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Abstract

This thesis theoretically studies structural and electronic properties of perovskite manganese
oxide superlattices by means of ab-initio calculations.

Lanthanum manganese oxides, given with the generic formula La1−xAxMnO3 (LAMO)
(A a divalent element), are an important class of perovskite manganese oxides due to their
various exotic properties, such as giant and colossal magnetoresistance effect, rich phase
diagrams with respect to doping, temperature or external fields, and intrinsic large Curie
temperature. These properties can be exploited in many potential technological applications
such as spin valves or spin injectors. Controlling the properties of these materials can be done
through deposition as thin films or as building blocks in superlattices. When x = 1/3, bulk
La1−xAxMnO3 is ferromagnetic and metallic due to the double-exchange mechanism in the
Mn 3d shell. When Mn is in a mixed valence state, the eg orbitals (dx2−y2 and dz2) are partially
occupied, and can delocalize on neighboring Mn atoms only if the latter are ferromagnetically
aligned. In very thin films, since the direction perpendicular to the substrate, c⃗, is only a few
unit cell thick, only in-plane (ab) interactions are important for the thermodynamic properties.
By acting on the LAMO layer geometry, one can thus maximize the dx2−y2 orbital occupancy
and increase the magnetic exchange and related Curie temperature.

Our aim was thus to design new materials with desired 3d orbital order so that to ensure
desired magnetic properties.

In this thesis, we worked on two types of superlattices. The first one was made of two un-
doped antiferromagnetic manganese oxides LaMnO3 and SrMnO3, i.e. [LaMnO3]n/[SrMnO3]m

superlattices. We investigated the magnetic ground state for different n and m values in
order to explain suprising experimental results. The second type of superlattices is composed
of metallic LAMO layers with alternated insulating layers. Indeed, the superlattices with
metal-insulator interfaces have a great potential in spin valves applications. Thus, we first con-
sidered the ferromagnetic-metallic/ferroelectric-insulating [LAMO]3/[BTiO3]3 superlattices
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(A = Sr or Ba, B = Ba or Pb) where the magnetic properties are reduced due to delocalization
of dz2 electrons at the interface from Mn to Ti. In such superlattices, we clarified the role
of the polarization of the ferroelectric layers and the role of the antiferrodistortive motions
in the manganite layers. In order to prevent the delocalization taking place at the interface,
we designed another superlattice with metallic-insulator interface where we replaced the
insulator (BTiO3) with a simple oxide (BO); that is [LAMO]n/[BO]p superlattices (A = Sr
or Ba, B = Ba, Sr or Mg and n = 3 or 6, p = 6 or 2). Within this new superlattice, we
successully managed to promote dx2−y2 orbital occupancies at the interfaces which ensures a
large magnetic moment at the interfaces and an expected large Curie temperature. We also
showed the weak correlation between electrical conductivity and orbital ordering.



Résumé

Au cours de cette thèse, nous avons étudiés théoriquement les propriétés structurelles et
électroniques des super-réseaux d’oxyde de manganèse en structure perovskite au moyen de
calculs ab initio.

Les oxydes de manganèse au lanthane, donnés avec la formule générique La1−xAxMnO3

(LAMO) (A un élément divalent), constituent une classe importante d’oxydes de manganèse
en raison de leurs diverses propriétés, telles que l’effet de magnétorésistance colossale, leur
riche diagramme de phase en fonction du dopage, de la température ou de champs externes,
et leur grande température Curie. Ces propriétés peuvent être exploitées dans de nombreuses
applications technologiques potentielles telles que les valves de spin ou les injecteurs de
spin. Le contrôle des propriétés de ces matériaux peut se faire par dépôt sous forme de
films minces ou comme blocs de construction dans des super-réseaux. Lorsque x = 1/3,
le La1−xAxMnO3 massif est ferromagnétique et métallique grâce au mécanisme de double
échange dans les electrons 3d de Mn. Lorsque Mn est dans un état de valence mixte, les
orbitales eg (dx2−y2 and d2

z ) sont partiellement occupées et peuvent se délocaliser sur les
atomes de Mn voisins, seulement si ceux-ci sont alignés ferromagnétiquement. Dans des
films très minces, puisque la direction perpendiculaire au substrat, c⃗, n’a que quelques
cellules unitaires d’épaisseur, seules les interactions dans le plan (ab) sont importantes pour
les propriétés thermodynamiques. En agissant sur la géométrie de la couche LAMO, on peut
ainsi maximiser l’occupation de l’orbitales dx2−y2 et augmenter l’échange magnétique et la
température Curie associée.

Notre but était donc de concevoir de nouveaux matériaux avec un ordre orbital 3d
spécifique afin d’assurer les propriétés magnétiques souhaitées.

Dans cette thèse, nous avons travaillé sur deux types de super-réseaux. Le premier
était constitué de deux oxydes de manganèse antiferromagnétiques, non dopés, LaMnO3

et SrMnO3, c’est-à-dire des super-réseaux [LaMnO3]n/[SrMnO3]m. Nous avons étudié
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l’état fondamental magnétique pour différentes valeurs n et m afin d’expliquer les résultats
expérimentaux surprenants. Le deuxième type de super-réseaux que nous avons étudiés
est composé de couches métalliques LAMO en alternance avec des couches isolantes. En
effet, les super-réseaux avec des interfaces métal-isolant ont un grand potentiel dans les
applications de valves de spin. Ainsi, nous avons d’abord considéré des super-réseaux entre
composés ferromagnétiques-métalliques et ferroélectriques-isolantes [LAMO]3/[BTiO3]3

((A = Sr ou Ba, B = Ba ou Pb). Dans ces super-réseaux, les propriétés magnétiques sont
malheuresement réduites en raison de la délocalisation d’électrons dz2 à l’interface entre Mn
et Ti. Dans de tels super-réseaux , nous avons clarifié le rôle de la polarisation des couches
ferroélectriques et le rôle des mouvements antiferrodistortifs dans les couches de manganite.
Enfin, de manierè à éviter que la délocalisation ait lieu à l’interface, nous avons conçu un
autre super-réseau avec interface métal-isolant dans lequel nous avons remplacé l’isolant
(BTiO3) par un oxyde simple (BO): [LAMO]n/[BO]p superlattices (A = Sr ou Ba, B = Ba,
Sr ou Mg et n = 3 ou 6, p = 6 ou 2). Dans ces nouveaux super-réseaux, nous avons réussi à
promouvoir les occupations des orbitales dx2−y2 dans les interfaces assurant un fort moment
magnetique à l’interface et a priori une fort temperature de Curie. Nous avons également
montré une faible corrélation entre la conductivité électrique et l’ordre orbitaire.
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Preface

Everything that we have and surrounds our lives is made of something. Everything has a
substance. If we take out the materials from our lives we are naked to this world. Materials
and the way that we used them determined the level of our civilizations through history:
The stone, the iron and the bronze ages. Not only for the practical purposes but also for
the sake of art and aesthetics, humankind gave the greatest importance to the understanding
of materials. For example, Egyptians were the earliest masters of gold beating. They were
using very thin gold leafs between different layers of materials for decoration purposes. In
Victorian era, engineering technologies developed with the use of materials, iron and steel.
Today, what we got used to see in our daily lives like bridges, railways etc. were the creation
of this development. The information age is brought by new advancements in the material
technologies, such as silicon technology or thin-film technology. Thus, controlling the
materials used in today’s technology is of great importance for the scientists and engineers.
Both scientist and engineers study the structures, physical and chemical properties of material
substances.

To begin with, we can give the definition of a matter. Matter is anything that occupies
space and has a mass. There are four states of matter observable in everyday life, i.e.
solid, liquid, gas and plasma but under extreme situations such as low or high pressure or
temperature there exist other states as well such as Bose-Einstein condenstate and quark-
gluon plasma. Condensed matter physics deals with the properties of condensed phases of
matter. The most common condensed phases are solids and liquids. The main approach
of condensed matter physics is to measure material properties by experiments, along with
the development of mathematical models in order to understand the physical behaviour of
the material. Understanding the properties of a material comes naturally with the desire to
control these properties for various purposes. A spotlight of condensed matter physics is
on the transport and magnetic properties of the materials for technological devices, such as
electronics and spintronics. Like our old wise Egyptian ancestors creating new compounds
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by thinly layering different materials, today, material scientists and physicists create novel
artificial thin films to control the transport and magnetic properties of the material.

Thin films deposited on a substrate are widely used in many technological devices. To
begin with examples, we can start with the compound semiconductor based devices. Light
emitting diodes (LED), laser diodes (LD), solar cells and electronic devices, such as high
electron mobility transistors (HEMT) and heterojunction bipolar transistors (HBT) require
the deposition of thin epitaxial layers. These thin layers often have lower defect and impurity
levels as compared to bulk materials. The invention of the first high-Tc superconducting
YBa2Cu3Ox (YBCO) thin films [1] opened a great new interest in the thin film community
and in superconducting microwave devices. Magnetic recording/memory technology is also
one of the most remarkable application of the thin film technology. Giant and colossal
magnetoresistance features that some thin film materials exhibit have a great impact on the
magnetic recording/memory technology. The miniaturization of magnetic devices opened a
new research field loosely named “micromagnetic devices”. The basic micromagnetic device
is built by the combination of a thin magnetic film with a planar coil. Possible applications
are micropower supplies, microsensors and mobile communication handsets. Ferroelectric
thin films are also demanded for nonvolatile memory devices (also named as FeRAMs,
ferroelectric random access memories) due to their high-speed writing, low dissipation,
power and high endurance. Due to the variety of technological devices that the thin films
offer, there exist various techniques to prepare high-quality thin films such as molecular beam
epitaxy (MBE), metal chemical vapour deposition (MOCVD) and pulsed laser deposition
(PLD).

When materials are constructed as layers or films, thickness of these layers/films is
significantly important to engineer their properties. A very thick film of a certain material can
exhibit bulk-like properties whereas very thin layers can exhibit different properties. However,
as it is hard to grow and use free-standing thin films, one needs to deposit them on another
material, namely on a substrate. Thus, in a thin film environment, the solid is deposited on a
substrate and experiences two interfaces: film-substrate interface and film-vacuum interface.
In such a case, the properties are expected to be much more dependent of the interfacial
effects. One challenge is to use the concepts of surface and interface physics in order to
understand and control the properties of thin films. Interface physics is therefore embedded
in the conventional condensed matter physics and it is truly correlated with other research
field such as molecular physics or particle beam optics (See Figure 2). Surface and interface
physics bring aspects for technological applications such as semiconductor technology or
corrosion and surface protection. Understanding this field from both experimental and
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theoretical points of view is really important. On the one hand, there are a few fields in
physics and chemistry that provide experimental methods and techniques to extract the surface
and interface physics. On the other hand, in addition to experimental approaches, computer
calculations is another important element. Indeed, nowadays accessible complex and large-
scale computer calculations made it possible to deduce theoretical understanding of interface
physics of thin films. In this thesis, we will study interfaces in heterostructures by means of
computer calculations in order to obtain the physics of thin films. More precisely, we will
study manganite-based superlattices at the atomic scale by means of ab-initio calculations.

Fig. 1 Surface and Interface Physics correlated with a variety of research fields. In this thesis,
we are particularly interested in Interface Physics of Thin Films at the computer calculations
level. Picture taken from Ref. [2]

This thesis is organized as follows. In chapter 1, we give a very short review of solid state
physics in order to introduce some basic concepts that are necessary to capture the physics of
thin films. In the same chapter, we shortly talk about the thin films conceptually. In chapter 2,
we give a review of CMR manganites and discuss their structural, electronic and magnetic
properties. We will also give a short comparison of the properties of La1−xAxMnO3 bulk
materials and thin films. The chapter 3 is devoted on the methodology that is used in this
thesis. In chapter 4, we will give the results of (LaMnO3)n − (SrMnO3)p superlattices. In
chapter 5, we provide the results of the superlattices of (La2/3A1/3MnO3)3 with alternated
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perovskite layers. In chapter 6, we present the results of superlattices of (La2/3A1/3MnO3)3

with simple alkaline oxides. In chapter 6.4, we give our conclusions and future perspectives.



Préface

Tout ce que nous avons et qui entoure nos vie est fait de quelque chose. Tout a une substance.
Si on sort les matériaux de nos vie, nous sommes nus face à ce monde. Matériaux et la
manière dont nous les utilisons déterminent notre niveau de civilisation : L’age de pierre,
de fer, de bronze. Non seulement pour des raisons pratiques mais mais aussi pour l’art et
l’esthétisme, l’humanité donna la plus grande importance à la compréhension des matériaux.
Par exemple, les égyptiens étaient les premiers maîtres à façonner l’or. Ils utilisaient des
couches très minces d’or entre différentes couches de matériaux pour décorer. À l’époque
victorienne, l’ingénierie technologique a développé l’utilisation de matériaux, fer et acier.
Aujourd’hui, ce que nous sommes habitués à voir dans notre quotidien, comme les ponts,
chemins de fer, etc. sont à l’origine de ces avancées. L’ère de l’information arrive avec des
nouveaux avancement en technologie des matériaux, comme l’utilisation du silicone ou les
films minces. Donc contrôler l’utilisation de matériaux dans la technologie actuelle est de
grande importance pour les scientifiques et ingénieurs. Tous deux étudient les structures, les
propriétés physiques et chimiques de la substances des matériaux.

Pour commencer, nous pouvons donner la définition de la matière. La matière est tout ce
qui occupe l’espace et a un masse. Il y a quatre états de la matière que l’on peut observer dans
la vie quotidienne, solide, liquide, gaz et plasma mais sous conditions extrêmes, comme forte
ou basse pression ou température, il existe d’autres états comme le bien connu condensat de
Bose-Einstein et le plasma de quak-gluon. La physique de la matière condensée s’attache
à l’étude des propriétés des phases condensées de la matière. Les phases condensées les
plus communes sont solide et liquide. L’approche principale de la physique de la matière
condensée est de mesurer les propriétés des matériaux avec des expériences, ainsi que le
développement de modèles mathématiques pour comprendre le comportement physique des
matériaux. Comprendre les propriétés des matériaux vient naturellement avec le désir de
contrôler ces propriétés pour différentes raisons. Un intérêt particulier de la physique de
la matière condensée est donné propriétés de transport magnétiques des matériaux pour les
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appareils technologiques, tels que l’électronique ou la spintronique. Comme nous anciens
sages ancêtre égyptiens, créer de nouveaux composés en superposant des couches minces
de différents matériaux, aujourd’hui, les scientifiques des matériaux et les physiciens créent
de nouveaux films minces pour contrôler le transport et les propriétés magnétiques des
matériaux.

Les couches minces déposées sur un substrats sont largement utilisées dans différent
appareils technologiques. Pour commencer avec des exemples, on peut commencer avec
les appareils à base de semi-conducteurs. Diode électroluminescente (DEL), diode laser
(DL), cellules solaires et appareils électroniques, tels que les transistors à haute mobilité
d’électrons (HEMT) et transistor bipolaire à hétérojonction (HBT) ont besoin de dépôts de
couches minces épitaxiales car ces couches minces ont souvent peu de défauts et un faible
taux d’impureté comparé au matériau en vrac. L’invention du premier supraconducteur à
haute température critique YBa2Cu3Ox (YBCO) en couche mince [1] a ouvert un grand
nouvel intérêt dans la communauté des films en couche minces et des appareils microonde
supraconducteurs. La technologie d’enregistrement magnétique et de mémoire magnétique
est aussi une des plus grandes applications remarquable de la technologie en couche mince.
La propriété de magnétorésistance géante et colossale que certains matériaux en couches
minces ont a un grand impact sur les technologie d’enregistrement et de mémoire magnétique.
La miniaturisation des appareils magnétiques a ouvert un nouveau domaine domaine nommé
“appareils micromagnétiques”. Le plus basique appareil micromagnétique est construit en
une combinaison de films minces magnétiques avec une bobine plane. Quelques possibles
applications sont des alimentations micropower, microsensors et de communication mobile.
Les films minces ferroélectique sont aussi prisés pour des appareils de mémoire non volatiles
(aussi nommées FeRAMs, ferroelectric random access memories) à cause de leur rapide
vitesse d’écriture, faible dissipation, puissance et haute endurance. Grâce à la diversité
d’appareils technologiques qu’offrent des films minces, il existe différentes techniques pour
préparer une diversité de films minces de haute qualité, comme l’épitaxie par jet moléculaire,
le dépôt chimique en phase vapeur et l’ablation laser pulsé.

Quand les matériaux sont composés de couches ou films, l’épaisseur de ces couches/films
est importante pour contrôler leurs propriétés. Un film épais d’un matériau donné peut
avoir certains propriétés du matériau massif alors que des couches très minces peuvent
avoir des propriétés très différentes. Cependant, comme il est difficile de faire pousser et
d’utiliser des films minces autonome, nous devons les déposer sur un autre matériau, appelé
substrat. Donc, dans un environnement de films minces, le solide est déposé sur un substrat
et a deux interfaces : une interface film-substrat et film-vide. Dans ce cas, les propriétés
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seront plus plus dépendantes des effets d’interface. Un défis est d’utiliser les concepts
de la physique des surfaces et interfaces pour comprendre et contrôler les propriétés des
films minces. La physique des interfaces est donc incluses dans la physique de la matière
condensée conventionnelle et est vraiment corrélée avec d’autres champs de recherche tels
que la physique moléculaire ou l’optique du faisceau de particules (voir Figure 2). La
physique des surfaces et interfaces apporte des aspects d’applications technologiques comme
la technologie des semi-conducteurs ou corrosion et de protection de surface. Comprendre ce
domaine d’un point de vue expérimental et théorique est vraiment très important. D’un côté,
il y a quelques domaines en physique et chimie qui fournissent des méthodes expérimentales
et des techniques pour extraire la physique des surfaces et interfaces. De l’autre, en plus des
approches expérimentales, les calculs informatiques est un autre élément important. En effet,
de nos jours, les calculs informatiques complexes et à haute échelle sont rendus accessibles et
permettent de déduire une compréhension théorique des la physique des interfaces des films
minces. Dans cette thèse, nous étudierons les interfaces dans les hétérostructures grâce à
des calculs informatiques pour obtenir la physique des films minces. Plus précisément, nous
étudierons les super réseaux à base de manganites à l’échelle atomique à l’aide de calculs
ab-initio.

Fig. 2 Physique des surfaces et interfaces corrélée avec une diversité de domaines recherches.
Dans cette thèse, nous sommes particulièrement intéressés par la physique des interfaces des
films minces par des calculs informatiques. Image prise de Ref. [2]
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Cette thèse est organisée de la manière suivante. Dans le chapitre 1, nous donnons une
très courte revue de la physique du sole pour introduire quelques concepts basiques qui sont
nécessaires pour la physique des films en couches minces. Dans le même chapitre, nous
parlons brièvement des concepts de film mince. Dans le chapitre 2, nous donnons une revue de
CMR manganites et discutons de leurs propriétés structurelles, électroniques et magnétiques.
Nous donnons aussi une courte comparaison des propriétés de La1−xAxMnO3 materieaux
massif et des couches minces. Le chapitre 3 est dédié à la méthodologie qui est utilisés dans
cette thèse. Dans le chapitre 4, nous donnons les résultats pour (LaMnO3)n − (SrMnO3)p

super réseaux. Dans le chapitre 5, nous fournissons les résultats pour les super réseaux
de (La2/3A1/3MnO3)3 avec des couches pérovskite alternées. Dans le chapitre 6, nous
présentons les résultats des super réseaux de (La2/3A1/3MnO3)3 avec les oxydes alcalines
simple. Dans le chapitre 6.4, nous donnons nos conclusions et perspectives futures.
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1.1 A very Short Review on Solids

Before describing thin-films and their place in today’s technology, let us start with recalling
some basics of solid materials. Some solid materials have a crystalline form, i.e. an ordered
internal crystal structure. The crystal structure is a description of a periodic arrangement of
atoms, ions or molecules in a crystalline material. The primitive unit cell, which contains the
smallest group of particles that determines the repeating pattern, defines the symmetry and
structure of the crystal lattice. The lengths of the principal axes of the unit cell and the angles
between them are named as the lattice constants or lattice parameters. The crystal lattice is
built by periodic translation of the unit cell along the axes. In three dimensions, all possible
symmetric arrangements of particles in space is given using one of the seven crystal lattice
systems. In these seven lattice systems, there are fourteen Bravais lattices. In figure 1.1, one
can see the seven different lattice systems with the fourteen Bravais lattices. For example
for the case of the orthorhombic lattice system, there exist four Bravais lattices; simple,
base-centered, body-centered or face-centered. The rotations, reflections or translations of
a crystal structure determine their symmetry operations and the set of these operations is
named as the crystallographic point groups. There are 32 crystallographic points groups. The
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combination of crystallographic points groups with Bravais lattices constructs the notion of
space groups in three dimensions. There are 230 space groups in three-dimensional space.

Fig. 1.1 The fourteen Bravais lattices. Picture taken from Ref. [3]

In order to determine the crystal lattice structure of a compound, there are different
experimental diffraction techniques widely used: X-ray or electron or neutron diffractions
on single crystals or powders. In X-ray diffraction technique, for example, the crystalline
atoms are exposed to a beam of incident X-rays that diffracts into many specific directions.
Particles in these techniques act as matter waves (i.e. wave-like). The de Broglie relation
states the relation between the wavelength and the momentum, that is λ = h/p, where λ

is the wavelength, h is the Planck’s constant and p is the magnitude of momentum. The
relation between the momentum p and the wavevector k⃗ is given by p = [h/(2π)]⃗k. Thus, it
is convenient to define a k-space or reciprocal space in the momentum space that is related
to real space. In real space, Bravais lattice is given with the mathematical formulation as
R⃗ = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 where a⃗1, a⃗2 and a⃗3 are the primitive vectors and n1, n2 and n3

are integers. The Fourier transform of Bravais lattice gives us the reciprocal lattice with
G⃗ = m1 b⃗1+m2 b⃗2+m3 b⃗3 where b⃗1 = 2π

a⃗2×a⃗3
a⃗1·(⃗a2×a⃗3)

, b⃗2 = 2π
a⃗3×a⃗1

a⃗2·(⃗a3×a⃗1)
and b⃗3 = 2π

a⃗1×a⃗2
a⃗3·(⃗a1×a⃗2)

are the primitive vectors and m1, m2 and m3 are the Miller indices. Miller index is a notation
tool to define crystal planes inside the lattice. One can also use similar indices to design the
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directions inside the lattice, i.e. direction indices. In figure 1.2, there are example crystal
planes denoted with Miller indices and direction indices.

Fig. 1.2 (a) Coordinates of lattice sites; (b) Miller indices of planes; (c,d) Miller indices of
planes and direction indices. Picture taken from Ref. [3]

Materials can be classified according to their bonding type into four classes: Metallic,
ionic, covalent and van der Waals. Metallic bonding occurs in metals and alloys. In metals,
the Fermi level electrons are rather delocalized and metallic bonding is relatively soft. Ionic
bonding occurs due to electrostatic attraction between oppositely charged ions such as
between metals and nonmetals. Covalent bonding is a chemical bond in which neighbouring
atoms share electrons. The van der Waals type bonding occurs due to weak dispersion forces.

Materials can be classified according to their ability to conduct electricity into three
classes: Conductors, semi-conductors, insulators. The distinction rises from the electronic
dispersion curves. The energy band structures are schematically shown in figure 1.3 for
metals, semiconductors and insulators. In metals, the Fermi level is in the middle of a band.
In insulators, there are only fully occupied or fully empty bands. In semi-conductors, at 0
Kelvin, there are only fully occupied or fully empty bands but bands can be partially occupied
at a finite temperature.

Materials can also be classified by their response to externally applied magnetic field.
This classification is based on the strength of the response. Diamagnetism is a fundamental
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Fig. 1.3 Schematic band structure for metal, semi-conductor and insulator.

property that all materials exhibit initially though it is normally very weak. In a diamagnetic or
non-magnetic material, atoms have no net magnetic moment. However, when a diamagnetic
material is exposed to an applied magnetic field, non-cooperative orbital motions of electrons
create small atomic currents which produce an induced magnetic field in the opposite
direction of the applied field so that a negative magnetization is produced to compensate
and the diamagnetic material is repelled. The response of a diamagnatic material to an
applied field can be seen schematically in figure 1.4a. In a paramagnetic material, there

H

H

H

a)

b)

c)

applied magnetic field

applied magnetic field

applied magnetic field

random spins

no net magnetic moment

ordered spins
in magnetic domains

removed magnetic field

removed magnetic field

removed magnetic field

M

Diamagnetism

Paramagnetism

Ferromagnetism

Fig. 1.4 Different responses of materials to an applied magnetic field: a) Diamagnetism b)
Paramagnetism c) Ferromagnetism.

are some atoms with a net magnetic moment but the individual magnetic moments do no
interact. However, in the presence of an applied magnetic field, the local magnetic moments
align in the same direction of the applied field which induce a small magnetization. This
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magnetization disappears when the applied field is removed. This can be schematically
seen in figure 1.4b. Unlike paramagnetic materials, the atomic spins in a ferromagnetic
material strongly interact with each other and align in the same direction inside magnetic
domains, even in the absence of an applied magnetic field. When there is an applied field the
domain boundaries move and the atomic spins align along the applied field. This mechanism
can be seen in figure 1.4c. There are two characteristics of ferromagnetic materials: i)
Spontaneous magnetization, ii) Magnetic ordering temperature also known as the Curie
temperature. The spontaneous magnetization is the net magnetization that the ferromagnetic
material exhibits uniformly inside the volume in the absence of an applied magnetic field. At
0 K, the magnitude of the magnetization depends on the magnetic moments of the electrons.
Saturation magnetization, Ms, on the other hand, is the maximum magnetization that can
be obtained in a magnetic field Hsat which depends on the temperature. Thermal energy
affects the exchange interactions in ferromagnetic materials. The Curie temperature Tc is the
temperature above which ferromagnetic alignment breaks and there is a spin randomizing
effect. Ferromagnetic materials can retain a memory of an applied magnetic field when the
field is removed. This is known as hysteresis and the change of magnetization with respect
to magnetic field is named as hysteresis loop. In figure 1.5, one can see an example of a
ferromagnetic hysteresis loop.

M

H

Fig. 1.5 Hysteresis Loop for a ferromagnetic material

In addition to paramagnetic and ferromagnetic materials, there are other type of magnetic
materials, i.e. antiferromagnetic and ferrimagnetic. The schematical representation of
magnetic materials are given in figure 1.6. In the absence of an applied field, when the
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magnetic moments/spins in a material align in opposite directions at neighbouring sites with
the same amplitude then this material is an antiferromagnetic material. Thermal energy also
affects the interactions inside an antiferromagnetic material. The Néel temperature TN is the
temperature above which the antiferromagnetic-paramagnetic transition takes place. When
the magnetic moments align in opposite directions but have different amplitudes so that the
net magnetic moment is non zero then this material is ferrimagnetic.

Ferromagnetic Antiferromagnetic FerrimagneticParamagnetic

Fig. 1.6 Type of magnetic materials: Paramagnetic, Ferromagnetic, Antiferromagnetic,
Ferrimagnetic

Materials can also be classified by their response to externally applied magnetic field.
Insulators can be sub-classifed as well depending on their response to an applied electric
field. When an electrical insulator can be polarized by an applied electric field and if this
polarization is linearly proportional to the applied field, this is a dielectric material. (See
the left figure 1.7.) The electrical charges inside the material volume do not flow like in a
conductor but positive charges move toward the field direction and negative charges move in
the opposite direction which results a dielectric polarization. Paraelectric materials exhibit
an enhanced non-linear polarization to an applied field. (See the center figure 1.7.) When
a material exhibit a spontaneous electric polarization that can be reversed by an external
electric field, this material is named as ferroelectric. The prefix “ferro” is for an analogy to
ferromagnetism as the ferroelectric materials exhibit a hysteresis loop which can be seen
on the right in figure 1.7. Barium titanate BaTiO3 is an example of ferroelectric insulator.
This compound has a perovskite form where Ba atoms sit in the corner of the lattice, Ti
atom is at the center and the oxygen atoms surround the Ti on the face-centers creating
an octahedron. The spontaneous polarization is created by the ionic displacement inside
volume when there is a non-centrosymmetric phase. The displacement of Ti with respect
to surrounding oxygens create a dipole moment. The diagram of energy with respect to
polarization, on the left in figure 1.8, reveals the double-well feature present in ferroelectric
materials. There are at least two directions with equal energy minima for the system, each of
them is associated to equal amplitudes but different orientations of the polarization. When
there is an applied electric field, one direction of the polarization is preferred over the others
so that the degeneracy is no longer active. When the applied field is applied in the opposite
direction, the polarization switches to this direction. Figure 1.8 demonstrates the double-well
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Fig. 1.7 Polarization vs Electric Field in dielectric, paraelectric and ferroelectric materials

potential and the hysteresis loop of a ferroelectric cubic perovskite material. One must note
that there are also orthorhombic/rhombohedral lattice systems exhibiting ferroelectricity.
Thus, the polarization can be in different directions rather than only two.
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Fig. 1.8 Double-well potential and Hysteresis loop of a ferroelectric perovskite material.

Before finishing this short review of solids, we would like to shortly talk about the
concepts of strain, stress and elasticity. Strain is a change in a solid in lattice parameters
(length, angle, or volume) compared to its bulk values. Stress is the force per unit area that
caused this change (for example, a force applied to the surface of the material). Elasticity
is the measure of the deformation of the material when a stress is applied. Strain can be
induced in a crystalline material by depositing on an another crystalline material (substrate).
This is called as epitaxy.
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As we gave the very essential background for the materials, now we can talk about how
to control their properties. During this thesis we will focus on thin films and would like to
dedicate the next section to a short introduction on the subject.

1.2 Thin Films

There has been always a great interest in the solids which have naturally layered-type
structures such as the bulk clay minerals or cobaltates in battery. Solid materials can also
be artificially layered as it is in thin films. Thin film is a material made of thin layers with a
thickness ranging from few atoms to several micrometers. Thin films do usually not exist
alone and they have to be deposited on a substrate material. The substrate material imposes
its symmetry and lattice parameters by strain to the thin films. The thickness of the film plays
a role on up to which unit cell the induced substrate symmetry and lattice parameters will
be kept in the films. In a thin film environment, thin part (film) tries to adopt the thick part
(substrate). Indeed, in thick films on a substrate only a few unit cells at the interface have
the lattice properties and symmetry induced by the substrate. After these unit cells, the films
behave as the bulk. In figure 1.9, on the left we give an illustration of a thin film structure
deposited on a substrate. Here, a and b denote the lattice parameters of the substrate and c is
the thickness of the thin film. On the right, we give an example of a thin film deposited on a
substrate: Pr0.5Ca0.5MnO3 thin film deposited on SrTiO3 (STO) [4].

a
b

c

Thin Film

Substrate

Fig. 1.9 (Left) An illustration of a thin film deposited on a substrate. (Right) A [010] cross
section of Pr0.5Ca0.5MnO3 thin film deposited on SrTiO3 (STO) taken at room temperature.
Picture taken from Ref. [4]
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When two or more different materials are artificially layered together, a new structure,
namely a heterostructure, is formed. Heterostructures cannot exist alone and they have to
be deposited on a substrate material as well. Heterostructures are a variety of thin films. A
heterostructure is named as a superlattice when it is a super periodic structure of layers. The
thickness of one layer in a superlattice is generally a few nanometers. In figure 1.10, we give
the schematical representation of an example of superlattice. Here, on a substrate material,
the material A is layered thrice and the material B is layered four times, this repeats twice
leading to a [(A3)/(B4)]2 superlattice.

Substrate

A
A
A

A
A
A

B
B
B
B

B
B
B
B

Fig. 1.10 Schematical picture of a superlattice: [A3/B4]2

The properties of very thin heterostructures/superlattices are mainly determined by their
surfaces and interfaces. In a solid heterostructure, an interface separates two solids while
a surface of a solid is in fact a simple type of interface, at which the solid is in contact
with the atmosphere or the vacuum. The properties of the heterostructure at the interfaces
might differ significantly from the parent bulk materials. For example, when a metallic
film is deposited on a semi-conductor, there exists a semi-conductor/metal interface and
one can expect new phenomena to appear at the interface. From a more general point of
view, in a solid compound, there are different degrees of freedom; that are spin, charge,
orbital and lattice degrees of freedom. Tuning these different degrees of freedom is pos-
sible by creating interfaces which cause some effects such as symmetry breaking, charge
transfer, strain, electrostatic coupling, frustration as illustrated in figure 1.11. Symmetry
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Fig. 1.11 Spin, charge, orbital and lattice at interfaces between different oxides can be
modified through the effects of local symmetry breaking, charge transfer, electrostatic
coupling, strain, and frustration. Picture from Ref. [5]

breaking at interfaces results with modification of the electronic and structural properties
of heterostructure. Charge transfer between one material to another takes place if two
interfacing materials have different chemical potentials. When two interfacing materials
have different lattice parameters, epitaxial strain is produced at the interface which is a
useful tool to control the lattice distortions and influence the electronic degrees of freedom
so that alternative electronic and structural ground states can be stabilized. In a thin film
environment, substrate induce strain effects on the thin film which modifies the latter’s lattice
parameters. When two polar materials are attached to each other, electrostatic interactions at
the interface result in electrostatic coupling between the layers. When there is a competition
between different interactions at the interface, frustration can take place resulting in new
structural and electronic phases.

Most of the technological applications require thin films. Therefore, constructing such
films and understanding their properties are vital. The material can exhibit quite different
properties when it is built as thin films compared to the bulk form due to deposition conditions.
In a thin film environment, two surfaces (substrate and thin film) are close to each other,
where the former can impact on the latter’s physical properties. This influence can lead to new
phenomena appearing. Indeed, imposed strain effects by the substrate can stabilize different
structures that do not appear under the classical conditions of pressure and temperature. For
example, the metastable perovskite compounds BiMnO3 and YMnO3 cannot exist in bulk
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and can only be prepared under high pressure. However, these metastable phases can be
synthesized as thin films via a pulser laser method [6, 7]. The dimensions of thin films are
well defined and controllable. The thickness, for example, can be reduced to one unit cell.
Thus, the deposition of ultrathin films or superlattices are possible. Reducing one dimension
of a material makes the system an intermediate one between macro and molecular systems
in which one can expect to investigate physical properties in microscopic scale. In addition,
growing artificially multilayer structures and controlling the film orientations are possible in
thin film technology which are essential for device applications. At last but not least, one
can engineer the properties of some materials such as manganese oxides by using artificial
superlattices. Indeed, it has been shown that stacking a magnetic layer La0.7A0.3MnO3 (A =
Sr, Ca or Ba) with an insulator such as SrTiO3 can create exotic properties in the system [8–
11]. For instance, in La0.7Ca0.3MnO3, the magnetoresistance (MR) can be enhanced at low
temperature and the metallic transition is supressed when the superlattice thickness is about
25 Å [10].

Since we would like to focus on manganite superlattices/thin films in this thesis, next
chapter is dedicated to manganites. We will recall some fascinating features that manganites
hold and explain structural, electronic and magnetic properties of manganites.
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2.1 Why Manganites?

Ever since Jonker and Van Santen reported the existence of ferromagnetism in the mixed
crystals of LaMnO3-AMnO3 (A = Sr, Ca or Ba) in 1950s [12], these doped manganese
oxides, named as manganites, are under the spotlight of scientists. Indeed, manganites,
given with the formulation AMnO3, have been fascinating the scientists since then, due the
opportunity to obtain large varieties of systems depending on the solid solution of the site A.
Naturally, due to the potentiality for applications, a greater interest has been given into the
class of manganites that exhibit large Curie temperature. The colossal magnetoresistance
effect is another reason which makes the manganites desirable for applications. Lastly but
most importantly, the manganites present rich phase diagrams in terms of both transport and
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magnetic properties depending on the concentration of the doping elements. Given all these
interesting qualities, there have been a great amount of theoretical and experimental studies
carried out and yet, even today there are still many things to exploit in manganites.

In 1950, Jonker and Van Santen discovered the dependence of the Curie temperature
(Tc), saturation magnetization (Ms), and electrical resistivity (ρ) in various ferromagnetic
doped LaMnO3 compounds [12, 13]. For the doping value x ∼ 0.35, they showed that
La1−xSrxMnO3 is ferromagnetic and has a maximum Curie temperature of Tc ∼ 370K, with
a saturation magnetization of Ms ∼ 90G/g, and a minimum electrical resistivity compared to
the other doping values. (See Figure 2.1). Jonker and Van Santen stated that the ferromagnetic
properties are the result of a strong Mn3+−Mn4+ exchange interaction, combined with
a weak Mn3+ −Mn3+ interaction and a negative Mn4+ −Mn4+ interaction. They also
showed that the change of the Curie temperature in these materials cannot only be explained
by the simple exchange interaction. Later studies showed that what determines the Curie
temperature is not the distance between manganese atoms, but the Mn−O−Mn angle.

On the track of Jonker and Van Santen’s steps, Volger’s measurements on La0.7Sr0.3MnO3

showed that magnetism and electrical conductivity are correlated [14]. In 1951, Zener brought
a theoretical explanation of the appearance of ferromagnetism by an effect called “double
exchange mechanism” [15], which we will explain in details in this chapter. The double-
exchange mechanism also explained the correlation between the electrical conduction and
ferromagnetism in doped manganites, reported in Jonker and Van Santen’s seminal paper
[13]. In 1955, using neutron scattering techniques, Wollan and Koehler obtained a detailed
characterization of the type of the magnetic orders for La1−xCaxMnO3 and built the very first
magnetic structure-based phase diagrams for manganites [16]. Their samples were purely
ferromagnetic over a relatively narrow range of composition (x∼ 0.35), showed simultaneous
occurrence of ferromagnetic and antiferromagnetic phases in the ranges (0 < x < 0.25) and
(0.40 < x < 0.5), and antiferromagnetic orders at x = 0 and x > 0.5. During the same period,
Jonker related the ferromagnetic and metallic phases of the manganites to lattice and crystal
structure [17]. He stated that LaMnO3 is antiferromagnetic, but it could be ferromagnetic
if the cubic perovskite structure, present at high temperatures, could be preserved at low
temperature. He concluded that when the structure gets closer to a stable cubic structure, then
the Mn3+−O2−−Mn4+ bonds are stronger and a stronger double exchange mechanism takes
place. In 1969, Searle and Wang reported the magnetic field dependence of the resistivity for
La1−xPbxMnO3, and in particular the existence of a large magnetoresistance effect near the
Curie temperature [18]. The magnitude of the magnetoresistance was reported to be 20% at
room temperature, for B = 1 T [18].
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Fig. 2.1 Magnetic properties of La1−xSrxMnO3 with respect to Sr doping: (top left) Curie
temperature Tc(K), (top right) saturation magnetization Ms at 90 K (label “calculated” cor-
responds to the saturation magnetization calculated on the assumption that all 3d electrons
in the mangenese ions contribute with their spins to the saturation magnetization), (bottom)
resistivity ρ . (Picture taken from references [12, 13])
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In 1988, the so-called “giant” magnetoresistance (GMR) was discovered in Fe/Cr super-
lattices [19, 20]. In these superlattices with thin Cr layers, A. Fert and P. Grünberg observed
that the magnetoresistance is very large; indeed, for example the resistivity is reduced by
a factor of 2 at T = 4.2 K and B = 2 T in Fe/Cr superlattice samples, with a Cr layer
thickness of 9 Å [19]. This so-called GMR materials are made of metallic multilayers and
heterogeneous films. The magnetoresistance values do typically range between 5−150% in
these compounds [21–25]. The interest in manganites was then triggered by the observation
of similarly large magnetoresistance effects in Nd0.5Pb0.5MnO3 [26] single crystal and in
La2/3Ba1/3MnO3 [27] thin films. Their resistivity as a function of an applied magnetic field
is reported in figure 2.2, extracted from references [26, 27]. On the left, for different magnetic
fields, the resistivity of the [110] direction cut from Nd0.5Pb0.5MnO3 single crystal is given
as a function of temperature for different external magnetic fields. The largest resistivity at
zero field appears close to 185 K. Below 185 K, the resistivity decreases sharply, by two
orders of magnitude. Between 190 K and 300 K, the resistivity declines. The largest negative
magnetoresistance (MR) appears close to the peak in the zero-field resistivity, where the resis-
tivity is reduced by two orders of magnitude. When the magnetic field increases, the peak in
the resistivity get smaller and occurs at higher temperatures. In the case of La2/3Ba1/3MnO3

ferromagnetic thin films, the resistivity measurements at room temperature [27] showed a
large magnetoresistance of more than 60%, formulated as ([ρ(0)−ρ(B)]/ρ(0) where ρ(B)
and ρ(0) are the resistivities at magnetic field B and without field respectively) which can be
seen on the right in figure 2.2. However, using the magnetoresistance formulation usually
used for magnetic multilayers, which is [ρ(B)−ρ(0)]/ρ(B), gives us the giant MR value
150%. From now on, the values given for magnetoresistance will be reported by taking
into account the latter formulation. Later, in the La0.67Ca0.33MnOx thin films, the magne-
toresistance effect is reported to be of 127000% at 77 K, B = 6 T [28, 29] (See figure 2.3).
This huge magnetoresistance was called colossal magnetoresistance (CMR) since it is of
three orders of magnitude larger than giant magnetoresistance (GMR). This large increase in
magnetoresistance created a big impact in the field of manganites. Indeed, CMR effect offers
tremendous potentials in the technologies of magnetic recording, spin-polarized electronics,
sensors and etc.

In conventional ferromagnets spin is not coupled with the lattice. However, in CMR
manganites, charge, spin, and lattice degrees of freedom are strongly coupled and these
couplings give rise to a rich variety of physical phenomena. Thus, in order to understand the
CMR effect, researchers enlarged their perspectives from the ferromagnetic metallic phase to
the doping regions where there exist many different competing phases.
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Fig. 2.2 (Left) The resistivity and magnetoresistance of Nd0.5Pb0.5MnO3 single crystal
from reference [26]. (Right) The resistivity and magnetoresistance of La2/3Ba1/3MnO3
ferromagnetic thin films [27]

Fig. 2.3 (Left) Resistivity (ρ) vs. Magnetic Field (B = H) exhibits the colossal magne-
toresistance behaviour about 127000% at 77 K. Picture taken from reference [28] (Right)
Temperature dependence of magnetoresistance (∆R/R = ∆ρ/ρ), resistivity (ρ) and magneti-
zation (M). (Picture taken from reference [28])
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Half-doped manganites are given with the generic formulation of R1−xAxMnO3. Here,
R is a trivalent element and A is a divalent alkaline element. Depending on the choice of
R and A, the composition can exhibit a wide range of magnetic and electric phenomena,
including ferromagnetic, antiferromagnetic, charge, and orbital ordering. In Figure 2.4
one can see the phase diagrams of La1−xSrxMnO3 (LSMO), Nd1−xSrxMnO3 (NSMO) and
Pr1−xCaxMnO3 (PCMO) [30]. This figure pictures the variety of the systems that one can

Fig. 2.4 The magnetic and electronic phase diagrams of La1−xSrxMnO3 (left),
Nd1−xSrxMnO3 (center) and Pr1−xCaxMnO3 (right). The PI, PM and CI stand for the para-
magnetic insulating, paramagnetic metallic and spin-canted insulating states, respectively.
The FI, FM, and AFM denote the ferromagnetic insulating and ferromagnetic metallic, and
antiferromagnetic (A-type) metallic states, respectively. (Picture taken from reference [30])

obtain in rare-earth manganites depending on the solid solutions of R and A. For example,
LSMO is a ferromagnetic metal in the doping region x = 0.3, so is NSMO, whereas PCMO is
a ferromagnetic insulator. Since La1−xSrxMnO3 has the largest Tc (370 K) among manganites
and a large bandwidth, significant amount of attention and focus have been given to the
study of these manganites. Thanks to this, the phase diagram of LSMO is the most complete
phase diagram among all manganites [31]. (see figure 2.5) This diagram was obtained by the
measurements of structural, magnetic, and transport properties on single crystals of LSMO
within 0 ≤ x ≤ 0.85 region. At low temperature, the system presents different magnetic
orderings depending on the Sr concentration. In the doping region of 0.16 ≤ x ≤ 0.5, LSMO
is ferromagnetic below the Curie temperature. For T < 200K, between the doping values
0.5 and 0.6, the magnetic ground state is either canted (CA) metallic or a non-uniform
phase-seperated (PS). For 0.6 ≤ x ≤ 0.7 and T < 200K, LSMO is A-type antiferromagnetic
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Fig. 2.5 Phase diagram of LSMO. Crystal Structures: O, O′ and O′′ refer to orthorhombic
structures: T is tetragonal, Mc is monoclinic, H is hexagonal, R is rhombohedral. Magnetic
structures: PM is paramagnetic, FM is ferromagnetic, AFM is antiferromagnetic, CA is
canted antiferromagnetic. Electronic states: PS is phase separated, I is insulating and M is
metallic. (Picture taken from Ref. [31])

metal. As Sr concentration increases, the phase transfers to C-type insulating AFM state.
Lastly, for x > 0.9, it goes through its G-type insulating AFM phase.

For the LSMO, it was shown by Tokura et al. that the magnetoresistance effect is
maximized in the doping region x = 0.175 which is the transition point from insulating
to metallic states at low temperatures [32]. This magnetoresistance effect is pictured in
figure 2.6. A large MR value around 90% is seen close to Tc = 283K. Such a large MR above
Tc is the indication of an insulator-metal transition.

With applications in mind, one can wonder whether it is possible to control these fas-
cinating properties of manganites. One way to do it is to deposite the manganites as thin
films, so interface effects or strain engineering can take place. Thus, we choose to work with
La1−xSrxMnO3 (x = 1/3) (LSMO) thin films because both Mn3+ and Mn4+ coexist in the
bulk LSMO and the Curie temperature of bulk LSMO as a function of hole doping is one
of the highest (Tc ≃ 370K). The question here is whether this Curie Temperature can be
controlled and whether it can be increased. Let us first take a look on the general structure of
manganites. Then later, in order to understand the behaviour and properties of LSMO, we
shall recall the properties of the parent compounds.
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Fig. 2.6 Magnetoresistance in a La0.825Sr0.175MnO3 crystal: (a) temperature dependence of
the resistivity in various magnetic fields and (b) the magnetic field dependence of resistivity
at various temperatures. (Picture taken from reference [32])

2.2 General Properties of CMR Manganites

2.2.1 Structure

The manganites, i.e. the compounds with AMnO3 formula, where A is either a cation or a
mixture of two or more of such elements, or vacancies, mostly crystallize at high temperature
in the so-called cubic perovskite structure (space group Pm3̄m) as shown at left in figure 2.7.
The perovskite structure allows the system to be doped in a large variety on both A and Mn
sites. In most of the cases, dopants on the A-site can form homogeneous solid solution. At
low temperature, perovskites exhibit lattice distortions leading to symmetry breakings. One
of very well known lattice distortion arises from the deformation of the MnO6 octahedron
and originates from a Jahn-Teller effect which we will explain later in this chapter. In the
ideal AMnO3 perovskite structure given at the left in figure 2.7, the mismatch between the
equilibrium A−O and Mn−O bond lengths is given by a tolerance factor t = (A−O)√

2(Mn−O)
,

which can be calculated from the sums of ionic radii obtained from X-ray diffraction at
room temperature. This mismatch takes then the form of t = rA+rO√

2(rMn+rO)
. Here, rA, rMn

and rO are the averaged ionic radii at sites A, Mn and O, respectively. t is called as the
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Fig. 2.7 (Left) Schematic picture of a cubic perovskite manganite. A cation sits at the corners.
Mn is at the center of the unit cell. Oxygens are at the face centers and form an octahedron
around Mn atom. Schematic distorted perovskite structures of manganite: orhorhombic
(center) and rhombohedral (right)

Goldschmit’s tolerance factor. When t is close to 1, the cubic perovskite structure is realized.
As t decreases, the lattice structure transforms to the rhombohedral (0.96 < t < 1) and then
to the orthorhombic (t < 0.96) structures in which the Mn−O−Mn bond angle is also
modified. On the other hand, when t > 1, which is the indication that the cation in the A-site
is too large, the hexagonal perovskite structure appears. In hexagonal perovskite structures,
the MnO6 octahedra exhibit face-sharing and chain-formation along the c⃗ axis.

Taking into account the general perovskites with the formula ABO3 let us briefly give
examples of perovskites with varying t values. When t > 1, the structure adjusts through
ferroelectric displacements in the perovskite, such as in BaTiO3 (A = Ba, B = Ti). When
t < 1, there are cooperative rotations of BO6 octahedra around a cubic [001] axis, such as
in CaTiO3 (A = Ca, B = Ti) [33]. These cooperative rotations also adjust to t < 1 in some
manganites such as La0.7Ba0.3MnO3 at T = 1.6 K around a cubic axis [101] in orthorhombic
space group (Imma) [34]. These rotations bend the Mn−O−Mn bond angle from 180◦ to
180◦−α and as a consequence affect the magnetic interactions which takes place between
Mn ions.

Hwang et al. studied the correlation between the Curie temperature and the average
ionic radius of La site ⟨rA⟩ in doped LaMnO3 [35]. They found a decrease in Tc and a
sharp increase in the magnetoresistance near the Tc for decreasing ⟨rA⟩ values. They also
noted that decreasing ⟨rA⟩ values also reduces the Mn−O−Mn bond angle and thereby the
electron hopping matrix element between the Mn sites since the bond angle is the responsible
parameter for electron hopping between Mn sites. Mahesh et al. also studied the same
relation in rare-earth manganites and stated that ferromagnetic transition temperature Tc and
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insulator-metal transition temperature Tp increases with ⟨rA⟩ [36]. In figure 2.8, one can see
the temperature as a function the tolerance factor and as well as ⟨rA⟩.

Fig. 2.8 (Left) Curie temperature as a function of tolerance factor for the system of
A0.7A′

0.3MnO3 where A is a trivalent rare earth and A′ is a divalent alkali earth ion. (Right)
Curie temperature as a function of ⟨rA⟩ for the system of A1−xA′

xMnO3. (Picture taken from
references [35] (left) and [36] (right))

However, the electronic and magnetic properties of manganites depend not only on the
tolerance factor or ⟨rA⟩, but also on the size mismatch between the A-size cations defined by
the variance σ2 = ∑i yir2

i − r2
A, where ri is the radius of each R3+ and D2+, yi is fractional

occupations of the i ions, rA is the average ionic radius of R3+ and D2+ [37–41]. The variance
σ2 determines the random distribution of the Mn−O−Mn bonds. Rodriguez-Martinez
et al. [37] studied the cation size and disorder effects in various rare earth manganites in
the doping region x = 0.3. They pointed out that the metal-insulator transition temperature
decreases as the variance σ2 increases as one can see on the left in figure 2.9. They have
proposed a fit to the linear region of this data in this figure with the relation: Tm(⟨rA⟩,σ2) =

Tm(⟨rA⟩,0)− p1σ2. Here, Tm(⟨rA⟩,0) is an estimate of the ideal metal-insulator transition
temperature if cation-size disorder were not present, i.e σ2 → 0 and p1 is the slope of the
fitting and gives the Mn−O force constant. Damay et al. [38] also studied cation disorder
and size effects upon magnetic transitions in various rare earth manganites in the doping
region x = 0.5. They have used the same fitting procedure proposed by Rodriguez-Martinez
et al. [37]. One can see on the right in figure 2.9 that the Curie temperature decreases as the
variance σ2 increases.
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Fig. 2.9 (Left) The variation of the metal-insulator transition temperature from resistivity Tm
with respect to the variance σ2. (Right) The variation of the ferromagnetic-paramagnetic
transition temperature Tc with respect to σ2 at constant ⟨rA⟩ for three series of compounds
involving ⟨rA⟩ = 1.237 Å, ⟨rA⟩ = 1.231 Å, and ⟨rA⟩ = 1.225 Å. Inset: p1 vs ⟨rA⟩ for the
three ⟨rA⟩ values studied. (Picture taken from references [37] (left) and [38] (right))

2.2.1.1 Parent Compounds

One can classify the undoped manganites into two groups: RMnO3 and AMnO3. Here, R is
a trivalent rare-earth atom and A is a divalent alkaline earth atom like Ca or Sr. Both RMnO3

and AMnO3 are antiferromagnetic insulators. Let us briefly take a look at the literature for
the crystal structures and magnetic orderings of LaMnO3 (La3+), CaMnO3 (Ca2+), BaMnO3

(Ba2+) and SrMnO3 (Sr2+) on which we will base our study as mixed-manganites.

The study of lanthanum and calcium manganites are well visited since the mid 50ies.
Wollan and Koehler stated that the magnetic ground state of LaMnO3 is A-type antiferromag-
netic (A-AFM) while CaMnO3 is G-type antiferromagnetic (G-AFM) [16]. Yakel studied
the structures of LaMnO3 and CaMnO3 compounds by means of X-ray powder diffraction
at room temperature [42]. At low temperature, Yakel reported orthorhombic structure for
LaMnO3 and CaMnO3 with a tolerance factor around 0.92. Elemans et al. studied mixed
manganites La1−xBaxMnO3 and found the orthorhombic structure present with the space
group Pbnm from X-ray and neutron diffractions at room temperature though this orthorhom-
bic distortion becomes smaller with increasing x values [43]. Later, CaMnO3 was reported
to have an orthorhombic derivative (Pbnm space group) of the ideal cubic perovskite with
nearly perfect octahedra [44–47]. Rodríguez-Carvajal et al. also studied LaMnO3 by thermal
analysis and high-resolution neutron-powder diffraction [48]. At room temperature, they
obtained the orthorhombic phase with Pbnm space group with an antiferrodistortive orbital
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ordering which is due to the Jahn-Teller effect. Above 750 K, there is a structural phase
transition where this Jahn-Teller effect disappears as well as the orbital ordering disappears.
The crystal symmetry does not change with this transition but lattice becomes metrically
cubic and MnO6 octahedra becomes more ideal at high temperature. They finally reported
that at 1010 K the phase transiton Pbnm → R3̄c → Pm3̄m occurs due to steric-thermal effects.

In 1968, Syono et al. studied the phase stability of BaMnO3 and SrMnO3 compounds [49].
They showed that these two manganites have hexagonal perovskite-like structures. Indeed,
at normal pressure BaMnO3 has a two layered hexagonal structure (2H) while SrMnO3 has
a four layered hexagonal structure (4H) [50]. The hexagonal structures for SrMnO3 and
BaMnO3 can be schematically seen in figure 2.10. BaMnO3 with 2H hexagonal structure is
stable below 1150◦C [51] whereas SrMnO3 hexagonal structure is stable in air below 1035◦C
with a cubic and a hexagonal perovskite structures [52, 53]. In 1988, by neutron diffraction
measurements, Battle et al. [54] stated that SrMnO3 is paramagnetic at room temperature
and has a hexagonal structure with P63/mmc. Chamberland et al. [50] have proposed that

Fig. 2.10 Schematical picture for hexagonal perovskite structures: (left) the four layered
hexagonal (4H-P63/mmc) for SrMnO3, the two layered hexagonal (2H-P63/mmc) for
BaMnO3

the hexagonal SrMnO3 has an antiferromagnetic ordering with Néel temperature TN = 350
K but Battle et al. [54] reported a short-range antiferromagnetic coupling between Mn ions
in face-sharing MnO6 octahedra above TN = 278±5 K. At 290 K, there is no long-range
magnetic ordering. The hexagonal SrMnO3 structure is stable up to about 1309 K above
which it transforms to a cubic structure. [52] The high-temperature cubic SrMnO3 survives
as a metastable phase at low temperatures if quenched. This cubic SrMnO3 has a G-type
antiferromagnetic structure at low temperature [16]. Both the hexagonal and the cubic
structures are semiconductors.
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For the crystal structures of mixed manganites, we can look back at the phase diagram
of La1−xSrxMnO3 (LSMO) given in figure 2.5. One can see that LSMO is orthorhombic
for small values of doping value x like the undoped LaMnO3. When 0.2 < x < 0.5, LSMO
is rhombohedral. At low temperature, when 0.5 < x < 0.7, LSMO is monoclinic. In the
same interval it is tetragonal at high temperature. When x values approaches to 1, LSMO is
hexagonal like SrMnO3.

As we shortly described the crystal structures and magnetic orderings of the undoped
manganites LaMnO3, CaMnO3, BaMnO3, SrMnO3 and La1−xSrxMnO3 now we would like
to recall the electronic structure of the manganites.

2.2.2 Atomic Electronic Structure

Manganese (Mn) belongs to the family of transition metals. It has 25 electrons with the
electronic configuration 1s22s22p63s23p64s23d5 in which there exist 7 valence electrons (2
valence electrons in the 4s shell and 5 valence electrons in the 3d shell). Let us first define the
orbitals of the 3d shell, i.e. the magnetic orbitals. In figure 2.11, one can see the d orbitals:
dx2−y2 , dz2 , dxy, dyz, dxz.

dx2−y2 dz2

dxy dyz dxz

Fig. 2.11 Magnetic orbitals: Five orbitals of the 3d shell
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2.2.2.1 Crystal-Field Splitting

In an isolated atom, these 3d orbitals of Mn would be degenerated. However, when man-
ganese atoms are embedded in a specific crystal geometry, in a solid state system, Mn being
positioned at the approximate center of an “octahedron”, breaking of the orbital degeneracy
takes place. In other words, the orbital degeneracy is removed by the presence of a crystal
field and the 3d orbitals energies are split. One can schematically see in figure 2.12 that
for an Mn atom embedded in a regular octahedron, the 3d orbitals are split into subsets eg

(dx2−y2 , dz2) and t2g (dxy, dyz, dxz), with the crystal field splitting energy ∆. Now, let us recall
the notion of crystal field splitting and how exactly it takes place.

eg

t2g

dz2

dxy

dx2−y2

dyz dxz

E
∆

Fig. 2.12 Crystal Field Splitting of a regular octahedron. Five-fold degenerate atomic 3d
levels split into lower t2g (triply degenerate) and higher eg (doubly degenerate) levels.

In an isolated, free ion, the one-electron potential vR(⃗r) has a O(3) symmetry (spherical
symmetry) and it is invariant under any rotation. Thus, all one-electron states within a
given shell (3d shell in the Mn ion case) are degenerate. However, when the same ion is
embedded inside a molecule or a solid, the one-electron potential vR(⃗r) is expected to have a
lower symmetry, thus the one-electron states of the the given shell will split. This symmetry
reduction arises from crystal field; which has two components:

• Ionic Contribution: Coulomb potential generated by the surrounding charged ions
(dominant in ionic crystals)

• Covalent Contribution: Ligand field due to the bonding with neighbours.
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Ionic contribution is dominant when the crystal is perfectly ionic and the ions can be treated
as point charges. Then, the one-electron potential can be given as

vR(⃗r) = ∑
µ

qµ

|⃗Aµ − r⃗|
= v0(r)+ ∑

µ ̸=0

qµ

|⃗Aµ − r⃗|
= v0(r)+ vc(⃗r) (2.1)

where A⃗µ are the position vectors of the ions and qµ are the ion charges. v0(r) is the ionic
central potential at the site A⃗0 and has spherical symmetry. vc(⃗r) is the “crystal field potential”
at a given site A⃗0 generated by all the surrounding ions in the crystal. For example, in the
case of perovskite manganites, at the site of Mn, one can calculate the crystal field potential
vc(⃗r) generated by all the neighbouring oxygen ions (six oxygen ions) using the equation 2.1
and making Taylor expansion approximations. For perovskite structure, one can find that
the crystal field potential vc(⃗r) has an octahedral symmetry. Thus, the crystal field potential
vc(⃗r) lowers the Mn site symmetry from spherical to octahedral. As a consequence, it lifts
the degeneracy of the shell. We will not present the details here (a detailed lecture on crystal
field splitting can be found in the reference [55]), however, based on group theory, one can
find how this splitting takes place (d shell splits into eg (dx2−y2 and dz2) and t2g (dxy, dyz and
dxz) shells). In addition, in order to determine which orbital set is lower in energy, one can
calculate the potential vc(⃗r) = voct(⃗r) and find that the eg states are higher in energy than
t2g states since the eg electrons face toward the negative oxygen ions and therefore feel a
larger Coulomb repulsion than the t2g ones, the latter having its nodes directed between
the negative oxygen ions. (See figure 2.13.) One must note that this result stands on the

dx2−y2 dz2

dxy dyz dxz

x⃗

z⃗

y⃗ 1

2

3
4

5

6

Fig. 2.13 d orbitals in an octahedral environment facing the negative oxygen ions

assumption of the first neighbours determining the crystal field. However, Coulomb repulsion
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is a long-range interaction. Thus, in the same ionic system, at a given site, while the first
neighbour interactions yielding an octahedron symmetry the further neighbour interactions
can lower the symmetry of the site. Therefore, one should take into account all contributions
of the splitting. Indeed, in many crystal systems, the point-charge model is not accurate and
moreover, the crystal field has a large covalent contribution, i.e. ligand field.

Now, we would like to point out the role of the ligand field on the crystal field splitting.
For this purpose, we will use the tight-binding theory. The Hamiltonian of a system for an
octahedron can be given as

Ĥ = ∑
σ

∑
m

εdmc†
dmσ

cdmσ
+ εp ∑

σ

∑
n

∑
µ

c†
pnσ µ

cpnσ µ
+∑

µ

∑
σ

∑
m

∑
n

tmnµ(c
†
dmσ

cpnσ µ
+ c†

pnσ µ
cdmσ

).

(2.2)
Here, m stands for the 3d-orbitals of the Mn (i.e. dx−y2 , dz2 , dxy, dyz and dxz) and n stands
for the 2p-orbitals of the O (i.e. px, py and pz). µ is the number of the oxygens in the
first coordination shell of the Mn (it is equal to 6 locally in an octahedron) and σ is for the
spin-up or spin-down electron. Finally, the operator c†

dmσ
creates a σ -electron in the orbital

dm while cdmσ
removes a σ -electron in the orbital dm. Similarly, c†

pnσ µ
creates a σ -electron in

the orbital pn of the µ th oxygen while cpnσ µ
removes a σ -electron in the orbital pn of the µ th

oxygen. tmnµ is the hopping between dm orbital of the Mn and pn orbital of the µth oxygen.

We encounter two types of bonds between manganese 3d orbitals and oxygen 2p orbitals
in the manganese octahedron environment. The σ bond takes place along the orbital axis
which makes it the strongest bond among other types of bonds. The dx2−y2 orbital has a
σ -bond with px orbitals of the oxygens located along the a⃗ direction from the Mn and py

orbitals of the oxygens located along the b⃗ direction from the Mn while the dz2 orbital has
also a σ -bond with px orbitals of the oxygens located along the a⃗ direction from the Mn,
py orbitals of the oxygens located along the b⃗ direction from the Mn and pz orbitals of the
oxygens located along the c⃗ direction from the Mn. (See figure 2.14 (a).) The π-bond takes
place between orbitals which share a nodal plane such as the dxy orbital with px orbitals of
the oxygens located along the b⃗ direction from Mn and py orbitals of the oxygens located
along the a⃗ direction from the Mn; the dyz orbital with py of the oxygens located along the c⃗
direction from the Mn and pz orbitals of the oxygens located along the b⃗ direction from the
Mn; the dxz orbital with px orbitals of the oxygens located along the c⃗ direction from the Mn
and pz orbitals of the oxygens located along the a⃗ direction from the Mn. (See figure 2.14
(b).)
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a)

b)

dz2pxa+

pyb+

Vpdσ−V′′
pdσ

−V′′
pdσ

pzc+

dxy
pxb+

pya+

Vpdπ Vpdπ

pxc+

dxzpza+

VpdπVpdπ

dyz

pyc+

pzb+

Vpdπ

Vpdπ

dx2−y2pxa+

pyb+

V′
pdσ V′

pdσ

a⃗

c⃗

b⃗

x⃗

z⃗

y⃗

Fig. 2.14 Independent Slater-koster two-central integrals for p and d-orbitals. a) σ -type
bonding: the bonding state is symmetrical with respect to rotations about the the bond axis.
b) π-type bonding: the bond axis lies in a nodal plane.

Now we will build the tight-binding Hamiltonian matrix first for the basis of eg orbitals of
Mn and 2p orbitals of O. We can build the hopping integrals between the eg and 2p orbitals
by using the Slater-Koster parameter Vpdσ . For example, the hopping between dx2−y2 and
pxa+ is given by tx2−y2 px1 =V ′

pdσ
=
√

3Vpdσ/2 and the hopping between dz2 and pxa+ is given
by tz2 px1 =−V ′′

pdσ
=−Vpdσ/2. The hopping between dz2 and pzc+ is given by tz2 pz5 =−Vpdσ
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The tight-binding Hamiltonian matrix for the eg orbitals is given by:

|dx2−y2⟩ |dz2⟩ |pa+
x ⟩ |pa−

x ⟩ |pb+
y ⟩ |pb−

y ⟩ |pc+
z ⟩ |pc−

z ⟩

Heg =



εdx2−y2 0
√

3Vpdσ/2 −
√

3Vpdσ/2 −
√

3Vpdσ/2
√

3Vpdσ/2 0 0

0 εdz2 −Vpdσ/2 Vpdσ/2 −Vpdσ/2 Vpdσ/2 Vpdσ −Vpdσ√
3Vpdσ/2 −Vpdσ/2 εp 0 0 0 0 0

−
√

3Vpdσ/2 Vpdσ/2 0 εp 0 0 0 0
−
√

3Vpdσ/2 −Vpdσ/2 0 0 εp 0 0 0√
3Vpdσ/2 Vpdσ/2 0 0 0 εp 0 0

0 Vpdσ 0 0 0 0 εp 0
0 −Vpdσ 0 0 0 0 0 εp


(2.3)

=

(
Hdd Hd p

Hpd Hpp

)
(2.4)

Here, εp < εdx2−y2 = εdz2 = εd , and ∆pd = εd − εp and Vpdσ < 0. As we have given the
blocks in 2.4, we can use downfolding method to project out the non-interacting p-electrons
and find an operator which acts only in d orbitals space eg-like bands. Thus, using the
resolvent of the matrix given in 2.4, we obtain the resolvent matrix;

R(ε,Heg) = (εI −Heg)
−1 =

(
ε −Hdd Hd p

Hpd ε −Hpp

)−1

. (2.5)

The first matrix element of the resolvent matrix will give us this energy-dependent operator:
Hε

eg
.

R00(ε,Heg) =

ε − (Hdd +Hd p(ε −Hpp)
−1Hpd︸ ︷︷ ︸

Hε
eg

)


−1

(2.6)

By downfolding, we also transformed the previous basis set to an energy-dependent basis set
of |dx2−y2⟩ε and |dz2⟩ε , thus the energy-dependent eg Hamiltonian in this energy-dependent
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basis is as follows:

|dx2−y2⟩ε |dz2⟩ε

Hε
eg
=

εd +
3V 2

pdσ

ε−εp
0

0 εd +
3V 2

pdσ

ε−εp

 |dx2−y2⟩ε

|dz2⟩ε

(2.7)

By setting ε = εd , one can find the eigenenergies of this matrix

ε
′
d = εd +

3V 2
pdσ

∆pd
.

We can do the same calculations for the t2g orbitals as well. The Hamiltonian matrix on
the basis of the metal t2g orbitals and the oxygen p-orbitals coupled to the later, is given by
the following:

|dxy⟩ |dyz⟩ |dxz⟩ |pb+
x ⟩ |pb−

x ⟩ |pc+
x ⟩ |pc−

x ⟩ |pa+
y ⟩ |pa−

y ⟩ |pc+
y ⟩ |pc−

y ⟩ |pa+
z ⟩ |pa−

z ⟩ |pb+
z ⟩ |pb−

z ⟩

Ht2g =



εdxy 0 0 Vpdπ −Vpdπ 0 0 Vpdπ −Vpdπ 0 0 0 0 0 0
0 εdyz 0 0 0 0 0 0 0 Vpdπ −Vpdπ 0 0 Vpdπ −Vpdπ

0 0 εdxz 0 0 Vpdπ −Vpdπ 0 0 0 0 Vpdπ −Vpdπ 0 0
Vpdπ 0 0 εp 0 0 0 0 0 0 0 0 0 0 0
−Vpdπ 0 0 0 εp 0 0 0 0 0 0 0 0 0 0

0 0 Vpdπ 0 0 εp 0 0 0 0 0 0 0 0 0
0 0 −Vpdπ 0 0 0 εp 0 0 0 0 0 0 0 0

Vpdπ 0 0 0 0 0 0 εp 0 0 0 0 0 0 0
−Vpdπ 0 0 0 0 0 0 0 εp 0 0 0 0 0 0

0 Vpdπ 0 0 0 0 0 0 0 εp 0 0 0 0 0
0 −Vpdπ 0 0 0 0 0 0 0 0 εp 0 0 0 0
0 0 Vpdπ 0 0 0 0 0 0 0 0 εp 0 0 0
0 0 −Vpdπ 0 0 0 0 0 0 0 0 0 εp 0 0
0 Vpdπ 0 0 0 0 0 0 0 0 0 0 0 εp 0
0 −Vpdπ 0 0 0 0 0 0 0 0 0 0 0 0 εp



=

(
Hdd Hd p

Hpd Hpp

)
(2.8)

Using the resolvent of the matrix given in 2.8 we have the resolvent matrix;

R(ε,Ht2g) = (εI −Ht2g)
−1 =

(
ε −Hdd Hd p

Hpd ε −Hpp

)−1

(2.9)
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The first element of the matrix gives us the energy-dependent operator which only acts on
d-space.

R00(ε,Ht2g) =

ε − (Hdd +Hd p(ε −Hpp)
−1Hpd︸ ︷︷ ︸

Hε
t2g

)


−1

(2.10)

We take εdxy = εdyz = εdxz = εd . In the basis of energy-dependent basis set of |dxy⟩ε , |dyz⟩ε

and |dxz⟩ε , the energy-dependent t2g Hamiltonian is as follows;

|dxy⟩ε |dyz⟩ε |dxz⟩ε

Hε
t2g

=


εd +

4V 2
pdπ

ε−εp
0 0

0 εd +
4V 2

pdπ

ε−εp
0

0 0 εd +
4V 2

pdπ

ε−εp


|dxy⟩ε

|dyz⟩ε

|dxz⟩ε

(2.11)

By setting ε = εd , one can find the eigenenergies of this matrix

ε
′′
d = εd +

4V 2
pdπ

∆pd

Finally, the covalent contribution in the 3d-shell crystal field splitting can be given by

∆ ∼ ε
′
d − ε

′′
d = 3

V 2
pdσ

∆pd
−4

V 2
pdπ

∆pd
> 0. (2.12)

We have shown that the eg orbitals are higher in energy compared to the t2g ones since the σ

bonds are stronger than π bonds.

At this point, one should also recall the notion of “High Spin configuration” and “Low
Spin configuration. According to the Hund’s rule, for a given electronic configuration with
degenerate orbitals, the spin value is maximized. This means that, in a degenerated set of
orbitals, electrons must first singly occupy all orbitals with the same spin, before filling in
pairs. For instance, for a system of five d electrons in an octahedron environment, there are
two possibilities:

• “High Spin configuration”: All five d electrons occupy singly all d orbitals with the
energy E = −10Jab + 10Uab + 2∆ where Jab is the Hund’s exchange energy, Uab is
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interorbital Coulomb repulsion energy and ∆ is the crystal field splitting energy (See
figure 2.15 a)).

• “Low spin configuration”: Three electrons will first fill t2g level with the same spins
and then the two electrons will be paired in t2g level again with the energy E =

−4Jab + 8Uab + 2Uaa where Jab is the Hund exchange energy, Uab is interorbital
Coulomb repulsion energy and Uaa is the intraorbital Coulomb repulsion energy (See
figure 2.15 b)).

Thus, noting that Uaa ≃Uab +2Jab, one can find the conditions for the spin configuration of
such system. If ∆ < 5Jab then High Spin configuration takes place whereas if ∆ > 5Jab Low
Spin configuration takes place.

∆

t2g

eg eg

∆

t2g

a) b)

Fig. 2.15 a) “high spin configuration” b) “low spin configuration”

Before finishing the section on the crystal field splitting, we would like to give the density
of states and band structure of an ideal cubic perovskite LaMnO3 (space group Pm3m)
obtained by a single-point non-magnetic calculation within B1WC hybrid functional [56]
with CRYSTAL code [57] in figure 2.16. Through this figure, one can easily see the effect
of the splitting of the 3d orbitals. The bands issued from the t2g orbitals (in green) lie down
under the Fermi level whereas the bands issued from the eg orbitals (in red) are above the
Fermi level. One can also depict from band structure along the path Γ−R that the eg orbitals
are doubly-degenerated and the t2g orbitals are triply-degenerated.

2.2.2.2 Jahn-Teller Distortion

Let us assume a physical system consisting of a large number of particles; that is nuclei
and electrons. The time-independent Schrödinger equation, that is ĤΨ = EΨ, describes
stationary states of such a system. Here, Ĥ is the Hamiltonian operator and E is the energy of
the state Ψ. The Born-Oppenheimer approximation helps us to write the system many-body
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Fig. 2.16 Density of states (left) and band structure (right) of an ideal cubic perovskite
LaMnO3 (Space group Pm3̄m). The bands issued from the eg orbitals are in red, the bands
issued from the t2g orbitals are in green. The special points in the band structure are
Γ = (0,0,0), M = (π/a,π/a,0), X = (π/a,0,0), R = (π/a,π/a,π/a)

wave function Ψ as a product of a many-body electron wave function ψ and a many-body
nuclei wave function φ :

Ψ({⃗r};{R⃗}) = ψ({⃗r}){R⃗}φ({R⃗}),

where {⃗r} and {R⃗} are respectively the ensemble of the position vectors of the electons and
the nuclei. Thus, the Hamiltonian operator can be split into two operators as well:

Ĥel({⃗r}){R⃗} = T̂e({⃗r})+V̂eN({⃗r}){R⃗}+V̂ee({⃗r})+V̂NN

Ĥnucl({R⃗}) = T̂N({R⃗})+E({R⃗})

Here, T̂e and T̂N are kinetic energy operators for electrons and nuclei. V̂eN , V̂ee and VNN

are the potential energy operators for electron-nuclei, electron-electron and nuclei-nuclei,
respectively. The time-independent Schrödinger equation, ĤΨ = EΨ also splits into:

Ĥelψ({⃗r}}){R⃗} = E({R⃗})ψ({⃗r}){R⃗}

Ĥnuclφ({R⃗}) = Eφ({R⃗})
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Let us assume that, for a given system defined by {⃗r} and {R⃗}, we have solved the electronic
eigenvalue problem defined by Ĥel . Let us also assume that {R⃗} = {R⃗0} defines a crystal
structure whose electronic ground state is degenerated. Thus, one will wonder whether this
crystal structure, that {R⃗0} defines, is stable. According to the Jahn-Teller theorem [58],
such a system is not stable and any non-linear system with a degenerate electronic ground
state will undergo some symmetry breaking by removing the symmetry constraint on the
wave-functions to lower the energy and remove the electronic degeneracy. This electronic
instability will drive lattice distortions. These distortions are named “Jahn-Teller distortion”,
and the reason behind it is the coupling between the electrons and the nuclei when occurring
locally as on a single ion. Jahn-Teller distortion is mostly seen when transition metals happen
to be in octahedral environments, but it can be observed in tetrahedral compounds as well.

As stated before, in an octahedral environment, the five d atomic orbitals are split into
two degenerate sets: eg and t2g. When the system has a degenerate electronic ground state
(partially filled eg or t2g orbitals), it will distort to remove this degeneracy and lower its
energy. In octahedral environments, one way to remove the degeneracy is either by elongation
or compression along one direction. The effects of elongation or compression are determined
by the overlap between the transition metal and ligand orbitals.

Now, let us take a deeper look on how the Jahn-Teller effect takes place with the insight
given in the references [55, 59]. Let us take a system in an equilibrium structure, {R⃗0}
with degenerate electronic ground states. The ground state energy is labelled as E({R⃗0})
with the degeneracy d > 1. For the simplicity, we take this energy as zero energy. The
corresponding degenerate electronic many-body wavefunctions are ψ j({⃗r}){R⃗}, j = 1, · · · ,d.

Since E({R⃗}) acts as a potential for the nuclei Hamiltonian we can label ÛN = E({R⃗}). This
potential is also called Born-Oppenheimer potential energy surface and in the system under
our consideration there are d Born-Oppenheimer energy surfaces. The energy surfaces close
to {R⃗0} can be classified in two classes:

• Renner-Teller section: The equilibrium structure, {R0} is a stationary point for all d
surfaces (⃗∇ÛN({R⃗0}) = 0⃗).

• Jahn-Teller section: The equilibrium structure, {R0} is not a stationary point for at
least some of the surfaces (⃗∇ÛN({R⃗0}) ̸= 0⃗ at least in some direction).
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One can expand ÛN around equilibrium structure {R⃗0} by assuming {R⃗0} is a stationary
point and find;

Ĥnucl = T̂N +∑
I

∑
ν

[
∂ÛN

∂uIν

]
|{R⃗0}︸ ︷︷ ︸

=0

uIν +
1
2 ∑

I
∑
ν

∑
I′

∑
ν ′

[
∂ 2ÛN

∂uIν∂uI′ν ′

]
|{R⃗0}

uIν uI′ν ′︸ ︷︷ ︸
ÛPH

N

+ · · · (2.13)

where u⃗I = R⃗I − R⃗0
I is the displacement vector for the atoms with respect to their equilibrium

position. Here, I and I′ are indexes for atoms and µ = x,y,z are the cartesian coordinates.
Thus, one can write

Ĥnucl ∼ T̂N +ÛPH
N .

This Hamiltonian gives the phonon dispersions in a crystal. Going back to the cases where
∇⃗ÛN({R⃗0}) ̸= 0⃗; the classical Jahn-Teller systems, one can consider small distortions around
{R⃗0} in order to lift the degeneracy of the d degenerate eigenvalues of the electronic Hamil-
tonian Ĥel . This leads to:

⟨ψ j|Ĥel({⃗r}){R⃗}|ψ j′⟩= E({R⃗0})δ j= j′ +∑
I

∑
ν

⟨ψ j|
[

∂ Ĥel

∂uIν

]
|{R⃗0}

|ψ j′⟩uIν︸ ︷︷ ︸
Û JT

j, j′

+ · · · . (2.14)

Here, ÛJT
j, j′ is a perturbation between the degenerate j and j′ energy surfaces and named the

Jahn-Teller potential. This potential does not only couple the energy surfaces but also couples
electrons and lattice vibrations. Thus we can rewrite the Born-Oppenheimer approximation
as follows:

Ψ({⃗r};{R⃗}) = ∑
d

ψd({⃗r}){R⃗}φd({R⃗}). (2.15)

Then, considering the nuclei part of time-independent Schrödinger equation Ĥ = EΨ, one
can obtain:

Ĥnuclφd({R⃗}) =
[
T̂N +ÛPH

N
]

φd({R⃗})+∑
d′

Û JT
d,d′ φd({R⃗}) = Eφd({R⃗}). (2.16)

The ground state of equation 2.16 leads to a new structure {⃗̃R0} in which the electronic
structure is no longer degenerate. Let’s take a look on how this degeneracy breaking takes
place for example in the ideal cubic LaMnO3 (as shown in figure 2.7). LaMnO3 has two
degenerate Mn 3d4 configurations; three electrons in the t2g orbitals and one electron in
the eg orbitals. According to the Jahn-Teller theorem, this degeneracy should be broken by
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some electronic instability. This instability can be brought by the normal modes Q2 and
Q3 as illustrated in figure 2.17. One can calculate the Jahn-Teller potential Û JT from the

Q2
Q

3

Fig. 2.17 The degenerate vibrational modes Q2 and Q3 in ideal cubic perovsktie LaMnO3

effect obtained due to the modes of Q2 and Q3 and also taking into account the ligand field
contribution.

When a tetragonal elongation along z takes place as shown in figure 2.18, the electronic
ground state degeneracy is broken by the stabilization of the d orbitals with a z component
(dz2 in eg level and dyz, dxz in t2g level) while the d orbitals without a z component are higher
in energy (dx2−y2 in eg level and dxy in t2g level).

On the other hand, when tetragonal compression along z takes place as shown in fig-
ure 2.19 the electronic ground state degeneracy is broken by the stabilization of the d orbitals
without a z component (dx2−y2 in eg level and dxy in t2g level) while the orbitals with a z
component are higher in energy (dz2 in eg level and dyz, dxz in t2g level).

As a general rule, when there is an odd number of electrons in the eg level the atomic
ground state is doubly degenerated and thus Jahn-Teller effect takes place. In the case of
LaMnO3, which is a high-spin d4, there is one electron in the eg orbitals, thus the Jahn-Teller
distortion occurs and lifts the orbital degeneracy, leading to an orbital ordering.

2.2.3 Effective Magnetic Interactions and Hopping Integrals

In the study of the manganites, it is vital to understand the magnetic interactions that can
occur between the manganese ions. For this purpose, we will recall the mechanism at play in
the effective exchange interactions between two Mn ions, resulting from direct interactions
or interactions through 2p orbitals of the oxygen atoms.
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Fig. 2.18 Crystal-field splitting of five-fold degenerate atomic 3d levels into lower t2g (triply
degenerate) and higher eg (doubly degenerate) levels. Jahn–Teller tetragonal distortion
(elongation) of MnO6 octahedron further lifts each degeneracy.
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Fig. 2.19 Crystal-field splitting of five-fold degenerate atomic 3d levels into lower t2g (triply
degenerate) and higher eg (doubly degenerate) levels. Jahn–Teller tetragonal distortion
(compression) of MnO6 octahedron further lifts each degeneracy.
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In the present case, magnetic interactions take place locally between neighbouring atoms
with open shells. They are short-range interactions between two bodies (atoms). They are
the parameters of an effective Hamiltonian such as the Spin-Heisenberg model.

2.2.3.1 Coulomb repulsion in a 2-electrons-2-sites system

Let us start with a system with open d shells. We can build up a simple 2-electrons-2-sites
system: one electron on each site. Let us call these sites A and B and the orbitals considered in
these sites are d orbitals. From now on, we will call the d orbital at site A as orbital a and the
d orbital at site B as orbital b. For generality purposes, in the case of a transition metal-oxide
system, we can further consider two magnetic sites with one d orbital on each, and add the
p orbitals of the anions located in between the two cation sites. We will presume that the
p orbitals are doubly occupied and non magnetic. First, we focus on the Coulomb term of
the two-electrons Hamiltonian. The Coulomb repulsion of the two-electrons Hamiltonian is
given by V̂ee =

1
|⃗r1−⃗r2

|. Here, r⃗1 and r⃗2 are the position vectors of the electrons. The possible
states of the system under our consideration can be schematically seen in figure 2.20. The
states are (a) | ↑,↑⟩, (b) | ↓,↓⟩, (c) | ↑,↓⟩ and (d) | ↓,↑⟩. The energy of an electron in the

a b

...
p1 pn

...
p1 pn

a b

...
p1 pn

a b

...
p1 pn

a b

b)a) d)c)

Fig. 2.20 The degenerate states of Ĥel are (a) | ↑,↑⟩, (b) | ↓,↓⟩, (c) | ↑,↓⟩ and (d) | ↓,↑⟩.

orbital a or b is respectively given by εa or εb. εa and εb can be expressed by using the Fock
operator as following

εa = ⟨ϕa|T̂ee +V̂eN + ∑
other

occ. orb.

(2Û0 − Ĵ0)|ϕa⟩

and
εb = ⟨ϕb|T̂ee +V̂eN + ∑

other
occ. orb.

(2Ûo − Ĵo)|ϕb⟩

where ϕa and ϕb are the one-electron wave functions corresponding to the orbitals a and b,
Ûo is the Coulomb operator and Ĵo is the exchange operator. They are given by the following
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formulae1:

Ûo|ϕ (⃗r1)⟩= ϕ (⃗r1)
∫

d3r2
|ϕo(⃗r2)|2

|⃗r1 − r⃗2|
and

Ĵo|ϕ (⃗r1)⟩= ϕo(⃗r1)
∫

d3r2
ϕ∗

o (⃗r2)ϕ (⃗r2)

|⃗r1 − r⃗2|
.

Considering the spins σ and σ ′, the two-electrons Slater determinant allows us to write
the states of figure 2.20:

ψa,σ ;b,σ ′ (⃗r1,s1 ;⃗r2,s2) =
1√
2

∣∣∣∣∣ϕa(⃗r1)σ(s1) ϕa(⃗r2)σ(s2)

ϕb(⃗r1)σ
′(s1) ϕb(⃗r2)σ

′(s2)

∣∣∣∣∣
=

1√
2

(
ϕa(⃗r1)ϕb(⃗r2)σ(s1)σ

′(s2)−ϕb(⃗r1)ϕa(⃗r2)σ
′(s1)σ(s2)

)
= |ϕσ

a ϕ
σ ′
b ⟩

We can calculate the matrix elements of the V̂ee by simply calculating ⟨ψa,σ ;b,σ ′| 1
|⃗r1−⃗r2| |ψa,σ ;b,σ ′⟩

and ⟨ψa,σ ;b,σ ′| 1
|⃗r1−⃗r2| |ψa,σ ′;b,σ ⟩. When both electrons have the same spin (σ = σ ′), i.e. for

the ψ↑↑ = | ↑,↑⟩ and ψ↓↓ = | ↓,↓⟩, we have

⟨ψa,σ ;b,σ |
1

|⃗r1 − r⃗2|
|ψa,σ ;b,σ ⟩=Uab − Jab

where Uab is the Coulomb repulsion integral and has the form

Uab =
∫

d3 r1

∫
d3 r2

|ϕa(⃗r1)|2|ϕb(⃗r2)|2

|⃗r1 − r⃗2|
(2.17)

and Jab is the exchange integral and has the form

Jab =
∫

d3 r1

∫
d3 r2

ϕ∗
a (⃗r1)ϕb(⃗r1)ϕ

∗
b (⃗r2)ϕa(⃗r2)

|⃗r1 − r⃗2|
(2.18)

In the case of opposite spins, i.e for the states ψ↑↓ = | ↑,↓⟩ and ψ↓↑ = | ↓,↑⟩, we have

⟨ψa,↑;b,↓|
1

|⃗r1 − r⃗2|
|ψa,↑;b,↓⟩= ⟨ψa,↓;b,↑|

1
|⃗r1 − r⃗2|

|ψa,↓;b,↑⟩=Uab

1We used the following the notation to go from function to bra-ket notation: ϕ (⃗r) = |ϕ (⃗r)⟩= ⟨⃗r|ϕ⟩.
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and
⟨ψa,↑;b,↓|

1
|⃗r1 − r⃗2|

|ψa,↓;b,↑⟩= ⟨ψa,↓;b,↑|
1

|⃗r1 − r⃗2|
|ψa,↑;b,↓⟩=−Jab.

if the orbitals are real. Thus, we can give the total electronic energy of the states given in
figure 2.20:

• For the states a) & b): E = Eo + εa + εb +Uab − Jab

• For the states c) & d): E = Eo + εa + εb +Uab

where Eo is the energy of the electrons of the occupied orbitals that is all electrons except
the ones in orbitals a and b. In the basis of ψ↑↑, ψ↑↓, ψ↓↑ and ψ↓↓ we can write the Coulomb
repulsion term as following:

ψ↑↑ ψ↑↓ ψ↓↑ ψ↓↓

Vee =


Uab − Jab 0 0 0

0 Uab −Jab 0
0 −Jab Uab 0
0 0 0 Uab − Jab


ψ↑↑
ψ↑↓
ψ↓↑
ψ↓↓

(2.19)

Then the two-electrons Hamiltonian matrix can be written as:

ψ↑↑ ψ↑↓ ψ↓↑ ψ↓↓

Hel = Eo I +


εa + εb +Uab − Jab 0 0 0

0 εa + εb +Uab −Jab 0
0 −Jab εa + εb +Uab 0
0 0 0 εa + εb +Uab − Jab


ψ↑↑
ψ↑↓
ψ↓↑
ψ↓↓

(2.20)

Diagonalizing the matrix 2.20 gives us the energies and the corresponding eigenstates. The
triplet states are ψ↑↑, ψ↓↓ and (ψ↑↓+ψ↓↑)/

√
2 with the energy εtriplet = εa + εb +Uab − Jab.

The singlet state is (ψ↑↓−ψ↓↑)/
√

2 with the energy εsinglet = εa + εb +Uab + Jab. It is pretty
much clear that Uab > 0 but one can easily show that Jab > 0. Moreover, it is also obvious
that εtriplet − εsinglet = −2Jab. Thus, if the many-body basis set was only the one which
reduces to those four Slater determinants, then the triplet state would be the ground state,
in this open-shell two electron-two orbital system. Let us take the limit case when the two
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sites are not spatially separated, which means that the system is equivalent to an one-site
system of one atom with two orbitals. Then, the result above can be seen as the Hund’s first
rule: In a degenerated atomic shell, the ground state will have the maximum spin. However,
when the two sites are at very large distance, like in H2 at very large distance, the ground
state is the singlet state due to the contribution of the other Slater determinants in the wave
function expansion. Thus, one should use perturbation theory to introduce the effect of the
non dominant configurations in the wave function and the off-diagonal part of the Fock
operator. These other terms can reverse the order of the singlet and triplet states.

2.2.3.2 Including the off-diagonal terms of Fock operator

Anderson Superexchange a.k.a. Superexchange through Space

Now, let us consider the case in which two electrons of opposite spins occupy the same orbital
in the open d shell environment given above (without taking into account the participation
of the p orbitals at first), we have six possible states: | ↑,↑⟩, | ↓,↓⟩, | ↑,↓⟩, | ↓,↑⟩, | ↑↓, ·⟩
and |·,↑↓⟩. The first four states are named as “covalent states” whereas the last two are
named as “ionic states”. In order to build the Hamiltonian of such a system in the basis of
these states, let us recall the operators of second quantization. The operator c†

ασ creates a
spin-σ electron in orbital α , where α = a,b. For example, c†

a↑|0⟩ creates a spin-up electron
in the orbital a. Here, |0⟩ denotes the system with no electrons. In order to annihilate
this electron from its orbital, we introduce the operator cασ . For example, ca↑ removes a
spin-up electron from the orbital a, if there is a spin-up electron in orbital a, otherwise it
returns 0. The operator nασ = c†

ασ cασ works as an observer. It returns 0 when there is no
spin-σ electron in the orbital α whereas it returns 1 when there is an electron. This operator
can be used to describe the on-site Coulomb repulsion operator acting on orbital σ by the
formulation nα↑nα↓. We defined the Coulomb repulsion between two electrons in a d-orbital
as Uaa and Ubb, for a and b orbitals, respectively, as in equation 2.17. Then, the off-site
Coulomb repulsion Uab between the occupied a and b orbitals can be also expressed by using
(nα↑+nα↓)(nα ′↑+nα ′↓). Jab is the exchange term between the states | ↑,↓⟩ and | ↓,↑⟩ and
Jab is also the exchange term between the states | ↑↓, ·⟩ and |·,↑↓⟩ since we take the orbitals
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a and b real. Finally, −tdd is the hopping between a and b orbitals.

Ĥ = ∑
σ

(εanaσ + εbnbσ )︸ ︷︷ ︸
(a)

+Uaana↑na↓+Ubbnb↑nb↓︸ ︷︷ ︸
(b)

+Uab(na↑nb↓+na↓nb↑)︸ ︷︷ ︸
(c)

+(Uab − Jab)(na↑nb↑+na↓nb↓)︸ ︷︷ ︸
(d)

+Jab(c
†
a↑c†

b↓ca↓cb↑+ c†
b↑c†

a↓cb↓ca↑)︸ ︷︷ ︸
(e)

+Jab(c
†
a↑c†

a↓cb↓cb↑+ c†
b↑c†

b↓ca↓ca↑)︸ ︷︷ ︸
(f)

−tdd ∑
σ

(c†
aσ cbσ + c†

bσ
caσ )︸ ︷︷ ︸

Ŵ=perturbation

(2.21)

Here, the part (a) is for the energy to put an electron on each orbital, the part (b) is for on-site
Coulomb energy when two electrons are on the same orbital a or b, the part (c) is the off-site
Coulomb energy when two electrons are on each orbital a and b with opposite spins, the part
(d) is the energy of one electron on each orbital a and b with same spins, the part (e) is the
exchange energy between the states | ↑,↓⟩ and | ↓,↑⟩ and the part (f) is the exchange energy
between the states | ↑↓, ·⟩ and |·,↑↓⟩

We can assume that each part that we just gave is much larger than the term that the
hopping −tdd describes. Thus, one can split the Hamiltonian into two parts: Ĥ0 unperturbed
Hamiltonian ((a)+ (b)+ (c)+ (d)+ (e)+ (f)) and Ŵ perturbation. As one can see, we can
write the Hamiltonian by separating into unperturbed and perturbation parts; Ĥ = Ĥ0 +Ŵ .
In the basis of the states | ↑,↑⟩, | ↓,↓⟩ | ↑,↓⟩, | ↓,↑⟩, | ↑↓, ·⟩ and |·,↑↓⟩, the unperturbed
Hamiltonian matrix is as follows:

| ↑,↑⟩ | ↓,↓⟩ | ↑,↓⟩ | ↓,↑⟩ | ↑↓, ·⟩ |·,↑↓⟩

H0 =



εa + εb +Uab − Jab 0 0 0 0 0
0 εa + εb +Uab − Jab 0 0 0 0
0 0 εa + εb +Uab −Jab 0 0
0 0 −Jab εa + εb +Uab 0 0
0 0 0 0 2εa +Uaa Jab

0 0 0 0 Jab 2εb +Ubb


(2.22)
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Considering εa + εb as reference energy and defining ∆ab = εa − εb the matrix given in 2.22
becomes as following:

| ↑,↑⟩ | ↓,↓⟩ | ↑,↓⟩ | ↓,↑⟩ | ↑↓, ·⟩ |·,↑↓⟩

H0 =



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab −Jab 0 0
0 0 −Jab Uab 0 0
0 0 0 0 Uaa +∆ab Jab

0 0 0 0 Jab Ubb −∆ab


(2.23)

This unperturbed Hamiltonian has eigenenergies

ε1,2,3 =Uab − Jab, ε4 =Uab + Jab, ε5,6 =
Uaa +Ubb

2
±

√
(Uaa −Ubb +2∆ab)2 +4J2

ab

2

with eigenstates

ψ1 = ψ↑↑ = | ↑,↑⟩
ψ2 = ψ↓↓ = | ↓,↓⟩

ψ3 =
ψ↑↓+ψ↓↑√

2
=

| ↑,↓⟩+ | ↓,↑⟩√
2

ψ4 =
ψ↑↓−ψ↓↑√

2
=

| ↑,↓⟩− | ↓,↑⟩√
2

ψ5,6 =

(
| ↑↓, ·⟩+

(
Ubb−Uaa−2∆ab±

√
(Uaa−Ubb+2∆ab)2+4J2

ab
2Jab

)
|·,↑↓⟩

)
√√√√1+

(
Ubb−Uaa−2∆ab±

√
(Uaa−Ubb+2∆ab)

2)+4J2
ab

2Jab

)2
.

Assuming that εa = εb, Uaa =Ubb =Ud one has the eigenenergies:

ε1,2,3 =Uab − Jab, ε4 =Uab + Jab, ε5,6 = ε± =Ud ± Jab
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ψ1 = ψ↑↑ = | ↑,↑⟩
ψ2 = ψ↓↓ = | ↓,↓⟩

ψ3 =
ψ↑↓+ψ↓↑√

2
=

| ↑,↓⟩+ | ↓,↑⟩√
2

ψ4 =
ψ↑↓−ψ↓↑√

2
=

| ↑,↓⟩− | ↓,↑⟩√
2

ψ5,6 = ψ
±
ion =

| ↑↓, ·⟩± |·,↑↓⟩√
2

.

The first three states are the triplet covalent states. ψ4 is the singlet covalent state. ψ5 = ψ
+
ion

(ε5 = ε+) and ψ6 = ψ
−
ion (ε6 = ε−) are the ionic states.

Thus, the diagonalized unperturbed Hamiltonian is as follows:

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

H̃0 =



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab − Jab 0 0 0
0 0 0 Uab + Jab 0 0
0 0 0 0 Ud + Jab 0
0 0 0 0 0 Ud − Jab



ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

(2.24)

Since U >Uab, the ground states are the triplet states ψ1, ψ2 and ψ3 with the energy Uab−Jab.

When we include the hopping and perturb the Hamiltonian, we encounter an exchange
mechanism, which can be schematically seen in figure 2.21. This exchange mechanism is
named as “Anderson superexchange” [60] or “Superexchange through space”. Here, moving
an electron from one orbital to another orbital comes with the hopping −tdd . By adding the

...
p1 pn

a b
...

p1 pn

a b a b

...
p1 pn

a b

...
p1 pn

...
p1 pn

a b
...

p1 pn

a b

−tdd −tdd

Fig. 2.21 Anderson superexchange a.k.a Superexchange “through space”

hopping to the Hamiltonian, one can rewrite the complete Hamiltonian matrix (Ĥ = Ĥ0 +Ŵ )
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as the following in the basis set of {| ↑,↑⟩, | ↓,↓⟩, | ↑↓⟩, | ↓,↑⟩, | ↑↓, ·⟩, |·,↑↓⟩}:

H =



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab −Jab −tdd −tdd

0 0 −Jab Uab tdd tdd

0 0 −tdd tdd Ud Jab

0 0 −tdd tdd Jab Ud



=



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab −Jab 0 0
0 0 −Jab Uab 0 0
0 0 0 0 Ud Jab

0 0 0 0 Jab Ud


︸ ︷︷ ︸

H0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −tdd −tdd

0 0 0 0 tdd tdd

0 0 −tdd tdd 0 0
0 0 −tdd tdd 0 0


︸ ︷︷ ︸

W

(2.25)
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The Hamiltonian H in the basis set of the eigenstates of H0 can be written as:

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

H =



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab − Jab 0 0 0
0 0 0 Uab + Jab −2tdd 0
0 0 0 −2tdd Ud + Jab 0
0 0 0 0 0 Ud − Jab



=



Uab − Jab 0 0 0 0 0
0 Uab − Jab 0 0 0 0
0 0 Uab − Jab 0 0 0
0 0 0 Uab + Jab 0 0
0 0 0 0 Ud + Jab 0
0 0 0 0 0 Ud − Jab


︸ ︷︷ ︸

H0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2tdd 0
0 0 0 −2tdd 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

W

(2.26)

We will take into account Ŵ at the 2nd order of perturbation theory to find the effective
Hamiltonian. The low-energy states, i.e. the singlet and the triplet states, are the model
space of our system. However, as one can see from the matrix W̃ the only hopping element
appears between the singlet state ψ4 and the ionic state ψ5 = ψ

+
ion. Thus, applying the 2nd

perturbation theory on the triplet states does not give any correction to the energy of those
states. However, one should correct the energy of the singlet state. Thus, we will apply 2nd

order perturbation on the model space.

2nd order perturbation
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At the 2nd order perturbation, one can obtain the hi j elements with the following formula;

hi j = ∑
κ

⟨ψi|T̂ |ψκ⟩⟨ψκ |T̂ |ψ j⟩
E(0)−E(ψκ )

κ ̸= model space (2.27)

where E(ψκ ) is the energy of the state ψκ which is out of the model space. The indexes i and
j correspond to the eigenstates of H̃0. Thus, the correction to the energy of the singlet state
ψ4 is given as − 4t2

dd
Ud−Uab

Thus, the corrected energy of the singlet state is given by

εsinglet =Uab + Jab −
4tdd

Ud −Uab
(2.28)

while the energy of the triplet states remains εtriplet = Uab − Jab Finally, we show that the
singlet-triplet splitting (the effective exchange coupling) is

εtriplet − εsinglet−= Jeff
dd =

4t2
dd

Ud −Uab
−2Jab.

Here, Jeff
2 =

4t2
dd

Ud−Uab
is a 2nd order term of the effective exchange coupling whereas Jeff

1 =

−2Jab is a 1st order term. Jeff
dd is positive as long as 4t2

dd
Ud−Uab

> 2Jab, which is the case except
in very special conditions where the hopping integral is very small due to symmetry or
distance reasons. Thus, the singlet state is the ground state and “Anderson Superexchange”
or “Superexchange through space” results with antiferromagnetism.

Superexchange through Bridge

For the Anderson superexchange, it is crucial to have hopping between the d-orbitals.
However, the d-orbitals are so localized that the hopping is non-negligible only between the
orbitals on different atoms that are close to each other. In the case of transition metal oxides,
transition metal cations (manganese ions in manganites) are separated by oxygen anions.
Since Mn−Mn distance is too large for the Anderson superexchange to be effective in most
of the antiferromagnetic manganites, it is not possible to explain the antiferromagnetism in
these compounds by means of Anderson superexchange. In such a situation we should take
into account the 4th order of the pertubation theory that involves a mechanism where hopping
is done through a bridge orbital, for example through the oxygen p orbital. This mechanism
is briefly called “superexchange through bridge” and can be seen in figure 2.22. Now for
simplification we give the Coulomb repulsion between two electrons in a d-orbital as Ud and
we neglect the Coulomb repulsion term between two electrons in p-orbitals. We also neglect
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...
p1 pn

a b
...

p1 pn

a b
...

p1 pn

a b
...

p1 pn

a b

−tpd

a b
...

p1 pn

a b
...

p1 pn

−tpd

a b
...

p1 pn

a b
...

p1 pn

−tpd

a b
...

p1 pn

a b
...

p1 pn

−tpd

Fig. 2.22 Superexchange “through bridge”

the off-site Coulomb repulsion Uab since we assume the distance between magnetic ions are
large (for example Mn−Mn distance). The energy of an electron in a d or p orbital is given
by εd or εp, respectively. −tpd is the hopping between p and d orbitals. The Hamiltonian for
such a system is given by the following:

Ĥ = ∑
σ

(
εd ∑

α=a,b
nασ + εpnpσ

)
+Uab ∑

σ

(
∑

α=a,b
nασ nα ′σ ′

)
+Ud ∑

α=a,b
nα↑nα↓

+Jab ∑
σ

(
∑

α=a,b
c†

ασ c†
α ′σ ′cασ ′cα ′σ

)
+ Jab ∑

σ

(
∑

α=a,b
c†

ασ c†
ασ ′cα ′σ ′cασ

)

−tpd ∑
σ

(
∑

α=a,b
c†

ασ cpσ + c†
pσ cασ

) (2.29)

Setting the reference energy to 2(εd +εp) and taking ∆pd = εd −εp gives us the Hamiltonian
matrix for antiparallel spins in d-orbitals:

|b↓p↑↓i a↑⟩ |b↑p↑↓i a↓⟩ |b↓p↑i a↑↓⟩ |b↑↓p↓i a↑⟩ |b↑p↓i a↑↓⟩ |b↑↓p↑i a↓⟩ |p↑↓i a↑↓⟩ |b↑↓p↑↓i ⟩ |b↑↓a↑↓⟩

H =



Uab −Jab tpd tpd 0 0 0 0 0
−Jab Uab 0 0 tpd tpd 0 0 0
tpd 0 Ud +2Uab +∆pd 0 0 0 −tpd 0 −tpd

tpd 0 0 Ud +2Uab +∆pd 0 0 0 −tpd −tpd

0 tpd 0 0 Ud +2Uab +∆pd 0 tpd 0 tpd

0 tpd 0 0 0 Ud +2Uab +∆pd 0 tpd tpd

0 0 −tpd 0 tpd 0 Ud Jab 0
0 0 0 −tpd 0 tpd Jab Ud 0
0 0 −tpd −tpd tpd tpd 0 0 2(Ud +2Uab +∆pd)


(2.30)

with the basis set of the states which can be seen in figure 2.23 (left). Considering εd > εp

and noting that the high energy states are the ones with at least one doubly occupied d-orbital,
|b↓p↑↓i a↑⟩ and |b↑p↑↓i a↓⟩ are the low-energy states while the rest of the states are high-energy
states. One can apply the downfolding recursively to the Hamiltonian matrix given in 2.30.

Downfolding technique
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...

c†
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c†
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c†
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= |b↑↓p↓i a↑⟩
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= |b↑↓p↑i a↓⟩

= |p↑↓i a↑↓⟩

= |b↑↓p↑↓i ⟩
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= |b↑a↑↓⟩

Fig. 2.23 (Left) Basis set for the superexchange “through bridge” Hamiltonian given in 2.30
and (right) basis set for the effective hopping Hamiltonian given in 2.38
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We can obtain the effective Hamiltonian by partitioning the Hilbert space into a reduced one.
In this scenario, one considers the Hamiltonian matrix H in 2.30 as blocks of interest, such as
low-energy states, high energy states. Thus, the Hamiltonian matrix H becomes as following;
into blocks of low-energy states, high-energy states and transfer blocks matrices:

A =

(
H00 T01

T10 H11

)
and B =

(
H11 T12

T21 H22

)
(2.31)

Then,

H =

H00 T01 0
T10 H11 T12

0 T21 H22

=

(
H00 T̃01

T̃10 B

)
. (2.32)

Here, H00 is the Hamiltonian of the low-energy states, H11 and H22 are the Hamiltonian for
the high energy states. T01 and T10 describe the transfer between the subspaces H00 and H11.
T12 and T21 describe the transfer between the subspaces H11 and H22. Thus, now, one can
partition the full system into low-energy states and project out the high-energy states. This
process can be done by downfolding method where one can find the resolvent matrix of H by
the following:

R(ε,H) = (ε −H)−1 =

(
ε −H00 T̃01

T̃10 ε −B

)−1

=
(
ε − (H00 + T̃01(ε −B)−1T̃10

)−1

=

ε − (H00 + T̃01

(
ε −H11 T12

T21 ε −H22

)−1

T̃10

−1

=

ε − (H00 +T01(ε −H11 −T12(ε −H22)
−1T21)

−1)T10︸ ︷︷ ︸
Heff

)


−1

(2.33)



60 Manganites

Thus, the effective Hamiltonian can be given by setting ε = 0:

Heff = H00 +T01(ε −H11 −T12(ε −H22)
−1T21)

−1)T10

∼ H00 +T01(−H11 −T12(−H22)
−1T21)

−1)T10

=

(
Uab − Jab −

2t2
pd

Ud +2Uab +∆pd

)(
1 0
0 1

)

+

(
Jab −

2t4
pd

(Ud +2Uab +∆pd)2

(
1

Ud + Jab
+

1
Ud +2Uab +∆pd

))(
1 −1
−1 1

)
. (2.34)

The eigenvalues and the corresponding eigenstates of the effective Hamiltonian given in 2.34
are as follows:

ε1 =Uab − Jab −
2t2

pd

Ud +2Uab +∆pd

ε2 =Uab + Jab −
2t2

pd

Ud +2Uab +∆pd
−

4t4
pd

(Ud +2Uab +∆pd)2

(
1

Ud + Jab
+

1
Ud +2Uab +∆pd

)

ψ1 =
|b↓p↑↓i a↑⟩+ |b↑p↑↓i a↓⟩√

2

ψ2 =
|b↓p↑↓i a↑⟩− |b↑p↑↓i a↓⟩√

2

Thus, one can obtain the effective exchange coupling by εtriplet − εsinglet = ε1 − ε2:

Jeff
pd =

4t4
pd

(Ud +2Uab +∆pd)2

(
1

Ud + Jab
+

1
Ud +2Uab +∆pd

)
−2Jab (2.35)

Here, Jeff
4 =

4t4
pd

(Ud+2Uab+∆pd)2

(
1

Ud+2ab+Jab
+ 1

Ud+∆pd

)
is a 4th order term of the effective ex-

change coupling whereas Jeff
1 =−2Jab is a 1st order term. Jeff

pd is positive as long as

4t4
pd

(Ud +2Uab +∆pd)2

(
1

Ud +2Uab + Jab
+

1
Ud +∆pd

)
> 2Jab

which is the case except very special conditions where the hopping integral is very small due
to the symmetry reasons. Thus, ψ2, the singlet state, is the ground state. The superexchange
“through bridge” mechanism results with antiferromagnetism. The effective exchange cou-
pling Jeff

pd exhibits the “superexchange through bridge” mechanism with four hopping steps
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as one can again see in figure 2.22. In order to generalize the superexchange through bridge
mechanism explained above for a system with several open d shells, one has to sum up all
the terms for all pairs of one electron on orbital a and one electron on orbital b. Of course,
some of the terms will be zero due to symmetry.

Finally, we can give the effective exchange coupling with the contribution of 1st , 2nd and
4th order terms:

Jeff = Jeff
1 + Jeff

2 + Jeff
4

=−2Jab +
4t2

dd
Ud −Uab

+
4t4

pd

(Ud +2Uab +∆pd)2

(
1

Ud +2Uab + Jab
+

1
Ud +2Uab +∆pd

)

Effective Hopping

Now we would like to talk about the case where there is only one electron for two d-
orbitals. We consider the system of two open d shells separated with the bridge p orbitals.
This time, there is only one electron on the d orbitals. Let us first assume that there is a direct
hopping (1st order perturbation) between the two d-orbitals a and b, the bridge orbitals do not
participate the mechanism at this stage. This case can be schematically seen in figure 2.24.
There are two possible states: c†

a↑|0⟩= | ↑, ·⟩ and c†
b↑|0⟩= |·,↑⟩. Using the Hamiltonian given

...
p1 pn

a b
...

p1 pn

a b a b
...

p1 pn

a b
...

p1 pn

−tdd

Fig. 2.24 Direct hopping

in 2.21, setting εa = εb as a reference energy, one can obtain the Hamiltonian matrix in the
basis set of the states | ↑, ·⟩ and |·,↑⟩ for such mechanism:

| ↑, ·⟩ |·,↑⟩

H =

(
0 −tdd

−tdd 0

)
| ↑, ·⟩
|·,↑⟩

(2.36)
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Diagonalizing this matrix gives us the eigenenergies and the corresponding eigenstates

ε1 =−tdd, ψ1 =
| ↑, ·⟩+ |·,↑⟩√

2

ε2 = tdd, ψ2 =
| ↑, ·⟩− |·,↑⟩√

2

Taking tdd > 0, ψ1 is the ground state. Thus, the delocalization energy also known as the
hopping energy is given by

ε1 − εa = teff
1 =−tdd.

Now, let us consider the 2nd order perturbation in which the bridge p-orbitals also can
participate the hopping mechanism. The schematic representation of such a mechanism is
given in figure 2.25.

...
p1 pn

a b
...

p1 pn

a b
...

p1 pn

a b
...

p1 pn

a b

−tpd

a b

...
p1 pn

a b

...
p1 pn

−tpd

Fig. 2.25 Hopping through bridge

The Hamiltonian of such a system can be given by

Ĥ = ∑
σ

(
εd ∑

α=a,b
nασ + εpnpσ

)
+Uab ∑

σ

(
∑

α=a,b
nασ nα ′σ ′

)
+Ud ∑

α=a,b
nα↑nα↓

−tpd ∑
σ

(
∑

α=a,b
(c†

ασ cpσ + c†
pσ cασ )

)
.

(2.37)

Setting the reference energy as εd + 2εp and taking ∆pd = εd − εp and in the basis set of
the states given in figure 2.23 (right), the Hamiltonian matrix for a system of 2-spin-up, 1



2.2 General Properties of CMR Manganites 63

spin-down electrons can be given as follows:

|p↑↓i a↑⟩ |b↑p↑↓i ⟩ |b↑p↓i a↑⟩ |b↓p↑i a↑⟩ |b↑p↑i a↓⟩ |p↑i a↑↓⟩ |b↑↓p↑i ⟩ |b↑↓a↑⟩ |b↑a↑↓⟩

H =



0 0 tpd −tpd 0 tpd 0 0 0
0 0 −tpd 0 tpd 0 tpd 0 0

tpd −tpd Uab +∆pd 0 0 0 0 tpd −tpd

−tpd 0 0 Uab +∆pd 0 0 0 −tpd 0
0 tpd 0 0 Uab +∆pd 0 0 0 tpd

tpd 0 0 0 0 Ud +∆pd 0 0 −tpd

0 tpd 0 0 0 0 Ud +∆pd −tpd 0
0 0 tpd −tpd 0 0 −tpd Ud +2∆pd 0
0 0 −tpd 0 tpd −tpd 0 0 Ud +2Uab +2∆pd


(2.38)

Let us obtain the effective Hamiltonian with both 2nd order perturbation and downfolding
the high-energy states.

1) 2nd Order Perturbation

The ground states of the unperturbed H0 of the Hamiltonian given 2.38 are ψ1 = c†
pi↓c†

pi↑c†
a↑|0⟩=

|p↑↓i a↑⟩ and ψ2 = c†
b↑c†

pi↓c†
pi↑|0⟩= |b↑p↑↓i ⟩. One can obtain the effective Hamiltonian in this

basis set by using the formula given in 2.27:

Heff =

− 2t2
pd

Uab+∆pd
− t2

pd
Ud+∆pd

t2

Uab+∆pd

t2

Uab+∆pd
− 2t2

pd
Uab+∆pd

− t2
pd

Ud+∆pd

 (2.39)

Solving the eigenvalue problem of this Hamiltonian gives us the eigenstates

ε1 =−
t2
pd

Uab +∆pd
−

t2
pd

Ud +∆pd
, ψ1 =

|p↑↓i a↑⟩+ |b↑p↑↓i ⟩√
2

ε2 =−3
t2
pd

Uab +∆pd
−

t2
pd

Ud +∆pd
, ψ2 =

|p↑↓i a↑⟩− |b↑p↑↓i ⟩√
2

If tpd > 0, then ψ2 is the ground state. Thus, the delocalization energy is given by

ε1 − ε2 = teff
2 = 2

t2
pd

∆pd
.

2) Downfolding technique
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We can also obtain the effective Hamiltonian by reducing the Hilbert space. Noting that high
energy states are the states with at least one doubly occupied d-orbital, we can partition the
Hamiltonian matrix given in 2.38 into blocks of low-energy states, high-energy states and
transfer blocks matrices:

A =

(
H00 T01

T10 H11

)
and B =

(
H11 T12

T21 H22

)
(2.40)

Then,

H =

H00 T01 0
T10 H11 T12

0 T21 H22

=

(
H00 T̃01

T̃10 B

)
(2.41)

The resolvent matrix of H is given by the following:

R(ε,H) = (ε −H)−1 =

(
ε −H00 T̃01

T̃10 ε −B

)−1

=
(
ε − (H00 + T̃01(ε −B)−1T̃10

)−1

=

ε − (H00 + T̃01

(
ε −H11 T12

T21 ε −H22

)−1

T̃10

−1

=

ε − (H00 +T01(ε −H11 −T12(ε −H22)
−1T21)

−1)T10︸ ︷︷ ︸
Heff

)


−1

(2.42)

Thus, the approximation of the effective Hamiltonian can be given by setting ε = 0 and
taking the limit when Ud → ∞:

Heff = H00 +T01(ε −H11 −T12(ε −H22)
−1T21)

−1)T10

∼ H00 +T01(−H11 −T12(−H22)
−1T21)

−1)T10

= −
2t2

pd

Uab +∆pd

(
1 −1

2
−1

2 1

)
(2.43)
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Solving the eigenvalue problem of this Hamiltonian gives us the eigenstates

ε1 =−
t2
pd

Uab +∆pd
, ψ1 =

|p↑↓i a↑⟩+ |b↑p↑↓i ⟩√
2

ε2 =−3
t2
pd

Uab +∆pd
, ψ2 =

|p↑↓i a↑⟩− |b↑p↑↓i ⟩√
2

If tpd > 0, then ψ2 is the ground state. Thus, the delocalization energy is given by

ε1 − ε2 = teff
2 = 2

t2
pd

∆pd
.

We obtain the same delocalization energy as 2nd order perturbation theory teff
2 = 2

t2
pd

∆pd
.

In order to generalize the effective hopping mechanism explained above for a system with
several open d shells, one has to sum up all the terms for all pairs of one electron on the
orbitals a and b. Naturally, some of the terms will be zero due to symmetry.

Finally, the effective hopping energy can be given by the contribution of both 1st and 2nd

order terms:

teff = teff
1 + teff

2 =−2tdd +2
t2
pd

∆pd

Due to the large distance between Mn ions in manganites (more generally metals in
transition-metal oxides), one can expect the delocalization energy teff

1 and the exchange
coupling Jeff

2 to be small as they include the terms consisting of tdd . On the other hand, the
terms teff

2 and Jeff
4 , i.e. the terms consisting of tpd , are dominant if they are non-zero.

Double Exchange

In doped manganites with mixed valence, there are Mn3+ and Mn4+ ions separated by
2p orbitals of O2−. In Mn4+ (d3) ions, the t2g orbitals are half-filled and the eg orbitals are
empty, whereas in Mn3+ (d4) ions, the t2g are still half-filled but there is one electron in the
eg level. While the nature of the occupied eg orbital in Mn3+ is a question of symmetry and
local energetics of the system (crystal field splitting, Jahn-Teller distortion etc.), one should
note that delocalization is allowed between the eg shells of the Mn3+ and the Mn4+ ions, for
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a ferromagnetic alignment. This mechanism is called “Double exchange” [15]. Let us try to
explain how this double exchange mechanism takes place.

When there are Mn3+ and Mn4+ ions separated with 2p orbitals of O2−, there are three
terms in the energy of these two ions. The energy can be be written as:

1)
Edeloc

t2g

eg

Mn3+
t2g

eg

Mn4+

EHund EHundESE

Edeloc

t2g

eg

Mn3+
t2g

eg

Mn4+

2)

EHund ESE

Edeloc

t2g

eg

Mn3+
t2g

eg

Mn4+

3)

EHund EHundESE

Fig. 2.26 Possible competing mechanisms in Mn3+-Mn4+ environment 1) Frustrated su-
perexchange 2) Frustrated delocalization 3) Frustrated Hund’s Exchange.

E = EHund +Edeloc +ESE +K

where EHund is the Hund’s exchange energy within each ion, Edeloc is the eg delocalization
energy between the ions, ESE is the superexchange energy, and K is the contribution of the
other terms and it is a constant. Here, EHund ∝ JH , Edeloc ∝ teff and ESE ∝ Jeff. One cannot
lower energy of all terms at the same time and has to frustrate one of them. Thus, depending
on which pair is stabilized, three scenario can take place as follows:

1. EHund +Edeloc → “Frustrated Superexchange”: The system is ferromagnetic ordered
Mn ions and one loses antiferromagnetic coupling between the ions.

2. EHund +ESE → “Frustrated Delocalization”: The system is antiferromagnetic ordered
Mn ions and one loses the delocalization energy between high spins.

3. ESE +Edeloc → “Frustrated Hund’s exchange”: The delocalization of one eg electron
takes place and there exist an antiferromagnetic ordering of the spins in eg and t2g level.
Thus, part of the electron ion each atom are not ferromagnetically aligned (atoms are
not high spin anymore).

These three scenario can be schematically seen in figure 2.262 Among these three
scenario, the first one takes place in Mn3+−O2−−Mn4+ environment since the gain of
energy that one gets with EHund and Edeloc is more than the one of ESE (EHund is order
of magnitude to eV, Edeloc is order of magnitude to 0.1 eV, ESE is order of magnitude to

2The hopping of the one electron is given here schematically. In general, the hopping takes place through
the oxygen 2p bridge orbitals in a mixed valence manganite.
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0.01 eV.). Thus, because of the strong intra-atomic Hund’s coupling, the transfer from
Mn3+ and Mn4+ is energetically favourable only when the core spins (t2g) of the Mn ions
are aligned ferromagnetically. This explains why the double exchange mechanism leads
to ferromagnetism despite the antiferromagnetic superexchange interactions. The double
exchange mechanism explains also the correlation between the electrical conduction and
ferromagnetism in doped manganites discovered by Jonker and Van Santen [12].

From the analysis above, one can point out the role of the allignment of the core t2g spins
in determining the eg electron delocalization. The effective eg hopping interaction between
neighbouring magnetic sites i and j can be given by teff

i j = t0
i j cos(θi j/2) [61, 62]. Here, t0

i j is
the intersite hopping interaction of the eg electron between the neighbouring sites, i and j
and θi j classical angle between the neighbouring core t2g spins of sites i and j. Thus, when
the t2g spins are alligned parallel teff

i j is maximized (i.e. the case seen in figure 2.26 1)). This
hopping maximization results an energy gain and reveals the ferromagnetic character of
double exchange mechanism. On the other hand, when the t2g spins are alligned antiparallel
teff
i j = 0 (i.e. the case seen in figure 2.26 2)).

The role of the geometry

In the effective hopping as well as exchange, the bond angle, i.e the angle of Mn−O−Mn
plays a significant role. In an ideal octahedron environment the bond angle is 180◦. In
figure 2.27, one can see a representation of Mn−O−Mn angle, particularly the dx2−y2 −
px − dx2−y2 angle. Here, 180−α is the angle between the two dx2−y2 orbitals. The p-d

−tpd
180−α

α

dx2−y2 dx2−y2

px

−tpd cosα

Fig. 2.27 A representation of the bond angle of dx2−y2 − px −dx2−y2 in a distorted octahedron

transfer interaction will scale as teff
2 cosα where teff

2 is 2nd order term of the effective hopping
in the ideal cubic perovskite where the bond angle Mn−O−Mn is 180◦. Thus, the 2nd order
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term of the effective hopping is given by

teff
2 ∝ t2

pd cosα

whereas the 4th order term of the effective superexchange coupling is given by

Jeff
2 ∝ t4

pd cos2
α.

One should note that the hopping energy is large for dx2−y2 → dx2−y2 in xy plane and
dz2 → dz2 in the z direction.

2.2.4 Spin, Orbital and Charge Ordering

In perovskite manganites, different degrees of freedom can order: spin, electron and orbital.
These orders are called magnetic, charge and orbital orders, respectively. Depending on
the interactions at play, the spin of the electrons can allign in a particular pattern. This
particular pattern is called spin ordering. Ferromagnetism is the result of parallel spin
alignment, whereas antiferromagnetism occurs when spins are antiparallel to each other. In
perovskites, antiferromagnetic spin ordering can take place in three different ways (limit-
ing ourselves to first neighbours): (i) A-type antiferromagnetism; in-plane ferromagnetic
spin ordering and out-of-plane antiferromagnetic ordering (ii) C-type antiferromagnetism;
in-plane antiferromagnetic spin ordering and out-of-plane ferromagnetic spin ordering (iii)
G-type antiferromagnetism; in-plane antiferromagnetic spin ordering and out-of-plane anti-
ferromagnetic spin ordering. These different types of spin ordering of perovskite lattice is
given schematictally in the figure 2.28.

The orbital ordering is a phenomenon where an orbital of a given degenerate shell is
preferentially occupied and this preferential occupation leads to an ordered pattern. These
preferential occupations usually results from the Jahn-Teller distortion, while the coopera-
tivity between Jahn-Teller effects on the different atoms of the system results in the orbital
ordering. Maezono et al. has studied the orbital ordering and spin ordering in undoped
manganese oxides [63]. They obtained a theoretical phase diagram for spin/orbital ordering
as a function of the antiferromagnetic interactions Js between the t2g electrons as illustrated
in figure 2.29. For intermediate values of Js, the system is A-type antiferromagnetic with
G-type orbital ordered.
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FM A−AFM C−AFM G−AFM

Fig. 2.28 Different type of spin arrangement of a lattice: Ferromagnetism (FM), A type
antiferromagnetism (A−AFM), C type antiferromagnetism (C−AFM), G type antiferro-
magnetism (G−AFM)

Fig. 2.29 Orbital structures of undoped manganites as a function of the Js; antiferromagnetic
interaction between core t2g electrons. (Picture taken from reference [63])
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Charge ordering in mixed-manganites is a periodic arrangement of the charges on the
lattice and is only favoured for certain electron hole ratios, making it doping dependent. In
particular, when the doping x is close to x = 1/2, the charge-ordering instability comes to the
surface. Charge ordering is driven by Coulomb repulsion between nearest-neighbours atoms.
In a charge ordered system, the electrical resistivity increases as the hopping of electrons
is hindered. Chen and Cheong reported the first clear evidence of a charge ordering in
La0.5Ca0.5MnO3 [64]. In the case of Nd1−xSrxMnO3 given in figure 2.4, the ferromagnetic
metallic (FM) phase state changes into the charge-ordered insulating (COI) below 160 K for
x = 1/2. In figure 2.30, Tokura et al. [65] gave the spin, charge and orbital ordering patterns
of the half-doped charge-exchange (CE) antiferromagnetic type manganites. One can see
the equal distribution of Mn3+ and Mn4+ ions on the (001) plane of the orthorhombic lattice
(Pbnm space group). At the same time, the eg orbitals are also ordered in 1×2 superlattice
on the same plane.

Fig. 2.30 Spin, charge, and orbital orderings of the CE AFM type observed for most of the
x = 1/2 manganites. The eg-orbital ordering is on Mn3+. The Mn4+ sites are the closed
circles. (Picture taken from reference [65])
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2.3 Properties of Bulk LAMO vs LAMO Thin films

Until now, we have given the basic structural, electronic and magnetic properties of mangan-
ites. It is worth to mention once more that one can control and modify these properties by the
deposition of the manganites in very thin films or in heterostructures. Thus, it is important
to address some critical changes that the compound present when it is layered as thin films
compared to its bulk form.

Studies on the structural characterization of thin films by several researchers show
that there are differences in crystal symmetry (lattice parameters, symmetry group etc.)
between the thin film and the bulk material due to the substrate-induced constraints. Electron
microscopy techniques show that the manganite thin films can have a crystal structure, which
is imposed by the lattice mismatch with the substrate. This crystal structure is different
from that of the bulk manganites or thick films of the manganites. Thus, in addition to the
structure differences, one can expect also changes in magnetic and transport properties in
these compounds when they are deposited as thin films compared to their bulk forms. Now,
let us briefly call some of the publications from literature for comparing the properties of
bulk La1−xAxMnO3 and La1−xAxMnO3 thin films (A = Ba,Sr,Ca).

In the study of bulk La2/3Ba1/3MnO3 samples and La2/3Ba1/3MnO3 thin films, Helmolt
et al. noted that there a sharp cusp in the resistivity as a function of temperature in the bulk
samples whereas the thin films show a broadening of the magnetic transition [66, 27]. In
figure 2.31, one can see the resistivity against the temperature for both bulk samples and thin
films. As-deposited thin films show a broader magnetic transition and their magnetoresistance
is weaker temperature-dependent below 250 K. However, the annealing heat treatment
increases the Curie temperature and results with a sharper transition as one can see on the
right bottom in figure 2.31. Comparing the bulk samples and the annealed thin films, the
differences probably arise from chemical disorder and oxygen deficiency [27].

Bibes et al. studied fully strained epitaxial thin films of La2/3Ca1/3MnO3 on the
SrTiO3 [67]. They reported the lattice parameters for different films of the t film thick-
ness 6 < t < 180 nm. The a lattice parameter of LCMO is close to a lattice parameter of
SrTiO3 within experimental error showing that the film is under strain. Aarts et al. also
reported similar values of the c lattice parameters for the thin films of La0.7Ca0.3MnO3

on the SrTiO3 [68]. One can see the variation of the a and c lattice parameters of the
La2/3Ca1/3MnO3 thin films with respect to the film thickness on the left in figure 2.32.
Zandbergen et al. reported that the thin films (∼ 6 nm) of La0.73Ca0.27MnO3 on a SrTiO3
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Fig. 2.31 The resistivity comparison of the bulk La(2−x)/3Ba(1+x)/3Mn1−xCuxO3 when x = 0
vs La2/3Ba1/3MnO3 thin films. (Left) Picture adapted from the reference [66] and (right)
picture taken from the reference [27]

Fig. 2.32 (Left) The a and c parameters of the La2/3Ca1/3MnO3 films on the SrTiO3 vs
t film thickness from the reference [67]. (Right) The in-plane (a||) and out-of-plane (a⊥)
lattice parameter of the La0.7Ca0.3MnO3 films on the SrTiO3 vs d film thickness from the
reference [69] ((Left) Picture taken from the reference [67] (Right) Picture adapted from the
reference [69])
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are ferromagnetically ordered-insulator around 150 K whereas the bulk or thicker films at
this Ca doping exhibit an insulator-to-ferromagnetic metal transition [70]. Indeed, the film
thickness plays a significant role in the properties of the thin films. When the film thickness
is of the order of 100 nm, the films can behave bulk-like due to strain relaxation [69, 71].
One can see on the right in figure 2.32 that the in-plane lattice parameter of the films are
not equal to the substrate in-plane lattice parameter when the thickness of the film increases.
However, in very thin films (a few unit cell on a substrate), the physical properties can be
quite different than the bulk or the thick films due to the induced in-plane epitaxial strain of
the substrate [72, 73].

Magnetoresistance values in LCMO thin films are generally larger and occur at lower
temperatures [28, 29, 68] than in the bulk samples [74]. It is also worth to remind again
that the colossal magnetoresistance (CMR) of LCMO thin films: 127000% at 77 K, B = 6
T [28, 29].

It was also shown that by applying appropriate strains through substrate and alternated
BaTiO3 layers, the Curie temperature of both LSMO and LCMO ferromagnetic superlattices
can be increased by more than an order of magnitude compared to the bulk [75]. In figure 2.33,
one can see the magnetic measurements carried out in the temperature range 4-1000K. For

Fig. 2.33 Magnetization (500 Oerst- eds) for the [(La2/3Sr1/3MnO3)3/(BaTiO3)3]25 (red
squares) and [(La2/3Ca1/3MnO3)4(BaTiO3)4]20 (green circles) superlattices. Hysteresis
loops of the calcium superlattice, recorded at 10K and 300K, are presented in the inserts.
The arrows mark the bulk Curie temperatures. (Picture taken from reference [75])
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LCMO superlattices, the Curie temperature is measured about 1000 K whereas the Curie
temperature of the LCMO bulk [76, 16] and thin films [29] is reported around 250-260 K.
For LSMO superlattices, the Curie temperature is measured about 650 K whereas the Curie
temperature of the LSMO bulk [77] or thin films [78] is about 370 K. This large increase of
the Curie temperature is done through orbital ordering which is a result of the strains induced
by the substate and alternated layers. In an ultrathin film environment, as the system will
behave like a two-dimensional system, only in-plane magnetic interactions will determine
the magnetic properties of the film. Thus, the Curie temperature of the ultrathin film can
be maximized if one stabilizes in-plane magnetic orbital dx2−y2 over out-of-plane dx2 in
the Mn3+ ions through Jahn-Teller distortion of the octahedra and maximizes the in-plane
effective exchange of dx2−y2 orbitals by preventing tilt of the MnO6 [75]. On the other hand,
at the interface of the manganite films and substrates it is observed that there is a strong
supression of the magnetotransport properties due to the out-of-plane dx2 orbital stabilization
of the Mn3+ ions [72, 75, 79, 80]. This interfacial layer with supressed magnetic properties
is named as “dead layer”.

The breakthrough of large increase in Curie temperature by strain and interface effects
open new opportunities to control magnetic properties of the artificial heterostructures.
During this thesis, we will focus on alternated manganite superlattices on a SrTiO3 substrate
and try to investigate the role of alternated layers in terms of the properties that they exhibit
such as polarization of BatiO3 and the role of antiferrodistortive motions of the manganite
layers. We will also focus on the prevention of the formation of the dead layer by introducing
manganite superlattices alternated with alkaline-earth oxides. As our study will be based on
ab-initio calculation, we would like devote the next section to the technical background of
density functional theory.
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3.1 Introduction

In this chapter we provide a brief overview of first-principles techniques used during this
thesis. Ab-initio calculations for solids are based on the equations of quantum mechanics. In
the first section of this chapter, we describe the quantum many-body problem and the Born-
Oppenheimer approximation. In the second section, we present the basics of the Density
Functional Theory. The exchange-correlation approximations are given in the third section.
Basis sets to describe the wave functions are introduced in the fourth section. Finally, we
give the computational details used in this thesis in the last section.

Let us first define some of the notations which will be used in this chapter:

• N is the total number of electrons,

• N0 is the total number of nuclei,

• i is index of the ith electron,

• I is index of the Ith the nucleus,

• r⃗i is the position vector of the ith electron,

• r⃗ is the position vector of an electron,

• {⃗r} is the ensemble of the position vectors of the electrons,

• R⃗I is the position vector of the Ith nucleus,

• R⃗ is the position vector of a nucleus,

• {R⃗} is the ensemble of the position vectors of the nuclei,

• ZI is the charge of the nucleus,

• MI is the mass of the nucleus,

• me is the mass of an electron.

• σ is the spin.

• ϕ is the one-electron wave function

• Ψ, ψ , φ are the many-electron wave functions

• ⟨Ĥ⟩= ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ is the expected value of the operator Ĥ in the wave function ψ .
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3.2 Quantum Many-Body Problem

Quantum many-body problem is a general term for the investigation of the properties of
microscopic physical systems that consist of large number of interacting particles. Quantum
mechanics provides an accurate description for such systems.

3.2.1 Schrödinger Equation for many-body system

In quantum mechanics, the fundamental equation is the Schrödinger equation [81] which
describes how the quantum state of a physical system evolves in time:

ih̄
dΨ({⃗r};{R⃗}; t)

dt
= ĤΨ({⃗r};{R⃗}; t) (3.1)

where i is the imaginary unit, h̄ is the reduced Planck constant, Ψ is the wave or state function
of the quantum system and Ĥ is the Hamiltionian operator.

When the wave functions form stationary states one can describe these states by using
the time-independent Schrödinger equation, that is;

ĤΨ = EΨ (3.2)

where E is the energy of the state Ψ. This equation is also called the energy eigenvalue
equation and the wave function Ψ is the eigenfunction of Ĥ corresponding to the eigenvalue
E.

3.2.2 Hamiltonian for a system of electrons and nuclei

The non-relativistic Hamiltonian for a system of N electrons and N0 nuclei is given by the
following equation:

Ĥ=− h̄2

2me

N

∑
i=1

∇
2
i −

N0

∑
I=1

h̄2

2MI
∇

2
I +

e2

4πε0

[
−

N

∑
i=1

N0

∑
I=1

ZI

|⃗ri − R⃗I|
+

1
2

N

∑
i ̸= j

1
|⃗ri − r⃗ j|

+
1
2

N0

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J|

]
.

(3.3)
Here, the first and second terms of the equation 3.3 correspond to the kinetic energy of the
electrons and of the nuclei, respectively. The third term is the electron-nuclei Coulomb
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interaction. The fourth term is the electron-electron Coulomb interaction. Finally, the last
term corresponds to the nuclei-nuclei interaction. By using simpler notations for each term
we can rewrite the Hamiltonian in the following form:

Ĥ({R⃗}, {⃗r}) = T̂e({⃗r})+ T̂N({R⃗})+V̂eN({R⃗}, {⃗r})+V̂ee({⃗r})+V̂NN({R⃗}) (3.4)

where T̂e and T̂N are respectively kinetic energy operators for electrons and nuclei. V̂eN ,
V̂ee and VNN are the potential energy operators for electron-nuclei, electron-electron and
nuclei-nuclei, respectively.

3.2.3 Born-Oppenheimer Approximation

Since the masses of nuclei are much larger than the mass of an electron, their velocity are
rather small compared to electrons ones. One can thus predict the motion of the electrons to
be immediate compared to the nuclei ones, and thus the nuclei to be at fixed positions when
electrons move. Along this line, Max Born and Robert Oppenheimer assumed that one can
separately treat the motion of atomic nuclei and electrons [82]. Within the Born-Oppenheimer
approximation, the system wave function can be written as a simple product of an electron
wave function ψ and a nuclei wave function φ :

Ψ({⃗r};{R⃗}) = ψ({⃗r}){R⃗}φ({R⃗}).

At the same time, the non-relativistic Hamiltionian given in the equation 3.4 can be separated
in a set of two independent equations describing the electronic movements and the nuclei
ones;

Ĥel({⃗r}){R⃗} = T̂e({⃗r})+V̂eN({⃗r}){R⃗}+V̂ee({⃗r})+VNN (3.5)

and
Ĥnucl({R⃗}) = T̂N({R⃗})+E({R⃗}) (3.6)

where Ĥel is electronic Hamiltonian and Ĥnucl is the nuclear one. Thus, the Schrödinger
equation 3.2 splits into

Ĥelψ({⃗r}){R⃗} = E({R⃗})ψ({⃗r}){R⃗}

Ĥnuclφ({R⃗}) = Eφ({R⃗}). (3.7)
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While Ĥel describes the electronic structure, Ĥnucl yields to the vibrational modes
(phonons). In the electronic Hamiltonian, the electron-nuclei operator V̂eN acts as a potential
parametrized by the fixed nuclei positions. VNN is a constant corresponding to nuclei-nuclei
interactions. As far as the electron motion is concerned, it causes only a shift in the total
energy. It can thus be neglected in solving the time-independent Schrödinger equation.

After solving the stationary time-independent electron Schrödinger equation for fixed
nuclei positions, one can find the motion of the latter by solving the nuclei Schrödinger
equation in which E({R⃗}) is the electronic energy and acts as a potential for the nuclei
equation. The eigenstates of the nuclear Hamiltonian around the equlibrium geometry
will give access to the systems of vibrations (phonons) for a given electronic state. The
equilibrium geometry is given by the minimization of the electronic energy with respect to
the nuclei position. This procedure can be summarized schematically by

min
{R⃗}

[
min

ψ
E[{R⃗},ψ]

]
(3.8)

where E is the ground-state the energy of the many-body system within the Ĥelψ = Eψ

eigenvalue problem. From now on, we will use the notation Ĥ to describe Ĥel .

For the simplicity of the framework, we adopt the atomic units for the rest of this chapter.
(h̄ = me = e = 4π/ε0 = 1)

3.3 Density Functional Theory: a way to solve the elec-
tronic structure

Density Functional Theory (DFT) is a computational method extensively used in quantum
physics, quantum chemistry and material science. It was built by Hohenberg and Kohn [83]
and Kohn and Sham [84] to treat the many-body electron-electron interactions. The basic
idea of DFT rests in giving a special role to the one-body electronic density of the ground
state of a quantum many-body system. Briefly, all ground state properties are to be considered
to be unique functionals of the ground state density.

The one particle density, n(⃗r), is defined by N times of the measure of the probability for
an electron to be present at any given point. The density is given by the expectation value
of the the density operator n̂(⃗r) = ∑

N
i=1 ∑σi δ (⃗r− r⃗i). Here δ (⃗r) is the Delta-Dirac function.



80 Technical Details-Methods

Thus, the one particle density is as follows:

n(⃗r) =
⟨ψ|n̂(⃗r)|ψ⟩
⟨ψ|ψ⟩

= N
∑σ1 · · ·∑σN

∫
d⃗r2 · · ·

∫
d⃗rN |ψ (⃗r,⃗r2,⃗r3, · · · ,⃗rN ,σ1,σ2 · · · ,σN)|2

∑σ1 · · ·∑σN

∫
d⃗r1

∫
d⃗r2 · · ·

∫
d⃗rN |ψ (⃗r1,⃗r2 ,⃗r3, · · · ,⃗rNσ1σ2 · · ·σN)|2

.

(3.9)

Taking the notation of V̂eN as V̂ext and naming it as external potential we express the
external potential energy by means of an integral of density. The total energy for a state ψ is
given by the expectation value of the Hamiltonian operator:

E =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

= ⟨Ĥ⟩= ⟨T̂e⟩+ ⟨V̂ee⟩+
∫

d⃗rVext (⃗r)n(⃗r). (3.10)

DFT consists of two fundamental theorems and the Kohn-Sham resolution principle. Let
us take a clear look on these theorems first.

3.3.1 Hohenberg-Kohn Theorems

The idea of Hohenberg and Kohn is the basis of the formulation of the density functional
theory as an exact theory of any many-body system of interacting particles in an external
potential V̂ext(⃗r). The Hamiltionian is as follows,

Ĥ =−
N

∑
i=1

∇
2
i +

N

∑
i=1

V̂ext(⃗ri)+
1
2

N

∑
i̸= j

1
|⃗ri − r⃗ j|

. (3.11)

Theorem 1. “For a given V̂ext in an N electron system, only one ground state density n0(⃗r)
is associated to this potential. Moreover, if n0(⃗r) is the ground state density of an N electron
system, only one V̂ext(⃗r) can correspond to this density.”

Proof. The first part of the theorem is obvious. We will prove the second part by the method
of proof of contradiction. First, we suppose that for an N electrons system there are two
different external potentials, leading to the same ground state density n0(⃗r), denoted V̂ (1)

ext (⃗r)
and V̂ (2)

ext (⃗r) differing by more than a constant, i.e.

V̂ (1)
ext (⃗r) ̸= V̂ (2)

ext (⃗r)+ c
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where c is a constant. Thus, there are two different hamiltonians, Ĥ(1) and Ĥ(2), which have
two different ground state wave-functions, |ψ(1)⟩ and |ψ(2)⟩, which are assumed to have the
same ground state density n0(⃗r). Here we treat the case of non-degenarate ground states.
Since |ψ(2)⟩ is not the ground state of Ĥ(1), it follows that

E(1)
0 = ⟨ψ(1)|Ĥ(1)|ψ(1)⟩< ⟨ψ(2)|Ĥ(1)|Ψ(2)⟩ (3.12)

⇒ ⟨ψ(2)|Ĥ(1)|ψ(2)⟩ = ⟨ψ(2)|Ĥ(2)|ψ(2)⟩+ ⟨ψ(2)|Ĥ(1)− Ĥ(2)|ψ(2)⟩ (3.13)

= E(2)
0 +

∫
d⃗r
[
V̂ (1)

ext (⃗r)−V̂ (2)
ext (⃗r)

]
n0(⃗r) (3.14)

⇒ E(1)
0 < E(2)

0 +
∫

d⃗r
[
V̂ (1)

ext (⃗r)−V̂ (2)
ext (⃗r)

]
n0(⃗r) (3.15)

Similarly, considering |ψ(1)⟩ is not the ground state of Ĥ(2) gives us

E(2)
0 < E(1)

0 +
∫

d⃗r
[
V̂ (2)

ext (⃗r)−V̂ (1)
ext (⃗r)

]
n0(⃗r). (3.16)

Summing the inequalities 3.15 and 3.16, we arrive at the contradictory inequality

E(1)
0 +E(2)

0 < E(1)
0 +E(2)

0 .

Therefore we simply show that there cannot be two different external potentials differing
from each other by more than a constant leading to the same ground state density. Within
this we have shown that n0(⃗r)⇒ V̂ext.

The reverse is more trivial. V̂ext determines the Hamiltonian Ĥ for an N electrons system,
which has one non-degenerate ground state wave-function ψ and accordingly one ground
state density n0(⃗r).

Corollary 1. Since the hamiltonian is fully determined by V̂ext and N, except for a constant
shift of the energy, it follows that the many-body wave-functions for all states (ground and
excited) are determined by n0(⃗r). Therefore, all properties of the system are completely
determined given only the ground state density n0(⃗r).

Theorem 2. “A universal functional for the ground state energy E[n] can be defined in terms
of the density. For any particular V̂ext(⃗r), the exact ground state energy of the system is the
global minimum value of this functional, and the density n(⃗r) minimizing this functional is
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“the exact ground state density n0(⃗r)”, provided with the fact that n0(⃗r) is the density of an N
electron system (N representability).”

Proof. Since the density determines the external potential uniquely and the potential de-
termines the ground state wave function uniquely, all the other observables of the system
are also uniquely determined and can be described as functionals of n(⃗r). That means for
instance that the total energy functional can be expressed as follows:

EHK[n] = T [n]+Eee[n]+
∫

d⃗rV̂ext(⃗r)n(⃗r) (3.17)

= FHK[n]+
∫

d⃗rV̂ext(⃗r)n(⃗r) (3.18)

where FHK is the sum of the kinetic energy and electron-electron Coulomb energy. Since the
form of these energies are the same for all systems FHK is thus a universal functional of the
density n(⃗r) and independent of the system.

Now let us take a system with the ground state density n(1)0 (⃗r) corresponding to the exter-
nal potential V̂ (1)

ext (⃗r). EHK[n] can be formulated as the expectation value of the Hamiltonian
in the ground state wavefunction |ψ(1)⟩

E(1)
0 = EHK[n

(1)
0 ] = ⟨ψ(1)|Ĥ(1)|ψ(1)⟩. (3.19)

We consider another density n(2)(⃗r) which corresponds to another wavefunction |ψ(2)⟩. So
we can easily conclude that the energy E(2) of the wavefunction |ψ(2)⟩ with respect to the
hamiltonian Ĥ(1) is greater than E(1)

0 by the following expression

E(1)
0 = ⟨ψ(1)|Ĥ(1)|ψ(1)⟩< ⟨ψ(2)|Ĥ(1)|ψ(2)⟩= E(2). (3.20)

So, the energy given in the equations 3.17 evaluated for the ground state density n0(⃗r) is
lower than any energy for any other density n(⃗r). This proves the theorem.

Corollary 2. The functional E[n] is sufficient to determine the exact ground state energy and
density.

In fact if we knew the functional FHK[n] we could find the exact ground state density
and energy by minimizing the total energy of the system. However, FHK is unknown which
leads us to use approximations. We will use the Kohn-Sham approximation to overcome this
problem.
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3.3.2 Kohn-Sham Ansatz

The basic principle of the Kohn and Sham ansatz lies down in replacing the many-body
system by an auxiliary independent particle system, to find the ground state properties of the
many-body system. Indeed, it is much easier to solve a non-interacting independent particle
problem compared to an interacting many-body problem.

Kohn-Sham assumed that the exact ground state density of an interacting system can be
written as the ground state density of a fictitious system of non-interacting particles. This
assumption gives us the independent particle equations that can be solved numerically.

The Kohn-Sham ansatz consists of two main assumptions:

• By “non-interacting V-representability” we can represent the exact ground state density
as the ground state density of an auxiliary system of non-interacting particles.

• We choose the Hamiltonian of the non-interacting system in a way to have the usual
kinetic energy operator and an effective local potential V̂eff(⃗r) acting on an electron at
point r⃗.

Let us define this auxiliary independent particle system. First, the Hamiltonian of this system
is given by the following:

Ĥauxσ =−1
2

∇
2 +V̂ σ

eff(⃗r). (3.21)

In a non-interacting independent electron system where N = N↑+N↓, the ground state ψ0

has one electron in each of the Nσ orbitals ϕσ
i with the lowest eigenenergy εσ

i of Hamiltonian
given in equation 3.21. The density of the such an auxiliary independent particle system is
given by

n(⃗r) = ∑
σ

n(⃗r,σ) = ∑
σ

Nσ

∑
i=1

|ϕσ
i (⃗r)|2, (3.22)

The independent particle kinetic energy TKS is

TKS = ⟨ψ|T̂KS|ψ⟩=−1
2 ∑

σ

Nσ

∑
i=1

⟨ϕσ
i |∇2|ϕσ

i ⟩ (3.23)

where ψ is now a non-interacting particle many-body wave function (ψ = |∏i ϕi⟩). The
Hartree energy, which is the classical Coulomb interaction energy of the electron density
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n(⃗r) interacting with itself, is given as

EHartree[n] =
1
2

∫
d⃗r d⃗r′

n(⃗r)n(⃗r′)

|⃗r− r⃗′|
. (3.24)

We can formulate the total energy by rewriting EHK the Hohenberg-Kohn expression given
in 3.17 using the Kohn-Sham principle:

EHK ≃ EKS = TKS[n]+
∫

d⃗rV̂ext(⃗r)n(⃗r)+EHartree[n]+Exc[n]. (3.25)

Exc is the exchange-correlation energy functional including Pauli Principle, correlated po-
sitions of electrons and the difference between the kinetic energy of the real system and
the auxiliary Kohn-Sham one. It can be explicitly seen if we rewrite Exc in terms of the
Hohenberg-Kohn functional FHK:

Exc[n] = FHK[n]− (TKS[n]+EHartree[n]) (3.26)

= T [n]−TKS[n]+Eee[n]−EHartree[n]. (3.27)

In fact, what is very remarkable about the exchange-correlation functional is that if we knew
the exact value of Exc, we could evaluate the exact ground state energy and density of the
many-body system by simply solving Kohn-Sham equations for independent particles with
this density.

Now it is time to introduce the Kohn-Sham variational equations and derive Ĥaux ≃ ĤKS.
We derive the variational functional over wavefunctions by Rayleigh-Ritz principle,

∀i ,
δEKS[n]
δϕ∗

i (⃗r)
=

δTKS[n]
δϕ∗

i (⃗r)
+

[
δEext[n]
δn(⃗r)

+
δEHartree[n]

δn(⃗r)
+

δExc[n]
δn(⃗r)

]
δn(⃗r)

δϕ∗
i (⃗r)

(3.28)

with the orthonormalized one electron wave functions (orbitals)

⟨ϕi|ϕ j⟩= δi, j. (3.29)

Now we have (for real orbitals)

δTKS[n]
δϕ∗

i (⃗r)
=−1

2
∇

2
ϕi(⃗r) and

δn(⃗r)
δϕ∗

i (⃗r)
= ϕi(⃗r). (3.30)
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so we can construct the Kohn-Sham Schrödinger-like equations,

(ĤKS − εi)|ϕi(⃗r)⟩= 0, (3.31)

where the ĤKS is the mono-electronic effective Hamiltonian and εi are its eigenvalues. In
Hartree atomic units,

ĤKS =−1
2

∇
2 + v̂KS(⃗r), (3.32)

with

v̂KS(⃗r) =
δEext[n]
δn(⃗r)

+
δEHartree[n]

δn(⃗r)
+

δExc[n]
δn(⃗r)

(3.33)

= v̂ext(⃗r)+ v̂Hartree(⃗r)+ v̂xc(⃗r). (3.34)

The Kohn-Sham Schrödinger-like equations equations 3.31 and 3.33 lead to the resulting
density n(⃗r) and total energy EKS given by 3.25. Here we must emphasize that these
formulations are entirely independent of the approximation for the functional Exc[n].

Kohn-Sham ansatz allows us to replace the N interacting electrons Hamiltonian with an
effective N non-interacting electrons Hamiltonians. Now the difficulty of the solution of an
interacting system is only in the exchange-correlation functional. Thus, after we approximate
this functional as accurately as possible, we can minimize the total energy of the many-body
problem.

Since all the difficulty rests in the exchange-correlation functional it is vital to approximate
this functional as accurately as possible. There have been different approaches to treat this
functional over the years. Now we will give a brief introduction and description for the
most common functionals such as local spin density approximation (LSDA) or generalized-
gradient approximations (GGAs) and finally we will talk about hybrid functionals which
are built using a combination of the exact exchange (from Hartree-Fock) and the effective
exchange and correlation from LSDA and GGAs.
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3.4 Exchange-Correlation Functionals

Using the Kohn-Sham ansatz the difficulty of the many-body problem is reduced to the
approximation of the exchange-correlation functionals. The first, the simplest and the most
widely used functional that we are about to explain is the local spin density approximation.

3.4.1 The local spin density approximation (LSDA)

The homogenous electron gas is the simplest model to represent the condensed matter. In this
model, nuclei are replaced by a uniform positively charged background. In the homogeneous
gas, all properties depend only on the electron and spin density. The LSDA approximation
models the interacting systems using an energy functional extracted from the homogeneous
electron gas. Indeed, the exchange-correlation energy is evaluated by an integral (over all
space) on the exchange-correlation energy density at each point assumed to be the same as in
a homogeneous electron gas.

ELSDA
xc [n↑,n↓] =

∫
d3r n(⃗r)εhom

xc (n↑(⃗r),n↓(⃗r)) (3.35)

=
∫

d3r n(⃗r)[εhom
x (n↑(⃗r),n↓(⃗r))+ ε

hom
c (n↑(⃗r),n↓(⃗r))] (3.36)

where n↑(⃗r) and n↓(⃗r) stand for the density of the spin up and down electrons respectively.
The expression of the exchange part of the homogeneous gas system is known;

εx[n↑,n↓] =−21/3
(3

4

)( 3
π

)1/3 ∫
d3 r
[
(n↑)4/3(⃗r)+(n↓)4/3(⃗r)

]
(3.37)

whereas the correlation part is fitted on the curves obtained from Quantum Monte-Carlo
calculations of the homogeneous electron gas electronic structure. Vosko et al. [85] and
Perdew and Zunger [86] have introduced the most famous approaches for this functional.

The first disadvantage of LSDA lies down in the Hartree energy, which includes an
electron-electron self interaction term that ought to be exactly cancelled by an exchange term.
However, due to the local formulation of v⃗x in LSDA, this cancellation does not take place
and a spurious self-interaction term remains. Even though the latter term is negligible for
the homogeneous gas, it is large for the atoms. The second drawback is that band gaps are
strongly underestimated. Many insulators such as CuO are found metallic within the LSDA
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scheme [87–89]. As a result, for metal/insulator interfaces, the Fermi Level of the metal is
located in the conduction bands instead of the gap [56]. LSDA also underestimates the lattice
constants, specifically for the ferroelectric materials [90]. Similarly, small deformations
occurring in ferroelectric materials or Jahn-Teller systems are underestimated in LSDA.

3.4.2 Generalized-gradient approximations (GGAs)

The generalized-gradient approximations were introduced as an alternative for LSDA to
improve the treatment of the non locality in quantum mechanics. Within this approach, the
exchange and correlation functional not only depends on the density but also on the gradient
of the density. So Exc[n] is given as,

EGGA
xc [n↑,n↓] =

∫
d3r n(⃗r)ε

hom
xc (n↑(⃗r),n↓(⃗r), |∇n↑|, |∇n↓|, . . .) (3.38)

=
∫

d3r n(⃗r)ε
hom
x (n)Fxc(n↑(⃗r),n↓(⃗r), |∇n↑|, |∇n↓|, . . .) (3.39)

where Fxc is dimensionless and εhom
x is the exchange energy of the unpolarized gas.

Though there are improvements in GGA compared to LSDA, GGA leads to some
overestimations. Particularly, GGA-PBE proposed by Perdew, Burke and Ernzerhof [91]
yields to supertetragonal structures for ferroelectric materials where LSDA has better results.
As in LSDA, GGA functionals underestimate bandgaps. Due to this drawback, Wu and
Cohen developed a recent GGA functional called GGA-WC [92] specifically designed for
ferroelectric materials. GGA-WC tries to improve the estimations of the small deformations
which are underestimated in LSDA.

3.4.3 Hybrid Functionals

The hybrid functionals are a set of approximations to the exchange-correlation energy
functional in DFT that combines the exact exchange from the Hartree-Fock method with the
exchange and correlation functional from LSDA or GGAs.

Since in terms of drawbacks LSDA and Hartree-Fock are the opposite of each other,
(i.e. for instance band gaps are underestimated in LSDA whereas they are overestimated in
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Hartree-Fock) this combination is expected to compensate failures of both approximations.
Here, one should note that different hybrid functionals have been created by different mixing
parameters.

Becke [93] proposed the simple half-half hybrid functional:

Ehyb
xc =

1
2
(E0

x +ELSDA
xc ) (3.40)

where E0
x is the exact exchange from Hartee-Fock method and ELSDA

xc is the LSDA exchange-
correlation functional.

The most common hybrid functional B3LYP [94] is however, a much better mixing
scheme. It was introduced by Becke [95] with mixing parameters fitted on large sets of
experimental data (A = 0.2, B = 0.9 and C = 0.81),

EB3LYP
xc =ELSDA

x +A(E0
x −ELSDA

x )+(1−A)B(EGGA
x −ELSDA

x )+ELSDA
c +C(E GGA

x −ELSDA
c )

(3.41)
where the ELSDA

x and ELSDA
c are the exchange and correlation functionals within LSDA and

EGGA
x and EGGA

c are respectively Becke’s GGA exchange [96] and GGA correlation of Lee,
Yan and Parr [97]. B3LYP is widely used for atomic and molecular calculations but its
application to periodic systems are not always satisfactory. Indeed B3LYP estimates the
lattice constants very well but it also overestimates the band gaps and slightly tetragonality.
It does not reproduce the correct exchange-correlation energy for the free electron gas which
is indeed a problem for metals [98].

B3PW, another hybrid functional, is composed of Becke’s GGA exchange functional [96]
with the GGA correlation functional of Perdew and Wang [99]. By setting the mixing
parameters B and C to 1 in the equation 3.41, the B1 funcional of [100, 101] is given by:

EB1
xc = EGGA

x +A(E0
x −EGGA

x )+EGGA
c . (3.42)

Becke suggested two different values 0.16 and 0.28 for A, depending on the choice of the
GGA functional for the exchange EGGA

x and correlation EGGA
c [100].

B1WC, which we use during this thesis, is a combination of a B1 functional with the
parameter A set to 0.16 and the Wu-Cohen GGA exchange-correlation functional [56]. It
was specifically designed to properly treat both gaps and weak distortions. During this thesis,
since we mainly studied metal/insulator interfaces, we thus needed to choose a functional that
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properly positions the metal Fermi level with respect to the insulator gap. In addition, a good
treatment of the Jahn-Teller distortions present in the system is crucial in our calculations.
Thus, the B1WC hybrid functional [56] was the best choice among all the possible functionals
along these two criteria. On the other hand, it is known that B1WC underestimates the lattice
constants about %1 compared to B3LYP functional and experiments. For example the lattice
constant of SrTiO3 (STO): aB3LYP/exp

STO = 3.905 Å whereas aB1WC
STO = 3.88 Å. However, since

this underestimation is rather negligible we choose to work within B1WC as we want to
define the band gaps and have the lattice distortions properly.

3.5 Basis Sets

After introducing the Born-Oppenheimer approximation, the DFT method and the exchange-
correlation functionals, another step is left to solve the Kohn-Sham equations. Basis sets are
needed to describe the wavefunctions, since Kohn-Sham equations are to be solved in a finite
space.

In periodic systems, the quantum system is assumed to be represented by the repetition
of a finite unit cell defined by unit vectors a⃗1, a⃗2, a⃗3. The one-electron wave functions are
expressed in the Bloch form as

ϕn,⃗k(⃗r) =
1√
Ω

un(⃗k,⃗r)ei⃗ k·⃗r

where Ω is the volume of the unit cell and is equal to a⃗1 · (⃗a2 × a⃗3). Here, un(⃗k,⃗r) is a lattice
periodic function, k⃗ is a wave-vector of the reciprocal space and n is the energy band indice.

There are two main ways to construct a basis set to describe these functions: Plane-waves
and Gaussian Orbitals.

3.5.1 Plane-Wave Basis Sets

In a plane-wave basis set, one rewrites the one-electron wave functions as

ϕn,⃗k(⃗r) =
1√
Ω

(
∑
G⃗

Cn,⃗k,G⃗eiG⃗·⃗r

)
ei⃗k·⃗r (3.43)
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where G⃗ is a vector of reciprocal space. Since there is an infinite number of plane waves
describing the Bloch functions in this Fourier expansion, one will approximate the equa-
tion 3.43 up to cut-off energy Ecut, that will reduce the plane wave expansion to a finite
one:

h̄2

2m
|⃗k+ G⃗|2 ≤ Ecut.

The one-electron wave function will then be expressed in this finite plane wave basis set:
{ei(⃗k+g⃗)·⃗r , h̄

2m |⃗k+ G⃗|2 ≤ Ecut}.

3.5.2 Gaussian Orbitals

Linear combination of atomic orbitals (LCAO) is a method used to describe the orbitals
(one-electron wave functions) of a system as a linear combination of local orbitals, centred
on the different atoms:

ϕn,⃗k(⃗r) = ∑
µ

aµ,nφ
µ ,⃗k(⃗r)

φ
µ ,⃗k(⃗r) = ∑

g⃗
ϕµ (⃗r− A⃗µ − g⃗)ei⃗k·⃗g (3.44)

where φ
µ ,⃗k(⃗r) are Bloch functions defined in terms of local functions, i.e, local atomic orbitals

ϕµ (⃗r). Here, g⃗ is the real space Bravais lattice and ∑g⃗ is extended to the set of all lattice
vectors. A⃗µ is the position of the nucleus in the zero reference cell (⃗g = (0,0,0)) on which
ϕµ is centred.

The atomic orbitals of a given atom can be grouped into shells labelled by λ . All atomic
orbitals with the same quantum numbers, s, n and l are grouped into the same shell. Thus,
the atomic orbitals, ϕµ belonging to the same shell λ can be notated as ϕ lm

λ
and can be

also expressed as linear combinations (normalized contractions) of normalized real solid
harmonic Gaussian type functions γ ′ = cγ where γ is the real solid harmonic Gaussian type
function (primitive function) and c is the normalization coefficient:

ϕµ (⃗r) = ϕ
ℓm
λ
(⃗r) = Nλ ∑

j
dλ

j cℓmj γ(αλ
j ;⃗r) = Nλ ∑

j
dλ

j cℓmj Xm
ℓ (⃗r)G(αλ

j ;⃗r) (3.45)

Here, j is the index running over the Gaussian type functions over the contraction where the
dλ

j is the contraction coefficient of the j-th primitive in the shell λ and Nλ is the normalization
coefficient of atomic orbitals belonging to the shell λ . G(α j ;⃗r− A⃗µ − g⃗) is the Gaussian
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function with the following formula;

G(α j ;⃗r− A⃗µ − g⃗) = e−α j (⃗r−A⃗µ−g⃗)2
.

Finally, Xm
l (⃗r) is a real solid harmonic and is composed of the solid harmonic function Y m

l as
following:

X |m|
ℓ (⃗r) =

Y |m|
ℓ (⃗r)+Y−|m|

ℓ (⃗r)
2

and X−|m|
ℓ (⃗r) =

Y |m|
ℓ (⃗r)−Y−|m|

ℓ (⃗r)
2i

with
Y m
ℓ (⃗r) = rℓP|m|

ℓ (cosΘ)eimΦ

where Pm
ℓ is the Legendre polynomial function characterized by the integers ℓ and m, such

that ℓ≥ 0 and −ℓ≤ m ≤ ℓ.

3.6 Computational Details

All the results reported in this thesis are based on the theoretical techniques given in the
previous sections. For the first-principle calculations we use the CRYSTAL code [57] which
is an ab initio code based on density functional theory.

Since the compounds of our interest consist of metallic and insulating layers we choose
to work with hybrid functionals in order to correctly localize the Fermi level of the metallic
phase with respect to the insulator gap. The B1WC [102, 56] functional, is a good choice
since it can describe accurately both the gaps amplitudes and the small structural distortions
found in ferroelectric (as BaTiO3) or Jahn-Teller systems (as La2/3Sr1/3MnO3).

In all our calculations, we use effective core pseudopotentials (ECP) for the heavy atoms
such as La and Sr atoms from reference [103, 104] and [105] respectively. The electrons in
brackets are represented inside the pseudopotential in equations 3.46 and 3.47.

La :
[
1s22s22p63s23p63d10

]
4s24p65s24d105p66s25d1 (3.46)

Sr :
[
1s22s22p63s23p63d10

]
4s24p65s2 (3.47)
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For the valence basis sets we use associated segmented basis set for La from reference [106].
For the valence basis set of Sr, we use Piskunov associated basis set [107] (3ζ quality).

Since Ba is a heavy atom, we used a small core effective pseudopotential. As in equa-
tions 3.46 and 3.47 the electrons treated in the core pseudopotential are in brackets.

Ba :
[
1s22s22p63s23p64s23d104p64d10

]
5s25p66s2 (3.48)

For Ba atom, we used the ECP from the reference [105]. Its associated basis set is found
reference [107] and it is also of 3ζ quality.

For Pb, we used Hay-Wadt the large effective core pseudopotential [108].

Pb :
[
[Xe]4 f 145d10]6s26p2 (3.49)

Its valence basis is set from reference [107]. The basis set is (3ζ ).

All other atoms (Mn, Ti and O) are represented with an all-electron basis set. The basis
set are of 2ζ +P quality and can be found in references [109–112].

In all our calculations, we performed full geometry optimization under substrate imposed
constrains; that is fixed in-plane lattice parameters (equal to the bulk SrTiO3 substrate as
found in a full geometry optimization under the same computational conditions: a = b =

aSTO = 3.88 Å), and substrate in-plane symmetry operations (P4mm space group) unless
otherwise specified. Since a part of our study aims at investigating MnO6 octahedra rotations
we used a double unit cell (

√
2a×

√
2b) in order to allow rotations. We introduced initial

rotations manually by small atomic displacements and we let the structure to relax.

Another important point in our study is the La/Sr ionic disorder in La2/3Sr1/3MnO3. In
LaMnO3, La has a formal charge of 3+, Mn a formal charge of 3+ and oxygen a 2− formal
charge (La3+Mn3+O2−

3 ). In SrMnO3, Sr has a formal charge of 2+, Mn a formal charge
of 4+ and oxygen again a 2− formal charge (Sr2+Mn4+O2−

3 ). In order to treat the La/Sr
ionic disorder we make full sets of calculations with all possible atomic orders. As fully
La/Sr ordered systems can be expected to induce artefactual electronic localization effects
we also defined average effective nuclear charges for La and Sr and redid all the calculations
with these effective charges. We modelled the average effective nuclear charges for La and



3.7 Parameters for the Results 93

Sr by using La3+ and Sr2+ in the correct proportions (In La2/3Sr1/3MnO3, there is a mixed
valence state for Mn (La3+

2/3Sr2+
1/3MnxO2−

3 . One can easily find that x = 10/3. By using this,

one can find La(3+ε1)+Mn10/3+O2−
3 and Sr(2+ε2)+Mn10/3+O2−

3 ). Thus, the average nuclear
charge is 29+ ε1 for La and it is 10+ ε2 for Sr since we used ECPs for La (29 electrons) and
Sr (10 electrons). In addition, we also performed calculations using only La or Sr ECPs with
average effective charges. Only the results seen in all the different calculations are presented,
otherwise specified.

3.7 Parameters for the Results

In this section, we would like to define the parameters that we will use when presenting the
results on the studied systems.

After the geometry optimization, we obtain the lattice parameters (a, b, c) in Å, Cartesian
coordinates (x,y,z) in Å and the fractional (x̃, ỹ, z̃) = (x/a,y/b,z/c) of the system. In order
to present the structural properties of the optimized geometry, we summarize our results with
the help of following parameters.

Average Plane:

We calculate the average plane between cations and anions of each atomic plane by the
following formula:

z̃average plane =
z̃cation + z̃anion

2
where z̃cation and z̃anion are the positions of the cation and anion in the c⃗ direction in fractional
units for the same atomic plane.

Interplane distance:

Interplane distance is given by the difference of two consecutive z values of average planes;
z̃i+1

average plane− z̃i
average plane. With this form, it is in the fractional units. In order to present it in

Å, we multiply with the c lattice parameter of the system;

interplane distancei = (z̃i+1
average plane − z̃i

average plane)× c = zi+1
average plane − zi

average plane.



94 Technical Details-Methods

zcation

zanion

zcation zanion
average plane

average planein
te

rp
la

ne
di

st
an

ce

Fig. 3.1 Schematical representation of average plane and interplane distance for a ideal cubic
perovskite LaMnO3. La atoms are in the corners of the unit cell and presented as green. Mn
atom is in the center of the unit cell and presented as purple. Oxygen atoms are at the face
centres and presented as red.

One can see the representation of the average planes and interplane distance of a cubic
perovskite LaMnO3 in 4.3. In the figure, the bottom grey plane is the average plane of LaO
and the top grey plane is the average plane of MnO2. The interplane distance is the distance
between these two average planes. As this system is an ideal cubic perovskite, the cations
and anions of each plane has the same z-coordinate value; thus sit on the exact same plane:
the average plane. However, in the case of lower symmetry systems (such as tetragonal
symmetry), the z-coordinate of the cation and the anion of the same plane can differ, thus the
average plane and interplane distance can give us clues about dimerization.

Rumpling:

The rumpling gives us the amplitude of the cationic/anionic displacement. It provides
an estimation of the dipole moment, thus an estimation of the polarization in the system,
since the average positions correspond to a non polar structure. The rumpling is calculated
as;

rumpling = (z̃cation − z̃average plane)× c = zcation − zaverage plane.
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Mn-O distance (dMn−O):

We calculate the corresponding Mn−O distance in the c⃗ direction by following;

dMn−O = (z̃Mn − z̃O1)× c or dMn−O = (z̃O2 − z̃Mn)× c

where Mn is manganese and O1 and O2 are the oxygen atoms as demonstrated in the fig-
ure 3.2.

Octahedron Thickness (dOO):

We calculate the octahedron thickness of a unit cell (O−Mn−O distance in the c⃗ direction)
by following;

dOO = (z̃O2 − z̃O1)× c

where O1 and O2 are the oxygen atoms as shown in the figure 3.2.

zO1

zO2

zA1

zA2

c′

dOO

a

dMn−O

zMn

d′
OO

Fig. 3.2 Schematical representation of octahedron thickness and layer thickness for an ideal
cubic perovskite LaMnO3.

Jahn-Teller distortion (JTd):

By using the octahedron thickness we can calculate the Jahn-Teller distortion (JTd) of
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the unit cell by
JTd = dOO/a−1

where a is the in-plane lattice parameter. When the Mn is in a regular octahedron environment
JTd = 0. Here, d′

OO = a in all calculations.

Layer Thickness (c′ )

We also calculate the layer/unit cell thickness (cation-cation distance in the c⃗ direction)
by following;

c′ = (z̃A2 − z̃A1)× c

where A1 and A2 are the cations as displayed in the figure 3.2.

Tetragonality:

By using the layer thickness we can calculate the tetragonality of the unit cell by c′/a−1
where a is the in-plane lattice parameter.

AFD motions:

In order to study of antiferrodistortive motions (AFD motions) of oxygens of the MnO2 layer,
one needs to double the unit cell in the (⃗a,⃗b) plane. Thus, the new cell parameters are as
follows;

a⃗′ = a⃗− b⃗, b⃗′ = a⃗+ b⃗, c⃗.

where a⃗,⃗b, c⃗ are the original unit cell parameters. The new unit cell is drawn within purple
square in figure 3.3. We displace oxygen atoms of MnO2 planes along a⃗ and b⃗ in the initial
guess to give a push to the geometry optimization. After the geometry optimization, we check
whether these atomic displacements are suppressed and the oxygen atoms come back to their
symmetric positions or not. We can calculate the final optimized oxygen displacements by
the following;

disp =
√

(x̃− x̃0)2 +(ỹ− ỹ0)2

where x̃0 and ỹ0 are the fractional in-plane coordinates of non-rotating oxygens atoms (O)
and x̃ and ỹ are the fractional in-plane coordinates of rotating oxygens atoms (O′) of MnO2.
Finally, the angle of the rotation can be given by ϑ = arctan disp

distMn−O
where distMn−O is the

in-plane distance between Mn and O in non-rotating octahedron.
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Fig. 3.3 Schematical representation of AFD motions of the oxygen atoms, as well as the octa-
hedron, in the new unit cell (a⃗′, b⃗′,c). The rotations are brought by the atomic displacement
in the (a⃗′, b⃗′) plane. The displacements are exaggerated for reading purposes. ϑ gives the
angle of the rotation of octahedron.
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Magnetic Moment:

We report the magnetic moment of each Mn in MnO2 plane by extracting it from the
Mulliken population analysis of α −β electrons.

Charge of a Plane:

We report the charge of each plane in the system studied by extracting it from the Mul-
liken population analysis of α +β electrons; for example for MnO2,

charge = (ZMn − Z̃Mn)+2× (ZO − Z̃O) = (25− Z̃Mn)+2× (8− Z̃O)

where Z̃Mn and Z̃O are the computed number of α +β electrons of Mn and O and ZMn and
ZO are the atomic numbers of Mn and O.

The eg Orbital Occupancy Ratio:

We report the eg orbital occupancy ratio for each Mn atom ;

ηeg = ηx2−y2/ηz2

where ηx2−y2 is the occupancy of the orbital dx2−y2 and ηz2 is the occupation number of the
orbital dz2 . The occupancies of the orbitals are generally obtained by the Mulliken population
analysis of α − β electrons. In the case of the systems with AFD motions, in order to
disentangle t2g − eg mixing induced by the octahedron rotations, we need to take the x and y
axes as the Mn local axes corresponding to the in-plane Mn−O directions. Thus, in these
cases, we calculate the density matrix of the d orbitals and extract real occupation numbers
of the t2g and eg orbitals with the consideration of the in-plane rotations.

Total eg Occupancy:

We also report the total eg orbital occupancy for each Mn atom per octahedron as defined;

toteg = ηx2−y2 +ηz2.
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Delocalization of 3dz2 on Ti:

We give the delocalization of the 3dz2 electrons between Mn−Ti at the interfaces. We
extract this information by the Mulliken population analysis of α −β electrons of the 3d-
shell of Ti atoms at the interfaces. Indeed, in such a way we can measure the leak of the
magnetic electrons on the Ti ions.

Polarization:

We also report the polarization of the systems in which we alternate manganite layers
with buffer insulators such as BaTiO3 and PbTiO3. We calculate the polarization of the
materials by using the following formula:

P⃗ =
|e|
V ∑Zionr⃗ion

where V is the unit cell volume, Zν
ion are the Born-effective charges of each atom that we

take from the Ref. [56] and r⃗ν is the atomic displacement vector of the atom ν . For the latter,
we take a hypothetical reference state with mirror symmetry planes ensuring there is no
polarization in the system and we calculate the atomic displacement by subtracting atomic
position from the reference positions.
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4.1 Introduction

The aim of this chapter is to study the magnetic ground state of LaMnO3 −SrMnO3 (LMO-
SMO) superlattices by means of first-principle calculations. We will study the effect of strain
by comparing different magnetic orderings for different thicknesses of ordered LMO-SMO
superlattices. In first section we will report the study of [(LaMnO3)1 − (SrMnO3)1]1. In
the second section, we will increase the number of layers from 2 to 4 and report the study
of [(LaMnO3)1 − (SrMnO3)1]2 superlattice. Third section, we will study again a 4-layers
system but with different cation ordering: [(LaMnO3)2 − (SrMnO3)2]1. Fourth section will
be dedicated to a 3-layers system; [(LaMnO3)2 − (SrMnO3)1]1 and in the fifth section we
will increase the number of layers from 3 to 6 layers; that is [(LaMnO3)2 − (SrMnO3)1]2.

First, we have considered cubic perovskite structures of LaMnO3 and SrMnO3 and
construct a tetragonal superlattice of them. The aim was to study the electronic and magnetic
properties of this superlattice. The effect of epitaxial strain, which arises because of the
lattice mismatch of the substrate and LaMnO3-SrMnO3 superlattice can be understood by
the tetragonal distortion of the superlattice. This tetragonal distortion is evaluated by c/a
ratio where c and a are the out-of-plane lattice and in-plane lattice parameters, respectively.
The c/a ratio is determined by the linear relation c−a0 =−4ν (a−a0) [113], where a0 is
the hypothetical lattice constant of the superlattice under a strain-free condition. Here, ν is a
Poisson ratio and it is around 0.3 for perovskite manganites [114]. Experimentally, a0 value
is the weighed average of the lattice constant of bulk LaMnO3 (3.936 Å) and bulk SrMnO3

(3.806 Å) [113, 115]. Thus, for example, a0 of [(LaMnO3)1 − (SrMnO3)1]1 superlattice is
calculated as 1

2(3.936+3.806) = 3.871 Å.

Previously, Nanda and Sathpathy[115] studied the effect of strain on the orbital ordering
and magnetic structure of these superlattices by applying different c/a ratio and running total
energy calculations. They interpreted their results in terms of a three-site Mn–O–Mn model.
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According to their model, the orbital character of eg electrons is determined by the strain.
When the superlattice is under tensile strain (c/a < 1), the magnetic structure is A-type
antiferromagnetic with preferential dx2−y2 orbital occupancy. When there is lattice-matched
structure, i.e. no strain (c/a = 1), the magnetic structure is ferromagnetic with equivalent
eg orbital occupancies. When the strain is compressive (c/a < 1), the magnetic structure is
C-type antiferromagnetic with preferential dz2 occupancy.

4.2 [(LaMnO3)1− (SrMnO3)1]1 Superlattice

First we start with the simplest case: [(LaMnO3)1 − (SrMnO3)1]1. In figure 4.1 one can see
the schematic representation of [(LaMnO3)1 − (SrMnO3)1]1. Our first consideration was to
study this superlattice deposited on SrTiO3 substrate. The substrate will impose its in-plane
lattice parameter to the superlattice. The experimental a lattice parameter of SrTiO3 (STO)
is found to be 3.905 Å. The optimized lattice parameter, however, is found to be 3.88 Å.
During this study we tried both values for lattice parameters in our calculations in order to
compare the results. We also studied strain-free environment for this superlattice in which
the in-plane lattice parameters are free to relax. Thus, we were able to obtain hypothetical
lattice parameters for the LaMnO3 −SrMnO3 superlattice.

Fig. 4.1 Schematic picture for LMO-SMO superlattice

In figure 4.2 we report the energy difference of each magnetic configuration with the
lowest state with respect to either optimized a lattice parameter or imposed a lattice parameter.
The lowest energy is obtained for ferromagnetic ordering in the strain-free case. The C-type
and G-type antiferromagnetic orderings are quite high in energy whereas ferromagnetic and
A-type antiferromagnetic structures are close in energy in both a = 3.88 Å and a = 3.905 Å.
Strain-free calculations show that ferromagnetic ordering desires contraction in-plane.
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Fig. 4.2 Energy difference of each configuration with respect to the lowest energy ordering
and geometry (∆E = E −E0) vs. the imposed a in-plane lattice parameter. Here, E0 is the
lowest energy obtained for the ferromagnetic ordering in the strain-free case.
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4.2.1 Strain-free conditions

First we consider an artificial strain-free environment by letting the in-plane lattice param-
eter to be optimized as well as c parameter. This calculation will give us the strain-free
reference of the in-plane lattice parameter of LMO-SMO superlattices. We computed two
magnetic configurations: ferromagnetic and A-type antiferromagnetic orderings. We found
that the ferromagnetic configuration is lower in energy compared to antiferromagnetic one
(∆E = EA−AFM −EFM ≃ 140 meV for whole system). For the ferromagnetic LMO-SMO
superlattice, the a lattice parameter is optimized at aFM = 3.833 Å. For A-type antiferromag-
netic LMO-SMO superlattice, it is optimized at aA−AFM = 3.873 Å.

Ferromagnetic Ordering

In tables 4.1 and 4.2, we report the structural and magnetic properties of ferromagnetic LMO-
SMO superlattice in strain-free environment. The parametrization of relevant quantities are
as explained in details in Chapter 3, section 3.7. One can also get an aide from the figure 4.3
for visualizing the table 4.1. As we mentioned above, for ferromagnetic ordering, the a lattice

c

Sr

La

Sr

O1

Mn1

Õ1

O2

O1

Mn2

Õ2

dMn−O

dMn−O
interplane

average plane

distance
} rumpling

Fig. 4.3 Schematic picture defining the average planes and interplane distances, as well as
rumpling. The oxygen atoms labelled as O1 and O2 belong to SrO and LaO planes, the
oxygen atoms labelled as Õ1 and Õ2 belong to the first and second MnO2 planes, respectively.
The atomic displacements are exaggerated in the sketch for reading purposes.

parameter is optimized at aFM = 3.833Å. The c lattice parameter is optimized at cFM = 7.714
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Å. In table 4.1, first thing to comment is that the system doesn’t have any polarization as
we can see from the compensating the rumpling values of the MnO2 planes. Next thing, by
looking at the interplane distances one can easily see that the average MnO2 planes are closer
to the average LaO planes than to the SrO plane. (The average distance with the LaO is
1.904 Å and the average distance with SrO is 1.953 Å.) Another important result to mention
is the Mn−O distances in the c⃗ direction. The dMn−O between MnO2 and LaO is 1.955 Å,
while dMn−O between MnO2 and SrO is 1.902 Å. The differences in the interplane distances
and dMn−O are the sign of dimerization in the c⃗ direction. Indeeed, the Mn−Mn distance
in c⃗ direction (dMn−Mn) changes depending on the plane that is sandwiched in between two
Mn. When there is an Sr in the plane sandwiched it is dMn−Mn and when there is a La it is
d′

Mn−Mn. By simply summing up the corresponding Mn-O distances one can easily see that
d′

Mn−Mn > dMn−Mn. This dimetrization is schematically drawn in figure 4.4.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.953 1.902
MnO2 0.253 -0.051

1.904 1.955
LaO 0.500 0

1.904 1.955
MnO2 0.747 0.051

1.953 1.902

Table 4.1 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]1 superlattice in a strain-free environment. aFM = 3.833 Å. cFM = 7.714 Å.

In table 4.2, we can immediately see that the Mn-octahedron thickness (dOO) and the
layer thickness (c′) are the same for the two layers so that the Jahn-Teller distortion (Jtd)
and tetragonality (c′/a− 1) values are the same as well. Both Jahn-Teller distortion and
tetragonality values indicate very small elongation in the superlattice mono-layers. The
magnetic moment of each Mn is the same. The eg occupancy ratios are also the same in
both octahedra. Finally, the eg occupancy ratio shows that dz2 is preferentially occupied over
dx2−y2 orbital though it is small. When we check the charges of the atomic planes in this
table, we see that there is a global electron transfer from SrO at a lower level LaO planes
toward MnO2 ones.
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Mn

Mn

Mn

c

La

Sr dMn-Mn

d'Mn-Mn

Fig. 4.4 Schematical representation of the dimerization in MnO2 planes. d′
Mn−Mn and dMn−Mn

are the Mn−Mn distances in c⃗ direction. d′
Mn−Mn > dMn−Mn

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.565
MnO2 3.857 0.006 3.857 0.006 3.435 0.885 0.703 -0.833
LaO 1.100

MnO2 3.857 0.006 3.857 0.006 3.434 0.885 0.703 -0.833

Table 4.2 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a strain-free environment. aFM = 3.833 Å.
cFM = 7.714 Å.

A-type Antiferromagnetic Ordering

In tables 4.3, 4.4 we report the results for A-type antiferromagnetic (ferromagnetic in plane,
antiferromagnetic in c⃗ direction) ordered [(LMO)1 − (SMO)1]1 superlattice in a strain-free
environment. The a lattice parameter is optimized at aA−AFM = 3.873 Å and the c lattice
parameter is optimized at cA−AFM = 7.531 Å. Thus, the first thing we can say is that, in a
strain-free environment, the in-plane lattice parameter increases in A-type antiferromagnetic
ordering compared to the ferromagnetic ordering (aA−AFM > aFM) while the out-of-plane
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lattice parameter decreases (cA−AFM < cFM). In table 4.3, one can see that z̃averageplane values
are the same as for the ferromagnetic ordering, while the interplane distances are smaller
than the ones in ferromagnetic ones. This is due to the overall contraction of the superlattice
in c⃗ direction. However, the analysis of the interplane distances done for the FM ordering is
valid for A-type antiferromagnetic ordering as well; the average MnO2 planes are closer to
the average LaO planes than to the average SrO planes. (The average distance with the LaO
is 1.864 Å and the average distance with SrO is 1.905 Å.) The dMn−O distances are overall
smaller than the ones for the ferromagnetic ordering (the dMn−O between MnO2 and LaO is
1.911 Å, while is dMn−O between MnO2 and SrO is 1.859 Å) but there is also a interlayer
dimerization. Finally, the rumpling values are decreased a little but again the system doesn’t
have any polarization.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 -0.001

1.905 1.859
MnO2 0.253 -0.046

1.864 1.911
LaO 0.500 0

1.864 1.911
MnO2 0.747 0.046

1.905 1.859

Table 4.3 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a strain-free environment. aA−AFM = 3.873
Å. cA−AFM = 7.539 Å.

In table 4.4, one can see that the Mn-octahedra thickness and the layer thickness are
more or less equal to each other for each mono-layer (around 3.77 Å). This value is less than
the thickness value of ferromagnetic case. However, the JTd and c′/a− 1 values are five
times larger than those of the ferromagnetic case. Both JTd and tetragonality indicate strong
contraction in the superlattice octhedrons and mono-layers. As a consequence of the JTd
value, the eg occupancy ratio is higher than the one in the purely ferromagnetic case, and
the dx−y2 orbital is preferentially occupied over the dz2 orbital. The magnetic moments of
the Mn ions present alternated signs, because of the spin ordering. Their values are a little
smaller than those of ferromagnetic case.

For comparing the relaxed lattice parameters of FM and A-AFM cases, one can take a
look to the sketch given in Figure 4.5. Here, in the case of A-type AFM compared to FM,
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.609
MnO2 3.770 -0.027 3.768 -0.027 3.374 2.045 0.67 -0.871
LaO 1.132

MnO2 3.770 -0.027 3.771 -0.026 -3.374 2.045 -0.67 -0.871

Table 4.4 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)1−(SrMnO3)1]1 superlattice in a strain-free environment. aA−AFM = 3.873
Å. cA−AFM = 7.539 Å.

c′FM

aFM aA−AFM

c′A−AFM

cFM cA−AFM

Fig. 4.5 Sketch for relaxed ferromagnetic and A-type antiferromagnetic [(LMO)1−(SMO)1]1
superlattice lattice parameters. aFM < aA−AFM, cFM > cA−AFM and c′FM > c′A−AFM

by taking into account the enlargement of the a lattice parameter and the reduction of the c
lattice parameter, we can say that antiferromagnetism in c⃗ direction induces a contraction on
the octahedra and layers along the c⃗ direction. The free energy of such a system can be given
as

F = Eelas +Edeloc +ESX +EHund (4.1)

where Eelas is the elastic energy, Edeloc is the delocalization energy, ESX is the superexchange
energy and EHund is the Hund’s energy.

When there is a ferromagnetic ordering in the system, the system will favor the in-plane
delocalization. For this purpose, the a lattice parameter will decrease in the ferromagnetic
ordering case. As a consequence, the in-plane delocalization t increases. The elastic energy
enlarges the c lattice parameter in order to preserve the volume of the system. Naturally, the
dOO also increases and results with a positive JTd which is responsible of a weak dominance
of dz2 occupancy in the strain-free case.
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When there is A-type antiferromagnetic ordering one can gain the superexchange energy
compared to ferromagnetic solution. In order to favour the superexchange energy along the c⃗
direction the superlattice contracts in the c⃗ direction. On the other hand, elastic energy will
still decrease the a lattice parameter but in order to preserve the volume this decrease will not
be too much. The contraction in the c⃗ direction will result with a slightly dominant dx2−y2

occupancy in the strain-free case.

4.2.2 Results with aSTO = 3.88 Å

Now we look at a [(LMO)1 − (SMO)1]1 superlattice deposited on a STO substrate. The
imposed a lattice parameter is the one we optimized within our calculations; that is a = 3.88
Å. We computed different magnetic configurations: ferromagnetic, A-type antiferromagnetic,
C-type antiferromagnetic and G-type antiferromagnetic. We found that the ferromagnetic
ordering has the lowest energy. As the C-type antiferromagnetic and G-type antiferromag-
netic configurations are way too high in energy we do no report their structural and magnetic
properties here in this section. However, in section with imposed a = 3.905 Å, we will report
the C-type antiferromagnetic configuration with the ferromagnetic and A-type antiferromag-
netic configurations to have an idea. When a = 3.88 Å is imposed, the energy difference
between the A-type antiferromagnetic ordering and the ferromagnetic ordering is found to be
∆E = EA−AFM −EFM ≃ 36 meV for whole superlattice and 9 meV per manganite unit cell.

Ferromagnetic Ordering

In table 4.5 we report the structural results of the optimized geometry of [(LMO)1 −
(SMO)1]1 superlattice with imposed a = 3.88 Å when spins are ferromagnetically alligned.
The c lattice parameter is optimized at cFM = 7.617 Å. The MnO2 planes have opposite
rumplings, thus we can say that the system doesn’t show any polarization. By looking at
the interplane distances, one can easily see that the average MnO2 planes are closer to the
average LaO planes than to the average SrO planes. The distance with the LaO is 1.876 Å
and the distance with SrO is 1.932 Å. The Mn−O distance in the c⃗ direction also changes
from one plane to another. The dMn−O between the MnO2 and LaO is 1.924 Å, while dMn−O

is 1.884 Å between MnO2 and SrO. These two results are sign of a dimerization as we
pointed out in the previous section. Though the interplane distances and the Mn−O distances
decreased compared to the ferromagnetic strain-free case, the dimerization is still there and
acts the same.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.127 0.000

1.932 1.884
MnO2 0.127 -0.048

1.876 1.924
LaO 0.373 0.000

1.876 1.924
MnO2 0.620 0.048

1.932 1.884

Table 4.5 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]1 superlattice on a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cFM = 7.617 Å.

In table 4.6, we give the results for the magnetic properties of the ferromagnetic ordered
system. The Mn-magnetic moments are the same in each MnO2 plane and this value is
similar to the ferromagnetic-strain free case. We can immediately see that the Mn-octahedra
thickness (dOO) and the layer thickness (c′) are the same in the two layers so that the Jahn-
Teller distortion (JTd) and tetragonality are the same as well. Both Jahn-Teller distortion and
tetragonality indicate that the superlattice mono-layers are contracted in the c⃗ direction and
the eg ratio shows that dx2−y2 is preferentially occupied. This result is the opposite of the
ferromagnetic strain-free case. When there is a strain due to the imposed a lattice parameter,
the gain in the in-plane delocalization energy cannot take place by compressing the a lattice
parameter. Thus, under the tensile strain, the system contracts in the c⃗ direction leading to a
negative JTd which is associated to a dominant dx2−y2 occupancy.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.584
MnO2 3.809 -0.018 3.808 -0.018 3.444 1.248 0.708 -0.854
LaO 1.125

MnO2 3.809 -0.018 3.808 -0.018 3.444 1.248 0.708 -0.854

Table 4.6 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cFM = 7.617 Å.
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A-type Antiferromagnetic Ordering

In tables 4.7, 4.8 we report the structural and magnetic quantities for the A-type antiferromag-
netic (ferromagnetic in plane, antiferromagnetic in c⃗ direction) ordered [(LMO)1−(SMO)1]1

superlattices. The c lattice parameter is optimized at cA−AFM = 7.531 Å. It is worth to
mention that this value is more or less the same as the c lattice parameter of the A-type
antiferromagnetic system in strain-free environment (c = 7.539 Å). It is probably because
of the very small mismatch between strain-free A-type antiferromagnetic in-plane lattice
parameter (aA−AFM = 3.873 Å) and the imposed in-plane lattice parameter (a = 3.88 Å).
The mismatch is around 0.2%. Thus, we can expect to have about the same structural and
magnetic properties with strain-free A-type antiferromagnetic case. Indeed, one can see
from the corresponding tables that the strain-free (optimized at a = 3.873 Å) and strained
A-type antiferromagnetic (fixed at a = 3.88 Å) cases show almost the same structural and
magnetic properties. In comparison to the strained ferromagnetic case, the strained A-type
antiferromagnetic system is indeed more contracted in c⃗ direction. This overall contraction
in c⃗ direction also reflects on the interplane distances between average planes and dMn−O

distances, thus the same dimerization analysis is still valid. The rumpling in each plane is
qualitatively the same with the strained ferromagnetic case.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.040 0

1.904 1.858
MnO2 0.293 -0.046

1.861 1.908
LaO 0.540 0

1.861 1.908
MnO2 0.787 0.046

1.904 1.858

Table 4.7 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 7.531 Å.

In table 4.8, one can see that the Mn-octahedra (dOO) and layer (c′) thicknesses are
even smaller than those of strained ferromagnetic case. As a consequence of the larger
negative JTd, the associated eg ratio is higher than for the strained ferromagnetic case. As a
conclusion, we can say that even if we have seen a contraction in the c⃗ direction in the strained
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ferromagnetic case, the contraction that we get from the strained A-type antiferromagnetic
case is larger.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.611
MnO2 3.765 -0.030 3.764 -0.030 3.376 2.073 0.67 -0.873
LaO 1.135

MnO2 3.765 -0.030 3.766 -0.030 -3.376 2.073 -0.67 -0.873

Table 4.8 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 7.531 Å.

4.2.3 Results with aSTO = 3.905 Å

Now we look at a [(LMO)1 − (SMO)1]1 superlattice deposited on a substrate where the
imposed a lattice parameter is the experimental STO one; that is a = 3.905 Å. We computed
different magnetic configurations: ferromagnetic, A-type antiferromagnetic and C-type
antiferromagnetic. We obtain the A-type antiferromagnetic ordering as the ground state
when the a is fixed at 3.905 Å. The C-type antiferromagnetic ordering has a very large
energy (∆E = EC−AFM −EA−AFM = 782 meV for whole superlattice). The energy difference
between the A-type antiferromagnetic ordering and the ferromagnetic ordering is given by
∆E = EA−AFM −EFM ≃ −13 meV for whole superlattice and -3 meV per manganite unit
cell.

Ferromagnetic Ordering

In table 4.9, we report the structural results of the optimized geometry of [(LMO)1 −
(SMO)1]1 superlattice with imposed a = 3.905 Å when spins are ferromagnetically alligned.
The c lattice parameter is optimized at cFM = 7.585 Å. The structural and magnetic properties
are qualitatively the same as for the ferromagentic case with imposed a = 3.88 Å , since
in both cases the superlattice is under tensile strain. However, one should note that the
overall contraction along c⃗ is a little bit larger in the a = 3.905 case than a = 3.88 Å case.
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Naturally, this increase in overall contraction reflects in the other structural parameters
such as interplane distances, dMn−O, dOO and etc. Nevertheless, the same analysis for the
dimerization is again valid in this case.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.924 1.877
MnO2 0.254 -0.047

1.868 1.915
LaO 0.500 0

1.868 1.915
MnO2 0.746 0.047

1.925 1.877

Table 4.9 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.905
Å. The c lattice parameter is optimized at cFM = 7.585 Å.

In table 4.10, we report the magnetic properties. The results are qualitatively similar
to the ferromagnetic ordered case with the imposed a = 3.88 Å. As the overall contraction
is increased in the a = 3.905 Å case, this reflects in the JTd and the associated the eg

occupancies but the physics does not change significantly from a = 3.88 Å case to a = 3.905
Å case when there is ferromagnetic ordering.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.592
MnO2 3.792 -0.029 3.793 -0.029 3.452 1.319 0.712 -0.863
LaO 1.135

MnO2 3.792 -0.029 3.791 -0.029 3.452 1.319 0.712 -0.863

Table 4.10 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.905 Å. The c lattice parameter is optimized at cFM = 7.585 Å.

In figure 4.6, we report the total and partial densities of states for the [(LMO)1 −
(SMO)1]1 superlattice in the ferromagnetic configuration. Mn atoms contribute to the



4.2 [(LaMnO3)1 − (SrMnO3)1]1 Superlattice 115

electronic structure at the Fermi level. Mn t2g states are below the Fermi level due to the
crystal field splitting. At the Fermi level, Mn eg ↑ states split into dx2−y2 and dz2 . Both
orbitals are almost equally occupied (even though the eg ratio shows preferential dx2−y2

orbital occupancy the difference remains small). These partially occupied eg orbitals lead to
a ferromagnetic double exchange. In spin-down channel we can notice the gap at the Fermi
level which is the sign of half-metallicity.
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Fig. 4.6 Total and partial densities of states for the [(LMO)1 − (SMO)1]1 superlattice in
ferromagnetic configuration. The symbols ↑ and ↓ are for the spin up and spin down states.
The Mn eg ↑ state at the Fermi level splits into dx2−y2 and dz2 . Both dx2−y2 and dz2 are more
or less equally occupied.

A-type Antiferromagnetic Ordering

We give the results summarized in tables 4.11 and 4.12 for A-type antiferromagnetic ordering
with imposed a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 7.500 Å. The
results in tables 4.11 and 4.12 are qualitatively similar to those of the A-type AFM ordering
with imposed a = 3.88 Å. However, one must note that the overall contraction along the c⃗
increases in comparison to a = 3.88 Å case as the fixed a lattice parameter is larger than
3.88 Å . Let us remind that a = 3.88 Å is very close to the strain-free reference (a = 3.873
Å) for the A-type antiferromagnetic ordering. Thus, this effect can be attributed to the elastic
energy that tends to keep the unit cell volume constant.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.897 1.852
MnO2 0.253 -0.045

1.853 1.898
LaO 0.500 0

1.852 1.898
MnO2 0.747 0.046

1.898 1.852

Table 4.11 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cA−FM = 7.500 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.619
MnO2 3.750 -0.040 3.752 -0.039 3.381 2.190 0.673 -0.882
LaO 1.145

MnO2 3.750 -0.040 3.748 -0.040 -3.381 2.194 -0.674 -0.882

Table 4.12 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 7.500 Å.
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In figure 4.7, we give the total and partial densities of states for the [(LMO)1− (SMO)1]1

superlattice in the A-type antiferromagnetic configuration. Again, Mn atoms contribute
to electronic structure at the Fermi level. Mn t2g states are below the Fermi level due to
crystal field splitting. At the Fermi level, Mn eg ↑ states split into dx2−y2 and dz2 . Since the
antiferromagnetism in the c⃗ direction enhances the contraction of Mn-octahedra in the c⃗
direction, the dx2−y2 orbital occupancy is significantly larger than the one of dz2 .
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Fig. 4.7 Total and partial densities of states for the [(LMO)1 − (SMO)1]1 superlattice in
A-type antiferromagnetic configuration. The symbols ↑ and ↓ are for the spin up and spin
down states. The Mn eg ↑ state at the Fermi level splits into dx2−y2 and dz2 . dx2−y2 is occupied
more than dz2 .

C-type Antiferromagnetic Ordering

Though it is quite higher in energy compared to other magnetic configurations we also
report C-type antiferromagnetic ordering; that is antiferromagnetic ordering in plane and
ferromagnetic ordering in c⃗ direction. The results are summarized in table 4.13 and table 4.14.
The c lattice parameter is optimized at cC−AFM = 7.714 Å which is larger than the c lattice
parameters that are obtained for ferromagnetic and A-type antiferromagnetic superlattice
with imposed a = 3.905 Å. This overall elongation in the c⃗ direction reflects on the interplane
distances and the dMn−O as elongation as well. However, the main result on dimerization
is still valid here too. The average MnO2 planes are closer to the average LaO planes than
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to the average SrO planes. The Mn−O distances (dMn−O) between MnO2 and LaO planes
(1.951 Å and 1.946 Å ) is larger than the one of between MnO2 and SrO (1.911 Å and 1.906
Å ). From the rumpling values, we can again conclude that the system does not show any
polarization.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0.001

1.959 1.911
MnO2 0.254 -0.050

1.900 1.951
LaO 0.500 -0.001

1.898 1.946
MnO2 0.746 0.050

1.957 1.906

Table 4.13 Table summarizing the structural properties of C-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cC−AFM = 7.714 Å.

In table 4.14, we report the magnetic and related structural properties. The two Mn atoms
of each plane has opposite signs in magnetic moment as we ordered C-type antiferromag-
netism; that is antiferromagnetic in plane and ferromagnetic in the c⃗ direction. The charges
of each plane is non-zero as we observed before in other calculations as well. The dOO and
c′ values are close to each other so that the corresponding JTd and c′/a−1 are also close.
We see the elongation in both dOO and c′ compared to ferromagnetic and A-type antiferro-
magnetic cases within a = 3.905 Å. However, what is remarkable in this table by looking
at the JTd and the associated eg occupancy ratio is that even though there is negative JTd,
which is the sign of contraction in the c⃗ direction, the dz2 orbital is preferentially occupied.

In figure 4.8, we can see the electronic structure of the C-type antiferromagnetic [(LMO)1−
(SMO)1]1 superlattice through the total and partial densities of states. One can see in the
inset of Figure 4.8 that dz2 is lower in energy and is more occupied whereas dx2−y2 orbital is
higher in energy and less occupied. The energy of the A-type antiferromagnetic configuration
is lower than the energy of ferromagnetic configuration (EA−AFM −EFM =−3 meV per unit
cell) when a is fixed at 3.905 Å, while it is the opposite (EA−AFM −EFM = 9 meV per unit
cell) when a is fixed at 3.88 Å. However, the energy difference between these two mag-
netic configurations is quite small. This is smaller than room temperature (kBT ∼ 25 meV).
This indicates that the magnetic ground state of [(LaMnO3)1 − (SrMnO3)1]1 superlattices
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.561
MnO2 3.853 -0.013 3.857 -0.012 3.336

(-3.336)
0.321 0.617

(-0.617)
-0.837

LaO 1.111
MnO2 3.861 -0.011 3.857 -0.012 3.320

(-3.320)
0.333 0.605

(-0.605)
-0.832

Table 4.14 Table summarizing the structural and magnetic properties of C-type antiferromag-
netic [(LaMnO3)1 − (SrMnO3)1]1 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cC−AFM = 7.714 Å.
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is quasi-degenerate in our calculations. In order to highlight this issue, we would like to
check whether this comes from a size effect. Thus, we have increased the number of layers
from 2 to 4. In addition, we will be able to check different magnetic configurations with by
increasing the number of layers.

4.2.4 Analysis of Mn–Mn distances

Finally, we would like to summarize the Mn–Mn distances in each magnetic ordering for
these superlattices. First, in table 4.15 we give the Mn–Mn distances for the superlattice
in a strain-free environment and within imposed a = 3.88 Å and a = 3.905 Å. We see the
dimerization in all cases.

dMn−Mn (Å)
FM A-AFM FM A-AFM FM A-AFM

Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.905 Å a = 3.905 Å
MnO2 ↑ ↓ ↑ ↓ ↓ ↑
SrO 3.804 3.718 3.768 3.716 3.754 3.704

MnO2 ↑ ↑ ↑ ↑ ↑ ↑
LaO 3.91 3.822 3.848 3.816 3.83 3.796

MnO2 ↑ ↓ ↑ ↓ ↑ ↓
Table 4.15 Table reporting the dMn−Mn values for strain-free, a = 3.88 Å and a = 3.905
Å for ferromagnetic, A-type antiferromagnetic cases. First line is visualized in red to point
out it it is the repetition of the second MnO2 plane due to periodicity.

4.3 [(LaMnO3)1− (SrMnO3)1]2 Superlattice

In this section, we double the size of the system with the same cationic order, [(LaMnO3)1 −
(SrMnO3)1]2, that allows us to study both size effects and different magnetic orderings. The
schematic picture of such superlattices is given in figure 4.9. In such superlattice, other than
the FM, A-AFM, C-AFM and G-AFM one can study the magnetic orderings such as ↑↑↓↓
(“uudd”) and ↑↓↓↑ (“uddu”). Since we have seen in the 2-layers systems that the C-AFM
and G-AFM are energetically too high, we didn’t study them for the 4-layers systems. In
figure 4.10 we gave the energy comparisons of each magnetic ordering with respect to the
substrate on which the superlattice is deposited.
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Fig. 4.9 Schematic picture for LMO-SMO superlattices

One can immediately notice that for both the substrate in-plane lattice parameter a = 3.88
Å and a = 3.905 Å, A-AFM is the ground state. In the 2-layers case, we got FM case as the
ground state for a = 3.88 Å. This shows that we were not able to completely capture the real
physics when the computed system had only 2-layers. What is also interesting here is that
we managed to get an intermediate magnetic order between A-AFM and FM which is the
“uudd” case. ‘

4.3.1 Strain-free conditions

As we did in previous section, we also study the superlattice in strain-free environment. We
found that the ferromagnetic solution is lower in energy than the A-type antiferromagnetic
one (∆E = EA−AFM−FM−EFM ≃ 96 meV for whole superlattice and 12 meV per manganite
unit cell). The strain-free reference in-plane lattice parameter is optimized at aFM = 3.836
Å for the ferromagnetic ordering while it is optimized at aA−AFM = 3.877 Å for the A-type
antiferromagnetic ordering. As one can see these values are consistent with strain-free values
found for the two-layers system.

Ferromagnetic Ordering

In tables 4.16, 4.17, we report the structural and magnetic results for the ferromagnetic
superlattice. The a lattice parameter is optimized at aFM = 3.836 Å. The c lattice parameter
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Fig. 4.10 Energy difference of each configuration with respect to the lowest energy ordering
and geometry (∆E = E −E0) vs. the imposed a in-plane lattice parameter. Here, E0 is the
lowest energy obtained for the ferromagnetic ordering in the strain-free case.
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is optimized at cFM = 15.152 Å. Though the in-plane lattice parameter is consistent with the
strain-free two-layers ferromagnetic system (aFM = 3.836 Å for four-layers and aFM = 3.833
Å for two-layers), the c lattice parameter is smaller than twice of the c lattice parameter
of the strain-free two-layers ferromagnetic system (cFM = 15.152 Å for four-layers and
2× cFM = 2×7.714 = 15.428 Å for two-layers doubled in c⃗ direction). This contraction
in the c⃗ direction is reflected on the structural parameters of table 4.16. One can see that
the interplane distances and the dMn−O ones are qualitatively the same as for the strain-free
two-layers ferromagnetic system but the values are smaller due to the overall contraction.
The dimerization is kept.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0.001

1.919 1.870
MnO2 0.127 -0.050

1.869 1.919
LaO 0.250 0

1.870 1.919
MnO2 0.373 0.049

1.918 1.869
SrO 0.500 0

1.919 1.868
MnO2 0.627 -0.050

1.869 1.919
LaO 0.750 0

1.870 1.920
MnO2 0.873 0.050

1.919 1.869

Table 4.16 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a strain free environment. The a lattice parameter is optimized
at aFM = 3.836 Å. The c lattice parameter is optimized at cFM = 15.152 Å.

In table 4.17, we report the magnetic and related structural results. The charges of each
atomic plane are more or less the same as the ones in the strain-free two-layers ferromagnetic
system. The Mn-magnetic moments of each MnO2 plane are equal to each other and are also
the same with strain-free two-layers ferromagnetic system. The main differences between
strain-free four-layers ferromagnetic and strain-free two-layers ferromagnetic systems are
in dOO and c′ of each layer and, corresponding JTd and tetragonality values. In strain-free
four-layers ferromagnetic case, we see that the each layer and Mn-octahedra of each layer are
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equal to each other and are contracted (negative JTd and tetragonality). Previously, we have
seen small elongation in Mn-octahedra of two-layers system with a slightly small dominant
dz2 occupancy. Now, in four-layers system, as we compress more in the c⃗ direction, the eg

ratio is closer to 1, indicating almost equal occupancies in dx2−y2 and dz2 orbitals.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.563
MnO2 3.789 -0.012 3.789 -0.012 3.435 0.939 0.704 -0.833
LaO 1.102

MnO2 3.788 -0.012 3.784 -0.013 3.434 0.945 0.704 -0.834
SrO 0.564

MnO2 3.787 -0.013 3.790 -0.012 3.431 0.950 0.702 -0.833
LaO 1.102

MnO2 3.788 -0.012 3.788 -0.012 3.433 0.945 0.702 -0.833

Table 4.17 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1−(SrMnO3)1]2 superlattice in a strain free environment. The a lattice parameter
is optimized at aFM = 3.836 Å. The c lattice parameter is optimized at cFM = 15.152 Å.

A-type Antiferromagnetic Ordering

In tables 4.18, 4.19, we report the structural and magnetic properties of the strain-free four-
layers A-type antiferromagnetic system. The a lattice parameter is optimized at aA−AFM =

3.877 Å. The c lattice parameter is optimized at cA−AFM = 15.046 Å. Both in-plane and
out-of-plane lattice parameters are consistent with the strain-free two-layers ferromagnetic
system (aFM = 3.836 Å for four-layers and aFM = 3.833 Å for two-layers, cA−AFM = 15.046
Å for four-layers and 2× cA−AFM = 2× 7.539 = 15.078 Å for two-layers doubled in c⃗
direction). Relatively, the interplane distances between average planes and Mn−O distances
are consistent with the two-layers system.

In table 4.19, one can see the magnetic and related structural properties. The charges of
each atomic plane is non-zero and the values are similar to those obtained in two-layers case.
The Mn-magnetic moments have opposite signs in each plane and their values are similar
to those of strain-free two-layers A-type antiferromagnetic case. The thickness of the layer
and Mn-octahedra are the same in each and equal to each other. The values are similar to
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.902 1.855
MnO2 0.126 -0.046

1.860 1.906
LaO 0.250 0

1.860 1.906
MnO2 0.374 0.046

1.901 1.855
SrO 0.500 0

1.901 1.855
MnO2 0.626 -0.046

1.860 1.906
LaO 0.750 0

1.860 1.906
MnO2 0.874 0.046

1.901 1.855

Table 4.18 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1−(SrMnO3)1]2 superlattice in a strain free environment. The a lattice parameter
is optimized at aA−AFM = 3.877 Å. The c lattice parameter is optimized at cA−AFM = 15.046
Å.
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those obtained for the two-layers system. Similarly, the associated JTd and tetragonality are
also the same. The corresponding eg ratio shows the same tendency as two-layers system; a
strongly dominant dx2−y2 occupancy.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.615
MnO2 3.762 -0.030 3.763 -0.029 3.373 2.216 0.669 -0.875
LaO 1.136

MnO2 3.762 -0.030 3.761 -0.030 -3.373 2.221 -0.67 -0.875
SrO 0.615

MnO2 3.761 -0.030 3.762 -0.030 3.373 2.221 0.67 -0.875
LaO 1.136

MnO2 3.762 -0.030 3.760 -0.030 -3.374 2.221 -0.67 -0.875

Table 4.19 Table summarizing the structural and magnetic properties of A-type antifer-
romagnetic [(LaMnO3)1 − (SrMnO3)1]2 superlattice in a strain free environment. The a
lattice parameter is optimized at aA−AFM = 3.877 Å. The c lattice parameter is optimized at
cA−AFM = 15.046 Å.

4.3.2 Results with aSTO = 3.88 Å

Now we look at an [(LMO)1 − (SMO)1]2 superlattice deposited on STO substrate. The
imposed a lattice parameter is the one that we optimized within our calculations; that
is a = 3.88 Å. We computed different magnetic configurations: ferromagnetic, A-type
antiferromagnetic “↑↑↓↓” and “↑↓↓↑ orderings. We have found the A-type antiferromagnetic
ordering as the lowest energy (EA−AFM −EFM =−103 meV, EA−AFM −Euudd ≃−79 meV,
EA−AFM −Euddu ≃−233 meV for whole superlattice).

Ferromagnetic Ordering

In table 4.20 we report the structural results of the optimized geometry of [(LMO)1 −
(SMO)1]2 superlattice with imposed a = 3.88 Å when spins are ferromagnetically alligned.
The c lattice parameter is optimized at cFM = 15.258 Å; this value is consistent with the c
lattice parameter optimized for the strained two-layers ferromagnetic system (cFM = 15.258
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Å for four-layers and 2×cFM = 2×7.617 = 15.234 Å for two-layers doubled in c⃗ direction).
The structural properties are qualitatively the same with the strained two-layers ferromagnetic
one. The values for interplane distances, rumplings and Mn−O distances are similar with
the strained two-layers ferromagnetic ones. The same dimerization analysis is valid.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.024 0

1.935 1.886
MnO2 0.103 -0.048

1.880 1.928
LaO 0.226 0

1.880 1.928
MnO2 0.350 0.048

1.934 1.886
SrO 0.476 0

1.935 1.886
MnO2 0.603 -0.048

1.880 1.928
LaO 0.726 0

1.880 1.928
MnO2 0.850 0.048

1.934 1.886

Table 4.20 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cFM = 15.258 Å.

In the table 4.21, we report the magnetic and related structural properties. The results are
qualitatively the same for the strained two-layers ferromagnetic superlattice. We observe neg-
ative JTd and related eg occupancy ratio with slightly small dominance in dx2−y2 occupancy.
We again found an eg occupancy ratio different from the one obtained for the strain-free
four-layers ferromagnetic superlattice.

A-type Antiferromagnetic Ordering

In table 4.22 and 4.23, we summarize the results A-type antiferromagnetic [(LMO)1 −
(SMO)1]2 superlattice with imposed a = 3.88 Å. The results are qualitatively the same with
A-type antiferromagnetic 2-layers superlattice.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.580
MnO2 3.815 -0.017 3.815 -0.017 3.447 1.152 0.71 -0.852
LaO 1.123

MnO2 3.814 -0.017 3.815 -0.017 3.446 1.152 0.71 -0.852
SrO 0.581

MnO2 3.814 -0.017 3.814 -0.017 3.447 1.152 0.71 -0.852
LaO 1.123

MnO2 3.814 -0.017 3.814 -0.017 3.447 1.152 0.71 -0.852

Table 4.21 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cFM = 15.258 Å.

The c lattice parameter is optimized at cA−AFM = 15.039 Å; this value is consistent with
the c lattice parameter optimized for the strained two-layers A-type antiferromagnetic system
(cFM = 15.258 Å for four-layers and 2× cA−AFM = 2×7.531 = 15.062 Å for two-layers
doubled in c⃗ direction). The structural properties are qualitatively the same with the strained
two-layers A-type antiferromagnetic one. The values for interplane distances, rumplings and
Mn−O distances are similar with the strained two-layers A-type antiferromagnetic ones.
The same dimerization analysis is valid.

In the table 4.23, we report the magnetic and related structural properties. The results are
qualitatively the same with strained two-layers A-type ferromagnetic superlattice. We observe
negative JTd and related eg occupancy ratio with large dominancy in dx2−y2 occupancy. These
result are also similar to the ones obtained for the strain-free four-layers A-type ferromagnetic
superlattice.

↑↑↓↓ Ordering

Now we consider a different magnetic ordering where spins are alligned as ↑↑↓↓ (”uudd“).
This magnetic configuration is found to be an intermediate phase between A-type antiferro-
magnetic and ferromagnetic phases (EA−AFM −EFM =−103 meV (-13 meV), EA−AFM −
Euudd ≃−79 meV (-10 meV) for whole superlattice (per unit cell)).
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.007 0

1.901 1.855
MnO2 0.119 -0.046

1.859 1.905
LaO 0.243 0

1.859 1.905
MnO2 0.366 0.046

1.901 1.855
SrO 0.493 0

1.901 1.855
MnO2 0.619 -0.046

1.859 1.905
LaO 0.743 0

1.859 1.905
MnO2 0.866 0.046

1.901 1.855

Table 4.22 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 15.039 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.616
MnO2 3.760 -0.031 3.760 -0.031 3.375 2.226 0.671 -0.877
LaO 1.138

MnO2 3.760 -0.031 3.760 -0.031 -3.375 2.226 -0.671 -0.877
SrO 0.615

MnO2 3.760 -0.031 3.760 -0.031 3.375 2.226 0.671 -0.877
LaO 1.138

MnO2 3.760 -0.031 3.760 -0.031 -3.375 2.226 -0.671 0.877

Table 4.23 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 15.039 Å.
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In tables 4.24, 4.25 we summarize the results. The c lattice parameter is optimized as
cuudd = 15.089 Å; that is closer to cA−AFM = 15.039 Å. When we analyse the interplane
distances we see that the average MnO2 planes are closer to LaO layers than SrO as we have
seen previously in all cases. In fact the interplane distances, rumpling values and Mn−O
distances are very similar to those we obtained for A-type antiferromagnetic case.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.005 0

1.906 1.858
MnO2 0.131 -0.048

1.866 1.914
LaO 0.255 0

1.867 1.913
MnO2 0.379 0.047

1.906 1.859
SrO 0.505 0

1.906 1.858
MnO2 0.631 -0.047

1.867 1.914
LaO 0.755 0

1.866 1.914
MnO2 0.879 0.047

1.906 1.859

Table 4.24 Table summarizing the structural properties of “↑↑↓↓” ordered [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cuudd = 15.089 Å.

In the table 4.25, we report the magnetic and related structural properties. The charges
of each atomic plane are non-zero and they are more or less the same as in the case of
A-type antiferomagnetic. The Mn-magnetic moment presents the spin ordering of the system:
“↑↑↓↓”. The other results are qualitatively the same as for the strained four-layers A-type
ferromagnetic superlattice. We observe negative JTd and related eg occupancy ratio with
large dominance in dx2−y2 occupancy. However, one must note that the dominant dx2−y2

occupancy that one can get is larger in A-type antiferromagnetic case.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.607
MnO2 3.772 -0.028 3.772 -0.028 3.387 1.906 0.677 -0.869
LaO 1.132

MnO2 3.772 -0.028 3.773 -0.028 3.387 1.901 0.676 -0.869
SrO 0.608

MnO2 3.772 -0.028 3.772 -0.028 -3.385 1.906 -0.677 -0.869
LaO 1.132

MnO2 3.772 -0.028 3.772 -0.028 -3.387 1.906 -0.677 -0.869

Table 4.25 Table summarizing the structural and magnetic properties of “↑↑↓↓” ordered
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cuudd = 15.089 Å.

↑↓↓↑ Ordering

Another spin allignment which can be tested in such superlattice is ↑↓↓↑ (”uddu“). This
configuration is energetically the highest. The structural results are given in tables 4.26. The
c lattice parameter is optimized at cuddu = 15.133 Å. Even though the values in interplane
distances and Mn−O distances change compared to the previous cases, the same dimerization
is still valid here too.

In table 4.27, we give the magnetic and related structural properties. The charges of each
atomic plane is non-zero and a little bit less than the ones we see in A-type antiferromagnetic
and “↑↑↓↓” cases. The Mn-magnetic moment exhibit the spin ordering of the system: “↑↓↓↑”.
The other results are similar to A-type antiferromagnetic and “↑↑↓↓” cases. We observe
negative JTd and the associated eg occupancy ratio with dominant dx2−y2 orbital. However,
the eg occupancy ratio is the smaller than A-type antiferromagnetic and “↑↑↓↓” cases.

4.3.3 Results with aSTO = 3.905 Å

Now we study the [(LMO)1 − (SMO)1]2 superlattice deposited on a substrate where the
imposed a lattice parameter is the experimental STO one; that is a = 3.905 Å. We com-
puted different magnetic configurations: ferromagnetic, A-type antiferromagnetic “↑↑↓↓”
and “↑↓↓↑ orderings. We found that the A-type antiferromagnetic ordering has the lowest
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.005 0

1.919 1.874
MnO2 0.121 -0.045

1.865 1.910
LaO 0.245 0

1.864 1.909
MnO2 0.368 0.045

1.919 1.874
SrO 0.495 0

1.919 1.874
MnO2 0.621 -0.045

1.864 1.909
LaO 0.745 0

1.865 1.910
MnO2 0.868 0.045

1.919 1.874

Table 4.26 Table summarizing the structural properties of “↑↓↓↑” ordered [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cuddu = 15.133 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.594
MnO2 3.784 -0.025 3.784 -0.025 3.409 1.751 0.685 -0.862
LaO 1.129

MnO2 3.783 -0.025 3.783 -0.025 -3.408 1.776 -0.683 -0.862
SrO 0.594

MnO2 3.783 -0.025 3.783 -0.025 -3.407 1.776 -0.683 -0.862
LaO 1.129

MnO2 3.784 -0.025 3.783 -0.025 3.409 1.751 0.685 -0.862

Table 4.27 Table summarizing the structural and magnetic properties of “↑↓↓↑” ordered
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cuddu = 15.133 Å.



4.3 [(LaMnO3)1 − (SrMnO3)1]2 Superlattice 133

energy (EA−AFM−EFM =−218 meV (-27 meV), EA−AFM−Euudd ≃−102 meV (-13 meV),
EA−AFM −Euddu ≃−280 meV (35 meV) for whole superlattice (per unit cell)).

Ferromagnetic Ordering

In table 4.28 we report the structural results of the optimized geometry of [(LMO)1 −
(SMO)1]2 superlattice with imposed a = 3.905 Å when spins are ferromagnetically alligned.
The c lattice parameter is optimized at cFM = 15.152 Å; this value is consistent with the c
lattice parameter optimized for the strained two-layers ferromagnetic system (cFM = 15.152
Å for four-layers and 2×cFM = 2×7.585 = 15.17 Å for two-layers doubled in c⃗ direction).
The structural properties are qualitatively the same with the strained two-layers ferromagnetic
one. The values for interplane distances, rumplings and Mn−O distances are similar with
the strained two-layers ferromagnetic ones. The same dimerization analysis is valid.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.922 1.876
MnO2 0.127 -0.047

1.865 1.912
LaO 0.250 0

1.865 1.912
MnO2 0.373 0.047

1.923 1.876
SrO 0.500 0

1.923 1.876
MnO2 0.627 -0.047

1.865 1.912
LaO 0.750 0

1.865 1.912
MnO2 0.873 0.047

1.923 1.876

Table 4.28 Table summarizing the structural properties of ferromagnetic [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.905
Å. The c lattice parameter is optimized at cFM = 15.152 Å.

In table 4.29, we report the magnetic and related structural properties. The results are
qualitatively the same with strained two-layers ferromagnetic superlattice. We observe
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negative JTd and related eg occupancy ratio with a dominant in dx2−y2 occupancy (stronger
than the one obtained for fixed a = 3.88 Å). These results are different than the ones obtained
for strain-free four-layers ferromagnetic superlattice as well.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.592
MnO2 3.788 -0.030 3.788 -0.030 3.444 1.430 0.707 -0.863
LaO 1.136

MnO2 3.788 -0.030 3.788 -0.030 3.445 1.430 0.707 -0.863
SrO 0.591

MnO2 3.788 -0.030 3.788 -0.030 3.445 1.430 0.707 -0.863
LaO 1.136

MnO2 3.789 -0.030 3.789 -0.030 3.444 1.430 0.707 -0.863

Table 4.29 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.905 Å. The c lattice parameter is optimized at cFM = 15.152 Å.

A-type Antiferromagnetic Ordering

We report the results in table 4.30 and table 4.31 for A-type antiferromagnetic LMO-SMO
superlattice with fixed a = 3.88 Å. The c lattice parameter is optimized as cA−AFM = 14.980
Å; this value is consistent with the c lattice parameter optimized for the strained two-layers
A-type ferromagnetic system (cA−AFM = 14.980 Å for four-layers and 2 × cA−AFM =

2× 7.500 = 15.00 Å for two-layers doubled in c⃗ direction). The structural results are
qualitatively the same with the A-type AFM ordered two-layers system superlattice with
a = 3.905 Å.

In table 4.31, we report the magnetic and related structural properties. The results are
qualitatively the same with strained two-layers ferromagnetic superlattice at fixed a = 3.905
Å. We observe negative JTd and related eg occupancy ratio with a very dominant in dx2−y2

occupancy (stronger than the one obtained for fixed a= 3.88 Å). We observe more contraction
in the c⃗ direction, thus larger negative JTd and increase in the dx2−y2 occupancy compared to
strain-free four-layers A-type ferromagnetic superlattice.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.007 0

1.893 1.848
MnO2 0.119 -0.046

1.852 1.897
LaO 0.243 0

1.852 1.897
MnO2 0.366 0.046

1.893 1.848
SrO 0.493 0

1.894 1.848
MnO2 0.619 -0.046

1.852 1.897
LaO 0.743 0

1.852 1.897
MnO2 0.866 0.045

1.893 1.848

Table 4.30 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 14.980 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.623
MnO2 3.745 -0.041 3.745 -0.041 3.38 2.353 0.674 -0.885
LaO 1.148

MnO2 3.745 -0.041 3.745 -0.041 -3.38 2.353 -0.674 -0.885
SrO 0.623

MnO2 3.745 -0.041 3.745 -0.041 3.38 2.353 0.674 -0.885
LaO 1.149

MnO2 3.745 -0.041 3.745 -0.041 -3.38 2.353 -0.674 -0.885

Table 4.31 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 14.980 Å.
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↑↑↓↓ and ↑↓↓↑ Orderings

We study also the two other magnetic orderings: “↑↑↓↓” and “↑↓↓↑”. The results are given in
tables 4.32, 4.33, 4.34, 4.35. The ”uudd“ state is again the intermediate phase between the
A-type antiferromagnetic and ferromagnetic cases. The structural and magnetic properties of
these configurations are qualitatively the same with the ones obtained for a = 3.88 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.899 1.852
MnO2 0.126 -0.047

1.857 1.904
LaO 0.250 0

1.857 1.904
MnO2 0.374 0.047

1.899 1.8530
SrO 0.500 0

1.900 1.853
MnO2 0.626 -0.047

1.857 1.904
LaO 0.750 0

1.857 1.904
MnO2 0.874 0.047

1.899 1.852

Table 4.32 Table summarizing the structural properties of “↑↑↓↓” ordered [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.905
Å. The c lattice parameter is optimized at cuudd = 15.027 Å.

In four-layers system the energy of the A-type antiferromagnetic configuration is lower
than the energy of ferromagnetic configuration (EA−AFM −EFM =−13 meV per unit cell
when a is fixed at 3.905 Åand EA−AFM −EFM =−27 meV per unit cell) when a is fixed at
3.88 Å). Although the energy difference between these two magnetic configuration is higher
than two-layers sysem they are still quite small (close to room temperature (kBT ∼ 25 meV).
This indicates that the magnetic ground state [(LaMnO3)1 − (SrMnO3)1]2 superlattices is
quasi-degenerate in our calculations. However, compared to two-layers system, we managed
to get the correct ground-state when a = 3.88 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.617
MnO2 3.756 -0.038 3.756 -0.038 3.392 2.077 0.68 -0.879
LaO 1.141

MnO2 3.757 -0.038 3.757 -0.038 3.392 2.077 0.68 -0.879
SrO 0.616

MnO2 3.757 -0.038 3.757 -0.038 -3.392 2.077 -0.68 -0.879
LaO 1.141

MnO2 3.756 -0.038 3.756 -0.038 -3.392 2.077 -0.68 -0.88

Table 4.33 Table summarizing the structural and magnetic properties of “↑↑↓↓” ordered
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.905 Å. The c lattice parameter is optimized at cuudd = 15.027 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0

1.912 1.868
MnO2 0.127 -0.044

1.854 1.898
LaO 0.250 0

1.853 1.898
MnO2 0.373 0.044

1.913 1.868
SrO 0.500 0

1.911 1.868
MnO2 0.627 -0.044

1.854 1.897
LaO 0.750 0

1.853 1.898
MnO2 0.873 0.044

1.913 1.868

Table 4.34 Table summarizing the structural properties of “↑↓↓↑” ordered [(LaMnO3)1 −
(SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.905
Å. The c lattice parameter is optimized at cuddu = 15.063 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.599
MnO2 3.766 -0.036 3.765 -0.036 3.414 1.899 0.687 -0.871
LaO 1.14

MnO2 3.766 -0.036 3.766 -0.036 -3.414 1.899 -0.687 -0.869
SrO 0.599

MnO2 3.766 -0.036 3.766 -0.036 -3.414 1.899 -0.687 -0.869
LaO 1.14

MnO2 3.766 -0.036 3.766 -0.036 3.414 1.899 0.687 -0.869

Table 4.35 Table summarizing the structural and magnetic properties of “↑↓↓↑” ordered
[(LaMnO3)1 − (SrMnO3)1]2 superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.905 Å. The c lattice parameter is optimized at cuddu = 15.063 Å.

4.3.4 Analysis of Mn–Mn distances

Finally, we would like to summarize the Mn–Mn distances in each magnetic ordering for
these superlattices. First, in table 4.36 we give the Mn–Mn distances for the superlattice in
a strain-free environment and within imposed a = 3.88 Å. We see the same pattern in all
the cases. This alternation between short and long distances is the sign of dimerization. In

dMn−Mn (Å)
FM A-AFM FM A-AFM ↑↑↓↓ ↑↓↓↑

Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.88 Å a = 3.88 Å
MnO2 ↑ ↓ ↑ ↓ ↓ ↑
SrO 3.739 3.71 3.772 3.71 3.717 3.748

MnO2 ↑ ↑ ↑ ↑ ↑ ↑
LaO 3.838 3.812 3.856 3.81 3.827 3.819

MnO2 ↑ ↓ ↑ ↓ ↑ ↓
SrO 3.737 3.71 3.772 3.71 3.717 3.748

MnO2 ↑ ↑ ↑ ↑ ↓ ↓
LaO 3.839 3.812 3.856 3.81 3.828 3.819

MnO2 ↑ ↓ ↑ ↓ ↓ ↑
Table 4.36 Table reporting the dMn−Mn values for strain-free and a = 3.88 Å for ferromag-
netic, A-type antiferromagnetic, “↑↑↓↓”,“↑↓↓↑”, cases. First line is visualized in red to point
out it it is the repetition of the fourth MnO2 plane due to periodicity.
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table 4.37 we give the Mn–Mn distances for the superlattice within imposed a = 3.905 Å.
Again, we see the dimerization in the distances.

dMn−Mn (Å)
FM A-AFM ↑↑↓↓ ↑↓↓↑

MnO2 ↑ ↓ ↓ ↑
SrO 3.752 3.696 3.704 3.736

MnO2 ↑ ↑ ↑ ↑
LaO 3.824 3.794 3.808 3.796

MnO2 ↑ ↓ ↑ ↓
SrO 3.752 3.696 3.706 3.736

MnO2 ↑ ↑ ↓ ↓
LaO 3.824 3.794 3.808 3.795

MnO2 ↑ ↓ ↓ ↑
Table 4.37 Table reporting the dMn−Mn values for a = 3.905 Å for ferromagnetic, A-type
antiferromagnetic, “↑↑↓↓”,“↑↓↓↑”, cases. First line is visualized in red to point out it it is the
repetition of the fourth MnO2 plane due to periodicity.
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4.4 [(LaMnO3)2− (SrMnO3)2]1 Superlattice

Until now, we studied one typical cation order regardless of the total number of layers of the
superlattice: [(LaMnO3)1 − (SrMnO3)1]. We devote this section to another cation ordered
system: (LaMnO3)2 − (SrMnO3)2. In the former superlattice, the MnO2 planes were only
between SrO and LaO planes. However, in (LaMnO3)2 − (SrMnO3)2 superlattice, MnO2

planes can also be in between either two SrO planes, or two LaO planes. The schematic
picture of such superlattice is given in figure 4.11. We studied this superlattice in an artificial

Fig. 4.11 Schematic picture for (LMO)2 − (SMO)2 superlattices

strain-free environment and on a substrate where the in-plane lattice parameter is imposed
to a = 3.88 Å . The magnetic configuration that are investigated are again FM, A-AFM,
“uudd” and “uddu”. In figure 4.12, we gave energy comparisons of each magnetic ordering.
Ferromagnetic configuration in a strain-free environment has the lowest energy.

4.4.1 Strain-free Conditions

We first study the superlattice in a strain-free environment. Thus, we can calculate the
hypothetical in-plane lattice parameter of this superlattice with different spin alignments.
We only took into account ferromagnetic and A-type antiferromagnetic cases. We found
that the ferromagnetic ordering is lower in energy than the A-type antiferromagnetic one
(∆E = EA−AFM = EFM ≃ 226 meV for whole superlattice, 28 meV per unit cell). The strain-
free reference in-plane lattice parameter is optimized at aFM = 3.828 Å for the ferromagnetic
ordering while it is optimized at aA−AFM = 3.878 Å for the A-type antiferromagnetic
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Fig. 4.12 Energy difference of each configuration with respect to the lowest energy ordering
and geometry (∆E = E −E0) vs. the imposed a in-plane lattice parameter. Here, E0 is the
lowest energy obtained for the ferromagnetic ordering in the strain-free case.

ordering. One can see that that aA−AFM is consistent with strain-free antiferromagnetic
[(LMO)1 − (SMO)1]2 superlattice while aFM is smaller than the one of strain-free antiferro-
magnetic [(LMO)1 − (SMO)1]2 superlattice.

Ferromagnetic Ordering

In table 4.38, 4.39, we report the structural and magnetic results of ferromagnetic superlattice.
The a lattice parameter is optimized at aFM = 3.828 Å. The c lattice parameter is optimized
at cFM = 15.566 Å. The in-plane lattice parameter (aFM = 3.828 Å) is a bit smaller than
the one obtained for strain-free ferromagnetic four layers [(LMO)1 − (SMO)1]2 superlattice
(aFM = 3.836 Å). The optimized c lattice parameter (cFM = 15.566 Å) is greater than the one
obtained for strain-free ferromagnetic four layers [(LMO)1 − (SMO)1]2 superlattice (cFM =

15.152 Å) and greater than twice of the c lattice parameter of of the strain-free ferromagnetic
two-layers ferromagnetic [(LMO)1 − (SMO)1]1 superlattice (2× cFM = 2×7.714 = 15.428
Å). One can see in table 4.38 that the interplane distance and dMn−O values are quite different
than the previous systems because of the cation ordering. However, the average LaO planes
are still closer to the average MnO2 planes than the average SrO planes.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.000 0.095

1.951 2.044
MnO2 0.125 0.000

1.949 2.044
SrO 0.250 -0.094

2.002 1.815
MnO2 0.379 -0.093

1.895 2.038
LaO 0.501 -0.050

1.937 1.886
MnO2 0.618 0.000

1.937 1.887
LaO 0.745 0.050

1.895 2.037
MnO2 0.871 0.092

2.000 1.814

Table 4.38 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)2] superlattice in a strain-free environment. The a lattice parameter is optimized at
aFM = 3.828 Å. The c lattice parameter is optimized at cFM = 15.566 Å.
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From magnetic properties given in the table 4.39, we notice that Mn-octahedra between
two SrO layers has the largest thickness (4.089 Å) whereas the Mn-octahedra between two
LaO layers has the smallest one (3.773 Å). In the former octahedra the dz2 is preferentially
occupied while in the latter dx2−y2 is occupied. We notice that there is almost no Jahn-Teller
distortion in the two other two Mn-octahedras between SrO and LaO layers. Thus, the eg

orbitals are more or less equally occupied in these layers. We also notice that tetragonality
has exactly opposite behaviour compared to Jahn-Teller distortion. As we can see the relevant
parameter to for the in-plane eg orbital occupancy (i.e. dx2−y2) is the Jahn-Teller distortion.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.588
MnO2 4.089 0.068 3.711 -0.031 3.572 0.353 0.805 -0.918
SrO 0.588

MnO2 3.853 0.006 3.941 0.029 3.347 1.019 0.654 -0.798
LaO 1.082

MnO2 3.773 -0.014 3.974 0.038 3.387 1.704 0.668 -0.820
LaO 1.081

MnO2 3.851 0.006 3.940 0.029 3.345 1.022 0.653 -0.798

Table 4.39 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2 − (SrMnO3)2] superlattice in a strain-free environment. The a lattice parameter
is optimized at aFM = 3.828 Å. The c lattice parameter is optimized at cFM = 15.566 Å.

A-type Antiferromagnetic Ordering

We summarize the results for A-type antiferromagnetic strain-free [(LaMnO3)2−(SrMnO3)2]

superlattice in the tables 4.40 and 4.41.The in-plane lattice parameter is optimized at
aA−AFM = 3.878 Å. The c lattice parameter is optimized as cA−AFM = 15.064 Å. One can
see in table 4.40 that the average LaO planes are still closer (around 1.833 Å) to the average
MnO2 planes than the average SrO planes (around 1.945 Å) when the MnO2 plane is in
between SrO and LaO but when the MnO2 plane is sandwiched between only one type of
plane then the average SrO planes are closer (1.842 Å) than the average LaO planes (around
1.911 Å). In the table 4.41, we see that all Mn-octahedras are contracted in c direction.
Consequently, dx2−y2 orbital is occupied more than dz2 in all layers. The Mn-octahedras
between SrO and LaO planes have the same Jahn-Teller distortion (-0.030) and eg occupancy
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO 0.003 0.051

1.842 1.894
MnO2 0.125 0.000

1.842 1.895
SrO 0.247 -0.052

1.945 1.819
MnO2 0.376 -0.074

1.833 1.945
LaO 0.498 -0.038

1.912 1.875
MnO2 0.625 0.000

1.911 1.874
LaO 0.745 0.037

1.833 1.943
MnO2 0.874 0.073

1.944 1.820

Table 4.40 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)2 − (SrMnO3)2] superlattice in a strain-free environment. The a lattice parameter
is optimized at aA−AFM = 3.878 Å. The c lattice parameter is optimized at cA−AFM = 15.064
Å.
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ratio (2.406). The Mn-octahedra in between two LaO planes is more contracted (JTd: -0.033)
than the one in between two SrO planes (JTd: -0.023). Consequently, the eg occupancy ratio
is higher in the former (2.338) than the latter (1.873).

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.635
MnO2 3.788 -0.023 3.582 -0.076 3.285 1.873 0.612 -0.872
SrO 0.545

MnO2 3.764 -0.030 3.791 -0.023 -3.364 2.406 -0.671 -0.872
LaO 1.121

MnO2 3.749 -0.033 3.899 0.005 3.452 2.338 0.721 -0.894
LaO 1.121

MnO2 3.763 -0.030 3.940 -0.022 -3.364 2.406 -0.671 -0.872

Table 4.41 Table summarizing the structural and magnetic properties of A-type antifer-
romagnetic [(LaMnO3)2 − (SrMnO3)2] superlattice in a strain-free environment. The a
lattice parameter is optimized at aA−AFM = 3.878 Å. The c lattice parameter is optimized at
cA−AFM = 15.064 Å.

4.4.2 Results with aSTO = 3.88 Å

Now we take [(LaMnO3)2 − (SrMnO3)2] superlattice deposited on STO substrate where
aSTO = 3.88 Å. We studied FM, A-AFM, “↑↑↓↓” and “↑↓↓↑” magnetic configurations in
this superlattice. We found the A-type antiferromagnetic ordering as the lowest energy quite
close to ferromagnetic ordering (EA−AFM −EFM ≃−38 meV (-5 meV), EA−AFM −Euudd ≃
−145 meV (-18 meV), EA−AFM −Euddu ≃−145 meV (-18 meV) for whole superlattice (per
unit cell)).

Ferromagnetic Ordering

In tables 4.42 and 4.43, we report the results for ferromagnetic [(LaMnO3)2 − (SrMnO3)2]

superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized as cFM = 15.333
Å; this value is smaller than the c lattice parameter optimized for the one of strain-free
ferromagnetic [(LaMnO3)2 − (SrMnO3)2] superlattice (cFM = 15.566 for the strain-free
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ferromagnetic [(LaMnO3)2 − (SrMnO3)2] superlattice). The average LaO planes are still
closer (around 1.864 Å) to the average MnO2 planes than the average SrO planes (around
1.983 Å) when the MnO2 plane is in between SrO and LaO but when the MnO2 plane is
sandwiched between only one type of plane then the average SrO planes are closer (1.894
Å) than the average LaO planes (around 1.926 Å). In the table 4.43, one can see that the

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.007 0.069

1.894 1.963
MnO2 0.117 0

1.894 1.963
SrO 0.240 -0.07

1.983 1.831
MnO2 0.370 -0.083

1.864 1.991
LaO 0.491 -0.045

1.926 1.881
MnO2 0.617 0

1.926 1.881
LaO 0.742 0.045

1.864 1.991
MnO2 0.864 0.083

1.983 1.831

Table 4.42 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cFM = 15.333 Å.

Mn-octahedra between two SrO layers is elongated (JTd: 0.012) whereas the rest of the Mn-
octahedras are all contracted. In the elongated Mn-octahedra, as usual, the dz2 is preferentially
occupied. In the Mn-octahedra between two LaO layers, the dx2−y2 occupancy is dominant.
The eg orbital occupancy is the same in the Mn-octahedras which are between SrO and LaO
planes.

A-type antiferromagnetic Ordering

The results for the A-type antiferromagnetic ordered (LaMnO3)2−(SrMnO3)2 superlattice is
given in the tables 4.44 and 4.45. The in-plane lattice parameter is imposed at aA−AFM = 3.88
Å. The c lattice parameter is optimized as cA−AFM = 15.064 Å. This is exactly same value
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.605
MnO2 3.926 0.012 3.651 -0.059 3.464 0.646 0.721 -0.882
SrO 0.605

MnO2 3.822 -0.015 3.870 -0.003 3.423 1.114 0.704 -0.839
LaO 1.105

MnO2 3.763 -0.030 3.942 0.016 3.452 1.615 0.714 -0.861
LaO 1.105

MnO2 3.822 -0.015 3.871 -0.002 3.424 1.114 0.704 -0.841

Table 4.43 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2 − (SrMnO3)2] superlattice in a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cFM = 15.333 Å.

that we get for strain-free A-type antiferromagnetic (LaMnO3)2 − (SrMnO3)2 superlattice.
The average LaO planes are still closer (around 1.833 Å) to the average MnO2 planes than
the average SrO planes (around 1.944 Å) when the MnO2 plane is in between SrO and LaO
but when the MnO2 plane is sandwiched between only one type of plane then the average
SrO planes are closer (1.843 Å) than the average LaO planes (around 1.911 Å). This result is
almost the same as the strain-free A-type antiferromagnetic ordering result. As one can see
in the table 4.45, all Mn-octahedras are contracted in c direction when the spins are aligned
antiparallel in c⃗ direction. Consequently, dx2−y2 orbital is occupied more than dz2 in all layers.
Again, the eg orbital occupancy is the same in the Mn-octahedras which are between SrO and
LaO planes. The Mn-octahedra in between two LaO planes is more contracted than the one in
between two SrO planes. Consequently, the former has higher eg occupancy. In figure 4.13,
we give total and partial densities of states for the [(LMO)2−(SMO)2] superlattice in A-type
antiferromagnetic configuration. At the down left, we present the total densities of states.
Mn atoms contribute to electronic structure at the Fermi level. At the down right, we report
the 3d orbitals of Mn atoms in each layer. Here, 1st Mn lies between two SrO layers while
3rd Mn is between two LaO layers. Both have their spins up. The 2nd and 4th Mn have their
spins down. At the top panel, we report the 3d orbitals for each Mn more in details. We can
clearly see that the dx2−y2 orbital is more occupied than dz2 in all layers.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.004 0.052

1.843 1.895
MnO2 0.119 0

1.843 1.894
SrO 0.241 -0.051

1.944 1.819
MnO2 0.370 -0.073

1.833 1.944
LaO 0.492 -0.037

1.911 1.874
MnO2 0.619 0

1.912 1.874
LaO 0.746 0.037

1.833 1.944
MnO2 0.867 0.073

1.945 1.819

Table 4.44 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)2 − (SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 15.064 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.634
MnO2 3.789 -0.024 3.583 -0.076 3.287 1.878 0.613 -0.872
SrO 0.635

MnO2 3.763 -0.030 3.790 -0.023 -3.366 2.394 -0.672 -0.819
LaO 1.121

MnO2 3.748 -0.034 3.898 0.005 3.452 2.353 0.721 -0.896
LaO 1.121

MnO2 3.763 -0.030 3.793 -0.023 -3.366 2.394 -0.672 -0.873

Table 4.45 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)2 − (SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter
is fixed at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 15.064 Å.
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Fig. 4.13 Total and partial densities of states for the (LMO)2 − (SMO)2) superlattice in
A-type antiferromagnetic configuration. At the bottom panel, total density of states and Mn
contribution is given.

“↑↑↓↓” and “↑↓↓↑” Orderings

The results for the “uudd” and “uddu magnetic configurations are qualitatively similar to
the A-type antiferromagnetic ordered superlattice even though the structural parameters can
change from one to another. The results given in the tables 4.47, 4.47 for “uudd” and in
tables 4.47, 4.47 for “uddu”.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.005 0.057

1.851 1.906
MnO2 0.117 -0.003

1.862 1.920
SrO 0.240 -0.055

1.963 1.833
MnO2 0.370 -0.074

1.839 1.953
LaO 0.492 -0.040

1.916 1.874
MnO2 0.618 -0.002

1.917 1.882
LaO 0.745 0.036

1.842 1.954
MnO2 0.866 0.076

1.952 1.819

Table 4.46 Table summarizing the structural properties of “↑↑↓↓” ordered [(LaMnO3)2 −
(SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cuudd = 15.141 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.625
MnO2 3.826 -0.014 3.601 -0.072 3.346 1.419 0.646 -0.869
LaO 0.615

MnO2 3.786 -0.024 3.816 -0.016 3.403 1.775 0.691 -0.858
SrO 1.114

MnO2 3.757 -0.032 3.909 0.007 -3.460 2.103 -0.723 -0.888
LaO 1.115

MnO2 3.772 -0.028 3.815 -0.017 -3.355 2.108 -0.662 -0.856

Table 4.47 Table summarizing the structural and magnetic properties of “↑↑↓↓” ordered
[(LaMnO3)2 − (SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cuudd = 15.141 Å.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
SrO -0.004 0.056

1.862 1.920
MnO2 0.119 0.002

1.852 1.906
SrO 0.241 -0.058

1.951 1.818
MnO2 0.370 -0.076

1.842 1.954
LaO 0.492 -0.036

1.917 1.883
MnO2 0.618 0.002

1.916 1.875
LaO 0.745 0.040

1.839 1.954
MnO2 0.866 0.074

1.963 1.833

Table 4.48 Table summarizing the structural properties of “↑↓↓↑” ordered [(LaMnO3)2 −
(SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter is fixed at a = 3.88
Å. The c lattice parameter is optimized at cuddu = 15.143 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

SrO 0.615
MnO2 3.826 -0.014 3.602 -0.072 3.347 1.419 0.646 -0.869
LaO 0.625

MnO2 3.773 -0.028 3.813 -0.017 -3.355 2.108 0.646 -0.856
SrO 1.115

MnO2 3.757 -0.032 3.910 0.008 -3.461 2.094 -0.724 -0.888
LaO 1.114

MnO2 3.782 -0.024 3.818 -0.016 3.404 1.775 0.691 -0.857

Table 4.49 Table summarizing the structural and magnetic properties of “↑↓↓↑” ordered
[(LaMnO3)2 − (SrMnO3)2] superlattice on a SrTiO3 substrate. The a lattice parameter is
fixed at a = 3.88 Å. The c lattice parameter is optimized at cuddu = 15.143 Å.
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4.4.3 Analysis of Mn–Mn distances

Finally, we would like to summarize the Mn–Mn distances in each magnetic ordering for
these superlattices. First, in table 4.50 we give the Mn–Mn distances for the superlattice
within imposed a = 3.88 Å. We see the same pattern in the distances for all magnetic
orderings. This pattern is the sign of a tetramerization of the system.

dMn−Mn (Å)
FM A-AFM FM A-AFM ↑↑↓↓ ↑↓↓↑

Strain-free Strain-Free a = 3.88 Å a = 3.88 Å a = 3.88 Å a = 3.88 Å
MnO2 ↑ ↓ ↑ ↓ ↓ ↑
SrO 3.858 3.714 3.794 3.714 3.725 3.753

MnO2 ↑ ↑ ↑ ↑ ↑ ↑
SrO 3.859 3.714 3.794 3.713 3.753 3.724

MnO2 ↑ ↓ ↑ ↓ ↑ ↓
LaO 3.924 3.82 3.872 3.818 3.827 3.837

MnO2 ↑ ↑ ↑ ↑ ↓ ↓
LaO 3.924 3.817 3.872 3.818 3.836 3.829

MnO2 ↑ ↓ ↑ ↓ ↓ ↑
Table 4.50 Table reporting the dMn−Mn values for strain-free and a = 3.88 Å for ferromag-
netic, A-type antiferromagnetic, “↑↑↓↓”,“↑↓↓↑”, cases. First line is visualized in red to point
out it it is the repetition of the fourth MnO2 plane due to periodicity.
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4.5 [(LaMnO3)2− (SrMnO3)1]1 Superlattice

In this section, we focus on the (LaMnO3)2−(SrMnO3)1 superlattice. In figure 4.14, one can
see the schematic representation of such superlattice. As we studied in previous sections, we
also studied (LaMnO3)2 − (SrMnO3)1 superlattice in a strain-free environment to determine
its strain-free lattice parameters for ferromagnetic ordering. We also studied this superlattice
on a STO superlattice where the in-plane lattice parameter is either imposed a = 3.88 or
a = 3.905 Å. In such superlattice, other than FM and A-AFM one can also study the magnetic
orderings such as “↑↑↓”, “↑↓↓”, “↓↑↑” and “↓↓↑”. Though these magnetic orderings are
expected to be higher in energy we studied them when a lattice parameter is imposed at 3.905
Å. In figure 4.15, we give the energy comparisons for different magnetic configuration with

Fig. 4.14 Schematic picture for LMO-SMO superlattices

the lowest energy state with respect to a lattice parameter. The lowest energy is obtained for
the ferromagnetic case in a strain-free environment.

4.5.1 Strain-free conditions

We start to study the superlattice in a strain-free environment for ferromagnetic ordering.
The strain-free reference in-plane lattice parameter is optimized at aFM = 3.848 Å for the
ferromagnetic ordering.
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and geometry (∆E = E −E0) vs. the imposed a in-plane lattice parameter. Here, E0 is the
lowest energy obtained for the ferromagnetic ordering in the strain-free case.
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Ferromagnetic Ordering

In tables 4.51 and 4.52, we report the structural and magnetic properties of ferromagnetic
(LMO)2 − (SMO)1 superlattice in strain-free environment. The a lattice parameter is op-
timized at aFM = 3.848 Å. The c lattice parameter is optimized at cFM = 11.679 Å. When
we take a look at the interplane distances we again notice that the average LaO planes are
closer to average MnO2 planes than average SrO planes. This is the reverse when we take a
look at dMn−O values. The oxygen of SrO plane is closer to the Mn of MnO2 plane than the
oxygen of LaO plane. However, there is a sign of spontanous symmetry breaking in these
values. Indeed, in table 4.52, we notice that the Mn-octahedra has different thickness in

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.002 0.067

1.935 2.071
MnO2 0.163 0.069

2.030 1.995
SrO 0.337 -0.034

1.952 1.852
MnO2 0.504 -0.066

1.888 1.982
LaO 0.666 -0.002

1.935 1.912
MnO2 0.832 0.000

1.939 1.868

Table 4.51 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)1]1 superlattice in a strain-free environment. The a lattice parameter is optimized
at aFM = 3.848 Å. The c lattice parameter is optimized at cFM = 11.679 Å.

each mono-layer. Although one can expect to have the same JTd ratio for the Mn-octahedras
between the LaO and SrO planes we see that they have different values (JTd: 0.057 and
-0.004). This spontaneous symmetry breaking happens in this 3-layers system in a strain-free
environment for ferromagnetic ordering because the double-exchange mechanism favours to
have delocalization in plane. Thus, when the lattice parameters are free to relax, the in-plane
lattice parameter is as shortened as possible in order to maximize this in-plane delocalization.
However, due to the elastic energy, the volume of the cell has to be preserved. Thus, one of
Mn-octahedra between LaO and SrO planes is elongated (4.066 Å) along the c⃗ direction as a
result.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.077
MnO2 4.066 0.057 3.862 0.004 3.798 0.498 0.971 -0.971
SrO 0.532

MnO2 3.834 -0.004 3.849 0.000 3.459 1.188 0.722 -0.854
LaO 1.070

MnO2 3.779 -0.018 3.968 0.031 3.482 1.500 0.735 -0.854

Table 4.52 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2−(SrMnO3)1]1 superlattice in a strain-free environment. The a lattice parameter
is optimized at aFM = 3.848 Å. The c lattice parameter is optimized at cFM = 11.679 Å.

4.5.2 Results with aSTO = 3.88 Å

Now we look at the [(LaMnO3)2 − (SrMnO3)1]1 superlattice deposited on STO substrate.
The imposed a lattice parameter is the one that we optimized within our calculations: a= 3.88
Å. We computed two different magnetic orderings: ferromagnetic and A-type antiferromag-
netic. We have found the ferromagnetic ordering as the lowest energy (EA−AFM −EFM =

167 meV for the whole superlattice and 28 meV per unit cell).

Ferromagnetic Ordering

In table 4.53, we report the structural properties of the optimized geometry of [(LaMnO3)2−
(SrMnO3)1]1 superlattice with imposed a = 3.88 Åwhen spins are ferromagnetically aligned.
The c lattice parameter is optimized at cFM = 11.555 Å. When we check the interplane
distances for two layers where MnO2 planes are sandwiched between LaO and SrO planes,
we again see that the average LaO planes are closer to the average MnO2 planes (around
1.883Å) than the average SrO planes (around 1.963 Å). When MnO2 plane is only sandwiched
between two LaO planes the interplane distance between the average LaO and MnO2 planes
is 1.930 Å.

In table 4.54, we report the magnetic and related structural properties. The results are
very different than the ones of the strain-free [(LaMnO3)2 − (SrMnO3)1]1 ferromagnetic
superlattice. There is no symmetry breaking in this case. The two Mn-octahedra that are
between LaO and SrO planes have the equivalent JTd (0.001 and 0.002) and c′/a−1 values (-



4.5 [(LaMnO3)2 − (SrMnO3)1]1 Superlattice 157

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.218 0.037

1.883 1.983
MnO2 -0.055 0.063

1.963 1.899
SrO 0.115 0.001

1.965 1.904
MnO2 0.285 -0.063

1.884 1.986
LaO 0.448 -0.039

1.930 1.891
MnO2 0.615 0.000

1.930 1.892

Table 4.53 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.88 Å. The c
lattice parameter is optimized at cFM = 11.555 Å.

0.018) with each other. In both of the Mn-octahedra, the eg occupancy ratio shows that dx2−y2

and dz2 occupied more or less equivalently (0.924 and 0.903). The Mn-octahedra between
two LaO planes is contracted the most (JTd: -0.025) with largest eg occupancy ratio (1.415).
In figure 4.16, we give the density of states of ferromagnetic [(LaMnO3)2 − (SrMnO3)1]1

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.089
MnO2 3.882 0.001 3.810 -0.018 3.623 0.924 0.839 -0.919
SrO 0.555

MnO2 3.890 0.002 3.810 -0.018 3.636 0.903 0.847 -0.924
LaO 1.09

MnO2 3.783 -0.025 3.936 0.014 3.552 1.415 0.785 -0.893

Table 4.54 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cFM = 11.555 Å.

superlattice with imposed a = 3.88 Å. One can see that in the 1st and 2nd manganese
(between the planes LaO and SrO), dx2−y2 and dz2 are equivalently stabilized. In the 3rd Mn
(between two LaO planes), dx2−y2 orbital preferentially occupied.



158 LMO-SMO Superlattices

-4 -2 0 2 4
-2

-1

0

1

2

P
D

O
S

t
2g

d
x

2
-y

2

d
z

2

-4 -2 0 2 4
-2

-1

0

1

2

-4 -2 0 2 4
-2

-1

0

1

2

-2 -1 0 1 2

ENERGY (eV)

-2

-1

0

1

2

P
D

O
S

1st Mn
2nd Mn
3rd Mn

-6 -4 -2 0 2 4 6

ENERGY (eV)

-20

-15

-10

-5

0

5

10

15

20

T
O

T
A

L
 D

O
S Fermi Level

Mn 3d orbitals

1st Mn 2nd Mn 3rd Mn

Mn

Fig. 4.16 Total and partial densities of states of [(LaMnO3)2 − (SrMnO3)1]1 superlattice on
a SrTiO3 substrate where a = 3.88 Å.

A-type antiferromagnetic Ordering

In tables 4.55 and 4.56, we summarize the results of A-type antiferromagnetic [(LaMnO3)2−
(SrMnO3)1]1 superlattice with imposed a = 3.88 Å. The c lattice parameter is optimized at
cA−AFM=11.585 Å. For two first layers where MnO2 planes are sandwiched between LaO and
SrO planes, we see that antiferromagnetism in the c⃗ direction affects the symmetry in the
interplane distances and dMn−O values (for example, the interplane distance between the
average LaO and MnO2 planes are 1.924 and 1.851 Å whereas this value was around 1.883
Å in ferromagnetic ordering).

In table 4.56, we report the magnetic and related structural results of A-type antiffero-
magnetic [(LaMnO3)2 − (SrMnO3)1]1 superlattice with imposed a = 3.88 Å. The effect of
antiferromagnetism in the c⃗ direction is again clear in the thickness of the Mn-octahedras
between LaO and SrO planes. The first one is elongated (JTd: 0.051) with a dominant dz2

occupancy, the second is contracted (JTd: -0.035) with a dominant dx2−y2 occupancy. The
Mn-octahedra between two LaO planes is also contracted (JTd: -0.030) with a dominant
dx2−y2 occupancy.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.226 0.072

1.924 2.068
MnO2 -0.100 0.072

2.036 2.010
SrO 0.075 -0.046

1.922 1.813
MnO2 0.241 -0.064

1.851 1.932
LaO 0.401 -0.017

1.923 1.910
MnO2 0.567 0.005

1.929 1.853

Table 4.55 Table summarizing the structural properties of A-type ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed
at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 11.585 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.101
MnO2 4.078 0.051 3.842 -0.010 3.833 0.438 1.004 -0.999
SrO 0.532

MnO2 3.745 -0.035 3.802 -0.020 -3.281 2.764 -0.591 -0.851
LaO 1.097

MnO2 3.763 -0.030 3.936 0.016 3.493 1.596 0.745 -0.878

Table 4.56 Table summarizing the structural and magnetic properties of A-type ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 11.585 Å.
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4.5.3 Results with aSTO = 3.905 Å

Now we study the [(LaMnO3)2 − (SrMnO3)1]1 superlattice deposited on a substrate where
the imposed a lattice parameter is the experimental one: a = 3.905 Å. We computer different
magnetic orderings: ferromagnetic, A-type antiferromagnetic, “↑↑↓”, “↑↓↓”, “↓↑↑” and
“↓↓↑” orderings. We have found ferromagnetic ordering as the lowest energy (EA−AFM −
EFM = 178 meV (30 meV), EA−AFM −Euud = 4 meV (0.6 meV), EA−AFM −Eudd = 2 meV
(0.4 meV), EA−AFM −Eduu = 1 meV (0.2 meV), EA−AFM −Eddu = 4 meV (0.7 meV) for the
whole superlattice (per unit cell)). All other antiferromagnetic orderings are quasi-degenerate.

Ferromagnetic Ordering

In table 4.57, we report the structural properties of the optimized geometry for the [(LaMnO3)2−
(SrMnO3)1]1 superlattice with imposed a= 3.905 Åwhen spins are ferromagnetically aligned.
The c lattice parameter is optimized at cFM = 11.508 Å. When we check the interplane dis-
tances for two layers where MnO2 planes are sandwiched between LaO and SrO planes, we
again see that the average LaO planes are closer to the average MnO2 planes (around 1.875Å)
than the average SrO planes (around 1.957 Å). When MnO2 plane is only sandwiched be-
tween two LaO planes the interplane distance between the average LaO and MnO2 planes is
1.922 Å.

In table 4.58, we report the magnetic and related structural results of [(LaMnO3)2 −
(SrMnO3)1]1 superlattice with imposed a= 3.905 Å. The two Mn-octahedra that are between
LaO and SrO planes have the equivalent JTd (-0.009 and -0.010) and c′/a−1 values (-0.028)
with each other. In both of the Mn-octahedra, the eg occupancy ratio shows that dx2−y2 and
dz2 occupied more or less equivalently (0.938 and 0.949). The Mn-octahedra between two
LaO planes is contracted the most (JTd: -0.035) with largest eg occupancy ratio (1.494).

A-type antiferromagnetic Ordering

We report the results in table 4.59 and table 4.60 for A-type antiferromagnetic [(LaMnO3)2−
(SrMnO3)1]1 superlattice with fixed a = 3.905 Å. The c lattice parameter is optimized at
cA−AFM = 11.414 Å.

For two first layers where MnO2 planes are sandwiched between LaO and SrO planes,
we again see that antiferromagnetism in the c⃗ direction affects the symmetry in the interplane
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.000 0.038

1.875 1.974
MnO2 0.163 0.062

1.957 1.897
SrO 0.333 -0.002

1.958 1.895
MnO2 0.503 -0.062

1.873 1.973
LaO 0.666 -0.038

1.922 1.885
MnO2 0.833 0.000

1.922 1.884

Table 4.57 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.905 Å. The
c lattice parameter is optimized at cFM = 11.508 Å.

dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.1
MnO2 3.871 -0.009 3.794 -0.028 3.641 0.938 0.849 -0.932
SrO 0.563

MnO2 3.867 -0.010 3.794 -0.028 3.634 0.949 0.844 -0.927
LaO 1.1

MnO2 3.769 -0.035 3.920 0.004 3.559 1.494 0.788 -0.903

Table 4.58 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.905 Å. The c lattice parameter is optimized at cFM = 11.508 Å.
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distances and dMn−O values (for example, the interplane distance between the average
LaO and MnO2 planes are 1.856 and 1.832 Å whereas this value was around 1.875 Å in
ferromagnetic ordering). The magnetic and related strucutral results are given in table 4.60.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.001 0.034

1.856 1.949
MnO2 0.164 0.059

1.957 1.916
SrO 0.336 -0.017

1.910 1.834
MnO2 0.503 -0.058

1.832 1.906
LaO 0.663 -0.016

1.933 1.917
MnO2 0.833 0.000

1.926 1.892

Table 4.59 Table summarizing the structural properties of A-type antiferromagnetic
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed
at a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 11.414 Å.

We see the effect of antiferromagnetism in the c⃗ direction in the two first layers where
the Mn-octahedras are between LaO and SrO planes. They are both contracted but they have
different Jahn-Teller distortion values (-0.010 and -0.042) and eg occupancy ratios (1.005
and 2.964). The Mn-octahedra between two LaO planes is also contracted (JTd: -0.025) with
a dominant dx2−y2 occupancy as well.

“↑↑↓”, “↑↓↓”, “↓↑↑” and “↓↓↑” Orderings

We also study the magnetic orderings: “↑↑↓”, “↑↓↓”, “↓↑↑” and “↓↓↑”. The results are given
tables 4.61, 4.62, 4.63, 4.64, 4.65, 4.66, 4.67 and 4.68. The results in the “↑↓↓” and “↓↑↑”
orderings are consistent with the A-type antiferromagnetic ordering because the spins of
the manganese atoms of the two MnO2 planes that are between LaO and SrO planes are
antiparallel as it was in A-type antiferromagnetic ordering. On the other hand, in the “↑↑↓”
and “↓↓↑” orderings, the spins in the MnO2 planes between LaO and SrO planes are parallel.
Thus, the results in these orderings are consistent with the ferromagnetic ordered superlattice.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.118
MnO2 3.865 -0.010 3.761 -0.037 3.659 1.005 0.874 -0.958
SrO 0.575

MnO2 3.741 -0.042 3.745 -0.041 -3.372 2.964 -0.658 -0.905
LaO 1.105

MnO2 3.809 -0.025 3.908 0.001 3.632 1.191 0.848 -0.936

Table 4.60 Table summarizing the structural and magnetic properties of A-type antiferromag-
netic [(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed
at a = 3.905 Å. The c lattice parameter is optimized at cA−AFM = 11.414 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.001 0.044

1.872 1.977
MnO2 0.163 0.060

1.951 1.891
SrO 0.333 -0.001

1.954 1.893
MnO2 0.504 -0.060

1.871 1.978
LaO 0.667 -0.045

1.902 1.856
MnO2 0.833 0.000

1.902 1.857

Table 4.61 Table summarizing the structural properties of “↑↑↓” ordered [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.905 Å. The
c lattice parameter is optimized at cuud = 11.452 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.11
MnO2 3.868 -0.009 3.776 -0.033 3.652 1.000 0.862 -0.946
SrO 0.569

MnO2 3.871 -0.009 3.776 -0.033 3.656 0.989 0.865 -0.946
LaO 1.11

MnO2 3.712 -0.049 3.900 -0.001 -3.399 3.194 -0.671 -0.899

Table 4.62 Table summarizing the structural and magnetic properties of “↑↑↓” ordered
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.905 Å. The c lattice parameter is optimized at cuud = 11.452 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.003 0.016

1.831 1.906
MnO2 0.164 0.059

1.911 1.835
SrO 0.331 0.019

1.958 1.916
MnO2 0.503 -0.059

1.855 1.948
LaO 0.665 -0.034

1.925 1.891
MnO2 0.834 0.000

1.933 1.917

Table 4.63 Table summarizing the structural properties of “↑↓↓” ordered [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.905 Å. The
c lattice parameter is optimized at cudd = 11.413 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.105
MnO2 3.740 -0.042 3.742 -0.042 3.372 2.940 0.658 -0.905
SrO 0.575

MnO2 3.865 -0.010 3.762 -0.037 -3.66 1.007 1.004 -0.957
LaO 1.118

MnO2 3.808 -0.025 3.908 0.001 -3.632 1.191 -0.848 -0.937

Table 4.64 Table summarizing the structural and magnetic properties of “↑↓↓” ordered
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.905 Å. The c lattice parameter is optimized at cudd = 11.413 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.004 0.016

1.831 1.907
MnO2 0.164 0.059

1.912 1.834
SrO 0.331 0.019

1.959 1.918
MnO2 0.503 -0.059

1.857 1.950
LaO 0.666 -0.034

1.925 1.891
MnO2 0.834 0.000

1.933 1.916

Table 4.65 Table summarizing the structuralproperties of “↓↑↑” ordered [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.905 Å. The
c lattice parameter is optimized at cduu = 11.416 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.106
MnO2 3.741 -0.042 3.743 -0.041 - 3.371 2.982 -0.657 -0.904
SrO 0.574

MnO2 3.868 -0.009 3.764 -0.036 3.664 0.984 0.877 -0.958
LaO 1.118

MnO2 3.807 -0.025 3.909 0.001 3.627 1.206 0.845 -0.934

Table 4.66 Table summarizing the structural and magnetic properties of “↓↑↑” ordered
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.905 Å. The c lattice parameter is optimized at cduu = 11.416 Å.

z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.001 0.047

1.872 1.978
MnO2 0.163 0.060

1.953 1.893
SrO 0.333 -0.001

1.953 1.892
MnO2 0.504 -0.061

1.871 1.977
LaO 0.667 -0.047

1.902 1.856
MnO2 0.833 0.000

1.903 1.857

Table 4.67 Table summarizing the structural properties of “↓↓↑” ordered [(LaMnO3)2 −
(SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.905 Å. The
c lattice parameter is optimized at cddu = 11.453 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.111
MnO2 3.871 -0.009 3.781 -0.032 -3.656 0.991 -0.864 -0.946
SrO 0.568

MnO2 3.869 -0.009 3.782 -0.032 -3.653 0.995 -0.862 -0.944
LaO 1.111

MnO2 3.713 -0.049 3.891 0.004 3.399 3.214 0.67 -0.899

Table 4.68 Table summarizing the structural and magnetic properties of “↓↓↑” ordered
[(LaMnO3)2 − (SrMnO3)1]1 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.905 Å. The c lattice parameter is optimized at cddu = 11.453 Å.

4.5.4 Analysis of Mn–Mn distances

Finally, we would like to summarize the Mn–Mn distances in each magnetic ordering for
these superlattices. First, in table 4.69 we give the Mn–Mn distances for the superlattice in a
strain-free environment and within imposed a= 3.88 Å. Here, one can notice the spontaneous
symmetry breaking in the strain-free case. The Mn–Mn distances when LaO is in between the
MnO2 layers are different in the 1st layer and in the 3rd one. When a is fixed to 3.88 Å, the
symmetry is restored in the ferromagnetic ordering, however the symmetry remains broken
in the A-type antiferromagnetic ordering. In table 4.70, we give the Mn–Mn distances within

dMn−Mn (Å)
FM FM A-AFM

Strain-free a = 3.88 Å a = 3.88 Å
MnO2 ↑ ↑ ↑
LaO 3.939 3.875 3.921

MnO2 ↑ ↑ ↑
SrO 3.847 3.803 3.823

MnO2 ↑ ↑ ↓
LaO 3.894 3.877 3.842

MnO2 ↑ ↑ ↑
Table 4.69 Table reporting the dMn−Mn values for strain free and a= 3.88 Å for ferromagnetic
and A-type antiferromagnetic cases. First line is visualized in red to point out it it is the
repetition of the third MnO2 plane due to periodicity.
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imposed a = 3.905 Å. One can see that Mn–Mn distances are symmetric for ferromagnetic,
“↑↑↓” and “↓↓↑” where they are not for the rest of the orderings.

dMn−Mn (Å)
FM A-AFM ↑↑↓ ↑↓↓ ↓↑↑ ↓↓↑

MnO2 ↑ ↑ ↓ ↓ ↑ ↑
LaO 3.858 3.841 3.834 3.823 3.823 3.835

MnO2 ↑ ↑ ↑ ↑ ↓ ↓
SrO 3.792 3.75 3.784 3.751 3.752 3.785

MnO2 ↑ ↓ ↑ ↓ ↑ ↓
LaO 3.858 3.823 3.834 3.839 3.841 3.833

MnO2 ↑ ↑ ↓ ↓ ↑ ↑
Table 4.70 Table reporting the dMn−Mn values for a = 3.905 Å for ferromagnetic, A-type
antiferromagnetic, “↑↑↓”,“↑↓↓”, “↓↑↑”, “↓↓↑” cases. First line is visualized in red to point
out it it is the repetition of the third MnO2 plane due to periodicity.
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4.6 [(LaMnO3)2− (SrMnO3)1]2 Superlattice

In this section, we double the size of the system with the same cation order of the previous
section; that is [(LaMnO3)2 − (SrMnO3)1]2. We studied the ferromagnetic ordering, A-type
antiferromagnetic ordering, “↑↓↓↓↑↑” and “↑↓↓↓↑↑” orderings with imposed a = 3.88 Å.
In figure 4.17, we give energy comparisons for different magnetic configurations with the
lowest energy state. One can see that we obtain the ferromagnetic ordering as the lowest
energy.
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Fig. 4.17 Energy difference of each configuration with respect to the lowest energy ordering
and geometry (∆E = E −E0) vs. the imposed a in-plane lattice parameter. Here, E0 is the
lowest energy obtained for the ferromagnetic ordering when a = 3.88 Å.

4.6.1 Results with aSTO = 3.88 Å

We studied this superlattice deposited on STO substrate. The imposed a lattice parameter is
a = 3.88 Å. As we stated above, we found the ferromagnetic ordering as the lowest energy in
our calculations (EA−AFM−EFM = 726 meV (61 meV), Euddduu−EFM = 226 meV (19 meV),
Euudduu −EFM = 268 meV (22 meV) for the whole superlattice (per unit cell)).
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Ferromagnetic Ordering

Now we look at the ferromagnetic [(LaMnO3)2 − (SrMnO3)1]2 superlattice with imposed
a = 3.88 Å. The c lattice parameter is optimized at cFM = 23.120 Å. In table 4.71, we give
the structural properties of the optimized geometry. When we check the interplane distances
for four layers where MnO2 planes are sandwiched between LaO and SrO planes, we again
see that the average LaO planes are closer to the average MnO2 planes (around 1.881Å) than
the average SrO planes (around 1.965 Å). When MnO2 plane is only sandwiched between
two LaO planes the interplane distance between the average LaO and MnO2 planes is
around 1.933 Å. This result is consistent with the ferromagnetic [(LaMnO3)2− (SrMnO3)1]1

superlattice with imposed a = 3.88 Å. In table 4.72, we report the magnetic and related
structural properties. The four Mn-octahedra that are between LaO and SrO planes have the
equivalent JTd (0.001, 0.000, 0.002 and 0.001) and c′/a−1 values (-0.018, -0.019, -0.018
and -0.017) with each other. In these Mn-octahedras, the eg occupancy ratio shows that
dx2−y2 and dz2 occupied more or less equivalently (0.925, 0.929, 0.901 and 0.909). The two
Mn-octahedras between two LaO planes are contracted the most (JTd: -0.023) with largest
eg occupancy ratio (1.304).

A-type antiferromagnetic Ordering

We study at the A-type antiferromagnetic [(LaMnO3)2 − (SrMnO3)1]2 superlattice with im-
posed a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 22.999 Å. In table 4.73,
we give the structural properties of the optimized geometry. For the layers where MnO2

planes are sandwiched between LaO and SrO planes, we see that antiferromagnetism in
the c⃗ direction affects the symmetry in the interplane distances and dMn−O values (for ex-
ample, the interplane distance between the average LaO and MnO2 planes are 1.949 and
1.851 Å whereas this value was around 1.881 Å in ferromagnetic ordering). Another
point to remark is that since the number of layers is even in this superlattice there can
be full antiferromagnetism in the c⃗ direction. Therefore, when we compare the results
with A-type antiferromagnetic ordered [(LaMnO3)2 − (SrMnO3)1]1 superlattice where the
number of layers are odd, even though the values of interplane distances for first half of
[(LaMnO3)2 − (SrMnO3)1]2 superlattice are consistent, for the second half they do not
exactly match.

In table 4.74, we report the magnetic and related structural properties.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.000 0.037

1.881 1.980
MnO2 0.081 0.063

1.965 1.902
SrO 0.166 0.000

1.964 1.901
MnO2 0.251 -0.062

1.881 1.980
LaO 0.333 -0.037

1.933 1.896
MnO2 0.416 0.000

1.933 1.896
LaO 0.500 0.037

1.882 1.983
MnO2 0.581 0.063

1.967 1.905
SrO 0.666 -0.001

1.967 1.903
MnO2 0.751 -0.063

1.881 1.982
LaO 0.833 -0.037

1.933 1.896
MnO2 0.916 0.000

1.932 1.896

Table 4.71 Table summarizing the structural properties of ferromagnetic [(LaMnO3)2 −
(SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.88 Å. The c
lattice parameter is optimized at cFM = 23.120 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.091
MnO2 3.882 0.001 3.808 -0.018 3.63 0.925 0.843 -0.921
SrO 0.553

MnO2 3.881 0.000 3.808 -0.019 3.628 0.929 0.841 -0.921
LaO 1.091

MnO2 3.792 -0.023 3.940 0.015 3.555 1.304 0.788 -0.895
LaO 1.09

MnO2 3.888 0.002 3.811 -0.018 3.634 0.901 0.846 -0.921
SrO 0.55

MnO2 3.885 0.001 3.813 -0.017 3.629 0.909 0.842 -0.918
LaO 1.09

MnO2 3.792 -0.023 3.940 0.015 3.55 1.304 0.788 -0.893

Table 4.72 Table summarizing the structural and magnetic properties of ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cFM = 23.120 Å.

The effect of full antiferromagnetism in the c⃗ direction is again clear in the thickness
of the Mn-octahedras between LaO and SrO planes. The very 1st Mn octahedra between
LaO and SrO planes is elongated (JTd: 0.073) with a dominant dz2 occupancy, the 2nd
Mn-octahera between LaO and SrO planes is contracted (JTd: -0.031) with a dominant
dx2−y2 occupancy. The 3rd Mn-octahedra between two LaO planes is also contracted (JTd:
-0.034) with a dominant dx2−y2 occupancy. Then, when the superlattice is repeated, the 4th
Mn-octahedra is no longer elongated as the 1st one (JTd: -0.012). The JTd values of 5th and
6th Mn-octahera are consistent with the 2nd and 3rd ones.

“↑↓↓↓↑↑” Ordering

We study at the “↑↓↓↓↑↑” ordered [(LaMnO3)2 − (SrMnO3)1]2 superlattice with imposed
a = 3.88 Å. The c lattice parameter is optimized at cuddduu = 23.084 Å. In table 4.75, we give
the structural properties of the optimized geometry. When we check the interplane distances
for four layers where MnO2 planes are sandwiched between LaO and SrO planes, we again
see that the average LaO planes are closer to the average MnO2 planes (around 1.847Å) than
the average SrO planes (around 1.941 Å). When MnO2 plane is only sandwiched between
two LaO planes the interplane distance between the average LaO and MnO2 planes is around
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO -0.004 0.096

1.949 2.125
MnO2 0.081 0.079

2.062 2.039
SrO 0.170 -0.056

1.930 1.805
MnO2 0.254 -0.069

1.851 1.956
LaO 0.335 -0.036

1.912 1.871
MnO2 0.418 -0.004

1.903 1.878
LaO 0.501 0.029

1.861 1.946
MnO2 0.581 0.056

1.937 1.887
SrO 0.666 -0.006

1.909 1.850
MnO2 0.749 -0.053

1.852 1.911
LaO 0.829 -0.005

1.897 1.906
MnO2 0.912 0.015

1.937 1.825

Table 4.73 Table summarizing the structural properties of A-type ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed
at a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 22.999 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.089
MnO2 4.164 0.073 3.856 -0.006 3.91 0.373 1.063 -1.036
SrO 0.522

MnO2 3.761 -0.031 3.800 -0.021 -3.322 2.888 -0.622 -0.881
LaO 1.116

MnO2 3.749 -0.034 3.880 0.000 3.486 2.692 0.742 -0.929
LaO 1.112

MnO2 3.833 -0.012 3.764 -0.030 -3.566 1.282 -0.81 -0.929
SrO 0.586

MnO2 3.761 -0.031 3.761 -0.031 3.381 2.323 0.668 -0.887
LaO 1.114

MnO2 3.731 -0.038 3.939 0.015 -3.39 2.746 -0.663 -0.876

Table 4.74 Table summarizing the structural and magnetic properties of A-type ferromagnetic
[(LaMnO3)2 − (SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cA−AFM = 22.999 Å.

1.983 Å. This result is similar with the ferromagnetic [(LaMnO3)2 − (SrMnO3)1]2 superlat-
tice with imposed a = 3.88 Å because in this ordering, LaO planes are always in between
ferromagnetically alligned Mn atoms and SrO planes are in between antiferromagnetically
alligned Mn atoms.

In table 4.76, we report the magnetic and related structural properties. The 1st and 4th
Mn-octahedra that are between LaO and SrO planes have the same JTd (-0.024) and eg

occupancy ratio (1.419). The 2nd and 5th Mn-octahedras between LaO and SrO planes
are also contracted (JTd: -0.024) with eg occupancy ratio (1.427). The 3rd and 6th Mn-
octahedras that are between two LaO planes are elongated (JTd: 0.022) but they still have a
dominant dx2−y2 occupancy.

“↑↑↓↓↑↑” Ordering

We study at the “↑↑↓↓↑↑” ordered [(LaMnO3)2 − (SrMnO3)1]2 superlattice with imposed
a = 3.88 Å. The c lattice parameter is optimized at cuudduu = 23.039 Å. In table 4.77, we
give the structural properties of the optimized geometry. From the interplane distances and
dMn−O there is no particular pattern.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.003 -0.001

1.847 1.905
MnO2 0.083 0.059

1.941 1.882
SrO 0.167 0.000

1.941 1.883
MnO2 0.251 -0.058

1.847 1.905
LaO 0.331 0.000

1.983 1.984
MnO2 0.417 0.000

1.983 1.984
LaO 0.503 -0.002

1.848 1.905
MnO2 0.583 0.059

1.941 1.882
SrO 0.667 0.000

1.941 1.882
MnO2 0.751 -0.058

1.847 1.905
LaO 0.831 0.001

1.983 1.984
MnO2 0.917 0.000

1.983 1.984

Table 4.75 Table summarizing the structural properties of “↑↓↓↓↑↑” ordered [(LaMnO3)2 −
(SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.88 Å. The c
lattice parameter is optimized at cuddduu = 23.084 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.088
MnO2 3.787 -0.024 3.789 -0.023 3.45 1.419 0.716 -0.877
SrO 0.556

MnO2 3.787 -0.024 3.789 -0.023 -3.454 1.427 -0.716 -0.879
LaO 1.088

MnO2 3.968 0.023 3.964 0.022 -3.798 1.702 -0.97 -0.976
LaO 1.088

MnO2 3.787 -0.024 3.789 -0.024 -3.449 1.419 -0.716 -0.877
SrO 0.556

MnO2 3.787 -0.024 3.789 -0.024 3.45 1.427 0.716 -0.879
LaO 1.088

MnO2 3.968 0.023 3.965 0.022 3.798 1.702 1.063 -0.976

Table 4.76 Table summarizing the structural and magnetic properties of “↑↓↓↓↑↑” ordered
[(LaMnO3)2 − (SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cuddduu = 23.084 Å.

In table 4.78, we report the magnetic and related structural properties. The 1st Mn-
octahedra is elongated (JTd: 0.023) with a dominant dz2 occupancy whereas all the rest of
the Mn-octahedra are contracted with dx2−y2 occupancy.
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z̃average plane interplane distances (Å) rumpling (Å) dMn−O(Å)
LaO 0.000 0.050

1.895 2.008
MnO2 0.082 0.063

1.998 1.962
SrO 0.169 -0.027

1.945 1.855
MnO2 0.253 -0.063

1.863 1.960
LaO 0.334 -0.034

1.940 1.903
MnO2 0.418 -0.003

1.929 1.904
LaO 0.502 0.028

1.858 1.946
MnO2 0.583 0.060

1.947 1.889
SrO 0.667 -0.001

1.929 1.870
MnO2 0.751 -0.058

1.861 1.925
LaO 0.832 -0.013

1.932 1.930
MnO2 0.916 0.005

1.943 1.888

Table 4.77 Table summarizing the structural properties of “↑↑↓↓↑↑” ordered [(LaMnO3)2 −
(SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at a = 3.88 Å. The c
lattice parameter is optimized at cuudduu = 23.039 Å.
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dOO (Å) JTd c′ (Å) c′/a−1 magnetic
moment
(µB)

ηx2−y2

ηz2
total eg charge (|e|)

LaO 1.093
MnO2 3.970 0.023 3.815 -0.017 3.755 0.679 0.935 -0.966
SrO 0.551

MnO2 3.815 -0.017 3.801 -0.020 3.497 1.379 0.747 -0.895
LaO 1.082

MnO2 3.807 -0.019 3.931 0.013 -3.568 1.251 -0.799 -0.906
LaO 1.107

MnO2 3.834 -0.012 3.776 -0.027 -3.55 1.243 -0.794 -0.924
SrO 0.563

MnO2 3.795 -0.022 3.772 -0.028 3.465 1.604 0.729 -0.894
LaO 1.097

MnO2 3.818 -0.016 3.945 0.017 3.608 1.142 0.827 -0.91

Table 4.78 Table summarizing the structural and magnetic properties of “↑↑↓↓↑↑” ordered
[(LaMnO3)2 − (SrMnO3)1]2 superlattice on a SrTiO3. The a lattice parameter is fixed at
a = 3.88 Å. The c lattice parameter is optimized at cuudduu = 23.039 Å.

4.6.2 Analysis of Mn–Mn distances

Finally, we would like to summarize the Mn–Mn distances in each magnetic ordering for
these superlattices. First, in table 4.79 we give the Mn–Mn distances for the superlattice
within imposed a = 3.88 Å. We see the cation symmetry in kept in the Mn-Mn distances in
the ferromagnetic and “↑↓↓↓↑↑” orderings. Let us remind that these two spin orderings are
respecting the cation one, while this is not the case for the other two spin orderings. Indeed,
as could be expected in the A-type antiferromagnetic and “↑↑↓↓↑↑” orderings there is no
symmetry in the Mn–Mn distances. This result points out that both cation and spin orderings
play an important role on the lattice relaxation.

4.7 Conclusion

In this chapter, we studied the superlattices of the two undoped antiferromagnetic manganese
oxides LaMnO3 and SrMnO3, i.e. [LaMnO3]n − [SrMnO3]m superlattices. We investigated
the magnetic ground state for different n and m values in strain-free environment and on
a SrTiO3 substrate with optimized and experimental a lattice parameter. We found that
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dMn−Mn (Å)
FM A-FM ↑↓↓↓↑↑ ↑↑↓↓↑↑

MnO2 ↑ ↓ ↑ ↑
LaO 3.876 3.95 3.889 3.896

MnO2 ↑ ↑ ↑ ↑
SrO 3.803 3.844 3.765 3.817

MnO2 ↑ ↓ ↓ ↑
LaO 3.876 3.827 3.889 3.863

MnO2 ↑ ↑ ↓ ↓
LaO 3.879 3.824 3.889 3.85

MnO2 ↑ ↓ ↓ ↓
SrO 3.808 3.737 3.764 3.759

MnO2 ↑ ↑ ↑ ↑
LaO 3.878 3.817 3.889 3.855

MnO2 ↑ ↓ ↑ ↑
Table 4.79 Table reporting the dMn−Mn values for strain free and a= 3.88 Å for ferromagnetic,
A-type antiferromagnetic, “↑↓↓↓↑↑”, “↑↑↓↓↑↑” cases. First line is visualized in red to point
out it it is the repetition of the third MnO2 plane due to periodicity.

both the [LaMnO3]1− [SrMnO3]1 and [LaMnO3]2− [SrMnO3]2 superlattices are in a A-type
antiferromagnetic state, whereas the [LaMnO3]2 − [SrMnO3]1 superlattice is ferromagnetic.
These results are in full agreement with the experimental findings (B. Mercey private com-
munication).
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5.1 Introduction

In chapter 4, we studied the (LaMnO3)n − (SrMnO3)p superlattices. Our aim was to investi-
gate these superlattices on different substrates with different magnetic orderings. We found
that (LaMnO3)1 − (SrMnO3)1 superlattices on a SrTiO3 substrate is A-type antiferromag-
netic whereas (LaMnO3)2 − (SrMnO3)1 on a SrTiO3 substrate if ferromagnetic.

In this chapter, we will combine the LSMO and LBMO compounds with alternated
titanates such as BaTiO3 (BTO), PbTiO3 (PTO) and SrTiO3 (STO) to study the effect of the
alternated layer on the magnetic properties of the manganite part. In addition, we will take
into account the antiferrodistortive motions (AFD) (i.e octahedra rotations) that take place in
the manganite layers.
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5.2 Alternated layers

As we mentioned earlier in Chapter 1, perovskite oxides form an important family of materials,
exhibiting a wide variety of functional properties exploited in various devices. Artificial
superlattices (SL) combining such compounds provides the opportunity not only to combine
the intrinsic properties of the building layers, but also to induce totally new phenomena
at their interfaces. Indeed, one can remind that at interfaces different degrees of freedom
(charge, orbital, spin, lattice) may be coupled between the two materials, by the mean of
effects such as symmetry breaking, charge transfer, strain engineering, etc. For instance,
it was recently shown that such techniques enable the increase of Curie temperature by
more than an order of magnitude in manganites [BaTiO3]n[La2/3A1/3MnO3]n superlattices
(A = Sr, Ca, n = 3,4) on a SrTiO3 substrate [75].

Since ferromagnetic materials with large Curie temperature are of great interest for
technological applications in electronics and spintronics, the understanding of the degrees of
freedom at play in the Curie temperature increase is of primary importance. Let us point out
that this large increase of Curie temperature was observed in superlattices alternating very
thin layers (a few mono-layers of each compounds) : Such lattices are not only dominated
by interface effects but also by the interactions between the latters. Indeed the thickness
of the layers is too small for the relaxation of the interface effects to take place before the
occurence of the second interface. In other words the two interfaces are overlaping. In
reference [75], the key role of the magnetic orbitals delocalization at the interface (charge
transfer between layers), as well as the substrate and alternate layer tetragonal structure
has been enlightened. The role of the MnO6 octahedra rotations and of the alternate layers
properties, such as polarization, have however not been investigated while both are know
to be of great importance. Indeed, octahedra rotations are known to be present in bulk
manganites and coupled to the magnetic properties [116], as well as sensitive to the epitaxial
strain imposed in thin films [117]. Similarly, Ismail-Beigi and coworkers showed that in
polar / manganite interfaces, the polarization plays a key role [118–120].

The aim of this chapter is to investigate, using first principle calculations, the role of
the octahedra rotations and alternated layer polarization in [BaTiO3]3[La2/3A1/3MnO3]3

superlattices with very thin layers (a few mono-layers) similar to those displaying a large
increase of the Curie temperature in reference [75].

At this point let us remember that La2/3A1/3MnO3 (LSMO) is a ferromagnetic metal,
thanks to the double exchange mechanism at play in the eg sub-set of the Mn 3d orbitals.
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The mixed valency of the Mn atoms (Mn4+2/3 associated with a high spin configuration
and a t3

2ge2/3
g atomic 3d configuration) allows a strong delocalisation between the latters

(in-plane through their dx2−y2 eg-orbitals and out-of-plane through their dz2 one), that com-
bined with a large intra-atomic Hund’s exchange overwhelms the antiferromagnetic cou-
pling issued from the Mn–Mn super-exchange (double-exchange mechanism). In bulk
LSMO, the rhombohedral structure insures an equal filling of the two eg orbitals and an
isotropic delocalization processes. In thin films, under tensile and quadratic strains, as in
the present systems, this isotropic behavior is broken and Jahn-Teller distortions take place.
In [BaTiO3]n[La2/3A1/3MnO3]n superlattices, the distortion was shown to be mono-layer
dependant, with interface elongated layers favoring dz2 occupancy and central contracted
layers favoring dx2−y2 occupancy [75]. While the last one favors large in-plane delocalization
and large Tc, the elongation at the interfaces are driven by small charge transfers at the
interfaces (delocalization between Mn and Ti dz2 orbitals) [79].

The systems studied in this chapter are pictured in figure 5.1. On the left in the figure,
one can see the [BaTiO3]3[La2/3Sr1/3MnO3]3 (BTO-LSMO) superlattice. By construction,

B

a) BTO-LSMO b) BTO-LBMO

3rd m. l.

2nd m. l.

1st m. l.

Ba

La/Sr

Mn
O
Ti

Ba

La

Mn
O
Ti

Fig. 5.1 Schematic representation of the unit cell used in the calculations: a)
[BaTiO3]3[La2/3Sr1/3MnO3]3 (BTO-LSMO) superlattice b) [BaTiO3]3[La2/3Ba1/3MnO3]3
(BTO-LBMO) superlattice.

the [BaTiO3]3[La2/3Sr1/3MnO3]3 superlattice presents two different interfaces between the
BaTiO3 and the La2/3Sr1/3MnO3 layers. One of them is (La/Sr)O/TiO2 (the 1st LSMO
mono-layer is attached to this interface). The other one is BaO/MnO2 (the 3rd LSMO
mono-layer is attached to this one). Thus, in order to clarify the role of this difference in the
interfaces, we decided to also investigate a superlattice with equal interfaces between the two
materials. Therefore, we also studied the [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice. One can



184 BTO-LSMO Superlattices

see [BaTiO3]3[La2/3Ba1/3MnO3]3 (BTO-LBMO) superlattice on the right of the figure 5.1.
In order to study symmetric interfaces (BaO/MnO2) we did two different calculations: the
first one without imposing the interface symmetry in the calculations and the second one
with imposed mirror symmetry along z axis. Finally, we also investigated the role of the
antiferrodistortive motions in the manganite layers.

5.2.1 Antiferrodistortive motions in BTO-LSMO

First we would like to study the release of AFD motions in the manganite layers of
[BaTiO3]3 − [La2/3Sr1/3MnO3]3 superlattice. Figure 5.2 reports the statistics found for
the MnO6 octahedra rotations, as a function of the different La/Sr ordering, as well as the
induced stabilization energy. One sees immediately that the majority of the orderings are

-800

-600

-400

-200

0

200

Sr at Interface 1
Sr at Center
Sr at Interface 2
La at Interface 1
La at Center
La at Interface 2
All Sr
All La

-800

-600

-400

-200

0

200

∆
E

 (
m

e
V

)

0 5 10 15

 Angle of AFD Motions

-800

-600

-400

-200

0

200

1st LSMO m.l.

2nd LSMO m.l.

3rd LSMO m.l.

Fig. 5.2 Stabilization energy brought by the octahedra rotations in the
[BaTiO3]3[La2/3Sr1/3MnO3]3 superlattice. The MnO6 rotation angles are reported
separately for each LSMO mono-layer (m.l.). The different colors correspond to different
ordering of the La/Sr LSMO ions. The dashed symbols to real atoms and the filled ones to
atoms with averaged effective nuclear charges.

stabilized by octahedra rotations.The stabilization energy brought by the octahedra rotations
is in average of 187 meV for total system. The three LSMO mono-layers do not however
behave in the same way. Two mono-layers exhibit rotations with a typical angle of 7◦ in
average, while at one of the interfaces the rotations remain very weak; it is around ∼ 2◦ in
average.
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Figure 5.3 a) displays the MnO6 octahedra rotations as a function of Jahn-Teller distortion,
which is the main lattice degree of freedom for orbital order in manganites. The mono-layers
that are on the right side of the dashed line show elongation in the c⃗ direction, whereas the
mono-layers that are on the left side of the dashed line are contracted in the c⃗ direction. The
calculations that we perform yield equivalent results and give the average layer behaviour
of such superlattices: 1st and 2nd LSMO mono-layer Mn-octahedra are contracted whereas
3rd LSMO mono-layer Mn-octahedra is elongated. For AFD motion analysis, one can
see the statistics fits into three clusters. The cluster identified with blue ellipse are the
mono-layers showing Mn-octahedra elongation in the c⃗ direction and no/weak AFD motions
(2◦ in average). They are essentially 3rd LSMO mono-layer at BaO/MnO2 interface. The
Mn-octahedra contracted mono-layers are grouped into red and orange circles. The cluster
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Fig. 5.3 Statistics of the MnO6 rotation (top) and relative eg orbital occupancy ratio (bottom)
as a function of the Jahn-Teller distortion (JTd). The data fit into three clusters: The blue
ellipse cluster stands for the mono-layers showing Mn-octahedra elongation in the c⃗ direction
and no/weak AFD motions as well as dominant dz2 orbital occupancy. The red circle cluster
stands for the mono-layers showing Mn-octahedra contraction in the c⃗ direction and large
AFD motions as well as dominant dx2−y2 orbital occupancy. The orange ellipse cluster stands
for the mono-layers showing Mn-octahedra contraction in the c⃗ direction and no/weak AFD
motions as well as dominant dx2−y2 orbital occupancy.

identified with red circle is for the mono-layers showing large AFD motions and they are
essentially 1st LSMO mono-layer at (La/Sr)O/TiO2 interface and a few of central mono-layer
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for some orderings. The orange cluster stands for the mono-layers showing no/weak AFD
motions and they are essentially central (2nd) mono-layers. The difference in the amplitude
of AFD motions exhibited by the red and orange clusters results from the dependence on
the cation ordering of the system. In figure 5.3 b, we display the eg occupancy ratio of the
mono-layers against the Jahn-Teller distortion. The mono-layers under the dashed line show
preferential dz2 occupancy whereas the ones above the dashed line show dx2−y2 occupancy.
Again, the calculations yield to equivalent results for different ionic orderings: 1st and 2nd
mono-layer Mn-octahedra are contracted with dominant dx2−y2 orbital occupancy whereas
the 3rd mono-layer Mn-octahedra is elongated with dz2 occupancy. This correlation between
JTd and preferential eg orbital occupancy is fully expected from the theory. One can again
fit the statistical data into three clusters in order to see the effect of the AFD motions on
the the correlation of JTd vs the eg occupancy ratio. In the blue ellipse cluster (elongated
3rd mono-layers with no/weak AFD motions), dz2 is preferentially occupied over dx2−y2 as
mentioned. dx2−y2 orbital is stabilized over dz2 in the red cluster (contracted 1st mono-layers
with large AFD motions) as well as in the orange one (contracted 2nd mono-layers with
no/weak AFD motions). The contracted mono-layers with large AFD motions (the red circle
cluster) have higher eg occupancy ratio than the contracted mono-layers with no/small AFD
motions (the orange circle cluster). One can conclude that the AFD motions are present only
in contracted layers and they enhance the in-plane magnetic properties since it increases the
dx2−y2 orbital stabilization.

In order to see the impact of the released AFD motions in LSMO we report the comparison
of the BTO-LSMO superlattices with and without AFD in figure 5.4 for one typical La/Sr
ordering, (since the results for other cation orderings are qualitatively similar). At the top
panel first we report the tetragonality c/a−1 ratio for each mono-layer (fig 5.4 a)). The c
value is calculated as cation-cation distance. One can see that for both cases the first two
mono-layers are contracted in c⃗ direction while the third layer is elongated but AFD motions
tend to contract these layers a little bit less. In fact, the central layer is more or less cubic
when the AFD motions are released.

Then (fig 5.4 b)), we report the Jahn-Teller distortion which gives similar results: for both
cases the two first-mono layers are contracted while the 3rd mono-layer is elongated. After
this, we report the MnO2 rumpling (fig 5.5 c)). One sees that the AFD motions do affect
neither the JTd nor the rumpling.

At the bottom panel, on the left (fig 5.4 d)), we give the eg occupancy ratio, defined as
ηx2−y2/ηz2 . First of all, for both cases we see that in the first two mono-layers dx2−y2 is
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Fig. 5.4 Analysis of the [BaTiO3]3[La2/3Sr1/3MnO3]3 superlattice for the impact of anti-
ferrodistortive (AFD) motions. The blue stands for the superlattice in which the AFD
motions are not released, the red is for the superlattice where AFD motions are released. At
the top panel from left to right, one finds the tetragonality c/a−1, Jahn-Teller distortion,
MnO2 rumpling in (Å). At the bottom panel from left to right, one finds the eg occupancy
ratio, total eg occupancy and delocalization of 3dz2 electrons on Ti at the interfaces. (Note:
Real orbital occupation numbers are used for ηx2−y2 and ηz2).
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preferentially occupied, while dz2 is preferred in the third mono-layer. However, we see that
the ratio in the contracted layers increases strongly in the superlattice where the AFD motions
are released. The ratio in the elongated layer does not change between the two calculations.
These results tell us that the AFD motions enhance the in-plane magnetic properties in the
contracted layers as it increases the in-plane eg orbital, dx2−y2 , population.

On the second chart (fig 5.4 e)), we report the total eg occupancies which is computed as
ηx2−y2 +ηz2 . Here we see a major difference for the central mono-layer. While the central
layer is strongly depopulated if the AFD motions are not allowed, this depopulation is totally
hindered by the AFD motions. It seems that the AFD motions compensate the depopulation
in the central layer which is observed in previous calculations [75].

The last item at the bottom panel (fig 5.4 f)) is dedicated to the delocalization of 3dz2

electrons between Mn and Ti at the interfaces. While there is no delocalization at the 1st
mono-layer, there is a slight delocalization in the third mono-layer. This delocalization is
however not affected by the AFD motions. One should remember that the mono-layer in
which this delocalization is observed is elongated in c⃗ direction and thus do not present much
AFD. In fact, it looks like AFD and interface delocalization are exclusive effects.

As a conclusion, one can say that the release of the AFD motions has little or no effects
on JTd, rumpling and tetragonality, while it has a strong effect on the orbital occupations.

5.2.2 The effect of the interface: BTO-LBMO, a case with equivalent
interfaces

Now in order to see the effect of the difference between the two interfaces, let us do the
same AFD motion analysis in the [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice. The difference
of this superlattice from [BaTiO3]3[La2/3Sr1/3MnO3]3 is that both interfaces are equivalent
i.e. BaO−MnO2 as one can see in figure 5.1 b. Let us note that there is only one cation
order for [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice that make both interfaces equivalent,
we thus focused our studies on this specific order. As we first focused on the AFD mo-
tions the symmetry group was kept to be as P4mm. However, in order to suppress the
polarization in BaTiO3 and study its effect we also considered the P4/mmm space group
of the [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice. In the P4/mmm space group, there ex-
ists a mirror symmetry planes in the TiO2 and MnO2 central mono-layers of BaTiO3 and
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La2/3Ba1/3MnO3. Let us first note that the stabilization energy brought by the Mn-octahedra
rotations (in P4mm space group) is around 421 meV for the total system.

We report the comparison of the different BTO-LBMO superlattices in figure 5.5. Again,
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Fig. 5.5 Analysis of the [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice for the impact of anti-
ferrodistortive (AFD) motions and polarization. The orange stands for the superlattice in
which the AFD motions are not released (P4mm space group), the pink is for the superlattice
where AFD motions are released (P4mm space group) and the purple is for the superlattice
where the polarization in BaTiO3 is supressed by imposing P4/mmm symmetry. At the top
panel from left to right, one finds the tetragonality c/a−1, the Jahn-Teller distortion, the
MnO2 rumpling in (Å). At the bottom panel from left to right, one finds the eg occupancy
ratio, total eg occupancy and delocalization of 3dz2 electrons on Ti at the interfaces. (Note:
Mülliken populations are used for ηx2−y2 and ηz2).

on the top panel, we first report the c/a−1 value (fig 5.5 a)). One can see that the values are
slightly different than those of BTO-LSMO. In superlattices with P4mm symmetry group
(the pink and orange symbols in figure 5.5), the first mono-layer is cubic (the c/a−1 is close
to 0) whereas the central and 3rd mono-layers are elongated. The effect of the AFD is mainly
on the central layer. The central layer is more elongated when the AFD motions are released.
What is also striking is that even though the 1st and 3rd mono-layers present equivalent
interfaces the c/a− 1 values are not the same; showing a strong spontaneous symmetry
breaking. This symmetry breaking arises from the direction of the polarization in the BaTiO3.
When we suppress the polarization in BaTiO3 by imposing a P4/mmm symmetry (the purple
symbol in the figure 5.5), this spontaneous symmetry breaking disappears; both the 1st and
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3rd mono-layers exhibit same tetragonality values. Within P4/mmm symmetry, all three
mono-layers are elongated.

Beside c/a−1 value (fig 5.5 b)), we give the Jahn-Teller distortion. In superlattices with
P4mm space group, with and without octahedra rotations, the first two Mn-octahedra are
contracted and the 3rd one is again elongated as seen in BTO-LSMO superlattice. Again, in
the 1st and the 3rd layers the Mn-octahedra do not have the same Jahn-Teller distortion, even
if these two layers have the same interfaces. However, when there is P4/mmm symmetry the
1st and 3rd Mn-octahedra have the same JTd values. Without polarization, the 1st and 3rd
layers Mn-octahedra are elongated in c⃗ direction, whereas the central ones are contracted.

After this (fig 5.5 c)), we report the MnO2 rumpling. For all cases, the results are
qualitatively similar suggesting there is no polarization in LBMO, which is to be expected
sinceLBMO is a conducting system. Both Jahn-Teller distortion and MnO2 rumpling are not
affected by the AFD motions.

At the bottom panel, on the left (fig 5.5 d)), we give the eg occupancy ratio. First of
all, within P4mm symmetry, with and without AFD motions, we see that in the first two
mono-layers dx2−y2 is preferentially occupied while dz2 is preferred in the third mono-layer.
However, we see that the ratio in the contracted layers increases in superlattices where the
AFD motions are released, (as seen in BTO-LSMO superlattice). The ratio in the elongated
layer seems not to change as AFD motions are set on. This result again supports the idea
that AFD motions enhance the in-plane magnetic properties, in the contracted layers, since
it increases the dx2−y2 orbital occupation (which is correlated with the in-plane magnetic
properties). When the polarization is suppressed in BaTiO3, the behaviour is not the same.
dz2 is preferentially occupied in the 1st and 3rd Mn-octahedra as it is expected from the
Jahn-Teller distortion values of these octahedras in this superlattice. dx2−y2 orbital is occupied
in the central layer. Thus, the polarization seems to enhance the in-plane magnetic properties
since ηx2−y2 occupancy is lower in non-polarized system. This issue will be studied in more
details later.

Beside the eg occupancy ratio, we report the total eg occupancies (fig 5.5 e)). The results
are qualitatively similar for the cases in P4mm with and without octahedra rotations. The
most populated layer is the elongated layer. Within P4/mmm, the populations are the same
for the 1st and 3rd layer as it is expected. The central layer is the least populated when the
polarization is killed.
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The last item in the bottom panel (fig 5.5 f)) is the delocalization of 3dz2 electrons
between Mn-Ti at the interfaces. As one can see that there is no delocalization at the 1st
mono-layer, whereas there is always a weak delocalization in the third mono-layer. One
should again remember that the mono-layer in which this delocalization is observed is
elongated in c⃗ direction. When the polarization is supressed, the delocalization is the same in
both interfaces.

After the careful study of AFD motions one can conclude:

1. The AFD motions definitely exist in both BTO-LSMO and BTO-LBMO superlattices
at least at low temperature.

2. These rotations take place only in mono-layers which are contracted in the c⃗ direction.

3. The amplitude of these rotations, however, is cation order dependent.

4. Though the Jahn-Teller distortion, which is the relevant structural parameter for the
eg occupancy ratio, does not change significantly as AFD set on, we saw that AFD
motions slightly increase the eg occupancy in the contracted octahedras, and strongly
increase the dx2−y2 vs. dz2 occupancies ratio.

5. Layer contraction can globally decrease the total eg occupancy.

By studying BTO-LBMO, we tried to highlight the role of the asymmetric interface of
BTO-LSMO. However, what we have seen in BTO-LBMO is that even if the two interfaces
are the same, they act in a similar way as the asymmetric interfaces in BTO-LSMO, and
that a spontaneous symmetry breaking occurs in the manganite. This result suggests that the
relevant parameter for the symmetry breaking here is not related to the interface asymmetry,
but rather to a parameter related to the alternated layer that differentiate the two interfaces.
The natural candidate is the polarization in BaTiO3. By imposing the P4/mmm symmetry and
killing the polarization in BaTiO3 we have seen that indeed the orientation of the polarization
in BaTiO3 determine the behaviour of the interface layers of the manganite.

5.2.3 The Role of the Polarization

We shall thus now enlarge our study to investigate the role of the polarization in the alternated
layers of the manganite superlattices. For such a purpose we extend our compounds to
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[PbTiO3]3[La2/3Sr1/3MnO3]3, since PbTiO3 is known to exhibit larger polarization than
BaTiO3.

The results are summarized in figure 5.6. Again, at the top panel first we report c/a−1
ratio. In PTO-LSMO, all three mono-layers are contracted whereas in the BTO-LSMO only
first two mono-layers are contracted. The amplitudes of the contractions in these two mono-
layers are similar to the contraction in PTO-LSMO. In BTO-LBMO, the first mono-layer
remains cubic and the last two mono-layers are elongated. In totally symmetric BTO-LBMO
where BTO does not induce any polarization, all three mono-layers are elongated. The central
one is a little bit more elongated than the two equal interfacial ones.

1 2 3
0

0.5

1

1.5

2

 η
x2 -y

2 / 
η

z2

PTO-LSMO
BTO-LSMO
BTO-LBMO
BTO-LBMO without P

1 2 3

Layer

-0.04

-0.02

0

0.02

0.04

c/
a-

1

1 2 3
-0.05

0

0.05

0.1

0.15

1 2 3
-0.1

-0.05

0

0.05

0.1

M
nO

2 R
um

pl
in

g 
(Å

)

1 2 3

Layer

0

0.005

0.01

0.015

0.02

D
el

oc
. o

f 3
d z2  o

n 
T

i

1 2 3
0.6

0.8

1

1.2

1 2 3

Layer

0

0.5

1

1.5

2

1st LSMO m.l.
2nd LSMO m.l.
3rd LSMO m.l.

1 2 3
-0.04

-0.02

0

0.02

0.04

1 2 3

Layer

-0.05

0

0.05

0.1

0.15

Ja
hn

-T
el

le
r 

di
st

or
tio

n

1 2 3

Layer

-0.1

-0.05

0

0.05

0.1

1 2 3
0

0.005

0.01

0.015

0.02

1 2 3

Layer

0.6

0.8

1

1.2

T
ot

al
 e

g

Fig. 5.6 Analysis of the effect of polarization in manganite superlattices. The green stands
for [PbTiO3]3[La2/3Sr1/3MnO3]3 superlattice in P4mm space group. The blue stands for
[BaTiO3]3[La2/3Sr1/3MnO3]3 superlattice. The orange stands [BaTiO3]3[La2/3Ba1/3MnO3]3
superlattice. The purple stands [BaTiO3]3[La2/3Ba1/3MnO3]3 superlattice in P4/mmm where
there is mirror symmetry planes to suppress the polarization in BaTiO3. At the top panel from
left to right, one finds the tetragonality c/a−1, Jahn-Teller distortion, MnO2 rumpling in (Å).
At the bottom panel from left to right, one finds the eg occupancy ratio, total eg occupancy
and delocalization of 3dz2 electrons on Ti at the interfaces. (Note: Mülliken populations are
used for ηx2−y2 and ηz2).

At the top panel on the second chart, we give the Jahn-Teller distortion. Except totally
symmetric BTO-LBMO, the rest has similar pattern. First and central layers Mn-octahedra
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are contracted, whereas the 3rd mono-layer is elongated. In totally symmetric BTO-LBMO,
two interfacial octahedras are equally elongated and central one is contracted.

The pattern of MnO2 rumpling is qualitatively similar in PTO-LSMO and BTO-LSMO.
For BTO-LBMO, the rumpling pattern is rather linear since it has symmetric interfaces
but the values in two interfaces are not exactly the same. However, in totally symmetric
BTO-LBMO the rumpling values of two interfacial layers compensate each other whereas
there is no rumpling in the cenral one since there is a mirror symmetry plane.

At the bottom panel on the left, we give the eg occupancy ratio. The fundemental results
are as follows; except totally symmetric BTO-LBMO, the ratio pattern is the same for the
rest of the systems, the two first mono-layers are preferentially dx2−y2 populated where is 3rd
mono-layer is dz2 populated. For totally symmetric BTO-LBMO, dz2 is more occupied at
the interfaces and dx2−y2 is more occupied in the central layer. All these results are coherent
with the observed JTd.

On the right, we report the total eg occupancy for each layer in the superlattice. In the
totally symmetric BTO-LBMO, the interface layers have the same total eg occupancy. For the
rest of the systems, we can see that the 3rd layer Mn-octahedra are more populated than the
other two layers. One should point out that a larger eg population is systematically observed
in elongated layers.

The last item at the bottom panel is the delocalization of the orbital 3dz2 of the Mn on
Ti. Except for the totally symmetric BTO-LBMO, one can see the pattern directly. The
first mono-layer, which is contracted, doesn’t exhibit much delocalization on Ti whereas
the elongated layer is slightly delocalized on Ti. In totally symmetric BTO-LBMO, the two
interface Mn-octahedra are elongated and there is a delocalization on Ti at both interfaces.
This result directly confirms that the delocalization is directly correlated to the elongation at
the interfaces.

We will now try to get some clear picture about what is exactly happening in these
systems by specifically displaying parameters correlations. Thus, we first would like to report
the eg occupancy ratio as a function of the Jahn-Teller distortion as we did for AFD analysis.
In figure 5.7 we give the eg ratio with respect to Jahn-Teller distortion. In this picture we also
added the results that we got for the released AFD motions as they are the true ground states
for BTO-LSMO and BTO-LBMO superlattices. Their colour are kept the same as before:
Red for BTO-LSMO with AFD and pink for BTO-LBMO with AFD. Here, one can clearly
see the expected inverse proportionality between eg ratio and Jahn-Teller parameter.



194 BTO-LSMO Superlattices

-0.05 0 0.05 0.1 0.15 0.2

Jahn-Teller distortion 

0

0.5

1

1.5

2

2.5

 η
x

2
-y

2
/ 

η
z

2

1st LSMO m.l.
2nd LSMO m.l.
3rd LSMO m.l.

0
0

0.5

1

1.5

2

2.5

PTO-LSMO
BTO-LSMO
BTO-LSMO with AFD
BTO-LBMO
BTO-LBMO with AFD
BTO-LBMO without P

Fig. 5.7 Statistics of manganite superlattices with alternated titanates. The eg orbital occu-
pancy ratio as a function of Jahn-Teller distortion parameter. (Note: Mülliken populations
are used for ηx2−y2 and ηz2).

We also try to get a picture of the correlation between the eg orbital occupancy ratio
and MnO2 rumpling. In figure 5.8 we summarized the eg occupancy ratio as a function
of MnO2 rumpling. However, it is hard to get a clear relation by looking at this picture.
This is most probably because the relevant rumpling parameter for the LSMO electronic
structure is the TiO2 rumpling of the alternating layer instead of the MnO2 one. To clarify
the role of the polarization in alternated layers on the manganite magnetic properties, we will
analyse the alternated layer features. Thus, in figure 5.9 on the left, we give the Jahn-Teller
distortion and the eg orbital occupancy ratio of the LSMO mono-layers as a function of
the TiO2 rumpling. On the right, we give the TiO2 rumpling in Å for each layer in each
system. On the right, considering absolute values we see that the largest amplitude for the
rumpling is for PTO-LSMO which is natural since it has the largest polarization. The two
BTO-LSMO system with and without AFD motions come after that. They have more or less
the same rumpling values. Then, BTO-LBMO with AFD motions has larger rumpling than
BTO-LBMO without AFD motions. Here, we see that there is an effect of the manganite
layer on the alternated layer polarization. The totally symmetric BTO-LBMO has of course
no TiO2 rumpling.

By looking at the left of the figure 5.9, one can see that the three mono-layers behave
differently. For the 1st mono-layers, we observe the largest rumpling in the alternated
titanates with the largest contraction in the Mn octahedra. As the rumpling decreases, the JTd
parameter increases. For the 2nd mono-layers, the central layers, the TiO2 rumpling does not
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significantly affect the Jahn Teller distortion. The 3rd mono-layers behave in a similar way.
As a conclusion, the TiO2 rumpling does not significantly affect the JT distortion except for
the large decrease in JTd in the case of the totally symmetric BTO-LBMO. This is because
the 1st mono-layer of the totally symmetric BTO-LBMO is elongated and that the total length
of the BTO has to be preserved (volume conservation to minimize the elastic energy).

When we check the eg ratio with respect to the TiO2 rumpling, it is hard to say that
the eg ratio in PTO-LSMO (green) is enhanced with more TiO2 rumpling, if we take into
account the real ground states of BTO-LSMO (red) and BTO-LBMO (pink) (the ones which
exhibit AFD motions). However, we should note here that we haven’t released the AFD
motions in PTO-LSMO. Thus, we might not be in the real ground state of PTO-LSMO, but
if we compare PTO-LSMO with BTO-LSMO without AFD (blue) and BTO-LBMO without
AFD (orange) it seems that eg ratio is enhanced by the TiO2 rumpling in the 1st mono-layer
as it can predicted by the above analysis of JTd vs. TiO2 rumpling for the 1st mono-layer.
Comparing the cases with AFD (red and pink triangles), one can see that eg ratio is enhanced
when there is more TiO2 rumpling. For the 2nd mono-layer (with and without AFD cases),
the eg ratio is not significantly affected by the rumpling, as can be predicted from the JTd
vs. the TiO2 rumpling for the 2nd mono-layer. This results holds for the eg ratio of the 3rd
mono-layer.
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We can also compute the polarization in alternated layers by using the Born-effective
charges as explained in the Chapter 3. Born effective charges are taken from reference [56]. In
figure 5.10, we report the polarization of the alternated layer in each system. As stated before,
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PTO has the largest polarization. The analysis we have done for the TiO2 rumpling stands
for the polarization as well. It seems that the more polarization the more contraction of the
octahedra in the 1st mono-layers. In addition, with the consideration of the real ground states
of BTO-LSMO and BTO-LBMO (with released octahedra rotations), polarization seems
to improve the eg ratio when we check the BTO-LSMO and BTO-LBMO 1st mono-layers
(the red and pink triangles in the figure 5.10). In the 2nd mono-layers Mn-octahedra, the eg

ratio does not significantly change as the polarization changes. This is also the case when
we include the AFD motions calculations (the red and pink circles). In the 3rd mono-layers
Mn-octahedra, the amplitude of the polarization does not significantly affect the eg ratio.

5.3 Conclusion

At the end of this study we can summarize the effects of the alternated layers in the manganite
superlattices as follows:
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1. The asymmetric or symmetric chemical nature of the interface is not a leading parame-
ter for the electronic structure of the interface. Indeed, we have seen that the same type
of spontaneous symmetry breaking that exists in BTO-LSMO superlattices also exists
in BTO-LBMO superlattices, though the two interfaces in the latter are equivalent.

2. The orientation of the polarization that exists in the alternated layers is the parameter
responsible for the spontaneous symmetry breaking in the interface manganite layers.
The 1st mono-layer is contracted where the direction of the polarization is out-of-the
the interface. The 3rd mono-layer is elongated where the direction of the polarization
is into the interface. The possible different chemical nature of the interfaces plays a
secondary role. As a result, we observe a delocalization of the 3dz2 orbital of the Mn
on the empty Ti ones in the 3rd mono-layer since it is elongated.

3. The amplitude of the polarization in the alternated layers only affect the 1st mono-
layer of the manganite layers. When the amplitude increases, the contraction of
Mn-octahedra of the 1st mono-layer increases, as well as the eg ratio of this mono-
layer.

The 2nd point is coherent with the paper of Ismail-Beigi and his co-workers [119]. Ismail-
Beigi and his co-workers studied a non-periodic BTO-LSMO superlattice. In this superlattice,
there is only one interface and the interface between the BTO and LSMO is composed of
BaO/MnO2 layers (there is vacuum at the end of the manganite layer). They pointed out the
role of polarization in BTO by changing the direction of the polarization. In the accumulation
state, where the direction of the polarization is out-of the interface layer, the interfacial BaO
layer’s oxygen is pushed toward to the interfacial Mn which results with JTd < 1. In the
depletion state, where the direction of the polarization is into the interface layer, the BaO
layer’s oxygen is pushed away from the interfacial Mn which results JTd > 1. As the systems
that we studied are periodic in first-principle calculations, the superlattice is repeated in the c⃗
direction, as well as the alternated layers. Thus, the polarization of the alternated layers can
be into or out-of the interface. Thus, we can have both accumulation and depletion states
in two different interfaces. The depletion takes place in the 3rd mono-layer (BaO/MnO2

interface) the oxygen anion of the BaO layer is pushed away from the interfacial Mn resulting
with an elongation in the 3rd mono-layer octahedra. The accumulation states takes place in
the 1st mono-layer ((La/Sr)O/TiO2 interface) the oxygen anion of the (La/Sr)O layer is
pushed toward the interfacial Mn resulting with a contraction in the 1st mono-layer octahedra.
One can schematically see the role of the orientation of the polarization on the interfaces in
both BTO-LSMO and BTO-LBMO superlattices in figure 5.11 and 5.12. The fact that there
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exists one elongated and one contracted interface manganite mono-layers in BTO-LSMO
superlattice is not a consequence of Ba proximity but the orientation of the polarization.

In this chapter, we also highlighted the role of the antiferrodistortive (AFD) motions in
the manganite layer on the properties of the superlattices.:

1. The AFD motion are present at least at low temperature.

2. They only exist in the contracted mono-layers.

3. They do not affect the structural properties such as Jahn-Teller distortion or tetragonal-
ity.

4. However, even though they do not affect the Jahn-Teller distortion, which is the
parameter responsible for the eg orbital ordering, they do enhance the preferential
dx2−Y 2 occupancy.

5. Thus, the AFD motions are expected to enhance the magnetic properties.

More general conclusions that we obtained through the study of BTO-LSMO superlattices
are as follows:

1. The mono-layer contraction decreases the total eg population.

2. The AFD motions and interface delocalization are exclusive effects.

3. The delocalization at the interfaces comes only in the elongated mono-layers.

As we stated before, at the 3rd mono-layer, where there is elongation, the dz2 orbital
is preferentially occupied and there is a delocalization of 3dz2 electrons from Mn atoms to
empty Ti d-shell. As a result, in this elongated layer the in-plane magnetic properties are
expected to decrease. Our aim in the next chapter is to find a way to suppress this elongation
and the correlated delocalization. For this purpose we will play on the alternated layers in
order to prevent the delocalization.
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6.1 Introduction

In the previous chapter, we studied the effect of the alternating layer polarization and AFD
motions of manganite layers on the properties of (BaTiO3)3/(La2/3Sr1/3MnO3)3 superlat-
tices. Indeed, we chose to work on these superlattices since they present the possibility
to increase the Curie temperature by one order of magnitude compared to the bulk com-
pound thanks to the orbital ordering triggered by the specific geometry around Mn ion [75].
We remind again that when manganite compounds such as La2/3Sr1/3MnO3 (LSMO) or
La2/3Ca1/3MnO3 (LCMO) are built as a supperlattice with BaTiO3 alternating layers on a
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SrTiO3 substrate, the thickness of the LSMO mono-layers can be contracted or elongated.
This geometric arrangements result in eg orbital ordering (a mechanism to control which eg

orbital will be occupied). This result was the key point of such superlattices. Indeed, it is
assumed that large dx2−y2 orbital occupancy in such manganite superlattices induce high Tc

and metallicity [75].

Unfortunately, a loss of magnetization and metalicity, also called “dead layer”, is observed
over a thickness of few unit cells at the interface of ferromagnetic manganites, such as
La2/3Sr1/3MnO3 (LSMO) or La2/3Ca1/3MnO3 (LCMO), and most perovskite substrates or
combined layers [121, 122]. Different hypotheses are considered to be the cause of this
“dead layer” phenomenon:

1. Insulating state of the very thin manganite films is a result of homogeneous substrate
strain [123],

2. Manganese eg orbital reconstruction that may induce C-type antiferromagnetism [124,
125].

3. Electronic and/or chemical phase separation [126] related to structural inhomogeneities
at the interface [127] or uncontrolled stoichiometry [128],

4. The weak delocalization of manganite Mn 3d electrons in the substrate Ti 3d empty
orbitals at the interfaces [79].

For the 1st hypothesis, one must remember that a homogeneous substrate strain of the
in-plane parameters does not relax for film thickness smaller than 1000 Å [126], whereas
transport properties are significantly changed for films thinner than a few unit cells (3–4
on STO substrate [124, 122], 30 on LaAlO3 substrate [124]). For the 2nd hypothesis, in
very thin films [122], ferromagnetism is observed, in contradiction with the proposed C-type
antiferromagnetic ordering resulting from orbital ordering. Since we would like to work with
perfect interfaces, we will not consider the 3rd hypothesis and focus on the study of the 4th
one where there is an enhanced dz2 occupancy at the interface.

Let us explain briefly how the formation of a “dead layer” can take place at the interfaces
in this hypothesis. The Mn dz2 electrons can delocalize in the empty dz2 orbitals of the
substrate or of the alternating layer (typically SrTiO3, BaTiO3 or similar compounds). Even
though this delocalization is weak (about one or two tenth of an electron [79]), at the
interfaces this delocalization energetically favors the dz2 orbital occupancy over the dx2−y2
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one. Thus, Jahn-Teller distortion of the MnO6 octahedron takes place, favoring the elongation
along the c directionn with a splitting of the eg degeneracy [75] (εz2 < εx2−y2). The in-
plane delocalization is thus hindered, at least by carrier density reduction. Consequently,
the characteristics of the “dead layer” phenomenon appear, (reduced ferromagnetic spin
arrangement and reduced conductivity [129, 122]). Such a Jahn-Teller distortion induces
a small increase of the c lattice parameter [130, 79], that can be fully attributed to the
delocalization mechanism at the interfaces, since strain effects tend to reduce c. Indeed,
on a SrTiO3 (STO) substrate, manganites such as LSMO or LCMO are under tensile strain
(aSTO = 3.905 Å [131], aLSMO = 3.880 Å [132], aLCMO = 3.86Å [133] yielding a 0.65%
tensile strain on LSMO and 1.15% on LCMO), known to favor a reduction of c lattice
parameter.

In chapter 5, we have seen that such a delocalization takes place between the Mn
3dz2 electrons in the Ti empty dz2 orbitals of the alternated layers at the interface when
the interfacial manganite mono-layer Mn-octahedra is elongated. The orientation of the
polarization of the alternated layers, indeed, plays a role in such an elongation as we discussed
in the previous chapter. However, suppressing the polarization in the alternated layers, as we
studied in BTO-LBMO superlattice (P4/mmm space), did suppress neither the elongation of
manganite mono-layer at the interfaces nor the interface delocalization from the Mn to the Ti
3dz2 orbitals. In this elongated manganite mono-layer, one can remember that we observed
dominant dz2 orbital population over dx2 orbital. Thus, we expect to have reduced in-plane
magnetic properties in this mono-layer. In order to prevent the formation of a such a layer,
i.e. “dead layer”, one thus needs to interface the manganite with an alternating layer material
hindering the delocalization between the different layers.

The aim of this work was thus to find out whether the delocalization at the interfaces
can explain the formation of the dead layer or not. For this purpose, we propose possible
candidates for new alternating layers in manganite superlattices in which the delocalization
at the interfaces are suppressed. In the next section, we will briefly discuss the requirements
to fulfill for such alternating layers.
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6.2 Possible compounds as alternating layers in manganite
superlattices

As the hypothesis for the origin of the formation of a “dead layer” is the delocalization
of d-shell between Mn and Ti atoms, one can suggest to use a compound with totally
filled d shells as the alternating layers. Thus, the BaSnO3 compound could be a good
suggestion since Sn has totally filled d-shells. However, test calculations [134] on such
heterostructures showed that there is a weak electron delocalization, from Sn filled dz2 orbitals
towards Mn partially occupied ones, very similar to what is observed in the calculations on
[BaTiO3]3 − [La2/3Sr1/3MnO3]3 [75]. This delocalization results again in an increase of the
Mn dz2 orbital occupancy, and a Jahn-Teller distortion elongating the octahedra. One can
thus expect such heterostructures to also exhibit a “dead layer” phenomenon.

Avoiding d orbitals in the alternating layers is another option to prevent this electron
delocalization completely. So, we can set up our first requirement for such materials to be
without d orbitals. The second requirement is to have a tetragonal or cubic structure. Indeed,
in the manganite layers, it is crucial to prevent the rhombohedral distortion but rather favor
a tetragonal distortion [75]. This tetragonal distortion, induced by the strain effect of the
substrate and kept by alternating layers, should lead to the contraction of the mono-layers
with favored the dx2−y2 orbital occupancy and thus of the desired properties. At last but not
least, after fulfilling these two requirements, the candidate compound must have a perfect
epitaxy with the manganite layer.

We chose to test the alkaline-earth oxides, particularly the BaO compound, since it
satisfies all the necessary conditions. Indeed, BaO has no d-shells as it doesn’t have a
transition metal in it. Moreover, the mismatch between BaO and LSMO is only of 0.7%, and
between BaO and the STO substrate 0.3%. One can see the other alkaline-earth oxide lattice
mismatch values with LSMO and STO in the table 6.1. We also need to mention that the
epitaxy imposes for the BaO unit cell (Fm3̄m cubic group [135]) to be rotated in-plane by an
angle of 45◦ [136, 137], compared to the manganite unit cell (this can be seen figure 6.1).

We thus studied, using first principle calculations, [La2/3Sr1/3MnO3]n[BaO]p superlat-
tices, alternating a few unit cells of manganite and of simple Barium oxide. Superlattices
with other alkaline-earth oxides (SrO, CaO and MgO) are also studied in order to see whether
the results are resilient to a change in the alternating layer, despite their unrealistic strain
values.
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Space Mismatch (%)
Compound Group a (Å) STO LSMO

substrate bulk

BaO Fm3̄m 5.5391 [135] 0.3 0.7
SrO Fm3̄m 5.1615 [138] -6.5 -6.2
CaO Fm3̄m 4.7990 [139] -13.1 -12.8
MgO Fm3̄m 4.214 [140] -23.7 -23.4

Table 6.1 Space Groups, lattice parameters and lattice mismatch of the different alkaline-earth
simple oxides with the SrTiO3 substrate [131, 141] and LSMO bulk [132, 142].

6.3 Results

6.3.1 Manganite thin films with simple BaO layers

We first studied the [La2/3Sr1/3MnO3]3[BaO]6 superlattice in order to investigate its structural
and magnetic properties. We computed our superlattice for all different cation models in order

Fig. 6.1 (color online) Schematic representation of the [La2/3Sr1/3MnO3]3[BaO]6 superlattice.
m.l. stands for mono-layer.
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to treat the manganite A-site cation disorder. As we mentioned in the technical details this
elongated interface manganite layer we used ECPs with averaged effective nuclear charges
in order to treat the average ions. We also tested the real charge cases in order to testify our
results. We used a

√
2a×

√
2a×c unit cell in order to allow octahedra rotations and in-plane

antiferromagnetic (AFM) ordering. In figure 6.1 one can see the schematic representation
of the superlattice studied. Here one should notice that the interfaces are non equivalent,
since one corresponds to a (La/Sr,O)–(BaO) interface and the other to a (MnO2)–(BaO)
interface. We studied different magnetic orderings in our superlattices that is ferromagnetic
(FM), A-type AFM (in-plane FM and out-of-plane AFM), C-type AFM (in-plane AFM and
out-of-plane FM) and G-type AFM (in-plane and out-of-plane AFM), that can be seen in
figure 6.2.

Fig. 6.2 Magnetic orderings studied in LSMO layers. Arrows indicate the spin directions.
FM: ferromagnetic, A-AFM: A-type antiferromagnetic, C-AFM: C-type antiferromagnetic,
G-AFM: G-type AFM antiferromagnetic ordering.
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Our geometry optimization calculations showed us that the magnetic ground state always
imposes FM in-plane order and a total net magnetic moment. The two out-of-plane magnetic
arrangements (FM and A-AFM orders) are found quasi-degenerate within DFT error bars.
Indeed, the energy difference per LSMO unit cell (or equivalently per Mn), between FM
and A-type AFM orders, is in average 12 meV, with a mean deviation of 9 meV. One should
mention that this is smaller than room temperature (kBT ∼ 25 meV). Cation ordering in
LSMO determines whether the DFT ground state is the FM or the A-type AFM configuration.
The two other magnetic configurations, in which there is in-plane AFM order, (C-AFM
and G-AFM) are much higher in energy, ranging between 130 meV and 210 meV above the
ground states.
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Fig. 6.3 η(dx2−y2)/η(dz2) ratio of the dx2−y2 and dz2 orbitals Mülliken occupancies in each
mono-layer as a function of the Jahn-Teller distortion (JTd) and of the tetragonality parameter
c/a− 1. Red and pink symbols refer to the interfacial mono-layers, blue symbols to the
central ones. Diamonds are for the FM order and stars for the A-type AFM one. The green
dashed squares show the experimental values of LSMO over STO for 6 m.l. thin films
exhibiting a dead layer. The Jahn-Teller distortion and c/a ratios are extracted from the
cumulative displacements in Ref. [130] and the η(dx2−y2)/η(dz2) ratio is extracted from
linear dichroism experiments of Ref. [124]. Bulk LSMO corresponds to the cross point
between the dashed lines.
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We report the statistics of both the Jahn-Teller distortion (JTd) (measured as dOO/a−
1, with dOO the out-of-plane O-Mn-O distance) and c/a (c being the perovskite A-sites
distances) as a function of the eg orbitals Mülliken occupancies ratio in figure 6.3. The results
are given for each LSMO mono-layers of the two quasi-degenerate ground states. We give the
experimental values of Jahn-Teller distortion and c/a−1 values of 6 mono-layer LSMO over
STO substrate from the reference [130]. We extracted Jahn-Teller distortion c/a−1 values
from the cumulative displacements ∆z of the atoms from the top TiO2 layer of STO substrate
given in Figure 4 of Ref [130]. We also give the experimental value of η(x2−y2)/η(z2) ratio
of 6 mono-layer LSMO grown on STO from the reference [124]. Polarization-dependent
X-ray absorption spectroscopy (XAS) helps to identify orbital occupation of transition-metal
oxides. Linear Dichorism in XAS is the difference between X-ray absorption spectra taken
with the polarization vector perpendicular and parallel to the crystal c-axis. One can use linear
dicroism in L-edge XAS to identify the 3d orbital character of orbital-ordered compounds.
Thus, we extracted the eg occupancy ratio from the linear dicroism experiment results given
in Figure 4 of Ref. [124] for 6 mono-layer LSMO over STO.

The main results are as follows: All three LSMO mono-layers are compressed along
the c⃗ direction, except for the central layer in two AFM calculations. When we quantified
the Jahn-Teller distortion of Mn-octahedra we saw that the Mn-octahedra of the interface
mono-layers are contracted along the c⃗ direction whereas the Mn-octahedra of center mono-
layer is elongated. The dx2−y2 orbital occupancy is dominant in the contracted interfacial
Mn-octahedras. This is the desired magnetic semi-metallic behavior. However, as one
can expect, since the Mn-octahedra of the central mono-layer exhibits an elongation of the
Mn-octahedra, the dz2 orbiral is the preffered eg orbital in this mono-layer. One must notice
in figure 6.3 that there is dominant dx2−y2 orbital occupancy for all mono-layers for a few
calculations.

One can immediately remember from the previous chapter, where we studied
[La2/3Sr1/3MnO3]3[BaTiO3]3 superlattices, that those results exhibit exact opposite behavior
with these ones. In the [La2/3Sr1/3MnO3]3[BaTiO3]3 superlattices, one of the interface layers,
into which the BaTiO3 polarization directs, is elongated with a dominant dz2 occupancy.

In table 6.2 and 6.3, we give the eg spin populations and Mn magnetic moments per layer
with associated structural properties of one typical cation ordering for FM and A-type AFM
magnetic ordering. The cation ordering chosen is associated with the lowest energy for both
FM and A-type AFM magnetic configurations.
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LSMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 0.361 0.266 1.357 -0.021 -0.002 3.343
2 0.368 0.552 0.667 -0.001 0.032 3.732
3 0.597 0.249 2.398 -0.069 -0.012 3.642

Table 6.2 Mülliken spin population of the Mn eg orbitals, c/a ratio, JTd (Jahn-Teller dis-
tortion) and µMn (Mn magnetic moment) in the ferromagnetic [La2/3Sr1/3MnO3]3[BaO]6
ground state of one typical cation order.

LSMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 -0.394 -0.166 2.373 -0.024 -0.014 3.26
2 0.256 0.778 0.329 -0.013 0.085 3.875
3 -0.502 -0.182 2.758 -0.050 -0.026 3.43

Table 6.3 Mülliken spin population of the Mn eg orbitals, c/a ratio, JTd (Jahn-
Teller distortion) and µMn (Mn magnetic moment) in the A-type antiferromagnetic
[La2/3Sr1/3MnO3]3[BaO]6 ground state of one typical cation order.

One can see from these two tables that the behaviour is qualitatively similar. However,
by looking at the eg occupancy ratio one can notice that the dx2−y2 orbital dominance (1st
and 3rd m. l.) or dz2 orbital dominance (2nd m. l.) is increased in the A-type AFM order
compared to FM. Relatively, contraction in the 1st and 3rd mono-layer and elongation in the
2nd mono-layer are increased. The magnetic moment of Mn atom is qualitatively similar in
each magnetic configuration.

These quasi-degenerate ground states (FM and A-type AFM orders) indicate that in real
systems such superlattices may present one or the other spin arrangement as the ground
state, according to the specific cation disorder. However one must keep in mind that at room
temperature both FM and A-type AFM states have similar probabilities. Thus, we expect to
have a net total magnetization even if the amplitude of this magnetization should be reduced.
Moreover, the fact that this superlattice exhibit dominant dx2−y2 orbital occupancy at the
LSMO interfaces shows us that we reached our goal of controlling the eg orbital occupancies.
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6.3.2 The effect of the thickness of manganite layer: A test case of
(LSMO)6 − (BaO)2

Whether the previous section conclusion remains valid will be the focus of this section if one
increases the size of the manganite layer. In order to check this point we increased the size of
the LSMO layer to 6 mono-layers, and performed the geometry optimization calculations
for one typical cation configuration. In figure 6.4, one can see the schematic representation
of [La2/3Sr1/3MnO3]6[BaO]2 superlattice. To keep the calculation to a reasonable size, we
needed to simultaneously decrease the BaO layer thickness.

Fig. 6.4 (color online) Schematic representation of the [La2/3Sr1/3MnO3]6[BaO]2 superlattice.
m.l. stands for mono-layer.

We thus first checked whether such a reduction would affect the results. For this purpose
we run test calculations on the preceding superlattice with only two mono-layers of BaO
(i.e. on [La2/3Sr1/3MnO3]3[BaO]2). The results for such a superlattice is summarized in the
table 6.4. Even though the structural parameters, i.e. Jahn-Teller distortion parameter and
tetragonality parameter, show different behaviour than those of [La2/3Sr1/3MnO3]3[BaO]6,
the eg orbital spin populations as well as the eg occupancy ratio and Mn magnetic moment
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LSMO eg orb. spin pop. ηx2−y2/ηx2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 0.395 0.373 1.050 -0.026 0.022 3.536
2 0.375 0.426 0.892 -0.022 -0.009 3.573
3 0.57 0.27 2.024 -0.057 -0.011 3.627

Table 6.4 Mülliken spin population of the Mn eg orbitals, c/a ratio, JTd (Jahn-Teller distor-
tion) and µMn (Mn magnetic moment) in the [La2/3Sr1/3MnO3]3[BaO]2 ground state of one
typical cation order.

showed similar behaviour. Thus, the 2-BaO mono-layers model is an appropriate choice for
us to test the size of the manganite layer behaviour with a BaO alternated layer.

As there is a FM in-plane order in [LSMO]3[BaO]6 superlattices and the C-type and G-
type AFM orders in [LSMO]3[BaO]6 superlattices are significantly higher in energy than the
quasi-degenerate FM and A-type AFM, we only studied three different spin configurations
for the [La2/3Sr1/3MnO3]6[BaO]2 superlattices: FM order, A-type AFM and ↑↑↓↓↑↑ which
can be seen in figure 6.5.

Fig. 6.5 Magnetic orderings studied in LSMO layers. Arrows indicate the spin directions.
FM: ferromagnetic, A-AFM: A-type antiferromagnetic and “uudduu”: ↑↑↓↓↑↑ ordering.

Our calculations showed a ground-state with the ↑↑↓↓↑↑ pattern (“uudduu”) and a total
net magnetization for the system. This ground state is again very close in energy to the FM
state and the A-type AFM state. The latter does not however correspond to a full AFM state,



214 AO-LSMO Superlattices

since it exhibits a non null net total magnetization of about 1/10 of an electron per Mn atom.
The dominant eg orbital occupancy in the different LSMO mono-layers is found qualitatively

Magnetic System Net total magnetization per Mn atom
FM 3.67

↑↑↓↓↑↑ 1.13
A-AFM 0.11

Table 6.5 Number of spin-up electrons, i.e. net total magnetization, per Mn atom for each
magnetic configuration of [La2/3Sr1/3MnO3]3[BaO]2 superlattice.

independent of the out-of–plane spin ordering (see tables 6.6, 6.7 and 6.8 for example).

LSMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 0.459 0.319 1.439 -0.032 0.017 3.548
2 0.467 0.237 1.970 -0.028 -0.034 3.434
3 -0.460 -0.253 1.818 -0.021 -0.038 -3.449
4 -0.302 -0.741 0.408 0.013 0.070 -3.892
5 0.480 0.220 2.182 -0.027 -0.035 3.442
6 0.501 0.293 1.710 -0.043 -0.012 3.567

Table 6.6 Mülliken spin population of the Mn eg orbitals, c/a− 1 ratio, JTd (Jahn-Teller
distortion) and µMn (Mn magnetic moment) in the ↑↑↓↓↑↑ ordered [La2/3Sr1/3MnO3]6[BaO]2
ground state of one typical cation order.

LSMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 0.452 0.305 1.482 -0.031 0.014 3.52
2 0.426 0.311 1.370 -0.022 -0.025 3.484
3 0.426 0.328 1.299 -0.017 -0.026 3.511
4 0.385 0.574 0.671 0.004 0.033 3.788
5 0.474 0.342 1.386 -0.029 -0.020 3.594
6 0.541 0.258 2.097 -0.048 -0.014 3.572

Table 6.7 Mülliken spin population of the Mn eg orbitals, c/a− 1 ratio, JTd (Jahn-Teller
distortion) and µMn (Mn magnetic moment) in the ferromagnetic [La2/3Sr1/3MnO3]6[BaO]2
of one typical cation order.
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LSMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 -0.492 -0.261 1.885 -0.037 0.008 -3.509
2 0.494 0.2 2.470 -0.032 -0.038 3.412
3 -0.426 -0.165 2.933 -0.025 -0.044 -3.364
4 0.291 0.771 0.377 0.014 0.077 3.912
5 -0.509 -0.17 2.994 -0.031 -0.040 -3.407
6 0.552 0.213 2.592 -0.050 -0.021 3.516

Table 6.8 Mülliken spin population of the Mn eg orbitals, c/a − 1 ratio, JTd (Jahn-
Teller distortion) and µMn (Mn magnetic moment) in the A-type antiferromagnetic
[La2/3Sr1/3MnO3]6[BaO]2 of one typical cation order.

As in the [LSMO]3[BaO]6 calculations, the mono-layers at the interfaces are contracted
and strongly dominated by the dx2−y2 orbital occupancy. In fact only the inner most mono-
layer is still elongated and dominated by dz2 orbital occupancy. As can be seen in figure 6.6,
the Mn magnetic moments and total eg occupancies exhibit a strong correlation with the
amplitude of the Jahn-Teller distortion. When the Mn-octahedra is elongated, there exist
larger eg population and naturally larger Mn magnetic moment. The Mn-octahedra in the
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Fig. 6.6 The correlation between magnetic moment and total eg population of each manganite
mono-layer with the Jahn-Teller distortion of each manganite mono-layer in [LSMO]6[BaO]2
superlattices.

inner most mono-layer exhibit a strong elongation and the largest Mn magnetic moment as
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can be seen from the tables 6.6, 6.7 and 6.8. This specificity of the inner most mono-layer is
responsible for the non-vanishing total magnetization in the A-type AFM state. These results
show that, when increasing the thickness of the LSMO layer, one essentially increases the
thickness of the interface layers and not of the central one. The former being contracted along
c⃗ and dominated by dx2−y2 orbital occupancy, it confirms that the use of BaO alternating
layers allow the control of the dx2−y2 vs dz2 orbital occupancies at the LSMO interfaces.

6.3.3 Manganite thin films with different alkaline-earth oxides

In this section we will check whether this result is resilient to a change in the simple oxide and
manganite compounds. We thus performed a set of calculations using BaO, SrO and MgO as
alternating layers, and LSMO or LBMO as manganite layers ([La2/3A1/3MnO3]3[BO]6), for a
typical cation disorder model. Table 6.9 summarizes the eg orbital occupancies, Mn magnetic
moments and related structural properties for those calculations. One may notice that
the [LBMO]3[BaO]6 and [LSMO]3[SrO]6 superlattices have in theory equivalent interfaces,
unlike all the other superlattices we studied. One sees in table 6.9 that this symmetry is kept
in the [LSMO]3[SrO]6 superlattice. Indeed, the two calculations with and without imposed
symmetry yield equivalent results within errors bars. For the [LBMO]3[BaO]6 superlattice
however, this is not the case. A spontaneous symmetry breaking occurs along the c⃗ axis,
associated with a small energetic stabilization (37meV ≃ 430K) per LBMO unit cell). This
induces a symmetry breaking in the eg orbitals occupancies as can be seen in table 6.9.
Nevertheless, all manganite interface mono-layers are favoring a dx2−y2 occupancy over a dz2

one, as was the case for the [LSMO]n[BaO]p compounds. The control of the orbital order at
the interfaces thus seems to remain valid independently of the manganite compound and of
the simple oxide chosen for the alternating layer.

6.3.4 Transport properties

We saw in the previous sections that the use of a simple oxide alternating layer allows to obtain
the desired orbital ordering at the interfaces as well as the hindering of the delocalization
at the interfaces. As one of our objectives was to improve the transport properties of the
superlattices, we would like to present here the Boltzman transport (BoltzTrap) calculations
carried out by our collaborator, Sébastien Lemal on our systems. He calculated the in-plane
conductivity tensor σxx(T,µ) =σyy(T,µ) at 300 K of the LSMO layers in of [LSMO]n[BaO]p
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LAMO eg orb. spin pop. ηx2−y2/ηz2 c/a−1 JTd µMn
mono-layer ηx2−y2 ηz2

1 0.441 0.284 1.553 -0.015 -0.001 3.479
LBMO-BaO 2 0.384 0.538 0.714 0.014 0.021 3.733

3 0.508 0.263 1.932 -0.022 0.005 3.538
1 0.476 0.265 1.796 -0.026 -0.002 3.5

LBMO-BaO 2 0.244 0.655 0.373 0.033 0.033 3.698
(P4/mmm) 3 0.476 0.265 1.796 -0.026 -0.002 3.5

1 0.478 0.255 1.875 -0.062 -0.014 3.487
LSMO-SrO 2 0.399 0.521 0.766 0.010 0.007 3.728

3 0.479 0.255 1.878 -0.064 -0.014 3.487
1 0.479 0.252 1.901 -0.062 -0.014 3.484

LSMO-SrO 2 0.399 0.528 0.756 0.008 0.010 3.739
(P4/mmm) 3 0.479 0.252 1.901 -0.062 -0.014 3.484

1 0.352 0.169 2.083 -0.077 -0.047 3.189
LSMO-MgO 2 0.234 0.702 0.333 0.016 0.061 3.75

3 0.596 0.260 2.292 -0.107 -0.007 3.649
1 0.353 0.166 2.127 -0.098 -0.054 3.186

LBMO-MgO 2 0.238 0.695 0.342 0.045 0.074 3.754
3 0.590 0.321 1.838 -0.037 0.044 3.708

Table 6.9 Mülliken spin population of the Mn eg orbitals in the [La2/3A1/3MnO3]3[BO]6
ground state (A=Sr, Ba ; B=Ba, Sr, Mg). The shown example was chosen as the cation
ordering associated with the lowest ground state energy.
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and [LSMO]3[BTO]3 superlattices within the BoltzTrap code [143] (T is the temperature and
µ is the chemical potential). These calculations rely on the previous first-principle results and
are within constant relaxation time (CRTA). The results are presented in the figure 6.7. As we

Fig. 6.7 Transport calculations on the [LSMO]n[BaO]p and [LSMO]3[BTO]3 systems at 300
K.

can see from this figure there is not a significant evolution in the in-plane conductivity in the
[LSMO]3[BaO]6 superlattice compared to FM [LSMO]3[BTO]3 superlattice. In the A-type
AFM [LSMO]3[BaO]3 superlattice, we observe a small increase in the in-plane conductivity.
In the [LSMO]6[BaO]2 superlattices, ferromagnetic and “↑↑↓↓↑↑” cases have similar spectral
conductivities. The maximum LSMO conductivity obtained in these new superlattices is
only 1.25σBTO−LSMO

xx . These results show that enhancing dx2−y2 orbital occupancy is not
necessarily enough to increase significantly the in-plane electrical conductivity. However,
one should remind that our conductivity estimations are restricted to the CRTA, within which
it has been recently shown (in LaNiO3 thin films) that such calculations underestimate the
amplitude of the changes in conductivity compared to experimental measurements [144].

6.4 Conclusion

In summary, we may recall that thin films and superlattices of [La2/3A1/3MnO3] (A=Sr, Ca)
manganite compounds, over an SrTiO3 substrate, have been extensively studied in the hope
to find a good material for electronic and spintronics applications. Indeed, on STO, the
LSMO is under tensile strain, so one is entitled to expect that the elastic energy will favor
a contraction of the mono-layers along the c⃗ direction. Due to the degeneracy of the eg

orbitals, such a contraction would have enhanced the occupation of the dx2−y2 over the dz2
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and thus the ferromagnetic and metallic behavior through the double exchange mechanism.
Unfortunately the formation of a non-magnetic and insulating layer (called “dead layer”) at
the interface prevents to reach this goal. One of the hypothesis to explain this “dead layer”
supposed it originates in a weak delocalization of the Mn dz2 orbitals in the empty Ti ones
inducing a dz2 dominant occupancy and a mono-layer extension along c⃗. The energy gain in
this phenomenon overvalues the elastic energy loss of the LSMO volume increase.

We theoretically studied different possibilities to prevent the delocalization at the interface
by using convenient alternating layers in the superlattices. Our first principle calculations
showed that superlattices alternating manganite and alkaline-earth simple oxides efficiently
prevent inter-layer delocalization, promote mono-layers contraction at the interfaces and a
preferred dx2−y2 occupancy over the dz2 one. Our studies show that this result should hold
for different manganite and alternating layer thicknesses. However, Boltzman transport
calculations show that it marginally impacts the transport properties. The hypothesis of the
origin of the dead layer in the eg orbitals ordering should thus be questioned. Nevertheless,
we succeeded in controlling the eg orbital order and occupancies with appropriate alternating
interface layers.





Conclusion

During this thesis, we studied theoretically manganite superlattices to investigate their
structural and electronic properties by means of first-principle calculations. Our study
is motivated by the interface effects that exist in perovskite oxides superlattices. Indeed,
manganite thin films and superlattices have great potential for technological applications such
as magnetic recording/memory technology. Perovskite oxides, with the formulation ABO3,
exhibit a wide variety of functional properties exploited in various technological applications.
By combining such perovskites in superlattices, one can not only combine their intrinsic
properties but also can induce totally new phenomena at their interfaces. Manganites are an
important class of perovskite oxides which have been extensively studied due to their various
exotic properties as we discussed in Chapter 2. Manganites, with the formulation AMnO3

where A is an element or a solid solution of two or more elements, offer large varieties of
systems with respect to the A site solid solution. The A-site generally is composed of one
rare-earth trivalent element (R) and one divalent alkaline-earth element (D) (A = R1−xDx).
Depending on the choice of R and D, manganites can display very rich phase diagrams of
magnetic and electric phenomena with respect to doping concentration of D. In addition
to this, giant and colossal magnetoresistance that a class of manganites show under the
application of a magnetic field make them desirable for various devices. Intrinsic large Curie
temperature is also another important feature that some manganites hold.

In this thesis, we chose to study in La1−xSrxMnO3 at the doping x = 1/3 deposited on
SrTiO3 substrate since it is a ferromagnetic metal and has a large Curie temperature (Tc ≃
370K). We combined La1−xSrxMnO3 layers with different alternated insulator layers and
studied structural and magnetic properties of such heterostructures by geometry optimizations
within the Density Functional Theory (DFT) calculations. In Chapter 3, we gave the technical
background of the DFT and our computational details.

We dedicated Chapter 4 to the study of LaMnO3 −SrMnO3 superlattices. We studied
different magnetic orderings with different number of layers and cation orderings. Both strain-
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free superlattices and superlattices deposited on a SrTiO3 substrate were studied by means
of first-principle calculations. We found that [LaMnO3]1 − [SrMnO3]1 and [LaMnO3]2 −
[SrMnO3]2 superlattices are A-type antiferromagnets, whereas the [LaMnO3]2 − [SrMnO3]1

superlattice is ferromagnetic.

In Chapter 5, we studied [BaTiO3]3/[La2/3Sr1/3MnO3]3 (BTO-LSMO) superlattice de-
posited on SrTiO3 substrate by means of first-principle calculations. We did full geometry
optimizations and investigated the electronic structures. Our study was motivated by the
large increase in Curie temperature that is observed in this superlattices through orbital
ordering compared to bulk LSMO. We studied the effect of the asymmetrical and sym-
metrical chemical nature of the interfaces, the effect of the polarization of the alternated
layers, and the role of the antiferrodistortive motions of manganite layers on the electronic
structure of these superlattices. Our findings in BTO-LSMO superlattices showed us that one
interface mono-layer and central mono-layer Mn-octahedra are contracted along c⃗ direction
(negative Jahn-Teller distortion) whereas the other interface mono-layer Mn-octahedra is
elongated along c⃗ direction (positive Jahn-Teller distortion). This Jahn-Teller distortion is
naturally followed by dx2−y2 (dz2) orbital occupancy enhancement in the contracted (elon-
gated) mono-layers Mn-octahedra. Since the LSMO layers are very thin (only a few unit cell)
in BTO/LSMO superlattice, one thus expects that the in-plane magnetic properties are more
important than the out-of magnetic properties. Therefore, preferential dx2−y2 orbital occu-
pancy maximize the in-plane magnetic properties of this superlattice. On the other hand, it is
known that the elongated mono-layers with dz2 orbital occupancy exhibit reduced magnetism
and conductivity. In the elongated interface layer, we also observed a delocalization of the
Mn-3d electrons on the empty 3dz2 orbital. First, we associated this symmetry breaking at
the interfaces with the fact that BTO-LSMO has chemically asymmetric interfaces: (the
interface attached to the contracted mono-layer: (La/Sr)O/TiO2, the interface attached to the
elongated mono-layer: BaO/MnO2). Thus, we tried to work with symmetric (equivalent in-
terfaces). To do this, we replaced La2/3Sr1/3MnO3 (LSMO) with La2/3Ba1/3MnO3 (LBMO)
and worked in [BaTiO3]3/[La2/3Ba1/3MnO3]3 (BTO-LBMO) superlattice. In this new super-
lattice, we had only BaO/MnO2-type of interfaces. However, we saw that there was still the
same type of symmetry breaking in the interface Mn-octahedras in this new superlattice. We
concluded at the end of this study that the asymmetric or symmetric chemical nature of the
interface is not a leading parameter for the interface electronic structure. Thus, we changed
our focus on the alternated layers possible impact on such a symmetry breaking. Indeed,
BaTiO3 is a ferroelectric insulator and it induces a spontaneous polarization in its layers.
Supressing the polarization in BaTiO3 layers in BTO-LBMO superlattice by imposing mirror
symmetry planes in c⃗ direction helped us to suppress this spontaneous symmetry breaking in
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the interfaces of BTO-LBMO superlattice. In totally symmetric BTO-LBMO superlattice,
both interface Mn-octahedra were elongated with dominant dz2 occupancy and there were
delocalization from Mn-3d orbitals to empty Ti 3dz2 ones. Thus, we understood that the
parameter responsible for the spontaneous symmetry breaking in the interface manganite
layers is the orientation of the polarization. When the direction of polarization is out-of
the interface manganite mono-layer, the interface manganite mono-layer Mn-octahedra is
contracted with a dominant dx2−y2 occupation. On the other hand, when it is into the interface
manganite mono-layer Mn-octahedra, the latter is elongated with a dominant dz2 occupation.
We also observed a delocalization of the 3dz2 orbital of the Mn on the empty Ti ones in the
3rd mono-layer when it is elongated. We wanted to investigate the role of polarization further
and for this purpose, we decided to focus on the amplitude of the polarization. We studied the
[PbTiO3]3/[La2/3Sr1/3MnO3]3 (PTO-LSMO) superlattice deposited on a SrTiO3 substrate
since PbTiO3 induces larger polarization compared to BaTiO3 and compared our results with
previous BTO-LSMO and BTO-LBMO superlattices. We saw that the amplitude of the polar-
ization only affects the contracted interface Mn-octahedra. It enhances the contraction of this
interface Mn-octahedra and the preferential occupancy of dx2−y2 orbital. Next exploration
was on the role of the antiferrodistortive (AFD) motions of the Mn-octahedra of LSMO
layers. In order to realize the AFD motions, we first gave a initial guess by displacing the
oxygen atoms of MnO2 planes along a⃗ and b⃗ directions. Then, we ran geometry optimization
calculations to see whether these motions were kept or not. Through this study, we saw
that the AFD motions are present at least at low temperature. These rotations do only exist
in the contracted mono-layer Mn-octahedras. When we compared the results of rotating
LSMO superlattices with the ones without rotations we saw that the Jahn-Teller distortion
parameter was affected by the rotations. However, the rotations increased the preferential
dx2−y2 occupancy even though it didn’t affect the Jahn-Teller distortion in the contracted
Mn-octahedras. Thus, we concluded that these motions are expected to enhance the in-plane
magnetic properties. We saw that the AFD motions and the delocalization of 3dz2 from
Mn–Ti at the elongated mono-layer Mn-octahedra are exclusive.

We dedicated Chapter 6 into the study of suppression of the elongated interface manganite
layer that we observed in BTO-LSMO superlattice in Chapter 5. This elongated layer is
named “dead layer” since it exhibits reduced magnetization and conductivity compared to
the contracted LSMO mono-layers. We suggested that the delocalization of 3d electron of
Mn to emtpy Ti 3dz2 electrons at the interface can be a possible reason of this elongation and
hindering magnetization. Thus, we wanted to find new alternated layers in order to suppress
this delocalization. Within this line, we needed to work with a compound; (i) without d
shells so that there cannot a delocalization take place at the interface, (ii) with a tetragonal
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or cubic structure so that tetragonal distortion can be favored in the manganite layers rather
than rhombohedral one, (iii) having a perfect epitaxy with mangantite layers. Alkaline
earth oxides fulfill all these three requirements. First, we studied [BaO]6/[La2/3Sr1/3MnO3]3

(6[BaO]-3[LSMO]) superlattice deposited on SrTiO3 substrate by means of first-principle
calculations. We did full geometry optimizations and investigated the electronic structures
for different magnetic orderings of LSMO layers. We found that ferromagnetic and A-
type antiferromagnetic orderings are quasi-degenerate which implies that we have in-plane
ferromagnetism in the BaO-LSMO superlattice. In both ground states, both interface LSMO
mono-layers are contracted with dominant dx2−y2 orbital occupancy whereas the central
LSMO mono-layer is elongated with dominant dz2 orbital occupancy. Thus, we successfully
managed to kill the delocalization at the interface. In order to see if these results are also
hold in thicker manganite layers, we studied [BaO]2/[La2/3Sr1/3MnO3]6 (2[BaO]-6[LSMO])
superlattice. We decreased the number of BaO layers from 6 to 2 in order to have a
feasible computational time but we first ran test calculation on [BaO]2/[La2/3Sr1/3MnO3]3

(2[BaO]-6[LSMO]) superlattice in order to see if there is a change in results between 6[BaO]-
3[LSMO] and 2[BaO]-6[LSMO] superlattices. Similar structural and magnetic properties are
also observed in the latter. Thus, we continued our work in 2[BaO]-6[LSMO] superlattice
without problem. We tested different magnetic orderings in 2[BaO]-6[LSMO] superlattice
such as ferromagnetic, A-type antiferromagnetic and ↑↑↓↓↑↑ and we saw that ↑↑↓↓↑↑ is the
lowest in energy but there is quasi-degeneracy with others at room temperature. The structure
and magnetic properties are similar to those of 6[BaO]-3[LSMO]. Only the inner most
central LSMO mono-layer is elongated with a dominant dz2 orbital occupancy whereas the
interface layers are contracted with a dominant dx2−y2 orbital occupancy. In this superlattice,
one essentially increases the thickness of the interface layers since the unit cells from the
interface up to the inner most central layer are all contracted like the interface layer. After
this study, we wanted to check whether our results are resilient to a change in the simple
oxide and manganite compounds. Therefore, we took SrO and MgO as alternated layers (6
layers) and LBMO as manganite layer (3 layers) and performed set calculations with new
superlattices. The results that we obtained for 6[BaO]-3[LSMO] superlattice are hold for
these ones as well. In the study 6[BaO]-3[LBMO] and 6[SrO]-3[LSMO], we had the chance
to study the effect of symmetric interfaces as we did before in BTO-LBMO superlattice. We
saw that there is a spontanous symmetry breaking at the interfaces in 6[BaO]-3[LBMO]
superlattice whereas there is no such symmetry breaking in 6[SrO]-3[LSMO]. This result is
interesting and to be investigared further. Finally, Sébastian Lemal calculated the conductivity
in these new superlattices by transport calculations in order to compare with BTO-LSMO
superlattice. Unfortunately, although we managed to kill the elongation and delocalization
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at the interface and manage to favor dx2−y2 over dz2 orbital the maximum conductivity of
this layer is not significantly improved compared to the dead layer present in BTO-LSMO
(1.25σBTO−LSMO

xx ).

Future works can be dedicated to question the real reason behind the dead layer present in
LSMO superlattices with alternated layers. Different alternated layers possibly hindering the
delocalization at interface like fluorides such as potassium fluoride (KF) or bromides such as
lithium bromide (LiBr) can be also tested to see if the conductivity is improved compared
BTO-LSMO superlattice.
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