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Méthodes statistiques utilisant des simulations hydrodynamiques
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Résumé:

Quand le bruit affectant une série temporelle est coloré avec des propriétés statistiques
inconnues, la difficulté pour la détection de signaux périodiques est de contrôler le degré de
confiance avec lequel les tests de détection rejettent l’hypothèse nulle en faveur de l’hypothèse
alternative. Cette thèse développe la possibilité d’utiliser des séries temporelles simulées du
bruit pour améliorer ce contrôle.
Plus particulièrement, dans le cas d’un échantillonnage régulier des observations, nous avons
analysé les performances de différents tests de détection appliqués à un périodogramme
standardardisé par les séries temporelles simulées du bruit coloré. Notre étude a notamment
été portée à considérer le cas de détections dites parcimonieuses dans le domaine de Fourier
ainsi qu’à étudier l’influence du nombre, nécessairement fini, de simulations disponibles du
bruit sur les performances de tests de détection appliqués à ce périodogramme standardisé.
Nous avons dérivé des expressions analytiques pour les probabilités de fausses alarmes et
de détections de différent tests et montré que la standardisation proposée entrâıne, dans la
majorité des cas, des tests de détection puissants dont le taux de fausses alarmes est constant
(dits CFAR). Bien que ces résultats analytiques ont été dérivés dans le cadre d’un régime
asymptotique, les résultats numériques montrent que la théorie développée décrit précisément
le comportement des tests de détection pour un nombre modéré de points d’observation.
Dans le cas d’un échantillonnage irrégulier des observations, le taux de fausses alarmes ne
peut pas être dérivé par des expressions analytiques simples même dans le cas d’un bruit
blanc Gaussien. Cependant, nous montrons qu’il est possible de combiner la standardisation
proposée du périodogramme avec des techniques de bootstrap pour contrôler la probabilité de
fausses alarmes de manière fiable dans le cas géneral d’un bruit coloré dont on est capable de
générer des séries temporelles. Nous montrons aussi que la procédure peut être améliorée en
utilisant la distribution des valeurs extrêmes généralisées.

Tout au long de cette étude, nous nous intéressons au problème particulier de la détection de
planètes extrasolaires par la méthode des vitesses radiales (VR). Avec la précision instrumentale
des spectrographes actuels, la principale barrière pour détecter des planètes de masse terrestre
vient de l’activité de l’étoile hôte elle-même: tâches, plages, convection et oscillations stellaires.
Cette activité entrâıne des corrélations dans les VR observées qui peuvent masquer la signature
de planétes extrasolaires ou au contraire les imiter et produire de fausses détections. Alors que
des indicateurs chromosphériques externes peuvent (partiellement) aider à supprimer les effects
(quasi-) périodiques d’origine magnétique (comme l’effet des tâches), cette thèse s’intéresse à
la contribution des processus de convection. La convection à la surface des étoiles induit un
“jitter” d’origine stellaire permanent dans les VR observées dont l’amplitude est de l’ordre
de celles des signatures de petites planètes. En parallèle, des simulations hydrodynamiques
(ab initio) de l’activité de convection stellaire ont été développées depuis maintenant plusieurs
décennies et permettent de reproduire, de manière fiables, des séries temporelles de ce “bruit”
convectif. Notre objectif est de prouver que de telles simulations peuvent améliorer, de manière
statistique le contrôle des seuils de fausses alarmes associés à toute détection de planètes. Dans
cet esprit, une comparaison de données solaires en VR observées et simulées est présentée à
la fin de ce manuscrit afin de confirmer la fiabilité de telles simulations. Dans ce contexte, la
standardisation proposée du périodogramme et les tests de détections étudiés ouvrent la porte
à de nombreuses applications intéressantes pour le domaine de la détection de planètes par la
méthode des VR.

Mots clés: Traitement du signal, Statistique de tests, Exoplanètes, Vitesses radiales, Bruit
stellaire coloré, Détection parcimonieuse.





Abstract:

When the noise affecting time series is colored with unknown statistics, a difficulty for periodic
signal detection is to control the true significance level at which the detection tests are
conducted. This thesis investigates the possibility of using training datasets of the noise to
improve this control.
Specifically, for the case of regularly sampled observations, we analyze the performances of
various detectors applied to periodograms standardized using the noise training datasets.
Emphasis is put on sparse detection in the Fourier domain and on the limitation posed by
the necessarily finite size of the training sets available in practice. We study the resulting
false alarm and detection rates and show that the proposed standardization leads, in some
cases, to powerful constant false alarm rate tests. Although analytical results are derived in an
asymptotic regime, numerical results show that theory accurately describes the tests’ behavior
for moderately large sample sizes.
In the case of irregularly sampled observations, while analytical expressions for the false
alarm rate are out of reach, we show that it is possible to combine the proposed periodogram
standardization and bootstrap techniques to consistently estimate the false alarm rate. We also
show that the procedure can be improved by using generalized extreme value distributions.

Throughout the study, we focus on the particular problem of extrasolar planet detection in ra-
dial velocity (RV) data. With the instrumental precision of the recent spectrographs, the main
barrier to detect Earth-mass planets comes from the host star activity: e.g. spots and plages,
convection, and stellar oscillations. This activity affects the RV as a colored noise, which can
mimic or hide the planet signatures. While external chromospheric indicators can (partially)
deal to avoid the (quasi-) periodic noise source due to the magnetic activity (e.g. the rotation-
ally modulated starspots), this thesis focuses on the contribution of convective process, which
induced a permanent stellar “jitter” leading to correlated RV variations with magnitude at the
level of the smallest planet signatures. In parallel, reliable (ab initio) hydrodynamic simulations
of the stellar surface convection activity have recently been developed during the last decade and
we aim to prove that they can statistically improve the control of the significance assigned to
planet detections. In this spirit, a comparison of RV solar observations and simulations will be
presented at the end of this thesis to confirm the reliability of these simulations. In this context,
the proposed periodogram standardization and detection tests investigated in the theoretical
part of the thesis open several interesting applications in the field of exoplanet detection in RV
data.

Keywords: Signal processing, Test statistics, Exoplanet, Radial velocity, Stellar colored noise,
Sparse detection.
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m’as appris. Au début de ma thèse, j’étais une grande novice dans le domaine du traitement
du signal et tu as su m’enseigner et me guider dans ce domaine avec patience et passion.
Lionel, merci également pour tes conseils, tes encouragements et ton enthousiasme quotidien.
Je ne compte plus le nombre d’heures que tu as passé à me faire répéter et à revoir mes
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Notations and Definitions

The following lists give the general notation, acronyms, abbreviations, and physical quantities
that are frequently used throughout this manuscript. Special notation that is used less frequently
will be defined when needed.

General notation

N Number of data points in the time series

tj Observation epoch

X(tj) Sampled time series

E(tj) Zero-mean stationary Gaussian colored noise

ν, νk Continuous frequency, Fourier frequency

Ω Indices set of considered Fourier frequencies

SE(ν) Noise power spectral density

rE Noise autocorrelation function

NS , αq, fq, ϕq Number of sines, sines’ amplitude, frequency and phase

NC Proxy for NS

Np Number of exoplanets orbiting target star

Tp, Mp, ep, ωp, t0, V0 Keplerian planet parameters

dp, Rp Planet semi major-axis and radius

i Planet orbital inclination

ap(tj), Ep(tj), ME,p(tj) True, eccentric and mean anomalies

Kp RV semiamplitude,

VR(tj) Radial velocity

λ, λ0 Observed and rest wavelength

M⊕, MJ Earth and Jupiter mass

R�, M� Solar radius and mass

R?, M? Stellar radius and mass

P (ν) Classical periodogram

L Number of available training data sets

PL(ν) Periodogram averaged with L training data sets of the noise

P̃ (ν|PL) Periodogram standardized by PL considered at frequency ν

DN (ν) Dirichlet kernel

KN (ν) Fèjer kernel
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Z, z Scalar random variable, one realization of Z

vZ(z) Pr(Z > z) (observed p-value)

VZ P-value as a random variable (VZ ∼ U[0 1])

Z = [Z1, . . . , ZN ]> Vector of random variables

VZ,k P-value associated to component Zk of Z

VZ,(k) K-th ordered p-value of Z

ϕZ Probability density function of Z

ΦZ Cumulative distribution function of Z

H0, H1 Null and alternative hypothesis

Bin(a b) Binomial distribution

U[a b] Uniform distribution between a and b

N (µ, σ2) Normal distribution of mean µ and variance σ2

Ix(a, b) Regularized incomplete Beta function

λk := λ(νk) Non centrality parameter

ρk := ρ(νk) := SE(νk)
Nσ2

k
A term relative to the noise PSD (cf. Eq. (B.7))

χ2
d1

Chi-square distribution with d1 degree of freedom

χ2
λk

(d1) Non central χ2 distribution with d1 degree of freedom

F (d1, d2) F (Fisher-Snedecor)distribution with d1 and d2 degrees of freedom

Fλk(d1, d2) Non central Fisher-Snedecor distribution with d1 and d2 degrees of freedom

TM (Z) Statistic of test of the maximum Zvalue

TC(Z) Statistic of test of the N th
C maximum Z value

TF (Z) Statistic of Fisher test

TCh(Z) Chiu test

TF,rob(Z) Statistic of Robust Fisher test

L, ` Likelihood and log-Likelihood function

TLR(Z), TGLR(Z) Statistic of Likelihood Ratio and Generalized Likelihood Ratio tests

TV AR(Z) Statistic of the test of the variance

KS(Z) Statistic of Kolmogorov-Smirnov test

HC(Z) Statistic of Higher Criticism test

BJ(Z) Statistic of Berk-Jones test

Pr Probability

PFA False alarm probability

PDET Detection probability

PM Probability of missed detection

γ Detection threshold

ŜE,AR(ν, θ̂AR) Noise power spectral density estimated by AR process with θ̂AR := [ô, ĉj , σ̂
2]>

the estimated parameter vector (order, coefficients, and predicted error variance).

PLS Lomb-Scargle periodogram

D̂(P̂FA) Distribution of the false alarm probability estimates

G(z,θGEV ) GEV cumulative distribution function with θGEV := [ξ, µ, σ]>

the GEV parameter vector (shape, location, and scale).

B0,B
? Proposed bootstrap procedure and “GEV accelerated” version
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Acronyms

1 D One-Dimentional

3 D Three-Dimentional

AR AutoRegressive (process)

AU Astronomical Unit

AUC Area Under Curve

CDF Cumulative Distribution Function

CFAR Constant False Alarm Rate

CNES Centre National d’Études Spatiales

CoROT COnvection, ROtation et Transits planétaires

ESA European Spatial Agency

ESPRESSO Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations

FA False Alarm

FT Fourier Transform

GEV Generalized Extreme Value

GLR Generalized Likelihood Ratio

GOF Goodness-Of-Fit

GOLF Global Oscillations at Low Frequency

HARPS High Accuracy Radial velocity Planet Searcher

HC Higher Criticism

HD HydroDynamical (simulations)

HZ Habitable Zone

IAU International Astronomical Union

LR Likelihood Ratio

LS Lomb-Scargle (periodogram)

MDI Michelson Doppler Imager

ML(E) Maximum Likelihood (Estimate)

NASA National Aeronautics and Space Administration

PDF Probability Density Function

PLATO PLAnetary Transits and Oscillations of stars

PSD Power Spectral Density

ROC Receiver Operating Characteristic

RV Radial Velocity

SNR Signal-to-Noise Ratio

SoHO Solar and Heliospheric Observatory

WGN White Gaussian Noise
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Abbreviations

cf. confer (refer to)

e.g. exempli gratia (for the sake of example)

i.e. id est (that is)

i.i.d. independent and identically distributed

inf least lower bound

resp. respectively

r.v. random variable

sup greatest upper bound

vs versus

w.r.t. with respect to

Physical quantities

c = 299 792 458 m.s−1 Speed of light

G = 6.67408× 10−11 m3.kg−1.s−2 Gravitational constant
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General Overview

Introduction

Since the detection of the first extrasolar planets in the 90’s, several thousands of new worlds
have been discovered. As the direct detection of planets is hard, the majority of the detection
techniques are indirect. For example, the radial velocity (RV) technique consists in measuring
the stellar motion though wavelength shifts (Doppler effect) due to the gravitational attraction
of orbiting planets. Modern instrumental performances have reached signal-to-noise ratios
allowing, in principle, to detect Earth mass planets by the RV method. However, at such low
levels of instrumental noise, a new critical and limiting issue appears. The stellar surface can
be seen as a boiling fluid, with millions of convection cells generating upward and downward
plasma flows visible under the form of granules. These motions generate random fluctuations in
the measured RV of the star that can mimic, or hide, exoplanetary signatures. The statistical
characterization of this stellar background noise is difficult, and this specific issue motivated
the present study.

Assessing the significance of a detection claim when the noise statistics are fully or even
partially unknown is a challenging problem. A fundamental quantity/tool when searching
for frequencies in temporal time series is the confidence level. This measure of the detection
significance is related to the statistical distribution of the noise within the data. Knowing
the noise statistics allows to derive detection tests of which we control the statistics and
can evaluate the false alarm probability. In practice, applying test statistics without con-
sidering these noise correlations can lead to uncontrolled false alarm rate. This is especially
important when the signal-to-noise ratio is low, i.e. when the planet signature magnitude is
at the level of the jitter induced by the convective motions, as for telluric planets orbiting
variable stars. Statistical tests and analysis accounting for spectral estimation are then es-
sential to derive such confidence intervals and they will take a significant part of this manuscript.

Motivation

A key point is that in parallel to technological advances, astrophysicists have continuously
improved stellar models and elaborated numerical simulation codes able to account for the
complex interplay of various astrophysical processes in the star’s interior and surface. Recent
works demonstrate that granulation noise can be reproduced in a reliable way by large scale
hydrodynamic (HD) numerical simulations. This suggests the possibility of using such ab initio
simulations in the detection process.

My thesis aims to design and analyzes reliable tools to control the false alarm and detection
probabilities when the noise is colored with unknown statistics. To deal with partially unknown
statistics, we investigate, through statistical methods, whether ab initio HD simulations could
improve the control of the significance assigned to planet detections. In other words, we
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consider that the noise statistics are partially known through independent simulations.

The goal of these works is to analyze, for the first time, the probability of false alarm and
detection of various tests conducted in presence of stellar convective noise. It is connected to
different fields of research including signal processing, planet detection and stellar physics.

Contributions

Chapter 1 introduces the astrophysical context of the thesis. The main contributions follow in
the next chapters.

• Chapter 2: This chapter gives a review of signal detection theory. An analyze of the
Keplerian signatures in the temporal and Fourier domains is given.

• Chapter 3: This chapter investigates whether independent simulations of the colored noise
could improve the detection significance. Using simulated time series to calibrate the pe-
riodogram of the observations, we design a frequency analysis tool that takes the form
of a standardized periodogram. In the case of regularly sampled observations, the statis-
tical analysis of such periodogram demonstrates that it is asymptotically independent of
the colored noise. This important property allows to design several detection tests that
turn out to be Constant False Alarm Rate detectors. For some of these tests, we derive
analytical expressions of the false alarms and detection probabilities. Among the inves-
tigated tests, particularly attention is given to tests adaptive in the number of periodic
components. Such tests, as the Higher-Criticism or the Berk-Jones tests, were recently
largely investigated in the Signal Processing community. Never used in the exoplanet
detection community, we propose to apply them to the periodogram. We found that these
adaptive tests appear more powerful than classical tests based on the highest periodogram
component in case of multi-signals, off-grid planetary period, and high eccentric orbits.
The performed statistical analysis allows the design of observational strategies for several
detection tests.

• Chapter 4: Considering the test based on the maximum periodogram value, we investigate
in this chapter the control of the test statistics in the case of irregularly sampled obser-
vations and colored noise. Because the distribution of any periodograms is not known
when the noise is not white and the sampling not regular, we develop a bootstrap pro-
cedure adapted to the proposed standardized periodogram. By generating thousands of
false alarm probability estimates, this bootstrap provides access to the distribution of
these estimates in order to bound the true false alarm probability, independently of the
data sampling. To save a significant amount of computational time, we further show
that the procedure can be improved by using generalized extreme value distributions.
The technique is an extension of previous works developed for the white noise case (cf.
[Süveges, 2014]) to the case of partially unknown colored noise.

• Works under investigation: In perspective of this thesis, we present a preliminary appli-
cation of the proposed methodology to real astrophysical data. We show a preliminary
comparison of radial velocities extracted from recent 3D hydrodynamic simulations of the
stellar convection with real solar data taken from GOLF spectrophotometer onboard the
SoHO spacecraft. Then, we discuss further other applications of this thesis work.

Several scientific publications were presented during this thesis. The following list refers to the
refereed publications.
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Organization of the dissertation

This manuscript is divided in two main parts, and a review of the works under investigation is
given in conclusion.

• Part I introduces the context of extrasolar planet detection and some fundamentals in
detection theory as well as several tools related to this thesis framework (hypothesis
testing, periodogram, tests statistics). Chapter 1 gives a survey of the exoplanet detection
field from the 90’s up to the present days, and describes the radial velocity technique as
well as the different noise sources we have to face in order to be able to detect Earth-mass
planets orbiting variable stars. Chapter 2 deals with the problem of detecting periodic
signatures in noisy data. We look at the particular cases of different kind of noises (white
and colored) and at the planetary signatures in the temporal and Fourier domains.
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• Part II presents the main contributions of this research work. Chapter 3 introduces a new
tool, namely a specific type of standardized periodogram, and make a statistical analysis
of different detection tests in the case of a regular time sampling. The false alarm and
detection probabilities are analytically derived for some of these tests, and some detec-
tors are proved to be CFAR. The advantages of using adaptive tests designed to detect
non extremely sparse signatures are also investigated for detecting planetary signatures.
Chapter 4 propose an adapted bootstrap procedure based on such periodograms to con-
trol the detection significance in case of irregular sampling. In a second step, Generalized
extreme values are exploited to save a large amount of computational time.

• Finally, in Perspectives, we present a preliminary application of this work to real as-
trophysical data. We investigate the realism of hydrodynamical simulations of the solar
convective noise with real observations of the solar convection. Then, we discuss several
applications of the developed study regarding the extrasolar solar planet detection field.
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Chapter 1

Exoplanet detection
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1.3.3 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Simulations of the convective stellar activity . . . . . . . . . . . . . . 25

1.5 Conclusions on the astrophysical context of the thesis . . . . . . . . 27

Science, and especially astrophysics, is a dynamic field evolving very fast. Our understanding
about the Nature’s laws and about our place in the Universe is always progressing and new
informations force ourselves to continuously question our basic theories and definitions. The
formal definition of a planet, for example, was discussed during a long time after the discovery
in 2005 of thousands of transneptunian objects1 in the Solar System, as Éris, a Pluto size object
[Soter, 2006]. It was finally decided, in 2006, by the International Astronomical Union (IAU)
that the formal word “planet” concerns only the eight Solar System planets.

Definition 1. (Solar System) planet

A planet is defined by the Resolution B5 of the IAU 2 (2006) as a celestial body that (a) orbits
around the Sun, (b) has sufficient mass for its gravity to overcome rigid body forces and assume
hydrostatic equilibrium (a nearly round shape), and (c) has cleared the neighbourhood around
its orbit.

In the Solar System, we found rocky planets close to the Sun (Mercury, Venus, the Earth
and Mars), gaseous giant planets beyond the ice line (Jupiter, Saturn, Uranus and Neptune)
and dwarf planets beyond (e.g. Pluton, Éris). However, this definition is difficult to apply to
bodies detected around other stars than the Sun. Indeed, in practice, no information about the
detected object shape is available (condition b) as well as the environment in which this object
evolves (condition c). Officially, the IAU has not yet decided on a definitive definition of the
word extrasolar planet.

1i.e. objects orbiting behind the Neptune’s orbit.
2https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf
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Definition 2. Extrasolar planet

The“Working Group on Extrasolar Planets” proposed3, in 2003, to define an extrasolar
planet as (a) a body orbiting an other star than the Sun (or a stellar remnant), (b) with a
mass below the mass limit for thermonuclear fusion of deuterium (≈ 13 MJ for objects of
solar metallicity), and (c) with a minimum mass and/or size defined as for our Solar System
planets. Substellar objects with masses above the limiting mass for thermonuclear fusion of
deuterium are “brown dwarf”. Free-floating objects (i.e. planetary bodies not gravitationally
linked to a star), in young star clusters, with masses below this mass limit are sub-brown dwarfs.

However, this “working definition” is debated and alternative ones are currently elaborated,
which are related to the object characteristics, circumstances or formation history (cf.
[Basri and Brown, 2006] for an interesting discussion on the subject). In this study, it will be
sufficient to consider extrasolar planets as celestial bodies orbiting other stars than the Sun
(and that are not double stars).

For more than 20 years, we know that a multitude of other worlds exist. How do we detect
them ? Are we able to detect Earth-like planets4 ? The objective of this chapter is to give
a short (necessary not complete) introduction of the astrophysical context underlying these
questions. In a first part, we propose a survey of this topic through the different methods of
planet detection and a recent review of the main discoveries (Sec. 1.1). We will then introduce
the particular technique of the radial velocities and discuss the main limitations to detect Earth-
mass planets through this method (Sec. 1.2). We will see that the instrumental performance
have been improved a lot during the last two decades, so that nowadays the main limitation
to detect the smallest extrasolar planets comes from the “noise” of the intrinsic activity of the
host star itself (Sec. 1.3). We will finally present the hydrodynamical (HD) simulations of the
stellar surface convection, which is a stochastic contribution of the stellar noise (Sec. 1.4), and
conclude on the thesis issue (Sec. 1.5).

1.1 Methods and discoveries

The quest of extrasolar planets began in the 90’s, with the discovery of several planets orbiting
around a pulsar named PSR 1257+12 [Wolszczan and Frail, 1992]. This type of star is a
rapidly rotating neutron star with an extremely dense core resulting of the explosion of a
massive supernova star. The astronomers were greatly surprised to find that planets have
survived to the stellar explosion.
Few years later, the first extrasolar planet orbiting a Sun-like star was discovered: 51 Pegasi
b [Mayor and Queloz, 1995]. Once again, this detection surprised the astronomers since the
planet is a giant (around half of the Jupiter mass) orbiting very close to the host star with
a very short period of only 4.2 days. This type of planets, now named Hot Jupiter planets5,
are not met in the Solar System. This discovery turned the old planetary formation models6

upside-down and new theories of systems formation based on planet’s migrations were then
developed (e.g. [Nelson et al., 2000, Masset and Papaloizou, 2003, Morbidelli et al., 2005,
Tsiganis et al., 2005]). This detection was done by the radial velocity technique (described in
the items below) and announced a new era in astrophysics: the hunt of extrasolar planets.

Since then, many space photometric missions (e.g. COROT [Baglin et al., 2006], Kepler

3http://w.astro.berkeley.edu/~basri/defineplanet/IAU-WGExSP.htm
4i.e. Earth-mass, density and temperature planets.
5Hot Jupiters are defined as Jupiter-type planet orbiting at < 0.1 AU.
6Standard models explained the planetary formation by a core accretion effect beside the snow line (i.e. at

large distance from star).
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[Borucki et al., 2010]) and ground based spectroscopy surveys (e.g. ELODIE, SOPHIE
[Bouchy, 2015], HARPS [Mayor et al., 2003]) have been dedicated to exoplanet hunting. A
multiplicity of new detection methods have emerged and the instrumental precision improved
to end up around 3610 extrasolar planets detections (June, 2017, source: exoplanets.eu).
Following [Perryman, 2011], the exoplanet detection techniques can be classified in four main
families:

Direct observation: The direct imaging method consists in taking a snapshot of the planets
and disk around a central star. While this is the most obvious method, it is also one of the
most difficult due to the strong contrast in luminosity between the star and the planet.
The method consists in hiding the stellar disk with a stellar mask (i.e. a coronograph)
to be able to detect the stellar light reflected by the orbiting planet, and to correct the
image using adaptive optics in real time. In June 2017, this method counted 63 detections.
The majority of these planets orbits around young stars or nearby stars [Perryman, 2011].
The success of this method depends on the separation between the star and the planet.
When coupled with spectroscopy, it informs on the planet radiation. This allows to
constrain, among other, the planet temperature, pressure, chemical composition and the
atmosphere structure. For an exhaustive review of this technique, one can report to
[Beuzit et al., 2006].

Effects of the host star: Planets create a gravitational force on their star making the system
star-planets moving around a common centre of mass. This effect can be detected by
measuring periodic (or quasi-periodic) perturbations of the stellar motion projected on
the line-of-sight. Depending on the system’s inclination and the stellar properties, three
different methods exist to detect this motion.

• The radial velocity method (RV), also called the Doppler spectroscopy technique,
consists in detecting the Doppler shifts in the stellar spectral lines. This shift is
related to the stellar motion by the Doppler effect (see Fig. 1.1 and Sec. 1.2). This
tiny relative shift (about ∆λ

λ ≈
v
c ≈

0.1
3×108 ≈ 3 × 10−10 for an Earth-like planet),

observed as a function of time, depends on the system inclination (systems seen
pole-on, i.e. i = 0◦, cannot be detected by this method). To date, 626 planets have
been detected using the RV technique, mostly around FGK stars as they present a
large number (several thousands) of spectral lines making the detection of the tiny
wavelength shift easier.

• The astrometry method consists in detecting periodic variations (wobbles) of the
stellar angular position in the sky as function of time. This method needs a very
high precision on the star location and, to date, there are only very few plan-
ets detected by this method (in fact, only 1 is listed in the exoplanets.eu cat-
alogue [Muterspaugh et al., 2010]). But far more detections are expected in the
next years with the results of the GAIA satellite (2014-2022) [Perryman et al., 2001,
Casertano et al., 2008]. According to Perryman et al., around 50 000 − 90 000 new
detections are expected after 10 years of this space mission (mostly giant planets
with relatively long period, i.e. < 5 AU) [Perryman et al., 2014]. If such an amaz-
ing estimation is correct, this will make the astrometry technique the most efficient
method, in terms of number of detected planets, for the next decades.

• The timing method, applied to pulsar stars, consists in detecting variations in the
time of arrival of the stellar radiative electromagnetic radiation. Indeed, the timing
of this pulse is extremely regular and can be compared to the timing of atomic clocks.
Small variations can indicate the pulsar motion due to orbiting masses. The timing
depends on the star’s rotation and can take values of some milliseconds to seconds.
In June 2017, 23 planets have been detected around pulsars (among which we find
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the three planets orbiting PSR 1257+12, introduced as the first exoplanets detection
some lines above). The few cases of such pulsar’s planets seem to indicate that the
first impression of the astronomer, questioning the possibility of their existence after
a supernova explosion, was right and that planets orbiting pulsar are rare.

These three methods, based on the gravitational effect of planets on their host stars, allow
to derive the planet mass and period. One can respectively report to [Fischer et al., 2014],
[Perryman et al., 2001] and [Schneider, 2005] for recent reviews of these techniques.

Photometric effects: When a planet crosses the stellar disk on the line-of-sight of the tele-
scope, one can observe a tiny decrease of the stellar flux as the planet blocks a part of the
stellar light (e.g. a flux decrease of 80 parts per million is expected for an Earth-size planet
orbiting a Sun-like star). This technique, called the transit method is, nowadays, the most
efficient for detecting planets, with about 1272 detections and more than 3000 planetary
candidates. While the probability of observing a planetary transit is small7, this huge
number of discoveries was possible thanks to dedicated space missions as COROT (led
by CNES), a mission that operated from 2006 to 2014 [Baglin et al., 2006], and Kepler, a
NASA mission operating from 2009 up to 2014 [Borucki et al., 2010]. The observation of
a planet transit gives informations on the planet radius, distance, and orbital inclination.
When transmission spectroscopy is done during the planetary transit, it informs on the
chemical composition and temperature of the planet atmosphere (e.g. study of HD 209458
[Brogi et al., 2017]). Infrared observations during the secondary transit (i.e. when planet
is crossing behind the star) allowed to make the first planetary spectra and to detect
molecules in the atmospheres (e.g. atomic sodium found in the atmosphere of HD 209458
b [Deming et al., 2013]). One can report to [Seager, 2008] for an exhaustive review of this
technique.

Gravitational microlensing effects: The concept of gravitational microlensing is due to Ein-
stein, who predicted that the distortion of spacetime by a massive object produces an
observable light magnification due to the gravitational field [Einstein, 1936]. Discovering
planets by the microlensing method consists in detecting the bending of light of a distant
bright source (background star) when it is aligned with a massive compact system contain-
ing one or more planets (lens system) (e.g. [Gould and Loeb, 1992]). Microlensing events
are rare. Since the last decades, a large ground based telescopes network has been dedi-
cated to this technique on the three South hemisphere continents (MOA, OGLE, LCOGT,
KMTNet, PLANET et µFUN [Beaulieu et al., 2013]) in order to maximize the possibility
of observing such events. This network works with alerts and allows to obtain continuous
measurements with high cadence during a detected event. The typical duration of an
event is about 25 days (e.g. [Ranc et al., 2015]). If the observational conditions are opti-
mal (i.e. a good temporal coverage of the event: no data gap, a good cadence: typically 20
minutes during the totality of the event, and of course, a good precision), refined models
can be used to describe the event. Simple microlensing models allow to measure the mass
ratio between the planet and the host star as well as the projected separation between
them (known up to a factor called the Einstein beam). By measuring the microlensing
parallaxes, with satellite such as Spitzer, K2, and (in the future) WFIRST other prop-
erties of the star/planets system can be derived (e.g. the total mass of the system or

7The probability that a planet’s orbit, with a random orientation, transits the star is proportional to the
planet semi major axis (dp) and the stellar radius (R?) [Borucki and Summers, 1984]

Pr
(

“transit”
)
≈ R?
dp
.

For example, the probability of detecting a Jupiter planet, at 5 AU, orbiting a Sun is about 0.1% and the
probability of detecting a Hot-Jupiter located at 0.05 AU is about 10%.
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the Earth-star distance). In June 2017, 43 planets have been detected by microlensing.
This technique is actually the most efficient to detect planets at large distances but the
confirmation of such detections by other techniques is also the most difficult. One can
refer to [Bennett, 2008, Beaulieu et al., 2006, Cassan, 2014, Ranc et al., 2015] for recent
reviews of this technique.

Unseen 
extrasolar planet

Observed star

Figure 1.1 – Illustration of the principle of the radial velocity technique. When the star moves
toward the observer, it produces a Doppler shift of the stellar lines toward the blue and toward
the red when it moves away. This periodic shift allows to detect indirectly the presence of
planets orbiting the observed star and gives a lower limit of the planet mass.

When the detection of a celestial body by two of these different methods is possible, a
detection is officially claimed as confirmed. Moreover, the combination of two of them can
allow the characterization of the planet properties. For example, the combination of the
RV (mass) and transit (radius) informations gives an estimate of the average planet density,
which may be an indicator of the liquid water presence on the planet surface. This precious
information, combined with the star-planet parameters, allows to draw preliminary models for
the planet structure. Among these models, one can find: telluric planets (e.g. Earth mass
planets [Shvartzvald et al., 2017]), Super-Earth8 [Santos et al., 2004], ocean or carbon planets
[Léger et al., 2004, Kuchner and Seager, 2005], Hot-Jupiters [Mayor and Queloz, 1995]), chtho-
nian planets9 [Hébrard et al., 2004], or giant planets (e.g. mini-Neptune [Barnes et al., 2009]).

Fig. 1.2 illustrates the discovered planets as a function of their masses and their distances
to the host star. The color code indicates the different detection methods. These discoveries
reveal an extreme diversity of the planet populations in terms of mass and orbital distances. A
global observation of this figure indicates that planets were found far much closer to their star
than our Solar System planets (as for instance the Hot Jupiter population). This is of course an
observational bias as we detect mostly the planet producing the largest signals (observational
limit). A new planet population appears to be the most abundant since the last survey of the

8Super-Earth are planets with mass between 2 and 10 Earth masses.
9Chthonian planets are hypothetic planets, born as giant gas planets with atmosphere composed of hydrogen

and helium that escaped with time due to their host star proximity. According to the giant planet interior models,
it should remain a solid or metallic rock core [Guillot, 1999].
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Kepler satellite [Borucki et al., 2010]: the Super-Earth planets, which are not present in our
Solar System.
Today, we know that multi-planetary systems orbiting other stars exist elsewhere (e.g.
Kepler-11 hosting a procession of 6 planets [Lissauer et al., 2011] or TRAPPIST-1 hosting a
system of 7 planets [Gillon et al., 2017]). Some of these planets orbit their star in less than 1
day (e.g. KOI 1843.03 with an orbital period of 4.2 hours [Rappaport et al., 2013]) and others
orbit in the Habitable Zone10 (HZ) of their star (e.g. Gliese 667c with 3 planets in the HZ
[Anglada-Escudé et al., 2013]).
Over the last few years, the number of detections of small telluric planets located in the HZ of
their star is increasing very rapidly. Indeed, last year (2016), astronomers discovered a planet
orbiting one of our nearest neighbouring star, at only 4 light year: Proxima Centauri, a red
dwarf M star [Anglada-Escudé et al., 2016]. The planet has a mass comparable to Earth and
orbits into the star’s HZ in 11 days (M dwarves are interesting targets as their HZ is far most
closer than for Sun-like stars). In the same year, the NASA discovered 7 Earth-size planets
orbiting also a M star named Trappist-1 [Gillon et al., 2017].

Figure 1.2 – Properties of the detected extrasolar planets depending on the detection method.
This figure represents the planets as a function of their masses and distances to their host star.
Four categories of planets are highlighted by the different frames. Note, however, that for the
planet population that has been detected by transit (red dots), one cannot access to the mass.
Consequently, some of the planets present in this graph are either confirmed by an independent
method (RV) given access to the mass or the mass has been roughly estimated through a model
linking the transit observations with the body’s mass. Masses derived by such method are
subject to caution. Source: exoplanets.org.

10According to [Seager, 2013], the habitable zone is the area where liquid water can be found on a planet
surface. In our Solar System this zone is located between 0.5 and 3 AU. Of course, the presence of liquid water
depends also on other parameters like the planet history or the stellar activity. For example, in our Solar System,
Venus, Mars, the Moon and a lot of asteroids are included in this habitable zone whereas no liquid water is
present today on their surface. This HZ must just be seen as a preliminary indicator for the search of life such
as we know it (i.e. developed in a water ocean at a planet’s surface), but it is not excluded that other forms of
life can exist in the Universe (e.g. below the surface of some giant planets icy moons).
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All of these discoveries result from the exponential improvement of the instrumental perfor-
mance (e.g. optics, detectors precision and space instruments), the calibration method, and
the detection algorithms. Indeed, detecting planets is always a difficult task for all the ex-
isting detection techniques as they are far much fainter, less massive, and smaller than their
host star. These reasons make the massive giant planets easier to detect in general. This is
illustrated by Fig. 1.3 showing the planets discovered by the RV method as a function of their
mass and the year of their discovery. We see the increase of the number of small planets de-
tection with time. Between 1995 and 2003, the majority of the detections were done using
a small number of instruments observing in the optical domain: HIRES (Hawaii), CORALIE
(La Silla, Chili), The Hamilton Spectrograph (Lick), ELODIE (Haute-Provence Observatory,
France), AFOE (Whipple Observatory), UCLES (Australia), the Coudé Echelle Spectrograph,
the Sandiford Cassegrain Echelle spectrograph and HRS (McDonald Observatory, USA). After
2003, the number of detections drastically increased with the start of the HARPS commissioning
(La Silla, Chile) opening the window to the Super-Earth and mini-Neptune planets populations
[Mayor et al., 2003]. With the soon coming instrument ESPRESSO (installed on the VLT), the
instrumental precision limit will reach the level allowing to detect Earth-like planets orbiting in
the HZ of Sun-like stars with the RV method (cf. Sec. 1.2.2) [Pepe et al., 2010].
In the next decade, other important instruments dedicated to the detection of low-mass
planets in the HZ of M dwarfs (and observing this time in the near infrared), will be set
up: CARMENES, installed in 2016 in the Calar Alto Observatory [Quirrenbach et al., 2014],
SPIRou, which will be installed on the Canada-France-Hawaii telescope this year (2017)
[Thibault et al., 2012], or still the ExTrA project, which will start in 2017 at La Silla, Chile
[Bonfils et al., 2015].
With these new instruments, the hunt of Earth-like planet is became possible.

51	
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Figure 1.3 – Planet mass vs date of discovery. One can see the impressive increase of the number
of detections with time up to a factor 1000 in less than 2 decades (1995-2015). Some famous
extrasolar planet names are indicated. The name of the planet αCentauri B b, claimed discov-
ered in 2012 in [Dumusque et al., 2012] can be seen in red as this detection is debated. Indeed,
other studies have shown that the claimed planet detection can be due to the contribution of
the host star surface activity [Hatzes, 2013, Rajpaul et al., 2016]. The different sources of this
stellar activity will be detailed in Sec. 1.3. Source: exoplanets.org.
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According to recent statistical studies, 16% of the FGK stars of our galaxy have at least
one planet [Fressin et al., 2013], and 15% of solar type stars would have an Earth-size planet
[Petigura et al., 2013]. Regarding the number of detected planets11, only 35 planets into more
than 3600 have a mass < 2M⊕. Assuming the validity of such statistical studies about the
existence of such small exoplanets, we can deduce that we are not able to detect them yet (or
that their detections are very difficult and hazardous).

1.2 The radial-velocity technique

The radial velocity technique is based on the Doppler-Fizeau effect introduced by Doppler in
1842 [Doppler, 1842]. This effect links the stellar motion (due to the influence of an orbiting
planet) on the light-of-sight of the observer to a wavelength shift in the stellar spectra. When
the star is going toward the observer, the stellar lines are blueshifted and redshifted when the
star is moving away (cf. Fig. 1.3). By ignoring relativistic effects (as VR � c), the relationship
between the RV and the wavelength shift is:

λ− λ0

λ0
=
VR
c
, (1.1)

with c the speed of light, λ0 the wavelength in the reference frame, λ the observed wavelength
and VR the projected velocity (i.e. the radial velocity).
The shape of a RV planet signature depends on the planet orbital parameters. The motion
is described by the Keplerian parameters of an elliptical planet orbit. These signatures are
described in the following section, which is largely inspired by [Perryman, 2011].

1.2.1 Planetary signatures

The RV semi-amplitude (K) due to a planet orbiting a star is related to the stellar and planetary
characteristics by:

K =

(
2πG

T

)1/3
M sin(i)

(M? +M)2/3

1√
1− e2

(1.2)

with G the gravitational constant, T the planet period, M the planet mass, M? the stellar
mass, i the inclination of the planet orbit with respect to the reference frame (cf. Fig. 1.6)
and e the orbit eccentricity12 (for the detailed calculations, see p.12 of [Perryman, 2011]).
According to (1.2), for a given stellar mass, it is easier to detect massive planets, short period
planets, and planets with small eccentric orbit. These remarks are indeed observed in Fig. 1.2,
where the detected planets are mostly massive and with short period orbit (generally combined
with a small eccentric orbit due to the tidal effects of the host star).

The first rows of Table. 1.1 shows the RV semi-amplitude of the Solar System planets, evaluated
from (1.2) in the perfect observational conditions (i = 90◦). For example, an Earth-like planet
orbiting around a Sun at 1 AU (row 3) has a signal amplitude of 8.9 cm.s−1 whereas a Jupiter-
like planet at 5.2 AU (row 5) produces a RV signal of 12.4 m.s−1 amplitude. To give an order of
magnitude, a radial velocity variation of 12 m.s−1 corresponds to the detection of a wavelength
shift in the spectral lines of ∆λ = 2 × 10−4 Å. Consequently, the detection needs an extreme
stability of the spectrograph. Rows 9 and 10 illustrate K for an Earth-like planet in close orbit
and a Super-Earth planet (at 1 AU) to be compared to Earth (row 3). When the planet is 10
times closer (or 5 times more massive), K is 3 (or respectively 5) times larger. The last three rows
correspond to some known exoplanet signatures. First, 51 Pegasi b (row 11) evoked in Sec. 1.1 for

11exoplanets.eu
120 ≤ e ≤ 1, with e = 0 for a circular orbit and e = 1 for a parabolic orbit.
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which the mass of the star is M? = 1.04 M� and the inclination of the orbit i = 80◦ leading to a
RV semi-amplitude of 55.9 m.s−1. As an illustration, the observed RV curve of 51 Peg b is shown
in the left panel of Fig. 1.4 as function of the phase13. Follows αCentauri B b (row 12), which
is a debated planet detection around a solar mass star (M? = 0.907 M�) of spectral type K1V
[Dumusque et al., 2012, Hatzes, 2013, Rajpaul et al., 2016], and Proxima Centauri b (row 13)
orbiting a M dwarf star (M? = 0.12 M�) of spectral type M5.5Ve [Anglada-Escudé et al., 2016].

Row Planets Mean distance Periods Eccentricity Mass K
number to the star (AU) (days) (MJ) (m.s−1)

1 Mercury 0.38 88 0.2060 1.70 × 10−4 0.008

2 Venus 0.72 225 0.0068 2.56 × 10−3 0.086

3 Earth 1.00 365 0.0167 3.15 × 10−3 0.089

4 Mars 1.52 686 0.0934 3.40 × 10−4 0.008

5 Jupiter 5.20 4332 0.0485 1.00 12.47
(11.9 yr)

6 Saturn 9.58 10755 0.0556 0.299 2.758
(29.5 yr)

7 Uranus 19.20 30687 0.0460 0.046 0.299
(84 yr)

8 Neptune 30.05 60190 0.0110 0.054 0.281
(164 yr)

9 Earth in close orbit 0.1 36.5 0.0167 3.15 × 10−3 0.28
10 Super-Earth 1 365 0.0167 15 × 10−3 0.45

11 51 Peg b 0.052 4.2 0.013 0.46 55.94
12 α Cen Bb 0.04 3.23 0 (fixed) 3.55 × 10−3 0.51
13 Proxima Cen b 0.048 11.18 < 0.35 4 × 10−3 1.4

Table 1.1 – Orbital characteristics and RV semi-amplitudes of the Solar System planets evaluated
for i = 90◦ (rows 1-8), a close-orbit Earth-mass planet (row 9), a Super-Earth of 5 M⊕ at 1 AU
(row 10), 51 Pegasi b (row 11), αCentauri B b (row 12) and Proxima Centauri b (row 13).
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Figure 1.4 – Left: Observed radial velocity curve of the planet 51 Pegasi b (extracted from
[Mayor and Queloz, 1995]). Right: RV signatures of the Earth (blue), Jupiter (red) and the
entire Solar System planets (assuming no interaction between them, black) evaluated for i = 90◦.
The RV of the entire Solar System is completely dominated by the Jupiter’s influence, which
with Saturn, contains more than 90% of the whole Solar System planets mass.

13The phase is t−t0
Tp

with t the time, t0 the time of the planet passage at periastron, and T the planet period.
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Considering now the orbit characterization, the signatures for Np planets with Keplerian orbits
can be expressed by:

VR(t) =

Np∑
p=1

Kp

(
cos(ωp + ap(t)) + ep cos(ωp)

)
+ V0, (1.3)

with Kp the semi-amplitude given by (1.2), ep the eccentricity, ωp the argument of periastron14

(0 ≤ ωp < 2π), V0 the velocity of the system barycentre, and ap(t) the true anomaly. In
practice, only the Keplerian parameters Tp, ωp, ep, Mp, and Kp can be derived from the
observations. The shape of the RV planet signature in (1.3), with respect to the different
Keplerian parameters, will be studied in details in Chap. 2 (Sec. 2.3).

In (1.3), the true anomaly is defined by Eq.(2.7), p.10 of [Perryman, 2011] as

ap(t) = 2 arctan

[√
1 + ep
1− ep

tan
(Ep(t)

2

)]
, (1.4)

with Ep(t) the eccentric anomaly. The eccentric anomaly can be calculated using the mean
anomaly M(t) which is, at a given time, the angular distance of the planet from periastron:

ME,p(t) = 2π
t− t0
Tp

= Ep(t)− ep sin(Ep(t)), (1.5)

with t0 the time of the planet passage at periastron. The mean anomaly can be seen as a
fictive mean motion around the planetary orbit and can be inferred directly from the data (see
Fig. 1.5). The second equality in (1.5) is called the Kepler equation and has to be solved by
iterative numerical methods such as the Newton-Raphson algorithm. At a given time, the planet
position (indicated by the blue circle in Fig. 1.5) can be described both in terms of the true
anomaly ap (with respect to the ellipse centre, i.e. the system center of mass, here indicated
by the star symbol) and the eccentric anomaly Ep (with respect to the auxiliary circle, i.e. the
circle which circumscribes the planetary ellipse).

ME,p(t)(ap(t)(Ep(t)(

Auxiliary(circle(

Ellip3cal(orbit(

X( X(

Mean(mo3on(
circle(

apoastron( periastron(Star ︎

Planet︎
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Figure 1.5 – Illustration of the three anomalies associated to an elliptical orbit.

14The periastron is the point where the planet is the closest to the star. The argument of periastron is the
angle between the direction of the ascendant node and the direction of the periastron.
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As seen in Sec. 1.1, the detectability of the RV planet signature depends on the planet’s or-
bit inclination on the light-of-sight. The inclination parameter is involved in (1.3) through
Kp ∝ Mp sin(i) (cf. (1.2)) and cannot be determined from RV observations (but by transit for
example). This leads only to a lower limit of the planet mass when the planet is only detected
by the RV technique.
Fig. 1.6 shows the effect of the inclination on the RV curves for three different configurations:

a) The “pole-on” geometry (i = 0◦), where the Doppler signature is minimum (VR = 0). In
this configuration the planet signature is not detectable and we have to use astrometric
measurements to detect the planet.

b) An intermediate case (i = 45◦), where the Doppler signature increases.

c) The “edge-on” geometry (i = 90◦), where the RV semi amplitude is maximum (maxVR).
This is the best configuration.

Figure 1.6 – Effect of the orbit orientation on an Earth-like planet RV signature (the Keplerian
parameters are indicated in the row 3 of Table. 1.1).

1.2.2 Method of measurement and instrumental errors

As discussed in the beginning of this section, RV measurements are based on the systematic mea-
sure of Doppler shifts in the stellar absorption lines. Ignoring the relativistic effects (VR � c),
the velocities can be determined by the classical form of the Doppler effect given in (1.1). Ac-
cording to Hatzes & Cochran, the RV precision (or dispersion, σinstr) is related to the resolution
R of the spectrograph, the signal-to-noise ratio (SNR) S/N , and the spectral range Bλ of the
spectrograph as [Hatzes and Cochran, 1992]:

σinstr ∝ R−1 × (S/N)−1 ×B−1/2
λ .

The resolution and the spectral range of the spectrograph fixed, the instrumental precision
depends on the SNR. The SNR depends on a lot of parameters, which modify the saturation
level (e.g. the signal magnitude, the detector characteristics, the stellar magnitude and spectral
type, the exposure time of the observations, the considered wavelength range or the quality of
the atmosphere). Achieving a RV precision of some m.s−1 is possible for two reasons.
First, a long-term instrumental stability, both in temperature, pressure and humidity, over
months or years. This is possible with échelle spectrographs15 operating at high resolution.

15The principle of any spectrograph is to disperse the received starlight into its wavelength components. Échelle
spectrographs use a reflecting grating (i.e. a dispersive element), composed of equally spaced grooves (facets)
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Today (2017), the more precise spectrograph is HARPS, which is installed on the ESO 3.6-m
telescope, La Silla, since 2003. HARPS operates in the optical domain (378 − 691 nm) with
a resolution of R = λ

∆λ ≈ 120 000. According to the extreme stability and the characteristics
of HARPS (e.g. captors and telescopes sizes, spectrograph resolution, calibration by Thorium-
Argon lamps), and considering a photon noise limit evaluated in nominal condition (e.g. for
stars with MV = 7), this spectrograph is able to provide long term (1 month) wavelength ref-
erence allowing to achieve a precision around 1 m.s−1 until the saturation limit of the CCD is
reached (300 000 electron peaks intensity) [Bouchy et al., 2001, Lovis et al., 2006]. This limit-
ing value of 1 m.s−1 has to be seen as the intrinsic scatter on the observed RV. Signal with
amplitudes below such limit are undetectable (whatever the number of observed data).
The detection also takes benefit from the instantaneous combination of many absorption lines
in the stellar spectrum through the cross-correlation technique, which improves the measured
SNR of the target Doppler shift (e.g. [Allende Prieto, 2007]). To do that, stars with spectral
type latter than F6 are the privileged targets as, at a given metallicity, they present a lot of
absorption lines (see Fig. 1.7). For earlier-type stars, complications appear as they are often fast
rotators making their (few) spectral lines wider (and consequently the wavelength shifts is less
detectable). One notes however that adapted crossed correlation techniques using specific tem-
plates (e.g. [Galland et al., 2005]) or other dedicated techniques (e.g. [Astudillo-Defru, 2015])
exist for these stars.
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Figure 1.7 – RV accuracy depending on the spectral type. Early type stars, from A0 to F5, and
late type stars, from K5 to M0, lead to poor RV accuracy. Main sequence stars, from F5 to K5,
are more favoured for RV technique. Figure adapted from [Bozza et al., 2016].

leaned to a specific angle (the blaze angle) with respect to the grating normal. This angle of diffraction is chosen
to make constructive interference and to diffract most of the light into high order (as a zero order corresponds
to the white light which bring no information). One can report to [Vogt, 1987] for details on this instrument.
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Following the Hatzes’ chapter in [Bozza et al., 2016], the more common methodology of RV
extraction is based on the cross-correlation technique. The main steps are:

1. Pixel measurements of the absorption lines position in the stellar spectrum by an
échelle spectrograph (e.g. HIRES, HARPS). In the spectrograph, many diffraction orders
disperse the light and are recorded in a CCD where the absorption lines can be measured.
The accuracy of the measurements depends on the instrumental resolution and on the
target star. For example, Fig. 1.7 (extracted from [Bozza et al., 2016]) shows an estimate
of RV errors as a function of the stellar spectral type (evaluated by taking into account
the stellar mean rotational velocity and approximate stellar line densities). Cool stars
(spectral type later than F6) have a good accuracy while more massive stars with high
rotational rates and high effective temperature induce large RV errors.

2. Conversion in wavelength shift with a calibration method. The first technique
consists in calibrating the observed spectrum with a simultaneous calibration done
with a Thorium lamp. This is the method used with spectrographs like ELODIE
and HARPS [Bouchy, 2015]. Another techniques consist in using an absorption cell
[Griffin and Griffin, 1973] as for the spectrograph of the McDonald Observatory (US),
or in using the Earth atmosphere as a reference (through telluric spectral lines). All these
calibration methods need high stability to minimize the instrumental drifts. Some errors
can happen during the data calibration step and one notes that a future promising method,
the “Laser frequency Combs”, is in development for the next generation of spectrograph
like ESPRESSO [Pepe et al., 2010].

3. Cross-correlation of the entire spectrum. Thousands of lines are measured in the
spectra of FGK stars and the wavelength shift is deduced by cross-correlation of the entire
spectrum with templates [Baranne et al., 1996]. Again, this is only possible by combining
thousands of lines. Indeed, since HARPS’ camera pixel size is about 15 µm (corresponding
to 800 m.s−1), it would be impossible to measure a 1 m.s−1 displacement with a unique
spectral line.

4. Translation in radial velocities. Using (1.1), the wavelength shift is measured with
respect to (w.r.t.) the reference frame of the observer. As the referential of the measure-
ment is linked to the spectrograph, we have to correct the shifts due to the Earth motion
depending on the instrument location and epochs of measurements. These barycentric
corrections include (among other things) the Earth’s orbital motion (up to 30 km.s−1),
the Earth’s rotation (≈ 4.6 km.s−1), the Solar System motion, and the proper motion of
the star w.r.t. the Solar System (some milli arcseconds per year for the majority of the
stars16 [Rouan, 2011]). These motions are evaluated with the ephemerides, the observer
position, the distance to the Earth centre and the position of the observed star.

During the process of RV extraction, instrumental noises can hide the searched planet signatures.
Fig. 1.8 shows the RV semi-amplitude Kp evaluated by (1.2) as function of the planet periods
Tp (for ep = 0 and M? = 1 M�) for different planet masses (1 MJ , 5 M⊕, 1 M⊕). The two RV
amplitudes indicated at right represent the limit range of the most accurate spectrograph in
activity, HARPS (blue shade region), and the future spectrograph ESPRESSO (yellow shade
region). One can observe that Earth-mass planets are not detectable with HARPS (at least
for period > 1 hour), which is only able to detect Super-Earth with close orbit (period ≤ 1
year). On the contrary, the future high-precision spectrograph ESPRESSO will decrease the
instrumental noise level by a factor of 10 allowing the detection of Earth-like planets (e.g. the

16Barnard’s star is the star known with the highest proper motion [Barnard, 1916]. This stars moves at
10.3”/year leading to observed RV variations around 110 km.s−1. To keep an order of magnitude in mind, it
would take around 175 years to this star to drift an angular distance equal to the diameter of the full Moon.
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blue curve corresponding to 1 M⊕ with 1 year period is at the expected detection limit of
ESPRESSO). These performance will be achieved thanks to the reduction of the instrumental
errors (by the spectrograph stability) and the improvement in the data calibration (through the
laser frequency comb technique).
For these modern stable spectrographs, the instrumental noise will not prevent the detection of
telluric RV planet signatures. Indeed, another source of noise appears when looking for small
planets: the noise created by the star itself, which becomes the main limiting factor at such low
instrumental levels.

Figure 1.8 – RV planet semi-amplitude as function of periods for ep = 0 and a solar mass
star. The blue and yellow shade regions represent approximately the HARPS and ESPRESSO
instrumental limits.

1.3 Stellar noises

Astrophysical noise sources arise from the stellar photospheric activity of the host star. Indeed,
the light observed to detect the RV planet signatures is formed at the stellar surface and
therefore is very affected by its dynamical environment. These plasma motions alter the shape
of the stellar absorption lines and affect the RV under the form of correlated noises.

Ignoring these noises, or misunderstanding them, had lead to several false planet detections
in the past (examples of debated detections are [Queloz et al., 2001, Figueira et al., 2010,
Dumusque et al., 2012]). Among the stellar activity, one can distinguish three main sources
of noise:

• the rotationally modulated starspots (dark areas) and plages (bright areas),

• the stellar oscillations (periodic light variations caused by resonant modes),

• the stochastic convection (granules).

Of course, this is a non-comprehensive list and a multitude of other phenomena participate to
the spectral lines alterations. For example, one can also note the motions induced by stellar

16



flares17 (see [Reiners, 2009], which study the case of an M dwarf star) but these processes are
not as important as the three above.
These three main noise sources can well be seen in RV data of the best known star: the Sun.
The left panel of Fig. 1.9 shows one year of RV solar data as a function of time, measured by
the GOLF spectrophotometer on board the SoHO spacecraft. This NASA mission is unique
as it has collected more than 20 years of (quasi) continuous observations. Contrary to ground
based spectrographs, GOLF extracts the RV by measuring intensity contrast in the sodium
Doublet lines [Garcia et al., 2005]. One can see RV magnitudes of several m.s−1 dominated by
the three main sources of the solar activity. The right panel illustrates the estimated power
spectral density (PSD) evaluated by the periodogram (i.e. the squared modulus of the Fourier
transform of the time series, see equation (2.24) in Chap. 2). At high frequency (ν > 10−2 Hz),
the power is approximately flat due to the instrumental noise: one can consider than in such
PSD region, the noise is White Gaussian (purple region). At lower frequencies ( 10−2 > ν >
10−3 Hz), we can observe the bump due to the oscillation modes, then the convective pattern
( 10−3 > ν > 10−5 Hz) and the magnetic activity (ν < 10−5 Hz). The periods larger that 70
days have been filtered out in this data set (i.e. ν < 1.65× 10−7 Hz, yellow shade region). This
solar velocity power, where no planetary signature is present (the periods of Mercure and Venus
are superior to 70 days), clearly shows a strong frequency dependence. The stellar activity
affects the whole frequency range and may disturb the planet detection. Details on the physical
properties of these stellar activity sources and their implications for extrasolar planet detection
are given below.

1.3.1 Magnetic activity

Physical description. The magnetic activity of stars produces starspots (dark areas) and
plages (bright areas) at the stellar surface. They appear as magnetic flux emergence, migrate in
latitude during a given stellar cycle, and may move across the disk as the star rotates. In such
region, the magnetic field is 1000 times larger than the global stellar field. Spots are regions with
low temperature in the photosphere (around 4500 K on the solar spots umbra and 5500 K in the
penumbra region [Solanki, 2003]). The number of these surface inhomogeneities changes with
the stellar cycle and can be very large during the cycle maxima (see the Sun pictures in Fig. 1.10
taken during two phases of the solar cycle). In practice, these magnetic spots appear, evolve in
size, and can migrate both in longitude and latitude at the stellar surface before they fade away.
They rotate with the star and change the shape of the observed line profiles, as illustrated in
Fig. 1.11 (extracted from [Haywood, 2015]). The top row of Fig. 1.11 illustrates different spot
locations on the stellar surface, while the bottom row shows the associated spectral line profile
distortion as a function of the spot location. If a spot is present on the observed stellar disk,
it changes the shape of the observed line profiles as it modifies the global balance between
upflows and downflows. It induces an inhibition of the convective blueshift effect (i.e. there is a
deficient emission at a given wavelength) [Dravins et al., 1981, Thomas and Weiss, 1992]. This
inhibition is due to the suppression of the convection by the strong magnetic fields inherent to
the spot. Consequently, regions with strong magnetic activity appear redshifted with respect
to the quiet photosphere [Meunier et al., 2010, Plavchan et al., 2015, Meunier et al., 2017b].

Influence on the detection of exoplanets. The active regions are problematic for ex-
oplanet detection as they persist for timescales of several stellar rotation periods (days to
months). The RV contribution of these features can thus mimic the periodic signatures of
interest [Queloz et al., 2001]. The amplitudes change with the stellar rotational velocity and
the spot filling factor (i.e. the fraction of the visible stellar disk covered by spots). For FGK

17The stellar flares are a brief variation of the stellar brightness due to a sudden energy release. They often
(but not always) go with coronal mass ejection.
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Figure 1.9 – Illustration of the solar colored noise. Left: Low frequency filtered solar RV times
series taken by the GOLF spectrophotometer on board the SoHO satellite (D. Salabert, private
communication). This time series of one year is (quasi) regularly sampled with a time sampling
step of ∆t = 20 seconds and has been taken during a solar minimum (1996). Right: Associated
PSD estimate (evaluated through the periodogram Eq.(2.24)). From high to low frequencies, one
can observe the different dominant components: the instrumental noise (purple shade region),
the oscillation modes, the convection and the magnetic activity. This set of data has been
filtered out at 70 days and frequencies ν < 1.65× 10−7 Hz should not been considered (yellow
shade region). This figure shows the large RV variations and the clear frequency dependence of
the solar activity.

18



Figure 1.10 – Image of the solar disk in visible light taken by the instrument MDI onboard the
SoHO spacecraft. At left, the image is taken during a solar maximum (on July 19, 2000) and
at right, on solar minimum (March 18, 2009). At maximum, one can observe a multitude of
stellar spots at the surface, in opposition to the quiet photosphere observed during the solar
minimum. Credit: NASA.

stars, the typical spot effects are not superior to 2 m.s−1, but it is enough to mimic or hide
the smallest planetary signatures [Meunier et al., 2010]. Studying the Sun, Meunier et al. have
determined empirical relationships between stellar parameters and the level of spot-induced RV
jitter. These unresolved features create a very complex radial velocity signature that requires
the use of activity diagnostics. For example, some common diagnostics used to infer the presence
of the spot and plage signatures in RV data are:

• Measurements at different wavelengths to investigate the temperature contrast in spots
and plages. For example, observations in the infrared instead of in optical, should reduce
the amplitude of the spots signatures as the contrast between the cool spots and the
hot photosphere decreases with increasing wavelengths, while the RV amplitude due to a
planet should stay constant [Ballerini et al., 2012]. This trick was for example illustrated
on solar observations used as a proxy [Marchwinski et al., 2015] but also to detect planets
(e.g. a 10 MJ planet at 3.56 days was detected by combining near-infrared and millimeter-
wavelength measurements [Setiawan et al., 2008]).

• Spectral indices measurements, like the Ca II and H&K lines, present an emission fea-
ture in the line’s core due to chromospheric magnetic activity [Baliunas et al., 1995,
Boisse et al., 2011, Meunier and Lagrange, 2013]. For example, this technique was used
to invalidate the planet detection of HD 99492 [Kane et al., 2016]. For M dwarfs, the
Balmer Hα can also be used, as it presents correlations between the stellar activity and
the equivalent width of the Hα line. As another example, the detection of GJ 581 was
debated as clear correlations between the Hα line variations and the optical observations
were found at the claimed planet period of 66 days [Robertson et al., 2014].

• Bisectors, measuring the spectral lines shapes, which are distorted by the presence of spots
(but also by the oscillations and convection pattern). The resulting shape between two
arbitrary chosen points in the resulting bisector can be analyzed to deduce the presence
of spots [Hatzes and Cochran, 2000, Desort et al., 2007, Boisse et al., 2011].
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Figure 1.11 – Illustration of the distortion of the spectral line shape due to the presence of a
starspot moving at the stellar surface. At the spot location, some light is removed which affects
the centre and shape of the observed spectral line with period related to the stellar rotational
velocity. This line asymmetry produces periodic variation in RV, which can mimic planetary
signatures. Figure extracted from [Haywood, 2015] (p.15).

• Sine fitting at harmonics of the stellar rotational period to avoid the persisting rotationally
modulated starspots and plages signatures [Dumusque et al., 2012].

• Simultaneous photometry and spectroscopy measurements to estimate the stellar pertur-
bations. This method was introduced by Aigrain et al., and is known under the name of
FF’ method [Aigrain et al., 2012].

• Model with dark rotationally modulated spots (e.g. SOAP numerical simulations
[Boisse et al., 2011]).

1.3.2 Oscillations

Physical description. Stars with an outer convective envelope are able to excite
acoustic modes, also called pressure-modes or p-modes, at the surface [Stein, 1967,
Stein and Nordlund, 2001]. Their properties are determined by the speed of sound profile in-
side the star interior, which makes them very interesting probes of the stellar interiors. They
were observed for the first time on the Sun in 1960, with a period of 5 minutes and ampli-
tudes of ≈ 20 cm.s−1 [Leighton, 1960]. A few years later, this gave birth to heliosismology
[Deubner and Gough, 1984]. Similar oscillations were detected in 2001 in (nearby) stars, other
than the Sun (see the detection of oscillation modes on αCen A by the spectrograph CORALIE
[Bouchy and Carrier, 2001]). Now, we detect them in thousands of stars thanks to CoROT and
Kepler. For Sun-like stars, these oscillations have typical periods of few minutes and they pro-
duce a characteristic comb like structure in the stellar noise PSD (see the bump around 3 mHz
in Fig. 1.9) [Bedding, 2014] . In radial velocity, the individual amplitudes of these modes are
small (around 20 cm.s−1).
The typical periods vary across the Hertzsprung-Russell diagram with the fundamental stellar
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parameters following the relation

T0 ∝
√
Teff

g

with T0 the oscillations period, Teff the effective temperature and g the surface gravity of
the star [Belkacem et al., 2011]. In general, the RV amplitudes and periods of the stellar p-
modes increase with the temperature for dwarf stars [Dumusque et al., 2011]. For FGK stars,
the modes lead to RV variations of magnitude ranging from some centimetres to meters per
second depending on the stellar parameters [Lovis et al., 2006]. The period of the p-modes
can reach some hours in Red Giants and the generated RV amplitudes can be 10 to 100 times
larger than for Sun-like stars [Christensen-Dalsgaard, 2014]. One can report to [Bedding, 2011,
Brown and Gilliland, 1994, Garćıa, 2015] for detailed reviews on the physical description of the
stellar oscillation modes.

Influence on the detection of exoplanets. For main sequence stars, the oscillations do not
represent a significant source of noise for extrasolar planet detection because their signatures
are concentrated around periods of some minutes. In practice, attempts to “cancel” this noise
consist in averaging the signal during exposure times longer than the oscillation periods. Typ-
ically, an exposure time of 10 − 35 minutes is used for Sun-like stars [Dumusque et al., 2011].
For giant stars however, they can become a more important source of noise for planet detection.

1.3.3 Convection

Physical description. The solar convection was observed for the first time on the Sun by
Hershel in 1801 [Herschel, 1801]. Herschel observed at the solar surface hot fluid cells of gas
moving due to buoyancy that were called later on granules [Dawes, 1864]. These granules are
the manifestation of surface temperature inhomogeneities, the granulation. This surface gran-
ulation pattern is associated to heat transport by the convection on horizontal scales of several
thousands kilometres [Nordlund et al., 2009]. The hot upflows carry the excess of entropy from
below, reach the surface, and then cool by radiation and sink down into the intergranular
lanes [Stein and Nordlund, 1998] (see Fig. 1.12). These motions influence the lines in many
aspects: shifts, width, and depth. It creates also an asymmetry in the line since the blue wing
is sensitive to upflows (granules) and the red wing to downflows (intergranular lanes) which are
very asymmetric (e.g. [Asplund et al., 2000, Asplund et al., 2004, Asplund et al., 2009]). The
granules cover the majority of the photosphere area and cause a global line shift towards blue,
called convective blueshift for the lines that are formed at the photosphere. This asymmetry is
correlated to the granules velocities and temperature (e.g. [Dravins et al., 1981, Dravins, 1987,
Gray, 2005]) and is generally measured using line bisectors (e.g. [Dravins and Lind, 1984]). A
granule alone has vertical motions of several hundreds m.s−1. However, when looking to the
entire stellar disk, which is composed of million of granules, the global RV variations of the
granules and intergranular regions tend to compensate each other and lead to fluctuating veloc-
ity amplitudes of some meters (the velocity decreases approximately with the square root of the
number of granules [Kjeldsen and Bedding, 2011]). This is, for example, observed by HARPS-N
[Dumusque et al., 2015] or GOLF [Garcia et al., 2005] (see left panel of Fig. 1.9).
In the Sun, convective noise was first studied by Harvey, who identified different components

as a function of their scales and periods, namely (from high to low frequencies) [Harvey, 1985]:

• the granulation: the smaller pattern (periods of some min or hours),

• the mesogranulation: the intermediate scale (periods of some hours to days),

• the supergranulation: the largest scale (periods of hours-days).
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Figure 1.12 – Comparison between the emergent intensity at the solar surface coming from
observations (right, Solar Swedish Telescope, Hizberger J., private communication) and simu-
lations (left) [Bigot and Thévenin, 2008]. Dimension: 6000 km × 6000 km.

Harvey derived empirical laws to fit the stellar power spectrum part dominated by such process
(cf. Fig. 1.9). The description of the different convective patterns are based on (Lorentzian)
functions fits, which are parametrized by the different amplitudes and timescales of the involved
phenomena. The convection parts in the Harvey’s functions are commonly described as a sum
of Lorentzian:

FH(ν,θn) =
n∑
i=1

4σ2
i τi

1 + (2πντi)βi
, (1.6)

with ν the frequency, n ∈ [1, 3] the number of considered components, and [σ2, τ ,β]> the
convection parameters to fit (with σ2 the rms velocities, τ the characteristic timescale, and β
the decay rate of the considered component).

At the smallest scale, the granulation has an averaged lifetime of about 10 − 15 min for
the Sun and each granule has a characteristic size around 1000 kms [Title et al., 1989,
Nordlund et al., 2009]. The existence of a mesogranulation convection scale, initially re-
ported by November et al., is a source of debate [November et al., 1981, Chou et al., 1991,
Rieutord et al., 2000], and in practice the “Harvey function fit” appears to work well without
this intermediate component (e.g. [Lefebvre et al., 2008] succeeded in fitting the GOLF solar
PSD with only two components). At the largest scale, the supergranulation has size around
30 000 km and a typical life time of ≈ 17 hours [Del Moro, 2004, Williams and Pesnell, 2011,
Williams and Pesnell, 2014]. The properties of the solar granulation and supergranulation are
listed in Table. 1.2 below. Fig. 1.13 shows three solar Dopplergrams18 (i.e. velocity map) taken
by Michelson Doppler Imager (MDI) on board SoHO during a solar minimum (March, 1996).
The light and dark regions represent respectively the up and down motions of the gas. In the
top panel, one can see the solar rotation with velocity around 2 km.s−1, which appears as a shift
from dark to light (with the dark color indicated a motion toward the camera). In the bottom
panel, the rotation of the Sun has been subtracted by a polynomial fit and an average of 30
images taken with a sampling rate of 45 seconds has been made to illustrate the solar super-
granulation. One can observe velocities of the convective pattern with maximum values around
400 m.s−1. The observed velocity is lower in the disk centre as the velocity is perpendicular to
the light-of-sight of MDI. The last panel shows the granulation (1 image obtained by removing
the supergranulation and rotation components). One can observe the small convective pattern
at the surface with velocities around 600 m.s−1 (this value is slightly underestimated due to the
spatial resolution).

18Source: https://sohowww.nascom.nasa.gov/gallery/Helioseismology/
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Granulation Supergranulation

Average size ≈ 1 000 km ≈ 30 000 km
Average speed ≈ 600 m/s ≈ 100− 150 m/s

Average lifetime 10− 15 min ≈ 17 hours

Table 1.2 – Properties of the solar granulation and supergranulation.

The convection is present at the surface of all late type stars (FGK stars, see
[Magic et al., 2013, Trampedach et al., 2013]). The characteristics of convection timescales and
velocity amplitudes change with the fundamental stellar parameters (Teff , log g, [Fe/H]). The
granulation velocities increase with the temperature for dwarf stars, i.e. they decrease from G
subgiants to K dwarf stars [Dravins, 1990, Dumusque et al., 2011, Meunier et al., 2017a]. The
granulation at the surface can not be observed by resolved observations as for the Sun and
astronomers have to rely on the spectral lines in terms of width, shapes and strength variations
to characterize it.

Based initially on the Sun study, reliable hydrodynamical simulations have been developed,
which brought a lot of informations on the granulation activity (see Sec. 1.4). If the signal-
to-noise ratio of the spectral line is sufficiently large, the line asymmetries due to granula-
tion are reproducible by using 3D magnetohydrodynamic simulations of the solar convection
(see [Dravins, 1999, Asplund et al., 2000, Dravins, 2008] and [Cegla et al., 2013] for the con-
text of extrasolar planet detection). For more details about convection, one can refer to
[Nordlund et al., 2009, Rieutord and Rincon, 2010, Williams and Pesnell, 2011].

Influence on the detection of exoplanets. The granulation component signatures is a
stochastic effect (through spectral line asymmetries), which is correlated over periods of some
minutes to several days. In RV, the convection produces variations from some centimeters to
meters by second [Dumusque et al., 2011]. Consequently, the convection reaches RV variations
of the same order of magnitude as the telluric planets [Meunier et al., 2015]. It is clear that
accounting for this stochastic noise is a fundamental issue to be able to reliably claim a planet
detection at the level of a few tenth of cm.s−1 precision.

To date, few strategies exist to counteract the effects of this intrinsic noise in the context of
exoplanet detection. Dumusque et al. propose an observational strategy to average out a part
of the granulation contribution [Dumusque et al., 2011]. Through a decrease of the number of
measurements, the authors showed that separating the number of observations by some hours
and using a specific exposure time allows to average this noise. This method was successful in
some cases (e.g. [Pepe et al., 2011]) and is the common methodology applied in practice.

However, reported to simulation studies, Meunier et al. shows that, even after several
hours of smoothing, the convective jitter amplitudes and correlations remain significant
and cannot be averaged out to neglect its contribution when looking for exo-Earth planets
signals [Meunier et al., 2015]. The authors studied the effect of both the granulation and
supergranulation components by generating RV simulations of a collection of cells with different
granule sizes and lifetimes. The granules were generated using an empirical size distribution
for which they assigned a lifetime, a position on the disk, and a RV and intensity contributions.
They found that both granulation and supergranulation are not completely averaged out by
using the observation strategies proposed by Dumusque et al., and that further techniques
have to be derived to deal with this noise source when looking for telluric planet signatures.
Meunier et al. concludes that the convective noise sources has a significant impact on the
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Figure 1.13 – Dopplergrams of the Sun taken by the MDI instrument on board SoHo. The
top panel illustrates the row Dopplergram where the rotation appears as a shift from dark to
light. The bottom panels show the supergranulation component (rotation removed, left) and
the granulation (rotation and supergranulation removed, right). Credit: NASA.
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detection limits even for Earth-mass planet signatures in the HZ of Sun like stars. This noise
source has to be taken into account as well as the noise coming from the magnetically driven
phenomena (as starspots and plages), which is the only noise source considered in the majority
of the publications related to exoplanet detection.

One finally notes an interesting attempt to deal with the granulation component, based on the
fact that recent 3D hydrodynamic simulations can reliably reproduce the spectral line asym-
metries (cf. Sec. 1.4): Cegla et al. aims to localize specific lines significantly affected by the
convection to exclude them in the RV extraction process [Cegla et al., 2013, Cegla et al., 2015].

1.3.4 Summary

To summarize, when looking for long period planets, the most annoying source of stellar noise
limiting the planets detection are due to the magnetic activity (cool spots, hot faculae, and
plage) as they produce RV variations at long periods (from days to years). Sometimes their
effect is manageable by looking to stellar chromospheric indicators, sometimes not.
Oscillation modes induce a noise source, which is manageable by averaging the observations
over several minutes for Sun-like stars. When looking for short period planets, the most
significant noise source comes from correlations due to the stellar convection. This convective
“noise” could produce false planetary detections and has to be taken into account. Moreover,
numerical studies showed that the convective noise contribution could also be a limiting factor
to detect exo-Earth.

Recently, a challenge under the form of a “blind test” was proposed to the community of planet
hunters (cf. [Dumusque, 2016, Dumusque et al., 2017]). This test aimed to compare different
strategies to detect planets in the instrumental and stellar colored noises. By injecting different
synthetic planetary signals in simulated RV data at the 1 m.s−1 level (including instrumental
and stellar noises), Dumusque challenged the community to find these signatures. The results
show that the most efficient methods to find planets was to take into account the different
activity indicators (e.g. Calcium and H&K lines) to identify the stellar activity and use red
noise19 models to take into account the stellar noise correlations. However, these methods
were not able to find the smallest planetary signatures and found a significant number of false
positive. This proves that there is still the need of further investigations to deal with the stellar
correlated noise. Understanding the stellar activity is a key point and one of the main challenge
we have to face to be able to reliably claim the smallest planet detections.

1.4 Simulations of the convective stellar activity

In the 80’s, the first realistic models of the stellar convection activity were developed in 3
dimensions [Nordlund, 1982]. Such models are ab initio in the sense that they only need the
information on the fundamental stellar parameters to solve equations of physics. This kind
of hydrodynamic 3D code resolves equations of compressible radiative hydrodynamic in 3D,
including radiative transfert and opacities (depending on the wavelength) and the Equation-of-
states taking into account molecular ionisation, formation and dissociation. These 3D magneto-
hydrodynamic simulations of stellar surface use cartesian box at the surface whose sizes (surface
and depth) depending on the type of stars. They allow to simulate surface effects as the
convection. A blueprint of a such local 3D box of simulation is illustrated in the left panel of
Fig. 1.14.

Several codes exist, differing principally by the numerical scheme, e.g. the STAGGER
code [Nordlund, 1982, Stein and Nordlund, 1998, Ludwig et al., 1999, Asplund et al., 1999,

19Power law noise
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Figure 1.14 – Left: blueprint of a local box simulation (courtesy of L. Bigot). Right: Snapshot of
one local box with the velocity field represented. One can observe, as expected, velocities in the
radial direction in the centre of the granules and in the opposite direction in the intergranular
zones.

Bigot et al., 2011], MuRAM [Vögler et al., 2005, Cegla et al., 2015] or CO5BOLD 3D
[Freytag et al., 2012]. These were firstly used for stellar diagnostics. They showed a lot of
corrections in relation to the hydrostatic 1D models. The main advantage is due to their hydro-
dynamical nature. They do not need adjustable parameters as micro or macro turbulence. In
1D, these fitting parameters follow an empirical law, which lead to model dependent results and
strong incertitudes about chemical abundances. Indeed, the convection modifies the line shapes
and consequently the chemical abundance (e.g. [Asplund et al., 2000, Asplund et al., 2004,
Asplund et al., 2009]). They can produce synthetic spectral lines to generate the granules in-
tensities and velocities (see the right panel in Fig. 1.14). Contrary to hydrostatic models in 1D,
the 3D simulations can reproduce the surface inhomogeneities and so characterise the stellar
convective noise.
For example, Fig. 1.12 shows a comparison between the emergent intensity at the so-
lar surface coming from solar observations (right) and from such 3D simulations (left)
[Bigot and Thévenin, 2008]. The realism of such simulation is evident. A result in velocity
is shown in Fig. 1.15, which illustrates periodograms of simulated RV solar time series of 66
simulated days. These series have been divided into three different epochs to build 3 different
periodograms. At low periods, one can observe the oscillations, which are naturally generated
from the simulation. At the longer periods (low frequencies), one can observe the stochastic
behaviour of the granulation whose manifestation in the periodogram is the apparition of ran-
dom peaks at different frequencies. These variations can be wrongly interpreted as planetary
signatures (see the peaks amplitudes variations at the frequency indicated by the dotted red
lines). This figure clearly illustrates the need of the statistical characterization and control of
this noise, as it can mimic or hide periodic signatures.
These simulations can be done for all late type stars (cf. [Dravins, 1990, Ludwig et al., 2002,
Magic et al., 2013, Trampedach et al., 2013]). For example, Fig. 1.16 illustrates the emergent
luminosity at the disk centre for different spectral type stars resulting from the STAGGER
code. The granules sizes depend on the star through its temperature and gravity. The velocity
of the convective cells increases with the temperature as the star becomes more opaque and the
convection has to increase to evacuate the entropy excess to the surface. According to these
simulations, Svensson & Ludwig show that the spectral power density (P ) is strongly dependent
on the stellar surface gravity (g) through [Svensson and Ludwig, 2005]

log(P ) ∝ −1

2
log(g).
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Figure 1.15 – Power spectral density estimate of simulated solar RV at three different epochs.
The dot red lines indicate the peaks amplitudes at a frequency corresponding to 2 days. One can
observe the stochastic behavior due to the convection, which can reach amplitudes of telluric
planet RV signatures. Credits: Lionel Bigot.

1.5 Conclusions on the astrophysical context of the thesis

In the last two decades, the new field of exoplanet hunting has widely grown, with now
more than several thousands of detections. While the majority of these detections are giants,
Super-Earth or close-orbit planets, the quest of exo-Earth planets begins to be achievable (e.g.
Gliese 667c [Anglada-Escudé et al., 2013]).

Among all the existing detection techniques, we focus in this thesis on the radial velocities.
This technique is currently one of the most successful (with transits) and allows to determine
the planet mass (up to a sin(i) factor). It is particularly efficient for cool low mass stars, short
period and massive planets. In this method, an exo-Earth signature has an amplitude 1000
times lower than a Jupiter planet. These planetary signatures can be modelled thanks to the
Kepler’s equations and depend on 6 parameters: the planet mass, period, eccentricity, argument
and time of passage at periastron and the barycentre velocity. By this technique, the detection
of Earth analogue needs to face two major challenges:

1. The first is technological. In practice, the observed data result from a complicated velocity
extraction process based on the observed stellar spectrum. Several sources of instrumental
noise can perturb the measurements (e.g. temperature or pressure variations, calibration,
guiding errors). Until the commissioning of the HARPS instrument, in 2003, the precision
limit were due to the instrumental noise. This instrument is the most precise in activity
today and allows to detect Super-Earth planets in close orbits. In the next years, the
new generation of spectrographs such ESPRESSO will allow to decrease the detection
threshold to some cm.s−1 making, in principle, small planets signatures detectable.

2. The second is astrophysical because at this level of instrumental precision, the surface
activity of the host star creates a frequency dependent noise, which can hide or mimic
the planet signatures. This stellar jitter affects the radial velocities in different ways:
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Figure 1.16 – Illustration of the granulation at the stellar surfaces. The different panels represent
snapshots of different type of stars (up to the front): αCentauri B, the Sun, Procyon and HD
84937. In each case, the resolution grid is 128 × 128 × 96 km corresponding to horizontal
dimensions of 20000 × 20000 kilometers. The stellar parameters are shown in each panel.
Courtesy: Lionel Bigot.

it has a stochastic part due to stellar surface convection and cyclic parts due to the
magnetic activity (e.g. starspots) and oscillations modes. These noises have to be precisely
understood to be able to claim real planet detections at the cm.s−1 levels.

This second point is the problem that motivated this thesis. While the magnetic part (e.g.
spots, plages) can be potentially removed thanks to chromospheric indicators, the stochastic
parts due to the convection process are not well constrained in practice. Stellar convection
is a noise source always present at the stellar surfaces of all the late-type stars. This is an
intrinsic physical limit to deal with to be able to detect the smallest planetary signatures at
the sub-m.s−1 level. This thesis focuses on this colored stellar noise contribution.

To deal with this noise, the basis idea of my thesis is to couple a statistical approach with the
knowledge of reliable 3D hydrodynamical (HD) simulations of such phenomenon in order to
control the small planet detections. Simulations of the convective noise are now reliable and
they can be useful tools to deal with the noise contribution due to the convection. The working
hypothesis made in this work assumes that long series of such simulations can be done and
used to design new and efficient statistical detection approaches. A first underlying advantage
of using such HD simulations in the detection process is that the noise is modelled according to
our knowledge of the physical processes (encapsulated in the HD simulations) and is not model
dependent (as when using empirical functions).
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In this chapter, we present one basic methodology and tools for the problem of detecting
periodic signatures in noisy data.

In the first part (Sec. 2.1), we explain the concept of hypothesis testing by introducing the
basics steps to build a hypothesis test, how to measure the detection significance, and how
to evaluate the test’s performance. The considered hypothesis testing methodology will be
focused on the frequentist approach but we will also mention the bayesian approach (yet
without details, as it is not studied in this manuscript).

In the second part (Sec. 2.2), we introduce the most common tool to detect periodic signals,
based on Fourier analysis: the periodogram. We will discuss the periodogram properties
depending on the presence (or absence) of signal and depending on the noise statistics. We will
also mention some alternative forms of the classical periodogram, introduced to counteract its
drawbacks.

In the third part (Sec. 2.3), we study the properties of radial velocity signatures introduced
in (1.3) in the Fourier domain. The results presented in this section have been published in
[Sulis et al., 2016a].

In the fourth and fifth parts (Sec. 2.4-2.5), we present some statistical tests that can be applied
to the periodogram depending on the knowledge (or not) of the searched signal parameters
and the noise statistics.

We will conclude with the framework in line with my studies (Sec. 2.7), namely the detection
of periodic Keplerian signatures in correlated noise.

Along these sections, we provide various illustrations of theoretical notions through examples.
Those can be skipped for a reading focused on the main lines of the thesis.

2.1 Hypothesis testing

2.1.1 Design of hypotheses

In the middle of the 50’s, Lehmann introduced the modern bases of hypothesis testing (see
the recent review [Lehmann and Romano, 2005]). The hypothesis testing method consists in
comparing between two (or more) possibilities for the data model. We speak about a binary
hypothesis testing problem in the simple case of two hypotheses and about a multiple hypothesis
test when there are more than two. In a “noise vs signal” framework, the goal of testing
hypotheses is to use the available observations and the prior knowledge, if available, as efficiently
as possible to make a decision between the presence or absence of a target signal within the
data. Following [Kay, 1998], the construction of such tests can be divided into four steps:

1. State the hypotheses of the considered problem,

2. Identify the appropriate test statistic,

3. Specify its associated significance level by selecting a test threshold,

4. Make a decision.

In this manuscript, we mainly consider the case of a binary hypotheses test, characterized by
two different statements:
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• H0: the null hypothesis, there is only noise within the data

• H1: the alternative hypothesis, a signal is present within the noisy data.

As will be mentioned in Sec. 2.2 and 2.3, we will sometimes consider a multiple hypotheses
framework, as in the Fourier domain multiple frequencies can be affected by exoplanetary sig-
nal(s).

2.1.2 Statistical tests and decision rule

For clarity, let us denote by X a random variable (r.v.) and by x its realizations. Vectors are
denoted by X = [X1, . . . , XN ]> and x = [x1, . . . , xN ]>.

Concept of statistical tests

To find evidence for or against H0 and be able to make a decision, one has to select an appro-
priate decision criterion through a detection test. A test statistic is a mathematical function of
the data. Considering the data vector x, the test statistic can be generally written as

T (x) := T (x1, . . . , xN ), (2.1)

with T (·) a (deterministic) function.
In a hypothesis test, this test statistic is a decision variable. If X is a random process, T (X) is
a random variable as well. For some data x, T (x) has to be compared to a decision criterion,
γ ∈ R, to make the test

T (x)
H1

≷
H0

γ. (2.2)

The null hypothesis is then rejected if T (x) > γ and accepted if T (x) ≤ γ. Equation (2.2) is
a decision rule. In the literature, this test is classified as a one-tailed right-sided test because
T (x) has to be superior to γ to decide H1. When the test is T (x)≷H0

H1
γ, one speaks about a

one-tailed left-sided test.
The threshold γ controls the significance level of the test, i.e. the probability of making wrong
decisions or rejecting H0 when it is true. For example, a significance level of 0.01 indicates a
1% risk of error, i.e. of wrongly concluding the presence of a signal when there is only noise
within the data.
To correctly determine the threshold’s value, the statistical test should be characterized by a
known probability distribution function (pdf) of T (x) under H0, noted ϕT (t|H0). The pdf of
T (x) under H0 and H1 should be as different as possible for the test to be powerful. If the pdf
is partially unknown under H0, it is still possible to control the test’s significance level under
some conditions (as we will see in Sec. 2.4, Sec. 2.7, and Chap. 3).

To evaluate the performance of a particular decision rule, different statistical indicators exist.
The main ones are the detection/error probabilities, the P -values and the Receiver operation
characteristics (ROC) curves discussed below. The reader can report to Kay’s book for more
details about these indicators [Kay, 1998].

Error probabilities

The choice between the model hypotheses always leads to a probability of error and a probability
of making the right decision. In the case of a binary hypotheses test, four probabilities can be
defined for a test of the form (2.2), namely:
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• The probability of detection (PDET )

PDET := Pr(“accept H1”|“H1 is true”)

= Pr(T (x) > γ|H1),

=

∫ +∞

γ
ϕT (t|H1) dt,

(2.3)

• The probability of false alarm (PFA), or Type I errors

PFA := Pr(“accept H1”|“H0 is true”)

= Pr(T (x) > γ|H0),

=

∫ +∞

γ
ϕT (t|H0) dt,

(2.4)

• The probability of missed detection (PM ), or Type II errors

PM := Pr(“accept H0”|“H1 is true”)

= Pr(T (x) < γ|H1)

=

∫ γ

−∞
ϕT (t|H1) dt

= 1− PDET .

(2.5)

The fourth case where H0 is retained whereas it is true, corresponds to Pr(T (x) < γ|H0) =
1− PFA. These probabilities are listed in Table. 2.1 below.

Claim H0 Reject H0

H0 true Correct decision Wrong decision
(1− PFA) (PFA)

H1 true Wrong decision Correct decision
(PM ) (PDET = 1− PM )

Table 2.1 – Probabilities involved when evaluating a decision rule.

Before illustrating the distribution of a particular test, it is worth mentioning two useful
distributions that will often appear in this manuscript: the central and non-central F distribu-
tions. Their properties are also listed in Appendix. A with the Gaussian and chi-squared (χ2)
distributions.

Definition 3. F-distribution

A F-distribution (defined also as Fisher-Snedecor law) corresponds to the scaled ratio of two
independent chi-squared distributed random variables V1 ∼ χ2

d1
and V2 ∼ χ2

d2
with d1 and d2

the degrees of freedom [Abramowitz et al., 1972]

V1/d1

V2/d2
∼ F (d1, d2).

The probability density function of a r.v. X ∼ F (d1, d2) is given, for positive values of d1 and
d2, by:

ϕF (x, d1, d2) =


√

(d1x)d1 (d2)d2

(d1x+d2)d1+d2

xB(d1
2 ,

d2
2 )

, for x ≥ 0,

0, for x < 0.

(2.6)
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with B the beta function defined by

B(a, b) :=

∫ 1

0
at−1ta−1(1− t)b−1dt. (2.7)

The corresponding cumulative distribution function (cdf) is:

ΦF (x, d1, d2) = I d1x
d1x+d2

(d1

2
,
d2

2

)
, (2.8)

with Ix(a, b) the regularized incomplete beta function defined, for (a, b) ∈ R2, as the ratio of the
incomplete beta function B(x; a, b) and the complete beta function B(a, b) :

Ix(a, b) :=
B(x; a, b)

B(a, b)
=

1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt. (2.9)

The mode, mean, and variance of the F distribution are listed in Table. 2.2.

Mode Mean Variance
m[x] E[x] Var[x]

Exists for d1 > 2 d1 > 0 d1 > 0
d2 > 0 d2 > 2 d2 > 4

Expression d1−2
d1

d2
d2+2

d2
d2−2

2d2
1(d2+d1−2)

d2(d1−2)2(d1−4)

Table 2.2 – Mode, mean, and variance of the central F law.

Definition 4. Non central F-distribution

A non central F-distribution corresponds to the ratio of two independent random variables
V1 ∼ χ2

λ,d1
and V2 ∼ χ2

d2
with χ2

λ,d1
the non central χ2 distribution characterized by the non

centrality parameter λ [Abramowitz et al., 1972]

V1/d1

V2/d2
∼ Fλ(d1, d2).

The pdf of a r.v. X ∼ Fλ(d1, d2) is given for positive values of d1,d2, and λ, by:

ϕFλ(x, d1, d2) =


∞∑
k=0

e
λ
2 (λ/2)k

B(d2
2 ,

d1
2 + k)k!

(d1

d2

) d1
2

+k
(

d2

d2 + d1x

) d1+d2
2

+k

x
d1
2
−1+k, for x ≥ 0,

0, for x < 0.
(2.10)

The corresponding cdf is:

ΦFλ(x, d1, d2) =
∞∑
k=0

(
(1

2λ)k

k!
e−

λ
2

)
I d1x
d1x+d2

(
d1

2
+ k,

d2

2
). (2.11)

When λ = 0, obviously the non central F becomes a central F distribution. The mode, mean,
and variance of this distribution are listed in Table. 2.3.
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Mode Mean Variance
m[x] E[x] Var[x]

d1 > 0 d1 > 0 d1 > 0
Exists for d2 > 0 d2 > 2 d2 > 4

λ > 0 λ > 0 λ > 0

Expression (*) d2(d1+λ)
d1(d2−2) 2 (d1+λ)2+(d1+2λ)(d2−2)

(d2−2)2(d2−4)

Table 2.3 – Mode, mean, and variance of the non-central F law. (*) The mode has to be
evaluated numerically.

Example 1. Central and non central F distributions

Consider a r.v. X ∼ F (d1, d2) under the null and X ∼ Fλ(d1, d2) under the alternative.
The evolution of the central and non-central F distributions given in (2.6) and (2.10) w.r.t.
their parameters are shown in Fig. 2.1 (resp. left and right panels).
One can see the pdf’s shape changing with the degrees of freedom (d1, d2) and the non
centrality parameter (λ) (see legend).
Consider now, for example, the case of the central F density F (50, 50) (yellow curve, left),
using the F mean and variance defined in Table. 2.2. One can compare this pdf with
a classical Gaussian distribution (black dotted line, left panel) of same mean (µ = 1.04)
and variance (σ2 = 0.09, cf. Table. 2.2). The same comparison is shown in the right panel
comparing the non central F density F70(50, 50) with a Gaussian distribution of same mean
(µ = 2.50) and variance (σ2 = 0.44, cf. Table. 2.3). In both cases, one can observe large
differences between the F distributions and the Gaussians, both in amplitudes (highlighted
by the dark regions) and especially wing shapes (highlighted by the yellow regions). If
these distributions correspond to ϕT in (2.5), (2.4) and (2.3), they will lead to very different
values for the false alarm/detection probabilities at a given threshold. This illustrates the
importance of knowing the true distribution of the considered test statistics for accurate
false alarm considerations.

Example 2. Distribution of test statistics T

Consider now a test statistic T with ϕT (x|H0) = ϕF (x, 50, 50) under the null, and following
a non-central F distribution under the alternative such as ϕT (x|H1) = ϕF70(x, 50, 50).
By the analytical expressions of the central (2.6) and non central F-pdf (2.10), one can
compute the right and wrong decision probabilities in (2.3), (2.4) and (2.5) for a binary
test as in (2.2).
Fig. 2.2 illustrates the decision region plots by representing the density under the null
(blue), under the alternative (green) and the probabilities PM in (2.5) (pink region) and
PFA in (2.4) (yellow region) for a given threshold γ. In essence, γ determines how extreme
the observed test statistic must be to reject H0. One can understand the critical role of the
test’s threshold in defining these probability regions. This threshold is always set in a way
of making a compromise between the detection and false alarm probabilities.
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Figure 2.1 – Influence of the parameters of a central (left) and non central distribution (right).
In each panel, a Gaussian distribution (black dot curve) is shown with same mean and variance
as F (50, 50) and Fλ(50, 50).

Figure 2.2 – Example of distribution of T under both hypotheses and of the decision regions
for a one-sided right tailed test. For a given threshold γ, the probability of missed detection,
defined in (2.5), is highlighted in pink while the false alarm probability, defined in (2.4), is
highlighted in yellow.
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P -value

An important statistical quantity, computed after the data has been collected, is the P -value.

Definition 5. P -value

The P -value1 represents the probability that a random variable X is at least as extreme as the
observed value x under H0:

vX(x) := Pr(X ≥ x|H0)

= 1− Pr(X < x|H0)

= 1− ΦX(x),

(2.12)

with ΦX the cdf of X under H0. Consequently, the value vX is the realization of the random
variable VX = 1− ΦX(X) for X = x.

A P -value is a probability, and then takes values in interval [0, 1]. A small P -value may consti-
tute a strong data evidence against H0 , but it does not inform on the validity of the alternative.
Under H0, by the Probability Integral Transform theorem, one can show that the P -values are
uniformly distributed : VX ∼ U(0, 1).

Proof of the uniform distribution of VX under H0. Consider a given threshold z ∈ [0, 1]. The
cdf of VX , say ΦV , writes

ΦV (z) := Pr(VX < z) = Pr(1− ΦX(X) < z) = Pr(ΦX(X) > 1− z).

As the cdf is a monotonic, increasing and continuous function, we can write:

ΦV (z) = Pr(X > Φ−1
X (1− z)) = 1− ΦX(Φ−1

X (1− z)) = z. (2.13)

Hence, ∀z ∈ [0, 1], we have ΦV (z) = z, and VX ∼ U(0, 1).

Example 3. Graphical illustration of a P -value

Consider again the case of a test statistic T ∼ F (50, 50) under the null.
Fig. 2.3 shows the pdf of T given in (2.6) (blue) with a PFA area (2.4) (yellow region)
evaluated for threshold γ = 1.2. The P -value (2.12) evaluated for a given observed value of
the test statistic, say tobs = 1.34, is shown by the purple dashed region. Here γ corresponds
to a PFA in (2.4) of

PFA = 1− ΦF (γ, 50, 50) = 0.26,

and the P -value in (2.12) is

vF (tobs) = 1− ΦF (tobs, 50, 50) = 0.15.

The black dot curve represents a Gaussian density with same variance and mean as the
F-distributed r.v. (cf. Example.1). Comparing the PFA at γ and P -values at tobs for the
two distributions (blue and black points) in Table. 2.4, one can observe drastic differences
and, once again, the importance of knowing the test statistic distribution to control the
significance of a detection. Indeed, if we wrongly assume T to be Gaussian, the P -value
6.2 × 10−4 will constitute a quite strong evidence against H0. However, if T ∼ F (50, 50)
under H0, the value of tobs is quite likely (i.e. the true P -value is not small).

1In this manuscript, the P -values, usually denoted by the letter P , will be denoted by V because P is used
for the periodogram (cf. Sec. 2.2).
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Figure 2.3 – Illustration of the P -value (purple dashed area) for a test statistic T F-distributed
(blue). The PFA region (yellow area) and a Gaussian density (black), of same mean, and
variance, are shown for comparison.

F-distribution Gaussian distribution

PFA(γ) 2.6× 10−1 4.3× 10−2

vX(tobs) 1.5× 10−1 6.2× 10−4

Table 2.4 – Numerical difference in terms of PFA (2.4) and P -value (2.12) measured on the F
and Gaussian distributions at, respectively, γ = 1.2 and tobs = 1.34.
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ROC curve

A Receiver operation characteristics (ROC) curve represents the test power (PDET ) as function
of its size (PFA). In such plots, the two probabilities are determined at a given threshold γ.
ROC curves allow to compare the performance of different tests.

Example 4. Evaluation of a ROC curve

Consider again, for test (2.2), the case of a test statistic T ∼ F (50, 50) under the null and
T ∼ Fλ(50, 50) under the alternative with λ = 20 here.
Using the respective cdf of these distributions (resp. ΦF given in (2.6) and ΦFλ given in
(2.11)), the PFA and PDET writes:

PFA(γ, T ) = 1− ΦF (γ, 50, 50),

PDET (γ, T ) = 1− ΦFλ(γ, 50, 50).

By extracting γ in the first equation and replacing in the second one, one obtains

PDET (PFA, T ) = 1− ΦFλ

(
Φ−1
F (1− PFA, d1, d2), 50, 50

)
,

with Φ−1
F the inverse F cdf.

This allows to compute ROC curves shown in Fig. 2.4 (red solid line). The diagonal
illustrates the random line, i.e. the detection behavior of a test that will not take any
advantages of the observed data and will give the same FA and detection probabilities
what ever the considered threshold. A ROC curve observed on such diagonal represents
the worst case scenario (PFA = PDET ). As the threshold γ increases, both probabilities
decreases, with two limiting cases: when γ → ∞, PFA = PDET = 0 and when γ →
0, PFA = PDET = 1 (for positive test statistics). The dotted red line represents a ROC
curve of a more powerful test and the dashed red line of a less powerful one. The Area
Under the Curve (AUC, yellow region) can also be used to measure the global test power
over all PFA. This area is by construction in the interval ]0.5, 1], with AUC = 0.5 for
the worst case (as the ROC is on the diagonal) and AUC = 1 for the ideal case (with
PDET = 1, ∀PFA).

2.1.3 Frequentist approaches: tests based on likelihood functions

One of the main stream for building tests is based on the likelihood functions for comparing
and scoring both hypotheses.

The likelihood

In statistics, the likelihood is defined as a conditional probability function of the observations,
conditioned to the parameters of a given model. The likelihood of N random variables X =
[X1, . . . , XN ]> for parameter θ is the joint density of these N r.v.:

L(θ,x) := ϕX(x,θ) = ϕX1,...,XN (x,θ). (2.14)

If the Xi are independent, the likelihood function is given by the product of these densities:

L(θ,x) =
N∏
i=1

ϕXi(xi,θ). (2.15)
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Figure 2.4 – Illustration of a test performance through the ROC curve and AUC.

The higher the likelihood, the better the model’s parameters fit with the observed data. Maxi-
mizing (2.15) with respect to θ leads to the maximum likelihood estimate (MLE):

θ̂ML := arg max
θ
L(θ,x). (2.16)

The “hat” over θ indicates that this value is an estimate. This general notation will be used
for all estimates in this document.
If the parameter vector θ is known under both hypotheses (θ0 and θ1) the Likelihood Ratio
(LR) test consists in comparing to a threshold the ratio of the two likelihoods evaluated under
both hypotheses:

TLR(x) =
ϕX(x, θ1)

ϕX(x, θ0)

H1

≷
H0

γ. (2.17)

According to the Neyman-Pearson lemma, in the case of a binary hypothesis where θ is known
under both hypotheses, the LR test is the most powerful detection test (i.e. no test has larger
PDET at a given PFA level) [Kay, 1998].

Lemma 1 (Neyman-Pearson lemma). In order to maximize the PDET for a fixed PFA = α, we
reject H0 if TLR(x) > γ where

PFA = Pr(TLR(x) > γ|H0) = α. (2.18)

If θ is unknown under one (or both) hypotheses, the Generalized Likelihood Ratio (GLR) test
consists in computing the same ratio as in (2.17), but with θ replaced by the MLE (θ̂ML):

TGLR(x) =

sup
θ̂ML∈Θ1

(ϕX(x, θ̂ML))

sup
θ̂ML∈Θ0

(ϕX(x, θ̂ML))

H1

≷
H0

γ. (2.19)

with (Θ0,Θ1) the respective parameter spaces under the two hypotheses.
In Sec. 2.4, we will study other detection tests, which are related to the GLR test (2.19) under
some conditions of the hypothesis testing (e.g. the Fisher’s test in (2.58)) and also other
determinist approaches (e.g. the Higher Criticism in (2.70) or the Berk Jones tests in (2.74)).
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2.1.4 A brief comment on Bayesian approaches

A second main stream of detection approaches exists (but we will not focus on it in this
manuscript) namely, the Bayesian approach.
Bayesian methods are an alternative to the frequentist approach. They consider the parameters
vector θ as random variables. These methods are based on the Bayes’ theorem which, using a
prior distribution for θ and a conditional distribution of the data, allows to derive a posterior
probability for the chosen model according to the observed data. A Bayesian analysis test
consists in comparing the probability of the model according to the a posteriori pdf (see
[Wakefield, 2013] for a recent review).

In extrasolar planet detection, a series of Bayesian techniques exist to search for Keplerian plan-
etary signatures of the form of (1.3) (e.g. [Ford and Gregory, 2007, Balan and Lahav, 2009])
in different kind of noises (e.g. White Gaussian noise (WGN) or Gaussian processes
[Haywood, 2015]).

2.2 Periodogram(s)

Consider the general model hypotheses{
H0 : X(t) = E(t)

H1 : X(t) = R(t) + E(t)
(2.20)

with E(t) a stationary Gaussian noise and R(t) the (possibly quasi-) periodic signature of
interest.

Before deriving hypotheses tests for model (2.20), let us look at the representation of R(t) in
the frequency domain. This leads to introduce the periodogram.

2.2.1 The classical periodogram

Consider a discrete time series x(t) = [x(t1), . . . , x(tN )]> with a regular sampling step ∆t =
tj+1 − tj defined for ∆t ∈ R+∗. The Discrete Fourier transform (DFT) of x, at frequency ν, is

DFT(x) :=
1

N
< g(ν),x >:=

1

N

N∑
j=1

x(tj)e
−i2πtjν .

with < ·, · > the scalar product and

g(ν) := [ei2πν , . . . , ei2πνtN ]>. (2.21)

The considered frequencies ν are Fourier frequencies:

νk :=
k

N∆t
, for k = 0, . . . , N − 1. (2.22)

One can show that the set g(νk) forms an orthogonal basis of vectors2. Defining a matrix
G := [g(ν0), . . . ,g(νN−1)]>, the complete DFT vector (containing all frequencies) writes

DFT(x) :=
1

N
Gx. (2.23)

As G is composed of N basis vectors, any signal x can be decomposed on this basis.

2i.e., < g(νk),g(νk′) >= 0 if k 6= k′ and N otherwise.
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Fourier analysis for periodicity detection dates back to Schuster, who introduced the notion
of periodogram as a measure for the strength of the components of the DFT vector in (2.23)
[Schuster, 1898]:

P (ν) =
1

N

∣∣∣ N∑
j=1

x(tj)g
H
∣∣∣2

=
1

N

∣∣∣ N∑
j=1

x(tj)e
−i2πνtj

∣∣∣2
=

1

N

∣∣∣ N∑
j=1

x(tj)
(

cos(2πνtj) + i sin(2πνtj)
)∣∣∣2.

(2.24)

The sine and cosine terms of the complex exponential in (2.24) are orthogonal for all k 6= k′.
It follows that P (νk) and P (νk′) are independent for k 6= k′ for any second order stationary
Gaussian process with autocorrelation function rE −→

N→+∞
0 (cf. Theorems 5.2.1 and 5.2.4

of [Brillinger, 1981]). When the data x(tj) are uncorrelated, half of this subset of ordinates
P (νk) are independent (N2 frequencies if N is even and N−1

2 if N is odd). This is also
asymptotically true for any Gaussian noise [Quinn and Hannan, 2001]. In the following, for
simplicity and without loss of generality, we assume N even and define the subset of (N2 − 1)
Fourier frequencies corresponding to k ∈ Ω := {1, . . . , N2 − 1}.

Under several assumptions, the statistical properties of the periodogram allow to characterize
P in (2.24) as an estimate of the power spectral density (PSD). These assumptions are:

(i) The sampling is regular;

(ii) The periodogram is evaluated at Fourier frequencies (νk, (2.22));

(iii) The number of samples N is large (asymptotic regime);

(iv) Under H0, the random process X is stationary Gaussian with known statistics.

Under these assumptions (i)−(iv), any finite set of periodogram ordinates near some fixed fre-
quency is asymptotically independent and exponentially distributed with parameters dependent
on the noise PSD at the relevant frequencies (this assumption actually extends to linear pro-
cesses other than Gaussian, see Theorem 4 of [Quinn and Hannan, 2001]).
In detection, this property is extensively used to obtain the probabilities of false alarm of tests
based on periodogram ordinates (as in (2.4)). If under the alternative of model (2.20) (peri-
odic signal in noise) the distribution of P can also be precisely characterized, these properties
translate into an accurate control of the detection probability (cf. (2.3)) as well.

Despite a large literature on the subject (e.g. [Bartlett, 1950, Grenander and Rosenblatt, 1957,
Brillinger, 1981, Priestley, 1981, Brockwell and Davis, 1991, Bloomfield, 2000,
Quinn and Hannan, 2001, Stoica and Moses, 2005]), the detection of periodic signals re-
mains an active field of research because in practical situations some (or all) assumptions
(i)-(iv) above may not be met [Li, 2014]. The following paragraphs summarize useful properties
of the periodogram.

2.2.2 Periodogram of a single sinusoid

It is useful for the following to look at the periodogram structure on the example of an evenly
sampled pure sinusoidal signal R(t) = αs sin(2πfst + ϕs) in model (2.20), with αs ∈ R+ the
signal amplitude, fs ∈ R its frequency and ϕs ∈ [0, 2π] a constant phase term.
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When evaluated at an arbitrary frequency ν and using 1/i = e−iπ/2, the periodogram writes:

P (ν) =
1

N

∣∣∣ N∑
j=1

αs sin(2πfstj + ϕs)e
−i2πνj∆t

∣∣∣2
=

1

N

∣∣∣ N∑
j=1

αs
ei2πfstj+ϕs − e−i2πfstj+ϕs

2i
e−i2πνj∆t

∣∣∣2
=

α2
s

4N

∣∣∣ N∑
j=1

ei2π(fs−ν)tjeiϕs−iπ/2 − e−i2π(fs+ν)tje−iϕs−iπ/2
∣∣∣2.

(2.25)

To develop (2.25), let us define the Dirichlet and Fejèr kernels.

Definition 6. Dirichlet kernel

The Dirichlet kernel is related to the discrete spectral window of the observations and defined
as [Li, 2014]:

DN (ν) =
1

N

N∑
n=1

N∑
j=1

δ(t− j∆t)e−i2πνj∆t

=
1

N

N∑
j=1

ei2πνj∆t

=
1

N

N∑
j=1

(
ei2πν∆t

)j
(sum of a geometric series)

=
1

N

1−
(

ei2πν∆t
)N

1−
(

ei2πν∆t
)


= e−iπν(N+1)∆t

(
sin(πνN∆t)

N sin(πν∆t)

)
.

(2.26)

Kernel DN is a cardinal sine like function, with maximum value at νk = 0 and zeros at the
Fourier frequencies νk 6= 0.

The left panel of Fig. 2.5 illustrates the modulus of the Dirichlet kernel as a function of ν for
different values of the time series length (N). This kernel tends to a Dirac impulsion δ(t) for
infinite N .

Definition 7. Fejèr kernel

The squared modulus of DN is called the Fejèr kernel [Li, 2014]:

KN (ν) :=
∣∣∣DN (ν)

∣∣∣2 =

∣∣∣∣∣ 1

N

N∑
j=1

ei2πνj

∣∣∣∣∣
2

=

(
sin(Nπν)

N sin(πν)

)2

. (2.27)

The periodogram of the pure sine signal, in (2.25), can then be written as a function of these
kernels

P (ν) =
α2
s

4N

∣∣∣NDN (fs − ν)ei(ϕs−π/2) +NDN (fs + ν)e−i(ϕs+π/2)
∣∣∣2,

=
Nα2

s

4

[
KN (fs − ν) +KN (fs + ν) + 2

√
KN (fs − ν)KN (fs + ν) cos(2πfs(N + 1) + 2ϕs)

]
.

(2.28)
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Written as in (2.28), one can see that the periodogram of a pure sine is composed by two
superimposed Fejèr kernels centred at opposite frequencies (fs and −fs) plus an “interference”
term.

The right panel of Fig. 2.5 shows the periodogram of a sinusoidal signal (αs = 2, ϕs = 0) with
a Fourier frequency (fs = ν451, green), and with a frequency between two Fourier frequencies
(red). The superposition of the Fejèr kernel evaluated for continuous frequencies3, ν, is shown
by the black solid line.

• If the frequency fs is on the Fourier frequency grid (i.e., fs = νk, for some k), the
periodogram achieves its maximum value in ±fs and is cancelled at the other frequencies.

Using (2.27), the amplitudes of the periodogram at ±fs are Nα2
s

4 as KN (0) = 1 and the
interference term in (2.28) is cancelled. In such case, the Fejèr kernels are sampled on
their global maxima in ±fs and the periodogram crosses its zeros at all νk.

• If fs is not on the Fourier grid, the sinusoidal component is orthogonal to none of the
complex exponentials sampled at Fourier frequencies (the different νk in (2.22)). The
kernels KN and interference terms in (2.28) are sampled at values where they are not null
and the periodogram has many (all, in fact) non zeros values at νk 6= ±fs. In this case,
the Fejér kernel illustrates the effect of spectral leakage: the “power of the sinusoid with
non-Fourier frequency” spreads over all frequencies.
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Figure 2.5 – Left: Illustration of the Dirichlet kernel defined in (2.26). Right: Illustration of
the spectral leakage effect on a sinusoidal signal. Comparison of the case where the Fourier
frequencies fall on the signal frequency fs (green stems) or not (red stems). The solid black
curve represents the Fejér kernel KN (ν − fs), defined in (2.27), centred on fs.

We note that for a complex signal of the form R(t) = αe2πifst, the periodogram expression
(2.24) is simpler and becomes:

P (ν) =
1

N

∣∣∣∣∣
N∑
j=1

R(tj)e
−2πitjν

∣∣∣∣∣
2

=
α2

N

∣∣∣∣∣
N∑
j=1

e2πitj(fs−ν)
∣∣∣2 =

α2

N

∣∣∣∣∣NDN (fs − ν)
∣∣∣2 = α2NKN (fs − ν).

3We used an oversampling factor of 10 to mimic a continuous vector of frequencies.
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2.2.3 Parseval’s identity

Using the Parseval’s identity, one can show that the periodogram is related to the sample
variance. Here is the demonstration.

Consider N even and a time series with standard deviation σX .

(i) Using Fourier series to develop X(t), the empirical variance can be written as a sum of sines
and cosines functions

σ̂2
X :=

1

N

N∑
t=1

(
X(t)−X

)2

=
1

N

N∑
t=1

([
K∑
k=0

Ak cos(2πνkt) +Bk sin(2πνkt)

]
−X

)2

=
1

N

N∑
t=1

(
K∑
k=1

Ak cos(2πνkt) +Bk sin(2πνkt)

)2

(2.29)

with K the number of considered components, and X = A0 = 1
N

N∑
t=1

X(t) the sample mean.

By using the orthogonality relations between sines and cosines at Fourier frequencies νk, ∀ k ∈
Ω := {1, . . . , N2 − 1}, one can show that:

Ak =
2

N

N∑
t=1

X(t) cos(2πνkt),

Bk =
2

N

N∑
t=1

X(t) sin(2πνkt).

(2.30)

Consequently, the variance estimate (2.29) writes

σ̂2
X =

1

2

N
2
−1∑

k=1

(A2
k +B2

k). (2.31)

(ii) The periodogram of X(t)−X writes :

P (νk) =
1

N

([
N∑
t=1

(X(t)−X) cos(2πνkt)

]2

+

[
N∑
t=1

(X(t)−X) sin(2πνkt)

]2)
.

Using (2.30) and considering Fourier frequencies νk with ∀ k ∈ Ω, the periodogram can be
written as:

P (νk) =
N

4

(
A2
k +B2

k

)
. (2.32)

(iii) The Parseval’s identity follows by combining (2.31) and (2.32)

σ̂2
X =

2

N

N/2∑
k=1

P (νk). (2.33)

Hence, the total dispersion of the time series is a scaled sum of the power at each frequency
P (νk). In other words, each ordinate P (νk) is homogenous to a variance and so to an estimate
of the signal PSD (here σ2

X).
The Parseval’s identity is also consistent with the spectral leakage: because of (2.33), the energy
of a pure sine at non Fourier frequency is not only concentrated on νk = fs but spreads over
the neighbourhood components (cf. Fig. 2.5).
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2.2.4 Periodogram resolution

The resolution of the periodogram, i.e. its capacity to distinguish between two distinct frequen-
cies, can only been increased by adding new observed data (increasing N , see Fig. 2.5). If the
number of observed data is fixed, one can apply the technique of zero padding, which consists
in adding zeros at the end of the observed time series (N ′ > N) to work with a finer Fourier
frequency grid { kN ′ }. The zero padding technique does not improve the spectral resolution.
When N ′ →∞, the resulting periodogram is called continuous periodogram (see black curve in
Fig. 2.5).

2.2.5 Bias and variance of the periodogram

Consider an evenly sampled time series X from a random process X with PSD SX estimated by
the periodogram P := [Pν1 , . . . ,PνN ]>. One wants to quantifiate how P deviates, in average,
to the true PSD SX (i.e. the estimation bias) as well as the variability of P from one training
data sample X to another (i.e. the estimation variance).

Definition 8. Bias and variance

The bias b and variance of an estimator θ̂ of some scalar parameter θ are defined as:

b
[
θ̂
]

:= E[θ̂]− θ

Var
[
θ̂
]

:= E
[(
θ̂ − E[θ̂]

)2
]
.

In the non asymptotic regime (N <<∞), one can show that the periodogram is a biased PSD
estimate of SX as E[P (νk)] 6= SX(νk). However, the periodogram is asymptotically an unbiased
and inconsistent estimate (cf. [Brillinger, 1981], Chap. 5, theorems 5.2.1 and 5.2.4):

E
[
P (νk)

]
= SX(νk) +O(1/N),

Var
[
P (νk)

]
= SX(νk)

2 +O(1/N),

Cov[P (νk), P (νk′)] = O(1/N), ∀k 6= k′.

(2.34)

with O the Bachmann-Landau notation4, and Cov the covariance function of P

Cov[P (νk), P (νk′)] := E
[(
P (νk)− E[P (νk)]

) (
P (νk′)− E[P (νk′)]

)]
.

2.2.6 Asymptotic distribution in the case of a pure random process

The asymptotic distribution of the periodogram under the null hypothesis of model (2.20) is
given in Theorem. 6.4 of [Li, 2014] (p.178).

4We note a function f(x) as f(x) = O(g(x)) if f(x) converges to a function g(x) (up to a constant) as x goes
to infinity.
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Theorem 1. (Asymptotic distribution of P in the case of noise - Theorem. 6.4 of [Li, 2014]).
Consider a time series X(t) = E(t) as a sampled zero-mean stationary complex Gaussian process
with autocorrelation function such as

∑
k |rE(k)| <∞ and strictly positive PSD SE > 0. In this

case, the asymptotic distribution of the periodogram under the null hypothesis of model (2.20)
is:

P (νk|H0) ∼


1

ρ(νk)

SE(νk)

2
χ2

2, ∀k ∈ Ω,

1

ρ(νk)
SE(νk)χ

2
1, for k = 0,

N

2
.

(2.35)

where, ∀k ∈ Ω:

ρk := ρ(νk) = 1 +O(rN ). (2.36)

with

rN :=

N∑
u=−N

min

(
1,
|u|
N

)
|rE(u)| −→

N→+∞
0. (2.37)

(cf. Appendix. B). Moreover, with m fixed as N → ∞, the r.v. in {P (νk) : νk ∈ Ωm} are
asymptotically independent for any m-subset Ωm ∈ Ω. When rN is small, the distribution of
P (νk|H0) for any given νk ∈ Ω can be approximated by 1

2SE(νk)χ
2
2.

As seen in (2.34), unlike the case of WGN, the periodogram ordinates are no longer independent
for finite sample sizes when the noise is colored. Theorems 5.2.1 and 5.2.4 of [Brillinger, 1981]
show nevertheless that the periodogram ordinates are asymptotically uncorrelated as N →∞.
In practice of course, N is finite. However, the asymptotic results above are indeed useful in
many practical cases, because the independence of the ordinates of P at different frequencies and
the asymptotic distribution 1

2SE(νk)χ
2
2 often hold with good accuracy if the correlation structure

decays fast enough (these assumptions are made in Whittle’s likelihood for instance, cf. Remark
6.6, p.178 of [Li, 2014]). Our derivations below will be based on approximate independence
assumption, which will be checked against simulations in Chap. 3 (e.g., cf. Sec. 3.5.1).

In practice, the statistics of the noise are often not (or only partially) known, and so are those
of the P ordinates (since SE is involved in (2.35)). In this case, it is thus very difficult to
assess how reliable is the claimed false alarm rate. This important point will be the subject of
Sec. 2.4.2 and 2.6.

2.2.7 Asymptotic distribution of P in the case of a periodic signal in noise

Let us consider a time series X(t) composed of a sum of NS complex sines and a stationary
colored Gaussian noise E(t):

X(t) =

NS∑
j=1

αje
2πifjt+ϕj + E(t) (2.38)

Denote by θ := [(α1, f1, ϕ1), . . . , (αNs, fNs, ϕNs)]
> the signal parameters for amplitudes,

frequencies (not restricted to the Fourier grid) and phases.

The asymptotic distribution of the periodogram under the alternative hypothesis of model
(2.20) is given in Corollary 6.2.b of [Li, 2014] (p.196).
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Theorem 2. (Asymptotic distribution of P in the case of periodic signals in noise - Corollary
6.2.b of [Li, 2014]). The asymptotic distribution of P under H1 for a model as in (2.38) is

P (νk|H1) ∼


1

ρ(νk)

SE(νk)

2
χ2
λk,2

, ∀k ∈ Ω,

1

ρ(νk)
SE(νk)χ

2
λk,1

, for k = 0,
N

2

(2.39)

with ρk given in (2.36) and λk the non centrality parameter associated to the χ2
2 distribution

given by

λk := λ(νk) = 2ρ(νk)N
1

SE(νk)

∣∣∣∣∣
NS∑
j=1

αjDN (νk − fj)

∣∣∣∣∣
2

(2.40)

with DN defined in (2.26).

The case of a real sinusoidal signal under H1 instead of the complex signal in (2.38) will be
developed in Chap. 3.

Example 5. Distribution of the periodogram: case of a White Gaussian noise

Consider under H0 a time series involving a WGN Xi = X(ti)
i.i.d.∼ N (0, σ2), ∀i and under

H1 a complex sine of the form of (2.38) in this noise (αs = 0.5, fs = 0.1, ϕs = 0).

As X := [X1, . . . , XN ]> is random, the periodogram (2.24) is also random. It is easy and
instructing to retrieve the results of the two theorems above in this simple case and in the
case of a colored noise in the next example.
Under H0, the periodogram at frequencies νk (∀k ∈ Ω) can be decomposed as:

P (νk|H0) =
1

N

∣∣∣ N∑
j=1

X(tj)
(

cos(2πνktj) + i sin(2πνktj)
)∣∣∣2

=
1

N

( N∑
j=1

X(tj) cos(2πνktj)
)2

+
1

N

( N∑
j=1

X(tj) sin(2πνktj)
)2

= C(νk)
2 +D(νk)

2.

(2.41)

Terms C(νk) and D(νk) are two linear combinations of independent normal variables.
Thanks to Parsen’s theorem, one can deduce (Theorem 4, p.90 [Parsen, 1962])C(νk) ∼ χ2

1 and D(νk) ∼ χ2
1 ⇒ P (νk|H0) ∼ χ2

1 + χ2
1 = χ2

2, ∀k ∈ Ω

C(νk) ∼ χ2
1 and D(νk) = 0 ⇒ P (νk|H0) ∼ χ2

1, for k =
{

0,
N

2

}
.

It follows that, P (νk) is exactly distributed under the null as

2

σ2
P (νk|H0) ∼ χ2

2 for k ∈ Ω. (2.42)

Following the same reasoning under H1 for a complex signal in WGN, using (2.39) the
distribution under the alternative is

2

σ2
P (νk|H1) ∼ χ2

2,λk
, for k ∈ Ω. (2.43)
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with the non centrality parameter in (2.40) given by

λ(νk) =


0 νk 6= fs

2Nα2
s

σ2
νk = fs.

(2.44)

The left panel of Fig. 2.6 illustrates the periodogram distribution under H0 at one fixed

Fourier frequency (νk = ν61 = 0.1, ∆t = 1) for Xi = Ei
i.i.d.∼ N (0, 1). The empirical pdf

has been computed with 105 Monte Carlo simulations (normalized histogram) with times
series of length N = 100. The theoretical distribution ϕχ2

2
(x) = e−x/2 is over-plotted in red.

The right panel illustrates the distribution of P (ν61) under the alternative for a model of
a WGN and a single complex signal of the form (2.38) with amplitude αs = 0.5, frequency
on grid fs = ν61 and zero phase. According to (2.43), the theoretical distribution is a non

central χ2
2 with non centrality parameter (2.44) λ = 2Nα2

s
σ2 = 50 (red curve).

To illustrate the influence of N and the signal amplitude αs in this distribution, we also
represent the theoretical pdf for resp. N = 40 (i.e. λ = 20) and αs = 0.75 (λ = 112.5)
by the green and yellow curves. One can see for a large number of data points (or a large
signal amplitude) the distribution leads to higher periodogram values under H1, which in
turn lead to an easier detection.
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Figure 2.6 – Periodogram distributions at one Fourier frequency (ν61) under the null (left) and
the alternative (right) of the model of Example. 6. Blue histograms represent the empirical

distributions obtained through 105 MC simulations of a WGN
i.i.d.∼ N (0, 1) under H0, and with

a complex sine function in this noise with frequency on grid fs = ν61 under H1. Red curves
are the theoretical density derived in (2.35) and (2.39). In the right panel, three theoretical
distributions are shown corresponding resp. to (N,αs) = (40, 0.5), (100, 0.5), (100, 0.75) for the
green, red and yellow curves.
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Example 6. Periodogram at the signal frequency in colored noise

Consider a complex signal of the form of (2.38) without noise. When the signal frequency
fs is on grid, the periodogram value in νk = fs is given by (2.25) :

P (νk) = N
α2
s

2
.

When a noise E(t) of PSD SE is present in (2.38), using the periodogram distribution
under H1 in (2.39) and the properties of the non central χ2 distribution (cf. Table. A.3,
Appendix. A), one can deduce for νk = fs:

E[P (νk)] =
(2 + λk)SE(νk)

2
= (1 +

λk
2

)SE(νk),

Var[P (νk)] =
2(2 + 2λk)S

2
E(νk)

22
= (1 + λk)S

2
E(νk).

At the other frequencies νk 6= fs, the non centrality parameter is null and, following the
periodogram distribution given in (2.35), the periodogram esperance and variance are{

E[P (νk)] = SE(νk),

Var[P (νk)] = SE(νk)
2.

Consequently, at the signal frequency, the periodogram values increase with N and α2, and
they do not change at the other frequencies.

Example 7. Periodogram of a WGN: bias and variance

Consider a White Gaussian noise X(t)
i.i.d.∼ N (0, 1). In this case, as seen in the previous

example, the periodogram ordinates evaluated at νk are χ2
2 distributed (2.42). Using the

Esperance and variance of a χ2 distribution (cf. Table. A.1, Appendix. A), it follows that

E[P (νk)] = E
[σ2χ2

2

2

]
=

2σ2

2
= σ2 ⇒ b[P (νk)] = 0,

Var[P (νk)] = Var
[σ2χ2

2

2

]
= σ4 2× 2

22
= σ4.

(2.45)

In the case of a WGN regularly sampled, the periodogram is strictly (and not only asymp-
totically) unbiased. The left panel of Fig. 2.7 verifies (2.45) for M = 104 Monte Carlo (MC)

simulations of a WGN X(t)
i.i.d.∼ N (0, 1) of N = 1024 points. The empirical values (red

and blue points) have been obtained using the estimated mean of the periodogram values
at each frequencies (i.e. 1

N

∑M
m=1 Pm(νk)) and the unbiased estimated variance (2.29). We

see the good match between the theoretical predictions (superimposed yellow and green
lines) and the simulations in both cases with small variations around the theoretical values
due to the finite values of used MC simulations.
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For the purpose of making a numerical example, we define now an autoregressive process which
is a common noise model for colored noise.

Definition 9. Autoregressive process

An autoregressive (AR) model is a correlated process parametrized by an order o and a correla-
tion structure characterized by filter coefficients {cj}, j = 1, . . . , o. Such a process, noted AR(o),
is generated at a given time tj according to its previous components and a stochastic term ε(tj)
as:

X(tj) =
o∑
j=1

cjX(tj − j∆t) + ε(tj) (2.46)

with cj ∈ ]−1; 1[ the AR coefficients filter5 and ε(t) a white Gaussian series with variance σ2.
The order and the coefficients are the model’s parameters. One representation of this signal is
the filtering of a WGN with variance σ2 by a filter characterised by a transfer function. The
theoretical PSD of an AR(o) process is [Brockwell and Davis, 1991]:

SE,AR(ν;θAR) :=
σ2∣∣∣1+

o∑
j=1

cje
−2πijν

∣∣∣2 , (2.47)

where θAR := [o, cj , σ2]> is the AR parameter vector. An AR process corresponds to a
frequency dependent noise.

Example 8. Periodogram of a colored noise: bias and variance

The right panel of Fig. 2.7 shows the bias and variance of P (νk) with 104 Monte Carlo
(MC) simulations of an autoregressive (AR) process of order o = 2, σ2 = 1 and coefficients
c = [0.8,−0.5]>. The color code is the same as for the case of the WGN (left panel). The
PSD of such noise (SE) is given in (2.47). Even for a relatively small value of N (= 1024
here), one can observe the good match between the asymptotical theoretical bias (which is
0) and variance (S2

E) of the periodogram and the simulations.

In conclusion, when the sampling is regular, the theory of the distribution of P is well understood
for periodic signals in colored noise. Moreover, the asymptotic theory seems to be quite accurate
even for relatively low value of N . This last point will be further investigated in Chap. 3 (cf.
Sec. 3.5.1).

5cj ∈ ]−1; 1[ for the stationary condition of the process.
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Figure 2.7 – Verification of the asymptotical periodogram bias (yellow solid line) and variance

(green solid line) for a WGN
i.i.d.∼ N (0, 1) (left) and for an AR(2) noise (right) with 104 MC

simulations (red and blue dots). The noise PSD SE is given by σ2 = 1 in the first case and by
(2.47) in the second case.

2.2.8 A note on some modified periodograms

A lot of modified periodograms have been developed in the literature to counteract drawbacks
of the classical periodogram (as its inconsistency). Examples of such periodograms are
given in [Daniell, 1946, Bartlett, 1950, Blackman and Tukey, 1958, Welch, 1967, Capon, 1969,
Priestley, 1981, Li, 2014].

Among them, one can distinguish the averaged periodogram introduced to reduce the peri-
odogram variance [Bartlett, 1950]. The averaged periodogram consists in averaging L classical
periodograms (2.24) to produce a consistent PSD estimate with a reduced variance (factor 1/L).
To built this periodogram, Bartlett has proposed to split the initial time series X(t) into L dif-
ferent blocks {X`}, for ` = 1, . . . , L, assuming the data blocks are uncorrelated and to compute
an averaged periodogram as:

PL(ν) :=
1

L

L∑
`=1

1

N

∣∣∣ N∑
j=1

X`(tj)e
−i2πνj∆t

∣∣∣2. (2.48)

In our study (cf. Sec. 3.2), we will use a periodogram closely related to (2.48) but conceptually
different: L will not be an effective number of blocks taken on the observed time series, but
will come from independent noise realizations coming from some simulations.

Many other modified periodograms follow the Bartlett’s method. Some of them allow the time
series sequences to overlap [Welch, 1967]. Some use specific spectral windows on each of the
time series sequence [Blackman and Tukey, 1958, Priestley, 1981, Li, 2014], and some use local
averaging of periodogram values [Daniell, 1946] or adapted band-pass filters [Capon, 1969].
The overlap allows to increase the number of averaged sequences to make a compromise
between the variance reduction (due to averaging) and a better resolution (which depends on
the spectral window of the sequences).
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For the case of irregular sampling, the sampled exponentials involved in the FT of the classical
and these modified periodograms are not orthogonal. In this case, in the literature of astro-
nomical times series analysis, periodograms adapted to the case of uneven sampling, such as
the famous Lomb-Scargle periodogram [Lomb, 1976, Scargle, 1982] have been designed. How-
ever, the ordinates of such “adapted periodograms” are dependent (even for a WGN) leading to
difficulties to derive the distribution of any test statistics based on their ordinates. This point
will be discussed in more details in Chap. 4 (cf. Sec. 4.1 to 4.4).

2.3 Planetary signatures in the periodogram

We study now the radial velocity signatures described in (1.3), first in the time domain and then
in the periodogram. In this section, the deterministic part R(t) of model (2.20) is considered.
The main lines of this section have been published in [Sulis et al., 2016a].

2.3.1 Signatures in the time domain

The radial velocity of a planet depends on six Keplerian parameters (plus some observational
parameters as the inclination, cf. Sec. 1.2.1). Fig. 2.8 illustrates their influence through the
independent variations of Kp (through Mp), Tp, ep, ωp, t0 and V0 for a solar mass star. In each
panel, the fixed parameters are Mp = 1 M⊕, Tp = 30 days, ep = 0 (except for the panel c),
where ep = 0.9), ωp = 0 rad, t0 = 0 day and V0 = 0 m.s−1. One can observe the following
points:

• The planet mass (panel a)) influences the RV semi-amplitude (in (1.2), Mp � M? leads
to Kp ∝ Mp + O((M? + Mp)

−2/3)). The RV amplitude increases with the planet mass
(Mp = [1, 2] M⊕ resp. for the red and black curves). This facilitates the detection of
massive planets.

• The planet period (panel b)) influences both Kp (∝ T
− 1

3
p ) in (1.2) and the periodicity of

the signature (Tp = 8.3 and 31.1 days resp. for the red and black curves). This facilitate
the detection of short period planets.

• The eccentricity (panel c)) changes the shape of the RV curve. The RV semi-amplitude
increases with ep as K ∝ (1− e2)−1/2 in (1.2), which in principe facilitates the detection
(ep = [0, 0.5, 0.9] resp. for the black, red and blue curves). However, a large eccentricity
may in practice not be an advantageous because it requires a thin sampling of the RV
curve. For example, a time sampling as the one marked with the green circles will show
a flat radial velocity and will be blind to the RV shape variations. If the maximum peak
is missed, one can easily be wrong on the orbit eccentricity.

• The argument of periastron (panel d)) impacts the shape of the RV curve when the
eccentricity becomes large, as (1.3) moves away from a sinusoid (see also panel c)). This
term can decrease the signal amplitude in the RV curve (ωp = π/2, red), introduces
asymmetries (ωp = π/4, blue) or inverts the RV amplitudes (ωp = π, black).

• The velocity of the system’s barycentre (panel e)) only introduces a RV shift (V0 = [−2, 0]
m.s−1 resp. for the red and black curves).

• The time of the planet’s passage at periastron (panel f)) only produces a time shift (t0 =
[0, 50] days resp. for the red and black curves).
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Figure 2.8 – Influence of the Keplerian parameters on RV planet signatures given in (1.3).

2.3.2 Signatures in the Fourier domain

Fig. 2.9 illustrates the influence of the relevant Keplerian parameters one by one in the
periodogram. As the velocity of the system barycentre (V0) and the time of passage at
periastron (t0) do not influence the periodogram at non zero frequencies, we only study here
the influence of a) the planet mass, b) period, c) eccentricity and d) the argument of periastron.

In panel a), we overplot on top of the considered “pure” planetary RV signatures a WGN with

unit variance: X(t) = E(t)
i.i.d∼ N (0, 1).

This noise could be seen as representative of the instrumental level limit of spectrograph such as
HARPS (i.e. 1 m.s−1, cf. Sec. 1.2.2) and is shown in order to compare the planet RV Keplerian
amplitudes with the level induced by such random instrumental noise.
The consideration of this “noise level” deserves some attention. In the figure, the black hori-
zontal lines represent three possible ways of measuring this “noise level” in the Fourier domain.

• The average noise level, γE , which according to (2.45) is also the variance here:

γE := E [P ] = σ2
X = 1.

This level is illustrated by the dashed line.

• The “90% confidence noise level” of one periodogram value, γ1. Using (2.42), the threshold
γ1 is defined, ∀k, by

Pr

[(
2
P (νk)

σ2

)
< γ1|H0

]
= Φχ2

2

(
2
γ1

σ2

)
=

90

100
.

This level is then:

γ1 =
σ2

2
Φ−1
χ2

2
(0.9),
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with Φ−1
χ2

2
the inverse cdf of a chi-square distribution with 2 degrees of freedom. This level

is illustrated by the dash-dot line.

• The “global 90% confidence noise level”, γη, evaluated for η = N
2 − 1 independent values

of the periodogram. The threshold γη is defined by

Pr

[
max
k

(
2
P (νk)

σ2

)
< γη|H0

]
=

η∏
k=1

Pr

[(
2
P (νk)

σ2

)
< γη

]
= Φχ2

2

(
2
γη
σ2

)η
=

90

100

which leads to

γη =
σ2

2
Φ−1
χ2

2
(0.91/η).

This level is illustrated by the dotted line.

Note that the periodogram of a pure noise may, by chance, show quite large values: here,
γE = 1, γ1 ≈ 2.30 while γη ≈ 7.43 for η = 178 (i.e. N = 358 samples).

The parameters of these simulations are T = 5 years and ∆t = 5.1 days. While the studied
variations of the parameters are indicated by the legend, the fixed parameters are ωp = 0 rad,
Tp = 364.9 days (frequency 1/Tp on grid, panels a and b) and Tp = 285.07 days (frequency off
grid, panel a, b and c), ep = 0 (panels a, b) and ep = 0.9 (panels c, d), t0 = 2 days, V0 = 0
m.s−1, Mp = 1 M⊕, M? = 1 M�, and i = 90◦.

Panel a: Influence of the planet mass (Mp). The influence of Mp in (1.3) appears only
in the expression of the RV semi-amplitude (1.2). In the figure, different masses are
investigated: the blue, red and green curves are associated respectively to Mp = 2, 1 and
0.5M⊕. In this plot, the signal frequency is on the Fourier frequency grid (Tp = 364.9 days,
corresponding to ν5 = 3.1 10−8Hz). The grey stems are one periodogram realization of a
WGN with unit variance. In comparison with the perturbations caused by an instrument
like HARPS, one sees the three planets have signatures of magnitudes comparable to
the considered noise levels. The amplitude of the RV signal varies by a factor of 2 and
4 depending on the planet mass. In the Fourier domain, the corresponding periodogram
peaks scale as K2

p (see (2.25)), so the signal to be detected scales as the squared amplitude.
Note that this signature will also increase linearly with N (through DN (2.26)).

Panel b: Influence of the planet period (Tp). The blue and red curves are associated to
Tp = 364.9 and 285.07 days. We superimpose the continuous periodograms (in practice the
periodogram is oversampled by a factor of 100) associated to these periods (red and blue

dashed curves). Two effects play a role here. First, as Kp ∝ T
− 1

3
p in (1.2), the amplitude

decreases with the period (Kp is respectively 0.089 and 0.097 m.s−1 for Tp = 364.9 and
285.07 days). Second, the planet frequency fp = 1/Tp may or may not be on the Fourier
grid, with the possible power leakage discussed in the previous subsection (see Fig. 2.5).
At worst, the amplitude reduction is when fp falls in the middle of a Fourier frequency
interval, as this leads to values not crossing the zeros of the Fejér kernel (cf. (2.25)).
In this panel (and the two following ones), the noise levels (horizontal black curves) are
shown in order to visually compare the RV amplitudes.

Panel c: Influence of the planet eccentricity (ep). The blue, red and green curves are
associated respectively to ep = 0.9, 0.5 and 0. To better show the influence of the consid-
ered parameter, we consider here an off-grid planet frequency as in panel b. In the case of
high eccentricity, the figure shows the apparition of multiple harmonics. This case differs
from the situation when a pure sinusoid is present, which corresponds to a circular plan-
etary orbit (ep = 0). However, planets with high-eccentricity orbits are rare and, even for
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Figure 2.9 – Study of RV planet signatures in the Fourier domain as a function of the planet
a) mass, b) period (for a given observational sampling), c) eccentricity and d) the argument of
periastron. In panels b, c, and d, one can observe the apparition of harmonics in the periodogram
[Sulis et al., 2016a].
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the highest eccentricities, the amplitude of the harmonics decay rapidly (the periodogram
plot is here in log scale). For example, in the Solar System the highest eccentricity is
e = 0.058 for Mercury; for exoplanets, the majority of the discovered planets by RV have
e < 0.5 (cf. right panel of Fig. 2.10).

Panel d: Influence of the planet passage at periastron (ωp). This term impacts the
first term in (1.3). In the last panel, the green, blue and red curves correspond re-
spectively to ωp = π, π4 and π

2 rad. The considered signal frequency is on the Fourier grid
(Tp = 364.9 days) and the eccentricity is set to ep = 0.9. One can observe that despite
the wild asymmetries of the RV light curves according to the value of ωp (cf. panel d of
Fig. 2.9), their signatures in the periodogram are very similar for all the ωp considered.

Number of planets (Np, not shown here). This parameter obviously impacts directly the
number of “large” components in the Fourier spectrum through the sum in (1.3). This
number can however safely be considered in the range 1 to 10 (say) for the vast majority
of exoplanetary systems. One can note that, currently (June 2017), exoplanetary sys-
tems found with the largest number of planets have seven planets (these systems are HD
10180 [Olsen and Bohr, 2010], Kepler-90 [Ford et al., 2011], HR 8832 [Vogt et al., 2015],
and TRAPPIST-1 [Gillon et al., 2017]). The left panel of Fig. 2.10 shows the number
of stars as function of the number of found planets within their System (all detection
methods considered). The Solar System is the only one known, at the present time, with
eight planets.

Fr
eq
ue
nc
y

Orbital	eccentricity

715	RV	planets

Figure 2.10 – Left: Histogram of the discovered multi-planetary system as function of the
number of planets (all detection methods considered). Right: Histogram of the planets orbital
eccentricities (only RV detection). Source: www.exoplanets.eu, June 2017
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2.3.3 Discussion and signal model

To summarise, we have seen that planets with RV of a few tens cm.s−1 reach amplitudes in
periodogram at levels comparable to the sample noise level discussed in Sec. 2.3.2. The detection
of the planet signature appears indeed difficult unless very long time series are available. The
peaks amplitudes can further be decreased for off-grid planet frequencies and the spectral leakage
effect has always to be taken into account. Numerous peaks may arise in the periodogram
because of off-grid frequencies and/or high eccentricities.
Strictly speaking, the number of nonzero Fourier coefficients for the periodogram of a pure
RV signature always equals the total number of Fourier frequencies, N , even for a pure sine
(zero eccentricity) as there is a null probability for the signal frequency to fall exactly on the

Fourier grid. According to (2.25), the periodogram amplitude should be close to NK2

2 in this
case. However, we have seen that in all cases (except perhaps very rare and exotic systems),
the RV spectral signatures exhibit only a small fraction of significant harmonics with respect to
the noise level (this is because the planets around a host star are in small number and tend to
have eccentricities well below 1). In short, while the RV spectrum of low mass planets can have
complicated structures, it is sparse6 in the vast majority of cases (though not strictly sparse).
Consequently, RV signals can be modelled by a sum of an unknown (but small) number of pure
sinusoids. In other words, we make the approximation that the Keplerian RV planet signatures
can be described by a finite sum of coefficients of a Fourier series.
In the following, we call this number NS , and we say that NS � N . When there is one planet
with frequency close to the Fourier grid and low eccentricity, NS will be essentially 1. This
leads to the model hypotheses:

H0 : X(tj) = E(tj)

H1 : X(tj) =

NS∑
q=1

αq sin(2πfqtj + ϕq) + E(tj)
(2.49)

with E(tj) the considered noise. Under H1, X(tj) contains an unknown (but small) number
of sinusoidal components (NS) with unknown parameters θq := [αq, fq, ϕq]

>. Note that the
αq may not be equal to the RV semi-amplitudes K described in (1.2) (this is only the case
when (1.3) becomes a sine function, i.e. when the planetary orbit is circular). Note also that if
several planets are present, NS encapsulates all the corresponding harmonic signals.

Now, what is the relevance of a detection strategy based on approximate model (2.49) instead
of exact RV signatures ?

Assuming R(tj) = VR(tj) in (1.3), an alternative approach following closely the Keplerian
RV model would be to discretise the Keplerian parameter space and end-up with a large
library of Keplerian profiles, which could be tested in a matched filter approach. Because
such a dictionary would necessarily be redundant (as all the Keplerian parameters have to be
considered), the resulting “periodogram” ordinates would not be independent and controlling
the false alarm would be delicate. Similarly, Keplerian periodograms (e.g. [Cumming, 2004])
consist in a least-square fit of function (1.3) to the observed data (cf. Chap. 4, Sec. 4.2).
In contrast, the discrete Fourier transform (through the periodogram) acts as an orthonormal
analysis dictionary of elementary harmonic oscillations, with well studied properties allowing
for analytical approximations (at least asymptotically as seen in Sec. 2.2 in (2.34), (2.35) and
(2.39)) and, importantly, fast algorithms. Note also that from a detection point of view, it may

6By definition, a signal is said sparse (resp. strictly sparse) when most of its coefficients are approximatively
(resp. strictly) null in a given dictionary. A dictionary is a representation of the observed signal. In our case, it
is the orthogonal basis of the discrete exponentials of the DFT.
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not be more powerful to use a large library of signals representing accurately the possible alter-
native signals than testing for only a reduced number (even a single) of approximate signals.
The reason is that by increasing the number of atoms of the library, the false alarm rate is
also increased. An example of this effect is described in the first pages of [Suleiman et al., 2014].

A classical approach in detection could be to use the GLR test defined in (2.19) with a Keplerian
RV model. However, deriving a GLR test by maximizing, as in (2.19), the likelihood with the
exact RV model over all unknown parameters seems out of reach because

(i) the complicated interdependence of some parameters (e.g. terms Mp, ep, Tp in (1.2) and
(1.3)) would make the maximization difficult, even numerically;

(ii) the unknown number of planets, even small, would require to ally the GLR to model
selection procedures, which in turn would make it difficult to evaluate the resulting false
alarm rate.

These considerations suggest that opting for a simple multi-sinusoidal model and combining
the (classical) periodogram ordinates for testing purposes allows to set up tests of good power
with the possibility of evaluating analytically their performance even when the noise PSD
SE is partially unknown (see Chap. 3) with, in addition, very fast detection algorithms.
In Chap. 3, we will show that for extrasolar detections by RV, the test of the maximum
periodogram component, described in (2.51) for NS = 1 should be a good choice in many
situations but adaptive procedures allowing to deal with sparse (but not extremely sparse)
signals (1 < NS � N) should also be considered for more complex Keplerian signatures (like
HC or BJ, cf. (2.70) and (2.74)).

We finally note that even if a full GLR approach will not be considered among the tests used
in this thesis, some of them are GLR tests in some particular cases of (2.49) (e.g. the Fisher’s
test, defined in (2.58) is a GLR when the noise is white Gaussian under the null and NS = 1
under the alternative).

2.4 Statistical tests applicable to the periodogram

This section aims to present some tests that can be applied to the periodogram ordinates. They
have been selected for reference as they cover different model settings (i.e. particular cases of
model (2.49)). Many of these tests have been designed in their original form for the simplest case
of a white noise under the null and one contribution of this thesis is to extend their application
to the case of partially unknown colored noise. Under some assumptions on the distribution of
the considered variates, the properties of these tests applied to the periodogram are well known
and are summarized below.

2.4.1 Preliminary notations

These tests are better presented using order statistics, which for a vector Z = [Z1, Z2, . . . , ZN ]>

will be denoted by:

min
k

Zk := Z(1) < Z(2) < . . . < Z(N) := max
k

Zk.

In the sequel, Z will indeed be taken as the vector of ordinates of periodogram P (2.24) or as a
normalized version of P (see Sec. 2.6). We present the tests on a generic data vector Z as the
considered tests can be applied to any data vector. Moreover, the application of some of them
to the periodogram was not considered yet in the literature.
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All tests below are of the form T(Z)≷H1
H0
γ, with T (Z) the test statistic and γ ∈ R+ a threshold

that determines the false alarm rate.
Also, recall from (2.12) that the observed P -value vT corresponding to the realization t := T (x)
of the random variable T (X) is defined as:

vT (t) := Pr (T (X) ≥ t|H0).

2.4.2 Classical tests

Schuster’s test

The first test that has been applied to the periodogram and that is the ancestor of all the other
tests presented here, is the Schuster’s test [Schuster, 1898]

TS(Zk) := Z(k)
H1

≷
H0

γ, (2.50)

where k corresponds to a predefined component of Z. This test has been developed for a
model involving under H0 a white Gaussian noise of known variance σ2 and under H1 a single
complex signal with unknown amplitude but known frequency fs = νk falling on the Fourier grid.

Considering Z := 2P/σ2, the ordinates of the periodogram evaluated at successive Fourier
frequencies in Ω are (even non asymptotically) i.i.d. with known distributions under both
hypotheses and given respectively in (2.42) and (2.43). In this case, the PFA can be easily
written as

PFA(TS(2P(νk)/σ
2), γ) := Pr (2P(νk)/σ

2 > γ|H0)

= 1− Φχ2
2
(γ)

= 1− (1− e−γ)

= e−γ .

Schuster’s test (2.50) is a binary hypothesis test in which a single component of P is tested. As
in practice the frequency of interest is unknown (and generally not falling on the Fourier grid),
other test statistics have been devised, as the test of the maximum.

Test of the maximum

This test statistics is based on the maximum component:

TM (Z) := Z(N). (2.51)

For N independent variates Zi of cdf ΦZi , using (2.4) one can deduce the false alarm of the test
TM (Z)≷H1

H0
γ:

PFA(TM (Z), γ) = 1− Pr[“All the components Zi are below γ”] = 1−
N∏
i=1

ΦZi(γ).

When Z is the periodogram, a particular set of frequencies Ω′ ⊂ Ω is often considered. The
alternative becomes “there is at least one sinusoidal signal with a frequency in Ω′”.
For a model (2.20) involving under H0 a white Gaussian noise of known variance σ2, the
probability of false alarm writes, for Ω′ = Ω:

PFA(TM (2P/σ2), γ) := Pr (TM (2P/σ2) > γ|H0)

= 1−
∏
k∈Ω

Pr

(
2Pk
σ2
≤ γ|H0,

)

= 1−
(

Φχ2
2
(γ)
)N

2
−1

= 1− (1− e−γ)
N
2
−1,

(2.52)
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with Φχ2
2

the cdf of a χ2
2 r.v. and Ω the indices set defined in Sec. 2.1.

For a model (2.20) involving under H1 a complex signal as in (2.38) with unknown frequency
(but on the Fourier grid) and under H0 a WGN of known variance, using (2.3), the probability
of detection writes:

PDET (TM (2P/σ2), γ) := Pr
(
TM (2P/σ2 > γ|H1

)
≈ 1−

∏
k∈Ω

Φχ2
2,λk

(γ) (2.53)

with λk the non centrality parameter defined in (2.40). In this case, test TM (P) corresponds
to the GLR test described in (2.19) [Kay, 1998].

Test of the variance

An interesting test to compare with TM is the test of the variance. Considering Z = P, this
test is interesting because the variance of the time series is proportional to the sum of the
periodogram components by the Parseval’s identity (2.33).

For a model (2.20) involving under H0 a zero mean white Gaussian noise of known variance σ2,
using (2.42), this test statistics writes

TV AR(P) :=
2

N − 1

N/2−1∑
k=1

P 2
k , (2.54)

and is proportional to an estimate of the time series variances. The distribution of this test
statistic is

TV AR(P) ∼ σ2

2

2

N − 1

N/2−1∑
k=1

χ2
2. (2.55)

Consequently, this test is related to N
2 − 1 independent random variables χ2

2 distributed. The
sum of these r.v. follows a χ2 distribution with 2× (N2 − 1) = N − 2 degrees of freedom leading
to

TV AR(P) ∼ σ2

N − 1
χ2
N−2.

The PFA of this test can then be deduced as

PFA(γ, TV AR(P)) = Pr(TV AR(P) > γ|H0)

= 1− Pr(TV AR(P) ≤ γ|H0)

= 1− Φχ2
N−2

(
γ
N − 1

σ2

)
.

(2.56)

Under H1, using (2.39) for a model involving a complex signal as in (2.38), the PDET writes

PDET (γ, TV AR(P)) = Pr(TV AR(P) > γ|H1)

= 1− Pr(TV AR(P) ≤ γ|H1)

= 1− Φχ2
N−2,λk

(
γ
N − 1

σ2

)
,

(2.57)

with γ(PFA) = σ2

N−1 Φ−1
χ2
N−2,λk

(1− PFA).
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Example 9. WGN case: TM vs TV AR

Consider model (2.20) with under H0 a WGN
i.i.d∼ N (0, 1) of N = 1024 data points and

under H1 a complex signal of the form (2.38) in such WGN. The signal frequency is located
on the Fourier grid (fs = ν667 = 0.15) and the amplitude is αs = 0.15.

Fig. 2.11 compares the tests TM (P/σ2) (black) given in (2.51) and TV AR(P/σ2) (red) given
in (2.54). In the panels a) and b), the theoretical PFA(γ) for the both tests (solid lines) given
in (2.52) and (2.57) are compared with their empirical estimates (dotted lines) obtained
through 105 MC simulations. One can observe the good match validating the theoretical
expressions. In panel c), the ROC curves of both tests, computed using equations (2.52),
(2.53), (2.56) and (2.57), are shown for the considered model. One can observe that TM
outperforms TV AR for all PFA. The last panel represents PDET (N ;PFA = 0.1) for both
tests (computed using the relation γ(PFA) in (2.53) and (2.57)). While these tests show
similar behavior for large N , TM shows better performance for finite N value. This is
because the energy in the Fourier domain is mainly concentrated on the signal frequency,
leading to a sparse signature easier to detect than when testing on the global dispersion of
temporal time series as TV AR.
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Figure 2.11 – Comparison of the performance of TM and TV AR for a WGN under H0 and a
single complex signal under H1. a,b) Verification of the false alarm probabilities expressions
given in (2.52) and (2.57) with MC simulations for resp. TM and TV AR. c) Associated ROC
curves. d) Detection probabilities given in (2.53) and (2.57) as function of N .

In the previous expressions of PFA, one notes that we have to know σ2 to be able to set the
detection threshold γ. In practice however, the noise variance / power spectral density is often
unknown. Hence, other tests like the Fisher’s test have been developed (for WGN) to deal with
an estimate of the noise variance σ2.

Fisher’s test

In 1929, Fisher developed a test for the case where the noise is a WGN of unknown variance
[Fisher, 1929]. The test statistic is

TF (Z) :=
Z(N)

N∑
k=1

Z(k)

. (2.58)

If Z = P, this test consists in normalizing the maximum periodogram component by an asymp-
totically unbiased estimate of the PSD (up to a known constant that can be absorbed in the
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threshold) (cf. (2.33)). Considering frequencies in Ω, Fisher’s test applied to Z = P writes:

TF (P) :=
P(N

2
−1)

N
2
−1∑

k=1

P(k)

. (2.59)

When a single monochromatic signal, with frequency on grid and unknown parameters θs :=
[αs, fs, φs]

>, is involved H1 in a WGN of unknown noise variance, the Fisher’s test is the most
powerful test [Anderson, 1971]. In such a case, this test corresponds to the GLR test (see
[Quinn, 1986], who also covers the case of more than one sinusoid).
Moreover as investigated below for a WGN with unknown variance, the Fisher’s test is a Con-
stant False Alarm Rate (CFAR) detector.

Definition 10. Constant False Alarm Rate detector

If a test is able to guarantee a prescribed false alarm rate under the null hypothesis although
some parameters under H0 (like the noise variance) are not known by the detector, the test is
called a Constant False Alarm Rate detector.

The false alarm rate of TF in case of a WGN is [Fisher, 1929]

PFA(TF (P), γ) =
M∑
j=1

(−1)j−1

(
N/2

j

) [
1− jγ

]N
2
−1

+
, (2.60)

where M the largest integer satisfying 1/γ < M ≤ N
2 and

(
N/2
j

)
:= (N/2)!

j!(N/2−j)! the binomial

coefficients. One can clearly note that the PFA of TF in (2.60) does not depend on σ2, which
makes the test CFAR.
Examples of works using this test in Astronomy are [Koen, 2015a, Koen, 2015b,
Schwarzenberg-Czerny, 1998, Aittokallio et al., 2001, Gutiérrez-Soto et al., 2009].
However, one can note two important drawbacks to this test:

1. The performance of this test decrease for an increasing number of periodic components in
the data [Chiu, 1989].

2. When the noise is not a WGN but is colored, the calibration by the sum of the periodogram
components does not give a consistent estimate of the noise PSD. Consequently the PFA
given in (2.60) is not valid.

The first drawback leads to turn to tests designed for multiple sinusoids as the ones described
in the following sections. The second drawback will be discussed in Sec. 2.6.

2.4.3 Tests designed for multiple sinusoids

In the case of multiple sinusoids involved in model (2.49) under H1 (NS > 1), the per-
formance of the Fisher’s test are known to decrease, owing to the perturbations of sinu-
soids in the noise variance estimation. Many alternatives tests exist (e.g. [Shimshoni, 1971,
Siegel, 1980, Bhansali, 1979, Priestley, 1981, Bölviken, 1983b, Bölviken, 1983a, Chiu, 1989,
Truong-Van, 1990, Von Sachs, 1993, Von Sachs, 1994, Artis et al., 2004, Zheng, 2012, Li, 2014])
offering globally the same robustness against an unknown noise variance [McSweeney, 2006].
One approach to deal with multi-sinusoids is to treat them as outliers in the periodogram to
better estimate the noise level by excluding a number NC ≥ 1 of components presumably con-
taminated by the sinusoids. This is interesting when one suspects that the time series may
contain several pure sinusoids under the alternative. In our application framework, we have
seen that this is the case for
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1. one single sinusoid with frequency off-grid,

2. NS pure sinusoids on grid,

3. a planet signature with exotic Keplerian parameters (i.e. high eccentricity or off-grid
frequency, cf. Sec. 2.3),

4. Np signatures different from “pure” sinusoidal signals.

Regarding the fact that testing the largest peak may not be the best strategy for multiple sinu-
soids, Chiu & Shimshoni have demonstrated that order statistics, different from the maximum,
may be more discriminative than Z(N) against the null [Shimshoni, 1971, Chiu, 1989].
For a detailed comparison of tests using a priori knowledge on the number of sinusoids, one can
refer to [Artis et al., 2004].

TC test

In this spirit, we propose a test, called TC below. Assuming a good estimate of NS is available
(say NC), this test looks at the N th

C order statistics of Z instead of the highest one:

TC(Z) := Z(N−NC+1). (2.61)

The test TM in (2.51) is a particular case of TC when NC = 1. Of course, the performance of
such a test depends on parameter NC (in practice, the best performance are not necessarily
achieved for NC = NS ; this will be shown in Chap. 3, Sec. 3.6).

For a model (2.20) involving under H0 a WGN of known variance, the PFA of TC can be derived
as follows. When Z = 2P/σ2, consider the case where NC = 3 and Ω′ = Ω. The PFA is

PFA(TC(2P/σ2)) = 1−Pr[“zero P (νk) ordinates > γ”]

. . . − Pr[“exactly one P (νk) > γ”]− Pr[“exactly two P (νk) > γ”].

Using the independence of the periodogram ordinates, this leads to

Pr[“exactly two P (νk) > γ”] =

(
N/2− 1

2

)
×Pr[“exactly 2 given P (νk) ordinates > γ”|H0]

. . . × Pr[“all the other ordinates νk′ 6= νk are < γ”|H0],

and using Pr[2P (νk)σ
2 > γ] = 1− Φχ2

2
(γ) in (2.42), we obtain

Pr[“2 P (νk) > γ”] =

(
N/2− 1

2

)[
1− Φχ2

2
(γ)

]2

Φχ2
2
(γ)N/2−1−2.

Consequently, for a general value of NC , the PFA of TC generalizes to

PFA(TC(2P/σ2;NC) = 1−
NC−1∑
j=0

(
N/2− 1

j

)[
1− Φχ2

2
(γ)

]j
Φχ2

2
(γ)N/2−1−j . (2.62)

Equation (2.62) reduces to (2.52) for NC = 1.
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Chiu’s test

In the case of multiple sinusoids in a WGN with unknown variance involved in model (2.20), one
can improve over TC in (2.61) by normalising TC by the sum of the periodogram components
(i.e. by an estimate of the noise variance (2.33)). Chiu proposed to produce a better estimate
of the noise variance σ2 than TF , in (2.58), by trimming a few of the largest Z components
when computing the average of the remaining ordinates [Chiu, 1989]. The Chiu’s test statistics
writes

TCh(Z) :=
Z(N−NC+1)

N−NC∑
k=1

Z(k)

. (2.63)

When the noise is white Gaussian, the PFA of TCh is the same than for the Fisher’s test given
in (2.60) [Chiu, 1989].

Robust Fisher test

Following the same idea, the robust Fisher test statistics is defined as (cf. [Li, 2014], Eq.6.2.18)

TF,rob(Z) := br N r
Z(N)

N r∑
k=1

Z(k)

, (2.64)

with r = N−NC
N the fraction of remaining values, and br = 1+ 1−r

r log(1−r) a constant ensuring
a consistent variance estimate in absence of sinusoids.
In the case of a WGN of unknown variance, the exact distribution of this test statistics is
derived in [Bölviken, 1983a]. For r = 1, this test is reduced to the Fisher’s test (up to a
constant N).

Approaches (2.61), (2.63) and (2.64) pose the question of the choice of NC , which must be set
a priori. These tests have decreasing power in case of strong mismatch between the value of
parameter NC . Not fixing NC in advance but estimating this parameter from the data may
lead to more powerful tests, but at the cost of a more difficult control of the FA rate (as NC

becomes random). This suggests to consider other approaches that are adaptive in the number
of sinusoids. This is the case of the two tests below: the Higher Criticism and the Berk-Jones
tests.
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Example 10. Comparison of the considered tests

Consider model (2.20) with a WGN E(t)
i.i.d.∼ N (0, σ2) of unknown variance σ2 under the

null, and a sinusoidal signal of the form R(t) =
∑NS

i=1 0.5 sin(2πfit) under the alternative
with fi the NS signal frequencies randomly chosen in the Fourier grid. The time series
length is N = 100. The purpose of this example is to demonstrate the robustness of tests
TF (2.58), TCh (2.63) and TF,rob (2.64) by studying: a) their performance for a WGN of
unknown variance depending on the number of sinusoids, b) the variation of the multi-sines
test performance with regard to the setting of parameter NC and c) the behavior of such
performance in a low order AR colored noise.

Panel a) of Fig. 2.12 illustrates the empirical ROC curves of the Fisher (green), Chiu (red)
and robust Fisher tests (blue) obtained with 104 MC realizations of X(t) for a single sinu-
soid (NS = 1) and for multiple sinusoids (NS = 10) under H1. The tests are equivalent for
the case NS = 1 (shown in black). For the case NS = 10, the Chiu and robust Fisher tests
are evaluated for NC = NS . One can observe that i) TF is not the best, ii) compared to
TF , TF,rob is the best at large PFA, and iii) at small PFA both TCh and TF,rob outperform TF .

Panel b) illustrates the ROC curves of the Chiu and Fisher tests for different NC values and
NS = 10. The considered values are NC = [5, NS , 20] (resp. the dashed, solid and dotted
curves). One can observe variations in the performance of these tests according to the
value of NC parameter. The TF,rob performance increase with the three considered values
of NC , while TCh shows opposite performance. Moreover, the TF,rob performance variate
slowly with the NC value in contrast to the ones of TCh. While the TCh performance
vary substantially, TF,rob shows relatively stable performance whatever NC . On this ex-
ample, the TF,rob performance are less influenced by the choice of the setting parameter NC .

Panel c) shows the non-reliability of all these tests when the noise is colored (here illustrated
by the AR(2) process used in Example. 8). All the ROC are located under the ROC’s
diagonal meaning that the tests are meaningless in this case. The ROC are completely
influenced by the noise PSD. The FA (and detection) probability of such tests are not valid
(e.g. (2.60)) and so the tests cannot be reliably implemented in this case.

Figure 2.12 – ROC curves of tests TF (2.58), TCh (2.63) and TF,rob (2.64) for NS = 10 sinusoids
in noise. a) Tests comparison for a WGN and multi-sines tests parametrized with NC = NS .
b) Influence of NC on multi-sines tests performance. c) Tests comparison for a colored noise
(AR(2)).
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2.5 Adaptive tests that can be applied to the periodogram

Some adaptive tests have recently been designed in order to detect faint sparse vectors means
in i.i.d. normal vectors. They are designed for the so-called “rare and weak detection” problem
[Donoho and Jin, 2004, Ingster et al., 2010, Walther, 2012, Arias-Castro et al., 2011]. To our
knowledge, such tests have not been applied yet to the periodogram.
These adaptive tests can be classified in the family of goodness-of-fit (GOF) tests. GOF tests
can be divided in two groups:

1. Tests based on the first moments of Z with respect to an orthonormal basis. This
group is let out of scope of this study but examples of such tests are the Neyman’
smooth test [Neyman, 1937], the Ledwina’s test [Ledwina, 1994], or the Rayner’s test
[Rayner et al., 2010].

2. Tests based on measures of deviations between the theoretical and empirical Z dis-
tribution under H0. Each measure of mismatch corresponds to a test. Exam-
ples of such tests are: Cramer-von Mises (and its generalization, the Anderson-
Darling test) [Anderson and Darling, 1954], Kolmogorov-Smirnov [Kolmogorov, 1933,
Smirnov, 1948, Berk and Jones, 1979], Berk-Jones [Berk and Jones, 1979], Phi-divergence
[Jager and Wellner, 2007], and the Higher Criticism [Tukey, 1976].

In this manuscript, we only focus on this second family for which a brief description is proposed
below.

2.5.1 Introduction of the problem

Adaptive tests can be introduced by considering a problem involving under the null a process Z
for which the ordinates {Zk} are i.i.d. with known marginal distribution (considered standard
Gaussian below) and under the alternative a sparse mean vector{

H0 : Zk ∼ N (0, 1),

H1 : Zk ∼ N (µk, 1), µk > 0, for some k ∈ [1, . . . , N ].
(2.65)

Often, the sparsity is measured under H1 by the proportion of nonzero coefficients as (cf.
[Donoho and Jin, 2004])

ε :=
#{µk 6= 0}

N
:= N−β, for β ∈]0, 1]. (2.66)

Since the ordinates Zk are independent, the P -values are i.i.d and uniformly distributed. For
a vector of r.v. Z = [Z1, Z2, . . . , ZN ]> of which z = [z1, z2, . . . , zN ]> is one realization, the
P -values (2.12) are thus of the form:

vk = Pr(N (0, 1) > zk) = 1− Φ(zk),

with Φ the standard gaussian cdf.

2.5.2 Example: Kolmogorov-Smirnov test

As before, denote
min
k

zk := z(1) < z(2) < . . . < z(N) := max
k

zk

the ordered values of z and by Z(1), . . . , Z(N) the order statistics of Z.
The observed P -values corresponding to z will be denoted by vZ,k (with vZ,k := Pr (Zk > zk))
and the observed ordered P -values by vZ,(k). The corresponding r.v. will be denoted by VZ,k
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and VZ,(k).

GOF tests are based on the important property that the P -values are independent and their
distribution under the null is uniform. Let us denote by ΦV the cdf of a uniform r.v. (ΦV (γ) =
γ). The corresponding empirical cdf of the P -values is given by:

Φ̂V (γ) :=
#{vZ,k ≤ γ}

N
. (2.67)

The idea of the considered GOF test is to measure a deviation between ΦV and Φ̂V and to
reject the null if the difference is large.

As an example, the Kolmogorov-Smirnov test statistics measures the maximum absolute devi-
ation between the observed and expected P -values cdf [Berk and Jones, 1979]

KS(Z) := sup
γ
|Φ̂V (γ)− γ|. (2.68)

Based on the KS test statistics (2.68), Anderson & Darling introduced a weight function to
calibrate the difference in (2.68) [Anderson and Darling, 1954]. Some years later, the Higher
Criticism (HC) was introduced in the same spirit [Tukey, 1976].

2.5.3 Higher Criticism

Also called second-level testing, the Higher Criticism test compares the fraction of observed test
statistics above a threshold to the expected fraction under the null hypothesis [Blomberg, 2012].
Donoho & Jin defined the test HC, which first computes weighted deviations of the empirical
cdf of the P -values w.r.t. their theoretical (uniform) cdf under the null [Donoho and Jin, 2004]:

HCk :=

√
N(k/N − vZ,(k))√
vZ,(k)(1− vZ,(k))

. (2.69)

The test statistic is the maximum of those weighted deviations (2.69):

HC(Z) := max
1≤k≤α0N

HCk (2.70)

with α0 ∈ [ 1
N , 1] a parameter.

The functioning of HC is illustrated by the left panel of Fig. 2.13 for N = 5 and α0 = 1
(adapted from [Paris, 2013]). The green line represents the true cdf of the P -values and the
blue discontinuous curve illustrates an example of an empirical cdf. The red arrows indicates
the scores HCk in (2.69) (up to the denominator factor of (2.69)). For example here, the highest
component of Z corresponds to the P -value v(5), which has the largest score (HC5).
The parameter α0 has to be set according to the data degree of sparsity under the considered
alternative hypothesis. This parameter expresses the fact that computing all ratios in (2.70) is
not useful since the considered alternative is sparse. In principle, α0 can be set in the interval
[1/N, 1/2], corresponding to the interval containing the smallest P -values (i.e. the largest Z
components) and the median P -value. Generally, authors choose α0 = 1/2 without a significant
impact on the test behaviour.
The theoretical (asymptotic) analysis of the detection problem posed by (2.65) was made by
[Ingster et al., 1998, Jin, 2004]. Following their notations, they parametrize the model (2.65)
under H1 by {

ε := N−β, for 1/2 < β < 1,

µ :=
√

2r log(N), for 0 < r < 1,
(2.71)
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Figure 2.13 – Left: Illustration of the principe of the HC test statistics defined in (2.70). Right:
Illustration of the detectability region defined in (2.72).

with β = 1 modelling a single sparse signal and β = 1/2 modelling a non extremely sparse
signal. These authors found a threshold curve, also called a detection boundary curve, in the
plane of the sparsity domain (through β) and the signal(s) amplitude r. This function separates
the detectable regions from the undetectable ones and writes

ρ?(β) =


0, for 0 < β < 1/2,

β − 1/2, for 1/2 ≥ β < 3/4,

(1−
√

1− β)2, for 3/4 ≥ β < 1,

(2.72)

A blueprint illustrating the principle of a detection boundary curve is shown in the right panel
of Fig. 2.13 (extracted from [Donoho and Jin, 2004]). The detection boundary separates the
detectable to undetectable regions. In the estimable region, it is possible to consistently estimate
the components. In some words, their results show that:

• In the detectable region (r > ρ?(β)), one can adjust the Neyman-Pearson test to achieve
an asymptotic null probability of error (i.e. PM + PFA → 0).

• In the undetectable region (r < ρ?(β)), it is not possible to separate the testing model
hypotheses and the sum of error tends to 1.

They proved that for r > ρ?(β), the HC statistics has full power asymptotically. This is
interesting as HC does not need knowledge of the sparsity parameter ε nor the signal parameter
µ. According to Donoho & Jin, HC has better asymptotic power characteristics than the max
test TM , defined in (2.51), for a specific range of contamination number (assuming they have
same amplitude).

Finally, as the HCk in (2.69) are dependent, one cannot compute analytically the false alarm of
this test for finite N but this is possible numerically. For example, efficient algorithms for com-
puting significance levels (and hence the function γ 7→ PFA(γ)) of HC for finite (but possibly
large) values of N can be found in [Moscovich et al., 2016, Moscovich-Eiger and Nadler, 2015].
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Let us now see how HC fits in our detection problem. For a model (2.20) involving a WGN
i.i.d∼ N (0, 1) under the null with known variance σ2, the vector Z = 2P/σ2 has i.i.d. ordinates
distributed as in (2.42). The ordered P -values involved in (2.69) are thus ordered values of
P -values computed by

v2P/σ2, k :=


1− Φχ2

2
(2 P (νk)/σ

2), ∀k ∈ Ω,

1− Φχ2
1
(2 P (νk)/σ

2), for k = 0,
N

2
.

(2.73)

Under the alternative (exoplanetary signatures), a fraction of the ordinates contain a determin-
istic part, and hence follows the non central χ2

2 distribution given in (2.39). The frequencies at
which these deviations occur are unknown. Their magnitudes (related to the non centrality λk)
are also unknown and weak, in the sense that they are comparable to the expected magnitude
of the periodogram maximum under the null hypothesis. So this is a rare and weak detection
problem, for which HC is indeed very relevant.

Example 11. HC applied to Z = 2P/σ2

Consider model (2.20) with a WGN E(t)
i.i.d∼ N (0, 1) under the null and NS = 40 sines

under the alternative. All the sines have a unit amplitude and the frequencies have been
taken randomly in the set of Fourier frequencies. The purpose of this example is to illustrate
the HC test statistics given in (2.69) when applied to 2P/σ2, with the P -values computed
as in (2.73).
Fig. 2.14 illustrates the ordered statistics Z(k) (left), the ordered P -values vZ,(k) (middle)
and statistics HCk (right) as a function of k/N . The time series has 500 points, leading
to 249 independent periodogram components following the χ2

2 distribution (2.39). The
parameter α0 = 1 here. The red vertical line indicates the max value of HCk (right panel)
found in k = 41 (i.e. k/N = 0.165) with HC41 = 2.7. So here the test statistics would
be HC41 and H0 would be rejected if HC41 is greater than the test threshold. Note that
in this case the test naturally identifies a number of 41 large periodogram ordinates. In
this example, one could say that there are 41 deviations under the alternative, which are
the 41 highest periodogram peaks. This corresponds here to all Z(k) ≥ 4.398 (left) or all
vZ,(k) < 0.11 (middle). In this example, this number is close to the true NS .

To summarize, optimality7 results of HC are asymptotic and established for a specific sparsity
vs amplitude model. When the deviation occurs at a single frequency or for extremely sparse
signatures, Donoho & Jin showed that the test based on the maximum value (TM , given in
(2.51)) is asymptotically optimal in the sense that whenever the Neyman-Pearson test has
full power, the TM test has full power as well. In such cases, the largest Z ordinate (or,
equivalently, the smallest P -value) is the most powerful test statistic to discriminate against
the null hypothesis. For sparse, but not extremely sparse signatures, adaptive tests are more
powerful as not focused only on the highest periodogram components (as also discussed about
the classical tests TCh, TF,rob and TC before) [Donoho and Jin, 2004]. Regarding the problem
of detecting RV planet signatures or their harmonics, the HC test can be very interesting. We
will come back to this point in Chap.3 (cf. Sec. 3.5.2).

7A test is said optimal in [Donoho and Jin, 2004], if the sum of the probability of error and the probability of
missed detection tends to zero for large N .
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Figure 2.14 – Illustration of HC test statistics (2.70) applied to NS = 40 sines in a WGN
through a) the ordered periodogram peaks, b) ordered P -values vZ,(k) and c) HCk statistics
defined in (2.69) as a function of k/N (i.e. the expected cdf of the P -values). The red vertical
lines indicate the k/N component corresponding to the max of HCk, i.e. k = 41.

2.5.4 Berk-Jones test

For HC (2.70), the deviations in (2.69) are established using the asymptotic convergence of
a binomial distribution to a Gaussian distribution. In the tails, however, this convergence is
very slow (see e.g., [Mary and Ferrari, 2014, Li and Siegmund, 2015, Moscovich et al., 2016] for
illustrations). For this reason the test statistics below was recently (and almost simultaneously)
proposed by [Mary and Ferrari, 2014, Aldor-Noiman et al., 2013, Kaplan and Goldman, 2014,
Gontscharuk et al., 2014]. As noted in [Moscovich et al., 2016, Gontscharuk et al., 2016], this
test was initially proposed by Berk and Jones (and called M+

n ) in [Berk and Jones, 1979].
This test is based on exact significance reflected by the P -values, that is, on the P -values of the
ordered P -values. Since the ordered P -values are ordered statistics from a uniform distribution,
they are beta distributed [David and Nagaraja, 2003], with

VZ ∼ B(k,N − k + 1),

their P -values involve the cdf of beta variables, which is a regularized incomplete beta function
given in (2.9) :

Pr(B(k,N − k + 1) ≤ x) = Ix(k,N − k + 1).

This leads to a test statistic, related to HC, called the Berk-Jones (BJ) test
statistics [Moscovich et al., 2016, Aldor-Noiman et al., 2013, Mary and Ferrari, 2014,
Kaplan and Goldman, 2014, Gontscharuk et al., 2014]:

BJ(Z) := max
1≤k≤α0N

I1−vZ,(k)
(N − k + 1, k). (2.74)

As for HC, one can apply this test to the periodogram. In this case, the P -values are computed
as in (2.73).
BJ presents the same adaptive optimality as HC for sparse mixture detection, and the
asymptotic distribution of the BJ test statistic can be found in the Theorem 4.1 of
[Moscovich et al., 2016]. As for HC, convergence to the asymptotic distribution may be slow.
Efficient algorithms for computing significance levels of BJ can be found (as previously noted
for HC) in [Moscovich et al., 2016, Moscovich-Eiger and Nadler, 2015].

An important point is the applicability of such adaptive tests in case of colored noise under H0.
When the noise is colored with autocovariance function Σ−1, some attempts exist, assuming
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Σ−1 is known, to compute the adaptive tests (e.g. [Hall and Jin, 2010]).

To conclude, adaptive tests such as HC and BJ are indeed interesting for periodicity detection.
However, they are not in nominal regime when the noise is colored with unknown statistics as
the periodogram P -values can not be easily computed. We will see in Chap. 3 that is is still
possible to built implementable adaptive (and CFAR) detectors in this case. Although adaptive
tests like HC and BJ have been mostly evaluated and designed for large N values, we will also
show in Chap. 3 (cf. Sec. 3.5.2) that they can be very powerful for finite N values as well.
One can finally note that, while the utility of such adaptive tests has been evoked (and will be
considered in Chap. 3) in the case of detection by RV data, they could also be very interesting
for detecting planetary signatures by the transit method. Indeed, detecting planetary transits
is also a “rare and weak” detection problem, where multiple periodic deviations (stellar light
flux diminution) occur under the alternative. In the case where P -values can be computed,
i.e. when we have access to the noise statistics, the application of adaptive tests as HC (2.70)
and (2.74) could be made directly on the time series for analysis. As my thesis attempts to
control these statistics through independent noise simulations of the colored noise of interest,
the application of adaptive tests to photometric data is one of the main perspectives of this
work.

2.6 Sinusoid detection in unknown noise statistics: related
works

This section aims to discuss the problem of controlling the distribution of tests based on the
periodogram ordinates when the noise is colored with unknown statistics.

So far, we have mostly illustrated the detection tests behavior for time series of WGN (with
known or unknown variance). If the noise E in model (2.49) is colored with known PSD
SE(νk) 6= σ2, all the performance calculations for PFA and PDET developed for a WGN for
TM (2.51), TC (2.61), TF (2.58), TCh (2.63) and TF,rob (2.64) are still (asymptotically) valid
by replacing the ordinates Zk = P (νk)/σ

2 by Zk = P (νk)/SE(νk) with P (νk)/SE(νk) ∼ χ2
2/2

under the null ∀k ∈ Ω according to (2.35).

When the noise has unknown statistics, the distribution of P under H0 given in (2.35) is not
known and consequently the significance level (the size) of the test (as those described in Sec. 2.1
to 2.4) is not known either. In this case, different approaches can be followed:

1. The first approach is simply to ignore possible noise correlations and to apply tests de-
signed for white noise. However, as was illustrated in Fig. 2.12 (right panel), the statistical
behavior of the resulting testing procedure may be hazardous, with unpredictable signifi-
cance level and poor power (see also [Kay, 1999] and [Sulis et al., 2016b] on this point).

2. The second approach consists in cleaning the data by a whitening procedure. This proce-
dure consists to find the dominant peak within the periodogram, fit a sine using the found
frequency and subtract it to the data. This is repeated until the dominant peak of the
periodogram residuals is found at the noise level. The resulting time series is then con-
sidered as “whitened”. In astronomy, this method is largely applied (under the name of
pre-whitening [Hatzes, 2013]) to remove the periodogram frequencies presumably affected
by (stellar) noise. Obviously, this method is always hazardous when the noise statistics
are unknown. Characterising precisely the statistical distribution of the resulting cleaned
residual components is consequently often a problem.

71



3. The last approach consists of estimating the noise PSD so that the hypothesis of a known
noise statistics is considered to hold approximately. This estimate of the noise PSD
can be used to calibrate the periodogram of the data P (ν), leading to a frequency-wise
standardized periodogram of the form

P̃ (ν|ŜE) :=
P (ν)

ŜE(ν)
. (2.75)

Such kind of standardization can be found, for example, in [Lu and Zimmerman, 2005,
Li, 2014]. The standardization by ŜE (i.e., a r.v., instead of SE) changes the distribution
of P (νk)/SE(νk), which is different from a χ2

2 distribution. Standardization (2.75) can
be seen as a generalization of the Fisher’s test approach (2.58) (which standardizes the
periodogram ordinates by the sample mean of the periodogram ordinates, i.e. an estimate
of the PSD of WGN).
The estimate ŜE(ν) can be

• Non parametric, i.e. the noise PSD is estimated without assuming any particu-
lar model on the PSD structure. However, other parameters may be involved in
the estimation procedure as, for example, parameters of specific spectral windows
[Hannan, 1961, Priestley, 1981]

• Parametric, i.e. the noise PSD depends (in a known manner) on a finite number of
parameters (e.g. AR models).

These methods estimate the model’s parameters from the observed data, which can lead
to three main problems for controlling the distribution of the test statistics:

(a) the choice of the noise PSD model,

(b) the estimation errors related to the parameters estimation of the chosen model,

(c) the possible bias on the parameters’ estimation due to the presence of the (unknown)
signal of interest.

Errors on the noise modelization or the parameters estimation can reduce the power of
the test and produce an over (or under) estimation of ŜE , which can lead to false (or
missed) detections.

2.6.1 Non parametric approches

Whittle suggests a method to deal with the problem of detecting sinusoids in mixed spectra (i.e.,
oscillating signal plus random noise) [Whittle, 1954]. He proposed a truncated periodogram to
estimate the noise PSD as in (2.75):

ŜE(νk) =
1

2π

m−1∑
s=−(m−1)

r̂E(s)e−iws (2.76)

with m a truncation point parameter and r̂E the noise auto-covariance function estimated on
selected data components using AR models. Using (2.76), he designed a statistic test based on
the Fisher test (2.58), which is:

TW (P) :=
max
k

P(k)/2πŜE(νk)

N/2∑
k=1

P(k)/2πŜE(νk)

. (2.77)
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The test statistics TW in (2.77) follows the same distribution as TF (2.58) with a PFA given in
(2.60) [Whittle, 1954]. In practice, this test is known to present two “weaknesses”. First, its
performance suffer from the possible presence of several sinusoidal signals in the data, as they
influence the estimation of ŜE(νk) and thus the power of TW . Second, the test omits some
pre-selected data components in evaluating r̂E (through parameter m in (2.76)) assuming they
are due to harmonics before the establishment of the existence of such harmonics. This is a
strange assumption when the purpose of the test is precisely to determine whether harmonics
are present or not.

Bartlett proposed to use “grouped periodograms” to estimate ŜE(νk) assuming an approx-
imately constant PSD over some frequency bands of given length [Bartlett, 1955]. These
grouped periodograms are parametrized by the segment length setting, which could deteriorate
the test performance in case of strong noise correlations [Priestley, 1981].

Following the reasoning of Whittle’s test TW (without using an AR noise however), Hannan
proposed to use a spectral window on the periodogram to attenuate the influence of ordinates
possibly contaminated by sinusoids [Hannan, 1961]. Hannan defined a “truncated periodogram
window” (Wm) as a weighted mean of the periodogram components:

ŜE(νk,θ) =
1

N

N−1∑
t=−N+1

(
1− |t|

N

)
rE(t) Wm(νk − θ) e−i2πνt, (2.78)

with Wm(θ) a spectral window depending on parameters θ and a “truncation point” m. The
window has to be chosen to remove the possible signal contributions at a given Fourier νk
by smoothing the periodogram over the frequency bins. Hannan proposed several spectral
windows according to different assumptions on the data. Moreover, he showed that the
resulting estimate ŜE is an unbiased estimate of the noise PSD even if a signal influences the
tested frequencies. However, some problems of estimate (2.78) appear due to the dependence
on the spectral leakage effect and of the large variability observed in practice in presence of
multiple harmonics under H1 [Nicholls, 1967, Nicholls, 1969].

An other method is the Priestley’s “double window periodogram” based on the autocovariance
of the data (Chap. 8 of [Priestley, 1981], [Bhansali, 1979]). This method is also called the
correlogram approach. Priestley assumes the existence of an integer m << N such that the
auto-covariance of the noise rE ≈ 0 for |n| ≥ m and evaluates:

Pωn,ωm(νk) =
1

2π

N−1∑
s=−N+1

(
wn(s, νk)− wm(s, νk)

)
r̂E(νk) (2.79)

with wn and wm two different lag windows, n and m their respective truncation points and r̂E
the covariance function estimated from the data. After the evaluation of (2.79), Priestley’s
method divides the range of the positive frequencies into smaller intervals, for which the
cumulative sum of (2.79) is computed. Then, a test is defined as the ratio of this cumulated
sum in (2.79) standardized by a function of the used spectral windows wn and wm. The
resulting test is shown to be normally distributed under the condition that r̂E → 0 for large N .
Knowing the distribution of this statistical test, Priestley proposed an iterative method based
on the residuals of (2.79) (i.e. in which the largest component of the Priestley’s test statistics
has been removed) to estimate the number of harmonics N̂S within the data. The iterations
are stopped when the statistical test, normally distributed under the null, is inferior to a given

threshold (iteratively decreased by a factor 1/N̂
(i)
S with N̂

(i)
S the counter of found harmonic

components in the Priestley’s iterative procedure).
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While the distribution under H0 of the standardized PSD estimate in (2.75) derived by
these methods can be accessed assuming ŜE ≈ SE (in such case the PFA is given by
(2.60)), the reliability of this approximation cannot really be checked in practice. The reader
is referred to Priestley’s book for more details about all these tests (Chap.8 of [Priestley, 1981]).

Other methods that are adaptive for the case of colored noise exist. Such methods use regression
techniques with robust M-estimators [Von Sachs, 1993, Von Sachs, 1994] or still model selection
procedures based on information theoretic criteria [Kavalieris and E.J., 1994]. Techniques re-
ducing the influence of signal peaks under the alternative are proposed in [Chiu, 1990] using
peak-insensitive Yule-Walker spectral estimates. [Kay, 1999] proposes a method combining a
smoothed periodogram PSD estimate and the GLR test (2.19), under the assumption of a known
broadband signal in unknown colored noise. Different approaches, related to standardizations
of the kind of (2.75) also exist: ratios of pairs of periodogram ordinates for symmetry testing
purposes [Lu and Zimmerman, 2005], of periodogram ordinates over distinct frequency bands
for detecting a signal with specified frequency [Liavas et al., 1998], the use a geometric mean
(instead of arithmetic mean in Fisher’s test) for standardization [Zheng, 2012].
As a general rule, when following GLR approaches for detecting multiple sinusoids in unknown
number, the GLR must be combined with model selection procedures. While sharp model selec-
tion criteria and CFAR detectors exist under white noise, the correlated case remains an open
problem [Nadler and Kontorovich, 2011].

2.6.2 Parametric methods

Parametric methods consist in assuming specific models for the noise PSD. Under this as-
sumption, their goal is to robustly estimate the parameters of this model. Common mod-
els are stationary autoregressive or ARMA (AR Moving Average) processes. Such meth-
ods are iterative procedures based on AR model of periodogram residuals [Priestley, 1981,
Quinn and Fernandes, 1991, Quinn, 1999], ARMA models [Gryca, 1998, Truong-Van, 1990] or
still methods using ratios of AR process as spectral estimates [White, 1999]. Many methods
exist to estimate the parameters of such AR or ARMA models. For instance, when using an
estimate based on an AR process of order o, this order can be estimated using many crite-
ria, e.g. [Akaike, 1969, Akaike, 1974, Parzen, 1975, Hannan and Quinn, 1979, Rissanen, 1984,
Ding et al., 2015]. We will be more specific on some of these models in the next chapter (cf.
Sec. 3.4).
Even if such approaches are relatively straightforward to implement, characterising the distri-
bution of P̃ (νk|ŜE) in (2.75) is very difficult owing essentially to the stochastic nature of the
estimated model parameters. The difficulty in this case is the dependence of the distribution
of ŜE on estimated parameters, which complicates the analytical characterization of the dis-
tribution of P̃ |ŜE . Moreover, as for the case of non parametric method, further complications
arise when multiple sinusoids are present under the alternative, as they perturb the estima-
tion of model of the noise PSD parameters. For colored noise with unknown PSD, we are not
aware of works studying the false alarm rate when AR/ARMA or other models are used for test
standardization as in (2.75).
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2.7 Conclusions

2.7.1 Main conclusions

Under some conditions which are

(i) The sampling is regular;

(ii) The periodogram is evaluated at Fourier frequencies (νk in (2.22));

(iii) The number of samples N is large (asymptotic regime);

(iv) Under H0, the random process X is stationary Gaussian with known statistics.

the periodogram is a powerful tool, with well understood statistical properties (at least
asymptotically).

Our study of the RV planetary signatures in the periodogram (Sec. 2.3) has shown that, for
a large majority of Keplerian parameters, these signatures are sparse in the frequency domain
(with exceptions for large orbital eccentricities). In practice, the number of harmonics that
are significant with respect to the noise level is small because the planets are in small number
and tend to eccentricities well below 1. In short, the RV detection problem can be casted as
a multiple sinusoids detection problem, for which a few number of sinusoidal variations are
present under H1. In the time domain, a relevant model is thus (2.49):

H0 : X(tj) = E(tj)

H1 : X(tj) =

NS∑
q=1

αq sin(2πfqtj + ϕq) + E(tj)
(2.80)

This chapter also provided an extended (though unavoidably selective) overview of classical
and recent techniques in sinusoid detection, with emphasis on the problem of designing CFAR
detectors for the composite hypotheses of multiple sinusoids and colored noise.

Depending on our knowledge of the noise statistics, if the noise is white or colored, we have
considered different statistical tests that can be applied to the periodogram ordinates (cf. Ta-
ble. 2.5).
Adaptive tests are particularly interesting for the field of extrasolar planets detection consisting
of detecting non extremely sparse signatures in a large number of frequencies. To our knowl-
edge, such approaches are for the moment unknown to the astronomy community, which mainly
employs the classical test TM based on the highest periodogram ordinates.

As we have seen, at least for regularly sampled observations, the significance level of all tests
applied to the periodogram can be obtained when the noise statistics is known for colored noise
(e.g. TM , TC , cf. column 7 of Table. 2.5) and for white noise (e.g. TF , TCh, TF,rob, cf. column
5). When the noise has unknown statistics, two cases can be considered:

• For white noise of unknown variance, several studies provide accurate results for standard-
ized test statistics of the form (2.75), e.g., [Fisher, 1929, Shimshoni, 1971, Siegel, 1980,
Bölviken, 1983b, Bölviken, 1983a, Chiu, 1989] (cf. column 6).

• For colored noise with unknown PSD, we are not aware of works studying the false alarm
rate when parametric models are used for test standardization. When non parametric
models are used, procedures described in [Hannan, 1961, Bhansali, 1979, Priestley, 1981]
provide asymptotic control of the false alarm rate. These procedures do not operate ex-
plicitly on test statistics of the form (2.75) but rather on windowed periodograms that
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TESTS R(t) in model (2.80) E(t) in model (2.80)

Name Equation NS Free WGN Colored Noise
parameter σ2 known σ2 unknown SE known SE unknown

TS (2.50) NS = 1 None Yes No Yes No

TM (2.51) NS = 1 None Yes No Yes No

TV AR (2.54) NS = N None Yes No Yes No

TF (2.58) NS = 1 None Yes Yes No No

TC (2.61) NS ≥ 1 NC Yes No Yes No

TCh (2.63) NS ≥ 1 NC Yes Yes No No
TF,rob (2.64)

KS (2.68)
HC (2.70) 1 ≤ NS << N α0 Yes No Yes No
BJ (2.74)

1 2 3 4 5 6 7 8

Table 2.5 – Table of the some test statistics found in the literature for white noise (Sec. 2.4). In
the last four columns, answers “Yes/No” indicate if the PFA control is possible for the considered
noise model under the null.

depend on several parameters. We found that these tests are in practice sensitive to
parameter setting and that estimating these parameters impact the significance level at
which the tests are conducted. This level can of course be approximated by simply ne-
glecting the influence of such a “preprocessing stage” (dealing, e.g., with model order
selection, filtering, adaptive window design, or standardization). For instance, we might
pretend that ŜE = SE as in (2.75) [Whittle, 1952] (which is at least asymptotically true
if ŜE is a consistent estimate). As it will be highlighted in Chap. 3 (cf. Sec. 3.5.4), the
actual significance level obtained when doing so may however be far from the assumed one.
This leaves open the question of designing both powerful and CFAR tests for unknown
colored noise.

In the particular field of exoplanet detection using radial velocity data, one can find similar
families of techniques as the ones cited in this chapter. Assuming a White Gaussian noise
case, several works use standardized test in the wake of Fisher’s approach (e.g. [Koen, 2015a,
Koen, 2015b]). To account for unknown colored noise, tests for planet detection are in practice
done after “whitening” the noise through preprocessing stages (e.g., local trend filtering or
harmonic removal), which exploit an a priori knowledge about known or presumed noise sources
(e.g., instrumental drifts or phenomena driven by stellar rotation, like spots) [Hatzes, 2013].
Parametric noise models are also used, as ARMA processes (e.g. [Tuomi et al., 2012]) or more
specific empirical models of stellar power spectral density based for example on the Harvey’s
laws given in (1.6) [Harvey, 1985, Dumusque et al., 2011].

2.7.2 This thesis

As explained in Chap. 1, a major difficulty for detecting exoplanet signatures in RV data is
the stellar noise. Noise is always adversarial, but the situation is much worse when the noise
statistics are not known. Power losses (missed detections) or in contrary false detections may
occur at rates that are completely uncontrollable for the astronomer when looking for RV
targets.

The approach followed in this thesis is thus to seek to take advantage from the realism
of recent 3D stellar hydrodynamical simulations (described in Sec. 1.4). These complex
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simulations account for numerous processes at the stellar surface: hydrodynamics, radiative
transfer, ionisation, dissociation of molecules and magnetic field. They are ab initio, i.e. they
only depend on the stellar characteristics (Teff , log g, [Fe/H]), which can be measured by
several independent methods (e.g. asterosismology, spectroscopy). Specifically, the idea is
to exploit such simulations of the stellar activity to “calibrate” the periodogram of the RV
data, similarly as in (2.75), in order to control the statistical significance of the testing procedure.

One main objective of this thesis is to design a detection method that does not rely on any
noise estimation from the data (exploiting stellar MHD simulations detailed in Sec. 1.4),
cleaning procedure or parametric noise models with parameters to set.

The simple but relevant model considered under H1 and the theoretical properties of the simple
but powerful analysis tool constituted by the periodogram will be two key ingredients allowing
to derive theoretical characterization of the resulting tests. The sparsity of the target signals
under H1 in the Fourier space also allows to adapt testing procedures designed for sparse
signals, but not necessarily for periodicity detection.

Some of the fundamental questions at the origin of this work and solved in the next chapters,
are: If such reliable simulations of the colored noise under H0 are available, how can they be
incorporated in the detection process to make it robust ? How reliable can be the significance
level associated to an extrasolar planet detection claim when using such simulations ? Which
statistical tests are the most appropriate for the detection of the RV Keplerian signatures ?
Can we extend detection methods to unevenly sampled time series ?

In Chap. 3, we will propose and analyze different detection methods for the problem of detecting
sinusoids with unknown parameters in unknown colored noise. We will consider first the case of
regularly sampled observations. The case of an irregular time sampling, encountered in practice
in RV, will be treated in Chap. 4.
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Proposed detection method
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Statistical tests exploiting
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This chapter focuses on the design and statistical characterization of detection tests when the
PSD of the colored noise is partially unknown and the signal parameters are unknown.

Following the review of the literature presented in Chap. 2, we propose a standardized
periodogram of the form of (2.75). The standardization is obtained by means of an averaged
periodogram computed from, say, L � N training time series. This training data set is
composed of L independent realizations of the noise process alone. One focus of the study is
on the gain that can be expected by using such training signals in a detection framework.
We, of course, make the important assumption that such a training data set is available.
Beyond the case of exoplanet detection considered here, one may imagine various situations
where training signals of the noise can be obtained. In astronomical instruments for instances,
secondary optical paths are often devoted to monitor “empty” regions of the sky or calibration
stars, in order to provide samples of the noise sources alone (a typical case is in the detection
of stellar oscillations [Gupta et al., 2001]). Note that training noise vectors are routinely used
for detection in radar systems, with however, an important difference: adaptive test statistics
in radar typically use estimates of the covariance matrix of the training vectors and therefore
require L > N for this matrix to be nonsingular [Van Trees, 2002]. This is a very different
regime from that considered here, where L� N .
Thus, the proposed statistical approach and the corresponding performance analysis is general
and can be useful for a large variety of detection problems, as soon as it is possible to acquire
time series of the colored noise.

The results presented in this chapter have been published in [Sulis et al., 2015,
Sulis et al., 2016b, Sulis et al., 2017b].

3.1 Statement, assumptions and objectives of the detection
problem

3.1.1 Model under both hypotheses

According to the analyzes made in Chap. 2 (cf. Sec. 2.7), we consider the general hypothesis
testing model defined as:

H0 : X(t) = E(t) (3.1.a)

H1 : X(t) =

NS∑
q=1

αq sin(2πfqt+ ϕq) + E(t) (3.1.b)
(3.1)

where X(t) is an evenly sampled data time series of length N .

Under H0, the noise E(t) is a zero-mean second-order stationary correlated Gaussian noise with
PSD such as inf(SE(ν)) > 0 and autocorrelation function rE such as

∑
k |rE(k)| < ∞. This

essentially means the noise process has no reason to be band-limited nor coherent in the long
term. In our application to exoplanet detection, this noise corresponds to the stochastic process
generated by stellar convection and instrumental noise.
Under H1, the target signal is modelled by an unknown number NS ≥ 1 of harmonics func-
tions of unknown amplitudes (αq ∈ R∗+), frequencies (fq ∈ R∗+) and phases (ϕq ∈ [0, 2π[ ).
Strictly speaking, as any natural frequency present in the target signal has zero probability to
coincide with a Fourier frequency, the corresponding number of nonzero Fourier coefficients (i.e.
the number of deviations in the Fourier spectrum under the alternative) always equals N (cf.
Fig. 2.9). However, most of the energy of (quasi-) periodic signals is captured by a small frac-
tion of Fourier coefficients, so that model (3.1) would often be accurate for any (quasi) periodic
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signals. In the particular case of RV planetary signatures, the study of the influence of the
Keplerian parameters, in Sec. 2.3, showed that this is indeed the case. We have seen that, in
all cases except perhaps very rare and exotic systems, the RV spectral signatures (1.3) exhibit
only a small fraction of significant harmonics because the planets tend to have low eccentricities
and are in small number (Np � N).
In short, the spectrum is sparse (though not strictly sparse) and RV signals can be modelled by
a sum of a small number of pure sinusoids. We call this number NS and we say that NS � N .
When there is one planet with frequency close to the Fourier grid, NS will be essentially 1. In
the simulations presented in Sec. 3.4, we will see that multi-planetary systems with 5 eccentric
planets behave like model (3.1) with NS not exceeding, say, 20 at most.

3.1.2 Assumptions and objectives

The working hypotheses made in this chapter are:

1. Unbiased noise simulations are available. In the present study, we assume, and this
is the originality of the present work, that independent realizations of the colored noise
can be generated (e.g. through stellar HD simulations) and consequently that the noise
power spectral density, SE , is partially known through these simulations. This training
data set is composed with L time series {X`}`=1,...,L sampled on the same grid as the ob-
servations. This set, denoted by T , is unbiased in the sense that an averaged periodogram
of the form of (2.48) obtained from an infinitely large batch would converge uniformly to
the true noise PSD. In practice, finite (possibly small) batch sizes can be encountered.
For this reason, we say above that the noise is partially unknown, we consider L � N
and we address the impact of small values of L on the detection performance.
In our application example, the simulations of the stellar convection used in
[Bigot et al., 2011] are computationally demanding. Obtaining a simulation of 100 days,
for a Sun-like star, takes about 3 months of computing time on 120 cores on modern clus-
ters. Consequently, realistic values of L are typically of a few tens at most. The realism
of this hypothesis will be addressed in the perspective part through the comparison of
MHD simulations with real solar observations. The effect of other noises is overlooked.
The effects of coherent stellar oscillations and of spots/plages at the stellar surface are
ignored here. Both would lead to quasi-coherent periodic perturbations, which would then
be captured by the model under H1. In addition, while the former effect can be accurately
reproduced by HD simulations, the latter can not (cf. Sec. 1.4.) Consequently, the results
of these thesis attempt to show what we can do, at best, if they are not such kinds of
noise sources (spots and pulsations).

2. The time series X(t) is evenly sampled. Because one important objective of this
study is to obtain analytical characterization of the test performance, we consider first a
regular sampling. The case of an irregular sampling, which is important in practice for
astronomical applications, will be treated in Chap. 4 (through different techniques as the
direct statistical analysis of periodograms is not achievable in this case).

3. The number of observations, N , is large. The analytical results obtained in this study
are asymptotic in the number of samples, which is characteristic of time series analysis.
We will however pay attention to whether asymptotic theory accurately describes reality
for finite sample sizes through numerical simulations.
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3.2 Statistical distribution of the proposed standardized peri-
odogram

3.2.1 Standardized periodogram P̃|PL

Regarding the problem of controlling the distribution of tests based on the periodogram ordi-
nates in case of unknown noise statistics (cf. Sec. 2.6), we propose a standardization of the
periodogram related to (2.75). As seen in Sec. 2.2.8, a straightforward, consistent and asymp-
totically unbiased estimate of the noise PSD can be obtained by the averaged periodogram
obtained from L independent realizations under H0. Replacing ŜE in (2.75) by PL in (2.48),
this standardized periodogram writes:

P̃ (νk) :=
P (νk)

PL(νk)
. (3.2)

We will sometimes write the standardized periodogram under the form of (3.2) as P̃ |PL when
the specification is necessary, i.e. when comparing with a different standardization (e.g. P̃ |ŜE
for a standardization by a specific estimate ŜE .)
One advantage of using such a periodogram is that the ratio ordinates at different frequencies
are asymptotically independent, leading to tractable analytical derivations.

The term “standardized periodogram” has been already used in the past but for differ-
ent concerns (e.g. to compare the ratio of periodogram ordinates for reflection symmetry
[Lu and Zimmerman, 2005] or to calibrate P by some specific estimators of the noise spec-
trum [Li, 2014]). Such versions of the standardized periodogram differ essentially by the fact
that their “calibrator” (the denominator in (3.2)) is based on the observed data while PL is
based on independent noise realizations.

3.2.2 Statistics of P̃|PL under H0

Using (2.35), the asymptotic distribution of the averaged periodogram can be derived as
[Bartlett, 1950]:

PL(ν|H0) ∼


SE(νk)

χ2
2L

2L
, ∀k ∈ Ω

SE(νk)
χ2
L

L
, for k = 0,

N

2
.

(3.3)

As the numerator and denominator of (3.2) are asymptotically independent variables with
known asymptotic distributions, the distribution of their ratio can be deducted. Using (2.35)
and (3.3), the asymptotic distribution of P̃ under H0 is a scaled ratio of two independent χ2

distributed r.v., which is a F distribution (cf. Definition. 2.1.2, Sec. 2.1.1):

P̃ (νk|H0) ∼


SE(νk) χ

2
2/2

SE(νk) χ
2
2L/2L

∼ χ2
2/2

χ2
2L/2L

∼ F (2, 2L), ∀k ∈ Ω

SE(νk) χ
2
1

SE(νk) χ
2
L/L

∼ χ2
1

χ2
L/L

∼ F (1, L), for k = 0,
N

2
.

(3.4)

This distribution is independent of the noise PSD under H0 because the noise influence in the
data (numerator) is cancelled by the noise training data set (denominator). This key property
will make the detection robust, as constant false alarm rates can be guaranteed whatever SE
(recall that SE is not exactly known).
One can note that a F distribution was also derived and exploited in [Lu and Zimmerman, 2005]
for symmetry testing purposes (ratios of the form P (νk)/P (νl), k 6= l) assuming the periodogram
components are asymptotically independent.
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3.2.3 Statistics of P̃|PL under H1

The distribution of the periodogram P is known when cisoids are present under the alternative
of model (3.1) (cf. (2.39)). The real case of model (3.1) is slightly more tedious but can be
treated similarly and gives a non central F distribution (cf. Appendix. B)

P̃ (νk|H1) ∼


SE(νk)χ

2
2,λk

SE(νk)χ
2
2L

∼
χ2

2,λk
/2

χ2
2L/2L

∼ Fλk(2, 2L), ∀k ∈ Ω,

SE(νk)χ
2
1,λk

SE(νk)χ
2
L/L

∼
χ2

1,λk

χ2
L/L

∼ Fλk(1, L), for k = 0 and k =
N

2
.

(3.5)

where the non centrality parameter λk depends on the signal signatures. Adapting the proof of
Theorem 6.2 of [Li, 2014], one can show that, ∀k ∈ Ω:

λk = ρk(rE)
N

2SE(νk)

NS∑
q=1

[
α2
qκ

2
q + 2αqκq

NS∑
`=q+1

α`κ` cos(θq − θ`)
]
, (3.6)

and for k = 0, N2 this expression is halved. The proof of (3.6) is reported in Appendix. B.
In general, the term ρk(rE) in (3.6), given in (2.36), can be approximated to 1 as the noise
autocorrelation function rE vanishes for large N (cf. Sec. 2.2.6). This approximation will be
studied numerically in Sec. 3.5.1 for different correlated noises.
The terms κq and θq in (3.6) arise from the spectral leakage of sinusoids with off-grid frequencies
(through the spectral window KN defined in (2.27)). These values are given by the modulus
and argument of the complex variable zq:

zq(νk) := DN (fq − νk)ei(ϕq−π2 ) −DN (fq + νk)e
−i(ϕq+

π
2

), (3.7)

κq := |zq(νk)|

=
(
KN (fq − νk)2+KN (fq + νk)

2−2KN (fq + νk)KN (fq − νk)cos(2π(N + 1)fq + 2ϕq)
)1/2 (3.8)

θq := ∠ zq, θq ∈ ]− π, π]. (3.9)

The non-centrality parameter λk in (3.6) is evaluated at the Fourier frequencies νk and
corresponds to the signal power (plus an interference term) normalized by the noise power in
the k-th frequency bin. Expression (3.6) is composed of a sum involving the signal parameters
θq = [αq, fq, ϕq]

>, for q = 1, . . . , NS , and the colored noise PSD SE . The finite duration
of the time series and the presence of off-grid frequency signals leads to spectral leakage,
characterised by the Fejér kernel KN (or spectral window, cf. Sec. 2.2) in the κq terms. This
kernel is composed of a main central lobe and sidelobes, whose widths depend on the spectral
resolution ( 1

N∆t) and on the signal frequencies position on the Fourier grid. The magnitude of
these sidelobes at neighbouring frequencies can be significant when the signal is off-grid and
the superposition of all the “signals kernel sidelobes” are evaluated by the second sum in (3.6).
In the case where the signal frequencies are on the Fourier grid (i.e. model (3.1).b is exact),
the second sum tends to zero as KN (0) = 1 (leading to κq(fq) → 1 and κq(νk 6= fq) → 0, ∀νk,
and so a vanishing product κqκ`). In this case, equation (3.6) is equivalent to the expression
given in (2.40) with κq = |DN (νk − fj)|2 (cf. remark 6.6 of [Li, 2014]).

As already discussed in Sec. 3.1.1, for general (possibly quasi-) periodic target signatures, the
decomposition into NS harmonic frequencies {fq ∈ R∗+} in model (3.1) is inaccurate. So the
number of non zero parameters λk is N . This is also the case when model (3.1.b) is exact with
at least one frequency fs not on the Fourier grid, even if NS � N . However, owing to the
efficiency of Fourier representation for compacting energy and to the fast decay of KN (ν) as a
function of ν, the proportion of parameters λk that significantly differ from 0 is always small
w.r.t. N .
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3.2.4 Mean and variance of P̃|PL under H0

Using (3.5), it is interesting to evaluate the mean and variance of the r.v. P̃ |PL. Using the
theoretical expressions for a F distributed r.v. given in Table. 2.2, we obtain

E
[
P̃ (ν)

]
=

2L

2L− 2
=

L

L− 1
, ∀L > 1

Var
[
P̃ (ν)

]
=

2(2L)2(2 + 2L− 2)

2(2L− 2)2(2L− 4)
=

L3

(L− 1)2(L− 2)
, ∀L > 2.

(3.10)

These quantities are only dependent on the number of available training data set (L). The
mean is only defined for L > 1 and the variance for L > 2. Consequently, one can expect
unpredictable deviations when only one or two training time series are available to standardize
the periodogram in (3.2). The reason is that the noise PSD is not well constrained due to the
high variance of PL making the standardization unstable. In the case of large L (L → ∞),
the mean tends to 1 because PL is an unbiased estimate of P . The variance also tends to 1 as
Var[P ]
SE

= SE
SE

= 1 when L →∞.

Example 12. Numerical illustration of the mean and variance of P̃ |PL

Panel a) of Fig. 3.1 illustrates the theoretical mean (red) and variance (blue) given in (3.10)
as a function of L. The horizontal black dashed line represents the expected asymptotic
value for these quantities (i.e. 1). One can observe that this asymptotic value is achieved
very fast (when L reaches a few tens).
The left panels compare these quantities with empirical results obtained by generating 104

standardized periodograms by MC simulations with b) L = 1, and c) L = 100 noise training

time series. For computing E
[
P̃ (ν)

]
and Var

[
P̃ (ν)

]
, we use the time series of the AR(2)

process introduced in Example. 8 with N = 1000. As expected, one observes occurrences
of large deviations to the asymptotic value in the case of low L, while this does not happen
for larger L values.

3.3 Statistical tests applied to the standardized periodogram

To simplify the presentation of the results, one will restrict in the following to the frequency set
Ω, i.e., to standardized vectors

P̃|PL :=

[
P (ν1)

PL(ν1)
, . . . ,

P (νN
2
−1)

PL(νN
2
−1)

]>
,

with P̃|PL the standardized periodogram obtained by means of an averaged periodogram
of L training data set of the colored noise. Extension of the results to all frequencies is
straightforward using the distributions given in (3.4) and (3.5).

Several statistical tests can be applied to the ordinates of this standardized periodogram. As
those ordinates are asymptotically mutually independent and further independent on the noise
PSD, with known distribution, the false alarm and detection probabilities can be derived for
some of these tests and some of them turn out to be CFAR. The following subsections derive
the statistical properties of the main tests studied in Sec. 2.4 when applied to P̃|PL.
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Figure 3.1 – Mean (red) and variance (blue) of the standardized periodogram. a) Theoretical
behavior as a function of L according to (3.10). Numerical evaluation of (3.10) using 104 MC
simulations of an AR(2) process for b) L = 1, and c) L = 100 training data sets. In all panels,
the black horizontal dashed line represents the asymptotic value (1).

3.3.1 Test of the maximum periodogram value (TM)

First, consider the most famous test (almost always used when looking for extrasolar planet
signatures in RV data, e.g. [Scargle, 1982, Cumming, 2004, Zechmeister and Kürster, 2009]),
the test of the maximum periodogram value, given in (2.51). When applied to the standardized
periodogram, this test writes:

TM (P̃|PL) := max P̃|PL

H1

≷
H0

γ. (3.11)

with γ > 0.

Under H0 of model (3.1) and in the asymptotic regime, this test statistics is the maximum of
independent and identically F distributed r.v., cf. (3.4). Using the probability density function
ϕF of a F r.v. given in (2.6), the density of a F (2, 2L) r.v. writes

ϕF (γ, 2, 2L) =

√
(2γ)2(2L)2L

(2γ+2L)2+2L

γB(2
2 ,

2L
2 )

=
1

γB(1, L)

γ 2L+1LL

2L+1(γ + L)L+1
,

=
1

B(1, L)

1

L

( L

γ + L

)L+1
.

(3.12)

Using the Beta function definition in (2.7), the term B(1, L) writes

B(1, L) :=

∫ 1

0
(1− t)L−1dt =

1

L
. (3.13)

By replacing B(1, L) in (3.12), the density ϕF (γ, 2, 2L) becomes

ϕF (γ, 2, 2L) =
1

B(1, L)
· 1

L
·
(

1 +
γ

L

)−L−1
=
(

1 +
γ

L

)−L−1
.
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It can be checked that the pdf is indeed normalized:∫ ∞
0

ϕF (γ, 2, 2L)dγ = 1.

Using now the cdf of a F (2, 2L) r.v. given in (2.8), the corresponding CDF ΦF (γ, 2, 2L) writes

ΦF (γ, 2, 2L) = I 2γ
2γ+2L

(2

2
,
2L

2

)
, (3.14)

with Ix(a, b) the regularized incomplete beta function (x, a, b ∈ R+3), defined in (2.9). As
parameters a, b ∈ N, one can use integration by parts to compute I. By further developing the
integral in (2.9), function Ix(a, b) can be rewritten in terms of binomial expansion as (cf. eq.
6.6.4, p.263 of [Abramowitz et al., 1972]):

Ix(a, b) =
a+b−1∑
j=a

(a+ b− 1)!

j!(a+ b− 1− j)!
xj
(

1− x
)a+b−1−j

. (3.15)

Finally, using (3.15) and the Newton’s binomial formula:

(a+ b)n =
n∑
i=0

Cina
ibn−i, (3.16)

the cdf of TM (P̃|PL) in (3.14) can be developed in a remarkably simple analytical expression:

ΦF (γ, 2, 2L) := I γ
L+γ

(1, L)

=

L∑
j=1

(
L

j

)(
γ

L+ γ

)j(
1− γ

L+ γ

)L−j

=
L∑
j=0

(
L

j

)(
γ

L+ γ

)j(
1− γ

L+ γ

)L−j
−
(
L

0

)(
γ

L+ γ

)0(
1− γ

L+ γ

)L−0

=

(
γ

L+ γ
+ 1− γ

L+ γ

)L
−

(
1− γ

L+ γ

)L

= 1−

(
L

L+ γ

)L
.

(3.17)
The probability of false alarm, defined in (2.4), of test TM (P̃|PL) in (2.51) can be computed
thanks to the asymptotic independence of the P̃|PL ordinates :

PFA(TM (P̃|PL), γ) := Pr(TM (P̃|PL) > γ|H0)

= 1−
∏
k∈Ω

Pr
(
P̃ (νk) ≤ γ|H0

)
= 1−

(
ΦF (γ, 2, 2L)

)N
2
−1

= 1−
(

1−
( L

γ + L

)L)N
2
−1
.

(3.18)

The PFA is independent of the noise PSD, which makes TM (P̃|PL) a CFAR detector. This
property has been developed in the asymptotic regime framework, but as we will show in
Sec. 3.5.1, this expression is still reliable for finite and relatively low N values depending on
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the correlation timescale (N = 1024 in the considered example).

Under H1 of model (3.1), using (2.39) and the approximate independence of the periodogram
ordinates in (3.2) ([Li, 2014], Theorem 6.5), one can deduce that the r.v. TM (P̃|PL) in (3.11)
follows a non central F distribution Fλk(2, 2L). Consequently, the probability of detection of

TM (P̃|PL) can be similarly approximated as:

PDET (TM (P̃|PL), γ) := Pr
(
TM (P̃|PL) > γ|H1

)
≈ 1−

∏
k∈Ω

ΦFλk
(γ, 2, 2L). (3.19)

Using (3.18), one can also deduce the threshold expression as a function of the false alarm, i.e.
γ(PFA), for the test statistics TM :

1−
(

1− PFA(γ)
) 1
η

=
( L

γ + L

)L
L

γ + L
=
(

1−
(

1− PFA(γ)
) 1
η
) 1
L

γ + L = L
(

1−
(

1− PFA(γ)
) 1
η
)− 1

L
,

(3.20)

which gives

γ(TM (P̃|PL), PFA) = L
[(

1− (1− PFA)
1

N/2−1

)− 1
L − 1

]
. (3.21)

Finally, using (3.19) and (3.21), one can express the detection probability for a given false alarm,
i.e. PDET (PFA), which can be useful to compute ROC curves:

PDET (TM (P̃|PL), PFA) ≈ 1−
∏
k∈Ω

ΦFλk

(
L(1− (1− PFA)

1
η )−

1
L − L, 2, 2L

)
. (3.22)

Illustrations of these results and the reliability of (3.18), (3.19) and (3.22) will be demonstrated
by numerical studies in Sec. 3.5.1.

Case of NS sinus on the grid. If all signal frequencies {fj}j=1,...,NS of model (3.1.b) fall on

the Fourier frequency grid, the PDET of TM (P̃|PL) given in (3.19) becomes:

PDET (TM P̃|PL), γ) = 1−
(

ΦF (γ,2,2L)

)N
2
−1−NS

NS∏
j=1

ΦFλj (γ,2,2L).

with the non centrality parameters given in (3.6) becoming here:

λk =


ρj
N

2

NS∑
j=1

α2
j

SE(fj)
, for k = j

0, for k 6= j

(3.23)

since for k = j, the crossed term in (3.6) vanishes owing to the orthogonality of the Fejér kernels
in the κj terms (3.2.3). One can note that expression (3.23) reduces to (2.44) in case of WGN,
because SE(fj) = σ2 and ρj = 1, ∀j = 1, . . . , N since rE(u) = 0, ∀u > 1.
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Analytical characterization of TM (P̃|PL) under H0 To quantify the behavior of the test
statistics TM (P̃|PL) as a function of N and L, it is interesting to look at (i) its distribution,
(ii) mode, and (iii-iv) first moments under the null.

(i) Density. For large N , the Extreme value Theorem predicts that all the maximum of r.v.
converges towards an extreme value distribution (cf. [Coles, 2001] and also Sec. 4.3). In
the case of TM (P̃|PL), one can develop the density function at finite N using (2.35). Using
also the periodogram distribution under the null (2.35), the cdf of TM (P̃|PL), i.e. of the
maximum of N

2 − 1 F independent variables, writes

ΦTM (γ, 2, 2L) :=
[
1−

( L

γ + L

)L]N
2
−1

=
[
1− g(γ)L

]N
2
−1

(3.24)

with g(γ) := L
γ+L . One can deduce the pdf by integrating (3.24). Using the relation

df(x)y

dx = y f(x)y−1 f ′(x), this derivative writes

ϕTM (γ,N,L) :=
∂ΦF (γ, 2, 2L)

∂γ

=
∂

∂γ

[[
1− g(γ)L

]N
2
−1
]

=
(N

2
− 1
)[

1− g(γ)L
]N

2
−2 ∂

∂γ

[
1− g(γ)L

]
=
(N

2
− 1
)[

1− g(γ)L
]N

2
−2

(−L) g(γ)L−1
(

(−1)g(γ)2 1

L

)
=
(N

2
− 1
)[

1− g(γ)L
]N

2
−2
g(γ)L−1g(γ)2

=
(N

2
− 1
)[

1− g(γ)L
]N

2
−2
g(γ)L+1

=
(N

2
− 1
)[

1−
(

L

γ + L

)L ]N
2
−2
(

L

γ + L

)L+1

.

(3.25)

(ii) Mode. The mode is derived at the point cancelling the pdf derivative, say γ = γ? > 0:

dϕTM (γ;N,L)

dγ

∣∣∣∣∣
γ=γ?

=
d

dγ

[(N
2
− 1
)[

1− g(γ)L
]N

2
−2
g(γ)L+1

]
γ=γ?

=
(N

2
− 1
) d
dγ

[[
1− g(γ)L

]N
2
−2
g(γ)L+1

]
γ=γ?

=
(N

2
− 1
)[(N

2
− 2
)[

1− g(γ)L
]N

2
−3
g(γ)2(L+1) − L+ 1

L
g(γ)L+2

[
1− g(γ)L

]N
2
−2
]
γ=γ?

= 0,
(3.26)

(iii) First moment. The esperance of TM (P̃|PL) is defined for N, L > 4:

E
[
max
k

P̃
]

=

∫ ∞
0
γ ϕ(γ,N,L) dγ =

(N
2
− 1
)∫ ∞

0
γ
[
1− g(γ)L

]N
2
−2
g(γ)L+1 dγ (3.27)

(iv) The second moment.

Var
[
max
k

P̃
]

=

∫ ∞
0
γ2 ϕ(γ,N,L) dγ =

(N
2
−1
)∫ ∞

0
γ2
[
1−g(γ)L

]N
2
−2
g(γ)L+1 dγ (3.28)

90



As (3.26), (3.27) and (3.28) are not derivable analytically, these equations have to be re-
solved numerically (e.g. using the global adaptive quadrature integrator of MATLAB, cf.
[Shampine, 2008]).

Fig. 3.2 illustrates the influence of the number of observations N (left, with L fixed to 20) and
of the number of noise training data set L (right, with N fixed to 1000) on the distribution of
TM (P̃|PL) under H0 given in (3.25). One can observe the increase of the pdf mode with N but
this effect will be more significant under the alternative (not shown, cf. Sec. 2.2.8). One also
sees that the pdf becomes more narrow for larger L. When L→∞, i.e. when the noise PSD is
perfectly estimated by the averaged periodogram, the standardized periodogram in (3.2) is χ2

2

distributed.
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Figure 3.2 – Density of TM (P̃|PL) given in (3.25) as a function of the detection threshold for
various values of N (left, for fixed L = 20) and L (right, for fixed N = 1000). The value
γ = γ? > 0 indicates the mode of the distribution for L = 20 and N = 100.

Fig. 3.3 represents (resp. from left to right) the mode and the two first moments of TM (P̃|PL)
given in (3.26), (3.27) and (3.28) as a function of N (first row, fixed L = 20) and L (second row,
fixed N = 1000). One value γ = γ? localized in Fig. 3.2 is shown just for verification. First, one
can observe the increase of all considered quantities with N more rapidly for low L. It illustrates
the fact that when more data are available, the test statistics has high value but at the cost of
a larger dispersion (especially if L is low, cf. Sec.(3.2.4)). The mode and the two first moments
decrease with L (more rapidly for low N). As a consequence, the FA threshold associated to
test TM (P̃|PL) will decrease for a large number of noise training data set (facilitating then the
detection). We see that these decreases are stabilized when L reaches a few tens, meaning that
we can expect to reach the asymptotic (in terms of L) FA thresholds using a moderate number
of training data set. For large L, one can expect less significant variations of the three quantities
with N under the null.
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Figure 3.3 – Theoretical mode, esperance and variance of TM (P̃|PL) given in (3.26), (3.27) and
(3.28) as function of N (first row, fixed L = 20) and L (second row, fixed N = 1000).

3.3.2 Fisher’s test and its variations (TF , TCh, TF,rob)

Under H0 of model (3.1), the Fisher’s test (2.59) applied to P̃|PL becomes:

TF (P̃|PL) :=
P̃(N

2
−1)

N
2
−1∑

k=1

P̃(k)

. (3.29)

This test looks for the maximum of identically distributed variables, which from (3.4) are
distributed as:

P (νi)

PL(νi)∑
k

P (νk)

PL(νk)

∼ F (2, 2L)∑
k

F (2, 2L)
. (3.30)

Each variable is a ratio of a F variable over a sum of F variables.
When L→∞, the F r.v. converges in distribution to a χ2

2 r.v. (i.e. F (2, 2L)
d→ χ2

2/2) leading
to a PFA as in (2.60) (cf. p.324 of [Johnson et al., 1994]).
For finite values of L, no analytic characterization of the resulting distribution of (3.30) is
known to our knowledge but, resorting to Monte Carlo simulations to evaluate the function
γ 7→ PFA is possible in principle. Resorting to MC simulations, when L is large, consists in
generating standardized periodograms using L × (` + 1) simulated times series of the noise
under the null (one for the numerator and ` for the denominator). Then, the test is applied on
the training periodograms, and the PFA is deduced using the empirical distribution function.
When L is small however, assessing the distribution of the maximum of these variables by MC
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simulations to compute the false alarm rate is not possible.

Similar remarks can be made about standardized versions of TCh in (2.63) or TF,rob in (2.64),
which involve denominators as in (3.30) in their test statistics: when L→∞ their distribution
tend to a χ2

2 distribution and one can use MC simulations, but for finite L the false alarm rate
cannot be computed.

Under H1 of model (3.1), the same arguments show that one cannot control the distributions
of the r.v. TF (P̃ (νk)|PL), TCh(P̃ (νk)|PL) and TF,rob(P̃ (νk)|PL) in general. Consequently, for
the Fisher test and its variations, the associated detection probabilities cannot be evaluated.

Although computing the PFA of these tests is not possible, one can use them for reference
to compare their performance w.r.t. to other tests applied to P̃|PL or P (cf. Sec. 3.5.1 and
Sec. 3.5.3), but keeping in mind that they cannot be implemented in practice.

3.3.3 Testing the N th
C largest periodogram value (TC)

We turn now to the test statistic TC given in (2.61). When applied to P̃|PL, it writes:

TC(P̃|PL;NC) := P̃(N−NC+1), (3.31)

where parameter NC allows to focus on the regions of order statistics where deviations under
the alternative are likely to be most significant.

Under H0, owing to (3.4), each ordinate (P̃|PL)i := P̃ (νi)

PL(νi)
has probability

u := 1− ΦF (γ, 2, 2L) =
( L

γ + L

)L
, (3.32)

to be larger than γ. Since the N
2 −1 ordinates of P̃ are asymptotically independent, the number

K of standardized ordinates larger than γ under H0 follows a binomial distribution :

K ∼ Bin(N/2− 1, 1− u). (3.33)

The cdf of a binomial r.v., say ΦBin, is a I function [Abramowitz et al., 1972]:

ΦBin(x, n, p) := Pr(Bin(n, p) ≤ x) = I1−p(n− x, 1 + x). (3.34)

So, replacing parameters (x, n, p) in (3.34) by (k, N2 , u) gives:

Pr(K ≤ k) = Iu(N/2− k, k). (3.35)

Using (3.32) and the relations

Pr(Bin(n, p) ≤ j) = 1− I1−p(j + 1, n− j), (3.36)

and

1− I1−x(b, a) = Ix(a, b), (3.37)

(cf., Prop. 6.6.3 in [Abramowitz et al., 1972]), the PFA of test TC applied to P̃|PL can be
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expressed as:

PFA(TC(P̃|PL, NC), γ) := Pr(TC(P̃|PL, NC) > γ|H0)

= 1−
NC−1∑
k=0

Pr(K = k|H0)

= 1− Pr(K < NC),

= 1− ΦBin(u,
N

2
−NC , NC), using (3.33) and (3.35)

= 1− I1−u(
N

2
−NC , NC), using (3.36)

= Iu(NC ,
N

2
−NC), using (3.37).

(3.38)

As a side remark, note that the false alarm rate of test TC applied to the periodogram of a
white noise of known variance was obtained as above in (2.62) (cf. Sec. 2.4.3) by replacing ΦF

with the CDF of χ2
2 r.v. according to (2.35).

As for TM (P̃|PL), Eq.(3.38) shows that test TC(P̃|PL) is CFAR.

Under H1, the function γ 7→ PDET (γ) of TC(P̃|PL, NC) can be deduced similarly to (3.38)
with, as we shall see, the difference that K is no longer binomial owing to the non centrality
parameter {λk}.

Denoting by K the number of ordinates of P̃ | PL larger than γ under H1 and by pi := Pr (K =
i | H1), the detection probability writes:

PDET(TC(P̃|PL,NC), γ) := Pr (TC(P̃|PL, NC) > γ|H1)

= Pr (K ≥ NC | H1)

= 1−
NC−1∑
i=0

Pr (K = i | H1)

= 1−
NC−1∑
i=0

pi.

(3.39)

Owing to (3.5) each ordinate (P̃|PL)i := P̃ (νi)

PL(νi)
has probability 1 − ΦFλi

(γ) with λi given

in (3.6) to be larger than γ. These variates can be considered approximately independent
(asymptotically) but obviously not identically distributed. This is why the variable K is not
binomially distributed (as it is underH0) and the probabilities {pi} require further investigation.
We proceed by induction. In the following, all probabilities are under H1. The first probability
p0 can simply be approximated as

p0 = Pr


N
2
−1⋂

k=1

(P̃ | PL)k ≤ γ

 ≈
N
2
−1∏

k=1

ΦFλk
.

The probability p1 = Pr(K = 1) is similarly

p1 = Pr

N
2
−1⋃

k=1

(P̃ | PL)k > γ
⋂
j 6=k

(P̃ | PL)j ≤ γ

 ≈
N
2
−1∑

k=1

[
(1− ΦFλk

)

N
2
−1∏

j=1,
j 6=k

ΦFλj

]
.

94



To generalize further, denote by Ω(i) one particular combination of i indices taken in Ω and

Ω
(i)

:= Ω\Ω(i) the set of remaining indices. Let {Ω(i)
1 , . . . ,Ω

(i)
i } (resp. {Ω(i)

1 , . . . ,Ω
(i)
N
2
−1−i})

denote the indices in two such combinations, and let Ωi be the set of all the {Ω(i)}. With these
notations, one obtains for i > 1 :

pi = Pr
⋃

Ω(i)∈Ωi


i⋂

k=1

(P̃ | PL)
Ω

(i)
k

> γ

N
2
−1−i⋂
k′=1

(P̃ | PL)
Ω

(i)

k′
≤ γ


≈
∑
Ω(i)

i∏
k=1

(
1− Φ

F
(γ,2,2L)
λ

Ω
(i)
k

)N2 −1−i∏
k′=1

ΦFλ
Ω

(i)

k′
(γ,2,2L).

(3.40)

The final PDET (TC(P̃|PL, NC), γ) expression follows by combining (3.39) and (3.40) and gives:

PDET (TC(P̃|PL, NC), γ) := Pr(TC(P̃|PL, NC) > γ|H1)

≈ 1−
NC−1∑
i=0

∑
Ω(i)∈Ωi

i∏
k=1

(
1− Φ

F
(γ,2,2L)
λ

Ω
(i)
k

)N2 −1−i∏
k′=1

ΦFλ
Ω

(i)

k′
(γ,2,2L),

(3.41)

which is typographically heavy but can be used to compute ROC curves with (3.38) and (3.41).
The non centrality parameters {λ

Ω
(i)
k

:= λ(ν
Ω

(i)
k

)} and {λ
Ω

(i)

k′
:= λ(ν

Ω
(i)

k′
)} are given by (3.6).

3.3.4 Adaptive tests (HC, BJ)

When applied to P̃|PL, the P -values involved in the Higher Critiscism (2.70) and the Berk
Jones tests (2.74) should be computed according to the distribution under the null given by
(3.4). Hence, similarly to (2.73), the P -values of P̃|PL at each frequency is:

V
P̃ |PL(k) :=


1− ΦF

(
P (νk)

PL(νk)
, 2, 2L

)
, ∀k ∈ Ω

1− ΦF

(
P (νk)

PL(νk)
, 1, L

)
, for k = 0,

N

2
.

(3.42)

The properties of the adaptive tests HC and BJ are otherwise left unchanged, with the CFAR
property added: thanks to the standardization of P by PL, the P -values are independent of the
noise PSD. An accurate computation of the P -values is made possible through the standard-
ization of P by PL and computation of the false alarm rates for HC and BJ can be computed
as in [Moscovich et al., 2016].

3.4 Standardization using parametric estimates of SE

Estimates of ŜE different from the averaged periodogram PL can be used for standardization
in (2.75). Sec. 2.6 has reviewed some methods to obtain such estimates. For the purpose of
comparing standardization P̃|ŜE with P̃|PL, we opt for AR parametric estimates allowing for
an automatic parameter setting, as this approach is commonly used in practice.

3.4.1 AR parameters estimation

When using an estimate based on an AR process of order o, this order can be estimated based
on statistical considerations using many criteria, e.g. [Akaike, 1969, Akaike, 1974, Parzen, 1975,
Rissanen, 1984, Ding et al., 2015], which are defined respectively by:
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Akaike’s final prediction error: FPE(o) := σ̂2
o

(N + o+ 1

N − p− 1

)
;

Akaike’s information criterion: AIC(o) := ln(σ̂2
o) +

2(o+ 1)

N
;

Parzen’s criterion AR transfer function: CAT (o) :=
( 1

N

o∑
j=1

N − j
Nσ̂2

j

)
− 1

σ̂2
j

;

Rissanen’s minimum description length: MDL(o) := σ̂2
o

(
1 +

o+ 1

N
ln(N)

)
;

Ding’s Bridge criterion: G(o) := log σ̂2
o + 2

o

N

o∑
i=1

1

i

(3.43)

with o = 1, ..., omax the model orders with maximum value omax, which has to be chosen, and
σ̂2
o the estimate of the prediction error power [Akaike, 1969]:

σ̂2
o =

1

N

N∑
t=o+1

(
X(t)−

o∑
j=1

cjX(t− j)
)2
.

For each criterion, the order minimising the corresponding cost function in (3.43) is selected.
In the numerical studies, we found that the selected order is often different from the true
one (as expected, see e.g., p. 211 of [Akaike, 1969] and [Boardman et al., 2002] for similar
conclusions). This is illustrated in the example below. However, as far as detection results are
concerned, these criteria have very similar behaviour for sufficiently large N (cf. Sec. 3.6).

Example 13. Comparison between the different AR order estimation criteria

Fig. 3.4 shows histograms of the estimated order for the five criteria introduced in (3.43),
evaluated with 104 MC simulations of AR processes with order o = 6 (blue histograms)
and o = 20 (red histograms). The time series length is N = 1024 and the maximum order
is set to omax = 30. One can see that the FPE, AIC, CAT and G criteria often find selected
orders different from the true ones. The CAT criterion overestimates the true order and
G seems to detect with same probability all the considered orders values. In contrast, the
MDL criterion most often found the true order for low value (o = 6) but fails to detect the
larger order (o = 20).

Once the order has been estimated, the AR(o) coefficients are calculated by inverting the Yule-
Walker equation (as this equation links the autocovariance matrix estimated from the data and
the AR coefficients). Denoting by θ̂AR := [ô, ĉj , σ̂

2
o ]
> the AR parameter vector with respec-

tively ôAR the selected order, {ĉj}j=,1,··· ,ôAR the AR coefficients, and σ̂2(ôAR) the estimated
prediction error variance, the PSD estimate is obtained similarly as in (2.47) by:

ŜE,AR(ν; θ̂AR) :=
σ̂2
o∣∣∣1+

ô∑
j=1

ĉje
−2πijν

∣∣∣2 . (3.44)
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Figure 3.4 – Distribution of the estimated AR order estimates (ô) obtained with 104 MC simu-
lations using a) FPE, b) AIC, c) CAT, d) MDL and e) G criterion. The blue histograms show
the result for an AR(6) and the red for an AR(20). One can see that MDL criterion is better
to find the true AR order for low o, while the other ones tend to overestimate its value.

3.4.2 Distribution of P̃|ŜE,AR
Even if such estimation approaches are relatively straightforward to implement, characterizing
precisely the distribution of P̃ (νk|ŜE,AR) is more difficult than in the case of P̃ (νk|PL), owing
essentially to the stochastic nature of ô in (3.44).

In practice however, the “whitening” effect of ŜE,AR is efficient because the selection procedures
have good fitting properties, i.e. they are approximately consistent:

ŜE,AR
≈−→ SE as N −→ +∞.

This leads to consider as reasonable the assumption that:

P (νk)

ŜE,AR(νk)
≈ P (νk)

SE(νk)
(3.45)

and, with (3.4), that P (νk)

ŜE,AR(νk)
is approximately a χ2

2 r.v. for k ∈ Ω (and a χ2
1 r.v. for k = 0, N2 ):

P (νk)

SE(νk)
∼ χ2

2

2

≈⇒ P (νk)

ŜE,AR(νk)
∼ χ2

2

2
. (3.46)

This approximation, which may seem natural, can be used to evaluate false alarm rates. For
example, using (3.46) and following the lines of (3.38), the false alarm of test statistics TC
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applied to P

ŜE,AR
leads, under the above approximation, to:

PFA(TC(P̃|ŜE,AR, NC), γ) := Pr(TC(P̃|ŜE,AR, NC) > γ|H0)

≈ Pr(TC(P̃|SE , NC) > γ|H0)

= 1−
NC−1∑
k=0

Pr(K = k|H0)

= 1− ΦBin(u,
N

2
−NC , NC)

= 1− I1−u(
N

2
−NC , NC)

= Iu(NC ,
N

2
−NC),

(3.47)

with u := Φχ2
2
(2γ) = e−γ . The reliability of this approximation will be studied in Sec. 3.5.4.

We will see that, even if the parametric model is well chosen, the resulting PFA control is less
reliable than the one derived by the non parametric standardization based on PL.

3.5 Numerical studies on synthetic noise processes

This section is a numerical study of the behavior of the tests statistics when applied to the
proposed standardized periodogram P̃|PL (3.2) (cf. Sec. 3.3). We also cross compare the
performance of various detection tests applied to P̃|PL and P̃|ŜE .

For the purpose of comparing theoretical results against a large number of simulations, a syn-
thetic colored noise process is considered under H0 of model (3.1). As a common method to
generate correlated noise, this frequency dependent noise is generated here as an AR process
with order o = 6 and coefficients {cj}j=1,...,o defined by:

X(t) =
o∑
j=1

cjXt−j + ε(t)

= 0.7Xt−1 + 0.05Xt−2 + 0.3Xt−4 − 0.3Xt−6 + ε(t),

(3.48)

with ε(t) ∼ N (0, 1). In absence of any other specification, the time series’ length is N = 1024
and ∆t = 1 unit (for the purpose of making an illustration without consideration of any real
physical timescale, one considers 1 unit is 1 second).

The coefficients of (3.48) have been chosen to yield a correlated noise process sketching the PSD
of some stars, exhibiting higher energy at low frequencies (e.g. convection), and local variations
at high frequencies (e.g. incoherent stellar oscillations). In the scope of the present study, this
colored noise is intended to roughly represent the large frequency variations encountered in
some stellar PSD. The choice of this PSD is obviously not intended to reflect the reality of a
particular stellar type.

One realization of this noise process is shown in Fig. 3.5 (panel a). The associated PSD is
shown in panel b) with the theoretical PSD, given in (2.47), overplotted in red. Panel c) shows
the theoretical autocorrelation function rE (evaluated as described in Appendix. C). One can
observe the fast decay of the noise correlation as a function of the lag, and rE totally vanishes
around a lag of about 40 samples.
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The theoretical evaluations of the previous sections call for various interesting comparisons.
The following numerical study is divided in five parts.
First, in Sec. 3.5.1, the analytical expressions of the PFA and PDET of tests TM and TC applied
to P̃|PL derived in Sec. 3.3.1 and Sec. 3.3 are verified with MC simulations. Then, we study
the influence of different parameters related to the nature of the data (data length and noise
autocorrelation function) and to the parameter setting (number of available noise training time
series and estimated number of harmonics).
In Sec. 3.5.2, the performance of the adaptive tests HC (2.70) and BJ (2.74), applied to the
standardized periodogram P -values (3.42), are studied for different sparsity regimes under the
alternative and compared to TM and TC .
In Sec. 3.5.3 and Sec. 3.5.4, the proposed methodology based on the standardized periodogram
(3.2) is compared with an approach ignoring the noise correlation, and with an approach as-
suming a parametric model on the noise process.
Finally, in Sec. 3.5.5 an application of this work to RV using HD simulated time series (as
described in Sec. 1.4) will be described.

In this section, the units of the different quantities have to be considered without any physical
realism.
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Figure 3.5 – Illustration of the considered AR(6) process through a) one realization of this
process, b) power spectral density and c) autocorrelation function. In panel b) the red curve
illustrates the theoretical PSD given in (2.47).

3.5.1 Classical tests based on P̃|PL

We first consider the theoretical results obtained for tests TM (P̃|PL) and TC(P̃|PL) defined in
(3.11) and (3.31).

False alarm and detection probabilities

Under the null of model (3.1), 104 MC simulations of the considered AR(6) noise are generated.
Under the alternative, NS = 3 sinusoids have been added with equal amplitudes αs = 0.2 m.s−1,
frequencies fs = 0.05, 0.12 and 0.22 Hz and random phases in [0, 2π]. For each time series, the
tests TM (P̃|PL) and TC(P̃|PL) (using NC = NS = 3) are applied. The empirical probabilities
are computed by:

PFA(γ) = 1− Φ̂T (γ|H0)

PDET (γ) = 1− Φ̂T (γ|H1)

with Φ̂T the empirical cdf (obtained with 104 realizations) of the considered test statistics
under both hypothesis.
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Fig. 3.6 aims to evaluate the accuracy of the analytical expressions of the false alarm given in
(3.18) and (3.38) (panel a)), and detection probabilities given in (3.19) and (3.41) (panel b))
derived for both tests. The ROC curves are shown in panel c).
All the theoretical expressions are shown by the colored dot lines and the empirical results by
the associated colored solid lines.
For all the considered parameters, one observes a fair agreement between the empirical and
theoretical (derived for the asymptotic regime) results, even for the not so large value of N
considered here (N = 1024).
Different values of L are shown here to illustrate the improvement brought by larger training
data sets (L = 5 for the blue and green curves, L = 100 for the black and red curves). One can
observe that both tests performance logically increase with L, as the estimation noise decreases
with the increasing size of the training data set.
Regarding the ROC (panel c)), the test TM outperforms TC for all considered values of L. This
behavior would be different if NS would be larger (cf. Fig. 3.7).

Figure 3.6 – Theoretical (solid lines) vs empirical (dot lines) results for TM (P̃|PL) and
TC(P̃|PL): a) FA probability (expressions (3.18) and (3.38)), b) detection probabilities (ex-
pressions (3.19) and (3.41)), and c) ROC curves (see (3.21)).

We compare now the performance of TM and TC depending on the parameters L and NC .
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Influence of L and NC

The performance of tests TM (P̃|PL) and TC(P̃|PL) depend on the number of available training
noise time series (L) and on the number of sinusoids presumably contaminated by noise (NC).
An interesting question is the gain brought by TC over TM in case of multiple sinusoids truly
present under H1 (note that no gain is apparent for NS = 3 in Fig. 3.6, panel c)). Under
H1, we consider NS = 20 sinusoidal signals (in the same AR(6) noise) with equal amplitudes
αs = 0.05 m.s−1 and frequencies {fj}j=1,...,NS equally spaced in the interval [4.5, 8] mHz (not
fixed on the Fourier grid). The results are shown in Fig. 3.7.

Consider first the influence of L. The panel a) shows the empirical ROC curves obtained for
tests TM (P̃|PL) (black) and TC(P̃|PL) (red). The standardized Fisher’s test TF applied to
P̃|PL (yellow) is also shown (only for comparison as computing the corresponding PFA is
not possible, cf. Sec. 3.3.2). The different values of L (5, 20, 100) are indicated by different
linestyles (see legend). The NC parameter of TC is set to NS . One observes that, as expected,
test TC is more powerful than TM when multiple sinusoids are present under H1. This will be
true if NS is significantly larger than 1, but this also depends on NC parameter. The question
of the influence of NC for this test is thus now investigated.

The panel b) of Fig. 3.7 shows the empirical ROC curves of TC(P̃|PL) for the same signal (i.e.
NS = 20 sines in the AR(6) noise), with L = 100 and NC = 1, 10, 20 (= NS), 30 and 80 (see
legend). These numerical results show that the ROC curves are stable over a relatively wide
range of NC values around NS . This test is thus not very sensitive to the NC parameter. The
best performance of TC are obtained for values of NC close to the real number of sinusoids.
Note that the value NC = NS does not yield the best performance. This shows that the region
to look at in order to “make the case” against the null may not exactly be the N th

S largest peak
(or equivalently, the N th

S smallest P -value), but slightly further away. This somewhat surprising
fact was noticed in [Donoho and Jin, 2004].

When a rough guess of the signal under H1 is available, it may be possible to adjust the value
of NC without MC simulations, by comparing ROC curves obtained from (3.38) and (3.41).
However, in cases where no relevant guess about NS can be made a priori , it may be useful to
turn to adaptive approaches (see Sec. 3.5.4). Adaptive vs non adaptive approaches (i.e. TC vs
HC and BJ) will be compared in Sec. 3.5.2.

To conclude, the tests TM and TC applied to P̃|PL allow to control precisely the PFA even for a
finite number of data for the considered type of noise correlation timescales. Their performance
logically increase with L. The performance of test TC are not very sensitive to the setting of
parameter NC and this test outperforms TM as long as the number of harmonic oscillations
under H1 is sufficiently large w.r.t. 1 (NS = 20 in our example).

Influence of the length of the time series (N)

Regarding now the influence of N (as our results are derived in the asymptotic regime),
we compare the theoretical probabilities of test TM (P̃|PL) given in (3.18) and (3.19) with
empirical probabilities obtained for time series of three different lengths N . We consider the
AR(6) process under the null and a single sinusoid on the Fourier grid under the alternative.
For the three time series of different lengths the sinusoid amplitude is resp. αs = 0.4, 0.25
and 0.1 m.s−1, the frequency is a Fourier frequency fs = ν370 = 0.1 Hz, the phase is null, and
L = 20 training data sets have been used. On these simulations, the parameter αs differs only
for the ROC curve visibility and does not influence the following results.

Fig. 3.8 shows the ROC curves of test TM (P̃|PL) for three values of N = 100, 1024 and 2500
(resp. from left to right). The red curves indicate the theoretical values (given in (3.22), (3.38)
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Figure 3.7 – ROC curves of tests TM (P̃|PL) (3.11) and TC(P̃|PL) (3.31) showing the influence
of a) the number of available light curves (L) and b) the parameter NC on the tests performance.

and (3.41)) while the empirical values obtained through 104 MC simulations are shown in black.

Fig. 3.9 shows the absolute differences between theory and empirical estimates as a function
of the threshold γ for the PFA (left) and PDET (right) with the different colors comparing the
deviations for the different N values. One can observe from these two figures the decrease of
the maximal error as N increases, as expected as our results are asymptotic. These deviations
have however the same order of magnitude (about 5×10−3 for all γ) and remain not significant
even for the case of a low number of observations. To conclude, the theoretical probabilities
derived in the asymptotic regime are also relevant for finite N values. Of course, this depends
on the correlations timescales w.r.t. N and we now investigate this point.
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Figure 3.8 – Theoretical (red) vs empirical (black) ROC curves of TM (P̃|PL) (3.11) for N =
100, 1024 and 2500 (resp. from left to right). One can observe the decrease of the ROC
deviations for large N .
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Figure 3.9 – Differences between theory and empirical evaluation of the PFA (left) and PDET
(right) in Fig. 3.8 as a function of γ. One can see the decrease of both quantities with large N .

Influence of the noise autocorrelation function: bias and dependencies

We investigate now more precisely the influence of several factors on the theoretical expressions
derived for test TM (P̃|PL) in (3.18) and (3.19). The factors explaining possible deviations
between theory and empirical results are:

• large correlations (through rE) leading to ρk 6= 1 (cf. Sec. 2.2.6, Theorem. 1),

• the existence of a small bias at finite N (cf. Sec. 2.2.5),

• dependencies of the ordinates P̃|PL (cf. Sec. 2.2.6 and Theorems 5.2.1 and 5.2.4 of
[Brillinger, 1981] on the asymptotic independence between the periodogram ordinates).

Under H1, consider a single sinusoid (αs = 0.25 m.s−1, fs = ν370 = 0.1 Hz, ϕs = 0) in three
different order AR processes:

• the AR(6) process, introduced in (3.48), with N = 1024 (green curves in panels b) and c)
in Fig. 3.10),

• an AR(100) process with N = 1024 (red curves in panels b) and c) in Fig. 3.10),

• an AR(100) process with N = 500 (black curves in panels b) and c) in Fig. 3.10).

Panel a) of Fig. 3.10 shows the theoretical autocorrelation functions of the considered processes
(rE(o = 6) in red and rE(o = 100) in black). The theoretical AR autocorrelation functions rE
are computed using the algorithm described in Appendix. C. One can see the correlations of
the high order AR process extend until a lag of ≈ 150 samples and the AR(6) until a lag of
≈ 40 (as also seen in Fig. 3.5, panel c)).
Panels b) and c) shows respectively the absolute difference between the empirical and theoretical
PFA and PDET as a function of γ for TM (P̃|PL). The theoretical results have been obtained
through 104 MC simulation of the three different AR processes. In panel c), the solid curves
illustrate the case where the theoretical PDET have been computed with (solid lines) and without
(dashed lines) the approximation ρk(rE) ≈ 1 in (3.19) and (3.6). In the case where ρk is not
approximated, the term has been evaluated as (cf. Appendix. B and Theorem 6.4, p.178 of
[Li, 2014]):

ρk :=
SE(νk)

Nσ2
k

, (3.49)

103



with σ2
k given in (B.5) as

σ2
k :=

1

N

N∑
t,s=1

rE(t− s)e−i2πνk(t−s). (3.50)

One can observe a larger mismatch between theory and observation under both hypotheses for
N low (black vs green/red).
Under H1 in panel c), one sees that the PDET differences have globally the same order of
magnitude as the PFA differences. Small differences (less than 1%) appear for the highly
correlated case (AR(100)). There is no improvement when considering the correct ρk (solid vs
dashed) suggesting that the mains sources of mismatch at finite N are the small dependencies
between the periodogram ordinates in (3.5) and the bias (the marginal distributions are not
exactly SEχ

2
2/2 at finite N).

50 100 150 200

Lag length

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

r
E

rE(o = 100)
rE(o = 6)

5 10 25 50 80

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
F
A
ab

so
lu
te

d
iff
er
en
ce

N = 500, o = 100
N = 1024, o = 100
N = 1024, o = 6

10 25 50 100 500

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
D
E
T
ab

so
lu
te

d
iff
er
en
ce

PDET (ρk = 1)
PDET (ρk 6= 1)

γ
γ

a) b) c)

Figure 3.10 – Illustration of different order of correlations on the theoretical results. a) Au-
tocorrelation function of the considered AR(6) (red) and AR(100) (black). b) PFA absolute
differences between empirical and theoretical (3.18) expressions depending on the noise corre-
lation (through o) and N . c) PDET differences with the theoretical expression (3.19) evaluated
with (solid lines) and without (dashed lines) the approximation ρk ≈ 1.

To conclude, the non vanishing bias and dependencies at finite N are the main limiting factors
to the reliability of the theoretical expressions derived in Sec. 3.2. However, the mismatch be-
tween theory and practice is very small for correlation timescale smaller than N (cf. Fig. 3.6 and
Fig. 3.9) and the theoretical results reflect very closely the performance observed in practice.
Regarding the considered application, where the colored noise is due to the convective phenom-
ena, this noise is correlated on timescales of minutes to days while the observations are sampled
each 1 or 3 points by night over several months in general. The theoretical results above are
then reliable in this regime (for a regular sampling).

3.5.2 Adaptive tests based on P̃|PL

When multiple deviations occur under the alternative, the proposed standardization allows the
use adaptive tests, as HC (2.70) and BJ (2.74), which are designed to detect non extremely
sparse signatures.

Compared ROC curves

Considering such adaptive tests applied to standardized data P̃|PL (3.2), one first wants to
study their performance and compare them to those tests TM and TC for different signal
sparsity regimes in the Fourier space.
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Fig. 3.11 shows the comparison results for different Keplerian planetary signatures (computed
using (1.3)) under H1 and the AR(6) noise described in (3.48) under H0.
Consider first the case where a single sparse signal is present under the alternative, i.e. when a
single planet signature with zero eccentricity is present in the periodogram. The periodogram
of the sparse sinusoidal signal is shown in panel c). Different signal RV semi-amplitudes have
been considered for the ROC visibility (we plot in red the signal used for L = 1 and in black
the one used for L = 50). The used Keplerian parameters are Mp = [10 M⊕, 2.5 M⊕]> (resp.
for L = 1, dashed curves, and L = 50, solid curves in a)), Tp = 5.33 days (fp = 2.17 µHz on
grid, N = 1800, ∆t = 30 min). The other Keplerian parameters are null. Panel a) shows the
respective empirical ROC curves of TM (black), TC (red), HC (blue) and BJ (green). In the
adaptive tests, half of the independent periodogram P -values have been considered (α0 = 1/2,

i.e. k = 1, . . . , N/2−1
2 ). Note that when NC = NS = 1, TC reduces to TM (cf. (2.61)). In this

case, one can observe than TM is slightly more powerful than the adaptive tests.
This situation changes when the number of harmonics is large (though still small w.r.t. N),
which is expected (cf. Sec. 3.5.1). This is shown in panel b) where Np = 5 RV planetary signals
have been introduced. The used Keplerian parameters for the five planets are respectively,
for p = 1, . . . , Np: Mp = [0.5 M⊕, 0.5 M⊕, 1 M⊕, 1 M⊕, 1 M⊕]> (for L = 1, dashed curves in
b)) and Mp = [0.5 M⊕, 0.5 M⊕, 0.7 M⊕, 0.8 M⊕, 0.8 M⊕]> (for L = 50, solid curves), Tp =
[0.46, 1.3, 2.4, 6.9, 9.2]> days (fp off-grid, such fp = [24.77, 8.69, 4.73, 1.67, 1.25]> µHz), ep = 0.9
∀p, and ωp = π ∀p (the other parameters are null). The periodogram of the pure Keplerian
signals is shown in d). One can visualize several harmonics appearing in the periodogram due
both to the large eccentricities and off-grid planet frequencies (here, we do use any criterion to
count the number of harmonics as, strictly speaking, it is equal to N , but one can observe in this
example more than 50 harmonics > 1 [m/s]2 for L = 1, and more than 20 harmonics > 1 [m/s]2

for L = 50). An interesting point is the comparison of HC and BJ with TC(P̃|PL, NC). For
this latter test, NC is set to Np. Hence, TC represents a kind of Oracle, which knows in which
region of the P -values to look at in order to “make the case” against H0 (for this test, best
performance are obtained for NC close to Np, cf. Sec. 3.5.1). Panel b) shows that adaptive
procedures (and in particular BJ) have a power higher than TC , for all considered values of L,
even if they do not benefit from such a priori knowledge. This makes such tests very interesting
in the case of unknown sparsity in the Fourier space.

Probability of detecting the true support in the Fourier space

While TM is, by construction, focused on the first ordered P -value (or equivalently, on the
largest peak in the standardized periodogram), adaptive tests allow to detect other deviations
from H0 corresponding to several peaks of the standardized periodogram. As we have seen
in Fig. 3.11, adaptive tests are efficient for detecting non extremely sparse signals in terms of
ROC, we may ask what is their probability to correctly determine the location of the signal
components in the Fourier space ? The following study examines this question for model (3.1).

• Study under the null. We perform 104 MC simulations of the AR(6) process defined
in (3.48), and apply tests TM (P̃|P20), HC(P̃|P20) and BJ(P̃|P20).
Our goal is to evaluate if some frequencies are preferentially identified by the three
test under the null. For test TM , we make the histogram of the frequencies where the
maximum peak is found (left panel, top row of Fig. 3.12). For HC and BJ, these test look
at the maximum of test statistics (HCk and BJk in (2.70) and (2.74)). Let k? be the
index achieving the maximal test statistics. This index corresponds to the frequency, say
νk? the k−th

? largest peak of the standardized periodogram, and we show the histograms
of the collected frequencies νk? for both tests in the middle and right panels. One can
observe a uniform distribution of all these tests over the frequencies. This desirable effect
comes from the periodogram standardization in (3.2). This means that the tests are not
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Figure 3.11 – Comparison of adaptive tests HC (2.70) and BJ (2.74) with classical tests TM (3.11)
and TC (3.31) applied to standardized data P̃|PL for L = 1 (dashed ROC) and L = 50 (solid
ROC). Panels a) and c) show the case of a sparse Keplerian signal (Np = 1, null eccentricity, on
grid planet frequency) under the alternative, computed thanks to (1.3). Panels b) and d) show
the case of non extremely sparse signal (Np = 5, large eccentricity, off grid planets frequency).
The first row shows the ROC curves and the bottom row the periodogram of the pure sinusoids
(without the AR noise).

biased toward any particular frequencies, even if the noise is colored.
The bottom row shows the resulting empirical PFA(γ) curves for the three tests (black).
The theoretical PFA expression derived for TM (P̃|PL) in (3.18) is overplotted in dashed
green. The red horizontal line indicates a PFA of 5% obtained resp. at γ0 = 11.6, 4.7 and
0.997 for resp. TM , HC and BJ. One can observe that the three tests have very different
distribution under H0.

In practice, the FA threshold γ0 at a given PFA can be obtained theoretically through
(3.21) for TM and using MC simulations for the adaptive tests for which no analytical PFA
expression is obtainable. One can refer, for example, to Moscovitch’s work, who proposed
a fast algorithm to compute P -values for such adaptive tests [Moscovich et al., 2016].

• Study under the alternative. We recall that one common measure of sparsity under
H1 is the proportion of nonzero coefficients parametrized as NS = N1−β, with β ∈ [1

2 , 1]
the sparsity coefficient (cf. [Donoho and Jin, 2004] and Sec. 2.5.1). We follow here closely
this parametrization, with NS signals of equal amplitudes in the time domain (α) and
frequencies fj (j = 1, . . . , NS) randomly chosen in the Fourier grid. Let ΩS ⊂ Ω define
the set of NS signal frequencies.
To evaluate the tests’ ability to locate the correct frequency support ΩS , we generate
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NMC = 104 MC simulations (i = 1, . . . , 104) for varying sines’ amplitudes and sparsity
coefficient (β), so varying NS . Locating the correct support means that the considered

test, say T , leads to NS ordinates found significant (which we note N̂S = NS) and the
significant frequencies are all in ΩS (which we note f̂j = fj , ∀j = 1, . . . , NS) for a given
threshold γ = γ0 corresponding to a target PFA.
For test TM , the number of estimated components is indeed always N̂S = 1 as it focuses
only on the maximum periodogram value and the f̂j is the frequency at witch the peri-

odogram is maximum. For adaptive tests, as seen in Example. 12 of Sec. 2.5.3, N̂S can
be measured as the number of ordered P -values smaller than the one selected by the tests
(in (2.70) and (2.74)). The frequencies f̂j correspond then to the periodogram frequencies

associated to these N̂S smallest ordered P -values (or, equivalently, to the N̂S frequencies
where the NS largest peaks occur in the standardized periodogram).
The probability of detecting the correct support at the right location is evaluated through
the 104 MC simulations for which one retains the number (#) of times where the test T
fits the three following conditions

P̂r
(
{T > γ0} ∩ {N̂S = NS} ∩ {f̂j = fj , ∀j}

)
:=

# {T > γ0 & N̂S = NS & f̂j = ∀ fj , ∀j}
NMC

.

(3.51)
Fig. 3.13 represents this estimated probability as a function of the sparsity parameter
β(NS) := 1 − logNS

logN (2.66) and the sines’ amplitudes. In this example, the number
of harmonics is precisely countable as the signals are sinusoidal functions with on grid
frequencies. For these simulations, we used L = 20 and the threshold of each test (TM ,
HC, BJ, resp. from left to right) corresponds to a PFA of 5% found empirically for HC
and BJ thanks to MC under H0 (see Fig. 3.10, last rows, red lines).
A grid of parameters of size 500 × 500 is evaluated for signal amplitudes α ∈ [0.05, 10]
m.s−1 and NS ∈ [1, 100] (corresponding to β ∈ [0.33, 1]). For TM , a zoom around β = 1
(i.e. NS = 1) has been done for visibility. Indeed, this test identifies one frequency and
has then a null probability to find the correct support if NS > 1.
BJ has the best performance over the whole considered sparsity regime (i.e. on 0.33 ≤
β ≤ 1). This test can locate the correct support with a high probability for signals with
α > 6 m.s−1 and β ∈ [0.33, 1]. If the performance of HC and BJ could be close in terms of
ROC (see Fig. 3.9) in the case of multiple signals, BJ better detects the true components
at their true location in a large part of the sparsity regime1.

1These results have not been published yet.
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Figure 3.12 – Study underH0 of tests TM (3.11), HC (2.70) and BJ (2.74) applied to P̃|P20 (3.2).
First row: “Frequency distribution” of each test statistics obtained through 104 MC simulations.
Last row: Empirical PFA(γ). The dashed red curves indicates a PFA of 5% obtained resp. at
γ0 = 11.6, 4.7 and 0.997 for the three considered tests.
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3.5.3 Effect of ignoring noise correlations

In Chap.2 (Sec. 2.6), we showed how ignoring noise correlations and applying statistical tests
to a classical (non standardized) periodogram leads to unreliable detection outcomes. Let us
illustrate this effect on the colored AR(6) noise described in (3.48) (∆t = 60 s here).

Consider two experiments where the sinusoidal signals are located in two opposite regions of
the noise PSD of the AR(6) process (cf. Fig. 3.5, panel b). The results are shown in Fig. 3.14.

First experiment: Under the alternative, NS = 5 sines are placed at signal frequencies in
a “bump” of the noise PSD (red lines, panel a). Panel b) shows the resulting empirical
ROC curves for tests TM , TF , TC and TCh (cf. Sec. 2.4). One sees that the performance
of classical tests like TCh (cyan) and TF (purple) applied to P appear more powerful than
TM (black), TF (yellow) and TC (red) applied to P̃|PL.

Second experiment: Under the alternative, the NS = 5 signal frequencies fall in a “valley”
of the noise PSD. The empirical ROC curves are shown in panel c). One sees that the
performance of tests using P̃|PL are now better than those based on P in this configuration
(the classical test ROC curves are on the diagonal).

To gain more insight on the relative tests performance, one compares, in the first row of
Fig. 3.15, the frequency distribution under H0 (as for Fig. 3.12, top row) of tests TM (P̃|PL),
TC(P̃|PL), TF (P), and TCh(P) (from left to right). For TF and TCh, the FA repartition in
frequency is not uniform and increases in the PSD regions of larger energy (ν < 1 mHz). When
signals frequencies happen to fall into these zones, tests based on P are favoured, but when the
frequencies fall outside such regions they have vanishing power. In contrast, the TM and TC tests
applied to P̃|PL allow a good detectability over all the frequency range, with performance close
to the asymptotic ones (L→∞, no estimation noise) for L ≈ 100. Under H1, one can see that
all the tests focus on the noise PSD bump when the signals are in these regions (second row).
When the signals fall into the valley regions (last row), tests based on P fail to detect the signals.

The false alarms of “unstandardized tests” accumulate precisely in the regions where the noise
PSD is large. Conversely, such tests have vanishing detection power in the PSD “valleys”. In
contrast, because of standardization by PL, the tests TM (P̃|PL) and TC(P̃|PL) have constant
false alarm rate over the whole frequency band (as also seen for HC and BJ applied to P̃|PL

in Fig. 3.12).

As a final remark, note that the tests based on P cannot be implemented as no threshold γ,
corresponding to a target PFA, can be derived. This is because the ROC curves can only be
derived if the PFA and PDET of the considered test are known, which is not the case for tests
based on P when the noise is colored.
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Figure 3.14 – (a) Noise and signals PSD. (b-c) ROC curves in case of signal frequencies falling
into the PSD “bump” region or the “valley” region of the noise PSD. The sines amplitudes have
been changed in the two cases for the ROC visibility but that does not influence the results.
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3.5.4 Comparison of the proposed standardization with a parametric ap-
proach

As discussed in Sec. 3.4, a way to deal with the frequency dependence of the noise is to estimate
its PSD by parametric models.
In order to compare performance of standardization by PL and by a parametric estimate in-
dependently from the choice of the noise model, we will apply estimation methods specifically
dedicated to AR processes (i.e. the chosen model is the true one and the parameters are esti-
mated as in (3.43)).
The question is the reliability of tests using P̃|ŜE,AR, and in particular how accurate is approx-
imation (3.47) for the PFA with this approach. (Recall that a difficulty with such methods is
the injection of estimation noise in the detection process through the parameters involved in
ŜE,AR. A standard approach discussed in Sec. 2.6 is to consider that the estimates are suffi-

ciently accurate for their intrinsic variance and bias to be negligible, i.e. SE ≈ ŜE,AR. We study
the performance of this approach here.) The results first regards ROC curves and then turn to
the actual control of the false alarm rate.

ROC comparison

Under H0 the noise is the AR(6) process described in (3.48). Under H1, we consider the case
of NS = 5 sinusoidal signals with frequencies falling into a “valley” region of the noise PSD (cf.
Fig. 3.12, right panel). The amplitudes of the sinusoids are all equals with αq = 0.07 m.s−1,
∀q = 1, . . . , 5 and the frequencies are fq = [4, 4.5, 5, 5.5, 6] mHz.
This section compares the performance of the tests based on standardization of P by a
parametric estimate, ŜE,AR, or by the non parametric estimate PL as in (3.2). The coefficients

of the parametric noise PSD estimate, ŜE,AR, are estimated by the best order and AR
coefficients found on a time series of length N × L by the selection criteria described in (3.43).
In the simulations, the best order is searched in the interval [1, omax = 40].

Fig. 3.16 shows the empirical ROC curves obtained through 104 MC simulation for five test
statistics:

• Two are based on the standardized periodogram calibrated by a non parametric PSD
estimate: TM (P̃|PL) (black solid line) and TC(P̃|PL) (red dashed solid line).

• Two are based on the standardized periodogram calibrated by the parametric PSD esti-
mate as described above: TC(P̃|ŜE,AR) with o estimated by FEP (blue points) and by
MDL (yellow points).

• A last test statistics TC(P̃|ŜE) is added to illustrate the case where the ŜE,AR coefficients
are estimated with the true AR order ô = o = 6 here (green points). This case is an ideal
(“oracle”) case for the standardization based on a parametric approach.

Each panel of Fig. 3.16 corresponds to one value of L (in reading order resp. for L = 1, 20, 50
and 100).
In the case L = 1, the “parametric tests” are more powerful than their non parametric coun-
terparts, as AR estimation acts as a relevant prior knowledge. In practice, this means that the
“whitening” effect of ŜE,AR is efficient because the considered AR estimation is efficient. The
ROC of the tests using the MDL criteria (which finds most of the time the true order in our
example, cf. Fig. 3.4) and of the test using the effective true order are the best. Indeed, these
tests have limited estimation error because the estimate ŜE,AR is smooth, which is obviously
not the case of the unconstrained, high variance estimate P 1 (the variance of PL decreases
in 1/L [Bartlett, 1950]). As L increases, the performance of parametric tests do not improve
significantly. In contrast, those of the non parametric standardization increase with L (as the
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variance at the denominator decreases) and the performance of all tests become comparable for
L ≈ 20. One can also see that, among the parametric tests, the test using the true model order
has not the best performance and the test using the MDL criterion has the better ones.
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Figure 3.16 – ROC curves in case of signal frequencies falling into the PSD “valley” for different
L values (1, 20, 50 and 100) associated to each panel (resp. from top left to bottom right). One
can observe better performance for larger L for tests based on P̃|PL.
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False alarm probability considering ŜE,AR ≈ SE

The parametric tests appear to have better performance in terms of ROC for small L. This is not
the whole story, however. To see whether these tests can be implemented, we now investigate
the relevance of the false alarm probabilities when derived under the approximation SE ≈ ŜE,AR
to compute target PFA for tests based on P̃|ŜE,AR. In the following study, we consider the PFA
of TC(P̃|ŜE,AR) approximated as in (3.47).

Fig. 3.17 compares, as a function of the test threshold, the PFA (3.47) (blue curve) with
the actual false alarm rates obtained for 1000 MC simulations. In each such simulation, an
estimate ŜE,AR(L) was obtained with the MDL criterion from L noise time series and used to
calibrate the periodogram.
For each such estimate, the true PFA of test TC(P̃|ŜE,AR, NC = Ns) was evaluated using
100 MC simulations and averages. The figure plots the averaged PFA for L = 1, 20 and 100
(resp. the black, green and red solid lines with dots). One sees that (3.47) is accurate, on
average, only when L is large. This figure indicates the variability of the true false alarm
rate. For each value of L, the figure also shows the empirical 3σ dispersion of the true
PFA w.r.t. its empirical average (colored shaded regions). Even when N is large, the true
significance levels at which TC test is conducted undergoes wild (and in practice unknown)
variations. The right panel is a zoom on the 3σ region for L = 100. Considering the
threshold γ = 5.9 for instance, expression (3.47) leads to a supposed PFA of ≈ 0.013. In
the right panel, one sees that the true false alarm rate for this threshold varies in reality
in the range [0.001, 0.03], depending on the realization of ŜE,AR. For smaller values of L,
the excursions of the true false alarm rates are so large that (3.47) is simply useless (grey
shaded regions). This shows that tests based on parametric estimation may be very hazardous,
even when the parametric model is true and when large data sets are available for PSD esti-
mation. Fig. 3.18 shows the empirical 1, 2, and 3σ envelops for the three considered values of L.
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Figure 3.17 – Comparison of the approximated PFA (3.47) (blue curve) with true PFA for
L = 1, 20 and 100. The solid lines represent the average actual PFA. The shaded regions are
the corresponding 3σ envelops. The right panel is a zoom around γ = 5.9 (indicated by the
purple boxed region in the left panel).

To conclude about the comparison between parametric vs non parametric approaches, the stan-
dardization by means of parametric estimates behave similarly for the different considered cri-
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Figure 3.18 – Empirical 1, 2, and 3σ envelops of PFA(γ) curves for TC applied to P̃|ŜE,AR for
different L: a) L = 1, b) L = 20, and c) L = 100.

teria, and they lead to better power than standardization using PL at low values of L. However,
they do not allow to accurately evaluate the false alarm rate, even in the ideal configuration
when the colored noise is generated according to the assumed parametric model. In contrast,
standardization by PL allows to do so, with power similar to those of parametric methods when
L reaches a few tens.

3.5.5 Application to the design of observational strategies

A direct application of the derived analytical expressions of the tests’ probabilities of false
alarm and detection is the design of observational strategies in the case of exoplanet detection
in RV time series.

To illustrate this, we consider under H1 a planet with the parameters of α Centauri B’s
exoplanet candidate as estimated in [Dumusque et al., 2012] (see the legend of Fig. 3.19). As
the orbital eccentricity of this planet is assumed null in this paper, the corresponding RV signal
is very sparse in the Fourier domain. Hence, we consider here test TM in (3.11) with PFA
given in (3.18) and PDET in (3.19). The time sampling ∆t is set to 4 hours but it was allowed
to slightly vary from one value of N to another in order to guarantee that the planet’s period
yields a frequency exactly on the Fourier grid. In this case, the spectrum is 1-sparse in Ω and
TM is the test that yields the best performance.

Under H0, one uses a model based on HD simulations of the Sun (cf. Perspective part). We
note that there is some mismatch between the simulated RV time series of the solar spectral
type (G2) and the true spectral type (K1) of the star hosting αCenB. Because spectral type
affects the noise properties (e.g. see [Meunier et al., 2017a]), these results should not be
considered to reflect perfectly the case of the candidate planet orbiting αCenB.

Fig. 3.19 illustrates the achievable performance compromises (PDET , PFA) as a function of N ,
for three target PFA (0.5, 0.1 and 0.01, indicated respectively by the dotted, solid and dashed
lines) and for different sizes of available training data sets L (∞, 100, 20, 5, shown respectively
in black, green, blue and red). These power curves were built using the expressions (3.21) and
(3.19) for the TM test and we checked that they are accurate in separate MC simulations (not

shown). In the case L → +∞, we used the fact that F (2, 2L)
d−−−−−→

L→+∞
χ2

2 to calculate the

theoretical PDET (PFA).
The study presented in Fig. 3.19 allows to quantify interesting facts. First, of course, PDET is
larger if the allowed PFA is larger. Second, for a fixed PFA, PDET is larger for an increasing

114



values of L. Going to specific cases, one sees that if a planet similar to the considered candidate
was orbiting a star of the considered spectral type (G2), of which 100 training time series are
available, it would require 250 days (1500 × 4h) of observations with 1 point every 4 hours
to guarantee a probability of detection of 90% while ensuring a false alarm rate of 1%. This
situation is indicated by the black square. With only L = 5 training time series, the probability
of detection would fall to about 10%, all other parameters equals (red square).
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Figure 3.19 – Example of a detectability study for a planet orbiting a solar type star (relevant
Keplerian parameters: Kp = 0.54 m.s−1, Tp = 3.23 days, ep = 0, Mp = 1.241 M⊕, i = 90◦,
dp = 0.0425 AU). The plot shows the achievable PDET for different configurations of PFA
budgets and numbers of available training light curves of the convective solar activity.

In this study, the frequency search is done on all the Fourier frequencies, i.e. in space Ω.
However, one can note that we can obtain higher PDET (at same PFA) by considering a narrow
frequency interval, i.e. Ω′ ⊂ Ω.
These results show that, if a reliable set of L noise time series is available, our theoretical results
on TM (P̃|PL) (for instance) can be used to determinate the number of time needed to warrant
any detection rate for a fixed PFA.

3.6 Summary and conclusions

In this chapter, we have investigated the possibility of using training noise data sets to improve
the reliability of the claimed false alarm rates. We have proposed to use these time series to
standardize the periodogram and analyzed the performance of several tests applied to this
periodogram.

In Sec. 3.2, we proposed an asymptotic analysis of the periodograms statistics after stan-
dardization in (3.2) for a model involving an unknown number of sinusoids with unknown
parameters in partially unknown colored noise, i.e. model (3.1). This model is quite general
and can be useful for a large variety of (quasi-) periodic signal detection problems.

In Sec. 3.3, this analysis allowed to characterize the performance of some standardized tests
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in terms of false alarm and detection rates. The considered tests include classical approaches
(TM , TC , TF , TCh and TF,rob) and also more recently considered adaptive tests (HC, BJ),
designed for the rare and weak setting.
We showed that when standardization is performed with a simple averaged periodogram as a
noise PSD estimate, tests as TM , TC , HC and BJ are CFAR for all sizes of training data sets.
Moreover, FA and detection probabilities can be derived by analytical expressions for TM and
TC . For adaptive tests, the standardization (by PL) offers the same benefits as if the statistics
of the noise were known a priori, with the CFAR property added. The false alarm and detection
probabilities can not be derived analytically and the P -values involved in HC and BJ have to
be computed through MC simulations or algorithms given in [Moscovich et al., 2016]. We also
showed the statistical distributions of tests as TF , TCh, and TF,rob applied to the standardized
periodogram are not known when standardization with PL is involved (at least for finite values
of L). In any case, without the standardization of P as proposed in (3.2), the PFA associated
to any test statistics can not be derived when SE is not known. In particular, we pointed
out that standardization based on parametric estimates of the noise PSD exhibits actual false
alarm rates that may be very far from the assumed ones, even for large data sets (cf. Sec. 3.5.4).

Regarding now the extensive numerical study of Sec. 3.6, one can list the following main results:

• Analytical PFA and PDET expressions derived in (3.18) and (3.19) for test TM (P̃|PL) and
derived in (3.38) and (3.41) for test TC(P̃|PL) are reliable for finite values of N (when
the correlation timescale is smaller than N). The influence of the noise correlation is
then negligible, and the term ρk in (3.5) can be approximated to 1 in general. When the
correlation timescale is large w.r.t. to the observation length N , the non-vanishing bias
and dependencies at finite N are the main cause of mismatch between theoretical and
empirical expressions (cf. Sec. 3.5.1).

• The performance of all test statistics based on P̃|PL logically increase with the number
of available training data sets (cf. Sec. 3.5.1).

• TC and the adaptive tests HC and BJ outperform TM when the number of pure sinusoids
under the alternative is large (while remaining small w.r.t. N). Adaptive tests can present
better power than some procedures for which the number of sinusoids would be known in
advance (cf. Sec. 3.5.2).

• Methods ignoring the noise correlations or using parametric noise PSD estimates can lead
to highly unreliable estimates of the false alarm probability. For the latter case, this is
even true when the noise model is exact, owing to the estimation noise of the model’s
parameters intrinsically injected in the detection procedure (cf. Sec. 3.5.3 and 3.5.4).

• Finally, the theoretical results on tests based on P̃|PL, for which we can control the
PFA and PDET , allow to design interesting detection strategies. These strategies can be
computed for different signal parameters as well as observational constraints. For example,
regarding the particular case of RV detection, such detection performance plots can be
interesting when considering a regular time sampling of 1 point/night. These results allow
to study best detection strategies in presence of convective noise, assuming of course that
HD simulations of such noise are available to implement P̃|PL.
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In practical applications, some of the assumptions made in this chapter may not be met as for
instance

(i) the stationarity of the colored noise process,

(ii) a regular sampling,

(iii) a large N .

This is, in particular, the case in exoplanet detection using RV time series, owing for instance
to astrophysical effects linked to magnetic activity (like spots, affecting (i)) or instrumen-
tal defects / observational constraints (affecting (i), (ii) and (iii)). Comparing theory to
practice in this particular application of RV planets detection, the present study is neverthe-
less useful to make feasibility studies, which then describe best achievable performance (i.e.,
around “quiet” stars and in absence of other un-modelled perturbations) for a regular sampling.

An important extension to the considered framework regards the case when, for periodic-
ity analysis, the time series is not correlated to orthogonal exponentials. This case encom-
passes situations where (a) the sampling is irregular, (b) P is not evaluated on the Fourier
grid (as in oversampled periodograms) (c) P is modified in the form of “generalized pe-
riodograms”, which correlate the time series with highly redundant dictionaries of specific
features (e.g. [Bölviken, 1983b, Baluev, 2008, Süveges, 2014, Scargle, 1982, Bretthorst, 2003,
Thong et al., 2004, Zechmeister and Kürster, 2009, Baluev, 2015, Gregory, 2016]). In such
cases, the considered ordinates exhibit strong dependencies. With the additional complica-
tion of partially unknown colored noise, analytical evaluation of the false alarm rate for the
considered tests seems out of reach. Addressing such situations is the purpose of the next
chapter.
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Chapter 4

Extension to the case of uneven
sampling
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This chapter investigates the difficult problem of assessing reliable false alarm rates for
detection tests when, in addition to the presence of a colored noise with partially unknown
statistics, the data sampling is irregular.

When the sampling is irregular, the classical periodogram ordinates P (νk) are not independent,
even when the noise is uncorrelated (i.e. WGN), because the sampled exponentials in (2.24)
are not orthogonal in general. This makes difficult to obtain analytical results for the PFA
(and the PDET ) of any test based on the periodogram ordinates. For instance, the analytical
expressions of PFA of tests TM and TC applied to P̃|PL (3.2) (given resp. in (3.18) and (3.38)),
are not valid for an uneven sampling.
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In the aim of working with periodicity analysis tools, similar to the classical peri-
odogram, different periodograms (mainly based on the Lomb-Scargle (LS) periodogram
[Lomb, 1976, Scargle, 1982]) have been developed. Some of these periodograms variants are
reviewed in Sec. 4.2.

In Sec. 4.3, we will introduce basic concepts of Generalized Extreme Value theory, which is the
asymptotic distribution of extrema of r.v. This section will be used in the proposed bootstrap
approach introduced in Sec. 4.5.

In Sec. 4.4, we will review some methods of the literature that aim to estimate the FA rates
of tests based on LS periodogram using the assumption that some periodogram ordinates are
independent or by using bootstrap procedures, or based on the theory of extreme values. As
we will see however, all these methods have been developed for the case where the noise is
White Gaussian.

Our contributions here are the following. Assuming again that we can dispose of reliable noise
time series (e.g. through hydrodynamical simulations of the stellar activity), we propose in
Sec. 4.5 an original and automated bootstrap method to produce reliable estimates of the PFA
of tests based on standardized periodograms of the form of (3.2).

The performance of such methodology to derive accurate false alarm rates will be evaluated
numerically in Sec. 4.6 on a synthetic colored noise process, as done in the previous chapter.
The investigation of the proposed methodology on real data and using real 3D hydrodynamical
simulations of the stellar convective surface activity is one of the main perspective of this
thesis.

The main results described in this chapter are published in [Sulis et al., 2017a].

4.1 Effect of uneven sampling on the periodogram

Let us first introduce the three main kinds of samplings that can be encountered in time series.

4.1.1 Considered sampling patterns

In the following, we consider different time samplings. They will be illustrated in Fig. 4.1 on a
pure sine function of the form

R(tj) = αs sin(2πfstj),

with αs = 1 and fs = 0.23 µHz. In this example, the initial (regular) time series length is
N = 100 and ∆t = 1 day. Each sampled signal is obtained by convolution of a continuous
signal by a stream of Dirac impulsions. In each case, the spectral window1 of the observation
(cf. Sec. 2.2.8) is computed using zero padding with N ′ = 10 × N = 1000 to better see the
secondary peaks of the “continuous spectral window”. Moreover, the spectral windows will be
normalized by their highest peak (in ν = 0) to compare their different structures. In each case,
the classical periodogram described in (2.24) is evaluated at dates {tj}.

1Computed as the FT of the time series with zeros when data are missing and ones otherwise. In the case of
a regular sampling, we have seen in Sec. 2.2 that the spectral window is related to the Fejèr kernel [Li, 2014].
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Regular sampling (S1). This sampling configuration, where the time sampling ∆t is constant
and the dates defined by tj = j∆t, ∀j = 1, . . . , N , has been considered in Chap. 2 and
3. This sampling allows to define a “natural” frequency set for the periodogram defined
by the Fourier frequencies given in (2.22). Associated to S1, one can also define precisely
the Nyquist frequency (fNy), i.e. the limit beyond which all signal frequencies (if present)
will be aliased:

fNy :=
1

2∆t
.

The first row of Fig. 4.1 illustrates a regular sampling of a pure sine R(tj) of frequency
on Fourier grid (fs = ν53, left), the spectral window of the observation (middle) and
the periodogram (right) related to the convolution of the signal spectrum by the spectral
window. In the spectral window, the zero padding allows to see the secondary peaks,
which are null at the Fourier frequencies. In the periodogram, the convolution results in
the presence of 2 peaks at frequencies νk = ±fs (cf. discussion in Sec. 2.2).

Regular sampling with gaps (S2). This configuration contains regularly sampled observa-
tions (e.g. in Astronomy, 1 point/night) where some data are occasionally missing (e.g.
due to meteorological events) or periodically missing (e.g. due to seasonal events).
This case is illustrated in the second row of Fig. 4.1, where the pure sine function R(tj)
(left, dots) is observed at three regular time intervals and contains two periodic gaps of
35 points each (N2 = 30

100N = 30). In the corresponding spectral window (middle), one
can observe several secondary lobes at non null frequencies, which are multiples of the
data gaps. In this case, the convolution of the signal spectrum by the spectral window
produces additional lines in the periodogram as well (right) [Vityazev, 1994]. This can
make the interpretation of the periodogram delicate (see e.g. the discussion in Chap.1 of
[Bourguignon, 2006]).

Random irregular sampling (S3). In this configuration, the data samples are taken ran-
domly in time. This case is illustrated in the last row of Fig. 4.1 where the sine function
R(tj) (left, dots) is observed at irregular time intervals (N3 = N2 points selected randomly,
here taken on the regular grid S1, for a computational time reason). In the spectral win-
dow (middle), one can see several peaks, which appear as “noise” or “signal” peaks in the
periodogram (right).
For signal detection, benefit could be taken from S3, as this kind of irregularity allows to
increase the number of frequencies free from aliases (as the alias’ origin comes from period-
icities in the spectral window, see e.g. [Eyer and Bartholdi, 1999, Púcik et al., 2012]). A
random time sampling improves on the aliases of the spectral window, thereby enhancing
sparsity in the Fourier space under the alternative. We might thus expect that tests like
TM in (2.51), HC in (2.70) or BJ in (2.74) (applied to suitably normalized periodogram
ordinates) would work better in irregular than in regular sampling. Regarding the re-
sults of our studies (cf. Sec. 4.5-4.6), the comparison of the performance of such tests in
case of uneven and even samplings is straightforward and very interesting but is left in
perspectives of this work.

For S3, the definition of a Nyquist frequency is difficult. Bretthorst proposed to use a
critical time, say δt, defined as the largest common divisor of all sampling epochs: tj := jδt,
with j = 1, . . . , N ′ ∈ N and N ′ >> N [Bretthorst, 1988]. If such a divisor exists, Eyer &
Bartholdi showed that the spectral window periodicity is 1/δt and the Nyquist frequency
can then be classically defined as fNy = 1/2δt (e.g. this was the case for the numerical
example in Fig. 4.1, cf. last row) [Eyer and Bartholdi, 1999]. If such a divisor does not exist,
the Nyquist frequency does not exists as well. In practice, δt always exists for finite preci-
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sion calculation S but, if δt is too small, it may lead to computationally unfeasible calculations2.

Regarding the application of interest, astronomical observations from the ground are affected
by the day/night intermittence, the meteorological events or still instrumental failures during
the data acquisition. Coupled with that, the observational time allocated to the researchers on
high resolution instruments, necessary to detect the smallest planet signatures (such as HARPS,
cf. Chap. 1), is difficult to obtain. Hence, gaps within the data of the form of S3 are common
in astronomy and especially for ground based radial velocity surveys. This chapter is then an
indispensable study if we want to apply our methodology on real RV observations.
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Figure 4.1 – Illustration of a sine function (column 1) in the Fourier domain (column 3) depend-
ing on the spectral window of the observations (column 2). The first row represents the case of
a regular time sampling S1 (N1 = N = 100, ∆t = 1), the second raw of S2 (regular sampling
with two periodic data gaps of 35 missing points each, N2 = 30), and the last row illustrates
a random irregular sampling S3 (N3 = 30). When gaps are present, one can observe peaks at
frequencies ν 6= fs in the periodograms due to the spectral window of the observations (cf. two
latter rows). These peaks look like noise or signal peaks in the data.

2 Note that different methods have been proposed in the literature to estimate the Nyquist frequency: some
consider the mean of the sampling interval [Scargle, 1982, Horne and Baliunas, 1986], the average of the inverse
time intervals between the measurements [Debosscher et al., 2007], the median [Graham et al., 2013] or the min-
imum sampled spacing [Roberts et al., 1987]. However, while all the limit frequencies defined by these different
techniques asymptotically tend to the definition of fNy for S1, none of these approaches seems strictly valid in
practice (e.g. see the discussion p.18 of [VanderPlas, 2017]).
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4.1.2 Classical periodogram and uneven sampling

When the sampling is regular (S1), the classical periodogram ordinates in (2.24) can be inter-
preted as the energy obtained when projecting the data on orthogonal exponentials. Indeed, as
shown in Chap. 2, P can be rewritten in this case as:

P (ν) :=
1

N

∣∣∣∣∣
N∑
j=0

X(tj)e
−2πitjν

∣∣∣∣∣
2

S1=

∣∣∣∣∣ < X,gj >

∣∣∣∣∣
2

with gj := [e−2πijν , . . . , e−2πijNν ]>

S1=
1

N

[(
N∑
j=0

X(tj) cos(2πitjν)

)2

+

(
N∑
j=0

X(tj) sin(2πitjν)

)2]
.

(4.1)

When the sampling is irregular (S2,S3), the complex exponentials gj are not orthogonal (nor
have the same norm), so < gj ,gk > 6= 0 for j 6= k, and the set of periodogram ordinates
are correlated (and thus dependent). It is also possible to form “generalized periodograms”,
which correlate the time series with possibly highly redundant dictionaries of specific features.
The most famous (and used) such periodogram is the Lomb-Scargle periodogram [Lomb, 1976,
Scargle, 1982].

4.2 Variants of the periodogram

4.2.1 The Lomb-Scargle periodogram

Lomb & Scargle have shown that the correlation between the sine and cosine terms in (4.1) can
be cancelled by construction of a new periodogram [Lomb, 1976, Scargle, 1982]. For WGN, the
two terms in (4.1) are two χ2

1 and hence this periodogram still has a χ2 distribution.
More specifically, Scargle addressed a general form for the classical periodogram written as

P (ν) =
A2

2

(
N∑
j=0

X(tj) cos(2πν[tj − τ(ν)])

)2

+
B2

2

(
N∑
j=0

X(tj) sin(2πν[tj − τ(ν)])

)2

(4.2)

with A,B ∈ R and τ(ν) an arbitrary function of the frequency and time epoch to be optimized.
The value of the phase is chosen such the periodogram in (4.2) (i) reduced to its classical form
for regularly sampled observations (leading to a χ2 distribution), and (ii) is invariant to a time-
shift of the time epochs (as the classical periodogram in (2.24) for a regular sampling). The
resulting Lomb-Scargle (LS) periodogram is easy to implement and defined as:

PLS(ν;A,B, τ) :=
1

2



 N∑
j=1

X(tj) cos
(

2πν[tj − τ ]
)2

N∑
j=1

cos2 (2πν[tj − τ ])

+

 N∑
j=1

X(tj) sin
(

2πν[tj − τ ]
)2

N∑
j=1

sin2 (2πν[tj − τ ])


(4.3)

with

τ(ν) :=
1

4πν
arctan


N∑
j=1

sin (4πνtj)

N∑
j=1

cos (4πνtj)

 . (4.4)

123



The frequency ν in (4.3) and (4.4) is usually taken in the interval ν ∈ [0, (N − 1)∆ν] with
∆ν = 1

T (but, as discussed in Sec.4.1.1, the frequency interval can be chosen differently).
The LS periodogram differs from the classical one by the denominators in (4.3) (namely,∑

j cos2(2πν[tj − τ ]) and
∑

j sin2(2πν[tj − τ ])) to be compared to N/2 in (2.24) (cf. Fig.5 of
[Scargle, 1982]). We note, however, that in many cases of irregular sampling, PLS differs only
slightly from the classical periodogram (cf. Example. 14). Moreover, the ordinates of PLS are
not independent for uneven samplings S2 and S3, even for WGN.

Example 14. Comparison between classical and LS periodograms for S1 and S2

Consider a model involving under H0 a WGN
i.i.d.∼ N (0, 1) of (known) unit variance and

under H1 a sine function of parameters αs = 1 m.s−1 and fs = 0.2 Hze.g.. The time series
are irregularly sampled on N ′ = 50 data points (N ′ points are randomly taken in a larger
regular grid of N = 500 points).
Panel a) of Fig.4.2 shows one realization of the classical (black) and LS (red) periodograms
under H1. The classical periodogram has been computed on a regular grid with ∆t = 1 s
and missing data are treated as zeros. Panel c) shows the absolute difference as a function
of the frequency between these two periodograms. Panel b) shows the empirical ROC
curves of test TM given in (2.51) applied to both periodograms. These curves have been
computed using 105 MC simulations of the considered model. Panel d) represents the
difference in terms of PFA and PDET by computing their absolute difference at each test
threshold γ.
One can see that, in terms of ROC, test TM based on the LS periodogram has better
(though not significantly better) detection performance (see [Vio et al., 2010] for similar
conclusions).

In case of uncorrelated noise X(tj)
i.d.∼ N (0, σ2

j ) under the null (with possibly σ2
j different but

known), Scargle has shown that the LS periodogram in (4.3) is equivalent, at each considered
frequency ν, to a data fitting by a sinusoidal function of the form

YLS(tj ;θLS) = A cos(2πνtj + τ(ν)) +B sin(2πνtj + τ(ν)), (4.5)

with θLS(ν) = [A,B, τ(ν)]> the unknown model’s parameters. The PLS can then be seen as
a least-square fitting procedure (“χ2 minimization procedure”), i.e. a function that minimises
the mean square difference between the data and a model function of the form:

fLS(t;θLS) :=
∑
j

(X(tj)− YLS(tj ;θLS))2

σ2
j

, (4.6)

From this point of view, the LS periodogram is very similar to the FT in the classical
periodogram: sine and cosine function are fitted across a grid of frequencies.

When the noise is white Gaussian, one can show that each individual PLS ordinate is χ2 dis-
tributed, ∀ν [Scargle, 1982]:

PLS(ν) ∼ ϕχ2
2
(γ) =

1

σ2
e−γ/σ

2
. (4.7)

The cdf of (4.7) is of the form

ΦPLS (γ) = 1− e−γ/σ2
. (4.8)

Consequently, σ2 in (4.7) and (4.8) has to be known if we want to be able to set the threshold
γ for a target PFA in Schuster’s test for instance.
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Figure 4.2 – Comparison between classical (black) and LS (red) periodograms, given in (2.24)
and (4.3), for series of sine in WGN unevenly sampled. The signal frequency is 0.2 Hz. a)
One periodogram realization, b) ROC comparisons, c) absolute periodogram difference at each
frequency, and d) absolute ROC difference computed at each threshold γ. One can observe that
the periodograms (and associated ROC) differ only slightly.

When the noise variance is unknown, different periodogram normalizations exist (e.g.
[Schwarzenberg-Czerny, 1998, Baluev, 2008]), but they seem to be rarely used in practice.

When X is an unknown colored noise, the statistical distribution of (4.3) is unknown and the
interpretation of PLS has to be done carefully [Vio et al., 2010]. In general, classical procedures
consist in

1. Computing the PLS ,

2. Whitening all the peaks assumed caused by the noise through a procedure such as CLEAN3

[Roberts et al., 1987],

3. Computing PLS on the data residuals,

4. Standardizing the PLS by the estimated variance of the data residuals, say σ̂2
res:

PLS
σ̂2
res

,

5. Estimate the PLS residual peaks significance assuming the data residuals are uncorrelated,
i.e. PLS

σ̂2
res
∼ χ2

2.

3In a few words, a CLEAN procedure consists in removing iteratively the largest peak in the periodogram
through a fit of a given function to the data (in general, a sinusoid with frequency given by the considered peak
location).
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The last point is only approximately correct at each frequency and the marginal joint distribu-
tion of the periodogram ordinates and their intrinsic dependences remain unknown.
Before discussing the control of the FA rate in case of colored noise for uneven sampling, which
is of concern in this thesis, let us review other interesting variants of the classical periodogram
(2.24).

4.2.2 Least-square fitting and other related periodograms

In the literature, one finds different forms of model YLS in (4.5) involved in the minimization
of a function of the form:

fY (t;θ) := (X−Y(t;θ))>Σ−1(X−Y(t;θ)) (4.9)

with X = [X1, . . . , XN ]> the observed data of covariance matrix Σ and Y(t;θ) =
[Y(t1;θ), . . . ,Y(tN ;θ)]> the signal model parametrized by θ.

For example, one can note the floating mean periodogram consisting in adding an offset constant
C ∈ R to model YLS in (4.5) to makes (4.9) equivalent to a constant plus sine wave fitting
[Cumming et al., 1999]:

YC(tj) = A cos(2πνtj) +B sin(2πνtj) + C. (4.10)

The data-compensated DFT (DCDFT) considers a model YDC of the form [Ferraz-Mello, 1981]

YDC(tj) = A sin(2πνtj) +Bε(tj), (4.11)

with A an arbitrary constant, ε
i.i.d.∼ N (0, 1) and B a factor related to the SNR. The stochastic

term of (4.11) has been introduced to counteract the fact that the mean of the data is not
well estimated when the sampling is irregular. For example, a local concentration of data will
overestimate the estimated mean in contrast to largely spaced irregular data. As for the PLS ,
when the noise is a WGN, each ordinate of the DCDFT is χ2 distributed but they are not
independent [Bourguignon, 2006].

Zechmeister & Kürster defined a Generalized LS periodogram by introducing weight functions
to the model YC in (4.10) to take into account that some data are more reliable than others
[Zechmeister and Kürster, 2009]. However, in contrast to the general case of (4.9), this measure
of the data uncertainties takes into account the error at each time tj (e.g. due to observational
conditions as the seeing or temperature variations) but not the noise correlations. Consequently,
considering a WGN, Zechmeister & Kürster write (4.9) as

fZ(tj ;θ) := W

N∑
j=1

wj

(
X(tj)− Y (tj ;θ

)2
(4.12)

with wj = 1
W

1
σ2
j

the normalized weights, W =
∑N

i=1
1
σ2
i
, and

∑N
j=1wj = 1.

Regarding the literature in astronomy for example, other periodogram variants exits:

Bayesian periodograms. Bayesian Keplerian periodograms involve a model, say YK , based
on (1.3) [Cumming, 2004, Jenkins et al., 2014, Tuomi et al., 2014, Mortier et al., 2015].
They are an extension of the LS periodogram but with a Keplerian RV model, “weight”
functions and a constant offset added to the data. The parameters space can be explored
using different methods, which are generally computationally heavy (e.g. using adaptive
Metropolis algorithm [Tuomi et al., 2014]).
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Methods using Bayesian Keplerian periodograms were shown to be the most successful
methods (compared to the other) to detect (by iteration) the synthetic planetary signals
injected in noisy data while ensuring a low false positive detection rate in the Interna-
tional Challenge proposed by Dumusque [Dumusque et al., 2017]. In practice, Keplerian
periodograms have been also successful to detect several planets (see e.g. the detection of
a cold Saturn planet in [Tuomi et al., 2014], or the claimed 6 planets systems of GJ876 in
[Jenkins et al., 2014]).

Maximum-Likelihood periodograms. Baluev proposed a maximum-likelihood periodogram
(MLP) that involve the multi-planet Keplerian parameters fitting and uncorrelated Gaus-
sian noise RV errors (method available through the software PlanetPack4, which can be
used for the goal of exoplanets detection [Baluev, 2013b]). The MLP represents a like-
lihood function (2.14), which compares a given model to the data at each step of the
minimization in (4.9). In the case of a Gaussian noise, the likelihood function writes:

L(x;θR,θE) =

N∏
i=1

1√
2πθE(i)

exp
{−[X(ti)−YK(ti;θR)]2

2 ξ θE(ti)

}
(4.13)

with YK the considered Keplerian model, θR the model parameters depending on the
Keplerian parameters related to (1.3), θE(ti) := σ2

?(ti)+σ2
G the noise parameters depend-

ing on the stellar (σ2
?) and instrumental (σ2

G) noise components to be estimated, and ξ a
corrective factor depending on the used number of degrees of freedom (here, of the size of
θR). Function (4.13) has to be maximized and the significance, according to the model, is
directly evaluated from the obtained values. One of the main advantages of such a method
is that it is able to detect multiple signals at the same time (i.e. it is not influenced by
data removal since it is a joint estimation) and is opened to include correlated noise along
with the WGN component.

Global fitting approaches. In the case of multiple signals (or a signal with harmonics),
the classical procedure based on the LS periodogram consists in subtracting out the
highest components before a new application of the method on the data residuals. This
can induce problems however, as the removal, one by one, of the highest components
affects the periodogram at all frequencies at each iteration. Hence, such iterative
methodology is critical for detecting low mass planets as SNR are typically low and
each iterative step can possibly influence the peaks due to the signal of interest
[Jenkins et al., 2014]. To counteract this limit, “multi-sines” fitting methods, which
consists in estimating simultaneously all the periodogram components, have been
developed (e.g. [Bourguignon et al., 2007, Hara et al., 2017]).
For example, Hara et al. proposed to fit the multi planet signatures simultaneously
during the detection procedure. Their method (called the basis pursuit `1-periodogram)
is a sparsity driven technique, where the observed RV are fitted using a global model
fitting approach combined with a Gaussian process to account for the noise correlations.
They applied their method to published detected multi-planetary systems and shared the
first place, with the Bayesian Keplerian periodograms, in the International Challenge of
Dumusque [Dumusque et al., 2017].
Alternatively, Feng et al., proposed an alternative Bayesian method, to separate in
the same time both signals and correlated noises [Feng et al., 2017]. This avoids
the bias introduced by any residual based analysis method. Their routine consists
in fitting the correlated noise using a Moving Average (MA) model, comparing the
noise models scores, selecting one, and optimizing a frequency-dependent linear trend
simultaneously with the sinusoids and noise components. The significance of signals

4https://sourceforge.net/projects/planetpack/
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are then accessed visually, through a moving periodogram, built using the Bayes’ factor
(estimated by the Bayesian information criterion, BIC, as described in [Feng et al., 2016]).

To summarize, there exists numerous interesting periodogram-like tools to deal with irregular
sampling. The majority of these models have reached a lot of success in extrasolar planet
detection.
However, these methods have also their drawbacks when dealing with signal buried in the stellar
noise as this colored noise is difficult to be isolated from the planetary signal. The choice of the
noise model can greatly influence the detection choice. For example, around the star GJ 581,
a system of 6 planets has been found by using a WGN model [Vogt et al., 2010], while planets
f and g were refuted when using a Gaussian red noise model (cf. [Baluev, 2013a], who also
questioned the existence of planet d). As noticed in [Feng et al., 2016], this is also the case for
the system around GJ 667C, which was claimed using WGN models and refuted by methods
using MA and Gaussian models [Anglada-Escudé et al., 2013]. Moreover, complicated models
(as the Keplerian periodograms) are computationally heavy (as a lot of parameters have to be
considered), which can make their use complicated for long time series.

4.3 Generalized Extreme Value distribution

Before discussing the false alarm probability applied to periodograms such as the PLS , we
dedicate a section to an introduction to Generalized Extreme Value (GEV) theory, which will
be useful for Sec. 4.4.3 and in our study in Sec. 4.5.2. This introduction is mainly based on the
Coles’ book [Coles, 2001].

4.3.1 Generalities

The GEV approach consists in looking at the asymptotic (N →∞) behavior of the distribution
of the extremum of N r.v. (minima as well as maxima).
Consider here test TM (2.51) applied to a vector Z and the linear renormalization of TM (Z):

T ?M (Z) :=
TM (Z)− bN

aN
, (4.14)

with aN > 0 and bN some constants. The following theorem (extracted from [Coles, 2001],
Theorem 3.1, p.46) gives the three possible (asymptotic) distributions of (4.14).

Theorem 3. (Extremal types theorem - Theorem 3.1. [Coles, 2001]).
If there exist sequences of constants aN > 0 and bN such that

Pr

(TM (z)− bN
aN

≤ z
)
−−−−→
N→∞

G(z),

where G is a non-degenerate function, then G belong to one of the following distributions:

I : G(z) = exp
{
− exp

[
−
(z − b

a

)]}
, −∞ < z <∞

II : G(z) =

 0, z ≤ b,

exp
{
−
(z − b

a

)−α}
, z > b,

III : G(z) =

 exp
{
−
[
−
(z − b

a

)α]}
, z < b

1, z ≥ b.

for positive values of parameters a, b, and α.
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This theorem is valid in the asymptotic regime, for all random variables z, which are sets of
maxima or minima. The three distributions G(z) of Theorem. 3 are (cf. [Katz, 2008] for the
different examples):

I- Gumbel distribution: the density of G decays exponentially, the upper end-point u is
infinite. The probability that z achieve large maxima is lower than for Fréchet distribution,
but it can happens anyway (contrary to the Weibull distribution). Examples are: normal
(i.e. Gaussian), log-normal, Gamma, exponential and χ2 distributions.

II- Fréchet distribution: the density of G decays polynomially, the upper end-point u is also
infinite. There is a non negligible chance than z achieve the extreme values. Examples
are: Student-t and Cauchy distributions.

III- Weibull distribution: the upper end-point u is finite. In this case, z < µ− ξσ and there is
zero probability to have value above this limit. Examples are: β and uniform distributions.

These three families of distributions will be illustrated in Example. 16. The distribution I and
II correspond to different rate of decay in the tail of the distribution of TM (Z), which are
parametrized by α.
The choice between these three distributions, as a priori distributions, is delicate. A better way
to avoid this choice is to reformulate the extremal types theorem with a single family supersed-
ing the three distributions: the GEV distribution [Fisher and Tippetts, 1928, Jenkinson, 1955].
The GEV distribution has cdf:

G(z;θGEV ) :=


exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ

+

}
, for ξ 6= 0

exp
{
− exp

{
−
(z − µ

σ

)}}
, for ξ = 0,

(4.15)

where the notation a+ means a+ := max(0, a) and θGEV := [ξ, µ, σ]> the GEV parameters
vector with ξ ∈ R the shape, µ ∈ R the location, and σ ∈ R+ the scale. In the case ξ 6= 0,
(4.15) is defined for z : 1 + ξ z−µσ > 0. In the case ξ = 0, (4.15) is derived by taking the limit
in 0 and gives the Gumbel distribution. A value ξ > 0 corresponds to the Fréchet distribution,
ξ = 0 to the Gumbel distribution, and ξ < 0 to the Weibull distribution.

An important quantity is the return level function, γ(q), evaluated for a return period q. In
common terminology, the return level is the level that is expected to be exceeded once in every q
random trials under the same characteristics. For example the return level γ(1/10) is expected
to be exceeded on average once every 10 time series of same length and time sampling grid. The
FA threshold associated to a target PFA is simply the 1−PFA quantile of the GEV distribution
(G(γ;θGEV ) = 1− PFA), which can be found by inverting (4.15) for test TM (Z) in (4.14):

γ(PFA;θGEV ) = G−1(1− PFA;θGEV ) =


µ− σ

ξ

(
1−

(
− log (1− PFA)

)−ξ)
, for ξ 6= 0,

µ− σ log
(
− log (1− PFA)

)
, for ξ = 0.

(4.16)
The demonstration of (4.16) is reported in Appendix. D.

4.3.2 Parameters estimation

The standard method to estimate the three unknown parameters θGEV of the GEV distribution
is to maximize the log-likelihood function associated to (4.15).
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This log-likelihood function is easily obtainable from the product of the GEV density. Denoting

the vector of b maxima Z = [Z1, . . . , Zb]
> following the GEV distribution (say g), Zi

i.i.d∼
g(θGEV ), the log-likelihood writes:

`(z;θGEV ) =


− b log(σ)−

(
1 +

1

ξ

) b∑
i=1

log
(

1 + ξ
zi − µ
σ

)
−

b∑
i=1

(
1 + ξ

zi − µ
σ

)−1/ξ
, for ξ 6= 0,

− b log(σ)−
b∑
i=1

(zi − µ
σ

)
−

b∑
i=1

exp
{
−
(zi − µ

σ

)}
, for ξ = 0.

(4.17)
with 1 + ξ zi−µσ > 0 for the case ξ 6= 0 (as otherwise (4.17) goes to −∞) and b the number of
considered maxima. The demonstration of (4.17) is reported in Appendix. D.
Maximizing this function consists in differentiating (4.17) with respect to each parameter θGEV .
It yields a system of equations given in (D.8) (cf. Appendix. D). As it does not exist any
analytical solution to solve these equations, they have to be solved iteratively using standard
numerical algorithms such as the Newton-Raphson method. It gives the MLE parameters
θ̂GEV := [ξ̂, µ̂, σ̂]>. The method to evaluate the standard errors on these GEV parameters is
also reported in Appendix. D (cf. (D.17)).

4.3.3 Diagnostic plots

To verify the “quality” of the parametric GEV modelization, one can usually uses diagnostic
plots as the Quantile-Quantile (Q-Q) or the Return level plots.

Quantile-Quantile plot The Q-Q plot aims to verify, visually, the validity of the GEV model
by comparing the empirical distribution of the independent maxima with the GEV model.
Considering the ordered maxima z(i), defined for i = 1, . . . , b, the empirical probability to
have exactly i values less than or equal to z(i) is i/b. Slightly changing5 this probability

by i
b+1 , the Q-Q plot at the point z(i) writes (abscissas, ordinates):{

Ĝ−1
( i

b+ 1
; θ̂GEV

)
, z(i)

}
, for i = 1, .., b.

If the fitted GEV model is good

Ĝ(z(i); θ̂GEV ) ≈ i

b+ 1
,

and the plot is close to the unit diagonal. Deviations from linearity are indicative of an
invalid GEV model. Contrary to the histogram plots of the data samples, which are gen-
erally less informative as their shape is sensitive to the chosen samples grouping intervals
(i.e. the bins), the Q-Q plot allows to see the possible divergences in the distribution tails
(where we usually want reliable return level precision, cf. e.g. to the discussion in Sec. 2
of [Süveges, 2014]).

Return level plot The return level plot is the graph used to evaluate if the variations in the
Q-Q plot are “natural” or in contrary if they are caused by an invalid GEV model. This
plot consists in plotting the return level (given in (4.16)) against the probability values[
− log(1− q)

]
in logarithm scale:{

log
[
− log(1− q)

]
, γ(PFA;θGEV )

}
∀0 < q < 1.

5To avoid the cdf value 1, which could cause problems as noted in [Coles, 2001, Süveges, 2014].
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and to compare it with the maximum likelihood return level estimate γ̂(PFA; θ̂GEV ) eval-
uated by replacing θGEV by θ̂GEV in (4.16). The abscissa are plotted in logarithm scale
because it compresses the tail of the distribution and then displays the return level esti-
mates for long return periods.
If ξ = 0 the plot is linear. If ξ < 0, the plot is convex with asymptotic limit as p → 0 at
σ
ξ , and if ξ > 0 the plot is concave and has no finite bound. Confidence intervals can be
associated to the return level plots to be more informative (cf. (D.20) of Appendix. D).

Example 15. Illustration of the three GEV distribution families

To illustrate the three different families of the GEV distribution, we generate b = 104

realizations of i.i.d. r.v. X with length N = 1000. For each series, we compute the
maximum, resulting in a vector Z = [Z1, . . . , Zb]

> of maxima and the parameters θ̂GEV :=
[ξ̂, µ̂, σ̂]> are evaluated as described in Sec. 4.3.2. The 95% confidence intervals are
obtained using (D.17) (cf. Appendix. D). Three cases are studied:

• Case 1: the r.v. follow a Student-t distribution Xi
i.i.d.∼ t(5) with 5 degrees of freedom,

• Case 2: the r.v. follow a normal distribution Xi
i.i.d.∼ N (0, 1),

• Case 3: the r.v. follow a Beta distribution Xi
i.i.d.∼ β(1, 2).

The found GEV parameters, resulting from the maximum log-likelihood estimation, with
their 95% confidence interval are given in the Table below.

ξ̂ ± δξ̂ µ̂ ± δµ̂ σ̂ ± δσ̂

Case 1 0.17 0.11 9.63 1.92 2.03 0.22

Case 2 -0.08 -0.11 7.58 0.36 0.38 -0.03

Case 3 -0.5 -0.53 0.98 0.05 0.005 -0.46

As announced in Sec. 4.3.1, one can see that the first case is a positive shape (ξ̂ ± δξ̂ > 0)
corresponding to a Fréchet distribution. The second case is a shape around zero (−0.19 ≤
ξ̂ ≤ 0.04) and corresponds to a Gumbel distribution. The last case, with −1.02 ≤ ξ̂ ≤ 0.03,
can be associated to a Weibull distribution.
Fig. 4.3 below illustrates the diagnostic plots associated to these three cases. The first
row shows the empirical distribution of the maxima obtained through the MC simulations
(histogram) vs the GEV pdf given in (4.15) evaluated with θ̂GEV . The second row shows
the Q-Q plots. Each data point in blue defines a sample point and the red straight lines
show the diagonal. One can observe, for each case, the linearity of the curves with no
significant deviations in the tails validating the estimated GEV model. The last row shows
the return level plots with theoretical value (blue) and empirical one (red) with the 95%
confidence intervals (black dashed curves, cf. Appendix. D).
One can see the different shapes of the return level plots according to the value of ξ and
the concordance between the theoretical plot (red) and empirical one (blue). This confirms
again the good evaluation of the fitted GEV model.
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Figure 4.3 – Diagnostic plots for three different GEV estimations.

4.4 False alarm rates evaluation

Let us now describe common methods that we can find in the literature to evaluate the false
alarm rate of TM applied to the LS periodogram. In Chap. 3, we have seen that TM is easy to
set up and appeared powerful to detect very sparse signals in the Fourier space.

4.4.1 Method of “independent” frequencies

We are interested here in the statistical behavior of M := TM (PLS) with:

TM (PLS) := max{PLS(ν1), PLS(ν2), .., PLS(νN )}
H1

≷
H0

γ, (4.18)

with PLS(νi) a set of N r.v. with distribution ϕPLS given in (4.8) in the case of a WGN (note
that the value of N is here different from the total length of the time series and corresponds to
the number of considered Fourier frequencies). For different periodogram standardizations (see,
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[Baluev, 2008]) the distribution ϕM changes depending on the number of degrees of freedom
used in the orthogonalization (2 for the PLS).

If the N considered ordinates are independent, the distribution of (4.18) is easily derivable:

ΦM (m) := Pr(M ≤ m) =
N∏
i=1

Pr(PLS(νi) ≤ m) = ΦN
PLS

. (4.19)

However, in practice the ordinates PLS(νk) are not independent if the sampling is irregular.
Consequently, ΦM never equals ΦN

PLS
in (4.19). Indeed, the PLS ensures the same marginal

distribution in case of WGN for the PLS ordinates but dependencies between these ordinates
exist because of the irregular sampling. The correlations and level of dependency of the r.v.
involved in (4.3) are contained in the spectral window (cf. discussion in [Frescura et al., 2008]).

Common methods consist in considering (4.19) anyway and finding, by empirical methods, an
estimate of an “effective” number of “independent” periodogram ordinates, say N̂ , and evaluate
the PFA as

PFA(γ,M) ≈ 1− ΦN̂
PLS

.

Examples of empirical methods to estimate N̂ are:

• Methods using MC simulations [Horne and Baliunas, 1986],

• Method deriving analytical estimates through different assumptions
[Schwarzenberg-Czerny, 1998, Cumming, 2004, Frescura et al., 2008]. For example,
Schwarzenberg-Czerny uses the approximation that the distribution of the maximum
(well normalized) periodogram component is related to the distribution of a single
component.

• Methods using bootstrap procedures (cf. paragraph below) to create thousands of
realizations of the considered test statistics. N̂ is then estimated through the me-
dian value of the obtained empirical maxima (say mmed) as N̂ = log 0.5

log Φ̂M (mmed)

[Schwarzenberg-Czerny, 2012].

However, in general, these empirical methods lead to inconsistencies because the supposed
functional form of the PFA above is wrong [Frescura et al., 2008, Süveges, 2014]. In the absence
of reliable estimates for the distribution of test statistics based on PLS (or possibly an other
periodograms of unevenly sampled time series), one can turn to pure bootstrap techniques.

4.4.2 Bootstrap methods

In essence, bootstrap procedures use sample-driven Monte Carlo simulations to produce em-
pirical estimates of the distribution of a considered set of random variables. These tech-
niques, initially introduced for i.i.d. r.v., have been intensively studied in the last decades
(see e.g. [Zoubir and Iskander, 2004]). Bootstrap techniques exist in the case of even sam-
pling and weakly dependent data (e.g. [Paparoditis and Politis, 1999]) and different resam-
pling procedures have been proposed (e.g.[Politis and Romano, 1994]). For longer memory pro-
cesses, “AR-aided” periodogram bootstrap consists in estimating the parameters of an AR
model in the time domain and in applying a non-parametric kernel based correction in the
frequency domain to counteract the effects of estimation noise on the AR parameters (e.g.
[Kreiss and Paparoditis, 2003]). For the uneven sampling case, “dependent wild bootstrap”
adapting to weakly dependent data unevenly sampled can be found in [Shao, 2010] and a boot-
strap procedure using a Generalized Extreme Value estimate on the periodogram maxima is
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presented in [Süveges, 2014] (cf. Sec. 4.4.3).
As underlined in [Young, 1994] for instance, the choice of the parameters of such procedures
(e.g. parametric noise models, number of blocks, block lengths, data weights or reparti-
tion of the sampled blocks) can be delicate. Moreover, the use of parametric methods like
AR modelling is obviously not well adapted to irregular sampling (since the AR model in-
volves values which are potentially missing, one have to reconstruct the missing data cf e.g.
[de Waele and Broersen, 2000, Bos et al., 2002, Baghi et al., 2016]).

For irregular sampling, in astronomy, one can find two classical families of bootstrap procedures
to derive the empirical distribution of the test statistics:

1. The first family of bootstrap consists in generating WGN with same variance as the ob-
served (potentially CLEANed) data, sampling them as the observation, and computing the
test statistics (generally, TM ) on each obtained periodogram to evaluate its distribution.

2. The second family consists in randomly shuffling the observation (keeping the time sam-
pling epochs fixed), computing the test statistics on each obtained periodogram, and
evaluating its distribution.

4.4.3 FA evaluation using theory of the extremes

Recent approaches proposed to use parametric models for the periodogram maxima. For
example, Baluev proposed a method based on the extremes of continuous-parameter stochastic
processes [Baluev, 2008]. Considering different distributions (in particular the beta, F or
χ2 distributions), Baluev derived an analytical upper-limit for the PFA of TM (PLS). This
upper-limit was derived assuming small aliases and weak spectral leakage in the observed time
series and has been numerically proved to be efficient for small PFA (< 5%) but not for higher
ones. This can be problematic when several signals are present in the data [Süveges et al., 2015].

Other interesting extrema distributions are the GEV, which are the limiting distribution of
maxima of sequence of possibly dependent r.v. (cf. Sec. 4.3). In practice, the GEV parameters
estimation is usually done on data blocks as only one observed time series is available. The
choice of the blocks’ size is critical and has to be done carefully as, on the one hand, large
blocks leads to few maxima and consequently to large variance in the GEV estimation. On the
other hand, small blocks could invalid the assumption related to independence between the zk
components in Theorem. 3 and lead to biases.
Süveges proposes a procedure combining a GEV model for the periodogram maximum and a
bootstrap procedure to evaluate the PFA associated to test TM in the case of unevenly sampled
time series involving WGN [Süveges, 2014, Süveges et al., 2015]. In few words, the procedure
consist in the following steps:

1. Evaluate the LS periodogram of the original time series using (4.3),

2. Make a number (say R) of non parametric bootstraps of this time series (cf. second family
of bootstrap described in Sec. 4.4.2),

3. Take the set of maxima {mj}, j = 1, . . . , R, of the R resulting partial periodograms,

4. Estimate a Ĝ(m, θ̂GEV ) model on these partial maxima (using (4.15) in Sec. 4.3.2),

5. Extrapolate for the periodogram of the original time series, i.e. use Ĝ(m, θ̂GEV ) in Eq.
(4.16) to find the threshold of the target PFA,

6. Estimates the confidence interval (cf. Appendix. D).

134



This hybrid method allows to derive reliable γ(P̂FA) for all target false alarm rates, and allows
to derive confidence intervals of the estimated return levels when the noise is uncorrelated.
Moreover, this procedure allows to decrease the number of MC used in the classical bootstrap
procedures, as described in Sec. 4.4.2, and hence allows to save a significant amount of compu-
tational time.
However, this technique is not directly applicable when considering colored noise as the shuffling
of the data, made during the bootstrap, breaks the intrinsic data correlations and consequently
affects the derived empirical test statistics distribution. In this spirit, we will attempt to take
benefit from this bootstrap/GEV technique when applied to standardized periodogram of the
form of (3.2). This point is developed in Sec. 4.5.2, which extends under some working assump-
tions the Süveges’ procedure to the case of irregularly sampled time series involving colored
noise.

4.4.4 Conclusions

To conclude, irregular sampling creates several peaks in the periodogram due to the spectral
window that looks like “noise” or “signal”.

The Lomb-Scargle periodogram is equivalent to a least-square analysis and several variants of
this periodogram have been proposed (e.g. Generalized LS or Keplerian periodograms).

Deriving the false alarm rate of tests based on such periodograms ordinates is not easy as the
different ordinates are not independent. Any procedure based on the Lomb-Scargle periodogram
has to face the difficulty that the dependence of some of these ordinates is strong, even in the
white noise case (this is well discussed in [Süveges, 2014] for instance). Besides, even when
considering the marginal distribution of the ordinates, the convenient exponential distribution
(χ2

2) of Lomb-Scargle is only valid in the white noise case, so the main advantage of this method
vanishes for colored noise. So, if such a method is used for partially unknown colored noise, the
false alarm rate assuming white Gaussian noise will almost surely be wrong. In fact, it is not
clear what would be the benefit of using this procedure in the colored noise framework, but if
this is done anyway, specific ways to estimate the resulting false alarm rate remain to be derived.

When the noise is colored, several methods (based on least-square analysis, maximization
of likelihood functions or sparse regularization) consist in modelling the noise by a specific
parametric model (e.g. Gaussian processes). However, the FA control is difficult as the derived
significance is model dependent. In practice, such methods can lead to very different detection
significance results when applied to extrasolar planet detection.

To control the FA, one can turn to bootstrap analyses, which consist in estimating the distri-
bution. If the test is based on r.v. extrema, combined with the bootstrap procedure, a GEV
model can be used to save a significant amount of computational time. However, controlling
reliably the FA rate in sinusoid detection is a problem in the case of an unevenly sampling and
unknown colored noise, even when resorting to bootstrap techniques (the Süveges’ technique
was developed for white Gaussian noise only).

In this study, we renounce to obtain analytical expression of the PFA of tests based on (any)
periodogram ordinates. We propose instead, in Sec. 4.5.1, an original and automated bootstrap
method allied to periodogram standardization. We will see in Sec. 4.5.2 that the method can
take advantage from GEV distributions (as proposed in [Süveges, 2014, Süveges et al., 2015])
to save computational time. The proposed procedure will be then numerically studied on a
synthetic colored noise in Sec. 4.3.
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4.5 Proposed bootstrap procedure

The present section explores a bootstrap solution combined with independent simulations of the
colored noise to solve the problem of controlling the FA rates in case of uneven sampling and
colored noise. As in Chap. 3, we assume that a training data set TL of the noise is available.
However, this set provides only a small number of noise samples - typically, the order of the
number of data samples. In this regime, our knowledge of the statistics of the random process
under H0 remains strongly impacted by estimation noise. Our strategy is again to get rid of any
nuisance effect from the noise PSD by considering standardized periodograms of the form (3.2),
for which the {tj} in (2.24) are unevenly spaced, and to capture the dependencies between the
periodogram ordinates through bootstrap techniques.

4.5.1 Direct bootstrap approach

Let us consider an observed time series of PSD S, noted Xobs|S, involving a random process
(with unknown PSD SE), plus possibly a periodic component, sampled at uneven time instants
{tj}j=1,...,Nobs . We perform the test TM (Z) := Z(N), with Z some periodogram, to decide
between the presence or absence of the periodic component. The question is to evaluate the
resulting PFA.

The study is presented on the classical periodogram, but any other periodograms described in
Sec. 4.1 could also be used without loss of generality. We also assume here that all epochs are
multiple of a common, possibly vanishingly, small interval δt.

Let us describe the considered test more precisely. First, we compute the periodogram of the
data. To reduce the computational time, we consider here the classical periodogram (2.24):

P (νk;Xobs|S) =
1

N

∣∣∣ N∑
j=1

Xobs(tj) e−i2πνjδt
∣∣∣2.

as it does not significantly differ from the LS periodogram and is easier to compute. Oth-
ers periodograms can, obviously, be used as the distribution of statistical tests based on any
periodogram is not known when the sampling is irregular.
Second, we compute the averaged periodogram (2.48) from the L time series of the training
data set, sampled at the same time instants {tj}, which we note {X`|SE}`=1,..,L:

PL(νk; {X`|SE}) :=
1

L

L∑
`=1

1

N

∣∣∣ N∑
j=1

X`(tj) e−i2πνjδt
∣∣∣2.

Specifically, the ordinates of the standardized periodogram in (3.2) are obtained by:

P̃ (νk;Xobs|SE , {X`|SE}) :=
P (νk;Xobs|S)

PL(νk; {X`|SE})
. (4.20)

We run test TM on the vector of standardized ordinates P̃|PL (4.20):

TM (P̃|PL) := max
k

P (νk;Xobs|S)

PL(νk; {X`|SE})
. (4.21)

In the following, we call M the maximum TM (P̃|PL) to be consistent with Sec. 4.4.1. The
associated PFA is then defined as:

PFA(M(P̃|PL), γ) := Pr (M(P̃|PL) > γ|H0). (4.22)
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Our goal is to obtain a confidence interval for this PFA at any γ.

Of course, if we could generate as many realizations as desired of the r.v. M(P̃|PL) (resulting
in, say b realizations {mi}i=1,...,b of the r.v. M , collected in a vector m := [m1 . . .mb]

>), we
would be able to estimate the empirical distribution of the maximum and thus the PFA by:

P̂FA(γ; m) := 1− Φ̂M (γ; m), (4.23)

with Φ̂M the empirical cdf of M , and where the dependency of the estimates on the observed
values m is explicit. The principle of such PFA estimation procedure is illustrated in Fig. 4.4.

INPUTS:
L	noise	training	data	set

MC	(		L	>>	1	)

Test	on
Standardized
Periodogram

Standardized periodogram

OUTPUT:
1	PFA	ESTIMATE

BOOTSTRAP	to	generate PFA	estimate

L >> 1

1− Φ̂M (γ; m)

Figure 4.4 – PFA estimation procedure (possible only if L >> 1).
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We can not do so however, because the training data set has finite size L. To counteract this
fact, we may estimate the parameters of the noise from {X`|SE}`=1,..,L under some model, with
the aim of generating secondary noise data sets according to this estimated model. To make an
example, we opt for a general parametric colored noise model as an autoregressive process with
PSD given in (2.47). As seen in Sec. 3.4, various selection criteria exist to estimate the order
of the process. Examples of such criteria are given in (3.43) and depend on the estimated AR
parameters θ̂AR := [ô, ĉj , σ̂

2
ô ]
>, from which a PSD estimate ŜE can be obtained as in (2.47)

(we have seen in Chap. 3 - cf. Sec. 3.5.5 - that this estimate is always noisy; this estimation
noise will however be accounted for by the proposed bootstrap procedure). For example, in the
simulations of Sec. 4.6, we will use the Bridge criterion (G) defined in (3.43) to estimate SE .
The estimated AR parameters also allow to generate (L + 1) × b correlated time series, noted
{X`|ŜE}, allowing to generate simulated standardized periodograms {P̃ (νk;X|ŜE , {X`|ŜE})},
each requiring 1 time series for numerator (2.24) and L for denominator (2.48). The resulting
b maxima can be used to estimate the PFA with (4.23). The principle of such PFA estimation
procedure is illustrated in Fig. 4.5.

INPUTS:
L	noise	training	data	set

Parametric estimation

MC	(		b	>>	1	)

Test	on	
Standardized Periodogram

Standardized periodogram

OUTPUT:
1	PFA	ESTIMATE

BOOTSTRAP	to	generate PFA	estimate

1 < L <<∞

ŜE

1− Φ̂M (γ; m)

Figure 4.5 – PFA estimation procedure if 1 < L <<∞.

138



However, as just recalled above, this estimate is obtained by means of one set of AR parameters
estimated from TL and is thus random. Obviously, we would have obtained a different estimate
for a different training set TL. The question is therefore to evaluate the distribution of the PFA
estimate. We can not evaluate this distribution (called D

P̂FA
below) because it requires a very

large number of training data sets L. This is where the bootstrap really comes in: we propose
to use the estimated parametric model parameters (e.g. the AR coefficients {ĉj}) on the time
series of TL to generate a number B of “fake training data sets”, from which we can obtain an
estimate of distribution D

P̂FA
, called D̂

P̂FA
below. This leads to the bootstrap procedure, called

B0, which follows the five main steps above, described in details in Algorithm. 1 and illustrated
in Fig. 4.6.

(i) 1st PSD estimation (2.47). It begins by a first parametric estimation on TL using (3.43)
(row 2).

(ii) 2nd PSD estimation. Secondary PSD estimates (noted
̂̂
S

(i)

E , i = 1, . . . , B) are generated
by estimating (a second time) the parametric noise model parameters on a i-th fake
training data set noted {X`|ŜE} using (3.43) (for simplicity, we omit the dependence in i
in this notation, row 4).

(iii) PFA estimate. These parameters are used to generate b (loop on j, row 5) standardized
periodograms using (4.20), the corresponding maxima m(i) using (4.21) and PFA estimates
using (4.23) with m(i) (row 6).

(iv) Repeat (ii) - (iii) to generate a set of B PFA estimates (loop on i, row 3).

(v) The distribution D̂
P̂FA

is then estimated from the set of B such estimates, {P̂ (i)
FA}i=1,..,B

(row 10).

Algorithm 1 Proposed bootstrap procedure (B0)

1: procedure B0 (TL)
2: ŜE(νk; θ̂AR({X`|SE}))
3: for i = 1, . . . , B do

4:
̂̂
S

(i)

E (νk;
̂̂
θAR({X`|ŜE})

5: for j = 1, . . . , b do

6: m
(i)
j = max

k
P̃ (νk;X|

̂̂
S

(i)

E , {X`|
̂̂
S

(i)

E })
7: end for
8: P̂

(i)
FA(γ; m(i))

9: end for
10: return D̂

P̂FA
({P̂ (i)

FA})
11: end procedure

One advantage of this procedure is that it is independent from the data under test. We note,
however, that the choice of the parametric model (e.g., AR, MA, ARMA, ARIMA, Harvey
functions or power functions) has to be done cautiously, and can be verified using diagnostic
plots.

139



INPUTS:	
  
L	
  noise	
  training	
  data	
  set	
  

(i)	
  1st	
  parametric	
  	
  es:ma:on	
  
(row	
  2)	
  

MC	
  (	
  	
  B	
  >>	
  1	
  )	
  
(row	
  3)	
  

(ii)	
  2nd	
  parametric	
  es:ma:on	
  
(row	
  4)	
  

MC	
  (	
  	
  b	
  >>	
  1	
  )	
  
(row	
  5)	
  

Test	
  on	
  Standardized	
  Periodogram	
  
(row	
  6)	
  	
  

Standardized	
  periodogram	
  

	
  
(v)	
  OUTPUT:	
  

DISTRIBUTION	
  OF	
  THE	
  PFA	
  ESTIMATES	
  
(row	
  10)	
  

	
  

(iii)	
  1	
  PFA	
  es:mate	
  
(row	
  8)	
  

(iv)	
  B	
  PFA	
  es:mates	
  

(-­‐)	
  cf.	
  Algorithm.	
  1	
  
(-­‐)	
  cf.	
  Step	
  list	
  

{X`|SE}

1 < L <<∞
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Figure 4.6 – Estimate of the PFA estimates distribution derived by B0 procedure. The different
rows of Algorithm. 1 are indicated in red, and the main steps in black.
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4.5.2 “Accelerated” bootstrap approach

The B0 procedure above does not rely on any model for the cdf of M , Φ̂M (γ; m(i)), in (4.23). To
be efficient, this estimation requires b to be large, which makes it computationally expensive.
However, as presented in Sec. 4.3, interesting results from univariate extreme-value theory show
that the maximum of a set of identically distributed (dependent or not) r.v. follows a GEV
distribution [Coles, 2001]. This suggests that GEV distributions can be used as a model for the
cdf of m(i). This method was used in [Süveges, 2014] in the case of white noise but we show
below that it can also be used in the case of colored noise when a training data set is available,
using the considered standardization.

The GEV model impacts only step 8 of Algorithm. 1, and the other steps are unchanged. In
Algorithm. 1, the unknown parameters θGEV = [ξ, µ, σ]> can be estimated using m(i) (step
8), for instance by maximum likelihood as described in Sec. 4.3.2 (cf. (4.17)). In this case the
maximization relies on the iterative method described in [Coles, 2001] and not reproduced here.

Denoting by ξ̂(i), µ̂(i), and σ̂(i) the estimated GEV parameters, P̂
(i)
FA can be estimated using

(4.15) by

P̂
(i)
FA(γ; m(i)) := 1− Ĝ(γ; θ̂GEV ), (4.24)

In the following, we will note by B? the B0 procedure using the GEV model.

4.6 Numerical studies on a synthetic noise process

The present numerical study only involves time series underH0 as we are interested in controlling
the false alarm rates. The results are obtained using a synthetic colored noise in order to analyze
and validate the B0 procedure and its “GEV-based” form B?. The different objectives of the
following subsections are:

• To illustrate the proposed procedure,

• To validate B0 and B? for different samplings schemes and AR estimation criteria,

• To compare B0 and B? in terms of performance, behaviours, and computation time.

4.6.1 Validation on known processes

Illustration of the procedure

We first consider a synthetic colored noise, E, as the AR(6) process (with coefficients c =
{0.7, 0.05, 0, 0.3, 0,−0.3}) introduced in Sec. 3.4. The corresponding theoretical PSD SE is
given by (2.47). It is represented by the green curve in the panels d) and e) of Fig. 4.7.

Fig. 4.7 and Fig. 4.8 illustrate a snapshot of some steps and quantities involved in B0 (see
Algorithm. 1). For the uneven sampling, we consider a regular grid {tk := k∆t}k=1,..,N with
N = 1024 and ∆t = 1 (panel a), yellow dots), from which we randomly select N = 103
data points (black dots). The spectral window of such sampling is illustrated in b), and the
periodogram (computed for the yellow dots of panel a)) is shown in panel c).
For TL, we generate L = 20 synthetic time series following the true PSD SE , noted {X`|SE},
from which we can compute an averaged periodogram PL|SE (panel d), black solid line). The
dashed red curve in panel d) illustrates the primary parametric PSD estimate ŜE obtained from
{X`|SE} (row 2 of Algorithm. 1). In panel e), the blue dashed line illustrates one secondary

PSD estimate
̂̂
S

(i)

E obtained from a “fake training data set” {X`|ŜE} of L simulated time
series (row 4 of Algorithm. 1). This panel also shows for comparison with d) the averaged
periodogram PL|ŜE (red solid line). Panel f) displays one standardized periodogram obtained
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from L+ 1 series {X`|
̂̂
S

(i)

E }, with the maximum value m
(i)
j indicated by the red circle (row 6 of

Algorithm. 1).
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Figure 4.7 – Snapshots of some steps in the B0 procedure for an AR(6) colored noise process.

The performance in terms of PFA estimates of the B0 procedure are shown in Fig. 4.8. In all the
following figures (i.e. until the end of this chapter), the green curves will represent the true PFA
given in (4.22) (more precisely, this is an accurate estimation of the true PFA obtained through
105 MC simulations of the investigated AR process. It will serve as reference for comparing the
performance of the proposed procedure).

The left panel of Fig. 4.8 shows the B (= 5200, here) estimates

P̂
(i)
FA(γ) = 1− Φ̂

(i)
M (γ; m(i)), for i = 1, . . . , B,

obtained through the B0 procedure with b = 104 (grey cruves).
The right panel shows, in grey, the distribution D̂

P̂FA
(B0) for a threshold fixed at γ0 = 10.6

corresponding to a true PFA of 0.1 (green). We see that the estimates bound the true value
with a relatively small dispersion. A 95% confidence interval, obtained from a Gaussian ap-
proximation (red), is indicated in blue and indeed contains the true PFA. A similarly reliable
estimation of the true PFA is possible over the whole γ range.

Method ignoring the noise correlations

In Fig. 4.9, we illustrate the PFA estimates obtained when using a classical bootstrap procedure,
that would ignore noise correlations. We use the Generalized Lomb Scargle periodogram (PGLS)
[Zechmeister and Kürster, 2009], which is a periodogram frequently used in Astronomy. In this
procedure, we generate unevenly sampled light curves by resampling the data (through random
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permutations), evaluate the PGLS , compute the maximum and perform test (2.51) on

P̃GLS(ν) :=
PGLS(ν)

σ̂2
W

with σ̂2
W the variance estimated from the data. This provides one estimate P̂FA(γ) and we

repeat this experiment 103 times. The resulting curves P̂FA(γ) are plotted in black. The true
PFA of this procedure (in green) has been generated with 105 MC simulations. The method
fails to estimate accurately the FA rate, because this simple resampling by permutation breaks
the data correlation. This is in clear contrast with the procedure shown in Fig. 4.8, which takes
benefit from the training data set.

Figure 4.8 – Left: Example of P̂FA (grey) vs PFA (green) for the proposed B0 procedure. Right:
D̂
P̂FA

(B0) for a threshold fixed at γ0 = 10.6 corresponding to a true PFA of 0.1 (green).

Figure 4.9 – Example of PFA(γ) curves obtained using a classical bootstrap procedure ignoring
the noise correlations. The true FA is shown in green.
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Influence of the data sampling

Let us now investigate the validity of the proposed approach on three other samplings:

• S1: regular sampling (N1 = 1024 points).

• S2: regular sampling with “gaps” (N2 = 368 points = 36% N1 + 16 gaps).

• S3: random irregular and sparse sampling (N3 = 103 = N1
10 ; this case is most representative

of real observational in RV data).

The results are shown in Fig. 4.10 to Fig. 4.14 for b = 104 and B = 1000.

• Fig. 4.10 evaluates the distribution of test TM (4.21) for the three samplings (left to
right). The grey histograms are the true distribution found through the true process: they
were generated using 105 MC simulations of the maximum of periodograms standardized
with the true AR process. The different color lines represents the smoothed histograms
contours obtained with 10 realizations of B0. One can observe a good match between the
histograms showing that the proposed procedure B0 allows to reproduce reliable estimates
of the test statistics distribution. The histogram modes are stable, around γ = 8 for the
three considered samplings. The distributions obtained using irregular samplings have
slightly heavier tails than the one obtained for S1.

• The first row of Fig. 4.11 shows, for the three samplings (left to right), the repartition
in function of the frequency of test TM (P̃|PL|H0) in (4.21) for the true process (top
row, black). This is the histogram of the frequencies corresponding to the largest peak
of the standardized periodogram in (4.20) (c.f. Fig. 4.4). The frequency distribution
obtained by the B0 procedure (that is, the largest peak in the periodogram obtained for 10
different MC realizations) is shown below (grey). Both distributions seem compatible with
a uniform distribution, as desired under H0, and as expected thanks to the periodogram
standardization in (4.20).

• Fig. 4.12 illustrates the resulting set of estimates {P̂ (i)
FA(γ)}, for i = 1, . . . , B (involved in

step. 3 of Algorithm. 1, grey) vs the true one (green). One can observe, ∀Si, i = 1, 2, 3,
that the estimates are globally distributed around the true PFA(γ).

• Fig. 4.13 represents the associated D̂
P̂FA

(B0) for a true PFA = 90%, 50%, 10% and 1%
corresponding to the value of γ0 indicated in each panel. In other words, we set the

test m
(i)
j = max

k
P̃ (νk;X|

̂̂
S

(i)

E , {X`|
̂̂
S

(i)

E }) (cf. row 6 of Algorithm 1) to the values γ0

corresponding to the PFA indicated above, and we investigate the ability of the bootstrap
algorithm to identify this PFA. The first row illustrates S1, the second S2, and the last
one S3. The empirical distributions of P̂FA are centred around the true PFA (green) with
a small dispersion (the maximum dispersion is observed for PFA = 0.5 and is inferior to
0.02 in absolute value).

• Finally, Fig. 4.14 shows the distribution estimates obtained for 10 other realizations of
the bootstrap procedure with different irregular samplings S3. One can observe that the
reliability of the proposed B0 procedure is fairly independent of the considered sampling.
One can also note (not shown) that the same statistical results are observed when using
the different AR criteria listed in (3.43).
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Figure 4.10 – B0 procedure: Pdf of TM for the three samplings.
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Figure 4.12 – Estimated FA rates: P̂FA(γ) vs true PFA(γ) for the proposed B0 for the three
considered samplings.
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Figure 4.14 – D̂
P̂FA

(B0) obtained for 10 realizations of the B0 bootstrap procedure (different
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to the value of γ0 indicated in each panel and is shown in green.
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4.6.2 “GEV accelerated” algorithm

In practice, one limitation of the B0 procedure is its computation time, related in particular
to the large number (b) of periodogram maxima required for the estimation of the PFA to
be accurate. To reduce b while keeping a tight confidence interval for the PFA, we consider
applying the version of the bootstrap procedure using the GEV approximation (B?) as described
in Sec. 4.5.2.

False alarm probability: B0 vs B? procedures

First, let us compare the reliability of the results based on the GEV model in terms of P̂FA(γ)
estimates.
Considering the irregular sampling S3, Fig. 4.15 compares the true PFA (green), the set of

estimates {P̂ (i)
FA} obtained with B0 (using B = 5200 and b = 104, grey), and the {P̂ (i)

FA} esti-
mates obtained with B? (for B = 1000, red). Different values of b for B? are shown (resp. in
lexicographical order: b = 50, 100, 500, 1000 and 10 000). We see an expected behaviour for B?:
the more MC simulations (the larger b) are used during the bootstrap (i.e. 2nd loop, row 5 of
Algorithm. 1), the more the GEV approximation gives an accurate estimate of the distribution.
For b = 103 or b = 500 (row 2), the distributions get close to the distribution of P̂FA(γ,B0)
computed with 104 realizations. For b = 104 the GEV distribution is more narrow than the
distribution obtained with B0 due to the parametric-aided nature of B?.

Figure 4.15 – P̂FA vs PFA for the proposed B0 (grey) and B? (red). Each panel indicates a
different value of b used in B?.

Fig. 4.16 shows D̂
P̂FA

(B?) resp. from left to right for a true PFA = 90%, 50%, 10% and 1%
corresponding to the value of γ0 indicated in the top row. One can see, in lexicographic order, the
result when using b = 50, 100, 500 and 1000 MC simulations. In the three last rows, a zoom has
been done for visibility. We see that the empirical distributions of the PFA estimates obtained
by B? are still concentrated around the true values. As for B0, this means that we can use B?

in practice to evaluate the PFA associated to any γ for test TM , with only 1 set TL available.
In the fourth row (corresponding to b = 1000), the distribution obtained with B0 (using also
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b = 1000) is shown in pink for comparison. One observes a narrower distribution of the FA
estimates obtained using B0, which is due to the fact that the estimated GEV parameters in B?

depends on the number of used maxima. When b is larger, the dispersion of the FA estimates
obtained with both procedures is comparable (cf. last panel of Fig. 4.15).
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Figure 4.16 – D̂
P̂FA

obtained by B? for a true PFA = 90%, 50%, 10% and 1% corresponding to
the value of γ0 indicated in the top row (resp. left to right) and for b = 50, 100, 500, 1000 and
10 000 MC simulations used (resp. from top to bottom).
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Bias, variance and computational gain in time

The left panel of Fig. 4.17 compares, as a function of b, the empirical means (solid lines, right
ordinate axis) and standard deviations (dashed lines, left ordinate axis) of the distributions of
the FA estimates by three procedures when the test TM in (4.21) is ran with a threshold γ
corresponding to a true FA rate of 0.1. The three procedures are:

• The true distribution of the FA estimates obtained following the scheme of Fig. 4.4,
assuming L >> 1 sets TL are available: D

P̂FA
(green),

• The estimated distribution of the FA estimates using procedure B0: D̂
P̂FA

(B0) (black),

• The estimated distribution of the FA estimates using procedure B?: D̂
P̂FA

(B?) (red),

All procedures lead to a decreasing dispersion and bias as b increases, with similar estimation
performance for D

P̂FA
and D̂

P̂FA
(respectively in black and green), although for the latter only

one genuine set TL is available. Moreover, these results show that the lowest dispersion and
bias for PFA = 0.1 is obtained by the third method (B?), because the GEV model is indeed
appropriate and has far less degrees of freedom than the non parametric estimate Φ̂M in (4.23)
used in the two other bootstraps.
The right panel compares possible compromises dispersion vs computation time achievable by
B0 and B?. For example, for b = 1000 we need around 14 hours of calculation (on a 4 sequential
job in a 3.2 GHz processor) for both procedures and we obtain similar dispersion in terms of FA
(i.e. 2.2× 10−2 for B0 and 1.8× 10−2 for B?). For b = 104 however, the computational time is
much larger, about 140 hours, and it does not significantly decrease the FA dispersion (namely
10−2 for B0 and 0.58× 10−2 for B?). To save a large amount of computational time, it appears
more interesting to apply B? with b = 1000 than using B0 with b = 104 MC simulations (e.g.
here, we observe a gain of 14×100

140 = 10 at a cost of a double dispersion, which is still inferior to
10−2). In this example, a compromise on the b value appears to save time while keeping a good
accuracy in the PFA estimates. The value of b = 103 seems to be a fair compromise.
To conclude this section, we see that B? allows for better compromises when comparing the
procedures at different b, and with a ≈ 20− 40% lower dispersion than B0 at the same compu-
tational cost. The use of the GEV model is thus efficient to save time for the evaluation of the
PFA while keeping the same reliability.
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Figure 4.17 – Comparison between the B0 and B? procedures. Left: Comparison in terms of P̂FA
dispersion and mean as a function of the number of used MC simulations b. Right: Dispersion
of P̂FA as a function of the computation time.
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4.7 Conclusions

In this chapter, we were interested in the control of the FA rates in case of colored noise in
irregularly sampled time series. In the first sections, we have seen that various periodogram
variants have been introduced in the literature to deal with the irregularity of the data
sampling, which introduces spurious peaks in the periodograms.
When the noise is white Gaussian, the distribution of test statistics based on periodograms
variants ordinates like the LS periodogram is difficult to evaluate as these ordinates are depen-
dent. Several methods propose to estimate a number of “effective independent” periodogram
ordinates to derive the test statistics distribution. Although such empirical methods to estimate
the FA rates are largely used in the literature, their reliability is strongly debated even for the
simplest case of WGN. To control the FA, we can instead turn to bootstrap analyses and to
extreme value theory to model the test statistics distribution.
In case of colored noise, several methods consist in modelling the noise correlations through
parametric models. They produce FA estimates that are always model dependent.

In Sec. 4.5, we have investigated the possibility of using noise training data sets to improve the
control of the false alarm rate associated to detection test in the case of irregular sampling.
The proposed method is based on standardized periodograms (which have been considered in
Chap. 3 in the case of regularly sampled observations). By developing an adapted bootstrap
procedure in the Fourier domain, it appears that one can reliably bound the false alarm
probability corresponding to any threshold for test TM (P̃|PL) (4.21) in the general case of
irregularly sampled observations by taking advantage from a training data set of the noise.
However, as this procedure is based on MC simulations, it is computationally heavy. We
showed that exploiting a GEV distribution allows to save time while keeping the same behavior
for the resulting FA estimates (cf. Sec. 4.5.2 and Sec. 4.6.2). Of course, this general procedure
can be useful for the detection of extrasolar planets in RV data: in this case, the time sampling
is often uneven, the exoplanetary signatures is hidden in the colored noise coming for the
stellar surface convection, and this noise can be accurately simulated using astrophysical codes.
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Conclusions and perspectives

Summary and main contributions

This thesis work was first motivated by its application to exoplanet detection by the radial
velocity technique. In this spirit, we have dedicated the first part of the Introduction (Chap. 1)
to the astrophysical problem of this thesis: controlling the significance level of planets
detection tests when planets’ signatures are hidden in the colored stellar noise. In parallel, 3D
hydrodynamic simulations of the stochastic convective noise are in rapid development since the
last decades, and they are now able to produce reliable time series of this “noise” source. In
the aim of using such noise training data set in the detection process, we have then dedicated
this thesis to the development of statistical methods taking advantages of such simulations of
the stellar noise.
Before getting to the heart of this research work, we tried to provide in a first chapter a detailed
introduction to the astrophysical context of extrasolar planet detection and stellar noise to
readers more familiar with detection theory. In a second chapter, we tried to provide a detailed
introduction of detection theory to readers more familiar with the astrophysical context.
In this second chapter, we have reviewed some bases of hypothesis testing methodology,
the periodogram properties as a PSD estimate, and different detection tests. Through the
investigation of the RV planetary signature in the periodogram, we have seen that the planetary
signals are sparse for the majority of the planet (Keplerian) parameters. This allowed to set
up a detection strategy based on a simplified sinusoid-based model and on a well understood
and efficient tool for sinusoid detection, the periodogram. We have studied the statistical
(asymptotic) properties of different test statistics applied to the periodogram for different cases
of noises (white and colored) under the null, and different signals (single or multiple) under the
alternative. We have seen that the false alarm and detection probabilities can not be known
when the noise is colored with unknown statistics for the considered tests from the literature.

As a very general problem, we were then interested in Chap. 3 to investigate whether noise
training data sets could improve the detection process and in particular allow the control of
the FA rates of some of the considered tests statistics. In this spirit, we have designed a
standardized periodogram, which consists in normalizing the periodogram of the data by an
averaged periodogram coming from available noise training data set. The statistical analysis of
the standardized periodogram shows that P̃|PL is asymptotically independent of the noise PSD
under the null. This property allowed us to characterize the FA and detection probabilities of
different detection tests, which are CFAR thanks to the standardization. In particular, we paid
special attention to:

• The test based on the maximum periodogram value (TM (P̃|PL)). This test is the most
powerful when the signal is extremely sparse under the alternative. Analytical expressions
of FA and detection probabilities have been derived and are given in (3.18) and (3.19).

• The multisine test based on the N th
C maximum standardized periodogram value

(TC(P̃|PL)), where NC is the a priori number of harmonics. For this test, we also derived
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analytical expressions for both probabilities, which are given in (3.38) and (3.41). We have
seen that this test can outperform TM (P̃|PL) when NS is large. We have also seen that
the performances of this test variates only slightly with the setting parameter NC , which
makes it very interesting when we can expect a large (w.r.t. 1) number of periodogram
components contaminated by the periodic signal.

• The adaptive tests based on the standardized periodogram P -values (HC(P̃|PL) and
BJ(P̃|PL)). For these tests, which are also CFAR thanks to the proposed standardization,
P -values have to be computed through numerical methods. We have seen that, in case of
non extremely sparse signal, these tests have excellent performances w.r.t. TM and even
TC . Such adaptive tests are particularly interesting as they do not need any a priori on
the number of sinusoidal components. In particular, BJ allows to efficiently detect the
correct number of components at their true location.

Although our results are asymptotic, numerous simulations showed that they accurately reflect
the tests performances in terms of false alarm and detection rates. These results are also quite
general in the sense that they can be applied to any sinusoid detection problem for which (even
a few) training data sets are available. One has observed that the performances of any test
applied to P̃|PL increase with the number of used noise time series. The statistical study of
these tests statistics opens the door to various studies. Indeed, we can:

• Derive reliable detection thresholds in case of colored noise,

• Compare the different tests’ performances (e.g. through ROC curves) for various types of
alternatives,

• Design efficient detection strategies for various detection tests to found the best observa-
tional parameters (N, ∆t) to be able to detect a given signal with high probability.

Considering then the case of time series irregularly sampled in Chap. 4, we have seen that
the periodogram ordinates are strongly dependent, making analytical expressions of the FA
rates out of reach. This is also true for the different periodograms used in practice as the
Lomb-Scargle periodogram or its generalizations. We proposed an adapted bootstrap procedure
to control the FA rates. This procedure is also based on the noise training data sets. Applied to
a synthetic colored noise, this bootstrap method is efficient to evaluate the true false alarm rate
at which the detection test (e.g. TM ) is conducted for all types of data sampling. It is quite
adaptable, as different periodograms can be used. Moreover, while the procedure has been
illustrated on test TM (P̃|PL), the implementation of other test statistics is straightforward.
Considering the case where we dispose of only a few noise training data sets (e.g. due to a
large computational time to generate them), the procedure involves a parametric estimation
for which the noise model can be well chosen (e.g. by checking our model choice through
diagnostic plots). In practice, AR colored noise could be a good choice as it is a quite general
colored noise model for which different AR estimation criteria exist, but any parametric noise
model can be chosen. Moreover, as the estimation is done on the simulated noise training data
set, the estimation is not influenced by missing data during the estimation process.
As a lot of colored noise realizations have to be performed during the proposed bootstrap
procedure, we have seen that using GEV model allows to save an important amount of
computational time. Making this approximation is at the price of a slightly larger FA estimates
interval.

Using independent noise training data sets in the detection process using the proposed stan-
dardized periodogram presents several advantages:

• First, comparing with classical methods ignoring the noise correlations, it allows to control
the FA rates independently of the colored noise PSD.
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• It does not need to make an a priori decision about the periodogram components con-
taminated by the noise, as in the CLEANing methods.

• The use of the noise training data set allows to control the FA and detection probabilities
by simple analytical expressions in the case of a regular sampling and by bounded estimates
in the case of irregularly sampled observations.

• The noise simulations constitute then a useful tool to design detection strategies for a
given signal to choose the best observational parameters and detection test.

Application to exoplanet detection

The statistical methods developed in Chap. 3 and 4 are based on the knowledge of the colored
noise. In these chapters, we used autoregressive processes for the noise in order to easily
generate time series and easily verify the developed theoretical expressions. The following step
is to apply 3D HD simulations to standardize the periodogram of RV data. Therefore, we
aim to compare the realism of such 3D HD simulations with real observations of the stellar
convection. To do so, the Sun is an ideal target since very long (quasi-regularly sampled) time
series of the solar RV are available.
We consider the RV data taken by Global Oscillations at Low Frequency (GOLF) resonant
scattering spectrophotometer on board the SoHo satellite6, which observes the Sun for two
decades (i.e. almost 2 solar cycles). This instrument observes the neutral sodium doublet lines
D1 at λ = 589.6 nm and D2 at λ = 589.0 nm. The RV extraction method is different from the
cross-correlation with ground-based spectrographs such as HARPS or HARPS-N (described in
Sec. 1.2.2). Spectrophotometers like GOLF extract the velocities by measuring the intensity
contrast in the observed absorption lines (for a detailed description of this extraction method,
one can report to [Boumier and Dame, 1993, Gabriel et al., 1995, Garcia et al., 2005]). We
use RV time series calibrated by Garcia et al. and filtered at 3 days to remove the long term
magnetic activity contributions [Garcia et al., 2005]. It should contains therefore only the
contribution of the solar convection and oscillations modes. We selected a time series of T = 54
days without any gaps in the years 1996-1997 to be close to the solar cycle minimum (to
minimize any potential contribution of magnetic activity). However, one can note that Garcia
et al. compared the solar PSD at different epochs of the solar cycle and did not find significant
variations with the magnetic cycle (for similar conclusions, see also [Lefebvre et al., 2008]).
To simulate the surface convection and stratification of the upper layers of the
Sun, we use the state-of-the-art radiative hydrodynamical: the STAGGER CODE7, cf.
[Nordlund and Galsgaard, 1995]. In a 3D local-box model of the solar photosphere8, the
code solves the full set of conservative hydrodynamical equations coupled to an accurate
treatment of the radiative transfer. The code is based on a sixth order explicit finite difference
scheme. The equations are solved on a staggered mesh where the thermodynamical variables
are cell centred, while the flux are shifted to the cell edge. The domain of simulation contains
the entropy minimum located at the surface and is extended deep enough to have a flat
entropy profile at the bottom (adiabatic regime). The code uses periodic boundary conditions
horizontally and open boundaries vertically. At the bottom of the simulation, the inflows have
constant entropy and pressure. The outflows are not constrained and are free to pass through
the boundary. We used a realistic equation-of-state that accounts for ionization, recombination,
and dissociation, and continuous plus line opacities. Radiative transfer is crucial since it drives
convection through entropy losses at the surface [Stein and Nordlund, 1998]. The wavelength
dependence of the radiative transfer is taken into account using a binning scheme, in which the

6http://irfu.cea.fr/Sap/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=1130
7http://www.astro.ku.dk/∼kg/Papers/MHDcode.ps.gz
8The box size is: 8000 km2 and +500 and −3400 kms above and below the surface at τ = 1.
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monochromatic lines are collected into 12 bins. The numerical resolution used for the present
simulation is 1203. The choice of this modest resolution is a compromise between sufficient fine
grid to catch enough of the inhomogeneities and sufficiently small to minimize the computing
and storing costs of very long run simulation. Several runs have been performed with different
magnetic fields injected in the simulation. In order to compare our RV to GOLF data, we
compute synthetic line profiles of the Sodium doublet from 3D snapshots every minutes and
for a sequence of 54 days. The synthetic disk-integrated intensity line profiles of the considered
lines have been computed at 6 different angles from disk center to the limb (using a Radau
integration). An example of such synthetic spectrum is shown in Fig. 4.5.

The RV is extracted from the line profiles by the intensity contrast in the blue (IB) and red
(IR) wings, related to the RV by:

VR(t) = κ
IB − IR
IB + IR

, (4.25)

with κ a proportionality term related to the slope at the wavelength were the RV is extracted
(cf. p.328 of [Unno et al., 1989] and to Sulis. et al., in prep).
The left panel of Fig. 4.5 shows a synthetic spectrum of the Na lines (called D1 and D2) at a
given time. The right panel illustrates the velocity extraction method on one line. The reference
spectrum is shown in black and the spectrum measured at a given time t, I(t, λ), is shown by
the dot green line. In this approach, the wavelength shift (∆λ) is not the measured quantity
but rather the change of intensity at fixed wavelength (λB0 , λR0 ). For small shifts, ∆λ and ∆I
are related by Taylor development, which leads to expression (4.25).
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Figure 4.5 – Simulated spectrum of the solar sodium doublet (left) and blueprint the velocity
extraction method on one line (right). The intensity changes are measured by GOLF at two
fixed wavelength (λB0 and λR0 ).
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The comparison of the simulated RV extracted from time series of 3D spectra (red) with GOLF
observations (black) is shown in Fig. 4.6. The left panel compares the RV and the right panel
the smoothed (of 10 bins) periodograms. We see a good match between the observations and the
simulations until ≈ 10−5 Hz corresponding to a period of the day. At the lower frequency, the
observations are filtered and the comparison is not possible (shade region). Both the simulations
and the observations show that the granulation contribution cannot be treated as a WGN (flat
power over the whole frequency range). The convective noise is frequency dependent over all
the frequencies. It increases towards the lower frequencies. The rms of radial velocities of the
observations is 1.5 m.s−1 and 0.95 m.s−1 for the simulated velocities (which is closed to the value
obtained by [Meunier et al., 2015] for the RV rms of the granulation, i.e. around 0.8 m.s−1).
Another interesting finding is that the PSD is dominated by the horizontal component of the
velocity, as noticed also in [Meunier et al., 2015]. Finally, we note that a transverse magnetic
field of 150 Gauss has been used in the simulations but we will explore in details different
strength fields for a better matching [Sulis et al., in preparation]. Indeed, the magnetic field
might affect the RV amplitudes and explain the slight disagreements shown in Fig. 4.6 (left).

Figure 4.6 – Left: Comparison of solar data (black) with the RV extracted from disk in-
tegration of synthetic sodium spectral lines D1 and D2 from hydrodynamical simulations of
granulation (red). Right: Smoothed periodograms of GOLF data (black) and simulated data
(red). The shade region illustrates the frequency range where the data have been filtered
[Garcia et al., 2005]. To the simulated RV time series, we have added a WGN of variance 2 to
mimic the instrumental noise at highest frequencies. This instrumental noise does not affect
the lower frequency part of the periodogram.

This preliminary comparison will be published in A&A [Sulis et al., in prep.]. In this paper, we
aim to focus on three main objectives:

(i) Show that 3D HD simulations are sufficiently realistic to reproduce the convective noise
in a Sun-like star,

(ii) Show the advantages of using the ab initio HD simulations to control the detection claims
by injecting false planetary signals in the solar data.

(iii) Study the planet detectability in presence of the convective noise source only. Indeed,
applying the periodogram standardization given in (3.2) using HD simulations will allow
to design detection strategies as in Sec. 3.5.5. Considering test TM in (3.11) with PFA
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given in (3.18) and PDET in (3.19), the application is straightforward. One can evaluate
several planetary (e.g. planet mass and period) and observational (e.g. time sampling)
parameters to predict the performances of the test as a function of the time of observation.

Moreover, using the RV resulting from the 3D HD simulations, we aim to

1. Study the influence of the magnetic field on the convective part of the solar DSP to find
if the simulations are in agreement with the results of [Garcia et al., 2005] (who found no
significant variations with the magnetic stellar cycle).

2. Investigate the influence of the fundamental stellar parameters on the convective PSD.
Indeed, in practice, the measures of the stellar fundamental parameters are always given
with incertitudes and we have to know the impact on the resulting PSD shape.

3. Compare the detection significances derived by classical methods with our method for
some small planetary signals at short periods.

4. Design detectability studies for different kind of stars, samplings and target planetary
signatures to evaluate the best observational strategies to deal with the stellar convective
noise source.

Further interesting perspectives for the long term

This statistical study coupled with the reliability of the HD simulations to describe the convec-
tive noise open also the door to further astronomical studies.

Adaptive tests. First, it should be interesting to investigate the performances of adaptive tests
in the case of irregular sampling. Indeed, as discussed quickly in Chap. 4 (cf. Sec. 4.1),
the detection tests performances can be better for irregular sampling than for regular
ones. The relative behavior of these tests is unknown for the moment when the sampling
is irregular and their performances in case of non extremely sparse signal (e.g. high
eccentric planet orbit) should be investigated.

Long computation time of the simulations. As the recent HD simulations are heavy in
computation time, one can imagine to produce “reference tables” of simulated data with
a very fine sampling (to be able to cope with the case of irregular sampling) for different
kind of stars.

Contribution of other noise sources. The contribution of the other noise sources that can-
not be taken into account through the simulated noise training data set should also be
investigated (e.g. instrumental noise or other noise sources as the magnetic activity).
Different approaches have to be considered depending on the other noise sources charac-
teristics. Are they stochastic or determinist ? Is it possible to produce independent noise
training data sets of such noises (e.g. instrumental noises, spot contribution correlated
to the frequency of the stellar surface rotation) ? Moreover, if we have access to external
indicators (e.g. chromospheric indicators) in order to remove their contributions at spe-
cific frequencies (through a CLEAN procedure), these specific frequencies should not be
considered to derived the FA rate and the proposed periodogram standardization should
perhaps be modified.

Planetary transits. Then, the developed methodology based on noise training data sets
should also be investigated to the planet detection by the transit methods. In this case,
the periodogram is no more appropriate as the signature is spread in the temporal domain
(this signature is indeed periodic but we observe very few periods in general), and with a
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shape which is very different from a sinusoidal form. In this case, classical methods consist
in taking advantage from the shape of the signature of interest and use specific matched
filters to represent the signal. The main detection algorithm consists in comparing the
light curves with a transit model for different parameters (epoch of the transit beginning,
period and duration). For example the Box-Least-Square algorithm [Kovacs et al., 2002]
consists in finding the best fit using mean square errors with a rectangular function for the
transit. However, the stellar noise is not taken into account and the FA cannot be reliably
derived when the noise is colored, as for the RV detection problem. Some matched filter
methods consist in whitening the noise with adapted filters but are based on the observed
data and it is difficult to control the statistical properties of the “whitened” estimate.
In this context, the proposed methodology could take advantage from independent noise
training data set coming from HD simulations coupled with a matched filter approach,
and with detection tests dedicated to these deviations of weak amplitudes in massive time
series. In this case also, we can expect that the use of simulated photometric time se-
ries coming from HD simulations of the granulation phenomenon could be very useful to
control the tests’ significance level. We note that the use of HD simulations has already
been investigated on photometric data in [Chiavassa et al., 2015, Chiavassa et al., 2017]
to highlight that a full characterization of the granulation noise should be considered for
detecting (and characterizing) the planetary transits.
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Appendix A

Theoretical distributions

This appendix lists the main theoretical distributions discussed in this work. One can report
to [Abramowitz et al., 1972] for further characteristics of these distributions.

Gaussian distribution

The probability density function of a normal r.v. with mean µ and variance σ2 is:

ϕG(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (A.1)

for x ∈ R, µ ∈ R and σ2 > 0.
The corresponding cumulative distribution function is

ΦG(x;µ, σ2) =
1

2

[
1 + erf

(x− µ
σ
√

2

)]
, (A.2)

with erf(x) := 2√
π

∫ x
0 e−t

2
dt the error function.

Mode Mean Variance
m[x] E[x] var[x]

Exists for µ ∈ R µ ∈ R σ2 > 0

Expression µ µ σ2

Table A.1 – Some properties of the Gaussian distribution.

χ2 distribution

The probability density function of a chi-square r.v. with d degrees of freedom is:

ϕχ2(x; d) =
xd/2−1e−x/2

2d/2 Γ(d2)
, (A.3)

for x > 0 and is null otherwise. The Gamma function is defined as Γ(z) =
∫∞

0 xt−1e−xdx.
The corresponding cumulative distribution function is

Φχ2(x; d) = ΓR

(d
2
,
x2

2

)
(A.4)

with ΓR(d, x) the regularized Gamma function.
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Mode Mean Variance
m[x] E[x] var[x]

Exists for d ≥ 2 d > 0 d > 0

Expression [0, d− 2]+ d 2d

Table A.2 – Some properties of the χ2 law.

Non central χ2 distribution

The probability density function of a non central chi-square r.v. with d degrees of freedom and
non centrality parameter λ is:

ϕχ2(x; d;λ) =
1

2
e−(x+λ)/2

(x
λ

)d/4−1/2
IBd/2−1(

√
λx) (A.5)

with IB the modified Bessel function of the first kind defined as IBa (b) =

(b/2)a
∞∑
j=0

(b2/4)j)

j!Γ(a+ j + a)
.

The corresponding cumulative distribution function is

Φχ2(x; d, λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!
ΓR

(
x, d+ 2j

)
. (A.6)

Mode Mean Variance
m[x] E[x] var[x]

Exists for k, λ > 0 k, λ > 0 k, λ > 0

Expression (*) d+ λ 2(d+ 2λ)

Table A.3 – Some properties of the non central χ2 law. (*) The mode has to be evaluated
numerically.

F distribution

The probability density function of a F r.v. with d1, d2 degrees of freedom is:

ϕF =

√
(d1x)d1 (d2)d2

(d1x+d2)d1+d2

xB(d1
2 ,

d2
2 )

, (A.7)

with the Beta function defined as B(x, y) =
∫ 1

0 x
t−1tx−1(1− t)y−1dt.

The corresponding cumulative distribution function is

ΦF (x, d1, d2) = I d1x
d1x+d2

(d1

2
,
d2

2

)
, (A.8)
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with Ix(a, b) the regularized incomplete beta function, defined by the ratio of the incomplete
beta function B(x; a, b) and the complete beta function B(a, b):

Ix(a, b) =
B(x; a, b)

B(a, b)
=

1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt.

If a, b ∈ N, we can use integration by parts to work out the integral. Then, we can develop the
expression in terms of binomial expansion (given by Eq 6.6.4, p263 of [Abramowitz et al., 1972])
as:

Ix(a, b) =
a+b−1∑
j=a

(a+ b− 1)!

j!(a+ b− 1− j)!
xj
(

1− x
)a+b−1−j

.

Mode Mean Variance
m[x] E[x] var[x]

Exists for d1 > 2 d2 > 2 d2 > 4

Expression d1−2
d1

d2
d2+2

d2
d2−2

2d2
1(d2+d1−2)

d2(d1−2)2(d1−4)

Table A.4 – Some properties of the central F law.

Non central F distribution

The probability density function of a non central F r.v. with d1, d2 degrees of freedom and non
centrality parameter λ is:

ϕFλ(x, d1, d2) =
∞∑
k=0

e
λ
2 (λ/2)k

B(d2
2 ,

d1
2 + k)k!

(d1

d2

) d1
2

+k( d2

d2 + d1x

) d1+d2
2

+k
x
d1
2
−1+k (A.9)

for x ≥ 0 and zero otherwise and d1, d2, λ > 0.

The corresponding cumulative distribution function is

ΦFλ(x, d1, d2) =

∞∑
k=0

(
(1

2λ)k

k!
e−

λ
2

)
I d1x
d1x+d2

(
d1

2
+ k,

d2

2
). (A.10)

When λ = 0, the non central F distribution becomes a central F distribution.

Mode Mean Variance
m[x] E[x] Var[x]

Exists for d1, d2, λ > 0 d1, λ > 0, d2 > 2 d1, λ > 0, d2 > 4

Expression (*) d2(d1+λ)
d1(d2−2) 2 (d1+λ)2+(d1+2λ)(d2−2)

(d2−2)2(d2−4)

Table A.5 – Some properties of the non-central F law. (*) The mode has to be evaluated
numerically.
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Appendix B

Periodogram distribution and non
centrality parameter

Derivation of expressions (2.39) and (3.6)

We prove here that for model (3.1) the periodogram is asymptotically distributed as in (2.39)
with non centrality parameters as in (3.6). The proof is adapted from Theorem. 2 extracted
from [Li, 2014], which considers the complex case. We first prove (2.39) and then turn to (3.6).

The time series of model (3.1) can also be written as

X(j) =

Ns∑
q=1

αq sin(2πfqj + ϕq) + E(j)

= R(j) + E(j),

with R(j) :=
∑Ns

q=1 αq sin(2πfqj + ϕq) a deterministic part, which using Euler formulae can be
written as

R(j) =

Ns∑
q=1

αq
2

ei(ϕq−π2 )e2πifqj − αq
2

e−i(ϕq+
π
2

)e−2πifqj .

By introducing:

g(ν) := [ei2πν , . . . , ei2πNν ]>,

g+(fq) := ei(ϕq−π2 )g(fq),

g−(fq) := e−i(ϕq+
π
2

)g(fq),

the time series writes in vector form:

X =

Ns∑
q=1

αq
2

(
g+(fq)− g−(fq)

)
+ E = R + E (B.1)

and its discrete Fourier transform (DFT) yk at frequency νk writes

yk =
1

N
gH(νk)X =

1

N
gH(νk)R +

1

N
gH(νk)E.

The DFT is composed of a deterministic part, µk, and a stochastic part, εk, defined as

µk :=
1

N
gH(νk)R and εk :=

1

N
gH(νk)E. (B.2)
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Because E is a zero mean Gaussian process, the random variable yk = µk + εk is Gaussian with
mean µk and variance σ2

k. This is a complex variable for all Fourier frequencies except for ν0

and νN
2

because g(ν0) and g(νN
2

) are real.

The distribution of the periodogram requires to investigate the variance of εk which, with (B.2),
writes:

NVar[εk] = N−1E
(
gH(νk)EE>g(νk)

)
= N−1

N∑
t,s=1

rE(t− s)e−i2πνk(t−s)

= N−1
∑
|u|<N

(N − |u|)rE(u)e−i2πνku

= SE(νk)−
∑
|u|<N

N−1|u|rE(u)e−i2πνku −
∑
|u|≥N

rE(u)e−i2πνku

= SE(νk) +O(rN ),

(B.3)

since, using |rE(u)| <∞ and the dominated convergence theorem we have

rN :=
∑
u

min

(
1,
|u|
N

)
|rE(u)| → 0 as N →∞. (B.4)

Hence, for all Fourier frequencies,

σ2
k := Var[εk] = N−1SE(νk) +O(N−1rN ). (B.5)

By Lemma 12.2.1(b) of [Li, 2014], we obtain

|yk|2/σ2
k ∼


1

2
χ2

2,2
|µk|2

σ2
k

, ∀k ∈ Ω,

χ2

1,
|µk|2

σ2
k

, for k = 0,
N

2
.

Hence, for the periodogram this implies

P (νk|H1) = N |yk|2 = Nσ2
k

|yk|2

σ2
k

∼


1

2
ρ−1
k SE(νk)χ

2
2,2ρkγk

, ∀k ∈ Ω,

ρ−1
k SE(νk)χ

2
1,ρkγk

, for k = 0,
N

2
,

(B.6)

where

ρk :=
SE(νk)

Nσ2
k

and γk := N
|µk|2

SE(νk)
. (B.7)

With (B.5), we see that

ρk =
SE(νk)

SE(νk) +O(rN )
= 1 +O(rN )

for all Fourier frequencies. Owing to (B.4), an approximated distribution of (B.6) can be
obtained by neglecting the O(rN ) in (2.39). The distribution (2.39) follows by noting

λk := 2γk for k ∈ Ω and λk := γk for k = 0,
N

2
. (B.8)
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We now turn to the computation of the non centrality parameters given in (3.6). We have from
(B.1), (B.2) and (B.7)

γk =
N

SE(νk)
| 1
N

gH(νk)R|2

=
1

NSE(νk)

∣∣∣ N∑
j=1

Ns∑
q=1

αq
2

(
ei(ϕq−π2 )e2πi(fq−νk)j − e−i(ϕq+

π
2

)e−2πi(fq+νk)j
)∣∣∣2. (B.9)

As a result, the non centrality parameter is:

λk = 2κkµk

≈ 2

SE(νk)

|FT(R(tj))|2

N

=
2

NSE(νk)

∣∣∣ N∑
j=1

R(tj)e
−2πiνktj

∣∣∣2
=

2

NSE(νk)

∣∣∣ N∑
j=1

Ns∑
p=1

αq
2

(
ei(φq−

π
2 )e2πifqtj − e−i(φq+

π
2 )e−2πifqtj

)
e−2πiνktj

∣∣∣2
=

2

NSE(νk)

∣∣∣ N∑
j=1

Ns∑
p=1

αq
2

(
ei(φq−

π
2 )e2πi(fq−νk)tj − e−i(φq+

π
2 )e−2πi(fq+νk)tj

)∣∣∣2
=

2

NSE(νk)

∣∣∣N Ns∑
p=1

αq
2

(
DN (fq − νk)ei(φq−

π
2 ) −DN (fq + νk)e−i(φq+

π
2 )
)∣∣∣2

=
N

2SE(νk)

∣∣∣ Ns∑
p=1

αq

(
DN (fq − νk)ei(φq−

π
2 ) −DN (fq + νk)e−i(φq+

π
2 )
)∣∣∣2

=
N

2SE(νk)

∣∣∣∣∣
Ns∑
p=1

αq

[
sin(Nπ(fq − νk))

N sin(π(fq − νk))
ei[(N+1)π(fq−νk)+(φq−π

2 )] − sin(Nπ(fq + νk))

N sin(π(fq + νk))
e−i[(N+1)π(fq+νk)+(φq+

π
2 )]

]∣∣∣∣∣
2

=
N

2SE(νk)

∣∣∣ Ns∑
p=1

αq

(
κ1(p)eiθ1(p) − κ2(p)eiθ2(p)

)∣∣∣2
=

N

2SE(νk)

∣∣∣ Ns∑
p=1

αq

(
z1(p)− z2(p)

)∣∣∣2
(B.10)

with the complex numbers z1(p) and z2(p) such as |κ1(p)| = |DN (fq − νk)| and |κ2(p)| =
|DN (fq + νk)|:{

z1(p) = κ1(p)eiθ1(p) = κ1(p) cos(θ1(p)) + iκ1(p) sin(θ1(p)) = a1(p) + ib1(p)

z2(p) = κ2(p)eiθ2(p) = κ2(p) cos(θ2(p)) + iκ2(p) sin(θ2(p)) = a2(p) + ib2(p)

and the associated complex parameters in the geometric form (module and argument):

κ1(p) =
sin(Nπ(fq − νk))

N sin(π(fq − νk))

κ2(p) =
sin(Nπ(fq + νk))

N sin(π(fq + νk))

θ1(p) = +[(N + 1)π(fq − νk) + (φq −
π

2
)]

θ2(p) = −[(N + 1)π(fq + νk) + (φq +
π

2
)].
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Then, we can develop the last line of (B.10) to obtain:

λk =
N

2SE(νk)

∣∣∣ Ns∑
p=1

(αqκq)e
iθq
∣∣∣2 =

N

2SE(νk)

∣∣∣ Ns∑
p=1

zq

∣∣∣2
with zq = z(p):

zq = αq [z1(p)− z2(p)]

= αq [a1(p) + ib1(p)− (a2(p) + ib2(p))]

= αq [(a1(p)− a2(p)) + i(b1(p)− b2(p))]

= αq κqe
iθq

(B.11)

If we now develop the two new terms (κq and θq, we avoid in the following the indice (p) to be
more clear):

κq = |z1(p)− z2(p)|

=

√(
a1(p)− a2(p)

)2
+
(
b1(p)− b2(p)

)2
=

√(
κ1 cos(θ1)− κ2 cos(θ2)

)2
+
(
κ1 sin(θ1)− κ2 sin(θ2)

)2
=

√(
κ1 cos(θ1)

)2
+
(
κ2 cos(θ2)

)2
− 2κ1κ2 cos(θ1) cos(θ2) +

(
κ1 sin(θ1)

)2
+
(
κ2 sin(θ2)

)2
− 2κ1κ2 sin(θ1) sin(θ2)

=

√
κ21

(
cos(θ1)2 + sin(θ1)2

)
+ κ22

(
cos(θ2)2 + sin(θ2)2

)
− 2κ1κ2

(
cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

)
=
√
κ21 + κ22 − 2κ1κ2 cos (θ1 − θ2)

=

√
KN (fq − νk) +KN (fq + νk)− 2

sin(Nπ(fq − νk))

N sin(π(fq − νk))

sin(Nπ(fq + νk))

N sin(π(fq + νk))
cos (θ1 − θ2)

=

√
KN (fq − νk) +KN (fq + νk)− 2

sin(Nπ(fq − νk))

N sin(π(fq − νk))

sin(Nπ(fq + νk))

N sin(π(fq + νk))
cos (2π(N + 1)fq + 2φq)

as

θ1−θ2 = +[(N+1)π(fq−νk)+(φq−
π

2
)]−(−)[(N+1)π(fq+νk)+(φq+

π

2
)] = 2π(N+1)fq+2φq

Now, for the argument of (B.11):

θq = ∠ zq =



arctan
( b1(p)− b2(p)

a1(p)− a2(p)

)
mod [2π] if (a1 − a2) > 0

arctan
( b1(p)− b2(p)

a1(p)− a2(p)

)
+ π mod [2π] if (a1 − a2) < 0 and (b1 − b2) > 0

arctan
( b1(p)− b2(p)

a1(p)− a2(p)

)
− π mod [2π] if (a1 − a2) < 0 and (b1 − b2) < 0

Finally, we use the fact that, for all complex zj = κj eiθj , we have the relation∣∣∣∑
j

zj

∣∣∣2 =
∑
j

[
(κj)

2 + 2
∑
`=j+1

κjκ` cos(θj − θ`)
]

as from [Kumar, 2010]:(∑
j

zj

)(∑
`

z`

)
=
∑
j

|zj |2 +
∑
`>j

zjz`

=
∑
j

κ2j +
∑
`>j

κjκ`e
i(θj−θ`)

=
∑
j

κ2j + 2
∑
`=j+1

κjκ` cos(θj − θ`)

(B.12)
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as the cosine terms in the exponential double up since cosine is even:

cos(θj − θ`) + cos(θ` − θj) = 2 cos(θj − θ`)

and the sine terms cancel since sine is odd:

sin(θj − θ`) + sin(θ` − θj) = 0.

So, we replace κj by αq κq to obtain the final expression for the non centrality parameter given
is (3.6):

λk =
N

2SE(νk)

∣∣∣ Ns∑
p=1

zq

∣∣∣2
=

N

2SE(νk)

NS∑
q=1

[
α2
qκ

2
q + 2αqκq

NS∑
`=q+1

α`κ` cos(θq − θ`)
]
.

(B.13)

Note that if all signal frequencies {fq} fall on the Fourier frequency grid, the crossed term
in (B.13) vanish owing to the orthogonality of the Fejér kernels centered at different signal
frequencies. In this case, expression (B.13) precisely reduces to expression given in Remark 6.6
of [Li, 2014].

The non-centrality parameter λk is evaluated at the Fourier frequencies νk and corresponds to
the signal power normalised by the noise power in the k-th frequency bin. If there is only noise in
the data λk = 0 but if some signals are present λk 6= 0 for the frequencies affected by the signals.
The expression (B.13) is composed of two sums depending on the signal parameters (αq, fq, ϕo)
and to the observational parameters (N,∆t). The truncation of the time sequence and the
presence of off-grid frequency signals cause the spectral leakage caracterised by the Fejér kernel
KN (or spectral window) in the κq terms. This kernel is composed on a main central lobe and
sidelobes with width depending on the spectral resolution ( 1

N∆t) and to the signal frequencies
position on the Fourier grid. The magnitude of these sidelobes at neighbouring frequencies
can be significant when the signal is off-grid and the superposition of all the “signals kernel
sidelobes” are evaluated by the second sum in (B.13). The second sum tends to zero in case of
signal frequencies on the Fourier grid as KN (0) = 1 and so κq(fq)→ 1 and κq(νk 6= fq)→ 0 (i.e
giving, ∀νk, the product κqκ` → 0).
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Appendix C

Theoretical AR autocorrelation
function

This appendix aims to derive the theoretical AR autocorrelation function rE up to a number
of considered lags (Nlags) for σ2

AR = 1. The main steps of the used algorithm (cf. p.65 of
[Tingyan, 2010]) are summarized below.

1. Find the first terms of the autocorrelation function {rE,1, .., rE,o} by solving linear system
setting up the matrix :

• We evaluate the Toeplitz matrix T of size (o+ 1)× (o+ 1):

T =


1 2 . . . o+ 1
2 1 . . . o
. . . . . . . . . . . .
p+ 1 p− 1 . . . 1


• We define a matrice R of size (o+ 1)× (o+ 1) such as :

R(i, T (i, j)) = R(i, T (i, j))− cj , for i, j = 1, ..., o+ 1.

• Then, the function evaluates the right-hand-side column vector of the Toeplitz ma-
trice : ψ with size (o+ 1)× (1) :

ψ(1) = 1, and ψ(i) =


ψ(1)
ψ(2)
. . .

ψ(i− 1)

×


ci
ci−1

. . .
c2

 , for i = 2, ..., o + 1.

• Finally, the ACF of the first terms are given by solving the system of linear equations

R× rE = ψ,

with the MATLAB function ”rE = mldivide(R,ψ)”.

2. The other autocorrelation coefficients {rE,o+1, ..., rE,Nlags
} are given by iterations.

For i = o+ 1, ..., Nlags:

rE,i =


c1

c2

. . .
co

×


rE,i
rE,i−1

. . .
rE,i−o+1

 .

3. Finally, the function normalizes the ACF coefficients :

rE =
rE

rE,1
.
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Appendix D

Generalized extreme value : proofs
of equations

This appendix aims to prove the equations derived in Sec. 4.3. All the demonstrations can be
found in [Coles, 2001].

Return level function (4.16)

In this part, we derive the return level expressions given in (4.16).

First, we have the GEV cdf (4.15):

G(z;θGEV ) :=


exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ

+

}
, for ξ 6= 0

exp
{
− exp

{
−
(z − µ

σ

)}}
, for ξ = 0,

The return level γ(q;θGEV ) is associated to a return period q such as:

Pr(z > γ(q;θGEV )) = 1−G(z ≤ γ(q;θGEV )) := q.

Using the inverse function of G, we obtain:

γ(q;θGEV ) = G−1
(

1− q;θGEV
)
. (D.1)

Let us define u := 1− q and isolate u in y := G(u;θGEV ).
For ξ 6= 0 we have:

y := exp
{
−
[
1 + ξ

(u− µ
σ

)]−1/ξ

+

}
log (y) = −

[
1 + ξ

(u− µ
σ

)]−1/ξ

+(
− log (y)

)−ξ
= 1 + ξ

(u− µ
σ

)
u = µ− σ

ξ

(
1−

(
− log (y)

)−ξ)
.

(D.2)

For ξ = 0, we have:

y := exp
{
− exp

{
−
(u− µ

σ

)}}
− log

(
log (y)

)
=
u− µ
σ

u = µ− σ
(

log
(

log (y)
))
.

(D.3)
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We replace u into y = G(u) and y into u in (D.2) and (D.3) to obtain the inverse of G in order
to evaluate the return level function by (D.1). Let us define yq := − log (1− q) in order to
obtain (4.16):

γ(q;θGEV ) = G−1(1− q;θGEV ) =

µ− σ

ξ

(
1− y−ξq

)
, for ξ 6= 0,

µ− σ log yq, for ξ = 0.

Likelihood function (4.17)

In this part, we derive the log-likelihood function associated to the GEV distribution given in
(4.17).

Assuming the independence of the b maxima z := [z1, . . . , zb]
>, the likelihood function can be

written as:

L(z;θGEV ) =

b∏
i=1

g(zi;θGEV ) =

b∏
i=1

dG(zi;θGEV )

dzi
, (D.4)

with g the GEV pdf and G the GEV cdf given in (4.15).

We first obtain g for the case ξ 6= 0 and then turn to the case ξ = 0.

• Case ξ 6= 0:

g(z;θGEV ) =
d exp{u(z)}

dz

=
du(z)

dz
exp{u(z)}

=
( 1

σ

)[
1 + ξ

(z − µ
σ

)]−( 1
ξ

+1

)
+

exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ

+

}
,

(D.5)

with


u(z) = −

[
1 + ξ

(z − µ
σ

)]−1/ξ

+
,

du(z)

dz
= −

(
− 1

ξ

)( ξ
σ

)[
1 + ξ

(z − µ
σ

)]− 1
ξ
−1

+
=
( 1

σ

)[
1 + ξ

(z − µ
σ

)]−( 1
ξ

+1

)
+

.

• Case ξ = 0:

g(z;θGEV ) =
d exp{−exp[u(z)]}

dz

= −d exp{u(z)})
dz

exp{−exp[u(z)]}

= −du(z)

dz
exp{u(z)} exp{−exp[u(z)]}

=
( 1

σ

)
exp
{
− z − µ

σ

}
exp
{
− exp

[
− z − µ

σ

]}
,

(D.6)

with


u(z) = −

(z − µ
σ

)
,

du(z)

dz
= − 1

σ
.
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Consequently, with (D.4), (D.5), and (D.6), the log-likelihood function in (D.4) writes as given
in (4.17):

`(z;θGEV ) := log L(z;θGEV )

= log

(
b∏
i=1

g(zi;θGEV )

)

=
b∑
i=1

log g(zi;θGEV )

=



b∑
i=1

log
( 1

σ

)
+

b∑
i=1

log

([
1 + ξ

(zi − µ
σ

)]−( 1
ξ

+1

)
+

)
+

b∑
i=1

log

(
exp
{
−
[
1 + ξ

(zi − µ
σ

)]−1/ξ

+

})
for ξ 6= 0,

b∑
i=1

log
( 1

σ

)
+

b∑
i=1

log

(
exp
{
−
(zi − µ

σ

)})
+

b∑
i=1

log

(
exp
{
− exp

[
− zi − µ

σ

]})
for ξ = 0

=


− b log (σ)−

(
1 +

1

ξ

) b∑
i=1

log
([

1 + ξ
(zi − µ

σ

)]
+

)
−

b∑
i=1

[
1 + ξ

zi − µ
σ

]−1/ξ

+
, for ξ 6= 0,

− b log (σ)−
b∑
i=1

(zi − µ
σ

)
−

b∑
i=1

exp
{
−
(zi − µ

σ

)}
, for ξ = 0.

(D.7)

The log-likelihood system of equation

In this part, in order to estimate the GEV parameters, we derive the likelihood system of
equation associated to the maximization of the likelihood given in (D.4). As it is more convenient
to work with the log-likelihood function ` (4.17), we derive the log-likelihood with respect to
the three GEV parameters (ξ, µ, σ):



d `(z; ξ, µ, σ)

dξ
= 0,

d `(z; ξ, µ, σ)

dσ
= 0,

d `(z; ξ, µ, σ)

dµ
= 0.

(D.8)

Derivation of (4.17) with respect to ξ

• First case, ξ 6= 0:

d `(zi; ξ, µ, σ)

dξ
= 0− d {f(ξ)× h(ξ)}

dξ
−

b∑
i=1

d{u(ξ)v(ξ)}
dξ

, (D.9)
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with



f(ξ) =
(

1 +
1

ξ

)
⇒ df(ξ)

dξ
= − 1

ξ2
,

h(ξ) =

b∑
i=1

log
(

1 + ξ
(zi − µ

σ

))
→ dh(ξ)

dξ
=

b∑
i=1

(zi − µ
σ

)[
1 + ξ

(zi − µ
σ

)]−1
,

u(ξ) =
(

1 + ξ
(zi − µ

σ

))
⇒ du(ξ)

dξ
=
(zi − µ

σ

)
,

v(ξ) = −1

ξ
⇒ dv(ξ)

dξ
=

1

ξ2
.

So we can deduce the two terms of (D.9):

– First term

d {f(ξ)× h(ξ)}
dξ

=
d f(ξ)

dξ
× h(ξ) +

d h(ξ)

dξ
× f(ξ)

= −
( 1

ξ2

) b∑
i=1

log
(

1 + ξ
(zi − µ

σ

))
+
(

1 +
1

ξ

) b∑
i=1

(zi − µ
σ

)[
1 + ξ

(zi − µ
σ

)]−1
.

– Second term

d{u(ξ)v(ξ)}
dξ

= u(ξ)v(ξ) ×
(

ln(u(ξ))× d v(ξ)

dξ
+ v(ξ)× 1

u(ξ)

du(ξ)

dξ

)
=
[
1 + ξ

(zi − µ
σ

)]− 1
ξ

+

(
1

ξ2
ln
{[

1 + ξ
(zi − µ

σ

)]
+

}
− 1

ξ

(zi − µ
σ

)[
1 + ξ

(zi − µ
σ

)]−1

+

)
.

So (D.9) writes:

d `(ξ, µ, σ; zi)

dξ
= −d {f(ξ)× h(ξ)}

dξ
−

b∑
i=1

d{u(ξ)v(ξ)}
dξ

,

= +
( 1

ξ2

) b∑
i=1

log
(

1 + ξ
(zi − µ

σ

))
−
(

1 +
1

ξ

) b∑
i=1

(zi − µ
σ

)[
1 + ξ

(zi − µ
σ

)]−1
(D.10)

−
b∑
i=1

[
1 + ξ

(zi − µ
σ

)]− 1
ξ

+

(
1

ξ2
ln
{[

1 + ξ
(zi − µ

σ

)]
+

}
− 1

ξ

(zi − µ
σ

)[
1 + ξ

(zi − µ
σ

)]−1

+

)
.

• Second case, ξ = 0: For ξ = 0, the likelihood is not defined.

Derivation of (4.17) with respect to µ

• First case, ξ 6= 0:

d `(z; ξ, µ, σ)

dµ
= 0−

(
1 +

1

ξ

) b∑
i=1

d log{u(µ)}
dµ

−
b∑
i=1

d u(µ)
− 1
ξ

dµ
(D.11)

with

u(µ) = 1 + ξ
(zi − µ

σ

)
⇒ du(µ)

dµ
= −

( ξ
σ

)
.

174



So (D.11) is finally:

d `(z; ξ, µ, σ)

dµ
= −

(
1 +

1

ξ

) b∑
i=1

(
− ξ

σ

)[
1 + ξ

(zi − µ
σ

)]−1

+
−

b∑
i=1

(
− 1

ξ

)(
− ξ

σ

)[
1 + ξ

(zi − µ
σ

)]−(1+ 1
ξ

)
+

=
ξ + 1

σ

b∑
i=1

[
1 + ξ

(zi − µ
σ

)]−1

+
− 1

σ

b∑
i=1

[
1 + ξ

(zi − µ
σ

)]−(1+ 1
ξ

)
+

.

(D.12)

• Second case, ξ = 0:

d `(z; ξ, µ, σ)

dµ
= 0−

b∑
i=1

(
− 1

σ

)
−

b∑
i=1

(−1)× (−1)× 1

σ
exp
{
−
(zi − µ

σ

)}
=

1

σ

(
1− exp

{
−
(zi − µ

σ

)}) (D.13)

Derivation of (4.17) with respect to σ

• First case, ξ 6= 0:

d `(z; ξ, µ, σ)

dσ
= −b d log{σ}

dσ
−
(

1 +
1

ξ

)
×

b∑
i=1

d log{u(σ)}
dσ

−
b∑
i=1

d log{u(σ)
− 1
ξ }

dσ
(D.14)

with 
d log(σ)

dσ
= − b

σ
,

u(σ) = 1 + ξ
(zi − µ

σ

)
⇒ du(σ)

dσ
= −

( 1

σ2

)
ξ(zi − µ).

So (D.14) is finally:

d `(ξ, µ, σ; zi)

dσ

= − b
σ

+
(

1 +
1

ξ

) b∑
i=1

[
1 + ξ

(zi − µ
σ

)]−1

+

( 1

σ2

)
ξ(zi − µ)− 1

ξ

b∑
i=1

ξ
(zi − µ

σ2

)[
1 + ξ

(zi − µ
σ2

)]−(1+ 1
ξ

)
+

= − b
σ

+
ξ + 1

σ2

b∑
i=1

(zi − µ)[
1 + ξ

(
zi−µ
σ

)]
+

− 1

σ2

b∑
i=1

(zi − µ)[
1 + ξ

(
zi−µ
σ

)]1+ 1
ξ

+

(D.15)

• Second case, ξ = 0:

d `(z; ξ, µ, σ)

dσ
=

1

σ

(
− b+

b∑
i=1

(zi − µ
σ

)
− 1

σ

b∑
i=1

exp
{
−
(zi − µ

σ

)})
(D.16)

It does not exist any analytical solution to solve equations (D.10), (D.12), (D.13), (D.15), and
(D.16). Consequently, these equations have to be solved iteratively (e.g. using the Newton-
Raphson method) to obtain the MLE parameters θ̂GEV := [ξ̂, µ̂, σ̂]>.
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Standard errors on the GEV parameters

In this part, we describe one common method to first, derive the standard errors on the esti-
mated GEV parameters θ̂GEV := [ξ̂, µ̂, σ̂]> and then the confidence interval for the return level
function (4.16) (namely the “delta method’). This method is based on the variance-covariance
information matrix and is implementable only for ξ > −0.5. One can refer to Sec. 3.3.2, p. 55
of [Coles, 2001] for a more detailed description.
The variance-covariance matrix is obtained via inversion of the observed information matrix,
which is defined as the negative of the second-order partial derivatives of the negative log-
likelihood (i.e. the Hessian matrix). We avoid in the following the dependence in z to be more
clear.

• The information matrix of the log-likelihood is:

I`(θGEV ) := −∇∇T `(θGEV ) =


−∂2`(θGEV )

∂ξ2 −∂2`(θGEV )
∂ξ∂µ −∂2`(θGEV )

∂ξ∂σ

−∂2`(θGEV )
∂ξ∂µ −∂2`(θGEV )

∂µ2 −∂2`(θGEV )
∂µ∂σ

−∂2`(θGEV )
∂ξ∂σ −∂2`(θGEV )

∂σ∂µ −∂2`(θGEV )
∂σ2


• The observed information matrix is : Î`(θ̂GEV ).

• The approximate variance-covariance matrix results from the inversion of Î`:

V̂`(θ̂GEV ) = Î`(θ̂GEV )−1.

The diagonal elements give the variance of the estimated parameters θ̂GEV and the off-diagonal
elements the covariance between two of them. Thanks to the asymptotic normality of the MLE
for any shape > 0.5 [Smith, 1985], the square roots of the diagonal elements of V̂` give the
expected standard errors for θ̂GEV . For instance, for a 95% confidence interval we obtain :

ξ̂ ± 1.96

√
V̂`,11(ξ̂),

µ̂± 1.96

√
V̂`,22(µ̂),

σ̂ ± 1.96

√
V̂`,33(σ̂).

(D.17)

It follows that confidence interval for the return level function (4.16) are obtainable, which is
very useful for hypothesis testing (for the purpose of choosing between the 3 types of extreme
distributions). Using the delta method, the variance-covariance matrix of the return level
function writes:

V̂γ̂(q; θ̂GEV ) ≈∇γ̂(q; θ̂GEV )T V̂`(θ̂GEV ) ∇γ̂(q; θ̂GEV ), (D.18)

with ∇γ̂(q; θ̂GEV ) such as:

∇γ̂(q; θ̂GEV ):=


[∂γ̂(q; θ̂GEV )

∂ξ̂
,
∂γ̂(q; θ̂GEV )

∂µ̂
,
∂γ̂(q; θ̂GEV )

∂σ̂

]>
=
[
σ̂

1− y−ξ̂q − ξ̂−1y−ξ̂q log(yq)

ξ̂2
, 1,− 1− y−ξ̂q

ξ̂

]>
, for ξ̂ 6= 0,

[∂γ̂(q; θ̂GEV )

∂µ̂
,
∂γ̂(q; θ̂GEV )

∂σ̂

]>
=
[
1,− log(yq)

]>
, for ξ̂ = 0.

(D.19)
∇γ̂(q; θ̂GEV ) is evaluated at the MLE of the considered GEV model θ̂GEV . The 95% confidence
interval for γ̂(q; θ̂GEV ) is then derived by

γ̂(q; θ̂GEV )± 1.96

√
V̂γ̂(q; θ̂GEV ). (D.20)

One notes that other methods exist to estimate the confidence interval of the MLE parameters
and the return level function such as parametric/non parametric bootstrap and profile likelihood
for example (cf. [Coles, 2001]).
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[Anglada-Escudé et al., 2016] Anglada-Escudé, G. et al. (2016). A terrestrial planet candidate
in a temperate orbit around Proxima Centauri. Nature, 536:437–440.

[Arias-Castro et al., 2011] Arias-Castro, E. et al. (2011). Global testing under sparse alterna-
tives: Anova, multiple comparisons and the higher criticism. Annals of Statistics, 39(5):2533–
2556.

[Artis et al., 2004] Artis, M. et al. (2004). The detection of hidden periodicities: A compari-
son of alternative methods. Economics Working Papers ECO2004/10, European University
Institute.

[Asplund et al., 1999] Asplund, M. et al. (1999). 3D hydrodynamical model atmospheres of
metal-poor stars. Evidence for a low primordial Li abundance. Astronomy and Astrophysics,
346:L17–L20.

177



[Asplund et al., 2004] Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., and Kisel-
man, D. (2004). Line formation in solar granulation. IV. [O I], O I and OH lines and the
photospheric O abundance. Astronomy and Astrophysics, 417:751–768.

[Asplund et al., 2009] Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. (2009). The
Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 47:481–
522.

[Asplund et al., 2000] Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C., and
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[Garćıa, 2015] Garćıa, R. A. (2015). Observational techniques to measure solar and stellar
oscillations. In EAS Publications Series, volume 73 of EAS Publications Series, pages 193–
259.

[Gillon et al., 2017] Gillon, M. et al. (2017). Seven temperate terrestrial planets around the
nearby ultracool dwarf star TRAPPIST-1. Nature, 542:456?460.

[Gontscharuk et al., 2014] Gontscharuk, V. et al. (2014). The intermediates take it all: Asymp-
totics of higher criticism statistics and a powerful alternative based on equal local levels.
Biometrical Journal, 57(1):159–180.

[Gontscharuk et al., 2016] Gontscharuk, V. et al. (2016). Goodness of fit tests in terms of local
levels with special emphasis on higher criticism tests. Bernoulli, 22(3):1331–1363.

[Gould and Loeb, 1992] Gould, A. and Loeb, A. (1992). Discovering planetary systems through
gravitational microlenses. The Astrophysical Journal, 396:104–114.

[Graham et al., 2013] Graham, M. J. et al. (2013). A comparison of period finding algorithms.
MNRAS, 434:3423–3444.

[Gray, 2005] Gray, D. F. (2005). The Observation and Analysis of Stellar Photospheres. UK:
Cambridge University Press.

[Gregory, 2016] Gregory, P. (2016). An apodized kepler periodogram for separating planetary
and stellar activity signals. MNRAS, 458(3):2604–2633.

[Grenander and Rosenblatt, 1957] Grenander, U. and Rosenblatt, M. (1957). Statistical analy-
sis of stationary time series. John Wiley and Sons.

[Griffin and Griffin, 1973] Griffin, R. and Griffin, R. (1973). On the possibility of determining
stellar radial velocities to 0.01 km s−1. MNRAS, 162:243–253.

[Gryca, 1998] Gryca, J. (1998). Detection of multiple sinusoids buried in noise via balanced
model truncation. International Instrumentation and Measurement Technology Conference,
IEEE, 2:1353–1358.

[Guillot, 1999] Guillot, T. (1999). Interior of Giant Planets Inside and Outside the Solar System.
Science, 286.

[Gupta et al., 2001] Gupta, S. et al. (2001). UPSO three channel fast photometer. Bulletin of
the Astronomical Society of India, 29:479–486.

184



[Gutiérrez-Soto et al., 2009] Gutiérrez-Soto, J. et al. (2009). Low-amplitude variations detected
by CoRoT in the B8IIIe star HD 175869. Astronomy and Astrophysics, 506:133–141.

[Hall and Jin, 2010] Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting sparse
signals in correlated noise. Annals of Statistics, 38(3):1686–1732.

[Hannan, 1961] Hannan, E. (1961). Testing for a jump in the spectral function. Journal of the
Royal Statistical Society: Series B, 23(2):394–404.

[Hannan and Quinn, 1979] Hannan, E. and Quinn, B. (1979). The determination of the order
of an autoregression. Journal of the Royal Statistical Society: Series B, 41(2):190–195.
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[Nordlund and Galsgaard, 1995] Nordlund, Å. and Galsgaard, K. (1995). A 3d mhd code for
parallel computers. Technical report, Astronomical Observatory, Copenhagen University,.

[November et al., 1981] November, L. et al. (1981). The detection of mesogranulation on the
sun. The Astrophysical Journal, 245:L123–L126.

[Olsen and Bohr, 2010] Olsen, K. and Bohr, J. (2010). Pair-correlation analysis of HD 10180
reveals a possible planetary orbit at about 0.92 AU. ArXiv e-prints.

[Paparoditis and Politis, 1999] Paparoditis, E. and Politis, D. (1999). The local bootstrap for
periodogram statistics. Journal of Time Series Analysis, 20(2):193–222.

[Paris, 2013] Paris, S. (2013). Sparsity-based detection strategies for faint signals in noise :
application to astrophysical hyperspectral data. Theses, Université Nice Sophia Antipolis ;
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