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Résumé du chapitre 1 en Français 
 

La Grippe est une maladie d’origine virale causée par un virus possédant un 
génome ARN segmenté et de polarité négative. Ce virus, dont la découverte et la 
caractérisation datent du début du siècle appartient à l’ordre des Mononegavirales et 
à la famille des Orthomyxoviridae. Au sein de cette famille virale, 6 genres de virus 
sont classifiés, dont trois (influenza A, B et C) sont des virus grippaux.  Ces genres 
se distinguent à la fois par des différences génomiques et antigéniques. Tous les 
virus de la grippe présentent des protéines de surface. L’hémagglutinine (HA) et la 
neuraminidase (NA) sont caractéristiques des types A et B. Le type C présente une 
seule protéine de surface, l’hémagglutinine-estérase-fusion (HEF).  

Les genres et sous-types de virus de la grippe se différencient aussi par leur 
zoonose, qui comprend de nombreuses espèces mammifères. Le virus influenza de 
type A est capable d’infecter un nombre important d’espèces mammifères (porcs, 
chevaux, humains et chauves-souris), mais présente son réservoir naturel chez les 
oiseaux. A l’heure actuelle, 105 espèces aviaires sont les hôtes de plusieurs 
souches de virus influenza de type A présentant 16 sous-types HA (H1-H16) et 9 
sous-types NA (N1–N9) différents. Plusieurs souches de grippe A (H17N9, H18N10) 
ont aussi été découvertes ces dernières années chez des chauves-souris vivant 
dans les jungles d’Amérique du sud. Influenza B ne présente qu’un seul type de 
HA/NA et infecte principalement l’homme selon un mode épidémique saisonnier. 
Influenza C est uniquement détectée chez l’homme et présente un danger sanitaire 
moindre par rapport aux autres sous types grippaux. 
Certaines espèces influenza A infectent l’homme selon deux modes épidémiques 
distincts : de façon épidémique (saisonnière) et de façon pandémique. 

Le mode épidémique saisonnier affecte les deux hémisphères du globe. Ce 
phénomène est permis par des glissements antigéniques, qui sont le produit de 
mutations ponctuelles du virus de la grippe. Ces mutations permettent aux virus 
d’échapper à l’immunisation progressive des populations infectées. Les épidémies 
grippales sévissent généralement pendant les saisons automno-hivernale dans les 
pays tempérés. Plusieurs facteurs semblent être la cause de ce phénomène. Bien 
que moins pathogènes que les manifestations pandémiques, les épidémies 
saisonnières infectent tous les ans un nombre considérable de personnes et 
engendrent des dommages sanitaires et économiques importants. Il est estimé 
qu’entre 3 et 5 millions de personnes sont hospitalisées suite à des infections 
grippales et entre 250 000 à 500 000 personnes en décèdent dans le monde. 
La seconde manifestation épidémiologique de la grippe est parfois pandémique. 
Lors de l’infection simultanée d’une cellule hôte par deux ou plusieurs virus grippaux, 
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des réassortiments nouveaux peuvent se produire générant de nouvelles souches. 
Ces virus pandémiques peuvent présenter une infectivité et/ou une pathogénicité 
grandement accrue. Au cours de l’histoire moderne, plusieurs pandémies ont sévi et 
parfois causé très rapidement la mort de millions de personnes. L’exemple le plus  
marquant est celui de la grippe dite « espagnole » de 1918 qui causa entre 50 et 100 
millions de morts. Les deux formes épidémiques de grippes sont liées 
historiquement et génétiquement. Les souches pandémiques sont souvent issues de 
souches épidémiques adaptées.  

La grippe est donc un problème majeur de santé public dans le monde dont le 
traitement à la fois symptomatique et préventif reste une priorité pour de nombreux 
organismes de santé public gouvernementaux et internationaux. A l’heure actuelle, 
la vaccination systémique des populations à risque (jeunes enfants, personnes 
âgées, personnes immunodéprimées ou souffrant de maladies respiratoires) reste la 
meilleure méthode de prophylaxie. Les programmes de vaccination mis en place 
depuis soixante ans ont permis de contenir la grippe épidémique saisonnière. 
Néanmoins, ce traitement présente des limitations, la plus importante étant durée 
nécessaire à la production du vaccin qui peut durer jusqu’à 6 mois.  

Il y a donc un engouement scientifique à développer des inhibiteurs antiviraux 
pouvant traiter ou réduire l’infection grippale. A l’heure actuelle, seul un antiviral, 
l’osaltamivir ou Tamiflu (Roche) présente une efficacité relative envers certaines 
souches et pour certaines personnes. 
 

Le virus de la grippe présente un matériel génétique divisé en 8 segments 
dont la réplication et la transcription sont indépendantes. Ces 8 segments codent 
pour un total de 10 protéines indispensables dont les sous-unités de polymérase 
(PA, PB1 et PB2), NP, HA, NA, M1, M2, NS1 et NS2. D’autres protéines accessoires 
et dont la présence n’est détectée que chez certaines souches sont aussi exprimées 
par ces 8 segments. Toutes ces protéines interviennent à différents cycles pendant 
la réplication et sont toutes des cibles intéressantes pour développer des inhibiteurs 
antiviraux.  
Au cœur du processus réplicatif du virus de la grippe se trouve l’ARN-polymérase 
ARN-dépendante constituée de trois protéines majeures : protéine acide (PA) 
protéine basique 1 (PB1) et protéine basique 2 (PB2). Cet hétérotrimère, une fois 
associé à la nucléoprotéine (NP) et à l’ARN virale constitue un complexe nommé 
ribonucléoprotéine (RNP). Les RNP sont dotées de deux activités distinctes, la 
réplication du génome ARN et la transcription de celui-ci. Ces deux étapes se 
déroulent exclusivement dans le noyau de la cellule infectée. Lors de la réplication, 
les RNP génèrent tout d’abord un ARN complémentaire qui sert ensuite de matrice 
réplicative pour ré-amplifier des ARNv. Lors de la transcription, les RNP génèrent 
des ARNm à partir de l’ARNv qui permettent ensuite l’expression de protéines 
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virales. L’ARN polymérase est dépourvue d’activité de synthèse de coiffe, celle-ci 
effectue donc un vol de coiffe issue d’ARNm cellulaires naissant, en utilisant trois 
activités différentes réparties sur les trois sous-unités de l’ARN polymérase. La coiffe 
de l’ARNm est capturée par un domaine de fixation de coiffe sur PB2, la coiffe suivie 
de 12 nucléotides est ensuite clivée par un domaine endonucléase localisé sur PA. Il 
s’en suit une étape de transcription réalisée par PB1. 

L’étude structurale de la polymérase s’est longtemps limitée à la 
caractérisation des domaines solubles de PA et PB1 qui a permis de proposer un 
modèle pour expliquer le vol de coiffe. Il a par contre fallu attendre l’année 2014 pour 
obtenir les premières structures cristallographiques de polymérase grippale (B et A 
de chauve-souris) permettant une compréhension accrue de son architecture 
globale et de son fonctionnement. L’assemblage de la polymérase reste encore mal 
compris. Le modèle actuel postule sur l’assemblage nucléaire de la polymérase qui 
impose l’adressage des différentes sous-unités vers le noyau. PB2 serait importée 
via l’interaction avec l’importine-α. Différentes structures ont déjà permis d’étudier 
cette interaction. L’import de PA et PB1 est moins connu, certaines études 
suggèrent un import commun via l’interaction avec une importine-β connue sous le 
nom de RanBP5. 

Pour le but de comprendre le fonctionnement de PA-PB1 comme précurseur 
de la polymérase et des facteurs contribuant à son assemblage avec PB2, mon 
projet de thèse se focalise sur la caractérisation structurale et fonctionnelle de PA-
PB1 et de RanBP5. Ces deux complexes protéiques ont été étudiés en tant que 
partenaires séparés et sous forme complexée afin enrichir les modèles 
d’assemblage actuels, mais aussi d’avancer dans la recherche de cibles potentielles 
antivirales.  
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1.1 GENERAL INFORMATION ON THE INFLUENZA 
VIRUS 

1.1.1 INFLUENZA VIRUSES 
 

Influenza viruses are segmented single stranded, negative sense RNA 
viruses belonging to the Orthomyxoviridae family (from the Greek: orthos, straight; 
myxa, mucus). According to the Baltimore classification established in 1971 
(Baltimore, 1971), this family of viruses belongs to the group V of RNA viruses. Both 
classification and definition as a negative strand RNA genome were established from 
the work of David Baltimore who demonstrated that the genome from this group of 
viruses were complementary to the messenger RNAs (mRNAs) also defined as 
positive strand RNA. Within the group V classification is the order of 
Mononegavirales, which comprises non-segmented RNA genome virus families, in 
which we can find the Bornaviridae, Filoviridae, Nyamiviridae, Paramyxoviridae and 
Rhabdoviridae families. Other viruses such as the Arenaviridae, Bunyaviridae, 
Ophioviridae and Orthomyxoviridae families which all possess segmented RNA 
genomes are grouped within a second unassigned order.  

The Orthomyxoviridae family comprises six genera (International Committee 
on Taxonomy of Viruses, http://www.ictvonline.org/): 

- Influenza virus A 
- Influenza virus B 
- Influenza virus C 
- Thogotovirus which includes Thogoto virus and Dhori virus 
- Isavirus which includes the Infectious Salmon Anemia virus (ISAV) 
- Quaranjavirus which includes the Johnston Atoll virus and the Quaranfil 

virus 
 

  Until very recently, with the appearance of a new type of influenza virus, 
known as influenza D which infects cattle (Hause et al., 2014), three major types 
were categorised:  influenza A, B and C. Their classification was based on their core 
protein content and their epidemiological characteristics (Ritchey et al., 1976a). 
Influenza A is classified by antigenic classes determined by two of its surface 
glycoproteins: the haemagglutinin (HA) and neuraminidase (NA). To date, at least 18 
subtypes of HA (H1-H18) and 11 subtypes of NA (N1-N11) can be distinguished. 
This large reservoir of HA (15 out of 18) and NA subtypes (9 out of 11) can be 
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sourced mostly within waterfowl hosts (Treanor, 2004). The last described antigenic 
variants such as H17/H18 and N10/N11 were discovered within fruit bats from 
central and south America (Tong et al., 2013). Influenza B only presents one subtype 
of HA and NA whereas influenza C possesses only one kind of surface glycoprotein 
known as a haemagglutinin-esterase-fusion (HEF) (Herrler et al., 1979, 1981; 
Kendal, 1975). The Current World Health Organisation nomenclature (WHO, 1980) 
classifies the  influenza virus with regards to type (A, B or C), original host (except 
for human strains), geographical point of origin, strain number, year of isolation and 
the antigenic subtype for  influenza A strains (HxNx). For this thesis project, two 
major strains were used: A/Victoria/3/1975 (H3N2) and A/Vietnam/1203/2004 
(H5N1); most of the introduction to this thesis therefore focuses on the influenza A 

subtype characteristics. 

1.1.2 ZOONOSIS OF INFLUENZA A VIRUSES 
 
 Influenza A virus differentiates itself from the two other types with regards to 
its very large host pool, which notably includes birds, humans, pigs, horses, dogs 
and bats (Vahlenkamp and Harder, 2006; Chan et al., 2013). They have also been 
shown to infect sporadically other host species such as those belonging to the 
Felidae family (cats, tigers, leopards) but also seals, whales and several rodent 
species (figure 1). Serological studies have also suggested that influenza A can 
occasionally infect several ruminant species, together with reptiles and amphibians 
(Vahlenkamp and Harder, 2006; Reperant et al., 2009; Herfst et al., 2014).  Influenza 
A therefore has an important spectrum range within the animal kingdom compared 
with other viruses.  
 

However, its main reservoir host pool is comprised of birds belonging to the 
Anseriformes (mallards, geese and swans) and Charadriiformes (sea gulls, waders, 
butonquails) orders (Kaplan and Webby, 2013; Yoon et al., 2014). In total, influenza 
A viruses have been isolated in at least 105 bird species spread out over 26 different 
families (Yoon et al., 2014). Practically every subtype of HA and NA has been 
detected within the Anas genus, also commonly known as the dabbling duck. 
 

Within those natural hosts, most viral strains evolve very slowly, indicating 
that they are highly adapted to these species (Webster et al., 1992; Yoon et al., 
2014). This adaptation process towards birds has been broken with domesticated 
poultry species, notably in the mid 1990s with the emergence of highly pathogenic 
H5N1 strains (Shortridge et al., 1998; Shortridge, 1999). Aside from affecting poultry 
farms, these epidemics also led to a minority of avian influenza cases to be 
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transmitted to humans with often fatal consequences (de Jong et al., 1997; Claas et 
al., 1998a, 1998b; Subbarao et al., 1998). 
 

 
Figure 1: Host distribution of type A influenza stains. (Adapted from Chan et al., 2013) 

Phylogenetic analyses, coupled with HA and NA subtype detection within the 
natural waterfowl species suggest that all current mammalian influenza A viruses 
originate from avian influenza species (Gorman et al., 1990a, 1990b, 1991; Webster 
et al., 1992; Yoon et al., 2014)    
 

Flu B infects almost exclusively humans and is responsible with type A of 
seasonal influenza epidemics.  Influenza C is essentially present within humans and 
provokes mild respiratory infections. All A, B and C viruses are probably related 
through a common ancestor (Wright et al, 2013). 

 

1.1.3 HISTORICAL BACKGROUND  
 

Flu viruses are unique with regards to their ability to generate both seasonal 
epidemics with variable intensities and pandemics. It is through the combination of 
epidemic and pandemic episodes that the influenza virus can be traced back 
throughout history.  
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Historical traces of influenza can be traced back to Late Antiquity. Early 
accounts in 412 BC by Hippocrates described comparable symptoms to those 
witnessed today during an influenza infection. Comparatively, several accounts of 
pandemic disease propagation have been attributed to influenza during the 16th and 
17th centuries. One such account, dating from 1510 described an epidemic of 
“sweat” (Sudor Anglicus; “English sweating sickness”) which could plausibly be 
attributed to influenza (Morens et al., 2010). Sero-archeological studies have 
confirmed influenza pandemics during the 19th century, most notably the one of 1889 
(also known as the “Russian flu”) which was able to spread worldwide within four 
months despite the much slower and more limited traveller flow of the time (Valleron 
et al., 2010). With the progress of medicine and especially with the advent of modern 
virology, researchers were able at the beginning of the 20th century to isolate 
influenza virions. In 1930 the first influenza virus was isolated (A/Swine/Iowa/30) 
from swine (Shope, 1931). Then in 1933 the first human strain was isolated (Smith et 
al., 1933) and categorised as a type A influenza. Seven years would pass before the 
characterisation of a new virus with different antigenic properties, classified as an 
influenza B virus (Francis, 1940). Influenza C was later discovered in 1947 (Taylor, 
1949).  

 

1.1.4 SEASONAL INFLUENZA  
 

From an epidemiological standpoint, seasonal epidemics of influenza occur 
during the winter months within the temperate regions of the planet, thus generating 
two epidemic peaks per year worldwide. In the northern hemisphere, the epidemic 
peak can be observed from December and February. In 2011 in the USA, the 
highest viral activity was recorded on the 5th week of the year  (Figure 2) (CDC, 2012). 
Since 1977 and the re-emergence of the H1N1 virus from the 1918 pandemic, 
seasonal strains of influenza (i.e., A/H1N1 and A/H3N2) circulate together with 
influenza B (World Health Organisation; Wright, P.F. et al, 2013). As of 2009, the 
seasonal epidemic strain of influenza H1N1 has been replaced by the adapted 
pandemic strain H1N1 originated from the “swine flu” episode of that same year 
(Broor et al., 2012, Wright et al, 2013). The distribution prevalence of both strains 
varies geographically making epidemiological studies complex to model. Also, 
epidemic influenza follows a slow but constant evolution process known as 
“antigenic drift” (detailed in chapter 1.3.1) which drives seasonal influenza strains to 
continually change in antigenic signatures in order to remain infectious within 
otherwise immunised populations.  
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Figure 2: Number and percentage of respiratory specimens testing positive for influenza in the year 
2010/2011, by type and week. (Centre of Disease Control and Prevention, 2012). 

Antigenic and genetic studies undertaken for several years have highlighted 
the common geographical source of the epidemic strains H3N2 and H1N1 as 
originating from South East Asia (Russell et al., 2008; Chan et al., 2010; Bedford et 
al., 2010). South East Asia, by its geographical situation at the crossroads of 
important commercial routes and with its high population density maintains a 
continuous epidemic linkage between the Northern and Southern hemispheres of the 
globe. Climate plays an important role in the epidemic spread of influenza and 
explains this situation. Tropical parts of the world such as South East Asia have mild 
seasonal variations and epidemic strains of influenza are active all year long in these 
regions of the world (Viboud et al., 2006; Russell et al., 2008). Continental climates, 
on the other hand, generate important humidity and temperature variations during 
the year. These variations limit or enhance the air transmissibility (Noti et al., 2013) 
and surface survivability (McDevitt et al., 2010) of the virus, generating a peak 
distribution throughout the year as shown for the USA (figure 2). Human transmission 
of the virus is essentially the effect of inhalation of expelled water drops from the 
coughs of infected people and direct contact with contaminated surfaces. It has 
therefore also been proposed that an increased crowding during the cold seasons 
could enhance the transmissibility of the virus (Souza et al., 2003).  Lastly, another 
factor that can also explain the seasonality of the influenza are variations in the host 
immune systems. In this regard, vitamin D levels —whose metabolism is correlated 
with ultraviolet B exposure— may affect the onset of influenza infections (Cannell et 
al., 2006).  
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From a clinical standpoint, seasonal influenza generates a mild or benign 
illness within the majority of otherwise healthy humans. Non-specific symptoms, 
such as strong fever, dry coughs, muscular and joint soreness, headaches and 
asthenia characterise the infection. On average, these symptoms persist 2 to 7 days. 
Response variation between patients is influenced both by the strain virulence and 
the innate immune and inflammatory response that is responsible for the infection 
symptoms (Junge, 2011). In the most severe cases, the initial infection can trigger 
complications such as bacterial secondary infections resulting in pneumonia and/or 
severe dehydration that can lead to death. The most sensitive age groups towards 
seasonal influenza are children below 5 years of age (YOA) and elderly people 
above 65 YOA. Virus shedding has been shown to precede the appearance of 
symptoms by one day in clinically induced infections (Carrat et al., 2008); on average 
viral shedding will peak on day 2 and then decrease to finally end after 5 days. In 
some cases the shedding period can extend to 9 days. It has also been shown that 
immune-deficient patients, elderly people and children can have extended viral 
shedding, lasting in some cases for several weeks (Mitamura and Sugaya, 2006; 
Gooskens et al., 2009). 
 

Although difficult to precisely quantify, the consequences of seasonal 
epidemics in the world are quite important. Albeit socially accepted as a “norm”, 
seasonal influenza is still responsible every year of important economic and human 
losses. WHO estimates that every year, the combination of both Northern and 
Southern hemisphere epidemics account for 250000 to 500000 deaths and 3 to 5 
million cases of severe illness requiring in many cases hospital treatment (WHO, 
2015). In France, influenza kills between 1500 and 2000 people a year and infects 
an average of 2.5 million people (INSERM, 2012). In 2015, a strong epidemic of 
H3N2 influenza has been shown to correlate with a 19% increase in mortality (8000 
additional fatalities) during the winter period in France (InVS, 2015).  

 
It is estimated that the economic burden generated by seasonal influenza is 

also considerable. In an economic study undertaken in France for the 1988/1989 
epidemic (Levy, 2012), research estimates a net direct cost of seasonal influenza of 
2.2 billion euros for the French social security system in today’s currency value. 
Added to this is the indirect social cost of 16.6 billion euros attributed to the 
productivity loss. When compared to today’s Gross Domestic Product (GDP), 18 
billion euros represents 0.6% of the French GDP (2,8 Trillion euros for the year 
2013). It is indeed estimated that every year, in France, between 2 and 12 million 
days of work are lost due to the influenza (GROG). 
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Although an important burden, both socially and economically, the emergence 
of seasonal influenza follows a regular and repetitive pattern which enables for 
preventive approaches to be put into place. This pattern has been broken in the past 
and will be broken in the future by occasional antigenic jumps, also known as 
“antigenic shifts” (detailed in chapter 1.3.2) which enable the appearance of Pandemic 
influenza strains. 

 

1.1.5 PANDEMIC INFLUENZA 
 

When looking at catastrophes, the twentieth century is still remembered for its 
two major conflicts, World War I and World War II which claimed the lives of around 
70 to 90 million people in total (Micheal Clodfelter, 2002). Little is remembered 
though, that in the space of one year (1918-1919), 50 million to arguably 100 million 
people lost their lives to the “Spanish influenza” pandemic (Johnson and Mueller, 
2002; Patterson and Pyle, 1991). This H1N1 outbreak remains the most severe 
influenza pandemic humanity ever experienced. At least 30% of the world population 
was infected with the virus which had an estimated case fatality rate > 2.5% 
(Taubenberger and Morens, 2006). Of course one cannot impute the death toll 
exclusively to the virus, specific factors of the time came into play. The pandemic 
onset started near the end of World War I and maintaining hygienic conditions in the 
front lines was difficult; also crowding due to troop gatherings enabled rapid 
contagion pockets to emerge. Malnutrition due to rationing and overall stress of war 
could also have been factors of aggravation (Song, 2014). Most strikingly was the 
fact that most deaths were the result of a consistent secondary bacterial infection 
causing respiratory pneumonia (Morens et al., 2010; Sheng et al., 2011). Contrary to 
seasonal influenza, the “Spanish influenza” pandemic was also very virulent within 
the young adult (20-35 YOA) age group (Simonsen et al., 1998; Frost, 2006). The 
mechanisms underlying such a specific virulence are still not fully understood, it has 
however been suggested that the genesis of the virus which resulted in the 
reassortment of previous H1 pandemic strains and an Avian strain possessing the 
N1 gene may be linked (Worobey et al., 2014). People born before 1890-1900 may 
have acquired partial immunity to the virus through past infections with precursor 
influenza strains. Another explanation for such a distinct age distribution may lie in 
the nature of the immune response at that age: it has indeed been proposed that 
deregulated cytokine and chemokine responses within young adults could be one of 
the reasons for such a strong pathogenicity (Loo and Gale, 2007; Gao et al., 2013).  
Remarkably, the pandemic followed in some countries like England, with three 
distinct epidemiological bursts of decreasing intensity (morbidity and fatality rate) in 
time and in geographical spreading, hinting a rapid adaption mechanism of the virus 
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to its human host (Taubenberger and Morens, 2006). In the years following 1919, the 
H1N1 “Spanish influenza” became seasonal influenza virus, with a normal 
age/pathogenicity distribution. This strain remained in circulation through the 
“antigenic drift” process until 1957 where it was replaced by the H2N2 subtype. It 
however later re-emerged in 1977 through what is believed to be an accidental 
release of a conserved virus within a laboratory. Genetic analysis have indeed 
revealed that the strain is closely related to the pre-1957 H1N1 strain (Nakajima et 
al., 1978; Scholtissek et al., 1978). 
 

Later pandemics emerged during the twentieth century. In 1957, an H2N2 
reassortment known as the “Asian influenza” originated from China, spread through 
Asia and caused the deaths of an estimated 1 million people worldwide. The United 
States were strongly hit by the pandemic, causing around 70 000 deaths, mostly 
among elderly people (Simonsen et al., 1998). Vaccination, which came into practice 
within the industrialised countries after the second world war was produced against 
the H2N2 virus from 1957 to 1960. The virus eventually disappeared from the human 
reservoir in 1968. Concern however persists as only individuals above 50 years old 
remain immunised against the strain (Nabel et al., 2011) which still circulates within 
wild and domestic animals (Ma et al., 2007). In 1968, a new strain emerged from the 
reassortment of A/H2N2 and A/H3 strains which produced the A/H3N2 strain also 
known as the “Hong Kong” pandemic. This pandemic which was severe in Asia, 
claimed the lives of an estimated 700 000 people and came to replace A/H2N2 as 
the dominating seasonal influenza strain in the later years (Simonsen et al., 1998). 
 

With the end of the 20th century and the beginning of the 21st century came 
new fears of pandemic influenza. In 2009, a social, political and media hype was 
triggered by the fast emergence of a novel H1N1 virus generated from the 
reassortment of bird, swine and human influenza A viruses (Garten et al., 2009; 
Trifonov et al., 2009). Considerable physical and financial means were invested to 
contain the spread. It is estimated that in France, 1.8 to 2.2 billion euros were 
invested to prevent the pandemic spread alone, by means of vaccines, antivirals, 
breathing masks and communication campaigns (Sénat Francais, 2011). An entire 
medical infrastructure was put into place worldwide and coordinated by national 
(Ministère de la santé, in France) and international institutions (WHO, Center for 
Disease Control) to cope with the ongoing crisis. Fortunately, this influenza strain, 
despite having a very high transmissibility, presented a mild pathogenicity towards 
humans. After one year, it was estimated that in France, 8 to 15 million people were 
infected by the first wave of H1N1 pandemic influenza; in total 1300 severe 
infections were reported with 312 confirmed deaths due to the virus (INSERM, 
2010). Comparable to the situation in 1918, young adults within the 20-30 years of 
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age group were more afflicted by the pandemic strain compared to seasonal strain 
epidemics. Personal medical histories such as chronic respiratory diseases and 
obesity were linked as being aggravating factors (CDC, 2010; INSERM, 2010).  
 

On the sidelines of these pandemic episodes, short, sporadic bursts of highly 
pathogenic viruses have been witnessed, especially in Asia. These were reported on 
several occasions starting in the late 90’s (1997) and shown to be caused by an 
avian influenza A/H5N1 virus (Claas et al., 1998b; Peiris et al., 2004). In most cases 
transmission was provoked by direct contact with contaminated birds or 
contaminated bird meat. Some rare cases of human to human transmission have 
however been documented (Ungchusak et al., 2005; Normile, 2006). More recently, 
H7N9 strain has been shown to infect humans as well, also with high pathogenicity. 
For all these episodes, only a very limited number of cases were reported, 718 cases 
for A/H5N1 since 2003 with a total of 413 deaths (WHO) placing the case fatality rate 
> 50%. These new emerging viruses are the cause of great concern, although they 
are weakly transmissible for the moment. A major fear is that with time, these viruses 
may mutate and/or reassort with other viruses to generate both highly pathogenic 
and transmissible strains. Several independent laboratories drew up controversy in 
2012 by either modelling (Russell et al., 2012) or by proving in ferrets that certain 
mutations can lead to an airborne transmissibility of the H5N1 virus (Herfst et al., 
2012; Imai et al., 2012).  

 

1.1.6 CURRENT TREATMENT STRATEGIES 
 

Immunisation, through the use of vaccination, is currently the most efficient 
method of preventing the onset of an influenza infection. Early studies in the 
aftermath of the “Spanish influenza” pandemic showed that using viruses grown in 
vitro could drastically increase the vaccinee’s antibody titer (Thomas and Magill, 
1936). In the 1940’s the first large scale trials of whole-virus inactivated vaccines 
were undertaken on military recruits and college students (Stokes et al., 1937; Salk 
et al., 1945). By 1945 a commercial vaccine was available in the United States and 
applied by intra-muscular injection. Whole-virus vaccines were prepared using 
inoculated eggs to grow the virus. After extraction, the viruses were inactivated by 
using formalin or β-propiolactone (Fiore et al., 2009). Although less immunogenic, 
most vaccines manufactured after 1970 were solvent disrupted subvirion 
preparations. Today, trivalent combinations of A/H3N2 A/H1N1 and B strains are 
manufactured every year in order to counter the “antigenic drift” of Haemagglutinin 
and Neuraminidase surface proteins of seasonal influenza. The WHO issues virus 
formulations directed at the preparation of the vaccine; these are based on the 
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observed strains of the seasonal influenza affecting the opposite hemisphere. 
Therefore, every year two separate formulations are issued. Depending on the 
“antigenic drift” outcome, these vaccines are more or less efficient. For seasonal 
influenza, the cost benefit ratio of vaccination is profitable within the very young (6 
months to 5 YOA), older age groups (> 65 YOA) and individuals presenting a high-
risk medical background such as immunocompromised patients. One of the main 
downfalls of vaccination is its inherent incapability to protect against sudden 
pandemic strain outburst. This is in part due to the current impossibility of predicting 
the outcome of antigenic shift, but mostly because of the necessarily long production 
period (6 months) required for vaccine production. In this rather long period, other 
means to actively fight the virus are needed. For these reasons, a lot of effort and 
means have been employed to develop antiviral inhibitors. 
 

To date, there are only four commercially available influenza inhibitors, which 
can be divided into two groups: 
 

- M2 ion channel inhibitors (Table 1) developed during the mid-sixties (Davies et 
al., 1964; Dolin et al., 1982) known as Amantadine and Rimantadine and 
today commercialised respectively under the names Symmetrel (Endo 
pharmaceuticals) and Flumadine (Forest pharmaceuticals). These chemical 
compounds are amine derivatives of the Adamantane class, which 
intercalates within the M2 ion channel and blocks the H+ proton influx 
required viral disassembly (see chapter 1.2.2). These drugs were previously used 
exclusively as a prophylaxis treatment and were only effective against 
influenza A viruses. They are however largely out-dated due to the rapid 
emergence of resistant influenza A strains (Belshe et al., 1989; Hayden and 
Hay, 1992). By the mid 2000s, 99% of H3N2 seasonal strains were resistant 
to this inhibitor class (CDC, 2006). 
 

- Neuraminidase inhibitors (Table 1) known as Zanamivir and Oseltamivir are 
commercialised respectively under the names of Relenza (GlaxoSmithKline) 
and Tamiflu (Roche). These compounds are also the product of years of 
research and derive from sialic acid analogues which were first investigated in 
the late 1970s (Schulman and Palese, 1975). Their mode of action is to target 
the neuraminidase active site, by sterically outcompeting the interaction with 
the sialic acid present on the infected cell membrane. Neuraminidase activity 
is required to cleave the sialic acid moieties involved in the release of newly 
assembled virions (see chapter 1.2.2). Due to high conservation of the 
neuraminidase active site, these inhibitors present a broad spectrum activity 
in most strains of influenza A and B viruses (Yen et al., 2006). Since the 90s 



1.1  GENERAL INFORMATION ON THE INFLUENZA VIRUS 

 

15 

these drugs have been used as a prophylaxis and active treatment of both 
seasonal and pandemic influenza with varying efficiency depending greatly on 
the virus strain and the infected individual. Although much more potent than 
M2 ion channel inhibitors, neuraminidase inhibitors present more severe side 
effects (Dutkowski et al., 2003). Resistant strains of influenza have also 
appeared for these drugs with much lower frequencies than for M2 ion 
channel inhibitors (Samson et al., 2013), due to the inherent loss of infectivity 
of NA mutated viruses. Still, it has recently been reported that strains resistant 
to both Oseltamivir/Amantadine are emerging (Sheu et al., 2011). 

 
Due to the limited scope of action provided by these few inhibitors and 

considering the rapid and unavoidable rise of poly-resistant strains, new strategies to 
inhibit the influenza virus proliferation are in the works (Monod et al., 2015). Several 
new inhibitors are in phase III clinical trials in the USA or clinically approved within 
different countries. Peramivir and Laninamivir, novel NA inhibitors have shown 
promising potential and remain potent on Oseltamivir resistant strains (Babu et al., 
2000; Koyama et al., 2009; Samson et al., 2013).  

 
Broad spectrum antivirals are also used to treat the influenza such as Arbidol, 

a haemagglutinin inhibitor (Teissier et al., 2011) whose use is only approved in 
China and Russia. Ribavirin, a nucleoside analogue mostly used against Hepatitis C 
(HCV) has been shown to be effective against influenza. It is however responsible of 
important secondary effects such as haemolytic anaemia. Favipiravir (Furuta et al., 
2005), a nucleoside analogue, is approved in Japan for the treatment of influenza. It 
was also shown to be effective against other negative-stranded RNA viruses 
including Ebola virus (Oestereich et al., 2014).  

 
Novel druggable targets have also emerged in the last ten years. In the future, 

multiple viral pathways will be blocked in order to limit the escape mechanism 
provided by the high mutational rate of the virus. Within this current strategy, several 
groups including the one in which I performed my thesis, have focused on the RNA 
dependent RNA polymerase (RdRp). This enzyme could constitute a major drug 
target due to its pivotal role in the viral replication process, but also because of its 
role in enabling a high mutation rate which is required for evading viral inhibitors.  
  

Further reading on the topic can be provided by the supplementary 
publication n°2. 
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Table 1: General overview of currently used influenza inhibitors. (Compound depiction were adapted 
from Monod et al., 2015) 

 
 
 

  



1.2  STRUCTURAL FEATURES AND INFECTIOUS CYCLE OF THE INFLUENZA A VIRUS 

 

17 

1.2 STRUCTURAL FEATURES AND INFECTIOUS 
CYCLE OF THE INFLUENZA A VIRUS 

 
Figure 3: Influenza A viral architecture. (A) Schematic view of the virion with core components. (B) 
Negative stain EM picture of virions (Rob Ruigrok). (C) Schematic representation of the RNP assembly 
(adapted from Naffakh et al, 2008). (D) Negative stain Electron Microscopy (EM) picture of purified RNPs. 
(Adapted from Ruigrok et al., 2011)  

1.2.1 STRUCTURE OF THE VIRAL PARTICLE 
 

The influenza A virus is an enveloped virus; virions are pleomorphic but 
usually adopt a spheroid shape measuring approximately 100 nm in diameter 
(Fujiyoshi et al., 1994), although much bigger virions have also been reported (Chu 
et al., 1949; Kilbourne and Murphy, 1960). The envelope is derived from the host cell 
membrane which is specifically enriched in cholesterol and glycosphingolipids 
(Scheiffele et al., 1999). In this membrane are inserted HA and NA surface 
glycoproteins and the M2 ion channel protein (Figure 3A). These surface glycoproteins 
can easily be seen on a negative stain electron microscopy image of full viruses 
(figure 3B). They can also be distinguished by shape: NA adopts a “nail” shape and 
HA a “spike” shape. There are generally distributed as 1 NA for 4 HA (Murti and 
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Webster, 1986). Inside the virion, the M1 (matrix) protein scaffolds the virion and is 
at the interface between the lipidic membrane and the ribonucleoproteins (Sha and 
Luo, 1997). In addition, the Nuclear Export Protein (NEP, previously described as 
NS2) is found within purified virion (Richardson and Akkina, 1991; O’Neill et al., 
1998). 
 

Within the viral core lies the segmented, negative and single stranded (ss) 
RNA genome divided into 8 separate segments. Each vRNA is bound to multiple 
copies of nucleoprotein (NP) and the highly conserved 5’ and 3’ extremities are 
bound to the RdRp complex heterotrimer composed of PA, PB1 and PB2 proteins. 
This macromolecular assembly (vRNA/polymerase/NP) forms the ribonucleoprotein 
(RNP) complex (Figure 3C and 3D) which is observed as a closed helical structure 
(Pons et al., 1969; Compans et al., 1972).  

 

1.2.2 SEGMENTED GENOME ORGANISATION 
 

One of the distinct characteristics of the influenza virus is its genomic 
organisation. Differently from other negative and single strand RNA viruses, 
influenza has a segmented division of its genome. This distinct feature enables a 
complex reassortment process between strains (detailed in chapter 1.3.2). Influenza A 
and B possess eight vRNA segments (Palese and Schulman, 1976; Ritchey et al., 
1976), differently from influenza C which only possess seven. Segments vary in size 
and are ordered from the longest (segment 1, 2341 nucleotides) to the shortest 
segment (segment 8, 890 nucleotides) for influenza A (figure 4). Each segment codes 
for a minimum of one protein; to date, segments 1, 4, 5 and 6 are known only to 
code for one protein. Other segments code for both “canonical” genes expressed 
with the original open reading frame (ORF) and additional proteins, which are either 
the product of a frame-shift reading (ORF+1) and/or produced after splicing of the 
mRNA. Overall, the combined segments can express 10 different proteins found in 
all viruses (Figure 4). Additionally, 7 accessory proteins have been described to exist 
in many strains. All of the segments share a common nucleotide (nt) sequence 
pattern. ORFs are flanked on both 5’tri-phosphate (5’) and 3’-hydroxyl (3’) 
extremities by untranslated regions (UTR) of 19 to 58 nt in length. These UTR 
regions harbour both the 5’ and 3’ terminal promoters measuring 12 and 13 nt in 
length are both fully conserved among the 8 segments, but also among all influenza 
A subtypes. Due to their quasi complete complementarity, these promoter regions 
have been shown to form a distinct secondary structure conformation called the 
panhandle when alone in solution (Baudin et al., 1994; Hsu et al., 1987). Following 
these promoter regions are segment specific UTR regions which have been shown 
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to be important in the regulation of viral gene expression and in packaging RNP 
within the progeny virions (Luytjes et al., 1989; Fujii et al., 2003, 2005). 
 

 
Figure 4: Organisation of the influenza A genomic segments and the respective coded viral proteins once 
transcribed into positive sense RNA. Segment length, in nucleotides, is numbered in black whereas 
protein length, in amino acid residues, is numbered in orange. Canonical ORF peptides are coloured 
blue, frame shift ORFs are coloured in salmon. Spliced-out sequenced are represented with the V shape. 
In the right column core proteins are spelled in bold black, abundantly distributed accessory proteins in 
blue and rare accessory proteins in green. (Adapted from Wright et al., 2013) 

1.2.2.A SEGMENT 1 
 

Segment 1 is only known to code for PB2 (759 aa), which is one of the 3 
subunits constitutive of the RdRp whose function and structure is discussed in 
chapter 1.4. 
 
1.2.2.B SEGMENT 2 
 

Segment 2 primarily codes for the expression of PB1 (757 aa), another 
subunit of the RdRp responsible of the polymerase activity (see chapter 1.4). In addition 
two auxiliary proteins PB1-F2 and PB1-N40 (Wise et al., 2009).  
 

PB1-F2 is a ≥78 aa peptide expressed from an alternate ORF whose 
discovery dates back to 2001 (Chen et al., 2001). This peptide has not been shown 
to integrate within the virions constitution (Krumbholz et al., 2010) but seems to play 
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multiple roles during infection. Research has shown a modulation of the viral 
polymerase activity (Mazur et al., 2008) through the interaction with the PB1 protein. 
It has also a pro-apoptotic activity within infected lymphocyte B cells through the 
disruption of mitochondrial membranes and the release of cytochrome C, potentially 
contributing to the evasion of the virus from the host immune response (Chen et al., 
2001; Henkel et al., 2010). PB1-F2 is also extensively studied for its pro-
inflammatory activity induced by its modulation of cytokine and interferon expression 
(Le Goffic et al., 2010; Henkel et al., 2010; Varga et al., 2012). The strain distribution 
of actively folded PB1-F2 is mostly found within avian influenza subtypes 
(Chakrabarti and Pasricha, 2013). The loss of biologically functional PB1-F2 seems 
to be beneficial in the adaptation to mammalian hosts (Zell et al., 2007; Dundon, 
2012), including humans (McAuley et al., 2010). 
 

As of 2009, an amino terminal (N-terminal) truncated version of PB1 (PB1-
N40) originating from an alternate AUG initiation site has been described (Wise et 
al., 2009) and seems important for viral proliferation (Tauber et al., 2012). Although 
able to interact with the polymerase complex, the role played by this protein remains 
elusive, as it has been shown to lack a transcriptase activity (Wise et al., 2009).  
 
1.2.2.C SEGMENT 3 
 

Segment 3 harbours the gene coding for PA (716 aa), the third subunit of the 
RdRp (detailed in chapter 1.4) that possesses the endonuclease domain. Also expressed 
is PA-X (253 aa), this protein discovered in 2012 (Jagger et al., 2012), is the 
combination of both an N-terminal part of PA (residues 1-190) and an extra carboxy 
terminal (C-terminal) domain expressed from a shifted reading frame, called the X 
domain (res 190-253). In this particular case, the shift originates from the RdRp 
slippage on a UUUGGUC motif during transcription (Vasin et al., 2014). The X 
domain is highly conserved among influenza A subtypes suggesting an important 
role in the viral life cycle (Shi et al., 2012). The functional roles played by PA-X 
seems to be that of host response modulation during infection, through the 
degradation of host messenger RNAs (mRNAs), specifically those transcribed by the 
RNA polymerase II (Jagger et al., 2012). In addition to PA-X, PA-N155 and PA-N182 
are also expressed by downstream alternate AUG initiation codons (Muramoto et al., 
2013). In essence, these proteins are C-terminal domains of PA without the 
endonuclease domain. As later discussed, this C-terminal domain is tightly bound to 
the PB1 subunit (see chapter 1.4.3) hinting a potential alternate polymerase assembly 
with these proteins. Little is known of their function except that their deletion 
generates slower replicating viruses (Muramoto et al., 2013). 
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1.2.2.D SEGMENT 4 
 

Segment 4 houses the gene coding for the haemagglutinin surface 
glycoprotein (HA), most important for the specific viral recognition/attachment to the 
host cells and membrane fusion process. Haemagglutinin is a class I viral fusion 
protein, a class which also contains the HIV GP41 receptor and the Ebola virus GP2 
receptor (Wright, P.F. et al, 2013). The protein is first synthesised in a precursor form 
HA0 which is then cleaved by host cell proteases. This cleavage enables the 
formation of two ectodomains HA1 (N-terminal domain of HA0) and HA2 (C-terminal 
domain of HA0); this step is required to expose the hydrophobic HA2 ectodomain 
whose function is to enable virus/endosomal membrane fusion (Weissenhorn et al., 
2007; Gamblin and Skehel, 2010). Haemagglutinin adopts a trimeric oligomerization 
state on the viral surface (figure 5A).  
 

HA1 forms a globular domain whose role is to recognize and interact with 
sialic acid glycans. Research has shown a viral strain prevalence towards certain 
glycan signatures, human influenza strains interact with sialic acid bound to 
galactose with an α2,6 (Saα2,6) linkage whereas avian strains interact with Saα2,3 
motifs (Connor et al., 1994; Viswanathan et al., 2010). Both motifs can be found in 
humans but within different cellular compartments. Saα2,6 is found in the upper 
respiratory track epithelial cells whereas Saα2,3 is found within the alveoli epithelial 
cells. 
 

HA2 adopts characteristic stem architecture with a triple α-helix segment 
linked to HA1. Upon the proton influx increase in the endosomal vesicle during 
endocytosis, the HA2 domains within the trimeric context are submitted to multiple 
phases of structural changes which result in pulling of viral and endosomal 
membranes together leading to membrane fusion (figure 5B). It has been reported that 
a minimum of three haemagglutinin trimmers are required to initiate membrane 
fusion (Danieli et al., 1996; Floyd et al., 2008). 
 

HA is also directly involved in the budding process, like NA through the 
coalescence of lipid raft domains generating favourable budding zones (Schmitt and 
Lamb, 2005). 
 

Finally, HA is one of the two main (with NA) surface antigens of influenza. 
During infection, the entering virus HA, especially the HA1 domain will stimulate 
neutralising antibody production by B-lymphocytes. These antibodies will then apply 
a selective pressure on the progeny virions after replication in the host cell. By 
actively pressuring the “antigenic drift” process, variations in HA epitopes are 
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important features considered in vaccine design (Smith et al., 2004; Wan et al., 
2014). 
 

 
Figure 5: Structural overview of haemagglutinin from an H3N2 influenza strain. (A) Trimeric 
oligomerization form (PDB 2YPG) featuring yellow, blue and green monomers. (B) Monomeric depiction 
of the structural changes upon acidification depicted with the HA1 ectodomain in red and the HA2 
ectodomain in rainbow colours distinguishing the α-helices and their conformational changes from the 
pre-fusion state to the late intermediate state (PDB 1HTM). (Depictions were generated with Chimera) 

1.2.2.E SEGMENT 5 
 

Segment 5 codes for the nucleoprotein (NP) (498 aa), the most abundant 
protein component of the RNP assembly (Pons et al., 1969). NP plays multiple roles 
within the RNP complex: it structures the RNP complex into a double helix 
(Heggeness et al., 1982; Jennings et al., 1983; Ruigrok and Baudin, 1995), by 
coating most of the vRNA and complementary (+)vRNA (cRNA), except the 5’ and 3’ 
promoter regions which interact directly with the RdRp. NP is proposed to modulate 
both replication and transcription of the vRNA (Beaton and Krug, 1986; Shapiro and 
Krug, 1988; Naffakh et al., 2008) and could also be the key regulatory element in the 
switch between replication and transcription (Skorko et al., 1991). It has been shown 
that the residue D88 is directly involved in the binding process to PB2 (Gui et al., 
2014) which corroborates previous works which showed  the N-terminal region of NP 
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to interact with PB2 (Albo et al., 1995; Biswas et al., 1998; Turan et al., 2004). NP is 
also proposed to interact with PB1, M2 and a number of host cell proteins including 
RAF-2p48/UAP56 and Tat-SF1 (Portela and Digard, 2002). 
 

 
Figure 6: Surface representation of H1N1 NP (2IQH) coloured by predicted polarity using. Blue indicates 
positively charged regions whereas red indicates negatively charged regions. (Depictions were 
generated with Chimera) 

A total of four crystallographic structures have described the influenza NP, 3 
of influenza A (Ye et al., 2006; Ng et al., 2008; Chenavas et al., 2013) and one of 
influenza B NP (Ng et al., 2012), all of them without RNA. Interestingly, most of the 
structures were crystallised as trimers for influenza A and tetramers for influenza B 
highlighting the inherent tendency of NP to oligomerize in the absence of vRNA. This 
property is enabled by the oligomerization loop (res 402 to 428), which performs a 
domain swap with the neighbouring NPs. This oligomerization process was broken 
by mutating the residue R416A in influenza A and generated a monomeric version of 
NP (Chenavas et al., 2013). This oligomerization property has been described as 
dynamic and influenced by salt content (Tarus et al., 2012). Monomerised NP can 
then form higher order oligomers with the vRNA. On the other hand, the loss of the 
oligomerization of NP mutants causes ineffective protein translation in the mini RNP 
model (Ye et al., 2012).  The entrapment of NP in a non-functional oligomeric state 
by the use of compounds has been shown to block the replication of the influenza 
virus in infected cells (Kao et al., 2010; Gerritz et al., 2011).  
 

Another potential regulatory element is phosphorylation. Early on studies have 
shown different patterns of phosphorylation within NP depending on the influenza 
strain and time of infection (Kistner et al., 1985, 1989). More recently it was shown 



1.2  STRUCTURAL FEATURES AND INFECTIOUS CYCLE OF THE INFLUENZA A VIRUS 

24 

that mutating key phosphorylated residues (S165, S407, S486) could disrupt both 
oligomerization and vRNA binding (Chenavas et al., 2013; Mondal et al., 2015). Also, 
induced phosphorylation during cell culture could promote oligomerization of purified 
NP (Mondal et al., 2015). Another study has also shown the role of phosphorylation 
in regulating NP shuttling between the nucleus and the cytoplasm (Zheng et al., 
2015). S9 and Y10 phosphorylation seem to affect the binding with importin-α and 
Y296 phosphorylation is assumed to affect CRM1 binding. 
 

Interaction with vRNA is performed by a highly positively charged groove, 
which is at the opposite side of the oligomerization loop (figure 6). Although still in 
debate, current models predict NP to bind to an average of 22 to 28 nucleotides 
(Ortega et al., 2000; Martín-Benito et al., 2001) with an affinity of 20 nM (Baudin et 
al., 1994; Ng et al., 2012; Portela and Digard, 2002). This number of bound 
nucleotides to NP differs greatly with other negative strand RNA virus NPs described 
such as rhabovirus (Albertini et al., 2006), RSV (Tawar et al., 2009) and 
paramyxovirus (Rudolph et al., 2003; Reguera et al., 2013). Chemical labelling 
studies have described the binding to occur upon the phosphate backbone (Baudin 
et al., 1994), exposing the bases to solvent. 
 
1.2.2.F SEGMENT 6 
 

Segment 6 is dedicated to code for the second major glycoprotein, the 
neuraminidase (454 aa). Although jointly present with HA, NA enables for the 
detachment of novel virions from the host cell. Organised as tetramer (figure 7A), NA 
is mostly structured as a globular head domain anchored within the lipid raft by its N-
terminus (residues 1- 90) (Blok et al., 1982). The head domain houses a pocket 
dedicated to the recognition and cleavage of sialic acid motifs (Colman et al., 1983). 
The cleavage of host cell sialic acid from HA is performed by NA, releasing the virion 
from the host cell membrane (Schmitt and Lamb, 2005; Gamblin and Skehel, 2010). 
Neuraminidase activity is also required in order to cleave off sialic glycans from the 
progeny virion to avoid self-agglutination which would diminish viral proliferation 
(Palese et al., 1974; Palese and Compans, 1976). 
 

NA activity is a key druggable target. Currently, several sialic acid derivatives, 
and especially Oseltamivir are effective in reducing viral activity by binding to the 
sialic acid cavity of NA (figure 7B), thus sterically blocking sialic acid recognition and 
cleavage. This has the effect of leaving progeny virions bound to their host cell 
through the HA interaction (Palese et al., 1974; Palese and Compans, 1976). 
Although effective, this inhibition strategy still enables the virus to replicate its 
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genomic material and therefore enables the mutation process to occur, giving rise to 
resistant strains. 
 

 
Figure 7: Neuraminidase structural features. (A) Tetrameric organisation of the neuraminidase (PDB 
1NN2). (B) Monomer bound to Oseltamivir (green, PDB 4GZP). (Depictions were generated with Chimera) 

 
Like HA, NA is also one of the major surface antigens of the virus and is 

subject to the same antigenic drift as HA. However, antibodies targeting NA do not 
neutralise the virus (Sylte and Suarez, 2009). They seem to favour viral aggregation 
and therefore only limit the viral spread.  

 
1.2.2.G SEGMENT 7 
 

Segment 7 contains the gene of M1 (or matrix protein), of M2 (ion channel), 
and M42 which are produced through a splicing mechanism.  
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The M1 matrix protein (252 aa) is the most abundant protein within the viral 

particles as it constitutes an interface between the outer envelope with the anchored 
glycoproteins and the internal 8 RNPs. EM observations have described M1 as a 6 
nm long rod with one end facing the membrane and the other facing the internal part 
of the virion (Ruigrok et al., 1989, 2000). The protein is structurally divided into two 
domains which both have separate biochemical properties. The N-terminal domain 
(res 1-164) has been shown to bind non specifically to vRNA but not to RNPs 
(Watanabe et al., 1996; Baudin et al., 2001). The vRNA binding has been proposed 
to originate from a strongly positively charged surface (figure 8A) which would interact 
with the negatively charged phosphate backbone of the RNA (Elster et al., 1994; 
Watanabe et al., 1996). An alternative explanation is that this surface is dedicated to 
the interaction with negatively charged liposomes (Ruigrok et al., 2000). The C-
terminal domain on the other hand binds to RNPs without interacting with the vRNA 
(Baudin et al., 2001) suggesting potential protein interactions with NP. 
 

M1 is proposed to play important roles in the transport and assembly of RNP 
particles to the budding zone (Schmitt and Lamb, 2005; Nayak et al., 2009), notably 
through the interaction with NEP for the nuclear export of RNPs (Cros and Palese, 
2003) and with cytoskeleton components, such as microfilaments (Avalos et al., 
1997). Furthermore, M1 has been reported to play an active role in membrane 
separation in the terminal budding phase (Nayak and Hui, 2004; Nayak et al., 2004). 
 

M2, the ion channel protein (97 aa), is obtained through the splicing of the 
segment 7 mRNA. This membrane anchored protein is organised as a tetramer 
(Figure 8B) on the viral surface (Holsinger and Lamb, 1991; Sugrue and Hay, 1991), 
enabling the passage of protons during endocytosis and thus the acidification of the 
virion core (Hay et al., 1985; Lamb et al., 1985). This feature is crucial to trigger the 
HA conformational change which in turn triggers the membrane fusion process. 
Acidification enables vRNP release from its interaction with M1 (Helenius, 1992).  
 

M2 can be divided into three separate domains: an N-terminal antigenic outer 
domain (res 1-24), a central AM2 trans-membrane domain of 23 residues organised 
as a α-helix and finally an internal C-terminal domain of 50 residues (Pielak and 
Chou, 2011). Two key residues (H37 and W41) have been determined to control 
both selectivity and the unidirectional flow of protons into the viral particle (Wang et 
al., 1995; Tang et al., 2002). Adamantanes derivatives, such as rimantadine, 
maintain the W41 residue within a closed conformation (figure 8B), thus blocking the 
acidification process (Schnell and Chou, 2008). Additionally, the large C-terminal 
domain, also known as the cytoplasmic domain, has been shown to be important in 
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the viral packaging process through its interaction with the M1 protein which serves 
as an intermediate with the vRNPs (McCown and Pekosz, 2006; Chen et al., 2008). 

 
Figure 8: Structures from segment 7 proteins. (A) Crystal structure of N-terminal domain of M1 (res 1-164, 
PDB 1EA3) obtained at pH 7 with a P1 space group. Monomer shown in blue cartoon depiction with its 
neighbouring symmetry generated translation coloured by surface charge. Positive charges are shown in 
blue, negative charges in red. (B) NMR structure (PDB 2RLF) of the tetrameric trans-membrane domain of 
M2 in complex with the rimantadine inhibitor (red). (Depictions were generated with Chimera) 
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M42 shares a homologous trans-membrane and cytoplasmic domain with M2. 

The N-terminal antigenic domain is however completely different due to an alternate 
splicing site (Wise et al., 2012). Little is known about the function of M42 other than 
its potential role as an alternate ionic channel and that it is distributed on Golgi 
apparatus membranes instead of the cytosolic membrane for M2 (Wise et al., 2012). 
 
1.2.2.H SEGMENT 8 
 

Segment 8 contains the genomic information to encode NS1 through a direct 
sequence read-through and NEP (previously called NS2) or NS3 through a spliced 
mRNA read-through.   
 

NS1 is a multifunctional protein implicated in a plethora of mechanisms that 
enhance the viral proliferation of influenza. The length of NS1 is strain-dependent 
and varies between 230 to 237 residues (Wright et al, 2013). Some reports have 
also detected C-terminal truncations (15 to 30 res) of NS1 within infected cells 
(Suarez and Perdue, 1998).  
 

Functionally, NS1 has been characterised to modulate different distinct 
pathways within the infected cell in order to favour viral replication. The most 
prominent of these pathways is the type 1 Interferon (IFN-α/IFN-β) response 
suppression (Hale et al., 2010a). During infections, one of the host cell defence 
mechanisms is the production of cytokines (Type I IFN). The triggering mechanism is 
induced by the recognition of molecular sensors dedicated to the recognition of 
exogenous vRNA, such as the Toll-like receptors (TLRs) (Kawai and Akira, 2011) 
and more specifically for influenza, the RIG-I like receptors (Yoneyama et al., 2004). 
Once these sensors are triggered, the IFN response promotes the up-regulation of 
up to >300 antiviral genes (Randall and Goodbourn, 2008) such as the Mx GTPases 
(Haller et al., 2009). To prevent these cytokine cascades from triggering, NS1 is 
expressed in important quantities within the cytoplasm and outcompetes TLRs and 
RIG-I by binding to the double stranded vRNA (Liu et al., 1997), masking the IFN 
trigger mechanisms. However, this is but one of many strategies of NS1 to counter 
host cell defence mechanisms. NS1 also directly interferes within the cytoplasm with 
antiviral proteins such as 2’-5’-oligoadenylate synthetase (OAS) and serine/threonine 
protein kinase R (Min and Krug, 2006; Min et al., 2007). Furthermore, NS1 has been 
shown to bind to RIG-I activator E3 ubiquitin ligase thereby down-regulating RIG-I 
activity (Gack et al., 2007).   
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Within the nucleus, NS1 modulates the transcriptome of host cell genes by 
interfering with host mRNA synthesis. This interference takes place notably by 
inhibiting the transcription terminator CPSF (Nemeroff et al., 1998) through the 
inhibition of splicing and mRNA nuclear export factors (Fortes et al., 1994; Qiu et al., 
1995; Satterly et al., 2007). 
 

From a structural standpoint, although named non-structural protein 1, NS1 
can be divided into 2 structured domains separated by non-structured linker regions 
(res 73-87, figure 9A) (Carrillo et al., 2014), each domain presenting its own NLS motif 
(Greenspan et al., 1988). The N-terminal domain (res 1-73) is dedicated to the 
recognition and binding of specific dsRNA motifs (Cheng et al., 2009; Liu et al., 
1997). Biochemical (Nemeroff et al., 1995) and structural characterisations (Liu et 
al., 1997; Cheng et al., 2009) have shown that a dimerisation process is required for 
RNA binding (figure 9B).  

 
The C-terminal domain of NS1 (res 87-230), also known as the “effector 

domain”, is involved in the binding of cellular host factors and stabilises the RNA 
binding domain (Bornholdt and Prasad, 2006; Hale et al., 2008, 2010b; Kerry et al., 
2011). The interplay between both domains of NS1 is still not fully understood. Both 
independent domains have a tendency to dimerise through different interfaces, 
suggesting multiple oligomerization states (Kerry et al., 2011).  
 

NEP (previously NS2), is a 121-residue protein translated from the spliced 
mRNA of segment 8. The NEP protein has been shown to integrate within the virion 
particles (Richardson and Akkina, 1991; Ward et al., 1995; Yasuda et al., 1993).  
With M1, NEP is implicated in the nuclear export of RNPs (O’Neill et al., 1998; 
Neumann et al., 2000; Cros and Palese, 2003). In the cytoplasm, NEP contributes to 
the budding process through a mediated interaction with a cellular ATPase (Gorai et 
al., 2012). 
 

Structurally, NEP is predicted as mostly disordered in its N-terminal domain. 
Only the C-terminal domain (res 63-116) has been crystallised (Akarsu et al., 2003): 
it is structured as two antiparallel α-helices of 20 residues each generating an 
amphiphilic structure believed to interact with M1 (Akarsu et al., 2003). Recent 
studies have also highlighted the potential role of NEP in regulating transcription and 
replication of RNP complexes (Bullido et al., 2001; Mänz et al., 2012; Paterson and 
Fodor, 2012). 
 

Also, an alternative mRNA splicing can generate NS3, which shares a 
common C-terminal domain with NEP. NS3 has been reported to enhance the viral 
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replication and could be linked to host adaptation mechanisms. It is only found within 
33 strains which have all a strong propensity to jump host (Selman et al., 2012). 
 

 
Figure 9: Structural features of NS1. (A) Full NS1 protein (PDB 4OPH) depicted in cartoon backbone and 
doted surface depiction. The N-terminal RNA binding domain is coloured green and the C-terminal 
domain is coloured in blue with the linker region in brown. (B) N-terminal RNA binding domain (green) 
interacting with dsRNA (orange) through a dimerization process (PDB 2ZKO). (Depictions were generated 
with Chimera) 
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1.2.3 VIRUS LIFE CYCLE 
 

The influenza life cycle can be divided into five major steps where all the 
previously described viral proteins play multifunctional roles. 
 
1.2.3.A ENTRY WITHIN THE HOST CELL  

(Stages 1 to 4, Figure 10) 
 

HA is the main driving protein within this process, through its recognition of 
Saα2,6 (human influenza strains) and/or Saα2,3 (Avian influenza strains) glycan 
motifs (Connor et al., 1994; Viswanathan et al., 2010). Virions directly bind to the 
surface of host epithelial cells, which triggers the internalisation of the viral particle 
within an endosome. The low pH within the endosome (pH 5-6) then acts as a 
chemical switch on which membrane fusion is dependent. Upon acidification, the HA 
undergoes an important structural conformation change releasing the HA1 
ectodomain and exposing the fusion peptide of the HA2 ectodomain (Harrison, 2008; 
Gamblin and Skehel, 2010). This fusion peptide is then inserted within the 
endosomal membrane and brings both the viral membrane and endosomal 
membrane together.  
 

In parallel, the ion channel M2 enables the passage of protons within the viral 
particle which in turn acidifies the viral core, releasing the vRNPs from their 
interaction with the M1 matrix protein (Matlin et al., 1981). The released RNPs are 
then transiently (10 min) found within the cytoplasm (Martin and Helenius, 1991).  
 
1.2.3.B NUCLEAR IMPORT OF THE vRNPs 

(Stage 5, Figure 10) 
 

One of the main characteristics of the influenza virus is that it performs its 
genomic replication and transcription within the nucleus of the host cell. Viral RNPs, 
due to their important size cannot diffuse through the nuclear membrane. This 
characteristic therefore imposes the hijacking of nuclear import/export mechanism 
through the nuclear pores (Cros and Palese, 2003; Boulo et al., 2007). This is 
required not only to import the incoming vRNPs, but also in later infection stages in 
order to assemble novel RNPs in the nucleus. Core components of the RNP are: the 
vRNA, which is always coated by NP and by the polymerase complex. NP, PA, PB1 
and PB2 all possess one or several nuclear localisation signal (NLS) (Jones et al., 
1986; Nath and Nayak, 1990; Nieto et al., 1994; Cros and Palese, 2003; Boulo et al., 
2007). These NLS signals enable the recruitment of Karyopherin import/export 
complexes (also discussed in chapter 1.4.5). However, it has been shown that the NLS on 
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NP is the most important signalling element for initial RNP import within the nucleus 
(O’Neill et al., 1995; Cros et al., 2005; Ozawa et al., 2007). The NLS of NP recruits a 
karyopherin-α class protein which then serves as an adaptor to recruit the 
karyopherin-β class importin. Karyopherin-β then initiates passage through the 
nuclear pore complex (NPC) and releases the RNPs upon binding to RanGTP 
(Boulo et al., 2007; Cros et al., 2005).  Ran is a RAS family GTPase that cycles from 
the nucleus to the cytoplasm through its binding with a β-importin or β-exportin 
complexes when it is bound to GTP, which is mostly found in the nucleus. Once in 
the cytoplasm, Ran recruits a GTPase activating factor GAP which provokes Ran to 
hydrolyse the GTP into GDP. This triggers the disengagement of Ran from the β-
importin or exportin and enables Ran to diffuse back to the nucleus in order to re-
engage a GTP molecule (Görlich and Kutay, 1999). 
 
1.2.3.C TRANSCRIPTION AND REPLICATION OF THE RNPs 

(Stages 6 to 10, Figure 10) 
 

Once in the nucleus, the RdRp performs two distinct activities (within the RNP 
context) which are the transcription and replication of the vRNA genome (detailed in 

chapter 1.4.4). 
 

Transcription, as further described in chapter 1.4.4.A, relies on the very 
unique mechanism of “cap-snatching” to transcribe the vRNA template into mRNA 
which will then be exported into the cytoplasm and translated into viral proteins (Krug 
et al., 1979; Plotch et al., 1981). Some of these viral proteins are imported into the 
nucleus after translation; such is the case for polymerase subunits (PA, PB1, PB2, 
see chapter 1.4.5), NP, NS1 and M1 through the importin α/β pathway (Boulo et al., 
2007; Hutchinson and Fodor, 2012). NEP, on the other hand is small enough (14,5 
kDa) to diffuse directly into the nucleus. Polymerase subunits and NP will be used in 
the replication of vRNA to generate novel RNPs (Moeller et al., 2012; Ye et al., 
2012). NS1 will interfere with the host cell transcription machinery and also play a 
role in the regulation of vRNP replication (Marión et al., 1997; Robb et al., 2009). 
NEP will participate —together with M1— in the export of RNPs from the nucleus 
(Neumann et al., 2000; O’Neill et al., 1998). 
 

Replication is a primer independent process which leads to the accumulation 
of novel (-) vRNA (Hay et al., 1982). To do so, two main stages have been identified 
as required (detailed in chapter 1.4.4). First the transcription of the (-) vRNA into a 
positive strand template (+) cRNA which itself becomes a template to generate novel 
(-) vRNA. Through this process, cRNA is also coated by newly synthesised NP and 
the RdRp within a transient (+) RNP complex (cRNP).  
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Although the switch between a transcribing and replicating polymerase is not 

yet fully understood, presence of free NP and polymerase for a successful replication 
indicate that a first phase transcription process is required (Huang et al., 1990). A 
self-amplifying loop between replication and transcription will then occur: as more 
template vRNA is produced, more mRNA can be transcribed. 

 
1.2.3.D EXPORT OF THE NEWLY SYNTHETISED vRNPs 

TOWARDS THE BUDDING ZONE 
(Stage 11, Figure 10) 

 
Once formed, novel RNPs will eventually be transported out of the nucleus 

(Shapiro et al., 1987). At first, NP was believed to be responsible of Crm1 binding 
through its two nuclear export signal (NES) domains. However, although Crm1 does 
bind to NP (Elton et al., 2001), no GTPase activity from Ran has been detected upon 
interaction with NP (Akarsu et al., 2003), which is required to trigger the migration of 
Crm1 towards the cytoplasm (Boulo et al., 2007). NEP on the other hand does have 
a NES domain and does activate Ran GTPase, suggesting that NEP links M1/RNP 
to Crm1 for nuclear export. This model points out the key role played by M1 and 
NEP in regulating this phenomenon. Interestingly, post translation modifications may 
be important as showed by the hyper-phosphorylation of M1 which sequesters M1 
within the nucleus (Whittaker et al., 1995). 
 

After being translocated through the nuclear pores, Ran GTP recruits 
RanGAP (Ran GTPase Activating Protein), which then hydrolyses the bound GTP 
into GDP. This provokes a conformational change within Ran which releases the 
GDP and itself from Crm1, triggering the release of the entire exportin bound cargo 
(Boulo et al., 2007).  
 

RNPs are then migrated towards the “budd zone” through the interaction with 
Rab11, a GTPase which associates with endoplasmic reticulum (ER) (Bruce et al., 
2010; Eisfeld et al., 2011). The interaction with Rab11 seems to be mediated by the 
RdRp, possibly through the PB2 subunit. Rab11 in turn interacts with the ER, 
microtubules and a series of host partners in order to migrate the progeny RNPs 
along the ER and towards the apical plasma membrane (Amorim et al., 2011; Avilov 
et al., 2012). Interestingly, the migration along the ER also co-localises RNPs 
together, preparing them for final packaging within the virion (Takizawa et al., 2010; 
Chou et al., 2013). 
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Figure 10: Influenza A virus life cycle. (1) HA mediated viral recognition of sialic moieties on the host cell 
surface followed by internalisation within the endosomes (2). (3) Acidification of the endosome triggering 
the viral and endosomal membrane fusion, which releases the RNPs within the cytosol (4). Importin 
mediated nuclear import of the RNPs (5). Cap-dependent transcription (6) is performed on vRNA to 
generate, through “cap snatching”  chimeric mRNA coding for the different viral proteins which are then 
expressed in the cytoplasm (7). Core RNP viral proteins (NP, PA, PB1, PB2) are then imported back in the 
nucleus (8). (9) Replication of the vRNA using a cRNP intermediate to generate novel vRNA strands 
which are then assembled within new RNPs (10). Upon assembly, novel vRNPs are exported from the 
nucleus (11) to the viral budding zone (12) for final assembly with the other viral proteins. (Adapted from 
Guilligay et al., 2010) 
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1.2.3.E ASSEMBLY AND BUDDING 
(Stages 12 to 13, Figure 10) 

 
As RNPs are formed and make their way to the plasma membrane, HA, NA, 

M2 are also expressed and addressed to the apical side of the plasma membrane 
were they concentrate in lipid raft microdomains (Scheiffele et al., 1999; Nayak and 
Hui, 2004). M1 interacts with all the cytoplasmic tails of NA, HA and M2 and anchors 
them on the nucleocapsid (Rossman and Lamb, 2011).  

 
RNP segment packaging is still currently debated. To date two models exist: a 

random packaging model versus a selective packaging model.  
 
The first model is sustained by the observation that some influenza viruses 

can carry more than the eight required segments (Enami et al., 1991; Bancroft and 
Parslow, 2002; Gao et al., 2010). This model would favour a very important number 
of potential RNP reassortments and only the viruses with the correct combinations 
would be viable. 

 
However, recent studies tend to favour the latter model of selective 

incorporation. Electron tomography experiments have shown a consistent ordering 
by size of the RNP segments within budding virions (Noda et al., 2006; Fournier et 
al., 2012; Noda et al., 2012), with only a limited number of conformations observed.  

 
The signal enabling discrimination RNPs is believed to be present within the 

5’ and 3’ 100-300 nt region which overlaps on both UTR and ORF regions of the viral 
RNA (Luytjes et al., 1989; Muramoto et al., 2006; Hutchinson et al., 2010). In order 
to discriminate among RNPs, segment specific sequences in 5’ and 3’ would be 
responsible for direct linkage between vRNA segments through Watson-Creek base 
pairing (Fujii et al., 2003; Goto et al., 2013). Also, viral assays have shown that 
mutations within these segment specific regions could modify the packaging of other 
segments (Muramoto et al., 2006; Hutchinson et al., 2008; Marsh et al., 2008; 
Hutchinson et al., 2009). This model therefore implies that vRNP structures enable 
direct access to some of the vRNA nucleotides and that evolution has pushed the 
influenza virus to integrate only a limited number of vRNP conformations. This 
question has great importance as it fundamentally defines some of the possible re-
arrangements of influenza virions. 
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1.3 EVOLUTION OF THE INFLUENZA VIRUS 

 
As mentioned earlier, the influenza virus can infect a wide variety of hosts, 

escape multiple layers of host defence mechanisms and use the host cell to its own 
advantage in very unique ways such as “cap snatching”. In modern history, it has 
also been able to evade vaccination whereas other viruses have quasi disappeared 
in humans such as smallpox. All these characteristics are explained by the 
astonishingly efficient adaption mechanisms within the influenza and its ability to 
jump between species. Two main properties drive this adaptation, antigenic “drift” 
and antigenic “shift”. 
 

1.3.1 ANTIGENIC DRIFT 
 

Antigenic drift is a slow but constant process of adaptation of the influenza 
virus to counter the acquired host immunity. It is driven by point mutations within the 
genome of influenza and is the direct result of vRNA replication by the RdRp. It is 
estimated that the RdRp has an error rate of around 1 nucleotide/ 10 000 nucleotide 
insertions during replication as it does not possess any proofreading activity (Drake, 
1993; Boivin et al., 2010). Therefore it is estimated that every progeny virion 
statistically contains one mutation. Every cell generates an estimate of 1000 to 
10000 virions during the infection cycle (Stray and Air, 2001). During this process, 
viable virions with mutated HA and NA which are no longer recognised by 
neutralising antibodies escape from the host immunity and continue the infectious 
cycle (Bush et al., 1999; Plotkin and Dushoff, 2003). 

 
The antigenic drift phenomenon is crucial to the virus for maintaining epidemic 

strains of influenza in circulation, notably to escape vaccine formulation. It is also 
worth noting that this mutagenic property is the main driver behind the emergence of 
antiviral resistant strains. 

 

1.3.2 ANTIGENIC SHIFT 
 

Antigenic shift is a sporadic and important change within the virion genome 
and is the direct consequence of its segmented nature. Indeed, every vRNA within 
the context of a vRNP behaves as an independent sub-genome, comparable to a 
chromosome within humans. This feature enables segmented viruses to reassort 
during a combined infection from two or more strains of viruses. Reassortment has 
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been observed within all influenza genera (A, B and C) but never between them. 
From an antigenic point of view, reassortments can generate novel HA and NA 
combinations that greatly differ from the circulating strains and therefore can 
potentially enhance the infectivity of the virus. As such, reassortments are the main 
drivers behind the emergence of novel pandemic influenza strains but also for 
interspecies adaptation (Wright et al, 2013; Schrauwen et al., 2014).  
 

 
Figure 11: Reassortment events driving the emergence of pandemic influenza A strains. (Adapted from 
Schrauwen et al., 2014) 

 
The importance of reassortment in modern pandemic emergence has been 

demonstrated by the last four major influenza pandemics (Figure 11). For instance the 
1957 and 1968 pandemics were the result of human strains reassortments with 
avian segments coding for HA/PB1/NA or HA/PB1 respectively (Webster et al., 1992; 
Schrauwen et al., 2014; Yoon et al., 2014). The 2009 H1N1 pandemic was on the 
other hand generated by multiple reassortment stages between humans, birds and 
pigs. In the end, the H1N1 virus possessed (N1)/M segments from a Eurasian pig 
influenza strain, (H1)/NP/NS segments originating from another H1N1 swine 
influenza strain, PB2/PA segments from a North American avian strain (H1N1) and 
the PB1 segment from the human epidemic strain H3N2 (Munier et al., 2010). These 
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influenza reassortments that affect humans are but a fraction of the total amount of 
reassortment events occurring in nature. In an ever changing world where climate 
change will modify the habitat, crowding and interaction between all of these 
species, novel unpredictable reassortments are bound to emerge, once again 
pushing the need to better understand the mechanisms behind such reassortments.  

1.4 THE INFLUENZA POLYMERASE STRUCTURE, 
FUNCTION AND ASSEMBLY PATHWAY 

 
As previously described, three of the longest segments of the vRNA genome 

contain the coding sequence for the RdRp complex. Composed of PA (“Polymerase 
Acid”, 716 aa), PB1 (“Polymerase Basic 1”, 757 aa) and PB2 (“Polymerase Basic 2”, 
759 aa), the heterotrimeric assembly of the polymerase is the largest protein 
complex of the viral particle (250 kDa). Within the context of a vRNP, the polymerase 
binds to the promoter regions of the vRNA (5’ and 3’ termini) and together with NP is 
the molecular machinery that drives Replication and Transcription of the vRNA 
genome. 
 

1.4.1 FOUNDING WORK ON THE POLYMERASE SUBUNITS 
 

For many years, the study of the polymerase complex was limited to a 
biochemical approach due to inherent difficulties in the structural characterisation of 
individual subunits of the polymerase complex.  
 

Little was known of PA’s function for a long time other than it was linked to the 
replication process, as this was shown through thermosensitive mutants (Krug et al., 
1975; Mahy, 1983; Honda et al., 2002). Later on, some research showed a specific 
link with replication and transcription (Fodor et al., 2002; Regan et al., 2006), most 
notably through the inhibition of the endonuclease activity (Fodor et al., 2002). Other 
studies have also shown PA to be associated with a virus-induced proteolysis activity 
(Sanz-Ezquerro et al., 1996; Hara et al., 2001; Perales et al., 2000). This subunit 
was described to be the most soluble when expressed independently, hinting a 
stabilising role towards PB1 which cannot be expressed alone (Hara et al., 2006). 
 

PB1 was identified as the central subunit at the core of the heterotrimeric 
complex (Digard et al., 1989) housing the polymerase activity. Early bio-informatics 
studies predicted the central region of PB1 to contain the conserved A-D motifs of 
RdRps (Poch et al., 1989) but also the pre-A and E motifs, which are exclusive to 
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segmented negative strand RNA viruses (Müller et al., 1994). These predictions 
corroborated earlier work using thermosensitive mutants which had already shown 
the pivotal role played by PB1 in the transcription/replication process (Mahy, 1983) 
and were in turn confirmed by point mutations (Biswas and Nayak, 1994). Differently 
from PA, no single domain of PB1 was ever expressed in a soluble form hinting its 
conformational dependency on other proteins, notably PA with which it interacts 
through a specific interaction domain (Pérez and Donis, 1995; González et al., 1996; 
Toyoda et al., 1996; Zürcher et al., 1996) and was shown to form a dimeric complex 
(Lee et al., 2002; Deng et al., 2005). 
 

PB2 was shown early on to interact with capped RNAs (Blaas et al., 1982; 
Ulmanen et al., 1981) and to play a pivotal role in the initiation of transcription (Plotch 
et al., 1981). Through a thermosensitive mutant analysis it was confirmed to be 
important for transcription (Mahy, 1983). Later point mutational studies confirmed the 
importance of PB2 in the cap binding process (Fechter et al., 2003) but also in the 
replication process (Gastaminza et al., 2003; Jorba et al., 2009). 
 

1.4.2 LOW RESOLUTION EM MAPS AND INDIVIDUAL DOMAIN 
STRUCTURES OF THE POLYMERASE  

 
It was not before the beginning of the 2000s decade that structural information 

on the polymerase was obtained. Before that, classical structural biology techniques 
such as EM, protein crystallography and NMR were all subject to their own 
limitations. EM was just starting to be used in order to produce large assembly 
reconstructions and although RNPs could be purified, their high degree of flexibility 
made the process of class averaging difficult. X-ray crystallography and solution 
NMR required important quantities of highly pure soluble protein and before 2007 no 
soluble crystallising domains had been isolated. 

 
The first structural breakthrough came with the design of artificially small and 

circular mini RNPs (Ortega et al., 2000). These mini RNPs remain replicase and 
trancriptase active. Using a 248 nucleotide vRNA coated by 9 NPs and one RdRp 
would ultimately generate a minimal mini vRNP rigid and homogenous enough for 
EM negative staining studies (Martín-Benito et al., 2001), producing the first ever low 
resolution model of a polymerase at 36 Å resolution within an RNP complex at 27 Å 
resolution (Figure 11A). This model was later improved in resolution to 24 Å and further 
characterised through the localisation of the polymerase subunits using subunit-
specific monoclonal antibodies (Area et al., 2004). With the advent of modern cryo-
EM imaging, the mini RNP was eventually modelled at higher resolution (Figure 12B), 
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giving unique structural insight into the NP oligomerization process (Coloma et al., 
2009). NP protomers could be visualised with a 12 Å resolution enabling a precise 
fitting of the atomic structure of NP. The polymerase was characterised at 18 Å 
resolution. More recently, two groups were independently able to produce full RNP 
particle cryo-EM reconstructions using images from linearised RNPs, but also by 
separating the class averaging over the segments and the RNP (Arranz et al., 2012; 
Moeller et al., 2012). This produced 20 Å models of both native RNPs (Figure 12C) 
(Arranz et al., 2012) and recombinantly produced RNPs (Moeller et al., 2012) and 
gave rise to distinct interpretations of NP conformation with the supra-helical 
structure. 

 
Figure 12: EM and cryo-EM models of RdRps isolated or within the context a vRNP. (A) Very first 
negative stain EM reconstruction of the mini-RNP particle at 27-36 Å resolution (Martin-Benito et al., 
2001). (B) Cryo-EM reconstruction at 12-18 Å resolution with fitted NP atomic model (Coloma et al, 2009). 
(C) Native RNP polymerase end reconstruction at 20 Å resolution with three separated domains in brown 
grey and green (Arranz et al., 2012). (D) Negative EM models of unbound polymerase at 25 Å resolution 
with coloured domains (Torreira et al., 2007). (E) vRNA bound polymerase negative stain EM model at 24 
Å resolution (Resa-Infante et al, 2010). (F) Cryo-EM reconstruction at 13 Å resolution of the unbound 
polymerase (Moeller et al., 2012). 
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Figure 13: Domain structures of the influenza A RdRp. (A) N-terminal endonuclease domain of PA (Dias 
et al., 2009). (B) C-terminal domain of PA (He et al., 2008). (C) PB1c-PB2n interacting domain (Sugitama et 
al, 2009). (D) Cap binding domain of PB2 (Guilligay et al., 2008). (E) C-terminal host interaction and NLS 
dual domain of PB2 (Tarendeau et al., 2008). NLS domain of PB2 in a free state (F) or bound (G) to 
importin-α5 (Tarendeau et al., 2007). (Adapted from Ruigrok et al., 2010) 
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In parallel to characterising the polymerase bound to vRNA within RNPs, 
recombinant expression of the polymerase was undertaken within mammalian cells 
and produced only enough material for negative staining reconstructions. Several 
models were generated at around 25-26 Å of resolution for unbound (Torreira et al., 
2007) or bound (Resa-Infante et al., 2010) polymerase to a vRNA template (Figure 12D 

and 12E). More recently, a refined cryo-EM RNA free structure of the full recombinantly 
produced polymerase was also produced at 13 Å resolution (Moeller et al., 2012) 
(Figure 12F). The comparison of these structures between them and with the vRNP 
bound forms showed similarities in overall architecture but also many differences, 
revealing potentially important conformational changes upon RNA binding and an 
inherent mobility of some of the domains (Torreira et al., 2007; Martín-Benito and 
Ortín, 2013). 
 

In conjunction with the EM successes in describing the overall architecture of 
the polymerase trimer, the very first atomic details of the polymerase were obtained 
on isolated soluble domains of PB2 by the ESPRIT screening methodology 
(Expression of Soluble Proteins by Random Incremental Truncation) (Tarendeau et 
al., 2007). An automated truncated fragment library search identified two separate 
domains on the PB2 protein, which are now describe.  
 

First, the C-terminal NLS domain (res 678-759), containing a bipartite NLS 
peptide (736-RKRX12KRIR-755), enables the recruitment of importin-α, itself an 
adapter to importin-β (Tarendeau et al., 2007). The structure of the NLS domain was 
determined both in solution using NMR (Figure 13F) and by X-ray crystallography in 
complex with importin-α 5 (Figure 13G). In these structures, the NLS signalling peptide 
adopts a completely different conformation. It is observed folded against the NLS 
domain when unbound to importin-α (NMR structure) and extended onto the 
importin-α binding within the complex (Tarendeau et al., 2007). In later studies, this 
domain was also crystallised within a N-terminally extended construct (res 538-759, 
Figure 13E) which included a new, individually folded domain that was also crystallised 
alone. Named the host interaction domain, it is highly implicated in host pathway 
interactions (Tarendeau et al., 2008; Kuzuhara et al., 2009). This host adaptation 
domain (res 538-678) has an exposed Glu 627 on its surface whose mutation into an 
lysine is crucial for the influenza virus adaptation within mammal hosts (Shinya et al., 
2007; Naffakh et al., 2008).  Interestingly, the double host adaption/NLS domain was 
observed folded in a manner which was incompatible with importin-α binding, 
suggesting that important conformational changes can take place between those two 
domains (Tarendeau et al., 2008; Kuzuhara et al., 2009). 
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The second major domain was a middle domain (res 320-483, Figure 13D) 
which is folded into a cap binding domain (Guilligay et al., 2008). This structure was 
solved using x-ray crystallography and was observed bound to m7GTP revealing the 
key residues implicated in cap recognition. Notably his357/phe404, which sandwich 
the methylated base, and glu361/lys376 that specifically interacts with the guanine 
nucleobase. Those same residues are also highly conserved among influenza 
viruses. Mutations on some of these residues within PB2 would then lead to a loss of 
transcription activity but not to a loss in replication within a mini-vRNP assay 
(Guilligay et al., 2008), ultimately showing the crucial role played by the cap binding 
domain in “cap snatching”. For these reasons, the cap-binding domain has been the 
focus of extensive antiviral compound screening by different research groups. 
 

Differently from PB2, or PB1, PA is a highly soluble protein when expressed 
on its own but cannot be crystallised as a full protein. It was however shown that a 
trypsin digestion of PA generates two major degradations, a N-terminal 25 kDa 
domain and a C-terminal 55 kDa domain (Hara et al., 2006). Construct optimisation 
led both domains to be eventually crystallised by several groups. 
 

The first domain to be characterised was the C-terminal domain (res 257-716) 
which was co-crystallised with a short part of the PB1 N-terminus (res 1-15, Figure 

13B) by two independent groups at the same time (He et al., 2008; Obayashi et al., 
2008). Both groups however, although suspecting a potential positively charged 
binding groove for the viral RNA, could not determine any biochemical activity from 
this domain. However, the presence of the PB1 binding domain opened the gateway 
to antiviral compounds targeting the PA-PB1 interaction (Li et al., 2012; Muratore et 
al., 2012). 
 

In the following year, once again two separate groups solved the structure of 
the N-terminal domain (res 1-197, Figure 13A) of PA. It was shown to house the 
endonuclease domain of the polymerase and presented a fold comparable to class II 
endonucleases (Dias et al., 2009; Yuan et al., 2009). Both groups however 
presented a divergence in the metal ions present in the catalytic site. Yuan et al. 
crystallised the domain with one Mg2+ ion within the catalytic site and conducted 
point mutations on the residues implicated in its recognition, demonstrating that 
these conserved residues could affect replication in a recombinant RNP system. 
Dias et al. crystallised the domain with two Mn2+ ions within the catalytic core, with 
one of the Mn2+ ions placed at the same atomic position as in the structure from 
Yuan et al. This metallic configuration is not as common; however, Dias et al. were 
able to show in vitro the direct efficiency increase of Mn2+ for RNA and ssDNA 
cleavage when compared to Mg2+ of Co2+. Later on, a study undertaken by our group 
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(which is detailed within the supplementary publication n°3) showed that Mn2+ 
was bound to the endonuclease domain with a 500 fold superior affinity than Mg2+ 
and that point mutations within the key residues implicated in the recognition of 
manganese severely disrupted the endonuclease activity (Crépin et al., 2010). As for 
the cap binding domain, the endonuclease domain has recently been the focus of 
intense compound screening in the hope to design novel inhibitors of the influenza 
virus (Kowalinski et al., 2012; DuBois et al., 2012). 
 

As I started my work on the polymerase, 90% of the PB1 protein was still 
structurally un-characterised. The only described structures were those of the 
interacting domains, res 1-15 for the interface with PA (He et al., 2008; Obayashi et 
al., 2008) and  res 685-757 which forms the interface with PB2 (Sugiyama et al., 
2009). However, towards the end of my PhD, a series of papers would finally unravel 
the overall structure of the RdRp. 

1.4.3 FULL ATOMIC MODELS FOR THE RNA DEPENDANT RNA 
POLYMERASE 

 
As you will later read in this thesis, our group has focused since a number of 

years to obtain the structure of the influenza A polymerase. In 2010, our group in 
collaboration with Imre Berger attempted a novel expression method to express the 
complex. This insect cell expression method (extensively discussed in the 
supplementary publication N°1) relies on the principle that all the subunits of a 
given complex are jointly expressed as one single polyprotein with TEV (Tobacco 
Etch Virus protease) cleavage sites in between every subunit. During expression, 
TEV, which is the first protein to be expressed, processes the polyprotein to 
generate a stoichiometric assembly of the complex. Although very promising 
compared to other recombinant expression methods, this method does not yet 
enable the full expression of an influenza A H3N2 (Human) or H5N1 (Avian) 
polymerase. The elements generating this problem and the optimization of these 
constructs will be discussed within the results chapter of this Thesis.  

 
Our collaborators S.Cusack et al. have applied this same methodology 

successfully on distinct influenza strains and were able to express and crystallise a 
full influenza B polymerase (Reich et al., 2014) and influenza A H17N10 from the 
newly discovered bat strain (Pflug et al., 2014).  Although sharing approximately 
36% of sequence identity for PA and PB2 and 60% for PB1, both polymerases are 
structurally homologous in the overall architecture. The full polymerase adopts a U 
shape configuration with two protruding arms (Figure 14A), corresponding to the 
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endonuclease domain of PA and the cap-binding domain of PB2 that face each other 
and are at the entrance of an important tunnel. 
 

Previous domain structures of the PActer-PB1nter and PB1cter-PB2nter are 
found as expected. However, the complexity with which all subunits fold together is 
much more important than previously thought. PA when visualised alone (Figure 14B) 
is folded into two completely separate domains, linked by a very long linker called 
PA-hinge, which is completely wrapped around PB1 (Figure 14A). One small domain in 
the N-terminus corresponding to the endonuclease domain and a bigger C-terminal 
domain which is packed against PB1. PB1 is at the core of the complex and 
organised as one single domain (Figure 14B) interacting at a majority with PA on one 
face and with PB2 to a lesser extent on the other (Figure 14A). Interestingly, the region 
proposed to regulate the nuclear import of PB1, containing a bipartite NLS motif is 
folded into a very long and exposed β-ribbon (Figure 14A). 
 

PB2, like PA, is spread out over the entire polymerase (Figure 14B) into what 
can be simplified as three main regions. The first N-terminal region (res 1-247) 
consists in a series of α-helices and a few β-strands which tightly intertwine with the 
C-terminal domain of PB1 (Figure 14A) and support the N-terminal endonuclease of 
PA, making this region unique, as all three subunits interact with each other. The 
second region is the globular cap-binding domain (res 320-480) which itself sits on 
the last C-terminal region of PB2 composed of several sub-domains (res 480-751).  
 

Importantly, both influenza B and influenza A polymerases were crystallised 
bound to a specific combination of 3’ and 5’ vRNA promoter sequences (Figure 14C). 
Both strands are bound in a very unique conformation which answers the 
longstanding dilemma of whether the promoter ends form a “panhandle” structure 
(Hsu et al., 1987; Fodor et al., 1994) or a “corkscrew” (Flick et al., 1996; Tomescu et 
al., 2014) structure. In reality the two vRNAs form a mix of both models with both 
strands exiting the polymerase as a duplex (3′ 10-UCUC-13 with 5′ 11-AGAG-14), 
however when entering the polymerase both 3’ and 5’ vRNA are separated and bind 
in different ways. The 5’ vRNA strand forms a hook structure as some models had 
already predicted (Pritlove et al., 1999) and is bound at the PA-PB1 interface. The 3’ 
vRNA is packed as a single stranded arc and most interestingly binds in a specific 
RNA binding pocket which is composed of all three subunits. Importantly, the 3’ 
vRNA appears to be directed out of the polymerase active site; this characteristic, 
also observed in influenza B, puts into question the initiation of polymerization on the 
3’ strand. 
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Figure 14: influenza A H17N10 overall structure. (A) Surface representation of the polymerase with PA in 
blue, PB1 in green and PB2 in red. The endonuclease of PA, the cap binding domain of PB2 and the NLS 
containing β-ribbon on PB1 are drawn in cartoon style. vRNA promoters are depicted in dark blue 
(3’vRNA) and magenta (5’vRNA) ribbons. (B) Cartoon depiction of the separate subunits with the surface 
envelope in the background. (C) Ribbon and stick diagram of the 3’ and 5’ vRNA promoter structure 
within the polymerase. (PDB: 4WSA). (Depictions were generated with Chimera) 
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As previously mentioned, PB1 is found as a single well-folded domain with 
several extruding features (Figure 15A). These features include an N-terminal PA 
binding region (res 1-15), the C-terminal PB2 binding region (res 669-750) and the 
NLS containing β-ribbon (res 177-212) motif, but also the β-hairpin motif (res 352-
360) that intricately folds within the PA C-terminus in a location crucial for vRNA 
binding.  Structurally, it presents the classical organisation of a RdRp. Analogous to 
a human right hand; it is configured successively in “finger, palm and thumb” 
domains. The “finger” and “thumb” domains present “fingertips” which are 
unstructured loops within the active site possessing the highly conserved 
polymerase pre-A/F and A to E motifs which catalyse the polymerisation reaction. 
One of these loops extended from two antiparallel β-strands  (res 640-657) is 
believed to be a priming loop enabling primer independent replication. Structural 
alignments with other polymerases have determined the closest analogue structure 
to be from the HCV polymerase (Figure 15C) and Norwalk polymerase to a lesser 
extent (Figure 15B). Based on these homologues, a model for template entry, 
template/product exit and nucleotide entry has been proposed (Figure 15 D) and fits 
with the existing solvent tunnels within the structure. 
 

Although structurally aligned, influenza B and bat influenza A crystals forms 
display a few distinct structural differences; the most important of which is the 
orientation of the cap-binding domain of PB2. In bat influenza A, the cap-binding site 
is found facing the endonuclease active site at a distance of 50 Å which is consistent 
with predicted cleaved mRNA length of 12-15 nt (Sikora et al., 2014)  whereas in 
influenza B, it is observed tilted 70° down, which would lead the mRNA primer into 
one of the PB1 active site tunnels. In one of the two influenza B structures, there is 
even residual non-attributed electron density showing a ssRNA pattern bound to the 
cap-binding domain and directed within the active site. These fortuitous observations 
are but frozen states of the polymerase which probably adopts a multitude of 
conformations; however, they enrich the current models explaining cap-dependent 
transcription. 
 



1.4  THE INFLUENZA POLYMERASE STRUCTURE, FUNCTION AND ASSEMBLY PATHWAY 

48 

 
Figure 15: Structure of the PB1 polymerase active site (PDB: 4WSA). (A) Side and front view of PB1 
drawn in a cartoon representation with a rainbow colouration of all sub-domains. (B) Superposed 
Norwalk polymerase (PDB: 3BSO) front view coloured with the same sub domain colour code as for PB1. 
(C) Superposed HCV polymerase (PDB: 2XI3) which possesses a priming loop coloured in purple. (D) 
Visualisation of the PB1 catalytic site in cartoon representation with a colouration distinguishing the 
different highly conserved pre A/F and A to E motifs. Based on the Norwolk polymerase catalytic (PDB: 
3BSO) domain superposition, location of the yet undetermined metal ion configuration to initiate the 
polymerase reaction of incoming NTPs and product formation. Supposed NTP, template entrances and 
product/template exit channels are visualised with orange arrows. (Adapted from Pflug et al., 2014) 
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1.4.4 CURRENT MODELS FOR TRANSCRIPTION AND 
REPLICATION 

 
1.4.4.A TRANSCRIPTION 
 

As previously mentioned, transcription of vRNA enables the synthesis of 
positive strand mRNA, coding for viral proteins. Differently from other viral 
polymerase complexes, the influenza RdRp does not possess a guanylyl 
methyltransferase activity required for synthesising a 7-methy-guanosine “cap” on 
the 5’ extremity of the newly synthesised RNA. Yet the presence of a “cap” in 5’ and 
of a poly-U tail in 3’ is compulsory for translation of the novel mRNA. Therefore 
evolution has pushed the influenza virus to generate capped mRNAs through a cap 
dependent mechanism known as “cap snatching” (Bouloy et al., 1978; Plotch et al., 
1979, 1981). This mechanism recruits all three of the polymerase subunits to 
perform different sequential tasks. First, the cap binding domain of PB2 will bind a 
nascent host cell mRNA through its cap-binding domain (Figure 16A). Experimental 
evidence seems to indicated that the RdRp recruits the host cell RNA polymerase II 
in order to be favourably exposed to nascent mRNA (Engelhardt et al., 2005; Mayer 
et al., 2007; Rodriguez et al., 2007), showing how the polymerase “hijacks” the host 
cells’ own replication machinery. After binding the cap, the endonuclease on the N-
terminus of PA cleaves the mRNA (Figure 16A) to a length of 12-13 nt with a specific 
preference for 3’ ends of guanine bases (Datta et al., 2013). The cap-binding domain 
of PB2 is then thought to freely rotate the cleaved mRNA primer into the active site 
through a primer specific tunnel (Figure 16B), thus enabling a base pair formation to 
occur. This event triggers the elongation phase (Figure 16C) where the vRNA is read 
from the 3’ extremity to the 5’ end. Reaching the 5’ end, the polymerase will then 
generate a poly A tail by a stuttering mechanism triggered by the template strand 
blocked on a poly U sequence by the 5’ extremity, which maintains its interaction 
with the polymerase (Tiley et al., 1994; Poon et al., 1999; González and Ortín, 1999). 
 
1.4.4.B REPLICATION 
 

Replication is a series of sequential stages which ultimately generates 
multiple novel copies of vRNA. Mechanistic differences must exist during both 
transcription and replication stages in order for the polymerase to completely 
replicate the vRNA or cRNA back into vRNA, without capping those RNAs or adding 
a poly A tail. Also, during replication, NP must be recruited and oligomerize onto the 
nascent RNA. Hence, several factors probably regulate the switch between a 
replicative polymerase and a transcribing polymerase.  
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Figure 16: “Cap-snatching mechanism” modelled with the new polymerase structures. (A) The RdRp 
bound to vRNA catches a nascent mRNA with the PB2 cap binding domain in orange and cleaves it 12-
13nt downstream with the PA endonuclease in green. (B) The cap binding domain then rotates 70° down 
to present the cleaved mRNA primer within the polymerase active site in blue where it forms a partial 
complementarity with the 3’ end. (C) Elongation phase where both template and product are release as 
separate strands. (D) Poly A generated through a stuttering mechanism on the poly U motifs on the 5’ 
represented in pink. (Adapted from Reich et al., 2014) 

These factors may include cellular factors such as a host cell interactants like 
the RNA Pol II (Engelhardt et al., 2005) or the MCM replicative helicase (Kawaguchi 
and Nagata, 2007). However, strong evidence supports newly synthesised free NP 
as one of the key switches from a transcriptive to a replicative vRNP complex; this 
could be the effect of a polymerase/NP interaction (Biswas et al., 1998; Mena et al., 
1999; Poole et al., 2004) or an interaction of NP with the vRNP template RNA (Hsu 
et al., 1987; Fodor et al., 1994; Klumpp et al., 1997). NEP also has been shown to 
downregulate de novo synthesis and increase transcription (Bullido et al., 2001; 
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Robb et al., 2009).  Another important regulatory element could be the initiation 
mechanism. In both de novo synthesis steps, an ApG dinucleotide primer is 
synthesised by the polymerase. However, in the case of cRNA the ApG primes the 
+4 position requiring the product to realign with the +1 position (Deng et al., 2006a; 
Zhang et al., 2010).  
 

The first stage consists in the synthesis of cRNA from vRNA during the early 
phases of infection and for a short period of time. The amplification process 
generating more vRNA seems to happen in later stages of infection (Hay et al., 
1977). This observation also correlates with later studies which used thermosensitive 
mutants towards vRNA synthesis yet showed normal levels of cRNA accumulation, 
suggesting that cRNA synthesis is a restricted process mostly performed on the 
incoming vRNAs (Wolstenholme et al., 1980; Thierry and Danos, 1982; Falcón et al., 
2004) 
 

In a later stage, the polymerase performs a second de novo synthesis on the 
cRNA to generate vRNA. For this second step, a new model has emerged from a 
trans-complementation experiment showing that cRNP would be used as a template 
by a second “trans” non-resident polymerase polymerase (Jorba et al., 2009; Resa-
Infante et al., 2011). This “trans” model (figure 17A) can be rationalised if the 3’ vRNA 
promoter can be swapped and initiates with the incoming polymerase, which then 
proceeds into an elongation phase. The newly synthesised 5’ vRNA would then 
recruit another non-resident polymerase and free NP would oligomerise on the rest 
of the vRNA. This model also allows a chain of polymerase to perform replication on 
the same cRNA leading to an amplification of the vRNA.  
 

Another “trans” model has also recently been proposed where the initial non-
resident polymerase would directly bind to the nascent 5’ vRNA (Moeller et al., 
2012). Termination in any case would also imply the release of the 5’ vRNA from the 
resident polymerase in order for a full read-through to occur (Figure 17B). In these 
trans models, the 5’ vRNA sequence would play a pivotal role as it would actually 
regulate the resident polymerase into only performing “cis” transcription. The bound 
5’ vRNA would impose a steric block, inducing poly-A synthesis during termination. 
Observations of a specific rigid hook structure of the 5’ vRNA when bound to the 
polymerase (Pflug et al., 2014; Reich et al., 2014) and the specific biochemical 
recognition of the 5’ towards the polymerase (Tiley et al., 1994; González and Ortín, 
1999) seem to support such models. 
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Figure 17: "Trans" model for vRNP synthesis. (A) Initiation and elongation phase of a non-resident 
polymerase on a released 3' vRNA promoter. The nascent 5' is bound by a second incoming non-resident 
polymerase. (B) Termination step where the resident polymerase is forced to dissociate from the 5’ vRNA 
end. (Adapted from Resa-Infante et al., 2011) 

1.4.5 ASSEMBLY PATHWAY OF THE POLYMERASE 
 

As previously described, the RdRp is an intricate multi-subunit protein 
performing a plethora of activities and interacting with a number of host cell and viral 
proteins. The detailed structural fold of all subunits implies a complex assembly 
process requiring specific refolding kinetics of all subunits in order to generate 
functional complexes. As previously mentioned, the karyopherin-α and β class of 
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proteins play a major role in this process. They transport the different subunits from 
the cytosol, where they are expressed, to the nucleus where they will assemble into 
fully formed complexes to then perform transcription and replication. When looking at 
the RNP as a whole, import and export mechanisms are required during the initial 
and final stages of infection (as previously described in chapter 1.2.3.B and 1.2.3.D)  
 

Importantly, for the polymerase complex assembly within the nucleus, this 
import process takes place with two distinct nuclear import routes (Figure 18A).  
 

PB2 on one side is imported by recruiting the importin-α isoforms (Figure 18), 
giving access to the classic nuclear import pathway (Görlich and Kutay, 1999; 
Marfori et al., 2011). This import pathway is a multi-step process in which importin-α 
will bind to the bipartite NLS of PB2 (Mukaigawa and Nayak, 1991; Tarendeau et al., 
2007), then recruit importin-β1 for nuclear translocation. Upon entry within the 
nucleus, the importin-β1 will release the importin-α when bound to RanGTP which 
acts as the association/dissociation regulator of nuclear import. This import pathway, 
although conventional, relies on a conformational state of PB2 rendering the NLS 
domain accessible, which has not been observed when the NLS domain is 
expressed with the C-terminal domain (Tarendeau et al., 2008; Kuzuhara et al., 
2009). These data suggest a required conformational change in PB2 for importin-α 
binding. The interaction with importin-α isoforms is also a crucial element in host 
adaptation and cellular tropism (Resa-Infante et al., 2008; Boivin et al., 2010; Resa-
Infante et al., 2014). Also, during the release from importin-α, other cellular factors 
such as Nup50 from the NPC may play a role in maintaining PB2 from re-binding 
importin-α (Pumroy et al., 2012). Additionally, the chaperone protein Hsp90 seems to 
play a role in stabilising PB2 during this process and is imported together with PB2 in 
the nucleus during infection (Naito et al., 2007; Chase et al., 2008). 
 

PA and PB1 seem to associate upon expression within the cytoplasm possibly 
through the recruitment of additional cellular factors; also, they seem strictly 
interdependent on each other for nuclear accumulation (Nieto et al., 1992; Fodor and 
Smith, 2004; Loucaides et al., 2009; Huet et al., 2010). Both proteins contain NLS 
signals. PA has two NLS motifs, one (res 124-139) which is on the endonuclease 
domain. The second (res 186-247) is located on the PA hinge region linking the 
endonuclease to the C-terminal domain on the influenza A structure (Pflug et al., 
2014). Most importantly, PB1 has a bipartite NLS domain (res 187–190 and 207–
211) located on the extremity of the long and highly exposed “β-ribbon” motif on the 
full polymerase structure (Pflug et al., 2014; Reich et al., 2014). It has been shown to 
recruit RanBP5 (Deng et al., 2006b; Hutchinson et al., 2011). Also called β-importin 
Ran Binding protein 5, importin 5 or Karyopherin β-3, this β-class importin is the only 
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described importin for the import of PA-PB1 and, contrary to PB2, does not seem to 
be subject to host restriction (Hutchinson et al., 2011). With this regard, the bipartite 
NLS of PB1 sequence is found strongly conserved among many influenza A 
subtypes (Figure 18B) and the inhibition of interaction with PA-PB1 through 
mutagenesis affects viral proliferation (Hutchinson et al., 2011; Hutchinson and 
Fodor, 2012).  

 
Figure 18: Nuclear import routes of full RNPs and single constituents through the NPC (PA, PB1, PB2 
and NP). (B) Residue propensity on the PB1 bipartite NLS after a multiple sequence alignment on human 
and avian influenza A strains. (Adapted from Hutchinson et al., 2012 and Hutchinson et al., 2011) 
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RanBP5 is a non-classical import factor binding the cargo protein directly 
without an importin-α intermediate (Jäkel and Görlich, 1998). It is however regulated, 
like other conventional β-importins through the interaction with RanGTP. Other than 
the influenza polymerase, RanBP5 has been shown to enable the import of other 
proteins involved in nucleic acid binding such as ribosomal proteins (Jäkel and 
Görlich, 1998), core histones (Baake et al., 2001) and other core cellular proteins 
(Ross et al., 2003; Fu et al., 2006; Chung et al., 2008). Moreover, it is also involved 
in the interaction and/or import of a multitude of other viral proteins such as the rev 
protein from HIV (Arnold et al., 2006), several of the Human Papilloma virus core 
proteins, such as L1-L2-I2 capsid proteins (Nelson et al., 2003; Darshan et al., 2004; 
Klucevsek et al., 2006) and the E5 oncoprotein (Krawczyk et al., 2008). More than a 
nuclear import factor, RanBP5 also plays a chaperone role by interacting with highly 
basic motifs on RNA binding proteins (Jäkel et al., 2002), a role which it is also 
believed to play with the PA-PB1 polymerase dimer (Hutchinson and Fodor, 2012; 
Hutchinson et al., 2011). 
 

Although structurally un-characterised, the overall fold of the protein will be 
comparable with that of other Karyopherin-β proteins, several of which have been 
crystallised in free, NLS bound or RanGTP bound forms (Cook et al., 2007; Xu et al., 
2010). However, to date no model exists describing an importin-β bound to a 
complete cargo protein. The closest protein sequence homologue to be structurally 
characterised was the yeast Kap121p (Kobayashi and Matsuura, 2013) which shares 
30% of sequence identity with RanBP5. Kap121p is organised as a right hand super-
helix constituted of 24 HEAT repeats which are two A and B antiparallel α-helices 
connected by loops of varying length (Figure 19A). As seen on the Figure 19A, these 
helices are exposed in a consistent fashion throughout the whole structure. A-α-
helices form the outer convex surface and will interact with the NPC during nuclear 
import whereas B-α-helices form the inner surface which mediates both NLS and 
RanGTP binding in the N-terminal half of the molecule. The N-terminal and C-
terminal first and last heat repeats are tilted, compared to the other heat repeats. 
This has the effect of capping the structure, which also packs with itself through an 
unfolded loop domain insertion (H15 or H18). Strong conformational changes occur 
upon binding of either a short NLS motif or RanGTP. In the case of Ran GTP, the 
binding event is shown to push out the bound NLS which is on an adjacent binding 
site (Figure 19B), the overall structure additionally undergoes conformational changes 
in the C-terminal half of the molecule.  
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Figure 19: Kap121p structural architecture. (A) Cartoon depiction of Kap121p with heat repeats coloured 
in orange for A α-helices and green for B α-helices. Unstructured loops H8 and H18 are coloured 
respectively in blue and black, the H15 insert is coloured in red. (B) Schematic view with the same colour 
code, RanGTP and NLS binding sites are detailed in purple and red. (Adapted from Kobayashi et al., 
2013) 

For RanBP5, a comparable structural behaviour can be expected. There is 
however a multitude of binding strategies for β-importins with conventional bipartite 
NLS motifs. Structural information on this binding process, combined with the 
understanding of the potential chaperone role played by RanBP5 on PA-PB1 could 
open a new pathway for potential inhibition of the polymerase assembly process. 
This in turn could lead to a new druggable target in the fight against influenza. 
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1.5 THESIS OBJECTIVES 
 

In the initial phase of the project, the only structural data describing the 
influenza A virus (IAV) RNA-polymerase was either fragmented or of low resolution. 
Most of crystal structures of soluble domains on the polymerase had already been 
described. As such, the biggest unknown feature was PB1 and parts of PB2. The 
global fold of the polymerase was also unknown although several low-resolution EM 
maps existed. 

Our group set out to express the full polymerase using recombinant 
polyprotein baculovirus technology. It was quickly found that full polymerase 
expression for the H3N2 and H5N1 strains was very difficult, especially in the 
quantities required for structural biology studies. Early crucial work established a 
truncated trimer construct which could express PA-PB1-PB2(1-116). This truncated 
polymerase was both replicase and endonuclease active. Historically, this construct 
was most probably one of the first to enable recombinant expression of PB1 in the 
world.  It however never crystallised for reasons that will be discussed in this thesis.  
Within this context, my thesis project was both to find a minimal crystallising domain 
for the polymerase but also investigate the factors limiting full polymerase expression 
and propose eventual solutions to these problems. As such, multiple truncated 
polymerase constructs were designed with the intent to produce crystallising 
polymerase core domains which all included PB1. Some of these constructs, 
including the polymerase heterodimeric assembly PA-PB1(1-686) could be purified 
without glycerol and to very high concentrations. These new properties enabled for 
Small Angle X-Ray Scattering (SAXS) to be performed and made the protein easier 
to use in affinity binding measurements. 

In parallel to working on the polymerase, my project also focused on 
expressing the cellular factor RanBP5 for crystallographic studies. In the later stages 
of my thesis, RanBP5 was inserted within the polymerase polyprotein expression 
construct with the intent to reconstitute the import complex. This thesis therefore 
initially focused on two very different protein complexes, however towards the end of 
the thesis, both projects came together in the form of the PA-PB1(1-686)-RanBP5 
complex. 

Finally, the production of an important construct library enabled us to set up 
and validate small scale high-throughput insect cell experiments with the intent of 
establishing a robust protocol for polymerase complex screening. This methodology 
will also enable wider screening of any multi-protein complex expressed in insect 
cells. 
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Résumé du chapitre 2 en Français 
 

Ce projet a fait intervenir plusieurs techniques et méthodes  expérimentales 
ayant conduit aux  résultats présentés dans ce manuscrit. 
Une stratégie d’expression de la polymérase tronquée a été mise en place en 
cellules d’insecte afin de produire une polyprotéine clivée à la TEV. Pour ce faire, 
des techniques de biologie moléculaire ont permis le clonage de gènes synthétiques 
de polymérase et de RanBP5 dans des vecteurs de transfert. Ces derniers ont été 
utilisés pour générer des baculovirus recombinants.  
Les méthodes de purification des différents complexes protéiques par lyse cellulaire, 
résine d’affinité au nickel et chromatographie d’exclusion de taille sont aussi 
détaillées dans ce chapitre. 

Une série de méthodes permettant la caractérisation fonctionnelle de PA-PB1 
est décrite avec notamment les méthodes de détermination de constante de 
dissociation (Kd) par anisotropie de fluorescence et rétention sur membrane ou 
« Filter Binding Assay ». Le thermofluor est présenté comme méthode qualitative 
afin de déterminer la température de fusion d’une protéine. Deux méthodes 
d’analyse des protéines purifiées sont décrites. Tout d’abord, la chromatographie 
d’exclusion de taille couplée à un système MALLS-refractomètre (Multiple Laser 
Light Scattering) permettant de déterminer précisément la masse moléculaire d’un 
complexe ainsi que sa monodispersité. Ensuite, la microscopie électronique à 
transmission qui permet d’estimer la pureté de l’échantillon analysé. 

Deux techniques de caractérisation structurales sont aussi détaillées, dont la 
diffusion des rayons X aux petits angles (SAXS) permettant la détermination d’une 
enveloppe basse résolution du complexe à étudier. Enfin, une portion de ce chapitre 
décrit le principe et la mise en place de techniques de cristallisation et diffraction de 
protéines aux rayons X. 
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2.1 CLONING OF THE RdRp POLYPROTEIN 
GENES AND BACULOVIRUS GENERATION 

 
All polymerase fusion constructs detailed within this thesis were cloned within 

the same “cassette” cloning vector called K7-pMARq which carries a resistance gene 
to ampicillin. This cloning vector is composed of an adaptor sequence flanked by 
BstEII and RsrII cleavage sites (Figure 20). The cassette was designed to directly 
clone up to three different proteins, each within the same reading frame and 
separated by a TEV cleavage site linker GSGSG(ENLYFQG)AGSGSGSG. An 8-
histidine tag is present and is coded within the N-terminus of the polyprotein. For 
polymerase constructs, PA, PB1 and PB2 genes from A/Viet-Nam/1203/2004(H5N1) 
and A/Victoria/3/1975(H3N2) strains (UniProtKB access number Q6DNN3 and 
H9XIJ5 respectively)! were synthesised by GeneArt (Life Technologies) and 
separately cloned within the A, B and C sites respectively (Figure 20).  

 
Figure 20: Cassette cloning sites within the K7-pMaRQ vector. Genes of interest are separately cloned 
within the A, B and C gene cloning sites located between TEV cleavage sites. 

To proceed with the bacmid generation stage, the polyprotein fusion gene 
was sub-cloned within the pBAC vector (Imre Berger, EMBL Grenoble) using the 
BsteII and RsrII enzymes. Positive clones are selected by the gentamycin resistance 
present on the pBAC. Once cloned within pBAC, the original fusion protein is 
integrated within a larger polyprotein ORF which now additionally has TEV 
expressed in the N-terminus and CFP (Cyan Fluorescent Protein, λexcitation = 430nm 

and λemission = 450-550nm) in its C-terminus. 
 

Bacmid generation is undertaken using the established protocols (Berger et 
al., 2013; Trowitzsch et al., 2010). First, DH10EMBacY cells (Imre Berger) are 
transformed with purified pBAC vector and left overnight at 37°C in LB (Leman 
Broth) media. This overnight incubation enables the pBAC plasmid containing the 
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fusion gene to integrate the EMBacY baculovirus genome through a Tn7 
transposition mechanism. Positive clones are selected on Luria Broth (LB, Sigma 
Aldrich) agar plates containing tetracyclin, gentamicin, kanamycin and distinguished 
from non re-integrated pBAC/EMBacY by their white phenotype in the presence of 
BluOgal (Sigma Aldrich) and IPTG (Sigma Aldrich). The Tn7 transposition site is 
indeed positioned within the LacZ gene, positive transpositions therefore disrupting 
the positive β-galactosidase phenotype which otherwise produces blue colonies. 
After a second isolation step on another Tet/Gent/Kan/IPTG/BluOgal LB agar dish, 
positive clones can inoculate a 2 ml LB culture bacmid prep. Bacmid DNA is purified 
with a standard plasmid miniprep kit (Qiagen) which relies on an alkaline lysis of the 
bacteria and precipitation of genomic DNA. After retrieving the supernatant, which 
contains soluble bacmid, a DNA precipitation using isopropanol/ethanol is used. The 
DNA pellet is then dried of ethanol and resuspended under the sterile hood and used 
immediately in the transfection stage. 
 

Transfection is performed on adherent Sf21 (Spodoptera frugiperda) insect 
cells within 6 well plate dishes and performed in duplicates for every bacmid. 
Chemical transfection is performed using X-tremeGENE HP DNA Transfection 
Reagent (Roche). After 60 h the well growth media is harvested, it constitutes the 
first baculovirus amplification (V0). The V0 is then used to infect a small (25 ml) 
suspension culture of sf21 cells at 0,5 cells/ml. After, infection cells are daily counted 
and maintained at 0,5-1,0 .106 cells/ml until they stop dividing which occurs generally 
24 to 48 h after infection. Following the day of proliferation arrest stage (dpa), YFP 
(Yellow Fluorescent Protein, λexcitation = 488 nm and λemission = 515 - 550 nm) 
fluorescence is monitored using a Tecan Infinite M200 Pro fluorometer until a 
fluorescence intensity signal is observed. At this moment, the cultures are 
centrifuged at 100 g for 5 min and the supernatant is harvested and constitutes the 
second virus amplification (V1). The remaining cell pellet is resuspended within an 
equal volume of fresh media and monitored until the YFP and CFP signals reach a 
plateau. After reaching a plateau, the cells are pelleted (10 min at 400 g) and frozen 
in order to perform small-scale purification tests. 

YFP and CFP serve as two very important fusion genes within this system. 
YFP is a transcriptional fusion to the polyhydrin promoter and reports baculovirus 
proliferation. CFP on the other hand is a translational fusion gene, which is the last 
translated protein within the polyprotein system and therefore directly reports on the 
efficacy of expression of the full polyprotein. (Note: A more visual representation of 
the method can be viewed in the figure 1 of Chapter 3). 
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2.2 HETEROTRIMERIC AND HETERODIMERIC 
POLYMERASE COMPLEXES PURIFICATION 

 
Large scale suspension culture expressing polymerase fusion constructs were 

prepared using High Five insect cells grown in Express Five media (Life 
Technologies) at 0.5 .106 cells/ml infected at 0.2 % (V/V) with the baculovirus mother 
solution.  Cultures were maintained at 0,5 to 1 .106 cells/ml until proliferation arrest 
(24-48h after infection). Following the proliferation arrest, YFP and CFP 
measurements were performed on 1.106 cells which were spun down and sonicated 
in 500 µL of PBS buffer. YFP/CFP measurements were performed every 12 h until a 
fluorescence plateau was reached (72-96h after infection). Cultures were then spun 
down at 400 g for 20 min and cell pellets were stored at - 80°C. 
 

During purification, cell pellets were resuspended in 50 ml of lysis buffer (50 
mM Tris pH 8.5, 300 mM NaCl and 2 mM beta-mercaptoethanol (BME)) for 5.108 
cells in the presence of EDTA-free anti-protease cocktail (complete from Roche). 
Lysis was performed by two cycles of freezing (-180 °C) / thawing (26 °C) after which 
10%  glycerol was added to the lysate before centrifugation (45 min, 40 000 g, 4 °C). 
After retrieval of the clarified lysate, 30 mM of imidazole pH 8 was added before 
loading on Ni-NTa superpose resin (Quiagen). After flowing through the lysate, the 
resin was washed with 10 column volumes (cv) of buffer A (lysis buffer with 30 mM 
imidazole), 10 cv of wash buffer B (50 mM tris pH 8.5, 1M NaCl, 10% glycerol and 2 
mM BME) and 10 cv of wash buffer A. Elution of the bound complex was performed 
with 300 mM Imidazole. Elution fractions containing polymerase were then pooled 
together and directly injected on a 5 ml Hitrap Heparin resin (GE Healthcare) which 
had previously been equilibrated with 4 cv of buffer A. After binding to the resin, a 5 
cv wash was performed with buffer A before eluting with a 40 ml salt gradient on an 
äkta prime system (GE Healthcare). The elution peak corresponding to 
stoechiometric polymerase assemblies was then pooled and injected on an S200 
(GE Healthcare) size exclusion chromatography column equilibrated in 50 mM Tris 
pH: 8.5, 300 mM NaCl, 5 mM BME and run on an äkta purifier system. Peak 
fractions were finally pooled and concentrated from 10 to 20 mg/ml using a 100 kDa 
cutoff concentrator (Amicon). For long-term storage, 20% glycerol was added to the 
protein solution which was then stored at -80°C. 
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2.3 CLONING OF RANBP5 

 
The RanBP5 synthetic gene was ordered at Lifetechnology-Genart and 

subcloned within the pFast-BAC (Life Technologies) vector using NcoI and XhoI 
DNA cleavage sites. Positive clones were grown on ampicillin LB agar plates from 
which a midiprep DNA purification was prepared. For the baculovirus generation 
step, DH10EMBacY cells were transformed with 2 µg of DNA. The following steps 
towards baculovirus generation are identical as those described in chapter 2.1. 
Importantly, during the expression of this protein in insect cells only YFP 
fluorescence is monitored in order to follow cell growth parameters. 

2.4 PURIFICATION OF RANBP5 
 

Large scale suspension culture expressing RanBP5 were prepared using 
High Five insect cells grown in Express Five media (Life Technologies) at 0.5 .106 
cells/ml infected at 0.2% (V/V) with the baculovirus mother solution. Cultures were 
maintained at 0.5 to 1 .106 cells/ml until proliferation arrest (24-48h after infection).  
Following the proliferation arrest, YFP measurements were performed on 1.106 cells 
that were spun down and sonicated in 500 µL of Phosphate Buffered Saline (PBS) 
buffer. YFP measurements were performed every 12h until a fluorescence plateau 
was reached (72-96h after infection). Cultures were then spun down at 400 g for 20 
min and cell pellets were stored at -80°C. 

 
For purification, cell pellets were re-suspended in 50 ml of lysis buffer (50 mM 

Hepes pH 7.5, 300 mM NaCl and 2mM BME) per 500.106 cells in the presence of 
EDTA free anti-protease cocktail (complete from Roche). Lysis was performed by 
two cycles of freezing (-180 °C) / thawing (26 °C) after which 5% of glycerol were 
added to the lysate before centrifugation (45 min, 40 000 g, 15°C). All further 
purification steps were then performed at room temperature (20 °C). After retrieval of 
the clarified lysate, 30 mM of imidazole pH 8 was added before loading on Ni-NTa 
superpose resin (Quiagen). After flowing through the lysate, the resin was washed 
with 10 column volumes (cv) of lysis buffer containing 30 mM of Imidazole. Elution 
was then performed by increasing the Imidazole content to 300 mM. Following 
elution, the protein fractions were pooled, supplemented with TEV protease at a 
100/1 (w/w) ratio and dialysed overnight in 50 mM HEPES pH 7.5, 300 mM NaCl, 5 
mM BME. After dialysis, the protein sample was flowed through 300 µL of Ni-Nta 
resin. The final purification stage consists in a size exclusion chromatography (SEC): 
the sample is injected on an S200 (GE healthcare S200 300/GL, 125 ml) column 



2.5 THERMOFLUOR 

65 

using an äkta purifier system which monitors sample elution at 260 and 280 nm. The 
peak fractions are concentrated to the desired concentration using a 50 kDa Amicon 
concentrator. 

2.5 THERMOFLUOR 

2.5.1 PRINCIPLE 
 

Thermofluor is an indirect method belonging to the thermal shift assay 
methods (Semisotnov et al., 1991) used to study the melting behaviour of a protein 
in a given condition. The method relies on the use of a hydrophobic fluorescent dye 
(Sypro) which is strongly quenched by water. As a protein is melted with an 
incremental increase in temperature, it will progressively expose the hydrophobic 
inner core. Sypro will bind to these hydrophobic patches, which indirectly results in 
an increase of Sypro fluorescence. Upon reaching a maximum of fluorescence, 
which corresponds to a fully unfolded state, fluorescence will then decrease as sypro 
dissociates from the protein in the higher temperatures. The Tm of a given protein 
can be determined by estimating the temperature at the midway point between the 
minimal and maximal fluorescence. 

 
Thermofluor has the advantage of being very easy and quick to setup and can 

inform on the stability of a protein with regards to a buffer, additives or ligand 
conditions. 
 

2.5.2 EXPERIMENTAL PROCEDURE 
 

Thermofluor experiments were performed following the same established 
protocols (Pantoliano et al., 2001). Samples were diluted at 10 µM in a buffer 
consisting of 20 mM HEPES pH: 7,5, 150 mM Nacl, 2 mM MgCl2 and 5X Sypro 
Orange (Invitrogen) at a final volume of 45 µL within 96 well iCycler iQ plates 
(Biorad). The thermal stability experiment was measured using a real time q-PCR 
machine (Stratagene Mx3005P) performing a temperature gradient of 25 °C to 95 °C 
with a 1 °C / min increment. At every increment, sypro fluorescence was measured 
with an excitation wavelength of 492 nm and an emission wavelength of 512 nm. 
The relative fluorescence emission was then plotted against its corresponding 
temperature to produce the thermal shift profile curve. The Tm was estimated 
from the curve as the midpoint temperature between the baseline and maximum 
value of the curve.  
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2.6 AFFINITY BINDING TECHNIQUES 
 

2.6.1 FLUORESCENCE ANISOTROPY 
 

Fluorescence anisotropy or fluorescence polarisation relies on the intrinsic 
properties of fluorophores to absorb and re-emit polarised light along different axes 
of polarisation.  

 
Fluorescence is derived from the ability of a molecule to absorb photons 

which induce electrons to migrate to higher energy states becoming “excited”. Upon 
excitation, the transition back to the ground state will re-emit energy under the form 
of both light and heat; the partial loss of radiation energy will therefore generate an 
emitted beam with a higher wavelength. When exciting a fluorophore with a polarised 
plane beam, fluorophores will be excited only when their transition moment is parallel 
to the electric vector of the incident beam. As well as absorption, emission of 
polarised light is also controlled by the transition moment orientation but also by the 
fluorescence lifetime, which differs between fluorophores (usually between 1 to 20 
nanoseconds). In solution, where fluorophores can freely rotate, the degree of 
polarisation of the emitted light is reduced. Anisotropy, which describes a 
fluorophores’ ability to maintain this polarised plane, can be described by the 
following formula:  

! = ! !!
1 + ! !

 

 
where r is the observed anisotropy, r0 the intrinsic anisotropy of a given fluorophore, 
τ the fluorescence lifetime and φ is the rotational time constant. For a hydrodynamic 
sphere in solution, φ can also be expressed with the following formula: 
 

! = ! !"!" 

 
where R is the gas constant, T the temperature, η the solution viscosity constant and 
V the molecular volume. As such, when performing a titration of fluorescently 
labelled RNA at constant temperature and viscosity, the only factor changing upon 
binding a protein is V, hence increasing φ in the general anisotropy formula, 
therefore increasing anisotropy (Figure 21). 
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Figure 21: Schematic representation of the anisotropy of a fluorescent DNA molecule. Anisotropy is 
increased upon binding a larger partner which slows the tumbling rate of the DNA molecule. (Adapted 
from LiCata and Wowor, 2008) 

In practice, fluorescence anisotropy titrations require the use of a high 
sensitivity fluorometer possessing two electro mechanical polarisers, one positioned 
at the excitation beam and the other on the emission path. For each titration point, 
two fluorescence measurements are required with polarisers either aligned (II) or 
perpendicular to each other (⊥). Through these experimental values, anisotropy can 
be expressed with the following equation: 
 

! = ! (!∥ − !!)(!∥ + !!)
 

 
where III and I⊥ are the fluorescence intensity values for the aligned and 
perpendicular planes respectively. 
 

Anisotropy affinity titrations are usually performed using low nanomolar 
concentrations of RNA. However, due to inherent sensitivity limitations, sub 
nanomolar concentrations cannot be used. Another important factor to consider is 
the effect of the fluorophores moiety on the binding kinetics. This effect can usually 
be verified using a competition assay where labelled RNAs are outcompeted with 
non-labelled RNA. Upon data acquisition, the change in anisotropy (Δr) or subtracted 
anisotropy can be plotted against the protein concentration to produce equilibrium 
binding curves. 
 



2.6 AFFINITY BINDING TECHNIQUES 

 

68 

2.6.2 FILTER BINDING ASSAY 
 

Filter binding assay (FBA) experiments require the use of radiolabelled RNAs; 
as such, a 5’ P32 labelling is undertaken using the T4 polynucleotide kinase on every 
RNA to be tested. The use of P32 radiolabelled RNAs greatly increases the detection 
sensitivity when compared to fluorescence based methods. However, the short beta 
decay of P32 (14 days) does not enable prolonged conservation of labelled RNAs 
upon labelling.  When recently labelled, RNA concentrations remain detectable well 
into the picomolar range enabling low nanomolar and sub-nanomolar affinity 
determination. FBA uses membrane immobilisation of the free or bound labelled 
RNA. In a double filter binding experiment (Wong and Lohman, 1993), affinity 
titration points are filtered onto two membranes. The first membrane (protran or 
PVDF, Amersham Systems) generally retains proteins; the second (Hybond-N+, 
Amersham Systems) will bind nucleic acid. Membranes are then “counted” by using 
a scintillation counter or revealed through the use of a phosphorescent screen. Upon 
revelation, spot intensity is integrated by imagery software. For each titration point, a 
bound RNA fraction is calculated using the following formula: 
 

!!"#$%!!"!"#$%& = !!"#$%&' − !!"#
!!"#$%&' − !!"# + !!"#

 

 
Where Iprotein and IRNA are the relative intensities of the Protran membrane filter and 
Hynbond-N+ filter respectively. Upon calculation, the RNA bound fraction ratio can 
be plotted against titrant concentration in order to produce an equilibrium titration 
curve. 
 

2.6.3 EXPERIMENTAL METHODS 
 

Experimental procedures for affinity binding titrations and data analysis are 
detailed in the chapter 3 methods part. 
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2.7 SIZE EXCLUSION CHROMATOGRAPHY 
COUPLED WITH MALLS 

(MALLS: Multi Angle Laser Light Scattering) 
 

2.7.1 PRINCIPLE OF MALLS 
 

SEC-MALLS-RI is an useful analysis to undertake prior to any high cost 
biophysical characterisation or crystal screening. Indeed, success or failure of these 
different methods depends largely on the dispersity and oligomeric state of a given 
protein sample. During the last stage of purification, SEC combined with an SDS 
PAGE analysis can already give an estimate of the oligomeric state of a protein 
through the use of calibrated columns. However, SEC alone does not give an 
estimate of dispersity (monodisperse/polydisperse) within a single elution peak that 
can sometimes be polydisperse. Also, some proteins can be attracted or repulsed by 
the SEC (sephadex) sugar matrix, which can bias the correlation between protein 
mass and SEC elution volume.  

 
SEC-MALLS-RI can accurately analyse protein samples through the 

combined use of Multi-Angle Laser Light Scattering (MALLS) and Refractive Index 
(RI) (Wyatt, 1991, 1993). MALLS uses a polarised and highly collimated laser beam 
focusing on the sample cell that is surrounded by several detectors measuring each 
a single angle of diffusion. Every angle intensity measurement is integrated and 
enables for the estimation of molecular weight through a correlation plot called the 
Debye Plot that requires a precise measurement of concentration. This 
measurement is possible through the combined used of a refractometer, which gives 
a concentration calculation through the measurement of a refractive index (Figure 

22A). The final curve usually plots the excess of refractive index (or UV absorbance) 
and molecular weight as a function of volume. Analysis of this curve enables an 
estimation of dispersity through the observation of a stable molecular weight 
estimate within a single peak (Figure 22B). 
 

2.7.2 EXPERIMENTAL PROCEDURE FOR MALLS 
 

All MALLS runs were performed using a 25 ml S200 SEC column (GE 
healthcare) connected to a Optilab T-rEX refractometer (Wyatt technologies) and a 
DAWN HELEOS-II multi angle light scattering detector measuring 18 scattered 
angles (Wyatt technologies). Prior to injection, columns and systems were 
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equilibrated in 3 to 5 column volumes. 50 µL injections were performed using protein 
samples concentrated at a minimum of 2 mg/ml. 
 

 
Figure 22: Schematic view of the SEC-MALLS-RI system and data analysis. (A) Measurements performed 
both by the MALLS detector and refractometer with their individual measurement output. (B) Combined 
data produced by a SEC-MALLS-RI run using pure serum albumin. The black curve corresponds to the 
excess of refractive index and the red spots correspond to molecular estimates at a given elution 
volume. (Images adapted from Marc Jamin, UVHCI Grenoble) 
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2.8 SMALL ANGLE X-RAY SCATTERING (SAXS) 
 

2.8.1 SAXS PRINCIPLE 

 
Figure 23: SAXS schematic principle and experimental setup. (Adapted from http://www.cgl.ucsf.edu/ 
Research/CandS/sali/) 

SAXS is a biophysical method which relies on the elastic scattering of X-rays 
at small angles by a given protein sample. Unlike X-ray crystallography, this method 
does not require the sample to crystallise, which makes it easy to apply on any 
purified monodisperse protein. However, the lack of a periodic organisation of the 
protein generates a signal averaging of all orientations of the protein. Therefore this 
method enables a size estimation of the protein by yielding a Radius of Gyration 
(Rg) and a maximal interatomic distance (Dmax). Also this method enables a shape 
approximation by providing a pair-distribution function P(r), which translates as the 
sum of all interatomic distances. In turn, the P(r) and experimental curve can 
generate low-resolution models (resolution between 20-100 Å) through 
computational modelling. 

 

2.8.2 DATA AQUISITION 
 

In practice, SAXS consists in the exposure of a given protein solution to an 
intense monochromatic beam of X-rays (λ within the range of 0.1 nm) and the 
measurement of scattered intensities at small angles (0.1° ≤ 2θ ≤ 5°) which requires 
an important detector distance from the scattering sample (Figure 23). In order to limit 
X-ray air absorption, the entire distance between the sample and the detector is 
within a vacuum tube. 
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First integrated by the detector as an image, computational analysis 
generates a one dimensional SAXS curve lnI(q) plotting the averaged intensity with 
its calculated error as a function of q which is the distance from the incident beam 
centre and directly correlates with the 2θ through the formula: 
 

! = !"#$%& ⁄ ! 
 
where θ is in degrees and λ in nm or Å. SAXS curves obtained for macromolecule 
samples at a given concentration must then be subtracted with the buffer Ln I(q) 
curve in order to assess exclusively the contribution of the protein to the SAXS curve 
(Figure 24). 

 
Figure 24: Example of a buffer subtraction on I(q) raw data curves for four different concentrations (1,25 
to 7,5 mg/ml). (Adapted from Putman et al., 2007) 

2.8.3 DATA ANALYSIS 
 

When analysing the data, the first performed analyses is the Guinier transform 
as it can indicate the presence of potential aggregation which would make any 
further analysis irrelevant. The Guinier plot, named after André Guinier (1911-2000), 
plots Ln(I) as a function of q2 at very small angles (Guinier region). In the presence 
of a monodisperse sample the curve is linear and remains so for all concentrations. 
However, when a protein has a tendency towards self-attraction or aggregation, a 
loss of linearity is observed and increases with concentration (Figure 25). The same 
loss of linearity can also be observed with proteins that strongly repulse each other. 
Data that does not respect a relative linearity within the Guinier region cannot be 
further interpreted. In the case where the Guiner region is linear, a curve can be 
fitted with the following equation: 

!" ! ! = !" ! ! − !
!!"!
!  
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 From this equation, two important constants can be deduced: I(0), which is 
the theoretical intensity at the origin were q2=0 and depends both on protein mass 
and volume; Rg (nm or Å), which defines the quadratic mean of distances to the 
centre of mass. 
 

 
Figure 25: Guinier transform for a monodisperse protein (Left), strongly aggregated (centre) and partially 
aggregated (Right) protein. (Adapted from Putman et al., 2007) 

The second analysis step is the P(r) function that describes all the inter-
atomic distances within the protein through the Fourier transform of the experimental 
curve Ln I (q). This mathematical function is analogous to the Patterson function 
used in X-ray crystallography with the exception that the P(r) is radially averaged and 
lacks vectors corresponding to the distance between the scattering particles. When 
using the GNOM program (Semenyuk and Svergun, 1991), indirect Fourier 
transforms of P(r) functions will be performed iteratively in order to fit the original 
experimental curve. The produced curve is bell-shaped and P(r) is equal to 0 at r = 0 
and r = Dmax. Dmax given in nm or Å represents the largest inter-atomic distance. 
The shape of the curve can already indicate the presence of separate domains and 
describes the overall shape of the protein (Figure 26). The Rg can also be deduced 
from the P(r) plot as it corresponds to the average of all distances over the whole 
range and with the Rg predicted with the Guinier approximation. This Rg calculation 
takes into account the entire experimental curve. Consistency in the calculated Rg 
between the Guinier plot and the pair-distribution function should always be 
observed. 

From the predicted P(r) and experimental curve, several ab initio envelope 
prediction programs such as SASHA, DAMMIN and GASBOR (Svergun et al., 1996; 
Svergun, 1999; Svergun et al., 2001) can compute envelopes. DAMMIN (Svergun, 
1999) is the program exclusively used in this thesis project to compute polymerase 
envelopes. It uses iterative simulated annealing of a randomly generated bead 
model in order to generate an envelope consistent with the experimental data. 
Computational constraints such as connectivity, smoothness or internal symmetry 
can be tuned in order to reduce the solution space. This process is repeated several 
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times in order to generate an ensemble of models, which can then be aligned and 
averaged using the DAMAVER (Volkov and Svergun, 2003) program. For further 
biological interpretation, SAXS can be compared to pdb structures using the Crysol 
algorithm (Svergun et al., 1995) which produces a theoretical SAXS diffusion curve 
(Ln I(q)) for a given pdb model. Further reading of SAXS principles and applications 
can be provided by the following extensive and complete review: Putman et al. 
(2007). 

 

Figure 26: P(r) function representations for different types of protein. (Adapted from Putman et al., 2007) 

2.8.4 EXPERIMENTAL PROCEDURES FOR SAXS 
 

All datasets were collected on BM29 at the ESRF (Grenoble). The initial trials 
using direct sample measurement showed a slight concentration dependency of I(0) 
for polymerase constructs, which is indicative of partial oligomerisation. Online SEC-
SAXS was therefore favoured for all other experiments in order to limit the 
contribution of aggregated, oligomeric or dissociated protein to the experimental 
curve. The experimental setup therefore consists of a High Pressure Liquid 
Chromatography (HPLC) system that injects the protein sample on a small S200 
column (S200 5/150 GL, GE healthcare) and monitors its elution by UV absorbance 
(280 and 260 nm) before injecting it on the SAXS measurement capillary. SAXS 
measurements were performed every second with a Pilatus 1M detector at a 
distance of 2,87 m allowing a q range of 0,03 to 4,5 nm with a wavelength of 0.01 
nm. 

 
Following the data collection, experimental curves were subtracted and 

analysed using Primus (ATSAS) or Scatter programs packages. To estimate the 
molecular mass, the Vc correlation approach was used (Rambo and Tainer, 2013). 
Rg predictions using the Guinier extrapolation were plotted against the elution 
volume to select the most monodisperse part of the protein elution peak. SAXS 
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datasets within this zone were then scaled and averaged to produce one unique Ln 
I(q) curve. After which GNOM was used to produce a P(r) function that was 
subsequently exploited by DAMMIF to generate 10 to 20 ab initio models. 
DAMAVER (Volkov and Svergun, 2003) was then used to generate an average 
model. DAMMIN was used to assess consistency of the averaged models with the 
original experimental curve. Model representation was done using chimera 
(Pettersen et al., 2004) and curve representations using Graphpad (Prism). 

2.9 X-RAY CRYSTALLOGRAPHY 
 

2.9.1 PRINCIPLE 
 

As SAXS, X-ray crystallography is a method that uses the elastic dispersion of 
X-rays by the electrons contained within the atomic structure of proteins. Differently 
from SAXS though, this method maintains orientational information, enabling the 
reconstruction of an electron density map, which in turn enables the building of a 
structure model at atomic resolution.  

 
To reach this final result, three major limiting steps can be distinguished. First 

is crystallogenesis, which is the formation of protein crystals and depends mostly on 
the biochemistry of a given protein (purity, stability, inherent flexibility) in order to be 
successful. Second is the data acquisition/integration step that is limited by the 
diffracting quality/intensity of the crystals. Third is solving the phase problem, which 
is done either by molecular replacement using homologous proteins and/or by 
experimental phasing. Final success is only ensured through the validation of these 
three stages. Any small flaws in the early stages can greatly impact the latter stages.  

2.9.2 CRYSTALLOGENESIS 
 

Crystallogenesis is the artificially induced transition of a protein from a soluble 
state into a solid and highly organised state. By definition, a protein crystal is grown 
through a periodic arrangement of the same unit cell or “building block” into 
superposed lattices eventually forming a macroscopic structure.  

 
In the early days of crystallography, crystal growth was considered more of an 

“art” than hard science due to the multiple parameters influencing its outcome and 
the sometimes empirical nature of the phenomenon. Even today, with a better 
understanding of physiochemical parameters controlling this process and the access 
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to high-throughput technologies, this process can be very difficult to attain and 
reproduce. Whatever the target protein, four steps are required for crystallogenesis: 
pre-nucleation, nucleation, growth, and cessation of growth that can all be visualised 
within the phase diagram (Figure 27).  

 
Figure 27: Crystallogenesis phase diagram representing the four stages of crystal growth. (A) Generation 
of a supersaturated state that can lead to crystal nucleation (B) followed by crystal growth (C) within the 
metastable zone. Growth arrest (D) is reached when the system reaches equilibrium at the solubility 
curve which separates the soluble region from the supersaturated state. 

To crystallise proteins, several methods can be used to induce these phase 
transitions: vapour diffusion techniques (sitting or hanging drop) and dialysis 
methods. The first method is the most commonly used and easy to set up in high 
throughput; it is also the only crystallisation method used within this thesis project. Its 
principle is to set up a closed system containing a precipitant well, whose volume far 
exceeds that of the protein sample. Within that same closed environment, the protein 
sample is mixed with some precipitant to form a drop and is either sitting on an 
adjacent surface or hanging from the top of the well. Over time, vapour diffusion will 
equalise the precipitant concentrations between the precipitant well and the 
protein/precipitant drop, which in effect concentrates both protein and precipitant 
within the drop. This has the effect of pushing the protein into a supersaturated state, 
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which can either lead to nucleation or precipitation. Commonly used precipitants 
include salts and organic precipitants such as polyethylenglycol (PEG), 2-Methyl-2,4-
pentanediol (MPD) or isopropanol. 

 
Temperature, pH and initial additives within the protein mix also play an 

important role in the potential outcome. Crystal growth can take from 1 day to 
several weeks depending on the protein. Once an initial crystallisation condition is 
identified, fine-tuning of these different parameters is undertaken in order to produce 
the biggest and nicest looking crystals possible. Once grown, crystals are fished out 
of their precipitant liquor using a cryo-loop and flash frozen in liquid nitrogen for 
storage before x-ray exposure and analysis. Appropriate cryo-protecting solutions 
are usually used to guarantee crystal integrity upon freezing. 
 

2.9.3 ACQUISITION AND INTEGRATION 
 

When matter is exposed to an incident beam of X-rays, the electrons 
constituting this matter absorb in part those X-rays and become excited. In order to 
return to their fundamental energy state those electrons re-emit X-rays in all 
directions. Within a crystal, proteins are periodically organised in lattice planes and 
has the effect of only allowing certain diffraction angles to produce constructive 
interference that produces diffraction spots. This property is controlled by Braggs law 
(Figure 28):  

2!!!"#$ = !!! 
 
where d is the distance between two reticular planes, � the wavelength of the 
incoming beam, n is an integer or whole number and � the angle between the 
incoming beam and the lattice plane. 
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Figure 28: Braggs Law represented with two incident beams of X-rays (black arrow), constructive 
interference is obtained only when the path difference d sinθ is a multiple of the beam wavelength 

It is important to note that in the case of a crystal, diffraction spots or 
“reflexions” are the product of constructive interference from all the electrons within 
the crystal lattice. In other words, each reflection contains information on all the 
atoms in the structure and each atom contributes to the intensity of each reflection.  
 

On a diffraction pattern, the reflexion spots correspond to coordinates within 
reciprocal space of the crystal lattice. One of the first stages of computer analysis 
during data collection is indexing. This step can be performed on two or more 
images ideally separated by a 90° angle and produces an estimation of the unit cell 
dimensions which in turn gives a prediction of crystal symmetry or space group. 
Space group determination then enables a collection strategy to be developed 
accordingly in order to limit X-ray exposure and therefore radiation damage. Indeed, 
a higher order of symmetry space group (P4, 90° oscillation) will need a shorter 
oscillation angle than a lower symmetry space group (P2, 180° oscillation). Once 
established, a full data collection can then be undertaken in order to measure all 
reflexions in reciprocal space, usually aiming for a completeness >98%. Modern 
beamlines will collect very thin sliced oscillations (0.2 °) resulting in the production of 
more than 1000 images for a full data collection. All these images are then re-
indexed with refined unit cell parameters that attribute a relative coordinate to all the 
recorded spots (Miller Indices, h, k, l). Following indexing is integration where all the 
images are converted into a single data file containing the h, k, l indexes of a spot 
and its measured intensity and error. Finally the last stages of data preparation 
include scaling and merging steps that combine the data and correct eventual 
discrepancies during the data collection (loop absorbance, beamline parameter 
variations and radiation damage).   
 

2.9.4 PHASE DETERMINATION 
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In order to determine an electronic density map of the scattering lattice or 

structure factors one must combine both the amplitude and phase of all the 
reflections. Amplitudes can be derived from the measured intensity of the reflexions. 
However, phases cannot be directly measured and are lost during the process. 
Several methods can be used to find the phases.  
 

The first, molecular replacement (MR), is purely computational and relies on 
the use of previously determined structures (Rossmann and Blow, 1962). In practice, 
molecular replacement programs (Phaser or Molrep) compare Patterson maps of the 
experimental data with predicted maps from the search model (homologous protein 
or domain). A Patterson map is an interatomic vector map generated by squaring all 
the structure factor amplitudes and setting the phases to zero. The Patterson map is 
self-centred so the MR search is divided into two stages, a rotational search (self-
rotation function) and a translational search. In a successful MR search, both stages 
will yield preferably one or few solutions. The correct orientations can then be used 
by the MR program to predict a phasing solution using the homologous model. 
Factors controlling the success rate of MR include structural homology (40% at least) 
between the search model and actual structure within the crystal. MR can also yield 
a solution when trying to solve the structure of a large complex and searching with a 
known structure of one of the domains constituting a minimum of 30% of the 
complex. Finally, the quality and resolution of the collected dataset plays an 
important role in the potentially successful outcome. 
 

The other method is through experimental phasing, which houses a large 
number of different sub-techniques; these all involve adding some other element 
within the native crystal. The first historically used method is Single Isomorphous 
Replacement (SIR), which requires soaking of the crystals in heavy atom solutions, 
the consequence of which does not modify the unit cell parameters. Diffraction spot 
amplitudes at the same wavelength of both native and soaked crystals will differ 
greatly (15-25 % difference) due to the contributions of the heavy atoms to the 
overall diffractions. Computer calculations can then predict the positions of the heavy 
atoms within the unit cell using Patterson functions; this in turn can provide a phase 
solution for all the other atoms. Using one isomorphous replacement can still 
produce a solution ambiguity, as two phase solutions are possible per structure 
factor. Combining derivative datasets using Multiple Isomorphous Replacement 
(MIR) can solve this eventual solution ambiguity.  

 
Nowadays however, the most commonly used method for experimental 

phasing is to use Single Anomalous Dispersion (SAD). This method is analogous in 
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some aspects to SIR as it requires the introduction of another component within an 
otherwise native crystal (Hendrickson et al., 1990). Selenomethionine is commonly 
used for this purpose and replaces methionine during expression of the protein, 
which can sometimes be a problem with unstable or difficult to express proteins. 
Also, in order for the experiment to be successful, a sufficient number of methionines 
are required within the protein amino acid sequence, at minimum 1.5% of the total 
number of residues.  

 
During diffraction and data processing, SAD relies on differences in Friedel 

Pair diffraction spots or anomalous dispersion that is maximised at a specific 
wavelength for selenium. Anomalous signal can be quantified through computer 
calculations and attributed to selenium atoms within the crystal structure. Like SIR, 
SAD can produce ambiguous phasing solutions, which can be reduced using 
Multiple Anomalous Dispersion (MAD), which takes two datasets: one maximising 
the anomalous dispersion like SAD and another one with poor anomalous dispersion 
signal. Due to the very weak amplitude differences in anomalous signal (1-5 %), 
strong data completeness is required. 

 
Direct experimental phasing methods can also be combined together in order 

to produce a more accurate phasing model. Such is the case with Single/Multiple 
Isomorphous Replacement with Anomalous Dispersion (SIRAS, MIRAS). Finally, 
combination of molecular replacement and experimental phasing methods can be 
used to reduce phase ambiguity. 
 

Once a phase solution is found, different programs can build a “raw” atomic 
model of the given protein taking into account the peptide sequence in order to 
explain the electronic density within the unit cell. Following this first build, manual 
tweaking and other programs can refine the model and also correct experimental 
data measurements in order to improve data to model statistics. Two major 
correlation factors are mainly used to evaluate model to data reciprocity: First, the R-
factor that calculates how the calculated amplitudes differ from the measured 
amplitudes at the previous refinement stage. Second is the free R-factors. In order to 
evaluate the final model, the free R-factor is used to compare amplitude differences 
between the refined amplitudes and 5% of the initial data that has not been 
submitted to refinement. In all, these statistics must remain close and improve 
together during the refinement process. 

 
Further reading for experimental principles of x-ray crystallography can be 

found in various reviews (Giegé and Sauter, 2010; Ilari and Savino, 2008; Wlodawer 
et al., 2013). 
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2.9.5 EXPERIMENTAL PROCEDURES FOR X-RAY 
CRYSTALLOGRAPHY: 

 
RanBP5 crystals were prepared using a protein mother liquor at 6-8 mg/ml 

within the size exclusion buffer (HEPES pH: 7.5, 300 mM NaCl, 5 mM β). Sitting 
drops were set up on intelliplates (96 wells, Art Robbins Instruments) by the High 
Throughput Crystallography facility (HTX-EMBL, Grenoble) using 100 nL of sample 
and 100 nL of precipitant. After initial hits identified with the Hampton and Quiagen 
screening kits, refined crystallisation was obtained with a precipitant composed of 
12% PEG 6000, 100 mM Sodium tri-Sodium Citrate pH: 4.5, 100 mM Ammonium 
Acetate. RanBP5 crystals would usually appear in 24h and grow for the following two 
days. Following growth, crystals were cryo-protected by adding 1 µL 40% PEG 3350, 
100 mM Sodium tri-Sodium Citrate pH: 4.5, 100 mM Ammonium Acetate to the 
screen drops. Crystals were then mounted on cryo loops (Hampton research) and 
frozen in liquid nitrogen. 

 
Diffraction experiments were undertaken on ID30.A, ID 29 and ID 23.1 at the 

European Synchrotron Radiation Facility (ESRF). Data was collected using a 
Marr225 or Dectris Pillatus 6M detector. Indexing and integration was performed 
using the XDS program package (Kabsch, 1993). Molecular replacement attempts 
on native datasets was undertaken using Molrep (Vagin and Teplyakov, 1997) and 
Phaser (McCoy et al., 2007) using the ccp4 (Winn et al., 2011). Derivative datasets, 
once integrated and scaled, were treated using SHARP. 
 

2.10 TRANSMISSION ELECTRON MICROSCOPY 
USING NEGATIVE STAINING 

 

2.10.1 PRINCIPLE 
 

Transmission Electron microscopy (TEM) is a biophysical method which uses 
strongly focused high voltage electron beams instead of light to probe matter. By 
doing so, the magnification power is considerably increased compared to a light 
based microscope by a factor 50000x. However, both visible light and electron 
microscopes share common magnifying features. As such, a TEM microscope 
consists in a big vacuum tube which has a source of electrons on the top. The 
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electrons are produced by a tungsten cathode or electron gun and accelerated by an 
anode which has a voltage potential with regards to the cathode, usually at around 
100 KeV when studying protein samples. Downstream from the source, a first series 
of electromagnetic/electrostatic lenses focus the electron beam on the sample. Once 
transmitted through the sample, a second series of lenses magnify the beam on a 
detector (phosphorescent screen or camera) enabling a direct computer integration 
of the images. On a homogeneous carbon surface, the presence of protein particles 
will modify through absorption and scattering the incoming X-rays. However, due to 
their weak atomic mass composition (carbon, hydrogen, nitrogen, oxygen), the signal 
contrast remains very weak. 

 
In order to solve this problem, negative staining methods are used to study 

small biological particles. In practice heavy metal salts such as Uranium Acetate 
(UrAc) or Sodium Silico Tungstate (SST) are used to increase the contrast by 
covering the entire surface of the grid but surrounding the protein particles. This 
produces a negative stain as the background absorbs more electrons, therefore 
appearing darker than the protein particles which appear brighter on the images. It is 
however important to note that EM observes artefacts of complexes and particles as 
the staining process can modify the sample stability and homogeneity. 

 
TEM, like X-ray crystallography and NMR can also be used as a tool for 

structural determination notably with the use of single particle analysis combined 
with cryo-EM (Zhou, 2008). Recently it has been increasingly used to produce high-
resolution structures (4-20 Å range). However, like all other methods, EM 
reconstruction requires a number of conditions to be met. First of all, the size of the 
target protein; as single particle analysis requires the alignment and class averaging 
of numerous particles (within the order of 105 for a near atomic resolution). Viruses 
and big macromolecular complexes with a high degree of internal symmetry 
constitute the best targets for this process but in recent years several smaller particle 
structures have been solved with resolutions around 4 Å (Bai et al., 2015; Chang et 
al., 2015; Du et al., 2015). The sample must also show a high degree of purity and 
stability especially when using cryo-EM.  

 
For further reading on the principle of negative staining EM can be found in 

various reviews (Boekema et al., 2009; Frank, 1996; Zhou, 2008) 

2.10.2 DATA COLLECTION 
 

For all polymerase and/or RanBP5 samples, negative staining TEM was used 
to assess the homogeneity of the sample. Samples (0,1 mg/ml) were analysed at the 
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Institut de Biologie Structurale (IBS) through a collaboration with the EM platform 
(Guy Schoen). The carbon flotation technique was used to prepare negative staining 
grids with UrAc or SST. Images were collected on a FEI Technai 12 LaB6 equipped 
with a Gatan Orius 1000 camera. 

2.11 AUTOMATED MICRO BIO-REACTOR (AMBR) 
 

2.11.1 BRIEF OVERVIEW 
 

AMBR (Tap Biosystems) is an automated workstation capable of performing 
24 to 48 micro-scale fermenter experiments simultaneously. Placed under a sterile 
hood (Figure 29A), the platform uses plastic single-use, 15 ml bioreactors (Figure 29B). 
For every reactor, ABMR can follow in real time both pH and cellular density. An 
automated robotic arm can also perform several functions such as sample retrieval 
(for cell counting and viability testing) and media supplementation. O2, N2 and CO2 
delivery per micro-scale reactor is individually controlled for optimal growth tuning. 
Homogenisation of the cultures is synchronised for all bioreactors and performed by 
the integrated plastic propeller within each bio-reactor. 

 
 

 
Figure 29: AMBR platform overview. (A) Picture of the AMBR platform within the insect cell facility of 
EMBL. (B) Single use, plastic bio-reactor containing mammalian cell media (Adapted from Tap 
Biosystems website). 
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2.11.2 AUTOMATED INSECT CULTURES 
 

In the first culture station, the 12 bioreactors were seeded with Sf21 
(Spodoptera frugiperda) insect cells in SF 900 II SFM medium (Life Technologies). 1 
ml to 1.3 ml V0 baculovirus of each of the 11 constructs was added in the 11 first 
bioreactors respectively. The last bioreactor was not infected and served as a control. 
For all 12 reactors, the cellular density was of 0.6.106 viable cells/ml for a final 
volume of 13 ml. In the second culture station, the 12 bioreactors were seeded with 
Hi5 (Trichopulsia ni) insect cell lines also in SF 900 II SFM medium. In order to keep 
the same MOI as for the SF21 infections, 1.4 to 1.6 ml Vo baculovirus of each of the 
11 constructs was added in 11 bioreactors respectively. The last bioreactor was not 
infected and served as a control. For all 12 reactors, the cellular density was of 
0.4.106 viable cells/ml with 13 ml of final volume. In the following days, liquid 
handling arm with sterile tips were used to sample out different volumes from the 
bioreactors. Samples were analysed for cell counts, viability and cell diameter with 
the Vi-cell XR (Beckman Coulter), for pH calibration using a micro pH probe (Crison 
Basic 20+ pH-meter) and for YFP/CFP fluorescence using the Tecan Infinite 200 Pro 
(Tecan). 

Bioreactors containing Hi5 insect cells were harvested 96 h after infection. 
Bioreactors containing Sf21 insect cells were harvested later when cell viability was 
around 70%. After a 10 min, 1000 g centrifugation step at room temperature, the 
culture supernatant was discarded, cell pellets were flash frozen in liquid nitrogen 
and stored at -80°C. 
 

2.11.3 SMALL-SCALE PURIFICATION 
 

Upon reaching the CFP/YFP plateau phase, AMBR cultures were spun down 
and re-suspended in 1.6 ml of lysis buffer (50 mM Tris pH: 8.5, 300 mM NaCl, 2 mM 
BME, 1 complete tab/50 ml). Two steps of freeze/thaw in liquid nitrogen were 
performed for lysis. Soluble fractionation was then performed with a 1 h 
centrifugation at 16000 g. Upon extraction of the supernatant and supplementation 
with 40mM imidazole, the nickel resin pull-down was undertaken using 100 µL of 
resin (Qiagen) with a 15 min incubation at 10°C. Three 1 ml wash steps were then 
performed including a high salt wash (1 M NaCl in the lysis buffer). Two 200 µL 
elutions were then performed by increasing the imidazole content to 300 mM. After 
elution, the two eluted fractions were concentrated to 50 µl using an 30 kDa cut-off 
concentrator (Amicon) and injected on a 3 ml S200 (PC 3.2/30, GE Healthcare) 
connected to the micro-äkta running at 0.05 ml/min. Peak fractions were collected at 
75 µL intervals within a 96 well Greiner plate. 



 

85 

 

 
 
 
 
 
 
CHAPTER 3: RNA BINDING AND 

ASSEMBLY OF HUMAN 
INFLUENZA A VIRUS 

POLYMERASES 
  



Résumé du chapitre 3 en Français 

 

86 

 

Résumé du chapitre 3 en Français 
 

Dans le but de comprendre les activités de transcription et de réplication de 
l’ARN polymérase du virus de la grippe, des études fonctionnelles ont été 
entreprises depuis plus de quarante ans. Il aura fallu attendre le développement de 
l’expression de polyprotéines recombinantes en cellules d’insecte pour obtenir des 
formes solubles de polymérases entières. Cette méthode a permis l’obtention de 
structures cristallographiques de polymérases d’influenza A issue d’une souche 
infectant les chauves souris et d’influenza B. Or, au moment de l’écriture de ce 
manuscrit, aucune structure de polymérase entière de souche de grippe A aviaire ou 
humaine n’a été publiée. Notre groupe a depuis la mise en place de cette méthode, 
recherché à exprimer des polymérases de souches aviaires (H5N1) et humaines ( 
(H3N2) mais s’est heurté à un problème d’expression de ces deux souches. Ce 
manuscrit d’article présente tout d’abord la méthode d’expression par polyprotéine 
de fusion qui a permis de produire et d’assembler de façon stoechiométrique PA, 
PB1 et PB2. Le rôle délétère de PB2 dans l’expression globale de la polyprotéine de 
fusion a pu être mis en évidence par le suivit des rapporteurs d’expression YFP/CFP 
et par western blot. L’obtention de polymérases tronquées ou complexées à RanBP5 
a ensuite été détaillée par analyses SDS PAGE, SEC-MALLS et par microscopie 
électronique en coloration négative. La mesure d’affinité par anisotropie de 
fluorescence a permis de mesurer des affinités extrêmement fortes de la polymérase 
envers le promoteur 5’ ARNv. Une mesure plus précise par rétention sur filtre d’ARN 
marqué au P32  a confirmé ce résultat, mesurant un KD de l’ordre du picomolaire. Le 
rôle crucial de PB2 dans la liaison de la polymérase au promoteur 3’ ARN a été 
démontré par l’absence d’affinité de PA-PB1 pour cet ARNv à la différence de PA-
PB1-PB2(1-116) qui le lie avec une affinité de l’ordre du nanomolaire.  

Ce manuscrit présente des résultats tout à fait novateurs dans la 
caractérisation par SAXS du complexe PA-PB1-RanBP5 et son absence totale 
d’affinité pour l’ARNv  5’. Ces résultats démontrent un rôle crucial de RanBP5  dans 
le processus d’assemblage de la polymérase qui reste encore mal compris. Il y est 
proposé modèle d’assemblage séquentiel de la polymérase où PA-PB1 est maintenu 
inactif par RanBP5 jusqu’à la phase d’assemblage finale avec PB2 où la présence 
du promoteur 3’ ARN peut jouer un rôle important. Cette découverte est importante, 
car elle ouvre de nouvelles voies d’inhibition du virus de la grippe notamment par le 
ciblage de l’interaction PA-PB1 et de RanBP5. 
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NOTE OF INTRODUCTION TO CHAPTER 3 
 

The following chapter is the manuscript of an article covering most of the 
results obtained with truncated RdRp constructs. In this manuscript, we investigate 
the factors leading to a loss of expression of the polymerase in our polyprotein 
strategy. We also demonstrate the expression and high-purity purification of IAV 
RdRps as well as RdRp-complexes. Functional studies focus mostly on the vRNA 
promoter binding and are coupled with MALLS characterisations and SAXS 
envelope determination. Altogether, the combined data of different RdRps and 
RanBP5 constructs further advance the current models of polymerase assembly by 
notably describing for the first time, the PA-PB1-RanBP5 complex in solution. It will 
be submitted at the beginning of October 2015. The manuscript is inserted directly 
and has it’s own page numbering. The following chapters continue after at page 93. 
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Abstract 

 

The genome of influenza A virus (IAV) comprises eight RNA segments (vRNA) which are transcribed 

and replicated by the heterotrimeric IAV RNA-dependent RNA-polymerase (RdRp). RdRp consists of 

three subunits (PA, PB1 and PB2) and the heterotrimeric complex binds both the highly conserved 3’- 

and 5’-ends of the vRNA segment. The IAV RdRp is an important antiviral target, but its structural 

mechanism has remained largely elusive to date. By applying a polyprotein strategy, we produced 

RdRp complexes and define a minimal human IAV RdRp core complex. We show that PA-PB1 forms a 

stable heterodimeric submodule that can strongly interact with 5’-vRNA. In contrast, 3’-vRNA 

recognition critically depends on the PB2 N-terminal domain. Moreover, we demonstrate that PA-PB1 

forms a stable and stoichiometric complex with host nuclear import factor RanBP5 that can be 

modelling by SAXS and we show that the PA-PB1-RanPB5 complex is no longer capable of 5’-vRNA 

binding. Our results provide further evidence for a step-wise assembly of IAV structural components 

from preformed submodules, regulated by nuclear transport mechanisms and host factor binding. 
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Introduction 1 

The influenza virus is a negative sense RNA virus with a segmented genome belonging to the 2 

Orthomyxoviridae family. The viral RNA (vRNA) is divided into 8 segments that encode for a total of 10 3 

core proteins and a few additional accessory proteins. Every vRNA segment is coated by numerous 4 

nucleoprotein (NP) units and by one RNA-dependent RNA-polymerase (RdRp) complex composed of 5 

PA (716 aa for influenza A virus (IAV) strains), PB1 (756 aa for IAV strains) and PB2 (757aa for IAV 6 

strains). The RdRp binds to the 5’- and 3’- terminal extremities of the vRNA which acts as a promoter 7 

region [1-3]. The macromolecular assembly between the vRNA, NP and the RdRp forms the 8 

ribonucleoprotein (RNP). The RdRp performs both replication and transcription of the vRNA genome 9 

in the nucleus of the cell. As such, the RdRp can produce either cRNA/vRNA through de novo 10 

replication or viral mRNA through “cap snatching” transcription [4]. The factors regulating the switch 11 

from a transcriptive to a replicative RdRp remain to be characterised. 12 

Recently, the structures of influenza B [5] and bat influenza A [6] were published, providing 13 

tremendous insight into the complex architecture of the RdRp. All three subunits are tightly 14 

intertwined and form intricate quaternary structures at the vRNA promoter binding sites. Current 15 

models of RdRp assembly suggest that PB2 is imported via the importin-α pathway [7,8] whereas the 16 

PA-PB1 heterodimer is imported through direct interaction with RanBP5 [9-11]. 17 

Structural studies of RdRp from the human infecting influenza A (human-IAV) strains in contrast, have 18 

been limited to date, partly due to difficulties to produce recombinant H3N2 or H5N1 polymerases. 19 

Nonetheless, a cryo-EM reconstruction was recently obtained of a truncated influenza A/H5N1 20 

polymerase [12]. In the present article, we identify PB2 as the main bottleneck hampering complete 21 

recombinant polymerase expression in our insect cells expression system. Moreover, we present the 22 



 4 

characterisation of several constructs of human-IAV RdRp, including the biologically relevant PA-PB1 1 

heterodimer in solution. The titration measurements against the 5’- and 3’-vRNA promoters show a 2 

strong sub-nanomolar affinity of the PA-PB1 heterodimer towards the 5’-vRNA whereas the specific 3 

binding of the 3’-vRNA requires the presence of PB2. By applying our co-expression strategy, we show 4 

that the previously proposed PA-PB1-RanBP5 import complex can be purified, which we characterise 5 

using small angle X-ray scattering (SAXS). Biochemical analysis of this complex reveals a role for 6 

RanBP5 in hindering 5’-vRNA binding. Taken together, these data provide evidence for a cellular RdRp 7 

assembly pathway following a sequential and conditional process of assembly. 8 

  9 



 5 

Results 1 

PB2 is a key limiting factor for recombinant expression of the heterotrimer 2 

Polyproteins are naturally used by certain viruses to structure their proteome [13,14]. Recombinant 3 

polyproteins mimicking viral polyproteins have recently emerged as a powerful tool to express protein 4 

complexes for functional characterisation as well as structural determination (reviewed in [15]). Using 5 

this strategy [16], soluble and active heterotrimeric RNA-dependent RNA-polymerases of influenza B 6 

virus (IBV) and bat influenza A (bat-IAV) virus could be produced, crystallized and the structure 7 

determined at high resolution [5,6]. We have applied a similar strategy to the RdRp of two human-IAV 8 

strains, A/Victoria/3/1975(H3N2) and the highly pathogenic A/Viet-Nam/1203/2004(H5N1). The three 9 

genes of each heterotrimeric complex were combined with Tobacco Etch Virus (TEV) protease and 10 

Cyan Fluorescent Protein (CFP) in a single large open reading frame (ORF). Each gene was separated 11 

by a DNA sequence encoding for a peptide segment comprising a short serine/glycine linker and a TEV 12 

protease cleavage site (Figure 1.A). The constructs were optimized for recombinant expression in 13 

insect cells using the MultiBac system [17,18]. During expression, the TEV protease cleaves the 14 

polyprotein co-translationally, resulting in a stoichiometric assembly of the RdRp that can then be 15 

selectively purified using an affinity nickel resin. The production of the polyprotein is monitored using 16 

the fluorescence of two reporter proteins: CFP encoded within the polyprotein reports directly on 17 

recombinant protein yield, while YFP, integrated in the baculovirus genome, monitors virus 18 

performance. The ratio of YFP/CFP in our system is a highly useful criterion to determine recombinant 19 

polyprotein translation efficacy of the different constructs. 20 

Table 1 summarizes the results obtained with all constructs tested. Several attempts were made to 21 

express the H3N2 polymerase heterotrimer (construct number 12, Table 1). Although YFP and CFP can 22 



 6 

be detected and quantified, CFP values were extremely low compared to YFP with a YFP/CFP ratio of 1 

50, the highest observed for any polyprotein constructs that we expressed. No clear bands were 2 

observed on western blot using specific PA, PB1 and PB2 antibodies. Similar results were obtained 3 

with the H5N1 RdRp polyprotein, indicating failure of these recombinant expression experiments for 4 

these full-length IAV heterotrimeric polymerases. 5 

In order to understand the difference between the expression of the human-IAV and IBV 6 

polymerases, we designed new constructs with a C-terminally truncated PB2 based on available 7 

structural information. These were PB2(1-36) [19], PB2(1-116) [20] and based on the cap-binding 8 

domain [21], PB2(322-483). Expression and purification experiments were undertaken on constructs 9 

15, 17 and 18, all of which all have full-length PA, PB1 and truncations of PB2 extending to residues 10 

116, 320 and 483 respectively (Figure 1.B). As the PB2 extension increases beyond residue 116, we 11 

observed a loss of expression of the polyprotein, thus identifying a critical region in PB2 that limits 12 

yield. This can first of all be observed through the monitoring of YFP/CFP reporter genes during 13 

expression (Figure 1.C). YFP fluorescence values reach a similar plateau for all constructs whereas CFP 14 

values are reduced significantly for constructs 17 and 18. Moreover, after nickel resin pull-down on 15 

lysates from an equal amount of cells, we observed by western blot (Figure 1.D) decreased intensity 16 

bands of not only PB2 but also PB1, indicative of an overall expression loss. Polyprotein size increase 17 

alone could not explain the reduced expression because other control constructs (19 and 20) with 18 

additional protein sequences beyond PB2 residue 116 conserve lower YFP/CFP ratios. Furthermore, 19 

replacing the PB2(1-116) by another large protein such as RanBP5 (residues 1-1115) generates a 20 

construct with a lower YFP/CFP ratio than construct 15. The analysis of the amino acids sequences of 21 

PB2 does not provide more indication on the real nature of this phenomenon (supplementary Figure 22 

1). 23 



 7 

To determine whether this “loss-of-expression” phenomenon results from our polyprotein expression 1 

strategy, which combines PA-PB1 and PB2 in one ORF, we generated a MultiBac baculovirus co-2 

expressing a PA-PB1 fusion and PB2 from an independent expression cassette [22]. This strategy also 3 

resulted in high YFP/CFP ratios (≥35), even though the CFP gene was only fused to PA-PB1. These 4 

results identify PB2, especially when extended beyond the residue 116, as the bottleneck for 5 

expression of complete human-IAV RdRp. 6 

Dissecting the heterotrimer 7 

In order to identify a minimal active core of the human-IAV polymerase, we have systematically 8 

dissected the heterotrimeric complex for further characterisation using the polyprotein strategy. The 9 

expression of PA-PB1 increases significantly when PB2 is totally removed (compare constructs 1 and 10 

13/15; Table 1). The same observation is made after removing the endonuclease domain (i.e. PA-Nter; 11 

compare constructs 14 and 13/15). After purification, PA-PB1 forms homogeneous monomeric and 12 

stable particles (Figure 2.B) whereas the complexes with PB2 (constructs 15 and 16) give rise to 13 

dimers in solution (Figure 2.A). The dimers are stable enough to withstand salt concentrations up to 2 14 

M NaCl during purification, but the SEC elution peaks are broad suggesting that the oligomerization 15 

process is quite dynamic. By adding vRNA promoter-like molecules (e.g. the IAV panhandle; [23]), we 16 

found that the dimers dissociated into monomeric RNA:protein complexes. We were able to show 17 

that the truncated PA-PB1 (construct 1) and the PA-PB1-PB2 (construct 14) exhibit expected 18 

polymerase activities. The endonuclease activity is similar to that of the isolated PA-Nter domain 19 

(supplementary Figure 2), can be inhibited by the same point mutation (i.e. PA-E80A) or compound 20 

(i.e. DPBA) and shows comparable dependency on manganese [24,25]. The constructs are also 21 

functional in RNA synthesis. Upon addition of a mixture of IAV panhandle, NTPs and [α-32P]-UTP, both 22 



 8 

truncated PA-PB1 and PA-PB1-PB2 are able to generate an 80-nucleotide long product plus other 1 

minor products in absence or in presence of ApG (supplementary Figure 3). 2 

We have also shown that further N-terminally truncating PA and/or C-terminally truncating PB1 has 3 

no impact on the expression of the corresponding polyproteins (constructs 1 to 11). The heterodimer 4 

PA-PB1 can be purified with or without the N-terminal domain of PA (i.e. PA-Nter; compare constructs 5 

1 and 2). However, as soon as the PA-hinge (residues 200-260) is removed, PB1 becomes insoluble. 6 

This implies that the PA-hinge linking the Nter- and Cter-domains of PA is crucial for the stability of 7 

PB1. However, it is not sufficient in itself since the C-terminal region of PA interacting with the N-8 

terminal part of PB1 [26,27], cannot be deleted either (compare constructs 2 and 5 to 11). PB1 can be 9 

shortened on its C-terminus but when purifying the construct 4 (i.e. PB1 until amino acid 560), only 10 

PA-Cter remains soluble. Thus, the minimal construct required to obtain soluble PB1 is construct 3 11 

with PA from 197 to 716 and PB1 from 1 to 660. All the PA-PB1 constructs without the N-terminal 12 

domain of PA form dimers in solution (supplementary Figure 4) and adding vRNA-like molecules has 13 

no incidence on the dimerization. 14 

Over all the constructs tested, crystals have only been obtained using construct 2 (PA from 197 to 716 15 

and PB1 from 1 to 686). Crystals grew in a few days in low PEG content solutions. They diffract poorly, 16 

with diffraction limited to typically | 10 Å. Adding vRNA-like molecules had no effect on the 17 

diffraction. One dataset has been collected at 7.95 Å (space group P612 with cells parameters a = b = 18 

349.2 Å, c = 166.4 Å). A molecular replacement solution has been found using bat-IAV PA-PB1 19 

structure [6] confirming that there is a dimer of two molecules of PA(197-716)-PB1(1-686) in the 20 

asymmetric unit (solvent content = 88 %). Because of the poor resolution, no model improvement 21 

was possible but there were no obvious significant differences compared to the input molecular 22 

replacement search model (supplementary Figure 5). 23 



 9 

PA-PB1 dimer exhibits high-affinity interaction with 5’-vRNA but requires PB2 for binding 3’-vRNA 1 

All influenza RNA segments have the same organization, a central coding region flanked by 2 un-2 

translated regions containing the highly conserved and complementary 5’- and 3’-ends [28-30]. The 3 

viral polymerase specifically interacts with both the 5’- and 3’-ends, as recently visualized in crystal 4 

structures [5,6], and uses them as a promoter [1-3]. During their biochemical characterisation, we 5 

have seen significant effects of vRNA-like RNA molecules on the stability and/or the oligomeric state 6 

of most of the constructs. The initial RNA molecule used was the 80-nt panhandle [23] from which we 7 

made the 5’-vRNAp corresponding to the 5’-end (5’-AGUAGAAACAAGGGUA) and it’s 3’ equivalent 8 

called 3’-vRNAp (AUACCCUGCUUUUGCU-3’). By thermal shift assay experiments, a 10°C stabilisation 9 

was observed when 5’-vRNAp was added to all the constructs, whereas when 3’-vRNAp was added, 10 

the effect was less significant and dependent on the construct. Similar data had already been 11 

published [31]. 12 

We used fluorescence anisotropy to measure the interaction between our truncated polymerase 13 

constructs and the conserved vRNA ends by following the fluorescence polarization increase of a 14 

fluorescently labelled RNA when it binds the polymerase. For this purpose, we used 5’-vRNAp and 3’-15 

vRNAp, both labelled with fluorescein amidite (FAM) at the opposite extremity of the putative 16 

interaction, i.e. at the 3’-end for the 5’-vRNAp and vice versa (Figure 3 and Table 2). At 300 mM NaCl, 17 

the Kd for the 5’-vRNAp are similar (sub-nanomolar) for both constructs 1 and 14, whereas for the 3’-18 

vRNAp, a Kd of 36 nM for the construct with PB2 is obtained (Figure 3.A) and no binding was observed 19 

for the construct without PB2 (Figure 3.C). As the estimated Kd for the 5’-end was in a range below 20 

the working concentration and beyond the sensitivity limit of the fluorescence anisotropy 21 

measurement, another method was required to determine the 5‘-vRNAp affinity. Filter binding assays 22 

(FBA) were then therefore used for precise Kd determination (Figure 3.B). With the corresponding 23 



 10 

radioactive probes, we found values of 0.2-0.4 nM for the 5’-end. For the 3’-end, the Kd was 100-fold 1 

higher and critically dependent on the presence of PB2. Salt concentration is also an important 2 

parameter. We show different binding characteristics at 150 and 300 mM NaCl of the PA-PB1 towards 3 

different RNAs. The Kd value of PA-PB1 for the 5’-end remains sub-nanomolar in the range of 150 to 4 

300 mM NaCl. In contrast, at 150 mM NaCl, 3’-vRNAp binds to PA-PB1 with the same affinity than for 5 

a poly-UC (Figure 3.C), and so is non-specific. All relevant titrations were performed at 300 mM NaCl 6 

to prevent non-specific affinity measurements. Recently published affinity data [32] working at 500 7 

mM NaCl likewise consistent with very high affinity of the 5’-vRNAp towards IAV polymerase but this 8 

study failed to measure 3’-vRNAp binding within the nanomolar range, indicating that 3’-vRNAp 9 

binding is also tightly influenced by salt concentration. 10 

RanBP5 interacts tightly with PA-PB1(1-686) when co-expressed 11 

During the viral cycle, the assembly of influenza RdRp follows a multi-factorial pathway involving 12 

many host partners proteins. After transcription in the nucleus, viral mRNAs are exported to the 13 

cytoplasm to be translated by the cellular machinery. The components of the replication machinery 14 

(i.e. PA, PB1, PB2 and NP) then must be imported into the nucleus. Whereas PB2 and NP use 15 

importins-α [8,33-36], PA and PB1 are conjointly imported as a preformed heterodimeric submodule 16 

by the importin-β RanBP5 [9,11,37]. Having confirmed the existence of a stable PA-PB1 complex we 17 

sought to demonstrate its interaction with RanPB5. The human IPO5 gene which encodes for RanBP5, 18 

was expressed in insect cells. After purification, RanBP5 forms a homogeneous monomeric sample 19 

(Figure 2.C) that has been used in mixing experiments with freshly purified PA-PB1(1-686) followed by 20 

SEC-MALLS-RI experiments. The two samples were mixed in stoichiometric ratio and incubated before 21 

size exclusion chromatography (SEC). Both RanBP5 and PA-PB1(1-686) were eluted in the same single 22 

peak, but MALLS-RI indicated a molecular weight corresponding of a mixture rather than a stable 23 



 11 

ternary complex (supplementary Figure 6). We then attempted to produce a PA-PB1(1-686)-RanBP5 1 

heterotrimer by the self-processing polyprotein strategy. A long ORF encoding for the trimeric 2 

complex was created by inserting the IPO5 gene downstream of the PB1(1-186) coding sequence 3 

(Table 1, construct 21). Remarkably, from this polyprotein construct, PA-PB1 co-purifies with RanBP5, 4 

forming a homogeneous and stable heterotrimer (Figure 2.D). 5 

Online SEC-SAXS was used for the characterisation of PA-PB1(1-686), RanBP5 and PA-PB1(1-686)-6 

RanBP5, respectively in solution. Using the Vc determination method [38] on the diffusion data of PA-7 

PB1(1-686) shows a Mw estimate of 146 kDa (Table 3 and supplementary Figure 7). The calculated 8 

Mw is 166 kDa. The Guinier transform measures a hydrodynamic radius (Rg) of 37.9 Å and GNOM 9 

produces the pair distribution function fit with a Dmax of 128 Å. Further analysis of the SAXS curve 10 

(Figure 4.A) shows a visually adequate correlation with the CRYSOL curve which uses the bat-IAV 11 

polymerase structure (PDB id: 4WSB) as a model. The high chi2 values are observed for this dataset, 12 

which are probably the result of a noisy SAXS curve. A slight deviation of the fit is observed above a q 13 

range of 0.8 nm-1, suggesting conformational differences between the scattering curve and the crystal 14 

structure coordinates. Ab-initio modelling was performed using 15 DAMMIF models which were 15 

averaged by DAMAVER. Averaged model correlation with the diffusion curve was then checked using 16 

the damstart file as a starting envelope for DAMMIN. The polymerase DAMAVER envelope (Figure 17 

4.A) appears as a pear shaped structure in which the homologous model can be fitted. Additional 18 

envelope volume is visible close to the endonuclease domain, implying that it adopts multiple 19 

conformations in solution. 20 

Using the same methodology, we determine RanBP5 to be a monomer in solution with a measured 21 

Mw of 144 kDa close to the theoretical Mw of 126 kDa (Table 3 and supplementary Figure 7). RanBP5 22 

displays an Rg of 38.8 Å and a Dmax of 136 Å. With a Mw lower than that of PA-PB1(1-686), RanBP5 23 



 12 

displays a larger Dmax and Rg indicating an extended structure. CRYSOL curve fitting using the closest 1 

sequence homologue Kap121 (PDB id: 3W3T) against the diffusion curve reveals important 2 

conformational differences between the two structures (Figure 4.B). Envelope modelling confirms an 3 

elongated structure of RanBP5 in solution. 4 

Analysis of PA-PB1(1-686)-RanBP5 describes a significantly larger complex in solution with an Rg of 5 

51.8 Å and a Dmax of 181 Å. The Mw estimate of 323 KDa is close to the expected Mw of 292 KDa, 6 

confirming the presence of a stoichiometric 1:1:1 PA-PB1(1-686)-RanBP5 complex in solution. MONSA 7 

was used to perform the ab-initio modelling of the complex PA-PB1(1-686)-RanBP5. It separately uses 8 

the PA-PB1(1-686) and RanBP5 diffusion curves (Figure 4.A and 4.B) in combination with that of PA-9 

PB1(1-686)-RanBP5 to propose a consensus dual envelope (Figure 4.C). Model fitting was performed 10 

against the three experimental curves and matches all 3 curves with similar quality. Homologous 11 

structures were manually fitted in order to compare envelope and crystal structure sizes. They do not 12 

constitute a valid docking solution and again only serve as dimension references. With this ab-initio 13 

modelling we also find a comparable envelope for PA-PB1(1-686) like the one produced with 14 

DAMMIF/DAMAVER. RanBP5 on the other hand displays a different envelope suggesting 15 

conformational differences between the unbound and bound forms of RanBP5. In this envelope, the 16 

Kap121 coordinates can no longer be totally fitted underscoring the conformational difference 17 

between the envelope and the homologous X-ray structure. The model suggests a close interaction 18 

between the two proteins, RanBP5 (violet envelope) tightly interacts well over half of its length with 19 

PA-PB1(1-686) (grey envelope), suggesting molecular contacts well beyond those of the proposed PB1 20 

NLS containing domain, which the crystal structure shows is a mobile and solvent exposed β-ribbon 21 

[6]. This model further supports the hypothesis that RanBP5 may play a chaperone function for PA-22 

PB1 prior to assembly with PB2 in the nucleus to complete the polymerase. 23 



 13 

RanBP5 regulates the binding of the 5’-vRNAp 1 

The PA-PB1 complex not only exists as a stable submodule but can moreover recognise the 5’-vRNAp 2 

with a high affinity and act as a replicase and endonuclease on its own, without PB2 present. The 3 

current model predicts the NLS of PA-PB1 to be present within PB1 (residues 187-211) [11], at the end 4 

of a beta-strand located parallel to the vRNAp binding sites, indicating a potential link between the 5 

binding to RanBP5 and/or the binding to vRNAp. 6 

Subsequently to measuring the sub-nanomolar Kd of PA-PB1(1-686) and PA-PB1-PB2(1-116) to the 5’-7 

vRNAp, an identical experiment was performed with the PA-PB1(1-686)-RanBP5 complex (Figure 3.D). 8 

The association curve clearly shows a complete loss of binding affinity towards the 5’-vRNAp when 9 

RanBP5 is present, both at 300 mM and 150 mM NaCl. Using SEC-MALLS-RI experiments, we have 10 

shown that an excess of 5’-vRNAp does not induce any complex dissociation of the PA-PB1(1-686)-11 

RanBP5 trimer (supplementary Figure 8). Taken together, these experiments suggest that RanBP5 12 

binding obscures the 5’-vRNAp binding site, thus blocking specific 5’-vRNAp binding. 13 

  14 
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Discussion 1 

Expression of full-length IBV and bat-IAV polymerases has been successfully achieved using a 2 

polyprotein approach, resulting in atomic resolution structures by X-ray crystallography [5,6]. In 3 

marked contrast and unexpectedly, efficient expression of active full-length human or avian IAV 4 

polymerase at yields high enough for structural studies has not been reported to date, irrespective of 5 

the method used. Our studies identify PB2, and notably residues 120 to 250 as responsible for this 6 

poor expression. Interestingly, attempts by a different research group to reconstitute a full IAV 7 

polymerase (e.g. full IAV polymerase expression/purification for structural studies) likewise failed 8 

beyond the N-terminal PB1 interacting domain of PB2 [12]. The reason why PB2 hinders polyprotein 9 

expression is not clear at the moment. We speculate that the extended fold of the PB2 region 1-250 is 10 

unstable unless bound to one side of PB1 [5,6] and thus may require chaperones to maintain its 11 

stability prior to assembly onto PA-PB1. Of note, Hsp90 has been shown to stimulate influenza virus 12 

RNA synthesis [39] and the nuclear import of the subunits [34]. Moreover, Hsp90 inhibitors reduce 13 

influenza virus replication in cell culture [40]. We have shown previously that provision of co-factors 14 

in trans can ameliorate the quality and quantity of target proteins expressed in the baculovirus/insect 15 

cell system [41,42]. Provision of Hsp90 and the other chaperones, within the polyprotein or in trans 16 

on the baculovirus backbone, may provide a powerful handle to overcome the bottleneck of human-17 

AIV polymerase production. 18 

PA-PB1 can be produced as a stable submodule and forms a discrete heterodimer in solution. 19 

Dimerization of PA-PB1 heterodimers can appear when either the endonuclease is removed or the N-20 

terminal of PB2 is added which may indicate that the superstructure formation could be artificially 21 

induced by truncations of the full-length polymerase. PA-PB1 can specifically bind to the 5’-vRNAp 22 

with sub-nanomolar affinity in solution. In contrast, 3’-vRNAp binding requires the presence of PB2 23 
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and is within the low nanomolar range, indicating a much stronger preference of the polymerase 1 

towards the 5’-vRNAp. These results are consistent with the high-resolution crystal structures in 2 

which the 5’-vRNAp binding site is located between the PA and PB1 subunits [5,6]. The 3’-vRNA, on 3 

the other hand, interacts with all three subunits suggesting a sequential vRNAp binding mechanism. 4 

Our results corroborate key steps of influenza polymerase assembly [9,37,43]. Purification of 5 

stoichiometric complexes using the polyprotein strategy confirm that PA-PB1 can exist as a preformed 6 

and stable submodule, independently of additional host factors, with PA acting as a putative 7 

“chaperone” for PB1. Our data also shows that PA-PB1 is functional in RNA synthesis, which has 8 

interesting physiological implications. Moreover, we demonstrate here that the PA-PB1(1-686) 9 

heterodimer can assemble with RanBP5 into a stable, heterotrimeric complex that can be purified in 10 

vitro. This likely corresponds to the import complex for these two subunits, although other 11 

chaperones such as HSP90 may be co-imported [34]. In contrast to PA-PB1 with RanBP5, we failed to 12 

reconstitute a binary PB2-importin-α complex using the polyprotein strategy even though functional 13 

and structural data show that PB2 nuclear import depends on the importin-α pathway, through a 14 

direct interaction between the PB2 C-terminal domain that contains the NLS [7,8]. This is probably 15 

partly due to an inherent instability of isolated IAV PB2 in insect cells but could also reflect the lack of 16 

sufficient chaperones, co-chaperones or other unidentified factors that stabilise PB2. Furthermore, 17 

cytoplasmic expression of PB2 appears to destabilise many cellular processes [44,45]. The lack of high 18 

expression levels of fully assembled PA-PB1-PB2 heterotrimers unfortunately currently limits our 19 

efforts to elucidate the structure of the complete IAV polymerase at atomic resolution. Nevertheless, 20 

docking of bat-IAV and IBV crystal structures into the PA-PB1(1-686)-RanBP5 SAXS envelope suggests 21 

that assembly of PB2 onto the PA-PB1-RanBP5 complex might be possible, based on steric 22 

considerations. Indeed RanBP5 could even facilitate trimer assembly perhaps concomitantly with Ran-23 
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dependent dissociation from PA-PB1. In contrast, RanBP5 profoundly affects the ability of PA-PB1 to 1 

bind vRNA. We show that whereas the 5’-vRNA is specifically recognized by PA-PB1 with high affinity, 2 

this is abolished in the ternary complex with RanBP5. This again suggests that RanBP5 disassociation 3 

may be coupled to assembly of the polymerase with the promoter RNA. In any case, only when PB2 4 

associates is the polymerase able to associate with the 3’-vRNA end, consistent with the crystal 5 

structure [5,6]. But surprisingly, the affinity of the heterotrimer for 3’-vRNA is in the same order of 6 

magnitude than the affinity of NP for RNA substrates (Table 2), revealing a potential competition 7 

between the complete polymerase heterotrimer and the nucleoprotein. 8 

We demonstrate here for the first time that the polyprotein expression strategy can be used not only 9 

to co-express subunits that form a stable complex, but also to successfully reconstitute interactions 10 

with downstream partner proteins in vivo in the expression host for direct purification and functional 11 

characterisation. Functional studies on IAV RdRp reveal that vRNAp promoter binding is completely 12 

abolished when PA-PB1(1-686) is bound to RanBP5, suggesting a possible role for RanBP5 in 13 

maintaining PA-PB1 in an inactive form during nuclear import. This discovery holds a promise for 14 

influenza research as it provides a novel point of therapeutic intervention for targeting and inhibiting 15 

influenza virus during assembly of its active components. We anticipate that compounds which block 16 

polymerase/RanBP5 binding or release may prove to be highly efficient, broad spectrum antiviral 17 

inhibitors in the treatment of influenza, in particular for patient groups where classical vaccination 18 

strategies fail. 19 

Methods 20 

Molecular biology 21 

The DNA coding sequences of A/Victoria/3/1975(H3N2), the highly pathogenic A/Viet-22 

Nam/1203/2004(H5N1) polymerase subunits and human IPO5 have been ordered to GeneArt 23 



 17 

(ThermoFisher Scientific), optimized for the expression in insect cells. Cloning has been achieved 1 

following the supplier procedures (New England Biolabs). The pPBAC plasmid was used for the 2 

polyprotein constructs [15,17]. Few constructs have been expressed using pFastBac-HTB (Life 3 

Technologies). vRNA-like molecules (i.e. IAV panhandle; [23]) have been produced and purified using 4 

classical in vitro transcription protocols [46,47]. 5 

Expression and purification 6 

Large scale suspension cultures expressing polymerase fusion constructs were prepared using High 7 

Five insect cells grown in Express Five media (Life Technologies) at 0.5x106 cells/mL infected at 0.2% 8 

(V/V) with the baculovirus mother solution. Cultures were maintained at 0.5-1x106 cells/mL until 9 

proliferation arrest (24-48h after infection). Following the proliferation arrest YFP and CFP 10 

measurements were performed every 12h until a fluorescence plateau was reached (72-96h after 11 

infection). Cultures were then spun down at 800 g for 10 min and cell pellets were stored at -80°C. 12 

Cell pellets were resuspended in 50 mL of lysis buffer (50 mM Tris-HCl pH 8.5, 300 mM NaCl and 2mM 13 

β-mercaptoethanol) per 500x106 cells in the presence of EDTA-free anti-protease cocktail (complete 14 

from Roche). Lysis was performed with two cycles of freezing (-180°C) / thawing (26°C) after which 15 

10% of glycerol were added to the lysate before centrifugation (45 min, 40 000 g, 4°C). After retrieval 16 

of the clarified lysate, 30 mM of imidazole pH 8.0 were added before loading on Ni-NTa superpose 17 

resin (Quiagen). After flowing the lysate through the resin, three wash steps with 10 column volumes 18 

(CV) of buffer A (lysis buffer with 30 mM imidazole), 10 CV of wash buffer B (50 mM Tris-HCl pH 8.5, 1 19 

M NaCl, 10% glycerol and 2 mM β-mercaptoethanol) and 10 CV of wash buffer A were performed. 20 

Elution of the bound complex was performed with 300 mM imidazole. Elution fractions containing 21 

polymerase were then pooled together and directly injected on a 5 mL Hitrap heparin resin (GE 22 

healthcare) which had previously been equilibrated with 5 CV of buffer A. After binding to the resin, a 23 
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5 CV wash was performed with buffer A before eluting with a 40 mL salt gradient on a FPLC system. 1 

The elution peak corresponding to stoichiometric polymerase assemblies was then pooled and 2 

injected on an S200 (GE healthcare) size exclusion chromatography equilibrated in 50 mM Tris-HCl pH 3 

8.5, 300 mM NaCl, 5 mM β-mercaptoethanol. Peak fractions were pooled and concentrated to the 4 

desired concentration using a 100 kDa concentrator. Once concentrated the protein prep could be 5 

stored by addition of 20% glycerol and flash freezing in liquid nitrogen. 6 

NP was purified using the protocol described in [48,49]. 7 

SEC-MALLS-RI analysis 8 

All MALLS runs were performed using a S200 increase SEC column (10/300 GL, GE Healthcare). Sample 9 

injection and buffer flow was controlled by a Hitachi L2130 pump, following the SEC column was a L-10 

2400 UV detector (Hitachi), Optilab T-rEX refractometer (Wyatt technologies) and a DAWN HELEOS-II 11 

multi angle light scattering detector (Wyatt technologies). Prior to injection, columns and systems 12 

were equilibrated in 5 to 10 column volumes of running buffer. 50 μL injections were performed using 13 

protein samples concentrated at a minimum of 2 mg.mL-1, constant flow rate of 0.5 mL.min-1 was 14 

used. Accurate MALLS mass prediction was performed with the Astra software (Wyatt Technologies). 15 

Curves were represented with Graphpad (Prism). 16 

 17 

Electron microscopy 18 

Samples (0.1 mg.mL-1) were applied to the clean side of carbon on mica. The carbon was then floated 19 

on sodium silicotungstate (2% v/w) or uranyl acetate (2% v/w) and a grid placed on the top of it. After 20 

air-drying, the samples were observed in a T12 FEI electron microscope and images were taken using 21 

an Orius SC1000 CCD camera (Gtan Inc., Pleasanton, CA). 22 
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SAXS analysis 1 

All datasets were collected on BM29 (ESRF). The initial trials using direct sample measurement 2 

showed a slight concentration dependency of the Guinier estimated Rg. Online SEC-SAXS was 3 

therefore used for all experiments in order to limit the contribution of partially aggregated, oligomeric 4 

or dissociated protein to the experimental curve. The experimental setup consists of a High Pressure 5 

Liquid Chromatography (HPLC) system connected to an analytical S200 increase column (5/150 GL, GE 6 

Healthcare) followed downstream by the SAXS sample capillary. SAXS measurements were performed 7 

every second with a Pilatus 1M detector at distance of 2.87 m allowing a q range of 0.03 to 4.5 nm 8 

with a wavelength of 0.01 nm. 9 

Following data collection, experimental curves were subtracted and analysed using Primus (ATSAS) or 10 

Scatter (Bioisis) programs suits [50]. To verify the molecular mass, the Rambo and Tainer method was 11 

used [38,51]. Rg predictions using the Guinier extrapolation were plotted against the elution volume 12 

to select the most monodisperse part of the protein elution peak. SAXS datasets within this zone were 13 

then scaled and averaged to produce one unique I(q) curve. GNOM [52] was then used to produce a 14 

P(r) function which was subsequently used by DAMMIF [53] to generate 15 ab-initio models. 15 

DAMAVER [54] was then used to generate an average model. Consistency of the DAMAVER averaging 16 

with the original experimental curve was assessed by using DAMMIN [55] and using the damstart.pdb 17 

envelope as a starting model. Homologue PDB structure comparison was assed using Crysol [56]. 18 

Multiple diffusion curve ab-initio modelling was performed using Bunch [57]. Homologue structure 19 

fitting within the DAMAVER envelope was performed with Chimera [58] and curve representations 20 

using Graphpad (Prism). 21 

Fluorescence anisotropy assay 22 
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Equilibrium RNA binding experiments were performed with the following vRNA set synthetized by 1 

Integrated DNA Technologies (IDT): 5’-vRNAp (5’-pAGUAGAAACAAGGGUA-FAM3’), 3’-vRNAp (5’FAM-2 

AUACCCUGCUUUUGCU-3’) and polyUC (5'-pUCUCUCUCUCUCUCUCUC-FAM3'). 5’-vRNA sequences 3 

were synthetized with a 5’-mono phosphate and labeled with 6-FAM in 3’OH. 3’ vRNA were labeled 4 

with FAM in 5’. Polymerase constructs was titrated into fluorescently labeled RNA using the buffer (50 5 

mM HEPES pH 7.5, 5 mM β-mercaptoethanol plus 150 mM or 300 mM NaCl) at room temperature. 6 

Initial reactions were performed with 2-4 nM of RNA with an initial volume of 600 μL to limit the 7 

dilution effect of protein addition (<5%). Anisotropy measurements were undertaken using a PTI 8 

fluorometer equipped with automated polarizers. The excitation and emission wavelengths were 494 9 

and 521 nm, respectively. 50 anisotropy measurements with a 1 second integration time were 10 

performed per titration point. 11 

Filter Binding Assay 12 

Equilibrium RNA binding experiments were undertaken with the same vRNA set synthetized by IDT. 13 

vRNA were labeled with 32P in 5’ using the T4 polynucleotide kinase (New England Biolabs). Double 14 

filter binding was used following the previously established protocol [59]. Protein concentration was 15 

titrated against constant concentrations of vRNA (≤ 0,01 nM) within a final volume of 200 μL using the 16 

standard protein buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5 mM β-mercaptoethanol). 180 μL were 17 

then filtered on two membranes using a 96 well Whatman Minifold dot-blot apparatus. The first 18 

membrane was Protran BA 85 membrane (Whatman) to retain the polymerase and the second one is 19 

a nylon Hybond-N+ membrane (Amersham Bioscience) to retain unbound nucleic acid. Both 20 

membranes were pre-incubated 1h at room temperature within the protein buffer prior to use. After 21 

blotting, another 180 μL of protein buffer were run through the membranes to wash any unbound 22 

RNA before letting the vacuum dry the dot-blots for 30 seconds. Both membranes were then 23 
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dismounted from the dot-blot apparatus and exposed to a storage phosphor screen (BAS storage 1 

phosphor screen, GE Healthcare) overnight. Revelation of the phosphor screen was then performed 2 

with a Typhoon Trio imaging system (GE Healthcare). Dot blot phosphorescence intensity was 3 

integrated using the Image J software. A derived bound ratio was then calculated using the following 4 

formula: 5 

𝐵𝑟 = 𝐼𝑏𝑜𝑢𝑛𝑑
𝐼𝑏𝑜𝑢𝑛𝑑 + 𝐼𝑓𝑟𝑒𝑒  6 

Where Ibound is the integrated intensity of protein/RNA complex which is retained by the protran 7 

membrane and Ifree is the unbound RNA retained by the nylon Hybond-N+ membrane. 8 

Binding assay data analysis 9 

RNA binding curves were plotted with the subtracted anisotropy or Bound RNA ratio as a function of 10 

the protein concentration. Sigmoidal binding curves were fitted to the data using GraphPad (Prism) 11 

with the following two equations: 12 

1) For the anisotropy titrations, [vRNA] ≈ Kd. Assuming a 1/1 stoichiometry the following equation was 13 

used to estimate the Kd 14 

∆𝐴 = {(𝑅𝑇 + 𝐸𝑇 + 𝐾𝑑) − [(𝑅𝑇 + 𝐸𝑇 + 𝐾𝑑)2 − 4 × 𝑅𝑇 × 𝐸𝑇]1/2

2 × 𝑅𝑇
} ×  ∆𝐴𝑇  15 

Where ∆A is the change in subtracted anisotropy, ∆AT the total change of subtracted anisotropy. RT is 16 

the total vRNA concentration, ET is the total polymerase concentration at each given point and Kd is 17 

the dissociation constant. 18 

2) In the case of filter binding assay, a single site isotherm was used as we consider that [vRNA] << Kd. 19 

This equation therefor assumes an effective equality between the free polymerase concentration and 20 

the total polymerase concentration.  21 
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∆𝐵𝑟 = {∆𝐵𝑟𝑇(𝐸𝑇 𝐾𝑑⁄ )
(1 +  𝐸𝑇 𝐾𝑑⁄ )} 1 

Where ∆Br is the change in binding ratio, ∆BrT is the total change in binding ratio. ET is the total 2 

polymerase concentration at every point in titration and Kd is the dissociation constant. 3 

Standard error calculations for the apparent Kd within a given condition were calculated through 4 

triplicate data measurement. 5 

 6 
 7 

8 
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Figures legends 1 

Figure 1 2 

Truncated human-IAV RdRp polyprotein expression. (A) Logic of the TEV-PA-PB1-PB2-CFP 3 

polyprotein expression in a schematic view. During expression, TEV will process the polyprotein 4 

ensuring a stoichiometric assembly of PA, PB1 and PB2. YFP and CFP are produced during the process 5 

and monitor respectively baculovirus proliferation and polyprotein translation. (B) Truncated RdRp 6 

constructs where PB2 is incrementally extended until residues 116, 320 or 483. (C) YFP (left) and CFP 7 

(right) fluorescence kinetics measured during Hi-5 insect cells culture of truncated RdRp constructs. 8 

YFP (λexi = 488 nm, λemi = 525 nm) and CFP (λexi = 430 nm, λemi = 480 nm) measurements were 9 

performed on cellular extracts prepared by sonicating 1x106 cells in PBS (500 PL) follow by 10 

centrifugation. Fluorescence intensities are plotted against time after infection. (D) Small scale nickel 11 

resin purification analysis by western blot. Purifications were performed on the 50 mL of Hi-5 insect 12 

cells cultures used for the YFP and CFP fluorescence kinetics (C). Deposits feature total lysate after 13 

freeze/thaw (T), supernatant after centrifugation (S), resin flow through (Ft) and the primary elution 14 

fraction (E). After migration on a 12 % SDS-PAGE, proteins were transferred on PVDF membrane. 15 

Primary antibodies targeting human-IAV PB2 (rabbit IgG) and human-IAV PB1 (mouse IgG) have been 16 

used. Revelation was performed with secondary goat antibodies coupled with Alexa Fluor 532 (λexi = 17 

632 nm, λemi = 647 nm) and Alexa Fluor 633 (λexi = 531 nm, λemi = 554 nm) targeting mouse and rabbit 18 

H + L domains respectively, using a Typhoon Trio imaging system (GE Healthcare). After integration of 19 

the raw data, PB1 and PB2 revelation are visible in red and green respectively. Black and white signal 20 

of PB2 is also shown (bottom) to highlight the PB2 truncations. The upper bands appearing in 21 

green/yellow, correspond to unprocessed polyproteins. 22 
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Figure 2 1 

Homogeneous sample analysis of recombinant polymerases, RanBP5 and polymerase-RanBP5. 2 

Purified product analysis are horizontally grouped for (A) PA-PB1-PB2(1-116), (B) PA-PB1(1-686), (C) 3 

RanBP5 and (D) PA-PB1(1-686)-RanBP5. On the left are the Coomassie blue colored SDS PAGE gel of 4 

the purified sample with corresponding subunits bands indicated by colored arrows (PA in blue, PB1 5 

in green and RanBP5 in purple). In the middle are the SEC-MALLS chromatograms with the UV signal 6 

as a backtrace and molecular weight estimate below the peak. Estimated average molecular weight 7 

for each sample is also detailed. SEC-MALLS-RI runs of PA-PB1(1-686), RanBP5 and PA-PB1(1-686)-8 

RanBP5 were performed in the same buffer (50 mM Tris-HCl pH 8.0 and 150 mM NaCl) whereas the 9 

SEC-MALLS-RI run of PA-PB1-PB2(1-116) was performed with 50 mM Tris-HCl pH 8.0, 300 mM NaCl 10 

and 10% glycerol. (right) corresponding electron microscopy images. 11 

Figure 3 12 

vRNA binding and specificity. (A) Binding titration of the truncated trimer PA-PB1-PB2(1-116) towards 13 

the 5’-vRNAp (blue triangle) and 3’-vRNAp (red square) sequences using fluorescence anisotropy at 14 

300 mM NaCl. (B) Binding titration performed by filter binding assay against P32 labelled 5’-vRNAp 15 

(blue triangle) and 3’-vRNAp (red square) using 300 mM NaCl. Bound RNA fraction is plotted as a 16 

function of polymerase concentration. (C) Binding titration of the truncated dimer PA-PB1(1-686) 17 

performed at 150 and 300 mM NaCl against the 5-’vRNAp (dark and light blue triangles), 3’-vRNAp 18 

(orange and dark red squares) and polyUC RNA (light and dark green circles) by fluorescence 19 

anisotropy. (D) Binding titration of different polymerases and polymerase-RanBP5 constructs against 20 

the 5’-vRNAp at 300 mM NaCl by fluorescence anisotropy. PA-PB1-PB2(116) and PA-PB1(1-686) are 21 

depicted by blue and orange triangles respectively, PA-PB1(1-686)-RanBP5 is depicted with purple 22 
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triangles. For all anisotropy titrations (A, C and D) subtracted anisotropy is plotted as a function of 1 

protein concentration. 2 

Figure 4 3 

Online SAXS analysis of PA-PB1, RanBP5 and PA-PB1-RanBP5 complex in solution. Results are shown 4 

for (A) PA-PB1(1-686), (B) RanBP5 and (C) PA-PB1-RanBP5. On the left are the experimental Ln[I(q)] 5 

curves with the ab-initio DAMMIN curve fit (blue) using the Damstart (DAMAVER) as an initial 6 

constraint and the CRYSOL fit (red) of the closest homologous X-ray structure. The MONSA fit is also 7 

shown for the 3 curves in black. The Chi2 of the different curves are also shown. On the right are the 8 

homologous PDB structure depicted as cartoon structures fitted into the DAMAVER ab-initio envelope 9 

for (A) and (B) and into the MONSA modeling in (C). RanBP5 is depicted in purple, PA in blue, PB1 in 10 

green and the NLS motif in deep-purple. All three structures are at the same scale. In (C) the PA-11 

PB1(1-686) and RanBP5 envelopes are colored in grey and purple respectively. 12 

 13 

  14 
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Supplementary information 1 

Supplementary Figure 1 2 

Sequences alignment of PB2. The alignment has been made for the sequences of the 2 human-IAV 3 

strains used for this work plus the 2 strains for which the structures have been recently solved. bat-4 

IAV corresponds to A/little yellow-shouldered bat/Guatemala/060/2010(H17N10) (UniProtKB access 5 

number: H6QM90), H3N2-IAV to A/Victoria/3/1975(H3N2) (H9XIJ5), H5N1-IAV to the highly 6 

pathogenic A/Viet-Nam/1203/2004(H5N1) (Q6DNN3) and IBV to B/Memphis/13/2003 (Q5V8X3). The 7 

secondary sequences elements shown over and below the sequences alignment correspond to bat-8 

IAV (PDB access numbers 4WSB) and IBV (4WSA) respectively. The alignment has been done using 9 

Clustal X2 [60] and drawn with ESPript [61]. 10 

Supplementary Figure 2 11 

Endonuclease activity. An unstructured 52 nt poly-UC RNA (10 µM) [25] was incubated with the wild-12 

type (wt) or E80A mutant of PA-PB1-PB2(1-116) (12 µM) or the N-terminal domain of PA (PA-Nter) (12 13 

µM) for 2 h at 37°C in a final volume of 30 µl. Reactions were done in the presence and/or in the 14 

absence of 0.5 mM MnCl2 in the reaction buffer 50 mM Tris-HCl pH 8,5, 25 mM KCl, 2,5 mM NaCl, 10 15 

mM β-mercaptoethanol as previously described [24,25]. Reactions were inhibited by addition of 2 16 

mM 2,4-dioxo-4-phenylbutanoic acid (DPBA) in the same conditions. As controls, the RNA was 17 

incubated with 0.5 mM MnCl2 or with 2 mM DPBA or alone (ctrl). Reactions were stopped by adding 18 

20 mM EGTA. The reactions were then loaded on an 8 M urea polyacrylamide gel. After migration, the 19 

gel was revealed by methylene blue staining. 20 

 21 

 22 
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Supplementary Figure 3 1 

De novo synthesis activity assay. (A) PA-PB1(1-686) and (B) PA-PB1-PB2(1-36) polymerases were 2 

incubated at 37°C with the 80-mer panhandle RNA, NTPs and radiolabelled [αP32] UTP. Reactions 3 

were stopped at 30, 60, 90 and 120 minutes with the addition of EGTA before loading on a 15 % urea 4 

PAGE. Revelation was performed using a phosphorus screen and Typhoon scanner (GE Healthcare). 5 

Supplementary Figure 4 6 

Effect of PA-Nter depletion on PA-PB1 oligomerzation. Individual SEC-MALLS chromatography runs 7 

of (A) PA-PB1(1-686) and (B) PA(196-716)-PB1(1-686) have been performed in the same buffer (50 8 

mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol) using a S200increase (10/300 GL, GE 9 

Healthcare) column. UV absorbance at 280 mm is plotted against the elution volume. MALLS-RI 10 

molecular mass estimates are plotted below the curve. 11 

Supplementary Figure 5 12 

Crystallization of PA(197-716)-PB1(1-686). (A) Snapshot of a crystal mounted on the beamline. The 13 

red cross corresponds to the position of the beam. (B) Statistics of the best data collected on a single 14 

crystal. (C) Comparison of (left) PA(196-716)-PB1(1-686) obtained by molecular replacement and 15 

(right) the already published crystal structure of bat-IAV RdRp (PDB access: 4WSB) [6]. Both models 16 

use the same color code, i.e. marine for PA, green-forest for PB1. The additional parts of bat-IAV RdRp 17 

are colored in light-blue and light-red for the endonuclease domain of PA (PA1-195) and PB2 (1-759) 18 

domain respectively. The panel was prepared using PYMOL [62]. Note that PA(196-716)-PB1(1-686) 19 

model is made by 2 molecules of PA(197-716)-PB1(1-686) in the asymmetric unit. On the figure, only 20 

one is shown. The second occupies the position of the endonuclease domain in the bat-IAV RdRp 21 

model. 22 
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Supplementary Figure 6 1 

RanBP5 and PA-PB1(1-686) does not form a stable complex when mixed. PA-PB1(1-686) and RanBP5 2 

were separately purified before being mixed in equimolar proportions. The mixture was incubated 1h 3 

at 20°C before analysis. Individual SEC-MALLS chromatography runs of (A) PA-PB1(1-686), (B) RanBP5 4 

and (C) PA-PB1(1-686) + RanBP5 were performed in the same buffer (50 mM Tris-HCl pH 8.0, 150 mM 5 

NaCl, 5 mM β-mercaptoethanol) using a S200increase (10/300 GL, GE Healthcare) column. UV 6 

absorbance at 280 mm is plotted against the elution volume. MALLS-RI molecular mass estimates are 7 

plotted below the curve. 8 

Supplementary Figure 7 9 

Rg determination by Guinier extrapolation. Guinier plots were calculated on low q regions and are 10 

linear for (A) PA-PB1(1-686), (B) PA-PB1(1-686)-RanBP5 and (C) RanBP5. 11 

Supplementary Figure 8 12 

The 5’-vRNAp does not dissociate or bind to the PA-PB1(1-686)-RanBP5 complex. Prior to injection 13 

on SEC-MALLS, the RdRp-RanBP5 complex was incubated with a 3 fold molar concentration of 5’-14 

vRNAp for 1h at 20°C. SEC-MALLS chromatograms are shown for both RdRp-RanBP5 wihtout (A) and 15 

with (B) 5’-vRNAp. Both analyses were performed in the same buffer (50 mM Tris-HCl pH 8.0, 150 mM 16 

NaCl, 5 mM β-mercaptoethanol). 17 

  18 



 30 

References 1 

 2 
1. Cianci C, Tiley L, Krystal M (1995) Differential activation of the influenza virus polymerase via template RNA 3 

binding. J Virol 69: 3995-3999. 4 
2. Hagen M, Chung TD, Butcher JA, Krystal M (1994) Recombinant influenza virus polymerase: requirement of 5 

both 5' and 3' viral ends for endonuclease activity. J Virol 68: 1509-1515. 6 
3. Tiley LS, Hagen M, Matthews JT, Krystal M (1994) Sequence-specific binding of the influenza virus RNA 7 

polymerase to sequences located at the 5' ends of the viral RNAs. J Virol 68: 5108-5116. 8 
4. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7GpppXm)-dependent influenza virion 9 

endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23: 10 
847-858. 11 

5. Reich S, Guilligay D, Pflug A, Malet H, Berger I, et al. (2014) Structural insight into cap-snatching and RNA 12 
synthesis by influenza polymerase. Nature 516: 361-366. 13 

6. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza A polymerase bound to the viral RNA 14 
promoter. Nature 516: 355-360. 15 

7. Mukaigawa J, Nayak DP (1991) Two signals mediate nuclear localization of influenza virus (A/WSN/33) 16 
polymerase basic protein 2. J Virol 65: 245-253. 17 

8. Tarendeau F, Boudet J, Guilligay D, Mas P, Bougault C, et al. (2007) Structure and nuclear import function of 18 
the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14: 229-233. 19 

9. Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, et al. (2006) Role of ran binding protein 5 20 
in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80: 11911-11919. 21 

10. Huet S, Avilov SV, Ferbitz L, Daigle N, Cusack S, et al. (2010) Nuclear import and assembly of influenza A 22 
virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J Virol 84: 1254-23 
1264. 24 

11. Hutchinson EC, Orr OE, Man Liu S, Engelhardt OG, Fodor E (2011) Characterization of the interaction 25 
between the influenza A virus polymerase subunit PB1 and the host nuclear import factor Ran-binding 26 
protein 5. J Gen Virol 92: 1859-1869. 27 

12. Chang S, Sun D, Liang H, Wang J, Li J, et al. (2015) Cryo-EM structure of influenza virus RNA polymerase 28 
complex at 4.3 A resolution. Mol Cell 57: 925-935. 29 

13. Al-Tawfiq JA, Zumla A, Memish ZA (2014) Coronaviruses: severe acute respiratory syndrome coronavirus 30 
and Middle East respiratory syndrome coronavirus in travelers. Curr Opin Infect Dis 27: 411-417. 31 

14. Lucas S, Nelson AM (2015) HIV and the spectrum of human disease. J Pathol 235: 229-241. 32 
15. Crepin T, Swale C, Monod A, Garzoni F, Chaillet M, et al. (2015) Polyproteins in structural biology. Curr Opin 33 

Struct Biol 32: 139-146. 34 
16. Nie Y, Bellon-Echeverria I, Trowitzsch S, Bieniossek C, Berger I (2014) Multiprotein complex production in 35 

insect cells by using polyproteins. Methods Mol Biol 1091: 131-141. 36 
17. Bieniossek C, Imasaki T, Takagi Y, Berger I (2012) MultiBac: expanding the research toolbox for multiprotein 37 

complexes. Trends Biochem Sci 37: 49-57. 38 
18. Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I (2010) New baculovirus expression tools for 39 

recombinant protein complex production. J Struct Biol 172: 45-54. 40 



 31 

19. Sugiyama K, Obayashi E, Kawaguchi A, Suzuki Y, Tame JR, et al. (2009) Structural insight into the essential 1 
PB1-PB2 subunit contact of the influenza virus RNA polymerase. Embo J 28: 1803-1811. 2 

20. An Y, Meresse P, Mas PJ, Hart DJ (2011) CoESPRIT: a library-based construct screening method for 3 
identification and expression of soluble protein complexes. PLoS One 6: e16261. 4 

21. Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, et al. (2008) The structural basis for cap 5 
binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15: 500-506. 6 

22. Bieniossek C, Richmond TJ, Berger I (2008) MultiBac: multigene baculovirus-based eukaryotic protein 7 
complex production. Curr Protoc Protein Sci Chapter 5: Unit 5 20. 8 

23. Baudin F, Bach C, Cusack S, Ruigrok RW (1994) Structure of influenza virus RNP. I. Influenza virus 9 
nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. Embo J 10 
13: 3158-3165. 11 

24. Crepin T, Dias A, Palencia A, Swale C, Cusack S, et al. (2010) Mutational and metal binding analysis of the 12 
endonuclease domain of the influenza virus polymerase PA subunit. J Virol 84: 9096-9104. 13 

25. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, et al. (2009) The cap-snatching endonuclease of 14 
influenza virus polymerase resides in the PA subunit. Nature 458: 914-918. 15 

26. He X, Zhou J, Bartlam M, Zhang R, Ma J, et al. (2008) Crystal structure of the polymerase PA(C)-PB1(N) 16 
complex from an avian influenza H5N1 virus. Nature 454: 1123-1126. 17 

27. Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, et al. (2008) The structural basis for an 18 
essential subunit interaction in influenza virus RNA polymerase. Nature 454: 1127-1131. 19 

28. Desselberger U, Racaniello VR, Zazra JJ, Palese P (1980) The 3' and 5'-terminal sequences of influenza A, B 20 
and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8: 315-21 
328. 22 

29. Robertson JS (1979) 5' and 3' terminal nucleotide sequences of the RNA genome segments of influenza 23 
virus. Nucleic Acids Res 6: 3745-3757. 24 

30. Skehel JJ, Hay AJ (1978) Nucleotide sequences at the 5' termini of influenza virus RNAs and their transcripts. 25 
Nucleic Acids Res 5: 1207-1219. 26 

31. Brownlee GG, Sharps JL (2002) The RNA polymerase of influenza a virus is stabilized by interaction with its 27 
viral RNA promoter. J Virol 76: 7103-7113. 28 

32. Tomescu AI, Robb NC, Hengrung N, Fodor E, Kapanidis AN (2014) Single-molecule FRET reveals a corkscrew 29 
RNA structure for the polymerase-bound influenza virus promoter. Proc Natl Acad Sci U S A 111: E3335-30 
3342. 31 

33. Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, et al. (2003) Importin alpha nuclear localization 32 
signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 278: 28193-28200. 33 

34. Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of 34 
influenza virus RNA polymerase subunits. J Virol 81: 1339-1349. 35 

35. Portela A, Digard P (2002) The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal 36 
to virus replication. J Gen Virol 83: 723-734. 37 

36. Weber F, Kochs G, Gruber S, Haller O (1998) A classical bipartite nuclear localization signal on Thogoto and 38 
influenza A virus nucleoproteins. Virology 250: 9-18. 39 

37. Fodor E, Smith M (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of 40 
the influenza A virus RNA polymerase complex. J Virol 78: 9144-9153. 41 



 32 

38. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. 1 
Nature 496: 477-481. 2 

39. Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, et al. (2002) Identification of Hsp90 as a stimulatory 3 
host factor involved in influenza virus RNA synthesis. J Biol Chem 277: 45306-45314. 4 

40. Chase G, Deng T, Fodor E, Leung BW, Mayer D, et al. (2008) Hsp90 inhibitors reduce influenza virus 5 
replication in cell culture. Virology 377: 431-439. 6 

41. Fitzgerald DJ, Schaffitzel C, Berger P, Wellinger R, Bieniossek C, et al. (2007) Multiprotein expression 7 
strategy for structural biology of eukaryotic complexes. Structure 15: 275-279. 8 

42. Palmberger D, Rendic D (2015) SweetBac: Applying MultiBac Technology Towards Flexible Modification of 9 
Insect Cell Glycosylation. Methods Mol Biol 1321: 153-169. 10 

43. Deng T, Sharps J, Fodor E, Brownlee GG (2005) In vitro assembly of PB2 with a PB1-PA dimer supports a new 11 
model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol 79: 12 
8669-8674. 13 

44. Graef KM, Vreede FT, Lau YF, McCall AW, Carr SM, et al. (2010) The PB2 subunit of the influenza virus RNA 14 
polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting 15 
expression of beta interferon. J Virol 84: 8433-8445. 16 

45. Patel D, Schultz LW, Umland TC (2013) Influenza A polymerase subunit PB2 possesses overlapping binding 17 
sites for polymerase subunit PB1 and human MAVS proteins. Virus Res 172: 75-80. 18 

46. Degut C, Monod A, Brachet F, Crepin T, Tisne C (2016) In vitro/in vivo production of tRNA for X-ray studies. 19 
Methods Mol Biol 1320: 37-57. 20 

47. Price SR, Ito N, Oubridge C, Avis JM, Nagai K (1995) Crystallization of RNA-protein complexes. I. Methods for 21 
the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249: 398-408. 22 

48. Boulo S, Akarsu H, Lotteau V, Muller CW, Ruigrok RW, et al. (2011) Human importin alpha and RNA do not 23 
compete for binding to influenza A virus nucleoprotein. Virology 409: 84-90. 24 

49. Chenavas S, Estrozi LF, Slama-Schwok A, Delmas B, Di Primo C, et al. (2013) Monomeric nucleoprotein of 25 
influenza A virus. PLoS Pathog 9: e1003275. 26 

50. Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI (2007) ATSAS 2.1 – towards automated and web-27 
supported small-angle scattering data analysis. J Appl Crystallogr 40: s223–s228. 28 

51. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural 29 
systems biology. Annu Rev Biophys 42: 415-441. 30 

52. Semenyuk AV, Svergun DI (1991) GNOM – a program package for small-angle scattering data processing. J 31 
Appl Crystallogr 24: 537–540. 32 

53. Franke D, Svergun DI (2009) DAMMIF , a program for rapid ab-initio shape determination in small-angle 33 
scattering. J Appl Crystallogr 42: 342–346. 34 

54. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl 35 
Crystallogr 36: 860–864. 36 

55. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering 37 
using simulated annealing. Biophys J 76: 2879–2886. 38 

56. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate X-ray solution scattering of 39 
biological macromolecules from atomic coordinates. J Appl Crystallogr 28: 768–773. 40 

57. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-41 
angle scattering data. Biophys J 89: 1237-1250. 42 



 33 

58. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera--a visualization 1 
system for exploratory research and analysis. J Comput Chem 25: 1605-1612. 2 

59. Wong I, Lohman TM (1993) A double-filter method for nitrocellulose-filter binding: application to protein-3 
nucleic acid interactions. Proc Natl Acad Sci U S A 90: 5428-5432. 4 

60. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X 5 
version 2.0. Bioinformatics 23: 2947-2948. 6 

61. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. 7 
Nucleic Acids Res 42: W320-324. 8 

62. DeLano WL (2002) The PyMOL Molecular Graphics System. San Carlos, CA, USA: DeLano Scientific. 9 
 10 
 11 
  12 



!

!

!

!

!

!

!

!

!

!

FIGURES(AND(SUPPLEMENTARY(
FIGURES!

!

!

!

!

!

!
(Note!:!Figure!captions!were!re3inserted!next!to!the!figures!in!order!to!help!in!
the!reading!process)! !



  



!

Table& 1:& Details& of& human3IAV& RdRp& polyproteins.! The! expressions! have! been! made! on! both!

A/Victoria/3/1975(H3N2)! and! A/Viet@Nam/1203/2004(H5N1)! strains.! The! ratio! YFP/CFP! were!

calculated!with!the!2!maxima!of!the!fluorescence!spectra!measured!on!the!same!sample!(YFP:!λexi!=!

488!nm,!λemi!=!525!nm!;!CFP:!λexi!=!430!nm,!λemi!=!480!nm)!corresponding!to!1x10
6
!infected!cells.!This!

ratio! is!proportional!to!the! level!of!expression!of!the!corresponding!constructs.!The!table!contains!

also!data!on!the!solubility!of!each!construct!in!the!classical!purification!buffer!(i.e.:!50!mM!Tris@HCl!

pH!8.5,!300!mM!NaCl,!2mM!β@mercaptoethanol,!2@10!%!glycerol).!*This!construct!has!been!cloned!in!

pFastBac@HTB!without!TEV!nor!CFP.!The!only!fluorescent!reporter!protein!was!the!YFP.!Its!signal!was!

in!accordance!with!the!YFP!values!obtained!for!the!other!constructs.!

! Construct!

number!

PA! PB1! PB2! RanBP5! YFP/CFP! Solubility!

! ! ! ! ! ! ! !

h
e
te
ro
d
im

e
rs
!

1& 1@716! 1@686! @! @! 6! yes!

2& 197@716! 1@686! @! @! 4! yes!

3& 197@716! 1@660! @! @! 4! yes!

4& 197@716! 1@560! @! @! 4! no!

5& 210@716! 1@686! @! @! 6! no!

6& 222@716! 1@686! @! @! 6! no!

7& 231@716! 1@686! @! @! 6! no!

8& 240@716! 1@686! @! @! 6! no!

9& 250@716! 1@686! @! @! 6! no!

10& 263@716! 1@686! @! @! 6! no!

11& 197@263! 16@686! @! @! n.d.*! no!
! & ! ! ! ! ! !

h
e
te
ro
tr
im

e
rs
!

12& 1@716! 1@757! 1@759! @! 50! n.d.!

13& 1@716! 1@757! 1@36! @! 15! yes!

14& 197@716! 1@757! 1@116! @! 7! yes!

15& 1@716! 1@757! 1@116! @! 17! yes!

16& 1@716! 1@757! 1@250! @! 28! n.d.!

17& 1@716! 1@757! 1@320! @! 30! n.d.!

18& 1@716! 1@757! 1@483! @! 41! n.d.!

19& 1@716! 1@757! 1@116!@!MBP! @! 17! yes!

20& 1@716! 1@757! 1@116!@!320@483! @! 20! yes!

21& 1@716! 1@686! @! 1@1115! 12! yes!
! ! ! ! ! ! ! !

!

! !



 2!

Table& 2:& Titration& measurements& against& vRNA& promoters.! Values! in! parentheses!
correspond!to!the!values!obtained!by!filter@binding!assay!experiments.!All!the!experiments!
have!been!made!in!triplicate.!

Construct! NaCl!
(mM)! RNA! Kd!

(nM)!
std!error!
(nM)! R2!

! ! ! ! ! !

construct!14:!
PA@PB1@!

PB2(1@116)!

! 5’@vRNAp! 0.83!(0.19)! 0.08!(0.02)! 0.99!(0.97)!

300! 3’@vRNAp! 36!(17)! 2!(2)! 0.99!(0.95)!

! polyUC! ≥!1000! n.d.! n.d.!
! ! ! ! ! !

construct!1:!
PA@PB1(1@686)!

! 5’@vRNAp! 0.87!(0.38)! 0.1!(0.05)! 0.99!(0.99)!

300! 3’@vRNAp! ≥!1000! n.d.! n.d.!

! polyUC! ≥!1000! n.d.! n.d.!
! ! ! ! !

! 5’@vRNAp! 0.53! 0.12! 0.99!

150! 3’@vRNAp! 22.1! 1.0! 0.99!

! polyUC! 22.8! 0.7! 0.99!
! ! ! ! ! !

construct!21:!
PA@PB1(1@686)!

RanBP5!
300! 5’@vRNAp! ≥!1000! n.d.! n.d.!

& & & & & &

!

! !



 3!

Table&3:&SAXS&data3collection&and&scattering3derived&parameters.&

! Construct&1&:!
PA@PB1(1@686)!

Construct&21&:!
PA@PB1(1@686)@

RanBP5!

Construct&22&:!
RanBP5!

Data&collection&parameters& ! ! !
Instrument! ESRF!@!BM29!
Beam!size!at!sample!(µm)! 700!x!700!
Wavelength!(Å)! 0.9919!
q!range!(Å@1)! 0.25!@!50!
Detector! Pilatus!1M!
Detector!distance!(m)! 2.867!
Exposure!(s!per!image)! 1!
Column! S200inc!5/150!GL!
Flow!rate!(mL.min@1)! 0.5! 0.4! 0.5!
Injected!sample!concentrations!(mg.mL@1)! 3.4! 4.3! 8.5!
Injection!volume!(µL)! 50!
Temperature!(K)! 293!

Structural&parameters& ! ! !
Rg!(Å)![from!P(r)]! 37.9!±!0.1! 52.2!±!0.1! 39.4!±!0.2!
Rg!(Å)![from!Guinier]! 36.2!±!0.4! 51.8!±!0.5! 38.8!±!0.8!
Dmax!(Å)! 128! 181! 136!
Porod!volume!estimate!(Å3)! 254!630! 577!070! 215!890!

Molecular3mass&determination& ! ! !
Molecular!mass!Mr!(Da)![from!Rambo]! 146!493! 323!311! 143!827!
Calculated!Mr!(Da)!from!sequence! 165!915! 291!983! 125!892!

Software&employed& ! ! !
Primary!data!reduction! PRIMUS!!
Data!processing! PRIMUS!
Ab(initio!analysis! DAMMIF!
Validation!and!averaging! DAMAVER!&!DAMMIN!/!MONSA!
Computation!of!model!intensities! CRYSOL!
3D!graphics!representations! CHIMERA!

!
!

!

 



 

 

Figure 1 

Truncated human-IAV RdRp polyprotein expression. (A) Schematic theory of the TEV-PA-

PB1-PB2-CFP polyprotein expression. During expression, TEV will process the polyprotein 

ensuring a stoichiometric assembly of PA, PB1 and PB2. YFP and CFP are produced during the 

process and monitor respectively baculovirus proliferation and polyprotein translation. (B) 

Truncated RdRp constructs where PB2 is incrementally extended until residues 116, 320 or 

483. (C) YFP (left) and CFP (right) fluorescence kinetics measured during Hi-5 insect cells 

culture of truncated RdRp constructs. YFP (λexi = 488 nm, λemi = 525 nm) and CFP (:λexi = 430 

nm, λemi = 480 nm) measurements were performed on cellular extracts prepared by 

sonicating 1x106 cells in PBS (500 L) follow by centrifugation. Fluorescence intensities are 

plotted against time after infection. (D) Small scale nickel resin purification analysis by 

western blot. Purifications were performed on the 50 mL of Hi-5 insect cells cultures used for 

the YFP and CFP fluorescence kinetics (C). Deposits feature total lysate after freeze/thaw (T), 

supernatant after centrifugation (S), resin flow through (Ft) and the primary elution fraction 

(E). After migration on a 12 % SDS-PAGE, proteins were transferred on PVDF membrane. 

Primary antibodies targeting human-IAV PB2 (rabbit IgG) and human-IAV PB1 (mouse IgG) 

have been used. Revelation was performed with secondary goat antibodies coupled with 

Alexa Fluor 532 (λexi = 632 nm, λemi = 647 nm) and Alexa Fluor 633 (λexi = 531 nm, λemi = 554 

nm) targeting mouse and rabbit H + L domains respectively, using a Typhoon Trio imaging 

system (GE Healthcare). After integration of the raw data, PB1 and PB2 revelation are visible 

in red and green respectively. Black and white signal of PB2 is also shown (bottom) to 

highlight the PB2 truncations. The upper bands appearing in green/yellow, correspond to 

unprocessed polyproteins. 
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Figure 2 

Homogeneous sample analysis of recombinant RdRp, RanBP5 and RdRp-RanBP5. Purified product 

analysis are horizontally grouped for (A) PA-PB1-PB2(1-116), (B) PA-PB1(1-686), (C) RanBP5 and (D) 

PA-PB1(1-686)-RanBP5. On the right are the coomassie blue colored SDS PAGE gel of the purified 

sample with corresponding subunits bands indicated by colored arrows (PA in blue, PB1 in green and 

RanBP5 in purple). In the middle are the SEC-MALLS chromatograms with the UV signal as a 

backtrace and molecular weight estimate below the peak. Estimated average molecular weight for 

each sample is also detailed. SEC-MALLS runs of PA-PB1(1-686), RanBP5 and PA-PB1(1-686)-RanBP5 

were performed in the same buffer (50 mM Tris-HCl pH 8.0 and 150 mM NaCl) whereas the SEC-

MALLS run of PA-PB1-PB2(1-116) was performed with 50 mM Tris-HCl pH 8.0, 300 mM NaCl and 10% 

glycerol. (Left) Negative stain transmission EM image realized on the preparation at 0.2 mg.mL-1. 
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Figure 3 

vRNA specificity. Binding affinity measurements of RdRp and RdRp-RanBP5 constructs 

towards 3’ and 5’ vRNA promoters. (A) Binding titration of the truncated trimer PA-PB1-

PB2(1-116) towards the 5’-vRNAp (blue triangle) and 3’-vRNAp (red square) sequences using 

fluorescence anisotropy at 300 mM NaCl. (B) Binding titration performed by filter binding 

assay against P32 labelled 5’-vRNAp (blue triangle) and 3’-vRNAp (red square) using 300 mM 

NaCl. Bound RNA fraction is plotted as a function of polymerase concentration. (C) Binding 

titration of the truncated dimer PA-PB1(1-686) performed at 150 and 300 mM NaCl against 

the 5-’vRNAp (dark and light blue triangles), 3’-vRNAp (orange and dark red squares) and 

polyUC RNA (light and dark green circles) by fluorescence anisotropy. (D) Binding titration of 

different RdRp and RdRp-RanBP5 constructs against the 5’-vRNAp at 300 mM NaCl by 

fluorescence anisotropy. PA-PB1-PB2(116) and PA-PB1(1-686) are depicted by blue and 

orange triangles respectively, PA-PB1(1-686)-RanBP5 is depicted with purple triangles. For all 

anisotropy titrations (A, C and D) subtracted anisotropy is plotted as a function of protein 

concentration. 
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Figure 4 

Online SAXS analysis of PA-PB1, RanBP5 and PA-PB1-RanBP5 complex in solution. Results are 

shown horizontally for (A) PA-PB1(1-686), (B) RanBP5 and (C) PA-PB1-RanBP5. On the left are the 

experimental Ln[I(q)] curves with the ab-initio DAMMIN curve fit (blue) using the Damstart 

(DAMAVER) as an initial constraint and the CRYSOL fit (red) of the closest homologous X-Ray 

structure. The MONSA fit is also shown for the 3 curves in black. The Chi2 of the different curves are 

also shown. On the right are the homologous PDB structure depicted as cartoon structures fitted into 

the DAMAVER ab-initio envelope for (A) and (B) and into the MONSA modeling in (C). RanBP5 is 

depicted in purple, PA in blue, PB1 in green and the NLS motif in deep-purple. All three structures are 

at the same scale. In (C) the PA-PB1(1-686) and RanBP5 envelopes are colored in grey and purple 

respectively. 
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Supplementary Figure 1 

Sequences alignment of PB2. The alignment has been made for the sequences of the 2 human-IAV 

strains used for this work plus the 2 strains for which the structures have been recently solved. bat-

IAV corresponds to A/little yellow-shouldered bat/Guatemala/060/2010(H17N10) (UniProtKB access 

number: H6QM90), H3N2-IAV to A/Victoria/3/1975(H3N2) (H9XIJ5), H5N1-IAV to the highly 

pathogenic A/Viet-Nam/1203/2004(H5N1) (Q6DNN3) and IBV to B/Memphis/13/2003 (Q5V8X3). The 

secondary sequences elements shown over and below the sequences alignment correspond to bat-

IAV (PDB access numbers 4WSB) and IBV (4WSA) respectively. The alignment has been done using 

Clustal X2 [53] and drawn with ESPript [54]. 

  



Supplementary Figure 1



 

 

 

 

 

 

 

 

Supplementary Figure 2 

Endonuclease activity. An unstructured 52 nt poly-UC RNA (10 µM) [24] was incubated with the wild-

type (wt) or E80A mutant of PA-PB1-PB2(1-116) (12 µM) or the N-terminal domain of PA (PA-Nter) 

(12 µM) for 2 h at 37°C in a final volume of 30 µl. Reactions were done in the presence and/or in the 

absence of 0.5 mM MnCl2 in the reaction buffer 50 mM Tris-HCl pH 8,5, 25 mM KCl, 2,5 mM NaCl, 10 

mM β-mercaptoethanol as previously described [23,24]. Reactions were inhibited by addition of 2 

mM 2,4-dioxo-4-phenylbutanoic acid (DPBA) in the same conditions. As controls, the RNA was 

incubated with 0.5 mM MnCl2 or with 2 mM DPBA or alone (ctrl). Reactions were stopped by adding 

20 mM EGTA. The reactions were then loaded on an 8 M urea polyacrylamide gel. After migration, 

the gel was revealed by methylene blue staining. 
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Supplementary Figure 3 

De novo synthesis activity assay. (A) PA-PB1(1-686) and (B) PA-PB1-PB2(1-36) polymerase preps 

were incubated at 37°C with the 80 mer panhandle RNA, NTPs and radiolabelled [αP32] UTP. 

Reactions were stopped at 30, 60, 90 and 120 minutes with the addition of EGTA before loading on a 

15 % urea PAGE. Revelation was performed using a phosphorus screen and Typhoon scanner (GE GE 

Healthcare). 
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Supplementary Figure 4 

Effect of PA-Nter depletion on PA-PB1 oligomerzation. Individual SEC-MALLS chromatography runs 

of (A) PA-PB1(1-686) and (B) PA(196-716)-PB1(1-686) have been performed in the same buffer (50 

mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol) using a S200increase (10/300 GL, GE 

Healthcare) column. UV absorbance at 280 mm is plotted against the elution volume. MALLS 

molecular mass estimates are plotted below the curve. 
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Supplementary Figure 5 

Crystallization of PA(197-716)-PB1(1-686). (A) Snapshot of a crystal mounted on the beamline. The 

red cross corresponds to the position of the beam. (B) Statistics of the best data collected on a single 

crystal. (C) Comparison of (left) PA(196-716)-PB1(1-686) obtained by molecular replacement and 

(right) the already published crystal structure of bat-IAV RdRp (PDB access: 4WSB) [6]. Both models 

use the same color code, i.e. marine for PA, green-forest for PB1. The additional parts of bat-IAV 

RdRp are colored in light-blue and light-red for the endonuclease domain of PA (PA1-195) and PB2 (1-

759) domain respectively. The panel was prepared using PYMOL [55]. Note that PA(196-716)-PB1(1-

686) model is made by 2 molecules of PA(197-716)-PB1(1-686) in the asymmetric unit. On the figure, 

only one is shown. The second occupies the position of the endonuclease domain in the bat-IAV 

RdRp model. 

  



C

A

B

196

1

196

1

NLS

endonuclease
domain

cap-binding
domain

PA-Cter
(196-716)

PA-CterPB2
PB1

(1-686)

A/Victoria/3/1975(H3N2) A/little yellow-shouldered bat
/Guatemala/060/2010(H17N10)

Supplementary Figure 5

Beamline
 λ (Å)
Cell parameters
 a, b, c (Å)
Space group
Resolution (Å)a

Rmergea, b

I/σIa
Completeness (%)a

multiplicitya

ESRF ID23-eh2
0.8726

349.2, 349.2, 166.4
P612
50 - 7.95 (8.15 - 7.95)
17.8 (89.7)
6 (1.4)
97.6 (94.6)
4.5 (5.2)

(a) Values in parentheses are for the highest-resolution shell.
(b) Rmerge = Σhkl Σi |Ii(hkl) - (I(hkl))| / Σhkl Σi Ii(hkl), where Ii(hkl) is the ith observation
of reflection hkl and <I(hkl)> is the weighted average intensity for all observations of
reflection hkl.

Crystal 1

100 µm



 

 

 

 

 

 

 

Supplementary Figure 6 

RanBP5 and PA-PB1(1-686) does not form a stable complex when mixed. PA-PB1(1-686) and 

RanBP5 were separately purified before being mixed in equimolar proportions. The mixture was 

incubated 1h at 20°C before analysis. Individual SEC-MALLS chromatography runs of (A) PA-PB1(1-

686), (B) RanBP5 and (C) PA-PB1(1-686) + RanBP5 were performed in the same buffer (50 mM Tris-

HCl pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol) using a S200increase (10/300 GL, GE 

Healthcare) column. UV absorbance at 280 mm is plotted against the elution volume. MALLS 

molecular mass estimates are plotted below the curve. 
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Résumé du chapitre 4 en Français 
 

L’assemblage de l’ARN polymérase ARN dépendante du virus de la grippe 
prend place dans le noyau de la cellule infectée. Ceci implique le transport des sous-
unités du cytoplasme où elles sont exprimées vers le noyau où se déroule 
l’assemblage. Le transport de PA-PB1, un complexe précurseur de la polymérase 
est encore mal compris mais semble se dérouler grâce au recrutement de RanBP5 
qui appartient à la classe des importines-β-3. D’un point de vue structurale, toutes 
les importines β partagent une architecture commune présentant une série de 23 
motifs « HEAT » qui correspondent à des hélices α antiparallèles d’environ 15 à 20 
résidus chacune. Leur structure tridimensionnelle tertiaire diffère cependant 
grandement entre différentes classes, mais aussi pour la même protéine selon son 
état fonctionnel (lié/dissocié). L’étude structurale de RanBP5 libre est donc 
présentée dans ce chapitre. L’expression a été mise en place en cellules d’insecte 
(High Five). La purification se fait en deux étapes majeures : suite à la centrifugation 
du lysat, une résine nickel suivie d’une chromatographie d’exclusion de taille permet 
d’obtenir une préparation purifiée de la protéine. Une analyse par MALLS et 
microscopie électronique montre une bonne homogénéité de l’échantillon, qui se 
comporte comme un monomère en solution. Ceci est aussi confirmé par SAXS qui 
permet d’estimer les dimensions de RanBP5. Celles-ci sont comparables avec celles 
d’un homologue d’importine β : la Kap121 issue de la levure qui partage 25 % 
d’homologie de séquence. Bien que comparable en taille, la courbe de diffusion est 
différente indiquant un repliement conformationnel différent. 

Une fois purifiée, RanBP5 a aussi permis l’obtention de cristaux, dont la 
qualité de diffraction (3.3 Å) est comparable à celle d’importines β non liées. 
Plusieurs jeux de données complets ont pu être collectés et indexés avec un groupe 
d ‘espace P212121. Le calcul du coefficient de Matthews estime la présence d’une 
molécule par unité asymétrique.  

La résolution de la structure atomique est néanmoins toujours en cours pour 
des raisons de difficulté d’obtention des phases. En effet, le remplacement 
moléculaire s’avère difficile avec des structures homologues à la résolution actuelle. 
L’obtention des phases par diffraction anomale de la sélénométhionine est aussi 
compliquée du fait d’une cristallisation moins optimale. La résolution de la structure 
de RanBP5 impliquerait donc de résoudre sa forme complexée à Ran(GTP) qui 
permettrait peut-être d’augmenter la stabilité du complexe et donc sa qualité de 
diffraction.
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NOTE OF INTRODUCTION TO CHAPTER 4 

 
As previously described within chapter 1.4.5, the polymerase assembly which 

takes place in the nucleus requires the separate import of both PB2 by importin-α 
and PA/PB1 by RanBP5 which belongs to the importin-β family. Structural details of 
the importin-α / PB2 interaction exist and show how PB2 undergoes a 
conformational change upon binding the importin-α (Kuzuhara et al., 2009; 
Tarendeau et al., 2007, 2008). However, no structures have yet described the 
interaction of importin-β-3 (RanBP5) with PA-PB1. To date, only a limited amount of 
data exist describing the interaction of RanBP5 with the polymerase (Deng et al., 
2006b; Hutchinson et al., 2011). Also, RanBP5, although belonging to the importin-β 
family has not yet been structurally characterised. In order to answer those 
questions, one of my thesis projects has focused on both an individual 
characterisation of RanBP5 which is presented in the following chapter, but also its 
interaction with the polymerase complex which has already been described in 
chapter 3. 
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4.1 OBJECTIVES 

 
Solving the structure of ligand-free RanBP5 was the first objective in order to 

understand the different conformational steps RanBP5 undertakes to bind and 
release PA-PB1. However, any structural or biochemical work requires an essential 
prerequisite that is the expression of the protein in a soluble form. At first, 
recombinant expression was attempted in E.coli but yielded no soluble protein 
(results not shown). Insect cell recombinant expression was therefore undertaken. 

 

4.2 EXPRESSION AND PURIFICATION OF RANBP5 
 

RanBP5 is expressed in insect cells as a single protein with the use of the 
pFastBac-htb vector, which does not enable for the monitoring of CFP (used to 
estimate expression/stability of other constructs). Also, TEV is not produced in this 
system and the His-tag is separated form RanBP5 by a TEV cleavage site. As such, 
only YFP can be monitored during the expression of RanBP5 and this only relates to 
the baculovirus proliferation. YFP measurements would usually plateau at around 
15000 au, 72-96h post-infection which is a third of the values observed for 
polymerase constructs, indicating a low rate of baculovirus proliferation. Expression 
of RanBp5 could only be confirmed through western blot analysis of small-scale 
purifications (not shown). The first large scale purification trials of RanBP5 yielded 
very little protein after the first nickel resin. Considerable increase in yield was 
observed only when glycerol (10% v/v) was added to the buffer immediately after 
lysis. Typical nickel resin purifications will yield around 10-15 mg of protein for 1L of 
culture and elute with a relatively high purity from the resin (Figure 30A). As expected, 
RanBP5 migrates just below the 130 kDa marker on SDS-PAGE gel which is 
coherent with its expected molecular weight of 120 kDa. Due to its important 
molecular weight, no migration difference is observed on gel after the TEV cleavage 
that is always performed after the nickel resin. Following the cleavage, TEV which 
carries a his-tag is separated from RanBP5 with a secondary nickel column flow 
through. 

 
The second step of purification (Figure 30B), consisting in a SEC 

chromatography, only separates very little amounts of associated complexes or 
contaminants (fractions 23 to 59). Most of RanBP5 is eluted through a very thin and 
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symmetrical peak (fractions 66 to 86). Although not submitted to any ion exchange 
column, the end-purified product from the elution peak presents no visible nucleic 
acid contamination on a UV spectrum curve (220-310 nm, Figure 30C) with a 
calculated 260/280 ratio of 0,506. 
 

 
Figure 30: Two-step purification of RanBP5. (A) Nickel resin purification analysed by a 10% SDS PAGE. 
8µL deposits were used to analyse the total lysate (T), post centrifugation supernatant (S), resin flow 
through (FT), wash steps (W) and elution fraction (E). (B) Chromatograph and SDS PAGE analysis with 
fraction numbers of the SEC run using a 120 ml S200 column. (C) UV spectrum performed on SEC peak 
fractions. 

4.3 SAXS CHARACTERISATION 
 
 Online SEC-SAXS was performed on purified RanBP5 to evaluate the 
oligomeric state and also compare a RanBP5 envelope with closely related importin-
β structures.  When plotting the total scattering intensity with regards to the elution 
time (Figure 31A), a typical elution peak describes the elution behaviour of RanBP5, as 
would a UV measurement (280 nm). At every second during the measurement, a 
Guinier plot was performed to estimate an Rg value. This value, when combined with 
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the total intensity plot, gives us a real time Rg per point of measurement. It can be 
observed that prior to the peak, bigger Rg species are eluted, which indicates the 
partial presence of bigger complexes. However at the peak centre, a stable Rg 
estimate is observed which indicates a rather monodisperse sample. Based on this 
plot, stable Rg points (158-163) were pooled and merged using the PRIMUS 
program to produce a single Ln I(q) data plot from which a Guinier curve could be 
calculated (Figure 31B). The Guinier estimation places the Rg at 3.89 nm and shows a 
truly linear curve, consistent with a non-aggregating protein. From this data, a P(r) 
plot was calculated by GNOM with a fixed Dmax at around 14 nm (Figure 31C).  

 
Figure 31: Online SAXS data analysis. (A) SEC elution plot with total scattering intensity of every frame 
and auto Rg prediction over time. (B) Guinier plot of peak measurements (158-163 sec) with Rg 
approximation. (C) P(r) size distribution plot using GNOM. 

Ab initio modelling was then undertaken using the raw data and P(r) plot to 
produce an array of 15 models using DAMMIF. Once averaged by DAMAVER, the 
consistency of the averaged models towards the original lnI(q) data was checked 
using DAMMIN (Figure 32A). The model versus raw data fit presents a chi2 
approximation of 0.786 that shows a good fit between both curves and indicates a 
consistency between the final ab initio model and the original data. When visualising 
the averaged envelope (Figure 32B) and fitting the closest sequence related structure 
of a ligand-free importin-β (Kap121, pdb-id: 3w3T), it appears that the pdb structure 
can largely fit within the envelope. Structural dimensions are respected as the 3W3T 
structure presents a maximum length of 12 nm, close to the RanBP5 Dmax of 14 
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nm. There is however an important deviation between the Kap121 Crysol and 
RanBP5 experimental curve suggesting important conformational differences. 

 
Figure 32: Ab initio modelling of RanBP5. (A) DAMMIN curve (in blue) using the damstart model as the 
starting envelope and CRYSOL curve (in red) of the Kap121 homologue (pdb id: 3W3T). Both curves are 
fitted against the raw ln I(q) plot (in violet) from frames 158 to 163. (B) DAMAVER envelope (purple) with 
fitted importin-β  homologue (pdb id: 3W3T). 

4.4 INITITIAL CHARACTERISATION AND 
CRYSTALISATION 

 
As previously mentioned, in order to crystallise a given protein, one must 

produce it in high quantities, at high levels of purity and in a stable form.  
 

To assess the level of purity in SEC peak fractions, EM negative staining grids 
were prepared in order to estimate the homogeneity of the sample. Both Sodium 
SilicoTungstate (SST) and Uranium Acetate (UrAc) were tested as contrasting 
agents; in the end, UrAc was used with RanBP5. As seen on an EM picture (Figure 

33A) using a 40000X magnification, the sample is non-aggregated in clusters and 
seems homogenous in the distribution of particle sizes. 
To estimate the stability of the protein once concentrated to 8 mg.ml-1, a thermal shift 
assay (TSA) run was performed (Figure 33B). It shows one single melting stage with 
an approximate Tm at 56 °C, which is rather stable for a protein of this size and well 
above the recommended 25 °C temperature difference (ΔT) with the incubation 
temperature for crystallisation (Dupeux et al., 2011).  
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Figure 33: Quality control steps required for crystallisation. (A) Negative stain EM image taken with the 
Technai 12 at 40 000x, using UrAc as contrasting agent. (B) TSA result plotting the sypro fluorescence 
intensity as a function of temperature, the Tm is estimated as the midway point between the maximum 
and minimum fluorescence values. (C) Initial crystal hits 2 days after plate setup. Drops contain 100 nL of 
protein solution and 100 nL of precipitant. Pictures were taken by the Formulatrix imaging robot. 

Based on these two previous results, crystallisation screens were undertaken 
using the EMBL high-throughput platform (HTX). Six initial screens were performed 
both at 20 °C and 4 °C covering a large range of salts, pH, pegs and other organic 
precipitants. In total 1152 different conditions were initially screened. Most either 
produced precipitated drops or clear drops. At 4 °C exclusively, two very comparable 
conditions yielded positive “hits”. One condition (10% PEG 6000, 0,1M Tri Na-Citrate 
pH 5) produced 4 small but sharp looking crystals while the other (15% PEG 4000, 
0.1M Tri Na Acetate pH: 4.6, 0.2M Ammonium Acetate) produced a “carpet” of 
microcrystals (Figure 33C). 
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Figure 34: RanBP5 crystal characterisation on ID 30A-3 (ESRF, Grenoble). (A) Cryo-loop and crystal 
snapshot with the beam position indicated by a red cross, green scale bars represent 50 µm. (B) Image 
collected on a Mar225 detector. (C) Indexing result produced by the EDNA processing server, showing 
the most probable space groups. 

The presence of crystals within crystallisation drops is a good start, however 
in some cases false results can appear because of salt crystal growth. In this case 
the crystals appeared quite quickly but increased in size over several days, which is 
more common for protein crystals. Also, upon manual observation no strong 
polarisation of light was observed which is usually the case with salt crystals. Three 
crystals were therefore mounted on cryo loops and cryo protected using 25 % 
glycerol. Although very small with a size below 100 µm in length (Figure 34A), one of 
the crystals diffracted to 4.3 Å with visible spots at around 4.7 Å (Figure 34B). The 
diffraction pattern is typical of a protein diffraction pattern as there are numerous 
spots, some of which are very close together. A salt crystal diffraction pattern usually 
has very little spots of very strong intensity. This is explained by the unit cell size, 
small unit cells such as those of salt molecules diffract with big distances between 
diffraction spots (reciprocal space), inversely bigger unit cells have shorter distances 
between the spots.  The diffraction geometry and spot shape is also quite “clean” 
indicating no visible splitting of the crystal. Computer indexation was possible using 
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two images 90° apart and predicts the space group symmetry to be a P222 
(Orthorhombic). As seen on the prediction result (Figure 34C), lower symmetry space 
groups such as P2 (Monoclinic) or P1 (Triclinic) also fit. However, the general rule is 
to attribute the highest symmetry space group while keeping a low penalty 
measurement (rmsd). 
 

Although attempted, a complete data collection was not possible due to 
inherent difficulties in correctly centring the crystal on the X-ray beam and also due 
to its size, radiation damage quickly appeared. This experiment however provided a 
cell dimension estimate, which also enables for the calculation of Mathews 
coefficient. Computer calculations use the unit cell dimensions and theoretical 
molecular weight of the protein in order to calculate a water content percentage. This 
resulted in predicting the unit cell to have one molecule in the asymmetric unit with a 
water content of 60%, which is coherent with the observed low resolution.  

4.5 CRYSTAL OPTIMISATION 
 

With the objective of producing bigger and better diffracting crystals, several 
refined crystallisation screens were designed and prepared with a formulator robot 
(Formulatrix). As several crystal hits had appeared with pegs ranging from 4000 to 
8000, a rational screen of PEG concentration/type versus pH and with or without 
ammonium acetate was designed (Figure 35). This screen enables to refine key 
conditions for proper crystallisation of RanBp5. First it demonstrates that RanBp5 
can crystallise in all three PEG types (4-8000). However, sharp crystals are mostly 
obtained in 10-12 % PEG 6000 (Figure 35) as the other conditions generate curved 
crystals (PEG 4000) or smaller and thinner crystals (PEG 8000). The other critical 
parameter is pH as most crystals grow exclusively in pH 4.5 using Tri Sodium Citrate 
(results not shown). Finally, ammonium acetate tends to limit nucleation and 
therefore increases the chances for bigger crystals but also produces visually 
sharper crystals. Although the listed conditions above contribute to producing the 
best looking crystals, all other conditions were tested for diffraction as in some cases 
the best looking crystals are not necessarily the best diffracting ones. However, as a 
general rule of thumb for RanBP5 crystals, the nicest looking crystals generally 
produce the nicest diffraction.  

 
Another important parameter controlling the nucleation was protein 

concentration. 3 to 5 mg/ml of protein were used in order to have a low nucleation 
and therefore produce bigger crystals. 
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Figure 35: PEG and pH screening to produce RanBp5 crystals. (Above) Schematic view of the screening 
grid, PEG 4000, 6000 and 8000 are individually screened against two pH conditions with either sodium 
citrate or sodium acetate. Ammonium acetate complements half the screen. (Below) Positive crystal 
growth, all images are at the same scale.  

From the initial optimised condition (12 % PEG 6000, 0.1M Na citrate pH: 4.5, 
0.2M ammonium acetate), numerous additive screens were also made in the attempt 
to increase crystal size or diffracting resolution. To date, no additive chemicals were 
found to optimise the process. Macro seeding was also undertaken. Macro seeding 
is a technique which consists in using previously grown crystals reduced to 
fragments to initiate nucleation. This method can present several potentially 
beneficial effects. It can first initiate crystal growth in a condition that will not bring the 
protein to a supersatured state, for instance a lower PEG content (8% PEG 6000). 
This in turn enables a perfect control of nucleation as only seeded crystals will grow. 
The second possible advantage is the potential for a cleaner crystal growth in the 
context where a protein can crystallise in several forms which can compete each 
other during crystal growth and contribute to twining. 
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4.6 DATA COLLECTION 
 

 
Figure 36: Initial dataset acquisition on ID 29 (ESRF, Grenoble). (A) Magnified view of the mounted 
crystal, the horizontal green scale represents 200 µm. (B) XDS indexing and integration report produced 
by the EDNA server. Bracket values describe the lower resolution shell statistics. (C) I/sigI plotted 
against the observation resolution. (D) Completeness plotted against the observation resolution. 

Following crystallisation and optimisation, a complete dataset was collected 
on the initial crystallisation condition. Although twice as big as the original crystals 
(Figure 36A), the outer edge resolution was quite low (4 Å) implicating once again a 
very high solvent content. Diffraction spots were so weak and thin that they were not 
easily visible on Pilatus detector images (not shown). However, indexing programs 
were able to evaluate the diffraction pattern. These programs enable an estimation 
of the cut-off resolution at around 3.9 Å, which is the point where the I/SigI (signal to 
noise ratio) goes below a value of 2 (Figure 36C). As a result, data completeness only 



4.7  INCREASING RESOLUTION THROUGH IN-SITU PROTEOLYSIS 

 

102 

extends to about the same resolution range before suddenly dropping (Figure 36D). 
Although indexed by the program, the outer shell (4.0 to 3.8 Å) or high-resolution 
shell contributes to increasing the Rsym figure of merit. It therefore reduces the 
quality of the dataset and must be deleted from the final integration stage. However, 
the overall dataset (from 50 to 3,9 Å) has a good completeness and multiplicity 
(Figure 36B). Cell parameters differ slightly from the initial parameters as they are 
obtained from a refined indexing on all the images. 

 
Following indexing, the entire dataset was integrated and scaled using XDS. 

As beta importins all adopt a heat repeat structure. Molecular replacement (MR) was 
attempted on multiple homologues by the Mr.Bump software (Keegan and Winn, 
2007). This program finds the closest sequence homologues on the pdb and uses 
Phaser (McCoy et al., 2007) as a molecular replacement program and several 
downstream refinement programs such as refmac (Murshudov et al., 1997). The 
closest sequence homologue (25% sequence identity) is Kap121p which is a yeast 
β-3 importin crystallised in different forms (Kobayashi and Matsuura, 2013). When 
using full β-importin structures, no valid phasing solutions were found. This was also 
true when using truncated search models although the figure of merit score improved 
(Z score in phaser) in particular when using N-terminal truncation of the Kap121p 
models, which implies a certain similarity with the search model. In any case, the 
incapability of phasing using MR can be attributed to important structural differences 
between the homologue search model and the structure of RanBP5, but also to the 
dataset resolution. Indeed, resolutions beyond 3 Å are difficult to phase through MR 
as Patterson maps become very noisy. Resolution improvement is therefore required 
in order to attempt further MR trials.  

4.7 INCREASING RESOLUTION THROUGH IN-SITU 
PROTEOLYSIS 

 
In some cases, slight degradations of unstructured loops or terminal tails can 

improve overall resolution by improving the crystal packing. This can be achieved 
through the direct addition of protease during the crystal drop setup and is known as 
in-situ proteolysis (Dong et al., 2007; Wernimont and Edwards, 2009). In order to 
assess the effect of small quantities of proteases, several kinetic proteolysis were 
made and analysed by SDS PAGE. Four commonly used proteases in protein 
crystallography were tested in the same conditions. Every protease was added at a 
concentration of 1/500th (w/w) to a sample of RanBP5 at 7mg/ml (concentration of 
crystallisation) and placed at 37 °C. At given time intervals (5 to 60 minutes), the 
reaction was stopped by adding SDS loading buffer and heating the tubes 5 min at 
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95 °C. As seen on the SDS-PAGE (Figure 37A), papain, which is a cysteine protease, 
over-degrades RanBP5 very quickly and therefore is not suited for in situ proteolysis. 
Elastase, which belongs to the serine protease class (targets A, G and V residues 
preferentially), generates several degradations below the 72 kDa, 55 kDa and 26 
kDa. However, none of those remain truly stable during the process. Trypsin and 
chymotrypsin were tested as well; these are also serine class inhibitors targeting K / 
R residues (trypsin) and Y / W / F (chymotrypsin) respectively. These two enzymes 
are the most commonly used enzymes for in situ proteolysis as they weakly degrade 
proteins. This is visible on the SDS PAGE analysis. Chymotrypsin generates a small 
degradation below the RanBP5 native band, which could correspond to a small 
terminal truncation. Trypsin also behaves in a comparable fashion but additionally 
generates another band at around 72 kDa.  
 

Based on the limited proteolysis results, crystal drops were set up with both 
trypsin and chymotrypsin. As in situ proteolysis can drastically modify the 
crystallising behaviour of a given protein, broad condition screening was undertaken. 
Carpet crystal growth was observed in the usual condition (10 % PEG 6000, Na 
citrate pH: 4.5) when adding chymotrypsin and, additionally, in a new condition (20% 
PEG 3350, 0.1 M Ammonium Formate) where a single small crystal was grown 
(Figure 37B). Although very small, the crystal was “fished” for diffraction testing. 
Differently from previous crystals which had all been flash frozen with either glycerol 
or ethylene glycol, this crystal was flash frozen in 40% PEG 3350 as PEG 3350 is 
the main precipitant of this condition.  
 

Upon characterisation on the beamline (ID 29), clean diffraction spots could 
be observed over 3.5 Å (Figure 38A), which was quite an important increase when 
compared to native RanBP5 crystals. Upon indexing/integration (Figure 38B), one of 
the first observations is the fact that the space group remains the same 
(orthorhombic, P212121) with very slight differences in the cell A, B, C dimensions 
(native: 92.6 / 96.2 / 192.3; with chymotrypsin: 91.2 / 95.4 / 189.2). The chymotrypsin 
grown RanBP5 crystal has a slightly smaller unit cell. This indicates potentially more 
efficient packing that is either the result of in situ proteolysis, or of the higher PEG 
content within the crystallisation condition. The overall dataset (2000 images) is of a 
much higher quality than those previously acquired. Reflections were recorded up to 
3.5-3.4 Å with completeness close to 100 % in all the resolution shells below 5.5 Å 
(Figure 38C). The dataset resolution limit is around 3.35 Å where the I/Iσ drops below a 
value of 2 (Figure 38D).  
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Figure 37: In situ proteolysis of RanBP5. (A) Kinetic proteolysis realised with chymotrypsin, trypsin, 
papain and elastase at a constant ratio of 1/500th (w/w) on RanBP5 at 37 °C over the course of 1h. Black 
arrows highlight transient degradation. (B) Magnified picture of an in situ proteolysis grown RanBP5 
crystal. 
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Figure 38: Data collection on RanBP5 crystal grown with in situ proteolysis (ID 29, ESRF Grenoble). (A) 
Diffraction image with a 3,5 Å resolution shell collected on a Pillatus 6M detector. The mounted crystal is 
shown on the upper left, green scale bars represent 50 µm. (B) Indexing and integration statistics from 
XDS. Bracket values describe the lower resolution shell statistics. (C) Completeness versus resolution 
plot. (D) I/Iσ versus resolution plot. 

Although considerably better than previous diffraction experiments, MR 
attempts with the chymotrypsin crystal fell short of finding a solution to the phase 
problem. Reproduction of the crystallisation has also been a considerable problem 
as the condition in PEG 3350, which produced the crystal, came from a commercial 
screen and could not be reproduced when hand made. The contribution of 
chymotrypsin to the overall crystallisation also asks the question of whether or not 
the RanBP5 crystals are partial or important digestions. In order to answer this 
question, a handmade drop with a “carpet” of small crystals had its 
protein/precipitant mother liquor removed, which only left the crystals stuck to the 
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glass surface. Those crystals were washed twice with pure precipitant then re-
suspended in the protein buffer. An SDS-PAGE gel was run with the sample and a 
freshly produced RanBP5 prep sample concentrated at 5 mg/ml. The gel was 
revealed using a silver nitrate kit (Biorad). As visible on the gel (Figure 39), the re-
suspended crystals are exclusively composed of full RanBP5 migrating at around 
120 kDa. This result indicates that degradation may only occur partially on the C-
terminus or N-terminus or that the protease degrades other elements within the 
protein prep, indirectly enhancing crystallogenesis. 

 
Based on the following results, the only solution to solving the phase problem 

is to use experimental phasing methods. 
 

 
Figure 39: SDS PAGE analysis of RanBP5 crystal content using a silver nitrate stain. 

4.8 EXPERIMENTAL PHASING OF RANBP5 
 

Experimental phasing can overcome in some cases the phase problem, 
especially when no suitable MR search model can be found. Resolution is not as 
much of a limiting factor when phasing experimentally, as phases can be determined 
for lower resolutions. The important factors are high multiplicity and absolute 
completeness within the dataset, which means having intense and clean diffraction 
within all resolution shells with a minimum of radiation damage. 
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4.8.1 SAD PHASING OF RANBP5 
 

Single Anomalous Dispersion as previously described is the most commonly 
used experimental phasing method and relies on the incorporation of 
selenomethionines instead of methionines.  
 

Mostly used for prokaryotic protein expression, SAD can also be used for 
insect cell expressed proteins but requires a very strict expression protocol (Barton 
et al., 2006; Cronin et al., 2007). Insect cells are grown in their normal media (Xpress 
Five, Life Technologies), then infected with the baculovirus and incubated for 10 to 
12h enabling baculovirus integration. Following this stage, cultures are gently 
centrifuged and re-suspended in methionine depleted media (Expression Systems) 
before complementation with selenomethionine. Cultures are then monitored as 
usual until harvest. Selenomethionine is slightly toxic for insect cells, thus reducing 
the overall expression yields by a factor of 2. Purification was undertaken using the 
exact same protocol as for the production of native crystals. Selenomethionine 
crystals were produced in PEG 6000 screens in the presence and absence of 
chymotrypsin. In all cases, crystals remained quite small and some appeared 
twinned. All were cryo-mounted using 40 % PEG 3350 as a cryo-protectant. 
 

When tested on the beamline (ID 29 and ID 23-1) most crystals diffracted very 
poorly, if at all. Out of 15 tested crystals, 3 diffracted to a reasonable resolution (4 Å) 
for a full data collection. One full dataset was collected on a slightly twinned and 
broken crystal (Figure 40A). Although reflections have been indexed up to 3.8 Å in 
resolution, most are visible at around 5 Å on the images. Another element is the 
apparent slight twinning of diffraction reflections which does contribute indexing 
errors. Overall a complete dataset was collected and integrated with the same space 
group parameters obtained for PEG 6000 crystals. Good completeness and 
redundancy was observed over the entire dataset (Figure 40B).  
 

Prior to collecting the reflection images, an energy scan was undertaken on 
the crystal to confirm the presence of selenium. In practice a phosphor screen 
detector is inserted after the crystal to measure the x-ray fluorescence at the 
excitation energy of selenium (12.620 to 12.740 KeV). As seen on the fluorescence 
scan produced by the CHOOCH (Evans and Pettifer, 2001) program (Figure 40C), a 
fluorescence peak is obtained at 12.6623 KeV, which confirms the presence of 
selenium within the crystal. From this scan an anomalous signal difference can be 
predicted for f’ and f”. To maximise the anomalous signal, and therefore the 
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amplitude difference between f’ and f”, the data collection was performed at the peak 
inflexion (12.662 KeV). 
 

 
Figure 40: SAD data collection on RanBP5. (A) Diffraction image on the Pillatus 6M detector and crystal 
picture with green scale bars representing 100 µm.  (ID 29, ESRF Grenoble). (B) Indexing/Integration 
statistics from XDS. Bracket values describe the lower resolution shell statistics. (C) Selenium energy 
scan with anomalous signal difference prediction. (D) Anomalous correction plotted against resolution 
(XDS). 

Once the data was integrated, anomalous signal can also be quantified by 
XDS during integration. Anomalous correction, a percentage of correlation between 
random half-sets of anomalous intensity differences, can be plotted against the 
resolution shells (Figure 40D). Above a value of 10, it indicates the presence of 
anomalous data. As observed on the plot, although reflections were integrated to 3.8 
Å, anomalous data only extends to about 5 Å. 
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Upon integration, selenomethionine sites and practical resolution for phasing 

can be estimated using the HKL2MAP program (Pape and Schneider, 2004) which 
recursively runs the SHELX sub-programs (Sheldrick, 2010). HKL2MAP estimated 
the presence of 39 selenomethionines at a cut-off resolution of 6 Å. We expected to 
find 42 methionines in a full RanBP5 molecule. However due to the poor resolution 
of the anomalous data, no clear phasing solution could be distinguished using 
SHELX (Sheldrick, 2008). 
 

In order to potentially improve the odds of finding a phasing solution, Single 
Isomorphous Replacement using Anomalous Signal (SIRAS) was used. The method 
consists in combining both the 3.3 Å resolution in situ proteolysis dataset with 
selenomethionine dataset at 3.8 Å, in order to have a sharper anomalous signal 
estimate. SHARP (Bricogne et al., 2003) was used to calculate a phasing solution 
but did not converge towards a strong phasing solution at the time of the writing of 
this thesis.  

 
It is interesting to note that while 2 of the diffraction selenomethionine crystals 

conserved the native P212121 unit cell (a/b/c=92/96/192), two other crystals, diffracting 
at around 4.5 Å, had a P212121 unit cell with distinctly different dimensions (a/b/c= 
97/125/149). This phenomenon was never observed with native RanBP5 crystals 
implying a different crystal packing induced by the presence of selenomethionine. 
These observations also give a clue to why more twining is observed in 
seleneomethionine crystals as the two existing unit cells may compete during crystal 
growth. 

 
In any case, bigger and better diffracting selenomethionine crystals will be 

required to solve the phase problem. 
 

4.8.2 SIR AND MIR PHASING 
 

At present, important focus is being put on obtaining bigger RanBP5 crystals 
in order to start testing different heavy atom soaks. The process will take time to fulfil 
as only certain heavy atom salts interact with a given protein and out of those, many 
will compromise the crystal integrity as they can destabilise the protein.  

 
In the event that a derivative crystal dataset is collected, it will be combined 

with the SAD dataset to improve phasing solutions.  
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4.9 CONCLUSION AND PERSPECTIVES 
 

When expressed in its native form in insect cells, RanBP5 can easily be 
expressed and purified to a relative purity through a two-step purification process. 
The protein is rather stable, homogenous and monodisperse as shown by SAXS and 
thermofluor. Although forming crystals in a restricted number of crystallisation 
conditions, the process and the parameters controlling crystallogenesis are still 
poorly understood. Some factors such as adding small quantities of chymotrypsin 
have improved the odds of crystallogenesis while some purifications fail to produce 
crystals for no obvious reasons. The produced crystals therefore remain small and of 
relatively low diffracting quality although some rare crystals have yielded good 
quality diffraction relative to their size. In turn, this has limited our ability to use MR or 
experimental methods to solve the phase problem. Precise tuning of crystallogenesis 
may eventually enable a structure resolution by SAD or SIR.  

 
It is important to note however that most published importin-β structures were 

published through a complex formation of either RanGTP or an NLS cargo 
(Kobayashi and Matsuura, 2013; Kobayashi et al., 2015; Lee et al., 2005). In all 
cases the stabilising effect increased the overall resolution enabling a solution to the 
phase problem. For some cases loop truncations were required for ligand-free β-
importin crystallisation (Kobayashi and Matsuura, 2013; Soniat et al., 2013). These 
observations indicate that in order to solve the structure of ligand-free RanBP5, a 
structural determination of NLS or RanGTP bound RanBP5 will be required. The 
cloning and expression of RanBP5/RanGTP and RanBP5/PB1(187-211) is ongoing 
in order to solve the phasing problem, but also with the final aim to explain the 
binding and dissociation kinetics of RanBP5 and the RdRp through structural and 
biochemical characterisation. 
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Résumé du chapitre 5 en Français 
 

L’expression de protéines en cellules d’insecte peut se révéler très efficace 
pour obtenir certains complexes protéiques pour lesquels l’expression en bactéries 
échoue systématiquement. Cependant sa mise en place impose des contraintes 
techniques plus lourdes comme le contrôle de la densité cellulaire, du pH et de 
l’oxygénation du milieu de culture. Ces contraintes couplées à l’émergence 
relativement récente de l’expression recombinante en cellules d’insecte ont limité le 
développement de méthodes d’expression en haut débit, couramment utilisées avec 
les bactéries. Dans ce chapitre, nous avons utilisé nos constructions d’ARN 
polymérase tronquée et les partenaires cellulaires (Red-Smu et RanBP5) pour 
développer une méthodologie de criblage de protéines recombinantes dans le but 
d’estimer leur qualité en vue d’une étude structurale. Pour ce faire 10 constructions 
différentes ont  été testées. Chacune de ces constructions a permis l’infection 
simultanée de 20 micro-fermenteurs spécialement conçus pour les cultures en 
suspension de cellules eucaryotes. Les cultures ont été maintenues par AMBR 
(Automated Micro Bio-Reactor), un automate capable de contrôler les paramètres de 
culture et d’effectuer des prélèvements cellulaires à intervalles récurrents. Grâce au 
suivi de la fluorescence YFP et CFP chaque culture a pu être stoppée à son 
maximum d’expression. La phase automatisée d’expression est suivie d’un protocole 
de micro-purification par résine d’affinité et chromatographie d’exclusion de taille. 
Les résultats ont mis en évidence qu’une analyse à micro échelle du profil de gel 
filtration des constructions combinée à un gel SDS-PAGE permet une estimation 
précise de plusieurs paramètres. Ces paramètres incluent le taux d’expression, la 
pureté, et la solubilité de chaque construction. Notre démarche a aussi impliqué une 
caractérisation de la température de fusion (Tm) par thermofluor qui permet 
d’estimer la stabilité relative de chaque construction.  

Ces résultats feront partie d’un article présentant les différentes applications 
possibles d’expression de cellules d’insecte en micro fermenteurs utilisant la 
plateforme AMBR. 
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NOTE OF INTRODUCTION TO CHAPTER 5 

 
The following chapter describes a direct application of the construct library 

described in chapter 3. The use of micro-scale and automated expression control is 
described and combined with small-scale purification protocols. In all, the results 
describe one the first high-throughput methodologies for insect cell-culture and 
soluble recombinant protein analysis.  

This chapter will incorporate part of a methods paper focusing on the AMBR 
expression platform applications and will be published before the end of 2015. The 
future article will present three different applications ranging from small-scale 
expression/purification screening, to micro scale crystallogenesis and influenza Virus 
Like Particle (VLP) production. 
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5.1 INTRODUCTION 

 
For over forty years since its discovery, the influenza RNA-dependent RNA-

polymerase (RdRp) had remained out of reach to crystallographers. Yet crucial 
atomic insight within this viral polymerase was needed to understand the 
mechanisms of transcription and replication, both taking place in the nucleus of 
infected cells. Expression problems were the key bottleneck to studying the structure 
of this multi-subunit complex, composed of PA, PB1 and PB2. Classical expression 
methods using prokaryotic cells or mammalian cell co-expression failed to produce 
the heterotrimer in either soluble form or sufficient quantities for structural biology. 
This all changed with the introduction of a polyprotein expression strategy in insect 
cells using the Multibac system (Crépin et al., 2015; Nie et al., 2014; Vijayachandran 
et al., 2011). In 2014, the structures of full influenza B (Reich et al., 2014) and bat 
strain H17N10 influenza A (Pflug et al., 2014) polymerases were solved by X-ray 
crystallography providing a unique insight into the polymerase architecture. 
However, to date, no full polymerase structures have been described for either 
human (H3N2) or highly pathogenic avian (H5N1) strains, which would be crucial in 
the design of broad spectrum inhibiting compounds. Also, the RdRp is believed to 
recruit a plethora of cellular partners when infecting host cells. Some of these include 
α- and β-importins, which enable nuclear assembly of the polymerase subunits. As 
such, RanBP5 exports PA-PB1 to the nucleus (Deng et al., 2006b; Hutchinson et al., 
2011) and PB2 is transported separately by importin-α (Mukaigawa and Nayak, 
1991; Tarendeau et al., 2007). More recently, studies have also shown the 
polymerase to interact with the RED-SMU1 heterocomplex which is implicated in 
mRNA splicing of NS1/NS2 genes (Fournier et al., 2014). RED (557 aa) has been 
identified as part of the spliceosome (Neubauer et al., 1998; Zhou et al., 2002) and 
owes its name from highly rich arginine (R), glutamic acid (E) and aspartic acid (D) 
stretches (Assier et al., 1999) in its core region (res 334 to 375). Little is known of the 
structure or function of SMU1. 

 
Considering the unresolved problem of full polymerase expression, we have 

designed a rational screen of truncated core polymerase constructs, using the H3N2 
strain. In all, we investigate and compare the expression yield and purification 
recovery of truncated human polymerase constructs alongside with RED-SMU1 and 
RanBP5. To do so, we have used AMBR (Tap biosystems). AMBR is an automated 
micro-scale fermenter platform capable of running 24 expression experiments 
simultaneously. This platform provides higher throughput ability towards tedious 
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manual insect cell suspension-culture maintenance, whilst maintaining optimal 
growth parameters. As such, when harvested, all cultures of a same batch will 
ensure maximal expression yield per construct. With these small-scale expression 
cultures, we have then used small-scale nickel resin purification and an äkta micro 
(GE healthcare) S200 gel filtration. All with the intent to provide an easy and direct 
protocol towards obtaining purified recombinant protein. In this application, we 
demonstrate the ability to compare qualitatively and quantitatively the output from 
every construct. These parameters can then drive the choice towards the most 
appropriate construct choice for structural biology applications. 

5.2 CONSTRUCT PANEL OVERVIEW 

 
Overall, 10 different constructs were tested (Figure 41A); including 6 RdRp 

truncation constructs and 4 cellular partners RED-SMU1 and RanBP5 constructs.  
Polymerase truncation constructs were all designed with the aim to express a 
minimal polymerase assembly composed of PA-PB1 with or without the 
endonuclease domain which clearly forms a separate domain from the PA-PB1 core, 
as seen on the X-Ray structure of Bat influenza A polymerase (Figure 41B). A His-tag 
positioning was also alternatively introduced in the C- and N-terminal extremities. 
Other constructs including a PB2 truncation extending to the residue 36 were tested 
with or without an endonuclease domain. PB2(1-36) was identified as a minimal 
PB1-interacting domain (Sugiyama et al., 2009) and hence may contribute to a 
higher stability of the RdRp complex. RED-SMU1 was both tested in its complete 
form and with two C-terminal random truncations of RED based on the literature 
(Fournier et al., 2014). RanBP5 was tested in its complete form and was expressed 
as the only non-polyprotein construct. 

 
RdRp and RED-SMU1 constructs were expressed within the polyprotein 

expression system. This strategy uses the expression of a single polypeptide chain 
in which the genes of interest are inserted between TEV and CFP genes. Peptidic 
linkers in between the different genes present a TEV cleavage sites. As the 
polyprotein is expressed, TEV self cleaves itself from the polyprotein and processes 
the linkers in between all the other proteins. This system ensures a direct 
stoichiometry in the expression of all the different partners. CFP is the last protein 
within the polypeptide chain. The measurement of CFP fluorescence enables a 
direct yield estimate of overall polyprotein expression. CFP fluorescence can also be 
rationalised with YFP, which is expressed by the baculovirus and under the control of 
another polyhedrin promoter. 
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For every construct, the AMBR experiments were realised both in Sf21 and 

High Five cells. Due to a consistent reduced yield in expression with the Sf21 cells, 
purification output results are only shown for the High Five AMBR experiments. 

 
Figure 41: Constructs tested using AMBR. (A) Schematic view of the construct truncation library used to 
produce 10 independent expression and purification experiments. Polymerase truncations deprived 
(PA(196-716)-PB1(1-686)) or including (PA-PB1(1-686) the PA endonuclease domain with alternate C-
terminus or N-terminus His-tags (RdRp 1, 2, 3 and 4). Heterotrimer truncations possessing the N-terminal 
domain of PB2 and once again deprived (PA(196-716)-PB1-PB2(1-36)) or possessing (PA-PB1-PB2(1-36)) 
the endonuclease domain (RdRp 5 and 6 respectively). Cellular partner proteins include RED-SMU1 
heterodimers with full and C-terminal truncations of RED. Also included within the experiment is 
RanBP5, which is expressed as a single protein. (B) X-ray structure (pdb id: 4WSB) of the bat flu A 
polymerase with subunits PA, PB1 and PB2 coloured with the same colour code as the RdRp construct 
diagram. 3’ and 5’ vRNA promoters are coloured in purple and yellow respectively. Endonuclease and 
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cap binding domains are shown with dashed circles. PB2 domains which were not included within the 
AMBR constructs are depicted in faded red. 

 
As a qualitative control for the whole production process leading to a purified 
product, the RED-SMU1(3) construct was duplicated during the early baculovirus 
generation stage. 

5.3 AMBR PURIFICATION RESULTS 
 

All the tested constructs were eluted from SEC purification using the äkta 
micro purifier. Peak fractions were analysed by a gradient 4-15 % SDS PAGE gel 
(Figure 42A). As seen on the gel, all constructs present visible bands with varying 
intensities. RdRp constructs all purify as a complex and show the expected bands for 
full PA, full PB1, PA(196-716) and PB1(1-686). PB2(1-36) is not detectable using a 
Coomassie blue coloration as its molecular weight is below the 15 kDa marker. 
RdRp6 shows a single band, which in effect is the overlay of both full PA, and full 
PB1 bands as revealed by another isocratic 12 % SDS PAGE gel of the entire SEC 
elution (Figure 42C). RED-SMU1 constructs also purify as a complex with the RED 
subunit migrating at 72 kDa when full and migrating below the 50 kDa marker when 
cleaved (RED-SMU1(2) and RED-SMU1(3)). SMU1 migrates as two characteristic 
smeared bands (Fournier et al., 2014) next to the 50 kDa marker. RanBP5 produces 
a single band, which migrates between the 100 and 150 kDa marker. All polyprotein 
constructs have a detectable TEV double band presence close to the 25 kDa 
marker, it is expected, as TEV was also His-tagged as an internal control and is 
difficult to separate using only SEC. 
 

When analysing the RdRp constructs, important effects on the final yield can 
be observed by comparing RdRp 1&2 and RdRp 3&4 which differ on their His-tag 
placement. In the first case, the His-tag is fused to the N-terminus of PA. In the 
second case it is placed on the C-terminus of PB1. As such, a C-terminal placement 
on PB1 significantly reduces overall purification yields in both cases. However, as 
mostly visible with RdRp 2 and RdRp 4, the band corresponding to His-PA(196-716) 
or full His-PA has a stronger intensity than the PB1(1-686) band, indicating the 
presence of excess PA within the purified product. The opposite is not true when the 
his-tag is placed on PB1(1-686) as both bands are of similar intensity. Removing the 
endonuclease also contributes to improving final purification yields, mostly when 
PB2(1-36) is absent. This can easily be seen when comparing the band intensity of 
PB1(1-686) throughout RdRp constructs 1 and 3. Finally, the presence of PB2 
greatly diminishes the overall expression of all of the polyprotein subunits.  
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Figure 42: Small-scale purification and characterisation of AMBR cultures. (A) AMBR purified end 
product analysis by SDS PAGE. (Gel on the left) SEC peak elution fractions from all constructs were 
deposited in equivalent quantities on a gradient 4-12% SDS gel. (Gel on the right) Control duplicate 
AMBR experiment of the RED-SMU1(3) construct is shown with higher quantities deposited (10µL). (B) 
Table of YFP/CFP reporter gene quantification and SEC peak thermal shift assay results for all AMBR 
constructs. YFP fluorescence (λexcitation/emission = 488/525) values directly report polyhedrin promoter 
activity. CFP fluorescence (λexcitation/emission = 430/492) correlates to the expression of the entire 
polyprotein constructs, as CFP is the last expressed protein. The relative ratio of YFP/CFP values is 
indicative of the polyprotein expression efficacy. Thermal shift assay Tm estimates are indicative of the 
purified sample stability. For RdRp constructs, increases in Tm upon 5’vRNA binding are also measured. 
(C) SEC chromatogram comparison for RdRp 4 and 6. Äkta micro purification runs of RdRp 4 (blue) and 6 
(green) constructs are shown with 280 nm UV absorbance plotted against the elution volume. 
Corresponding SDS PAGE with the peak fraction (*) and thermal shift assay analysis are also shown on 
the right of the chromatogram. 

 
This difference is even more visible when comparing the äkta micro elution 

curves of RdRp 4 and RdRp 6 (Figure 42C). Both constructs are N-terminally His-
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tagged and possess the PA endonuclease. However integrating PB2 within the 
polyprotein not only reduces polymerase but also TEV expression. This result 
indicates that integrating PB2(1-36) brings upon a translational or post-translational 
problem for the polyprotein expression and is analogous to the expression problem 
described at length in chapter 3. 

 
All RED-SMU1 constructs are purified at the same level of purity and with 

comparable yields despite truncations in the RED protein. RanBP5 is expressed in 
relatively low yields when compared to the other proteins but is observed as a single 
band migrating between the 100 and 150 kDa marker. Duplication of the RED-
SMU1(3) expression and analysis with higher deposits on the SDS PAGE (Figure 42A) 
show identical band intensities for RED(1-299), SMU1 and TEV. Indicating a strong 
consistency in expression and purification methodology. 
 

YFP and CFP measurements can be rationalised together to produce the 
YFP/CFP ratio, which reports the relative expression efficacy of a given construct 
(Figure 43B). RED-SMU1 constructs are the most easily expressed constructs within 
the panel with a low YFP/CFP ratio around 2 at the time of harvest. Within the 
polymerase constructs, most YFP/CFP ratios are found close to 6. The highest 
measured ratios are for constructs RdRp 3 and 6 which both have a PA 
endonuclease domain and either a PB1 C-terminal His-tag or PB2(1-36).  
 

Thermofluor experiments as shown for constructs RdRp 4&6 (Figure 42C) were 
realised on all constructs using the peak fraction to determine a Tm (Figure 42B). 
RdRp constructs Tm was also measured in the presence of 5’vRNAp as previous 
research has highlighted the increase in Tm attributed to 5’vRNAp binding (Brownlee 
and Sharps, 2002). From all the constructs tested, RanBP5 is the most stable protein 
with a Tm of 53°C. RED-SMU1(1) comprising a full RED(1-557) has a Tm of 48°C 
comparable to that of RED-SMU1(3). RED-SMU1(2) shows a 2°C increase in Tm 
and is the most stable out of all RED-SMU1 constructs. Polymerases vary greatly in 
their respective Tm with and without 5’vRNAp. 3 to 8°C stabilisation upon 5’vRNA 
binding can be observed depending on the constructs. For identical constructs RdRp 
1 to 4 with PA (N-terminus) or PB1 (C-terminus) His-tag placements, a consistent 
1°C increase in Tm can be observed without 5’vRNAp between RdRp 1&2 and 
RdRp 3&4. This difference is possibly explained by the presence of co-purified His-
PA (196-716) or full His-PA (RdRp 2 and 4 respectfully), which may impact on the 
melting curve. However upon 5’vRNAp binding the endonuclease deficient construct 
RdRp 1 with a C-terminal His-tag is the most stable dimeric form of polymerase with 
a Tm of 49°C. RdRp 5&6 constructs including PB2(1-36) also show an increased Tm 
at 44°C when unbound to 5’vRNAp indicating that PB2 increases the overall 



5.4  CONCLUSION 

121 

construct stability. Again, upon 5’vRNAp binding, the lack of the endonuclease 
domain generates the most stable of all polymerase constructs (RdRp5) with a Tm of 
51°C. 

5.4 CONCLUSION 
 

Micro-scale expression using the AMBR system and purification with the äkta 
micro can efficiently be used to assess different parameters that are crucial for the 
rational choice of constructs for structural characterisation. Constructs can be 
selected on their expression and solubility levels as shown by the CFP/YFP 
measurements and SDS-PAGE peak analysis. Purity estimation can also be 
undertaken with the SDS-PAGE and SEC chromatography profile that can also 
provide an estimation of oligomeric state. Thermal shift assay performed on the peak 
fraction can also generate key information on the stability of the purified product. It 
can as well be used as a qualitative tool for the analysis of binding additives.  
 

Using AMBR, we demonstrate that human strain (H3N2) influenza complexes 
can be expressed when removing the C-terminus of PB2 as previously shown in 
chapter 3. We highlight the beneficial effect of the endonuclease removal on yield 
and stability. Interestingly we also show the stabilising effect of the N-terminal 
domain of PB2(1-36) which has been shown to closely interact with PA-PB1. Also, 
we confirm the stabilising effect of 5’vRNAp binding on the truncated polymerases, 
which implies an active energy driven binding of the vRNA. Finally we show the 
ability to express cellular partners RED-SMU1 and RanBP5, which are purified to 
high levels of purity and in a reproducible manner as shown by the duplicated 
expression process of RED-SMU1(3). 

 
In all, we present a methodology opening the domain of medium to high 

throughput screening of insect cell recombinant expression. This relatively simple 
workflow tremendously accelerates the search for high value protein candidates and 
can be exploited both qualitatively and quantitatively. Such a method is also greatly 
suited for polyprotein screening and will be used to tackle future multi protein 
complex assemblies. 
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The heterotrimeric RNA-dependent RNA-polymerase is the main core 

component of the influenza virus infectious cycle. Together with the nucleoprotein 
and vRNA it performs both transcription and replication of the vRNA genome in the 
nucleus of infected cells. These two activities control both the production of novel 
viral proteins and vRNA. As such, the polymerase activity controls all the processes 
leading to novel virus synthesis during infection making it an ideal target for inhibitor 
drug design.  

 
At the very start of this research project no expression technology could 

propose a solution to express the RNA polymerase in sufficient quantities for 
structural biology. To try and overcome this problem, our group in collaboration with 
others, setup the polyprotein expression strategy to express influenza A polymerase. 
Although un-successful in the expression of full PA-PB1-PB2, our group managed to 
show a successful proof of concept by expressing a truncated version of the 
polymerase, which was both endonuclease and de-novo synthesis active. With this 
construct, PB1 could be expressed for the very first time in a soluble form. 
Tremendous effort was then invested in finding a suitable truncated construct for the 
influenza A polymerase. Over 4 years, our group has dissected H5N1 and H3N2 
polymerases with the use of over 30 construct variations, all with the intent to obtain 
a crystal structure of the polymerase. Although some constructs (notably PA(196-
716)-PB1(1-686)) showed a very promising biochemical behaviour and even 
produced protein crystals. No high-resolution diffracting crystals were ever produced 
with H5N1 or H3N2 strains when truncating the polymerase, even after tedious 
optimisations steps. This also remains true to this date in the rest of the world.  

 
Many of the purified constructs prove to be difficult proteins in solution. Even 

when well expressed and easy to purify, many of the truncated constructs (especially 
with PA or PB2 truncation) behave as dimers in solution when sufficiently 
concentrated.. The polymerase is composed of highly charged subunits with different 
polarities; in the context of a truncated RdRp this induces a trans molecular charge 
compensation which probably is the cause of this dimerisation.  V-RNA-p binding 
induces important conformational changes which induce a monomerisation of the 
polymerase. It is however difficult to conclude that this oligomeric behaviour is of 
biological significance. We clearly observe PA-PB1 as a dimer and no full 
polymerase has ever been reported to form dimers.  

 
Crystal structures of full Bat-A and B polymerases were eventually solved in 

2014 by our collaborator Stephen Cusack using the same polyprotein approach. 
These structures provide a tremendous understanding of the overall polymerase 
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architecture and cap-snatching mechanism. However, the intricate complexity of the 
polymerase quaternary structure also opens new questions regarding its assembly 
process, which possibly requires multiple cellular partners.  

 
In this thesis, the underlying problems of expression of full H3N2 and H5N1 

polymerases are advanced: Notably the role played by the PB2 subunit in reducing 
the expression of the entire polyprotein. No clear answer can be given as for why 
PB2 is such a problem for the expression of these strains compared to Bat-A or B 
polymerase. One possible answer to this problem may lie in the required co-
expression of other cellular factors, notably Hsp90 which may play a role in the 
stabilisation of PB2 (Chase et al., 2008; Naito et al., 2007). Also, as a potential 
solution, one could consider vRNAp bound polymerase synthesis by engineering a 
cellular transcription of vRNA in parallel to the polyprotein system. In any case, the 
produced truncation library has brought other answers on the polymerase and 
notably on its precursor core complex PA-PB1. We have demonstrated that the 
complex exists as a monomer in solution and possesses de novo synthesis activity. 
We have also shown that it binds with a very high affinity to the 5’vRNAp sequence 
and that 3’vRNAp requires the presence of PB2. We have proven that truncating the 
endonuclease domain from the polymerase is feasible. Nonetheless, PB1 requires 
the long and non-structured hinge region of PA (residues 196-257) to remain soluble. 
This result is also quite important as it validates the theory that PA-N155 and PA-
N182 could assemble with PB1 to form separate polymerase entities whose function 
would still need to be investigated (Muramoto et al., 2013). 

 
Expansion of the polyprotein expression technology has enabled for the co-

expression of RanBP5 with PA-PB1, which further expands the current possibilities 
to study polymerase and host cell factor interaction. 

 
Using multiple biophysical methods such as SEC-MALLS, EM and SAXS we 

have further studied how the PA-PB1-RanBP5 complex behaves in solution. PA-
PB1-RanBP5 forms a 1:1:1 complex. RanBP5 has been shown to tightly bind to with 
PA-PB1 and inhibit the 5’vRNAp binding. To further investigate the nature of this 
binding process, mutations and dissociation studies will be performed. Also, a cross 
linking mass spec investigation of the complex may advance the structural 
knowledge and enable for a precise model generation. 

 
The crystallographic characterisation of RanBP5 and its interaction with the 

NLS domain of PB1 is underway. The unbound form of RanBP5 can be expressed 
and purified alone and yields medium quality diffracting crystals which contain the full 
protein. Solving the phase problem for the unbound RanBP5 form may require 
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solving the structures of NLS or Ran(GTP) bound forms, that is underway but will still 
yield key structural data, as important conformational differences are expected 
between the different forms. Solving the X-ray structure of RanBP5 bound to the 
PB1-NLS will be a key step towards finding any polymerase assembly inhibitors. 
Putting together an atomic model for RanBP5 with the data of the full import complex 
will not only broaden our understanding of how the polymerase assembles in the 
nucleus but also enrich the field of importin/exportin studies. RanBP5, is also 
involved in the transport of other proteins associated to other viral proteins such as 
rev from HIV and the L1-L2-L3 from the Human Papilloma Virus (Nelson et al., 2003; 
Darshan et al., 2004; Klucevsek et al., 2006). Applying the same rational expression 
approach to these complexes may also successfully reconstitute these complexes. 

 
Finally, the large panel of polymerase constructs has given us the opportunity 

to setup some of the very first high throughput expression technology with 
baculovirus infected cells insect cells. With the AMBR robot, we demonstrate that 
using small-scale expression, affinity binding and SEC can produce interpretable 
results which can then drive a rational choice towards the most promising constructs. 
This experiment was undertaken as a proof of concept, it will now be applied at a 
higher frequency for construct libraries which were previously untested. One could 
imagine such a platform being used to screen co-expressed polymerases with 
potential cellular partners and directly identify complexes that form recombinantly. 
Micro-scale purification also allows for further structural studies such as EM and 
micro-crystallisation experiments. 

 
On a final note, this thesis but also more broadly the numerous internships 

beforehand have clearly defined my path as a researcher. I have had the unique 
chance to collaborate with our industrial partner (Roche Pharmaceuticals), which 
gave me the opportunity to get a first-hand experience of working within the industry 
(January to March 2013 in Nutley, USA). Also, my PhD has made use of multiple 
biophysical and biochemical methods which have enriched not only my technical 
abilities but also my critical perspective on how research can be done. 
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Polyproteins in structural biology
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Polyproteins are chains of covalently conjoined smaller proteins

that occur in nature as versatile means to organize the proteome

of viruses including HIV. During maturation, viral polyproteins are

typically cleaved into the constituent proteins with different

biological functions by highly specific proteases, and structural

analyses at defined stages of this maturation process can

provide clues for antiviral intervention strategies. Recombinant

polyproteins that use similar mechanisms are emerging as

powerful tools for producing hitherto inaccessible protein targets

such as the influenza polymerase, for high-resolution structure

determination by X-ray crystallography. Conversely, covalent

linking of individual protein subunits into single polypeptide

chains are exploited to overcome sample preparation

bottlenecks. Moreover, synthetic polyproteins provide a

promising tool to dissect dynamic folding of polypeptide chains

into three-dimensional architectures in single-molecule structure

analysis by atomic force microscopy (AFM). The recent use of

natural and synthetic polyproteins in structural biology and major

achievements are highlighted in this contribution.
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Introduction
Polyproteins composed of covalently linked individual
proteins with different biological functions are prevalent
in nature. For instance SARS coronavirus, the agent that
causes severe acute respiratory syndrome, realizes its entire
proteome from two large polyproteins, each encoded by a

long single open reading frame (ORF) [1]. The expressed
SARS polyproteins are then processed into the individual
functional protein subunits by the action of highly specific
proteases also encoded by the ORFs [1,2]. A further
example is human immune deficiency virus (HIV) which
causes acquired immune deficiency syndrome (AIDS).
The RNA genome of this retrovirus is organized in three
major genes gag, pol and env, which encode for polyproteins
and undergo proteolytic processing at defined stages dur-
ing maturation [3]. Recombinant polyprotein approaches
mimicking viral polyproteins have recently emerged as a
powerful means to express high-value protein complexes
for structure determination [4,5!]. Recently, the long elu-
sive influenza polymerase has been produced successfully
from a self-processing synthetic polyprotein, enabling
high-resolution structure determination [6!!,7]. Polypro-
tein fusions which are not processed by protease, but
remain covalently conjoined by engineered linkers have
been instrumental to obtain important insight into numer-
ous essential physiological processes including multidrug
efflux, co-translational protein targeting or enzymatic pro-
cessing of chromatin, among others [8!!,9,10,11!,12!!].
Moreover, single-chain engineering approaches linking
protein domains into novel, artificial polyproteins have
resulted in new classes of high-affinity binder molecules
as potential protein therapeutics [13] and accelerated
elucidation of mechanisms governing protein folding by
single-molecule techniques [14]. Thus, polyprotein tech-
nologies have recently gained prominence as particularly
useful tools for unlocking previously often inaccessible
protein samples to detailed structural and mechanistic
studies, as illustrated in the following. In this contribution,
the use of polyproteins in structural biology is discussed, by
highlighting recently determined structures of naturally
occurring polyproteins on one hand and by reviewing
recent structural studies where recombinant polyprotein
constructions were utilized on the other.

Natural polyproteins
Polyproteins are used in nature by many viruses to
structure their proteome. As a consequence, viral poly-
proteins are an intense focus of research efforts for nu-
merous reasons [15–17]. For instance, inhibition by small
molecules of proteases that process polyproteins during
viral maturation can provide a powerful handle to combat
viral disease [2,18–20]. In HIV, the physical infrastructure
of the virus is provided by the gag gene which gives rise to
the precursor Gag (group specific antigen) polyprotein
[21]. Viral protease processes Gag during maturation into
several proteins and spacer peptides dictating immature

Available online at www.sciencedirect.com

ScienceDirect

www.sciencedirect.com Current Opinion in Structural Biology 2015, 32:139–146



and mature viral capsid structure [22]. Maturation is a
two-stage process. Precursor Gag polyprotein first forms a
hexameric lattice at the plasma membrane of an infected
cell. This induces budding and release of immature viral
particles. Proteolytic processing of Gag then rearranges
the viral structure to the mature form [23]. Inhibition of
Gag-processing protease enabled preparation of imma-
ture retroviral capsids suitable for structure analysis by
electron cryo-tomography and subtomogram averaging
methods (Figure 1) [24–26,27!!]. Comparison of the
structures of HIV Gag protein in reconstituted tubular
arrays on one hand and in intact virus particles on the
other, provided unprecedented insights into the confor-
mational plasticity of this precursor polyprotein [26,27!!].
The studies also revealed that retroviral capsid proteins
can adopt different quaternary arrangements during virus
assembly, notwithstanding conserved tertiary structures
[27!!].

A different, less frequently encountered type of natural,
non-viral polyproteins are so-called tandemly repetitive
polyproteins (TRPs). TRPs are also produced as large
precursor proteins and then processed by proteases into
several copies of proteins with similar function. TRPs are

made of consecutively arranged repeats of amino-acid
stretches. Examples of known TRPs include polyprotein
lipid binding proteins of nematodes [28] and filaggrins,
which are keratinocyte produced TRPs crucial to health
and appearance of skin [29,30]. The solution structure of a
mature, post-translationally processed repeat unit of a
TRP, ABA-1A from the nematode polyprotein allergen
of Ascaris, was determined, representing the first structure
of this class of proteins [31]. ABA-1A adopts a novel fold
comprising two juxtaposed four-helical bundles that share
a long central alpha-helix (Figure 1). Nematode polypro-
tein allergens have no known counterpart in humans. The
Ascaris ABA-1A structure therefore may serve as a starting
point for the development of new drugs and therapeutic
intervention strategies against disease states caused by
these intestinal parasites.

An inverse ‘polyprotein’ concept of covalently linking
functional protein units into long modular polypeptide
chains characterizes mega-enzymes that functionally ar-
range multiple domains into ordered assembly lines for
the production of a wide variety of bioactive molecules.
Modular polyketide synthases (PKS) and their metazoan
homologs, fatty acid synthases (FAS) belong to this class
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Natural polyprotein structures. Polyproteins, prevalent in biology, are illustrated here by the structures of the human immune deficiency virus (HIV)
immature capsid determined by electron cryo-tomography revealing molecular details of hexameric Gag [24,26,27!!], the structure of a repeated
unit of the ABA-1 nematode polyprotein allergen derived from nuclear magnetic resonance (NMR) spectroscopy [31] and the crystal structure of a
single-chain, multi-domain long-chain acyl-CoA carboxylase, LCC [34]. CT stands for carboxyltransferase, BCCP for biotin carboxyl carrier protein,
and BC for biotin carboxylase components.
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of catalysts [32,33]. Recently, the structure and function
of a modular multi-domain long-chain acyl-CoA carbox-
ylase from Mycobacterium avium was elucidated [34]. The
crystal structure revealed extensive swapping of function-
al domains in the holo-enzyme which is a homo-hexamer
(Figure 1). Thus, four intertwined protomers are involved
in completing one catalytic reaction cycle [34].

Synthetic polyproteins
Influenza polymerase produced from a recombinant
polyprotein
The highly successful strategy of viruses to utilize poly-
proteins to their advantage has found its equivalent
in recombinant technology. A synthetic polyprotein,

expressed recombinantly in baculovirus-infected insect
cells, has enabled the structure determination of influenza
polymerase. Despite its common appearance, a detailed
understanding of the molecular mechanisms of the virus
that causes influenza has remained elusive. More than
40 years ago, the influenza polymerase was discovered, a
key protein complex that replicates the genetic material of
the virus [35,36]. Atomic resolution information on the
structure and function of this protein machine is essential,
as it may open up important avenues for drug discovery.
However, the influenza polymerase remained inaccessible
for decades — to produce this valuable protein complex
for detailed analysis, proved to be a seemingly insur-
mountable technical challenge. This has now changed
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Influenza polymerase. (a) A self-processing recombinant polyprotein was used to express influenza polymerase complex in high quality and
quantity in insect cells by using the MultiBac system [37] as illustrated (left). The polymerase was expressed from a single open reading frame
encoding for tobacco etch virus NIa protease (TEV), the polymerase subunits PA, PB1 and PB2 and a fluorescent protein (CFP). A second, yellow
fluorescent protein (YFP) was inserted elsewhere into the MultiBac baculoviral genome as an expression performance marker. The resulting
polyprotein is processed into the individual subunits by highly specific proteolysis mediated by TEV. The polyprotein construct is shown
schematically (right) illustrating tag placement and design of spacers in between the subunits (adapted from [6!!]). The C-terminal part of PB1 and
the N-terminal part of PB2 co-fold into a helical bundle necessitating careful linker design (boxed). (b) Crystal structure of influenza polymerase
bound to cognate viral RNA (vRNA) is shown in a ribbon representation. PA is colored in blue, PB1 in green and PB2 in red. RNA substrate is
colored in orange. Cap-binding domain and endonuclease domain are indicated. The structure motif formed by PB1 C-terminal domain and PB2
N-terminal domain is shown in a magnification (right). PB2 N-terminus and PB1 C-terminus are marked.
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dramatically with structures of influenza polymerase
complex determined by X-ray crystallography [6!!,7].
These break-through studies provide unprecedented
insight into the inner workings of this viral protein
machine. This revolution in understanding influenza
was brought about by applying a polyprotein strategy
to produce influenza polymerase recombinantly, in the
quality and quantity required for high-resolution struc-
tural and functional analysis (Figure 2). The strategy
applied recapitulates the mechanism adopted by SARS
coronavirus. A single ORF was constructed encoding for
a highly specific protease, NIa, from tobacco etch virus
(TEV), fused in frame with consecutively arranged PA,
PB1 and PB2 subunits of the polymerase. At the far end of
the polyprotein, a reporter protein was inserted to track
protein production ‘in real-time’ during expression, by
recording fluorescence [5!]. All protein units within the
polyprotein were spaced apart by customized linkers
containing the specific site for cleavage by the TEV
protease, purification tag sequences and spacer residues
(Figure 2). The polyproteins encoding for influenza
polymerases were successfully expressed with the Multi-
Bac baculovirus insect cell expression system developed
for producing multiprotein complexes [37].

Sample preparation bottlenecks resolved by synthetic
polyproteins that remain uncleaved
The polyprotein encoding for influenza polymerase was
proteolytically cleaved into the constituent protein sub-
units to yield the sample that crystallized. Conversely,
engineering of individual proteins into covalently linked
polypeptide chains can also accelerate structure determi-
nation considerably. These ‘polyproteins’ remain con-
joined as single-chains during sample preparation and
structure determination. Particularly prominent examples
for such single-chain engineering include the insertion of
T4 lysozyme into the primary sequence of G-protein
coupled receptors (GPCRs) to facilitate crystallogenesis
[38]. In a variation of this approach, the catalytic domain of
Pyrococcus abysii glycogen synthase was recently used to
stabilize an intracellular loop of the human OX2 orexin
receptor to determine its crystal structure bound to an
insomnia drug [39].

Elaborate single-chain engineering into polyproteins was
applied to determine the architecture of the bacterial
multidrug efflux pump AcrABZ-TolC [8!!]. In this study,
the efflux pump was assembled by preparing two
single-chain polypeptide fusions, AcrB-AcrA-AcrB and
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Figure 3
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Linking individual proteins into polypeptide chains. Proteins engineered into single polypeptide chains were used to obtain suitable sample for
structure determination of AcrABZ complex [8!!], an alphabody (MA12) to neutralize human interleukin Il-23 (p19 and p40) [13] and the first
structure of a histone-modifying enzyme, the Polycomb Repressive Complex (PRC) 1 ubiquitylation module, bound to a nucleosome [12!!]. Linker
amino acid segments are marked (L, L1, L2).
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AcrA-AcrZ, respectively, each conjoined by extended
glycine/serine rich linkers. TolC was co-expressed with
the AcrA-AcrZ fusion. This strategy resulted in a recon-
stituted complex with the correct stoichiometry enabling
structure determination by hybrid methods. Fitting of
crystal coordinates into EM densities allowed to model
AcrBZ/AcrA interactions (Figure 3) as well as the holo-
complex containing TolC.

Single-chain engineering likewise enabled the develop-
ment of alphabodies, a novel scaffold representing a
promising alternative to antibodies for various biomedical
and biotechnological applications [13]. Alphabodies com-
prise in silico designed short individual alpha-helical
protein segments that are then conjoined by covalent

linkers into single-chain antiparallel coiled-coils that are
highly stable and suitable for affinity maturation. The
crystal structure of a complex with human interleukin
(IL-23) revealed the structural basis of IL-23 antagonism
by the alphabody, MA12 (Figure 3).

Covalent linking of subunits of a protein complex was
required to obtain the first crystal structure of a histone-
modifying enzyme complex bound to a nucleosome core
particle [12!!]. Polycomb repressor complex (PRC) 1, an
essential regulator of cell fate, comprises an activity to
ubiquitylate nucleosomal histone H2A at residue K119.
PRC1 uses its E3 ubiquitin ligase subunits, Ring1B and
Bmi1, together with an E2 ubiquitin-conjugating enzyme,
UbcH5c for this purpose. The E2–E3 complex was

Polyproteins in structural biology Crépin et al. 143
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SRP pathway revealed by single-chain protein engineering. (a) E. coli signal recognition particle (SRP) protein subunit Ffh (green) and the SRP
receptor FtsY (purple) were covalently linked into a single polypeptide chain (left). NG domains are marked. The dashed line indicates the
extended polypeptide linker. Bound nucleotide is shown (spheres). The single polypeptide construct is illustrated on the right, detailing the
arrangement of FtsY A (blue) and NG (purple) domains, the 30 amino acid glycine/serine rich linker connecting FtsY with Ffh, and the Ffh NG
(green) and M (yellow) domains. N and C-termini are marked. (b) Structures of SRP/FtsY bound to a translating ribosome were elucidated by
electron cryo-microscopy (color coding as in panel a). 4.5S RNA is colored in orange. EM density and fitted models of the ‘early’ and
‘proofreading’ stages are shown (left, top). Substantial rearrangements are observed as illustrated by the overlay of the EM densities and the
model coordinates (left, bottom) (adapted from [10!]). The cryo-EM structure of the ribosome-SRP-FtsY co-translational targeting complex in the
closed state is shown on the right (adapted from [11!]).
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produced using an engineered single-chain fusion of
Ring1B to UbcH5c to overcome the low affinity and
salt-sensitive E2–E3 interaction. The resulting single-
chain construct was co-expressed with Bmi1 to produce
the trimeric complex which was purified and reconstituted
with nucleosome core particles, and crystallized [12!!].
The structure showed two copies of PRC1 E2–E3 complex
bound to one nucleosome, revealing intricate interactions
(Figure 3).

SRP pathway revealed by single-chain protein
engineering
Around one third of the proteins in living cells are delivered
to the plasma membrane. This is carried out by a univer-
sally conserved, complex mechanism involving ribosomes
that are translating mRNA into membrane-bound nascent
polypeptide chains, the signal recognition particle, SRP
and the SRP receptor, FtsY [9,40,41]. Snapshots of this
elaborate process were obtained by single particle electron
cryo-microscopy and biochemical analysis [9,10!,11!,42–
44]. These studies revealed SRP binding to ribosome
nascent chain complexes [42], followed by the ‘early’
[44], ‘proofreading’ [10!] and ‘closed’ [11!] states upon
FtsY binding and GTP hydrolysis. Successful structure
determination critically relied on stabilizing SRP binding
to FtsY. This was achieved by covalently linking the SRP
subunit Ffh with FtsY into a single polypeptide chain
with virtually wild-type activity (Figure 4).

Polyprotein single-molecule structural biology
Transient unfolding and refolding of proteins can be an
essential feature of protein structure space in living
organisms, for example in the translocation of proteins
into and across cellular membranes or the muscle stroke.
The use of atomic force microscopy (AFM) has emerged
as a powerful technique to probe protein structure,
enabling analysis of the mechanical stability and folding
pathway of protein specimens at the single-molecule
level. By means of a stretching force, applied through a
microscopic cantilever to a biological target fixed to a
support and recorded by the deflection of a laser beam,
the analyzed protein is unfolded to an extended state
(Figure 5).

Historically, polyproteins were used in single-molecule
AFM to measure unique mechanical fingerprint profiles
of a protein response to the applied mechanical force
[14,45!]. The muscle protein titin is a prominent example
[46–48]. Titin consists of several hundred repeated pro-
tein domains including fibronectin and immunoglobulin-
like folds. The use of polyproteins in single-molecule
AFM results in considerable improvement of the statisti-
cal evaluation of singular domains within the polyprotein
chain [14]. This can be exploited in the analysis of
homomeric polyproteins that are constructed genetically
or by chemical fusion reaction from identical copies of the
same protein species of choice. Moreover, in addition to

providing a clear fingerprint, polyproteins also have the
advantage that a larger number of events can be recorded
per experiment as compared to only one event if mono-
meric proteins are used.

For these reasons polyproteins emerge as work-horses of
single-molecule structural biology by AFM. Numerous
polyproteins have been analyzed for their mechanical
properties by using this technique, including poly-I27,
derived from the I-band region of Titin, oligo-calmodulin,
poly-ubiquitin, polyproteins made of the virulence factor
GB1 of Peptostreptococcus magnus [46–54] and others, pro-
viding unique insights into biological folding/unfolding
mechanisms. The availability of a large and growing
number of well characterized homomeric specimens fur-
thermore enables now the construction of chimeric poly-
proteins as a tool to study mechanically uncharacterized
proteins, by using the unique fingerprints of the known
protein unit as a reference [14,45!].

Conclusions
Natural and synthetic polyproteins are at the core of con-
temporary structural biology. Analysis of viral polyproteins
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Polyprotein single-molecule structural biology. The setup of atomic
force microscopy of polyproteins is shown in a schematic
representation (adapted from [14]). The polyprotein is tethered to the
gold support resting on the piezoelectronic positioning stage (bottom)
on one end, and the tip of a cantilever made of silicon nitride on the
other. A laser beam is focused on the back of the cantilever (top). The
cantilever is displaced by the force that acts on the polyprotein chain
resulting in change of the deflection of the laser beam, recorded by a
photodetector. Increasing force causes each domain of the
polyprotein to unfold, resulting in characteristic spikes in a force/
extension diagram (inset).

Current Opinion in Structural Biology 2015, 32:139–146 www.sciencedirect.com



and the architectural consequences of their processing
during maturation not only furthers our understanding of
viral mechanisms but provides important clues for drug
design to combat viral diseases. Synthetic polyproteins are
emerging as invaluable tools to accelerate research by
unlocking hitherto inaccessible proteins for high resolution
structure determination. Artificial polyproteins obtained
by singe-chain protein engineering approaches are instru-
mental to overcome sample production bottlenecks and
provide novel means to illuminate biological mechanisms,
including folding and unfolding properties at the single-
molecule level. We anticipate a major increase in the use of
polyproteins in structural biology as valuable tools to tackle
large and complex biological systems in the future.
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Carrión-Vázquez M: Quasi-simultaneous imaging/pulling
analysis of single polyprotein molecules by atomic force
microscopy. Rev Sci Instrum 2007, 78:113707.

50. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H,
Fernandez JM: Mechanical design of proteins studied by
single-molecule force spectroscopy and protein engineering.
Prog Biophys Mol Biol 2000, 74:63-91.

51. Carrion-Vazquez M, Li H, Lu H, Marszalek PE, Oberhauser AF,
Fernandez JM: The mechanical stability of ubiquitin is linkage
dependent. Nat Struct Biol 2003, 10:738-743.

52. He C, Genchev GZ, Lu H, Li H: Mechanically untying a protein
slipknot: multiple pathways revealed by force spectroscopy
and steered molecular dynamics simulations. J Am Chem Soc
2012, 134:10428-10435.

53. Cao Y, Li H: Polyprotein of GB1 is an ideal artificial elastomeric
protein. Nat Mater 2007, 6:109-114.

54. Li YD, Lamour G, Gsponer J, Zheng P, Li H: The molecular
mechanism underlying mechanical anisotropy of the protein
GB1. Biophys J 2012, 103:2361-2368.

146 New constructs and expressions of proteins

Current Opinion in Structural Biology 2015, 32:139–146 www.sciencedirect.com



 

 
 
 

Publication n°2: 
 
 

Alexandre Monod, Christopher Swale, Bogdan Tarus, Alice Tissot, 
Bernard Delmas, Rob WH Ruigrok, Thibaut Crépin & Anny Slama-

Schwok  

Learning from structure-based drug design and new antivirals 
targeting the ribonucleoprotein complex for the treatment of 

influenza 

Expert Opin. Drug Discov. (2015) 10(4):345-371 

  



  



1. Introduction

2. Novel antiviral candidates

targeting external viral

proteins

3. Structural basis for

small-molecules inhibition of

individual proteins of the RNP

4. Targeting the non-structural

protein 1

5. Conclusion

6. Expert opinion

Review

Learning from structure-based
drug design and new antivirals
targeting the ribonucleoprotein
complex for the treatment of
influenza
Alexandre Monod, Christopher Swale, Bogdan Tarus, Alice Tissot,
Bernard Delmas, Rob WH Ruigrok, Thibaut Cr!epin &
Anny Slama-Schwok†
†Virologie et Immunologie Mol!eculaires, INRA UR, Jouy en Josas, France

Introduction: Influenza viruses are a threat to human health. There are pres-

ently only two methods for treating influenza: vaccines, which require yearly

updates, and two classes of antivirals that suffer with the problem of resis-

tance by current human influenza viruses; this is especially the case with

amantadine and rimantadine. Consequently, there is an urgent need for the

development of new antivirals with new mechanisms of action.

Areas covered: In this review, the authors focus on viral protein domains, their

associated activity and their inhibition by small molecules defined by a

structure-based design with a special emphasis on the ribonucleoprotein com-

plex and its inhibitors. Several new classes of antiviral candidates targeting

viral replication through individual domains of the polymerase and the nucle-

oprotein (NP) have been developed through structure-based design.

Expert opinion: To date, the antivirals targeting neuraminidase are by far the

most developed and potent. Antiviral candidates targeting the NP and poly-

merase domains are in the pipeline but their pharmacokinetics needs further

studies. The recently published structures of the polymerase expand the pos-

sibilities for development of new antivirals. Combination therapies targeting

conserved viral targets and new cellular proteins or exploiting drug promiscu-

ity hold promises to fight against the emergence of resistance.

Keywords: antivirals, cap-binding domain, endonuclease domain, neuraminidase and matrix

2 inhibitors, nucleoprotein inhibitors, replication and transcription, resistance,

ribonucleoprotein complex

Expert Opin. Drug Discov. (2015) 10(4):345-371

1. Introduction

Influenza viruses are important pathogens of humans and animals. In humans, they
cause seasonal epidemics, resulting in about 3 -- 5 million yearly cases of severe ill-
ness and 500,000 deaths [1]. Highly transmissible influenza A viruses can lead to
pandemics as it occurred in 1918, 1957, 1968 and 2009. Influenza viruses have a
segmented RNA genome, and exchange of segments between different viruses can
lead to viruses with new biological characteristics. In particular, when a human virus
mixes its genomic segments with those of an animal virus, a new virus may emerge
with novel hemagglutinin (HA) and neuraminidase (NA). Such an occasional event
called antigenic shift is associated with pandemics, as previously observed in
1957 and 1968, with the emergence of H2N2 and H3N2 lineages in the human
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population, respectively. Antigenic drift results from gradual
accumulation of mutations in the surface glycoproteins and
leads to annual flu epidemics.
Due to the high mutation rate of the virus, influenza

vaccines that promote antibody production against the HA
confer protection for no more than a few years. Every year,
the World Health Organization estimates which strains of
the virus are expected to circulate in the next year, allowing
production of vaccines that will provide a strong immunity
against the emerging strains. The vaccine is reformulated
once a year before the winter periods in the northern and
southern hemispheres.
Influenza viruses belong to the Orthomyxoviridae family.

Wild aquatic birds constitute the natural host reservoir for a
large variety of influenza A viruses, but some influenza viruses
infect humans, pigs and other mammals. The type A viruses
are the most virulent among the three influenza types. The
influenza A viruses can be divided into different serotypes,
according to the antibody response against their HAs
(H1 -- H18) and the NA (N1 to N10), but only H1 -- H3
and N1 and N2 are commonly found in humans (H2 was
present only from 1957 to 1968). Influenza B almost exclu-
sively infects humans and thus pandemics of influenza B do
not occur. Influenza C viruses infect humans, dogs and pigs.
Less common than other types, it only causes mild disease
in children.
The influenza A genome contains eight RNA segments,

each segment encoding one to two main proteins.
Whereas three segments encode the HA, the NA and the

matrix 2 (M2) proteins, the five others encode the replicative
machinery and proteins controlling the host response and the
traffic of the genome in the cell compartments. Entry of the
particles into the cell is mediated by endocytosis, and fusion
between the viral and the endosomal membranes occurs after
endosome acidification. Using microtubule and actin-
associated motors, viral ribonucleoproteins (RNPs) migrate
toward the nucleus to ensure the primary transcription
(Figure 1). The genomic segments are of negative sense, mean-
ing that they are of opposite sense than mRNA, and transcrip-
tion is the first activity of the virus after entry in the host cell.
Transcription and replication are ensured by the viral RNA-
dependent RNA-polymerase (RdRp), a multiprotein complex
composed of three subunits, PA, PB1 and PB2 which inter-
acts with both nucleoprotein (NP) and the viral genome [2,3].
While replication and transcription occur in the nucleus of
the cell, several viral proteins (NEP and M1) are associated
with the export of the RNP complexes from the nucleus
toward the viral budding site in rafts at the apical side of the
plasma membrane. The non-structural protein 1 (NS1) has
multiple roles during the virus cycle, the best recognized
role being its ability to downregulate the IFN induction in
the infected cell.

What are the targets for available antivirals and their role in
the viral cycle? Current antiviral drugs used against influenza
are inhibitors of detachment of the viral particle from the
host cell, NA inhibitors (oseltamivir and zanamivir) and
M2 channel protein inhibitors (adamantane derivatives) [4,5].
Their efficiency remains questionable: American H3N2
circulating strains in 2005 were generally resistant to amanta-
dine and rimantadine.

In this review, focus is made on viral protein domains, their
associated activity and their inhibition by small molecules
defined by a structure-based design with a special emphasis
on the RNP complex and its inhibitors. Influenza antivirals
were previously actively reviewed [1,2,4-7]. Nucleic acid-based
and vaccine approaches are out of the scope of this review.
We will first detail the external proteins HA, NA and
M2 and their new inhibitors.

2. Novel antiviral candidates targeting
external viral proteins

2.1 Hemagglutinin
The HA is a surface glycoprotein of influenza virus required
for viral particle entry. HA is a homotrimeric protein formed
by a globular head positioned over a stem domain. Each HA
monomer contains two disulfide-linked polypeptides
HA1 and HA2 that are derived from the proteolytic cleavage
of a precursor by host protease. HA binds to sialic acid recep-
tors of the host cell (Figure 1 and Table 1). Seasonal vaccines
provide neutralizing antibodies targeting the highly variable
region of HA. Carbohydrate-binding agents that recognize
glycosylation sites on HA prevent virus adsorption to the
cell [8]. Besides its activity as binding to sialic acid receptors,

Article highlights.

. There is a need for new antivirals to protect the
populations against resistant viral strains to approved
antivirals targeting neuraminidase and matrix 2 (M2).

. To overcome resistance, new antiviral candidates
targeting the conserved stem region of hemagglutinin
and inhibiting its pH-induced structural change are
being developed. New structure-based inhibitors of NA
and active inhibitors against resistant strains of
M2 were reported.

. Within the ribonucleoprotein, inhibitors of the
nucleoprotein, modulating its oligomerization and its
RNA binding, were developed. Two functional domains
of the polymerase were targeted by new antiviral
candidates: the PA endonuclease and the PB2
cap-binding domain. PB1--PA interactions were disrupted
by novel inhibitors.

. Non-structural protein 1 is a conserved protein that is
targeted both at the level of its RNA-binding ability and
probably at its effector domain through its interface
with cellular factors.

. The new structures of the polymerase hold a lot of
possibility for developing new antivirals. Antiviral
combinations may probably be the necessary solution
for blocking resistance to antivirals.

This box summarizes key points contained in the article.
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HA, together with the M2 proton channel, participates in
virus entry by endocytosis through fusion of virus and cell
membranes and release of the viral RNP complexes from the
acidified endocytic particle. This activity is inhibited by a
variety of small molecules that prevent the fusogenic activity
by blocking the irreversible conformational change of HA
induced by acidic pH. The drug arbidol is representative of
such a class of antivirals which inhibits HA-mediated mem-
brane fusion by increasing the stability of the HA to low
pH [9,10]. The advantage of arbidol also resides in its broad
spectrum activity not only against influenza A and B but also
against other viruses such as respiratory syncytial virus (RSV),
parainfluenza virus, Coxsackievirus, rhinovirus, hepatitis B

virus and hepatitis C virus. This broad spectrum activity may
also be enhanced by arbidol interactions with additional targets
as phospholipids of the cell membrane. Binding of small mol-
ecules as t-butyl benzene-1,4 diol at the interface between two
HA monomers likely inhibit HA by avoiding structural
changes required for membrane fusion [11]. Structural optimi-
zation of salicylamide-based HA inhibitor led to the design
of benzenesulfonamide derivatives that stabilized the pre-
fusion of HA structure [12]. Inhibition of conserved sites in
the stem region of HA holds promise for broad spectrum
protective effects [13]. Small-molecule inhibitors derived from
aminoalkyl phenol or sulfonamide scaffolds targeting pockets
in the stem region were recently reported [14].

NA inhibitors:
Oseltamivir,
Zanamivir,
Peramivir,
Peramivir,
Lanamivir

Virus detachment
budding

Assembly
packaging

Translation

Transcription
cap-snatching

Replication

RNP
release

Nuclear import
RNP

Endosome

Fusion
uncoating

Internalization
endocytosis

Attachment

Influenza virus

HA inhibitors
targeting sialic

acid binding sites:
N-acetyl neuraminic

acid

M2 ion channel
inhibitors:

amantadine
rimantadine

mRNA

Nucleus

NS1 PB1-F2 Host response
modulation

PA PB1 PB2

NP M1 NEP

HA NA M2 M1

Figure 1. Illustration showing influenza virus’ lifecycle: influenza viral particle attaches to the host cell (represented by a
black rectangle) by binding to sialic acid receptors mediated by the hemagglutinin Internalization of the particle is mediated
by endocytosis. Following internalization, endosomal acidification initiates conformational changes in HA, driving fusion of
virus and cell membranes. The rupture of the membrane of the endosome releases the viral RNP complexes of each of the
eight segments of genomic RNA, whereas acidification of the virion interior by the M2 proton channel drives the dissociation
of M1 from the viral genome. Nuclear import of the RNP mediated by the cellular transport machinery allows transcription to
begin in the nucleus involving a specific cap-snatching mechanism and the formation of a capped messenger RNA. The mRNAs
are exported to the cytoplasm and translated into proteins by cellular ribosomes. Newly translated proteins are transported to
the nucleus (PA, PB1, PB2, NP, M1, NEP). Formation of new progeny requires replication to take place in the nucleus by the
RNP followed by translation. Progeny viral RNP are then exported to the cytoplasm with the assistance of M1 and NEP and
assembly of novel viral particles containing HA, NA, M2 and M1 and their budding at the cell surface that requires the NA to
detach. The figures also shows the presently available antivirals targeting M2, NA or HA, the latter being targeted by vaccines.
HA: Hemagglutinin; M1: Matrix protein 1; M2: Matrix 2; NA: Neuraminidase; NEP: Nuclear export protein; RNP:
Ribonucleoprotein.
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2.2 Neuraminidase
The NA is a second glycoprotein expressed at the surface of
influenza virus which releases the newly formed viral particle
by cleaving the terminal sialic acid from HA receptors on
cell membranes (Figure 1 and Table 1). NA is a tetrameric
enzyme. NA forms two phylogenetic groups with distinctive
structural features in the active site, including a protein loop
(150-loop) in an open conformation in group 1 (N1, N4,
N5 and N8), whereas in group 2 NAs (N2, N3, N6,
N7 and N9) this loop is in a closed conformation. The cur-
rently used antivirals are oseltamivir (Tamiflu) and zanamivir
(Relenza) that target the active site of NA and represent suc-
cessful early structure-based designed compounds
(Table 1) [15,16]. Zanamivir has a poor solubility and is admin-
istered as aerosol, whereas Tamiflu is formulated as a prodrug.
Although zanamivir is well tolerated and has few side effects,
the route of administration of this drug can represent a prob-
lem especially for children and elderly patients who might not
be able to inhale zanamivir suitably [3]. To circumvent these
issues, an intravenous formulation of zanamivir has been
developed and is currently under Phase III clinical trial. Pera-
mivir is a cyclopentane compound, approved in Japan for use
in adult and pediatric patients with influenza A virus and
influenza B virus infection [17]; in addition, it is currently
undergoing clinical trials in the US and in other countries.
This compound is administered only as an intravenous for-
mulation, due to its very low bioavailability. Laninamivir tar-
gets more specifically class 2 NA and is potent, in particular,
against the 2009 pandemic strain [18]. The octanoate prodrug
of laninamivir has binding and inhibitory properties that
make it like Tamiflu (Table 1). Many mutations of NA have
been identified in patients, of which some confer resistance
to treatment [1]. In 2009, the swine flu pandemic (p09N1)
was sensitive to oseltamivir but resistance develops in this
strain as observed earlier in the H274Y H1N1-resistant
strains.
Based on crystallographic structures, novel anti-NA com-

pounds have been developed, some of them being very tight
binders as AV5080, whereas others act as ‘suicide inhibitors’
forming a covalent bond with NA active site [19-21]. Exploita-
tion of the cavity formed by the open-loop conformation (the
150-cavity) led to the development of novel sialic acid deriv-
atives, such as oseltamivir derivatives modified with a spirolac-
tam ring or carrying various side-chains [22-24]. In the
C4 position, the OH group of sialic acid was replaced by a
guanidinium in peramivir, zanamivir and laninamivir and
by an amine in oseltamivir and AV580. The amide group in
the C5 position and carboxylic acid in the second position
are shared by most compounds and sialic acid, the latter being
recognized by an arginine (R292). Conjugates of polymers
(biodegradable polyglutamine) with multiple copies of zana-
mivir interfered more efficiently than zanamivir with intracel-
lular trafficking of the endocytosed viruses and the subsequent
virus--endosome fusion [25]. Their advantage resides in a

higher antiviral activity by 1000- to 10,000-folds and
in vivo longer-lasting effects than the monomeric drug.

2.3 Matrix 2
M2 is a homotetramer composed of four parallel transmem-
brane a-helices positioned across the viral lipid envelope,
forming the ion channel where proton conduction takes place.
In response to low pH in the endosome, M2 creates a proton
flux from the endosome to the virion core (Figure 1). M2 is
also responsible for the delayed acidification of the Golgi
before viral assembly to insure correct structures of the other
viral proteins. The N-terminal end of the channel is gated
by the V27 residue, and the channel width (pore) is controlled
by four additional pore-facing residues such as A30,
S31 (N31 in resistant strains), G34, H37 and W41 that con-
stitute the functional core of the channel (Figure 2). H37 is the
pH sensor, whereas W41 acts as a C-terminal gate and is adja-
cent to amphipathic helices stabilizing the channel. The above
pore-controlling residues constitute the high-affinity binding
site for amantadine and rimantadine that inhibit proton con-
duction by pore occlusion [26-28]. Adamantanes were the first
anti-influenza drugs approved, although presenting CNS
side effects. Resistance to adamantanes as adamantine is the
main problem of most present circulating or threatening
influenza virus, including avian H5N1. The hydrophobic
adamantane moiety interacts with the channel gate V27, while
their positively charged group interacts with H37. The chan-
nel adapts to saturated polycyclic compounds of various
sizes [29] and amantadine substituted with aromatic side chain
as thienyl group in M2WJ332 [3] were potent inhibitors of
drug-resistant S31N mutant of M2 (Figure 2 and Table 1).

Resistance to antiviral treatment addressed above led to the
targeting of the RNP complex, the viral minimal machinery
for all transcription and replication [2,30]. Because these pro-
teins are usually less prone to mutations, and some of these
proteins as the NP are unique to virus and have no equivalent
in the host, targeting the RNP by small molecules could tend
to an ultimate goal in antiviral treatment: i) to be broad spec-
trum and effective against various strains and ii) to generate
minimal escape from treatment and if possible be effective
on existing resistant strains.

3. Structural basis for small-molecules
inhibition of individual proteins of the RNP

3.1 Nucleoprotein
NP is a highly conserved protein that binds to and protects
the viral genomic or anti-genomic RNA [30-32]. NP has a
structural chaperone-like role in the assembly of the RNP;
however, much of the structural information on how RNA
binds to NP is still incomplete, and the assembly of NP-
RNA oligomers into RNP mainly relies on exciting cryo-
electron microscopy (EM) studies at 20 Å resolution [33-35].
The reconstruction showed a double helical stem region of
NP oligomers on viral single-stranded RNA in which NP

A. Monod et al.
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mediated the assembly of the two strands. Interactions of
NP with the polymerase subunits through other types of
interactions were also observed, consistent with NP--PB2
interactions characterized by other methods [36-38]. How NP
discriminates these viral RNAs (viral RNA of negative polarity
[vRNA] and complementary RNA intermediate of positive
polarity [cRNA]) from viral mRNA and cellular RNAs is still
unknown [39]. NP is hypothesized to contribute to switching
between transcription and replication that take place in the
nucleus of infected cells; the exact role of NP in these pro-
cesses is an active field of research [40-42]. NP binds single-
stranded viral RNA as oligomers that are essential for RNP
complex activity on long templates [43]. NP self-association
is mediated by a flexible tail-loop that protrudes into a pocket
in adjacent subunit on trimer formation; a dimeric interface
was also defined [44-46]. The tail loop position (residues
402 -- 428 of NP) differs within the influenza A H1N1 and
H5N1 NP trimer and influenza B tetramer [47], thus suggest-
ing the that tail loop may support different oligomers [48,49].
NP oligomerization is a dynamic process and NP can also
adopt a monomeric structure [30], which is stabilized by phos-
phorylation and possibly through the interaction with other
(cellular) proteins as importin a5 [30,50-53]. NP structure is
characterized by a head and body domain that are separated
by a highly basic groove involved in RNA-binding. Figure 3

and Table 2 recapitulate the present antiviral candidates target-
ing NP for which structure is known or estimated by molecu-
lar dynamic simulations and confirmed by experimental
evidence. The ability of NP to self-associate and form NP-
RNA oligomers required for RNP function was targeted by

two opposite approaches (Figure 3A). In the first one, nucleo-
zin stabilized the interface between NP monomers inducing
the formation of nonfunctional higher order oligomers that
modified the RNP trafficking to the nucleus (Figure 3A)
[54-56]. Nucleozin was the first molecule identified by high-
throughput screening using the nuclear transport of NP as
readout. The nucleozin-binding sites were identified by struc-
tural and modeling studies and were confirmed by escape
mutations to nucleozin analog treatment at the interface
between two NP molecules in a hydrophobic pocket formed
by Y289, N309 and Y52 and Y313 (Figure 3C) [57]. Nucleozin
and its derivatives bear the arylpiperazine scaffold associated
with a relatively low solubility and yet their pharmacokinetics
was not reported. These compounds are presently the most
potent compounds targeting NP. Shen et al. used an opposite
approach that avoided oligomer formation by blocking the
insertion of the oligomerization loop targeting the
E339-R416 salt bridge with peptides or compound 3 bearing
a thiazole carboxamide motif (Figure 3A, center
and Table 2) [58]. Competing with NP binding to RNA was
another approach that identified naproxen that bound in a
small hydrophobic site formed by Y148, F489 and R361 in
the RNA-binding groove of NP based on molecular modeling
and confirmed by surface plasmon resonance (Figure 3A, right
and 3B) [59]. Naproxen combined an antiviral activity with an
anti-inflammatory effect; being also a generic drug inhibiting
the inducible COX, naproxen is an approved drug (anti-COX
activity) and as such has favorable solubility and stability
properties. Naproxen and its designed derivatives were shown
to stabilize monomeric NP by modifying the cavity in which
the oligomerization loop inserts, close to their binding
site [60].

Within the context of the RNP, the RdRp, composed by
the three subunits PA, PB1 and PB2, mediates replication
and transcription of the segmented viral RNA. The transcrip-
tion process involves a unique cap-snatching mechanism in
which the RdRp binds to host cellular pre-mRNAs via their
5¢-cap structure and then cleaves them to generate capped oli-
gonucleotides, which are used as primers to initiate the tran-
scription of viral mRNAs. Owing to the cap, viral mRNAs
are translated into proteins by the cell machinery. The cap-
snatching mechanism is an essential and conserved process
in all members of the Orthomyxoviridae family, including
influenza A, B and C viruses. Because the host cell has no
analogous activity, cap-snatching inhibitors could be specific
against all influenza subtypes and strains. Cap-snatching pro-
cesses can be inhibited by targeting either the PB2 cap-
binding or PA endonuclease domains. Influenza polymerase
domains such as PA endonuclease [61,62], PA C-terminal
domain associated with PB1 N-terminal peptide [63,64], PB1
C-terminal associated with PB2 N-terminal [65], PB2 Cap-
binding domain [66] as well large parts of PB2 C-terminal
[67] were solved and these structures provided the basis for
structure-based design of specific inhibitors as detailed below.
During the course of writing this review, the structures of the

1 97

19

49

V27

N31

H37

W41

Figure 2. Illustration showing part of the M2 proton channel
constituted by the assembly of four parallel transmembrane
a-helices across the viral coat. The core of the channel
involves V27 as the gate to the channel, and important
residues N31, H37 and W41 are represented. The channel
lumen is blocked by the inhibitor M2-WJ332 that is active
against the resistant S31N protein [3,29].
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whole polymerase of influenza A and B were published [68,69].
Figure 4 shows the overall structure of Influenza A polymerase;
the previously solved domains of PA endonuclease (green)
and PB2 Cap-binding (orange) with bound inhibitors are
highlighted.

3.2 PB2 cap-binding
Transcription by the cap-snatching mechanism requires that
host-cell pre-mRNAs are bound via their 5¢-cap structure to
the PB2 subunit. Thus, the PB2 cap-binding site is a potential
target for new drugs to inhibit viral replication. The X-ray
structure of the cap-binding site with bound 7-methylguano-
sine triphosphate (m7GTP) has been obtained [66] and
revealed that the m7GTP is sandwiched between two aromatic
residues (Phe404 and His357), forming strong :--stacking
interactions. The guanine base is also recognized by hydrogen
bonds to key PB2 residues (Lys376 and Glu361) and several
residues are involved in interactions with phosphate groups.
Docking studies using the structure of the PB2 cap-binding
domain suggested that different 7-methylguanine derivatives
are good candidates [70]. Crystal structures of cap-binding
domain--inhibitor complexes have been obtained with three
active m7GTP derivatives and confirmed a unique binding
mode of the m7GTP scaffold in the PB2 recognition site for
these compounds and the m7GTP [70]. More recently, a series

of azaindole derivatives targeting PB2 has been identified [71].
The X-ray crystal structure of a pyrimidine azaindole deriva-
tive denoted VX787 (described in Table 2) bound to
PB2 [71] confirmed that VX787 occupies the m7GTP-binding
site where the azaindole ring makes interactions with the key
residues, Lys376 and Glu361, as well as stacking of the three
aromatic rings of VX787 between the side chains of His357,
Phe323 Phe404 and Phe325 (Figure 4, orange inset). Orally
bioavailable, this compound shows a strong potency for a
large number of influenza A strains, including pandemic
2009 H1N1 and avian H5N1 flu strains in a mouse influenza
model. VX787 is the one of the two compounds targeting the
polymerase actually under clinical trial. The other compound
is T705, a ribonucleotide analog (6-fluoro-3-hydroxy-2-pyra-
zinecarboxamide) also known as favipiravir that inhibits many
viral RdRps, thus being effective against a variety of
viruses [72].

3.3 PA endonuclease
The endonuclease activity necessary for the cleavage of the
host cellular pre-mRNAs is carried out by the N-terminal
domain of PA subunit (Nter-PA, ~ 25 kDa, residues
1 -- 196). The structure of Nter-PA has been solved in several
crystal forms with (or without) various ligands [61,62,73-79].
Two years after the first structure of the PA catalytic domain

RNA

NP

499

F489

Q149

Y148

Y289

N309

Y52

Y313
R355

R361

201

A.

B. C.

Figure 3. Illustration showing inhibitors of the nucleoprotein NP: two opposite strategies have been developed for
modulating NP oligomerization loop as explained by the cartoon shown in panel (A). NP is found in various assemblies with
and without single-stranded RNA that may interconvert depending on the conditions. Attempts to decrease NP self-
association through binding to the oligomerization [58] (panel A, center) or to impede RNA binding to the binding groove of
monomeric NP (panel (A), right and yellow naproxen in panel (B) [59,60] is presented. The nucleozin derivative, shown in
purple, stabilizes the interface between two adjacent NP monomers and favors nonfunctional oligomers of NP (panel (A), left
and panel (C) the residues of the two NP are shown in cyan and blue) [55,57].
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was solved [61,62], two laboratories described high-resolution
X-ray cocrystal structures of PA endonuclease domain with a
series of specific compounds known or predicted to block
the endonuclease activity [74,75]. This domain presents a high
conservation among influenza A, B and C subtypes and
identical residues are found in particular in the metal-binding
residues His41, Glu80, Asp108, Glu119 and the catalytic
residue Lys134. The cocrystal structure of Nter-PA with the
well-known inhibitor 2,4 dioxo-4-phenylbutanoic acid
(Table 2) [80] have been obtained by the two groups. Further-
more, whereas Dubois et al. showed crystal structures with
different compounds like pyrimidine and hydroxyquinoline
derivatives (Table 2), Kowalinski et al. characterized crystal
structures with diketo compounds and a green tea catechin
(Figure 4). All these inhibitors coordinate the two-metal endo-
nuclease active site and engage the active site residues (Figure 4,
green inset). The structures showed a structure--activity rela-
tionship of several known influenza inhibitors, opening the
way for drug design optimization. In particular, residues
away from the two-metal center may increase potency and
new binding pockets bearing aromatic residues may deserve

further investigation. Additionally, the large water molecule
network found in the structures may be targeted by inhibitors
for an entropic gain while keeping the metal center recogni-
tion moiety. Recently, hydroxypyridine derivative has been
identified as a bimetal chelating ligand at the endonuclease
active site through an X-ray crystallographic screening cam-
paign of fragments library [73]. Thus, two new series of endo-
nuclease inhibitors hydroxypyridine and hydroxyquoline
derivatives have been reported [76,78] as well as their aza
analogs [77].

3.4 Targeting PA-peptide PB1 interface
Efficient assembly of the influenza virus heterotrimeric RdRp
is critical for virus replication and pathogenicity. Therefore,
interfering with the assembly of the RdRp complex could be
a way to fight against influenza infection. A large library of
drugs, in particular benzofurazan derivatives, was found to
act by inhibiting the viral RdRp complex through disruption
of the complex formed by PA and PB1 subunits [81-84]. Since
the association of these subunits is essential for replication [85-

88] and the sequence of this domain is highly conserved [89,90],

PA
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Figure 4. Illustration showing the binding of endonuclease and cap-binding inhibitors. The recent full heterotrimeric RNA-
polymerase X-ray structure is shown as a reference ( [68] PDB code: 4WSB), PA is represented in green, PB1 in yellow and PB2 in
orange. (A) Bound green tea catechin to PA endonuclease active site is shown. Divalent cations (Mn2+ ions, purple spheres)
and key active site residues that interact with the compound or are close to it are represented. Putative hydrogen bonds
(< 3.2 Aº ) and additional possible interactions (< 3.6 Aº ) are shown as green dotted lines. Green inset: green tea catechin
coordinates the two manganese ions and the active site residues are engaged in the interaction ( [74] PDB code: 4AWM). (B)
Bound VX787 to PB2 cap-binding domain is shown. Orange inset: the azaindole ring system is shown interacting with the key
protein residues K376 and E361 (green dotted lines). The three aromatic rings are stacked between the side chains of H357,
F404, F323 and F325. The carboxylic group of the ligand makes two water-mediated interactions (red spheres and green
dotted lines) with the nitrogen of H357 and K339 ([71] PDB code: 4P1U).
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this interaction represents an attractive target for inhibitors.
Due to the crystallographic structures of the PA--peptide
PB1 complex [63,64] a short peptide derived from the C termi-
nus of PB1 has been shown to disrupt the interaction between
the C-terminal part of PB1 and the N-terminal part of
PB2 and to inhibit viral polymerase activity and replica-
tion [91]. Docking studies were performed to explore the struc-
tural features responsible for the biological activity of
benzofurazan derivatives (Table 2) [83,84]. Docking suggested
that their most reliable binding mode involves a :--stacking
interactions with PA Trp706 of the benzofurazan scaffold, a
hydrogen bond with Gln408 and electrostatic interactions
with PA Lys643.
Last, most of the compounds targeting the RNP are still in

a preclinical stage in terms of therapeutics for humans and
many of drug-related aspects still require adequate studies.
Likewise, no drug targeting NS1 as described below has
been approved and the following are mostly preclinical
studies.

4. Targeting the non-structural protein 1

NS1 is a highly conserved multifunctional protein.
NS1 protects the virus against the antiviral responses of the
host mediated by IFN-a/b pathways in a way that seems to
be strain-specific [92]. NS1 antagonizes IFN by a number of
ways, as binding to double-stranded (ds) viral RNA, thus pro-
tecting it from cellular factors, by blocking retinoic acid
inducible gene–I and NF-kB activation. NS1 is active as a
dimer and is divided into two functional domains: an
N-terminal domain that binds dsRNA (RNA-binding
domain [RBD]) and a C-terminal effector domain that binds
multiple cellular proteins. The structures of the isolated RBD
alone and with RNA bound provided the structural basis for
small molecule inhibition of the RNA-protein association or
destabilization of the homodimer interface required for
dsRNA binding [93]. In particular, a deep cavity was identified
in the conserved tracks of basic and hydrophilic residues com-
plementary to the phosphate backbone of A-form dsRNA of
NS1 as a site for small molecule binding as a polyphenol
and quinoxaline derivatives (Table 2) [94,95]. The recent struc-
ture of the C-terminal domain of NS1 in complex with a
chromatin-associated factor may open a new way to inhibit
NS1 through associated cellular factor--NS1 interface(s) [96].

5. Conclusion

Many of the antiviral candidates described in this review still
require preclinical and clinical studies to assess their safety,
toxicity and efficacy profiles required for the drug to be used
on humans. The goal will be to treat in priority more suscep-
tible populations as immunocompromised, young infants and
elderly people in the search of antivirals directed against
influenza A virus and probably adapt to their specific immune
conditions. This goal is, nevertheless, complicated to reach,

owing to the difficulties of enrolling patients in appropriate
clinical studies, complicated by comorbidities and placebo-
controlled conditions which may be ethically unacceptable.
FDA approval is thus challenging in these conditions. Future
perspectives for new classes of antivirals targeting the RNP
complex are very promising but these await pharmacokinetics
and drug-related studies to be performed.

6. Expert opinion

6.1 Key findings and weaknesses in the research

done so far
Monotherapy with antivirals holds a higher probability of
resistance to treatment, in particular to those antivirals target-
ing external proteins with intrinsic relatively high mutation
rate as NA, M2 and the variable region of HA.

To date, the antiviral candidates targeting NA are by far the
most developed and for some of them extremely potent. The
structure of the sialic acids derivatives in complex with the
enzyme active site revealed an empty negatively charged
pocket in the region of the C4 position on the sugar ring.
The C4-OH was substituted by an amino or guanidinium
group (oseltamivir, zanamivir, laninamivir) or by a bulky
hydrophobic substituent (AV580 [19], A, B and C; Table 1).
Substitution at other position(s) may help improve solubility
and potency [23,24].

Novel antiviral candidates that target the RNP hold a great
potential, both in terms of target conservation and of unique-
ness/specificity compared to viral entry inhibitors. In terms of
specificity, targeting the PB2 cap-binding domain of
influenza virus may not differ so much from targeting cellular
factors involved in cap-binding in the host cell. To date,
inhibitors of the capping machinery are used to reverse che-
moresistance since deregulation of cap-dependent translation
is associated with cancer initiation [97]. Nevertheless, quite
potent inhibitors of PB2 cap-binding were recently developed
with few reported interactions with cellular partners [70,71].
The endonuclease domain represents a specific target with
an excellent druggable site [73-78,83,84]. Moreover, the PA--PB1
interaction represents an attractive target for inhibitors since
the association of PA and PB1 subunits is essential for replica-
tion [85-88], and the sequence of these domains is highly con-
served [89,90]. The NP is also an excellent target for antivirals
that was exploited through modulation of its self-association
and its RNA-binding function [31,44,45,53,57,59,60,98].

6.2 Potential of this research and exciting area of

research
The potential for disruption of specific protein--protein inter-
actions within the RNP holds a lot of promises for the design
of new antivirals. The field benefits from a breakthrough with
the exciting crystal structures of influenza A and B polymerase
with bound viral RNA promoter [68,69] that now opens brand
new perspectives for the design of new antivirals perturbing
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the polymerase assembly. Additionally, RNA-binding sites on
the polymerase could represent newly defined targets probably
through a better mechanistic understanding of the conserved
RNA 3¢-end recognition.

6.3 Antiviral combinations as a promising area of

research
Multiple combinations as successfully exemplified by the
tri-therapies developed against HIV may apply to severe
influenza cases [1]. At present, combination therapies using
dual NA antivirals did not reduce resistance. In contrast, pre-
clinical studies showed additive effects of NA inhibitors with
antiviral drugs with different mechanisms of action [1]. Future
drug combinations targeting the viral RNP may involve
compounds that inhibit more than one interaction type
(protein--protein, protein--RNA). Alternatively, antiviral com-
bination that target both a viral protein and a cellular factor
involved in the host response to Influenza virus, holds prom-
ises for improved results for the host, human or animal [1,2].
The targeted host protein could be a factor required for tran-
scription/replication or factors involved in chaperoning or
transport of the RNP or its constituents. Moreover, combina-
tion therapies may reduce doses, thereby reducing the side
effects and importantly, resistance against cellular factor are
not observed.

Exploiting drug promiscuity (drug binding to more than
one target) may be an advantage in severe cases of influenza [1].
A ‘two-in-one’ combination was recently suggested for
naproxen, an approved anti-inflammatory drug and also
inhibits influenza A NP [59].

6.4 How can it facilitate the discovery of new

compounds or reduce attrition rates?
Improving our understanding of the structural biology of the
virus and the underlying mechanisms of the targeted proteins
in the viral lifecycle would be extremely important in the near

future. As for any drug development, overcoming toxicity is
an issue requiring careful and relevant assays. Improving solu-
bility and cellular targeting to the proper cellular compart-
ment may decrease side effects.

6.5 Alternative technologies/approaches for

understanding structural and mechanistic issues on

influenza
Mechanistic assembly and function of multiprotein com-
plexes may now benefit from high-resolution cryo-EM detec-
tors. It is clear that function of the polymerase involves
coordinated conformational changes and appropriate tools
monitoring these movements in real time as time-resolved
fluorescence, force measurements using single molecule tech-
niques will flourish and greatly add to our understanding on
influenza virus.
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Influenza virus polymerase initiates the biosynthesis of its own mRNAs with capped 10- to 13-nucleotide
fragments cleaved from cellular (pre-)mRNAs. Two activities are required for this cap-snatching activity:
specific binding of the cap structure and an endonuclease activity. Recent work has shown that the cap-binding
site is situated in the central part of the PB2 subunit and that the endonuclease activity is situated in the
N-terminal domain of the PA subunit (PA-Nter). The influenza endonuclease is a member of the PD-(D/E)XK
family of nucleases that use divalent metal ions for nucleic acid cleavage. Here we analyze the metal binding
and endonuclease activities of eight PA-Nter single-point mutants. We show by calorimetry that the wild-type
active site binds two Mn2! ions and has a 500-fold higher affinity for manganese than for magnesium ions. The
endonuclease activity of the isolated mutant domains are compared with the cap-dependent transcription
activities of identical mutations in trimeric recombinant polymerases previously described by other groups.
Mutations that inactivate the endonuclease activity in the isolated PA-Nter knock out the transcription but not
replication activity in the recombinant polymerase. We confirm the importance of a number of active-site
residues and identify some residues that may be involved in the positioning of the RNA substrate in the active
site. Our results validate the use of the isolated endonuclease domain in a drug-design process for new
anti-influenza virus compounds.

Influenza virus is a segmented negative-strand RNA virus
that replicates in the nucleus of infected cells. Its eight viral
RNA (vRNA) segments are covered by the viral nucleoprotein
(NP) with a stoichiometry of 24 nucleotides per nucleoprotein
protomer (25). The 3! and 5! ends of the vRNA are bound to
the RNA-dependent RNA polymerase, a heterotrimeric com-
plex composed of PB1, PB2, and PA. The complex between
vRNA, NP, and the polymerase is called a ribonucleoprotein
particle (RNP). Both ends of the viral RNA are necessary for
polymerase activity, and together they form the promoter for
transcription (12, 18, 33). Influenza virus RNA polymerase
differs from the polymerases of the nonsegmented negative-
strand RNA viruses, in that it does not carry the enzymatic
functions required for the 5! capping of its own mRNAs (gua-
nylyl- and methyltransferase activities). Instead, influenza virus
mRNAs are capped by a unique cap-snatching mechanism
(27). The polymerase binds to cellular pre-mRNAs via their
cap structure and then cleaves them to generate capped 10- to
13-residue oligonucleotides, which are used as primers to ini-
tiate the transcription of viral mRNAs. The viral mRNAs are
terminated by a 3!-end poly(A) sequence generated by the
stuttering of the RNA polymerase at an oligo(U) motif located
at the 5! end of the template (28, 29). The endonuclease
activity for cleavage of the host mRNAs is not active in recom-
binant trimeric polymerase in the absence of vRNA. For viral
transcription, the binding of the 5! end of the genomic vRNA

is necessary to stimulate the cap binding (4). The binding of
both ends of the vRNA is also required to stimulate the
endonuclease activity (12), and direct binding of annealed 3!
and 5! vRNA ends stimulates cap binding and endonuclease
activity even more strongly (22). These results suggest that
significant conformational changes may take place in the RNA
polymerase complex upon binding of the vRNA. When the three-
dimensional (3D) electron microscopy model of the polymerase
on a recombinant RNP was compared with that of free recom-
binant polymerase, structural differences were indeed observed
(1, 5, 35).

The cap-binding site was known to be located within the PB2
subunit (23) but was only recently shown by structural analysis
to reside in an independently folding domain of the PB2 sub-
unit, between amino acids 320 and 483 (10). This isolated
domain binds to cap analogues in the absence of other parts of
the RNA polymerase and of vRNA. The position of the endo-
nuclease site was also controversial but has recently been
proven to reside in an also independently folding amino-ter-
minal domain of the PA subunit (6, 37). The crystal structure
of the first 196 residues of PA (PA-Nter) (Fig. 1A) shows
structural homology with nucleases of the PD-(D/E)XK super-
family, which contains bacterial restriction enzymes such as
Escherichia coli EcoRV and Pyrococcus furiosus Holiday junc-
tion resolvase. This family of enzymes binds to one or two
divalent metal ions, in particular, Mg2" or Mn2". One of the
ions is clearly involved in catalysis, whereas the role of the
second one is not clearly established and may have a modula-
tory role (inhibition or stimulation, depending on the concen-
tration and the nature of the ion) (17, 26). PA-Nter shows
endonuclease activity in the absence of the rest of the poly-
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merase and has the same metal ion dependence as the poly-
merase in intact RNPs. The domain cleaves most efficiently
with manganese ions, followed by cobalt ions (6, 7). In the
crystal structure of PA-Nter determined by Dias et al., two
divalent cation sites were identified, and both are occupied by
manganese (6); metal site 1 (M1) is liganded by Glu80,
Asp108, and Glu119 (through a water molecule); and metal
site 2 (M2) is liganded by His41, Asp108, Glu119, and the
carbonyl oxygen of Ile120 (Fig. 1A and B). On the other hand,
Yuan and coworkers crystallized PA-Nter in the presence of
only MgCl2 and observed a single Mg2! ion in site M1 (37).
The active site also contains Lys134, which could correspond to
the catalytic lysine of the PD-(D/E)XK motif (6, 37, 38).

Both the isolated cap-binding domain of PB2 and the endo-
nuclease domain of PA have significant advantages compared
to intact viral RNPs for inhibitor screening and structure-based
antiviral drug optimization. However, it needs to be ascer-
tained that the isolated domains have the same function and
activity as the domains inside the intact trimeric RNA poly-
merase. A mutational analysis of the cap-binding domain con-
firmed that mutations in the isolated domain have the same
effects as those in the context of the intact polymerase (10).
Here we present the results of a mutational analysis of the
active site of the isolated endonuclease domain. The mutations
include the active-site residues involved in metal binding
(His41, Glu80, Asp108, Glu119), the putative catalytic Lys134
residue, and three strictly conserved residues located on the
rim surrounding the active site: Arg84, Tyr130, and Lys137
(Fig. 1A). The effects of these mutations introduced in the
isolated domain on endonuclease activity are compared to
those already tested in the intact recombinant polymerase (13,
37). We also tested the affinities of Mn2! and Mg2! ions for
the wild-type (wt) and mutant endonuclease domains and cor-
relate metal binding with enzymatic activity.

MATERIALS AND METHODS

Mutants. The clones containing the mutated DNA coding for PA-Nter (resi-
dues 1 to 209), cloned in pETM11, were obtained from Geneart (Germany). The
clones code for a poly(His) sequence separated from the protein-coding se-
quence by a TEV cleavage site. The vectors were used to transform the E. coli
BL21(DE3) RIL CodonPlus strain (Stratagene). The mutant proteins were ex-

pressed in LB medium overnight at 15°C after induction with 0.1 mM isopropyl-
"-D-thiogalactopyranoside (IPTG). All PA-Nter mutants were expressed in the
soluble fraction of the bacterial cells and were purified by an immobilized metal
affinity column (IMAC). A second IMAC step was performed after cleavage by
the His-tagged TEV protease, followed by gel filtration on a Superdex 200
column (GE Healthcare). Finally, the protein was concentrated to 5 to 10
mg ! ml#1. For H41A and H41E, the yields were only about 5% of those ob-
tained for the other mutants. The elution profile during the final gel filtration
step showed the presence of aggregated material for these mutants.

Biophysical characterization. (i) Far-UV CD spectra. Far-UV circular dichro-
ism (CD) spectra were recorded with a 1-mm path length at 20°C on a Jasco
model J-810 CD spectropolarimeter equipped with a Peltier thermostat, as
described previously (6). The PA-Nter concentration was 10 $M in 10 mM
Tris-HCl, pH 7.0–10 mM NaCl.

(ii) Thermal shift assays. Thermal shift assays were performed with 10 $M
PA-Nter in 20 mM Tris-HCl, pH 7.0–100 mM NaCl and a 5% dilution of SYPRO
orange dye (Invitrogen), as described. The dye was excited at 490 nm, and the
emission light was recorded at 575 nm while the temperature was increased by
increments of 1°C per minute from 25 to 75°C. Control assays were carried out
in the absence of protein or dye to check that no fluorescence signal was
recorded. The experiments gave virtually identical results when they were per-
formed under the same conditions. The variation between experiments came
only from the estimation of the flexion point of the curve and was less than 0.5°C
in triplicate experiments. For this reason, the results shown in Fig. 2C do not
have error bars.

(iii) Isothermal titration calorimetry. Isothermal titration calorimetry (ITC)
experiments were performed using a high-precision VP-ITC system (Microcal
Inc., Northampton, MA). Proteins were first extensively dialyzed against the
titration buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl). All solutions were
filtered, degassed to avoid bubble formation, and equilibrated to the correspond-
ing temperature before each experiment. Protein solutions at about 60 $M in the
calorimetric cell were titrated with the appropriate metal (0.8 to 9 mM) dissolved
in dialysis buffer. Depending on the binding affinities, titrations were carried out
either by constant-volume injections (30 injections of 7.5 $l) or by increasing-
volume injections (27 injections from 4 to 20 $l) in order to better define the
titration curves. The heat evolved after each metal injection was obtained from
the integral of the calorimetric signal. The resulting binding isotherms were
analyzed by nonlinear least-squares fitting of the experimental data to models
corresponding to a single set of identical sites or corresponding to two sets of
independent sites. Analysis of the data was performed using the Microcal Origin
program (OriginLab Corporation, Northampton, MA).

Endonuclease assays. Endonuclease assays were carried out using an unstruc-
tured U-rich RNA probe of 51 nucleotides (6, 31) or a short panhandle RNA of
36 nucleotides comprising just the conserved 3& and 5& ends of the viral RNA with
a short linker (6). RNA cleavage was performed by incubating 13 $M PA-Nter
with various RNA substrates (all at 10 $M) at 37°C in a final volume of 50 $l.
The reaction buffer was 20 mM Tris-HCl, pH 8, 100 mM NaCl, and 10 mM
"-mercaptoethanol plus 1 mM MnCl2 or 1 mM MgCl2. Incubations were stopped
by addition of EGTA at a final concentration of 20 mM. The reaction products

FIG. 1. Active site of PA-Nter. (A) Ribbon diagram of the structure of influenza A/Victoria/3/1975 PA-Nter (Protein Data Bank accession
number 2W69) with ' helices in blue and " strands in yellow. The key active-site residues mutated in this study are indicated in pink, and the
manganese ions are in green. (B) Blowup of the active site of PA-Nter indicating the two metal binding sites and the metal binding ligands.
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were loaded on 8 M urea–15% polyacrylamide gels and stained with methylene
blue. The results of these assays were not quantified. The activities were esti-
mated from the disappearance of the band of the intact panhandle RNA after
incubation for 80 min and 6 h as !! for wt enzyme, ! for mutants like R84A
and Y130A that digested less than 50% of the substrate RNA after 80 min but
all of it after 6 h, " for mutants like K137A that still had a significant amount of
intact RNA after 6 h, and # for mutants like D108A, E119A, and K134A that
were inactive.

RESULTS

All PA-Nter mutants were expressed and purified, and all
mutants except the H41A mutant had yields comparable to the
yield of the wt. This mutant yielded only about 5% of that for
the wild type, and the elution profile of the final gel filtration
step showed the presence of aggregates. The folding of the

FIG. 2. Biophysical characterization of PA-Nter mutants. (A) Circular dichroism on wt PA-Nter and two of the eight mutants. CD spectra of
the wt, H41A, and E119A PA-Nters are in orange, blue, and green, respectively. (B) Thermal stabilization by MnCl2. Thermal shift assays on wt
and E119A PA-Nters were done in the presence (red and dark green, respectively) or absence (orange and green, respectively) of 0.5 mM MnCl2.
(C) Effects of metals and DPBA binding on the thermal stability. Thermal shift assays to test the metal ion stabilization were performed on wt
PA-Nter and the corresponding mutants in the presence (dark colors) and absence (light colors) of DPBA. The proteins were incubated with 0.1
mM MnCl2 (green) or 5 mM MgCl2 (violet) or without any metal (red). All experiments were repeated at least three times on different occasions
and with different protein preparations. The results were identical when the same experimental conditions were used.
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mutants was checked by circular dichroism. All mutants
showed a spectrum identical to that of the wt PA-Nter, as
shown in Fig. 2A only for the E119A mutant, except that the
H41A mutant showed little secondary structure (Fig. 2A).

Thermal stability. The thermal stability of the mutants was
tested by Thermofluor assays in which a hydrophobic fluoro-
phore has little affinity for native proteins but binds to dena-
tured proteins, leading to an increase of the fluorescence (9).
The apparent melting temperature (Tm) of denaturation can
be obtained from the temperature dependence of the fluores-
cence (Fig. 2B). The thermal stability of the H41A mutant
could not be derived since the fluorescent probe bound to the
protein at room temperature, another indication that it is not
properly folded. The R84A, D108A, and K137A PA-Nters
have the same Tm as wt PA-Nter (Fig. 2C, pink bars) and the
K134A PA-Nter is slightly less stable, whereas the E80A,
E119A, and Y130A PA-Nters are more stable (Fig. 2C). The
active site of wt PA-Nter is strongly negatively charged (Fig.
3A). In general, mutations that increase the negative charge in

the active-site pocket destabilize the domain (e.g., see Fig. 3B
and D for the H41A and K134A PA-Nters, respectively),
whereas mutations that reduce the negative charge increase
the stability of the domain (e.g., Fig. 3C for the E80A PA-
Nter). The fact that the H41A PA-Nter does not fold properly
suggests that a basic residue at position 41 is important to
provide the necessary electrostatic compensation for correct
folding.

Nuclease activity. The RNase activity of the mutants was
tested in the presence of 1 mM MnCl2 or 1 mM MgCl2 using
short panhandle RNA (36 nucleotides) and unstructured U-
rich RNA (51 nucleotides) as substrates (6). The substrate
RNA was analyzed on gels after digestion for 80 min or 6 h, as
shown in Fig. 4 and summarized in Table 1. Two of three
mutants with mutations of acidic residues directly involved in
metal binding (E80A, D108A, and E119A) are inactive both
with MnCl2 and with MgCl2. The exception was the E80A
mutant, which retained activity only in the presence of man-
ganese ions. The K134A mutant is also completely inactive,

FIG. 3. Electrostatic surface potentials of the active sites of wt and three mutant PA-Nters. The surface of wt PA-Nter (A) was calculated from
the crystal structure (Protein Data Bank accession number 2W69), whereas those of mutant PA-ters H41A (B), E80A (C), and K134A
(D) correspond to models generated in silico. The electrostatic surfaces were calculated using the DelPhi program (30) with H41 fully protonated.
The potential scales range from !5.0 kT/e (red) to 5.0 kT/e (blue).
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which is consistent with it being the catalytic lysine. The R84A,
Y130A, and K137A mutants situated on the active-site rim are
all less active than the wild type to various degrees but are not
inactive. Also note that the activities of the wild type and all
active mutants were higher in the presence of 1 mM MnCl2
than in the presence of 1 mM MgCl2 (Fig. 4C to F).

Metal binding monitored by thermal stabilization. We pre-
viously showed that the addition of 0.5 mM Mn2! ions

significantly enhances the thermal stability of wt PA-Nter
and that 0.5 mM dioxo-4-phenylbutanoic acid (DPBA), a
known inhibitor of the influenza virus endonuclease (34),
supershifts the Tm but only in the presence of metal ions (6).
It is likely that the three oxygens on this inhibitor ligate the
two resident metal ions in a similar manner, as has recently
been observed in the integrase-inhibitor complex of retro-
viruses (14). To monitor metal binding to the mutant pro-
teins, we therefore used the Thermofluor assay to measure
the Tm in the presence of 0.1 mM MnCl2 (Fig. 2C, light
green), 5 mM MgCl2 (Fig. 2C, light violet), or no metal (Fig.
2C, pink). We also measured the Tm in the presence of
metal ions plus DPBA (Fig. 2C, red, dark green, and dark
violet). Two of the three mutations that knock out the metal-
ligating acidic residues (E80A, D108A, and E119A) also abol-
ish metal ion binding. The exception was the E80A mutant,
which was stabilized by Mn2! but not by Mg2! ions, consistent
with the results of the endonuclease assay. All other mutations
were stabilized by both types of cations and were further sta-
bilized when DPBA was added in the presence of metal ions,
similar to the result for the wt. In the absence of ions, the
inhibitor did not stabilize the proteins.

Metal binding measured by ITC. In the PD-(D/E)XK nu-
clease superfamily, the positions equivalent to Asp108,

FIG. 4. Endonuclease activities of PA-Nter mutants.(A and B) RNase activities of wild-type and mutant PA-Nters in the presence of 1 mM
MnCl2 using a short panhandle RNA of 36 nucleotides (6) for 80 min (A) and 6 h (B). (C to F) The same experiment described for panels A and
B but using U-rich RNA (51 nucleotides) plus 1 mM MnCl2 (C and D) and using U-rich RNA plus 1 mM MgCl2 (E and F). RNA cleavage was
performed by incubating 13 "M PA-Nter for 80 min (A, C, and E) or 6 h (B, D, and F) with 10 "M RNA at 37°C in a final volume of 50 "l.

TABLE 1. Effects of mutations on RNase activity of PA-Nter and
comparison with transcription and replication activities of the

recombinant trimeric polymerase

Mutation Role
RNase activity

Transcriptiona Replicationa

MnCl2 MgCl2

wt !! !! ! !
H41A Ligand Mn2 NDb ND # #
E80A Ligand Mn1 $ # # !
R84A RNA positioning ! ! ! !
D108A Ligands Mn1

and Mn2
# # # !

E119A Ligand Mn2 # # # !
Y130A RNA positioning ! ! ! !
K134A Catalytic # # # !
K137A RNA positioning $ $ ! !

a The results obtained with influenza virus recombinant RNP (13, 37).
b ND, not determined.
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Glu119, and Lys134 are always present, giving the family its
name. Glu80 and His41 are not always conserved, and indeed,
this combination seems to be specific for the influenza virus
endonuclease (6, 37). Glu80 is particularly interesting, as E80A
shows binding and residual nuclease activity with Mn2! ions
but not with Mg2! ions. In order to understand these obser-
vations, we directly measured Mn2! and Mg2! ion binding to
wt PA-Nter and E80A by ITC (Fig. 5 and Table 2), which is the
most appropriate technique for directly measuring the thermo-
dynamics of protein-ligand binding (21). We find that binding
of Mn2! ions to wt PA-Nter is exothermic (Fig. 5A), whereas
binding of Mg2! ions is endothermic (Fig. 5B). The dissocia-
tion constants for the Mn2! and Mg2! ions are obtained by
model fitting (Table 2), in which the number of binding sites
and the values for the disassociation complex (Kd

"1) and en-
thalpy change (#H) are variables.

For the wt protein, the titration data for both Mn2! and
Mg2! are best fitted with a two-site model since the quality of
the fit (by the chi-square test) is better by a factor of 2 than that
for a single-site model. Note that at this stage that we make no
assumption about whether the two Mn2! sites revealed by ITC
are the same as the two Mg2! sites or whether they correspond
to sites M1 and M2 defined by the crystal structure (6). The
affinity of wt PA-Nter for Mn2! ions (Kds for the two sites, 0.3
and 6.5 $M) is 500 to 600 times higher than that for Mg2! ions
(Kds for the two sites, 148 and 4,000 $M). This is consistent
with the higher endonuclease activity shown by wt PA-Nter in
the presence of 1 mM Mn2! compared to that in the presence
of 1 mM Mg2! ions (compare Fig. 4C and E). The measured
affinities lie in the range of those obtained for other divalent
cation binding proteins, such as RNAses and proteases (3, 20,
36). The fact that the binding enthalpy is exothermic for Mn2!

ions and endothermic for Mg2! ions suggests a more optimal
coordination for bound Mn2! ions, which is reflected in a more
favorable enthalpy.

Addition of MgCl2 to the E80A mutant produced no heat
effect, in agreement with the absence of thermal stabilization
and nuclease activity upon addition of Mg2! ions. The binding
data for Mn2! could be modeled using a single site with a Kd

of 77 $M and an occupancy of 2.1 or with two sites with Kd

values of 5.2 and 46 $M. Because the chi-square test of the
single-site model provides a value twice that of the two-site-
model, we favor the two-site model. Although the Mn2! bind-
ing affinities for the two-site model are only 10 times lower
than those for wt PA-Nter, the endonuclease activity of this

FIG. 5. Isothermal titration calorimetry of wild-type PA-Nter with metal ions. (A) MnCl2 at 0.3 mM was added to 60 $M PA-Nter at 25°C in
20 mM Tris-HCl (pH 8.0) plus 100 mM NaCl; (B) MgCl2 at 9 mM was added to 60 $M PA-Nter at 25°C in 20 mM Tris-HCl (pH 8.0) plus 100
mM NaCl. In the lower panels, the circles represent experimental data and the continuous lines correspond to the best fit to a model with two
binding sites.

TABLE 2. Metal specificity of PA-Ntera

Ion Site
Kd ($M)

wt E80A

Mn2! High affinity 0.3 5.2
Low affinity 6.5 46

Mg2! High affinity 148
Low affinity 4,000

a Isothermal titration calorimetry experiments were performed on a VP-ITC
calorimeter using protein solutions at a concentration of 60 $M and metal
solution concentrations between 0.8 and 9 mM.
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mutant is impaired in the presence of 1 mM MnCl2, which may
be due to a difference in the geometry of metal binding due to
the absence of Glu80.

DISCUSSION

This work was undertaken with dual aims: first, to determine
whether mutations in the isolated endonuclease domain had
the same effects on activity as the equivalent mutations made
in the trimeric polymerase and, second, to clarify whether the
nuclease activity of the domain depends on binding to one or
two Mg2! or Mn2! ions.

Concerning the first aim, all the alanine mutations that we
made in PA-Nter have already been studied in the context of
the trimeric recombinant polymerase (13, 37). As Table 1
shows, mutations that inactivate the endonuclease activity in
the isolated PA-Nter domain knock out transcription but not
replication in the intact polymerase. The experiments with the
intact recombinant polymerase were performed in the pres-
ence of MgCl2 without added MnCl2. Bearing in mind our
results for this mutant, this could explain why the intact poly-
merase containing the E80A mutation was inactive in tran-
scription in the assay of Hara and coworkers (13). The results
for this mutation presented by Yuan and coworkers (37) are
more ambiguous; although the mutant was inactive in the en-
donuclease assay, some globin mRNA-primed transcription
activity was retained. Concerning the conserved Arg84,
Tyr130, and Lys137 residues on the active-site rim, we hypoth-
esized that these could be necessary for the binding and correct
positioning of the substrate RNA in the active site. In partic-
ular, Arg84 is bound to a well-ordered sulfate ion in the crystal
structure of PA-Nter (6). This sulfate is in the same position as
one of the phosphates of the EcoRV restriction enzyme prod-
uct complex (16). Tyr130 and Lys137 coordinate water mole-
cules that bind to the monophosphate group in a complex of
PA-Nter with nucleoside monophosphates (38). In the isolated
endonuclease domain, the enzymatic activities of R84A,
Y130A, and K137A were reduced, whereas in the context of
the intact trimeric polymerase, the mutations retain full tran-
scription activity (13). We may explain this difference by the
fact that in the intact polymerase the prebinding of the cellular
mRNA to the PB2 cap-binding domain probably considerably
enhances substrate affinity by increasing the local concentra-
tion. Furthermore, the presence of other positively charged
polymerase domains such as the highly basic surfaces of the
PB2 627 domain (19, 32) and the C-terminal two-thirds of PA
(15, 24) may also assist with the correct positioning of the
substrate RNA over the endonuclease active site.

An additional observation is that the active site of the en-
donuclease is very acidic, like that of other endonucleases (Fig.
3A); and mutations that increase the negative charge destabi-
lize the protein, whereas those that decrease the acidity stabi-
lize PA-Nter. The single exception is the D108A mutant PA-
Nter, which has the same stability as wt PA-Nter, for which we
do not have an explanation. The H41A mutation in the context
of the intact polymerase results in disruption not only of tran-
scription but also of replication (13, 37). Therefore, it seems
that the correct folding or the stability of PA-Nter is a prereq-
uisite to the correct formation of the active site of the poly-
merase on the PB1 subunit. These observations also suggest a

rationale for why PA-Nter has a histidine at position 41 rather
than a glutamate, as in EcoRV (5).

In conclusion, the accordance of the activities of PA-Nter
with those of the intact recombinant trimer suggests that iso-
lated PA-Nter has the same structure in the context of the
intact trimer and validates the use of the isolated domain for
drug screening and structure-based design. A similar conclu-
sion was drawn for the PB2 cap-binding domain, i.e., that the
isolated domain has the same structure as that in recombinant
RNP (10). This would imply that activation of the cap-binding
and endonuclease functions in the intact polymerase, by the
binding of the 5" end of the vRNA or a 3"-5" duplex (12, 22),
are likely not due to the induced formation of the two active
sites but rather to the removal of inhibition (perhaps steric) of
these functions. The structural differences that are observed
between free polymerase and RNP-bound polymerase (1, 5,
35) suggest important domain rearrangements that may
change the disposition of the cap-binding and endonuclease
sites and the overall binding of host mRNA by the intact
polymerase.

Concerning the second aim of our study, in a careful enzy-
matic analysis of the endonuclease activity of purified RNPs,
Doan et al. showed that there are two interacting metal bind-
ing sites that need to be occupied with divalent metal ions for
full nuclease activity (7). They found that manganese ions are
two times stronger than magnesium ions at activating the en-
donuclease and showed that the affinity for Mn2! ions is stron-
ger than for Mg2! ions. The metal dependence of the endo-
nuclease activity shown here is in agreement with these results.
The nuclease activity of PA-Nter and the mutants is higher in
the presence of 1 mM MnCl2 than in the presence of 1 mM
MgCl2, and the shift in Tm is higher in the presence of 0.1 mM
Mn2! ions than in the presence of 5 mM Mg2! ions.

Yuan and coworkers grew crystals of PA-Nter in the pres-
ence of 100 mM MgCl2 and observed a single metal ion only in
position M1, even in the presence of mononucleotide phos-
phates (38). Therefore, in the absence of substrate, Mg2! ions
seem to bind only to the M1 site even at concentrations that lay
several orders of magnitude above the low affinity Kd (4 mM).
Because a second magnesium ion was never seen in the active
site, it is possible that the low-affinity binding site for Mg2! lies
outside the active site. Histidine is one of the ligands of the M2
site in the crystal structure (6). Whereas manganese ions can
be favorably coordinated by both acidic residues and histidine
(2, 11), ligation of Mg2! ions by histidine is uncommon (8).
This agrees with the biochemical and enzymatic data presented
here for the E80A mutant (Glu80 is an M1 ligand), which
showed neither RNase activity nor binding of Mg2! ions, al-
though the mutant could still bind two manganese ions. All
crystallographic data (37, 38) and our enzymatic and ITC data
presented here suggest that only a single magnesium ion can
bind to the enzymatic cavity of PA-Nter in the absence of
substrate. However, Doan et al. (7) found a Hill coefficient of
2 for the endonuclease activity of intact viral RNPs in the
presence of Mg2!, suggesting that two ions can bind in the
presence of substrate. The finding that the stability of wt PA-
Nter supershifts in the presence of Mg2! plus the inhibitor also
suggests that two ions can bind when PA-Nter is stabilized by
the inhibitor.

Dias et al. grew crystals in a mixture of 2.5 mM MnCl2 and
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5 mM MgCl2 and located two Mn2! ions in positions M1 and
M2 (6). Two manganese ions were also found by Zhao and co-
workers upon adding MnCl2 (38). Our ITC results explain
these structural observations, since they show that Mn2! can
bind with a high affinity to two sites (Kds, 0.3 and 6.5 "M) and
that Mn2! binding to its second site is 20-fold higher than that
of Mg2! ions to their high-affinity site (Kd, 148 "M). Although
with these data we cannot prove that the two Mn2! binding
sites obtained through ITC correlate with the two binding sites
observed in the crystal structure, it is likely that it is the case.
This is supported by the results on activity and Mn2! binding
of the E80A mutant, which has an active site that resembles
that of EcoRV, which also binds to two manganese ions.

In conclusion, our results are consistent with previous results
on the metal dependence of the endonuclease in intact RNPs.
We show quantitatively that the endonuclease active site binds
to two Mn2! ions and has a significantly higher affinity for
Mn2! ions than for Mg2! ions. As was mentioned by Zhao et
al., the cellular concentration of free magnesium ions is in the
millimolar range, whereas that of manganese ions is in the
micromolar range (38), making roles for both ions in the en-
donuclease activity during infection by influenza virus entirely
possible. This suggestion is strengthened by the findings of
Doan et al. that indicated a synergistic activation of cleavage
activity with combinations of different metal ions (7).
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Abstract 
Influenza A virus is a negative-strand RNA virus belonging to the 

Orthomyxoviriadea family whose replication occurs in the nucleus of infected 
cells. The genome organisation of influenza virus is segmented in eight vRNA 
segments of negative polarity coding for at least 16 different viral proteins. 
Each vRNA is bound to multiple copies of nucleoprotein (NP) and to the 
heterotrimeric RNA-dependent RNA-polymerase complex (PA, PB1 and PB2) 
through its 5’ and 3’ extremities. This macromolecular assembly 
(vRNA/polymerase/NP) forms the ribonucleoprotein (RNP) particle. The RNP 
complex is at the core of viral replication and in the context of RNPs, the 
polymerase performs both transcription and replication of the vRNA genome. 
As such, the polymerase constitutes a major antiviral drug target. The 
research work presented within this thesis focuses on the underlying 
determinants of the RNA polymerase assembly process and its interaction 
with its vRNA genome. To fulfill these goals, our lab, in collaboration with 
other groups, has set up a novel polyprotein expression system to express the 
polymerase but also to reconstitute polymerase and cellular partner 
complexes, notably RanBP5, which belongs to the importin-β family. 

Résumé 
Le virus de la grippe A est un virus à ARN négatif appartenant à la 

famille des Orthomyxoviriadea dont la réplication se produit dans le noyau 
des cellules infectées. L'organisation du génome est segmentée en huit 
segments d'ARNv de polarité négative, codant pour un minimum de 16 
protéines virales différentes. Ces ARN viraux (ARNv) sont en complexe avec 
de nombreuses copies de nucléoprotéines et liés par leurs extrémités 5’ et 3’  
au complexe hétérotrimérique de l’ARN-polymérase ARN-dépendante 
composé des sous unités PA, PB1 et PB2. Cet assemblage macromoléculaire 
(ARNv / polymérase / NP) nommée Ribonucléoprotéine (RNP) constitue une 
entité génomique indépendante. Dans le contexte de la RNP, l’ARN-
polymérase assure à la fois la transcription et la réplication du génome ARNv. 
En assurant ces deux fonctions, l’ARN-polymérase joue un rôle majeur dans 
la réplication virale et constitue une cible antivirale privilégiée. Les travaux de 
recherche présentés dans cette thèse se concentrent sur les éléments 
structuraux participants à l'assemblage de l’ARN polymérase et son interaction 
avec les avec les ARNv. Pour atteindre ces objectifs, notre laboratoire, en 
collaboration avec d'autres groupes, a mis en place un système d'expression 
en polyprotéines permettant d’exprimer la polymérase. Plus encore, cette 
méthode a aussi permis de reconstituer des complexes entre l’ARN-polymérase 
et des partenaires cellulaires, notamment RanBP5 qui appartient à la famille 
des importines-β. 


