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Resumé

Dans cette thèse, nous étudions théoriquement di�érents e�ets liés à la localisation d'Anderson.
Nous nous concentrons sur le contexte des atomes froids, dans lesquels sont simulés des potentiels
désordonnés ou des systèmes chaotiques. Ce résumé long en français suit la structure de la thèse en
sept chapitres.

Après une introduction à la localisation d'Anderson, présentant à la fois des aspects théoriques et
expérimentaux et constituant le chapitre 1, nous présentons une théorie approchée de la distribution
d'énergie des nuages atomiques dans les potentiels speckles. Cette étude est menée en deux étapes.
La première est présentée dans le chapitre 2, où nous considérons les propriétés statistiques des
potentiels optiques de type speckle, en particulier celles des minima d'intensité. Dans le chapitre
3, nous présentons la deuxième partie de l'étude, une méthode de calcul de la fonction spectrale et
de la densité d'états, valable dans la limite de désordre fort. En utilisant les résultats obtenus au
chapitre 2, nous appliquons cette méthode au cas unidimensionnel.

Dans le chapitre 4, nous caractérisons le mouvement du centre de masse de paquets d'ondes lancés
avec une vitesse �nie dans un potentiel aléatoire. Cette étude dévoile une manifestation nouvelle et
inattendue de la localisation d'Anderson : après un mouvement initial balistique, le centre de masse
du paquet présente une rétro-ré�exion et revient lentement à sa position initiale. Nous avons nommé
ce phénomène l'e�et de boomerang quantique. Le c÷ur du chapitre 4 consiste en une description
analytique de l'e�et de boomerang quantique en une dimension.

Dans le chapitre 5, les interactions atome-atome sont introduites dans les simulations numériques,
au niveau champ moyen (Gross-Pitaevskii). Leur e�et sur le phénomène de boomerang quantique est
étudié. L'e�et des interactions est aussi étudié dans l'étalement en énergie d'ondes planes évoluant
dans des potentiels aléatoires tridimensionnels. En�n, nous discutons la façon dont les interactions
a�ectent le pic de rétro-di�usion cohérente, et, en particulier, nous trouvons, de façon inattendue,
une construction incomplète du pique aux temps courts.

Dans le chapitre 6, nous prenons une direction di�érente et considérons un modèle détermi-
niste (quoique chaotique), le kick rotor. Nous montrons que des modèles de kicks rotors o�rent des
perspectives intéressantes pour l'étude de localisation d'Anderson. D'une part, avec de fortes mo-
tivations expérimentales et théoriques, nous présentons des éléments probants en faveur d'un kick
rotor sans spin dans l'ensemble symplectique. D'autre part, le réexamen de kicks rotors modulés
quasi-périodiquement, communément étudiés, révèle des résultats intrigants.

En�n, le chapitre 7 résume nos résultats et donne quelques perspectives pour de futurs travaux.

Introduction

La thèse commence par une introduction à la physique de la localisation d'Anderson. La locali-
sation d'Anderson a été prédite en 1958 par Anderson. Depuis, le sujet a été l'objet de nombreux
travaux. Ceci furent aussi bien théoriques qu'expérimentaux. Le sujet est aussi intéressant du point
de vue mathématique, des preuves mathématiques de la localisation ont pu être obtenues. Il sera
vain d'essayer de rendre compte de tous ces développement dans une thèse.
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Concernant les aspects théoriques, nous avons donc choisi de présenter dans les grandes lignes
deux théories populaires de la localisation. La première, la théorie auto-cohérente de Vollhard et
Wöl�e, est une théorie microscopique de la localisation. L'idée est de décomposer la distribution
de densité à un point r et à un temps t comme une somme interférentielle de chemins. Parmi ces
di�érents chemins, seuls deux classes sont prises en compte. Le choix de ces deux classes étant basé
sur des arguments physiques. La première classe rassemble tous les termes non-interférentiels, c'est
le Di�uson, le processus associé est un processus de marche aléatoire, bien décrit par une équation de
di�usion aux temps longs et sur des échelles de distance su�samment grandes. La deuxième classe,
appelée Cooperon, correspond à ce qui est communément appelé la localisation faible. Cette contri-
bution interférentielle est en e�et responsable d'une réduction du transport associé au Di�uson. La
localisation d'Anderson survient quand le Cooperon devient important. C'est le cas en basse dimen-
sions (d ≤ 2) et à désordre fort en haute dimensions. La théorie auto-cohérente permet de traiter
le premier cas, sous une hypothèse de champ moyen. Cette hypothèse empêche la description du
cas tridimensionnel, où la présence d'un point critique, s'accompagnant de �uctuations importantes,
est incompatible avec le champ moyen. Nous montrons aussi certaines limites de cette théorie en
une dimension, par la comparaison avec une théorie exacte, la théorie de Berezinskii. On observe
en particulier des déviations à la théorie auto-cohérente dans les ailes de la distribution de densité.
Là encore, ces déviations sont associées à des �uctuations importantes, qui violent l'hypothèse de
champ moyen.

La théorie d'échelle de la localisation propose une approche di�érente. Adoptant un point de vue
macroscopique, cette dernière consiste à étudier comment la conductance g d'un échantillon varie
avec sa longueur. Cette étude est menée à travers une fonction Gell-Mann-Low β, qui encode la
variation du logarithme de la conductance avec le logarithme de la taille du système. Cette théorie
se base sur deux hypothèses. La première est que la fonction β considérée ne dépend que de la
conductance elle-même (d'où le nom de théorie d'échelle à un paramètre). La deuxième hypothèse
est la continuité et la régularité de la fonction β. La connaissance des régimes asymptotiques (à grand
et petit g) clôt le raisonnement. En e�et, comment nous le montrons dans la thèse, le comportement
qualitatif de la fonction β se déduit directement de ces trois éléments (un seul paramètre pertinent,
régularité de la fonction β et connaissance des régimes asymptotiques).

De ce comportement qualitatif, on peut tirer deux informations d'importance : la théorie d'échelle
à un paramètre prédit que la localisation prévaut en basse dimensions (d ≤ 2) et qu'une transition
entre localisation et di�usion est attendue en haute dimensions (d > 2). En particulier, la possibilité
d'une transition en deux dimensions a longtemps était débattue, la prédiction de la théorie d'échelle
à un paramètre, en faveur de la localisation de tous les états, est aujourd'hui communément acceptée.

Après ces discussions théoriques, nous donnons dans la thèse un bref compte rendu des nombreux
travaux expérimentaux associés à la localisation d'Anderson. Au départ, le sujet s'est développé
autour d'expériences de matière condensée. Ces expériences ont donné lieu à de nombreux dévelop-
pements, mais la richesse de la physique de la matière condensée constitue une di�culté quant à
l'observation directe de la localisation d'Anderson. En particulier, les interactions électron-électron
ou le couplage électron-phonon rendent l'observation de la localisation d'Anderson � pure � très
di�cile.

Par la suite, de nombreuses expériences ont été réalisées dans le but d'observer la localisation
d'Anderson dans des contextes di�érents. En e�et, la localisation d'Anderson est avant tout un
phénomène d'interférences, il peut donc être observé à priori avec tout type d'ondes. Ces expériences
ont permis l'observation de la localisation d'ondes très variées, parmi lesquelles les micro-ondes, les
ondes élastiques, la lumière et les ondes sonores.

Plus récemment, la localisation d'Anderson d'ondes de matière a été observée avec des atomes
froids. Les plateformes expérimentales d'atomes froids o�rent des possibilités très intéressantes pour
l'étude de la localisation. D'une part, ces plateformes o�rent un haut niveau de contrôle. En parti-
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culier, les interactions inter-atomiques peuvent être maitrisées, et il est possible d'atteindre un faible
couplage atome-environnement. D'autre part, les expériences utilisant le couplage lumière-matière
permettent l'observation des atomes au sein même du milieu désordonné et de suivre leur évolution.

Ces possibilités clés ont donné lieu à un renouvellement de l'intérêt porté à la localisation d'An-
derson. En e�et, ces possibilités o�rent d'intéressantes perspectives expérimentales et théoriques.
Par exemple, les expériences d'atomes froids basés sur un protocole de trempe impose de prendre en
compte la distribution d'énergie des atomes (au lieu de considérer uniquement l'énergie de Fermi).

L'introduction se termine par une discussion de l'e�et des interactions sur la localisation d'An-
derson. Deux grandes lignes de recherche sont distinguées. En premier lieu est discuté l'e�et des
interactions au niveau champ moyen, où de nombreux scénarios ont été étudiés. Ce point de vue,
adopté par la suite dans le chapitre 5 de la thèse, est contrasté par une courte discussion sur la
localisation à N corps. Cette thématique de recherche explore la possibilité d'étendre la localisation
d'Anderson à des problèmes à N corps, pour lesquels la localisation est prédite dans l'espace de Fock.

Propriétés statistiques des potentiels speckles

Le deuxième chapitre de la thèse concerne les propriétés statistiques des potentiels speckles. Le
chapitre commence par une introduction à la physique des atomes froids.

Dans les expériences d'atomes froids, on utilise l'interaction entre les atomes et un rayonnement
lumineux monochromatique pour induire un potentiel e�ectif. En pratique, sous certaines conditions,
la dynamique des atomes plongés dans le rayonnement peut être décrite par une dynamique hamil-
tonienne, dans laquelle le potentiel extérieur est proportionnel à l'intensité lumineuse. Dans une
première section de ce chapitre, nous montrons comment l'on dérive cette évolution hamiltonienne.

La dynamique des atomes plongés dans le rayonnement est bien décrite par une approximation
semi-classique où les atomes sont traités quantiquement et le champ électrique composant le rayon-
nement est traité classiquement. Sous l'approximation d'un atome à deux niveaux, l'hamiltonien de
l'atome est alors composé de trois termes. Le premier est associé à l'énergie cinétique de l'atome, le
deuxième à l'interaction dipolaire entre l'atome et le rayonnement et le troisième est consacré à l'état
interne de l'atome. A partir de cet Hamiltonien, on peut calculer l'équation d'évolution de l'opéra-
teur densité. Sous l'hypothèse d'un faible nombre d'atomes excités, l'équation pour la projection de
l'opérateur densité sur l'état interne fondamental est fermée. Il su�t alors d'intégrer le mouvement
sur les micro-oscillations du centre de masse de l'atome pour obtenir qu'en e�et, la dynamique de
l'atome à deux niveaux se réduit à une dynamique hamiltonienne, et on trouve que le potentiel
extérieur est proportionnel à l'intensité lumineuse.

A partir de ces résultats, on se rend compte que créer un potentiel désordonné se réduit à géné-
rer un pro�l d'intensité lumineuse désordonné. Celui ci est généralement obtenu expérimentalement
en transmettant un laser à travers une plaque rugueuse. Dans la thèse, nous discutons cette pos-
sibilité. Nous introduisons le schéma expérimental correspondant et décrivons le pro�l d'intensité
ainsi obtenu. Cette dernière étape consiste en l'expression du champ complexe en un point donné
comme la superposition du champ di�usé par chaque morceau de la plaque rugueuse (principe de
Huygens-Fresnel). Il s'en suit, par le théorème de la limite centrale, que le champ complexe a une sta-
tistique gaussienne, dont on déduit la statistique du potentiel résultant comme étant exponentielle.
On considère ensuite les corrélations spatiales du potentiel résultant. Celles ci se trouvent liés à la
transformée de Fourier de la distribution d'intensité au sein de la plaque rugueuse. Les corrélations
peuvent ainsi être contrôlées par l'application de masques sur la plaque rugueuse.
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Dans une troisième partie du chapitre, nous considérons des propriétés plus spéci�ques des poten-
tiels speckles, celles des minima d'intensité. Plus précisément, nous nous intéressons à la distribution
jointe de la profondeur et de la courbure des dits minima d'intensité. Le calcul de la distribution
jointe se fait, en suivant Goodman, par l'introduction du champ complexe, dont le potentiel est le
module carré. Comme nous l'avons vu, ce champ complexe est gaussien. A partir de ce champ com-
plexe et de ses dérivées, elles aussi gaussienne, on obtient la distribution recherchée par changement
de variable. Cette distribution a trois propriétés remarquables, importantes pour la suite de la thèse.
Premièrement elles présentent une très faible probabilité de trouver un minima dont la courbure est
faible. Cette dernière a au contraire tendance à prendre une valeur typique, donnée dans la thèse en
terme des propriétés du potentiel. La dernière propriété remarquable est la présence de la plupart
des minima à basses énergies.

Fonction spectrale et densité d'états semi-classiques dans les poten-
tiels speckles

Dans ce chapitre, on s'intéresse aux propriétés spectrales des atomes dans les potentiels de type
speckle. Ces propriétés sont très importantes dans le contexte des expériences d'atomes froids. En
e�et, la procédure de trempe, généralement utilisée dans ce type d'expérience, peuple toute une
distribution d'énergie. Les quantités physiques (libre parcours moyen, longueur de localisation, ...)
dépendant de l'énergie, la dynamique totale résulte de la superposition des composantes d'énergie
du paquet d'ondes.

Dans une première partie de ce chapitre, nous considérons la limite de désordre faible, où des
calculs perturbatifs sont possibles. On choisit pour mener à bien ces calculs d'introduire le formalisme
des fonctions de Green. A cet e�et, on introduit d'abord formellement la fonction de Green, puis
son développement perturbatif associé. Nous introduisons ensuite le concept de self-énergie, d'abord
comme une simpli�cation du développement perturbatif de la fonction de Green. Nous discutons
ensuite son sens physique : la partie réelle déplace l'énergie alors que la partie imaginaire donne
un temps de vie. Par la suite, nous discutons le sens à donner à la terminologie "désordre faible",
en particulier dans le cas des potentiels de type speckle. Finalement, nous introduisons la fonction
spectrale, la distribution d'énergie moyenne des ondes planes dans le potentiel désordonné.

Dans une deuxième partie du chapitre, nous motivons l'étude de la fonction spectrale. Sa connais-
sance est en e�et primordiale pour décrire la distribution d'énergie de paquets d'ondes arbitraires. Et
la distribution d'énergie joue un rôle très important. Nous donnons quelques exemples pour lesquels
la distribution d'énergie joue un rôle crucial.

Dans un premier temps, nous considérons une situation réalisée expérimentalement, où un pa-
quet d'ondes initialement étroit évolue dans un potentiel speckle unidimensionnel. Ce speckle a
une caractéristique intrigante : à faible désordre, le coe�cient de di�usion est fortement énergie-
dépendent, présentant des changements brusques lorsque l'énergie dépasse des valeurs spéci�ques.
L'évolution totale, intégrée sur toute les composantes d'énergies du paquet d'ondes, peut donc di�érer
de l'évolution d'une composante énergétique individuelle. En e�et, à grande distance, la localisation
exponentielle (habituellement attendue) est transformée en une localisation algébrique.

À l'inverse, un paquet d'ondes composé uniquement d'atomes di�usifs peut apparaître proche
de localisé en raison de la fonction spectrale. En e�et, même si pour une énergie donnée, le noyau
est di�usif, l'évolution totale peut apparaître sous-di�usive en raison de la dépendance énergétique
spéci�que du coe�cient de di�usion. L'évolution totale dans ce cas ressemble à la situation où une
seule composante d'énergie avec un noyau sous-di�usif est en jeu, imitant ainsi l'apparition de la
localisation d'Anderson.
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La connaissance précise de la distribution d'énergie est également nécessaire pour la caractérisa-
tion de la transition d'Anderson en trois dimensions. En e�et, dans ce cas, les composantes d'énergie
se répartissent des deux côtés du seuil de mobilité, la dynamique complète est alors une superposition
de comportements localisés et di�usifs. La connaissance de la distribution d'énergie est nécessaire
pour extraire des quantités physiquement pertinentes (par exemple la position du seuil de mobilité).

La troisième partie du chapitre est consacrée à la limite de désordre fort. Comme on le montre
dans la thèse, cette limite est bien décrite par des approximations semi-classiques. Nous commençons
par la limite classique, en négligeant la non-commutativité de p et r. Nous comparons le résultat
ainsi obtenu à des simulations numériques exactes pour trois distributions de potentiel di�érentes :
la distribution gaussienne, la distribution speckle rouge et la distribution speckle bleu. On trouve
que pour la distribution gaussienne, la fonction spectrale est bien décrite par sa limite classique. Le
cas d'une distribution speckle est plus délicat, en particulier proche de sa discontinuité où la limite
classique est complètement fausse.

Pour aller plus loin, on propose une expansion en puissance de ~ de l'opérateur d'évolution,
à partir de laquelle on déduit des corrections systématiques à la limite classique de la fonction
spectrale. Cette méthode présente deux étapes principales, dans une premier temps une expansion
en commutateur de l'opérateur d'évolution est présentée. A partir de cette expansion, la moyenne sur
le désordre est calculée par une expansion en cumulant. Cette dernière s'appuie sur la représentation
du potentiel speckle comme le module carré d'un champ complexe, ainsi d'un théorème de Leonov
et Shiryaev, qui permet de mener à bien le calcul. Cette technique nous permet de calculer une
correction au premier ordre non nul en ~ de la fonction spectrale. Cette correction a�ne la description
de la fonction spectrale dans le cas du potentiel gaussien et des potentiels speckle loin de leur
discontinuité. La problème proche de la discontinuité des potentiels speckles demeure.

Pour calculer la fonction spectrale des potentiels speckles proche de leur discontinuité, nous
développons une nouvelle approche semi-classique, cette fois ci basée sur une approximation de phase
stationnaire. Il apparait qu'à l'approximation de phase stationnaire et aux énergies d'intérêts (pour
lesquelles l'approche précédente ne su�t pas), il est possible d'approximer le potentiel speckle par
des oscillateurs harmoniques (inversés) isolés. En utilisant les propriétés statistiques des potentiels
speckles calculées dans le chapitre 2, on arrive à une très bonne description de la fonction spectrale
proche des discontinuités des potentiels speckles.

En connectant les deux méthodes, une description satisfaisante de l'ensemble du spectre énergé-
tique est possible. Notre description semi-classique fournit en outre une interprétation physique de
caractéristiques intrigantes de la fonction spectrale. En particulier, pour le potentiel speckle bleu,
nous avons montré que le pique de la fonction spectrale à faible énergie est essentiellement associé
à l'état fondamental d'un atome dans un puits de potentiel, alors que la bosse secondaire est asso-
ciée aux états excités. Nous avons également souligné qu'en dépit de leur symétrie, speckle rouge et
bleu ont des caractéristiques remarquablement di�érentes dans le régime semi-classique, venant de
la nature des trajectoires classiques impliquées aux énergie proche de zéro : pour le potentiel bleu,
ces trajectoires classiques se trouvent dans des puits potentiels profonds, alors que pour le potentiel
rouge, elles sont au voisinage du sommet de puits inversés.

Ce travail a donné lieu à une publication dans Physical Review A.

Une suite logique de ce travail serait de considérer le cas tridimensionnel, impliqué dans des
questions importantes liées à la localisation d'Anderson. Cette tâche semble cependant di�cile, en
raison de l'existence de courbes le long desquelles le potentiel est nul, rendant l'application de la
méthode développée dans cette thèse moins évidente.
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E�et de boomerang quantique

Dans ce chapitre, on s'intéresse à une situation proche de l'expérience réalisée en 2008 à Palaiseau.
Dans cette expérience, un paquet d'ondes étroit est lâché dans un potentiel désordonné et l'évolution
de son pro�l de densité est enregistrée au cours du temps. Nous proposons de reproduire la même
expérience, en donnant en plus une vitesse initiale. Dans la thèse, nous donnons une description
analytique et numérique complète du mouvement du centre de masse du paquet d'ondes en une
dimension.

Dans un premier temps, on considère une approche classique du problème. Celle-ci utilise le
théorème d'Ehrenfest pour relier le centre de masse à la vitesse moyenne. La dynamique de la vitesse
moyenne est ensuite décrite par deux équations de Boltzmann couplées. La solution de ces équations
prédit un mouvement du centre de masse relativement simple : après un mouvement balistique, le
centre de masse sature au libre parcours moyen. Ceci s'interprète très simplement par l'isotropisation
de la distribution de vitesse aux temps courts. Une fois la distribution de vitesse isotrope, il n'y a
plus de mouvement du centre de masse, celui reste à un libre parcours moyen, qu'il a parcouru avant
que la distribution de vitesse ne devienne isotrope.

Nous présentons dans un deuxième temps une approche numérique permettant de simuler e�ca-
cement ce problème. Cette méthode utilise les polynômes de Chebyshev pour obtenir une représen-
tation de l'opérateur d'évolution bien appropriée à une implémentation numérique. Nous donnons
quelques détails sur cette méthode et sur son implémentation. Elle est ensuite utilisée pour simuler
le mouvement du paquet d'ondes initialement doté d'une vitesse initiale. On trouve que, au lieu de
saturer au libre parcours moyen comme attendu, le centre de masse, après son mouvement balistique,
retourne lentement à l'origine. Nous appelons cet e�et l'e�et de Boomerang quantique.

Dans un troisième temps, nous apportons une preuve simple de l'e�et de Boomerang quantique,
utilisant une expansion en modes du paquet d'ondes. Cette démonstration donne la forme �nale
du paquet d'ondes, parfaitement symétrique par rapport à l'origine. En étudiant numériquement
la dynamique du paquet d'ondes, on observe que celui-ci subit en e�et une symétrisation gauche-
droite au cours du temps. Plutôt qu'à un mouvement rigide et global du paquet d'ondes, l'e�et de
Boomerang quantique est en fait associé à cette symétrisation.

Pour aller plus loin, et calculer le centre de masse aux temps �nis, nous utilisons une technique
diagrammatique. Cette technique, exacte dans la limite de désordre faible, a été introduite par
Berezinskii en 1973. Dans un premier temps, nous relions le centre de masse au produit de deux
fonctions de Green, ce qui nous permet d'utiliser la technique de Berezinskii pour calculer le centre
de masse.

La technique de Berezinskii est basée sur une expansion perturbative du produit des deux fonc-
tions de Green, qui est ensuite resommée, permettant ainsi une description non perturbative. L'ex-
pansion perturbative est exprimée en termes de diagrammes, eux même constitués de vertex reliés
par des lignes. Pour e�ectuer la resommation de ses diagrammes, un point clé est la possibilité, en
une dimension, d'inclure les facteurs associés aux lignes dans les vertex. Un diagramme est ainsi le
produit des facteurs associés à ses vertex. Les lignes se réduisent à des contraintes dans le choix des
vertex. A partir de cette représentation en termes de vertex, il est possible de calculer les diagrammes
en étudiant comment ceci changent lorsque le point initial et le point �nal sont déplacés. On déduit
de ce raisonnement des équations pour le centre de masse.

Ces équations demeurent compliquées, leur solution générale n'est pas connue. Une possibilité est
alors de les résoudre aux temps longs, ce qui simpli�e la tache et rend possible l'obtention du retour
asymptotique du paquet d'ondes à l'origine. Ce résultat est en très bon accord avec nos simulations
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numériques aux temps longs. Pour aller plus loin, et décrire le centre de masse à tout temps, nous
avons développé une nouvelle méthode de résolution des équations de Berezinskii. En e�et, nous
avons montré qu'il est possible de résoudre ces équations sous la forme d'une expansion de Taylor.
Cette dernière peut être calculée de façon systématique à l'aide d'un ordinateur. En calculant les 100
premiers termes de l'expansion de Taylor, on se rend vite compte que la série correspondante à un
rayon de convergence �ni (que nous estimons à quatre temps de di�usion). Il est cependant possible
de dépasser cette limite par une resommation de Padé. Cette dernière o�re une excellente description
du centre masse à tout temps, même quand l'approximant de Padé est d'ordre relativement bas.

La méthode de Berezinskii développée dans ce chapitre est en principe limitée au cas d'un
potentiel gaussien non corrélé. Nous argumentons dans la thèse que le centre de masse suit la même
courbe pour des potentiels non-gaussien et corrélés. Ses arguments sont con�rmés par des simulations
numériques qui montrent que le centre de masse est indépendant de la distribution du potentiel.

Pour �nir, nous montrons qu'une relation simple relie le centre de masse et la largeur du paquet
d'ondes. Cette relation se trouve être à la base de notre calcul du mouvement du centre de masse.

Ces travaux ont donné lieu à la rédaction d'une lettre soumise à Physical Review Letters.

Le raisonnement présenté dans la thèse et expliquant l'e�et de boomerang quantique en termes
de modes localisés réels s'applique en dimension quelconque. L'e�et de boomerang quantique est
donc attendu également en dimensions supérieures, à condition que la dynamique soit localisée. Ceci
o�re des perspectives intéressantes pour de futurs travaux. Par exemple, en prolongement de travaux
récents sur le pique de rétro-di�usion, il serait très intéressant d'e�ectuer une analyse numérique
�ne de l'e�et de boomerang quantique en trois dimensions. Une autre piste de recherche intéressante
serait de chercher des phénomènes similaires dans d'autres classes de symétrie (par exemple dans
la classe unitaire où la compréhension qualitative de l'e�et de boomerang quantique en termes de
modes localisés réel ne s'applique pas).

Paquets d'ondes interagissant faiblement

Dans ce chapitre, on prend en compte les interactions atome-atome. On se place dans le contexte
des gaz dilués de bosons condensés, qui décrit bien les expériences mises en ÷uvre à Palaiseau et
Florence.

Dans une première partie, nous donnons une dérivation simple de l'équation de Gross-Pitaevskii.
Cette dernière décrit l'évolution de la fonction d'onde du condensat. Cette description néglige les
atomes non-condensés, et la possibilité pour les atomes de sortir du condensat. Néanmoins, l'équation
de Gross-Pitaevskii explique très bien de nombreux résultats expérimentaux.

Fort de cette simpli�cation, nous introduisons ensuite, dans une deuxième partie, un méthode nu-
mérique permettant de simuler l'évolution du gaz de bosons, régit par l'équation de Gross-Pitaevskii.
Cette méthode s'appuie sur la méthode développée au chapitre précédent pour intégrer numérique-
ment l'équation de Schrödinger. Nous montrons que l'inclusion de la non-linéarité revient à ajouter
des phases avant et après l'application de la méthode linéaire. Cette méthode est asymptotiquement
exacte quand le temps est in�niment discrétisé. En pratique, on peut s'appuyer sur le fait que l'erreur
à temps �xé décroit comme le carré du pas en temps. Cette méthode est particulièrement adaptée
à la limite de faibles interactions. Elle permet en e�et de traiter e�cacement la partie linéaire de
l'équation de Gross-Pitaevskii, de faible interactions n'imposant que des pas temporels raisonnables.
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Il reste néanmoins que l'on souhaite atteindre des temps relativement longs dans nos simulations
numériques. Nous souhaitons en e�et accéder à des régimes de temps où la non-linéarité se fait sentir.
Pour cette raison, nous adoptons dans certaines sections un modèle réseau, plus facile à simuler
numériquement. On notera que dans la limite linéaire et concernant la localisation d'Anderson, il
n'y a essentiellement pas de di�érence entre la physique des réseaux et celle du continu. On peut
donc espérer décrire, au moins qualitativement, la physique du continu.

Pour valider notre méthode numérique, nous considérons une situation qui a fait l'objet de
nombreuses études. Elle consiste à placer un paquet d'ondes à un point d'un réseau désordonné et
à le laisser l'étaler. On observe alors que la non-linéarité vient perturber la localisation d'Anderson,
qui prédit une saturation de l'étalement. En e�et, une dynamique sous-di�usive est attendue. Nous
observons bien ce comportement sous-di�usif dans nos simulations avec un exposant de sous-di�usion
en accord avec de précédents travaux.

Dans une troisième partie, nous nous tournons alors vers un problème nouveau, celui de l'e�et de
la non-linéarité sur l'e�et de boomerang quantique. Nous étudions cette situation numériquement,
et observons que la non-linéarité à l'air d'interrompre l'e�et de boomerang quantique. Le boomerang
quantique non-linéaire semble ne pas revenir à l'origine.

Pour comprendre un peu mieux ce phénomène, nous le comparons à un phénomène de déco-
hérence. Ce dernier est étudié numériquement par l'introduction dans les simulations numérique
d'un potentiel désordonné supplémentaire, dont l'amplitude varie dans le temps. Pour e�ectuer ces
simulations, on utilise la même méthode numérique que pour le cas non-linéaire. On trouve que de
façon surprenante, il est possible de reproduire presque à l'identique les courbes du mouvement du
centre de masse non-linéaire avec ce modèle de décohérence. Ce résultat suggère que la non-linéarité
agit ici comme une source de décohérence. On peut alors associer à la non-linéarité un temps de
décohérence. Ce dernier est obtenu en considérant la di�usion associé au modèle de décohérence
dont le mouvement du centre de masse reproduit celui obtenu avec l'équation de Gross-Pitaevskii.

On trouve alors qu'à la non-linéarité est associée un temps de décohérence inversement propor-
tionnel à la force de la non-linéarité.

Dans une quatrième partie, nous considérons la dynamique de la distribution d'énergie du paquet
d'ondes. En e�et, contrairement au cas linéaire pour lequel la distribution d'énergie n'évolue pas,
la non-linéarité est susceptible d'induire des collisions inélastiques et donc un changement de la
distribution d'énergie.

Nous commençons cette partie par un réexamen du problème de l'étalement du paquet d'ondes,
qui montre l'importance de la dynamique de la distribution d'énergie. En e�et, nous faisons une
expérience numérique relativement simple, qui consiste à comparer deux scénarios très proches.
Dans les deux cas, nous considérons l'étalement d'un paquet d'ondes, simplement dans le premier
cas l'énergie initiale du paquet d'ondes se trouve à un endroit arbitraire du spectre alors que dans le
second cas, l'énergie du paquet d'ondes est choisie telle qu'elle corresponde à l'énergie pour laquelle
la longueur de localisation est maximale. En e�et, si dans le premier cas le paquet d'ondes est
susceptible d'explorer des régions du spectre d'énergie où la longueur de localisation est grande,
dans le second cas, le paquet d'ondes ne peut qu'explorer des régions où la longueur de localisation
est relativement petite. Les simulations numériques révèlent que cette di�érence est fondamentale,
avec un transport beaucoup moins e�cace dans le cas où le paquet d'ondes est dès le départ au
maximum de la longueur de localisation.

Bien que les simulations du paragraphe précédent soient faite en une dimension, nous considérons
ensuite le cas tridimensionnel, plus simple en ce qu'il permet de négliger les e�ets de localisation.
La dynamique de la distribution d'énergie peut alors être calculée. Nous comparons ce calcul à des
simulations numériques, et trouvons un bon accord. Nous pouvons alors conclure que la distribution
d'énergie évolue sur un temps caractéristique proportionnel au carré de l'inverse de la force de la
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non-linéarité.
Nous observons cependant dans les simulations numériques une dynamique de la distribution

d'énergie sur une échelle de temps beaucoup plus courte, celle du temps de di�usion. Nous attribuons
cette dynamique à deux e�ets de temps courts, liés à la dynamique du paquet d'ondes sur cette échelle
de temps.

Nous considérons �nalement dans une dernière partie l'e�et des interactions sur le pique de rétro-
di�usion cohérente. De la même façon que pour la distribution d'énergie, les simulations révèlent
deux temps caractéristiques. En premier lieu, aux temps courts (de l'ordre du temps de di�usion),
on observe une construction incomplète du pique de rétro-di�usion cohérente. Ensuite, sur des temps
plus longs, l'amplitude du pique diminue. Nous postulons que ces deux e�ets sont liés aux deux e�ets
observés sur la distribution d'énergie.

Bien que nous ayons souligné les mécanismes physiques à l'÷uvre, notre travail a été essen-
tiellement numérique. Une caractérisation analytique des e�ets introduits dans ce chapitre devrait
permettre d'a�ner leur compréhension et o�re des perspectives intéressantes pour de futurs travaux.

Le kick rotor, un simulateur paradigmatique de la localisation d'An-
derson

Dans ce chapitre, nous changeons quelque peu de thématique. Nous considérons di�érentes va-
riantes de kicks rotors, qui sont des modèles déterministes. La dynamique classique de ces modèles
est cependant généralement chaotique, et leur dynamique quantique essentiellement identique à celle
de modèles désordonnés.

Ce chapitre s'ouvre par une section d'introduction à la physique du kick rotor. Nous y discutons
notamment les réalisations expérimentales avec des atomes froids, et introduisons quelques dé�nitions
utiles pour la suite.

Ensuite, dans une deuxième section, on introduit le concept des propriétés spectrales universelles
et les ensemble de matrices aléatoires de Dyson. Nous discutons notamment du rôle central joué
par les symétries par renversement du temps. Ainsi, nous introduisons les trois ensembles de Dyson,
par une brève dérivation des propriétés statistiques de matrices invariantes par renversement du
temps. Nous montrons notamment que les matrices appartenant à l'ensemble symplectique sont
caractérisées par une dégénérescence de Kramers.

Nous donnons ensuite les formes approximées (Wigner surmise) des distributions d'espacement
de niveau dans chacun des trois ensembles. Suite à quoi, nous discutons du rôle des symétries
par renversement du temps pour les opérateurs de Floquet. Nous discutons aussi du lien entre les
ensembles de Dyson et les classes d'universalité des systèmes désordonnés.

Après ces parties introductives, nous examinons la possibilité qu'un kick rotor sans spin soit dans
la classe symplectique. On notera qu'il est communément accepté qu'une telle possibilité est exclue.

Pour trouver un kick rotor sans spin dans la classe symplectique, nous proposons de ré�échir
autour du phénomène de localisation faible. Ce dernier se manifeste en e�et très di�éremment dans
la classe symplectique puisqu'il est transformé en anti-localisation. L'idée est alors de changer le signe
de la localisation faible. Comme nous le montrons dans la thèse, ceci est possible par introduction
d'un potentiel discontinu et d'une alternance de deux kicks d'amplitude di�érentes. Comme nous le
montrons dans la thèse, ce modèle reproduit bien les signatures de l'anti-localisation, pourvu que
la discontinuité soit placée le long d'une direction supplémentaire, composée d'un petit nombre de
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sites.
Pour aller plus loin, on se tourne vers les propriétés spectrales introduites dans la section pré-

cédente. On retrouve les caractéristiques de l'ensemble symplectique, avec la présence de la dégéné-
rescence de Kramers et la statistique des espacements de niveaux attendue dans cet ensemble. Nous
montrons ensuite, qu'en e�et, l'opérateur de Floquet commute avec un opérateur de renversement
du temps, et que ce dernier est de carré −1.

Pour aller plus loin, nous proposons de considérer le cas tridimensionnel, par l'introduction de
fréquences incommensurables. Cette astuce, permettant de simuler des problèmes désordonnés de
dimensions entières arbitraires à l'aide de kicks rotors modulés dans le temps, n'a jusque là été
appliquée qu'à des systèmes appartenant à la classe orthogonal. Avant de se lancer dans l'étude du
modèle sans spin supposé symplectique, nous véri�ons que l'astuce s'applique aussi au cas symplec-
tique. Nous e�ectuons à cet e�et des simulations numériques de kick rotor avec spin. Les résultats
suggèrent que cette astuce ne s'applique pas dans la classe symplectique, l'exposant critique observé
est en e�et distinct de celui attendu pour un modèle désordonné équivalent. Nous sommes donc
forcés de reporter l'étude du modèle sans spin supposé symplectique.

Pour essayer de comprendre pourquoi l'astuce usuelle, consistant à moduler l'amplitude des kicks
par des produits de fonctions trigonométriques pour simuler des dimensions supplémentaires, ne
fonctionne pas dans la classe symplectique, nous nous sommes intéressés à une nouvelle modulation.
Plus précisément, nous avons essayé d'identi�er les propriétés importantes des séquences issues de
produits de fonctions trigonométriques pour simuler des problèmes désordonnés en dimensions non
entière. Mise à part la compréhension des kicks rotors modulés, cette étude est aussi motivée par
les perspectives intéressantes o�ertes par la simulation de problèmes désordonnés en dimensions non
entières, telle que l'identi�cation de la dimension critique inférieure dans l'ensemble symplectique
(prédite strictement supérieur à 1 et strictement inférieur à 2) et d'explorer les conséquences de cette
dimension critique inférieure non entière.

A cet e�et, nous avons proposé une nouvelle séquence quasi-périodique. Cette dernière est obtenue
de façon relativement similaire à la technique habituelle consistant à échantillonner des produits de
fonctions trigonométriques. Plus précisément, nous proposons une fonction dont l'échantillonnage
pour des arguments entiers génère une série quasi-périodique.

Les résultats sont surprenants, avec di�érents régimes de sous-di�usion dépendant de l'amplitude
des kicks. Bien que l'objectif de simuler des problèmes désordonnés en dimensions non entières ne
soit pas atteint, nous pensons que les résultats sont prometteurs.

Finalement, nous avons montré que le kick rotor constitue une excellente plate-forme pour ca-
ractériser divers aspects de la localisation d'Anderson, et avons identi�é trois directions de recherche
prometteuses pour de futurs travaux. Tout d'abord, dé�ant une hypothèse communément acceptée,
nous avons présenté des éléments probants en faveur d'un kick rotor sans spin dans la classe symplec-
tique. Deuxièmement, nous avons observé que l'astuce des séquences quasi périodiques de Casati et
al. semble échouer dans la classe symplectique. Troisième, nous avons exploré la possibilité d'utiliser
de nouveaux types de séquences quasi-périodiques. Nous pensons que notre étude préliminaire dans
cette direction montre des résultats prometteurs et ouvre des perspectives passionnantes pour de
futurs travaux.



Abstract

This thesis theoretically investigates several e�ects related to Anderson localization, focusing on
the context of disordered and chaotic cold-atomic systems.

In cold-atomic systems, optical speckle patterns are often used to create the disorder. The
resulting potentials felt by the atoms di�er from Gaussian random potentials, commonly assumed
in the description of condensed-matter systems. In the �rst part of the thesis, we discuss their
speci�cities, with an emphasis on the spectral properties of atoms in such potentials. In particular,
we derive several approximations for the spectral function.

Atom-optics experiments o�er interesting possibilities, such as the possibility to directly probe
the atoms inside the disordered potential. In view of these possibilities, we consider in the second
part of the thesis the spreading of matter wave packets initially launched with a non-zero velocity. We
�nd that after an initial ballistic motion, the packet center-of-mass experiences a retrore�ection and
slowly returns to its initial position, mimicking a boomerang. We show that this unexpected quantum
boomerang e�ect is a consequence of Anderson localization, and describe it both numerically and
analytically in dimension 1.

Atom-atom interactions are then introduced in a third part. We consider dilute condensed
bosonic gases, and treat the interactions at the mean-�eld (Gross-Pitaevskii) level. Various situations
are studied numerically, in particular the quantum boomerang scenario, and the dynamical spreading
� both in momentum and energy � of matter waves prepared as plane waves.

In the last part, we show that chaotic models o�er interesting prospects for the study of Anderson
localization. On the one hand, going against common wisdom, we present strong evidences in favor
of a spinless kicked rotor in the sympletic ensemble. On the other hand, a second look at a commonly
studied quasi-periodically modulated kicked rotor reveals intriguing results.
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Chapter 1

Introduction

Anderson localization, the absence of wave di�usion due to destructive interference between
partial waves multiply scattered by a disordered potential, was predicted theoretically in 1958 [1].
Anderson formulated the problem of localization under the form of a perturbative expansion, for
which he was able to derive a convergence criterion and thus a condition for localization to occur.
Later on, various theories of Anderson localization emerged. The subject is also of interest to
mathematicians, who were able to give mathematically rigorous proofs of localization [2].

In this chapter, we introduce several descriptions of Anderson localization that will be useful in
the rest of the thesis. We start with the self-consistent theory of localization in section 1.1. This
theory will allow us to gain intuition on the phenomenon of Anderson localization, and to introduce
some important concepts. The self-consistent theory, which is a kind of mean-�eld approximation, is
then compared with a more rigorous approach in one-dimension, Berezinskii diagrammatic technique,
in section 1.2. The scaling theory of localization is then introduced in section 1.3. By adopting a
macroscopic point of view, the latter o�ers a di�erent perspective on Anderson localization.

Anderson localization has been experimentally observed in various contexts. In section 1.4,
we give a brief account of these experimental developments, and discuss the speci�cities of cold-
atom platforms in the �eld of Anderson localization. In section 1.5, we brie�y discuss the role of
interactions, often unavoidable in experiments.

We conclude this chapter with an outline of the thesis in section 1.6.

1.1 From weak to strong localization: the self-consistent approach

1.1.1 Weak localization

In this section, we present an intuitive picture of Anderson localization. To that end, we assume
that a particle is initially placed at some point r′ in a disordered medium, and formally express its
density distribution at another point r at time t as a sum over all possible scattering paths:

n(r, t) =

∣∣∣∣∣∣
∑

paths i

Ai

∣∣∣∣∣∣

2

=
∑

paths i

AiA
∗
i

︸ ︷︷ ︸
classical

+
∑

paths i6=j

AiA
∗
j

︸ ︷︷ ︸
quantum

. (1.1)
r′

r
i

j

scatterers

`

In this picture, Ai is the partial complex amplitude associated with the scattering path i. It has
a phase which depends on the path i. In equation (1.1), we have separated two contributions to

1
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the density distribution. On the one hand, the so-called �classical� contribution describes a random
walk process where the various paths do not interfere and their intensity simply add up. The other
�quantum� contribution, on the other hand, contains all possible interference e�ects. The pairs of
paths responsible for the �quantum� contribution come with a phase factor of order k`. Here k is
related to the De Broglie wave length of the particle λ, through k = 2π/λ, and ` is the scattering
mean free path, the average distance traveled by the atoms between successive scattering events. If
now we impose that k` � 1 (this de�nes a weak disorder criterion, see section 3.1 for details), the
�quantum� contribution is negligible on average. Under this approximation, the particle experiences
a classical di�usion process at large scales, with a di�usion coe�cient D0:

(∂t −D0∇2
r)ncl(r, t) = δ(r − r′)δ(t) ⇔ ncl(r, t) =

∫
dω
2π

dq
(2π)d

eiq.(r−r
′)−iωt 1

−iω +D0q2
, (1.2)

where ncl(r, t) is the disorder averaged classical density. Note that (−iω+D0q
2)ncl(q, ω) = 1 is the

di�usion equation in Fourier space. This description is however incomplete. Indeed, some carefully
designed pairs of paths turn out to survive the disorder average, provided each path accumulates
the same phase during its propagation. When time-reserval invariance holds, this is precisely the
case for a path and its time-reserved counterpart.

r′

r

(a) Di�uson

r′

r

(b) Cooperon

Figure 1.1 � Two types of pairs of scattering paths contributing to the averaged density distribution:
(a) the Di�uson: both paths follow the same sequence of scatterers in the same direction, and (b)
the Cooperon: the two paths follow the same sequence of scatterers, but in opposite directions.

Cooperon
loop

This argument leads us to keep two types of pairs of paths, the classical ones
(called �Di�uson�) and their time-reserved counterpart (called �Cooperon�). They
are depicted in �gure 1.1. Strictly speaking, Di�uson and Cooperon are symmetric
upon time-reversal symmetry only when r = r′. This property makes the Cooperon
play a singular role: it enhances the probability of observing the particle near its
starting point.

From the two building blocks in �gure 1.1, we can build more complicated
paths by chaining Di�usons and Cooperons (see �gure opposite). The Cooperons
can only appear as closed loops, their occurrence during the propagation leads to
a reduction of the di�usion coe�cient1:

1For a derivation of equation (1.3), see e.g. [3].
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nWL(r, t) =

∫
dω
2π

dq
(2π)d

eiq.(r−r
′)−iωt 1

−iω +D(ω)q2

1

D(ω)
=

1

D0
+

1

πρD0

∫
dQ

(2π)d
1

−iω +D0Q
2

︸ ︷︷ ︸
=ncl(r′,ω)

, (1.3)

where ρ is the disorder-averaged density of states per unit volume. The reduction of the di�usion
coe�cient by interference e�ects is known as weak localization, and has been the subject of extensive
research, in particular in condensed-matter physics, where it was tracked through its interplay with
temperature, magnetic �eld, spin-orbit coupling or magnetic impurities (see e.g. the review [4] and
the more recent experiment [5]). Note that one can alternatively observe the Cooperon contribu-
tion as a coherent enhancement of the return probability [6] or under the form of a coherent back
scattering peak [7, 8].

One sees that the reduction of the di�usion coe�cient D0 in equation (1.3) is proportional to
the classical return probability ncl(r′, ω). As it turns out, this correction becomes signi�cant in low
dimensions (d ≤ 2) as well as at strong disorder in higher dimensions [3].

1.1.2 Strong localization: the self-consistent approach

In fact, if the quantum corrections (the Cooperon loops)
become more important, more complex scattering paths ap-
pear, as shown in the �gure on the right. These scattering
paths may include loops nested into loops. The approximate
solution to this problem has been provided by Vollhardt and
Wöl�e in 1980 [9], who suggested to renormalize the di�u-
sion coe�cient in the return probability itself:

nSCTL(r, t) =

∫
dω
2π

dq
(2π)d

eiq.(r−r
′)−iωt 1

−iω +D(ω)q2

1

D(ω)
=

1

D0
+

1

πρD0

∫
dQ

(2π)d
1

−iω +D(ω)Q2

︸ ︷︷ ︸
=nSCTL(r′,ω)

,

(1.4)

Vollhardt and Wöl�e self-consistent theory has enjoyed quite some success (see [10] for a recent
review). It is however inaccurate in the vicinity of critical points, where its kind of mean-�eld nature2

prevents accurate determinations of critical exponents [11].
Equation (1.4) can be fully solved in 1D [12], where the resulting in�nite-time density pro�le

takes the form

nSCTL(x, t =∞)|2 =
e−|x|/2`

4`
. (1.5)

1.2 Berezinskii diagrammatic technique

Berezinskii diagrammatic technique is a rigorous approach to localization restricted to the one-
dimensional (1D) case. It was developed by Berezinskii in 1973 [13] and is discussed in details in

2The correction brought by each loop is an only an average correction, possible �uctuations from one loop to the
other are not accounted for.
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chapter 4. As the self-consistent theory, this method is based on the resummation of a diagrammatic
expansion. However, in contrast with the self-consistent theory, the choice of relevant diagrams is
rigorously controlled and their summation is exact. A particularly interesting result, obtained with
this technique by Gogolin [14], is the in�nite-time average density pro�le reached by an initially
narrow wave packet spreading in a disordered potential3,

nG(x, t =∞) =

∫ ∞

0

dηπ2

32`

η
(
1 + η2

)2
sinh(πη)e−(1+η2)|x|/8`

[1 + cosh(πη)]2
. (1.6)

Equation (1.6) can be interpreted as an average over exponentially localized pro�les [∝ exp(−|x|/ξ)],
the integral over η accounting for the distribution of localization lengths ξ. As visible in �gure 1.2,
equation (1.6) somewhat di�ers from the result obtained using the self-consistent theory of localiza-
tion, equation (1.5). The major di�erence occurs in the wings, where the exact result (1.6) decays
as exp(−|x|/8`). This di�erence lies in the large �uctuations present in the wings, which make
the average pro�le dominated by rare events not captured by the self-consistent theory, which only
describes the typical pro�le [15]. In the center of the pro�le, �uctuations are much smaller [16, 17],
and the self-consistent theory works well.

2000 1000 0 1000 2000
x/`

10-118
10-109
10-100
10-91
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10-64
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10-28
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10-10
10-1

n
(x
,t
→
∞

)`

Gogolin

exp(− |x|/8`)

4 2 0 2 4
10-2

10-1

exp(− |x|/2`)

Figure 1.2 � Comparison between the exact Gogolin pro�le for the average density n(x, t→∞)
(equation (1.6), red curve) and two simple exponential forms. In the main plot, the comparison is
done with exp(−|x|/8`), shown as a dashed blue line. The inset presents a zoom on the small x
part, where the comparison is done with exp(−|x|/2`), shown as a dashed green line. The latter is
the prediction of the self-consistent theory.

1.3 Scaling theory of localization

The seemingly simple idea of considering how the properties of a system change when its size
changes can be very fruitful for describing complex systems. Inspired by the ideas developed in the
context of critical phenomena in statistical physics, Abrahams, Anderson, Licciardello and Ramakr-
ishnan introduced a scaling theory of Anderson localization in disordered system of �nite size [18].
In the present section, we give a brief account of their contribution.

3We will come back on the conditions under which equation (1.6) is valid in section 4.4.
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The idea is to describe how the dimensionless conductance g of a disordered sample scales with
its size Ld. Concretely speaking, one considers the Gell-Mann-Low β function, de�ned as

β =
d ln(g)

d ln(L)
. (1.7)

The key ingredients allowing to characterize the β function are the following: (i) g is the only relevant
variable, so that β depends only on g (hence the name one-parameter scaling theory), (ii) the β
function is continuous and regular and (iii) the knowledge of the β function in its asymptotic regimes.
On the one hand, the small g asymptotic follows from the exponential decay of the conductance,
expected in the localization regime, and perturbation theory around this behavior [18],

β(g) ∼
g→0

ln(g) [1 + αg] , (1.8)

with α > 0. On the other hand, perturbation theory around the Ohm law provides the large g
asymptotic [18]:

β(g) = d− 2− a/g + . . . (1.9)

with a > 0 for spinless time-reversal invariant systems. By interpolating between these two limits,
Abrahams, Anderson, Licciardello and Ramakrishnan sketched the β function in all dimensions, as
reproduced in �gure 1.3.

Figure 1.3 � Sketch (reproduced from [18]) of the β function versus ln(g) obtained by interpolating
smoothly between the asymptotic limits (1.8) and (1.9). As discussed in the main text, in d > 2 the
β function crosses 0, thus exhibiting a phase transition. Its slope across 0, shown as solid-circled
line, encodes the critical exponent associated to this phase transition [18]. A jump of conductivity
in d = 2, debated at the time [19], leads to the dashed line, inconsistent with the hypothesis of
regularity, which instead rules in favor of localization of all states in d = 2.

Note that the β function (1.7) can be calculated from the self-consistent theory introduced in
section 1.1. Its behavior is consistent with the general prediction of the scaling theory [20].

What conclusions can we draw from �gure 1.3? On the one hand, for small dimensions (d ≤ 2),
the β function is always negative, i.e. the conductance decreases with increasing system size, and as
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one moves along the curve of the β function, one ends up in the localization regime [β(g) ∼ ln(g)]
for large systems. On the other hand, for higher dimensions (d > 2) the β function crosses 0. The
point gc such that β(gc) = 0 separates two drastically di�erent scaling behaviors. For g < gc, one
recovers the small dimension situation and localization eventually prevails for large enough systems.
For g > gc in contrast, the conductance increases with increasing system size, signaling a regime
of classical di�usion. gc de�nes the so-called mobility edge, separating a localized phase from a
delocalized phase for in�nite systems. The associated transition is called Anderson transition, and
was already predicted by Anderson in his seminal paper [1].

Interestingly, the two-dimensional (2D) case appears very sensitive to the sign of the correction in
1/g at large g [sign of a in (1.9)]. In the case of spinless time-reversal invariant systems considered
so far, the weak localization correction was responsible for a small negative correction to β(g �
1) = 0. As it turns out, this perturbative correction strongly depends on the symmetries of the
Hamiltonian. Assuming a weak magnetic �eld (thus breaking time-reversal invariance), the 1/g
term of equation (1.9) disappears (a = 0), but the β function is not qualitatively a�ected, as the
next order term, in 1/g2, bears a negative correction as well [21,22]. In sharp contrast, accounting for
the electron spin through a spin-orbit term in the Hamiltonian turns the weak localization correction
into a weak antilocalization correction and lead to a transition in two dimensions [22]. This is but
one mechanism leading to criticality in 2D disordered systems [11].

1.4 Experimental observations of Anderson localization

1.4.1 Early condensed-matter experiments

One of the initial motivation that led to the theoretical prediction of localization was the under-
standing of spin transport in doped semiconductors, and in particular the observations of slow spin
transport by Feher and Gere [23,24]. In the decades following Anderson's discovery of localization,
a lot of experimental e�ort were devoted to the subject (see [25] for a review). Experiments were
performed with solid-state samples such as thin metallic �lms or semiconductors. Correspondingly,
theoretical works were primarily concerned with the conductivity (or related observables) of these
systems (see review [25]).

The richness of solid-state system may however also constitute a di�culty. For instance, the
e�ect of electron-electron interactions is a priori important in this context, their interplay with
localization was intensively studied (see [26] for a review). The possibility of other mechanisms
inhibiting transport (e.g. many-body e�ects for Mott insulators) makes the de�nite observation of
Anderson localization di�cult [27]. Furthermore, the coupling of electrons with external degrees of
freedom (e.g. phonons) makes the localization phenomenon di�cult to observe in �pure� conditions.

1.4.2 A wave phenomenon

As we have seen in section 1.1, Anderson localization is a manifestation of interferences be-
tween partial waves multiply scattered by the disorder. In other words, it is intrinsically a wave
phenomenon [28]. As such, it was observed with various kinds of waves including microwaves [29],
bending waves [30], light [31, 32] (see however [33, 34]) and ultrasound waves [35], to give the main
examples.

Recently, Anderson localization of atomic matter waves has also been observed [36�40]. A
major advantage of these setups is the possibility to control atom-atom interactions (through, e.g.,
Feshbach resonances), and to achieve a weak coupling to the environment. Furthermore, atom-optics
experiments o�er the possibility to directly probe localization phenomena inside the atomic system,
as well as to follow their evolution in the course of time [41,42].
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These key possibilities have led to an enrichment of Anderson localization phenomenology with
the discovery of the coherent forward scattering peak [43], which can be used to characterize An-
derson transitions [44]. In addition, cold-atom experiments based on a quench protocol [37�40, 45]
impose to account for a broad spectrum of energy components [42, 46] (as opposed to condensed-
matter experiments where only electrons near the Fermi energy contribute to transport). At last,
the speci�cities of speckle optical potentials, often used to create the disorder [37�40,45], lead to pe-
culiar features, such as the existence of a series of apparent �mobility edges� between energy regions
where localization lengths di�er by orders of magnitude [47].

1.5 Anderson localization and interactions

The question of interactions is naturally important, as they are often unavoidable in experiments.
Concerning this issue, two main trends have recently emerged. On the one hand, a large body of work
tackles the question from the perspective of weakly interacting bosonic gases, and treat interactions
at the mean-�eld level, possibly including perturbative corrections to the mean-�eld solution. On
the other hand, a growing community has embarked into the subject of many-body localization, an
extension of Anderson localization for many-body systems. The present thesis is only concerned
with the former point of view, which is introduced in the next subsection. We have chosen to brie�y
discuss few aspects of many-body localization right afterwards, to o�er a contrasting view.

1.5.1 Mean-�eld e�ects

At the mean-�eld level, the dynamics of cold bosonic gases is described by a nonlinear equation.
This nonlinearity makes the physics very rich. Indeed, one expects the nonlinearity to have di�erent
e�ects depending on the initial conditions, as the superposition principle no longer holds. Four
situations have attracted a lot of attention. First, the interplay between Anderson localization and
interactions was tracked in the spreading of wave packets (see [48, 49] for recent reviews). It was
found that Anderson localization is destroyed in favor of subdi�usion at long times as a result of
a trade-o� between destruction of localization and dilution of the nonlinearity. The destruction
of Anderson localization in favor of subdi�usion was observed experimentally [50]. Subdi�usion
is however predicted to breakdown at extremely long times, replaced by a slower spreading (if
any) (see [51, 52] for rigorous proofs and [53, 54] for possible physical mechanisms). Second, the
e�ects of inelastic collisions and the ensuing dynamics of the energy distribution was studied [55�
59] as well as the eventual thermalization [60]. Third, the e�ect of interactions on the coherent
backscattering peak was studied in an atom-laser-like con�guration, where a static atomic beam is
re�ected from a nonlinear disordered medium [61,62]. It was found that interactions may transform
the coherent backscattering peak into a dip. Note that one of the motivation for this work came from
the optical context, where the e�ect of interactions on the coherent backscattering peak had been
previously considered [63�66]. Fourth, in similar atom-laser-like con�gurations, the transmission of
Bose-Einstein condensates through disordered regions was considered [67�69], reporting a destruction
of Anderson localization in favor of super�uidity for small condensate velocities. At large velocities,
Anderson localization prevails for small disordered regions (still, larger than the localization length)
and an instability of the mean-�eld solution is expected for larger disordered regions.

The physics of perturbative corrections to the mean-�eld solution was also considered in the
framework of Bogoliubov theory [70�76], through the truncated Wigner method [77], and with
diagrammatic theory [78,79].
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1.5.2 Many-body e�ects

The �eld of many-body localization emerged after the pioneering work of Basko, Aleiner and
Altshuler [80], who considered the possible localization of a many-body wave function in the Fock
space of Anderson-localized states. From this formulation of the problem, they were able to build
a reasoning somewhat similar to Anderson's original arguments for localization. This seminal pa-
per generated a large body of works, see [81, 82] for recent reviews. These works con�rmed the
phenomenon of many-body localization and associated to it a whole phenomenology, with, in partic-
ular, the absence of thermalization and the logarithmic growth of entanglement entropy. The latter
property should be contrasted with one-particle Anderson localization, for which the entanglement
entropy is bounded [83]. Many-body localization has been recently observed experimentally [84,85].
Note that the many-body counterpart of the Cooperon (�gure 1.1b) is predicted to be visible in
Fock space [86]. Many-body localization has also found applications in gauge theories [87] and time
crystals [88]. The subject is also of interest to mathematicians [89�91].

1.6 Outline of the thesis

The general goal of this thesis is to theoretically investigate several interesting e�ects related to
Anderson localization, focusing on the context of cold-atomic systems. The study falls into three
main categories. We �rst consider general aspects of cold-atom setups featuring speckle optical
potentials, with an emphasis on the spectral properties of the atoms. The second facet of this work
concerns new aspects of Anderson localization that can be explored with cold-atom setups. The third
theme discusses the e�ect of interactions on various phenomena associated to Anderson localization,
from the perspective of condensed bosons.

The thesis is organized as follows. We �rst present a theoretical approach to the energy distri-
bution of atomic clouds in speckle potentials. This study consists of two stages. The �rst one is
presented in chapter 2, where we consider statistical properties of speckle optical potentials, with
an emphasis on intensity minima. In chapter 3, we present the second stage, a novel theoretical
method for the calculation of the spectral function and the density of states in the strong disorder
limit. Using the results obtained in chapter 2, we apply this method to the 1D case. The 2D case
is treated in our published paper, reproduced in section 3.5.

In chapter 4, we come to the second facet of the work, with the characterization of the center-of-
mass motion of wave packets launched with a �nite velocity in random potentials. This study unveils
a novel and unexpected manifestation of Anderson localization: after an initial ballistic motion, the
packet center-of-mass experiences a retrore�ection and slowly returns to its initial position. We
dubbed this phenomenon the quantum boomerang e�ect. The core of chapter 4 consists in the
analytical description of the quantum boomerang e�ect in one dimension.

In chapter 5, atom-atom interactions are introduced in the numerical simulations, at the mean-
�eld (Gross-Pitaevskii) level. Their e�ects on the quantum boomerang phenomenon are �rst dis-
cussed. The e�ect of interactions is further investigated in the energy spreading of plane waves
evolving in three-dimensional (3D) random potentials. Finally, we also discuss how they a�ect the
coherent back scattering peak, and in particular reveal an unexpectedly small rise of the peak at
short times.

In chapter 6, we take a di�erent direction and consider a deterministic (albeit chaotic) model,
the kicked rotor. We show that such kicked-rotor models o�er interesting prospects for the study of
Anderson localization. On the one hand, with strong experimental and theoretical motivations, we
present compelling evidences in favor of a spinless kicked rotor in the sympletic ensemble. On the
other hand, a second look at quasi-periodically modulated kicked rotors reveals intriguing results.

Finally, chapter 7 summarizes our �ndings and gives some perspectives.



Chapter 2

Statistical properties of speckle patterns

In cold-atom experiments, one takes advantage of the interaction between a laser and the atoms
for various purposes. Of particular interest to us in this chapter is the possibility to shape the
potential felt by the atoms. Indeed, under certain conditions, to be discussed in section 2.1, the
laser acts for the atoms as a potential which is simply proportional to the laser intensity. In low
dimensions, the common route to generate random potentials is to shine a laser on a rough plate.
The resulting potential is then the complex di�raction pattern of the plate, and the randomness
originates from the �random� local roughness of the plate. A precise understanding of the statistics
of the resulting potential is of utmost importance for the analysis of such experiments.

This chapter is divided in three parts. First, we give a brief introduction to the cold-atom frame-
work in section 2.1. Second, section 2.2 gives an introduction to the statistics of speckle potentials,
and is concerned with general properties, such as the on-site distribution and correlation functions.
This introductory section follows the book by Goodman [92]. It will also be the occasion to explain
how speckle patterns are generated in the numerical simulations. Then, in section 2.3, we dive into
more speci�c statistical properties, the statistical properties of intensity minima. The distributions
considered there were derived during the thesis, and used to calculate spectral properties of atomic
clouds in speckle potentials, which is the object of chapter 3.

2.1 Dipolar potential for cold-atoms

In this section, we show how one can take advantage of the interaction between a laser and the
internal structure of an atom to in�uence the dynamics of its external degrees of freedom. This
introductory section follows the courses by Dalibard at Collège de France [93].

For the sake of simplicity, throughout this section we consider a two-level atom interacting with
a laser of frequency ω, as illustrated in �gure 2.1. The ground state |g〉 and the excited state |e〉 of
the atom describe its internal degrees of freedom, typically |g〉 is the orbital wave function of the
outermost occupied shell in the ground state and |e〉 is an unoccupied orbital wave function. In cold-
atom experiments, one takes advantage of the internal structure of the atom to induce the dynamics
of its external degrees of freedom in a controlled way. The interaction between laser and atoms
o�ers many possibilities. We detail only one of them in this manuscript, the possibility to tailor the
external potential felt by the atoms. Other examples are brie�y mentioned in subsection 2.1.3.

2.1.1 Dipolar atom-laser interaction

The atom is not charged, but possesses an internal structure, it can thus interact with the electric
�eld of the laser through its dipole moment. For simplicity, we assume a linearly polarized (along

9
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|e〉

|g〉

~ω0

~ω

Figure 2.1 � Pictorial representation of a two-level atom, a ground state |g〉 and an excited state |e〉,
separated by an energy ~ω0. A laser of frequency ω is shined on it.

u) classical electric �eld
E(r, t) = E(r) cos(ωt+ φ(r))u. (2.1)

Of course, E(r, t) must obey Maxwell's equations, E(r) and φ(r) are not arbitrary functions. Note
that the polarization is not crucial to the present discussion, it simply selects the possible excited
states. At the dipolar approximation, the �eld only couples states of same angular momentum
projection along u. The excited state is generally one among a degenerate set, the two levels
are thus essentially always coupled at the dipolar approximation, making higher order multipole
moments irrelevant.

At the dipolar approximation, the atom interacts with the electric �eld through

V̂d = −d̂.E(r), (2.2)

where the dipole operator writes d̂ = −er̂i, with e the elementary electric charge and r̂i the position
operator of the electron in the reference frame of the atom. Here r is the atom center-of-mass. It is
useful to express V̂d in the two-level basis,

V̂d = − |e〉 〈e| d̂ |g〉 〈g| .E(r)− |g〉 〈g| d̂ |e〉 〈e| .E(r), (2.3)

where we have not included 〈e| d̂ |e〉 and 〈g| d̂ |g〉 because they vanish by parity. To lighten the
notations, we introduce the reduced atomic dipole (which can be chosen real for a two-level atom)

d0 = 〈e| d̂ |g〉 .u = 〈g| d̂ |e〉 .u, (2.4)

and two operators operating transitions between |g〉 and |e〉,

σ̂+ = |e〉 〈g| , σ̂− = |g〉 〈e| . (2.5)

The dipolar atom-laser interaction reduces to

V̂d(r, t) = −d0E(r)(σ̂+ + σ̂−) cos(ωt+ φ(r)). (2.6)

2.1.2 Dipolar potential

Statement of the problem

Under certain conditions, to be speci�ed in this subsection, the dipolar atom-�eld interaction
mimicks an external potential: the center of mass of the atom in the electric �eld experiences an
Hamiltonian dynamics, the dipolar interaction taking the form of an external potential. The goal of
this subsection is to derive the corresponding e�ective Hamiltonian. To that end, we start from the
full Hamiltonian

Ĥ =
p̂2

2m
+ V̂d(r, t) + ~ω0 |e〉 〈e| , (2.7)



2.1. Dipolar potential for cold-atoms 11

where the �rst term accounts for the external kinetic degrees of freedom of the atom, the second
term describes its coupling to the electric �eld at the dipolar approximation, and the last term is
associated with the internal structure of the atom (we have chosen to count the energy starting
from the ground state energy). We have already neglected spontaneous emission, which intrinsically
cannot be described by an Hamiltonian dynamics, and thus assumed a small number of atoms in
the excited state. The state of the atom is described by the density operator ρ̂, describing both its
internal and external degrees of freedom. Of particular interest to us is its projection on the ground
state of the atom, ρ̂gg = 〈g|ρ̂|g〉.

Ground-state dynamics

The evolution of ρ̂gg is governed by the Heisenberg equation

dρ̂gg
dt

=
1

i~

[
Ĥ, ρ̂gg

]
=

1

i~

[
p̂2

2m
, ρ̂gg

]
− cos(ωt− φ)iΩ(r̂)ρ̂eg + cos(ωt− φ)ρ̂geiΩ(r̂), (2.8)

where naturally ρ̂eg = 〈e|ρ̂|g〉 and ρ̂ge = ρ̂†eg. We have also introduced the Rabi frequency Ω(r̂) =
−d0E(r̂)/~.

The evolution of ρ̂gg is coupled to the evolution of ρ̂eg that obeys

dρ̂eg
dt

=
1

i~

[
Ĥ, ρ̂eg

]
=

1

i~

[
p̂2

2m
, ρ̂eg

]
− iω0ρ̂eg − cos(ωt− φ)iΩ(r̂)ρ̂gg + cos(ωt− φ)ρ̂eeiΩ(r̂), (2.9)

where ρ̂ee = 〈e|ρ̂|e〉. To simplify this equation, we make use of two assumptions. First, we assume
that a negligible fraction of atoms are excited, i.e. ρ̂ee ≈ 0. Then we assume that internal degrees
of freedom vary much faster than external ones, and thus neglect the kinetic part. Under this two
assumptions, equation (2.9) provides

ρ̂eg =
Ω(r̂)

2

[
e−i(ωt−φ)

ω − ω0
− ei(ωt−φ)

ω + ω0

]
ρ̂gg, (2.10)

which we plug in equation (2.8) to �nd a closed equation for ρ̂gg,

dρ̂gg
dt

=
1

i~

[
p̂2

2m
, ρ̂gg

]
+

Ω2(r̂)

2i
cos(ωt− φ)

[
e−i(ωt−φ)

ω − ω0
− ei(ωt−φ)

ω + ω0

]
ρ̂gg

− ρ̂gg
Ω2(r̂)

2i
cos(ωt− φ)

[
ei(ωt−φ)

ω − ω0
− e−i(ωt−φ)

ω + ω0

]
,

(2.11)

we have used ρ̂gg = ρ̂†gg. The optical frequency ω is very large. On time scales larger than 1/ω,
we can neglect the micro-oscillations of the atomic center-of-mass induced by the rapidly oscillating
terms (rotating wave approximation). Under this approximation, the dynamics is governed by

dρ̂gg
dt

=
1

i~

[
p̂2

2m
+ V (r̂), ρ̂gg

]
, (2.12)

with, in the limit ω + ω0 � |ω − ω0|,

V (r̂) ' d2
0E2(r̂)

4~
1

ω − ω0
. (2.13)
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To make a more direct connection with the properties of the two-level atom, we express the reduced
atomic dipole in terms of the decay rate of the excited state Γ [93]:

d2
0 =

3hc3ε0Γ

2ω0
, (2.14)

where c is the speed of light. Plugging (2.14) in equation (2.13), and introducing the laser intensity
I(r) = cε0E2(r̂)/2, we obtain the following expression for the potential

V (r̂) ' 3πc2Γ

2ω0

I(r)

δ
, (2.15)

where δ = ω − ω0 is the laser detuning with respect to the two-level transition.
In conclusion, the ground state of the atom obeys an Hamiltonian dynamics and feels an external

potential V (r̂) proportional to the laser intensity. Depending on the laser frequency detuning with
respect to the two-level transition considered, the sign of the potential can be positive or negative.
The physical picture underlying the above calculation is the following: the incoming �eld polarizes
the atom, which in turn interacts with it. Under the conditions detailed in the present subsection,
this interaction, averaged over the rapid �uctuations of the electric �eld, acts as a potential for the
external degrees of freedom of the atom.

Assumptions

In deriving equation (2.12), we have made various assumptions, which we now summarize and
discuss. To begin with, we have considered a two-level atom. This is a good model for alkaline-earth
metals (when they nuclear spin is vanishing), but it needs to be extended for alkali metals. For more
complicated internal structures, the approach is somewhat similar and the conclusion is the same:
for the atom, the laser mimicks an external potential. Another important assumption is that few
atoms get excited by the laser, which is only possible if the laser frequency is far-enough detuned
with respect to the two-level transition. Note that, in principle, it does not set a limit on the strength
of the potential felt by the atom. Indeed, it is possible with large laser intensity and correspondingly
large detuning to create strong potentials while preserving a small number of excitations. At last,
we have assumed that internal degrees of freedom vary much faster than external ones, a condition
generally met in cold-atom experiments.

2.1.3 Taking advantage of absorption or complex internal structures

So far, we have only seen photon absorption or more complex internal structures as annoyances
without which we would be better o�. In fact, photon absorption is the key to cool atoms down
to very low temperatures, a step which preludes all the present discussion. On the other hand, one
can use complex internal structures to mimick gauge �elds. For more details about the cooling pos-
sibilities o�ered by atom-laser interaction see [94]. The reader interested in the generation of gauge
�elds in cold-atom experiments can consult the review [95]. Additionally, one can take advantage
of the Zeeman e�ect to tune atom-atom interactions by application of a magnetic �eld, yet again a
formidable subject we do not aim at covering in the present manuscript, see [96] for a recent review.
The cold-atom technology is now widely used, as demonstrated by [97], and has allowed progress in
many areas of quantum physics, as emphasized in [98,99].

2.2 Speckle patterns: generalities

In the light of section 2.1, the generation of a random potential boils down to the generation
of a su�ciently disordered intensity pattern I(r) = cε0E2(r̂)/2. The common way to achieve this
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Figure 2.2 � Schematic representation of an experimental setup used to generate a speckle pattern in
cold-atom experiments. A laser is shined on a rough plate, that scatters the electro-magnetic wave.
The resulting interference pattern is observed in the observation plane, at a distance D from the
plate. A lens is placed right after the rough plate, its focal plane corresponding to the observation
plane, thus mimicking a far �eld con�guration with a reasonable D.

goal consists in creating a speckle pattern, obtained by di�raction of a rough plate, as illustrated in
�gure 2.2. The resulting speckle pattern is observed in the far �eld and corresponds to the di�raction
pattern of the plate. In practice, one places a lens right after the rough plate and uses the focal plane
as observation plane, thus mimicking a far-�eld con�guration with a reasonable distance between
the plate and the observation plane. The electric �eld polarization does not play an important role,
we assume a scalar �eld for the sake of simplicity.

2.2.1 Fresnel integral

The speckle pattern is characterized by a position-dependent intensity I(x, y). To compute
I(x, y), we follow Huygens-Fresnel principle and break down the rough plate into many independent
bits, each bit behaving as a secondary source. The observed speckle pattern is then the interference
pattern of the electro-magnetic (EM) wave scattered by all the bits. Given a bit at (α, β), and its
corresponding complex amplitude a(α, β) (in which we also include the phase accumulated when
going through the lens), the resulting complex electric �eld at (x, y) writes

Eα,β(x, y) =
a(α, β)eikr

iλr
, (2.16)

with r =
√

(x− α)2 + (y − β)2 +D2, λ = 2π/k the wave length of the laser and D the distance
between the rough plate and the observation plane. In the limit D � x, y, α, β, one can resort to
the Fresnel approximation:

r = D

√
1 +

(x− α)2 + (y − β)2

D2
' D +

(x− α)2 + (y − β)2

2D
. (2.17)

The total complex �eld at (x, y) is obtained by integration over the bits constituting the rough plate:

E(x, y) =

∫
dαdβAα,β(x, y) =

eikD

iλD
e
ik
2D

(x2+y2)

∫
dαdβe

ik
2D

(α2+β2)e−
ik
D

(xα+yβ)a(α, β). (2.18)

The EM wave intensity follows from I ∝ |E|2. In this section, the proportionality constant is irrele-
vant, we set it to 1 and use I = |E|2 to lighten the notations. The rough plate and its associated lens
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are described by the function a(α, β), which contains the position-dependent scattering properties
of the plate and the phase accumulated when going through the lens. We model it by a random
function. For the present purposes, we do not need the full distribution of a(α, β), but only its cor-
relation function. Assuming that the observation region is not large enough to allow the resolution
of the details of the rough plate, we can neglect spatial correlations of a(α, β)1:

a(α, β)a∗(α′, β′) = Irp(α, β)δ(2)(α− α′, β − β′). (2.19)

Irp(α, β) characterizes the average intensity transmission of the rough plate at (α, β). In experiments,
it can be tuned by application of a mask.

2.2.2 On-site intensity distribution

We have laid out all the necessary ingredients for the statistical characterization of speckle
potentials. Let us start with the intensity distribution at a given point (x, y). For an arbitrary
speckle pattern, the complex electric �eld at (x, y) is given by equation (2.18) as the sum over
contributions from a very large number of secondary sources. From the central limit theorem, it
thus obeys a Gaussian law2:

P
(
Re(E), Im(E)

)
=

1

2πσ2
E

exp

(
−Re(E)2 + Im(E)2

2σ2
E

)
(2.20)

To obtain the distribution of the intensity, I = |E|2, we introduce the change of variables

Re(E) = I cos(θ), (2.21)

Im(E) = I sin(θ), (2.22)

the Jacobian is simply 1/2. The joint distribution of intensity and phase follows:

P (I, φ) =
θ(I)

4πσ2
E

exp

(
− I

2σ2
E

)
. (2.23)

where θ is the Heaviside theta function. The phase is thus uniformly distributed, and the intensity
obeys an exponential law:

P (I) =
θ(I)

I0
exp

(
− I

I0

)
, (2.24)

where we have introduced the average intensity

I0 = I =

√
I2 − I2

= 2σ2
E . (2.25)

2.2.3 Correlation functions

Besides the on-site distribution, it is crucial to account for the spatial correlation of the poten-
tial. The complex electric �eld being a Gaussian random variable of vanishing mean value, all its
correlations functions are encoded in its second-order correlation function

CE(x, y;x′, y′) = E(x, y)E∗(x′, y′). (2.26)

1Note that these correlations are important in experiments to keep a small di�raction angle, so as to concentrate
the speckle pattern in a limited region of space. Taking them into account only changes the large scale structure of
the speckle pattern.

2To simplify the discussion, we assume that the complex electric �eld phase is uniformly distributed in [0, 2π[, such
that E(x, y) = 0. Experimentally, this corresponds to using a plate rough at the scale of λ.
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Similarly, the intensity correlation functions are deduced from CE , by application of Wick theorem,
for example

CI(x, y;x′, y′) =I(x, y)I(x′, y′)− I(x, y) I(x′, y′)

=E(x, y)E∗(x, y)E(x′, y′)E∗(x′, y′)− E(x, y)E∗(x, y) E(x′, y′)E∗(x′, y′)
=E(x, y)E∗(x′, y′) E(x′, y′)E∗(x, y)

=CE(x, y;x′, y′)C∗E(x, y;x′, y′) = |CE(x, y;x′, y′)|2.

(2.27)

In turn, CE can be computed from equation (2.18):

CE =
e
ik
2D

(x2+y2−x′2−y′2)

λ2D2

∫
dαdβdα′dβ′a(α, β)a∗(α′, β′)e

ik
2D

(α2+β2−α′2−β′2)e−
ik
D

(xα+yβ−x′α′−y′β′).

(2.28)
Plugging in equation (2.19), we �nd

CE =
e
ik
2D

(x2+y2−x′2−y′2)

λ2D2

∫
dαdβe−

ik
D

((x−x′)α+(y−y′)β)Irp(α, β). (2.29)

We see that CI (= |CE |2, equation (2.27)) is the modulus square of the inverse Fourier transform of
Irp(α, β), the intensity distribution of the laser in the rough plate, and depends only on (x−x′, y−y′).
The intensity distribution of the laser in the rough plate can be experimentally tuned by application
of a mask on the rough plate (we assume that the converging lens transmit uniformly the EM wave).
Physically, CI corresponds to the di�raction pattern of the mask. Given a rough plate of size R,
the intensity correlation function in the observation plane typically decays over a distance D/kR.
This distance de�nes σ, the correlation length of the potential. Three examples of masks and their
associated intensity correlation function are shown in table 2.1.

We have so far only considered 2D speckle patterns. A 1D speckle can easily be obtained from
a 2D one, simply by cutting a slice in the 2D pattern. The generation of 3D speckle patterns is
more involved. Indeed, the setup described here to generate speckle patterns has a small angular
aperture, resulting in speckle grains elongated in the z direction. Recently, 3D speckle patterns were
implemented in two experiments [38,40], by superimposing two 2D speckle patterns generated along
two di�erent directions, so that the resulting 3D speckle pattern remains anisotropic.

2.2.4 Numerical implementation

Having characterized the statistical properties of speckle potentials, we are now in position to
implement them numerically. This implementation serves two purposes in the present thesis. On the
one hand, we use them directly to study their properties in section 2.3. On the other hand, they from
a key ingredient for the numerical simulations of chapters 3 and 4. Their implementation amounts to
generating a spatially correlated random function. In practice, one generates the complex amplitude
in two steps. First, one generates an uncorrelated grid of points with the desired distribution (e.g.
complex Gaussian). Second, one convolutes the uncorrelated grid by the desired correlation function.
The convolution can be conveniently performed in Fourier space, where it is simply a multiplication.
Eventually, the speckle potential is obtained as the modulus square of the complex amplitude. In
fact, this procedure exactly mimicks the experimental scenario discussed in the previous subsections,
where the intensity correlation function is simply the modulus square of the inverse Fourier transform
of the intensity distribution in the rough plate, the correlation function is thus imprinted �in Fourier
space� by the rough plate mask.

Two realizations of 1D random potentials used in the numerical simulations of chapter 3 are
shown in �gure 2.3. They correspond to realizations of speckle optical potentials, with the following
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Mask (Irp(α, β))

Square
θ(R− |α|)θ(R− |β|)
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(
x
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C
I
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I
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√

2kR

Table 2.1 � Three possible masks applied on the rough plate, and their resulting intensity correlation
functions. α and β are expressed in arbitrary units. For the isotropic masks (the circle and the
Gaussian), the correlation function is isotropic as well, however the correlation function associated
to the square mask is anisotropic. θ is the Heaviside theta function, sinc(x) = sin(x)/x and J1 is
the �rst order Bessel function of the �rst kind. We have introduced σ, the correlation length of the
potential, which depends on the typical length over which Irp(α, β) decays R, the wave length of the
laser λ (= 2π/k) and the distance between the rough plate and the observation plane D.

on-site distribution (we move from the intensity notation to the potential one for consistency with
the rest of the thesis):

P
[
V (x)

]
=

1

V0
θ
[
±V (x)

]
exp

[
∓V (x)

V0

]
, (2.30)

where θ is the Heaviside theta function. The disorder strength V0 > 0 enters both the average

V (x) = ±V0 and the variance V (x)2 − V (x)
2

= V 2
0 . In equation (2.30), the upper sign refers to a

blue-detuned speckle potential (ω > ω0 in equation (2.13)), bounded by zero from below, and the
lower sign to a red-detuned speckle potential (ω < ω0), bounded by zero from above. They are both
characterized by a Gaussian correlation function:

V (x)V (x′)− V (x)
2

= V 2
0 exp

(
−|x− x

′|2
2σ2

)
. (2.31)

2.3 Statistics of intensity minima

The above statistical characterization of speckle potentials opens the way for calculating more
speci�c statistical properties. We are interested in intensity minima, and more precisely the joint
distribution of their depths and curvatures, together with the density of minima, in the 1D situation.
We want eventually to apply these statistical properties to the calculation of spectral properties of
atoms in chapter 3, we thus hereafter adopt the language of potential rather that of intensity. To
set the notations, we introduce the potential on-site distribution,

P
[
V (x)

]
=

1

V0
θ
[
V (x)

]
exp

[
−V (x)

V0

]
, (2.32)
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Figure 2.3 � Numerical realizations of a red- (left) and a blue-detuned (right) 1D speckle potential.
The on-site distribution is exponential [equation (2.30)] and the two-point correlation function is
Gaussian [equation (2.31)].

where θ is the Heaviside theta function. Along with the on-site distribution, the potential is char-
acterized by a Gaussian correlation function [equation (2.31)]. The correlation function is set for
de�niteness, the calculation can be done for arbitrary correlation functions.

To be concrete, given the expansion of the potential near a minima

V (x) = V +
1

2
mω2x2 + . . . , (2.33)

we are interested in the joint distribution of V and ω (P (V, ω)), as well as the density of minima.
Note that results on the 2D counterpart of P (V, ω) can be found in our published paper, reproduced
in section 3.5. For the sake of brevity, we just brie�y comment on these results in subsection 2.3.3.
Throughout this section, we use a characteristic scale for ω,

ω0 =

√
V0

mσ2
. (2.34)

2.3.1 Joint distribution P (V, ω)

In this subsection, we calculate the joint probability distribution P (V, ω) discussed above. The
distribution P (V, ω) is closely related to the joint, conditional probability distribution of V (x) and its
second derivative V ′′(x) given that V ′(x) = 0 and V ′′(x) > 0, P (V (x), V ′′(x)|V ′(x) = 0, V ′′(x) > 0),
that we propose to calculate �rst. From here on we use the following abbreviated notation for the
potential and its derivatives at point x:

V ≡ V (x), Vx ≡ V ′(x), Vxx ≡ V ′′(x). (2.35)

The above distribution follows from

P (V, Vxx|Vx = 0, Vxx > 0) = N × lim
Vx→0

P (V, Vx, Vxx)

P (Vx)
. (2.36)

The numerical constant N that appears in equation (2.36) stems from the fact that only positive
curvatures are selected on the left-hand side, whereas on the right-hand side all possible values are
understood. It will be later determined from the normalization condition. In order to compute the
joint distribution P (V, Vx, Vxx), we follow Goodman [92] and write the potential as

V = <(x)2 + =(x)2. (2.37)
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Up to a constant multiplicative factor, <(x) and =(x) respectively describe the real and imaginary
part of the laser electric �eld at point x, from which the speckle potential V is built on, as explained
in section 2.2. As for the potential, we introduce the following short-hand notations

< ≡ <(x), <x ≡ <′(x), <xx ≡ <′′(x) = ≡ =(x), =x ≡ =′(x), =xx ≡ =′′(x). (2.38)

The motivation for introducing the �elds < and = is that they are independent Gaussian variables
with zero mean and equal variance [92]. Their derivatives are likewise Gaussian, since any lin-
ear transformation of a Gaussian retains Gaussian statistics. They also have a zero mean. As a
consequence, the six random variables of interest obey the multi-dimensional Gaussian distribution

P (<,=,<x,=x,<xx,=xx) =
e−u

tC−1
u/2

8π3
√
det(C)

, (2.39)

where ut is a row vector with entries (<,=,<x,=x,<xx,=xx), and C is the covariance matrix.
We then introduce in equation (2.39) the change of variables

< =
√
V cos θ, = =

√
V sin θ, (2.40)

from which we calculate the distribution P (V, θ, Vx, θx, Vxx, θxx), with a corresponding Jacobian
equal to 1/8. By explicitly evaluating the entries of the C matrix for the Gaussian correlation
function (2.31) and calculating the remaining integrals over θ, θx and θxx with Mathematica [100],
we �nd

P (V, Vx, Vxx) =
σ4

4
√

2πV 3
0 V

e
− 24V+16Vxxσ

2+(V 2
x−2V Vxx)

2σ4/V 3

16V0

√
(−V 2

x + 2V Vxx)V0

V
,

×



I− 1

4

[
(V 2
x − 2V Vxx)2σ4

16V 3V0

]
+ I 1

4

[
(V 2
x − 2V Vxx)2σ4

16V 3V0

]
 ,

(2.41)

where I1/4 and I−1/4 are the modi�ed Bessel functions of the �rst kind. Note that this expression
is valid only when V 2

x − 2V Vxx < 0, a condition ful�lled since only minima of the potential are
considered3. The distribution P (V, Vx, Vxx) is regular with respect to the limit Vx → 0. In equa-
tion (2.36), we can thus take this limit separately in numerator and denominator, reducing the latter
to a numerical constant which can be absorbed in the normalization prefactor N .
From the joint distribution (2.41), we are now in position to access the probability P (V, Vxx|Vx =
0, Vxx > 0) using equation (2.36). The result is

P (V, Vxx|Vx = 0, Vxx > 0) =
N
√
Vxx
V

e
− 6V 2+4V Vxxσ

2+V 2
xxσ

4

4V0V


I− 1

4

(
V 2
xxσ

4

4V V0

)
+ I 1

4

(
V 2
xxσ

4

4V V0

)
 . (2.42)

By imposing that the distribution is normalized, we �nd N = σ5/(2cV
5/2

0 ), where

c =

√
3Γ
(
1/4
)

Γ
(
5/4
)
− Γ

(
−1/4

)
Γ
(
7/4
)

33/4
√

2π
' 1.00685, (2.43)

which will be replaced by 1 in the following.
The last stage of the calculation consists in connecting P (V, Vxx|Vx = 0, Vxx > 0) to the sought for

distribution P (V, ω). This amounts to changing the variables from Vx = 0 to x such that Vx(x) = 0,

3The maxima of the potential could be studied along the same lines, but they are not relevant for our calculations
of spectral properties in chapter 3.
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Figure 2.4 � Joint distribution P (V, ω) of minima and potential curvature around minima, for a 1D,
blue-detuned speckle potential with Gaussian correlation function [equation (2.44)].

and from Vxx to ω such that mω2 = Vxx. The associated Jacobian is |dVx/dx×dVxx/dω| = 2m5/2ω3.
We �nally infer

P (V, ω) =
1

V ω0

(
ω

ω0

)4

e
− 3

2

(
V
V0

)2
−
(
ω
ω0

)2
− V0

4V

(
ω
ω0

)4


I− 1

4

(
V0

4V

(
ω

ω0

)4
)

+ I 1
4

(
V0

4V

(
ω

ω0

)4
)
 .

(2.44)
The joint distribution is shown in �gure 2.4. At a given potential minimum V , we observe that

it is maximum for ω ∼ ω0, at smaller ω, the distribution rapidly falls to zero.
Low energy minima, V � V0, will turn out of special importance for the spectral properties of

atoms in speckle potentials, it is thus interesting to express the distribution P (V, ω) in the limit
V → 0 [101]:

P (V, ω)V0ω0 ∼
V→0

√
2

π

√
V0

V

(
ω

ω0

)2

e
−
(
ω
ω0

)2

. (2.45)

The 1/
√
V divergence at low V shows that most minima lie at very low V � V0. The distribution

of their associated frequency ω is peaked around ω0.

2.3.2 Density of minima

We are also interested in the density of minima ρ. To evaluate it, we follow [102,103] and consider
the general identity ∫

dxδ(V ′(x))f(x) =
∑

n

1

|V ′′(xn)|f(xn), (2.46)

valid for any function f . The sum is over all point xn where V ′(x) ≡ Vx vanishes. If we choose f(x)
to be |V ′′(x)| ≡ |Vxx|, then the integral is equal to the number of points at which Vx vanishes. This
de�nes the density of extrema per unit length as

δ(Vx)|Vxx|. (2.47)

The corresponding density restricted to minima of the potential is

δ(Vx)Vxxθ(Vxx), (2.48)
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with θ the Heaviside function. The disorder-averaged density of minima then reads

ρ =

∫
dVxdVxxP (Vx, Vxx)δ(Vx)Vxxθ(Vxx). (2.49)

Using equation (2.41), we obtain ρ = c′/σ, where c′ ' 0.284026.

2.3.3 Two-dimensional case

As we have shown at the end of subsection 2.3.1, most minima lie at very low V � V0 in one-
dimension, with a square-root singularity of the distribution of minima at small V [equation (2.45)].
It turns out that the two-dimensional case is even more singular, with a �nite density of minima
exactly at V = 0. The presence of such minima can be readily understood from the decomposition
of V as V = <2 + =2 [equation (2.37)]. Indeed, they correspond to the intersections of the lines
along which the Gaussian random functions < and = are vanishing. These particular minima play
a crucial role for the calculation of spectral properties of atoms in speckle potentials in the next
chapter. More precisely, from the expansion of V around a minima,

V (x, y) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 + . . . , (2.50)

where the basis if chosen such that the crossed term (in xy) is vanishing, the joint distribution of
ωx and ωy is required. Its derivation is a bit technical and not very enlightening, we thus prefer to
refer to our published paper, reproduced in section 3.5, for a detailed derivation. The situation is
somewhat similar to the one-dimensional case with typical frequencies taking values around ω0.

2.4 Conclusion

In this chapter, we have sketched out the generation of random potentials in cold-atom ex-
periments and seen how to implement them numerically. We have characterized their statistical
properties, as modulus square of complex Gaussian random variables, with various possible spatial
correlations. From this characterization, we have then extracted important information for chapter
3, that of statistics of intensity minima in one-dimension. The intensity minima essentially lie at low
energies, V � V0, and the distribution of their proper frequency is peaked around ω0 =

√
V0/(mσ2).



Chapter 3

Semiclassical spectral function and

density of states in speckle optical

potentials

As a prelude to the study of Anderson localization, it is important to characterize the spectral
properties of the atoms in the random potential. In connection with cold-atom experiments, we are
speci�cally concerned with speckle potentials, introduced in chapter 2. To get a �rst hand on the
subject, we start with the weak disorder limit (section 3.1). In this limit, a perturbative treatment of
the random potential is possible, allowing for a description of the atoms in terms of quasi-particles.
It is a natural framework for introducing important quantities for the rest of the thesis. Among
them, the spectral function, viz. the average energy distribution of a plane wave in the speckle
potential, receives special attention, and its importance for the dynamics of atoms is discussed. A
companion of the spectral function is the density of states. The latter is also an important quantity,
in particular in the discussion of phases of dirty interacting bosons [60,71,104].

In the strong disorder regime, semiclassical methods turn out particularly valuable for calcu-
lating the above quantities. On the one hand, a perturbative expansion in ~ allows for systematic
corrections to the classical limit in the large energy sector [105]. On the other hand, the low en-
ergy part requires a non-perturbative method. The perturbative expansion was recently carried out
in [105], based on Wigner-Weyl formalism. In contrast, here we address the singular corrections that
appear at low energy, using a new method based on stationary phase approximations, and applied
to the one and two dimensional cases. These calculations are described and discussed in details
in a published paper, reproduced in section 3.5. We choose here to present both the perturbative
expansion in ~ (with a method di�ering from that of [105]) and the non-perturbative method, to
o�er a somewhat complete description of the semiclassical regime. As the two-dimensional case is
qualitatively similar to the one-dimensional one, we prefer to detail only the former here, and refer
to the article of section 3.5 for the latter.

Section 3.1 is introductory, the reader familiar with the Green function language may prefer
to skip it. Section 3.2 motivates our study of the spectral function, and section 3.3 develops our
contribution to the subject.

3.1 Weak disorder, perturbative calculations

In the weak disorder limit (to be de�ned shortly), one can resort to perturbation theory to
get an understanding of the physics at play. We propose to carry out this program in the present
section, within the Green function formalism. To lighten the notations, we assume a 1D system.
The generalization of the mathematics to any dimension is straightforward. We closely follow the

21
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book by Akkermans and Montambaux [3].

3.1.1 Perturbative treatment with Green functions

Green functions o�er a powerful tool to carry out systematic perturbative calculations. In this
respect, they are widely used in condensed matter physics [106]. Given an Hamiltonian

H = H0 + V, (3.1)

the (retarded) Green function is de�ned as

G(x1, x2, t) = θ(t) 〈x2|e−iHt/~|x1〉 , (3.2)

with θ the Heaviside theta function. Its Fourier transform in turn writes

G(x1, x2, ε) =

∫ ∞

−∞
dte

i(ε+i0+)t
~ G(x1, x2, t) = 〈x2|Ĝ|x1〉 , (3.3)

where we have introduced the Green operator Ĝ:

Ĝ =
1

ε−H + i0+
, (3.4)

i0+ being an in�nitesimal imaginary part ensuring the convergence of the Fourier transform at long
times. The convenience of the Green function appears when one expresses the total Green operator
Ĝ in terms of the free Green operator Ĝ0 = 1/(ε−H0 + i0+):

Ĝ = Ĝ0 + Ĝ0V Ĝ, (3.5)

which is easily obtained from the de�nitions of Ĝ and Ĝ0. Equation (3.5) is called the Lippmann�
Schwinger equation. Iterating it generates a systematic perturbative expansion of Ĝ, the so-called
Born series:

Ĝ = Ĝ0 + Ĝ0V Ĝ0 + Ĝ0V Ĝ0V Ĝ0 + . . . (3.6)

So far, H0 and V can be arbitrary operators. In this thesis, we are primarily concerned with atoms
subjected to disorder. It is thus natural to chose H0 as the kinetic part of the Hamiltonian and V
as the potential modeling the disorder. H0 is diagonal in momentum space, so is G0, which writes

G0(k, k′, ε) =

∫∫
dxdx′e−ikx+ik′x′G0(x, x′, ε) =

1

ε− εk + i0+
δk,k′ , (3.7)

where εk is the dispersion relation, εk = ~2k2/2m for free atoms of mass m. G0(k, k′, ε) being
diagonal, we introduce the short-hand notation

G0(k, ε) = G0(k, k, ε) =
1

ε− εk + i0+
. (3.8)

One expects the full Green function for a given disorder realization to be very complicated, and
generally impractical. A more pertinent object is the distribution of the Green function. The
distribution may however remains a di�cult object to handle, so that one usually consider only the
disorder-averaged Green function. According to equation (3.6), the latter can be expressed as

G(x, x′, ε) =G0(x, x′, ε) +

∫
dx1G0(x, x1, ε)V (x1)G0(x1, x

′, ε)

+

∫
dx1dx2G0(x1, x2, ε)V (x1)G0(x1, x2, ε)V (x2)G0(x2, x

′, ε) + . . .

(3.9)
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Choosing the origin of energies at V , we can set the mean value of V to 0 in equation (3.9). From
here on we assume that V = 0, and de�ne the potential correlation function as

V (x1)V (x2) = B(x1 − x2). (3.10)

With these de�nitions, equation (3.9) reduces to

G(x, x′, ε) = G0(x, x′, ε) +

∫
dx1dx2G0(x, x2, ε)B(x1 − x2)G0(x1, x2, ε)G0(x2, x

′, ε) + . . . (3.11)

Translational invariance after disorder averaging suggests to express the average Green function in
Fourier space, where it is diagonal:

G(k, ε) =

∫
d(x−x′)e−ik(x−x′)G(x, x′, ε) = G0(k, ε)+G0(k, ε)

[∫
dq
2π
B(q)G0(k + q, ε)G0(k, ε)

]
+ . . .

(3.12)
This expression of the average Green function provides a natural starting point for perturbative cal-
culations in random potentials. Before embarking into speci�c calculations, it is useful to rearrange
the above series, which is the object of the next subsection.

3.1.2 The self-energy

For simplicity, let us assume a Gaussian random potential for the moment, such that the n-
correlation functions appearing in equation (3.9) reduce to products of B through application of
Wick theorem. Interestingly, at order 2n in V , the above procedure generates a term of the form

G0(k, ε)

[∫
dq
2π
B(q)G0(k + q, ε)G0(k, ε)

]n
. (3.13)

In fact, equation (3.13) is but one example of high order contributions (here of order 2n) that can be
obtained by chaining lower order contributions (here n identical second order contributions). This
property suggests to introduce a quantity, the so-called self-energy Σ(k, ε), gathering all contributions
separable in lower order contributions. The average Green function then writes

G(k, ε) = G0(k, ε) +G0(k, ε)
∞∑

n=1

[
Σ(k, ε)G0(k, ε)

]n
. (3.14)

where Σ(k, ε) contains only those contributions to G(k, ε) that cannot be factorized. Upon summing
the geometric series, equation (3.14) reduces to the so-called Dyson equation

G(k, ε) = G0(k, ε) +G0(k, ε)Σ(k, ε)G(k, ε)⇔ G(k, ε) =
1

ε− εk − Σ(k, ε)
. (3.15)

At this point, the physical meaning of the self-energy starts to appear. Indeed, we have recasted
the average Green function under a form reminiscent of the free Green function [equation (3.8)], the
self-energy encoding the di�erence between the two. To make the role of the self-energy more clear,
it is useful to go back to time,

G(k, t) =

∫
dε

2π~
e−iεt/~

1

(ε− Σ′)− εk − iΣ′′
(3.16)

where we have split the real and imaginary parts of the self-energy Σ = Σ′ + iΣ′′. To perform the
integration, one needs to know how Σ depends on ε. Under the assumption that Σ is a smooth
function of energy, we can use the residue theorem to �nd

G(k, t) = θ(t)e−i(εk+Σ′(εk,k))t/~eΣ′′(εk,k)t/~, (3.17)
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where we have used the fact that the imaginary part of the self-energy must always be negative
to guarantee causality. In fact, the absence of poles in the upper half plane, which guarantees
causality1, also implies Kramers-Kronig relations between the real and imaginary parts of G(k, ε).
Equation (3.17) should be compared to the de�nition of G(k, t) (which follows from equation (3.2)
through a Fourier transform):

G(k, t) = θ(t)〈k|e−iHt/~|k〉. (3.18)

Σ′ thus simply encodes an energy shift. Σ′′, on the other hand, encodes the lifetime of plane waves
in the disordered potential.

Note that the concept of self-energy is not restricted to the Gaussian potentials considered here.
For example, in the case of speckle potentials, the introduction of the complex Gaussian �eld E
(V = ±|E|2) allows for a similar introduction of the self-energy as a simpli�cation of the Born series
(see [107] for more details about this procedure). By studying the properties of the self-energy series,
one can de�ne a weak disorder criterion, which should be satis�ed for the self-energy to be described
by the �rst few terms of its Born series. For speckle potentials, one �nds [107]

η � kσ, (3.19)

where η = V0/Eσ. Here V0 and Eσ are characteristics of the speckle potential considered. V0

corresponds to the amplitude of the �uctuations and Eσ = ~2/mσ2 is the characteristic energy
associated to the spatial correlation length σ (see chapter 2 for details).

In some cases (e.g. when the potential distribution does not allow for the application of Wick
theorem), it can be useful to introduce the self-energy simply through (3.15) (as opposed to through
the Born series).

3.1.3 Scattering mean free time and scattering mean free path

The imaginary part of the self-energy (Σ′′) encodes the lifetime of plane waves in a disordered
potential. This lifetime is usually called scattering mean free time, and denoted by τ . Another
approach to calculating this lifetime is the Fermi golden rule:

~
τ

=

∫
dk′| 〈k|V |k′〉 |2δ(εk − ε′k), (3.20)

which writes in our context
~
τ

=

∫
dk′B(k − k′)δ(εk − ε′k). (3.21)

The Fermi golden rule (3.21) turns out to give an approximation of the lifetime at lowest order in
V , which should be compared with the calculation of the imaginary part of the self-energy at lowest
order in V , given by [equation (3.12)]

Σ′′ = Im

[∫
dk′

2π
B(k − k′)G0(k′, ε)

]
. (3.22)

To simplify this equation, we �rst use the parity of B(x) to infer that B(k) is real, and then use:

Im
[
G0(k′, ε)

]
= Im

[
1

ε− ε′k + i0+

]
= −iπδ(ε− ε′k). (3.23)

1To evaluate equation (3.16) at negative times, we use complex analysis and close the contour in the upper-half
complex plane: the analyticity of G(k, ε) guarantees that G(k, t < 0) = 0 (causality). If the imaginary part of the
self-energy were positive, a pole in the upper-half complex plane would contribute to G(k, t < 0), thus violating
causality.
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This leads to

Σ′′(k, ε) = −1

2

∫
dk′B(k − k′)δ(ε− ε′k). (3.24)

This results coincides with the Fermi golden rule (3.21). The factor 2 stems from the self-energy
dealing with |k〉, while the Fermi golden rule deals with | |k〉 |2. The scattering mean free time is
thus given by τ = −~/(2Σ′′(k, εk)).

A companion of the scattering mean free time is the scattering mean free path. To introduce it,
we consider the Green function in real space,

G(x, x′, ε) =

∫
dk
2π
eik(x′−x)G(k, ε) =

∫
dk
2π
eik(x′−x) 1

(ε− Σ′)− εk − iΣ′′
. (3.25)

We assume again that the self-energy simply shifts the pole, such that

G(x, x′, ε) = G0(x, x′, ε− Σ′)e−|x−x
′|/2`, (3.26)

with

` = −
[

~2kε̃
2mΣ′′(kε̃, ε̃)

]

ε̃=ε−Σ′

(
kε̃ =

√
2mε̃/~

)
. (3.27)

The average Green function can be viewed as a free Green function decaying over a distance `. The
particle (described by the modulus square of the wave function) thus typically propagates freely over
a distance ` before being scattered, hence the name scattering mean free path for `.

In a weak disordered potential, the plane waves have a �nite lifetime τ , during which they
typically travel a distance `, with τ and ` set by the imaginary part of the self-energy. In the present
context, these plane waves and associated self-energy form the quasi-particles which are commonly
used as building blocks for the description of coherent e�ects (see e.g. [9]). Interestingly, one can
generally recast the weak disorder criterion, equation (3.19) for speckle potentials, under the form
kε` � 1 [107]. Expressed in terms of the wave length λε = 2π/kε, the weak disorder criterion
becomes `� λε, which corresponds to well separated scattering events [108].

3.1.4 The spectral function

The two e�ects of the self-energy are clearly visible in the spectral function, de�ned as

Ak(ε) = − 1

π
Im
[
G(k, ε)

]
=
|Σ′′|
π

1

(ε− Σ′ − εk)2 + Σ′′2
. (3.28)

In the free case, Σ = 0, the spectral function is a delta function centered at εk. The e�ect of the
disorder is twofold. On the one hand, the real part of the self-energy (Σ′) shifts the maximum of
the spectral function. On the other hand, the imaginary part of the self-energy (Σ′′) broadens the
peak. These two e�ects are illustrated in �gure 3.1a. The broadening e�ect is also visible in �gure
3.1b, which compares a numerically computed spectral function (details in the caption of �gure 3.1)
and equation (3.28) with the self-energy calculated at lowest order in V (Born approximation):

Σ =

∫
dq
2π
B(q)G0(k + q, ε) =

∫
dq
2π

B(q − k)

ε− εq + i0+
. (3.29)

As visible in �gure 3.1b, at weak disorder, the real part of the self-energy has a small e�ect. At
stronger disorder, a precise account of the real part of the self-energy can be crucial, in particular
for the calculation of the mobility edge [109].
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Figure 3.1 � a) Schematic representation of the e�ects of a weak disorder on the spectral function,
through the self-energy Σ. The self-energy Σ is decomposed into its real part Σ′ (shift of the peak)
and its imaginary part Σ′′ (width of the peak). b) Spectral function as a function of energy, for a
weak, delta-correlated Gaussian potential (V (x)V (x′) = V 2

0 δ(x − x′)/k, with V0 ' 0.076 ~2k2/m).
The red line shows the perturbative result, equation (3.28), with Σ evaluated at the Born approxima-
tion [equation (3.29)]: Σ ' −iV 2

0 m/~2k2 ' iΣ′′. This result is compared with numerical simulations,
obtained by propagating a plane wave, |k〉, in a system of size 5000π/k, discretized with 78540 grid
points. The results are averaged over 2500 disorder realizations and periodic boundary conditions
are used.

The physical meaning of the spectral function appears clear if one re-expresses (3.28) as

Ak(ε) = − 1

π
Im
[
G(k, ε)

]
= − 1

π
Im

[
〈k| 1

ε−H + i0+
|k〉
]

= 〈k| δ(ε−H) |k〉. (3.30)

Ak(ε) is the average energy distribution of a plane wave |k〉 in the presence of the disorder. At weak
disorder, the spectral function is sharply peaked, so that energies and momenta are generally used
interchangeably.

The spectral function is a ubiquitous quantity for the characterization of the cold-atoms in
random potentials. Its role in the description of the dynamics of atoms in random potentials is
the object of the next section. Note that it has very recently been experimentally measured in 3D
speckle potentials [110].

3.2 Importance of the spectral function in the dynamics of cold-
atoms in random potentials

Let us consider a common experimental scenario in the context of Anderson localization: the
spreading of a wave packet. In such an experiment, one tracks manifestations of Anderson local-
ization in the freezing of the average density pro�le. What is really observed can however be more
subtle, for the wave packet is generally made of several energy components ε. To see this, we intro-
duce a central object, Pε(x−x′, t), the average probability for a particle of energy ε to go from x′ to
x given a time span t. The dynamics of the wave packet results from both the integration over the
wave packet energy distribution and the convolution of Pε(x − x′, t) with the initial spatial pro�le.
The wave packet energy distribution is essentially given by the spectral function Ak(ε), which has to



3.3. Strong disorder, semiclassical regime 27

be weighted by the initial momentum distribution of the wave packet. To express the wave packet
density, we introduce the joint position-momentum distribution, referred to as Wigner distribution,

W (x, p, t) =
1

2π~

∫ ∞

−∞
dyψ∗(x+ y/2, t)ψ(x− y/2, t)e−iyp/~. (3.31)

The average density at time t is then written as

|ψ(x, t)|2 =

∫
W (x′, k, t = 0)Ak(ε)Pε(x− x′, t)dx′dεdk. (3.32)

Note that this somewhat natural decomposition of the average density can be derived using the
diagrammatic formalisms discussed in subsection 1.1 [42] and section 1.2 [111]. In equation (3.32),
one identi�es

∫
dkW (x′, k, t = 0)Ak(ε) as the joint energy-position initial distribution. The wave

packet density at time t then follows from the propagation of each energy component, starting from
the initial spatial pro�le.

In the above decomposition, Pε(x − x′, t) plays a prominent role as it contains all the physics
associated with Anderson localization. Nonetheless, forgetting completely about the rest would be
dangerous. Indeed, the energy distribution can have drastic e�ects on the dynamics, even at reason-
ably weak disorder. Concretely speaking, let us consider the situation experimentally realized in [37],
where an initially narrow wave packet evolves in a 1D speckle potential. This particular speckle po-
tential has an intriguing feature: at weak disorder, the scattering mean path is strongly energy
dependent, exhibiting sharp crossovers when the energy goes through speci�c values [47]. Following
equation (3.32), the total evolution, integrated over all energy components of the wave packet, may
thus di�er from the evolution of an individual energy component. Indeed, at large distances, the
(usually expected) Anderson exponential localization is turned into algebraic localization [112].

Conversely, as was pointed out in [46,113], a wave packet made of only di�usive atoms can appear
close to localized because of the spectral function. Indeed, even if for a given energy ε, Pε(x−x′, t) is
a di�usive kernel, the total evolution may appear subdi�usive due to the speci�c energy dependence
of the di�usion coe�cient. The total evolution in this case looks as if a single energy component
with a subdi�usive kernel was at play, thus mimicking the onset of Anderson localization.

As demonstrated in [38, 40, 45], a precise account of the energy distribution is also required
in the characterization of the Anderson transition in three dimensions. Indeed, in this case the
energy distribution spreads on both sides of the mobility edge, making the complete dynamics a
superposition of localized and di�usive behaviors. The knowledge of the energy distribution is then
needed to extract physically relevant quantities (e.g. the position of the mobility edge) from the
complete dynamics [114,115].

All these reasons motived us to have a closer look at Ak(ε). This is the central question addressed
in this chapter.

3.3 Strong disorder, semiclassical regime

We have seen in sections 3.1 and 3.2 that the spectral function is an important quantity to
characterize the dynamics of wave packets in random potentials. We have been able to obtain it
perturbatively in the weak disorder limit. The present section is devoted to the strong disorder limit
(to be de�ned shortly), for which semiclassical approximations turn out to o�er valuable tools.
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3.3.1 De�nitions and methods

We recall the de�nition of the spectral function [equation (3.30)]:

Ak(ε) = 〈k| δ (ε−H) |k〉. (3.33)

Introducing the Fourier representation of the Dirac delta function in equation (3.33), it follows that

Ak(ε) =

∫ ∞

−∞

dt
2π~

eiεt/~〈k| e−iHt/~ |k〉, (3.34)

which establishes the connection with the evolution operator e−iHt/~. The spectral function is related
to the density of states per unit volume (DoS), ν(ε), through the relation

ν(ε) =
1

Ld
Tr δ (ε−H) =

∫
ddk

(2π)d
Ak(ε). (3.35)

The amplitude of the potential �uctuations (V0) de�nes a natural energy scale in the problem.
Besides its �uctuations, the potential is characterized by its correlation length (σ), which de�nes
another important energy scale, Eσ = ~2/mσ2. The ratio of these two energy scales,

η =
V0

Eσ
=
mσ2V0

~2
, (3.36)

is of special importance. In the following, we focus on the so-called semiclassical regime characterized
by the condition

η � 1. (3.37)

Anticipating on the results presented below, we have represented pictorially the semiclassical limit
in �gure 3.2.
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(b) Low energies

Figure 3.2 � Pictorial representation of the semiclassical limit for a blue-detuned speckle potential.
The semiclassical condition η � 1 implies the existence of many states in typical minima of the
potential (the typical lowest harmonic-state lying at ~ω0 = V0/

√
η, see section 2.3 for more details).

At higher energies (a), an expansion in powers of ~ is possible. This is the object of subsection 3.3.2.
At low energies, on the contrary, corrections to the classical limit are singular. We present in
subsection 3.3.3 a semiclassical approach, based on stationary phase approximations, allowing us to
describe these singular quantum corrections.

In the classical limit η → ∞, the non-commutation between position and momentum can be
neglected, so that 〈k| e−iHt/~ |k〉 ≈ e−i~k2t/2m e−iV (r)t/~. With in addition

e−iV (r)t/~ =

∫
dV P (V )e−iV t/~ =

1

1± itV0/~
, (3.38)
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where P (V ) is the speckle on-site potential distribution [equation (2.30)], equation (3.34) yields

Acl
k (ε) =

∫ ∞

−∞

dt
2π~

ei(ε−εk)t/~

1± itV0/~
= P (ε− εk) , (3.39)

with εk = ~2k2/(2m). Note that in equations (3.38) and (3.39), V0 encodes the variance of the
potential. Note also that the slow decay in time of (3.38) is rooted in the discontinuity of the
speckle on-site distribution [in contrast, the counterpart of (3.38) for a Gaussian potential decays as
exp(−αt2)]. In the classical limit, the spectral function thus mimics the on-site distribution [105].
With this result in hand, the classical DoS follows from equation (3.35):

νcl(ε) =

∫ ∞

0
dεkν0(εk)P (ε− εk), (3.40)

where ν0 is the free-space DoS [105,116].
The classical limit for the spectral function [equation (3.39)] is compared with numerical simu-

lations in �gure 3.3 for three di�erent on-site distributions: a Gaussian (�gure 3.3a), a red-detuned
(�gure 3.3b) and a blue-detuned speckle (�gure 3.3c). Remarkably, the classical limit describes rea-
sonably well the Gaussian case, which is smooth, but is completely inadequate near the discontinuity
of the speckle distribution. This already suggests that perturbation theory around the classical limit
should be su�cient for the description of the spectral function when the distribution is smooth. In
contrast, a completely di�erent starting point is probably more suited near the discontinuity of the
speckle distribution.
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Figure 3.3 � Spectral function as a function of energy in a 2D random potential, for three di�erent
on-site distributions. In all three cases η = 4. The classical limit (3.39), shown as a black curve, is
systematically compared with numerical results shown as colored squares. The on-site distributions
are a) Gaussian, b) red-detuned speckle and c) blue-detuned speckle. The numerical results are taken
from [105]. On the one hand, one observes than the spectral function is reasonably well described
by the classical limit for the smooth Gaussian distribution. On the other hand, the exact spectral
function di�ers widely from its classical limit near the discontinuity of the speckle distribution.

3.3.2 Smooth quantum corrections

To go beyond the classical limit, equation (3.39) for the spectral function and equation (3.40)
for the DoS, it is natural to look for a expansion in powers of ~, where the leading order would be
the classical limit and the next orders would bring corrections to it. This expansion can be worked
out in two ways. One possibility is to work directly in the energy domain, and use Wigner-Weyl
formalism [117]. The other possibility is to start from the representation of the spectral function
in terms of the evolution operator, equation (3.34), and proceed with a commutator expansion of
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the latter, followed by a cumulant expansion. Of course, either way leads to the same result. In
this thesis, we touch upon the main steps of the commutator-cumulant expansion, and refer to our
published paper, reproduced in section 3.5, for more details. The reader interested in the �rst way,
based on the Wigner-Weyl formalism, can �nd the calculation in [105].

Note that while the results presented below for the spectral function extend directly to the DoS,
through equation (3.35), we focus in this subsection on the spectral function only. As the DoS directly
follows from the spectral function in equation (3.35), we felt that a speci�c discussion on the DoS
would be redundant. This feeling is strengthened by the di�culty of getting reliable numerical results
at large energy for the DoS, preventing quantitative comparison with exact numerical simulations.

Both the expansion in powers of ~ (present subsection) and the method based on a stationary
phase approximation (subsection 3.3.3) apply to potentials with arbitrary correlation functions. For
the sake of concreteness, we consider speckle potentials with a Gaussian correlation function:

V (r)V (r′) = V 2
0 exp

(
−|r − r

′|2
2σ2

)
. (3.41)

Commutator-cumulant expansion of the evolution operator

We here present an expansion in powers of ~ of the evolution operator expectation value

〈k| e−i(p2/2m+V )t/~ |k〉 . (3.42)

In the limit ~→ 0, p2 and V commute and we have

〈k| e−i(p2/2m+V )t/~ |k〉 −−−→
~→0

e−i
~2k2
2m

t
~ 〈k| e−iV t/~ |k〉 . (3.43)

Corrections to this limit involve commutators of p2 and V . This is encoded in Zassenhaus for-
mula [118]:

et̃(X+Y ) = et̃X et̃Y e−
t̃2

2
[X,Y ] e

t̃3

6
(2[Y,[X,Y ]]+[X,[X,Y ]]) +O(t̃4). (3.44)

To reveal the small parameter of the commutator expansion of (3.42), we introduce t̃ = tV0/~, the
time expressed in the natural units of the problem. With this de�nition, one natural recovers the
classical limit (3.43) in the commutator expansion of (3.42) when ~→ 0. The following calculation
is performed with the natural time t̃, to leading order in ~. The expansion of (3.42) involves a few
commutators. Their calculation is tedious but straightforward, let us skip it and directly move on
to the disorder average. Averaging over disorder can be done by mean of the following cumulant
expansion:

exp (X) = exp



∞∑

n=1

κn(X)

n!


 , (3.45)

where κn(X) denotes the nth cumulant of X. In the present context, X is a sum of random variables.
Cumulants of sum of random variables can be conveniently expressed with joint cumulants [119],
which are basically a generalization of the notion of cumulant to several variables (K2(X) becomes
Kjoint(X,X), allowing to consider Kjoint(X,Y ) as well). Note that even at lowest order in ~, an
in�nite number of cumulants must be kept. The present expansion generates a wealth of terms
which we do not want to show here, we prefer to restrict ourselves and only give the �avor of the
calculation. The basic idea is to write the potential as2

V = ±
(
E2

1 + E2
2

)
, (3.46)

2See section 2.2 for more details about this decomposition.
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with the + (resp. −) sign for blue-(resp. red-)detuned speckles. Since E1 and E2 are independent
Gaussian variables with zero mean and equal variance, the decomposition (3.46) is convenient when
working with cumulants. The rest of the calculation is centered around a theorem due to Leonov
and Shiryaev [120], which allows to disentangle the joint cumulants containing powers of the E1 or
E2 into joint cumulants containing only E1 or E2 at �rst order, at the price of some combinatorics.
Indeed, after writing the expansion in terms of joint cumulants containing only E1 or E2 at �rst
order, the calculation is not di�cult to carry out in Fourier space. Eventually, it boils down to the
summation of geometric and logarithmic series. We �nd

〈k| e
−i

[
p2

2m
+V

]
t
~ |k〉 =

e−iεk t̃/V0

1± it̃ ×
[

1 +
dit̃3

12η(1± it̃) +
t̃4

12η(1± it̃)
εk
V0

+ . . .

]
, (3.47)

where d is the space dimension. We recall that t̃ = tV0/~. In the limit k = 0, the quantum correction
is small when t̂ = t̃/

√
η = tV0/~

√
η � 1. It de�nes the natural frequency unit in this context:

ω0 =
V0

~√η =

√
V0

mσ2
, (3.48)

which is the typical oscillation frequency in a potential well of height V0 and size σ. The condition
of validity of equation (3.47) simply reads ω0t � 1. The Fourier integral over time is then well
approximated if:

|ε| � ~ω0 =
V0√
η
. (3.49)

This discussion is put on a more solid ground in the next subsection through comparison with exact
numerical simulations. For the sake of clarity, the limit (3.49) will be referred to as high energy limit
in the following. The opposite low energy limit corresponding to |ε| ' ~ω0 = V0/

√
η.

Results and validity

The present subsection is largely based on [105] where the same results for the spectral function
have been obtained using Wigner-Weyl formalism. The �rst-order correction to the classical limit,
equation (3.47), is compared with exact numerical simulations in the insets of �gure 3.4. The results
con�rm the discussion of subsection 3.3.2, namely the classical limit plus the small correction describe
very well the high-energy limit, whereas as ε approaches ~ω0 = V0/

√
η, the spectral function starts

to deviate strongly from the classical approximation (main plots of �gure 3.4) and the expansion
loses its accuracy (insets of �gure 3.4). In fact, for speckle potentials the low-energy region is non
trivial. While the classical spectral function, equation (3.39), has a discontinuity at ε− εk, the exact
spectral function is widely di�erent: for a blue-detuned speckle, it rigorously vanishes below ε = 0
and, for k = 0, it rapidly increases between ε = 0 and ε ∼ V0/

√
η.

To get some understanding on the low energy part, it is useful to repeat the calculation for a
Gaussian potential, i.e. to trade the speckle on-site distribution, equation (2.30), to

PGaussian
[
V (r)

]
=

1

V0

√
2π

exp

[
−V (r)2

2V 2
0

]
. (3.50)

The calculation is much simpler in this case, as the Gaussian nature of the potential helps to carry
out the cumulant expansion. The result is

〈k| e
−i

[
p2

2m
+V

]
t
~ |k〉 = e−iεk t̃/V0e−t̃

2 ×
[

1 +
dit̃3

12η
+

t̃4

12η

εk
V0

+ . . .

]
. (3.51)
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Figure 3.4 � Figures from [105] showing the spectral function Ak=0(ε) as a function of energy ε in
two dimensions, (a) red- and (b) blue-detuned, speckle potential with Gaussian correlation function.
Note the following correspondences with our notations, E = ε, |V /Eζ | = η and |V | = V0. Inset:
focus on the correction to the classical limit, ∆Ak(ε) = Ak(ε) − Acl

k (ε), The prediction (3.47) is
shown as the solid orange curve.

The result exhibits a remarkable di�erence with its counterpart for speckle potentials, equation (3.47):
the classical part decays exponentially with time, whereas it decays only as 1/t for speckle potentials.
This di�erence has important manifestations in the spectral function, deduced from equations (3.47)
and (3.51) by Fourier transform [equation (3.34)]. For speckle potentials, the quantum corrections
generate unphysical singularities (delta functions and derivatives). In contrast, for Gaussian poten-
tials, they remain small and the classical limit already o�ers an decent approximation of the spectral
function, as visible in �gure 3.5a. As shown in �gures 3.5b and 3.5c, accounting for the quantum
corrections only re�nes the description of the spectral function.

In conclusion, the expansion in powers of ~ is perfectly suited to describe the high energy limit
for speckle potentials and fails at low energies, with in particular unphysical singularities (delta
functions and derivatives). These di�culties are absent for Gaussian potentials, and are rooted in
the discontinuity of the potential on-site distribution.

3.3.3 Treatment of low energies

Harmonic-oscillator approximation

We now would like to describe the quantum corrections to the classical limit in the low-energy
region ε ∼ V0/

√
η for speckle potentials. As we have seen in subsection 3.3.2, an expansion in powers

of ~ is not suited to tackle this regime, the quantum corrections to the classical expressions being
singular. A non-perturbative method is called for. We propose an approach inspired of Gutwiller
theory [121], for which we here sketch the essential ideas. The starting point is the Van Vleck form
of the propagator, valid in the semiclassical regime [122,123]:

〈r| e−iHt/~ |r′〉 '
∑

α

(. . . ) eiSα(r,r′,t)/~, (3.52)

where the sum runs over classical trajectories leading from r′ to r during the time span t. Sα(r, r′, t)
is the classical action associated with the classical trajectory α. We do not give the expression of
the prefactors here. Their exact value is not important for the present preliminary discussion,
where we remain at a qualitative level and want only to discuss which classical trajectories give
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Figure 3.5 � Figures from [105] showing the spectral function Ak(ε) as a function of energy ε in a
2D Gaussian potential with Gaussian correlation function. Note the following correspondences with
our notations, E = ε, V = V0, Eζ = Eσ, Tk = εk. Figure (a) shows the spectral function, while
�gures (b) and (c) focus on the correction to the classical limit, ∆Ak(ε) = Ak(ε) − Acl

k (ε). The
prediction (3.51) is shown as the solid green curve.

the most important contributions. The sum over all classical trajectories is a very complicated one,
obviously di�erent for each disorder realization, making the averaging a priori rather complex. One
can nevertheless convince oneself that the statistical properties of the potential will have a strong
in�uence. For instance, for a blue-detuned speckle at low energy, there will be essentially short
trajectories trapped in the potential wells, so that the peculiar distribution of energy minima will
play a crucial role.

The spectral function is related to the propagator (3.52) through the relation

Ak(ε) =

∫
dt

2π~

∫
dd∆r
Ld

eiεt/~−ik·∆r〈r| e−iHt/~ |r′〉, (3.53)

where ∆r = r − r′. The integral over time can be performed by a stationary phase approximation,
which restricts the contributing classical trajectories to those with energy ε [123]. At the low energies
ε < ~ω0 we are targeting, such classical trajectories lie in potential wells (resp. inverted potential
wells) for blue-detuned (resp. red-detuned) speckles. We propose to approximate these (inverted)
wells by independent (inverted) harmonic oscillators3. Under this approximation, the stationary
phase approximation becomes exact so one can simply replace the propagator (3.52) by the known
propagator of an (inverted) harmonic oscillator [126].

Blue-detuned speckle

Within the harmonic oscillator approximation described above, equation (3.53) simply reduces
to a sum of spectral functions of in�nitely many random harmonic oscillators i whose minima Vi are
centered at xi. For the case of a 1D, blue-detuned speckle potential, this reads

Ak(ε) '
1

L

∑

xi

∞∑

n=0

|ψin(k)|2δ
(
ε− εin

)
, (3.54)

3Note that for blue-detuned speckle potentials, the spectral function and the density of states exhibit a Lifshitz
tail at very small energies [124, 125]. This tail is intrinsically quantum and cannot be described by semiclassical
approximations.
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where ψin(k) is the eigenfunction of the 1D ith oscillator in k space:

ψin(k) =
(2π)1/2

√
2nn!

(
~

πmωi

)1/4

e
− ~k2

2mωi
+ikxiHn



√

~k2

mωi


 , (3.55)

normalized according to
∫
dk/(2π)|ψin(k)|2 = 1 and with associated eigenenergy εin = Vi + ~ωi(n+

1/2).
We now make use of the assumption that the harmonic wells are statistically independent, which

allows us to take the sum over xi out of the disorder average. The latter is then over the random
frequency ωi and the potential minimum Vi of a single oscillator only. To lighten the notations,
we drop the now unnecessary i index. By introducing the joint distribution P (V, ω) of these two
random variables, we rewrite equation (3.54) as

Ak(ε) = ρ

∞∑

n=0

∫
dV dωP (V, ω)|ψn(k)|2δ(ε− εn), (3.56)

where ρ is the average density of potential minima. ρ and the distribution P (V, ω) have been derived
in section 2.3 for speckle potentials. Note that equation (3.56) is only justi�ed if a typical harmonic
well accommodates many states. In the semiclassical regime (3.37), this is indeed the case: as the
typical frequency of the oscillator will be ω0 and the typical depth of a potential well V0, the number
of states contained in the well is ∼ V0/~ω0 =

√
η � 1.

Red-detuned speckle

For the red-detuned speckle potential, we proceed similarly. Here however, we do not care much
about the potential wells which have energy minima typically of the order of −V0, that is, in a range
where the classical approximation works well (see �gure 3.4a). Indeed, we are interested here in the
energy range around ε = 0, so that it is the potential maxima which are relevant. We thus make use
of an inverted harmonic-oscillator approximation. In this case however, the representation (3.54) of
the spectral function is not convenient due to the continuous nature of the spectrum of the inverted
harmonic oscillator4. We therefore prefer to work in the time domain, using formulation (3.34) for
the spectral function (written for a 1D speckle):

Ak(ε) ' ρ
∫ ∞

−∞

dt
2π~

eiεt/~〈k| e−iHIHOt/~ |k〉, (3.57)

where HIHO = p2/(2m)− Vi −mω2(x− xi)2/2. The 1D inverted harmonic-oscillator propagator in
k space is given by [126]

〈k| e−iHIHOt/~ |k〉 = 2πeiV t/~

√
i~

2πmω sinh(ωt)
exp

{
− i~k

2

mω

[
coth(ωt)− 1

sinh(ωt)

]}
. (3.58)

The disorder average is then carried out as in equation (3.56), by averaging over V and ω with the
help of the joint distribution P (V, ω). By �returning� the potential V (x) → −V (x), we are back
to the blue-detuned potential so the joint distribution of the maxima Pred(V, ω) is nothing but the
joint distribution Pblue(V, ω) for the minima of a blue-detuned speckle. This symmetry also implies
that the density of maxima for a red-detuned speckle is equal to the density of minima ρ for a
blue-detuned speckle.

4It could be possible to perform a Wick rotation and express everything as a sum of imaginary �energies�. This
treatment is not very enlightening.
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Note that, in principle, one could use the propagator of the harmonic oscillator in the time
domain for calculating the spectral function of the blue-detuned speckle potential as well. This
approach turns however inadequate due to the presence of an in�nite number of singularities � when
ωt is an integer multiple of π � arising in the time integral over the propagator.

In principle, the present method applies to any dimension, with the counterpart of the joint
distribution P (V, ω) becoming a priori increasingly di�cult to calculate as the dimension increases.
We have successfully applied this method to the 1D and 2D cases in a published paper, reproduced
in section 3.5. We here detail only the 1D case. The 2D case is quite similar, we merely comment
on it in subsection 3.3.7.

3.3.4 Spectral function and density of states in one dimension: results

Plugging the joint distribution of minima and curvature around minima (2.45), as well as the
density of minima (2.49), in the formulas of subsection 3.3.3, it is not di�cult to obtain the spec-
tral function and the DoS. The resulting predictions are however a bit cumbersome and not very
enlightening, we thus choose not to reproduce them here. The interested reader can �nd them in
our published paper, reproduced in section 3.5. It is more appealing to compare them to numer-
ical simulations. This is done in �gure 3.6 where we show systematically the (inverted) harmonic
oscillator prediction as a red curve and the results from numerical simulations as blue points. For
comparison, we also show the classical limits [equations (3.39) and (3.40)] as solid green curves.

As visible in �gures 3.6a and 3.6b, in the blue-detuned case, the harmonic oscillator approxima-
tion describes very well the spectral function (�gure 3.6a) and the DoS (�gure 3.6b) at low energies.
We can thus interpret the low-energy features of the spectral function and the DoS from this per-
spective. The peak of the spectral function in the blue-detuned case originates from the ground
state of the harmonic oscillators. Its relatively narrow character comes from the ω distribution in
equation (2.44) rather well peaked around ω = ω0. The ensuing bump builds up upon adding ex-
cited states5. The narrow peak in turn results in a bump in the DoS at low energy, see �gure 3.6b.
Indeed, upon increasing k the peak of the spectral function becomes less and less pronounced but
remains at the same energy, which results in a smooth bump after summation over k. At larger
energies ε > V0 (not shown for the DoS in �gure 3.6b), the harmonic-oscillator approximation breaks
down and the purely classical limit takes over, eventually leading to Ak=0(ε) = exp

(
−ε/V0

)
/V0 and

ν(ε) ' ν0(ε) =
√
m/(2ε)/(π~) for ε→∞ [116].

In the red-detuned spectral function case, shown in �gure 3.6c, the inverted harmonic-oscillator
prediction is in good agreement with the numerical results for energies near 0. At smaller energies
(ε . −V0), the description of the speckle potential in terms of inverse harmonic oscillators becomes
poor, while the classical limit provides an excellent approximation.

At variance with the blue-detuned DoS (�gure 3.6b), the red-detuned DoS (�gure 3.6d) is well
described by the classical limit at all energies. This can be understood qualitatively from the
Gutzwiller trace formula [121,127], which expresses the DoS as the sum of the classical contribution,
equation (3.40), and of oscillatory contributions coming from periodic orbits. Around ε = 0, the
periodic orbits in a red-detuned speckle are long ones with characteristic properties (action, period...)
which strongly depend on the disorder realization, so that all oscillatory contributions cancel out.
This is indeed in stark contrast with the blue-detuned speckle where periodic orbits around ε = 0
are short orbits trapped in the deep potential minima and collectively contribute to �bumps� in the
DoS. The absence of inverted-harmonic oscillator prediction for the red-detuned DoS comes from
an ultraviolet divergence. This divergence already appears in the DoS of the inverted harmonic
oscillator, for which it originates of the continuous nature of the spectrum. It thus appears that
for the DoS of red-detuned speckles, the description of singular quantum corrections requires to go

5Note that |ψn(k = 0)|2 vanishes for odd n, such that only even n contribute to Ak=0(ε) in equation (3.56).
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Figure 3.6 � Spectral function Ak=0(ε) and density of states ν(ε) as a function of energy in a 1D
blue(red-)-detuned speckle potential with Gaussian correlation function, for η = 128. The (inverted)
harmonic-oscillator approximation of subsection 3.3.3 is systematically shown as a solid red curve,
and the classical limit, equations (3.39) and (3.40) for the spectral function and the density of states
respectively, as a solid green curve. Blue dots are the result of exact numerical simulations. The
parameters used in the numerical simulations can be found in our published paper, reproduced in
section 3.5.

beyond the inverted harmonic-oscillator approximation. In any case, these corrections are extremely
small, as visible in �gure 3.6d.

Note that very recent experimental measurements of the spectral function [110] corroborate
these results at a qualitative level. In particular, the predicted dissymmetry between red- and
blue-detuned speckles, as well as the peaked structure of the blue-detuned spectral function, were
unambiguously observed. A quantitative comparison is impossible, as the experiment was performed
with 3D speckles.
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3.3.5 Validity of the harmonic-oscillator approximation

A simple argument can be used to estimate the energy range where the harmonic-oscillator
approximation is valid. According to the virial theorem, equipartition between kinetic and potential
energy imposes that εn = mω2 〈x2〉n for the energy of an eigenstate. In order for the speckle potential
to be correctly described by an harmonic-oscillator approximation, all states such that εn = ε in
equation (3.54) should have an extension

√
〈x2〉n much smaller than the correlation length σ, which

imposes an upper limit for the energy: ε� mω2σ2 (in case this condition is not ful�lled, anharmonic
terms would also come into play). As seen in subsection 2.3.1, the most likely value of ω is ω0, so
the condition becomes

ε� V0. (3.59)

On the other hand, the classical approximation is expected to describe well the spectral function
down to energies of order V0/

√
η [105]. Therefore, in the region V0/

√
η � ε� V0 both the harmonic-

oscillator and the classical approximation provide a good description of the spectral function and of
the DoS.

Equation (3.59) provides a restriction on the high-energy tail of the spectral function Ak(ε) for
the latter to be correctly described by our harmonic-oscillator approximation. A similar argument
imposes an additional restriction for the momentum k. Indeed, equipartition between kinetic and
potential energy for the harmonic oscillator also implies

~2 〈k2〉n
2m

=
1

2
mω2 〈x2〉n , (3.60)

where
√
〈x2〉n should be again much smaller than σ for the harmonic-oscillator approximation to

hold. With ω ∼ ω0, condition (3.60) reads

~2 〈k2〉n
m

� V0. (3.61)

The contribution of each eigenstate to the sum in equation (3.54) being proportional to |ψn(k)|2,
the sum is dominated by eigenstates having

√
〈k2〉n of the order of k, such that criterion (3.61) leads

to
εk � V0. (3.62)

In any case, the harmonic oscillator approximation is a good one in the region ε, εk ∼ ~ω0 where
the quantum corrections are important, while the purely classical result (3.39) takes over at higher
energy ε, εk ∼ V0.

3.3.6 Validity of the inverted harmonic-oscillator approximation

The breakdown of the inverted harmonic-oscillator approximation at energies ε . −V0 can be
understood from a reasoning on the classical action that appears in equation (3.52). Indeed, for the
stationary phase approximation to be valid, the time span t associated with a classical trajectory
should be such that the classical action V0t/~ is large, imposing t � ~/V0. Energies corresponding
to such long times ful�ll

|ε| � V0. (3.63)

Note that this condition is fully similar to that for blue-detuned speckles, equation (3.59), though it
is here deduced from a slightly di�erent argument. Then, the motion of a classical atom of energy
ε = εk −mωx2/2 describes well the dynamics in a red-detuned speckle as long as the excursion x2

remains much smaller than σ, namely as long as εk + |ε| � mωσ2/2. Since ω ∼ ω0 and |ε| � V0,
this leads to

εk � V0, (3.64)

which is the same validity condition as for blue-detuned speckles.
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3.3.7 Higher dimensions

Having settled the 1D situation, we now brie�y comment on the case of higher dimensions. The
sharp behavior of the blue-detuned spectral function at low energy observed in one dimension is
rooted in the presence of most minima at very low V � V0 (see subsection 2.3.1). In this respect,
one expects a sharper spectral function in two dimensions, reminiscent of the minima sitting exactly
at V = 0 (see subsection 2.3.3). This is indeed what is numerically observed in �gure 3.7 where the
spectral function for a 1D and 2D blue-detuned speckle potentials are shown respectively as blue
and green squares. We note that the 3D spectral function, shown as red squares, is even sharper. On
the other hand, at high energies the 1D, 2D and 3D spectral functions all collapse on the classical
limit [equation (3.39)] shown as a solid black curve.

0.0 0.2 0.4 0.6 0.8 1.0
ε/V0
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Figure 3.7 � Spectral function Ak=0(ε) as a function of energy in blue-detuned speckle potentials
with Gaussian correlation function, for η = 128. The result for the one-dimensional case is shown
as blue squares and is compared with the results obtained in two and three dimensions, respectively
shown as green and red squares. The classical limit, equation (3.39), is the same in all dimensions
and is shown as a solid black curve. The parameters used in the 1D and 2D numerical simulations
can be found in our published paper, reproduced in section 3.5. In three dimensions, we have used
a discrete grid of size L3 = (6πσ)3 with 1203 grid points, and averaged the results over 720 disorder
realizations.

Aside from the minima exactly at V = 0, the 2D case is quite similar to the 1D one. Results
similar to those presented in subsection 3.3.4 can be found in our published paper, reproduced in
section 3.5. The 3D case constitutes a technical challenge, because the points of vanishing potential
responsible for the sharp 2D blue-detuned spectral function turn to curves. The approximation of
isolated harmonic oscillators used throughout this section thus breaks down, one has to cope with
valleys instead of isolated minima. We leave this challenging task for later work.

3.4 Conclusion

In this chapter, we have discussed many properties of the spectral function, a fundamental
building block in the description of matter wave packets. We have introduced this concept by starting
from the weak-disorder limit, and we have then discussed its importance in the characterization of
the energy distribution, and thus the dynamics of wave packets. Directly connected with the spectral
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function, the density of states came along. Although we have put less emphasis on it, it is also an
important quantity, particularly in the discussion of phases of dirty interacting bosons [60,71,104].

In the core of this chapter, we have introduced two semiclassical methods aiming to describe the
spectral function and the density of states in speckle potentials. We have seen how the corrections
to the classical limit can be obtained through an expansion in powers of ~ of the spectral function
or the density of states in the large energy sector. This expansion is however not su�cient at low
energies, due to the discontinuity of the on-site potential distribution. In order to overcome this
di�culty, we have developed a novel analytical method based on a semiclassical description of the
dynamics combined with the statistical properties of potential extrema. Applying this approach to
1D blue- and red-detuned speckles, we have carried out the calculation of the spectral function and
the DoS. The 2D case is very similar to the 1D one with some additional technical di�culties, we
have preferred to left it aside here and refer the interested reader to our published paper, reproduced
in section 3.5. In both the 1D and 2D cases, by connecting the two methods, a rather complete
description of the whole energy spectrum is possible.

Our semiclassical description additionally provides a simple interpretation of intriguing features
of the spectral function and DoS. In particular, for blue-detuned potentials we have shown that the
low-energy peak of spectral functions is essentially associated with the ground state of an atom in a
potential well of the speckle, while the secondary bump is associated with excited states. We have also
emphasized that in spite of their simple symmetry, red- and blue-detuned speckles exhibit remarkably
di�erent features in the semiclassical regime, coming from the fundamental di�erent nature of the
classical trajectories involved near zero energy: for blue-detuned speckles, these classical trajectories
lie in deep potential wells, while for red-detuned speckles they lie in the vicinity of the top of inverted
wells.

As a logical continuation of this work, it would be of great interest to address the case of three-
dimensional speckle potentials, involved in important questions related to Anderson localization [38,
40, 44, 109, 115, 128]. This task appears challenging though, due to the existence of curves along
which the potential is vanishing, making the application of a harmonic oscillator approximation less
obvious.

3.5 Article: Semiclassical spectral function and density of states in

speckle potentials [Phys. Rev. A 94, 022114 (2016)]
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We present an analytical method for calculating the spectral function and the density of states in speckle
potentials, valid in the semiclassical regime. Our approach relies on stationary phase approximations, allowing
us to describe the singular quantum corrections at low energies. We apply it to the calculation of the spectral
function and the density of states in one- and two-dimensional speckle potentials. By connecting our results with
those of previous work valid in the high-energy sector, we end up with a consistent description of the whole
energy spectrum, in good agreement with numerical simulations.
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I. INTRODUCTION

Anderson localization, the absence of wave diffusion due
to destructive interference between partial waves multiply
scattered by a disordered potential [1], has been observed
in a number of experiments involving atomic matter waves
quasiperiodically kicked by laser pulses [2,3] or subjected to
one-dimensional (1D) [4] and three-dimensional (3D) [5,6]
quenched speckle potentials, as well as ultrasound waves in
3D disordered dielectric media [7]. In cold-atom setups, the
control of atom-atom interactions (through, e.g., Feshbach
resonances) together with a weak coupling to the environment
constitute precious assets for the observation of interference
effects in disorder. Furthermore, atom-optics experiments offer
the possibility to directly probe localization phenomena inside
the atomic system, as well as to follow their evolution in the
course of time [8,9].

If atoms are injected into a disordered potential with an
initial momentum k, they no longer have a well defined
energy ε but rather an energy distribution called the spectral
function, denoted by Ak(ε). The spectral function thus defines
a quasiparticle, and generally speaking can provide important
physical insights to the complex problem of disorder scattering
even without the knowledge of the system’s eigenstates [10].
Even more, it turns out that to achieve a quantitative under-
standing of cold-atom experiments in speckle potentials and
in particular to properly characterize Anderson localization,
a good knowledge of the spectral function is crucial. Indeed,
when disorder is strong enough the spectral function is broad,
which can have important consequences for the global motion
of an atomic cloud. For instance, a cloud of atoms that
are individually diffusive may exhibit a global subdiffusive
behavior as a result of the superposition of the various energy-
dependent atomic diffusion coefficients, thus mimicking the
onset of localization [11,12]. Furthermore, even if the cloud
contains localized atoms, usually a finite part of it remains
diffusive and a precise characterization of the spectral function
is then required in order to pinpoint the location of the mobility
edge [6,13]. Related to the spectral function, the density
of states (DOS) in strong speckle potentials is also poorly
understood. This question is however essential as the DOS
plays a central role in atomic physics, in particular in the
discussion of phases of interacting bosons [14–16].

Despite its importance, the calculation of the spectral
function of speckle potentials in the strong disorder regime

has been little addressed, the main difficulty stemming from
the inapplicability of weak-disorder approximations in this
regime. Recently however, a systematic semiclassical expan-
sion of the spectral function around the classical solution has
been proposed [17]. Although successful in the large-energy
sector, the approach of [17] fails at capturing the singular
quantum corrections at low energies. As far as the DOS is
concerned, important progress has been recently accomplished
by Falco et al. [18], who used a classical approximation for
describing high energies in speckle potentials. Again however,
this approach remains inaccurate to capture the low-energy
sector. As a matter of fact, the difficulty of treating low energies
in speckle potentials lies in the singular nature of quantum
corrections in this region of the spectrum. Such singular
corrections are absent for Gaussian random potentials [17]
frequently used in condensed-matter physics [19]. To our
knowledge, they have not been described yet.

In this paper, we calculate the spectral function and the
density of states in one- (1D) and two-dimensional (2D)
speckle potentials, making use of a semiclassical approach
based on stationary phase approximations, thereby allowing
for a nonanalytic perturbation expansion in �. Our theoretical
predictions are in good agreement with exact numerical sim-
ulations in the low-energy sector where quantum corrections
are singular. By connecting our results with those of [17],
we eventually end up with a consistent description of the
whole energy spectrum. Section II is devoted to the definition
of the relevant quantities and to a discussion of the results
previously obtained in [17]. Our semiclassical approach is
also introduced and discussed. In Sec. III, we derive important
statistical properties of 1D speckles needed to implement our
semiclassical theory. Results for the 1D spectral function and
DOS are presented in Sec. IV. The approach is then extended
to the 2D case in Secs. V and VI. In Sec. VII, we finally
summarize our findings and discuss some open questions.

II. DEFINITIONS AND METHODS

A. Framework

We consider a cloud of noninteracting atoms of mass m,
subjected to a random potential V (r). Its dynamics is governed
by the Hamiltonian

H = p2

2m
+ V (r), (1)

2469-9926/2016/94(2)/022114(16) 022114-1 ©2016 American Physical Society
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where p = −i�∇. The coordinate vector r ∈ [0,L]d lies
in a d-dimensional cubic volume of linear size L that
we will eventually make tend to infinity. In the following,
averaging over the random potential will be indicated by an
overline: (. . . ). In practice, speckle potentials are obtained by
transmission or reflection of a laser through a rough plate. The
resulting potential V (r) felt by atoms subjected to this light is
proportional to the square of a complex Gaussian field [20],
with a sign that depends on the laser detuning with respect
to the considered two-level transition. This potential has the
following on-site distribution:

P [V (r)] = 1

V0
θ [±V (r)]exp

[
∓V (r)

V0

]
, (2)

where θ (. . . ) is the Heaviside θ function. The disorder strength
V0 > 0 enters both the average V (r) = ±V0 and the variance

V (r)2 − V (r)
2 = V 2

0 . In Eq. (2), the upper sign refers to a
blue-detuned speckle potential, bounded by zero from below,
and the lower sign to a red-detuned speckle potential, bounded
by zero from above. Another quantity that we will frequently
encounter in the following is the two-point correlation function

V (r)V (r ′) − V (r)
2
. For the isotropic speckles considered in

this paper, the two-point correlation function depends only on
|r − r ′|. It decays over a typical distance σ , referred to as the
correlation length [20]. σ defines an important characteristic
energy scale, the so-called correlation energy [21]:

Eσ = �2

mσ 2
. (3)

The two-point correlation function can take various forms
depending on the experimental setup [20]. The approach
developed in this paper in principle applies to any shape of the
correlation function, but the results for the spectral function
and the DOS turn out to very weakly depend on it, provided
the proper value of σ is chosen. Consequently, for definiteness
we will only consider the Gaussian case in the following:

V (r)V (r ′) − V (r)
2 = V 2

0 exp

(
−|r − r ′|2

2σ 2

)
. (4)

As an example, we show in Fig. 1 a numerical disorder
realization of both a blue and a red-detuned 1D speckle
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FIG. 1. Numerical realizations of a red- (left) and a blue-detuned
(right) 1D speckle potential. The on-site distribution is given by
Eq. (2) and the two-point correlation function by Eq. (4). The
procedure used to numerically generate the speckle is explained in
the main text.

potential. To generate these realizations, we use a numerical
procedure that precisely describes the experimental scenario:
we first generate a spatially uncorrelated complex random
Gaussian field in Fourier space, simulating the transmission
through the rough plate. This field is then multiplied by a
proper cutoff function—that physically describes the shape
of the plate—which we take Gaussian to reproduce the
two-point correlation function (4). Finally, (the opposite of)
the modulus square of the field in coordinate space gives the
blue-(red-)detuned speckle potential visible in the observation
plane [20].

B. Definitions, semiclassical regime

The figure of merit of this paper is the spectral function,
defined as

Ak(ε) = 〈k| δ(ε − H ) |k〉. (5)

Physically, the spectral function is the probability density for
a plane wave |k〉 to have energy ε in the potential V (r). At
vanishing disorder, the spectral function is a Dirac δ function
centered at energy �2k2/2m. Upon increasing the disorder,
this peak acquires a finite width and, at strong disorder,
starts to develop intriguing structures that we wish to explore.
Introducing the Fourier representation of the Dirac δ function
in Eq. (5), it follows that

Ak(ε) =
∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iH t/� |k〉, (6)

which establishes the connection with the evolution operator
e−iH t/�. The spectral function is related to the DOS per unit
volume ν(ε) through the relation

ν(ε) = 1

Ld
Tr δ(ε − H ) =

∫
dd k

(2π )d
Ak(ε). (7)

There are several energy scales in the problem: E, Eσ , V0,
and only their ratio matter. Of special importance is the
parameter

η = V0

Eσ

= mσ 2V0

�2
. (8)

In this paper, we focus on the so-called semiclassical regime
characterized by the condition [17,18]

η � 1. (9)

This inequality has a simple interpretation:
√

η is the ratio of
the disorder correlation length σ to the de Broglie wavelength
of a particle with energy V0, so that, in the semiclassical
regime, the quantum particle can resolve all the potential
fluctuations. Alternatively, a quantum particle with energy V0

encountering a potential barrier of height V0 and thickness σ

will have a vanishingly small probability exp(−√
η) to tunnel

through it, making the dynamics almost classical.
In the deep semiclassical limit η → ∞, the noncommuta-

tion between position and momentum can be neglected, so that
〈k| e−iH t/� |k〉 ≈ e−i�k2t/2m e−iV (r)t/� and Eq. (6) yields

Acl
k (ε) =

∫ ∞

−∞

dt

2π�
ei(ε−εk)t/�

1 ± itV0/�
= P (ε − εk), (10)

022114-2
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where εk = �2k2/(2m) and P (ε) is the on-site potential
distribution [Eq. (2)]. In the classical limit, the spectral
function thus mimics the on-site distribution (2) [17]. With this
result in hand, the classical DOS then follows from Eq. (7):

νcl(ε) =
∫ ∞

0
dεkν0(εk)P (ε − εk), (11)

where ν0 is the free-space DOS [17,18].

C. Smooth quantum corrections

For both the spectral function and the density of states,
it is possible to calculate the smooth quantum corrections to
the classical limits (10) and (11) from an analytic expansion
in �. The calculation of the first quantum correction has been
recently carried out in [17] in the energy domain from Wigner-
Weyl formalism [22]. The calculation is also possible in the
time domain from an expansion of the evolution operator, as
we show in Appendix A. In any dimension d, either of the two
approaches leads to

Ak(ε) =
∫ ∞

−∞

dt

2π�
ei(ε−εk )t/�

1 ± itV0/�

×
[

1 + dit3V 2
0 Eσ/�3

12(1 ± itV0/�)
+ t4V 2

0 Eσ/�4

12(1 ± itV0/�)
εk

]
,

(12)

with again the + (−) sign for the blue-(red-)detuned speckle.
As was noticed in [17], Eq. (12) is correct only at large
energies. For k = 0, this can be readily seen from the
observation that the first quantum correction term should
remain small for the perturbation theory to be valid. This term
is of the order of t2V0Eσ/�2 ∼ (t/�)2V 2

0 /η. It is useful to
define the natural frequency unit in this context:

ω0 =
√

V0

mσ 2
= V0

�√
η
, (13)

which is the typical oscillation frequency in a potential well
of height V0 and size σ. The condition of validity of Eq. (12)
simply reads ω0t 
 1. The Fourier integral over time is then
well approximated if

ε � �ω0 = V0√
η
. (14)

If one performs the Fourier integral in Eq. (12) at energies
smaller than V0/

√
η, the failure of the perturbation expansion

manifests itself as unphysical singularities (δ functions and
derivatives). One should then resort to another approach, which
is the object of the next section. In fact, as noted in [17], for
speckle potentials the low-energy region is nontrivial. While
the classical spectral function, Eq. (10), has a discontinuity at
ε − εk, the exact spectral function is widely different: for a
blue-detuned speckle, it rigorously vanishes below ε = 0 and,
for k = 0, it rapidly increases between ε = 0 and ε ∼ V0/

√
η.

These difficulties are absent for Gaussian potentials [17].

D. Treatment of low energies

1. Harmonic-oscillator approximation

We now would like to describe the quantum corrections
to the classical limit in the low-energy region ε ∼ V0/

√
η for

speckle potentials. For this purpose, we propose an approach
inspired of Gutwiller theory [23], for which we here sketch the
essential ideas. The starting point is the Van Vleck form of the
propagator, valid in the semiclassical regime [24,25]:

〈r| e−iH t/� |r ′〉 �
∑

α

(. . . )eiSα (r,r ′,t)/�, (15)

where the sum runs over classical trajectories leading from r ′
to r during the time span t . Sα(r,r ′,t) is the classical action
associated with the classical trajectory α. We do not give the
expression of the prefactors here. Their exact value is not
important for the present preliminary discussion, where we
remain at a qualitative level and want only to discuss which
classical trajectories give the most important contributions.
The sum over all classical trajectories is a very complicated
one, obviously different for each disorder realization, making
the averaging a priori rather complex. One can nevertheless
envision that the statistical properties of the potential may
have a strong influence. For a blue-detuned speckle at low
energy, there will be essentially short trajectories trapped in
the potential wells, so that it is easy to understand that the
peculiar distribution of energy minima will play a crucial role.

The spectral function is related to the propagator (15)
through the relation

Ak(ε) =
∫

dt

2π�

∫
dd�r
Ld

eiεt/�−ik·�r〈r| e−iH t/� |r ′〉, (16)

where �r = r − r ′. The integral over time can be performed
by a stationary phase approximation, which restricts the
contributing classical trajectories to those with energy ε [25].
At the low energies ε < �ω0 we are targeting, such classi-
cal trajectories lie in potential wells (respectively inverted
potential wells) for blue-detuned (respectively red-detuned)
speckles. We propose to approximate these wells by inde-
pendent harmonic oscillators [26]. Under this approximation,
the stationary phase approximation becomes exact so one can
simply replace the propagator (15) by the known propagator
of a harmonic oscillator (respectively inverted harmonic
oscillator) [29].

2. Blue-detuned speckle

Within the harmonic oscillator approximation described
above, Eq. (16) simply reduces to a sum of spectral functions of
infinitely many random harmonic oscillators i whose minima
Vi are centered at r i . For the case of a 1D, blue-detuned speckle
potential, this reads

Ak(ε) � 1

L

∑
xi

∞∑
n=0

∣∣ψi
n(k)

∣∣2δ(ε − εi
n

)
, (17)
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where ψi
n(k) is the eigenfunction of the 1D ith oscillator in k

space:

ψi
n(k) = (2π )1/2

√
2nn!

(
�

πmωi

)1/4

e−�k2/2mωi+ikxi Hn

⎛
⎝
√

�k2

mωi

⎞
⎠,

normalized according to
∫

dk/(2π )|ψi
n(k)|2 = 1 and with

associated eigenenergy εi
n = Vi + �ωi(n + 1/2).

We now make use of the assumption that the harmonic wells
are statistically independent, which allows us to take the sum
over xi out of the disorder average. The latter is then over the
random frequency ωi and the potential minimum Vi of a single
oscillator only. By introducing the joint distribution P (Vi,ωi)
of these two random variables, we rewrite Eq. (17) as

Ak(ε) = ρ

∞∑
n=0

∫
dVidωiP (Vi,ωi)

∣∣ψi
n(k)

∣∣2δ(ε − εi
n

)
, (18)

where ρ is the average density of potential minima. Calculation
of the distribution P (Vi,ωi) will be the object of Sec. III.
Note that Eq. (18) is only justified if a typical harmonic well
accommodates many states. In the semiclassical regime (9),
this is indeed the case: as the typical frequency of the oscillator
will be ω0 and the typical depth of a potential well V0,

the number of states contained in the well is ∼ V0/�ω0 =√
η � 1.

3. Red-detuned speckle

For the red-detuned speckle potential, we proceed similarly.
The potential wells which can accommodate a harmonic series
of bound states have energy minima typically of the order of
−V0, that is in a range where the classical approximation works
well (see below). In contrast, we are interested in the energy
range around E = 0, near the maximum allowed potential, and
it is the potential maxima which are relevant. We thus make
use of an inverted harmonic-oscillator approximation. In this
case however, the representation (17) of the spectral function
is not convenient due to the continuous nature of the spectrum
of the inverted harmonic oscillator [30]. We therefore prefer to
work in the time domain, using formulation (6) for the spectral
function (written for a 1D speckle):

Ak(ε) � ρ

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHIHOt/� |k〉, (19)

where HIHO = p2/(2m) − Vi − mω2
i (x − xi)2/2. The 1D in-

verted harmonic-oscillator propagator in k space is given
by [29]

〈k|e−iHIHOt/� |k〉

= 2πeiVi t/�

√
i�

2πmωish(ωit)

× exp

{
− i�k2

mωi

[
coth(ωit) − 1

sh(ωit)

]}
. (20)

The disorder average is then carried out as in Eq. (18), by
averaging over Vi and ωi with the help of the joint distribution
P (Vi,ωi). By “returning” the potential V (x) → −V (x), we
are back to the blue-detuned potential so the joint distribution

of the maxima Pred(Vi,ωi) is nothing but the joint distribution
Pblue(Vi,ωi) for the minima of a blue-detuned speckle. This
symmetry also implies that the density of maxima for a red-
detuned speckle is equal to the density of minima ρ for a
blue-detuned speckle.

Note that, in principle, one could use the propagator of
the harmonic oscillator in the time domain for calculating the
spectral function of the blue-detuned speckle potential as well.
This approach turns however inadequate due to the presence
of an infinite number of singularities—when ωit is an integer
multiple of π—arising in the time integral over the propagator.

III. STATISTICS OF 1D SPECKLE POTENTIALS

A. Joint distribution P(Vi ,ωi )

In this section, we calculate the joint probability distribution
P (Vi,ωi) discussed above. From here on we drop the subscript
i and merely write P (V,ω) to lighten the notations. We derive it
for the blue-detuned speckle potential, for which it corresponds
to the joint probability of minima and potential curvature
around minima.

The distribution P (V,ω) is closely related to the joint,
conditional probability distribution P (V (x), V ′′(x)|V ′(x) =
0, V ′′(x) > 0) of V (x) and its second derivative V ′′(x) given
that V ′(x) = 0 and V ′′(x) > 0, that we propose to calculate
first. From here on we use the following abbreviated notation
for the potential and its derivatives at point x:

V ≡ V (x), Vx ≡ V ′(x), Vxx ≡ V ′′(x). (21)

The above distribution follows from

P (V,Vxx |Vx = 0,Vxx > 0) = N × lim
Vx→0

P (V,Vx,Vxx)

P (Vx)
.

(22)

The numerical constant N that appears in Eq. (22) stems
from the fact that only positive curvatures are selected on
the left-hand side, whereas on the right-hand side all possible
values are understood. It will be later determined from
the normalization condition. In order to compute the joint
distribution P (V,Vx,Vxx), we follow Goodman [20] and write
the potential as

V = Re(x)2 + Im(x)2. (23)

Up to a constant multiplicative factor, Re(x) and Im(x)
respectively describe the real and imaginary parts of the laser
electric field at point x, from which the speckle potential
V is built. As for the potential, we introduce the following
short-hand notations:

� ≡ Re(x), �x ≡ d

dx
Re(x), �xx ≡ d2

dx2
Re(x)

(24)

� ≡ Im(x), �x ≡ d

dx
Im(x), �xx ≡ d2

dx2
Im(x).

The motivation for introducing the fields � and � is that
they are independent Gaussian variables with zero mean and
equal variance [20]. Their derivatives are likewise Gaussian,
since any linear transformation of a Gaussian retains Gaussian
statistics. They also have a zero mean. As a consequence, the
six random variables of interest obey the multidimensional
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Gaussian distribution

P (�,�,�x,�x,�xx,�xx) = e−ut C−1u/2

8π3
√

det(C)
, (25)

where ut is a row vector with entries (�,�,�x,�x,�xx,�xx),
and C is the covariance matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�� �� ��x ��x ��xx ��xx

�� �� ��x ��x ��xx ��xx

�x� �x� �x�x �x�x �x�xx �x�xx

�x� �x� �x�x �x�x �x�xx �x�xx

�xx� �xx� �xx�x �xx�x �xx�xx �xx�xx

�xx� �xx� �xx�x �xx�x �xx�xx �xx�xx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries of this matrix can be explicitly calculated for a
blue-detuned speckle potential. This yields

C =

⎛
⎜⎜⎜⎜⎜⎝

F (0) 0 0 0 F ′′(0) 0
0 F (0) 0 0 0 F ′′(0)
0 0 −F ′′(0) 0 0 0
0 0 0 −F ′′(0) 0 0

F ′′(0) 0 0 0 F (4)(0) 0
0 F ′′(0) 0 0 0 F (4)(0)

⎞
⎟⎟⎟⎟⎟⎠,

where F (x) is related to the two-point correlation function of
the potential V through

F (x − x ′) = 1
2

√
V (x)V (x ′) − V (x)

2
. (26)

We then introduce in Eq. (25) the change of variables

� =
√

V cos θ, � =
√

V sin θ, (27)

from which we calculate the distribution P (V,θ,Vx,θx,

Vxx,θxx), with a corresponding Jacobian equal to 1/8. By ex-
plicitly evaluating the entries of the C matrix for the Gaussian
correlation function (4) and calculating the remaining integrals
over θ , θx , and θxx with Mathematica [31], we find

P (V,Vx,Vxx)

= σ 4

4
√

2πV 3
0 V

e−[24V +16Vxxσ
2+(V 2

x −2V Vxx )2σ 4/V 3]/16V0

×
{

I−1/4

[(
V 2

x − 2V Vxx

)2
σ 4

16V 3V0

]

+ I1/4

[(
V 2

x − 2V Vxx

)2
σ 4

16V 3V0

]}√( − V 2
x + 2V Vxx

)
V0

V
,

(28)

where I1/4 and I−1/4 are the modified Bessel functions of the
first kind. Note that this expression is valid only when V 2

x −
2V Vxx < 0, a condition fulfilled since only minima of the
potential are considered [32]. The distribution P (V,Vx,Vxx)
is regular with respect to the limit Vx → 0. In Eq. (22),
we can thus take this limit separately in the numerator and
denominator, reducing the latter to a numerical constant which
can be absorbed in the normalization prefactor N .

From the joint distribution (28), we are now in position
to access the probability P (V,Vxx |Vx = 0,Vxx > 0) using
Eq. (22). The result is

P (V,Vxx |Vx = 0,Vxx > 0)

= N
√

Vxx

V
e−(6V 2+4V Vxxσ

2+V 2
xxσ

4)/4V0V

×
[
I−1/4

(
V 2

xxσ
4

4V V0

)
+ I1/4

(
V 2

xxσ
4

4V V0

)]
. (29)

By imposing that the distribution is normalized, we find
N = σ 5/(2cV

5/2
0 ), where c = [

√
3�(1/4)�(5/4) − �(−1/4)

�(7/4)]/(33/4
√

2π ) � 1.006 85, which will be replaced by 1
in the following.

The last stage of the calculation consists of connect-
ing P (V,Vxx |Vx = 0,Vxx > 0) to the sought for distribution
P (V,ω). This amounts to changing the variables from Vx = 0
to x such that Vx(x) = 0, and from Vxx to ω such that mω2 =
Vxx . The associated Jacobian is |dVx/dx × dVxx/dω| =
2m5/2ω3. We finally infer

P (V,ω) = 1

V ω0

(
ω

ω0

)4

e−3/2(V/V0)2−(ω/ω0)2−V0/4V (ω/ω0)4

×
{

I−1/4

[
V0

4V

(
ω

ω0

)4
]

+ I1/4

[
V0

4V

(
ω

ω0

)4
]}

.

(30)

The joint distribution is shown in Fig. 2. At a given potential
minimum V , we observe that it is maximum for ω ∼ ω0. At
smaller ω, the distribution rapidly falls to zero, which supports
our description of the speckle potential landscape in terms of
purely harmonic wells at low energies.

As we are primarily interested in low-energy minima V 

V0, it is instructive to express the distribution P (V,ω) in the

FIG. 2. Joint distribution P (V,ω) of minima and potential curva-
ture around minima, for a 1D, blue-detuned speckle potential with
Gaussian correlation function [Eq. (30)].
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classical limit

blue-detuned

numerics
harmonic oscillator

FIG. 3. Spectral function Ak=0(ε) as a function of energy in a 1D,
blue-detuned speckle potential with Gaussian correlation function, for
η = 128. The harmonic-oscillator approximation, Eq. (36), is shown
as a solid red curve, and the classical limit, Eq. (10), as a solid green
curve. Blue dots are the result of exact numerical simulations.

limit V → 0 [33]:

P (V,ω)V0ω0 ∼
V →0

√
2

π

√
V0

V

(
ω

ω0

)2

e−(ω/ω0)2
. (31)

This asymptotic expression shows that most minima lie at
very low V 
 V0. This phenomenon is ultimately responsible
for the sharp behavior of the spectral function at low energy.
A broader distribution of energy minima would smooth out
all peaks and oscillations in the spectral function and DOS, as
visible in Figs. 3 and 4.

numerics
harmonic oscillator

classical limit

blue-detuned

FIG. 4. Density of states ν(ε) as a function of energy in a 1D,
blue-detuned speckle potential with Gaussian correlation function.
The harmonic oscillator-approximation, Eq. (37), is shown as a solid
red curve, and the classical limit, Eq. (11), as a solid green curve.
Blue dots are the result of exact numerical simulations.

B. Density of minima

The last unknown quantity is the density of minima ρ. To
evaluate it, we follow [34,35] and consider the general identity∫

dxδ[V ′(x)]f (x) =
∑

n

1

|V ′′(xn)|f (xn), (32)

valid for any function f . The sum is over all points xn where
V ′(x) ≡ Vx vanishes. If we choose f (x) to be |V ′′(x)| ≡ |Vxx |,
then the integral is equal to the number of points at which Vx

vanishes. This defines the density of extrema per unit length
as

δ(Vx)|Vxx |. (33)

The corresponding density restricted to minima of the potential
is

δ(Vx)Vxxθ (Vxx), (34)

with θ the Heaviside function. The disorder-averaged density
of minima then reads

ρ =
∫

dVxdVxxP (Vx,Vxx)δ(Vx)Vxxθ (Vxx). (35)

Using Eq. (28), we obtain ρ = c′/σ , where c′ � 0.284 026.

IV. 1D SPECTRAL FUNCTION AND DOS: RESULTS

A. Spectral function for 1D blue-detuned speckles

We now evaluate the theoretical prediction (18) of the
spectral function for 1D, blue-detuned speckle potentials,
using Eq. (30) for the joint distribution of minima and curvature
around minima. By carrying out the integral over ωi that ranges
from 0 to ∞, we find

Ak(ε) = c′

σ

∑
n

∫ ε

0
dV

|ψn(k)|2
�(n + 1/2)

P

(
V,

ε − V

�(n + 1/2)

)
θ (ε).

(36)
This prediction is shown in Fig. 3 as a function of energy,

for k = 0 and η = 128 (solid red curve). As discussed in
Sec. II D 1, we expect it to describe low energies. At
large energies, the classical limit (10) (solid green curve in
Fig. 3)—and its smooth quantum corrections (12)—is on the
other hand a very good approximation. In order to assess the
accuracy of these two limits, we have performed numerical
simulations of the spectral function. For these simulations
we use a discrete grid of size L = 200σ with 4000 grid
points and periodic boundary conditions, and compute the
spectral function from definition (6), using the same approach
as described in [17] to carry out the time evolution. The results
are averaged over 50 000 disorder realizations, and are shown
in Fig. 3 as blue dots. We see that the harmonic-oscillator
prediction is in excellent agreement with the numerics at
low energies. In particular, the high and narrow peak near
ε/V0 ∼ 0.05 and the secondary “bump” near ε/V0 ∼ 0.25 are
very well described. The peak originates from the ground state
of the harmonic oscillator [term n = 0 in the sum (36)]; its
relatively narrow character originates from the ω distribution
in Eq. (30) rather well peaked around ω = ω0. The bump
comes from the excited states.
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B. Density of states for 1D blue-detuned speckles

From definition (7) and Eq. (36), we can compute the DOS
for 1D blue-detuned speckles. Carrying out the integral over
k, we find

ν(ε) = c′

σ

∑
n

∫ ε

0
dV

1

�(n + 1/2)
P

(
V,

ε − V

�(n + 1/2)

)
θ (ε).

(37)
This prediction is shown in Fig. 4 as a function of energy,

for η = 128 (solid red curve), together with the classical
limit, Eq. (11) (solid green curve). We have also performed
numerical simulations of the DOS, by first computing many
spectral functions for k ranging from 0 to 13σ−1 and then
summing over k, using a number of grid points between 4000
(at small k) and 40 000 (for the largest k). These results are
shown in Fig. 4 as blue dots. The DOS displays a bump at
low energies, which is reminiscent of the narrow peak that
shows up in the profiles of the spectral function; see Fig. 3.
Indeed, upon increasing k the peak of the spectral function
becomes less and less pronounced but remains at the same
energy, which results in a smooth bump after summation over
k. As seen in Fig. 4, at low energies numerical results are very
well captured by the harmonic-oscillator prediction. At larger
energies ε > V0 (not shown in Fig. 4), the harmonic-oscillator
approximation breaks down and the purely classical limit takes
over, eventually leading to ν(ε) � ν0(ε) = √

m/(2ε)/(π�) for
ε → ∞ [18].

C. Validity of the harmonic-oscillator approximation

A simple argument can be used to estimate the energy
range where the harmonic-oscillator approximation is valid.
According to the Virial theorem, equipartition between kinetic
and potential energy imposes that εn = mω2 〈x2〉n for the mean
energy of an eigenstate. In order for the speckle potential to be
correctly described by a harmonic-oscillator approximation,
all states such that εn = ε in Eq. (17) should have an extension√〈x2〉n much smaller than the correlation length σ , which
imposes an upper limit for the energy: ε 
 mω2σ 2 (in case

this condition is not fulfilled, anharmonic terms would also
come into play). As seen in Sec. III A, the most likely value of
ω is ω0, so the condition becomes

ε 
 V0. (38)

On the other hand, the classical approximation is expected
to describe well the spectral function down to energies of
order V0/

√
η [17]. Therefore, in the region V0/

√
η 
 ε 
 V0

both the harmonic-oscillator and the classical approximation
provide a good description of the spectral function and of the
DOS.

Equation (38) provides a restriction on the high-energy tail
of the spectral function Ak(ε) for the latter to be correctly
described by our harmonic-oscillator approximation. A similar
argument imposes an additional restriction for the momentum
k. Indeed, equipartition between kinetic and potential energy
for the harmonic oscillator also implies

�2 〈k2〉n
2m

= 1

2
mω2〈x2〉n, (39)

where
√〈x2〉n should be again much smaller than σ for

the harmonic-oscillator approximation to hold. With ω ∼ ω0,
condition (39) reads

�2 〈k2〉n
m


 V0. (40)

The contribution of each eigenstate to the sum in Eq. (17)
being proportional to |ψn(k)|2, the sum is dominated by
eigenstates having

√〈k2〉n of the order of k, such that
criterion (40) leads to

εk 
 V0. (41)

In any case, the harmonic oscillator approximation is a good
one in the region ε,εk ∼ �ω0 where the quantum corrections
are important, while the purely classical result (10) takes over
at higher energy ε,εk ∼ V0.

D. Spectral function for 1D red-detuned speckles

For 1D, red-detuned speckle potentials, we make use of the
approach explained in Sec. II D 3 to calculate the spectral
function. Using Eq. (19) and (20) together with the joint
distribution (30) and carrying out the integral over V , we find

Ak(ε) = (2π )2c′σ 4m5/2

√
2V

5/2
0

∫ ∞

−∞

dt

2π�
eiεt/�

∫ ∞

0
dω ω4

[
I 2
−1/4

(
mω2σ 2

2V0

√
3 − 2itV0/�

)
− I 2

1/4

(
mω2σ 2

2V0

√
3 − 2itV0/�

)]

×
√

i�
2πmωsh(ωt)

exp

{
− i�k2

mω

[
coth(ωt) − 1

sh(ωt)

]
− mω2σ 2

V0

}
. (42)

This prediction is shown in Fig. 5 for k = 0 (solid red
curve), together with the classical limit, Eq. (10) (solid green
curve). Both limits are compared with the result of numerical
simulations (blue dots) that use a discrete grid of size L =
200σ with 4000 grid points, periodic boundary conditions,
and 50 000 disorder realizations.

As seen in Fig. 5, the harmonic-oscillator prediction is
in good agreement with the numerical results for energies

near 0. At smaller energies (ε � −V0), the description of
the speckle potential in terms of inverse harmonic oscillators
becomes poor, while the classical limit provides an excellent
approximation.

E. Validity of the inverted harmonic-oscillator approximation

The breakdown of the inverted harmonic-oscillator ap-
proximation at energies ε � −V0 can be understood from a
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numerics
inverted harmonic oscillator

classical limit

red-detuned

FIG. 5. Spectral function Ak=0(ε) as a function of energy in a 1D,
red-detuned speckle potential with Gaussian correlation function, for
η = 128. The inverted harmonic-oscillator approximation, Eq. (42),
is shown as a solid red curve, and the classical limit, Eq. (10), as a solid
green curve. Blue dots are the result of exact numerical simulations.

reasoning on the classical action that appears in Eq. (15).
Indeed, for the stationary phase approximation to be valid, the
time span t associated with a classical trajectory should be such
that the classical action V0t/� is large, imposing t � �/V0.
Energies corresponding to such long times fulfill

|ε| 
 V0. (43)

Note that this condition is fully similar to that for blue-detuned
speckles, Eq. (38), though it is here deduced from a slightly
different argument. Then, the motion of a classical atom of
energy ε = εk − mωx2/2 describes well the dynamics in a
red-detuned speckle as long as the excursion x2 remains much
smaller than σ , namely as long as εk + |ε| 
 mωσ 2/2. Since
ω ∼ ω0 and |ε| 
 V0, this leads to

εk 
 V0, (44)

which is the same validity condition as for blue-detuned
speckles.

F. Density of states for 1D red-detuned speckles

We show in Fig. 6 as blue dots the DOS in a 1D, red-detuned
speckle potential, computed from numerical simulations where
we have summed over 208 spectral functions with k ranging
from 0 to 13σ−1, varying the number of grid points from 4000
(for small k) to 40 000 (for the largest k). We also show as the
solid green curve the classical prediction (11). As seen in the
figure, the latter already provides an excellent description of
the exact results. This can be understood qualitatively from the
Gutzwiller trace formula [23,36] which expresses the density
of states as the sum of the classical contribution, Eq. (11),
and of oscillatory contributions coming from periodic orbits.
Around E = 0, the periodic orbits in a red-detuned speckle
are long ones with characteristic properties (action, period...)
which strongly depend on the disorder realization, so that all
oscillatory contributions cancel out. This is in stark contrast
with the blue-detuned speckle where periodic orbits around

red-detuned

numerics
classical limit

FIG. 6. Density of states ν(ε) as a function of energy in a 1D,
red-detuned speckle potential with Gaussian correlation function.
The classical limit, Eq. (11), is shown as a solid green curve. Blue
dots are the result of exact numerical simulations.

E = 0 are short orbits trapped in the deep potential minima
and collectively contribute to “bumps” in the DoS.

In principle, quantum corrections to the DOS can be
obtained from Eq. (42) by evaluating the Fresnel integral
over k; see Eq. (7). The latter can be performed, but the
remaining integral over t displays an ultraviolet divergence.
This divergence already appears in the DOS of the inverted
harmonic oscillator, for which it originates of the continuous
nature of the spectrum. It thus appears that for the DOS of
red-detuned speckles, the description of singular quantum
corrections requires to go beyond the inverted harmonic-
oscillator approximation, a task that we leave for later work.

V. STATISTICS OF 2D SPECKLE POTENTIALS

We now turn to the study of 2D speckle potentials which we
aim to describe, at low energies, by a 2D harmonic-oscillator
approximation. By analogy with the 1D case, we propose to
model the speckle potential around an extremum V (xi,yi) by a
2D harmonic oscillator (respectively inverted harmonic oscil-
lator) of the form ±V ± mω2

x(x − xi)2/2 ± mω2
y(y − yi)2/2

with again the + (respectively −) sign for blue (respectively
red)-detuned speckles, with random frequencies ωx and ωy .
Such a description requires the preliminary knowledge of
the joint probability distribution P (V,ωx,ωy) of extrema and
potential curvature around extrema. Study of this quantity
is the object of the present section. We here focus on blue-
detuned speckle potentials, and then infer the corresponding
distribution for red-detuned speckles by the same symmetry
argument as in one dimension.

A. Density of minima at V = 0

2D speckle potentials have a important difference with 1D
potentials: they present a finite density of points exactly at
V = 0 [34]. In writing the blue-detuned speckle potential as

V (x,y) = Re(x,y)2 + Im(x,y)2, (45)
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(minima at         

(minima at         )

)

FIG. 7. Blue curve: integrated density of minima (density of
minima whose depth is greater than V ) for a 2D, blue-detuned
speckle potential with Gaussian correlation function. The results
have been obtained numerically on a discrete grid of size L × L =
400σ × 400σ.

these points are minima that correspond to the intersections of
the curves Re(x,y) = 0 and Im(x,y) = 0. Before considering
the distribution P (V,ωx,ωy), let us first examine the proportion
of minima at V = 0 and at V �= 0. To this end, we have
numerically computed the integrated density of minima, i.e.,
the density of minima whose depth is greater than V . To
distinguish between minima at V = 0 and minima at V �= 0,
we have exploited the sensitivity (respectively insensitivity) of
the minima at V = 0 (respectively V �= 0) with respect to a
change in the spatial discretization (number of grid points). The
results of these simulations are shown in Fig. 7. They have been
obtained on a discrete grid of size L × L = 400σ × 400σ , by
varying the number of grid points between 18 000 and 26 000
along x and y. The discontinuity of the integrated density of
minima at V = 0 visible in Fig. 7 defines ρ0, the density of
minima at V = 0. We find that approximately ρ0/ρ ∼ 65% of
all minima lie at V = 0 [37]. Note that this result is confirmed
by an analytical prediction derived in [34]:

ρ0 =
[ −4πF (0)

∇2
rF (r)|r=0

]−1

, (46)

where F (r − r ′) =
√

V (r)V (r ′) − V (r)
2
/2. For the Gaussian

correlation function (4), this explicitly gives ρ0 = 1/(4πσ 2) �
0.08/σ 2.

In two dimensions, the majority of minima thus lies at
V = 0. To keep the discussion and the calculation as simple as
possible, as a first approximation, we keep only the minima at
V = 0 in the 2D semiclassical description. We will discuss
the validity of this approximation in Sec. VI A. The joint
distribution of interest P (V,ωx,ωy) reduces to

P (V,ωx,ωy) � P (ωx,ωy)δ(V ), (47)

where P (ωx,ωy) is the 2D joint distribution of potential
curvatures around a minimum (xi,yi) where V (xi,yi) = 0.

B. Joint distribution P(ωx,ω y)

The distribution P (ωx,ωy) is closely related to the joint,
conditional probability distribution P (ωx,ωy |V (xi,yi) = 0) of
potential curvatures given that V (xi,yi) = 0. To calculate this
distribution, we first expand V (x,y) up to second order in the
vicinity of (xi,yi) as

V (x,y) � 1
2XAXt, (48)

where X = (x − xi,y − yi) and

A =
(

∂2
xV (x,y) ∂x∂yV (x,y)

∂y∂xV (x,y) ∂2
yV (x,y)

)
. (49)

By diagonalizing the quadratic form (48) (which is possible
since the matrix A is symmetric), we can describe a well
of the speckle potential in terms of two independent 1D
harmonic oscillators, whose curvatures ωx and ωy are related
to the eigenvalues λ1 and λ2 of A through ωx = √

λ1/m and
ωy = √

λ2/m. The calculation of the joint distribution of the
eigenvalues (λ1,λ2) is done in Appendix B for clarity. The
corresponding result for P (ωx,ωy |V = 0) is

P (ωx,ωy |V = 0) = 2

ω4
0

∣∣ω2
y − ω2

x

∣∣e−(ω2
x+ω2

y)/ω2
0 . (50)

The sought for distribution P (ωx,ωy) then follows from the
change of variables from V (xi,yi) = 0 to (xi,yi) such that
V (xi,yi) = 0: P (ωx,ωy) = (d2V/dxdy)P (ωx,ωy |V = 0),
where d2V is the change in the surface element
defined by the 2D curve V (x,y) when x varies from
xi to xi + dx and y varies from yi to yi + dy. Since
V (x,y) � mω2

x(x − xi)2/2 + mω2
y(y − yi)2/2 in the vicinity

of a minimum, we expect this change to be proportional to
ωxωydxdy, such that

P (ωx,ωy) ∝ ωxωyP (ωx,ωy |V = 0). (51)

The unknown prefactor is determined from normalization,
which eventually leads to

P (ωx,ωy) = 4

ω6
0

ωxωy

∣∣ω2
y − ω2

x

∣∣e−(ω2
x+ω2

y)/ω2
0 . (52)

A density plot of P (ωx,ωy) is shown in Fig. 8. As in one
dimension, the distribution rapidly falls to zero at small
frequencies, which again supports our description of the
speckle potential landscape in terms of purely harmonic wells
at low energies. We have confirmed Eq. (52) by numerical
simulations of the distribution P (ωx,ωy), deduced from
numerically generated speckle potentials. We show in Fig. 9
the numerical cut P (ωx,ωy = 1.25ω0) as a function of ωx (blue
dots), together with Eq. (52) (red curve), and find a very good
agreement.

VI. 2D SPECTRAL FUNCTION AND DOS: RESULTS

A. Spectral function for 2D blue-detuned speckles

We are now in position to compute the spectral function
for 2D, blue-detuned speckle potentials. The 2D counterpart
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FIG. 8. Density plot of the joint distribution P (ωx,ωy) at a point
where V = 0 for a 2D, blue-detuned speckle potential with Gaussian
correlation function.

of Eq. (18) reads

Ak(ε) = ρ0

∞∑
nx,ny=0

∫
dωxdωyP (ωx,ωy)

× |ψnx
(kx)|2|ψny

(ky)|2δ(ε − εnx,ny
), (53)

where P (ωx,ωy) is the joint distribution of curvatures around
minima at V = 0 given by Eq. (52), εnx,ny

= �ωx(nx + 1/2) +
�ωy(ny + 1/2) and the eigenfunctions ψnx

(kx) are given by
Eq. (17) with n replaced by nx and k replaced by kx , and
similarly for ψny

(ky). By performing the integral over ωy and

FIG. 9. Cut P (ωx,ωy = 1.25ω0) of the joint distribution of
curvatures around a minima at V = 0 for a 2D, blue-detuned speckle
potential. Blue dots are the results of numerical simulations and the
red curve is Eq. (52).

numerics
harmonic oscillator

classical limit

blue-detuned

corrected harm. osc.

FIG. 10. Spectral function Ak=0(ε) as a function of energy in a 2D,
blue-detuned speckle potential with Gaussian correlation function, for
η = 128. The harmonic-oscillator approximation, Eq. (54), is shown
as a solid red curve, and the classical limit, Eq. (10), as a solid green
curve. The corrected harmonic-oscillator approximation, Eq. (56),
is shown as a solid black curve. Blue dots are the results of exact
numerical simulations.

using that ρ0 = 1/(4πσ 2), we find

Ak(ε) = 1

4πσ 2

∑
nx,ny

∫ ε/�(nx+1/2)

0
dωx

|ψnx
(kx)|2

�(ny + 1/2)
θ (ε)

×|ψny
(ky)|2P (ωx,ωy)|ωy=(ε−�ωx (nx+1/2))/�(ny+1/2).

(54)

This prediction is shown in Fig. 10 as a function of
energy, for k = 0 and η = 128 (solid red curve). The classical
limit (10), expected to describe large energies, is also shown as
a solid green curve. These results are compared to numerical
simulations of the spectral function (blue dots) which use a sys-
tem size L × L = (20πσ )2 with 600 grid points along x and y,
periodic boundary conditions and 40 000 disorder realizations.
Several observations can de made. Like in one dimension, the
harmonic approximation quantitatively describes the spectral
function for energies ∼ V0/

√
η = �ω0. The large peak is at

an energy about twice larger than in one dimension—compare
with Fig. 3—because it is the ground-state energy of a 2D
(instead of 1D) harmonic oscillator. It is also slightly higher
and the minimum around ε/V0 = 0.2 as well as the second
bump above are slightly more visible than in one dimension.
This is because most potential minima are exactly at V = 0
in two dimensions, while this is not true in one dimension, so
that an additional smoothing takes place in the latter case. This
must however be taken with a grain of salt: the 2D low-energy
peak of the spectral function is not entirely controlled by
the ground state of the harmonic oscillator: excited states
also contribute for roughly 25% of the peak height. As seen
in Fig. 10, deviations of the harmonic-oscillator prediction
from the numerical result occur at smaller energy than in
one dimension. This phenomenon can be understood from the
expression of the spectral function in terms of the propagator
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of the 2D harmonic oscillator:

Ak(ε) = ρ0

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHHOt/� |k〉, (55)

where HHO = p2/(2m) + mω2
xx

2/2 + mω2
yy

2/2. In two di-
mensions, the propagator 〈k| e−iHHOt/� |k〉 ∝ 1/t at short
times [29]. This singularity is more pronounced than in one
dimension where the propagator diverges as 1/

√
t . In two

dimensions there is thus more weight on short times, which are
by construction not well captured by the harmonic-oscillator
approximation. On the other hand, we know that short times
are fairly well described by the classical limit, Eq. (10). To
improve on the quality of the harmonic-oscillator description,
we thus propose to replace the contribution from the pole at
t = 0 by the classical contribution. The contribution from this
pole is simple to calculate from Eq. (55): we find θ (ε)/V0.
The classical contribution is given in Eq. (10). The above
prescription thus leads to

Acorr
k (ε) � Ak(ε) − θ (ε)

V0
+ θ (ε)

V0
exp

(
−ε − εk

V0

)
, (56)

where Ak(ε) is the prediction of the harmonic-oscillator
description, Eq. (54). Equation (56) is shown in Fig. 10 as
a solid black curve, and is in very good agreement with the
numerical simulations.

The excellent agreement with the numerical calculations
justifies a posteriori the approximation of keeping only the
minima at V = 0. Such an agreement may surprise the
attentive reader as approximately 35% of the minima have
been left aside. The reason for it lies in two mechanisms
reducing the contribution to the spectral function of minima
at V �= 0 as compared to minima at V = 0. First, among the
35% of minima at V �= 0, only a fraction contributes to the
spectral function: as we are interested in very low energies
(ε 
 V0), we should keep only the harmonic wells with
associated minimum smaller than ε. Second, the smoothing
due to the dispersion in V —compare the 1D oscillations in
Fig. 3 with such a dispersion and the 2D oscillations in Fig. 10
where the dispersion is absent—makes the contribution of
minima at V �= 0 negligible after application of the corrected
harmonic-oscillator prescription [Eq. (56)].

B. Density of states for 2D blue-detuned speckles

From definition (7) and Eq. (54), we can compute the DOS
for 2D blue-detuned speckles. Carrying out the integral over
k, we readily find

ν(ε) = 1

4πσ 2

∑
nx,ny

∫ ε/�(nx+1/2)

0
dωx

θ (ε)

�(ny + 1/2)

×P

(
ωx,

ε − �ωx(nx + 1/2)

�(ny + 1/2)

)
. (57)

This prediction is shown in Fig. 11 as a function of energy,
for η = 128 (solid red curve), together with the classical
limit, Eq. (11) (solid green curve). We have also performed
numerical simulations of the DOS. In two dimensions however,
the strategy of numerically computing first spectral functions at
different k and then summing of k is numerically demanding.
We have thus used a different scheme that consists of

blue-detuned

numerics
harmonic oscillator

classical limit
corrected harm. osc.

FIG. 11. Density of states ν(ε) as a function of energy in a 2D,
blue-detuned speckle potential with Gaussian correlation function.
The harmonic-oscillator approximation, Eq. (57), is shown as a solid
red curve, and the classical limit, Eq. (11), as a solid green curve.
The corrected harmonic-oscillator description, Eq. (60), is shown
as a solid black curve. Blue dots are the result of exact numerical
simulations.

expressing the trace in Eq. (7) in real space rather than in
momentum space:

ν(ε) = 1

L2
Tr δ(ε − H ) = 1

L2

∫
d2r 〈r| δ(ε − H )|r〉. (58)

The system being translation invariant on average, the inte-
grand is in fact independent of r so

ν(ε) = 〈r = 0| δ(ε − H ) |r = 0〉

=
∫ ∞

−∞

dt

2π�
eiεt/�〈0| e−iH t/� |0〉. (59)

From Eq. (59), it thus appears that the DOS can be obtained
by numerically propagating a particle initially located at the
origin, then recording the value of the wave function at
the origin for many different times t , and finally taking the
Fourier transform with respect to time and averaging over
disorder. We have applied this strategy for a system size
L × L = (10πσ )2 with 400 grid points along x and y and
40 000 disorder realizations. Results are shown in Fig. 11
as blue dots. As for the 2D spectral function, we observe
deviations of the theoretical prediction (59) from the numerical
results at relatively small energies due to a pole ∝ 1/t2 in the
propagator in (59). We again correct them by replacing the
contribution of this pole by the classical result (11). This gives

νcor(ε) = ν(ε) − mεθ (ε)

2π�2V0
+ mθ (ε)

2π�2

(
1 − e−ε/V0

)
. (60)

This prediction is plotted in Fig. 11 (solid black curve), and
describes very well the exact numerical results.
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numerics
inverted harmonic oscillator

classical limit

red-detuned

corrected inverted 
harm. osc.

FIG. 12. Spectral function Ak=0(ε) as a function of energy in a 2D,
red-detuned speckle potential with Gaussian correlation function, for
η = 128. The inverted harmonic-oscillator approximation, Eq. (62),
is shown as a solid red curve, and the classical limit, Eq. (10),
as a solid green curve. The corrected inverted harmonic-oscillator
approximation, Eq. (63), is shown as a solid black curve. Blue dots
are the results of exact numerical simulations.

C. Spectral function for 2D red-detuned speckles

To evaluate the spectral function for 2D, red-detuned
speckle potentials, we proceed as in one dimension and write

Ak(ε) � ρ0

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHIHOt/� |k〉, (61)

where HIHO = p2/(2m) − mω2
xx

2/2 − mω2
yy

2/2. Making the
average over disorder explicit, we have

Ak(ε) = 1

4πσ 2

∫ ∞

−∞

dt

2π�
eiεt/�

∫ ∞

0
dωxdωyP (ωx,ωy)

×〈kx | e−i[p2
x/(2m)−mω2

xx
2/2]t/�|kx〉

× 〈ky | e−i
[
p2

y/(2m)−mω2
yy

2/2
]
t/�|ky〉, (62)

where the 1D inverted harmonic-oscillator propagator is given
by Eq. (20).

Equation (62) is shown in Fig. 12 (solid red curve), together
with the classical limit, Eq. (10) (solid green curve). Results
of numerical simulations that use a system size L × L =
(20πσ )2 with 600 grid points along x and y and 40 000 disorder
realizations are also shown (blue dots). As for the blue-detuned
speckle, the pole 1/t in the propagator gives rise to deviations
of the oscillator description from the exact numerical results
that are more significant than in one dimension. We again cure
them by replacing the contribution of the pole by the classical
limit:

Acor
k (ε) = Ak(ε) − θ (−ε)

V0
+ θ (−ε)

V0
e(ε−εk)/V0 . (63)

This prediction is plotted in Fig. 12 (solid black curve), and
describes very well the exact numerical results.

numerics
classical limit

red-detuned

FIG. 13. Density of states ν(ε) as a function of energy in a 2D,
red-detuned speckle potential with Gaussian correlation function. The
classical limit, Eq. (11), is shown as a solid green curve. Blue dots
are the results from exact numerical simulations based on Eq. (59).

D. Density of states for 2D red-detuned speckles

We show in Fig. 13 the DOS in a 2D, red-detuned speckle
potential computed from numerical simulations using a system
size L × L = (10πσ )2 with 2000 grid points in each direction
and 8000 disorder realizations, based on Eq. (59) (blue dots).
As for 1D red-detuned speckles, the oscillator correction to
the DOS diverges due to an ultraviolet divergence in the
propagator; see Sec. IV F. Nevertheless, as seen in Fig. 13, the
classical prediction (11) (solid green curve) already constitutes
an excellent approximation of the exact result.

VII. CONCLUSION

In this paper, we have pointed out that an expansion in
powers of � of the spectral function or the density of states in
speckle potentials is not sufficient at low energies, due to the
discontinuity of the potential distribution. In order to overcome
this difficulty, we have developed an analytical method based
on a semiclassical description of the dynamics combined with
the statistical properties of potential extrema. Applying this
approach to 1D and 2D blue- and red-detuned speckles, we
have carried out the calculation of the spectral function and
the DOS. By connecting our results with those of previous
works valid at high energies [17,18], we have been able to
describe the whole energy spectrum, and have found a good
agreement with exact numerical simulations.

Our semiclassical description additionally provides a sim-
ple interpretation of intriguing features of the spectral function
and DOS. In particular, for blue-detuned potentials we have
shown that the low-energy peak of spectral functions is
essentially associated with the ground state of an atom in
a potential well of the speckle, while the secondary bump
is associated with excited states. We have also emphasized
that in spite of their simple symmetry, red- and blue-detuned
speckles exhibit remarkably different features in the semiclas-
sical regime, coming from the fundamental different nature
of the classical trajectories involved near zero energy: for
blue-detuned speckles, these classical trajectories lie in deep
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potential wells, while for red-detuned speckles they lie in the
vicinity of the top of inverted wells.

As a logical continuation of this work, it would be of
great interest to address the case of three-dimensional speckle
potentials, involved in important questions related to Anderson
localization [5,6,38,39]. This task appears challenging though,
as the isolated points of zero potential in two dimensions
become curves in three dimensions, making the application
of a harmonic-oscillator approximation less obvious.
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APPENDIX A

In this Appendix, we calculate the leading-order smooth
quantum corrections to the classical limit of the spectral
function, Eq. (12), using an alternative approach to the one used
in [17]. The calculation is first carried out for 1D, blue-detuned
speckles, then generalized to any dimension, and finally to
red-detuned speckles by a simple symmetry argument.

The first stage of our approach is a commutator expansion of
the evolution operator based on the Zassenhaus formula [40]:

〈k|e−i[p2/2m+V ]t |k〉
= e−iV (x)t e(i�2t3/3m)[∂xV (x)]2

×e(−�2t2/4m)[2ik∂xV (x)+∂2
x V (x)]−(it3�2/3m)[∂2

x V (x)]εk eO(�3).

(A1)

The second stage consists of carrying out the disorder average.
This can be done by mean of the following cumulant
expansion:

exp(X) = exp

[ ∞∑
n=1

κn(X)

n!

]
, (A2)

where κn denotes the nth cumulant. To evaluate the cumulants
of sums of random variables that appear in Eq. (A2), we make
use of the expansion

κn(X + Y ) =
n∑

j=0

(
n

j

)
κ(X, . . . ,X︸ ︷︷ ︸

j terms

,Y, . . . ,Y︸ ︷︷ ︸
n−j terms

), (A3)

where we have introduced the joint cumulants κ , defined
as [41]

κ(X1, . . . ,Xn) =
∑
π

(|π | − 1)!(−1)|π |−1
∏
B∈π

[∏
i∈B

Xi

]
.

(A4)
Here π runs through the list of all partitions of {1, . . . ,n}, B

runs through the list of all blocks of the partition π , and |π | is
the number of parts in the partition. Joint cumulants have the
following important properties [41]:

(1) they are linear in all variables;
(2) κ(X, . . . ,X) = κn(X);

(3) κ(X1, . . . ,Xn) = 0 if any set of the Xi’s are independent
of the remaining Xj �=i’s.

After these premises, let us now write the random potential
as

V (x) = E1(x)2 + E2(x)2, (A5)

where E1 and E2 are independent Gaussian variables with
zero mean and equal variance [20]. Defining X = −iV (x)t
and denoting by Yi the � corrections appearing in Eq. (A2),
we obtain for the nth cumulant:

κn

(
X +

m∑
i=1

Yi

)

= κn(X) +
m∑

i=1

nκ(X, . . . ,X︸ ︷︷ ︸
n−1 terms

,Yi)

+
2∑

j=1

(
n

2

)
κ

⎛
⎝X, . . . ,X︸ ︷︷ ︸

n−2 terms

, − �t2

2m

[
∂xE

2
j (x)

]
i�k,

− �t2

2m

[
∂xE

2
j (x)

]
i�k

)
+ O

(
�3

)
. (A6)

We now need to calculate the various cumulants entering this
equation. For this purpose, we use a theorem due to Leonov
and Shiryaev [42,43]. Before discussing the theorem itself, it
is useful to introduce some terminology. Consider the matrix⎛

⎜⎜⎜⎝
X11 . . . X1J

. .

. .

. .

XJ1 . . . XJJ

⎞
⎟⎟⎟⎠, (A7)

and a partition P1 ∪ P2 ∪ · · · ∪ PM of its entries. We choose
this matrix square for simplicity, but the formalism is straight-
forwardly generalizable to rectangular matrices. If the rows
are denoted by R1, . . . ,RJ , then a partition is said to be
indecomposable if and only if there exist no sets Pm1 , . . . ,PmN

,
(N < M), and rows Ri1 , . . . ,RiP , (P < J ), with

Pm1 ∪ · · · ∪ PmN
= Ri1 ∪ · · · ∪ RiP . (A8)

The theorem then goes as follows [42]. Consider a matrix
of random entries Xij (i,j = 1, . . . ,J ) and the J random
variables

Yi =
J∏

j=1

Xij , i = 1, . . . ,J. (A9)

The joint cumulant κ(Y1,...,YJ ) is then given by

κ(Y1, . . . ,YJ ) =
∑
P

κ(Xi1j1 , . . . ,Ximjm︸ ︷︷ ︸
{i1j1,...,imjm}=P1

)

. . . κ(Xinjn
, . . . ,Xiojo︸ ︷︷ ︸

{injn,...,iojo}=Pp

), (A10)

where the summation is over all indecomposable partitions
P = P1 ∪ · · · ∪ Pp of matrix (A7).

Let us now tackle one of the terms involved in Eq. (A6):
κ(E2

1, . . . ,E
2
1 ,∂

2
xE2

1). It is simpler to work in Fourier space,
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hence defining

Ej (x) =
∫

dpi

2π
eipxEj (p). (A11)

The cumulant of interest then reads

κ
(
E2

1 , . . . ,E
2
1 ,∂

2
xE2

1

)
= −

∫ [
2n∏
i=1

dpi

2π

]
(p2n−1 + p2n)2κ[E1(p1)E1(p2),

. . . ,E1(p2n−3)E1(p2n−2),E1(p2n−1)E1(p2n)]. (A12)

The corresponding matrix (A7) is⎛
⎜⎜⎜⎝

E1(p1) E1(p2)
. .

. .

. .

E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎠. (A13)

As E1 is Gaussian distributed, only joint cumulants involving
two fields should be kept in the right-hand side of Eq. (A10).
Our indecomposable partitions are then made of pairs of E1

and all give the same contribution. Let us now count them,
taking into account the two following constraints for making
pairs so to obtain an indecomposable partition:

(i) A pair cannot be formed out of two fields lying on the
same line, i.e., the choice

⎛
⎜⎜⎜⎜⎜⎜⎝

E1(p1) E1(p2)

. .

. .

. .
E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎟⎟⎟⎠

(A14)

is forbidden.
(ii) Two pairs right nearby cannot be formed, i.e., the choice

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1(p1) E1(p2)

E1(p1) E1(p2)

. .

. .

. .
E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A15)

is forbidden.
Therefore, to form the first pair, we have (2n) choices for the

first field and (2n − 2) choices for the second, and similarly for
the next pairs. This leaves us with 2n(2n − 2)2(2n − 4)2 . . . =
22nn!2/(2n) choices of pairing. There is however a redundancy
in this counting, due to the invariance of the partition with
respect to both swapping of the two fields inside one pair (2n

possibilities) and swapping of different pairs (n! possibilities).
This leaves us with only 2nn!2/(2n2nn!) = 2nn!/(2n) choices
of pairing. Calculating the contribution from one of them, we

obtain

κ
(
E2

1 , . . . ,E
2
1︸ ︷︷ ︸

n−1 terms

,∂2
xE2

1

) = 2nn!

2n
Fn−2(0)2

×[F (0)F ′′(0) + F ′2(0)], (A16)

where F (x) is defined by Eq. (26).
A similar derivation is then performed for all terms in

Eq. (A6) that are not found to vanish on the basis of the
property (3) above [41]. Upon summing various geometric
series and recognizing the expansion of a logarithm, we find

〈k| e−i[p2/2m+V ](t/�) |k〉

= e−iεk t/�

1 ± itV0/�

[
1 + it3V 2

0 Eσ/�3

12(1 + itV0/�)
+ t4V 2

0 Eσ/�4

12(1 + itV0/�)
εk

]
.

(A17)

This result is not difficult to generalize to dimension d, where
Eq. (A2) becomes

〈k| e−i[ p2/2m+V ](t/�) |k〉
= e−iV (r)t e(i�2t3/3m)

∑d
i=1 [∂xi

V (r)]2

×e(−�2t2/4m)[2ik·∇V (r)+∇2V (r)]

×e
−(i�2t3/3m)

∑d
i,j=1[∂xi

∂xj
V (r)](�2kikj /2m)

eO(�3). (A18)

In the sum
∑d

i,j=1 [∂xi
∂xj

V (r)]�2kikj /2m, to leading order in
� the crossed terms (i �= j ) do not contribute to the disorder-
averaged propagator as their contributions are proportional
to first-order derivatives of the field correlation function (26)
evaluated at 0, which vanish. Also, derivatives of the potential
with respect to different directions are independent. Therefore,
the propagator in dimension d is simply the product of d 1D
propagators. Finally, the result for the red-detuned speckle is
deduced by changing m to −m and t to −t (which amounts to
changing the sign of V ). The general result then reads

〈k| e−i[p2/2m+V ](t/�) |k〉

= e−iεk t/�

1 ± itV0/�

[
1+ dit3V 2

0 Eσ/�3

12(1 ± itV0/�)
+ t4V 2

0 Eσ/�4

12(1 ± itV0/�)
εk

]
,

(A19)

with the + (respectively −) sign for blue-(respectively red-
)detuned speckles. This immediately leads to Eq. (12) of the
main text.

APPENDIX B

In this Appendix, we derive the joint probability distribution
P (λ1,λ2) of the eigenvalues λ1 and λ2 of the matrix

A =
(

∂2
xV (x,y) ∂x∂yV (x,y)

∂y∂xV (x,y) ∂2
yV (x,y)

)
, (B1)

in the vicinity of a minimum V (x,y) = 0. As in Sec. III A we
write the potential as

V (x,y) = Re(x,y)2 + Im(x,y)2, (B2)
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where Re(x,y) and Im(x,y) are independent Gaussian vari-
ables with zero mean and equal variance σ 2

c = V0/(4σ 2) [20].
Making use of the shorthand notation

�x ≡ ∂xRe(x,y), �x ≡ ∂xIm(x,y),
(B3)�y ≡ ∂yRe(x,y), �y ≡ ∂yIm(x,y),

we rewrite the matrix A as

A = 2

(
�2

x + �2
x �x�y + �x�y

�x�y + �x�y �2
y + �2

y

)
. (B4)

�x , �y , �x , and �y are independent, Gaussian distributed
random variables with zero mean and variance σc. The
distribution P (u,v) can then be expressed as

P (u,v) =
∫

d�xd�yd�xd�yP (�x)P (�y)P (�x)P (�y)

× δ[u − λ1(�x,�y,�x,�y)]δ[v − λ2(�x,�y,�x,�y)].

To tackle this integral, we first change variables to “intensity”
and “phase”:

�x =
√

I1 cos θ1, �x =
√

I1 sin θ1,
(B5)

�y =
√

I2 cos θ2, �y =
√

I2 sin θ2.

The Jacobian of the transformation is 1/4, and I1,I2 ∈
[0, + ∞[ and θ1,θ2 ∈ [−π,π ]. The integral reduces to

P (λ1,λ2)

= 1

32π2σ 4
c

∫ +∞

0
dI1dI2

∫ π

−π

dθ1dθ2e
−(I1+I2)/2σ 2

c

×δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos 2(θ1 − θ2)
])

×δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos 2(θ1 − θ2)
])

,

where we have assumed λ2 > λ1 without loss of generality,
and added a corresponding renormalization prefactor 1/2. We
then introduce

ϕ = θ1 + θ2, φ = 2(θ1 − θ2), (B6)

and carry out the integral over ϕ. This eventually yields

P (λ1,λ2) = 1

8πσ 4
c

∫ +∞

0
dI1dI2

∫ π

0
dφe−(I1+I2)/2σ 2

c

×δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

×δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

.

This expression can be further simplified by writing∫ ∞
0 dI1dI2 = ∫ ∞

0 dI1
∫ I1

0 dI2 + ∫ ∞
0 dI1

∫ ∞
I1

dI2 and noticing
the equality of these two integrals due to the symmetric role
played by I1 and I2:

P (λ1,λ2) = 1

4πσ 4
c

∫ +∞

0
dI1

∫ I1

0
dI2

∫ π

0
dφe−(I1+I2)/2σ 2

c

× δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

× δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

.

We then change the variable φ to z so that

z = I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ, (B7)

where z spans the interval [0,2I2]. The corresponding Jacobian
is ∣∣∣∣∂φ

∂z

∣∣∣∣ = 2|I1 + I2 − z|√
z(2I1 − z)(2I2 − z)(2I1 + 2I2 + z)

. (B8)

Performing the integrals over I2 and z, we straightforwardly
find

P (λ1,λ2) = 1

8πσ 4
c

∫ λ2/2

(λ1+λ2)/4
dI1e

−(λ1+λ2)/4σ 2
c

× (λ2 − λ1)θ (λ1)√
λ1λ2(λ2 − 2I1)(2I1 − λ1)

. (B9)

The remaining integral can be done analytically, yielding

P (λ1,λ2) = (λ2 − λ1)e−(λ1+λ2)/4σ 2
c

32σ 4
c

√
λ1λ2

θ (λ1) (λ2 > λ1). (B10)

This relation has been obtained assuming λ2 > λ1. The
opposite case λ1 < λ2 is fully symmetric:

P (λ1,λ2) = (λ1 − λ2)e−(λ1+λ2)/4σ 2
c

32σ 4
c

√
λ1λ2

θ (λ2) (λ2 < λ1). (B11)

Using Eqs. (B10) and (B11) together with the relations λ1 =
mω2

x , λ2 = mω2
x , we finally obtain Eq. (50) of the main text.
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Chapter 4

Quantum boomerang e�ect in

one-dimensional random potentials

Having clari�ed how random potentials are generated in cold-atom experiments in chapter 2, and
discussed the general framework for describing the dynamics of wave packets in section 3.2, we now
consider a concrete dynamical scenario. The latter resembles the experiment performed in Palaiseau
in 2008 [37], where an initially narrow wave packet spreads in a one-dimensional random potential,
and the density pro�le is recorded in the course of time. Here however, we propose to additionally
give the atoms a �nite average velocity and track the wave packet center-of-mass motion.

The chapter starts with a brief statement of the problem in section 4.1. In section 4.2, we
develop an intuitive derivation of the packet center-of-mass, based on classical arguments. This
somewhat naive approach is compared to numerical simulations in section 4.3. The numerical
simulations reveal an unexpected phenomenon: after an initial ballistic motion, the packet center-
of-mass experiences a retrore�ection and appears to slowly return to its initial position. We dubbed
this phenomenon the quantum boomerang e�ect. We show in section 4.4 that it is triggered by
Anderson localization. Section 4.5 is devoted to an analytical treatment of the center of mass, based
on Berezinskii diagrammatic technique [13]. This derivation is supplemented by appendices 4.A
and 4.B. In applying Berezinskii diagrammatic technique, we make some assumptions on the random
potential and on the initial wave packet, which are discussed in section 4.6. In section 4.7 �nally,
we derive a surprising relation between center of mass and mean square displacement. Section 4.8
concludes the chapter and gives some perspectives for future work.

4.1 Initial condition

We consider the evolution of an initial Gaussian wave packet with a phase,

ψ(x, t = 0) = Ψk0(x) =
exp

(
−x2/2σ2 + ik0x

)

π1/4σ1/2
, (4.1)

which we will refer to as �kicked� Gaussian wave packet in the following. At variance with the initial
wave packet used in Palaiseau in 2008 [37], (4.1) is imprinted with a mean velocity ~k0/m. The
evolution is governed by the Hamiltonian

H = −~2∆/2m+ V, (4.2)

57



58 Chapter 4. Quantum boomerang e�ect in one-dimensional random potentials

where V is a Gaussian1, uncorrelated random potential:

V (x) = 0 and V (x)V (x′) = γδ(x− x′), (4.3)

the overbar denoting averaging over disorder realizations. Starting from a Gaussian-correlated po-
tential, equation (2.31), the uncorrelated potential (4.3) is obtained by taking the limit σ → 0 and
V0 → ∞ with γ = V 2

0 σ
√

2π. Of course the dynamics of the wave packet for positive and negative
k0 is perfectly symmetric. Without loss of generality, from here on we consider only k0 > 0.

For the sake of simplicity, we assume in the following that the wave packet can be approximated
by a quasi-monochromatic wave packet (i.e. its dynamics is supported by only one energy compo-
nent). This approximation is justi�ed in the limit of an initially narrow momentum distribution,
k0σ � 1, and of a weak energy broadening by the disorder (k0` � 1). To make it clear, we adopt
the language of section 3.2 and write the energy distribution P (ε) as

P (ε) =

∫
W (x, p)Ap(ε)dxdp, (4.4)

where Ap(ε) is the spectral function and W (x, p) is the Wigner distribution of the initial wave
packet (4.1):

W (x, p) =
1

π
exp

(
−x2/σ2

)
exp

[
−(p− ~k0)2σ2

]
. (4.5)

Under the assumption k0σ � 1, we can simplify the initial Wigner distribution to

W (x, p) ' 1√
πσ

exp
(
−x2/σ2

)
δ(p− ~k0), (4.6)

such that equation (4.4) reduces to P (ε) = A~k0(ε). By further assuming weak disorder (k0` � 1),
the spectral function can be approximated by its free form A~k0(ε) ' δ(ε − ~2k2

0/2m), such that
P (ε) ' δ(ε−~2k2

0/2m). Only one energy component (ε0 = ~2k2
0/2m) is indeed at play. In section 4.5,

we will come back more rigorously on this and rely directly on the assumptions k0σ � 1 and k0`� 1.

The disorder parameter k0` introduced above involves the scattering mean free path ` = ~k0τ/m,
related to the scattering mean free time τ , given by (subsection 3.1.3)

τ =
k0~3

2mγ
(4.7)

at the Born approximation.
We focus primarily on the visual case of a wave packet which is initially much smaller than the

mean free path. As it turns out, what we discuss in the following holds as well for wave packet
broader than the mean free path, as shown in subsection 4.6.3.

4.2 Classical approach

To get a �rst insight on the dynamics of the kicked wave packet, let us start with classical
considerations. To that end, we �rst relate the center of mass to the average momentum, through
Ehrenfest theorem:

∂t 〈x〉 =
〈p〉
m
. (4.8)

1As discussed in chapter 2, this model of random potential is not realistic for cold-atom experiments. It is chosen
here because it allows for much simpler perturbative developments thanks to Wick theorem (see subsection 3.1.2
for more details), and eventually to fully solve the problem in section 4.5. In the weak disorder limit, the choice of
potential on-site distribution, if reasonable, is anyhow not expected to change the physics discussed in this chapter [42].
This issue is further discussed in section 4.6.1.
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In this notation, the symbol 〈.〉 refers to both the quantum expectation value and the disorder
average.

Equation (4.8) provides a good starting point in that the evolution of the momentum distribution
takes a rather simple form in the classical framework. Indeed, under the conditions introduced in
section 4.1, atoms have either a positive momentum ~k0 or a negative one −~k0, and they are
scattered from one momentum state to the other at a rate 1/2τ (see subsection 3.1.3 for more
details), leading to two coupled Boltzmann equations for the evolution of the average population in
~k0 (n+) and −~k0 (n−): {

dn+

dt = n−
2τ −

n+

2τ ,
dn−
dt = n+

2τ −
n−
2τ ,

(4.9)

with of course n+ + n− = 1. These two equations are straightforward to solve. With the initial
condition n+ = 1, we �nd

n+ =
1 + e−t/τ

2
and n− =

1− e−t/τ
2

. (4.10)

Plugging this result back in equation (4.8),

∂t 〈x〉class =
~k0

m
(n+ − n−) , (4.11)

and using 〈x(t = 0)〉 = 0, we �nd the following classical solution for the center of mass:

〈x〉class = `
(

1− e−t/τ
)
. (4.12)

Within a classical approach, the initial ballistic motion of the center of mass thus quickly satu-
rates at a scattering mean free path. Is this the full story, or does Anderson localization modify this
intuitive behavior? To answer this question, we propose to perform numerical simulations. Before
doing so, we note that equation (4.12) applies in any dimension.

4.3 Numerical solution

This section being devoted to a numerical technique, we set ~ to 1 to lighten the notations.

To propagate numerically the initial wave packet, equation (4.1), we start by discretizing the
space on a grid. The Laplacian in the Schrödinger equation thus becomes a discrete one. In order
to correctly describe the continuous limit, the discretization should be �ne enough to capture the
spatial variations of the wave function. When using correlated potentials, one should also make sure
that the discretization allows to resolve the correlation length. The space being of �nite size, we
have to impose boundary conditions. Throughout this thesis, we use periodic boundary conditions.
Note that we use large enough systems for the wave packet not to reach the boundaries.

The way random potentials are numerically generated was discussed in subsection 2.2.4. It
remains to perform the evolution, for that we follow [129,130]. The idea is to take advantage of the
formal solution of the Schrödinger equation as

|ψ(t)〉 = Û(t) |ψ(t = 0)〉 = e−iĤt |ψ(t = 0)〉 . (4.13)

The challenge is then to �nd a representation of Û(t) which can be implemented e�ciently. This is
achieved with Chebyshev polynomials.
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4.3.1 Chebyshev polynomials

The Chebyshev polynomial of order k is de�ned as Tk(x) = cos(karccos(x)). Chebyshev polyno-
mials have the following orthogonality properties [131]:

∫ 1

−1
dx
Tn(x)Tm(x)√

1− x2
=
π

2
δn,m(2− δn,0), (4.14)

and they can be determined iteratively using [131]

{
Tn+1(x) = 2xTn(x)− Tn−1(x),

T0(x) = 1, T1(x) = x.
(4.15)

Importantly, the Chebyshev polynomials form a complete basis, and the Chebyshev series of a given
function f :

f(x) =
∑

n

cnTn(x), (4.16)

converges to f , for x ∈ [−1, 1], if f is piecewise smooth and continuous [131]. The series (4.16)
generally diverges for |x| > 1 [131].

4.3.2 Expansion of the evolution operator over Chebyshev polynomials

Since the Chebyshev series converges only in [−1, 1], it cannot be directly used to expand the
evolution operator Û(t). To achieve this goal, it is convenient to introduce the quantities

R =
Emax − Emin

2
, (4.17)

G = Emin, (4.18)

Ĥnorm =
Ĥ − (R+G)

R
, (4.19)

where Emin and Emax are respectively a lower and an upper bound of the Hamiltonian spectrum
(such bounds always exist in the discrete �nite systems used in numerical simulations). With these
de�nitions, the eigenvalues of Ĥnorm are in [−1, 1] and

Û(t) = e−iĤt = e−i(R+G)te−iRĤnormt. (4.20)

We can now write e−iRĤnormt as a sum of Chebyshev polynomials:

e−iRĤnormt =
∞∑

k=0

akTk(Ĥnorm). (4.21)

The ak are determined from the Chebyshev polynomials orthogonality relations (4.14),

ak
π

2
(2− δk,0) =

∫ 1

−1
dx
Tk(x)e−iRxt√

1− x2
= π(−i)kJk(Rt), (4.22)

where Jk denotes the kth order Bessel function of the �rst kind.
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4.3.3 Practical implementation

Numerically, we cannot sum the in�nite series in (4.21), we have to stop at some point. This
is where the choice of Chebyshev polynomials proves useful, since for large enough k, ak decays
exponentially with k [101].

At this stage, two important comments are in order. First, the e�ciency of the procedure strongly
depends on the bounds on the Hamiltonian spectrum that one is able to provide [Emax and Emin in
equation (4.19)]. Absolute bounds are not di�cult to obtain by minimizing/maximizing separately
the kinetic and potential energies:

Eabs
min = Vmin and Eabs

max =
1

2m

(
π

∆x

)2

+ Vmax (4.23)

where Vmin (Vmax) is the smallest (largest) value taken by the given realization of the random
potential and ∆x is the grid step. However, it is generally more e�ective to use tighter bounds Emin

and Emax, which can be estimated from

∣∣∣(Ĥ − Eabs
max)n |ψ〉

∣∣∣
2
∼

n→∞

(
Emin − Eabs

max

)2n
, (4.24)

∣∣∣(Ĥ + Eabs
min)n |ψ〉

∣∣∣
2
∼

n→∞

(
Emax + Eabs

min

)2n
, (4.25)

with |ψ〉 an arbitrary state with non vanishing projection on the eigenstate with lowest (resp. highest)
eigenvalue of Ĥ. In practice, at weak disorder we use the eigenstate minimizing or maximizing the
kinetic energy, while at strong disorder, the eigenstates minimizing and maximizing the potential
energy are used. We assume that the asymptotic behaviors (4.24) and (4.25) are reached when
we observe an essentially geometrical progression (i.e. when the ratio of two consecutive values is
roughly constant). To be on the safe side, Emin (Emax) is eventually reduced (increased) by a few
percents.

A second important point is the question of numerical stability. Indeed, computing the Cheby-
shev polynomials in (4.21) iteratively using equation (4.15) up to high order may lead to numerical
instabilities. To avoid such troubles, it is generally preferable to divide the full evolution into small
time steps. Indeed, the maximum order in the Chebyshev expansion decreases when the time step
decreases. The maximum order in the Chebyshev expansion being inversely proportional to the
time step [Jk(Rt) in equation (4.22) takes non-negligible values for k . Rt], the division of the
full evolution in small time steps does not impact much the performances. We have also noticed
that a rearrangement of the series (4.21) tends to impact the numerical stability as well as the
performances. Practically, we have observed that rearranging the series (4.21) under the form

kmax∑

k=0

akTk(Ĥnorm) =

kmax∑

k=0

bkĤ
k
norm, (4.26)

with time steps allowing for kmax to be around 20, is both numerically stable and e�cient. Equa-
tion (4.26) simply rearranges the Chebyshev polynomials (e.g. T1 = x, T2 = −1+2x2) in monomials
(e.g. −1, x, 2x2).

4.3.4 Results for 〈x〉
We are now in position to perform the numerical simulations for 〈x〉. To meet the conditions

of section 4.1, we discretize the Hamiltonian on a 1D grid of size 16000π/k0, divided into 251352
grid points (roughly �ve grid points per k−1

0 ). The initial wave-packet width is set to σ = 10/k0,
and γ = 5.8 10−3 ~4k3

0/m
2 (k0` ' 86.5). The resulting center of mass, averaged over 45000 disorder
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realizations, is shown in �gure 4.1a as blue points, with statistical error bars. As visible in �gure 4.1a,
while at short times the initial ballistic motion is well described by the classical prediction (4.12)
(in green), the center of mass experiences a retrore�ection instead of saturating at a mean free
path (quantum boomerang e�ect). This surprising behavior is due to Anderson localization, as
demonstrated in the next section.

We note nevertheless that the classical prediction is an excellent approximation at short times.
Indeed, anticipating on the results presented in section 4.5, we have compared the classical predic-
tion (4.12) to the exact short-time expansion [equation (4.69)] in �gure 4.1b. One needs to keep the
�rst six terms of the short-time expansion (magenta curve) to improve upon the classical prediction.
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Figure 4.1 � Center of mass 〈x〉 as a function of time, respectively in units of the scattering mean
free path and time, of a wave packet initially launched with �nite velocity in a random potential.
The classical prediction, equation (4.12), shown as a green curve, is compared with numerical sim-
ulations shown as blue points. Figure a): after an initial ballistic motion, the packet center-of-mass
experiences a retrore�ection, in sharp contrast with the classical expectation. Figure b): focus on
short times, with a comparison between the classical prediction and the exact short-time expansion
[equation (4.69)], the classical prediction is an excellent approximation in this limit, six terms of the
short-time expansion (magenta curve) are needed to improve upon it. The parameters used in the
numerical simulations are given in the main text, in subsection 4.3.4.

4.4 Convergence of the density to its in�nite-time limit

The reason why quantum wave packets behave so di�erently can be understood by the following
argument. At any time, the density distribution can be expanded over the eigenbasis {εn, |φn〉} of
H as

|Ψ(x, t)|2 =
∑

n,m

〈φn|Ψk0〉 〈Ψk0 |φm〉φn(x)φ∗m(x)e−i(εn−εm)t/~. (4.27)

Since eigenstates are localized, the system is constrained to a volume set by the localization length
ξ = 2` [132]. This de�nes a typical mean level spacing ∆ = 1/(ρξ) (ρ is the density of states per unit
volume), with a corresponding Heisenberg time τH = 2π~/∆ = 4τ beyond which the o�-diagonal
oscillatory terms n 6= m in equation (4.27) vanish, leaving:

|Ψ(x,∞)|2 =
∑

n

| 〈φn|Ψk0〉 |2|φn(x)|2, (4.28)
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where the overbar (. . . ) denotes averaging over the random potential. Due to time-reversal in-
variance, the localized eigenstates φn can be chosen real. Furthermore, we have | 〈φn|Ψk0〉 |2 =
| 〈φ∗n|Ψ∗k0〉 |2 = | 〈φn|Ψ−k0〉 |2: equation (4.28) is independent of the sign of k0. Equation (4.28) thus
coincides with the long-time, spatially symmetric, averaged density distribution that would have
been obtained with an initial wave packet having a symmetric velocity distribution. This shows
that the center of mass must return to its initial position at long times, as a result of Anderson
localization.

In order to clarify which speci�c behavior of the spatial distribution |Ψ(x, t)|2 actually gives
rise to the quantum boomerang e�ect, we show in �gure 4.2 the x > 0 (blue curve) and x < 0
(red curve) components of the spatial pro�le |Ψ(x, t)|2, obtained numerically at three successive
times. As shown above, this distribution is expected to converge toward a symmetric one, equation
(4.28), which coincides with the �nal distribution associated to an initial wave packet of the form
Ψk0(x) ∝ exp(−x2/2σ2) cos(k0x) (i.e. a state having a momentum distribution symmetric with
respect to k = 0). As it turns out, this �nal distribution is the so-called Gogolin density pro�le [14]:

|Ψ(x,∞)|2 =

∫ ∞

0

dηπ2

32`

η
(
1 + η2

)2
sinh(πη)e−(1+η2)|x|/8`

[1 + cosh(πη)]2
. (4.29)

Equation (4.29) is derived in [14] using Berezinskii diagrammatic technique [13]. The latter is
discussed in details in section 4.5 and applies in the conditions detailed in section 4.1 (quasi-
monochromatic narrow initial wave packet and weak disorder). Equation (4.29) is also shown in
�gure 4.2 for comparison. At short times, the initial ballistic motion is visible as a peak moving
with velocity v0 = ~k0/m. After this peak has been attenuated, one sees that the retrore�ection
does not stem from a rigid, forth and back motion of the wave packet, but rather from a process of
re-symmetrization of the shape of the pro�le around x = 0.
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Figure 4.2 � Average density pro�le obtained numerically at three di�erent times. The solid upper
blue and lower red curves are the x > 0 and x < 0 components of the pro�le, respectively. The
long-time limit of the pro�le, equation (4.29), is shown as a dashed black curve.

Having clari�ed the origin of the quantum boomerang e�ect, we now would like to analyze the
center of mass at �nite times from an analytical perspective.
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4.5 Center-of-mass motion from Berezinskii diagrammatic technique

To lighten the notations, we use ~ = 1 throughout this section.

4.5.1 Center of mass in terms of Green functions

To begin with, we express the quantity of interest, here 〈x〉, in terms of Green functions (the
reader not familiar with Green functions may �nd subsection 3.1.1 useful). This is most conveniently
done by �rst making use of the Erenhfest theorem, ∂t 〈x〉 = 〈p〉 /m, which leads to

〈p〉 =

∫
dp
2π
|ψ(p, t)|2p =

i

4π

∫
dxadxbdp

(
∂xa − ∂xb

)
e−ip(xa−xb)ψ(xa, t)ψ∗(xb, t). (4.30)

Then, we express ψ(xa, t) [resp. ψ∗(xb, t)] in terms of GR(xa, xc, t) [resp. GA(xb, xd, t)]:

ψ(xa, t) =

∫
dxcG

R(xa, xc, t)Ψk0(xc)

[
resp. ψ∗(xb, t) =

∫
dxdG

A(xb, xd, t)Ψ
∗
k0(xd)

]
. (4.31)

We can perform the integral over p, equal to 2πδ(xa − xb), to �nd

〈p〉 =
i

2

∫
dxdxcdxd

[(
∂xa − ∂xb

)
GR(xa, xc, t)GA(xb, xd, t)

]
xa=xb=x

Ψk0(xc)Ψ
∗
k0(xd). (4.32)

It is easier to work in the frequency domain than in time domain, we thus introduce the Fourier
transforms

GR(xa, xc, ω1) =

∫
dteiω1tGR(xa, xc, t) and G

A(xb, xd, ω2) =

∫
dte−iω2tGA(xb, xd, t). (4.33)

Changing variables to ε and ω through ω1 = ε and ω2 = ε− ω, we obtain

〈p(ω)〉 =
i

4π

∫
dxdxcdxddε

[(
∂xa − ∂xb

)
GR(xa, xc, ε)GA(xb, xd, ε− ω)

]
xa=xb=x

Ψk0(xc)Ψ
∗
k0(xd),

(4.34)
where 〈p(ω)〉 =

∫
dteiωt 〈p(t)〉. The Fourier transform of the center of mass, 〈x(ω)〉 =

∫
dteiωt 〈x(t)〉,

immediately follows from

∂t 〈x(t)〉 = 〈p(t)〉 /m⇔ 〈x(ω)〉 = − 1

imω
〈p(ω)〉 . (4.35)

Equation (4.34) is fully general and does not rely on any assumption.

4.5.2 Diagrammatics

As we have seen in subsection 3.1.1, Green functions are very convenient for perturbative cal-
culations. A perturbative treatment is however insu�cient here, because the quantum boomerang
e�ect is due to Anderson localization, which is in essence a non-perturbative phenomenon. The
Berezinskii diagrammatic technique [13] allows for a systematic resummation of the perturbative se-
ries, thus providing an analytical description of Anderson localization in one dimension. Berezinskii
diagrammatic technique operates in a frequency range where ω � ε, hence a priori describing only
times longer than 1/ε. Note that, anticipating on the results presented below, we can replace ε by
ε0, such that the weak disorder limit k0`� 1 can equivalently be written ε0τ � 1, and the condition
t > 1/ε0 does not impose anything on t/τ .
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Diagrammatic representation of GR(xa, xc, ε)GA(xb, xd, ε− ω)

We start by expanding the Green function, under the form of a Born series [equation (3.6)],

GA/R(x, x′, ε) =G
A/R
0 (x− x′, ε) +

∫
dx1G

A/R
0 (x− x1, ε)V (x1)G

A/R
0 (x1 − x′, ε)+

∫
dx1dx2G

A/R
0 (x− x1, ε)V (x1)G

A/R
0 (x1 − x2, ε)V (x2)G

A/R
0 (x2 − x′, ε) + . . . ,

(4.36)

where GA/R0 (x− x′, ε) is the Green function of the free-particle Hamiltonian, given by

G
A/R
0 (x− x′, ε) = ±im

k
e∓ik|x−x

′|, (4.37)

with k =
√

2mε. The following formula will be useful in what follows:

GA0 (x− x′, ε− ω) = i
m

k
e−ik(1− ω

2ε)|x−x′| when |ω| � ε. (4.38)

The di�erent terms appearing in the right-hand side of equation (4.36) are represented as dia-
grams: the unaveraged diagrams consist of two particle lines going respectively from xc to xa and xd
to xb (respectively for GR and GA). Each line consists of segments (x′, x1), . . . , (xi, xi+1), . . . , (xn, x)
; the segments are the free Green functions while the points xi refer to the factors V (xi). After av-
eraging, these factors group together in pairs (by application of Wick theorem), each pair being
associated with the potential correlation function (4.3). In the diagrams, the potential correlation
functions are represented by wavy lines and free Green functions by ordinary (for the retarded Green
function, GR) and dashed lines (for the advanced Green function GA). An example of such a diagram
is shown in �gure 4.3 (for the sake of clarity with xa = xb = x and xc = xd = x′).

xx′x1 x2 x3 x4 x5 x6 x7

L Z R

Figure 4.3 � Example of diagram contributing to GR(x, x′, ε)GA(x, x′, ε− ω). The wavy lines repre-
sent the potential correlation function, the ordinary (dashed) lines represent the free Green functions
for the retarded (advanced) Green function. The vertical unfolding is necessary to represent the di-
agram, the vertical direction has no substance.
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Initial vertices

In principle, to sum all the diagrams, we should consider all possible initial vertices. They are
depicted in �gure 4.4. Under the weak-disorder condition introduced in section 4.1 (k0`� 1), only
two of them matter. To exhibit these relevant initial vertices, the �rst step is to order the scattering
points xi (over which the integration is performed to calculate a diagram) as

−∞ < x1 ≤ · · · ≤ xi ≤ x′ ≤ xi+1 ≤ · · · ≤ xj ≤ x ≤ xj+1 ≤ · · · ≤ xn <∞. (4.39)

With this ordering, the free Green functions are now factorable thanks to the �xed sign of xi−xj
over the region of integration [given by equation (4.39)]. For example, if xi > xj , we have

GR0 (xi − xj , ε) = −im
k
eik|xi−xj | =

√
−im

k
eikxi

√
−im

k
e−ikxj . (4.40)

This allows us to formally associate the �rst factor to the vertex xi and the second one to the vertex
xj . We generalize this procedure to all GR0 and GA0 lines of the diagrams, thereby transferring the
dependence on the xi's from the lines to the vertices.

In each diagram, we can now consider the initial vertices separately from the rest. The di�erent
initial vertices are shown in �gure 4.4. Vertices 4.4c and 4.4d carry a rapidly oscillating factor
e±ik(xc+xd), integrating it makes a negligible contribution to GRGA. We thus keep only initial
vertices 4.4a and 4.4b.

xc

xd

(a)

xc

xd

(b)

xc

xd

(c)

xc

xd

(d)

Figure 4.4 � Di�erent vertices at the starting point. To those vertices correspond the following
factors: (m/k) exp(ik(xd − xc)) exp(−iωkxd/(2ε)) [a], (m/k) exp(ik(xc − xd)) exp(iωkxd/(2ε)) [b],
(m/k) exp(ik(xc + xd)) exp(−iωkxd/(2ε)) [c], (m/k) exp(−ik(xc + xd)) exp(iωkxd/(2ε)) [d].

As speci�ed in section 4.1, the initial wave packet is assumed much smaller than the scattering
mean free path: |xc − xd| � `, allowing us to perform the integral over xc − xd in equation (4.34).
To this end, we change variable to r = xc − xd and x′ = (xc + xd)/2 in equation (4.34) (we also use
equation (4.35) to express the center of mass 〈x〉 in terms of the momentum expectation value 〈p〉):

〈x(ω)〉 = − 1

4πmω

∫
dxdx′drdε

[(
∂xa − ∂xb

)
GR(xa, x′ + r/2, ε)GA(xb, x′ − r/2, ε− ω)

]
xa=xb=x

×Ψk0(x′ + r/2)Ψ∗k0(x′ − r/2).

(4.41)

The range of Ψk0 being much smaller than the scattering mean free path, we can assume that
no scattering event takes place between xc and xd, and factorize e±ikr in the product GRGA as
illustrated in �gure 4.5:

GR(xa, x′ + r/2, ε)GA(xb, x′ − r/2, ε− ω) ' e∓ikrGR(xa, x′, ε)GA(xb, x′, ε− ω), (4.42)

with the upper sign for the vertex 4.4a and the lower sign for the vertex 4.4b.
We are now in position to perform the integration over r. For vertices 4.4a and 4.4b we obtain:

∫
dre∓ikrΨk0(x′ + r/2)Ψ∗k0(x′ − r/2) =

2πk

m

∫ ∞

0
dpW (x′,±p)δ(ε− p2/2m), (4.43)
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Figure 4.5 � Relevant vertices at the starting point: operation of changing variables from (xc, xd) to
(r, x′) through r = xc − xd and x′ = (xc + xd)/2, under the condition |r| � ` (no scattering event
between xc and xd).

where we have introduced (we remind that k =
√

2mε)

1 =
k

m

∫ ∞

0
dpδ(ε− p2/2m), (4.44)

and the Wigner distribution of the initial wave packet W (r, p) [equation (4.5)]. We identify δ(ε −
p2/2m) as the free spectral function A0

p(ε) (see subsection 3.1.4 for more details).

Plugging equations (4.42) and (4.43) in equation (4.41), we obtain

〈x(ω)〉 = −
∫

dxdx′dpdε
k

2m2ω

[(
∂xa − ∂xb

)
GR(xa, x′, ε)GA(xb, x′, ε− ω)

]
xa=xb=x

×


W (x′, p)︸ ︷︷ ︸
vertex 4.4a

+W (x′,−p)︸ ︷︷ ︸
vertex 4.4b


A0

p(ε).

(4.45)

Note that the free spectral function A0
p(ε) appears here instead of the average spectral function Ap(ε)

in the presence of the random potential. This is due to our approximation of no scattering event
between xc and xd [111]. Anyway, the free spectral function A0

p(ε) is an excellent approximation of
Ap(ε) in the weak disorder limit we are considering. Under the conditions of section 4.1 [Ap(ε) =
A0
p(ε) = δ(ε− p2/2m) and W (x′, p) = δ(x′)δ(p− k0)], equation (4.45) simpli�es to

〈x(ω)〉 = − k0

2m2ω

∫
dx
[(
∂xa − ∂xb

)
GR(xa, 0, ε0)GA(xb, 0, ε0 − ω)

]
xa=xb=x

, (4.46)

with vertex 4.4a as only possible initial vertex in the diagrammatic representation of GRGA. Equa-
tion (4.46) constitutes our starting point for the calculation of 〈x〉 with Berezinskii diagrammatic
technique.

To summarize, the conditions allowing us to simplify equations (4.34) and (4.35) to equa-
tion (4.46) are i) the quasi-monochromaticity, which makes the integral over ε dominated by ε0,
ii) the initially narrow wave packet, allowing for Ψk0(x) ' δ(x), iii) the kicking term, exp(ik0x),
together with the assumption k0σ � 1, which impose an initial motion to the right (i.e. initial
vertex 4.4a only).

Selection of relevant diagrams

For the sake of generality, we momentarily forget the restriction to the initial vertex 4.4a in the
diagrammatic representation of GRGA, and include the initial vertex 4.4b as well.

In order to evaluate GRGA exactly, one should in principle sum all possible diagrams, which is
a formidable task. As for initial vertices, at weak disorder (k0` � 1) only a subclass of diagrams
matters. To exhibit these diagrams, we consider the intervals delimited by the successive scattering
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points of equation (4.39) and to each associate a number pair (g, g′), where g and g′ are the number of
GR0 and GA0 lines in the interval. For example, to the diagram in �gure 4.3 corresponds the sequence
(from left to right) (2,2),(3,3),(3,1),(1,1),(1,1),(2,2),(4,4),(2,2). When going from one interval to a
neighboring one, the numbers g and g′ undergo de�nite changes ∆g and ∆g′ which are uniquely
determined by the type of vertex separating the two intervals. Di�erent types of vertices are displayed
in �gure 4.6. As an example, the diagram f in �gure 4.6 corresponds to ∆g = ∆g′ = 2. Such a
vertex appears in �gure 4.3 between the intervals at the left and at the right of x1.

We are now in position to distinguish two families of vertices. On the one hand, the �rst family
has the property that ∆g = ∆g′. As can be seen from equation (4.38), in the limit ω/ε0 → 0,
the vertices of this family are phaseless. On the other hand, the remaining vertices carry a phase
ei(∆g

′−∆g)k0x. Integrating this rapidly oscillating factor makes a negligible contribution to GRGA.
We thus keep only diagrams made of vertices having the property ∆g = ∆g′. Such vertices are
represented in �gure 4.6 (for the inner ones) and 4.7 (for the external ones).

a(a’) b(b’) c(c’) d e f

Figure 4.6 � Di�erent inner vertices that form the relevant diagrams when ω � ε0. The vertices a',b'
and c', not shown on the �gure, di�er from the vertices a, b and c by having dashed brown lines in
place of ordinary lines. The vertex a(a') corresponds to a term of the form G0(xi−1−xi)V (xi)G0(xi−
xi)V (xi)G0(xi−xi+1). To those vertices correspond the following factors: −γ(m/k0)2 [a,a',b,b',c,c'],
γ(m/k0)2 [d], γ(m/k0)2 exp(iωk0xi/ε0) [e], γ(m/k0)2 exp(−iωk0xi/ε0) [f].

x ′
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Γ+,.

x ′

b

Γ−,.

x

c

Γ.,+

x

d
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Figure 4.7 � Di�erent vertices at the starting point x′ and the ending point x entering the relevant
diagrams when ω � ε0. We denote such diagrams by Γ±,±, the left subscript ± indicates the
type of x′ vertex (a or b), while the right subscript indicates the type of x vertex (c or d) (e.g.
a diagram containing b and c will be denoted Γ−,+). To those vertices correspond the following
factors: (m/k0) exp(−iωk0x

′/(2ε0)) [a], (m/k0) exp(iωk0x
′/(2ε0)) [b], (m/k0) exp(iωk0x/(2ε0)) [c],

(m/k0) exp(−iωk0x/(2ε0)) [d].

〈x〉 in terms of diagrams

Coming back to our initial problem, the calculation of 〈x〉 through equation (4.46), we see that
two important points should be taken into account: i) we should only keep diagrams with initial
vertices of type 4.4a and ii) we should account for the derivatives with respect to the initial point.
i) amounts to keeping only diagrams of type Γ+,. in �gure 4.7 and ii) simply introduces prefactors
(from the caption of �gure 4.4, ∓2ik0 for Γ.,±). Taking i) and ii) into account, we obtain

〈x(ω)〉 = − 1

iω

∫
d(x− x′)

[
Γ+,+(x− x′)− Γ+,−(x− x′)

]
, (4.47)
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where we have used the fact that GRGA depends only on |x − x′|, due to translational invariance
after averaging over the random potential. For latter convenience, it is useful to symmetrize equa-
tion (4.47), which presently describes the center of mass of a wave packet initially kicked to the
right, by adding the corresponding equation for a wave packet initially kicked to the left

〈x(ω)〉−k0 = − 1

iω

∫
d(x− x′)

[
Γ−,+(x− x′)− Γ−,−(x− x′)

]
, (4.48)

through 〈x〉k0 = (〈x〉k0 − 〈x〉−k0)/2, to obtain

〈x(ω)〉 = − 1

2iω

∫
d(x− x′)

[
Γ+,+(x− x′)− Γ+,−(x− x′)− Γ−,+(x− x′) + Γ−,−(x− x′)

]
. (4.49)

Indeed, under this form 〈x(ω)〉 can be treated on the same footing as the current-current corre-
lation function with the Berezinskii approach2 [13]. We will come back to the connection between
center of mass and the current-current correlation function in section 4.7.

4.5.3 Equations for the center of mass

Setting up the equations

From this point on, we use Berezinskii convention ~ = 2m = k0 = 1. ~, m and k0 will be
reintroduced in the �nal results.

To calculate the diagrams involved in equation (4.49), we start by distinguishing the left-hand,
right-hand and central parts of the diagrams as the part of the diagrams lying to the left of x′,
to the right of x, and between x′ and x respectively (we assume x > x′ for the moment). In
�gure 4.3, these respectively correspond to L, R and Z. Since for all the selected vertices (see
�gure 4.6) ∆g = ∆g′ = 0,±2, in each interval belonging to the left-hand and right-hand part we
have g = g′ = 2n, while in each interval belonging to the central part we have g = g′ = 2n + 1,
where n is an integer which may depend on the interval.

The contribution of each diagram is an integral over the region (4.39). This integral breaks
up into product of three integrals over (x1, . . . , xi), (xi+1, . . . , xj) and (xj+1, . . . , xn), which we call
respectively the contributions of the left-hand, central and right-hand part. Let us denote by R̃m(x)
the sum of the contributions of all the right-hand parts that have at the boundary with the central
part (i.e. immediately to the right of point x) the state g = g′ = 2m, by R̃m′(x′) the analogous sum
of the contributions of the left-hand parts, and by Zm′,m(x′, x) the sum of the contributions made
by the central parts with left and right boundary states g = g′ = 2m′ + 1 and g = g′ = 2m+ 1.

To calculate R̃m(x), the idea is to consider how it varies as x is increased of an in�nitesimal
amount δx. In practice, one can relate R̃m(x− δx) to R̃m(x) by adding all the possible vertices in
�gure 4.6 between x−δx and x. However, in doing this, one should be careful not to obtain diagrams
with particle loops or diagrams that bear no relation with the original diagrams. In particular, one
must only keep diagrams for which the lines GR0 and GA0 are continuous from x′ to x. For this
purpose, we can number the lines on the boundary of the right-hand part by assigning #1 to the
segment corresponding to the �rst entry of the particle line into the right-hand part, #2 to the �rst
emergence from it, #3 to the second entry, and so forth from 1 to 2m. Then, in constructing the
diagrams, we should keep in mind that the angles at the vertices in �gure 4.6 can only be formed by
the segments of the G0-lines with consecutive numbers. Applying this procedure to R̃m in �gure 4.8,

2Note that using directly the results of [13] to calculate 〈x〉, we �nd a result o� by a factor of 2.
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we derive the equation

R̃m(x− δx) =R̃m(x) +
γ

4


−4mδx︸ ︷︷ ︸

a and a'

− 2m2δx− 2m(m− 1)δx︸ ︷︷ ︸
b and b'

− 2m(m− 1)δx︸ ︷︷ ︸
c and c'

+ 4m2δx︸ ︷︷ ︸
d


 R̃m(x)

+
γ

4


m2R̃m−1(x)eiωxδx︸ ︷︷ ︸

e

+m2R̃m+1(x)e−iωxδx︸ ︷︷ ︸
f


+O(δx2).

(4.50)

Taking the limit δx→ 0, we obtain

−dR̃m(x)

dx
=
γ

4

[
−2m2R̃m(x) +m2R̃m−1(x)eiωx +m2R̃m+1(x)e−iωx

]
. (4.51)

This equation can be solved under the form R̃m(x) = eiωmxRm, with Rm solution of

iνRm +m (Rm+1 +Rm−1 − 2Rm) = 0 for m > 0 and R0 = 1, (4.52)

where ν = 4ω/γ.
For R̃m′(x′), the procedure is identical with x+ δx instead of x− δx and e ↔ f [�gure 4.6]. One

�nds
dR̃m′(x′)

dx′
=
γ

4

[
−2m′2R̃m′(x

′) +m′2R̃m′−1(x′)e−iωx
′
+m′2R̃m′+1(x′)eiωx

′
]
, (4.53)

i.e. R̃m′(x) = R̃m(−x).
For Z.,m(x), on should separate the �ending vertex� (the one at x, c and d in �gure 4.7) from

the rest, formally

dZ.,m(x)

dx
=

d (�ending vertex� × �the rest�)
dx

=
d �ending vertex�

dx
�the rest� +

d �the rest�
dx

�ending vertex�,
(4.54)

and one �nds
dZ.,m(x)

dx
= ± iω

2
Z.,m(x) +

γ

4

[
m2e−iωxZ.,m−1 + (m+ 1)2eiωxZ.,m+1 − (m2 + (m+ 1)2)Z.,m

]
,

(4.55)
± depending on the kind of �ending vertex�, + for Γ.,+ and − for Γ.,−. Zm,.(x′) is in turn found
equal to Z.,m(−x).

From the initial and �nal vertices presented in �gure 4.7, we see that the Γ introduced in
equations (4.49) can be expressed as

(
Γ++ Γ+−
Γ−+ Γ−−

)
=

∞∑

m′=0

∞∑

m=0

(
R̃m′Zm′,mR̃m R̃m′Zm′,mR̃m+1

R̃m′+1Zm′,mR̃m R̃m′+1Zm′,mR̃m+1

)
. (4.56)

Some simpli�cations

Let us come back to equation (4.49). We �rst consider the contribution of Γ+,+(x′ < x). We
express it through3

∫

x′<x
d(x′ − x)eik(x′−x)Γ+,+(x′ − x) = 4γ

∞∑

m′=0

Rm′(ω)Q̃++
m′ (ω, k), (4.57)

3k is absent in the equation for 〈x〉 [equation (4.49)], and thus set to 0 in the �nal expressions [equations (4.63)
and (4.65)]. It is here introduced for the sake of generality, to conform with Berezinskii notations [13].
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Figure 4.8 � Schematic representation of the process of constructing the right hand parts and equa-
tion (4.50). The right-hand parts are represented with rectangles ; the curves are the particle lines
inside the right-hand part and the central part. The diagrams a',b' and c' are the same as a, b
and c with the vertex below the x-axis. Only one example for each kind of vertex is represented,
summation over all possible choice for incoming and outgoing legs is implied.

where, according to (4.56),

Rm′Q̃
++
m′ (ω, k) =

γ

4

∞∑

m=0

∫ ∞

0
dre−ikrR̃m′(x− r)Zm′,m(x− r, x)R̃m(x). (4.58)

Q̃++
m′ is then de�ned as

Q̃++
m′ (ω, k) =

γ

4

∞∑

m=0

∫ x

−∞
dx′eik(x′−x)e−iωm

′x′Zm′,m(x′, x)eiωmxRm. (4.59)

We recall that R̃m′(r) = e−iωm
′rRm′ , with Rm′ independent of r. To derive an equation for

Q̃++
m′ (ω, k), we start by the following integration by part:
∫ x

−∞
dx′eik(x′−x)e−iωm

′x′Zm′,m(x′, x)eiωmxRm

=

[
eik(x′−x)e−iωm

′x′

ik − iωm′ Zm′,m(x′, x)eiωmxRm

]x

−∞
−
∫ x

−∞
dx′

eik(x′−x)e−iωm
′x′

ik − iωm′
dZm′,m(x′, x)

dx′
eiωmxRm.

(4.60)
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We have the condition Zm′,m(x′, x′) = δm′,m, and the equation for Zm′,m (from equation (4.55) and
Zm,.(x

′) = Z.,m(−x))

−dZm′,.
dx′

=
iω

2
Zm′,. +

γ

4

[
m′2eiωx

′
Zm′−1,. + (m′ + 1)2e−iωx

′
Zm′+1,. − (m′2 + (m′ + 1)2)Zm′,.

]
.

(4.61)
Plugging it in equation (4.60), we �nd the sought for equation

Rm′ −
4ik

γ
Q̃++
m′ +

4iω

γ

(
m′ +

1

2

)
Q̃++
m′ + (m′+ 1)2(Q̃++

m′+1− Q̃++
m′ )−m′2(Q̃++

m′ − Q̃++
m′−1) = 0. (4.62)

The same procedure is then carried out for Γ+,−(x′ < x). The contributions from Γ+,+(x′ < x)
and Γ+,−(x′ < x) are gathered through the introduction of Q1

m(ω, k) = Q̃++
m − Q̃+−

m . Γ+,+(x′ >
x) and Γ+,−(x′ > x) give the same contribution with an opposite k, Q1

m(ω,−k). Gathering the
contributions from the Γ+,. we obtain

〈x(ω)〉Γ+,.
= − 2

iωγ

∞∑

m=0

Rm

[
Q1
m(ω, k = 0) +Q1

m(ω,−k = 0)
]
, (4.63)

with

P 1
m − iκQ1

m + iν

(
m+

1

2

)
Q1
m + (m+ 1)2(Q1

m+1 −Q1
m)−m2(Q1

m −Q1
m−1) = 0, (4.64)

where we have introduced ν = 4ω/γ, κ = 4k/γ and P 1
m = Rm − Rm+1. Adding the contribution

from Γ−,., we eventually obtain

〈x(ω)〉 = − 2

iωγ

∞∑

m=0

P 1
m

[
Q1
m(ω, k = 0) +Q1

m(ω,−k = 0)
]
. (4.65)

The problem is reduced to solving equations (4.52) for Rm, (4.64) for Q1
m and summing them as

prescribed by equation (4.65). The solution of equation (4.52) has an explicit form [133]:

Rm(s) = sΓ(m+ 1)Ψ(m+ 1, 2;−s), (4.66)

where Ψ is the con�uent hypergeometric function of the second kind, and s = iν. It is sometimes
more convenient to work with the integral representation of Rm, which reads

Rm = −iν
∫ ∞

0
dseiνs

(
s

s+ 1

)m
= −iν

∫ ∞

0
dseiνs

(
1 + s−1

)−m
. (4.67)

Equation (4.67) can be directly checked from equation (4.52) through integration by part. On the
other hand, to the best of our knowledge no closed form solution for Q1

m exists.

Note that the derivation of Gogolin density pro�le [equation (4.29)] presented in [14] involves an
equation akin to (4.65). More precisely, the in�nite-time density pro�le is similarly written as a sum
over P 0

m and Q0
m. P

0
m = (Rm +Rm+1)/2 is the counterpart of P 1

m, and the equation for Q0
m di�ers

from (4.64) only through the upper index. The in�nite-time limit then allows to approximate m by
a continuous variable, making the calculation tractable.
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4.5.4 Results

The problem is now only of mathematical nature. To extract the long time asymptotic behavior
of 〈x〉, one can use the generating functions of Rm and Q1

m to derive an integro-di�erential equation
for 〈x〉. This integro-di�erential equation cannot be solved in full generality but can be used to
extract the limit of long times. This program is carried out in appendix 4.A, the result writes

〈x〉 = `
64ln(t/4τ)τ2

t2
+O

(
1

t2

)
. (4.68)

Equation (4.68) is shown in �gure 4.9, as a solid red curve, and is in excellent agreement with the
numerical simulations at long times.

We can also solve equation (4.64) for Q1
m by making use of an expansion in powers of t. The

method is presented in appendix 4.B and allows to extract the short-time expansion of 〈x〉 up to
arbitrary order. Keeping only the �rst few terms, we obtain the short-time series

〈x〉 = `

[
t

τ
− t2

2τ2
+

t3

6τ3
− 3t4

64τ4
+

7t5

576τ5
− 629t6

207360τ6

]
+O

(
t7
)
. (4.69)

The series has a �nite convergence radius (estimated at 4τ from the �rst 100 terms). Equation
(4.69) is compared with numerical simulations at short-times in �gure 4.1, it describes very well the
numerical results up to t ≈ τ .

To describe the center of mass beyond the convergence radius of the short-time series (4.69), we
propose a Padé resummation. The knowledge of the long-time limit (4.68) suggests to express 〈x〉
at any time under the form

〈x〉 = `
ln(1 + t/4τ)τ2

t2
lim
N→∞

∑N
n=0 an

(
t/τ
)n

∑N
n=0 bn

(
t/τ
)n

︸ ︷︷ ︸
Padé approximant

, (4.70)

the coe�cients an and bn are deduced from the short-time series (4.69). In practice, (4.70) converges
quickly, and an excellent approximation of 〈x〉 for times up to 120τ is obtained with N = 7. This is
demonstrated by the solid green curve in �gure 4.9a, which perfectly coincides with the numerical
results.

4.6 General case

So far, we have only considered the case of a Gaussian uncorrelated potential. As discussed
in section 2.2, this model for the random potential is not realistic for cold-atom experiments. It
was chosen here to allow for the full analytical treatment of section 4.5. Nevertheless, in the weak
disorder limit, a kind of universality with respect to the potential on-site distribution and correlation
function is expected [42].

4.6.1 Case of a non-Gaussian potential

The on-site distribution, if reasonable, is not expected to have any qualitative e�ect on the
dynamics. This is indeed what we observe in �gure 4.10b, where the numerical simulations using
a blue-detuned speckle uncorrelated potential4 are in excellent agreement with our prediction for a
Gaussian potential. This is in agreement with the one-parameter scaling theory [section 1.3], which
states that the dynamics depends on the microscopic details only through the non-interferential
(classical) limit [` and τ here, see equation (4.12)].

4This potential has an on-site exponential distribution and is de�ned only for positive V , see section 2.2 for more
details.
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Figure 4.9 � Figure a): center of mass 〈x〉 of a wave packet initially launched with �nite velocity
in a random potential, as a function of time. The analytical results, equation (4.68) for the long
time asymptotic and the Padé approximant (4.70), respectively shown as red and green curves, are
compared with numerical simulations shown as blue points, with statistical error bars. Inset of �gure
a): di�erence between the Padé approximant of 〈x〉 and the numerical result (∆x = 〈x〉green−〈x〉blue)
as a function of time. Figure b): center of mass multiplied by (t/τ)2 as a function of time. The
asymptotic result (4.68) [red curve] is compared to the numerical prediction. The parameters used
in the numerical simulations are given in subsection 4.3.4. To allow for a more accurate comparison,
we have used more precise estimates (only by roughly a percent) of the scattering mean free path and
time, ` = ~4(1− cos2(k0a))/2m2a2γ and τ = `ma/~ sin(k0a) respectively [134], where a = 0.2/k0 is
the lattice spacing used in the numerical simulations. Just like (4.7), these forms are valid to lowest
order in the potential, the only di�erence is that they take the spatial discretization into account
[(4.7) corresponds to the limit a→ 0].

4.6.2 Case of a correlated potential

The introduction of correlations requires some care. Indeed, the scattering on correlated po-
tentials is described by two time scales, the scattering (τ) and transport mean free time (τb). The
latter is de�ned as the average time it takes for an atom to experience a signi�cative change in its
direction of propagation. In the case of an uncorrelated potential, the scattering is isotropic and the
transport mean free time is equal to the scattering mean free time. In strongly correlated potentials
in contrast, scattering is strongly anisotropic and the transport mean free time well exceeds the
scattering mean free time [135]. Correspondingly, the transport mean free path (`b = ~k0τb/m) is
the average time traveled by the atoms before experiencing a signi�cative change in their direction
of propagation. As it turns out, Berezinskii equations can be derived for correlated potentials, the
net result is that the replacement (τ, `) → (τb, `b) fully accounts for the correlations [14]. This is
again fully consistent with the one-parameter scaling theory, as here the classical limit is set by `b
and τb (in section 4.2, describing the classical limit, the replacement (τ, `)→ (τb, `b) is immediate).

When performing the simple replacement (τ, `) → (τb, `b) to describe the correlated case, one
should ensure that the variations of τb and `b with energy are not too important in the energy range
covered by the wave packet. Indeed, as discussed in section 3.2, not ful�lling this condition can
lead to surprises. As an example, one can imagine having energy components with sharply distinct
localization lengths, as can be the case in speckle potentials [47]. If this happens, it could lead to
an apparent halt of the quantum boomerang e�ect, waiting for the retrore�ection of slow energy
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Figure 4.10 � Center of mass as a function of time for two types of random potentials. The numerical
results for a Gaussian correlated potential (a) and an uncorrelated potential with on-site blue-
detuned speckle distribution (b) are shown in blue, with their error bars, and are compared to the
analytical prediction obtained in section 4.5. For a), the potential correlation function is given
by (4.71). The speckle distribution (b) corresponds to an exponential distribution, de�ned only
for positive V . For a) [resp. b)], we have used a disorder strength V0 = 0.1 ~2k2

0/m [resp. γ =
0.0058 ~4k3

0/m
2]. In both cases, we have used an initial wave packet of size σ = 10/k0. The results

are averaged over 25000 [resp. 15000] disorder realizations for a) [resp. b)]. In the correlated case
(a), the correlation length σc is equal to 0.5/k0. To guarantee that the correlations are correctly
resolved, we have used a thinner discretization of roughly 10 points per k−1

0 in the correlated case (a)
than in the uncorrelated case (b) for which roughly 5 points per k−1

0 were su�cient. Transport (a)
and scattering (b) mean free time and path are obtained by �tting the short times with the classical
prediction (4.12) (with ` and τ replaced by τb and `b for a), see main text for more details). The
�tted values [` ' 87 and `b ' 96] are close to the predictions of perturbation theory [` ' 86 from
equation (4.7) and `b ' 100 from equation (4.72)]. Note that in the correlated case (a), `b ' 1.5`.

components. To avoid the appearance of such e�ects, we have chosen to use a correlated potential
that has smooth variations of the transport mean free path and time. This potential is described by
an exponential correlation function:

V (x)V (x′) = V 2
0 exp

(
−|x− x

′|
σc

)
, (4.71)

from which we infer the scattering and transport mean free path at the Born approximation [3]:

` =
~4k2

0

m2V 2
0

[
2σc +

2σc
1 + 4k2

0σ
2
c

]−1

and `b =
~4k2

0

2m2V 2
0

1 + 4k2
0σ

2
c

2σc
. (4.72)

Figure 4.10a shows that in this case, the simple replacements (τ, `) → (τb, `b) in the results of
section 4.5 is indeed su�cient to describe the correlated case.

4.6.3 Case of a broad initial wave packet

We have so far restricted ourselves to the case of a wave packet initially much smaller than the
mean free path. What happens to the quantum boomerang e�ect if we relax this assumption? To
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answer this question, we elaborate on the reasoning leading to equation (3.32). We assume that the
initial wave packet plays only a role through its convolution with a propagator:

|ψ(x, t)|2 =

∫
dx′P (x′ − x, t)|Ψk0(x′)|2, (4.73)

with P (x′−x, t) the probability for a particle initially at x′ to reach x in a time span t and |Ψk0(x′)|2
the initial wave packet. The center of mass follows from integration over x weighted by x. The change
of variable x̃ = x− x′ then allows to immediately conclude that the width of the initial wave packet
plays no role.

To validate the above reasoning, we have performed numerical simulations starting from wave
packets much broader than the mean free path. The results are reported in �gure 4.11 and con�rm
the minor role (if any) played by the initial wave packet width on the quantum boomerang e�ect.
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Figure 4.11 � Center of mass as a function of time in the case of an initially broad wave packet
(σ � `). The center of mass obtained numerically, starting from a broad wave packet, is shown in
blue, with its error bars and is compared to the analytical prediction obtained in section 4.5. The
numerical parameters match the ones used for the numerical results of �gure 4.9, except for the
initial width of the wave packet, equal to σ = 750/k0 ' 9`. The scattering mean free path (`) and
time (τ) are calculated using the formula given in the caption of �gure 4.9.

In conclusion, although a broad wave packet appears essentially motionless at the scale of its
size, a �ne analysis reveals that it experiences the same quantum boomerang e�ect than a narrow
wave packet.

4.7 A simple relation between 〈x〉 and 〈x2〉
Interestingly, the similarity of the calculation of 〈x〉 and of the current-current correlation func-

tion, observed in subsection 4.5.2, is rooted in a simple relation between 〈x〉 and 〈x2〉 (note that 〈x2〉
is directly related to the di�usion coe�cient and thus to the conductivity, which in turn is related to
the current-current correlation function). To exhibit this connection, we start by applying Ehrenfest
theorem to the mean-square displacement, ∂t 〈x2〉 = 〈

[
x2, p2

]
〉 /(2i~m), and split the particle dis-

tribution into two classes of positive and negative velocities: |Ψ(x, t)|2 = n+(x, t) + n−(x, t). This
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leads to5

∂t 〈x2〉 = 2v0 〈x〉+ − 2v0 〈x〉− , (4.74)

where v0 = ~k0/m. Here 〈x〉± =
∫∞
−∞ x n±(x, t) dx, with obviously 〈x〉 = 〈x〉+ + 〈x〉−.

[...] [...]

[...] [...]

a) b)

c) d)

Figure 4.12 � a) Arbitrary multiple scattering path going from x = 0 to x, contributing to 〈x〉−
(the path is unfolded to the top for clarity). By time-reversing and translating this path by −x, we
obtain path b), which gives an opposite contribution to 〈x〉−, ensuring that 〈x〉− vanishes. c) Path
contributing to 〈x〉+. Its time-reversed and translated counterpart d) starts with momentum −k0

and is thus not populated at t = 0, so that 〈x〉+ can be non-vanishing.

We now consider an arbitrary path contributing to 〈x〉− [�gure 4.12a]. The path starts at
x = 0 with momentum ~k0 and reaches x with momentum −~k0 at time t. By time-reversing
and translating this path of a distance −x, one can always �nd a complementary path starting
with momentum ~k0 at x = 0 and reaching −x at time t [�gure 4.12b]. Due to time-reversal and
translational invariance, these two paths contribute with the same weight to n−(x, t), which is thus
an even function of x, yielding 〈x〉− = 0. This reasoning does not apply to 〈x〉+ since the time-
reversed/translated counterpart of an arbitrary path contributing to 〈x〉+ starts by construction
with a momentum −~k0 which is not initially populated (see �gures 4.12c-d). We have thus shown

∂t〈x2〉 = 2v0〈x〉. (4.75)

4.8 Conclusion

In this chapter, we have considered the evolution in a 1D disordered potential of an initial wave
packet carrying a �nite velocity. We have �rst observed numerically that, unexpectedly, after an
initial ballistic motion, the packet center-of-mass experiences a retrore�ection and slowly returns to
its initial position (quantum boomerang e�ect). We have attributed this phenomenon to Anderson
localization.

The core of this chapter consisted in applying Berezinskii diagrammatic theory [13] to this
scenario. We have been able to derive the long-time asymptotic return of the packet center-of-mass
to its initial position. Further, we have presented a new method to solve Berezinskii equations
under the form of a Padé approximant, allowing for a description of the center-of-mass motion at all
times. We have also derived an intriguing relation between the center of mass and the mean square
displacement, which turns out to be at the root of our calculations.

We have then tested the robustness our results with respect to a change in the statistics of the
random potential and of the size of the initial wave packet. We have found that, at least for weak

5This can be justi�ed more rigorously by using the phase space Wigner representationW (x, p, t) of the wave packet
(see section 3.2 for more details). Under the conditions of section 4.1, W (x, p, t) is non vanishing only near p = ±~k0,
so that it can be split in two parts W (x, p, t) ≈ n+(x, t)δ(p− ~k0) + n−(x, t)δ(p+ ~k0).
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disorder, the statistics of the potential (including on-site distribution and possible correlations)
does not visibly a�ect the center-of-mass motion. Similarly, the center-of-mass motion appears
independent of the width of the initial wave packet.

The reasoning presented in section 4.4, and explaining the quantum boomerang e�ect in terms
of real localized modes, applies in any dimension. The quantum boomerang e�ect is thus expected
to take place in higher dimensions as well, provided the dynamics is Anderson localized. This o�ers
interesting perspectives for future work. For example, along with recent works on the coherent back-
ward and forward scattering peaks across Anderson transition [44,128], it would be very interesting
to perform a �ne numerical analysis of the quantum boomerang e�ect in three dimensions. Another
interesting direction of research would be to look for similar phenomena in other symmetry classes
(e.g. in the unitary class where the qualitative understanding of retrore�ection in terms of real
localized modes does not apply).

4.9 Article: When Anderson localization makes quantum particles

move backward [Submitted to Phys. Rev. Lett. (arXiv:1704.05241)]
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We unveil a novel and unexpected manifestation of Anderson localization of matter wave pack-
ets that carry a finite average velocity: after an initial ballistic motion, the packet center-of-mass
experiences a retroreflection and slowly returns to its initial position. We describe this effect both
numerically and analytically in dimension 1, and show that it is destroyed by weak particle interac-
tions which act as a decoherence process. The retroreflection is also present in higher dimensions,
provided the dynamics is Anderson localized.
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Anderson localization (AL), the absence of wave dif-
fusion due to destructive interference in disordered po-
tentials [1], is ubiquitous in condensed-matter systems,
wave physics or atom optics. This offers many experi-
mental platforms for its characterization, as was recently
demonstrated experimentally with light [2, 3] (see how-
ever [4, 5]) or ultrasound waves [6]. Very recently, AL
of atomic matter waves has also been observed [7–11], as
well as its many-body counterpart [12, 13]. A precious
asset of atom optics experiments is to allow for direct
tests of fundamental manifestations of AL, such as the
time evolution of wave packets. In this context, a com-
mon experimental scenario for probing localization con-
sists in preparing a spatially narrow atomic wave packet
in a trap, then opening the trap and recording the time
evolution of the gas [14, 15]. After it has been released,
the wave packet spreads symmetrically around its initial
position and, after a transient ballistic expansion, quickly
becomes localized in space. What happens, now, if a
nonzero average velocity is additionally imprinted to the
gas? In a naive picture, one expects the randomization
of velocities due to scattering on the random potential to
stop the initial ballistic motion of the wave packet center-
of-mass (CoM) at roughly a mean free path `, and then
a symmetric localization of the packet around this new
central position due to AL. We show in this Letter that
the evolution is in fact very different. Quite unexpect-
edly, after an initial ballistic motion where the CoM in-
deed increases up to `, the wave packet slowly returns to
its initial position, recovering a symmetric shape at long
times. The final state of the system is in turn identical
to the one that would have been reached if no velocity
had been transferred to the gas.

In this Letter, we thoroughly study this phenomenon
both numerically and analytically. In dimension 1, we
give an exact solution to this problem. We then study
the CoM retroreflection in the presence of a weak nonlin-
earity describing particle interactions in the mean field
approximation. The CoM freezes at a position that de-
pends on the strength of interactions, very much like a
decoherence process.

Let us consider a one-dimensional (1D) system de-
scribed by the Hamiltonian H = −~2∆/(2m) + V (x),
where V (x) is a Gaussian, uncorrelated random poten-
tial: V (x) = 0 and V (x)V (x′) = γδ(x − x′), where the
overbar denotes averaging over disorder realizations. We
wish to study the time evolution of a normalized Gaus-
sian wave packet, Ψk0(x) ∝ exp

[
−x2/(2σ2) + ik0x

]
, to

which a finite momentum ~k0 is imprinted. We choose
k0 > 0 without loss of generality. To simplify the dis-
cussion, we assume throughout this Letter a sharp ini-
tial velocity distribution, k0σ � 1, and weak disorder,
k0` � 1, thereby allowing for a simple description of
the wave packet in terms of two velocity components
±~k0/m, with energy E0 = ~2k20/(2m).
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FIG. 1. (Color online) Main plot: center of mass as a func-
tion of time. Its long-time asymptotics, Eq. (6), is shown
as a solid red curve, and the re-summation of the short-time
series, Eq. (10), as a solid green curve. The latter perfectly
overlaps with the numerical result (blue dots). The dashed
curve is the classical result, Eq. (1). Inset: center of mass
multiplied by (t/τ)2 as a function of time. The asymptotic
result (6) (red curve) is compared to the numerical prediction,
displayed with its statistical error bars. The parameters used
in the simulations are given in the main text.

The average evolution in the random potential is gov-
erned by two microscopic scales, the scattering mean free
time τ and the scattering mean free path ` = v0τ , where
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v0 = ~k0/m. Throughout this Letter, τ and ` are cal-
culated to the leading order in 1/(k0`) � 1, using the
Born approximation at energy E0 [16]. The assumption
of uncorrelated random potential is not crucial for our
discussion: all the results that follow hold as well for
short-range correlated potentials, provided that ` and τ
are replaced by the transport mean free path and time,
respectively [17, 18].

By numerically propagating Ψk0(x), we obtain the
disorder-averaged density profile |Ψ(x, t)|2, from which
we infer the CoM 〈x〉 ≡

∫
x|Ψ(x, t)|2dx. The result is

shown in Fig. 1 : 〈x〉 first increases rapidly, reaches a
maximum at t ∼ τ and then slowly decreases to zero.
In other words, after a transient motion rightward, the
center of mass of the wave packet slowly returns to its ini-
tial position x = 0. For these simulations we discretize
the Hamiltonian on a 1D grid of size 16000π/k0, divided
into 251352 grid points. The initial wave-packet width
is set to σ = 10/k0, and γ = 0.0058~4k30/m2 (k0` =
~4k30/(2m2γ) ' 86.5). The results are averaged over
45000 disorder realizations. In the simulations, the evolu-
tion operator is expanded in a series of Chebyshev poly-
nomials, as explained in [19, 20]. The surprising behav-
ior observed in Fig. 1 is dramatically different from the
classical expectation, which can be simply deduced from
Ehrenfest theorem: ∂t 〈x〉class = 〈p〉/m=~k0(n+−n−)/m
where n± is the population of particles with momentum
±~k0 (n++n−=1). Using the classical Boltzmann equa-
tions ∂tn± = (n∓−n±)/(2τ) with the initial condition
n+ =0, we find

〈x〉class = `
(

1− e−t/τ
)
, (1)

which is shown in Fig. 1 as a dashed curve. Within the
classical picture, the CoM thus quickly saturates to the
mean free path `, but never experiences retroreflection.
The reason why quantum wave packets behave so differ-
ently can be understood by the following argument. At
any time, the density distribution can be expanded over
the eigenbasis {εn, |φn〉} of H as

|Ψ(x, t)|2 =
∑

n,m

〈φn|Ψk0〉 〈Ψk0 |φm〉

× φn(x)φ∗m(x)e−i(εn−εm)t.

(2)

Since eigenstates are localized, the system is constrained
to a volume set by the localization length ξ = 2`. This
defines a typical mean level spacing ∆ = 1/(ρξ) (ρ is the
density of states per unit volume), with a corresponding
localization time τloc = 2π~/∆ = 4τ beyond which the
off-diagonal oscillatory terms n 6= m in Eq. (2) vanish,
leaving:

|Ψ(x,∞)|2 =
∑

n

| 〈φn|Ψk0〉 |2|φn(x)|2. (3)

Due to time-reversal invariance, the φn(x) are real so
that 〈φn|Ψk0〉 = 〈φn|Ψ−k0〉∗: Eq. (3) is independent of

FIG. 2. a) A typical multiple scattering path going from
x = 0 to x, contributing to 〈x〉− (the path is unfolded to the
top for clarity). The momentum reverses at each scattering
event. By time-reversing and translating this path by −x, we
obtain path b), which gives an opposite contribution to 〈x〉−,
ensuring that 〈x〉− vanishes. c) Path contributing to 〈x〉+.
Its time-reversed and translated counterpart d) starts with
momentum −k0 and is thus not populated at t = 0, so that
〈x〉+ 6= 0.

the sign of k0, and thus coincides with the long-time,
spatially symmetric density distribution that would have
been obtained with an initial wave packet having a sym-
metric velocity distribution. This shows that the CoM
must return to its initial position at long times, as a re-
sult of AL.

Let us now be more quantitative and analyze the CoM
at finite times. For this purpose, we start by apply-
ing Ehrenfest theorem to the mean-square displacement,
∂t 〈x2〉 = 〈

[
x2, p2

]
〉 /(2i~m), and split the particle distri-

bution into two classes of positive and negative velocities:
|Ψ(x, t)|2 = n+(x, t) + n−(x, t). This leads to [21]

∂t 〈x2〉 = 2v0 〈x〉+ − 2v0 〈x〉− . (4)

Here 〈x〉± =
∫∞
−∞ x n±(x, t) dx, with obviously 〈x〉 =

〈x〉+ + 〈x〉−. We now consider an arbitrary path con-
tributing to 〈x〉− [Fig. 2(a)]. The path starts at x = 0
with momentum ~k0 and reaches x with momentum
−~k0 at time t. By time-reversing and translating this
path of a distance −x, one can always find a complemen-
tary path starting with momentum ~k0 at x = 0 and
reaching −x at time t (Fig. 2b). Due to time-reversal
and translational invariance, these two paths contribute
with the same weight to n−(x, t), which is thus an even
function of x, yielding 〈x〉− = 0. This reasoning does not
apply to 〈x〉+ since the time-reversed/translated counter-
part of an arbitrary path contributing to 〈x〉+ starts by
construction with a momentum −~k0 which is not ini-
tially populated (see Figs. 2c-d). We have thus

∂t〈x2〉 = 2v0〈x〉, (5)
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a property that we can use to infer the long-time limit of
〈x〉 from 〈x2〉, which was previously studied in [22]. This
yields [23]

〈x〉 = `
64ln(t/4τ)τ2

t2
+O

(
1

t2

)
. (6)

Eq. (6) is shown in Fig. 1 and matches well the exact
numerical prediction at long times. The inset of Fig.
1 also confirms the presence of the logarithmic term in
Eq. (6).

In fact, one can go one step further and exploit Eq.
(5) to compute 〈x〉 at any time. For this purpose, we use
Berezinskii diagrammatic technique [24] which, combined
with Eq. (5), gives [23]

〈x〉 =

∫
dω
2π
e−iωt


− 2`

iω

∞∑

m=0

P 1
m(ω)Q1

m(ω)


 , (7)

where P 1
m(ω) = sΓ(m+1)[Ψ(m+1, 2;−s)−(m+1)Ψ(m+

2, 2;−s)], with s = 4iωτ , Γ the Gamma function and Ψ
the confluent hypergeometric function of the second kind.
The Q1

m(ω) are solutions of

[4iτ(m+ 1/2)ω − (m+ 1)2 −m2]Q1
m(ω)

+(m+ 1)2Q1
m+1(ω) +m2Q1

m−1(ω) + P 1
m(ω) = 0. (8)

At short times, one can solve these equations with the
expansion Q1

m(ω) =
∑+∞
n=0 qm,n/(iω)n. To compute the

qm,n, we first notice that qm,i = 0 if i ≤ m, which follows
from the large-frequency expansion of P 1

m(ω) (which has
no terms 1/ωi with i < m). We use this result to expand
Eqs. (8) order by order in 1/ω and reduce them to a
triangular system. This method provides us with the
coefficients χn of the expansion 〈x〉 = `

∑
n χn(t/τ)n at

arbitrary order [18]. We find for instance

〈x〉 = `

[
t

τ
− t2

2τ2
+

t3

6τ3
− 3t4

64τ4

]
+O

(
t5
)
. (9)

The method cannot be directly used to estimate 〈x〉 at
any time because the series has a finite convergence ra-
dius, estimated at 4τ from the first 100 terms. Neverthe-
less, the observed exponential decay of the χn makes this
series a good candidate for a Padé resummation. The
knowledge of the long-time limit (6) suggests to express
the CoM at any time under the form

〈x〉 = `
ln(1 + t/4τ)τ2

t2
lim
n→∞

Rn(t), (10)

where Rn(t) is a diagonal Padé approximant of order n,
deduced from the χn coefficients [25]. In practice, Rn(t)
converges quickly, and an excellent approximation of 〈x〉
for times up to 120τ is obtained with n = 7. This is
demonstrated by the solid green curve in Fig. 1, which
perfectly coincides with the numerical results.

5
10

15
20

25

1

0.1

10-2

10-3

0

Eq. (11)

FIG. 3. (Color online) Average density profile obtained nu-
merically at three different times. The solid upper blue and
lower red curves are the x > 0 and x < 0 components of the
profile, respectively. The long-time limit of the profile, Eq.
(11), is shown as a dashed black curve.

In order to clarify which specific behavior of the spa-
tial distribution |Ψ(x, t)|2 actually gives rise to the phe-
nomenon of retroreflection, we show in Fig. 3 the x > 0
(blue curve) and x < 0 (red curve) components of the
spatial profile |Ψ(x, t)|2, obtained numerically at three
successive times. The profiles display a ballistic peak
responsible for the increase of 〈x〉 at short times. After
this peak has been attenuated, the profile re-symmetrizes
itself around x = 0, which gives rise to the retroreflec-
tion phenonemon. As discussed above, this distribution
is expected to converge toward a symmetric one, Eq. (3),
which coincides with the so-called Gogolin density profile
[17, 26]:

|Ψ(x,∞)|2 =

∫ ∞

0

dηπ2

32`

η
(
1 + η2

)2
sinh(πη)e−(1+η2)|x|/8`

[1 + cosh(πη)]2
,

(11)
which is shown in Fig. 3 for comparison. Note that
although we start from a rather narrow wave packet with
σ < ` in our simulations, the retroreflection phenomenon
is present as well when σ > `.

We finally discuss the effect of particle interactions
on 〈x〉(t), by considering a weakly interacting, con-
densed bosonic gas. Its dynamics is governed, at
the mean field level, by the Gross-Pitaevskii equation
i~∂tΨ = [−~2∆/2m + V (x) + g|Ψ|2]Ψ. For wave
packets with k0 = 0, it was shown that the interac-
tion term g|Ψ|2 leads to a destruction of AL at very
long times, in favor of a regime of subdiffusion where
〈x2〉 ∼ tα with α < 1 [27, 28]. Here we take a
different perspective and investigate numerically how
the nonlinearity affects 〈x〉. For these simulations, we
write the evolution operator over a small time step
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FIG. 4. (Color online) Main plot: center of mass 〈x〉g as
a function of time, for g = 0 (solid lower blue curve), g =
0.09~2k0/m (solid middle orange curve) and g = 0.15~2k0/m
(solid upper magenta curve). Two dashed curves show the
center of mass 〈x〉φ obtained with the model of decoherence,
for Af = 0.02, 0.03. Dotted curve: CoM in 2D. Inset: τ/τφ(g),
well fitted by a linear regression. The effective decoherence
time τφ(g) associated with the nonlinearity thus behaves like
~/τφ(g) ∼ g/`.

δt as U(δt) = exp[−ig
∣∣Ψ(δt)

∣∣2 δt/2]exp[−i(−~2∆/2m +

V )δt]exp[−ig
∣∣Ψ(0)

∣∣2 δt/2] and treat the linear part as be-
fore, through an expansion in a series of Chebyshev poly-
nomials. We use a system of size 7500π/k0 discretized
into 23562 grid points, and propagate a wave packet
of width σ = 10/k0 in a random potential of strength
γ = 0.0196~4k30/m2 (k0` ' 18.1). The results are av-
eraged over 600000 (8.85 millions) disorder realizations
when g 6= 0 (respectively g = 0). We show in Fig. 4
the CoM 〈x〉g as a function of time obtained with this
procedure, for two values of g 6= 0. We observe that 〈x〉g
decreases more slowly than in the non-interacting limit
and saturates at a finite value at long times. The CoM
retroreflection is thus interrupted by the nonlinearity.

To better understand the role of the nonlinearity, we
have also studied how the CoM is affected by decoher-
ence, modeled by the Hamiltonian H = −~2∆/(2m) +
V (x) + Vφ(x, t). Here V (x) is the same random poten-
tial as above and Vφ(x, t) = h(x)f(t), where h(x) has
the same statistical properties as V (x) and f(t) is a ran-
dom, Gaussian distributed function of time with zero av-
erage. f(t) is fully characterized by its time-time cor-
relation function which we choose Gaussian, f(t)f(t′) =
A2
fexp[−(t − t′)2/2σ2

t ], with Af � 1 to ensure that the
fluctuating potential is weaker than the static one. We
have checked that the potential Vφ(x, t) does induce deco-
herence: at long times, it restores classical diffusion with
〈x2〉 = 2Dφt, where Dφ = ξ2/τφ = 4`2/τφ is the diffu-
sion coefficient and τφ the decoherence time [17]. Because
Vφ(x, t) preserves time-reversal and translational invari-

ance after a disorder average, Eq. (5) still holds for this
model, demonstrating that the CoM, 〈x〉φ, converges to a
finite value 4`τ/τφ at long times. 〈x〉φ is displayed in Fig.
4 (dashed curves), for two values of Af . The two values
of g chosen in the Gross-Pitaevskii model were adjusted
so that 〈x〉g coincides with these two curves 〈x〉φ in the
long-time limit. Surprisingly, the obtained curves 〈x〉φ
match extremely well the nonlinear curves 〈x〉g in the
whole time window. This suggests that at least regard-
ing 〈x〉 and for times short enough for subdiffusion not
to play a major role, the nonlinearity acts similarly to a
decoherence process. From this observation, we associate
to the nonlinearity an effective decoherence time τφ(g).
To find this quantity, we first determine Dφ from the evo-
lution of 〈x2〉 with time in the model of decoherence, and
then find the associated g by matching the curves 〈x〉φ
and 〈x〉g at long time. The results, shown in the inset
of Fig. 4, demonstrate that ~/τφ(g) ∝ g/ξ, which can
be interpreted as the average interaction energy within a
localization volume ξ = 2`. A similar time scale for the
dynamical alteration of localization by interactions was
found in [29, 30].

We expect the retroreflection phenomenon to be a
rather general property of systems displaying Anderson
localization. In particular, it is not restricted to 1D sys-
tems, as can be inferred from a straightforward extension
to any dimension of the reasoning leading to Eq. (3).
We have also numerically checked that the CoM indeed
goes back to its initial position in two-dimensional (2D)
random potentials, see the dotted curve in Fig. 4, ob-
tained using the 2D version of the potential V (x) (with
k0` ' 2.5). At weak disorder, the decay of 〈x〉 (t) is
however much slower in 2D because the localization time
is much longer than in 1D. The fact that the retroreflec-
tion is significantly affected by weak interactions at short
times suggests that it could be advantageously used as
a sensitive probe of Anderson localization in interacting
disordered systems.

We thank Christian Miniatura for discussions at the
early stages of this work.
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Appendix 4.A Solution of Berezinskii equations at long times

In this appendix, we use the Berezinskii convention ~ = 2m = k0 = 1.

To obtain the long-time (small frequency) asymptotic behavior of 〈x〉 from Berezinskii equations
[equations (4.64), (4.65) and (4.66)], it is convenient to introduce the generating functions

R(ζ) =

∞∑

m=0

Rmζ
m and Q(ζ) =

∞∑

m=0

Q1
mζ

m. (4.76)

R(ζ) can be deduced from the closed-form solution of Rm [equation (4.67)], the result writes

R(ζ) =
1

1− ζ

[
1− ζF

(
iν

1− ζ

)]
, F (z) = ze−zEi(z), (4.77)

where Ei(z) is the exponential integral function. For Q(ζ) we can only infer a di�erential equation
from equation (4.64):

iν

(
ζ
dQ
dζ

+
1

2
Q

)
+ (1− ζ)

d
dζ

{
ζ
d
dζ

[
(1− ζ)Q

]}
+ P (ζ) = 0, (4.78)

where P (ζ) =
∑∞

m=0 P
1
mζ

m is straightforward to deduce from R(ζ).
Coming back to equation (4.65), we introduce the solution for Rm [equation (4.67)] and obtain

〈x〉 = − 4ν

ωγ

∫ ∞

0
dseiνs

∞∑

m=0

1

s+ 1
Qm(ω, k = 0)

(
s

s+ 1

)m
= − 4ν

ωγ

∫ ∞

0
dseiνsB(s), (4.79)

where B(s) is then given by

B(s) =
1

s+ 1
Q

(
s

s+ 1

)
=

1

s+ 1

∞∑

m=0

Qm(ω, k = 0)

(
s

s+ 1

)m
. (4.80)

From equation (4.78), we deduce the equation obeyed by B(s):

d
ds

(
s(s+ 1)

dB(s)

ds

)
+ iν

[
s
d
ds

((s+ 1B(s)) +
B(s)

2

]
+ iνe−iν(s+1)Ei(iν(s+ 1)) = 0. (4.81)

It is convenient to use the alternative form

〈x〉 = −4ν

iω

∫ ∞

0
ds(eiνs − 1)

dB(s)

ds
, (4.82)

obtained through integration by part.
We are now in position to address the small frequency (ν) expansion. We start by changing

variable to u = −iνs,
〈x〉 = − ν2

iωγ

∫ −i∞

0
(e−u − 1)

dB(u)

du
du. (4.83)

Equation (4.81) becomes

d
du

(
u2dB(u)

du

)
− u d

du

(
uB(u)

)

+ iν

{
− d
du

(
uB(u)

)
+ u

dB(u)

du
+
B(u)

2

}
+ iνe−iνeuEi(−u+ iν) = 0.

(4.84)



4.A. Solution of Berezinskii equations at long times 85

We are interested in the few �rst orders in ν, we can therefore readily neglect the term enclosed in
the braces, to simplify equation (4.84) to

d
du

(
u2dB(u)

du

)
− u d

du

(
uB(u)

)
+ iνe−iνeuEi(−u+ iν) = 0, (4.85)

yet it is a di�cult matter to solve this equation. The way around this di�culty is to �rst consider
equation (4.81) in the limit |νs| = |u| � 1. Indeed, in this limit the terms enclosed in the square
brackets can be neglected, and using the expansion Ei(z) ≈ ln(−z) + C (where C is the Euler
constant), we directly obtain

dB(s)

ds
≈ −iν

{
C − 1

s+ 1
+

ln
[
(−iν)(s+ 1)

]

s+ 1
+

ln(s+ 1)

s(s+ 1)

}
for |νs| � 1. (4.86)

An expansion of equation (4.86) for large s leads to

1

−iν
dB(s)

ds
≈ C − 1 + ln(s)

s
+

d
ds

[
ln(s) + C − 1

s

]
+

ln(s)

s2
+ . . . for |νs| � 1. (4.87)

Going back to u = −iνs, we �nd

dB(u)

du
= −iν

{
ln(u) + C − 1

u

}
+ (iν)2

{
d
du

[
ln(u) + C − 1

u

]
+

1

u2
ln

(
u

−iν

)}
+ . . . (4.88)

From this last equation, it is clear that B(u) as a ν expansion of the form

B(u) = iνB1(u) + (iν)2ln(−iν)B̂(u) + (iν)2B2(u) + . . . , (4.89)

with the asymptotic forms as u→ 0

dB1(u)

du
→ −

(
ln(u) + C − 1

u

)
,
dB̂(u)

du
→ − 1

u2
,
dB2(u)

du
→ 2− C

u2
. (4.90)

It is di�cult to fully determine B1(u) and B2(u). B̂(u) is however quite simple to obtain. From
the expansion of the nonhomogeneous term of equation (4.84):

d
du

(
u2dB(u)

du

)
− u d

du

(
uB(u)

)
+ iν

{
− d
du

(
uB(u)

)
+ u

dB(u)

du
+
B(u)

2

}

iνeuEi(−u)− (iν)2

(
euEi(−u) +

1

u

)
+O

(
ν3
)

= 0,

(4.91)

we identify the equation obeyed by B̂(u),

d
du

(
u2dB̂(u)

du

)
− u d

du

(
uB̂(u)

)
= 0, (4.92)

whose solution, consistent with equation (4.90), is simply given by B̂(u) = 1/u.
In the integral of equation (4.83), the contribution of the small u part is not very clear and

requires some care (divergences appear due to the above expansion for large s, which clearly does
not extend to u = 0). To handle it, we split the integral over two regions: [0, s0] and [s0,∞], where
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s0 � 1, but |ν|s0 � 1. We start with the region s < s0, where we can approximate eiνs − 1 by iνs
and use equation (4.86), the integral is then not di�cult to evaluate explicitly:

1

−iν

∫ s0

0
s
dB(s)

ds
ds ≈

∫ s0

0
s

{
C − 1

s+ 1
+

ln
[
(−iν)(s+ 1)

]

s+ 1
+

ln(s+ 1)

s(s+ 1)

}
ds

= (C − 2)s0 + (s0 + 2− C)ln(s0 + 1) + ln(−iν)(s0 − ln(s0 + 1)).

(4.93)

A large s0 expansion provides

1

−iν

∫ s0

0
s
dB(s)

ds
ds ≈ (C − 2)s0 + (s0 + 2− C)ln(s0)− ln(−iν)ln(s0) + . . . . (4.94)

Expressing this last result in terms of u0 = −iνs0, we �nd the following contribution to 〈x〉:
4

iωγ

[
iνu0(ln(u0) + C − 2)− (iν)2ln(−iν)(C − 2− ln(u0)) + (iν)2(C − 2)ln(u0) + ν2ln2(−iν) + . . .

]
.

(4.95)
As for the remaining contribution, from the region s > s0, we go from s to u = −iνs and use
equation (4.89), and consider only the contribution from B̂, relevant for the center of mass. B̂ being
equal to 1/u, in the limit u0 → 0, we are free to move the integration back to the reals, such that
its contribution to 〈x〉 is

− 4

iωγ
(iν)2ln(−iν)

∫ ∞

u0

e−u − 1

u2
= − 4

iωγ
(iν)2ln(−iν)(ln(u0) + C − 1) +O(u0). (4.96)

The limit u0 → 0 is now well de�ned (with the contributions from B1 and B2 at small u, the ln(u0)
cancel each other). Summing equations (4.95) and (4.96), we �nally obtain

〈x〉 = πα+
16iν

γ2

(
ln2(−iν) + (2C − 3)ln(−iν))

)
+O(ν), (4.97)

where α is a numerical constant which is di�cult to determine using the above method (it comes
from B1) and irrelevant for the center of mass. It is given in [13] as α = 32(π2 − C3)/γ2. B2 only
contributes to O(ν).

The result for the center of mass obtained by Fourier transforming (4.97) is

〈x〉 = 64`

[
ln(t/4τ)τ2

t2
+
τ2

2t2

]
+ . . . (4.98)

Appendix 4.B Solution of Berezinskii equations from short times

To be consistent with the notations used in our submitted paper reproduced in section 4.9, we
reintroduce ~, k0 and m in this appendix.

To go beyond the long-time limit treated in appendix 4.A, we propose to solve the equations for
the center of mass at any time. The solution takes the form of a short time expansion,

〈x〉 = `

∞∑

n=0

χn

(
t

τ

)n
, (4.99)

rearranged under the form of a Padé approximant,

〈x〉 = `
ln(1 + t/4τ)τ2

t2
lim
N→∞

∑N
n=0 an

(
t/τ
)n

∑N
n=0 bn

(
t/τ
)n . (4.100)
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Indeed, it is possible to work out the χn of equation (4.99) up to arbitrary order, but the resulting
series has a �nite convergence radius, estimated at 4τ from the �rst 100 terms6. Once rearranged
under the form of a Padé approximant, as done in equation (4.100), we observe numerical convergence
and the resulting 〈x〉 is in excellent agreement with our numerical simulations (�gure 4.9a). It is the
knowledge of the long-time limit [equation (4.98)] that suggests the form (4.100). In practice, (4.100)
converges quite rapidly, the results for N = 7 demonstrate no visible di�erence with the results for
N = 14 for times up to 120τ .

Let us �nd the χn then. We recall the expression of the center of mass [equation (4.65)]:

〈x〉 = − 2`

iω



∞∑

m=0

P 1
mQ

1
m


 , (4.101)

where P 1
m = sΓ(m + 1)[Ψ(m + 1, 2;−s) − (m + 1)Ψ(m + 2, 2;−s)], with s = 4iωτ , Γ the Gamma

function and Ψ the con�uent hypergeometric function of the second kind. The Q1
m are solutions of

[4iωτ(m+ 1/2)− (m+ 1)2 −m2]Q1
m + (m+ 1)2Q1

m+1 +m2Q1
m−1 + P 1

m = 0. (4.102)

The di�culty lies in the calculation of the Q1
m. Following the route outlined above, we write them

under the form of a large frequency expansion

Q1
m(ν) '

+∞∑

n=0

qn,m
(iν)n

. (4.103)

And introduce this decomposition in equation (4.102), with P 1
m reduced to its asymptotic form,

O

(
1

(iν)m

)
+

(
m+

1

2

) +∞∑

n=0

qn,m
(iν)n−1

+ (m+ 1)2




+∞∑

n=0

qn,m+1

(iν)n
−

+∞∑

n=0

qn,m
(iν)n


−m2




+∞∑

n=0

qn,m
(iν)n

−
+∞∑

n=0

qn,m−1

(iν)n


 = 0.

(4.104)

For m = 0, we see that q0,0 = 0. Then, for m = 1, we see that q0,1 and q1,1 are vanishing. This
pattern leads to

qn,m = 0 if n ≤ m⇔ Q1
m(ν) =

∑

n>m

qn,m
(iν)n

. (4.105)

We can now turn to the non-vanishing terms. To that end, let us move to an �algorithmic point
of view�, and in this respect recast equation (4.102) to the general form

(αmν + βm)Q1
m + γmQ

1
m+1 +m2Q1

m−1 + δ0
m(ν) = 0, (4.106)

where αm, βm, γm and δ0
m(ν) are known. Plugging in equation (4.105), we �nd our basic equation

(αmν + βm)


∑

n>m

qn,m
(iν)n


+ γm


 ∑

n>m+1

qn,m+1

(iν)n


+m2


 ∑

n>m−1

qn,m−1

(iν)n


+ δ0

m(ν) = 0. (4.107)

To start with, one can scan m and consider the resulting equations from (4.107) at lowest order in
1/ν. Only αmνQ1

m and m2Q1
m−1 contribute, they are thus straightforward to solve, to �nd all the

6More work is needed to identify the origin of this �nite convergence radius.
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qn=m+1,m. One can then absorb the known qn=m+1,m and δ0
m(ν) in a new quantity, δ1

m(ν), to �nd
an equation similar to (4.107):

(αmν + βm)


 ∑

n>m+1

qn,m
(iν)n


+ γm


 ∑

n>m+2

qn,m+1

(iν)n


+m2


∑

n>m

qn,m−1

(iν)n


+ δ1

m(ν) = 0. (4.108)

We have highlighted in red the important di�erences between equations (4.107) and (4.108). Re-
peating the above procedure, one �nds the qn=m+2,m, in turn absorbed in a new δ∗m(ν), and so on
and so forth. It is then immediate to deduce the χn of equation (4.99).

For practical purposes, we have included a copy of the Mathematica [100] notebook used to
generate the results presented in �gure 4.9 in Mathematica [100] notebook 4.1.

Note that an alternative numerical solution of Berezinskii equations exists [136].
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nbterms = 15; (* Number of \chi_n computed. Should be greater than 1 *)
tmax = 120; (* Maximum time for which <x> is computed, in units of the scattering mean
free time *)
tstep = 0.01; (* Sample the time with a time step tstep. Should be smaller than tmax *)

fctr [m_, s_] := s*Gamma[m + 1]*HypergeometricU[m + 1, 2, −s]
fctp [m_, s_] := fctr[m, s] − fctr [m + 1, s] (* P_m^1 *)

SeriesCoe�cient[fctp[m, s], {s, In�nity, n}];
p = Table[%, {m, 0, nbterms − 1}, {n, 0, nbterms − 1}];
(* Store P_m^1 large large \nu expansion for all m in a matrix *)
savp = p;

q = Table[ 0, {x, nbterms}, {y, nbterms}];
(* Store Q_m^1 large large \nu expansion for all m in a matrix *)
Do[ q[[1, 1 + i ]] = −2*p[[1, i]];
Do[q[[m, m + i]] = (−1/(m − 1/2))*((m − 1)^2*q[[m − 1, m − 1 + i]] +

p[[m, m + i − 1]]), {m, 2, nbterms − i, 1}] /; (nbterms − i) > 1;
Do[p[[m, m + i]] -= (m^2 + (m − 1)^2)* q[[m, m + i]],

{m, nbterms − i}] /; (nbterms − i) > 0;
Do[p[[m, m + i + 1]] += m^2* q[[m + 1, m + 1 + i]],

{m, nbterms − i − 1}] /; (nbterms − i − 1) > 0; , {i , nbterms − 1}]

p = savp;

xomega = Table[ Sum[p[[m, i]]*q[[m, j]]*KroneckerDelta[n, i + j], {m, nbterms}, {i,
nbterms}, {j, nbterms}], {n, 3, nbterms + 2}];

(* Sum over m P_m^1 Q_m^1, gives the series in frequency *)

xtime = Table[ 1/2*xomega[[n]]*(−1)^(n)/(Gamma[n + 1]*4^(n − 1)), {n, nbterms}];
(* = \chi_n *)

x[t_] := Sum[xtime[[n]]*t^n, {n, nbterms − 1}];

xpade = PadeApproximant[ t^2/Log[1 + t/4]*x[t], {t, 0, Floor[(nbterms − 1)/2]}];
tabxpade = Table[{t, xpade*Log[1 + t/4]/t^2}, {t, tstep, tmax, tstep}];
�lename = "mean_x_pade_order" <> ToString[Floor[(nbterms − 1)/2]] <> ".dat";
Export[�lename, tabxpade];

Mathematica [100] notebook 4.1 � Computes 〈x〉 under the form of a Padé approximant. The script
outputs a two column �le, the �rst column is the time in units of τ , and the second column is the
corresponding 〈x〉 in units of `. The parameter �nbterms� �xes the number of χn computed. The
maximum time can be �xed with the parameter �tmax�, and the time sampling with the parameter
�tstep�.





Chapter 5

Weakly interacting wave packets

So far, we have neglected atom-atom interactions and discussed only single-particle physics.
Interactions are, however, often present in experiments, it is thus important to characterize their
e�ects. In the present thesis, we restrict ourselves to dilute condensed bosonic gases, which are used
in the Palaiseau [38] and Florence [40] groups.

The limitation to weakly interacting condensed bosonic gases allows us to approximate the full
quantum many-body dynamics by a nonlinear equation for a classical �eld. Section 5.1 recalls some
details on this approximation. We present a method to propagate numerically wave packets in the
presence of a nonlinearity in section 5.2. As an illustration, we apply this method to an extensively
studied scenario: the spreading of an initially narrow wave packet in a disordered potential. It is the
opportunity to discuss the interplay between Anderson localization and interactions. Section 5.3 is
devoted to the e�ect of the nonlinearity on the quantum boomerang e�ect of chapter 4. In sections 5.4
and 5.5, we trade the 1D initially narrow wave packet for 3D plane waves, with section 5.4 focusing
on the dynamics of the energy distribution and section 5.5 examining the e�ect of interactions on the
coherent back scattering peak. The subject of weakly interacting wave packets evolving in random
potentials is vast, the present chapter is only concerned with some aspects and is not intended to
cover it exhaustively.

Subsection 5.2.1 and sections 5.3, 5.4 and 5.5 present original results obtained during the present
thesis. Sections 5.4 and 5.5 present on-going work.

5.1 Bose-Einstein condensates in random potentials

5.1.1 Many-body Hamiltonian

A common experimental scenario for probing localization consists in preparing a spatially narrow
atomic wave packet in a trap, then opening the trap to release the atoms in a disordered potential
and recording the time evolution of the gas [41, 42]. After it has been released, its dynamics is
encoded in the many-body Hamiltonian, written in second quantization,

Ĥ =

∫
drΨ̂†(r)

[
−~2∆

2m
+ Vext(r)

]
Ψ̂(r) +

1

2

∫
drdr′Vint(r − r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r), (5.1)

where Vext is the external (here disordered) potential and Vint is the two-body interaction potential.
The �eld operator Ψ̂ obeys the non-trivial commutation relation (assuming a bosonic atomic cloud)

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r − r′). (5.2)
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In the Heisenberg picture, the �eld operator evolves according to

i~∂tΨ̂(r, t) =
[
Ψ̂(r, t), Ĥ

]
=

[
−~2∆

2m
+ Vext(r) +

∫
dr′Vint(r − r′)Ψ̂†(r′, t)Ψ̂(r′, t)

]
Ψ̂(r, t). (5.3)

5.1.2 Bogoliubov approximation

Equation (5.3) is fully general, but rather complicated, it is a nonlinear equation for a quantum
�eld. In the limit of a weakly interacting Bose-Einstein condensate (BEC), we can proceed with the
Bogoliubov approximation. The �rst step consists in singling out the condensate mode in the �eld
Ψ̂:

Ψ̂(r, t) = φ(r, t)â0 + δΨ̂(r, t). (5.4)

Here â0 annihilates a particle in the condensate mode, described by the wave function φ(r, t).
δΨ̂(r, t) accounts for non-condensed atoms. Then, since the initial state is a BEC, we expect Ψ̂(r, t)
to be dominated by φ(r, t)â0 and we thus neglect δΨ̂(r, t). Finally, the BEC containing many atoms,
the operator â0 is well approximated by a scalar (â0 and â†0 are approximately equal to the square
root of the number of atoms in the condensate, N). Replacing Ψ̂(r, t) by φ(r, t)

√
N in equation (5.3),

we �nd

i~∂tφ(r, t) =

[
−~2∆

2m
+ Vext(r) +N

∫
dr′Vint(r − r′)|φ(r′, t)|2

]
φ(r, t). (5.5)

The dynamics of the BEC is described by the classical �eld φ(r, t), the wave function of the con-
densate, obeying the nonlinear equation (5.5). Note that φ(r, t) is normalized to unity.

5.1.3 Two-body low energy collisions and scattering potential

To simplify the problem even further, we can use the fact that, at the very low energies we are
considering, the scattering properties of the atoms through the full interaction potential Vint(r− r′)
are encoded in a single length scale, the scattering length a [137]. In the dilute limit, it is thus
su�cient to model the interaction potential by a potential reproducing the appropriate scattering
length. The simplest choice is

Vint(r − r′) =
4πa~2

m
δ(r − r′) =

g

N
δ(r − r′). (5.6)

Substituting equation (5.6) into equation (5.5), we obtain the fundamental equation of the present
chapter, the Gross-Pitaevskii equation, describing the evolution of the condensate wave function:

i~∂tφ(r, t) =

[
−~2∆

2m
+ Vext(r) + g|φ(r, t)|2

]
φ(r, t). (5.7)

The many-body evolution [equation (5.3)] is thus recast under the form of a single-particle
Schrödinger equation [equation (5.7)] with an additional nonlinear potential, g|φ(r, t)|2, describing
a kind of self interaction. The latter approximates the interaction of an atom with the other atoms
in the condensate in a mean-�eld way. As we will see later on, the nonlinear nature of the Gross-
Pitaevskii equation makes the associated physics very rich, as the nonlinearity can have widely
di�erent e�ects depending on the initial conditions.



5.2. Numerical integration of the Gross-Pitaevskii equation 93

5.1.4 Comments on the Gross-Pitaevskii equation

Before exploring the consequences of the nonlinearity, two comments are in order. First, even
though we gave here a somewhat simplistic derivation of the Gross-Pitaevskii equation (5.7), one
should not conclude that this chapter is on thin ice. Indeed, the Gross-Pitaevskii equation can
be derived rigorously [138] and turns out to explain very well many experiments involving weakly
interacting cold bosons (see [139] for a review). Nevertheless, the Gross-Pitaevskii equation accu-
rately describes the evolution of the condensate wave function only, and in practice some atoms are
inevitably not condensed. It is possible to take them into account approximately, for instance within
Bogoliubov theory [70�76,140]. We will however stay at the Gross-Pitaevskii level in this thesis.

Note that the non-condensed fraction may increase in time through the depletion of the conden-
sate. To the best of our knowledge, this issue was only addressed in contexts that di�er slightly from
the ones considered in this chapter. To be more speci�c, as opposed to [75,76,140] where the atoms
are condensed in the lowest energy state, we consider the evolution of atoms condensed in arbitrary
wave functions. Another example is the study of transport of condensed atoms through disordered
waveguides, in atom-laser-like con�gurations [72]. In these contexts, for weak enough potentials and
interactions, the depletion of the condensate remains small.

Still, even though the Gross-Pitaevskii equation (5.7) represents a formidable simpli�cation of
the full many-body dynamics [equation (5.3)], reliable results remain generally di�cult to obtain
analytically. Numerical simulations of the Gross-Pitaevskii equation in the weakly interacting limit
therefore turn out quite valuable.

5.2 Numerical integration of the Gross-Pitaevskii equation

This section being devoted to a numerical technique, we set ~ to 1 to lighten the notations.

We have seen in section 4.3 that the Schrödinger equation can e�ciently be solved numerically
by means of a Chebyshev polynomial expansion. The Gross-Pitaevskii equation (5.7) is a priori not
well adapted to this method because of the time-dependent term g|φ(r, t)|2. In this thesis, however,
interactions are always considered as a weak perturbation of the disordered Hamiltonian, such that
it is tempting to integrate equation (5.7) similarly to the usual Schrödinger equation, with only a
small modi�cation accounting for the nonlinearity.

5.2.1 Numerical scheme and error estimate

To integrate the Gross-Pitaevskii equation numerically, we show in the present subsection that
the evolution operator over a small time step can be conveniently separated into a linear operator
and two simple nonlinear terms. To this end, we start from the formal solution

|φ(t)〉 = Û(t) |φ(t = 0)〉 = T exp

(
−i
∫ t

0
dt′ĤGP(t′)

)
|φ(t = 0)〉 , (5.8)

where

ĤGP(t) =
p2

2m
+ Vext(r) + g|φ(r, t)|2 = Ĥg=0 + g|φ(r, t)|2, (5.9)

and T is the time-ordering operator. We proceed with a Taylor expansion of the time-dependent
term

g|φ(r, t′)|2 = g

(
|φ(r, t = 0)|2 +

[
∂t′ |φ(r, t′)|2

]
t′=0

t′
)

+O(t′2). (5.10)
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The key point is to notice that the term linear in t′ in equation (5.10) can be taken out of the
exponential in equation (5.8), with only an O(t3) error:

T exp

(
−i
∫ t

0
dt′ĤGP(t′)

)
= exp

(
−ig

[
∂t|φ(r, t)|2

]
t=0

t2

2

)
exp

(
−iĤGP(t = 0)t

)
+O(t3). (5.11)

Indeed, terms arising from the non-commutativity of
[
∂t|φ(r, t)|2

]
t=0

t and the kinetic term are O(t3)
(a t2 comes from the two integrals over time and a t from the time dependence of the nonlinear part).
To further simplify (5.11), we use the symmetrized Trotter formula [141]:

exp

(
−i
[
Ĥg=0 + g|φ(r, t = 0)|2

]
t

)

= exp

(
−ig|φ(r, t = 0)|2

2
t

)
exp

(
−iĤg=0t

)
exp

(
−ig|φ(r, t = 0)|2

2
t

)
+O(t3),

(5.12)

as well as
[
|φ(r, t = 0)|2 +

[
∂t|φ(r, t)|2

]
t=0

t

]
t =
[
|φ(r, t = 0)|2 + |φ(r, t)|2 − |φ(r, t = 0)|2 +O(t2)

]
t

= |φ(r, t)|2t+O(t3),

(5.13)

to �nally obtain

T exp

(
−i
∫ t

0
dt′ĤGP(t′)

)

= exp

(
−ig|φ(r, t)|2

2
t

)
exp

(
−iĤg=0t

)
exp

(
−ig|φ(r, t = 0)|2

2
t

)
+O(t3).

(5.14)

To guarantee a small error, we split the total evolution in N time steps: t = Nδt. The wave
function at time t is then obtained by iterating N times the equation

|φ(δt)〉 = exp

(
−ig|φ(r, δt)|2

2
δt

)
exp

(
−iĤg=0δt

)
exp

(
−ig|φ(r, t = 0)|2

2
δt

)
|φ(t = 0)〉 . (5.15)

The error at time t scales as 1/N2. Equation (5.15) embodies our numerical technique to integrate
the Gross-Pitaevskii equation. Note that |φ(r, δt)|2 in equation (5.15) follows from

∣∣φ(r, δt)
∣∣2 =

∣∣∣∣∣∣
〈r| exp

(
−iĤg=0δt

)
exp

(
−ig|φ(r, t = 0)|2

2
δt

)
|φ(t = 0)〉

∣∣∣∣∣∣

2

, (5.16)

such that our numerical integration scheme is explicit. For small g, the linear part can e�ciently
be implemented as a sum of Chebyshev polynomials, as done in section 4.3. The nonlinear part
is simply accounted for through multiplication by phases before and after applying the Chebyshev
polynomial expansion.

5.2.2 In practice

Keeping a weak interaction while having a weak disorder makes the numerical simulations quite
demanding. Indeed, it imposes the hierarchy τk � τdis � τg where the time scales are respectively
associated to the kinetic, disorder and interaction terms. Practically, we want to reach long times
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(t � τg) to see the e�ects of the nonlinearity, while the numerical simulations are constrained to
describe correctly the kinetic dynamics (t ' τk). To make the problem more tractable, we have
chosen to release the constraint of describing the continuous situation as faithfully as possible and
simply consider the lattice situation in subsection 5.2.3 and section 5.3. The corresponding 1D
Hamiltonian writes

Ha =
∑

i

[
−φi+1 + φi−1 − 2φi

2ma2
+ Vi + g|φi|2

]
, (5.17)

where a is the lattice spacing, φi = φ(ai), and the sum runs over the lattice sites. Note that
throughout the thesis, a lattice is used in the numerical simulations. However, in the rest of the
thesis, we always choose a lattice spacing much smaller than the smallest length scale of the problem.
It is this condition that is relaxed in subsection 5.2.3 and section 5.3, we expect the results presented
there to describe the continuous situation at a qualitative level only. Note that in the non-interacting
limit, there is little di�erence between a continuous and a discrete system, as far as localization on
large spatial scales is concerned [108].

Throughout this chapter, we use an uncorrelated Gaussian potential of strength set by γ (in
dimension d):

ViVj = γδi,j/a
d, (5.18)

with δi,j the Kronecker delta.

The rest of this chapter is devoted to the application of the present numerical approach to the
Gross-Pitaevskii equation in various situations. Whenever possible, we will underline the qualitative
physical picture at play. Sections 5.2.3, 5.3 and 5.4.1 discuss the interplay between localization and
nonlinearity in the 1D case. From subsection 5.4.2 onward, on the other hand, we focus on the 3D
geometry in the di�usive regime.

5.2.3 Nonlinearity and spreading

To illustrate the above numerical method, we propose to consider the common experimental
scenario for probing localization in cold-atom experiments. It consists in releasing in a random
potential an initially narrow atomic wave packet. Anderson localization is tracked in the evolution of
the mean square displacement 〈x2〉 of the wave packet. Indeed, as opposed to di�usion, for which 〈x2〉
grows linearly in time, Anderson localization bounds 〈x2〉 to roughly the square of the localization
length. In this section, we address the question of how the nonlinearity modi�es this behavior. Note
that this question has already been extensively studied numerically and theoretically [142�148].

Numerical experiment

Following [142], we propagate numerically a wave packet initially placed at x = 0 (φ2(x, t =
0) = δx,0/a, with δx,0 the Kronecker delta) in a strong random potential. The resulting mean
square displacement 〈x2〉 as a function of time is shown in �gure 5.3, and unambiguously displays
subdi�usion at long times:

〈x2〉 ∝ tα with 0 < α < 1. (5.19)

The subdi�usive exponent (the slope of the dashed line in the �gure) is approximately equal to 0.29,
in agreement with [142]. This subdi�usive behavior was also observed numerically in [143�148] and
experimentally in [50].

Subdi�usion is however predicted to breakdown at extremely long times, replaced by a slower
spreading (if any) (see [51, 52] for rigorous proofs and [53, 54] for possible physical mechanisms).
We however never reach this regime in the present thesis (with possibly the exception of the results
presented in �gure 5.3a).
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Figure 5.1 � Mean square displacement as a function of time. In log-log scale, the long time limit
is well �tted by a straight line, hence demonstrating subdi�usion. The associated subdi�usive
exponent (α in (5.19), i.e. the slope of the dashed line in the �gure) is approximately equal to 0.29.
For these simulations, we have used a nonlinear strength g = 0.5 ~2/ma and a disorder strength
γ = 0.5625 ~4/m2a. A time step δt = 0.04 ma2/~ was found su�cient. The results are averaged
over 15000 disorder realizations.

Discussion

The nonlinearity thus a�ects Anderson localization, without destroying it completely (which
would result in the restoration of a pure di�usive spreading). The reason for this mixed behavior
lies in a trade-o� between destruction of localization by the time-dependent nonlinearity on one hand,
and dilution of the nonlinearity itself by a di�usive behavior on the other hand. In the literature, one
�nds two approaches attempting at quantifying this trade-o�. One trend is to treat the nonlinearity
as mixing the linear localized modes and hence restoring transport by allowing the atoms to jump
from one localized mode to another (see [48, 49] for recent reviews). The mixing depending on
the strength of the nonlinearity, it would disappear at long times if di�usion prevailed. Another
approach that has been proposed consists in generalizing the self-consistent theory of localization
(see section 1.1 for more details) to the nonlinear case [149]. Here as well localization would not be
destroyed by the nonlinearity if di�usive transport were restored.

Both approaches predict that subdi�usion is the condition to balance destruction of localization
and dilution of the nonlinearity. Although the numerical value of the subdi�usive exponent [α
in (5.19)] is still debated. On the one hand, the generalized self-consistent theory of localization
predicts α = 1/2. On the other hand, the mixing of linear localized modes appear to be dependent
on the chaotic properties of the Gross-Pitaevskii chain (5.17) [144]. These chaotic properties are
only partially understood [49,57,150], resulting in di�erent predictions for the subdi�usive exponent,
e.g. α = 1/2 [144,151], α = 2/5 [145,147] or α = 1/3 [143,144,152,153].

5.3 Nonlinear quantum boomerang

5.3.1 Numerical experiment

The nonlinearity a�ecting Anderson localization, a natural question to ask is whether it prevents
the quantum boomerang e�ect of chapter 4. Let us perform the numerical simulation then, and
propagate the initial wave function

φ(x) ∝ e−x2/2σeik0x. (5.20)
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We show in �gure 5.2a the resulting center of mass 〈x〉g as a function of time, for two values
of g 6= 0. We observe that 〈x〉g decreases more slowly than in the non-interacting limit and seems
to saturate at a �nite value at long times. The center-of-mass retrore�ection is thus interrupted by
the nonlinearity, the nonlinear quantum boomerang does not come back to the origin. For these
simulations, we used a system of size 7500π/k0 discretized into 23562 grid points, and propagate a
wave packet of width σ = 10/k0 in a random potential of strength γ = 0.0196 ~4k3

0/m
2 (k0` ' 18.1).

The results are averaged over 600000 (8.85 millions) disorder realizations when g 6= 0 (respectively
g = 0). A time step between 1.47 m/(~k2

0) (for the largest g) and 2.27 m/(~k2
0) (for the smallest g)

was found su�cient.
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Figure 5.2 � Figure a): center of mass 〈x〉g as a function of time, for g = 0 (solid lower blue curve),
g = 0.09 ~2k0/m (solid middle orange curve) and g = 0.15 ~2k0/m (solid upper magenta curve). Two
dashed curves show the center of mass 〈x〉φ obtained with the model of decoherence, for Af = 0.02
and 0.03 (from bottom to top). The scattering mean free path (`) and time (τ) are calculated at the
Born approximation, using the formula given in the caption of �gure 4.9. Figure b): τ/τφ(g), well
�tted by a linear regression. The e�ective decoherence time τφ(g) associated with the nonlinearity
thus behaves like ~/τφ(g) ∼ g/`. The parameters used in the numerical simulations are given in the
main text.

5.3.2 Comparison with decoherence

To better understand the role of the nonlinearity, we have also studied how the center of mass
is a�ected by decoherence, modeled by the Hamiltonian

H = −~2∆

2m
+ V (x) + Vφ(x, t). (5.21)

Here V (x) is the usual random potential and

Vφ(x, t) = h(x)f(t), (5.22)

where h(x) has the same statistical properties as V (x) and f(t) is a random, Gaussian distributed
function of time with zero average. f(t) is fully characterized by its time-time correlation function
which we choose Gaussian,

f(t)f(t′) = A2
f exp[−(t− t′)2/2σ2

t ], (5.23)
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with Af � 1 to ensure that the temporally �uctuating potential is weaker than the static one. For
this model, we use the same numerical scheme as for the Gross-Pitaevskii equation [with g|φ(x, t)|2
replaced by Vφ(x, t)] and take σt = 4 m/(~k2

0) and a time step δt = 0.735 m/(~k2
0).

We have checked that the potential Vφ(x, t) does induce decoherence: at long times, it restores
classical di�usion with 〈x2〉 = 2Dφt, where Dφ = ξ2/τφ = 4`2/τφ is the di�usion coe�cient and
τφ the decoherence time [14]. Because Vφ(x, t) preserves time-reversal and translational invariance
after disorder averaging, equation (4.75) still holds for this model:

〈x〉 =
∂t 〈x2〉

2v0
. (5.24)

Since 〈x2〉 = 2Dφt at long times, 〈x〉φ converges to the �nite value 4`τ/τφ (we have used ` = v0τ).
〈x〉φ is displayed in �gure 5.2a (dashed curves), for two values of Af . The two values of g chosen
in the Gross-Pitaevskii model were adjusted so that 〈x〉g coincides with these two curves 〈x〉φ in
the long-time limit1. Surprisingly, the obtained curves 〈x〉φ match extremely well the nonlinear
curves 〈x〉g in the whole time window. This suggests that at least regarding 〈x〉, the nonlinearity
acts similarly to a decoherence process. From this observation, we associate to the nonlinearity an
e�ective decoherence time τφ(g). To �nd this quantity, we �rst determine Dφ from the evolution of
〈x2〉 with time in the model of decoherence, and then �nd the associated g by matching the curves
〈x〉φ and 〈x〉g at long time. The results, shown in �gure 5.2b, demonstrate that ~/τφ(g) ∝ g/ξ, which
can be interpreted as the average interaction energy within a localization volume ξ = 2`. A similar
time scale for the dynamical alteration of localization by interactions was found in [147, 149]. Note
that the subdi�usion regime ensuing the dynamical alteration of localization (see subsection 5.2.3)
is only visible for times much longer than τφ(g) [147,149], whereas �gure 5.2a present times of order
τφ(g) (e.g. for g = 0.15~2k0m � magenta curve in �gure 5.2a � τφ(g) ≈ 250τ).

5.4 Nonlinearity and energy distribution

We have seen in section 3.2 that in the linear case, it is quite natural to express the dynamics
of a given wave packet as a sum over its energy components. For example, the density at time t is
conveniently written as

|ψ(r, t)|2 =

∫
dεP (ε)Φε(r, t), (5.25)

where P (ε) is the average wave packet energy distribution and Φε(r, t) describes the dynamics of
the energy component ε. In the nonlinear case, the energy distribution may vary in time, due to the
time-dependence of the nonlinear term. This section aims at studying the evolution of its average.
We de�ne the average energy distribution at time t as

P (ε, t) = 〈φ(t)|δ(ε−H)|φ(t)〉, (5.26)

where H is the Gross-Pitaevskii Hamiltonian at time t and φ(t) the wave function at time t. Before
studying the evolution of the energy distribution, let us provide some motivation through a second
look at the spreading scenario of subsection 5.2.3.

5.4.1 Motivations: a second look at spreading

Numerical experiment

In subsection 5.2.3, we have used an initial wave packet of the form φ2(x) = δx,0/a and a strong
random potential. We propose to consider now a wave packet of the form

φ(x) ∝ cos(k0x)e−x
2/2σ2

, (5.27)
1Practically, a least-square �t method has been used for center-of-mass data corresponding to t > 150τ .
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evolving in a weak random potential. These conditions o�er more control over the initial energy
distribution, since at weak disorder the kinetic energy dominates and the momentum distribution
of (5.27) can be tuned. In particular, in the limit k0σ � 1, the momentum distribution [and thus
the energy distribution � see subsection 3.1.4 for more details] of (5.27) is sharply peaked around
~k0 [~2k2

0/2m].
The resulting mean square displacement 〈x2〉 is shown in �gure 5.3 as a function of time for

two values of k0. On the one hand, the results for k0 = π/4a (�gure 5.3b) unambiguously display
subdi�usion at long times, 〈x2〉 ∝ tα, with a subdi�usive exponent (the slope of the dashed line in the
�gure) α ' 0.3. On the other hand, the case k0 = π/2a (�gure 5.3a) appears clearly di�erent, with
a much smaller subdi�usive exponent (α ' 0.19) and a possible deviation from subdi�usion at long
times. More work is however needed to fully characterize this possible deviation from subdi�usion.
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Figure 5.3 � Mean square displacement as a function of time, for two values of k0a. In log-log scale,
the long time limit is well �tted by a straight line, hence demonstrating subdi�usion. Note however
the possible deviation from subdi�usion at long times in �gure a), although more work is needed to
be conclusive. The associated subdi�usive exponent (α in (5.19) and slope of the line here) di�ers for
the two values of k0. For a) (respectively b), we have used a disorder strength γ = 0.0225 ~4/m2a3

(respectively γ = 0.01 ~4/m2a3), so that ` = 25a for both k0 at the Born approximation (formula in
caption of �gure 4.9). In both cases, we have used a nonlinear strength g = 0.5 ~2/ma and an initial
wave packet of size σ = 10a. A time step δt = 0.05 ma2/~ was found su�cient for both �gures. The
results are averaged over 3000 (1500) disorder realizations for �gure a) (respectively b).

Possible interpretation

We propose to interpret the di�erence between the two results of �gures 5.3a and 5.3b from the
perspective of a wave packet exploring the energy landscape. At weak disorder, the localization
length is maximal at energy ~2k2

m/2m with km = π/2a [134], thus a wave packet starting with a
wave vector k0 = π/2a = km can only explore energy regions where the localization length is smaller
than the one at ε = ~2k2

0/2m while the wave packet starting with a wave vector k0 = π/4a 6= km
will expand to energy region of large localization length compared to the one at ε = ~2k2

0/2m. As
a result, the wave packet starting with a wave vector k0 = π/4a spreads more rapidly than the one
starting with k0 = π/2a.

Note that in the context of many-body localization, a somewhat similar reasoning led Gornyi,
Mirlin, Müeller and Polyakov to question the very possibility of many-body localization in the
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continuum limit [154], for which the localization grows without bounds as the energy increases.

5.4.2 Numerical study of the energy distribution dynamics

We now come back to the primary object of this section: the dynamics of the energy distribution.

De�nition

To simplify the discussion, we consider the evolution of an initial plane-wave,

φ(x, y, z, t = 0) ∝ eik0x, (5.28)

evolving in a weak 3D Gaussian delta-correlated potential,

VrVr′ = γδr,r′/a
3, (5.29)

with δr,r′ the Kronecker delta. The motivation for considering the weakly disordered 3D case is
twofold. On the one hand, we aim at describing the e�ect of the nonlinearity on the coherent back
scattering peak in section 5.5, the latter is di�cult to see in 1D, as it does not stand out from
the background (see subsection 5.5.1 for more details). On the other hand, it o�ers a conceptual
simpli�cation by placing us on the di�usive side of Anderson transition.

Results at intermediate times

In the numerical simulations, we compute the average energy distribution using

P (ε, t) = 〈φ(t)|δ(ε−H)|φ(t)〉 =

∫ ∞

−∞

dt′

2π~
〈φ(t)|ei(ε−H)t′/~|φ(t)〉, (5.30)

where |φ(t)〉 is the wave function at time t and H is the full Hamiltonian (including the nonlinearity)
at time t. The evolution is performed with the usual Chebyshev method (presented in section 4.3).
The resulting average energy distribution at di�erent times is shown in �gure 5.4 as blue curves.
The energy distribution visibly explores the energy landscape.

Note that ε = 〈φ(t)|H|φ(t)〉 is not conserved during the nonlinear evolution. The conserved
quantity is

E = 〈φ(t)|
[
p2/2 + V + g|φ(t)|2/2

]
|φ(t)〉 = ε(t)− g

2

∫
dr|φ(r, t)|4. (5.31)

However, the nonlinearity being very small, the distributions of ε and E are not expected to di�er
much. Our goal of describing the e�ect of the nonlinearity on the coherent back scattering peak
(see subsection 5.5.1 for more details about it) led us to choose ε over E. We are however not quite
certain that E is not more suited to the task.

Results at short times (t ≈ τ)
Naively, one expects the initial energy distribution to be set by the spectral function Ak0(ε) with

a given self-energy2:

P (ε, t = 0+) = Ak0(ε) =

∣∣= (Σ)
∣∣

π

1
(
ε− ε(k0)−< (Σ)

)2
+
(
=(Σ)

)2 , (5.32)

2At short times, the momentum and energy distributions are sharply peaked, the self-energy Σ corresponds to
Σ(ε = ~2k20/2m,k = k0). The reader not familiar with the concepts of spectral function or self-energy can �nd some
details in section 3.1.
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Figure 5.4 � Energy distribution at di�erent times. The solution of the kinetic equation (5.37),
is shown as magenta curves and is compared to numerical simulations shown as blue curves. The
initial energy distribution (computed at time t = 36 ma2/~ ' 2τ as prescribed by subsection 5.4.4)
is shown for comparison as a black dashed line. The parameters used in the numerical simulations
can be found in the caption of table 5.1.

and to then slowly evolve through inelastic collisions on the nonlinear term of the Gross-Pitaevskii
equation, not much happening at short times. Surprisingly, the numerical results present a very
short-time dynamics (t ≈ τ) of the average energy distribution. We have characterized this short-
time dynamics by �tting the average energy distribution with a time-dependent self-energy Σt:

P (ε, t) =

∣∣= (Σt)
∣∣

π

1
(
ε− ε(k0)−< (Σt)

)2
+
(
=(Σt)

)2 . (5.33)

The results are reported in table 5.1.

5.4.3 Short-time (t ≈ τ) picture: shifting and screening

In fact, at early times one needs to account for the rapid randomization of φ. Indeed, initially

φ is a plane wave, thus |φ|2 does not �uctuate and |φ|4 = |φ|22
, but as φ gets randomized by the

disorder, we expect |φ|4 to include a �uctuating part, in addition to |φ|22
:

|φ|4 = |φ|22
+
[
|φ|4 − |φ|22

]
= |φ|22

+ var
(
|φ|2

)
. (5.34)
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Time (ma2/~) τ (ma2/~) <(Σ) (~2/ma2)

0 17.44 ± 0.04 (−8.863 ± 0.005)× 10−2

6 18.28 ± 0.04 (−8.475 ± 0.005)× 10−2

12 18.56 ± 0.04 (−8.280 ± 0.005)× 10−2

18 18.68 ± 0.04 (−8.135 ± 0.005)× 10−2

24 18.76 ± 0.04 (−8.040 ± 0.005)× 10−2

30 18.76 ± 0.04 (−7.975 ± 0.008)× 10−2

36 18.76 ± 0.08 (−7.938 ± 0.008)× 10−2

Table 5.1 � Scattering mean free time τ = −~/2=(Σ) and real part of the self-energy obtained
numerically for various times. The simulations were performed on a 3D lattice made of 600 × 962

sites (the long direction is the one associated to k0), with a disorder strength γ = 0.18 ~4/m2a, a
nonlinearity g/Vol = 0.0075 ~2/ma2 and an initial wave vector k0 = π/4a. The results are averaged
over 15 disorder realizations. A time step δt = 0.4 ma2/~ was found su�cient. The error estimates
come from the �tting procedure.

The e�ect of this randomization corresponds to a shift of the real part of the self-energy accounting
for the increase of |φ|4 and the conserved quantity E [equation (5.31)]3:

∫
dεP (ε, t)ε− g

2

∫
dr|φ(r, t)|4 = ε(k0) + < (Σt)−

g

2

∫
dr|φ(r, t)|4 = E. (5.35)

Another e�ect takes place at short times, the screening of the random potential by the nonlin-
earity ensuing from the atoms preferring low potential regions to high potential ones. E�ectively,
the screening of the random potential reduces the self-energy (in absolute value).

Initially absent, both these e�ects build up rapidly, over roughly one scattering mean free time,
in agreement with the results reported in table 5.1. To be a bit more quantitative, we propose to
estimate the shift of the real part of the self-energy <(Σ) associated to the randomization of the wave
packet. Assuming that φ(r, t > τ) is a complex Gaussian random variable, var

(
|φ|2

)
= |φ|2, such

that the randomization of the wave packet shifts <(Σ) by approximately 0.5g/Vol ' 4×10−3 ~2/ma2,
i.e. roughly half of the observed shift of <(Σ). In conclusion, both e�ects (the screening and the
randomization) have a comparable e�ect on <(Σ).

5.4.4 Intermediate-time picture: kinetic equation

We now turn to times longer than the scattering mean free time, at which the energy distribution
evolves through inelastic collisions on the nonlinear potential (g|ψ|2). In the di�usive regime, it is
possible to account for these inelastic collisions within a kinetic equation, via a collision integral.
The latter can be derived using diagrammatic theory [56,58]. In this context, it is more convenient to
use a variant of the energy distribution, fε, related to P (ε) [equation (5.26)], through fε = P (ε)/ν(ε)
with ν(ε) the density of states per unit volume (DoS). The corresponding energy distribution is then
normalized according to ∫

fεν(ε)dε = 1. (5.36)

3Note that we de�ne the real part of the self-energy with respect to the energy ε = 〈φ(t)|H|φ(t)〉. One could work
with E [equation (5.31)] instead, and the self-energy would then not be shifted by the randomization of φ. At this
stage, this choice is arbitrary.
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Surprisingly, in the case of an initial plane wave, the evolution equation for the energy distribu-
tion, fε, is closed [59,155]:

∂tfε =

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2 W (ε; ε1, ε2)

[
(fε + fε1+ε2−ε)fε1fε2 − fεfε1+ε2−ε(fε1 + fε2)

]
, (5.37)

where

W (ε; ε1, ε2) =
m3g2

8π3~7νε

(
2ν1 + |ν1 + ν2 + ν3 − ν4| − |ν1 − ν2 − ν3 + ν4|

)
, (5.38)

with (ν1, ν2, ν3, ν4) being a permutation of (νε1 , νε2 , νε, νε1+ε2−ε) such that ν1 ≤ ν2 ≤ ν3 ≤ ν4. In
fact, the energy distribution contains all the necessary information to describe the inelastic collisions.
This is somewhat reminiscent of the spectral function, the energy distribution of a plane wave,
containing all information about the elastic collisions (mean free path and time), as we have seen in
subsection 3.1.4. The disorder enters in equation (5.37) through the DoS, and, more importantly,
in the initial condition which is set by the spectral function [equation (5.32)].

The short-time e�ects discussed in subsection 5.4.3 are not included in equation (5.37), which
describes the evolution of the energy distribution at times t & τ . In fact, they only a�ect the
initial energy distribution to be fed into equation (5.37). The initial energy distribution is set by
the self-energy, through the spectral function [equation (5.32)]. We thus take the short-time e�ects
into account by simply using a corrected self-energy in (5.32), that corresponds to the self-energy at
t ' 2τ .

5.4.5 Density of states

To integrate equation (5.37) and compute the average energy distribution at time t, one needs
the DoS. To compute it, we assume that is not a�ected by the nonlinearity, which should be the
case as long as the latter is small [156]. The potential being delta-correlated [equation (5.29)],
various approximate strategies can be employed, ranging from the Born approximation introduced
in section 3.1 to more sophisticated methods, the self-consistent Born approximation (SCBA) and
the coherent potential approximation (CPA) [109, 157, 158]. The corresponding formulas are given
in appendix 5.A. To attest the accuracy of these approximate methods, we compare them to the
numerically obtained DoS in �gure 5.5, we also show in green the DoS of the disorder-free lattice
for comparison. The numerical DoS follows from [159]

ν(ε) = 〈r = 0| δ (ε−H) |r = 0〉 =

∫ ∞

−∞

dt
2π~

eiεt/~〈r = 0| e−iHt/~ |r = 0〉, (5.39)

with the convention

|r = 0〉 =
δr,0

a3/2
, (5.40)

where a is the lattice spacing and δr,0 is the Kronecker delta. The evolution is performed with
the usual Chebyshev method (see section 4.3 for more details). As visible in �gure 5.5, the CPA
approximation describes very well the numerical DoS. It will thus be our choice for the integration
of equation (5.37).

5.4.6 Comparison with numerics

To estimate the accuracy of equation (5.37), we solve it numerically, using the CPA DoS and
taking into account the short-time e�ects as prescribed in subsection 5.4.4, and compare the solution
to numerical simulations in �gure 5.4. At this stage, we had to divide W [equation (5.38)] by 2 for
the solution of (5.37) to match our numerical simulations. We presume that a factor 2 is missing in
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Figure 5.5 � Density of states as a function of energy. Di�erent approximate methods for the density
of states are compared to numerical results. Figure a) presents the full energy range, while �gure b)
focus is on the small energy part. In �gure (b), the initial energy distribution is also shown, with an
arbitrary scale along the y-axis. The numerical simulations were performed on a 3D lattice made of
1203 sites, with a disorder strength γ = 0.18 ~4/m2a and averaged over 1000 disorder realizations.

equation (5.38). Figure 5.4 shows what the evolution of the energy distribution is well described by
the collision integral [equation (5.37)].

The energy distribution tends to explore the energy landscape on a time scale τg = ~3/mg2.
This time scale di�ers from the time scale found in section 5.3 for the alteration of the quantum
boomerang e�ect, which is proportional to 1/g. The quantum boomerang e�ect appears more
sensitive to interactions than the energy distribution, we postulate that it is a�ected by processes
leaving the energy distribution unchanged. This di�erence can be understood in the framework of
decoherence and dissipation (see [160] and references therein), decoherence processes a�ect only the
quantum boomerang e�ect, and dissipation is responsible for the slower dynamics in energy.

5.4.7 In�nite-time equilibrium

At in�nite time, we expect the system to reach an equilibrium state, with a thermal Rayleigh-
Jeans distribution maximizing entropy [161,162]:

f eqε =
1

Ω

T

ε− µ, (5.41)

where Ω is the volume of the system, T and µ(≤ 0) are analogues of the usual temperature and
chemical potential respectively. Plugging (5.41) into the collision integral (5.4.4), one indeed �nds
∂tf

eq
ε = 0 [60]. Distribution (5.41) is generally assumed to hold up to some cuto�, e.g. εmax =

T + µ [60, 163] (beyond which (5.41) starts to deviate from the Bose-Einstein distribution [78]).
Unfortunately, this long time regime is beyond the reach of our numerical simulations.

Note that the entropy whose maximization leads to (5.41) is de�ned with plane-wave states [161],
this is a good approximation since we are on the di�usive side of Anderson transition. This choice
is consistent with the collision integral (5.37), which is derived neglecting localization e�ects. The
case of strongly localized 1D chains was considered in [57, 164], where they assume a Boltzmann
distribution.
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5.5 Nonlinearity and the coherent back scattering peak

5.5.1 Coherent back scattering peak

In section 5.4, we have studied how the energy distribution of an initial plane wave evolves in a
3D random potential through the nonlinear term of the Gross-Pitaevskii equation [equation (5.4)].
The energy distribution is not easily measurable in cold-atom experiments, one often prefers to
measure the related momentum distribution [40]. At times longer than the scattering mean free
time, one naively expects no preferred direction for the momentum, and thus an isotropic momentum
distribution given by the projection of the energy distribution on the momentum space:

|φ(p, t)|2 =

∫
dεAp(ε)fε(t), (5.42)

where the spectral function Ap(ε) connects energy and momentum in the random potential (see
subsection 3.1.4 for more details).

Equation (5.42) relies on a classical point of view and neglects an important contribution to the
momentum distribution, the coherent back scattering (CBS) peak. To exhibit it, let us expand on
the discussion of the weak localization phenomenon in subsection 1.1.1. It was argued there that two
classes of paths contributing to the real space density survive the disorder averaging. The momentum
distribution can be similarly decomposed as a sum of paths, with however di�erent initial and �nal
points for the wave function and its conjugate, according to

|φ(p, t)|2 =
1

~2

∫
dr3dr4e

−ip.(r3−r4)/~φ(r3, t)φ∗(r4, t). (5.43)

Figure 5.6 adapts �gure 1.1 to the present case by showing the two main paths that contribute
to φ(r3, t)φ∗(r4, t). Assuming an initial plane wave with wave vector k0 and performing the Fourier
transform, the Di�uson brings an isotropic contribution, described by equation (5.42) whereas the
Cooperon contribution is strongly anisotropic and peaked around −~k0 [165], as visible in �gure 5.7.
If phase coherence is fully preserved, the peak reaches twice the background height [165].

r1

r2

r3

r4

(a) Di�uson

r1

r3

r2

r4

(b) Cooperon

Figure 5.6 � Two kinds of pair of scattering paths contributing to φ(r3, t)φ
∗(r4, t). Between the

�rst and last scattering events, both paths follow the same sequence of scattering events by either
propagating (a) in the same direction or (b) in opposite directions.

The present section is devoted to the e�ect of interactions on the CBS peak.



106 Chapter 5. Weakly interacting wave packets

2 ms

pz

py

0.02

2.5 ms2 ms1.5 ms

0 ms 0.5 ms 1 ms

0.11 0.4

0
pi

0.02 0.02

Figure 5.7 � Figure from [7] showing the experimentally measured momentum distribution after
di�erent propagation times in a 2D disordered potential. The initial momentum distribution (�rst
image) is sharply peaked around ~k0. After few scattering mean free times (last image), the mo-
mentum distribution presents an isotropic part (associated to the Di�uson) and the coherent back
scattering (CBS) peak around −~k0 (associated to the Cooperon). It should be mentioned that an-
other peak, the coherent forward scattering peak, is expected at longer times, when the localization
regime is reached [43, 166]. Note that the situation is similar in three dimensions, with a spherical
isotropic shell and a peak at −~k0.

5.5.2 Numerics

To study the e�ects of interactions on the CBS peak, we propagate an initial plane wave exactly
as we did in section 5.4, but keep track of the momentum distribution

|φ(p, t)|2 =

∣∣∣∣
1

~

∫
dre−ip.r/~φ(r, t)

∣∣∣∣
2

, (5.44)

instead of the energy distribution. We de�ne the CBS peak contrast as the height of the distribution
at the top of the peak (located at p = −~k0) divided by the background amplitude, measured at
a momentum ~k0 in a direction orthogonal to ~k0. We show in �gure 5.8 the numerically obtained
CBS peak contrast. In the non interacting limit (g = 0), the CBS peak builds up rapidly (over few
scattering mean free times) and saturates at twice the background as expected. In the nonlinear
case (g 6= 0), the CBS does not build up completely at short times and saturates well below twice
the background before decreasing on a much longer time scale.

5.5.3 Physical picture

The Cooperon diagrams of �gure 5.6b are built by letting the dashed path follow the same
trajectory as the continuous path but in the opposite direction, in order to guarantee that the phase
accumulated along the continuous path is canceled by the one accumulated along the dashed path.
In doing so, we implicitly assumed that on each segment the quasi-particles are the same for the
continuous and dashed paths (i.e. same energy and self-energy, see section 3.1 for more details).
This assumption may be challenged by the nonlinear time-dependent term of the Gross-Pitaevskii
equation (5.4).

To make it more clear, we reproduce the diagrams in �gure 5.6b, displaying the time as a
color (going from blue at short times to red at long times) in �gure 5.9. It appears that the
phase cancellation on each segment is hampered by the mechanisms introduced in subsections 5.4.4
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Figure 5.8 � Coherent back scattering (CBS) peak contrast as a function of time, with statistical
error bars. We de�ne the CBS peak contrast as the height of the distribution at the top of the peak

(|φ(−~k0)|2) divided by the background amplitude (|φ(~k⊥0 )|2), where k⊥0 .k0 = 0 and |k⊥0 | = k0.
The nonlinear case (g 6= 0), shown in green, is compared to the linear one (g = 0), shown in blue.
The simulations were performed on a 3D lattice made of 600 × 962 sites (the long direction is the
one associated to k0), with a disorder strength γ = 0.05 ~4/m2a (τ ≈ 71 ma2/~) and an initial wave
vector k0 = π/4a. The results are averaged over 5000 disorder realizations. In the nonlinear case,
we have used a nonlinearity g/Vol = 0.004 ~2/ma2, and a time step δt = 1.6 ma2/~.

and 5.4.3. On the one hand, as a result of the short-time e�ects of subsection 5.4.3, di�erent quasi-
particles are associated to the continuous and dashed paths in the vicinities of the starting and
ending points. This a�ects all contributions to the Cooperon and results in the partial rise of the
CBS peak at short times4. On the other hand, the energy redistribution of subsection 5.4.4 may
change the energy after some time. This e�ect takes place on a much longer time scale: in the weak
nonlinearity limit we are considering, many scattering events on the disordered potential are needed
before the energy redistribution becomes e�ective. We expect this e�ect to eventually destroy the
CBS peak as inelastic collisions add up. To summarize, the short-time e�ects are responsible for the
CBS peak not rising to twice the background at short times (t ≈ τ), and the energy redistribution
to the slow reduction of the CBS contrast on a much longer time scale.

5.6 Conclusion

In this chapter, we have touched upon the e�ect of weak interactions on the evolution of con-
densed bosonic gases in disordered potentials. This study consisted of three parts. We have �rst
shown how the complex quantum many-body dynamics approximately reduces to a nonlinear equa-
tion on a classical �eld. We have then developed a numerical scheme to integrate said equation. In
a third stage, we have applied the numerical method to various physical situations.

The main conclusions that we have drawn from this study follows. First, acting similarly to
a decoherence process (with a decoherence time proportional to ~ξ/g), the nonlinearity seems to
interrupt the quantum boomerang e�ect and prevent the full retrore�ection of wave packets launched

4Continuing on the remark of footnote 3, we would like to stress that at the moment, it is not clear to us which
de�nition of the couple energy/real part of the self-energy is relevant for the CBS peak. Nevertheless, both de�nitions
lead to the same qualitative conclusion of a shift of the self-energy at short times, only the amplitude of the shift is
in question.
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Figure 5.9 � Couple of scattering paths of Cooperon type, with time shown as a color (going from
blue at short times to red at long times).

with �nite velocity. Second, we have shown that the nonlinearity allows the wave packet to explore
the energy landscape. Given an initial plane wave, the dynamics of the energy distribution obeys a
closed equation and inelastic collisions happen on a time scale τg = ~3/mg2. Third these inelastic
collisions hit the CBS peak and are expected to eventually lead to its destruction. Fourth, the
CBS peak is also a�ected by short-time e�ects, the screening of the disordered potential by the
nonlinearity as well as the shift of the real part of the self-energy associated to the randomization of
the wave packet5. As a result, the CBS peak does not rise to twice the background height at short
times.

While we have underlined the physical picture behind these phenomena, our work was essentially
numerical. Further analytical characterization of the e�ects introduced in this chapter should provide
deeper insights and o�er interesting perspectives for future work.

Appendix 5.A Approximations of the density of states

In this appendix, we give the formulas for the density of states (DoS) used in subsections 5.4.5
and 5.4.6. Four approximations of the DoS are presented, a priori in increasing order of accuracy
(disorder-free, Born, SCBA and CPA). These formulas are taken from [109] and apply to delta-
correlated potentials, for which the self-energy can be assumed to depend only on energy [Σ(k, ε) =
Σ(ε)].

5.A.1 Density of states in term of self-energy

The DoS is computed through the average Green function G(ε) [section 3.1]:

ν(ε) = − 1

π
=
[
G(ε)

]
, (5.45)

which is in turn expressed in terms of the self-energy Σ(ε) [section 3.1]:

G(ε) =

∫ π

−π

d3k

(2π)3

1

ε− ε(k)− Σ(ε)
, (5.46)

where ε(k) is the lattice dispersion relation [ε(k) = (3 − cos(kxa) − cos(kya) − cos(kza))~2/ma2].
The integral over k can be performed to express G(ε) as [167]

G(ε) =
P (6/E)

E
, where E =

2ma2

~2

[
ε− Σ(ε)

]
− 6 and P (z) =

1− 9ξ4

(1− ξ)3(1 + 3ξ)

[
2

π
K(k1)

]2

. (5.47)

5The e�ect of the randomization of the wave packet on the CBS peak should be taken with a grain of salt, see
footnote 4.



5.A. Approximations of the density of states 109

Here ξ and k1 are functions of z de�ned as

ξ(z) =

(
1−

√
1− z2/9

1 +
√

1− z2

)1/2

, k1(z)2 =
16ξ3

(1− ξ)3(1 + 3ξ)
, (5.48)

and K is the complete elliptic integral of the �rst kind.

5.A.2 Approximations of the self-energy

The simplest approximation is to ignore the disordered potential and set Σ to 0, hence recovering
the disorder-free DoS:

νfree(ε) = − 1

π
=
[
G0(ε)

]
, (5.49)

where G0(ε) is the disorder-free Green function (which can be deduced from G(ε) by setting Σ to
0).

Alternatively, one can compute the self-energy perturbatively in the disorder (see section 3.1 for
more details). At lowest order (Born approximation), the self-energy writes

Σ(ε) = V 2
0 G0(ε). (5.50)

A slight, but simple, improvement is the self-consistent Born approximation (SCBA) where the
disorder-free Green's function in equation (5.50) is modi�ed self-consistently, leading to

Σ(ε) = V 2
0 G0(ε− Σ(ε)). (5.51)

Σ(ε) can then be computed numerically, e.g. with a root-searching algorithm.
A supposably better approximation scheme is the coherent potential approximation (CPA) [157,

158], which leads to an equation involving the potential on-site distribution P (V ) [here P (V ) =
exp(−V 2/2V 2

0 )/V0

√
2π]:

∫
dV

V − Σ(ε)

1− (V − Σ(ε))G0(ε− Σ(ε))
P (V ) = 0. (5.52)

Again, a root-searching algorithm allows to compute Σ(ε) numerically.





Chapter 6

The kicked rotor, a paradigmatic

simulator for Anderson localization

We have so far discussed Anderson localization and its manifestations in the dynamics of particles
evolving in random potentials. Such systems do not have the exclusivity though, Anderson localiza-
tion also appears in deterministic models. In this chapter, we consider an example of deterministic
model displaying Anderson localization, the kicked rotor. This model has been of great experimental
importance [168], in particular in the context of the early observations with cold-atoms of Anderson
localization in one dimension [169], of the Anderson transition in three dimensions [36] and more
recently of Anderson localization in two dimensions [39]. Besides these experimental successes, the
kicked rotor has also constituted theoretical challenges, starting from the numerical observation of
dynamical localization [170] and its connection to Anderson localization through a mapping onto
a disorder model [171]. Later the connection was also established through a supersymmetric �eld
theory [172]. More recently, the emergence of topological features in kicked-rotor models for particle
with half-integer spins was reported [173�175].

The aim of this chapter is to show that many areas are still to be explored. We start by brie�y
introducing the kicked rotor and its connection with Anderson localization in section 6.1. Section 6.2
introduces the three simplest universality classes and some of their universal properties. From these
notions, section 6.3 challenges common wisdom by exploring the possibility of a spinless kicked rotor
in the symplectic class. In section 6.4, we start by introducing an important possibility o�ered by the
kicked rotor, the simulation of high dimensions with speci�c 1D quasi-periodically modulated kicked
rotors. This possibility is then applied to a kicked rotor belonging to the symplectic universality
class. We conclude section 6.4 by investigating the properties of a new type of quasi-periodically
modulated kicked rotor.

Note that this chapter presents works in progress.

6.1 From chaos to disorder

The kicked-rotor model describes the motion of a particle living on a circle of length 2π and
periodically kicked. The corresponding Hamiltonian takes the form

H =
p2

2
+ V (θ)

∑

n

δ(t− n), (6.1)

111
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with p = −i~∂θ. The single-valuedness of the wave function quantizes the momentum in units of ~
(p = l~ with l ∈ Z). A commonly studied kicked rotor has the simple form

H =
p2

2
+K cos (θ)

∑

n

δ(t− n), (6.2)

i.e. V (θ) = K cos (θ).
In cold-atomic realizations of model (6.1) [168], the particle does not strictly live on a circle,

but rather in a virtually in�nite 1D space parametrized by x, and is kicked with a periodic optical
potential (of period 2π/k). The Hamiltonian takes the form

H =
p2

2m
+ V (kx)

∑

n

δ(t− nτ), (6.3)

with V a periodic function of period 2π. The periodicity of the potential allows one to write the
dynamics on a circle by application of the Bloch theorem. This procedure shifts the momentum,
quantized in integer units of ~k on the circle (θ ∈ [−π/k, π/k[), by a quasi-momentum β~k (β ∈
[0, 1[):

H =
(k~)2(l + β)2

2m
+ V (kθ)

∑

n

δ(t− nτ). (6.4)

The quasi-momentum β is conversed during the evolution. The theoretician model (6.1) corresponds
to using the units m = τ = k = 1. In these units, ~ is proportional to m/k2τ . In practice, it can
thus e�ectively be experimentally tuned via τ .

Throughout out this chapter, we work in units m = τ = k = 1.

6.1.1 Classical chaotic dynamics

Let us start by recalling what is the classical dynamics associated to (6.2). From Hamilton
equations, one can express the classical dynamics as Chirikov's standard map [176]:

pt+1 = pt +K sin(θt), (6.5)

θt+1 = θt + pt+1, (6.6)

where θn (pt) is the position (momentum) of the classical particle at time t (right before a kick). As
it turns out, Chirikov's standard map is chaotic for large enough K [176]. The associated extreme
sensitivity on the initial conditions results in a deterministic di�usion process in momentum space:
for large enough K and at long enough times, the average of p2 over the initial angle θ grows linearly
in time [176]. With respect to Anderson localization, this di�usion process in momentum space
plays the role of the classical real space di�usion of disorder models.

6.1.2 Quantum evolution: Floquet operator

At the quantum level, the dynamics is similarly obtained by applying repeatedly the Floquet
operator

F = UkineticUkick, (6.7)

which governs the evolution over one period. Here, Ukick describes the kick [it is the quantum coun-
terpart of (6.5)] and Ukinetic describes the free propagation between kicks [it corresponds to (6.6)].
For the kicked rotor (6.2), they are respectively given by

Ukick = exp
(
−iK cos(θ)/~

)
and Ukinetic = exp

(
−ip2/2~

)
. (6.8)
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6.1.3 Quantum evolution: pseudo-random kicked rotor

We now turn to the kicked rotor (6.4), relevant for cold-atom experiments. It is useful to
express Ukick and Ukinetic in the momentum basis. The momentum being quantized in units of ~, we
parametrize the momentum basis by integers l: p |l〉 = l~ |l〉. On the one hand, the kick changes the
momentum, and is thus non diagonal:

〈l|Ukick|l′〉 =

∫ π

−π
dθe−iK cos(θ)/~e−i(l−l

′)θ = il
′−lJl′−l(K/~), (6.9)

where Jl′−l denotes the (l′ − l)th Bessel function of the �rst kind. On the other hand, Ukinetic is
diagonal:

〈l|Ukinetic|l′〉 = exp
(
−i~(l + β)2/2

)
δl′,l, (6.10)

with δl′,l the Kronecker delta.
Let us now consider the di�erence between two consecutive phases of (6.10):

~
2

[
(l + 1 + β)2 − (l + β)2

]
= ~l + ~β + ~/2. (6.11)

In the limit K/~ � 1, (6.9) populates large momenta, such that two consecutive phases typically
di�er by much more than 2π. Alternatively, the same holds true when ~ � 1. In either one of the
two limits, ~(l+ β)2/2 in (6.10) is essentially equivalent to a pseudo-random momentum-dependent
phase:

〈l|Ukinetic|l〉 ≈ exp (−iφl) , φl ∈ [0, 2π[, (6.12)

with di�erent realizations of the phases depending on β [177,178]. In experiments, many β compo-
nents are initially populated such that the measurements can be viewed as averaged over β [179].

In the rest of the chapter, we approximate the φl of equation (6.12) by uniformly distributed
random phases. Within this approximation, ~ only appears in the kick term and can thus be absorbed
in the kick strength: we set it to 1 to lighten the notations. The reason for using this approximation is
essentially conceptual, it is used to bring out the e�ects discussed and facilitate their understanding.
The consistency of the results for a pseudo-random sequence is systematically checked numerically,
with the exception of the results presented in �gure 6.6. Note that this approximation is only valid
for ~ values incommensurate with π (e.g. for ~ = 4π, two consecutive phases di�er only by ~β [2π],
which can be very small) [180,181].

6.1.4 From classical di�usion to localization

In the spirit of what we have done in section 1.1 for disordered systems, we write the quantum
probability to go from momentum p1 to momentum p2 in a time span t as a sum over classical paths
weighted by complex numbers Ai (averaging over the quasi-momentum β is implied):

P (p1 → p2, t) =

∣∣∣∣∣
∑

path i

Ai

∣∣∣∣∣

2

=
∑

paths i

AiA
∗
i

︸ ︷︷ ︸
classical

+
∑

paths i6=j

AiA
∗
j

︸ ︷︷ ︸
quantum

. (6.13)

With only the so-called �classical� contribution, the momentum space dynamics would be di�usive.
Following the reasoning of section 1.1, to this contribution we should add the phaseless �quantum�
contributions, among which the important Cooperon contribution, built from a path i and its time-
reversed counterpart j. In a way, the chaotic properties of the classical dynamics select the classical
paths, and thus play a role similar to disorder. In close analogy with disorder models (see section 1.1
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for more details), the accumulation of Cooperon loops1 leads to localization: the classical momentum
space di�usion is stopped at long times and replaced by localization [182].

These perturbative similarities between the kicked rotor and disordered systems can be formalized
through a mapping of the kicked rotor onto a 1D lattice with pseudo-random on-site potential [171].
The equivalence between the kicked rotor and disorder models can also be shown through a su-
persymmetric �eld theory [172]. The latter method connects the kicked rotor to quasi-1D disorder
models, with thus an important di�erence with respect to the 1D disorder models of chapter 4, the
presence of a di�usive regime at short times.

6.2 Universality classes and random matrix theory

6.2.1 From a perturbative perspective

As discussed in subsection 6.1.4, the Cooperon, formed by coupling a path and its time-reversed
counterpart, plays an important role in the transport properties. It is based on time-reversal sym-
metry, thus suggesting that this symmetry plays a central role. In the particular case of the kicked
rotor, for which the Cooperon is built in momentum space, the relevant time-reversal symmetries
are combinations of spatial parities and conventional time-reversal symmetries [183]:

t→ t0 − t,
p→ p,

θ → θ0 − θ,
(6.14)

with arbitrary t0 and θ0. The kicked rotor (6.2) clearly has this symmetry (e.g. with t0 = θ0 = 0), it
thus belongs to the so-called orthogonal class and the Cooperon is nonzero. When all time-reversal
symmetries of type (6.14) (i.e. for all t0 and θ0) are broken, the system belongs to the unitary class
and the Cooperon is zero.

In the case of particles with half-integer spin, the situation is somewhat more subtle, with the
time-reversal symmetry having di�erent e�ects depending on the presence of additional geometrical
symmetries. We come back to these subtleties in subsection 6.2.2. For now, we just note that when
the only symmetry is of the form

t→ t0 − t,
p→ p,

θ → θ0 − θ,
S → −S,

(6.15)

where S is the spin, the associated kicked rotor belongs to the symplectic class [184] and the
Cooperon is present, although it manifests itself as an antilocalization contribution (we come back
to this point in subsection 6.3.1).

Based on the interplay between Cooperon and time-reversal symmetries, we distinguish three
classes. First the orthogonal class, for spinless kicked rotors invariant under a time-reversal symme-
try, featuring a Cooperon inhibiting transport. Second the unitary class, for spinless kicked rotors
without any time reversal invariance, for which the Cooperon is irrelevant. Third the symplectic
class, for spin-1/2 particle with time-reversal symmetry of type (6.15) as only symmetry, featuring
a Cooperon enhancing transport.

1Note that other more complicated interferential contributions also play an important role for localization [22].
They also have analogues in disorder models [22].
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6.2.2 Universal properties and random matrix theory

Generalities

The present subsection aims at pointing out universal properties associated with each class, based
on the framework of random matrix theory. The idea behind random matrix theory is that local
spectral properties of disordered or quantum chaotic Hamiltonians2 are universal and depend only on
speci�c symmetries of the Hamiltonian. As an example, given the ordered eigenvalues (λ1, λ2, . . . , λn)
of an Hamiltonian, the distribution of the level spacings (s1 = λ2−λ1,s2 = λ3−λ2,sn−1 = λn−λn−1)
is universal, provided the level spacings are expressed in units of the local mean level spacing (〈si〉).
To �nd the corresponding universal properties, one uses ensembles of random matrices.

Random matrices were introduced by Wigner to model the nuclei of heavy atoms [185]. This
fruitful idea then spread to many �elds, from disordered and quantum chaotic systems to two-
dimensional gravity and string theory [186]. Perhaps more surprisingly, it was also found useful in
number theory, to study the distribution of zeros of the Riemann zeta function [187].

In this thesis, we consider only a particular class of random matrix ensembles, the so-called
Dyson ensembles, which are ensembles of Hermitian matrices featuring statistically independent
entries, with only one possible symmetry: time reversal. Note that in the context of disordered and
quantum chaotic systems, other random matrix ensembles play an important role, they include the
possibility of other symmetries [188,189].

In the following two subsections, we discuss the di�erent random matrix ensembles describing
systems with and without time reversal symmetry. The discussion follows the book by Haake [123].
For the sake of brevity, we only gather here some important results for the upcoming section 6.3,
and refer the reader to [123] for a more thorough discussion.

Hamiltonians not invariant under time reversal

Before exploring the consequences of time reversal symmetry on the local spectral properties of
disordered or quantum chaotic Hamiltonians, let us consider the non-symmetric case. Concretely
speaking, we want to de�ne the random matrix ensemble that describes a given disordered or chaotic
Hamiltonian featuring no time reversal symmetry. For simplicity, we assume that the random matrix
ensemble has statistically independent entries.

To characterize this random matrix ensemble, we need to identify under which transforma-
tions it should be statistically invariant. A generic transformation changes the Hamiltonian H to
H ′ = AHA−1. Since no time reversal symmetry applies here, the only requirement is that the
transformation should retain Hermiticity:

H ′† = (AHA−1)† = AHA−1 ⇔
[
H,AA†

]
= 0. (6.16)

The general transformations for non-time-reversal invariant systems are thus unitary, up to an
irrelevant global factor. For N ×N matrices, they form the U(N) group.

Only one random Hermitian matrix ensemble has statistically independent entries and is sta-
tistically independent under U(N) transformations, the Gaussian unitary ensemble [190]. This
ensemble of Hermitian matrices has real (resp. complex) statistically independent Gaussian (resp.
non-)diagonal entries3.

2By quantum chaotic Hamiltonian, we mean a quantum Hamiltonian whose classical counterpart displays a chaotic
dynamics.

3Of course, strictly speaking, an Hermitian matrix cannot have statistically independent entries, since the upper
and lower triangular part of the matrix are related by complex conjugation. Only the upper (lower) triangular part
of the matrix has literally statistically independent entries.
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Time reversal operator

To explore the consequences of time-reversal symmetries, we need to represent them by operators
acting on wave functions. As it turns out, time-reversal operators T are antiunitary [123]:

〈Tψ| Tφ〉 = 〈φ|ψ〉 , (6.17)

and can always be written [123]
T = UK, (6.18)

where U is an arbitrary unitary matrix and K is the antiunitary complex conjugation operator in
position representation. The case U = 1 is associated to conventional time-reversal symmetry:

t→ −t,
p→ −p,
θ → θ.

(6.19)

It is reasonable to require that every time-reversal operators T acting twice on a wave function
does not change it (up to a phase factor, i.e. T 2ψ = eiαψ). It can be shown that T 2 = 1 (α = 0)
and T 2 = −1 (α = π) are the only possibilities consistent with the antiunitarity of T [123].

Let us �rst consider the case T 2 = 1. Assuming an Hamiltonian invariant under T ([H,T ] = 0),
its local spectral properties should be described by a random matrix ensemble similarly invariant
under T . To exhibit the constraint imposed by this invariance, we �rst show that a T -invariant basis
exists. To that end, given an arbitrary vector φ1 and a complex number a1, we build the vector

ψ1 = a1φ1 + Ta1φ1, (6.20)

which is manifestly T -invariant. Repeating the same procedure with a vector φ2 orthogonal to ψ1,
we get the T -invariant vector

ψ2 = a2φ2 + Ta2φ2, (6.21)

which turns out to be orthogonal to ψ1:

〈ψ2|ψ1〉 = a∗2 〈φ2|ψ1〉+ a2 〈Tφ2|ψ1〉 = a2 〈T 2φ2|ψ1〉∗ = a2 〈φ2|ψ1〉∗ = 0. (6.22)

From this procedure, one can build a complete basis of orthogonal vectors.
With a T -invariant basis at hand, we consider an arbitrary matrix O invariant under T ([O, T ] =

0). The matrix O is real in the T -invariant basis:

Oµν = 〈ψµ|Oψν〉 = 〈Tψµ|TOψν〉∗ = 〈ψµ|TOT 2ψν〉∗ = 〈ψµ|TOTψν〉∗ = O∗µν . (6.23)

The entries of the random matrices invariant under T can thus be described by real distributions.
The ensemble of matrices that leave a N ×N real matrix real is the O(N) group, a subgroup of the
U(N) group. The random Hermitian matrix ensemble that has statistically independent entries and
is statistically independent under O(N) transformations is the Gaussian orthogonal ensemble [190].
This ensemble of symmetric matrices has statistically independent real Gaussian entries.

The case T 2 = −1 is somewhat richer, with di�erent distributions depending on the presence
of geometrical symmetries. Independently of the presence of geometrical symmetries, the T 2 = −1
case has a distinguishable feature, the presence of Kramers' degeneracy. Indeed, if ψ is an eigenstate
of the Hamiltonian with energy E, so is Tψ since [H,T ] = 0, moreover ψ and Tψ are orthogonal:

〈ψ|Tψ〉 = 〈Tψ|T 2ψ〉∗ = −〈Tψ|ψ〉∗ = −〈ψ|Tψ〉 = 0, (6.24)
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all eigenvalues are thus doubly degenerate. An important consequence of this double degeneracy is
that the Hilbert space dimension, if �nite, must be even (we denote it 2N). This result is consistent
with the common wisdom that T 2 = −1 is only possible for half-integer spin particles.

In the absence of geometrical symmetries, one can use a basis organized in pairs (|i〉,T |i〉). In
this basis, a matrix invariant under T can be decomposed in 2 × 2 blocks formed by the pairs
(|i〉,T |i〉). Similarly to the real T -invariant matrices when T 2 = 1, when T 2 = −1 each block of
a T -invariant matrix can be described by four real numbers giving the weights associated to the
matrices (1,−iσ) [with σ the Pauli matrices]. Further Hermiticity connects the blocks on each side
of the diagonal and reduces the description of diagonal blocks to a single real number [123]. These
matrices are thus formally equivalent to N × N Hermitian quaternionic matrices4. On the one
hand, for o�-diagonal elements, there is a one-to-one correspondence between the four real numbers
composing a quaternion and the four real numbers describing a block5. On the other hand, the
N real diagonal elements of the Hermitian quaternionic matrix describes the diagonal blocks. The
ensemble of transformations leaving this structure unchanged is the symplectic Sp(N) group. The
random Hermitian matrix ensemble that has statistically independent entries and is statistically
independent under Sp(N) transformations forms the Gaussian symplectic ensemble [190]. This
ensemble of 2N × 2N Hermitian matrices can be described by N ×N Hermitian matrices with real
(resp. quaternionic) statistically independent Gaussian (resp. non-)diagonal entries.

The presence of an additional geometrical symmetry (e.g. parity) splits the matrices in two
blocks transposed of one another:

H =

(
H+ 0
0 HT

+

)
. (6.25)

Kramers' degeneracy is a direct consequence of this structure. The associate random Hermitian
matrix ensemble is then that of H+, which is only constrained by Hermiticity, it is thus the Gaussian
unitary ensemble. The presence of an additional geometric symmetry imposes real �uctuations for
H+ and the corresponding ensemble is thus the Gaussian orthogonal ensemble.

Level spacing distribution in the three Dyson random matrix ensembles

We have de�ned three ensembles of Hermitian random matrices, the Gaussian orthogonal ensem-
ble (GOE), the Gaussian unitary ensemble (GUE), and the Gaussian symplectic ensemble (GSE).
In each ensemble, one can work out local spectral properties that are expected to be universal.
A commonly used quantity is the distribution of level spacings. Given the ordered eigenvalues
(λ1, λ2, . . . , λN ) of a given matrix, it is the distribution of si (s1 = λ2 − λ1, s2 = λ3 − λ2, . . . ,
sN−1 = λN − λN−1). It is expressed in units of the local mean level spacing (〈si〉).

For su�ciently large matrices, the approximate results are respectively for the orthogonal, unitary
and symplectic ensembles [190]:

PGOE(s) =
π

2
se−

π
4
s2 , (6.26)

PGUE(s) =
32

π2
s2e−

4
π
s2 , (6.27)

PGSE(s) =
218

36π3
s4e−

64
9π
s2 . (6.28)

A comparison between these three results and the Poisson distribution

PPoisson(s) = e−s, (6.29)

4An Hermitian quaternionic matrix is composed of real entries on the diagonal and o�-diagonal quaternionic entries.
5In fact, the analogy between the structure of the 2× 2 blocks and quaternions goes much deeper, see e.g. [191].
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which would prevail if the eigenvalues were just uniformly and independently distributed over some
interval, is shown in �gure 6.1. The random matrix ensembles show di�erent degrees of level-level
repulsion, with a level spacing distribution starting as s for the orthogonal ensemble, s2 for the
unitary ensemble and s4 for the symplectic ensemble.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s
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Figure 6.1 � Eigenvalue spacing distributions for di�erent random matrix ensembles. The approxi-
mate results for the three Dyson ensembles are shown: equation (6.26) for the orthogonal ensemble
in green, equation (6.27) for the unitary ensemble in red and equation (6.28) for the symplectic
ensemble in light blue. For comparison, the Poisson distribution (6.29) (which would prevail if the
eigenvalues were just uniformly and independently distributed over some interval) is shown in dark
blue.

6.2.3 Time reversal symmetry for Floquet models

Going back to our initial model, equation (6.1), we see that it does not �t in the above framework.
Indeed, (6.1) being time-dependent, it does not make much sense to look at its (time-dependent)
eigenvalues. In fact, it is the Floquet operator (6.7), describing the evolution over a period, that
plays the role of the Hamiltonian in this case. The universal local spectral properties are found in the
eigenvalues of the Floquet operator. The Floquet operator being unitary, it is not described by the
above Gaussian ensembles, but by very similar ensembles, the circular ensembles. The eigenvalues
of unitary operators being complex numbers of modulus 1, the interesting spectral properties lie in
their phase. In fact, for large enough matrices, de�ning the level spacing as the distance between
two consecutive eigenphases, one �nds the same distributions of level spacings than for the Gaussian
ensembles.

The interplay with the time-reversal symmetry is slightly changed. Indeed, since the Floquet
operator propagates a given state over a period, its time-reversed counterpart should propagate a
state backward in time over a period, such that the time-reversed Floquet operator should be the
inverse of the Floquet operator:

TFT−1 = F−1 = F †. (6.30)

Equation (6.30) replaces [H,T ] = 0 for Floquet operators.
A Floquet operator without property (6.30) has the universal properties of the circular unitary

ensemble (CUE). A Floquet operator with property (6.30) and T 2 = 1 [respectively T 2 = −1] has
the universal properties of the circular orthogonal (COE) [respectively symplectic (CSE)] ensemble.
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To a good approximation, their level spacing distribution are respectively given by (6.27), (6.26)
and (6.28).

6.2.4 Critical exponents

The above classi�cation of Hamiltonians in terms of their local spectral properties may seem a
bit unusual to the statistical physicist. Indeed, in statistical physics it is more common to group
models in universality classes characterized by some critical exponents [192]. In the case of Anderson
transitions, the same characterization applies and di�erent universality class features di�erent critical
exponents. It is now clear that the above three classes (orthogonal, unitary and symplectic) de�ne
three di�erent universality classes, each displaying a di�erent universal divergence of the localization
length near the critical point [189]. Concerning the critical properties, to the best of our knowledge,
nothing is known for kicked rotors besides spinless time-reversal invariant ones that are known to
belong to the orthogonal class, together with disorder models [36, 179].

6.3 A spinless kicked rotor in the symplectic class?

It is commonly accepted that the time-reversal operator can only square to -1 for particles with
half-integer spin [123]. As a corollary, it is believed that the symplectic Anderson universality class
can only be explored with half-integer spin particles. This section aims at challenging this restriction.

6.3.1 Weak antilocalization

Model

To start with, we look for a kicked-rotor model exhibiting weak antilocalization. This charac-
teristic of the symplectic class corresponds to a Cooperon with a sign opposite to the Di�uson [3].
The Cooperon is built from a path and its time-reversed counterpart. A path itself is de�ned as a
sequence of free propagations with momenta pt, separated by kicks. The intuitive idea is to use a
kicking potential V (θ) with the property

〈p1|e−iV (θ)|p2〉 = −〈p2|e−iV (θ)|p1〉 for all (p1, p2), (6.31)

such that, for each kick, the Cooperon accumulates a minus sign as compared to the usual time-
reversal invariant situation, for which

〈p1|e−iV (θ)|p2〉 = 〈p2|e−iV (θ)|p1〉 . (6.32)

We need to go one step further and impose that the Cooperon only hosts an odd number of kicks,
otherwise the accumulation of positive and negative signs would simply kill it. This can be easily
achieved with an alternation of two di�erent kicks. Figure 6.2 presents a pictorial view of these
ideas.

To achieve property (6.31), we need a kicking term e−iV (θ) whose Fourier transform

f(p) =

∫
dθe−ipθe−iV (θ), (6.33)

is odd [f(p) = −f(−p)]. From the properties of Fourier transforms, it is su�cient and necessary for
e−iV (θ) to be odd as well. An example of a potential with property (6.31) is

V (θ) = K cos(θ) +
π

2
sgn(θ). (6.34)



120 Chapter 6. The kicked rotor, a paradigmatic simulator for Anderson localization
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Figure 6.2 � Cooperon with alternation of two di�erent kicks, respectively shown as blue squares
and red stars, lines are free propagations. On the one hand, for odd number of kicks, we can use
property (6.31) to express the Cooperon as minus its Di�uson counterpart. On the other hand, the
alternation of two kicks make it impossible for a Cooperon to have an even number of kicks.

The potential (6.34) has however a serious issue with respect to Anderson localization: it is discon-
tinuous. Indeed, one kick with potential (6.34) is su�cient to populate arbitrary high momenta, with
only an algebraic decay of the momentum density, which is inconsistent with exponential Anderson
localization [193].

In order to achieve the desired properties without destroying Anderson localization, we introduce
an additional dimension, made of only two sites, and place the discontinuity along it. We end up
with the following Hamiltonian (with only two sites along y, y = ±1):

HCSE =
p2
θx

2
+ ty + gCSE(θx, y, α)

∑

n

δ(t− 2n) + gCSE(θx, y,−α)
∑

n

δ(t− 2n+ 1), (6.35)

where
gCSE(θx, y, α) = K(1 + α)

[
cos(θx) + yε sin(2θx)

]
+ y

π

2
. (6.36)

ty accounts for the tunneling between the two sites along y. In practice, we treat it like p2
θx
/2: in

momentum space, we approximate it by a py-dependent random number uniformly distributed in
[0, 2π[ (see subsection 6.1.3 for more details). Here, the term in y sin(2θx) is introduced to couple
the θx and y directions; if they were uncoupled the dynamics along the two directions would be
separated. It is chosen invariant under (θx, y)→ (−θx,−y), such that (6.31) holds.

We will also consider an orthogonal variant of (6.35) for comparison:

HCOE =
p2
θx

2
+ ty + gCOE(θx, y, α)

∑

n

δ(t− 2n) + gCOE(θx, y,−α)
∑

n

δ(t− 2n+ 1), (6.37)

where
gCOE(θx, y, α) = K(1 + α)

[
cos(θx) + yε sin(2θx)

]
. (6.38)

Signatures

In order to check that model (6.35) indeed features weak antilocalization, we perform two types
of numerical simulations.

A �rst signature of weak antilocalization is visible in real space. In usual time-reversal invariant
kicked rotors, starting from a wave packet placed at (θx, y) = (θ0, 1), the Cooperon of subsection 6.2
manifests itself as a peak in the density at (θx, y) = (−θ0,−1) (the Cooperon is built in momentum
space, we are thus looking at an analogue of the coherent back scattering peak), on top of the uniform



6.3. A spinless kicked rotor in the symplectic class? 121

background associated to the Di�uson [194]. Should its sign be reversed, the Cooperon manifests
itself as a dip in the density at (θx, y) = (−θ0,−1). This is indeed what we observe numerically, as
visible in �gure 6.3.
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Figure 6.3 � Average densities as a function of θx, along y = −1, obtained by kicking 2000 times
a wave packet initially placed at (θx = 1, y = 1). The numerical parameters are K = 7.5, ε =
0.2 and α = 1/3. The space ([−π, π[) is discretized in 12584 points. The results are averaged
over 15000 random realizations of the kinetic operator. The results were respectively obtained
with Hamiltonian (6.35) (blue) and Hamiltonian (6.37) (green). Note that the same wave function
normalization is used in both cases; for some reason the density obtained with Hamiltonian (6.35)
is slightly imbalanced between y = −1 and y = 1.

A second signature is visible in momentum space. In usual time-reversal invariant kicked rotors,
starting from a plane wave, the weak localization correction slows down the short-time di�usion.
Should the sign of the Cooperon be reversed, a weak antilocalization correction appears and enhances
the short-time di�usion. These e�ects are most conveniently observed in a variant of the β function,
de�ned as [21]

β(g) =
d ln(g)

d ln(L)
, (6.39)

with L =
√
〈p2〉 and g =

√
〈p2〉/t. With these de�nitions, the β function writes

β(g) = 1− 2
d ln(〈p2〉)
d ln(t)

. (6.40)

We calculate this function numerically by propagating a plane wave and recording 〈p2〉 versus time.
Di�usion at short times manifests itself as a β function going to -1 at large g. Weak (anti) localization
correction brings a (positive) negative correction to the β function at large g. This is clearly visible
in �gure 6.4.

We have thus found a spinless kicked rotor exhibiting features typical of the symplectic class. Note
that in the numerical simulations, we use a �nite grid chosen with care. Indeed for relation (6.31)
to hold on a �nite grid, each point θx ∈ [−π, π[ must have a partner −θx, in particular the grid
should not include the point θx = 0. Typically, 2N grid points are used, with a uniform sampling:
{±2πn/N ± π/N / n ∈ N}. Relation (6.31) is true in the continuous case since the point θx = 0 is
of measure zero.
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Figure 6.4 � β(g) as a function of 1/g. The numerical parameters are K = 10, α = 1/3 and
ε = 0.2. The space ([−π, π[) is discretized in 6292 points. The results are averaged over 5000 random
realizations of the kinetic operator. The results were respectively obtained with Hamiltonian (6.35)
(blue) and Hamiltonian (6.37) (green). As there are strong �uctuations from one kick to the other,
due to the structure of the Hamiltonian, we have only kept measurements done after an even number
of kicks to compute β.

6.3.2 Eigenvalue statistics

To see how far the analogy with spin-1/2 particles goes, we now consider the eigenvalue statistics.
In the limit of an in�nite system, localized eigenstates do not overlap, such that their associated
eigenvalue are independent. The Poisson distribution is thus expected, independently of the Hamil-
tonian symmetries. Of course, we can only simulate numerically �nite systems. For kicked rotors,
eigenstates are localized in momentum space, the system size is thus set by the spatial discretization:
assuming that the spatial grid varies by step of ∆x, momenta take values in [−~π/∆x,~π/∆x[. For
the eigenvalues to obey the random matrix predictions of subsection 6.2.2, we must ensure that
the localization length is much larger than ~π/∆x (this is generally achieved by using huge kick-
ing strengths). Apart from that, the localization properties of the Hamiltonian are not especially
important for the eigenvalue statistics. We thus consider directly the 1D model6

H1D-CSE =
p2
θ

2
+

[
K(1 + α) cos(θ) +

π

2
sgn(θ)

]∑

n

δ(t− 2n)

+

[
K(1− α) cos(θ) +

π

2
sgn(θ)

]∑

n

δ(t− 2n+ 1).

(6.41)

As discussed in subsection 6.2.3, the relevant operator to be diagonalized is the associated Floquet
operator. The Floquet operator being unitary, its eigenvalues are complex numbers of modulus 1.
The statistical study is performed on the phases of the eigenvalues. To be more speci�c, given the
ordered eigenphases of the eigenvalues (φ1, φ2, . . . , φN ), we consider the distribution of the level
spacings si (s1 = φ2 − φ1, s2 = φ3 − φ2, . . . , sN−1 = φN − φN−1). Level spacing distributions
computed numerically for the Floquet operator of (6.41) with di�erent parameters are shown in
�gure 6.5.

6While the conventional time-reversal symmetry (t→ −t, pθ → −pθ, θ → θ) plays no role for the kicked rotor, it
could disturb the spectral analysis [183]. For the random kicked rotor, using independent random phases (as opposed
to phases with parity properties, e.g. φl = φ−l) in equation (6.12) allows to stay clear of this parasitic e�ect.
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(a) Even grid size, α 6= 0.
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(b) Even grid size, α = 0.
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(c) Odd grid size, α 6= 0.

Figure 6.5 � Distributions of level spacing for the Floquet operator of (6.41). For the three �gures,
we have usedK = 100 and computed all the eigenvalues for 10000 random realizations of the Floquet
operator. Figure (a) was obtained for α = 0.3 and a spatial discretization made of 32 points in ]0, π[
and their partner obtained by parity (the grid was of the form {±2πn/N ± π/N / n ∈ N}). Figure
(b) was obtained for α = 0 and the same spatial grid as �gure (a). Figure (c) was obtained for α = 0.3
and a spatial grid including the point θ = 0 (the grid was of the form {±2πn/N / n ∈ N}). Random
matrix theory predictions, equation (6.26) (COE), equation (6.27) (CUE) and equation (6.28) (CSE),
as well as the Poisson distribution, equation (6.29), are shown for comparison.

In addition, given the level spacings, one can de�ne the quantity [195]

r̃i =
min(si, si−1)

max(si, si−1)
. (6.42)

Its average over both the spectrum and di�erent realizations of the Floquet operator is denoted 〈r̃〉.
We have compared the 〈r̃〉 found for the Floquet operator of (6.41) to the random matrix results
of [195] in table 6.1. Table 6.1 also reports the presence of Kramers' degeneracy.

Parameters Kramers' degeneracy 〈r̃〉 〈r̃〉 from [195]
Same as �gure 6.5a Present 0.6751 ± 0.0004 0.6744 ± 0.0001 (GSE)
Same as �gure 6.5b Present 0.6012 ± 0.0004 0.5996 ± 0.0001 (GUE)
Same as �gure 6.5c Absent 0.5313 ± 0.0004 0.5307 ± 0.0001 (GOE)

Table 6.1 � 〈r̃〉 as obtained for the Floquet operator of (6.41) and di�erent parameters. The quantity
〈r̃〉 is de�ned in the main text. For comparison, we have reported the values found in [195] for random
matrices in the Gaussian orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles. We
have also reported the presence of Kramers' degeneracy. As discussed in subsection 6.3.3, only the
square of the Floquet operator associated to �gure 6.5b exhibits Kramers' degeneracy. The Floquet
operator itself exhibits pairs of opposite eigenvalues.

The results for the eigenvalue statistics reported in this section con�rm the analogy with spin-
1/2 particles. The results are indeed fully consistent with the symplectic class when the conditions
of subsection 6.3.1 are met (�gure 6.5a): i) α 6= 0 (i.e. alternation of two di�erent kicks), and ii)
a spatial grid built in such a way that each point θ as a partner −θ [so as to guarantee (6.31)].
Interestingly, the case α = 0 (�gure 6.5b) seems to correspond to the case of a spin-1/2 particle in
the presence of a geometrical symmetry (Kramers' degeneracy and unitary �uctuations). For the
sake of completeness, we have also included the results obtained with a grid including θ = 0, even
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though it is not relevant to the continuous case since the point θ = 0 should be of measure zero.
Quite surprisingly, adding the point θ = 0 (�gure 6.5c) leads to eigenvalue statistics consistent with
the orthogonal class.

6.3.3 Time-reversal invariance

The above results suggest to look for a time-reversal symmetry of the Floquet operator of (6.41)
squaring to −1. To this end, we write the Floquet operator as

F = U1U2, (6.43)

with

U1 = e−ip
2
θ/2e−i[K(1+α) cos(θ)+π

2
sgn(θ)], (6.44)

U2 = e−ip
2
θ/2e−i[K(1−α) cos(θ)+π

2
sgn(θ)]. (6.45)

As discussed in subsection 6.2.1, in the case of the kicked rotor, one usually considers the product
of the parity (P ) and the conventional time-reversal (T ) operators7 (TK = PT ). As such, it squares
to 1 (T 2

K = 1). Its associated symmetry writes




t→ −t,
θ → −θ,
p→ p.

(6.46)

Case of even number of sites, α 6= 0 (�gure 6.5a)

Clearly the Floquet operator of (6.41) is not invariant under TK :

T−1
K FTK = U †1U

†
2 6= F †. (6.47)

We can nevertheless consider the time-reversal operator

T̃ = U1TK . (6.48)

One then �nds (it is easy to check that T̃−1 = TKU
†
1)

T̃−1FT̃ = TKU
†
1FU1TK = T−1

K U2U1TK = U †2U
†
1 = F †. (6.49)

For U1 given by equation (6.44), one can use the important relation

T−1
K U1TK = −U †1 , (6.50)

to compute T̃ 2:
T̃ 2 = U1TKU1TK = U1T

−1
K U1TK = U1(−U †1) = −1. (6.51)

In conclusion, the Floquet operator is invariant [in the sense of equation (6.30)] under the action
of a time-reversal operator squaring to −1. This explains the symplectic statistics of eigenvalues
observed in �gure 6.5a and table 6.1, as well as the presence of Kramers' degeneracy.

7For the sake of clarity, we omit the factors e±ip
2
θ/2 that should enter the de�nitions of the time-reversal operators

[123], they do not change anything to the reasoning. This remark applies to the whole subsection.
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Case of even number of sites, α = 0 (�gure 6.5b)

In the case α = 0, the Floquet operator reduces to Fα=0 = U1 and we still have [equation (6.50)]

T−1
K U1TK = −U †1 ⇔ T−1

K Fα=0TK = −F †α=0. (6.52)

It has an important consequence on the spectrum. To exhibit it, we start from the eigenvalue
equation

Fα=0 |φv〉 = e−iφv |φv〉 ⇔ F †α=0 |φv〉 = eiφv |φv〉 . (6.53)

We then apply TK on both sides of the right equality and insert T 2
K = 1 to �nd

TKF
†
α=0TKTK |φv〉 = e−iφvTK |φv〉 ⇔ Fα=0TK |φv〉 = −e−iφvTK |φv〉 . (6.54)

TK |φv〉 is an eigenstate of Fα=0 with eigenvalue −e−iφv . Assuming a �nite dimension 2N , we �nally
use the basis {φ1, . . . , φN}, {TKφ1, . . . , TKφN} to write Fα=0 as

Fα=0 =

(
F+ 0
0 −F+

)
. (6.55)

Figure 6.5b and table 6.1 show the eigenvalue statistics of

F 2
α=0 =

(
F 2

+ 0
0 F 2

+

)
. (6.56)

The structure of F 2
α=0 explains the results of �gure 6.5b and table 6.1, in the spirit of Kramers'

degeneracy with one geometric symmetry [equation (6.25)].

Case of odd number of sites (�gure 6.5c)

In the case of an odd number of sites, equation (6.50) does not hold due to the presence of the
site θ = 0 on which TK has no e�ect. Equation (6.49) however does hold. The question is thus
whether T̃ squares to plus or minus 1. The case −1 implying Kramers' degeneracy, it is possible only
if the Hilbert space dimension is even. The number of sites is odd, so is the Hilbert space dimension,
such that all time-reversal symmetries must square to 1. We conclude that the Floquet operator is
invariant [in the sense of equation (6.30)] under the action of a time-reversal operator squaring to
1, explaining the orthogonal statistics of eigenvalues observed in �gure 6.5c and table 6.1.

6.3.4 Conclusion

We have presented in this section a spinless kicked rotor consistent with the symplectic class. It
shows clear signatures of weak antilocalization and the statistics of its eigenvalues unambiguously
place it in the symplectic class. It is indeed invariant under the e�ect of a time-reversal operator
squaring to -1. Yet, it is desirable to con�rm these observations by an analysis of its critical properties
in higher dimensions. Let us take that road.

6.4 From incommensurate frequencies to higher dimensions

6.4.1 Generalities

The kicked rotor o�ers a very powerful, yet intriguing, way to explore high dimensions exper-
imentally or numerically. It consists in modulating quasi-periodically the kick sequence of a 1D
kicked rotor. For example, one can use the kicked rotor

H =
p2
θ

2
+K(t) cos (θ)

∑

n

δ(t− n), (6.57)
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with
K(t) = K

[
1 + η cos(ω1t+ ϕ1) cos(ω2t+ ϕ2)

]
, (6.58)

to simulate a 3D disorder problem. (6.57) was shown to be equivalent to 3D disorder models, provided
ω1 and ω2 are chosen incommensurate with each other and 2π [179, 196, 197] (we use ω1 = 2π

√
5

and ω2 = 2π
√

13 in the following).
The current understanding of this correspondence between 1D modulated kicked rotors and 3D

problems is based on the equivalence between the dynamics generated by (6.57) and the dynamics
generated by the 3D pseudo-rotor

H =
p2
θ

2
+ ω1p1 + ω2p2 +K

[
1 + η cos(θ1) cos(θ2)

]
cos (θ)

∑

n

δ(t− n), (6.59)

with initial conditions θ1 = ϕ1 and θ2 = ϕ2. The equivalence appears directly when writing down
the evolution of a given wave packet with the two models [196]. Note that similarly to the 1D usual
kicked rotor, the pseudo-rotor (6.59) can be mapped onto a 3D disorder model [179,196] and can be
shown to be equivalent to disorder models through a supersymmetric �eld theory [197].

6.4.2 Incommensurate frequencies in the symplectic class

To the best of our knowledge, the idea of using a quasi-periodic modulation to study higher
dimensions has only been applied to kicked rotors in the orthogonal class. Before applying it to our
spinless kicked rotor presumably belonging to the symplectic class, we propose to check the validity
of the approach in the more familiar situation of a spin-1/2 kicked rotor [184,198].

Model

We use the following kicked rotor

H =
p2

2
+K(t)ge1

2

(θ)
∑

n

δ(t− 2n) +K(t)go1
2

(θ)
∑

n

δ(t− 2n+ 1), (6.60)

where

ge1
2

(θ) = (1 + α)
[
cos(θ) + ε sin(2θ)σz

]
and go1

2

(θ) = (1− α)
[
cos(θ) + µ sin(2θ)σx

]
. (6.61)

Here σx and σz are Pauli matrices. K(t) is given by equation (6.58). (6.60) is invariant under (6.15)
(with θ0 = 0 and half-integers t0) and does not have any geometrical symmetry (this is ensured by
the sin(2θ) terms), it thus belongs to the symplectic class [183].

Finite time scaling

The kicked rotor (6.60) presents a phase transition. To extract the associated critical exponent,
which governs the divergence of the localization length near the transition, we follow [179] and
perform a �nite time scaling analysis of 〈p2〉. Practically, 〈p2〉 is obtained by propagating an initial
plane wave with the Hamiltonian (6.60) and averaging the result over random realizations of the
kinetic term and the phases ϕ1 and ϕ2. Near the phase transition and at long enough times, 〈p2〉
follows the universal scaling law

〈p2〉 = t2/3F
[
(K −Kc)t

1/3ν
]
, (6.62)

where Kc is the critical point and ν is the critical exponent characterizing the transition. To extract
the critical exponent, we de�ne the quantity ln Λ = ln(〈p2〉 /t2/3) and �t it with a Taylor expansion
of ln(F ):

ln(Λ) = ln(Λc) + (K −Kc)t
1/3νF1 + . . . (6.63)
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The best �t ln Λ�t(K, t) is obtained by minimizing

χ2 =
∑

K,t

(
ln
[
Λdata(K, t)

]
− ln

[
Λ�t(K, t)

]

σ(K, t)

)2

, (6.64)

where σ(K, t) is the numerical uncertainty of ln
[
Λdata(K, t)

]
. The numerical data ln

[
Λdata(K, t)

]

for di�erent times t are correlated. For the �tting procedure to be meaningful, we resample them
with a bootstrap method. The error estimates on the position of the critical point Kc and the value
of the critical exponent ν given below correspond to their respective standard deviation during the
bootstrap process.

Results

We have performed numerical simulations of (6.60) with the numerical parameters α = 0.5,
ε = 0.5, η = 0.15, µ = 0.5 and for various values of K. The space ([−π, π[) was discretized in 6284
points. To avoid deviations from (6.62) due to �nite time e�ects, we have carried out the �nite time
analysis with values of 〈p2〉 measured between 200000 and 1000000 kicks. Generically, the results
are averaged over 120 random realizations. We have used more realizations near the critical point,
with 480 realizations for K ∈ [1.68, 1.695[ and 1560 realizations for K ∈ [1.695, 1.75].

The results are reported in �gure 6.6 and exclude the possibility of (6.60) being in the same
universality class as spin-1/2 disorder models, with a critical exponent more than 4σ away from the
one found in spin-1/2 disorder models.

Our numerical simulations strongly suggests that the spin-1/2 quasi-periodically modulated
kicked rotor is not in the symplectic universality class. This result is consonant with similar obser-
vations for unitary kicked rotors [200]. This issue forces us to postpone the characterization of the
critical properties of the spinless kicked rotor presumably in the symplectic class.

6.4.3 Beyond the incommensurate frequencies

It is presently not clear why quasi-periodically modulated kicked rotors appear not to fall in the
expected unitary and symplectic universality classes. The reason may be that the �quasi-periodic
trick� is limited to the orthogonal universality class and is not suited to the unitary and symplectic
universality classes. One may envision that the commonly used cosine quasi-periodic sequences
reproduce the �uctuations of the orthogonal class, and should not be used in an attempt at exploring
the unitary and symplectic universality classes.

In this line of thoughts, we propose to consider the possibility of other quasi-periodic sequences.
Before targeting speci�cally the unitary and symplectic universality classes, we propose to explore the
possibility of simulating Anderson localization on fractals with quasi-periodically modulated kicked
rotors. Such kicked rotors may be useful to study the symplectic class, and in particular to identify
the lower critical dimension, which is believed to be somewhere between 1 and 2 [201], with intriguing
consequences [202]. Other possible applications include the validation of d = 2 + ε expansions [22,
203]. It is indeed a di�cult task to simulate numerically (not to mention experimentally) such
problems on actual fractals [201�205].

Casati et al. quasi-periodic sequences

Before exploring other quasi-periodic sequences, we need to develop some understanding of the
commonly used quasi-periodic sequences [196]. These sequences are built by sampling trigonometric
functions. More precisely, one studies 2D Anderson localization with a kick sequence

K2(t) = K
[
1 + η cos(ω1t+ ϕ1)

]
for t ∈ N, (6.65)
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Figure 6.6 � Main plot: scaling quantity ln(Λ) as a function of ln(ξ/t1/3). ξ is proportional to
|K − Kc|−ν . The numerical data in blue, with their statistical error bars, are well �tted by a
function of the form (6.63), with the expansion stopped at F1. The χ2 per degree of freedom
associated to the �t, equal to 1.1, is indeed satisfactory (close to 1). The �t provides the following
estimates for the critical point and critical exponent: Kc = 1.695± 0.001 and ν = 1.68± 0.07. The
value of the critical exponent is more than 4σ away from the one found in spin-1/2 disorder models,
which lies in the range [1.35, 1.39] [199]. Inset: ln(Λ) as a function of K at various times between
200000 and 1000000 kicks. For K < Kc (on the localized side of the transition), ln(Λ) decreases in
time, while for K > Kc (on the di�usive side of the transition), ln(Λ) increases in time. Between
these two limits, ln(Λ) is constant at the critical point K = Kc. A critical point Kc ∈ [1.694, 1696]
(represented as a blue rectangle) is fully consistent with the results. The numerical parameters used
are given in the main text, in subsection 6.4.2 Results.

where ω1 is incommensurate with 2π, and studies higher dimensions by adding incommensurate
frequencies, e.g. three dimensions with

K3(t) = K
[
1 + η cos(ω1t+ ϕ1) cos(ω2t+ ϕ2)

]
for t ∈ N. (6.66)

To �nd other relevant quasi-periodic sequences, our angle is to retain two important properties
of these sequences, namely the quasi-time-reversal-invariance and the quasi-periodicity. Indeed, it is
with these properties that the diagrams responsible for Anderson localization can be built [22, 182,
206]. Quasi-time-reversal-invariance and quasi-periodicity correspond to approximations of ω1/2π
(or ω1/2π and ω2/2π) by rationals.

In this vein, the important di�erence between K2 and K3 is the scaling of �how di�cult it gets to
achieve quasi-time-reversal-invariance (quasi-periodicity)� as �one becomes more and more demand-
ing on the precision of the time-reversal (quasi-period)�. In mathematical terms, this statement
takes the following form: calling α the number of acceptable rational approximations to ω1/2π (or
ω1/2π and ω2/2π) and β the maximal distance between ω1/2π (or ω1/2π and ω2/2π) and its rational
approximations, we are interested in how α changes with β. For example, for K2 one �nds α ∝ β,
while for K3 one obtains α ∝ β2. More generally, for Kd one gets α ∝ βd−1. This reasoning neglects
the properties of the rational approximations that may change with β.
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Two theorems from number theory

Two theorems from number theory are of interest for the matter at hand. The �rst one is
Hurwitz's theorem [207], it states that for every irrational number ξ there are in�nitely many coprime
integers m, n such that ∣∣∣∣ξ −

m

n

∣∣∣∣ <
1√
5n2

. (6.67)

The second one is Roth's theorem [208], which states that every irrational algebraic number ξ has
approximation exponent equal to 2, i.e., for any ε > 0, the inequality

∣∣∣∣ξ −
m

n

∣∣∣∣ <
1

n2+ε
(6.68)

can have only �nitely many solutions in coprime integers m and n.

From these two theorems, we conclude that the error in approximating ω/2π by a rational is
inversely proportional to the square of the associated period.

Quasi-periodic sequences from series

From the above discussion, we want a function f(t) that has approximate time reversals (periods),
with the number of time reversals (periods) scaling as εd−1, where ε is the precision of the time-
reversal (period). In addition, the lengths of the time-reversals (periods) should scale as

√
ε. We

propose the following function f(t)8:

f(t) = cos

(
2πt

4

)
+ 8

∑

n>2

(−1)n+1f2n(t), (6.69)

where

fm(t) =



(

1

2m

) 1
d−1

+

(
1

2m

) 1
d−1 2t

m



d−1

for t ∈
{

0,
m

2

}
, (6.70)

with a time-reversal symmetry around m/2: fm(m/2 + t) = fm(m/2 − t), and a period m. d
supposably encodes the spatial dimension of the equivalent disorder model. In the following, we
average over the origin of time to ensure statistical time-translational invariance.

Results

We have tested the sequence (6.69) numerically with the Hamiltonian

H =
p2

2
+K

[
1 + ηf(t)

]
cos(θ)

∑

n

δ(t− n), (6.71)

the results are reported in �gure 6.7. The results show that localization prevails at small K and
turns into subdi�usion as K is increased. Surprisingly, subdi�usion does not concern only one
value of K but a full range of values of K (η being �xed), with a subdi�usive exponent increasing
with K. To go further, we have compared the results displaying a subdi�usive exponent of 2/3
(K = 1.64 in �gure 6.7b) with the known critical pro�le of the usual quasi-periodic kicked rotor
[equation (6.57)] [209]:

|ψ(p)|2 =
3α

2
Ai(α|p|), (6.72)

8As the functions fm�1(t) are slowly varying and positive, we have added the (−1)n+1 to ensure some time-
translational-invariance. The factor 8 is simply here for the sum not to be negligibly small.



130 Chapter 6. The kicked rotor, a paradigmatic simulator for Anderson localization

where Ai is the Airy function. As visible in the main plot of �gure 6.8c, the numerical results are
very well �tted by (6.72) with α ' 0.0056, thus suggesting that it corresponds to an Anderson-
3D critical point. Note that equation (6.72) corresponds to a 3D di�usion process with a frequency
dependent di�usion coe�cientD(ω) = (−iω)1/3, integrated over two directions [209,210]. Deviations
from (6.72) are expected at small p, due to the multifractal structure of the critical eigenfunctions
[209�213], they are clearly visible in the inset of �gure 6.8c. These deviations constitute a more
speci�c signature of a critical point, although more work is needed to describe them in terms of
the multifractal exponents of the critical eigenfunctions [214], which would provide an unambiguous
correspondence with an Anderson-3D critical point.

Admittedly, these results are not consistent with (6.71) being equivalent to a d-dimensional
disorder model (for which one expects subdi�usion for only one value of K � at �xed η), but we
believe that they open the door to exciting perspectives. A theoretical framework is lacking to put
these results into perspective. We can only notice a similarity with the power-law random banded
matrix (PRBM) ensemble [193], which features a set of critical points. An important di�erence
with this model resides in the localized regime (small K in the present context), where we observe
exponential localization (�gures 6.8a and 6.8b) as opposed to algebraic localization in the PRBM
ensemble.
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Figure 6.7 � 〈p2〉 as a function of time for an initial plane wave evolving according to (6.71), with
η = 0.45. The space ([−π, π[) is discretized in 25168 points and the results are averaged over 96
realizations of the kinetic term. The dashed lines are linear �ts.

6.5 Conclusion

In this chapter, we have discussed various aspects of Anderson localization from the perspective
of kicked-rotor models. The main conclusions of these studies is that many aspects of Anderson
localization are still to be explored with the kicked rotor. We have put forward three main directions.

The �rst one concerns the possibility of exploring the symplectic class without the need of
a spin. This has both theoretical and experimental motivations. On the theoretical side, it goes
against common wisdom that a spinless model belongs to the symplectic class. From an experimental
point of view, while it would open exciting possibilities [174], the introduction of a spin necessitates
quite some e�orts [168], avoiding it is desirable. We have presented strong evidences in favor of this
possibility.
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Figure 6.8 � Logarithms of the average momentum-density pro�les for an initial plane wave evolving
according to (6.71), with η = 0.45. In �gures a) and b), the dashed lines are �ts of the form a|x|+ b.
For �gures a) and b), the space ([−π, π[) is discretized in 1260 points and the results are averaged
over 10000 realizations of the kinetic term. For �gure c), the space is discretized in 6292 points
and the results are averaged over 2000 realizations of the kinetic term. Figure c) main plot: at
large scales the numerical results in green are well �tted by (6.72) with α ' 0.0056. Inset: average
momentum-density pro�le, deviations from (6.72) with α ' 0.0056 are clearly visible at small p,
they could be a manifestation of the multifractal structure of the critical eigenfunctions [209�213].

The study of the symplectic class led us to a second direction, the apparent failure of the �quasi-
periodic modulation trick� [196] in the unitary and symplectic classes. To begin addressing this
issue, one could perform numerical simulations with actual 3D kicked rotors, as done in [215] for the
orthogonal class, rather than through the introduction of incommensurate frequencies. Such a study
would either point to the quasi-periodic modulation, or to a more fundamental di�erence between
kicked rotors and disorder models in the unitary and symplectic classes.

A third aspect concerns the possibility of using new types of quasi-periodic kicking sequences,
with di�erent possible intentions. Although our attempt at exploring Anderson localization on
fractals has not yet gone through, we believe that our preliminary study shows promising results
and open exciting perspectives for future work.





Chapter 7

Conclusion

In this thesis, we theoretically investigated several interesting e�ects related to Anderson lo-
calization, focusing on the context of cold-atomic systems. We naturally started by characterizing
the speckle potentials typically used in cold-atom experiments. In particular, we calculated statis-
tical properties of intensity minima. In short, these minima typically lie at low energies and the
distribution of their curvature is peaked around the average value.

With these results at hand, we embarked into the description of the spectral properties of atoms
in speckle potentials. More precisely, we considered the spectral function and the density of states,
in the strong disorder limit. Semiclassical methods turned out very powerful and allowed for a good
description of the whole energy spectrum. Besides, our calculations provide a simple interpretation
of intriguing features of the spectral function and density of states and of the di�erence between
red- and blue-detuned speckles.

The study of spectral properties was also the opportunity to set the general framework for
describing the dynamics of wave packets in random potentials. We applied it to a particular scenario,
di�ering from the experiment performed in Palaiseau in 2008 [37] only in that atoms are given a
�nite velocity at t = 0. Remarkably, we found that after an initial ballistic motion, the packet
center-of-mass experiences a retrore�ection and slowly returns to its initial position, mimicking a
boomerang. We associated this quantum boomerang e�ect to Anderson localization, and described
it thoroughly in one dimension, both analytically and numerically.

We then considered the e�ects of weak interactions on the evolution in disordered potentials
of condensed bosonic gases. To that end, we have developed a numerical integrate scheme of the
Gross-Pitaevskii equation, which describes the evolution of an interacting gas at the mean-�eld
level. This method was applied to various situations, with three main conclusions. First, nonlinear
interactions tend to inhibit the quantum boomerang e�ect of wave packets launched with �nite
velocity. Second, because of inelastic collisions on the nonlinear potential, the wave packet explores
the energy landscape. Third, the coherent back scattering (CBS) peak of matter waves prepared
as plane wave states is strongly a�ected by the nonlinearity. We identi�ed two kind of processes
reducing the CBS contrast: short-time e�ects that break time-reversal invariance on the one hand,
and inelastic collisions eventually leading to its destruction on a much longer time scale on the other
hand.

These results point to interesting perspectives for future work. Concerning the spectral prop-
erties, we have not treated the three-dimensional case, involved in important questions related to
Anderson localization [38, 40, 44, 109, 115, 128]. Its description would be of great interest. For ex-
ample, the spectral function could be used to estimate the position of the mobility edge, through a
generalized Io�e-Regel criterion [109,216�218].

As far as the quantum boomerang e�ect is concerned, while we have given a thorough description
of the one-dimensional case, more work is needed in higher dimensions. For example, in light of recent
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work on the coherent backward and forward scattering peaks across Anderson transition [44,128], it
would be very interesting to perform a �ne numerical analysis of the quantum boomerang e�ect in
three dimensions. Another interesting possibility is to look for similar phenomena in other symmetry
classes (e.g. in the unitary class where the qualitative understanding of retrore�ection in terms of
localized real modes does not apply).

Our study of the e�ects of weak interactions on the evolution of condensed bosonic gases was
essentially numerical. While we underlined the physical picture explaining our observations, much
remains to be done to describe them analytically. For example, we pointed out strong similarities,
regarding the quantum boomerang e�ect, between the nonlinearity and a simple decoherence process.
Exhibiting the microscopic origin of these similarities would probably be very enlightening. On
a more fundamental level, we treated the interactions through a mean-�eld approximation, thus
possibility missing coherent many-body e�ects. Their inclusions may lead to qualitatively di�erent
conclusions (e.g. a many-body coherent backscattering peak [86,219,220]).

Finally, we have shown that the kicked rotor constitutes a good platform to characterize various
aspects of Anderson localization, and have identi�ed three interesting directions of research for future
work. First, going against common wisdom, we have presented strong evidence that the symplectic
class can be explored with spinless particles. Second, we have observed that the �quasi-periodic
modulation trick� of Casati et al. [196] seems to fail in the unitary and symplectic classes. Third,
we have explored the possibility of using new types of quasi-periodic kicking sequences. We believe
that our preliminary study in this direction shows promising results and opens exciting perspectives
for future work.
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Abstract

This thesis theoretically investigates several e�ects related to Anderson localization, focusing on
the context of disordered and chaotic cold-atomic systems.

In cold-atomic systems, optical speckle patterns are often used to create the disorder. The
resulting potentials felt by the atoms di�er from Gaussian random potentials, commonly assumed
in the description of condensed-matter systems. In the �rst part of the thesis, we discuss their
speci�cities, with an emphasis on the spectral properties of atoms in such potentials. In particular,
we derive several approximations for the spectral function.

Atom-optics experiments o�er interesting possibilities, such as the possibility to directly probe
the atoms inside the disordered potential. In view of these possibilities, we consider in the second
part of the thesis the spreading of matter wave packets initially launched with a non-zero velocity. We
�nd that after an initial ballistic motion, the packet center-of-mass experiences a retrore�ection and
slowly returns to its initial position, mimicking a boomerang. We show that this unexpected quantum
boomerang e�ect is a consequence of Anderson localization, and describe it both numerically and
analytically in dimension 1.

Atom-atom interactions are then introduced in a third part. We consider dilute condensed
bosonic gases, and treat the interactions at the mean-�eld (Gross-Pitaevskii) level. Various situations
are studied numerically, in particular the quantum boomerang scenario, and the dynamical spreading
� both in momentum and energy � of matter waves prepared as plane waves.

In the last part, we show that chaotic models o�er interesting prospects for the study of Anderson
localization. On the one hand, going against common wisdom, we present strong evidences in favor
of a spinless kicked rotor in the sympletic ensemble. On the other hand, a second look at a commonly
studied quasi-periodically modulated kicked rotor reveals intriguing results.


