This thesis theoretically studies structural and electronic properties of perovskite manganese oxide superlattices by means of ab-initio calculations.

Lanthanum manganese oxides, given with the generic formula La 1-x A x MnO 3 (LAMO) (A a divalent element), are an important class of perovskite manganese oxides due to their various exotic properties, such as giant and colossal magnetoresistance effect, rich phase diagrams with respect to doping, temperature or external fields, and intrinsic large Curie temperature. These properties can be exploited in many potential technological applications such as spin valves or spin injectors. Controlling the properties of these materials can be done through deposition as thin films or as building blocks in superlattices. When x = 1/3, bulk La 1-x A x MnO 3 is ferromagnetic and metallic due to the double-exchange mechanism in the Mn 3d shell. When Mn is in a mixed valence state, the eg orbitals (d x 2 -y 2 and d z 2 ) are partially occupied, and can delocalize on neighboring Mn atoms only if the latter are ferromagnetically aligned. In very thin films, since the direction perpendicular to the substrate, ⃗ c, is only a few unit cell thick, only in-plane (ab) interactions are important for the thermodynamic properties. By acting on the LAMO layer geometry, one can thus maximize the d x 2 -y 2 orbital occupancy and increase the magnetic exchange and related Curie temperature.

Our aim was thus to design new materials with desired 3d orbital order so that to ensure desired magnetic properties.

In this thesis, we worked on two types of superlattices. The first one was made of two undoped antiferromagnetic manganese oxides LaMnO 3 and SrMnO 3 , i.e. [LaMnO 3 ] n /[SrMnO 3 ] m superlattices. We investigated the magnetic ground state for different n and m values in order to explain suprising experimental results. The second type of superlattices is composed of metallic LAMO layers with alternated insulating layers. Indeed, the superlattices with metal-insulator interfaces have a great potential in spin valves applications. Thus, we first considered the ferromagnetic-metallic/ferroelectric-insulating [LAMO] 3 /[BTiO 3 ] 3 superlattices Preface by thinly layering different materials, today, material scientists and physicists create novel artificial thin films to control the transport and magnetic properties of the material. √ 2(Mn-O) , which can be calculated from the sums of ionic radii obtained from X-ray diffraction at room temperature. This mismatch takes then the form of t = r A +r O √ 2(r Mn +r O ) . Here, r A , r Mn and r O are the averaged ionic radii at sites A, Mn and O, respectively. t is called as the

(A = Sr or Ba, B = Ba or Pb) where the magnetic properties are reduced due to delocalization of d z 2 electrons at the interface from Mn to Ti. In such superlattices, we clarified the role of the polarization of the ferroelectric layers and the role of the antiferrodistortive motions in the manganite layers. In order to prevent the delocalization taking place at the interface, we designed another superlattice with metallic-insulator interface where we replaced the insulator (BTiO 3 ) with a simple oxide (BO); that is [LAMO] n /[BO] p superlattices (A = Sr or Ba, B = Ba, Sr or Mg and n = 3 or 6, p = 6 or 2). Within this new superlattice, we successully managed to promote d x 2 -y 2 orbital occupancies at the interfaces which ensures a large magnetic moment at the interfaces and an expected large Curie temperature. We also showed the weak correlation between electrical conductivity and orbital ordering.

Résumé

Au cours de cette thèse, nous avons étudiés théoriquement les propriétés structurelles et électroniques des super-réseaux d'oxyde de manganèse en structure perovskite au moyen de calculs ab initio.

Les oxydes de manganèse au lanthane, donnés avec la formule générique La 1-x A x MnO 3 (LAMO) (A un élément divalent), constituent une classe importante d'oxydes de manganèse en raison de leurs diverses propriétés, telles que l'effet de magnétorésistance colossale, leur riche diagramme de phase en fonction du dopage, de la température ou de champs externes, et leur grande température Curie. Ces propriétés peuvent être exploitées dans de nombreuses applications technologiques potentielles telles que les valves de spin ou les injecteurs de spin. Le contrôle des propriétés de ces matériaux peut se faire par dépôt sous forme de films minces ou comme blocs de construction dans des super-réseaux. Lorsque x = 1/3, le La 1-x A x MnO 3 massif est ferromagnétique et métallique grâce au mécanisme de double échange dans les electrons 3d de Mn. Lorsque Mn est dans un état de valence mixte, les orbitales eg (d x 2 -y 2 and d 2 z ) sont partiellement occupées et peuvent se délocaliser sur les atomes de Mn voisins, seulement si ceux-ci sont alignés ferromagnétiquement. Dans des films très minces, puisque la direction perpendiculaire au substrat, ⃗ c, n'a que quelques cellules unitaires d'épaisseur, seules les interactions dans le plan (ab) sont importantes pour les propriétés thermodynamiques. En agissant sur la géométrie de la couche LAMO, on peut ainsi maximiser l'occupation de l'orbitales d x 2 -y 2 et augmenter l'échange magnétique et la température Curie associée.

Notre but était donc de concevoir de nouveaux matériaux avec un ordre orbital 3d spécifique afin d'assurer les propriétés magnétiques souhaitées.

Dans cette thèse, nous avons travaillé sur deux types de super-réseaux. Le premier était constitué de deux oxydes de manganèse antiferromagnétiques, non dopés, LaMnO 3 et SrMnO 3 , c'est-à-dire des super-réseaux [LaMnO 3 ] n /[SrMnO 3 ] m . Nous avons étudié x l'état fondamental magnétique pour différentes valeurs n et m afin d'expliquer les résultats expérimentaux surprenants. Le deuxième type de super-réseaux que nous avons étudiés est composé de couches métalliques LAMO en alternance avec des couches isolantes. En effet, les super-réseaux avec des interfaces métal-isolant ont un grand potentiel dans les applications de valves de spin. Ainsi, nous avons d'abord considéré des super-réseaux entre composés ferromagnétiques-métalliques et ferroélectriques-isolantes [LAMO] 3 /[BTiO 3 ] 3 ((A = Sr ou Ba, B = Ba ou Pb). Dans ces super-réseaux, les propriétés magnétiques sont malheuresement réduites en raison de la délocalisation d'électrons d z 2 à l'interface entre Mn et Ti. Dans de tels super-réseaux , nous avons clarifié le rôle de la polarisation des couches ferroélectriques et le rôle des mouvements antiferrodistortifs dans les couches de manganite. Enfin, de manierè à éviter que la délocalisation ait lieu à l'interface, nous avons conçu un autre super-réseau avec interface métal-isolant dans lequel nous avons remplacé l'isolant (BTiO 3 ) par un oxyde simple (BO): [LAMO] n /[BO] p superlattices (A = Sr ou Ba, B = Ba, Sr ou Mg et n = 3 ou 6, p = 6 ou 2). Dans ces nouveaux super-réseaux, nous avons réussi à promouvoir les occupations des orbitales d x 2 -y 2 dans les interfaces assurant un fort moment magnetique à l'interface et a priori une fort temperature de Curie. Nous avons également montré une faible corrélation entre la conductivité électrique et l'ordre orbitaire. Preface

Table of contents

Everything that we have and surrounds our lives is made of something. Everything has a substance. If we take out the materials from our lives we are naked to this world. Materials and the way that we used them determined the level of our civilizations through history:

The stone, the iron and the bronze ages. Not only for the practical purposes but also for the sake of art and aesthetics, humankind gave the greatest importance to the understanding of materials. For example, Egyptians were the earliest masters of gold beating. They were using very thin gold leafs between different layers of materials for decoration purposes. In Victorian era, engineering technologies developed with the use of materials, iron and steel.

Today, what we got used to see in our daily lives like bridges, railways etc. were the creation of this development. The information age is brought by new advancements in the material technologies, such as silicon technology or thin-film technology. Thus, controlling the materials used in today's technology is of great importance for the scientists and engineers.

Both scientist and engineers study the structures, physical and chemical properties of material substances.

To begin with, we can give the definition of a matter. Matter is anything that occupies space and has a mass. There are four states of matter observable in everyday life, i.e. solid, liquid, gas and plasma but under extreme situations such as low or high pressure or temperature there exist other states as well such as Bose-Einstein condenstate and quarkgluon plasma. Condensed matter physics deals with the properties of condensed phases of matter. The most common condensed phases are solids and liquids. The main approach of condensed matter physics is to measure material properties by experiments, along with the development of mathematical models in order to understand the physical behaviour of the material. Understanding the properties of a material comes naturally with the desire to control these properties for various purposes. A spotlight of condensed matter physics is on the transport and magnetic properties of the materials for technological devices, such as electronics and spintronics. Like our old wise Egyptian ancestors creating new compounds Thin films deposited on a substrate are widely used in many technological devices. To begin with examples, we can start with the compound semiconductor based devices. Light emitting diodes (LED), laser diodes (LD), solar cells and electronic devices, such as high electron mobility transistors (HEMT) and heterojunction bipolar transistors (HBT) require the deposition of thin epitaxial layers. These thin layers often have lower defect and impurity levels as compared to bulk materials. The invention of the first high-T c superconducting YBa 2 Cu 3 O x (YBCO) thin films [1] opened a great new interest in the thin film community and in superconducting microwave devices. Magnetic recording/memory technology is also one of the most remarkable application of the thin film technology. Giant and colossal magnetoresistance features that some thin film materials exhibit have a great impact on the magnetic recording/memory technology. The miniaturization of magnetic devices opened a new research field loosely named "micromagnetic devices". The basic micromagnetic device is built by the combination of a thin magnetic film with a planar coil. Possible applications are micropower supplies, microsensors and mobile communication handsets. Ferroelectric thin films are also demanded for nonvolatile memory devices (also named as FeRAMs, ferroelectric random access memories) due to their high-speed writing, low dissipation, power and high endurance. Due to the variety of technological devices that the thin films offer, there exist various techniques to prepare high-quality thin films such as molecular beam epitaxy (MBE), metal chemical vapour deposition (MOCVD) and pulsed laser deposition (PLD).

When materials are constructed as layers or films, thickness of these layers/films is significantly important to engineer their properties. A very thick film of a certain material can exhibit bulk-like properties whereas very thin layers can exhibit different properties. However, as it is hard to grow and use free-standing thin films, one needs to deposit them on another material, namely on a substrate. Thus, in a thin film environment, the solid is deposited on a substrate and experiences two interfaces: film-substrate interface and film-vacuum interface. In such a case, the properties are expected to be much more dependent of the interfacial effects. One challenge is to use the concepts of surface and interface physics in order to understand and control the properties of thin films. Interface physics is therefore embedded in the conventional condensed matter physics and it is truly correlated with other research field such as molecular physics or particle beam optics (See Figure 2). Surface and interface physics bring aspects for technological applications such as semiconductor technology or corrosion and surface protection. Understanding this field from both experimental and theoretical points of view is really important. On the one hand, there are a few fields in physics and chemistry that provide experimental methods and techniques to extract the surface and interface physics. On the other hand, in addition to experimental approaches, computer calculations is another important element. Indeed, nowadays accessible complex and largescale computer calculations made it possible to deduce theoretical understanding of interface physics of thin films. In this thesis, we will study interfaces in heterostructures by means of computer calculations in order to obtain the physics of thin films. More precisely, we will study manganite-based superlattices at the atomic scale by means of ab-initio calculations.

Fig. 1 Surface and Interface Physics correlated with a variety of research fields. In this thesis, we are particularly interested in Interface Physics of Thin Films at the computer calculations level. Picture taken from Ref. [2] This thesis is organized as follows. In chapter 1, we give a very short review of solid state physics in order to introduce some basic concepts that are necessary to capture the physics of thin films. In the same chapter, we shortly talk about the thin films conceptually. In chapter 2, we give a review of CMR manganites and discuss their structural, electronic and magnetic properties. We will also give a short comparison of the properties of La 1-x A x MnO 3 bulk materials and thin films. The chapter 3 is devoted on the methodology that is used in this thesis. In chapter 4, we will give the results of (LaMnO 3 ) n -(SrMnO 3 ) p superlattices. In chapter 5, we provide the results of the superlattices of (La 2/3 A 1/3 MnO 3 ) 3 with alternated Preface perovskite layers. In chapter 6, we present the results of superlattices of (La 2/3 A 1/3 MnO 3 ) 3 with simple alkaline oxides. In chapter 6.4, we give our conclusions and future perspectives.

Préface

Tout ce que nous avons et qui entoure nos vie est fait de quelque chose. Tout a une substance. Si on sort les matériaux de nos vie, nous sommes nus face à ce monde. Matériaux et la manière dont nous les utilisons déterminent notre niveau de civilisation : L'age de pierre, de fer, de bronze. Non seulement pour des raisons pratiques mais mais aussi pour l'art et l'esthétisme, l'humanité donna la plus grande importance à la compréhension des matériaux. Par exemple, les égyptiens étaient les premiers maîtres à façonner l'or. Ils utilisaient des couches très minces d'or entre différentes couches de matériaux pour décorer. À l'époque victorienne, l'ingénierie technologique a développé l'utilisation de matériaux, fer et acier. Aujourd'hui, ce que nous sommes habitués à voir dans notre quotidien, comme les ponts, chemins de fer, etc. sont à l'origine de ces avancées. L'ère de l'information arrive avec des nouveaux avancement en technologie des matériaux, comme l'utilisation du silicone ou les films minces. Donc contrôler l'utilisation de matériaux dans la technologie actuelle est de grande importance pour les scientifiques et ingénieurs. Tous deux étudient les structures, les propriétés physiques et chimiques de la substances des matériaux.

Pour commencer, nous pouvons donner la définition de la matière. La matière est tout ce qui occupe l'espace et a un masse. Il y a quatre états de la matière que l'on peut observer dans la vie quotidienne, solide, liquide, gaz et plasma mais sous conditions extrêmes, comme forte ou basse pression ou température, il existe d'autres états comme le bien connu condensat de Bose-Einstein et le plasma de quak-gluon. La physique de la matière condensée s'attache à l'étude des propriétés des phases condensées de la matière. Les phases condensées les plus communes sont solide et liquide. L'approche principale de la physique de la matière condensée est de mesurer les propriétés des matériaux avec des expériences, ainsi que le développement de modèles mathématiques pour comprendre le comportement physique des matériaux. Comprendre les propriétés des matériaux vient naturellement avec le désir de contrôler ces propriétés pour différentes raisons. Un intérêt particulier de la physique de la matière condensée est donné propriétés de transport magnétiques des matériaux pour les Préface appareils technologiques, tels que l'électronique ou la spintronique. Comme nous anciens sages ancêtre égyptiens, créer de nouveaux composés en superposant des couches minces de différents matériaux, aujourd'hui, les scientifiques des matériaux et les physiciens créent de nouveaux films minces pour contrôler le transport et les propriétés magnétiques des matériaux.

Les couches minces déposées sur un substrats sont largement utilisées dans différent appareils technologiques. Pour commencer avec des exemples, on peut commencer avec les appareils à base de semi-conducteurs. Diode électroluminescente (DEL), diode laser (DL), cellules solaires et appareils électroniques, tels que les transistors à haute mobilité d'électrons (HEMT) et transistor bipolaire à hétérojonction (HBT) ont besoin de dépôts de couches minces épitaxiales car ces couches minces ont souvent peu de défauts et un faible taux d'impureté comparé au matériau en vrac. L'invention du premier supraconducteur à haute température critique YBa 2 Cu 3 O x (YBCO) en couche mince [1] a ouvert un grand nouvel intérêt dans la communauté des films en couche minces et des appareils microonde supraconducteurs. La technologie d'enregistrement magnétique et de mémoire magnétique est aussi une des plus grandes applications remarquable de la technologie en couche mince. La propriété de magnétorésistance géante et colossale que certains matériaux en couches minces ont a un grand impact sur les technologie d'enregistrement et de mémoire magnétique. La miniaturisation des appareils magnétiques a ouvert un nouveau domaine domaine nommé "appareils micromagnétiques". Le plus basique appareil micromagnétique est construit en une combinaison de films minces magnétiques avec une bobine plane. Quelques possibles applications sont des alimentations micropower, microsensors et de communication mobile. Les films minces ferroélectique sont aussi prisés pour des appareils de mémoire non volatiles (aussi nommées FeRAMs, ferroelectric random access memories) à cause de leur rapide vitesse d'écriture, faible dissipation, puissance et haute endurance. Grâce à la diversité d'appareils technologiques qu'offrent des films minces, il existe différentes techniques pour préparer une diversité de films minces de haute qualité, comme l'épitaxie par jet moléculaire, le dépôt chimique en phase vapeur et l'ablation laser pulsé.

Quand les matériaux sont composés de couches ou films, l'épaisseur de ces couches/films est importante pour contrôler leurs propriétés. Un film épais d'un matériau donné peut avoir certains propriétés du matériau massif alors que des couches très minces peuvent avoir des propriétés très différentes. Cependant, comme il est difficile de faire pousser et d'utiliser des films minces autonome, nous devons les déposer sur un autre matériau, appelé substrat. Donc, dans un environnement de films minces, le solide est déposé sur un substrat et a deux interfaces : une interface film-substrat et film-vide. Dans ce cas, les propriétés seront plus plus dépendantes des effets d'interface. Un défis est d'utiliser les concepts de la physique des surfaces et interfaces pour comprendre et contrôler les propriétés des films minces. La physique des interfaces est donc incluses dans la physique de la matière condensée conventionnelle et est vraiment corrélée avec d'autres champs de recherche tels que la physique moléculaire ou l'optique du faisceau de particules (voir Figure 2). La physique des surfaces et interfaces apporte des aspects d'applications technologiques comme la technologie des semi-conducteurs ou corrosion et de protection de surface. Comprendre ce domaine d'un point de vue expérimental et théorique est vraiment très important. D'un côté, il y a quelques domaines en physique et chimie qui fournissent des méthodes expérimentales et des techniques pour extraire la physique des surfaces et interfaces. De l'autre, en plus des approches expérimentales, les calculs informatiques est un autre élément important. En effet, de nos jours, les calculs informatiques complexes et à haute échelle sont rendus accessibles et permettent de déduire une compréhension théorique des la physique des interfaces des films minces. Dans cette thèse, nous étudierons les interfaces dans les hétérostructures grâce à des calculs informatiques pour obtenir la physique des films minces. Plus précisément, nous étudierons les super réseaux à base de manganites à l'échelle atomique à l'aide de calculs ab-initio. Fig. 2 Physique des surfaces et interfaces corrélée avec une diversité de domaines recherches. Dans cette thèse, nous sommes particulièrement intéressés par la physique des interfaces des films minces par des calculs informatiques. Image prise de Ref. [2] Préface Cette thèse est organisée de la manière suivante. Dans le chapitre 1, nous donnons une très courte revue de la physique du sole pour introduire quelques concepts basiques qui sont nécessaires pour la physique des films en couches minces. Dans le même chapitre, nous parlons brièvement des concepts de film mince. Dans le chapitre 2, nous donnons une revue de CMR manganites et discutons de leurs propriétés structurelles, électroniques et magnétiques. Nous donnons aussi une courte comparaison des propriétés de La 1-x A x MnO 3 materieaux massif et des couches minces. Le chapitre 3 est dédié à la méthodologie qui est utilisés dans cette thèse. Dans le chapitre 4, nous donnons les résultats pour (LaMnO 3 ) n -(SrMnO 3 ) p super réseaux. Dans le chapitre 5, nous fournissons les résultats pour les super réseaux de (La 2/3 A 1/3 MnO 3 ) 3 avec des couches pérovskite alternées. Dans le chapitre 6, nous présentons les résultats des super réseaux de (La 2/3 A 1/3 MnO 3 ) 3 avec les oxydes alcalines simple. Dans le chapitre 6.4, nous donnons nos conclusions et perspectives futures. 

Chapter 1

Controlling the Matter

A very Short Review on Solids

Before describing thin-films and their place in today's technology, let us start with recalling some basics of solid materials. Some solid materials have a crystalline form, i.e. an ordered internal crystal structure. The crystal structure is a description of a periodic arrangement of atoms, ions or molecules in a crystalline material. The primitive unit cell, which contains the smallest group of particles that determines the repeating pattern, defines the symmetry and structure of the crystal lattice. The lengths of the principal axes of the unit cell and the angles between them are named as the lattice constants or lattice parameters. The crystal lattice is built by periodic translation of the unit cell along the axes. In three dimensions, all possible symmetric arrangements of particles in space is given using one of the seven crystal lattice systems. In these seven lattice systems, there are fourteen Bravais lattices. In figure 1.1, one can see the seven different lattice systems with the fourteen Bravais lattices. For example for the case of the orthorhombic lattice system, there exist four Bravais lattices; simple, base-centered, body-centered or face-centered. The rotations, reflections or translations of a crystal structure determine their symmetry operations and the set of these operations is named as the crystallographic point groups. There are 32 crystallographic points groups. The combination of crystallographic points groups with Bravais lattices constructs the notion of space groups in three dimensions. There are 230 space groups in three-dimensional space.

Fig. 1.1 The fourteen Bravais lattices. Picture taken from Ref. [3] In order to determine the crystal lattice structure of a compound, there are different experimental diffraction techniques widely used: X-ray or electron or neutron diffractions on single crystals or powders. In X-ray diffraction technique, for example, the crystalline atoms are exposed to a beam of incident X-rays that diffracts into many specific directions. Particles in these techniques act as matter waves (i.e. wave-like). The de Broglie relation states the relation between the wavelength and the momentum, that is λ = h/p, where λ is the wavelength, h is the Planck's constant and p is the magnitude of momentum. The relation between the momentum p and the wavevector ⃗ k is given by p = [h/(2π)] ⃗ k. Thus, it is convenient to define a k-space or reciprocal space in the momentum space that is related to real space. In real space, Bravais lattice is given with the mathematical formulation as ⃗ R = n 1 ⃗ a 1 + n 2 ⃗ a 2 + n 3 ⃗ a 3 where ⃗ a 1 , ⃗ a 2 and ⃗ a 3 are the primitive vectors and n 1 , n 2 and n 3 are integers. The Fourier transform of Bravais lattice gives us the reciprocal lattice with

⃗ G = m 1 ⃗ b 1 + m 2 ⃗ b 2 + m 3 ⃗ b 3 where ⃗ b 1 = 2π ⃗ a 2 ×⃗ a 3 ⃗ a 1 •(⃗ a 2 ×⃗ a 3 ) , ⃗ b 2 = 2π ⃗ a 3 ×⃗ a 1 ⃗ a 2 •(⃗ a 3 ×⃗ a 1 ) and ⃗ b 3 = 2π ⃗ a 1 ×⃗ a 2 ⃗ a 3 •(⃗ a 1 ×⃗ a 2 )
are the primitive vectors and m 1 , m 2 and m 3 are the Miller indices. Miller index is a notation tool to define crystal planes inside the lattice. One can also use similar indices to design the directions inside the lattice, i.e. direction indices. In figure 1.2, there are example crystal planes denoted with Miller indices and direction indices. Materials can be classified according to their bonding type into four classes: Metallic, ionic, covalent and van der Waals. Metallic bonding occurs in metals and alloys. In metals, the Fermi level electrons are rather delocalized and metallic bonding is relatively soft. Ionic bonding occurs due to electrostatic attraction between oppositely charged ions such as between metals and nonmetals. Covalent bonding is a chemical bond in which neighbouring atoms share electrons. The van der Waals type bonding occurs due to weak dispersion forces.

Materials can be classified according to their ability to conduct electricity into three classes: Conductors, semi-conductors, insulators. The distinction rises from the electronic dispersion curves. The energy band structures are schematically shown in figure 1.3 for metals, semiconductors and insulators. In metals, the Fermi level is in the middle of a band. In insulators, there are only fully occupied or fully empty bands. In semi-conductors, at 0 Kelvin, there are only fully occupied or fully empty bands but bands can be partially occupied at a finite temperature.

Materials can also be classified by their response to externally applied magnetic field. This classification is based on the strength of the response. Diamagnetism is a fundamental property that all materials exhibit initially though it is normally very weak. In a diamagnetic or non-magnetic material, atoms have no net magnetic moment. However, when a diamagnetic material is exposed to an applied magnetic field, non-cooperative orbital motions of electrons create small atomic currents which produce an induced magnetic field in the opposite direction of the applied field so that a negative magnetization is produced to compensate and the diamagnetic material is repelled. The response of a diamagnatic material to an applied field can be seen schematically in figure 1.4a. In a paramagnetic material, there are some atoms with a net magnetic moment but the individual magnetic moments do no interact. However, in the presence of an applied magnetic field, the local magnetic moments align in the same direction of the applied field which induce a small magnetization. This magnetization disappears when the applied field is removed. This can be schematically seen in figure 1.4b. Unlike paramagnetic materials, the atomic spins in a ferromagnetic material strongly interact with each other and align in the same direction inside magnetic domains, even in the absence of an applied magnetic field. When there is an applied field the domain boundaries move and the atomic spins align along the applied field. This mechanism can be seen in figure 1.4c. There are two characteristics of ferromagnetic materials: i) Spontaneous magnetization, ii) Magnetic ordering temperature also known as the Curie temperature. The spontaneous magnetization is the net magnetization that the ferromagnetic material exhibits uniformly inside the volume in the absence of an applied magnetic field. At 0 K, the magnitude of the magnetization depends on the magnetic moments of the electrons. Saturation magnetization, M s , on the other hand, is the maximum magnetization that can be obtained in a magnetic field H sat which depends on the temperature. Thermal energy affects the exchange interactions in ferromagnetic materials. The Curie temperature T c is the temperature above which ferromagnetic alignment breaks and there is a spin randomizing effect. Ferromagnetic materials can retain a memory of an applied magnetic field when the field is removed. This is known as hysteresis and the change of magnetization with respect to magnetic field is named as hysteresis loop. In figure 1.5, one can see an example of a ferromagnetic hysteresis loop.
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Fig. 1.5 Hysteresis Loop for a ferromagnetic material

In addition to paramagnetic and ferromagnetic materials, there are other type of magnetic materials, i.e. antiferromagnetic and ferrimagnetic. The schematical representation of magnetic materials are given in figure 1.6. In the absence of an applied field, when the Controlling the Matter magnetic moments/spins in a material align in opposite directions at neighbouring sites with the same amplitude then this material is an antiferromagnetic material. Thermal energy also affects the interactions inside an antiferromagnetic material. The Néel temperature T N is the temperature above which the antiferromagnetic-paramagnetic transition takes place. When the magnetic moments align in opposite directions but have different amplitudes so that the net magnetic moment is non zero then this material is ferrimagnetic. Materials can also be classified by their response to externally applied magnetic field. Insulators can be sub-classifed as well depending on their response to an applied electric field. When an electrical insulator can be polarized by an applied electric field and if this polarization is linearly proportional to the applied field, this is a dielectric material. (See the left figure 1.7.) The electrical charges inside the material volume do not flow like in a conductor but positive charges move toward the field direction and negative charges move in the opposite direction which results a dielectric polarization. Paraelectric materials exhibit an enhanced non-linear polarization to an applied field. (See the center figure 1.7.) When a material exhibit a spontaneous electric polarization that can be reversed by an external electric field, this material is named as ferroelectric. The prefix "ferro" is for an analogy to ferromagnetism as the ferroelectric materials exhibit a hysteresis loop which can be seen on the right in figure 1.7. Barium titanate BaTiO 3 is an example of ferroelectric insulator. This compound has a perovskite form where Ba atoms sit in the corner of the lattice, Ti atom is at the center and the oxygen atoms surround the Ti on the face-centers creating an octahedron. The spontaneous polarization is created by the ionic displacement inside volume when there is a non-centrosymmetric phase. The displacement of Ti with respect to surrounding oxygens create a dipole moment. The diagram of energy with respect to polarization, on the left in figure 1.8, reveals the double-well feature present in ferroelectric materials. There are at least two directions with equal energy minima for the system, each of them is associated to equal amplitudes but different orientations of the polarization. When there is an applied electric field, one direction of the polarization is preferred over the others so that the degeneracy is no longer active. When the applied field is applied in the opposite direction, the polarization switches to this direction. Figure 1.8 demonstrates the double-well Before finishing this short review of solids, we would like to shortly talk about the concepts of strain, stress and elasticity. Strain is a change in a solid in lattice parameters (length, angle, or volume) compared to its bulk values. Stress is the force per unit area that caused this change (for example, a force applied to the surface of the material). Elasticity is the measure of the deformation of the material when a stress is applied. Strain can be induced in a crystalline material by depositing on an another crystalline material (substrate). This is called as epitaxy.

As we gave the very essential background for the materials, now we can talk about how to control their properties. During this thesis we will focus on thin films and would like to dedicate the next section to a short introduction on the subject.

Thin Films

There has been always a great interest in the solids which have naturally layered-type structures such as the bulk clay minerals or cobaltates in battery. Solid materials can also be artificially layered as it is in thin films. Thin film is a material made of thin layers with a thickness ranging from few atoms to several micrometers. Thin films do usually not exist alone and they have to be deposited on a substrate material. The substrate material imposes its symmetry and lattice parameters by strain to the thin films. The thickness of the film plays a role on up to which unit cell the induced substrate symmetry and lattice parameters will be kept in the films. In a thin film environment, thin part (film) tries to adopt the thick part (substrate). Indeed, in thick films on a substrate only a few unit cells at the interface have the lattice properties and symmetry induced by the substrate. After these unit cells, the films behave as the bulk. In figure 1.9, on the left we give an illustration of a thin film structure deposited on a substrate. Here, a and b denote the lattice parameters of the substrate and c is the thickness of the thin film. On the right, we give an example of a thin film deposited on a substrate: Pr 0.5 Ca 0.5 MnO 3 thin film deposited on SrTiO 3 (STO) [4]. Picture taken from Ref. [4] When two or more different materials are artificially layered together, a new structure, namely a heterostructure, is formed. Heterostructures cannot exist alone and they have to be deposited on a substrate material as well. Heterostructures are a variety of thin films. A heterostructure is named as a superlattice when it is a super periodic structure of layers. The thickness of one layer in a superlattice is generally a few nanometers. In figure 1.10, we give the schematical representation of an example of superlattice. Here, on a substrate material, the material A is layered thrice and the material B is layered four times, this repeats twice leading to a [(A 3 )/(B 4 )] 2 superlattice. The properties of very thin heterostructures/superlattices are mainly determined by their surfaces and interfaces. In a solid heterostructure, an interface separates two solids while a surface of a solid is in fact a simple type of interface, at which the solid is in contact with the atmosphere or the vacuum. The properties of the heterostructure at the interfaces might differ significantly from the parent bulk materials. For example, when a metallic film is deposited on a semi-conductor, there exists a semi-conductor/metal interface and one can expect new phenomena to appear at the interface. From a more general point of view, in a solid compound, there are different degrees of freedom; that are spin, charge, orbital and lattice degrees of freedom. Tuning these different degrees of freedom is possible by creating interfaces which cause some effects such as symmetry breaking, charge transfer, strain, electrostatic coupling, frustration as illustrated in figure 1.11. Symmetry Fig. 1.11 Spin, charge, orbital and lattice at interfaces between different oxides can be modified through the effects of local symmetry breaking, charge transfer, electrostatic coupling, strain, and frustration. Picture from Ref. [5] breaking at interfaces results with modification of the electronic and structural properties of heterostructure. Charge transfer between one material to another takes place if two interfacing materials have different chemical potentials. When two interfacing materials have different lattice parameters, epitaxial strain is produced at the interface which is a useful tool to control the lattice distortions and influence the electronic degrees of freedom so that alternative electronic and structural ground states can be stabilized. In a thin film environment, substrate induce strain effects on the thin film which modifies the latter's lattice parameters. When two polar materials are attached to each other, electrostatic interactions at the interface result in electrostatic coupling between the layers. When there is a competition between different interactions at the interface, frustration can take place resulting in new structural and electronic phases.

Substrate

Most of the technological applications require thin films. Therefore, constructing such films and understanding their properties are vital. The material can exhibit quite different properties when it is built as thin films compared to the bulk form due to deposition conditions. In a thin film environment, two surfaces (substrate and thin film) are close to each other, where the former can impact on the latter's physical properties. This influence can lead to new phenomena appearing. Indeed, imposed strain effects by the substrate can stabilize different structures that do not appear under the classical conditions of pressure and temperature. For example, the metastable perovskite compounds BiMnO 3 and YMnO 3 cannot exist in bulk and can only be prepared under high pressure. However, these metastable phases can be synthesized as thin films via a pulser laser method [6,7]. The dimensions of thin films are well defined and controllable. The thickness, for example, can be reduced to one unit cell. Thus, the deposition of ultrathin films or superlattices are possible. Reducing one dimension of a material makes the system an intermediate one between macro and molecular systems in which one can expect to investigate physical properties in microscopic scale. In addition, growing artificially multilayer structures and controlling the film orientations are possible in thin film technology which are essential for device applications. At last but not least, one can engineer the properties of some materials such as manganese oxides by using artificial superlattices. Indeed, it has been shown that stacking a magnetic layer La 0.7 A 0.3 MnO 3 (A = Sr, Ca or Ba) with an insulator such as SrTiO 3 can create exotic properties in the system [START_REF] Kwon | Desirable magnetotransport properties in doped mn-oxide-based superlattices[END_REF][START_REF] Lu | Magnetoresistance of coherently strained la 2/3 ba 1/3 mno 3 /SrTiO 3 superlattices[END_REF][START_REF] Jo | Inhomogeneous transport in heteroepitaxial la 0.7 ca 0.3 mno 3 /srtio 3 multilayers[END_REF][START_REF] Izumi | la 1-x sr x mno 3 superlattices composed of ferromagnetic x = 0.4 and antiferromagnetic x = 0.55 layers[END_REF]. For instance, in La 0.7 Ca 0.3 MnO 3 , the magnetoresistance (MR) can be enhanced at low temperature and the metallic transition is supressed when the superlattice thickness is about 25 Å [START_REF] Jo | Inhomogeneous transport in heteroepitaxial la 0.7 ca 0.3 mno 3 /srtio 3 multilayers[END_REF].

Since we would like to focus on manganite superlattices/thin films in this thesis, next chapter is dedicated to manganites. We will recall some fascinating features that manganites hold and explain structural, electronic and magnetic properties of manganites. 

Why Manganites?

Ever since Jonker and Van Santen reported the existence of ferromagnetism in the mixed crystals of LaMnO 3 -AMnO 3 (A = Sr, Ca or Ba) in 1950s [START_REF] Jonker | Ferromagnetic compounds of manganese with perovskite structure[END_REF], these doped manganese oxides, named as manganites, are under the spotlight of scientists. Indeed, manganites, given with the formulation AMnO 3 , have been fascinating the scientists since then, due the opportunity to obtain large varieties of systems depending on the solid solution of the site A. Naturally, due to the potentiality for applications, a greater interest has been given into the class of manganites that exhibit large Curie temperature. The colossal magnetoresistance effect is another reason which makes the manganites desirable for applications. Lastly but most importantly, the manganites present rich phase diagrams in terms of both transport and magnetic properties depending on the concentration of the doping elements. Given all these interesting qualities, there have been a great amount of theoretical and experimental studies carried out and yet, even today there are still many things to exploit in manganites.

In 1950, Jonker and Van Santen discovered the dependence of the Curie temperature (T c ), saturation magnetization (M s ), and electrical resistivity (ρ) in various ferromagnetic doped LaMnO 3 compounds [START_REF] Jonker | Ferromagnetic compounds of manganese with perovskite structure[END_REF][START_REF] Van Santen | Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[END_REF]. For the doping value x ∼ 0.35, they showed that La 1-x Sr x MnO 3 is ferromagnetic and has a maximum Curie temperature of T c ∼ 370K, with a saturation magnetization of M s ∼ 90G/g, and a minimum electrical resistivity compared to the other doping values. (See Figure 2.1). Jonker and Van Santen stated that the ferromagnetic properties are the result of a strong Mn 3+ -Mn 4+ exchange interaction, combined with a weak Mn 3+ -Mn 3+ interaction and a negative Mn 4+ -Mn 4+ interaction. They also showed that the change of the Curie temperature in these materials cannot only be explained by the simple exchange interaction. Later studies showed that what determines the Curie temperature is not the distance between manganese atoms, but the Mn -O -Mn angle.

On the track of Jonker and Van Santen's steps, Volger's measurements on La 0.7 Sr 0.3 MnO 3 showed that magnetism and electrical conductivity are correlated [START_REF] Volger | Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure[END_REF]. In 1951, Zener brought a theoretical explanation of the appearance of ferromagnetism by an effect called "double exchange mechanism" [START_REF] Zener | Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure[END_REF], which we will explain in details in this chapter. The doubleexchange mechanism also explained the correlation between the electrical conduction and ferromagnetism in doped manganites, reported in Jonker and Van Santen's seminal paper [START_REF] Van Santen | Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[END_REF]. In 1955, using neutron scattering techniques, Wollan and Koehler obtained a detailed characterization of the type of the magnetic orders for La 1-x Ca x MnO 3 and built the very first magnetic structure-based phase diagrams for manganites [START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF]. Their samples were purely ferromagnetic over a relatively narrow range of composition (x ∼ 0.35), showed simultaneous occurrence of ferromagnetic and antiferromagnetic phases in the ranges (0 < x < 0.25) and (0.40 < x < 0.5), and antiferromagnetic orders at x = 0 and x > 0.5. During the same period, Jonker related the ferromagnetic and metallic phases of the manganites to lattice and crystal structure [START_REF] Jonker | Magnetic compounds with perovskite structure iv conducting and nonconducting compounds[END_REF]. He stated that LaMnO 3 is antiferromagnetic, but it could be ferromagnetic if the cubic perovskite structure, present at high temperatures, could be preserved at low temperature. He concluded that when the structure gets closer to a stable cubic structure, then the Mn 3+ -O 2--Mn 4+ bonds are stronger and a stronger double exchange mechanism takes place. In 1969, Searle and Wang reported the magnetic field dependence of the resistivity for La 1-x Pb x MnO 3 , and in particular the existence of a large magnetoresistance effect near the Curie temperature [START_REF] Searle | Studies of the ionic ferromagnet (lapb)mno3. v. electric transport and ferromagnetic properties[END_REF]. The magnitude of the magnetoresistance was reported to be 20% at room temperature, for B = 1 T [START_REF] Searle | Studies of the ionic ferromagnet (lapb)mno3. v. electric transport and ferromagnetic properties[END_REF]. Fig. 2.1 Magnetic properties of La 1-x Sr x MnO 3 with respect to Sr doping: (top left) Curie temperature T c (K), (top right) saturation magnetization M s at 90 K (label "calculated" corresponds to the saturation magnetization calculated on the assumption that all 3d electrons in the mangenese ions contribute with their spins to the saturation magnetization), (bottom) resistivity ρ. (Picture taken from references [START_REF] Jonker | Ferromagnetic compounds of manganese with perovskite structure[END_REF][START_REF] Van Santen | Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[END_REF])

In 1988, the so-called "giant" magnetoresistance (GMR) was discovered in Fe/Cr superlattices [START_REF] Baibich | Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices[END_REF][START_REF] Binasch | Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[END_REF]. In these superlattices with thin Cr layers, A. Fert and P. Grünberg observed that the magnetoresistance is very large; indeed, for example the resistivity is reduced by a factor of 2 at T = 4.2 K and B = 2 T in Fe/Cr superlattice samples, with a Cr layer thickness of 9 Å [START_REF] Baibich | Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices[END_REF]. This so-called GMR materials are made of metallic multilayers and heterogeneous films. The magnetoresistance values do typically range between 5 -150% in these compounds [START_REF] Parkin | Giant magnetoresistance in antiferromagnetic co/cu multilayers[END_REF][START_REF] Berkowitz | Giant magnetoresistance in heterogeneous cu-co alloys[END_REF][START_REF] Fullerton | 150% magnetoresistance in sputtered fe/cr(100) superlattices[END_REF][START_REF] Chen | Creation of bulk, superlatticelike structure and giant magnetoresistance effect in a deformed cu-ni-fe alloy[END_REF][START_REF] Hylton | Giant magnetoresistance at low fields in discontinuous nife-ag multilayer thin films[END_REF]. The interest in manganites was then triggered by the observation of similarly large magnetoresistance effects in Nd 0.5 Pb 0.5 MnO 3 [START_REF] Kusters | Magnetoresistance measurements on the magnetic semiconductor nd0.5pb0.5mno3[END_REF] single crystal and in La 2/3 Ba 1/3 MnO 3 [START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF] thin films. Their resistivity as a function of an applied magnetic field is reported in figure 2.2, extracted from references [START_REF] Kusters | Magnetoresistance measurements on the magnetic semiconductor nd0.5pb0.5mno3[END_REF][START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF]. On the left, for different magnetic fields, the resistivity of the [110] direction cut from Nd 0.5 Pb 0.5 MnO 3 single crystal is given as a function of temperature for different external magnetic fields. The largest resistivity at zero field appears close to 185 K. Below 185 K, the resistivity decreases sharply, by two orders of magnitude. Between 190 K and 300 K, the resistivity declines. The largest negative magnetoresistance (MR) appears close to the peak in the zero-field resistivity, where the resistivity is reduced by two orders of magnitude. When the magnetic field increases, the peak in the resistivity get smaller and occurs at higher temperatures. In the case of La 2/3 Ba 1/3 MnO 3 ferromagnetic thin films, the resistivity measurements at room temperature [START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF] showed a large magnetoresistance of more than 60%, formulated as ([ρ(0)ρ(B)]/ρ(0) where ρ(B) and ρ(0) are the resistivities at magnetic field B and without field respectively) which can be seen on the right in figure 2.2. However, using the magnetoresistance formulation usually used for magnetic multilayers, which is [ρ(B)ρ(0)]/ρ(B), gives us the giant MR value 150%. From now on, the values given for magnetoresistance will be reported by taking into account the latter formulation. Later, in the La 0.67 Ca 0.33 MnO x thin films, the magnetoresistance effect is reported to be of 127000% at 77 K, B = 6 T [START_REF] Mccormack | Very large magnetoresistance in perovskite-like la-ca-mn-o thin films[END_REF][START_REF] Jin | Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films[END_REF] (See figure 2.3). This huge magnetoresistance was called colossal magnetoresistance (CMR) since it is of three orders of magnitude larger than giant magnetoresistance (GMR). This large increase in magnetoresistance created a big impact in the field of manganites. Indeed, CMR effect offers tremendous potentials in the technologies of magnetic recording, spin-polarized electronics, sensors and etc.

In conventional ferromagnets spin is not coupled with the lattice. However, in CMR manganites, charge, spin, and lattice degrees of freedom are strongly coupled and these couplings give rise to a rich variety of physical phenomena. Thus, in order to understand the CMR effect, researchers enlarged their perspectives from the ferromagnetic metallic phase to the doping regions where there exist many different competing phases. Half-doped manganites are given with the generic formulation of R 1-x A x MnO 3 . Here, R is a trivalent element and A is a divalent alkaline element. Depending on the choice of R and A, the composition can exhibit a wide range of magnetic and electric phenomena, including ferromagnetic, antiferromagnetic, charge, and orbital ordering. In Figure 2.4 one can see the phase diagrams of La 1-x Sr x MnO 3 (LSMO), Nd 1-x Sr x MnO 3 (NSMO) and Pr 1-x Ca x MnO 3 (PCMO) [START_REF] Tokura | Colossal magnetoresistive manganites[END_REF]. This figure pictures the variety of the systems that one can Fig. 2. 4 The magnetic and electronic phase diagrams of La 1-x Sr x MnO 3 (left), Nd 1-x Sr x MnO 3 (center) and Pr 1-x Ca x MnO 3 (right). The PI, PM and CI stand for the paramagnetic insulating, paramagnetic metallic and spin-canted insulating states, respectively. The FI, FM, and AFM denote the ferromagnetic insulating and ferromagnetic metallic, and antiferromagnetic (A-type) metallic states, respectively. (Picture taken from reference [START_REF] Tokura | Colossal magnetoresistive manganites[END_REF]) obtain in rare-earth manganites depending on the solid solutions of R and A. For example, LSMO is a ferromagnetic metal in the doping region x = 0.3, so is NSMO, whereas PCMO is a ferromagnetic insulator. Since La 1-x Sr x MnO 3 has the largest T c (370 K) among manganites and a large bandwidth, significant amount of attention and focus have been given to the study of these manganites. Thanks to this, the phase diagram of LSMO is the most complete phase diagram among all manganites [START_REF] Dunaevskii | Magnetic phase diagrams of manganites in the electron doping region[END_REF]. (see figure 2.5) This diagram was obtained by the measurements of structural, magnetic, and transport properties on single crystals of LSMO within 0 ≤ x ≤ 0.85 region. At low temperature, the system presents different magnetic orderings depending on the Sr concentration. In the doping region of 0.16 ≤ x ≤ 0.5, LSMO is ferromagnetic below the Curie temperature. For T < 200K, between the doping values 0.5 and 0.6, the magnetic ground state is either canted (CA) metallic or a non-uniform phase-seperated (PS). For 0.6 ≤ x ≤ 0.7 and T < 200K, LSMO is A-type antiferromagnetic metal. As Sr concentration increases, the phase transfers to C-type insulating AFM state. Lastly, for x > 0.9, it goes through its G-type insulating AFM phase.

For the LSMO, it was shown by Tokura et al. that the magnetoresistance effect is maximized in the doping region x = 0.175 which is the transition point from insulating to metallic states at low temperatures [START_REF] Tokura | Giant magnetotransport phenomena in filling-controlled kondo lattice system: La1-xsrxmno3[END_REF]. This magnetoresistance effect is pictured in figure 2.6. A large MR value around 90% is seen close to T c = 283K. Such a large MR above T c is the indication of an insulator-metal transition.

With applications in mind, one can wonder whether it is possible to control these fascinating properties of manganites. One way to do it is to deposite the manganites as thin films, so interface effects or strain engineering can take place. Thus, we choose to work with La 1-x Sr x MnO 3 (x = 1/3) (LSMO) thin films because both Mn 3+ and Mn 4+ coexist in the bulk LSMO and the Curie temperature of bulk LSMO as a function of hole doping is one of the highest (T c ≃ 370K). The question here is whether this Curie Temperature can be controlled and whether it can be increased. Let us first take a look on the general structure of manganites. Then later, in order to understand the behaviour and properties of LSMO, we shall recall the properties of the parent compounds. 

General Properties of CMR Manganites

Structure

The manganites, i.e. the compounds with AMnO 3 formula, where A is either a cation or a mixture of two or more of such elements, or vacancies, mostly crystallize at high temperature in the so-called cubic perovskite structure (space group Pm 3m) as shown at left in figure 2.7. The perovskite structure allows the system to be doped in a large variety on both A and Mn sites. In most of the cases, dopants on the A-site can form homogeneous solid solution. At low temperature, perovskites exhibit lattice distortions leading to symmetry breakings. One of very well known lattice distortion arises from the deformation of the MnO 6 octahedron and originates from a Jahn-Teller effect which we will explain later in this chapter. In the ideal AMnO 3 perovskite structure given at the left in figure 2.7, the mismatch between the equilibrium A -O and Mn -O bond lengths is given by a tolerance factor t = (A-O) Fig. 2.7 (Left) Schematic picture of a cubic perovskite manganite. A cation sits at the corners. Mn is at the center of the unit cell. Oxygens are at the face centers and form an octahedron around Mn atom. Schematic distorted perovskite structures of manganite: orhorhombic (center) and rhombohedral (right) Goldschmit's tolerance factor. When t is close to 1, the cubic perovskite structure is realized. As t decreases, the lattice structure transforms to the rhombohedral (0.96 < t < 1) and then to the orthorhombic (t < 0.96) structures in which the Mn -O -Mn bond angle is also modified. On the other hand, when t > 1, which is the indication that the cation in the A-site is too large, the hexagonal perovskite structure appears. In hexagonal perovskite structures, the MnO 6 octahedra exhibit face-sharing and chain-formation along the ⃗ c axis.

Taking into account the general perovskites with the formula ABO 3 let us briefly give examples of perovskites with varying t values. When t > 1, the structure adjusts through ferroelectric displacements in the perovskite, such as in BaTiO 3 (A = Ba, B = Ti). When t < 1, there are cooperative rotations of BO 6 octahedra around a cubic [001] axis, such as in CaTiO 3 (A = Ca, B = Ti) [START_REF] Farrel | X-ray diffractometry of low-temperature phase transformations in strontium titanate[END_REF]. These cooperative rotations also adjust to t < 1 in some manganites such as La 0.7 Ba 0.3 MnO 3 at T = 1.6 K around a cubic axis [101] in orthorhombic space group (Imma) [START_REF] Radaelli | Structural phase diagram of perovskite A 0.7 A ′ 0.3 MnO 3 (a= la, pr; a'= ca, sr, ba): A new imma allotype[END_REF]. These rotations bend the Mn -O -Mn bond angle from 180 • to 180 •α and as a consequence affect the magnetic interactions which takes place between Mn ions.

Hwang et al. studied the correlation between the Curie temperature and the average ionic radius of La site ⟨r A ⟩ in doped LaMnO 3 [START_REF] Hwang | Lattice effects on the magnetoresistance in doped lamno 3[END_REF]. They found a decrease in T c and a sharp increase in the magnetoresistance near the T c for decreasing ⟨r A ⟩ values. They also noted that decreasing ⟨r A ⟩ values also reduces the Mn -O -Mn bond angle and thereby the electron hopping matrix element between the Mn sites since the bond angle is the responsible parameter for electron hopping between Mn sites. Mahesh et al. also studied the same relation in rare-earth manganites and stated that ferromagnetic transition temperature T c and insulator-metal transition temperature T p increases with ⟨r A ⟩ [START_REF] Mahesh | Effect of the internal pressure due to the a-site cations on the giant magnetoresistance and related properties of doped rare earth manganates, ln1-xaxmno3 (ln = la, nd, gd, y; a = ca, sr, ba, pb)[END_REF]. In figure 2.8, one can see the temperature as a function the tolerance factor and as well as ⟨r A ⟩. x MnO 3 . (Picture taken from references [START_REF] Hwang | Lattice effects on the magnetoresistance in doped lamno 3[END_REF] (left) and [START_REF] Mahesh | Effect of the internal pressure due to the a-site cations on the giant magnetoresistance and related properties of doped rare earth manganates, ln1-xaxmno3 (ln = la, nd, gd, y; a = ca, sr, ba, pb)[END_REF] (right)) However, the electronic and magnetic properties of manganites depend not only on the tolerance factor or ⟨r A ⟩, but also on the size mismatch between the A-size cations defined by the variance σ 2 = ∑ i y i r 2 ir 2 A , where r i is the radius of each R 3+ and D 2+ , y i is fractional occupations of the i ions, r A is the average ionic radius of R 3+ and D 2+ [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF][START_REF] Damay | Cation disorder and size effects upon magnetic transitions in ln0.5a0.5mno3 manganites[END_REF][START_REF] Martin | Magnetic phase diagrams of L 1-x A x mno 3 manganites (l = Pr, Sm; a = Ca, Sr)[END_REF][START_REF] Terai | Electronic and magnetic properties of R 0.5 A 0.5 mno 3 compounds (r = Gd, dy, ho, er; a = Sr, ca)[END_REF][START_REF] Yusuf | Magnetic and electrical properties of (la 1-x dy x ) 0.7 ca 0.3 mno 3[END_REF]. The variance σ 2 determines the random distribution of the Mn -O -Mn bonds. Rodriguez-Martinez et al. [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF] studied the cation size and disorder effects in various rare earth manganites in the doping region x = 0.3. They pointed out that the metal-insulator transition temperature decreases as the variance σ 2 increases as one can see on the left in figure 2.9. They have proposed a fit to the linear region of this data in this figure with the relation:

T m (⟨r A ⟩, σ 2 ) = T m (⟨r A ⟩, 0) -p 1 σ 2 .
Here, T m (⟨r A ⟩, 0) is an estimate of the ideal metal-insulator transition temperature if cation-size disorder were not present, i.e σ 2 → 0 and p 1 is the slope of the fitting and gives the Mn -O force constant. Damay et al. [START_REF] Damay | Cation disorder and size effects upon magnetic transitions in ln0.5a0.5mno3 manganites[END_REF] also studied cation disorder and size effects upon magnetic transitions in various rare earth manganites in the doping region x = 0.5. They have used the same fitting procedure proposed by Rodriguez-Martinez et al. [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF]. One can see on the right in figure 2.9 that the Curie temperature decreases as the variance σ 2 increases. [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF] (left) and [START_REF] Damay | Cation disorder and size effects upon magnetic transitions in ln0.5a0.5mno3 manganites[END_REF] (right))

Parent Compounds

One can classify the undoped manganites into two groups: RMnO 3 and AMnO 3 . Here, R is a trivalent rare-earth atom and A is a divalent alkaline earth atom like Ca or Sr. Both RMnO 3 and AMnO 3 are antiferromagnetic insulators. Let us briefly take a look at the literature for the crystal structures and magnetic orderings of LaMnO 3 (La 3+ ), CaMnO 3 (Ca 2+ ), BaMnO 3 (Ba 2+ ) and SrMnO 3 (Sr 2+ ) on which we will base our study as mixed-manganites.

The study of lanthanum and calcium manganites are well visited since the mid 50ies. Wollan and Koehler stated that the magnetic ground state of LaMnO 3 is A-type antiferromagnetic (A-AFM) while CaMnO 3 is G-type antiferromagnetic (G-AFM) [START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF]. Yakel studied the structures of LaMnO 3 and CaMnO 3 compounds by means of X-ray powder diffraction at room temperature [START_REF] Yakel | On the structures of some compounds of the perovskite type[END_REF]. At low temperature, Yakel reported orthorhombic structure for LaMnO 3 and CaMnO 3 with a tolerance factor around 0.92. Elemans et al. studied mixed manganites La 1-x Ba x MnO 3 and found the orthorhombic structure present with the space group Pbnm from X-ray and neutron diffractions at room temperature though this orthorhombic distortion becomes smaller with increasing x values [START_REF] Jacqueline | The crystallographic and magnetic structures of la1-xbaxmn1-xmexo3 (me = mn or ti)[END_REF]. Later, CaMnO 3 was reported to have an orthorhombic derivative (Pbnm space group) of the ideal cubic perovskite with nearly perfect octahedra [START_REF] Poeppelmeier | Structure determination of CaMnO 3 and CaMnO 2.5 by x-ray and neutron methods[END_REF][START_REF] Poeppelmeier | Camno2.5 and ca2mno3.5: New oxygen-defect perovskite-type oxides[END_REF][START_REF] Freyria Fava | A quantum mechanical investigation of the electronic and magnetic properties of perovskite[END_REF][START_REF] Rørmark | Enthalpies of oxidation of camno3-δ , ca2mno4-δ and srmno3-δ deduced redox properties[END_REF]. Rodríguez-Carvajal et al. also studied LaMnO 3 by thermal analysis and high-resolution neutron-powder diffraction [START_REF] Rodríguez-Carvajal | Neutron-diffraction study of the jahn-teller transition in stoichiometric lamno 3[END_REF]. At room temperature, they obtained the orthorhombic phase with Pbnm space group with an antiferrodistortive orbital ordering which is due to the Jahn-Teller effect. Above 750 K, there is a structural phase transition where this Jahn-Teller effect disappears as well as the orbital ordering disappears. The crystal symmetry does not change with this transition but lattice becomes metrically cubic and MnO 6 octahedra becomes more ideal at high temperature. They finally reported that at 1010 K the phase transiton Pbnm → R 3c → Pm 3m occurs due to steric-thermal effects.

In 1968, Syono et al. studied the phase stability of BaMnO 3 and SrMnO 3 compounds [START_REF] Syono | Structure relations of hexagonal perovskite-like compounds abx3 at high pressure[END_REF]. They showed that these two manganites have hexagonal perovskite-like structures. Indeed, at normal pressure BaMnO 3 has a two layered hexagonal structure (2H) while SrMnO 3 has a four layered hexagonal structure (4H) [START_REF] Chamberland | Preparation and characterization of bamno3 and srmno3 polytypes[END_REF]. The hexagonal structures for SrMnO 3 and BaMnO 3 can be schematically seen in figure 2.10. BaMnO 3 with 2H hexagonal structure is stable below 1150 • C [START_REF] Negas | Phase equilibria and structural relations in the system BaMnO 3-x[END_REF] whereas SrMnO 3 hexagonal structure is stable in air below 1035 • C with a cubic and a hexagonal perovskite structures [START_REF] Negas | The system SrMnO 3-x[END_REF]53]. In 1988, by neutron diffraction measurements, Battle et al. [START_REF] Battle | The structural and magnetic properties of srmno3: A reinvestigation[END_REF] stated that SrMnO 3 is paramagnetic at room temperature and has a hexagonal structure with P6 3 /mmc. Chamberland et al. [START_REF] Chamberland | Preparation and characterization of bamno3 and srmno3 polytypes[END_REF] have proposed that Fig. 2.10 Schematical picture for hexagonal perovskite structures: (left) the four layered hexagonal (4H-P6 3 /mmc) for SrMnO 3 , the two layered hexagonal (2H-P6 3 /mmc) for BaMnO 3 the hexagonal SrMnO 3 has an antiferromagnetic ordering with Néel temperature T N = 350 K but Battle et al. [START_REF] Battle | The structural and magnetic properties of srmno3: A reinvestigation[END_REF] reported a short-range antiferromagnetic coupling between Mn ions in face-sharing MnO 6 octahedra above T N = 278 ± 5 K. At 290 K, there is no long-range magnetic ordering. The hexagonal SrMnO 3 structure is stable up to about 1309 K above which it transforms to a cubic structure. [START_REF] Negas | The system SrMnO 3-x[END_REF] The high-temperature cubic SrMnO 3 survives as a metastable phase at low temperatures if quenched. This cubic SrMnO 3 has a G-type antiferromagnetic structure at low temperature [START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF]. Both the hexagonal and the cubic structures are semiconductors.

For the crystal structures of mixed manganites, we can look back at the phase diagram of La 1-x Sr x MnO 3 (LSMO) given in figure 2.5. One can see that LSMO is orthorhombic for small values of doping value x like the undoped LaMnO 3 . When 0.2 < x < 0.5, LSMO is rhombohedral. At low temperature, when 0.5 < x < 0.7, LSMO is monoclinic. In the same interval it is tetragonal at high temperature. When x values approaches to 1, LSMO is hexagonal like SrMnO 3 .

As we shortly described the crystal structures and magnetic orderings of the undoped manganites LaMnO 3 , CaMnO 3 , BaMnO 3 , SrMnO 3 and La 1-x Sr x MnO 3 now we would like to recall the electronic structure of the manganites.

Atomic Electronic Structure

Manganese (Mn) belongs to the family of transition metals. It has 25 electrons with the electronic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 in which there exist 7 valence electrons (2 valence electrons in the 4s shell and 5 valence electrons in the 3d shell). Let us first define the orbitals of the 3d shell, i.e. the magnetic orbitals. In figure 2 

Crystal-Field Splitting

In an isolated atom, these 3d orbitals of Mn would be degenerated. However, when manganese atoms are embedded in a specific crystal geometry, in a solid state system, Mn being positioned at the approximate center of an "octahedron", breaking of the orbital degeneracy takes place. In other words, the orbital degeneracy is removed by the presence of a crystal field and the 3d orbitals energies are split. One can schematically see in figure 2.12 that for an Mn atom embedded in a regular octahedron, the 3d orbitals are split into subsets e g (d 2.12 Crystal Field Splitting of a regular octahedron. Five-fold degenerate atomic 3d levels split into lower t 2g (triply degenerate) and higher e g (doubly degenerate) levels.

In an isolated, free ion, the one-electron potential v R (⃗ r) has a O(3) symmetry (spherical symmetry) and it is invariant under any rotation. Thus, all one-electron states within a given shell (3d shell in the Mn ion case) are degenerate. However, when the same ion is embedded inside a molecule or a solid, the one-electron potential v R (⃗ r) is expected to have a lower symmetry, thus the one-electron states of the the given shell will split. This symmetry reduction arises from crystal field; which has two components:

• Ionic Contribution: Coulomb potential generated by the surrounding charged ions (dominant in ionic crystals)

• Covalent Contribution: Ligand field due to the bonding with neighbours.

Ionic contribution is dominant when the crystal is perfectly ionic and the ions can be treated as point charges. Then, the one-electron potential can be given as

v R (⃗ r) = ∑ µ q µ | ⃗ A µ -⃗ r| = v 0 (r) + ∑ µ̸ =0 q µ | ⃗ A µ -⃗ r| = v 0 (r) + v c (⃗ r) (2.1)
where ⃗ A µ are the position vectors of the ions and q µ are the ion charges. v 0 (r) is the ionic central potential at the site ⃗ A 0 and has spherical symmetry. v c (⃗ r) is the "crystal field potential" at a given site ⃗ A 0 generated by all the surrounding ions in the crystal. For example, in the case of perovskite manganites, at the site of Mn, one can calculate the crystal field potential v c (⃗ r) generated by all the neighbouring oxygen ions (six oxygen ions) using the equation 2.1 and making Taylor expansion approximations. For perovskite structure, one can find that the crystal field potential v c (⃗ r) has an octahedral symmetry. Thus, the crystal field potential v c (⃗ r) lowers the Mn site symmetry from spherical to octahedral. As a consequence, it lifts the degeneracy of the shell. We will not present the details here (a detailed lecture on crystal field splitting can be found in the reference [START_REF] Pavarini | Quantum materials: Experiments and theory[END_REF]), however, based on group theory, one can find how this splitting takes place (d shell splits into e g (d x 2 -y 2 and d z 2 ) and t 2g (d xy , d yz and d xz ) shells). In addition, in order to determine which orbital set is lower in energy, one can calculate the potential v c (⃗ r) = v oct (⃗ r) and find that the e g states are higher in energy than t 2g states since the e g electrons face toward the negative oxygen ions and therefore feel a larger Coulomb repulsion than the t 2g ones, the latter having its nodes directed between the negative oxygen ions. (See figure 2.13.) One must note that this result stands on the is a long-range interaction. Thus, in the same ionic system, at a given site, while the first neighbour interactions yielding an octahedron symmetry the further neighbour interactions can lower the symmetry of the site. Therefore, one should take into account all contributions of the splitting. Indeed, in many crystal systems, the point-charge model is not accurate and moreover, the crystal field has a large covalent contribution, i.e. ligand field. Now, we would like to point out the role of the ligand field on the crystal field splitting. For this purpose, we will use the tight-binding theory. The Hamiltonian of a system for an octahedron can be given as

Ĥ = ∑ σ ∑ m ε d m c † d mσ c d mσ + ε p ∑ σ ∑ n ∑ µ c † p nσ µ c p nσ µ + ∑ µ ∑ σ ∑ m ∑ n t mnµ (c † d mσ c p nσ µ + c † p nσ µ c d mσ ).
(2.2) Here, m stands for the 3d-orbitals of the Mn (i.e. d x -y 2 , d z 2 , d xy , d yz and d xz ) and n stands for the 2p-orbitals of the O (i.e. p x , p y and p z ). µ is the number of the oxygens in the first coordination shell of the Mn (it is equal to 6 locally in an octahedron) and σ is for the spin-up or spin-down electron. Finally, the operator c † d mσ creates a σ -electron in the orbital d m while c d mσ removes a σ -electron in the orbital d m . Similarly, c † p nσ µ creates a σ -electron in the orbital p n of the µth oxygen while c p nσ µ removes a σ -electron in the orbital p n of the µth oxygen. t mnµ is the hopping between d m orbital of the Mn and p n orbital of the µth oxygen.

We encounter two types of bonds between manganese 3d orbitals and oxygen 2p orbitals in the manganese octahedron environment. The σ bond takes place along the orbital axis which makes it the strongest bond among other types of bonds. The d x 2 -y 2 orbital has a σ -bond with p x orbitals of the oxygens located along the ⃗ a direction from the Mn and p y orbitals of the oxygens located along the ⃗ b direction from the Mn while the d z 2 orbital has also a σ -bond with p x orbitals of the oxygens located along the ⃗ a direction from the Mn, p y orbitals of the oxygens located along the ⃗ b direction from the Mn and p z orbitals of the oxygens located along the ⃗ c direction from the Mn. (See figure 2.14 (a).) The π-bond takes place between orbitals which share a nodal plane such as the d xy orbital with p x orbitals of the oxygens located along the ⃗ b direction from Mn and p y orbitals of the oxygens located along the ⃗ a direction from the Mn; the d yz orbital with p y of the oxygens located along the ⃗ c direction from the Mn and p z orbitals of the oxygens located along the ⃗ b direction from the Mn; the d xz orbital with p x orbitals of the oxygens located along the ⃗ c direction from the Mn and p z orbitals of the oxygens located along the ⃗ a direction from the Mn. (See figure 2.14 (b).) a) b) Now we will build the tight-binding Hamiltonian matrix first for the basis of e g orbitals of Mn and 2p orbitals of O. We can build the hopping integrals between the e g and 2p orbitals by using the Slater-Koster parameter V pdσ . For example, the hopping between d x 2 -y 2 and p x a + is given by t x 2 -y 2 p x 1 = V ′ pdσ = √ 3V pdσ /2 and the hopping between d z 2 and p x a + is given by t z 2 p x 1 = -V ′′ pdσ = -V pdσ /2. The hopping between d z 2 and p z c + is given by t z 2 p z 5 = -V pdσ

d z 2 p x a + p y b + V pdσ -V ′′ pdσ -V ′′ pdσ p z c + d xy p x b + p y a + V pdπ V pdπ p x c + d xz p z a + V pdπ V pdπ d yz p y c + p z b + V pdπ V pdπ d x 2 -y 2 p x a + p y b + V ′ pdσ V ′ pdσ ⃗ a ⃗ c ⃗ b ⃗ x ⃗ z ⃗ y
The tight-binding Hamiltonian matrix for the e g orbitals is given by:

|d x 2 -y 2 ⟩ |d z 2 ⟩ |p a + x ⟩ |p a - x ⟩ |p b + y ⟩ |p b - y ⟩ |p c + z ⟩ |p c - z ⟩ H e g =               ε d x 2 -y 2 0 √ 3V pdσ /2 - √ 3V pdσ /2 - √ 3V pdσ /2 √ 3V pdσ /2 0 0 0 ε d z 2 -V pdσ /2 V pdσ /2 -V pdσ /2 V pdσ /2 V pdσ -V pdσ √ 3V pdσ /2 -V pdσ /2 ε p 0 0 0 0 0 - √ 3V pdσ /2 V pdσ /2 0 ε p 0 0 0 0 - √ 3V pdσ /2 -V pdσ /2 0 0 ε p 0 0 0 √ 3V pdσ /2 V pdσ /2 0 0 0 ε p 0 0 0 V pdσ 0 0 0 0 ε p 0 0 -V pdσ 0 0 0 0 0 ε p               (2.3) = H dd H d p H pd H pp (2.4) Here, ε p < ε d x 2 -y 2 = ε d z 2 = ε d , and ∆ pd = ε d -ε p and V pdσ < 0.
As we have given the blocks in 2.4, we can use downfolding method to project out the non-interacting p-electrons and find an operator which acts only in d orbitals space e g -like bands. Thus, using the resolvent of the matrix given in 2.4, we obtain the resolvent matrix;

R(ε, H e g ) = (εI -H e g ) -1 = ε -H dd H d p H pd ε -H pp -1
.

(2.5)

The first matrix element of the resolvent matrix will give us this energy-dependent operator:

H ε e g . R 00 (ε, H e g ) =     ε -(H dd + H d p (ε -H pp ) -1 H pd H ε e g )     -1 (2.6)
By downfolding, we also transformed the previous basis set to an energy-dependent basis set of |d x 2 -y 2 ⟩ ε and |d z 2 ⟩ ε , thus the energy-dependent e g Hamiltonian in this energy-dependent basis is as follows:

|d x 2 -y 2 ⟩ ε |d z 2 ⟩ ε H ε e g =   ε d + 3V 2 pdσ ε-ε p 0 0 ε d + 3V 2 pdσ ε-ε p   |d x 2 -y 2 ⟩ ε |d z 2 ⟩ ε (2.7)
By setting ε = ε d , one can find the eigenenergies of this matrix

ε ′ d = ε d + 3V 2 pdσ ∆ pd .
We can do the same calculations for the t 2g orbitals as well. The Hamiltonian matrix on the basis of the metal t 2g orbitals and the oxygen p-orbitals coupled to the later, is given by the following:

|d xy ⟩ |d yz ⟩ |d xz ⟩ |p b + x ⟩ |p b - x ⟩ |p c + x ⟩ |p c - x ⟩ |p a + y ⟩ |p a - y ⟩ |p c + y ⟩ |p c - y ⟩ |p a + z ⟩ |p a - z ⟩ |p b + z ⟩ |p b - z ⟩ H t 2g =                     ε dxy 0 0 V pdπ -V pdπ 0 0 V pdπ -V pdπ 0 0 0 0 0 0 0 ε dyz 0 0 0 0 0 0 0 V pdπ -V pdπ 0 0 V pdπ -V pdπ 0 0 ε dxz 0 0 V pdπ -V pdπ 0 0 0 0 V pdπ -V pdπ 0 0 V pdπ 0 0 ε p 0 0 0 0 0 0 0 0 0 0 0 -V pdπ 0 0 0 ε p 0 0 0 0 0 0 0 0 0 0 0 0 V pdπ 0 0 ε p 0 0 0 0 0 0 0 0 0 0 0 -V pdπ 0 0 0 ε p 0 0 0 0 0 0 0 0 V pdπ 0 0 0 0 0 0 ε p 0 0 0 0 0 0 0 -V pdπ 0 0 0 0 0 0 0 ε p 0 0 0 0 0 0 0 V pdπ 0 0 0 0 0 0 0 ε p 0 0 0 0 0 0 -V pdπ 0 0 0 0 0 0 0 0 ε p 0 0 0 0 0 0 V pdπ 0 0 0 0 0 0 0 0 ε p 0 0 0 0 0 -V pdπ 0 0 0 0 0 0 0 0 0 ε p 0 0 0 V pdπ 0 0 0 0 0 0 0 0 0 0 0 ε p 0 0 -V pdπ 0 0 0 0 0 0 0 0 0 0 0 0 ε p                     = H dd H d p H pd H pp (2.8)
Using the resolvent of the matrix given in 2.8 we have the resolvent matrix;

R(ε, H t 2g ) = (εI -H t 2g ) -1 = ε -H dd H d p H pd ε -H pp -1
(2.9)

The first element of the matrix gives us the energy-dependent operator which only acts on d-space.

R 00 (ε,

H t 2g ) =     ε -(H dd + H d p (ε -H pp ) -1 H pd H ε t 2g )     -1
(2.10)

We take 

ε d xy = ε d yz = ε d xz = ε d .
|d xy ⟩ ε |d yz ⟩ ε |d xz ⟩ ε H ε t 2g =      ε d + 4V 2 pdπ ε-ε p 0 0 0 ε d + 4V 2 pdπ ε-ε p 0 0 0 ε d + 4V 2 pdπ ε-ε p      |d xy ⟩ ε |d yz ⟩ ε |d xz ⟩ ε (2.11) 
By setting ε = ε d , one can find the eigenenergies of this matrix

ε ′′ d = ε d + 4V 2 pdπ ∆ pd
Finally, the covalent contribution in the 3d-shell crystal field splitting can be given by

∆ ∼ ε ′ d -ε ′′ d = 3 V 2 pdσ ∆ pd -4 V 2 pdπ ∆ pd > 0.
(2.12)

We have shown that the e g orbitals are higher in energy compared to the t 2g ones since the σ bonds are stronger than π bonds.

At this point, one should also recall the notion of "High Spin configuration" and "Low Spin configuration. According to the Hund's rule, for a given electronic configuration with degenerate orbitals, the spin value is maximized. This means that, in a degenerated set of orbitals, electrons must first singly occupy all orbitals with the same spin, before filling in pairs. For instance, for a system of five d electrons in an octahedron environment, there are two possibilities:

• "High Spin configuration": All five d electrons occupy singly all d orbitals with the energy E = -10J ab + 10U ab + 2∆ where J ab is the Hund's exchange energy, U ab is interorbital Coulomb repulsion energy and ∆ is the crystal field splitting energy (See figure 2.15 a)).

• "Low spin configuration": Three electrons will first fill t 2g level with the same spins and then the two electrons will be paired in Before finishing the section on the crystal field splitting, we would like to give the density of states and band structure of an ideal cubic perovskite LaMnO 3 (space group Pm3m) obtained by a single-point non-magnetic calculation within B1WC hybrid functional [56] with CRYSTAL code [START_REF] Dovesi | CRYSTAL09 User's Manual[END_REF] in figure 2.16. Through this figure, one can easily see the effect of the splitting of the 3d orbitals. The bands issued from the t 2g orbitals (in green) lie down under the Fermi level whereas the bands issued from the e g orbitals (in red) are above the Fermi level. One can also depict from band structure along the path Γ -R that the e g orbitals are doubly-degenerated and the t 2g orbitals are triply-degenerated.

t

Jahn-Teller Distortion

Let us assume a physical system consisting of a large number of particles; that is nuclei and electrons. The time-independent Schrödinger equation, that is ĤΨ = EΨ, describes stationary states of such a system. Here, Ĥ is the Hamiltonian operator and E is the energy of the state Ψ. The Born-Oppenheimer approximation helps us to write the system many-body ). The bands issued from the e g orbitals are in red, the bands issued from the t 2g orbitals are in green. The special points in the band structure are Γ = (0, 0, 0), M = (π/a, π/a, 0), X = (π/a, 0, 0), R = (π/a, π/a, π/a)

wave function Ψ as a product of a many-body electron wave function ψ and a many-body nuclei wave function φ :

Ψ({⃗ r}; { ⃗ R}) = ψ({⃗ r}) { ⃗ R} φ ({ ⃗ R}),
where {⃗ r} and { ⃗ R} are respectively the ensemble of the position vectors of the electons and the nuclei. Thus, the Hamiltonian operator can be split into two operators as well:

Ĥel ({⃗ r}) { ⃗ R} = Te ({⃗ r}) + VeN ({⃗ r}) { ⃗ R} + Vee ({⃗ r}) + VNN Ĥnucl ({ ⃗ R}) = TN ({ ⃗ R}) + E({ ⃗ R})
Here, Te and TN are kinetic energy operators for electrons and nuclei. VeN , Vee and V NN are the potential energy operators for electron-nuclei, electron-electron and nuclei-nuclei, respectively. The time-independent Schrödinger equation, ĤΨ = EΨ also splits into:

Ĥel ψ({⃗ r}}) { ⃗ R} = E({ ⃗ R}) ψ({⃗ r}) { ⃗ R} Ĥnucl φ ({ ⃗ R}) = E φ ({ ⃗ R})
Let us assume that, for a given system defined by {⃗ r} and { ⃗ R}, we have solved the electronic eigenvalue problem defined by Ĥel . Let us also assume that { ⃗ R} = { ⃗ R 0 } defines a crystal structure whose electronic ground state is degenerated. Thus, one will wonder whether this crystal structure, that { ⃗ R 0 } defines, is stable. According to the Jahn-Teller theorem [START_REF] Jahn | Stability of polyatomic molecules in degenerate electronic states. i. orbital degeneracy[END_REF], such a system is not stable and any non-linear system with a degenerate electronic ground state will undergo some symmetry breaking by removing the symmetry constraint on the wave-functions to lower the energy and remove the electronic degeneracy. This electronic instability will drive lattice distortions. These distortions are named "Jahn-Teller distortion", and the reason behind it is the coupling between the electrons and the nuclei when occurring locally as on a single ion. Jahn-Teller distortion is mostly seen when transition metals happen to be in octahedral environments, but it can be observed in tetrahedral compounds as well.

As stated before, in an octahedral environment, the five d atomic orbitals are split into two degenerate sets: e g and t 2g . When the system has a degenerate electronic ground state (partially filled e g or t 2g orbitals), it will distort to remove this degeneracy and lower its energy. In octahedral environments, one way to remove the degeneracy is either by elongation or compression along one direction. The effects of elongation or compression are determined by the overlap between the transition metal and ligand orbitals. Now, let us take a deeper look on how the Jahn-Teller effect takes place with the insight given in the references [START_REF] Pavarini | Quantum materials: Experiments and theory[END_REF][START_REF] Pavarini | Correlated electrons: from models to materials[END_REF]. Let us take a system in an equilibrium structure, { ⃗ R 0 } with degenerate electronic ground states. The ground state energy is labelled as E({ ⃗ R 0 }) with the degeneracy d > 1. For the simplicity, we take this energy as zero energy. The corresponding degenerate electronic many-body wavefunctions are

ψ j ({⃗ r}) { ⃗ R} , j = 1, • • • , d.
Since E({ ⃗ R}) acts as a potential for the nuclei Hamiltonian we can label ÛN = E({ ⃗ R}). This potential is also called Born-Oppenheimer potential energy surface and in the system under our consideration there are d Born-Oppenheimer energy surfaces. The energy surfaces close to { ⃗ R 0 } can be classified in two classes:

• Renner-Teller section: The equilibrium structure, {R 0 } is a stationary point for all d surfaces ( ⃗ ∇ ÛN ({ ⃗ R 0 }) = ⃗ 0).

• Jahn-Teller section: The equilibrium structure, {R 0 } is not a stationary point for at least some of the surfaces ( ⃗ ∇ ÛN ({ ⃗ R 0 }) ̸ = ⃗ 0 at least in some direction).

One can expand ÛN around equilibrium structure { ⃗ R 0 } by assuming { ⃗ R 0 } is a stationary point and find;

Ĥnucl = TN + ∑ I ∑ ν ∂ ÛN ∂ u Iν |{ ⃗ R 0 } =0 u Iν + 1 2 ∑ I ∑ ν ∑ I ′ ∑ ν ′ ∂ 2 ÛN ∂ u Iν ∂ u I ′ ν ′ |{ ⃗ R 0 } u Iν u I ′ ν ′ ÛPH N + • • • (2.13)
where ⃗ u I = ⃗ R I -⃗ R 0 I is the displacement vector for the atoms with respect to their equilibrium position. Here, I and I ′ are indexes for atoms and µ = x, y, z are the cartesian coordinates. Thus, one can write Ĥnucl ∼ TN + ÛPH N .

This Hamiltonian gives the phonon dispersions in a crystal. Going back to the cases where ⃗ ∇ ÛN ({ ⃗ R 0 }) ̸ = ⃗ 0; the classical Jahn-Teller systems, one can consider small distortions around { ⃗ R 0 } in order to lift the degeneracy of the d degenerate eigenvalues of the electronic Hamiltonian Ĥel . This leads to:

⟨ψ j | Ĥel ({⃗ r}) { ⃗ R} |ψ j ′ ⟩ = E({ ⃗ R 0 })δ j= j ′ + ∑ I ∑ ν ⟨ψ j | ∂ Ĥel ∂ u Iν |{ ⃗ R 0 } |ψ j ′ ⟩ u Iν ÛJT j, j ′ + • • • . (2.14)
Here, ÛJT j, j ′ is a perturbation between the degenerate j and j ′ energy surfaces and named the Jahn-Teller potential. This potential does not only couple the energy surfaces but also couples electrons and lattice vibrations. Thus we can rewrite the Born-Oppenheimer approximation as follows:

Ψ({⃗ r}; { ⃗ R}) = ∑ d ψ d ({⃗ r}) { ⃗ R} φ d ({ ⃗ R}).
(2.15)

Then, considering the nuclei part of time-independent Schrödinger equation Ĥ = EΨ, one can obtain:

Ĥnucl φ d ({ ⃗ R}) = TN + ÛPH N φ d ({ ⃗ R}) + ∑ d ′ ÛJT d,d ′ φ d ({ ⃗ R}) = E φ d ({ ⃗ R}). (2.16)
The ground state of equation 2.16 leads to a new structure { ⃗ R0 } in which the electronic structure is no longer degenerate. Let's take a look on how this degeneracy breaking takes place for example in the ideal cubic LaMnO 3 (as shown in figure 2.7). LaMnO 3 has two degenerate Mn 3d 4 configurations; three electrons in the t 2g orbitals and one electron in the e g orbitals. According to the Jahn-Teller theorem, this degeneracy should be broken by some electronic instability. This instability can be brought by the normal modes Q 2 and Q 3 as illustrated in figure 2.17. One can calculate the Jahn-Teller potential ÛJT from the

Q 2 Q 3
Fig. 2.17 The degenerate vibrational modes Q 2 and Q 3 in ideal cubic perovsktie LaMnO 3 effect obtained due to the modes of Q 2 and Q 3 and also taking into account the ligand field contribution.

When a tetragonal elongation along z takes place as shown in figure 2.18, the electronic ground state degeneracy is broken by the stabilization of the d orbitals with a z component (d z 2 in e g level and d yz , d xz in t 2g level) while the d orbitals without a z component are higher in energy (d x 2 -y 2 in e g level and d xy in t 2g level).

On the other hand, when tetragonal compression along z takes place as shown in figure 2.19 the electronic ground state degeneracy is broken by the stabilization of the d orbitals without a z component (d x 2 -y 2 in e g level and d xy in t 2g level) while the orbitals with a z component are higher in energy (d z 2 in e g level and d yz , d xz in t 2g level).

As a general rule, when there is an odd number of electrons in the e g level the atomic ground state is doubly degenerated and thus Jahn-Teller effect takes place. In the case of LaMnO 3 , which is a high-spin d 4 , there is one electron in the e g orbitals, thus the Jahn-Teller distortion occurs and lifts the orbital degeneracy, leading to an orbital ordering.

Effective Magnetic Interactions and Hopping Integrals

In the study of the manganites, it is vital to understand the magnetic interactions that can occur between the manganese ions. For this purpose, we will recall the mechanism at play in the effective exchange interactions between two Mn ions, resulting from direct interactions or interactions through 2p orbitals of the oxygen atoms. In the present case, magnetic interactions take place locally between neighbouring atoms with open shells. They are short-range interactions between two bodies (atoms). They are the parameters of an effective Hamiltonian such as the Spin-Heisenberg model.

Coulomb repulsion in a 2-electrons-2-sites system

Let us start with a system with open d shells. We can build up a simple 2-electrons-2-sites system: one electron on each site. Let us call these sites A and B and the orbitals considered in these sites are d orbitals. From now on, we will call the d orbital at site A as orbital a and the d orbital at site B as orbital b. For generality purposes, in the case of a transition metal-oxide system, we can further consider two magnetic sites with one d orbital on each, and add the p orbitals of the anions located in between the two cation sites. We will presume that the p orbitals are doubly occupied and non magnetic. First, we focus on the Coulomb term of the two-electrons Hamiltonian. The Coulomb repulsion of the two-electrons Hamiltonian is given by Vee

= 1 |⃗ r 1 -⃗ r 2 |.
Here,⃗ r 1 and ⃗ r 2 are the position vectors of the electrons. The possible states of the system under our consideration can be schematically seen in figure 2. [START_REF] Binasch | Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[END_REF] (2 Ûo -Ĵo )|ϕ b ⟩ where ϕ a and ϕ b are the one-electron wave functions corresponding to the orbitals a and b, Ûo is the Coulomb operator and Ĵo is the exchange operator. They are given by the following formulae 1 

: Ûo |ϕ(⃗ r 1 )⟩ = ϕ(⃗ r 1 ) d 3 r 2 |ϕ o (⃗ r 2 )| 2 |⃗ r 1 -⃗ r 2 | and Ĵo |ϕ(⃗ r 1 )⟩ = ϕ o (⃗ r 1 ) d 3 r 2 ϕ * o (⃗ r 2 )ϕ(⃗ r 2 ) |⃗ r 1 -⃗ r 2 | .
Considering the spins σ and σ ′ , the two-electrons Slater determinant allows us to write the states of figure 2.20:

ψ a,σ ;b,σ ′ (⃗ r 1 , s 1 ;⃗ r 2 , s 2 ) = 1 √ 2 ϕ a (⃗ r 1 )σ (s 1 ) ϕ a (⃗ r 2 )σ (s 2 ) ϕ b (⃗ r 1 )σ ′ (s 1 ) ϕ b (⃗ r 2 )σ ′ (s 2 ) = 1 √ 2 ϕ a (⃗ r 1 )ϕ b (⃗ r 2 )σ (s 1 )σ ′ (s 2 ) -ϕ b (⃗ r 1 )ϕ a (⃗ r 2 )σ ′ (s 1 )σ (s 2 ) = |ϕ σ a ϕ σ ′ b ⟩
We can calculate the matrix elements of the Vee by simply calculating ⟨ψ a,σ ;b,σ

′ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,σ ;b,σ ′ ⟩ and ⟨ψ a,σ ;b,σ ′ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,σ ′ ;b,σ ⟩.
When both electrons have the same spin (σ = σ ′ ), i.e. for the ψ ↑↑ = | ↑, ↑⟩ and ψ ↓↓ = | ↓, ↓⟩, we have

⟨ψ a,σ ;b,σ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,σ ;b,σ ⟩ = U ab -J ab
where U ab is the Coulomb repulsion integral and has the form

U ab = d 3 r 1 d 3 r 2 |ϕ a (⃗ r 1 )| 2 |ϕ b (⃗ r 2 )| 2 |⃗ r 1 -⃗ r 2 | (2.17)
and J ab is the exchange integral and has the form

J ab = d 3 r 1 d 3 r 2 ϕ * a (⃗ r 1 )ϕ b (⃗ r 1 )ϕ * b (⃗ r 2 )ϕ a (⃗ r 2 ) |⃗ r 1 -⃗ r 2 | (2.18)
In the case of opposite spins, i.e for the states ψ ↑↓ = | ↑, ↓⟩ and ψ ↓↑ = | ↓, ↑⟩, we have

⟨ψ a,↑;b,↓ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,↑;b,↓ ⟩ = ⟨ψ a,↓;b,↑ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,↓;b,↑ ⟩ = U ab and ⟨ψ a,↑;b,↓ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,↓;b,↑ ⟩ = ⟨ψ a,↓;b,↑ | 1 |⃗ r 1 -⃗ r 2 | |ψ a,↑;b,↓ ⟩ = -J ab .
if the orbitals are real. Thus, we can give the total electronic energy of the states given in figure 2.20:

• For the states a) & b):

E = E o + ε a + ε b +U ab -J ab • For the states c) & d): E = E o + ε a + ε b +U ab
where E o is the energy of the electrons of the occupied orbitals that is all electrons except the ones in orbitals a and b. In the basis of ψ ↑↑ , ψ ↑↓ , ψ ↓↑ and ψ ↓↓ we can write the Coulomb repulsion term as following:

ψ ↑↑ ψ ↑↓ ψ ↓↑ ψ ↓↓ V ee =      U ab -J ab 0 0 0 0 U ab -J ab 0 0 -J ab U ab 0 0 0 0 U ab -J ab      ψ ↑↑ ψ ↑↓ ψ ↓↑ ψ ↓↓ (2.19)
Then the two-electrons Hamiltonian matrix can be written as:

ψ ↑↑ ψ ↑↓ ψ ↓↑ ψ ↓↓ H el = E o I +      ε a + ε b +U ab -J ab 0 0 0 0 ε a + ε b +U ab -J ab 0 0 -J ab ε a + ε b +U ab 0 0 0 0 ε a + ε b +U ab -J ab      ψ ↑↑ ψ ↑↓ ψ ↓↑ ψ ↓↓ (2.20)
Diagonalizing the matrix 2.20 gives us the energies and the corresponding eigenstates. The triplet states are ψ ↑↑ , ψ ↓↓ and (ψ ↑↓ + ψ ↓↑ )/ √ 2 with the energy ε triplet = ε a + ε b +U ab -J ab . The singlet state is (ψ ↑↓ψ ↓↑ )/ √ 2 with the energy ε singlet = ε a + ε b +U ab + J ab . It is pretty much clear that U ab > 0 but one can easily show that J ab > 0. Moreover, it is also obvious that ε tripletε singlet = -2J ab . Thus, if the many-body basis set was only the one which reduces to those four Slater determinants, then the triplet state would be the ground state, in this open-shell two electron-two orbital system. Let us take the limit case when the two sites are not spatially separated, which means that the system is equivalent to an one-site system of one atom with two orbitals. Then, the result above can be seen as the Hund's first rule: In a degenerated atomic shell, the ground state will have the maximum spin. However, when the two sites are at very large distance, like in H 2 at very large distance, the ground state is the singlet state due to the contribution of the other Slater determinants in the wave function expansion. Thus, one should use perturbation theory to introduce the effect of the non dominant configurations in the wave function and the off-diagonal part of the Fock operator. These other terms can reverse the order of the singlet and triplet states. The first four states are named as "covalent states" whereas the last two are named as "ionic states". In order to build the Hamiltonian of such a system in the basis of these states, let us recall the operators of second quantization. The operator c † ασ creates a spin-σ electron in orbital α, where α = a, b. For example, c † a↑ |0⟩ creates a spin-up electron in the orbital a. Here, |0⟩ denotes the system with no electrons. In order to annihilate this electron from its orbital, we introduce the operator c ασ . For example, c a↑ removes a spin-up electron from the orbital a, if there is a spin-up electron in orbital a, otherwise it returns 0. The operator n ασ = c † ασ c ασ works as an observer. It returns 0 when there is no spin-σ electron in the orbital α whereas it returns 1 when there is an electron. This operator can be used to describe the on-site Coulomb repulsion operator acting on orbital σ by the formulation n α↑ n α↓ . We defined the Coulomb repulsion between two electrons in a d-orbital as U aa and U bb , for a and b orbitals, respectively, as in equation 2.17. Then, the off-site Coulomb repulsion U ab between the occupied a and b orbitals can be also expressed by using (n α↑ + n α↓ )(n α ′ ↑ + n α ′ ↓ ). J ab is the exchange term between the states | ↑, ↓⟩ and | ↓, ↑⟩ and J ab is also the exchange term between the states | ↑↓, •⟩ and |•, ↑↓⟩ since we take the orbitals a and b real. Finally, -t dd is the hopping between a and b orbitals.

Ĥ = ∑ σ (ε a n aσ + ε b n bσ ) (a)
+U aa n a↑ n a↓ +U bb n b↑ n b↓ We can assume that each part that we just gave is much larger than the term that the hopping -t dd describes. Thus, one can split the Hamiltonian into two parts: 

(b) +U ab (n a↑ n b↓ + n a↓ n b↑ ) (c) + (U ab -J ab )(n a↑ n b↑ + n a↓ n b↓ ) (d) + J ab (c † a↑ c † b↓ c a↓ c b↑ + c † b↑ c † a↓ c b↓ c a↑ ) (e) + J ab (c † a↑ c † a↓ c b↓ c b↑ + c † b↑ c † b↓ c a↓ c a↑ ) (f) -t dd ∑ σ (c † aσ c bσ + c † bσ c aσ ) Ŵ =perturbation
| ↑, ↑⟩ | ↓, ↓⟩ | ↑, ↓⟩ | ↓, ↑⟩ | ↑↓, •⟩ |•, ↑↓⟩ H 0 =          ε a + ε b +U ab -J ab 0 0 0 0 0 0 ε a + ε b +U ab -J ab 0 0 0 0 0 0 ε a + ε b +U ab -J ab 0 0 0 0 -J ab ε a + ε b +U ab 0 0 0 0 0 0 2ε a +U aa J ab 0 0 0 0 J ab 2ε b +U bb          (2.22)
Considering ε a + ε b as reference energy and defining ∆ ab = ε aε b the matrix given in 2.22 becomes as following:

| ↑, ↑⟩ | ↓, ↓⟩ | ↑, ↓⟩ | ↓, ↑⟩ | ↑↓, •⟩ |•, ↑↓⟩ H 0 =           U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 -J ab U ab 0 0 0 0 0 0 U aa + ∆ ab J ab 0 0 0 0 J ab U bb -∆ ab           (2.23)
This unperturbed Hamiltonian has eigenenergies

ε 1,2,3 = U ab -J ab , ε 4 = U ab + J ab , ε 5,6 = U aa +U bb 2 ± (U aa -U bb + 2∆ ab ) 2 + 4J 2 ab 2
with eigenstates

ψ 1 = ψ ↑↑ = | ↑, ↑⟩ ψ 2 = ψ ↓↓ = | ↓, ↓⟩ ψ 3 = ψ ↑↓ + ψ ↓↑ √ 2 = | ↑, ↓⟩ + | ↓, ↑⟩ √ 2 
ψ 4 = ψ ↑↓ -ψ ↓↑ √ 2 = | ↑, ↓⟩ -| ↓, ↑⟩ √ 2 ψ 5,6 = | ↑↓, •⟩ + U bb -U aa -2∆ ab ± √ (U aa -U bb +2∆ ab ) 2 +4J 2 ab 2J ab |•, ↑↓⟩ 1 + U bb -U aa -2∆ ab ± (U aa-U bb +2∆ ab ) 2 )+4J 2 ab 2J ab 2 .
Assuming that ε a = ε b , U aa = U bb = U d one has the eigenenergies:

ε 1,2,3 = U ab -J ab , ε 4 = U ab + J ab , ε 5,6 = ε ± = U d ± J ab ψ 1 = ψ ↑↑ = | ↑, ↑⟩ ψ 2 = ψ ↓↓ = | ↓, ↓⟩ ψ 3 = ψ ↑↓ + ψ ↓↑ √ 2 = | ↑, ↓⟩ + | ↓, ↑⟩ √ 2 
ψ 4 = ψ ↑↓ -ψ ↓↑ √ 2 = | ↑, ↓⟩ -| ↓, ↑⟩ √ 2 ψ 5,6 = ψ ± ion = | ↑↓, •⟩ ± |•, ↑↓⟩ √ 2 .
The first three states are the triplet covalent states. ψ 4 is the singlet covalent state. ψ 5 = ψ + ion (ε 5 = ε + ) and ψ 6 = ψ - ion (ε 6 = ε -) are the ionic states.

Thus, the diagonalized unperturbed Hamiltonian is as follows:

ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 H0 =           U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab + J ab 0 0 0 0 0 0 U d + J ab 0 0 0 0 0 0 U d -J ab           ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 (2.24) 
Since U > U ab , the ground states are the triplet states ψ 1 , ψ 2 and ψ 3 with the energy U ab -J ab .

When we include the hopping and perturb the Hamiltonian, we encounter an exchange mechanism, which can be schematically seen in figure 2.21. This exchange mechanism is named as "Anderson superexchange" [START_REF] Anderson | Antiferromagnetism. theory of superexchange interaction[END_REF] or "Superexchange through space". Here, moving an electron from one orbital to another orbital comes with the hopping -t dd . By adding the ... 

H =          U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab -t dd -t dd 0 0 -J ab U ab t dd t dd 0 0 -t dd t dd U d J ab 0 0 -t dd t dd J ab U d          =          U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 -J ab U ab 0 0 0 0 0 0 U d J ab 0 0 0 0 J ab U d          H 0 +          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -t dd -t dd 0 0 0 0 t dd t dd 0 0 -t dd t dd 0 0 0 0 -t dd t dd 0 0          W (2.25)
The Hamiltonian H in the basis set of the eigenstates of H 0 can be written as:

ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 H =          U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab + J ab -2t dd 0 0 0 0 -2t dd U d + J ab 0 0 0 0 0 0 U d -J ab          =          U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab -J ab 0 0 0 0 0 0 U ab + J ab 0 0 0 0 0 0 U d + J ab 0 0 0 0 0 0 U d -J ab          H 0 +          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2t dd 0 0 0 0 -2t dd 0 0 0 0 0 0 0 0          W (2.26)
We will take into account Ŵ at the 2 nd order of perturbation theory to find the effective Hamiltonian. The low-energy states, i.e. the singlet and the triplet states, are the model space of our system. However, as one can see from the matrix W the only hopping element appears between the singlet state ψ 4 and the ionic state ψ 5 = ψ + ion . Thus, applying the 2 nd perturbation theory on the triplet states does not give any correction to the energy of those states. However, one should correct the energy of the singlet state. Thus, we will apply 2 nd order perturbation on the model space.

At the 2 nd order perturbation, one can obtain the h i j elements with the following formula;

h i j = ∑ κ ⟨ψ i | T |ψ κ ⟩⟨ψ κ | T |ψ j ⟩ E (0) -E (ψ κ ) κ ̸ = model space (2.27)
where E (ψ κ ) is the energy of the state ψ κ which is out of the model space. The indexes i and j correspond to the eigenstates of H0 . Thus, the correction to the energy of the singlet state

ψ 4 is given as - 4t 2
dd U d -U ab Thus, the corrected energy of the singlet state is given by

ε singlet = U ab + J ab - 4t dd U d -U ab (2.28)
while the energy of the triplet states remains ε triplet = U ab -J ab Finally, we show that the singlet-triplet splitting (the effective exchange coupling) is

ε triplet -ε singlet -= J eff dd = 4t 2 dd U d -U ab -2J ab .
Here,

J eff 2 = 4t 2 dd U d -U ab is a 2 nd order term of the effective exchange coupling whereas J eff 1 = -2J ab is a 1 st order term. J eff dd is positive as long as 4t 2 dd U d -U ab > 2J ab
, which is the case except in very special conditions where the hopping integral is very small due to symmetry or distance reasons. Thus, the singlet state is the ground state and "Anderson Superexchange" or "Superexchange through space" results with antiferromagnetism.

Superexchange through Bridge

For the Anderson superexchange, it is crucial to have hopping between the d-orbitals. However, the d-orbitals are so localized that the hopping is non-negligible only between the orbitals on different atoms that are close to each other. In the case of transition metal oxides, transition metal cations (manganese ions in manganites) are separated by oxygen anions. Since Mn -Mn distance is too large for the Anderson superexchange to be effective in most of the antiferromagnetic manganites, it is not possible to explain the antiferromagnetism in these compounds by means of Anderson superexchange. In such a situation we should take into account the 4 th order of the pertubation theory that involves a mechanism where hopping is done through a bridge orbital, for example through the oxygen p orbital. This mechanism is briefly called "superexchange through bridge" and can be seen in figure 2.22. Now for simplification we give the Coulomb repulsion between two electrons in a d-orbital as U d and we neglect the Coulomb repulsion term between two electrons in p-orbitals. We also neglect ... the off-site Coulomb repulsion U ab since we assume the distance between magnetic ions are large (for example Mn -Mn distance). The energy of an electron in a d or p orbital is given by ε d or ε p , respectively. -t pd is the hopping between p and d orbitals. The Hamiltonian for such a system is given by the following:

p 1 p n a b ... p 1 p n a b ... p 1 p n a b ... p 1 p n a b -t pd a b ... p 1 p n a b ... p 1 p n -t pd a b ... p 1 p n a b ... p 1 p n -t pd a b ... p 1 p n a b ... p 1 p n -t pd
Ĥ = ∑ σ ε d ∑ α=a,b n ασ + ε p n pσ +U ab ∑ σ ∑ α=a,b n ασ n α ′ σ ′ +U d ∑ α=a,b n α↑ n α↓ +J ab ∑ σ ∑ α=a,b c † ασ c † α ′ σ ′ c ασ ′ c α ′ σ + J ab ∑ σ ∑ α=a,b c † ασ c † ασ ′ c α ′ σ ′ c ασ -t pd ∑ σ ∑ α=a,b c † ασ c pσ + c † pσ c ασ (2.29)
Setting the reference energy to 2(ε d + ε p ) and taking ∆ pd = ε dε p gives us the Hamiltonian matrix for antiparallel spins in d-orbitals:

|b ↓ p ↑↓ i a ↑ ⟩ |b ↑ p ↑↓ i a ↓ ⟩ |b ↓ p ↑ i a ↑↓ ⟩ |b ↑↓ p ↓ i a ↑ ⟩ |b ↑ p ↓ i a ↑↓ ⟩ |b ↑↓ p ↑ i a ↓ ⟩ |p ↑↓ i a ↑↓ ⟩ |b ↑↓ p ↑↓ i ⟩ |b ↑↓ a ↑↓ ⟩ H =           U ab -J ab t pd t pd 0 0 0 0 0 -J ab U ab 0 0 t pd t pd 0 0 0 t pd 0 U d + 2U ab + ∆ pd 0 0 0 -t pd 0 -t pd t pd 0 0 U d + 2U ab + ∆ pd 0 0 0 -t pd -t pd 0 t pd 0 0 U d + 2U ab + ∆ pd 0 t pd 0 t pd 0 t pd 0 0 0 U d + 2U ab + ∆ pd 0 t pd t pd 0 0 -t pd 0 t pd 0 U d J ab 0 0 0 0 -t pd 0 t pd J ab U d 0 0 0 -t pd -t pd t pd t pd 0 0 2(U d + 2U ab + ∆ pd )           (2.30)
with the basis set of the states which can be seen in figure 2.23 (left). Considering ε d > ε p and noting that the high energy states are the ones with at least one doubly occupied d-orbital, |b ↓ p ↑↓ i a ↑ ⟩ and |b ↑ p ↑↓ i a ↓ ⟩ are the low-energy states while the rest of the states are high-energy states. One can apply the downfolding recursively to the Hamiltonian matrix given in 2.30. Then,

Downfolding technique

c † p i ↓ c † p i ↑ c † a↑ |0⟩ c † b↑ c † p i ↓ c † p i ↑ |0⟩ c † b↑ c † p i ↓ c † a↑ |0⟩ c † b↓ c † p i ↑ c † a↑ |0⟩ c † b↑ c † p i ↑ c † a↓ |0⟩ c † b↑ c † a↓ c † a↑ |0⟩ c † p i ↑ c † a↓ c † a↑ |0⟩ c † b↓ c † b↑ c † p i ↑ |0⟩ c † b↓ c † b↑ c † a↑ |0⟩ c † b↓ c † p i ↓ c † p i ↑ c † a↑ |0⟩ c † b↑ c † p i ↓ c † p i ↑ c a↓ |0⟩ c † b↓ c † p i ↑ c † a↓ c † a↑ |0⟩ c † b↓ c † b↑ c † p i ↓ c † a↑ |0⟩ c † b↑ c † p i ↓ c † a↓ c † a↑ |0⟩ c † b↓ c † b↑ c † a↓ c † a↑ |0⟩ c † b↓ c † b↑ c † p i ↑ c † a↓ |0⟩ c † p i ↓ c † p i ↑ c † a↓ c † a↑ |0⟩ c † b↓ c † b↑ c † p i ↓ c † p i ↑ |0⟩ . 
= |b ↓ p ↑↓ i a ↑ ⟩ = |b ↑ p ↑↓ i a ↓ ⟩ = |b ↓ p ↑ i a ↑↓ ⟩ = |b ↑↓ p ↓ i a ↑ ⟩ = |b ↑ p ↓ i a ↑↓ ⟩ = |b ↑↓ p ↑ i a ↓ ⟩ = |p ↑↓ i a ↑↓ ⟩ = |b ↑↓ p ↑↓ i ⟩ = |b ↑↓ a ↑↓ ⟩ = |p ↑↓ i a ↑ ⟩ = |b ↑ p ↑↓ i ⟩ = |b ↑ p ↓ i a ↑ ⟩ = |b ↓ p ↑ i a ↑ ⟩ = |b ↑ p ↑ i a ↓ ⟩ = |p ↑ i a ↑↓ ⟩ = |b ↑↓ p ↑ i ⟩ = |b ↑↓ a ↑ ⟩ = |b ↑ a ↑↓ ⟩ Fig. 2.
H =    H 00 T 01 0 T 10 H 11 T 12 0 T 21 H 22    = H 00 T01 T10 B . (2.32)
Here, H 00 is the Hamiltonian of the low-energy states, H 11 and H 22 are the Hamiltonian for the high energy states. T 01 and T 10 describe the transfer between the subspaces H 00 and H 11 .

T 12 and T 21 describe the transfer between the subspaces H 11 and H 22 . Thus, now, one can partition the full system into low-energy states and project out the high-energy states. This process can be done by downfolding method where one can find the resolvent matrix of H by the following:

R(ε, H) = (ε -H) -1 = ε -H 00 T01 T10 ε -B -1 = ε -(H 00 + T01 (ε -B) -1 T10 -1 =   ε -(H 00 + T01 ε -H 11 T 12 T 21 ε -H 22 -1 T10   -1 =    ε -(H 00 + T 01 (ε -H 11 -T 12 (ε -H 22 ) -1 T 21 ) -1 )T 10 H eff )    -1 (2.33)
Thus, the effective Hamiltonian can be given by setting ε = 0:

H eff = H 00 + T 01 (ε -H 11 -T 12 (ε -H 22 ) -1 T 21 ) -1 )T 10 ∼ H 00 + T 01 (-H 11 -T 12 (-H 22 ) -1 T 21 ) -1 )T 10 = U ab -J ab - 2t 2 pd U d + 2U ab + ∆ pd 1 0 0 1 + J ab - 2t 4 pd (U d + 2U ab + ∆ pd ) 2 1 U d + J ab + 1 U d + 2U ab + ∆ pd 1 -1 -1 1 . (2.34)
The eigenvalues and the corresponding eigenstates of the effective Hamiltonian given in 2.34 are as follows:

ε 1 = U ab -J ab - 2t 2 pd U d + 2U ab + ∆ pd ε 2 = U ab + J ab - 2t 2 pd U d + 2U ab + ∆ pd - 4t 4 pd (U d + 2U ab + ∆ pd ) 2 1 U d + J ab + 1 U d + 2U ab + ∆ pd ψ 1 = |b ↓ p ↑↓ i a ↑ ⟩ + |b ↑ p ↑↓ i a ↓ ⟩ √ 2 ψ 2 = |b ↓ p ↑↓ i a ↑ ⟩ -|b ↑ p ↑↓ i a ↓ ⟩ √ 2 
Thus, one can obtain the effective exchange coupling by ε tripletε singlet = ε 1ε 2 :

J eff pd = 4t 4 pd (U d + 2U ab + ∆ pd ) 2 1 U d + J ab + 1 U d + 2U ab + ∆ pd -2J ab (2.35)
Here,

J eff 4 = 4t 4 pd (U d +2U ab +∆ pd ) 2 1 U d +2 ab +J ab + 1 U d +∆ pd is a 4 th order term of the effective ex- change coupling whereas J eff 1 = -2J ab is a 1 st order term. J eff pd is positive as long as 4t 4 pd (U d + 2U ab + ∆ pd ) 2 1 U d + 2U ab + J ab + 1 U d + ∆ pd > 2J ab
which is the case except very special conditions where the hopping integral is very small due to the symmetry reasons. Thus, ψ 2 , the singlet state, is the ground state. The superexchange "through bridge" mechanism results with antiferromagnetism. The effective exchange coupling J eff pd exhibits the "superexchange through bridge" mechanism with four hopping steps as one can again see in figure 2. [START_REF] Berkowitz | Giant magnetoresistance in heterogeneous cu-co alloys[END_REF]. In order to generalize the superexchange through bridge mechanism explained above for a system with several open d shells, one has to sum up all the terms for all pairs of one electron on orbital a and one electron on orbital b. Of course, some of the terms will be zero due to symmetry.

Finally, we can give the effective exchange coupling with the contribution of 1 st , 2 nd and 4 th order terms:

J eff = J eff 1 + J eff 2 + J eff 4 = -2J ab + 4t 2 dd U d -U ab + 4t 4 pd (U d + 2U ab + ∆ pd ) 2 1 U d + 2U ab + J ab + 1 U d + 2U ab + ∆ pd

Effective Hopping

Now we would like to talk about the case where there is only one electron for two dorbitals. We consider the system of two open d shells separated with the bridge p orbitals. This time, there is only one electron on the d orbitals. Let us first assume that there is a direct hopping (1 st order perturbation) between the two d-orbitals a and b, the bridge orbitals do not participate the mechanism at this stage. This case can be schematically seen in figure 2.24. There are two possible states: 

c † a↑ |0⟩ = | ↑, •⟩ and c † b↑ |0⟩ = |•, ↑⟩. Using the Hamiltonian given ... p 1 p n a b ... p 1 p n a b a b ... p 1 p n a b ... p 1 p n -t dd
| ↑, •⟩ |•, ↑⟩ H = 0 -t dd -t dd 0 | ↑, •⟩ |•, ↑⟩ (2.36) 
Diagonalizing this matrix gives us the eigenenergies and the corresponding eigenstates

ε 1 = -t dd , ψ 1 = | ↑, •⟩ + |•, ↑⟩ √ 2 ε 2 = t dd , ψ 2 = | ↑, •⟩ -|•, ↑⟩ √ 2
Taking t dd > 0, ψ 1 is the ground state. Thus, the delocalization energy also known as the hopping energy is given by

ε 1 -ε a = t eff 1 = -t dd .
Now, let us consider the 2 nd order perturbation in which the bridge p-orbitals also can participate the hopping mechanism. The schematic representation of such a mechanism is given in figure 2 The Hamiltonian of such a system can be given by

Ĥ = ∑ σ ε d ∑ α=a,b n ασ + ε p n pσ +U ab ∑ σ ∑ α=a,b n ασ n α ′ σ ′ +U d ∑ α=a,b n α↑ n α↓ -t pd ∑ σ ∑ α=a,b (c † ασ c pσ + c † pσ c ασ ) .
(2.37)

Setting the reference energy as ε d + 2ε p and taking ∆ pd = ε dε p and in the basis set of the states given in figure 2.23 (right), the Hamiltonian matrix for a system of 2-spin-up, 1 spin-down electrons can be given as follows:

|p ↑↓ i a ↑ ⟩ |b ↑ p ↑↓ i ⟩ |b ↑ p ↓ i a ↑ ⟩ |b ↓ p ↑ i a ↑ ⟩ |b ↑ p ↑ i a ↓ ⟩ |p ↑ i a ↑↓ ⟩ |b ↑↓ p ↑ i ⟩ |b ↑↓ a ↑ ⟩ |b ↑ a ↑↓ ⟩ H =           0 0 t pd -t pd 0 t pd 0 0 0 0 0 -t pd 0 t pd 0 t pd 0 0 t pd -t pd U ab + ∆ pd 0 0 0 0 t pd -t pd -t pd 0 0 U ab + ∆ pd 0 0 0 -t pd 0 0 t pd 0 0 U ab + ∆ pd 0 0 0 t pd t pd 0 0 0 0 U d + ∆ pd 0 0 -t pd 0 t pd 0 0 0 0 U d + ∆ pd -t pd 0 0 0 t pd -t pd 0 0 -t pd U d + 2∆ pd 0 0 0 -t pd 0 t pd -t pd 0 0 U d + 2U ab + 2∆ pd           (2.38)
Let us obtain the effective Hamiltonian with both 2 nd order perturbation and downfolding the high-energy states.

1) 2 nd Order Perturbation

The ground states of the unperturbed H 0 of the Hamiltonian given 2.38 are

ψ 1 = c † p i ↓ c † p i ↑ c † a↑ |0⟩ = |p ↑↓ i a ↑ ⟩ and ψ 2 = c † b↑ c † p i ↓ c † p i ↑ |0⟩ = |b ↑ p ↑↓ i ⟩.
One can obtain the effective Hamiltonian in this basis set by using the formula given in 2.27:

H eff =   - 2t 2 pd U ab +∆ pd - t 2 pd U d +∆ pd t 2 U ab +∆ pd t 2 U ab +∆ pd - 2t 2 pd U ab +∆ pd - t 2 pd U d +∆ pd   (2.39)
Solving the eigenvalue problem of this Hamiltonian gives us the eigenstates

ε 1 = - t 2 pd U ab + ∆ pd - t 2 pd U d + ∆ pd , ψ 1 = |p ↑↓ i a ↑ ⟩ + |b ↑ p ↑↓ i ⟩ √ 2 ε 2 = -3 t 2 pd U ab + ∆ pd - t 2 pd U d + ∆ pd , ψ 2 = |p ↑↓ i a ↑ ⟩ -|b ↑ p ↑↓ i ⟩ √ 2
If t pd > 0, then ψ 2 is the ground state. Thus, the delocalization energy is given by

ε 1 -ε 2 = t eff 2 = 2 t 2 pd ∆ pd . 

2) Downfolding technique

We can also obtain the effective Hamiltonian by reducing the Hilbert space. Noting that high energy states are the states with at least one doubly occupied d-orbital, we can partition the Hamiltonian matrix given in 2.38 into blocks of low-energy states, high-energy states and transfer blocks matrices:

A = H 00 T 01 T 10 H 11 and B = H 11 T 12 T 21 H 22 (2.40)
Then,

H =    H 00 T 01 0 T 10 H 11 T 12 0 T 21 H 22    = H 00 T01 T10 B (2.41)
The resolvent matrix of H is given by the following:

R(ε, H) = (ε -H) -1 = ε -H 00 T01 T10 ε -B -1 = ε -(H 00 + T01 (ε -B) -1 T10 -1 =   ε -(H 00 + T01 ε -H 11 T 12 T 21 ε -H 22 -1 T10   -1 =    ε -(H 00 + T 01 (ε -H 11 -T 12 (ε -H 22 ) -1 T 21 ) -1 )T 10 H eff )    -1 (2.42)
Thus, the approximation of the effective Hamiltonian can be given by setting ε = 0 and taking the limit when U d → ∞:

H eff = H 00 + T 01 (ε -H 11 -T 12 (ε -H 22 ) -1 T 21 ) -1 )T 10 ∼ H 00 + T 01 (-H 11 -T 12 (-H 22 ) -1 T 21 ) -1 )T 10 = - 2t 2 pd U ab + ∆ pd 1 -1 2 -1 2 1 (2.43)
Solving the eigenvalue problem of this Hamiltonian gives us the eigenstates

ε 1 = - t 2 pd U ab + ∆ pd , ψ 1 = |p ↑↓ i a ↑ ⟩ + |b ↑ p ↑↓ i ⟩ √ 2 ε 2 = -3 t 2 pd U ab + ∆ pd , ψ 2 = |p ↑↓ i a ↑ ⟩ -|b ↑ p ↑↓ i ⟩ √ 2
If t pd > 0, then ψ 2 is the ground state. Thus, the delocalization energy is given by

ε 1 -ε 2 = t eff 2 = 2 t 2 pd ∆ pd .
We obtain the same delocalization energy as 2 nd order perturbation theory t eff 2 = 2 t 2 pd ∆ pd . In order to generalize the effective hopping mechanism explained above for a system with several open d shells, one has to sum up all the terms for all pairs of one electron on the orbitals a and b. Naturally, some of the terms will be zero due to symmetry.

Finally, the effective hopping energy can be given by the contribution of both 1 st and 2 nd order terms:

t eff = t eff 1 + t eff 2 = -2t dd + 2 t 2 pd ∆ pd
Due to the large distance between Mn ions in manganites (more generally metals in transition-metal oxides), one can expect the delocalization energy t eff 1 and the exchange coupling J eff 2 to be small as they include the terms consisting of t dd . On the other hand, the terms t eff 2 and J eff 4 , i.e. the terms consisting of t pd , are dominant if they are non-zero.

Double Exchange

In doped manganites with mixed valence, there are Mn 3+ and Mn 4+ ions separated by 2p orbitals of O2-. In Mn 4+ (d 3 ) ions, the t 2g orbitals are half-filled and the e g orbitals are empty, whereas in Mn 3+ (d 4 ) ions, the t 2g are still half-filled but there is one electron in the e g level. While the nature of the occupied e g orbital in Mn 3+ is a question of symmetry and local energetics of the system (crystal field splitting, Jahn-Teller distortion etc.), one should note that delocalization is allowed between the e g shells of the Mn 3+ and the Mn 4+ ions, for a ferromagnetic alignment. This mechanism is called "Double exchange" [START_REF] Zener | Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure[END_REF]. Let us try to explain how this double exchange mechanism takes place.

When there are Mn 3+ and Mn 4+ ions separated with 2p orbitals of O 2-, there are three terms in the energy of these two ions. The energy can be be written as:

1)

E deloc t 2g e g Mn 3+
t 2g e g

Mn 4+

E Hund E Hund E SE E deloc t 2g e g Mn 3+ t 2g e g Mn 4+
2)

E Hund E SE E deloc t 2g e g Mn 3+
t 2g e g Mn 4+

3) [START_REF] Kusters | Magnetoresistance measurements on the magnetic semiconductor nd0.5pb0.5mno3[END_REF] Possible competing mechanisms in Mn 3+ -Mn 4+ environment 1) Frustrated superexchange 2) Frustrated delocalization 3) Frustrated Hund's Exchange.

E Hund E Hund E SE Fig. 2.
E = E Hund + E deloc + E SE + K
where E Hund is the Hund's exchange energy within each ion, E deloc is the e g delocalization energy between the ions, E SE is the superexchange energy, and K is the contribution of the other terms and it is a constant. Here, E Hund ∝ J H , E deloc ∝ t eff and E SE ∝ J eff . One cannot lower energy of all terms at the same time and has to frustrate one of them. Thus, depending on which pair is stabilized, three scenario can take place as follows:

1. E Hund + E deloc → "Frustrated Superexchange": The system is ferromagnetic ordered Mn ions and one loses antiferromagnetic coupling between the ions.

2. E Hund + E SE → "Frustrated Delocalization": The system is antiferromagnetic ordered Mn ions and one loses the delocalization energy between high spins.

3. E SE + E deloc → "Frustrated Hund's exchange": The delocalization of one e g electron takes place and there exist an antiferromagnetic ordering of the spins in e g and t 2g level. Thus, part of the electron ion each atom are not ferromagnetically aligned (atoms are not high spin anymore).

These three scenario can be schematically seen in figure 2.26 2 Among these three scenario, the first one takes place in Mn 3+ -O 2--Mn 4+ environment since the gain of energy that one gets with E Hund and E deloc is more than the one of E SE (E Hund is order of magnitude to eV, E deloc is order of magnitude to 0.1 eV, E SE is order of magnitude to 0.01 eV.). Thus, because of the strong intra-atomic Hund's coupling, the transfer from Mn 3+ and Mn 4+ is energetically favourable only when the core spins (t 2g ) of the Mn ions are aligned ferromagnetically. This explains why the double exchange mechanism leads to ferromagnetism despite the antiferromagnetic superexchange interactions. The double exchange mechanism explains also the correlation between the electrical conduction and ferromagnetism in doped manganites discovered by Jonker and Van Santen [START_REF] Jonker | Ferromagnetic compounds of manganese with perovskite structure[END_REF].

From the analysis above, one can point out the role of the allignment of the core t 2g spins in determining the e g electron delocalization. The effective e g hopping interaction between neighbouring magnetic sites i and j can be given by t eff i j = t 0 i j cos (θ i j /2) [START_REF] Anderson | Considerations on double exchange[END_REF][START_REF] De Gennes | Effects of double exchange in magnetic crystals[END_REF]. Here, t 0 i j is the intersite hopping interaction of the e g electron between the neighbouring sites, i and j and θ i j classical angle between the neighbouring core t 2g spins of sites i and j. Thus, when the t 2g spins are alligned parallel t eff i j is maximized (i.e. the case seen in figure 2.26 1)). This hopping maximization results an energy gain and reveals the ferromagnetic character of double exchange mechanism. On the other hand, when the t 2g spins are alligned antiparallel t eff i j = 0 (i.e. the case seen in figure 2.26 2)).

The role of the geometry

In the effective hopping as well as exchange, the bond angle, i.e the angle of Mn -O -Mn plays a significant role. In an ideal octahedron environment the bond angle is 180 • . In transfer interaction will scale as t eff 2 cos α where t eff 2 is 2 nd order term of the effective hopping in the ideal cubic perovskite where the bond angle Mn -O -Mn is 180 • . Thus, the 2 nd order term of the effective hopping is given by

t eff 2 ∝ t 2
pd cos α whereas the 4 th order term of the effective superexchange coupling is given by

J eff 2 ∝ t 4 pd cos 2 α.
One should note that the hopping energy is large for

d x 2 -y 2 → d x 2 -y 2 in xy plane and d z 2 → d z 2 in the z direction.

Spin, Orbital and Charge Ordering

In perovskite manganites, different degrees of freedom can order: spin, electron and orbital. These orders are called magnetic, charge and orbital orders, respectively. Depending on the interactions at play, the spin of the electrons can allign in a particular pattern. This particular pattern is called spin ordering. Ferromagnetism is the result of parallel spin alignment, whereas antiferromagnetism occurs when spins are antiparallel to each other. In perovskites, antiferromagnetic spin ordering can take place in three different ways (limiting ourselves to first neighbours): (i) A-type antiferromagnetism; in-plane ferromagnetic spin ordering and out-of-plane antiferromagnetic ordering (ii) C-type antiferromagnetism; in-plane antiferromagnetic spin ordering and out-of-plane ferromagnetic spin ordering (iii) G-type antiferromagnetism; in-plane antiferromagnetic spin ordering and out-of-plane antiferromagnetic spin ordering. These different types of spin ordering of perovskite lattice is given schematictally in the figure 2.28.

The orbital ordering is a phenomenon where an orbital of a given degenerate shell is preferentially occupied and this preferential occupation leads to an ordered pattern. These preferential occupations usually results from the Jahn-Teller distortion, while the cooperativity between Jahn-Teller effects on the different atoms of the system results in the orbital ordering. Maezono et al. has studied the orbital ordering and spin ordering in undoped manganese oxides [63]. They obtained a theoretical phase diagram for spin/orbital ordering as a function of the antiferromagnetic interactions J s between the t 2g electrons as illustrated in figure 2.29. For intermediate values of J s , the system is A-type antiferromagnetic with G-type orbital ordered. Charge ordering in mixed-manganites is a periodic arrangement of the charges on the lattice and is only favoured for certain electron hole ratios, making it doping dependent. In particular, when the doping x is close to x = 1/2, the charge-ordering instability comes to the surface. Charge ordering is driven by Coulomb repulsion between nearest-neighbours atoms. In a charge ordered system, the electrical resistivity increases as the hopping of electrons is hindered. Chen and Cheong reported the first clear evidence of a charge ordering in La 0.5 Ca 0.5 MnO 3 [START_REF] Chen | Commensurate to incommensurate charge ordering and its real-space images in la 0.5 ca 0.5 mno 3[END_REF]. In the case of Nd 1-x Sr x MnO 3 given in figure 2.4, the ferromagnetic metallic (FM) phase state changes into the charge-ordered insulating (COI) below 160 K for x = 1/2. In figure 2.30, Tokura et al. [START_REF] Tokura | Colossal magnetoresistive manganites[END_REF] gave the spin, charge and orbital ordering patterns of the half-doped charge-exchange (CE) antiferromagnetic type manganites. One can see the equal distribution of Mn 3+ and Mn 4+ ions on the (001) plane of the orthorhombic lattice (Pbnm space group). At the same time, the e g orbitals are also ordered in 1 × 2 superlattice on the same plane. 

Properties of Bulk LAMO vs LAMO Thin films

Until now, we have given the basic structural, electronic and magnetic properties of manganites. It is worth to mention once more that one can control and modify these properties by the deposition of the manganites in very thin films or in heterostructures. Thus, it is important to address some critical changes that the compound present when it is layered as thin films compared to its bulk form.

Studies on the structural characterization of thin films by several researchers show that there are differences in crystal symmetry (lattice parameters, symmetry group etc.) between the thin film and the bulk material due to the substrate-induced constraints. Electron microscopy techniques show that the manganite thin films can have a crystal structure, which is imposed by the lattice mismatch with the substrate. This crystal structure is different from that of the bulk manganites or thick films of the manganites. Thus, in addition to the structure differences, one can expect also changes in magnetic and transport properties in these compounds when they are deposited as thin films compared to their bulk forms. Now, let us briefly call some of the publications from literature for comparing the properties of bulk La 1-x A x MnO 3 and La 1-x A x MnO 3 thin films (A = Ba, Sr, Ca).

In the study of bulk La 2/3 Ba 1/3 MnO 3 samples and La 2/3 Ba 1/3 MnO 3 thin films, Helmolt et al. noted that there a sharp cusp in the resistivity as a function of temperature in the bulk samples whereas the thin films show a broadening of the magnetic transition [66,[START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF]. In figure 2.31, one can see the resistivity against the temperature for both bulk samples and thin films. As-deposited thin films show a broader magnetic transition and their magnetoresistance is weaker temperature-dependent below 250 K. However, the annealing heat treatment increases the Curie temperature and results with a sharper transition as one can see on the right bottom in figure 2.31. Comparing the bulk samples and the annealed thin films, the differences probably arise from chemical disorder and oxygen deficiency [START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF].

Bibes et al. studied fully strained epitaxial thin films of La 2/3 Ca 1/3 MnO 3 on the SrTiO 3 [START_REF] Bibes | Nanoscale multiphase separation at la 2/3 ca 1/3 mno 3 /srtio 3 interfaces[END_REF]. They reported the lattice parameters for different films of the t film thickness 6 < t < 180 nm. The a lattice parameter of LCMO is close to a lattice parameter of SrTiO 3 within experimental error showing that the film is under strain. Aarts et al. also reported similar values of the c lattice parameters for the thin films of La 0.7 Ca 0.3 MnO 3 on the SrTiO 3 [START_REF] Aarts | Disorder effects in epitaxial thin films of (la,ca)mno3[END_REF]. One can see the variation of the a and c lattice parameters of the La 2/3 Ca 1/3 MnO 3 thin films with respect to the film thickness on the left in figure 2 are ferromagnetically ordered-insulator around 150 K whereas the bulk or thicker films at this Ca doping exhibit an insulator-to-ferromagnetic metal transition [START_REF] Zandbergen | Magnetoresistance and atomic structure of ultrathin films of la 0.73 ca 0.27 mno 3 on srtio 3[END_REF]. Indeed, the film thickness plays a significant role in the properties of the thin films. When the film thickness is of the order of 100 nm, the films can behave bulk-like due to strain relaxation [START_REF] Ziese | Strain-induced orbital ordering in thin la 0.7 ca 0.3 mno 3 films on srtio 3[END_REF][START_REF] Infante | Elastic and orbital effects on thicknessdependent properties of manganite thin films[END_REF]. One can see on the right in figure 2.32 that the in-plane lattice parameter of the films are not equal to the substrate in-plane lattice parameter when the thickness of the film increases. However, in very thin films (a few unit cell on a substrate), the physical properties can be quite different than the bulk or the thick films due to the induced in-plane epitaxial strain of the substrate [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF][START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF].

Magnetoresistance values in LCMO thin films are generally larger and occur at lower temperatures [START_REF] Mccormack | Very large magnetoresistance in perovskite-like la-ca-mn-o thin films[END_REF][START_REF] Jin | Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films[END_REF][START_REF] Aarts | Disorder effects in epitaxial thin films of (la,ca)mno3[END_REF] than in the bulk samples [START_REF] Mahesh | Giant magnetoresistance in bulk samples of la 1-x a x mno 3 (a = sr or ca)[END_REF]. It is also worth to remind again that the colossal magnetoresistance (CMR) of LCMO thin films: 127000% at 77 K, B = 6 T [START_REF] Mccormack | Very large magnetoresistance in perovskite-like la-ca-mn-o thin films[END_REF][START_REF] Jin | Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films[END_REF].

It was also shown that by applying appropriate strains through substrate and alternated BaTiO 3 layers, the Curie temperature of both LSMO and LCMO ferromagnetic superlattices can be increased by more than an order of magnitude compared to the bulk [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. In figure 2.33, one can see the magnetic measurements carried out in the temperature range 4-1000K. For LCMO superlattices, the Curie temperature is measured about 1000 K whereas the Curie temperature of the LCMO bulk [START_REF] Schiffer | Low temperature magnetoresistance and the magnetic phase diagram of la 1-x ca x mno 3[END_REF][START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF] and thin films [START_REF] Jin | Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films[END_REF] is reported around 250-260 K. For LSMO superlattices, the Curie temperature is measured about 650 K whereas the Curie temperature of the LSMO bulk [START_REF] Urushibara | Insulatormetal transition and giant magnetoresistance in la 1-x sr x mno 3[END_REF] or thin films [START_REF] Ju | Giant magnetoresistance in la 1-x sr x mno z films near room temperature[END_REF] is about 370 K. This large increase of the Curie temperature is done through orbital ordering which is a result of the strains induced by the substate and alternated layers. In an ultrathin film environment, as the system will behave like a two-dimensional system, only in-plane magnetic interactions will determine the magnetic properties of the film. Thus, the Curie temperature of the ultrathin film can be maximized if one stabilizes in-plane magnetic orbital d x 2 -y 2 over out-of-plane d x 2 in the Mn 3+ ions through Jahn-Teller distortion of the octahedra and maximizes the in-plane effective exchange of d x 2 -y 2 orbitals by preventing tilt of the MnO 6 [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. On the other hand, at the interface of the manganite films and substrates it is observed that there is a strong supression of the magnetotransport properties due to the out-of-plane d x 2 orbital stabilization of the Mn 3+ ions [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF][START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF][START_REF] Lepetit | Interface effects in perovskite thin films[END_REF][START_REF] Tebano | Preferential occupation of interface bands in la 2/3 sr 1/3 mno 3 films as seen via angle-resolved photoemission[END_REF]. This interfacial layer with supressed magnetic properties is named as "dead layer".

The breakthrough of large increase in Curie temperature by strain and interface effects open new opportunities to control magnetic properties of the artificial heterostructures. During this thesis, we will focus on alternated manganite superlattices on a SrTiO 3 substrate and try to investigate the role of alternated layers in terms of the properties that they exhibit such as polarization of BatiO 3 and the role of antiferrodistortive motions of the manganite layers. We will also focus on the prevention of the formation of the dead layer by introducing manganite superlattices alternated with alkaline-earth oxides. As our study will be based on ab-initio calculation, we would like devote the next section to the technical background of density functional theory.

Chapter 3

Technical Details-Methods 

Introduction

In this chapter we provide a brief overview of first-principles techniques used during this thesis. Ab-initio calculations for solids are based on the equations of quantum mechanics. In the first section of this chapter, we describe the quantum many-body problem and the Born-Oppenheimer approximation. In the second section, we present the basics of the Density Functional Theory. The exchange-correlation approximations are given in the third section. Basis sets to describe the wave functions are introduced in the fourth section. Finally, we give the computational details used in this thesis in the last section.

Let us first define some of the notations which will be used in this chapter:

• N is the total number of electrons,

• N 0 is the total number of nuclei,

• i is index of the i th electron,

• I is index of the I th the nucleus,

• ⃗ r i is the position vector of the i th electron,

• ⃗ r is the position vector of an electron,

• {⃗ r} is the ensemble of the position vectors of the electrons,

• ⃗ R I is the position vector of the I th nucleus,

• ⃗ R is the position vector of a nucleus,

• { ⃗ R} is the ensemble of the position vectors of the nuclei,

• Z I is the charge of the nucleus,

• M I is the mass of the nucleus,

• m e is the mass of an electron.

• σ is the spin.

• ϕ is the one-electron wave function • Ψ, ψ, φ are the many-electron wave functions

• ⟨ Ĥ⟩ = ⟨ψ| Ĥ|ψ⟩
⟨ψ|ψ⟩ is the expected value of the operator Ĥ in the wave function ψ.

Quantum Many-Body Problem

Quantum many-body problem is a general term for the investigation of the properties of microscopic physical systems that consist of large number of interacting particles. Quantum mechanics provides an accurate description for such systems.

Schrödinger Equation for many-body system

In quantum mechanics, the fundamental equation is the Schrödinger equation [81] which describes how the quantum state of a physical system evolves in time:

ih dΨ({⃗ r}; { ⃗ R};t) dt = ĤΨ({⃗ r}; { ⃗ R};t) (3.1)
where i is the imaginary unit, h is the reduced Planck constant, Ψ is the wave or state function of the quantum system and Ĥ is the Hamiltionian operator.

When the wave functions form stationary states one can describe these states by using the time-independent Schrödinger equation, that is;

ĤΨ = EΨ (3.2)
where E is the energy of the state Ψ. This equation is also called the energy eigenvalue equation and the wave function Ψ is the eigenfunction of Ĥ corresponding to the eigenvalue E.

Hamiltonian for a system of electrons and nuclei

The non-relativistic Hamiltonian for a system of N electrons and N 0 nuclei is given by the following equation:

Ĥ = - h2 2m e N ∑ i=1 ∇ 2 i - N 0 ∑ I=1 h2 2M I ∇ 2 I + e 2 4πε 0 - N ∑ i=1 N 0 ∑ I=1 Z I |⃗ r i -⃗ R I | + 1 2 N ∑ i̸ = j 1 |⃗ r i -⃗ r j | + 1 2 N 0 ∑ I̸ =J Z I Z J | ⃗ R I -⃗ R J | . (3.
3) Here, the first and second terms of the equation 3.3 correspond to the kinetic energy of the electrons and of the nuclei, respectively. The third term is the electron-nuclei Coulomb interaction. The fourth term is the electron-electron Coulomb interaction. Finally, the last term corresponds to the nuclei-nuclei interaction. By using simpler notations for each term we can rewrite the Hamiltonian in the following form:

Ĥ({ ⃗ R}, {⃗ r}) = Te ({⃗ r}) + TN ({ ⃗ R}) + VeN ({ ⃗ R}, {⃗ r}) + Vee ({⃗ r}) + VNN ({ ⃗ R}) (3.4)
where Te and TN are respectively kinetic energy operators for electrons and nuclei. VeN , Vee and V NN are the potential energy operators for electron-nuclei, electron-electron and nuclei-nuclei, respectively.

Born-Oppenheimer Approximation

Since the masses of nuclei are much larger than the mass of an electron, their velocity are rather small compared to electrons ones. One can thus predict the motion of the electrons to be immediate compared to the nuclei ones, and thus the nuclei to be at fixed positions when electrons move. Along this line, Max Born and Robert Oppenheimer assumed that one can separately treat the motion of atomic nuclei and electrons [82]. Within the Born-Oppenheimer approximation, the system wave function can be written as a simple product of an electron wave function ψ and a nuclei wave function φ :

Ψ({⃗ r}; { ⃗ R}) = ψ({⃗ r}) { ⃗ R} φ ({ ⃗ R}).
At the same time, the non-relativistic Hamiltionian given in the equation 3.4 can be separated in a set of two independent equations describing the electronic movements and the nuclei ones;

Ĥel ({⃗ r}) { ⃗ R} = Te ({⃗ r}) + VeN ({⃗ r}) { ⃗ R} + Vee ({⃗ r}) +V NN (3.5) and Ĥnucl ({ ⃗ R}) = TN ({ ⃗ R}) + E({ ⃗ R}) (3.6)
where Ĥel is electronic Hamiltonian and Ĥnucl is the nuclear one. Thus, the Schrödinger equation 3.

2 splits into Ĥel ψ({⃗ r}) { ⃗ R} = E({ ⃗ R}) ψ({⃗ r}) { ⃗ R} Ĥnucl φ ({ ⃗ R}) = E φ ({ ⃗ R}). (3.7)
While Ĥel describes the electronic structure, Ĥnucl yields to the vibrational modes (phonons). In the electronic Hamiltonian, the electron-nuclei operator VeN acts as a potential parametrized by the fixed nuclei positions. V NN is a constant corresponding to nuclei-nuclei interactions. As far as the electron motion is concerned, it causes only a shift in the total energy. It can thus be neglected in solving the time-independent Schrödinger equation.

After solving the stationary time-independent electron Schrödinger equation for fixed nuclei positions, one can find the motion of the latter by solving the nuclei Schrödinger equation in which E({ ⃗ R}) is the electronic energy and acts as a potential for the nuclei equation. The eigenstates of the nuclear Hamiltonian around the equlibrium geometry will give access to the systems of vibrations (phonons) for a given electronic state. The equilibrium geometry is given by the minimization of the electronic energy with respect to the nuclei position. This procedure can be summarized schematically by min

{ ⃗ R} min ψ E[{ ⃗ R}, ψ] (3.8)
where E is the ground-state the energy of the many-body system within the Ĥel ψ = Eψ eigenvalue problem. From now on, we will use the notation Ĥ to describe Ĥel .

For the simplicity of the framework, we adopt the atomic units for the rest of this chapter. (h = m e = e = 4π/ε 0 = 1) 3.3 Density Functional Theory: a way to solve the electronic structure Density Functional Theory (DFT) is a computational method extensively used in quantum physics, quantum chemistry and material science. It was built by Hohenberg and Kohn [83] and Kohn and Sham [84] to treat the many-body electron-electron interactions. The basic idea of DFT rests in giving a special role to the one-body electronic density of the ground state of a quantum many-body system. Briefly, all ground state properties are to be considered to be unique functionals of the ground state density.

The one particle density, n(⃗ r), is defined by N times of the measure of the probability for an electron to be present at any given point. The density is given by the expectation value of the the density operator n(

⃗ r) = ∑ N i=1 ∑ σ i δ (⃗ r -⃗ r i ).
Here δ (⃗ r) is the Delta-Dirac function.

Thus, the one particle density is as follows:

n(⃗ r) = ⟨ψ| n(⃗ r)|ψ⟩ ⟨ψ|ψ⟩ = N ∑ σ 1 • • • ∑ σ N d⃗ r 2 • • • d⃗ r N |ψ(⃗ r,⃗ r 2 ,⃗ r 3 , • • • ,⃗ r N , σ 1 , σ 2 • • • , σ N )| 2 ∑ σ 1 • • • ∑ σ N d⃗ r 1 d⃗ r 2 • • • d⃗ r N |ψ(⃗ r 1 ,⃗ r 2 ,⃗ r 3 , • • • ,⃗ r N σ 1 σ 2 • • • σ N )| 2 . (3.9)
Taking the notation of VeN as Vext and naming it as external potential we express the external potential energy by means of an integral of density. The total energy for a state ψ is given by the expectation value of the Hamiltonian operator:

E = ⟨ψ| Ĥ|ψ⟩ ⟨ψ|ψ⟩ = ⟨ Ĥ⟩ = ⟨ Te ⟩ + ⟨ Vee ⟩ + d⃗ rV ext (⃗ r)n(⃗ r). (3.10) 
DFT consists of two fundamental theorems and the Kohn-Sham resolution principle. Let us take a clear look on these theorems first.

Hohenberg-Kohn Theorems

The idea of Hohenberg and Kohn is the basis of the formulation of the density functional theory as an exact theory of any many-body system of interacting particles in an external potential Vext (⃗ r). The Hamiltionian is as follows,

Ĥ = - N ∑ i=1 ∇ 2 i + N ∑ i=1 Vext (⃗ r i ) + 1 2 N ∑ i̸ = j 1 |⃗ r i -⃗ r j | . (3.11)
Theorem 1. "For a given Vext in an N electron system, only one ground state density n 0 (⃗ r) is associated to this potential. Moreover, if n 0 (⃗ r) is the ground state density of an N electron system, only one Vext (⃗ r) can correspond to this density."

Proof. The first part of the theorem is obvious. We will prove the second part by the method of proof of contradiction. First, we suppose that for an N electrons system there are two different external potentials, leading to the same ground state density n 0 (⃗ r), denoted V (1) ext (⃗ r) and V (2) ext (⃗ r) differing by more than a constant, i.e.

V (1) ext (⃗ r) ̸ = V (2) ext (⃗ r) + c
where c is a constant. Thus, there are two different hamiltonians, Ĥ(1) and Ĥ(2) , which have two different ground state wave-functions, |ψ (1) ⟩ and |ψ (2) ⟩, which are assumed to have the same ground state density n 0 (⃗ r). Here we treat the case of non-degenarate ground states. Since |ψ (2) ⟩ is not the ground state of Ĥ(1) , it follows that

E (1) 0 = ⟨ψ (1) | Ĥ(1) |ψ (1) ⟩ < ⟨ψ (2) | Ĥ(1) |Ψ (2) ⟩ (3.12) ⇒ ⟨ψ (2) | Ĥ(1) |ψ (2) ⟩ = ⟨ψ (2) | Ĥ(2) |ψ (2) ⟩ + ⟨ψ (2) | Ĥ(1) -Ĥ(2) |ψ (2) ⟩ (3.13) = E (2) 0 + d⃗ r V (1) ext (⃗ r) - V (2) ext (⃗ r) n 0 (⃗ r) (3.14) ⇒ E (1) 0 < E (2) 0 + d⃗ r V (1) ext (⃗ r) - V (2) ext (⃗ r) n 0 (⃗ r) (3.15)
Similarly, considering |ψ (1) ⟩ is not the ground state of Ĥ(2) gives us

E (2) 0 < E (1) 0 + d⃗ r V (2) ext (⃗ r) - V (1) ext (⃗ r) n 0 (⃗ r). (3.16) 
Summing the inequalities 3.15 and 3.16, we arrive at the contradictory inequality

E (1) 0 + E (2) 0 < E (1) 0 + E (2)
0 .

Therefore we simply show that there cannot be two different external potentials differing from each other by more than a constant leading to the same ground state density. Within this we have shown that n 0 (⃗ r) ⇒ Vext .

The reverse is more trivial. Vext determines the Hamiltonian Ĥ for an N electrons system, which has one non-degenerate ground state wave-function ψ and accordingly one ground state density n 0 (⃗ r).

Corollary 1. Since the hamiltonian is fully determined by Vext and N, except for a constant shift of the energy, it follows that the many-body wave-functions for all states (ground and excited) are determined by n 0 (⃗ r). Therefore, all properties of the system are completely determined given only the ground state density n 0 (⃗ r). Theorem 2. "A universal functional for the ground state energy E[n] can be defined in terms of the density. For any particular Vext (⃗ r), the exact ground state energy of the system is the global minimum value of this functional, and the density n(⃗ r) minimizing this functional is "the exact ground state density n 0 (⃗ r)", provided with the fact that n 0 (⃗ r) is the density of an N electron system (N representability)."

Proof. Since the density determines the external potential uniquely and the potential determines the ground state wave function uniquely, all the other observables of the system are also uniquely determined and can be described as functionals of n(⃗ r). That means for instance that the total energy functional can be expressed as follows:

E HK [n] = T [n] + E ee [n] + d⃗ r Vext (⃗ r) n(⃗ r) (3.17) = F HK [n] + d⃗ r Vext (⃗ r) n(⃗ r) (3.18)
where F HK is the sum of the kinetic energy and electron-electron Coulomb energy. Since the form of these energies are the same for all systems F HK is thus a universal functional of the density n(⃗ r) and independent of the system. Now let us take a system with the ground state density n We consider another density n (2) (⃗ r) which corresponds to another wavefunction |ψ (2) ⟩. So we can easily conclude that the energy E (2) of the wavefunction |ψ (2) ⟩ with respect to the hamiltonian Ĥ(1) is greater than

E (1)
0 by the following expression

E (1) 0 = ⟨ψ (1) | Ĥ(1) |ψ (1) ⟩ < ⟨ψ (2) | Ĥ(1) |ψ (2) ⟩ = E (2) . (3.20)
So, the energy given in the equations 3.17 evaluated for the ground state density n 0 (⃗ r) is lower than any energy for any other density n(⃗ r). This proves the theorem.

Corollary 2. The functional E[n] is sufficient to determine the exact ground state energy and density.

In fact if we knew the functional F HK [n] we could find the exact ground state density and energy by minimizing the total energy of the system. However, F HK is unknown which leads us to use approximations. We will use the Kohn-Sham approximation to overcome this problem.

Kohn-Sham Ansatz

The basic principle of the Kohn and Sham ansatz lies down in replacing the many-body system by an auxiliary independent particle system, to find the ground state properties of the many-body system. Indeed, it is much easier to solve a non-interacting independent particle problem compared to an interacting many-body problem.

Kohn-Sham assumed that the exact ground state density of an interacting system can be written as the ground state density of a fictitious system of non-interacting particles. This assumption gives us the independent particle equations that can be solved numerically.

The Kohn-Sham ansatz consists of two main assumptions:

• By "non-interacting V-representability" we can represent the exact ground state density as the ground state density of an auxiliary system of non-interacting particles.

• We choose the Hamiltonian of the non-interacting system in a way to have the usual kinetic energy operator and an effective local potential Veff (⃗ r) acting on an electron at point⃗ r.

Let us define this auxiliary independent particle system. First, the Hamiltonian of this system is given by the following:

Ĥaux σ = - 1 2 ∇ 2 + V σ eff (⃗ r). (3.21) 
In a non-interacting independent electron system where N = N ↑ + N ↓ , the ground state ψ 0 has one electron in each of the N σ orbitals ϕ σ i with the lowest eigenenergy ε σ i of Hamiltonian given in equation 3.21. The density of the such an auxiliary independent particle system is given by

n(⃗ r) = ∑ σ n(⃗ r, σ ) = ∑ σ N σ ∑ i=1 |ϕ σ i (⃗ r)| 2 , (3.22) 
The independent particle kinetic energy T KS is

T KS = ⟨ψ| TKS |ψ⟩ = - 1 2 ∑ σ N σ ∑ i=1 ⟨ϕ σ i |∇ 2 |ϕ σ i ⟩ (3.23)
where ψ is now a non-interacting particle many-body wave function (ψ = | ∏ i ϕ i ⟩). The Hartree energy, which is the classical Coulomb interaction energy of the electron density n(⃗ r) interacting with itself, is given as

E Hartree [n] = 1 2 d⃗ r d⃗ r ′ n(⃗ r) n( ⃗ r ′ ) |⃗ r -⃗ r ′ | . (3.24)
We can formulate the total energy by rewriting E HK the Hohenberg-Kohn expression given in 3.17 using the Kohn-Sham principle:

E HK ≃ E KS = T KS [n] + d⃗ r Vext (⃗ r) n(⃗ r) + E Hartree [n] + E xc [n]. (3.25)
E xc is the exchange-correlation energy functional including Pauli Principle, correlated positions of electrons and the difference between the kinetic energy of the real system and the auxiliary Kohn-Sham one. It can be explicitly seen if we rewrite E xc in terms of the Hohenberg-Kohn functional F HK :

E xc [n] = F HK [n] -(T KS [n] + E Hartree [n]) (3.26) = T [n] -T KS [n] + E ee [n] -E Hartree [n]. (3.27) 
In fact, what is very remarkable about the exchange-correlation functional is that if we knew the exact value of E xc , we could evaluate the exact ground state energy and density of the many-body system by simply solving Kohn-Sham equations for independent particles with this density. Now it is time to introduce the Kohn-Sham variational equations and derive Ĥaux ≃ ĤKS . We derive the variational functional over wavefunctions by Rayleigh-Ritz principle,

∀i , δ E KS [n] δ ϕ * i (⃗ r) = δ T KS [n] δ ϕ * i (⃗ r) + δ E ext [n] δ n(⃗ r) + δ E Hartree [n] δ n(⃗ r) + δ E xc [n] δ n(⃗ r) δ n(⃗ r) δ ϕ * i (⃗ r) (3.28)
with the orthonormalized one electron wave functions (orbitals)

⟨ϕ i |ϕ j ⟩ = δ i, j . (3.29) 
Now we have (for real orbitals)

δ T KS [n] δ ϕ * i (⃗ r) = - 1 2 ∇ 2 ϕ i (⃗ r) and δ n(⃗ r) δ ϕ * i (⃗ r) = ϕ i (⃗ r). (3.30)
so we can construct the Kohn-Sham Schrödinger-like equations,

( ĤKS -ε i )|ϕ i (⃗ r)⟩ = 0, (3.31)
where the ĤKS is the mono-electronic effective Hamiltonian and ε i are its eigenvalues. In Hartree atomic units, ĤKS = -

1 2 ∇ 2 + vKS (⃗ r), (3.32) 
with

vKS (⃗ r) = δ E ext [n] δ n(⃗ r) + δ E Hartree [n] δ n(⃗ r) + δ E xc [n] δ n(⃗ r) (3.33) = vext (⃗ r) + vHartree (⃗ r) + vxc (⃗ r). (3.34)
The Kohn-Sham Schrödinger-like equations equations 3.31 and 3.33 lead to the resulting density n(⃗ r) and total energy E KS given by 3.25. Here we must emphasize that these formulations are entirely independent of the approximation for the functional

E xc [n].
Kohn-Sham ansatz allows us to replace the N interacting electrons Hamiltonian with an effective N non-interacting electrons Hamiltonians. Now the difficulty of the solution of an interacting system is only in the exchange-correlation functional. Thus, after we approximate this functional as accurately as possible, we can minimize the total energy of the many-body problem.

Since all the difficulty rests in the exchange-correlation functional it is vital to approximate this functional as accurately as possible. There have been different approaches to treat this functional over the years. Now we will give a brief introduction and description for the most common functionals such as local spin density approximation (LSDA) or generalizedgradient approximations (GGAs) and finally we will talk about hybrid functionals which are built using a combination of the exact exchange (from Hartree-Fock) and the effective exchange and correlation from LSDA and GGAs.

Exchange-Correlation Functionals

Using the Kohn-Sham ansatz the difficulty of the many-body problem is reduced to the approximation of the exchange-correlation functionals. The first, the simplest and the most widely used functional that we are about to explain is the local spin density approximation.

The local spin density approximation (LSDA)

The homogenous electron gas is the simplest model to represent the condensed matter. In this model, nuclei are replaced by a uniform positively charged background. In the homogeneous gas, all properties depend only on the electron and spin density. The LSDA approximation models the interacting systems using an energy functional extracted from the homogeneous electron gas. Indeed, the exchange-correlation energy is evaluated by an integral (over all space) on the exchange-correlation energy density at each point assumed to be the same as in a homogeneous electron gas.

E LSDA xc [n ↑ , n ↓ ] = d 3 r n(⃗ r)ε hom xc (n ↑ (⃗ r), n ↓ (⃗ r)) (3.35) = d 3 r n(⃗ r)[ε hom x (n ↑ (⃗ r), n ↓ (⃗ r)) + ε hom c (n ↑ (⃗ r), n ↓ (⃗ r))] (3.36)
where n ↑ (⃗ r) and n ↓ (⃗ r) stand for the density of the spin up and down electrons respectively. The expression of the exchange part of the homogeneous gas system is known;

ε x [n ↑ , n ↓ ] = -2 1/3 3 4 3 π 1/3 d 3 r (n ↑ ) 4/3 (⃗ r) + (n ↓ ) 4/3 (⃗ r) (3.37)
whereas the correlation part is fitted on the curves obtained from Quantum Monte-Carlo calculations of the homogeneous electron gas electronic structure. Vosko et al. [85] and Perdew and Zunger [86] have introduced the most famous approaches for this functional.

The first disadvantage of LSDA lies down in the Hartree energy, which includes an electron-electron self interaction term that ought to be exactly cancelled by an exchange term. However, due to the local formulation of ⃗ v x in LSDA, this cancellation does not take place and a spurious self-interaction term remains. Even though the latter term is negligible for the homogeneous gas, it is large for the atoms. The second drawback is that band gaps are strongly underestimated. Many insulators such as CuO are found metallic within the LSDA scheme [START_REF] Terakura | Band theory of insulating transition-metal monoxides: Band-structure calculations[END_REF][START_REF] Grioni | Unoccupied electronic states of cuo: An oxygen 1 s x-ray-absorption spectroscopy investigation[END_REF][START_REF] Ching | Ground-state and optical properties of cu 2 o and cuo crystals[END_REF]. As a result, for metal/insulator interfaces, the Fermi Level of the metal is located in the conduction bands instead of the gap [56]. LSDA also underestimates the lattice constants, specifically for the ferroelectric materials [START_REF] Rabe | Modern Ferroelectrics[END_REF]. Similarly, small deformations occurring in ferroelectric materials or Jahn-Teller systems are underestimated in LSDA.

Generalized-gradient approximations (GGAs)

The generalized-gradient approximations were introduced as an alternative for LSDA to improve the treatment of the non locality in quantum mechanics. Within this approach, the exchange and correlation functional not only depends on the density but also on the gradient of the density. So E xc [n] is given as,

E GGA xc [n ↑ , n ↓ ] = d 3 r n(⃗ r) ε hom xc (n ↑ (⃗ r), n ↓ (⃗ r), |∇n ↑ |, |∇n ↓ |, . . . ) (3.38) 
= d 3 r n(⃗ r) ε hom x (n)F xc (n ↑ (⃗ r), n ↓ (⃗ r), |∇n ↑ |, |∇n ↓ |, . . . ) (3.39) 
where F xc is dimensionless and ε hom x is the exchange energy of the unpolarized gas.

Though there are improvements in GGA compared to LSDA, GGA leads to some overestimations. Particularly, GGA-PBE proposed by Perdew, Burke and Ernzerhof [START_REF] Perdew | [END_REF] yields to supertetragonal structures for ferroelectric materials where LSDA has better results. As in LSDA, GGA functionals underestimate bandgaps. Due to this drawback, Wu and Cohen developed a recent GGA functional called GGA-WC [92] specifically designed for ferroelectric materials. GGA-WC tries to improve the estimations of the small deformations which are underestimated in LSDA.

Hybrid Functionals

The hybrid functionals are a set of approximations to the exchange-correlation energy functional in DFT that combines the exact exchange from the Hartree-Fock method with the exchange and correlation functional from LSDA or GGAs.

Since in terms of drawbacks LSDA and Hartree-Fock are the opposite of each other, (i.e. for instance band gaps are underestimated in LSDA whereas they are overestimated in Hartree-Fock) this combination is expected to compensate failures of both approximations. Here, one should note that different hybrid functionals have been created by different mixing parameters.

Becke [93] proposed the simple half-half hybrid functional:

E hyb xc = 1 2 (E 0 x + E LSDA xc ) (3.40)
where E 0 x is the exact exchange from Hartee-Fock method and E LSDA xc is the LSDA exchangecorrelation functional.

The most common hybrid functional B3LYP [94] is however, a much better mixing scheme. It was introduced by Becke [95] with mixing parameters fitted on large sets of experimental data (A = 0.2, B = 0.9 and C = 0.81),

E B3LYP xc = E LSDA x +A(E 0 x -E LSDA x )+(1-A)B(E GGA x -E LSDA x )+E LSDA c +C(E GGA x -E LSDA c ) (3.41)
where the E LSDA are respectively Becke's GGA exchange [96] and GGA correlation of Lee, Yan and Parr [97]. B3LYP is widely used for atomic and molecular calculations but its application to periodic systems are not always satisfactory. Indeed B3LYP estimates the lattice constants very well but it also overestimates the band gaps and slightly tetragonality. It does not reproduce the correct exchange-correlation energy for the free electron gas which is indeed a problem for metals [START_REF] Paier | Why does the b3lyp hybrid functional fail for metals[END_REF]. B3PW, another hybrid functional, is composed of Becke's GGA exchange functional [96] with the GGA correlation functional of Perdew and Wang [START_REF] Perdew | Electronic Structure of Solids[END_REF]. By setting the mixing parameters B and C to 1 in the equation 3.41, the B1 funcional of [START_REF] Dovesi | [END_REF]101] is given by: B1WC, which we use during this thesis, is a combination of a B1 functional with the parameter A set to 0.16 and the Wu-Cohen GGA exchange-correlation functional [56]. It was specifically designed to properly treat both gaps and weak distortions. During this thesis, since we mainly studied metal/insulator interfaces, we thus needed to choose a functional that properly positions the metal Fermi level with respect to the insulator gap. In addition, a good treatment of the Jahn-Teller distortions present in the system is crucial in our calculations. Thus, the B1WC hybrid functional [56] was the best choice among all the possible functionals along these two criteria. On the other hand, it is known that B1WC underestimates the lattice constants about %1 compared to B3LYP functional and experiments. For example the lattice constant of SrTiO 3 (STO): a B3LYP/exp STO = 3.905 Å whereas a B1WC STO = 3.88 Å. However, since this underestimation is rather negligible we choose to work within B1WC as we want to define the band gaps and have the lattice distortions properly.

E B1 xc = E GGA x + A(E 0 x -E GGA x ) + E GGA c . ( 3 

Basis Sets

After introducing the Born-Oppenheimer approximation, the DFT method and the exchangecorrelation functionals, another step is left to solve the Kohn-Sham equations. Basis sets are needed to describe the wavefunctions, since Kohn-Sham equations are to be solved in a finite space.

In periodic systems, the quantum system is assumed to be represented by the repetition of a finite unit cell defined by unit vectors ⃗ a 1 ,⃗ a 2 ,⃗ a 3 . The one-electron wave functions are expressed in the Bloch form as

ϕ n, ⃗ k (⃗ r) = 1 √ Ω u n ( ⃗ k,⃗ r)e i ⃗ k•⃗ r
where Ω is the volume of the unit cell and is equal to ⃗ a 1 • (⃗ a 2 ×⃗ a 3 ). Here, u n ( ⃗ k,⃗ r) is a lattice periodic function, ⃗ k is a wave-vector of the reciprocal space and n is the energy band indice.

There are two main ways to construct a basis set to describe these functions: Plane-waves and Gaussian Orbitals.

Plane-Wave Basis Sets

In a plane-wave basis set, one rewrites the one-electron wave functions as

ϕ n, ⃗ k (⃗ r) = 1 √ Ω ∑ ⃗ G C n, ⃗ k, ⃗ G e i ⃗ G•⃗ r e i ⃗ k•⃗ r (3.43)
where ⃗ G is a vector of reciprocal space. Since there is an infinite number of plane waves describing the Bloch functions in this Fourier expansion, one will approximate the equation 3.43 up to cut-off energy E cut , that will reduce the plane wave expansion to a finite one:

h2 2m | ⃗ k + ⃗ G| 2 ≤ E cut .
The one-electron wave function will then be expressed in this finite plane wave basis set:

{e i( ⃗ k+⃗ g)•⃗ r , h 2m | ⃗ k + ⃗ G| 2 ≤ E cut }.

Gaussian Orbitals

Linear combination of atomic orbitals (LCAO) is a method used to describe the orbitals (one-electron wave functions) of a system as a linear combination of local orbitals, centred on the different atoms:

ϕ n, ⃗ k (⃗ r) = ∑ µ a µ,n φ µ, ⃗ k (⃗ r) φ µ, ⃗ k (⃗ r) = ∑ ⃗ g ϕ µ (⃗ r -⃗ A µ -⃗ g) e i ⃗ k•⃗ g (3.44)
where φ µ, ⃗ k (⃗ r) are Bloch functions defined in terms of local functions, i.e, local atomic orbitals

ϕ µ (⃗ r).
Here, ⃗ g is the real space Bravais lattice and ∑ ⃗ g is extended to the set of all lattice vectors. ⃗ A µ is the position of the nucleus in the zero reference cell (⃗ g = (0, 0, 0)) on which ϕ µ is centred.

The atomic orbitals of a given atom can be grouped into shells labelled by λ . All atomic orbitals with the same quantum numbers, s, n and l are grouped into the same shell. Thus, the atomic orbitals, ϕ µ belonging to the same shell λ can be notated as ϕ lm λ and can be also expressed as linear combinations (normalized contractions) of normalized real solid harmonic Gaussian type functions γ ′ = cγ where γ is the real solid harmonic Gaussian type function (primitive function) and c is the normalization coefficient:

ϕ µ (⃗ r) = ϕ ℓm λ (⃗ r) = N λ ∑ j d λ j c ℓm j γ(α λ j ;⃗ r) = N λ ∑ j d λ j c ℓm j X m ℓ (⃗ r)G(α λ j ;⃗ r) (3.45)
Here, j is the index running over the Gaussian type functions over the contraction where the d λ j is the contraction coefficient of the j-th primitive in the shell λ and N λ is the normalization coefficient of atomic orbitals belonging to the shell λ . G(α j ;⃗ r -⃗ A µ -⃗ g) is the Gaussian function with the following formula;

G(α j ;⃗ r -⃗ A µ -⃗ g) = e -α j (⃗ r-⃗ A µ -⃗ g) 2 .
Finally, X m l (⃗ r) is a real solid harmonic and is composed of the solid harmonic function Y m l as following:

X |m| ℓ (⃗ r) = Y |m| ℓ (⃗ r) +Y -|m| ℓ (⃗ r) 2 and X -|m| ℓ (⃗ r) = Y |m| ℓ (⃗ r) -Y -|m| ℓ (⃗ r) 2i with Y m ℓ (⃗ r) = r ℓ P |m| ℓ (cos Θ)e imΦ
where P m ℓ is the Legendre polynomial function characterized by the integers ℓ and m, such that ℓ ≥ 0 and -ℓ ≤ m ≤ ℓ.

Computational Details

All the results reported in this thesis are based on the theoretical techniques given in the previous sections. For the first-principle calculations we use the CRYSTAL code [START_REF] Dovesi | CRYSTAL09 User's Manual[END_REF] which is an ab initio code based on density functional theory.

Since the compounds of our interest consist of metallic and insulating layers we choose to work with hybrid functionals in order to correctly localize the Fermi level of the metallic phase with respect to the insulator gap. The B1WC [102,56] functional, is a good choice since it can describe accurately both the gaps amplitudes and the small structural distortions found in ferroelectric (as BaTiO 3 ) or Jahn-Teller systems (as La 2/3 Sr 1/3 MnO 3 ). In all our calculations, we use effective core pseudopotentials (ECP) for the heavy atoms such as La and Sr atoms from reference [103,104] and [105] respectively. The electrons in brackets are represented inside the pseudopotential in equations 3.46 and 3.47.

La : 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 4d 10 5p 6 6s 2 5d 1 (3.46)

Sr : 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 (3.47)

For the valence basis sets we use associated segmented basis set for La from reference [106]. For the valence basis set of Sr, we use Piskunov associated basis set [107] (3ζ quality).

Since Ba is a heavy atom, we used a small core effective pseudopotential. As in equations 3.46 and 3.47 the electrons treated in the core pseudopotential are in brackets.

Ba : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 6s 2 (3.48)

For Ba atom, we used the ECP from the reference [105]. Its associated basis set is found reference [107] and it is also of 3ζ quality.

For Pb, we used Hay-Wadt the large effective core pseudopotential [108].

Pb : [Xe]4 f 14 5d 10 6s 2 6p 2 (3.49) Its valence basis is set from reference [107]. The basis set is (3ζ ).

All other atoms (Mn, Ti and O) are represented with an all-electron basis set. The basis set are of 2ζ + P quality and can be found in references [START_REF] Towler | Ab initio study of mno and nio[END_REF][110][111][112].

In all our calculations, we performed full geometry optimization under substrate imposed constrains; that is fixed in-plane lattice parameters (equal to the bulk SrTiO 3 substrate as found in a full geometry optimization under the same computational conditions: a = b = a STO = 3.88 Å), and substrate in-plane symmetry operations (P4mm space group) unless otherwise specified. Since a part of our study aims at investigating MnO 6 octahedra rotations we used a double unit cell ( √ 2a × √ 2b) in order to allow rotations. We introduced initial rotations manually by small atomic displacements and we let the structure to relax.

Another important point in our study is the La/Sr ionic disorder in La 2/3 Sr 1/3 MnO 3 . In LaMnO 3 , La has a formal charge of 3+, Mn a formal charge of 3+ and oxygen a 2-formal charge (La 3+ Mn 3+ O 2- 3 ). In SrMnO 3 , Sr has a formal charge of 2+, Mn a formal charge of 4+ and oxygen again a 2-formal charge (Sr 2+ Mn 4+ O 2- 3 ). In order to treat the La/Sr ionic disorder we make full sets of calculations with all possible atomic orders. As fully La/Sr ordered systems can be expected to induce artefactual electronic localization effects we also defined average effective nuclear charges for La and Sr and redid all the calculations with these effective charges. We modelled the average effective nuclear charges for La and Sr by using La 3+ and Sr 2+ in the correct proportions (In La 2/3 Sr 1/3 MnO 3 , there is a mixed valence state for Mn (La 3+ 2/3 Sr 2+ 1/3 Mn x O 2- 3 . One can easily find that x = 10/3. By using this, one can find La (3+ε 1 )+ Mn 10/3+ O 2- 3 and Sr (2+ε 2 )+ Mn 10/3+ O 2- 3 ). Thus, the average nuclear charge is 29 + ε 1 for La and it is 10 + ε 2 for Sr since we used ECPs for La (29 electrons) and Sr (10 electrons). In addition, we also performed calculations using only La or Sr ECPs with average effective charges. Only the results seen in all the different calculations are presented, otherwise specified.

Parameters for the Results

In this section, we would like to define the parameters that we will use when presenting the results on the studied systems.

After the geometry optimization, we obtain the lattice parameters (a, b, c) in Å, Cartesian coordinates (x, y, z) in Å and the fractional ( x, ỹ, z) = (x/a, y/b, z/c) of the system. In order to present the structural properties of the optimized geometry, we summarize our results with the help of following parameters.

Average Plane:

We calculate the average plane between cations and anions of each atomic plane by the following formula: zaverage plane = zcation + zanion 2 where zcation and zanion are the positions of the cation and anion in the ⃗ c direction in fractional units for the same atomic plane.

Interplane distance:

Interplane distance is given by the difference of two consecutive z values of average planes; zi+1 average planezi average plane . With this form, it is in the fractional units. In order to present it in Å, we multiply with the c lattice parameter of the system; interplane distance i = (z i+1 average planezi average plane ) × c = z i+1 average planez i average plane . One can see the representation of the average planes and interplane distance of a cubic perovskite LaMnO 3 in 4.3. In the figure, the bottom grey plane is the average plane of LaO and the top grey plane is the average plane of MnO 2 . The interplane distance is the distance between these two average planes. As this system is an ideal cubic perovskite, the cations and anions of each plane has the same z-coordinate value; thus sit on the exact same plane: the average plane. However, in the case of lower symmetry systems (such as tetragonal symmetry), the z-coordinate of the cation and the anion of the same plane can differ, thus the average plane and interplane distance can give us clues about dimerization.

Rumpling:

The rumpling gives us the amplitude of the cationic/anionic displacement. It provides an estimation of the dipole moment, thus an estimation of the polarization in the system, since the average positions correspond to a non polar structure. The rumpling is calculated as; rumpling = (z cationzaverage plane ) × c = z cationz average plane .

Mn-O distance (d Mn-O ):

We calculate the corresponding Mn -O distance in the ⃗ c direction by following;

d Mn-O = (z Mn -zO 1 ) × c or d Mn-O = (z O 2 -zMn ) × c
where Mn is manganese and O 1 and O 2 are the oxygen atoms as demonstrated in the figure 3.2.

Octahedron Thickness (d OO ):

We calculate the octahedron thickness of a unit cell (O -Mn -O distance in the ⃗ c direction) by following;

d OO = (z O 2 -zO 1 ) × c
where O 1 and O 2 are the oxygen atoms as shown in the figure 3.2. Layer Thickness (c ′ )

z O 1 z O 2 z A 1 z A 2 c ′
We also calculate the layer/unit cell thickness (cation-cation distance in the ⃗ c direction) by following;

c ′ = (z A 2 -zA 1 ) × c
where A 1 and A 2 are the cations as displayed in the figure 3.2.

Tetragonality:

By using the layer thickness we can calculate the tetragonality of the unit cell by c ′ /a -1 where a is the in-plane lattice parameter.

AFD motions:

In order to study of antiferrodistortive motions (AFD motions) of oxygens of the MnO 2 layer, one needs to double the unit cell in the (⃗ a, ⃗ b) plane. Thus, the new cell parameters are as follows;

⃗ a ′ = ⃗ a -⃗ b, ⃗ b ′ = ⃗ a + ⃗ b, ⃗ c.
where ⃗ a, ⃗ b,⃗ c are the original unit cell parameters. The new unit cell is drawn within purple square in figure 3.3. We displace oxygen atoms of MnO 2 planes along ⃗ a and ⃗ b in the initial guess to give a push to the geometry optimization. After the geometry optimization, we check whether these atomic displacements are suppressed and the oxygen atoms come back to their symmetric positions or not. We can calculate the final optimized oxygen displacements by the following;

disp = ( x -x0 ) 2 + ( ỹ -ỹ0 ) 2
where x0 and ỹ0 are the fractional in-plane coordinates of non-rotating oxygens atoms (O) and x and ỹ are the fractional in-plane coordinates of rotating oxygens atoms (O ′ ) of MnO 2 .

Finally, the angle of the rotation can be given by ϑ = arctan disp dist Mn-O where dist Mn-O is the in-plane distance between Mn and O in non-rotating octahedron. 

Magnetic Moment:

We report the magnetic moment of each Mn in MnO 2 plane by extracting it from the Mulliken population analysis of αβ electrons.

Charge of a Plane:

We report the charge of each plane in the system studied by extracting it from the Mulliken population analysis of α + β electrons; for example for MnO 2 ,

charge = (Z Mn -ZMn ) + 2 × (Z O -ZO ) = (25 -ZMn ) + 2 × (8 -ZO )
where ZMn and ZO are the computed number of α + β electrons of Mn and O and Z Mn and Z O are the atomic numbers of Mn and O.

The e g Orbital Occupancy Ratio:

We report the e g orbital occupancy ratio for each Mn atom ;

η e g = η x 2 -y 2 /η z 2
where η x 2 -y 2 is the occupancy of the orbital d x 2 -y2 and η z 2 is the occupation number of the orbital d z 2 . The occupancies of the orbitals are generally obtained by the Mulliken population analysis of αβ electrons. In the case of the systems with AFD motions, in order to disentangle t 2ge g mixing induced by the octahedron rotations, we need to take the x and y axes as the Mn local axes corresponding to the in-plane Mn -O directions. Thus, in these cases, we calculate the density matrix of the d orbitals and extract real occupation numbers of the t 2g and e g orbitals with the consideration of the in-plane rotations.

Total e g Occupancy:

We also report the total e g orbital occupancy for each Mn atom per octahedron as defined;

tot e g = η x 2 -y 2 + η z 2 .
Delocalization of 3d z 2 on Ti:

We give the delocalization of the 3d z 2 electrons between Mn -Ti at the interfaces. We extract this information by the Mulliken population analysis of αβ electrons of the 3dshell of Ti atoms at the interfaces. Indeed, in such a way we can measure the leak of the magnetic electrons on the Ti ions.

Polarization:

We also report the polarization of the systems in which we alternate manganite layers with buffer insulators such as BaTiO 3 and PbTiO 3 . We calculate the polarization of the materials by using the following formula:

⃗ P = |e| V ∑ Z ion ⃗ r ion
where V is the unit cell volume, Z ν ion are the Born-effective charges of each atom that we take from the Ref. [56] and ⃗ r ν is the atomic displacement vector of the atom ν. For the latter, we take a hypothetical reference state with mirror symmetry planes ensuring there is no polarization in the system and we calculate the atomic displacement by subtracting atomic position from the reference positions. 

Introduction

The aim of this chapter is to study the magnetic ground state of LaMnO 3 -SrMnO 3 (LMO-SMO) superlattices by means of first-principle calculations. We will study the effect of strain by comparing different magnetic orderings for different thicknesses of ordered LMO-SMO superlattices. In first section we will report the study of [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 . In the second section, we will increase the number of layers from 2 to 4 and report the study of [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice. Third section, we will study again a 4-layers system but with different cation ordering: [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] 1 . Fourth section will be dedicated to a 3-layers system; [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 and in the fifth section we will increase the number of layers from 3 to 6 layers; that is

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 .
First, we have considered cubic perovskite structures of LaMnO 3 and SrMnO 3 and construct a tetragonal superlattice of them. The aim was to study the electronic and magnetic properties of this superlattice. The effect of epitaxial strain, which arises because of the lattice mismatch of the substrate and LaMnO 3 -SrMnO 3 superlattice can be understood by the tetragonal distortion of the superlattice. This tetragonal distortion is evaluated by c/a ratio where c and a are the out-of-plane lattice and in-plane lattice parameters, respectively. The c/a ratio is determined by the linear relation ca 0 = -4ν (aa 0 ) [START_REF] Hiroyuki Yamada | lamno 3 /srmno 3 interfaces with coupled charge-spin-orbital modulation[END_REF], where a 0 is the hypothetical lattice constant of the superlattice under a strain-free condition. Here, ν is a Poisson ratio and it is around 0.3 for perovskite manganites [START_REF] Konishi | Orbital-state-mediated phase-control of manganites[END_REF]. Experimentally, a 0 value is the weighed average of the lattice constant of bulk LaMnO 3 (3.936 Å) and bulk SrMnO 3 (3.806 Å) [START_REF] Hiroyuki Yamada | lamno 3 /srmno 3 interfaces with coupled charge-spin-orbital modulation[END_REF][START_REF] Nanda | Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: lamno 3 /srmno 3[END_REF]. Thus, for example, a 0 of

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice is calculated as 1 2 (3.936 + 3.806) = 3.871 Å.
Previously, Nanda and Sathpathy [START_REF] Nanda | Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: lamno 3 /srmno 3[END_REF] studied the effect of strain on the orbital ordering and magnetic structure of these superlattices by applying different c/a ratio and running total energy calculations. They interpreted their results in terms of a three-site Mn-O-Mn model.

According to their model, the orbital character of e g electrons is determined by the strain. When the superlattice is under tensile strain (c/a < 1), the magnetic structure is A-type antiferromagnetic with preferential d x 2 -y 2 orbital occupancy. When there is lattice-matched structure, i.e. no strain (c/a = 1), the magnetic structure is ferromagnetic with equivalent e g orbital occupancies. When the strain is compressive (c/a < 1), the magnetic structure is C-type antiferromagnetic with preferential d z 2 occupancy.

[(LaMnO

3 ) 1 -(SrMnO 3 ) 1 ] 1 Superlattice
First we start with the simplest case:

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 . In figure 4.1 one can see the schematic representation of [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 .
Our first consideration was to study this superlattice deposited on SrTiO 3 substrate. The substrate will impose its in-plane lattice parameter to the superlattice. The experimental a lattice parameter of SrTiO 3 (STO) is found to be 3.905 Å. The optimized lattice parameter, however, is found to be 3.88 Å. During this study we tried both values for lattice parameters in our calculations in order to compare the results. We also studied strain-free environment for this superlattice in which the in-plane lattice parameters are free to relax. Thus, we were able to obtain hypothetical lattice parameters for the LaMnO 3 -SrMnO 3 superlattice. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.

Strain-free conditions

First we consider an artificial strain-free environment by letting the in-plane lattice parameter to be optimized as well as c parameter. This calculation will give us the strain-free reference of the in-plane lattice parameter of LMO-SMO superlattices. We computed two magnetic configurations: ferromagnetic and A-type antiferromagnetic orderings. We found that the ferromagnetic configuration is lower in energy compared to antiferromagnetic one (∆E = E A-AFM -E FM ≃ 140 meV for whole system). For the ferromagnetic LMO-SMO superlattice, the a lattice parameter is optimized at a FM = 3.833 Å. For A-type antiferromagnetic LMO-SMO superlattice, it is optimized at a A-AFM = 3.873 Å.

Ferromagnetic Ordering

In tables 4. parameter is optimized at a FM = 3.833Å. In table 4.2, we can immediately see that the Mn-octahedron thickness (d OO ) and the layer thickness (c ′ ) are the same for the two layers so that the Jahn-Teller distortion (Jtd) and tetragonality (c ′ /a -1) values are the same as well. Both Jahn-Teller distortion and tetragonality values indicate very small elongation in the superlattice mono-layers. The magnetic moment of each Mn is the same. The e g occupancy ratios are also the same in both octahedra. Finally, the e g occupancy ratio shows that d z 2 is preferentially occupied over d x 2 -y 2 orbital though it is small. When we check the charges of the atomic planes in this table, we see that there is a global electron transfer from SrO at a lower level LaO planes toward MnO 2 ones. 

Mn
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A-type Antiferromagnetic Ordering

In tables 4.3, 4.4 we report the results for A-type antiferromagnetic (ferromagnetic in plane, antiferromagnetic in ⃗ c direction) ordered [(LMO) 1 -(SMO) 1 ] 1 superlattice in a strain-free environment. The a lattice parameter is optimized at a A-AFM = 3.873 Å and the c lattice parameter is optimized at c A-AFM = 7.531 Å. Thus, the first thing we can say is that, in a strain-free environment, the in-plane lattice parameter increases in A-type antiferromagnetic ordering compared to the ferromagnetic ordering (a A-AFM > a FM ) while the out-of-plane lattice parameter decreases (c A-AFM < c FM ). In table 4.3, one can see that zaverageplane values are the same as for the ferromagnetic ordering, while the interplane distances are smaller than the ones in ferromagnetic ones. This is due to the overall contraction of the superlattice in ⃗ c direction. However, the analysis of the interplane distances done for the FM ordering is valid for A-type antiferromagnetic ordering as well; the average MnO In table 4.4, one can see that the Mn-octahedra thickness and the layer thickness are more or less equal to each other for each mono-layer (around 3.77 Å). This value is less than the thickness value of ferromagnetic case. However, the JTd and c ′ /a -1 values are five times larger than those of the ferromagnetic case. Both JTd and tetragonality indicate strong contraction in the superlattice octhedrons and mono-layers. As a consequence of the JTd value, the e g occupancy ratio is higher than the one in the purely ferromagnetic case, and the d x -y 2 orbital is preferentially occupied over the d z 2 orbital. The magnetic moments of the Mn ions present alternated signs, because of the spin ordering. Their values are a little smaller than those of ferromagnetic case.

For comparing the relaxed lattice parameters of FM and A-AFM cases, one can take a look to the sketch given in Figure 4.5. Here, in the case of A-type AFM compared to FM, by taking into account the enlargement of the a lattice parameter and the reduction of the c lattice parameter, we can say that antiferromagnetism in ⃗ c direction induces a contraction on the octahedra and layers along the ⃗ c direction. The free energy of such a system can be given as

d OO (Å) JTd c ′ (Å) c ′ /a -1 magnetic moment (µ B ) η x 2 -
[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a strain-free environment. a A-AFM = 3.873 Å. c A-AFM = 7.539 Å. c ′ FM a FM a A-AFM c ′ A-AFM c FM c A-AFM
F = E elas + E deloc + E SX + E Hund (4.1)
where E elas is the elastic energy, E deloc is the delocalization energy, E SX is the superexchange energy and E Hund is the Hund's energy.

When there is a ferromagnetic ordering in the system, the system will favor the in-plane delocalization. For this purpose, the a lattice parameter will decrease in the ferromagnetic ordering case. As a consequence, the in-plane delocalization t increases. The elastic energy enlarges the c lattice parameter in order to preserve the volume of the system. Naturally, the d OO also increases and results with a positive JTd which is responsible of a weak dominance of d z 2 occupancy in the strain-free case.

When there is A-type antiferromagnetic ordering one can gain the superexchange energy compared to ferromagnetic solution. In order to favour the superexchange energy along the ⃗ c direction the superlattice contracts in the ⃗ c direction. On the other hand, elastic energy will still decrease the a lattice parameter but in order to preserve the volume this decrease will not be too much. The contraction in the ⃗ c direction will result with a slightly dominant d x 2 -y 2 occupancy in the strain-free case.

Results with a STO = 3.88 Å

Now we look at a [(LMO) 1 -(SMO) 1 ] 1 superlattice deposited on a STO substrate. The imposed a lattice parameter is the one we optimized within our calculations; that is a = 3.88 Å. We computed different magnetic configurations: ferromagnetic, A-type antiferromagnetic, C-type antiferromagnetic and G-type antiferromagnetic. We found that the ferromagnetic ordering has the lowest energy. As the C-type antiferromagnetic and G-type antiferromagnetic configurations are way too high in energy we do no report their structural and magnetic properties here in this section. However, in section with imposed a = 3.905 Å, we will report the C-type antiferromagnetic configuration with the ferromagnetic and A-type antiferromagnetic configurations to have an idea. When a = 3.88 Å is imposed, the energy difference between the A-type antiferromagnetic ordering and the ferromagnetic ordering is found to be ∆E = E A-AFM -E FM ≃ 36 meV for whole superlattice and 9 meV per manganite unit cell.

Ferromagnetic Ordering

In table 4.5 we report the structural results of the optimized geometry of [(LMO) 1 -(SMO) 1 ] 1 superlattice with imposed a = 3.88 Å when spins are ferromagnetically alligned. The c lattice parameter is optimized at c FM = 7.617 Å. The MnO 2 planes have opposite rumplings, thus we can say that the system doesn't show any polarization. By looking at the interplane distances, one can easily see that the average MnO 2 planes are closer to the average LaO planes than to the average SrO planes. The distance with the LaO is 1.876 Å and the distance with SrO is 1.932 Å. The Mn -O distance in the ⃗ c direction also changes from one plane to another. The d Mn-O between the MnO 2 and LaO is 1.924 Å, while d Mn-O is 1.884 Å between MnO 2 and SrO. These two results are sign of a dimerization as we pointed out in the previous section. Though the interplane distances and the Mn -O distances decreased compared to the ferromagnetic strain-free case, the dimerization is still there and acts the same. In table 4.6, we give the results for the magnetic properties of the ferromagnetic ordered system. The Mn-magnetic moments are the same in each MnO 2 plane and this value is similar to the ferromagnetic-strain free case. We can immediately see that the Mn-octahedra thickness (d OO ) and the layer thickness (c ′ ) are the same in the two layers so that the Jahn-Teller distortion (JTd) and tetragonality are the same as well. Both Jahn-Teller distortion and tetragonality indicate that the superlattice mono-layers are contracted in the ⃗ c direction and the e g ratio shows that d x 2 -y 2 is preferentially occupied. This result is the opposite of the ferromagnetic strain-free case. When there is a strain due to the imposed a lattice parameter, the gain in the in-plane delocalization energy cannot take place by compressing the a lattice parameter. Thus, under the tensile strain, the system contracts in the ⃗ c direction leading to a negative JTd which is associated to a dominant d x 2 -y 2 occupancy. 
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A-type Antiferromagnetic Ordering

In tables 4.7, 4.8 we report the structural and magnetic quantities for the A-type antiferromagnetic (ferromagnetic in plane, antiferromagnetic in⃗ c direction) ordered [(LMO) 1 -(SMO) 1 ] 1 superlattices. The c lattice parameter is optimized at c A-AFM = 7.531 Å. It is worth to mention that this value is more or less the same as the c lattice parameter of the A-type antiferromagnetic system in strain-free environment (c = 7.539 Å). It is probably because of the very small mismatch between strain-free A-type antiferromagnetic in-plane lattice parameter (a A-AFM = 3.873 Å) and the imposed in-plane lattice parameter (a = 3.88 Å).

The mismatch is around 0.2%. Thus, we can expect to have about the same structural and magnetic properties with strain-free A-type antiferromagnetic case. Indeed, one can see from the corresponding tables that the strain-free (optimized at a = 3.873 Å) and strained A-type antiferromagnetic (fixed at a = 3.88 Å) cases show almost the same structural and magnetic properties. In comparison to the strained ferromagnetic case, the strained A-type antiferromagnetic system is indeed more contracted in ⃗ c direction. This overall contraction in ⃗ c direction also reflects on the interplane distances between average planes and d Mn-O distances, thus the same dimerization analysis is still valid. The rumpling in each plane is qualitatively the same with the strained ferromagnetic case. 

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]
1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 7.531 Å.

In table 4.8, one can see that the Mn-octahedra (d OO ) and layer (c ′ ) thicknesses are even smaller than those of strained ferromagnetic case. As a consequence of the larger negative JTd, the associated e g ratio is higher than for the strained ferromagnetic case. As a conclusion, we can say that even if we have seen a contraction in the⃗ c direction in the strained ferromagnetic case, the contraction that we get from the strained A-type antiferromagnetic case is larger. 
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4.2.3

Results with a STO = 3.905 Å

Now we look at a [(LMO) 1 -(SMO) 1 ] 1 superlattice deposited on a substrate where the imposed a lattice parameter is the experimental STO one; that is a = 3.905 Å. We computed different magnetic configurations: ferromagnetic, A-type antiferromagnetic and C-type antiferromagnetic. We obtain the A-type antiferromagnetic ordering as the ground state when the a is fixed at 3.905 Å. The C-type antiferromagnetic ordering has a very large energy (∆E = E C-AFM -E A-AFM = 782 meV for whole superlattice). The energy difference between the A-type antiferromagnetic ordering and the ferromagnetic ordering is given by ∆E = E A-AFM -E FM ≃ -13 meV for whole superlattice and -3 meV per manganite unit cell.

Ferromagnetic Ordering

In table 4.9, we report the structural results of the optimized geometry of [(LMO) 1 -(SMO) 1 ] 1 superlattice with imposed a = 3.905 Å when spins are ferromagnetically alligned. The c lattice parameter is optimized at c FM = 7.585 Å. The structural and magnetic properties are qualitatively the same as for the ferromagentic case with imposed a = 3.88 Å , since in both cases the superlattice is under tensile strain. However, one should note that the overall contraction along ⃗ c is a little bit larger in the a = 3.905 case than a = 3.88 Å case. In table 4.10, we report the magnetic properties. The results are qualitatively similar to the ferromagnetic ordered case with the imposed a = 3.88 Å. As the overall contraction is increased in the a = 3.905 Å case, this reflects in the JTd and the associated the e g occupancies but the physics does not change significantly from a = 3.88 Å case to a = 3.905 Å case when there is ferromagnetic ordering. In figure 4.6, we report the total and partial densities of states for the [(LMO) 1 -(SMO) 1 ] 1 superlattice in the ferromagnetic configuration. Mn atoms contribute to the electronic structure at the Fermi level. Mn t 2g states are below the Fermi level due to the crystal field splitting. At the Fermi level, Mn e g ↑ states split into d x 2 -y 2 and d z 2 . Both orbitals are almost equally occupied (even though the e g ratio shows preferential d x 2 -y 2 orbital occupancy the difference remains small). These partially occupied e g orbitals lead to a ferromagnetic double exchange. In spin-down channel we can notice the gap at the Fermi level which is the sign of half-metallicity. 
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A-type Antiferromagnetic Ordering

We give the results summarized in tables 4.11 and 4.12 for A-type antiferromagnetic ordering with imposed a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 7.500 Å. The results in tables 4.11 and 4.12 are qualitatively similar to those of the A-type AFM ordering with imposed a = 3.88 Å. However, one must note that the overall contraction along the ⃗ c increases in comparison to a = 3.88 Å case as the fixed a lattice parameter is larger than 3.88 Å . Let us remind that a = 3.88 Å is very close to the strain-free reference (a = 3.873 Å) for the A-type antiferromagnetic ordering. Thus, this effect can be attributed to the elastic energy that tends to keep the unit cell volume constant. In figure 4.7, we give the total and partial densities of states for the [(LMO) 1 -(SMO) 1 ] 1 superlattice in the A-type antiferromagnetic configuration. Again, Mn atoms contribute to electronic structure at the Fermi level. Mn t 2g states are below the Fermi level due to crystal field splitting. At the Fermi level, Mn e g ↑ states split into d x 2 -y 2 and d z 2 . Since the antiferromagnetism in the ⃗ c direction enhances the contraction of Mn-octahedra in the ⃗ c direction, the d x 2 -y 2 orbital occupancy is significantly larger than the one of d z 2 . 

C-type Antiferromagnetic Ordering

Though it is quite higher in energy compared to other magnetic configurations we also report C-type antiferromagnetic ordering; that is antiferromagnetic ordering in plane and ferromagnetic ordering in⃗ c direction. In table 4.14, we report the magnetic and related structural properties. The two Mn atoms of each plane has opposite signs in magnetic moment as we ordered C-type antiferromagnetism; that is antiferromagnetic in plane and ferromagnetic in the ⃗ c direction. The charges of each plane is non-zero as we observed before in other calculations as well. The d OO and c ′ values are close to each other so that the corresponding JTd and c ′ /a -1 are also close. We see the elongation in both d OO and c ′ compared to ferromagnetic and A-type antiferromagnetic cases within a = 3.905 Å. However, what is remarkable in this table by looking at the JTd and the associated e g occupancy ratio is that even though there is negative JTd, which is the sign of contraction in the ⃗ c direction, the d z 2 orbital is preferentially occupied.

In figure 4.8, we can see the electronic structure of the C-type antiferromagnetic [(LMO) 1 -(SMO) 1 ] 1 superlattice through the total and partial densities of states. One can see in the inset of Figure 4.8 that d z 2 is lower in energy and is more occupied whereas d x 2 -y 2 orbital is higher in energy and less occupied. The energy of the A-type antiferromagnetic configuration is lower than the energy of ferromagnetic configuration (E A-AFM -E FM = -3 meV per unit cell) when a is fixed at 3.905 Å, while it is the opposite (E A-AFM -E FM = 9 meV per unit cell) when a is fixed at 3.88 Å. However, the energy difference between these two magnetic configurations is quite small. This is smaller than room temperature (k B T ∼ 25 meV). This indicates that the magnetic ground state of is quasi-degenerate in our calculations. In order to highlight this issue, we would like to check whether this comes from a size effect. Thus, we have increased the number of layers from 2 to 4. In addition, we will be able to check different magnetic configurations with by increasing the number of layers.
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Analysis of Mn-Mn distances

Finally, we would like to summarize the Mn-Mn distances in each magnetic ordering for these superlattices. First, in table 4.15 we give the Mn-Mn distances for the superlattice in a strain-free environment and within imposed a = 3.88 Å and a = 3.905 Å. We see the dimerization in all cases. 

d Mn-Mn (Å) FM A-AFM FM A-AFM FM A-AFM Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.905 Å a = 3.905 Å MnO 2 ↑ ↓ ↑ ↓ ↓ ↑ SrO 3.

[(LaMnO

3 ) 1 -(SrMnO 3 ) 1 ] 2 Superlattice
In this section, we double the size of the system with the same cationic order, [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 , that allows us to study both size effects and different magnetic orderings. The schematic picture of such superlattices is given in figure 4.9. In such superlattice, other than the FM, A-AFM, C-AFM and G-AFM one can study the magnetic orderings such as ↑↑↓↓ ("uudd") and ↑↓↓↑ ("uddu"). Since we have seen in the 2-layers systems that the C-AFM and G-AFM are energetically too high, we didn't study them for the 4-layers systems. In figure 4.10 we gave the energy comparisons of each magnetic ordering with respect to the substrate on which the superlattice is deposited. One can immediately notice that for both the substrate in-plane lattice parameter a = 3.88 Å and a = 3.905 Å, A-AFM is the ground state. In the 2-layers case, we got FM case as the ground state for a = 3.88 Å. This shows that we were not able to completely capture the real physics when the computed system had only 2-layers. What is also interesting here is that we managed to get an intermediate magnetic order between A-AFM and FM which is the "uudd" case. '

Strain-free conditions

As we did in previous section, we also study the superlattice in strain-free environment. We found that the ferromagnetic solution is lower in energy than the A-type antiferromagnetic one (∆E = E A-AFM-FM -E FM ≃ 96 meV for whole superlattice and 12 meV per manganite unit cell). The strain-free reference in-plane lattice parameter is optimized at a FM = 3.836 Å for the ferromagnetic ordering while it is optimized at a A-AFM = 3.877 Å for the A-type antiferromagnetic ordering. As one can see these values are consistent with strain-free values found for the two-layers system.

Ferromagnetic Ordering

In tables 4.16, 4.17, we report the structural and magnetic results for the ferromagnetic superlattice. The a lattice parameter is optimized at a FM = 3.836 Å. The c lattice parameter Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.

is optimized at c FM = 15.152 Å. Though the in-plane lattice parameter is consistent with the strain-free two-layers ferromagnetic system (a FM = 3.836 Å for four-layers and a FM = 3.833 Å for two-layers), the c lattice parameter is smaller than twice of the c lattice parameter of the strain-free two-layers ferromagnetic system (c FM = 15.152 Å for four-layers and 2 × c FM = 2 × 7.714 = 15.428 Å for two-layers doubled in ⃗ c direction). This contraction in the ⃗ c direction is reflected on the structural parameters of table 4. [START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF]. One can see that the interplane distances and the d Mn-O ones are qualitatively the same as for the strain-free two-layers ferromagnetic system but the values are smaller due to the overall contraction. In table 4.17, we report the magnetic and related structural results. The charges of each atomic plane are more or less the same as the ones in the strain-free two-layers ferromagnetic system. The Mn-magnetic moments of each MnO 2 plane are equal to each other and are also the same with strain-free two-layers ferromagnetic system. The main differences between strain-free four-layers ferromagnetic and strain-free two-layers ferromagnetic systems are in d OO and c ′ of each layer and, corresponding JTd and tetragonality values. In strain-free four-layers ferromagnetic case, we see that the each layer and Mn-octahedra of each layer are equal to each other and are contracted (negative JTd and tetragonality). Previously, we have seen small elongation in Mn-octahedra of two-layers system with a slightly small dominant d z 2 occupancy. Now, in four-layers system, as we compress more in the ⃗ c direction, the e g ratio is closer to 1, indicating almost equal occupancies in d x 2 -y 2 and d z 2 orbitals. 
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A-type Antiferromagnetic Ordering

In tables 4.18, 4.19, we report the structural and magnetic properties of the strain-free fourlayers A-type antiferromagnetic system. The a lattice parameter is optimized at a A-AFM = 3.877 Å. The c lattice parameter is optimized at c A-AFM = 15.046 Å. Both in-plane and out-of-plane lattice parameters are consistent with the strain-free two-layers ferromagnetic system (a FM = 3.836 Å for four-layers and a FM = 3.833 Å for two-layers, c A-AFM = 15.046 Å for four-layers and 2 × c A-AFM = 2 × 7.539 = 15.078 Å for two-layers doubled in ⃗ c direction). Relatively, the interplane distances between average planes and Mn -O distances are consistent with the two-layers system.

In table 4. [START_REF] Baibich | Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices[END_REF], one can see the magnetic and related structural properties. The charges of each atomic plane is non-zero and the values are similar to those obtained in two-layers case. The Mn-magnetic moments have opposite signs in each plane and their values are similar to those of strain-free two-layers A-type antiferromagnetic case. The thickness of the layer and Mn-octahedra are the same in each and equal to each other. those obtained for the two-layers system. Similarly, the associated JTd and tetragonality are also the same. The corresponding e g ratio shows the same tendency as two-layers system; a strongly dominant d x 2 -y 2 occupancy. In the table 4.21, we report the magnetic and related structural properties. The results are qualitatively the same for the strained two-layers ferromagnetic superlattice. We observe negative JTd and related e g occupancy ratio with slightly small dominance in d x 2 -y 2 occupancy. We again found an e g occupancy ratio different from the one obtained for the strain-free four-layers ferromagnetic superlattice.
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A-type Antiferromagnetic Ordering

In table 4 The c lattice parameter is optimized at c A-AFM = 15.039 Å; this value is consistent with the c lattice parameter optimized for the strained two-layers A-type antiferromagnetic system (c FM = 15.258 Å for four-layers and 2 × c A-AFM = 2 × 7.531 = 15.062 Å for two-layers doubled in ⃗ c direction). The structural properties are qualitatively the same with the strained two-layers A-type antiferromagnetic one. The values for interplane distances, rumplings and Mn -O distances are similar with the strained two-layers A-type antiferromagnetic ones. The same dimerization analysis is valid.

In the table 4.23, we report the magnetic and related structural properties. The results are qualitatively the same with strained two-layers A-type ferromagnetic superlattice. We observe negative JTd and related e g occupancy ratio with large dominancy in d x 2 -y 2 occupancy. These result are also similar to the ones obtained for the strain-free four-layers A-type ferromagnetic superlattice.

↑↑↓↓ Ordering

Now we consider a different magnetic ordering where spins are alligned as ↑↑↓↓ ("uudd"). This magnetic configuration is found to be an intermediate phase between A-type antiferromagnetic and ferromagnetic phases (E A-AFM -E FM = -103 meV (-13 meV), E A-AFM -E uudd ≃ -79 meV (-10 meV) for whole superlattice (per unit cell)). In the table 4.25, we report the magnetic and related structural properties. The charges of each atomic plane are non-zero and they are more or less the same as in the case of A-type antiferomagnetic. The Mn-magnetic moment presents the spin ordering of the system: "↑↑↓↓". The other results are qualitatively the same as for the strained four-layers A-type ferromagnetic superlattice. We observe negative JTd and related e g occupancy ratio with large dominance in d x 2 -y 2 occupancy. However, one must note that the dominant d x 2 -y 2 occupancy that one can get is larger in A-type antiferromagnetic case. 
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↑↓↓↑ Ordering

Another spin allignment which can be tested in such superlattice is ↑↓↓↑ ("uddu"). This configuration is energetically the highest. The structural results are given in tables 4.26. The c lattice parameter is optimized at c uddu = 15.133 Å. Even though the values in interplane distances and Mn-O distances change compared to the previous cases, the same dimerization is still valid here too.

In table 4.27, we give the magnetic and related structural properties. The charges of each atomic plane is non-zero and a little bit less than the ones we see in A-type antiferromagnetic and "↑↑↓↓" cases. The Mn-magnetic moment exhibit the spin ordering of the system: "↑↓↓↑". The other results are similar to A-type antiferromagnetic and "↑↑↓↓" cases. We observe negative JTd and the associated e g occupancy ratio with dominant d x 2 -y 2 orbital. However, the e g occupancy ratio is the smaller than A-type antiferromagnetic and "↑↑↓↓" cases.

Results with a STO = 3.905 Å

Now we study the [(LMO) 1 -(SMO) 1 ] 2 superlattice deposited on a substrate where the imposed a lattice parameter is the experimental STO one; that is a = 3.905 Å. We computed different magnetic configurations: ferromagnetic, A-type antiferromagnetic "↑↑↓↓" and "↑↓↓↑ orderings. We found that the A-type antiferromagnetic ordering has the lowest In table 4.29, we report the magnetic and related structural properties. The results are qualitatively the same with strained two-layers ferromagnetic superlattice. We observe negative JTd and related e g occupancy ratio with a dominant in d x 2 -y 2 occupancy (stronger than the one obtained for fixed a = 3.88 Å). These results are different than the ones obtained for strain-free four-layers ferromagnetic superlattice as well. 
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A-type Antiferromagnetic Ordering

We report the results in table 4.30 and table 4.31 for A-type antiferromagnetic LMO-SMO superlattice with fixed a = 3.88 Å. The c lattice parameter is optimized as c A-AFM = 14.980 Å; this value is consistent with the c lattice parameter optimized for the strained two-layers A-type ferromagnetic system (c A-AFM = 14.980 Å for four-layers and 2 × c A-AFM = 2 × 7.500 = 15.00 Å for two-layers doubled in ⃗ c direction). The structural results are qualitatively the same with the A-type AFM ordered two-layers system superlattice with a = 3.905 Å.

In table 4.31, we report the magnetic and related structural properties. The results are qualitatively the same with strained two-layers ferromagnetic superlattice at fixed a = 3.905 Å. We observe negative JTd and related e g occupancy ratio with a very dominant in d x 2 -y 2 occupancy (stronger than the one obtained for fixed a = 3.88 Å). We observe more contraction in the ⃗ c direction, thus larger negative JTd and increase in the d x 2 -y 2 occupancy compared to strain-free four-layers A-type ferromagnetic superlattice. In four-layers system the energy of the A-type antiferromagnetic configuration is lower than the energy of ferromagnetic configuration (E A-AFM -E FM = -13 meV per unit cell when a is fixed at 3.905 Åand E A-AFM -E FM = -27 meV per unit cell) when a is fixed at 3.88 Å). Although the energy difference between these two magnetic configuration is higher than two-layers sysem they are still quite small (close to room temperature (k B T ∼ 25 meV). This indicates that the magnetic ground state [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattices is quasi-degenerate in our calculations. However, compared to two-layers system, we managed to get the correct ground-state when a = 3.88 Å. 
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Analysis of Mn-Mn distances

Finally, we would like to summarize the Mn-Mn distances in each magnetic ordering for these superlattices. First, in table 4.36 we give the Mn-Mn distances for the superlattice in a strain-free environment and within imposed a = 3.88 Å. We see the same pattern in all the cases. This alternation between short and long distances is the sign of dimerization. In strain-free environment and on a substrate where the in-plane lattice parameter is imposed to a = 3.88 Å . The magnetic configuration that are investigated are again FM, A-AFM, "uudd" and "uddu". In figure 4.12, we gave energy comparisons of each magnetic ordering. Ferromagnetic configuration in a strain-free environment has the lowest energy.

d Mn-Mn (Å) FM A-AFM FM A-AFM ↑↑↓↓ ↑↓↓↑ Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.88 Å a = 3.88 Å MnO 2 ↑ ↓ ↑ ↓ ↓ ↑ SrO 3.

Strain-free Conditions

We first study the superlattice in a strain-free environment. Thus, we can calculate the hypothetical in-plane lattice parameter of this superlattice with different spin alignments. We only took into account ferromagnetic and A-type antiferromagnetic cases. We found that the ferromagnetic ordering is lower in energy than the A-type antiferromagnetic one (∆E = E A-AFM = E FM ≃ 226 meV for whole superlattice, 28 meV per unit cell). The strainfree reference in-plane lattice parameter is optimized at a FM = 3.828 Å for the ferromagnetic ordering while it is optimized at a A-AFM = 3.878 Å for the A-type antiferromagnetic strain-free strain-free a=3.88 FM A-AFM Fig. 4.12 Energy difference of each configuration with respect to the lowest energy ordering and geometry (∆E = E -E 0 ) vs. the imposed a in-plane lattice parameter. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.

ordering. One can see that that a A-AFM is consistent with strain-free antiferromagnetic [(LMO) 1 -(SMO) 1 ] 2 superlattice while a FM is smaller than the one of strain-free antiferromagnetic [(LMO) 1 -(SMO) 1 ] 2 superlattice.

Ferromagnetic Ordering

In table 4 From magnetic properties given in the table 4.39, we notice that Mn-octahedra between two SrO layers has the largest thickness (4.089 Å) whereas the Mn-octahedra between two LaO layers has the smallest one (3.773 Å). In the former octahedra the d z 2 is preferentially occupied while in the latter d x 2 -y 2 is occupied. We notice that there is almost no Jahn-Teller distortion in the two other two Mn-octahedras between SrO and LaO layers. Thus, the e g orbitals are more or less equally occupied in these layers. We also notice that tetragonality has exactly opposite behaviour compared to Jahn-Teller distortion. As we can see the relevant parameter to for the in-plane e g orbital occupancy (i.e. d x 2 -y 2 ) is the Jahn-Teller distortion. 
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A-type Antiferromagnetic Ordering

We summarize the results for A-type antiferromagnetic strain-free [(LaMnO ratio (2.406). The Mn-octahedra in between two LaO planes is more contracted (JTd: -0.033) than the one in between two SrO planes (JTd: -0.023). Consequently, the e g occupancy ratio is higher in the former (2.338) than the latter (1.873). Mn-octahedra between two SrO layers is elongated (JTd: 0.012) whereas the rest of the Mnoctahedras are all contracted. In the elongated Mn-octahedra, as usual, the d z 2 is preferentially occupied. In the Mn-octahedra between two LaO layers, the d x 2 -y 2 occupancy is dominant. The e g orbital occupancy is the same in the Mn-octahedras which are between SrO and LaO planes.
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A-type antiferromagnetic Ordering

The results for the A-type antiferromagnetic ordered (LaMnO Again, the e g orbital occupancy is the same in the Mn-octahedras which are between SrO and LaO planes. The Mn-octahedra in between two LaO planes is more contracted than the one in between two SrO planes. Consequently, the former has higher e g occupancy. In figure 4.13, we give total and partial densities of states for the [(LMO) 2 -(SMO) 2 ] superlattice in A-type antiferromagnetic configuration. At the down left, we present the total densities of states. Mn atoms contribute to electronic structure at the Fermi level. At the down right, we report the 3d orbitals of Mn atoms in each layer. Here, 1st Mn lies between two SrO layers while 3rd Mn is between two LaO layers. Both have their spins up. The 2nd and 4th Mn have their spins down. At the top panel, we report the 3d orbitals for each Mn more in details. We can clearly see that the d x 
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"↑↑↓↓" and "↑↓↓↑" Orderings

The results for the "uudd" and "uddu magnetic configurations are qualitatively similar to the A-type antiferromagnetic ordered superlattice even though the structural parameters can change from one to another. The results given in the tables 4. 

Analysis of Mn-Mn distances

Finally, we would like to summarize the Mn-Mn distances in each magnetic ordering for these superlattices. First, in table 4.50 we give the Mn-Mn distances for the superlattice within imposed a = 3.88 Å. We see the same pattern in the distances for all magnetic orderings. This pattern is the sign of a tetramerization of the system. values for strain-free and a = 3.88 Å for ferromagnetic, A-type antiferromagnetic, "↑↑↓↓","↑↓↓↑", cases. First line is visualized in red to point out it it is the repetition of the fourth MnO 2 plane due to periodicity.

d Mn-Mn (Å) FM A-AFM FM A-AFM ↑↑↓↓ ↑↓↓↑ Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.88 Å a = 3.88 Å MnO 2 ↑ ↓ ↑ ↓ ↓ ↑ SrO 3

[(LaMnO

3 ) 2 -(SrMnO 3 ) 1 ] 1 Superlattice
In this section, we focus on the (LaMnO 3 ) 2 -(SrMnO 3 ) 1 superlattice. In figure 4.14, one can see the schematic representation of such superlattice. As we studied in previous sections, we also studied (LaMnO 3 ) 2 -(SrMnO 3 ) 1 superlattice in a strain-free environment to determine its strain-free lattice parameters for ferromagnetic ordering. We also studied this superlattice on a STO superlattice where the in-plane lattice parameter is either imposed a = 3.88 or a = 3.905 Å. In such superlattice, other than FM and A-AFM one can also study the magnetic orderings such as "↑↑↓", "↑↓↓", "↓↑↑" and "↓↓↑". Though these magnetic orderings are expected to be higher in energy we studied them when a lattice parameter is imposed at 3.905 Å. In figure 4.15, we give the energy comparisons for different magnetic configuration with Fig. 4.14 Schematic picture for LMO-SMO superlattices the lowest energy state with respect to a lattice parameter. The lowest energy is obtained for the ferromagnetic case in a strain-free environment.

Strain-free conditions

We start to study the superlattice in a strain-free environment for ferromagnetic ordering.

The strain-free reference in-plane lattice parameter is optimized at a FM = 3.848 Å for the ferromagnetic ordering. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.

Ferromagnetic Ordering

In tables 4.51 and 4.52, we report the structural and magnetic properties of ferromagnetic (LMO) 2 -(SMO) 1 superlattice in strain-free environment. The a lattice parameter is optimized at a FM = 3.848 Å. The c lattice parameter is optimized at c FM = 11.679 Å. When we take a look at the interplane distances we again notice that the average LaO planes are closer to average MnO 2 planes than average SrO planes. This is the reverse when we take a look at d Mn-O values. The oxygen of SrO plane is closer to the Mn of MnO 2 plane than the oxygen of LaO plane. However, there is a sign of spontanous symmetry breaking in these values. Indeed, in table 4. [START_REF] Negas | The system SrMnO 3-x[END_REF] each mono-layer. Although one can expect to have the same JTd ratio for the Mn-octahedras between the LaO and SrO planes we see that they have different values (JTd: 0.057 and -0.004). This spontaneous symmetry breaking happens in this 3-layers system in a strain-free environment for ferromagnetic ordering because the double-exchange mechanism favours to have delocalization in plane. Thus, when the lattice parameters are free to relax, the in-plane lattice parameter is as shortened as possible in order to maximize this in-plane delocalization. However, due to the elastic energy, the volume of the cell has to be preserved. Thus, one of Mn-octahedra between LaO and SrO planes is elongated (4.066 Å) along the ⃗ c direction as a result. The imposed a lattice parameter is the one that we optimized within our calculations: a = 3.88 Å. We computed two different magnetic orderings: ferromagnetic and A-type antiferromagnetic. We have found the ferromagnetic ordering as the lowest energy (E A-AFM -E FM = 167 meV for the whole superlattice and 28 meV per unit cell).
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Ferromagnetic Ordering

In table 4 In table 4.56, we report the magnetic and related structural results of A-type antifferomagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice with imposed a = 3.88 Å. The effect of antiferromagnetism in the ⃗ c direction is again clear in the thickness of the Mn-octahedras between LaO and SrO planes. The first one is elongated (JTd: 0.051) with a dominant d z 2 occupancy, the second is contracted (JTd: -0.035) with a dominant d x 2 -y 2 occupancy. The Mn-octahedra between two LaO planes is also contracted (JTd: -0. 
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[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 .
The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 11.414 Å.

We see the effect of antiferromagnetism in the ⃗ c direction in the two first layers where the Mn-octahedras are between LaO and SrO planes. They are both contracted but they have different Jahn-Teller distortion values (-0.010 and -0.042) and e g occupancy ratios (1.005 and 2.964). The Mn-octahedra between two LaO planes is also contracted (JTd: -0.025) with a dominant d x 2 -y 2 occupancy as well.

"↑↑↓", "↑↓↓", "↓↑↑" and "↓↓↑" Orderings We also study the magnetic orderings: "↑↑↓", "↑↓↓", "↓↑↑" and "↓↓↑". The results are given tables 4.61, 4.62, 4.63, 4.64, 4.65, 4.66, 4.67 and 4.68. The results in the "↑↓↓" and "↓↑↑" orderings are consistent with the A-type antiferromagnetic ordering because the spins of the manganese atoms of the two MnO 2 planes that are between LaO and SrO planes are antiparallel as it was in A-type antiferromagnetic ordering. On the other hand, in the "↑↑↓" and "↓↓↑" orderings, the spins in the MnO 2 planes between LaO and SrO planes are parallel. Thus, the results in these orderings are consistent with the ferromagnetic ordered superlattice. 
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Analysis of Mn-Mn distances

Finally, we would like to summarize the Mn-Mn distances in each magnetic ordering for these superlattices. First, in table 4.69 we give the Mn-Mn distances for the superlattice in a strain-free environment and within imposed a = 3.88 Å. Here, one can notice the spontaneous symmetry breaking in the strain-free case. The Mn-Mn distances when LaO is in between the MnO 2 layers are different in the 1st layer and in the 3rd one. When a is fixed to 3.88 Å, the symmetry is restored in the ferromagnetic ordering, however the symmetry remains broken in the A-type antiferromagnetic ordering. In table 4.70, we give the Mn-Mn distances within values for a = 3.905 Å for ferromagnetic, A-type antiferromagnetic, "↑↑↓","↑↓↓", "↓↑↑", "↓↓↑" cases. First line is visualized in red to point out it it is the repetition of the third MnO 2 plane due to periodicity.

d Mn-Mn (Å) FM FM A-AFM Strain-free a = 3.88 Å a = 3.88 Å MnO 2 ↑ ↑ ↑ LaO 3.

[(LaMnO

3 ) 2 -(SrMnO 3 ) 1 ] 2 Superlattice
In this section, we double the size of the system with the same cation order of the previous section; that is

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 .
We studied the ferromagnetic ordering, A-type antiferromagnetic ordering, "↑↓↓↓↑↑" and "↑↓↓↓↑↑" orderings with imposed a = 3.88 Å.

In figure 4.17, we give energy comparisons for different magnetic configurations with the lowest energy state. One can see that we obtain the ferromagnetic ordering as the lowest energy. Fig. 4.17 Energy difference of each configuration with respect to the lowest energy ordering and geometry (∆E = E -E 0 ) vs. the imposed a in-plane lattice parameter. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering when a = 3.88 Å.

4.6.1 Results with a STO = 3.88 Å

We studied this superlattice deposited on STO substrate. The imposed a lattice parameter is a = 3.88 Å. As we stated above, we found the ferromagnetic ordering as the lowest energy in our calculations (E A-AFM -E FM = 726 meV (61 meV), E uddduu -E FM = 226 meV (19 meV), E uudduu -E FM = 268 meV (22 meV) for the whole superlattice (per unit cell)).

Ferromagnetic Ordering

Now we look at the ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized at c FM = 23.120 Å. In table 4.71, we give the structural properties of the optimized geometry. When we check the interplane distances for four layers where MnO 2 planes are sandwiched between LaO and SrO planes, we again see that the average LaO planes are closer to the average MnO 2 planes (around 1.881Å) than the average SrO planes (around 1.965 Å). When MnO 2 plane is only sandwiched between two LaO planes the interplane distance between the average LaO and MnO 2 planes is around 1.933 Å. This result is consistent with the ferromagnetic

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1
superlattice with imposed a = 3.88 Å. In table 4.72, we report the magnetic and related structural properties. The four Mn-octahedra that are between LaO and SrO planes have the equivalent JTd (0.001, 0.000, 0.002 and 0.001) and c ′ /a -1 values (-0.018, -0.019, -0.018 and -0.017) with each other. In these Mn-octahedras, the e g occupancy ratio shows that d x 2 -y 2 and d z 2 occupied more or less equivalently (0.925, 0.929, 0.901 and 0.909). The two Mn-octahedras between two LaO planes are contracted the most (JTd: -0.023) with largest e g occupancy ratio (1.304).

A-type antiferromagnetic Ordering

We study at the A-type antiferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 22.999 Å. In table 4.73, we give the structural properties of the optimized geometry. For the layers where MnO 2 planes are sandwiched between LaO and SrO planes, we see that antiferromagnetism in the ⃗ c direction affects the symmetry in the interplane distances and d Mn-O values (for example, the interplane distance between the average LaO and MnO 2 planes are 1.949 and 1.851 Å whereas this value was around 1.881 Å in ferromagnetic ordering). Another point to remark is that since the number of layers is even in this superlattice there can be full antiferromagnetism in the ⃗ c direction. Therefore, when we compare the results with A-type antiferromagnetic ordered The effect of full antiferromagnetism in the ⃗ c direction is again clear in the thickness of the Mn-octahedras between LaO and SrO planes. The very 1st Mn octahedra between LaO and SrO planes is elongated (JTd: 0.073) with a dominant d z 2 occupancy, the 2nd Mn-octahera between LaO and SrO planes is contracted (JTd: -0.031) with a dominant d x 2 -y 2 occupancy. The 3rd Mn-octahedra between two LaO planes is also contracted (JTd: -0.034) with a dominant d x 2 -y 2 occupancy. Then, when the superlattice is repeated, the 4th Mn-octahedra is no longer elongated as the 1st one (JTd: -0.012). The JTd values of 5th and 6th Mn-octahera are consistent with the 2nd and 3rd ones.

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice

"↑↓↓↓↑↑" Ordering

We study at the "↑↓↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized at c uddduu = 23.084 Å. In table 4.75, we give the structural properties of the optimized geometry. When we check the interplane distances for four layers where MnO 2 planes are sandwiched between LaO and SrO planes, we again see that the average LaO planes are closer to the average MnO 2 planes (around 1.847Å) than the average SrO planes (around 1.941 Å). When MnO 2 plane is only sandwiched between two LaO planes the interplane distance between the average LaO and MnO 

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 .
The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 22.999 Å.

1.983 Å. This result is similar with the ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice with imposed a = 3.88 Å because in this ordering, LaO planes are always in between ferromagnetically alligned Mn atoms and SrO planes are in between antiferromagnetically alligned Mn atoms.

In table 4.76, we report the magnetic and related structural properties. The 1st and 4th Mn-octahedra that are between LaO and SrO planes have the same JTd (-0.024) and e g occupancy ratio (1.419). The 2nd and 5th Mn-octahedras between LaO and SrO planes are also contracted (JTd: -0.024) with e g occupancy ratio (1.427). The 3rd and 6th Mnoctahedras that are between two LaO planes are elongated (JTd: 0.022) but they still have a dominant d x 2 -y 2 occupancy.

"↑↑↓↓↑↑" Ordering

We study at the "↑↑↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized at c uudduu = 23.039 Å. In table 4.77, we give the structural properties of the optimized geometry. From the interplane distances and d Mn-O there is no particular pattern. 

Analysis of Mn-Mn distances

Finally, we would like to summarize the Mn-Mn distances in each magnetic ordering for these superlattices. First, in table 4.79 we give the Mn-Mn distances for the superlattice within imposed a = 3.88 Å. We see the cation symmetry in kept in the Mn-Mn distances in the ferromagnetic and "↑↓↓↓↑↑" orderings. Let us remind that these two spin orderings are respecting the cation one, while this is not the case for the other two spin orderings. Indeed, as could be expected in the A-type antiferromagnetic and "↑↑↓↓↑↑" orderings there is no symmetry in the Mn-Mn distances. This result points out that both cation and spin orderings play an important role on the lattice relaxation.

Conclusion

In this chapter, we studied the superlattices of the two undoped antiferromagnetic manganese oxides LaMnO 3 and SrMnO 3 , i.e. [LaMnO 3 ] n -[SrMnO 3 ] m superlattices. We investigated the magnetic ground state for different n and m values in strain-free environment and on a SrTiO 3 substrate with optimized and experimental a lattice parameter. We found that 

Introduction

In chapter 4, we studied the (LaMnO 3 ) n -(SrMnO 3 ) p superlattices. Our aim was to investigate these superlattices on different substrates with different magnetic orderings. We found that (LaMnO 3 ) 1 -(SrMnO 3 ) 1 superlattices on a SrTiO 3 substrate is A-type antiferromagnetic whereas (LaMnO 3 ) 2 -(SrMnO 3 ) 1 on a SrTiO 3 substrate if ferromagnetic.

In this chapter, we will combine the LSMO and LBMO compounds with alternated titanates such as BaTiO 3 (BTO), PbTiO 3 (PTO) and SrTiO 3 (STO) to study the effect of the alternated layer on the magnetic properties of the manganite part. In addition, we will take into account the antiferrodistortive motions (AFD) (i.e octahedra rotations) that take place in the manganite layers.

Alternated layers

As we mentioned earlier in Chapter 1, perovskite oxides form an important family of materials, exhibiting a wide variety of functional properties exploited in various devices. Artificial superlattices (SL) combining such compounds provides the opportunity not only to combine the intrinsic properties of the building layers, but also to induce totally new phenomena at their interfaces. Indeed, one can remind that at interfaces different degrees of freedom (charge, orbital, spin, lattice) may be coupled between the two materials, by the mean of effects such as symmetry breaking, charge transfer, strain engineering, etc. For instance, it was recently shown that such techniques enable the increase of Curie temperature by more than an order of magnitude in manganites [BaTiO 3 ] n [La 2/3 A 1/3 MnO 3 ] n superlattices (A = Sr, Ca, n = 3, 4) on a SrTiO 3 substrate [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF].

Since ferromagnetic materials with large Curie temperature are of great interest for technological applications in electronics and spintronics, the understanding of the degrees of freedom at play in the Curie temperature increase is of primary importance. Let us point out that this large increase of Curie temperature was observed in superlattices alternating very thin layers (a few mono-layers of each compounds) : Such lattices are not only dominated by interface effects but also by the interactions between the latters. Indeed the thickness of the layers is too small for the relaxation of the interface effects to take place before the occurence of the second interface. In other words the two interfaces are overlaping. In reference [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF], the key role of the magnetic orbitals delocalization at the interface (charge transfer between layers), as well as the substrate and alternate layer tetragonal structure has been enlightened. The role of the MnO 6 octahedra rotations and of the alternate layers properties, such as polarization, have however not been investigated while both are know to be of great importance. Indeed, octahedra rotations are known to be present in bulk manganites and coupled to the magnetic properties [START_REF] Garcia-Fernandez | Influence of magnetic ordering on structural instabilities in insulating perovskites[END_REF], as well as sensitive to the epitaxial strain imposed in thin films [START_REF] Vailionis | Misfit strain accommodation in epitaxial abo 3 perovskites: Lattice rotations and lattice modulations[END_REF]. Similarly, Ismail-Beigi and coworkers showed that in polar / manganite interfaces, the polarization plays a key role [START_REF] Chen | Ferroelectric control of magnetization in la 1-x sr x mno 3 manganites: A first-principles study[END_REF][START_REF] Chen | Reversible modulation of orbital occupations via an interfaceinduced polar state in metallic manganites[END_REF][START_REF] Steven | Polarization screening-induced magnetic phase gradients at complex oxide interfaces[END_REF].

The aim of this chapter is to investigate, using first principle calculations, the role of the octahedra rotations and alternated layer polarization in [BaTiO 3 ] 3 [La 2/3 A 1/3 MnO 3 ] 3 superlattices with very thin layers (a few mono-layers) similar to those displaying a large increase of the Curie temperature in reference [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF].

At this point let us remember that La 2/3 A 1/3 MnO 3 (LSMO) is a ferromagnetic metal, thanks to the double exchange mechanism at play in the e g sub-set of the Mn 3d orbitals.

The mixed valency of the Mn atoms (Mn 4+2/3 associated with a high spin configuration and a t 3 2g e 2/3 g atomic 3d configuration) allows a strong delocalisation between the latters (in-plane through their d x 2 -y 2 e g -orbitals and out-of-plane through their d z 2 one), that combined with a large intra-atomic Hund's exchange overwhelms the antiferromagnetic coupling issued from the Mn-Mn super-exchange (double-exchange mechanism). In bulk LSMO, the rhombohedral structure insures an equal filling of the two e g orbitals and an isotropic delocalization processes. In thin films, under tensile and quadratic strains, as in the present systems, this isotropic behavior is broken and Jahn-Teller distortions take place. In [BaTiO 3 ] n [La 2/3 A 1/3 MnO 3 ] n superlattices, the distortion was shown to be mono-layer dependant, with interface elongated layers favoring d z 2 occupancy and central contracted layers favoring d x 2 -y 2 occupancy [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. While the last one favors large in-plane delocalization and large T c , the elongation at the interfaces are driven by small charge transfers at the interfaces (delocalization between Mn and Ti d z 2 orbitals) [START_REF] Lepetit | Interface effects in perovskite thin films[END_REF].

The systems studied in this chapter are pictured in figure 5 In order to study symmetric interfaces (BaO/MnO 2 ) we did two different calculations: the first one without imposing the interface symmetry in the calculations and the second one with imposed mirror symmetry along z axis. Finally, we also investigated the role of the antiferrodistortive motions in the manganite layers.

Antiferrodistortive motions in BTO-LSMO

First we would like to study the release of AFD motions in the manganite layers of stabilized by octahedra rotations.The stabilization energy brought by the octahedra rotations is in average of 187 meV for total system. The three LSMO mono-layers do not however behave in the same way. Two mono-layers exhibit rotations with a typical angle of 7 • in average, while at one of the interfaces the rotations remain very weak; it is around ∼ 2 • in average.

[BaTiO 3 ] 3 -[La 2/3 Sr 1/3 MnO 3 ] 3 superlattice.
Figure 5.3 a) displays the MnO 6 octahedra rotations as a function of Jahn-Teller distortion, which is the main lattice degree of freedom for orbital order in manganites. The mono-layers that are on the right side of the dashed line show elongation in the ⃗ c direction, whereas the mono-layers that are on the left side of the dashed line are contracted in the ⃗ c direction. The calculations that we perform yield equivalent results and give the average layer behaviour of such superlattices: 1st and 2nd LSMO mono-layer Mn-octahedra are contracted whereas 3rd LSMO mono-layer Mn-octahedra is elongated. For AFD motion analysis, one can see the statistics fits into three clusters. The cluster identified with blue ellipse are the mono-layers showing Mn-octahedra elongation in the ⃗ c direction and no/weak AFD motions (2 • in average). They are essentially 3rd LSMO mono-layer at BaO/MnO 2 interface. The Mn-octahedra contracted mono-layers are grouped into red and orange circles. The cluster Again, the calculations yield to equivalent results for different ionic orderings: 1st and 2nd mono-layer Mn-octahedra are contracted with dominant d x 2 -y 2 orbital occupancy whereas the 3rd mono-layer Mn-octahedra is elongated with d z 2 occupancy. This correlation between JTd and preferential e g orbital occupancy is fully expected from the theory. One can again fit the statistical data into three clusters in order to see the effect of the AFD motions on the the correlation of JTd vs the e g occupancy ratio. In the blue ellipse cluster (elongated 3rd mono-layers with no/weak AFD motions), d z 2 is preferentially occupied over d x 2 -y 2 as mentioned. d x 2 -y 2 orbital is stabilized over d z 2 in the red cluster (contracted 1st mono-layers with large AFD motions) as well as in the orange one (contracted 2nd mono-layers with no/weak AFD motions). The contracted mono-layers with large AFD motions (the red circle cluster) have higher e g occupancy ratio than the contracted mono-layers with no/small AFD motions (the orange circle cluster). One can conclude that the AFD motions are present only in contracted layers and they enhance the in-plane magnetic properties since it increases the d x 2 -y 2 orbital stabilization.

In order to see the impact of the released AFD motions in LSMO we report the comparison of the BTO-LSMO superlattices with and without AFD in figure 5.4 for one typical La/Sr ordering, (since the results for other cation orderings are qualitatively similar). At the top panel first we report the tetragonality c/a -1 ratio for each mono-layer (fig 5.4 a)). The c value is calculated as cation-cation distance. One can see that for both cases the first two mono-layers are contracted in ⃗ c direction while the third layer is elongated but AFD motions tend to contract these layers a little bit less. In fact, the central layer is more or less cubic when the AFD motions are released.

Then (fig 5 .4 b)), we report the Jahn-Teller distortion which gives similar results: for both cases the two first-mono layers are contracted while the 3rd mono-layer is elongated. After this, we report the MnO 2 rumpling (fig 5.5 c)). One sees that the AFD motions do affect neither the JTd nor the rumpling.

At the bottom panel, on the left (fig 5 .4 d)), we give the e g occupancy ratio, defined as η x 2 -y 2 /η z 2 . First of all, for both cases we see that in the first two mono-layers d x 2 -y 2 is preferentially occupied, while d z 2 is preferred in the third mono-layer. However, we see that the ratio in the contracted layers increases strongly in the superlattice where the AFD motions are released. The ratio in the elongated layer does not change between the two calculations. These results tell us that the AFD motions enhance the in-plane magnetic properties in the contracted layers as it increases the in-plane e g orbital, d x 2 -y 2 , population.

On the second chart (fig 5.4 e)), we report the total e g occupancies which is computed as

η x 2 -y 2 + η z 2 .
Here we see a major difference for the central mono-layer. While the central layer is strongly depopulated if the AFD motions are not allowed, this depopulation is totally hindered by the AFD motions. It seems that the AFD motions compensate the depopulation in the central layer which is observed in previous calculations [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF].

The last item at the bottom panel (fig 5.4 f)) is dedicated to the delocalization of 3d z 2 electrons between Mn and Ti at the interfaces. While there is no delocalization at the 1st mono-layer, there is a slight delocalization in the third mono-layer. This delocalization is however not affected by the AFD motions. One should remember that the mono-layer in which this delocalization is observed is elongated in ⃗ c direction and thus do not present much AFD. In fact, it looks like AFD and interface delocalization are exclusive effects.

As a conclusion, one can say that the release of the AFD motions has little or no effects on JTd, rumpling and tetragonality, while it has a strong effect on the orbital occupations.

The effect of the interface: BTO-LBMO, a case with equivalent interfaces

Now in order to see the effect of the difference between the two interfaces, let us do the same AFD motion analysis in the We report the comparison of the different BTO-LBMO superlattices in figure 5.5. Again, )), we give the Jahn-Teller distortion. In superlattices with P4mm space group, with and without octahedra rotations, the first two Mn-octahedra are contracted and the 3rd one is again elongated as seen in BTO-LSMO superlattice. Again, in the 1st and the 3rd layers the Mn-octahedra do not have the same Jahn-Teller distortion, even if these two layers have the same interfaces. However, when there is P4/mmm symmetry the 1st and 3rd Mn-octahedra have the same JTd values. Without polarization, the 1st and 3rd layers Mn-octahedra are elongated in ⃗ c direction, whereas the central ones are contracted.

[BaTiO 3 ] 3 [La 2/
After this (fig 5 .5 c)), we report the MnO 2 rumpling. For all cases, the results are qualitatively similar suggesting there is no polarization in LBMO, which is to be expected sinceLBMO is a conducting system. Both Jahn-Teller distortion and MnO 2 rumpling are not affected by the AFD motions.

At the bottom panel, on the left (fig 5.5 d)), we give the e g occupancy ratio. First of all, within P4mm symmetry, with and without AFD motions, we see that in the first two mono-layers d x 2 -y 2 is preferentially occupied while d z 2 is preferred in the third mono-layer. However, we see that the ratio in the contracted layers increases in superlattices where the AFD motions are released, (as seen in BTO-LSMO superlattice). The ratio in the elongated layer seems not to change as AFD motions are set on. This result again supports the idea that AFD motions enhance the in-plane magnetic properties, in the contracted layers, since it increases the d x 2 -y 2 orbital occupation (which is correlated with the in-plane magnetic properties). When the polarization is suppressed in BaTiO 3 , the behaviour is not the same. d z 2 is preferentially occupied in the 1st and 3rd Mn-octahedra as it is expected from the Jahn-Teller distortion values of these octahedras in this superlattice. d x 2 -y 2 orbital is occupied in the central layer. Thus, the polarization seems to enhance the in-plane magnetic properties since η x 2 -y 2 occupancy is lower in non-polarized system. This issue will be studied in more details later.

Beside the e g occupancy ratio, we report the total e g occupancies (fig 5.5 e)). The results are qualitatively similar for the cases in P4mm with and without octahedra rotations. The most populated layer is the elongated layer. Within P4/mmm, the populations are the same for the 1st and 3rd layer as it is expected. The central layer is the least populated when the polarization is killed.

The last item in the bottom panel (fig 5.5 f)) is the delocalization of 3d z 2 electrons between Mn-Ti at the interfaces. As one can see that there is no delocalization at the 1st mono-layer, whereas there is always a weak delocalization in the third mono-layer. One should again remember that the mono-layer in which this delocalization is observed is elongated in ⃗ c direction. When the polarization is supressed, the delocalization is the same in both interfaces.

After the careful study of AFD motions one can conclude:

1. The AFD motions definitely exist in both BTO-LSMO and BTO-LBMO superlattices at least at low temperature.

2. These rotations take place only in mono-layers which are contracted in the ⃗ c direction.

3. The amplitude of these rotations, however, is cation order dependent.

4. Though the Jahn-Teller distortion, which is the relevant structural parameter for the e g occupancy ratio, does not change significantly as AFD set on, we saw that AFD motions slightly increase the e g occupancy in the contracted octahedras, and strongly increase the d x 2 -y 2 vs. d z 2 occupancies ratio.

5. Layer contraction can globally decrease the total e g occupancy.

By studying BTO-LBMO, we tried to highlight the role of the asymmetric interface of BTO-LSMO. However, what we have seen in BTO-LBMO is that even if the two interfaces are the same, they act in a similar way as the asymmetric interfaces in BTO-LSMO, and that a spontaneous symmetry breaking occurs in the manganite. This result suggests that the relevant parameter for the symmetry breaking here is not related to the interface asymmetry, but rather to a parameter related to the alternated layer that differentiate the two interfaces. The natural candidate is the polarization in BaTiO 3 . By imposing the P4/mmm symmetry and killing the polarization in BaTiO 3 we have seen that indeed the orientation of the polarization in BaTiO 3 determine the behaviour of the interface layers of the manganite.

The Role of the Polarization

We shall thus now enlarge our study to investigate the role of the polarization in the alternated layers of the manganite superlattices. For such a purpose we extend our compounds to The results are summarized in figure 5.6. Again, at the top panel first we report c/a -1 ratio. In PTO-LSMO, all three mono-layers are contracted whereas in the BTO-LSMO only first two mono-layers are contracted. The amplitudes of the contractions in these two monolayers are similar to the contraction in PTO-LSMO. In BTO-LBMO, the first mono-layer remains cubic and the last two mono-layers are elongated. In totally symmetric BTO-LBMO where BTO does not induce any polarization, all three mono-layers are elongated. The central one is a little bit more elongated than the two equal interfacial ones. At the top panel on the second chart, we give the Jahn-Teller distortion. Except totally symmetric BTO-LBMO, the rest has similar pattern. First and central layers Mn-octahedra are contracted, whereas the 3rd mono-layer is elongated. In totally symmetric BTO-LBMO, two interfacial octahedras are equally elongated and central one is contracted.

The pattern of MnO 2 rumpling is qualitatively similar in PTO-LSMO and BTO-LSMO. For BTO-LBMO, the rumpling pattern is rather linear since it has symmetric interfaces but the values in two interfaces are not exactly the same. However, in totally symmetric BTO-LBMO the rumpling values of two interfacial layers compensate each other whereas there is no rumpling in the cenral one since there is a mirror symmetry plane.

At the bottom panel on the left, we give the e g occupancy ratio. The fundemental results are as follows; except totally symmetric BTO-LBMO, the ratio pattern is the same for the rest of the systems, the two first mono-layers are preferentially d x 2 -y 2 populated where is 3rd mono-layer is d z 2 populated. For totally symmetric BTO-LBMO, d z 2 is more occupied at the interfaces and d x 2 -y 2 is more occupied in the central layer. All these results are coherent with the observed JTd.

On the right, we report the total e g occupancy for each layer in the superlattice. In the totally symmetric BTO-LBMO, the interface layers have the same total e g occupancy. For the rest of the systems, we can see that the 3rd layer Mn-octahedra are more populated than the other two layers. One should point out that a larger e g population is systematically observed in elongated layers.

The last item at the bottom panel is the delocalization of the orbital 3d z 2 of the Mn on Ti. Except for the totally symmetric BTO-LBMO, one can see the pattern directly. The first mono-layer, which is contracted, doesn't exhibit much delocalization on Ti whereas the elongated layer is slightly delocalized on Ti. In totally symmetric BTO-LBMO, the two interface Mn-octahedra are elongated and there is a delocalization on Ti at both interfaces. This result directly confirms that the delocalization is directly correlated to the elongation at the interfaces.

We will now try to get some clear picture about what is exactly happening in these systems by specifically displaying parameters correlations. Thus, we first would like to report the e g occupancy ratio as a function of the Jahn-Teller distortion as we did for AFD analysis. In figure 5.7 we give the e g ratio with respect to Jahn-Teller distortion. In this picture we also added the results that we got for the released AFD motions as they are the true ground states for BTO-LSMO and BTO-LBMO superlattices. Their colour are kept the same as before: Red for BTO-LSMO with AFD and pink for BTO-LBMO with AFD. Here, one can clearly see the expected inverse proportionality between e g ratio and Jahn-Teller parameter. We also try to get a picture of the correlation between the e g orbital occupancy ratio and MnO 2 rumpling. In figure 5.8 we summarized the e g occupancy ratio as a function of MnO 2 rumpling. However, it is hard to get a clear relation by looking at this picture. This is most probably because the relevant rumpling parameter for the LSMO electronic structure is the TiO 2 rumpling of the alternating layer instead of the MnO 2 one. To clarify the role of the polarization in alternated layers on the manganite magnetic properties, we will analyse the alternated layer features. Thus, in figure 5.9 on the left, we give the Jahn-Teller distortion and the e g orbital occupancy ratio of the LSMO mono-layers as a function of the TiO 2 rumpling. On the right, we give the TiO 2 rumpling in Å for each layer in each system. On the right, considering absolute values we see that the largest amplitude for the rumpling is for PTO-LSMO which is natural since it has the largest polarization. The two BTO-LSMO system with and without AFD motions come after that. They have more or less the same rumpling values. Then, BTO-LBMO with AFD motions has larger rumpling than BTO-LBMO without AFD motions. Here, we see that there is an effect of the manganite layer on the alternated layer polarization. The totally symmetric BTO-LBMO has of course no TiO 2 rumpling. By looking at the left of the figure 5.9, one can see that the three mono-layers behave differently. For the 1st mono-layers, we observe the largest rumpling in the alternated titanates with the largest contraction in the Mn octahedra. As the rumpling decreases, the JTd parameter increases. For the 2nd mono-layers, the central layers, the TiO 2 rumpling does not significantly affect the Jahn Teller distortion. The 3rd mono-layers behave in a similar way. As a conclusion, the TiO 2 rumpling does not significantly affect the JT distortion except for the large decrease in JTd in the case of the totally symmetric BTO-LBMO. This is because the 1st mono-layer of the totally symmetric BTO-LBMO is elongated and that the total length of the BTO has to be preserved (volume conservation to minimize the elastic energy).

When we check the e g ratio with respect to the TiO 2 rumpling, it is hard to say that the e g ratio in PTO-LSMO (green) is enhanced with more TiO 2 rumpling, if we take into account the real ground states of BTO-LSMO (red) and BTO-LBMO (pink) (the ones which exhibit AFD motions). However, we should note here that we haven't released the AFD motions in PTO-LSMO. Thus, we might not be in the real ground state of PTO-LSMO, but if we compare PTO-LSMO with BTO-LSMO without AFD (blue) and BTO-LBMO without AFD (orange) it seems that e g ratio is enhanced by the TiO 2 rumpling in the 1st mono-layer as it can predicted by the above analysis of JTd vs. TiO 2 rumpling for the 1st mono-layer. Comparing the cases with AFD (red and pink triangles), one can see that e g ratio is enhanced when there is more TiO 2 rumpling. For the 2nd mono-layer (with and without AFD cases), the e g ratio is not significantly affected by the rumpling, as can be predicted from the JTd vs. the TiO 2 rumpling for the 2nd mono-layer. This results holds for the e g ratio of the 3rd mono-layer. We can also compute the polarization in alternated layers by using the Born-effective charges as explained in the Chapter 3. Born effective charges are taken from reference [56]. In figure 5.10, we report the polarization of the alternated layer in each system. As stated before, PTO has the largest polarization. The analysis we have done for the TiO 2 rumpling stands for the polarization as well. It seems that the more polarization the more contraction of the octahedra in the 1st mono-layers. In addition, with the consideration of the real ground states of BTO-LSMO and BTO-LBMO (with released octahedra rotations), polarization seems to improve the e g ratio when we check the BTO-LSMO and BTO-LBMO 1st mono-layers (the red and pink triangles in the figure 5.10). In the 2nd mono-layers Mn-octahedra, the e g ratio does not significantly change as the polarization changes. This is also the case when we include the AFD motions calculations (the red and pink circles). In the 3rd mono-layers Mn-octahedra, the amplitude of the polarization does not significantly affect the e g ratio.

Conclusion

At the end of this study we can summarize the effects of the alternated layers in the manganite superlattices as follows:

1. The asymmetric or symmetric chemical nature of the interface is not a leading parameter for the electronic structure of the interface. Indeed, we have seen that the same type of spontaneous symmetry breaking that exists in BTO-LSMO superlattices also exists in BTO-LBMO superlattices, though the two interfaces in the latter are equivalent.

2. The orientation of the polarization that exists in the alternated layers is the parameter responsible for the spontaneous symmetry breaking in the interface manganite layers. The 1st mono-layer is contracted where the direction of the polarization is out-of-the the interface. The 3rd mono-layer is elongated where the direction of the polarization is into the interface. The possible different chemical nature of the interfaces plays a secondary role. As a result, we observe a delocalization of the 3d z 2 orbital of the Mn on the empty Ti ones in the 3rd mono-layer since it is elongated.

3. The amplitude of the polarization in the alternated layers only affect the 1st monolayer of the manganite layers. When the amplitude increases, the contraction of Mn-octahedra of the 1st mono-layer increases, as well as the e g ratio of this monolayer.

The 2nd point is coherent with the paper of Ismail-Beigi and his co-workers [START_REF] Chen | Reversible modulation of orbital occupations via an interfaceinduced polar state in metallic manganites[END_REF]. Ismail-Beigi and his co-workers studied a non-periodic BTO-LSMO superlattice. In this superlattice, there is only one interface and the interface between the BTO and LSMO is composed of BaO/MnO 2 layers (there is vacuum at the end of the manganite layer). They pointed out the role of polarization in BTO by changing the direction of the polarization. In the accumulation state, where the direction of the polarization is out-of the interface layer, the interfacial BaO layer's oxygen is pushed toward to the interfacial Mn which results with JTd < 1. In the depletion state, where the direction of the polarization is into the interface layer, the BaO layer's oxygen is pushed away from the interfacial Mn which results JTd > 1. As the systems that we studied are periodic in first-principle calculations, the superlattice is repeated in the ⃗ c direction, as well as the alternated layers. Thus, the polarization of the alternated layers can be into or out-of the interface. Thus, we can have both accumulation and depletion states in two different interfaces. The depletion takes place in the 3rd mono-layer (BaO/MnO 2 interface) the oxygen anion of the BaO layer is pushed away from the interfacial Mn resulting with an elongation in the 3rd mono-layer octahedra. The accumulation states takes place in the 1st mono-layer ((La/Sr)O/TiO 2 interface) the oxygen anion of the (La/Sr)O layer is pushed toward the interfacial Mn resulting with a contraction in the 1st mono-layer octahedra. One can schematically see the role of the orientation of the polarization on the interfaces in both BTO-LSMO and BTO-LBMO superlattices in figure 5.11 and 5.12. The fact that there exists one elongated and one contracted interface manganite mono-layers in BTO-LSMO superlattice is not a consequence of Ba proximity but the orientation of the polarization.

In this chapter, we also highlighted the role of the antiferrodistortive (AFD) motions in the manganite layer on the properties of the superlattices.:

1. The AFD motion are present at least at low temperature.

2. They only exist in the contracted mono-layers.

3. They do not affect the structural properties such as Jahn-Teller distortion or tetragonality.

4. However, even though they do not affect the Jahn-Teller distortion, which is the parameter responsible for the e g orbital ordering, they do enhance the preferential d x 2 -Y 2 occupancy.

5. Thus, the AFD motions are expected to enhance the magnetic properties.

More general conclusions that we obtained through the study of BTO-LSMO superlattices are as follows:

1. The mono-layer contraction decreases the total e g population.

2. The AFD motions and interface delocalization are exclusive effects.

3. The delocalization at the interfaces comes only in the elongated mono-layers.

As we stated before, at the 3rd mono-layer, where there is elongation, the d z 2 orbital is preferentially occupied and there is a delocalization of 3d z 2 electrons from Mn atoms to empty Ti d-shell. As a result, in this elongated layer the in-plane magnetic properties are expected to decrease. Our aim in the next chapter is to find a way to suppress this elongation and the correlated delocalization. For this purpose we will play on the alternated layers in order to prevent the delocalization. 

Introduction

In the previous chapter, we studied the effect of the alternating layer polarization and AFD motions of manganite layers on the properties of (BaTiO 3 ) 3 /(La 2/3 Sr 1/3 MnO 3 ) 3 superlattices. Indeed, we chose to work on these superlattices since they present the possibility to increase the Curie temperature by one order of magnitude compared to the bulk compound thanks to the orbital ordering triggered by the specific geometry around Mn ion [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. We remind again that when manganite compounds such as La 2/3 Sr 1/3 MnO 3 (LSMO) or La 2/3 Ca 1/3 MnO 3 (LCMO) are built as a supperlattice with BaTiO 3 alternating layers on a SrTiO 3 substrate, the thickness of the LSMO mono-layers can be contracted or elongated. This geometric arrangements result in e g orbital ordering (a mechanism to control which e g orbital will be occupied). This result was the key point of such superlattices. Indeed, it is assumed that large d x 2 -y 2 orbital occupancy in such manganite superlattices induce high T c and metallicity [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF].

Unfortunately, a loss of magnetization and metalicity, also called "dead layer", is observed over a thickness of few unit cells at the interface of ferromagnetic manganites, such as La 2/3 Sr 1/3 MnO 3 (LSMO) or La 2/3 Ca 1/3 MnO 3 (LCMO), and most perovskite substrates or combined layers [START_REF] Yamada | Engineered interface of magnetic oxides[END_REF][START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF]. Different hypotheses are considered to be the cause of this "dead layer" phenomenon:

1. Insulating state of the very thin manganite films is a result of homogeneous substrate strain [START_REF] Ziese | Strain-induced orbital ordering in thin la 0.7 ca 0.3 mno 3 films on srtio 3[END_REF],

2. Manganese e g orbital reconstruction that may induce C-type antiferromagnetism [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF][START_REF] Tebano | Preferential occupation of interface bands in la 2/3 sr 1/3 mno 3 films as seen via angle-resolved photoemission[END_REF].

3. Electronic and/or chemical phase separation [START_REF] Infante | Elastic and orbital effects on thicknessdependent properties of manganite thin films[END_REF] related to structural inhomogeneities at the interface [START_REF] Bibes | Nanoscale multiphase separation at la 2/3 ca 1/3 mno 3 /srtio 3 interfaces[END_REF] or uncontrolled stoichiometry [START_REF] Mundy | Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metalâ??insulator transition[END_REF],

4. The weak delocalization of manganite Mn 3d electrons in the substrate Ti 3d empty orbitals at the interfaces [START_REF] Lepetit | Interface effects in perovskite thin films[END_REF].

For the 1st hypothesis, one must remember that a homogeneous substrate strain of the in-plane parameters does not relax for film thickness smaller than 1000 Å [START_REF] Infante | Elastic and orbital effects on thicknessdependent properties of manganite thin films[END_REF], whereas transport properties are significantly changed for films thinner than a few unit cells (3-4 on STO substrate [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF][START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF], 30 on LaAlO 3 substrate [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF]). For the 2nd hypothesis, in very thin films [START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF], ferromagnetism is observed, in contradiction with the proposed C-type antiferromagnetic ordering resulting from orbital ordering. Since we would like to work with perfect interfaces, we will not consider the 3rd hypothesis and focus on the study of the 4th one where there is an enhanced d z 2 occupancy at the interface.

Let us explain briefly how the formation of a "dead layer" can take place at the interfaces in this hypothesis. The Mn d z 2 electrons can delocalize in the empty d z 2 orbitals of the substrate or of the alternating layer (typically SrTiO 3 , BaTiO 3 or similar compounds). Even though this delocalization is weak (about one or two tenth of an electron [START_REF] Lepetit | Interface effects in perovskite thin films[END_REF]), at the interfaces this delocalization energetically favors the d z 2 orbital occupancy over the d x 2 -y 2 one. Thus, Jahn-Teller distortion of the MnO 6 octahedron takes place, favoring the elongation along the c directionn with a splitting of the e g degeneracy [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF] (ε z 2 < ε x 2 -y 2 ). The inplane delocalization is thus hindered, at least by carrier density reduction. Consequently, the characteristics of the "dead layer" phenomenon appear, (reduced ferromagnetic spin arrangement and reduced conductivity [START_REF] Pallecchi | Field effect in manganite ultrathin films: Magnetotransport and localization mechanisms[END_REF][START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF]). Such a Jahn-Teller distortion induces a small increase of the c lattice parameter [START_REF] Herger | Structure determination of monolayer-by-monolayer grown la 1-x sr x mno 3 thin films and the onset of magnetoresistance[END_REF][START_REF] Lepetit | Interface effects in perovskite thin films[END_REF], that can be fully attributed to the delocalization mechanism at the interfaces, since strain effects tend to reduce c. Indeed, on a SrTiO 3 (STO) substrate, manganites such as LSMO or LCMO are under tensile strain (a STO = 3.905 Å [START_REF] Nelmes | Thermal motion in srtio3 at room temperature: Anharmonic or disordered?[END_REF], a LSMO = 3.880 Å [START_REF] Pinsard | Structural phase diagram of la 1-x sr x mno 3 for low sr doping[END_REF], a LCMO = 3.86Å [START_REF] Blasco | A systematic study of structural, magnetic and electrical properties of perovskites[END_REF] yielding a 0.65% tensile strain on LSMO and 1.15% on LCMO), known to favor a reduction of c lattice parameter.

In chapter 5, we have seen that such a delocalization takes place between the Mn 3d z 2 electrons in the Ti empty d z 2 orbitals of the alternated layers at the interface when the interfacial manganite mono-layer Mn-octahedra is elongated. The orientation of the polarization of the alternated layers, indeed, plays a role in such an elongation as we discussed in the previous chapter. However, suppressing the polarization in the alternated layers, as we studied in BTO-LBMO superlattice (P4/mmm space), did suppress neither the elongation of manganite mono-layer at the interfaces nor the interface delocalization from the Mn to the Ti 3d z 2 orbitals. In this elongated manganite mono-layer, one can remember that we observed dominant d z 2 orbital population over d x 2 orbital. Thus, we expect to have reduced in-plane magnetic properties in this mono-layer. In order to prevent the formation of a such a layer, i.e. "dead layer", one thus needs to interface the manganite with an alternating layer material hindering the delocalization between the different layers.

The aim of this work was thus to find out whether the delocalization at the interfaces can explain the formation of the dead layer or not. For this purpose, we propose possible candidates for new alternating layers in manganite superlattices in which the delocalization at the interfaces are suppressed. In the next section, we will briefly discuss the requirements to fulfill for such alternating layers.

Possible compounds as alternating layers in manganite superlattices

As the hypothesis for the origin of the formation of a "dead layer" is the delocalization of d-shell between Mn and Ti atoms, one can suggest to use a compound with totally filled d shells as the alternating layers. Thus, the BaSnO 3 compound could be a good suggestion since Sn has totally filled d-shells. However, test calculations [START_REF] Lepetit | Private Communication[END_REF] on such heterostructures showed that there is a weak electron delocalization, from Sn filled d z 2 orbitals towards Mn partially occupied ones, very similar to what is observed in the calculations on [BaTiO 3 ] 3 -[La 2/3 Sr 1/3 MnO 3 ] 3 [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. This delocalization results again in an increase of the Mn d z 2 orbital occupancy, and a Jahn-Teller distortion elongating the octahedra. One can thus expect such heterostructures to also exhibit a "dead layer" phenomenon.

Avoiding d orbitals in the alternating layers is another option to prevent this electron delocalization completely. So, we can set up our first requirement for such materials to be without d orbitals. The second requirement is to have a tetragonal or cubic structure. Indeed, in the manganite layers, it is crucial to prevent the rhombohedral distortion but rather favor a tetragonal distortion [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF]. This tetragonal distortion, induced by the strain effect of the substrate and kept by alternating layers, should lead to the contraction of the mono-layers with favored the d x 2 -y 2 orbital occupancy and thus of the desired properties. At last but not least, after fulfilling these two requirements, the candidate compound must have a perfect epitaxy with the manganite layer.

We chose to test the alkaline-earth oxides, particularly the BaO compound, since it satisfies all the necessary conditions. Indeed, BaO has no d-shells as it doesn't have a transition metal in it. Moreover, the mismatch between BaO and LSMO is only of 0.7%, and between BaO and the STO substrate 0.3%. One can see the other alkaline-earth oxide lattice mismatch values with LSMO and STO in the table 6.1. We also need to mention that the epitaxy imposes for the BaO unit cell (Fm 3m cubic group [START_REF] Zollweg | X-ray lattice constant of barium oxide[END_REF]) to be rotated in-plane by an angle of 45 • [START_REF] Junquera | First-principles calculation of the band offset at bao/batio 3 and sro/srtio 3 interfaces[END_REF][START_REF] Bousquet | First-principles study of competing ferroelectric and antiferroelectric instabilities in batio 3 /BaO superlattices[END_REF], compared to the manganite unit cell (this can be seen figure 6.1).

We thus studied, using first principle calculations, [La 2/3 Sr 1/3 MnO 3 ] n [BaO] p superlattices, alternating a few unit cells of manganite and of simple Barium oxide. Superlattices with other alkaline-earth oxides (SrO, CaO and MgO) are also studied in order to see whether the results are resilient to a change in the alternating layer, despite their unrealistic strain values. 

Results

Manganite thin films with simple BaO layers

We first studied the [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 6 superlattice in order to investigate its structural and magnetic properties. We computed our superlattice for all different cation models in order to treat the manganite A-site cation disorder. As we mentioned in the technical details this elongated interface manganite layer we used ECPs with averaged effective nuclear charges in order to treat the average ions. We also tested the real charge cases in order to testify our results. We used a √ 2a × √ 2a × c unit cell in order to allow octahedra rotations and in-plane antiferromagnetic (AFM) ordering. In figure 6.1 one can see the schematic representation of the superlattice studied. Here one should notice that the interfaces are non equivalent, since one corresponds to a (La/Sr,O)-(BaO) interface and the other to a (MnO 2 )-(BaO) interface. We studied different magnetic orderings in our superlattices that is ferromagnetic (FM), A-type AFM (in-plane FM and out-of-plane AFM), C-type AFM (in-plane AFM and out-of-plane FM) and G-type AFM (in-plane and out-of-plane AFM), that can be seen in figure 6.2. Our geometry optimization calculations showed us that the magnetic ground state always imposes FM in-plane order and a total net magnetic moment. The two out-of-plane magnetic arrangements (FM and A-AFM orders) are found quasi-degenerate within DFT error bars. Indeed, the energy difference per LSMO unit cell (or equivalently per Mn), between FM and A-type AFM orders, is in average 12 meV, with a mean deviation of 9 meV. One should mention that this is smaller than room temperature (k B T ∼ 25 meV). Cation ordering in LSMO determines whether the DFT ground state is the FM or the A-type AFM configuration. The two other magnetic configurations, in which there is in-plane AFM order, (C-AFM and G-AFM) are much higher in energy, ranging between 130 meV and 210 meV above the ground states. ) ratio is extracted from linear dichroism experiments of Ref. [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF]. Bulk LSMO corresponds to the cross point between the dashed lines.

We report the statistics of both the Jahn-Teller distortion (JTd) (measured as d OO /a -1, with d OO the out-of-plane O-Mn-O distance) and c/a (c being the perovskite A-sites distances) as a function of the e g orbitals Mülliken occupancies ratio in figure 6.3. The results are given for each LSMO mono-layers of the two quasi-degenerate ground states. We give the experimental values of Jahn-Teller distortion and c/a -1 values of 6 mono-layer LSMO over STO substrate from the reference [START_REF] Herger | Structure determination of monolayer-by-monolayer grown la 1-x sr x mno 3 thin films and the onset of magnetoresistance[END_REF]. We extracted Jahn-Teller distortion c/a -1 values from the cumulative displacements ∆z of the atoms from the top TiO 2 layer of STO substrate given in Figure 4 of Ref [START_REF] Herger | Structure determination of monolayer-by-monolayer grown la 1-x sr x mno 3 thin films and the onset of magnetoresistance[END_REF]. We also give the experimental value of η(x 2y 2 )/η(z 2 ) ratio of 6 mono-layer LSMO grown on STO from the reference [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF]. Polarization-dependent X-ray absorption spectroscopy (XAS) helps to identify orbital occupation of transition-metal oxides. Linear Dichorism in XAS is the difference between X-ray absorption spectra taken with the polarization vector perpendicular and parallel to the crystal c-axis. One can use linear dicroism in L-edge XAS to identify the 3d orbital character of orbital-ordered compounds. Thus, we extracted the e g occupancy ratio from the linear dicroism experiment results given in Figure 4 of Ref. [START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF] for 6 mono-layer LSMO over STO.

The main results are as follows: All three LSMO mono-layers are compressed along the ⃗ c direction, except for the central layer in two AFM calculations. When we quantified the Jahn-Teller distortion of Mn-octahedra we saw that the Mn-octahedra of the interface mono-layers are contracted along the ⃗ c direction whereas the Mn-octahedra of center monolayer is elongated. The d x 2 -y 2 orbital occupancy is dominant in the contracted interfacial Mn-octahedras. This is the desired magnetic semi-metallic behavior. However, as one can expect, since the Mn-octahedra of the central mono-layer exhibits an elongation of the Mn-octahedra, the d z 2 orbiral is the preffered e g orbital in this mono-layer. One must notice in figure 6.3 that there is dominant d x 2 -y 2 orbital occupancy for all mono-layers for a few calculations.

One can immediately remember from the previous chapter, where we studied [La 2/3 Sr 1/3 MnO 3 ] 3 [BaTiO 3 ] 3 superlattices, that those results exhibit exact opposite behavior with these ones. In the [La 2/3 Sr 1/3 MnO 3 ] 3 [BaTiO 3 ] 3 superlattices, one of the interface layers, into which the BaTiO 3 polarization directs, is elongated with a dominant d z 2 occupancy. In table 6.2 and 6.3, we give the e g spin populations and Mn magnetic moments per layer with associated structural properties of one typical cation ordering for FM and A-type AFM magnetic ordering. The cation ordering chosen is associated with the lowest energy for both FM and A-type AFM magnetic configurations. One can see from these two tables that the behaviour is qualitatively similar. However, by looking at the e g occupancy ratio one can notice that the d x 2 -y 2 orbital dominance (1st and 3rd m. l.) or d z 2 orbital dominance (2nd m. l.) is increased in the A-type AFM order compared to FM. Relatively, contraction in the 1st and 3rd mono-layer and elongation in the 2nd mono-layer are increased. The magnetic moment of Mn atom is qualitatively similar in each magnetic configuration. These quasi-degenerate ground states (FM and A-type AFM orders) indicate that in real systems such superlattices may present one or the other spin arrangement as the ground state, according to the specific cation disorder. However one must keep in mind that at room temperature both FM and A-type AFM states have similar probabilities. Thus, we expect to have a net total magnetization even if the amplitude of this magnetization should be reduced. Moreover, the fact that this superlattice exhibit dominant d x 2 -y 2 orbital occupancy at the LSMO interfaces shows us that we reached our goal of controlling the e g orbital occupancies.

LSMO

6.3.2

The effect of the thickness of manganite layer: A test case of (LSMO) 6 -(BaO) 2 Whether the previous section conclusion remains valid will be the focus of this section if one increases the size of the manganite layer. In order to check this point we increased the size of the LSMO layer to 6 mono-layers, and performed the geometry optimization calculations for one typical cation configuration. In figure 6 We thus first checked whether such a reduction would affect the results. For this purpose we run test calculations on the preceding superlattice with only two mono-layers of BaO (i.e. on [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 2 ). The results for such a superlattice is summarized in the table 6.4. Even though the structural parameters, i.e. Jahn-Teller distortion parameter and tetragonality parameter, show different behaviour than those of [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 6 , the e g orbital spin populations as well as the e g occupancy ratio and Mn magnetic moment showed similar behaviour. Thus, the 2-BaO mono-layers model is an appropriate choice for us to test the size of the manganite layer behaviour with a BaO alternated layer.

As there is a FM in-plane order in Our calculations showed a ground-state with the ↑↑↓↓↑↑ pattern ("uudduu") and a total net magnetization for the system. This ground state is again very close in energy to the FM state and the A-type AFM state. The latter does not however correspond to a full AFM state, since it exhibits a non null net total magnetization of about 1/10 of an electron per Mn atom. The dominant e g orbital occupancy in the different LSMO mono-layers is found qualitatively Magnetic System Net total magnetization per Mn atom FM 3.67 ↑↑↓↓↑↑ 1.13 A-AFM 0.11 As in the [LSMO] 3 [BaO] 6 calculations, the mono-layers at the interfaces are contracted and strongly dominated by the d x 2 -y 2 orbital occupancy. In fact only the inner most monolayer is still elongated and dominated by d z 2 orbital occupancy. As can be seen in figure 6.6, the Mn magnetic moments and total e g occupancies exhibit a strong correlation with the amplitude of the Jahn-Teller distortion. When the Mn-octahedra is elongated, there exist larger e g population and naturally larger Mn magnetic moment. The Mn-octahedra in the inner most mono-layer exhibit a strong elongation and the largest Mn magnetic moment as can be seen from the tables 6.6, 6.7 and 6.8. This specificity of the inner most mono-layer is responsible for the non-vanishing total magnetization in the A-type AFM state. These results show that, when increasing the thickness of the LSMO layer, one essentially increases the thickness of the interface layers and not of the central one. The former being contracted along ⃗ c and dominated by d x 2 -y 2 orbital occupancy, it confirms that the use of BaO alternating layers allow the control of the d x 2 -y 2 vs d z 2 orbital occupancies at the LSMO interfaces.

Manganite thin films with different alkaline-earth oxides

In this section we will check whether this result is resilient to a change in the simple oxide and manganite compounds. We thus performed a set of calculations using BaO, SrO and MgO as alternating layers, and LSMO or LBMO as manganite layers ([La 2/3 A 1/3 MnO 3 ] 3 [BO] 6 ), for a typical cation disorder model. Table 6.9 summarizes the e g orbital occupancies, Mn magnetic moments and related structural properties for those calculations. One may notice that the [LBMO] 3 [BaO] 6 and [LSMO] 3 [SrO] 6 superlattices have in theory equivalent interfaces, unlike all the other superlattices we studied. One sees in table 6.9 that this symmetry is kept in the [LSMO] 3 [SrO] 6 superlattice. Indeed, the two calculations with and without imposed symmetry yield equivalent results within errors bars. For the [LBMO] 3 [BaO] 6 superlattice however, this is not the case. A spontaneous symmetry breaking occurs along the ⃗ c axis, associated with a small energetic stabilization (37 meV ≃ 430 K) per LBMO unit cell). This induces a symmetry breaking in the e g orbitals occupancies as can be seen in table 6.9. Nevertheless, all manganite interface mono-layers are favoring a d x 2 -y 2 occupancy over a d z 2 one, as was the case for the [LSMO] n [BaO] p compounds. The control of the orbital order at the interfaces thus seems to remain valid independently of the manganite compound and of the simple oxide chosen for the alternating layer.

Transport properties

We saw in the previous sections that the use of a simple oxide alternating layer allows to obtain the desired orbital ordering at the interfaces as well as the hindering of the delocalization at the interfaces. As one of our objectives was to improve the transport properties of the superlattices, we would like to present here the Boltzman transport (BoltzTrap) calculations carried out by our collaborator, Sébastien Lemal on our systems. He calculated the in-plane conductivity tensor σ xx (T, µ) = σ yy (T, µ) at 300 K of the LSMO layers in of . These results show that enhancing d x 2 -y 2 orbital occupancy is not necessarily enough to increase significantly the in-plane electrical conductivity. However, one should remind that our conductivity estimations are restricted to the CRTA, within which it has been recently shown (in LaNiO 3 thin films) that such calculations underestimate the amplitude of the changes in conductivity compared to experimental measurements [START_REF] Fowlie | Conductivity and local structure of lanio3 thin films[END_REF].

Conclusion

In summary, we may recall that thin films and superlattices of [La 2/3 A 1/3 MnO 3 ] (A=Sr, Ca) manganite compounds, over an SrTiO 3 substrate, have been extensively studied in the hope to find a good material for electronic and spintronics applications. Indeed, on STO, the LSMO is under tensile strain, so one is entitled to expect that the elastic energy will favor a contraction of the mono-layers along the ⃗ c direction. Due to the degeneracy of the e g orbitals, such a contraction would have enhanced the occupation of the d x 2 -y 2 over the d z 2 and thus the ferromagnetic and metallic behavior through the double exchange mechanism. Unfortunately the formation of a non-magnetic and insulating layer (called "dead layer") at the interface prevents to reach this goal. One of the hypothesis to explain this "dead layer" supposed it originates in a weak delocalization of the Mn d z 2 orbitals in the empty Ti ones inducing a d z 2 dominant occupancy and a mono-layer extension along ⃗ c. The energy gain in this phenomenon overvalues the elastic energy loss of the LSMO volume increase.

We theoretically studied different possibilities to prevent the delocalization at the interface by using convenient alternating layers in the superlattices. Our first principle calculations showed that superlattices alternating manganite and alkaline-earth simple oxides efficiently prevent inter-layer delocalization, promote mono-layers contraction at the interfaces and a preferred d x 2 -y 2 occupancy over the d z 2 one. Our studies show that this result should hold for different manganite and alternating layer thicknesses. However, Boltzman transport calculations show that it marginally impacts the transport properties. The hypothesis of the origin of the dead layer in the e g orbitals ordering should thus be questioned. Nevertheless, we succeeded in controlling the e g orbital order and occupancies with appropriate alternating interface layers.

Conclusion

During this thesis, we studied theoretically manganite superlattices to investigate their structural and electronic properties by means of first-principle calculations. Our study is motivated by the interface effects that exist in perovskite oxides superlattices. Indeed, manganite thin films and superlattices have great potential for technological applications such as magnetic recording/memory technology. Perovskite oxides, with the formulation ABO 3 , exhibit a wide variety of functional properties exploited in various technological applications. By combining such perovskites in superlattices, one can not only combine their intrinsic properties but also can induce totally new phenomena at their interfaces. Manganites are an important class of perovskite oxides which have been extensively studied due to their various exotic properties as we discussed in Chapter 2. Manganites, with the formulation AMnO 3 where A is an element or a solid solution of two or more elements, offer large varieties of systems with respect to the A site solid solution. The A-site generally is composed of one rare-earth trivalent element (R) and one divalent alkaline-earth element (D) (A = R 1-x D x ). Depending on the choice of R and D, manganites can display very rich phase diagrams of magnetic and electric phenomena with respect to doping concentration of D. In addition to this, giant and colossal magnetoresistance that a class of manganites show under the application of a magnetic field make them desirable for various devices. Intrinsic large Curie temperature is also another important feature that some manganites hold.

In this thesis, we chose to study in La 1-x Sr x MnO 3 at the doping x = 1/3 deposited on SrTiO 3 substrate since it is a ferromagnetic metal and has a large Curie temperature (T c ≃ 370K). We combined La 1-x Sr x MnO 3 layers with different alternated insulator layers and studied structural and magnetic properties of such heterostructures by geometry optimizations within the Density Functional Theory (DFT) calculations. In Chapter 3, we gave the technical background of the DFT and our computational details.

We dedicated Chapter 4 to the study of LaMnO 3 -SrMnO 3 superlattices. We studied different magnetic orderings with different number of layers and cation orderings. Both strain-free superlattices and superlattices deposited on a SrTiO 3 substrate were studied by means of first-principle calculations. We found that

[LaMnO 3 ] 1 -[SrMnO 3 ] 1 and [LaMnO 3 ] 2 - [SrMnO 3 ] 2 superlattices are A-type antiferromagnets, whereas the [LaMnO 3 ] 2 -[SrMnO 3 ] 1 superlattice is ferromagnetic.
In Chapter 5, we studied [BaTiO 3 ] 3 /[La 2/3 Sr 1/3 MnO 3 ] 3 (BTO-LSMO) superlattice deposited on SrTiO 3 substrate by means of first-principle calculations. We did full geometry optimizations and investigated the electronic structures. Our study was motivated by the large increase in Curie temperature that is observed in this superlattices through orbital ordering compared to bulk LSMO. We studied the effect of the asymmetrical and symmetrical chemical nature of the interfaces, the effect of the polarization of the alternated layers, and the role of the antiferrodistortive motions of manganite layers on the electronic structure of these superlattices. Our findings in BTO-LSMO superlattices showed us that one interface mono-layer and central mono-layer Mn-octahedra are contracted along ⃗ c direction (negative Jahn-Teller distortion) whereas the other interface mono-layer Mn-octahedra is elongated along ⃗ c direction (positive Jahn-Teller distortion). This Jahn-Teller distortion is naturally followed by d x 2 -y 2 (d z 2 ) orbital occupancy enhancement in the contracted (elongated) mono-layers Mn-octahedra. Since the LSMO layers are very thin (only a few unit cell) in BTO/LSMO superlattice, one thus expects that the in-plane magnetic properties are more important than the out-of magnetic properties. Therefore, preferential d x 2 -y 2 orbital occupancy maximize the in-plane magnetic properties of this superlattice. On the other hand, it is known that the elongated mono-layers with d z 2 orbital occupancy exhibit reduced magnetism and conductivity. In the elongated interface layer, we also observed a delocalization of the Mn-3d electrons on the empty 3d z 2 orbital. First, we associated this symmetry breaking at the interfaces with the fact that BTO-LSMO has chemically asymmetric interfaces: (the interface attached to the contracted mono-layer: (La/Sr)O/TiO 2 , the interface attached to the elongated mono-layer: BaO/MnO 2 ). Thus, we tried to work with symmetric (equivalent interfaces). To do this, we replaced La 2/3 Sr 1/3 MnO 3 (LSMO) with La 2/3 Ba 1/3 MnO 3 (LBMO) and worked in [BaTiO 3 ] 3 /[La 2/3 Ba 1/3 MnO 3 ] 3 (BTO-LBMO) superlattice. In this new superlattice, we had only BaO/MnO 2 -type of interfaces. However, we saw that there was still the same type of symmetry breaking in the interface Mn-octahedras in this new superlattice. We concluded at the end of this study that the asymmetric or symmetric chemical nature of the interface is not a leading parameter for the interface electronic structure. Thus, we changed our focus on the alternated layers possible impact on such a symmetry breaking. Indeed, BaTiO 3 is a ferroelectric insulator and it induces a spontaneous polarization in its layers. Supressing the polarization in BaTiO 3 layers in BTO-LBMO superlattice by imposing mirror symmetry planes in ⃗ c direction helped us to suppress this spontaneous symmetry breaking in the interfaces of BTO-LBMO superlattice. In totally symmetric BTO-LBMO superlattice, both interface Mn-octahedra were elongated with dominant d z 2 occupancy and there were delocalization from Mn-3d orbitals to empty Ti 3d z 2 ones. Thus, we understood that the parameter responsible for the spontaneous symmetry breaking in the interface manganite layers is the orientation of the polarization. When the direction of polarization is out-of the interface manganite mono-layer, the interface manganite mono-layer Mn-octahedra is contracted with a dominant d x 2 -y 2 occupation. On the other hand, when it is into the interface manganite mono-layer Mn-octahedra, the latter is elongated with a dominant d z 2 occupation. We also observed a delocalization of the 3d z 2 orbital of the Mn on the empty Ti ones in the 3rd mono-layer when it is elongated. We wanted to investigate the role of polarization further and for this purpose, we decided to focus on the amplitude of the polarization. We studied the [PbTiO 3 ] 3 /[La 2/3 Sr 1/3 MnO 3 ] 3 (PTO-LSMO) superlattice deposited on a SrTiO 3 substrate since PbTiO 3 induces larger polarization compared to BaTiO 3 and compared our results with previous BTO-LSMO and BTO-LBMO superlattices. We saw that the amplitude of the polarization only affects the contracted interface Mn-octahedra. It enhances the contraction of this interface Mn-octahedra and the preferential occupancy of d x 2 -y 2 orbital. Next exploration was on the role of the antiferrodistortive (AFD) motions of the Mn-octahedra of LSMO layers. In order to realize the AFD motions, we first gave a initial guess by displacing the oxygen atoms of MnO 2 planes along ⃗ a and ⃗ b directions. Then, we ran geometry optimization calculations to see whether these motions were kept or not. Through this study, we saw that the AFD motions are present at least at low temperature. These rotations do only exist in the contracted mono-layer Mn-octahedras. When we compared the results of rotating LSMO superlattices with the ones without rotations we saw that the Jahn-Teller distortion parameter was affected by the rotations. However, the rotations increased the preferential d x 2 -y 2 occupancy even though it didn't affect the Jahn-Teller distortion in the contracted Mn-octahedras. Thus, we concluded that these motions are expected to enhance the in-plane magnetic properties. We saw that the AFD motions and the delocalization of 3d z 2 from Mn-Ti at the elongated mono-layer Mn-octahedra are exclusive.

We dedicated Chapter 6 into the study of suppression of the elongated interface manganite layer that we observed in BTO-LSMO superlattice in Chapter 5. This elongated layer is named "dead layer" since it exhibits reduced magnetization and conductivity compared to the contracted LSMO mono-layers. We suggested that the delocalization of 3d electron of Mn to emtpy Ti 3d z 2 electrons at the interface can be a possible reason of this elongation and hindering magnetization. Thus, we wanted to find new alternated layers in order to suppress this delocalization. Within this line, we needed to work with a compound; (i) without d shells so that there cannot a delocalization take place at the interface, (ii) with a tetragonal or cubic structure so that tetragonal distortion can be favored in the manganite layers rather than rhombohedral one, (iii) having a perfect epitaxy with mangantite layers. Alkaline earth oxides fulfill all these three requirements. First, we studied [BaO] 6 /[La 2/3 Sr 1/3 MnO 3 ] 3 (6[BaO]-3[LSMO]) superlattice deposited on SrTiO 3 substrate by means of first-principle calculations. We did full geometry optimizations and investigated the electronic structures for different magnetic orderings of LSMO layers. We found that ferromagnetic and Atype antiferromagnetic orderings are quasi-degenerate which implies that we have in-plane ferromagnetism in the BaO-LSMO superlattice. In both ground states, both interface LSMO mono-layers are contracted with dominant d x 2 -y 2 orbital occupancy whereas the central LSMO mono-layer is elongated with dominant d z 2 orbital occupancy. Thus, we successfully managed to kill the delocalization at the interface. In order to see if these results are also hold in thicker manganite layers, we studied [BaO] 2 /[La 2/3 Sr 1/3 MnO 3 ] 6 (2[BaO]-6[LSMO]) superlattice. We decreased the number of BaO layers from 6 to 2 in order to have a feasible computational time but we first ran test calculation on [BaO] 2 /[La 2/3 Sr 1/3 MnO 3 ] 3 (2[BaO]-6[LSMO]) superlattice in order to see if there is a change in results between 6[BaO]-3[LSMO] and 2[BaO]-6[LSMO] superlattices. Similar structural and magnetic properties are also observed in the latter. Thus, we continued our work in 2[BaO]-6[LSMO] superlattice without problem. We tested different magnetic orderings in 2[BaO]-6[LSMO] superlattice such as ferromagnetic, A-type antiferromagnetic and ↑↑↓↓↑↑ and we saw that ↑↑↓↓↑↑ is the lowest in energy but there is quasi-degeneracy with others at room temperature. The structure and magnetic properties are similar to those of 6[BaO]-3 [LSMO]. Only the inner most central LSMO mono-layer is elongated with a dominant d z 2 orbital occupancy whereas the interface layers are contracted with a dominant d x 2 -y 2 orbital occupancy. In this superlattice, one essentially increases the thickness of the interface layers since the unit cells from the interface up to the inner most central layer are all contracted like the interface layer. After this study, we wanted to check whether our results are resilient to a change in the simple oxide and manganite compounds. Therefore, we took SrO and MgO as alternated layers (6 layers) and LBMO as manganite layer (3 layers) and performed set calculations with new superlattices. The results that we obtained for 6[BaO]-3[LSMO] superlattice are hold for these ones as well. In the study 6[BaO]-3[LBMO] and 6[SrO]-3[LSMO], we had the chance to study the effect of symmetric interfaces as we did before in BTO-LBMO superlattice. We saw that there is a spontanous symmetry breaking at the interfaces in 6[BaO]-3[LBMO] superlattice whereas there is no such symmetry breaking in 6[SrO]-3[LSMO]. This result is interesting and to be investigared further. Finally, Sébastian Lemal calculated the conductivity in these new superlattices by transport calculations in order to compare with BTO-LSMO superlattice. Unfortunately, although we managed to kill the elongation and delocalization at the interface and manage to favor d x 2 -y 2 over d z 2 orbital the maximum conductivity of this layer is not significantly improved compared to the dead layer present in BTO-LSMO (1.25 σ BTO-LSMO xx ).

Future works can be dedicated to question the real reason behind the dead layer present in LSMO superlattices with alternated layers. Different alternated layers possibly hindering the delocalization at interface like fluorides such as potassium fluoride (KF) or bromides such as lithium bromide (LiBr) can be also tested to see if the conductivity is improved compared BTO-LSMO superlattice. 
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Fig. 1 .

 1 Fig. 1.2 (a) Coordinates of lattice sites; (b) Miller indices of planes; (c,d) Miller indices of planes and direction indices. Picture taken from Ref. [3]

Fig. 1 . 3

 13 Fig. 1.3 Schematic band structure for metal, semi-conductor and insulator.

Fig. 1 . 4

 14 Fig. 1.4 Different responses of materials to an applied magnetic field: a) Diamagnetism b) Paramagnetism c) Ferromagnetism.

Fig. 1 . 6

 16 Fig. 1.6 Type of magnetic materials: Paramagnetic, Ferromagnetic, Antiferromagnetic, Ferrimagnetic

Fig. 1 . 7 Fig. 1 . 8

 1718 Fig. 1.7 Polarization vs Electric Field in dielectric, paraelectric and ferroelectric materials

Fig. 1 . 9 (

 19 Fig. 1.9 (Left) An illustration of a thin film deposited on a substrate. (Right) A [010] cross section of Pr 0.5 Ca 0.5 MnO 3 thin film deposited on SrTiO 3 (STO) taken at room temperature.Picture taken from Ref.[4] 

Fig. 1 .

 1 Fig. 1.10 Schematical picture of a superlattice: [A 3 /B 4 ] 2

Fig. 2 . 2 (

 22 Fig. 2.2 (Left) The resistivity and magnetoresistance of Nd 0.5 Pb 0.5 MnO 3 single crystal from reference [26]. (Right) The resistivity and magnetoresistance of La 2/3 Ba 1/3 MnO 3 ferromagnetic thin films[START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF] 

Fig. 2 . 3 (

 23 Fig. 2.3 (Left) Resistivity (ρ) vs. Magnetic Field (B = H) exhibits the colossal magnetoresistance behaviour about 127000% at 77 K. Picture taken from reference [28] (Right) Temperature dependence of magnetoresistance (∆R/R = ∆ρ/ρ), resistivity (ρ) and magnetization (M). (Picture taken from reference [28])

Fig. 2 . 5

 25 Fig. 2.5 Phase diagram of LSMO. Crystal Structures: O, O ′ and O ′′ refer to orthorhombic structures: T is tetragonal, Mc is monoclinic, H is hexagonal, R is rhombohedral. Magnetic structures: PM is paramagnetic, FM is ferromagnetic, AFM is antiferromagnetic, CA is canted antiferromagnetic. Electronic states: PS is phase separated, I is insulating and M is metallic. (Picture taken from Ref. [31])

Fig. 2 . 6

 26 Fig. 2.6 Magnetoresistance in a La 0.825 Sr 0.175 MnO 3 crystal: (a) temperature dependence of the resistivity in various magnetic fields and (b) the magnetic field dependence of resistivity at various temperatures. (Picture taken from reference [32])

Fig. 2 . 8 (

 28 Fig. 2.8 (Left) Curie temperature as a function of tolerance factor for the system of A 0.7 A ′ 0.3 MnO 3 where A is a trivalent rare earth and A ′ is a divalent alkali earth ion. (Right) Curie temperature as a function of ⟨r A ⟩ for the system of A 1-x A ′x MnO 3 . (Picture taken from references[START_REF] Hwang | Lattice effects on the magnetoresistance in doped lamno 3[END_REF] (left) and[START_REF] Mahesh | Effect of the internal pressure due to the a-site cations on the giant magnetoresistance and related properties of doped rare earth manganates, ln1-xaxmno3 (ln = la, nd, gd, y; a = ca, sr, ba, pb)[END_REF] (right))

Fig. 2 . 9 (

 29 Fig. 2.9 (Left) The variation of the metal-insulator transition temperature from resistivity T m with respect to the variance σ 2 . (Right) The variation of the ferromagnetic-paramagnetic transition temperature T c with respect to σ 2 at constant ⟨r A ⟩ for three series of compounds involving ⟨r A ⟩ = 1.237 Å, ⟨r A ⟩ = 1.231 Å, and ⟨r A ⟩ = 1.225 Å. Inset: p 1 vs ⟨r A ⟩ for the three ⟨r A ⟩ values studied. (Picture taken from references [37] (left) and [38] (right))

Fig. 2 .

 2 Fig. 2.11 Magnetic orbitals: Five orbitals of the 3d shell

Fig. 2 .

 2 Fig. 2.13 d orbitals in an octahedral environment facing the negative oxygen ions

Fig. 2 .

 2 Fig. 2.14 Independent Slater-koster two-central integrals for p and d-orbitals. a) σ -type bonding: the bonding state is symmetrical with respect to rotations about the the bond axis. b) π-type bonding: the bond axis lies in a nodal plane.

Fig. 2 .

 2 Fig. 2.15 a) "high spin configuration" b) "low spin configuration"

Fig. 2 .

 2 Fig.2.16 Density of states (left) and band structure (right) of an ideal cubic perovskite LaMnO 3 (Space group Pm 3m). The bands issued from the e g orbitals are in red, the bands issued from the t 2g orbitals are in green. The special points in the band structure are Γ = (0, 0, 0), M = (π/a, π/a, 0), X = (π/a, 0, 0), R = (π/a, π/a, π/a)

  d

Fig. 2 .

 2 Fig. 2.20 The degenerate states of Ĥel are (a) | ↑, ↑⟩, (b) | ↓, ↓⟩, (c) | ↑, ↓⟩ and (d) | ↓, ↑⟩.

2. 2 . 3 . 2

 232 Including the off-diagonal terms of Fock operator Anderson Superexchange a.k.a. Superexchange through Space Now, let us consider the case in which two electrons of opposite spins occupy the same orbital in the open d shell environment given above (without taking into account the participation of the p orbitals at first), we have six possible states: | ↑, ↑⟩, | ↓, ↓⟩, | ↑, ↓⟩, | ↓, ↑⟩, | ↑↓, •⟩ and |•, ↑↓⟩.

(2. 21 )

 21 Here, the part (a) is for the energy to put an electron on each orbital, the part (b) is for on-site Coulomb energy when two electrons are on the same orbital a or b, the part (c) is the off-site Coulomb energy when two electrons are on each orbital a and b with opposite spins, the part (d) is the energy of one electron on each orbital a and b with same spins, the part (e) is the exchange energy between the states | ↑, ↓⟩ and | ↓, ↑⟩ and the part (f) is the exchange energy between the states | ↑↓, •⟩ and |•, ↑↓⟩

  Ĥ0 unperturbed Hamiltonian ((a) + (b) + (c) + (d) + (e) + (f)) and Ŵ perturbation. As one can see, we can write the Hamiltonian by separating into unperturbed and perturbation parts; Ĥ = Ĥ0 + Ŵ . In the basis of the states | ↑, ↑⟩, | ↓, ↓⟩ | ↑, ↓⟩, | ↓, ↑⟩, | ↑↓, •⟩ and |•, ↑↓⟩, the unperturbed Hamiltonian matrix is as follows:

  p
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 2 Fig. 2.21 Anderson superexchange a.k.a Superexchange "through space"

Fig. 2 .

 2 Fig. 2.22 Superexchange "through bridge"

Fig. 2 .

 2 Fig. 2.24 Direct hopping

Fig. 2 .

 2 Fig. 2.25 Hopping through bridge

figure 2 .Fig. 2 .

 22 Fig. 2.27 A representation of the bond angle of d x 2 -y 2p xd x 2 -y 2 in a distorted octahedron

FMFig. 2 .Fig. 2 .

 22 Fig. 2.28 Different type of spin arrangement of a lattice: Ferromagnetism (FM), A type antiferromagnetism (A -AFM), C type antiferromagnetism (C -AFM), G type antiferromagnetism (G -AFM)

Fig. 2 .

 2 Fig. 2.30 Spin, charge, and orbital orderings of the CE AFM type observed for most of the x = 1/2 manganites. The e g -orbital ordering is on Mn 3+ . The Mn 4+ sites are the closed circles. (Picture taken from reference [65])

Fig. 2 .

 2 Fig. 2.31 The resistivity comparison of the bulk La (2-x)/3 Ba (1+x)/3 Mn 1-x Cu x O 3 when x = 0 vs La 2/3 Ba 1/3 MnO 3 thin films. (Left) Picture adapted from the reference[66] and (right) picture taken from the reference[START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF] 

Fig. 2 .

 2 Fig. 2.32 (Left) The a and c parameters of the La 2/3 Ca 1/3 MnO 3 films on the SrTiO 3 vs t film thickness from the reference [67]. (Right) The in-plane (a || ) and out-of-plane (a ⊥ ) lattice parameter of the La 0.7 Ca 0.3 MnO 3 films on the SrTiO 3 vs d film thickness from the reference [69] ((Left) Picture taken from the reference [67] (Right) Picture adapted from the reference [69])

Fig. 2 .

 2 Fig. 2.33 Magnetization (500 Oerst-eds) for the [(La 2/3 Sr 1/3 MnO 3 ) 3 /(BaTiO 3 ) 3 ] 25 (red squares) and [(La 2/3 Ca 1/3 MnO 3 ) 4 (BaTiO 3 ) 4 ] 20 (green circles) superlattices. Hysteresis loops of the calcium superlattice, recorded at 10K and 300K, are presented in the inserts. The arrows mark the bulk Curie temperatures. (Picture taken from reference [75])
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  r) corresponding to the external potential V (1) ext (⃗ r). E HK [n] can be formulated as the expectation value of the Hamiltonian in the ground state wavefunction |ψ (1) ⟩ E (1) 0 = E HK [n (1)0 ] = ⟨ψ(1) | Ĥ(1) |ψ(1) ⟩.(3.19) 

  x and E LSDA c are the exchange and correlation functionals within LSDA and E GGA x and E GGA c

. 42 )

 42 Becke suggested two different values 0.16 and 0.28 for A, depending on the choice of the GGA functional for the exchange E GGA x and correlation E GGA c[START_REF] Dovesi | [END_REF].
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 31 Fig. 3.1 Schematical representation of average plane and interplane distance for a ideal cubic perovskite LaMnO 3 . La atoms are in the corners of the unit cell and presented as green. Mn atom is in the center of the unit cell and presented as purple. Oxygen atoms are at the face centres and presented as red.
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 32 Fig. 3.2 Schematical representation of octahedron thickness and layer thickness for an ideal cubic perovskite LaMnO 3 .

Fig. 3 . 3

 33 Fig. 3.3 Schematical representation of AFD motions of the oxygen atoms, as well as the octahedron, in the new unit cell ( ⃗ a ′ , ⃗ b ′ , c). The rotations are brought by the atomic displacement in the ( ⃗ a ′ , ⃗ b ′ ) plane. The displacements are exaggerated for reading purposes. ϑ gives the angle of the rotation of octahedron.
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Fig. 4 . 1

 41 Fig. 4.1 Schematic picture for LMO-SMO superlattice

Fig. 4 . 2

 42 Fig.4.2 Energy difference of each configuration with respect to the lowest energy ordering and geometry (∆E = E -E 0 ) vs. the imposed a in-plane lattice parameter. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.

Fig. 4 . 3

 43 Fig. 4.3 Schematic picture defining the average planes and interplane distances, as well as rumpling. The oxygen atoms labelled as O 1 and O 2 belong to SrO and LaO planes, the oxygen atoms labelled as Õ1 and Õ2 belong to the first and second MnO 2 planes, respectively. The atomic displacements are exaggerated in the sketch for reading purposes.

Fig. 4 . 4

 44 Fig. 4.4 Schematical representation of the dimerization in MnO 2 planes. d ′Mn-Mn and d Mn-Mn are the Mn -Mn distances in ⃗ c direction. d ′ Mn-Mn > d Mn-Mn

) 1 -

 1 (SrMnO 3 ) 1 ] 1 superlattice in a strain-free environment. a A-AFM = 3.873 Å. c A-AFM = 7.539 Å.

Fig. 4 . 5

 45 Fig. 4.5 Sketch for relaxed ferromagnetic and A-type antiferromagnetic [(LMO) 1 -(SMO) 1 ] 1 superlattice lattice parameters. a FM < a A-AFM , c FM > c A-AFM and c ′ FM > c ′ A-AFM

Fig. 4 . 6

 46 Fig. 4.6 Total and partial densities of states for the [(LMO) 1 -(SMO) 1 ] 1 superlattice in ferromagnetic configuration. The symbols ↑ and ↓ are for the spin up and spin down states. The Mn e g ↑ state at the Fermi level splits into d x 2 -y 2 and d z 2 . Both d x 2 -y 2 and d z 2 are more or less equally occupied.
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 47 Fig. 4.7 Total and partial densities of states for the [(LMO) 1 -(SMO) 1 ] 1 superlattice in A-type antiferromagnetic configuration. The symbols ↑ and ↓ are for the spin up and spin down states. The Mn e g ↑ state at the Fermi level splits into d x 2 -y 2 and d z 2 . d x 2 -y 2 is occupied more than d z 2 .

Fig. 4 . 8

 48 Fig. 4.8 Total and partial densities of states for the [(LMO) 1 -(SMO) 1 ] 1 superlattice in C-type antiferromagnetic configuration. The symbols ↑ and ↓ are for the spin up and spin down states. The Mn e g ↑ state at the Fermi level splits into d x 2 -y 2 and d z 2 . d z 2 is occupied more than d x 2 -y 2 .
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 49 Fig. 4.9 Schematic picture for LMO-SMO superlattices

Fig. 4 .

 4 Fig.4.10 Energy difference of each configuration with respect to the lowest energy ordering and geometry (∆E = E -E 0 ) vs. the imposed a in-plane lattice parameter. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.
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 4 Fig. 4.11 Schematic picture for (LMO) 2 -(SMO) 2 superlattices

Fig. 4 .

 4 Fig. 4.13 Total and partial densities of states for the (LMO) 2 -(SMO) 2 ) superlattice in A-type antiferromagnetic configuration. At the bottom panel, total density of states and Mn contribution is given.

Fig. 4 .

 4 Fig.4.15 Energy difference of each configuration with respect to the lowest energy ordering and geometry (∆E = E -E 0 ) vs. the imposed a in-plane lattice parameter. Here, E 0 is the lowest energy obtained for the ferromagnetic ordering in the strain-free case.
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Fig. 4 .

 4 Fig. 4.16 Total and partial densities of states of [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 substrate where a = 3.88 Å.

) 2 -

 2 (SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 23.120 Å.
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Fig. 5 . 1

 51 Fig. 5.1 Schematic representation of the unit cell used in the calculations: a) [BaTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 (BTO-LSMO) superlattice b) [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 (BTO-LBMO) superlattice.

Figure 5 .

 5 2 reports the statistics found for the MnO 6 octahedra rotations, as a function of the different La/Sr ordering, as well as the induced stabilization energy. One sees immediately that the majority of the orderings are

Fig. 5 . 2

 52 Fig. 5.2 Stabilization energy brought by the octahedra rotations in the [BaTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 superlattice. The MnO 6 rotation angles are reported separately for each LSMO mono-layer (m.l.). The different colors correspond to different ordering of the La/Sr LSMO ions. The dashed symbols to real atoms and the filled ones to atoms with averaged effective nuclear charges.

Fig. 5 . 3

 53 Fig. 5.3 Statistics of the MnO 6 rotation (top) and relative e g orbital occupancy ratio (bottom) as a function of the Jahn-Teller distortion (JTd). The data fit into three clusters: The blue ellipse cluster stands for the mono-layers showing Mn-octahedra elongation in the ⃗ c direction and no/weak AFD motions as well as dominant d z 2 orbital occupancy. The red circle cluster stands for the mono-layers showing Mn-octahedra contraction in the ⃗ c direction and large AFD motions as well as dominant d x 2 -y 2 orbital occupancy. The orange ellipse cluster stands for the mono-layers showing Mn-octahedra contraction in the ⃗ c direction and no/weak AFD motions as well as dominant d x 2 -y 2 orbital occupancy.

Fig. 5 . 4

 54 Fig.5.4 Analysis of the [BaTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 superlattice for the impact of antiferrodistortive (AFD) motions. The blue stands for the superlattice in which the AFD motions are not released, the red is for the superlattice where AFD motions are released. At the top panel from left to right, one finds the tetragonality c/a -1, Jahn-Teller distortion, MnO 2 rumpling in (Å). At the bottom panel from left to right, one finds the e g occupancy ratio, total e g occupancy and delocalization of 3d z 2 electrons on Ti at the interfaces. (Note: Real orbital occupation numbers are used for η x 2 -y 2 and η z 2 ).
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 55 Fig.5.5 Analysis of the [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 superlattice for the impact of antiferrodistortive (AFD) motions and polarization. The orange stands for the superlattice in which the AFD motions are not released (P4mm space group), the pink is for the superlattice where AFD motions are released (P4mm space group) and the purple is for the superlattice where the polarization in BaTiO 3 is supressed by imposing P4/mmm symmetry. At the top panel from left to right, one finds the tetragonality c/a -1, the Jahn-Teller distortion, the MnO 2 rumpling in (Å). At the bottom panel from left to right, one finds the e g occupancy ratio, total e g occupancy and delocalization of 3d z 2 electrons on Ti at the interfaces. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).

[PbTiO 3 ] 3 [

 33 La 2/3 Sr 1/3 MnO 3 ] 3 , since PbTiO 3 is known to exhibit larger polarization than BaTiO 3 .

Fig. 5 . 6

 56 Fig. 5.6 Analysis of the effect of polarization in manganite superlattices. The green stands for [PbTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 superlattice in P4mm space group. The blue stands for [BaTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 superlattice. The orange stands [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 superlattice. The purple stands [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 superlattice in P4/mmm where there is mirror symmetry planes to suppress the polarization in BaTiO 3 . At the top panel from left to right, one finds the tetragonality c/a -1, Jahn-Teller distortion, MnO 2 rumpling in (Å).At the bottom panel from left to right, one finds the e g occupancy ratio, total e g occupancy and delocalization of 3d z 2 electrons on Ti at the interfaces. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).
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 57 Fig. 5.7 Statistics of manganite superlattices with alternated titanates. The e g orbital occupancy ratio as a function of Jahn-Teller distortion parameter. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).
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 58 Fig. 5.8 Statistics of manganite superlattices with alternated titanates. The e g orbital occupancy ratio as a function of MnO 2 rumpling in Å. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).
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 59 Fig.5.9 Statistics of the effect of the TiO 2 rumpling in the alternated layers titanates on the manganite layer properties. On the left the Jahn-Teller distortion parameter, and the e g orbital occupancy ratio given as a function of TiO 2 rumpling, on the right TiO 2 rumpling given for each layer. Lines are guide for the eyes. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).
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 5 Fig. 5.10 Statistics of the amplitude of the polarization in the alternated titanates of the manganite superlattices with alternated layers. The Jahn-Teller distortion parameter and the e g orbital occupancy ratio is given as a function of the the amplitude of the polarization. (Note: Mülliken populations are used for η x 2 -y 2 and η z 2 ).

Fig. 5 .Fig. 5 .

 55 Fig. 5.11 Schematical representation of the orientation of the polarization in BTO-LSMO superlattice: the accumulation state where the polarization of alternate titanates is out-of the interface layer, the depletion state where the polarization of the alternate titanates is into the layer.
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 61 Fig. 6.1 (color online) Schematic representation of the [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 6 superlattice. m.l. stands for mono-layer.

Fig. 6 . 2

 62 Fig. 6.2 Magnetic orderings studied in LSMO layers. Arrows indicate the spin directions. FM: ferromagnetic, A-AFM: A-type antiferromagnetic, C-AFM: C-type antiferromagnetic, G-AFM: G-type AFM antiferromagnetic ordering.

2 Fig. 6 .

 26 Fig.6.3 η(d x 2 -y 2 )/η(d z 2 ) ratio of the d x 2 -y 2 and d z 2 orbitals Mülliken occupancies in each mono-layer as a function of the Jahn-Teller distortion (JTd) and of the tetragonality parameter c/a -1. Red and pink symbols refer to the interfacial mono-layers, blue symbols to the central ones. Diamonds are for the FM order and stars for the A-type AFM one. The green dashed squares show the experimental values of LSMO over STO for 6 m.l. thin films exhibiting a dead layer. The Jahn-Teller distortion and c/a ratios are extracted from the cumulative displacements in Ref.[START_REF] Herger | Structure determination of monolayer-by-monolayer grown la 1-x sr x mno 3 thin films and the onset of magnetoresistance[END_REF] and the η(d x 2 -y 2 )/η(d z 2 ) ratio is extracted from linear dichroism experiments of Ref.[START_REF] Tebano | Evidence of orbital reconstruction at interfaces in ultrathin la 0.67 sr 0.33 mno 3 films[END_REF]. Bulk LSMO corresponds to the cross point between the dashed lines.

  .4, one can see the schematic representation of [La 2/3 Sr 1/3 MnO 3 ] 6 [BaO] 2 superlattice. To keep the calculation to a reasonable size, we needed to simultaneously decrease the BaO layer thickness.

Fig. 6 . 4 (

 64 Fig. 6.4 (color online) Schematic representation of the [La 2/3 Sr 1/3 MnO 3 ] 6 [BaO] 2 superlattice. m.l. stands for mono-layer.

  [LSMO] 3 [BaO] 6 superlattices and the C-type and Gtype AFM orders in [LSMO] 3 [BaO] 6 superlattices are significantly higher in energy than the quasi-degenerate FM and A-type AFM, we only studied three different spin configurations for the [La 2/3 Sr 1/3 MnO 3 ] 6 [BaO] 2 superlattices: FM order, A-type AFM and ↑↑↓↓↑↑ which can be seen in figure 6.5.

Fig. 6 . 5

 65 Fig. 6.5 Magnetic orderings studied in LSMO layers. Arrows indicate the spin directions. FM: ferromagnetic, A-AFM: A-type antiferromagnetic and "uudduu": ↑↑↓↓↑↑ ordering.

Fig. 6 . 6

 66 Fig. 6.6 The correlation between magnetic moment and total e g population of each manganite mono-layer with the Jahn-Teller distortion of each manganite mono-layer in [LSMO] 6 [BaO] 2 superlattices.

  Fig. 6.7 Transport calculations on the [LSMO] n [BaO] p and [LSMO] 3 [BTO] 3 systems at 300 K.
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  x 2 -y 2 , d z 2 ) and t 2g (d xy , d yz , d xz ), with the crystal field splitting energy ∆. Now, let us recall the notion of crystal field splitting and how exactly it takes place.

				e g
	E	d x 2 -y 2	d z 2
		d xy	d yz	d xz	t 2g

∆

Fig.

  In the basis of energy-dependent basis set of |d xy ⟩ ε , |d yz ⟩ ε and |d xz ⟩ ε , the energy-dependent t 2g Hamiltonian is as follows;

  2g level again with the energy E = -4J ab + 8U ab + 2U aa where J ab is the Hund exchange energy, U ab is interorbital Coulomb repulsion energy and U aa is the intraorbital Coulomb repulsion energy (See figure2.15 b)).Thus, noting that U aa ≃ U ab + 2J ab , one can find the conditions for the spin configuration of such system. If ∆ < 5J ab then High Spin configuration takes place whereas if ∆ > 5J ab Low Spin configuration takes place.

	∆
	t 2g

  z 2

	Regular octahedron	Elongated octahedron
	e g	d x 2 -y 2
	E		
	t 2g	d xy	
		d xz	d yz
	Regular octahedron	Compressed octahedron
	e g	d z 2	
	E	d x 2 -y 2
	t 2g	d xz	d yz
		d xy	
	Fig. 2.19 Crystal-field splitting of five-fold degenerate atomic 3d levels into lower t 2g (triply
	degenerate) and higher e g (doubly degenerate) levels. Jahn-Teller tetragonal distortion
	(compression) of MnO 6 octahedron further lifts each degeneracy.	

Fig.

2

.18 Crystal-field splitting of five-fold degenerate atomic 3d levels into lower t 2g (triply degenerate) and higher e g (doubly degenerate) levels. Jahn-Teller tetragonal distortion (elongation) of MnO 6 octahedron further lifts each degeneracy.

  We can obtain the effective Hamiltonian by partitioning the Hilbert space into a reduced one. In this scenario, one considers the Hamiltonian matrix H in 2.30 as blocks of interest, such as low-energy states, high energy states. Thus, the Hamiltonian matrix H becomes as following; into blocks of low-energy states, high-energy states and transfer blocks matrices:

	A =	H 00 T 01 T 10 H 11	and B =	H 11 T 12 T 21 H 22	(2.31)

23 (Left) 

Basis set for the superexchange "through bridge" Hamiltonian given in 2.30 and (right) basis set for the effective hopping Hamiltonian given in 2.

[START_REF] Damay | Cation disorder and size effects upon magnetic transitions in ln0.5a0.5mno3 manganites[END_REF] 

  .25.

			-t pd		-t pd	
	a a	b b	a a	b b	a a	b b
	... ...		... ...		... ...	
	p 1 p 1	p n p n	p 1 p 1	p n p n	p 1 p 1	p n p n

  .32. Zandbergen et al. reported that the thin films (∼ 6 nm) of La 0.73 Ca 0.27 MnO 3 on a SrTiO 3

Table 4 .

 4 The c lattice parameter is optimized at c FM = 7.714 Å. In table 4.1, first thing to comment is that the system doesn't have any polarization as we can see from the compensating the rumpling values of the MnO 2 planes. Next thing, by looking at the interplane distances one can easily see that the average MnO 2 planes are closer to the average LaO planes than to the SrO plane. (The average distance with the LaO is 1.904 Å and the average distance with SrO is 1.953 Å.) Another important result to mention is the Mn -O distances in the ⃗ c direction. The d Mn-O between MnO 2 and LaO is 1.955 Å, while d Mn-O between MnO 2 and SrO is 1.902 Å. The differences in the interplane distances and d Mn-O are the sign of dimerization in the ⃗ c direction. Indeeed, the Mn -Mn distance in ⃗ c direction (d Mn-Mn ) changes depending on the plane that is sandwiched in between two Mn. When there is an Sr in the plane sandwiched it is d Mn-Mn and when there is a La it is d ′ Mn-Mn . By simply summing up the corresponding Mn-O distances one can easily see that d ′ Mn-Mn > d Mn-Mn . This dimetrization is schematically drawn in figure 4.4.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0
		1.953	1.902
	MnO 2	0.253	-0.051
		1.904	1.955
	LaO	0.500	0
		1.904	1.955
	MnO 2	0.747	0.051
		1.953	1.902

1 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a strain-free environment. a FM = 3.833 Å. c FM = 7.714 Å.

Table 4 .

 4 2 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a strain-free environment. a FM = 3.833 Å.

	y 2 η z 2	total e g charge (|e|)

c FM = 7.714 Å.

Table 4 .

 4 2 planes are closer to the average LaO planes than to the average SrO planes. (The average distance with the LaO is 1.864 Å and the average distance with SrO is 1.905 Å.) The d Mn-O distances are overall smaller than the ones for the ferromagnetic ordering (the d Mn-O between MnO 2 and LaO is 1.911 Å, while is d Mn-O between MnO 2 and SrO is 1.859 Å) but there is also a interlayer dimerization. Finally, the rumpling values are decreased a little but again the system doesn't have any polarization.3 Table summarizing the structural properties of A-type antiferromagnetic [(LaMnO 3

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	-0.001
		1.905	1.859
	MnO 2	0.253	-0.046
		1.864	1.911
	LaO	0.500	0
		1.864	1.911
	MnO 2	0.747	0.046
		1.905	1.859

Table 4 .

 4 4 Table summarizing the structural and magnetic properties of A-type antiferromagnetic

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 5 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 7.617 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	-0.127	0.000
		1.932	1.884
	MnO 2	0.127	-0.048
		1.876	1.924
	LaO	0.373	0.000
		1.876	1.924
	MnO 2	0.620	0.048
		1.932	1.884

Table 4 .

 4 6 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 7.617 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 7 Table summarizing the structural properties of A-type antiferromagnetic

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.040	0
		1.904	1.858
	MnO 2	0.293	-0.046
		1.861	1.908
	LaO	0.540	0
		1.861	1.908
	MnO 2	0.787	0.046
		1.904	1.858

Table 4 .

 4 [START_REF] Kwon | Desirable magnetotransport properties in doped mn-oxide-based superlattices[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 7.531 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 Naturally, this increase in overall contraction reflects in the other structural parameters such as interplane distances, d Mn-O , d OO and etc. Nevertheless, the same analysis for the dimerization is again valid in this case. 9 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 7.585 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0
		1.924	1.877
	MnO 2	0.254	-0.047
		1.868	1.915
	LaO	0.500	0
		1.868	1.915
	MnO 2	0.746	0.047
		1.925	1.877

Table 4 .

 4 [START_REF] Jo | Inhomogeneous transport in heteroepitaxial la 0.7 ca 0.3 mno 3 /srtio 3 multilayers[END_REF] Table summarizing the structural and magnetic properties of ferromagnetic[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 7.585 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 [START_REF] Izumi | la 1-x sr x mno 3 superlattices composed of ferromagnetic x = 0.4 and antiferromagnetic x = 0.55 layers[END_REF] Table summarizing the structural properties of A-type antiferromagnetic[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-FM = 7.500 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0
		1.897	1.852
	MnO 2	0.253	-0.045
		1.853	1.898
	LaO	0.500	0
		1.852	1.898
	MnO 2	0.747	0.046
		1.898	1.852

Table 4 .

 4 [START_REF] Jonker | Ferromagnetic compounds of manganese with perovskite structure[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 7.500 Å.

Table 4 .

 4 The results are summarized in table 4.13 and table 4.14. The c lattice parameter is optimized at c C-AFM = 7.714 Å which is larger than the c lattice parameters that are obtained for ferromagnetic and A-type antiferromagnetic superlattice with imposed a = 3.905 Å. This overall elongation in the⃗ c direction reflects on the interplane distances and the d Mn-O as elongation as well. However, the main result on dimerization is still valid here too. The average MnO 2 planes are closer to the average LaO planes than to the average SrO planes. The Mn -O distances (d Mn-O ) between MnO 2 and LaO planes (1.951 Å and 1.946 Å ) is larger than the one of between MnO 2 and SrO (1.911 Å and 1.906 Å ). From the rumpling values, we can again conclude that the system does not show any polarization.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0.001
		1.959	1.911
	MnO 2	0.254	-0.050
		1.900	1.951
	LaO	0.500	-0.001
		1.898	1.946
	MnO 2	0.746	0.050
		1.957	1.906

[START_REF] Van Santen | Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[END_REF] 

Table summarizing the structural properties of C-type antiferromagnetic

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c C-AFM = 7.714 Å.

Table 4 .

 4 [START_REF] Volger | Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure[END_REF] Table summarizing the structural and magnetic properties of C-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 1 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c C-AFM = 7.714 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 

		804	3.718	3.768	3.716	3.754	3.704
	MnO 2 ↑	↑	↑	↑	↑	↑	
	LaO	3.91	3.822	3.848	3.816	3.83	3.796
	MnO 2 ↑	↓	↑	↓	↑	↓	

[START_REF] Zener | Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure[END_REF] 

Table reporting the d Mn-Mn values for strain-free, a = 3.88 Å and a = 3.905 Å for ferromagnetic, A-type antiferromagnetic cases. First line is visualized in red to point out it it is the repetition of the second MnO 2 plane due to periodicity.

Table 4 .

 4 

	The dimerization is kept.	
		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0.001
		1.919	1.870
	MnO 2	0.127	-0.050
		1.869	1.919
	LaO	0.250	0
		1.870	1.919
	MnO 2	0.373	0.049
		1.918	1.869
	SrO	0.500	0
		1.919	1.868
	MnO 2	0.627	-0.050
		1.869	1.919
	LaO	0.750	0
		1.870	1.920
	MnO 2	0.873	0.050
		1.919	1.869

[START_REF] Wollan | Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno 3[END_REF] 

Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a strain free environment. The a lattice parameter is optimized at a FM = 3.836 Å. The c lattice parameter is optimized at c FM = 15.152 Å.

Table 4 .

 4 

	y 2 η z 2	total e g charge (|e|)

[START_REF] Jonker | Magnetic compounds with perovskite structure iv conducting and nonconducting compounds[END_REF] 

Table summarizing the structural and magnetic properties of ferromagnetic

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

2 superlattice in a strain free environment. The a lattice parameter is optimized at a FM = 3.836 Å. The c lattice parameter is optimized at c FM = 15.152 Å.

Table 4 .

 4 

	The values are similar to

[START_REF] Searle | Studies of the ionic ferromagnet (lapb)mno3. v. electric transport and ferromagnetic properties[END_REF] 

Table summarizing the structural properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a strain free environment. The a lattice parameter is optimized at a A-AFM = 3.877 Å. The c lattice parameter is optimized at c A-AFM = 15.046 Å.

Table 4 .

 4 FM = 2 × 7.617 = 15.234 Å for two-layers doubled in⃗ c direction). The structural properties are qualitatively the same with the strained two-layers ferromagnetic one. The values for interplane distances, rumplings and Mn -O distances are similar with the strained two-layers ferromagnetic ones. The same dimerization analysis is valid.

	y 2 η z 2	total e g charge (|e|)

[START_REF] Baibich | Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices[END_REF] 

Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a strain free environment. The a lattice parameter is optimized at a A-AFM = 3.877 Å. The c lattice parameter is optimized at c A-AFM = 15.046 Å.

4.3.2 Results with a STO = 3.88 Å

Now we look at an [(LMO) 1 -(SMO) 1 ] 2 superlattice deposited on STO substrate. The imposed a lattice parameter is the one that we optimized within our calculations; that is a = 3.88 Å. We computed different magnetic configurations: ferromagnetic, A-type antiferromagnetic "↑↑↓↓" and "↑↓↓↑ orderings. We have found the A-type antiferromagnetic ordering as the lowest energy (E A-AFM -E FM = -103 meV, E A-AFM -E uudd ≃ -79 meV, E A-AFM -E uddu ≃ -233 meV for whole superlattice). The c lattice parameter is optimized at c FM = 15.258 Å; this value is consistent with the c lattice parameter optimized for the strained two-layers ferromagnetic system (c FM = 15.258 Å for four-layers and 2 × c

Table 4 .

 4 

20 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 15.258 Å.

Table 4 .

 4 .22 and 4.23, we summarize the results A-type antiferromagnetic [(LMO) 1 -(SMO) 1 ] 2 superlattice with imposed a = 3.88 Å. The results are qualitatively the same with A-type antiferromagnetic 2-layers superlattice. 21 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 15.258 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )		
	SrO							0.580
	MnO 2	3.815	-0.017 3.815 -0.017	3.447	1.152	0.71	-0.852
	LaO							1.123
	MnO 2	3.814	-0.017 3.815 -0.017	3.446	1.152	0.71	-0.852
	SrO							0.581
	MnO 2	3.814	-0.017 3.814 -0.017	3.447	1.152	0.71	-0.852
	LaO							1.123
	MnO 2	3.814	-0.017 3.814 -0.017	3.447	1.152	0.71	-0.852

Table 4 .

 4 

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		SrO	-0.007			0
				1.901			1.855
		MnO 2	0.119			-0.046
				1.859			1.905
		LaO	0.243			0
				1.859			1.905
		MnO 2	0.366			0.046
				1.901			1.855
		SrO	0.493			0
				1.901			1.855
		MnO 2	0.619			-0.046
				1.859			1.905
		LaO	0.743			0
				1.859			1.905
		MnO 2	0.866			0.046
				1.901			1.855
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )	
	SrO						0.616
	MnO 2	3.760	-0.031 3.760 -0.031	3.375	2.226 0.671	-0.877
	LaO						1.138
	MnO 2	3.760	-0.031 3.760 -0.031	-3.375	2.226 -0.671	-0.877
	SrO						0.615
	MnO 2	3.760	-0.031 3.760 -0.031	3.375	2.226 0.671	-0.877
	LaO						1.138
	MnO 2	3.760	-0.031 3.760 -0.031	-3.375	2.226 -0.671	0.877

[START_REF] Berkowitz | Giant magnetoresistance in heterogeneous cu-co alloys[END_REF] 

Table summarizing the structural properties of A-type antiferromagnetic

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 15.039 Å.

Table 4 .

 4 [START_REF] Fullerton | 150% magnetoresistance in sputtered fe/cr(100) superlattices[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 15.039 Å.In tables 4.24, 4.25 we summarize the results. The c lattice parameter is optimized as c uudd = 15.089 Å; that is closer to c A-AFM = 15.039 Å. When we analyse the interplane distances we see that the average MnO 2 planes are closer to LaO layers than SrO as we have seen previously in all cases. In fact the interplane distances, rumpling values and Mn -O distances are very similar to those we obtained for A-type antiferromagnetic case.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.005	0
		1.906	1.858
	MnO 2	0.131	-0.048
		1.866	1.914
	LaO	0.255	0
		1.867	1.913
	MnO 2	0.379	0.047
		1.906	1.859
	SrO	0.505	0
		1.906	1.858
	MnO 2	0.631	-0.047
		1.867	1.914
	LaO	0.755	0
		1.866	1.914
	MnO 2	0.879	0.047
		1.906	1.859

Table 4 .

 4 

[START_REF] Chen | Creation of bulk, superlatticelike structure and giant magnetoresistance effect in a deformed cu-ni-fe alloy[END_REF] 

Table summarizing the structural properties of "↑↑↓↓" ordered [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudd = 15.089 Å.

Table 4 .

 4 [START_REF] Hylton | Giant magnetoresistance at low fields in discontinuous nife-ag multilayer thin films[END_REF] Table summarizing the structural and magnetic properties of "↑↑↓↓" ordered[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudd = 15.089 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		SrO	-0.005			0
				1.919			1.874
		MnO 2	0.121			-0.045
				1.865			1.910
		LaO	0.245			0
				1.864			1.909
		MnO 2	0.368			0.045
				1.919			1.874
		SrO	0.495			0
				1.919			1.874
		MnO 2	0.621			-0.045
				1.864			1.909
		LaO	0.745			0
				1.865			1.910
		MnO 2	0.868			0.045
				1.919			1.874
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )	
	SrO						0.594
	MnO 2	3.784	-0.025 3.784 -0.025	3.409	1.751 0.685	-0.862
	LaO						1.129
	MnO 2	3.783	-0.025 3.783 -0.025	-3.408	1.776 -0.683	-0.862
	SrO						0.594
	MnO 2	3.783	-0.025 3.783 -0.025	-3.407	1.776 -0.683	-0.862
	LaO						1.129
	MnO 2	3.784	-0.025 3.783 -0.025	3.409	1.751 0.685	-0.862

[START_REF] Kusters | Magnetoresistance measurements on the magnetic semiconductor nd0.5pb0.5mno3[END_REF] 

Table summarizing the structural properties of "↑↓↓↑" ordered

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddu = 15.133 Å.

Table 4 .

 4 [START_REF] Helmolt | Giant negative magnetoresistance in perovskitelike la 2/3 ba 1/3 mno x ferromagnetic films[END_REF] Table summarizing the structural and magnetic properties of "↑↓↓↑" ordered [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddu = 15.133 Å.energy (E A-AFM -E FM = -218 meV (-27 meV), E A-AFM -E uudd ≃ -102 meV (-13 meV), E A-AFM -E uddu ≃ -280 meV (35 meV) for whole superlattice (per unit cell)).In table 4.28 we report the structural results of the optimized geometry of [(LMO) 1 -(SMO) 1 ] 2 superlattice with imposed a = 3.905 Å when spins are ferromagnetically alligned. The c lattice parameter is optimized at c FM = 15.152 Å; this value is consistent with the c lattice parameter optimized for the strained two-layers ferromagnetic system (c FM = 15.152 Å for four-layers and 2 × c FM = 2 × 7.585 = 15.17 Å for two-layers doubled in ⃗ c direction). The structural properties are qualitatively the same with the strained two-layers ferromagnetic one. The values for interplane distances, rumplings and Mn -O distances are similar with the strained two-layers ferromagnetic ones. The same dimerization analysis is valid.

	Ferromagnetic Ordering	
		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0
		1.922	1.876
	MnO 2	0.127	-0.047
		1.865	1.912
	LaO	0.250	0
		1.865	1.912
	MnO 2	0.373	0.047
		1.923	1.876
	SrO	0.500	0
		1.923	1.876
	MnO 2	0.627	-0.047
		1.865	1.912
	LaO	0.750	0
		1.865	1.912
	MnO 2	0.873	0.047
		1.923	1.876

Table 4 .

 4 [START_REF] Mccormack | Very large magnetoresistance in perovskite-like la-ca-mn-o thin films[END_REF] Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 15.152 Å.

Table 4 .

 4 

	y 2 η z 2	total e g charge (|e|)

[START_REF] Jin | Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films[END_REF] 

Table summarizing the structural and magnetic properties of ferromagnetic

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 15.152 Å.

Table 4 .

 4 

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		SrO	-0.007			0
				1.893			1.848
		MnO 2	0.119			-0.046
				1.852			1.897
		LaO	0.243			0
				1.852			1.897
		MnO 2	0.366			0.046
				1.893			1.848
		SrO	0.493			0
				1.894			1.848
		MnO 2	0.619			-0.046
				1.852			1.897
		LaO	0.743			0
				1.852			1.897
		MnO 2	0.866			0.045
				1.893			1.848
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )	
	SrO						0.623
	MnO 2	3.745	-0.041 3.745 -0.041	3.38	2.353 0.674	-0.885
	LaO						1.148
	MnO 2	3.745	-0.041 3.745 -0.041	-3.38	2.353 -0.674	-0.885
	SrO						0.623
	MnO 2	3.745	-0.041 3.745 -0.041	3.38	2.353 0.674	-0.885
	LaO						1.149
	MnO 2	3.745	-0.041 3.745 -0.041	-3.38	2.353 -0.674	-0.885

[START_REF] Tokura | Colossal magnetoresistive manganites[END_REF] 

Table summarizing the structural properties of A-type antiferromagnetic

[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]

2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 14.980 Å.

Table 4 .

 4 [START_REF] Dunaevskii | Magnetic phase diagrams of manganites in the electron doping region[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 14.980 Å.

	↑↑↓↓ and ↑↓↓↑ Orderings	
	We study also the two other magnetic orderings: "↑↑↓↓" and "↑↓↓↑". The results are given in
	tables 4.32, 4.33, 4.34, 4.35. The "uudd" state is again the intermediate phase between the
	A-type antiferromagnetic and ferromagnetic cases. The structural and magnetic properties of
	these configurations are qualitatively the same with the ones obtained for a = 3.88 Å.
		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0
		1.899	1.852
	MnO 2	0.126	-0.047
		1.857	1.904
	LaO	0.250	0
		1.857	1.904
	MnO 2	0.374	0.047
		1.899	1.8530
	SrO	0.500	0
		1.900	1.853
	MnO 2	0.626	-0.047
		1.857	1.904
	LaO	0.750	0
		1.857	1.904
	MnO 2	0.874	0.047
		1.899	1.852

Table 4 .

 4 

[START_REF] Tokura | Giant magnetotransport phenomena in filling-controlled kondo lattice system: La1-xsrxmno3[END_REF] 

Table summarizing the structural properties of "↑↑↓↓" ordered [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uudd = 15.027 Å.

Table 4 .

 4 [START_REF] Farrel | X-ray diffractometry of low-temperature phase transformations in strontium titanate[END_REF] Table summarizing the structural and magnetic properties of "↑↑↓↓" ordered[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uudd = 15.027 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 [START_REF] Radaelli | Structural phase diagram of perovskite A 0.7 A ′ 0.3 MnO 3 (a= la, pr; a'= ca, sr, ba): A new imma allotype[END_REF] Table summarizing the structural properties of "↑↓↓↑" ordered [(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ] 2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uddu = 15.063 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )	
	SrO						0.599
	MnO 2	3.766	-0.036 3.765 -0.036	3.414	1.899 0.687	-0.871
	LaO						1.14
	MnO 2	3.766	-0.036 3.766 -0.036	-3.414	1.899 -0.687	-0.869
	SrO						0.599
	MnO 2	3.766	-0.036 3.766 -0.036	-3.414	1.899 -0.687	-0.869
	LaO						1.14
	MnO 2	3.766	-0.036 3.766 -0.036	3.414	1.899 0.687	-0.869

Table 4 .

 4 [START_REF] Hwang | Lattice effects on the magnetoresistance in doped lamno 3[END_REF] Table summarizing the structural and magnetic properties of "↑↓↓↑" ordered[(LaMnO 3 ) 1 -(SrMnO 3 ) 1 ]2 superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uddu = 15.063 Å.

Table 4 .

 4 [START_REF] Mahesh | Effect of the internal pressure due to the a-site cations on the giant magnetoresistance and related properties of doped rare earth manganates, ln1-xaxmno3 (ln = la, nd, gd, y; a = ca, sr, ba, pb)[END_REF] Table reporting the d Mn-Mn values for strain-free and a = 3.88 Å for ferromagnetic, A-type antiferromagnetic, "↑↑↓↓","↑↓↓↑", cases. First line is visualized in red to point out it it is the repetition of the fourth MnO 2 plane due to periodicity.

		739	3.71	3.772	3.71	3.717	3.748
	MnO 2 ↑	↑	↑	↑	↑	↑	
	LaO	3.838	3.812	3.856	3.81	3.827	3.819
	MnO 2 ↑	↓	↑	↓	↑	↓	
	SrO	3.737	3.71	3.772	3.71	3.717	3.748
	MnO 2 ↑	↑	↑	↑	↓	↓	
	LaO	3.839	3.812	3.856	3.81	3.828	3.819
	MnO 2 ↑	↓	↑	↓	↓	↑	

table 4 .

 4 [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF] we give the Mn-Mn distances for the superlattice within imposed a = 3.905 Å. Again, we see the dimerization in the distances.

			d Mn-Mn (Å)	
		FM	A-AFM	↑↑↓↓	↑↓↓↑
	MnO 2 ↑		↓	↓	↑
	SrO	3.752	3.696	3.704	3.736
	MnO 2 ↑		↑	↑	↑
	LaO	3.824	3.794	3.808	3.796
	MnO 2 ↑		↓	↑	↓
	SrO	3.752	3.696	3.706	3.736
	MnO 2 ↑		↑	↓	↓
	LaO	3.824	3.794	3.808	3.795
	MnO 2 ↑		↓	↓	↑

Table 4 .

 4 [START_REF] Lide | Cation disorder and size effects in magnetoresistive manganese oxide perovskites[END_REF] Table reporting the d Mn-Mn values for a = 3.905 Å for ferromagnetic, A-type antiferromagnetic, "↑↑↓↓","↑↓↓↑", cases. First line is visualized in red to point out it it is the repetition of the fourth MnO 2 plane due to periodicity.

Table 4 .

 4 .38, 4.39, we report the structural and magnetic results of ferromagnetic superlattice. The a lattice parameter is optimized at a FM = 3.828 Å. The c lattice parameter is optimized at c FM = 15.566 Å. The in-plane lattice parameter (a FM = 3.828 Å) is a bit smaller than the one obtained for strain-free ferromagnetic four layers[(LMO) 1 -(SMO) 1 ] 2 superlattice (a FM = 3.836 Å).The optimized c lattice parameter (c FM = 15.566 Å) is greater than the one obtained for strain-free ferromagnetic four layers [(LMO) 1 -(SMO) 1 ] 2 superlattice (c FM = 15.152 Å) and greater than twice of the c lattice parameter of of the strain-free ferromagnetic two-layers ferromagnetic [(LMO) 1 -(SMO) 1 ] 1 superlattice (2 × c FM = 2 × 7.714 = 15.428 Å). One can see in table 4.38 that the interplane distance and d Mn-O values are quite different than the previous systems because of the cation ordering. However, the average LaO planes are still closer to the average MnO 2 planes than the average SrO planes. 38 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice in a strain-free environment. The a lattice parameter is optimized at a FM = 3.828 Å. The c lattice parameter is optimized at c FM = 15.566 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.000	0.095
		1.951	2.044
	MnO 2	0.125	0.000
		1.949	2.044
	SrO	0.250	-0.094
		2.002	1.815
	MnO 2	0.379	-0.093
		1.895	2.038
	LaO	0.501	-0.050
		1.937	1.886
	MnO 2	0.618	0.000
		1.937	1.887
	LaO	0.745	0.050
		1.895	2.037
	MnO 2	0.871	0.092
		2.000	1.814

Table 4 .

 4 39 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 )

	y 2 η z 2	total e g charge (|e|)

2 -(SrMnO 3 ) 2 ] superlattice in a strain-free environment. The a lattice parameter is optimized at a FM = 3.828 Å. The c lattice parameter is optimized at c FM = 15.566 Å.

Table 4 .

 4 3 ) 2 -(SrMnO 3 ) 2 ]superlattice in the tables 4.40 and 4.41.The in-plane lattice parameter is optimized at a A-AFM = 3.878 Å. The c lattice parameter is optimized as c A-AFM = 15.064 Å. One can see in table4.40 that the average LaO planes are still closer (around 1.833 Å) to the average MnO 2 planes than the average SrO planes (around 1.945 Å) when the MnO 2 plane is in between SrO and LaO but when the MnO 2 plane is sandwiched between only one type of plane then the average SrO planes are closer (1.842 Å) than the average LaO planes (around 1.911 Å). In the table 4.41, we see that all Mn-octahedras are contracted in c direction.[START_REF] Terai | Electronic and magnetic properties of R 0.5 A 0.5 mno 3 compounds (r = Gd, dy, ho, er; a = Sr, ca)[END_REF] Table summarizing the structural properties of A-type antiferromagnetic [(LaMnO 3 )

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	0.003	0.051
		1.842	1.894
	MnO 2	0.125	0.000
		1.842	1.895
	SrO	0.247	-0.052
		1.945	1.819
	MnO 2	0.376	-0.074
		1.833	1.945
	LaO	0.498	-0.038
		1.912	1.875
	MnO 2	0.625	0.000
		1.911	1.874
	LaO	0.745	0.037
		1.833	1.943
	MnO 2	0.874	0.073
		1.944	1.820

Consequently, d x 2 -y 2 orbital is occupied more than d z 2 in all layers. The Mn-octahedras between SrO and LaO planes have the same Jahn-Teller distortion (-0.030) and e g occupancy 2 -(SrMnO 3 ) 2 ] superlattice in a strain-free environment. The a lattice parameter is optimized at a A-AFM = 3.878 Å. The c lattice parameter is optimized at c A-AFM = 15.064 Å.

Table 4 .

 4 In tables 4.42 and 4.43, we report the results for ferromagnetic[(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ]superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized as c FM = 15.333 LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice). The average LaO planes are still closer (around 1.864 Å) to the average MnO 2 planes than the average SrO planes (around 1.983 Å) when the MnO 2 plane is in between SrO and LaO but when the MnO 2 plane is sandwiched between only one type of plane then the average SrO planes are closer (1.894 Å) than the average LaO planes (around 1.926 Å). In the table 4.43, one can see that the

	y 2 η z 2	total e g charge (|e|)

[START_REF] Yusuf | Magnetic and electrical properties of (la 1-x dy x ) 0.7 ca 0.3 mno 3[END_REF] 

Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice in a strain-free environment. The a lattice parameter is optimized at a A-AFM = 3.878 Å. The c lattice parameter is optimized at c A-AFM = 15.064 Å.

4.4.2 Results with a

STO = 3.88 Å Now we take [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ]

superlattice deposited on STO substrate where a STO = 3.88 Å. We studied FM, A-AFM, "↑↑↓↓" and "↑↓↓↑" magnetic configurations in this superlattice. We found the A-type antiferromagnetic ordering as the lowest energy quite close to ferromagnetic ordering (E A-AFM -E FM ≃ -38 meV (-5 meV), E A-AFM -E uudd ≃ -145 meV (-18 meV), E A-AFM -E uddu ≃ -145 meV (-18 meV) for whole superlattice (per unit cell)). Å; this value is smaller than the c lattice parameter optimized for the one of strain-free ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice (c FM = 15.566 for the strain-free ferromagnetic [(

Table 4 .

 4 42 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 )

2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 15.333 Å.

Table 4 .

 4 43 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice in a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 15.333 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	SrO							0.605
	MnO 2	3.926	0.012 3.651 -0.059	3.464	0.646 0.721	-0.882
	SrO							0.605
	MnO 2	3.822	-0.015 3.870 -0.003	3.423	1.114 0.704	-0.839
	LaO							1.105
	MnO 2	3.763	-0.030 3.942	0.016	3.452	1.615 0.714	-0.861
	LaO							1.105
	MnO 2	3.822	-0.015 3.871 -0.002	3.424	1.114 0.704	-0.841

3 ) 2 -(SrMnO 3 ) 2 superlattice is given in the tables 4.44 and 4.45. The in-plane lattice parameter is imposed at a A-AFM = 3.88 Å. The c lattice parameter is optimized as c A-AFM = 15.064 Å. This is exactly same value that we get for strain-free A-type antiferromagnetic (LaMnO 3 ) 2 -(SrMnO 3 ) 2 superlattice. The average LaO planes are still closer (around 1.833 Å) to the average MnO 2 planes than the average SrO planes (around 1.944 Å) when the MnO 2 plane is in between SrO and LaO but when the MnO 2 plane is sandwiched between only one type of plane then the average SrO planes are closer (1.843 Å) than the average LaO planes (around 1.911 Å). This result is almost the same as the strain-free A-type antiferromagnetic ordering result. As one can see in the table

4

.45, all Mn-octahedras are contracted in c direction when the spins are aligned antiparallel in ⃗ c direction. Consequently, d x 2 -y 2 orbital is occupied more than d z 2 in all layers.

Table 4 .

 4 

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		SrO	-0.004				0.052
					1.843			1.895
		MnO 2	0.119				0
					1.843			1.894
		SrO	0.241				-0.051
					1.944			1.819
		MnO 2	0.370				-0.073
					1.833			1.944
		LaO	0.492				-0.037
					1.911			1.874
		MnO 2	0.619				0
					1.912			1.874
		LaO	0.746				0.037
					1.833			1.944
		MnO 2	0.867				0.073
					1.945			1.819
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	SrO							0.634
	MnO 2	3.789	-0.024 3.583 -0.076	3.287	1.878 0.613	-0.872
	SrO							0.635
	MnO 2	3.763	-0.030 3.790 -0.023	-3.366	2.394 -0.672	-0.819
	LaO							1.121
	MnO 2	3.748	-0.034 3.898	0.005	3.452	2.353 0.721	-0.896
	LaO							1.121
	MnO 2	3.763	-0.030 3.793 -0.023	-3.366	2.394 -0.672	-0.873

2 -y 2 orbital is more occupied than d z 2 in all layers. 44 Table summarizing the structural properties of A-type antiferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 15.064 Å.

Table 4 .

 4 [START_REF] Poeppelmeier | Camno2.5 and ca2mno3.5: New oxygen-defect perovskite-type oxides[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c

Table 4 .

 4 

	47, 4.47 for "uudd" and in

[START_REF] Freyria Fava | A quantum mechanical investigation of the electronic and magnetic properties of perovskite[END_REF] 

Table summarizing the structural properties of "↑↑↓↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudd = 15.141 Å.

Table 4 .

 4 [START_REF] Rørmark | Enthalpies of oxidation of camno3-δ , ca2mno4-δ and srmno3-δ deduced redox properties[END_REF] Table summarizing the structural and magnetic properties of "↑↑↓↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudd = 15.141 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	SrO	-0.004	0.056
		1.862	1.920
	MnO 2	0.119	0.002
		1.852	1.906
	SrO	0.241	-0.058
		1.951	1.818
	MnO 2	0.370	-0.076
		1.842	1.954
	LaO	0.492	-0.036
		1.917	1.883
	MnO 2	0.618	0.002
		1.916	1.875
	LaO	0.745	0.040
		1.839	1.954
	MnO 2	0.866	0.074
		1.963	1.833

Table 4 .

 4 

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	SrO							0.615
	MnO 2	3.826	-0.014 3.602 -0.072	3.347	1.419 0.646	-0.869
	LaO							0.625
	MnO 2	3.773	-0.028 3.813 -0.017	-3.355	2.108 0.646	-0.856
	SrO							1.115
	MnO 2	3.757	-0.032 3.910	0.008	-3.461	2.094 -0.724	-0.888
	LaO							1.114
	MnO 2	3.782	-0.024 3.818 -0.016	3.404	1.775 0.691	-0.857

[START_REF] Rodríguez-Carvajal | Neutron-diffraction study of the jahn-teller transition in stoichiometric lamno 3[END_REF] 

Table summarizing the structural properties of "↑↓↓↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddu = 15.143 Å.

Table 4 .

 4 [START_REF] Syono | Structure relations of hexagonal perovskite-like compounds abx3 at high pressure[END_REF] Table summarizing the structural and magnetic properties of "↑↓↓↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 2 ] superlattice on a SrTiO 3 substrate. The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddu = 15.143 Å.

Table 4 .

 4 50Table reporting the d Mn-Mn

		.858	3.714	3.794	3.714	3.725	3.753
	MnO 2 ↑	↑	↑	↑	↑	↑	
	SrO	3.859	3.714	3.794	3.713	3.753	3.724
	MnO 2 ↑	↓	↑	↓	↑	↓	
	LaO	3.924	3.82	3.872	3.818	3.827	3.837
	MnO 2 ↑	↑	↑	↑	↓	↓	
	LaO	3.924	3.817	3.872	3.818	3.836	3.829
	MnO 2 ↑	↓	↑	↓	↓	↑	

Table 4 .

 4 , we notice that the Mn-octahedra has different thickness in[START_REF] Negas | Phase equilibria and structural relations in the system BaMnO 3-x[END_REF] Table summarizing the structural properties of ferromagnetic [(LaMnO 3 )

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	-0.002	0.067
		1.935	2.071
	MnO 2	0.163	0.069
		2.030	1.995
	SrO	0.337	-0.034
		1.952	1.852
	MnO 2	0.504	-0.066
		1.888	1.982
	LaO	0.666	-0.002
		1.935	1.912
	MnO 2	0.832	0.000
		1.939	1.868

2 -(SrMnO 3 ) 1 ] 1 superlattice in a strain-free environment. The a lattice parameter is optimized at a FM = 3.848 Å. The c lattice parameter is optimized at c FM = 11.679 Å.

Table 4 .

 4 [START_REF] Negas | The system SrMnO 3-x[END_REF] Table summarizing the structural and magnetic properties of ferromagnetic[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ]1 superlattice in a strain-free environment. The a lattice parameter is optimized at a FM = 3.848 Å. The c lattice parameter is optimized at c FM = 11.679 Å.

	y 2 η z 2	total e g charge (|e|)

4.5.2 Results with a STO = 3.88 Å Now we look at the [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice deposited on STO substrate.

Table 4 .

 4 .53, we report the structural properties of the optimized geometry of [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice with imposed a = 3.88 Åwhen spins are ferromagnetically aligned. The c lattice parameter is optimized at c FM = 11.555 Å. When we check the interplane distances for two layers where MnO 2 planes are sandwiched between LaO and SrO planes, we again see that the average LaO planes are closer to the average MnO 2 planes (around 1.883Å) than the average SrO planes (around 1.963 Å). When MnO 2 plane is only sandwiched between two LaO planes the interplane distance between the average LaO and MnO 2 planes is 1.930 Å.In table 4.54, we report the magnetic and related structural properties. The results are very different than the ones of the strain-free [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 ferromagnetic superlattice. There is no symmetry breaking in this case. The two Mn-octahedra that are between LaO and SrO planes have the equivalent JTd (0.001 and 0.002) and c ′ /a -1 values(- 53 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 11.555 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		LaO	-0.218				0.037
					1.883			1.983
		MnO 2	-0.055				0.063
					1.963			1.899
		SrO	0.115				0.001
					1.965			1.904
		MnO 2	0.285				-0.063
					1.884			1.986
		LaO	0.448				-0.039
					1.930			1.891
		MnO 2	0.615				0.000
					1.930			1.892
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.089
	MnO 2	3.882	0.001 3.810 -0.018	3.623	0.924 0.839	-0.919
	SrO							0.555
	MnO 2	3.890	0.002 3.810 -0.018	3.636	0.903 0.847	-0.924
	LaO							1.09
	MnO 2	3.783	-0.025 3.936	0.014	3.552	1.415 0.785	-0.893

0.018) with each other. In both of the Mn-octahedra, the e g occupancy ratio shows that d x 2 -y 2 and d z 2 occupied more or less equivalently (0.924 and 0.903). The Mn-octahedra between two LaO planes is contracted the most (JTd: -0.025) with largest e g occupancy ratio (1.415). In figure

4

.16, we give the density of states of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1

Table 4 .

 4 [START_REF] Battle | The structural and magnetic properties of srmno3: A reinvestigation[END_REF] Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 11.555 Å.superlattice with imposed a = 3.88 Å. One can see that in the 1st and 2nd manganese (between the planes LaO and SrO), d x 2 -y 2 and d z 2 are equivalently stabilized. In the 3rd Mn (between two LaO planes), d x 2 -y 2 orbital preferentially occupied.

Table 4 .

 4 030) with a dominant d x 2 -y 2 occupancy.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
		LaO	-0.226				0.072
					1.924			2.068
		MnO 2	-0.100				0.072
					2.036			2.010
		SrO	0.075				-0.046
					1.922			1.813
		MnO 2	0.241				-0.064
					1.851			1.932
		LaO	0.401				-0.017
					1.923			1.910
		MnO 2	0.567				0.005
					1.929			1.853
		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.101
	MnO 2	4.078	0.051 3.842 -0.010	3.833	0.438 1.004	-0.999
	SrO							0.532
	MnO 2	3.745	-0.035 3.802 -0.020	-3.281	2.764 -0.591	-0.851
	LaO							1.097
	MnO 2	3.763	-0.030 3.936	0.016	3.493	1.596 0.745	-0.878

[START_REF] Pavarini | Quantum materials: Experiments and theory[END_REF] 

Table summarizing the structural properties of A-type ferromagnetic

[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ]

1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 11.585 Å.

Table 4 .

 4 56 Table summarizing the structural and magnetic properties of A-type ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 11.585 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.000	0.038
		1.875	1.974
	MnO 2	0.163	0.062
		1.957	1.897
	SrO	0.333	-0.002
		1.958	1.895
	MnO 2	0.503	-0.062
		1.873	1.973
	LaO	0.666	-0.038
		1.922	1.885
	MnO 2	0.833	0.000
		1.922	1.884

Table 4 .

 4 [START_REF] Dovesi | CRYSTAL09 User's Manual[END_REF] Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 11.508 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.1
	MnO 2	3.871	-0.009 3.794 -0.028	3.641	0.938 0.849	-0.932
	SrO							0.563
	MnO 2	3.867	-0.010 3.794 -0.028	3.634	0.949 0.844	-0.927
	LaO							1.1
	MnO 2	3.769	-0.035 3.920	0.004	3.559	1.494 0.788	-0.903

Table 4 .

 4 [START_REF] Jahn | Stability of polyatomic molecules in degenerate electronic states. i. orbital degeneracy[END_REF] Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c FM = 11.508 Å. distances and d Mn-O values (for example, the interplane distance between the average LaO and MnO 2 planes are 1.856 and 1.832 Å whereas this value was around 1.875 Å in ferromagnetic ordering). The magnetic and related strucutral results are given in table 4.60.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.001	0.034
		1.856	1.949
	MnO 2	0.164	0.059
		1.957	1.916
	SrO	0.336	-0.017
		1.910	1.834
	MnO 2	0.503	-0.058
		1.832	1.906
	LaO	0.663	-0.016
		1.933	1.917
	MnO 2	0.833	0.000
		1.926	1.892

Table 4 .

 4 59 Table summarizing the structural properties of A-type antiferromagnetic

Table 4 .

 4 [START_REF] Anderson | Antiferromagnetism. theory of superexchange interaction[END_REF] Table summarizing the structural and magnetic properties of A-type antiferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c A-AFM = 11.414 Å.

	y 2 η z 2	total e g charge (|e|)

Table 4 .

 4 [START_REF] Anderson | Considerations on double exchange[END_REF] Table summarizing the structural properties of "↑↑↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uud = 11.452 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
					(µ B )	
	LaO						1.11
	MnO 2	3.868	-0.009 3.776 -0.033	3.652	1.000 0.862	-0.946
	SrO						0.569
	MnO 2	3.871	-0.009 3.776 -0.033	3.656	0.989 0.865	-0.946
	LaO						1.11
	MnO 2	3.712	-0.049 3.900 -0.001	-3.399	3.194 -0.671	-0.899

Table 4 .

 4 [START_REF] De Gennes | Effects of double exchange in magnetic crystals[END_REF] Table summarizing the structural and magnetic properties of "↑↑↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c uud = 11.452 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.003	0.016
		1.831	1.906
	MnO 2	0.164	0.059
		1.911	1.835
	SrO	0.331	0.019
		1.958	1.916
	MnO 2	0.503	-0.059
		1.855	1.948
	LaO	0.665	-0.034
		1.925	1.891
	MnO 2	0.834	0.000
		1.933	1.917

Table 4 .

 4 63 Table summarizing the structural properties of "↑↓↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c udd = 11.413 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.105
	MnO 2	3.740	-0.042 3.742 -0.042	3.372	2.940 0.658	-0.905
	SrO							0.575
	MnO 2	3.865	-0.010 3.762 -0.037	-3.66	1.007 1.004	-0.957
	LaO							1.118
	MnO 2	3.808	-0.025 3.908	0.001	-3.632	1.191 -0.848	-0.937

Table 4 .

 4 [START_REF] Chen | Commensurate to incommensurate charge ordering and its real-space images in la 0.5 ca 0.5 mno 3[END_REF] Table summarizing the structural and magnetic properties of "↑↓↓" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c udd = 11.413 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.004	0.016
		1.831	1.907
	MnO 2	0.164	0.059
		1.912	1.834
	SrO	0.331	0.019
		1.959	1.918
	MnO 2	0.503	-0.059
		1.857	1.950
	LaO	0.666	-0.034
		1.925	1.891
	MnO 2	0.834	0.000
		1.933	1.916

Table 4 .

 4 [START_REF] Tokura | Colossal magnetoresistive manganites[END_REF] Table summarizing the structuralproperties of "↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c duu = 11.416 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.106
	MnO 2	3.741	-0.042 3.743 -0.041	-3.371 2.982 -0.657	-0.904
	SrO							0.574
	MnO 2	3.868	-0.009 3.764 -0.036	3.664	0.984 0.877	-0.958
	LaO							1.118
	MnO 2	3.807	-0.025 3.909	0.001	3.627	1.206 0.845	-0.934

Table 4 .

 4 66 Table summarizing the structural and magnetic properties of "↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c duu = 11.416 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	-0.001	0.047
		1.872	1.978
	MnO 2	0.163	0.060
		1.953	1.893
	SrO	0.333	-0.001
		1.953	1.892
	MnO 2	0.504	-0.061
		1.871	1.977
	LaO	0.667	-0.047
		1.902	1.856
	MnO 2	0.833	0.000
		1.903	1.857

Table 4 .

 4 [START_REF] Bibes | Nanoscale multiphase separation at la 2/3 ca 1/3 mno 3 /srtio 3 interfaces[END_REF] Table summarizing the structural properties of "↓↓↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c ddu = 11.453 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )		
	LaO								1.111
	MnO 2	3.871	-0.009 3.781 -0.032	-3.656	0.991 -0.864	-0.946
	SrO								0.568
	MnO 2	3.869	-0.009 3.782 -0.032	-3.653	0.995 -0.862	-0.944
	LaO								1.111
	MnO 2	3.713	-0.049 3.891	0.004	3.399	3.214	0.67	-0.899

Table 4 .

 4 [START_REF] Aarts | Disorder effects in epitaxial thin films of (la,ca)mno3[END_REF] Table summarizing the structural and magnetic properties of "↓↓↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.905 Å. The c lattice parameter is optimized at c ddu = 11.453 Å.

Table 4 .

 4 [START_REF] Ziese | Strain-induced orbital ordering in thin la 0.7 ca 0.3 mno 3 films on srtio 3[END_REF] Table reporting the d Mn-Mn values for strain free and a = 3.88 Å for ferromagnetic and A-type antiferromagnetic cases. First line is visualized in red to point out it it is the repetition of the third MnO 2 plane due to periodicity. imposed a = 3.905 Å. One can see that Mn-Mn distances are symmetric for ferromagnetic, "↑↑↓" and "↓↓↑" where they are not for the rest of the orderings.

		939	3.875	3.921
	MnO 2 ↑	↑	↑	
	SrO	3.847	3.803	3.823
	MnO 2 ↑	↑	↓	
	LaO	3.894	3.877	3.842
	MnO 2 ↑	↑	↑	

Table 4 .

 4 70 Table reporting the d Mn-Mn

Table 4 .

 4 where the number of layers are odd, even though the values of interplane distances for first half of [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice are consistent, for the second half they do not exactly match.In table 4.74, we report the magnetic and related structural properties. 71 Table summarizing the structural properties of ferromagnetic [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c FM = 23.120 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.000	0.037
		1.881	1.980
	MnO 2	0.081	0.063
		1.965	1.902
	SrO	0.166	0.000
		1.964	1.901
	MnO 2	0.251	-0.062
		1.881	1.980
	LaO	0.333	-0.037
		1.933	1.896
	MnO 2	0.416	0.000
		1.933	1.896
	LaO	0.500	0.037
		1.882	1.983
	MnO 2	0.581	0.063
		1.967	1.905
	SrO	0.666	-0.001
		1.967	1.903
	MnO 2	0.751	-0.063
		1.881	1.982
	LaO	0.833	-0.037
		1.933	1.896
	MnO 2	0.916	0.000
		1.932	1.896

Table 4 .

 4 72 Table summarizing the structural and magnetic properties of ferromagnetic [(LaMnO 3

Table 4 .

 4 [START_REF] Huijben | Critical thickness and orbital ordering in ultrathin la 0.7 sr 0.3 mno 3 films[END_REF] Table summarizing the structural properties of A-type ferromagnetic[(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ]2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c A-AFM = 22.999 Å.

	2 planes is around

Table 4 .

 4 [START_REF] Mahesh | Giant magnetoresistance in bulk samples of la 1-x a x mno 3 (a = sr or ca)[END_REF] Table summarizing the structural and magnetic properties of A-type ferromagnetic

Table 4 .

 4 [START_REF] Sadoc | Large increase of the curie temperature by orbital ordering control[END_REF] Table summarizing the structural properties of "↑↓↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddduu = 23.084 Å.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.003	-0.001
		1.847	1.905
	MnO 2	0.083	0.059
		1.941	1.882
	SrO	0.167	0.000
		1.941	1.883
	MnO 2	0.251	-0.058
		1.847	1.905
	LaO	0.331	0.000
		1.983	1.984
	MnO 2	0.417	0.000
		1.983	1.984
	LaO	0.503	-0.002
		1.848	1.905
	MnO 2	0.583	0.059
		1.941	1.882
	SrO	0.667	0.000
		1.941	1.882
	MnO 2	0.751	-0.058
		1.847	1.905
	LaO	0.831	0.001
		1.983	1.984
	MnO 2	0.917	0.000
		1.983	1.984

Table 4 .

 4 [START_REF] Schiffer | Low temperature magnetoresistance and the magnetic phase diagram of la 1-x ca x mno 3[END_REF] Table summarizing the structural and magnetic properties of "↑↓↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uddduu = 23.084 Å.In table4.78, we report the magnetic and related structural properties. The 1st Mnoctahedra is elongated (JTd: 0.023) with a dominant d z 2 occupancy whereas all the rest of the Mn-octahedra are contracted with d x 2 -y 2 occupancy.

		zaverage plane interplane distances (Å) rumpling (Å) d Mn-O (Å)
	LaO	0.000	0.050
		1.895	2.008
	MnO 2	0.082	0.063
		1.998	1.962
	SrO	0.169	-0.027
		1.945	1.855
	MnO 2	0.253	-0.063
		1.863	1.960
	LaO	0.334	-0.034
		1.940	1.903
	MnO 2	0.418	-0.003
		1.929	1.904
	LaO	0.502	0.028
		1.858	1.946
	MnO 2	0.583	0.060
		1.947	1.889
	SrO	0.667	-0.001
		1.929	1.870
	MnO 2	0.751	-0.058
		1.861	1.925
	LaO	0.832	-0.013
		1.932	1.930
	MnO 2	0.916	0.005
		1.943	1.888

Table 4 .

 4 [START_REF] Urushibara | Insulatormetal transition and giant magnetoresistance in la 1-x sr x mno 3[END_REF] Table summarizing the structural properties of "↑↑↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudduu = 23.039 Å.

		d OO (Å)	JTd	c ′ (Å) c ′ /a -1 magnetic moment	η x 2 -y 2 η z 2	total e g charge (|e|)
						(µ B )	
	LaO							1.093
	MnO 2	3.970	0.023 3.815 -0.017	3.755	0.679 0.935	-0.966
	SrO							0.551
	MnO 2	3.815	-0.017 3.801 -0.020	3.497	1.379 0.747	-0.895
	LaO							1.082
	MnO 2	3.807	-0.019 3.931	0.013	-3.568	1.251 -0.799	-0.906
	LaO							1.107
	MnO 2	3.834	-0.012 3.776 -0.027	-3.55	1.243 -0.794	-0.924
	SrO							0.563
	MnO 2	3.795	-0.022 3.772 -0.028	3.465	1.604 0.729	-0.894
	LaO							1.097
	MnO 2	3.818	-0.016 3.945	0.017	3.608	1.142 0.827	-0.91

Table 4 .

 4 [START_REF] Ju | Giant magnetoresistance in la 1-x sr x mno z films near room temperature[END_REF] Table summarizing the structural and magnetic properties of "↑↑↓↓↑↑" ordered [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 2 superlattice on a SrTiO 3 . The a lattice parameter is fixed at a = 3.88 Å. The c lattice parameter is optimized at c uudduu = 23.039 Å.

Table 4 .

 4 [START_REF] Lepetit | Interface effects in perovskite thin films[END_REF] Table reporting the d Mn-Mn values for strain free and a = 3.88 Å for ferromagnetic, A-type antiferromagnetic, "↑↓↓↓↑↑", "↑↑↓↓↑↑" cases. First line is visualized in red to point out it it is the repetition of the third MnO 2 plane due to periodicity.

			d Mn-Mn (Å)	
		FM	A-FM	↑↓↓↓↑↑	↑↑↓↓↑↑
	MnO 2 ↑	↓		↑	↑
	LaO	3.876	3.95	3.889	3.896
	MnO 2 ↑	↑		↑	↑
	SrO	3.803	3.844	3.765	3.817
	MnO 2 ↑	↓		↓	↑
	LaO	3.876	3.827	3.889	3.863
	MnO 2 ↑	↑		↓	↓
	LaO	3.879	3.824	3.889	3.85
	MnO 2 ↑	↓		↓	↓
	SrO	3.808	3.737	3.764	3.759
	MnO 2 ↑	↑		↑	↑
	LaO	3.878	3.817	3.889	3.855
	MnO 2 ↑	↓		↑	↑

both the [LaMnO 3 ] 1 -[SrMnO 3 ] 1 and [LaMnO 3 ] 2 -[SrMnO 3 ] 2 superlattices are in a A-type antiferromagnetic state, whereas the [LaMnO 3 ] 2 -[SrMnO 3 ] 1 superlattice is ferromagnetic. These results are in full agreement with the experimental findings (B. Mercey private communication).

  3 Ba 1/3 MnO 3 ] 3 superlattice. The difference of this superlattice from [BaTiO 3 ] 3 [La 2/3 Sr 1/3 MnO 3 ] 3 is that both interfaces are equivalent i.e. BaO -MnO 2 as one can see in figure5.1 b. Let us note that there is only one cation order for [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 superlattice that make both interfaces equivalent, we thus focused our studies on this specific order. As we first focused on the AFD motions the symmetry group was kept to be as P4mm. However, in order to suppress the polarization in BaTiO 3 and study its effect we also considered the P4/mmm space group of the [BaTiO 3 ] 3 [La 2/3 Ba 1/3 MnO 3 ] 3 superlattice. In the P4/mmm space group, there exists a mirror symmetry planes in the TiO 2 and MnO 2 central mono-layers of BaTiO 3 and La 2/3 Ba 1/3 MnO 3 . Let us first note that the stabilization energy brought by the Mn-octahedra rotations (in P4mm space group) is around 421 meV for the total system.

Table 6 .

 6 1 Space Groups, lattice parameters and lattice mismatch of the different alkaline-earth simple oxides with the SrTiO 3 substrate[START_REF] Nelmes | Thermal motion in srtio3 at room temperature: Anharmonic or disordered?[END_REF][START_REF] Megaw | Crystal structure of double oxides of the perovskite type[END_REF] and LSMO bulk[START_REF] Pinsard | Structural phase diagram of la 1-x sr x mno 3 for low sr doping[END_REF][START_REF] Radaelli | Structural effects on the magnetic and transport properties of perovskite A 1-x A ′ x mno 3 (x = 0.25, 0.30)[END_REF].

		Space		Mismatch (%)
	Compound Group	a (Å)	STO	LSMO
				substrate	bulk
	BaO	Fm 3m 5.5391 [135]	0.3	0.7
	SrO	Fm 3m 5.1615 [138]	-6.5	-6.2
	CaO	Fm 3m 4.7990 [139]	-13.1	-12.8
	MgO	Fm 3m 4.214 [140]	-23.7	-23.4

Table 6 .

 6 e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1 JTd µ Mn mono-layer η x 2 -y 2 2 Mülliken spin population of the Mn e g orbitals, c/a ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the ferromagnetic [La 2/3 Sr 1/3MnO 3 ] 3 [BaO] 6 ground state of one typical cation order. LSMO e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1

			η z 2	
	1	0.361 0.266	1.357	-0.021 -0.002 3.343
	2	0.368 0.552	0.667	-0.001 0.032 3.732
	3	0.597 0.249	2.398	-0.069 -0.012 3.642
					JTd	µ Mn
	mono-layer η x 2 -y 2	η z 2	
	1	-0.394 -0.166	2.373	-0.024 -0.014 3.26
	2	0.256 0.778	0.329	-0.013 0.085 3.875
	3	-0.502 -0.182	2.758	-0.050 -0.026 3.43

Table 6 .

 6 3 Mülliken spin population of the Mn e g orbitals, c/a ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the A-type antiferromagnetic [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 6 ground state of one typical cation order.

Table 6 .

 6 LSMOe g orb. spin pop. η x 2 -y 2 /η x 2 c/a -1 JTd µ Mn mono-layer η x 2 -y 2 4 Mülliken spin population of the Mn e g orbitals, c/a ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 2 ground state of one typical cation order.

		η z 2		
	1	0.395 0.373	1.050	-0.026 0.022 3.536
	2	0.375 0.426	0.892	-0.022 -0.009 3.573
	3	0.57 0.27	2.024	-0.057 -0.011 3.627

Table 6 .

 6 5 Number of spin-up electrons, i.e. net total magnetization, per Mn atom for each magnetic configuration of [La 2/3 Sr 1/3 MnO 3 ] 3 [BaO] 2 superlattice. independent of the out-of-plane spin ordering (see tables 6.6, 6.7 and 6.8 for example). LSMO e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1

	JTd	µ Mn

Table 6 .

 6 6 Mülliken spin population of the Mn e g orbitals, c/a -1 ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the ↑↑↓↓↑↑ ordered [La 2/3 Sr 1/3MnO 3 ] 6 [BaO] 2 ground state of one typical cation order. LSMO e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1

	JTd	µ Mn

Table 6 .

 6 7 Mülliken spin population of the Mn e g orbitals, c/a -1 ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the ferromagnetic [La 2/3 Sr 1/3MnO 3 ] 6 [BaO] 2 of one typical cation order. LSMO e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1 JTd µ Mn mono-layer η x 2 -y 2

			η z 2		
	1	-0.492 -0.261	1.885	-0.037 0.008 -3.509
	2	0.494	0.2	2.470	-0.032 -0.038 3.412
	3	-0.426 -0.165	2.933	-0.025 -0.044 -3.364
	4	0.291 0.771	0.377	0.014 0.077 3.912
	5	-0.509 -0.17	2.994	-0.031 -0.040 -3.407
	6	0.552 0.213	2.592	-0.050 -0.021 3.516

Table 6 .

 6 [START_REF] Kwon | Desirable magnetotransport properties in doped mn-oxide-based superlattices[END_REF] Mülliken spin population of the Mn e g orbitals, c/a -1 ratio, JTd (Jahn-Teller distortion) and µ Mn (Mn magnetic moment) in the A-type antiferromagnetic [La 2/3 Sr 1/3 MnO 3 ] 6 [BaO] 2 of one typical cation order.

Table 6 .

 6 [LSMO] n[BaO] p LAMO e g orb. spin pop. η x 2 -y 2 /η z 2 c/a -1 9 Mülliken spin population of the Mn e g orbitals in the [La 2/3 A 1/3 MnO 3 ] 3 [BO] 6 ground state (A=Sr, Ba ; B=Ba, Sr, Mg). The shown example was chosen as the cation ordering associated with the lowest ground state energy.

	JTd	µ Mn
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We used the following the notation to go from function to bra-ket notation: ϕ(⃗ r) = |ϕ(⃗ r)⟩ = ⟨⃗ r|ϕ⟩.

nd order perturbation

The hopping of the one electron is given here schematically. In general, the hopping takes place through the oxygen 2p bridge orbitals in a mixed valence manganite.

4.5.3

Results with a STO = 3.905 Å Now we study the [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice deposited on a substrate where the imposed a lattice parameter is the experimental one: a = 3.905 Å. We computer different magnetic orderings: ferromagnetic, A-type antiferromagnetic, "↑↑↓", "↑↓↓", "↓↑↑" and "↓↓↑" orderings. We have found ferromagnetic ordering as the lowest energy (E A-AFM -E FM = 178 meV (30 meV), E A-AFM -E uud = 4 meV (0.6 meV), E A-AFM -E udd = 2 meV (0.4 meV), E A-AFM -E duu = 1 meV (0.2 meV), E A-AFM -E ddu = 4 meV (0.7 meV) for the whole superlattice (per unit cell)). All other antiferromagnetic orderings are quasi-degenerate.

Ferromagnetic Ordering

In table 4.57, we report the structural properties of the optimized geometry for the [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice with imposed a = 3.905 Åwhen spins are ferromagnetically aligned. The c lattice parameter is optimized at c FM = 11.508 Å. When we check the interplane distances for two layers where MnO 2 planes are sandwiched between LaO and SrO planes, we again see that the average LaO planes are closer to the average MnO 2 planes (around 1.875Å) than the average SrO planes (around 1.957 Å). When MnO 2 plane is only sandwiched between two LaO planes the interplane distance between the average LaO and MnO 2 planes is 1.922 Å.

In table 4.58, we report the magnetic and related structural results of [(LaMnO 3 ) 2 -(SrMnO 3 ) 1 ] 1 superlattice with imposed a = 3.905 Å. The two Mn-octahedra that are between LaO and SrO planes have the equivalent JTd (-0.009 and -0.010) and c ′ /a -1 values (-0.028) with each other. In both of the Mn-octahedra, the e g occupancy ratio shows that d x 2 -y 2 and d z 2 occupied more or less equivalently (0.938 and 0.949). The Mn-octahedra between two LaO planes is contracted the most (JTd: -0.035) with largest e g occupancy ratio (1.494).

A-type antiferromagnetic Ordering

We report the results in table 4