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Chapter 1

Résumé en français

1.1 Introduction et contexte historique

Soit X une variété algébrique sur un corps k et Bir(X) son groupe des transforma-
tions birationnelles. Les buts principaux pour étudier Bir(X) sont:

(1) Comprendre la géométrie de X en étudiant la structure de groupe de Bir(X).

(2) Comprendre la structure de groupe de Bir(X) en étudiant la géométrie de X.

Souvent on se concentrera sur le cas où X est une variété rationnelle. Dans ce
cas, la structure de Bir(X) est particulièrement riche et intéressante. En l’honneur
du mathématicien italien Luigi Cremona (1830-1903), le groupe Bir(X) est dans
ce cas appelé groupe de Cremona en n-variables, où n est la dimension de X. On
utilise la notation

Crn(k) := Bir(Pn
k).

Si n = 2 on parle souvent du groupe de Cremona du plan.
Si on fixe des coordonnées homogènes [x0 : · · · : xn] de Pn

k, chaque élément f 2
Crn(k) est représenté par des polynômes homogènes du même degré f0, . . . , fn 2
k[x0, . . . , xn] sans facteur commun non constant. Alors f est donné par

f : [x0 : · · · : xn] 799K [f0 : · · · : fn].

En utilisant des coordonnées a�nes [1 : X1 : · · · : Xn] = (X1, . . . , Xn), la transfor-
mation birationnelle f est donnée par

f : (X1, . . . , Xn) 799K (F1, . . . , Fn),

où les Fi(X1, . . . , Xn) 2 k(X1, . . . , Xn) sont les quotients

Fi(X1, . . . , Xn) = fi(1, X1, . . . , Xn)/f0(1, X1, . . . , Xn).

Ceci définit un (anti-)isomorphisme entre Crn(k) et le groupe des k-automorphis-
mes du corps des fonctions k(X1, . . . , Xn). Plus généralement, on peut identifier
Bir(X) avec le groupe des k-automorphismes du corps des fonctions k(X).

1



2 CHAPTER 1. RÉSUMÉ EN FRANÇAIS

Les éléments de Crn(k) sont appellés des transformations de Cremona. Les
premiers exemples étaient déjà utilisé par les mathématiciens dans la Grèce an-
tique. Mais ce ne fut qu’au 19ème siècle, dans le cadre des recherches en géométrie
projective, en vogue dans ce temps-là, que les transformations de Cremona furent
étudiées dans le contexte de la géométrie algébrique, notamment dans les deux
articles [Cre63] et [Cre65] publiés par Cremona en 1863 et 1865. Cette époque
est aujourd’hui appelée l’école italienne de la géométrie algébrique. Des travaux
importants étaient conduits par Bertini, Castelnuovo, Enriques, Geiser, Hudson,
de Jonquières, Kantor, Noether, Segre, Wiman et beaucoup d’autres. On ren-
voie à [Dol12], [Hud27], [Sny28] et [Dés06a] pour des références et des remarques
historiques plus complètes.

De nombreuses techniques et des résultats importants développés par ces géo-
mètres algébriques classiques continuent d’inspirer les mathématiciens aujourd’hui
(voir [Dol12] pour un résumé et des références). Un des résultats les plus connus
et importants est le théorème de Noether et Castelnuovo:

Théorème 1.1.1 ([Noe70], [Cas01], [Ale16]). Le groupe de Cremona du plan sur
un corps algébriquement clos k est engendré par le groupe des automorphismes
Aut(P2

k) ' PGL3(k) et l’involution quadratique standard

� := [x0 : x1 : x2] 799K [x1x2 : x0x2 : x0x1].

Remarque 1.1.1. L’énoncé du théorème de Noether et Castelnuovo n’est plus
vrai, si k n’est pas algébriquement clos (voir par example [Isk83], [BM14] pour des
généralisations aux cas où k est parfait, respectivement le cas k = R).

La classification des sous-groupes finis de Cr2(k) est un autre problème classique
important. Une classification pour le cas k = C a été obtenue en 2007 par Dolgachev
et Iskovskikh avec des outils modernes ([DI09], voir aussi [Bla07] et [Tsy13]). La
classification pour le cas où la caractéristique de k est positive est toujours ouverte
et fait l’objet de recherches. Le problème de classifier les sous-groupes finis de
Cr3(k) est plus di�cile. Prokhorov a décrit tous les groupes finis simples qui se
plongent dans Cr3(C) ([Pro12]). D’autres travaux concernant ce sujet sont [CS16]
et [Pro11]. En dimension plus grande que trois, les sous-groupes finis des groupes de
Cremona sont peu connus. Cependant Birkar a récemment démontré la conjecture
BAB (dénommée après A. Borisov, V. Alexeev and L. Borisov) qui implique, par
un résultat de Prokhorov et Shramov, que Cr2(C) satisfait la propriété de Jordan,
c’est-à-dire que pour chaque entier n il existe une constante C(n) telle que chaque
sous-groupe de Crn(C) est abélien d’indice fini plus petit que C(n) ([PS16], [Bir16]).

Les groupes de Cremona peuvent être munis de structures algébriques. On peut
définir notamment la topologie de Zariski (voir [BF13] pour une vue d’ensemble sur
le sujet et les propriétés de cette topologie). Cette topologie permet de définir
des sous-groupes algébriques. Enriques a classé tous les sous-groupes algébriques
connexes maximaux de Cr2(C) ([Enr93]). Cette classification a été réécrite dans
un langue plus moderne par Umemura ([Ume82b]) et étendue par Blanc à une
classification des sous-groupes algébriques maximaux, pas nécessairement connexes
([Bla09]). Umemura a aussi classé les sous-groupes algébriques connexes maximaux
de Cr3(C) ([Ume85, Ume85]). Parmi les travaux sur les sous-groupes algébriques
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des groupes de Cremona il faut aussi mentionner ceux de Demazure [Dem70] et
Bialynicki-Birula [BB67].

Vers le milieu du 20ème siècle la recherche en géométrie algébrique s’est plutôt
concentrée sur les fondations du sujet et les questions classiques n’étaient plus au
centre de l’intérêt. La recherche en géométrie birationnelle et notamment sur les
groupes des transformations birationnelles a prospéré de nouveau quelques décades
plus tard en Russie avec Danilov, Gizatullin, Iskovskikh, Manin et d’autres. Suite
aux travaux de Mori et d’autres dans les années 1980, la géométrie birationnelle a
gagné encore plus d’attention et est devenue un des sujets principaux de la géométrie
algébrique. En 2008 deux séminaires Bourbaki avaient comme sujet le groupe de
Cremona du plan ([Fav10], [Ser10]) et ont remis le sujet de nouveau en vogue.

Des nouvelles techniques, qui venaient principalement de la dynamique, ont
conduit à des résultats qui ont contribué considérablement à la compréhension
du groupe de Cremona du plan. Une des percées principales fut sans doute la
construction d’une action de Bir(S) par isométries sur un espace hyperbolique H1

de dimension infinie par Manin ([Man86]) et l’application des outils de la théorie
géométrique des groupes sur cette action pour obtenir des résultats sur la structure
de groupe de Bir(S) par Cantat ([Can11a]). Ici, S est une surface projective sur un
corps k. Un élément f 2 Cr2(k) est appelé respectivement elliptique, parabolique
ou loxodromique, si l’isométrie de H1 correspondante est elliptique, parabolique ou
loxodromique. Cette distinction se traduit au niveau du comportement dynamique
de f . Si X est une variété projective lisse et H une polarisation de X, c’est-à-dire
un diviseur ample, alors le degré degH(f) 2 Z+ d’une transformation rationnelle
dominante f de X par rapport à H est défini par

degH(f) = f⇤H ·Hd�1,

oú d est la dimension de X et f⇤H est la transformation totale de H par f .

Théorème 1.1.2 (Gizatullin; Cantat; Diller and Favre). Soit k un corps algé-
briquement clos, S une surface projective sur k avec une polarisation H et f 2
Bir(S). Alors on se trouve dans un des cas suivants:

(1) f est elliptique, la suite {degH(fn)} est bornée, il existe un entier k 2 Z+ et
une application birationnelle ' : S 99K S0 vers une surface projective lisse S0

telle que 'fk'�1 est contenu dans Aut0(S0), la composante neutre du groupe
des automorphismes Aut(S0).

(2a) f est parabolique et degH(fn) ⇠ cn pour une constante positive c et f
préserve une fibration rationnelle, c’est-à-dire qu’il existe une surface pro-
jective lisse S0, une application birationnelle ' : S 99K S0, une courbe B et
une fibration rationnelle ⇡ : S0 ! B, telles que 'f'�1 permute les fibres de
⇡.

(2b) f est parabolique et degH(fn) ⇠ cn2 pour une constante positive c et f
préserve une fibration elliptique ou quasi-elliptique (si car(k) = 2 or 3), c’est-
à-dire qu’il existe une surface projective lisse S0, une application birationnelle
' : S 99K S0, une courbe B et une fibration elliptique ou quasi-elliptique
⇡ : S0 ! B, telles que 'f'�1 permute les fibres de ⇡.
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(3) f est loxodromique et degH(fn) = c�(f)n+O(1) pour une constante positive
c. Ici, �(f) est le degré dynamique de f . Dans ce cas f ne préserve aucune
fibration.

Le théorème 1.1.2 a mené à des résultats remarquables sur la structure de groupe
de Bir(S), où S est une surface. Du point de vue de la théorie géométrique des
groupes, le groupe de Cremona agissant sur H1 partage des propriétés avec d’autres
groupes agissant sur des espaces hyperboliques comme par example le groupe mod-
ulaire d’une surface agissant sur le complexe des courbes ou le groupe des automor-
phismes extérieurs d’un groupe libre à n générateurs agissant sur l’outre espace.

Dans [Can11a], Cantat a démontré, entre autres résultats, que le groupe de
Cremona du plan satisfait l’alternative de Tits pour les sous-groupes de type fini,
c’est-à-dire que chaque sous-groupe de type fini de Cr2(C) est soit résoluble à indice
fini près, soit il contient un groupe libre à deux générateurs. Blanc a démontré que le
groupe de Cremona du plan ne contient pas de sous-groupe propre distingué fermé
par rapport à la topologie de Zariski (voir [Bla10], ou [BZ15] pour une généralisation
de ce résultat à la dimension quelconque). Dans [CLdC13], Cantat et Lamy ont
démontré que le groupe de Cremona du plan n’est pas simple et ainsi ont répondu
à une des questions les plus importantes du sujet. L’outil principal de leur article
consiste à coupler l’action de Cr2(C) sur H1 avec les résultats du Théorème 1.1.2
et puis d’appliquer la théorie de petite simplification (voir par exemple [Cou16]).

Cette thèse contribue à la recherche sur les groupes de Cremona en considérant
des classes de “grands” sous-groupes.

Dans le chapitre 3 on considère des plongements algébriques de Cr2(C) vers
le groupe des transformations birationnelles Bir(M) d’une variété algébrique M .
D’abord on étudie les propriétés géométriques d’un exemple d’un plongement de
Cr2(C) dans Cr5(C) décrit par Gizatullin. Dans une deuxième étape on donne une
classification des homomorphismes algébriques de Cr2(C) vers Bir(M), où M est
une variété de dimension 3 et on généralise partiellement ce résultat à des homo-
morphismes algébriques de Cr2(C) vers Bir(M), où M est une variété algébrique
de dimension n + 1. Cela donne notamment une classification de tous les actions
régulières de PGLn+1(C) sur des variétés projectives lisses de dimension n+ 1 qui
s’étendent à une action rationnelle de Crn(C). Le chapitre 3 est le texte d’un article
qui est accepté pour publication dans les “Annales de l’Institut Fourier” avec un
appendice additionnel.

Les suites de degrés d’itérés des transformation birationnelles jouent un rôle
principal pour comprendre la structure des groupes de transformations birationnel-
les des surfaces. Très peu est connu sur ces suites dans les dimensions plus grandes
que deux. Au chapitre 4 on considère quelques questions concernant les suites
de degrés des transformations dominantes rationnelles des variétés de dimension
quelconque. On démontre notamment de nouvelles contraintes sur leur croissance
et on étudie quelques exemples. En plus on démontre que l’ensemble de tous les
suites de degrés est dénombrable. Ceci généralise un résultat de Bonifant et Fornaess
([BF00]). Le chapitre 4 est le texte d’un article qui est accepté pour publication
dans “Mathematical Research Letters”.

Dans le chapitre 5 on explique quelques résultats connus sur le groupe de
Cremona du plan, dont on aura besoin aux chapitres 6 et 7.
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Le chapitre 6 est dédié aux sous-groupes de Cr2(C) qui ne contiennent que
des éléments elliptiques. Jusqu’ à présent les résultats sur ce type de groupes
n’existent que pour le cas de groupes de type fini ([Can11a]). L’idée principale
de ce chapitre est d’utiliser le théorème de compacité de la théorie des modèles
pour généraliser des résultats sur les groupes de type fini à des résultats sur des
groupes quelconque. Ceci nous permet de déduire des résultats sur la structure
des groupes qui ne contiennent que des éléments elliptiques. On verra notamment
que Cr2(C) satisfait l’alternative de Tits pour tous les sous-groupes, c’est-à-dire que
chaque sous-groupe de Cr2(C) est soit résoluble à indice fini près, soit il contient un
groupe libre à deux générateurs. On démontre également que tous les sous-groupes
de torsion de Cr2(C) sont abéliens à indice fini près et que la longueur dérivée des
sous-groupes résolubles de Cr2(C) est bornée.

Dans le chapitre 7 on considère des sous-groupes simples de Cr2(C). On
démontre que tous les sous-groupes simples de type fini de Cr2(C) sont finis. Si on
suppose qu’une conjecture ouverte est vraie, on peut démontrer qu’un sous-groupe
de Cr2(C) qui contient un élément loxodromique n’est pas simple. Les ingrédients
principaux pour cette preuve sont des résultats de la théorie de la petite simpli-
fication de [CLdC13] et des travaux plus récents de Shepherd-Barron [SB13]. Le
résultat principal de ce chapitre, est que si une conjecture ouverte est vraie (con-
jecture 7.1.1), alors un sous-groupe simple se plonge dans Cr2(C) si et seulement
s’il se plonge dans PGL3(C).

Dans le chapitre 8 on résume les questions ouvertes les plus importantes qui
se sont posées pendant la thèse et à laquelles je ne sais pas encore répondre.

Dans ce qui suit on donne un résumé de chaque chapitre qui décrit les principaux
résultats originaux.

1.2 Homomorphismes entre groupes de Cremona

Dans ce chapitre on travaille toujours sur le corps des nombres complexes. Le point
de départ de nos considérations est la théorie des représentations de dimension finie
des groupes de Lie. Il existe une théorie assez complète sur les homomorphismes
de groupes de Lie entre les groupes classiques. Ces homomorphismes peuvent être
décrits de manière satisfaisante en fonction des vecteurs de poids maximal (voir
par exemple [FH91]). La stratégie principale consiste à étudier les groupes suivants
qu’on peut associer à un groupe de Lie complexe G:

• un tore fixe T de rang maximal, c’est-à-dire un sous-groupe de la forme (C⇤)n,
où n est maximal entre tous les sous-groupe de cette forme:

• le groupe de Weyl associé à T , c’est-à-dire le groupe NormG(T )/T ;

• les sous-groupes de racines, c’est-à-dire les sous-groupes additifs à un para-
mètre de G qui sont normalisés par T .

Parfois, les groupes de Cremona sont vus comme des analogues en dimension
infinie des groupes de Lie complexes. De cette perspective on pourrait rêver d’une
théorie des “représentations de Cremona”, d’une classification complète de tous les



6 CHAPTER 1. RÉSUMÉ EN FRANÇAIS

homomorphismes de Crn(C) vers Bir(M) qui préservent des structures algébriques,
pour des variétés projectives quelconques M .

Il existe des analogues des tores maximaux et des groupes de Weyl dans Crn(C).
Soit Dn ⇢ Crn(C) le sous-groupe de dimension n formé des automorphismes diag-
onaux. C’est le tore de rang maximal selon le sens suivant: soit D un sous-groupe
algébrique de Crn(C) qui est isomorphe à (C⇤)k. Alors k  n et si k = n, alors D
est conjugué à Dn ([BB67]).

Soit A = (aij) 2 Mn(Z) une matrice d’entiers. La matrice A détermine une
application rationnelle de l’espace a�ne vers lui-même:

fA = (xa11
1 xa12

2 · · ·xa1n
n , xa21

1 xa22
2 · · ·xa2n

n , . . . , xan1
1 xan2

2 · · ·xann
n ).

On a fA � fB = fAB pour A,B 2 Mn(Z) et on peut observer que fA est une
transformation birationnelle si et seulement si A 2 GLn(Z). Ceci défini un homo-
morphisme injectif M : GLn(Z) ! Crn(C); l’image de M dans Crn(C) on appelle
le groupe de Weyl et on écrit Wn := M(GLn(Z)). Cette terminologie est jus-
tifiée par le fait que le normalisateur de Dn dans Crn(C) est le produit semi-direct
NormCrn(C)(Dn) = Dn o Wn. Parfois Wn est appelé groupe des transformations
monomiales.

Observons que le théorème de Noether et Castelnuovo implique notamment
que Cr2(C) = hW2,PGL3(C)i. Par contre, Hudson et Pan ([Hud27], [Pan99]) ont
démontré que pour n � 3 le groupe de Cremona Crn(C) n’est plus engendré par
PGLn+1(C) et Wn. On définit:

Hn := hPGLn+1(C),Wni .

Malgré l’analogie avec les groupes de Lie, il n’est pas clair que l’on puisse créer
une théorie des représentations de Cremona. Les exemples suivantes illustrent
que la situation est plus compliquée que pour les groupes de Lie classiques et
qu’en général il existe beaucoup d’homomorphismes di↵érents entre des groupes de
Cremona:

Exemple 1.2.1. Supposons qu’une variété projective M est birationnellement
équivalente à Pn ⇥N pour une variété N . L’action standard sur le premier fac-
teur induit un homomorphisme injectif de Crn(C) vers Bir(Pn ⇥N) et donc aussi
vers Bir(M). On appelle les plongements de cette forme plongements standards.
On obtient en particulier un plongement standard Crn(C) ! Bir(Pn ⇥Pm) pour
tout entier positif m.

Exemple 1.2.2. Une variété M est appelé stablement rationnelle s’il existe un en-
tier n tel que M⇥Pn est rationnelle. Il existe des variétés de dimension � 3 qui sont
stablement rationnelles mais pas rationnelles (voir [BCTSSD85]). On va démontrer
que deux plongements standard f1 : Crn(C) ! Bir(Pn ⇥N) et f2 : Crn(C) !
Bir(Pn ⇥M) sont conjugués si et seulement si N et M sont birationnellement
équivalentes. Alors, toutes les classes d’équivalence birationnelle des variétés sta-
blement rationnelles de dimension k définissent une classe di↵érente de plongement
Crn(C) ! Bir(Pm) pour m = n+ k.



1.2. HOMOMORPHISMES ENTRE GROUPES DE CREMONA 7

1.2.1 Le cas dim(M)  n

SoitM une variété complexe projective de dimension n et ⇢ : PGLr+1(C) ! Bir(M)
un plongement. Alors n � r et si n = r on a que M est rationnelle et que ⇢ et
le plongement standard à conjugaison et à homomorphismes du corps C près (voir
[Can14] et [Dés06b]). Ceci implique notamment qu’il n’existe pas de plongement
de Crn(C) vers Bir(M) si dim(M) < n. On rappellera ces résultats et on verra que
la restriction d’un automorphisme de Crn(C) au sous-groupe Hn est le plongement
standard à conjugaison et à automorphisme du corps C près (section 3.5.5).

1.2.2 Homomorphismes algébriques

On dit qu’un homomorphisme de groupes  : Crn(C) ! Bir(M) est algébrique si
sa restriction à PGLn+1(C) est un morphisme algébrique. Pour la définition des
morphismes algébriques on utilisera la topologie de Zariski sur Bir(M) (voir sec-
tion 3.2). Un élément f 2 Crn(C) est appellé algébrique, si la suite {deg(fn)}n2Z+

est bornée.

Définition 1.2.1. Soit M une variété et 'M : Crn(C) ! Bir(M) un homomor-
phisme algébrique non trivial. On dit que 'M est réductible s’il existe une variété
N telle que 0 < dim(N) < dim(M) et un morphisme algébrique 'N : Crn(C) !
Bir(N) avec une application rationnelle dominante ⇡ : M 99K N qui est Crn(C)-
équivariante par rapport aux actions rationnelles induites par 'M et 'N , c’est-à-dire
⇡ � 'M (g) = 'N (g) � ⇡ pour tous les g 2 Crn(C).

1.2.3 Un exemple dû à Gizatullin

Dans [Giz99] Gizatullin considère la question suivante: est-ce qu’on peut étendre
une représentation linéaire  : PGL3(C) ! PGLn+1(C) vers un homomorphisme
des groupes  : Cr2(C) ! Crn(C)? Il démontre que les actions de PGL3(C) sur
l’espace des coniques, cubiques et quartiques s’étendent à des homomorphismes de
Cr2(C) vers Cr5(C), Cr9(C) et Cr14(C).

Dans la section 3.3 on étudiera en détail quelques propriétés géométriques de
l’homomorphisme de Gizatullin

� : Cr2(C) ! Cr5(C).

Par construction, la restriction de � à PGL3(C) donne la représentation linéaire
' : PGL3(C) ! PGL6(C) qui est donné par l’action de PGL3(C) sur les coniques.
On démontrera notamment le théorème suivant:

Théorème 1.2.3. L’homomorphisme de Gizatullin � : Cr2(C) ! Cr5(C) a les
propriétés suivantes:

(1) � est injectif et irréductible.

(2) L’action rationnelle de Cr2(C) sur P5 induite par � préserve la surface de
Veronese V et sa variété des sécantes S ⇢ P5. La restriction de cette action
induit une action rationnelle de Cr2(C) sur V et sur S.
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(3) Le plongement de Veronese v : P2 ! P5 est Cr2(C)-équivariant par rapport
à l’action standard sur P2.

(4) L’application rationnelle dominante des sécantes s : P2 ⇥P2 99K S ⇢ P5

(voir section 3.3.4) est Cr2(C)-équivariant par rapport à l’action diagonale
de Cr2(C) sur P2 ⇥P2.

(5) L’action rationnelle de Cr2(C) sur P5 préserve une forme volume sur P5 avec
un pôle d’ordre 3 le long de la variété des sécantes S.

(6) � envoie le groupe d’automorphismes polynomiaux Aut(A2) ⇢ Cr2(C) vers
Aut(A5) ⇢ Cr5(C).

(7) Pour tout élément f 2 Cr2(C) on a deg(f)  deg(�(f)),

(8) Pour tout élément g 2 Aut(A2) ⇢ Cr2(C) on a deg(g) = deg(�(g)).

La représentation '_ de PGL3(C) vers PGL6(C) donnée par  � ↵, où ↵ est
l’homomorphisme algébrique g 7! tg�1, est conjuguée dans Cr5(C) à la représenta-
tion '. Cette conjugation nous donne un homomorphisme

�_ : Cr2(C) ! Cr5(C),

dont l’image préserve S et induit une action rationnelle de Cr2(C). Comme S est
rationnelle, � et �_ induisent deux homomorphismes de Cr2(C) vers Cr4(C), qu’on
appelle  1 et  2. On démontrera l’énoncé suivant:

Proposition 1.2.4. Les deux homomorphismes  1, 2 : Cr2(C) ! Cr4(C) ne sont
pas conjugués dans Cr4(C); ils sont de plus irréductibles et donc non conjugués au
plongement standard.

1.2.4 Plongements algébriques en codimension 1

On donnera une classification partielle des plongements algébriques de Crn(C) vers
Bir(M), où M est une variété de dimension n+ 1 pour n � 2.

Exemple 1.2.5. Pour une courbe C de genre � 1, la variété Pn ⇥C n’est pas
rationnelle et on a le plongement standard  C : Crn(C) ! Bir(Pn ⇥C).

Exemple 1.2.6. Crn(C) agit rationnellement sur l’espace total du fibré canonique
de Pn:

K
P

n ' O
P

n(�(n+ 1)) '
n̂

(TPn)_

par f(p,!) = (f(p),! � (dfp)�1), où p 2 Pn et ! 2
Vn(Tp Pn)_. Plus généralement,

on obtient une action rationnelle de Crn(C) sur l’espace total du fibré canonique
K⌦l

P

n ' O
P

n(�(n+ 1)l) et sa complétion projective

Fl := P(O
P

n �O
P

n(�l(n+ 1))

pour tout entier l 2 Z�0. Ceci induit une famille dénombrable d’homomorphismes

 l : Crn(C) ! Bir(Fl).
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Exemple 1.2.7. Soit P(TP2) l’espace total de la projectivisation du fibré tangent
de P2. Alors P(TP2) est rationnel et il existe un homomorphisme injectif

 B : Cr2(C) ! Bir(P(TP2))

défini par  B(f)(p, v) := (f(p),P(dfp)(v)). Ici, P(dfp) : PTp ! PTf(p) est défini

comme la projectivisation de la di↵érentielle dfp de f au point p 2 P2.

Exemple 1.2.8. Soit G(1, 3) la Grassmannienne des droites dans P3. La variété
G(1, 3) est rationnelle de dimension 4 munie d’une action régulière transitive de
PGL4(C). Ceci nous donne un plongement algébrique de PGL4(C) vers Cr4(C).
On démontrera qu’une action régulière de PGL4(C) sur G(1, 3) ne peut pas être
étendue en une action rationnelle de Cr3(C).

La classification des actions régulières de PGLn+1(C) sur des variétés projectives
lisses de dimension n+1 est connue; dans la section 3.4 on étudiera leurs classes de
conjugaison dans Crn+1(C). On démontrera que les exemples 1.2.5 à 1.2.8 décrivent,
à conjugaison birationnelle et à automorphisme algébrique de PGLn+1(C) près, tous
les actions régulières de PGLn+1(C) sur des variétés projectives lisses de dimension
n+ 1 et que ces actions ne sont pas birationellement conjuguées. Cela nous donne
une classification des homomorphismes algébriques de PGLn+1(C) vers Bir(M), où
M est projective lisse de dimension n + 1. À la section 3.5 on étudiera comment
ces actions régulières s’étendent en des actions rationnelles de Crn(C) sur M . On
note ↵ : PGLn(C) ! PGLn(C) l’automorphisme algébrique donné par g 7! t(g�1).

Théorème 1.2.9. Soit n � 2 et M une variété projective complexe de dimension
n+1 et soit ' : PGLn+1(C) ! Bir(M) un homomorphisme algébrique non trivial.
Alors

(1) ' est conjugué, à l’automorphisme ↵ près, à l’un des plongements décrits
dans les exemples 1.2.5 à 1.2.8.

(2) Si n = 3 et ' est conjugué à l’action décrite dans l’exemple 1.2.8, alors ni '
ni ' � ↵ ne s’étendent à un homomorphisme de H3 vers Bir(M).

(3) Si ' est conjugué à l’un des plongements décrits dans les exemples 1.2.5 à
1.2.7 alors un et seulement un des plongements ' ou ' � ↵ s’étend en un
homomorphisme de Crn(C) vers Bir(M).

(4) ' s’étend à Hn si et seulement si ' s’étend à Crn(C); dans ce cas l’extension
à Hn est unique.

Ici, Hn est défini par Hn := hPGLn+1(C),Wni, et on rappelle que Wn est le
sous-groupe isomorphe à GLn(Z) des transformations monomiales de Crn(C).

Le théorème 1.2.9 classifie tous les homomorphismes de groupes  : Hn !
Bir(M) pour des variétes projectives lisses M de dimension n+1 tels que la restric-
tion à PGLn+1(C) est un morphisme algébrique. Par le théorème de Noether et
Castelnuovo, on obtient notamment une classification complète de tous les homo-
morphismes de Cr2(C) vers Bir(M) pour les variétés projectives M de dimension 3:
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Corollaire 1.2.10. Soit M une variété projective de dimension 3 et  : Cr2(C) !
Bir(M) un homomorphisme algébrique non trivial. Alors  est conjugué à exacte-
ment un des homomorphismes décrits aux exemples 1.2.5 à 1.2.8.

Les observations suivantes sont immédiates:

Corollaire 1.2.11. Soit M une variété projective de dimension 3 et  : Cr2(C) !
Bir(M) un homomorphisme algébrique non trivial. Alors,

(1)  est injectif.

(2) Il existe une application rationnelle f : M 99K P2 qui est Cr2(C)-équivariante
par rapport à l’action rationnelle induite par  sur M et l’action standard
sur P2. En particulier tous les homomorphismes algébriques de Cr2(C) vers
Bir(M) sont réductibles.

(3) Il existe un entier C 2 Z tel que

1/C deg(f)  deg (f)  C deg(f).

On observe que la partie (3) du corollaire 1.2.11 rassemble à la partie (8) du
théorème 1.2.3 et nous mène vers la question suivante:

Question 1.2.1. Soit � : Cr2(C) ! Crn(C) un plongement algébrique. Existe-il
une constante C qui ne dépend que de � telle que 1/C deg(f)  deg(�(f)) 
C deg(f) pour tous les f 2 Cr2(C)?

On peut considérer un analogue de la question 1.2.1 pour les représentations de
groupes de Lie de SL2(C). Soit ||A|| la norme d’opérateur d’une matrice A 2
SL2(C). L’application d : A 7! | log(||A||)|est symmétrique et sous-additive et
peut donc être vue comme analogue de la fonction des degrés sur Cr2(C). Les
représentations irréductibles de dimension finie de SL2(C) sont exactement les
représentations données par l’action de SL2(C) sur l’espace vectoriel C[x, y]d des
polynômes de degré d. Soit ⇢ : SL2(C) ! GL(C[x, y]d) une représentation irréduc-
tible. Alors il existe une constante C telle que

1/C||A||  ||⇢(A)||  C||A||.

1.3 Suites de degrés

Soit Xk une variété projective définie sur un corps k et soit Bir(X) le groupe des
transformations birationnelles de Xk. Un groupe � est appelé groupe des transfor-
mations birationnelles s’il existe un corps k et une variété projective Xk sur k tel
que � ⇢ Bir(Xk). Plus généralement on considère Rat(Xk), le monöıde des appli-
cations rationnelles dominantes de Xk sur lui-même. Par conséquent, on appelle un
monöıde � monöıde des applications rationnelles dominantes, s’il existe un corps
k et une variété projective Xk sur k telle que � ⇢ Rat(Xk).

Si Xk est une variété projective lisse, un outil intéressant pour étudier la struc-
ture des monöıdes des applications rationnelles dominantes sont les fonctions de
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degré. On fixe une polarisation de Xk, c’est-à-dire la classe H d’un diviseur ample
sur Xk. Alors on associe à chaque élément f 2 Rat(Xk) son degré degH(f) 2 Z+

par rapport à H, qui est défini par

degH(f) = f⇤H ·Hd�1,

où d est la dimension de Xk et f⇤H est la transformé totale de H par f . Si Xk est
une variété projective lisse sur un corps k de caractéristique zéro, on a

degH(f � g)  C(Xk, H) degH(f) degH(g),

pour tout f, g 2 Bir(Xk), où C(Xk, H) est une constante qui ne dépend que de
Xk et de la polarisation H (voir [DS05]). Pour une généralisation de ce résultat
aux corps de caractéristique positive, voir [Tru15], [Tru16] ou, pour une approche
alternative plus récente, [Dan17].

Soit � ⇢ Rat(Xk) un monöıde de transformations rationnelles dominantes de
type fini d’une variété projective lisse Xk avec un ensemble fini S de générateurs.
On définit

DS,H : Z+ ! Z+

par
DS,H(n) := max

�2BS(n)
{degH(�)},

où BS(n) est l’ensemble de tous les éléments dans � dont la longueur de mot
par rapport aux générateurs S est  n. On appelle une application Z+ ! Z+

qui peut être réalisée pour un corps k et un quadruplet (Xk, H,�, S) comme une
telle application une suite de degrés. Notre définition de suite de degrés inclut
notamment les suites de degrés qui sont données par des groupes de type fini � ⇢
Bir(Xk) de transformations birationnelles.

Dans le chapitre 4 on démontrera que l’ensemble de toutes les suites de degrés
est dénombrable, on donnera des nouvelles contraintes sur la croissance d’une suite
de degrés et on donnera de nouveaux exemples.

1.3.1 Dénombrabilité des suites de degrés

Bonifant et Fornaess on démontré que l’ensemble des suites {dn} telles qu’il existe
une application rationnelle dominante f de P2

C

vers lui-même satisfaisant deg(fn) =
dn est dénombrable ([BF00]), ce qui a répondu à une question de Ghys. On
généralisera ce résultat de Bonifant et Fornaess à toutes les suites de degrés sur
toutes les variétés projectives lisses, tous les corps, toutes les polarisations et tous les
ensembles finis générateurs des monöıdes de type fini des applications rationnelles
dominantes:

Théorème 1.3.1. L’ensemble de toutes les suites de degrés est dénombrable.

1.3.2 Questions

En dimension 2 la croissance des degrés des transformations birationnelles est bien
comprise (Theorem 1.1.2). Dans le cas des automorphismes polynomiaux de A2 on
a même un résultat plus précis:
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Théorème 1.3.2 ([Fur99]). Soit f 2 Aut(A2
C

). Alors la suite de degrés {deg(fn)}
est soit périodique (dans ce cas la suite est bornée), soit une progression géométrique.

Par contre, en dimension supérieure on ne dispose pas de beaucoup de résultats.
Par exemple, Lo Bianco a traité le cas des automorphismes de variétés kähleriennes
compactes de dimension 3 ([LB14]). Mais les questions suivantes semblent rester
ouvertes:

Question 1.3.1. Est-ce qu’il existe une transformation birationnelle f d’une vari-
été projective Xk tel que degH(fn) est de croissance intermédiaire, par exemple
degH(fn) ⇠ e

p
n?

Question 1.3.2. Est-ce qu’il existe une transformation f tel que degH(fn) crôıt
“lentement”? Par exemple, est-ce qu’on peut avoir degH(fn) ⇠ p

n? Ou est-ce que
la croissance d’une suite de degrés qui n’est pas bornée, est au moins linéaire?

Question 1.3.3. Si une transformation birationnelle f satisfait degH(fn) ⇠ �n,
alors est-ce que � est un nombre algébrique?

Question 1.3.4. Est-ce que tous les transformations birationnelles de croissance
polynomiale préservent des fibrations?

1.3.3 Suites de degrés des automorphismes polynomiaux

Un bon point de départ pour étudier les suites de degrés est le groupe d’auto-
morphismes polynomiaux Aut(Ad) de l’espace a�ne Ad de dimension d. À la sec-
tion 4.3.2 on va démontrer l’observation suivante (une démonstration de ce résultat
se trouve aussi dans [Dés16b]):

Proposition 1.3.3. Soit k un corps et f 2 Aut(Ad
k) un automorphisme polynomial

tel que deg(fd) = deg(f)d. Alors deg(fn) = deg(f)n pour tout n 2 Z+.

Le monöıde End(Ad
k) peut être vu comme espace vectoriel sur k, sur lequel la

fonction de degré induit une filtration d’espaces vectoriels de dimension finie. Cette
structure supplémentaire donne la possibilité d’employer une nouvelle technique,
qu’on utilisera pour démontrer que les suites de degrés non bornés des groupes
d’automorphismes polynomiaux divergent et ne peuvent pas être de croissance trop
petite:

Théorème 1.3.4. Soit f 2 End(Ad
k) un endomorphisme et supposons que {deg(fn)}

n’est pas borné. Alors pour tout entier K, on a

# {m | deg(fm)  K} < Cd ·Kd,

où Cd = (1+d)d

(d�1)! . En particulier deg(fn) converge vers 1 lorsque n tend vers 1.

Le théorème 1.3.4 implique par un résultat d’Olshanskii ([Ols99]) qu’une suite
de degrés non bornée d’un automorphisme polynomial se comporte comme une
fonction de longueur des mots. Le corollaire suivant se déduit directement du
théorème 1.3.4:
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Corollaire 1.3.5. Soit � ⇢ End(Ad
k) un monöıde engendré par un ensemble fini

S. Si DS(n) < Cd ·n1/d pour un ensemble infini des entiers n, alors � est de degré
borné.

Malheureusement, nos techniques pour démontrer le théorème 1.3.4 ne s’appli-
quent pas aux transformations birationnelles arbitraires de Pd

k. Par contre, si on
suppose que le corps de base k est fini, on obtient des résultats similaires:

Théorème 1.3.6. Soit Fq un corps fini avec q éléments et soit f 2 Rat(Pd
Fq
) tel

que la suite {deg(fn)} n’est pas bornée. Alors, pour tout entier K,

# {m | deg(fm)  K}  qC(K,d),

où C(K, d) = (d+1) ·
�
d+K
K

�
. En particulier deg(fn) diverge vers 1 lorsque n tend

vers 1.

Corollaire 1.3.7. Soit � ⇢ Rat(Pd
Fq
) un monöıde de type fini et S un ensemble

fini de générateurs de �. Il existe une constante positive Cd,q tel que si

DS(n) < Cd,q · log(n)1/d

pour tous les n, alors � est de degré borné.

1.3.4 Types de croissance de degrés

Définition 1.3.1. Soit Xk une variété projective lisse avec une polarisation H sur
un corps k et soit f 2 Bir(Xk). On définit l’ordre de croissance de degH(fn) par

dpol(f) := lim sup
n!1

log(degH(fn))

log(n)
.

L’ordre de croissance peut être infini.

Des résultats de Truong, Dinh et Sibony impliquent que l’ordre de croissance
ne dépend pas du choix de la polarisation (section 4.2.5):

Proposition 1.3.8. Soit Xk une variété projective sur un corps k et soit f 2
Bir(Xk). Alors dpol(f) ne dépend pas du choix de la polarisation.

Soit f une transformation birationnelle d’une surface. Le théorème 1.1.2 im-
plique que dpol(f) = 0, 1, 2 ou 1. On peut se poser la question suivante:

Question 1.3.5. Est-ce qu’il existe une constante C(d) qui ne dépend que de d,
tel que pour tous les variétés Xk de dimension d on a pour tous les f 2 Bir(Xk) si
dpol(f) est fini, alors dpol(f) < C(d)?

On donnera quelques exemples de suites de degrés qui indiquent que la crois-
sance des degrés en dimension supérieure est plus riche qu’en dimension 2. On
constate tout d’abord qu’il existe des automorphismes polynomiaux dont les suites
de degrés ont une croissance polynomiale, ce qui n’est pas le cas en dimension 2:
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Exemple 1.3.9. Soit k un corps. On définit f, g, h 2 Aut(Ad
k) par g = (x+yz, y, z),

h = (x, y + xz, z) et

f = g � h = (x+ z(y + xz), y + xz, z).

On peut observer par induction que deg(fn) = 2n+ 1; notamment, dpol(f) = 1.
Plus général, pour tout l  d/2 il existe des éléments fl 2 Aut(Ad

k) tel que
dpol(f) = l (Section 4.3.4).

Exemple 1.3.10. La transformation birationnelle f = (x1, x1x2, . . . , x1x2 · · ·xn)
de Pd

k défini par rapport à des coordonnées a�nes (x1, . . . , xd), satisfait deg(fn) =
nd�1, c’est-à-dire dpol(f) = d� 1.

L’observation suivante est de Serge Cantat:

Exemple 1.3.11. On définit la racine de l’unité ! := �1+
p
�3

2 et la courbe ellip-
tique E! := C /(Z+Z!). Soit

X := E! ⇥ E! ⇥ E!

et s : X ! X l’automorphisme d’ordre fini donné par multiplication diagonale
par �!. Dans [OT15] Oguiso et Truong on démontré que Y := X/s est une
variété rationnelle de dimension 3. Soit f : X ! X l’automorphisme défini par
(x1, x2, x3) 7! (x1, x1 + x2, x2 + x3). Comme f commute avec s, il induit un auto-
morphisme de Y , qu’on appelle f̂ . Soit �1 : Ỹ ! Y une résolution des singularités
de Y . On définit f̃ 2 Bir(Ỹ ) par

f̃ := ��1
1 � f̂ � �1.

On va voir à la section 4.3.5 que dpol(f̃) = 4.

1.4 Sous-groupes des éléments elliptiques du grou-
pe de Cremona du plan

Dans ce chapitre on s’intéresse aux groupes G ⇢ Cr2(C) tels que tous les éléments
de G sont elliptiques. Par définition, cela signifie que l’isométrie sur l’espace H1

qui correspond à g 2 G a un point fixe dans H1. Dans [Can11a], Proposition
3.10, Cantat démontre qu’un élément g 2 Cr2(C) est elliptique si et seulement si
g est algébrique, c’est-à-dire que {deg(fn)} est borné ou, ce qui est équivalent,
il existe un k 2 Z+ tel que gk est conjugué à un automorphisme dans Aut0(S),
la composante connexe de l’identité du groupe d’automorphismes d’une surface
projective lisse S. Le fait que tous les éléments de G soient elliptiques n’implique
pas que G est contenu dans un groupe algébrique, c’est-à-dire que le degré des
éléments est uniformement borné. Ceci est illustré par les exemples suivants:

Exemple 1.4.1. Soit G ⇢ Cr2(C) le groupe des éléments de la forme (x, y+p(x)),
où p(x) 2 C(x) est une fonction rationnelle. Alors chaque élément dans G est
algébrique, mais G contient des éléments de degrés arbitrairement grands.
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Exemple 1.4.2. Dans [Wri79], Wright construit des exemples de sous-groupes de
torsion de Aut(A2) (donc en particulier de Cr2(C)) qui contiennent des éléments de
degré arbitrairement grands. En fait, il démontre qu’il existe un sous-groupe G de
Cr2(C) qui est isomorphe au sous-groupe des racines de l’unité dans C⇤ mais qui
n’est pas borné. Dans [Lam01a], Lamy démontre que certaines exemples de Wright
ne préservent aucune fibration.

Jusqu’à présent il n’existe des résultats sur des sous-groupes des éléments el-
liptiques que dans le cas où les sous-groupes sont de type fini ou bornés. Notre
stratégie consiste à utiliser ces résultats en les combinant avec le théorème de com-
pacité de la théorie des modèles afin de démontrer le théorème suivant qui donne
des informations sur la structure des sous-groupes de Cr2(C) qui consistent en des
éléments elliptiques:

Théorème 1.4.3. Soit G ⇢ Cr2(k) un sous-groupe formé d’éléments elliptiques.
Alors, on est dans un des cas suivants:

(1) G n’est pas un groupe de torsion et G contient un sous-groupe de type fini qui
ne préserve aucune fibration. Dans ce cas, G est conjugué à un sous-groupe
de Aut(P2), de Aut(P1 ⇥P1) ou de Aut(S6), où S6 est la surface de del Pezzo
de degré 6.

(2) G est un groupe de torsion.

(3) G préserve une fibration rationnelle et G est conjugué à un sous-groupe du
groupe de Jonquières J ' PGL2(C(t))oPGL2(C), qui est le sous-groupe de
Cr2(C) des éléments qui préservent une fibration rationnelle donnée.

(4) Tous les sous-groupes de type fini G préservent une fibration rationnelle et il
existe un sous-groupe de torsion G0 ⇢ G et une suite exacte

1 ! G0 ! G ! PGL2(C).

Dans le cas où G est un sous-groupe de torsion de Cr2(C), on peut préciser le
résultat:

Théorème 1.4.4. Soit G ⇢ Cr2(C) un sous-groupe de torsion. Alors G se plonge
dans GLN (C) pour un N  48 et N  36 si G est infini.

Remarque 1.4.1. Il existe unN 2 Z+ tel que chaque sous-groupe fini de Cr2(C) se
plonge dans GLN (C). Dans ce texte on donnera le borne N  48, mais on suppose
que cette borne peut être baissée sensiblement. On verra notamment qu’un sous-
groupe fini de Cr2(C) se plonge dans GL36(C) ou il est isomorphe à une extension
de S4 par le groupe de Klein.

Théorème 1.4.5 (Schur, voir [CR62, p.258]). Soit G ⇢ GLn(C) un sous-groupe
de torsion. Alors G contiens un sous-groupe abélien d’indice plus petit ou égal à

(
p
8n+ 1)2n

2 � (
p
8n� 1)2n

2

.
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À l’aide du théorème 1.4.4 et du théorème 1.4.5, on déduit directement que la
même propriété est vraie pour les sous-groupe de torsion de Cr2(C):

Corollaire 1.4.6. Un sous-groupe de torsion G de Cr2(C) est soit fini, soit iso-
morphe à un sous-groupe de GLN (C) pour N  36. En particulier, G contient un
sous-groupe abélien d’indice plus petit ou égal à

(96
p
2 + 1)2592 � (96

p
2� 1)2592 < 105537.

La suite dérivée d’un groupe G est la suite des groupes définie par

• G(0) := G

• G(i+1) := [G(i), G(i)],

où le groupe dérivé [H,H] d’un groupe H est le sous-groupe engendré par tous les
éléments de la forme aba�1b�1, a, b 2 H.

Un groupe G est résoluble si et seulement si sa suite dérivée se termine par
l’identité après un nombre fini d’itérations. La longueur dérivée de G est le nombre
minimal k tel que G(k) = {id}.

Un autre résultat qui se déduit du théorème 1.4.3 concerne l’alternative de Tits.
En [Tit72], Tits a démontré l’énoncé suivant:

Théorème 1.4.7 ([Tit72]). Soit k un corps de caractéristique 0 et n 2 Z+. Alors
tout sous-groupe G de GLn(k) est soit résoluble à indice fini près, soit il contient
un sous-groupe libre non-abélien.

Ce résultat a mené aux définitions suivantes:

Définition 1.4.1.

(1) Un groupe G satisfait l’alternative de Tits si tout sous-groupe G est soit
résoluble à indice fini près, soit contient un sous-groupe libre non-abélien.

(2) Un groupe G satisfait l’alternative de Tits pour les sous-groupes de type fini
si tout sous-groupe de type fini de G est soit résoluble à indice fini près, soit
contient un sous-groupe libre non-abélien.

Le théorème 1.4.7 énonce que tous les groupes linéaires sur un corps de car-
actéristique 0 satisfont l’alternative de Tits. Les groupes linéaires en caractéristique
positive satisfont l’alternative de Tits pour les sous-groupes de type fini ([Tit72]).

Dans sa thèse, Lamy a démontré l’alternative de Tits pour Aut(A2
C

):

Théorème 1.4.8 ([Lam01b]). Aut(A2
C

) satisfait l’alternative de Tits.

La preuve du théorème 1.4.8 emploie la structure de produit amalgamé de
Aut(A2

C

) qui est donnée par le théorème de Jung et van der Kulk (voir par ex-
emple [Lam02]) et la théorie de Bass-Serre (voir [Ser77]).

Cantat a démontré l’alternative de Tits pour les sous-groupes de type fini de
Cr2(C):

Théorème 1.4.9 ([Can11a]). Cr2(C) satisfait l’alternative de Tits pour les sous-
groupes de type fini.
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Le théorème 1.4.9 fait partie d’une série de résultats profonds sur la structure
du groupe de Cremona du plan, que Cantat déduit par l’action isométrique de
Cr2(C) sur l’espace de Picard-Manin H1 ([Can11a]). L’obstacle principale pour
généraliser le théorème 1.4.9 à des sous-groupes quelconques était imposé par les
sous-groupes des éléments elliptiques qui ne sont pas bornés. On peut appliquer le
théorème 1.4.3 à ce cas afin de démontrer le résultat suivant:

Théorème 1.4.10. Cr2(C) satisfait l’alternative de Tits.

En [Dés15], Déserti donne une description des classes de sous-groupes résolubles
de Cr2(C). On complémentera son résultat par l’observation suivante:

Théorème 1.4.11. Il existe une constante K  35 telle que la longueur dérivée
de tous les sous-groupes résolubles de Cr2(C) est  K.

1.5 Sous-groupes simples du groupe de Cremona
du plan

Cantat et Lamy ont démontré en 2012 que le groupe de Cremona du plan n’est pas
simple, une question ouverte depuis longtemps. L’idée principale pour démontrer ce
résultat consistait d’utiliser l’action isométrique de Cr2(C) sur l’espace de Picard-
Manin H1 et d’appliquer des techniques de la théorie de petite simplification. Dans
ce chapitre on ra�nera ces techniques avec le but de classifier tous les sous-groupes
simples de Cr2(C). En travaillant sur ce sujet je suis tombé sur un problème que je
ne pouvais pas résoudre et qu’on énonce maintenant comme conjecture. On dénote
par Ind(f) ⇢ P2 l’ensemble des points d’indétermination d’une transformation
birationnelle f 2 Cr2(C).

Conjecture 1.5.1. Soit f 2 Cr2(C) un élément loxodromique, p 2 P2 un point qui
n’est pas contenu dans un axe de coordonnée de P2, et k un entier positif. Alors
l’ensemble constructible

{d(fd)k(p) | d 2 D2 tel que p /2 Ind((fd)l) pour tous les 1  l  k}

est ouvert et dense dans P2.

Le résultat principal serait:

Théorème 1.5.2. On suppose que la conjecture 1.5.1 soit vrai.
Soit G ⇢ Cr2(C) un sous-groupe simple. Alors:

(1) G ne contient pas d’élément loxodromique.

(2) Si G contient un élément parabolique, alors G fixe une fibration rationnelle,
c’est-à-dire il existe une application rationnelle G-invariante ⇡ : P2 99K P1

telle que les fibres générales sont rationnelles. Dans ce cas, G est isomorphe
à un sous-groupe de PGL2(C(t)).

(3) Si tous les éléments de G sont elliptiques, alors G est un sous-groupe simple
d’un sous-groupe algébrique de Cr2(C) ou G est conjugué à un sous-groupe
du groupe de Jonquières J ' PGL2(C)n PGL2(C(t)).
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Remarque 1.5.1. Seulement la partie (1) du théorème 1.5.2 dépend de la conjec-
ture 1.5.1. Si on suppose que le sous-groupe simple G ne contient pas d’élément
loxodromique, les parties (2) et (3) peuvent être démontrées sans utilisation de la
conjecture 1.5.1.

En considérant les sous-groupes algébriques maximaux de Cr2(C), on peut
déduire du théorème 1.5.2 l’observation suivante:

Corollaire 1.5.3. Supposons que la conjecture 1.5.1 soit vraie.
Un sous-groupe simple G se plonge dans Cr2(C) si et seulement si G est iso-

morphe à un sous-groupe de PGL3(C).

Le corollaire 1.5.3 mène vers la question suivante qui semble être ouverte:

Question 1.5.1. Quels sont les sous-groupes simples de PGL3(C) et PGL2(C)?

Les sous-groupes de la forme PSL2(k), où k ⇢ C est un sous-corps, et les sous-
groupes simples finis sont des exemples des sous-groupes simples de PGL2(C). Il
n’est pas évident qu’il existe d’autres exemples:

Question 1.5.2. Quels sont les sous-groupes simples de PSL2(Q)? Est-ce que
PSL2(Q) contient des sous-groupes infinis propres?

1.5.1 Sous-groupes simples de type fini

Un groupe G satisfait la propriété de Malcev, si chaque sous-groupe de type fini
� ⇢ G est résiduellement fini, c’est-à-dire, pour chaque g 2 � il existe un groupe
fini H et un homomorphisme ' : � ! H tel que g n’est pas contenu dans le
noyau de '. Malcev a démontré que les groupes linéaires satisfont cette propriété
([Mal40a]). Parmi les groupes qui satisfont la propriété de Malcev on trouve les
groupes d’automorphismes des variétés algébriques sur des corps de caractéristique
0. Une question de Cantat, qui est toujours ouverte, demande si le groupe de
Cremona du plan satisfait la propriété de Malcev.

Un sous-groupe simple d’un groupe qui satisfait la propriété de Malcev est
toujours simple. On démontrera que cette dernière propriété est vraie pour le
groupe de Cremona du plan:

Théorème 1.5.4. Tous les sous-groupes simples de type fini de Cr2(C) sont finis.

Pour démontrer le théorème 1.5.4 on n’a pas besoin de la conjecture 1.5.1.
Avec la classification des sous-groupes finis de Cr2(C) ([DI09]) on obtient:

Corollaire 1.5.5. Les sous-groupes simples non-abéliens de type fini de Cr2(C)
sont les groupes

A5, A6, PSL2(7).



Chapter 2

Introduction and summary
of results

2.1 Introduction and historical context

To an algebraic variety X over a field k one can associate Bir(X), its group of
birational transformations. The study of Bir(X) includes the following two aims:

(1) Understanding the geometry of X through the group structure of Bir(X).

(2) Understanding the group structure of Bir(X) through the geometry of X.

We will mostly focus on the case where X is a rational variety. In this instance
the group structure of Bir(X) is particularly rich and interesting. In honor of the
Italian mathematician Luigi Cremona (1830-1903), it is called the Cremona group
in n-variables, where n is the dimension of n. We denote it by

Crn(k) := Bir(Pn
k).

If n = 2 we will frequently speak of the plane Cremona group.
If we fix homogeneous coordinates [x0 : · · · : xn] of Pn

k, every element f 2 Crn(k)
can be described by homogeneous polynomials of the same degree f0, . . . , fn 2
k[x0, . . . , xn] without non-constant common factor, such that f is given by

f : [x0 : · · · : xn] 799K [f0 : · · · : fn].

With respect to a�ne coordinates [1 : X1 : · · · : Xn] = (X1, . . . , Xn), the birational
transformation f is given by

f : (X1, . . . , Xn) 799K (F1, . . . , Fn),

where the Fi(X1, . . . , Xn) 2 k(X1, . . . , Xn) are the quotients

Fi(X1, . . . , Xn) = fi(1, X1, . . . , Xn)/f0(1, X1, . . . , Xn).

19
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This yields a natural (anti-)isomorphism between Crn(k) and the group of k-field
automorphisms of the function field k(X1, . . . , Xn). More generally, one can identify
Bir(X) with the group of k-field automorphisms of the function field k(X).

Elements of Crn(k) are called Cremona transformations. First examples of Cre-
mona transformations, such as the inversion at a circle, had already been used in
antiquity. But it was mainly in the 19th century, after the rise of projective and
algebraic geometry, that the systematic study of Cremona transformations in the
context of algebraic geometry was initiated. In particular, the two groundbreak-
ing papers [Cre63] and [Cre65] by Cremona, published in 1863 and 1865, laid the
foundations for considerable research activities conducted by numerous algebraic
geometers from what is called the Italian school of algebraic geometry. Some impor-
tant work of this time was done by Bertini, Castelnuovo, Enriques, Geiser, Hudson,
de Jonquières, Kantor, Noether, Segre, and Wiman amongst others. We refer to
[Dol12], [Hud27], [Sny28] or [Dés06a] for more exhaustive historical remarks and
references.

A considerable number of important techniques and results have been produced
by these classical algebraic geometers that keep inspiring researchers up to today
(see [Dol12] for an overview and references). One of the most celebrated results is
the Theorem of Noether and Castelnuovo:

Theorem 2.1.1 ([Noe70], [Cas01], [Ale16]). The plane Cremona group over an
algebraically closed field k is generated by the group of automorphisms Aut(P2

k) '
PGL3(k) and the standard quadratic involution

� := [x0 : x1 : x2] 799K [x1x2 : x0x2 : x0x1].

Remark 2.1.1. The statement of the Theorem of Noether and Castelnuovo does
not hold anymore, if k is not algebraically closed (see for example [Isk83], [BM14]
for some generalizations to perfect fields and the fields of real numbers respectively).

Another important classical problem was the classification of finite subgroups
of Cr2(k). A full classification for k = C has been obtained by Dolgachev and
Iskovskikh with the help of modern techniques in 2007 ([DI09], see also [Bla07] and
[Tsy13]). The classification for the case that the characteristic of k is positive is still
open and subject to research. The problem of classifying finite subgroups of Cr3(k)
is more di�cult. Prokhorov described all finite simple groups that can be embedded
into Cr3(C) ([Pro12]). Other works on the subject include [CS16], [Pro11]. In
dimensions strictly larger than 3 very little is known about finite subgroups of
Cremona groups. However, recently Birkar proved the BAB conjecture (named
after A. Borisov, V. Alexeev and L. Borisov), which implies, by a result of Prokhorov
and Shramov, that Crn(C) satisfies the Jordan property, i.e. for each n there exists
a constant C(n) such that every finite subgroup of Crn(C) is abelian up to index
at most C(n) ([PS16], [Bir16]).

Cremona groups can be equipped with additional algebraic structures. In partic-
ular, we can define the so called Zariski topology on it (see [BF13] for an overview
and the main properties of the topology). Enriques classified the maximal con-
nected algebraic subgroups of Cr2(C) ([Enr93], see Section 3.2.2 for the definition
of algebraic subgroups). This classification has been rewritten in a more modern
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language by Umemura ([Ume82b]) and been extended to the classification of all
maximal algebraic subgroups of Cr2(C) by Blanc ([Bla09]). Umemura also classi-
fied all maximal connected algebraic subgroups of Cr3(C) ([Ume85, Ume85]). Other
works on algebraic subgroups include [Dem70] and [BB67].

Towards the middle of the 20th century the research focus in algebraic geometry
shifted away from the classical subjects and rather towards the work on rigorous
foundations. Research in birational geometry and in particular groups of birational
transformations bloomed again in Russia some decades later with researchers in-
cluding Iskovskikh, Manin, Gizatullin and Danilov. With the works of Mori and
others in the 1980s birational geometry moved again into the center of research in
algebraic geometry. In 2008 two Bourbaki talks were held on the plane Cremona
group ([Fav10], [Ser10]) which definitely brought the research on Cremona groups
back into fashion.

Major new techniques, mostly from dynamics, yielded novel results that con-
tributed substantially to the understanding of the plane Cremona group. One of
the most remarkable breakthroughs was probably the construction of an action of
Bir(S) by isometries on an infinite dimensional hyperbolic space H1 by Manin
([Man86]) and the application of methods from geometric group theory on this
action in order to deduce results on the structure of Bir(S) by Cantat ([Can11a]).
Here, S is a projective surface over a field k. An element f 2 Cr2(k) is called
elliptic, parabolic or loxodromic if the isometry on H1 corresponding to f is ellip-
tic, parabolic or loxodromic respectively. The crucial point is, that this distinction
corresponds to the dynamical behavior of f . If X is a smooth projective variety
and H an ample divisor class of X, then the degree degH(f) 2 Z+ of a rational
dominant transformation f of X with respect to H is defined by

degH(f) = f⇤H ·Hd�1,

where d is the dimension of X and f⇤H is the total transform of H under f .

Theorem 2.1.2 (Gizatullin; Cantat; Diller and Favre). Let k be an algebraically
closed field, S a projective surface over k with a fixed polarization H and f 2 Bir(S).
Then one of the following is true:

(1) f is elliptic, the sequence {degH(fn)} is bounded and there exists a k 2 Z+

and a birational map ' : S 99K S0 to a smooth projective surface S0 such that
'fk'�1 is contained in Aut0(S0), the neutral component of the automorphism
group Aut(S0).

(2a) f is parabolic and degH(fn) ⇠ cn for some positive constant c and f pre-
serves a rational fibration, i.e. there exists a smooth projective surface S0, a
birational map ' : S 99K S0, a curve B and a fibration ⇡ : S0 ! B, such that
a general fiber of ⇡ is rational and such that 'f'�1 permutes the fibers of ⇡.

(2b) f is parabolic and degH(fn) ⇠ cn2 for some positive constant c and f pre-
serves a rational fibration, i.e there exists a smooth projective surface S0, a
birational map ' : S 99K S0, a curve B and a fibration ⇡ : S0 ! B, such that
'f'�1 permutes the fibers of ⇡ and such that ⇡ is an elliptic fibration, or a
quasi-elliptic fibration (the latter only occurs if char(k) = 2 or 3).
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(3) f is loxodromic and degH(fn) = c�(f)n +O(1) for some positive constant c,
where �(f) is the dynamical degree of f . In this case f does not preserve any
fibration.

Theorem 2.1.2 has lead to various remarkable results on the group structure
of Bir(S) for surfaces S. From the point of view of geometric group theory, the
plane Cremona group acting on H1 has some analogies with other groups acting on
hyperbolic spaces such as the mapping class group of a surface acting on the complex
of curves or groups of outer automorphisms of a free group with n generators acting
on the outer space.

In [Can11a], Cantat showed amongst other results that the plane Cremona
group satisfies Tits’ alternative for finitely generated subgroups, i.e. every finitely
generated subgroup either contains a free group or is virtually solvable. Blanc
showed that the plane Cremona group does not contain any non-trivial closed
normal subgroup ([Bla10], see [BZ15] for a generalization of this result for arbitrary
dimensions). In [CLdC13], Cantat and Lamy proved that the plane Cremona group
is not simple and thus answered one of the most significant questions in the field.
The main ingredients for their paper come from combining the action of Cr2(C)
on H1 with the results from Theorem 2.1.2 and then applying small cancellation
theory (see for example [Cou16]).

This thesis contributes to the research on Cremona groups by studying certain
classes of “large” subgroups. We briefly outline the structure and the main results.
Chapter 3 and Chapter 4 are self-contained texts, whereas Chapter 5 to 7 depend
on each other.

In Chapter 3 we look at algebraic embeddings of Crn(C) to the group of
birational transformations Bir(M) of an algebraic variety M . First we study geo-
metrical properties of an example of an embedding of Cr2(C) into Cr5(C) that has
been discovered by Gizatullin. In a second part, we give a full classification of all
algebraic embeddings of Cr2(C) into Bir(M), where M is a variety of dimension 3
and generalize this result partially to algebraic embeddings of Crn(C) into Bir(M),
where the dimension of M is n + 1, for arbitrary n. In particular, this yields a
classification of all algebraic PGLn+1(C)-actions on smooth projective varieties of
dimension n + 1 that can be extended to rational actions of Crn(C). Chapter 3
consists of the text of an article that has been accepted for publication in “Annales
de l’Institut Fourier” with an additional appendix.

Degree sequences of birational transformations play an important role in un-
derstanding the structure of groups of birational transformations of surfaces. Only
little is known about these sequences in higher dimensions. In Chapter 4 we will
look at some questions regarding degree sequences of dominant rational transfor-
mations of varieties in dimension � 2, in particular we will discover some new
constraints on their growth and investigate properties of certain examples. We will
also see that the set of all possible degree sequences is countable; this generalizes
a result of Bonifant and Fornaess ([BF00]). Chapter 4 consists of the text of an
article that has been accepted for publication in “Mathematical Research Letters”.

In Chapter 5 we recall some results about the plane Cremona group that we
use in Chapter 6 and 7.
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Chapter 6 is concerned with subgroups of Cr2(C) consisting only of elliptic
elements. Up to this point, results on such groups existed only if they were finitely
generated ([Can11a]) or contained in an algebraic group. The main idea of this
chapter is to use the compactness theorem from model theory to generalize results
about finitely generated subgroups to results about arbitrary subgroups. This
allows us to deduce results about the group structure of groups consisting of elliptic
elements. In particular, we show that Cr2(C) satisfies Tits’ alternative for arbitrary
subgroups, i.e. every subgroup of Cr2(C) is either virtually solvable or contains a
free subgroup. Moreover, we prove that torsion subgroups are virtually abelian and
that the derived length of solvable subgroups of Cr2(C) is bounded.

In Chapter 7 we look at simple subgroups of Cr2(C). We show that all finitely
generated simple groups of Cr2(C) are finite. Under the additional assumption
of an unproven conjecture on a dynamical property of loxodromic maps (Conjec-
ture 7.1.1) we moreover show that a subgroup of Cr2(C) that contains a loxodromic
element is not simple. The main ingredients for this proof are the techniques from
[CLdC13] and the more recent work by Shepherd-Barron [SB13]. The main result
of this section is that, under the assumption of an unproven conjecture, a sim-
ple subgroup can be embedded into Cr2(C) if and only if it can be embedded into
PGL3(C).

Chapter 8 briefly summarizes the main questions I have encountered during
my thesis, which I was not able to solve.

In what follows we will give a detailed description of the results from each part.

2.2 On homomorphisms between Cremona groups

The starting point of our considerations is the finite dimensional representation
theory of Lie groups. There exists a rather complete theory on Lie group homo-
morphisms between classical groups that has a satisfying description in terms of
vectors of highest weights (see for example [FH91]). The main strategy consists in
considering the following groups associated to a complex Lie group G:

• a fixed torus T of maximal rank, i.e. a subgroup of the form (C⇤)n, where n
is maximal among all such subgroups;

• the Weyl group of T . i.e. the group NormG(T )/T ;

• root subgroups, i.e. additive one-parameter subgroups of G that are normal-
ized by T .

Sometimes Cremona groups are seen as infinite dimensional analogues of com-
plex Lie groups. From that perspective one could dream of a theory of “Cremona
representations”, of a complete description of group homomorphisms from Crn(C)
to Bir(M), for a given variety M , that preserve some algebraic structure.

There exist analogues in Crn(C) of tori of maximal rank and the Weyl group.
Let Dn ⇢ PGLn+1(C) ⇢ Crn(C) be the n-dimensional subgroup consisting of
diagonal automorphisms. It is the torus of highest rank of Crn(C) in the following
sense: Let D be an algebraic subgroup of Crn(C) isomorphic to (C⇤)k, then k  n
and if k = n then D is conjugate to Dn ([BB66]).
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Let A = (aij) 2 Mn(Z) be a matrix of integers. The matrix A determines a
rational self map of the a�ne space

fA = (xa11
1 xa12

2 · · ·xa1n
n , xa21

1 xa22
2 · · ·xa2n

n , . . . , xan1
1 xan2

2 · · ·xann
n ).

We have fA � fB = fAB for A,B 2 Mn(Z). One observes that fA is a birational
transformation if and only if A 2 GLn(Z). This yields an injective homomorphism
GLn(Z) ! Crn(C) whose image we call the Weyl group and denote by Wn. This
terminology is justified by the fact that the normalizer of Dn in Crn(C) is the
semidirect product NormCrn(C)(Dn) = Dn oWn. Sometimes Wn is also called the
group of monomial transformations.

Note that Theorem 2.1.1 implies in particular that Cr2(C) = hW2,PGL3(C)i.
Results of Hudson and Pan ([Hud27], [Pan99]) show that for n � 3 the Cremona
group Crn(C) is not generated by PGLn+1(C) and Wn anymore. We define:

Hn := hPGLn+1(C),Wni .

Despite this analogy to Lie groups, it is unclear, whether a theory of Cremona
representations can be developed. With the following examples we would like to
illustrate that the situation is more complicated and that in general there exist
many di↵erent homomorphisms between various Cremona groups:

Example 2.2.1. Assume that a variety M is birationally equivalent to Pn ⇥N
for some variety N . The standard action on the first factor yields an injective
homomorphism of Crn(C) into Bir(Pn ⇥N) and therefore also into Bir(M). We
call embeddings of this type standard embeddings. In particular, we obtain in that
way for all nonnegative integers m a standard embedding Crn(C) ! Bir(Pn ⇥Pm).

Example 2.2.2. A variety M is called stably rational if there exists a n such that
M ⇥ Pn is rational. There exist varieties of dimension larger than or equal to 3
that are stably rational but not rational (see [BCTSSD85]). We will see that two
standard embeddings f1 : Crn(C) ! Bir(Pn ⇥N) and f2 : Crn(C) ! Bir(Pn ⇥M)
are conjugate if and only if N and M are birationally equivalent. So every class
of birationally equivalent stably rational varieties of dimension k defines a di↵erent
conjugacy class of embeddings Crn(C) ! Bir(Pm) for m = n+ k.

As a first step in exploring Cremona representations, we consider in this chapter
group homomorphisms from Crn(C) to Bir(M). In particular, we will study an
embedding of Cr2(C) into Cr5(C) that was described by Gizatullin [Giz99] and
consider the case, where dim(M) = n+ 1. Throughout the whole chapter we work
over the field of complex numbers C.

2.2.1 The case dim(M)  n

Let M be a complex projective variety of dimension n and ⇢ : PGLr+1(C) !
Bir(M) an embedding. Then n � r and if n = r it follows that M is rational
and that up to a field automorphism, ⇢ is the standard embedding (see [Can14]
and [Dés06b]). This implies in particular that there are no embeddings of Crn(C)
into Bir(M) if dim(M) < n. In the Appendix we recall these results and show that
the restriction of an automorphism of Crn(C) to the subgroup Hn is inner up to a
field automorphism.
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2.2.2 Algebraic homomorphisms

We call a group homomorphism  : Crn(C) ! Bir(M) algebraic if its restriction to
PGLn+1(C) is an algebraic morphism, i.e. the map PGLn+1(C)⇥M 99K M given
by (g, x) 799K g(x) is a rational map. The algebraic structure of Bir(M) and some
properties of algebraic homomorphisms will be discussed in Section 3.2. Recall
that an element f 2 Crn(C) is called algebraic, if the sequence {deg(fn)}n2Z+ is
bounded.

Definition 2.2.1. Let M be a variety and 'M : Crn(C) ! Bir(M) a non-trivial
algebraic group homomorphism. We say that 'M is reducible if there exists a
variety N such that 0 < dim(N) < dim(M) and an algebraic homomorphism
'N : Crn(C) ! Bir(N) together with a dominant rational map ⇡ : M 99K N that
is Crn(C)-equivariant with respect to the rational actions induced by 'M and 'N

respectively, i.e. ⇡ � 'M (g) = 'N (g) � ⇡ for all g 2 Crn(C).

Remark 2.2.1. In [Zha10], Zhang uses the terminology primitive action for ir-
reducible actions in the sense of Definition 2.2.1; in [Can03], Cantat says that an
action admits a non-trivial factor if it is reducible.

Note that if we look at the induced action of Crn(C) on the function field C(M)
of M , reducibility is equivalent to the existence of a nontrivial invariant function
field C(N) ⇢ C(M).

2.2.3 An example by Gizatullin

In [Giz99], Gizatullin looks at the following question: Consider a linear repre-
sentation  : PGL3(C) ! PGLn+1(C). Does the homomorphism  extend to a
homomorphism  : Cr2(C) ! Crn(C)? He shows that the linear representations
given by the action of PGL3(C) on conics, cubics and quartics can be extended to
homomorphisms from Cr2(C) to Cr5(C), Cr9(C) and Cr14(C), respectively. These
homomorphisms are related to the rational action of Cr2(C) on moduli spaces of
certain vector bundles on P2 that were discovered by Artamkin ([Art90]).

In Section 3.3 we study in detail some geometrical properties of the homomor-
phism

� : Cr2(C) ! Cr5(C)

that was described by Gizatullin; by construction, the restriction of � to PGL3(C)
yields the linear representation ' : PGL3(C) ! PGL6(C) given by the action of
PGL3(C) on plane conics. Among other things, we prove the following:

Theorem 2.2.3. Let � : Cr2(C) ! Cr5(C) be the Gizatullin homomorphism. Then
the following is true:

(1) The group homomorphism � is injective and irreducible.

(2) The rational action of Cr2(C) on P5 that is induced by � preserves the
Veronese surface V and its secant variety S ⇢ P5 and induces rational actions
of Cr2(C) on V and S.
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(3) The Veronese embedding v : P2 ! P5 is Cr2(C)-equivariant with respect to
the standard rational action on P2.

(4) The dominant secant map s : P2 ⇥P2 99K S ⇢ P5 (see Section 3.3.4) is
Cr2(C)-equivariant with respect to the diagonal action of Cr2(C) on P2 ⇥P2.

(5) The rational action of Cr2(C) on P5 preserves a volume form on P5 with poles
of order three along the secant variety S.

(6) The group homomorphism � sends the group of polynomial automomorphisms
Aut(A2) ⇢ Cr2(C) to Aut(A5).

Note that the injectivity of � follows from (3); in Section 3.3.8 irreducibility is
proved. Part (2) - (4) of Theorem 3.1.3 will be proved in Section 3.3.4, part (5) in
Section 3.3.6 and part (6) in Section 3.3.7

The representation '_ of PGL3(C) into PGL6(C) given by  �↵, where ↵ is the
algebraic homomorphism g 7! tg�1, is conjugate in Cr5(C) to the representation
'. This conjugation yields the embedding �_ : Cr2(C) ! Cr5(C), whose image
preserves the secant variety S as well and induces a rational action on it. As the
secant variety S is rational, � and �_ induce two non-standard homomorphisms
of Cr2(C) into Cr4, which we denote by  1 and  2 respectively. In Section 3.3.5
we prove the following:

Proposition 2.2.4. The two homomorphisms  1, 2 : Cr2(C) ! Cr4(C) are not
conjugate in Cr4; moreover they are irreducible and therefore not conjugate to the
standard embedding.

Remark 2.2.2. The homomorphism  1 is injective, since it restricts to the stan-
dard action on the Veronese surface. However, it seems to be unclear, whether
 2 is injective as well. Since the restriction of  2 to PGL3(C) is injective, it
seems unlikely that  2 is not injective. In fact, it seems that one could use results
form [BZ15] to show that non-trivial algebraic homomorphisms are always injective.
However, I haven’t proved it yet.

Since � is algebraic, the images of algebraic elements under � are algebraic
again (see Proposition 3.2.6). Calculation of the degrees of some examples suggests
that � might even preserve the degrees of all elements in Cr2(C). However, we
were only able to prove the following (Section 3.3.7):

Theorem 2.2.5. Let � : Cr2(C) ! Cr5(C) be the Gizatullin-embedding. Then

(1) for all elements f 2 Cr2(C) we have deg(f)  deg(�(f)),

(2) for all g 2 Aut(A2) ⇢ Cr2(C) we have deg(g) = deg(�(g)).

The image of the Weyl groupW2 under � is not contained in theWeyl groupW5.
More generally, it can be shown that there exists no algebraic homomorphism from
Cr2(C) to Cr5(C) that preserves automorphisms, diagonal automorphisms and the
Weyl group:

Theorem 2.2.6. There is no non-trivial algebraic homomorphism  : Cr2(C) !
Cr5(C) such that:
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(1)  (PGL3(C)) ⇢ PGL6(C)

(2)  (D2) ⇢ D5 and

(3)  (W2) ⇢ W5.

2.2.4 Algebraic embeddings in codimension 1

In Section 3.4 and Section 3.5 we look at algebraic homomorphisms Crn(C) !
Bir(M) in the case where M is a smooth projective variety of dimension n+ 1 for
n � 2.

Example 2.2.7. For all curves C of genus � 1, the variety Pn ⇥C is not rational
and there exists the standard embedding  C : Crn(C) ! Bir(Pn ⇥C).

Example 2.2.8. Crn(C) acts rationally on the total space of the canonical bundle
of Pn

K
P

n ' O
P

n(�(n+ 1)) '
n̂

(TPn)_

by f(p,!) = (f(p),!�(dfp)�1), where p 2 Pn and ! 2
Vn(Tp Pn)_. More generally,

we obtain a rational action of Crn(C) on the total space of the bundle K⌦l
P

n '
O

P

n(�(n+ 1)l) and on its projective completion

Fl := P(O
P

n �O
P

n(�l(n+ 1))

for all l 2 Z�0. This yields a countable family of injective homomorphisms

 l : Crn(C) ! Bir(Fl).

Note that the restriction of this rational action to PGLn(C) is regular, hence these
embeddings are algebraic.

We can choose a�ne coordinates (x1, . . . , xn, xn+1) of Fl such that  l is given
by

 l(f)(x1, . . . , xn, xn+1) = (f(x1, . . . , xn), J(f(x1, . . . , xn))
�lxn+1),

where, J(f(x1, . . . , xn)) denotes the determinant of the Jacobian of f at the point
(x1, . . . , xn). Observe that  0 is conjugate to the standard embedding.

Example 2.2.9. Let P(TP2) be the total space of the fiberwise projectivisation
of the tangent bundle over P2. Then P(TP2) is rational and there is an injective
group homomorphism

 B : Cr2(C) ! Bir(P(TP2))

defined by  B(f)(p, v) := (f(p),P(dfp)(v)). Here, P(dfp) : PTp ! PTf(p) defines

the projectivisation of the di↵erential dfp of f at the point p 2 P2.

Example 2.2.10. The Grassmannian of lines in the projective 3-space G(1, 3)
is a rational variety of dimension 4 with a transitive algebraic PGL4(C)-action.
This action induces an algebraic embedding of PGL4(C) into Cr4. In Proposition
3.5.2 we will show that the image of this embedding does not lie in any subgroup
isomorphic to Cr3. So no group action of PGL4(C) on G(1, 3) by automorphisms
can be extended to a rational action of Cr3.
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The classification of PGLn+1(C)-actions on smooth projective varieties of di-
mension n+1 is well known to the experts; in Section 3.4 we study their conjugacy
classes. We will see that Examples 2.2.7 to 2.2.10 describe up to birational conju-
gation and up to algebraic homomorphisms of PGLn+1(C) all possible PGLn+1(C)-
actions on smooth projective varieties of dimension n+1 and that these actions are
not birationally conjugate to each other. This yields a classification of algebraic
homomorphisms of PGLn+1(C) to Bir(M) up to birational conjugacy, for smooth
projective M of dimension n + 1. We will study in Section 3.5 how these actions
extend to rational actions of Crn(C) on M . Denote by ↵ : PGLn(C) ! PGLn(C)
the algebraic automorphism given by g 7! t(g�1).

Theorem 2.2.11. Let n � 2, let M be a complex projective variety of dimension
n+ 1 and let ' : PGLn+1(C) ! Bir(M) be a non-trivial algebraic homomorphism.
Then

(1) ' is conjugate, up to the automorphism ↵, to exactly one of the embeddings
described in Example 2.2.7 to 2.2.10.

(2) If n = 3 and ' is conjugate to the action described in Example 2.2.10, then
neither ' nor ' � ↵ can be extended to a homomorphism of H3 to Bir(M).

(3) If ' is conjugate to one of the embeddings described in Example 2.2.7 to 2.2.9
then exactly one of the embeddings ' or ' �↵ extends to a homomorphism of
Crn(C) to Bir(M).

(4) ' extends to Hn if and only if it extends to Crn(C); moreover, in this case
the extension to Hn is unique.

Theorem 2.2.11 classifies all group homomorphisms  : Hn ! Bir(M) for pro-
jective varieties M of dimension n + 1 such that the restriction to PGLn+1(C) is
an algebraic morphism. By the theorem of Noether and Castelnuovo, we obtain
in particular a full classification of all algebraic homomorphisms from Cr2(C) to
Bir(M) for projective varieties M of dimension 3:

Corollary 2.2.12. Let M be a projective variety of dimension 3 and  : Cr2(C) !
Bir(M) a non-trivial algebraic group homomorphism. Then  is conjugate to ex-
actly one of the homomorphisms described in Example 2.2.7 to 2.2.9.

The following observations are now immediate:

Corollary 2.2.13. Let M be a projective variety of dimension 3 and  : Cr2(C) !
Bir(M) a non-trivial algebraic homomorphism. Then

(1)  is injective.

(2) There exists a Cr2(C)-equivariant rational map f : M 99K P2 with respect
to the rational action induced by  and the standard action respectively. In
particular, all algebraic homomorphisms from Cr2(C) to Bir(M) are reducible.

(3) There exists an integer C 2 Z such that

1/C deg(f)  deg( (f))  C deg(f).
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Note that Part (3) of Corollary 2.2.13 resembles in some way Theorem 2.2.5
and leads to the following question:

Question 2.2.1. Let � : Cr2(C) ! Crn(C) be an algebraic embedding. Does there
always exist a constant C depending only on � such that 1/C deg(f)  deg(�(f)) 
C deg(f)?

One could consider an analogue of Question 2.2.1 for Lie group representations
of SL2(C). Let ||A|| be the operator norm of a matrix A 2 SL2(C). The function
d : A 7! | log(||A||)| can be seen as an analogue of the degree function on Cr2(C) in
the sense that it is symmetric and subadditive. The finite-dimensional irreducible
representations of SL2(C) are exactly the representations given by the action on the
vector space C[x, y]d of polynomials of degree d. Let ⇢ : SL2(C) ! GL(C[x, y]d) be
an irreducible representation. One can check that there exists a constant C such
that

1/C||A||  ||⇢(A)||  C||A||.

2.3 Degree sequences

Let Xk be a projective variety defined over a field k; denote by Bir(Xk) the group
of birational transformations of Xk. A group � is called a group of birational
transformations if there exists a field k and a projective variety Xk over k such
that � ⇢ Bir(Xk). More generally, one can consider Rat(Xk), the monoid of
dominant rational self-maps of Xk. Accordingly, we call a monoid � a monoid of
rational dominant transformations, if there exists a field k and a projective variety
Xk over k such that � ⇢ Rat(Xk).

If Xk is a smooth projective variety, an interesting tool to study the structure
of monoids of rational dominant transformations are degree functions. Fix a polar-
ization of Xk, i.e. an ample divisor class H of Xk. Then one can associate to every
element f 2 Rat(Xk) its degree degH(f) 2 Z+ with respect to H, which is defined
by

degH(f) = f⇤H ·Hd�1,

where d is the dimension of Xk and f⇤H is the total transform of H under f . For
a smooth projective variety Xk over a field k of characteristic zero, one has for
f, g 2 Bir(Xk)

degH(f � g)  C(Xk, H) degH(f) degH(g),

where C(Xk, H) is a constant only depending on Xk and the choice of polarization
H (see [DS05]). For a generalization of this result to fields of positive characteristic,
see [Tru15] and [Tru16] and the more recent [Dan17] for an alternative approach.

Let f be a rational self map of Pd
k. With respect to homogeneous coordinates

[x0 : · · · : xd] of Pd
k, f is given by [x0 : x1 : · · · : xd] 7! [f0 : f1 : · · · : fd],

where f0, . . . , fd 2 k[x0, . . . , xd] are homogeneous polynomials of the same degree
and without common factor. We define deg(f) = deg(fi). If f is dominant, then
deg(f) = degH(f) for H = O(1). Note that if f is an endomorphism of Ad

k defined
by (x1, . . . , xd) 7! (f1, . . . , fd) with respect to a�ne coordinates (x1, . . . , xd) of Ad

k,
where f1, . . . , fd 2 k[x1, . . . , xd], then deg(f) is the maximal degree of the fi.
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Let � ⇢ Rat(Xk) be a finitely generated monoid of rational dominant trans-
formations of a smooth projective variety Xk with a finite set of generators S. We
define

DS,H : Z+ ! Z+

by
DS,H(n) := max

�2BS(n)
{degH(�)},

where BS(n) denotes all elements in � of word length  n with respect to the
generating set S. We call a map Z+ ! Z+ that can be realized for some field k and
some (Xk, H,�, S) as such a function a degree sequence. Note that our definition of
degree sequences includes in particular degree sequences that are given by finitely
generated groups of birational transformations � ⇢ Bir(Xk).

In this chapter we show that there exist only countably many degree sequences,
display certain constraints on their growth and give some new examples.

2.3.1 Countability of degree sequences

In [BF00], Bonifant and Fornaess proved that the set of sequences {dn} such that
there exists a rational self map f of Pd

C

satisfying deg(fn) = dn for all n, is count-
able, which answered a question of Ghys. We generalize the result of Bonifant
and Fornaess to all degree sequences over all smooth projective varieties, all fields,
all polarizations and all finite generating sets S of finitely generated monoids of
rational dominant maps:

Theorem 2.3.1. The set of all degree sequences is countable.

2.3.2 Questions

In dimension 2 the degree growth of birational transformations is well understood
(Theorem 2.1.2). In the case of polynomial automorphisms, we have an even more
precise statement:

Theorem 2.3.2 ([Fur99]). Let f 2 Aut(A2
C

), then the degree sequence {deg(fn)}
is either periodic (in particular bounded) or a geometric progression.

However, in higher dimensions there are only few results on the degree growth
of birational transformations. For instance, in [LB14] Lo Bianco treats the case of
automorphisms of compact Kähler threefolds. The following questions seem to be
open:

Question 2.3.1. Does there exist a birational transformation f of a projective
variety Xk such that degH(fn) is of intermediate growth, for instance degH(fn) ⇠
e
p
n?

Question 2.3.2. Does there exist a birational transformation f such that degH(fn)
is unbounded, but grows ”slowly“? For instance, can we have degH(fn) ⇠ p

n? Or
do unbounded degree sequences grow at least linearly?

Question 2.3.3. If there is a birational transformation f such that degH(fn) ⇠ �n,
is � always an algebraic number?
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Question 2.3.4. Do birational transformations of polynomial growth always pre-
serve some non-trivial rational fibration?

2.3.3 Degree sequences of polynomial automorphisms

A good place to start the examination of degree sequences seems to be the group
of polynomial automorphisms of the a�ne d-space Aut(Ad

k). In Section 4.3.2 we
will show the following observation (the proof of which can be found as well in
[Dés16a]):

Proposition 2.3.3. Let k be a field and f 2 Aut(Ad
k) a polynomial automorphism

such that deg(fd) = deg(f)d, then deg(fn) = deg(f)n for all n 2 Z+.

The monoid End(Ad
k) has the additional structure of a k-vector space, on which

the degree function induces a filtration of finite dimensional vector spaces. This
gives rise to a new technique, which we will use to prove that unbounded degree
sequences of groups of polynomial automorphisms diverge and can not grow arbi-
trarily slowly:

Theorem 2.3.4. Let f 2 End(Ad
k) be an endomorphism and assume that the

sequence {deg(fn)} is unbounded. Then for all integers K

# {m | deg(fm)  K} < Cd ·Kd,

where Cd = (1+d)d

(d�1)! . In particular, deg(fn) converges to 1 as n goes to 1.

By a result of Ol’shanskii ([Ols99]), Theorem 2.3.4 shows that an unbounded
degree sequence of a polynomial automorphism behaves in some ways like a word
length function. The following corollary is immediate:

Corollary 2.3.5. Let � ⇢ End(Ad
k) be a finitely generated monoid with generating

system S. If DS(n) < Cd · n1/d for infinitely many n then � is of bounded degree.

Unfortunately our methods to prove Theorem 2.3.4 do not work for arbitrary
birational transformations of Pd

k. However, if we assume the ground field to be
finite, we obtain similar results:

Theorem 2.3.6. Let Fq be a finite field with q elements and let f 2 Rat(Pd
Fq
) such

that the sequence {deg(fn)} is unbounded. Then, for all integers K,

# {m | deg(fm)  K}  qC(K,d),

where C(K, d) = (d+ 1) ·
�
d+K
K

�
. In particular, deg(fn) converges to 1 as n goes

to 1.

Corollary 2.3.7. Let � ⇢ Rat(Pd
Fq
) be a finitely generated monoid with generating

system S. There exists a positive constant Cd,q such that if DS(n) < Cd,q · log(n)1/d
for all n, then � is of bounded degree.
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2.3.4 Types of degree growth

Definition 2.3.1. Let Xk be a smooth projective variety with polarization H over
a field k and let f 2 Bir(Xk). We denote the order of growth of degH(fn) by

dpol(f) := lim sup
n!1

log(degH(fn))

log(n)
.

The order of growth can be infinite.

By results of Truong, Dinh and Sibony, the order of growth does not depend on
the choice of polarization (see Section 4.2.4):

Proposition 2.3.8. Let Xk be a smooth projective variety over a field k and let
f 2 Bir(Xk). Then dpol(f) does not depend on the choice of polarization.

Let f be a birational transformation of a surface. As recalled above, in that
case dpol(f) = 0, 1, 2 or 1. This gives rise to the following question:

Question 2.3.5. Does there exist a constant C(d) depending only on d such that
for all varieties Xk of dimension d we have dpol(f) < C(d) for all f 2 Bir(Xk) with
dpol(f) finite?

We give some examples of degree sequences that indicate that the degree growth
in higher dimensions is richer than in dimension 2. First of all, note that in general
elements in Aut(Ad

k) can have polynomial growth, which is not the case for d = 2
by Theorem 2.3.2.

Example 2.3.9. Let k be any field and define f, g, h 2 Aut(A3
k) by g = (x +

yz, y, z), h = (x, y + xz, z) and

f = g � h = (x+ z(y + xz), y + xz, z).

One sees by induction that deg(fn) = 2n+ 1; in particular, dpol(f) = 1.
More generally, for all l  d/2 there exist elements fl 2 Aut(Ad

k) such that
dpol(f) = l (Section 4.3.4).

Other interesting examples of degree sequences of polynomial automorphisms
and the dynamical behavior of the corresponding maps are described in [Dés16a].
For birational transformations of Pd

k we can obtain even faster growth (see [Lin12]
for more details):

Example 2.3.10. The birational transformation f = (x1, x1x2, . . . , x1x2 · · ·xn) of
Pd
k defined with respect to a�ne coordinates (x1, . . . , xd) satisfies deg(fn) = nd�1,

i.e. dpol(f) = d� 1.

The following interesting observation is due to Serge Cantat:

Example 2.3.11. Define ! := �1+
p
�3

2 and the elliptic curve E! := C /(Z+Z!).
Let

X := E! ⇥ E! ⇥ E!
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and s : X ! X the automorphism of finite order given by diagonal multiplication
with �!. In [OT15] Oguiso and Truong prove that the quotient Y := X/s is a
rational threefold. Let f : X ! X be the automorphism defined by (x1, x2, x3) 7!
(x1, x1 + x2, x2 + x3). Since f commutes with s, it induces an automorphism on
Y , which we denote by f̂ . Let �1 : Ỹ ! Y be a resolution of the singularities of Y
and define f̃ 2 Bir(Ỹ ) by

f̃ := ��1
1 � f̂ � �1.

We will show in Section 4.3.5 that dpol(f̃) = 4.

Remark 2.3.1. In [Dés16a] Déserti shows that for all l  d there exists a birational
transformation f 2 Bir(Pd

C

) such that dpol(f) = l.

2.4 Groups of elliptic elements of the plane Cre-
mona group

In this chapter we will be interested in groups G ⇢ Cr2(C) such that every element
in G is elliptic. An element g is elliptic if and only if {deg(fn)} is bounded or,
equivalently, there exists a k 2 Z+ such that gk is conjugate to an automorphism
in Aut0(S), the neutral component of the automorphism group of a projective
surface S ([Can11a, Proposition 3.10]).

Definition 2.4.1. A group G ⇢ Cr2(C) is a group of elliptic elements if every
element in G is elliptic.

Definition 2.4.2. A group G ⇢ Cr2(C) is bounded if there exists a constant K
such that deg(g)  K for all elements g 2 G.

Algebraic groups are always bounded, but bounded groups do not need to be
algebraic. However, a subgroup of Cr2(C) is bounded if and only if it is contained
in an algebraic group. All bounded groups are groups of elliptic elements. But the
converse is not true as the following examples illustrate:

Example 2.4.1. Let G ⇢ Cr2(C) be the group of elements of the form (x, y+p(x)),
where p(x) 2 C(x) is a rational function. Then every element in G is algebraic, but
G contains elements of arbitrarily high degrees.

Example 2.4.2. In [Wri79], Wright constructs examples of torsion subgroups of
Aut(A2) and hence in particular of Cr2(C) that contain elements of arbitrary high
degree. In fact, he shows that there is a subgroup G of Cr2(C) that is isomorphic to
the subgroup of roots of unity in C⇤ but that is not bounded. In [Lam01a], Lamy
shows that some of the examples of Wright do not preserve any fibration.

So far there only exist results about subgroups consisting of elliptic elements if
they are bounded or finitely generated. Our strategy will be to use these results
together with the compactness theorem from model theory in order to prove the
following theorem that gives some information about the structure of subgroups of
Cr2(C) consisting only of elliptic elements:
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Theorem 2.4.3. Let G ⇢ Cr2(k) be a subgroup of elliptic elements. Then we are
in one of the following cases:

(1) G is not a torsion group and G contains a finitely generated subgroup that
does not preserve any fibration. In this case, G is conjugate to a subgroup of
Aut(P2), of Aut(P1 ⇥P1) or of Aut(S6), where S6 is the del Pezzo surface of
degree 6.

(2) G is a torsion group.

(3) G preserves a rational fibration and is therefore conjugate to a subgroup of
the de Jonquières group J ' PGL2(C(t))o PGL2(C), which is the subgroup
of Cr2(C) that preserves a given rational fibration.

(4) Every finitely generated subgroup of G preserves a rational fibration and there
exists a torsion subgroup G0 ⇢ G and an exact sequence

1 ! G0 ! G ! PGL2(C).

In the case, where G is a torsion subgroup of Cr2(C), we can say more:

Theorem 2.4.4. Let G ⇢ Cr2(C) be a torsion subgroup. Then G can be embedded
into GLN (C) for some N  48 and N  24 if G is infinite.

Remark 2.4.1. There exists an N 2 Z+ such that every finite subgroup of Cr2(C)
can be embedded into GLN (C). In this text we will give the rough upper bound
N  48, but we expect that this bound can be lowered ignificantly. We will see
in particular, that every finite subgroup of Cr2(C) can be eitehr embedded into
GL36(C) or it is isomorphic to an extension of S4 by the Klein four-group.

Let us give some consequences of Theorem 2.4.3. It has been proven by Schur
that every torsion subgroup of GLn(C) is abelian up to finite index. More precisely:

Theorem 2.4.5 (Schur, see [CR62, p.258]). Let G ⇢ GLn(C) be a torsion subgroup.
Then G contains an abelian subgroup of index at most

(
p
8n+ 1)2n

2 � (
p
8n� 1)2n

2

.

So from Theorem 2.4.4 (2) and Theorem 2.4.5 we can deduce directly that the
same property holds for torsion subgroups of Cr2(C):

Corollary 2.4.6. Every torsion subgroup G of Cr2(C) is finite or isomorphic to
a subgroup of GLN (C) for some N  24. In particular, G contains an abelian
subgroup of index at most

(96
p
2 + 1)2592 � (96

p
2� 1)2592 < 105537.

Recall that the derived series of a group G is the series of groups defined by

• G(0) := G

• G(i+1) := [G(i), G(i)],
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where the commutator subgroup [H,H] of a group H is the subgroup generated by
all elements of the form aba�1b�1, a, b 2 H.

A group G is solvable if and only if its derived series terminates at the identity
element after finitely many steps. The derived length of G is the smallest k such
that G(k) = {id}.

Another result that can be deduced from Theorem 2.4.3 concerns the Tits al-
ternative. In [Tit72], Tits showed the following:

Theorem 2.4.7 ([Tit72]). Let k be a field of characteristic zero and n 2 Z+. Then
every subgroup G of GLn(k) is either virtually solvable or contains a non-abelian
free subgroup.

This result has lead to the following definitions:

Definition 2.4.3.

(1) A group G satisfies Tits’ alternative if every subgroup of G is either virtually
solvable or contains a non-abelian free subgroup.

(2) A group G satisfies Tits’ alternative for finitely generated subgroups if every
finitely generated subgroup of G either is virtually solvable or contains a
non-abelian free subgroup.

Theorem 2.4.7 states that linear groups over fields of characteristic zero satisfy
Tits’ alternative. Linear groups over fields of positive characteristic only satisfy
Tits’ alternative for finitely generated subgroups ([Tit72]). Other well-known ex-
amples of groups that satisfy Tits’ alternative include mapping class groups of
surfaces ([Iva84]), Out(Fn), the outer automorphism group of the free group of
finite rank n ([BFH00]) or hyperbolic groups in the sense of Gromov ([Gro87]).

In his PhD thesis Lamy showed Tits’ alternative for subgroups of Aut(A2
C

):

Theorem 2.4.8 ([Lam01b]). Aut(A2
C

) satisfies Tits’ alternative.

The proof of Theorem 2.4.8 relies on the amalgamated product structure of
Aut(A2

C

) that is given by the Theorem of Jung and van der Kulk (see for example
[Lam02]) and Bass-Serre theory (see [Ser77]).

Cantat established Tits’ alternative for finitely generated subgroups of Cr2(C):

Theorem 2.4.9 ([Can11a]). Cr2(C) satisfies Tits’ alternative for finitely generated
subgroups.

Theorem 2.4.9 is part of a series of profound results about the group structure of
the plane Cremona group that Cantat deduces from the action by isometries on the
Picard-Manin space H1 by Cr2(C) ([Can11a]). The main obstacle to generalize
Theorem [Can11a] to arbitrary subgroups was caused by unbounded groups of
elliptic elements that do not preserve any fibration. At this point, Theorem 2.4.3
steps in. It turns out that it yields the techniques to complete the result:

Theorem 2.4.10. Cr2(C) satisfies Tits’ alternative.

In [Dés15], Déserti gives a description of solvable subgroups of Cr2(C). We
complement her result with the following observation:
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Theorem 2.4.11. There exists a constant K  35 such that the derived length of
solvable subgroups of Cr2(C) is  K.

Remark 2.4.2. Also here, the upper bound 35 is only a rough estimate and we
expect that it can be lowered by a detailed examination of the derived length of
finite subgroups of Cr2(C).

For each n 2 Z+ there exists an N 2 Z+ such that every solvable subgroup of
GLn(C) has derived length  N . This result seems to go back to Zassenhaus, see
for example [New72], where explicit bounds are computed. The following bound is
attributed to Huppert:

Theorem 2.4.12 ([New72, p.1]). Let G ⇢ GLn(C) be a solvable subgroup. The
derived length of G is  min{2n, 1 + 7 log2(n)}.

In [FP16], Furter and Poloni show that the maximal derived length of a solvable
subgroup of Aut(A2

C

) is 5 (and that this bound is optimal).

2.5 Simple subgroups of the plane Cremona group

It had been a long-standing open question, whether the plane Cremona group is
simple as a group until Cantat and Lamy showed in 2012 that it is not. The main
idea to prove this result was to use the action of Cr2(C) on the Picard-Manin
space H1 by isometries and use techniques from small cancellation theory. In this
chapter, we refine these techniques with the aim of classifying all simple subgroups
of Cr2(C). However, during the work I have encountered a problem that I was not
able to solve. We formulate it in the following conjecture, which will be discussed
in more detail in Section 7.2.3. Denote by Ind(f) ⇢ X the indeterminacy locus of
a birational transformation of a variety X.

Conjecture 2.5.1. Let f 2 Cr2(C) be a loxodromic element, p 2 P2 a point that
is not contained in any of the coordinate lines of P2, k a positive integer. Then the
constructible set

{d(fd)k(p) | d 2 D2 such that p /2 Ind((fd)l) for all 1  l  k}

is open and dense in P2.

The main result of this chapter will be:

Theorem 2.5.2. Assume that Conjecture 2.5.1 holds.
Let G ⇢ Cr2(C) be a simple group. Then:

(1) G does not contain any loxodromic element.

(2) If G contains a parabolic element, then G fixes a rational fibration, i.e. there
exists a G-invariant rational map ⇡ : P2 99K P1 with rational fibers. In that
case, G is isomorphic to a subgroup of PGL2(C(t)).

(3) If all elements in G are elliptic then either G is a simple subgroup of an alge-
braic subgroup of Cr2(C) or it is conjugate to a subgroup of the de Jonquières
group J ' PGL2(C)n PGL2(C(t)).
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Remark 2.5.1. Only part (1) of Theorem 7.1.2 depends on Conjecture 2.5.1. If
we assume that the simple subgroup G does not contain any loxodromic element,
Part (2) and (3) can be proven without assuming Conjecture 2.5.1 (Lemma 7.3.1
and 7.3.2).

As for the case (3) of Theorem 2.5.2, one observes that a simple subgroup of
PGL2(C)nPGL2(C(t)) is abstractly isomorphic to a simple subgroup of PGL2(C).
However, we are not able to give a description of the conjugacy classes of simple
subgroups of PGL2(C)n PGL2(C(t)).

From Theorem 2.5.2 one can deduce the following observation by looking at the
classification of maximal algebraic subgroups of Cr2(C) (see Theorem 6.2.1):

Corollary 2.5.3. Assume that Conjecture 2.5.1 holds.
A simple group G can be embedded into Cr2(C) if and only if G is isomorphic

to a subgroup of PGL3(C).

Corollary 2.5.3 naturally leads to the following question, which is, to our knowl-
edge, an open problem:

Question 2.5.1. What are the simple subgroups of PGL3(C) and PGL2(C)?

Obvious classes of simple subgroups of PGL2(C) are subgroups of the form
PSL2(k), where k ⇢ C is a subfield, or finite simple subgroups. It is unclear,
whether there exist other examples:

Question 2.5.2. What are the simple subgroups of PSL2(Q)? Does PSL2(Q)
contain a proper infinite simple subgroup?

2.5.1 Finitely generated simple subgroups

A group G satisfies the property of Malcev, if every finitely generated subgroup
� ⇢ G is residually finite, i.e. for every element g 2 � there exists a finite group
H and a homomorphism ' : � ! H such that g is not contained in the kernel
of '. Malcev showed that linear groups satisfy this property ([Mal40a]). Other
groups that fulfill the property of Malcev include automorphism groups of algebraic
varieties over fields of characteristic zero. In [Can11a], Cantat asked whether the
plane Cremona group has the property of Malcev, a question that is still open.

Note that finitely generated simple subgroups of groups with the property of
Malcev are always finite. We will prove the following theorem for the plane Cremona
group:

Theorem 2.5.4. Every finitely generated simple subgroup of Cr2(C) is finite.

Note that in order to prove Theorem 2.5.4 we do not need Conjecture 2.5.1.
From the classification of finite subgroups of Cr2(C) (see [DI09]) we obtain:

Corollary 2.5.5. A finitely generated simple subgroup of Cr2(C) is isomorphic to

Z /pZ, for some prime p, A5, A6, PSL2(7).

The conjugacy classes of these finite groups are classified in [DI09].
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Chapter 3

On homomorphisms between
Cremona groups

3.1 Introduction and statement of the results

3.1.1 Cremona groups

Let M be a complex algebraic variety and Bir(M) the group of birational transfor-
mations of M . Denote by Pn = Pn

C

the complex projective space of dimension n.
The group

Crn := Bir(Pn)

is called the Cremona group. In this paper we are interested in group homomor-
phisms from Crn to Bir(M). In particular, we will study an embedding of Cr2
into Cr5 that was described by Gizatullin [Giz99] and consider the case, where
dim(M) = n+ 1.

A birational transformation A : M 99K N between varieties M and N induces
an isomorphism Bir(M) ! Bir(N) by conjugating elements of Bir(M) with A.
Two homomorphisms � : Bir(M) ! Bir(N1) and  : Bir(M) ! Bir(N2) are called
conjugate if there exists a birational transformation A : N1 99K N2 such that  (g) =
A � �(g) �A�1 for all g 2 Bir(M).

Example 3.1.1. Assume that a variety M is birationally equivalent to Pn ⇥N
for some variety N . The standard action on the first factor yields an injective
homomorphism of Crn into Bir(Pn ⇥N) and therefore also into Bir(M). We call
embeddings of this type standard embeddings. In particular, we obtain in that way
for all nonnegative integers m a standard embedding Crn ! Bir(Pn ⇥Pm).

Example 3.1.2. A variety M is called stably rational if there exists a n such that
M ⇥ Pn is rational. There exist varieties of dimension larger than or equal to
3 that are stably rational but not rational (see [BCTSSD85]). We will see that
two standard embeddings f1 : Crn ! Bir(Pn ⇥N) and f2 : Crn ! Bir(Pn ⇥M) are
conjugate if and only if N and M are birationally equivalent (Lemma 3.3.3). So

39
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every class of birationally equivalent stably rational varieties of dimension k defines
a di↵erent conjugacy class of embeddings Crn ! Bir(Pm) for m = n+ k.

If we fix homogeneous coordinates [x0 : · · · : xn] of Pn, every element f 2 Crn
can be described by homogeneous polynomials of the same degree f0, . . . , fn 2
C[x0, . . . , xn] without non-constant common factor, such that

f([x0 : · · · : xn]) = [f0 : · · · : fn].
The degree of f is the degree of the fi.

With respect to a�ne coordinates [1 : X1 : · · · : Xn] = (X1, . . . , Xn), we have

f(X1, . . . , Xn) = (F1, . . . , Fn),

where Fi(X1, . . . , Xn) = fi(1, X1, . . . , Xn)/f0(1, X1, . . . , Xn) is an element of the
field C(X1, . . . , Xn). The subgroup of Crn consisting of elements F such that all the
Fi are polynomials as well as all the entries of F�1, is exactly Aut(An), the group
of polynomial automorphisms of the a�ne space An. When we look at Aut(An)
as a subgroup of Crn, we will always consider the embedding given by the a�ne
coordinates x0 6= 0.

An important subgroup of Crn is the automorphism group

Aut(Pn) ' PGLn+1(C).

The n-dimensional subgroup of Aut(Pn) consisting of diagonal automorphisms will
be denoted by Dn. It is the torus of highest rank of Crn in the following sense: Let
D be an algebraic subgroup of Crn isomorphic to (C⇤)k, then k  n and if k = n
then D is conjugate to Dn ([BB66]).

Let A = (aij) 2 Mn(Z) be a matrix of integers. The matrix A determines a
rational self map of the a�ne space

fA = (xa11
1 xa12

2 · · ·xa1n
n , xa21

1 xa22
2 · · ·xa2n

n , . . . , xan1
1 xan2

2 · · ·xann
n ).

We have fA � fB = fAB for A,B 2 Mn(Z). One observes that fA is a birational
transformation if and only if A 2 GLn(Z). This yields an injective homomorphism
GLn(Z) ! Crn whose image we call the Weyl group and denote it by Wn. This
terminology is justified by the fact that the normalizer ofDn in Crn is the semidirect
product NormCrn(Dn) = DnoWn. Note that DnoWn is the automorphism group
of (C⇤)n. Sometimes, Wn is also called the group of monomial transformations.

The well known theorem of Noether and Castelnuovo (see for example [AC02])
states that over an algebraically closed field k the Cremona group in two variables
is generated by PGL3(k) and the standard quadratic involution

� := [x1x2 : x0x2 : x0x1] 2 W2 .

Results of Hudson and Pan ([Hud27], [Pan99]) show that for n � 3 the Cremona
group Crn is not generated by PGLn+1(C) and Wn. Let

Hn := hPGLn+1(C),Wni .
Blanc and Hedén studied the subgroup Gn of Crn generated by PGLn+1(C) and
the element �n := [x�1

0 : · · · : x�1
n ] ([BH14]). In particular, they show that Gn is a

finite index subgroup of Hn and that it is strictly contained in Hn if and only if n
is odd. Further results about the group structure of Gn can be found in [Dés14].
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3.1.2 The case dim(M)  n

Let M be a complex projective variety of dimension n and ⇢ : PGLr+1(C) !
Bir(M) an embedding. Then n � r and if n = r it follows that M is rational
and that up to a field automorphism, ⇢ is the standard embedding (see [Can14]
and [Dés06b]). This implies in particular that there are no embeddings of Crn into
Bir(M) if dim(M) < n. In the Appendix we recall these results and show that the
restriction of an automorphism of Crn to the subgroup Hn is inner up to a field
automorphism.

3.1.3 Algebraic homomorphisms

We call a group homomorphism  : Crn ! Bir(M) algebraic if its restriction to
PGLn+1(C) is an algebraic morphism. The algebraic structure of Bir(M) and some
properties of algebraic homomorphisms will be discussed in Section 3.2. Recall that
an element f 2 Crn is called algebraic, if the sequence {deg(fn)}n2N

is bounded.

Definition 3.1.1. Let M be a variety and 'M : Crn ! Bir(M) a non-trivial
algebraic group homomorphism. We say that 'M is reducible if there exists a
variety N such that 0 < dim(N) < dim(M) and an algebraic homomorphism
'N : Crn ! Bir(N) together with a dominant rational map ⇡ : M 99K N that
is Crn-equivariant with respect to the rational actions induced by 'M and 'N

respectively, i.e. ⇡ � 'M (g) = 'N (g) � ⇡ for all g 2 Crn.

Remark 3.1.1. In [Zha10], Zhang uses the terminology primitive action for ir-
reducible actions in the sense of Definition 3.1.1; in [Can03], Cantat says that an
action admits a non-trivial factor if it is reducible.

Note that if we look at the induced action of Crn on the function field C(M) of
M , reducibility is equivalent to the existence of a non-trivial Crn-invariant function
field C(N) ⇢ C(M).

3.1.4 An example by Gizatullin

In [Giz99], Gizatullin looks at the following question: Consider a linear representa-
tion  : PGL3(C) ! PGLn+1(C). Does  extend to a homomorphism  : Cr2 !
Crn? He shows that the linear representations given by the action of PGL3(C) on
conics, cubics and quartics can be extended to homomorphisms from Cr2 to Cr5,
Cr9 and Cr14, respectively. These homomorphisms are related to the rational ac-
tion of Cr2 on moduli spaces of certain vector bundles on P2 that were discovered
by Artamkin ([Art90]).

In Section 3.3 we study in detail some geometrical properties of the homomor-
phism

� : Cr2 ! Cr5

that was described by Gizatullin; by construction, the restriction of � to PGL3(C)
yields the linear representation ' : PGL3(C) ! PGL6(C) given by the action of
PGL3(C) on plane conics. Among other things, we prove the following:
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Theorem 3.1.3. Let � : Cr2 ! Cr5 be the Gizatullin homomorphism. Then the
following is true:

(1) The group homomorphism � is injective and irreducible.

(2) The rational action of Cr2 on P5 that is induced by � preserves the Veronese
surface V and its secant variety S ⇢ P5 and induces rational actions of Cr2
on V and S.

(3) The Veronese embedding v : P2 ! P5 is Cr2-equivariant with respect to the
standard rational action on P2.

(4) The dominant secant map s : P2 ⇥P2 99K S ⇢ P5 (see Section 3.3.4) is Cr2-
equivariant with respect to the diagonal action of Cr2 on P2 ⇥P2.

(5) The rational action of Cr2 on P5 preserves a volume form on P5 with poles
of order three along the secant variety S.

(6) The group homomorphism � sends the group of polynomial automomorphisms
Aut(A2) ⇢ Cr2 to Aut(A5).

Note that the injectivity of � follows from (3); in Section 3.3.8 irreducibility is
proved. Part (2) - (4) of Theorem 3.1.3 will be proved in Section 3.3.4, part (5) in
Section 3.3.6 and part (6) in Section 3.3.7

The representation '_ of PGL3(C) into PGL6(C) given by  �↵, where ↵ is the
algebraic homomorphism g 7! tg�1, is conjugate in Cr5(C) to the representation
'. This conjugation yields the embedding �_ : Cr2(C) ! Cr5(C), whose image
preserves the secant variety S as well and induces a rational action on it. As the
secant variety S is rational, � and �_ induce two non-standard homomorphisms
of Cr2(C) into Cr4, which we denote by  1 and  2 respectively. In Section 3.3.5
we prove the following:

Proposition 3.1.4. The two homomorphisms  1, 2 : Cr2(C) ! Cr4(C) are not
conjugate in Cr4; moreover they are irreducible and therefore not conjugate to the
standard embedding.

Remark 3.1.2. The homomorphism  1 is injective, since it restricts to the stan-
dard action on the Veronese surface. However, it seems to be unclear, whether
 2 is injective as well. Since the restriction of  2 to PGL3(C) is injective, it
seems unlikely that  2 is not injective. In fact, it seems that one could use results
from [BZ15] to show that non-trivial algebraic homomorphisms are always injective.
However, I haven’t proved it yet.

Since � is algebraic, the images of algebraic elements under � are algebraic
again (see Proposition 3.2.6). Calculation of the degrees of some examples suggests
that � might even preserve the degrees of all elements in Cr2. However, we were
only able to prove the following (Section 3.3.7):

Theorem 3.1.5. Let � : Cr2 ! Cr5 be the Gizatullin-embedding. Then

(1) for all elements f 2 Cr2 we have deg(f)  deg(�(f)),
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(2) for all g 2 Aut(A2) ⇢ Cr2 we have deg(g) = deg(�(g)).

The image of the Weyl groupW2 under � is not contained in theWeyl groupW5.
More generally, we will show in the appendix that there exists no algebraic homo-
morphism from Cr2(C) to Cr5(C) that preserves automorphisms, diagonal auto-
morphisms and the Weyl group:

Theorem 3.1.6. There is no non-trivial algebraic homomorphism  : Cr2 ! Cr5
such that:

(1)  (PGL3(C)) ⇢ PGL6(C)

(2)  (D2) ⇢ D5 and

(3)  (W2) ⇢ W5.

3.1.5 Algebraic embeddings in codimension 1

In Section 3.4 and Section 3.5 we look at algebraic homomorphisms Crn ! Bir(M)
in the case where M is a smooth projective variety of dimension n+ 1 for n � 2.

Example 3.1.7. For all curves C of genus � 1, the variety Pn ⇥C is not rational
and there exists the standard embedding  C : Crn ! Bir(Pn ⇥C).

Example 3.1.8. Crn acts rationally on the total space of the canonical bundle of
Pn

K
P

n ' O
P

n(�(n+ 1)) '
n̂

(TPn)_

by f(p,!) = (f(p),!�(dfp)�1), where p 2 Pn and ! 2
Vn(Tp Pn)_. More generally,

we obtain a rational action of Crn on the total space of the bundleK⌦l
P

n ' O
P

n(�(n+
1)l) and on its projective completion

Fl := P(O
P

n �O
P

n(�l(n+ 1))

for all l 2 Z�0. This yields a countable family of injective homomorphisms

 l : Crn ! Bir(Fl).

Note that the restriction of this rational action to PGLn(C) is regular, hence these
embeddings are algebraic.

We can choose a�ne coordinates (x1, . . . , xn, xn+1) of Fl such that  l is given
by

 l(f)(x1, . . . , xn, xn+1) = (f(x1, . . . , xn), J(f(x1, . . . , xn))
�lxn+1),

where, J(f(x1, . . . , xn)) denotes the determinant of the Jacobian of f at the point
(x1, . . . , xn). Observe that  0 is conjugate to the standard embedding.

Example 3.1.9. Let P(TP2) be the total space of the fiberwise projectivisation
of the tangent bundle over P2. Then P(TP2) is rational and there is an injective
group homomorphism

 B : Cr2 ! Bir(P(TP2))

defined by  B(f)(p, v) := (f(p),P(dfp)(v)). Here, P(dfp) : PTp ! PTf(p) defines

the projectivisation of the di↵erential dfp of f at the point p 2 P2.
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Example 3.1.10. The Grassmannian of lines in the projective 3-space G(1, 3)
is a rational variety of dimension 4 with a transitive algebraic PGL4(C)-action.
This action induces an algebraic embedding of PGL4(C) into Cr4. In Proposition
3.5.2 we will show that the image of this embedding does not lie in any subgroup
isomorphic to Cr3. So no group action of PGL4(C) on G(1, 3) by automorphisms
can be extended to a rational action of Cr3.

The classification of PGLn+1(C)-actions on smooth projective varieties of di-
mension n+1 is well known to the experts; in Section 3.4 we study their conjugacy
classes. We will see that Examples 3.1.7 to 3.1.10 describe up to birational conju-
gation and up to algebraic automorphisms of PGLn+1(C) all possible PGLn+1(C)-
actions on smooth projective varieties of dimension n+1 and that these actions are
not birationally conjugate to each other. This yields a classification of algebraic
homomorphisms of PGLn+1(C) to Bir(M) up to birational conjugacy, for smooth
projective M of dimension n + 1. We will study in Section 3.5 how these actions
extend to rational actions of Crn on M . Denote by ↵ : PGLn(C) ! PGLn(C) the
algebraic automorphism given by g 7! t(g�1).

Theorem 3.1.11. Let n � 2, let M be a complex projective variety of dimension
n+ 1 and let ' : PGLn+1(C) ! Bir(M) be a non-trivial algebraic homomorphism.
Then

(1) ' is conjugate, up to the automorphism ↵, to exactly one of the embeddings
described in Example 3.1.7 to 3.1.10.

(2) If n = 3 and ' is conjugate to the action described in Example 3.1.10, then
neither ' nor ' � ↵ can be extended to a homomorphism of H3 to Bir(M).

(3) If ' is conjugate to one of the embeddings described in Example 3.1.7 to 3.1.9
then exactly one of the embeddings ' or ' �↵ extends to a homomorphism of
Crn to Bir(M).

(4) ' extends to Hn if and only if it extends to Crn; moreover, in this case the
extension to Hn is unique.

Theorem 3.1.11 classifies all group homomorphisms  : Hn ! Bir(M) for pro-
jective varieties M of dimension n + 1 such that the restriction to PGLn+1(C) is
an algebraic morphism. By the theorem of Noether and Castelnuovo, we obtain in
particular a full classification of all algebraic homomorphisms from Cr2 to Bir(M)
for projective varieties M of dimension 3:

Corollary 3.1.12. Let M be a projective variety of dimension 3 and  : Cr2 !
Bir(M) a non-trivial algebraic group homomorphism. Then  is conjugate to ex-
actly one of the homomorphisms described in Example 3.1.7 to 3.1.9.

The following observations are now immediate:

Corollary 3.1.13. Let M be a projective variety of dimension 3 and  : Cr2 !
Bir(M) a non-trivial algebraic homomorphism. Then

(1)  is injective.
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(2) There exists a Cr2-equivariant rational map f : M 99K P2 with respect to
the rational action induced by  and the standard action respectively. In
particular, all algebraic homomorphisms from Cr2 to Bir(M) are reducible.

(3) There exists an integer C 2 Z such that

1/C deg(f)  deg( (f))  C deg(f).

Note that Part (3) of Corollary 3.1.13 resembles in some way Theorem 3.1.5
and leads to the following question:

Question 3.1.1. Let � : Cr2 ! Crn be an algebraic embedding. Does there always
exist a constant C depending only on � such that 1/C deg(f)  deg(�(f)) 
C deg(f)?

3.1.6 Acknowledgements

I would like to express my warmest thanks to my PhD advisors Jérémy Blanc and
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3.2 Algebraic homomorphisms

In this section we recall some results on the algebraic structure of Bir(M) and of
some of its subgroups and we discuss our notion of algebraic homomorphisms.

3.2.1 The Zariski topology

We can equip Bir(M) with the so-called Zariski topology. Let A be an algebraic
variety and

f : A⇥M 99K A⇥M

an A-birational map (i.e. a map of the form (a, x) 799K (a, f(a, x)) that induces
an isomorphism between open subsets U and V of A ⇥ M such that the projec-
tions from U and from V to A are both surjective). For each a 2 A we obtain
therefore an element of Bir(M) defined by x 7! p2(f(a, x)), where p2 is the second
projection. Such a map A ! Bir(M) is called a morphism or family of birational
transformations parametrized by A.

Definition 3.2.1. The Zariski topology on Bir(M) is the finest topology such that
all morphisms f : A ! Bir(M) for all algebraic varieties A are continuous (with
respect to the Zariski topology on A).
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The map ◆ : Bir(M) ! Bir(M), x 7! x�1 is continuous as well as the maps
x 7! g � x and x 7! x � g for any g 2 Bir(M). This follows from the fact that
the inverse of an A-birational map as above is again an A-birational map as is
the right/left-composition with an element of Bir(M). The Zariski topology was
introduced in [Dem70] and [Ser08] and studied in [BF13].

3.2.2 Algebraic subgroups

An algebraic subgroup of Bir(M) is the image of an algebraic group G by a mor-
phism G ! Bir(M) that is also an injective group homomorphism. It can be shown
that algebraic groups are closed in the Zariski topology and of bounded degree in
the case of Bir(M) = Crn. Conversely, closed subgroups of bounded degree in
Crn are always algebraic subgroups with a unique algebraic group structure that is
compatible with the Zariski topology (see [BF13]). We will also use the fact that
all algebraic subgroups of Crn are linear ([BF13]).

Let N be a smooth projective variety that is birationally equivalent to M .
Let G be an algebraic group acting regularly and faithfully on N . This yields a
morphism G ! Bir(M), so G is an algebraic subgroup of Bir(M). On the other
hand, a theorem by Weil, Rosenlicht and Sumihiro states that in characteristic zero
all algebraic subgroups of Bir(M) have this form.

Theorem 3.2.1 ([Wei55], [Ros56, Theorem 1]). Let M be an algebraic variety
over a field k and let G ⇢ Bir(M) be an algebraic subgroup. Then there exists
an algebraic variety X and a birational map f : M 99K X that conjugates G to a
subgroup of Aut(X) such that the induced action on X is algebraic.

However, Theorem 3.2.1, while giving no restrictions on the base-field, does not
say anything about the structure of the variety X. The following two theorems
show that under additional assumptions Theorem 3.2.1 can be improved:

Theorem 3.2.2 ([Sum74, Theorem 3]). Let X be a normal variety over an alge-
braically closed field on which a linear group G acts algebraically. Then there exists
a G-equivariant completion X of X.

Theorem 3.2.3 ([Kol07]). Let X be a projective variety over a field k of char-
acteirstic 0 on which an algebraic group G acts algebraically. There exists a G-
equivariant resolution of singularities ⇡ : X̃ ! X, i.e. X̃ is a smooth projective
G-variety and ⇡ is a G-equivariant birational morphism.

We can now put everything together. Let M be a complex variety and G ⇢
Bir(M) a linear algebraic subgroup. By Theorem 3.2.1, there exists a variety X
and a birational map f : M 99K X that conjugates G to a subgroup of Aut(X)
such that the induced action on X is algebraic. After normalizing G-equivariantly,
we may assume that X is normal. By Theorem 3.2.2, there exists a G-equivariant
completion X of X. By the G-equivariant Chow Lemma ([Sum74, Theorem 2]),
there exists a projective G-variety X 0 and a G-equivariant birational morphism
⇡0 : X 0 ! X. Finally, by Theorem 3.2.3, there exists a G-equivariant resolution
of singularities of ⇡ : N ! X 0. Hence we obtain the following version of Weil’s
theorem:
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Theorem 3.2.4 (Weil, Rosenlicht, Sumihiro). Let M be a complex variety and
G ⇢ Bir(M) a linear algebraic subgroup. Then there exists a smooth projective
variety N and a birational map f : M ! N that conjugates G to a subgroup of
Aut(N) such that the induced action on N is algebraic.

It can be shown (see for example, [BF13]) that the sets (Crn)d ⇢ Crn consisting
of all birational transformations of degree  d are closed with respect to the Zariski
topology. So the closure of a subgroup of bounded degree in Crn is an algebraic
subgroup. Since all algebraic subgroups of Crn are linear ([BF13]), it can therefore
be regularized in the sense of the above theorem. We obtain:

Corollary 3.2.5. Let G ⇢ Crn be a subgroup that is contained in some (Crn)d,
then there exists a smooth projective variety N and a birational transformation
f : Pn 99K N such that fGf�1 ⇢ Aut(N).

The maximal algebraic subgroups of Cr2 have been classified together with
the rational surfaces on which they act as automorphisms ([Enr93], [Bla09]). In
dimension 3, a classification for maximal connected algebraic subgroups exists:
[Ume82b], [Ume85], [Ume82a].

3.2.3 Algebraic homomorphisms and continuous homomor-
phisms

We defined a group homomorphism from Crn to Bir(M) to be algebraic if its
restriction to PGLn+1(C) is a morphism. Note that this is a priori a weaker notion
than being continuous with respect to the Zariski topology. It is not clear, whether
algebraic homomorphisms are always continuous. However, for dimension 2 we
have the following partial result, which will proved in Section 3.2.5:

Proposition 3.2.6. Let � : Cr2 ! Bir(M) be a homomorphism of groups. The
following are equivalent:

(1) � is algebraic.

(2) The restriction of � to any algebraic subgroup of Cr2 is algebraic.

(3) The restriction of � to one positive dimensional algebraic subgroup of Cr2 is
algebraic.

3.2.4 One-parameter subgroups

A one-parameter subgroup is a connected algebraic group of dimension 1. It is
well known (see for example [Hum75]) that all linear one-parameter subgroups are
isomorphic to either C or C⇤. The group C is unipotent, the group C⇤ semi-simple.

Proposition 3.2.7 shows that, up to conjugation by birational maps, there exists
only one birational action of C and only one of C⇤ on P2:

Proposition 3.2.7. In Cr2 all one-parameter subgroups isomorphic to C are con-
jugate and all one-parameter subgroups isomorphic to C⇤ are conjugate.
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The first part of Proposition 3.2.7 follows from results in [BD15] and [Bla06]
(see also [Bru97]). The second part is a special case of Theorem 3.2.8.

Theorem 3.2.8 ([BB66], [Pop13]). In Crn all tori of dimension � n � 2 are
conjugate to a subtorus of Dn. Moreover, two subtori of Dn are conjugate in Crn
to each other if and only if they are isomorphic.

LetG be a connected linear algebraic group and {Ui}i2I the set of one-parameter
subgroups of G. Then the subgroup H ⇢ G generated by all the Ui is closed
and connected and there exist one-parameter subgroups U1, U2 . . . , Un such that
U1 · U2 · · ·Un = H ([Hum75, Proposition 7.5]). On the other hand, if g is the Lie
algebra of G, then the exponential map exp: g ! G induces a di↵eomorphism from
an analytically open set of g to an analytically open neigborhood V of the identity
in G. For all elements A 2 g, the closure of the abelian subgroup {exp(tA) | t 2 C}
in G is abelian and connected and therefore of the form (C⇤)m ⇥ Cn for some in-
tegers m and n (see for example [Kra14, Chapter 3.8]), hence it is contained in
H. We obtain that V is contained in G and hence that H is open in the analytic
topology. This yields H = G and thus

U1 · U2 · · ·Un = G.

The following Lemma is a classical result (see for example [Sta13]):

Lemma 3.2.9. Let G be a linear algebraic group and U1, . . . , Un be algebraic sub-
groups such that U1U2 · · ·Un = G. Let H be a linear algebraic group and ' : G ! H
a homomorphism of abstract groups such that '|Ui is a homomorphism of algebraic
groups for all i. Then ' is a homomorphism of algebraic groups.

3.2.5 Algebraic and abstract group homomorphisms

Let G and H be algebraic groups that are isomorphic as abstract groups. The
question whether G and H are also isomorphic as algebraic groups has been treated
in detail in [BT73] (see also [Die71] and [Dés06a]). We will use the following result:

Proposition 3.2.10. Let G be an algebraic group that is isomorphic to PGLn(C)
as an abstract group. Then G is isomorphic to PGLn(C) as an algebraic group.
Moreover, for every abstract isomorphism

⇢ : PGLn(C) ! G

there exists an automorphism of fields ⌧ : C ! C such that ⇢ � ⌧ is an algebraic
isomorphism.

Remark 3.2.1. It is well known that the automorphisms of PGLn(C) as an alge-
braic group are compositions of inner automorphisms and the automorphism

↵ : PGLn(C) ! PGLn(C), g 7! tg�1.

Proof of Proposition 3.2.6. We first show how (1) implies (2). Let G be an algebraic
subgroup of Cr2. We can assume that G is connected. By the above remark,



3.3. AN EXAMPLE BY GIZATULLIN 49

there exist one parameter subgroups U1, . . . , Uk ⇢ G such that U1 · · ·Uk = G.
Since, by Proposition 3.2.7, the group Ui is conjugate to a one parameter subgroup
of PGL3(C) for all i, we obtain that the restriction of ' to any of the Ui is an
algebraic homomorphism of groups and that '(G) ⇢ Crn is of bounded degree.
Then '(G) ⇢ Crn is an algebraic group. We can now apply Lemma 3.2.9 and
conclude that the restriction of ' to G is a homomorphism of algebraic groups.

Statement (3) follows immediately from statement (2), so it only remains to
prove that (3) implies (1). Let ' : Cr2 ! Bir(M) be a homomorphism of abstract
groups and let G ⇢ Cr2 be a positive dimensional algebraic subgroup such that the
restriction of ' to G is a morphism. Since G is infinite, it contains a one parameter
subgroup U ⇢ G.

Let U1, . . . , Un ⇢ PGL3(C) be unipotent one parameter subgroups such that
U1 · · ·Un = PGL3(C). If U is unipotent, all the subgroups Ui are conjugate to U .
Hence the restriction of ' to Ui is a morphism for all i. The image '(PGL3(C)) ⇢
Crn is of bounded degree, so '(PGL3(C)) ⇢ Crn is an algebraic group and with
Lemma 3.2.9 it follows that the restriction of ' to PGL3(C) is a morphism.

Denote by D1 ⇢ PGL3(C) the subgroup given by elements of the form [cx0 :
x1 : x2], c 2 C⇤ and by T ⇢ PGL3(C) the subgroup of all elements of the form
[x0 : x1 + cx0 : x2], c 2 C; we have D1 ' C⇤ and T ' C. If U is semi-simple, it is,
again by Proposition 3.2.7, conjugate to D1, hence the restriction of ' to D1 is a
morphism well. Note that

T = {[x0 : x1 + cx0 : x2] | c 2 C} = {dgd�1 | d 2 D1} [ {id}

where g = [x0 : x1 + x0 : x2]. We obtain that '(T ) is of bounded degree and
contained in the algebraic group '(T ) ⇢ Crn. As '(T ) consists of two '(D1)-orbits,
it is constructible and therefore closed. We obtain that the images of all unipotent
subgroups of Cr2 under ' are algebraic subgroups.The map '(U1)⇥ · · ·⇥'(Un) !
Crn is a morphism, so its image is a constructible set and therefore closed since
it is a group. Hence '(PGL3(C)) = '(U1) · · ·'(Un) is an algebraic subgroup. By
Proposition 3.2.10 it is isomorphic as an algebraic group to PGL3(C) and there
exists an automorphism of fields ⌧ : C ! C such that ' � ⌧ : PGL3(C) ! PGL3(C)
is an isomorphism of algebraic groups. But since the restriction of ' to T is already
an algebraic homomorphism, it follows that ⌧ is the identity.

Remark 3.2.2. Proposition 3.2.6 shows in particular that algebraic homomor-
phisms � : Cr2 ! Bir(M) send algebraic elements to algebraic elements. This
result follows also directly from the fact that a birational transformation f 2 Cr2
of degree d can be written as the product of at most 4d linear maps and 4d times
the standard quadratic involution � (see for example [AC02]); we therefore obtain
that the sequence {deg(�(f)n)} is bounded if {deg(fn)} is bounded.

3.3 An example by Gizatullin

3.3.1 Projective representations of PGLn(C)
The results from representation theory of linear algebraic groups that we use in
this section can be found, for example, in [FH91], [Pro07].
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Proposition 3.3.1. There is a bijection between homomorphisms of algebraic
groups from SLn(C) to SLm(C) such that the image of the center is contained
in the center and homomorphisms of algebraic groups from PGLn(C) to PGLm(C).

From Proposition 3.3.1 and some elementary representation theory of SL3(C) it
follows that n = 6 is the smallest number such that there exist non-trivial and non-
standard homomorphisms of algebraic groups from PGL3(C) to PGLn(C). In fact,
up to automorphisms of PGL3(C) there are exactly two non-trivial representations
from PGL3(C) to PGL6(C).

The first one is reducible. Let  0 : GL3 ! GL6 be the linear representation
given by the diagonal action on C3 ⇥C3; we denote by  : PGL3(C) ! PGL6(C)
its projectivisation.

The second one is given by the action of PGL3(C) on the space of conics. The
latter one can be parametrized by the space PM3 of symmetric 3⇥ 3-matrices up
to scalar multiple and is isomorphic to P5. Let g 2 PGL3(C), we define '(g) 2
PGL6(C) by (aij) 7! g(aij)(tg).

In this section we identify the space of conics with P5 in the following way:

(aij) 7! [a00 : a11 : a22 : a12 : a02 : a01]

In other words, the conic C given by the zeroes of the equation

F = a00X
2 + a11Y

2 + a22Z
2 + 2a12Y Z + 2a02XZ + 2a01XY

is identified with the point [a00 : a11 : a22 : a12 : a02 : a01] 2 P5 .
Observe that with our definition, '(g) sends the conic C to the conic given by

the zero set of the polynomial F � (tg).
Let

↵ : PGL3(C) ! PGL3(C)

be the algebraic automorphism g 7! (tg)�1. Then '(↵(g)) maps the conic C to
g(C), which is the conic given by the zero set of the polynomial F �g�1. Accordingly,
'(↵(g)) 2 PGL6(C) maps the matrix (aij) 2 M3 to (tg)�1(aij)g�1.

The action of PGL3(C) on P5 induced by ' has exactly three orbits that are
characterized by the rank of the corresponding symmetric matrix in M3. Geometri-
cally they correspond to the sets of smooth conics, pairs of distinct lines and double
lines. The set of double lines is a surface isomorphic to P2 and called the Veronese
surface; we denote it by V . The set of singular conics S is the secant variety of V
and has dimension 4.

To describe the PGL3(C)-orbits with respect to the action induced by  , con-
sider a point p = [x0 : x1 : x2 : x3 : x4 : x5] 2 P5. Then p can either be mapped
by an element of  (PGL3(C)) to a point of the form [a : 0 : 0 : b : 0 : 0], where
[a : b] 2 P1, or to the point [1 : 0 : 0 : 0 : 0 : 1] and these points are all in di↵erent
 (PGL3(C))-orbits. The stabilizer of [1 : 0 : 0 : 0 : 0 : 1] in  (PGL3(C)) is the
subgroup of matrices of the form


g 0
0 g

�
, where g 2 PGL3(C) has the form

2

4
1 a 0
0 b 0
0 c 1

3

5 .
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Therefore, the orbit of [1 : 0 : 0 : 0 : 0 : 1] under  (PGL3(C)) has dimension 5. The
orbit of a point of the form [a : 0 : 0 : b : 0 : 0], on the other hand, has dimension 2.
So we have a family parametrized by P1 of orbits of dimension 2 and one orbit of
dimension 5. In particular, there is no  (PGL3(C))-invariant subset of dimension
4.

The following observation is easy but useful. We leave its proof to the reader.

Lemma 3.3.2. Let X and Y be two projective varieties with biregular actions
of a group G and let f : X 99K Y be a G-equivariant rational map. Then the
indeterminacy locus If ⇢ X and the exceptional locus Exc(f) ⇢ X are G-invariant
sets.

Note that Lemma 3.3.2 implies in particular that all equivariant rational maps
between smooth projective varieties with respect to actions without orbits of codi-
mension � 2 are morphisms.

Lemma 3.3.3. Let M and M 0 be irreducible complex projective varieties such that
M ⇥ Pn et M 0 ⇥ Pn are birationally equivalent. Then the standard embeddings

 : PGLn+1(C) ! Bir(Pn ⇥M) and  0 : PGLn+1(C) ! Bir(Pn ⇥M 0)

are conjugate if and only if M and M 0 are birationally equivalent.

Proof. If M and M 0 are birationally equivalent it follows directly that  and  0

are conjugate. On the other hand, assume that there exists a birational map
A : Pn ⇥M 99K Pn ⇥M 0 that conjugates  to  0, i.e. A �  (g) =  0(g) � A for
all g 2 PGLn+1(C). The images  (PGLn+1(C)) and  0(PGLn+1(C)) permute the
fibers {p} ⇥ M , p 2 Pn and {p} ⇥ M 0, p 2 Pn respectively. By Lemma 3.3.2, no
fiber is fully contained in the exceptional locus of A.

The fiber
F := [1 : 1 : · · · : 1]⇥M ⇢ Pn ⇥M

consists of all fixed points of the image of the subgroup of coordinate permutations
 (Sn+1) and it is isomorphic to M . Correspondingly, the fiber

F 0 := [1 : 1 : · · · : 1]⇥M 0 ⇢ Pn ⇥M 0

consists of all fixed points of  0(Sn+1) and is isomorphic to M 0. Hence the strict
transform of F under A is F 0 and we obtain that M and M 0 are birationally
equivalent.

Proposition 3.3.4. Let ', : PGL3(C) ! PGL6(C) be the homomorphisms de-
fined in Section 3.3.1. The subgroups '(PGL3(C)) and  (PGL3(C)) are not con-
jugate in Cr5.

Proof. Assume that there is an element f 2 Cr5 conjugating '(PGL3(C)) to
 (PGL3(C)). Note that P5 has no  (PGL3(C))-invariant subset of dimension 4.
Hence, by Lemma 3.3.2, f must be a birational morphism and therefore an auto-
morphism. But this isn’t possible since the action of '(PGL3(C)) has an orbit of
dimension 4 and the action of  (PGL3(C)) does not.
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3.3.2 A rational action on the space of plane conics

Our goal is to extend the group homomorphism ' : PGL3(C) ! PGL6(C) to a
group homomorphism

� : Cr2 ! Cr5 .

A first naive idea is to check whether the map  : {PGL3(C),�} ! Cr5 defined
by  (g) = '(g) for g 2 PGL3(C) and  (�) = [x�1

0 : x�1
2 : · · · : x�1

5 ] extends to a
group homomorphism Cr2 ! Cr5. However,  (�) and  (h) don’t satisfy relation
(3) of Lemma 3.5.12. Let h = [Z �X : Z � Y : Z] 2 Cr2, then

([x�1
0 : x�1

1 : · · · : x�1
5 ] � '(h))3 6= id .

In [Giz99], Gizatullin constructs an extension � : Cr2 ! Cr5 of ', defined by
�|PGL3(C) = ' and

�(�) = [x1x2 : x0x2 : x0x1 : x3x0 : x4x1 : x5x2].

He shows the following:

Proposition 3.3.5 ([Giz99]). The map � : Cr2 ! Cr5 is a group homomorphism.

3.3.3 The dual action

We can also look at the representation '_ : PGL3(C) ! PGL6(C) that is defined
by

'_(g) := t'(g)�1.

In other words, '_ = ' � ↵, where ↵ : PGL3(C) ! PGL3(C) is the algebraic
automorphism g 7! (tg)�1.

Let A = (aij) be a 3⇥ 3 matrix. The cofactor matrix C(A) of A is given by

Cij(A) = (�1)i+jAij ,

where Aij is the i, j-minor of A, i.e. the determinant of the 2⇥ 2-matrix obtained
by removing the i-th row and j-th column of A. We denote by

Ad(A) := tC(A)

the adjugate matrix of A. This is a classical construction and it is well known that
Ad(AB) = Ad(B)Ad(A) and that if A is invertible, then Ad(A) = det(A)A�1. In
particular, Ad : PM3 99K PM3 is a birational map. The conic corresponding to
the symmetric matrix A is the dual of the conic corresponding to the symmetric
matrix A. This is one of the birational maps that A.R.Williams described in 1938
in his paper “Birational transformations in 4-space and 5-space” ([Wil38]).

Lemma 3.3.6. We identify P5 with the projectivized space of symmetric 3 ⇥ 3
matrices PM3. The birational transformation Ad 2 Cr5 is given by

Ad := [x1x2 �x2
3 : x0x2 �x2

4 : x0x1 �x2
5 : x4x5 �x0x3 : x3x5 �x1x4 : x3x4 �x2x5].

Moreover, Ad conjugates ' to '_.
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Proof. It is a straightforward calculation that the rational map Ad from P5 to itself
that corresponds to Ad is given by

Ad := [x1x2 �x2
3 : x0x2 �x2

4 : x0x1 �x2
5 : x4x5 �x0x3 : x3x5 �x1x4 : x3x4 �x2x5].

The actions of PGL3(C) on PM3 induced by ' and '_ are given by '(g)(X) =
gX(tg) and '_(g)X = t(g�1)Xg�1 respectively, for all X 2 PM3. We obtain

Ad('(g)(X)) = Ad(tg)Ad(X)Ad(g) = (tg)�1Ad(X)g�1 = '_(g)Ad(X).

Remark 3.3.1. The blow-up Q of P5 along the Veronese surface is the so called
space of complete conics. Let U ⇢ P5 be the open orbit of the PGL3-action on
P5 given by ', i.e. U = P5 \S. Then U can be embedded into P(C6) ⇥ P((C6)_)
by sending a conic C 2 U to the pair (C,C_), where C_ denotes the dual conic
of C. It turns out that Q is isomorphic to the closure of U in P(C6) ⇥ P((C6)_).
Moreover, the PGL3-action on P5 given by ' lifts to an algebraic action on Q and
the birational map ad to an automorphism of Q. More details on this subject can
be found for example in [Bri89].

Lemma 3.3.6 shows that the representations ' and '_ are conjugate to each
other in Cr5 by the birational transformation Ad. By conjugating �(�) with Ad
we can extend '_ to the dual embedding �_ : Cr2 ! Cr5 and obtain

�_(�) = [(x1x2 � x2
3)

2x0 : (x0x2 � x2
4)

2x1 : (x0x1 � x2
5)

2x2 :

(x0x2 � x2
4)(x0x1 � x2

5)x3 : (x1x2 � x2
3)(x0x1 � x2

5)x4 : (x1x2 � x2
3)(x0x2 � x2

4)x5].

3.3.4 Geometry of �

The embedding � induces a rational action of Cr2 on the space of conics on P2.
The action of �(�) can be seen geometrically as follows (compare with [Giz99,
Introduction]): Let Q0 := [1 : 0 : 0], Q1 := [0 : 1 : 0] and Q2 := [0 : 0 : 1]. Let
C ⇢ P2 be a conic that doesn’t pass through any of the points Qi. Write

C = {a00X2 + a11Y
2 + a22Z

2 + 2a12Y Z + 2a02XZ + 2a01XY = 0} ⇢ P2

Denote by Pij , i 2 {1, 2, 3}, j 2 {1, 2} the points of intersection of C with the
lines li, where l0 := {X = 0}, l1 := {Y = 0} and l2 := {Z = 0}. Denote by fij the
line passing through Qi and Pij . The images �(fij) are again lines passing through
the point Qi. Let P 0

ij be the intersection of �(fij) with li. One checks that the
conic D defined by the equation

a11a22x
2
0 + a00a22x

2
1 + a00a11x

2
2 + 2a00a12x1x2 + 2a11a02x0x2 + 2a22a01x0x2 = 0

passes through the points P 0
ij . Since no 4 of the 6 points P 0

ij lie on the same line,
D is the unique conic through the points P 0

ij . We have thus proven the following:

Proposition 3.3.7. For a general conic C ⇢ P2 there exists a unique conic D
through the six points P 0

ij and D is the image of C under �(�).
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Notice as well that the indeterminacy points of �(�) in P5 correspond to the
subspace of dimension 2 of conics passing through the points Q1, Q2, Q3 and the
subspaces of dimension 2 of conics consisting of one li and any other line. The
three subspaces of dimension 4 of conics passing through one of the points Qi are
contracted by the action of �(�) and form the exceptional divisor.

In homogeneous coordinates of P5, the four planes of indeterminacy locus of
�(�) can be described as follows

E0 = {x1 = x2 = x3 = 0}, E1 = {x0 = x2 = x4 = 0}, E2 = {x0 = x1 = x5 = 0}

and F = {x1 = x2 = x3 = 0}.
The exceptional divisor of �(�) consists of the three hyperplanes

H0 = {x0 = 0}, H1 = {x1 = 0}, H2 = {x2 = 0},

The hyperplanes H0, H1 and H2 are contracted by �(�) onto the planes E0, E1

and E2 respectively. Note as well that E0, E1 and E2 are contained in the secant
variety S ⇢ P5 of the Veronese surface V and they are tangent to V .

The geometrical description of the rational action of �_(�) on the space of
conics is the dual of the construction described above. If C is a conic not passing
through any of the points Q0, Q1, Q2, we get �_(�)(C) in the following way: let
li,1, li,2 be the tangents of C passing through the point Qi. Then the images of the
li,1 and li,2 under � are lines again. There exists a unique conic having all the lines
�(li,1) and �(li,2) for all i as tangents.

These geometrical constructions show that �(Cr2) preserves the space of conics
consisting of double lines and therefore the Veronese surface V in P5. The injective
morphism

v : P2 ! P5, [X : Y : Z] 7! [X2 : Y 2 : Z2 : Y Z : XZ : XY ]

is called the Veronese morphism. It is an isomorphism onto its image, which is
V . It is well known that v is PGL3(C)-equivariant with respect to the standard
action and the action induced by � respectively. The restriction of �(�) to V is a
birational transformation. We therefore obtain a rational action of Cr2 on V ' P2.
Since the restriction of this rational action to PGL3(C) is the standard action, we
obtain by Corollary 3.5.11 from the appendix that v is Cr2-equivariant.

We observe as well that �(Cr2) preserves the secant variety S ⇢ P5 of V . Note
that S is the closure of the image of the rational map:

S : P2 ⇥P2 ! S ⇢ P5,

that maps the point [X : Y : Z], [U : V : W ] 2 P2 ⇥P2 to the point

[XU : Y V : ZW : 1/2(YW + UZ) : 1/2(XW + ZU) : 1/2(XV + Y U)].

Note that S is generically 2 : 1. Again, the geometrical construction above shows
that S is Cr2-equivariant with respect to the diagonal action on P2 ⇥P2 and the
action given by � on P5 respectively.

We obtain the following sequence of Cr2-equivariant maps:
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P2 ��! P2 ⇥P2 S99K P5,

where � is the diagonal embedding. This proves part (2) to (4) of Theorem 3.1.3.
Let f 2 Crn be a birational transformation and let l ⇢ Pn be a general line and

H ⇢ P5 a general hyperplane. Then, f�1(H) intersects l in deg(f) points, which is
equivalent to f(l) intersecting H in deg(f) points. More generally, if C ⇢ Pn is a
general curve of degree d, then f(C) intersects H in d · deg(f) points. If C and H
are not in general position, but C is not contained in the exceptional locus of f and
f(C) is not contained in H, we only have that f(C) and H intersect in  d ·deg(f)
points. With this and the observation that �(Cr2) preserves the Veronese surface
and extends the canonical rational action of Cr2 we are able to prove part (1) of
Theorem 3.1.5:

Proposition 3.3.8. Let f 2 Cr2. Then deg(f)  deg(�(f)).

Proof. Denote by v : P2 ! P5 the Veronese embedding. Let C ⇢ P2 be a general
conic. The image v(C) ⇢ P5 is a curve of degree 4 given by the intersection of
a hyperplane H ⇢ P5 and the Veronese surface. Let f 2 Cr2 be a birational
transformation of degree d. The strict transform f(C 0) of a general conic C 0 ⇢ P2

intersects C in 4d di↵erent points. By the above results (namely, (3) in Theorem
3.1.3) we know that v(f(C 0)) = �(f)(v(C 0)). The curve v(C 0) is a curve of degree
4 and since v(f(C 0)) = �(f)(v(C 0)) intersects the hyperplane H in 4d points we
obtain by the above remark that deg(�(f)) � d.

3.3.5 Two induced embeddings from Cr2 into Cr4

The birational map Ad 2 Cr5 contracts the secant variety S ⇢ P5 onto the Veronese
surface V ⇢ P5. However, the exceptional locus of  _(�) = Ad�(�)Ad consists of
the three hyperplanes

G0 = {z1z2 � z23 = 0}, G1 = {z0z2 � z24 = 0}, G2 = {z0z1 � z25 = 0},

with respect to homogeneous coordinates [z0 : z1 : z2 : z3 : z4 : z5] of P5.
This implies in particular that the restriction of �_(�) to S induces a birational

map of S and therefore that any element in �_(Cr2) restricts to a birational map
of S.

Since S is a cubic hypersurface and contains the two disjoint planes

E1 = {z1 = z2 = z3 = 0}, E2 = {z0 = z4 = z5 = 0},

it is rational. Explicitely, projection onto E1 and E2 yields the birational map
A : S 99K P2 ⇥P2 defined by

[z0 : z1 : z2 : z3 : z4 : z5] 7! [z1 : z2 : z3], [z0 : z4 : z5].

The inverse transformation A�1 is given by

[x0 : x1 : x2], [y0 : y1 : y2] 7! [p2y0, p1x0, p1x1, p1x2, p2y1, p2y2],
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where p1 = (x0y21 + x1y22 � 2x2y1y2) and p2 = y0(x0x1 � x2
2).

Let f 2 Cr2. As seen above, both images �(f) and �_(f) restrict to a birational
map of S. So conjugation of � and �_ by A yields two embeddings from Cr2 into
Bir(P2 ⇥P2) ' Cr4, which we denote by  1 and  2 respectively.

Proof of Proposition 3.1.4. Irreducibility is proved in Section 3.3.8.
By Theorem 3.2.8, all tori D2 ⇢ Cr4 are conjugate to the standard torus D2 ⇢

Cr4. We calculate the map that conjugates  1(D2) =  2(D2) to the image of the
standard embedding of D2 explicitely. Let ⇢ : P2 ⇥P2 99K P2 ⇥P2 be the birational
transformation defined by

([x0 : x1 : x2], [y0 : y1 : y2]) 7! ([x2y0 : x0y1 : x2y1], [x0y
2
1 : x1y

2
2 : x2y1y2]).

The inverse map ⇢�1 is given by

([x0 : x1 : x2], [y0 : y1 : y2]) 7! ([x2
1y

2
2 : x2

2y0y1 : x1x2y
2
2 ], [x0y0 : x2y0 : x1y2]).

One calculates that ⇢A 1([aX : bY : cZ])A�1⇢�1 maps ([x0 : x1 : x2], [y0 : y1 : y2])
to ([ax0 : bx1 : cx2], [y0 : y1 : y2]). Correspondingly, ⇢A 2([aX : bY : cZ])A�1⇢�1

maps ([x0 : x1 : x2], [y0 : y1 : y2]) to ([a�1x0 : b�1x1 : c�1x2], [y0 : y1 : y2]). So the
second coordinates parametrize the closures of the D2-orbits. Since W2 normalizes
D2, its image preserves the D2-orbits. We thus obtain two homomorphisms

�1 : W2 ! Cr2,�2 : W2 ! Cr2

by just considering the rational action of W2 on the second coordinate.
Assume that there exists an element A 2 Bir(P2 ⇥P2) that conjugates  to  _.

As A normalizes  1(D2) =  2(D2), it preserves the  1(D2)-orbits as well. Hence
by restriction on the second coordinate, it conjugates �1 to �2. It therefore su�ces
to show that �1 and �2 are not conjugate.

In Cr2 we have

f := [XY : Y Z : Z2] = ⌧1g0�g0�g0⌧2,

where ⌧1 = [Z : Y : X], ⌧2 = [Y : Z : X] and g0 = [Y �X : Y : Z]. By calculating
the corresponding images under � we obtain

�(f) = �(⌧1g0�g0�g0⌧2) = [x0x1 : x1x2 : x2
2 : x2x3 : �x2x5 + 2x3x4 : x1x4]

and �_(f) = [g0 : g1 : g2 : g3 : g4 : g5], where

g0 = (x0x1 � x2
5)

2x0,

g1 = x2
0x

2
1x2 � 2x0x1x2x

2
5 � 4x0x1x3x4x5 + 4x0x

2
3x

2
5 + 4x1x

2
4x

2
5 + x2x

4
5 � 4x3x4x

3
5,

g2 = (x0x2 � x2
4)

2x1,

g3 = (x0x2 � x2
4)(x0x1x3 � 2x1x4x5 + x3x

2
5),

g4 = �(x0x2 � x2
4)(x0x1 � x2

5)x5,

g5 = (x0x1 � x2
5)(x0x1x4 � 2x0x3x5 + x4x

2
5).
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This yields
�1(f) = [(y1 � 2y2)

2 : y0y1 : �y2(y1 � 2y2)]

and

�2(f) = [y20y1 + 4y0y
2
1 � 6y0y1y2 � 3y1y

2
2 + 4y32 : y0(y0 + 2y1 � 3y2)

2 :

(2y0y1 � y0y2 � y22)(y0 + 2y1 � 3y2)].

We show that these two transformations are not conjugate in Cr2. With respect to
a�ne coordinates [y0 : y1 : 1] one calculates

�1(f)
2 =

✓
y0y1 � 2y1 + 4

y1 � 2
, y1

◆
.

From this we see that the integer sequence deg(�1(f)n) grows linearly in n and is,
in particular, not bounded.

Let A = [y0 � y2 : y1 � y2 : y2]. Then

A�2(f)
2A�1 = [�y20y

2
1(2y1+y0) : y

2
0y

2
1(3y1+2y0) : p(y0, y1, y2)(3y1+2y0)(2y1+y0)],

where p(y0, y1, y2) = (6y21y2 + 7y2y0y1 + 6y0y21 + 2y20y2 + 2y20y1). We claim that

fn
A = A�2(f)

2nA�1 = [�y20y
2
1(2ny1 + (2n� 1)y0) : y

2
0y

2
1((2n+ 1)y1 + 2ny0) : fn],

where fn = (2ny1+(2n�1)y0)((2n+1)y1+2ny0)pn(y0, y1, y2) for some homogeneous
pn 2 C[y0, y1, y2] of degree 3. Note that this claim implies in particular that
deg(�2(f)n) is bounded for all n and hence that �1(f) and �2(f) are not conjugate.

To prove the claim we proceed by induction. Assume that fn
A has the desired

form. One calculates that the first coordinate of fn+1
A = A�2(f)2A�1 � fn

A is

�ry20y
2
1((2n+ 2)y1 + (2n+ 1)y0),

the second coordinate is

ry20y
2
1((2n+ 3)y1 + (2n+ 1)y0)

and the third coordinate

r((2n+ 2)y1 + (2n+ 1)y0)((2n+ 3)y1 + (2n+ 1)y0)pn+1(x0, x1, x2),

where r = y40y
4
1(2ny0 + (2n � 1)y1)2((2n + 1)y0 + 2ny1)2 and pn 2 C[x0, x1, x2] is

homogeneous of degree 3. This proves the claim.

3.3.6 A volume form

Let M be a complex projective manifold. It is sometimes interesting to study
subgroups of Bir(M) that preserve a given form. In [Bla13] and [DL16] the au-
thors study for example birational maps of surfaces that preserve a meromorphic
symplectic form (see [CK15] for the 3-dimensional case). In [Giz08] and [CD16]
Cremona transformations in dimension 3 preserving a contact form are studied.
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Define

F := det

0

@
x0 x5 x4

x5 x1 x3

x4 x3 x2

1

A

and let

⌦ :=
x6
5

F 2
· dx0 ^ dx1 ^ dx2 ^ dx3 ^ dx4.

Then ⌦ is a 5-form on P5 with a double pole along the secant variety of the Veronese
surface. Note that the total volume of P5 is infinite.

Proposition 3.3.9. All elements in �(Cr2) preserve ⌦.

Proof. We show that �(PGL3(C)) and �(�) preserve ⌦.
Let g = [�X : �Y : Z] 2 �(PGL3(C)). One checks that �(g) preserves ⌦.

Since �(PGL3(C)) preserves F , we have that �(fgf�1) preserves ⌦ as well. As
�(PGL3(C)) is simple, the whole group preserves ⌦.

With respect to a�ne coordinates given by x5 = 1, we have

�(�) = (x1, x0, x0x1x
�1
2 , x0x3x

�1
2 , x1x4x

�1
2 ).

A direct calculation yields ⌦ � �(�) = ⌦.

3.3.7 Polynomial automorphisms

In this section we will prove Claim (6) of Theorem 3.1.3 as well as Theorem 3.1.5.
Let Aut(A2) ⇢ Cr2 be the subgroup of automorphisms of the a�ne plane with
respect to the a�ne coordinates [1 : X : Y ]. By the theorem of Jung and van der
Kulk (see for example [Lam02]), Aut(A2) has the following amalgamated product
structure

Aut(A2) = A↵2 ⇤\J2,

where J2 denotes the subgroup of elementary automorphisms, which is the sub-
group of all elements of the form

{(c1X + b, c2Y + p(X)) | c1, c2, b 2 C, p(X) 2 C[X]} .

Let f 2 Aut(A2) and assume that f = a1j1a2j2 · · · jn�1an, where a1, an 2 A↵2,
ai 2 A↵2 \J2 for 2  i  n � 1 and ji 2 J2 \ A↵2. It is well known that
deg(f) = deg(j1) deg(j2) · · · deg(jn�1).

Let Aut(A5) ⇢ Cr5 be given by the a�ne coordinates [1 : x1 : · · · : x5].
Lemma 3.3.10 follows from a direct calculation.

Lemma 3.3.10. The image �(A↵2) is contained in A↵5.

We consider the following elements in J2:

f�n := (X,Y + �Xn),

where n 2 Z�0 and � 2 C.
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Lemma 3.3.11. For all n 2 Z�0 we have

�(f�n ) = (x1, x2 + �2xn
1 + �x3An � �x4x1An�1, x3 + �x1Bn�1, x4 + �Bn, x5),

where

An = 2

bn/2cX

k=0

✓
n

2k + 1

◆
xn�2k�1
5 (x2

5 � x1)
k

and

Bn =

bn/2cX

k=0

✓
n

2k

◆
xn�2k
5 (x2

5 � x1)
k.

Moreover, the following recursive identities hold:

An = 2x5An�1 � x1An�2,

Bn = 2x5Bn�1 � x1Bn�2.

Proof. For n = 0 and n = 1 the claim follows from a direct calculation.
Let s := (X,XY ) 2 Cr2. Then we have f�n+1 = sf�ns

�1. In Cr2 the iden-
tity s = ⌧1g0�g0�g0⌧2 holds, where ⌧1 = (XY �1, Y �1), ⌧2 = (Y �1, XY �1) and
g0 = (X,XY ). Note that ⌧1 and ⌧2 are elements of PGL3. If we calculate the
corresponding images under � we obtain

�(s) = �(⌧1g0�g0�g0⌧2) = (x1, x1x2, x1x4, 2x4x5 � x3, x5)

and
�(s�1) = (x1, x2x

�1
1 , 2x3x5x

�1
1 � x4, x3x

�1
1 , x5).

One calculates

sf�ns
�1 = (x1, x2 + �2xn+1

1 + �x3(2x5 � x1)An�1 � �x4x1An, x3 + �x1Bn,

x4 � �(2x5Bn � x1Bn�1).

This shows by induction that

�(f�n ) = (x1, x2 + �2xn
1 + �x3An � �x4x1An�1, x3 + �x1Bn�1, x4 + �Bn, x5),

where
An = 2x5An�1 � x1An�2, A0 = 0, A1 = 2;

Bn = 2x5Bn�1 � x1Bn�2, B0 = 1, B1 = x5.

These recursive formulas have the following closed form:

An =

�
x5 +

p
x5

2 � x1

�n �
�
x5 �

p
x5

2 � x1

�n
p
x5

2 � x1
,

Bn =
1

2

⇣
x5 �

p
x5

2 � x1

⌘n
+ 1/2

⇣
x5 +

p
x5

2 � x1

⌘n
.

The claim follows.
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Since A↵n together with all the elements f�n , n 2 N, � 6= 0 generates Aut(A2),
Lemma 3.3.11 shows that �(Aut(A2)) is contained in Aut(A5) and thus claim (6)
of Theorem 3.1.3.

Lemma 3.3.12. Let n and m be positive integers and An, Bm as in Lemma 3.3.11.
Then

AnBm�1 �An�1Bm = P (x1, x5),

where P 2 C[x1, x5] is a polynomial of degree < max{m,n}.

Proof. If n = 1 or m = 1 the claim is true, since A0 = 0, A1 = 2, B0 = 1, B1 = x5

and deg(Ak) = k � 1, deg(Bk) = k. By the identities from Lemma 3.3.11, one
obtains

AnBm�1 �An�1Bm = (2x5An�1 � x1An�2)Bm�1 �An�1(2x5Bm�1 � x1Bm�2)

= x1(An�1Bm�2 �An�2Bm�1).

The claim follows by induction on m and n.

Lemma 3.3.13. Let

f = f�1
1 f�2

2 · · · f�n
n , where �n 6= 0.

Then

�(f) = (x1, x2 + F, x3 + p3(x1, x5) + �nx1Bn�1, x4 + p4(x1, x5) + �nBn, x5),

where F = p2(x1, x5) + x3(�1A1 + · · ·+ �nAn)� x4x1(�1An�1 + · · ·+ �nAn) and
p2, p3, p4 2 C[x1, x5] are polynomials of degree  n. In particular, deg(�(f)) =
deg(f).

Proof. It is easy to see that the third and fourth coordinate of �(f) have the
claimed form. The more di�cult part is the second coordinate.

For n = 1 the claim follows directly from Lemma 3.3.11. We proceed now by
induction. Let �n+1 6= 0 and m be the largest number, such that m  n and
n 6= 0. By the induction hypothesis we may assume that the second coordinate of
�(f�1

1 f�2
2 · · · f�m

m ) has the form

x2 + p2(x1, x5) + x3(�1A1 + · · ·+ �mAm)� x4x1(�1A0 + · · ·+ �mAm�1).

The second coordinate of �(f�1
1 f�2

2 · · · f�m
m ) � �(f�n

n ) is therefore

x2+p2(x1, x5)+x3(�1A1+· · ·+�mAm+�nAn)�x4x1(�1A0+· · ·+�mAm�1+�nAn)

+x1

mX

k=1

�k(AkBn�1 �Ak�1Bn).

By Lemma 3.3.12, x1
Pm

k=1 �k(AkBn�1�Ak�1Bn) is a polynomial in x1 and x5 of
degree  n.
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Proof of Theorem 3.1.5. The first claim was proved in Proposition 3.3.8.
To prove the second part, we show in a first step that deg(�(f)) = deg(f) for all

elements f 2 J2. Composition with an element in A↵2 doesn’t change the degree,
by Lemma 3.3.10. So it is enough to consider elements in J2 of the form f = (X,Y +
P (X)), P 2 C[X]. For suitable �i 2 C we have f = f�1

1 f�2
2 · · · f�n

n , where �n 6= 0.
In Lemma 3.3.13 we’ve seen that � preserves the degree of these elements.

Let now f 2 Aut(A2) be arbitrary and assume that f = a1j1a2j2 · · · jn�1an,
where a1, an 2 A↵2, ai 2 A↵2 \J2 for 2  i  n � 1 and ji 2 J2 \ A↵2. So
deg(f) = deg(j1) deg(j2) · · · deg(jn�1) and

�(f) = �(a1)�(j1)�(a2)�(j2) · · ·�(jn�1)�(an).

This implies in particular that

deg(�(f))  deg(�(a1)) deg(�(j1)) · · · deg(�(jn�1)) deg(�(an)) = deg(f).

With this and part (1) of Theorem 3.1.5, part (2) follows.

3.3.8 Irreducibility of �,  1 and  2

First we show that � is irreducible. Assume that there is a rational dominant map
⇡ : P5 99K M to a variety M with an algebraic embedding 'M : Cr2 ! Bir(M) such
that A is Cr2-equivariant. Since 'M is algebraic, we may assume that PGL3(C)
acts regularly on M . We obtain that the restriction of A to the open PGL3(C)-
invariant subset U ⇢ P5 consisting of all smooth conics is a PGL3(C)-equivariant
morphism, whose image is an open dense subset of M on which PGL3(C) acts
transitively. Note that this implies dim(M) > 1.

If dimM = 2, we obtain by Theorem 3.5.9 that M ' P2 with the standard
action of PGL3(C). The stabilizer in PGL3(C) of a point in U ⇢ P5 is isomorphic to
SO3(C). On the other hand the stabilizer in PGL3(C) of a point in P2 is isomorphic
to the group of a�ne transformations A↵2 = GL2(C)n C2. Since SO3(C) can not
be embedded into A↵2, the case dim(M) = 2 is not possible.

If dim(M) = 3, we find, by Theorem 3.4.1, a PGL3(C)-equivariant projection
M 99K P2 and are again in the case dim(M) = 2.

If dim(M) = 4, let p 2 M be a general point and Fp := A�1(p) ⇢ P5 the fiber
of A. Let q 2 Fp be a point that is only contained in one connected component
C of Fp. Again, the stabilizer of q is isomorphic to SO3(C). This implies that
SO3(C) acts regularly on the curve C with a fixpoint. The neutral component of
the group of birational transformations of C is isomorphic to PGL2(C), is abelian or
is trivial. In all cases we obtain that the connected group SO3(C) fixes C pointwise.
In other words, the group SO3(C) preserves each conic of the family of conics in P2

parametrized by C. This is not possible.
The proof that  1 and  2 are irreducible is done analogously.

3.4 PGLn+1(C)-actions in codimension 1

In this section we look at algebraic embeddings of PGLn+1(C) into Bir(M) for com-
plex projective varieties M of dimension n+1. Our aim is to prove Theorem 3.4.1.
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Theorem 3.4.1. Let n � 2 and let M be a smooth projective variety of dimen-
sion n+ 1 with an algebraic rational non-trivial PGLn+1(C)-action. Then, up to
birational conjugation and automorphisms of PGLn+1(C), we have one of the fol-
lowing:

(1) M ' Fl = P(O
P

n � O
P

n(�l(n + 1)) for a unique element l 2 Z�0 and
PGLn+1(C) acts as in Example 3.1.8.

(2) M ' Pn ⇥C for a unique smooth curve C and PGLn+1(C) acts on the first
factor as in Example 3.1.1.

(3) M ' P(T P2) and PGL3(C) acts as in Example 3.1.9.

(4) M ' G(1, 3) and PGL4(C) acts as in Example 3.1.10.

Moreover, these actions are not birationally conjugate to each other.

Remark 3.4.1. If M is rational and of dimension 2 or 3, this result can be deduced
directly from the classification of maximal algebraic subgroups of Cr2 and Cr3 by
Enriques, Umemura and Blanc ([Enr93], [Ume82b], [Ume85], [Ume82a], [Bla09]).

3.4.1 Classification of varieties and groups of automorphisms

With some geometric invariant theory and using results of Freudenthal about topo-
logical ends, the following classification can be made (see [CZ12, Theorem 4.8] and
the references in there):

Theorem 3.4.2. Let M be a smooth projective variety of dimension n+ 1 with a
non-trivial regular action of PGLn+1(C), where n � 2. Then we are in one of the
following cases:

(1) M ' P(O
P

n �O
P

n(�k)) for some k 2 Z�0.

(2) M ' Pn ⇥C for a curve C of genus � 1.

(3) M ' P(T P2) ' PGL3(C)/B, where B ⇢ PGL3(C) is a Borel subgroup.

(4) M ' G(1, 3) ' PGL4(C)/P , where P ⇢ PGL4(C) is the parabolic subgroup
consisting of matrices of the form

0

BB@

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 0 ⇤ ⇤
0 0 ⇤ ⇤

1

CCA .

The neutral components Aut0(M) of the automorphism groups of the varieties
M that appear in Theorem 3.4.2 are well known. Proofs of the following Proposition
can be found in [Akh95, Proposition 2.4.1, 2.4.2, Example 2.4.2, and Theorem
3.3.2].
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Proposition 3.4.3.

• Aut0(P(O
P

n �O
P

n(�k)) ' (GLn+1(C)/µk)o C[x0, . . . , xn]k, where
C[x0, . . . , xn]k denotes the additive group of homogeneous polynomials of de-
gree k and µk ⇢ C⇤ the group of all elements c 2 C⇤ satisfying ck = 1,

• Aut0(Pn ⇥C) ' PGLn+1(C)⇥Aut0(C),

• Aut0(P(T P2)) ' PGL3(C),

• Aut0(G(1, 3)) ' PGL4(C).

To describe the PGLn+1(C)-actions on these varieties we recall some results
about group cohomology.

3.4.2 Group cohomology

Let H be a group that acts by automorphisms on a group N . A cocycle is a map
⌧ : H ! N such that ⌧(gh) = ⌧(g)(g · ⌧(h)) for all g, h 2 H. Two cocycles ⌧ and ⌫
are cohomologous if there exists an a 2 N such that

⌧(g) = a�1⌫(g)(g · a) for all g 2 H.

This defines an equivalence relation on the cocycles. The set of cocycles up to co-
homology will be denoted by H1(H,N). If H acts trivially on N , the set H1(H,N)
corresponds to the set of group homomorphisms H ! N up to conjugation. The
following lemma is well known.

Lemma 3.4.4. Let G := N oH be a semi direct product of groups and ⇡ : G ! H
the canonical projection on H. Then there exists a bijection between H1(H,N) and
the sections of ⇡ up to conjugation in N .

There always exists the trivial cocycle ⌧0 : H ! N , g 7! eN . The setH1(G,N) is
therefore a pointed set with basepoint ⌧0. Assume that G acts on two groups A and
B by automorphisms. A G-homomorphism � : A ! B induces a homomorphism of
pointed sets

�⇤ : H
1(G,A) ! H1(G,B)

given by �⇤(⌧) = � � ⌧.

Proposition 3.4.5 ([Ser79], p. 125, Proposition 1). Let G be a group that acts by
automorphisms on groups A,B and C. Every exact sequence of G-homomorphisms

1 ! A ! B ! C ! 1

induces an exact sequence of pointed sets

H1(G,A) ! H1(G,B) ! H1(G,C).
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3.4.3 Proof of Theorem 3.4.1

We use the classification of smooth projective varieties of dimension n + 1 with
a regular PGLn+1(C) action of Theorem 3.4.2. We have to show that case (1)
appears only if k = l(n+ 1) for some integer l. Examples 3.1.7 to 3.1.10 show that
for all the other varieties there exist PGLn+1(C)-actions. So we have to show that
these actions are unique and not birationally conjugate to each other.

Uniqueness of the actions

By Proposition 3.4.3, Aut0(P(T P2)) ' PGL3(C) and Aut0(G(1, 3)) ' PGL4(C).
The uniqueness of the embedding is clear in these cases since PGLn+1(C) is a simple
group. If M ' Pn ⇥C uniqueness follows directly from the fact that PGLn+1(C)
does not embed into Aut(C).

Now we show that PGLn+1(C) can be embedded into Aut0(P(O
P

n �O
P

n(�k))
if and only if n | k. Then we show that in this case, up to conjugation and algebraic
automorphisms of PGLn+1(C), the embedding is unique.

Lemma 3.4.6. A non-trivial algebraic group homomorphism from PGLn(C) to
GLn(C)/µk exists if and only if n | k, where

µk = {� id | � 2 C,�k = 1}.

Proof. If n | k, we have PGLn(C) ' SLn(C)/(µk \ SLn(C)) = SLn(C)/(µk \
µn(C)) ⇢ GLn(C)/µk.

On the other hand, assume that there exists a non-trivial algebraic homo-
morphism � : PGLn(C) ! GLn(C)/µk. Since PGLn(C) is simple, the image
�(PGLn(C)) is contained in the derived subgroup of GLn(C)/µk, which is the group
SLn(C)/(µk \SLn(C)) = SLn(C)/(µk \µn). Both, �(PGLn(C)) and SLn(C)/(µk \
µn(C)), are irreducible and have the same dimension. Since the center of �(PGLn(C))
is trivial, it follows that µn ⇢ µk and hence that n divides k.

Let n and k be positive integers such that (n+1) | k. Denote by C[x0, . . . , xn]k
the vector space of homogeneous polynomials of degree k . We define

G := C[x0, . . . , xn]k o PGLn+1(C),

where the semi direct product is taken with respect to the action g · p = p � g�1.
Here we look at PGLn+1(C) ⇢ GLn+1(C)/µk as described in Lemma 3.4.6. Let
⇡ : G ! PGLn+1(C) be the standard projection.

Lemma 3.4.7. Up to conjugation, there exists a unique section ◆ : PGLn+1(C) !
G of ⇡.

Proof. Let
◆ : PGLn+1(C) ! G

be the standard section of ⇡ and let

' : PGLn+1(C) ! G
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be an arbitrary section of ⇡. We show that ' is conjugate to ◆. Note that it is
enough to show that '(PGLn+1(C)) = ◆(PGLn+1(C)).

The group G acts by a�ne transformation on the a�ne space C[x0, . . . , xn]k
and ◆(PGLn+1(C)) is the subgroup of G consisting of all elements that fix 0. Let
H ⇢ Dn�1 be the finite subgroup consisting of the identity and all elements of
order d for some d large enough and not divisible by k. Then the action of '(H)
on C[x0, . . . , xn]k has a fixed point p. Indeed, let p 2 C[x0, . . . , xn]k and consider
its finite orbit p1, . . . , pr of p under H. The barycenter of p1, · · · , pr, i.e. the point
q = 1/r(p1 + p2 + · · ·+ pr) is then invariant under the transformations in H. After
conjugation, we can assume that q = 0 and hence

'(H) ⇢ ◆(PGLn+1(C))

and therefore '(H) = ◆(H).
The centralizer of H in PGLn+1(C) is the diagonal subgroup Dn. The central-

izer of ◆(H) in G is ◆(Dn), since, by assumption, d is no multiple of k. This implies
'(Dn) = ◆(Dn). The normalizer of Dn in PGLn+1(C) is DnoSn+1 and the normal-
izer of ◆(Dn) in G is ◆(DnoSn+1). Hence we obtain '(DnoSn+1) = ◆(DnoSn+1)
and since both ◆ and ' are sections,

'|DnoSn+1 = ◆|DnoSn+1 .

Let g := (x0 + x1, x1, . . . , xn) 2 PGLn+1(C). Let E ⇢ Dn be the centralizer of
g in Dn. So E is the subgroup of elements of the form

(c0x0, c0x1, c2x2, . . . , cnxn)

with ci 2 C⇤ such that c20c2c3 · · · cn = 1. Denote '(g) = (v, g), for some v 2
C[x0, . . . , xn]k. Take a d 2 E. Then ◆(d) = (0, d) and (0, d)(v, g)(0, d�1) =
(v � d�1, g) yields v � d�1 = v. Therefore, all summands of v are of the form
xr0
0 xr1

1 (x0 · · ·xn)s, where r0 + r1 = s. Assume that

v =
X

s,r0+r1=s

ar0r1sx
r0
0 xr1

1 (x0 · · ·xn)
s.

We calculate
(v, g)2 = (v + v � g�1, g2),

and
v + v � g�1 =

X

s,r0+r1=s

ar0r1sx
r0
0 xr1

1 (x0 · · ·xn)
s

+
X

s,r0+r1=s

ar0r1s(x0 � x1)
r0xr1

1 ((x0 � x1)x1 · · ·xn)
s.

On the other hand, we have g2 = f � g � f�1 for f = (x0, 1/2x1, 2x2, x3, . . . , xn).
Hence

(0, f)(v, g)(0, f�1) = (v, g)2 = (v + v � g�1, g2),

and therefore

v + v � g�1 =
X

s,r0+r1=s

2r1ar0r1sx
r0
0 xr1

1 (x0 · · ·xn)
s
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This yields ar0r1s = 0 for all r1, r2 and s and thus '(g) 2 ◆(PGLn+1(C)).
Since PGLn+1(C) is generated as an abstract group by Dn o Sn+1 and g, this

yields '(PGLn+1(C)) = ◆(PGLn+1(C)), which finishes the prove.

Lemma 3.4.8. PGLn+1(C) acts non-trivially on the fibration P(O
P

n �O
P

n(�k))
with basis Pn if and only if k = l(n+ 1) for some nonnegative l. Moreover, in this
case the action is unique up to conjugation and up to algebraic automorphisms of
PGLn+1(C).

Proof. Let � : PGLn+1(C) ! Aut0(P(O
P

n�O
P

n(�k))) be an algebraic embedding.
By Proposition 3.4.3, there exists an exact sequence of algebraic homomorphisms

1 ! C[x0, . . . , xn]k ! Aut0(P(O
P

n �O
P

n(�k))) ! GLn+1(C)/µk ! 1.

If � is non-trivial, this induces a non-trivial algebraic homomorphism from
PGLn+1(C) into GLn+1(C)/µk and by Lemma 3.4.6 this is possible if and only if
(n + 1) | k. So assume that k = l(n + 1) for an integer l. It remains to show that
in this case � is unique up to conjugation and up to algebraic automorphisms of
PGLn+1(C). Let

Fl := P(O
P

n �O
P

n(�k)).

We look at Fl as a P1-fibration over the basis Pn. So there is an exact sequence

1 ! Aut0
P

n(Fl) ! Aut0(Fl)
⇡�! PGLn(C) ! 1.

Here, Aut0
P

n(Fl) ' C⇤ nC[x0, . . . , xn]k denotes the subgroup of automorphisms of
Fl that fix the basis Pn pointwise.

Let H := PGLn+1(C). By Lemma 3.4.4, the sections of ⇡ up to conjugation are
in bijection with

H1(H,Aut0
P

n(Fl)) = H1(H,C[x0, . . . , xn]k o C⇤ /µk).

By Proposition 3.4.5, there is an exact sequence of pointed sets

H1(H,C[x0, . . . , xn]k) ! H1(H,Aut
P

n(Fl)) ! H1(H,C⇤ /µk).

The action of H on C⇤ /µk is trivial, so H1(H,C⇤ /µk) is the set of homomor-
phisms H ! C⇤ /µk. Hence H1(H,C⇤ /µm) = {1}. By Lemma 3.4.7, we obtain
H1(H,C[x0, . . . , xn]k) = {1} and thus H1(H,Aut

P

n(Fl)) = {1}. So, all sections of
⇡ are conjugate.

Now, since H is simple and not contained in Aut0
P

n(Fl), we obtain ⇡��(H) ⇢ H.
Both � and ⇡ are are algebraic morphisms, so ⇡ � �(H) = H. Therefore, up to the
algebraic automorphism ⇡ � �, the homomorphism � is a section of ⇡.

Non conjugacy

It remains to show that the actions from Theorem 3.4.1 are not birationally conju-
gate.

Let M be a variety of dimension n+ 1 on which PGLn+1(C) acts faithfully.
If M is not rational, then M is isomorphic to Pn ⇥C for some smooth curve C.

Recall that Pn ⇥C is birationally equivalent to Pn ⇥C 0 for smooth curves C and
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C 0 if and only if C and C 0 are birationally equivalent which again implies that C
and C 0 are isomorphic. So, if PGLn+1(C) acts rationally and non trivially on a
non rational variety M of dimension n + 1, then this one is uniquely determined
up to algebraic automorphisms of PGLn+1(C) and up to birational conjugation in
Bir(M).

In the case that M is rational, we have to show that the PGLn+1(C)-actions
listed in Theorem 3.4.1 are not conjugate to each other. For this, note that none
of them has an orbit of codimension � 1. Lemma 3.3.2 induces therefore that any
birational transformation conjugating one action to another one must be an iso-
morphism. As the varieties listed in Theorem 3.4.1 are not isomorphic we conclude
that the actions are not conjugate.

3.5 Extension to Crn and Hn

In this section we study how the PGLn+1(C)-actions described in the above section
extend to rational Crn-actions. Our goal is to prove Theorem 3.1.11. We proceed
case by case.

3.5.1 The case G(1, 3)

Let

s1 :=

0

@
0 0 1
1 0 0
0 1 0

1

A , and s2 :=

0

@
0 �1 1
0 �1 0
1 �1 0

1

A 2 GL3(Z).

Lemma 3.5.1. Let G be a group. There exists no homomorphism ⇢ : GL3(Z) ! G
such that ⇢(s1) has order 3 and s2 2 ker(⇢).

Proof. Assume that such a ⇢ exists. Let

A :=

0

@
1 0 0
0 1 0
0 �1 1

1

A , B :=

0

@
�1 1 0
0 0 1
1 0 0

1

A , T :=

0

@
1 0 0
0 �1 0
0 0 �1

1

A 2 GL3(Z).

One calculates (A(s2(Bs2B�1))A�1) = s1T . So s1T is contained in the kernel
of ⇢ and we get ⇢(T ) = ⇢(s�1

1 ). But this is a contradiction since the order of T is
2.

The following construction comes up in the context of tetrahedral line complexes
(see [Dol12]). Consider the 4 hyperplanes in P3

E0 := {x0 = 0}, E1 := {x1 = 0}, E2 := {x2 = 0}, E3 := {x3 = 0}.

A line l 2 G(1, 3) that is not contained in any of the Ei, intersects each plane Ei

in one point pi. We thus obtain a rational surjective map

cr : G(1, 3) 99K P1
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that is defined by associating to the line l the cross ratio between the points pi.
The closure cr�1([a : b]) in G(1, 3) is irreducible if and only if [a : b] 2 P1 \{[0 :

1], [1 : 0], [1 : 1]}, whereas cr�1([a : b]) consists of two irreducible components in all
the other cases ([Dol12, Chapter 10.3.6]).

Recall that ↵ is the automorphism of PGL4 given by g 7! tg�1.

Proposition 3.5.2. There exists no non-trivial group homomorphism

� : hPGL4(C),W3i ! Bir(G(1, 3))

such that �(PGL4(C)) ⇢ Aut(G(1, 3)).
In particular, neither the action of PGL4(C) on G(1, 3) given by the embedding

'G (see Example 3.1.10) nor the action given by 'G�↵ can be extended to a rational
action of Cr4.

Proof. Lemma 3.5.14 implies that if PGL4(C) is contained in the kernel of a ho-
momorphism � : hPGL4(C),W3i ! Bir(G(1, 3)), then � is trivial. So we may
assume that � embeds PGL4(C) into Aut0(G(1, 3)). By Theorem 3.4.1, it is there-
fore enough to show that 'G and 'G � ↵ do not extend to a homomorphism of
hPGL4(C),W3i.

The 'G(D3)-orbit of a line that is not contained in one of the planes Ei and
that does not pass through any of the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 :
0], [0 : 0 : 0 : 1], has dimension 3 and these are all 'G(D3)-orbits of dimension 3.

Since 'G(D3) stabilizes the hyperplanes Ei and since the cross ratio is invariant
under linear transformations, we obtain that cr is 'G(D3)-invariant. By the above
remark, the rational map cr therefore parametrizes all but finitely many 'G(D3)-
orbits of dimension 3 by P1 \{[0 : 1], [1 : 0], [1 : 1]}.

The image 'G(S4), where S4 ⇢ PGL4 is the subgroup of coordinate permuta-
tions, normalizes 'G(D3) and therefore it permutes its 3-dimensional orbits. Since
S4 permutes the hyperplanes Ei, we can describe its action on the 3-dimensional
'G(D3)-orbits by its action on the cross ratio of the intersection of general lines
with the planes Ei.

Let r be the cross ratio between the points p0, p1, p2, p3 on a line. One calculates
that the cross ratio between p3, p1, p2, p0 is again r and that the cross ratio between
the points p2, p0, p1, p3 is 1

1�r . Hence the image of ⌧1 := [x3 : x1 : x2 : x0]
leaves cr invariant, whereas for the permutation ⌧2 := [x2 : x0 : x1 : x3] we have
cr � '(⌧2) 6= cr and cr � '(⌧2)2 6= cr.

Let f : G(1, 3) 99K P4 be a birational transformation and let '0
G : = f � 'G �

f�1. The image '0
G(D3) ⇢ Cr4 is an algebraic torus of rank 3 and therefore, by

Proposition 3.2.8, conjugate to the standard subtorus D3 ⇢ D4 of rank 3. In other
words, there exists a rational map P4 99K P1 whose fibers consist of the closure of
the '0

G(D3)-orbits. The image '0
G(S4) permutes the torus orbits, hence we obtain

a homomorphism ⇢ : S4 ! PGL2(C). By what we observed above, the permutation
⌧1 is contained in the kernel of ⇢, whereas the image ⇢(⌧2) has order 3. The matrix
representation in GL3(Z) of ⌧1 corresponds to s1 and the matrix representation of
⌧2 corresponds to s2.

It follows now from Lemma 3.5.1 that ⇢ can not be extended to a homomorphism
from GL3(Z) ' W3 to PGL2(C), which implies that there exists no homomorphism
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� : hPGL4(C),W3i ! Cr4 such that �(PGL4(C)) = '0
G(PGL4(C)), since W3 nor-

malizes the torus and its image would therefore permute the torus orbits as well.
The statement follows.

3.5.2 The case P(T P2)

Recall that matrices of order two in PGL2(C) have the form


0 1
a 0

�
, or


1 b
c �1

�
, where a 2 C⇤, b, c 2 C, bc 6= �1. (3.1)

Proposition 3.5.3. The embedding 'B : PGL3(C) ! Bir(P(T P2)) extends in a
unique way to an embedding

�B : Cr2 ! Bir(P(T P2)).

Proof. We show that every extension coincides with the one given in Example 3.1.9.
For this it is enough to show that the image of � is uniquely determined. Assume
that there is an extension  : Cr2 ! Bir(P(T P2)) of 'B . Our goal is to show
 (�) =  B(�).

Let d 2 D2, d = (ax1, bx2) with respect to a�ne coordinates given by x0 = 1.
Then 'B(d) = (ax1, bx2, (b/a)x3), with respect to suitable local a�ne coordinates
of P(T P2). Let � : P(T P2) 99K P2 ⇥P1 be the birational map given by

� : (x1, x2, x3) 7! (x1, x2,
x1

x2
x3),

with respect to a�ne coordinates.
Let  1 : Cr2 ! Bir(P2 ⇥P1) be the algebraic embedding  1 = � � ���1. This

gives us a P2-fibration, which we call the horizontal fibration, and a P1-fibration,
which we call the vertical fibration. The image  1(D2) acts canonically on the first
factor and leaves the second one invariant. The horizontal fibers thus consist of
the closures of D2-orbits. Since W2 normalizes D2, the image  1(W2) permutes
the orbits of  1(D2). Hence it preserves the horizontal fibration and we obtain a
homomorphism

⇢ : W2 ' GL2(Z) ! Bir(P1) = PGL2(C).

In what follows we identify W2 with GL2(Z).
The images of the three transpositions in S3 = W2 \PGL3(C) under ⇢ are:

⇢

✓
0 1
1 0

◆
=


0 1
1 0

�
, ⇢

✓
1 �1
0 �1

◆
=


1 �1
0 �1

�

and ⇢

✓
�1 0
�1 1

◆
=


�1 0
�1 1

�
.

The image ⇢(�) is either the identity or it has order 2. The elements of the
form (3.1) do not commute with the images of S3 described above. Since � is
contained in the center of W2, we obtain ⇢(�) = id.
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It remains to show that the action of  1(�) on the first factor of P2 ⇥P1 is the
standard action. Let M = P2 be a horizontal fiber. It is stabilized by  (D2) and
 (�), so we obtain a homomorphism

� : hD2,�i ! Bir(M) = Cr2 .

Since �d��1 = d�1 for all d 2 D2, there exists a d 2 D2 such that �(�) = d�. This
is true for all horizontal fibers, so  1(�) induces an automorphism of U ⇥P1, where

U = {[x0 : x1 : x2] | x0, x1, x2 6= 0} ⇢ P2 .

Let S ' P1 ⇢ U ⇥P1 be a vertical fiber and ⇡ : U ⇥P1 ! U the projection onto
the first factor. Then ⇡ � 1(�)(S) is a regular map from P1 to the a�ne set U and
is therefore constant. We obtain that  1(�) preserves the vertical fibration.

The image  1(PGL3(C)) preserves the vertical fibration as well and projection
onto P2 yields a homomorphism from PGL3(C) to Cr2 that is the standard em-
bedding. Hence  1(Cr2) preserves the vertical fibration and we obtain an algebraic
homomorphism from Cr2 to Cr2, which is uniquely determined by its restriction
to PGL3(C) by Corollary 3.5.11 in the appendix. So the image  1(�) is uniquely
determined.

Proposition 3.5.4. There exists no homomorphism � : Cr2 ! Cr3 such that

�|PGL3(C) = 'B � ↵,

where 'B denotes the embedding of PGL3(C) into Cr3 from Example 3.1.9 and ↵
the algebraic automorphism of PGL3(C) given by g 7! tg�1.

Proof. Assume that such an extension � : Cr2 ! Cr3 of 'B � ↵ exists.
Observe that ↵(D2) = D2 and that ↵|S3 = idS3 . Therefore, we can repeat the

same argument as in the proof of Proposition 3.5.3 to obtain  (�) = �B(�). But
we have

 (�) (g) (�) (g) (�) (g) 6= id

for g = [z � x : z � y : z] - this contradicts the relations in Cr2 (Proposition
3.5.12).

3.5.3 The case P(OPn �OPn(�k(n+ 1)))

Proposition 3.5.5. The algebraic homomorphism 'l : PGLn+1(C) ! Bir(Fl) ex-
tends uniquely to the embedding

 l : Hn ! Bir(Fl) (see Example 3.1.8).

Proof. Suppose that there is an extension  : Hn ! Bir(Fl) of 'l. We will show
that  is unique and therefore that  =  l.

Let (x1, . . . , xn�1, w) be a�ne coordinates of Fl such that for every g 2 PGLn+1(C)
the image 'l(g) acts by

(x1, . . . , xn, w) 7! (g(x1, . . . , xn), J(g(x1, . . . , xn))
�lw).
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In particular, the image under  of (d1x1, . . . , dnxn) 2 Dn acts by

(x1, . . . , xn, w) 7! (d1x1, . . . , dnxn, (d1 · · · dn)�lw).

Define � : Fl ! Pn ⇥P1 by

� : (x1, . . . , xn, w) 7! (x1, . . . , xn, (x1 · · ·xn)
lw)

with respect to a�ne coordinates. Let  1 : Crn ! Bir(Pn ⇥P1) be the algebraic
embedding  1 := � �  � ��1. Then the image  1(Dn) acts canonically on the first
factor and leaves the second one invariant. Since Wn normalises Dn, the image
 1(Wn) permutes the orbits of  1(Dn). Hence  1(Wn) preserves the horizontal
fibration. This induces a homomorphism

⇢ : Wn ' GLn(Z) ! PGL2(C).

In what follows, we identify Wn with GLn(Z). Let An+1 ⇢ Sn+1 ⇢ PGLn+1(C)
be the subgroup of coordinate permutations s 2 Sn+1 such that J(s) = 1. Hence
An+1 2 ker(⇢). Note that the fixed point set of  1(An+1) is the vertical fiber

L := [1 : · · · : 1]⇥ P1 ⇢ Pn ⇥P1 .

Since �n commutes with An+1, the image  1(�n) stabilises L. The group
 1(Dn) acts transitively on an open dense subset of vertical fibers that contains
L. Since  1(�n) normalizes  1(Dn), we obtain that  1(�n) preserves the vertical
fibration. Therefore hPGLn+1(C),�ni preserves the vertical fibration. We obtain
a homomorphism hPGLn+1(C),�ni ! Crn, which is, by Corollary 3.5.11 and Re-
mark 3.5.1 in the appendix, the standard embedding.

Let

fA = (
1

x1
, x2, . . . , xn).

In [BH14] it is shown that fA is contained in hPGLn+1(C),�ni, which implies that
 1(fA) preserves the vertical fibration and that its action on Pn is the standard
action.

Recall that (hfA)3 = id for h = (1� x1, x2, . . . , xn�1) 2 Crn. The image  1(h)
is

 1(h) : (x1, . . . , xn, z) 7! (1� x1, x2, . . . , xn, (�1)lz).

Denote by A 2 GLn(Z) the integer matrix corresponding to fA. We have ⇢(A) = id
or ⇢(A) is of order two, i.e. has the form (3.1).

Suppose that ⇢(A) = id. Then

 1(fA) : (x1, . . . xn, z) 7! (
1

x1
, x2 . . . xn, z).

The relation (hfA)3 = id then implies that l is even.
Suppose that

⇢(fA) =


1 b
c �1

�
, where b, c 2 C, bc 6= �1,
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hence

 1(fA) : (x1, . . . xn, z) 7!
✓

1

x1
, x2 . . . xn,

z + b

cz � 1

◆

and therefore

 1(hfA) = (x1, . . . xn, z) 7!
✓
1� 1

x1
, . . . xn,

(�1)lz + (�1)lb

cz � 1

◆
,

One calculates that if l is even, then the relation (hfA)3 = id is not satisfied. So
assume that l is odd. This gives

 1(hfA)
3 = (x1, . . . xn, z) 7!

✓
x1, . . . xn,

a1z + a2
a3z � a4

◆
,

where a1 = 3bc � 1, a2 = (bc � 1)b � 2b, a3 = (1 � bc)c + 2c and a4 = 3bc � 1. So
(hfA)3 = id yields either l odd and b = c = 0 or l odd and bc = 3. However, the
latter is not possible. Consider the transformation

⌧ = (x1, . . . , xn�2, xn, xn�1) 2 Sn.

We have fA⌧ = ⌧fA. Note that

 1(⌧) : (x1, . . . , xn, z) 7! (x1, . . . , xn�2, xn, xn�1, . . . , xn, (�1)lz)

and this transformation does not commute with
⇣
x1, . . . xn,

a1z+a2
a3z�a4

⌘
in the second

case. Hence c = b = 0 and l is odd.
Finally, assume that

⇢(fA) =


0 1
a 0

�
, where a 2 C⇤ .

This implies

 1(fA) : (x1, . . . xn, z) 7!
✓

1

x1
, x2 . . . xn,

1

az

◆

and hence  (hfA)3 6= id.
We conclude that

⇢(fA) =


1 0
0 (�1)l

�

and therefore that the action of  (fA) is uniquely determined by l. Hence

 |hPGLn(C),�n�1i =  l|hPGLn(C),�n�1i.

Let fB , fC , fD and fE 2 Crn be as in the proof of Corollary 3.5.10. By Lemma
3.5.13 it remains to show that the image  (fB) is uniquely determined. We use
once more the relation

fB = fDfCfEf
�1
D .

Since ⇢(CE) = id and since fD has order two, we obtain ⇢(B) = id.
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Let c 2 P1 such that the restriction of  1(fB) to the hyperplane

{c}⇥ Pn ⇢ P1 ⇥Pn

is a birational map. Then the restriction of  1(fB) to {c} ⇥ Pn has to fulfill the
relations with the group hPGLn+1(C),�ni. By Corollary 3.5.11 we obtain that this
restriction has to be fB . Hence the image  1(fB) is unique.

Proposition 3.5.6. There exists no group homomorphism  : Hn ! Bir(Fl) such
that  |PGLn+1(C) = 'l � ↵.

Proof. Assume that such an extension  : Hn ! Crn exists. Let � be as in Propo-
sition 3.5.5 and  2 : Hn ! Bir(P1 ⇥Pn),

 2 := � � 'l � ↵ � ��1.

Similarly as in the proof of Proposition 3.5.5 one can show that  2(�n) preserves
the vertical fibration. In that way we obtain an algebraic homomorphism

A : hPGLn+1(C),�i ! Crn

such that A|PGLn+1(C) = ↵. Such a homomorphism does not exist by Corollary
3.5.11.

3.5.4 The case C ⇥ Pn

Throughout this section, C denotes a projective curve. For the proof of Theorem
3.4.1 it is enough to consider non rational curves, however, the following proposi-
tions hold in the more general case.

Proposition 3.5.7. The embedding 'C : PGLn+1(C) ! Bir(C ⇥ Pn) extends
uniquely to the standard embedding

�C : Hn ! Bir(C ⇥ Pn) (see Example 3.1.7).

Proof. Let ⇡ : C⇥Pn ! C be the first projection. Suppose that there is an extension
 : Hn ! Bir(C ⇥ Pn) of 'C . By definition,  (PGLn+1(C)) fixes the fibers of ⇡.
Moreover, each fiber of ⇡ is a closure of a  (Dn)-orbit. Since the elements of Wn

commute with Dn, we conclude that  (Wn) preserves the fibration given by ⇡.
Hence Hn preserves the fibration given by ⇡ and we obtain a homomorphism

⇢ : Hn ! Bir(C)

such that PGLn+1(C) ⇢ ker(⇢). In the Appendix it is shown that the normal
subgroup generated by PGLn+1(C) in Hn is all of Hn. Hence ⇢ is trivial and  (Hn)
preserves every fiber of ⇡. The restriction  (Hn)|c⇥P

n for any c 2 C defines a
homomorphism from Hn to Crn such that the restriction to PGLn+1(C) is the
standard embedding. By Corollary 3.5.11, this is the standard embedding. Hence
 is unique.
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Proposition 3.5.8. There exists no group homomorphism  : Hn ! Bir(C⇥Pn)
such that  |PGLn+1(C) = 'C � ↵.
Proof. Assume there exists such a  . As in the proof of Proposition 3.5.7 one
can show that  (Hn) fixes the horizontal fibration. The restriction  (Hn)|c⇥P

n�1

defines for each c 2 C a homomorphism from Hn to Crn such that the restriction
to PGLn+1(C) is given by g 7! ↵(g). By Corollary 3.5.11, there exists no such
homomorphism.

3.5.5 Proof of Theorem 3.1.11

Statement (1) is the content of Theorem 3.4.1. Statement (2) follows from Propo-
sition 3.5.2. Statement (3) and (4) follow from the Propositions 3.5.3, 3.5.4, 3.5.5,
3.5.6, 3.5.7 and 3.5.8. Note that the Propositions 3.5.2, 3.5.4, 3.5.6 and 3.5.8 show
that the regular actions of PGLn+1(C) that do not extend to a rational action of
Crn also do not extend to a rational action of Hn.

Appendix

3.5.6 Embeddings of Hn into Crn

Let � : C ! C be a field homomorphism. By acting on the coordinates, � induces
a bijective map � : Pn ! Pn. Conjugation with � yields a group homomorphism
of Crn that preserves degrees. Observe that we obtain the image of g 2 Crn by
letting � operate on the coe�cients of g. By abuse of notation we denote this group
homomorphism by � as well. In [Dés06b] Déserti showed that all automorphisms
of Cr2 are inner up to field automorphisms of that type. A generalization of this
result is the following theorem by Cantat:

Theorem 3.5.9 ([Can14]). Let M be a smooth projective variety of dimension n
and r 2 N. Let ⇢ : PGLr+1(C) ! Bir(M) be a non-trivial group homomorphism.
Then n � r and if n = r then M is rational and there exists a homomorphism
of fields � : C ! C such that ⇢ is up to conjugation the standard embedding of
PGLn+1(C) into Crn followed by the group homomorphism � : Crn ! Crn.

The goal of this appendix is to prove the following two corollaries of Theo-
rem 3.5.9:

Corollary 3.5.10. Let n > m and let � : Crn ! Crm be a group homomorphism.
Then the normal subgroup of Crn containing Hn is contained in the kernel of �.

No such non-trivial homomorphism is known so far. In fact, the existence of a
non-trivial homomorphism � : Crn ! Crm for n > m � 2 would imply that Crn is
not simple, a question that is still open.

Let ↵ : PGLn+1(C) ! PGLn+1(C) be the algebraic automorphism defined by
g 7! tg�1.

Corollary 3.5.11. Let  : Hn ! Crn be a non-trivial group homomorphism. Then
there exists a homomorphism of fields � of C and an element g 2 Crn such that
g g�1 is the standard embedding followed by the group homomorphism �.
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Moreover, the extension of the standard embedding ' : PGLn+1(C) ! Crn as
well as the extension of the embedding � � ', to the group Hn is unique, where
� is any field homomorphism of C. The embedding ' � ↵, does not extend to a
homomorphism from Hn to Crn.

Remark 3.5.1. The proof of Corollary 3.5.11 shows that the statement of Corol-
lary 3.5.11 holds as well if we replace the group Hn by the group Gn ⇢ Crn, i.e.
the group generated by PGLn+1(C) and the element �n := (x�1

1 , x�1
2 , . . . , x�1

n ).

By the theorem of Noether and Castelnuovo, Corollary 3.5.11 implies in partic-
ular the theorem of Déserti about automorphisms of Cr2.

We often use the following relations between elements of the Cremona group:

Lemma 3.5.12. In Cr2 the following relations hold:

(1) �⌧(⌧�)�1 = id for all ⌧ 2 S3,

(2) �d = d�1� for all diagonal maps d 2 D2 and

(3) (�h)3 = id for h = [x2 � x0 : x2 � x1 : x2].

Proof. One checks the identities by a direct calculation.

Denote by Cr0n ⇢ Crn the subgroup consisting of elements that contract only
rational hypersurfaces. We have Hn ⇢ Cr0n. On the other hand, it seems to be
an interesting open question, whether there exist elements in Cr0n that are not
contained in Hn for any n � 3 (cf. [Lam14]).

Lemma 3.5.13. The group Hn is generated by PGLn+1(C) and the two birational
transformations �n := (x�1

1 , x�1
2 , . . . , x�1

n ) and fB := (x1x2, x2, x3, . . . , xn).

Proof. It is known that GLn(Z) is generated by the subgroup of permutation ma-
trices in GLn(Z) and the two elements

A :=

0

BBBBBB@

�1 0 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
and B :=

0

BBBBBB@

1 1 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA

(see for example [dlH00, III.A.2]). Notice that fB is the birational transformation
in Wn corresponding to B. Let fA be the birational transformation corresponding
to A. In [BH14] it is shown that fA is contained in hPGLn+1(C),�ni.

Lemma 3.5.14. The two birational transformations �n := (x�1
1 , x�1

2 , . . . , x�1
n ) and

fB := (x1x2, x2, x3, . . . , xn) are contained in the normal subgroup of Hn generated
by PGLn+1(C).
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Proof. Let

gn := [xn � x0 : xn � x1 : · · · : xn � xn�1 : xn] 2 PGLn+1(C).

Then �ngn�ngn�ngn = id . In particular, �ngn conjugates �n to gn.
Let

C :=

0

BBBBBB@

�1 2 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
, D :=

0

BBBBBB@

�1 0 0 · · · 0
�1 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
,

E :=

0

BBBBBB@

0 1 0 · · · 0
1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
2 GLn(Z)

and let fC , fD and fE be the corresponding elements in Wn. It is shown in [BH14]
that fC is contained in hPGLn+1(C),�ni. Moreover, one calculates that

fB = fDfCfEf
�1
D ,

which implies that fB is conjugate to an element in hPGLn+1(C),�ni.

Proof of Corollary 3.5.10. The corollary follows directly from Lemma 3.5.13 and
from Lemma 3.5.14

Proof of Corollary 3.5.11. By Theorem 3.5.9 we may assume that there exists a
field homomorphism � : C ! C, such that, up to conjugation, the restriction of
 to PGLn+1(C) is the standard embedding composed with � or the standard
embedding composed with � and the automorphism ↵ of PGLn+1(C) given by
↵(g) = tg�1.

Therefore, after conjugation, the restriction of  to D2 is the standard embed-
ding composed with �. In particular,  (D2) = �(D2) is dense in D2 and therefore
 (Wn) is contained in Dn o Wn. Assume that  (�n) = d⌧ for some d 2 Dn

and ⌧ 2 Wn. The relation  (�n) (e) (�n) =  (e)�1 for all e 2 Dn implies
 (�n)e (�n) = e�1 for all e 2 D2 and hence, ⌧ = �n. Note that the restriction of
 to Sn+1 is the standard embedding. So for all ⌧ 2 Sn+1 we obtain

⌧d�n = d�n⌧ = d⌧�n.

The only element in Dn that commutes with Sn+1 is the identity. Hence we obtain
 (�n) = �n (and this shows the statement from Remark 3.5.1).

Let gn be as in the proof of Corollary 3.5.10. The relation �ngn�ngn�ngn = id
implies that  |PGLn+1(C) is the standard embedding composed with �, since

�n↵(gn)�n↵(gn)�n↵(gn) 6= id .
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It remains to show that  (fB) = fB . Let d 2 Dn, and ⇢ 2 Wn such that
 (fB) = d⇢. The image  (fB) acts on  (Dn) by conjugation. The action of  (fB)
on  (Dn) is determined by ⇢. Since  |Dn is the standard embedding composed
with �, we obtain ⇢ = fB . Let d = (d1x1, . . . , dnxn). The image  (fB) commutes
with �n. We obtain

d�1�nfB = �ndfB = dfB�n = d�nfB

and hence di = ±1 for all i.
The image  (fB) commutes with all elements of Sn+1 that fix the coordinates

x1 and x2. Similarly as above, this yields that d commutes with all elements of
Sn+1 that fix the coordinates x1 and x2 and we get di = 1 for i 6= 1 and i 6= 2.

In [BH14] it is shown that f2
B is contained in hPGLn+1(C),�ni. By what we

proved above, this gives

 (f2
B) = f2

B = dfBdfB = dd0f2
B ,

where d0 = (d1d2x1, d2x2, . . . , dnxn). So dd0 = id, which yields d21d2 = 1 and
therefore d2 = 1. This means that we have either  (fB) = fB or  (fB) = dfB
with d = (�x1, x2, . . . , xn).

Let

r1 := [x0 : x1 : · · · : xn�1 : xn + x1], r2 := [xn : x1 : · · · : xn�1 : x0],

r3 := [xn : x0 : x2 : · · · : xn�1 : x1], t := [xn : x0 : · · · : xn�1].

We have the relation

(r2tfBt
�1r3)r1(r2tfBt

�1r3) = r1

and therefore
(r2t (fB)t

�1r3)r1(r2t (fB)t
�1r3) = r1.

One calculates that if  (fB) = (�x1, x2, . . . , xn)fB then this relation is not satis-
fied. Hence  (fB) = fB .

3.5.7 The Weyl group is not preserved

There are many embeddings � of the group of monomial maps in dimension 2
which is given by W2 nD2 into the group Wn nDn such that �(D2) ⇢ Dn and
�(W2) ⇢ Wn. Indeed, by a theorem of Popov ([Pop13]), every embedding D2 ! Dn

is conjugate by elements of Wn to the standard embedding

↵ :

✓
a 0
0 b

◆
7!

0

BBBB@

a 0 0 . . . 0
0 b 0 . . . 0
0 0 1 . . . 0
0 . . . 0
0 . . . 0 1

1

CCCCA
.

Therefore, any group homomorphism f : W2 ! Wn�2 induces a homomorphism
F : W2 ! Wn given by

g 7!
✓

g 0
0 f(g)

◆
.
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We see now that F extends to an embeddingH : W2 nD2 ! Wn nDn such that
the restriction of H to D2 is the standard embedding. Moreover, every embedding
W2 nD2 ! Wn nDn that sends W2 into Wn and D2 into Dn is conjugate to an
embedding of this form. The goal of this section is to prove Theorem 3.1.6.

Lemma 3.5.15. Let Sn ⇢ GLn be the symmetric subgroup of permutation matrices.
A matrix (aij) 2 Mn commutes with all elements in Sn if and only if there are
a, b 2 C such that aii = a for all i and ars = b for all r 6= s.

Proof. All matrices of this form commute with all transpositions of Sn and therefore
with Sn. On the other hand, let aij be a matrix that commutes with all elements
of Sn. Let ⌧ = (rs) 2 Sn be a transposition. Then ⌧(aij) = (aij)⌧ implies
a⌧(k)l = ak⌧(l) for all 1  k, l  n. So we get arr = ass and ark = ask as well as
akr = aks for all k. The result follows with a := a11 and b := a12.

Lemma 3.5.16. The homomorphism  : PGL3(C) ! PGL6(C) cannot be extended
to a homomorphism  : Cr2 ! Cr5 such that  (�) 2 D5 nW5.

Proof. Assume that there is an element tfA 2 W5 of order two, where t 2 D5 and
fA 2 W5, which satisfies the relations of Proposition 3.5.12. Let A 2 GL5(Z) be the
integer matrix corresponding to fA with respect to the a�ne coordinates x2 = 1.

We look at the conditions that the relations (2)-(5) of Proposition 3.5.12 impose
on tfA. Note that (�fA)2 = id implies that f2

A = id, that

tfA⌧ = ⌧ tfA

for all ⌧ 2  (S3) implies fA⌧ = ⌧fA and that tfAd = d�1tfA for all d 2  (D2)
implies fAd = d�1fA.

First we observe that we can associate to each element w 2 W5 a 6⇥ 6 integer
matrix, i.e. a matrix N = (nij) 2 M6(Z) with integer entries such that

w = [xn00
0 xn01

1 · · ·xn05
5 : · · · : xn50

0 · · ·xn55
5 ].

On the other hand, each 6 ⇥ 6 integer matrix N 2 M6(Z) yields a rational map
gN : P5 99K P5. For two matrices N1, N2 2 M6(Z) we have

gN1gN2 = gN1N2 .

Moreover gN1 = gN2 if and only if we obtain N1 by adding some integer row-vector
of length 6 to every row of N2. So for every element w 2 W5 there is a unique
matrix N 2 M6(Z) with nonnegative entries and at least one zero in each column
satisfying w = gN . In this proof we will call an integer matrix of this form reduced.

Let now M be a 6⇥ 6 integer matrix such that fA = gM . Note that the matrix
A can be obtained from M by subtracting the third row of M from all the other
rows and erasing the third row and the third column. We assume M to be reduced.
Let s 2 S6 be a permutation of coordinates. The corresponding reduced matrix
S 2 M6(Z) is the permutation matrix corresponding to s. Notice that the matrices
SM and MS are reduced again.

We look at M in block form

M :=


↵ �
� �

�
2 M6(N),
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where ↵ = (aij), � = (bij), � = (cij) and � = (dij) are 3⇥ 3 matrices. Let ⌧ 2 S3.
Then  (⌧) is a permutation again. By relation (2), we get

 (⌧)fA = fA (⌧).

Since the 6 ⇥ 6 integer matrices corresponding to  (⌧)fA and fA (⌧) are both
reduced, they are the same. Looking at them in block form, we obtain


⌧↵ ⌧�
⌧� ⌧�

�
=


↵⌧ �⌧
�⌧ �⌧

�
.

By Lemma 3.5.15 it follows that there exist a1, a2, b1, b2, c1, c2, d1, d2 2 Z such that
aii = a1, bii = b1, cii = c1, dii = d1 for all i and aij = a2, bij = b2, cij = c2 and
dij = d2 for i 6= j. If we pass on to the matrix A 2 GL5(Z) with respect to a�ne
coordinates given by x2 = 1 we obtain:

A =

2

66664

a 0 b1 � b2 0 b2 � b1
0 a 0 b1 � b2 b2 � b1
c1 c2 d1 � b2 d2 � b2 d2 � b1
c2 c1 d2 � b2 d1 � b2 d2 � b1
c2 c2 d2 � b2 d2 � b2 d1 � b1

3

77775

for a := a1 � a2.
The image under  with respect to these a�ne coordinates of a diagonal element

[↵x0 : �x1 : �x2] is ✓
↵

�
x0,

�

�
x1,

↵

�
x3,

�

�
x4, x5

◆
.

Relation (3) yields ✓
↵

�

◆a✓�
�

◆b1�b2

=
�

↵
.

We therefore get
a = �1 and b1 � b2 = 0.

So the matrix A has the form

A =

2

66664

�1 0 0 0 0
0 �1 0 0 0
c1 c2 d e e
c2 c1 e d e
c2 c2 e e d

3

77775
,

where d := d1 � b1, e := d2 � b2.
Since A is of order two, we obtain

d2 + 2e2 = 1,

which implies d = ±1 and e = 0.
Using again relation (4), we obtain

✓
↵

�

◆c1+d✓�
�

◆c2

=
�

↵
.
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Hence c2 = 0 and c1 + d = �1. If d = �1, this implies c1 = 0 and thus

tfA =
�
t1x0

�1, t2x1
�1, t3x3

�1, t4x4
�1, t5x5

�1
�
,

for some ti 2 C⇤. Whereas if d = 1, we obtain c1 = �2 and therefore

fA =
�
t1x0

�1, t2x1
�1, t3x3x

�2
0 , t4x4x

�2
1 , t5x5

�
.

Neither of these transformations satisfies relation (5) with

 (h) = (x0 � 1, x1 � 1, x3 � x5, x2 � x5, x5)

nor with

 _(h) =

✓
x0

1� x0 � x1
,

x1

1� x0 � x1
,

x3

1� x0 � x1
,

x4

1� x0 � x1
,
x5 � x3 � x4

1� x0 � x1

◆
.

Proposition 3.5.17. The map � : Cr2 ! Cr5 is the unique homomorphism such
that �|PGL3(C) = ' and such that �(�) is contained in D5 nW5.

Moreover there exists no homomorphism  : Cr2 ! Cr5 such that

 |PGL3(C) = '_

and such that  (�) is contained in D5 nW5.

Proof. Assume that there is an element tfA 2 D5 nW5 of order two, where t 2 D5

and fA 2 W5, which satisfies the relations of Proposition 3.5.12. Let A 2 GL5(Z)
be the integer matrix corresponding to fA with respect to the a�ne coordinates
x2 = 1.

We look at the conditions that the relations (2)-(5) of Proposition 3.5.12 impose
on tfA. Note that (tfA)2 = id implies that f2

A = id and that tfAd = d�1tfA for
all d 2  (D2) implies fAd = d�1fA. The relation tfA⌧ = ⌧ tfA for all ⌧ 2  (S3)
implies fA⌧ = ⌧fA as well as ⌧ t = t⌧ . Hence t is of the form

t = [x0 : x1 : x2 : t1x3 : t1x4 : t1x5]

for a t1 2 C⇤.
Moreover, the relation tfAtfA = id implies that tfA = fAt�1.
Note that

'|S3 =  |S3 .

We can therefore apply the same arguments as in the proof of Lemma 3.5.16 to
obtain that A has the form

A =

2

66664

a 0 b1 � b2 0 b2 � b1
0 a 0 b1 � b2 b2 � b1
c1 c2 d1 � b2 d2 � b2 d2 � b1
c2 c1 d2 � b2 d1 � b2 d2 � b1
c2 c2 d2 � b2 d2 � b2 d1 � b1

3

77775
,
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where a, b1, b2, c1, c2, d1, d2 are integers.
The image under � with respect to these a�ne coordinates of a diagonal element

[↵x0 : �x1 : �x2] is ✓
↵2

�2
x0,

�2

�2
x1,

�

�
x3,

↵

�
x4,

↵�

�2
x5

◆
.

Relation (3) yields

✓
↵2

�2

◆a✓
�

�

◆b1�b2 ✓↵�
�2

◆b2�b1

=
�2

↵2
.

We therefore get
b1 � b2 = 2a+ 2.

The matrix A has order 2. Multiplication of the first row with the last column
gives therefore 0 and we obtain

(b1 � b2)(�a+ d2 � d1) = 0.

Case 1: b1 � b2 = 0. Then we have a = �1.
So our matrix has the form

A =

2

66664

�1 0 0 0 0
0 �1 0 0 0
c1 c2 �1 �2 �2
c2 c1 �2 �1 �2
c2 c2 �2 �2 �1

3

77775
,

for some c1, c2, �1, �2 2 Z. Since A is of order 2, we get �2 = 0 and �1 = ±1.
Assume that �1 = �1. Then, by considering the third row and using relation

(3), ✓
↵2

�2

◆c1 ✓�2

�2

◆c2 ✓�
�

◆�1

=
�

�
.

Hence c1 = c2 = 0. and we find that A = � id. However, this transformation does
not satisfy relation (3) from Lemma 3.5.12, nor does tfA for any t 2 D5 of the form
described above. So we have �1 = 1 and

✓
↵2

�2

◆c1 ✓�2

�2

◆c2 ✓�
�

◆1

=
�

�

yields c1 = 0, c2 = �1. So

A =

2

66664

�1 0 0 0 0
0 �1 0 0 0
0 �1 1 0 0
�1 0 0 1 0
�1 �1 0 0 1

3

77775
.

This is exactly the matrix corresponding to �(�) with respect to these a�ne co-
ordinates. Direct calculations show that tfA satisfies relation (5) if and only if
t = id.
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Case 2: �a + d2 � d1 = 0. If we consider the fifth row and use again relation
(3), we obtain:

✓
↵2

�2

◆c2 ✓�2

�2

◆c2 ✓�
�

◆d2�b2 ✓↵
�

◆d2�b2 ✓↵�
�2

◆d1�b1

=
�2

↵�
.

Looking at the exponents of � this yields

�4c2 � 2(d2 � b2)� 2(d1 � b1) = 2.

We use b1 = b2 + 2a+ 2 and d1 = d2 + a and get

b2 = c2 �
a+ 1

2
+ d1.

Considering the third row and relation (3) we obtain

✓
↵2

�2

◆c1 ✓�2

�2

◆c2 ✓�
�

◆d1�b2 ✓↵
�

◆d2�b2 ✓↵�
�2

◆d2�b1

=
�

�

and therefore

�2c1 � 2c2 � (d1 � b2)� (d2 � b2)� 2(d2 � b1) = 1.

From this we conclude
c1 = b2 � d1 + 1.

This yields

A =

2

66664

a 0 2a+ 2 0 �2a� 2
0 a 0 2a+ 2 �2a� 2

�a+1
2 + c2 c2

a+1
2 � c2

3a+1
2 � c2

�a�3
2 � c2

c2
�a+1

2 + c2
3a+1

2 � c2
a+1
2 � c2

�a�3
2 � c2

c2 c2
3a+1

2 � c2
3a+1

2 � c2
�3a�3

2 � c2

3

77775
.

By multiplying the third row with the first column we obtain

3c2a� (3/4)a2 + (1/2)a+ 1/4� 3c22 � c2 = 0.

This equation has two solutions for a:

a = 2c2 + 1 and a+ 2c2 � 1/3.

Since c2 and a have to be integers this yields a = 2c2 + 1. Thus

A =

2

66664

2 c2 + 1 0 4 c2 + 4 0 �4 c2 � 4
0 2 c2 + 1 0 4 c2 + 4 �4 c2 � 4
0 c2 1 2 c2 + 2 �2 c2 � 2
c2 0 2 c2 + 2 1 �2 c2 � 2
c2 c2 2 c2 + 2 2 c2 + 2 �3� 4 c2

3

77775
.
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So we get

fA = (x2c2+1
0 x4+4c2

3 x�4�4c2
5 , x2c2+1

1 x4+4c2
4 x�4�4c2

5 ,

xc2
1 x3x

2c2+2
4 x�2c2�2

5 , xc2
0 x2c2+2

3 x4x
�2c2�2
5 , xc2

0 xc2
1 x2c2+2

3 x2c2+2
4 x�3�4c2

5 ).

Since fAt = t�1fA, we obtain in this case that t1 = 1 and therefore that t = id.
By relation (5), we have

fA'(h)fA = '(h)fA'(h).

Remember that

'(h) = (x0 + 1� x4, x1 + 1� x3, 2� x3, 2� x4, 2� x3 � x4 + x5).

Let U := {(u, 1, 1, 1, 1) | u 2 C}. We observe that '(h)(U) = U , so in particular,
'(U) is not contained in the indeterminacy locus of fA, which is contained in the
hyperplanes given by xi = 0 for some i. The restriction of '(h)fA'(h), respectively
of fA'(h)fA to U is therefore a rational map. One calculates that

'(h)fA'(h)(u, 1, 1, 1, 1) = (u2c2+1 + 1� uc2 , 1, 1, 2� uc2 , 1),

and that the first coordinate of fA'(h)fA is

(u2c2+1 + 1� uc2)2c2+1(1� 2uc2)�4�4c2

So this case is not possible.
For the second claim we assume that there is an element fA 2 W5 fulfilling the

relations (2)-(4) with '_(PGL3(C)). Since '_|S3 = '|S3 and '(d)�1 = '_(d) for
all elements d 2 D2, we can repeat all the steps of the proof that only required
relations (2)-(4). So in case 1 we just check by calculations that neither of the
transformations fA, f� id 2 W5 corresponding to � id or A satisfies relation (5)
with respect to the image of h under '_, nor does fA or f�id.

For case 2, let
g := [X � Z : Y : Z].

Then �g�g�g = id. We have

'_(g) =

✓
x0

p
,
x2

p
,
x3 + x5

p
,
�x0 � x4

p
,
�x5

p

◆

where p = x0 + 2x4 + 1. Here again, '_(h)(U) is not contained in the indetermi-
nacy locus of fA and therefore the restriction of fA'_(g)fA to U is rational. One
calculates that the first entry of '_(g)fA'_(g)(u, 1, 1, 1, 1) is

24c2+4u2c2+1

24c2+4u2c2+1 � 22c2+3(u+ 3)c2(u+ 1) + u(u+ 3)c2 + 3(u+ 3)2c2
,

whereas the first entry of fA'_(g)fA(u, 1, 1, 1, 1) is

u(2 + uc2)4c2+4

(u2c2+1 + 4 + 4uc2)2c2+1
.

One calculates that the two expressions are not the same for all c2 2 Z, so for no
choice of c2 the map fA fulfills relation (5).
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Lemma 3.5.18. The normalizer of '(D2) in PGL6(C) is the group generated by
S6 and D5.

Proof. The fixed points of the action of '(D2) on P5 are exactly the points

P0 = [1 : 0 : 0 : 0 : 0 : 0], P1 = [0 : 1 : 0 : 0 : 0 : 0], . . . , P5 = [0 : 0 : 0 : 0 : 0 : 1].

If an element f 2 PGL6(C) normalizes '(D2), then it has to preserve the set of
fixed points of '(D2). The elements of PGL6(C) that permute the points Pi are
exactly the linear monomial maps.

We also recall the following fusion theorem about tori:

Lemma 3.5.19 (Lemma 2 in [Pop13]). Let T1 ⇢ Dn and T2 ⇢ Dn be two subtori.
If T1 and T2 are conjugate in GLn then they are conjugate in the normalizer
NGLn(Dn).

Proposition 3.5.20. There is no homomorphism of groups  : Cr2 ! Cr5 such
that  (PGL3(C)) =  (PGL3(C)) or  (PGL3(C)) = '(PGL3(C)) and  (W2) ⇢
D5 oW5.

Proof. First we show that ' can not be extended to a homomorphism from Cr2 to
Cr5 that sends W2 into D5 o W5. As seen in the proof of Proposition 3.1.4, we
have

�([xy : yz : z2]) = [x0x1 : x1x2 : x2
2 : x2x3 : �x2x5 + 2x3x4 : x1x4].

So �(W2) is not contained in D5oW5 and by Proposition 3.5.17, there is no other
extension of ' to Cr2 such that W2 is sent to D5 oW5.

Lemma 3.5.16 shows that  can not be extended to a homomorphism from Cr2
to Cr5 such that W2 is sent to W5.

Let  : Cr2 ! Cr5 be an automorphism such that  (PGL3(C)) = '(PGL3(C))
or  (PGL3(C)) =  (PGL3(C)). By Proposition 3.2.10 there exists an automor-
phism of fields � : C ! C such that  � � is an algebraic homomorphism. The
restriction of  � � to PGL3(C) is either  , � ↵,' or ' � ↵, up to conjugation by
an element g 2 PGL6. By assumption,  ��(D2) is contained inD5, so g 2 D5oW5,
by Lemma 3.5.18.

Since neither of  , � ↵,' or ' � ↵ can be extended to an embedding of Cr2
such that W2 is sent to D5 oW5 by Proposition 3.5.16 and Proposition 3.5.17 it
follows that  � � and thus  do not map W2 into W5.

Proof of Theorem 3.1.6. Assume that there is a homomorphism of groups

 : Cr2 ! Cr5

such that  (PGL3(C)) ⇢ PGL6(C),  (D2) ⇢ D5 and  (W2) ⇢ W5. By definition,
 |PGL3(C) is a homomorphism of algebraic groups. So there exists an automorphism
g 2 PGL6(C) such that the restriction of g g�1 to PGL3(C) is either ',  or '�↵,
respectively  � ↵. By Lemma 3.5.18 and Lemma 3.5.19 the automorphism g is
contained in S6 nD5.

But then g �  � g�1 preserves D2 oW2, which is not possible, by Proposition
3.5.20.



Chapter 4

Remarks on the degree
growth of birational
transformations

4.1 Introduction and results

4.1.1 Groups of birational transformations and degree se-
quences

Let Xk be a projective variety defined over a field k. Here, a projective variety is
a separated, geometrically integral, projective scheme of finite type over k. Denote
by Bir(Xk) the group of birational transformations of Xk. A group � is called a
group of birational transformations if there exists a field k and a projective variety
Xk over k such that � ⇢ Bir(Xk). More generally, one can consider Rat(Xk),
the monoid of dominant rational self-maps of Xk. Accordingly, we call a monoid
� a monoid of rational dominant transformations, if there exists a field k and a
projective variety Xk over k such that � ⇢ Rat(Xk).

If Xk is a smooth projective variety, an interesting tool to study the structure
of monoids of rational dominant transformations are degree functions. Fix a polar-
ization of Xk, i.e. an ample divisor class H of Xk. Then one can associate to every
element f 2 Rat(Xk) its degree degH(f) 2 Z+ with respect to H, which is defined
by

degH(f) = f⇤H ·Hd�1,

where d is the dimension of Xk and f⇤H is the total transform of H under f . For
a smooth projective variety Xk over a field of characteristic zero k, one has for
f, g 2 Bir(Xk)

degH(f � g)  C(Xk, H) degH(f) degH(g),

where C(Xk, H) is a constant only depending on Xk and the choice of polarization
H (see [DS05]). For a generalization of this result to fields of positive character-
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istic, see [Tru15] and [Tru16] (see also the more recent [Dan17] for an alternative
approach).

Let f be a rational self map of Pd
k. With respect to homogeneous coordinates

[x0 : · · · : xd] of Pd
k, f is given by [x0 : x1 : · · · : xd] 7! [f0 : f1 : · · · : fd], where

f0, . . . , fd 2 k[x0, . . . , xd] are homogeneous polynomials of the same degree and
without a common factor. We define deg(f) = deg(fi). If f is dominant, then
deg(f) = degH(f) for H = O(1). So in case Xk = Pd

k we can extend the notion of
degree to all rational self maps. Note that if f is an endomorphism of Ad

k defined
by (x1, . . . , xd) 7! (f1, . . . , fd) with respect to a�ne coordinates (x1, . . . , xd) of Ad

k,
where f1, . . . , fd 2 k[x1, . . . , xd], then deg(f) is the maximal degree of the fi.

Let � ⇢ Rat(Xk) be a finitely generated monoid of rational dominant trans-
formations of a smooth projective variety Xk with a finite set of generators S. We
define

DS,H : Z+ ! Z+

by
DS,H(n) := max

�2BS(n)
{degH(�)},

where BS(n) denotes all elements in � of word length  n with respect to the
generating set S. We call a map Z+ ! Z+ that can be realized for some field k and
some (Xk, H,�, S) as such a function a degree sequence. Note that our definition of
degree sequences includes in particular degree sequences that are given by finitely
generated groups of birational transformations � ⇢ Bir(Xk).

In this paper we show that there exist only countably many degree sequences,
display certain constraints on their growth and give some new examples.

4.1.2 Countability of degree sequences

In [BF00], Bonifant and Fornaess proved that the set of sequences {dn} such that
there exists a rational self map f of Pd

C

satisfying deg(fn) = dn for all n, is count-
able, which answered a question of Ghys. We generalize the result of Bonifant
and Fornaess to all degree sequences over all smooth projective varieties, all fields,
all polarizations and all finite generating sets S of finitely generated monoids of
rational dominant maps:

Theorem 4.1.1. The set of all degree sequences is countable.

4.1.3 Previous results on degree growth

In dimension 2 the degree growth of birational transformations is well understood
and is a helpful tool to understand the group structure of Bir(Sk) for projective
surfaces Sk over a field k.

Theorem 4.1.2 (Gizatullin; Cantat; Diller and Favre). Let k be an algebraically
closed field, Sk a projective surface over k with a fixed polarization H and f 2
Bir(Sk). Then one of the following is true:

• the set {degH(fn)} is bounded;
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• degH(fn) ⇠ cn for some positive constant c and f preserves a rational fibra-
tion;

• degH(fn) ⇠ cn2 for some positive constant c and f preserves an elliptic
fibration;

• degH(fn) ⇠ �n, where � is a Pisot or Salem number.

For more details on this rich subject and references to the proof of Theorem 4.1.2
see [Can12a]. In the case of polynomial automorphisms of the a�ne plane, the
situation is even less complicated. Let f 2 Aut(A2

k). Then the sequence {deg(fn)}
is either bounded or it grows exponentially in n. See [Fur99] for this and more
results on the degree growth in Aut(A2

k)
In higher dimensions there are only few results on the degree growth of birational

transformations. In particular, the following questions are open:

Question 4.1.1. Does there exist a birational transformation f of a projective
variety Xk such that degH(fn) is of intermediate growth, for instance degH(fn) ⇠
e
p
n?

Question 4.1.2. Does there exist a birational transformation f such that degH(fn)
is unbounded, but grows ”slowly“? For instance, can we have degH(fn) ⇠ p

n? Or
do unbounded degree sequences grow at least linearly?

Question 4.1.3. If there is a birational transformation f such that degH(fn) ⇠ �n,
is � always an algebraic number?

Question 4.1.4. Do birational transformations of polynomial growth always pre-
serve some non-trivial rational fibration?

In [LB14] Lo Bianco treats the case of automorphisms of compact Kähler three-
folds.

4.1.4 Degree sequences of polynomial automorphisms

A good place to start the examination of degree sequences seems to be the group
of polynomial automorphisms of the a�ne d-space Aut(Ad

k). In Section 4.3.2 we
will show the following observation (the proof of which can be found as well in
[Dés16a]):

Proposition 4.1.3. Let k be a field and f 2 Aut(Ad
k) a polynomial automorphism

such that deg(fd) = deg(f)d, then deg(fn) = deg(f)n for all n 2 Z+.

The monoid End(Ad
k) has the additional structure of a k-vector space, on which

the degree function induces a filtration of finite dimensional vector spaces. This
gives rise to a new technique, which we will use to prove that unbounded degree
sequences of groups of polynomial automorphisms diverge and can not grow arbi-
trarily slowly:
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Theorem 4.1.4. Let f 2 End(Ad
k) be an endomorphism and assume that the

sequence {deg(fn)} is unbounded. Then for all integers K

# {m | deg(fm)  K} < Cd ·Kd,

where Cd = (1+d)d

(d�1)! . In particular, deg(fn) converges to 1 as n goes to 1.

By a result of Ol’shanskii ([Ols99]), Theorem 4.1.4 shows that an unbounded
degree sequence of a polynomial automorphism behaves in some ways like a word
length function. The following corollary is immediate:

Corollary 4.1.5. Let � ⇢ End(Ad
k) be a finitely generated monoid with generating

system S. If DS(n) < Cd · n1/d for infinitely many n then � is of bounded degree.

Unfortunately our methods to prove Theorem 4.1.4 do not work for arbitrary
birational transformations of Pd

k. However, if we assume the ground field to be
finite, we obtain similar results:

Theorem 4.1.6. Let Fq be a finite field with q elements and let f 2 Rat(Pd
Fq
) such

that the sequence {deg(fn)} is unbounded. Then, for all integers K,

# {m | deg(fm)  K}  qC(K,d),

where C(K, d) = (d+ 1) ·
�
d+K
K

�
. In particular, deg(fn) converges to 1 as n goes

to 1.

Corollary 4.1.7. Let � ⇢ Rat(Pd
Fq
) be a finitely generated monoid with generating

system S. There exists a positive constant Cd,q such that if DS(n) < Cd,q · log(n)1/d
for all n, then � is of bounded degree.

4.1.5 Types of degree growth

Definition 4.1.1. Let Xk be a smooth projective variety with polarization H over
a field k and let f 2 Bir(Xk). We denote the order of growth of degH(fn) by

dpol(f) := lim sup
n!1

log(degH(fn))

log(n)
.

The order of growth can be infinite.

By results of Truong, Dinh and Sibony, the order of growth does not depend on
the choice of polarization (see Section 4.2.4):

Proposition 4.1.8. Let Xk be a smooth projective variety over a field k and let
f 2 Bir(Xk). Then dpol(f) does not depend on the choice of polarization.

Let f be a birational transformation of a surface. As recalled above, in that
case dpol(f) = 0, 1, 2 or 1. This gives rise to the following question:

Question 4.1.5. Does there exist a constant C(d) depending only on d such that
for all varieties Xk of dimension d we have dpol(f) < C(d) for all f 2 Bir(Xk) with
dpol(f) finite?
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We give some examples of degree sequences that indicate that the degree growth
in higher dimensions is richer than in dimension 2. First of all, note that elements
in Aut(Ad

k) can have polynomial growth:

Example 4.1.9. Let k be any field and define f, g, h 2 Aut(Ad
k) by g = (x +

yz, y, z), h = (x, y + xz, z) and

f = g � h = (x+ z(y + xz), y + xz, z).

One sees by induction that deg(fn) = 2n+ 1; in particular, dpol(f) = 1.
More generally, for all l  d/2 there exist elements fl 2 Aut(Ad

k) such that
dpol(f) = l (Section 4.3.4).

Other interesting examples of degree sequences of polynomial automorphisms
and the dynamical behavior of the corresponding maps are described in [Dés16a].
For birational transformations of Pd

k we can obtain even faster growth (see [Lin12]
for more details):

Example 4.1.10. The birational transformation f = (x1, x1x2, . . . , x1x2 · · ·xn) of
Pd
k defined with respect to local a�ne coordinates (x1, . . . , xd) satisfies deg(fn) =

nd�1, i.e. dpol(f) = d� 1.

The following interesting observation is due to Serge Cantat:

Example 4.1.11. Define ! := �1+
p
3

2 and the elliptic curve E! := C /(Z+Z!).
Let

X := E! ⇥ E! ⇥ E!

and s : X ! X the automorphism of finite order given by diagonal multiplication
with �!. In [OT15] Oguiso and Truong prove that the quotient Y := X/s is a
rational threefold. Let f : X ! X be the automorphism defined by (x1, x2, x3) 7!
(x1, x1 + x2, x2 + x3). Since f commutes with s, it induces an automorphism on
Y , which we denote by f̂ . Let �1 : Ỹ ! Y be a resolution of the singularities of Y
and define f̃ 2 Bir(Ỹ ) by

f̃ := ��1
1 � f̂ � �1.

We will show in Section 4.3.5 that dpol(f̃) = 4.

Remark 4.1.1. In [Dés16a] Déserti shows that for all l  d there exists a birational
transformation f 2 Bir(Pd

C

) such that dpol(f) = l.

4.2 Preliminaries

4.2.1 Monoids of rational dominant transformations

Let Xk be a projective variety over a field k (i.e. a separated, geometrically in-
tegral, projective scheme of finite type over k). There is a one to one correspon-
dence between rational dominant self maps of Xk and k-endomorphisms of the
function field k(Xk). The field k(Xk) is the field of fractions of a k-algebra of
finite type k[x1, . . . , xn]/I, where I ⇢ k[x1, . . . , xn] is a prime ideal generated
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by elements f1, . . . , fl 2 k[x1, . . . , xn]. A field extension k ! k0 induces a base
change Xk0 ! Xk. The function field of Xk0 is the field of fractions of the k0-
algebra k0[x1, . . . , xn]/I 0, where I 0 is the ideal generated by f1, . . . , fl. Note that
k(Xk) ⇢ k0(Xk0). We say that a k0-endomorphism of k0(Xk0) is defined over k, if it
restricts to a k-endomorphism of k(Xk). Consider a k0-endomorphism G of k0(Xk0)
sending generators (x1, . . . , xn) of k0(Xk0) to (g1, . . . , gn), where gi 2 k0(Xk0). Then
G is defined over k if and only if gi 2 k(Xk) for all i. On the other hand,
let gi, . . . , gn 2 k(Xk) and let (x1, . . . , xd) 7! (g1, . . . , gd) be a k-endomorphism
of k(Xk). Then (x1, . . . , xd) 7! (g1, . . . , gd) defines as well a k0-endomorphism
of k0(Xk0). So a k-endomorphism (x1, . . . , xn) 7! (g1, . . . , gn) of k(Xk) extends
uniquely to a k0-endomorphism of k0(Xk0). This yields the following observation:

Lemma 4.2.1. Let Xk be a projective variety over a field k and ' : k ! k0 a homo-
morphism of fields. Then ' induces a natural injection of monoids  ' : Rat(Xk) !
Rat(Xk0).

Recall that there are uncountably many isomorphism classes of finitely gener-
ated groups and thus in particular uncountably many isomorphism classes of finitely
generated monoids. The following observation by de Cornulier shows that being a
monoid of rational dominant transformations is in some sense a special property
(cf. [Cor13] and [Can12b]).

Proposition 4.2.2. There exist only countably many isomorphism classes of fini-
tely generated monoids of rational dominant transformations.

Proof. Let � ⇢ Rat(Xk) be a monoid of rational dominant transformations with a
finite generating set f1, . . . , fn 2 � , where Xk is a projective variety defined over a
field k. Denote by S ⇢ k the finite set of coe�cients necessary to define Xk and the
rational dominant transformations fi. Let k0 be the field Fp(S), where p = char(k),
or Q(S) if char(k) = 0.

We consider the function field k0(Xk0) as a subfield of the function field k(Xk).
Note that the action of the elements of � on k0(Xk) preserves k0(Xk0) and that
fi1fi2 · · · fim = fj1fj2 · · · fjm in Rat(Xk) if and only if fi1fi2 · · · fim = fj1fj2 · · · fjm
in Rat(Xk0). So without loss of generality we may assume � ⇢ Rat(Xk0), where k0

is a finitely generated field extension of some Fp or of Q.
A rational dominant transformation of a given variety Xk is defined by finitely

many coe�cients in k. So the cardinality of the set of all finitely generated monoids
of rational dominant transformations of a varietyXk is either countable, if k is finite,
or it has at most the cardinality of k.

Recall that the cardinality of the set of all finitely generated field extensions
of Fp and Q is countable. Since a projective variety is defined by a finite set of
coe�cients, we obtain that there are only countably many isomorphism classes of
projective varieties defined over a field k0 that is a finitely generated field extension
of Fp or Q. The claim follows.

4.2.2 Intersection form

Let Xk be a smooth projective variety of dimension d over an algebraically closed
field k and let D be a Cartier divisor on Xk. The Euler characteristic of D is the
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integer

�(Xk, D) =
1X

i=0

(�1)i dimk H
i(Xk, D).

Let D1, . . . , Dd be Cartier divisors on Xk. The function

(m1, . . . ,md) 7! �(Xk,m1D1 + · · ·+mdDd)

is a polynomial in (m1, . . . ,md). The intersection number of D1, . . . , Dd is then
defined to be the coe�cient of the term m1m2 · · ·md in this polynomial and we
denote it by D1 · D2 · · ·Dd. One can show that intersection numbers are always
integers and that the intersection form is symmetric and linear in all d arguments.
Moreover, if D1, . . . , Dd are e↵ective and meet properly in a finite number of points,
D1 · · ·Dd is the number of points inD1\· · ·\Dd counted with multiplicities and the
intersection form is the unique bilinear form with this property. For the details on
this construction we refer to [Deb01] and the references in there. The intersection
number is preserved under linear equivalence, therefore it is well defined on classes
of Cartier divisors. Note as well that an isomorphism between algebraically closed
fields does not change the cohomology dimensions and hence that the intersection
numbers are invariant under such an isomorphism.

Let Xk be a smooth projective variety of dimension d over an arbitrary field k
and let D1, . . . , Dd be Cartier divisors on Xk. Denote by k an algebraic closure of
k. We define the intersection number D1 ·D2 · · ·Dd as the intersection number of
D1, D2, . . . , Dd on Xk after base extension k ! k. By the remark above, this does
not depend on the choice of the algebraic closure k. Every field isomorphism k ! k0

extends to an isomorphism between the algebraic closures of k and k0, hence the
intersection number is invariant under field isomorphisms. Since the intersection
form is unique, it also does not change under a base extension k ! k0 between
algebraically closed fields.

We summarize these properties in the following proposition:

Proposition 4.2.3. Let Xk be a smooth projective variety of dimension d over a
field k. Then there exists a symmetric d-linear form on the group of divisors of Xk:

Div(Xk)⇥ · · ·⇥Div(Xk) ! Z, (D1, . . . , Dd) 7! D1 ·D2 · · ·Dd,

such that if D1, . . . , Dd are e↵ective and meet properly in a finite number of points
over the algebraic closure of k, D1 · · ·Dd is the number of points in D1 \ · · · \Dd

over the algebraic closure of k counted with multiplicity. Moreover, this intersection
form is invariant under base change k ! k0 of fields.

Recall that two divisors D1 and D2 are called numerically equivalent if D1 ·� =
D2 · � for all curves � on X. Denote by N1(X) the Neron-Severi group, which
is the group of divisors modulo numerical equivalence. The intersection number
of divisors D1, . . . , Dd is invariant under numerical equivalence, so we obtain an
intersection form on N1(X).
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4.2.3 Polarizations and degree functions

A polarization on a smooth projective variety Xk of dimension d is an ample divisor
class H. This implies in particular that Y ·Hd�1 > 0 for all e↵ective divisors Y .

Let f 2 Rat(Xk) and denote by dom(f) the maximal open subset of Xk on
which f is defined. The graph �f of f is the closure of {(x, f(x)) | x 2 dom(f))} ⇢
Xk⇥Xk. Let p1 and p2 : �f ! X be the natural projections on the first respectively
second factor, then f = p2 � p�1

1 . Note that p1 is birational. The total transform
of a divisor D under f is the divisor p1⇤(p

⇤
2D), where p2⇤D is the pullback of D as

a Cartier divisor and p1⇤(p
⇤
2D) is the pushforward of p2⇤D as a Weil divisor. Note

that if k is algebraically closed and D is e↵ective, then the support of f⇤D is the
closure of all the points in dom(f) that are mapped to D by f . The degree of a
dominant rational transformation f of X with respect to an ample divisor class H
of X is defined as the integer degH(f) = f⇤H ·Hd�1, where d is the dimension of
X and f⇤H is the total transform of H under f .

4.2.4 Degrees in the case of complex varieties

Let X
C

be a smooth complex projective variety of dimension d. The following
constructions and results can be found in [Laz04]. By taking the first Chern class
one can embed N1(X

C

) into H2(X;Z)t.f., which is H2(X
C

;Z) modulo its torsion
part. It turns out that N1(X

C

) = H2(X
C

;Z)t.f. \H1,1(X
C

), i.e. we can associate
to each divisor class D in N1(X

C

) its Chern class c1(D) which is a unique class of
closed (1, 1)-forms in H1,1(X

C

). Let D1, . . . , Dd be divisors and choose for each i
a representative !i of the class c1(Di). Then

D1 ·D2 · · ·Dd =

Z

XC
!1 ^ !2 ^ · · · ^ !d.

A divisor is ample if and only if its Chern class is a Kähler class, i.e. it is represented
by a Kähler form. This notion makes it possible to study degrees of meromorphic
maps of compact Kähler manifolds.

Let f : X 99K Y be a meromorphic transformation between compact Kähler
varieties. Denote by �f ⇢ X ⇥ Y its graph and by ⇡X and ⇡Y the canonical
projections from X ⇥ Y to X and Y . Let ! be a (1, 1)-form on Y and let ⇡⇤

Y !|�f

be the restriction of the pullback of ! to �f . One can define f⇤! as the closed
positive current

f⇤! = (⇡X)⇤(⇡
⇤
Y !|�f ),

where (⇡X)⇤ is the push forward of ⇡⇤
Y !|�f as a current. With respect to local

coordinates (x1, x2, . . . , xd) one can write f⇤! =
P

i,j aijdxi ^ dxj , where the aij
are local L1-functions. We refer to [DN11] for details on this construction. If H
is a divisor on Y and ! represents its chern class, then f⇤! represents the Chern
class of f⇤H.

If ! is a Kähler form of a compact Kähler variety X
C

, one can define the degree
of a birational map f 2 Bir(X

C

) by

deg!XC
(f) =

Z

XC
f⇤!XC ^ !XC ^ · · · ^ !XC .
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This definition coincides with our previous definition of degree (Section 4.2.3) and
extends this notion to compact Kähler manifolds.

4.2.5 Invariance of the degree by semi-conjugacy

In [Tru16] the following is shown (see also [DS05] and [DN11] for the characteristic
0 case):

Theorem 4.2.4. Let Xk be a smooth projective variety over a field k with polar-
ization H and f 2 Bir(X). There exists a constant A > 0 such that

A�1 degH(fn)  k(fn)⇤k  A degH(fn),

where k · k denotes any norm on End(N1(Xk)⌦Z

R).

The following corollary follows from Theorem 4.2.4 and proves Proposition 4.1.8:

Corollary 4.2.5. Let Xk be a smooth projective variety over a field k, then

dpol(f) = lim sup
n!1

log(k(fn)⇤k)
log(n)

.

In particular, dpol(f) does not depend on the choice of polarization.

Proposition 4.2.6. Let Xk and Yk be smooth projective varieties over a field k of
dimension d, let f 2 Bir(Xk), g 2 Bir(Yk) and ⇡ : X ! Y a dominant morphism
such that ⇡ � f = g � ⇡. Then dpol(f) = dpol(g).

Proposition 4.2.6 follows from [Tru16, Lemma 4.5] by looking at the maps
⇡ : X ! Y and ⇡�1 : Y ! X as correspondences. Let us describe another strategy
to prove Proposition 4.2.6, which has been communicated to us by the referee (see
also [Dan17]). Let HX and HY be ample divisors on X and Y respectively. The
divisor H := ⇡⇤HY is big and nef. Siu’s inequality (see [Laz04, 2.2.13], [Dan17])
implies

HX  d · HX ·Hd�1

Hd
H.

This means that HX · �  d · HX ·Hd�1

Hd H · � for all e↵ective curves � on X. Let C

be equal to d · (HX ·Hd�1)
Hd . Then

degHX
(fn)  Cd(fn)⇤H ·Hd�1 = Cd⇡⇤(gn)⇤HY · (⇡⇤HY )

d�1

 C deg(⇡)(gn)⇤HY ·Hd�1
Y = C deg(⇡) degHY

(gn).

On the other hand, degHY
(gn)  ⇡⇤(gn)⇤HY · (⇡⇤HY )d�1 = (fn)⇤H · Hd�1. By

Theorem 4.2.4, there exists a constant A such that (fn)⇤H ·Hd�1  A degHX
(fn).
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4.3 Proofs

4.3.1 Proof of Theorem 4.1.1

Let k be a field, Xk a smooth projective variety defined over k, H a polarization of
Xk and � ⇢ Rat(Xk) a finitely generated monoid of rational dominant transfor-
mations with generating set T . Then Xk, H and T are defined by a finite set S of
coe�cients from k. Let k0 ⇢ k be the field Fp(S), where p = char(k), or k0 = Q(S)
if char(k) = 0. By Proposition 4.2.3, the degree of elements in � considered as
rational dominant transformations of Xk with respect to the polarization H is the
same as the degree of elements in � considered as rational dominant transforma-
tions of Xk0 . So without loss of generality, we may assume that � is a submonoid
of Rat(Xk0), where k0 is a finitely generated field extension of Fp or of Q.

As in the proof of Proposition 4.2.2, we use the fact that there are only countably
many isomorphism classes of such varieties. Polarizations and rational self maps are
defined by a finite set of coe�cients, so the cardinality of the set of all (k0, Xk0 , H, T )
up to isomorphism, where k0 is a finitely generated field extension of Fp or Q, Xk0

a smooth projective variety over k0, H a polarization of Xk0 and T a finite set of
elements in Rat(Xk0) is countable. It follows in particular that the set of all degree
sequences is countable.

4.3.2 Proof of Proposition 4.1.3

Let k be a field and f 2 Bir(Pd
k) a birational map that is given by [f0 : · · · : fd], with

respect to homogeneous coordinates [x0 : · · · : xd], where the fi are homogenous
polynomials of the same degree without common factors. There are two important
closed subsets of Pd

k associated to f , the indeterminacy locus Ind(f), consisting of
all the points where f is not defined and the exceptional divisor Exc(f), the set of
all the points where f is not a local isomorphism. If f is not an automorphism, the
indeterminacy locus is a closed set of codimension � 2 and the exceptional divisor
a closed set of codimension 1. Note that Ind(f) is exactly the set of points, where
all the fi vanish. Let X ⇢ Pd

k be an irreducible closed set that is not contained
in Ind(f). We denote by f(X) the closure of f(X \ Ind(f)) and we say that f
contracts X if dim(f(X)) < dim(X).

The following lemma is well known (see for example [FS94]):

Lemma 4.3.1. Let k be a field and g, f 2 Bir(Pd
k). Then deg(f �g)  deg(f) deg(g)

and deg(f � g) < deg(f) deg(g) if and only if g contracts a hypersurface to a subset
of Ind(f).

Proof. Let f = [f0 : · · · : fd] and g = [g0 : · · · : gd]. Then deg(f �g) < deg(f) deg(g)
if and only if the polynomials f0(g0, . . . , gd), . . . , fd(g0, . . . , gd) have a non constant
common factor h 2 k[x0, . . . , xd]. Let M ⇢ Pd

k be the hypersurface defined by
h = 0. Then f is not defined along g(M). This implies that the codimension of
g(M) is � 2 and therefore that g contracts M to a subset of Ind(f).

On the other hand, let M be an irreducible component of a hypersurface that
is contracted by g to a subset Ind(f). Assume that M is the zero set of an
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irreducible polynomial h. Since g(M) ⇢ Ind(f), we obtain that the polynomi-
als f0(g0, . . . , gd), . . . , fd(g0, . . . , gd) vanish all on M and therefore that h divides
f0(g0, . . . , gd), . . . , fd(g0, . . . , gd). This implies deg(f � g) < deg(f) deg(g).

In order to prove Proposition 4.1.3, we consider an element f 2 Aut(Ad
k) as

a birational transformation of Pd
k whose exceptional divisor is the hyperplane at

infinity H := Pd
k \Ad

k and whose indeterminacy points are contained in H.
Note that deg(fd) = deg(f)d implies deg(f l) = deg(f)l for l = 1, . . . , d. We

look at f as an element of Bir(Pd
k). If f is an automorphism of Pd

k, its degree is 1 and
the claim follows directly. Otherwise, f contracts the hyperplane H. By Lemma
4.3.1, deg(f l+1) = deg(f l) deg(f) is equivalent to f l(H) not being contained in
Ind(f). In particular, if deg(f l) = deg(f)l and f l(H) = f l+1(H) for some l then
deg(f i) = deg(f)i for all i � l.

Let 1  l  d. By Lemma 4.3.1, f l(H) is not contained in Ind(f). Observe
that f l(H) is irreducible and f l+1(H) ⇢ f l(H). This implies dim(f l+1(H)) 
dim(f l(H)) and dim(f l+1(H)) = dim(f l(H)) if and only if f l+1(H) = f l(H). It
follows that the chain H � f(H) � f2(H) � · · · becomes stationary within the
first d iterations. In particular, fd(H) = fd+i(H) for all i and therefore deg(f i) =
deg(f)i for all i.

4.3.3 Proof of Theorem 4.1.4 and Theorem 4.1.6

We start by proving Theorem 4.1.4. Let f 2 End(Ad
k) be an endomorphism such

that the sequence {deg(fn)} is unbounded. Our first remark is that the elements
of {fn} are linearly independent in the vector space of polynomial endomorphisms
End(Ad

k). Indeed, assume that for any n we have

fn =
X

l<n

clf
l,

for some c1, . . . , cn�1 2 k. It follows by induction that deg(fn+i) is smaller or equal
to maxl<n deg(f l) for all i .

Denote by End(Ad)K the k-vector space of polynomial endomorphisms of de-
gree  K, which has dimension d ·

�
d+K
K

�
. One calculates

d ·
✓
d+K

K

◆
<

1

(d� 1)!
(K + d)d  (1 + d/K)d

(d� 1)!
Kd  CdK

d,

where Cd = (1+d)d

(d�1)! . Since the elements in {fk}\End(Ad)K are linearly indepen-

dent, the cardinality of {fk} \ End(Ad)K is at most CdKd�1.
For the proof of Theorem 4.1.6 note that in the case of finite fields, there are

only finitely many birational transformations of a given degree. If f l = f for some
l > 1, then {deg(fn)} is bounded. There are

�
d+K
K

�
monomials of degree  K. A

birational transformation of degree  K is given by d + 1 polynomials of degree
 K, so by C(K, d) = (d+1)

�
d+K
K

�
coe�cients from Fq. Hence there are less than

qC(K,d) birational transformations of degree  K. This proves the claim.
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4.3.4 Proof of Example 4.1.9

Let d be an integer and l = bd/2c. For d = 3 the automorphism f3 := (x +
z(y + xz), y + xz, z) from Example 4.1.9 satisfies deg(fn

3 ) ⇠ n. Moreover, the first
coordinate of fn

3 is the coordinate with highest degree. Assume now that d � 5 and
that we are given an automorphism fd�2 2 Aut(Ad�2) such that deg(fn

d�2) grows
like nl�1 and that the first coordinate of fn

d�2 is the entry with highest degree. Let

fd := (x1 + x3(x2 + x1x3), x2 + x1x3, fd�2(x3, . . . , xd)).

One sees by induction that the degree of fn
d grows like nl and that the first coor-

dinate of fn
d is the coordinate of fn

d with highest degree.

4.3.5 Proof of Example 4.1.11

In this section we use the notation introduced in Example 4.1.11.
Let dz1, dz2, dz3 be a basis of H1,0(X). Then dz̄1, dz̄2, dz̄3 is a basis of H0,1(X)

and the (1, 1)-forms dzi ^ dz̄j form a basis of H1,1(X). This allows us to identify
H1,1(X) with H1,0(X)⌦H0,1(X). The automorphism fn induces automorphisms
on both H1,0(X) and H0,1(X) whose norm grows like n2. This implies that the
norm of the induced action of fn on H1,1(X) grows like n4. By Corollary 4.2.5, we
obtain dpol(f) = 4.

Denote by ⇡ : X ! Y = X/s the quotient map. Let X̃ be a smooth projective
variety, �2 : X̃ ! X a birational morphism and  : X̃ ! Ỹ a dominant morphism
such that the following diagram commutes:

X̃ Ỹ

X Y.

 

�2 �1

⇡

Note that  is generically finite. By Proposition 4.2.6, we have dpol(��1
2 �f ��2) =

dpol(f) = 4 and hence, again by Proposition 4.2.6, dpol(f̃) = dpol( � ��1
2 � f �

�2 �  �1) = 4, which proves the claim of Example 4.1.11.

4.4 Remarks

4.4.1 Other degree functions

One can define more general degree functions. Let Xk be a smooth projective
variety over a field k with polarization H and 1  l  d� 1, then

deglH(f) := (f⇤H)l ·Hd�l.

These degree functions play an important role in dynamics. In characteristic 0, we
still have deglH(fg)  C deglH(f) deglH(g) for a constant C not depending on f and
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g (see [DS05] for characteristic 0, and [Tru15], [Tru16] for generalizations to fields
of positive characteristic).

Our proof of Theorem 4.1.1 works as well if we replace the function degH by
deglH for any l. Let � ⇢ Bir(Xk) be a finitely generated group of birational trans-
formations with a finite symmetric set of generators S. We define Dl

S,H : Z+ ! Z+

by Dl
S,H(n) := max�2BS(n){degH(�)} and we call a map Z+ ! Z+ that can be

realized for some (Xk, H,�, S, l) as such a function a general degree sequence.

Theorem 4.4.1. The set of all general degree sequences is countable.

Proof. Analogous to the proof of Theorem 4.1.1.
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Chapter 5

Preliminaries

5.1 Introduction

To a smooth projective surface S over a field k one can associate its group of
birational transformations Bir(S). If S is rational, this group is particularly rich
and interesting. In this case it is isomorphic to the plane Cremona group

Cr2(k) := Bir(P2
k).

In this section we always assume that k is a fixed algebraically closed field. If we
choose homogeneous coordinates [x : y : z] of P2

k, every element f 2 Cr2(k) is given
by

[x : y : z] 799K [f0(x, y, z) : f1(x, y, z) : f2(x, y, z)],

where f0, f1, f2 2 k[x, y, z] are homogeneous polynomials of the same degree and
without a non-constant common factor. We will always assume that the homoge-
neous coordinates are fixed and identify f with [f0 : f1 : f2].

In the last decade many results about the group structure of the plane Cremona
group have been proven. One of the main techniques to better understand infinite
subgroups of Cr2(k) was the construction of an action by isometries of the plane
Cremona group on an infinite dimensional hyperbolic space and the use of results
from hyperbolic geometry and group theory. The aim of this chapter is to gather
some results we need for our purposes. Most of the times we will refer to other
sources for the proofs.

5.2 An infinite dimensional hyperbolic space

5.2.1 The bubble space

Let X be a smooth projective surface. The bubble space B(X) is, roughly speaking,
the set of all points that belong to X or are infinitely near to X. More precisely,
B(X) can be defined as the set of all triples (y, Y, ⇡), where Y is a smooth projec-
tive surface, y 2 Y and ⇡ : Y ! X a birational morphism modulo the following
equivalence relation: A triple (y, Y,⇡) is equivalent to (y0, Y 0,⇡0) if there exists a

99
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birational transformation ' : Y 99K Y 0 that restricts to an isomorphism in a neigh-
borhood of y, maps y to y0 and satifies ⇡0 � ' = ⇡. A point p 2 B(X) that is
equivalent to (x,X, id) is called a proper point of X. All points in B(X) that are
not proper are called infinitely near. If there is no ambiguity, we will sometimes
denote a point in the bubble space by y instead of (y, Y,⇡).

Let f : X 99K Y be a birational transformation. By Zariski’s theorem (see
[Bea96, Corollary II.12]) we can write f = ⇡2 � ⇡�1

1 , where ⇡1 : Z ! X,⇡2 : Z ! Y
are finite sequences of blow ups. We may assume that there is no (�1)-curve in Z
that is contracted by both, ⇡1 and ⇡2. The base-points B(f) of f are the points
in B(X) that are blown up by ⇡1. The proper base-points are sometimes called
indeterminacy points of f in the above sense.

A birational morphism ⇡ : X ! Y induces a bijection (⇡1)• : B(X) ! B(Y ) \
B(⇡�1) by sending a point represented by (x,X,') to the point represented by
(x,X,⇡�'). A birational transformation of smooth projective surfaces f : X 99K Y
induces a bijection f• : B(X)\B(f) ! B(Y )\B(f�1) by f• := (⇡2)• �(⇡1)�1

• , where
⇡1 : Z ! X, ⇡2 : Z ! Y is a minimal resolution of f .

5.2.2 The Picard-Manin space

LetX be a smooth projective surface and Pic(X) its Picard group. The intersection
between curves extends to a quadratic form Pic(X) ⇥ Pic(X) ! Z, (C,D) 7!
C ·D. The Néron-Severi group NS(X) is the quotient of Pic(X) modulo numerical
equivalence, i.e. C is equivalent to D if C · E = D · E for all divisors E. Recall
that in the case of rational surfaces, we have NS(X) = Pic(X).

The Néron-Severi group is a finitely generated free abelian group, whose rank
⇢(X) is called the Picard number. By the Hodge index theorem, the signature of
the intersection form on NS(X) has signature (1, ⇢(X)� 1).

The pull-back of a birational morphism ⇡ : Y ! X yields an injection of Pic(X)
into Pic(Y ) that preserves the intersection form, so we obtain an injection from
NS(X) into NS(Y ). The morphism ⇡ : Y ! X can be written as a finite sequence
of blow-ups. Let e1, . . . , ek ⇢ Y be the classes of the irreducible components of
the exceptional divisor of ⇡, i.e. the classes contracted by ⇡. Then we have a
decomposition

NS(Y ) = NS(X)� Z e1 � · · ·� Z ek, (5.1)

which is orthogonal with respect to the intersection form.
Let ⇡1 : Y ! X and ⇡2 : Y 0 ! X be birational morphisms of smooth projective

surfaces. We say that ⇡1 is above ⇡2 if ⇡�1
2 � ⇡1 is a morphism. In other words,

⇡1 lies above ⇡2 if all the points that are blown up by ⇡2 are also blown up by
⇡1. For any two birational morphisms ⇡1 : Y ! X and ⇡2 : Y 0 ! X there exists a
birational morphism ⇡3 : Y 00 ! X that lies above ⇡1 and ⇡2.

Consider the set of all birational morphisms of smooth projective surfaces
⇡ : Y ! X. Our remark above shows that the corresponding embeddings of the
Néron-Severi groups ⇡ : NS(X) ! NS(Y ) form a directed family, so the direct limit

Z(X) := lim
⇡ : Y!X

NS(X)

exists. It is called the Picard-Manin space of X. The intersection forms on the
groups NS(Y ) induce a quadratic form on Z(X) of signature (1,1).
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Let p 2 B(X) be a point in the bubble space of X and denote by ep the divisor
class of the exceptional divisor of the blow-up of p in the corresponding Néron-
Severi group, i.e. ep can be seen as a point in Z(X). From Equation 5.1 one
deduces that the Picard-Manin space has the following decomposition

Z(X) = NS(X)�
M

p2B(X)

Z ep.

Moreover, ep · ep = �1 and ep · eq = 0 for all p 6= q, as well as ep · l = 0 for all
l 2 NS(X).

5.2.3 Some hyperbolic geometry

Let H be a real Hilbert space of dimension n, where n can also be infinite (in which
case n� 1 is infinite as well), and e0 2 H a unit vector. Let e?0 be the orthogonal
complement of the space R e0 and (ei)i2I an orthonormal basis of e?0 . We define a
scalar product h· | ·ih with signature (1, n� 1) on H by setting

hu | vih := a0b0 �
X

i2I

aibi,

for any two elements u = a0e0 +
P

i2I aiei and v = b0e0 +
P

i2I biei in H. The
set of all elements in v 2 H such that hv | vih = 1 defines a hyperboloid with two
connected components. We define Hn�1 to be the connected component of this
hyperboloid that contains e0. We define a metric on Hn�1 by

d(u, v) := arccosh(hu | vih).
It turns out that Hn�1 with the metric d is a complete metric space that is �-
hyperbolic in the sense of Gromov with � = log(1 +

p
2). Indeed, if we intersect

Hn�1 with a subspace of dimension m  n�1 of H such that the intersection is not
empty, we obtain a hyperbolic space Hm�1. In particular, every triangle in Hn�1

lies in a subspace isometric to H2. The space H1 is hyperbolic (see for example
[CLdC13]).

The boundary @Hn�1 of Hn�1 consists of the one-dimensional vector subspaces
in the light cone, i.e. the cone of isotropic vectors with respect to h· | ·ih.

Let O1,n(R) be the group of linear transformations of H that preserve the form
h· | ·ih and O+

1,n(R) ⇢ O1,n(R) the index two subgroup that preserves Hn�1. Then

O+
1,n(R) acts by isometries on Hn�1. On the other hand, one can also show that

every isometry of Hn�1 is induced by an element of O+
1,n(R).

To an isometry h of Hn�1 we associate L(h) := inf{d(h(p), p) | p 2 Hn�1}. If
L(h) = 0 and the infimum is achieved, i.e. h has a fixed point in Hn�1, then h is
called elliptic. If L(h) = 0 but the infimum is not achieved, we call h parabolic.
It can be shown that a parabolic isometry fixes exactly one point p on the border
@Hn�1. If L(h) > 0 we call h loxodromic. In this case the set

{p 2 Hn�1 | d(h(p), p) = L(h)}
is a geodesic line in Hn�1. It is called the axis Ax(h) of h and L(h) is called the
translation length. A loxodromic isometry has exactly two fixed points in @H1,
one of them attractive and the other repulsive (see [Can11a]).
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5.2.4 An isometric action of Bir(X)

Now we consider again a smooth projective surface X and its Picard-Manin space
Z(X). Let Z(X) be the completion of the real vector space Z(X) ⌦ R that we
obtain in the following way:

Z(X) := {v +
X

p2B(X)

apep | v 2 NS(X)⌦ R, ap 2 R,
X

p2B(X)

a2p < 1}.

The intersection form extends continuously to a quadratic form on Z(X) with sig-
nature (1,1). Let e0 2 Z(X) be a vector that corresponds to an ample class. We
define H1(X) to be the set of all vectors v in Z(X) such that v ·v = 1 and e0 ·v > 0.
This yields a distance d on H1(X) by

d(u, v) := arccosh(u · v).

This yields the same space as described above, for n = 1. As before, the boundary
@H1(X) consists of the lines in the isotropic cone. Often, we will just write H1

and @H1 instead of H1(X) and @H1(X), if it is clear from the context, over
which surface we are working.

Let us explain, how Bir(X) acts on H1. A birational morphism f : Y ! X
of smooth projective surfaces induces an isomorphism f⇤ : Z(Y ) ! Z(X). Let
NS(Y ) = NS(X) � Z ep1 � · · · � Z epn , where p1, . . . , pn 2 B(X) are the points
blown up by f and epi is the irreducible component in the exceptional divisor that
is contracted to pi. The map f⇤ is then defined by f⇤(ep) = ef•(p) for all p 2 B(Y ),
f⇤(epi) = epi and f⇤(D) = D for all D 2 NS(X) ⇢ NS(Y ) (where the inclusion is
given by the pull back of f).

A birational map f : Y 99K X induces an isomorphism f⇤ : Z(Y ) ! Z(X),
which is defined by f⇤ = (⇡2)⇤�(⇡1)�1

⇤ , where ⇡1 : Z ! Y,⇡2 : Z ! X are birational
morphisms such that f = ⇡2 � ⇡�1

1 .
Now assume that f 2 Bir(X). Then f⇤ yields an automorphism of Z(X) ⌦

R, which extends to an automorphism of the completion Z(X) and preserves the
intersection form. This automorphism thus preserves the hyperboloid H1 and it
induces an isometry on H1. This gives an action by isometries of Bir(X) on H1.

We refer to [Man86], where this construction was developed for the first time
and [Can11a] for details and proofs.

An element f 2 Cr2(C) is called elliptic, if the corresponding isometry on H1

is elliptic, parabolic if the corresponding isometry is parabolic and loxodromic if
the corresponding isometry is loxodromic. The axis Ax(f) of a loxodromic element
f 2 Cr2(C) is the axis in H1 of the isometry of H1 corresponding to f .

5.2.5 Dynamical degrees

LetX be a projective surface with a polarizationH and f 2 Bir(X). The dynamical
degree of f is defined by

�(f) := lim
n!1

degH(fn)
1
n .

The following result is well known. A proof can be found for example in [Can15,
Lemma 4.5]:
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Proposition 5.2.1. The dynamical degree �(f) of a birational transformation
f 2 Bir(X) does not depend on the choice of the polarization H. Moreover, f
is loxodromic if and only if �(f) > 1. In this case the translation length of the
isometry of H1 induced by f is log(�(f)).

In [BC16], Blanc and Cantat studied the spectrum of possible values that can
be obtained as dynamical degrees of birational transformations of a given projective
surface.

Theorem 5.2.2 ([BC16, Corollary 1.7], [DF01]). Let X be a projective surface
over an algebraically closed field k and let f 2 Bir(X) with �(f) > 1. Then �(f) is
either a Pisot or Salem number. Moreover, �(f) � �L, where �L > 1 is the Lehmer
number.

Recall that the Lehmer number �L ' 1.1762 is the unique root > 1 of the
irreducible polynomial x10+x9�x7�x6�x5�x4�x3+x+1. The fact that there
is no birational transformation f of a surface such that 1 < �(f) < �L is usually
refered to as the gap property.

One of the consequences of Theorem 5.2.2 is the following:

Corollary 5.2.3 ([BC16, Corollary 4.7]). Let f be a birational transformation of
a projective surface S. If f is loxodromic, the infinite cyclic group generated by f
is a finite index subgroup of the centralizer of f in Bir(X).

5.2.6 Degrees and types

The importance of the action of Bir(X) by isometries on H1 is a result of the
following correspondence between the dynamical behavior of a birational transfor-
mation f of X, in particular its degree, and the type of the induced isometry on
H1:

Theorem 5.2.4 (Gizatullin; Cantat; Diller and Favre). Let X be a smooth pro-
jective surface over an algebraically closed field k with a fixed polarization H and
f 2 Bir(X). Then one of the following is true:

(1) f is elliptic, the sequence {degH(fn)} is bounded and there exists a k 2 Z+

and a birational map ' : X 99K Y to a smooth projective surface Y such that
'fk'�1 is contained in Aut0(Y ), the neutral component of the automorphism
group Aut(Y ).

(2a) f is parabolic and degH(fn) ⇠ cn for some positive constant c and f pre-
serves a rational fibration, i.e. there exists a smooth projective surface Y , a
birational map ' : X 99K Y , a curve B and a fibration ⇡ : Y ! B, such that
a general fiber of ⇡ is rational and such that 'f'�1 permutes the fibers of ⇡.

(2b) f is parabolic and degH(fn) ⇠ cn2 for some positive constant c and f pre-
serves a fibration of genus 1 curves, i.e there exists a smooth projective surface
Y , a birational map ' : X 99K Y , a curve B and a fibration ⇡ : Y ! B, such
that 'f'�1 permutes the fibers of ⇡ and such that ⇡ is an elliptic fibration,
or a quasi-elliptic fibration (the latter only occurs if char(k) = 2 or 3).
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(3) f is loxodromic and degH(fn) = c�(f)n +O(1) for some positive constant c,
where �(f) is the dynamical degree of f . In this case, f does not preserve
any fibration.

A first main step towards Theorem 5.2.4 has been done by Gizatullin in [Giz80]
(see as well [Gri16]), where he classified parabolic automorphisms of surfaces. In
[DF01], Diller and Favre proved the main result about the possible degree growths
(see also [Fav10]).

Theorem 5.2.4 has lead to various remarkable results on the group structure of
Bir(X); we will state some of them in the following sections. From the point of
view of geometric group theory, the plane Cremona group acting on H1 has some
analogies with other groups acting on hyperbolic spaces such as for example the
mapping class group of a surface acting on the complex of curves or groups of outer
automorphisms of a free group with n generators acting on the outer space.

Let us also recall the following result, which we will use later:

Theorem 5.2.5 ([Can11a, Theorem 6.6]). Let G ⇢ Cr2(C) be a subgroup. If G
does not contain any loxodromic element, then G fixes a point in H1 [@H1.

5.3 The parabolic case

5.3.1 The de Jonquières subgroup

A fibration of a surface S is a rational map ⇡ : S 99K C, where C is a curve such that
the general fibers are one-dimensional. We will identify two fibrations ⇡1 : S 99K C
and ⇡2 : S 99K C 0 with each other if there exists an open dense subset U ⇢ S that
is contained in the domain of ⇡1 and ⇡2 such that the restrictions of ⇡1 and ⇡2 to U
define the same set of fibers. We say that a group G ⇢ Bir(S) preserves a fibration
⇡ if G permutes the fibers, i.e. there exists a rational G-action on C such that ⇡ is
a G-equivariant map. A rational fibration of a rational surface X is a rational map
⇡ : S 99K P1 such that the general fiber is rational.

The following theorem is due to Noether and Enriques. We refer to [Bea96,
III.4] for a proof.

Theorem 5.3.1. Let ⇡ : X 99K C be a rational fibration. Then there exists a
birational map ' : C ⇥ P1 99K X such that ⇡ � ' is the projection onto the first
factor.

In other words, Theorem 5.3.1 states that, up to birational transformations,
there exists just one rational fibration of P2.

Definition 5.3.1. The de Jonquières subgroup J of Cr2(C) is the subgroup of
elements that preserve the pencil of lines through the point [0 : 0 : 1] 2 P2.

With respect to a�ne coordinates [x : y : 1] an element in J is of the form

(x, y) 799K
✓
ax+ b

cx+ d
,
↵(x)y + �(x)

�(x)y + �(x)

◆
,
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where

✓
a b
c d

◆
2 PGL2(C) and

✓
↵(x) �(x)
�(x) �(x)

◆
2 PGL2(C(x)). This induces

an isomorphism
J ' PGL2(C)n PGL2(C(x)).

By Theorem 5.3.1, every subgroup of Cr2(C) that preserves a rational fibration is
conjugate to a subgroup of J .

5.3.2 Halphen surfaces

Consider two smooth cubic curves C and D in P2. Then C and D intersect in
9 points p1, . . . , p9 and there is a pencil of cubic curves passing through these 9
points. By blowing up p1, . . . , p9, we obtain a rational surface X with a fibration
⇡ : X ! P1 whose fibers are genus 1 curves. More generally, we can consider a
pencil of curves of degree 3m for any m 2 Z+ and blow up its base-points to
obtain a surface X. Such a pencil of genus 1 curves is called a Halphen pencil
and the surface X a Halphen surface of index m. A surface X is Halphen if and
only if the linear system |�mKX | is one-dimensional, has no fixed component and
is base-point free. Up to conjugacy by birational maps, every pencil of genus 1
curves of P2 is a Halphen pencil and Halphen surfaces are the only examples of
rational elliptic surfaces. We refer to [CD12] and [IS96, Chapter 10] for proofs and
more details. A subgroup G of Cr2(C) that preserves a pencil of genus 1 curves
is therefore conjugate to a subgroup of the automorphism group of some Halphen
surface.

Lemma 5.3.2. Let X be a Halphen surface and f 2 Bir(X) a birational transfor-
mation that preserves the Halphen pencil, then f 2 Aut(X).

Proof. Since the Halphen pencil is defined by a multiple of �KX , the class of the
anticanonical divisor, every birational transformation of a Halphen surface that
preserves the Halphen fibration, preserves KX , the class of the canonical divisor.
Assume that f is not an automorphism and let Z be a minimal resolution of inde-
terminacies of f and ⇡, ⌘ : Z ! X such that f = ⇡ � ⌘�1. We have

⌘⇤(KX) +
X

Ei = KZ = ⇡⇤(KX) +
X

Fi,

where the Ei and Fi are the total pull-backs of the exceptional curves; in particular,
E2

i = �1, F 2
i = �1 and EiEj = 0, FiFj = 0 for i 6= j. Since f preserves KX , we

have that ⌘⇤(KX) = ⇡(KX) and hence
P

Ei =
P

Fi. Note that
P

Ei contains at
least one (�1)-curve Ek. Hence Ek · (

P
Ei) = �1 = Ek · (

P
Fi). But this implies

that Ek is contained in the support of
P

Fi, which contradicts the minimality of
the resolution.

The automorphism groups of Halphen surfaces are studied in [Giz80] and in
[CD12], see also [Gri16]. We need the following result, which can be found in
[CD12, Remark 2.11]:

Theorem 5.3.3. Let X be a Halphen surface. Then, there exists a homomorphism
⇢ : Aut(X) ! PGL2(C) with finite image such that ker(⇢) is an extension of an
abelian group of rank  8 by a cyclic group of order dividing 24.
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We also recall the following result from [Can11a]:

Lemma 5.3.4. Let G ⇢ Cr2(C) be a group that does not contain any loxodromic
element but contains a parabolic element. Then G is conjugate to a subgroup of the
de Jonquières group J or to a subgroup of Aut(Y ), where Y is a Halphen surface.

Proof. By Theorem 5.2.5, G fixes a point q 2 H1 [@H1. Let f 2 G be a parabolic
element. By definition, f has no fixed point in H1 and a unique fixed point
p 2 @H1. It follows that p = q. By Theorem 5.2.4, there exists a birational map
' : P2 99K Y , a curve C and a fibration ⇡ : Y ! C such that 'f'�1 permutes the
fibers of ⇡. In particular, 'f'�1 preserves the divisor class of a fiber F of ⇡. Being
the class of a fiber, F has self-intersection 0. The point A 2 Z(P2) corresponding
to F satisfies therefore hA | Ai = 0 and we obtain that p 2 @H1 corresponds to
the line passing through the origin and A. It follows that every element in G fixes
A and hence that every element in G preserves the divisor class of F , i.e. every
element in 'G'�1 permutes the fibers of the fibration ⇡ : Y ! C. If the fibration
is rational, G is conjugate to a subgroup of J . If it is a fibration of genus 1 curves,
there exists a Halphen surface Y such that G is conjugate to a subgroup of Bir(Y )
and such that G preserves the Halphen fibration. By Lemma 5.3.2, G is therefore
contained in Aut(Y ).

5.4 The Zariski topology and algebraic subgroups

Let X be a complex projective variety. The group Bir(X) can be equipped with
some additional geometric and algebraic structure. We recall some definitions and
results.

Let A be an algebraic variety and

f : A⇥X 99K A⇥X

an A-birational map (i.e. a map of the form (a, x) 799K (a, f(a, x)) that induces
an isomorphism between open subsets U and V of A ⇥ X such that the projec-
tions from U and from V to A are both surjective. For each a 2 A we obtain
therefore an element of Bir(X) defined by x 7! p2(f(a, x)), where p2 is the second
projection. Such a map A ! Bir(X) is called a morphism or family of birational
transformations parametrized by A.

Definition 5.4.1. The Zariski topology on Bir(X) is the finest topology such that
all morphisms f : A ! Bir(X) for all algebraic varieties A are continuous (with
respect to the Zariski topology on A).

The map ◆ : Bir(X) ! Bir(X), x 7! x�1 is continuous as well as the maps
x 7! g � x and x 7! x � g for any g 2 Bir(X). This follows from the fact that
the inverse of an A-birational map as above is again an A-birational map as is
the right/left-composition with an element of Bir(X). The Zariski topology was
introduced in [Dem70] and [Ser08] and studied in [BF13].

An algebraic subgroup of Bir(X) is the image of an algebraic group G by a
morphism G ! Bir(X) that is also an injective group homomorphism. It can be
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shown that algebraic groups are closed in the Zariski topology and of bounded
degree in the case of Bir(X) = Crn(C). Conversely, closed subgroups of bounded
degree in Crn(C) are always algebraic subgroups with a unique algebraic group
structure that is compatible with the Zariski topology (see [BF13]). In [BF13], it
is shown moreover, that all algebraic subgroups of Crn(C) are linear.

Let Y be a smooth projective variety that is birationally equivalent to X. Let G
be an algebraic group acting regularly and faithfully on Y . This yields a morphism
G ! Bir(X), so G is an algebraic subgroup of Bir(X). On the other hand, recall
the theorem of Weil, Rosenlicht and Sumihiro states, that in the complex case all
algebraic subgroups have this form:(cf. [Theorem 3.2.4] in Section 3 for further
explanations and references):

Theorem 5.4.1 (Weil, Rosenlicht, Sumihiro). Let M be a complex variety and
G ⇢ Bir(M) a linear algebraic subgroup. Then there exists a smooth projective
variety N and a birational map f : M ! N that conjugates G to a subgroup of
Aut(N) such that the induced action on N is algebraic.

It can be shown (see for example, [BF13]) that the sets Crn(C)d ⇢ Crn(C)
consisting of all birational transformations of degree  d are closed with respect
to the Zariski topology. Hence the closure of a subgroup of bounded degree in
Crn(C) is an algebraic subgroup and since all algebraic subgroups of Crn(C) are
linear ([BF13]), it can therefore be regularized by Theorem 3.2.4. We obtain:

Corollary 5.4.2. Let G ⇢ Crn(C) be a subgroup that is contained in some set
Crn(C)d. Then there exists a smooth projective variety Y and a birational trans-
formation f : Pn 99K Y such that fGf�1 ⇢ Aut(Y ).

The maximal algebraic subgroups of Cr2(C) have been classified together with
the rational surfaces on which they act as automorphisms ([Enr93], [Bla09]). In
dimension 3, a classification for maximal connected algebraic subgroups exists:
[Ume82b], [Ume85], [Ume82a]. We will discuss and use the classification of maximal
algebraic subgroups in Chapter 6.

Lemma 5.4.3. Let G ⇢ Cr2(C) be a group that fixes a point in H1. Then the
degree of all elements in G is uniformly bounded and there exists a smooth projec-
tive variety X and a birational transformation ' : P2 99K X such that 'G'�1 ⇢
Aut(X).

Proof. Let p 2 H1 be the fixed point of G and denote by e0 2 H1 the class
of a line in P2. Let g 2 G be arbitrary. Since the action of G on H1 is iso-
metric, d(g(e0), p) = d(e0, p), in particular, d(g(e0), e0)  2d(e0, p). This implies
hg(e0), e0i  cosh(2d(e0, p)) for all g 2 G. As hg(e0), e0i = deg(g), the degree of
all elements in G is uniformly bounded. The statement follows now from Corollary
5.4.2.

Lemma 5.4.4. Let G ⇢ Cr2(C) be a positive dimensional connected algebraic
subgroup. If an element f 2 Cr2(C) normalizes G then G has either a dense orbit,
or the group generated by f and G is conjugate to a subgroup of the de Jonquières
subgroup J .
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Proof. By Theorem 3.2.4, there exists a smooth projective variety Y and a bira-
tional map f : P2 99K Y that conjugates the rational action of G on P2 to a regular
action on Y . By geometric invariant theory, there exists a G-invariant dominant
rational map ⇡ : Y 99K X, for some variety X, such that every general fiber of ⇡
contains an orbit of G that is dense in the fiber. As G is positive dimensional, the
dimension of X is either 0 or 1. If the dimension of X is 0, then G has an open and
dense orbit on Y . If X has dimension 1, then the general fibers have dimension
1. Since G is an algebraic subgroup of Cr2(C), it is linear. Therefore, the general
fibers of ⇡ are rational curves. As f normalizes G, it permutes the orbits of G
and therefore preserves the rational fibration given by ⇡. By Theorem 5.3.1, f is
conjugate to a subgroup of the de Jonquières group.

5.5 Tori and monomial maps

An algebraic torus of rank n is an algebraic subgroup isomorphic to (C⇤)n. The
subgroup of diagonal automorphisms D2 ⇢ PGL3(C) is a torus of rank 2. All
algebraic tori in Cr2(C) are of rank  2 and are conjugate in Cr2(C) to a subtorus
of D2 ([BB67], [Dem70]).

An integer matrix A = (aij) 2 M2(Z) determines a rational map fA of P2,
which we define, with respect to local coordinates (x, y), by

fA = (xa11ya12 , xa21ya22).

We have fA � fB = fAB for A,B 2 M2(Z). One observes that fA is a birational
transformation if and only if A 2 GL2(Z). This yields an injective homomorphism
GL2(Z) ! Cr2(C). By abuse of notation, we will identify its image with GL2(Z).
The normalizer of D2 in Cr2(C) is the semidirect product

NormCr2(C)(D2) = GL2(Z)nD2.

We call GL2(Z) n D2 the group of monomial transformations and its elements
monomial maps. We say that f 2 Cr2(C) is of monomial type, if f is conjugate
to an element in GL2(Z) n D2. We call a matrix A 2 GL2(Z) loxodromic, if the
corresponding birational monomial map in Cr2(C) is loxodromic.

We will prove a couple of easy lemmas for later use.

Lemma 5.5.1. Let m 2 GL2(Z) ⇢ Cr2(C) be a loxodromic monomial map and
�2 ⇢ D2 an infinite subgroup that is normalized by m. Then �2 is dense in D2

with respect to the Zariski topology.

Proof. Let �
0
2 be the neutral component of the Zariski-closure of �2. If �

0
2 has

dimension 2, we are done. Otherwise, �
0
2 is of dimension 1, since �2 is not finite.

It follows, that �
0
2 has no dense orbit and therefore, by Lemma 5.4.4, that m is

conjugate to an element of the de Jonquières group. This is not possible since m
is loxodromic, by assumption.

Lemma 5.5.2. Let f 2 Cr2(C) be a birational transformation such that fD2f�1 ⇢
GL2(Z) n D2. Then f 2 GL2(Z) n D2, i.e. there exists, up to automorphisms of
D2, a unique embedding of D2 into GL2(Z)nD2.
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Proof. Since fD2f�1 is an algebraic subgroup, it is of bounded degree. Since
GL2(Z) contains only finitely many elements of a given degree, fD2f�1 is therefore
contained in a group of the form H n D2, where H is finite. Since fD2f�1 is
connected, it is contained in D2, which implies that f normalizes D2.

Lemma 5.5.3. Let g 2 GL2(Z) be a loxodromic element and f 2 Cr2(C) an
element such that fgf�1 is contained in GL2(Z)nD2. Then f 2 GL2(Z)nD2.

Proof. Assume that fgf�1 2 GL2(Z) n D2. Then the axis of the loxodromic
element fgf�1 is fixed pointwise by both, fD2f�1 and D2 (see Example 5.6.1).
Hence, the group A generated by fgf�1 and D2 is bounded. By Theorem 5.5.4, A
is conjugate to a subgroup of D2. This implies that fD2f�1 ⇢ D2 and therefore,
that f 2 GL2(Z)nD2.

Let M 2 GL2(Z) and fM be the corresponding birational transformation. The
dynamical degree �(fM ) of fM is exactly the spectral radius of the matrix M . This
shows in particular that the dynamical degree of a monomial matrix is always a
quadratic algebraic integer.

If M 2 GL2(Z) has spectral radius strictly larger than 1, the birational map
fM is loxodromic. This yields examples of loxodromic elements that normalize
an infinite elliptic subgroup. The following theorem by Cantat shows that, up to
conjugacy, these are the only examples with this property:

Theorem 5.5.4 ([DP12, Appendix]). Let N be a subgroup of Cr2(C) containing
at least one loxodromic element. Assume that there exists a short exact sequence

1 ! A ! N ! B ! 1,

where A is infinite and of bounded degree. Then N is conjugate to a subgroup of
GL2(Z)nD2.

Later, we will generalize Theorem 5.5.4 (see Theorem 6.6.3) to the case where
A is a group that only contains elliptic elements.

5.6 Small cancellation

Let ✏, B > 0. Two geodesic lines L and L0 in H1 are called (✏, B)-close, if the
diameter of the set S = {x 2 L | d(x, L0)  ✏} is at least B, i.e. there exist two
points in S with distance at least B.

Definition 5.6.1. Let G ⇢ Cr2(C) be a subgroup. A loxodromic element g 2 G is
called rigid in G if there exist ✏, B > 0 such that for every element h 2 G we have:
h(Ax(g)) is (✏, B)-close to Ax(g) if and only if h(Ax(g)) = Ax(g).

Definition 5.6.2. Let G ⇢ Cr2(C) be a subgroup. A loxodromic element g 2 G
is called tight in G if it is rigid and if, for all h 2 G, h(Ax(g)) = Ax(g) implies
hgh�1 = g or hgh�1 = g�1.

Example 5.6.1. Let m 2 GL2(Z) ⇢ Cr2(C) be a loxodromic element. Then the
group D2 fixes the axis of m pointwise and no power of m is tight ([Can15, Example
7.1]).



110 CHAPTER 5. PRELIMINARIES

The following theorem has been developed in various contexts. In [CLdC13] the
authors use a version of it to show that Cr2(C) is not simple, by showing that a
generic element in Cr2(C) is tight in Cr2(C). This result was later generalized by
Lonjou to show that Cr2(k) is not simple, where k is an arbitrary field ([Lon16]).
Dahmani, Guirardel and Osin used a similar statement in the context of mapping
class groups ([DGO17]). We refer to [Cou16] for an overview of the subject.

Theorem 5.6.2 ([CLdC13, Theorem 2.10]). Let G ⇢ Cr2(C) be a subgroup and
g 2 G an element that is tight in G. Then every element h in hhgii, the smallest
normal subgroup of G containing g, satisfies the following alternative: Either h is
a conjugate of g or h is a loxodromic element with larger translation length than g.
In particular, for n � 2, g is not contained in hhgnii.

In [SB13], Shepherd-Barron classifies tight elements in G = Cr2(C) using The-
orem 5.5.4:

Theorem 5.6.3 ([SB13]). In Cr2(C) every loxodromic element is rigid. If g is
conjugate to a monomial map, then no power of g is tight. In all the other cases,
there exists an integer n such that gn is tight.

Note that if G ⇢ Cr2(C) is a subgroup and g 2 Cr2(C) is a rigid element, then g
is rigid in G as well. The same is true for tight elements. However, there might be
loxodromic elements g 2 G such that g is tight in G but not in Cr2(C). From the
proof of Theorem 5.6.3 (see [SB13, p.18]) and Lemma 5.5.1 the following Theorem
follows:

Theorem 5.6.4. Let G ⇢ Cr2(C) be a subgroup and g 2 G a loxodromic element.
The following two conditions are equivalent:

(1) no power of g is tight in G;

(2) there is a subgroup �2 ⇢ G that is normalized by g and a birational trans-
formation f 2 Cr2(C) such that f�2f�1 ⇢ D2 is a dense subgroup and
fgf�1 2 GL2(Z)nD2.

From Theorem 5.6.2 and Theorem 5.6.4 one deduces directly the following
lemma, which we will need later:

Lemma 5.6.5. Let G ⇢ Cr2(C) be a simple subgroup. Then for every loxodromic
element g 2 G there exists an infinite subgroup �g

2 ⇢ G and an element f 2 Cr2(C)
that conjugates �g

2 to a subgroup of D2 and g to an element of GL2(Z)nD2.



Chapter 6

Subgroups of elliptic
elements

6.1 Introduction

In this chapter we are interested in groups G ⇢ Cr2(C) such that every element in
G is elliptic. In Lemma 5.4.3, we have seen that g is elliptic if and only if {deg(fn)}
is bounded or, equivalently, there exists a k 2 Z+ such that gk is conjugate to an
automorphism in Aut0(S), the neutral component of the automorphism group of a
projective surface S ([Can11a, Proposition 3.10]).

Definition 6.1.1. A group G ⇢ Cr2(C) is a group of elliptic elements if every
element in G is elliptic.

Definition 6.1.2. A group G ⇢ Cr2(C) is bounded if there exists a constant K
such that deg(g)  K for all elements g 2 G.

Algebraic groups are always bounded, but bounded groups do not need to be
algebraic. However, a subgroup of Cr2(C) is bounded if and only if it is contained
in an algebraic group (see Section 5.4). Note that all bounded groups are groups of
elliptic elements. But the converse is not true as the following examples illustrate:

Example 6.1.1. Let G ⇢ Cr2(C) be the group of elements of the form (x, y+p(x)),
where p(x) 2 C(x) is a rational function. Then every element in G is algebraic, but
G contains elements of arbitrarily high degrees.

Example 6.1.2. In [Wri79], Wright constructs examples of torsion subgroups of
Aut(A2) and hence in particular of Cr2(C) that contain elements of arbitrarily high
degree. In fact, he shows that there is a subgroup G of Cr2(C) that is isomorphic to
the subgroup of roots of unity in C⇤ but that is not bounded. In [Lam01a], Lamy
shows that some of the examples of Wright do not preserve any fibration.

So far there only exist results about subgroups consisting of elliptic elements if
they are bounded or finitely generated. Our strategy will be to use these results
together with the compactness theorem from model theory in order to prove the

111
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following theorem that gives some information about the structure of subgroups of
Cr2(C) consisting only of elliptic elements:

Theorem 6.1.3. Let G ⇢ Cr2(C) be a subgroup of elliptic elements. Then we are
in one of the following cases:

(1) G is not a torsion group and G contains a finitely generated subgroup that
does not preserve any fibration. In this case, G is conjugate to a subgroup of
Aut(P2), of Aut(P1 ⇥P1) or of Aut(S6), where S6 is the del Pezzo surface of
degree 6.

(2) G is a torsion group.

(3) G preserves a rational fibration and is therefore conjugate to a subgroup of
the de Jonquières group J ' PGL2(C(t))o PGL2(C), which is the subgroup
of Cr2(C) that preserves a given rational fibration.

(4) Every finitely generated subgroup of G preserves a rational fibration and there
exists a torsion subgroup G0 ⇢ G and an exact sequence

1 ! G0 ! G ! PGL2(C).

In the case, where G is a torsion subgroup of Cr2(C), we can say more:

Theorem 6.1.4. Let G ⇢ Cr2(C) be a torsion subgroup. Then G can be embedded
into GLN (C) for some N  48 and N  24 if G is infinite.

Remark 6.1.1. There exists an N 2 Z+ such that every finite subgroup of Cr2(C)
can be embedded into GLN (C) (Proposition 6.2.2). In this text we will give the
rough upper bound N  48, but we expect that this bound can be lowered ig-
nificantly. We will see in particular, that every finite subgroup of Cr2(C) can be
either embedded into GL36(C) or it is isomorphic to an extension of S4 by the Klein
four-group.

Let us give some consequences of Theorem 6.1.3. It has been proven by Schur
that every torsion subgroup of GLn(C) is abelian up to finite index. More precisely:

Theorem 6.1.5 (Schur, see [CR62, p.258]). Let G ⇢ GLn(C) be a torsion subgroup.
Then G contains an abelian subgroup of index at most

(
p
8n+ 1)2n

2 � (
p
8n� 1)2n

2

.

So from Theorem 6.1.4 (2) and Theorem 6.1.5 we can deduce directly that the
same property holds for torsion subgroups of Cr2(C):

Corollary 6.1.6. Every torsion subgroup G of Cr2(C) is finite or isomorphic to
a subgroup of GLN (C) for some N  24. In particular, G contains an abelian
subgroup of index at most

(96
p
2 + 1)2592 � (96

p
2� 1)2592 < 105537.
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Recall that the derived series of a group G is the series of groups defined by

• G(0) := G

• G(i+1) := [G(i), G(i)],

where the commutator subgroup [H,H] of a group H is the subgroup generated by
all elements of the form aba�1b�1, a, b 2 H.

A group G is solvable if and only if its derived series terminates at the identity
element after finitely many steps. The derived length of G is the smallest k such
that G(k) = {id}.

Another result that can be deduced from Theorem 6.1.3 concerns the Tits al-
ternative. In [Tit72], Tits showed the following:

Theorem 6.1.7 ([Tit72]). Let k be a field of characteristic zero and n 2 Z+. Then
every subgroup G of GLn(k) is either virtually solvable or contains a non-abelian
free subgroup.

This result has lead to the following definitions:

Definition 6.1.3.

(1) A group G satisfies Tits’ alternative if every subgroup of G is either virtually
solvable or contains a non-abelian free subgroup.

(2) A group G satisfies Tits’ alternative for finitely generated subgroups if every
finitely generated subgroup of G either is virtually solvable or contains a
non-abelian free subgroup.

Theorem 6.1.7 states that linear groups over fields of characteristic zero satisfy
Tits’ alternative. Linear groups over fields of positive characteristic only satisfy
Tits’ alternative for finitely generated subgroups ([Tit72]). Other well-known ex-
amples of groups that satisfy Tits’ alternative include mapping class groups of
surfaces ([Iva84]), Out(Fn), the outer automorphism group of the free group of
finite rank n ([BFH00]) or hyperbolic groups in the sense of Gromov ([Gro87]).

In his PhD thesis Lamy showed Tits’ alternative for subgroups of Aut(A2
C

):

Theorem 6.1.8 ([Lam01b]). Aut(A2
C

) satisfies Tits’ alternative.

The proof of Theorem 6.1.8 relies on the amalgamated product structure of
Aut(A2

C

) that is given by the Theorem of Jung and van der Kulk (see for example
[Lam02]) and Bass-Serre theory (see [Ser77]).

Cantat established Tits’ alternative for finitely generated subgroups of Cr2(C):

Theorem 6.1.9 ([Can11a]). Cr2(C) satisfies Tits’ alternative for finitely generated
subgroups.

Theorem 6.1.9 is part of a series of profound results about the group structure of
the plane Cremona group that Cantat deduces from the action by isometries on the
Picard-Manin space H1 by Cr2(C) ([Can11a]). The main obstacle to generalize
Theorem [Can11a] to arbitrary subgroups was caused by unbounded groups of
elliptic elements that do not preserve any fibration. At this point, Theorem 6.1.3
steps in. It turns out that it yields the techniques to complete the result:
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Theorem 6.1.10. Cr2(C) satisfies Tits’ alternative.

In [Dés15], Déserti gives a description of solvable subgroups of Cr2(C). We
complement her result with the following observation:

Theorem 6.1.11. There exists a constant K  35 such that the derived length of
solvable subgroups of Cr2(C) is  K.

Remark 6.1.2. Also here, the upper bound 35 is only a rough estimate and we
expect that it can be lowered by a detailed examination of the derived length of
finite subgroups of Cr2(C).

For each n 2 Z+ there exists an N 2 Z+ such that every solvable subgroup of
GLn(C) has derived length  N . This result seems to go back to Zassenhaus, see
for example [New72], where explicit bounds are computed. The following bound is
attributed to Huppert:

Theorem 6.1.12 ([New72, p.1]). Let G ⇢ GLn(C) be a solvable subgroup. The
derived length of G is  min{2n, 1 + 7 log2(n)}.

In [FP16], Furter and Poloni show that the maximal derived length of a solvable
subgroup of Aut(A2

C

) is 5 (and that this bound is optimal). Theorem 6.1.11 can be
deduced from Theorem 6.1.3. However, we will give a direct and easier proof.

6.2 Maximal algebraic subgroups

In this section we recall some results about algebraic subgroups of Cr2(C). In
[Bla09], Blanc classified all maximal algebraic subgroups of Cr2(C) (see [Ume82b],
[Enr93] for the case of maximal connected algebraic subgroups). There are 11
classes of maximal algebraic subgroups. We summarize them in Theorem 6.2.1.
We will recall in Section 6.2.1 and Section 6.2.2 the notions of del Pezzo surfaces
and conic bundles.

Theorem 6.2.1 ([Bla09]). Every algebraic subgroup of Cr2(C) is contained in
a maximal algebraic subgroup. The maximal algebraic subgroups of Cr2(C) are
conjugate to one of the following groups:

(1) Aut(P2) ' PGL3(C)

(2) Aut(P1 ⇥P1) ' (PGL2(C))2 o Z /2Z

(3) Aut(S6) ' (C⇤)2o(S3⇥Z /2Z), where S6 is the del Pezzo surface of degree 6.

(4) Aut(Fn) ' C[x, y]noGL2(C)/µn, where n � 2 and Fn is the n-th Hirzebruch
surface and µn ⇢ GL2(C) is the subgroup of n-torsion elements in the center
of GL2(C).

(5) Aut(S,⇡), where ⇡ : S ! P1 is an exceptional conic bundle.

(6)-(10) Aut(S), where S is a del Pezzo surface of degree 5, 4, 3, 2 or 1. In this case,
Aut(S) is finite.
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(11) Aut(S,⇡), where (S,⇡) is a (Z /2Z)2-conic bundle and S is not a del Pezzo
surface. There exists an exact sequence

1 ! V ! Aut(S,⇡) ! HV ! 1,

where V ' (Z /2Z)2 and HV ⇢ PGL2(C) is a finite subgroup.

In [Bla09] one finds a more detailed description of the groups above as well as
a classification of the conjugacy classes of the maximal algebraic subgroups.

The aim of this section is to deduce from Theorem 6.2.1 the following Proposi-
tion, which implies that there exists a positive integer N such that every bounded
subgroup of Cr2(C) that is not contained in the automorphism group of a Hirze-
bruch surface can be embedded into GLN (C):

Proposition 6.2.2. There exists an N 2 Z+ such that for every bounded subgroup
G ⇢ Cr2(C) there exists a group-homomorphism ' : G ! GLN (C) such that ker(')
is isomorphic to Cn for some n. The constant N can be chosen to be  48.

We will prove Proposition 6.2.2 in Section 6.2.3.

6.2.1 Automorphism groups of del Pezzo surfaces

Recall that a del Pezzo surface is a smooth projective surface whose anticanonical
divisor class is ample. The degree of a del Pezzo surface S is the self-intersection
number of its canonical class. It is well-known that the degree of a del Pezzo surface
is a positive integer  9. A del Pezzo surface is isomorphic to either P2,P1 ⇥P1

or to the blow-up S of r general points in P2. Here, general means that S does
not contain a curve of self-intersection  �2. In this last case, the degree of S
is exactly 9 � r. There exists a unique isomorphism class of del Pezzo surfaces of
degree 5, 6, 7 and 9, two isomorphism classes of del Pezzo surfaces of degree 8 and
infinitely many isomorphism classes of del Pezzo surfaces of degree 1, 2, 3 or 4 (see
for example [Dol12, Chapter 8] for proofs and references for these and other results
on del Pezzo surfaces). Automorphism groups of del Pezzo surfaces are always
algebraic subgroups of Cr2(C) ([Bla09, Proposition 2.2.6]) and they are finite if
and only if the degree of the corresponding surface is  5.

If the degree of a del Pezzo surface S is 5, then Aut(S) = S5. A precise
descripition of automorphism groups of del Pezzo surfaces of degree  4 can be
found in the tables in [DI09, Section 10]. This description yields in particular the
following:

Theorem 6.2.3 ([DI09]). If the automorphism group of a del Pezzo surface is
finite, then it has order at most 648.

From Theorem 6.2.3 it follows directly that every automorphism group of a del
Pezzo surface that is finite can be embedded into GL648(C). However, this bound
can be improved significantly:

Lemma 6.2.4. If the automorphism group of a del Pezzo surface is finite, then it
can be embedded into GL8(C).
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Proof. Let S be a del Pezzo surface such that Aut(S) is finite. This implies that
S is of degree d  5, hence S is isomorphic to the blow-up of r = 9 � d general
points p1, . . . , pr in P2, where 4  r  8. The Néron-Severi space NS(S) ⌦ R is
therefore of dimension r+1 and has a basis [E0], [Ep1 ], . . . , [Epr ], where [E0] is the
pullback of the class of a line and the [Epi ] are the classes of the exceptional lines
Epi corresponding to the points pi. Since the self-intersection of a class [Epi ] equals
�1, the exceptional line Epi is the only representative of [Epi ] on S. If f 2 Aut(S)
acts as the identity on NS(S)⌦R, we obtain that f preserves the exceptional lines
Epi for all i. Therefore, f induces an automorphism on P2 that fixes the points
pi. But since the pi are in general position and r � 4, the automorphism f is
the identity. Thus, the action of Aut(S) on NS(S) ⌦ R is faithful and we obtain
a faithful representation Aut(S) ! GLr+1(C). As every element f 2 Aut(S) fixes
the canonical divisor KS , the one-dimensional subspace R ·KS in NS(S)⌦R is fixed.
We project to the orthogonal complement of KS in NS(S)⌦R and obtain a faithful
representation of Aut(S) into GLr(C).

A del Pezzo surface of degree 6 is isomorphic to the surface

S6 = {((x : y : z), (a : b : c)) 2 P2 ⇥P2 | ax = by = cz},
which is the blow-up of P2 in three general points. The group Aut(S6) is isomorphic
to (C⇤)2 o (S3 ⇥ Z /2Z), where S3 acts by permuting the coordinates of the two
factors simultanously, Z /2Z exchanges the two factors and d 2 (C⇤)2 acts by
sending ((x : y : z), (a : b : c)) to (d(x : y : z), d�1(a : b : c)) (d(x : y : z) is
the standard action on P2). In other words, Aut(S6) is conjugate to the subgroup
(S3 ⇥ Z /2Z)nD2 ⇢ GL2(Z)nD2.

Lemma 6.2.5. The group Aut(S6) can be embedded into GL6(C).
Proof. Consider the rational map f : P2 99K P6 given by

[x : y : z] 799K [x2y : x2z : y2x : y2z : z2x : z2y : xyz].

Then, the rational action of (S3⇥Z /2Z)nD2 on f(P2) extends to a regular action
on P6 that preserves the a�ne space given by x6 6= 0. This yields an embedding of
(S3 ⇥ Z /2Z)nD2 into GL6(C).

Lemma 6.2.6. Let G ⇢ Cr2(C) be a subgroup that is conjugate to an automorphism
group of a del Pezzo surface. Then G can be embedded into GLN (C) for some
N  8.

Proof. We prove that Aut(S) can be embedded into GLN (C) for all del Pezzo
surfaces S. The following results are proven in [Bla09, Section 3]. If S is a del Pezzo
surface of degree 9 then S is isomorphic to P2, so Aut(S) = PGL3(C) ⇢ GL8(C).
This corresponds to case (1) of Theorem 6.2.1. If the degree of S is 8 then S is
either isomorphic to F0 = P1 ⇥P1 or to F1. The automorphism group Aut(F1) is
not a maximal algebraic subgroup of Cr2(C) and Aut(F0) = (PGL2(C))2oZ /2Z ⇢
GL6(C). In the case that S is a del Pezzo surface of degree 7, Aut(S) is conjugate
to a subgroup of Aut(P1 ⇥P1). A del Pezzo surface of degree 6 can be embedded
into GL6(C), by Lemma 6.2.5. If the degree of a del Pezzo surface S is  5 then
Aut(S) is finite and the claim follows from Lemma 6.2.4.
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6.2.2 Automorphism groups of rational fibrations

In this section we consider the cases (4), (5) and (11) of Theorem 6.2.1.

Automorphism groups of Hirzebruch surfaces

In case (4) of Theorem 6.2.1, the semidirect product gives a natural homomorphism
' : Aut(Fn) ! GL2(C)/µn whose kernel is isomorphic to Cn. The following lemma
shows, that GL2(C)/µn can be embedded into GL4(C) for all n � 2:

Lemma 6.2.7. If n � 2 is even, the group GL2(C)/µn is isomorphic as an algebraic
group to PGL2(C)⇥C⇤. If n is odd, then GL2(C)/µn is isomorphic as an algebraic
group to GL2(C).

Proof. Assume that n � 2 is even, so n = 2k for some k 2 Z+. Consider the
algebraic group homomorphism 'e : GL2(C) ! PGL2(C) ⇥ C⇤ given by A 7!
([A], det(A)k), where [A] denotes the class of A modulo the center of GL2(C). The
kernel of 'e consists of the scalar matrices of the form a · id such that det(a)k = 1;
hence, ker('e) = µn. Let (M, c) 2 PGL2(C) ⇥ C⇤. We choose a representative
A 2 SL2(C) ⇢ GL2(C) of the class of M and a n-th root of c in C, which we denote
by d. Then 'e(d ·A) = (M, c). So 'e is surjective and the claim follows.

Assume that n is odd; so n = 2k + 1 for some k 2 Z+. Consider the algebraic
group homomorphism 'o : GL2(C) ! GL2(C) given by A 7! det(A)kA. Let B 2
GL2(C) and c 2 C a n-th root of det(B)k. Then

'o(c
�1 ·B) = c�2k�1 det(B)k ·B = B,

hence 'o is surjective. Moreover, ker('o) = µn, and the claim follows.

Automorphism groups of exceptional fibrations

In a next step, we consider the case Aut(S,⇡), where ⇡ : S ! P1 is an exceptional
fibration, i.e. case (5) of Theorem 6.2.1. An exceptional fibration S is by definition
a conic bundle with singular fibers above 2n points in P1 and with two sections s1
and s2 of self-intersection �n, where n is an integer � 2 (see [Bla09]).

We recall a construction from representation theory that is usually called the
induced representation:

Lemma 6.2.8. Let G be a group and H ⇢ G a subgroup of index n. If H can be
embedded into GLm(C) then G can be embedded into GLmn(C).

Proof. Let ⇡ : G ! G/H be the quotient map and let V be a vector space of
dimension m on which H acts faithfully. We define the mn-dimensional vector
space W as the direct sum of n copies of V indexed by the elements G/H, i.e.:

W :=
M

k2G/H

Vk.

We fix a set of representatives g1, . . . , gn 2 G of the left cosets of H in G. Then
every g 2 G can be written in a unique way as g = gih, where h 2 H. Let g 2 G
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and v 2 Vl; then g defines an automorphism of W in the following way: g permutes
the summands of W by sending Vl to Vg(l) and the restriction of g to Vl sends a
vector v 2 Vl to the vector h(v) 2 Vg(l). This induces a faithful action of G on
W .

The proof of the following lemma can be found in [Bla09, proof of Lemma 4.3.3].
We briefly recall the arguments of the proof.

Lemma 6.2.9. Let ⇡ : S ! P1 be an exceptional fibration. There exists a split
exact sequence

1 ! H ! Aut(S,⇡) ! Z /2Z ! 1,

where H is isomorphic to a subgroup of PGL2(C)⇥ C⇤ ⇢ GL4(C).

Proof. There exists a birational morphism ⌘0 : S ! P1 ⇥P1 of conic bundles that
is the blow-up of 2n points for some n � 1; n of them lie on one line l1 of self-
intersection 0 and the other n on another line l2 of self intersection 0 such that l1
and l2 do not intersect (see [Bla09, Lemma 4.3.1]). Let s1 and s2 in S be the strict
transforms of l1 and l2 under ⌘. Hence, s1 and s2 are of self-intersection �n  �2.
The group Aut(S,⇡) then acts on the set {s1, s2}, since s1 and s2 are the unique
curves of self-intersection �n. This gives an exact sequence

1 ! H ! Aut(S,⇡) ! W ! 1,

where W ⇢ Z /2Z and H preserves each of the sections s1 and s2. Therefore, H
is conjugate by ⌘0 to a subgroup of Aut(P1 ⇥P1) that preserves the structure of a
conic bundle, so H is conjugate to a subgroup of PGL2(C)⇥PGL2(C). In fact, since
H preserves the two lines l1, and l2, it is contained in PGL2(C) ⇥ C⇤. It remains
to show that W is isomorphic to Z /2Z and that it can be lifted to Aut(S,⇡). We
may assume that the 2n points blown up by ⌘0 are of the form {(pi, [0 : 1])}ni=1

and {(pi, [1 : 0])}2ni=n+1 for some pi 2 P1. For each i = 1, . . . , 2n, let mi 2 C[x0, x1]
be a homogeneous form of degree 1 that vanishes on pi. Consider the birational
involution of P1 ⇥P1 given by

⌧ : ([x0 : x1], [y0 : y1]) 99K
 
[x0 : x1], [y1

nY

i=1

mi(x0, x1) : y1

2nY

i=n+1

mi(x0, x1)]

!
.

The base-points of ⌧ are exactly the 2n points blown up by ⌘0, and ⌘�1
0 ⌧⌘0 is in

Aut(S,⇡) and it exchanges the two sections s1 and s2. Hence W = h⌘�1
0 ⌧⌘0i, which

proves the claim.

Lemma 6.2.8 and Lemma 6.2.9 directly imply the following:

Corollary 6.2.10. Let ⇡ : S ! P1 be an exceptional fibration. Then Aut(S,⇡) can
be embedded into GL8(C).
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(Z /2Z)2-conic bundles

In this section we treat case (11) of Theorem 6.2.1.

Lemma 6.2.11. Let G be a group such that there exists a short exact sequence

1 ! V ! G
⇡�! HV ! 1,

where V ' (Z /2Z)2 and HV 2 {A5,S4,A4} is a finite subgroup. Then G can be
embedded into GL48(C). Moreover, either G is an extension of S4 by V , or G can
be embedded into GL24(C).

Proof. First we assume that HV ' A5. Recall that a stem extension of a group
H is a central extension 1 ! K ! C ! H ! 1, such that K is contained in the
commutator subgroup of C. If the group H is perfect, there exists a largest stem
extension, unique up to isomorphism. It is called the universal perfect central exten-
sion. The central group K of the universal perfect central extension is isomorphic
to the Schur multiplier of H. The Schur multiplier of A5 is Z /2Z and the universal
central extension is SL2(F5) (see [Sch04], [Sch07] and [HH92] for these results). Let
H := [G,G] be the commutator subgroup of G. There exist hence two possibili-
ties. Either V \ H = id or V \ H = Z /2Z. Since A5 is perfect there exists also
a surjective group homomorphism ' : H ! A5 defined on the generators of H by
'(aba�1b�1) = ⇡(a)⇡(b)⇡(a)�1⇡(b)�1. Clearly, ⇡ is indeed a group homomorphism.
If V \H = id, the homomorphism ' is for cardinality reasons an isomorphism, i.e.
H ' A5. Hence we obtain a split exact sequence 1 ! H ! G ! V ! 1 and since
V is central, we have G ' A5 ⇥ V . If V \H = Z /2Z, then H ' SL2(F5) and we
conclude similarly that G ' SL2(F5) ⇥ Z /2Z. Recall that we can embed A5 into
GL3(C), so if G ' A5 ⇥ V , then G can be embedded into GL5(C). Since SL2(F5)
is the universal perfect central extension, the projective representation of A5 into
PGL2(C) lifts to a representation of SL2(F5) into GL2(C) and so SL2(F5)⇥Z /2Z
can be embedded into GL4(C).

If HV is isomorphic to A4, the group G can be embedded into GL24(C), by
Lemma 6.2.8 and analogously, if HV is isomorphic to S4, then G can be embedded
into GL48(C).

Our goal is to prove the following group theoretical lemma:

Lemma 6.2.12. Let G be a group such that there exists a short exact sequence

1 ! V ! G
⇡�! HV ! 1,

where V ' (Z /2Z)2 and HV ⇢ PGL2(C) is a finite subgroup. Then G can be
embedded into GL48(C). Moreover, either G is an extension of S4 by V , or G can
be embedded into GL36(C).

Recall that the finite subgroups of PGL2(C) are A5,S4,A4,Z /nZ and D2n for
all n 2 Z+ (see [Bea10]) and that the subgroups of a dihedral group D2n are either
cyclic or dihedral.
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Proof of Lemma 6.2.12. IfHV is isomorphic to A5,S4 or A4, the claim follows from
Lemma 6.2.11. It remains to consider the cases HV = Z /nZ and HV = D2n for
n 2 Z+. Let g 2 HV and g̃ 2 G be an element of ⇡�1(g). Conjugation by g̃ induces
an automorphism of V and, since V is abelian, this automorphism does not depend
on the choice of g̃. This yields an action of HV on V . The automorphism group of
V is isomorphic to S3 and we thus obtain a homomorphism ' : HV ! S3, whose
image we denote by H. This yields a short exact sequence

1 ! G0 ! G
'�⇡��! H ! 1,

where G0 = ⇡�1(ker(')) and V is contained in the center of G0. We claim that G0

can be embedded into GL6(C). From this the statement of the Lemma follows by
Lemma 6.2.8.

So it remains to show the claim. Consider the short exact sequence

1 ! V ! G0 ⇡|G0���! ker(') ! 1.

As a subgroup of Z /nZ or D2n, the group ker(') is either cyclic or dihedral. We
first assume that ker(') = Z /lZ for some l 2 Z+. In this case G0 is abelian and
contains either an element of order l or of order 2l, so by the structure theorem
for finite abelian groups, G0 is either isomorphic to Z /2Z⇥Z /2Z⇥Z /lZ or to
Z /2Z⇥Z /2lZ. In both cases, G0 can be embedded into GL3(C).

If ker(') = D2n for some n 2 Z+, let  : ker(') ! Z /2Z be the natural
projection given by the semi-direct product structure of D2n. We thus obtain a
short exact sequence

1 ! G00 ! G0  �'�⇡����! Z /2Z ! 1,

where G00 = (' � ⇡|G0)�1(ker( )). By Lemma 6.2.8, it is enough to show that G00

can be embedded into GL3(C). We consider the following short exact sequence

1 ! V ! G00 '�⇡|G00�����! ker( ) ! 1.

Again, V is contained in the center of G00 and since ker( ) = Z /nZ we can apply
the same argument as above to conclude thatG00 can be embedded into GL3(C).

6.2.3 On the structure of bounded subgroups

We are finally able to prove Proposition 6.2.2:

Proof of Proposition 6.2.2. It is enough to prove Proposition 6.2.2 for maximal al-
gebraic subgroups, so we need to consider the cases (1)-(11) from Theorem 6.2.1.

The statement follows directly for the groups that appear in the cases (1)-
(2). For case (4), we observe that by Lemma 6.2.7, GL2(C)/µn can be embedded
into GL4(C), so the natural projection given by the semi-direct product structure
induces a homomorphism to GL4(C) with kernel isomorphic to Cn. In case (5), the
statement follows from Lemma 6.2.9. In the cases (3) as well as (6)-(10) we use
Lemma 6.2.6. In case (11) the statement follows from Lemma 6.2.12.
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In fact,the only obstruction, why we have to choose N  48 instead of N  36
in Proposition 6.2.2, are the finite groups G of the form

1 ! V ! G
⇡�! HV ! 1,

where V = (2Z)2 and HV ' S4 that appear as automorphism groups of exceptional
bundles in case (11) of Theorem 6.2.1 (see Lemma 6.2.12). This observation allows
us to state the following more precise formulation of Proposition 6.2.2:

Proposition 6.2.13. There exists an N 2 Z+ such that for every bounded subgroup
G ⇢ Cr2(C), either G is an extension of S4 by (Z /2Z)2, or there exists a group-
homomorphism ' : G ! GLN (C) such that ker(') is isomorphic to Cn for some n.
The constant N can be chosen to be  36.

6.3 Finitely generated groups of elliptic elements

In [Can11a], Cantat developed the action of the plane Cremona group on the Picard-
Manin space H1 to prove various group theoretical results about Cr2(C). In par-
ticular, he shows the following result:

Theorem 6.3.1 ([Can11a, Proposition 6.14]). Let � be a finitely generated sub-
group of elliptic elements. Then either � is bounded or � preserves a rational
fibration, i.e. � is conjugate to a subgroup of J .

Example 6.1.2 shows that the condition that � is finitely generated in Theorem
6.3.1 is necessary. It is an open question, that has been asked in [Can11a] and
[Fav10], whether there exist finitely generated groups of elliptic elements that are
not bounded.

Lemma 6.3.2. Let G ⇢ Cr2(C) be a group of elliptic elements. Then one of the
following is true:

(a) G preserves a fibration and is therefore conjugate to a subgroup of the de Jon-
quières group J or to a subgroup of Aut(X), where X is a Halphen surface.

(b) Every finitely generated subgroup of G is bounded.

Moreover, if G fixes a point p 2 @H1 that does not correspond to the class of a
rational fibration ⇡ : P 99K P, then we ar in case (b).

Proof. By Theorem 5.2.5, G fixes a point p 2 H1 [@H1. If p 2 H1, then G is
bounded and we are done. If p 2 @H1, then either p corresponds to the class of
a general fiber of some fibration ⇡ : Y ! P1, where Y is a rational surface. In this
case, G preserves this fibration and is therefore conjugate to a subgroup of J (if
the fibration is rational) or to a subgroup of Aut(X), where X is a Halphen surface
(if the fibration consists of curves of genus 1). Or p does not correspond to the
class of a fibration. Let us prove that in this case (b) holds. Let � ⇢ G be any
finitely generated subgroup. By Theorem 6.3.1, � is either bounded or it preserves
a rational fibration. In the first case we are done. In the second, it follows that �
fixes a point q 2 @H1 that corresponds to the class of the rational fibration that is
preserved by �. Hence q 6= p and G therefore fixes the geodesic line through p and q.
In particular, G fixes a point in H1 and is therefore bounded, by Lemma 5.4.3.
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The Burnside problem asks whether a finitely generated torsion group is finite.
In general it has a negative answer. However, there are some important classes
of groups in which the Burnside property holds. Most prominently, every finitely
generated torsion subgroup of a linear group is finite by results of Burnside and
Schur (see [CR62]). The following theorem, which can be deduced from the Tits
alternative for finitely generated groups, asserts that the same is true for finitely
generated torsion subgroups of Cr2(C).

Theorem 6.3.3 (Theorem 7.7, [Can11a]). Every finitely generated torsion sub-
group of Cr2(C) is finite.

Theorem 6.3.1 and 6.3.3 are crucial for the proof of Theorem 6.1.3.

6.4 The compactness theorem

The compactness theorem is a well known result from model theory. It states that
a set of first order sentences has a model if and only if each of its finite subsets has
a model. The countable version of the theorem has been proven by Gödel in 1930,
the general version is due to Malcev ([Mal40b]). We recall the original version as
stated by Malcev:

Definition 6.4.1. Let {xi}i2I be a set of variables. A condition is an expression
of the form F (xi1 , . . . , xik) = 0 or an expression of the form F1(xi1 , . . . , xik) 6= 0 _
F2(xik , . . . , xik) 6= 0_ · · ·_Fl(xi1 , . . . , xik) 6= 0, where F and the Fi are polynomials
with integer coe�cients.

A mixed system is a set of conditions.

Definition 6.4.2. A mixed system S is compatible if there exists a field k which
contains values {zi}i2I that satisfy S.

Theorem 6.4.1 (Mal’cev, [Mal40b]). If every finite subset of a mixed system S is
compatible, then S is compatible.

Malcev used Theorem 6.4.1 to deduce that if for a given group G every finitely
generated subgroup can be embedded into GLn(k) for some field k then there exists
a field k0 such that G can be embedded into GLn(k0). Note that a priori nothing
can be said about the structure of the field k0.

6.5 Proof of Theorem 6.1.3

The aim of this section is to prove Theorem 6.1.3. We start with some technical
lemmas.

Lemma 6.5.1. Let A be a group acting by automorphisms on P1 ⇥P1. If A has a
fixed point then it is birationally conjugate to a subgroup of Aut(P2).

Proof. Assume that A acts on P1 ⇥P1 with a fixed point p. We consider P1 ⇥P1

embedded as a smooth quadric Q in P3. All the automorphisms of Q are induced
by the elements in Aut(P3) = PGL4(C) that preserve the non-degenerate quadratic
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form that defines Q. Hence the action of A on Q extends to an action on P3. Let
⇡ : Q 99K P2 be the birational transformation given by stereographic projection
from p. Since A fixes p, it induces a regular action on P2 that is ⇡-equivariant.
Hence, ⇡ conjugates A to a subgroup of Aut(P2).

Lemma 6.5.2. Let G ⇢ Cr2(C) be a group of elliptic elements that is not a tor-
sion group and contains a finitely generated subgroup � that does not preserve any
fibration. Then G is conjugate to a subgroup of Aut(P2), Aut(P1 ⇥P1) or Aut(S6).

Proof. As G is not a torsion group, we may assume that � contains an element
of infinite order. By Theorem 6.3.1, � is bounded and therefore contained in a
maximal algebraic subgroup of Cr2(C). By Theorem 6.2.1, the only infinite maxi-
mal algebraic subgroups of Cr2(C) that do not preserve any rational fibrations are
the groups Aut(P2), Aut(P1 ⇥P1) and Aut(S6), where S6 is the del Pezzo surface
of degree 6. Therefore, every finitely generated subgroup of G that does contain
� is conjugate to a subgroup of either Aut(P2), Aut(P1 ⇥P1) or Aut(S6). By
adding elements to a given finitely generated group, we observe that there exists
H 2 {Aut(P2),Aut(P1 ⇥P1),Aut(S6)} such that every finitely generated subgroup
of G is conjugate to a subgroup of H.

We first consider the case H = Aut(S6). The del Pezzo surface S6 is the blow-
up of 3 general points p1, p2, p3 in P2. We may assume that p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]. Denote by l1, l2, l3 the strict transforms in S6 of
the three coordinate lines in P2 and let e1, e2, e3 be the exceptional divisors. The
automorphism group of S6 is D2 o (S3 ⇥ Z /2Z), where the action of D2 o S3 is
induced by the action of D2 o S3 on P2 preserving the set of points {p1, p2, p3}.
The pullback of the standard quadratic involution � yields an automorphism of
S6, which corresponds to the factor Z /2Z in the automorphism group ([Dol12],
Chapter 8.4.2)). Let � ⇢ G be a finitely generated infinite subgroup that does not
preserve any fibration. We may assume � ⇢ Aut(S6). We denote by � ⇢ Aut(S6)
the Zariski-closure of �. Since � is infinite, the subgroup D0 := � \D2 ⇢ Aut(S6)
is infinite. Moreover, D0 is a normal subgroup in �, which implies in particular
that � preserves the closures of the orbits of D0. As � does not preserve any
fibration and since D0 is infinite, we obtain that D0 has a dense orbit and therefore
that D2 = D0 ⇢ �. Note that D2 is the connected component of the identity
of Aut(S6). This implies that every chain of strict inclusions of closed algebraic
groups in Aut(S6)

� = G1 ⇢ G2 ⇢ · · · ⇢ Gk

has length k  12 = |S3⇥Z /2Z |. Assume that there exists an element g1 2 G that
is not contained in �. In this case, there exists a f1 2 Cr2(C) such that f1h�, g1if�1

1

is a subgroup of Aut(S6) and we obtain a strict inclusion f1�f�1
1 ⇢ f1h�, g1if�1

1 .
If G ⇢ h�, g1i, we are done, otherwise we continue inductively until we obtain a
chain of inclusions of algebraic subgroups of Aut(S6)

fr�f�1
r ⇢ frh�, g1if�1

r ⇢ · · · ⇢ frh�, g1, . . . , grif�1
r ,

such that G ⇢ h�, g1, . . . , gri. Such an r exists and it is at most 12 by the above

remark. In particular, frGf�1
r = frh�, g1, . . . , grif�1

r and is therefore contained in
Aut(S6).
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Unfortunately, we can’t apply the above argument to the cases, where H =
Aut(P2) orH = Aut(P1 ⇥P1), since it relied on the fact that Aut(S6) has dimension
2.

Now let X = P1 ⇥P1 or X = P2. First we assume that there exists a finitely
generated infinite subgroup � ⇢ G that does not preserve any fibration and has

no fixed point on X. We may assume that � ⇢ Aut(X). Let �
0
be the connected

component of the identity of the closed subgroup � ⇢ Aut(X). Since � is infinite, �
0

contains an element of infinite order. It has therefore orbits of positive dimension.
It is moreover a normal subgroup in �, so all elements in � preserve the closures

of its orbits. Since � does not preserve any fibration, �
0
has therefore an orbit of

dimension 2. Assume that there is an element g 2 G that is not contained in �.
Then there exists a f 2 Bir(X) such that fh�, gif�1 is contained in Aut(X). Note
that f conjugates � ⇢ Aut(X) to the subgroup f�f�1 ⇢ Aut(X). Therefore, we

obtain two di↵erent actions ⇢1 and ⇢2 of �
0
on X, which are conjugate by f . The

first one is given by

⇢1 : �
0 ⇥X ! X, (g, x) 7! g(x)

and the second by

⇢2 : �
0 ⇥X ! X, (g, x) 7! fgf�1(x).

The exceptional divisor of f , i.e. the union of irreducible curves contracted by

f , and the set of indeterminacy points of f in X are therefore both �
0
-invariant

subsets of X, with respect to ⇢1. And the exceptional divisor of f�1 and the set of

indeterminacy points of f�1 in X are both �
0
-invariant subsets of X, with respect

to ⇢2.

If the two dimensional orbit of �
0
under ⇢1 is closed we thus obtain that the

exceptional locus of f as well as the set of indeterminacy points are empty, hence

f is an automorphism. If �
0
does not act transitively on X under ⇢1, its two

dimensional orbit U is open in X. Hence the curve C = X \ U is �
0
-invariant

under ⇢1. Since �
0
does not have any fixed points on X under ⇢1, the curve C

has to be smooth. Moreover, � ⇢ PGL2(C)⇥ PGL2(C)o Z /2Z does not preserve
any fibration, by assumption. Hence, C cannot consist of more than one fiber
of the same fibration. In particular, C is irreducible. The number of irreducible
components of the exceptional divisor of f is larger or equal to the number of
indeterminacy points of f�1, thus f�1 has at most one indeterminacy point, which

has to be a fixed point under ⇢2. But �
0
has no fixed points under ⇢1 and thus also

not under ⇢2, so f�1 has no indeterminacy points. Similarly one shows that f has
no indeterminacy points. It follows that f is an automorphism of X and therefore
that g 2 Aut(X) and since g was chosen arbitrarily we obtain G ⇢ Aut(X).

If X = P2 and every finitely generated subgroup � of G has a fixed point p�, this
implies that every finitely generated subgroup � fixes a rational fibration, namely
the pencil of lines through p�. This does not appear, by assumption.

If X = P1 ⇥P1 and every finitely generated subgroup of G has a fixed point, we
obtain by Lemma 6.5.1 that every finitely generated subgroup of G is conjugate to
a subgroup of Aut(P2), so this case reduces to the previous case.
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Proof of Theorem 6.1.4. If G is finite, the theorem is covered by Proposition 6.2.2.
Hence we may assume G to be infinite.

We will now generalize Proposition 6.2.13 with the help of the compactness
theorem to arbitrary torsion subgroups. Let N 2 Z be an integer such that every
large enough finite subgroup of Cr2(C) can be embedded into GLN (C), e.g. N = 36
(Proposition 6.2.13). To every element g 2 G we associate a N ⇥ N matrix of
variables

�
xg
ij

�
. We now construct a mixed system S consisting of the following

conditions:

(1) the equations given by the matrix product (xf
ij)(x

g
ij) = (xh

ij) for all f, g, h 2 G
such that fg = h;

(2) for all g 2 G \ {id} the conditions (
W

i x
g
ii � 1 6= 0) _ (

W
i6=j x

g
ij 6= 0);

(3) xid
ii � 1 = 0 and xid

ij = 0 for all 1  i, j  N , i 6= j;

(4) p 6= 0 for all primes p 2 Z+.

First we show that S is compatible. For this, it su�ces to show that every finite
subset of S is compatible, by Theorem 6.4.1. Let c1, . . . , cn 2 S be finitely many
conditions. There are only finitely many variables xg

ij that appear in c1, . . . , cn.
Denote by {g1, . . . , gl} ⇢ G the finite set of all elements g in G such that for
some 1  i, j  N the variable xg

ij appears in one of the conditions c1, . . . , cn.
Consider the finitely generated subgroup � = hg1, . . . , gli ⇢ G. By Theorem 6.3.3,
� is finite and has therefore a faithful representation to GLN (C), where N = 48
(Proposition 6.2.2). More precisely, since G is infinite, we may assume that �
contains strictly more than 96 elements, so by Proposition 6.2.13, we can choose
N to be  36. The existence of such a faithful representation implies in particular
that C contains values that satisy the finite set of conditions c1, . . . , cn, i.e it is
compatible.

Hence there exists a field k which contains values zgij for all i, j 2 {1, . . . , N},
and all g 2 G that satisfy conditions (1) to (4). First we note that char(k) = 0
because of the conditions (4). Since G ⇢ Cr2(C), it has at most the cardinality of
the continuum, so in particular, the values {zgij} are contained in a subfield k0 of
k with the same cardinality as C, which implies that k0 can be embedded into C
as a subfield. So without loss of generality we may assume that k = C. Consider
now the map ' : G ! GLN (C) given by g 7! (zgij)i,j . It is well defined, since
the conditions (3) imply '(id) = id and by the conditions (1) the image of every
element of G is an invertible matrix. The conditions (1) furthermore ensure that '
is a group automorphism and the conditions (2) ensure that it is injective.

Proof of Theorem 6.1.3. Let G ⇢ Cr2(C) be a group of elliptic elements. We dis-
tinguish 3 di↵erent cases.

Case 1. If G is a torsion group, there is nothing to prove.
Case 2. When G is not a torsion group and contains a finitely generated

subgroup � that does not preserve any fibration the theorem is covered by Lemma
6.5.2.
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Case 3. Now, assume that for every finite set of elements �1, . . . , �n 2 G
there exists a rational fibration ⇡ : P2 99K P1 such that the group � := h�1, . . . , �ni
permutes the fibers of ⇡. In other words, every subgroup � ⇢ G generated by
elements of infinite order �1, . . . , �n, is conjugate to a subgroup of the de Jonquières
subgroup J = PGL2(C(t))o PGL2(C). Let

' : J = PGL2(C(t))o PGL2(C) ! PGL2(C)

be the natural projection. We consider two subcases:
Case 3a. Assume that every finitely generated subgroup of G can be conjugated

to a subgroup of J , but that there exist elements �1, . . . , �n 2 G such that the
finitely generated subgroup � = h�1, . . . , �ni ⇢ G satisfies the following property:
whenever we conjugate � to a subgroup of J , there exists a generator of infinite
order �i that is contained in the kernel of '.

WBy changing the order of the generators, we may assume that there exists
a k 2 {1, . . . , n} such that the generators �1, . . . , �k of � are of infinite order and
such that the generators �k+1, . . . , �n are torsion elements. For every finite set
of elements {�1, . . . , �l} ⇢ � the group h�1, . . . , �n, �1, . . . , �li preserves a fibration
⇡ : P2 99K P1 whose fibers are �i-invariant for some i 2 {1, . . . , k}, by hypothesis
of Case 3a. By construction of �1, . . . , �n, there exists a j 2 {1, . . . , k} such that
for every finitely generated subgroup � of G there exists a �j-invariant fibration
⇡ : P2 99K P1 that is preserved by �. The general fibers of ⇡ are exactly the orbit
closures of �j . We conclude that every element of G preserves the orbit closures of
�j . Therefore, G is conjugate to a subgroup of J . This proves Theorem 6.1.3 for
the subcase (3a).

Case 3b. We assume that for every finite subset �1, . . . , �n of G the group
� := h�1, . . . , �ni of G can be conjugated to a subgroup of J in such a way that the
kernel of ' does not contain any element of the set {�1, . . . , �n} that has infinite
order.

Again, as in case (2), we use the compactness theorem. To every element g 2 G
we associate a 3⇥3 matrix of variables

�
xg
ij

�
. We consider PGL2(C) as a closed sub-

group of GL3(C) (e.g. through the embedding given by the adjoint representation).
Let f1, . . . , fm 2 C[xij ]1i,j3 be the polynomials such that PGL2(C) ⇢ GL3(C)
is exactly the zero set of f1, . . . , fm in GL3(C). We construct a mixed system S
consisting of the following conditions:

(1) the equations given by (xf
ij)(x

g
ij) = (xh

ij) for all f, g, h 2 G such that fg = h;

(2) for all g 2 G of infinite order the conditions

(
_

i

xg
ii � 1 6= 0) _ (

_

i6=j

xg
ij 6= 0);

(3) f1(x
g
ij) = · · · = fm(xg

ij) = 0 for all g 2 G \ {id};

(4) xid
ii = 1 and xid

ij = 0 for all 1  i, j  3, i 6= j;

(5) p 6= 0 for all primes p 2 Z+.
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We first show that S is compatible. For this, it su�ces to show that every finite
subset of S is compatible, by Theorem 6.4.1. Let c1, . . . , cn 2 S be finitely many
conditions. There are only finitely many variables xg

ij that appear in c1, . . . , cn.
Denote by {g1, . . . , gl} ⇢ G the finite set of all elements g in G such that for some
1  i, j  N the variable xg

ij appears in one of the conditions c1, . . . , cn. Consider
the finitely generated group � = hg1, . . . , gli. By assumption, � is conjugate to
a subgroup of J such that ker(') does not contain any element from {g1, . . . , gl}
that has infinite order. Therefore, the projection ' allows us to associate to each
element g 2 {g1, . . . , gl} a 3 ⇥ 3-matrix whose variables satisfy conditions (1) to
(4), i.e. the conditions c1, . . . , cn are compatible.

Let now k be a field containing values that satisfy the conditions of S. By
the same argument as in the proof of Theorem 6.1.4, we may assume that k = C.
Consider the map  : G ! GL3(C). It is well defined, since the conditions (4)
imply '(id) = id and by the conditions (1) the image of every element of G is an
invertible matrix. All elements in  (G) are contained in PGL2(C) since they satisfy
conditions (4). From the conditions (1) we obtain that  is a group homomorphism
and the conditions (2) ensure that no element of infinite order is contained in the
kernel of  . Hence, there exists a homomorphism  : G ! PGL2(C) such that
ker( ) is a torsion subgroup. This finishes the proof of Theorem 6.1.3.

6.6 Tits’ alternative

In this section we prove Theorem 6.1.10. Consider a subgroup G ⇢ Cr2(C). First
we consider the case, where G contains a loxodromic element, then the case, where
G contains a parabolic but no loxodromic element, and then the case, where G is
a group of elliptic elements. The first two cases are treated analogously as in the
proof of the Tits alternative for finitely generated subgroups in [Can11a], whereas
in the last case the Tits alternative can be deduced from Theorem 6.1.3.

6.6.1 The loxodromic case

We first start with some preparation.

Lemma 6.6.1. Let g 2 Cr2(C) be an algebraic element that fixes two di↵erent
rational fibrations. Then g is of finite order.

Proof. Assume that the two rational fibrations fixed by g are given by the rational
maps ⇡1,⇡2 : P2 99K P1. We thus obtain a dominant g-invariant rational map
⇡ : P2 99K P1 ⇥P1 given by ⇡ = (⇡1,⇡2). Since ⇡ is of finite degree, it is locally a
finite cover, hence g must be of finite order.

Lemma 6.6.2. Let G ⇢ Cr2(C) be an algebraic subgroup of dimension � 9. Then
G preserves a unique rational fibration.

Proof. It follows from Theorem 6.2.1 that G is conjugate to a subgroup of Aut(Fn)
for some Hirzebruch surface Fn, n � 2, and therefore that G preserves a rational
fibration ⇡ : Fn ! P1. As G permutes the fibers of ⇡, we obtain a homomorphism
' : G ! PGL2(C) with a kernel of dimension � 6. Assume that there exists a
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second rational fibration ⇡0 : Fn 99K P1 that is preserved by G. We obtain a second
homomorphism '0 : G ! PGL2(C). The restriction of ⇡0 to ker(⇡) has a positive
dimensional kernel. Hence, the intersection ker(')\ker('0) is positive dimensional.
In particular, ker(')\ker('0) contains an element of infinite order. By Lemma 6.6.1,
the rational maps ⇡ and ⇡0 define the same fibration.

The following result is a generalization of Theorem 5.5.4:

Theorem 6.6.3. Let N be a subgroup of Cr2(C) containing at least one loxodromic
element. Assume that there exists a short exact sequence

1 ! A ! N ! B ! 1,

where A is an infinite group of elliptic elements. Then N is conjugate to a subgroup
of GL2(Z)nD2.

Proof. By Theorem 5.2.5, A fixes a point in p 2 @H1 [H1. If p 2 H1, then
A is bounded and we are in the case of Theorem 5.5.4. So we may assume that
p 2 @H1 and that p is the only fixed point of A in @H1, since otherwise A fixes
the geodesic between p and q and again, A would be bounded.

Let f 2 N be a loxodromic element. Since f normalizes A, we obtain that f
fixes p. Being loxodromic, f does not preserve any fibration and hence, p does not
correspond to the class of a fibration. In particular, every finitely generated group of
elliptic elements that fixes p is bounded, by Lemma 6.3.2. Denote by G ⇢ Cr2(C)
the subgroup of elements that fix p. Let L be the one-dimensional subspace of
Z(P2) that corresponds to p. Since G fixes p, its linear action on Z(P2) acts on L
by automorphisms preserving the orientation. This yields a group homomorphism
⇢ : G ! R⇤

+. The kernel of ⇢ consists of elliptic elements, since loxodromic elements
do not fix any vector in Z(P2), and G does not contain any parabolic elements, as
p does not correspond to the class of a fibration. Moreover, all elliptic elements
in G are contained in ker(⇢), since 1 is the only eigenvalue of a transformation of
Z(P2) that is induced by an elliptic element (see [Can15, Section 4.1.3]). Let f 2 G
be loxodromic; let us show that no power of f is tight. Assume the contrary, i.e.
that fn is tight in G for some n 2 Z. By Theorem 5.6.2, all elements except the
identity in the normal subgroup generated by fn are loxodromic. In particular, all
the elements of the form gfng�1f�n are loxodromic, where g 2 G is an element
that does not commute with fn (such elements exist by Corollary 5.2.3, since we
assumed N ⇢ G to be infinite). But ⇢(gfng�1f�n) = id and hence gfng�1f�n is
elliptic - a contradiction. Hence, no power of f is tight, which implies, by Theorem
5.6.4, that there exists a h 2 Cr2(C) and an algebraic subgroup B ⇢ G such that
hfh�1 is monomial and hBh�1 = D2.

Let � ⇢ ker(⇢) be a finitely generated subgroup. Since � is bounded, the
Zariski-closure � of � is an algebraic subgroup of G. Let

d := sup{dim(�) | � ⇢ ker(⇢) finitely generated }.

First, assume that d is finite. Since ker(⇢) contains a subgroup that is conjugate
to D2, we have d � 2. Let � ⇢ ker(⇢) be a finitely generated subgroup such

that dim(�) = d and denote by �
0
the connected component of the identity in
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the algebraic group �. Let f 2 N be any element. Note that f�
0
f�1 is again

an algebraic subgroup and that h�0
, f�

0
f�1i is contained in the Zariski-closure of

the finitely generated group h�, f�f�1i. By [Hum75, Chapter 7.5], h�0
, f�

0
f�1i is

closed and connected. Since it is of dimension  d and contains �
0
it equals �

0
, i.e.

f normalizes �
0
. By Theorem 5.5.4 and Lemma 5.5.1, there exists a g 2 Cr2(C)

such that g�g�1 is a dense subgroup of D2 and gfg�1 is monomial. Since the
normalizer of D2 is GL2(Z)nD2, we obtain that gGg�1 ⇢ GL2(Z)nD2 and hence
in particular gNg�1 ⇢ GL2(Z)nD2.

Now assume that d = 1. Let � ⇢ ker(⇢) be a finitely generated subgroup such
that dim(�) � 9. By Lemma 6.6.2, � preserves a unique rational fibration given by
a rational map ⇡ : P2 99K P1. Let g 2 ker(⇢) be any element. The algebraic group
h�, gi preserves again a rational fibration and since it contains �, this fibration
is again given by ⇡. It follows that ker(⇢) preserves a rational fibration, which
implies that ker(⇢) is bounded and we can apply Theorem 5.5.4 to conclude that
gGg�1 ⇢ GL2(Z)nD2 and hence in particular gNg�1 ⇢ GL2(Z)nD2.

From Theorem 6.6.3 we can in particular draw the following results:

Lemma 6.6.4. Let f, g 2 Cr2(C) be two loxodromic elements such that Ax(f) 6=
Ax(g). Then either f and g do not have a common fixed point on @H1, or hf, gi
is conjugate to a subgroup of GL2(Z)nD2.

Proof. Assume that f and g have a common fixed point p 2 @H1. Let L be
the one-dimensional subspace of Z(P2) that corresponds to p. Since hf, gi fixes p,
its linear action on Z(P2) acts on L by automorphisms preserving the orientation.
As in the proof of Theorem 6.6.3, this yields a group homomorphism ⇢ : hf, gi !
R⇤

+ whose kernel consists of elliptic elements. Assume that fn is tight for some
n. By Theorem 5.6.2, all elements except the identity in the normal subgroup
generated by fn are loxodromic. In particular, gfng�1f�n is loxodromic. But
⇢(gfng�1f�n) = id and hence gfng�1f�n is elliptic - a contradiction. Hence, no
power of f is tight, which implies, by Theorem 5.6.4, that there exists a h 2 Cr2(C)
and a bounded subgroup �2 ⇢ hf, gi such that hfh�1 is monomial and h�2h�1

is a dense subgroup of D2. In particular, ker(⇢) is infinite as �2 ⇢ ker(⇢). The
statement now follows from Theorem 6.6.3.

Lemma 6.6.5. Let G ⇢ Cr2(C) be a subgroup containing loxodromic elements
f and g such that Ax(f) 6= Ax(g). Then either there exist loxodromic elements
h1, h2 2 G such that h1 and h2 do not have a common fixed point on @H1, or G
is conjugate to a subgroup of GL2(Z)nD2.

Proof. If f and g do not have a common fixed point, we are done. So we may assume
that f and g have a common fixed point p 2 @H1 and that hf, gi is conjugate to
a subgroup of GL2(Z)nD2, by Lemma 6.6.4. If all elements in G fix p, we obtain
an exact sequence

1 ! ker(⇢) ! G ! H ! 1

and we are done by Theorem 6.6.3, since all elements in ker(⇢) are elliptic. Oth-
erwise, there exists a loxodromic element h 2 G that does not fix p. If h does not
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have a common fixed point in @H1 with either f or g we are done. Otherwise,
h has a common fixed point q1 with f and a common fixed point q2 with g and
q1 6= q2 (otherwise, f and g would have the same axis). There exists an algebraic
subgroup B ⇢ Cr2(C) that is conjugate to D2 and that fixes p, q1 and q2. We
may assume that B = D2. Hence, h normalizes a subgroup of elliptic elements
containing D2. By Theorem 6.6.3, there exists an element a 2 Cr2(C) such that
ahD2, hia�1 ⇢ GL2(Z) n D2. In particular, a conjugates D2 to a subgroup of
GL2(Z) nD2. This implies aD2a�1 = D2 and therefore a 2 GL2(Z) nD2. Hence
h 2 GL2(Z)nD2.

The main tool to prove the Tits alternative for subgroups of Cr2(C) containing
loxodromic elements is the so-called ping-pong Lemma:

Lemma 6.6.6 (Ping-pong Lemma, [dlH00, II.B.]). Let S be a set and f1, f2 two
bijections of S. Assume that there exist subsets S1 and S2 of S such that fn

1 (S1) ⇢
S2 and fn

2 (S2) ⇢ S1 for all n 2 Z, n 6= 1. Then f1 and f2 generate a non-abelian
free group.

Lemma 6.6.7. Let G ⇢ Cr2(C) be a subgroup that contains a loxodromic element.
Then one of the following is true:

(1) G is conjugate to a subgroup of GL2(Z)nD2,

(2) G contains a subgroup G0 of index at most two that is isomorphic to ZnH,
where H is a finite group,

(3) G contains a non-abelian free subgroup.

Proof. Let f 2 G be a loxodromic element. We consider three cases.
Case 1. First we assume that all elements in G preserve the axis Ax(f) of

f . There is a subgroup G0 ⇢ G of index at most 2 such that G0 preserves the
orientation of the axis. Hence every element g 2 G0 translates the points on Ax(f)
by a constant cg 2 R. This yields a group homomorphism ⇡ : G0 ! R, whose kernel
is a bounded group. By Theorem 5.5.4, ker(⇡) is either finite or G0 is conjugate
to a subgroup of GL2(Z)nD2. If G0 is conjugate to a subgroup of GL2(Z)nD2,
then so is G. The image of ⇡ is discrete by the gap property (Theorem 5.2.2) and
therefore isomorphic to Z. Hence, if ker(⇡) is finite, we are in case (2).

Case 2. Now assume that there is an element g 2 G that does not preserve
Ax(f). By Lemma 6.6.5, either G is conjugate to a subgroup of GL2(Z) n D2 or
G contains two loxodromic elements h1, h2 that do not have a common fixed point
in @H1. In the first case we are done, in the second one we apply the ping-pong
Lemma by considering the action of h1 and h2 on the border @H1 and chosing as
subsets S1 and S2 small enough neighborhoods of the fixed points of f and g on
@H1. More precisely, denote by ↵+ the attracting fixed point of f in @H1 and by
↵� its repulsive fixed point. Similarly, we denote by �+ and �� the attractive and
repulsive fixed point of g on @H1 respectively. Let S+

1 be a small neighborhood
of ↵+ and S�

1 a small neighborhood of ↵� in @H1. Similarly, let S+
2 be a small

neighborhood of �+ and S�
2 a small neighborhood of ��. We assume that S+

1 ,
S�
1 , S+

2 , and S�
2 are pairwise disjoint. Let S1 := S+

1 [ S�
1 and S2 := S+

2 [ S�
2 .
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There exist positive integers n1, n2, n3, n4 satisfying fn1(S2) ⇢ S+
1 , f�n2(S2) ⇢ S�

1 ,
gn3(S1) ⇢ S+

1 and g�n3(S2) ⇢ S1. Define n := max{n1, n2, n3, n4}. As f(S+
1 ) ⇢

S+
1 and f�1(S�

1 ) ⇢ S�
1 as well as g(S+

2 ) ⇢ S+
2 and g�1(S�

2 ) ⇢ S�
2 , we obtain that

fm(S2) ⇢ S1 and f�m(S2) ⇢ S1 as well as gm(S1) ⇢ S2 and g�m(S1) ⇢ S2 for all
m � n. The two maps fn and gn together with the sets S1, S2 therefore satisfy all
the conditions from the Ping-Pong Lemma and we obtain that fn and gn generate
a non-abelian free subgroup of G.

6.6.2 The parabolic case

Recall that a subgroup of Cr2(C) that contains no loxodromic element, but a
parabolic element always preserves a rational or elliptic fibration (Lemma 5.3.4).
From the structure theorems about these groups we will deduce that subgroups of
this type satisfy Tits’ alternative.

Theorem 6.6.8 ([Can12a], Proposition 6.3). Assume that we have a short exact
sequence of groups

1 ! G1 ! H ! G2 ! 1.

If G1 and G2 satisfy Tits’ alternative then H satisfies Tits’ alternative.

Remark 6.6.1. In the published version of the paper [Can12a] there is a gap in
the proof of Theorem 6.6.8. However, in the version of the paper on the website of
the author [Can11b] this gap has been filled and the proof is complete.

Remark 6.6.2. Theorem 6.6.8 implies in particular, that the group GL2(Z)nD2

satisfies Tits’ alternative.

Lemma 6.6.9. Let G ⇢ Cr2(C) be a subgroup that contains a parabolic element
but no loxodromic element. Then G satisfies Tits’ alternative.

Proof. By Lemma 5.3.4, G is either conjugate to a subgroup of J or to a subgroup
of Aut(X), where Aut(X) is the automorphism group of a Halphen surface. In the
first case, the Tits alternative follows from Theorem 6.6.8 and the Tits alternative
for linear groups in characteristic zero, since J ' PGL2(C) n PGL2(C(t)). In the
second case, G is solvable since the automorphism group of a Halphen surface is
virtually abelian.

6.6.3 Proof of Theorem 6.1.10

We are now ready to prove Tits’ alternative for the Cremona group:

Proof of Theorem 6.1.7. Let G ⇢ Cr2(C) be a subgroup. If G contains a loxo-
dromic element, then, by Lemma 6.6.7, G is either conjugate to a subgroup of
GL2(Z) n D2, in which case the Tits alternative holds (see Remark 6.6.2), G is
cyclic up to finite index, or G contains a non-abelian free subgroup. Therefore, the
Tits alternative holds for groups containing loxodromic elements.

For the case that G contains a parabolic but no loxodromic element, Tits’
alternative is proven in Lemma 6.6.9.
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Assume that all elements in G are elliptic. We thus are in one of the cases
of Theorem 6.1.3. All the groups that satisy case (1) or case (2) are linear and
therefore satisfy the Tits alternative. If G is a group from case (3) or case (4) the
Tits alternative follows from Theorem 6.6.8.

6.7 Derived length

In this section we will prove Theorem 6.1.11. Our starting point is the following ver-
sion of a Theorem by Déserti ([Dés15]), which can be deduced from the properties
of the action of Cr2(C) on H1. We will briefly recall its proof.

Theorem 6.7.1. Let G ⇢ Cr2(C) be a solvable subgroup, then one of the following
is true:

(1) G is a subgroup of elliptic elements, and hence isomorphic to a solvable sub-
group of one of the groups from Theorem 6.1.3.

(2) G is conjugate to a subgroup of J ' PGL2(C)n PGL2(C(t)).

(3) G is conjugate to a subgroup of the automorphism group of a Halphen surface.

(4) G is conjugate to a subgroup of GL2(Z)nD2.

(5) There is a loxodromic element f 2 Cr2(C) and a finite group H ⇢ Cr2(C)
such that G = hfinH.

Proof. Let G ⇢ Cr2(C) be a solvable subgroup.
Case 1. G contains a loxodromic element. In this case the statement follows

directly from Lemma 6.6.7.
Case 2. G does not contain a loxodromic element, but G contains a parabolic

element. In this case the statement of the theorem follows from Lemma 5.3.4.
Case 3. G is a group of elliptic elements and as such isomorphic to a subgroup

of one of the groups from Theorem 6.1.3.

Lemma 6.7.2. Let G be a group. If there exists an N such that every finitely
generated subgroup of G has derived length  N , then G is solvable and has derived
length  N .

Proof. We will show that G(N) = {id}. Let g 2 G(N). Then there exists a finitely
generated group H such that g 2 H(N). By assumption, H(N) = {id}.

We also recall the following well known Lemma about solvable subgroups:

Lemma 6.7.3. Assume that there is an exact sequence of groups

1 ! H1 ! G ! H2 ! 1.

Then G is solvable if and only if H1 and H2 are solvable. Moreover, the derived
length of G is at most the sum of the solvable lengths of H1 and of H2.
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Lemma 6.7.4. There exists a constant K  35 such that every finitely generated
solvable subgroup of elliptic elements of Cr2(C) has derived length  K and every
finite solvable subgroup has derived length  K � 1.

Proof. Let � ⇢ Cr2(C) be a finitely generated subgroup of elliptic elements. By
Theorem 6.3.1, � is either contained in a maximal algebraic subgroup or it is
conjugate to a subgroup of J = PGL2(C(t))o PGL2(C).

In the first case, by Proposition 6.2.13, either � is an extension of S4 by
(Z /2Z2) in which case the derived length is  4. Or there exists a homomor-
phism ' : � ! GLN (C) for N  24 such that ker(') is isomorphic to Cn for some
n. By Theorem 6.1.12 there exists a constant K  1 + 7 log2(24)  34 such that
every solvable subgroup of GLN (C) has derived length  K. It follows in particular
that the derived length of � is  K + 1  35, and that it is  34, if � is finite.

As for the second case, we note that, again by Theorem 6.1.12, every solvable
subgroup of PGL2(C) and PGL2(C(t)) has derived length  6, since PGL2(C)
can be embedded into GL3(C). By Lemma 6.7.3, every solvable subgroup of
PGL2(C(t))oPGL2(C) has therefore derived length  12. This proves the Lemma
for the second case.

Proof of Theorem 6.1.11. Let G ⇢ Cr2(C) be a solvable subgroup.
Case 1. First we assume that G contains a loxodromic element. By Theo-

rem 6.7.1, G is either isomorphic to a subgroup of GL2(Z) n D2 or to a group of
the form ZnH, where H ⇢ Cr2(C) is finite. Every solvable subgroup of GL2(Z)
has derived lentgh  4, hence in the first case, G has derived length  5. In the
second case, G is solvable if and only if H is solvable and the derived length of G
is one larger than the derived length of H. By Lemma 6.7.4, the derived length of
H is  34.

Case 2. In a next step we consider the case where G does not contain a
loxodromic element, but a parabolic element. In this case, G is either isomorphic
to a subgroup of the de Jonquières group J or to a subgroup of the automorphism
group of a Halphen surface. If G is isomorphic to a subgroup of the de Jonquières
group there exists a short exact sequence

1 ! H1 ! G ! H2 ! 1,

where H1 ⇢ PGL2(C(t)) and H2 ⇢ PGL2(C). Since G is solvable, H1 and H2 are
solvable. By Theorem 6.1.12, the derived length of H1 and H2 is bounded by 6 and
therefore, by Lemma 6.7.3, the derived length of G is  12. If G is isomorphic to
a subgroup of the automorphism group of a Halphen surface X, then there exists,
by Theorem 5.3.3, a homomorphism ⇢ : Aut(X) ! H, where H ⇢ PGL2(C) is a
finite group, and ker(⇢) is an extension of an abelian group by a cyclic group of
order dividing 24. Hence the derived length of G is  8.

Case 3. Finally, we consider the case where G is a group of elliptic elements.
In this case the Lemma follows from Lemma 6.7.2 and Lemma 6.7.4.
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Chapter 7

Simple subgroups of the
plane Cremona group

7.1 Introduction and results

It had been a long-standing open question, whether the plane Cremona group is
simple as a group until Cantat and Lamy showed in 2012 that it is not. The main
idea to prove this result was to use the action of Cr2(C) on the Picard-Manin
space H1 by isometries and use techniques from small cancellation theory. In this
chapter, we refine these techniques with the aim of classifying all simple subgroups
of Cr2(C). However, during the work I have encountered a problem that I was not
able to solve. We formulate it in the following conjecture, which will be discussed
in more detail in Section 7.2.3.

Conjecture 7.1.1. Let f 2 Cr2(C) be a loxodromic element, p 2 P2 a point that
is not contained in any of the coordinate lines of P2, k a positive integer. Then the
constructible set

{d(fd)k(p) | d 2 D2 such that p /2 Ind((fd)l) for all 1  l  k}

is open and dense in P2.

The main result of this chapter will be:

Theorem 7.1.2. Assume that Conjecture 7.1.1 holds.
Let G ⇢ Cr2(C) be a simple group. Then:

(1) G does not contain any loxodromic element.

(2) If G contains a parabolic element, then G fixes a rational fibration, i.e. there
exists a G-invariant rational map ⇡ : P2 99K P1 with rational fibers. In that
case, G is isomorphic to a subgroup of PGL2(C(t)).

(3) If all elements in G are elliptic then either G is a simple subgroup of an alge-
braic subgroup of Cr2(C) or it is conjugate to a subgroup of the de Jonquières
group J ' PGL2(C)n PGL2(C(t)).

135
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Remark 7.1.1. Only part (1) of Theorem 7.1.2 depends on Conjecture 7.1.1. If
we assume that the simple subgroup G does not contain any loxodromic element,
Part (2) and (3) can be proven without assuming Conjecture 7.1.1 (Lemma 7.3.1
and 7.3.2).

As for the case (3) of Theorem 7.1.2, one observes that a simple subgroup of
PGL2(C)nPGL2(C(t)) is abstractly isomorphic to a simple subgroup of PGL2(C).
However, we are not able to give a description of the conjugacy classes of simple
subgroups of PGL2(C)n PGL2(C(t)).

From Theorem 7.1.2 one can deduce the following observation by looking at the
classification of maximal algebraic subgroups of Cr2(C) (see Theorem 6.2.1):

Corollary 7.1.3. Assume that Conjecture 7.1.1 holds.
A simple group G can be embedded into Cr2(C) if and only if G is isomorphic

to a subgroup of PGL3(C).

Corollary 7.1.3 naturally leads to the following question, which is, to our knowl-
edge, an open problem:

Question 7.1.1. What are the simple subgroups of PGL3(C) and PGL2(C)?

Obvious classes of simple subgroups of PGL2(C) are subgroups of the form
PSL2(k), where k ⇢ C is a subfield, or finite simple subgroups. It is unclear,
whether there exist other examples:

Question 7.1.2. What are the simple subgroups of PSL2(Q)? Does PSL2(Q)
contain a proper infinite simple subgroup?

7.1.1 Finitely generated simple subgroups

A group G satisfies the property of Malcev, if every finitely generated subgroup
� ⇢ G is residually finite, i.e. for every element g 2 � there exists a finite group
H and a homomorphism ' : � ! H such that g is not contained in the kernel
of '. Malcev showed that linear groups satisfy this property ([Mal40a]). Other
groups that fulfill the property of Malcev include automorphism groups of algebraic
varieties over fields of characteristic zero. In [Can11a], Cantat asked whether the
plane Cremona group has the property of Malcev, a question that is still open.

Note that finitely generated simple subgroups of groups with the property of
Malcev are always finite. We will prove the following theorem for the plane Cremona
group:

Theorem 7.1.4. Every finitely generated simple subgroup of Cr2(C) is finite.

Note that in order to prove Theorem 7.1.4 we do not need Conjecture 7.1.1.
From the classification of finite subgroups of Cr2(C) (see [DI09]) we obtain:

Corollary 7.1.5. A finitely generated simple subgroup of Cr2(C) is isomorphic to

Z /pZ, for some prime p, A5, A6, PSL2(7).

The conjugacy classes of these finite groups are classified in [DI09].
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7.2 The loxodromic case

One of the main steps towards Theorem 7.1.2 is the following:

Theorem 7.2.1. Assume that Conjecture 7.1.1 holds.
A simple subgroup G ⇢ Cr2(C) does not contain any loxodromic element.

The starting point to prove Theorem 7.2.1 is Lemma 5.6.5. It states that all
loxodromic elements in a simple group G are of monomial type and that, up to
conjugation, G contains a dense subgroup �2 ⇢ D2 for each of its loxodromic
elements. Our strategy is to show that if G contains a loxodromic element, these
conditions imply that G is conjugate to a subgroup of GL2(Z)nD2 and from this
we will deduce a contradiction to the simplicity of G.

In Section 7.2.1 we first prove a result about the degrees of elements that conju-
gate loxodromic elements to monomial elements. In Section 7.2.2 we take a closer
look at the dynamical behavior of exceptional curves and base-points. This will
allow us to prove Theorem 7.2.1 in Section 7.2.5.

7.2.1 Degree bounds

One of the numerous corollaries that Blanc and Cantat draw from the gap property
of the dynamical degrees of elements in Cr2(C) (Theorem 5.2.2) in [BC16], is the
following result:

Theorem 7.2.2 (Cantat, Blanc, [BC16, Corollary 1.5]). Two loxodromic elements
f, g 2 Cr2(k) of degree  d are conjugate if and only if they are conjugate by an
element of degree  (2d)57.

Another important result we will use is that the dynamical degree is a lower
semi-continuous function on Cr2(C) with respect to the Zariski topology:

Theorem 7.2.3 ([Xie15, Theorem 4.3]). The dynamical degree is a lower semi-
continuous function. More precisely, let A ⇢ Cr2(C) be a family of birational
transformations parametrized by an algebraic variety A. Then for all � 2 R, the
set {f 2 A | �(f) > �} is open in A.

Theorem 7.2.4 ([Xie15, Theorem 1.6]). Let k be an algebraically closed field and
d � 2 an integer. Denote by Cr2(k)d the space of Cremona transformations of
degree d. Then for any � < d, the set

U� = {f 2 Cr2(k)d | �1(f) > �}

is open and Zariski-dense in Cr2(k)d.

Lemma 7.2.5. Let A 2 SL2(Z) be a loxodromic element. Then A is conjugate in
GL2(Z) to a matrix B such that all entries of B are non-negative, or all entries of
B are non-positive.

Proof. Let LA be the linear transformation of R2 corresponding to A. Since it
is loxodromic, it has two di↵erent eigenspaces E±� and E±1/� with eigenvalues
±� > 1 and ±1/� respectively. Fix two eigenvectors e1 2 E±� and e2 2 E±1/�. Let
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u and v be vectors in Z2 ⇢ R2 that form a basis of Z2 and such that v = ↵1e1+↵2e2,
u = �1e1��2e2 with ↵1,↵2,�1,�2 > 0. With respect to the basis (u, v), the images
of u and v under LA are either both in the first quadrant (if the eigenvalues of A
are � and 1/�) or in the third quadrant (if the eigenvalues of A are �� and �1/�).
Therefore, all the entries of the matrix of LA with respect to the basis (u, v) are
either non-negative or non-positive.

Lemma 7.2.6. Let A,B 2 GL2(Z) be two loxodromic elements such that tr(A) =
tr(B) and det(A) = det(B). Then A is conjugate to B if and only if A2 is conjugate
to B2.

Proof. If A is conjugate to B, then A2 is conjugate to B2. On the other hand,
assume that there exists a C 2 GL2(Z) such that CA2C�1 = B2. Since A is loxo-
dromic, tr(A) 6= 0. By the Theorem of Cayley-Hamilton, A = 1/ tr(A)(A2+det(A))
and, since tr(A) = tr(B) and det(A) = det(B) by assumption, B = 1/ tr(A)(B2 +
det(A)). Therefore, CAC�1 = 1/ tr(A)(CA2C�1 + det(A)) = C(1/ tr(A)(B2 +
det(A)))C�1 = B.

Lemma 7.2.7. For an integer n 2 Z there exist only finitely many conjugacy
classes of loxodromic elements in GL2(Z) with trace n.

Proof. We first show the claim for elements in SL2(Z). By Lemma 7.2.5, every
conjugacy class of loxodromic elements in SL2(Z) contains an element B such that
all entries of B are non-negative or all entries of B are non-positive. We show that

there exist only finitely many elements of that form with trace n. Let

✓
a b
c d

◆
2

GL2(Z), such that a, b, c and d are either all non-negative or all non-positive. First
assume that tr(B) = n > 0, hence we have a, d, b, c � 0. Moreover, there are only
finitely many values a, d 2 Z�0 that satisfy a+ d = n. The condition ad� bc = ±1
furthermore implies that there are only finitely many values for a, b, c and d. If we
assume n < 0, we proceed analogously. If the trace of a matrix A 2 GL2(Z) is zero,
then A has finite order and is therefore not loxodromic.

Now we consider the case of loxodromic elements in GL2(Z) of determinant �1.
Let B 2 GL2(Z) be a loxodromic element of trace n and of determinant �1 and
denote by �(B) > 1 its spectral radius. We have ��1 < | tr(B)| < �+1 and hence,
| tr(B2)| < �2 + 1  | tr(B)2|+ 2| tr(B)|, in particular, there are only finitely many
values that tr(B2) can take. Since B2 2 SL2(Z), this implies that there exist only
finitely many conjugacy classes to which B2 can belong. By Lemma 7.2.6, there
exists a one-to-one correspondence between the conjugacy classes of elements in
GL2(Z) of trace n and determinant �1 and the conjugacy classes of the squares of
such elements. Hence, there exist only finitely many conjugacy classes to which B
can be belong. This finishes the proof.

Lemma 7.2.8. Let � > 0 and g 2 GL2(Z)nD2. If �1(g)  � then g is conjugate
in GL2(Z) to an element of degree  C(�), where the constant C(�) only depends
on �.

Proof. We first show the claim for elements in GL2(Z). The dynamical degree �1(g)
is the spectral radius of g, i.e. the absolute value of the matrix g that is strictly
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larger than 1. The condition �1(g)  � implies that | tr(g)| = |�1(g) + �1(g)�1| 
�+1. So tr(g) is contained in the finite set of integers between �(�+1) and (�+1).
By Lemma 7.2.7, there exist only finitely many conjugacy classes in GL2(Z) to
which g can belong. Denote by f1, . . . , fn representants of these classes. We set
C(�) = max{deg(f1), . . . , deg(fn)}.

Let g = md, where m 2 GL2(Z) and d 2 D2, and let n 2 GL2(Z) be the
element that conjugates m to an element in GL2(Z) of degree  C(�). Since
deg(nmdn�1) = deg(nmn�1), we are done.

Finally, we are able to prove the main result of this section:

Lemma 7.2.9. Let g 2 Cr2(k) be a loxodromic element of monomial type. Then
there exists an m 2 GL2(Z)nD2 and a constant K depending only on d := deg(g),
such that g is conjugate to m by an element of degree  K.

Proof. Note that �1(g)  d. So, by Lemma 7.2.8, there exists a constant C(d)
such that g is conjugate to an m 2 W2 nD2 of degree  C(d). By Theorem 7.2.2,
g can be conjugated to m by an element of degree  K, where K = (2r)57 for
r = max{d, C(d)}.

7.2.2 Base-points and toric boundaries

Let S be a smooth projective surface with a given regular D2-action that has an
open orbit U ⇢ S. The fixed points of this action are called toric points, the
algebraic set @S := S \U is called the toric boundary. In what follows, we consider
P2 equipped with the standard action ofD2, or blow-ups ⇡ : S ! P2 of finitely many
toric points with the pull-back of the standard action of D2 on P2. In this case, @S
is always a curve whose irreducible components are lines with self-intersection  1.

A toric point in the bubble space B(P2) is a point of the form (p, S,⇡), where
⇡ : S ! P2 is the blow-up of finitely many toric points and p 2 S is a toric point.
If a toric point q1 2 B(P2) lies above a point q2 2 B(P2), then q2 is toric as well.

Let S be a projective surface, f 2 Bir(S) and assume that f contracts a curve
C ⇢ S. If f(C) = p 2 S we say that f contracts C to p. We extend this notion
to infinitely near points. Consider a point in the bubble space B(S) with a repre-
sentative (p, T,⇡). Let f̃ 2 Bir(T ) be given by f̃ := ⇡�1f⇡ and denote by C̃ the
strict transform of C under ⇡. We say that f contracts C to p if f̃(C̃) = p. If p lies
above a point q in B(S) and f contracts a curve C ⇢ S to p, then f also contracts
C to q.

Definition 7.2.1. Let S be a projective surface and f 2 Bir(S). We denote by
E(f) the number of irreducible components of the exceptional divisor of f and by
I(f) the number of indeterminacy points of f .

Remark 7.2.1. For f 2 Cr2, the numbers E(f) and I(f) can be bounded by a con-
stant depending only on the degree of f . Let g be another Cremona transformation.
Then E(fg)  E(f) + E(g) and I(fg)  I(f) + I(g).

Lemma 7.2.10. Let S be a rational projective surface, f 2 Bir(S) of monomial
type and ⇡ : S 99K P2 a birational transformation. Then I(fn) and E(fn) are
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uniformly bounded for all n by a constant K only depending on ⇡ and the degree of
⇡f⇡�1.

Proof. The birational transformation ⇡ : S 99K P2 only contracts finitely many
irreducible curves and has only finitely many base-points. So I(fn) and E(fn) are
uniformly bounded for all n if and only if I(⇡f⇡�1) and E(⇡f⇡�1) are uniformly
bounded. It is therefore enough to consider the case f 2 Bir(P2).

By Lemma 7.2.9, there exists a g 2 Cr2(C) of degree  C, where C only
depends on deg(f), such that gfg�1 = m 2 GL2(Z) n D2. We have E(mn) 
3 and I(mn)  3 for all n. By Remark 7.2.1, E(g) and I(g) are bounded by
a constant K 0 depending only on deg(g) and hence only on deg(f). Therefore,
E(fn) = E(gmng�1)  2K 0 + 3 and I(fn) = I(gmng�1)  2K 0 + 3. We thus set
K := 2K 0 + 3.

7.2.3 A conditional lemma

Let f 2 Cr2(C) be a birational transformation, k 2 Z+ a positive integer and p 2 P2

a point that is not contained in any of the coordinate lines, i.e. all the coordinates
of p are non zero. We consider the following rational map

'f
k,p : D2 99K P2, d 7! d(fd)k(p).

We note that 'f
k,p does not need to be well defined. For instance, if 'f

k,p is a well

defined rational map and 'f
k,p(d) = q is an indeterminacy point of f for a general

d 2 D2, then '
f
k+1,p is not defined anymore.

However, if 'f
k,p is a well defined rational dominant map, then 'f

k+1,p is a well
defined rational map as well (although not necessarily dominant).

Example 7.2.11. Consider the standard quadratic involution � := [yz : xz : xy] 2
Cr2(C). Since �d = d�1�, we obtain that '�2k,p(d) = �(p) for all positive integers
k and all p 2 U . In particular, '�k,p is well defined for all k. Moreover, if k is even,
then '�k,p is constant, and if k is odd then '�k,p is dominant.

Example 7.2.12. Consider the birational map of the form f = (x�1, p(x, y)) 2
Cr2(C) defined with respect to local coordinates (x, y) for some p(x, y) 2 C(x, y).
For a d 2 D2 given by d = (d1x, d2y), one calculates dfd = (x�1, d2p(d1x, d2y)).
Let p = (a, b) 2 U . Then, if 'f

2k,p(D2) is well defined, the image 'f
2k,p(D2) is

contained in the line x = a, for all positive integers k.

However, the maps in Example 7.2.11 and 7.2.12 are rather particular and both
of them preserve rational fibrations. We expect that similar phenomena do not
occur if f is a loxodromic element, i.e. that for a loxodromic element f 2 Cr2(C),
the rational map 'f

k,p is well defined and dominant for all positive integers k. This
leads to Conjecture 7.1.1 stated in the introduction:

Conjecture 7.1.1: Let f 2 Cr2(C) be a loxodromic element, p 2 P2 a point
that is not contained in any of the coordinate lines of P2, k a positive integer. Then
the constructible set

{d(fd)k(p) | d 2 D2 such that p /2 Ind((fd)l) for all 1  l  k}
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is open and dense in P2.

A positive answer to Conjecture 7.1.1 implies in particular the following result,
which we need in order to prove Theorem 7.1.2.

Conditional Lemma 7.2.13. Assume that Conjecture 7.1.1 holds.
Let ⇡ : S ! P2 be the blow-up of finitely many toric points, f 2 Bir(S) and

N 2 Z+. Assume that f contracts a curve C ⇢ S that is not contained in the toric
boundary of S. Then, there exists an open dense subset U ⇢ D2 ⇥D2 such that for
all (d1, d2) 2 U the following condition is satisfied:

(A) For all k  N the curve d�1
2 (C) is not contained in the exceptional locus

of (d1fd2)�k, i.e. (d1fd2)�k(d�1
2 (C)) is a curve for all k  N . Moreover,

(d1fd2)�k(d�1
2 (C)) is not contained in the toric boundary @S for all k  N

and d1fd2 is loxodromic.

In particular, (d1fd2)k contracts a curve that is not contained in @S.

Proof. It is enough to show the claim for S = P2. Indeed, the push-forward of
d1fd2 under ⇡ satisfies condition (A) on P2 if and only if d1fd2 staisfies condition
(A) on S. So we may and do assume that S = P2.

Denote by Exc(f�1) the exceptional locus of f�1. Let p 2 C be a non-toric
point and 1  l  k. The set

Vl := {d 2 D2 | (d(f�1d)l(p) /2 Exc(f�1 [ @ P2)} ⇢ D2

is open in D2 and since the set

{d(f�1d)l(p) | d 2 D2, d(f
�1d)l(p) /2 Ind(d(f�1d)) [ · · · [ Ind(d(f�1d)l)}

is dense in P2 by Conjecture 7.1.1, the set Vl is not empty and therefore dense.
Define now the open dense subset V :=

Tk
l=1 Vk ⇢ D2. Hence, for all d 2 V , and

1  l  k we have that d(f�1d)l(C) is not contained in the exceptional locus of
f�1 nor in @ P2.

Consider now the map m : D2⇥D2 ! D2 given by (d1, d2) 7! d�1
1 d�1

2 and define
the open dense subset U1 := m�1(V ) ⇢ D2 ⇥D2. Let (d1, d2) 2 U1. Therefore, we
have

(d�1
1 d�1

2 )(f�1(d�1
1 d�1

2 ))l(C) = d�1
1 (d1fd2)

�ld�1
2 (C) 6⇢ Exc(f�1) [ @ P2,

which is equivalent to (d1fd2)�l(d�1
2 (C)) not being contained in Exc((d1fd2)�1)[

@ P2 for all 1  l  k.
By Theorem 7.2.3, there exists an open set U2 ⇢ D2 ⇥ D2 such that d1fd2 is

loxodromic for all (d1, d2) 2 U2. Since (id, id) is contained in U2, it is non-empty
and therefore dense. Define U := U1 \U2. By construction, all elements (d1, d2) in
U satisfy property (A).

7.2.4 An application of Conjecture 7.1.1

Assume that a group G ⇢ Cr2(C) contains a loxodromic element f that contracts
a curve C ⇢ P2 that is not contained in the toric boundary. In this section, we
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want to show that it is possible to find diagonal automorphisms d1, d2 2 D2 such
that an iterate of d1fd2 contracts many curves and is therefore not of monomial
type, by Lemma 7.2.10. Unfortunately, our arguments depend on Lemma 7.2.13
and therefore on Conjecture 7.1.1. The next lemmas will be rather technical, so let
us briefly sketch the rough strategy. Let f 2 Cr2(C) be a loxodromic element that
contracts a curve C that is not contained in the toric boundary. We consider the
following cases:

• In Lemma 7.2.14, we consider the case, where fn(C) is a toric point for all
n � 1.

• In Lemma 7.2.15 we consider the case, where f(C) is a point not contained
in the toric boundary.

• The situation is more complicated, if f(C) is contained in the toric boundary.
In Lemma 7.2.17 we treat the special case, where f(C) is contracted to a
point on a line L of the toric boundary and the restriction of f to L is a
birational self-map of L.

• In Lemma 7.2.19 finally, we show the general case. The main step there is to
replace f with a loxodromic transformation of the form dfd�1f�1 (Lemma 7.2.18
asserts that this map is still loxodromic), which in the main case fullfills the
assumptions of Lemma 7.2.14.

• In Lemma 7.2.21 we will use all these results to see that, after possibly blowing
up some toric points, loxodromic elements in a simple subgroup of Cr2(C) only
contract curves that are contained in the toric boundary, which will be the
key result to prove Theorem 7.2.1.

Lemma 7.2.14. Assume that Conjecture 7.1.1 holds.
Let ⇡ : S ! P2 be a blow-up of finitely many toric points, f 2 Bir(S) a loxo-

dromic element and �2 ⇢ D2 a dense subgroup. Assume that there exists a curve
C ⇢ S that is not contained in the toric boundary and that is contracted by fn to
a toric point for all n 2 Z+. Then, the group hf,�2i contains an element that is
not of monomial type.

Proof. By Lemma 7.2.10, there exists a constant K only depending on deg(f) with
the following property: for each g 2 Bir(S) of degree at most deg(f), if there exists
an n 2 Z+ such that gn contracts K + 1 di↵erent curves on S, then g is not of
monomial type.

By Lemma 7.2.13, there exists an open dense subset U ⇢ D2⇥D2 such that for
all k  K + 1 the curve C is not contained in the exceptional locus of (d1fd2)�k,
i.e. (d1fd2)�k(C) is a curve for all k  K + 1. Moreover, (d1fd2)�k(C) is not
contained in the toric boundary @S for all k  K + 1. Let (d1, d2) 2 U \ �2 ⇥ �2.
Then (d1fd2)�1(d�1

2 (C)), . . . , (d1fd2)�K�1(d�1
2 (C)) are K+1 di↵erent curves. By

assumption, fn(C) is a toric point for all n 2 Z+; in particular, (d1fd2)n(d
�1
2 (C))

is a toric point for all n 2 Z+. Hence, (d1fd2)K+1 contracts K +1 di↵erent curves
and therefore, d1fd2 is not of monomial type.
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Lemma 7.2.15. Assume that Conjecture 7.1.1 holds.
Let ⇡ : S ! P2 be a blow-up of finitely many toric points and f 2 Bir(S). If f

contracts a curve C ⇢ S that is not contained in the toric boundary @S of S onto
a point p 2 S that is not contained in @S, then there exists an open dense subset
U ⇢ D2 ⇥D2 such that d1fd2 is not of monomial type.

Proof. We first show that, for a given N 2 Z+, there exists an open dense subset
V ⇢ D2 ⇥D2 such that all (d1, d2) 2 V satisfy the condition:

(B) For all 0 < k  N , the point (d1fd2)k(d
�1
2 (C)) is not a base point of d1fd2.

Condition (B) is an open condition. There is an open dense subset W ⇢ (D2 ⇥
D2)N such that for all 0 < k  N � 1 every tuple ((d11 , d12), . . . , (dn1 , dn2) 2
W satisfies that ((dk2fdk1) · · · (d22fd21)(d12fd11))(d�1

12 (C)) is not a base point of
d(k+1)1fd(k+1)2 . We identify D2 ⇥ D2 with the diagonal D in (D2 ⇥ D2)N and
note that all the elements in the intersection W \D, which is an open set, satisfy
condition (B). It therefore remains to show that V \D is non-empty, i.e. that there
exists at least one pair (d1, d2) 2 D2 ⇥D2 that satisfies condition (B). Let d2 2 D2

be arbitrary and let q 2 d�1
2 (C) be a point that is not a base point of fd2, that

is not p and that is not contained in the toric boundary of S. Let d1 2 D2 be the
element such that d1(p) = q. It follows that (d1fd2)k(d

�1
2 (C)) = q for all k � 0; in

particular, (d1fd2)k(C) is not a base-point of (d1fd2), and hence (d1, d2) satisfies
condition (B).

Let (d1, d2) 2 D2 ⇥ D2. By Lemma 7.2.10 there exists a K 2 Z+ depending
only on deg(f) = deg(d1fd2) such that if E((d1fd2)n) > K for some n 2 Z+, then
d1fd2 is not of monomial type. Let V 0 ⇢ D2 ⇥D2 be an open dense subset such
that (d1fd2)�k does not contract C and the strict transform (d1fd2)�k(C) is a
curve that is not contained in the toric boundary of S for all k  K + 1. Such
a V 0 exists by Lemma 7.2.13. Let V ⇢ D2 ⇥ D2 be an open dense subset such
that for all 0 < k  K + 1, the point (d1fd2)k(C) is not a base point of d1fd2
for all (d1, d2) 2 V . Define the open dense set U := V \ V 0 ⇢ D2 ⇥ D2. By
construction, for every (d1, d2) 2 U the transformation (d1fd2)N+1 contracts the
K+1 di↵erent curves d�1

2 (C), (d1fd2)�1(d�1
2 (C)), . . . , (d1fd2)�N (d�1

2 (C)). Hence,
E((d1fd2)n) > K, and we obtain that d1fd2 is not of monomial type.

Lemma 7.2.16. Let p 2 P1 \{[0 : 1], [1 : 0]} and g 2 PGL2(C). Then one of the
following is true:

(1) the set {d(gd)n(p) | d 2 D1} is open and dense in P1 for all n 2 Z�0,

(2) the set {d(g2d)n(p) | d 2 D1} is open and dense in P1 for all n 2 Z�0.

Proof. Assume that g =

✓
r s
t u

◆
, where r, s, t, u 2 C, p = [1 : c], where c 6= 0

and let d =

✓
x 0
0 y

◆
. Let n 2 Z+ be any positive integer. We first calculate

gd =

✓
rx sy
tx uy

◆
and see by induction that, for all n � 1,

(gd)n =

✓
rnxn + yp1(x, y) yp2(x, y)

xp3(x, y) unyn + xp4(x, y)

◆
,
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where p1, p2, p3, p4 2 C[x, y] are homogeneous polynomials of degree n� 1. Hence,

d(gd)n =

✓
rnxn+1 + xyp1(x, y) xyp2(x, y)

xyp3(x, y) unyn+1 + xyp4(x, y)

◆
.

Therefore, d(gd)n(p) is given by

[rnxn+1 + xyp1(x, y) + c(xyp2(x, y)) : xyp3(x, y) + c(unyn+1 + xyp4(x, y))].

This defines a morphism from P1 to P1. If it is not constant, the image of the
open subset of points [x : y], x 6= 0, y 6= 0, which is exactly the set {d(gd)n(p) |
d 2 D1}, is open and dense in P1. If it is constant for some n 2 Z+, i.e. d(gd)n(p)
does not depend on d and thus the above expression is independent of [x : y], then
r = u = 0. If this is the case, then g2 2 D1, which implies in particular that
d(g2d)n(p) = dn+1g2(p) and hence that the set {d(g2d)n(p) | d 2 D1} is open and
dense in P1 for all n 2 Z+.

For n = 0 the sets {d(gd)n(p) | d 2 D1} and {d(g2d)n(p) | d 2 D1} are always
open and dense.

Lemma 7.2.17. Assume that Conjecture 7.1.1 holds.
Let ⇡ : S ! P2 be a blow-up of finitely many toric points, f 2 Bir(S) and

�2 ⇢ D2 a dense subset. Assume that f contracts a curve C ⇢ S that is not
contained in the toric boundary of S, onto a non-toric point p 2 S that is contained
in a line L ⇢ @S. If f restricts to a birational transformation of L to itself, then the
subgroup h�2, fi ⇢ Cr2(C) contains a loxodromic element that is not of monomial
type.

Proof. By Lemma 7.2.13, there exists an open dense U ⇢ D2 ⇥ D2 such that for
all (d1, d2) 2 U ,

(1) d1fd2 is loxodromic,

(2) (d1fd2)�2 does not contract d�1
2 (C),

(3) (d1fd2)�2(C) is a curve that is not contained in the toric boundary of S.

Since �2 ⇢ D2 is dense, the intersection �2 ⇥ �2 with U is non-empty, i.e.
there exist e1, e2 2 �2 that satisfy conditions (1) to (3). We fix e1 and e2 and
define f̃ := e1fe2 2 h�2, fi and C̃ := e�1

2 (C). The birational transformation f̃
contracts the curve C̃, which is not contained in @S, to the point p0 := f̃(C̃) 2 L.
Let C 0 := f̃�1(C̃). The birational transformation f̃2 contracts the curve C 0, which
is not contained in @S, to the point p0 2 L.

Let K be the integer from Lemma 7.2.10 satisfying that for every loxodromic
element of monomial type h 2 Cr2(C) of degree  deg(f̃)2, the number E(hn) is
 K for all n 2 Z.

Elements of D2 restrict to automorphisms of L. In fact, by choosing homoge-
neous coordinates of L such that the two toric points on L correspond to [1 : 0]
and [0 : 1] respectively, we obtain a surjective homomorphism of algebraic groups
'L : D2 ! D1. Denote by g 2 PGL2(C) the transformation of L induced by f̃ . By
Lemma 7.2.16, we are always in one of the following two cases:
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Case 1: The set {d(gd)n(p0) | d 2 D1} is open and dense in P1 for all n 2 Z�0.
Let p1, . . . , pr be the indeterminacy points of f̃ that lie on L. There exists an open
dense set V ⇢ D1 such that {p1, . . . , pr} are not contained in {d(gd)n(p) | d 2 V }
for all 0  n  K + 1. Consider the morphism  L : D2 ⇥ D2 ! D1 defined by
 L(d1, d2) := 'L(d2)'L(d1). Since  L is surjective, the set W :=  �1

L (V ) is open
and dense in D2 ⇥D2. Hence for all (d1, d2) 2 W we have:

(1) d2d1(f̃d2d1)n(p0) = d2(d1f̃d2)nd1(p0) is not a base-point of f̃ for all 0  n 
K + 1 which is equivalent to (d1f̃d2)nd1(p0) not being a base-point of d1f̃d2
for all 0  n  K + 1.

By Lemma 7.2.13, there exists an open dense U ⇢ D2 ⇥ D2 such that for all
(d1, d2) 2 U :

(2) d1f̃d2 is loxodromic,

(3) (d1f̃d2)�k does not contract d�1
2 (C) for all 0  k  K + 1,

(4) (d1f̃d2)�k(C) is a curve that is not contained in the toric boundary of S for
all 0  k  K + 1.

The intersection W \ U ⇢ D2 ⇥ D2 is open and dense, hence the intersection
�2\U \W is not empty. Let (d1, d2) 2 �2\U \W . The birational transformation
d1f̃d2 2 h�2, fi is loxodromic by condition (2), it contracts the curve d�1

2 (C̃) to
the point d1(p0) 2 L and condition (1) ensures that (d1fd2)k contracts d�1

2 (C̃) for
all 1  k  K + 1. It follows that (d1f̃d2)K+1 contracts the K + 1 di↵erent curves
d�1
2 (C̃), (d1f̃d2)�1(d�1

2 (C̃)), . . . , (d1f̃d2)�K(d�1
2 (C̃)), which are not contained in

the toric boundary. By Lemma 7.2.10 and the way we have chosen K, it follows
that d1f̃d2 is loxodromic but not of monomial type.

Case 2: The set {d(g2d)k(p0) | d 2 D1} is open and dense in P1 for all k 2 Z�0.
In this case we proceed analogously as in case 1 by replacing f̃ by f̃2 and C̃ by
f̃�1(C̃) and show that there exist d1, d2 2 �2 such that (d1f̃2d2)K+1 contracts
K + 1 di↵erent curves and is therefore not of monomial type.

Lemma 7.2.18. Assume that Conjecture 7.1.1 holds.
Let f 2 Cr2(C) be a loxodromic element that is not contained in GL2(Z)nD2.

There exists an n 2 Z+ and an open dense set V ⇢ D2 such that fnd�1f�nd is
loxodromic.

Proof. Let ↵+ 2 @H1 be the attracting fixed point of the isometry induced by
f on H1, and let ↵� 2 @H1 be its repulsive fixed point. The axis Ax(f) is
the geodesic line between ↵+ and ↵�. We claim that there exists an open dense
subset U ⇢ D2 of elements that fix neither ↵+ nor ↵�. Denote by G ⇢ Cr2(C)
the subgroup of all elements that fix ↵+. As in the proof of Theorem 6.6.3, denote
by ⇢ : G ! R>0 the group homomorphism given by the action of G on the one-
dimensional subspace L ⇢ Z(P2) that corresponds to the point ↵+. The kernel of ⇢
is a bounded subgroup, which is normalised by f . If ker(⇢) is infinite, there exists,
by Theorem 6.6.3, an element h 2 Cr2(C), such that hGh�1 ⇢ GL2(Z)nD2. As f
is not in GL2(Z)nD2, the transformation h is not in GL2(Z)nD2 and therefore,
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by Lemma 5.5.2, h�1D2h\D2 is a proper closed subset. In particular, there exists
an open dense set U1 ⇢ D2 that is not contained in G. If G is finite, the existence
of such an open dense U1 ⇢ D2 follows trivially. With the same argument, we
obtain an open dense set U2 ⇢ D2 that does not fixe ↵�. Define U := U1 \ U2.
This proves the claim.

Let d 2 U be arbitrary. Denote by �+ 2 @H1 the attracting fixed point of
the loxodromic isometry d�1f�1d and by �� 2 @H1 its repulsive fixed point. By
the above observation, ↵+,↵�,�+ and �� are pairwise disjoint. Let S+

1 be a small
neighborhood of ↵+ in @H1 and S�

1 a small neighborhood of ↵�. Similarly, let
S+
2 be a small neighborhood of �+ and S�

2 a small neighborhood of ��. We may
assume that S+

1 , S�
1 , S+

2 and S�
2 are pairwise disjoint. Since �+ is attractive, there

exists an n1 2 Z+ such that d�1f�n1d(S+
1 ) ⇢ S+

2 . Similarly, let n2 2 Z+ be
such that fn2(S+

2 ) ⇢ S+
1 is a proper subset. For n := max{n1, n2}, we obtain that

fnd�1f�nd(S+
1 ) is a proper subset of S+

1 . Analogously, if we choose n large enough,
(fnd�1f�nd)�1(S�

2 ) is a proper subset of S+
2 . Thus, fnd�1f�nd has an attractive

fixed point in S+
1 and a repulsive fixed point in S�

2 . In particular, fnd�1f�nd is
loxodromic.

Consider the family of birational transformations {fnd�1f�nd | d 2 D2}. It
contains one element of dynamical degree � > 1. By Theorem 7.2.3, the dynamical
degree is a lower semi-continuous function. Hence, there exists an open dense subset
V ⇢ D2 such that the dynamical degree of fnd�1f�nd is > 1 for all d 2 V , which
is equivalent to fnd�1f�nd being loxodromic.

Lemma 7.2.19. Assume that Conjecture 7.1.1 holds.
Let ⇡ : S ! P2 be a blow up of finitely many toric points and f 2 Bir(S) a

loxodromic element. Let �2 ⇢ D2 be a dense subgroup. If f contracts a curve
C ⇢ S that is not contained in the toric boundary to a point in the bubble space
B(S) that is not toric, then the group hf,�2i contains a loxodromic element that
is not of monomial type.

Proof. By Lemma 7.2.13, there exists for each n 2 Z+ an open dense subset Vn ⇢
D2⇥D2 such that for all k  n and all (d1, d2) 2 Vn, the transformation (d1fd2)k is
loxodromic and contracts a curve that is not contained in the toric boundary of S.
Since the field of complex numbers is uncountable, V :=

T
n2Z+

Un is a very general
non-empty set, i.e. the complement of countably many proper closed subsets. Let
(d1, d2) 2 V . Since f is not loxodromic, there exists, by Lemma 7.2.18, an N 2 Z+

and an open dense set U ⇢ D2 such that d(d1fd2)nd�1(d1fd2)�n is loxodromic for
all d 2 U . By Theorem 7.2.3, there exists therefore an open dense set W ⇢ (D2)3

such that d(d1fd2)nd�1(d1fd2)�n is loxodromic for all (d, d1, d2) 2 W .
Since �2 ⇢ D2 is dense in D2, there exist (d1, d2) 2 �2 and U 0 ⇢ D2 open

dense such that (U 0, d1, d2) ⇢ W . By the choice of (d1, d2), we obtain that
(d1fd2)�n+1(C) is still a curve not contained in the toric boundary. For an open
dense set U 00 ⇢ D2, the curve d(d1fd2)�n+1(C) is not contained in the exceptional
divisor of (d1fd2)n and the curve C̃ := (d1fd2)nd(d1fd2)�n+1(C) is not contained
in @S. Define the open dense subset U := U 0 \ U 00. Define g := (d1fd2)n. Hence,
for all d 2 U , the loxodromic map dgd�1g�1 contracts the curve C̃ to the non-toric
point d•(p) 2 B(S).
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Our goal is now to find a d 2 U \ �2 such that we can construct on the basis
of dgd�1g�1 an element in hf,�2i that is not of monomial type. Let K be the
constant from Lemma 7.2.10, such that for all loxodromic elements h 2 Cr2(C) of
monomial type of degree  deg(g)2 the number of irreducible curves contracted by
hk is bounded by K for all k 2 Z. By Lemma 7.2.13, there exists for each d 2 U an
open dense set Vd ⇢ D2 ⇥D2 such that (d1dgd�1g�1d2)�l(d�1

2 (C̃)) is a curve not
contained in @S for all l  K + 1 and such that (d1dgd�1g�1d2)�l is loxodromic.
This gives an open dense subset W̃ ⇢ (D2)3 such that all (d, d1, d2) 2 W̃ satisfy
the prescribed properties.

Claim. one of the following possibilities occur:

(1) There exist d, d1, d2 2 �2 such that (d1dgd�1g�1d2)l(d
�1
2 (C̃)) is a point for

all l  K + 1, i.e. (d1dgd�1g�1d2)l contracts the curve C for all l  K + 1.

(2) There exist d, d1, d2 2 �2 and a k  K + 1 such that

(d1dgd
�1g�1d2)

k(d�1
2 (C̃)) 2 S

is a point not contained in the toric boundary.

(3) There exist a blow-up of finitely many toric points ⇡ : S0 ! S and ele-
ments d, d1, d2 2 �2, as well as a k  K + 1, such that the pull-back of
(d1dgd�1g�1d2)l on S0 contracts the strict transform of d�1

2 (C̃) to a non-
toric point p 2 S0 that is contained in a line L ⇢ @S0 and the pull-back of
(d1dgd�1g�1d2)k restricts to a birational transformation of L to itself.

If our claim holds, we are done. Indeed, if we are in situation (1), the map
(d1dgd�1g�1d2)K+1 contracts K + 1 distinct curves, hence (d1dgd�1g�1d2) is not
of monomial type, by Lemma 7.2.10, as deg(d1dgd�1g�1d2)  deg(g)2. Whereas in
the second and third situation, we are in the situation of Lemma 7.2.15 or Lemma
7.2.17 respectively.

The proof of the claim requires multiple steps and various case-distinctions.
We will prove it by induction. More precisely, we show by induction over N
that either we are in situation (2) or (3), or there exists a blow-up of finitely
many toric points ⇡N : SN ! S and an open dense set WN ⇢ (D2)3 such that
(d1dgd�1g�1d2)l(d

�1
2 (C̃)) is a non-toric point in a line L ⇢ @SN for all l  N

and for all (d, d1, d2) 2 WN . The claim then follows with N = K + 1 and some
(d, d1, d2) 2 (�2)3 \WK+1.

If ⇡ : S0 ! S is a given blow-up of toric points, Bir(S) is isomorphic to Bir(S0)
through the isomorphism f 7! ⇡�1f⇡. In order to simplify notation, in what
follows we will always identify, by abuse of notation, Bir(S) directly with Bir(S0)
without mentioning the isomorphism. We will also identify the curve C̃ with its
strict transform under ⇡N .

First, we consider N = 1. We set W0 = W̃ . If (d1dgd�1g�1d2)(d
�1
2 (C̃)) is not

contained in @S for one triple (d, d1, d2) 2 W0, it is not contained in @S for all triples
(d, d1, d2) in an open dense subset W 0

0 ⇢ W0 and we are in situation (2). Otherwise,
since (d1dgd�1g�1d2)(d

�1
2 (C̃)) is not toric for all (d, d1, d2) 2 W0, we blow-up

finitely many toric points ⇡1 : S1 ! S until the point d1dgd�1g�1d2(d
�1
2 (C̃)) is a
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proper non-toric point in a line L ⇢ @S1 for one triple (d, d1, d2) 2 W0 and hence
for all triples (d, d1, d2) in an open dense subset W1 ⇢ W0.

Assume now the induction hypothesis to hold for N . We assume that there
exists a blow-up of finitely many toric points ⇡N : SN ! S and an open dense
set WN ⇢ (D2)3 such that (d1dgd�1g�1d2)l(d

�1
2 (C̃)) is a non-toric point in a

line L ⇢ @SN for all l  N and all d, d1, d2 2 WN . Our goal is to show that
either we are in situation (2) or (3), or there exists a blow-up of finitely many
toric points ⇡ : SN+1 ! SN and an open dense set WN+1 ⇢ WN such that
(d1dgd�1g�1d2)(d1dgd�1g�1d2)N (d�1

2 (C̃)) is a a proper non-toric point in a line
L ⇢ @SN+1 for all (d, d1, d2) 2 WN+1. Let p := (d1dgd�1g�1d2)N (d�1

2 (C̃)). We
distinguish various cases:

Case 1: Assume that there exists a triple (d, d1, d2) 2 WN such that d2(p) is
not a base-point of g�1, d�1g�1d2(p) is not a base-point of g and d1dgd�1g�1d2(p)
is not contained in @SN . It follows that this property holds for an open dense
subset W 0

N ⇢ WN and we are in situation (2).
Case 2: Assume that p lies on a line L ⇢ @SN and that the restriction of

g�1 to L induces a birational map from L to the strict transform g�1(L). If
g�1(L) is not contained in @SN , we can choose d, d1, d2 2 W1 \ (�2)3 in such a
way that (d1dgd�1g�1d2)(p) is a point in SN that is not contained in @SN and
we are in situation (2). If g�1(L) is contained in @S1, then g�1(L) = L0, where
L0 ⇢ @SN is a line; moreover, g(L0) = L. This implies that d1d�1g�1d2 and
therefore (d1d�1g�1d2)N induces a birational transformation from L to itself for
all (d, d1, d2) 2 WN \ (�2)3 and we are in situation (3).

Case 3. Assume that p lies on a line L ⇢ @SN and that L is contracted
by g�1 to a non-toric point q 2 SN . If q is not contained in @SN , we choose
(d, d1, d2) 2 WN \ (�2)3 in such a way that d�1g�1d2(p) is not an indeterminacy
point of g, and in such a way that (d1dgd�1g�1d2)(q) 2 SN is not contained in
@SN . Thus, we are in situation (2). If q is contained in a line L0 ⇢ @SN , we
define V2 ⇢ (D2)3 to be the open dense subset of elements (d, d1, d2) such that
d�1g�1d2(p) is not a base-point of g. Since we can choose d1 and d2 arbitrarily, V2

is of the form O⇥D2⇥D2, where O ⇢ D2 is open and dense. Hence, W 0
N := WN\V2

is open and dense in (D2)3. We consider subcases:

(a) The restriction of g to L0 induces a birational map to the strict transform
g(L0). If g(L0) is not contained in @SN , for all (d, d1, d2) in an open dense
subset of W 0

N , the point d1dgd�1g�1d2(p) is not contained in @SN and we
are in situation (2). If g(L0) is a line L00 that is contained in @SN , then
g�1(L00) = L0. Choose d, d1, d2 2 W 0

N \ (�2)3 such that:

• d�1(q) 2 L0 is not an indeterminacy point of g,
• d�1(q) 2 L0 is not mapped to a toric point by g,
• d2d1dgd�1(q) 2 L00 is not an indeterminacy point of g�1,
• d2d1dgd�1(q) 2 L00 is not mapped by g�1 to a toric point,
• d�1g�1d2d1dgd�1(q) 2 L00 is not an indeterminacy point of g,
• d�1g�1d2d1dgd�1(q) 2 L00 is not mapped by g to a toric point.

It follows that (d1dgd�1g�1d2)N+2(d�1
2 (C̃)) is a non-toric point contained



7.2. THE LOXODROMIC CASE 149

in the line L00 ⇢ @SN and the restriction of (d1dgd�1g�1d2)N+2 to L00 is a
birational transformation to itself, hence we are in situation (3).

(b) The map g contracts L0 to a non-toric point. If g(L0) is not contained in @SN ,
then, for all (d, d1, d2) 2 W 0

N , the point d1dgd�1g�1d2(p) is not contained in
@SN and we are in situation (2). If g(L0) is contained in a line L00 ⇢ @SN , we
set SN+1 = SN and WN+1 := W 0

N .

(c) If g maps L0 to a toric point, we blow up toric points ⇡ : S0
N ! SN until g(L0)

is either a line conained in @S0
N , or g(L0) is a non-toric point in @S0

N . In the
first case, we proceed as in (a), in the second case we proceed as in (b), by
considering S0

N instead of SN .

Case 4. Finally, assume that p lies on a line L ⇢ @SN and that L is contracted
by g�1 to a toric point q 2 SN . In this case, we blow up toric points ⇡ : S0

N ! SN

until g�1(L) is either a line L0 ⇢ @S0
N , or g�1(L) is a non-toric point in @S0

N . By
considering S0

N instead of SN , we proceed as in case 2 or as in case 3, respectively.

A birational transformation f of a projective surface S is called algebraically
stable if there exists no point p in the bubble space B(S) such that p is a base-
point of f i and of f�j for integers i, j > 0. In [DF01] it is shown that for a
given f 2 Bir(S) there exists a blow-up ⇡ : S0 ! S such that ⇡�1f⇡ 2 Bir(S0) is
algebraically stable. In the following lemma we prove a similar statement, but here
we only consider toric points.

Lemma 7.2.20. Let f 2 Cr2(C). There exists a blow-up of finitely many toric
points ⇡ : S ! P2 such that f̂ := ⇡�1f⇡ 2 Bir(S) satisfies the following property:
every toric point p 2 B(S) is either not a base-point of f̂ i for all i > 0 or p is not
a base-point of f̂ i for all i < 0.

Proof. Let K be the set of all base-points p 2 B(P2) such that p is a base-point of
f i and f�j for some i, j > 0. We claim that K is finite. Let p 2 K be arbitrary and
i, j > 0 such that p is a base-point of f i and of f�j and |i + j| is minimal among
all such pairs i, j. We denote by f• the self-map of the bubble space induced by
f (see Section 5.2.1). The point q = f i�1

• (p) is a base-point of f . In that way, we
associate to every point in K a base-point of f . There are exactly |i� j� 1| points
in K that are associated to the base-point q, namely fk

• (p) for �j < k < i. Since
f has only finitely many base-points, this implies that K is finite. Let T ⇢ K be
the subset of all points in K that are toric. Note that if p 2 T is not a proper
point and p lies above a point q 2 B(P2), then q is in T as well. Hence, T is a
cluster, i.e. a finite subset of points in B(S) that can be blown up. Let ⇡ : S ! P2

be the blow-up of all the points in T . The birational transformation f̂ may have
more base points than f , but if p 2 B(S) is a base-point of f̂ i and of f̂�j for some
i, j > 0, then p is not toric.

Lemma 7.2.21. Assume that Conjecture 7.1.1 holds.
Let f 2 Cr2(C) be a loxodromic element and �2 ⇢ D2 a dense subgroup. If all

loxodromic elements in hf,�2i are of monomial type, then there exists a blow-up of
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finitely many toric points ⇡ : S ! P2 such that f̂m := ⇡�1fm⇡ only contract curves
contained in the toric boundary for all m 2 Z.

Proof. Let ⇡ : S ! P2 be the blow-up of finitely many toric points that is given by
Lemma 7.2.20. Assume that f̂ contracts a curve C ⇢ S that is not contained in @S
to a point p in the bubble space B(S). If p is non-toric, we obtain, by Lemma 7.2.19,
that hf̂ ,�2i contains an element that is not of monomial type, which contradicts
our assumption. So p has to be toric. Since p is a base-point of f̂�1, it follows that
p is not a base-point of f̂n for any n 2 Z+, by the construction of ⇡ : S ! P2. In
other words, f̂n contracts C to a point, for all n 2 Z+. Again by Lemma 7.2.19,
f̂n does not contract C to a non-toric point for any n 2 Z+. Hence, f̂n contracts
C to a toric point for all n 2 Z+. But in this case, Lemma 7.2.14 implies that
hf̂ ,�2i contains an element that is not of monomial type, which contradicts our
assumption. Therefore, all curves that are contracted by f are contained in @S.

If we replace f̂ by f̂m for m 2 Z the proof works analogously.

7.2.5 Proof of Theorem 7.2.1

Definition 7.2.2. Let C be a curve on a smooth projective surface with irreducible
components C1, . . . , Cn and simple normal crossings.

C is called a zigzag if the Ci are smooth, rational and if for all i we have
Ci · Ci+1 = 1, whereas Ci · Cj = 0 for j 6= i, i+ 1.

C is called a loop if it has simple normal crossings and one of the following
conditions are satisfied:

• If n = 1 then C has exactly one singular point.

• If n = 2 then the Ci are smooth and C1 · C2 = 2.

• If n � 3 then the Ci are smooth, Ci�1 · Ci = Ci · Ci+1 = 1 for 1 < i < n,
C1 · Cn = 1 and Ci · Cj = 0 in all the other cases where i 6= j.

In [Giz71a] and [Giz71b], Gizatullin considered boundaries of embeddings of
completions of algebraic surfaces. We need the following result:

Theorem 7.2.22 ([Giz71a, Proposition 5]). Let S be a smooth projective surface,
X any algebraic surface and ◆ : X ! S an open embedding. Let @S := S \ ◆(X).
Assume that @S is the finite union of smooth irreducible rational curves Ei of self-
intersection 6= �1, and that @S is a simple normal crossing divisor. Then one of
the following is true:

(1) @S is empty.

(2) @S is the disjoint union of finitely many smooth rational curves of self-
intersection 0.

(3) @S is a zigzag.

(4) @S is a loop.
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If we assume in addition that the boundary curve consists of curves that are
contracted by birational transformations, we obtain further restrictions. In [GD75],
[GD77], Gizatullin and Danilov investigated this situation in detail and developed
various techniques to prove a series of important results on automorphisms of a�ne
surfaces.

The following lemma is well known. Here, as well as in our proof of Proposition
7.2.28 we follow [CC17, Section 6].

Lemma 7.2.23. Let S be a smooth rational projective surface, X any algebraic
surface and ◆ : X ! S an open embedding. Let @S := S \ ◆(X). Assume that @S is
the finite union of smooth disjoint irreducible rational curves E1, . . . , Ek, k � 1, of
self-intersection 0, and that @S is a simple normal crossing divisor. Furthermore,
assume that there exists a birational transformation f 2 Bir(S) such that f induces
an automorphism on X and such that each Ei is contracted by fn for some n 2 Z.
Then f preserves a rational fibration.

Proof. Riemann-Roch for surfaces (see for example [Har77, Theorem V.1.6]) states
that

h0(S,E1)� h1(S,E1) + h2(S,E1) =
1

2
(E2

1 �KS · E1) + �(OS).

Since S is rational, one has �(OS) = 1. The genus formula states

g(E1) = 1 +
1

2
(E2

1 + E1 ·KS).

As g(E1) = 0 and E2
1 = 0, we obtain E1 ·KS = �2, in particular (KS�E1)E1 = �2.

Since E1 is nef, its intersection with any e↵ective divisor is non-negative. Therefore,
KS � E1 is not e↵ective and h0(S,KS � E1) = 0, which implies, by Serre duality,
that h2(S,E1) = 0. By combining all these results we get:

h0(S,E1) = h1(S,E1) +
1

2
(0 + 2) + 1 � 2.

Let s1, s2 be to linearly independent elements in H0(S,E1). In that way we obtain
a birational map ⇡ : S 99K P1 given by x 7! [s1(x) : s2(x)]. The birational transfor-
mation ⇡ is base-point free, since E1 has self-intersection 0 and so the curves cut
out by s1 or s2 do not intersect. The curve E1 is contracted by ⇡. The curves Ei for
i 6= 1 do not intersect E1, so ⇡(Ei) ⇢ P1 \{⇡(E1)}. They are therefore contracted
as well. Let now F be a fiber under ⇡ of a point in P1 \{⇡(E1), . . . ,⇡(En)}. Since F
is linearly equivalent to E1, it is rational. We have that F ⇢ X. Since f(F ) is again
a complete rational curve, its image ⇡(f(F )) is a point and f(F ) ⇢ P \{⇡(E1)} is
again a fiber. Hence f preserves a rational fibration.

The following result and proof can be found in [GD75, Proposition 6.4].

Lemma 7.2.24. Let S be a smooth rational projective surface, X any algebraic
surface and ◆ : X ! S an open embedding. Let @S := S \ ◆(X). Assume that @S
is the finite union of smooth irreducible rational curves E1, . . . , Ek, k � 1 forming
a loop or a zig-zag, and that @S is a simple normal crossing divisor. Furthermore,
assume that there exists a birational transformation f 2 Bir(X) such that f induces
an automorphism on X and such that each Ei is contracted by fn for some n 2 Z.
Then X is the blow-up of an a�ne surface.
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Proof. If @S contains (�1)-curves, we contract them; this does not change X and
@S remains a zig-zag or a loop respectively. Without loss of generality, we may
thus assume that @S does not contain any (�1)-curves.

We claim that there exists an e↵ective divisor D on S with support @S satisfying
D · Ei > 0 for all 1  i  k. For all 1  i  k, there exists an n 2 Z such that fn

contracts Ei and the curves in @S are the only curves contracted by iterates of f .
Hence, there exists at least one component Er of @S with self-intersection � 0.

If @S is a zig-zag, we may assume that the curves Ei are ordered in such a way
that Ei ·Ei+1 = 1 for 1  i  k�1, Ei ·Ej = 0 for j /2 {i�1, i, i+1} and Ei ·Ei = di,
where dr � 0. Choose now integers a1, . . . , ak > 0 such that ai+1 > �dia2i for all
1  i < r and ai�1 > �dia2i for all r < i  k, for example by setting a1 = 1 and
ak = 1 and the other ai accordingly. If we set

D :=
kX

i=1

aiEi,

then D · Ei = ai�1 + a2i di + ai+1 for 1 < i < k and D · E1 = a1d21 + a2, D · Ek =
ak�1 + a2kdk. The conditions on the ai ensure that D · Ei > 0 for 1  i  k.

If @S is a loop, we may assume that the Ei are ordered in such a way that
Ei · Ei+1 = 1 for all 1  i  k, where we identify Ek+1 with E1, and di = Ei · Ei.
Again, there exists an i such that di � 0. Without loss of generality, we assume
i = k. Let a1 = 1 and then choose integers a2, . . . , ak such that ai+1 > �dia2i .

Again, let D :=
Pk

i=1 aiEi. Then, D ·Ei = ai�1+dia2i +ai+1 � ai�1+dia2i > 0 for
1  i < k and D · Ek = ak�1 + dka2k + 1 > 0 since dk � 0. This proves the claim.

Since D ·Ei > 0 for all 1  i  k, the restriction of D to @S has positive degree
on each component, hence D|@S is an ample divisor on @S. Let m 2 Z+ be large
enough such that mD|@S is very ample and such that H1(@S,mD|@S) = 0 (such
an m exists by the Serre vanishing theorem (see [Har77, Theorem III.5.2])). The
short exact sequence

0 ! OS((m� 1)D) ! OS(mD) ! OS(mD)|D ! 0.

yields a long exact sequence

0 ! H0(S, (m� 1)D) ! H0(S,mD) ! H0(D,mD|D)

! H1(S, (m� 1)D)
�m��! H1(S,mD) ! H1(D,mD) = 0.

The homomorphism �m is surjective and h1(S,mD) decreases as m increases. So
for m large enough, �m is an isomorphism and we obtain an exact sequence

0 ! H0(S, (m� 1)D) ! H0(S,mD)
↵�! H0(D,mD|D) ! 0.

Let s01, . . . , s
0
N be a basis of H0(D,mD|D), let s1, . . . , sN 2 H0(S,mD) be preim-

ages of s01, . . . , s
0
N under ↵ and let s0 2 H0(S,mD) be a section that cuts out D.

Since mD|D is very ample, s1, . . . , sN do not vanish all together at any point in
@S, so s0, s1, . . . , sN never vanish all together at any point in S. So the rational
map 'mD : S 99K Pn defined by H0(S,mD) is base-point free, hence a morphism.
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The divisor D is nef since D · � > 0 for every curve � ⇢ @S, by construction,
and D · � � 0 for all other curves � in S. Moreover, D is big, since D · D > 0.
This implies that 'mD is a birational morphism. The restriction of 'mD to @S is
an embedding and 'mD(@S) is a hyperplane section. Therefore, the restriction of
'mD to X is a birational morphism from X to an a�ne surface. Hence, X is the
blow-up of an a�ne surface.

Combining Proposition 7.2.22 with Lemma 7.2.23 and Lemma 7.2.24 yields the
following:

Proposition 7.2.25. Let S be a smooth rational projective surface, X any algebraic
surface and ◆ : X ! S an open embedding. Let @S := S \ ◆(X). Assume that @S is
the finite union of smooth irreducible rational curves E1, . . . , Ek of self-intersection
6= �1, and that @S is a simple normal crossing divisor. Furthermore, assume
that there exists a birational transformation f 2 Bir(S) such that f induces an
automorphism on X and such that each Ei is contracted by fn for some n 2 Z.
Then one of the following is true:

(1) @S is empty.

(2) @S is the disjoint union of finitely many smooth rational curves of self-
intersection 0.

(3) @S is a zigzag.

(4) @S is a loop.

Moreover, in case (2), f preserves a rational fibration and in case (3) and (4) the
surface X is a blow-up of an a�ne surface.

An a�ne toric surface is a normal a�ne surface that admits a regular faithful
D2-action. A�ne toric surfaces and their automorphism groups are well understood
(see for example [KPZ15],[Ful93]). We will briefly recall some well-known facts.
Denote by A1

⇤ := A1 \{0} the a�ne line deprived of one of its points.

Lemma 7.2.26. Let X be a smooth a�ne toric surface that admits a loxodromic
automorphism whose dynamical degree is not an integer. Then X is isomorphic to
A1

⇤ ⇥A1
⇤.

Proof. By the combinatorial classification of toric varieties, smooth a�ne surfaces
correspond bijectively to the cones in a two dimensional real vector space that are
generated by a part of a given underlying basis ([Ful93]). There are exactly three
such cones: the zero cone, which corresponds to toric surface A1

⇤ ⇥A1
⇤, the half line

given by a single basis vector, which corresponds to A1
⇤ ⇥A1 and the cone generated

by two basis vectors, which corresponds to A2. Hence every smooth a�ne toric
surface is isomorphic to A2, A1

⇤ ⇥A1, or to A1
⇤ ⇥A1

⇤. The dynamical degree of an
element in Aut(A2) is always an integer. The A1-fibration is given by the invertible
functions on A1

⇤ ⇥A1, so automorphisms of A1
⇤ ⇥A1 preserve this A1-fibration. This

implies that their dynamical degree is 1. Since dynamical degrees are invariant
under conjugacy, X can only be isomorphic to A1

⇤ ⇥A1
⇤ whose automorphism group

is GL2(Z)nD2.



154 CHAPTER 7. SIMPLE SUBGROUPS

Lemma 7.2.27. Let f 2 Cr2(C) be loxodromic and of monomial type. Then f is
not conjugate to an automorphism of a projective surface.

Proof. A point p 2 P2 is called a persistent base-point of f if there exists an integer
N such that p is a base-point of fn for all n � N , but p is not a base-point of f�n

for any n � N . Blanc and Déserti showed that the number of persistent base-points
is invariant under conjugation and that a birational transformation is conjugate to
an automorphism of a smooth projective surface if and only if it has no persistent
base-points ([BD15, Proposition 3.3]).

Since f is loxodromic and of monomial type, we can conjugate, by Lemma 7.2.5,
either f , f2 or f4 to an element in GL2(Z) of the form m = (xayb, xcyd), where
a, b, c, d � 0. We observe that the point (0, 0) is not a base-point of mn for all
positive n. On the other hand, for all positive n, mn contracts a coordinate line
to (0, 0), so (0, 0) is a base-point of m�n for all positive n. Hence, (0, 0) is a
persistent base-point of m�1. By the above mentioned result of Blanc and Déserti,
the birational transformation m, and therefore also f , can not be conjugated to an
automorphism of a projective surface.

Proposition 7.2.28. Let ⇡ : S ! P2 be a blow-up of finitely many toric points and
let f 2 Cr2(k) be a loxodromic element of monomial type such that f̂ i := ⇡�1f i⇡
only contract curves of the toric boundary for all i 2 Z. Then f is monomial.

Proof. Let @S be the finite union of lines that belong to the toric boundary of S
and that are contracted by fk for some k 2 Z. Define Y := S \ @S. If there is
an indeterminacy point p 2 Y of f , let C ⇢ @S be the union of all the curves
contracted by f�1 to p. Assume that there is an irreducible component E of @S
that intersects C but does not belong to C. Then f�1(E) passes through p. Since
E is contained in @S, there exists a k 2 Z such that fk contracts E. Therefore,
fk+1 contracts f�1(E). But as p lies in Y , no curve that is contracted by fk for
any k 2 Z passes through p. It follows that such an E does not exist and that C
is a connected component of @S. Therefore, there exists an open neighborhood U
of p and an open neighborhood V of C such that f induces an isomorphism from
U \ p to V \ C. This implies the existence of a birational morphism ⇡1 : S ! S1

that contracts C to a point ⇡(C) on a smooth projective variety S1 and induces an
isomorphism from S \ C to S \ ⇡(C).

We continue this process finitely many times, until we obtain a contraction
morphism ⇡ : S ! Sm, where Sm is a smooth surface with boundary @Sm = ⇡m(@S)
such that there are no indeterminacy points of f left in Sm\@Sm. In a next step we
repeat the same procedure for f�1 instead of f . In that way we obtain a birational
morphism ⇡n : S ! Sn that contracts finitely many components of @S, where Sm

is smooth and projective such that Y = Sn \ @Sn does not contain any base-points
of f̃ = ⇡f⇡�1 and f̃�1. We observe that f̃ and f̃�1 leave Y invariant. Indeed,
f̃(@Sn) ⇢ @Sn and f̃�1(@Sn) ⇢ @Sn and both, f̃ and f̃�1 are local isomorphisms
around every point p 2 Y . Hence f is an automorphism of Y . Since we only
contracted curves that belong to the boundary, we can also push forward the D2-
action on S to Sn. We may and do also assume that @Sn contains no (�1)-curves
(otherwise we contract them as well).
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The curve @Sn has simple normal crossings and all its components are smooth
rational curves, none of them has self intersection (�1). So we find ourselves in
one of the four possibilities of Proposition 7.2.25. We note that (1) is not possible,
since f is loxodromic and of monomial type and therefore not conjugate to an
automorphism of a smooth projective surface, by Lemma 7.2.27. In case (2), f has
to preserve a rational fibration, which is not possible since f is loxodromic. Thus,
we are either in case (3) or case (4) and obtain therefore that Y is the blow-up of
an a�ne toric surface, i.e. there exists a blow-up morphism ⇢ : Y ! X, where X is
a�ne. The exceptional divisor of ⇢ consists of projective curves and sinceX is a�ne,
they are the only projective curves on Y and are therefore preserved by f̃ and by
D2. Hence f̃ induces an automorphism on X and we have a D2-action on X. Since
f is loxodromic and of monomial type, its dynamical degree is a quadratic integer.
By Lemma 7.2.26, the only a�ne toric surface with a loxodromic automorphism of
non-integral dynamical degree is A1

⇤ ⇥A1
⇤. Hence, f̃ and therefore f normalize D2,

which implies that f is monomial.

Proof of Theorem 7.2.1. Let G ⇢ Cr2(C) be a simple subgroup and assume that G
contains a loxodromic element g. By Lemma 5.6.5, all loxodromic elements in G are
of monomial type and G contains a subgroup �2 that is normalized by g and there
exists an element f 2 Cr2(C) that conjugates �2 to a dense subgroup of D2 and
hg,�2i to a subgroup of GL2(Z)nD2. We may thus assume that g is monomial and
�2 ⇢ D2 is a dense subgroup. Assume that there exists another loxodromic element
f 2 G. By Lemma 7.2.21, there exists a blow-up of finitely many toric points
⇡ : S ! P2 such that f only contracts curves in the toric boundary @S. Proposition
7.2.28 implies that, in fact, f is monomial. Hence, all loxodromic elements of G
are contained in GL2(Z) n D2. Let h 2 G be an arbitrary element. Since hgh�1

is loxodromic, it is monomial. By Lemma 5.5.3, h is contained in GL2(Z) n D2

as well. Hence G ⇢ GL2(Z) n D2 and we obtain a non-trivial homomorphism
' : G ! GL2(Z) whose kernel contains �2 - a contradiction to G being simple.
Therefore, G does not contain any loxodromic element.

7.3 The parabolic and elliptic case

Lemma 7.3.1. let G ⇢ Cr2(C) be a simple subgroup that contains no loxodromic
element, but a parabolic element. Then G is conjugate to a subgroup of the de
Jonquières group and G is isomorphic to a subgroup of PGL2(C).

Proof. By Lemma 5.3.4, we know that G is either conjugate to a subgroup of the
automorphism group of a Halphen surface or to a subgroup of the de Jonquières
subgroup J . By Theorem 5.3.3, automorphism groups of Halphen surfaces are
finite extensions of abelian subgroups. It follows that the automorphism group
of a Halphen surface does not contain infinite simple subgroups. Therefore, G is
conjugate to a subgroup of J . Let

1 ! PGL2(C(t)) ! J ! PGL2(C) ! 1

be the short exact sequence from the semi-direct product structure of J . Since G
is simple, it is either contained in the kernel or the image of '. In both cases it is
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isomorphic to a subgroup of PGL2(C).

To treat groups of elliptic elements we will apply similar techniques as in the
proof of Theorem 6.6.3.

Lemma 7.3.2. Let G ⇢ Cr2(C) be a simple subgroup of elliptic elements. Then
either G is a subgroup of an algebraic group in Cr2(C) or G is conjugate to a
subgroup of the de Jonquières group J .

Proof. By Lemma 6.3.2, G preserves either a fibration or every finitely generated
subgroup of G is bounded. In the first case, G either preserves a rational fibration
and is conjugate to a subgroup of J , or G preserves a fibration of genus 1 curves
and is conjugate to a subgroup of Aut(X), where X is a Halphen surface. In the
latter case, Theorem 5.3.3 implies that G is finite.

Now assume that every finitely generated subgroup of G is bounded. If G is a
torsion group, G is finite by Theorem 6.1.4. We thus may assume that G contains
an element of infinite order. Define

d := sup{dim(�) | � ⇢ G finitely generated }.
First assume that d is finite. Since G contains an element of infinite order, d � 1.

Let � ⇢ G be a finitely generated subgroup such that dim(�) = d and denote by �
0

the neutral component of the algebraic group �. Let f 2 G be an arbitrary element.

Then f�
0
f�1 is again an algebraic subgroup and h�0

, f�
0
f�1i is contained in the

Zariski-closure of the finitely generated group h�, f�f�1i. Therefore, h�0
, f�

0
f�1i

is closed and connected (see [Hum75, Chapter 7.5]). Since it is of dimension  d

and contains �
0
it equals �

0
, i.e. f normalizes �

0
. Since G is simple, f 2 �

0
, hence

G ⇢ �
0
. In particular, G is a bounded subgroup and as such is a subgroup of an

algebraic group.
Now assume that d = 1. Let � ⇢ G be a finitely generated subgroup such that

dim(�) � 9. By Lemma 6.6.2, � preserves a unique rational fibration given by a
rational map ⇡ : P2 99K P1. Let g 2 G be an arbitrary element. The algebraic group
h�, gi preserves again a rational fibration and since it contains �, this fibration is
again given by ⇡. It follows that G preserves a rational fibration and thus that G
is conjugate to a subgroup of J .

Proof of Theorem 7.1.2. The first statement of the Theorem is proven in Theo-
rem 7.2.1, the second statement of Theorem 7.1.2 is proven in Lemma 7.3.1 and
the third statement in Lemma 7.3.2.

7.4 The case of finitely generated subgroups

If we assume that Conjecture 7.1.1 holds, Theorem 7.1.4 follows directly from The-
orem 7.1.2 and the property of Malcev for linear groups. In this section we give a
short direct proof that relies on di↵erent techniques than the proof of Theorem 7.1.2
and in particular does not rely on Conjecture 7.1.1. The main advantage, when
working with a finitely generated group, is that we can find a good reduction mod-
ulo p. We start by explaining this construction and will then apply it in a second
step to our problem.
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7.4.1 Reduction modulo p

The following lemma is due to Lech and Bell ([Lec53], [Bel06]). It can be seen as
an analogue of the Lefschetz principle and is used in various contexts of number
theory, dynamics and algebra:

Lemma 7.4.1 ([Bel06, Lemma 3.1]). Let K be a finitely generated extension of Q
and let S be a finite subset of K. Then there exist infinitely many primes p so that
K embeds into Qp; moreover, we can chose this embedding in such a way that S is
mapped into Zp.

The following proposition shows how Lemma 7.4.1 can be applied to obtain
information about the structure of subgroups of Cr2(C). A similar statement has
already been proven and applied by de Cornulier in order to show that the Cremona
group is sofic ([Cor13], see also [Can12b]).

Proposition 7.4.2. Let � ⇢ Crn(C) be a finitely generated subgroup. Then
there exist infinitely many primes p such that there exists a non-trivial group-
homomorphism ' : � ! Crn(Fp) that satisfies deg('(f))  deg(f) for each f 2 �.

Proof. Let g1, . . . , gl 2 � be a symmetric set of generators. We may assume that
gi 6= id for all i. Fix homogeneous polynomials Gij 2 C[x0, . . . , xn] such that gi =
[Gi0 : · · · : Gin] and define the endomorphisms Gi := (Gi0, . . . , Gin) 2 End(An+1).
Assume that g�1

i = gj and let

Fi := Gi �Gj = (Fi0, . . . , Fin) 2 An+1 .

Note that gi � gj = [Fi0 : · · · : Fin] = [x0 : · · · : xn], i.e. Fij = Pixj for some
homogeneous polynomial Pi 2 C[x0, . . . , xn].

Let T be the finite set of all non-zero coe�cients that appear in the polyno-
mials Gij , the Fij or the polynomials G1iG2j � G1jG2i and let S = T [ T�1. By
Lemma 7.4.1, we can consider the field K = Q(S) as a subfield of the field Qp in
such a way that S is contained in Zp \pZp. Hence we may consider all our polyno-
mials Gij , Fij and G1iG2j �G1jG2i to be elements of Zp[x0, . . . , xn]. By reducing
the coe�cients modulo p, we obtain a ring homomorphism  : Zp[x0, . . . , xn] !
Fp[x0, . . . , xn]. Define the rational maps

'(gi) = [ (Gi0) : · · · :  (Gin)].

Note that

'(gi) � '(g�1
i ) = [ (Fi1) : · · · :  (Fin)] = [ (Pi)x0 : · · · :  (Pi)xn] = id,

so '(gi) is a birational transformation of P2
Fp
. Assume that gi1gi2 · · · gil = id

for some 1  i1, . . . , il  k. Then, Gi1 � · · · � Gil = (Qx0, . . . , Qxn) for some
homogeneous polynomial Q. It follows that '(gi1)'(gi2) · · ·'(gil) = [ (Q)x0 :
 (Q)x1 : · · · :  (Q)xn] = id. Therefore, the map ' can be extended to a homomor-
phism of groups ' : � ! Cr2(Fp). By construction, at least one of the polynomials
 (G1i) (G2j) �  (G1j) (G2i) is not zero and hence '(g1) 6= '(g2); in particular,
' is not trivial.

Let g = gi1gi2 · · · gil 2 �. Then g = [H0 : H1 : · · · : Hn], where (H0, . . . , Hn) =
Gi1 � · · · � Gil . We then have '(g) = [ (H0) :  (H1) : · · · :  (Hn)]. This shows
that deg('(g))  deg(g).
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Together with Theorem 5.6.4 we obtain the following result:

Theorem 7.4.3. Let � ⇢ Cr2(C) be a finitely generated subgroup. If � contains a
loxodromic element, then � is not simple.

Proof. Let f 2 � be a loxodromic element. If there exists a n such that fn is tight
in �, the group � is not simple by Theorem 5.6.2 and we are done. If no power
of f is tight, it follows from Theorem 5.6.4 that � contains an infinite subgroup
�2 that is normalized by f and that is conjugate to a subgroup of D2. The group
�2 being conjugate to a subgroup of D2 implies in particular that the degrees of
the elements in �2 are uniformly bounded by an integer K. By Proposition 7.4.2,
there exists a prime p and a non-trivial group homomorphism ' : � ! Crn(Fp) that
satisfies deg('(f))  deg(f). In Crn(Fp) there exist only finitely many elements of
degree  K, hence the image '(�2) is finite. It follows that ' has a proper kernel
and therefore that � is not simple.

We are now able to prove Theorem 7.1.4 using the same strategy as in the proof
of Theorem 7.1.2.

Lemma 7.4.4. Let � ⇢ PGL2(C(t)) o PGL2(C) be a finitely generated simple
subgroup. Then � is finite.

Proof. Since � is simple, it is either isomorphic to a subgroup of PGL2(C) or to a
subgroup of PGL2(C(t)), in particular � is linear. Since linear groups satisfy the
property of Malcev, finitely generated simple linear groups are finite.

Proof of Theorem 7.1.4. Let � ⇢ Cr2(C) be a finitely generated simple subgroup.
By Theorem 7.4.3, � does not contain any loxodromic element. If � contains a
parabolic element, then � is conjugate to a subgroup of the de Jonquières group
J ' PGL2(C(t))oPGL2(C) or to a subgroup of the automorphism group Aut(X)
of a Halphen surface X. This last case is not possible, since Aut(X) is abelian
up to finite index, by Theorem 5.3.3. If � is a subgroup of J , the claim follows
with Lemma 7.4.4. If all elements in � are elliptic, � is, by Theorem 6.3.1, either
conjugate to a subgroup of J or to a subgroup of an algebraic group. In the first
case, � is finite by Lemma 7.4.4. As for the second case we recall that algebraic
subgroups are always linear. Hence � is linear and therefore finite, since linear
groups satisfy the property of Malcev.



Chapter 8

Summary of open questions

In this chapter we will briefly recall the most important and interesting questions
that came up during the work on this thesis that I was not able to answer and that
are, to my knowledge, open. The aim is to point out, what is missing from this
thesis and also, to sketch a starting point for future research projects.

With regards to homomorphisms between Cremona groups the question, how
the example of Gizatullin could be generalized to other projective representations
of PGL3(C) is still open:

Question 8.0.1 (Section 3.3). Which projective representations of complex Lie
groups from PGL3(C) to PGLn+1(C) can be extended to homomorphisms of Cre-
mona groups from Cr2(C) to Crn(C)?

I did not succeed in refining the techniques used to prove Theorem 4.1.4 in order
to answer the following question positively, nor to construct examples with degree
growth that is not polynomial:

Question 8.0.2 (Section 4.1.3). Does there exist a birational transformation f 2
Aut(Ad) such that deg(fn) ⇠ p

n? Does there exist an f 2 Aut(Ad) such that
deg(fn) ⇠ exp(

p
n)?

It seems that it should be possible to refine Theorem 6.1.3 in order to exclude
case (4):

Question 8.0.3 (Section 6.1). Are all subgroups of elliptic elements in Cr2(C)
either bounded or conjugate to a subgroup of the de Jonquères group?

The following question is not directly related to Cremona groups, but is com-
pelling on its own:

Question 8.0.4 (Section 7.1). What are the simple subgroups of SL2(Q)? Or,
more generally, what are the simple subgroups of SLn(C)?

Obviously, it would be important to prove Conjecture 7.1.1 in order to classify
all simple subgroups of Cr2(C):
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Question 8.0.5 (Section 7.2.3). Let f 2 Cr2(C) be a loxodromic element, p 2 P2

a point that is not contained in any of the coordinate lines of P2 and k a positive
integer. Is the set

{d(fd)k(p) | d 2 D2 such that p 6= Ind((fd)l) for all 1  l  k}

always dense in P2?
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[BH14] Jérémy Blanc and Isac Hedén, The group of Cremona transfor-
mations generated by linear maps and the standard involution,
http://arxiv.org/abs/1405.2746 (2014).

[Bir16] Caucher Birkar, Singularities of linear systems and boundedness of
fano varieties, arXiv preprint arXiv:1609.05543 (2016).
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[Die71] Jean A. Dieudonné, La géométrie des groupes classiques, Springer-
Verlag, Berlin-New York, 1971, Troisième édition, Ergebnisse der
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[Sch04] J. Schur, Über die Darstellung der endlichen Gruppen durch ge-
brochen lineare Substitutionen, J. Reine Angew. Math. 127 (1904),
20–50. MR 1580631

[Sch07] , Untersuchungen über die Darstellung der endlichen Gruppen
durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132
(1907), 85–137. MR 1580715

[Ser77] Jean-Pierre Serre, Arbres, amalgames, SL2, Société Mathématique
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