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Abstract

In light of the recent advances in the field of web engineering, along with the decrease of cost
of cloud computing, service-oriented architectures rapidly became the leading solution in provid-
ing valuable services to clients. Following this trend, the composition of third-party services has
become a successful paradigm for the development of robust and rich distributed applications,
as well as automating business processes. With the availability of hundreds of thousands of web
services and APIs, such integrations become cumbersome and tedious when performed manually.
Furthermore, different clients may require different integration requirements and policies, which
further complexifies the task. Moreover, providing such a solution that is both robust and scalable
is a non-trivial task. Therefore, it becomes crucial to investigate how to efficiently coordinate the
interactions between existing web services. As such, this thesis aims at investigating the underlying
challenges in web service composition in the context of modern web development practices. We
present an architectural framework to support the specification of web service compositions using
a language-based approach, and show how we support their execution in a scalable manner using
MEDLEY, a lightweight, event-driven platform.

Keywords: Service composition, Orchestration, Domain-specific languages, Microservices, Dis-

tributed systems

Résumé

Au vu des dernières avancées dans le domaine de l’ingénierie web, ainsi qu’avec la baisse de
coût du cloud computing, les architectures orientées services sont rapidement devenues la solu-
tion prépondérante pour fournir des services à valeur ajoutée aux clients. Suite à cette tendance,
la composition de services tiers est devenue un paradigme de référence pour le développement
d’applications robustes et riches, ou encore pour l’automatisation de processus métiers. Avec la
disponibilité de centaines de milliers de services et APIs web, la réalisation de telles intégrations
devient lourde et fastidieuse quand effectuée manuellement. Par ailleurs, chaque client peut exiger
des besoins et politiques d’intégration différentes, ce qui complexifie davantage la tâche. De plus,
fournir une telle solution qui soit à la fois robuste et scalable est une tâche non-triviale. Il est donc
primordial d’étudier comment coordiner de manière efficace les intéractions entre les services web
existants. Ainsi, cette thèse vise à étudier les problématiques liées à la composition de services web
dans le contexte des pratiques de développement web modernes. Nous présentons un cadre archi-
tectural permettant la spécification de compositions de services web grâce à une approche orientée
langage, et montrons comment supporter leur exécution de manière scalable grâce à MEDLEY, une
plateforme légère et orientée événements.

Mots clés : Composition de services, Orchestration, Langages métiers, Microservices, Systèmes distri-

bués
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CHAPTER

1
Introduction

This chapter introduces the scope of the work achieved throughout this PhD thesis.
Carried out under the CIFRE 1 industrial partnership contract with the French com-
pany CPRODIRECT, this thesis aims at studying CPRODIRECT’s recent interest in web
service orchestration. With the increasing popularity of service-oriented architec-
tures, it becomes crucial to investigate how to efficiently coordinate the interactions
between existing web services. As such, we present in this chapter the context of our
work, the underlying challenges and our main contributions.

Contents
1.1 Context: CPRODIRECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Challenges in web service composition . . . . . . . . . . . . . . . . . . . 2

1.3 MEDLEY: an event-driven lightweight platform for service composition 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. CIFRE: Convention Industrielle de Formation par la REcherche, a French funding grant aimed at pro-
moting collaborations between national companies and public research institutions.

1



2 CHAPTER 1. INTRODUCTION

1.1 Context: CPRODIRECT

Based in the outskirts of Bordeaux, CPRODIRECT is a web development agency spe-
cialized in consulting services, with an emphasis on e-commerce and marketing activi-
ties. The center of activity of the company revolves around providing valuable services to
their clients, tailored to suit their needs. The company thrives on integrating existing web
services to provide an added value to their clients. This enables CPRODIRECT to leverage
well-established, high-quality web services to provide relevant solutions to their clients in a
timely fashion. However, with the availability of hundreds of thousands of web services and
APIs, such integrations become cumbersome and tedious when performed manually. Fur-
thermore, each client may require different integration requirements and policies, which
further complexifies the task. Typically, common use cases include automating business
processes across multiple applications by reacting to specific external events, propagating
and transforming the data along the way according to the client’s requirements. For in-
stance, this can consist in monitoring social networks for negative comments about the
client’s product or brand, then creating an issue in a dedicated CRM (Client Relation Man-
agement) tool, and finally notifying a sales representative in order to address the issue as
soon as possible. Moreover, providing such a solution that is both robust and scalable is
a non-trivial task. The work performed during this thesis lays ground for addressing the
underlying issues in web service composition.

1.2 Challenges in web service composition

Over the past decade, distributed applications have been evolving at a frantic pace, crit-
ically relying on integrating altogether a plethora of composable services to offer a host of
new functionalities with an added value. The abundance of web services available online
led researchers and businesses alike to leverage their potential in a number of ways [Alonso
et al., 2004]. Historically, several solutions were proposed to address this issue. For in-
stance, BPEL (Business Process Execution Language) used to be the reference solution to
orchestrate SOAP services, and has been the subject of a multitude of studies and industrial
applications [Andrews et al., 2003]. However, SOAP services are rapidly being deprecated
today, in favor of the more flexible REST architectural style [Fielding, 2000]. Moreoever,
there are inherent and fundamental differences between legacy web services (SOAP) and
the more modern architectural style (REST) for web services in terms of specifications,
toolings and best practices. This brings forth its own set of challenges in the context of web
service composition.
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1.2.1 Orchestrating modern web services

Since the early days of distributed computing there was a primitive notion of services
that took its origins from RPC mechanisms [Nelson, 1981]. The concept of services was sig-
nificantly refined across the last decades to have a strong impact on the distributed com-
puting landscape, particularly due to the emergence of the Service-Oriented Architecture
(SOA) paradigm. Founded on the Web Service stack (as defined by the WS-* specifications),
SOA aims at providing an architectural framework for encapsulating business logic and ex-
posing it through standardized interfaces over the network.

From a higher perspective, SOA has promoted at least two major trends that have a long
term impact. First, it has promoted a standardized way to build an application (that can
itself be seen as a service) as a set of well specified, independent, self-contained and loosely
coupled services that work altogether in concert. Second, it has proven that services act as
a valuable paradigm to design complex applications.

As a result, we live in a service-oriented world. Applications ranging from the simplest
smartphone application to the web’s most complex one strive, in one way or another, to
interact with value-added services, potentially made themselves from other services. In
other terms, applications are increasingly built using the SOA paradigm and integrate a
myriad of composable services. Furthermore, with the wide expansion of cloud providers,
IaaS (Infrastructure-as-a-Service) and PaaS (Platform-as-a-Service) offerings have become
more accessible and affordable alternatives compared to self-hosted solutions [Zhang
et al., 2010]. For instance, cloud providers such as AWS 2, GAE 3, Heroku 4 and DigitalO-
cean 5 all offer an easy and affordable way for businesses and individuals alike to rapidly
deploy, monitor and manage their services on reliable infrastructure.

As services are autonomous and deployed, undeployed and upgraded independently
from each other, SOA enables application developers to have a fine-grained control on
how to smoothly update their applications and how to make them scalable in a produc-
tion environment. Hence, nowadays, the development of SOA-based applications goes
hand in hand with continuous service development and continuous service integration
practices [Fowler and Lewis, 2014]. This new trend coupled with the steady proliferation
of services is not without challenges, and potentially obsoletes the traditional vision of
SOA [Newman, 2015], along with their classical implementations based on the Web Ser-
vices (WS-*) specifications. For instance, these long-standing specifications propose stan-
dards for defining web services (SOAP: Simple Object Access Protocol), and for defining or-
chestrations between these services (BPEL: Business Process Execution Language). How-
ever, the use of these de facto standards as a workflow to compose a plethora of services
may be inadequate according to the developers’ expectations. In fact, BPEL is a low-level

2. https://aws.amazon.com
3. https://cloud.google.com/appengine
4. https://www.heroku.com
5. https://www.digitalocean.com

https://aws.amazon.com
https://cloud.google.com/appengine
https://www.heroku.com
https://www.digitalocean.com


4 CHAPTER 1. INTRODUCTION

and verbose language that describes how services need to be composed instead of defining
what should be realized. Clients need to statically declare in advance the services they de-
pend on to carry out the required orchestration. Then, they have to explicitly specify how
to programmatically bind to these services, along with the control flow logic (invoking ser-
vices, waiting for the responses, error handling, etc.). Furthermore, clients have to account
for data flow operations and type incompatibilities between services, which further com-
plexifies the task. Consequently, the quantity of code developers have to write in BPEL
grows proportionally to the number of services they want to compose. The high complex-
ity of the written code typically makes the use of BPEL and other conventional techniques
not really suitable in practice, and associated visual edition tools unusable. Furthermore,
existing workflow languages typically require strongly-typed and well-defined interfaces
from composed services. However, defining such interfaces is not the trend anymore due
to the fast proliferation of services that most often expose their web APIs without any con-
tracts (such as with REST for instance) [Maximilien et al., 2007]. Thus, there is a need to
write some glue code to compose services in an ad hoc and fast manner.

From another perspective, with the emergence of continuous service integration and
development (commonly referred to as DevOps), workflow languages need to support not
only static composition of well-specified services, but also on-the-fly integration of ser-
vices that have not been previously planned at design time [Pautasso, 2009a; Pautasso and
Alonso, 2005]. Doing so enables smoother and faster integrations of new services, while
also providing better reliability at the orchestration level, should a required service fail
to respond, as an equivalent service could be dynamically selected instead by the run-
time system. However, conventional methods fail in this aspect, especially in the context
of microservices and REST APIs. Finally, existing workflow languages are typically bun-
dled with an execution engine such as an Enterprise Service Bus (ESB). However, ESBs are
well known to be heavyweight execution platforms [Chappell, 2004]. This makes their de-
ployment and administration more costly and time consuming, as they require a lot of
(human and computational) resources to operate. As such, they do not meet the trend
of lightweight containers and frequent deployments, as popularized by Docker. Docker
enables developers to deploy their service compositions wherever they want, such as per-
sonal clouds, according to specific privacy requirements [Fuchs and Gürgens, 2013].

Hence, the SOA paradigm has to evolve. Well known service providers such as Net-
flix, Amazon, Spotify and SoundCloud have already widely adopted a refinement of the
SOA paradigm named microservices. Microservices are no more than SOA instances con-
strained to the basics of HTTP, i.e. with a RESTful style, without the WS-* specifications,
and coupled with a variety of tools to promote fast deployment and undeployment of ser-
vices. However the challenge to compose services stays open to microservices practition-
ers that are free to use the programming language they want.
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1.2.2 Detecting specific changes in web service data

Integration platforms such as IFTTT 6 and Zapier 7 have recently emerged with the aim
of orchestrating interactions between a multitude of web services such as Facebook and
Twitter [Liu et al., 2000; Pandey et al., 2004]. They enable end users to describe which ac-
tions to trigger when a custom event occurs on a web service [Ur et al., 2016]. For instance,
one may want to automatically tweet a message when a specific subway line becomes un-
available. However, most of existing web services do not provide a way to specify custom
event notifications. To overcome this limitation, platform owners have developed their
own notification system by performing a recurrent polling of monitored services. For each
service, the current state is periodically fetched and compared against the previous one to
identify specific values that vary over time. When a change is detected, the corresponding
event is raised. Because specific code needs to be developed for each event of a service, the
set of supported services and events is limited and does not necessarily meet user expec-
tations.

Each step of the monitoring process can be relatively complex. As an example, consider
the use of the Facebook service to detect new photos with a given tagged user in a given
album. To implement this scenario, one needs first to periodically poll several Facebook
API endpoints (the one for the photos and the one for the tags) and navigate through the
paginated responses. The resulting aggregated state is then compared against the previous
one. However, this comparison requires focusing only on new photos (identified by their
unique IDs) while ignoring other irrelevant changes such as the last update time. Even
such a simple use case underlines the complexities of this process, which are declined in
two different challenges: state computation and change detection.

Although the computation of a state sometimes requires fetching a unique resource
from a single API endpoint, it is often necessary to implement more complicated policies.
For instance, the construction of a state may require navigating through a set of API end-
points, where several requests must be chained in a particular order to correctly fetch the
relevant data. In addition, responses returned by a service can be paginated and thus ne-
cessitate several subsequent requests to accumulate all the data. Thus, constructing a state
can quickly become laborious.

Once a state has been computed, it is necessary to detect changes with the previous
one. However, off-the-shelf techniques can produce unexpected or irrelevant results as
in the previous Facebook example in which photos with only a modified last update time
should not be reported as different. Developing a generic differencing tool is a well-known
complex problem, and can be NP-hard depending both on the change operations that are
considered, and on the guarantees about the output size [Buttler, 2004].

6. https://ifttt.com
7. https://zapier.com

https://ifttt.com
https://zapier.com
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1.2.3 Scaling a service composition platform

Designing a scalable service composition platform as envisioned by the CPRODIRECT

company that would be capable of efficiently supporting hundreds of thousands of users
is a non-trivial task, and highlights two key challenges.

First, the easiest way to make such a platform scale (i.e. without altering its existing
software architecture) is to perform vertical scaling. However, scaling vertically requires
increasing the capacity of the existing server, for instance by investing in more raw pro-
cessing capacity, and/or more memory. Obviously such hardware updates are well known
to be expensive and limited [Cáceres et al., 2010]. Furthermore, it does not provide any
auto-provisioning nor auto-scaling features, which are required to scale smoothly accord-
ing to the number of users and simultaneous executions of compositions [Vaquero et al.,
2011]. Hence, the deployment of such a platform is not cloud-friendly: the billing is inde-
pendent of the resources consumed, which has a direct consequence on operational costs.

Second, the proposed platform architecture needs to directly take into account API rate
limit rules and quota policies of third-party services that are composed. Such rules or quo-
tas are often applied to avoid inappropriate use of services, by limiting the number of re-
quests a client can perform in a given timeframe. API rate limits also allow service providers
to achieve better performance (especially during traffic peaks), better security (reduces im-
pact of Denial-of-Service attacks), and enables them to provide higher rate limits as pre-
mium offerings. Without these restrictions, a set of clients issuing requests to the same
service at the same time can severely degrade the experience for all the other clients. As
a consequence, the composition platform can potentially be blocked or black-listed if the
rate limits are exceeded. In addition, excessive invocation of services within a composition
increases average execution time and thus resource usage. State of the art techniques are
not straightforward to apply in the context of service composition to address both of these
key issues.

1.3 MEDLEY: an event-driven lightweight platform for
service composition

The contribution of this thesis aims at investigating the underlying challenges in web
service composition in the context of modern web development practices. The ultimate
goal of this thesis is to provide an architectural framework to support the specification and
execution of web service compositions in a scalable manner. To this extent, we propose
four complementary contributions.

First, we introduce ARIA, a domain-specific language for describing service composi-
tions using high-level constructs and domain-specific semantics. ARIA is specifically de-
signed to tackle the aforementioned problematic issues encountered when orchestrating
the composition of various heterogeneous web services. By providing an abstraction layer
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between the low-level implementation and the high-level business logic, the language al-
lows users to express compositions with fine-grain tuning of both control flow and data
flow. Additionally, ARIA meets the current trends in terms of continuous service integra-
tion and development to promote a continuously evolving service-oriented architecture.

Second, we introduce a declarative language-based approach, POLLY, to simplify
change detector construction. POLLY enables describing change detection strategies in
JSON data fetched from RESTful APIs. The domain-specific language provides declarative,
simple yet highly-expressive constructs for describing how to construct a state from one or
multiple API endpoints, how to identify changes in states, and how to produce a custom
output. The POLLY compiler automatically produces an efficient JavaScript implementa-
tion which runs on top of a runtime system and hides low-level requirements such as HTTP
authentication and pagination. In our context, POLLY change detectors enable generating
custom events to automatically trigger the execution of ARIA compositions when a change
occurs in targeted web service data.

Third, we present the architecture of MEDLEY, an event-driven lightweight platform for
service composition. The MEDLEY platform comprises a runtime system to support the
execution of service compositions specified using the ARIA language, and enables the fast
integration of third-party service providers. Once defined, ARIA specifications are com-
piled into low-level code which runs on top of MEDLEY. The runtime system relies on an
event-driven, process-based communication paradigm for a lightweight and highly perfo-
mant execution model. MEDLEY also supports the integration of service provider compo-
nents specified using POLLY, thus enabling triggers for the execution of ARIA compositions
based on change events detected by POLLY change detectors.

Furthermore, to ensure the scalability of the MEDLEY platform in production environ-
ment, we focus on a novel approach for efficient scheduling in service orchestration en-
gines. The main challenge is to support an increasing number of users while taking into
account the API rate limits of third-party services used by the service compositions. To the
best of our knowledge, this issue has not been addressed yet in the current state of the art.
In particular, we design MEDLEY to support horizontal scaling. Scaling horizontally en-
ables creating applications that scale across nodes. To this end, in a way similar to Docker
Swarm [Merkel, 2014], we introduce a custom scheduler to the MEDLEY platform to be
able to create a MEDLEY cluster capable of dynamically increasing or decreasing the num-
ber of MEDLEY nodes to distribute the incoming workload. However, in contrast to Docker
Swarm which is agnostic to the containerized application, our own scheduler is able to
dispatch composite services according to both their dependencies, and the resources that
the composed services consume. As a consequence, the MEDLEY platform can be easily
deployed on public cloud infrastructures, thus enabling the billing of only the resources
that are effectively consumed. Furthermore, to overcome API rate limit rules of third-party
services, the MEDLEY platform is enhanced with caching capabilities on each node of the
cluster. The MEDLEY scheduler relies on a heuristic-based approach to optimize cache
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affinity, thus reducing the total number of requests to third-party services, and improving
the scalability of the platform.

1.4 Thesis outline

The remainder of this document is organized as follows. Chapter 2 presents an
overview of the state of the art in the field of web services and service orchestration. We
describe their fundamental concepts while highlighting their shortcomings in our context.
In Chapter 3, we propose two domain-specific languages (DSLs). First, we present POLLY, a
DSL for detecting custom changes in web service data. We explain the DSLs semantics, op-
erators and grammars while illustrating their usefulness through relevant scenarios (Sec-
tion 3.2). Second, we present ARIA, a DSL for specifying service compositions using high-
level constructs and domain-specific semantics (Section 3.3). Then, we introduce MEDLEY

in Chapter 4. MEDLEY is an event-driven lightweight platform for service composition. We
show how MEDLEY supports the execution of ARIA compositions, which can be triggered
by change events detected by POLLY change detectors. In Chapter 5, we present a thorough
evaluation of our contributions. We evaluate the expressivity and features of the proposed
DSLs, and undertake a performance evaluation of the MEDLEY platform, then discuss the
results. Finally, Chapter 6 concludes this document by summarizing our contributions and
exposing several perspectives of this work.
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Background

In this chapter, we present fundamental concepts related to web service compo-
sition. We give a brief overview of service-oriented architectures covered in this
thesis, describing the transition from legacy architectural styles, to the more mod-
ern microservices architectures. We then present several existing languages, models
and platforms used for service composition. Finally, we introduce some notions in
change detection in the context of web services data.
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2.1 Genesis of service-oriented architectures

In a broad sense, the concept of architecture is what allows systems to evolve and pro-
vide a certain level of service throughout their lifecycle. In the context of software engineer-
ing, this translates into high-level concerns for bridging the gap between system function-
ality and target requirements that the system has to meet. Over the past several decades,
software architectures have been thoroughly studied, constantly evolving and adapting ac-
cording to the latest technological advances and trends.

Ever since the 1970s, developers experienced problems associated with large-scale soft-
ware development [Brooks, 1975]. As such, the following decades witnessed a huge rise
of interest from the research community for software design and its implications on the
development process. References to the concept of software architecture also started to
appear around the 1980s [Bergland, 1981]. However, a solid foundation on the topic was
only established in 1992 in a publication authored by Perry and Wolf [Perry and Wolf, 1992].
They define software architecture distinctly from software design. Evern since, their work
has generated an evolving community of researchers that actively studied the notion and
the practical applications of software architecture. In the years to follow, software architec-
ture concepts were broadly adopted by both industry and academia. Bosch’s work [Bosch,
2004] provides a good overview of the current research state in software engineering and
architecture, highlighting the challenges to investigate. Since its appearance, software ar-
chitecture has developed into a mature discipline making use of notations, tools, and sev-
eral techniques.

As a result, software engineers have come up with different ways to design, implement
and compose systems that provide broad functionality and satisfy a wide range of require-
ments. In the remainder of this section, we provide a brief overview on the evolution of
software architectures.

2.1.1 Monolithic applications

In essence, IT businesses face the challenges of minimizing costs while also meeting the
growing need for evolution. Driven by ever-changing user requirements and competitive
offerings, they have to deliver better services and user experiences in a shorter amount of
time. However, legacy applications typically tend to be built as monolithic applications,
leading to higher costs of maintenance and evolution.
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Figure 2.1 – "A monolithic application puts all its functionality into a single process, and
scales by replicating the monolith on multiple servers" [Fowler and Lewis, 2014].

Monolithic applications. A monolithic application is built as a single-tiered unit. It
is typically characterized by a set of distinguishable functionalities (data processing,
persistence, error handling, user interface, etc.) which are all interwoven, forming a
single logical executable. Any change to the system involves rebuilding and deploying
a new version of the application. Likewise, scaling requires scaling the entire applica-
tion rather than parts of it that require greater resources (see Fig. 2.1).

As applications grow, large monoliths tend to become difficult to maintain and evolve,
due to their increased complexity. Developers must coordinate their development and
deployment efforts due to the lack of clear boundaries between the constituents of the
application. Common tasks like contributing code and tracking down bugs require long
perusals throughout the code base, leading to decreased developer productivity. As a
monolithic application is deployed as a single executable artefact, any change in a com-
ponent of the monolith requires rebooting the whole application. For large-sized projects,
restarting usually entails considerable downtimes, hindering development, testing, and
the maintenance of the project. Thus, it becomes difficult to apply continuous develop-
ment practices which typically promote frequent updates. Furthermore, as monoliths are
composed of several different components, each component may have different resource
requirements at runtime [Balalaie et al., 2015]. As such, deploying a monolithic applica-
tion is usually sub-optimal with regards to the required resources: some components can
be memory-intensive, others computational-intensive, etc. When choosing a deployment
environment, developers must compromise with a one-size-fits-all configuration, which
is either expensive or sub-optimal with respect to the individual components. To scale
a monolithic application, developers can either deploy the monolith on a more powerful
host (vertical scaling), or replicate the entire monolith on several machines and distribute
the load among them (horizontal scaling). Either way, only a subset of the components
is stressed, leading to inefficient and costly scaling, as each component cannot be scaled
independently in monolithic applications.
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2.1.2 Service-oriented architectures

Ever since, a particular focus has been given to the fundamental principle of separa-
tion of concerns (SoC) [Hürsch and Lopes, 1995]. SoC is a design principle that dictates
the separation of a program into distinct sections, such that each section addresses a sep-
arate, well-defined concern. This allows better control over design, implementation and
evolution of software systems. In this sense, software architectures gradually evolved from
monolithic applications, to a more loosely coupled set of web services. Web services are
the building blocks of service-oriented architectures (SOA).

Web services. According to the W3C Web Services Glossary, a web service is a "soft-
ware system designed to support interoperable machine-to-machine interaction over
a network". In other words, a web service is a self-contained application that can be
invoked over the network to perform a given operation, and relies on open standards
for communication and messaging.

With the establishment of web services, developers could harness the complexity of
distributed systems and to integrate different software applications [MacKenzie et al.,
2006]. Service-oriented architectures (SOA) rely on a set of guidelines and protocols for
defining web services. These include encapsulation, interchangeability, abstraction and
business cohesion [Wang and Fung, 2004]. Typically, a web service exposes its function-
alities to other components via a well-defined interface. It relies on standard protocols
for message passing. As such, this enables modularity and reuse of services across differ-
ent systems, as well as implementation independence. Furthermore, as SOA relies on the
principle of separation of concerns, it enables the implementation of an application as a
set of distinct services, developed by dedicated teams.

2.1.3 Microservices

As the sheer scale of applications increases (in terms of data consumption, process-
ing and output), it becomes increasingly important to find fault tolerant, scalable ways
to manage both systems and the data they manage. Further refining the SOA paradigm
is the microservice architectural style. This paradigm is a more modern interpretation
of service-oriented architectures used to build distributed software systems [Namiot and
Sneps-Sneppe, 2014].
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Figure 2.2 – "A microservices architecture puts each element of functionality into a separate
service, and scales by distributing these services across servers, replicating as needed" [Fowler
and Lewis, 2014].

Microservices. The microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often using an HTTP resource API.
These services are built around business capabilities and independently deployable
by fully automated deployment machinery (see Fig. 2.2).

First introduced in 2011, the term microservices was introduced as a way to describe a
new paradigm for programming applications using a modern, flexible architectural style to
meet the demands of the fast-paced web. This new trend in software architecture empha-
sizes the design and development of highly maintainable and scalable software [Dragoni
et al., 2016]. Although the microservices architecture gained popularity relatively recently,
it has already been the subject of numerous studies to discuss patterns and applications of
microservices [Krause, 2014].

This architectural style allows managing growing complexity by functionally decom-
posing large systems into a set of independent services. From a technical point of view, mi-
croservices are self-contained components that are independently developed and tested,
and conceptually deployed in isolation and equipped with their own data persistence so-
lutions. The distinguishing behaviour of a microservice architecture derives from the com-
position and coordination of microservices, each running its own processes and commu-
nicating via lightweight mechanisms. This approach delivers all sorts of benefits in terms
of maintainability and scalability. As microservices are implemented independently from
each other, their code base tends to be inherently smaller. As such, developers can more
easily develop, test and investigate the behaviour of a functionality independently from
the rest of the system. Furthermore, it becomes possible to seamlessly update an applica-
tion by deploying new versions of a microservice and gradually transitioning the incoming
traffic from the old version to the new version of the microservice. Instead of rebooting
the whole system, individual microservices can be updated at different rates, as required.
Unlike monolithic applications, a microservices architecture enables the system to conve-
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Figure 2.3 – Overview of a continuous deployment pipeline, defining all stages from devel-
opment to release. Tests range from unit tests, to integration and acceptance tests. Existing
tools for continuous integration, development and delivery include Jenkins 1, Travis CI 2,
GitLab CI 3, Circle CI 4, and Codeship 5.

niently scale up or down each individual microservice independently from the other ser-
vices that constitute the application, according to its load [Gabbrielli et al., 2016].

These characteristics foster continuous integration [Fowler and Foemmel, 2006] and
greatly ease the maintenance of the application, while also promoting faster and more fre-
quent update cycles. To facilitate working with such distributed systems, several automa-
tion tools and techniques emerged, with the aim of accelerating the development, deploy-
ment and maintenance of microservices. This trend, commonly known as DevOps [Bal-
alaie et al., 2016], relies on the use of container-based solutions (such as Docker [Merkel,
2014]) to promote faster test and build cycles, while also streamlining automated deploy-
ments through continuous integration practices [Smeds et al., 2015]. Such containerisa-
tion enables developers to enjoy a high degree of freedom in the configuration of the de-
ployment environment that best suits their needs (in terms of costs and quality of service).
Figure 2.3 illustrates an example of a DevOps pipeline for continuous deployment.

2.2 Overview of the Web Service stack

Founded in 1994 by Tim Berners-Lee, the World Wide Web Consortium (W3C) is re-
sponsible for developing and maintaining protocols and standards to ensure long-term
growth for the Web. With over thousands of drafts and specifications, W3C is the leading
reference in the web community. Among the proposed standards, the Web Services (WS-
*) specification suite [Weerawarana et al., 2005] proposes a technological stack aimed at
standardizing how web services are defined, described, published, located and invoked.
Figure 2.4 presents a quick overview of some of the WS standards that are relevant to our
work.

5. https://jenkins.io
5. https://travis-ci.org
5. https://docs.gitlab.com/ce/ci
5. https://circleci.com
5. https://codeship.com

https://jenkins.io
https://travis-ci.org
https://docs.gitlab.com/ce/ci
https://circleci.com
https://codeship.com
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Figure 2.4 – Web Services technological stack.

2.2.1 Service invocation with SOAP

Designed in 1998 as part of the WS-* stack, SOAP (Simple Object Access Protocol)
is a protocol specification for implementing web services [Box et al., 2000]. It relies on
the transmission of SOAP messages for messaging and remote procedure calls (RPC), and
leverages existing transport protocols such as HTTP and SMTP for communication instead
of defining its own protocol. Exchanged SOAP messages are wrapped in SOAP envelopes,
structured as XML documents, as shown in Fig. 2.5. The SOAP envelope identifies the XML
document as a SOAP message, and contains a header and a body. The header contains op-
tional metadata information (e.g. authentication, routing details, delivery settings), while
the body contains the payload of the message destined to be processed by the receiver.

Figure 2.5 – Structure of a SOAP message.

2.2.2 Service description with WSDL

SOAP services are described using the WSDL (Web Service Description Language) stan-
dard [Christensen et al., 2001]. WSDL defines the service interface description in a stan-
dard, implementation-independent way. It provides details about how to locate the ser-
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vice, and describes the set of supported operations. Operation signatures are described
using the XSD (XML Schema Definition) standard [Gao et al., 2009]. XSD is an XML-based
meta-language for formalizing the structure of XML documents and specifying data struc-
tures exchanged between services in the context of SOA.

2.2.3 Service discovery with UDDI

To support the discovery of existing web services, UDDI (Universal Description Dis-
covery and Integration) registries enable publishing web services interfaces, making them
available for external clients [OASIS, 2004]. By offering users a unified and systematic way
to find service providers through a centralized registry of services, UDDI registries can be
queried to locate web services based on their characteristics. Similar to a phone directory,
UDDI registries encode infomation about web services under three categories: (i) white
pages include name and contact details, (ii) yellow pages include a categorization based on
business and service types, and (iii) green pages include technical details about the service.

2.2.4 The Web Service model: putting things together

Figure 2.6 – Architecture of the WS model.

Figure 2.6 gives an overview of the elements introduced previously, and shows how they
come to play together. The service provider implements the web service and describes its
interface using WSDL. To make the service discoverable, it is published in a central service
registry using UDDI. The service registry indexes published services, enabling clients to
easily locate the services. Finally, the service consumer queries the registry to lookup an
existing service, and uses the WSDL service description obtained to bind to and invoke the
web service.
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2.3 The REST architectural style

Initially presented in the doctoral dissertation of Roy T. Fielding [Fielding, 2000], the
REST (Representational State Transfer) architectural style is by far the most widely adopted
way of exposing services over the web today [Danielsen and Jeffrey, 2013]. It revolves
around the central notion of resources, which are abstract entities identified by URIs, and
manipulated through a uniform interface. REST relies on HTTP as the underlying transport
protocol, enabling clients to manipulate resources using the standard HTTP verbs. For in-
stance, the GET, POST, PUT and DELETE verbs are typically used to read, create, update and
delete resources, respectively.

Figure 2.7 – A request/response roundtrip between a client and a REST web API. The
Accept header allows specifying the resource representation that the client wishes to re-
ceive, while the Content-Type header specifies which representation is returned in the
response.

HTTP status codes. REST also relies on the standard HTTP response status codes to pro-
vide a uniform interface for specifying the semantics of the response, allowing clients to
react accordingly [Fielding et al., 1999]. For instance, status codes in the 2xx range convey
information about successful operations, 3xx about redirections, 4xx about client errors,
and 5xx about server errors (see Fig. 2.7).

Resource representation. Resource states are commonly represented using the JSON
(JavaScript Object Notation) format, although any other standard or arbitrary media types
can be used (such as XML). The client specifies during content negotiation which content
representations it can process, and the server either supplies one of the requested repre-
sentation if possible, or an 406 Not Acceptable error if it cannot automatically make a
selection (see Fig. 2.7). This fosters reusability, interoperability and loose-coupling.

JavaScript Object Notation. Although REST does not enforce any particular resource
representation format, the most commonly used format is JSON [Rodríguez et al., 2016],
due to its simplicity, ease of use and smaller footprint compared to other alternatives. A
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JSON document is a textual serialization of structured data, derived from the object lit-
erals of JavaScript. It consists of a tree composed of three kinds of nodes: literals, arrays
and objects. A literal node can be one of the following primitive types: a number, a string,
a boolean or the null literal. An object node is an unordered collection of zero or more
key/value pairs, where each key is a string that is unique within the object, and a value that
is a node. An array node is an ordered sequence of zero or more nodes. Figure 2.8 shows
an example of a JSON document.

1 {
2 "id": 123,
3 "details": {
4 "title": "Summer 2017",
5 "subtitle": null,
6 "tags": ["vacation", "beach", "sun"]
7 },
8 "private": false
9 }

Figure 2.8 – Example of a JSON document describing a photo album.

2.3.1 Hypermedia-driven discovery with HATEOAS

The REST architectural style supports the dynamic discovery of an application’s capa-
bilities entirely through hypermedia. HATEOAS (Hypermedia As The Engine Of Applica-
tion State) is a REST constraint that enables the client to navigate the REST API interface
dynamically by including hypermedia links with the server responses. The media types
used for the resource representations and the link relations they may contain are standard-
ized. The client navigates through application states by following the links included within
a representation or by manipulating the representation in other ways afforded by its media
type. This capability differs from that of SOA-based systems and WSDL-driven interfaces,
where endpoints are statically fixed [Alarcon et al., 2010]. As an illustration, Fig. 2.9 shows
an example of a HATEOAS-based API response that provides the user’s name, while includ-
ing a self-linking URL where that user is located, and how to locate that user’s albums. The
rel attribute defines the relationship of the link with regards to the resource itself.

2.3.2 REST API description methods

To enable the description of REST services, the XML-based language WADL (Web Ap-
plication Description Language) standard was proposed as part of the W3C as a simpler al-
ternative to WSDL (which was initially designed for SOAP services) [Hadley, 2006]. A WADL
document describes the set of resources that can be manipulated using the REST service,
giving details about the access method (HTTP verbs) and XSD descriptions of the resource
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1 {
2 "name": "Alice",
3 "links": [
4 {
5 "rel": "self",
6 "href": "https://api.example.com/users/1"
7 },
8 {
9 "rel": "albums",

10 "href": "https://api.example.com/users/1/albums"
11 }
12 ]
13 }

Figure 2.9 – Example of a HATEOAS-based response containing hypermedia links.

types. Alternatively, other JSON-based API specification languages have been developed
by the industry, such as RAML 6, Blueprint 7 and the proprietary Google API Discovery Ser-
vice 8. More recently, a consortium of several major API vendors came together to found
the OpenAPI Initiative 9 (founded in November 2015), in an effort to standardize how REST
web APIs are described. OpenAPI relies on the JSON Schema standard [Galiegue et al.,
2013; Pezoa et al., 2016] to provide a machine-readable API definition, making possible
use-cases such as interactive documentation, client-side and server-side code generation,
and automation of test cases. Although OpenAPI is gaining more and more traction (with
over 350,000 downloads per month), it is still far from being widely adopted by the ma-
jority of the web API community [Fokaefs et al., 2015; Lucky et al., 2016]. Instead, serivce
providers tend to simply provide plain human-readable HTML descriptions of the docu-
mentation. However, web APIs clients have no control over the API and the service behind
the API, as a provider may change either or both, potentially causing breaking changes.

2.4 Service composition overview

Due to the considerable cost decrease in cloud computing, the past decade witnessed
the emergence of a fairly large number of web services. Inherently, this enables clients to
rely on a set of existing services in order to develop new ones. However, this comes with its
own set of challenges. A number of languages have been proposed to define how services
can be composed into business processes [Sheng et al., 2014].

In the service-oriented paradigm, the essential idea lies not only in the reusability
of coarse-grained business functionalities exposed as services, but more importantly in

6. https://raml.org
7. https://apiblueprint.org
8. https://developers.google.com/discovery
9. https://www.openapis.org

https://raml.org
https://apiblueprint.org
https://developers.google.com/discovery
https://www.openapis.org
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the definition of loosely-coupled entities, specified in business terms instead of technical
ones [Papazoglou, 2003]. At the service level, a composition refers to a business behavior,
which assembles (beyond a single program and language) invocations of several services
to perform a given task.

“Services reflect a "service-oriented" approach to programming, based on the idea of
describing available computational resources, e.g., application programs and informa-
tion system components, as services that can be delivered through a standard and well-
defined interface. [...] Service-based applications can be developed by discovering, in-
voking, and composing network-available services rather than building new applica-
tions.” [Papazoglou, 2008].

Although existing technologies (such as the WS-* stack) provide means to describe, lo-
cate, and invoke services over the network, they fail in giving a rich behavioral description
about the role of the service in a broader, more complex collaboration. Such a collabora-
tion consists in a sequence of activities and relationships between activities, which consti-
tutes the logic of a business process. In this sense, service composition consists in creating
higher level, cross-organizational business processes from a set of existing web services,
focusing on the composition business logic rather than the technical details. Service com-
position can be achieved using one of two paradigms: service orchestration and service
choreography [Peltz, 2003].

Orchestration. Service orchestration represents a single centralized executable busi-
ness process (the orchestrator) which coordinates the interaction among different ser-
vices. The orchestrator is responsible for invoking and combining the services. The
relationship between all the participating services are described by a single endpoint
(i.e. the composite service). The orchestration includes the management of transac-
tions between individual services. Orchestration employs a centralized approach for
service composition.

Choreography. Service choreography is a global description of the participating ser-
vices, which is defined by exchange of messages, rules of interaction and agreements
between two or more endpoints. It allows each involved party to describe its part in
the interaction. Choreography employs a decentralized, collaborative approach for
service composition.

In other words, a choreography describes the collaborative interactions between mul-
tiple services, whereas orchestration represents a centralized control from one party’s per-
spective. This means that a choreography differs from an orchestration with respect to
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(a) Service orchestration. (b) Service choreography.

Figure 2.10 – Service orchestration vs. service choreography.

where the logic that controls the interactions between the services involved should reside.
Figure 2.10 illustrates these approaches at a higher level.

In the remainder of this dissertation, we employ the term “composition” to denote the
composition of service invocations to perform a business-oriented task.

Composition models

Composition models define abstractions and languages to specify the order in which
and the conditions under which web services are invoked [Dustdar and Schreiner, 2005].
They rely on process-modeling languages, such as UML activity diagrams, Petri-nets, state-
charts, rule-based orchestrations, activity hierarchies, and π-calculus. Data access models
define how data is specified and exchanged between parties. The service selection model
deals with static and dynamic binding to specify how a web service is selected as a compo-
nent (either statically at design-time, or dynamically during runtime). Transactions define
which transactional semantics can be associated to the composition and how this is done.
Finally, a model for exception handling is required to handle exceptional states during the
execution of the composite service without aborting the composition. Other composition
approaches introduce the notion of automated [Narayanan and McIlraith, 2002], ontology-
based [Agarwal et al., 2003] and semantic web services composition [Rao and Su, 2003], as
alternatives to manual composition techniques. The semantic web community provides
interesting approaches to support the adaptation of business processes based on semantic
descriptions [Küster and König-Ries, 2006].

2.4.1 Process algebras & concurrency models

Various formalisms were proposed in the first half of the 20th century to formalize the
concept of the behaviour of a system, leading to the foundation of process algebras [Mo-
rimoto, 2008; Aceto and Gordon, 2008]. Process algebras are a diverse family of abstract
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languages used to formally specify the execution model of concurrent systems. Such lan-
guages provide the necessary semantics to express interactions, communications and syn-
chronizations between several independent processes [Magee et al., 1999; Ferrara, 2004;
Foster et al., 2005]. These formalisms are founded on algebraic laws and support the au-
tomatic verification of properties of systems behavior. They enable one to reason formally
on systems and apply various model-checking techniques to verify properties, variants and
invariants of concurrent systems [Baeten, 2005]. Throughout its execution lifecycle, a sys-
tem may interact with one or several other systems. To describe parallel or distributed sys-
tems, a process algebra relies on a set of structural laws, i.e. a given set of atomic actions,
and basic operators to compose these into more complicated processes. Typically, basic
operators include parallel composition, alternative composition, and sequential composi-
tion.

There is a considerable amount of work and applications realized in a number of pro-
cess algebras. Among the multitude of proposed algebras, CCS (Calculus of Communi-
cating Systems) [Milner, 1989] was historically the first with a complete theory, introduc-
ing the semantics of algebraic operators. On the other hand, CSP (Calculus of Sequential
Processes) [Hoare, 1978] adopts the message passing paradigm of communication, using
synchronous communication and is a guarded command language. Later on, it was found
that this model was lacking, for instance because deadlock behaviour is not preserved.
Further contributions lead to the specification of ACP (Algebra of Communicating Pro-
cesses) [Bergstra and Klop, 1985], which emphasizes the algebraic aspect, using an equa-
tional theory with a range of semantic models and a more general communication scheme.
Finally, LOTOS (Language of Temporal Ordered Systems) [Bolognesi and Brinksma, 1987]
is a formal specification language based on temporal ordering of events, used for protocol
specification. It provides means to describe data and operations based on abstract data
types, while also enabling the description of concurrent processes based on process calcu-
lus. Other formal languages such as Petri nets can be used for model-checking of existing
orchestrations [Murata, 1989], while the more expressive π-calculus [Milner, 1999] offers
constructs to compose business processes in terms of sequential, parallel and conditional
executions, leading to compositions of arbitrary complexity.

2.4.2 BPEL: Business Process Execution Language

With the rapid expansion of service-oriented architectures, the need for a workflow
modeling framework became clearer, leading to the development of BPEL (Business Pro-
cess Execution Language) [Andrews et al., 2003]. Standardized by the OASIS organization
in 2004, BPEL is made part of the standard Web Service stack (under the name WS-BPEL).
It consists in an XML-based language defining several constructs to describe business pro-
cesses across a set of web services. It defines a set of basic control structures such as con-
ditions, loops, and elements to invoke web services and receive messages from them. The
language also provides a model for describing the behavior of a composition based on its
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interactions with the composed services. Message structures can be manipulated, assign-
ing parts or the whole of them to variables that can in turn be used to send other messages.
BPEL relies heavily on WSDL interfaces [Christensen et al., 2001] to define links with part-
ner services and uses an XML-based data model.

BPEL supports two different types of business processes: executable and abstract busi-
ness processes. On one hand, executable processes model the actual behavior of a partic-
ipant in a business interaction. They follow the orchestration paradigm and can be exe-
cuted by an orchestration engine. On the other hand, abstract processes are partially spec-
ified processes. They hide some of the internal behaviour details, and serve a descriptive
role, as they are not intended to be executed.

Core language constructs. A BPEL orchestration can be represented as a series of steps,
where each step is called an activity. BPEL supports two types of activities: primitive and
structure activities. On one hand, primitive activities enable users to perform common
tasks, such as invoking web services (<invoke>), waiting for the response (<receive>),
manipulating data variables (<assign>), and throwing runtime exceptions (<throw>). On
the other hand, structure activities enable users to combine primitive activities to express
a more complex logic. For instance, users can define a set of activities that will be invoked
in an ordered sequence (resp. in parallel) using the <sequence> (resp. <flow>) construct.
For control flow semantics, the <while> construct can be used to define loops, whereas
<switch> can be used to implement switch-case branches.

Runtime environment. The execution of BPEL orchestrations requires deploying them
on a BPEL-capable server. BPEL servers typically provide control over process instances
that are executing and those that have finished, while also supporting long-running pro-
cesses and managing intermediate process states [Louridas, 2008]. Some servers even pro-
vide control over process activities and allow their monitoring. Deploying a BPEL process
requires a deployment descriptor (which is not covered by the BPEL standard) and is spe-
cific to each BPEL server. The deployment descriptor typically specifies the BPEL source
file name, process name, WSDL locations of all partner link services, and other configura-
tion properties. Some of the most popular BPEL servers are based on Java EE, and include
Oracle BPEL Process Manager, IBM WebSphere Business Integration Server Foundation,
BEA WebLogic Integration, ActiveBPEL Engine and Apache ODE.

BPEL extensions. In the following years, a number of contributions proposed several ex-
tensions and refinements of BPEL. Among these solutions, some tackle service composi-
tion using a goal-driven semantic approach [Klusch and Gerber, 2006; Zhao and Doshi,
2009; Mayer et al., 2014]. They rely on ontologies and on reasoning engines to dynamically
select services that fulfill the user-provided requirements. The scientific workflow com-
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munity also uses BPEL processes to enact workflows on computing grids [Emmerich et al.,
2005].

Example

To illustrate the concepts presented earlier, we propose the example presented in
Fig. 2.11. The aim is to help users in planning travel plans, by looking up several airlines
(here, Airline1 and Airline2) and identifying the one that offers the lowest prices for the
given travel details (destination, dates, etc.). We now describe the necessary steps to per-
form in order to implement this scenario using BPEL. To simplify our example, we assume
that both airlines offer a web service and that both services are identical (i.e. provide same
port types and operations). We also forgo implementing any fault handling, which remains
a crucial aspect in real-world scenarios.

Figure 2.11 – Overview of a BPEL orchestration. It consists in looking up airline offers for
the given travel details, and selecting the airline with the lowest price.
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Process definition. First, we define the process by specifying its name (Fig. 2.12, line 2)
and the required namespaces (lines 3-6). We define here the target namespace (line 3) and
the namespaces to access the BPEL process WSDL (line 5) and the airline WSDLs (line 6).
We also declare the default namespace for all BPEL activity tags (line 4).

1 <process
2 name="TravelProcess"
3 targetNamespace="http://example.com/bpel/travel/"
4 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
5 xmlns:trv="http://example.com/bpel/travel/"
6 xmlns:air="http://example.com/service/airline/">
7 <!-- ... -->
8 </process>

Figure 2.12 – Definition of the BPEL process and its required namespaces.

Partner links. Partner links represent the interaction between the BPEL process and the
involved parties. This includes all web services that will be invoked and the client of the
BPEL process. Each partner link specifies up to two attributes: myRole indicates the role
of the business process itself, while partnerRole indicates the role of the partner. In our
example, the first partner link (Fig. 2.13, line 2) corresponds to the client that invokes the
business process. The last two partner links (lines 3 and 4) correspond to the airline web
services.

1 <partnerLinks>
2 <partnerLink name="client" partnerLinkType="trv:travelLT" myRole="travelService"

,→ partnerRole="travelServiceCustomer"/>
3 <partnerLink name="Airline1" partnerLinkType="air:flightLT" myRole="airlineCustomer"

,→ partnerRole="airlineService"/>
4 <partnerLink name="Airline2" partnerLinkType="air:flightLT" myRole="airlineCustomer"

,→ partnerRole="airlineService"/>
5 </partnerLinks>

Figure 2.13 – Definition of the process partner links.

Variables. Variables in BPEL processes enable storing, reformating, and transforming
messages. A variable is typically needed for every message sent to partner services and
received from them. For each variable, the type has to be specified. These types include
the WSDL message type, XML Schema simple type, or an XML Schema element. In our
example, we use WSDL message types for all variables (see Fig. 2.14).
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1 <variables>
2 <!-- Input of this BPEL process -->
3 <variable name="TravelRequest" messageType="trv:TravelRequestMessage"/>
4 <!-- Input for Airline1 and Airline2 web services -->
5 <variable name="FlightDetails" messageType="air:FlightTicketRequestMessage"/>
6 <!-- Output from Airline1 -->
7 <variable name="FlightResponseA1" messageType="air:TravelResponseMessage"/>
8 <!-- Output from Airline2 -->
9 <variable name="FlightResponseA2" messageType="air:TravelResponseMessage"/>

10 <!-- Output from BPEL process -->
11 <variable name="TravelResponse" messageType="air:TravelResponseMessage"/>
12 </variables>

Figure 2.14 – Definition of the process variables.

Body. The process main body specifies the order in which activities are invoked. A
<sequence> activity (Fig. 2.15, line 1) allows defining several activities that will be per-
formed sequentially. Within the sequence, we first prepare the required input by copying
the flight details from the TravelRequest variable (line 4) to the FlightDetails variable
(line 5).

1 <sequence>
2 <assign>
3 <copy>
4 <from variable="TravelRequest" part="flightData"/>
5 <to variable="FlightDetails" part="flightData"/>
6 </copy>
7 </assign>
8 <!-- ... -->

Figure 2.15 – Variable assignment using the copy construct.

Invoking the airline services. Next, we invoke both airline web services to check for ticket
prices. We use the <flow> activity (Fig. 2.16, line 1) to invoke both services asynchronously.
For each service, we use a <sequence> (lines 2 and 6) to group an <invoke> activity (line 3)
for the asynchronous invocation, and a <receive> activity (line 4) to wait for the callback.
The resulting messages are stored in the FlightResponseA1 and FlightResponseA2 vari-
ables, respectively.

Selecting the cheapest offer. At this stage of the process, we have obtained two ticket
offers from the invoked web services. We now use the <switch> activity to select the
service offering the lowest price (Fig. 2.17). In lines 3 and 4, we use the BPEL func-
tion getVariableData to extract the value from the response message. We specify an
XPath [Clark et al., 1999] query expression to locate the price element within the message
part. Lines 6 to 11 assign the selected value to the output variable TravelResponse.
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1 <flow>
2 <sequence>
3 <invoke partnerLink="Airline1" portType="air:FlightAvailabilityPT"

,→ operation="FlightAvailability" inputVariable="FlightDetails"/>
4 <receive partnerLink="Airline1" portType="air:FlightCallbackPT"

,→ operation="FlightTicketCallback" variable="FlightResponseA1"/>
5 </sequence>
6 <sequence>
7 <!-- Same goes for Airline2 -->
8 </sequence>
9 </flow>

Figure 2.16 – Asynchronous invocation of the flight web services.

1 <switch>
2 <case condition="
3 bpws:getVariableData(’FlightResponseA1’, ’responseData’, ’/data/price’) <=
4 bpws:getVariableData(’FlightResponseA2’, ’responseData’, ’/data/price’)">
5 <!-- Select Airline1 -->
6 <assign>
7 <copy>
8 <from variable="FlightResponseA1" />
9 <to variable="TravelResponse" />

10 </copy>
11 </assign>
12 </case>
13 <otherwise>
14 <!-- Select Airline2 -->
15 </otherwise>
16 </switch>

Figure 2.17 – Selecting the cheapest airline offer.

Returning the final result. The final step of this BPEL process consists in returning a re-
ply to the client indicating the selected airline. We use the client partner link to trigger the
callback by invoking the ClientCallback operation on the ClientCallbackPT port type
(Fig. 2.18, line 1). The TravelResponse variable holds the reply message.

1 <invoke partnerLink="client" portType="trv:ClientCallbackPT"
,→ operation="ClientCallback" inputVariable="TravelResponse"/>

2 </sequence>
3 </process>

Figure 2.18 – Notifying the user about the selected airline by invoking the corresponding
client callback.



28 CHAPTER 2. BACKGROUND

2.4.3 Orchestrating REST services

Nowadays, legacy web services are rapidly decaying, in favor of the more flexible REST
architectural style. Although REST became the building block for major service providers,
it still lacks an official standard for describing service interfaces, thus limiting the appli-
cability of existing orchestration techniques in practice. Therefore, there is a fundamen-
tal mismatch between the REST architectural style and SOA orchestration solutions, since
these solutions are not directly applicable [Zur Muehlen et al., 2005].

Nonetheless, several efforts have been made to support the composition of RESTful
services [Haupt et al., 2014]. Some approaches such as Bite [Curbera et al., 2007; Rosen-
berg et al., 2008] and S [Bonetta et al., 2012] define domain-specific languages to express
compositions. Bite follows a workflow model while S is an extension of JavaScript. Both
of them require services to be statically binded and provide limited support for error han-
dling. Other approaches propose to extend BPEL by adding new activities to manipulate
REST resources as first-class entities [Pautasso, 2008, 2009b]. However, in practice, existing
BPEL orchestration engines have limited support for composing REST services.

2.4.4 Commercial integration platforms

Figure 2.19 – An example of a rule-based composition, notifying the user by email if rainy
weather is predicted.

In the commercial world, several SaaS (Software-as-a-Service) solutions and integra-
tion platforms have been built around the concept of composing these emerging services.
These rule-based platforms provide user-friendly web applications in which users can de-
scribe simple orchestration scenarios between a multitude of web services such as Face-
book and Twitter [Liu et al., 2000; Pandey et al., 2004]. For instance, they enable users to
define a composition that automatically notifies the user by email if the forecast predicts
rainy weather (Fig. 2.19). We provide here a quick overview of these commercial integra-
tion platforms.
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IFTTT

Launched in 2011, IFTTT 10 (If This Then That) is a free service that allows end-users to
describe simple compositions between a large number of web applications, with a strong
emphasis on IoT devices and smart home automation [Ovadia, 2014]. Using a trigger/ac-
tion paradigm, users can describe which actions to trigger when a custom event occurs on
a given web service [Ur et al., 2016]. In other terms, an IFTTT composition is expressed as
a pair of <trigger, action>, such as "on <trigger> do <action>". IFTTT also provides a mobile
application that allows users to view and manage their compositions, but also to leverage
the device sensors as data sources for triggers (e.g. battery level, geolocation) and actions
(e.g. ringer, SMS).

Figure 2.20 – A screenshot of an IFTTT composition. It consists in notifying the user with a
custom message through the IFTTT mobile application about the weather predictions for
the current day. Weather data is retrieved from the Wunderground 11API.

10. https://ifttt.com
11. https://www.wunderground.com

https://ifttt.com
https://www.wunderground.com
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Zapier

Initially released in August 2012, Zapier 12 is a web-based service that allows end users
to integrate the web applications they use. If offers a wide range of possibilities, with over
750 apps supported, primarily targeting business productivity, project management and
marketing automation tasks. A composition in Zapier consists in a trigger, followed by one
or several actions, executed sequentially one after the other. Users can apply data filters to
transform or filter the passed data between intermediary steps.

Figure 2.21 – A screenshot of a Zapier composition. It consists in automating a market-
ing campaign using Wufoo 13and Mailchimp 14. First, Wufoo is monitored for new form
entries, then Mailchimp is updated accordingly with the subscriber’s details.

12. https://zapier.com
14. https://www.wufoo.com
14. https://mailchimp.com

https://zapier.com
https://www.wufoo.com
https://mailchimp.com
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Azuqua

Founded in 2011, Azuqua 15 is a cloud-native Integration Platform-as-a-Service (IPaaS)
that supports web service composition, with an emphasis on both IT governance, security
and oversight [Hasija and Unger, 2015]. The Azuqua platform provides an intuitive user
interface, enabling users to integrate their business applications by defining the data flow
between services.

Figure 2.22 – A screenshot of an Azuqua composition. It consists in notifying the user about
updates or changes in Salesforce 16, a customer relation management tool. First, Salesforce
is monitored for changes in specific form fields. Then, for every change detected, the user
is notified by email (Gmail 17) and chat (Slack 18).

15. http://azuqua.com
18. https://www.salesforce.com
18. https://www.google.com/gmail
18. https://slack.com

http://azuqua.com
https://www.salesforce.com
https://www.google.com/gmail
https://slack.com
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Workato

Launched in 2013, Workato 19 is an enterprise-oriented IPaaS. Trusted by over 21,000
organizations, it focuses on intelligent automations, enterprise integrations and process
automation. Workato enables business users and IT to collaborate in order to build, oper-
ate and rollout automations while ensuring security and governance policies.

Figure 2.23 – A screenshot of a Workato composition. It consists in detecting new tick-
ets that have been closed on Zendesk 20(a customer support tool). Whenever a ticket is
closed, the attachment documents are extracted from the comments section and uploaded
on Dropbox 21(cloud storage) for archival purposes.

19. https://www.workato.com
21. https://www.zendesk.com
21. https://www.dropbox.com

https://www.workato.com
https://www.zendesk.com
https://www.dropbox.com
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Microsoft Flow

Made publicly available in November 2016, Microsoft Flow 22 is a workflow manage-
ment tool, offering an interface for connecting two or more cloud services in order to create
business workflows, such as automating file synchronization, alerting, data organization,
etc. It is particularly focused on integrations with Microsoft’s own business tools, such as
Office 365, Dynamics CRM, PowerApps, and Yammer, as well as those that are commonly
used in organizations, like MailChip, GitHub, Salesforce, and Slack. Microsoft Flow also
provides a mobile application for managing compositions and receiving alerts when an
error occurs while running a composition.

Figure 2.24 – A screenshot of a Microsoft Flow composition. It consists in using the MSN
Weather 23service to fetch the current weather at a given location. If there is more than 20%
chance of rain, the user is notified about the poor weather by email and mobile notifica-
tion. Otherwise, the user is notified about the good weather.

22. https://flow.microsoft.com
23. https://www.msn.com/en-us/weather

https://flow.microsoft.com
https://www.msn.com/en-us/weather
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Summary

As the number of web services keeps on growing, many commercial platforms for ser-
vice composition have been proposed over the past few years. We present here a brief
overview of the leading commercial platforms presented in this section, and show how
they compare to each other.

Expressivity. The platforms and solutions presented earlier do not provide the same level
of expressivity. For instance, the IFTTT model has limited expressivity, as IFTTT compo-
sitions are limited to a single action per trigger, thus hindering the expression of more
complex scenarios. Although other composition platforms do not have this restriction
and enable users to express more complex compositions, they do not necessarily provide
more advanced control-flow mechanisms, such as asynchronous/parallel invocations of
services. Most of them also do not provide any looping constructs (except Workato and
Microsoft Flow).

Extensibility. To fully benefit from a composition platform, users must be able to easily
add support for any of their services. This translates into extending the platform by craft-
ing an integration for the required service, in order to make it compatible and supported
by the platform. However, the presented platforms offer many different ways to do so. For
instance, IFTTT requires a premium partnership model in order to enable providers to add
a new service. It enforces technical requirements that partners have to follow in order to
integrate their services. On the other hand, Zapier, Azuqua, Workato and Microsoft Flow
offer a more hands-on approach where developers have to configure dedicated connec-
tors with the targeted platform. This is done either through a developer platform where
developers integrate their APIs by specifying a form-based configuration, or by providing
them with an SDK (Software Development Kit) to manually implement their own connec-
tors. Likewise, they all impose specific requirements to enable the integration (description
format, authentication protocol, etc.).

Offering. All commercial platforms presented above are provided as a hosted web appli-
cation. Based on a freemium model, they offer different subscription plans, with varying
features, services and customer support. However, due to the hosted nature of these solu-
tions, they may not be suitable for large businesses or organizations which handle sensitive
and business-critical data, as they have to compromise and expose at least a part of their
internal network. In this context, an on-premise deployment of the composition platform
is required to contain it within the bounds of the private network. By restricting its ac-
cess to the local network of the organization, the privacy of confidential data and business
processes is ensured [Na et al., 2010].
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Error handling. As compositions interact with third-party services, it is inherently in-
evitable to encounter errors at some point. Being able to reason about such errors and
to express the corresponding error handling logic is often critical to business-oriented
tasks [Guidi et al., 2009]. For instance, users may require executing a different logic when a
specific error occurs in a given service. However, with the exception of Workato, these plat-
forms do not provide any error handling mechanisms to the users when expressing their
composition logic. Instead, they resort to automatically retrying failed requests, logging
the errors encountered and notifying the users about them.

2.5 Change detection in web resources

As presented in the previous section, composition platforms typically allow users to
define and deploy service compositions, then triggering them whenever a particular event
occurs on a given monitored third-party service. In the case of Fig. 2.19, the trigger consists
in detecting if the forecast predicts rainy weather, in which case the rest of the composition
is executed. In other words, this trigger consists in repeatedly polling the weather service
and verifying if the response data changes between subsequent polls from sunny to rainy,
for example. Thus, it is important to support a wide range of trigger events in order to meet
the client’s needs, scaling accordingly for all the services supported by the platform. The
monitoring of web resources raises many challenges involving data collection and change
detection [Abiteboul, 2002].

2.5.1 Data collection

Due to its distributed nature, the web is not a centrally managed repository of informa-
tion. Rather, it consists of billions of independent content providers, each providing their
own data and services across the web [Brewington and Cybenko, 2000]. As such, it be-
comes increasingly important to investigate techniques for exploring and gathering these
resources [Douglis et al., 1997]. A number of research contributions focused on the chal-
lenges related to collecting data from the web. This led to the emergence of web crawlers.
A web crawler is an automated system for exploring web resources (typically web pages)
for different purposes [Olston et al., 2010]. Typically, web crawlers are notoriously used
by seach engines to assemble and index large corpuses of resources [Fetterly et al., 2003].
This allows clients to issue queries against these indexes and find the matching resources
rapidly and efficiently. Web crawlers are also used for collecting large sets of web pages
and resources for archival 24 purposes, as well as for data mining, where web resources
are collected and analyzed for statistical properties and data analytics [Baeza-Yates et al.,
2007].

24. https://archive.org

https://archive.org
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Other solutions have been built around web crawlers to provide valuable services to
their clients. For instance, web monitoring services such as Streamdata.io 25 and Giga
Alert 26 allow their clients to submit standing queries, continuously monitoring the speci-
fied web resources, and notifying them about changes matching those queries. Such ser-
vices lift the burden of repeated polling off of their clients, notifying them only about rel-
evant changes. This is particularly important, considering today’s growing use of mobile
devices, as a particular focus needs to be given to energy efficiency and bandwidth us-
age [Dinh and Boonkrong, 2013].

2.5.2 Differencing algorithms

Figure 2.25 – An example of a diff between two different states of a given collection. The fig-
ure shows the states S0 and S1 of a collection captured at different times, and the resulting
changes detected when comparing these two states.

In today’s fast-paced web, data is continuously churning to reflect the latest state.
Change detection consists in computing a diff between two documents, and identifying
any relevant changes (see Fig. 2.25). Several existing contributions focus on improving the
differencing process.

Although previous works focused on providing a framework for automatic detection of
relevant changes on websites [Borgolte et al., 2014], they do not directly address change
detection in REST APIs data, nor do they allow clients to specify what constitutes a rele-
vant change. Their approach consists in representing documents as ordered or unordered
labeled trees, and aim for optimizing the tree edit distance [Zhang and Shasha, 1989; But-
tler, 2004; Bille, 2005]. Nonetheless, the problem of finding a minimal patch is O(n3) to
NP-hard for ordered trees (depending on the set of operations considered), and NP-hard

25. https://streamdata.io
26. http://www.gigaalert.com

https://streamdata.io
http://www.gigaalert.com
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for unordered trees [Zhang et al., 1992; Pawlik and Augsten, 2011; Higuchi et al., 2012].
This leads to the use of practical heuristics that rely on the syntactical properties of the
documents in order to provide reasonably good results [Lempsink et al., 2009]. As such,
additional algorithms have been designed specifically for detecting changes in structured
documents. For instance, several contributions enable change detection in XML by rep-
resenting XML documents as ordered trees, then relying on the Longest Common Subse-
quence (LCS) algorithm [Hirschberg, 1977] to perform greedy heuristics for computing a
minimal change set [Cobena et al., 2002; Lindholm et al., 2006]. Other alternatives con-
sider XML documents as unordered trees, yielding higher quality results, although at the
expense of greater runtime cost [Wang et al., 2003]. More recently, other algorithms have
been proposed for JSON documents [Cao et al., 2016], which are a combination of un-
ordered and ordered labeled trees, producing patches that are compatible with the JSON
Patch RFC [Bryan and Nottingham, 2013]. Lastly, with today’s growing use of mobile de-
vices, a particular focus is given to energy efficiency. Producing minimal diffs becomes
particularly important when dealing with mobile clients, as it helps reducing the band-
width usage [Simon et al., 2014].

2.6 Summary

The literature presented in this state of the art mainly focuses on either formal concur-
reny models, or the composition of well-defined web services using BPEL and WSDL. How-
ever, none of these properly address the challenges raised by the composition of REST web
APIs and microservices. Furthermore, the proposed solution needs to satisfy the require-
ments of CPRODIRECT in terms of expressivity, reliability, scalability and performance. The
design of the MEDLEY platform draws its inspiration from existing solutions, while propos-
ing a new approach for the composition of modern web services. To this extent, the under-
lying architectural framework supporting the MEDLEY platform relies on:

(i) POLLY, a high-level domain-specific language for describing change detection strate-
gies in web service data (presented in Section 3.2),

(ii) ARIA, an expressive domain-specific language for describing compositions of web
services (presented in Section 3.3),

(iii) an event-driven, lightweight runtime supporting the execution of compositions
specified using the ARIA language, and triggered by events detected using POLLY for
custom change detectors (presented in Sections 4.1 and 4.2),

(iv) an efficient approach for scheduling composition executions in a distributed con-
text, ensuring the scalability of the platform in the face of a growing userbase and
third-party API rate limits (presented in Section 4.3).





CHAPTER

3
Domain-specific languages for

service composition

We start this chapter by identifying several key challenges faced when composing
several heterogeneous web services. To overcome these challenges, we propose
two domain-specific languages (DSLs) that address the highlighted issues. First, we
present POLLY, a high-level DSL for describing change detection strategies in web
service data. POLLY simplifies the development of custom change detectors in order
to trigger the execution of service compositions when a change occurs in web ser-
vice data. We provide an in-depth description of the POLLY language constructs, and
illustrate them through real use cases specified by CPRODIRECT. Then, we present
ARIA, an expressive DSL for easily describing compositions of web services. We give
an overview of the language architecture and semantics, and explain how ARIA pro-
vides the necessary abstractions to address the issues raised above in a simple and
expressive way.
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3.1 Challenges in web service composition

Distributed web applications are evolving at an increasingly high velocity, extensively
leveraging existing services in order to offer a wide array of new features and function-
alities. The emergence of the service-oriented paradigm has made it possible to build
complex applications as a set of self-contained and loosely coupled services that work al-
together in concert. Several languages, including BPEL, have been proposed to ease the
orchestration of service compositions. However, they all fail in the context of modern
web practices and microservice architectures, which are adopted by many major service
providers. Therefore, existing approaches for orchestrating the composition of various ser-
vices become unusable in practice. We illustrate issues that developers have to face in the
remainder of this section.

3.1.1 Complexity of orchestrations

An orchestration may be triggered either manually (e.g. on demand), or automatically
according to a given set of events, according to the user requirements (e.g. "a new issue was
created"). To automate the execution of an orchestration, one typically needs to monitor a
given service for new events or state changes, triggering the orchestration whenever spe-
cific events occur. This monitoring can be performed either synchronously by repeatedly
polling the endpoint (pull mode) or by registering a callback for an asynchronous notifica-
tion (push mode). When services only support polling, clients have to initiate a request to
the server to retrieve the current state of the service. Then, the client compares this state
with the previous one to detect any changes. Despite the advantages of push mode, de-
veloping applications based on the asynchronous paradigm is known to be challenging for
many developers. When data needs to be propagated between subsequent asynchronous
actions, the corresponding information has to be stored by the runtime system at the point
of the asynchronous call. The runtime system then passes it back to the stored continu-
ation function when the corresponding response is received. Integrating services based
on active polling may also be challenging for the developer. He needs to set up a reason-
able frequency for polling to avoid resources waste while preserving good responsiveness.
When the same service is used several times, its invocations could be factorized among
several clients. However, identifying such global optimization opportunities is difficult
when the orchestration code is hard-written and each composition is developed indepen-
dently from each other.

Example

To outline the multiple challenges involved when trying to detect changes in service
data, we explain in details the scenario described in Section 1.2: detecting new photos of a
given Facebook album where Alice is tagged.
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1 {
2 "data": [
3 {
4 "created_time":

,→ "2016-05-20T12:28:57+0000",
5 "updated_time":

,→ "2016-05-20T12:26:57+0000",
6 "id": "1106290499393017"
7 }
8 ],
9 "paging": {

10 "next":
,→ "https://graph.facebook.com/..."

11 }
12 }

(a) Excerpt of a list of photos of a Facebook
album.

1 {
2 "data": [
3 {
4 "id": "10203528656797589",
5 "name": "Bob",
6 "created_time":

,→ "2016-05-20T12:39:01+0000",
7 "x": 73.684210526316,
8 "y": 74.865350089767
9 }

10 ],
11 "paging": {
12 "next":

,→ "https://graph.facebook.com/..."
13 }
14 }

(b) Excerpt of a list of tags of a Facebook
photo.

Figure 3.1 – Excerpt of photos and tags from the Facebook service.

In order to detect the new photos, one first needs to gather the complete list of photos of
the Facebook album. This can be done by issuing a request on the https://graph.facebook.
com/v2.9/:albumId/photos URL, where :albumId is the identifier of the photo album of
interest. The Facebook service returns a response as a JSON document as illustrated in
Fig. 3.1a. However, additional processing is needed to bridge the gap between the expected
information and what is available in the returned document.

Firstly, the whole list of photos is not received at once, because the response is pagi-
nated (i.e. split in several lists of a fixed size). The paging.next attribute gives the URL
to query to receive the next batch of photos. Additionally, the tags present on the photos
are not part of this response. An additional request per photo is required to gather this in-
formation. This request can be made on the endpoint https://graph.facebook.com/v2.9/:
photoId/tags where :photoId is the identifier of the photo of interest (received in response
of the previous request). A request on the tags endpoint yields the result shown in Fig. 3.1b.

As we can see, this response is paginated as well. One can notice that the requests to
gather the tags of each photo can be performed in an asynchronous manner, to improve
performance. Finally, the tagged person names are available in these responses. To gather
all the required information, the developer has then to manually construct a list that com-
bines the photos and the tags data, as shown in Fig. 3.2a.

Performing a new polling operation using the same process would produce a new list of
photos, as shown in Fig. 3.2b. By using an off-the-shelf differencing tool, the developer can
compute the patch shown in Fig. 3.3. As it can be noticed, this patch contains two irrelevant
changes: the x coordinate of the tag of the first photo and the last update time of the first
photo. The only relevant change is the third one, where we can see a newly created photo

https://graph.facebook.com/v2.9/:albumId/photos
https://graph.facebook.com/v2.9/:albumId/photos
https://graph.facebook.com/v2.9/:photoId/tags
https://graph.facebook.com/v2.9/:photoId/tags
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1 [
2 {
3 "created_time":

,→ "2016-05-20T12:26:57+0000",
4 "updated_time":

,→ "2016-05-20T12:28:57+0000",
5 "id": "1106290499393017",
6 "data": [
7 {
8 "id": "10203528656797589",
9 "name": "Bob",

10 "created_time":
,→ "2016-05-20T12:39:01+0000",

11 "x": 73.684210526316,
12 "y": 74.865350089767
13 }
14 ]
15 }
16 ]

(a) Initial version.

1 [
2 {
3 "created_time":

,→ "2016-05-20T12:26:57+0000",
4 "updated_time":

,→ "2016-05-20T12:29:57+0000",
5 "id": "1106290499393017",
6 "data": [
7 {
8 "id": "10203528656797589",
9 "name": "Bob",

10 "created_time":
,→ "2016-05-20T12:39:01+0000",

11 "x": 76.684210526316,
12 "y": 74.865350089767
13 }
14 ]
15 },
16 {
17 "created_time":

,→ "2016-05-20T12:35:57+0000",
18 "id": "2206280499393006",
19 "data": [
20 {
21 "id": "20406528656797578",
22 "name": "Alice",
23 "created_time":

,→ "2016-05-20T12:45:57+0000",
24 "x": 63.684210526316,
25 "y": 62.865350089767
26 }
27 ]
28 }
29 ]

(b) Updated version.

Figure 3.2 – Initial and updated version.

containing a tag referring to user Alice. Therefore, the developer needs to post-process the
patch produced by the differencing tool in order to construct the notification relevant to
the scenario.

In this example we clearly show that detecting changes in service data is a tedious op-
eration. It requires navigating across several endpoints, possibly chaining response ele-
ments into query parameters, and handling the problem of pagination at each step. When
the data is gathered, an off-the-shelf differencing tool may produce irrelevant changes thus
requiring either post-processing of the output or developing an ad-hoc differencing algo-
rithm.
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1 [
2 {
3 "op": "replace",
4 "path": "/0/data/0/x",
5 "value": 76.684210526316
6 },
7 {
8 "op": "replace",
9 "path": "/0/updated_time",

10 "value": "2016-05-20T12:29:57+0000"
11 },
12 {
13 "op": "add",
14 "path": "/1",
15 "value": {

16 "created_time":
,→ "2016-05-20T12:35:57+0000",

17 "id": "2206280499393006",
18 "data": [
19 {
20 "id": "0406528656797578",
21 "name": "Alice",
22 "created_time":

,→ "2016-05-20T12:45:57+0000",
23 "x": 63.684210526316,
24 "y": 62.865350089767
25 }
26 ]
27 }
28 }
29 ]

Figure 3.3 – JSON diff between the two versions of Figure 3.2.

3.1.2 Heterogeneity of unspecified interfaces

Existing orchestration languages such as BPEL require strongly-typed and well-defined
interfaces from composed services. They typically enable orchestration of services by
leveraging their static descriptions, thus expressing business processes as a set of oper-
ations and message exchanges between a number of services. These orchestration lan-
guages rely on description languages like WSDL that have been extensively used for many
years. For instance, WSDL formally describes the service, specifying its location, its pro-
vided methods, how to bind to it, and how incoming and outgoing messages should be
structured. Figure 3.4 presents an example of a WSDL description.

However, the current trend of microservice architectures promotes the use of REST-
ful services for which such formal service descriptions do not necessarily exist. Instead,
service providers tend to simply provide human-readable documentation for the service,

1 <definitions>
2 <types>
3 <!-- Defines the data types used by the web service -->
4 </types>
5 <message>
6 <!-- Defines the data elements being exchanged for each operation -->
7 </message>
8 <portType>
9 <!-- Describes the operations that can be performed and the messages involved -->

10 </portType>
11 <binding>
12 <!-- Defines the protocol and data format for each port type -->
13 </binding>
14 </definitions>

Figure 3.4 – An example showing the XML structure of a WSDL description.
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making it difficult to leverage exisiting solutions. Therefore, off-the-shelf tools are imprac-
tical in this context. In addition, services that provide similar content are often heteroge-
neous both in the format of data they provide and in the communication paradigm they
rely on (synchronous vs. asynchronous). The developer has to account for all these details
when building a service orchestration.

Example

To illustrate this issue, consider a custom daily news digest where a user receives an
email containing information formatted to his liking about his favorite news from different
sites (see Fig. 3.5). The developer has to manually specify how to interact with these news
providers, what information to retrieve and how to aggregate data to produce a curated
digest, and finally email the result. As the number of services increases, this task becomes
laborious.

Figure 3.5 – A composition for aggregating data from different services (S1, S2 and S3), then
building a curated digest by extracting relevant data, and finally sending it to the client
using an emailing service (M1).
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3.1.3 Dynamicity of service composition

Compositions of services are usually statically specified and make explicit the connec-
tions between the interacting composed services. This design-time coupling prevents an
orchestration from dynamically adapting its behavior when new services are deployed, un-
deployed or upgraded. Although the microservices architecture promotes dynamicity, it
does not provide any insights on how to achieve it in practice. Supporting adaptation at
runtime is known to complexify the task of the developer as he needs not only to focus on
the orchestration of several services, but also on how to smoothly react to service changes.

Example

As an example, consider the custom daily news digest orchestration scenario. To pre-
vent failure in case the mail service becomes unavailable for some time, the user should
ideally be able to specify a pool of mail services that can be used interchangeably (see
Fig. 3.6). However, defining such dynamic service selection policies in existing orchestra-
tion languages is limited, and requires explicit handling of all errors and edge cases by the
user, making it tedious to maintain.

Figure 3.6 – The orchestration should be able to adapt in the face of service outages (M1),
and failover to other compatible services (M2) in order to ensure its complete execution.



46 CHAPTER 3. DOMAIN-SPECIFIC LANGUAGES FOR SERVICE COMPOSITION

3.2 POLLY: a DSL for custom change detection of web
service data

An ever-growing number of web service providers expose data that is continuously
changing. Use cases arise where being notified about changes made to the data is essential
to the client, for instance to know when a user has a new follower on Twitter. Monitoring
changes on web services data consists in polling services for the required data, detecting
any changes in the targeted data subset, and notifying the user only about the relevant
changes. However, each step of this process can be relatively complex, leading to a tedious
and challenging implementation for developers.

In our context, CPRODIRECT, wishes to compete with traditional platforms by enabling
fast integration of new service providers and events in its own platform [Ben Hadj Yahia
et al., 2016b]. To reduce time to market, we investigate the challenges of detecting changes
in web service data. We focus on modern web services that follow the REST architectural
style and exchange data with their consumers in JSON. In this section, we introduce POLLY,
a domain-specific language for defining custom change detection strategies in web service
data. By leveraging the domain knowledge of the user, POLLY offers declarative, concise yet
highly-expressive constructs for specifying custom change detectors. We present the lan-
guage constructs and illustrate our approach using several user-driven scenarios provided
by CPRODIRECT.

3.2.1 Overview of the POLLY language

The POLLY language is based on the YAML [Ben-Kiki et al., 2005] syntax and is imple-
mented as a Node.js module. Inspired by dataflow architectures, it enables users to express
and define custom change detectors in the form of processing pipelines. A pipeline is ex-
pressed as a series of operations that are applied on successive sets of data, where data and
operations on it are independent from each other.

Figure 3.7 – In POLLY, an operation accepts a JSON document as input, processes it accord-
ing to a given logic, and produces a new JSON document as output.

To build such pipelines, POLLY provides an extensible set of operations, where each
operation performs a specific task. As Fig. 3.7 demonstrates, an operation accepts a JSON
document as input, processes the input document according to a specific logic, and finally
produces an output document that is passed as input for the following operation. Users
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can specify additional parameters to fine-tune the operation, and refine the produced out-
come. These parameters are specific to each operation type. Provided operation types are
further detailed in the following section. Furthermore, POLLY provides mechanisms to ex-
tract, transform and template data using JSONPath and standard dot notation, allowing
users to customize the manipulated data, keeping only relevant parts and discarding the
rest.

Using the provided operations, users can build custom change detectors by chaining
multiple operations together, in a way that is conceptually similar to piping Unix processes
(see Fig. 3.8). POLLY allows the user to specify how to compute a state by fetching a set of
API resources, how to detect custom changes that are relevant to his requirements, and
how to build a custom output to match the expected outcome. The provided language
operators and constructs are described at greater length in the following section.

1 pipeline:
2 - operation: op1
3 definition: # ...
4

5 - operation: op2
6 definition: # ...
7

8 - operation: op3
9 definition: # ...

(a) POLLY specification for defin-
ing a pipeline.

(b) Visual representation of the POLLY pipeline presented in
Fig. 3.8a.

Figure 3.8 – An example of a POLLY processing pipeline.

3.2.2 Specification of the POLLY language

In this section, we introduce POLLY, a declarative language-based approach that raises
the level of abstraction by providing dedicated operators to express state construction,
change detection, and output construction within a pipeline of operations. We describe
here how our approach enables one to simply design efficient custom change detectors
for web service data, allowing developers to only focus on their domain knowledge of the
manipulated services. Figure 3.11 gives the BNF specification of the POLLY language gram-
mar.

Language constructs. By design, each operation processes an input value (represented
by the “_” symbol), and produces an output value (represented by the “&” symbol). These
default values can be overridden using the input and output keywords at the operation
level. Furthermore, POLLY introduces three additional notations. The “~” symbol refers to
the response body of a request (Fig. 3.9a, lines 11 and 13), while the “%” symbol refers to
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1 - operation: fetch
2 definition:
3 request:
4 url: https://graph.facebook.com

,→ /v2.9/:albumId/photos
5 params:
6 albumId: 465607303461343
7 query:
8 access_token: XXXX
9 headers:

10 Accept: application/json
11 template: ~.data
12 pagination:
13 next: ~.paging.next
14 # Or, instead of using template:
15 # output: &:$..data

(a) POLLY specification for fetching a list of
photos for a given album.

1 - operation: fetch
2 definition:
3 repeat:
4 forEach: _
5 placeholders:
6 photoId: ^.id
7 request:
8 url: https://graph.facebook.com

,→ /v2.9/:photoId/tags
9 query:

10 access_token: XXXX
11 headers:
12 Accept: application/json
13 pagination:
14 next: ~.paging.next
15 template:
16 photoId: ^.id
17 tags: ~.data

(b) POLLY specification for fetching a list of
tags for each album photo.

Figure 3.9 – A minimal example showcasing how to retrieve all photo tags of a Facebook
album using POLLY.

the response headers. The “^” symbol represents the loop iteration cursor (Fig. 3.9b, lines
6 and 16). This cursor represents the current element being iterated on. All five notations
presented in this paragraph support the dot notation for accessing child properties. For
example, ~.data references the data attribute at the root of the response document.

Evaluating JSONPath expressions. POLLY relies on the JSONPath specification [Goess-
ner, 2007] to describe the selection of a sub-document, as illustrated in line 15 of Fig. 3.9a.
This enables users to easily extract the sub-documents of interest. Thus, a JSONPath ex-
pression 1 can be applied on any of the previous symbols, using the following notation:
[symbol]:[jsonpath_expr]. For instance, the evaluation of the expression &:$..id is
equivalent to evaluating $..id on the output document (&), thus producing all the idfields
present in the output document.

3.2.3 State construction

The fetch operator enables the user to specify how to collect data from a set of API
endpoints. These details are specified within the request block (Fig. 3.9a, line 3). Here, the
user defines the resource URL using the url keyword (line 4). The URL can have parameter
placeholders (prefixed by a colon), which are substituted with the matching key from the

1. The $ symbol represents the root of the current document in JSONPath.
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params block (line 5). Furthermore, the DSL offers the ability to specify query parameters
(query, line 7) as well as HTTP headers (headers, line 9) as key-value pairs.

Templating. In the majority of use cases, the user only requires gathering a subset of the
collected data. Furthermore, he might also need to include extra information along with
the response. The template keyword allows specifying a transformation template. This can
be expressed directly as an expression, or as a new set of keys where each corresponding
value is an expression. For example, line 11 of Fig. 3.9a shows how to extract the dataobject
from the API response (Fig. 3.1a, line 2). Another example occurs in line 15 of Fig. 3.9b
where we fetch photo tags. Here, we define a new template containing the original photo
ID and its tags. This transformation is necessary in order to manually include the photo ID
(which is not part of the API response) in the final state.

Pagination. The pagination keyword enables the user to indicate how to fetch subse-
quent pages when the response is paginated (Fig. 3.9a, line 12). Information about pagi-
nation is typically present in an HTTP header or in the body of the response. For example,
GitHub returns the full URL of the next page in the Link header, while Twitter provides
just a cursor for the next page in the body of the response. Other APIs such as Stack Ex-
change require the user to manually specify the page number as a query parameter when
requesting a resource, but do not provide any information about the current or next page
number in the body of the response. Instead, they just indicate if there are subsequent
pages using a boolean value in the body of the response. To support all these pagination
methods, POLLY enables the user to specify how to navigate to the following page using the
next keyword (line 13). This keyword accepts either an expression containing the full URL
of the next page, or key-value pairs specifying the name and value of the query parameter
used for pagination (queryParam, defaults to the value page and auto-incremented by de-
fault). After collecting all subsequent pages, the results are flattened in a single array and
returned as the output of the operation.

Parallel fetch. In the Facebook example presented in Section 3.1.1, the user has to first
retrieve a list of photo IDs for a given album, then retrieve the tags for each photo. To
enable this scenario, POLLY provides the repeat keyword (Fig. 3.9b, line 3). This keyword
allows specifying an iteration set from the output of the previous operation (forEach, line
4), and corresponding placeholder labels (placeholders, line 5). These placeholders are
substituted in the URL by their value, thus executing a request for each constructed URL.
In the Facebook example, this corresponds to fetching the tags for each album photo. By
default, all requests are asynchronous and performed in parallel. The output of this oper-
ation contains a list of templated objects (line 15), where each object includes the current
photo ID and the list of tags for a given photo (e.g. Fig. 3.1b).
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1 - operation: filterArray
2 definition:
3 input: _
4 identifiers:
5 - ^.photoId
6 find:
7 - addedItems
8 output: &.addedItems

(a) Specification for detecting
new photos.

1 - operation: filterCustom
2 definition:
3 function: !!js/function >
4 function (existing, input) {
5 const result = [];
6 input.forEach((item) => {
7 const isTagged = item.tags.some((value) =>

,→ {
8 return value.name === ’Alice’;
9 });

10 if (isTagged) { result.push(item.photoId);
,→ }

11 });
12 return { type: "addedTags", items: result };
13 }

(b) Custom change detection specification.

Figure 3.10 – Detecting new photos where Alice is tagged using POLLY.

3.2.4 Change detection

After computing the state in the previous step, the user can now proceed to specifying
a change detection strategy. Our preliminary case studies showed that changes to a JSON
document can occur on objects or arrays, and range from additions and deletions, to value
modifications and order changes. In light of these results, the POLLY DSL provides several
filtering operators for change detection: filterObject, filterArray and filterCustom. The fil-
terObject (resp. filterArray) operator accepts an expression of object (resp. array) type as
an input. The filterCustom operator enables the user to define custom filtering logic.

Change types. The find keyword enables defining a list of change types to detect in the
input of the operation (Fig. 3.10a, line 6). The list of supported change types is presented
in Table 3.1. For each change type listed in the find block, a matching object is included
in the output of the operation, containing the corresponding data. For instance, listing
addedItems and removedItems in the find block would produce as output an array of two
objects, each having addedItems (resp. removedItems) as types, and each having a list of
the items that have been detected as recently-added (resp. recently-removed).

Per-change type templating. Although the template keyword presented in Section 3.2.3
is also supported in this operation, one might need to specify different templates for differ-
ent change types. To meet this requirement, POLLY supports an additional keyword tem-
plates (mutually exclusive with template). This keyword allows specifying the change type
(e.g. addedItems) as key, and the associated template as value.
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Table 3.1 – List of supported change types.

filterObject filterArray

Change types

addedKeys addedItems
removedKeys removedItems
modifiedKeys modifiedItems
unmodifiedKeys unmodifiedItems

movedItems

Targeted monitoring. By default, all keys of the input document are watched for modi-
fications, and any change would mark the document as modified. The optional keyword
watch can be used to restrict the set of keys to watch for modifications. This enables the
user to define what actually constitutes a relevant change. Note that for objects, a key is
marked as modified (resp. unmodified) if the value corresponding to the key specified in
the watch block is modified (resp. unmodified). For arrays, an item is marked as modified
(resp. unmodified) if any (resp. all) of the values corresponding to the keys specified in the
watch block are modified (resp. unmodified).

Custom item identification. Additionally, when dealing with array items, it is necessary
to uniquely identify the items throughout subsequent polls. This allows us to know for ex-
ample if a given item has been added or removed during the polling interval. However, not
all APIs provide unique identifiers on all of their resources. Moreover, these identifiers can
be present under different key labels. For this reason, we provide an additional keyword
called identifiers, which allows the user to specify how to uniquely identify an item within
a collection (line 4). This can be as simple as providing the path to the id field of an item,
a list of fields (e.g. first and last names of a user), or a wildcard to hash the entire item and
use it as its own identifier.

Custom filtering. When none of the previous operators are adequate, the filterCustom
operator can be used to implement one’s own custom filtering logic. Figure 3.10b shows
an example of how to filter a list of photos by only selecting those where Alice is tagged.
This operator provides a hook function with the previous and current states as parameters
(line 4). The user can implement this hook in JavaScript, returning a custom output. In this
example, the user iterates on the input array of photos (line 6) and checks whether if Alice
is tagged on the current photo (lines 7-9), in which case he retrieves the photo ID (line 10).
To avoid any security issues when running user-provided code, this function is executed
within an isolated sandbox at runtime.
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start ::= pipeline: operation +

operation ::= (fetch | filterArray | filterObject | filterCustom )

fetch ::= operation: fetch NL fetchDef (NL output )?

fetchDef ::= definition: NL INDENT
(repeat NL)?

req
(NL template )?

filterArray ::= operation: filterArray NL fArrayDef (NL output )?

fArrayDef ::= definition: NL INDENT
findInArr
(NL input )?

(NL watch )?

(NL identifiers )?

(NL template )?

(NL templates )?

filterObject ::= operation: filterObject NL fObjectDef (NL output )?

fObjectDef ::= definition: NL INDENT
findInObj
(NL input )?

(NL watch )?

(NL template )?

(NL templates )?

filterCustom ::= operation: filterCustom NL fCustomDef (NL output )?

fCustomDef ::= definition: NL INDENT
function: fn
(NL input )?

Figure 3.11 – BNF specification of the POLLY language grammar (continued on next page).
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repeat ::= repeat: NL INDENT
forEach: string
(NL placeholders: object )?

req ::= request: NL INDENT
url: string
(NL params: object )?

(NL query: object )?

(NL headers: object )?

(NL pagination: pagingOpts )?

pagingOpts ::= pagination: string
| pagination: NL INDENT

next: string
(queryParam: string )?

template ::= template: (object | string )
templates ::= templates: object
findInArr ::= find: (addedItems | removedItems | modifiedItems |

unmodifiedItems | movedItems)+

findInObj ::= find: (addedKeys | removedKeys | modifiedKeys |
unmodifiedKeys)+

watch ::= watch: strlist
identifiers ::= identifiers: strlist
fn ::= function: !!js/function > jsFunction
input ::= input: string
output ::= output: (object | string )

Figure 3.11 – BNF specification of the POLLY language grammar (continued from previous
page).
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3.3 ARIA: a DSL for web service composition

To abstract away the low-level details from the users when composing heterogeneous
services, we introduce in this section ARIA, a highly-expressive DSL that enables users to
express service compositions from a higher abstraction level as opposed to several other
orchestration languages. We present an overview of the language architecture, and show
how ARIA enables the development of various compositions, involving a large number of
existing services.

3.3.1 Overview of the ARIA language

Inspired by flow-based programming and the event-driven communication paradigm,
ARIA enables users to reason and to focus on business logic rather than be disrupted by
low-level technical implementation details and intricacies. To create a composition in
ARIA, users mainly have to specify the set of services they wish to use, and the composi-
tion logic. This consists in defining the control flow that reflects which and when services
should be invoked, and how runtime errors and exceptions should be handled. Further-
more, users can easily express data flow by extracting, transforming and passing data be-
tween services.

Figure 3.12 – An ARIA process listens on its input stream, and produces events on its output
stream.

To enable these features, the ARIA language provides an abstraction layer to facilitate
these tasks. As such, third-party web services are wrapped and exposed to the user as pro-
cesses. The role of a process is twofold. First, it provides a wrapper to hide the low-level
technical details for invoking the service, such as the boilerplate code that needs to be writ-
ten to properly construct the request, passing in any optional or required arguments, speci-
fying HTTP headers and authentication tokens, etc. These are hidden and abstracted away
from the users. Once defined, a process can be used from any composition, thus avoid-
ing code duplication across compositions and facilitating maintenance should a process
needs updating or debugging. Second, an ARIA process exposes to the users event-based
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control flow mechanisms for invoking services. As demonstrated in Fig. 3.12, a process p1
listens for its input event, labeled p1:in. Whenever such an event is received, the process
invokes the wrapped service. It then emits on its output stream either an event carrying
the response of the invoked service if the request was successful (event of type p1:out), or
emits an error event if the request failed or if a runtime exception is encountered (event of
type p1:err). Finally, the process emits an event of type p1:end to signal the end of the
processing.

Furthermore, the ARIA language natively supports JSON and JSONPath expressions, to
simplify data manipulation. It also provides a way to invoke arbitrary JavaScript code at
runtime. These mechanisms are explained at greater length in Section 3.3.2.

Example

To illustrate these concepts, consider the following scenario. A user needs to be auto-
matically notified about new high-priority issues on a given GitHub 2 repository. He also
needs to be notified if the composition fails at retrieving these issues. Figure 3.13 gives an
overview of this composition, and shows how ARIA processes can be assembled together
to achieve this.

Figure 3.13 – An example of an ARIA composition.

2. A Git repository hosting service
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1 composition {
2 process getNewIssues = require("Github/GetNewIssues");
3 getNewIssues.init({ "credentials": "<label>" });
4 process gmail = require("Gmail/SendEmail");
5 process outlook = require("Outlook/SendEmail");
6 // ...
7 pool process sendEmail = require("Medley/Pool");
8 sendEmail.addToPool([gmail, outlook]);
9 sendEmail.init({ "strategy": "round-robin" });

10

11 stream issues = getNewIssues.invoke({ "repository": "medley/hello-world" });
12 on (issues:out as issue) do {
13 if (issue.priority == "high") {
14 sendEmail.invoke({
15 "to": "john@doe.com",
16 "body": "New issue: " + jp.value(issue, "$.url")
17 });
18 }
19 }
20 on (issues:err as error) do {
21 sendEmail.invoke({
22 "to": "john@doe.com",
23 "body": "Error encountered while fetching new issues: {{error.message}}"
24 });
25 }
26 }

Figure 3.14 – A composition example using ARIA DSL.

3.3.2 Specification of the ARIA language

In the remainder of this section, we rely on the example scenario presented in the pre-
vious section, and provide its specification using the ARIA language in Fig. 3.14. This sce-
nario serves as a running example to illustrate the ARIA DSL constructs, with the help of
Fig. 3.18 that gives the BNF specification of the language grammar.

Figure. 3.14 describes a composition that checks for new high-priority issues created on
a specific GitHub repository (line 11). If a new issue is detected, it notifies the user by send-
ing her an email containing the issue’s URL (lines 12 to 19). The email service is selected
from a pool of interchangeable services, enabling fault-tolerance on service unavailability
(lines 7 to 9). It also notifies the user if an error is encountered with the GitHub service
when polling for new issues (lines 20 to 25).

Furthermore, this example enables us to highlight some key language operators of the
ARIA DSL, which are described at greater length hereafter.

Composition definition

In ARIA, services are mapped to processes. The DSL allows users to configure processes
to use and express how to compose them altogether according to the events that can occur
on their respective output streams. The composition keyword (Fig. 3.14, line 1) enables
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1 process getNewIssues =
,→ require("Github/GetNewIssues");

(a) Requiring a process in ARIA.
(b) Underlying components of an ARIA process.

Figure 3.15 – Requiring ad-hoc processes in ARIA.

defining the body of the composition as a set of instructions. The process keyword (lines
2, 4, 5, 7) enables declaring a new process variable. Processes support the init method
(lines 3, 9), allowing the user to configure the process with initialization parameters. These
parameters persist throughout the lifecycle of the process instance.

Requiring ad-hoc processes

To ease the use of the ARIA language and favor code reusability, requests to third-party
services are not explicitly defined in the composition specification. Instead, the request
logic and configuration is implemented in ad-hoc processes by the service providers. Ser-
vice providers are in charge of defining and maintaining reusable black-boxes which im-
plement the interaction logic with the desired services (see Fig. 3.15). The process interface
statically describes it, providing metadata about the service as well as type information
about the expected input and the produced output of the process, using the JSON Schema
specification [Galiegue et al., 2013; Pezoa et al., 2016].

Once implemented, processes are deployed to an internal process repository, in a
plugin-like fashion. The processes are then indexed and become available for use on the
underlying execution platform. To enable loading an existing process, the require func-
tion (lines 2, 4, 5, 7) is provided globally and serves as an import mechanism for instan-
ciating processes. require returns a new instance of the specified process. Processes are
looked up by name and loaded from the internal process repository.

Stream processing

The invoke method (lines 11, 14, 21) allows the user to invoke a process with a set
of arguments. When invoked, the process returns a reference to its output stream (line
11). The events of an output stream are tagged according to their types: out for successful
executions (line 12), err for erroneous executions (line 20), and end to signal the end of
stream. Thus, users can listen to these event types using the on construct (lines 12, 20),
then react according to the event type by specifying the corresponding handler. Each event
carries along a payload (response output data or error message), and can be labeled using
the as keyword (lines 12, 20). A process invocation can yield 0, 1 or n events, according to
its implementation logic.
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1 pool process notify = require("Medley/Pool");
2 process p1 = require("P1/SendMessage");
3 process p2 = require("P2/SendMessage");
4 process p3 = require("P3/SendMessage");
5 notify.addToPool([p1, p2, p3]);
6 notify.init({ "strategy": "round-robin" });

(a) Defining a process pool in ARIA. (b) Visualisation of the notify
process pool in Fig. 3.16a

Figure 3.16 – Dynamic process pools in ARIA.

Process invocations separated by semi-colons are executed in an asynchronous man-
ner. As such, p1.invoke(); p2.invoke(); represents a parallel execution of both p1 and
p2 processes. If a sequential ordering is required, on blocks can be nested to invoke the first
process, wait for the end event of the first process’ stream, then invoke the second process.
The execution of a composition is finished when the streams of all invoked processes are
closed.

Dynamic process pools

ARIA also provides a construct to specify pools of interchangeable processes, using the
pool keyword. More specifically, it consists in a set of processes that share a common in-
terface, and are semantically equivalent (i.e. they can fulfill the same functional need).
A process pool is typically used to allow a composition to dynamically bind to a service or
adapt to service outages, all while being transparent to the developer (see Fig. 3.16). For in-
stance, emailing services such as Gmail and Outlook are considered to be interchangeable
since they all provide the same base functionality and have a compatible interface (e.g. re-
cipient address, title, message body, etc.). An example is presented in Fig. 3.14, lines 7 to
9. A verification is performed at compile time, to ensure that all processes of a pool share
a common interface. Formally, two services are type compatible if there exists a bijection
between their respective sets of mandatory input types such that each pair in the bijection
is compatible (identical field name and field type). Process pools can be configured using
different pre-defined strategies. For example, line 9 shows that a round-robin strategy is
used to alternate between the Gmail and Outlook service providers. Other natively sup-
ported strategies include fallback (always use the first process unless an error occurs, in
which case fallback to the next process, and so on) and random (randomly select a process
for each invocation).
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1 stream sx = getX.invoke();
2 stream sy = getY.invoke();
3 on (sx:out as x and sy:out as y) do {
4 doZ.invoke({ "body": "X is worth

,→ {{x.value}} while Y is worth
,→ {{y.value}}" });

5 }

(a) Using the AND operator in ARIA.

(b) FIFO ordering of incoming events.

Figure 3.17 – Joining two streams using the AND operator.

Control flow

Users may need to invoke several services in parallel, and join their output streams,
for instance to aggregate data from different sources before performing an action. For this
purpose, we introduce the and operator (see Fig. 3.17). It allows users to express synchro-
nization points when invoking multiple asynchronous processes. The and operator is im-
plemented as a built-in process that generates an output event only when it receives an
event from both its two input streams. Incoming events are buffered in a circular FIFO
memory enabling the runtime to provide load shedding by discarding events that occur
more frequently from one source than the other. For each discarded event, an error event
is generated on the error stream allowing the composition to react to it. If the aggregated
services take too much time to respond, the memory is flushed.

The language also provides basic control flow constructs, with the if/else keywords.
These constructs provide filtering capabilities on data from output events and can be used
to conditionally execute a branch of the program. For example, line 13 of Fig. 3.14 shows
how to express the invocation of the sendEmail process only when the value of the priority
field is high.

Data flow

A crucial aspect in composing multiple web services is being able to reuse and pass
data from a service to another. ARIA provides the necessary mechanisms to have fine-grain
control over the data, such as on-the-fly substitution and evaluation of expressions, as well
as document traversal and templating.

To enable the extraction of data from inbound events, ARIA supports the use of property
accessors using the dot notation, as well as the use of JSONPath expressions [Goessner,
2007] for subdocument extraction. JSONPath is the XPath [Urpalainen, 2008] equivalent
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comp ::= composition { decl + rule + }
decl ::= pool? process ident = require ( string );

| ident .init ( json ? );
| ident .addToPool ([ ident (, ident )∗ ]);

rule ::= on event do { action + }
event ::= evt | event and evt | ( event )
evt ::= evt_kind (as ident )?

evt_kind ::= ident : out | ident : err | ident : end
action ::= stream ident = ident .invoke ( json ? ) ;

| ident .invoke ( json ? ) ;
| if ( expr ) action (else action )?

| rule
expr ::= ! expr | expr binop expr | ( expr )

| ident | string | integer | float
| method ( expr ∗ (, expr )∗ )

method ::= ident | jsonpath . ident
binop ::= < | > | <= | >= | == | != | && | ||

Figure 3.18 – BNF specification of the ARIA language grammar.

for JSON documents. It provides a set of operators to traverse JSON documents from their
root (noted as $), and selectors to match queries on document attributes. In the snippet
presented in Fig. 3.14 (lines 13 and 23), we use the dot notation to access data properties
of the corresponding events. In line 16, the global helper jp is used to evaluate a JSONPath
expression against an event payload. The jp.value method returns the first value that
matches the expression, whereas the jp.querymethod returns all matching values. In line
23, we use the double curly braces notation {{...}} as templating placeholders for string
interpolation. These expressions are evaluated at runtime, and placeholders are replaced
with their corresponding values.

Furthermore, ARIA also provides an environment for evaluating expressions on primi-
tive types. The evaluation environment is accessed through <@ expr @> delimiters, where
expr is the expression to evaluate. Valid expressions are a restricted subset of JavaScript
functions. For instance, the expression <@ Date.now() @> evaluates to the current date.
As such, users can easily manipulate and transform data through evaluated expressions. At
runtime, a pre-processing phase takes place, where expressions are first substituted with
their appropriate values, and then evaluation environments are resolved.
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3.4 Summary

We presented in this chapter an overview of the main challenges developers face when
orchestrating web services. To address these issues, we proposed two domain-specific lan-
guages to raise the level of abstraction when dealing with the composition of modern web
services.

First, we identified the potential of triggering the execution of service compositions
when changes occur in web service data. To this extent, we introduced POLLY, a high-level
DSL for describing custom change detectors in web service data. We showed how POLLY

enables users to define custom change detection strategies using high-level constructs, ab-
stracting away the underlying complexities. Then, we also introduced ARIA, an expressive
DSL for describing the orchestration of web services using an event-driven paradigm. We
showed how ARIA enables users to describe complex composition scenarios in a simple
yet powerful way. In the following Chapter 4, we present the implementation details of the
MEDLEY platform, a runtime system that supports the execution of ARIA compositions that
can be triggered by POLLY change detectors.





CHAPTER

4
Runtime system implementation

In this chapter, we present MEDLEY, an event-driven lightweight platform for service
composition. MEDLEY supports the execution of compositions specified using the
ARIA language, and triggered by events detected using custom POLLY change detec-
tors. We describe the implementation details of the MEDLEY platform and show how
it supports the execution of web service compositions in a scalable manner.
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4.1 An event-driven lightweight platform for service
composition

In this section, we rely on Fig. 4.1 as a illustration to describe the architecture of the
MEDLEY platform.

Figure 4.1 – Steps involved in running a composition on the MEDLEY platform.

Based on a particular set of services to compose (Fig. 4.1 Ê), a user specifies, via the
use of the ARIA DSL presented in Section 3.3, two kinds of information: (i) how to assem-
ble together the services, and (ii) the composition logic (Fig. 4.1 Ë). In particular, with ARIA,
services are mapped to processes, and the process workflow is expressed in terms of pat-
terns of events. Accordingly, the user is expressing in a simpler manner which processes to
invoke according to events that may occur. The written specification is then given as input
to the ARIA compiler (Fig. 4.1 Ì).

The compiler in turn generates the adequate low-level code enabling communications
among the assembled processes. In fact, the service orchestration relies on an event-
driven, process-based communication paradigm, conceptually similar to what is encoun-
tered in traditional POSIX systems (Fig. 4.1 Í). Each orchestration is mapped to a set of
processes, and runs in a sandbox isolated from other instances, enabling multi-tenancy.
Hence, several users can deploy different service orchestrations without interferences
among each other.

Finally, the MEDLEY platform takes charge transparently, on the behalf of the users,
of the interaction with third-party services (Fig. 4.1 Î) as expected by the users accord-
ing to their ARIA specifications. Through the use of pre-defined processes that implement
the interaction logic with the service providers, MEDLEY supports both the pull and push
paradigms. These can be implemented as plugin modules, either using the provided MED-
LEY developer API, or using POLLY to create custom change detectors to trigger composi-
tions whenever specific events occur on targeted services.
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4.2 Implementation

MEDLEY draws its inspiration from several existing concepts, such as flow-based pro-
gramming, and process algebras. MEDLEY applies both of these concepts to the particular
context of microservice composition. The notion of Flow-Based Programming (FBP) was
first introduced by John Paul Morrison in the early 1970s [Morrison, 2010]. FBP introduces
the concepts of processes, bounded buffers, information packets, named ports, and sep-
arate definition of connections. FBP views an application as a network of asynchronous
processes communicating by means of streams of structured data chunks known as infor-
mation packets. Information packets are passed between the inputs and outputs of pro-
cesses. Each process may have multiple inputs and outputs, and multiple processes may
be connected to a specific inport or outport. FBP encourages loose coupling of compo-
nents, relying on linking black boxes in order to build microservice architectures. This
approach is applied in MEDLEY, complemented by an event-driven communication layer.

The implementation of the MEDLEY platform comprises a compiler for the ARIA

domain-specific language, a runtime system and a service for integrating third-party ser-
vice providers. The runtime system relies on Node.js, a JavaScript runtime built on top of
Chrome’s V8 JavaScript engine which provides an event-driven, non-blocking I/O execu-
tion model (Fig. 4.2). Renowned in the web development ecosystem for its performance,
efficiency and scalability, Node.js is an ideal target platform for our requirements. From
the ARIA specification of an orchestration, the compiler generates JavaScript code that
can then be linked with the runtime system. The generated code runs on devices ranging
from desktop computers to resource-constrained devices such as home appliances. Ex-
cluding third-party dependencies, the runtime system defines various utility functions and
amounts to about 1,200 source lines of JavaScript code. The ARIA compiler is around 600
source lines of code. In the remainder of this section, we first describe the main challenges
in code generation, then present the runtime system, and finally explain how third-party
services are integrated in the MEDLEY platform.

4.2.1 Code generation

The main challenges in generating code from an ARIA specification are the propagation
of data throughout subsequent process invocations, and the routing of events through the
use of the publish / subscribe paradigm.

Data propagation

An orchestration typically defines a hierarchy of handlers, the actions inside an on
clause. Code inside a handler can access not only the data associated to its input event
but also its inner events. Figure 4.3 shows an example of orchestration in which a han-
dler manipulates data (line 5) associated to one of its inner events (line 2). Because each
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Figure 4.2 – Non-blocking asynchronous execution model of Node.js.

1 stream foo = getFoo.invoke();
2 on (foo:out as f) do {
3 stream bar = getBar.invoke();
4 on (bar:out) do {
5 p.invoke({ "id": "{{f.id}}" });
6 }
7 }

Figure 4.3 – A hierarchy of nested handlers.

process invocation is asynchronous, data associated to events must be maintained across
multiple invocations, resulting into a hierarchy of data. Maintaining data hierarchy can,
however, have serious performance penalties in terms of memory usage. Furthermore,
propagating the whole payload of an event might not be necessary when only a subset of
the data is required at a later stage.

The ARIA compiler implements a backward dataflow analysis to identify data fragments
that must be maintained across multiple process invocations. These data fragments are
implemented as an environment structure that is added to the event payload. Processes
forward this environment from their input channel to their output channel, adding infor-
mation only when it may be required at later stage. To reduce memory footprint, the en-
vironment structure contains only references to data stored inside a global environment
maintained by the runtime system. The MEDLEY platform abstracts away this mechanism,
as developers do not need to be aware of these details.

Event routing

In MEDLEY, each process has its own input channel for listening to events and output
channel for publishing events. Events associated to a process are isolated in the names-
pace of the process, preventing them from interfering with other processes. To implement
the logic described in the ARIA specification, the compiler generates a set of rewrite rules.
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e = 〈l ,d ,δ〉 e Í p.invoke( j )

e ⇒〈pi n , j ,δ∪ {(l ,d)}〉 (4.1)

e = 〈l ,d ,δ〉 e Í stream s = p.invoke( j )

e ⇒〈pi n , j ,δ∪ {(l ,d)}〉 pout = 〈l ′,d ′,δ′〉 pout ⇒〈s,d ′,δ′〉 (4.2)

e = 〈l ,d ,δ〉 Í on (e) do {stmt1; . . . ; stmtn}

e Í acti on1 . . . e Í acti onn
(4.3)

e1 = 〈l1,d1,δ1〉 e2 = 〈l2,d2,δ2〉 Í on (e1 and e2) do {stmt1; . . . ; stmtn}

e1 ⇒〈andi n , {(l1,d1)},δ1〉 e2 ⇒〈andi n , {(l2,d2)},δ2〉
andout Í stmt1 . . . andout Í stmtn

(4.4)

Figure 4.4 – Rewrite rules for event routing.

Rewrite rules are used to intercept events, rename them, and publish them under a new
event name, in order to dispatch them to the appropriate recipient processes. Rewrite
rules are described as inference rules with a sequence of premises above a horizontal bar
and a judgment below the bar (see Fig. 4.4).

An event e is described as 〈l ,d ,δ〉, where l is the label name of the event, d the data
associated to it, and δ the environment structure of the call hierarchy. A rewrite rule of the
form e1 ⇒ e2 means that once the event e1 occurs, the runtime system raises the event e2.
A judgment of the form e Í stmt means that the runtime systems interprets the statement
stmt when the event e occurs. In other words, stmt is the callback associated to e. The
first and second rules are for invoking a process p. In that case, we rewrite the event e
that triggers the invocation of p as pi n , the input event of p. The third rule shows how all
instructions defined in the body of the handler are executed asynchronously. The fourth
rule shows how MEDLEY implements the and operator by rewriting each event into the
input event of the and process. This process is provided as a built-in process. When it
receives both the events 〈andi n , {(l1,d1)},δ1〉 and 〈andi n , {(l2,d2)},δ2〉 on its input channel,
it generates the event 〈andout {(l1,d1), (l2,d2)},δ1 ∩δ2〉 on its output channel. This rule is
generalizable for the conjunction of n events.

4.2.2 Runtime system

The runtime system relies on Node.js as the underlying execution environment. Once
a composition is specified and compiled, the generated code is deployed onto the platform
for execution.
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Event-driven messaging model

At runtime, an ARIA compositions is translated into a set of processes and rewrite rules.
The runtime system manages the lifecycle of processes by initializing, starting, stopping
and destroying them as necessary. When initialized, a process p is subscribed to its input
channel, listening to events of type pi n . Whenever it receives such an event, the process
is invoked, producing on its output stream events of type pout for successful executions,
or events of type per r when errors are encountered. When a process finishes executing its
logic, it emits an event of type pend to signal the end of the processing, thus closing its out-
put stream and releasing acquired resources. To enable the routing of events to the appro-
priate processes, the system generates a set of rewrite rules to dynamically rename events
on the fly, mapping them to the appropriate processes as defined by the composition spec-
ification. Rewrite rules are discussed at greater length in Section 4.2.1. Furthermore, the
runtime system encapsulates each composition in a scoped environment by assigning it
a unique namespace. Therefore, events generated within a composition are restricted to
their composition scope and cannot leak over to other compositions, thus enabling multi-
tenant concurrency.

Authenticating HTTP requests

Nowadays, most third-party services require some form of client authentication in or-
der to allow the interaction with their web APIs. Such mechanisms ensure that the client
is authorized to perform the requested operations. Our current implementation sup-
ports a wide range of client authentication methods, ranging from HTTP Basic Authentica-
tion [Franks et al., 1999] and API keys [Farrell, 2009], to OAuth protocols [Hammer-Lahav,
2010; Hardt, 2012]. To handle these authentication mechanisms, MEDLEY provides a ded-
icated user interface through which users can authorize third-party services by providing
the corresponding credentials and a textual label to reference them. When editing an ARIA

composition, the process.init method can be used to specify the user credentials in or-
der to authenticate outgoing requests to third-party services when authentication is re-
quired. A process cannot be started unless all required parameters and credentials have
been correctly set.

Error handling

During its lifecycle, a composition may encounter several kinds of errors. A process
may emit an error on its output channel (events of type err) based on its internal imple-
mentation. An error may indicate that a request to a third-party service has failed, that
authentication has failed or any other service specific errors. These errors are reported as
events and thus are accessible at the language level. Therefore, users can describe in their
orchestration their own error handling policies. In addition, the runtime system handles
errors such as network failures. In that case, it rolls back the failed process and retries
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the failed request again later, increasing the time interval between each subsequent retry.
When too many errors are raised by a composition, the system may decide to kill the run-
ning instance and release corresponding resources. Furthermore, the system enforces a
timeout at the process level and at the composition level, in order to prevent the execution
from hanging indefinitely.

4.2.3 Integrating third-party services

Third-party services are integrated into the MEDLEY platform through the implemen-
tation of processes. The developer responsible for this task is called a process provider.

Defining processes. Since the majority of exisiting third-party service providers rarely
publish any form of formal service interface description (such as WSDL or OpenAPI de-
scriptions), the process provider needs to bridge this gap by providing the necessary infor-
mation to describe the wrapped service. Typically, in MEDLEY this consists in specifying
various details about the process interface in a manifest file, facilitating its discovery and
usage across the platform. The manifest file contains metadata about the process (name,
human-readable description, resources, classification, etc.), and includes a process inter-
face. The interface is described using the JSON Schema standard. It gives typing infor-
mation about the process input and output data, indicating which keys are required or
optional, which values are allowed, etc.

Implementing processes. After defining its interface, the process provider implements
the process using one of two methods. The first method consists in implementing the
process as a Node.js module. This can be as simple as specifying the HTTP request to
the targeted service. Various helper methods from the MEDLEY developer API are passed
to the module through depencency injection. The second method consists in using the
POLLY language to specify trigger processes. These processes are typically used to monitor
changes on third-party services, and trigger the execution of a composition whenever a
change is detected.

Publishing processes. Once fully implemented and defined, processes can be published
on the MEDLEY process repository, making them available to use by the platform users.
A discovery service enables looking up processes according to user requirements. Fur-
thermore, the process repository also supports versioning for published processes, as it is
necessary to handle third-party API evolution in a sane way.
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Figure 4.5 – Overview of the architectural elements to scale the MEDLEY platform.

4.3 Towards a scalable architecture

In Section 3.3, we introduced ARIA, a language-based approach to raise the level of
abstraction required to express an orchestration of web services, and presented the im-
plementation details on how ARIA compositions are executed on the MEDLEY platform in
Section 4.1. However, knowing that CPRODIRECT plans on commercializing the platform,
it is crucial to consider the performance and scalability of the platform in order to ensure
the reliability of the product.

In this section, we describe how we improve the prototype implementation of MEDLEY

and turn it into a reliable commercial product by introducing new architectural elements,
supporting horizontal scaling across an elastic cluster of nodes. We propose an approach
to overcome API rate limit rules of third-party services, in order to scale the number of ex-
ecuted composite services linearly with the number of nodes of the cluster. An evaluation
is presented in Chapter 5, where we compare the performance of our approach against
existing scheduling strategies.

4.3.1 Scalability challenges

To support horizontal scaling, a distributed approach must be considered in order to
efficiently spread the increasing workload. In the context of MEDLEY, we consider the exe-
cution of a service composition as an individual job. Hence, scaling MEDLEY requires dis-
patching jobs across a cluster of nodes running the MEDLEY platform in an efficient way.
To achieve this, a suitable scheduler is required to efficiently load balance the incoming
workload among the multiple instances of the MEDLEY platform deployed on the cluster
nodes. Furthermore, the expected scheduler must be able to perform a fine-grained dis-
patching policy according to several criterias in order to optimize the performance. First,
it must take into account the underlying resource usage of each node. Second, it should
also consider the resulting cache affinity coming from the execution of compositions to
avoid reaching the API rate limits of the related third-party services. In the remainder of
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this section, we introduce a refinement of the architecture of the MEDLEY platform and its
new underlying elements to provide such features.

The main challenge is designing a scalable architecture capable of supporting an in-
creasing number of clients (thus, an increasing number of executions) while minimizing
the usage of third-party services in order to stay under the API rate limits for as long as pos-
sible. Figure 4.5 highlights the newly-added architectural elements to support horizontal
scaling, and how they fit with our already existing MEDLEY platform. The main new com-
ponents are the global storage, the task queue, the scheduler, and local caches for each
node.

4.3.2 Approach

From single node to a distributed architecture

The initial MEDLEY platform, which includes components such as a runtime system,
core services, and a set of service providers, is containerized using Docker [Merkel, 2014]
to ensure sandboxing at the operating system level. This facilitates both deployment and
administration of the platform on a number of system architectures. Following the mi-
croservices paradigm, the MEDLEY platform that runs inside a container, called a worker,
processes a single composition at a time according to an ARIA specification. As such,
this enables fair resource usage across compositions, while also preventing misbehaving
compositions from impacting other instances running on the same node. Each node of
the cluster can launch several workers depending on its hardware capabilities (CPU and
memory). Additional nodes and/or workers can be dynamically provisionned to meet the
increasing load.

Precompiling MEDLEY specifications

Each MEDLEY specification S is compiled to produce executable code. Compiled MED-
LEY specifications C (S) of S are saved in a global storage using the hash H(S) of the spec-
ification as an identifier. Each specification S is hence uniquely identified by an identi-
fier Si d , and is further associated with metadata that defines user credentials and the fre-
quency at which S needs to be executed based on the subscription plan of the user. Based
on that information, a new job is created every time S needs to be executed. The resulting
job defined as 〈Si d , H(S)〉 is then submitted to the task queue.

To avoid fetching every time the compiled version of a composition to be executed by a
worker, each node of the cluster embeds a local in-memory cache. In case of a cache miss,
the compiled code corresponding to the job is retrieved from the global storage and saved
in the cache, resulting in potential eviction of previous lines. To avoid waste of resources,
cache entries have time-to-live delays and are automatically evicted if unused for a given
period.
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Figure 4.6 – Conditional request using the ETag and If-None-Match HTTP headers.

Job scheduling & processing

Whenever a composition is planned for execution, a corresponding job is submitted to
the task queue. The scheduler consumes jobs from the task queue, and schedules them
to available nodes. Using a task queue upstream allows scaling the scheduler by spawning
several instances feeding off the same queue, thus distributing the load over several in-
stances and avoiding having a single point of failure. When the execution of a composition
is completed, the container is shutdown, and resources of the host node are released for
future use. However, if the execution fails due to a runtime error (e.g. an internal error or
an error returned by a third-party service), then the job is pushed back into the queue and
retried again at a later point in time, using an exponential backoff policy. This allows to
account for rate limits, which can be handled by retrying later in this case.

Caching HTTP responses

Similarly to the pre-compiled specifications, each node uses a local cache for third-
party services. Whenever a worker requests a resource from a third-party service, it first
checks if it is already present in the local cache, in which case its value is immediately
returned. Otherwise an outgoing GET request is issued to the third-party service, and its
response body is cached according to the response headers. Namely, the HTTP standard
defines clear semantics of caching mechanisms through the use of the Cache-Control and
Expires headers. These headers allow specifying the caching strategy for a given resource
as well as their expiration date, beyond which the resource is considered to be stale. For
instance, Cache-Control: public, max-age=600 indicates that a resource can be cached
for 10 minutes by any (public or private) cache.

Furthermore, performing conditional requests improve the efficiency of the caches
while also reducing the bandwidth usage. For instance, the value of the ETag response
header (which represents the fingerprint of a given resource) is used in subsequent re-
quests under the If-None-Match request header to conditionally fetch a resource if the
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Figure 4.7 – Cache-aware scheduling of jobs across a set of cluster nodes. X and Y denote
cacheable resources.

resource has been modified between polls. Otherwise, the server returns the status code
HTTP 304 Not Modified to indicate that the resource has not been modified since, and
that using the cached value is safe (see Fig. 4.6). Likewise, the same principle applies
with the Last-Modified response header and the If-Modified-Since request header,
but with timestamps instead of hash values.

Using this kind of information enables us to safely cache and manage responses from
the queried third-party services. The advantages of cache hits are twofold: (i) the response
is returned an order of magnitude faster than performing a network roundtrip to fetch it
since it is locally available, thus incurring less operational costs, and (ii) it avoids consum-
ing from the allocated API rate limit quotas, thus supporting more executions.

However, third-party services do not necessarily support caching. To overcome this is-
sue, we extend our approach to enable the platform owner to override the service provider
component. Such components are responsible for communicating with specific third-
party services and act as thin wrappers to enable their integration with the MEDLEY plat-
form. Depending to which extent an information needs to be accurate, the service provider
component can override the headers of a response to make it cacheable for a given period
of time. For example, if many users (and thus compositions) use a weather service to fetch
the temperature of the same city at almost the same time, responses to that service can be
safely cached for a given amount of time.
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Θ(x,n) =
{

1 if x is cached locally on node n

0 otherwise
(4.5)

Θsr c (C ,n) =α ·Θ(C ,n) (4.6)

Θsr v (C ,n) =β ·
|ser vi ces(C )|∑

s=1
γ ·Θ(s,n) (4.7)

scor e(C ,n) = f (Θsr c (C ,n), Θsr v (C ,n), r es(n)) (4.8)

Figure 4.8 – Job placement heuristics.

Optimizing cache affinity

The MEDLEY scheduler is responsible for efficiently load balancing jobs among nodes
of the cluster. The purpose of job placement is to optimize cache affinity while taking into
account the underlying resource usage of each node. More specifically, to do that, we rely
on a heuristics-based approach which calculates, for a given job, the score of each node.
The highest ranking node is then selected and a worker is created on that node to execute
the job. To avoid launching too many workers on nodes of the cluster, thus degrading the
overall performance, the scheduler can postpone the processing of jobs in the task queue.
When the size of the task queue increases too much, the system may decide to dynamically
extend the size of the cluster by provisioning new nodes. Figure 4.7 gives an illustration of
cache-aware scheduling across a cluster of 3 nodes.

Our scoring function depends on several criteria (see Fig. 4.8). First, we define a helper
function Θ that checks if a given resource is locally cached (Equation 4.5). The functions
in Equations 4.6 and 4.7 calculate a partial score reflecting if a composition C is cached
locally on node n, and a partial score for the number of services used in composition C
that are cached on node n, respectively. A node ranks higher if it has cache entries for the
compiled code of the composition as well as entries for the third-party services used by
that composition. The weight parameters α, β and γ enable fine-tuning the equations ac-
cording to the cost or importance of the variables. For instance, we can assign a higher γ
value for services that have more restricted rate limit quotas than others. Finally, Equa-
tion 4.8 shows how the final score depends on the partial scores calculated previously, as
well as the resources of node n: CPU usage, available memory, number of jobs in progress,
etc. The score of a node increases when available resources increase. Note that the sched-
uler also does a health check of each node of the cluster to prevent scheduling a job on an
unavailable node.
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A walkthrough example

To better illustrate this aspect, consider the setup presented in Fig. 4.7 as an example.
Initially, all nodes (N1, N2 and N3) are idle, and their corresponding caches are empty. The
composition queue contains five compositions (C1 to C5), each them requiring either the
cacheable resources X or Y.

Step 1. First, the scheduler pulls C1 from the queue, and assigns it to the highest ranking
node. Since initially, all nodes have an equal score, any node can be chosen (in this case,
N1 was selected). During its execution, composition C1 requests the resource X, which is
subsequently cached on the same node.

Step 2. Next, C2 is considered. The highest ranking nodes for C2 are nodes N2 and N3. In
this case, N2 was selected. Likewise, composition C2 is executed, and resource Y is subse-
quently cached locally.

Step 3. The scheduler considers now the placement of composition C3. Seeing as this
composition requires the resource X, which is already cached on node N1, the score of this
node increases considerably, leading to the placement of C3 on node N1. Leveraging the
availability of the cached resource X improves overall performance by reducing the overall
number of outgoing requests, and does not consume from the corresponding alloted API
requests quota.

Step 4. Composition C4 is now considered. Although node N1 would be ideal in terms
of cache affinity, it however can no longer process more compositions due to lack of re-
sources. Thus, the highest ranking node in this case is node N3.

Step 5. Finally, the scheduler considers composition C5. Similarly to step 3, this composi-
tion requires the resource Y, which is already cached on node N2. Following our heuristics
for optimizing cache affinity, the highest ranking node in this case is N2.

4.4 Summary

We presented in this chapter the implementation details of the MEDLEY platform. We
described the compiler internals, and showed how the underlying runtime system relies
on a lightweight, event-driven model to support the execution of MEDLEY compositions.
Furthermore, we identified the challenges in scaling such a platform, and proposed a novel
approach to efficiently distribute the load across a cluster of nodes. In the following Chap-
ter 5, we present a thorough evaluation of the domain-specific languages presented in
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Chapter 3, followed by a performance evaluation of the MEDLEY runtime system to evalu-
ate its performance and scalability.



CHAPTER

5
Evaluation and analysis

In this chapter, we present several evaluations to assess the proposed contributions.
First, we show the applicability of POLLY by using it to automatically generate a num-
ber of change detectors for widely used web services such as Twitter, Facebook, and
GitHub. We demonstrate that POLLY’s code is more concise that a manual imple-
mentation, and that it outperforms a state-of-the-art, off-the-shelf differencing tech-
nique. Second, we propose a comparative study of the supported language features
of ARIA and the abstractions provided compared to existing approaches. We also
evaluate the runtime performance of the code generated by compiling ARIA specifi-
cations. Using various compositions involving a large number of services, we show
how ARIA consumes a reasonably low amount of resources, both on a standard server
and on an embedded device. Finally, we show how the MEDLEY platform scales well
in a distributed context, while also taking into consideration the API rate limits of
third-party services. We demonstrate how our approach outperforms existing solu-
tions.
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5.1 Evaluating the POLLY language

We evaluate our approach using six scenarios provided by our industrial partner
CPRODIRECT. We first compare the level of abstractions provided by POLLY (in terms of
verbosity) compared to its handwritten counterpart. We then assess some runtime metrics
(such as the differencing time, output size and maximum memory usage) of our solution
compared to a state-of-the-art differencing tool.

5.1.1 Test scenarios

Our industrial partner CPRODIRECT has defined the six following scenarios to be used
in our evaluation. They illustrate the diversity of possible use cases ranging from being
notified about new objects to changes of attributes values or order in a ranking.

— ElasticSearch (ES): Developer Alice uses an instance of ElasticSearch as a search en-
gine for her e-commerce platform, and wants to be notified when the top 5 best-
selling products change in ranking order.

— Facebook (FB): Developer Alice wants to monitor a Facebook album where her
friends Dan and Dave are participating. Alice would like to be notified only about
pictures where Dan and Dave are tagged together.

— GitHub (GH): Developer Alice is interested in monitoring GitHub for new projects
written in the Go language with over 2,000 stars.

— Stack Overflow (SO): Developer Alice wants to monitor StackOverflow for new
JavaScript questions where there is an active bounty of over 100 reputation points.

— Transport for London (TL): Developer Alice wants to be notified whenever the status
of the Victoria subway line changes (e.g. from healthy to faulty).

— Twitter (TW): Developer Alice wants to be notified whenever the official Bordeaux
account has new followers on Twitter.

5.1.2 Language verbosity

Experimental setup. All scenarios described in Section 5.1.1 have been implemented
twice by the main contributor of POLLY: once using the JavaScript language on top of
the Node.js platform, and once using our domain-specific language POLLY. Note that the
JavaScript version was implemented before any research work was done on POLLY, in order
to avoid any bias, and to serve as a reference point in subsequent evaluations.

Experimental protocol. Figure 5.1 shows the number of lexical tokens used in the Node.js
version versus the POLLY version. One can notice that POLLY results in a much smaller pro-
gram, ranging from 5.5 to 8 times smaller. Furthermore, the figure shows the distribution
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Figure 5.1 – Lexical tokens used to specify each scenario, using Node.js code vs. POLLY.

of tokens across different categories (fetch, diff and output). Other tokens that are not di-
rectly related to these (such as module imports and configuration) are assigned to the other
category. First, we notice that the Node.js implementation requires a lot more boilerplate
code than POLLY, with around 200 tokens in the other category, compared to 5 for POLLY.
Second, we notice that the output construction requires more or less the same number of
tokens for both approaches, while it requires significantly less tokens for the fetch and diff
categories using the POLLY approach.

5.1.3 Performance metrics

Since one of the main benefits of using our approach is to be able to perform a cus-
tom differencing based upon domain knowledge of the data returned by the REST APIs, we
wanted to evaluate in greater details the advantages of using such a strategy. We compare
in this experiment the performance of POLLY against a state-of-the-art generic differencing
technique for JSON documents (JDR). We selected JDR as a candidate since prior bench-
marks show it outperforms all other JavaScript differencing libraries [Cao et al., 2016].

Experimental setup. Since we are only focusing on the performance of the differencing
and output construction stages for this benchmark, we can prefetch all required resources
for better reproducibility. We thus proceed to collecting real data from the six service
providers presented above. This is achieved by polling the services for the required re-
sources over a period of 48 hours with an interval of 5 minutes, yielding 576 snapshots per
service. We then serve this collected data through a mock server in the following exper-
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Figure 5.2 – Change detection time using JDR vs. POLLY.

iments. All experiments were performed on a single machine powered by an Intel Core
i7-6500U CPU @ 2.50 GHz x 4 and 8 GB of memory.

Experimental protocol. We designed an experiment which consists in running each sce-
nario 576 times (once for each snapshot) using JDR and POLLY as change detection meth-
ods. At each step, we measure the differencing time as well as the output size. This process
is repeated for 10 iterations for better precision. Throughout the process, the memory us-
age is monitored in order to register the peak memory consumption. The results of this
experiment are shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4. One can notice that the POLLY ap-
proach produces lower differencing times and output sizes compared to the JDR approach,
apart from the output size for the Facebook (FB) scenario, where the output size is equal
to 0 for every polling step for both approaches. This is because no modifications occurred
during the monitoring period. The difference in output sizes is explained by the fact that
JDR produces a JSON Patch [Bryan and Nottingham, 2013] (an intermediary document ex-
pressing a sequence of operations to apply to a JSON document in order to obtain the final
outcome), whereas POLLY directly produces the minimal set of required data as specified
in the DSL, which generally tends to be much smaller in size. Furthermore, we can see in
Fig. 5.4 that the maximum memory usage for POLLY is always lesser than for JDR. This is
because POLLY loads smaller objects in memory during the differencing stage, thanks to
the templating directives of the DSL.

Statistical testing. To have a finer-grained analysis of these results, we subject our results
to a statistical testing. Our three null hypotheses are that:

— H 1
0 output size is the same for POLLY and JDR.

— H 2
0 differencing time is the same for POLLY and JDR.
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Figure 5.3 – Output sizes using JDR vs. POLLY.

— H 3
0 maximum memory usage is the same for POLLY and JDR.

Our three alternative hypotheses are:

— H 1
a output size is lesser for POLLY than JDR.

— H 2
a differencing time is lesser for POLLY than JDR.

— H 3
a maximum memory usage is lesser for POLLY than JDR.

To test these three hypotheses, we used a one-tailed paired Wilcoxon rank test, since it
bears no assumptions on the underlying distribution of the dataset values. To assess the
magnitude of the difference between differencing time, output size, and maximum mem-
ory usage between the two approaches, we use Cohen’s d and report its corresponding level
on Cohen’s standard scale. The results of this statistical testing are shown in Table 5.1.

One can notice that most tests are significant (p-value under the 0.05 threshold), mean-
ing that POLLY produces significantly smaller outputs in a significantly reduced time com-
pared to the JDR generic differencing approach. The only non-significant test is for the

Table 5.1 – P-values of our statistical testing and size effect.

Detection time Output size Max memory

Scenario P-value Effect size (lvl) P-value Effect size (lvl) P-value Effect size (lvl)

ES 5.2403e-96 2.0909 (large) 4.4477e-42 0.6854 (med) 8.0638e-31 0.5821 (med)
FB 5.2548e-96 3.7704 (large) 1.0000e+00 NaN (NA) 4.3350e-06 0.1922 (negl)
GH 5.2550e-96 2.9894 (large) 1.3620e-84 1.1863 (large) 1.1887e-63 0.8794 (large)
SO 5.2543e-96 6.1502 (large) 1.0484e-74 0.7705 (med) 9.8855e-16 0.3372 (small)
TL 1.0000e+00 -4.8853 (large) 6.3619e-99 88.6262 (large) 2.2512e-02 0.0908 (negl)
TW 5.2547e-96 2.8470 (large) 2.4653e-72 0.8081 (large) 3.9153e-39 0.6092 (med)
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Figure 5.4 – Maximum memory usage using JDR vs. POLLY.

output size of the FB scenario. This is because in this scenario the output size is equal to 0
for every polling step for both approaches.

For the magnitude of the difference, the values range from medium to large, large being
by far the most common value (10 times out of 17 values), followed by medium (4 times),
small (1 time) and negligible (2 times). This means that POLLY results in a highly improved
outcome in terms of output size, differencing time and memory usage compared to the
JDR approach.
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5.2 Evaluating the ARIA language

In this section, we propose a number of evaluations to assess the benefits of our ap-
proach. First, we present a comparison of the language features provided by ARIA and
other existing languages and solutions. We rely on well-established benchmarks to show
how ARIA is more expressive than the other alternatives. Then, we conduct a series of ex-
periments to evaluate the performance of the generated code from ARIA specifications,
and show its efficiency when executed on different setups.

5.2.1 Language expressivity

Experimental protocol

To assess our approach in providing a simple yet highly expressive language for service
composition, we conduct a comparative study of the features supported by ARIA compared
to Bite [Rosenberg et al., 2008], S [Bonetta et al., 2012] and the WS-BPEL standard [Andrews
et al., 2003]. We select these solutions because they address the problem of composing
web services and provide a language to describe such compositions. We rely on the work
of Sheng et al. [Sheng et al., 2014] to identify the following features:

— Dynamic typing: the ability to manipulate arbitrarily-typed data structures.

— Dynamic service selection: the ability to select and bind services at runtime.

— Exception handling: the ability to handle and respond to runtime errors.

— Hybrid service support: the ability to compose services of different types (REST, SOAP,
etc.).

— Language extensibility: the ability to extend the language and provide new features.

— Scoping: the ability to define and use nested blocks and localized variables.

Table 5.2 – Comparison of language features in ARIA vs. Bite, S and WS-BPEL.

ARIA Bite S WS-BPEL

Dynamic typing + + + -
Dynamic service selection + - - -
Exception handling + ∼ ∼ +
Hybrid service support + - - ∼
Language extensibility + + - -
Scoping + - + +

(+) Supported, (-) Not supported, (∼) Partial support.
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Results

Table 5.2 summarizes the results of our comparative study.

— All approaches support dynamic data typing except for BPEL, where data types are
defined by their corresponding WSDL interface.

— Furthermore, even though all solutions enable static binding of services, ARIA also
provides a construct to handle pools of services at runtime, enabling dynamic bind-
ing based on user-defined strategies.

— All four solutions also support handling runtime exceptions, although at different
levels. For instance, Bite enables defining exception handlers at the activity and
composition levels, while S just relies on standard error handlers provided by the
JavaScript language. On the other hand, ARIA enables reacting to error events from
the output streams of the invoked processes.

— As for the supported types of web services, they all enable composing RESTful ser-
vices except BPEL, even though recent works aim to address this aspect by propos-
ing extensions to BPEL. However, in practice, these extensions have limited support
for most major enterprise BPEL engines. Moreover, since services are wrapped and
exposed as processes in ARIA, we can easily integrate other types of web services
such as SOAP. Since the adaptation is handled at the process level (by the process
provider), it is transparent at the language level, enabling the composition of hetero-
geneous services.

— Regarding language extensibility, ARIA can be easily extended by implementing new
processes, whereas the same can be achieved in Bite by implementing new activity
types, allowing further customization of these languages. This aspect is not covered
in S and BPEL.

— Table 5.2 also shows that scoping is supported by all solutions except Bite, since it
relies on a lightweight composition model.
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5.2.2 Performance metrics

To assess the runtime behaviour of the code generated from compiling ARIA specifica-
tions, we perform a series of experiments to evaluate the resource usage across different
hardware architectures.

Experimental protocol

Our benchmarks measure the resource usage of ARIA compositions when gradually
increasing the number of simultaneous compositions. Monitoring memory footprint is
performed using Node’s builtin method process.memoryUsage() 1. This method returns
various information about the memory consumption of the Node process including the
resident set size, which is the portion of the process’s memory held in RAM.

We perform a staged rollout by instanciating and starting a new composition every 10
milliseconds, and collect a snapshot of memory usage every second. The period used in
our experiments vary from 30 seconds to 5 minutes (which is relatively short compared to
existing commercial solutions, where the fastest cycles are of 5 minutes). A small period
increases responsiveness but requires much more resources as the composition needs to
be executed more often. This protocol reflects the typical workload that is expected for
recurrent compositions.

1 composition {
2 process getQuote = require("Mock/GetQuote");
3 process sendSms = require("Mock/SendSms");
4 // ...
5 stream quote = getQuote.invoke({ "symbol": "MSFT" });
6 on (quote:out as q) do {
7 if (q.value > 100) {
8 sendSms.invoke({
9 "text": "Current price: {{q.value}}",

10 "number": "+33601234567"
11 });
12 }
13 }
14 }

Figure 5.5 – ARIA specification of the stock exchange composition. This composition sends
a notification by SMS to the user whenever the value of MSFT shares goes over 100 USD.

1. https://nodejs.org/api/process.html#process_process_memoryusage

https://nodejs.org/api/process.html#process_process_memoryusage
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(a) Simultaneous compositions. (b) Dynamic memory consumption (MB).

Figure 5.6 – Benchmark results on a server.

Experimental setup

The ARIA specification used for our experiments is depicted in Fig. 5.5. It consists in
periodically polling a stock exchange service for a quote, and notifying the user by SMS if
the value of the stock quote is above 100 USD. The period corresponds to the time elapsed
between two successive executions of a composition. To measure the intrinsic scalability
of our implementation, the processes used in our experiments do not actually communi-
cate with third-party services. Instead, we use a mock server to simulate real-world latency
by defining a randomized delay for response times between 50 and 100 milliseconds. Sim-
ilarly, we mock the behavior of the stock exchange service. The returned value is random-
ized and varies between 80 and 120 USD.

We run our experiments on two different kinds of hardware platforms, from embedded
devices to mainstream servers. The server we use is powered by 2 quadcore AMD Opteron
4386 CPUs at 3 GHz and 16 GB of memory. We configure our runtime system to use a
pool of 7 working threads, and one thread for the main process. Therefore, we allocate one
thread on each physical core of the server. We increase the memory limit of our underlying
execution engine to 4 GB which is its current maximum on 64-bit systems. As an embedded
system candidate, we use the Raspberry Pi 2 model B with 1 quadcore BCM2836 CPU and 1
GB of memory. We configure our runtime system to use a total of 4 threads, mapping each
of them on a physical core. We raise the memory limit to 1 GB, which is the maximum of
memory available on this device.
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(a) Simultaneous compositions. (b) Dynamic memory consumption (MB).

Figure 5.7 – Benchmark results on an embedded device.

Results

Performance results on the server are shown in Fig. 5.6 while those for the embedded
device are shown in Fig. 5.7. On the server, the total number of simultaneous compositions
varies from at least 22,000 with a period of 30 seconds to up to 125,000 with a period of 5
minutes. Similarly, the Raspberry Pi 2 enables at least 4,000 simultaneous compositions
with a period of 30 seconds to up to 27,000 with a period of 5 minutes. When the period is
too small or the number of simultaneous compositions is too high, the event queue of the
runtime (Node.js) becomes full and no composition can be instantiated anymore. As illus-
trated in Fig. 5.6b and Fig. 5.7b, the memory consumption of ARIA follows the same growth
as the number of simultaneous compositions. In the worst case, the runtime consumes up
to the total of memory allocated to it. Our current implementation relies on Node.js which
limits the memory of a single process to 4 GB. However, as compositions are independent
from each others, it is possible to increase the number of simultaneous compositions by
distributing them over a cluster of several instances of Node.js processes.
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5.3 Evaluating the MEDLEY platform

We perform a series of experiments to evaluate the runtime performance and scala-
bility of the MEDLEY platform. We show that our approach enables overcoming API rate
limit rules of third-party services and scaling the number of executed composite services
linearly with the number of nodes of the cluster. We then compare the performance of our
cache-aware scheduler with several traditional solutions implemented by Docker Swarm.

Experimental protocol

1 composition {
2 process getWeather = require("Mock/GetWeather");
3 process notify = require("Mock/Notify");
4 // ...
5 stream weather = getWeather.invoke({ "city": "BDX" });
6 on (weather:out as w) do {
7 notify.invoke({
8 "to": "+33612345678",
9 "body": "Current weather: {{w.temperature}} Celsius."

10 });
11 }
12 }
13 }

Figure 5.8 – ARIA specification of a composition that notifies the user about the current
weather.

The workload we use is based on both CPRODIRECT’s business plan and their prelim-
inary estimations of the platform usage. We consider 50 different compositions and 50
third-party services. Each composition retrieves an information from one of the services
and then triggers a notification to the user. An example of an ARIA specification used as a
composition within our workload is shown in Fig. 5.8. Here, the composition consists in
retrieving the current weather of a city and then sending a SMS message to the user. Note
that the data returned by the weather service is cacheable for a duration between 30 to 60
seconds.

From these 50 ARIA specifications, we generate a set of 1,000 jobs based on the esti-
mations of CPRODIRECT regarding the subscription plans and the frequency of execution
for each plan. Let F be the minimal time interval between two consecutive executions of
the same composite service for a given user. We consider that 10% of the users have sub-
scribed a plan with a frequency of execution of F, 30% with a frequency of 2∗F and 60%
with a frequency of 3∗F.

Our experiment consists in processing all the jobs in the task queue. Each run is re-
peated three times for better precision. We then compare our own strategy (MC) with two
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Figure 5.9 – Number of requests to third-party services.

placement strategies provided by Docker Swarm 2. The random strategy (SR) randomly se-
lect a node to run a worker. The spread strategy (SS) schedules a job on the node with the
smallest number of running workers (containers).

Experimental setup

To make our experiments reproducible and agnostic of the network, we developed sev-
eral mock servers. These rely on data collected from real invocation of service providers
such as GitHub, Yahoo Finances, and OpenWeatherMap. During the data collection phase,
we gathered the HTTP headers, body and round-trip time of each response. This informa-
tion enables us to mimic the behavior of real worldwide service providers. For instance,
the mock server uses the response time collected in the previous step to delay its response
upon a request.

For our experiments, we use one machine to host the mock servers and one machine
to host the MEDLEY scheduler along with its task queue and global storage. In addition, we
use a cluster of nodes for running instances of the MEDLEY execution engine. We vary the
size of the cluster, ranging from 1 node, 2 nodes, 4 nodes, 8 nodes, up to 16 nodes. Each

2. https://docs.docker.com/swarm/scheduler/strategy

https://docs.docker.com/swarm/scheduler/strategy
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1 nodes 2 nodes 4 nodes 8 nodes 16 nodes
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Figure 5.10 – Distribution of job execution time per cluster size and strategy.

node is powered by four Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20 GHz cores and 4 GB of
memory.

5.3.1 Overcoming API rate limits

Figure 5.9 depicts the number of requests to third-party services for a cluster size rang-
ing from 1 to 16 nodes. Our strategy (MC) consistently outperforms both Docker Swarm
spread and random scheduling strategies. When the number of nodes grows, cache lo-
cality decreases since cache entries are distributed across several nodes. This leads to an
increase in the number of requests. However, this happens slower for our policy than for
other Docker strategies. This behaviour can be observed in the segment from 8 nodes to 16
nodes using MC. It is worth noting that the worst behaviour appears with a cluster size of
one node. This is due to the fact that processing all the jobs using a single node takes more
time; during that time, cache entries have a higher chance of expiring before being reused
by other jobs. Thus, the increasing number of cache expirations leads to a higher number
of requests.
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Figure 5.11 – Normalized execution time (our approach (MC) is the baseline).

5.3.2 Scalability performance

Job execution time is an important metric to assess the behaviour of MEDLEY. Fig-
ure 5.10 presents a boxplot with the distribution of job execution time for all strategies
using different cluster sizes. As expected, the strategy selected has no impact on job exe-
cution time when only one node is used. The first thing worth noting is that our strategy
has greater stability than both Docker spread and Docker random. In particular, we can
observe that the range of values for SS and SR is larger than MC’s when four or more nodes
are used. In addition, many outliers appear in Docker strategies for 8 and 16 nodes.

The stability of our scheduling strategy positively affects the number of jobs we can
process in a given amount of time. Figure 5.11 shows the normalized time required to
process 1,000 jobs using different cluster sizes and scheduling policies. We use our own
strategy as the baseline. When using a cluster of 8 nodes, the overhead of using off-the-
shelf techniques ranges from 10% with SS to 20% with SR. When the cluster has 16 nodes,
the overhead increases up to 15% using SS and 23% using SR.
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5.4 Summary

In this section, we presented a thorough evaluation of all the underlying elements of
the MEDLEY platform. First, we used POLLY to automatically generate custom change de-
tectors for six use cases provided by our industrial partner CPRODIRECT. Our evaluation
(Sec. 5.1) shows that POLLY outperforms a handwritten implementation in terms of code
verbosity, and that POLLY outperforms a state-of-the-art off-the-shelf differencing tool in
terms of running time and output size. Second, we demonstrated how easy it is to de-
velop various compositions involving a large number of existing services, using the ARIA

domain-specific language. We showed how ARIA is a highly-expressive language that is
richer in functionalities and language constructs compared to existing solutions (Sec. 5.2).
Third, we presented a performance evaluation of the MEDLEY platform on a single host.
We demonstrated how MEDLEY consumes a reasonably low amount of resources and how
the platform scales well both on a mainstream server and an embedded device such as a
Raspberry Pi (Sec. 5.2.2). Finally, we evaluated our approach for scaling the MEDLEY plat-
form in a distributed context (Sec. 5.3). We proposed a new strategy for scheduling the
execution of service compositions on a cluster of nodes. Our goals are reducing the num-
ber of requests to third-party services and reducing the cost of processing compositions.
The proposed scheduling policy assumes that each node in the cluster has a cache for the
latest HTTP responses, as well as the compiled code of the compositions to execute. Us-
ing information about the content of these caches, the scheduler places incoming jobs in a
way that increases cache affinity. We showed that such a mechanism helps in achieving our
goals. By conducting a set of experiments, we showed that our strategy outperforms well-
established approaches in terms of minimizing the number of outgoing requests. Likewise,
we also showed that we are able to reduce the cost of processing a large set of composi-
tions.



CHAPTER

6
Conclusion

In light of the recent advances in the field of web engineering, along with the decrease
of cost of cloud computing, service-oriented architectures rapidly became the leading so-
lution in providing valuable services to clients. Typically, these solutions are provided to
a broad number of clients in the form of specialized, well-defined web services. Follow-
ing this trend, the composition of third-party services has become a successful paradigm
for the development of robust and rich distributed applications. Although such composi-
tions can be implemented manually, it can be a tedious, error-prone and challenging task
to accomplish, especially when dealing with a large number of heterogeneous third-party
services. Furthermore, distributing the load in an efficient and scalable way while also
taking into account runtime constraints is not a straightforward task. In this concluding
chapter, we summarize our contributions in web service composition, and present some
interesting research perspectives

6.1 Context and contributions

The work presented in this dissertation lays ground for a comprehensive approach to
address the underlying challenges in service composition. To meet their clients needs,
CPRODIRECT aims at becoming the leading solution for service orchestration. This trans-
lates into several requirements that we address in this thesis:

— the ability to rapidly design and deploy service compositions of arbitrary complexity

— the ability to detect specific change events that occur on third-party services, in order
to trigger the execution of said compositions

— the ability to provide a lightweight, low overhead runtime system to enable on-
premise deployments for enterprise clients

93
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— the ability to efficiently scale according to the resources available and dynamically
adapt according to the API rate limits

Consequently, we investigated each one of these requirements, and proposed a com-
prehensive approach for web service composition using the MEDLEY platform. A summary
of the proposed contributions is presented below.

6.1.1 ARIA: a domain-specific language for web service composition

Our first contribution, presented in Sec. 3.3, aims at identifying and addressing the
multiple issues faced by developers when composing several heterogeneous web services.
Furthermore, CPRODIRECT requires that the proposed solution should be of a sufficiently
high level of abstraction, to ease its use and make it more accessible to a larger number of
clients.

ARIA meets these requirements by providing a high-level domain-specific language to
describe service compositions in a simple yet highly expressive way. Using dedicated high-
level constructs and domain-specific semantics, ARIA enables users to have a fine-grain
tuning of both control flow and data flow of service compositions. By relying on an event-
driven paradigm, users express compositions by invoking processes that encapsulate the
services logic, and react on the events emitted on their output streams. To improve the
robustness and reliability of the composition, process pools can be used to dynamically
select the services based on a given strategy. This contribution has been published in the
International Conference on Web Engineering (2016) [Ben Hadj Yahia et al., 2016b].

6.1.2 POLLY: a language-based approach for custom change detection
of web service data

Our second contribution, presented in Sec. 3.2, aims at identifying and addressing the
underlying challenges in detecting specific changes across a multitude of web API end-
points. To reduce time to market, CPRODIRECT requires a solution to rapidly integrate
new service providers and provide a way to monitor change events and react upon their
occurrence.

For this purpose, POLLY provides a declarative domain-specific language to describe
custom change detection strategies in web services data. By leveraging the domain knowl-
edge of the user, POLLY offers concise, yet highly expressive constructs for specifying cus-
tom change detectors. The language provides a simplified syntax to collect data from one
or several web API endpoints, supporting automatic pagination and request chaining in
sequential and parallel order. Furthermore, it enables users to precisely describe what
constitutes a relevant change in a given scenario, while also allowing them to template the
final output to extract only the necessary data, thus improving the overall performance.
We showed the applicability of POLLY using real scenarios provided by CPRODIRECT, and
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demonstrated its efficiency compared to traditional approaches. This contribution has
been published in the International Conference on Service-Oriented Computing (2017) [Ben
Hadj Yahia et al., 2017].

6.1.3 MEDLEY: an event-driven, lightweight platform for service
composition

The objectives of our third contribution, presented in Sec. 4.1, are twofold. First, the
design of a runtime system is needed to support the execution of service compositions
specified using the ARIA language. Furthermore, CPRODIRECT requires that such a sys-
tem must be lightweight, efficient and extensible to enable its deployment in enterprise
environments. Second, the execution platform must enable triggering the execution of
compositions when change events are detected using POLLY.

In this contribution, we presented the implementation of the runtime system of the
MEDLEY platform. We described the internals of the compiler, and how an event-driven
messaging model is used to generate events and route them to the appropriate processes.
The platform also provides authentication and error handling mechanisms, as well as a
plugin-based mechanism for integrating third-party services. Through a series of exper-
iments, we demonstrated the efficiency of the MEDLEY runtime in a single-host setup.
This contribution has been published in the International Conference on Web Engineering
(2016) [Ben Hadj Yahia et al., 2016b].

6.1.4 Towards a scalable service composition platform

Our fourth and final contribution, presented in Sec. 4.3, investigates the challenges
in scaling web service composition platforms. As CPRODIRECT wishes to support a large
number of clients on its MEDLEY platform, constraints such as API rate limits and runtime
performance must be carefully addressed.

To this end, our contribution proposes a novel approach for efficiently scaling web ser-
vice composition engines. Using a distributed architecture, composition executions are
spread across a variable number of cluster nodes. Whenever they are run, compositions are
precompiled and locally cached, along with HTTP responses of the invoked third-party ser-
vices, to improve performance. Compositions are executed in isolated sandboxes to pre-
vent runtime misbehaviour from affecting other instances. Furthermore, a cache-aware
scheduler is used to dispatch composition executions across the cluster in an efficient way.
Its placement policy aims at optimizing cache affinity, while also taking into account the
node’s available resources. Maximizing cache hits positively improves the overall perfor-
mance, and decreases the consumption rate of the API request quotas, thus allowing to
support more clients. Finally, our evaluation shows that our approach outperforms exist-
ing and well-established scheduling strategies. This contribution has been published in
the International Middleware Conference (2016) [Ben Hadj Yahia et al., 2016a].
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6.2 Perspectives

As demonstrated throughout this dissertation, web service composition is a complex
domain of research, requiring expertise in several fields such as software engineering, web
engineering, domain-specific languages and distributed systems. Furthermore, applying
these fields in an industrial context brings forth its own set of challenges. This leaves room
for a number of interesting research axes worth investigating. We propose in this section
several perspectives for the MEDLEY platform.

6.2.1 A formal verification model for data privacy in ARIA

In the industrial world, data privacy is of utmost importance, especially in the con-
text of sensitive and confidential data. Some institutions are even required by law to pro-
vide guarantees about the privacy and integrity of their clients information. For instance,
banking and health institutions need to comply with regulations and compliances such
as HIPAA 1, HITRUST 2, SOC 2 3 and SOC 3 4. As the trend of using multiple, specialized
services is becoming more prevalent, it is crucial to maintain these guarantees across all
composed services.

An interesting approach would be proposing a formal verification model for ARIA to
verify and enforce privacy and security policies throughout the composition platform.
Such a model would enable performing dataflow analyses of orchestrations to verify if sen-
sitive data may be compromised and exposed to untrusted services. Furthermore, these
policies can be applied at the user level as well, to enable the administrators to define ac-
cess control levels (ACL) and prevent unauthorized users from accessing or manipulating
sensitive data in their compositions.

6.2.2 A large-scale developer survey for POLLY

In Sec. 3.2, we showed how POLLY addresses several issues in detecting custom changes
in web services data. One of the initial design goals was to provide a domain-specific lan-
guage that is expressive, simple to use and less verbose than handwritten implementations.
In this sense, it would be insightful to conduct a large-scale developer survey to assess the
benefits of using POLLY in terms of productivity, code quality and maintenance cost. The
survey would help identifying possible enhancements and optimization opportunities, as
well as highlighting common pitfalls, best practices, and learning curve. The study can
consist in asking developers to implement predefined scenarios, using both POLLY and the
programming language of their choice, followed up by a survey to rate both approaches

1. https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
2. https://hitrustalliance.net
3. https://www.ssae-16.com/soc-2
4. https://www.ssae-16.com/soc-3

https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://hitrustalliance.net
https://www.ssae-16.com/soc-2
https://www.ssae-16.com/soc-3
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according to the criteria mentionned earlier. Analyzing the results would give us a better
insight about the effectiveness of POLLY. As an effort to showcase our current implemen-
tation, an online demonstration of POLLY is freely available at the following address 5.

6.2.3 Refining job placement strategies in MEDLEY using
machine-learning techniques

In Sec. 4.3, we showed how we efficiently distributed composition execution jobs across
a cluster of nodes, with the aim of maximizing cache affinity whenever possible. As most
compositions are recurrently executed at a given frequency, it becomes possible to pro-
gressively estimate the resources consumed for a given composition, refining it over time.
As such, we envision a refinement of the scheduler where the resource usage of each job
is also considered. Using machine-learning techniques, a runtime profile can be built for
each composition, which can be leveraged by the scheduler to improve job placement.
This approach has the added benefit of improving the overall resource usage of the cluster,
which leads to better provisioning and lower operational costs.

5. https://demo.pollyapp.ml

https://demo.pollyapp.ml




APPENDIX

A
Résumé en Français

Un service web repose sur un ensemble de standards bien définis afin de permettre
la communication et l’échange de données entre applications et systèmes hétérogènes
dans des environnements distribués. Grâce aux dernières avancées technologiques dans
le domaine du génie logiciel, le développement de services web est désormais de plus en
plus accessible, et de moins en moins coûteux [Zhang et al., 2010]. Ainsi, un vaste nom-
bre de services à valeur ajoutée sont disponibles aujourd’hui sur le marché, témoignant
d’une forte croissance au quotidien. L’abondance de ces services a suscité l’intérêt des
chercheurs et des entreprises afin d’exploiter leur potentiel dans plusieurs façons possi-
bles [Alonso et al., 2004]. Plus particulièrement, notre partenaire industriel CPRODIRECT

cherche à exploiter cette panoplie de services afin de proposer des solutions pertinentes
et efficaces à ses clients, grâce à l’intégration et l’orchestration de ces services. Cependant,
avec la disponibilité de centaines de milliers de services et APIs différentes, ces inté-
grations deviennent fastidieuses quand effectuées manuellement. De plus, chaque client
peut exiger des contraintes et politiques d’intégration différentes, complexifiant davantage
la tâche. Enfin, concevoir et fournir une solution qui soit à la fois robuste et scalable est
une tâche non-triviale. Au vu de cette forte croissance des architectures orientées services,
il est donc nécessaire d’étudier comment coordonner de manière efficace les interactions
entre des services web existants. Cette thèse a pour objectif d’étudier les problématiques
sous-jacentes à la composition de services web, dans le contexte des architectures web
modernes.

Au cours des dernières décennies, de nombreuses approches et solutions ont été pro-
posées pour aborder ces problèmes. Par exemple, BPEL (Business Process Execution Lan-
guage) [Andrews et al., 2003] était la solution de référence pour l’orchestration des services
SOAP, et était le sujet de nombreuses études et applications commerciales. Cependant,
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les services SOAP disparaissent rapidement aujourd’hui, en faveur du style architectural
REST [Fielding, 2000] qui présente plus de flexibilité. En effet, il existe des différences fon-
damentales entre les services web hérités (SOAP) et les services web développés selon le
style architectural plus moderne (REST), en terme de spécifications, d’outils et des bonnes
pratiques à adopter. De nombreux autres modèles (composition sémantique [Rao and Su,
2003], composition basée sur l’ontologie [Agarwal et al., 2003]), langages (algèbres de pro-
cessus [Morimoto, 2008; Aceto and Gordon, 2008]) et extensions de BPEL ont été proposés
au fil du temps [Sheng et al., 2014]. Néanmoins, ceux-ci n’adressent pas les besoins du
monde industriel, qui exige une grande rapidité d’intégration avec les nouveaux services
émergents.

Dans le milieu commercial, de nombreuses plateformes de composition telles que
IFTTT 1 et Zapier 2 permettent à leurs utilisateurs d’exprimer des compositions de services
dans le but d’automatiser des tâches récurrentes [Liu et al., 2000; Pandey et al., 2004]. Ces
compositions se déclenchent quand un ou plusieurs événements ont lieu sur un service
donné, puis exécutent la logique de composition correspondante [Ur et al., 2016]. Cepen-
dant, ces plateformes restent très limitées en expressivité, et ne permettent pas de spécifier
des compositions plus complexes. De plus, comme la grande majorité des services web ne
fournissent pas de moyens pour définir des événements personnalisés, il est à la charge de
la plateforme concernée de développer un système de notification, consistant à monitorer
des services en les interrogeant régulièrement afin de détecter des changements au fil
du temps. Dès qu’un changement est détecté, un événement peut être levé. Comme il
est nécessaire d’écrire du code spécifique pour chaque service à intégrer, cette approche
devient très vite limitée et risque de ne pas correspondre aux attentes des clients. Tous
ces éléments soulèvent donc un grand nombre de défis à aborder dans le contexte de la
composition des services web modernes.

Dans cette thèse, nous identifions les problématiques à considérer dans le contexte de
la composition de services web modernes (Chapitre 2). Ici, nous adressons les besoins
suivants:

— La capacité de rapidement concevoir et déployer des compositions de services d’une
complexité arbitraire

— La capacité de détecter des événements de changement spécifiques qui ont lieu sur
des services tiers, afin de déclencher l’exécution de ces compositions

— La capacité de fournir un environnement d’exécution léger et performant pour per-
mettre le déploiement auprès des clients industriels

— La capacité de passage à l’échelle efficace en fonction des ressources disponibles, et
l’adaptation dynamique en fonction des limites sur les taux de requêtes d’APIs

1. https://ifttt.com
2. https://zapier.com

https://ifttt.com
https://zapier.com


101

En se basant sur une approche langage, nous proposons un cadre architectural complet
qui permet la spécification et l’exécution des compositions de services web de manière
scalable. Pour cela, nous proposons quatre contributions complémentaires.

Premièrement, nous proposons ARIA, un langage dédié pour décrire des composi-
tions de services grâce à des constructions de langage de haut niveau, ainsi que des
sémantiques spécifiques au domaine de métier (Sec. 3.3). ARIA est conçu spécifique-
ment pour confronter les éléments problématiques mentionnés auparavant, rencontrés
lors de l’orchestration de plusieurs services web hétérogènes. En fournissant une couche
d’abstraction entre l’implémentation de bas niveau et la logique métier de haut niveau, le
langage permet aux utilisateurs d’exprimer des compositions à un degré fin à la fois le flux
de contrôle et le flux de données. Afin d’améliorer la robustesse et la fiabilité de la com-
position, des pools (groupements) de processus peuvent être utilisés afin de sélectionner
dynamiquement les services à invoquer en fonction d’une stratégie donnée.

Deuxièmement, nous proposons POLLY, une approche déclarative et orientée langage
pour simplifier la construction des détecteurs de changement (Sec. 3.2). POLLY permet
de décrire des stratégies de détection de changement dans les documents JSON, obtenus
à travers les APIs REST. Ce langage dédié fournit des constructions déclaratives, simples
et expressives pour décrire comment construire un état à partir d’une ou plusieurs routes
d’APIs, comment identifier des changement dans ces états, et comment produire une sor-
tie personnalisée en fonction des attentes du client. Le compilateur de POLLY produit au-
tomatiquement une implémentation efficace en JavaScript, qui est exécuté dans un envi-
ronnement d’exécution dédié, et fait abstraction des contraintes techniques de bas niveau,
telles que l’authentification HTTP et la pagination des réponses. Dans notre contexte,
les détecteurs de changement développés avec POLLY permettent de générer des événe-
ments personnalisés afin de déclencher automatiquement l’exécution des compositions
ARIA quand un changement a lieu dans les données d’un service web donné.

Troisièmement, nous présentons l’architecture de MEDLEY, une plateforme légère et
orientée événements pour la composition de services web (Sec. 4.1). La plateforme MED-
LEY consiste en un environnement d’exécution léger pour supporter l’exécution de com-
positions de services spécifiées avec le langage ARIA, et permet l’intégration rapide des
fournisseurs de service web tiers. Une fois définies, les spécifications ARIA sont compilées
vers du code bas niveau, qui est ensuite exécuté au sein de MEDLEY. L’environnement
d’exécution repose sur un paradigme de communication événementiel et basé sur les pro-
cessus, pour fournir un modèle d’exécution léger et à haute performance. MEDLEY sup-
porte aussi l’intégration des détecteurs de changement spécifiés avec POLLY, permettant
ainsi la mise en place de déclencheurs pour les compositions ARIA, basés sur les événe-
ments de changement détectés par POLLY.

Enfin, afin de s’assurer de la capacité de passage à l’échelle de la plateforme MED-
LEY dans un environnement de production, nous proposons une nouvelle approche pour
un ordonnancement efficace dans les moteurs d’orchestration de services (Sec. 4.3). Le
défi principal consiste à supporter un nombre croissant d’utilisateurs tout en prenant en
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compte les limites sur les taux de requêtes des APIs des services tiers invoqués par les com-
positions. Ainsi, nous permettons le passage à l’échelle horizontal de MEDLEY. Cela per-
met de distribuer la charge de la plateforme à travers plusieurs nœuds. À cet effet, de
manière similaire à Docker Swarm [Merkel, 2014], nous introduisons un ordonnanceur
dédié à la plateforme MEDLEY, afin de pouvoir créer un cluster capable d’augmenter ou
de réduire dynamiquement le nombre de noeuds MEDLEY afin de distribuer au mieux la
charge. Contrairement à Docker Swarm, qui est agnostique à l’application conteneurisée,
notre ordonnanceur est capable d’expédier des compositions en fonction de leurs dépen-
dances, mais aussi des ressources qu’elles consomment. En conséquence, la plateforme
MEDLEY est facilement déployable sur des infrastructures cloud publiques, permettant
ainsi l’optimisation des coûts opérationnels. De plus, afin de gérer les limites sur les taux
de requêtes d’APIs des services tiers, la plateforme MEDLEY dispose de capacités de cache
sur chaque nœud du cluster. L’ordonnanceur de MEDLEY se base sur des heuristiques afin
d’optimiser l’affinité du cache, réduisant ainsi le nombre total de requêtes aux services
tiers, et améliorant le passage à l’échelle de la plateforme.

Pour évaluer la pertinence de notre approche, nous présentons une évaluation appro-
fondie dans Chapitre 5. Nous évaluons l’expressivité et les fonctionnalités des langages
dédiés proposés, et conduisons une évaluation de performance de la plateforme MED-
LEY, puis discutons des résultats obtenus. Enfin, le Chapitre 6 conclut cette thèse en ré-
sumant nos contributions, et en présentant plusieurs perspectives possibles pour étendre
ces travaux.
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