conclusion. This property will be explicitly
verified below when comparing the spin asymmetries at LHC 14 TeV and at FCC 100 TeV.

First of all, we compare the single-spin asymmetries at LHC 14 TeV for the production of a
final state with invariant mass mX assuming different partonic initial states. We compare the
consistency of the asymmetries obtained with NNPDF with those obtained with DSSV/MRST.
In all cases, the uncertainty band on the asymmetries corresponds to that of the polarized
PDFs, since in this respect the unpolarized PDF uncertainties can be neglected. We show the
asymmetries for gg, uu and dd initial states in the upper row Figure 3.2 and for the ds, db and sb
initial states in the bottom row of the figure. The DSSV08 densities consist of a PDF set obtained
in the fixed-flavor-number scheme, and therefore the polarized bottom PDF ∆b = ∆b̄ = 0. While
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Figure 3.2: The single-spin asymmetry AL at the parton luminosity level at LHC 14 TeV, and
for various initial-state partonic combinations. We compare results obtained using NNPDF-
pol1.1/NNPDF2.3 with those obtained using DSSV/MRST and present them as function of the
invariant mass of the final state mX . The bands correspond to the polarized PDF uncertainties.

differences between fixed-flavor-number and variable-flavor-number schemes lead to substantial
differences for unpolarized PDFs [138], this is considered less important for polarized PDFs in
the region with available experimental data where the contribution from heavy quarks is small.
However, this is no longer true when evolving upwards in Q2 to the region relevant for collider
physics, where heavy quark PDFs are not negligible even in the polarized case.

In general there is a reasonable qualitative agreement between the results from NNPDF-
pol1.1 and those of DSSV, with some quantitative differences, for instance in asymmetries that
involve the polarized strange PDF. This is expected since NNPDFpol1.1 and DSSV08 generally
agree well for all PDFs but for ∆s(x,Q2), where even the sign is opposite [138]. Larger PDF
uncertainties are obtained using NNPDFpol1.1, partially due to the more flexible functional
form of the input PDFs as compared to DSSV08. Results for the single spin asymmetries for a
100 TeV FCC are qualitatively similar once the value of the final state mass is properly rescaled
as discussed above, so that results are not shown explicitly.

Results for the single-spin asymmetries in the gg, uu, dd and ds partonic sub-channels for
LHC 14 TeV and FCC 100 TeV are summarized in Figure 3.3. It is apparent that the property
which we have discussed above, namely that if the final state mass range is suitably scaled, the
qualitative features of the spin asymmetries are the same at center-of-mass energies of 14 TeV
and 100 TeV. The most striking property is that different partonic sub-channels lead to very
different asymmetries. In this particular case, just a measurement of the sign of the asymmetry
would indicate which are the dominant partonic initial states, and measurements of AL with a
few percent experimental uncertainty would even distinguish between gg and qq initiated final
states.

Double-spin asymmetries are experimentally more challenging since their absolute values are
smaller. The reason for this is because they involve the convolution of two polarized PDFs in the
numerator, instead of just one as for single-spin asymmetries. The results for various partonic
channels are summarized in Figure 3.4. Again reasonable agreement between NNPDFpol1.1
and DSSV08 is found. Asymmetries involving quarks are larger than those involving gluons,
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Figure 3.3: Summary of the single-spin asymmetries AL for a variety of initial state partonic com-
binations as a function of the invariant mass of the produced final state mX at the LHC 14 TeV
(left panel) and at an FCC 100 TeV (right panel). The asymmetries have been obtained using
NNPDFpol1.1/NNPDF2.3.
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Figure 3.4: The double-spin asymmetry ALL at the PDF level, Eq. (3.20), at LHC 14 TeV
for various initial-state partonic combinations, comparing the results obtained using NNPDF-
pol1.1/NNPDF2.3 with those obtained using DSSV/MRST.

reflecting that the ∆q densities are larger than the ∆g one at large-x, as shown in Figure 3.1.
Moreover, large final state masses are required to yield spin asymmetries that are larger than a
few percent.

The final comparison is provided by double-spin asymmetry calculations for the gg, uu, dd
and ds partonic sub-channels for LHC 14 TeV and FCC 100 TeV and we collect the results in
Figure 3.5. The PDF uncertainties are found to be very large, since there is far less experimental
information in the determinations of the ∆fi/p densities than in the unpolarized case. However,
if the measurement of a vanishing double-spin asymmetry could be performed, this would be a
valuable piece of information since it would exclude that the final state is dominantly produced
from uu scattering. Moreover, double-spin asymmetry measurements could nevertheless be used
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Figure 3.5: Summary of the double-spin asymmetries ALL for a variety of initial state par-
tonic combinations as a function of the invariant mass of the produced finale state mX at the
LHC 14 TeV (left panel) and at an FCC 100 TeV (right panel). The asymmetries have been
obtained using NNPDFpol1.1.

to verify the results obtained from single-spin asymmetries.
After this discussion at the PDF level only, in the next section we will present predictions

for hadron-level asymmetries in various scenarios for BSM monotop production. From now on
we will neglect for clarity the polarized PDF uncertainties. It has already been shown in this
section that they are large, however, the availability of a polarized hadron collider would also
provide a large set of polarized PDF-sensitive measurements that should substantially reduce
these uncertainties. In addition, in the short term, additional constraints from a variety of
polarized measurements from fixed target and collider experiments like HERMES, COMPASS
and RHIC will allow to further pin down the polarized PDFs. In the medium term, important
constraints on polarized PDFs could also be provided by a Electron-Ion Collider (EIC) [139–142],
currently under study.

3.3 Physics case: monotop production

In order to illustrate the power of spin asymmetries for the characterization of new physics,
we focus on one particular BSM signature, dubbed monotop, that has recently been pro-
posed [106, 107]. The monotop signature is characterized by the production of a single top
quark in association with missing transverse energy and no other particle. The choice of such a
process is driven by several considerations.

First of all, the sector of the top quark is widely believed to be one of the key candidates
for coupling in an enhanced way to new physics particles, due to the vicinity of the top mass
to the electroweak scale. Second, monotop production is negligible in the Standard Model,
where the top quark is produced in association with a Z-boson and no extra jet. This process
is indeed loop-induced, GIM-suppressed and further reduced by the branching ratio of the Z-
boson to neutrinos. This ensures that the observation of a monotop system at the LHC (or at
an FCC) could be safely considered as a clear tell-tale sign of new physics. Third, there is a wide
variety of new physics theories that can lead to monotop production (see, e.g., Refs. [106–115]).
Monotops therefore offer a good way to illustrate how single-spin and double-spin asymmetries
could provide a unique handle to extract information on the (hypothetical) new physics sector.
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Figure 3.6: Feynman diagrams for monotop production in the R-parity violating MSSM with
Minimal Flavour Violation (MFV), where i, j are flavour indices, and s is the squark index.

3.3.1 Monotop production in the RPV MSSM

We begin by considering the MSSM after supplementing its R-parity conserving superpoten-
tial by one single RPV operator, the so-called UDD term. As it will be shown below, this
simple setup includes three distinct monotop production mechanisms hardly distinguishable in
unpolarized proton-proton collisions, apart from the differences in total rates that are however
dependent on unknown couplings. This contrasts with the situation where additional polarized
observables are available since in this case, discriminating between the different initial states be-
comes possible. We model the supersymmetric interactions among the matter sector by adding
to the R-parity conserving MSSM superpotential WMSSM the RPV UDD operator,

W = WMSSM + 1
2λ
′′
ijkU

i
RD

j
RD

k
R , (3.21)

where UR and DR are the chiral superfields associated with the up-type and down-type right-
handed (s)quark supermultiplets, the color indices are implicit for clarity and the flavour indices
being explicitly indicated. Monotop production is induced by non-vanishing λ

′′
3jk couplings

together with enforcing the lightest neutralino to be long-lived, a setup almost unconstrained
by experimental data [143]. If at least one of these λ′′ couplings is non-vanishing, top squarks
of mass mt̃ can be resonantly produced from the scattering of two down-type antiquarks of
different flavors and further decay into a top quark and a lightest neutralino which, if lighter
than the top quark, is long-lived enough to escape detection and gives rise to missing transverse
energy in a detector [144]. The same final state could also be produced through t/u-channel
down-type squark exchanges as depicted in Figure 3.6. We however neglect, in the following,
these non-resonant contributions with respect to the resonant s-channel diagram, that we have
explicitly verified to be largely dominant.

In the RPV supersymmetric framework described above, the fully polarized partonic cross-
section for monotop production from a q̄q̄′ initial-state is given by

σ̂h1h2
RPV (q̄j q̄k → tχ̃0

1) =
(1− h1)(1− h2)π

∣∣λ′′3jk sin θt̃
∣∣2

6 BR
(
t̃→ tχ̃0

1
)
δ
(
ŝ−m2

t̃

)
, (3.22)

where ŝ denotes the partonic center-of-mass energy and h1 and h2 the helicities of the initial
antiquarks. Results for the charge-conjugate process can be obtained by replacing hi → −hi.
Moreover, we have assumed that only one of the two stop mass-eigenstates is light enough to
significantly contribute to the cross-section and kept the associated dependence on the stop
mixing angle θt̃ explicit. Finally, we have adopted the narrow-width approximation to model
the resonant behavior of the squared matrix element by a Breit-Wigner lineshape. Although
non-general, such an approximation holds when the width of the resonance is small with respect
to its mass, which allows one to neglect off-shell effects, when the resonance decays into much
lighter particles and when its mass is much smaller than the center-of-mass energy, which avoids
important distortions of the Breit-Wigner lineshape [145].
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Scenario σ0 σL σLL

MSSM RPV
d s+ d̄ s̄ d∆s+ s∆d+ d̄∆s̄+ s̄∆d̄ ∆d∆s+ ∆d̄∆s̄
d b+ d̄ b̄ d∆b+ b∆d+ d̄∆b̄+ b̄∆d̄ ∆d∆b+ ∆d̄∆b̄
s b+ s̄ b̄ s∆b+ b∆s+ s̄∆b̄+ b̄∆s̄ ∆s∆b+ ∆s̄∆b̄

Hylogenesis
d d+ d̄ d̄ d∆d+ d̄∆d̄ ∆d∆d+ ∆d̄∆d̄
s s+ s̄ s̄ s∆s+ s̄∆s̄ ∆s∆s+ ∆s̄∆s̄
b b+ b̄ b̄ b∆b+ b̄∆b̄ ∆b∆b+ ∆b̄∆b̄

X-model
g u+ g ū g∆u+ u∆g + g∆ū+ ū∆g ∆g∆u+ ∆g∆ū
g c+ g c̄ g∆c+ c∆g + g∆c̄+ c̄∆g ∆g∆c+ ∆g∆c̄

Table 3.1: Parton luminosities that contribute to the unpolarized cross-section, the single- and the
double-spin asymmetries in the three different scenarios for monotop production that are discussed in
this paper. For each model, the first row corresponds to the dominant production channel. In singly-
polarized collisions, the second hadron is the one that is chosen to be polarized.
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Figure 3.7: RPV monotop production total cross sections at the LHC 14 TeV (left panel) and at an FCC
100 TeV (right panel) as a function of the invariant mass of the final state. We fix the stop mixing angle
to π/4, consider the branching ratio BR(t̃ → tχ̃0

1) = 1 and address three distinct benchmark scenarios
where one single RPV coupling is non-vanishing at a time: λ

′′

312 (green), λ′′

313 (blue) and λ
′′

323 (red).
Cross-sections have been obtained using the NNPDF2.3 unpolarized parton set.

Because of the symmetry properties of the RPV superpotential of Eq. (3.21), the couplings of
quarks or antiquarks of the same flavor to the stop t̃ vanish so that only three different flavour
combinations can yield a non-zero cross-section, namely the d s + d̄ s̄, d b + d̄ b̄ and s b + s̄ b̄
initial states. Here we are implicitly summing over both monotop and anti-monotop production,
while later in the section, we will explore the potential of tagging the charge of the final-state
monotop. The parton luminosities that contribute to the unpolarized cross-section, the single-
and the double-spin asymmetries in the various different scenarios for monotop production that
are discussed in this paper are summarized in Table 3.1.

In Figure 3.7, we present total cross-sections for RPVmonotop production at the LHC 14 TeV
(left panel) and at an FCC 100 TeV (right panel) as a function of the mass of the lightest top
squark. We compute our results by making use of Eq. (3.14) with the NNPDF2.3 set of parton
densities, and for the sake of the example, we consider maximal stop mixing (θt̃ = π/4), the
branching ratio of the stop resonance into a monotop state equal to unity (BR(t̃ → tχ̃0

1) = 1)
and all the three possible different initial states. We however assume that only one of the three
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Figure 3.8: Single-spin (upper panel) and double-spin (lower panel) asymmetries for RPV monotop
production at the LHC 14 TeV (left panel) and at an FCC 100 TeV (right panel) as function of the stop
(or monotop) mass. We fix the stop mixing angle to π/4, consider the branching ratio BR(t̃→ tχ̃0

1) = 1
and address three distinct benchmark scenarios where one single RPV coupling is non-vanishing at a
time: λ′′

312 (green), λ′′

313 (blue) and λ′′

323 (red). Asymmetries have been obtained using NNPDFpol1.1 and
NNPDF2.3.

RPV couplings is non-zero at a time and that its value is fixed to λ′′ = 0.2. With a quadratic
dependence on the λ′′-parameters, RPV monotop production could in principle be expected
both at the LHC and at an FCC. However, characterizing which partonic initial state would
be (dominantly) responsible for the possible observation of an excess is far more complicated
than measuring a total cross-section. The standard approach would then be to probe differential
distributions sensible, e.g., to the presence of valence or sea quarks in the initial state. However,
in the rest of this section we focus on a complementary approach to characterize the initial state
of monotop production by means of spin asymmetry measurements in polarized pp collisions.

In the RPV context, there is only one single combination of quark helicities that gives rise
to a monotop final state, as indicated in Eq. (3.22). Consequently, partonic spin asymmetries
turn out to be equal to ±1 and hadronic asymmetries reduce to ratios of partonic luminosities.
Therefore, in the approximation in which there is a single dominant coupling λ′′, hadron-level
spin-asymmetries can be expressed in terms of a ratio of linear combinations of polarized and
unpolarized PDFs and the results of Section 3.2 hold. For instance, for the case of monotop
production in the dominant channel d̄ s̄+d s we have

Ad̄s̄+dsL =
LLds − LLd̄s̄
Lds + Ld̄s̄

and Ad̄s̄+dsLL =
LLLds + LLL

d̄s̄

Lds + Ld̄s̄
, (3.23)

and likewise for other initial states. We collect the results for the relevant channels in Fig-
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ure 3.8 for both the LHC 14 TeV (left panel) and the FCC 100 TeV (right panel), after summing
over both monotop and anti-monotop production modes, and show single-spin (upper row) and
double-spin (lower row) asymmetries.

It is clear from Figure 3.8 that polarized asymmetries can be sizable, and moreover depend
strongly on the partonic initial state. For instance, at the LHC 14 TeV and mX = 3 TeV, AL
varies from 20% for the sb initial state to −30% for the ds combination. The different behaviors
of ALL and AL for the same partonic initial state has also discrimination power. Therefore, it
can be seen that the availability of polarized beams at high energy hadron colliders allows to
disentangle the different possible scenarios leading to monotop production, especially for large
final-state masses, where the polarized asymmetries are larger.

3.3.2 Other scenarios for monotop production

In addition to the RPV MSSM scenario, several other models predict monotop production at
hadron colliders. Therefore, in the event of observation of the monotop signature, determining
which is the correct underlying model will be a difficult task. In particular, even disentangling
a resonant monotop production from a non-resonant one might be non-trivial due to detector
effects distorting typical resonant shapes expected, for instance, in the missing energy spec-
trum [107]. In Section 3.3.1, we have investigated monotop production in the context of RPV
supersymmetry and have shown how spin asymmetries could help characterizing the type of
RPV interactions relevant for the production of a monotop state. We now investigate two addi-
tional scenarios predicting the production of a top quark in association with missing energy, and
illustrate the strengths of measuring spin asymmetries in polarized collisions in order to obtain
information on the underlying model.

We first focus on the so-called Hylogenesis models for dark matter where a monotop state
can be produced from the decay of a heavy vector resonance Vµ of mass mV that couples to
down-type quarks [112, 113]. The leading order Feynman diagram for monotop production in
this scenario is shown in Figure 3.9. The heavy vector resonance Vµ decays into an associated
pair comprised of a top quark and a spin-1/2 dark matter particle, carrying missing energy,
that we generically denote by χ. We further describe the couplings of down-type quarks to the
colored resonance Vµ with charge ±2/3 by the Lagrangian2

Lhylo = 1
2κij d̄

c
iγ
µdjVµ + h.c. , (3.24)

where again a sum over color indices is understood, i and j are flavor indices and κij denotes the
3×3 (symmetric) matrix of interaction strengths in flavour space. As in Eq. (3.22) for the RPV
case, we will rewrite any dependence on the interactions of the dark matter state χ in terms
of the branching ratio of Vµ to a monotop final state, so that the corresponding Lagrangian
contributions are unnecessary and have been omitted. The constraints on the parameters of this
scenario from collider and flavour physics have been studied in Ref. [146], which shows that they
are model dependent and can be easily avoided, specially in the case of third generation quarks.
In the rest of this section, we restrict ourselves to the dominant dd+d̄d̄ production channel,
again summing over monotop and anti-monotop production. As stated above, a discussion on
the information that can be obtained by tagging the charge of the final-state top quark, and thus
disentangling monotop and anti-monotop production, will be carried out later in this section.

The third model for monotop production that we consider in this work will be denoted by the
name ‘X-Model’. It is motivated by models of dark matter where the top quark couples to a new
neutral vector boson Xµ strongly interacting with invisible particles of a hidden sector [114,115].

2The Lagrangian choice is not unique and we focus on one particular example among others that induces large
differences compared to the RPV case.



Chapter 3: Leading Order phenomenology at polarized hadron colliders 49

q

q(‘)

r

tV
q

g

X

tq

q

g

X

t
t

Figure 3.9: Feynman diagram associated with Hylogenesis monotop production.
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Figure 3.10: Feynman diagrams associated with monotop production from flavor-changing interactions
associated with an extra vector boson X in the X–model.

The Feynman diagrams for monotop production in this scenario are shown in Figure 3.10. In
this case, the associated production of the new X-boson, which typically decays into particles
of the hidden sector and thus escapes detection, with a top quark leads to a monotop signa-
ture. Adopting a simplified approach, we fix the part of the Lagrangian relevant for monotop
production to

LX = giX ūiγ
µPRtXµ + h.c. , (3.25)

where PR denotes the right-handed chirality projector and gX the associated vector of coupling
constants in generation space. In the following, we focus on the dominant production channel
where the X-boson couples to an up quark and a top quark (see Table 3.1). The experimental
constraints on the new physics mass scale in this scenario have been studied in Ref. [114]. Their
findings indicate that the mass of the X field can be as low as 100 GeV without conflicting with
current bounds, such as Bd,s − B̄d,s mixing or rare top decays.

The two Lagrangians of Eqs. (3.24) and (3.25) allow us to calculate the corresponding fully
polarized partonic cross-sections. We obtain, using the narrow width approximation for the
Hylogenesis case and providing the differential cross-section with respect to the Mandelstam
t-variable for the X-model,

σ̂h1h2
hylo (q̄j q̄k → tχ) =

2(1− h1h2)π
∣∣κjk∣∣2

3 × BR
(
V → tχ

)
× δ

(
ŝ−m2

V

)
,

dσ̂h,λX
dt̂

(uig → tX) = 1
16πŝ2

g2
sg
i2
X

12ŝm2
X(t̂−m2

t )2 (1 + h)
[
C1 + C2λ

]
.

(3.26)

In the Hylogenesis model, h1, h2 are the helicities of the initial partons and the results for
the charge-conjugate processes are obtained by replacing hi → −hi. It is clear from the fully
polarized partonic cross-section of Eq. (3.26) that in this case, the single-spin asymmetries vanish
exactly. In contrast, for the double-polarized asymmetries, we have a similar situation as for
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RPV monotop production and the hadron-level asymmetries can be written in terms of ratios of
the partonic luminosities discussed in Section 3.2. To be explicit, for the dominant production
channel d̄ d̄+d d we have

Ad̄d̄+dd
L = 0 , Ad̄d̄+dd

LL = −
LLLdd + LLL

d̄d̄

Ldd + Ld̄d̄
, (3.27)

and likewise for other initial states.
In the X-model calculation, we have kept the dependence on the gluon and initial quark

polarizations λ and h explicit and have introduced the kinematical factors

C1(ŝ, t̂) = m8
t −m6

t

[
2ŝ+ t̂

]
+m4

t

[
(ŝ+ t̂)2 − 2m2

X(t̂+m2
X)
]

+m2
t

[
4m6

X − 2m4
Xt+ 2m2

X(ŝ2 − ŝt̂+ 2t̂2)− t̂(ŝ+ t̂)2
]

− 2m2
X t̂(2m4

X + ŝ2 + t̂2 − 2m2
X(ŝ+ t̂)

]
,

C2(ŝ, t̂) =
[
m4
t +m2

t (2m2
X−ŝ− t̂)+2m2

X(ŝ− t̂)
][
m4
t + t̂(2m2

X−ŝ− t̂)−m2
t (2m2

X+ŝ)
]
.

(3.28)

The main feature of this class of models with respect to the RPV case lies in the various helicity
combinations contributing to the polarized cross-section. Important differences are consequently
expected in spin asymmetries when comparing RPV monotop production to Hylogenesis or dark
matter X-model predictions.

This is illustrated in Figure 3.11 where we compare, for illustrative purposes, single-spin and
double-spin asymmetries as predicted in RPV scenarios where the monotop system originates
from a ds+ d̄s̄ initial state, in Hylogenesis models where it is produced from dd+ d̄d̄ scattering
and in dark matter X-models where the X-boson arises from the g (u+ ū) initial state. We
present our results as functions of the monotop system mass being defined as the resonance
mass for both the RPV and the Hylogenesis scenarios, and as the sum of the X-boson and top
quark masses for the X-model case3.

Figure 3.11 is the main result of this work. It tells us that, assuming polarized PDF uncer-
tainties are improved by a series of dedicated measurements, a measurement of the single-spin
asymmetry with 5% precision would allow one to discriminate between the three production
mechanisms for states with sufficiently large invariant mass, approximately above 2 TeV at
the LHC and above 10 TeV at the FCC. Even a measurement of the sign of the single spin
asymmetries would be very valuable to discriminate between different scenarios. Double-spin
asymmetries would provide a complementary cross-check of the single-spin results, though their
measurement is rather more challenging both because of the reduced rates and because of the
smaller values of the asymmetries. The qualitative behavior of AL and ALL is also found to be
rather different in some scenarios. In RPV monotop production, for instance, AL is large and
negative, while ALL is small and positive. It is thus clear that a simultaneous measurement of
AL and ALL would provide stringent constraints on the underlying production dynamics.

3.3.3 Impact of monotop charge tagging

In the final part of this section, we study what we can learn if the charge of the final-state top
quark is tagged, that is, if we are able to disentangle the monotop signature (a top quarks of
charge +2/3 and missing transverse energy) from the anti-monotop signature (same with a top
antiquark). This charge tagging could be potentially relevant because in these two cases, the

3The numerical values of all other model parameters are irrelevant as canceling in the ratios of polarized and
unpolarized cross-sections.
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Figure 3.11: Single-spin (upper panel) and double-spin (lower panel) asymmetries for monotop produc-
tion at the LHC 14 TeV (left panel) and at an FCC 100 TeV (right panel) as function of the monotop
system mass for the various new physics scenarios described in the text. Asymmetries have been obtained
using NNPDFpol1.1 and NNPDF2.3. Sum over monotop and anti-monotop production is implicit.

polarized PDFs that are relevant according to the nature of the initial state can show quite
different behaviors. Tagging the charge of the top quark can thus provide another handle on
the underlying BSM scenario that has induced monotop production4.

We show in Figure 3.12 the single-spin asymmetries for LHC 14 TeV and FCC 100 TeV,
this time separating monotop from anti-monotop production, for the three models under con-
sideration. The relevant initial states for monotop production are d̄ s̄, d̄ d̄ and u g in the RPV,
Hylogenesis and X-model scenarios respectively, and the corresponding charge-conjugate ones
for anti-monotop production. It is clear from the differences between the left and right columns
of Figure 3.12 that tagging the top quark charge provides important information about the
underlying production model, with the differences particularly striking in the case of the RPV
scenario, where at large masses a different sign of the asymmetry is predicted in the two cases.

We recall that the results of Figure 3.11 cannot be retrieved by a trivial average of the
asymmetries of Figure 3.12 over monotop and anti-monotop production, as the full singly-
polarized and unpolarized cross sections need to be averaged first, before evaluating the ratios.

3.3.4 Summary

In this section, we have shown how, using polarized collisions, it is possible to discriminate among
different models that lead to the same final-state signature, in this case monotop production.

4Charge asymmetries are also interesting observables in the context of unpolarized collisions.
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Figure 3.12: Single-spin asymmetries for monotop (left panel) and anti-monotop (right panel) produc-
tion at the LHC 14 TeV (upper row) and at an FCC 100 TeV (lower row) as function of the invariant
mass of the final state for the different new physics scenarios discussed in this work.

While we have considered this specific benchmark scenario, it is clear that our results/our
considerations apply to a wide variety of other BSM models where the availability of polarized
beams would provide a unique handle for their characterization.

3.4 Conclusions

In this chapter, we have shown how the availability of polarized beams at high-energy hadron
colliders provides a unique handle on the discrimination between different beyond the Standard
Model scenarios that lead to the same final-state signatures in unpolarized collisions. First of
all, we have discussed in a model-independent way why single and double-spin asymmetries in
polarized collisions allow us for the separation between different initial-state production mech-
anisms. Then we have considered different benchmark scenarios for monotop production and
shown how the measurement of spin asymmetries in polarized collisions could help to discrimi-
nate between different models. Therefore, while polarized beams are certainly not required for
BSM discoveries, they can provide very useful information on the properties of the hypothetical
BSM sector, in particular in the determination of its couplings to Standard Model particles.

While technically feasible, the likelihood of a future polarized mode at the LHC is very
small, requiring a complete modification of the full injector chain. The situation might however
be different for the recently proposed Future Circular Collider (FCC) at a center-of-mass energy
of 100 TeV: if there is a strong physics case, the polarized option should be considered seriously.
In any case this is the right time to begin to think of the feasibility of such an option, now



Chapter 3: Leading Order phenomenology at polarized hadron colliders 53

that various studies for the planning of this machine have just started. In particular, if new
physics is discovered at the LHC during the proton-proton runs at center-of-mass energies of
13 TeV, 14 TeV, or at the future high-luminosity upgrade of the LHC, there will be a very
strong motivation for a polarized mode of the FCC in order to characterize and understand the
properties of this new sector.

Future studies, along similar directions as the ones explored in this thesis, should be per-
formed in two different and complementary directions. First, other BSM scenarios should be
studied. These studies should focus on the production of high-mass particles, since it is the only
region where single- and double-spin asymmetries are relatively large, and thus experimentally
accessible. Second, one should also perform more detailed feasibility studies for the measure-
ment of single- and double-spin asymmetries, trying to estimate the luminosities in the polarized
mode that a 100 TeV FCC could deliver and how the rates would be affected by the finite po-
larization of the beams. Quantifying the statistical uncertainties of the spin asymmetries at the
FCC would also allow one to better understand what is the reach of BSM characterization of
the polarized collision mode.

As an intriguing final remark, it should be noted that at a 100 TeV FCC it might be possible
to access polarized collisions without the need of using polarized beams. Indeed, at the scale of
10-20 TeV, the electroweak W - and Z-bosons are effectively massless and should be included in
the DGLAP evolution, which leads at this point to an intrinsic polarization of the quarks and
gluons via mixing. This is an interesting possibility to study further, since in any case PDFs
with electroweak corrections are mandatory for the physics of a 100 TeV hadron collider.
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Chapter 4

Regularization and Renormalization

Tree-level calculations discussed in the previous chapter might be sufficient (in some specific
situations) to discover New Physics at the LHC. However, if one aims at checking the internal
consistency of a given model, and desires to probe the total rates with a higher level of accuracy,
it is necessary to amend leading order calculations by higher order corrections. Next-to-Leading
Order (NLO) predictions reduce theoretical uncertainties due to unphysical scales dependence,
describe more precisely the shape of the differential distributions (by taking into account for
instance new partonic channels opening-up at NLO), allow to assess the convergence of the
perturbative series expansion, and provide a better estimate of the various background sources
contaminating the different signal regions. These accurate predictions are particularly needed
for searches of signal events in large background samples.

In a general manner, NLO corrections are of two types, real and virtual. Real contributions
involve the emission of one extra parton compared to the Born process, and are obtained by
interfering the corresponding graphs (channel by channel), before summing over all possible
channels. Virtual contributions, on the other hand, are characterized by the internal exchange
of particles inside closed loops, and are obtained by interfering the one-loop diagrams with
the tree-level graphs (channel by channel), before summing over all possible channels. Virtual
corrections (for a given channel) can be further decomposed into various sub-categories, that are
defined according to the number of external legs contained in the corresponding topologies. The
topologies that are most frequently encountered at one-loop for a 2 → 2 process are depicted
in Fig. 4.1. The first type of diagram corresponds to one-point graphs, while the second type
is usually referred to as bubble graphs (due to its shape). The third, and fourth topologies are
finally known as vertex corrections, and box diagrams respectively.

Two major complications are essentially encountered at next-to-leading order i) the number
of Feynman diagrams involved ii) the appearance of divergent integrals at the intermediate
stages of the calculation. If the first difficulty can be tackled by means of a suitable computer
program generating automatically the relevant Feynman diagrams, such as FeynArts [147] or
QGRAF [148], the second problem however requires more care. The divergences encountered
at the intermediate stages of the one-loop calculations can be of the following types: UV,
soft, collinear, and soft-collinear. UV divergences originate from virtual contributions1, and
constitute the main concern of this chapter. Soft divergences come from the emission of a
parton of small momentum between two on-shell particles, and can be understood as resulting
from the fact that particles with almost vanishing transverse momenta cannot be detected.

1Because particles entering into the loops are virtual, and because the loop momentum q, over which we
integrate loop integrals is left unconstrained by momentum conservation, it is possible for q to get arbitrarily
large values. If the power of q in the denominator of the loop integral (assuming no power of q in the numerator)
is lower or equal to the number of space-time dimensions, UV-divergences can appear.
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Figure 4.1: Main one-loop topologies encountered at next-to-leading order. Straight lines can
denote any field.

Collinear divergences appear when a massless particles splits into two other massless particles,
and reflect the fact that particles emitted collinearly one to another cannot be resolved. Finally,
soft-collinear divergences arise from kinematical regions where there is an overlap between soft
and collinear singularities. Soft, collinear, and soft-collinear divergences are here collectively
denoted as infrared (IR) divergences.

The predictive power of a renormalizable theory should not be spoilt by higher order correc-
tions, therefore UV and IR divergences appearing at the intermediate stages of the calculation
should ultimately cancel2, leaving only finite corrections. In this chapter, we provide a short
introduction to one-loop calculations, and detail the procedure of renormalization, which essen-
tially aims at treating UV-divergences. For completeness, note that in order to obtain a result
which is also infrared-finite, one still has i) to make sure that, according to the Kinoshita-Lee–
Nauenberg (KLN) theorem3, all the IR divergences, but the pure collinear poles of the initial
state, cancel between the real and the virtual contributions ii) to absorb the remaining collinear
singularities into the redefinition of the PDFs by means of the mass factorization procedure [151].

This chapter is organized as follows: in Sections 4.1 and 4.2 we provide a consistent defini-
tion of Dimensional Regularization (DREG), and Dimensional Reduction (DRED) respectively.
DREG and DRED are the two regularization schemes used in this thesis to make singularities
manifest. In Section 4.3, we review some one-loop techniques that are used to evaluate frequently
encountered scalar integrals, and to isolate divergences from finite terms. In Section. 4.4, we
present the Passarino-Veltman decomposition which is used to simplify tensor loop integrals.
Finally, in Section 4.5, we explain how UV-divergences can be absorbed into the redefinition of
all the bare fields and parameters by means of the procedure of multiplicative renormalization.

4.1 Regularization scheme

The regularization procedure aims at providing a consistent way of adding, subtracting and
multiplying potentially divergent quantities, and requires in practice the introduction of an
object called the regulator. The purpose of this regulator is to make singularities manifest, so
that it becomes possible to practically manipulate them, and to keep track of them all along the
calculation. At the end of the calculation, the goal is to have all the divergent terms (related to
the regulator) separated out from the finite ones, and eventually, taking the physical limit will
confine the divergences to the aforementioned terms. There exists several implementations of the
regularization procedure in QFT, all having their own virtues and shortcomings. In a generic
manner, the more the symmetries of the theory are preserved by the regularization scheme,
the easier the calculations are expected to be. In what follows, we focus more specifically on
one particular technique called Dimensional Regularization, which is nowadays one of the most
popular and convenient technique to perform loop calculations in perturbation theory.

2For sufficiently inclusive physical observables.
3In a non-Abelian gauge theory with massless fields, transition rates are free of infrared divergences, if the

summation over the initial and final degenerate states is carried out [149,150].
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Dimensional regularization:

Dimensional regularization (DREG) is a method originally introduced in 1972 by ’t Hooft and
Veltman [152], Bollini and Gambiagi [153], Cicuta and Montaldi [154], and Ashmore [155] to
regularize divergent integrals. Among many virtues, DREG has the appealing properties of
preserving gauge symmetries as well as Poincaré invariance, and allows for a simultaneous reg-
ularization of both UV and IR soft/collinear divergences. The basic idea of DREG consists
in analytically continuing the loop momenta from 4 to D = 4 − 2ε4 dimensions, so that the
divergences appear as poles in 1/ε and 1/ε2 at the intermediate stages of the calculations. From
a formal point of view, the analytic continuation of the loop integrals requires the construc-
tion of an infinite dimensional vector space QD on which all the D-dimensional integrals are
well-defined. This vector space QD has to include the usual Minkowski space Q4 as a vector
subspace, and can be decomposed as a direct sum of Q4 and a residual infinite-dimensional
vector subspace QD−4

QD = Q4 ⊕QD−4 , (4.1)

where QD−4 and Q4 are orthogonal to one another. This constructivist formulation of DREG
originally developed by Wilson [156] and Collins [157] actually ensures the algebraic consistency
of the regularization procedure inasmuch as all the objects, like the metric tensors or the Dirac
matrices, are being given an explicit representation in the QD space. Analogously to the four-
dimensional case, D-dimensional integrals defined over QD satisfy the following properties [158]

Linearity: for any complex number a and b, and any function f and g of the momentum q∫
dDq

[
a f(q) + b g(q)

]
= a

∫
dDqf(q) + b

∫
dDqg(q) . (4.2)

Translational invariance: for any momentum p, and any function f(q)∫
dDqf(q + p) =

∫
dDqf(q) . (4.3)

Scaling law: for any complex number λ, and any function f(q)∫
dDqf(λq) = λ−D

∫
dDqf(q) . (4.4)

Lorentz invariance: for any element Λ of the Lorentz group, and any function f(q)∫
dDqf(Λq) =

∫
dDqf(q) . (4.5)

A proof of uniqueness and existence of such a definition of DREG, as well as a detailed study
of all its properties is far beyond the scope of this manuscript, the reader is therefore referred
to [157] and references therein for more details on the constructive approach of DREG.

Conventions, subtleties and prescriptions in DREG

Although particularly convenient, the technique of dimensional regularization is not entirely free
of ambiguities and requires additional prescriptions to be made unequivocal. The goals of this
subsection are i) to review the nature and the origin of those ambiguities/subtleties ii) to fix the
conventions used in the rest of this thesis so that there is no ambiguity left in the calculations.

4The regulator ε can be a non-integer or even a complex number.



58 Chapter 4: Regularization and Renormalization

Conventions

In DREG, the normalization of the D-dimensional integrals can be equivalently chosen to be
1/(2π)D or 1/(2π)4, since what ultimately matters is that theD-dimensional integration measure
allows us to recover the four-dimensional one when taking the limit D → 4. In this thesis, we
choose (by convention) the normalization of the D-dimensional integrals to be 1/(2π)D.

Similarly, in DREG, the normalization of the trace of γ matrices can be equivalently chosen
to be 2D/2 or 4. More specifically, since the representation of γ matrices in D dimensions
corresponds to a set of 2D/2× 2D/2 matrices, we would expect the trace of the unit matrix to be

Tr
(
1
)

= 2D/2 . (4.6)

This solution is however unnecessarily complicated for two reasons i) Clifford algebras behave
differently in even and odd-dimensions, so there is no natural continuation of the algebra in
arbitrary D dimensions ii) no algebraic manipulation depends on the value of the trace, thus
any value of the trace ensuring a smooth transition around D = 4 can provide a satisfactory
answer [159]. In this manuscript, we choose to define the trace of the unit matrix in complete
analogy to the four-dimensional case by taking

Tr
(
1
)

= 4 . (4.7)

Subtleties

In DREG, the first subtlety is related to the necessity of shifting the dimensionality of all the
fields and couplings when performing the analytic continuation from the standard Minkowski
space into the infinite D-dimensional vector space QD. The action, which is the integral of
the classical Lagrangian density, is by definition a dimensionless quantity in four-dimensions,
and has to remain dimensionless in arbitrary D-dimensions. In order to preserve the renormal-
izability of the theory, the associated Lagrangian density thus has to become D-dimensional.
The dimensionality of the fields and the couplings is therefore expected to be affected by the
procedure of analytic continuation. For a generic Standard Model-like Lagrangian, we obtain

[Aµ] = D − 2
2 = 1− ε ,

[
φ
]

= D − 2
2 = 1− ε , [g] = 4−D

2 = ε ,

[Ψ] = D − 1
2 = 3

2 − ε , [λ] = 4−D = 2ε , [Y ] = 4−D
2 = ε ,

where Aµ, φ, Ψ, g, λ and Y generically denote gauge fields, scalar fields, Dirac fermions, gauge
coupling constants, quartic coupling constants for scalar fields, and Yukawa couplings. The
notation [x] here refers to the mass-dimension of the argument x. At this point it is important to
note that all the couplings that were originally dimensionless forD = 4 have become dimensionful
in arbitrary D dimensions. For all the couplings of the theory to retain the mass-dimension they
had in D = 4, it is found necessary to modify the integration measure of loop integrals such that∫

dDq

(2π)D −→ µ2ε
R

∫
dDq

(2π)D , (4.8)

where q is the loop momentum, and where µR is the renormalization scale.
The second subtlety in DREG is linked to the simultaneous regularization of UV and IR

divergences. As highlighted before in this section, the concept of dimensional regularization
is based on the fundamental property that divergent integrals in four dimensions can become
convergent in D dimensions. More specifically, UV divergences encountered in loops are better
behaved for ε > 0, while their IR counterpart tend to favour ε < 0. Seeing that it is not possible
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to have Re(D) > 4 and Re(D) < 4 at the same time, what is done in practice is i) assume that
there are no IR divergences (or at least that the latter are regulated in some other way) ii) take
ε > 0, so that loop integrals become convergent in the UV iii) use analytic continuation to the
complex D-plane to make the integrals infrared-convergent. Eventually the IR divergences will
appear as 1/ε and 1/ε2 poles at one-loop.

Prescriptions

The first prescription needed concerns the analytic continuation of γ5 in DREG. γ5 is by def-
inition a four-dimensional object, and as such can only be well-defined on Q4. Extending its
definition to QD is intrinsically bound to generate mathematical inconsistencies (for more details
see Appendix E). Several prescriptions have been designed to handle γ5 in DREG, in this thesis
we adopt the Naive Dimensional Regularization (NDR) scheme.

The second prescription required is related to the analytic continuation of the external four-
momenta and spin degrees of freedom. More specifically, the convergence of the loop integrals
only requires the loop momenta to be D-dimensional, but does not tell us anything about the
way the analytic continuation of the external momenta and spin degrees of freedom has to be
performed. This additional ambiguity has led to the emergence of different schemes, which are
all based on the original formulation of ’t Hooft and Veltman. In the following, we review the
basic properties of each of the four schemes that are commonly employed in modern calculations.

The ’t Hooft-Veltman (HV) scheme:
The ’t Hooft-Veltman scheme [152] is historically the first scheme that has been worked-out.
In this scheme, external fields have their momenta and spin degrees of freedom kept four-
dimensional, while virtual particles entering in the loops have their momenta and spin degrees
of freedom continued into D-dimensions. In the HV scheme, on-shell fermions have two degrees
of freedom, and massless (resp. massive ) internal gauge bosons have D−2 (resp. D−1) degrees
of freedom. It has been proven that the HV scheme preserves unitarity of the S-matrix [152].

The Conventional Dimensional Regularization (CDR) scheme:
Conventional Dimensional Regularization [157] is a slight variation of the HV scheme and differs
only from the latter by the fact that external momenta and external fields are also considered
D-dimensional. In CDR, everything is D-dimensional. The CDR scheme is the natural scheme
for quantities computed using the optical theorem, and thus preserves unitarity.

The Dimensional Reduction (DRED) scheme:
Another variation of the HV scheme is called Dimensional Reduction, and was originally intro-
duced by Siegel [160] at the end of the seventies as a manifestly SUSY-preserving regularization
scheme. In a nutshell, DRED consists in lowering the dimensionality of the loop momenta from
4 to D = 4 − 2ε, while keeping all the fields and all external momenta four dimensional. For
more details, see next section.

The Four-Dimensional Helicity (FDH) scheme:
The Four-Dimensional Helicity [161,162] scheme was originally developed to construct one-loop
amplitudes from unitarity cuts, and is frequently used in the context of massless NLO QCD
calculations, where it can drastically simplify calculations. The FDH scheme, like DRED,
continues loop-momenta to D-dimensions while keeping the fields four-dimensional. In this
scheme, gauge invariance of the full theory is broken by the restriction of the loop momenta to
have a smaller dimensionality than the spin degrees of freedom, Ward identities are therefore
not satisfied for the additional spin degrees of freedom and the FDH scheme starts to become
inconsistent beyond NLO for non-supersymmetric theories [163]. The ills of FDH at higher
orders can however be cured by means of Dimensional reconstruction [164].
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4.2 Dimensional Reduction
Although DREG (i.e the HV or the CDR scheme) has been successfully applied to a huge variety
of QCD and electroweak processes at next-to-leading order and beyond, this technique is however
not suited for supersymmetric extensions of the Standard Model. Dimensional regularization
indeed introduces a mismatch between bosonic and fermionic degrees of freedom within vector
supermultiplets5, resulting into a manifest breaking of supersymmetry. As mentioned in the
previous section, a good regularization scheme, is a scheme that preserves as many symmetries
as possible at the quantum level. Resorting to DREG in the context of supersymmetric theories,
although still possible, is certainly not the optimal choice as it would require an additional
prescription to restore the fundamental Ward-Takahashi and Slavnov-Taylor identities in the
final step of the renormalization procedure. In the case of our interest, this would for instance
entail the introduction of SUSY restoring counter-terms6 that do not stem from the original
Lagrangian by multiplicative renormalization [165, 166]. The determination of the structure of
those counter-terms and their subsequent evaluation would hence be the source of additional
complications that would make the use of DREG particularly inconvenient.

In order to avoid the aforementioned troubles, a manifestly SUSY-preserving regularization
scheme called Dimensional Reduction (DRED) has been proposed by Siegel in [160]. The original
idea of DRED [167] is to start from a standard four-dimensional space-time and to compactify
it to a smaller vector space of dimension D = 4− 2ε < 4, where only loop momenta take values
so that UV singularities can still be dimensionally regularized. However, in contrast to DREG,
spin degrees of freedom of both external and internal fields are kept four-dimensional7. From
a formal point of view, the original version of DRED consists in decomposing the standard
Minkowski space Q4 as direct sum of orthogonal vector subspaces such that

Q4 = QD ⊕Q4−D , (4.9)

where QD is the infinite dimensional vector space of DREG, and where Q4−D is its infinite
dimensional complement. As outlined by Siegel himself in the early 80’s [168], this formulation
of DRED however suffers from mathematical inconsistencies, which arise when considering the
following product of antisymmetric tensors

ε(D)
µνρσ ε

(4−D) αβγδ ε(D) µνρσ ε
(4−D)
αβγδ , (4.10)

where ε(D)
µνρσ is a Levi-Civita tensor living in the D-dimensional space, and ε(4−D)

αβγδ is the associ-
ated rank-four antisymmetric tensor of the complementary vector space Q4−D. If we contract
antisymmetric tensors living in the same vector space, we obtain

ε(D)
µνρσ ε

(4−D) αβγδ ε(D) µνρσ ε
(4−D)
αβγδ = D

(
D − 1

)(
D − 2

)(
D − 3

)(
4−D

)(
3−D

)(
2−D

)(
1−D

)
,

which can be rewritten as

ε(D)
µνρσ ε

(4−D) αβγδ ε(D) µνρσ ε
(4−D)
αβγδ = D

(
D − 1

)2(
D − 2

)2(
D − 3

)2(
D − 4

)
. (4.11)

In contrast, if we contract antisymmetric tensors living in two different (orthogonal) vector
spaces, then the product (4.10) has to be zero, which gives

0 = D
(
D − 1

)2(
D − 2

)2(
D − 3

)2(
D − 4

)
. (4.12)

5An on-shell gluino has two fermionic degrees of freedom, while an on-shell gluon in D dimensions has D − 2
degrees of freedom.

6The existence of such counter-terms is guaranteed by renormalizability of supersymmetric theories [165].
7All Dirac algebra can thus be treated as four-dimensional.
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The previous equation becomes inconsistent if i) D is a complex number ii) D is a real non-inte-
ger number iii) D is a strictly positive integer with D > 4. A generalization of this mathematical
inconsistency can be formulated in terms of the determinant of the metric tensor of each vector
space without using Levi-Civita tensors [169]. The authors of the aforementioned study have
moreover correlated this inconsistency with the impossibility of decomposing the standard (fi-
nite) Minkowski space Q4 into a direct sum of two infinite dimensional vector subspaces, QD
and Q4−D. To get a rid of the inconsistencies of the original definition of DRED, the same
authors have also introduced the concept of quasi-four dimensional vector space Q4S [169,170],
whose existence has been formally demonstrated by construction in [171].

The peculiarity of this quasi-four dimensional vector space resides in the fact that it retains
most of the four-dimensional properties of the Minkowski space8, while being infinite dimensional
at the same time. It is shown in [171] that Q4S can be decomposed as the direct sum of the
D-dimensional space QD, and a residual Q4S−D vector space such that

Q4S = QD ⊕Q4S−D , (4.13)

where QD and Q4S−D are completely orthogonal one to another, and where

QD = Q4 ⊕QD−4 . (4.14)

One can respectively define over Q4S , QD, Q4S−D, Q4 and QD−4, the associated metric tensors
ηµν , η̂µν , η̃µν , η̄µν and ˜̃ηµν , which satisfy the following properties

ηµν = η̂µν + η̃µν , ηµνηµν = 4 , η̂µν η̂µν = D , η̃µν η̃µν = 2ε
ηµν η̂ν

ρ = η̂µρ , ηµν η̃ν
ρ = η̃µρ , η̂µν η̃ν

ρ = 0 , η̂µν = η̄µν + ˜̃ηµν , (4.15)
η̄µν η̄µν = 4 , ˜̃ηµν ˜̃ηµν = D − 4 = −2ε , η̂µν η̄ν

ρ = η̄µρ , η̂µν ˜̃ην ρ = ˜̃ηµρ ,
η̄µν ˜̃ην ρ = 0 .

In the previous set of equations it is important to realize that, except for the case of the standard
Minkowski space Q4, index counting is no longer possible. As a matter of fact, in infinite-
dimensional vector spaces Lorentz indices can take infinitely many different values, whereas
they are formally limited to 0, 1, 2 and 3 in the usual Minkowski space Q4. Using dimensional
splitting, it is possible to define any four-vector pµ living in Q4S such that

pµ = p̂µ + p̃µ , p̂µ = η̂µνpν , p̃µ = η̃µνpν , (4.16)

where p̂µ and p̃µ are respectively the D and 4S − D component of pµ. Imposing the Dirac
algebra in Q4S

{γµ, γν} = 2ηµν1 , (4.17)

gives the following relations for the Q4S−D and QD components

{γ̂µ, γ̂ν} = 2η̂µν1 , {γ̃µ, γ̃ν} = 2η̃µν1 , {γ̂µ, γ̃ν} = 0 . (4.18)

Since the introduction of the infinite-dimensional vector spaces Q4S , QD and Q4S−D requires
the spinor indices to range over an infinite number of values, one must work with infinite-
dimensional γ-matrices to realize the Dirac algebra. However, this means that the genuinely
four-dimensional Fierz identities, which are supposed to ensure the invariance of the Lagrangian
under SUSY transformations, cannot be satisfied anymore. The lack of Fierz identities in Q4S
in principle entails a loss of supersymmetry even at the one-loop level. Fortunately it was shown
in [169] that such effects only arise at higher orders, where traces of at least ten γ-matrices are
encountered. The consistent formulation of DRED thus breaks supersymmetry just like DREG,
but only starting from higher orders. DRED is therefore perfectly legitimate in the context of
supersymmetric one-loop calculations, and can be safely applied to the cases of our interest.

8But the Fierz identities that are genuinely four-dimensional.
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Re(q0)

Im(q0)

Figure 4.2: Integration contour in the q0 complex plane. The crosses correspond to the location
of the poles displaced from the real axis by means of the Feynman prescription.

4.3 Evaluation of scalar one-loop integrals

Now that we have a consistent definition of DREG (and DRED), we would like to evaluate some
scalar integrals that are commonly encountered in the context of one-loop calculations. In this
section, we first derive the analytical form of the one-point function, before doing the same for
the two-point function. The case of the three-point and four-point function is not detailed in
the present manuscript, here we simply provide a general expression for each of those integrals,
their complete analytical expression can however be found in [172–174].

Scalar one-point function A0(m2)

The scalar one-point function A0(m2) is defined as

A0(m2) :=
∫
dDq

iπ2 (2πµR)2ε 1[
q2 −m2 + iε

] , (4.19)

where q, m, µR, and iε are respectively the loop momentum, the mass of the particle entering in
the loop, the renormalization scale, and the Feynman prescription in charge of ensuring causality
of the propagator. More specifically, the integral (4.19) contains an integration over the q0 real
axis running from −∞ to +∞ which exhibits the following poles

q0 = ±
√
|~q|2 +m2 − iε = ±

√
|~q|2 +m2 ∓ iε

2
√
|~q|2 +m2 + O(ε2) . (4.20)

The Feynman prescription iε previously introduced aims at shifting the poles above and below
the real axis (see Fig. 4.2) such that it is possible to define a closed integration contour in the
q0 complex plane that do not enclose the poles. Thanks to the Cauchy theorem9, the integral
over this closed contour has to be zero. For D < 2, the originally divergent integral (4.19)
becomes convergent, and the integrand vanishes fast enough so that the contribution of the arcs
drops-out for |q0| −→ ∞. Consequently, it is then possible to replace the q0 integration over the
real axis by a q0 integration over the imaginary axis. This procedure is called Wick rotation and
from a conceptual point of view strictly amounts to transforming the Minkowski space into an
Euclidean space. In practice, Wick rotation is achieved by performing the following substitution

q0 = iq0
E , ~q = ~qE , q2 =

(
q0)2 − ~q 2 = −

(
q0
E

)2 − ~qE
2 = −q2

E . (4.21)

9The integral of an holomorphic function over a closed contour that do not enclosed any pole vanishes.
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The genuine virtue of this technique resides in the fact that it is always possible in the Euclidean
space to use rotational invariance to decompose the integrand into a radial and an angular part
by introducing the following spherical coordinates

dDq = (idq0
E)dD−1 ~qE = idDqE = iqD−1

E dqEdΩD , (4.22)

thus making the evaluation of loop integrals simpler than in the case of the regular Minkowski
space, where one has to use the residue theorem instead. Recalling that D = 4− 2ε, we obtain

A0(m2) = −(4π2µ2
R)ε

iπ2

∫ ∞
0

iqD−1
E dqEdΩD

[q2
E +m2 − iε]

(D.11)= −(4πµ2
R)ε

Γ(D/2)

∫ ∞
0

dq2
E

(q2
E)D/2−1

[q2
E +m2 − iε]

If we perform the following change of variable

T = (m2 − iε)
q2
E + (m2 − iε)

−→ q2
E = (m2 − iε)

(
1− T

)
T−1 , (4.23)

dT = − (m2 − iε) dq2
E

[q2
E + (m2 − iε)]2

−→ dq2
E = −(m2 − iε)T−2dT , (4.24)

the scalar one-point function reduces to

A0(m2) = −(4πµ2
R)ε

Γ(D/2)

∫ 1

0
dT (1− T )D/2−1 T (1−D/2)−1 (m2 − iε)D/2−1 . (4.25)

Using the definition (D.8) of the Euler-Beta function, the previous expression simplifies to

A0(m2) = −Γ(ε− 1)(m2 − iε)
(
m2 − iε
4πµ2

R

)−ε
.

Using the property (D.3) of the Euler-Gamma function, the previous equation gives

A0(m2) = −Γ(ε+ 1)
ε(ε− 1) (m2 − iε)

(
m2 − iε
4πµ2

R

)−ε
. (4.26)

The regularization procedure aims at identifying and isolating singularities so that it becomes
possible to practically manipulate them. Eq.(4.26) is in this respect not very useful as the pole
structure of the scalar one-point function is not made explicit. The pole structure can only be
made manifest by performing a Laurent series expansion around ε = 0. At one-loop we obtain

A0(m2) = − m2

ε

[
− 1− ε+O(ε2)

][
1− εγE +O(ε2)

] [
1− ε ln

(
m2

4πµ2
R

)
+O(ε2)

]
,

which thus gives

A0(m2) = m2
[1
ε̄

+ 1− ln
(
m2

µ2
R

)
+O(ε)

]
, (4.27)

with
1
ε̄

= 1
ε

+ ln(4π) − γE . (4.28)

At this level, two comments are in order i) the choice of including or not the universal constant
ln(4π)− γE into the definition of the pole is purely conventional, and is related to the choice of
the renormalization scheme, in this thesis we choose to include those terms, this the so-called
MS/DR scheme ii) according to (4.27), a massless scalar one-point function is exactly zero.
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Scalar two-point function B0(p2,m2
1,m

2
2)

The scalar two-point function B0(p2,m2
1,m

2
2) is defined as

B0(p2,m2
1,m

2
2) :=

∫
dDq

iπ2 (2πµR)2ε 1[
q2 −m2

1 + iε
][(
p+ q

)2 −m2
2 + iε

] , (4.29)

where p is the external momentum, q is the internal loop momentum, and m1 and m2 are the
masses of the virtual particles. Note in addition that B0(p2,m2

1,m
2
2) is symmetric under the

permutation of m1 and m2 such that B0(p2,m2
1,m

2
2) = B0(p2,m2

2,m
2
1). Using the Feynman trick

1
AB

=
∫ 1

0

dx[
Ax+ (1− x)B

]2 , (4.30)

it is possible to rewrite (4.29) as follows

B0(p2,m2
1,m

2
2) = (4π2µ2

R)ε

iπ2

∫ 1

0
dx

∫
dDq[(

p+ q
)2
x+ (1− x)q2 − (1− x)m2

1 − xm2
2 + iε

]2 .

If we i) use translational invariance to perform the momentum transformation q → q = q + xp
ii) introduce the variable M2 = x2p2 − x(p2 +m2

1 −m2
2) +m2

1 − iε iii) perform a Wick rotation
iv) use (D.11) to simplify the angular part of the loop integral, we obtain the following expression

B0(p2,m2
1,m

2
2) =

(
4π2µ2

R

)ε
π2

√
π
D

Γ(D/2)

∫ 1

0
dx

∫ +∞

0
dq2
E

(q2
E)D/2−1[

q2
E +M2]2 . (4.31)

With the following change of variable

X = M2

q2
E +M2 −→ q2

E = M2 (1−X)
X

, (4.32)

dX = − M2 dq2
E

[q2
E +M2]2

−→ dq2
E = −M

2

X2 dX , (4.33)

the scalar two-point function can be rewritten as

B0(p2,m2
1,m

2
2) = (4π2µ2

R)ε π−ε

Γ(D/2)

∫ 1

0
dx

∫ 1

0
dX (1−X)D/2−1 X1−D/2 (M2)D/2−2 . (4.34)

Using the definition (D.8) of the Euler-beta function, and the property (D.3) of the Euler-Gamma
function the previous expression reduces to

B0(p2,m2
1,m

2
2) =

∫ 1

0
dx

Γ(1 + ε)
ε

(
M2

4πµ2
R

)−ε
. (4.35)

To make the pole structure of the two-point function B0(p2,m2
1,m

2
2) explicit, we finally perform

a Laurent series expansion around ε = 0, and obtain at one-loop

B0(p2,m2
1,m

2
2) =

∫ 1

0
dx

1
ε

[
1− εγE +O(ε2)

] [
1− ε ln

(
M2

4πµ2
R

)
+O(ε2)

]
, (4.36)

which finally simplifies to

B0(p2,m2
1,m

2
2) = 1

ε̄
−
∫ 1

0
dx ln

(
x2p2 − x

(
p2 +m2

1 −m2
2
)

+m2
1 − iε

µ2
R

)
+ O(ε) . (4.37)
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The argument of the logarithm in (4.37) can be rewritten in terms of the roots of the polynomial
equation x2p2 − x

(
p2 +m2

1 −m2
2
)

+m2
1 − iε = 0. Those roots are

x1,2 =
p2 +m2

1 −m2
2 ±

√(
p2 +m2

1 −m2
2
)2 − 4p2(m2

1 − iε)
2p2 , (4.38)

such that

B0(p2,m2
1,m

2
2) = 1

ε̄
−
∫ 1

0
dx ln

(
p2(x− x1

)(
x− x2

)
µ2
R

)
+ O(ε) . (4.39)

After integrating by part the previous expression, one obtains

B0(p2,m2
1,m

2
2) = 1

ε̄
+ 2 − ln

(
p2

µ2
R

)
−

2∑
i=1

[
ln
(
1− xi

)
+ xi ln

(
xi

xi − 1

)]
+ O(ε) ,

which eventually reduces to

B0(p2,m2
1,m

2
2) = 1

ε̄
+ 2 − ln

(
m2

2
µ2
R

)
−

2∑
i=1

xi ln
(

xi
xi − 1

)
+ O(ε) . (4.40)

From the generic expression (4.37), one can also deduce the following special cases

B0(0, 0, 0) = 1
ε̄
− 1

ε̄IR
,

B0(p2, 0, 0) = 1
ε̄

+ 2 − ln
(−p2 − iε

µ2
R

)
+ O

(
ε
)
,

B0(0,m2, 0) = 1
ε̄

+ 1 − ln
(
m2

µ2
R

)
+ O

(
ε
)
,

B0(0,m2,m2) = 1
ε̄
− ln

(
m2

µ2
R

)
+ O

(
ε
)
,

B0(m2,m2, 0) = 1
ε̄

+ 2 − ln
(
m2

µ2
R

)
+ O

(
ε
)
,

B0(0,m2
1,m

2
2) = 1

ε̄
+ 1 − 1

m2
1 −m2

2

[
m2

1 ln
(
m2

1
µ2
R

)
− m2

2 ln
(
m2

2
µ2
R

)]
+ O

(
ε
)
,

B0(p2,m2, 0) = 1
ε̄

+ 2 − ln
(
m2

µ2
R

)
+ m2 − p2

p2 ln
(
m2 − p2 − iε

m2

)
+ O

(
ε
)
,

B0(m2,m2,m2) = 1
ε̄

+ 2 − ln
(
m2

µ2
R

)
− π√

3
+ O

(
ε
)
,

B0(p2,m2,m2) = 1
ε̄

+ 2 − ln
(
m2

µ2
R

)
+ β ln

(
β − 1
β + 1

)
+ O(ε) , β =

√
1− 4(m2 − iε)

p2 .

Analogously, the derivative of the scalar two-point function B′0(p2,m2
1,m

2
2) is defined such that

B′0(p2,m2
1,m

2
2) = ∂B0(p2,m2

1,m
2
2)

∂p2 . (4.41)

Its analytical form can be obtained by applying the previous definition to (4.37), which gives

B′0(p2,m2
1,m

2
2) =

∫ 1

0
dx

x(1− x)[
x2p2 − x(p2 +m2

1 −m2
2) +m2

1 − iε
] + O(ε) . (4.42)
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Note that (4.42) is UV-finite, but can potentially contain infrared singularities as shown below

B′0(0, 0, 0) = 0 ,

B′0(p2, 0, 0) = − 1
p2 + O

(
ε
)
,

B′0(0,m2, 0) = 1
2m2 + O

(
ε
)
,

B′0(0,m2,m2) = 1
6m2 + O

(
ε
)
,

B′0(m2,m2, 0) = − 1
2m2

[ 1
ε̄IR

+ 2− ln
(
m2

µ2
R

)]
+ O

(
ε
)
,

B′0(0,m2
1,m

2
2) = 1(

m2
2 −m2

1
)2 [m2

2 +m2
1

2 − m2
2m

2
1(

m2
2 −m2

1
) ln

(
m2

2
m2

1

)]
+ O

(
ε
)
,

B′0(p2,m2, 0) = − 1
p2

[
1 + m2

p2 ln
(
m2 − p2 − iε

m2

)]
+ O

(
ε
)
,

B′0(m2,m2,m2) = 1
m2

[ 2π
3
√

3
− 1

]
+ O

(
ε
)
,

B′0(p2,m2
1,m

2
2) = 1

p2(x1 − x2
)[x1

(
x1 − 1

)
ln
(

x1
x1 − 1

)
− x2

(
x2 − 1

)
ln
(

x2
x2 − 1

)]
− 1
p2 +O

(
ε
)
.

Scalar three-point function C0(p2
1, p

2
2,m

2
1,m

2
2,m

2
3)

The scalar three-point function C0(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) is defined as

C0 :=
∫
dDq

iπ2 (2πµR)2ε 1[
q2 −m2

1 + iε
][(
p1 + q

)2 −m2
2 + iε

][(
p1 + p2 + q

)2 −m2
3 + iε

] , (4.43)
where p1, p2, and p3 are the external momenta, q is the internal loop momentum, m1, m2, and
m3 are the masses of the virtual particles, and where the arguments of C0 on the left-hand
side of (4.43) have been omitted for brevity. Note in addition that (4.43) is UV-finite, but can
potentially contain infrared divergences. The exact analytical expression of (4.43), where the
pole structure is made explicit, and where the finite terms are detailed, is given in [172–174].

Scalar four-point function D0(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m

2
4)

The scalar four-point function D0(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m

2
4) is defined as

D0 :=
∫
dDq

iπ2
(2πµR)2ε[

q2 −m2
1 + iε

][(
p1 + q

)2 −m2
2 + iε

][(
p1 + p2 + q

)2 −m2
3 + iε

] (4.44)

× 1[(
p1 + p2 + p3 + q

)2 −m2
4 + iε

] ,
where p1, p2, p3, and p4 are the external momenta, q is the internal loop momentum, m1, m2,
m3, and m4 are the masses of the virtual particles, and where the arguments of D0 on the left-
hand side of (4.44) have been omitted for brevity. Analogously to (4.43), (4.44) is UV-finite but
can contain infrared divergences. Similarly, the analytical expression of (4.44), where the pole
structure is made manifest, and where the finite terms are detailed, can be found in [172–174].



Chapter 4: Regularization and Renormalization 67

4.4 Passarino-Veltman reduction
The Passarino-Veltman (PV) reduction scheme was originally introduced in 1978 [175], and is
historically the first systematic procedure that has been developed to decompose tensor and
vector integrals over a basis of scalar integrals. More specifically, the main reason why the PV
decomposition allows us to reduce any tensor/vector integral to a linear combination of scalar
integrals is Lorentz invariance. According to Lorentz invariance, the tensor structure of the loop
integrals can be expressed in terms of Lorentz-invariant quantities, i.e. the external momenta
pµi , and the metric tensor ηµν . At one-loop, we can perform the following form-factor expansion

Bµ = pµB1 ,

Bµν = pµpνB21 + ηµνB22 ,

Cµ = pµ1C11 + pµ2C12 ,

Cµν = pµ1p
ν
1C21 + pµ2p

ν
2C22 + {p1p2}µνC23 + ηµνC24 ,

Cµνρ = pµ1p
ν
1p
ρ
1C31 + pµ2p

ν
2p
ρ
2C32 + {p1p1p2}µνρC33 + {p1p2p2}µνρC34

+ {p1η}µνρC35 + {p2η}µνρC36 ,

(4.45)
Dµ = pµ1D11 + pµ2D12 + pµ3D13 ,

Dµν = pµ1p
ν
1D21 + pµ2p

ν
2D22 + pµ3p

ν
3D23 + {p1p2}µνD24 + {p1p3}µνD25

+ {p2p3}µνD26 + ηµνD27 ,

where B1, B21, B22, C11, C12, . . . , D27 are some scalar integrals, the so-called form factors, whose
arguments have been omitted for brevity, and where the notation {· · · }µνρ corresponds to a sum
over all possible permutations of Lorentz indices. The PV reduction is here performed up to
Dµν , because, in the context of squark-antisquark pair production, and gluino pair production,
this is the highest rank four-point function that is needed (at one-loop).

Vector integral Bµ(p2,m2
1,m

2
2)

The vector integral Bµ(p2,m2
1,m

2
2) is defined as

Bµ(p2,m2
1,m

2
2) =

∫
dDq

iπ2 (2πµR)2ε qµ[
q2 −m2

1 + iε
][(
p+ q

)2 −m2
2 + iε

] . (4.46)

Using the Feynman trick (4.30), and translational invariance, we obtain

Bµ(p2,m2
1,m

2
2) =

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε qµ − xpµ[
q2 −M2]2 , (4.47)

with M2 = x2p2 − x(p2 +m2
1 −m2

2) +m2
1 − iε. Note that the first term of (4.47) has to be zero

because i) the function is odd in q ii) the domain of integration of this function is symmetric, so

Bµ(p2,m2
1,m

2
2) = pµ

[
−
∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε x[
q2 −M2]2

]
= pµB1(p2,m2

1,m
2
2) . (4.48)

Following the procedure detailed in the case of B0(p,m2
1,m

2
2), we obtain for B1(p,m2

1,m
2
2),

B1(p2,m2
1,m

2
2) = − 1

2ε̄ +
∫ 1

0
x dx ln

(
x2p2 − x

(
p2 +m2

1 −m2
2
)

+m2
1 − iε

µ2
R

)
+O(ε) . (4.49)
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If we contract (4.48) with the external momentum pµ, we obtain

pµBµ(p2,m2
1,m

2
2) =

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε p.q[
q2 −m2

1 + iε
][(
p+ q

)2 −m2
2 + iε

] . (4.50)

In addition to Lorentz invariance, the PV reduction scheme also relies on the assumption that it
is always possible to decompose (at one-loop) any scalar product of loop momenta with external
momenta as a linear combination of inverse propagator (plus an invariant). For p.q we have

p.q = 1
2
[ [(

p+ q
)2 −m2

2 + iε
]
−
[
q2 −m2

1 + iε
]

+
(
m2

2 − p2 −m2
1
) ]

, (4.51)

where the third term of (4.51) is the so-called invariant. Injecting (4.51) into (4.50) then gives

pµBµ(p2,m2
1,m

2
2) = 1

2
[
A0(m2

1) − A0(m2
2) + f1(p,m2

1,m
2
2) B0(p2,m2

1,m
2
2)
]
, (4.52)

with

f1(p2,m2
1,m

2
2) =

(
m2

2 − p2 −m2
1
)
. (4.53)

Therefore, according to (4.48), the scalar integral B1(p2,m2
1,m

2
2) can be rewritten as

B1(p2,m2
1,m

2
2) = 1

2p2

[
A0(m2

1)−A0(m2
2) + f1(p2,m2

1,m
2
2) B0(p2,m2

1,m
2
2)
]
. (4.54)

Note that i) the previous definition of B1 is only useful as long as p2 6= 0, if in some specific
cases p2 = 0, one has to go back to the generic definition of (4.49) to derive the analytical form
of the B1 function ii) in contrast to B0(p2,m2

1,m
2
2), B1(p2,m2

1,m
2
2) is not symmetric under the

permutation of m1 and m2. The permutation of the second and third argument indeed gives

B1(p2,m2
2,m

2
1) = − B1(p2,m2

1,m
2
2) − B0(p2,m2

1,m
2
2) . (4.55)

Similarly to B′0(p2,m2
1,m

2
2), the derivative of B1(p2,m2

1,m
2
2) is defined as

B′1(p2,m2
1,m

2
2) = ∂B1(p2,m2

1,m
2
2)

∂p2 . (4.56)

The analytical form of B′1(p2,m2
1,m

2
2) is obtained after applying (4.56) to (4.49), this gives

B′1(p2,m2
1,m

2
2) =

∫ 1

0
dx

x2(x− 1)[
x2p2 − x(p2 +m2

1 −m2
2) +m2

1 − iε
] + O(ε) . (4.57)

Tensor integral Bµν(p2,m2
1,m

2
2)

The tensor integral Bµν(p2,m2
1,m

2
2) is defined as

Bµν(p2,m2
1,m

2
2) =

∫
dDq

iπ2 (2πµR)2ε qµqν[
q2 −m2

1 + iε
][(
p+ q)2 −m2

2 + iε
] , (4.58)

Using the Feynman trick (4.30), and translational invariance, we obtain

Bµν(p2,m2
1,m

2
2) =

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε qµqν − x
(
pµqν + qµpν

)
+ x2pµpν[

q2 −M2]2 , (4.59)
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withM2 = x2p2−x(p2 +m2
1−m2

2)+m2
1− iε. Note that the second term of (4.59) has to be zero

because i) the function is odd in q ii) the domain of integration of this function is symmetric, so

Bµν(p2,m2
1,m

2
2) =

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε x
2pµpν + 1

4 q
2ηµν[

q2 −M2]2 . (4.60)

If we define the following integrals

B21(p2,m2
1,m

2
2) =

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε x2[
q2 −M2]2 , (4.61)

B22(p2,m2
1,m

2
2) = 1

4

∫ 1

0
dx

∫
dDq

iπ2 (2πµR)2ε q2[
q2 −M2]2 , (4.62)

and inject them into (4.60), we recover the expected Lorentz decomposition

Bµν(p2,m2
1,m

2
2) = pµpνB21(p2,m2

1,m
2
2) + ηµνB22(p2,m2

1,m
2
2) . (4.63)

Following the same procedure as detailed before, B21 and B22 can be re-expressed as

B21(p2,m2
1,m

2
2) = 1

3ε̄ −
∫ 1

0
dx x2 ln

(
x2p2 − x

(
p2 +m2

1 −m2
2
)

+m2
1 − iε

µ2
R

)
+ O(ε) , (4.64)

B22(p2,m2
1,m

2
2) = − 1

4ε̄

[p2

3 −m
2
1 −m2

2

]
+ 1

4

∫ 1

0
dx M2

[
1− 2 ln

(
M2

µ2
R

)]
+ O(ε) . (4.65)

If we now contract the tensor two-point function with all the possible Lorentz invariants, i.e.
we apply the metric tensor ηµν and the external momentum pµ to (4.63) and (4.58), we obtain

ηµνBµν = D B22 + p2 B21 = A0(m2
2) + m2

1 B0(p2,m2
1,m

2
2) , (4.66)

pµBµν =
[
B22 + p2B21

]
pν = 1

2

[
A0(m2

2) + f1(p2,m2
1,m

2
2) B1(p2,m2

1,m
2
2)
]
pν , (4.67)

which simplifies to the the following system of equations

D B22 + p2 B21 = A0(m2
2) + m2

1B0(p2,m2
1,m

2
2) , (4.68)

B22 + p2 B21 = 1
2
[
A0(m2

2) + f1(p2,m2
1,m

2
2) B1(p2,m2

1,m
2
2)
]
. (4.69)

Subtracting (4.69) from (4.68) ultimately gives

B22(p2,m2
1,m

2
2) = 1

D − 1

[
m2

1B0(p2,m2
1,m

2
2) − 1

2f1(p2,m2
1,m

2
2) B1(p2,m2

1,m
2
2) + 1

2A0(m2
2)
]
,

which can in turn be injected into (4.69) to deduce B21

B21(p2,m2
1,m

2
2) = 1

p2

[1
2A0(m2

2) + 1
2f1(p2,m2

1,m
2
2) B0(p2,m2

1,m
2
2) − B22(p2,m2

1,m
2
2)
]
.

Note that the previous definitions of B21 and B22 are only useful as long as p2 6= 0, if p2 = 0
one has to go back to (4.64) and (4.65) to derive the analytical form of B21 and B22.

Vector integral Cµ(p2
1, p

2
2,m

2
1,m

2
2,m

2
3)

The vector three-point function Cµ(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) is defined as

Cµ(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) =

∫
dDq

iπ2 (2πµR)2ε qµ[
q2 −m2

1
][(
p1 + q

)2 −m2
2
][(
p1 + p2 + q

)2 −m2
3
] , (4.70)
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where the Feynman prescription iε has been omitted for brevity. Lorentz invariance allows for
the following Passarino-Veltman decomposition of the vector three-point function Cµ

Cµ = pµ1C11 + pµ2C12 . (4.71)

If we respectively apply the external momenta p1,µ and p2,µ on (4.71), we obtain

p1µC
µ = p2

1 C11 + p1.p2 C12 , (4.72)
p2µC

µ = p1.p2 C11 + p2
2 C12 . (4.73)

If we now apply the external momenta p1,µ and p2,µ on (4.70), we obtain on the other hand

p1µC
µ =

∫
dDq

iπ2 (2πµR)2ε p1.q[
1
][

2
][

3
] , (4.74)

p2µC
µ =

∫
dDq

iπ2 (2πµR)2ε p2.q[
1
][

2
][

3
] , (4.75)

where we have introduced the following handy notation[
q2 −m2

1
]

=
[
1
]
,

[(
p1 + q

)2 −m2
2
]

=
[
2
]
,

[(
p1 + p2 + q

)2 −m2
3
]

=
[
3
]
. (4.76)

Since

p1.q = 1
2
[ [(

p1 + q
)2 −m2

2
]
−
[
q2 −m2

1
]

+ f1(p1,m
2
1,m

2
2)
]
, (4.77)

p2.q = 1
2
[ [(

p1 + p2 + q
)2 −m2

3
]
−
[(
p1 + q

)2 −m2
1
]

+ f2(p1, p2,m
2
2,m

2
3
)]
, (4.78)

with

f1(p2
1,m

2
1,m

2
2) = (m2

2 −m2
1 − p2

1) , (4.79)

f2(p2
1, p

2
2,m

2
2,m

2
3) =

[
m2

3 −m2
2 −

(
p1 + p2

)2 + p2
1

]
, (4.80)

then the equations (4.74) and (4.75) can be rewritten as

p1µC
µ = 1

2

∫
dDq

iπ2 (2πµR)2ε
[ 1[

1
][

3
] − 1[

2
][

3
]] + 1

2f1 C0 , (4.81)

p2µC
µ = 1

2

∫
dDq

iπ2 (2πµR)2ε
[ 1[

1
][

2
] − 1[

1
][

3
]] + 1

2f2 C0 , (4.82)

where the arguments of the functions f1, f2, C0 and Cµ have been omitted for brevity. Equating
the previous expressions with (4.72) and (4.73) respectively, gives eventually

R1 = p2
1 C11 + p1.p2 C12 = 1

2
[
B0(1, 3)−B0(2, 3) + f1 C0

]
, (4.83)

R2 = p1.p2 C11 + p2
2 C12 = 1

2
[
B0(1, 2)−B0(1, 3) + f2 C0

]
, (4.84)

where the notation B0(i, j) corresponds to

B0(i, j) =
∫
dDq

iπ2 (2πµR)2ε 1[
i
][
j
] , with i, j = 1, 2, 3 and i 6= j . (4.85)
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Note that because B0(1, 3) − B0(2, 3), B0(1, 2) − B0(1, 3), and C0 are UV-finite, the integrals
C11 and C12 must also be UV-finite. The equations (4.83) and (4.84) can then be rewritten as(

R1
R2

)
=
(

p2
1 p1.p2

p1.p2 p2
2

)
︸ ︷︷ ︸

X

(
C11
C12

)
, (4.86)

where the 2 × 2 matrix X is the so-called Gram matrix. If the Gram matrix is invertible, it is
possible to decompose the form factors C11 and C12 over a basis of scalar integrals. The inverse
of the Gram matrix then takes the following analytical form

X−1 = 1
p2

1p
2
2 −

(
p1.p2

)2
(

p2
2 −p1.p2

−p1.p2 p2
1

)
. (4.87)

In the case where the Gram matrix is not invertible, the system cannot be solved, and therefore
the PV reduction becomes inefficient. We finally obtain the solution(

C11
C12

)
= X−1

(
R1
R2

)
. (4.88)

Tensor integral Cµν(p2
1, p

2
2,m

2
1,m

2
2,m

2
3)

The tensor three-point function Cµν(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) is defined as

Cµν(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) =

∫
dDq

iπ2 (2πµR)2ε qµqν[
q2 −m2

1
][(
p1 + q

)2 −m2
2
][(
p1 + p2 + q

)2 −m2
3
] , (4.89)

where the Feynman prescription has been omitted for simplicity. Lorentz invariance allows for
the following decomposition of the tensor integral Cµν

Cµν = pµ1p
ν
1 C21 + pµ2p

µ
2C22 + (pµ1pν2 + pµ2p

ν
1) C23 + ηµν C24 . (4.90)

If we apply the external momenta p1,µ and p2,µ, and the metric tensor ηµν on (4.90), we obtain

p1µC
µν =

[
p2

1C21 + p1.p2 C23 + C24
]
pν1 +

[
p1.p2 C22 + p2

1 C23
]
pν2 , (4.91)

p2µC
µν =

[
p1.p2 C21 + p2

2 C23
]
pν1 +

[
p2

2 C22 + p1.p2 C23 + C24
]
pν2 , (4.92)

ηµνC
µν = D C24 + p2

1 C21 + p2
2 C22 + 2p1.p2 C23 . (4.93)

If we now apply p1,µ, p2,µ, and ηµν on (4.89),and use (4.77) and (4.78), this gives

p1µC
µν =

∫
dDq

iπ2 (2πµR)2ε p1.q q
ν[

1
][

2
][

3
] =

∫
dDq

iπ2 (2πµR)2ε q
ν

2

[
1[

1
][

3
] − 1[

2
][

3
] + f1[

1
][

2
][

3
]] ,

p2µC
µν =

∫
dDq

iπ2 (2πµR)2ε p2.q q
ν[

1
][

2
][

3
] =

∫
dDq

iπ2 (2πµR)2ε q
ν

2

[
1[

1
][

2
] − 1[

1
][

3
] + f2[

1
][

2
][

3
]] ,

ηµνC
µν =

∫
dDq

iπ2 (2πµR)2ε q2[
1
][

2
][

3
] =

∫
dDq

iπ2 (2πµR)2ε

[
1[

2
][

3
] + m2

1[
1
][

2
][

3
]] .

With the help of the notation introduced in (4.85), this system of equations can be rewritten as

p1µC
µν = 1

2

[
Bν(1, 3) + f1C

ν −
∫
dDq

iπ2 (2πµR)2ε qν − pν1[
q2 −m2

2
][(
p2 + q

)2 −m2
3
]] ,(4.94)

p2µC
µν = 1

2
[
Bν(1, 2) − Bν(1, 3) + f2C

ν
]
, (4.95)

ηµνC
µν = B0(2, 3) + m2

1 C0 , (4.96)



72 Chapter 4: Regularization and Renormalization

where we have performed the momentum transformation q → q − p1 in (4.94), and where

Bν(1, 2) = Bν(p2
1,m

2
1,m

2
2) = pν1 B1(p2

1,m
2
1,m

2
2) = pν1 B1(1, 2) ,

Bν(1, 3) = Bν((p1 + p2)2,m2
1,m

2
3
)

=
(
p1 + p2

)ν
B1(1, 3) ,

B0(2, 3) = B0(p2
2,m

2
2,m

2
3) .

Using the previous definitions and Lorentz invariance we obtain

p1µC
µν = 1

2

[(
p1 + p2

)ν
B1(1, 3) + f1

[
pν1C11 + pν2C12

]
− pν2B1(p2

2,m
2
2,m

2
3) + pν1B0(2, 3)

]
,

p2µC
µν = 1

2

[
pν1B1(1, 2) −

(
p1 + p2

)ν
B1(1, 3) + f2

[
pν1C11 + pν2C12

]]
,

ηµνC
µν = B0(2, 3) + m2

1 C0 .

Combining (4.91), and the first line of the previous system of equations gives

p2
1C21 + p1.p2C23 + C24 = 1

2
[
B1(1, 3) + B0(2, 3) + f1 C11

]
= R3 , (4.97)

p1.p2C22 + p2
1C23 = 1

2
[
B1(1, 3) − B1(p2

2,m
2
2,m

2
3) + f1 C12

]
= R5 . (4.98)

Similarly combining (4.92), and the second line of the same system of equations gives

p1.p2C21 + p2
2C23 = 1

2
[
B1(1, 2) −B1(1, 3) + f2 C11

]
= R4 , (4.99)

p2
2C22 + p1.p2C23 + C24 = 1

2
[
−B1(1, 3) + f2 C12

]
= R6 . (4.100)

Combining (4.97) with (4.99), and (4.98) with (4.100), and solving the two systems by inverting
the 2× 2 Gram matrix gives the following results for the form factors C21, C22, and C23(

C21
C23

)
= X−1

(
R3 − C24

R4

)
,

(
C23
C22

)
= X−1

(
R5

R6 − C24

)
. (4.101)

The last step of the reduction procedure of the tensor integral Cµν consists in finding an analyt-
ical solution for the remaining form factor C24. This can be done by equating (4.93) and (4.96),
and assembling the resulting equation with (4.97) and (4.99) such that we have

DC24 + p2
1C21 + p2

2C22 + 2p1.p2C23 = m2
1C0 + B0(2, 3) , (4.102)

p2
1C21 + p1.p2C23 + C24 = 1

2
[
B1(1, 3) +B0(2, 3) + f1C11

]
, (4.103)

p2
2C22 + p1.p2C23 + C24 = 1

2
[
−B1(1, 3) + f2C12

]
. (4.104)

Subtracting (4.103) and (4.104) from (4.102) then directly gives

C24 = 1(
D − 2

)[m2
1C0 −

1
2
[
f1C11 + f2C12 − B0(2, 3)

]]
. (4.105)

As a final remark let us note that because C0, C11 and C12 are UV-finite, C24 has to be UV-
divergent. C24 is moreover the only UV-divergent form factor of Cµν , this result can be deduced
after plugging (4.105) into (4.101). The UV-divergent piece of C24 more specifically reads

UV
[
C24

]
= 1

4ε̄ . (4.106)
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Tensor integral Cµνρ(p2
1, p

2
2,m

2
1,m

2
2,m

2
3)

The tensor three-point function Cµν(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) is defined as

Cµνρ(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) =

∫
dDq

iπ2 (2πµR)2ε qµqνqρ[
q2 −m2

1
][(
p1 + q

)2 −m2
2
][(
p1 + p2 + q

)2 −m2
3
] ,(4.107)

where the Feynman prescription has been omitted for simplicity. Lorentz invariance allows for
the following decomposition of the tensor integral Cµνρ

Cµνρ = pµ1p
ν
1p
ρ
1 C31 + pµ2p

ν
2p
ρ
2 C32 + {p1p1p2}µνρ C33 + {p1p2p2}µνρ C34

+ {p1η}µνρ C35 + {p2η}µνρ C36 , (4.108)

with

{p1p1p2}µνρ = pµ1p
ν
1p
ρ
2 + pν1p

ρ
1p
µ
2 + pρ1p

µ
1p

ν
2 , {p1η}µνρ = pµ1η

νρ + pν1η
ρµ + pρ1η

µν , (4.109)
{p1p2p2}µνρ = pµ1p

ν
2p
ρ
2 + pν1p

ρ
2p
µ
2 + pρ1p

µ
2p

ν
2 , {p2η}µνρ = pµ2η

νρ + pν2η
ρµ + pρ2η

µν . (4.110)

Apart from the increasing complexity of the calculations, the reduction procedure of Cµνρ re-
mains the same as for Cµν . The procedure is summarized as follows i) contract (4.108) with
the external momenta p1,ρ and p2,ρ ii) construct a set of linear equations by first selecting in
both p1,ρC

µνρ and p2,ρC
µνρ the scalar coefficient appearing in front of a given tensor component

and assume that each of those coefficients is equal to a scalar function Ri iii) the analytic form
of each Ri (expressed in terms of scalar integrals) is obtained after contraction of (4.107) with
the external momenta p1,ρ and p2,ρ and the extraction of the relevant tensor component iv) as
soon as all the Ri are known, each system of equations is then solved by inverting the Gram
matrix. The scalar products p1,ρC

µνρ and p2,ρC
µνρ have four possible tensor components in

total, namely ηµν , pµ1pν1 , p
µ
2p

ν
2 , and

(
pµ1p

ν
2 + pν1p

µ
2
)
. Following the procedure detailed above gives(

C35
C36

)
= X−1

(
R10
R11

)
,

for the ηµν component, with the scalar functions R10 and R11 defined such that

R10 = 1
2
[
f1C24 + B22(1, 3) − B22(p2

2,m
2
2,m

2
3)
]
,

R11 = 1
2
[
f2C24 +B22(1, 2)−B22(1, 3)

]
,

and (
C31
C33

)
= X−1

(
R12 − 2C35

R13

)
,

for the pµ1pν1 component, with the scalar functions R12 and R13 defined such that

R12 = 1
2
[
f1C21 +B21(1, 3)−B0(2, 3)

]
,

R13 = 1
2
[
f2C21 +B21(1, 2)−B21(1, 3)

]
,

and (
C34
C32

)
= X−1

(
R14

R15 − 2C36

)
,
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for the pµ2pν2 component, with the scalar functions R14 and R15 defined such that

R14 = 1
2
[
f1C22 + B21(1, 3) − B21(p2

2,m
2
2,m

2
3)
]
,

R15 = 1
2
[
f2C22 −B21(1, 3)

]
,

and (
C33
C34

)
= X−1

(
R16 − C36
R17 − C35

)
,

for the (pµ1pν2 + pν1p
µ
2 ) component, with the scalar functions R16 and R17 defined such that

R16 = 1
2
[
f1C23 +B21(1, 3) +B1(p2

2,m
2
2,m

2
3)
]
,

R17 = 1
2
[
f2C23 −B21(1, 3)

]
.

Four-point vector integral Dµ(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m

2
4)

The four-point vector integral Dµ is defined as

Dµ =
∫
dDq

iπ2
(2πµR)2ε

qµ[
q2 −m2

1
][(
p1 + q

)2 −m2
2
][(
p1 + p2 + q

)2 −m2
3
][(
p1 + p2 + p3 + q

)2 −m2
4
] , (4.111)

where the arguments of Dµ, and the Feynman prescription iε have been omitted for brevity.
Lorentz covariance allows us to decompose the four-point function Dµ such that

Dµ = pµ1D11 + pµ2D12 + pµ3D13 . (4.112)

If we respectively contract (4.112) with the external momenta p1,µ, p2,µ, and p3,µ we obtain

p1,µD
µ = p2

1D11 + p1.p2D12 + p1p3D13 = R20 , (4.113)
p2,µD

µ = p1.p2D11 + p2
2D12 + p2p3D13 = R21 , (4.114)

p3,µD
µ = p1.p3D11 + p2p3D12 + p2

3D13 = R22 . (4.115)

This system of equations can be rewritten in terms of the 3× 3 Gram matrix X such that p2
1 p1.p2 p1.p3

p1.p2 p2
2 p2.p3

p1.p3 p2.p3 p2
3


︸ ︷︷ ︸

X

D11
D12
D13

 =

R20
R21
R22

 , (4.116)

and therefore, D11
D12
D13

 = X−1

R20
R21
R22

 . (4.117)

Similarly, if we now contract (4.111) with the external momenta p1,µ, p2,µ, and p3,µ, this gives

p1µD
µ =

∫
dDq

iπ2 (2πµR)2ε p1.q[
1
][

2
][

3
][

4
] = 1

2

∫
dDq

iπ2 (2πµR)2ε
[

1[
1
][

3
][

4
] − 1[

2
][

3
][

4
]]+ 1

2f1D0 ,(4.118)

p2µD
µ =

∫
dDq

iπ2 (2πµR)2ε p2.q[
1
][

2
][

3
][

4
] = 1

2

∫
dDq

iπ2 (2πµR)2ε
[

1[
1
][

2
][

4
] − 1[

1
][

3
][

4
]]+ 1

2f2D0 ,(4.119)

p3µD
µ =

∫
dDq

iπ2 (2πµR)2ε p3.q[
1
][

2
][

3
][

4
] = 1

2

∫
dDq

iπ2 (2πµR)2ε
[

1[
1
][

2
][

3
] − 1[

1
][

2
][

4
]]+ 1

2f3D0 ,(4.120)



Chapter 4: Regularization and Renormalization 75

where we have introduced the convenient notations[
1
]

=
[
q2 −m2

1
]
,

[
2
]

=
[(
p1 + q

)2 −m2
2
]
,[

3
]

=
[(
p1 + p2 + q

)2 −m2
3
]
,

[
4
]

=
[(
p1 + p2 + p3 + q

)2 −m2
4
]
,

and where f1 and f2 have already been defined in (4.79) and (4.80), and f3 is given by

f3(p2
1, p

2
2, p

2
3,m

2
2,m

2
3,m

2
4) =

[
m2

4 −m2
3 −

(
p1 + p2 + p3

)2 +
(
p1 + p2

)2]
. (4.121)

Equating (4.113), (4.114), and (4.115) with (4.118), (4.119), and (4.120) respectively leads to

R20 = 1
2
[
f1 D0 + C0(1, 3, 4)− C0(2, 3, 4)

]
, (4.122)

R21 = 1
2
[
f2 D0 + C0(1, 2, 4)− C0(1, 3, 4)

]
, (4.123)

R22 = 1
2
[
f3D0 + C0(1, 2, 3)− C0(1, 2, 4)

]
, (4.124)

and D11
D12
D13

 = X−1

R20
R21
R22

 .

Four-point tensor integral Dµν(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m

2
4)

The four-point tensor integral Dµν is defined as

Dµν =
∫
dDq

iπ2
(2πµR)2ε

qµqν[
q2 −m2

1
][(
p1 + q

)2 −m2
2
][(
p1 + p2 + q

)2 −m2
3
][(
p1 + p2 + p3 + q

)2 −m2
4
] , (4.125)

where the arguments of Dµν , and the Feynman prescription iε have been omitted for brevity.
Lorentz covariance allows us to decompose the four-point function Dµν such that

Dµν = pµ1p
ν
1D21 + pµ2p

ν
2D22 + pµ3p

ν
3D23 + {p1p2}µνD24 + {p1p3}µνD25

+ {p2p3}µνD26 + ηµνD27 . (4.126)

The procedure to derive the analytical expression of the form factors D21, D22, D23, D24, D25,
D26, and D27 has already been detailed when reviewing the Cµνρ function, we do not repeat it
here. The only difference comes from the fact that the exact form of D27 can be obtained by
contracting (4.125) and (4.126) with the metric tensor, equating the two resulting equations,
and then subtracting from the latter R30, R34, and R38. Following this procedure, we obtainD21

D24
D25

 = X−1

R30 −D27
R31
R32

 ,

for the pν1 component, with the scalar functions R30, R31, and R32 defined such that

R30 = 1
2
[
f1D11 + C0(2, 3, 4) + C11

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)]
,

R31 = 1
2
[
f2D11 + C11

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)
− C11

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)]
,

R32 = 1
2
[
f3D11 + C11

(
p2

1, p
2
2,m

2
1,m

2
2,m

2
3
)
− C11

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)]
,
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and D24
D22
D26

 = X−1

 R33
R34 −D27

R35

 ,

for the pν2 component, with the scalar functions R33, R34 and R35 defined such that

R33 = 1
2
[
f1D12 + C11

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)
− C11

(
p2

2, p
2
3,m

2
2,m

2
3,m

2
4
)]
,

R34 = 1
2
[
f2D12 + C12

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)
− C11

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)]
,

R35 = 1
2
[
f3D12 + C12

(
p2

1, p
2
2,m

2
1,m

2
2,m

2
3
)
− C12

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)]
,

and D25
D26
D23

 = X−1

 R36
R37

R38 −D27

 ,

for the pν3 component, with the scalar functions R36, R37 and R38 defined such that

R36 = 1
2
[
f1D13 + C12

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)
− C12

(
p2

2, p
2
3,m

2
2,m

2
3,m

2
4
)]
,

R37 = 1
2
[
f2D13 + C12

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)
− C12

(
(p1 + p2)2, p2

3,m
2
1,m

2
3,m

2
4
)]
,

R38 = 1
2
[
f3D13 − C12

(
p2

1, (p2 + p3)2,m2
1,m

2
2,m

2
4
)]
,

where D27 is defined as

D27 = 1
(D − 3)

[
m2

1D0 −
1
2
[
f1D11 + f2D12 + f3D13 − C0(2, 3, 4)

]]
. (4.127)

Limitations of the Passarino-Veltman reduction method

The Passarino-Veltman (PV) decomposition is an efficient reduction technique employed in many
modern loop calculations. Yet, this procedure still exhibits some intrinsic limitations that make
its use highly unadvisable, if not impossible, in certain cases. In the following, we detail some
pathological cases for which an alternative to the PV reduction has to be found to carry out the
reduction program.

The validity of the PV algorithm first depends on the assumption that the Gram matrix is
invertible, i.e the Gram determinant is non-zero. However, there exists some specific kinematical
configurations, called exceptional phase-space points, for which the Gram determinant exactly
vanishes, this is the case for instance when two external momenta are collinear one to another. In
such configurations, the PV algorithm is bounded to fail. Besides, even if the Gram determinant
is not exactly zero, but close to zero, the brute-force application of the PV algorithm can generate
numerical instabilities10. Second, the Passarino-Veltman algorithm relies on the idea that the
scalar product of a loop momentum with an external momentum can always be expressed as a
linear combination of inverse propagators. This statement is true at one-loop, but not necessarily
at higher orders. The PV reduction scheme is therefore not the optimal choice for calculations
beyond one-loop. Third, the iterative nature of the PV algorithm directly implies a rapid
growth in the number of terms when evaluating high-rank tensor integrals. The PV reduction is
therefore not the best choice when dealing with loop integrals exhibiting many Lorentz indices.

10The numerical instabilities are due to a loss of significance which occurs when subtracting two nearly equal
number, such as p2

1p2
2 − (p1.p2)2 for instance when p1, and p2 are (almost) collinear.
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4.5 Renormalization
Now that the poles have been isolated from the finite terms, the last step of the procedure consists
in absorbing UV divergences into the redefinition of all the fields and parameters of the original
tree-level Lagrangian, the so-called bare fields and bare parameters, by means of a technique
called multiplicative renormalization. This technique is called multiplicative renormalization
because it amounts to re-expressing each bare quantity, usually denoted by the subscript "0", as
a product between its renormalized counterpart and a multiplicative factor Zi such that

φ0 = Z
1/2
φ φ , g0 = Zgg , (4.128)

where φ, and g respectively correspond to generic renormalized fields, and coupling constants,
and where the Zi are the renormalization constants (RCs). In perturbation theory, it is possible
to perform a series expansion around unity for each RC. At one-loop, this gives in our notations

Z
1/2
φ = 1 + 1

2δZφ , Zg = 1 + δZg . (4.129)

With the help of (4.129), it is possible to split the original tree-level Lagrangian L(φ0, g0) into
a renormalized part L(φ, g), and a part containing the counter-terms (CT),

L(φ0, g0) = L(φ, g) + Lct(φ, g, δZφ, δZg) . (4.130)

The first term on the right-hand side of (4.130) is similar to the original tree-level Lagrangian,
except that all the bare fields and parameters have been replaced by their renormalized counter-
part. The second term on the other hand introduces new interactions (and hence new Feynman
diagrams), whose aim is to cancel UV-divergences originating from the renormalized Lagrangian
L(φ, g) (through loop calculations). If the divergent part of each counter-term is fixed by the
requirement that it should cancel against the UV poles of the loops, the finite part depends on
the other hand on the choice of the renormalization scheme. There are several renormalization
schemes available on the market, in this thesis, we employ the on-shell (OS) scheme, and the
modified minimal subtraction scheme MS (resp. DR11 for SUSY loop calculations).

The on-shell scheme consists in fixing the counter-terms such that the renormalized param-
eters are set equal to their physical value at all orders in perturbation theory. Renormalization
constants being fixed at physical scales, physical observables and parameters are consequently
scale independent in this scheme, i.e. they do not run with the energy. The OS scheme is a
scheme that is frequently encountered in the literature, however its use, in the context of per-
turbative QCD, for the renormalization of the gluon wave-function (WF), the strong coupling
constant, and the light-quark masses and WFs is made ambiguous by the fact at low-energies
quarks and gluons are screened inside hadrons. More specifically, this ambiguity can be traced
back to the fact that UV-divergences are subtracted from the aforementioned quantities at scales
where perturbation theory is no longer reliable, while we assume perturbativity in the first place.
In this case, a more suitable choice is the MS scheme (resp. DR scheme for supersymmetric loop
calculations12) where the only requirement is that the counter-terms should cancel the UV-part
of the loop contributions.

In this section, we will apply the procedure of multiplicative renormalization detailed above
to the case of the free Lagrangian describing the dynamics of a set of generic massive complex
scalar fields, massive fermions, and massive gauge fields with mixing. The goal of this section is
to determine the analytical expressions of all the RCs needed to obtain a UV-finite result.

11DR is defined as the combined use of DRED and modified minimal subtraction.
12At one-loop, the MS and DR scheme only differ by finite terms, consequently counter-terms calculated in the

the MS or in the DR scheme are completely equivalent.
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f̃j f̃i
M = i Γ̂ij
Γ̂ij = δij

(
p2 −m2

i

)
+ Π̂ij

(
p2)

Figure 4.3: One-particle irreducible two-point function for generic scalar fields f̃i with mixing.
Γ̂ denotes the matrix of inverse propagators, Π̂ij

(
p2) is the renormalized self-energy, and p is

the momentum of the external particles. The momentum p flows from the left to the right.

Renormalization of generic scalar fields with mixing

At tree-level, the free Lagrangian for a set of massive complex scalar fields f̃i reads

L =
(
∂µf̃

∗
0,i ∂

µf̃0,j − m2
f̃i,0

f̃∗0,if̃0,j
)
δij . (4.131)

Knowing that, at one-loop, the scalar fields f̃0,i and their masses m2
f̃i,0

are renormalized as

f̃0,j =
[
δjk + 1

2
(
δZf̃

)
jk

]
f̃k , f̃∗0,i = f̃∗`

[
δi` + 1

2
(
δZ∗

f̃

)
i`

]
,

m2
f̃i,0

= m2
f̃i

+ δm2
f̃i
,

we obtain the following expression for the renormalized self-energy Π̂ij
(
p2)

Π̂ij
(
p2) = Πij

(
p2)+ 1

2
(
p2 −m2

f̃i

)(
δZf̃

)
ij

+ 1
2
(
p2 −m2

f̃j

)(
δZ∗

f̃

)
ji
− δij δm2

f̃i
. (4.132)

In the previous expression, Πij
(
p2) denotes to the unrenormalized self-energy, which originates

from the calculation of loop diagrams, and p is the momentum of the external particles. The
renormalized self-energy Π̂ij

(
p2) is linked to the matrix of inverse propagators Γ̂ by the relation

given in Fig. 4.3. The next step of the procedure then consists in fixing the counter-terms by
means of the renormalization conditions. In the on-shell scheme, those conditions read

R̃e Γ̂ij
(
p2)∣∣∣

p2=m2
f̃j

= 0 , (4.133)

lim
p2→m2

f̃i

1
p2 −m2

f̃i

R̃e Γ̂ii
(
p2) = 1 , (4.134)

which means that we simultaneously require the real part of the pole of the propagator to be
the renormalized mass, i.e. the physical mass, and the residue of the pole to be one. The mass
counter-term δm2

f̃i
can be obtained from (4.133), in the case where i = j. The expression of the

off-diagonal Wave-Function Renormalization Constants (WFRCs) δZij can also be derived from
(4.133), but for i 6= j. Finally, the diagonal WFRCs δZii can be determined from (4.134), after
having injected the definition of δm2

f̃i
into the previous equation. Eventually, the counter-terms

for a set of complex scalar fields take the following form

δm2
f̃i

= R̃e
[
Πii(m2

f̃i
)
]
,

(δZf̃ )ij = 2
m2
f̃i
−m2

f̃j

R̃e
[
Πij(m2

f̃j
)
]

with i 6= j ,

(δZf̃ )ii = − R̃e
[
Π̇ii(m2

f̃i
)
]

with Π̇ii(m2
f̃i

) = ∂Πii(p2)
∂p2

∣∣∣
p2=m2

f̃i

.

The WFRCs and the mass counter-terms are consequently expressed in terms of the unrenor-
malized self-energy, which is calculable order by order in perturbation theory.
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fj fi
M = i ūi

(
p
)

Γ̂ij uj
(
p
)

Γ̂ij = δij
(
/p−mfi

)
+ Σ̂ij

(
p
)

Figure 4.4: The one-particle irreducible two-point function for generic fermions fi with mixing.
Γ̂ denotes the matrix of inverse propagators, Σ̂ij

(
p2) is the renormalized self-energy, and p is

the momentum of the external particles. The momentum p flows from the left to the right.

Renormalization of generic fermion fields with mixing

At tree-level, the free Lagrangian for a set of massive four-components fermions fi reads

L = f̄0,i
(
iγµ∂µ −mfi,0

)
f0,j δij . (4.135)

At one-loop, the Dirac spinors f0,i, and their mass mfi,0 are reparameterized as follows

f0,j =
[
δjk + 1

2
(
δZLf

)
jk
PL + 1

2
(
δZRf

)
jk
PR
]
fk ,

f̄0,i = f̄l
[
δli + 1

2
(
δZR†f

)
li
PL + 1

2
(
δZL†f

)
li
PR
]
,

mfi,0 = mfi + δmfi ,

where PL and PR are the chiral projectors defined in Appendix A, and δZLf and δZRf are the
left-handed, and right-handed WFRCs of the fermions. Injecting the previous equations into the
tree-level Lagrangian, leads to the following expression for the renormalized self-energy Σ̂ij

(
p
)

Σ̂ij
(
p
)

= Σ̂V,L
ij

(
p
)
/pPL + Σ̂V,R

ij

(
p
)
/pPR + Σ̂S,L

ij

(
p
)
PL + Σ̂S,R

ij

(
p
)
PR , (4.136)

with

Σ̂V,L/R
ij

(
p
)

= ΣV,L/R
ij

(
p
)

+ 1
2
[(
δZ

L/R
f

)
ij

+
(
δZ

L/R†
f

)
ij

]
,

Σ̂S,L/R
ij

(
p
)

= ΣS,L/R
ij

(
p
)
− 1

2
[
mf,i

(
δZ

L/R
f

)
ij

+
(
δZ

R/L†
f

)
ij
mf,j

]
− δmf,i δij ,

where ΣV,L
ij and ΣV,R

ij respectively denote the left-, and right-handed vector part of the unrenor-
malized self-energy, ΣS,L

ij and ΣS,R
ij respectively correspond to the left-, and right-handed scalar

part of the unrenormalized self-energy, and p is the momentum of the external particles. ΣV,L/R
ij ,

and ΣS,L/R
ij are the so-called vector, and scalar parts of the unrenormalized self-energy Σ̂ij

(
p
)

because they are respectively proportional to /p, and mf . The renormalized self-energy Σ̂ij
(
p
)
is

linked to the matrix of inverse propagators Γ̂ by the relation given in Fig. 4.4. Then, we fix the
counter-terms with the help of the on-shell renormalization conditions, which are in this case

R̃e Γ̂ij
(
p
)
uj
(
p
)∣∣∣
p2=m2

fj

= 0 , (4.137)

lim
p2→m2

fi

1
/p−mfi

R̃e Γ̂ii
(
p
)
ui
(
p
)

= ui
(
p
)
. (4.138)

The mass counter-term δmfi is obtained from (4.137), by taking i = j. The derivation works
as follows i) rewrite the condition (4.137) as a system of two equations (one for each chiral
component) ii) add those two equations to cancel the WFRCs dependence iii) re-express δmfi
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V a
µ V b

ν

M = −i εµ
(
p
)

Γ̂abµν ε∗ν
(
p
)

Γ̂abµν = −
(
p2 −m2

V a
)
δab ηµν − Π̂µν

(
p
)

Figure 4.5: The one-particle irreducible two-point function for vector fields V with mixing. Γ̂
denotes the matrix of inverse propagators, Σ̂ij

(
p2) is the renormalized self-energy, and p is the

momentum of the external particles. The momentum p flows from the left to the right.

in terms of the various components of the unrenormalized self-energy, and the mass mfi . The
off-diagonal Wave-Function Renormalization Constants (WFRCs) δZij are also derived from
(4.137), but for i 6= j. Finally, the diagonal WFRCs δZii are determined by injecting the
definition of δmfi into (4.138). Eventually, the counter-terms take the following form

δmfi = 1
2 R̃e

[
mi

(
ΣV,L
ii

(
mfi

)
+ ΣV,R

ii

(
mfi

))
+ ΣS,L

ii

(
mfi

)
+ ΣS,R

ii

(
mfi

)]
,

(δZL/Rf )ij = 2
m2
fi
−m2

fj

× R̃e
[
m2
jΣ

V,L/R
ij

(
mfj

)
+ mimjΣV,R/L

ij

(
mfj

)
+ miΣS,L/R

ij

(
mfj

)
+ mjΣS,R/L

ij

(
mfj

)]
,

(δZL/Rf )ii = − R̃e
[
ΣV,L/R
ii

(
mfi

)]
+ 1

2mfi

R̃e
[
ΣS,L/R
ii

(
mfi

)
− ΣS,R/L

ii

(
mfi

)]
− mfi R̃e

[
mfi

(
Σ̇V,L/R
ii

(
mfi

)
+ Σ̇V,R/L

ii

(
mfi

))
+ Σ̇S,L/R

ii

(
mfi

)
+ Σ̇S,R/L

ii

(
mfi

)]
.

Renormalization of generic vector bosons with mixing

At tree-level, the free Lagrangian for a set of massive vector fields V reads

L = − 1
2
(
∂ρV µ

0,a ∂ρV
ν

0,b ηµν − ∂ρV µ
0,a ∂µV

ν
0,b ηνρ

)
δab + m2

V a,0V
µ

0,aV
ν

0,b δab ηµν . (4.139)

At one-loop, the fields and mass parameters can be renormalized as

V µ
0,a =

[
δac + 1

2
(
δZV

)
ac

]
V µ
c , V ν

0,b =
[
δbd + 1

2
(
δZV

)
bd

]
V ν
d , (4.140)

m2
V a,0 = m2

V a + δm2
V a . (4.141)

The renormalized self-energy Π̂µν
(
p2) can be split into a transverse and a longitudinal part

Π̂ab
µν

(
p
)

=
(
ηµν −

pµpν
p2

)
Π̂ab
T

(
p
)

+ pµpν
p2 Π̂ab

L

(
p
)
, (4.142)

respectively denoted as Π̂ab
T

(
p
)
and Π̂ab

L

(
p
)
. Gauge invariance of the renormalized self-energy

Π̂µν
(
p
)
directly fixes the longitudinal component to be zero, i.e. Π̂ab

L

(
p
)

= 0. In the following,
we therefore suppress all subscripts T , as it is understood that we are systematically referring to
the transverse part of the renormalized self-energy anyway. Injecting (4.140), and (4.141) into
(4.139) leads to the following expression for Π̂ab

(
p
)

Π̂ab(p) = Πab

(
p
)

+ 1
2
(
p2 −m2

V a
)(
δZV

)
ab

+ 1
2
(
p2 −m2

V b
)(
δZV

)
ba
− δab δm2

V a . (4.143)

In the previous expression, Πab

(
p
)
denotes to the unrenormalized self-energy, which originates

from the calculation of loop diagrams, and p is the momentum of the external particles. The



Chapter 4: Regularization and Renormalization 81

renormalized self-energy Π̂ab
µν

(
p
)
is linked to the matrix of inverse propagators Γ̂µν by the relation

given in Fig. 4.5. The counter-terms are then fixed by applying the on-shell renormalization
conditions, which read as follows for a set of generic vector fields

R̃e Γ̂abµν
(
p
)
εν
(
p
)∣∣∣
p2=m2

V b

= 0 , (4.144)

lim
p2→m2

V a

1
p2 −m2

V a
R̃e Γ̂aaµν

(
p2)εν(p) = −εµ

(
p
)
. (4.145)

The mass counter-term δm2
V a can be obtained from (4.144), by taking a = b. The off-diagonal

WFRCs (δZV )ab can also be derived from (4.144), but for a 6= b. Finally, the diagonal WFRCs
(δZV )aa are fixed by (4.145), after having injected the definition of δm2

V a into the previous
equation. Eventually, the counter-terms take the following form

δm2
V a = R̃e

[
Πaa(m2

V a)
]
,

(δZṼ )ab = 2
m2
V a −m2

V b
R̃e

[
Πab(m2

V b)
]
,

(δZV )aa = − R̃e
[
Π̇aa(m2

V a)
]
.

In practice, only the last counter-term will be needed in the calculations reported in Chapters
5 and 6. This is due to the fact that the gauge symmetry SU(3)C forbids mass corrections to
the gluon, and to the fact that even if the gauge group of QCD were broken, gluons could not
mix with any other vector field whatsoever13. So, neither the off-diagonal WFRCs, nor the mass
counter-terms are needed for the gluon in QCD or SUSY-QCD.

Renormalization of the strong coupling constant

The renormalization of the strong coupling constant gs proceeds exactly as detailed before for
the two-point functions. We start from the tree-level Lagrangian of SUSY-QCD, and renormalize
the gluon field, the quark, gluino, and squark fields and masses, and the coupling constant gs
such that gs,0 = gs+δgs. In the case of the quark-quark-gluon interaction, this gives for instance
the following counter-term Lagrangian at one-loop

LCT = q̄cmi gaµγ
µ
[
δgsδij + gs

2
([(

δZLq
)
ij

+
(
δZL†q

)
ij

]
PL +

[(
δZRq

)
ij

+
(
δZR†q

)
ij

]
PR + δZg δij

)]
T acmcnq

cn
j .

Then, we impose that the sum of this counter-term and the vertex corrections Vgqq associated to
triangle graphs involving two external quarks and one external gluon is UV-finite. Seeing that the
WFRCs have been defined in the previous step of the renormalization procedure, the expression
of the counter-term δgs directly ensue from the previous requirement. The same procedure has
to be carried out for each term of the interaction Lagrangian, so that UV-finiteness is ensured
at one-loop in every sector of the theory. We will give more details on that step when discussing
the squark-antisquark pair production in SUSY-QCD with NMFV in the next chapter.

Renormalization of the squark mixing angles

In the case of our interest, supersymmetric QCD, the only scalars that can mix are the squarks.
More specifically, from (2.112), we know that squark gauge eigenstates q̃g0,j and mass eigenstates

13Because gluons are the only spin-1 coloured particles of the theory.
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q̃0,k are related by the following equation at tree-level

q̃g0,j = Rq̃∗0,kj q̃0,k , (4.146)

where the superscript g denotes gauge eigenstates, and Rq̃ corresponds to the squark mixing
matrix. At one-loop, the mass eigenstates and the elements of Rq̃ are reparameterized as follows

q̃0,k =
[
δki + 1

2
(
δZq̃

)
ki

]
q̃i , Rq̃∗0,kj = Rq̃∗kj + δRq̃∗kj , (4.147)

which gives for the gauge eigenstates

q̃g0,j =
[
Rq̃∗kj + δRq̃∗kj

][
δki + 1

2
(
δZq̃

)
ki

]
q̃i = Rq̃∗ij q̃i + δRq̃∗ij q̃i + 1

2 Rq̃∗kj
(
δZq̃

)
ki
q̃i .

The squarks WFRCs can then be split into an hermitian, and anti-hermitian part such that

q̃g0,j = Rq̃∗ij q̃i + δRq̃∗ij q̃i + 1
4 Rq̃∗kj

[(
δZq̃

)
ki

+
(
δZ∗q̃

)
ik

]
q̃i + 1

4 Rq̃∗kj

[(
δZq̃

)
ki
−
(
δZ∗q̃

)
ik

]
q̃i ,

which is equivalent to

q̃g0,j =
[
Rq̃∗kj + 1

4 Rq̃∗ij
[(
δZq̃

)
ik

+
(
δZ∗q̃

)
ki

]]
q̃k +

[
δRq̃∗ij + 1

4 Rq̃∗kj
[(
δZq̃

)
ki
−
(
δZ∗q̃

)
ik

]]
q̃i .

In the previous equation, the mixing angle counter-term δRq̃ij can be chosen so that it cancels
the anti-hermitian part of the squark WFRCs [176]. The motivation behind this choice is that
it is highly desirable to preserve the form of the rotation (4.146) at one-loop. This leads to

δRq̃ij = 1
4

6∑
k=1

[(
δZq̃

)
ik
−
(
δZ∗q̃

)
ki

)]
Rq̃kj . (4.148)

Additional prescriptions:

Because of the SU(2)L symmetry, the soft-SUSY breaking mass parameters of the left-handed
squarks of the same isodoublet must be identical at tree-level. This feature is preserved at
one-loop in the DR scheme. This is however not the case in the on-shell scheme, where the
finite terms differ. By convention, an additional (finite) shift must therefore be performed on
the OS soft-SUSY mass parameter of the left-handed down-type squarks, so that the equality
mentioned above is restored. If this prescription has been discussed in the case of MFV [177–179],
its generalization to NMFV is currently under study. The renormalization of the off-diagonal
elements of the squark mass matrix in the gauge eigenstate basis is also currently under study.

Summary:
In this chapter, we have provided a short introduction to one-loop calculation techniques. More
specifically, we have first recalled the various challenges of NLO calculations, before giving a
constructive (and mathematically consistent) definition of both Dimensional Regularization,
and Dimensional Reduction. Then, we have detailed how to evaluate scalar integrals that are
frequently encountered in the context of one-loop calculations, and introduce the Passarino-
Veltman reduction scheme designed to decompose each vector and tensor loop integral into a
linear combination of simpler scalar integrals multiplied by Lorentz invariants. The last part
of this chapter has been dedicated to the procedure of multiplicative renormalization, which
aims at absorbing UV divergences into the redefinition of all the bare fields and parameters of
the original tree-level Lagrangian. In this last section, we have derived all the renormalization
constants that are necessary to ensure the UV-finiteness of the theory at one-loop (for generic
scalar, fermions, and vector fields with mixing), and provided our results in the on-shell scheme.



Chapter 5

Squark-antisquark production at
NLO with NMFV

In the previous chapter, we have detailed the procedure of renormalization for a set of generic
scalar, fermion, and vector fields (with mixing) and derived the expression of all the counter-
terms that are necessary to ensure the UV-finiteness of the final result. In this chapter, we are
going to apply this procedure, for the first time, to the case of squark-antisquark production at
next-to-leading order in supersymmetric QCD with Non-Minimal Flavour Violation.

Accurate theoretical predictions for squark-antisquark hadroproduction are essential for the
derivation of the squark masses exclusion limits at the LHC, can possibly help to refine the
experimental search strategies in some specific regions of the parameter space, and in case of
discovery, can be used to characterize the properties of the observed particles [180–182]. The
inclusive cross section for squark-antisquark hadroproduction at leading order in SUSY-QCD, in
the limit of mass degenerate squarks, has been known for more than thirty years [183–185]. The
next-to-leading order SUSY-QCD corrections have been obtained ten years later [186–188], also
in the limit where all the squarks, but the stops, are mass degenerate. Those corrections have
been found to be positive, and large, more than 30% of the tree-level contribution (depending on
the detail of the considered SUSY scenario), and their inclusion has been shown to significantly
reduce the factorization and renormalization scale dependence of the total cross section. The
previous results have been subsequently implemented in the publicly available Fortran code
Prospino [189], which allows for the computation of inclusive and differential cross section of
squark and gluino hadroproduction, at leading order, and next-to-leading order in SUSY-QCD.

A significant part of the large NLO SUSY-QCD corrections originates from the energy region
near the (partonic) production threshold [187]. In this region, the NLO corrections are essentially
dominated by the contributions coming from soft gluon emission in the initial and final state, and
by Coulomb corrections due to the exchange of (long-range) gluons between massive particles in
the final state. The soft-gluon corrections can be taken into account to all orders in perturbation
theory by means of threshold resummation techniques [190,191]. Recently, a substantial amount
of work has been dedicated to the inclusion of threshold effects at the next-to-leading logarithmic
(NLL) [192–199], and next-to-next-to-leading logarithmic (NNLL) accuracy [200–203]. These
corrections typically result into a small increase of the total cross section, 5 to 15 % depending
on the SUSY scenario, and lead to a further reduction of the renormalization and factorization
scale dependence.

In addition to the large SUSY-QCD corrections, the leading order electroweak (EW) contri-
butions have also been considered [204,205], and the NLO-EW corrections to squark-antisquark
hadroproduction have been studied in [206–209]. The latter have been shown to be sizeable,
depending on the model, and on the flavour and chirality of the produced squarks in the final
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state. The squark-antisquark production and decay matched with parton showers at NLO has
been investigated in [210,211], and recently, a lot of efforts have been devoted to the automation
of precisions calculations for squark-antisquark hadroproduction [88,212,213].

In all the aforementioned studies, Minimal Flavour Violation has been systematically as-
sumed, and in most cases, the 2 × 2 squark mixing matrices have been considered to be diag-
onal, except for the top squarks. The inclusion of Non-Minimal Flavour Violating effects for
squark-antisquark hadroproduction at NLO in SUSY-QCD has however never been investigated
in the literature so far. In this chapter, we provide the first preliminary (analytical) results
for the virtual contributions, i.e. the loop amplitudes and the renormalization constants, and
report on the status of this on-going calculation. The analytical results obtained and summa-
rized in the present manuscript have been cross-checked with the help of the Mathematica
packages FeynArts-3.9 and FormCalc-8.4. More specifically, the Feynman diagrams and
their associated amplitudes have been generated via the FeynArts package by means of the
tree-level model file FVMSSM.mod, which is an implementation of the MSSM Lagrangian includ-
ing Non-Minimal Flavour Violating effects. The Feynman rules implemented in the FeynArts
model file FVMSSM.mod, do not contain the SUSY-QCD counter-terms that are needed to ensure
the UV-finiteness of the virtual contribution. Those counter-terms have been implemented into
a new model file. The generated amplitudes have been then be calculated with the help of
FormCalc.

This chapter is organized as follows: in Section 5.1, we fix our conventions, define our model,
and provide the expression of the MSSM SUSY-QCD Lagrangian, where Non-Minimal Flavour
Violating effects have been included. In Section 5.2, we provide the first necessary ingredient
of the next-to-leading order cross-section, namely the leading order matrix element for squark-
antisquark hadroproduction. In Section 5.3, we detail the renormalization program, and specify
all the renormalization constants that need to be calculated to yield a UV-finite result. In
Section 5.4, we calculate the self-energies of all the fields appearing in the tree-level diagrams,
i.e. quarks, gluons, squarks, and gluinos, and provide their respective renormalization constants
in the On-Shell (OS) scheme, and/or in the MS/DR scheme. In Section 5.5, we consider the
case of the vertex corrections, and calculate the renormalization constant of the strong coupling
constant. In Section 5.6, we focus on the box contributions, and provide all the Feynman
diagrams contributing to this last piece of the one-loop calculation.

5.1 Theoretical set-up

In the most general version of the Minimal Supersymmetric Standard Model (MSSM), soft su-
persymmetry breaking induces the mixing of all left- and right-handed squark gauge eigenstates
(with the same quantum numbers). Because the squark mass eigenstates, that are obtained
after the diagonalization of the two squark mass matrices by means of the 6 × 6 unitary ma-
trices Rũ and Rd̃ respectively (see Section 2.11 for more details), are an admixture of left- and
right-handed squark gauge eigenstates of all generations, flavour violations can arise even in the
SUSY-QCD sector of the usual MSSM Lagrangian. In the squark mass-eigenstate basis, the
Lagrangian of our interest (in the four-component spinor formalism) reads

L = − 1
4gµνg

µν − 1
2
(
∂µg

µ)2 − ūg∂µDµug + i

2
¯̃g /Dg̃ − 1

2mg̃̃̄gg̃ +Dµq̃
†
iD

µq̃i −m2
q̃i q̃
†
i q̃i

+ iq̄i /Dqi −mqi q̄iqi −
g2
s

2
[
q̃†i (R

q̃)ifT a(Rq̃)∗jf q̃j − q̃
†
i (R

q̃)i(f+3)T
a(Rq̃)∗j(f+3)q̃j

]2
+
√

2gs
[(
q̄fPLe

−
iϕg̃

2 g̃a
)
T a(Rq̃)∗i(f+3)q̃i − q̃

†
i (R

q̃)ifT a
(
e−

iϕg̃
2 ¯̃gaPLqf

)
+ h.c.

]
.

(5.1)
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All color indices have been understood, except when attached to the matrices of the fundamen-
tal representation of SU(3)C , that we denote by T a. The first line of the previous Lagrangian
includes kinetic and gauge interaction terms for the gluon (g), the gluino (g̃), and the squarks
(q̃), as well as the soft SUSY-breaking gluino and squark mass terms, where mg̃ and mq̃i re-
spectively correspond to the gluino and squarks masses. Note that we have also added to the
Lagrangian the necessary ghost (ug), and gauge-fixing terms related to our choice of working
in the Feynman gauge. The second line of the Lagrangian includes kinetic, mass, and gauge
interaction terms for the quarks (qi), and describes the quartic interactions of the squarks. Fi-
nally, the last line corresponds to trilinear quark-squark-gluino interactions. For completeness,
we have kept explicit the dependence of the squark-quark-gluino vertices on the gluino phase ϕg̃
(see Section 2.10).

In order to write Eq. (5.1) under a compact form, we have employed SU(3)C covariant
derivatives Dµ and the gluon field strength tensor gµν . These objects are defined such that

gaµν = ∂µg
a
ν − ∂νgaµ + gs f

a
bc g

b
µ g

c
ν and Dµ = ∂µ − igsT agaµ , (5.2)

where we denote the strong coupling constant by gs, and the antisymmetric structure constants
of SU(3)C by fabc. The matrices T a are taken in the appropriate representation of SU(3)c, i.e.,
the fundamental one for (s)quarks and the adjoint for gluinos and ghosts. The Feynman rules
relevant for the calculations performed in this work have been extracted from the Lagrangian
(5.1), and are summarized in Appendix F.

The momenta associated to the initial-state particles of the original 2→ 2 process are labelled
p1, and p2, those of the final-state particles are called p3 and p4. The Mandelstam variable ŝ, t̂,
and û are defined such that

ŝ = (p1+p2)2 = (p3+p4)2 , t̂ = (p1−p3)2 = (p2−p4)2 , (5.3)
û = (p1−p4)2 = (p2−p3)2 , (5.4)

and the reduced Mandelstam variables t̂X and ûX correspond to

t̂X = t̂−m2
X , ûX = û−m2

X . (5.5)

Note finally, that the matrix elements detailed below are evaluated in the approximation of
massless quarks in the initial state, and that the final-state squarks are assumed to be produced
on-shell, i.e. ŝ > (mq̃i +mq̃j ).

5.2 Tree-level matrix element
Before starting to compute loops, it is first necessary to derive the full matrix element for the
2 → 2 process at tree-level. The diagrams contributing to squark-antisquark pair production
at leading order in SUSY-QCD are represented on Fig. 5.1. The first two diagrams correspond
to the quark-antiquark channel, and are interfered coherently to produce the correct matrix
element, which reads as follows

∣∣MB
q,s

∣∣2 = (n2
c − 1)2g4

s

ŝ2
(
ût̂−m2

q̃im
2
q̃′j

)
δqq′δijδmn ,∣∣MB

q,t

∣∣2 = (n2
c − 1)g

4
s

t̂2g̃

[(∣∣Rq̃imRq̃′jn∣∣2+
∣∣Rq̃i(m+3)R

q̃′

j(n+3)
∣∣2)(ût̂−m2

q̃im
2
q̃′j

)
+ m2

g̃ ŝ
(∣∣Rq̃imRq̃′j(n+3)

∣∣2+
∣∣Rq̃i(m+3)R

q̃′

jn

∣∣2)] , (5.6)

2 Re
{
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q,sM

B
q,t
∗} = −n

2
c − 1
nc

2g4
s

ŝt̂g̃

(
ût̂−m2

q̃im
2
q̃′j

)
Re
{
Rq̃imR

q̃′∗
jn +Rq̃i(m+3)R

q̃′∗
j(n+3)

}
δqq′δijδmn .
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Figure 5.1: Feynman diagrams for squark-antisquark pair production at leading order in SUSY-
QCD. The quark-antiquark channel (top), the gluon-gluon channel (bottom), and the ghost
channel (middle), mandatory for calculations performed in Feynman gauge, are depicted here.

In the previous expressions, q̃ and q̃′ denote the squark-type indices, m and n correspond to
quark flavour indices, i and j are the squark flavour indices, and nc is the number of colours.
Analogously, the various contributions associated to the gluon-gluon sub-process are given by∣∣MB

g,s

∣∣2 = (n2
c − 1)nc

g4
s

4ŝ2

[
32m4

q̃i − 3(t̂2 + û2)− 26t̂û
]
δqq′δij , (5.7)

∣∣MB
g,t

∣∣2 = (n2
c − 1)2

nc

g4
s

t̂2q̃i
(t̂+m2

q̃i)
2δqq′δij , (5.8)

∣∣MB
g,u

∣∣2 = (n2
c − 1)2

nc

g4
s

û2
q̃i

(û+m2
q̃i)

2δqq′δij , (5.9)

∣∣MB
g,4
∣∣2 = 2(n2

c − 1)(n2
c − 2)

nc
g4
sδqq′δij ,

2Re
{
MB
g,sM

B
g,t
∗} = −(n2

c − 1)nc
g4
s

4ŝt̂q̃i

[
4(t̂2 +m4

q̃i) + ŝ2 − 8m2
q̃i(ŝ+ t̂)

]
δqq′δij , (5.10)

2Re
{
MB
g,sM

B
g,u
∗} = −(n2

c − 1)nc
g4
s

4ŝûq̃i

[
4(û2 +m4

q̃i) + ŝ2 − 8m2
q̃i(ŝ+ û)

]
δqq′δij , (5.11)

2Re
{
MB
g,sM

B
g,4
∗} = 0 , (5.12)

2Re
{
MB
g,tM

B
g,u
∗} = n2

c − 1
nc

−g4
s

2t̂q̃i ûq̃i

(
ŝ− 4mq̃i

)2
δqq′δij , (5.13)

2Re
{
MB
g,tM

B
g,4
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c − 1)(n2
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nc

g4
s

4t̂q̃i

[
ŝ− 4(t̂+m2
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δqq′δij , (5.14)

2Re
{
MB
g,uM
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4ûq̃i
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from which we have to subtract the two squared ghost contributions,

∣∣MB
ug ,1

∣∣2 =
∣∣MB

ug ,2
∣∣2 = (n2

c − 1)nc
g4
s

8ŝ2 (t̂− û)2δq̃iq̃′j . (5.16)

Summing-up all the contributions, the squared matrix element we obtain agrees with [214–216].
The gluon channel is numerically the dominant channel at the LHC, due to the large PDF of
the gluon, and is completely independent of the flavour structure of the theory, i.e. of the
squark mixing angle. In this channel, the produced squarks are bounded to exhibit the same
fermion type and sfermion index. Similar considerations also hold for the s-channel diagram of
the qq̄-channel. As a matter of fact, only the t-channel of the quark-antiquark channel exhibit
a dependence on the squark mixing angles, due to presence of gluino-squark-quark vertices, and
can lead to the production of squarks of different types, and with different sfermion index.

The matrix elements detailed above have also been checked against the results obtained
with FeynArts/FormCalc, for each contribution separately in the case of the qq̄-channel,
and at the level of the total matrix element for the gg-channel (out of which the ghost contri-
butions must be subtracted). This fact more specifically originates from the fact that in Fey-
nArts/FormCalc only the (physical) transverse polarization modes of the gluon are taken
into account, i.e. gluons are expressed in the axial gauge.

5.3 Renormalization set-up

As explained in Section 4.5, the original tree-level Lagrangian (5.1) must be renormalized to
absorb UV-divergences appearing when evaluating loop integrals. In this study, we renormal-
ize multiplicatively all the bare fields and parameters, before expanding each renormalization
constant perturbatively. Since, we focus in this chapter on next-to-leading order calculations in
SUSY-QCD, this expansion can be restricted to the first order in αs. This gives the following
replacement rules for all the bare fields (denoted by the subscript "0") appearing in (5.1)

gµ0 =
√
Zgg

µ =
(
1 + 1

2δZg
)
gµ ,

q0,i =
(√

Zq
)
ij
qj =

[
δij + 1

2
(
δZLq

)
ij
PL + 1

2
(
δZRq

)
ij
PR
]
qj ,

g̃0 =
√
Zg̃ g̃ =

[
1 + 1

2 δZLg̃ PL + 1
2 ZRg̃ PR

]
g̃ , (5.17)

q̃0,i =
(√

Zq̃
)
ij
q̃j =

[
δij + 1

2
(
δZq̃

)
ij

]
q̃j ,

where the generation indices for quarks (resp. squarks) are ranging from one to three (resp. from
one to six). The previous expressions include a dependence on the renormalization constants δZ
that are extracted by requiring the ultraviolet-finiteness of the renormalized self-energies of the
various fields (see Section 5.4 below). The remaining ultraviolet divergences, that may still arise
after field renormalization, are absorbed by renormalizing all the parameters of the Lagrangian
(5.1). For the quark, squark, and gluino masses we have

mqi,0 = mqi + δmqi , mg̃,0 = mg̃ + δmg̃ , (5.18)
m2
q̃i,0 = m2

q̃i
+ δm2

q̃i
. (5.19)

Similarly, for the squark mixing angles we obtain

(Rq̃)ij = (Rq̃)ij + (δRq̃)ij . (5.20)
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Figure 5.2: Virtual QCD (top) and SUSY-QCD (bottom) corrections to the gluon self-energy.
The momentum p flows from the left to the right, and the indices a and d correspond to the
colour indices of the external gluons. The vanishing tadpole diagrams are not depicted here.

Finally, the strong coupling constant is reparameterized as follows at one-loop

gs,0 = gs + δgs . (5.21)

Applying (5.17), (5.19), Eq. (5.20) and Eq. (5.21) to the original tree-level Lagragian (5.1) allows
us to derive the counter-term Lagrangian, whose Feynman rules are summarized in Section 5.4,
and Appendix F. All counter-terms, such as the one induced by the quartic squark interaction
term, that are irrelevant for squark-antisquark pair production at the LHC have been omitted.

5.4 Self-energies
In this section, we are going to i) calculate the one-loop corrections to the propagator of the
gluon, quarks, gluino and squarks ii) derive the counter-term associated to each propagator
iii) determine the various renormalization constants associated to each field appearing in the
diagrams of the tree-level process. All the self energies, and RCs, have been cross-checked with
the help of FeynArts [147] and FormCalc [217,218] via the FVMSSM.mod model file.

Gluon self-energy
At next-to-leading order in SUSY-QCD, the gluon propagator receives contributions from gluon,
ghost, and quark loops (first row of Fig. 5.2), and from gluino, and squark loops (second row of
Fig. 5.2). There also exists another possible diagram, a one-point graph with a gluon running
into the loop, however its contribution can be omitted, inasmuch as a massless A0 function is
identically zero. The amplitudes corresponding to the gluon and ghost diagrams are

iΠµν (g)
ad (p) = 1

2

∫
dDq

(2π)D µ
2ε
R gsfabc

[
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] −i
(p+ q)2

−i
q2
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,
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∫
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[
− gsfabc(−pµ − qµ)
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[
2Bµν(p2, 0, 0) + 2pµBν(p2, 0, 0)

]
,

(5.22)
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where nc denotes for the number of colours, µR is the renormalization scale, and where the factor
of 1/2 appearing in front of the gluon amplitude is a symmetry factor needed to account for the
fact that identical particles are running into the loop. In order to stay as generic as possible,
the previous results are expressed in terms of D = 4− 2rε, with the r-parameter defined as

r =
{

1 for HV and CDR ,
0 for DRED and FDH .

(5.23)

The fermion loops, can be divided into three categories, nf = 5 massless quark loops, a massive
top quark loop, and a massive gluino loop. The corresponding amplitudes read

iΠµν (q)
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(5.24)
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(5.25)

Note that the top and gluino contributions are similar, up to a symmetry factor (due to identical
particle in the loop), and to the general color structure of the loop diagrams. The remaining
contributions, i.e. the squark bubble and the one-point graph presented in the lower panel of
Fig. 5.2, read, after summing over all squark species,
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gaµ(p) gdν(p) −iδad δZg (p2ηµν − pµpν) .

Figure 5.3: Feynman rule associated to the gluon kinetic counter-term. The indices µ, ν and a,
d respectively correspond to Lorentz and colour indices.

As explained in Section 4.4, Lorentz covariance allows us to decompose each vector and tensor
integral in (5.22), (5.24), (5.25), and (5.26) as a linear combination of scalar integrals such that,

Bµ(p2,m2
1,m

2
2) = pµB1(p2,m2

1,m
2
2) ,

Bµν(p2,m2
1,m

2
2) = pµpνB21(p2,m2

1,m
2
2) + ηµνB22(p2,m2

1,m
2
2) ,

(5.27)

where the scalar integrals B1 and B21, and B22 can be further reduced to A0 and B0 functions.
Eventually, we obtain for the total unrenormalized self-energy

iΠµν
ab (p) = iδab(p2ηµν − pµpν)Π(p) , (5.28)
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)
nfB0(p2, 0, 0) + 8

(
1−ε

)A0(m2
t )

p2

+ 4
(
ε−1−2m

2
t

p2

)
B0(p2,m2

t ,m
2
t ) + 4nc

(
ε−1−2

m2
g̃

p2

)
B0(p2,m2

g̃,m
2
g̃)

+ 8(1−ε)nc
A0(m2

g̃)
p2 +

∑
q̃

{
4(ε−1)

A0(m2
q̃)

p2 +
(4m2

q̃

p2 − 1
)
B0(p2,m2

q̃ ,m
2
q̃)
}]

,

(5.29)

As detailed in Section 4.5, the gluon counter-term is obtained after applying the procedure of
multiplicative renormalization to the bare kinetic Lagrangian

L = − 1
4g

a,µν
0 gd0,µνδad , (5.30)

where we recall that the bare quantities are denoted by the subscript "0". From the gluon kinetic
CT Lagrangian, one can deduce the associated Feynman rule, which is given in Fig. 5.3. After
factorizing out the color structure, the counter-term contribution to the gluon self-energy reads,

iΠµν(x)
ad (p) = −iδad δZg (p2ηµν − pµpν) , (5.31)

where δZg is the gluon WFRC. In order to determine δZg, we still need to fix the renormal-
ization conditions. As mentioned in the previous chapter, renormalizing the gluon on-shell is
not an optimal choice, because i) it amounts to subtracting UV-divergences at scales where
QCD is no longer perturbative ii) parton distributions (including the one of the gluon) are
usually provided in the MS scheme, not in the OS scheme1. Seeing that, when convoluting
the NLO partonic cross section with the PDFs in the very last step of the calculation, every
single quantity needs to be expressed in the same scheme (for consistency of the final result), it
is therefore tempting renormalize the gluon WFRC in the MS/DR scheme. However, because
it is a mass-independent renormalization scheme, the MS/DR scheme explicitly violates the

1Note however that it is still possible to use translation rules to go from one scheme to another.
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Figure 5.4: Virtual QCD (left) and SUSY-QCD (right) corrections to the quark self-energy. The
momentum p flows from the left to the right, and the indices cj and ci correspond to the colour
indices of the external quarks. The vanishing tadpole diagrams are not depicted here.

Appelquist-Carazzonne decoupling theorem [219], which stipulates that heavy fields should ulti-
mately decouple from low-energy physics. So, instead of just the MS/DR scheme, we are going to
apply the Collins-Wilczek-Zee (CWZ) prescription [220] to derive the gluon WFRC. The CWZ
prescription consists in using i) the MS/DR scheme for the light flavours ii) a zero-momentum
subtraction for heavy particle graphs, and gives in practice

δZg = − g2
s

8π2

[ 1
2ε̄
(
nf+1−nc

)
− 1

3 ln m
2
t

µ2
R

− nc
3 ln

m2
g̃

µ2
R

− 1
12
∑
q̃

ln
m2
q̃

µ2
R

]
, (5.32)

and

δZg = 1
ε̄

g2
s

16π2

(
nc − (nf + 1)

)
, (5.33)

in the MS/DR scheme, with

1
ε̄

= 1
ε̄

+ ln 4π − γE . (5.34)

Finally, let us note that keeping only the QCD diagrams, we recover the well-known expression

δZg
QCD = 1

ε̄

g2
s

48π2

(
5nc − 2nf

)
. (5.35)

Quark self-energy

As illustrated in Fig. 5.4, the quark self-energy iΣ gets contributions, at next-to-leading order in
SUSY-QCD, from gluon (left) and gluino (right) loop-diagrams The amplitudes related to the
gluon and gluino bubbles read

iΣ(g)
cjci(p) =

∫
dDq

(2π)Dµ
2ε
R

[
igsT

a
cjck

γµδjk
] i(− /q +mqk

)
q2 −m2

qk

[
igsT

a
ckci

γµδik
] −i
(q + p)2

=
ig2
sCF δcjci
16π2 δij

[
(2−D)γµBµ(p2,m2

qi , 0)−DB0(p2,m2
qi , 0)

]
,

iΣ(g̃)
cjci(p) =

6∑
k=1

{∫
dDq

(2π)Dµ
2ε
R

[
i
√

2gsT acjck
((
Rq̃
)∗
k(j+3)e

−iϕg̃/2PL−
(
Rq̃
)∗
kj
eiϕg̃/2PR

)]
i
(
−/q+mg̃

)
q2−m2

g̃

[
i
√

2gsT ackci
((
Rq̃
)
k(i+3)e

iϕg̃/2PR−
(
Rq̃
)
ki
e−iϕg̃/2PL

)] i

(p+q)2−m2
q̃k

}

=
ig2
sCF δcjci

8π2

6∑
k=1

{
− γµBµ(p2,m2

g̃,m
2
q̃k

)P1,kij −mg̃B0(p2,m2
g̃,m

2
q̃k

)P2,kij
}
,

(5.36)
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Figure 5.5: Feynman rule for the counter-term associated to the quark propagator. The indices
i, j, and ci and cj respectively correspond to flavour and colour indices of the external quarks.

where ci and cj are the external fundamental color indices, where we recall that the SU(3)c
group invariant CF = (n2

c − 1)/(2nc), and where the quantities P1,kij and P2,kij are defined as

P1,kij =
(
Rq̃
)
ki

(
Rq̃
)∗
kj
PL +

(
Rq̃
)
k(i+3)

(
Rq̃
)∗
k(j+3)PR , (5.37)

P2,kij =
(
Rq̃
)
ki

(
Rq̃
)∗
k(j+3)e

−iϕg̃PL +
(
Rq̃
)
k(i+3)

(
Rq̃
)∗
kj
eiϕg̃PR . (5.38)

The total unrenormalized amplitude can in a general manner be rewritten as

iΣcjci
ji (p) = iδcjci

[
ΣV,L
ji (p2)/pPL + ΣV,R

ji (p2)/pPR + ΣS,L
ji (p2)PL + ΣS,R

ji (p2)PR
]
, (5.39)

where ΣV,L/R is its left-handed (resp. right-handed) vector component, and ΣS,L is its left-
handed (resp. right-handed) scalar component. The vector integrals appearing in (5.36) can
be reduced to a basis of scalar integrals by means of (5.27). The various components of the
unrenormalized amplitude hence read as follows

ΣV,Lji (p) = − g2
sCF
8π2

[
(1−rε)B1(p2,m2

qi
, 0)δij +

6∑
k=1

(Rq̃)∗kj(Rq̃)kiB1(p2,m2
g̃,m

2
q̃k

)
]
,

ΣV,Rji (p) = − g2
sCF
8π2

[(
1− rε

)
B1(p2,m2

qi
, 0)δij +

6∑
k=1

(Rq̃)∗k(j+3)(Rq̃)k(i+3)B1(p2,m2
g̃,m

2
q̃k

)
]
,

ΣS,Lji (p) = − g2
sCF
8π2

[
(2−rε)mqiB0(p2,m2

qi
, 0)δij+mg̃

6∑
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g̃,m
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)
}]

,

ΣS,Rji (p) = − g2
sCF
8π2

[
(2−rε)mqiB0(p2,m2

qi
, 0)δij+mg̃

6∑
k=1

{
(Rq̃)k(i+3)(Rq̃)∗kjeiϕg̃B0(p2,m2

g̃,m
2
q̃k

)
}]

.

(5.40)

The free massive quark counter-term is obtained, as explained in Section 4.5, after applying the
procedure of multiplicative renormalization to the bare Lagrangian

L =
(
q̄j,0 i/∂ qi,0 −mqi,0 q̄j,0qi,0

)
δij (5.41)

where we recall that the subscript "0" denotes bare quantities. From the corresponding CT
Lagrangian, it i possible to deduce the Feynman rule given in Fig. 5.5. Since only light quarks
can contribute to the quark-antiquark channel at the LHC, the quark WFRCs can be expressed
directly in the MS/DR scheme. Using unitarity of the mixing matrices Rq̃, and retaining only
the UV-divergent part, we obtain

(δZL/Rq )ij = −g
2
sCF

8π2ε̄
δij . (5.42)

Similarly, we obtain for the light quark mass corrections

δmqi = −g
2
sCF

8π2ε̄
mqi . (5.43)
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Figure 5.6: Virtual one-loop contributions to the gluino self-energy. The momentum p flows from
the left to the right, and the indices a and d correspond to the colour indices of the external
gluinos. The vanishing tadpole diagrams are not depicted here.

Gluino self-energy
At the one-level, the gluino propagator receives contributions from two quark/squark loop dia-
grams and one gluon/gluino loop diagram, as shown in Fig. 5.6,

iΣ(g̃)
ba (p) =

∫
dDq

(2π)D µ
2ε
R

[
gsf

cbdγµ
] i(− /q +mg̃

)
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,m2

q̃j
)
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]}
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(5.44)

where a and b are the color indices associated to the external gluinos, and where the coefficients
Cji, and Sji are defined such that

Cji =
∣∣(Rq̃)ji∣∣2 +

∣∣(Rq̃)j(i+3)
∣∣2 , Sji = (Rq̃)ji(Rq̃)∗j(i+3)e

−iϕg̃ , (5.45)

The total unrenormalized amplitude can in a general manner be rewritten as

iΣab(p) = iδab
[
ΣV,L(p2)/pPL + ΣV,R(p2)/pPR + ΣS,L(p2)PL + ΣS,R(p2)PR

]
, (5.46)

The vector integrals Bµ in (5.44) can be reduced to a basis of scalar integrals by means of (5.27),
such that the various components of the unrenormalized amplitude read as follows
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(5.47)
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Figure 5.7: Feynman rule for the counter-term associated to the gluino propagator. The indices
a and b correspond to the colour indices of the external gluinos.

The free massive gluino counter-term is obtained, as explained in Section 4.5, after applying the
procedure of multiplicative renormalization to the bare Lagrangian

L =
( i

2
¯̃gb0/∂g̃a0 −

1
2mg̃ ¯̃gbg̃a

)
δab , (5.48)

where we recall that the subscript "0" denotes bare quantities. From the corresponding CT
Lagrangian, it i possible to deduce the Feynman rule given in Fig. 5.7. The diagonal WFRCs
of the gluino can be written in the OS scheme as

(
δZ

L/R
g̃

)
ij

= g2
s
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(5.49)

The WFRCs can alternatively be expressed in the MS/DR scheme by retaining only the UV-
divergent part of the B0, and B1 functions. In this case, the WFRCs take the following form

δZ
L/R
g̃ = − g2

s

16π2ε̂

(
nc + nf + 1

)
. (5.50)

The gluino mass is renormalized on-shell so that it corresponds to the gluino physical mass,

δmg̃ = − g2
smg̃

16π2

[
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.
(5.51)

Squark self-energy

The one-loop contributions to the squark self-energy in SUSY-QCD, noted iΠij where the indices
i and j specify the outgoing and incoming squark mass-eigenstates, consist in the three diagrams
depicted in Fig. 5.8. The corresponding amplitudes read, using the Feynman rules of Appendix F,

iΠ(g)
cicj

(p) =
∫

dDq

(2π)D µ
2ε
R

[
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a
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, 0)−A0(m2

q̃i
)
]
,

(5.52)
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Figure 5.8: Virtual one-loop contributions to the squark self-energy. The momentum p flows
from the left to the right, and the indices cj , ci and i, j respectively correspond to colour and
flavour indices of the external squarks. The vanishing tadpole diagrams are not depicted here.
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(5.53)

where ci and cj are the color indices associated to the external squarks, where the coefficients
R(q̃caa , q̃

cb
b ) are given in Appendix F, and where for simplicity we have defined
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The Bµ integrals of (5.53) can be reduced to a basis of scalar integrals by means of (5.27). After
factorizing out the colour structure, the total unrenormalized self-energy reads
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(5.56)

The free massive squark counter-term is obtained, as explained in Section 4.5, after applying
the procedure of multiplicative renormalization to the bare Lagrangian

L =
(
∂µq̃
†
i,0∂

µq̃j,0 −m2
q̃i,0 q̃

†
i,0q̃j,0

)
δij , (5.57)
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Figure 5.9: Feynman rule for the counter-term associated to the gluino propagator. The indices
i, j, and ci and cj respectively correspond to flavour and colour indices of the external squarks.

where we recall that the subscript 0 denotes bare quantities. From the corresponding CT La-
grangian, it is possible to deduce the Feynman rule given in Fig. 5.9. In the OS scheme, the
squark mass renormalization constants δm2

q̃i
takes the following form
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g̃)−A0(m2

ql

)]
+ 2mg̃mqlR̃e

(
S2,iil

)
B0(m2

q̃i ,m
2
ql
,m2

g̃)
}
.

(5.58)

Similarly, the diagonal squark WFRCs can be written, in the OS scheme, as

(δZq̃)ii = − g2
sCF

16π2

[
− 4m2

q̃iB
′
0(m2

q̃i ,m
2
q̃i , 0)− 2B0(m2

q̃i ,m
2
q̃i , 0) + 2

3∑
l=1

{
R̃e
(
S1,iil

)[
(
m2
q̃i −m

2
ql
−m2

g̃

)
B′0(m2

q̃i ,m
2
ql
,m2

g̃) +B0(m2
q̃i ,m

2
ql
,m2

g̃)
]

+ 2mg̃mqlR̃e
(
S2,iil

)
B′0(m2

q̃i ,m
2
ql
,m2

g̃)
}
,

(5.59)

and, in the MS/DR scheme, as

(δZq̃)ii = 0 . (5.60)

The off-diagonal squark WFRCs, out of which we construct the (δRq̃)ij , are given by

(δZq̃)ij = g2
sCF
8π2

1
m2
q̃i
−m2

q̃j

[ 6∑
k=1

3∑
l=1

{[(
Rq̃
)∗
kl

(
Rq̃
)
il
−
(
Rq̃
)∗
k(l+3)

(
Rq̃
)
i(l+3)

]
[(
Rq̃
)∗
jl

(
Rq̃
)
kl
−
(
Rq̃
)∗
j(l+3)

(
Rq̃
)
k(l+3)

]
A0(m2

q̃k
)
}

+ 2
3∑
l=1

{
S1,ijl

[(
m2
q̃j−m

2
ql
−m2

g̃

)
B0(m2

q̃j ,m
2
ql
,m2

g̃)−A0(m2
g̃)−A0(m2

ql

)]
+ 2mg̃mqlS2,ijlB0(m2

q̃j ,m
2
ql
,m2

g̃)
}
.

(5.61)

5.5 Vertex corrections
In this section, our goals are i) to calculate the one-loop corrections to each vertex appearing
in the Feynman diagrams of the leading-order process (see Section 5.2) ii) to derive the form
of the counter-term associated to each vertex iii) to determine the renormalization constant δgs
by imposing that the sum of the vertex corrections and the counter-term is UV-finite (for each
vertex). Note that the last point require the RCs of Section 5.4 as a necessary input.
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Figure 5.10: One-loop contributions to the gluon-quark-antiquark vertex, where µ denotes the
Lorentz index of the external gluon, and a, b, c, ci, cj , ck, and cl correspond to colour indices.
The four-momenta of the gluon (p1) and the fermions (p2, p3) are taken incoming to the loop.

The gluon-quark-antiquark vertex

The gluon-quark-antiquark interactions are derived from the Lagrangian

Lgqq = gs,0 q̄
cj
0,jγ

µT acjcig
a
0,µq

ci
0,i . (5.62)

At the one-loop level in supersymmetric QCD, the corresponding vertex, V (0)
gqq receives correc-

tions from the four diagrams depicted in Fig. 5.10. For future convenience, we introduce the
notation V

(xyz)
gqq to label the various amplitudes contributing to the corrections of the gluon-

quark-antiquark vertex. The letters x, y and z here correspond to the particles entering in the
loops. With the help of the Feynman rules of Appendix F, the pure QCD corrections, with only
quarks and gluons running into the loops, are given by

V (qqg)
gqq =

∫
dDq

(2π)Dµ
2ε
R

[
igsT

b
cjcl

δjlγ
ν
]
i
−/q − /p2
(q + p2)2

[
igsT

a
clck

δlkγ
µ
]
i
−/q − /p1 − /p2
(q + p1 + p2)2

[
igsT

b
ckci

δkiγν
]−i
q2

=− iδijg
3
s

32ncπ2T
a
cjciδij

[(
(4−D)/p2γ

µ
/p1 − 2/p1γ

µ
/p2 + (2−D)/p2γ

µ
/p2

)
C0 +

(
(2−D)/p2

− 2/p1

)
γµγβCβ + γαγµ

(
(4−D)/p1 + (2−D)/p2

)
Cα + (2−D)γαγµγβCαβ

]
,

and

V (ggq)
gqq =

∫
dDq

(2π)Dµ
2ε
R

[
igsγ

νT bcjclδjl
]
i
/q

q2

[
igsγ

ρT cclciδli
] −i
(q + p2)2

−i
(q + p1 + p2)2 × gsfabc

×
[
(p1 − p2 − q)ρδµν − (q + 2p1 + p2)νδµρ + (2q + 2p2 + p1)µηνρ

]
= iδijncg

3
s

32π2 T acjci

[
2B0(p2

1, 0, 0)γµ −
(
γµγα(/p1 − /p2)− (2/p1 + /p2)γαγµ

+ (2−D)(2p2 + p1)µγα
)
Cα + (2D − 4)γαCµα

]
.
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Note that for clarity, we have omitted the arguments of all the three-point functions appearing
in the previous expressions. Those arguments can however be recovered by performing the
following substitutions

V (gqq)
gqq : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1, 0, 0, 0) ,

V (ggq)
gqq : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1, 0, 0, 0) .

(5.63)

The supersymmetric contributions, with squarks and gluinos running into the loops, can be
obtained in a similar manner, and take the following form

V (q̃q̃g̃)
gqq =

∫
dDq

(2π)D µ
2ε
R

6∑
k=1

{[
i
√

2gsT bcjck

((
Rq̃
)∗
k(j+3)e

−iϕg̃/2PL −
(
Rq̃
)∗
kj
eiϕg̃/2PR

)]
× i

/q +mg̃

q2 −m2
g̃

×

[
i
√

2gsT bclci

((
Rq̃
)
k(i+3)e

iϕg̃/2PR −
(
Rq̃
)
ki
e−iϕg̃/2PL

)]
× i

(q + p2)2 −m2
q̃k

×

i

(q + p2 + p1)2 −m2
q̃k

×
[
− igsT ackcl

(2p2 + p1 + 2q)µ
]}

=− ig3
s

16ncπ2T
a
cjci

6∑
k=1

{
γαP1,kij

[
2Cαµ + (2p2 + p1)µCα

]
−mg̃P2,kij

[
2Cµ + (2p2 + p1)µC0

]}
,

V (g̃g̃q̃)
gqq =

∫
dDq

(2π)D µ
2ε
R

6∑
k=1

{[
i
√

2gsT bcjck

((
Rq̃
)∗
k(j+3)e

−iϕg̃/2PL −
(
Rq̃
)∗
kj
eiϕg̃/2PR

)]
× i

q2 −m2
q̃i

×

i
−/q − /p2 +mg̃

(q + p2)2 −m2
g̃

×
[
gsfabcγ

µ
]
× i

−/q − /p1 − /p2 +mg̃

(q + p1 + p2)2 −m2
g̃

×
[
i
√

2gsT cckci((
Rq̃
)
k(i+3)e

iϕg̃/2PR −
(
Rq̃
)
ki
e−iϕg̃/2PL

)]
=− incg

3
s

16π2 T
a
cjci

6∑
k=1

{[(
/p2γ

µ
(
/p1 + /p2

)
+m2

g̃γ
µ
)
C0 +

(
/p2γ

µγα + γαγµ
(
/p1 + /p2

)]
Cα

+ γαγµγβCαβ

]
P1,kij +mg̃

[(
/p2γ

µ + γµ
(
/p1 + /p2

))
C0 + 2Cµ

]
P2,kij

}
,

where the arguments of the three-point functions can recovered by performing the replacements

V (q̃q̃g̃)
gqq : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
g̃,m

2
q̃k
,m2

q̃k
) ,

V (g̃g̃q̃)
gqq : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
q̃k
,m2

g̃,m
2
g̃) .

(5.64)

Note for completeness that in the present case, we have considered all quarks massless, inasmuch
as top quark loops would imply that we would have a top quark initiated process at leading
order2. We moreover recall that

C{0,µ,µν}(p2
2, p

2
1;m2

1,m
2
2,m

2
3) =

∫
dDq

iπ2 (2πµR)2ε {1, qµ, qµqν}[
q2 −m2

1
][

(q + p2)2 −m2
2
][

(q + p1 + p2)2 −m2
3
] ,

and that the quantities P1,kij and P2,kij are defined as

P1,kij =
(
Rq̃
)
ki

(
Rq̃
)∗
kj
PL +

(
Rq̃
)
k(i+3)

(
Rq̃
)∗
k(j+3)PR ,

P2,kij =
(
Rq̃
)
ki

(
Rq̃
)∗
k(j+3)e

−iϕg̃PL +
(
Rq̃
)
k(i+3)

(
Rq̃
)∗
kj
eiϕg̃PR .

As detailed in Section 4.4, Lorentz covariance allows us to decompose each vector and tensor
integral as linear combination of scalar integrals such that
Cµ(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) = pµ2C11(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) + pµ1C12(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) ,

Cµν(p2
2, p

2
1,m

2
1,m

2
2,m

2
3) = pµ2p

ν
2C21(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) + pµ1p

ν
1C22(p2

2, p
2
1,m

2
1,m

2
2,m

2
3)

+
(
pµ2p

ν
1 + pµ1p

ν
2
)
C23(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) + ηµνC24(p2

2, p
2
1,m

2
1,m

2
2,m

2
3) ,
(5.65)

2The parton distribution of the top quark is irrelevant at energy scales of a few TeV.
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where the Cij can be further reduced to a basis of scalar integrals, namely the A0, B0, and C0
functions. The resulting expressions after complete reduction being rather lengthy, we will only
rewrite the amplitudes at the level of the Cij . We obtain for the amplitudes of our interest

V (qqg)
gqq = − iδijg

3
s

32ncπ2 δijT
a
cjci

[
(2−D)2C24γ

µ + (2−D)(C12+C22)/p1γ
µ
/p1 + (2−D)(2C11

+C21+C0)/p2γ
µ
/p2+

(
(2−D)(C12+C23)+(4−D)(C11+C0)

)
/p2γ

µ
/p1

+
(
(2−D)(C12+C23)−2(C11+ C0)

)
/p1γ

µ
/p2

]
,

V (ggq)
gqq = iδijncg

3
s

32π2 T acjci

[(
2B0(p1; 0, 0)+2(D−2)C24+p2

1C12+2p2
2C11

)
γµ+(D−2)(C12

+ 2C22)/p1p
µ
1 +(D−2)(C11 + 2C23)/p2p

µ
1 +2(D−2)(C12 + C23)/p1p

µ
2

+2(D−2)(C11 + C21)/p2p
µ
2 +C12γ

µ
/p1/p2+C11γ

µ
/p2/p1+2C11/p1/p2γ

µ+C12/p2/p1γ
µ
]
,

V (q̃q̃g̃)
gqq = − ig3

s

16ncπ2T
a
cjci

6∑
k=1

{[
2C24γ

µ+(C11+2C23)/p2p
µ
1 +(C11+C21)/p2p

µ
2 +(C12

+2C22)/p1p
µ
1 +2(C12+C23)/p1p

µ
2

]
P1,kij−mg̃

[
(2C12+C0)pµ1 +2(C11+C0)pµ2

]
P2,kij

}
,

V (g̃g̃q̃)
gqq = − incg

3
s

16π2 T
a
cjci

6∑
k=1

{[(
(2−D)C24+m2

g̃C0
)
γµ+(2C11+C21+C0)/p2γ

µ
/p2+(C12

+C23)/p1γ
µ
/p2+(C12+C22)/p1γ

µ
/p1+(C11+C12+C23+C0)/p2γ

µ
/p1

]
P1,kij

+mg̃

[
C0γ

µ
/p1+2C12p

µ
1 +2(C11+C0)pµ2

]
P2,kij

}
.

(5.66)

The four one-loop diagrams presented above are all ultraviolet-divergent, their UV-part being

UV
[
V (qqg)
gqq + V (ggq)

gqq + V (q̃q̃g̃)
gqq + V (g̃g̃q̃)

gqq

]
= ig3

s

16π2ε̄

2n2
c − 1
nc

γµT acjci . (5.67)

As explained in Section 4.5, the renormalizability of a theory requires that UV-divergences
originating from loops cancel against those coming from the counter-terms. In the case of our
interest, the counter-term we need is obtained from the tree-level Lagrangian (5.62) by means
of multiplicative renormalization, and according to Fig. 5.11 reads as follows

V (x)
gqq = iγµ

[
δgsδji + gs

2

([(
δZLq

)
ji

+
(
δZL†q

)
ji

]
PL +

[(
δZRq

)
ji

+
(
δZR†q

)
ji

]
PR + δZg δij

)]
T acjci

= i
[
δgs + g3

s

32π2ε̄

[
− 4CF + nc − nf − 1

]]
γµT acjci

. (5.68)

where we recall that in our definitions of the WFRCs, we have factorized out the color structure.
Collecting all the contributions to the vertex corrections at order O(αs) and imposing the result
to be UV-finite, we derive the strong coupling constant renormalization constant,

δgs = − g3
s

32π2ε̄

[
3nc − nf − 1

]
≡ − g3

s

32π2ε̄
β0 , (5.69)

where we have introduced the first coefficient of the SUSY-QCD β-function, β0. Accounting for
five active light flavours, as well as for gluons in the running of the strong coupling constant, we
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Figure 5.11: Feynman rule of the gluon-quark-antiquark vertex counter-term V
(x)
gqq . The indices

i, j, and ci and cj respectively correspond to flavour and colour indices of the external quarks

obtain for the strong coupling renormalization constant [220–223],

δgs = g3
s

16π2

[
− β0

2ε̄ −
nc
3 log

m2
g̃

µ2
R

− 1
12
∑
q̃i

log
m2
q̃i

µ2
R

− 1
3 log m

2
t

µ2
R

]
, (5.70)

where gs is now evaluated at the renormalization scale µR and obeys the evolution equation

dg2
s(µ2

R)
d logµ2

R

= −g
4
s(µ2

R)
16π2

[11
3 nc −

2
3nf

]
. (5.71)

The gluon-squark-antisquark vertex

The gluon-squark-antisquark interactions are described by the tree-level Lagrangian

L = igs
[
q̃†i,0g

a
0,µT

a∂µq̃j,0 − ∂µq̃†i,0g
µa
0 T aq̃j,0

]
. (5.72)

At the one-loop level, in SUSY-QCD, the associated vertex V (0)
gq̃q̃ receives corrections from six

diagrams, which are depicted in Fig. 5.12. With the help of the Feynman rules of Appendix F,
we first evaluate the diagrams involving quarks and gluinos in the loops. We obtain

V
(qqg̃)
gq̃q̃ = −

3∑
k=1

∫
dDq

(2π)D µ
2ε
R Tr

{[
i
√

2gsT bcick

((
Rq̃
)
i(k+3)e

iϕg̃/2PR−
(
Rq̃
)
ik
e−iϕg̃/2PL

)]
−i(/p2+/q −mqk

)
(q+p2)2 −m2

qk

[
igsγ

µT ackcl

]−i(/p1+/p2+/q −mqk
)

(q+p1+p2)2 −m2
qk[

i
√

2gsT bclcj

((
Rq̃
)∗
j(k+3)e

−iϕg̃/2PL−
(
Rq̃
)∗
jk
eiϕg̃/2PR

)]−i(/q−mg̃)
q2−m2

g̃

}

= ig3
s

8ncπ2T
a
cicj

3∑
k=1

[[
(p1+p2)µB0(p2

1,m
2
qk
,m2

qk
)+Bµ(p2

1,m
2
qk
,m2

qk
)+
(
pν2(p1+2p2)µ+pν1p

µ
2
)
Cν

+
(
m2
g̃+m2

qk
−p2

2−p1 ·p2
)
Cµ+m2

g̃(p1+2p2)µC0

]
S1,ijk−mg̃mqk

S2,ijk

[
2Cµ+(p1+2p2)µC0

]]
,

V
(g̃g̃q)
gq̃q̃ = −

3∑
k=1

∫
dDq

(2π)D µ
2ε
R Tr

{[
i
√

2gsT bcick

((
Rq̃
)
i(k+3)e

iϕg̃/2PR−
(
Rq̃
)
ik
e−iϕg̃/2PL

)] i(/q +mqk
)

q2 −m2
qk[

i
√

2gsT bclcj

((
Rq̃
)∗
j(k+3)e

−iϕg̃/2PL−
(
Rq̃
)∗
jk
eiϕg̃/2PR

)] i(/q+/p1+/p2+mg̃)
(q+p1+p2)2−m2

g̃

[
gsfabcγ

µ
] i(/q+/p2+mg̃)

(q+p2)2−m2
g̃

}

= − ig3
snc

8π2 T acjci

3∑
k=1

[[(1
2p1+p2

)µ
B0(p2

1,m
2
g̃,m

2
g̃)+m2

qk
(2p2+p1)µC0+

(
m2
g̃+m2

qk
−p1 ·p2−p2

2
)
Cµ

+
(
pµ1p

ν
2 +(2p2+p1)νpµ2

)
Cν

]
S1,ijk−mqk

mg̃S2,ijk

[
2Cµ+(p1+2p2)µC0

]]
,
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Figure 5.12: Virtual one-loop contributions to the gluon-squark-antisquark vertex. The external
Lorentz (µ) and color (a, ci, cj) indices are indicated, and the four-momenta of the gluon (p1)
and the fermions (p2, p3) are taken incoming to the loop.

where the arguments of the three-point functions can be recovered by means of the substitutions

V
(qqg̃)
gq̃q̃ : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
g̃,m

2
qk
,m2

qk
) ,

V
(g̃g̃q)
gq̃q̃ : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
qk
,m2

g̃,m
2
g̃) .

(5.73)

Analogously, one can evaluate the two flavour-diagonal triangle diagrams, i.e the ones with
gluons and squarks running into the loops. This gives

V
(q̃q̃g)
gq̃q̃ =

∫
dDq

(2π)Dµ
2ε
R

[
−igsT bcick(2p2+q)ν

] i

(q+p2)2−m2
q̃i

[
−igsT ackcl(2q+2p2+p1)µ

]
i

(q+p2+p1)2−m2
q̃i

[
−igsT bclcj (q+2p1+2p2)ν

]−i
q2

= ig3
sδij

16ncπ2T
a
cicj

[
2(p2

2+p1 ·p2)(p1+2p2)µC0+4(p2
2+p1 ·p2)Cµ+(p1+2p2)ν

(p1+2p2)µCν+2(p1+2p2)νCµν
]
,

V
(ggq̃)
gq̃q̃ =

∫
dDq

(2π)Dµ
2ε
R × gsfabc

[
(p1−p2−q)ρδµν−(q+2p1 + p2)νδµρ+(2q+2p2+p1)µηνρ

]
−i

(p2+q)2

[
−igsT bcick(p2−q)ν

] −i
(p1+p2+q)2

[
igsT

c
ckcj

(q−p1−p2)ρ
] i

q2−m2
q̃i

= − ig3
sncδij
32π2 T acicj

[
2(p1+2p2)µB0(p2

1, 0, 0)−
(
p1 ·p2p

µ
1−p

2
1p
µ
2−2m2

q̃i(p1+2p2)µ
)
C0

−(p2
1−4p1 ·p2−4p2

2)Cµ−
(
(2p2−p1)µpν1 +(2p1+4p2)µpν2

)
Cν−(2p1+4p2)νCµν

]
,
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where the replacement rules

V
(q̃q̃g)
gq̃q̃ : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1, 0,m2

q̃i ,m
2
q̃i) ,

V
(ggq̃)
gq̃q̃ : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
q̃i , 0, 0) ,

(5.74)

have to be applied to recover the arguments of the three-point functions. The last two diagrams,
the bubble diagrams, are calculated in a similar way, and their sum V bub

gq̃q̃ is given by

V bub
gq̃q̃ =

∫
dDq

(2π)D µ
2ε
R

[[
ig2
s

(
T aT b+T bT a

)
cick

][
igs(q+2p3)µT bckcj

] i

(q+p3)2−m2
q̃i

−i
q2

+
[
ig2
s

(
T aT b+T bT a

)
ckcj

][
−igs(q+2p2)µT bcick

] i

(q+p2)2−m2
q̃i

−i
q2

]
= ig3

s(n2
c−2)δij

32ncπ2 T acicj

[
Bµ(p2

2, 0,m2
q̃i

)−Bµ(p2
3, 0,m2

q̃i
)+2pµ2B0(p2

2, 0,m2
q̃i

)−2pµ3B0(p2
3, 0,m2

q̃i
)
]
.

The vector and tensor integrals appearing in the expressions above can be reduced to scalar
integrals using (5.27), and (5.65). For loops containing massive quarks and gluinos, we get

V
(qqg̃)
gq̃q̃ = ig3

s

8ncπ2T
a
cicj

3∑
k=1

[[(1
2p

µ
1 +pµ2

)
B0(p2

1,m
2
qk
,m2

qk
) + C0m

2
g̃(p1+2p2)µ + C11

(
p2

2p
µ
1

+(m2
g̃+m2

qk
+p2

2)pµ2
)

+ C12
(
(m2

g̃+m2
qk
−p2

2)pµ1 +(p2
1+2p1 ·p2)pµ2

)]
S1,ijk

−mg̃mqkS2,ijk
[
C0(p1+2p2)µ + 2C11p

µ
2 + 2C12p

µ
1

]]
,

V
(g̃g̃q)
gq̃q̃ = − ig3

snc
8π2 T acicj

[[(1
2p

µ
1 +pµ2

)
B0(p2

1,m
2
g̃,m

2
g̃) + C0m

2
qk

(p1+2p2)µ + C11
(
p2

2p
µ
1

+(p2
2+m2

qk
+m2

g̃)p
µ
2

)
+ C12

(
(m2

g̃+m2
qk
−p2

2)pµ1 +(p2
1+2p1 ·p2)pµ2

)]
S1,ijk

−mg̃mqkS2,ijk
[
C0(p1+2p2)µ + 2C11p

µ
2 + 2C12p

µ
1

]]
.

(5.75)

Finally, we deduce the contributions of the last two triangles and the bubble diagrams

V
(q̃q̃g)
gq̃q̃ = ig3

sδij
16ncπ2T

a
cicj

[
2C0(p2

2+p1 ·p2)(p1+2p2)µ + C11

(
(2p2

2+p1 ·p2)pµ1 +(8p2
2+6p1 ·p2)pµ2

)
+ C12

(
(p2

1+4p2
2+6p1 ·p2)pµ1 +(2p2

1+4p1 ·p2)pµ2
)

+ C21

(
4p2

2+2p1 ·p2

)
pµ2 + C22

(
2p2

1

+4p1 ·p2

)
pµ1 + C23

(
(4p2

2+2p1 ·p2)pµ1 +(2p2
1+4p1 ·p2)pµ2

)
+ C24

(
2p1+4p2

)µ]
,

V
(ggq̃)
gq̃q̃ = − ig3

sncδij
32π2 T acicj

[(
2pµ1 +4pµ2

)
B0(p2

1, 0, 0)− C0

(
(p1 ·p2−2m2

q̃i
)pµ1−(p2

1+4m2
q̃i

)pµ2
)

+ C11

(
(p1 ·p2−2p2

2)pµ1−(p2
1−2p1 ·p2)pµ2

)
+ C12

(
(4p2

2+2p1 ·p2)pµ1−(2p2
1+4p1 ·p2)pµ2

)
− C21

(
4p2

2+2p1 ·p2

)
pµ2 − C22

(
2p2

1+4p1 ·p2

)
pµ1 − C23

(
(4p2

2+2p1 ·p2)pµ1

+(2p2
1+4p1 ·p2)pµ2

)
− C24

(
2p1+4p2

)µ]
,

V bub
gq̃q̃ = ig3

s(n2
c−2)δij

64ncπ2 T acicj

[(
3+

m2
q̃i

p2
2

)
pµ2B0(p2

2, 0,m2
q̃i

)−
(

3+
m2
q̃i

p2
3

)
pµ3B0(p2

3, 0,m2
q̃i

)

−A0(m2
q̃i

)
(pµ2
p2

2
− p

µ
3
p2

3

)]
.

(5.76)
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ga1
µ (p1)

q̃
cj†
j (p3)

q̃cii (p2)

i(pµ3 −p
µ
2 )
[
δgsδij + 1

2gs
(
(δZq̃+δZ†q̃)ij +δZgδij

)]
T acicj ,

Figure 5.13: Feynman rule of the gluon-squark-antisquark vertex counter-term V
(x)
gqq . The indices

i, j, and ci and cj correspond to flavour and colour indices of the external squarks.

The one-loop amplitudes presented above are all separately UV-divergent, and their sum gives

UV
[
V

(qqg̃)
gq̃q̃ + V

(g̃g̃q)
gq̃q̃ + V

(q̃q̃g)
gq̃q̃ + V

(ggq̃)
gq̃q̃ + V bub

gq̃q̃

]
= − ig

3
sncδij

16π2ε̄

(
p2 − p3

)µ
T acicj . (5.77)

As explained in Section 4.5, the renormalizability of a theory requires that UV-divergences
originating from loops cancel against those coming from the counter-terms. In the case of our
interest, the counter-term we need is obtained from the tree-level Lagrangian (5.1) by means of
multiplicative renormalization, and according to Fig. 5.13 reads as follows

V
(x)
gq̃q̃ = i(p3 − p2)µδij

[
δgs + 1

2gsδZg
]
T acicj

= ig3
sδij

16π2 (p2 − p3)µT acicj
[nc
ε̄

+ nc
3 log

m2
g̃

µ2
R

+ 1
12
∑
q̃i

log
m2
q̃i

µ2
R

+ 1
3 log m

2
t

µ2
R

]
, (5.78)

where we have introduced the results of Eqs. (5.33) and (5.70). As expected, the renormalized
gluon-squark-antisquark vertex is then ultraviolet-finite.

The gluino-squark-quark vertex

The gluino-quark-squark interactions are described by the tree-level Lagrangian

L =
√

2gs,0
[(
q̄j,0PLe

− iϕg̃
2 g̃a0

)
T a(Rq̃0)∗i(j+3),0q̃i,0 − q̃

†
i,0(Rq̃0)ij,0T a

(
e−

iϕg̃
2 ¯̃ga0PLqj,0

)
+ h.c.

]
. (5.79)

In what follows, we only detail the calculations related to the gluino-squark-antiquark vertex,
inasmuch as corrections to the gluino-antisquark-quark vertex can be deduced by hermitian
conjugation. At one-loop in SUSY-QCD, the gluino-squark-antiquark vertex receives corrections
from the four diagrams that are depicted in Fig. 5.14. If we compute their respective amplitudes,
V

(qq̃g̃)
g̃q̃q , V (g̃gq)

g̃q̃q , V (q̃qg)
g̃q̃q and V (gg̃q̃)

g̃q̃q with the help of the Feynman rules of Appendix F, and with
the help of the following replacement rules for the arguments of the three-point functions,

V
(qq̃g̃)
g̃q̃q : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
g̃,m

2
qk
,m2

q̃l
) ,

V
(g̃gq)
g̃q̃q : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
qj ,m

2
g̃, 0) ,

V
(q̃qg)
g̃q̃q : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1, 0,m2

q̃i ,m
2
qj ) ,

V
(gg̃q̃)
g̃q̃q : C{0,µ,µν} ↔ C{0,µ,µν}(p2

2, p
2
1,m

2
q̃i , 0,m

2
g̃) ,

(5.80)
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cj
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q̃ckk
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q̃
cj
i (p2)

Figure 5.14: Virtual one-loop contributions to the gluino-squark-antiquark vertex. The external
color indices (a, ci, cj) are indicated, and the four-momenta p1 p2, and p3 are all taken incoming
to the loop.

the amplitudes read

V
(qq̃g̃)
g̃q̃q =

∫
dDq

(2π)D µ
2ε
R

∑
k,l

{[
i
√

2gsT ackcl

((
Rq̃
)∗
l(k+3)e

−iϕg̃/2PL−
(
Rq̃
)∗
lk
eiϕg̃/2PR

)]
i
/q+/p2+mqk

(q+p2)2 −m2
qk[

i
√

2gsT bcick

((
Rq̃
)
i(k+3)e

iϕg̃/2PR−
(
Rq̃
)
ik
e−iϕg̃/2PL

)]
i
/q+mg̃

q2−m2
g̃

×
[
i
√

2gsT bclcj

((
Rq̃
)
l(j+3)e

iϕg̃/2PR−
(
Rq̃
)
lj
e−iϕg̃/2PL

)] i

(q+p1+p2)2−m2
q̃l

}
= − i

√
2g3
s

16ncπ2T
a
cicj

∑
k,l

{[
B0(p2

1,m
2
qk
,m2

q̃l
)+m2

g̃C0+/p2γ
νCν

]
P1+mg̃

[
/p2C0 + γνCν

]
P2

+mqk
γνCνP3 +mg̃mqk

C0P4

}
,

V
(g̃gq)
g̃q̃q =

∫
dDq

(2π)D µ
2ε
R

[
gsfcabγ

µ
]
i
/q+/p2+mg̃

(q+p2)2−m2
g̃

[
i
√

2gsT bcick

((
Rq̃
)
i(j+3)e

iϕg̃/2PR

−
(
Rq̃
)
ij
e−iϕg̃/2PL

)]
i
/q+mqj

q2 −m2
qj

[
igsγµT

c
ckcj

] −i
(q+p1+p2)2

= − i
√

2ncg3
s

32π2 T acicj

{[
DB0(p2

1,m
2
g̃, 0)+

(
4pν2 +(D−4)/p2γ

ν+(2−D)mg̃γ
ν
)
Cν

+m2
qj
DC0

]
S1,ij +mqj

[(
mg̃+(2−D)/p2

)
C0+(2−D)γνCν

]
S2,ij

}
,

V
(q̃qg)
g̃q̃q =

∫
dDq

(2π)D µ
2ε
R

[
i
√

2gsT ackcl

((
Rq̃
)
i(j+3)e

iϕg̃/2PR−
(
Rq̃
)
ij
e−iϕg̃/2PL

)]
(−i)

/q+/p1+/p2−mqj

(q+p1+p2)2−m2
qj[

igsγµT
b
clcj

]−i
q2

i

(q+p2)2−m2
q̃i

×
[
− igs(2p2+q)µT bcick

]
= i
√

2g3
s

32ncπ2T
a
cicj

{[
B0(p2

1,m
2
q̃i
,m2

qj
)+
(

(/p1+/p2)γν+2γν/p2

)
Cν+2(/p1+/p2)/p2C0

]
S1,ij

−mqj

[
2/p2C0+γνCν

]
S2,ij

}
,
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V
(gg̃q̃)
g̃q̃q =

∫
dDq

(2π)D µ
2ε
R

[
gsfbcaγ

µ
]
(−i)

/q+/p1+/p2−mg̃

(q+p1+p2)2−m2
g̃

[
i
√

2gsT cckcj

((
Rq̃
)
i(j+3)e

iϕg̃/2PR

−
(
Rq̃
)
ij
e−iϕg̃/2PL

)] i

q2−m2
q̃i

−i
(p2+q)2

[
− igs(p2−q)µT bcick

]
= i
√

2ncg3
s

32π2 T acicj

[
B0(p2

1, 0,m2
g̃)+

(
γν(/p2+/p1−mg̃)−/p2γ

ν
)
Cν+

(
m2
q̃i
−/p2(/p1+/p2−mg̃)

)
C0

]
S1,ij ,

where we have introduced the quantities

S1,ij =
(
Rq̃
)
ij
e−iϕg̃/2PL −

(
Rq̃
)
i(j+3)e

iϕg̃/2PR , (5.81)

S2,ij =
(
Rq̃
)
ij
e−iϕg̃/2PR −

(
Rq̃
)
i(j+3)e

iϕg̃/2PL , (5.82)

and

P1 =
(
Rq̃
)∗
l(k+3)

(
Rq̃
)
i(k+3)

(
Rq̃
)
lj
e−iϕg̃/2PL −

(
Rq̃
)∗
lk

(
Rq̃
)
ik

(
Rq̃
)
l(j+3)e

iϕg̃/2PR , (5.83)

P2 =
(
Rq̃
)∗
lk

(
Rq̃
)
ik

(
Rq̃
)
lj
e−iϕg̃/2PL −

(
Rq̃
)∗
l(k+3)

(
Rq̃
)
i(k+3)

(
Rq̃
)
l(j+3)e

iϕg̃/2PR , (5.84)

P3 =
(
Rq̃
)∗
l(k+3)

(
Rq̃
)
ik

(
Rq̃
)
l(j+3)e

−iϕg̃/2PR −
(
Rq̃
)∗
lk

(
Rq̃
)
i(k+3)

(
Rq̃
)
lj
eiϕg̃/2PL , (5.85)

P4 =
(
Rq̃
)∗
lk

(
Rq̃
)
i(k+3)

(
Rq̃
)
l(j+3)e

3iϕg̃/2PR −
(
Rq̃
)∗
l(k+3)

(
Rq̃
)
ik

(
Rq̃
)
lj
e−3iϕg̃/2PL . (5.86)

The vector and tensor integrals appearing in the expressions above can be reduced to scalar
integrals by means of (5.27), and (5.65). Eventually, one obtains

V
(qq̃g̃)
g̃q̃q = − i

√
2g3
s

16ncπ2T
a
cicj

∑
k,l

{[
B0(p2

1,m
2
qk
,m2

q̃l
)+m2

g̃C0+p2
2C11 + /p2/p1C12

]
P1+mg̃

[
/p2(C0+C11)

+ /p1C12

]
P2 +mqk

[
/p2C11+/p1C12

]
P3 +mqk

mg̃C0P4

}
,

V
(g̃gq)
g̃q̃q = − i

√
2ncg3

s

32π2 T acicj

{[
DB0(p2

1,m
2
g̃, 0)+

(
Dp2

2+(2−D)mg̃/p2

)
C11+

(
4p1 ·p2+(2−D)mg̃/p1

+(D−4)/p2/p1

)
C12+m2

qj
DC0

]
S1,ij +mqj

[(
mg̃+(2−D)/p2

)
C0+(2−D)(/p2C11+/p1C12)

]
S2,ij

}
,

V
(q̃qg)
g̃q̃q = i

√
2g3
s

32ncπ2T
a
cicj

{[
B0(p2

1,m
2
q̃i
,m2

qj
)+2(/p1+/p2)/p2C0+

(
3p2

2+/p1/p2

)
C11

+
(
p2

1+2p1 ·p2+/p1/p2

)
C12

]
S1,ij −mqj

[
2/p2C0+/p2C11+/p1C12

]
S2,ij

}
,

V
(gg̃q̃)
g̃q̃q = i

√
2ncg3

s

32π2 T acicj

[
B0(p2

1, 0,m2
g̃)+

(
m2
q̃i
−/p2(/p1+/p2−mg̃)

)
C0+

(
/p2/p1−mg̃/p2

)
C11

+
(
p2

1−mg̃/p1+/p1/p2−/p2/p1

)
C12

]
S1,ij .

The previous amplitudes are all UV-divergent, and the sum of their UV-divergent part is

UV
[
V

(qq̃g̃)
g̃q̃q + V

(g̃gq)
g̃q̃q + V

(q̃qg)
g̃q̃q + V

(gg̃q̃)
g̃q̃q

]
= − i

√
2g3
s

32π2ε̄
T acicj

5n2
c − 1
nc

S1,ij . (5.87)

Starting from the Lagrangian of (5.79), one can obtain the counter-term Feynman rules sum-
marized in Appendix F by replacing all the bare fields and parameters by their renormalized
counter-parts. A specificity of the gluino-squark-quark interactions is that they also involve the
squark mixing angles, which must also be renormalized as follows,

(Rq̃0)ij = (Rq̃)ij + (δRq̃)ij . (5.88)
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The renormalization constants (δRq̃)ij are defined such that

(δRq̃)ij = 1
4

6∑
k=1

[(
δZq̃

)
ik
−
(
δZ∗q̃

)
ki

)]
Rq̃kj . (5.89)

Even if there is no canonical definition for the squark mixing matrices renormalization con-
stants, the choice of (5.89) is inspired by the on-shell scheme, where the one-loop corrections
to the sfermion mixing angles are imposed to vanish on-shell. In the MS-scheme, the squark
renormalization constants being anti-hermitian, the counterterm contribution to the gluino-
squark-antiquark vertex simplifies to

V
(x)
g̃q̃q = i

√
2g3
s

32π2 T
a
cicj

[5n2
c − 1
ncε̄

+ 2nc
3 log

m2
g̃

µ2
R

+ 1
6
∑
q̃i

log
m2
q̃i

µ2
R

+ 2
3 log m

2
t

µ2
R

]
S1,ij , (5.90)

where the last equality is deduced from the results of (5.33), (5.42), (5.50) and (5.70). Comparing
with Eq. (5.87), the renormalized gluino-squark-antiquark vertex is thus finite in the UV.

The triple gluon vertex

The triple gluon interactions are described by the following tree-level Lagrangian

L = −gs,0fabc ∂νga0,µ gb0,ν g
µc
0 . (5.91)

At one-loop, the associated triple gluon vertex receives (non-vanishing) corrections from the
diagrams that are depicted in Fig. 5.15. With the help of the Feynman rules of Appendix F, we
obtain for the massive quark loop contributions

V (qqq)
ggg =

∫
dDq

(2π)Dµ
2ε
R Tr

{[
igsγ

νT bnm

]
i
−/q−/p2+mq

(q+p2)2−m2
q

[
igsγ

νT amo

]
i
−/q−/p2−/p1+mqk

(q+p2+p1)2−m2
q

[
igsγ
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]
i
−/q+mq

q2−m2
q

+
[
igsγ

νT bmn

]
i
−/q−/p2+mqk

(q+p2)2−m2
q

[
igsγ

νT aom

]
i
−/q−/p2−/p1+mq

(q+p2+p1)2−m2
q

[
igsγ

νT cno

]
i
−/q+mq

q2−m2
q

}

= − g3
snf

32π2 f
abc
[
Tr
{
γνγαγµγβγργσ

}[
Cαβσ + (p2+p1)βCασ + p2αCβσ + p2α(p2+p1)βCσ

]
+ 4m2

q

[
Cρηµν + Cνηµρ + Cµηνρ +

[
pρ1η

µν−pν1ηµρ + (p1+2p2)µηνρ
]
C0
]]
,

where m, n, and o correspond to colour indices of the quarks running into the loops, and k is
the flavour index of the quarks. The contribution of the nf light quarks is directly obtained
from the previous expression by taking the massless limit. The arguments of the three-point
functions appearing above can be recovered by performing the following substitution

V (qqq)
ggg : C{0,µ,µν,µνρ} ↔ C{0,µ,µν,µνρ}(p2

2, p
2
1,m

2
q ,m

2
q ,m

2
q) . (5.92)

The triangle integrals with three Lorentz indices can be reduced to a linear combination of scalar
integrals such that

Cµνρ = p2µp2νp2ρC31 + p1µp1νp1ρC32 +
(
pµ2p

ν
2p
ρ
1+pµ2p

ρ
2p
ν
1 +pν2p

ρ
2p
µ
1
)
C33 +

(
pµ1p

ν
1p
ρ
2+pµ1p

ρ
1p
ν
2

+pν1p
ρ
1p
µ
2
)
C34 +

(
p2µηνρ+p2νηµρ+p2ρηµν

)
C35 +

(
p1µηνρ+p1νηµρ+p1ρηµν

)
C36 .
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Figure 5.15: Non-vanishing virtual one-loop contributions to the triple gluon vertex. The ex-
ternal color indices (a, b, c) are indicated and the four-momenta p1 p2, and p3 are all taken
incoming.

where all arguments are understood. The reduction involving large analytical expressions, we
do not detail it here. The sum of all diagrams containing a squark loop, V (q̃q̃q̃)

ggg is given by

V (q̃q̃q̃)
ggg =

∫
dDq

(2π)D µ
2ε
R

∑
q̃

{[[
− igsT bnm(2q+p2)ν

][
− igsT amo(2q+2p2+p1)µ

][
− igsT con(2q+p1+p2)ρ

]
+
[
− igsT bmn(2q+p2)ν

][
− igsT aom(2q+2p2+p1)µ

][
− igsT cno(2q+p1+p2)ρ

]] i

q−m2
q̃

× i

(q+p2)2−m2
q̃

i

(q+p1+p2)2−m2
q̃

= g3
s

32π2 f
abc
∑
q̃

{
8Cµνρ + 4

[
(p1+p2)ρCµν+(p1+2p2)µCνρ+pν2Cµρ

]
+ 2
[
(p1+2p2)µ(p1

+p2)ρCν + pν2(p1+p2)ρCµ+pν2(p1+2p2)µCρ
]

+ (p1+2p2)µpν2(p1+p2)ρC0

}
,
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where the arguments of the three-point functions read now as

V (q̃q̃q̃)
ggg : C{0,µ,µν,µνρ} ↔ C{0,µ,µν,µνρ}(p2

2, p
2
1,m

2
q̃ ,m

2
q̃ ,m

2
q̃) . (5.93)

The gluon and ghost loops form a gauge invariant subset and read

V (ggg)
ggg =

∫
dDq

(2π)D µ
2ε
R gsf

adf
[
(p1−p2−q)σηµα−(q+2p1 + p2)αηµσ+(2q+2p2+p1)µηασ

]
× gsfdbe

[
− (2p2+q)βδνα+(2q+p2)νδβα+(p2−q)αηβν

]
gsf

fec
[
(p1+p2+2q)ρησβ

−(q+2p1 + 2p2)βδρσ+(p2+p1−q)σδρβ
]−i
q2

−i
(q+p2)2

−i
(q+p1+p2)2

= g3
snc

32π2 f
abc

[
(8D−14)Cµνρ + 2

[
ηµρCναα+ηνρCµαα+ηµνCραα

]
+
[
(3p1−p2)ρηµν

−(4p1+p2)νηµρ + 3(p1+2p2)µηρν
]
Cαα+(4D−7)

[(
p1+2p2

)µ
Cνρ+pν2Cµρ

+
(
p1+p2

)ρ
Cµν

]
+2
[
ηνρ(p1+2p2)αCαµ + ηµρp2αC

αν + ηµν(p1+p2)αCαρ
]

+
[
3pν1p

ρ
1

+(2D−1)pρ1pν2−13pν1p
ρ
2 +(2D−14)pν2p

ρ
2 + ηνρ

[
12p2

2+12p1 ·p2−p2
1
]]
Cµ +

[
(2D−14)pµ1p

ρ
1

+(4D−20)pρ1p
µ
2 +(2D−1)pµ1p

ρ
2 +(4D−4)pµ2p

ρ
2 + ηµρ

[
10p2

1+10p1 ·p2 − p2
2
]]
Cν +

[
3pµ1pν1

+16pν1p
µ
2 +(2D−3)pµ1pν2 +(4D−4)pµ2pν2−ηµν

[
p2

1+12p1 ·p2 + p2
2
]]
Cρ +

[
pα1
[
3(p1

+p2)ρηµν−4(2p1+p2)νηµρ+(3p1+2p2)µηνρ
]

+ pα2
[
(7p1−p2)ρηµν−(8p1+p2)νηµρ+2(p1

+2p2)µηνρ
]]
Cα +

[
3pν1p

ρ
1p
µ
2 +(D−7)pµ1p

ρ
1p
ν
2 +(2D−11)pρ1pν2p

µ
2 +3pν1p

µ
2p
ρ
2 +(D−4)pµ1pν2p

ρ
2

+(2D−8)pµ2pν2p
ρ
2 +ηµν

[
5pρ1p2

2−2p2
1p
ρ
2−8p1 ·p2p

ρ
2−p2

2p
ρ
2
]
+ηµρ

[
− 4p1 ·p2p

ν
1−6p2

2p
ν
1

+5p2
1p
ν
2 +6p1 ·p2p

ν
2−p2

2p
ν
2
]
+ηνρ

[
3p1 ·p2p

µ
1 +4p2

2p
µ
1 +p2

1p
µ
2 +8p1 ·p2p

µ
2 +8p2

2p
µ
2
]]
C0

]
,

V (ugugug)
ggg =

∫
dDq

(2π)D µ
2ε
R (−)

[
− gsfafd(p2+q)µ

][
− gsf bdeqν

][
− gsf cef (p1+p2+q)ρ

]
+
[
gsf

adf (p1+p2+q)µ
][
gsf

bed(p2+q)ν
][
gsf

cfeqρ
] i
q2

i

(q+p2)2
i

(q+p1+p2)2

= g3
snc

32π2 f
abc

[
2Cµνρ +

[
(p1+2p2)µCνρ + pν2C

µρ+(p1+p2)ρCµν
]

+
[
(pρ1p

µ
2 +pµ2p

ρ
2)Cν+pν2(p1+p2)µCρ

]]
,

where d, e and f are internal adjoint color indices and the replacement rule for the arguments
of the three-point functions is

V (ggg/ugugug)
ggg : C{0,µ,µν,µνρ} ↔ C{0,µ,µν,µνρ}(p2

2, p
2
1, 0, 0, 0) . (5.94)

The last triangle diagram, i.e. the one with gluinos, finally gives the following expression

V (g̃g̃g̃)
ggg =−

∫
dDq

(2π)D µ
2ε
R Tr

{[
gsf

bdeγν
]
i
/q+mg̃

q2−m2
g̃

[
gsf

cefγρ
]
i
/q+/p1+/p2+mg̃

(q+p1+p2)2−m2
g̃

[
gsf

afdγµ
]
i
/q+/p2+mg̃

(q+p2)2−m2
g̃

}
= − g3

snc
32π2 f

abc

{
Tr
{
γνγαγργβγµγδ

}[
Cαβδ + (p1+ p2)βCαδ + p2δCαβ + (p1+ p2)βp2δCα

]
+m2

g̃

[
Tr
{
γνγργµγα

}[
Cα+p2αC0

]
+ Tr

{
γνγργαγµ

}[
Cα+(p1+ p2)αC0

]
+ Tr

{
γνγαγργµ

}
Cα

]}
,

where the arguments of the loop-integrals read

V (g̃g̃g̃)
ggg : C{0,µ,µν,µνρ} ↔ C{0,µ,µν,µνρ}(p2

2, p
2
1,m

2
g̃,m

2
g̃,m

2
g̃) . (5.95)
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Figure 5.16: Feynman rule of the triple gluon vertex counter-term. All four-momenta are taken
incoming to the vertex, and are denoted by p1, p2 and p3. The indices a1, a2 and a3 are adjoint
color indices.

We now turn to the calculation of the bubble diagrams included in Fig. 5.15, using the Feynman
rules of Appendix F. The amplitude associated to the first diagram (third line of Fig. 5.15) reads

V (gg1)
ggg = 1

2

∫
dDq

(2π)D µ
2ε
R gsf

ebd
[
− (2p2+q)αηβν+(2q+p2)νηαβ+(p2−q)βηαν

]−i
q2

−i
(q+p2)2 × ig

2
s[

δµαδ
ρ
β

[
facffedf+faeff cdf

]
+ ηµνηαβ

[
fadffecf−faeff cdf

]
+ δµβδ

ρ
α

[
−fadffecf−facffedf

]]
= 9ncg3

s

64π2 f
abc
[
pρ2η

µν − pµ2ηνρ
]
B0(p2

2, 0, 0) ,

while those associated to the second and third diagrams (last line of Fig. 5.15) are obtained by
symmetry,

V (gg2)
ggg = 9ncg3

s

64π2 f
abc
[
pµ3η

ρν − pν3ηµρ
]
B0(p2

3, 0, 0) ,

V (gg3)
ggg = 9ncg3

s

64π2 f
abc
[
pν1η

ρµ − pρ1η
µν
]
B0(p2

1, 0, 0) .

Summing up all the contribution, the ultraviolet-divergent piece of the one-loop corrections to
the triple gluon vertex is given by

UV
[
Vggg

]
= UV

[
V (qqq)
ggg + V (q̃q̃q̃)

ggg + V (ggg)
ggg − V (ugugug)

ggg + V (g̃g̃g̃)
ggg + V (gg2)

ggg + V (gg3)
ggg + V (gg3)

ggg

]
= g3

s

32π2 f
abc
[
(p1−p2)ρηµν+(p3−p1)νηρµ+(p2−p3)µηνρ

]1
ε̄

[
2nf + 2

]
.

(5.96)

As explained in Section 4.5, the renormalizability of a theory requires that UV-divergences
originating from loops cancel against those coming from the counter-terms. In the case of our
interest, the counter-term we need is obtained from the tree-level Lagrangian (5.91) by means
of multiplicative renormalization, and according to Fig. 5.16 reads as follows,

V (x)
ggg = fabc

[
(p1−p2)ρηµν+(p3−p1)νηρµ+(p2−p3)µηνρ

][
δgs + 3

2gsδZg
]

= − g3
s

32π2 f
abc
[
(p1−p2)ρηµν+(p3−p1)νηρµ+(p2−p3)µηνρ

]
×
[2nf+2

ε̄

+ nc
3 log

m2
g̃

µ2
R

+ 1
12
∑
q̃i

log
m2
q̃i

µ2
R

+ 1
3 log m

2
t

µ2
R

]
,

(5.97)

where we have used the results of (5.33) and (5.70) to derive the analytical expression of V (x)
ggg .

Comparing UV
[
Vggg

]
, and V (x)

ggg , we conclude that the renormalized vertex is UV-finite, .
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Figure 5.17: The ten box diagrams contributing to the quark-antiquark channel. The flavour
indices of the external quarks and squarks are respectively denoted by m, n, and i, j, while k,
and l correspond to the flavour indices of the virtual particles.

Comments

In the calculations we have presented so far, we have neither mentioned the ghosts WFRC, nor
the corrections to the gluon-ghost-ghost vertex. This omission is due to the fact that, in practice,
we have used the FeynArts/FormCalc framework to perform all the one-loop calculations
detailed above. More specifically, if in FeynArts/FormCalc internal gluons are chosen to be
in the Feynman gauge (which requires the presence of ghosts to cancel unphysical polarization
modes of the gluons), external gluons are on the other hand treated in the axial gauge. In
FeynArts/FormCalc, ghosts can therefore appear inside loops, but can never be on external
legs, which is why they do not need to be renormalized.

In addition, note that in the present section, we have also voluntarily omitted the corrections
to the gluon-gluon-squark-antisquark vertex, because those are conventionally included into the
box diagram contributions in FeynArts/FormCalc which are discussed just below.

5.6 Box contributions

The last remaining one-loop diagrams that we need to include into our calculations are the
four-point diagrams, also referred to as box diagrams. There are 42 of them in total, out of
which 10 contribute to the quark-antiquark channel (see Fig. 5.17), and 32 contribute to the
gluon channel (see Figs. 5.18 and 5.19 ). The calculation of the box contributions involves
rather large expressions, which is why they are not detailed in the present manuscript. A few
qualitative remarks can however be made concerning those box diagrams. First of all, box
diagrams contain infrared divergences, just like the self-energies and the vertex corrections, and
according to the KLN theorem, those divergences, but the simple collinear poles of the initial
state, are expected to cancel against the IR divergences originating from the real contributions.
Second, the ten box diagrams of the quark-antiquark channel are in principle UV-finite, because
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Figure 5.18: First set of box diagrams contributing to the gluon-gluon channel. The flavour
indices of the external squarks are denoted by i, j, while while k, and l correspond to the flavour
indices of the virtual particles.

there is no quark-antiquark-squark-antisquark vertex at tree-level from which we can derive a
counter-term supposed to cancel the hypothetical UV-divergent piece of those boxes. Third, the
box diagrams contributing to the gluon channel, are expected to exhibit a UV-divergent part,
which will eventually cancel against the UV-part of the counter-term associated to the tree-level
Lagrangian describing gluon-gluon-squark-antisquark interactions in (5.1).

5.7 Status report on the calculation

With the help of FeynArts/FormCalc, we have first explicitly cross-checked the analytical
expression of the tree-level matrix elements derived in Section 5.2, contribution by contribution
in the case of the quark-antiquark channel, and for the total matrix element (from which we
have subtracted the ghost contributions) in the case of the gluon channel. We have then derived
the self-energies, the Wave-Functions Renormalization Constants, and the mass RCs of all the
particles appearing in the process at tree-level. All of them have been checked with the help of
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Figure 5.19: Second set of box diagrams contributing to the gluon-gluon channel. The flavour
indices of the external squarks are denoted by i, j, while while k, and l correspond to the flavour
indices of the virtual particles.

two independent FeynArts tree-level model files. The first one being the FVMSSM model file,
directly provided by FeynArts, while the second was generated by means of FeynRules. The
analytical results obtain with both model files perfectly agree.

After the implementation of a model file containing the vertices of the counter-term La-
grangian, and the definition of the renormalization constants, we have explicitly checked the
UV-finiteness of the virtual contribution. At present, we are at the level of checking the in-
frared finiteness of the NLO corrections, and have implemented for the process of our interest
the procedure of mass factorization, in a Mathemetica notebook, in order to subtract the
remaining collinear poles of the initial state that can be absorbed into the redefinition of the
parton distributions at next-to-leading order.



Chapter 6

Matching NLO predictions with
parton showers

Fixed-order calculations, such as the one discussed in the previous chapter, involve, in most cases,
due to the complexity of the calculations, only a limited number of particles in the final-state, in
contrast to what we observe experimentally, and are only valid when partons are hard and well-
separated. In order to account for a more realistic final-state, and to resum large logarithms
arising from soft/collinear regions of the phase-space, one usually adopts the Parton Shower
(PS) approach, which consists in using the collinear factorization approximation to decompose
the amplitude of a process with n + 1 particles in the final-state, into a n partons final-state
multiplied by the Altarelli-Parisi splitting kernels1. In the PS approach, the successive emission
of two partons is completely decorrelated, and can be interpreted as a Markovian process2. More
details on Parton Shower algorithms, and their implementation into Shower Monte-Carlo (SMC)
programs can be found in [224], and references therein.

Fixed-order calculations, and parton showers are complementary approaches, and combining
them is the purpose of the so-called matching procedure. At next-to-leading order, this matching
procedure exhibits a double-counting problem3, which can fortunately be evaded by means of
the MC@NLO [225], and POWHEG [226] methods. In this chapter, we choose to use the first
method, implemented in the context of the MadGraph5_aMC@NLO framework, and present
for the first time the full automation of collider predictions matched to parton showers at the
next-to-leading accuracy in QCD within non-trivial extensions of the standard model. As an
application, we explore scenarios beyond the standard model where new coloured scalar and
Majorana particles are pair-produced. This work is not related to the previous chapter.

This chapter is organized as follows: in Section 6.1 we present our results for stop and
sgluon pair production at next-to-leading order in SUSY-QCD, matched with parton shower. In
Section 6.2 we present our results obtained for gluino pair-production at NLO in SUSY-QCD
matched with PS, in a scenario where all the squarks, but the stops, are mass degenerate, and
where the latter are decoupled so that no on-shell subtraction is required for the real contribution.

6.1 Coloured scalar pair production

Motivated by the conceptual issues accompanying the Standard Model, many new physics the-
ories have been developed over the last decades. Most of them exhibit an extended coloured

1Assuming that only two of the n + 1 partons are collinear one to another
2The probability of not emitting a parton between two given scales corresponds to the so-called Sudakov form

factor.
3Parton showers include approximate real corrections in the soft/collinear limit.
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sector, and related new phenomena are expected to be observable at high-energy hadron collid-
ers such as the LHC. In particular, effects induced by hypothetical coloured scalar particles have
received special attention from both the ATLAS and CMS collaborations. Many LHC analyses
are indeed seeking for the scalar partners of the Standard Model quarks (the squarks) and gluons
(the sgluons) that are predicted, for instance, in minimal [44, 116] and non-minimal [227, 228]
supersymmetric or in vector-like confining theories [229].

In this context, it is clear that an approach to precision predictions that is fully general in
any considered theory is highly desirable, and the MadGraph5_aMC@NLO framework [230]
is in a prime position to provide it. Its structure for tackling leading-order (LO) computations
has indeed already proved to be very efficient at satisfying the needs of both the theoretical
and experimental high energy physics communities. Generalizing this flexibility to the next-to-
leading order (NLO) case is however not straightforward, essentially because of the necessity of
specifying model-dependent counter-terms, including those arising from the renormalization of
the Lagrangian. Recent developments [231] in the FeynRules package [232] have allowed to
overcome this main obstacle and paved the way to the full automation of NLO QCD predictions
matched to parton showers for generic theories.

We describe the details of this implementation by working through two specific cases and
revisit some LHC phenomenology associated with stops and sgluons in the context of simplified
models of new physics [233, 234]. Employing state-of-the-art simulation techniques, we match
NLO-QCD matrix elements to parton showers and present precision predictions for several kine-
matical observables after considering both the production and the decay of the new particles.
In more detail, we make use of FeynRules to implement all possible couplings of the new fields
to quarks and gluons and employ the NloCT program [231] to generate a UFO module [235]
containing, in addition to tree-level model information, the ultraviolet and R2 counter-terms
necessary whenever the loop integral numerators are computed in four dimensions, as in Mad-
Loop [236] that uses the Ossola-Papadopoulos-Pittau (OPP) reduction formalism [237]. This
UFO library is then linked to the MadGraph5_aMC@NLO framework which is used, for the
first time, for predictions in the context of new physics models featuring an extended coloured
sector. We focus in this chapter on the pair production of those new heavy states at NLO in
QCD. Their decay is then taken into account separately, at the leading order and with the spin
information retained, by means of the MadSpin [238] and MadWidth [239] programs.

In the rest of this section, we define the simplified models describing stop/sgluon dynamics,
and detail the renormalization of the effective Lagrangians, and the validation of the UFO models
generated by NloCT. Our results follow, and consist of total rates and differential distributions
illustrating some kinematical properties of the produced new states and their decay products.

Benchmark scenarios for stop hadroproduction

Following a simplified model approach, we extend the Standard Model by a complex scalar
field σ3 (a stop) of mass m3. This field lies in the fundamental representation of SU(3)c, so
that its strong interactions are standard and embedded into SU(3)c-covariant derivatives. We
enable the stop to decay via a coupling to a single top quark and a gauge-singlet Majorana
fermion χ of mass mχ that can be identified with a bino in complete supersymmetric models.
Finally, despite of being allowed by gauge invariance, the single stop couplings to down-type
quarks, as predicted in R-parity violating supersymmetry, are ignored for simplicity. We model
all considered interactions by the Lagrangian

L3 = Dµσ
†
3D

µσ3 −m2
3σ
†
3σ3 + i

2 χ̄
/∂χ− 1

2mχχ̄χ+
[
σ3t̄
(
g̃LPL + g̃RPR

)
χ+ h.c.

]
, (6.1)
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where we denote the strengths of the stop couplings to the fermion χ by g̃, and where PL,R are
the usual left- and right-handed projectors.

Aiming to precision predictions at the NLO accuracy, a renormalization procedure is required
in order to absorb all ultraviolet divergences yielded by virtual loop-diagrams. This is achieved
through counter-terms that are derived from the tree-level Lagrangian by replacing all bare fields
(generically denoted by Ψ) and parameters (generically denoted by A) by

Ψ→ Z
1/2
Ψ Ψ ≈

[
1 + 1

2δZΨ
]
Ψ and A→ A+ δZA , (6.2)

where the renormalization constants δZ are restricted in our case to QCD contributions at the
first order in the strong coupling αs. Like in usual supersymmetric setups, the g̃ couplings are of
a non-QCD nature so that our simplified model does not feature new strong interactions involv-
ing quarks. The wave-function renormalization constant of the latter is therefore unchanged with
respect to the Standard Model, contrary to the one of the gluon that must appropriately com-
pensate stop-induced contributions. Adopting the on-shell renormalization scheme, the gluon
and stop wave-function (δZg and δZσ3) and mass (δm2

3) renormalization constants read

δZg = δZ
(SM)
g − g2

s

96π2

[1
ε̄
− log m

2
3

µ2
R

]
, δZσ3 = 0 , (6.3)

δm2
3 = −g

2
sm

2
3

12π2

[3
ε̄

+ 7− 3 log m
2
3

µ2
R

]
, (6.4)

where δZ(SM)
g collects the Standard Model components of δZg. Moreover, we denote the renor-

malization scale by µR and following standard conventions, the ultraviolet divergent parts of the
renormalization constants are written in terms of the quantity 1/ε̄ = 1/ε − γE + log 4π where
γE is the Euler-Mascheroni constant, and ε is the regulator of DREG

The renormalization of the strong coupling is achieved by subtracting, at zero-momentum
transfer, all heavy particle contributions from the gluon self-energy. This ensures that the
running of αs solely originates from nf = 5 flavors of light quarks and gluons, and any effect
induced by the massive top and stop fields is decoupled and absorbed into the renormalization
constant of αs,

δαs
αs

= αs
2πε̄

[
nf
3 −

11
2

]
+ αs

6π

[1
ε̄
− log m

2
t

µ2
R

]
+ αs

24π

[1
ε̄
− log m

2
3

µ2
R

]
. (6.5)

All loop-calculations achieved in this work rely on the OPP formalism. It is based on the
decomposition of any loop amplitude in both cut-constructible and rational elements, the latter
being related to the ε-pieces of the loop-integral denominators (R1) and numerators (R2). For
any renormalizable theory, there is a finite number of R2 terms, and they all involve interactions
with at most four external legs that can be seen as counter-terms derived from the tree-level
Lagrangian [240]. Considering corrections at the first order in QCD, the σ3-field induces three
additional R2 counter-terms with respect to the Standard Model case,

R
σ†3σ3
2 = ig2

s

72π2 δc1c2

[
3m2

3 − p2
]
, R

gσ†3σ3
2 = 53ig3

s

576π2T
a1
c2c3

(
p2 − p3

)µ1 , (6.6)

R
ggσ†3σ3
2 = ig4

s

1152π2 η
µ1µ2

[
3δa1a2 − 187{T a1 , T a2}

]
c3c4

,

where ci, µi, and pi indicate the color index, Lorentz index, and the four-momentum of the ith
particle incoming to theR...i...2 vertex, respectively. Moreover, the matrices T denote fundamental
representation matrices of SU(3).
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m3 [GeV] 8 TeV
σLO [pb] σNLO [pb]

100 389.3+34.2%
−23.9% 554.8+14.9%

−13.5%
+1.6%
−1.6%

250 4.118+40.4%
−27.2% 5.503+13.1%

−13.7%
+3.7%
−3.7%

500
(
6.594× 10−2)+45.5%

−29.1%

(
7.764× 10−2)+12.1%

−14.1%
+6.7%
−6.7%

750
(
3.504× 10−3)+48.8%

−30.5%

(
3.699× 10−3)+12.3%

−14.6%
+10.2%
−10.2%

1000
(
2.875× 10−4)+51.5%

−31.5%

(
2.775× 10−4)+13.1%

−15.2%
+15.5%
−15.5%

Table 6.1: Total cross sections for stop pair production at the LHC, running at
√
s = 8 TeV. Results are

presented together with the associated scale and PDF (not shown for the LO case) uncertainties. Monte
Carlo errors are of about 0.2-0.3% and omitted.

m3 [GeV] 13 TeV
σLO [pb] σNLO [pb]

100 1066+29.1%
−21.4% 1497+14.1%

−12.1%
+1.2%
−1.2%

250 15.53+35.2%
−24.8% 21.56+12.1%

−12.3%
+2.4%
−2.4%

500 0.3890+39.6%
−26.4% 0.5062+11.2%

−12.8%
+4.4%
−4.4%

750
(
3.306× 10−2)+41.8%

−27.5%

(
4.001× 10−2)+10.8%

−12.9%
+6.1%
−6.1%

1000
(
4.614× 10−3)+43.6%

−28.3%

(
5.219× 10−3)+10.9%

−13.2%
+7.9%
−7.9%

Table 6.2: Same as Tab. 6.1 but for
√
s = 13 TeV.

Contrary to complete supersymmetric scenarios, the g̃ operators present a non-trivial one-
loop ultraviolet behaviour that is not compensated by effects of other fields such as gluinos.
Since we focus on QCD NLO corrections to the strong production of a pair of σ3 fields followed
by their LO decays, the related counter-terms are therefore omitted from this document.

Our stop simplified model has been implemented in FeynRules, and we have employed the
NloCT package to automatically generate all QCD ultraviolet and R2 counter-terms (including
the Standard Model ones). The output has been validated against our analytical calculations,
which constitutes a validation of the handling of new massive colored states by NloCT. Finally,
the analytical results have been exported to a UFO module that we have imported into Mad-
Graph5_aMC@NLO. For our numerical analysis, we consider scenarios where m3 and mχ are
kept free. The g̃L,R parameters are fixed to typical values for supersymmetric models featuring
a bino-like neutralino and a maximally-mixing top squark,

g̃L = 0.25 and g̃R = 0.06 . (6.7)

Benchmark scenarios for sgluon hadroproduction

We construct a simplified model describing sgluon dynamics by supplementing the Standard
Model with a real scalar field σ8 (a sgluon) of mass m8 lying in the adjoint representation of
the QCD gauge group. Its strong interactions are described by gauge-covariant kinetic terms
and we enable single sgluon couplings to quarks and gluons, like in complete models where such
interactions are loop-induced. The corresponding effective Lagrangian reads

L8 = 1
2Dµσ8D

µσ8 −
1
2m

2
8σ8σ8 + ĝg

Λ σ8GµνG
µν +

∑
q=u,d

[
σ8q̄

(
ĝLq PL + ĝRq PR

)
q + h.c.

]
, (6.8)

where Gµν refers to the gluon field strength tensor and the single sgluon interaction strengths
are denoted by ĝ. Although the ĝ operators induce single sgluon production, we ignore it in this
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m8 [GeV] 8 TeV
σLO [pb] σNLO [pb]

100 3854+34.4%
−24.1% 5573+14.9%

−13.6%
+1.6%
−1.6%

250 38.89+41.3%
−27.7% 54.32+14.5%

−14.6%
+3.9%
−3.9%

500 0.5878+47.6%
−30.0% 0.7431+15.8%

−16.2%
+7.6%
−7.6%

750
(
2.977× 10−2)+52.0%

−31.9%

(
3.353× 10−2)+17.2%

−17.3%
+12.1%
−12.1%

1000
(
2.328× 10−3)+55.9%

−33.4%

(
2.398× 10−3)+19.0%

−18.4%
+19.1%
−19.1%

Table 6.3: Total cross sections for sgluon pair production at the LHC, running at
√
s = 8 TeV. Results

are presented together with the associated scale and PDF (not shown for the LO case) uncertainties.
Monte Carlo errors are of about 0.2-0.3% and omitted.

m8 [GeV] 13 TeV
σLO [pb] σNLO [pb]

100 10560+29.2%
−21.5% 14700+13.6%

−11.9%
+1.2%
−1.2%

250 150.4+35.7%
−25.1% 214.5+12.9%

−12.9%
+2.5%
−2.5%

500 3.619+40.8%
−27.0% 4.977+13.3%

−14.1%
+4.7%
−4.7%

750 0.2951+43.6%
−28.4% 0.3817+14.0%

−14.8%
+6.9%
−6.9%

1000
(
3.983× 10−2)+46.1%

−29.5%

(
4.822× 10−2)+15.1%

−15.6%
+9.3%
−9.3%

Table 6.4: Same as Tab. 6.3 but for
√
s = 13 TeV.

work since the presence of a complete basis of dimension-five operators at tree-level is required to
guarantee the cancellation, after renormalization, of all loop-induced ultraviolet divergences. We
postpone the associated study to a future work. The ĝ couplings being technically of higher-order
in QCD (as in complete theories), the quark fields are renormalized like in the Standard Model.
In contrast, the sgluon QCD interactions induce a modification of the on-shell gluon wave-
function renormalization constant δZg and yield non-vanishing on-shell sgluon wave-function
(δZσ8) and mass (δm2

8) renormalization constants,

δZg = δZ
(SM)
g − g2

s

32π2

[1
ε̄
− log m

2
8

µ2
R

]
, δZσ8 = 0 ,

δm2
8 = −3g2

sm
2
8

16π2

[3
ε̄

+ 7− 3 log m
2
8

µ2
R

]
. (6.9)

Sgluon effects are also subtracted, at zero-momentum transfer, from the gluon self-energy and
absorbed in the renormalization of the strong coupling,

δαs
αs

= αs
2πε̄

[
nf
3 −

11
2

]
+ αs

6π

[1
ε̄
− log m

2
t

µ2
R

]
+ αs

8π

[1
ε̄
− log m

2
8

µ2
R

]
. (6.10)

They finally induce new R2 counter-terms,

Rσ8σ8
2 = ig2

s

32π2 δa1a2

[
3m2

8 − p2
]
, Rgσ8σ8

2 = 7g3
s

64π2 fa1a2a3

(
p2 − p3

)µ1 , (6.11)

Rggσ8σ8
2 = ig4

s

384π2 η
µ1µ2

[
72(da1a4eda2a3e + da1a3eda2a4e)− 141da1a2eda3a4e (6.12)

−92δa1a2δa3a4 + 50(δa1a3δa2a4 + δa1a4δa2a3)
]
, (6.13)

in the same notations as in the previous section.
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We have implemented the sgluon simplified model in FeynRules and generated a UFO
model that we have linked to MadGraph5_aMC@NLO by means of the NloCT package. The
generated model has then been validated analytically against the above results. Our numerical
study relies on benchmark scenarios inspired by an R-symmetric supersymmetric setup with
non-minimal flavor violation in the squark sector [241], in which the only non-vanishing coupling
parameters are fixed to

ĝg
Λ = 1.5 · 10−6 GeV−1 ,

(ĝL,Ru )3i = (ĝL,Ru )i3 = 3 · 10−3 ∀i = 1, 2, 3 .
(6.14)

LHC phenomenology

In Tabs. 6.1, 6.2, 6.3, and 6.4, we provide stop and sgluon pair production cross sections for
LHC collisions at center-of-mass energies of

√
s = 8 and 13 TeV and for different mass choices.

The results are evaluated both at the LO and NLO accuracy, and presented together with the
associated theoretical uncertainties. For the central values, we have fixed the renormalization and
factorization scales to the stop/sgluon mass and used the NNPDF 2.3 parton distributions [136].
Scale uncertainties have been derived by varying both scales by a factor of two up and down, and
the parton distribution uncertainties have been extracted from the cross section values spanned
by the NNPDF density replica.

The results of Tabs. 6.1, 6.2, 6.3, and 6.4 have been confronted to predictions obtained with
the public packages Prospino [188] (stop pair production) and MadGolem [242] (sgluon pair
production). Stop-pair total production rates have been found to agree at the level of the numer-
ical integration error, while virtual and real contributions to sgluon-pair production are agreeing
separately at the amplitude level. We have additionally performed independent calculations of
the loop contributions based on FeynArts [147], that we have found to agree with our predic-
tions. Realistic descriptions of LHC collisions require to match hard scattering matrix elements
to a modeling of QCD environment. To this aim, we make use of the MC@NLO method [243] as
implemented in MadGraph5_aMC@NLO. We match in this way the hard scattering process
to the Pythia 8 parton showering and hadronization [244], after employing the MadSpin and
MadWidth programs to handle stop and sgluon decays. Jet reconstruction is then performed
by means of the anti-kT algorithm with a radius parameter set to 0.4 [245], as included in the
FastJet program [246], and events are finally analyzed with the MadAnalysis 5 package [247].
Normalizing the results to an integrated luminosity of 100 fb−1, we present, in Fig. 6.1, the distri-
bution of a key observable for stop searches, namely the missing transverse energy. We show LO
and NLO predictions for 13 TeV collisions as calculated by MadGraph5_aMC@NLO in the
context of three benchmark scenarios for which (m3,mχ) = (500, 50) GeV (red), (1000, 50) GeV
(green) and (500, 200) GeV (blue). Similarly, we describe the hadronic activity HT associated
with the production of a sgluon pair in Fig. 6.2 in the case of a sgluon mass of 500 GeV (red)
and 1000 GeV (green)4.

Summary

In this section, we have demonstrated that a joint use of the FeynRules, NloCT and Mad-
Graph5_aMC@NLO programs enables the full automation of the Monte Carlo simulations of
high-energy physics collisions at the next-to-leading order accuracy in QCD and for non-trivial

4With the current level of precision of the experimental searches, the current limits on the stop and sgluon
masses, that are extracted on the basis of NLO total rates but LO simulations for the distributions, can be
assumed to hold. Evaluating the NLO effects on the shapes and how this translates in terms of a modification of
the limits goes beyond the scope of this work.
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Figure 6.1: Missing transverse energy spectrum for a stop pair production and decay signal.
We consider several mass setups and show results at the NLO and LO accuracy (upper panel),
together with their bin-by-bin ratio (lower panel).
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Figure 6.2: Same as Fig. 6.1 for the HT spectrum of sgluon signals.

extensions of the Standard Model. This has been illustrated with simplified models such as those
used for supersymmetry searches at the LHC. In this context, we have adopted setups that ex-
hibit extra coloured particles and non-usual interaction structures and presented the analysis of
two exemplary signals with the automated tool MadAnalysis 5.

In the aim of an embedding within experimental software, we have designed a webpage
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Figure 6.3: Tree-level Feynman diagrams for the production of a pair of gluinos in quark-
antiquark (top) and gluon-gluon collisions (bottom). Ghost contributions, mandatory for calcu-
lations performed in Feynman gauge, are also shown (middle).

http://feynrules.irmp.ucl.ac.be/wiki/NLOModels, where hundreds of differential distribu-
tions are available for validation purposes, together with the associated FeynRules and UFO
models.

6.2 Gluino pair production

In this last section, we match for the first time NLO QCD matrix-element-based predictions
to parton showers for gluino pair-production. Virtual contributions are evaluated following the
Ossola-Papadopoulos-Pittau (OPP) formalism as implemented in MadLoop [236,237], and com-
bined with real emission contributions by means of the FKS subtraction method as embedded in
MadFKS [248,249]; these two modules being fully incorporated in MadGraph5_aMC@NLO.
The matching to parton showers is then achieved by employing the MC@NLO method [243].
After accounting for (LO) gluino decays, we study the impact of both the NLO contributions
and the parton showers in the context of LHC physics.

Theoretical framework

Our study of gluino pair-production and decay is based on an MSSM-inspired simplified model.
We complement the Standard Model with three generations of non-mixing left-handed and right-
handed squark fields q̃L,R of mass mq̃L,R and with a Majorana fermionic gluino field g̃ of mass
mg̃. The dynamics of the new fields is described by the following Lagrangian,

LSQCD = Dµq̃
†
LD

µq̃L +Dµq̃
†
RD

µq̃R + i

2
¯̃g /Dg̃ −m2

q̃L
q̃†Lq̃L −m

2
q̃R
q̃†Rq̃R −

1
2mg̃̃̄gg̃

+
√

2gs
[
− q̃†LT

(¯̃gPLq)+
(
q̄PLg̃

)
T q̃R + h.c.

]
− g2

s

2
[
q̃†RT q̃R − q̃

†
LT q̃L

][
q̃†RT q̃R − q̃

†
LT q̃L

]
,

(6.15)
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mg̃ [GeV] σLO [pb] σNLO [pb]

200 2104+30.3%
−21.9%

+14.0%
−14.0% 3183+10.8%

−11.6%
+1.8%
−1.8%

500 15.46+34.7%
−24.1%

+19.5%
−19.5% 24.90+12.5%

−13.4%
+3.7%
−3.7%

750 1.206+35.9%
−24.6%

+23.5%
−23.5% 2.009+13.5%

−14.1%
+5.5%
−5.5%

1000 1.608 · 10−1+36.3%
−24.8%

+26.4%
−26.4% 2.743 · 10−1+14.4%

−14.8%
+7.3%
−7.3%

1500 6.264 · 10−3+36.2%
−24.7%

+29.4%
−29.4% 1.056 · 10−2+16.1%

−15.8%
+11.3%
−11.3%

2000 4.217 · 10−4+35.6%
−24.5%

+29.8%
−29.8% 6.327 · 10−4+17.7%

−16.6%
+17.8%
−17.8%

Table 6.5: LO and NLO QCD inclusive cross sections for gluino pair-production at the LHC, running
at a center-of-mass energy of

√
s = 13 TeV. The results are shown together with the associated scale and

PDF relative uncertainties.

that contains all interactions allowed by QCD gauge invariance and supersymmetry, as well
as squark and gluino kinetic and mass terms. In our notation, T stands for the fundamental
representation matrices of SU(3), PL (PR) for the left-handed (right-handed) chirality projector
and gs is the strong coupling constant. Flavour and colour indices are left understood for brevity.

In addition, we enable the (possibly three-body) decays of the coloured superpartners by
including (s)quark couplings to a gauge-singlet Majorana fermion χ of mass mχ that is identified
with a bino,

Ldecay = i

2 χ̄
/∂χ− 1

2mχχ̄χ+
√

2g′
[
− q̃†LYq

(
χ̄PLq

)
+
(
q̄PLχ

)
Yq q̃R + h.c.

]
. (6.16)

In this Lagrangian, Yq denotes the hypercharge quantum number of the (s)quarks and g′ the
hypercharge coupling.

At NLO in QCD, gluino pair-production receives contributions from real emission diagrams
as well as from the interferences of tree-level diagrams with virtual one-loop diagrams that
exhibit ultraviolet divergences. These must be absorbed through a suitable renormalization of
the parameters and of the fields appearing in LSQCD. To this aim, we replace all (non-)fermionic
bare fields Ψ (Φ) and bare parameters y by the corresponding renormalized quantities,

Φ→
[
1 + 1

2δZΦ
]
Φ , Ψ→

[
1 + 1

2δZ
L
ΨPL + 1

2δZ
R
ΨPR

]
Ψ ,

y → y + δy ,
(6.17)

where the renormalization constants δZ and δy are truncated at the first order in the strong
coupling αs. The wave-function renormalization constants of the massless quarks (δZL,Rq ), of
the top quark (δZL,Rt ), of the gluon (δZg) and the top mass renormalization constant (δmt) are
given, when adopting the on-shell renormalization scheme, by

δZg = − g2
s

24π2

[
− 1

3 +B0(0,m2
t ,m

2
t ) + 2m2

tB
′
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t ,m
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2
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2
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2
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,

δZL,Rq = g2
sCF
8π2 B1(0,m2
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2
q̃L,R

) ,

(6.18)
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δZL,Rt = g2
sCF

16π2

[
1 + 2B1(m2

t ,m
2
g̃,m

2
t̃L,R

) + 2B1(m2
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2
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t ,m
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2
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t ,m

2
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2
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,

δmt = −g
2
sCFmt

16π2
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2
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t ,m
2
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2
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)
]
,

(6.19)

where the B0,1 (and A0, for further references) functions and their derivatives stand for the
standard two-point (one-point) Passarino-Veltman loop-integrals [175]. Moreover, nc = 3 and
CF = (n2

c − 1)/(2nc) denote respectively the number of colors and the quadratic Casimir invari-
ant associated with the fundamental representation of SU(3). The gluino wave-function and
mass renormalization constants δZL,Rg̃ and δmg̃ are given by

δZg̃ = g2
s

16π2

[
nc + 2ncB1(m2

g̃,m
2
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(6.20)

while the squark wave-function (δZq̃) and mass (δm2
q̃) renormalization constants read,

δZq̃ = g2
sCF
8π2

[
−B0(m2
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2
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2
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(6.21)

with (−)L ≡ 1 and (−)R ≡ −1, and withmq 6= 0 for top squarks only. As a result of the structure
of the gluino-squark-quark interactions, squark mixing effects proportional to the corresponding
quark masses are generated at the one-loop level and must be accounted for in the renormaliza-
tion procedure. In our simplified setup, we consider nf = 5 flavors of massless quarks so that
these effects are only relevant for the sector of the top squarks. In this case, matrix renormal-
ization is in order, (

t̃L
t̃R

)
→
(
t̃L
t̃R

)
+ 1

2

(
δZt̃L δZt̃,LR
δZt̃,RL δZt̃R

)(
t̃L
t̃R

)
, (6.22)

and we impose that the stop sector is renormalized so that left-handed and right-handed stops
are still defined as non-mixed states at the one-loop level. In the MSSM, this is made possible
by stop couplings to the Higgs sector that generate an off-diagonal mass counter-term,

δLoff = −δm2
t̃,LR(t̃†Lt̃R + t̃†Rt̃L) . (6.23)

These Higgs couplings being absent in our simplified model, we therefore introduce δLoff explic-
itly. The off-diagonal stop wave-function (δZt̃,LR = δZt̃,RL) and mass (δm2

t̃,LR) renormalization
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constants are then found to be

δZt̃,LR = g2
sCFmg̃mt

4π2(m2
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∑
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t ,m
2
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(6.24)

where δZt̃,LR has been symmetrized. In this way, it incorporates the renormalization of the stop
mixing angle (taken vanishing in our model) which does not need to be explicitly introduced [250].

In order to ensure that the running of αs solely originates from gluons and nf active flavors
of light quarks, we renormalize the strong coupling by subtracting at zero-momentum transfer,
in the gluon self-energy, all massive particle contributions. This gives

δαs
αs

= αs
2πε̄

[
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3 −

11nc
6

]
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− log m
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24π
∑
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]
.

(6.25)

The ultraviolet-divergent parts of δαs/αs are written in terms of the quantity 1
ε̄ = 1

ε − γE + log 4π
where γE is the Euler-Mascheroni constant and ε is connected to the number of space-time di-
mensions D = 4− 2ε.

Finally, the artificial breaking of supersymmetry by the mismatch of the two gluino and
the (D − 2) transverse gluon degrees of freedom must be compensated by finite counter-terms.
Imposing that the definition of the strong coupling gs is identical to the Standard Model one,
only quark-squark-gluino vertices and four-scalar interactions have to be shifted [166],

LSCT =
√

2gs
αs
3π
[
− q̃†LTa
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q̃†RTaq̃R − q̃

†
LTaq̃L

][
q̃†RT

aq̃R − q̃†LT
aq̃L

]
,

(6.26)

where we have introduced adjoint color indices for clarity.
In our phenomenological study, loop-calculations are performed numerically in four dimen-

sions by means of the MadLoop package and therefore require the extraction of rational parts
that are related to the ε-pieces of the loop-integral denominators (R1, which are automatically
reconstructed within the OPP reduction procedure) and numerators (R2). For any renormal-
izable theory, the number of R2 terms is finite and they can be seen as counter-terms derived
from the bare Lagrangian [240]. In the context of the LSQCD Lagrangian, all necessary R2
counter-terms can be found in Ref. [251].

The setup described above has been implemented in the FeynRules package and we have
made use of the NloCT program to automatically calculate all the ultraviolet and R2 counter-
terms of the model. The specificity of the renormalization of the stop sector has been imple-
mented via a new option of NloCT, SupersymmetryScheme->"OS", that allows to treat all scalar
fields that mix at the loop-level as described above. We have validated the output against our
analytical calculations, and these results represent the first validation of NloCT in the con-
text of computations involving massive Majorana colored particles. We have finally generated
a UFO version of the model that can be loaded into MadGraph5_aMC@NLO and which
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we have made publicly available on http://feynrules.irmp.ucl.ac.be/wiki/NLOModels. We
have further validated the model, together with the numerical treatment of the loop-diagrams
by MadLoop, by comparing MadGraph5_aMC@NLO predictions to those of the code
Prospino [188], using a fully degenerate mass spectrum due to the limitations of the latter.

LHC phenomenology

In Table 6.5, we compute gluino pair-production total cross sections for proton-proton collisions
at a center-of-mass energy of

√
s =13 TeV and for different gluino masses. Squarks are de-

coupled (mt̃L
= 16 TeV, mt̃R

= 17 TeV and mq̃L = mq̃R = 15 TeV) so that any resonant squark
contribution appearing in the real-emission topologies is off-shell and therefore suppressed. The
latter production modes can be seen as the associated production of a gluino and a squark that
subsequently decays into a gluino and a quark. Including these contributions as parts of the
NLO QCD corrections for gluino pair-production would hence result in a double-counting when
considering together all superpartner production processes inclusively. Moreover, these resonant
channels require a special treatment in the fully-automated MadGraph5_aMC@NLO frame-
work, that is left to future work [252]. Our choice for the squark spectrum corresponds to the
one made by ATLAS and CMS collaborations in their respective gluino searches [253–256].

Our results are evaluated both at the LO and NLO accuracy in QCD and presented together
with scale and parton distribution (PDF) uncertainties. For the central values, we set the
renormalization and factorization scales to half the sum of the transverse mass of all final state
particles and use the NNPDF 3.0 set of parton distributions [128] accessed via the LHAPDF 6
library [257]. Scale uncertainties are derived by varying both scales independently by factors 1/2,
1 and 2, and the PDF uncertainties have been extracted from the cross section values spanned
by all NNPDF distribution replicas following the NNPDF recommendations [258]. We observe
a significant enhancement of the cross section of about 50% due to genuine NLO contributions,
as well as a sizable reduction of the uncertainties. In particular, the apparent drastic reduction
of the PDF uncertainties is related to the poor quality of the LO NNPDF fit when compared to
the NLO fit [128].

In order to achieve realistic simulations of LHC collisions, we first handle gluino decays by us-
ing tree-level decay matrix-elements as calculated by the MadSpin [238] and MadWidth [239]
programs. Due to the three-body nature of the gluino decays, spin correlations are here omit-
ted as MadSpin can only handle them for two-body decays. We then interface the partonic
events obtained in this way to a parton showering and hadronization description as provided
by the Pythia 8 package [259], and use the anti-kT jet reconstruction algorithm [245] with
a radius parameter set to 0.4, as implemented in FastJet [246], to reconstruct all final state
parton-level and hadron-level jets for fixed-order and parton-shower-matched calculations re-
spectively. Finally, the phenomenological analysis of the generated events is performed with
MadAnalysis 5 [247].

Key differential distributions particularly sensitive to both NLO and shower effects are pre-
sented in Fig. 6.4. We show the transverse-momentum (pT ) spectra of the first five leading
jets (first five subfigures) for two benchmark scenarios featuring either a light (mg̃ = 1 TeV)
or a heavy (mg̃ = 2 TeV) gluino, as well as a rather light bino (mχ = 50 GeV). We compare
fixed-order predictions (dashed) to results matched to parton showers (solid) and consider both
LO (blue) and NLO (red) accuracy in QCD. We observe that the differential K-factors (i.e.,
the bin-by-bin ratios of the NLO result to the LO one) both with and without parton-shower
matching strongly depend on the jet pT . The NLO effects therefore not only increase the overall
normalization of the distributions, but also distort their shapes. The K-factor is indeed greater
at low pT than at high pT , so that the traditional procedure of using LO predictions scaled by
inclusive K-factors cannot be used for an accurate gluino signal description.
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Figure 6.4: First five leading jet and gluino-pair transverse-momentum spectra for the production of a
pair of gluinos decaying each into two jets and a neutralino. We consider two mass configurations and
show results at the NLO (red) and LO (blue) accuracy in QCD, at the fixed-order (dashed, fLO and
fNLO) and after matching to the Pythia 8 parton shower description (solid). Theoretical uncertainties
related to the fixed order calculations are shown as blue (LO) and gray (NLO) bands.
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Fig. 6.4 also underlines the effects of matching LO and NLO matrix elements to parton
showers. Since most parton-level jets originate from the decay of very massive gluinos, the fixed-
order pT distributions peak at large pT values. In addition, the low-pT region of these spectra
is depleted. As a result of the matching to parton showers, the fixed-order NLO distributions
are distorted and softened. While the change is milder in the large-pT tails whose shapes are
controlled by the hard matrix element, the low-pT regions are mostly sensitive to resummation
and become populated. The parton shower emissions from hard partons are indeed often not
reclustered back with the jet they are issued from, hence distorting the jet pT spectra. For this
reason, resummation effects become significant below the peak of the various pT distributions.
This effect is also illustrated on the last subfigure of Fig. 6.4, where we show the pT spectrum
of the gluino pair in the small pT range. We have verified that the matched results agree with
the fixed-order ones for very large pT values of the order of the gluino mass.

Conclusions

We have performed the first calculation of NLO supersymmetric QCD corrections to gluino
pair- production matched to parton showers and have studied the impact of both the NLO
contributions and of the parton showers. We have shown that observable effects could be induced
on the exclusion limits and that more accurate calculations are crucial for extracting model
parameters in case of a discovery. Our calculation has been performed fully automatically
and we have applied it to the case of a simplified model similar to one of those used by the
ATLAS and CMS collaborations for their respective gluino searches. In addition, we have
publicly released the UFO model associated with our computation, that is sufficiently general
to be readily used to explore the phenomenology associated with any supersymmetric QCD
process. Finally, our results also shows that all technical obstacles for automating the matching
of fixed-order calculations for inclusive supersymmetric particle production at the NLO in QCD
to parton showers have been cleared, up to the ambiguity issue of the double counting arising
in real emission resonant contributions [252].



Chapter 7

Conclusions and outlook

Supersymmetry is one of the leading candidate for Beyond the Standard Model physics, and is
extensively searched for at LHC. In this thesis we have focused on the phenomenology of N = 1
supersymmetric theories, for which we have provided theoretical predictions at leading order
(LO), and next-to-leading order (NLO) in perturbation theory, at polarized and unpolarized
hadron colliders. In Chapter 1, we have reviewed the successes and limitations of the Standard
Model of particle physics, and have motivated the necessity to study theories that go Beyond
the Standard Model. Then, we have chosen to restrict to one particular type of extension of the
SM, namely N = 1 supersymmetry.

In Chapter 2, we have provided a short introduction to N = 1 supersymmetry, where we
have first recalled some basic facts about SUSY (history, motivations, superalgebra and prop-
erties of the supermultiplets), before introducing the superspace formalism, and detailing the
various steps inherent to the construction of supersymmetric Lagrangians. In the second part
of this chapter, we have then focused on one particular implementation of N = 1 supersym-
metry, namely the Minimal Supersymmetric Standard Model, for which we have described the
mechanism of electroweak symmetry breaking, and detailed the various sectors of the theory at
tree-level.

In Chapter 3, we have shown how the availability of polarized beams at high-energy hadron
colliders can provide a unique handle on the discrimination between different beyond the Stan-
dard Model scenarios that lead to the same final-state signatures in unpolarized collisions. First
of all, we have discussed in a model-independent way why single and double-spin asymmetries in
polarized collisions allow us for the separation between different initial-state production mecha-
nisms. Then we have considered different benchmark scenarios for monotop production and have
shown how the measurement of spin asymmetries in polarized collisions could help to discrimi-
nate between different models. Therefore, while polarized beams are certainly not required for
BSM discoveries, they can provide very useful information on the properties of the hypothetical
BSM sector, in particular in the determination of its couplings to Standard Model particles.

In Chapter 4, we have provided a short introduction to one-loop calculation techniques.
More specifically, we have first recalled the various challenges of NLO calculations, before giving
a constructive (and mathematically consistent) definition of both Dimensional Regularization,
and Dimensional Reduction. Then, in the second part of this chapter, we have detailed how to
evaluate scalar integrals that are frequently encountered in the context of one-loop calculations,
and have introduced the Passarino-Veltman reduction scheme designed to decompose each vector
and tensor loop integral into a linear combination of simpler scalar integrals. Finally, the last
part of this chapter has been dedicated to the procedure of multiplicative renormalization, which
aims at absorbing UV divergences into the redefinition of all the bare fields and parameters of
the original tree-level Lagrangian. In this last section, we have derived all the renormalization
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constants that are necessary to ensure the UV-finiteness of the theory at one-loop (for generic
scalar, fermions, and vector fields with mixing).

In Chapter 5, we have applied the concepts reviewed in the previous chapter for the first time
to the case of squark-antisquark hadroproduction at next-to-leading order in SUSY-QCD with
Non-Minimal Flavour Violation (NMFV). In the first part of this chapter, we have detailed the
field content of the model, have given the analytical expression of the tree-level matrix element,
and have defined the set-up employed to renormalize the theory at the one-loop level. In the
second part of this chapter, we have then focused on the derivation of the self-energies and vertex
corrections, and provided the analytical expression of all the Renormalization Constants (RCs)
needed for the process of our interest. In the third part of chapter we have finally discussed the
box contributions, and provided a short status report on this on-going calculation.

In Chapter 6, we have presented for the first time the full automation of collider predictions
matched with parton showers at the next-to-leading accuracy in QCD within non-trivial exten-
sions of the Standard Model. As an application, we have explored scenarios beyond the Standard
Model where new coloured scalar (stops and sgluons), and Majorana particles (gluinos) can be
pair produced in hadron collisions. Using simplified models to describe the new field interac-
tions with the Standard Model, we have presented precision predictions for the LHC within the
MadGraph5_aMC@NLO framework.

On the short term, our goals are to extend the work presented in this thesis in two directions.
The first one concerns squark-antisquark hadroproduction at NLO in SUSY-QCD with NMFV,
and consists in including all the real corrections in our code in order to finalize the calculation,
produce numerical results, and ultimately publish them (in the coming months). The second
one would be to generalize the results obtained for gluino pair production matched with parton
shower at NLO in SUSY-QCD to the case where intermediate resonances are kinematically
allowed to be on-shell, i.e. to automatically perform the on-shell subtraction in a gauge invariant
way. A publication is there again expected in the coming months.



Appendix A

Conventions

In this appendix, we specify the conventions that are used in all the calculations performed
in this thesis, and recall some basic facts about the tensor formalism, Dirac algebra and Weyl
fermions. The Greek indices of the middle of the alphabet denote Lorentz indices and range
from zero to three, while Latin indices correspond to space indices and range from one to three.
For the Minkowski metric ηµν and its inverse ηµν , we employ the particle physics conventions
ηµν = diag(1,−1,−1,−1) and ηµν = diag(1,−1,−1,−1). The contravariant four-vector position
and momentum are defined as

xµ = (t,−→x ) , pµ = (E,−→p ) , (A.1)

and the space-time derivative is given by

∂µ = (∂/∂t,−→∇) . (A.2)

The Lorentz indices can be raised or lowered by means of the metric tensor such that

xµ = ηµνxν , and xµ = ηµνx
ν . (A.3)

In this manuscript, we systematically use the natural units

} = c = 1 . (A.4)

The Dirac algebra in four-dimensions reads

{γµ, γν} = 2ηµν14 , γ5 = iγ0γ1γ2γ3 , {γµ, γ5} = 0 ,(
γµ
)† = γ0γµγ0 ,

(
γ0)2 = 14 ,

(
γ5)2 = 14 ,

(
γ5)† = γ5 ,

where the gamma matrices take the following form in the chiral representation

γ5 =
(
−1 0
0 1

)
, γ0 =

(
0 1
1 0

)
, γµ =

(
0 σµ

σ̄µ 0

)
, γµν =

(
σµν 0
0 σ̄µν

)
, (A.5)

and where we have introduced in the previous equation the Pauli matrices

σµ =
(
12, ~σ

)
, σ̄µ =

(
12,−~σ

)
, (A.6)

defined such that

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

σ̄0 =
(

1 0
0 1

)
, σ̄1 =

(
0 −1
−1 0

)
, σ̄2 =

(
0 i
−i 0

)
, σ̄3 =

(
−1 0
0 1

)
.
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We moreover recall that

σµν = 1
4 (σµσ̄ν − σν σ̄µ) , (A.7)

σ̄µν = 1
4 (σ̄µσν − σ̄νσµ) , (A.8)

and that the chiral projectors are defined as

PL = 1− γ5

2 , PR = 1 + γ5

2 , (A.9)

and satisfy the following properties

PL + PR = 14 , PLPR = PRPL = 0 , P 2
L = PL , P 2

R = PR . (A.10)

In supersymmetry, we prefer to employ Weyl spinors rather than Dirac or Majorana spinors.
The latter can be decomposed in terms of two-component Weyl spinors such that

ψD =
(
λα
χ̄α̇

)
, ψM =

(
λα
λ̄α̇

)
, (A.11)

where λα, and λ̄α̇, χ̄α̇ are respectively left-handed, and right-handed Weyl spinors, and where
the indices α and α̇ range from 1 to 2. Undotted indices are used for left-handed spinors, while
dotted indices are used for right-handed spinors. Note in addition that the hermitian conjugate
of a left-handed Weyl spinor is a right-handed Weyl spinor and the other way around

χ̄α̇ = χ†α , (χ̄α̇)† = χα . (A.12)

For the contraction of repeated spinor indices, we follow the Van Der Waerden conventions
defined such that

λαψα = λ · ψ , and χ̄α̇λ̄
α̇ = χ̄ · λ̄ , (A.13)

where the antisymmetric Levi-Civita tensor is used to raise and lower spinor indices

λα = εαβλβ , λα = εαβλ
β , λ̄α̇ = εα̇β̇λ̄β̇ , λ̄α̇ = εα̇β̇λ̄

β̇ ,

and where we recall that

iσ2 =
(

0 1
−1 0

)
, εαβ =

(
0 1
−1 0

)
, εαβ =

(
0 −1
1 0

)
,

−iσ2 =
(

0 −1
1 0

)
, εα̇β̇ =

(
0 1
−1 0

)
, εα̇β̇ =

(
0 −1
1 0

)
.

In our conventions, we set

ε0123 = +1 , and ε0123 = −1 . (A.14)



Appendix B

Basic facts on su(N)

A Lie algebra consists of a vector space g and an antisymmetric bilinear map

[−,−] : g× g −→ g , (B.1)

called a Lie bracket, which satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 ∀ X,Y, Z ∈ g . (B.2)

Lie algebras considered in particle physics are real, in other words, g is a real vector space and
its structure constants are thus real. This means, in particular, that in a unitary representation,
they are realized as hermitian traceless matrices. Fixing a basis {T a} for a real g, the Lie bracket
is specified by the structure constants fabc = −fbac such that

[T a, T b] = ifabcT c , (B.3)

allowing us to rewrite Jacobi identity as

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 . (B.4)

In what follows, we focus exclusively on su(N), since this algebra is the one we need for the
calculation of the QCD color factors. su(N) is the Lie Algebra associated to the special unitary
group SU(N) comprising all unitary N ×N matrices of determinant 1.

Fundamental representation of su(N)
The {T a} are the generators of the fundamental representation of the su(N) algebra. They
correspond to a set of N×N hermitian traceless matrices with the following algebraic properties

Tr(T a) = 0 , Tr(T aT b) = 1
2δ

ab , (B.5)

{T a, T b} = 1
N
δab + dabcT c , (B.6)

where dabc are the symmetric structure constants, and N is the dimension of the representation.

Adjoint representation of su(N)
The adjoint representation of su(N) algebra is spanned by the antisymmetric structure constants
fabc, which define a basis of (N2 − 1)× (N2 − 1) matrices such that

(F a)bc = −ifabc , (B.7)
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where the (F a)bc are the generators of the adjoint representation of su(N). In the adjoint
representation, the Jacobi identity reads

fadef bcd + f bdef cad + f cdefabd = 0 , (B.8)

or equivalently [
F a, F b

]
= ifabcF c . (B.9)

Projection Operator
The generators of the fundamental representation and the identity matrix constitute a basis on
which it is possible to decompose any N×N hermitian matrixM such thatM = m01N +maT

a.
Using the properties of (B.5) we obtain

Tr(M) = m0 N =⇒ m0 = 1
N

Tr(M) ,

Tr(T aM) = mb Tr(T aT b) = 1
2mb δab = 1

2 ma =⇒ ma = 2 Tr(T aM) ,

and thus

M = 1
N

Tr(M) 1N + 2 Tr(T aM)T a . (B.10)

Let us now consider one entry of the hermitian matrix M , we have

Mij = 1
N
Mkkδij + 2T aklMlkT

a
ij ,

Mlkδilδjk = 1
N
Mlkδijδkl + 2T aklMlkT

a
ij .

After simplification of the Mlk, we obtain the following expression for the projection operator

T aijT
a
kl = 1

2

(
δilδjk −

1
N
δijδkl

)
(B.11)

Casimir Operator
T aT a is a Casimir operator of the fundamental representation whose entries are given by

(T aT a)ij = T aikT
a
kj = 1

2

(
δijδkk −

1
N
δikδjk

)
= 1

2

(
Nδij −

1
N
δij

)
= N2 − 1

2N δij ,

or equivalently in a more compact way

(T aT a)ij = CF δij with CF = N2 − 1
2N . (B.12)

The off-diagonal entries of the Casimir operator T aT a are identically zero, and the diagonal
ones are equal to CF . This operator is therefore proportional to the unit matrix and thus must
commute with all the generators of the fundamental representation. Analogously, The Casimir
operator in the adjoint representation of su(N) is defined as

(F cF c)ab = (F c)ad(F c)db = −f cadf cdb = facdf bcd = Nδab (B.13)

or equivalently

(F cF c)ab = CAδ
ab with CA = N . (B.14)

F cF c is proportional to 1N2−1 and thus must commute with all the generators of the adjoint.
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Useful identities
Using (B.5), (B.6) and (B.11), we obtain the following expressions

fabc = −2iTr(T a[T b, T c]) (B.15)
dabc = 2Tr(T a{T b, T c}) (B.16)

T aT b = 1
2

( 1
N
δab + (dabc + ifabc)T c

)
(B.17)

Tr(T aT bT c) = 1
4
(
dabc + ifabc

)
(B.18)

Tr(T aT bT aT c) = − 1
4N δbc (B.19)

Tr(T aT cT cT b) = N2 − 1
4N δab (B.20)
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Appendix C

Parton distributions C++ interface

Source file : header.h

#include <iostream >
#include <iomanip >
#include <fstream >
#include <cmath >
#include <string >
#include <sstream >
#include "LHAPDF/LHAPDF.h"
using namespace std;

// Define the scale you want to probe:
const double scale = 1e2;
const double Q = scale;
const double Q2 = Q * Q;

// Define the PDF set you want to use:
const string pdfset = "NNPDFpol11_100";

// Extrapolation flag
const bool EXTRAPOLATION_FLAG = true;

// Number of sampled points in the x-range
const int NxPoints = (const int) 1e4;

// Define the x-range you want to probe:
const double xmin = log(1e-3);
const double xmax = log (1.0);
const double delta = (xmax - xmin) / double(NxPoints );

// Function protypes
double Compute_Std_Dev (int n, double *, double );
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Source file : utils.cpp

#include"header.h"

double Compute_Std_Dev (int n, double *y, double Avg)
{

double sum = 0.0;
for (int k = 0; k < n; k++)

{
sum += (y[k] - Avg) * (y[k] - Avg);

}
sum /= double (n - 1);
return sqrt(sum);

}

Source file : PDF.cpp

#include "header.h"

int main (void)
{

string pdfext = ".LHgrid";
string pdfname = (string) pdfset + pdfext;

// Initialization of the PDF set
LHAPDF :: setVerbosity (0);
LHAPDF :: initPDFSet (pdfname );
int Nbrep = LHAPDF :: numberPDF ();

if (EXTRAPOLATION_FLAG == true)
{

LHAPDF :: extrapolate(true);
}

// Creating directory for data files
string sep = "-";
string folder = "data";
stringstream energy; energy << Q2;
string units = "GeV2";
string dir = pdfset + sep + folder + sep + energy.str() + sep + units;

// Creating directory for data
mkdir(dir.c_str(), S_IRWXU );

// Enter directory recently created
chdir(dir.c_str ());

// Initialization for result + error
double avg = 0.0;
double err = 0.0;
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Source file : PDF.cpp

// String for data files extensions
string ext = ".dat";

// Declare output file stream
ofstream output;

// Loop over the various types of partons
for (int j = -5; j < 6; j++)

{
// Creates data file for each parton distribution
stringstream ss; ss << j + 5;
string filename = dir + sep + ss.str() + ext;
const char* string1 = filename.c_str ();
output.open (string1 );

// Creates a 1D array of fixed size for the probed x values
double *x = new double[NxPoints ];

// Loop over various values of x
for (int i = 0; i < NxPoints; i++)

{
// X values probed
x[i]= exp (xmin + double(i) * delta);

// Central value (average) for a PDF j at a scale Q and at x[i]
LHAPDF :: initPDF (0);
avg = LHAPDF ::xfx(x[i], Q, j);

double *pdf = new double[Nbrep];

// Loop over the number of replicas for a given x
for(int nrep = 1; nrep <= Nbrep; nrep ++)

{
LHAPDF :: initPDF (nrep);
pdf[nrep -1] = LHAPDF ::xfx(x[i], Q, j);

}

// 1-sigma error band for one pdf at a given x
err = Compute_Std_Dev (Nbrep , pdf , avg);

// Writing results in data files + 1-sigma error band
output << setprecision (6) << scientific;
output << x[i] << "     " << avg << "     " << err \

<< "     " << avg + err << "     " \
<< avg - err << endl;

delete [] pdf;
}

delete [] x;
output.close ();

}
return 0;

}
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Source file : Makefile

CXX = g++
CXXFlags = -Wall -Wextra -pedantic -O2 -g -Weffc++ -Wcast -qual
-Wcast -align -Wconversion -Wdouble -promotion -Wunused
-Wunsafe -loop -optimizations -Wuninitialized
LIB= -L$(shell lhapdf -config libdir) -lLHAPDF
INC= -I$(shell lhapdf -config incdir)
EXEC= PDF_interface
SRC= $(wildcard *.cpp)
OBJ= $(SRC: .cpp=.o)
HEAD = header.h

$(EXEC):$(OBJ)
$(CXX) $^ -o $@ $(INC) $(LIB)

%.o: %.cpp $(HEAD)
$(CXX) $(CXXFlags) -o $@ -c $^

.PHONY: clean

clean:
rm $(EXEC)
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Euler-Gamma and Beta functions

The Euler-Gamma function
The Euler-Gamma function Γ(z) with z ∈ C appears frequently in loop calculations when using
dimensional regularization, and corresponds to an extension of the factorial function

Γ(n) = (n− 1)! with n ∈ N∗, such that Γ(n+ 1) = n Γ(n) , (D.1)

to complex and real arguments. The Euler-Gamma function is defined for all complex and real
numbers, except for negative integers where the function exhibits simple poles. ∀z ∈ C with
<(z) > 0, Γ(z) is defined via the following convergent improper integral

Γ(z) =
∫ +∞

0
tz−1e−tdt . (D.2)

Exploiting the property of (D.1), the previous definition of Γ(z) can be extended by means of
analytic continuation to regions in the complex plane where Re(z) ≤ 0 such that

Γ(z + 1) = z Γ(z) with z ∈ C . (D.3)

The Euler-Gamma function has the following basic properties

Γ(1) = 1 , Γ(2) = 1 , Γ(1/2) =
√
π , Γ′(1) = −γE , (D.4)

where γE is the Euler-Mascheroni constant defined such that

γE = 0.577216 . (D.5)

Another useful relation is the so-called Legendre duplication formula, which is given by

Γ(z) Γ
(
z + 1

2

)
= 21−2z √π Γ(2z) (D.6)

The Beta function
The Beta function B(α, β) with α, β ∈ C is defined in this thesis such that

B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt , Re(α) > 0, Re(β) > 0 , (D.7)

where B(α, β) is symmetric under permutation of α, and β. The beta function can related to
the Euler-Gamma function by means of the following equation

B(α, β) = Γ(α) Γ(β)
Γ(α+ β) (D.8)
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Proof:

According to (D.2), the product of two Euler Γ functions can be written as

Γ(α) Γ(β) =
∫ +∞

0
xα−1e−xdx

∫ +∞

0
yβ−1e−ydy .

Performing the change of variables x = v2, dx = 2v dv, and y = u2, dy = 2u du, gives

Γ(α) Γ(β) = 4
∫ +∞

0
v2α−1e−v

2
dv

∫ +∞

0
u2β−1e−u

2
du .

The previous expression can be further simplified by means of the following change of variables
v = ρ cos θ and u = ρ sin θ, such that

Γ(α) Γ(β) = 4
∫ +∞

0

(
ρ2)α+β−1

e−ρ
2
dρ2

∫ +π/2

0

(
cos θ

)2α−1 ( sin θ
)2β−1

dθ

(D.2)= 2 Γ(α+ β)
∫ +π/2

0

(
cos θ

)2α−1 ( sin θ
)2β−1

dθ

= Γ(α+ β)
∫ 1

0

(
cos2 θ

)α−1(1− cos2 θ
)β−1

d cos2 θ .

Setting t = cos2 θ and dividing each member of the equation by Γ(α+ β) then gives back (D.8)

B(α, β) =
∫ 1

0
tα−1(1− t)β−1

dt = Γ(α) Γ(β)
Γ(α+ β) .

Angular part of loop integrals
As detailed in Section 4.3, it is always possible to decompose the integrand of a scalar loop
integral into a radial and an angular part (after having performed a Wick rotation and having
introduced the spherical coordinates). The goal of this section is to provide an analytical ex-
pression for the angular part ΩD of the D-dimensional scalar integrals. As we are going to see
now, ΩD can be explicitly written in terms of Euler-Gamma functions. The starting point of
the proof is the definition of the Gaussian integral

√
π =

∫ +∞

−∞
dx e−x

2
, (D.9)

such that we de facto have(√
π
)D =

∫ +∞

−∞
dDxe−

∑
x2
i =

∫ +∞

−∞
dDxe−x

2 =
∫
dΩD

∫ +∞

0
xD−1e−x

2
dx ,

where we have used in the last step the spherical coordinates to split the radial and the angular
part of the integrand. The integral can then be rewritten as(√

π
)D = 1

2

∫
dΩD

∫ +∞

0
(x2)D/2−1e−x

2
dx2 = 1

2

∫
dΩD

∫ +∞

0
tD/2−1e−tdt . (D.10)

Using the definition of the Euler-Gamma function (D.2), the previous equation simplifies to

ΩD =
∫
dΩD = 2

(√
π
)D

Γ(D/2) , (D.11)

which is, according to (D.4), equivalent to

ΩD =
∫
dΩD = 2 Γ(1/2)D

Γ(D/2) . (D.12)



Appendix E

γ5 in D-dimensions

Dimensional regularization has been applied with great success to gauge theories like QCD
or QED1. In contrast, gauge theories involving chiral fermions like the electroweak Standard
Model, or calculations sensitive to polarization effects have been notoriously known to exhibit
mathematical inconsistencies related to the analytic continuation of γ5 in D 6= 4 dimensions
[260]. In this appendix, we first point out that a naive extension of the definition of γ5 from 4
to D dimensions is the source of the aforementioned inconsistencies. Then we review the virtues
and drawbacks of the various prescriptions that have been designed to handle γ5 in DREG, with
a special emphasis put on the ’t Hooft-Veltman-Breitenlohner-Maison (HVBM) scheme, and on
the Naive Dimensional Regularization (NDR) scheme. In four-dimensions γ5 is defined as

γ5 = i

4!εµνρσγ
µγνγργσ . (E.1)

This definition implies that

(γ5)2 = 1, {γµ, γ5} = 0,
Tr(γ5) = 0, Tr(γµγ5) = 0, Tr(γµγνγ5) = 0, Tr(γµγνγργ5) = 0, (E.2)

Tr(γµγνγργσγ5) = 4i εµνρσ .

Naively, we would expect the properties of (E.2) to hold for any value of D, this is however not
true. If we assume, cyclicity of the trace and an anticommuting γ5 such that

{γµ, γ5} = 0 ∀ µ = 0, . . . D − 1
(
γ5)2 = 1 , (E.3)

we obtain the following properties of γ5 in D dimensions

2D Tr(γ5) = 0
Tr(γµγ5) = 0, 2

(
2−D

)
Tr(γµγνγ5) = 0, Tr(γµγνγργ5) = 0 (E.4)

2
(
D − 4

)
Tr(γµγνγργσγ5) = 0 .

It is clear from the last line of (E.4) that only the particular case D = 4 allows us to recover
the usual non-zero trace of γ5 given in (E.2). The analytic continuation into D dimensions
requires by definition the trace operation to be meromorphic, i.e. there should exist a smooth
transition when taking the limit D → 4. The problem is that the trace of γ5 and four Dirac
matrices given in (E.4) has to be zero for D 6= 4. The meromorphicity of the trace operation
thus enforces a vanishing trace of Dirac matrices in (E.4) for any value of D, even for D = 4.

1For calculations of unpolarized quantities only.
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Consequently, we cannot recover the original four-dimensional result of (E.2), and that is why
the naive anticommuting scheme is said to be mathematically inconsistent. More intuitively, the
mathematical inconsistency of the NDR scheme can be understood as resulting from the fact
that γ5 is an ill-defined object for D 6= 4, and hence that all its usual algebraic properties in
four dimensions cannot be simultaneously maintained in D dimensions.

Several schemes have been proposed to solve this issue. The most commonly accepted is the
so-called ’t Hooft-Veltman-Breitenlohner-Maison scheme, which was originally proposed by ’t
Hooft and Veltman in [152], and Akyeampong and Delbourgo [261], before being generalized by
Breitenlohner and Maison [262], Thompson and Yu [263], and Collins [157]. The HVBM scheme
consists in defining γ5 as a generic four-dimensional object given by (E.1), which anticommutes
with the four-dimensional part of the other γ-matrices, and commutes with remaining part

{γµ, γ5} = 0 if µ = 0, 1, 2, 3, (E.5)[
γµ, γ5] = 0 otherwise. (E.6)

An alternative way to formulate the HVBM scheme can be summarized as follows. Knowing
that in DREG we can decompose the D-dimensional vector space QD into a direct sum of the
usual four-dimensional space Q4 and a residual infinite dimensional space QD−4 such that

QD = Q4 ⊕QD−4 , (E.7)

and that γ5 is ill-defined in D dimensions, it is safer to assume that γ5 lives only in Q4 (which
is orthogonal to QD−4). Objects living in orthogonal vector spaces commutes by definition,
therefore the anticommutation relation is preserved for the four-dimensional component of γµ,
and γ5 commutes with γµ otherwise. Introducing the four-dimensional component γ̄µ of γµ and
its D − 4 counterpart ˜̃γµ it is possible to rewrite (E.5) and (E.6) in a more compact way as

{γµ, γ5} = {γ̄µ, γ5}+ {˜̃γµ, γ5} (E.5)= {˜̃γµ, γ5} (E.6)= 2γ5 ˜̃γµ . (E.8)

In a very general manner, the HVBM scheme allows for a systematic and mathematically con-
sistent treatment of γ5 at all orders in perturbation theory, and gives the correct result for
the (physical) axial anomalies in the limit where D = 4, which is not possible with a chirally-
symmetric scheme like the NDR [264]. This procedure however leads to more involved calcu-
lations, first because of (E.8), and second because of the fact that a non-anticommuting γ5

generates spurious anomalies that violates chiral symmetry, and thus gauge invariance.
These spurious anomalies are artefacts originating from the choice of the γ5 prescription,

and have to be removed through an appropriate choice of counterterms in the Lagrangian2. The
real complication of the HVBM scheme hence resides in the fact that in order to get a rid of
the anomalies that would spoil renormalizability of the theory3, Ward-Takahashi (WT) as well
as Slavnov-Taylor (ST) identities have to be restored by hand, order by order in perturbation
theory, through (finite) renormalization. This procedure of finite renormalization inherent to
the use of the HVBM scheme adds another layer of complexity to the renormalization procedure,
and seeing that Naive Dimensional Regularization and the HVBM scheme are expected to give
the same results (at the exception of some pathological cases like the AVV triangles with a
fermion-loop) we can understand why, despite being formally inconsistent, the NDR scheme is
still used in a significant number of modern calculations.

2Note however that those counterterms are not chirally-symmetric.
3Renormalizability of abelian as well as non-abelian gauge theories heavily relies on the assumption that there

exists a gauge invariant regularization.



Appendix F

NMFV SUSY-QCD Feynman rules

gaµ(p1)

gcρ(p3)

gbν(p2)

gsfabc
[
(pρ1−p

ρ
2)ηµν+(pν3−pν1)ηρµ+(pµ2−p

µ
3 )ηνρ

]
,

gaµ(p1)

ucg(p3)

ūbg(p2)

−gsfabcpµ3 ,

gaµ(p1)

q
cj
j (p3)

q̄cii (p2)

igsγ
µT acicjδij ,

gaµ(p1)

gbν(p2)

gdσ(p4)

gcρ(p3)
ig2
s

[
ηµσηνρ

[
facef bde + fabef cde

]
+ ηµρηνσ

[
fadef bce −

fabef cde
]

+ ηµνηρσ
[
− fadef bce − facef bde

]]
.

Table F.1: Feynman rules for the QCD sector. The four-momenta p1, p2, p3 and p4, are all taken
incoming to the vertices. The generators of the su(3)C algebra in the fundamental (resp. adjoint)
representation are noted T acicj (resp. fabc). The indices ci, cj and a, b, c, d are respectively the
colour indices of the fundamental and the adjoint representation. The indices µ, ν, ρ, σ are
Lorentz indices, and i, j are flavour indices with i, j = 1, 2, 3.
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q̃cii (p1)

g̃a(p3)

q̄
cj
f (p2)

−i
√

2gs
[
(Rq̃)∗ifeiϕg̃/2PR − (Rq̃)∗i(f+3)e

−iϕg̃/2PL
]
T acjci ,

q̃∗cii (p1)

¯̃ga(p3)

q
cj
f (p2)

−i
√

2gs
[
(Rq̃)ife−iϕg̃/2PL − (Rq̃)i(f+3)e

iϕg̃/2PR
]
T acicj ,

gaµ(p1)

g̃c(p3)

¯̃gb(p2)

gsfabcγ
µ ,

gaµ(p1)

q̃
cj
j (p3)

q̃∗cii (p2)

igs
(
pµ3 − p

µ
2
)
T acicjδij ,

gbν(p2)

gaµ(p1)

q̃
cj
j (p4)

q̃∗cii (p3)

ig2
s

(
T aT b + T bT a

)
cicj

δij η
µν ,

Q̃
cj
j (p2)

q̃cii (p1)

Q̃′∗c`` (p4)

q̃′∗ckk (p3)

−ig2
s

[
R(q̃cii , q̃

′ck
k )R(Q̃cjj , Q̃

′c`
` ) +R(q̃cii , Q̃

′c`
` )R(Q̃cjj , q̃

′ck
k )
]
.

Table F.2: Feynman rules for the SUSY-QCD sector. The four-momenta p1, p2, p3 and p4, are
all taken incoming to the vertices. The indices ci, cj , ck, c` and a, b, c are all colour indices, µ
and ν are Lorentz indices, and i, j, k, ` are flavour indices with i, j, k, ` = 1, 2, 3. The notation
¯̃g allows one to uniquely define the fermion flow associated with vertices involving (Majorana)
gluino fields. Note in addition that R(q̃cii , Q̃

cj
j ) = δq̃Q̃T

a
cjci

[
(Rq̃)∗il(Rq̃)jl − (Rq̃)∗i(l+3)(R

q̃)j(l+3)
]

where the flavour index l is implicitly summed-over in the previous expression.
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gaµ(p1)

gcρ(p3)

gbν(p2)

fabc
[
(p1−p2)ρηµν+(p3−p1)νηρµ+(p2−p3)µηνρ

][
δgs+

3
2gsδZg

]
,

gaµ(p1)

q
cj
j (p3)

q̄cii (p2)

iγµ
[
δgsδij + gs

2
([(

δZLq
)
ij

+
(
δZL†q

)
ij

]
PL +

[(
δZRq

)
ij

+(
δZR†q

)
ij

]
PR + δZg δij

)]
T acicj ,

q̃cii (p1)

g̃a(p3)

q̄
cj
f (p2) −i

√
2gsT acjci

[(δgs
gs

(Rq̃)∗if + (δRq̃)∗if + 1
2
(
δZRg̃ (Rq̃)∗if +

(Rq̃)∗if ′(δZLq )∗f ′f + (Rq̃)∗jf (δZq̃)ji
))
eiϕg̃/2PR −(δgs

gs
(Rq̃)∗i(f+3) + (δRq̃)∗i(f+3) + 1

2
(
δZLg̃ (Rq̃)∗i(f+3) +

(Rq̃)∗i(f ′+3)(δZ
R
q )∗f ′f + (Rq̃)∗j(f+3)(δZq̃)ji

))
e−iϕg̃/2PL

]
,

q̃∗cii (p1)

¯̃ga(p3)

q
cj
f (p2) −i

√
2gsT acicj

[(δgs
gs

(Rq̃)if + (δRq̃)if + 1
2
(
δZR∗g̃ (Rq̃)if +

(Rq̃)if ′(δZLq )f ′f + (Rq̃)jf (δZq̃)∗ji
))
e−iϕg̃/2PL −(δgs

gs
(Rq̃)i(f+3) + (δRq̃)i(f+3) + 1

2
(
δZL∗g̃ (Rq̃)i(f+3) +

(Rq̃)i(f ′+3)(δZRq )f ′f + (Rq̃)j(f+3)(δZq̃)∗ji
))
eiϕg̃/2PR

]
,

gaµ(p1)

q̃
cj
j (p3)

q̃∗cii (p2)

i(pµ3 − p
µ
2 )
[
δgsδij + 1

2gs
(
(δZq̃ + δZ†q̃)ij + δZgδij

)]
T acicj ,

gbν(p2)

gaµ(p1)

q̃
cj
j (p4)

q̃∗cii (p3)

i
(
T aT b + T bT a

)
cicj

ηµν
[
2gsδgsδij + 1

2g
2
s

(
(δZq̃ + δZ†q̃)ij +

2δZgδij
)]

,

Table F.3: Feynman rules for the counter-terms of the QCD, and SUSY-QCD sectors that are
needed for squark-antisquark pair production at NLO with NMFV. The four-momenta p1, p2, p3
and p4, are all taken incoming to the vertices. The indices ci, cj , ck, c` and a, b, c are all colour
indices, µ and ν are Lorentz indices, and i, j, k, ` are flavour indices with i, j, k, ` = 1, 2, 3.
The notation ¯̃g allows one to uniquely define the fermion flow associated with vertices involving
(Majorana) gluino fields.
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