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1

Context and Motivation

Material selection in the design of mechanical components often leads an engineer

to make compromises between mechanical resistance and component weight. Typ-

ically the specific elastic modulus and specific yield stress are used to choose a ma-

terial, and then the component is dimensioned accordingly. This means that steel

producers must seek to optimize the elastic modulus, yield stress, and density of

their products in order to maintain competition against other materials such as alu-

minum, titanium, or fiber composites. Historically, while the elastic modulus and

density can be varied only marginally as they are primarily defined the mass and

atomic bond strength of iron, the yield stress can be easily changed from one alloy

to another. As such, a precise understanding of the interactions between processing

parameters, the resultant microstructure, and final mechanical behavior is necessary

in order to both optimize the performance of existing steel alloys and to develop

more advanced steels.

Significant progress in ferrous metallurgy has been made through the develop-

ment of a first generation advanced high strength steels (dual-phase, TRIP, marten-

sitic) with ferrite-based microstructures followed by a second generation (TWIP)

with primarily austenitic microstructures. As with many fields, however, there re-

main significant improvements to be made particularly for the automotive industry.

Due to increasingly stringent emissions regulations, the automotive industry has

made vehicle light-weighting one of its primary objectives in new product devel-

opment. Lighter vehicle weight would evidently reduce fuel consumption and, in

turn, CO2 emissions. As such, steels with a higher specific strength are needed. The

recent development of a third generation of advanced high strength steels (AHSS)

shows promise in attaining not only improved ductility and tensile strength, but

also non-negligible reductions in density by the addition of aluminum to the alloy.

These steels have complex multiphase microstructures composed of a mixture of fer-

rite, retained austenite, and martensite. In quenched and partitioned steels (Q&P),

the martensite can be “partitioned” wherein carbon in the martensite diffuses into

neighboring austenite and can lead to “soft” and “hard” families of martensite. In

medium manganese steels, upon which this research will focus, ultra-fine-grained

(UFG) microstructures are used to obtain retained austenite at room temperature

which will then either transform to martensite, as in TRIP steel, or form twins, as in

TWIP steel, when plastically deformed. These TRIP and TWIP effects provide sig-

nificant work hardening and allow the steel to harden locally, delaying necking and

improving ductility. Additionally, alloying medium manganese steels with several
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weight percent of aluminum will reduce the density and the loss in strength that

would normally accompany aluminum additions is compensated for by TRIP or

TWIP. Medium manganese steels therefore offer opportunities to both increase ten-

sile strength and decrease density and are an ideal candidate for use in automotive

products.

The microstructures observed in medium manganese steels present a significant

challenge in terms of their characterization. Not only does one need to consider the

interactions of two or three phases, but significantly different plastic deformation

mechanisms in each as well as evolving phase volume fractions due to martensite

transformation during plasticity. With a UFG microstructure, mechanical characteri-

zation of individual phases is quite difficult. Behavior laws for each phase must thus

be determined through a fit of the multiphase composite against macroscopic data

rather than against data for each phase separately. Even once the behavior laws are

identified and their parameters determined, the interactions between phases must

be considered and the kinetics of the TRIP or TWIP effects characterized.

These challenges are not easily surmounted, but provide the opportunity to bet-

ter understand the interaction of different phases in polycrystals and the effect of

mechanical contrast between phases on macroscopic properties. It obliges the re-

finement of existing characterization techniques to enable the identification of single

phase behaviors in multiphase materials, which is not easily achieved at the micron-

scale as considered here. In fact, current progress in this area involves combined

nanoindentation tests and crystal plasticity simulations to obtain phase behavior

laws [1].

This thesis will focus on a medium manganese (Medium Mn) TRIP steel and will

seek to achieve the following:

1. Identify and characterize the plastic deformation mechanisms present in each

phase of each alloy and relate them to macroscopic behavior.

2. Understand the relationship between fabrication parameters and mechanical

behavior, specifically regarding the degree of work hardening.

3. Provide a numerical tool for understanding the behavior of these steels regard-

ing the strain instabilities than can be present.

The thesis will be structured as follows:

• A first chapter will present a bibliographic summary of the deformation mech-

anisms in steels, the state of the art in research on Medium Mn steels, and a

description of Lüders and Portevin-Le Châtelier strain instabilities.

• Initial results of a microstructural and mechanical characterization of the steel

are described and the questions motivating the core work of the thesis are pre-

sented.
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• The methodology by which the TRIP effect and strain instabilities are ana-

lyzed are presented. Particular attention is given to the magnetic measurement

method of the retained austenite fraction that was developed in this research.

• Results of the characterization of the TRIP effect via magnetic measurements,

strain band characterizations using digital image correlation, and strain rate

sensitivity measurements are presented with initial commentary.

• A discussion of the obtained results and the origin of the observed differences

in TRIP kinetics and the characteristics of strain instabilities is presented.

• The primary conclusions of the work are given alongside perspectives for fu-

ture work.
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Chapter 1

Sommaire

L’imposition de limites de plus en plus strictes sur les émissions de CO2 par les

véhicules automobiles nécessite une diminution importante de leur consommation

d’essence. Du point du vue du fabricant automobile, cela peut se faire par des

changements de conception du châssis et des matériaux utilisés. En fait, la per-

formance du matériau est représentée par le ratio résistance mécanique — masse

volumique. Ainsi, un matériau léger comme l’aluminium nécessitera une épaisseur

importante pour atteindre la rigidité requise, ce qui aura tendance à augmenter le

poids de la pièce finale. Par contre, l’accroissement de la résistance mécanique d’un

acier permettra d’en réduire l’épaisseur, ce qui compense sa masse volumique rel-

ativement élevée. C’est dans cet objectif que l’industrie de l’acier développe une

troisième génération d’aciers à très haute résistance (AHSS, pour Advanced High

Strength Steels) dans le but d’améliorer les propriétés mécaniques tout en garantis-

sant une facilité de mise en forme et de soudage. Cette thèse concerne l’un de ces

aciers, ainsi que les liens entre sa microstructure et son comportement mécanique.

Le premier chapitre présente les aciers de troisième génération à partir d’une

étude bibliographique qui servira de base pour la suite du manuscrit. Il décrit, en

particulier, la microstructure et les comportements mécaniques typiques des aciers à

moyenne teneur en manganèse (généralement entre 5 et 8% en poids), dit « Moyen

Mn » La première partie de ce chapitre donne les bases des mécanismes de plasticité

induite par la transformation (effet TRIP) et des phénomènes Portevin-Le Châte-

lier (PLC) et Lüders. Pour mieux comprendre ces phénomènes, la deuxième partie

s’adresse plus particulièrement aux instabilités mécaniques de type PLC et Lüders,

ainsi qu’à leurs origines microscopiques. Ces effets sont résumés pour des alliages

d’aluminium et des aciers bas carbones et TWIP (plasticité induite par maclage). Fi-

nalement, les modes de déformation plastique observés dans les aciers sont décrits.

Une attention particulière est portée à l’effet TRIP, à son effet sur le comportement

mécanique et aux méthodes utilisées pour caractériser la cinétique de la transforma-

tion de phase pendant la déformation.

Le deuxième chapitre continue avec une étude d’un acier Fe-0,2C-5Mn-2,5Al qui

est un acier TRIP « Moyen Mn TRIP » formé d’un mélange de ferrite et austénite

résiduelle, avec éventuellement une faible proportion volumique de martensite ther-

mique. Son but est de présenter une analyse microstructurale et mécanique afin
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d’établir une relation entre la microstructure et le comportement mécanique, et leur

dépendance en fonction des paramètres de fabrication. Dans cette étude, le paramètre

de fabrication étudié est la température de recuit intercritique qui détermine les pro-

portions des phases initiales et la stabilité de l’austénite résiduelle. Trois tempéra-

tures sont définies, 740, 760 et 780◦C, pour un maintien constant de 2 minutes.

Les résultats expérimentaux montrent que, pour les recuits à 740 et 760◦C, la dé-

formation se passe de façon très hétérogène. Des instabilités mécaniques dues aux

effets Lüders et PLC sont présentes en traction uniaxiale pendant toute la durée de

l’essai. Par contre, pour un recuit à 780◦C, la déformation est totalement homogène.

Il est évident aussi que la température de recuit a un fort effet sur le comporte-

ment mécanique en termes d’allongement uniforme et de contrainte maximale. Une

éprouvette recuite à 740◦C par exemple, peut atteindre 30% d’allongement et 1100

MPa de contrainte maximale, quand une éprouvette recuite à 780◦C présente plutôt

un allongement de 15% et une contrainte maximale de 1500 MPa. Ces variations

ont comme origine une différence de fraction volumique d’austénite résiduelle et de

sa stabilité à température ambiante. Plus l’austénite est instable, plus sa transfor-

mation en martensite pendant la déformation est facilitée et plus l’écrouissage est

rapide. Des expériences complémentaires montrent une apparente sensibilité néga-

tive à la vitesse de déformation. Cela est typique des alliages qui présentent un effet

PLC, mais c’est également le cas en l’absence de PLC. Ce chapitre se conclut par

plusieurs questions, auxquelles la thèse cherchera à répondre :

• Quel est l’effet de la température de recuit sur la cinétique de transformation

martensitique ?

• Comment interagissent l’effet TRIP et les bandes de Lüders/PLC ?

• Comment s’explique la sensibilité négative à la vitesse de déformation ?

Le troisième chapitre détaille les méthodes expérimentales mises en œuvre pour

répondre à ces questions. Des essais en traction uniaxiale avec corrélation d’images

(DIC) sont réalisés pour caractériser les différentes bandes de déformation quand

elles sont présentes. Le logiciel Correli TR3 est utilisé, qui régularise le champ de

déformation calculé et qui assure ainsi que la solution est mécaniquement admissi-

ble.

La cinétique de transformation de phase pendant la déformation est caractérisée

par une méthode magnétique. Ce choix permet une haute fréquence de mesure

(ici, entre 2 Hz et 10 Hz) et donc des donnés continues et rapides par rapport, par

exemple, aux méthodes par diffraction des rayons-X ou des électrons. Cette méthode

est décrite en détail, avec une attention particulière à deux corrections par rapport à

son utilisation habituelle.

• La première est une correction de l’effet de la contrainte appliquée sur l’éprouvette,

qui a une influence marquée sur les propriétés magnétiques. Cette correction

est assez simple : comme les résultats concernent uniquement à l’aimantation à
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saturation, une correction linéaire est basée sur un coefficient de magnétostric-

tion, ce qui lui confère un sens physique par rapport à d’autres méthodes de

correction purement empiriques.

• La deuxième correction prend en compte le fait que les propriétés magnétiques

de la microstructure sont hétérogènes, avec la ferrite et la martensite qui sont

ferromagnétiques et l’austénite résiduelle qui est paramagnétique. Cette cor-

rection s’appuie sur un modèle du type Eshelby pour une inclusion sphérique

dans un milieu équivalent homogène pour calculer la localisation du champ

magnétique appliquée dans chacune des phases. Cette correction est une nou-

veauté dans la mesure où elle est appliquée à l’estimation de l’aimantation à

saturation ; jusqu’à présente elle n’avait été faite que sur des mesures de sus-

ceptibilité magnétique.

Les quatrième et cinquième chapitres décrivent les résultats obtenus par ces deux

méthodes, corrélation d’images et mesures magnétiques, et en présente une discus-

sion. Les bandes de déformation sont caractérisées, avec des différences notables

entre la première bande (bande de Lüders) et les bandes suivantes. La largeur de

la bande et sa vitesse de propagation sont bien moins importantes pour la première

bande que pour les autres bandes supposées de type PLC. De plus, la vitesse de

déformation et l’incrément de déformation sont bien plus importants dans la pre-

mière bande. Des graphiques spatio-temporels montre que la première bande –

dans tous les cas où elle apparait – est très stable et se propage continument le long

de l’éprouvette, alors que les bandes suivantes sont souvent plus perturbées, voire

même aléatoires. Ceci confirme la nature et l’origine différentes de la bande initiale

et des suivantes : une bande de Lüders à la limite d’élasticité suivie par des bandes

de type PLC. Dans le cas du recuit intercritique à 740◦C, les bandes PLC se propa-

gent de façon plutôt continue alors qu’elles sont plus aléatoires dans les échantillons

recuits à 760◦C. Pour le recuit à 780◦C aucune bande n’a été observée lors de la dé-

formation des éprouvettes.

La section suivante du quatrième chapitre met en évidence une sensibilité no-

table du comportement mécanique à la température de recuit intercritique. Des

éprouvettes provenant de deux lingots différents censées avoir subi les mêmes re-

cuits à 740, 760 ou 780◦C montrent finalement des comportements très différents

pour une température de recuit donnée. Pour l’étude de ces aciers, il est donc cri-

tique de comparer des éprouvettes qui viennent d’un même lingot.

Les résultats de mesures magnétiques in situ pendant un essai de traction mon-

trent l’effet de la température de recuit intercritique sur la cinétique de transfor-

mation de phase pendant la déformation. L’évolution de la fraction volumique

d’austénite résiduelle est tracée en regard des courbes de traction pour prouver que,

même considérant le fait que toutes les éprouvettes n’ont pas la même teneur ini-

tiale en austénite résiduelle, la transformation se produit d’autant plus rapidement

que la température de recuit est élevée. De plus, le nombre de points de mesure
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obtenus (quelques milliers par essai) permet de distinguer des paliers sur les courbes

d’évolution de l’austénite correspondant au passage des bandes de Lüders ou PLC.

Ceci ne serait pas possible avec d’autres méthodes basées sur la diffraction (sauf

peut-être par diffraction X au synchrotron) et surtout pas dans une quinzaine de

minutes par essai comme dans ce travail, vu que l’acquisition des données de diffrac-

tion est bien plus lente que l’acquisition des données magnétique. Ce résultat tend

à prouver la coïncidence de l’effet TRIP et du passage des bandes de déformation et

confirme l’utilité des mesures magnétiques pour doser la teneur en austénite résidu-

elle.

Comme le couplage entre la contrainte et l’aimantation est corrigée dans ce tra-

vail, il était possible de montrer que la transformation martensitique se déclenche

uniquement après l’amorçage de la plasticité dans l’éprouvette. Des mesures de

l’aimantation en fonction de la contrainte vraie ne montrent aucun changement avant

la limite d’élasticité, suggérant que la transformation martensitique est plutôt in-

duite par la déformation que par la contrainte, au moins en début d’essai. Ce résul-

tat est unique car les méthodes classiques de mesure magnétique par ferritescope ne

corrigent pas les couplages magnéto-mécaniques.

Pour analyser et comprendre l’origine de la sensibilité négative du comporte-

ment en traction à la vitesse de déformation, des essais ont été réalisés à des vitesses

de déformation de 10−4, 10−3 et 10−2 s−1. Des mesures magnétiques in situ one été

également réalisées pendant ces essais pour quantifier l’effet de la vitesse de défor-

mation sur la cinétique de transformation martensitique au cours de la déformation.

L’interprétation de ces données est compliquée par la présence des instabilités

mécaniques en forme des bandes de déformation. Néanmoins à partir des cas dans

lesquels la déformation se passe de façon homogène, il est possible de déduire que

la cinétique de transformation martensitique est ralentie pour les vitesses de défor-

mation élevées. Ceci pourrait être dû à l’échauffement adiabatique plus important

quand la vitesse de déformation augmente. Des transitions entre différents types

de comportement PLC apparaissent aussi en fonction de la vitesse de déformation.

Ceci est surtout évident pour les échantillons recuits à 760◦C où le PLC est du type

C à 10−4 s−1, puis type B à 10−3 s−1 et disparait finalement à 10−2 s−1. Une carte

est proposée dans la discussion qui indique le type de comportement PLC (s’il est

présent) en fonction de la température de recuit et de la vitesse de déformation im-

posée.

La dernière partie expérimentale est consacrée à une quantification de la sen-

sibilité à la vitesse de déformation par essais de traction avec des sauts de vitesse

de déformation entre 10−4 et 10−2 s−1. La sensibilité « steady state » (c’est-à-dire,

une fois que la courbe de traction se stabilise après le pique initiale au moment

de l’accélération de vitesse de déformation) dépend fortement de la déformation à

laquelle la mesure est faite. Les résultats sont très différents selon que la mesure est

réalisée juste après le saut de vitesse (<0,5% déformation) ou après une déformation

de 2% après le saut. Les mesures « continues » de l’évolution relative de contrainte
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semblent être en accord avec les mesures prises à 2% déformation après le saut de

vitesse confirmant donc la sensibilité négative à la vitesse de déformation.

Finalement, un modèle simple est proposé pour comprendre les comportements

observés en termes de comportement mécanique des phases et de cinétique de trans-

formation martensitique. Il s’agit d’une simple loi de mélange construite avec l’hypothèse

« Iso-Work » pour laquelle il est supposé que le travail mécanique est identique

dans chaque phase. Son application sur les cas où la déformation est homogène per-

met de déduire que les comportements des phases sont tels que la grosse majorité

de l’écrouissage vient de l’effet TRIP par l’accroissement de la fraction volumique

d’une phase martensitique très dure. Les courbes de traction expérimentales sont

alors bien reproduites en utilisant une cinétique de transformation martensitique

modélisée à partir de la relation d’Olson et Cohen identifiée à partir des données

magnétiques expérimentales.

Le comportement des différents essais sont alors reproduits simplement en changeant

les proportions des phases initiales. Ce modèle permet, par exemple, de montrer que

l’origine de la bande le Lüders est très probablement dans la ferrite par comparaison

avec la littérature en utilisant l’écrouissage estimée dans la ferrite par ce modèle au

début de plasticité.

Les données magnétiques sont aussi utilisées pour décrire la cinétique de trans-

formation martensitique dans le cadre du modèle de Ludwigson-Berger qui présente

l’intérêt de ne dépendre que d’un seul paramètre ajustable. Dans ce cas, il est montré

que la présence ou non de PLC est vraisemblablement liée à la cinétique de trans-

formation martensitique. Cette approche permet de déduire l’existence d’une plage

étroite de valeurs du paramètre k de Ludwigson-Berger dans laquelle se fait la tran-

sition entre un comportement hétérogène et une déformation homogène : pour les

faibles valeurs de k, on n’observe pas de PLC, alors que le phénomène apparaît

pour les valeurs plus importantes. Ce résultat est très intéressant pratiquement car

il suggère que l’effet PLC pourrait être éliminé avec une composition permettant de

contrôler l’instabilité de l’austénite.

Finalement, plusieurs conclusions générales sont déduites de ce travail :

• Des bandes de déformation ont pu être caractérisées expérimentalement en

termes de déformation locale et de cinétique de transformation martensitique

par mesure magnétique,

• Ces bandes de déformation coïncident avec la transformation martensitique

locale,

• La cinétique de transformation martensitique au cours de la déformation est

sensible à la température de recuit et à la vitesse de déformation,

• La sensibilité à la vitesse, apparemment négative, résulte d’une interaction

complexe entre la cinétique de transformation martensitique, l’échauffement

adiabatique, et l’existence éventuelle de bandes de déformation.
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Des perspectives sont proposées afin d’identifier des chemins potentiels pour

mieux comprendre et quantifier le comportement de ces matériaux en vue d’en op-

timiser la composition et le procédé de frabrication.
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Chapter 2

Literature Review

2.1 Third Generation Advanced High Strength Steels

To provide higher strength, high formability materials for the automotive industry

and remain competitive with other materials eg. aluminum for frame components,

a third generation of AHSS is being actively researched. The desired properties in-

clude an ultimate tensile strength surpassing 1000 MPa and a tensile elongation of

30-40%. The sought properties of third generation AHSS relative to the first two

generations is presented in Figure 2.1 [2]. These steels use far less alloy content

than the second generation (TWIP) steels, and thus should be cheaper to manufac-

ture and show improved weldability. High strength and high formability would en-

able automotive manufacturers to achieve further vehicle weight reductions through

structural redesign using stronger materials, allowing component thicknesses to be

reduced while maintaining rigidity.

Third generation AHSS typically contain 5-15 wt% Mn and up to 0.3-0.4 wt%

C [3–5]. This is a stark difference from TWIP steels, which can contain more than

0.5 wt% C and more than 20 wt% Mn [6–8] and as such third generation steels are

often referred to as Medium Mn steels. While 2nd generation AHSS are primarily

austenitic, 3rd generation steels typically have multi-phase microstructures contain-

ing ferrite, retained austenite, and sometimes thermal martensite. The microstruc-

ture is generally finer and contains more retained austenite than the first generation

of AHSS. It is possible to stabilize austenite at room temperature despite the lower

Mn and C content by what has been termed an austenite reversion transformation

(ART). The ART process typically consists of hot rolling at austenitizing tempera-

ture and quenching followed by cold rolling and an intercritical anneal in the fer-

rite + austenite domain to revert the quenched martensite to a mixture of ferrite

and austenite. During the intercritical anneal martensite is reverted to an ultra-fine-

grained (UFG) mixture of ferrite and austenite; this fine grain size allows the austen-

ite to remain metastable at room temperature [9]. The intermediate cold rolling step

included before the intercritical anneal will help to further refine the grain size. Fig-

ure 2.2 illustrates the ART process for fabricating Medium Mn steels.

While this thesis will deal primarily with Med Mn TRIP (Transformation-Induced
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FIGURE 2.1: Different families of Advanced High-Strength Steels
(AHSS) mapped with respect to the achievable elongation and tensile
strengths for each. The third generation currently being developed
provide a middle-ground between the first and second generations
and provide several improvements due to the lower alloy concentra-

tion used [2].

FIGURE 2.2: Medium Mn steels are fabricated by hot-rolling at
austenitizing temperature above Ac3 followed by quenching. Cold-
rolling in the next step creates a highly-deformed cold-rolled mi-
crostructure before annealing to refine the final microstructure. The
anneal is carried out in the intercritical region between the Ac1 and
Ac3 temperatures and allows ferrite and austenite to form from the

previously martensitic microstructure.
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Plasticity) steels, it is worth mentioning that there is another group of third gener-

ation AHSS called Quenched and Partitioned (Q&P) steels that fall into the same

compositional ranges. These steels are also hot rolled at austenitizing temperature

and quenched, but they are only quenched to 100-200◦C (or otherwise below the

martensite start temperature) to generate a partially martensitic microstructure and

then reheated to 400-500◦C for the partitioning step during which alloying elements,

notably carbon, are partitioned from the martensite to the remaining austenite [10].

The alloy is then quenched to room temperature. This results in a steel that contains

significant proportions of martensite with some metastable retained austenite. Ten-

sile strengths upwards of 1500 MPa are not uncommon and tensile elongations are

on the order of about 10% [11].

2.1.1 Microstructures

Much work has gone into the thermodynamics underlying the microstructural evo-

lution of Medium Mn steels during processing. Here, an emphasis is placed on the

result obtained rather than the process by which the different phases are formed.

As mentioned previously, an ultra-fine-grained microstructure can be obtained by

annealing a hot-rolled, quenched, and cold-rolled sheet that is thus comprised pri-

marily of martensite and bainite. The duration and temperature of the anneal as

well as the chemical composition will play critical roles in determining the final mi-

crostructure. Each of these will be examined here.

During intercritical annealing, small quantities of carbides such as pearlite that

may exist within the microstructure dissolve and form austenite nuclei [12]. In-

creased annealing temperature or time will result in further dissolution of these car-

bides as well as higher retained austenite volume fractions. It also, however, results

in more grain growth. This is not ideal given that the objective is to obtain a very fine

austenite that remains metastable at room temperature. If too much grain growth

occurs, the austenite will have partially transformed to martensite during cooling to

room temperature. This has been well-illustrated by Li et al. in a cold-rolled Medium

Mn TRIP steel, as can be seen in Figure 2.3 [13].

To avoid destabilization of the austenite via grain growth for very long anneals,

the annealing temperature can be increased or decreased to control the nucleation

of ferrite and austenite and thus their volume fractions. Gibbs et al. [14] showed

that the retained austenite fraction increases with intercritical annealing tempera-

ture up until a certain peak after which the austenite destabilizes and large fractions

of martensite are obtained. Figure 2.4 shows the results of their ThermoCalc model

predictions compared to measured austenite volume fractions. The same drop-off in

retained austenite volume fraction at room temperature also occurs if the annealing

temperature is too high, as demonstrated by Li et al. as in Figure 2.3, so care must be

taken to optimize the temperature and duration of the anneal to obtain the desired

proportion of retained austenite. The sudden loss of stability could be related to the
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FIGURE 2.3: Microstructures observed in a 0.2C-1.6Al-6Mn Medium
Mn steel for intercritical annealing at (a) 600◦C (b) 630◦C (c) 650◦C
and (d) 700◦C [13]. With increasing annealing temperature, the
austenite (A) grain size increases and after a certain point some
martensite (M) is obtained at room temperature. Ferrite (F) is also

present as a matrix phase [13].

composition of the austenite. It has been shown that the Mn concentration in austen-

ite decreases with intercritical annealing temperature and that the C concentration

shown a maximum at intermediate annealing temperatures, as shown in Figure 2.5,

likely due to the increase in grain size for higher annealing temperatures. The peak

in the retained austenite fraction could then be related to the peak in the stability of

the austenite as induced by the combined effects of C and Mn.

The composition of the retained austenite is important in that it will alter not

only the volume fraction of retained austenite after cooling, but also its stacking fault

energy. It has been shown that the stacking fault energy is correlated to the active

plastic deformation mechanisms in the steel [8, 15], though no direct link had been

established between SFE and the active deformation mechanism. This is illustrated

in Figure 2.6 in which the authors suggested that as the stacking fault energy (SFE)

decreases, the deformation mode changes from dislocation slip to twinning induced

plasticity (TWIP) to transformation induced plasticity (TRIP). Given that the SFE is

heavily influenced by composition via substitutional defects in the crystal lattice, the

concentrations of C and Mn in the austenite will play a critical role in determining

which deformation modes are active for a given alloy.
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FIGURE 2.4: The retained austenite volume fraction obtained upon
cooling to room temperature shows a peak for intermediate intercrit-
ical annealing temperatures in a 0.1C-7.1Mn steel. As the annealing
temperature increases, the Ms temperature of the retained austenite
increases above room temperature and allows some thermal marten-

site to form when cooled to room temperature [14].
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FIGURE 2.5: During intercritical annealing, the concentrations of sta-
bilizing alloying elements in the retained austenite were modified.
The Mn content decreased with increasing annealing temperature
and the C concentration peaked at intermediate temperatures. The
appearance of martensite in the initial microstructure in a 0.1C-7.1Mn
steel steel roughly corresponds to the temperatures after the C con-

centration peak where both C and Mn concentrations are low [14].





18 Chapter 2. Literature Review

FIGURE 2.7: When higher concentrations of Al are added, it is pos-
sible for large δ-ferrite bands to form in the microstructure between

regions of austenite (A) and ferrite (α) [16].

FIGURE 2.8: Changing the intercritical annealing temperature in a
0.05C-6.1Mn-1.5Si steel affected the stability of the retained austenite
and thus the mechanical behavior. The stress-strain curves (left) and
strain hardening curves (right) showed significant differences for in-
tercritical annealing at (1) 700◦C, (2) 680◦C, (3) 660◦C and (4) 640◦C

[17].

2.1.2 Mechanical Properties

Modifications to the annealing temperature and time will alter the stability of the re-

tained austenite and thus heavily influence the mechanical properties of the steel. By

changing the composition of the austenite, the deformation mechanism can be pre-

determined and its associated kinetics controlled. That is, by carefully optimizing

the chemical composition and annealing parameters, one can make a steel that will

plastically deform by a TRIP or TWIP with the desired transformation/twinning

rate. It has been shown by [17, 18] that both the annealing temperature and the

duration of the anneal have a significant impact on the resulting mechanical prop-

erties of the steel, as can be seen in Figures 2.8 and 2.9. This is a direct result of the

partitioning of alloying elements between the ferrite and retained austenite and the

associated modification of the stability of the austenite.

It is interesting to note, particularly in Figure 2.8, the enormous difference in
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FIGURE 2.9: The annealing time also affected the mechanical re-
sponse of a 0.09C-4.6Mn-3Si steel, as illustrated here for varying

lengths of intercritical annealing at 670◦C [18].

mechanical properties resulting from a change in annealing temperature of just a

few degrees Celsius. The UTS in the 0.05C-6.1Mn-1.5Si steel studied by Lee et al.

increased by 300 MPa and the elongation decreased by half just from a difference

of 60◦C in the intercritical annealing temperature. The work hardening rate also

changed significantly from one temperature to another, with sharp increases in work

hardening occurring at different levels of true strain. This is due to variations in the

onset of TRIP due to varying retained austenite stability.

Also of interest are the long yield point elongation phenomena that are present

in the two samples annealed at lower temperatures. The bands are the result of

a form of static strain aging referred to as Piobert-Lüders bands (or often simply

Lüders bands) and have been observed previously in ferritic steels [13, 19, 20]. When

dislocation cores become pinned by interstitial C atoms, a barrier to dislocation slip

is created wherein a certain stress is required to free the dislocation and allow plastic

deformation to occur. This pinning results in an increase in yield strength, followed

by a propagative macroscopic strain band that traverses the entire tensile specimen

after which point the strain generally becomes homogeneous.

In the case of Lüders bands, the pinning occurs just once. However should the

interstitial C be sufficiently mobile, they can "overtake" the mobile dislocations and

pin them repeatedly, resulting in a series of strain bands than can either be station-

ary or propagative. This is referred to as dynamic strain aging or the Portevin Le-

Châtelier (PLC) effect. It can occur in bcc phases (eg. ferrite) at temperatures above

about 200◦C, but in fcc phases (austenite) it can occur at room temperature [21]. This

effect is frequently observed in Al alloys for example [22], and has been frequently

observed in Medium Mn steels as well [17, 23, 24] as demonstrated in Figure 2.10.
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FIGURE 2.10: For a 0.17C-6.5Mn-1.1Al Medium Mn alloy, long
Lüders plateaus and the PLC effect were observed for lower inter-
critical annealing temperatures as in the samples annealed at 610◦C
and 650◦C, though the cold rolled microstructure was not completely
recovered in the sample annealed at 570◦C so it was much harder and

more brittle than the others [24].

An understanding of these strain localizations is critical because the TRIP and

TWIP phenomena are associated with plastic strain, so the presence of bands will

alter the kinetics of TRIP and TWIP. Thus, if one seeks to optimize the mechanical

properties of a Medium Mn steel, it is necessary to understand the Lüders and PLC

phenomena in order to be able to quantify their influence on TRIP or TWIP.

It has recently been shown that even when Lüders plateaus are extremely long

(about 10% strain), the Lüders strain can be greatly reduced by controlling the mi-

crostructure [25]. In the case of an UFG Medium Mn TRIP steel, an elongated lamel-

lar microstructure seems to be desirable as it provides a grain-scale deformation

that is more favorable than globular grains in terms of reducing the Lüders strain.

This is illustrated in Figure 2.11 where the Lüders strain was reduced from about

10 % to 2-3% by the application of an additional heat treatment to modify the grain

morphology. This same method was applied for several different samples annealed

at different temperatures, shown in Figure 2.12, and the trend remained the same:

lamellar grains resulted in a shorter Lüders plateau.

2.2 Strain Localizations—Lüders and PLC Effects

2.2.1 Lüders Bands in Low-C Steels

The Lüders phenomenon is well-known and often occurs in low carbon steels. It

is a form of static strain aging wherein, as previously mentioned, interstitial carbon

pins dislocations and increases the mechanical energy necessary to initiate plastic

deformation. As shown in Figure 2.13a, the effect manifests itself in the form of a
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FIGURE 2.11: A two-step intercritical anneal was applied to a 0.1C-
6.4Mn steel to greatly reduce the length of the Lüders plateau by

forming a lamellar rather than globular microstructure [25].

FIGURE 2.12: The two-step intercritical anneal, when applied to a
0.1C-6.4Mn Medium Mn TRIP steel, had a slight softening effect and
either greatly shortened or eliminated the Lüders plateaus that ex-
isted in samples annealed only once at temperatures below 660◦C

[25].
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(A)

(B)

FIGURE 2.13: (A) The yield point elongation observed in some
Medium Mn steels is due to the localization of strain in a Lüders band
that propagates across the tensile length of the sample. (B) This be-
havior is the result of static strain aging that increases the yield stress
and creates a plateau with a strain necessary to obtain the stress-strain
state corresponding to the case where static strain aging does not oc-

cur [26].

macroscopic Lüders band that propagates across the sample at a constant stress. This

results in a plateau in the tensile curve that can continue for several percent of plastic

strain. The Lüders strain is hypothesized to correspond to the intersection of the

observed mechanical behavior and the "true" tensile behavior of the material when

yielding is continuous, as illustrated in Figure 2.13b by Schwab et al. [26]. The strain

increment provided by the Lüders band depends on the mechanical behavior of each

phase and notably this "true" yield stress of the material. The primary concern of

end-users with respect to Lüders banding is the surface defects the band can create

on a component. If the Lüders strain is reduced, these surface defects are easier to

avoid and are less problematic in forming operations, so control of the Lüders strain

is highly desirable.

It has been shown that the Lüders strain is correlated to the work hardening
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FIGURE 2.14: It was shown by [27] for C-Mn steels that, regardless of
the carbon concentration (and thus availability of interstitial C to pin
dislocations) the Lüders strain was directly related to the rate of work

hardening at the lower yield stress.

rate at the lower yield point. Regardless of the carbon concentration, a low work

hardening rate corresponds to a high Lüders strain, as seen in Figure 2.14 [27]. This

is of interest in the current case because should the TRIP effect in a Medium Mn

steel fail to provide enough work hardening, the Lüders plateau (if present) would

be very long. Thus the Lüders strain should be linked to the stability of the retained

austenite and to its transformation rate as well.

Evidently, since the underlying microscopic mechanism for Lüders bands is the

impingement of dislocations by carbon atoms, the carbon concentration is of im-

portance in determining the characteristics of the Lüders behavior. It is important,

however, that the carbon be on interstitial sites and not tied up in carbides, so the

Lüders effect is typically seen at lower levels of carbon. Johnson et al. [28] showed,

as in Figure 2.15, that increasing concentrations of C resulted in lower Lüders strains

based on experimental data from [27] and a model developed by [29].

2.2.2 Portevin-Le Châtelier Bands

While Lüders bands are most commonly seen in bcc alloys, there is another local-

ization phenomenon that can occur in fcc alloys. The Portevin Le-Châtelier (PLC)

effect (sometimes called dynamic strain aging) is, like the Lüders effect, the macro-

scopic manifestation of an interaction between dislocations and solute atoms [30].

PLC is referred to as a type of dynamic strain aging because, contrary to Lüders, the



24 Chapter 2. Literature Review

FIGURE 2.15: The carbon concentration in low C steels does modify
the Lüders strain slightly as shown here by [28] where an increase
of the concentration of C from 0.05 wt% to 0.16 wt% led to a 50%
decrease in the Lüders strain. This decrease could be related to either
solution strengthening of the ferrite or carbon being consumed by

carbides rather than remaining in solid solution.

pinning effect occurs continuously throughout deformation. Dislocations become

pinned and a certain mechanical energy is needed for them to unpin and become

mobile again, at which time a sharp stress relaxation occurs as this stored energy is

released. However, the now-mobile dislocations are soon re-pinned by solute atoms

and the stress barrier must once again be overcome. Additionally, obstacles to dislo-

cation motion can permit solutes to diffuse into dislocation cores and re-pin the dis-

location, such as nanoprecipitates [31], or grain boundaries [32]. The unpinning and

re-pinning occurs over a characteristic reloading time which depends on the defect

type and strain rate, among other parameters. This continuous pinning-unpinning

process leads to distinct serrations in the tensile curve as illustrated by Jiang et al. in

Figure 2.16 [33].

Materials that undergo PLC often exhibit a negative strain rate sensitivity. That

is, increasing the applied strain rate will decrease the UTS rather than increase it as

in materials with a positive strain rate sensitivity. This is shown, for example, by

Zavattieri [34] in the case of a high Mn austenitic TWIP steel. Figure 2.17 shows

the mechanical response of this steel at three different crosshead displacement rates.

Varying the crosshead speed will vary the strain rate in the sample, but because

the displacement rate is maintained constant, the strain rate will decrease slightly

over the course of the test (hence the use of crosshead speed rather than strain rate

in Figure 2.17). It is quite clear that when the crosshead speed is increased, the

maximum stress decreases by several percent. Increasing the applied strain rate will

decrease the reloading time and accelerate the propagation speed of the band [30].

Bian et al. [35] showed that increases in the applied strain rate will also result in

increases of the stress amplitude of pinning-unpinning cycles, as shown in Figure
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FIGURE 2.16: The serrations observed in the tensile curves of materi-
als that exhibit PLC are directly related to the force required to unpin
dislocations (∆F) and the incubation time between pinning and un-

pinning (treload) [33].

2.18.

Higher deformation temperatures also influence PLC. Since the bands are the

result of dislocation unpinning avalanches, the mobility of both dislocations and ob-

stacles are important in determining the time between an unpinning event and the

subsequent re-pinning. Dislocation motion is obviously aided by increases in tem-

perature. Solute atoms can pin dislocations more effectively at higher deformation

temperatures because their diffusivity within the parent lattice is increased. Previous

experiments [22] have demonstrated this in an Al-Mg alloy, as shown in Figure 2.19,

where deformation of a sample cooled in a mixture of ethanol and dry ice resulted

in a complete loss of PLC. Additionally, Swaminathan et al. performed a tempera-

ture effect study on Hastelloy X, in which chromium carbide nanoprecipitates can

form [31]. As illustrated in Figure 2.20, they showed that not only did increasing

the deformation temperature result in the appearance of PLC, but further increases

led to a change in the type of PLC band from propagative (type A) to a mixture of

propagative and stationary bands (type A+B).

PLC bands are often characterized using digital image correlation (DIC). The

parameters of interest are generally the band width, band propagation velocity, and

strain rate in the band relative to the applied strain rate. It is important then, to

understand the trends in these parameters in materials that exhibit PLC if one is to

determine whether the bands in a different material are PLC bands or something

else.

Shabadi et al. explored the effect of sample orientation relative to the rolling

direction on PLC band parameters in an Al-Cu alloy [36]. As shown in Figure 2.21,

they demonstrated that the band width increased slightly with increased strain, that

the band velocity decreased with strain, and that the band angle relative to the load

direction remained roughly constant. The sample orientation had a negligible effect
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FIGURE 2.17: Materials susceptible to PLC often have a negative
strain rate sensitivity (SRS) and will soften at higher strain rates as

shown here for a 0.6C-17Mn austenitic TWIP steel [34].

FIGURE 2.18: The applied strain rate can also affect the initiation
strain for PLC and the stress intensity of the serrations observed
in tensile curves as demonstrated here for a 0.6C-23Mn TWIP steel

where ∆σ refers to the unpinning stress [35].
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FIGURE 2.19: The presence of PLC is dependent on the deformation
temperature, as shown here by [22] for an Al-Mg alloy where PLC

disappears altogether when the sample is deformed at -75◦C.

FIGURE 2.20: Increasing the deformation temperature can change the
type of PLC observed. Swaminathan et al. [31] showed that no PLC
was observed at room temperature in nickel-based Hastelloy X, but
type-A propagative PLC appeared at 300◦C and changed to a more
random mixture of type-A and type-B as the temperature was in-

creased to 700◦C.



28 Chapter 2. Literature Review

on these properties. Initially, the band propagation speed was relatively high, but

rapidly decreased. The rate of decrease slowed down after the first few bands and

continued roughly linearly throughout the rest of the experiments.

This trend in band velocity was confirmed by Bian et al. [35] for several differ-

ent strain rates. Additionally, they showed that for a given sample geometry and

material composition, this decrease in band speed does not depend on the applied

displacement rate. That is, when the band speed νB is normalized by the crosshead

speed νC , the ratio νB/νC as a function of strain produces the same result for tests at

all crosshead speeds. Figure 2.22 suggests that the crosshead speed does not change

the mechanism by which the band propagates, but simply accelerates its displace-

ment.

The most commonly used and often easiest method of characterizing PLC is via

the strain rate sensitivity parameter as calculated for tensile tests with strain rate

jumps. Should the applied strain rate be increased from ǫ̇1 to ǫ̇2, the strain rate

sensitivity can be calculated by

mss =
∆log(σ)

∆log(ǫ̇)
(2.1)

where ∆log(σ) is the stress difference between the steady state behavior at ǫ̇2 and

the extrapolated stress value at that strain level if the strain rate had remained at ǫ̇1.

As previously shown, materials that undergo PLC very often have a negative

strain rate sensitivity. Therefore, one would expect mss to be negative in these ma-

terials. It can be seen in Figure 2.23 that mss in an Al-Mg alloy is negative and

remains constant with the progression of strain. However, if the testing tempera-

ture is altered, the strain rate sensitivity parameter can either decrease or increase

and become positive. In the case of Picu et al.’s results in Figure 2.23, the sudden

sign change in m when the temperature was increased to 50◦C was explained by a

change in the activation energy for PLC with increasing temperature [37].

2.3 Deformation Mechanisms in Steels

The prediction of mechanical properties for a given microstructure necessitates an

understanding of the plastic deformation mechanisms that can be activated in a

steel. Evidently, one must also be able to predict which mode is active, though this is

quite complex and would likely be done using a correlation with the stacking fault

energy of the retained austenite as the thermodynamic prediction of the activation

of different mechanisms is a laborious undertaking. This section will provide an

overview of the primary deformation mechanisms observed in the third generation

of AHSS.



2.3. Deformation Mechanisms in Steels 29

FIGURE 2.21: Variation of PLC band parameters in Al-Cu alloy
AA2219. The parameters did not change significantly for different
strain directions relative to the rolling direction. Band width was seen
to increase with strain, propagation speed decreased with strain, and
the band angle relative to the loading direction was more or less con-

stant [36].
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FIGURE 2.22: The propagation speed of PLC bands relative to the
crosshead displacement speed was shown by Bian et al. in a 0.6C-
23Mn TWIP steel[35] to initially decrease sharply, then converge to a
linear decrease with increasing strain. This was true for three strain
rates of three different orders of magnitude, suggesting that the strain
rate affects only the velocity itself and not the velocity relative to the

crosshead displacement.

FIGURE 2.23: The SRS in an Al-Mg alloy was shown to be negative
and constant with respect to strain in experiments performed by Picu
et al. [37]. The deformation temperature, however, had an effect on
the SRS with STS initially decreasing but then increasing as tempera-

ture was increased to 50◦C and 110◦C.
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TABLE 2.1: Slip Systems in Iron

Phase Plane Direction Total Slip Systems

austenite (fcc) {111} <110> 12
ferrite (bcc) {110} <111> 24

{112} <111>

2.3.1 Dislocation Slip

If one were to strain a single-phase ferritic steel, plastic deformation would occur

by dislocation slip. Pre-existing dislocations in the microstructure of the steel re-

quire an energy input to displace and will only become mobile once enough elastic

mechanical work has been done. Upon yielding, dislocations begin to "slip" along

certain crystalline slip systems in order to accommodate the deformation that is be-

ing induced by continued straining of the material. These slip systems are given in

Table 2.1 for bcc and fcc systems (respectively, ferrite and austenite in steels). Which

of these slip systems are activated depends on the resolved shear stress on that slip

system. The resolved shear stress is calculated as

τ = cosψ · cosΘ · σ (2.2)

where ψ is the angle between the slip direction and the direction of the applied load,

Θ is the angle between the slip plane normal and the direction of the applied load,

and σ is the applied tensile stress. The factor m = cosψ · cosΘ is referred to as the

Schmid factor and provides the ratio of the tensile stress that is resolved on a given

slip system as a shear stress. The Schmid factor varies between 0 and 0.5. It can be

related to the yield stress of a material by the relation

τc = mmax · σy (2.3)

where mmax is the maximum Schmid factor among all slip systems for a given load

geometry, σy is the observed yield stress, and τc is the critical resolved shear stress

(CRSS) to initiate plasticity on that slip system. This is the shear stress needed to

activate the slip system with the maximum Schmid factor, but as the applied stress

increases other slip systems may also be activated.

On its own, dislocation slip provides no hardening. If there are no interac-

tions between mobile dislocations, a material that deforms purely by dislocation

slip could even be perfectly plastic with no hardening at all. However, disloca-

tions can become pinned by inclusions and grain boundaries (which would affect

the yield stress), or other dislocations (which would affect work hardening, espe-

cially as new dislocations are generated over the course of plasticity). The resulting

restriction of dislocation motion increases the stress required to provide enough dis-

location movement to accommodate the applied strain and will thus result in work

hardening of the material. Slip on several adjacent parallel crystalline planes with

increasing strain can result in the formation of slip bands which create observable
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FIGURE 2.24: The shear stress on a given system depends on the an-
gle between the slip plane normal and the load direction (θ) and the

angle between the slip direction and the load direction (ψ).

FIGURE 2.25: As strain increases in a grain, slip on neighboring
planes can result in the formation of slip bands. Shown here by
Kahloun et al. in ferrite, these bands are observable macroscopically

and create surface roughness [38].

surface roughness in a grain, as shown in Figure 2.25 [38]. The separation of a dis-

location into partial dislocations can lead to planar slip, as illustrated in Figure 2.26

by Wang et al. [39].

2.3.2 Twinning-Induced Plasticity (TWIP)

In fcc and hcp metals, it is possible to have a global shear displacement of several

adjacent crystallographic planes simultaneously. A region with a distinctly different

crystal orientation (but same crystal lattice) is created and is referred to as a twin.

The generation of large number of twins is, then a means by which a grain can ac-

commodate plastic deformation. In austenite, twinning occurs on the {111}<112>

system [40].
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FIGURE 2.26: As shown by Wang et al. for Ni3Al0.5Ta0.5, the dissoci-
ation of a dislocation into two partial dislocations can lead to planar

slip [39].

Twinning can be modeled in the same way as dislocation slip by activating twin-

ning when the resolved shear stress on the twinning system {111}<112> is suffi-

ciently high. The activation of twinning does not preclude simultaneous dislocation

slip, however. As shown in Figure 2.27, the both can occur in the same grain as long

as the Schmid factors for each system are such that multiple systems can be acti-

vated. In the figure, TEM observations of hexagonal Mg are shown in which both

slip traces and deformation twins can be observed to varying degrees in each grain.

As one might infer from the image, the generation of twins also produces extra in-

terfaces within a grain that could provide some strain hardening by a reduction in

the mean free path for dislocation motion. This can lead to a dynamic Hall-Petch

effect as described by Allain et al. [8]. Additionally, the sudden shear that occurs to

accommodate the applied strain results in a stress relaxation that can in turn lead to

the formation of strain bands as in PLC [15, 34, 35, 41].

Twinning results in a characteristic crystal orientation change locally and, as

such, one would expect that the degree of twinning could be characterized by anal-

yses of a sample’s textural evolution with strain. In fact, TWIP steels do commonly

show a texture concentration for <111>‖TD (transverse direction) and <100>‖TD.

with a notable development of the {110}<112> Brass texture component [44–46]. An

example of the texture development of a high-Mn TWIP steel for a strain increment

of 20% is provided in Figure 2.28 [47]. In fact, it is uncertain whether the twin orien-

tations themselves are responsible for these textural changes. Twin volume fraction

saturates at relatively low values of only 0.15-0.20 within the austenite phase [48, 49]

and it is thus unlikely that the twins themselves create a macroscopic texture change,

but could be that the way twins affect dislocation slip leads to texture development

along the <100>‖TD fiber [47].
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FIGURE 2.27: (left) TEM observations of various grains of hcp Mg
with varying orientations denoted by the hexagonal prisms in each
grain and (right) the presence of deformation twins in these same
grains, with the twinning directions in each grain highlighted in blue

[43].

FIGURE 2.28: A 45◦ cross section of the texture of a high-Mn TWIP
steel in Euler Space shows that the texture in TWIP steels is reinforced

in the α-fiber and in the Cu component with increasing strain [47].
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FIGURE 2.29: As illustrated by Cherkaoui et al. [50], TRIP can be ei-
ther stress-assisted or strain-assisted depending on the deformation
temperature relative to the Ms temperature of the retained austenite.
Above the temperatureMd, the austenite is sufficiently stabilized that
no transformation occurs and instead plasticity occurs through dislo-
cation slip. The lines represent Mσ

s (stress-assisted transformation),
the stress required for strain induced transformation, and the yield

stress of the austenite as a function of temperature.

2.3.3 Transformation-Induced Plasticity (TRIP)

If a given grain of retained austenite is sufficiently thermodynamically unstable,

the input of energy via mechanical work can cause the austenite to transform into

martensite. This phase transformation is the namesake of TRIP steels.

One common way of characterizing the stability of the retained austenite phase

is by the martensite start temperature, Ms, below which retained austenite will be-

gin transforming to martensite without any external applied stress or strain. The

amount of austenite that transforms is defined by both the temperature of the steel

relative to Ms and the applied load. In Figure 2.29, the relationship between temper-

ature, stress, and the types of possible phase transformation are mapped [50]. When

the deformation temperature is between Ms and Mσ
s , it is possible for stress-assisted

martensite transformation to occur during elastic straining. Above Mσ
s , the trans-

formation becomes strain-assisted instead as plastic deformation creates martensite

nucleation sites at the intersection of shear bands [51].

Olson and Cohen developed a model to describe the martensite transformation

rate in TRIP steels that is commonly used as a quick characterization of austenite

stability [51]. They described the kinetics of the nucleation of martensite via the

generation of embryos at shear band intersections as a function of plastic strain in

the austenite and the contribution of work energy (σ · ∆ǫ) to the activation of the
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transformation. They assumed that shear bands formed in the austenite at a constant

rate with increasing strain and expressed the evolution of the volume fraction of

shear bands as

fsb = 1− exp(−αǫ) (2.4)

where α is a constant that represents the rate of shear band formation. According

to Olson and Cohen, this parameter increases with decreasing stacking fault energy

and increases with strain rate. The number of shear bands is then related to the

number of shear band intersections by

N I
v = K

(

N sb
v

)n

(2.5)

where N sb
v and N I

v are respectively the number of shear bands and number of shear

band intersections with the subscript v indicating that the number is taken in the

volume. K is a geometric constant related to the austenite grain size and n is a

constant. The martensite transformation rate itself is described as

dfα′

1− fα′

= v̄α′ · dNα′,v (2.6)

which then permitted the martensite fraction to be calculated as

fα′ = 1− exp
(

− β[1− exp(−αǫ)]n
)

(2.7)

Thus the model relies on three parameters: α, β, and n. α is related to the rate of

shear band generation, β is defined by the probability that a martensite nucleus will

form at a shear band intersection, and the exponent n is a constant. These parame-

ters are dependent on the testing temperature, and as such the dependence of each

is described in Figure 2.30. It can be seen that both α and β increase with decreas-

ing temperature. α is dependent mostly on the ability to form shear bands which

in turn depends on the mobility of dislocations which decreases with temperature.

β depends more on the stacking fault energy of the retained austenite. β will de-

crease with increasing temperature when tests are performed relatively close to the

martensite start temperature, but will not change significantly as the temperature is

decreased much further than about −50◦C. Figure 2.30 (c) shows not the exponent

n from Equation 2.7, but the "potency," as Olson and Cohen called it, of nucleation

sites at shear band intersections. That is, the probability of a particular intersection

forming a martensite nucleus. This probability is a function of the chemical driv-

ing force and, if the entropy change associated with the transformation is taken as a

linear function of temperature, the temperature-dependent probability nv(T ) can be

expressed as a Gaussian distribution.

Olson and Cohen compared this model to experimental data from [52] for a 304

stainless austenitic steel deformed at varying temperatures. It was shown that the

Olson-Cohen model is able to describe the transformation kinetics as well as the
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FIGURE 2.30: The parameters in the Olson-Cohen model are depen-
dent on the deformation temperature of the sample. As the genera-
tion of shear bands (α) and probability of martensite nucleation (β)
depend on dislocation mobility and SFE, respectively, their tempera-
ture dependence is evident. The driving force for transformation is
described by nv(T ) and takes the form of a Gaussian with respect to

temperature [51].
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FIGURE 2.31: The Olson-Cohen model was able to accurately pre-
dict the changes in TRIP kinetics for tensile testing of a 304 stainless
TRIP steel strained at different temperatures by Angel [52], making
the model a common choice for characterizing TRIP from a macro-

scopic scale [51].

variation in kinetics as the testing temperature was changed. As the model is com-

putationally simple to implement and given its rather accurate correlation to exper-

imental data, this model has become common for describing TRIP kinetics from a

macroscopic point of view.

The phase transformation results in the creation of a significant number of addi-

tional interfaces in the microstructure via either blocks or needle-like laths of marten-

site, as illustrated in Figure 2.32 that inhibit dislocation motion. The martensite

phase itself can be very hard and brittle for higher carbon contents. The gradual ad-

dition of martensite to the microstructure will thus greatly increase the steel’s UTS,

but degrade its total elongation.

Spencer et al. performed an in-situ neutron diffraction study of the stress parti-

tioning between the austenite and martensite phases in a 316L austenitic stainless

steel [54]. The sample had been pre-strained to 15% at 77K to transform some of the

austenite to martensite. The yield stress of the martensite was about 1000 MPa—

nearly twice that of the retained austenite. Thus, a sudden burst of martensite trans-

formation could result in a spike in the strain hardening rate in the sample. Proper

optimization of the microstructure of a TRIP steel thus depends on the precise con-

trol of the retained austenite’s stability and of the martensite transformation rate.
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FIGURE 2.32: Cubic martensite in a 0.15C-1.4Mn-0.3Si steel took the
form of either (a) blocks/plates or (b) laths/needles [53], meaning
that the number of additional interfaces generated and thus the hard-
ening capacity added by the martensite depends somewhat on its

morphology.

FIGURE 2.33: Neutron diffraction experiments by Spencer et al. [54]
on a 316L austenitic stainless steel made it possible to determine the
degree of stress partitioning between martensite and retained austen-
ite in a pre-strained TRIP steel. Martensite has a much higher yield
stress than austenite and thus acts as a strong elastic reinforcing

phase.
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Chapter 3

Material Characterization

3.1 Material and Fabrication Process

As described in Chapter 2, the fabrication process used to produce a Medium Mn

steel has a significant impact on it’s final properties. The intercritical annealing tem-

perature, in particular, will directly influence the phase volume fractions of ferrite,

retained austenite, and martensite as well as the stability of the retained austen-

ite phase. Sheets of a Medium Mn steel with the composition provided in Table

3.1 were produced by ArcelorMittal for this study. The sheets were obtained from

60mm thick induction-cast ingots that had been roughed down to 30mm and hot

rolled to 2.8mm in thickness at austenitizing temperature and then quenched and

cold-rolled to a thickness of 1.25mm. After cold-rolling, they were intercritically an-

nealed for 2 minutes at temperatures ranging from 740◦C to 780◦C in order to vary

the microstructures generated and the stability of the retained austenite phase.

Tensile curves for each intercritical annealing temperature are presented in Fig-

ure 3.1. It can be clearly seen that the degree of work hardening changed drastically

from one sample to another due to just a 10◦C difference in annealing temperature.

Increasing the annealing temperature led to a rapid decrease in total elongation and

an increase in UTS due to changes in the initial retained austenite fraction and its sta-

bility in regards to the TRIP effect. When the austenite is unstable, a mechanically-

induced transformation to martensite can occur rapidly during tensile testing and

result in a very high degree of work hardening. This hardening comes from the

high yield stress of the martensite relative to ferrite and austenite, which means that

since the hardening in the ferrite and austenite remain unchanged, the true stress is

increased but the work hardening rate remains the same

The initial microstructure is critical in understanding how a Medium Mn steel

will behave mechanically. The phase volume fractions in the unstrained state must

be known and some understanding of the degree of the thermodynamic stability

TABLE 3.1: TRIP Steel Composition

Alloy C wt% Mn wt% Al wt% Fe wt%

Med. Mn TRIP 0.2 5.0 2.5 bal.
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of the retained austenite is needed. In order to study the effects of the initial mi-

crostructure on the mechanical response of Medium Mn TRIP steels, intercritical

annealing temperatures of 740◦C, 760◦C, and 780◦C were selected for the experi-

ments performed during this thesis as they provided three distinctly different levels

of work hardening in tension.

The objective of the study, then, was to identify how the plastic deformation

mechanisms changed with respect to the initial microstructure and the retained austen-

ite stability. Particular interest was given to the TRIP effect and its kinetics during

unidirectional tension.

FIGURE 3.1: Tensile curves for a 0.2C-5Mn-2.5Al Medium Mn steel
produced by ArcelorMittal with intercritical annealing temperatures
ranging from 740◦C to 780◦C. For this research, temperatures of

740◦C, 760◦C, and 780◦C were chosen for study.

TABLE 3.2: Compositions of Low-density Alloys

Alloy C wt% Mn wt% Al wt% Fe wt% TIA(◦C)

LD-A 0.2 8.5 6 bal. 850

LD-B 0.3 6.5 6 bal. 850

LD-B 0.3 6.5 6 bal. 900

3.2 Macroscopic Mechanical Properties

Tensile tests were carried out on samples from each intercritical annealing tempera-

ture. Samples were cut in the rolling direction (RD), transverse direction (TD), and

diagonal direction (45◦ from the RD) with a gauge length of 60mm, width of 10mm,

and thickness of about 1.25mm. The sample geometry is shown in Figure 3.2 for a

sample with an applied speckle pattern for DIC. The thickness varied slightly de-

pending on where in the sheet the sample was cut and from which sheet. Initial
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FIGURE 3.5: Tensile properties of samples annealed at 740◦C strained
in the rolling direction (RD), transverse direction (TD) and in the di-

agonal direction at 45◦. A strain rate of 5 · 10−4 s−1 was used.

samples annealed at 740◦C, as can be seen in Figure 3.5, the loading direction did not

have a significant effect on the tensile behavior. In the sample annealed at 760◦C, the

UTS attained was higher in the RD than in the TD or at 45◦, as shown in Figure

3.6. Finally, in Figure 3.7 it can be seen that the loading direction had no significant

impact on the tensile behavior of the samples. The slight difference between the

RD and other directions in tension observed particularly in the sample annealed at

760◦C is typical of a material with a cold-rolled texture and is not unexpected.

The appearance of steps or plateaus in the tensile curves for intercritical anneals

at 740◦C and 760◦C suggests the presence of a dynamic strain aging effect such as

the Portevin-Le Châtelier effect described in Chapter 2. Because materials exhibit-

ing PLC typically have a negative strain rate sensitivity, tensile tests were conducted

on samples from each intercritical annealing temperature at strain rates of 10−4s−1,

10−3s−1 and 10−2s−1. If there is a negative strain rate sensitivity in the current case,

then the UTS and overall degree of work hardening should decrease with increas-

ing strain rate. Negative strain rate sensitivity is generally observed in fcc phases

such as aluminum or iron austenite [35, 55] but ferrite does not show any strain rate

sensitivity [56].

In samples annealed at 740◦C, no truly significant effect on strain hardening was

observed contrary to the hypothesis of negative strain rate sensitivity due to PLC.

The three samples, shown in Figure 3.8, showed the same tensile behavior aside

from a decreased total elongation in the sample strained at 10−2s−1. This decrease

in total elongation could however just be an effect of the strain localizations leading

to early necking and not an effect of strain rate. There was also an increase in the

length of the Lüders plateau with increasing strain rate, as seen in Figure 3.10a.

In the samples intercritically annealed at 760◦C, the degree of work hardening
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FIGURE 3.6: Tensile properties of samples annealed at 760◦C strained
in the rolling direction (RD), transverse direction (TD) and in the di-

agonal direction at 45◦. A strain rate of 5 · 10−4 s−1 was used.

FIGURE 3.7: Tensile properties of samples annealed at 780◦C strained
in the rolling direction (RD), transverse direction (TD) and in the di-

agonal direction at 45◦. A strain rate of 5 · 10−4 s−1 was used.
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FIGURE 3.8: Variation in mechanical behavior of samples annealed at
740◦C with varying strain rates. There was a decrease in total elon-
gation for a strain rate of 10−2 s−1, but no change in work hardening
with respect to strain rate. The length of the Lüders plateau increased

slightly as strain rate increased.

did not change significantly with strain rate, but the tensile test at 10−2s−1 did show

much more continuous work hardening, shown in Figure 3.9. It is possible that the

strain instabilities are not present at higher strain rate, which would be in agreement

with the observed effect of strain rate on materials exhibiting PLC. Regarding the

Lüders band, the Lüders strain decreased at higher strain rates this time as illus-

trated in Figure 3.10b.

Finally, in the samples annealed at 780◦C, there was an apparent negative strain

rate sensitivity, as shown in Figure 3.11. While the trend appears to be clear for

all three strain rates, it should be noted that the sample strained at 10−3s−1 was

periodically interrupted during testing which may have affected strain hardening.

In the current case, the origin of the strain rate sensitivity (when and if it exists) is

unclear due to the complex microstructure and the phase transformation that could

possibly be retarded by adiabatic heating.

3.3 Microstructure

To understand the differences in mechanical properties for different TIA, the corre-

sponding microstructures of each need to be characterized. Samples were taken in

the unstrained state and after straining until rupture and were cut such that the ob-

served face is in the RD-TD plane. Samples were mechanically ground and polished

down to a 1µm colloid and flash-etched by submersing the sample in a 2% Nital

solution.

The microstructure is too fine to do any useful observations by optical microscopy,
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FIGURE 3.9: Variation in mechanical behavior of samples annealed at
760◦C with varying strain rates. For a strain rate of 10−2 s−1, the UTS
decreased slightly and total elongation increased slightly. The length

of the Lüders plateau increased as strain rate increased.

(A)

(B)

FIGURE 3.10: The strain rate had an influence on the Lüders strain,
as can be seen here for the samples annealed at 740◦C and 760◦C.
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FIGURE 3.11: Tensile properties of samples annealed at 780◦C
strained in the rolling direction (RD), transverse direction (TD) and

in the diagonal direction at 45◦.

so samples were analyzed in a FEG-SEM at an accelerating voltage of 2 kV, 30µm di-

aphragm, and a working distance of about 4mm. The voltage used is much lower

than the standard 15-25kV used for metallic samples, but in this case it enabled the

fine microstructural features to be resolved clearly and in particular the fine marten-

site lamellae. The image for the sample annealed at 760◦C in Figure 3.12b was ac-

quired in a standard SEM (without FEG) with a 15kV voltage and a working distance

of 8-9mm.

Sampled that were prepared for EBSD were prepared by either vibrational pol-

ishing or manual cloth polishing with a 0.01µm colloidal silica solution. However,

the retained austenite in these steels seems to be very sensitive to surface conditions

and did not reliably diffract with any preparation method. As such, EBSD studies

on these samples were unfortunately limited.

Initial characterizations of the microstructures in the unstrained state showed a

few differences between samples from different intercritical annealing temperatures.

The microstructures can be seen in Figure 3.12 in which ferrite grains are recessed

with a very smooth surface and retained austenite is in relief with a rougher surface.

The martensite in the sample annealed at 780◦C is clearly distinguished by its charac-

teristic lamellar morphology. The most clear difference was that samples annealed

at 740◦C and 760◦C were composed of a mixture of ferrite and retained austenite,

while samples annealed at 780◦C contained a significant proportion of martensite. It

can also be seen that, in all three samples, there are zones with a more banded struc-

ture of elongated grains. These are likely zones that have poorly recrystallized and

the orientation of the bands is related to the orientation of the parent austenite grain

from which they formed. The bands themselves are alternating layers of ferrite and

austenite.
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FIGURE 3.13: Initial phase volume fractions in the unstrained state
after annealing and quenching as measured via XRD (α and γ) and
as estimated from SEM images (α′) as a function of the intercritical

annealing temperature used.

X-ray Diffraction (XRD) was used to determine the initial austenite volume frac-

tion for each intercritical annealing temperature. X-rays were produced with a Co-

Kα source with an energy of 6.915 keV. As XRD is a surface measurement, the sample

was oscillated in order to increase the volume of measurement (still at the surface)

by scanning over a larger area. This provides better statistical sample size in terms

of the number of grains analyzed. Spectra were obtained for several orientations

of the sample relative to the incident beam. The inclination angle of the sample

with respect to the incident beam, ψ, was varied from 0◦ to 70◦ with a step size of

5◦. The rotation of the sample around its normal to the sample surface, Φ, varied

from 0◦ to 355◦ with a step of 5◦. These spectra were summed together in order to

minimize texture effects on the relative peak intensities of the bcc and fcc phases,

which can vary significantly depending on the orientation of the sample. The vol-

ume fraction of retained austenite was calculated using the method presented in [57]

and the phase volume fractions for each annealing temperature are summarized in

Figure 3.13. The volume fraction of martensite was estimated from SEM images for

the sample annealed at 780◦C. The volume fractions of austenite are accurate within

a few percent as they are directly measured by XRD. The ferrite volume fraction is

thus also accurate for annealing temperatures of 740◦C and 760◦C when no thermal

martensite is present. The ferrite and martensite content for the anneal at 780◦C are

more variable, probably within 5-10%. The austenite fraction in this case is accu-

rate, and there should be less ferrite so with an approximation of the ferrite volume

fraction and the known austenite fraction, the martensite fraction is deduced.

When examining the samples after straining until rupture, the difference in the

stability of the retained austenite was evident. In Figure 3.14, samples annealed at

740◦C and 780◦C are shown. It can be seen that for 740◦C, there is still a non-trivial

portion of retained austenite in the microstructure that has not yet transformed to

martensite. The austenite in this case is more stable, which corresponds to the lower

degree of work hardening observed for samples annealed at 740◦C due to a lower
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This emphasizes the importance of understanding the effects of the annealing tem-

perature on the steel and being able to predict the mechanical behavior based on

processing parameters.

One notable characteristic of these steels is the presence of a long yield point elon-

gation caused by the propagation of a Lüders band. This occurs in alloys with a low

enough Al concentration that ferrite bands do not form and which are intercritically

annealed within a certain range of temperatures that varies with alloy composition.

In the current case, Lüders bands were observed for anneals at 740◦C and 760◦C, but

not at 780◦C. Lüders bands are problematic in that they result in a large amount of

heterogeneous strain which is not desirable for forming operations.

In the same samples in which Lüders bands appeared, a series of strain instabil-

ities were observed after the passage of the Lüders band, resulting in "steps" in the

tensile curves. This was, as will be shown in Chapter 5 the result of additional strain

bands in the sample. The presence of strain bands over the entire course of plasticity

in these steels in interesting in that this sort of dynamic strain aging effect is often

associated with a negative strain rate sensitivity and with deformation mechanisms

which create a local and temporary softening. This occurs, for example, in Al-Mg al-

loys where solute atoms diffuse into dislocation cores and block dislocation motion

[37, 62]. The resulting unpinning results in a drop in the applied force as the energy

stored by dislocation pinning is released, then hardening continues normally. It also

can occur in TWIP steels where the generation of a twin causes a local relaxation,

followed by some hardening due to the reduction in the dislocation mean free path

[15, 41]. The formation of these Portevin-Le Châtelier bands has not been confirmed

to be a possible result of TRIP, but it has been suggested [54] that martensite trans-

formation can localize in the form of a Lüders band.

The appearance of these bands in Medium Mn TRIP steels is common, but is

poorly understood. Gibbs et al. [14] suggested that the serrations seen in work hard-

ening curves are due to a variable martensite transformation rate resulting from the

competition between the consumption and creation of martensite nucleation sites

during plastic deformation. Lee et al. [63] attributed the serrations to dynamic strain

aging (DSA) leading to the formation of Portevin Le-Châtelier (PLC) bands. Cai et

al. [61] instead proposed that the stability of the austenite phase itself varied from

one grain to another and thus could transform to martensite in bursts. It is im-

portant to understand what the origin of the PLC-type bands is in order to know

which processing parameters need to be changed to eliminate it. At the very least,

it is necessary to know how the localization of strain in bands affects the martensite

transformation.

From the point of view of the steelmaker, it is important to be able to predict the

mechanical behavior of a steel so that the composition and fabrication process can

be optimized. It is particularly important to have an idea of the yield stress, UTS,

and total elongation which are the parameters of interest for end users. To this end,

a numerical tool to simulate the mechanical behavior of a Medium Mn steel would
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be useful to be able to predict for a given composition and fabrication process what

microstructure will be obtained and how it will perform under a mechanical load.

3.4.2 Objectives

With these observations in mind, the objectives of this thesis can be defined. As it

seems that these steels plastically deform primarily by TRIP, it is necessary to un-

derstand how the kinetics of the martensite transformation are affected by the inter-

critical annealing temperature. It is also interesting to know whether the strain rate

sensitivity that is observed in other studies but is not quite clear in the current case

is truly present in these steels and what might be the cause. Finally, it is necessary

to understand how the Lüders and PLC bands affect TRIP. The primary goals of this

thesis can then be specified as:

• Understand how the intercritical annealing temperature affects the mechanical

behavior of the steel, notably through the transformation kinetics during TRIP,

• Determine to what degree the observed strain instabilities are related to TRIP,

characterize the type of instability and when they are or are not present, and

• Analyze the observed strain rate sensitivity of the steel and explain its origins.

This thesis will the concentrate on the kinetics of the austenite to martensite

phase transformation in a 0.2C-5Mn-2.5Al Medium Mn TRIP steel. Particular at-

tention is given to the characterization of Lüders and Portevin-Le Châtelier strain

bands and the manner in which TRIP is affected by them. The strain rate sensitivity

will be quantified at relatively slow strain rates compared to those used in indus-

try (for reasons related to the mechanical testing equipment available and desire to

observe strain instabilities that may disappear at higher strain rates). Finally, some

numerical analyses of the kinetics of TRIP will be developed with the assumption

that the microstructure is pre-determined. A thesis completed in parallel with this

one 1 provides an in-depth analysis of the thermodynamics of microstructure for-

mation during processing. The two data sets could then be combined into a more

complete tool afterwards.

1Completed by Aurore Mestrallet at INP Grenoble entitled "Thermodynamique de nouvelles solu-
tions d’aciers de 3éme génération á structure duplex"
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Chapter 4

Experimental Methodology

4.1 DIC Characterization of Strain Bands

Analysis of the PLC bands observed in the Medium Mn TRIP alloy studied here

was performed using digital image correlation (DIC). This chapter will first detail

how the strain field is calculated using DIC and how the calculation parameters—

element size and regularization length—were verified. A subsequent section will

explain how the method was employed in the current case and how the strain bands

were characterized.

4.1.1 Strain Field Calculation by DIC

Digital image correlation allows the experimenter to measure the displacement field

and evaluate the strain field on the surface of a sample and its evolution during me-

chanical testing. A high-contrast, randomized pattern is applied to the surface of

the sample, as in the example in Figure 4.1a, and images are recorded during defor-

mation at regular intervals. Each pixel in an image registers a gray scale value, as

illustrated in Figure 4.1b, and these gray scale values are used by the DIC algorithm

to locate characteristic features on the sample surface and calculate their displace-

ment from one image to another. The algorithm used in Correli T3R as explained

hereafter is adapted from [64–66].
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a Newton algorithm

η2c =
∑

Ω

[g(~x+ ~ui + d~u)− f(~x)]2 (4.4)

where the displacement field ~u is decomposed into the displacement field from the

preceding image ~ui plus an incremental field d~u. If d~u is small, Equation (4.4) can be

rewritten as

η2c =
∑

Ω

[

g(~x+ ~ui) + d~u · ~∇g(~x+ ~ui)− f(~x)
]2

(4.5)

It is worth noting that after the first iteration of Newton’s scheme, ~ui becomes the

new evaluation about which corrections d~u are updated.

The displacement field itself is a sum over each degree of freedom multiplied by

a shape function ~ψ

~u =
∑

n

an · ~ψn(~x) (4.6)

where an is the unknown associated with the displacement in the nth degree of free-

dom. In the present case, 3-noded triangular elements are used (thus the T3 acronym

in the DIC code) with linear interpolation functions.

With ηc now adapted for iterative minimization, the problem can be linearized

in a typical finite element form as

M · d~a = ~bi (4.7)

in which M is an allegory of the mass matrix in a finite element problem and~bi is the

force vector. In the current case, M contains a dyadic product of image gradients and

shape functions and~b also contains the gray level residuals. M and~b are respectively

expressed as

Mnm =
∑

Ω

(

~ψn · ~∇f(~x)
)(

~ψm · ~∇f(~x)
)

(4.8)

and
~b i
n =

∑

Ω

(

~ψn · ~∇f(~x+ ~ui)
)

[

f(~x)− g(~x+ ~ui)
]

(4.9)

4.1.3 Regularization

The fluctuations that exist in the gray scale images due to texture, lighting, and other

effects may lead to calculated displacements that are not mechanically admissible.

That is, we know that in elasticity the strain should be along the tensile axis with an

accompanying reduction in cross section. Random localized spikes in the displace-

ment also lack a physical sense and are likely computational errors. By applying

a mechanical regularization scheme (i.e. the R acronym in the DIC code), these er-

rors can be minimized and something closer to reality is obtained. In Correli T3R,

this is achieved by the application of an elastic filter that helps the software to weed

out mechanically inadmissible displacements. The regularization is applied over a
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characteristic length that should be optimized and will be discussed in a subsequent

section. The regularization is written for linear elastic equilibrium as

K · ~a = ~f (4.10)

in which K is the stiffness matrix, ~a the nodal displacement vector, and ~f is the force

vector. If ~a is not mechanically admissible it will result in residual forces

~fres = K · ~a− ~f (4.11)

In the absence of body forces, no force should be applied on internal nodes. To ac-

count for this, a second minimization functional (i.e. the L2 norm of the equilibrium

gap [69]) is introduced

η2m = ~a⊺K
⊺
K~a (4.12)

for the interior nodes. The minimization of the weighted sum of both Equations

(4.5) and (4.12) leads to a displacement field solution with a minimized effect of

mechanically inadmissible displacements.

This is valid only for internal nodes, however. A final consideration must be

made for the boundary nodes as well

η2b = ~a⊺L⊺L~a (4.13)

where L acts on the boundaries [66].

The use of this regularization scheme helps ensure the physical sense of the mea-

sured displacement and strain fields. However, the regularization length over which

local mechanical admissibility is enforced must be carefully optimized, particularly

when strain localizations are present. The regularization tends to have a smooth-

ing effect on strain fields and thus any real localizations will be affected just as the

artifacts are [70].

4.1.4 DIC Parameterization

A proper parameterization of DIC is necessary to asses the quality of the result ob-

tained. To that end, several calculations were performed in order to determine the

effects of element size and regularization length on several output parameters of the

DIC calculation. The width of the Lüders band, its propagation speed, and the total

strain at the end of the Lüders plateau were selected to determine at what element

size and regularization length the result converges. The calculation time was also

assessed to optimize the calculation.

The data used were from a tensile test on a sample intercritically annealed at

740◦C. The first 73 images were used, corresponding to the point at which the Lüders

band initiated and propagated across most of the ROI. Element (mesh) sizes of 5,
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The resulting peaks in the line profiles were fitted with Gaussian functions. The full

width mid height (FWMH) was used to calculate band width and the peak loca-

tions in each of the 8 profiles were used to calculate the band angle, as illustrated

in Figure 4.3. Band width measurements are corrected for the displacement of the

band during the 3s interval between images. The band velocity is calculated using

the shift in position of the strain peaks from one image to another. Distances in pix-

els are converted to mm by using the known width of the sample to determine the

px/mm scale.

FIGURE 4.3: The band width and peak location were calculated by
plotting line profiles and fitting the resulting peaks with Gaussian
functions. The full width at mid height (FWMH) was used to rep-
resent the band width. The position of the peak was used for both
the propagation velocity and the band angle. The strain level is re-

encoded as gray level to be used by ImageJ.

The width of the Lüders band was reliant on both the regularization length and

element size. The regularization length was particularly important because if it is

too large, the band can be smoothed out and the width increased. At the same time,

when the regularization length was too small, the strain field was too noisy for the

band to be properly identified numerically. This was the case for the calculations

made with a 10px mesh and 2-element (so 20px) regularization length and is illus-

trated in Figure 4.4 with a comparison between different regularization lengths for

an element size of 10px. Because of this noise issue, the Lüders band width and

propagation speed are not plotted for this case. For the calculation with a mesh size

of 5px and regularization length of 25px, the peak associated with the Lüders band

was composed of several small, sharp peaks that were able to be identified accu-

rately but that did not provide a real measurement of the band width. It can be

seen in Figure 4.5a that the Lüders band width seems to converge to a value around

0.3mm for all element sizes (aside from the erroneous value given at 5px element

size and 25px regularization length, as mentioned).
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FIGURE 4.4: The regularization length used in the DIC calculation
(here for an element size of 10px) is important in that it can reduce
noise resulting from mechanically inadmissible strains, but it can also
smooth out real localizations. Comparing the top 2 images, a large
regularization length eliminates some minor noise that is visible with
a shorter regularization length. However it also decreases the strain
level in the band and widened it slightly. When the regularization
length becomes too small however, noise can become problematic as

seen in the bottom image.

The element size and regularization length did not have any significant influence

on the band propagation speed or on the strain achieved with the passage of the

Lüders band, as seen in Figures 4.5b and 4.5c. The band propagation speed was

0.21-0.22 mm/s in all cases in which the band location was identifiable (i.e. with

acceptable levels of noise). The strain after the Lüders plateau showed a maximum

at intermediate regularization lengths when the element size was larger (15 or 20px).

It is uncertain if this is a real effect or simply a normal statistical dispersion. In

any case, there was good agreement between the values obtained by DIC and those

obtained with an extensometer (9.5-10%strain).

The calculation time was of interest purely from a practical point of view to avoid

excessively long calculation times. The calculation for 73 images took approximately

1h in most cases. When the mesh size was 5px, the calculation time was quite long

and a calculation with a 2-element regularization length was not attempted as it

would likely have taken 8-10 hours. For smaller mesh sizes of 10 and 15px with a

2-element regularization length, the calculation time increased by about 100% and
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200%, respectively. The regularization length did not seem to affect the calculation

time for an element size of 20px, which was quite coarse and fairly manageable

computationally.

(A) (B)

(C) (D)

FIGURE 4.5: The calculation was performed at several regularization
lengths and mesh sizes to determine the conditions for the conver-
gence of (A) the band width, (B) the strain increment induced by the
band, (C) the band propagation speed, and (D) the calculation time.

Based on these results, it was decided that for the complete DIC analyses for each

sample and over the entirety of the tensile test (as described in the next section), an

element size of 10px (0.29mm) and regularization length of 50px (1.45mm) would

be used. This provided a good compromise between precision and calculation time

and seemed an optimal choice.

4.2 Magnetic Characterization

An experimental methodology was developed that is able to describe the kinetics of

the TRIP effect in steels by following the evolution of a sample’s magnetic properties.

The following sections seek to first describe the means by which magnetic materi-

als are characterized and the microscopic origins of macroscopic magnetic proper-

ties. Next, the means of calculating the retained austenite fraction in a multiphase
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FIGURE 4.6: Schematic illustration of a magnetic hysteresis and the
characteristic properties that can be extracted from it. In this work,

the value of interest is the saturated magnetization, Ms.

Medium Mn TRIP steel using both magnetic susceptibility and saturation magneti-

zation methods are developed and validated through comparison to other methods

of dosing phase volume fractions. Corrections for the localization of the applied

magnetic field within individual phases and for the Villari effect are subsequently

developed. Finally, results of the in-situ generation of M-H hystereses during ten-

sile testing are presented and used to explain the kinetics of the TRIP phenomenon

in Medium Mn steels as it relates to the intercritical annealing temperature, strain

instabilities, and macroscopic applied strain rate.

4.3 Characterization of Magnetic Properties

4.3.1 Macroscopic Characterization

When characterizing a magnetic material, the properties of interest are typically

those related to the ease with which a material is able to be magnetized. Charac-

terization methods are, then, based upon the application of magnetic H-fields of

varying magnitude and measurement of the resulting induced B-field or magnetiza-

tion, M. If one were to apply a cyclic H-field to a sample of ferromagnetic material,

one obtains a hysteresis as in Figure 4.6 with several characteristic features that de-

scribe the magnetic state of the sample.

In a magnetic hysteresis such as the one shown in Figure 4.6, it can be seen that

there is a minimum applied magnetic field that is necessary to induce a magneti-

zation in the sample (after the "first" magnetization when starting from the origin).

This value is referred to as the coercivity, Hc, of the material and is a means of quan-

tifying the ease with which magnetic domains are able to reorient themselves in

the direction of the applied field. The coercivity is the property that distinguishes



68 Chapter 4. Experimental Methodology

FIGURE 4.7: Schematic comparison of the magnetic hystereses of a
magnetically hard material such as α′ martensite (left) and a magnet-
ically soft material such as iron ferrite (right). The field required to
induce a magnetization in a hard material is significantly higher than

in a soft material.

whether a given material is magnetically "hard" or "soft", meaning the amount of

energy that needs to be applied in order to obtain a magnetic response from the

material. A magnetically hard material will have a much higher coercivity than a

magnetically soft material, as can been seen in Figure 4.7, and a hard material will

consequently show higher losses represented by the integral of the hysteresis.

For a sufficiently high applied H-field, the magnetization in the sample becomes

saturated. This saturation magnetization, M s, is intrinsic to the material and is thus

can be used to characterize the magnetic properties of a material. If the value ofM s is

known for each independent phase in a dual-phase material, one could theoretically

deduce the volume fractions of each phase by using the measured macroscopic value

of M s for the dual-phase system.

If the applied field is increased such that a strong magnetization is induced and

then decreased back to zero, a remanent magnetization is created. That is, a por-

tion of the induced magnetization will remain in the absence of an applied field due

to, among other things, alignment of magnetic dipoles and rotation of magnetic do-

mains in the microstructure. The existence of magnetic remanence shows that there

is an effect of a material’s magnetic history on its actual magnetic state. If one wishes

to remove this remanent magnetization to study the case in which there is no mag-

netic history, one must apply a magnetic field that is of opposite sign to the field

used to induce the magnetization in the first place and that is of a magnitude equal

to the coercivity of remanence, Hr. The coercivity of remanence is the field in the

opposite direction of the magnetization that needs to be applied to negate an exist-

ing remanent magnetization and demagnetize the material. Practically speaking, it

is difficult to apply an H-field of exactly the value of Hr. As such, the demagnetiza-

tion of a material is typically achieved by cycling the applied field between positive

and negative values with a progressively decreasing amplitude. In this way, most of

the remanent magnetization is negated with each cycle and eventually the material

arrives at a state with a magnetic remanence very close to zero.
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FIGURE 4.8: Schematic representation of the data obtainable via an-
hysteretic magnetic measurements. The primary interest in this case
is χ, which is the magnetic susceptibility of the material and is an

intrinsic material property.

This demagnetization procedure is useful in that it permits one to study the mag-

netic response of a material over a broad range of applied magnetic fields without

the need to account for the magnetic load history of the sample. By demagnetizing

the sample and then applying a constant H-field, one obtains the induced magneti-

zation for that field magnitude without any remanent effects. This can be performed

over a series of values of H to generate a so-called "anhysteretic" curve, as shown

in Figure 4.8. Such data is of interest because the magnetic behavior near the origin

in an anhysteretic curve is linear and its slope is the initial magnetic susceptibility,

which is a physical parameter defining the magnetic response of the material.

The properties defined in this section would permit the experimenter to char-

acterize a magnetic material, but analysis of the properties measured necessitates

a certain level of understanding of the microstructural origins of these properties.

This is especially important in the current study because the objective is to study the

microstructural evolution of a Medium Mn TRIP steel through analysis of its mag-

netic properties, making a high level of precision essential to the study. In order to

obtain such precision, the effects of texture, deformation, and applied load need to

be understood.

4.3.2 Microscopic characterization

In magnetic materials, there exists a magnetic microstructure composed of magnetic

domains with individual magnetization directions. Figure 4.9 provides the example

of magnetic domains in a grain of cohenite in an iron meteorite. Here, the sample
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FIGURE 4.9: Sample of an iron meteorite containing magnetic cohen-
ite. The application of a ferrofluid to the surface of the sample creates
magnetic constrast that allows magnetic domains to be observed, as

illustrated in (c) and (d) here by Reznik [72]

is polished and coated with a ferrofluid to provide magnetic constrast in optical mi-

croscopy, revealing the columns of ellipsoidal magnetic domains [72]. The magneti-

zation of a domain is usually aligned with one of the "easy" magnetization directions

within the parent grain. In fact, in a single crystal of a magnetic material, there exist

families of crystalline directions in which magnetization is more easily induced [73].

For example in bcc iron, the <100> and <111> directions are more easily magnetized,

as can be seen in Figure 4.10 [74] where ξ represents the angle between the applied

field H and the <100> direction of an iron monocrystal.

A particularly important point illustrated by Figure 4.10 is the minimal variation

in the value of M s. The saturated magnetization in the easy and hard magnetization

directions differ by no more than 5·10−6 for an applied field of 4·106 A/m, clearly

demonstrating that crystal orientation does not affect M s. This is important from an

experimental point of view as it eliminates what would otherwise be a cumbersome

analysis of textural effects on the measurement.

There is, however, a coupling of magnetic and mechanical behaviors that will

have a significant effect on the measured magnetic properties. When a material

in magnetized, an elastic strain is induced in the magnetization direction. This is

referred to as magnetostriction. The magnetostrictive strain, ǫµ, is sensitive to the
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FIGURE 4.10: Zhang [74] showed that the magnetization of a sample
depends on the angle between the magnetization direction and the
easy magnetization direction in a single crystal, represented by ξ. The
effect on saturated magnetization, however, is negligible (see inset).

FIGURE 4.11: Hysteretic and anhysteretic representations of the mag-
netostriction strain as a function of the applied field [75].

sample texture due to varying magnetic hardness relative to the magnetization di-

rections. The evolution of the magnetistrictive strain during cyclic or anhysteretic

magnetic fields is shown in Figure 4.11. The magnitude of ǫµ depends on the aver-

age angle between the easy magnetization direction and the direction of the applied

field. It is therefore important to take the sample orientation and texture into account

when measuring magnetoelastic strains.

Daniel et al. have shown [76] that if one assumes that ǫµ is isochoric, the magne-

tostrictive strain tensor in a cubic lattice can be expressed in the crystalline reference
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frame as
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where λxyz is the magnetostrictive constant in the direction [xyz] in the crystalline

reference frame and γn are the magnetization directions 1, 2, or 3 in the sample ref-

erence frame. The magnetostrictive constant λ is defined as the magnetostrictive

strain along a given direction of the crystal lattice when the crystal is magnetized to

saturation along that direction.

This formulation of the magnetostriction is true for a monocrystal, but if one

considers a polycrystal with isotropically-oriented magnetic domains, this micro-

scopic magnetostriction can be translated to a macroscopic effect. When no magnetic

field is applied to the sample, the magnetization directions in each domain remain

isotropic and the induced magnetostrictions cancel each other out. However, if a

field is applied, the domains will attempt to align themselves with the direction of

the applied field. The distribution of magnetization directions in domains is thus

no longer isotropic and a net magnetization is obtained. This magnetization results

in a magnetostriction that is concentrated in the magnetization direction and thus a

strain that is measurable at the macroscopic scale is obtained.

The existence of this magneto-mechanical coupling also means that an applied

stress will have an effect on the magnetic properties of the loaded sample. For ex-

ample, it has been shown on several occasions that a compressive stress of only a

few dozen MPa can considerably decrease the susceptibility of a magnetic mate-

rial, whereas tensile stresses have the opposite effect. However this magnetoelastic

effect—also referred to as the Villari effect [77]—will reverse itself (Villari reversal) at

sufficiently high magnitudes of the applied field. Such behavior is illustrated in Fig-

ure 4.12 where anhysteretic data for a ferritic material are given at 0 and ±55 MPa.

Looking at, for example, the curve for -55 MPa it can been seen that while the mag-

netization is initially lower than at 0 MPa, it surpasses the magnetization at 0 MPa

at an applied field of about 1500 A/m. This stress effect is attributed to the defor-

mation of the crystal lattice and resulting changes in the magnetocrystalline energy

of the domains. The applied stress forces a reorientation of the magnetic domains

within a given grain and consequently changes the net magnetization.

With a basic understanding of how magnetic materials are characterized and

how microstructure and mechanical loads can affect magnetic properties, it is now

possible to look at some examples of how magnetic measurements have been previ-

ously applied to steels.
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FIGURE 4.12: The Villari effect [78] is defined by a change in magnetic
properties due to an applied stress. Note that at a certain field level,
the sign change of the effect reverses. This is referred to as Villari
reversal. The effect on the value of Ms is significant, even for a small
applied load. As such, this effect needs to be corrected for in-situ

application of magnetic measurements.

4.3.3 Example 1: Analysis of Anisotropy of TRIP by Saturated Magneti-

zation

The most commonly employed use of saturated magnetization measurements in the

characterization of the austenite to martensite transformation rate in TRIP steels.

Compared to XRD or EBSD, magnetic methods provide a simpler means of obtain-

ing several retained austenite measurements over the course of a mechanical test.

It is also more convenient in terms of equipment availability than, say, synchrotron

or neutron diffraction experiments. One such study performed by Beese and Mohr

[79] will now be presented in which directional magnetic measurements were made

on a tensile sample in-situ to determine the degree of anisotropy of the martensite

transformation in an austenitic stainless TRIP steel.

Flat specimens of a 301LN austenitic stainless steel with the composition pro-

vided in Table 4.1 containing retained austenite and approximately 20% thermal

martensite were studied in unidirectional tension. Samples were taken in the rolling

direction, transverse direction, and on the diagonal at 45◦ from the rolling direction

of the sheet. The samples were strained in tension and a ferritescope was used to

measure the saturated magnetization at several points during testing. As can be

seen in Figure 4.13, the work hardening rate when strained in the rolling direction

was lower than in the transverse or diagonal directions. It was hypothesized that

this could be to do anisotropy in the martensite transformation rate. EBSD texture

measurements were also performed to determine the texture evolutions before and

after straining.
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FIGURE 4.13: Variations in strain hardening rate with tensile direc-
tion relative to the rolling direction of the sheet. Beese and Mohr
suggested that this was due to anisotropy in the martensite transfor-

mation rate with respect to the tensile direction. [79]

TABLE 4.1: Austenitic Stainless Steel 301LN Composition (wt%)

C Cr Ni N Fe

0.025% 17.5% 6.5% 0.15% bal.

It was observed in this study that the applied load had a significant effect on

the ferritescope measurements, so the authors periodically unloaded the sample to

obtain more reliable measurements. Figure 4.14 illustrates the data obtained and

their variation during the loading and unloading cycles.

This use of loading and unloading cycles made it possible to minimize the ef-

fects of the Villari effect, thus improving the accuracy of the measurements. The

authors noted that while unloading will remove the macroscopic load, there will be

a residual stress at the grain scale that remains due to the martensite transformation.

To confirm that the calibration parameters used remained valid given the existence

of these residual stresses, neutron diffraction experiments were performed to de-

termine the lattice strains in the martensite in the unloaded state. The ferritescope

data was extrapolated to obtain the ferritescope reading that would correspond to a

zero residual stress state under the hypothesis that the magnetoelastic effect is lin-

early correlated to stress. It was found that the error of 4-8% induced by residual

stresses in the martensite was able to be accounted for in the calibration through the

extrapolation of the macroscopic ferritescope data.

With the ferritescope measurements validated, tensile tests were performed on
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FIGURE 4.15: Beese and Mohr demonstrated that the TRIP effect was
not dependent on the tensile direction relative to the loading direction
and concluded that the observed differences in strain hardening were

likely due to the initial texture in the sheet [79].

TABLE 4.3: Stress Triaxialities by Test Type

Uniax. Tension Biaxial Tension Plane Strain Shear Uniax. Compression
1

3

2

3
0.58 0 −1

3

Strain rates of 10−3s−1 were used for all tests. Biaxial tests were performed using

the hydraulic bulge methodology, shear tests using simple shear for sheet metals,

and compression on flat samples using an anti-buckling jig. In cases where exten-

someters could not be used to measure strain (biaxial, shear) DIC was used. No

strain measurement was made for the plane strain samples because the tensile length

was too small and the furnace window did not permit the use of digital image cor-

relation (DIC).

Kim et al. showed that as the deformation temperature increased, the marten-

site transformation rate decreased significantly. Figure 4.16a shows that this trend

occurred for all triaxialities and that there was a significant effect of the stress triaxi-

ality on the transformation rate. While in this case the trend was not clear, a previous

study by Beese and Mohr [79] showed that the transformation rate varied linearly

with stress triaxiality.

Beese and Mohr [79] had proposed an empirical model to predict the martensite

fraction as a function of strain, triaxiality, and the Lode parameter. Beese and Mohr’s
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(A)
(B)

FIGURE 4.16: Kim et al. experimentally illustrated the differences in
TRIP kinetics for different stress triaxialities and deformation temper-
atures (A) and developed a model that was able to reproduce these
results fairly well (B) by adding temperature effects into a model pre-

viously proposed by Beese and Mohr [80].

model is given by:

ḟα′ = (fα′,max − fα′)nD(Dǭ)n−1ǭ (4.15)

where ǭ is the Von Mises equivalent strain, fα′ and ḟα′ are the martensite fraction

and it’s time derivative, and n and D are material parameters. The parameter D is

determined by

D = D(η, θ) = (D0 + aθθ + aηη) (4.16)

where θ and η are respectively the Lode parameter and stress triaxiality and aθ, aη

and D0 are material parameters. Kim et al. modified this model by redefining D

as a product of an adjusted version of Beese and Mohr’s D1(η, θ) times Kim et al.’s

newly-defined D2(T ):

D = D1(η, θ) ·D2(T ) (4.17)

where

D1(η, θ) = (D0 + aθθ
a + aηη

b) (4.18)

and

D2(T ) = A+B · exp(−T − 25

C
) (4.19)

The exponents a and b in Equation 4.18 have been added by Kim et al. to account

for the nonlinearity of the relationships between ˙fα′ and θ and η that they observed.

The parameters A,B, and C in Equation 4.19 are model parameters.

The comparison of their model to experimental data is shown in Figure 4.17.
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(A) (B)

(C) (D)

FIGURE 4.17: The model developed by Beese and Mohr tended to
overestimate the transformed martensite fraction as observed by Kim
et al. (A), but the addition of temperature effects improved the model
fit for experiments performed at 25◦C (B), 60◦C (C), and 100◦C (D)

[80].
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Figure 4.17a shows the comparison of Kim et al.’s room temperature data to the un-

modified model proposed by Beese and Mohr. Figures 4.17b, 4.17c, and 4.17d show

the comparison of the temperature sensitive model to experimental data at 25◦C,

60◦C, and 100◦C respectively. The model accurately reproduces the trends observed

in the experimental data for both deformation temperature and stress triaxiality, al-

beit with 7 calibrated model or material parameters. Nonetheless, the study clearly

demonstrates that both stress triaxiality and deformation temperature play a criti-

cal role in determining the martensite transformation rate in TRIP steels by using

magnetic saturation measurements to calculate retained austenite volume fractions

in deformed samples.

A note on ferritescopes

Ferritescopes are a common tool for making measurements of the saturated magnetization of a sample

during mechanical testing. They use a magnetic probe to measure variations in the induced magnetic

field when the probe is place on the surface of a sample. The ferritescope outputs a "ferrite num-

ber" that is related to the magnetic phase content of the sample. The ferritescope reading needs to

be calibrated for the thickness of the sample and a proportionality constant needs to be determined

using several samples with different martensite volume fractions. This leads to a measurement of the

ferromagnetic phase fraction that strongly depends on empirical fits and calibrations and thus the

measurement obtained via ferritescopes loses some of its physical sense. This problem is compounded

by the fact that ferritescope manufacturers, to the author’s knowledge, do not provide a method of

accounting for the effect of an applied load on the measurement.

For this reason, the current work forgoes the use of a commercial ferritescope and opts for a

homebrew solution. While more physically cumbersome than a ferritescope probe, it allows the ex-

perimenter to directly access the physical properties of the sample and be more certain of how the

ferromagnetic volume fraction is calculated.

4.4 Development of an In-situ Magnetic Testing Device

The results presented in Chapter 3 showed that in Medium Mn TRIP steels, the in-

tercritical annealing temperature used had a drastic effect on the stability of the re-

tained austenite present in the steel. In order to understand the relationship between

the intercritical annealing temperature and the amount of work hardening obtain-

able, it is necessary to quantify the amount of retained austenite that transforms to

martensite for a given strain increment. That is, a description of the phase trans-

formation kinetics as a function of strain is needed for each intercritical annealing

temperature. A number of methods (such as XRD, EBSD, thermal diffusivity, etc.

[81]) would be suitable if this were the only goal, but the presence of strain localiza-

tions complicates the issue.

It was observed previously that the presence of strain bands during tensile test-

ing of samples annealed at 740◦C and 760◦C led to steps or plateaus in the tensile

curves. Additionally, Lüders plateaus of up to 7-8% were observed in these samples.

It would be interesting, then, to understand how the TRIP effect is manifested when
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the strain is localized in bands in this way. However while the Lüders bands are

visible on the surface of the sample, the subsequent PLC type bands are not. An in-

situ method of measuring the retained austenite volume fraction is thus needed to

characterize the interaction between the bands and the phase transformation. Fur-

ther reducing the number of appropriate retained austenite measurement methods

is the fact that these bands propagate relatively quickly, providing a burst of induced

strain over several seconds of tension. Any in-situ retained austenite measurement

must then be able to be performed very rapidly (in terms of time per measurement)

and at a high sampling rate (in terms of the number of measurements made per unit

time). Given these constraints, the decision was made to use a magnetic measure-

ment system.

To truly capture the microstructural evolution over the course of a tensile test in-

situ, the best option is to use the saturated magnetization to determine the retained

austenite volume fraction. Using this metric would permit rapid, high frequency

measurements of the retained austenite volume fraction by rapidly cycling the ap-

plied magnetic field. However, it was decided that the magnetic results should be

compared to previous XRD measurements to ensure that the system developed here

enables accurate retained austenite fraction measurements. Then, the system needed

to be adapted for in-situ use; that is, in the presence of an applied load. It was demon-

strated in Section 4.3.3 that the Villari effect results in a very strong influence of the

applied stress on the magnetization measurement. A correction for this magnetoe-

lastic effect was thus developed based on [77, 82].

Another consideration was that, due to the presence of multiple phases with very

different magnetic properties, the local applied magnetic field would vary from one

phase to another. In steels, there are both magnetically hard or soft phases–such

martensite and ferrite, respectively–meaning that stronger applied fields are needed

to obtain the saturation magnetization if magnetically hard phases are present. Ad-

ditionally, other phases show a negligible magnetic response. Austenite and pearlite

would be examples of negligibly magnetic phases that can be present in steels. Austen-

ite in particular is a paramagnetic phase. This means that the magnetic dipoles re-

sulting from the presence of free electrons in fcc iron can be aligned through the

application of a magnetic field but do not interact with neighboring dipoles, result-

ing in a very weak magnetization. Because of this lack of dipole interaction, once

the applied field is removed austenite reverts to a zero-magnetization state. While

it does technically magnetize, the magnetization obtainable in austenite for a given

applied field are dwarfed by the magnetization in ferrite or austenite for the same

field. This stark difference in magnetic properties results in demagnetizing effects

at the phase boundaries [83]. A correction was thus developed that would take into

account the local applied field in each phase, rather than just the macroscopic "aver-

age" applied field.

The localization correction had previously been developed by Daniel and Hubert
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[76] in a model and is used here as a correction to experimental data. The magne-

toelastic correction is based on the work of Hubert and Lazreg [77] but is novel in its

implementation in-situ during tensile experiments. This is, to the author’s knowl-

edge, the first use of in-situ magnetic measurements that do not affect the tensile test

or require its interruption and for which the stress effect is corrected. Moreover, it

is the only existing method (aside from synchrotron) that can measure the retained

austenite volume fraction in-situ without a need to pause the experiment. The two

corrections employed here provided a significant improvement in measurement ac-

curacy and an advancement in the way that magnetic measurements of retained

austenite fractions are performed. The system developed will be described in the

subsequent sections.

4.4.1 Magnetic Measurement System

A measurement system was developed based on the work of Bormio-Nunes and Hu-

bert [84] in order to perform in-situ measurements of the retained austenite volume

fraction during tensile testing. The device is capable of producing both anhysteretic

(see Figure 4.8) and hysteretic (see Figure 4.6) data. As such, it was possible to first

use the magnetic susceptibility obtained via anhysteretic data to verify the precision

of the method using a physical material property. The major downside to anhys-

teretic measurements, however, is that they take a long time to perform. With the

system developed here, a single anhysteretic curve takes 30-40 minutes to record,

hence the preference for saturated magnetization which takes only a fraction of a

second per cycle.

The setup consists of a primary coil placed around a tensile sample that creates

a magnetic field in the sample. A schematic of the setup is provided in Figure 4.18.

The applied field is cycled through the application of a triangular current waveform.

This current is then integrated over the length of the coil to obtain the applied field.

The applied field is enclosed by two high-permeability ferrimagnetic yokes used

to contain the magnetic field and concentrate it in the sample. The induced mag-

netic flux in the sample is then measured as a voltage using a pick-up coil wound

around the sample surface. The pick-up coil measures the average flux in the por-

tion of the sample around which the driving coil is placed. In the current setup, this

corresponds to a measurement over 37mm of the 60mm active tensile length of the

sample.

Because the driving coil encloses the sample, strain measurements must be per-

formed with a strain gauge if the local strain is desired. Here, the plastic strain in

tensile experiments is instead calculated using the displacement of the crosshead

and the assumption that the tensile machine is rigid.
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area of several µm2 to several mm2. This magnetic measurement is made over a

volume of approximately 450mm3, providing an excellent statistical representation

of the microstructure particularly in the current case when the average grain size is

less than 1µm.

The applied field and induced magnetization are averaged over the microstruc-

ture in the portion of the sample contained within the driving coil and can be written

as
~H = fα ~Hα + fα′

~Hα′ + fγ ~Hγ (4.21)

~M = fα ~Mα + fα′
~Mα′ + fγ ~Mγ (4.22)

where fn, ~Hn, and ~Mn are respecitvely the volume fraction, applied field, and in-

duced magnetization in the phase n. For the purposes of the current study (and as

is often done when performing magnetic characterizations of TRIP alloys) the ferrite

and martensite are treated as a single ferromagnetic phase which will be referred to

from here on using the subscript α. The assumption, then, is that ferrite and marten-

site have the same magnetic properties. In reality there is a difference between the

two—ferrite is a magnetically soft phase whereas martensite is magnetically hard.

Carbon content also has an effect on the magnetic properties of iron. While it is

entirely possible the distinction could be made between the two phases through the

use of an additional property like the coercivity or remanent magnetization, it would

require a significant time investment and is thus viewed as a future perspective for

the moment. In the current work both phases are assumed identical which will lead

to a slight but acceptably small over-estimation of the retained austenite content.

Simplifying Equations 4.21 and 4.22 as such leads to

~H = fα ~Hα + fγ ~Hγ (4.23)

~M = fα ~Mα + fγ ~Mγ (4.24)

where the subscript α now represents the combined behavior of ferrite and marten-

site. Essentially, the phases in the sample are divided into two group: ferromagnetic

phases and non-magnetic phases. This includes then, the hypothesis that austenite is

non-magnetic. This is a strong hypothesis because austenite’s magnetic response is

minimal compared to that of ferrite or martensite and as such it will have a negligible

contribution to the macroscopic magnetic response of the sample. If the magnetiza-

tion in the austenite is then assumed to be 0,

~M = fα ~Mα (4.25)
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from which one obtains the magnetization ratio that is typically used when making

magnetic measurements of the retained austenite volume fraction:

fα =
~M

~Mα

(4.26)

where ~M is the measured average induced magnetization in the sample and ~Mα is

the induced magnetization in the ferromagnetic phase only. This ratio can be related

to the magnetic susceptibility, χ, by recognizing that χ = ~M/~H to obtain

fα =
χ

χα
· H
Hα

(4.27)

and if one then assumes that the applied field is the same in all phases (as is com-

monly done) one obtains a simple ratio of susceptibilities

fα =
χ

χα
(4.28)

where χα is the susceptibility of an purely ferromagnetic sample.

The formulations for the retained austenite volume fraction proposed in Equa-

tions 4.26 and 4.28 were then compared to XRD measurements. A tensile sample that

had been intercritically annealed at 780◦C was strained and periodically unloaded to

perform both hysteretic (to obtainM s) and anhysteretic (for χ) measurements at sev-

eral levels of plastic strain. The change of magnetic behavior with the progression of

plastic strain is shown in Figure 4.19 where both anhysteretic curves and hysteretic

cycles are shown for several levels of plastic strain1. The retained austenite volume

fraction was calculated using equations 4.26 and 4.28 and compared to previous

XRD experiments on the same alloy for four different strain levels. The comparison

is presented in Figure 4.20. It can be seen in the figure that while the overall agree-

ment between magnetic measurements and XRD measurements is good, there is a

large discrepancy between the two methods over the first 1-2% of strain: the moment

of the test where the largest volumes of retained austenite are present. This discrep-

ancy then can be said to be due to the demagnetizing effect at the phase boundary

between the ferromagnetic and non-magnetic phases as previously discussed. To

improve the accuracy of the measurement when large volume fractions of austenite

are present, a localization operation was performed to take into account the hetero-

geneity of the applied field at the grain scale.

1Note that the coercivity of the sample increases as the phase transformation progresses. This is
due to the generation of magnetically hard martensite and hints at the future possibility to distinguish
between the ferrite and martensite via magnetic measurements.
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4.5.1 Localization Correction

In mechanics a commonly employed method of localizing the macroscopic stresses

and strains into each phase is the application of the localization model developed by

Eshelby [87] which considers a spherical particle embedded in an infinite homoge-

neous equivalent medium. This same model can be applied to any material property

to obtain a localization of that property in each phase.

If a given phase i is treated as a spherical particle embedded in a homogeneous

matrix and that the particle’s magnetic behavior follows a linear constitutive law

(since the demagnetizing field is small enough to remain in a linear regime), the

magnetization in the particle can be expressed as

~Mi = χi
~Hi (4.29)

then the solution to the Eshelby problem will give

~Hi − ~H∞ =
1

3 + 2χ∞
( ~M∞ − ~Mi) (4.30)

where ~H∞ and ~M∞ denote the macroscopic (average) magnetic field and magneti-

zation and χ∞ is the macroscopic susceptibility defined as χ∞ = M∞/H∞. Apply-

ing Equation (4.30) to the current problem without an applied stress, the field along

the magnetization axis in the ferromagnetic phase α becomes

Hα = H +
1

3 + 2χ
(M −Mα) (4.31)

with χ =M/H . With the magnetic susceptibility of the ferromagnetic phase defined

as χα =Mα/Hα, it follows

H

Hα
=

3 + 2χ+ χα

3 + 3χ
(4.32)

where the volume fraction of the ferromagnetic phase is defined as

fα =
M

Mα
(4.33)

It should be noted that this definition differs from the classical one given in Equa-

tion (4.26) since saturation is not achieved. This relationship is most appropriate for

low magnetic field levels where the magnetic behavior can be considered as linear.

Equation (4.33) is transformed by introducing the corresponding magnetic fields and

susceptibilities

fα =
χH

χαHα
(4.34)

Finally, by combining Equations (4.32) and (4.34), fα reads

fα =
χ(3 + 2χ+ χα)

χα(3 + 3χ)
(4.35)
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However, this expression is only valid considering the initial susceptibility (or

linear behavior). By recognizing that χ = 1

3
Asµ0M

s2 and χα = 1

3
Asµ0M

s
α
2 and

considering χ≫ 1, the volume fraction of ferromagnetic phase is expressed as

fα ≈
(

M s

M s
α

)2

(4.36)

The volume fraction of ferromagnetic phase thus obtained provides a second esti-

mation of fα+α′ with the hypothesis that the ferromagnetic areas do not interact. It

is unlikely that no interaction occurs between individual grains in the ferromagnetic

phase in reality, but a compromise between expressions (4.26) and (4.36) can be made

through the use of a ratio parameter, κ, leading to

fα+α′ =
M s

M s
α

+ κ ·
[

(

M s

M s
α

)2

− M s

M s
α

]

(4.37)

where κ is a mixing parameter identified using an unstrained sample with a known

ferromagnetic volume fraction.

When Equation 4.37 is used with κ = 2/3, the calculation of the retained austenite

volume fraction is greatly improved compared to the non-localized data presented

in Figure 4.20. The localized data are presented in Figure 4.21 alongside the same

XRD data for comparison. It should be noted that because ferrite and martensite

do not quite have the same magnetic properties as is assumed here [77], the initial

retained austenite fraction in this case is overestimated. This is due to the presence

of thermal martensite in the initial microstructure which is more weakly magnetic

than ferrite.

FIGURE 4.21: The application of the localization correction results in a
significant improvement in the calculated retained austenite fraction
when large proportions of austenite are present compared to the case

without the correction in Figure 4.20.
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4.5.2 Magnetoelastic Correction

If measurements of the sample magnetization are to be made in-situ, then the effect

of the applied stress on the magnetic properties must be taken into account since it

has been shown that even modest loads can have a non-negligible impact on mag-

netization [88]. This can be clearly seen in Figure 4.22 where magnetization data

obtained during unloading of a sample annealed at 760◦C is shown. The magnetiza-

tion changes drastically with the applied stress even though during unloading the

microstructure remains constant, illustrating rather definitively the significance of

the Villari effect and its impact on the saturated magnetization.

FIGURE 4.22: In-situ magnetization measurements of a sample an-
nealed at 760◦C during unloading after straining until a point just be-
fore necking. During unloading, the microstructure does not change
(i.e. no TRIP occurs), yet the magnetization increases. This is a result
of the Villari effect. The magneto-mechanical coupling demonstrated
herein must be corrected if measurements are to be made under an

applied stress.

A model has been recently developed which was used to predict the magneto-

mechanical coupling in dual phase steels for stresses up to approximately 600MPa

by relating kinematic hardening to magneto-elastic effects occurring within each

phase at the grain scale [77]. A correction of the Villari effect that derives from the

same approach is proposed.

The multidomain modeling used was first introduced by Lazreg and Hubert [82].

It is able to model the magnetization and the magnetostrictive strain of an isotropic

polycrystalline ferromagnetic material submitted to a uniaxial applied stress. Two

scales are involved: the domain scale (at which 6 domains are considered) and the

grain scale at which an equivalent polycrystalline medium is assumed. The macro-

scopic and crystallographic frames of reference are coincident (i.e. (~x, ~y, ~z)=([100],[010],[001])).
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In the simplified description proposed here, rotation of the magnetization is not con-

sidered. The stress tensor σ and magnetic field ~H are assumed homogeneous. The

free energy of a domain φ then becomes simply a sum of the magnetostatic (Zeeman)

and magnetoelastic energies written as

Wφ = −µ0 ~H · ~Mφ − σ : ǫµφ (4.38)

where µ0 is the magnetic permeability of vacuum, ~Mφ the magnetization vector in-

side a domain that satisfies | ~Mφ|=M s
α, and ǫ

µ
φ the magnetostrictive strain tensor (see

details in Ref. [82]). The volume fraction of a domain fφ is calculated from Boltz-

mann statistics

fφ =
exp(−As Wφ)

∑

φ exp(−As Wφ)
(4.39)

where As is a fitted parameter proportional to the magnetic initial susceptibility χ0

without an applied stress (As = 3χ0

µ0 Ms
α
2 ). The magnetization of the single crystal is

obtained from an averaging operation

~M =
∑

φ

fφ ~Mφ (4.40)

when the magnetic field and uniaxial stress σ are applied along ~x. After a few calcu-

lations and a second order Taylor expansion of the exponential, one obtains

M = ~M · ~x = χ0H(1 +
6χ0

µ0 M s
α
2
λσ) (4.41)

where λ is a global magnetostriction constant. This relationship permits a new def-

inition of the initial susceptibility in which it is linearly related to the magnitude of

stress as

χ0
σ =M/H = χ0(1 +

6χ0

µ0.M s
α
2
λσ) (4.42)

This equation applies for the initial susceptibility but is assumed to be applicable for

the secant susceptibility at any magnetic field level and especially at the magnetic

field level where the experimental saturation of magnetization is measured. A linear

correction of stress effect is then obtained

χσ = χ(1 + ησ) (4.43)

where η is a constant that can be identified using experiments where some variation

of magnetization with stress is observed (see Figure 4.22) without phase change. The

constant η is typically on the order of −10−5 MPa−1. This relationship between sus-

ceptibility and stress applies to the magnetization level as well, so a stress sensitive
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magnetization “saturation” is defined as

M s
σ = fα+α′χσH = fα+α′M s

α(1 + ησ) =M s(1 + ησ) (4.44)

Equation (4.26) is thus modified to become

fα+α′ =
M s

σ

(1 + ησ)M s
α

(4.45)

which provides a correction to the ferromagnetic volume fraction fα+α′ for a mag-

netic saturation value M s obtained with applied stress σ.

The effect of the stress correction is shown in Figure 4.23 for a sample annealed

at 780◦C. This linear correction of the M s value improves the accuracy of retained

austenite measurements at high stress where differences of up to 0.05 in fα+α′ were

observed between calculations using M s and M s
σ. It also makes it possible to deter-

mine whether or not stress-induced martensite transformation occurs.

FIGURE 4.23: Magnetization and volume fraction of ferromagnetic
phases (ferrite + martensite) for TIA = 780◦C as functions of plas-
tic strain as calculated from in-situ data with and without the stress
correction developed in this study. High levels of stress reduce the
measured magnetization and result in several percent difference in

calculated volume fractions.

If this stress correction is included in the previous localization correction, Equa-

tion 4.37 becomes

fα+α′ =
M s

σ

(1 + ησ)M s
α

[

1 + κ

(

M s

(1 + ησ)M s
α

− 1

)]

(4.46)

As previously mentioned, the κ parameter is identified via a magnetic measure-

ment on a sample (in the unstrained state) with a known volume fraction of ferro-

magnetic material and was determined to be 2

3
in the current case.
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simply because the strain increment in both Lüders bands were not identical, or that

the cross section of the sample varied slightly from one side of the sample to the

other.

The error bars represent the standard error of the measurement calculated by

SE =
σ
2
√
n

(4.47)

where σ is the standard deviation of the measurements and n is the number of mea-

surements performed (here, 40). It can be seen then, that the retained austenite vol-

ume fraction calculated fromM s using the methods defined in this chapter provides

a measurement error of roughly ±1%. This is quite good and shows that the mea-

surements obtained using hysteretic data are reliable and repeatable.

4.6 Experimental Procedure

4.6.1 Strain Band Characterization by DIC

In order to characterize the strain bands present in the steel studied, tensile dog bone

specimens were cut along the rolling direction from 1.25mm thick sheet. The speci-

mens had an active gauge length 60mm long and 10mm wide. Unidirectional tensile

tests were performed using an Instron extensometer with a 12.5mm initial length to

confirm DIC measurements as previously demonstrated. The samples were strained

until rupture using an Instron 4430 electromechanical tensile testing machine with a

strain rate in the sample of 5 · 10−4s−1.

Images for DIC analyses were obtained by painting the polished sample surface

with a black and white speckle pattern and taking pictures every 3s during testing.

A single Canon 60D camera with a 105mm macro objective lens was used to acquire

the images with an exposure time of 1

320
s−1, ISO grade of 800, and an aperture f-

stop of f/9. Two halogen lamps were used to illuminate the specimen surface. The

images recorded were 3465 × 5202px in definition with 16bit encoding and were

cropped to remove excess empty space and converted to .tif format for registration

purposes. Correlation of the images was done using 3-node triangular elements and

regularization using RT3-DIC [66]. A 10 pixel element size and regularization length

of 50 pixels were used for the calculations. Pixel sizes varied between 0.025 and

0.05mm from one test to another and this scale was determined using the measured

width of the sample. The displacement fields in photo nwere calculated with respect

to the reference image using the results from photo n− 1 to initialize the calculation.

The strain rate fields are computed from the (Lagrangian) velocity fields.

Analyses of the strain bands were performed by using profiles as outlined in the

previous section in Figure 4.3. Images of the strain increment fields were taken from

periods during which bands were present. On each image, 8 profiles were plotted

along the tensile length at 20px intervals using ImageJ [71] as shown in Figure 4.25.
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FIGURE 4.26: The line profiles measured by ImageJ for a given image
are post-treated in Matlab and scaled to distances in mm. The center
of the peak is used as its location for calculating propagation speed
and band angle. The FWMH is used to calculate the width of the

band.

4.6.2 Strain Rate Sensitivity

Additional experiments were carried out in which strain rate jumps were performed

intermittently during tensile testing. The base strain rate was 10−4s−1 and strain

rate jumps to 10−2s−1 were performed until a relative displacement of 2mm was

achieved, at which point the strain rate decelerated back to 10−4s−1 for another 2mm

of displacement.

During these experiments, DIC images were captured using a pco.1200 high

speed camera. 780 × 500px images were captured at 5 frames per second. This

high speed was necessary in order to minimize the strain step between images at

high strain rate (and thus facilitate convergence of the DIC calculation), however it

is much more than is necessary for the slow strain rate. As such, DIC calculations

were performed by taking every fifth image for the periods at slow strain rate and

every image during periods of high strain rate. As such, for a strain rate of 10−4s−1 a

1s interval between images was used and for a strain rate of 10−2s−1, a 0.2s interval

was used.

The images were analyzed in the same manner as explained in the previous sec-

tion. Line profiles were plotted over each images and the fitted peaks were used to

characterize the strain bands.

In this case, the interest is to observe how the strain bands are affected by the

sudden change in strain rate. The applied strain as measured macroscopically must

be accommodated within the band. When the strain rate jump occurs, it could be

that the band widens to strain a larger volume of material. It could also simply

increase in strain increment while maintaining the same width. The response to

this question is critical to understanding the manner in which the strain rate jumps

affect TRIP and could provide some insight into the micromechanical mechanism

responsible for the PLC-type bands observed.
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4.7 Magnetic Experimental Procedure

Three goals were defined for the use of the in-situ magnetic measurement system:

• Quantify the differences in TRIP kinetics for different intercritical annealing

temperatures

• Determine how the presence of strain localizations affects TRIP

• Characterize the effect of strain rate on TRIP

This was achieved through two experimental campaigns. The first sought to

use saturated magnetization measurements to compare TRIP kinetics for different

intercritical annealing temperatures. These results were compared to DIC analyses

of the strain bands sometimes present in order to determine how the strain bands

and TRIP could interact. A second set of experiments was conducted to study the

effect of strain rate on TRIP and any effects of the microstructural evolution on strain

rate sensitivity. These were, once again, coupled with DIC experiments.

In both sets of experiments, a current is induced in the driving coil and an in-

duced voltage is read by the probe coil. The applied field is calculated by

H = I · N
Leq

(4.49)

where I is the applied current, N is the number of loops in the driving coil (81), and

Leq is the length of the driving coil (37mm). From H , the induced B-field can be

calculated by

B = V · 1

n ·A · 10−6
− µ0H

(

A0

A
− 1

)

(4.50)

where V is the voltage in the probe coil, n is the number of loops in the probe coil

(50), A is the instantaneous area of the sample (approximated by A0

1+ǫ
, and µ0 is the

permittivity of vacuum. Finally the B-field can be transformed to magnetization by

M =
B

µ0
−H (4.51)

after which the retained austenite volume fraction is calculated using the methods

outlined in Section 4.5.

4.7.1 Intercritical Annealing Temperature Effect and Strain Localizations

The saturated magnetization method for measuring the retained austenite volume

fraction was implemented for in-situ tensile testing of flat tensile samples intercriti-

cally annealed at temperatures of TIA = 740◦C, 760◦C, and 780◦C. The objective was

to explore how the intercritical annealing temperature affects the martensite trans-

formation rate and to observe any effects of strain localizations. At the same time,

the experiments would serve as a proof of concept for this newly-developed in-situ
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experimental method, demonstrating that high-frequency determination of the re-

tained austenite volume fraction is possible. This would open up the possibility of

in-situ mechanical tests at strain rates more representative of those used in industrial

forming operations.

Flat tensile specimens with an active tensile length of 60mm, width of 10mm, and

thickness of 1.25mm were strain using a crosshead displacement speed of 1.8mm/min

(ǫ̇ = 5 · 10−4s−1). Tensile tests were interrupted and unloaded when necking was

observed so that anyhsteretic data could be obtained both before and after tensile

testing. This was done to confirm that the initial and final points obtained with M s

were coherent with those obtained with χ. The sensor probes were directly wound

on the sample surface and consisted of 50 loops.

The current in the driving coil was cycled at a frequency of 2Hz with a current

probe sensitivity of 100 A/V. 500 points per period (so 1000 per cycle) were saved.

Due to memory buffer limitations in the data acquisition card used, 400 cycles were

saved per data file. As such, several files were needed per test which resulted in

occasional periods of about 30s during which no data was recorded. At a frequency

of 2Hz, this results in about 13% of "downtime" during which no measurements are

made. The resulting data are more than satisfactory for fitting the phase transforma-

tion kinetics despite these measurement gaps.

4.7.2 Strain Rate Effect and Strain Rate Sensitivity

The same method was also employed to study the effect of strain rate on the kinetics

of TRIP. Strain rates of 10−4s−1, 10−3s−1, and 10−2s−1 were chosen. The frequency

at which the applied H-field was cycled was 10Hz this time in order to assure that

enough data points were obtained for the tests at 10−2s−1. A current probe sensitiv-

ity of 50A/V was used and 1000 points per period were recorded. This was done be-

cause each hysteresis would be taken over a larger increment of strain—particularly

in the sample strained at 10−2s−1—and as such a more well-defined hysteresis was

desired to avoid problems with the larger strain increment.

The samples strained at 10−4s−1 and 10−2s−1 were performed as before. For the

slow strain rate, gaps in the data were permissible and for the fastest strain rate the

test was completed in one data file. If the previous method was used for the test

at 10−3s−1, however, a much higher portion of the experiment would have been

conducted while no data was being acquired. As such, the tension was paused (and

stress maintained) during the approximately 30-40 seconds during which each data

file was saved and the next one created.

Additional tests were performed for each intercritical annealing temperature wherein

strain rate jumps from ǫ̇ = 10−4s−1 to ǫ̇ = 10−2s−1 were performed. In this case, once

the Lüders band (when present) completely traversed the sample and an additional

0.5mm of crosshead displacement was attained, a strain rate jump was initiated.

The jump was set to continue for 2mm of displacement ( 3-4% strain) after which the

strain rate would decelerate to 10−4s−1. The test continued at 10−4s−1 for another
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FIGURE 4.27: Illustration of the instantaneous and stabilized stress
changes that are used in calculating the strain rate sensitivity. The in-
stantaneous stress change δσi is calculated at the stress peak and the
stabilized stress change δσs is calculated by extrapolating the slower
strain rate behavior and subtracting it from the stress measured ex-

perimentally at high strain rate.

2mm of displacement, at which point another strain rate jump was performed. The

two strain rate were alternated as such until rupture.

The instantaneous strain rate sensitivity was calculated using the instantaneous

stress change that occurred upon accelerating, δσi. For the stabilized strain rate sen-

sitivity, the stress change δσs was calculated at three different points: the middle of

the high rate domain as well as 0.2% and 0.5% strain after the acceleration. This was

done to compare the three and determine which point is best for calculating δσs.

The strain rate jump and associated stress changes are illustrated in Figure 4.27. The

instantaneous strain rate sensitivity was calculated by

mi =
log(δσi)

log( ǫ̇1
ǫ̇2
)

(4.52)

and the stabilized strain rate sensitivity is

ms =
log(δσs)

log( ǫ̇1
ǫ̇2
)

(4.53)

where δσs is calculated by taking a linear regression of the 200-300 points before the

strain rate jump and extrapolating them to get an approximation of the stress that

would have been obtained had the strain rate jump not been performed.

The advantage to performing magnetic measurements of the retained austenite

fraction during tensile tests with strain rate jumps lies in the potential correlation

between the austenite fraction and the strain rate sensitivity. It is sometimes hypoth-

esized that the negative strain rate sensitivity in Med Mn TRIP alloys comes from

a solute effect in the austenite wherein dislocations are pinned by C-Mn clusters. If
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this is true, one would suspect that the strain rate sensitivity would be more nega-

tive when more austenite is present. Not only that, but the trend should be the same

for all intercritical annealing temperatures, as the PLC effect in that case would be

determined only by the austenite fraction and not its stability.
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Chapter 5

TRIP and Strain Instability

Analysis

The preceding chapters outlined the experimental methodology that was employed

to analyze the strain localizations in a 0.2C-5Mn-2.5Al Medium Mn TRIP steel as

well as the kinetics of the martensite transformation during TRIP. This chapter will

begin by presenting the results of these experiments as they relate to the stability

of the retained austenite as modified by the intercritical annealing temperature TIA

and its effect on the work hardening. This is accomplished using magnetic measure-

ments of the retained austenite volume fraction to characterize the microstructural

evolution. Next, a DIC characterization is presented to differentiate the initial band

that creates a yield point elongation and the other bands that follow, as well as mag-

netization analyses to characterize their interaction with TRIP. Finally, the results of

studies on the strain rate effect on TRIP and the strain rate sensitivity of the steel are

provided. This chapter seeks to compile experimental results with the intention of

using the subsequent chapter to discuss them in depth.

5.1 Strain Band Characterization

While the first strain band and subsequent bands observed in tensile curves for

samples annealed at 740◦C and 760◦C appear to be distinctly different, it was not

a certainty that they were the result of two independent phenomena. The perceived

difference could, for example, simply be an effect of the onset of plasticity.

By analyzing images of the calculated strain increment in the longitudinal direc-

tion as previously outlined in Chapter 4, it was possible to show that the width of

the first band is significantly different from that of the subsequent bands. Table 5.1

shows the band width, band angle, and band propagation velocity for the Lüders

bands in samples annealed at 740◦C and 760◦C as well as the average of the PLC-

type bands in the sample annealed at 740◦C. The PLC bands in the sample annealed

at 760◦C were too random to obtain statistically reliable values because the passage

of the band occurred over only 2-3 images in most cases. Thus, the PLC bands from

this sample are excluded from Table 5.1.
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TABLE 5.1: DIC strain band characterization

Velocity (mm/s) Band Width (mm) Inclination θ(◦)

740◦C Lüders 0.381 ± 0.008 0.605 ± 0.033 66.4 ± 0.496

PLC 0.583 ± 0.084 0.770 ± 0.042 69.8 ± 0.605

760◦C Lüders 0.623 ± 0.003 0.246 ± 0.044 69.3 ± 0.800

The magnitude of the strain in each band was characterized by the maximum

value of a line profile across the sample in images in which a band was present. The

strain amplitude as a function of time is plotted in Figure 5.2 for the samples an-

nealed at 740◦C and 760◦C. There is a clear distinction between the initial bands,

which had maximum strain increments in the longitudinal direction of approxi-

mately 0.03 to 0.035, and the subsequent PLC-type bands which had a more or less

constant strain amplitude of about 0.015. This supports the assertion that the two

types of bands are the result of different phenomena.

As can be seen in Figure 5.3, the velocity of the PLC-type bands decreased roughly

linearly with total strain while the strain rate in the band remained constant. The

propagation velocity is related to the macroscopic displacement rate. In the current

case, a constant crosshead displacement speed of 1.8mm/s was used to provide a

strain rate of 5 · 10−4s−1, but because the sample elongates during tensile testing

the macroscopic strain rate decreases slightly over the course of the experiment. As

a point of reference, the expected actual strain rate at 30% strain is 3.8 · 10−4s−1–

slightly higher than the roughly 3 · 10−4s−1 shown in Figure 5.3. When considering

the strain rate in the band as measured by DIC, the strain rate was approximately

constant at 0.005–0.006s−1. Note however, that the strain rate and propagation speed

in the Lüders band differed significantly from those of the PLC-type bands. The

propagation speed of the Lüders band was 0.4mm/s while that of the first PLC-type

band was nearly 1mm/s. The strain rate in the bands showed the opposite trend,

with a strain rate of about 0.01s−1 in the Lüders band before the strain rate decreased

to 0.005–0.006s−1 in each subsequent band as mentioned previously.
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(A)

(B)

(C)

FIGURE 5.1: Spatiotemporal DIC measurements of the strain rate as
measured by DIC normalized by the applied macroscopic strain rate
of 5 · 10−4s−1 for intercritical annealing at (a) 740◦C, (b) 760◦C, and
(c) 780◦C. The vertical axis represents the position along the tensile
direction and the color bar represents the ratio of the strain rates in
the tensile direction. Clear strain bands are observed in (a) and (b),

but not in (c).
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(A)

(B)

FIGURE 5.9: Spatiotemporal DIC measurements of (a) nominal longi-
tudinal strain and (b) longitudinal strain rate measurements for an-
nealing at 740◦C. The horizontal axis is the time in seconds, the ver-
tical axis represents the position along the tensile direction, and the
color bar represents either the total strain in the tensile direction or
the strain rate (1/s) in the tensile direction. The data in (a) is taken
from the 740-b sample while that in (b) is from 740, demonstrating

again the difference observable between two batches.
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(A)

(B)

FIGURE 5.10: Plots of (a) true stress and (b) retained austenite volume
fraction vs. true plastic strain for each intercritical annealing temper-
ature. The same steps previously observed in tensile data are again
seen in the retained austenite volume fraction, suggesting that the
TRIP effect coincides with the passage of strain bands. Both plots

share identical strain axes.
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FIGURE 5.11: Sample magnetization (with stress correction) plotted
as a function of true stress shows that during elasticity, the magne-
tization remained constant meaning that there is no stress-induced

transformation before yielding.

Because the magnetic measurements made here correct for the effect of stress on

the magnetization, it was possible to determine whether or not any stress-induced

transformation occurred during elasticity. Figure 5.11 shows the saturated magneti-

zation of the sample as a function of the applied true stress for each intercritical an-

nealing temperature. It can be seen that the saturated magnetization in each sample

remained constant until the yield stress was attained. After yielding, the martensite

transformation occurred readily in the samples annealed at 780◦C and 760◦C while

the sample annealed at 740◦C showed very little transformation even after yielding.

Because the magnetization did not change during elasticity, it can be concluded that

no stress-induced transformation occurred.

The evolutions of the austenite volume fraction as calculated from magnetization

measurements on each sample were used to fit the parameters of an Olson-Cohen

model [51]

fα+α′ = 1− exp(−β(1− exp(−αǫp)n) (5.1)

where the α parameter is related to both the number of shear bands and the stacking

fault energy of the austenite, β accounts for the probability of a martensite nucleus

to form, which is in turn defined by the driving force for the phase transformation.

The exponent n is usually considered a material constant, and in the current case is

fixed at 2 because the nominal composition of the steel does not change. Perhaps

surprisingly, the model can be fit to the measured austenite volume fraction change

fairly well even when strain localizations are present as can be seen in Figure 5.12.

This provides a set of effective Olson-Cohen parameters, given in Table 5.2, that

are valid in a macroscopic sense for a given microstructure and austenite stability.

Estimations of the martensite start temperature, MS , obtained from ThermoCalc are

also provided in Table 5.2.
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FIGURE 5.12: Experimental transformation rates of retained austenite
in alloys annealed at 740◦C, 760◦C, 780◦C (symbols), fit with a stan-

dard Olsen-Cohen model (dashed lines).

TABLE 5.2: Macroscopic Olson-Cohen Parameters

TIA(
◦C) α β n MS(

◦C)

740 6 0.3 2 -7.5

760 15 1.2 2 26

780 18 1.9 2 58

5.4 Effect of Strain Rate on TRIP

Because materials exhibiting PLC typically have a negative strain rate sensitivity

[35, 89], tensile tests were conducted at several strain rates to observe whether this

is the case for these steels. Strain rates of 10−4s−1, 10−3s−1, and 10−2s−1 were used

on samples from each intercritical annealing temperature and with in-situ magnetic

measurements showed some interesting results. The data is not easily interpreted,

however, as the presence of strain bands modifies the true strain rate seen by the ma-

terial through the localization of the strain in a much smaller volume than if plastic-

ity occurred homogeneously. As such, trends in behavior with respect to strain rate

need to be considered with the knowledge that the presence of strain localizations

can increase the strain rate by 20 to 30 times the imposed value, as demonstrated

previously in Section 5.1.

In samples annealed at 740◦C, the strain hardening in tension was identical for

all three strain rates, as seen in Figure 5.13. The true stress–true strain curves over-

lapped perfectly, with the only difference being a decrease in total elongation for the

sample strained at 10−2s−1. This finding is reflected in the transformation kinetics

as measured via the saturated magnetization and normalized by the initial retained
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FIGURE 5.15: The samples annealed at 760◦C and strained at
10−4s−1, 10−3s−1, and 10−2s−1 showed that the type of PLC observed
changes with the strain rate. At the slowest strain rate, serrations in
the stress strain curve suggest random PLC while at 10−3s−1 the ser-
ration amplitude is diminished. At 10−2s−1, no noticeable PLC was

observed.

5.5 Strain Rate Sensitivity

The strain rate sensitivity of steels can be measuring using strain rate jump tests in

which the strain rate is suddenly increased. Tensile tests during which the strain rate

was alternated between 10−4s−1 and 10−2s−1 were performed with in-situ magnetic

measurements to determine the strain rate sensitivity of the steel as a function of

both strain and retained austenite fraction. This was done to determine whether

the negative strain rate sensitivity originated from a solute effect in the austenite

(and, if so, the SRS should go towards 0 as the austenite fraction decreased) or from

the phase transformation itself (in which case the SRS could either remain constant

until the transformation is completed or could decrease progressively with austenite

content).

One of the primary goals of these experiments was to compare them against

other experiments with DIC in which strain rate jumps were performed. These ex-

periments have been performed for anneals at 740◦C and 760◦C, but a complete

analysis is not yet finished. Initial results are inconclusive–in a sample annealed at

740◦C no PLC bands were observed during the period at high strain rate.

In a sample annealed at 740◦C submitted to strain rate jumps, it was observed

that the work hardening was significantly higher than at constant strain rates of

either 10−4s−1 or 10−2s−1, as seen in Figure 5.17. This corresponded to a series of

sharp increases in the ferromagnetic volume fraction at the moment of the strain rate

acceleration, indicating a burst of transformation that surpassed the transformation

rates of either sample strained at a constant strain rate. This is shown in Figure 5.18
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FIGURE 5.18: Example of a strain rate jump in a sample annealed
at 740◦C with in-situ magnetic measurements of the retained austen-
ite volume fraction. When the strain rate is accelerated, a burst of
martensite transformation occurs. No transformation occurs there-

after until the strain rate is decelerated and plasticity continues.

The sample strained at 760◦C showed a similar trend, shown in Figure 5.19, with

a much higher work hardening rate when strain rate jumps were performed than

in the cases with a constant strain rate. The transformation rate curves showed that

there were the same bursts of transformation associated with the strain rate jumps,

however this time they seemed to coincide with the deceleration rather than acceler-

ation as seen in samples annealed at 740◦C or 780◦C. An illustration of this behavior

is provided in Figure 5.20. While the transformation rate in the sample that under-

went strain rate jumps is between that of the two constant strain rates, the work

hardening in the tensile curves suggest that it is in fact higher than either of the two

other samples. This discrepancy could be due to the fact that only one sample was

used at each temperature.

The sample annealed at 780◦C exhibited decreased work hardening as the strain

rate was increased from 10−4s−1 to 10−2s−1, as seen in Figure 5.21. The sample upon

which strain rate jumps were performed seemed to show the same behavior as the

sample strained at a constant strain rate of 10−4s−1, though the transformation rate

was higher when strain rate jumps were performed than without jumps. In this

case, as is shown in Figure 5.22, a burst of martensite transformation is observed

when the strain rate is accelerated much like the sample annealed at 740◦C. The

transformation rate at 10−2s−1 was much lower than at 10−4s−1. This could be once

again a statistical effect of the small sample size, or it could indicate an effect of adi-

abatic heating due to higher strain rate and consequent stabilization of the retained

austenite.

When analyzing the strain rate sensitivity, two different sensitivities were mea-

sured: the instantaneous sensitivity, mi, and the steady state sensitivity, mss. The

calculation of these terms was explained previously in Chapter 4. Both descriptions

of the SRS were plotted as a function of strain and of the retained austenite volume

fraction (for samples upon which magnetic measurements were made).
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FIGURE 5.23: Instantaneous strain rate sensitivity for strain rate
jumps from 10−4s−1 to 10−2s−1. The SRS was constant and positive
for all samples. A, B, and C in the legend entries denote individual

samples.

The instantaneous sensitivity, as can be seen in Figure 5.23, was positive and con-

stant over the course of the tensile tests for all intercritical annealing temperatures.

This is a typical result and was expected. However, there was perhaps a slight de-

crease of mi with strain in samples annealed at 780◦C. More data would be needed

to determine if this effect is real or simply a statistical anomaly.

It was observed that the steady state SRS, mss, shows different trends depend-

ing on the point at which mss is evaluated. If mss is calculated 0.002mm/mm after

the stress peak at the moment of acceleration, it can be seen in Figure 5.24a that

m0.002
ss is constant and slightly positive. However if it is evaluated 0.005mm/mm

after the peak or in the middle of the period of higher strain rate deformation (about

0.02mm/mm after the stress peak), the trends are different. In Figure 5.25a, m0.005
ss is

still more or less constant with greater dispersion and is centered around 0. When

mss is calculated at the middle of the high strain rate period, mmid
ss was initially

negative but gradually tended towards 0 as strain increased. The fact that three dif-

ferent trends can be obtained depending just on the point at which mss is calculated

demonstrates the need to check the calculation with a more global view than just

calculating a ratio at a single point.

When mss is considered as a function of the retained austenite volume fraction

rather than the macroscopic strain, the observed trends become more complicated.

It should be noted, however, that the small number of points obtained means that

these trends should be taken in a qualitative sense rather than quantitative as more

data is needed for the result to have a statistical meaning.

For m0.002
ss , the values remained positive and for samples annealed at 760◦C and

780◦C an increasing trend was observed for decreased austenite volume fraction.

The sample annealed at 740◦C showed the opposite trend, with m0.002
ss decreasing

with decreased retained austenite fractions.
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For m0.005
ss , it seems that the SRS is negative for small austenite fractions and

becomes positive linearly as the austenite fraction increases. This is the opposite of

what was expected for either possibility for the mechanism underlying the negative

SRS observed in this steel because it would imply that the austenite has a positive

SRS and that perhaps martensite has a negative SRS..

Finally formmid
ss , a similar trend to the one seen form0.005

ss is observed, but shifted

down to lower values. mmid
ss is negative for low austenite volume fractions and in-

creases somewhat linearly to 0 as the austenite volume fraction is increased. For

TIA values of 740◦C and 760◦C, mmid
ss increased towards 0 as the retained austenite

fraction decreased. For a TIA of 780◦C, mmid
ss decreased very slightly as the austenite

fraction was decreased. These trends seem to imply an effect of the composition or

grain size of the retained austenite on the SRS as these are the primary characteris-

tics that change with TIA. While the increase in SRS seems more or less linear with

decreasing retained austenite fraction, the slopes are not the same for each anneal-

ing temperature, which implies perhaps a difference due to the initial phase volume

fractions or some other microstructural parameter. If there was not an additional

effect, there should be no difference in the behavior from one annealing temperature

to another.

Because the location of the calculated mss had such a significant impact on the

trends observed for varying strain levels or retained austenite volume fractions, a

"continuous" SRS estimation was made using tensile curves for samples strained at

constant strain rates of 10−4s−1 and 10−2s−1. This is done to determine approxi-

mately what value of m is expected and thus determine which measurement point

for mss is most appropriate. The two curves were projected onto a common strain

axis and the difference in stress between the two used to calculate mcont as

mcont =
ln(∆σ)

ln(ε̇2/ε̇1)
(5.2)

This ratio mcont is plotted for each TIA in Figure 5.27. Interestingly, once the

Lüders band was completed, the SRS estimation was negative for all samples with

an annealing temperature of 780◦C giving the most negative result. In the samples

annealed at 760◦C and 780◦C, mcont began to increase slowly after a certain point.

This is perhaps related to the near-completion of the martensite transformation. The

sample annealed at 740◦C did not show this effect and it did not approach 100%

transformation of the retained austenite to martensite. The values of mcont thus ob-

tained seem to suggest that mmid
ss is the best method for assessing the strain rate

sensitivity as it is the one that gave distinctly negative values of the SRS as for mcont.
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FIGURE 5.27: Strain rate sensitivity as calculated using tensile data
with continuous strain rates of 10−4s−1 and 10−2s−1 for each inter-
critical annealing temperature. The approximate strain correspond-
ing to the end of the Lüders plateau is indicated in relevant samples.
The SRS is seemingly constant and negative in all cases, with perhaps
a slight increasing trend towards the end of the test in samples an-

nealed at 760◦C and 780◦C.



125

Chapter 6

Discussion

This chapter will seek to analyze in detail the results presented in the previous chap-

ter. First, the results obtained in samples showing homogeneous deformation are

considered. Next, a model will be described which will be used as a tool for inter-

preting the results obtained experimentally and which is parametrized using data

for samples which were annealed at 780◦C. This model will then be applied to ex-

amine the strain instabilities, changes in TRIP kinetics with both TIA and ǫ̇, and the

strain rate sensitivity. The Lüders strain is analyzed and is correlated with the de-

gree of work hardening. Particular attention is paid to the presence or not of strain

instabilities and the relation of their presence to the kinetics of TRIP.

6.1 TRIP Kinetics when Deformation is Homogeneous

In order to determine the conditions for the appearance of strain instabilities, the

case when the strain is homogeneous must first be understood. This section will an-

alyze the samples annealed at 780◦C and determine how the transformation kinetics

change during TRIP with strain rate. The strain rate sensitivity will be analyzed

and compared to microstructural information obtained via the magnetic properties

of the samples.

The Olson-Cohen model, as presented in Chapter 2, uses three parameters to

describe the transformation kinetics in TRIP steels. The parameter α is defined by

the probability of a nucleation site to form a martensite nucleus, and is as such de-

pendent on the stability of the retained austenite. A second parameter β is related

to the rate of generation of nucleation sites at the intersection of shear bands and

is thus a function of the mechanical properties of the retained austenite. Finally

the parameter n is based on composition and is fixed at 2 for all samples which

has been shown to be an appropriate value for multiphase TRIP steels [90]. The

Olson-Cohen model could, as suggested in Chapter 5, provide some insight into

the changes in kinetics for different intercritical annealing temperatures. Figure 6.1

provides Olson-Cohen fits for samples annealed at 780◦C submitted to tensile de-

formation at 10−4s−1, 10−3s−1, and 10−2s−1. The corresponding parameters of the

Olson-Cohen model are provided in Table 6.1. Because in these samples there is

some initial thermal martensite from the quench, the transformation is considered
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FIGURE 6.1: Transformation kinetics in samples annealed at 780◦C
and strained at imposed strain rates of 10−4s−1, 10−3s−1, and
10−2s−1. The curves were fitted with the Olson-Cohen model, using

the parameters provided in Table 6.1.

TABLE 6.1: Olson-Cohen Parameters for TIA = 780◦C

TIA(
◦C) ǫ̇(s−1) α β n ǫpre

10−4 18 1.9 2 0.02
780 10−3 10 3.9 2 0.025

10−2 7.2 1.9 2 0.05

to be partially complete. During the formation of thermal martensite, it is likely that

a large number of dislocations were created in the austenite, increasing the num-

ber of nucleation sites available for transformation. To account for this, a pre-strain

factor was added to the Olson-Cohen model such that the amount of transformed

austenite present in the initial microstructure predicted by the model was about the

same level as predicted in Chapter 3 (roughly 20 vol%). This parameter is given as

ǫpre in Table 6.1 and the new formulation of the Olson-Cohen model is

fα′ = 1− exp
(

− β[1− exp(−α(ǫ+ ǫpre)]
n
)

(6.1)

It should be noted that for the sample strained at 10−3s−1 (for all TIA) it was nec-

essary to pause the tensile test at regular intervals so that magnetic data could be

saved to disk and the acquisition restarted. This resulted in stress relaxation during

these pauses and slight overshoots of the flow stress upon reloading as was seen in

Figure 5.14b. This resulted in increased work hardening and a higher rate of trans-

formation, perhaps due to the additional mechanical energy input during yielding

when reloading the sample. The samples at 10−3s−1 will then not be included when

analyzing trends in Olson-Cohen parameters as the resulting behavior is not the

same as the other samples.

The parameters in Table 6.1 show that when the strain rate is changed from

10−4s−1 to 10−2s−1, β remains the same but α decreases by more than half. If the

hypotheses made by Olson and Cohen [51] are correct, then this would indicate that

martensite nucleation sites were generated at the same rate, but that the probability
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of the formation of a martensite nucleus decreased with strain rate.

The kinetics of the martensite transformation are typically not strain-rate sensi-

tive [91], so it is unlikely that the change in the Olson-Cohen parameters would be

directly due to the increased strain rate. However, TRIP is temperature sensitive and

the adiabatic heat generated at higher strain rates could reduce the transformation

rate. In the samples annealed at 780◦C, the transformation kinetics for a strain rate

of 10−3s−1 are difficult to interpret as previously mentioned. However, the trans-

formation rate slows significantly when the strain rate is increased from 10−4s−1 to

10−2s−1.

The idea that the TRIP kinetics are slowed because of adiabatic heating is fairly

well supported in the literature. It has previously been shown that increasing the

strain rate can increase the temperature of the sample to such a level that the kinetics

of the martensite transformation are affected [92–95]. This was demonstrated by

Choi et al. for example, as shown in Figure 6.2 [95].

As can be seen in Figure 6.3, simulations including a small change in sample tem-

perature showed a significant effect on the work hardening rate in a 304 austenitic

stainless TRIP steel when the sample temperature increases via adiabatic heating.

This observation is confirmed by the experimental results of Choi et al. on a duplex

stainless TRIP steel [95]. They reported that the loss of work hardening was due to

reduced TRIP from a combination of adiabatic heat and changes in strain partition-

ing between ferrite and austenite with strain rate. Figure 6.2 shows that an increase

in strain rate from 10−3s−1 to 10−2s−1 resulted in an increase in sample tempera-

ture from 44◦C to 99◦C and the complete disappearance of the TRIP effect due to

austenite stabilization at higher temperature.

These results seem to support the idea that the macroscopic strain rate sensitiv-

ity observed in the samples annealed at 780◦C is due to a reduction in the work

hardening rate provided by TRIP.

Assuming then, that the reduction in transformation rate is indeed due to an

increase in sample temperature due to adiabatic heating and a consequent stabi-

lization of the retained austenite, the parameters of the Olson-Cohen model can be

explained. While the rate of generation of nucleation sites does not vary significantly

with strain rate, the stabilization of austenite via adiabatic heat reduces the proba-

bility of transformation on an existing nucleation site. Revisiting the variations in

model parameters with testing temperature as defined by Olson and Cohen [51]–

which were previously presented in Chapter 2 and are now reused in Figure 6.4–the

invariance of β is logical because the Ms temperature of the samples annealed at

780◦C is about 58◦C, so it is probable that ambient temperature falls in the flat re-

gion to the left of the curve for β. Additionally, if adiabatic heating were to increase

the temperature, Olson and Cohen suggest that α should decrease. These expecta-

tions are perfectly in line with the parameter values obtained, so it seems that the

assertion that adiabatic heat is responsible for the negative strain rate sensitivity in

samples annealed at 780◦C is well-founded.
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FIGURE 6.2: Experiments by Choi et al. [95] showed that the tem-
perature increase due to adiabatic heating at high strain rates has a
significant effect on the work hardening capacity of a duplex stain-

less TRIP steel.
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FIGURE 6.3: Simulations performed by Yoo et al. [93] showed that the
slight increase in sample temperature with increasing strain rate has
a significant effect on the kinetics of TRIP through a reduction of the
uniform elongation when no transformation occurs to delay necking.

FIGURE 6.4: Trends in the parameters of the Olson-Cohen model with
respect to deformation temperature support the hypothesis that adi-
abatic heat is responsible for the negative SRS observed in samples

annealed at 780◦C

.
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In order to better understand the observed mechanical behavior of these steels

with respect to the martensite transformation rate during TRIP in each, a simple

model was constructed and calibrated using the data from samples annealed at

780◦C as a baseline.

6.2 Model of Macroscopic Mechanical Behavior

The results obtained in this study provide an almost purely macroscopic descrip-

tion of the mechanical behavior of the steel. However, to understand the effects of

microstructure, intercritical annealing temperature, retained austenite stability, and

strain rate on the kinetics of TRIP or on the presence of Lüders or PLC bands, some

knowledge of the micromechanical behavior of each phase is needed.

The physically-based models often used by metallurgists with hardening laws

based on dislocation interactions are often poorly adapted for the sub-micrometric

grain sizes seen in the UFG Medium Mn steel studied here. As such, a simple numer-

ical model based on Voce hardening laws was developed to use not as a predictive

tool, but as a means of understanding some of the trends observed in the mechanical

behavior of this steel. This section will describe the model and the determination of

its parameters.

6.2.1 Behavior Laws

In this steel, the vast majority of the work hardening comes from the martensite

transformation. This was observed in the previous chapter, for example, in sam-

ples annealed at 780◦C or 740◦C. The stark difference in transformation rate led to

drastically different amounts of work hardening. If, then, it is assumed that TRIP

is the primary contributor to work hardening, a simple mechanical model with lit-

tle hardening in the ferrite and austenite phases can be used. This assumption is

reasonable, as it has been demonstrated previously that dynamic recovery of dislo-

cations by absorption into grain boundaries severely limits work hardening when

the grain size is very small [96]. The ferrite, austenite, and martensite phases were

thus modeled with Voce laws such that the elasto-plastic transition was relatively

rapid and hardening in the ferrite and austenite were low:

σi = σy + σs(1− e−mǫ) (6.2)

where σy is the yield stress of the phase i, σs is the saturation value of the stress

used for work hardening, and m is a strain hardening exponent. The values of these

parameters could then be used, for example, to modify the relative strengths of each

phase and observe the effect on the phase transformation. The yield stress σy was
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calculated using the phase compositions as determined by ThermoCalc using the

expression

σy,α = 52 + 33CMn (6.3)

for the ferrite [97],

σy,γ = 228 + 187Cc − 2CMn (6.4)

for the austenite [98], and

σy,α′ = 800 3
√

Cc + 33CMn (6.5)

for the martensite [99]. As such, the behavior of the composite of all the phases

is then determined by the chemical composition of each phase and the TRIP effect.

The determination of the parameters σi andmi will be described in Section 6.2.2. The

macroscopic behavior is obtained using a mixture rule with the iso-work hypothesis.

Iso-work assumes that the mechanical work performed by each phase in equivalent

(rather than the stress or the strain in each phase) and has been shown to be effective

in modeling multi-phase steels [97, 100]:

ΣdE = σαdǫα = σγdǫγ = σα′dǫα′ (6.6)

where σi and dǫi are the stresses and strain increments in each phase and Σ andE are

the macroscopic stress and strain. The transformation kinetics were implemented

using the Olson-Cohen model described in the previous section.

This model then relies on the Olson-Cohen parameters α and β, the saturated

stresses in each phase i, σs,i and exponents mi from the Voce hardening laws, the

phase volume fractions, and their chemical compositions. The Olson-Cohen param-

eters were obtained by fitting experimental data for each intercritical annealing tem-

perature and strain rate. The Voce parameters σs and m were adjusted for each

phase to fit experimental tensile results. The volume fractions used are obtained

via magnetization measurements and, in the case of thermal martensite, estimations

made considering SEM images and XRD measurements as well. The initial volume

fractions of each phase used for each temperature are presented in Table 6.2.

The martensite volume fraction, when thermal martensite is present, is estimated

based on ThermoCalc estimations made by ArcelorMittal and magnetic measure-

ments of the ferromagnetic volume fraction. The ThermoCalc estimations suggest

that at TIA, the retained austenite fraction increases with annealing temperature but

after a certain point it destabilizes. As such, the sample annealed at 780◦C should

have less ferrite than a sample annealed at 760◦C. The measured retained austenite

volume fraction is then used to estimate the ferrite and martensite volume fractions.
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TABLE 6.2: Initial Phase Volume Fractions Used in Model

TIA(
◦C) ǫ̇(s−1) α γ α′

10−4 0.68 0.32 0.00
740 10−3 0.70 0.30 0.00

10−2 0.70 0.30 0.00

10−4 0.72 0.28 0.00
760 10−3 0.70 0.30 0.00

10−2 0.67 0.33 0.00

10−4 0.59 0.21 0.20
780 10−3 0.59 0.21 0.20

10−2 0.63 0.17 0.20

TABLE 6.3: Values of Ms and CMn for Each TIA

TIA(
◦C) Ms(

◦C) CMn,α CMn,γ

740◦C -7.5 0.0310 0.0829
760◦C 26 0.0315 0.0775
780◦C 58 0.0319 0.0727

The chemical composition of the phases affects the mechanical behavior and re-

tained austenite stability. While the Olson-Cohen model does not directly use com-

position as an input (though the parameters can vary with respect to SFE, which

is composition dependent), the effect of composition on the yield stress of each

phase will have an effect in that the austenite will be more or less hard and thus

make a smaller or larger contribution to mechanical work as defined in Equation

6.6. If the austenite is softer, it will undergo more strain and transform more rapidly

through an accelerated generation of nucleation sites whereas the opposite is true if

the austenite is very hard. The same ThermoCalc results that provided estimations

of theMs temperature of each alloy were used to obtain an accurate estimation of the

manganese concentration in the ferrite and austenite for each intercritical annealing

temperature. These are presented in Table 6.3 .

6.2.2 Determination of Model Parameters for TIA =780◦C

The results of experiments in which in-situ magnetic measurements were made were

fitted with an Olson-Cohen model with the parameters provided in Table 6.1. How-

ever concerning the Voce model, it was observed by modifying the yield stress and

saturation stress of the austenite that the martensite transformation rate is quite in-

sensitive to changes in the austenite’s behavior law. Increasing or decreasing the

yield stress significantly did not change the transformation kinetics much due to the

already rapid transformation as measured for this annealing temperature. Thus, a

first approximation of the Olson-Cohen parameters can be made without any con-

sideration of the mechanical behavior of the retained austenite and then fine-tuned

as the macroscopic mechanical behavior is fitted to tensile data.
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TABLE 6.4: Voce Parameters for TIA = 780◦C

σy (MPa) σs (MPa) m (-)

Ferrite 135.0 250 10
Austenite 303.5 500 10

Martensite 931.0 5000 20

Once the Olson-Cohen parameters had been determined, the properties of the

Voce laws were fitted against tensile data. In this way, one can assure that the model

reproduces the same mechanical behavior and TRIP kinetics as observed experimen-

tally. The only parameters left to be fit then, since the yield stresses are determined

using Equations 6.3-6.5, are the saturation stresses σs,i and the exponents mi. The

experiments performed at strain rates of 10−4s−1 and 10−2s−1 on samples annealed

at 780◦C were used as a baseline to determine these hardening parameters. The

volume fractions of each phase are defined in Table 6.2.

Figure 6.5 shows the comparison of the model and the experimental data for

samples annealed at 780◦C and strained at 10−4s−1 and 10−2s−1 while the param-

eters of the Voce law for each phase are summarized in Table 6.4. The behavior of

each phase for both strain rates is provided in Figure 6.6. Notably, the yield stress of

the austenite is about 170 MPa higher than that of the ferrite. This seems counter to

the idea that when austenite is softer than ferrite, TRIP can begin immediately and

the work hardening is high enough to yield continuously. It is possible to fit the data

with the austenite at lower stress (eg. 100 MPa works), but there is no physical rea-

soning (to the best of the author’s knowledge) to justify such a change that warrants

ignoring Equation 6.4.

It was seen that the level of work hardening observed in tensile experiments was

not obtainable purely from the progressive addition of martensite via TRIP (with

martensite and ferrite taken as perfectly plastic). As such, a small degree of work

hardening was permitted in the ferrite and austenite, but small enough that the

TRIP effect is still responsible for the gross majority of hardening. The martensite

was also allowed to harden, but the parameters were defined such that it hardened

very rapidly to simulate a predominantly elastic deformation. From the calibration

process on samples annealed at 780◦C it can be seen already that a simple change in

transformation kinetics (and use of measured initial phase volume fractions) allows

the model to fit the data for strain rates of 10−4s−1 (A) and 10−2s−1 quite well, as

was shown in Figure 6.5.

6.3 Strain Localizations

In Chapter 5 the characteristics of the strain bands observed in samples annealed at

740◦C and 760◦C were quantified. The band widths, propagation velocities, strain

increment within the band, and strain rates in the bands seemed to indicate that

the first band that occurs at yielding is different from the subsequent bands. The







136 Chapter 6. Discussion

width of the first band was significantly smaller than those of the subsequent bands,

the propagation velocity was distinctly different, and—for the sample annealed at

740◦C—the strain increment and strain rate in the bands changed significantly be-

tween the first band and the following ones. It seems clear then, that the first band

and the subsequent bands are the result of two different phenomena: an initial

Lüders band at yielding followed by a PLC-type behavior during plasticity. This

section will provide an analysis of both types of bands and the variations in band

character that occur for different TIA or strain rate.

6.3.1 Lüders Bands

The presence of Lüders bands was observed in all samples annealed at 740◦C and

760◦C, while those annealed at 780◦C did not have any form of yield point elon-

gation. This was shown with DIC spatiotemporal graphs in the previous chapter

where the strain increment between images is plotted. The presence or not of strain

bands has yet to be explained in the literature. Some have suggested that it is a

true Lüders band that propagates through the ferrite matrix due to either a Cottrel

dislocation-pinning effect [23, 101] or a grain size effect where dislocations are ab-

sorbed into grain boundaries and which can be overcome through the formation of

a bimodal grain size [96]. This section will seek to analyze the Lüders bands through

the use of both experimental data and the model developed in the previous section.

In the samples annealed at 740◦C and 760◦C, the observed Lüders bands differed

in the magnitude of the Lüders strain and showed some variation with strain rate.

Interestingly, the Lüders strain increased with strain rate in the sample annealed at

740◦C, but decreased with strain rate for samples annealed at 760◦C, as can be seen

in Figure 6.7.

In materials exhibiting the Lüders phenomenon, the Lüders strain has previously

been shown to increase with increasing strain rate in mild steel [102], so the result

for intercritical annealing at 740◦C is expected. The decrease in Lüders strain with

increasing strain rate for samples annealed at 760◦C, however, suggests an effect

of TRIP on the Lüders band. It has been shown previously that TRIP can decrease

the Lüders strain by increasing the work hardening rate at the lower yield stress

[103], which seems to be the case here. In the previous chapter it was shown that

in samples annealed at 760◦C there is a burst of martensite transformation as the

Lüders band passes, which could result in high local hardening and affect the Lüders

strain.

Considering the sample annealed at 780◦C, the presence of thermal martensite

in the initial microstructure could result in sufficient hardening to avoid the appear-

ance of the Lüders band, in particular because the thermal transformation is homo-

geneous rather than localized in a specific area.

A study by Tsuchida et al. [27] compiled data for various steels with yield point

elongations and was able to correlate the work hardening rate at the lower yield



6.3. Strain Localizations 137

FIGURE 6.7: Observed Lüders strain plotted as a function of the ap-
plied strain rate for samples annealed at 740◦C and 760◦C. The Lüders
strain increased with increasing strain rate for samples annealed at

740◦C, but decreased for 760◦C.

stress to the Lüders strain. They used a Holloman law to fit tensile data and calculate

the work hardening rate at the lower yield stress by

dσ

dε
= Kn

(σLY S

K

)
n−1

n (6.7)

where σLY S is the true stress at the lower yield stress andK and n are the parameters

of the Holloman law. This methodology was applied to the steels studied here and

added to Tsuchida’s compilation of results in Figure 6.8. As can be seen in the figure,

the current results do not quite fit with Tsuchida’s analysis. However, the work

hardening rate measured is that of the macroscopic sample.

Lüders bands often occur in ferritic steels, so perhaps the work hardening rate

needed here is that of the ferrite. If the ferrite is softer than the retained austenite,

then the initiation of yielding in ferrite could take the form of a Lüders band that

passes through the other phases without significantly straining them beyond what

is necessary to accommodate the strain the the ferrite, as suggested by Gibbs et al.

[104]. An estimation of the work hardening rate in the ferrite was made by multi-

plying the calculated work hardening by the ratio of the stress in the ferrite to the

macroscopic stress at yielding (which maintains the Iso-Work assumption used in

the model). The model estimated this ratio to be about 0.251 for annealing at 740◦C

and 0.223 for annealing at 760◦C. The data from the current study then shifts to the

left and superimposes with Tsuchida’s data, as seen in Figure 6.9. This suggests,

then that the Lüders bands observed in Medium Mn steels could indeed be due to

static strain aging in the ferrite.

If the Voce parameters for TIA =780◦C are now used as a starting point for the

parameters at 760◦C and strained at 10−2s−1, the model can be tested in a case with
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FIGURE 6.8: The Lüders strains and work hardening rates at the LYS
for the Medium Mn TRIP steel studied here were superimposed on
Figure 6 from [27] in which similar results are compiled for various

different steels with Lüders bands.

FIGURE 6.9: If the work hardening rate calculated for the current
samples is multiplied by the ratio of the stress in the ferrite to the
macroscopic stress at yielding, the results are in perfect agreement

with those of Tsuchida et al.
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TABLE 6.5: Olson-Cohen Parameters

TIA(
◦C) ǫ̇(s−1) α β n

10−4 6 0.3 2
740 10−3 6 0.3 2

10−2 8 0.15 2

10−4 15 1.2 2
760 10−3 13 1.6 2

10−2 17 1.9 2

10−4 18 1.9 2
780 10−3 10 3.9 2

10−2 7.2 1.9 2

a Lüders band but without PLC. The homogeneous deformation after the passage

of the Lüders band in this sample makes it ideal to test how the behavior is affected

by the presence of a Lüders effect. If the hardening laws for each phase are held

constant and only the Olson-Cohen parameters are modified according to the fit-

ted values in Table 6.5, the mechanical behavior for this sample requires 100MPa

to be added to the macroscopic stress of the mixture in order for the model to fit

the experimental data. The ability to fit the data in this case by simply shifting the

stress-strain curve upwards supports the idea of static strain aging as the culprit for

the Lüders band, as static strain aging would increase the stress needed for the onset

of plasticity by inhibiting dislocation motion.

When the same approach is used for samples that deform heterogeneously–for

anneals at 760◦C and 740◦C at all strain rates except for the sample annealed at 760◦C

and strained at 10−2s−1–the additional stress needed to fit experimental data in-

creased. In the samples annealed at 740◦C, the additional stress needed was 300MPa

and for samples annealed at 760◦C 400MPa was needed. Comparing the Olson-

Cohen parameters for these samples with those that deformed homogeneously, the

strain hardening from TRIP was reduced. The difference in the additional stress

needed to account for static strain aging is perhaps due to the presence of dynamic

strain aging, so a solute effect that pins dislocations and results in PLC bands.

Thus, in the case where Lüders bands are present it seems that the work hard-

ening does not change, but a static strain aging effect is present that artificially in-

creases the yield stress before returning to the normal behavior. The stress needed to

fit experimental data when there is PLC is higher than when no PLC occurs. The fits

for intercritical anneals at 740◦C and 760◦C are presented in Figures 6.10 and 6.11.

Up to this point, it seems to be clear that a relatively high work hardening rate

is needed if the length of the Lüders plateau is to be reduced. If the steel hardens

more quickly, the unpinning stress can be attained for a smaller strain increment and

the Lüders strain is reduced. Results obtained by [96] and [25] show that a second

intercritical anneal can also greatly reduce the Lüders strain through the modifica-

tion of grain morphology. Han proposed that a larger ferrite grain size increased

the propagation velocity of the Lüders band and limited dynamic recovery in grain
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TABLE 6.6: Voce Parameters for TIA = 740◦C

σy (MPa) σs (MPa) m (-)

Ferrite 122.0 250 10
Austenite 334.5 500 10

Martensite 1006.3 5000 20

TABLE 6.7: Voce Parameters for TIA = 760◦C

σy (MPa) σs (MPa) m (-)

Ferrite 140.4 250 10
Austenite 316.4 500 10

Martensite 967.8 5000 20

boundaries that is observed in UFG microstructures. Thus, work hardening is in-

creased in the ferrite which could reduce the Lüders strain. In Steineder’s work, the

second anneal results in a modification of the grain morphology of both phases in

forming a more lamellar than globular microstructure. Steineder suggested that this

change in morphology allows dislocation cells to form and thus permits more work

hardening than is possible with UFG globular microstructures. Thus, the explana-

tions for the reduction of the Lüders strain after a second anneal are also based on

work hardening, reinforcing the assertion that control of the work hardening rate at

the onset of plasticity plays an important role in controlling the Lüders strain.

6.3.2 Portevin-Le Châtelier Bands

Once the Lüders band has completely traversed the sample’s tensile length, plas-

ticity continued through the nucleation and propagation of a series of subsequent

strain bands that were either propagative or random depending on the intercritical

annealing temperature and strain rate. In general, the samples annealed at 740◦C

and 760◦C showed a PLC effect, while the sample annealed at 780◦C showed no

PLC effect with the only exception being the sample annealed at 760◦C and strained

at 10−2s−1 which did not have PLC. Several other authors have shown that PLC is

present in Medium Mn TRIP steels within a certain range of intercritical annealing

temperatures [13, 23, 24, 105], however no consensus on the origin of the effect has

been established.

To demonstrate that the strain instabilities that occur over the course of plas-

tic deformation are indeed a PLC effect, the characteristics of the band were com-

pared to those measured on PLC bands in TWIP steels and solution-strengthened

aluminum alloys. Notably, the previous chapter provided measurements of the band

width, propagation velocity, strain increment in the band, and the strain rate within

the band. This characterization will utilize primarily the results obtained for an an-

neal at 740◦C as the bands in this case were purely propagative and were able to

be reliably characterized. The PLC bands in samples annealed at 760◦C were much

more random, making it difficult to measure the propagation velocity accurately.
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FIGURE 6.10: Comaprison of the model to experimental data for a
sample annealed at 740◦C and strained at 10−4s−1 (A) with the Olson-
Cohen data fitted to magnetic measurement data (B) and the mechan-

ical behavior of each phase (C).
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FIGURE 6.11: Comparison of the model to experimental data for a
sample annealed at 760◦C and strained at 10−4s−1 (A) with the Olson-
Cohen data fitted to magnetic measurement data (B) and the mechan-

ical behavior of each phase (C).
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The propagation velocity is also needed to calculate the band width because the dis-

placement of the band between images needs to be taken into account. As such, the

PLC bands in the sample annealed at 760◦C are used only for the measured strain in-

crement in the band and strain rate in the band since these do not require knowledge

of the propagation velocity. They will also be discussed later when the difference in

PLC character (propagative versus random) and effects of strain rate on PLC are

analyzed.

The average band width of the PLC bands in samples annealed at 740◦C was

0.77mm, which was about 27% larger than the Lüders band which was 0.605mm in

width. Moreover, the average propagation velocity of PLC bands of 0.583mm/s was

53% larger than the 0.381mm/s measured for the Lüders band. The strain increment

in the PLC bands was more or less constant for both 740◦C and 760◦C at about 0.015,

perhaps increasing very slightly as the macroscopic strain increased. The strain in

the Lüders bands were significantly higher–about 0.04 for TIA = 760◦ C and 0.07

for TIA = 740◦ C–suggesting that the Lüders bands and PLC bands are indeed two

different phenomena.

In the literature [34, 35, 89], the band propagation velocity and strain rate in the

band are typically normalized by the imposed displacement rate and strain rate,

respectively. If this methodology is applied to the results presented in Figure 4.5c in

the previous chapter, they can be compared to published data for TWIP steels and

aluminum alloys. The band propagation has thus been normalized by the imposed

crosshead displacement speed and the strain rate in the band is normalized by the

initial imposed strain rate. These results are presented in Figure 6.12.

The same measurement of the normalized band propagation velocity was made

by both Zavattieri et al. [34] and Bian et al. [35], as presented in Figure 6.13. Us-

ing their data, it can be seen that in the two studies the normalized propagation

velocity decreased with strain at rates of about -1.25mm/s/% and -1.4mm/m/%,

respectively. Ait-Amokhtar [89] observed the same trend with a slope of about -

1.2mm/s/% for the transition zone between type A and type B PLC in an Al-Mg

alloy. This decreasing trend is observed in the current data as well, though the rate

of decrease of -0.82mm/s/% is quite a bit smaller. However, the studies to which the

current results are compared were performed on, respectively, a 0.6C-17Mn TWIP

steel, a 0.6C-23Mn TWIP steel, and an aluminum alloy. The chemical composition

and plastic deformation mechanism are significantly different in the current case, so

to find that the rate of decrease is within an order of magnitude of the published

values for such starkly different materials strongly suggests that the same type of ef-

fect is being observed. At the same time, that TWIP steel and Al have almost exactly

the same slope while the current TRIP steel has a smaller slope suggests that per-

haps either TRIP or the multi-phase microstructure has an effect on the propagation

velocity.

If the strain rate within the band is now considered, the average value of about

12 times the applied macroscopic strain rate is in good agreement with the values
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(A)

(B)

(C)

FIGURE 6.13: Published data by Zavattieri et al. [34] for a 0.6C-17Mn
TWIP steel (A), Bian et al. [35] for a 0.6-23Mn TWIP steel (B), and
Ait-Amokhtar et al. [89] for an Al-Mg alloy (C) showing a linearly
decreasing trend when the band propagation velocity in normalized
by the imposed displacement rate. Studies were performed on high-

Mn TWIP steels exhibiting PLC instabilities.
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FIGURE 6.14: The strain rate in PLC bands normalized by the applied
macroscopic strain rate and plotted as a function of the macroscopic

strain in a 0.6C-17Mn TWIP steel from [34].
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FIGURE 6.15: The strain components along the longitudinal (A),
transverse (B), and shear (C) components of a PLC band in a sam-
ple annealed at 740◦C and strained at 5 · 10−4s−1 from the current

study.
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(A)

(B)

FIGURE 6.16: Changes in type of PLC behavior observed in samples
annealed at 740◦C (A) and 760◦C (B) for different strain rates.

The samples annealed at 740◦C and strained at 5 · 10−4s−1, 10−3s−1, and 10−2s−1

showed clear "steps" in the tensile curves with relatively little serrations. However

in the sample strained at 10−4s−1, high frequency serrations are observed in be-

tween points where significant stress relaxations occur. This is more indicative of

type B PLC, much like in the samples annealed at 760◦C and strained at 5 · 10−4s−1

or 10−3s−1. The sample annealed at 760◦C and strained at 10−4s−1 showed very

intense serrations throughout the tensile test, with the amplitude of the serrations

decreasing with strain. No steps were observed in this sample. It is very interest-

ing that the stress amplitude of the serrations decreased with strain, as typically the

opposite is observed in PLC [41]. This could be explained by the decrease in re-

tained austenite volume fraction resulting in fewer interactions between solutes and

dislocations in the austenite. Finally, the sample annealed at 760◦C and strained at

10−2s−1 did not exhibit any PLC.

It is of interest to understand in what case PLC bands are expected to be observed

in Medium Mn TRIP steels. To that end, Figure 6.17 provides a map of the combina-

tions of macroscopic strain rate and martensite start temperature (Ms) as estimated
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FIGURE 6.17: Map of tensile tests performed at different macroscopic
applied strain rates for different intercritical annealing temperatures,

indicating the type of PLC bands observed, if any.

by ThermoCalc. Interestingly, as Ms increases for a given strain rate, it seems pos-

sible to transition from type A to B to C and finally to the disappearance of PLC. If

the intercritical annealing temperature is assumed to change the Mn content of the

austenite, then it could be reasoned that at low TIA there is relatively less manganese

in austenite and thus fewer C-Mn clusters to pin dislocation motion, making type C

PLC very difficult to obtain due to limited solute-dislocation interaction. With in-

creasing strain rate, the propagation of type A PLC bands is increasingly favored

over types B or C.

6.4 Strain Rate Effects on Tensile Behavior

6.4.1 Effect of Strain Rate on TRIP

Results of in-situ saturated magnetization measurements showed that there is a sig-

nificantly different rate of martensite transformation during TRIP for the three dif-

ferent intercritical annealing temperatures studied. This is often explained in the

literature as an effect of the stability of retained austenite [14, 15, 18]. However,

it is of interest to understand exactly how this difference in transformation kinet-

ics manifests itself, as austenite stability is not the only factor influencing it. It has

been shown that there is a correlation between the stability of retained austenite and

its stacking fault energy (SFE) [15], but there are also other micromechanical effects

such as stress/strain partitioning and the generation of martensite nucleation sites.

Beginning with the samples annealed at 780◦C since these samples did not ex-

hibit any sort of strain bands, it can be seen in Table 6.5 that α decreases with increas-

ing strain rate. The martensite transformation thus slows down when the strain rate

is increased as the probability of transformation decreases. The decrease in work
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hardening in these samples with increasing strain rate is thus a result of slower trans-

formation kinetics and seemingly not a strain rate sensitivity of the austenite. The

mechanism for the decrease in transformation probability is possibly by the increase

in sample temperature due to increased adiabatic heating as the strain rate increases.

This is supported by Figure 6.1 wherein the tensile data for strain rates of 10−4s−1

and 10−2s−1 are able to be reproduced by only changing the Olson-Cohen parame-

ters for the transformation kinetics.

If the austenite did soften with higher strain rate, plastic strain would become

more concentrated in the austenite and the transformation should speed up due

to an increase in the number of nucleation sites. If this were to occur, the harden-

ing provided by TRIP could likely compensate for the softening contributed by the

austenite.

In the samples annealed at 740◦C and 760◦C, the trend is less clear. In these sam-

ples, strain bands form and it was demonstrated in the previous chapter that the

strain rate in the band is significantly different from the applied strain rate. The con-

centration of strain in a band could also concentrate the adiabatic heat in the band as

there is less volume deforming and less surface available for heat dissipation while

a given point in the sample is being deformed. Nonetheless, it is interesting to note

that for both intercritical annealing temperatures, α shows a minimum for a strain

rate of 10−3s−1 and β shows a maximum. So for intermediate strain rates, it seems

that the probability of transformation decreases while the number of nucleation sites

increases.

Interestingly, the transformation rate curves for anneals at 760◦C and 780◦C for

a strain rate of 10−2s−1 are superimposed as can be seen in Figure 6.19c. This points

out a limitation in the use of a pre-strain factor in the Olson-Cohen model in that

because the beginning of the curves do not superimpose with this addition, it is

difficult to assert that the transformation rates are truly the same. At the same time,

the fact that the transformation is partially completed must be taken into account,

so this limitation will have to be accepted unless a model that can better account for

the difference in initial nucleation sites is used.

Perhaps the most important result of this study was shown in Figure 5.10 in the

previous chapter. In this figure it can be seen that the same steps that appear in

the tensile curves for samples annealed at 740◦C and 760◦C appear in the retained

austenite volume fraction data as well. The presence of these bands in both data

sets strongly suggests that the martensite transformation and passage of Lüders or

PLC bands are in fact coincident. This confirms the results of Sun et al. [105] who

used ferritescope data to demonstrate that the TRIP effect occurs with the passage

of strain bands. The current study improves upon the accuracy of the austenite

fraction measurements by the correction of localization and magnetoelastic effects,

but sacrifices a local strain measurement to do so.

The coincidence of the two phenomena raises the question of whether the TRIP

effect is induced by the strain increment associated with PLC bands, or whether the
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(A)

(B)

(C)

FIGURE 6.18: Comparison of experimental data and the Olson-Cohen
model for each strain rate in samples annealed at 740◦C (A), 760◦C

(B), and 780◦C (C).
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(A)

(B)

(C)

FIGURE 6.19: Comparison of experimental data and the Olson-Cohen
model for each annealing temperature in samples strained at 10−4s−1

(A), 10−3s−1 (B), and 10−2s−1 (C).
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local stress/strain incompatibilities generated during TRIP can lead to the nucle-

ation of a strain band. In reality, it is likely a combination of both. There seems to

be either a solute or grain size effect given the behavior of the sample annealed at

740◦C and strained at 10−2s−1 wherein clear propagative PLC bands are observed

over the course of the tensile test, but very little martensite transformation occurs

aside from a small burst during the passage of the Lüders plateau. At the same time,

the PLC bands are observable over the entire course of tensile tests even in samples

annealed at 760◦C which transform relatively quickly and contain less than 10 vol%

austenite by the time 10-15% strain is attained. Perhaps, then, the stress relaxation

that occurs when the martensite transformation occurs allows neighboring grains

to soften as well, resulting in a sort of chain reaction where neighboring austenite

grains can be made to transform due to localizations around a freshly-transformed

martensite block. If the retained austenite transformed in small blocks rather than

entire grains with each passage of a band–that is, if grains are partially transformed

and thus grain size reduced–the stabilizing effect resulting from decreased grain size

would increase the stress needed to transform the rest of the grain. Once that stress

is attained, a relaxation would occur as the transformation happens similarly to the

increase in stress and subsequent relaxation that occurs with dislocation unpinning

in traditional dynamic strain aging. This is exceedingly difficult to prove defini-

tively given the fact that the transformation is instantaneous, but could be possible

using a combination of EBSD and micro-DIC to determine whether the transforma-

tion occurs grain-by-grain or in blocks and how the austenite grain size distribution

evolves with increasing strain.

A study by Steineder et al. [25] showed that the single-parameter Ludwigson-

Berger model for TRIP kinetics can be used to demonstrate that Lüders bands are

observed only beyond a critical parameter value. This method was applied here to

determine if PLC bands also occurred for a certain critical transformation rate. The

Ludwigson-Berger model is written as

1

Vγ
− 1

Vγ,0
=
K

p
ε (6.8)

where Vγ is the retained austenite volume fraction and K and p are fitted parame-

ters. For TRIP steels, p is taken as 1, so that K becomes the only parameter needed

to fit the transformation kinetics. This model was applied to all of the samples to

which the Olson-Cohen model was applied previously. In Figure 6.20 it can be seen

that while there is not a distinct value of K that provides a limit between samples

with and without PLC, there is seemingly a transition zone between K = 40 and

K = 50. Between these values, the samples annealed at 760◦C and 780◦C strained at

10−2s−1 (which did not exhibit PLC) appear as well as the sample annealed at 760◦C

strained at 10−3s−1 (which showed type B PLC). Otherwise, samples with K < 40

exhibited PLC while those with K > 50 did not. It is unclear if a critical value of K
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FIGURE 6.20: Comparison of experimental data and the Ludwigson-
Berger model for each intercritical annealing temperature and strain
rate. Only the parameter K is fitted to experimental data. Annealing
temperatures of 740◦C, 760◦C, and 780◦C are represented by blue,

green, and red curves respectively.

exists for the presence of Lüders bands as was the case in [25] because the sample an-

nealed at 780◦C and strained at 10−2s−1 overlaps with the sample annealed at 760◦C

and strained at 10−3s−1 due to its reduced transformation rate at higher strain rate.

Nonetheless, there is a definitive transition where above a certain value of K there

is no longer any PLC. This transition seems to occur between K = 40 and K = 44.

6.5 Strain Rate Sensitivity

The strain rate sensitivity (SRS) of the steel was assessed at three different points

after strain rate jumps from 10−4s−1 to 10−2s−1: 0.002 strain after the acceleration,

0.005 strain after the acceleration, and at the midpoint of the high strain rate period

about 0.02 strain after acceleration. These three methods gave results on the same

order of magnitude, but different enough to demonstrate that the point at which SRS

is measured is critically important. Notably, the measurements made 0.002 strain

after the strain rate jump gave positive values, while those made 0.005 strain after

the jump were centered around 0 and finally the measurements at the midpoint of

the high strain rate period were negative. The results were compared to [35] for SRS

measurements on TWIP steel exhibiting PLC, whose results are presented in Figure

6.21.

In the figure it can be seen that the steady state SRS mss was about -0.005 and

remained negative and approximately constant throughout the experiments. The

values reported do not agree with the values obtained here at 0.002 or 0.005 strain

after the strain rate jump. However when mss is calculated at the midpoint of the

highs train rate period, the initial value of about -0.005 is very close to the measure-

ments made by Bian et al. Moreover, for mmid
ss the SRS increased towards 0 with
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FIGURE 6.21: Strain rate sensitivity measurements made by Bian et
al. on a 0.6C-23Mn TWIP steel exhibiting PLC. The steady state strain

rate sensitivity was around 0.005. [35]

increasing strain. This would be logical if the negative SRS were due to the austen-

ite because the retained austenite is gradually consumed by TRIP with increasing

strain. It would seem then that mmid
ss is the most appropriate measurement of the

strain rate sensitivity made in this study. It should be noted that because the work

hardening rate changes when the strain rate is accelerated, this method is depen-

dent on the duration of the period at high speed (in this case, 2mm of displacement

or roughly 4% strain).

The strain rate sensitivity started off negative for low strain in all samples. As

the strain increased and austenite transformed to martensite, the strain rate sensi-

tivity gradually increased towards 0, as was shown in Figure 5.26 in the previous

chapter. Moreover, it was seen that if a single intercritical annealing temperature

is considered, the SRS increased with decreasing retained austenite volume fraction

(except for the sample annealed at 780◦C, for which the two points obtained gave

very similar values of mss). This seems to suggest that the retained austenite is at

least partially responsible for the negative strain rate sensitivity seen in this alloy.

That is, if the negative SRS were purely the result of reduced work hardening from

TRIP, then the SRS as a function of Vγ should be constant. The fact that m increases

as Vγ decreases suggests that the austenite itself has a negative SRS and that stabi-

lization via adiabatic heat is not the only reason for the macroscopic negative SRS.

This explanation of the interaction between strain rate, adiabatic heat, and initial

microstructure is important when considering the evolution of the microstructure

during experiments in which strain rate jumps were performed. The samples upon

which strain rate jumps were performed showed significantly more work harden-

ing than either sample deformed at constant rates of 10−4s−1 or 10−2s−1. The same
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occurs upon deceleration.

If the strain is initially proceeding in the form of a PLC band and then the strain

rate is increased, if the sample remains in a PLC regime as for a 740◦C anneal, the

propagation speed of the band should increase [106], but otherwise the mechanical

behavior remains the same. Any dislocations are generated within the band still, so a

sudden increase in strain rate could generate a large quantity of dislocations which

then provide nucleation sites for martensite transformation. Likewise in the case

of the sample annealed at 780◦C, the deformation remains homogeneous as does

the evolution of the dislocation density. Thus, the transformation can occur upon

accelerating.

If the strain begins localized in a band but then suddenly the strain rate is in-

creased to one at which PLC no longer exists, it is unsure how the sample reacts. The

fact that there is no work hardening during the high strain rate periods, then sud-

denly a burst of martensite transformation occurs upon deceleration implies that

nucleation sites are generated at 10−2s−1 and then activated upon decelerating to

10−4s−1. This should not be a result of adiabatic heat stabilizing the austenite at

10−2s−1 because if this were the case, the same behavior should be observed in sam-

ples annealed at 740◦C which have even more stable austenite than those annealed

at 760◦C. DIC experiments on samples annealed at 760◦C upon which strain rate

jumps are performed are needed to attempt to determine what happens to the PLC

bands when the strain rate jump occurs. These experiments have been performed

for anneals at 740◦C and 760◦C but the DIC calculations, however, did not handle the

strain rate jumps well and did not converge. They are currently being post-treated

piecewise (excluding the moments at which the strain rate jumps are performed) and

initially it seems that after the first jump, no strain bands are present. This would

mean that the speed of the strain band, if it exists, would need to be lower than

about 10mm/s based on the relative lengths of the sample and the region of interest

used for DIC. This speed is well above the measured band propagation speeds, so

it is possible that the band did not pass into the region of interest (ROI). The contin-

ued analysis of these experiments will hopefully show how the band characteristics

are affected by the strain rate jump and how any such changes might relate to the

observed trends in magnetic measurements at the time of the jump.
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Conclusions and Persectives

This thesis provided an in-depth analysis of the kinetics of martensite transforma-

tion in a 0.2C-5Mn-2.5Al Medium Manganese TRIP steel, as well as a characteriza-

tion of the strain instabilities that occur for certain intercritical annealing tempera-

tures. The primary conclusions made in the study are summarized below.

An experimental setup for measuring the saturated magnetization of a tensile

sample in-situ was developed. This system permitted measurements of the saturated

magnetization–from which the retained austenite volume fraction is then deduced–

to be made between 2 and 10 times per second here, though the system is capable

of even higher frequencies as noted in Chapter 4. It was possible to thus measure

the evolution of the microstructure during TRIP over a full tensile test without any

need to interrupt the test, resulting in significant gains in time. Additionally, new

corrections not used in similar experiments using ferritescopes are proposed to ac-

count for the heterogeneous magnetic field in the microstructure and the effect of an

applied stress on the magnetization of the sample.

The measurements of the retained austenite fraction obtained with this system

on samples annealed at 740◦C, 760◦C, or 780◦C made it possible to demonstrate that

there is a stark difference in transformation kinetics with respect to the intercriti-

cal annealing temperature when the retained austenite fraction is plotted as a func-

tion of the macroscopic plastic strain. It was seen that the Olson-Cohen model for

martensite transformation kinetics is able to reproduce the experimental measure-

ments fairly well for samples that deform homogeneously. Using this model, it was

concluded that both the rate of generation of nucleations sites and the probability of

their activation increase with the intercritical annealing temperature. There is, how-

ever, a complication in that no local measurement of the strain is available, so it is

unsure what role the heterogeneous deformation in some samples played in these

differences in transformation rate.

The appearance of steps in the plots of the retained austenite fraction as a func-

tion of plastic strain suggested a coincidence of the passage of strain bands and the

martensite transformation. This was confirmed using digital image correlation (DIC)

characterizations of the strain bands, showing that they are responsible for steps

in the stress-strain curves for certain samples. The presence of the same kind of

heterogeneous behavior in both stress-strain data and austenite fraction-strain data

strongly suggests that the two phenomena are coincident.

Moreover, these same DIC characterizations of the strain bands demonstrated

that there were significant differences in the width, propagation speed, and strain
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rate between the first strain band and all of the subsequent bands. It was concluded

that the first strain band is a Lüders band likely occurring in the ferrite, while the

subsequent bands are a type of PLC though the underlying mechanism is uncertain.

The hypothesis that the strain bands that appear after yielding are a type of PLC

was tested by measuring the strain rate sensitivity (SRS) of the steels at each temper-

ature. It was seen that the SRS was negative and seemed to increase as the retained

austenite fraction decreased. This suggests that the retained austenite has a negative

SRS, which in turn seems to suggest that there is perhaps a solute effect in which

dislocations become pinned or that the transformation itself is responsible for the

mechanical instability. In the samples annealed at 780◦C for which no PLC occurred,

a negative SRS was nonetheless observed and is likely a result of the stabilization of

the retained austenite by adiabatic heating at higher strain rates.

A map was constructed that approximates for which strain rate and marten-

site start temperatures (Ms) PLC bands were observed or not and, if they were ob-

served, whether they were type A, B, or C. Such data has, to the author’s knowledge,

not been reported in the literature on Medium Mn steels. Additionally, using the

Ludwigson-Berger model for transformation kinetics it was shown that there seems

to be a critical transformation rate of about K = 40 to K = 44 below which PLC

occurs.

Perspectives

While the magnetic system employed here marks an improvement over ferritescope

methods, the one missing component is access to the local strain in the same area

in which the saturated magnetization is measured. Were this to be done, a more di-

rect measurement of the transformation kinetics could be made in cases where the

strain is heterogeneous. It is suspected that the transformation kinetics in the strain

band are the same or at least very similar to the kinetics when strain is homoge-

neous, but this cannot be confirmed without access to the local strain. Moreover,

this would permit a correlation between the strain increment induced by the band

and the amount of martensite transformed during its passage.

It was seen that when strain rate jumps are performed, there was no work hard-

ening during the high strain rate period and there were peculiar bursts of transfor-

mation either upon accelerating or decelerating the strain rate. It is of interest to

understand if and how the strain bands are modified when a strain rate jump is

performed, as these changes could help explain why for TIA = 740◦C or 780◦C the

burst occurred upon accelerating, but for an anneal at 760◦C the burst occurs upon

decelerating. Experiments with strain rate jumps and DIC measurements were per-

formed, but are still being post-treated to hopefully provide some insight into these

changes. It is possible that the fact that the strain rate jumps for samples annealed at

760◦C show a different behavior due to the switch from heterogeneous to homoge-

neous strain, but this is uncertain at this time.
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To truly understand micro-mechanically what happens as plasticity occurs het-

erogeneously via PLC or Lüders bands, a more precise model is needed. Such a

model should include a dynamic Hall-Petch effect that is accurate for grain sizes

below 1µm. This model would need to be a finite element crystal plasticity model

in order to simulate the strain bands. This would permit the analysis of the precise

microstructural conditions that lead to strain band nucleation, for example. Addi-

tionally, it could allow one to determine whether the transformation rate in the band

truly corresponds to the observed macroscopic transformation rate.
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