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ABSTRACT

Abstract

This work is conducted as international collaboration with " Airbus Safran Launch-

ers ", " Ecole Centrale de Lyon " and " National Engineering School of

Tunis ".

Elastomeric compounds are widely used in industry for their high deformability

and damping capabilities. Subjected to complex combinations of manufacturing

and service loadings, elastomers show the fact to undergo severe loading conditions

and the load case of large static predeformation superimposed by small amplitude

dynamic excitation is commonly encountred for industrial applications e.g tires,

shock-absorbing bushes, construction industry, aerospace applications... To design

such industrial compounds efficiently, it is of major importance to predict the re-

sponse of the products through simple modeling processes which have multiplied

analysis methods: experimental, theoretical and numerical. Within this context,

the present work focuses on design and analysis of dynamic properties of an elas-

tomeric device at a predeformed configuration.

To this end, three rubber mixtures have been experimentally investigated: Natural

Rubber (NR), Bromobutyl (BIIR) and a mixture of both (NR/BIIR). A discussion

is made with concern to experimental set-up as well as the used procedures for an

efficient specimens testings. Within these findings, we made judgement on the pre-

dictive capabilities, in time and frequency domains, of some single integral based

hyper-visco-elastic models under time-strain seperability assumption. The consid-

ered models are widely used for engineering applications and focus have been made

on the Simo model implemented in finite element commercial software Abaqus. This

work is followed by an application on an industrial component. In the framework of

this thesis, the finite element calculation code ABAQUS 6.14 was used to investigate

the dynamic properties of such structure. An analysis methodology have been pre-

sented to carefully identify the set of parameters with the objective of satisfaction

of some industrial requirements mainly mass, stiffness and damping capabilities.

Keywords:

rubber, experimental characterization, finite strain viscoelasticity, time-strain sepa-

rability, frequency dependence, finite element analysis, structure dynamics
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RÉSUMÉ

Résumé

Ce travail s’inscrit dans le cadre d’un partenariat international Airbus Safran

Launchers ", " Ecole Centrale de Lyon " et " Ecole Nationale d’Ingénieurs

de Tunis ".

Les composés élastomériques sont largement utilisés dans l’industrie pour leurs dé-

formabilité et leurs capacités d’amortissement. Soumis aux combinaisons complexes

de fabrication et de charges de service, les élastomères montrent la capacité de subir

des conditions de chargement sévères et le cas de pré-déformation statique super-

posée par une excitation dynamique de petite amplitude est couramment utilisé

pour des applications industrielles, par exemple des pneus, des amortisseurs, appli-

cations aérospatiales ... Pour concevoir efficacement ces composés industriels, il est

primordial de prédire la réponse des produits à travers des processus de modélisa-

tion simples qui ont multiplié les méthodes d’analyse: expérimentale, théorique et

numérique. Dans ce contexte, le présent travail se concentre sur la conception et

l’analyse des propriétés dynamiques d’un dispositif élastomère autour d’une config-

uration préformée. À cette fin, trois mélanges de caoutchouc ont été expérimentés:

Caoutchouc naturel (NR), Bromobutyl (BIIR) et un mélange des deux (NR / BIIR).

Une discussion est faite avec préoccupation pour la mise en place expérimentale ainsi

que les procédures utilisées pour des essais expérimentaux efficaces. Avec ces conclu-

sions, nous avons fait un jugement sur les capacités de prévision, dans les domaines

temporels et fréquentiels, de certains modèles hyper-visco-élastique à base d’intégrale

unique sous l’hypothèse de séparabilité des effets temps-déformation. Les modèles

considérés sont largement utilisés pour les applications d’ingénierie. Ce travail est

suivi d’une application sur un composant industriel. Dans le cadre de cette thèse,

le code de calcul d’éléments finis ABAQUS 6.14 a été utilisé pour étudier les pro-

priétés dynamiques de cette structure. Une méthodologie d’analyse a été présentée

pour identifier soigneusement l’ensemble des paramètres dans le but de satisfaire

certaines exigences industrielles, principalement des capacités de masse, de rigidité

et d’amortissement.

Mots clés:

Caoutchouc, caractérisation expérimentale, viscoélasticité en grande déformation,

séparabilité temps-déformation, dépendance en fréquence, analyse par éléments finis,

dynamique des structures
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General Introduction

Context

This work is part of an international partnership involving the Tribology and System

Dynamics Laboratory LTDS of "Ecole Centrale de Lyon", Laboratory of Applied

Mechanics and Engineering LMAI of "Ecole Nationale d’Ingénieurs de Tunis", as

academics, and the industrial "Airbus Safran Launchers". The objective of the

thesis is modeling the rubber compound to be used in a launcher configurations and

whose main role is to ensure a good filtering in order to attenuate the vibrations of

the system induced by the boosters and the solid rocket motor. By virtue of their

use, these elements are thus caused to undergo small dynamic displacements around

a large static preload or predeformation.

Nowadays, the design of industrial structures such as those found in the automo-

tive, aeronautical or space industries uses a very complex architecture and is in the

form of an assembly of different components having different geometric dimensions

and different mechanical properties. The study of dynamic behavior of industrial

structures becomes a primary feature in the design phase of industrial structures.

Indeed, a high level of vibration can lead to destruction, to fatigue phenomena or

to disrupt the functioning of certain systems. One of the most used solutions to

attenuate vibrations is the addition of rubber-metal laminates or elastomeric de-

vices located at the interface between two components of an industrial structure for

transmission of static and dynamic stresses as well as damping. The geometrical

dimensions of these elastomeric devices are generally small compared to those of

the industrial structure. The analysis of the influence of these compounds (choice

of material and geometry) on the vibratory behavior of industrial structures still

requires heavy and expensive test campaigns. This is why the industrial players put

forward the numerical simulations by finite elements in the design process in order

to optimize the choice of the material and the geometry of these modules.
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Problematics and objectives

Paradoxically, the design and dimensioning of elastomeric structures still poses many

problems both from the characterization and modeling of the mechanical behavior

of the material in its environment, as well as the associated numerical simulations.

The design of this type of devices, which remain closely linked to safety, requires

a great level of control and guarantees of reliability that are increasingly exigent.

These goals are as critical as the use conditions of these elastomeric parts which are

often very severe, subject to static, dynamic and thermal stresses.

To simulate the response of these parts, the complexity of the mechanical behavior

of the elastomers must be taken into account. In fact, elastomers exhibit mechanical

properties making them special materials: high deformability and damping capacity.

Indeed, this behavior is highly nonlinear and the response of the part will depend on

the predeformation, the frequency and the excitation amplitude, the temperature,

among other parameters. These non-linearities are intervening at static level as well

as dynamic one:

• In a quasi-static state, these materials can undergo very large deformations

and then return to their initial configuration without any permanent deforma-

tion. Predeformation rates of several tens of percent can therefore be imposed.

To model the behavior of the part under quasi-static stress, hyperelastic mod-

els are used. The nonlinearities involved are then both geometric (the material

undergoes a great deformation) and behavioral (the models used make it possi-

ble to write a nonlinear relation between the stress tensor and the deformations

tensor).

• In dynamic, these materials also have damping properties that allow them to

dissipate energy. They exhibit frequency stiffening under harmonic excitation:

viscoelastic behavior laws are used to represent these phenomena. It should

be noted, however, that linear viscoelasticity is insufficient to fully understand

the behavior of these parts: it does not take into account, on the one hand, the

large deformation aspect and on the other hand the nonlinear characteristics

of the material. The behavior is thus dissipative nonlinear: if we impose

deformations sufficiently small around a predeformed configuration so that

the hyperelastic model can be linearized, the frequency response obtained will

be non-linear. The dynamic modulus strongly depends on the predeformation

level, even at low levels.

2



INTRODUCTION

It is thus necessary to control the phenomena to be taken into account for the

simulation of the mechanical behavior of these elastomeric connecting elements.

However, to this difficulty is added the fact that the finite element model of an

industrial structure can reach millions of degrees of freedom because of the difference

in scale of the geometric dimensions between the elastomeric devices and the rest

of the components. Moreover, this finite element model must take into account the

different nonlinear behavior laws and the transient dynamic nature of the simulation.

Thus, the use of finite element modeling and its implementation on the scale of a

complete industrial structure leads to problems with a high number of degrees of

freedom whose resolution requires huge means of calculation. Similarly, this finite

elements model of very large size must be sufficiently handy for a parametric use

although its recalibration with experimental measurements on the materials is very

delicate.

The general framework of the work of this thesis concerns on one hand the exper-

imental characterization at the scale of the material of some rubber mixtures and

the analysis of hyperviscoelastic models developed on this subject and on the other

hand the implementation of a finite elements structure model of a geometrical con-

figuration of the launcher’s inter-stage elastomeric device in order to allow the choice

of the damping material as well as the geometrical parameters to be retained.

Methodology

In order to accurately define the structural behavior of the elastomeric device, the

following methodology was followed:

• Experimental characterization and physical analysis of elastomers behavior:

An experimental database was constructed to characterize the behavior of dif-

ferent materials. Indeed, three materials have been tested for their damping

capacity: Natural Rubber (NR), Bromobutyl (BIIR) and a mixture of the two

previous ones (NR / BIIR). A mechanical characterization of the long - term

behavior (equilibrium) at high deformation was carried out through monotonic

tests at different loading speeds taking into account different loading modes:

uniaxial tensile and simple shear. The dynamic tests were carried out on DMA

(Dynamic Mechanical Analysis) and allowed access to the vibratory response

of the materials at different frequencies, temperatures and static preload levels.

3
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These tests were supplemented by thermal characterization on DSC (Differen-

tial Scanning Calorimetry) to assess the thermal stability of materials as the

service environment covers a wide range of temperatures. The characteriza-

tion of the various elastomeric mixtures chosen made it possible to select the

material for the elastomeric device to be retained.

• Analysis of hypervicoelastic models suitable to describe rubber-like materials

behavior: The behavior laws governing elastomers response are highly nonlin-

ear and several models have been proposed in the literature. An analytical

analysis of the different models proposed for the study of Hyper-Visco-Elastic

materials was carried out. This study focused on separable models (i.e time-

strain separability, an experimental observation which afford a large modeling

simplificity) based on a hereditary integral describing the effect of loading

history. Well known models such as Christensen, Fosdick & Yu and a vari-

ant of the BKZ were considered as well as other more recent models. The

Simo model, implemented in the ABAQUS finite element software, has been

analyzed with the greatest interest, for the few identification parameters it

requires, its ease of implementation and its ability to reproduce the sample

tests with some acceptable fidelity.

• Development of a modeling methodology for the structure for a geometric

launcher configuration of one of the elastomeric devices: A geometry proposal

of the elastomeric device has been made, taking into account the geometric

constraints. A configuration of the launcher type has led us to seek a suitable

solution for integrating the elastomeric device. The previous steps of this thesis

allowed us the construction of the finite element model which allowed the pre-

diction of the dynamic behavior of the structure based on observable variables

relevant for dynamic vibratory study. This structure modeling methodology is

sufficiently handy for a parametric analysis and allowed to validate the choice

of a geometry as well as a damping mixture from those previously tested.

Outline

This manuscript is subdivised to four chapters, organized as follows. The first chap-

ter is devoted to a reminder of the mechanical properties of elastomers. It is a

phenomenological study of rubber materials, allowing to review the specificities of

4
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the behavior of this material. Moreover this chapter establishes a state of the art,

not exhaustive, of the modeling of this behavior. This chapter focuses on three main

points. First, we recall some elements of the continuum mechanics in large defor-

mations, and then we review the main research work on models of both hyperelastic

and viscoelastic behaviors. The second chapter is dedicated to the experimental in-

vestigation conducted to identify the materials parameter, the experimental set-up

as well as the used procedures for an efficient specimens testings. This experimen-

tal database aims to draw conclusions and a comparison concerning the materials

properties, with consideration to industrial applications. In the following chapter,

a short review of the different modeling frameworks is made as well as a classifica-

tion of models according to two criterions: integral-based or internal variables-based

models, and time-strain separable or not criterion. This objective of this chapter is

analysis of the predictive capabilities of some integral-based finite strain viscoelas-

tic models under separability assumption, in time and frequency domains. Finally,

the fourth chapter is dedicated to the concretization of the work on a geometrical

launcher configuration, describing the modeling methodology adopted in the finite

element code Abaqus 6.14 for the study of structures with viscoelastic materials

inserts. The compromised solution found to lead to the satisfaction of all techni-

cal requirements is presented within this chapter, as well as numerical simulation

results.
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Elastomers: physical aspects and

continuum mechanics
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1.1 INTRODUCTION

1.1 Introduction

This introductive chapter aims to analyse the behavior of elastomers within a phe-

nomenogical approach. The advent of rubber-like materials is the plethora of prop-

erties available for a vast range of engineering applications such as tires, shock-

absorbing bushes, construction industry, and especially the construction of modern

aerospace structures [1][2]. They are capable of sustaining large deformations, of

about some hundreds of percents, and quickly and forcibly retract to their origi-

nal dimensions. Rubbers are resilient and yet exhibit internal damping. Due to

their complex nature, and in particular the presence of carbon chains, this class of

materials is of highly non-linear behaviors [3][4][5][6][7]. This introductive chapter

is mainly subdivised in two parts: the first is dedicated to the phenomenology of

rubber materials and their physical aspects while within the second part we recall

the main elements of the theory of finite elasticity for the description of elastic and

viscoelastic phenomenon.

1.2 Phenomenology of elastomers

1.2.1 Generalities

Natural rubber and its synthetic counterparts, elastomers, are widely used in the

field of industry. The multiplicity of uses of elastomers comes from very interesting

mechanical characteristics:

• Ability to undergo large deformations

• Ability to dissipate energy, making possible to obtain vibratory and acoustic

isolators

This makes elastomeric compounds widely used in industry for damping appli-

cations, from seals and bushes to motor support, launchers softeners and others

[8][9][10][11]... Rubber-like materials are often used interchangeably with the term

elastomers. The term “elasto” recalls the great potential of elastic deformation, and

the “mer” evokes nature of polymers and thus their macromolecular constitution.

Natural rubber (also called caoutchouc and which appearance date early 20th cen-

tury) as initially produced, consists of polymers of the organic compound isoprene,

and is harvested mainly in the form of the latex from the rubber tree "hevea" or

8
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others. Nevertheless, the latex is a sticky, milky colloid drawn off by making inci-

sions in the bark and collecting the fluid in vessels in a process called "tapping".

Hence, rubber at the raw state have no interesting properties. To obtain a re-

versible elastic material, it must be created between the different macromolecules

bridges that form a three-dimensional network. This process, called vulcanization,

was accidentally discovered by Goodyear in 1839 and is still at the base of the rub-

ber manufacturing industry. During the vulcanization, the long chain molecules

of the rubber are chemically united to adjacent chains forming crosslinks. From a

chemical point of view, natural rubber is a product of polymerization of isoprene

chemical formula (C5H8)n, n having a value of about 10 000. The manufacture of

synthetic rubbers is based on the same principle. To obtain an efficient industrial

material, elastomers are often a mixture of a lot of components: processing agents

as sulfur, metallic oxides or other additives prime for "curing", catalysts to acceler-

ate the process mainly mercaptobenzothiazole (MBT/MBTS) and ethylene thiourea

(ETU), activators like zinc oxide and stearic acid, dyes for colored elastomers, an-

tidegradants... Elastomers which contain only processing agents and chemicals for

protection, coloring and vulcanization are referred to as pure gum. The majority

of elastomers used for mechanical applications contain a filler, hence referred to as

filled rubbers: the fillers can improve the elasticity of the final product without in-

creasing its hardness (based on calcium carbonate or barium sulface) or improve its

resistance (carbon black, zinc oxide, magnesium carbonate...). The carbon black,

which remains the main reinforcing filler of the rubber, is in the form of small carbon

particles mixed with the natural gum before vulcanization. The obtained material

then constitutes a continuous network and the fillers form an agglomerate inside

the network. Elastomers are then diphasic materials composed of components with

completely different mechanical properties.

1.2.2 High deformability

Rubbers behavior can be primarily described as hyperelastic materials under static

or quasi-static loadings [12] where dissipative effects are negligible. There have been

numerous experimental studies addressing the response of rubbers under quasi-static

loading conditions, including uniaxial tension/compression, shear, equibiaxial ten-

sion... Under all these experimental conditions, the resulting constitutive responses

are strongly nonlinear, as shown in fig. 1.1. Moreover, the incompressibility of rub-

bers has been confirmed by a number of different researchers over the years [3][13].

9
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Experiments show a limited volume variation (V/V0=0.01) at large strain (500%

of deformation), as shows fig. 1.2, corroborating the incompressibility constraint

introduced in many constitutive equations.

Figure 1.1: Nominal stress vs strain for quasi-static loadings [14]

Figure 1.2: Volume change of filled rubber materials [15]

10





1.2 PHENOMENOLOGY OF ELASTOMERS

1.2.3.2 Dynamic response

A frequently employed characterization of elastomers is achieved through sinusoidal

strain histories of frequency ω. Under the action of dynamic loadings, the deforma-

tion of rubbers, like other viscoelastic solids, occurs with a certain delay owing to

viscous friction inside the material as shows fig. 1.4. Under harmonic deformations,

this delay manifests itself by a phase shift between the applied displacement and the

load. This shift is proportional to the viscous losses. Nevertheless, the properties

measured on a rubber are dependent on the desired operating point.

Figure 1.4: Dynamic response of rubber-like materials [18]

1.2.4 Thermal response

The variation of dynamic mechanical properties (storage modulus and loss factor)

with temperature provide fundamental knowledge for understanding the filled rubber

characteristics [19]. Figure 1.5 shows that at low temperature, the shear storage

modulus is at its maximum, and the loss factor at its minimum. This area of

behavior is the hard or brittle state of the material. Increasing the temperature, the

storage modulus decreases suddenly and the loss factor see its maximum. For higher

frequencies, the behavior is stable and not too dependent of temperature compared

to the previous areas. This domain is called the “rubbery plateau” [9].

12
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Figure 1.5: Evolution of the dynamic properties as function of temperature [20]

1.2.5 Some other non-linearities

1.2.5.1 Mullins effect

The Mullins effect is a strain induced softening phenomenon, which is mainly asso-

ciated with a significant reduction in the stress at a given level of strain during the

unloading path as compared with the stress on initial loading in stress-strain cyclic

tests [21][22][23]. A typical cyclic loading path where Mullins effect is evident is

represented in fig. 1.6 in terms of stress-strain curves. In fact, on the initial loading

(abb’) the virgin material exhibits a relatively stiff response. When the material is

subsequently unloaded, then reloaded, the stress-strain curve follows a significantly

softer path (aBb’) until the point of max deformation previous applied (b’) is reached

for the second time. Continuing to increase further on the stretch, the stress-strain

curve will return to follow the primary path until next unload is performed (b’cc’).

13
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Figure 1.6: Cyclic loading with evident Mullins effect [24]

1.2.5.2 Payne Effect

Another softening phenomenon which shows the dependency of the stress upon the

entire history of deformation is the so-called Payne effect [25][26]. Like the Mullins

effect, this is a softening phenomena but it concerns the behavior of rubbers sub-

jected to oscillatory displacement. Indeed, the dynamic part of the stress response

presents rather strong non-linear amplitude dependency, which is actually the Payne

effect shown in fig. 1.7. The Payne effect is essential for the frequency and amplitude-

dependent dynamic stiffness and damping behavior of rubbers bushings, automotive

tires and other products...
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(a) Shear storage modulus

(b) Shear loss Modulus

Figure 1.7: Payne effect on dynamic properties [27]

1.3 Elements of the theory of finite elasticity: Kine-

matics

In the previous section, we have highlighted some physical aspects of elastomeric

materials [4][28], that in addition to undergo large deformations, own a dissipative

component on behalf of their viscoelastic nature [16]. In this section, we recall some

basic concepts of the general framework of finite elasticity [29]. A non-exhaustive

list of hyperelastic models, then viscoelastic models will be presented.

15
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1.3.1 Material and Spatial Representation

We consider a three-dimensional Euclidean space. We denote C0 the reference con-

figuration, where the solid S occupies Ω0. The set of material particules P defines

the deformable solid position in the actual configuration Ct, of a volume Ω at time

t, as shows fig. 1.8. In the reference configuration, the point P is defined by the

vector X while it is defined by x in the current time t. Deformation state is the

defined by χ:

χ :







C0 → Ct

X → x = χ (X, t)
(1.1)

Figure 1.8: Reference and current configurations

The deformation gradient F is defined as :

dx = FdX

F = Gradx
(1.2)

where the gradient operator Grad is defined with respect to the reference unde-

formed configuration.

16
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The deformation χ is reversible with the condition

J > 0 (1.3)

where J is the determinant of F.

F is invertible, and its inverse allows to transport a tangent vector from the current

configuration to the initial configuration:

dX = F−1dx

F−1 = gradX
(1.4)

where grad is the gradient tensor with respect to the actual deformed configuration.

We introduce the spacial displacement vector U in the reference configuration as:

U (X, t) = x(X, t)−X (1.5)

A Lagrangien description (in the reference configuration) of the displacement gra-

dient is hence given:

GradU = Gradx−GradX

= F− I
(1.6)

We can describe the displacement gradient in the current configuration (Eulerian

description) within:

gradu = gradx− gradX

= I− F−1
(1.7)

In the following, strain and stress tensors are briefly recalled, detailed explanations

on basics of continumm mechanics can be found for example in [29][30][31].

1.3.2 Deformation Tensors

Lagrangian description (Reference Configuration C0):

We introduce the right Cauchy Green strain tensor C = FT F. The symmetric

Green Lagrange deformation tensor is defined as:

E =
1

2
(C− I) (1.8)

17
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Using the displacement vector, this tensor is written:

E =
1

2

(

GradU + (GradU )T +GradU (GradU )T
)

(1.9)

Eulerian description (Actual Configuration Ct):

We introduce the left Cauchy Green strain tensor B = FFT . The associated strain

tensor is the Euler-Almansi strain tensor defined as:

A =
1

2
(I−B−1) (1.10)

Invariants

Isotropic scalar-valued invariants of C (and B) are written as:

I1 = tr(C) (1.11a)

I2 =
1

2

(

tr(C)2 − tr(C2)
)

(1.11b)

I3 = det(C) (1.11c)

where tr defines the mathematical operator trace of a matrix.

Let λ1, λ2 andλ3 be the eigenvalues of C. The invariants are then written:

I1 = λ1 + λ2 + λ3 (1.12a)

I2 = λ1λ2 + λ1λ3 + λ2λ3 (1.12b)

I3 = λ1λ2λ3 (1.12c)

1.3.3 Incompressibility

The considered materials in this section are incompressible. We take into account

the incompressiblity condition by imposing to the transformation χ to be volume

preserving (isochoric). The volume change measure between C0 and Ct is written:

dv = J dV (1.13)

For an isochoric deformation, we have:

J = detF = I3 = 1 (1.14)

18
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1.3.4 Stress tensors

We consider a surface element relative to a chosen configuration. We can obtain

three different description of load, with respect to the chosen configuration: Eulerien,

Lagrangian and/or a mixed description.

Figure 1.9: Stress vectors at different configurations

Eulerian Description

The Cauchy stress tensor σ is eulerian, symmetric and defined as:

t = σn (1.15)

where t is the measured load per unit surface, and n is the normal to the element

surface ds. The load per surface is then defined as:

df = tds = σnds (1.16)

The Cauchy stress is called true stress for experimental considerations.

Mixed Description

Load per surface can be related to the reference element surface dS using :

df = T dS = ΠNdS (1.17)

Π is the non-symmetric first Piola-Kirchoff stress tensor, and expresses the actual

stress in the reference configuration, and related to the Cauchy stress tensor as:

Jσ = ΠFT (1.18)

19
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The first Piola-Kirchoff stress is called nominal stress for experimental considera-

tions.

Lagrangian Description

Transposing all quantities to the reference configuration, we obtain:

df0 = F−1 df = SN dS (1.19)

S is the second Piola-Kirchoff stress tensor and is symmetric without physical sig-

nification. It is related to the Cauchy stress tensor as :

J σ = FSFT (1.20)

1.3.5 Equilibrium equations

The equilibrium equations are obtained from the balance of the linear and rotational

momentum. The general framework of finite deformations imposes the distinction

between the reference and the actual configurations. The equilibrium problem is

formulated as shows fig. 1.10 and the classically considered boundary conditions

are:
{

u= u0 on ∂ωu

t= σn on ∂ωσ

(1.21)

In the reference configuration, these boundary conditions are expressed as:

{

u= u0 on ∂Ωu

T= ΠN = on ∂Ωσ

(1.22)

Figure 1.10: Equilibrium problem
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Eulerian Description

In the actual configuration, the balance of the linear momentum is written as:

∫

ω

ρfi dω +

∫

∂ω

ti ds =

∫

ω

ργi dω (1.23)

Including previously recalled stress tensors and introducing Gauss theorem, we ob-

tain the following equilibrium equations in the actual configuration:











div(σ) + ρf= ρü in ω

u = u0 on ∂ωu

t= σn on ∂ωσ

(1.24)

where div defines the divergence vector operator with respect to the actual config-

uration.

The balance of the rotational momentum provides the symmetry of the Cauchy

stress σ.

Lagrangian Description

In the actual configuration, the balance of the linear momentum is written as:

∫

Ω

ρ0fi dΩ +

∫

∂Ω

Ti dS =

∫

Ω

ρ0γi dΩ (1.25)

Hence, we obtain the mixed equilibrium equations:











Div(Π) + ρ0f= ρ0ü in Ω

u = u0 on ∂Ωu

T= ΠN on ∂Ωσ

(1.26)

where Div defines the divergence vector operator with respect to the reference con-

figuration.

The balance of the rotational momentum provides following:

ΠFT = FΠT (1.27)
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1.4 Modeling elastic properties: Hyperelasticity

Elastomeric materials are assumed isotropic, incompressible and isothermal. In this

section, only highly non-linear elastic response under large strain is considered with

respect to the general theory of Hyperelasticity [32].

1.4.1 Hyperelasticity constitutive equations

A Cauchy-elastic material is one in which the stress at each point is determined only

by the current state of deformation with respect to an arbitrary reference configura-

tion [32]. It follows from this definition that the stress in a Cauchy elastic material

does not depend on the path of deformation or the history of deformation, or on the

time taken to achieve that deformation or the rate at which the state of deformation

is reached. The definition also implies that the constitutive equations are spatially

local; that is, the stress is only affected by the state of deformation in an infinites-

imal neighborhood of the point in question, without regard for the deformation or

motion of the rest of the material. It also implies that body forces (such as gravity),

and inertial forces cannot affect the properties of the material. Hyperelatic behav-

ior, commonly known as Green elasticity, is a special case of the Cauchy elasticity

concept [33][34] and there exist a strain-energy function denoted W from which de-

rives stress quantities. This implies that the work done during loading processes

is path independent. Without recalling thermodynamical framework, this strain-

energy function commonly referred to as hyperelastic potential, satisfies objectivity

and material symmetry principles as written function of the deformation tensor E

in the general case and function of invariants of C or B for isotropic materials [35].

The hyperelastic potential is obtained through :

- internal dissipation is equal to zero (elastic material)

- thermal effects are neglected (isothermal state)

By expressing the dissipation potential in the different configurations and introduc-

ing the incompressibility condition, we obtain the constitutive hyperelastic equations

written as follows:

• Lagrangian description

S = 2
∂W

∂C
− pC−1 (1.28)
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• Eulerian description

σ = 2B
∂W

∂B
− pI (1.29)

• Mixed description

Π =
∂W

∂F
− pF−T (1.30)

W can be expressed function of the invariants I1 and I2 [35] or of eigenvalues of C.

Hence, we obtain:

S = 2

([

∂W

∂I1
+ I1

∂W

∂I2

]

I− ∂W

∂I2
C

)

− pC−1 (1.31a)

σ = 2B

([

∂W

∂I1
+ I1

∂W

∂I2

]

I− ∂W

∂I2
B

)

− pI (1.31b)

Π = 2F

([

∂W

∂I1
+ I1

∂W

∂I2

]

I− ∂W

∂I2
C

)

− pF−T (1.31c)

1.4.2 Hyperelastic potentials examples

Numerous forms of strain-energy functions have been proposed in the litterature

and are well summarized in [24]. Some are based on statistical theories, others are

purely phenomenological. There are several classification approachs for hyperelastic

potentials. Firstly, we can separate those that are expressed as a function of the

invariants I1 and I2, and those which are expressed as a function of the principal

elongations λi. Another way of establishing a classification is to consider those

whose coefficients intervene in linear form (as the generalized Rivlin model) and

those whose coefficients intervene in the form of power laws (as Ogden Model).

There are several forms of strain-energy function commonly used for incompressible

or quasi-incompressible isotropic elastomers:

• The polynomial form and it’s particular cases: the reduced polynomial form,

the neo-Hookean form, the Mooney-Rivlin form, and the Yeoh form

• Ogden real exponents form

• Arruda-Boyce form

• Van der Waals form

In following, we will try to recall the general form and references for each model and

its parameters.
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1.4 HYPERELASTICITY

Polynomial Form

Rivlin [12][36] extended the Mooney model [37], and proposed a Polynomial series

of W :

W =
∞
∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j (1.32)

where Cij are material parameters and C00 = 0. This series is classically truncated

to second or third order, and is used for large strain problems.

Mooney-Rivlin Model

Mooney observed that the shear response is quasi-linear [37]. This model is classicaly

used for moderate strain lower than 200%. This potential has form:

W = C1(I1 − 3) + C2(I2 − 3) (1.33)

where C1 and C2 are material parameters and are temperature dependent. We re-

mark that this model is commonly referred to as Mooney-Rivlin model, besides, in

litterature, the Mooney-Rivlin model is identified as the above mentionned Polyno-

mial model [38].

Reduced Polynomial

Particular forms of the polynomial model can also be obtained by setting Cij, i 6= j

coefficients to zero. If all with are set to zero, the reduced polynomial form is

obtained:

W =
∞
∑

i=0

Ci0(I1 − 3)i (1.34)

Omitting the I2 dependence has been justified based on observations that the sen-

sitivity of the strain energy function to changes in the second invariant is generally

much smaller than the sensitivity to changes in the first invariant [39].

Yeoh Model

The Yeoh form [40] can be viewed as a special case of the reduced polynomial with

N = 3:

W =
3
∑

i=0

Ci0(I1 − 3)i (1.35)
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NeoHookean Model

The NeoHookean model [41] is the simplest proposed model for rubber, and is derived

from the statistical thermodynamics of cross-linked polymer chains:

W = C1(I1 − 3) (1.36)

This model, similar to Hooke’s law, revealed good approximation of data lower than

50% of deformation, and is classically used as first test of constitutive models.

Ogden Form

The phenomenological Ogden model [13] consists on a expansion of the strain energy

through a series of real powers of λi :

W =
N
∑

i=1

µi

αi

(λαi

1 + λαi

2 + λαi

3 − 3) (1.37)

where the material parameters µi andαi should satisfy the following stability condi-

tion:

µi αi > 0 ∀ i = 1, N (1.38)

This model is one of the most widely used models for large strain problems, even

with some difficulties for materials parameters identification.

Arruda-Boyce model

Commonly referred to as "8 chain model", Arruda and Boyce [42] proposed this

model based on the statistical mechanics of a material with a cubic representative

volume element containing eight chains along the diagonal directions. This model

is isotropic and the proposed form in Abaqus is:

W = µ

[

1

2
(I1 − 3) +

1

20λ2
m

(I21 − 9) +
11

1050λ4
m

(I31 − 27)

+
19

7000λ6
m

(I41 − 81) +
519

67375λ8
m

(I51 − 243)

] (1.39)

where µ and λm are temperature-dependent material parameters, and the typical

value of λm is 7.
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Van Der Waals model

The use of Van Der Walls forces was firstly proposed by Wang and Guth [43] and

explicitely revived in 1956 by Kilian and al [44], and consists on treating the rubber

networks as a gaz with particules in interaction. The strain potential form was

proposed later [45] and has the form:

W = µ



−(λ2
m − 3) [ln(1− η) + η]− 2

3
a

(

Ĩ − 3

2

)
3
2



 (1.40)

where Ĩ = (1 − β)I1 + βI2 is a generalized strain invariant and β is a material

parameter. a is the global interaction parameter and η =
√

Ĩ−3
λ2
m−3

whith λm is the

so-called "locking stretch".
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1.5 Modeling dissipative properties: viscoelasticity

Within the section dedicated to the phenomenology of elastomers, we have high-

lighted a dissipative behavior of rubber-like materials due to their viscoelastic na-

ture [16]. In this section, we will recall the general framework of viscoelasticity

aiming to take into account the dissipation effects. In fact, viscoelastic materials

are those for which the relationship between stress and strain depends on time or,

in the frequency domain, on frequency. This section is organised in two part: while

the first is dedicated to the linear viscoelastic behavior and to some basic rheological

models describing this dissipative behavior, the second investigates the finite strain

viscoelasticity and some proposed models within the main two approachs commonly

used in this framework: integral based approach and internal variables approach.

1.5.1 Linear viscoelasticity

Viscoelastic materials are those for which the relationship between stress and strain

depends on time. Linear viscoelastic materials are those for which there is a linear

relationship between stress and strain, and the linear viscoelasticity theory have a

sens of "idealization" for this class of materials. The effects of creep (evolution of

the strain in response to a stress step) and of relaxation (evolution of the stress in

response to a deformation step) evoked in fig. 1.3 call on the concept of "memory" of

viscoelastic materials. The linear viscoelastic behavior can be defined from the data

of one of these response functions with care to linearity and Boltzmann superposition

principle. The stress (respectively strain) is hence linear functional in the whole

history of deformation (respectively stress).

The constitutive equation for an isotropic linear viscoelastic material is:

σ(t) =

∫ t

0

λ(t− τ) tr(ǫ̇)(τ) dτ I +

∫ t

0

2µ(t− τ) ǫ̇(τ) dτ (1.41)

where λ and µ are the lamé parameters [35], that explicitely defines the relaxation

functions.

A commonly used approach is to seperate the stress into deviatoric and spherical

parts [46] for near incompressible materials:

{

s(t)= σ(t)− 1
3
trσ(t) I

e(t)= ǫ(t)− 1
3
trǫ(t) I

(1.42)
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1.5 VISCOELASTICITY

e(t) (respectively s(t)) is the deviatoric part of the deformation tensor (respectively

stress tensor).

The constitutive equation could then be written as:

{

s(t)=
∫ t

0
2µ(t− τ) ė(τ) dτ

trσ(t)= 3
∫ t

0
K(t− τ)trǫ̇(τ) dτ

(1.43)

where K is the bulk modulus.

An alternative form of eq. (1.41) for incompressible materials can be:

σ(t) =

∫ t

0

2µ(t− τ) ė(τ) dτ − p(t)I (1.44)

and µ(t) is function of relaxation, and this equation can be written for creep. To

approximate this relaxation function, we present some basic rheological models in

linear viscoelasticity.

1.5.1.1 Rheological models in linear viscoelasticity

Viscoelasticity is the property of materials that exhibit both viscous and elastic

characteristics when undergoing deformation. Within linear viscoelasticiy, the elas-

tic property is modeled by a linear spring while the viscous part is modeled by a

newtonian fluid dashpot, as shows section 1.5.1.1.

σ = µ ǫ σ = η ǫ̇

Figure 1.11: Rheology basic elements in viscoelasticity

In order to correctly represent the complex behavior of viscoelastic materials, these

rheological elements are assembled in series or in parallel. For elements in parallel,

the relaxation function of the set is the sum of the relaxation functions of the

elements (all the elements undergo the same strain, the total stress is the sum

of the stress on each element). For the elements in series, the creep function of the

set is the sum of the creep functions of the elements (the same stress is supported by

all the elements, but the total strain is the sum of the strains of each element). In

the following, we briefly recall relaxation functions issued from some classic models

in litterature.
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1.5 VISCOELASTICITY

Maxwell model This model consists on a series assembly of the previously men-

tionned rheological elements as shows fig. 1.12. This model is able to model a

viscoelastic fluid behavior but not a viscoelastic solid.

σ

ǫ1 ǫ2

Figure 1.12: Mawxell model

As mentionned above, the same stress is supported by all the elements, but the total

strain is the sum of the strains of each element:











σ(t)= µ ǫ1(t)

σ(t)= η ǫ̇2(t)

ǫ(t)= ǫ1(t) + ǫ2(t)

(1.45)

The governing equation of this model is:

σ̇ +
µ

η
σ = µǫ̇ (1.46)

The instantaneous response is given as: σ0 = µǫ0. The relaxation kernel of this

model is given as:

µ(t) = µe(
−t

τ
) (1.47)

with τ = η

µ
is the relaxation time.

Kelvin model The Kelvin model, as shows fig. 1.13, consists of a spring and

dashpot in parallel, so that the strain experienced by the spring is the same as that

experienced by the dashpot:











σ1(t)= µ ǫ(t)

σ2(t)= η ǫ̇(t)

σ(t)= σ1(t) + σ2(t)

(1.48)

This model is mainly used to explain the creep behaviour of viscoelastic materials

meanwhile it poses the limitation of not supporting the instantaneous deformations.
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µ

η

σ1

σ2

ǫ

Figure 1.13: Kelvin model

The governing equation is written as:

σ = ηǫ̇+ µǫ (1.49)

Standard linear solid (SLS) model The standard linear solid model (also re-

ferred to as Zener model) effectively combines the Maxwell model and a Hookean

spring in parallel, as shows fig. 1.14. A viscous material is modeled as a spring and

a dashpot in series with each other, both of which are in parallel with a lone spring.

For this model, the governing constitutive relation is:

σ̇ +
µ

η
σ − µ∞ µ

η
ǫ = (µ∞ + µ)ǫ̇ (1.50)

µ∞

ǫ1 ǫ2

µ η

Figure 1.14: SLS model

The relaxation kernel issued from this model is:

µ(t)= µ∞ + µe(
−t

τ
)

= µ∞

(

1 + µ

µ∞

e(
−t

τ
)
) (1.51)

For a relaxation test, the long time response (t → ∞) of this model is found to be

σ = µ∞ ǫ0, which justifies the denomination of "infinite elasticity" given to the first

spring.
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Generalized maxwell model The Generalized Maxwell model also known as

the Maxwell–Wiechert model is the most general form of the linear model for vis-

coelasticity [47]. It takes into account that the relaxation does not occur at a single

time, but at a distribution of times. This model consists of a parallel assembly of n

Maxwell models and a NeoHookean spring, as shows fig. 1.15. This leads to a model

µ∞

ǫ

zn

ǫ2

ǫ1 z1

z2

ǫn

µ1

µ2

µn

η1

ηn

η2

Figure 1.15: Maxwell–Wiechert model

having the same properties as the SLS model, but more capable of smoothing the

experimental data. The relaxation kernel is written as:

µ(t)= µ∞ +
n
∑

i=1

µie
(−t

τ
)

= µ∞

(

1 +
n
∑

i=1

µi

µ∞

e(
−t

τ
)

) (1.52)

This general form is commonly referred to as Prony serie. In the frequency domain,

we apply an excitation having the form ǫ = ǫ0e
(iωt) and we seek for a solution of the

same form σ = σ0e
(iωt). More accurately, we apply a Fourier transform of eq. (1.44)

after introducing the Prony serie

σ(t) = µ∞

∫ t

0

(

1 +
n
∑

i=1

µi

µ∞

e
(
−(t−s)

τi
)

)

ǫ̇(s) ds (1.53)

The obtained stress has the form:

σ(ω) = iωǫ0 g
∗(ω) e(iωt) (1.54)
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where g∗(ω) stands for the Fourier transform of the normalized shear modulus. The

obtained dynamic modulus is hence written:

g∗(ω)=
n
∑

i=1

∫

∞

0
µi

µ∞

e
(−t

τi
)
e−(iωt)dt

µ∗(ω)= µ∞ +
n
∑

i=1

iωµi

1
τi
+iω

(1.55)

1.5.2 Finite strain viscoelasticity

The framework of the large deformations is a context that adds a difficulty in the

description of the viscoelastic behavior. Modeling strain-rate dependent response

of rubber materials is derived following different approachs which can be classi-

fied according to different criterions. In this section, we made use of the following

criterions: The first one is related to the formulation of the model which can be

integral based or differential/internal-variables based, while the second criterion is

the time-strain separability or factorability [48][49] which is frequently introduced

in the formulation of finite strain viscoelastic constitutive models and afford a large

theoretical simplicity.

1.5.2.1 Integral based formulation

The integral-based framework is founded on an extension of the Boltzmann superpo-

sition principle to finite strain. The stress quantity is decomposed to an hyperelastic

part corresponding to the instantaneous/equilibrium stress response, and an over-

stress quantity expressed as an heriditary integral including a measure of material’s

memory through relaxation functions. From an historically point of view, multiple-

integral representation of the finite strain viscoelastic behavior have been originally

proposed by Green and Rivlin [50][51], in a general form commonly referred to as

functional Volterra series. This work has been followed by other contributions: [52],

[53], [54], [55] and more recently [56], among others. Multiple-integral models are

known to be generally non seperable [57] and mainly hardly identifiable.

An example for this class of models is the model proposed by [54]. After introducing
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incompressibility condition, and in term of second Piola-Kirchoff stress:

S(t) = −pC−1 +

∫ t

−∞

r1(t− τ)Ė(τ) dτ

+

∫ t

−∞

∫ t

−∞

r2(t− τ1, t− τ2) Ė(τ1)Ė(τ2) dτ1dτ2

+

∫ t

−∞

∫ t

−∞

∫ t

−∞

r3(t− τ1, t− τ2, t− τ3) tr
(

Ė(τ1)Ė(τ2)
)

Ė(τ3) dτ1dτ2dτ3

+

∫ t

−∞

∫ t

−∞

∫ t

−∞

r4(t− τ1, t− τ2, t− τ3) Ė(τ1)Ė(τ2)Ė(τ3) dτ1dτ2dτ3 + ....

(1.56)

where the ri designate the i order Volterra kernel which have to be chosen carefully

to estimate the viscoelastic behavior.

Meanwhile, the constitutive theory of finite linear viscoelasticity [58] have been of

a major contribution within this framework, and small deviations away from the

thermodynamic equilibrium are assumed. The proposed models with respect to this

theory are generally of single integral presentation and have been widely investigated,

as by [59], [60], [61] and[62], for the simplicity they afford to enginnering applications.

Some of most used models of this contruction type which are seperable and do not

require hard identification procedure could be found in [63], [64], [65] and [66]. As

examples of models of single interal formulation, we can find:

• Christensen model [67]

σ = −pI+ 2B
∂W

∂B
+ FG0

∫ t

0

g1(t− s)
∂E(s)

∂s
dsFT (1.57)

• QLV model [68]

σ = −pI+ 2B
∂W

∂B
+ FG0

∫ t

0

g1(t− s)
∂S

∂s
dsFT (1.58)

• Hallquist model [69] (implemented in LS-DYNA)

σFg = −pI+ 2B
∂W

∂B
− FG0

∫ t

0

∂g1(t− s)

∂(t− s)
β1C

−1(s) ds (1.59)
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• Yang et al model [70]

σFg = −pI+ 2B
∂W

∂B
− FG0

∫ t

0

∂g1(t− s)

∂(t− s)
(β1 + β2I2(s))C

−1(s) ds (1.60)

where G0 is the instantaneous shear modulus, gi are the dimensionless Prony series

parameters and βi are material parameters.

In the work of [71], a seperable model adapted for high strain rates was introduced,

meanwhile, other contributors [62] have found that it shows some shortcomings

owing to a zero Young’s modulus in the undeformed configuration. We denote that

a new class of quasi-linear models, consisting on a generalization of fung’s models [68]

describing nonlinear viscoelastic response of materials, have been latterly proposed

by [72][73] where the linearized strain is expressed in terms of a nonlinear measure

of the stress. Within this framework, other models are found to be non seperable as

[74], [75], [26] and [76] among others. The recently proposed model by [77] offers the

ability to be seperable or non seperable according to the choice of some variables.

1.5.2.2 Differential and internal variables model

The second framework, differential/internal-variables, consists on a 3D generaliza-

tion of the 1D rheological models with large deformations. Whithin this framework,

two different approachs could be considered: differential models without thermody-

namics considerations [14], and the thermodynamically consistent internal-variables

approach [78][79]. Considering differential approach, some of these models could be

classified according to the seperability criterion to: seperable [80], [81], non-seperable

that leads to integral [82] and non-seperable that does not lead to integral [83]. The

second approach, internal-variables, was originally proposed by [84] and [85] as gen-

eralization of the work of Biot [86]. This approach have been more investigated mid

1970s by [78][79], inspired by the work of [87] on elasto-plastic deformations. This

thermodynamically consistent approach consists on a multiplicative decomposition

of deformation gradient into elastic and inelastic parts, and one can take either the

"over-stress" or the inelastic strain as an internal variable. The key point to develop

models of this form is the choice of the evolution equation for the internal vari-

ables which is not evident nor unique. The particularity of these models is that in

some cases they could lead to an integral equation, and specially some contributors

introduced linear evolution equations for the internal variables: seperable models

including works of [88], [89], [85] and [90], and non seperable models as [84]. Even
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thought some models could take the integral form and are seperable, they are found

to be hardly identifiable and require a large number of material parameters except

the Simo model. Examples of non seperable internal-variables models that don’t

lead to an integral equation would include the work of [91], [23], [92], [93], [94]

among others.

1.6 Conclusion

Within this chapter, we tried to present a sort of review for the mechanical behav-

ior of elastomeric materials. We firstly recalled the phenomenological behavior of

elastomers which are known to be of high deformability and posessing dissipative

capabilities. Those materials are widely used in industrial context, even with non

mastered phenomena and experimental investigations pointing out lots of non linear

effects. Modeling elastomers behavior correctly should be done within the frame-

work of finite strain viscoelaticiy. In the second part of this chapter, we recalled

basic concepts of this description, with uncoupled elastic and viscous effects. The

next chapter will be dedicated to experimental investigation on three rubber-like

materials. In fact, to well design the industrial compound or device, a suitable

choice of elastomeric material is a primary future, combining stiffness properties

and damping requirements. To this end, this survey will be carried on candidate

mixtures chosen with respect to those requirements.

35



1.6 CONCLUSION

36



Chapter 2

Experimental investigation on three
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2.1 INTRODUCTION

2.1 Introduction

In the previous chapter, we highlighted that elastomers are widely used in industry

due to their mechanical properties particularly their damping capabilities[6][4]. Sub-

jected to complex combinations of manufacturing and service loadings, elastomers

show the fact of undergoing severe loading conditions [95]. It has been pointed

out through experimental investigations that rubber-like materials show lots of non

linear behaviors [3]. Estimating the damping capability is a primary feature to be

considered in many engineering applications and to design industrial compounds

efficiently, it is of major importance to measure the sensitivity of the dynamic re-

sponse to the influencing parameters [96].

This chapter is dedicated to a series of experimental observations on three vulcan-

ized rubber materials : Natural Rubber NR, Bromobutyl BIIR and a mix of both

NR/BIIR. The considered materials are intended to the specified damping applica-

tion.Firstly, we present the considered materials and the furnished parameters, the

experimental set-up as well as the used procedures for an efficient specimens testing.

The following section reports the experimental results for the monotonic and dy-

namic investigation of the three elastomers. In order to evaluate the hysterisis re-

sponse, cyclic tests are presented. The Mullins effect have been studied by many au-

thors whith different approaches [23][21][97] and it is to denote that for the intended

industrial application, a preconditionning procedure is applied to eliminate this ef-

fect. Since the rubber-like material’s behavior is pronounced to be rate-dependent,

multistep tests were used to approach the nonlinear elastic equilibrium with a good

approximation. Relaxation tests were conducted in order to identify the viscoelastic

behavior of the tested materials, which is time dependent none deformation de-

pendent i.e time-strain separable [48][49]. In the same section, dynamic tests are

presented. Herein, we intentionally avoid the Payne Effect [25], which consists on

a dynamic amplitude dependent softening effect [26]. Both frequency and tempera-

ture dependence were evaluated and discussed. Within this investigation, a coupled

temperature-frequency dependence is highlighted. Increasing frequency leads to shift

the glass transition temperature to higher values [98]. Moreover, the influence of the

static predeformation on the dynamic response were investigated [99]. Conclusions

are drawn concerning a comparison of the materials properties, with consideration

to the industrial applications.
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2.2 Materials and specimens

2.2.1 Materials

The aim of this experimental investigation is the characterization of some candi-

date rubber-like materials, that have to satisfy some requirements from mechanical

properties as well as degazage and cleanliness imposed by ESA standard ECSS

Q-70-02A. It should also be emphasized that the mixture must have a good ca-

pability for molding, and good adhesion to metal insert. The chosen vulcanized

rubber-like materials throughout this work are:

• a filled natural rubber NR vulcanizate

• a filled bromo butyl BIIR vulcanizate

• a mix of both precedent filled rubbers NR/BIIR vulcanizate

The considered rubbers were provided by " EMAC Technical Rubber Compounds".

The mechanical behavior of the three materials is known to be incompressible hyper-

visco elastic [3][16][100], as highlighted in Chapter 1.

Tables 2.1 to 2.3 summarizes the measured hardness and the furnished vulcanization

and strength parameters. The manufacturer also provided curemeter curves, shown

in figs. 2.1 to 2.3, for vulcanization, on MDR 2000 Moving Die Rheometer which

is designed to test mixed rubber and capable of measuring rubber compound cure

under isothermal test conditions with constant strain and frequency.

NR BIIR NR/BIIR

Shore A 41 30 27

Table 2.1: Measured hardness
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Test Temp Test time ML MH ts1 ts2 t10 t50 t90
◦C min dNm dNm min min min min min

NR 160 5 0.82 7.73 1.08 1.20 1.02 1.36 2.31

BIIR 160 10 1.6 3.83 3.85 6.48 0.1 4.06 6.56

NR/BIIR 160 10 1.06 2.90 5.76 2.90 5.57 8.20

Table 2.2: Vulcanization parameters

R.Fracture A.Fracture M@50% M@100% M@200% M@300%

MPa % MPa MPa MPa MPa

NR 20.7 683 0.73 1.04 1.62 2.4

BIIR 13.5 902 0.47 0.78 1.28 1.84

NR/BIIR 9.77 920 0.48 0.66 1.03 1.42

Table 2.3: Strength properties

Figure 2.1: NR rheometer response
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Figure 2.2: BIIR rheometer response

Figure 2.3: NR/BIIR rheometer response

2.2.2 Experimental devices

The objective of this section is to present the material available to us to carry out

the mechanical characterization of our candidate materials.

2.2.2.1 Traction Machine

Traction machines are commonly used in the rubber industry to control the tensile

traction characteristics of materials such as stress and strain till break. For mono-

tonic testing, we made use of the Instron 3345 single-column compression traction
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machine which is particularly suitable for traction and compression tests of elas-

tomeric materials, with force ranges of less than 5 kN. This testing machine is used

for its precision :

• 100: 1 force range (use of 1.0% force sensor capacity without loss of accuracy)

• Strain rate 0.001-500 mm.min−1

• Data acquisition rate of 500 Hz

• Vertical test area of 1123 mm (44.2 in)

Figure 2.4: Instron 3345 testing machine
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2.2.2.2 Visco-analyzer

The Metravib DMA 50N shown in fig. 2.5 allows to characterize dynamic behavior

of materials:

• Maximum force 50N

• Maximum displacement +/- 3mm

• Frequency range 10−3-100 Hz

• Temperature range -100→+500 ◦C

• Temperature rate range +/-0.1 → +/-10 ◦C min−1

Figure 2.5: Metravib DMA 50N testing machine

2.2.3 Differential scanning calorimetry

Differential scanning calorimetry, commonly named DSC and developed by [101], is

a thermoanalytical technique in which the difference in the amount of heat required

to increase the temperature of a sample and reference is measured as a function
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Figure 2.6: DSC machine

of temperature. Both the sample and reference are maintained at nearly the same

temperature throughout the experiment. Generally, the temperature program for a

DSC analysis is designed such that the sample holder temperature increases linearly

as a function of time. The reference sample should have a well-defined heat capacity

over the range of temperatures to be scanned. DSC is used widely for examining

polymeric materials to determine their thermal transitions.

2.2.4 Test specimens

According to the tests carried out during this part, different geometries of test

specimens were used. These are all obtained from a 2.3 mm thick plates molded in

compression in which the test pieces are cut-out with a punch.

2.2.4.1 Haltère type 2 specimen

The Haltère type 2 specimen (fig. 2.7), commonly referred to as H2 Specimen, was

used for monotonic tension tests. These specimens are normalized according to ISO

37 standard.
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Figure 2.7: H2 Specimen (ISO 37 standard)

Figure 2.8: H2 Specimen dimensions in mm

2.2.4.2 Quad-shear samples

The Quad-shear test specimen [102] consists of four rubber parts glued on four

rectangular metallic fittings, as shows fig. 2.9. This specimen is used for monotonic

shear tests
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Figure 2.9: Quad-shear sample

2.2.4.3 DMA double shear specimen

The DMA double-shear test piece consists of three metal fittings on which two

cylindrical rubber parts are glued. This test piece will be used to quantify the

viscous behavior of our materials. Due to some testing difficulties for thermal testing,

we substituted the steel reinforcements by aluminium ones to gain on adherance

between rubber/glue/reinforcement, as shows fig. 2.10

Figure 2.10: specimen preparation
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Figure 2.11: DMA shear specimen holder

2.2.4.4 DSC sample

DSC samples are analysed in small metal pans, designed for optimal thermal con-

ductivity and minimum reaction with the sample. Pans may be open, pin-hole,

covered or sealed

Figure 2.12: DSC pans
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2.3 Experimental procedure

2.3.1 Monotonic testing

The monotonic tests aims to identify the hyperelastic behavior of the three vul-

canized rubber materials. Taking different loading paths into account, sets of ex-

periments including uniaxial tension and simple shear tests were carried out on an

Instron 3345 Table machine. The tension tests were performed using standardized

Haltere type 2 specimens, as shows fig. 2.8. Shear tests were achieved with the use of

quad-shear specimens holders [102][9], as shows fig. 2.9, with four elastomeric inserts

of 25mm height, 15mm wide and 2.3mm thick cut out from plates. An industrial

cyanoacrylate fast-acting adhesive was used to hold the assembly. Note that pre-

liminary tests showed that the shear occurs on inserts none on glue. The monotonic

experiments were performed at room temperature under displacement control, and

the engineering strain was calculated assuming an homogeneous deformations on

the whole specimen. At least three tests were carried out for each loading path.

For the uniaxial tension, the specimens were loaded till 500% of deformation under

strain-rates of 10% min−1, 100% min−1 and 200% min−1. Avoiding that the shear oc-

curs on glue, the shear tests were loaded till 100% of deformation at 5% min−1, 10%

min−1 and 20% min−1. Focusing on the equilibrium hyperelastic stress response, we

make use of multistep experiments at different strains with holding periods of 10

minutes during which the applied strain was held constant[23], as shows fig. 2.13.

It is important to underline that a preconditioning procedure allows to not consider

the Mullins effect, that is known to be a stress softening of virgin specimens in the

first loading cycles [21][103]. The elastomeric samples were subjected to 5 loading-

unloading cycles, under a constant strain-rate of 100% min−1 for uniaxial tension

and 10% min−1 for shear loadings.
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Figure 2.13: Strain history for monotonic testing

2.3.2 DMA tests

To identify the time-dependent viscoelastic behavior, stress relaxation experiments

were conducted on a Metravib DMA machine of load capacity 50N by mean of the

double shear specimens holder as shown in fig. 2.11. It consists on an assembly of

metallic cylinders with elastomers sheet cut out of plates of 10mm diameter and

2.3 mm thickness, as shown in fig. 2.10. The experimental procedure consists on

deforming the specimen with a traverse rate of 100% min−1 at different strains levels,

ranging from 10% to 50%, and holding the assembly for four hours. An hysteresis

is seen to quickly vanish and the steady relaxation response is measured.

Investigating the dynamic properties of the considered elastomers, the experimental

procedure consists on superimposing a simple shear predeformation and a sinusoidal

strain after sufficient relaxation time of about 10 mn as:

ǫ(t) = ǫ0 +△ǫ.sin(ωt) (2.1)

where ǫ0 denotes the predeformation and △ǫ the strain amplitude.

To consider the frequency-dependence of the material’s behavior, frequency sweep

tests with stepwise changing frequency from 0.1Hz up to 40Hz at constant predefor-
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mation were used. Furthermore, the predeformation-dependence was investigated

through imposing different levels of prestrain levels from 10% up to 30% [104]. The

dynamic deformation amplitude was set as maximum dynamic strain is less than

1%, in order to avoid another softening effect, the so-called Payne-effect [25][105].

The Payne-effect is an amplitude dependent stress softening that leads to a decrease

of the storage modulus for increasing dynamic strain amplitude and a maximum of

the loss modulus at middle strains. Since elastomers are known to be sensitive to

thermal environement, dynamic investigation were conducted with a temperature

sweep from -100 ◦C to 100 ◦C with a temperature rate of 2 ◦C per minute.

2.4 Experimental results and discussion

2.4.1 Monotonic Tests

2.4.1.1 The Mullins Effect

To investigate the softening behavior of virgin specimens, loading-unloading cycles

were applied under a constant strain rate of 100% min−1. During this process, a

maximum of stress is reached in the first cycle [22]. The second cycle shows a

significant decrease in the stress value. Figures 2.14 and 2.15 show cyclic responses

of the three filled rubbers, under tension and shear modes, respectively. One can

observe that the mechanical softening occurs until a quasi-stationary loop is reached

[21][102][23]. Both BIIR and NR/BIIR reached this loop beginning from the third

cycle. NR exhibit continuous non-linear softening effect and reached the stationary

loop at the fifth cycle.

2.4.1.2 Strain-rate dependence

The three elastomers exhibit strain-rate dependence in the studied range of deforma-

tion. Increasing deformation rate leads to a higher stress, till a glassy hyperelastic

response is obtained [106][107][108]. Figure 2.16 shows that NR is dependent for

all the applied strain-rates while BIIR exhibit the glassy behavior for strain-rates

higher than 100% /min. The NR/BIIR material shows a slight dependence, with

maximum deviation of 5%. Moreover, for BIIR and NR/BIIR, this dependence is

seen to be pronounced for high strains, higher than 200% of deformation.
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Figure 2.14: Uniaxial tension cyclic loading

Figure 2.15: Simple shear cyclic loading

Focusing on the hyperelastic equilibrium stress-strain curve, the constant strain-rate

was interrupted by several holding times, with a duration of 10 minutes. Many au-

thors [23][98] suggest that there exists a unique equilibrium response, approached

in an asymptotic sense, as the strain rate goes to zero. In our experiments, we have

seen that the value of stress reached at the end of each relaxation period is approx-

imately constant at the lower strain-rate. The set of these points is defined as the

time-independent equilibrium hyper-elastic stress-strain curve, as shows fig. 2.17.

Figure 2.18 graphically shows the equilibrium response of the three elastomers. The
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NR is seen to be the stiffest material while NR/BIIR is the softer. The reason of

this softening is not clear, but could be related to the vulcanization parameters.

Figure 2.16: Non-equilibrium tension stress response at different strain-rates

Figure 2.17: Definition of the equilibrium stress-strain curve for the tension mode
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Figure 2.18: Time independent equilibrium stress-strain curve of the three materials

2.4.2 Stress Relaxation

When vulcanized rubbers are deformed, the stress gradually decreases with time

[6][16]. In other circumstances, when viscoelastic materials are subjected to a con-

stant stress, the resulting deformation is seen to increase continuously, which is the

creep phenomena [6][109]. Stress relaxation experiments were conducted on simple

shear specimens, measuring the stress over four hours of relaxation for different con-

stant strains. Figures 2.19 to 2.21 show that the three materials relax and the shift

from the levels of maintained strain is quasi linear. Direct comparison of the three

materials shows that the relaxation of the natural rubber NR is less obvious than

the Bromobutyl filled materials (BIIR and NR/BIIR).
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Figure 2.19: Relaxation stress response: BIIR

Figure 2.20: Relaxation stress response: NR

Figure 2.21: Relaxation stress response: NR/BIIR
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2.4.3 Time-Strain separability

The time-strain separability in viscoelastic materials [48][49] is not a rule derived

from fundamental principles but merely an hypothesis based on experimental phe-

nomena, stress relaxation for long times. In constitutive modeling, time-strain sep-

arability has been extensively employed because of its theoretical simplicity and

practical convenience [110]. Within our experimental survey, the time-strain sepa-

rability is confirmed by normalized stress relaxation curves, and graphically shown

in figs. 2.22 to 2.24. The normalized stress response is seen to be independent of the

deformation. For each material, the different curves form an "envelop" with a max-

imum deviation of 5%. The three materials exhibit only time dependent behavior

none deformation dependence, and the stress could hence be written:

σ(t, ǫ) = f(t) . g(ǫ) (2.2)

Figure 2.22: Normalized relaxation stress: BIIR
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Figure 2.23: Normalized relaxation stress: NR

Figure 2.24: Normalized relaxation stress: NR/BIIR
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2.4.4 Temperature effect on dynamic properties

The variation of dynamic mechanical properties (storage modulus and loss factor)

with temperature provide fundamental knowledge for understanding the filled rub-

ber characteristics [26][111]. As mentioned above, we performed temperature sweep

test for the three materials, at a small dynamic strain amplitude to avoid the Payne

effect. The results are shown in figs. 2.25 and 2.30. At low temperature, the shear

storage modulus is at its maximum, and the loss factor at its minimum. This is

the glassy state of the material. Increasing the temperature, the storage modulus

decreases suddenly and the loss factor reach its maximum. The maximum point

of the this factor defines the glass transition temperature. For higher frequencies,

the behavior is stable and not too dependent of temperature compared to the pre-

vious areas. This domain is called the "rubbery plateau" [112]. In fact, the glass

transition were measured for the three materials using the peak for the loss factor

at 1 Hz as measure. The three materials exhibit the same response, with different

glass transition temperatures varying from -55 ◦C for the NR, -45 ◦C for the BIIR,

-40 ◦C for the NR/BIIR. There exist important differences between the Tg values

depending on the measurement method [113][114] (DSC, DMA).

The value of the glass transition temperature is shown, for example in fig. 2.30, to

be sensitive to frequency. Increasing the frequency leads to a higher glass transition

temperature. The Tg is seen to be shifted approximately with 4 ◦C per decade of

frequency. This effect can be explained by the work of [16][115][116], resuming that

dynamic mechanical properties of certain thermo-rheologically simple materials de-

pend on a single variable combining the temperature and frequency effects.

57



2.4 EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2.25: Shear storage modulus vs temperature at different frequencies: BIIR

Figure 2.26: Shear storage modulus vs temperature at different frequencies: NR
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Figure 2.27: Shear storage modulus vs temperature at different frequencies:
NR/BIIR

Figure 2.28: Loss factor vs temperature at different frequencies: BIIR
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Figure 2.29: Loss factor vs temperature at different frequencies: NR

Figure 2.30: Loss factor vs temperature at different frequencies: NR/BIIR
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2.4.5 Glass transition temperature

The glass transition were measured for the three materials using the peak for the

loss factor at 1 Hz as measure. The three materials exhibit the same response,

with different glass transition temperatures varying from -55 ◦C for the NR, -45 ◦C

for the BIIR, -40 ◦C for the NR/BIIR. There exist important differences between

the Tg values depending on the measurement method [113][114] (DSC, DMA). Ta-

ble 2.4 summarizes the measured glass transition temperatures with both methods,

while figs. 2.31, 2.33 and 2.34 graphically report the DSC thermal response to a

temperature slope of 10 ◦C/min rate.

DSC DMA

NR -63.02 ◦C -55 ◦C
BIIR -64.76 ◦C -45 ◦C

NR/BIIR -62.43 ◦C -40 ◦C

Table 2.4: Glass transition temperatures: Comparison DSC and DMA

Figure 2.31: DSC curve: BIIR
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Figure 2.32: DSC Glass transition technique: BIIR

Figure 2.33: DSC curve: NR

2.4.6 Time-Temperature superposition principle: Master curves

To investigate the frequency-dependent material behavior, frequency sweep tests

from 0.1Hz up to 40Hz were performed at room temperature of about 23 ◦C. In-

creasing the frequency range is accessible via the time-temperature superposition

principle, which states that the effect of temperature is the same as applying a
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Figure 2.34: DSC curve: NR/BIIR

shifting to the timescale [117][105]. This superposition principle is used to deter-

mine temperature-dependent mechanical properties of linear viscoelastic materials

from known properties at a reference temperature [6]. The elastic moduli of typical

amorphous polymers increase with loading rate but decrease when the temperature

is increased. Fortunately, curves of the instantaneous modulus as a function of time

do not change shape as the temperature is changed but appear only to shift left or

right. This implies that a master curve at a given temperature can be used as the

reference to predict curves at various temperatures by applying a shift operation.

The application of the principle typically involves the following steps:

1. experimental determination of frequency-dependent curves of isothermal vis-

coelastic mechanical properties at several temperatures and for a small range

of frequencies

2. computation of a translation factor to correlate these properties for the tem-

perature and frequency range

3. experimental determination of a master curve showing the effect of frequency

for a wide range of frequencies

The translation factor is often computed using an empirical relation. To this end

and to consider a wide range of frequency ( 10−2 till 107 Hz), we make use of the
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WLF (William-Landel and Ferry) model [117], which takes the following form:

log(aT ) =
−C1(T − Tr)

C2 + (T − Tr)
(2.3)

where T is the temperature, Tr is a reference temperature chosen to construct the

compliance master curve and C1, C2 are the WLF law material constants adjusted

to fit the values of the superposition parameter aT . The alternative model suggested

by Arrhenius [118] was not used herein.

The figs. 2.35 to 2.40 summarizes the experimental determination of frequency-

dependent curves of isothermal properties. Table 2.5 summarizes the determined

coefficients for the WLF model.

C1 C2 Tr
◦C

NR 2.6 75.5 3.2

BIIR 11.6 212 23.3

NR/BIIR 7.3 166.2 28

Table 2.5: WLF parameters for the three materials

Shear storage modulus and loss factor show the same behavior for the three ma-

terials, as illustrated in figs. 2.41 and 2.42. At low frequencies, the shear storage

modulus and the loss factor are seen to be of low values. Increasing frequency in the

way that higher frequencies lead to greater modulus, but it is shown that the loss

modulus increases with frequency till reaching a maximum and decreasing since. As

mentioned above, the compounds are relevant to a damping application. Comparing

the behavior of the three materials to the dynamic excitation, fig. 2.41 shows that

the three materials exhibit nearly the same shear storage modulus dependence to

frequency, except that the Natural Rubber NR shear modulus is quietly constant

under the frequency of 3000 Hz, and increases after. The loss factor is that part

significant to damping property. In fig. 2.42, BIIR and NR/BIIR have better damp-

ing properties than the NR for low frequencies. For very high frequencies (near 1E5

Hz), the NR is relevant to a more damping ability.
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Figure 2.35: Isothermal Shear storage modulus: BIIR

Figure 2.36: Isothermal Loss factor: BIIR
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Figure 2.37: Isothermal Shear storage modulus: NR

Figure 2.38: Isothermal Loss factor: NR
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Figure 2.39: Isothermal Shear storage modulus: NR/BIIR

Figure 2.40: Isothermal Loss factor: NR/BIIR
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Figure 2.41: Shear storage modulus Master curves, comparison of the three materi-
als

Figure 2.42: Loss factor Master curves, comparison of the three materials
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2.4.7 Static predeformation effect on dynamic properties

Depending on the applications, rubber compounds are generally used at a prede-

formed configuration [9]. Several authors [22][49][115] have investigated this phe-

nomena, and defined three zones: a linear domain, transition zone and nonlinear

domain of dependency, depending on the amount of installed predeformation. The

three tested materials exhibit predeformation-dependence. In term of shear storage

modulus, the experimenntal curves in figs. 2.43 to 2.45 show that increasing the static

predeformation leads to a lower storage modulus. Greater predeformation leads to

a softening phenomenon. The decrease between 0% and 10% of predeformation is

greater than the one between 20% of predeformation and 30% of predeformation

for the tested materials. Interested by the loss factor, increasing installed prede-

formation for both NR and BIIR decreases the loss factor, as graphically shown in

figs. 2.46 and 2.47. For the NR/BIIR, increasing predeformation leads to a higher

damping factor as shows fig. 2.48. In relation with authors observations mentioned

above, we can define the deformation zones as:

• Deformation less than 10% corresponding to the linear domain, the curves are

qualitatively the same with a slight transition

• From 10% to 20% of deformation corresponding to the transition domain,

where the transition is of a greater amount

• Deformation greater than 20% corresponding to the non linear domain

Fig. 2.43 and Fig. 2.46 exhibits the prestrain-dependence behavior of the Bromobutyl

BIIR. The experimental curves show that increasing the static predeformation leads

to a lower storage modulus and loss factor. Greater predeformation leads to a lower

softening in term of shear storage modulus. The decrease between 0% and 10% of

predeformation is greater than the one between 20% of predeformation and 30%

of predeformation. The loss factor’s dependency exhibits the same phenomena.

Therefore, the softening of the material is non linear.
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Figure 2.43: Shear modulus frequency and predeformation dependence: BIIR

Figure 2.44: Shear modulus frequency and predeformation dependence: NR
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Figure 2.45: Shear modulus frequency and predeformation dependence: NR/BIIR

Figure 2.46: Loss factor frequency and predeformation dependence: BIIR
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Figure 2.47: Loss factor frequency and predeformation dependence: NR

Figure 2.48: Loss factor frequency and predeformation dependence: NR/BIIR
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2.5 Conclusions

The intention of this chapter is to investigate the mechanical behavior of the filled

rubber materials, at different frequency, temperature and predeformation levels used

for the intented engineering application. The materials behavior is characterized by

non-linear elasticity combined with viscoelasticity, and a weak equilibrium hystere-

sis. Within this experimental investigation, for the monotonic tests, it has been

shown that the Mullins effect vanishes after the three to five loading cycles and

a quasi-stationary equilibrium is then reached. The three materials exhibit rate-

dependence properties, and the hyperelastic equilibrium response was identified with

the presented technique. Since application of superimposed predeformation with a

small sinusoidal strain is widely common in engineering applications, the viscoelastic

properties of the three vulcanized materials, for different levels of predeformation,

were investigated. The experimental data show that material behaviors depend on

frequency, temperature and the predeformation level. Conducting the tests over a

wide range of temperature and using the time-temperature equivalence principle lead

to characterize the materials damping as a function of frequency and temperature

over the range encountred in engineering applications. Experimental observations

printed out from this work are resumed as:

• NR offers the highest stiffness while it shows the lowest damping ability in

the intented service domain. It can offer the maximum damping factor for

high frequencies. It has been found that increasing predeformation leads to

the highest softening in terms of shear storage modulus.

• In contrast with NR, BIIR offers the highest damping factor and the lowest

stiffness. The softening of BIIR with increasing predeformation is moderate.

• The softening of NR/BIIR observed during monotonic tests is not clear, and

could be due to vulcanization parameters. Meanwhile, it offers mid-range

dynamic properties. This material shows the ability to be softer and acquire

a higher damping ability with increasing predeformation.

With these experimental findings, the focus in the next chapter will be made on

the predictive capabilities of some hyper-visco-elastic models which are widely used

for rubber-like material. Within the proposed experimental database, the following

investigation will be carried in time and frequency domains.
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3.1 INTRODUCTION

3.1 Introduction

Modeling strain-rate dependent response of rubber materials is mainly derived fol-

lowing two different frameworks based on the phenomenological approach, and one

can reffer to the well detailed introduction of [119] for more details. As recalled in

Chapter 1, the constitutive theory of finite linear viscoelasticity [58] have been of a

major contribution and is founded on an extension of the Boltzmann superposition

principle to finite strain. The stress quantity is decomposed to an equilibrium part

corresponding to the stress response at highly slow rate, and an overstress quan-

tity expressed as an heriditary integral including a measure of material’s memory

through relaxation function [120]. Based on experimental observations, the time-

strain separability or factorability assumption [57][110] is frequently introduced in

the formulation of finite strain viscoelasticity constitutive models and afford a large

theoretical simplicity. The second approach consists on decomposition of deforma-

tion gradient into elastic and inelastic parts [121], and in which the elastic part de-

rives from an hyperelasticity model while the viscoelastic overstressed part is related

to the so-called internal strain, determined by an evolution equation [78][79][122][23].

The objective of this chapter is to propose an analysis of the predictive capabilities

of some models for engineering applications. The choice is made herein on some

heriditary integral-based constitutive models in time and frequency domains, under

the separability assumption [48][49]. This work is instigated by the experimental

investigation made in chapter 2. Moreover, the choice of the considered models

is motivated by the fact that these models do not require a special identification

procedure and all parameters have been identified using Abaqus Evaluate Module.

Conclusion for time domain and frequency domain analysis as described in [64] and

[123] are drawn, with focus on the capability of the considered models to predict

dynamic properties in term of storage modulus and loss factor with respect to the

predeformation levels.
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3.2 Seperable Finite Strain Viscoelastic Models un-

der consideration

3.2.1 Models under consideration

In the present work, some of major contributions finite strain viscoelastic models

involving heriditary integral have been considered under the seperability assumption.

This choice is motivated by the experimental observation confirming the seperability

assumption, as mentionned above. Models are chosen so as to not require a special

identification procedure. All parameters have been identified using Abaqus Evaluate

Module. The models under consideration are:

• Christensen model (3.1a), applicable for moderate and large strain ranges,

consists on a viscoelastic generalisation of the kinetic theory of rubber elasticity

with specific attention to stress-imposed problems [67]

• Fosdick & Yu model [65](3.1b), based on the QLV model, consists on a simple

convolution between the Cauchy stress tensor σ(t) and the relative Green-

Saint-Venant deformation gradient Et(s)

• a solid extension of the K-BKZ model (3.1c), based on an hyperelastic part

and a K-BKZ fluid [63] for the viscous part. This model have been proposed

investigated in a recent work [124] for monotonic and relaxation response.

• Simo model (3.1d), proposed in 1987 [88], based on an uncouple volumetric

and deviatoric response over any range of deformation, with decomposition of

the stress tensor into initial and nonequilibrium parts. We denote that the

Simo model is used in finite element software Abaqus [125]

We have considered two other models, that analysis have shown that:

– Fung’s model, commonly referred to as Quasi Linear Viscoelastic QLV model

[68], is one of the most used models as a simple way to incorporate nonlinearity

and time dependence in a simplified integral model. This model is intended

specially for biological tissues, and can find application for elastomers. Analy-

sis of this model have shown that, for an incompressible material, we hold the

same expression as the Simo model.
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– Yang et al. model was proposed in 2000, and is an extension of the BKZ model

[70]. This model is mainly issued for very high strain-rates. Considering the A5

term as zero in the originally proposed model, we denote that the expression

is the same as Fosdick and Yu model.

We consider an homogeneous, isotropic and incompressible material. Intending to

have the same parameters number for the hyperelastic part, we make use of a general-

isation of some models originally introduced with respect to a NeoHookean material.

Moreover, introduced an extension of the original versions of single relaxation time

in some models to a Prony’s series of at least 3 characteristic times. The constitutive

relations for respectively Christensen, Fosdick & Yu , K-BKZ and Simo models are:

σCh = − pI+ 2B
∂W

∂B
+ FG0

∫ t

0

g1(t− s)
∂E(s)

∂s
dsFT (3.1a)

σFY = − pI+ 2B
∂W

∂B
+G0

∫ t

0

g1(t− s)
∂Et(s)

∂s
ds (3.1b)

σBKZ = − pI+ 2B
∂W

∂B
− 2FG0

∫ t

0

g1(t− s)
∂C−1

∂s
dsFT (3.1c)

σSi = − pI+ 2B
∂W

∂B

1

g∞
+

dev

[
∫ t

0

∂g1(s)

∂s
F−1

t (t− s)
2

g∞
B(t− s)

∂W

∂B
F−T

t (t− s) ds

] (3.1d)

(3.1e)

The convolution integral-based approach is based on the relative deformation gra-

dient Ft(s) = F(s)F−1(t) which is the deformation gradient at the current time s

at the current configuration. For the Simo model, the "dev" operator is defined as:

dev(.) = (.)−
(

1
3
(.) : I

)

I.

We recall the first Piola-Kirchoff stress Π, which is called nominal stress and ex-

presses the actual stress in the reference configuration. This stress is related to the

Cauchy stress tensor as:

σ = ΠFT (3.2)

Using eq. (1.31c), stress-stretch relationships corresponding to simple test for an

hyperelastic material can be derived:
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• Uniaxial Tension:

Π = 2

(

λ− 1

λ2

)(

∂W

∂I1
+

∂W

∂I2

1

λ

)

(3.3)

• Pure Shear:

Π = 2

(

λ− 1

λ3

)(

∂W

∂I1
+

∂W

∂I2

)

(3.4)

Detailed expressions for simple tests and equations in the framework of hyperlasticity

can be found in [38].

3.2.2 Identification Procedure

Identification of materials parameters consists on fitting theoretical solution T th

with experimental data T test. Abaqus offers an evaluation module [126]: Given

experimental data, the material constants are determined through a least-squares-

fit procedure, which minimizes the relative error in stress. For the N nominal

stress–nominal strain data pairs, the relative error measure e is minimized:

e =
N
∑

i=1

(

1− T th
i

T test
i

)2

(3.5)

Moreover, Abaqus offers the possibility to check the material stability limits using

the Drucker criterion [127].

3.2.3 Transformations under consideration

The available experimental data are for an uniaxial tension test and a simple shear

test, so we have considered the following motions:

3.2.3.1 Uniaxial Tension

We consider an uniaxial tension test. The transformation has the form:

x1 = λ(t)X1 x2 =
1√
λt

X2 x3 =
1√
λt

X3 (3.6)
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The deformation gradient and the right Cauchy-Green strain tensor have compo-

nents:

F(t) =











λ(t) 0 0

0 1√
λ(t)

0

0 0 1√
λ(t)











C(t) = B(t) =









λ2(t) 0 0

0 1
λ(t)

0

0 0 1
λ(t)









(3.7)

The hydrostatic pressure is eliminated through the relation:

σtension = σ11 − σ22 (3.8)

since σ22 = 0.

The obtained constitutive equations for uniaxial tension motion are then:

σCh
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

∂W

∂I1
+

1

λ(t)

∂W

∂I2

)

+
G0

2
λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.9a)

σFY
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

∂W

∂I1
+

1

λ(t)

∂W

∂I2

)

+
G0

2λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2
λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.9b)

σBKZ
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

∂W

∂I1
+

1

λ(t)

∂W

∂I2

)

+
2G0

λ(t)

∫ t

0

g1(t− s)
∂λ(s)

∂s
ds

− 2G0λ(t)
2

∫ t

0

g1(t− s)
∂ 1

λ(s)2

∂s
ds

(3.9c)

σSi
tension(t) =

2

g∞

(

λ(t)2 − 1

λ(t)

)(

∂W

∂I1
+

1

λ(t)

∂W

∂I2

)

+
2

g∞

(

λ(t)2 − 1

λ(t)

)
∫ t

0

ġ1(s)

(

∂W

∂I1
+

1

λ(t− s)

∂W

∂I2

)

ds

− 2

λ(t)g∞

∫ t

0

ġ1(s)
∂W

∂I2
λ2(t− s)ds

(3.9d)
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3.2.3.2 Simple Shear motion

Considering a simple shear motion, the non-symmetric deformation gradient has

components:

F(t) =







1 γ(t) 0

0 1 0

0 0 1






(3.10)

The right and left Cauchy-Green strain tensor:

C(t) =







1 γ(t) 0

γ(t) 1 + γ2(t) 0

0 0 1






B(t) =







1 + γ2(t) γ(t) 0

γ(t) 1 0

0 0 1






(3.11)

The obtained constitutive equations for a simple shear motion are then:

σCh
12 (t) = 2γ(t)

(

∂W

∂I1
+

∂W

∂I2

)

+
G0

2

∫ t

0

g1(t− s)
∂γ(s)

∂(s)
ds

+
G0

2
γ(t)

∫ t

0

g1(t− s)
∂γ2(s)

∂(s)
ds

(3.12a)

σFY
12 (t) = 2γ(t)

(

∂W

∂I1
+

∂W

∂I2

)

+
G0

2

∫ t

0

g1(t− s)
∂γ(s)

∂(s)
ds (3.12b)

σBKZ
12 (t) = 2γ(t)

(

∂W

∂I1
+

∂W

∂I2

)

+ 2G0

∫ t

0

g1(t− s)
∂γ(s)

∂(s)
ds (3.12c)

σSi
12(t) =

2

g∞
γ(t)

(

∂W

∂I1
+

∂W

∂I2

)

− 2

g∞

∫ t

0

∂g1(s)

∂s

∂W

∂I2
γ(t− s) ds

+
2

g∞
γ(t)

∫ t

0

∂g1(s)

∂s

(

∂W

∂I1
+ 2

∂W

∂I2

)

ds

(3.12d)
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3.3 Prediction of purely hyperelastic response

There are several forms of strain energy potentials available in Abaqus to model

incompressible or quasi-incompressible isotropic elastomers [128]:

• The polynomial form and it’s particular cases: the reduced polynomial form,

the neo-Hookean form, the Mooney-Rivlin form, and the Yeoh form

• Ogden real exponents form

• Arruda-Boyce form

• Van der Waals form

Comparison results are graphically shown in fig. 3.1. For a given model, a unique

set of material parameters must be able to reproduce set of experimental data with

good appproximation. In the considered deformation range, we observed that:

• Arruda Boyce model, Van der Walls and Yeoh models have shown slightly

the same response in uniaxial or shear modes. These models are seen to

underestimate the uniaxial tension nominal stress and over estimate the shear

one. Nevertheless, the response have the same curvature as experimental data

and the maximum measured error for highest strains is of about 18%.

• Mooney-Rivlin and NeoHookean potentials are seen not able to predict exper-

imental data. The response is quasi-linear for both models. An acceptable

range of deformation for both models can be less than 150% of deformations.

• The reduced polynomiam model with N=6 is seen to have a response similar to

Arruda-Boyce model. It under-estimate tension stress and over-estimate the

shear stress. Nevertheless, at moderate of large strains, the models is seen to

have some instabilities, and the origin of some curvatures (as shown in Figure)

is not clear.

• Both Ogden (N=3) and Polynomial(N=2) strain energy potentials are seen to

give a well approximated response of the experimental data for a large strain

loading. For moderate strains (approximately 300% in shear), the Polynomial

model is seen unable to fit the curvature. Ogden model exhibit a slight under-

estimation of the tension stress and an over-estimation of the shear stress.

Nevertheless, the measured error is acceptable.
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(a) NR Uniaxial (b) NR Simple Shear

(c) BIIR Uniaxial (d) BIIR Simple Shear

(e) NR/BIIR Uniaxial (f) NR/BIIR Simple Shear

Figure 3.1: Comparison of experimental data and different hyperelastic strain en-
ergy potentials response
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3.4 Predictive capabilities of relaxation experiments

The evaluation of the prony series is available in the abaqus evaluation module

[126] for normalized shear stress relaxation experiments, with a specification on the

maximum relative error which we have chosen to be of 10−2. We make use of the

normalized stress relaxation curves for the three materials at mean deformation level

(30%).

The deformation taken into account for relaxation tests is less than 50% of deforma-

tion. For simplification reasons, and since experimental data are well approximated

in this range, we consider in this section Neo-Hookean, Mooney-Rivlin and 2nd order

Polynomial hyperelastic potentials.

For a stress relaxation test:

γ(t) = γ0H(t) (3.13)

where H(t) is the Heaviside function. This equation is to be introduced in the gov-

erning shear equations eqs. (3.12a) to (3.12d). Considering NeoHookean, Mooney-

Rivlin and 2nd order polynomial hyperelastic potential, the following equations are

hence obtained:

Neo-Hookean potential:

σCh
12 (t) = 2γ0 C10 +

G0

2
γ0g1(t) +

G0

2
γ3
0g1(t) (3.14a)

σFY
12 (t) = 2γ0 C10 +

G0

2
γ0g1(t) (3.14b)

σBKZ
12 (t) = 2γ0 C10 + 2G0γ0g1(t) (3.14c)

σSi
12(t) =

2

g∞
γ0C10 +

2

g∞
γ0C10 [g1(t)− g1(0)] (3.14d)

Mooney-Rivlin potential:

σCh
12 (t) = 2γ0 (C10 + C01) +

G0

2
γ0g1(t) +

G0

2
γ3
0g1(t) (3.15a)

σFY
12 (t) = 2γ0 (C10 + C01) +

G0

2
γ0g1(t) (3.15b)

σBKZ
12 (t) = 2γ0 (C10 + C01) + 2G0γ0g1(t) (3.15c)

σSi
12(t) =

2

g∞
γ0 (C10 + C01) +

2

g∞
γ0 (C10 + C01) [g1(t)− g1(0)] (3.15d)
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2nd order Polynomial potential

σCh
12 (t) = 2γ0

(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

+
G0

2
γ0g1(t) +

G0

2
γ3
0g1(t)

(3.16a)

σFY
12 (t) = 2γ0

(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

+
G0

2
γ0g1(t)

(3.16b)

σBKZ
12 (t) = 2γ0

(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

+ 2G0γ0g1(t)
(3.16c)

σSi
12(t) =

2

g∞
γ0
(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

+
2

g∞
γ0
(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

[g1(t)− g1(0)]

(3.16d)

Relaxation equilibrium response For a very long relaxation time i.e t → ∞,

the relaxation equations for the considered hyperelastic potentials give the following

equilibrium expressions:

σNeo−Hook Equil
12 = 2C10γ0 (3.17a)

σMREquil
12 = 2 (C10 + C01) γ0 (3.17b)

σPoly Equil
12 = 2

(

C10 + 2C20γ
2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)

γ0 (3.17c)

Comparison results are reported on figs. 3.2 to 3.4 :

• Considering the NeoHookean hyperelastic potential, the models are seen to

well reproduce the relaxation test data for low deformation level. For higher

deformation levels, the predicted response is seen to be overestimated. This

can be dedicated to the few hyperelastic model parameters, which is clearly

not able to predict the long-term vicoelastic response with good accuracy.

• Considering the Mooney-Rivlin hyperelastic potential, the response of the

models improves. With materials BIIR and NR/BIIR, as shows figs. 3.3b

and 3.4b, the response is well approximated at 10% and 30% of deformations.

This hyperelastic model still can’t predict the long-term stress for the NR

model since the response between the two deformation levels stress response

is not really linear.
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• The 2nd order Polynomial hyperelastic model offers the best prediction for the

long-term relaxation stress response. The measured error between experimen-

tal test data and predicted data is of an acceptable level.

• The major difference of the considered hyper-visco-elastic models is seen for

the hysteritic part. Focusing on figs. 3.2c, 3.3c and 3.4c, the Simo model is

seen to offer a good fidelity to approximate low times stress. Christensen and

Fosdick & Yu models underestimate the hysteritic stress level while the BKZ

model is observed to highly overestimate the instantaneous relaxation stress.
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(a) NeoHook

(b) Mooney-Rivlin

(c) 2nd Order Polynomial

Figure 3.2: Comparison of the models relaxation response with different hyperelastic
models: Material NR
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(a) NeoHook

(b) Mooney-Rivlin

(c) 2nd Order Polynomial

Figure 3.3: Comparison of the models relaxation response with different hyperelastic
models: Material BIIR
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(a) NeoHook

(b) Mooney-Rivlin

(c) 2nd Order Polynomial

Figure 3.4: Comparison of the models relaxation response with different hyperelastic
models: Material NR/BIIR
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3.5 Predictive capabilities of monotonic experiments

3.5.1 Monotonic uniaxial tension

In this section we hold the choice of the polynomial hyperelasic form and its partic-

ular cases NeoHookean and Mooney-Rivlin.

NeoHookean Potential

σCh
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)

C10

+
G0

2
λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.18a)

σFY
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)

C10

+
G0

2λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2
λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.18b)

σBKZ
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)

C10

+
2G0

λ(t)

∫ t

0

g1(t− s)
∂λ(s)

∂s
ds

− 2G0λ(t)
2

∫ t

0

g1(t− s)
∂ 1

λ(s)2

∂s
ds

(3.18c)

σSi
tension(t) =

2

g∞

(

λ(t)2 − 1

λ(t)

)

C10

+
2

g∞

(

λ(t)2 − 1

λ(t)

)

C10

∫ t

0

ġ1(s)ds

(3.18d)
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Mooney-Rivlin Potential

σCh
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

C10 +
1

λ(t)
C01

)

+
G0

2
λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.19a)

σFY
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

C10 +
1

λ(t)
C01

)

+
G0

2λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2
λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.19b)

σBKZ
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)(

C10 +
1

λ(t)
C01

)

+
2G0

λ(t)

∫ t

0

g1(t− s)
∂λ(s)

∂s
ds

− 2G0λ(t)
2

∫ t

0

g1(t− s)
∂ 1

λ(s)2

∂s
ds

(3.19c)

σSi
tension(t) =

2

g∞

(

λ(t)2 − 1

λ(t)

)(

C10 +
1

λ(t)
C01

)

+
2

g∞

(

λ(t)2 − 1

λ(t)

)
∫ t

0

ġ1(s)

(

C10 +
1

λ(t− s)
C01

)

ds

− 2

λ(t)g∞
C01

∫ t

0

ġ1(s)λ
2(t− s)ds

(3.19d)

2nd order Polynomial Potential

σCh
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)[

C10 + 2C20(I1 − 3) + C11(I2 − 3)

+
1

λ(t)
(C01 + 2C02(I2 − 3) + C11(I1 − 3))

]

+
G0

2
λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.20a)
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σFY
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)[

C10 + 2C20(I1 − 3) + C11(I2 − 3)

+
1

λ(t)
(C01 + 2C02(I2 − 3) + C11(I1 − 3))

]

+
G0

2λ(t)2

∫ t

0

g1(t− s)
∂λ2(s)

∂s
ds

− G0

2
λ(t)

∫ t

0

g1(t− s)
∂ 1

λ(s)

∂s
ds

(3.20b)

σBKZ
tension(t) = 2

(

λ(t)2 − 1

λ(t)

)[

C10 + 2C20(I1 − 3) + C11(I2 − 3)

+
1

λ(t)
(C01 + 2C02(I2 − 3) + C11(I1 − 3))

]

+
2G0

λ(t)

∫ t

0

g1(t− s)
∂λ(s)

∂s
ds

− 2G0λ(t)
2

∫ t

0

g1(t− s)
∂ 1

λ(s)2

∂s
ds

(3.20c)

σSi
tension(t) =

2

g∞

(

λ(t)2 − 1

λ(t)

)[

C10 + 2C20(I1 − 3) + C11(I2 − 3)

+
1

λ(t)
(C01 + 2C02(I2 − 3) + C11(I1 − 3))

]

+
2

g∞

(

λ(t)2 − 1

λ(t)

)
∫ t

0

ġ1(s)

[

C10 + 2C20(I1 − 3) + C11(I2 − 3)

+
1

λ(t− s)
(C01 + 2C02(I2 − 3) + C11(I1 − 3))

]

ds

− 2

λ(t)g∞

∫ t

0

∂g1(s)

∂s
(C01 + 2C02(I2 − 3) + C11(I1 − 3))λ2(t− s)ds

(3.20d)

Since the available experimental data for uniaxial tension are only for monotonic

testing, we consider the elongation function as:

λ(t) = 1 + λ̇ t (3.21)

with λ̇ = cst. The integration of those equations have been done using numerical

approximation methods [129].

The response of monotonic tension nominal stress (Π) for each material are reported

in figs. 3.5 to 3.7. The considered models present the capability to take into account

a strain rate effect, with higher stain rates leading to a higher stress at same defor-

92



3.5 PREDICTIVE CAPABILITIES OF MONOTONIC EXPERIMENTS

mation level. Considering a NeoHookean or a Mooney-Rivlin hyperelastic potential,

the predicted data are seen to be non accurate, and all the models could not pre-

dict the second inflection point. Considering the 2nd Order Polynomial hyperelastic

potential, we made the following observations:

• All the considered models are able to predict a strain-rate effect.

• The Christensen model is seen to highly overestimate the nominal stress level

for high strains, not to exceed 100% of deformation for the BIIR and the

NR/BIIR materials as shows figs. 3.6e, 3.6f, 3.7e and 3.7f. For the NR material,

this model was able to predict the stress level with accepted overestimation

and the error increases as strain-rate increases.

• Fosdick & Yu model is seen to underestimate the stress level for the three

materials, and has the lowest stress level through all models. Nevertheless,

the predicted level is seen to be acceptable.

• Both BKZ and Simo models were able to give a better approximation of the

stress level. The prediction is quite good and the predicted stress is in a good

range.
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(a) NR 10% min NeoHookean (b) NR 100% min NeoHookean

(c) NR 10% min Mooney (d) NR 100% min Mooney

(e) NR 10% min Poly (f) NR 100% min Poly

Figure 3.5: NR monotonic tension models response, for NeoHookean, Mooney-Rivlin
and Polynomial Hyperelastic Potentials
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(a) BIIR 10% min NeoHookean (b) BIIR 100% min NeoHookean

(c) BIIR 10% min Mooney (d) BIIR 100% min Mooney

(e) BIIR 10% min Poly (f) BIIR 100% min Poly

Figure 3.6: BIIR monotonic tension models response, for NeoHookean, Mooney-
Rivlin and Polynomial Hyperelastic Potentials
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(a) NRBIIR 10% min NeoHookean (b) NRBIIR 100% min NeoHookean

(c) NRBIIR 10% min Mooney (d) NRBIIR 100% min Mooney

(e) NRBIIR 10% min Poly (f) NRBIIR 100% min Poly

Figure 3.7: NRBIIR monotonic tension models response, for NeoHookean, Mooney-
Rivlin and Polynomial Hyperelastic Potentials
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3.5.2 Monotonic simple shear

For a monotonic simple shear motion, we consider:

γ(t) = γ0t (3.22)

We introduce this equation into eqs. (3.12a) to (3.12d) to obtain the constitutive

equations for a monotonic simple shear motion:

NeoHookean Potential

σCh
12 (t) = 2γ0tC10 +

G0

2
γ0

∫ t

0

g1(t− s)ds

+G0γ
3
0t

∫ t

0

g1(t− s)sds

(3.23a)

σFY
12 (t) = 2γ0tC10 +

G0

2
γ0

∫ t

0

g1(t− s)ds (3.23b)

σBKZ
12 (t) = 2γ0tC10 + 2G0γ0

∫ t

0

g1(t− s)ds (3.23c)

σSi
12(t) =

2

g∞
γ0tC10 +

2

g∞
γ0tC10

∫ t

0

∂g1(s)

∂s
ds (3.23d)

Mooney Rivlin Potential

σCh
12 (t) = 2γ0t (C10 + C01) +

G0

2
γ0

∫ t

0

g1(t− s)ds

+G0γ
3
0t

∫ t

0

g1(t− s)sds

(3.24a)

σFY
12 (t) = 2γ0t (C10 + C01) +

G0

2
γ0

∫ t

0

g1(t− s)ds (3.24b)

σBKZ
12 (t) = 2γ0t (C10 + C01) + 2G0γ0

∫ t

0

g1(t− s)ds (3.24c)

σSi
12(t) =

2

g∞
γ0t (C10 + C01)−

2

g∞
γ0C01

∫ t

0

∂g1(s)

∂s
(t− s) ds

+
2

g∞
γ0t (C10 + 2C01)

∫ t

0

∂g1(s)

∂s
ds

(3.24d)
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2nd Order Polynomial Potential

σCh
12 (t) = 2γ0t

(

C10 + 2C20γ(t)
2 + C01 + 2C02γ(t)

2 + 2C11γ(t)
2
)

+
G0

2
γ0

∫ t

0

g1(t− s)ds

+G0γ
3
0t

∫ t

0

g1(t− s)sds

(3.25a)

σFY
12 (t) = 2γ0t

(

C10 + 2C20γ(t)
2 + C01 + 2C02γ(t)

2 + 2C11γ(t)
2
)

+
G0

2
γ0

∫ t

0

g1(t− s)ds
(3.25b)

σBKZ
12 (t) = 2γ0t

(

C10 + 2C20γ(t)
2 + C01 + 2C02γ(t)

2 + 2C11γ(t)
2
)

+ 2G0γ0

∫ t

0

g1(t− s)ds
(3.25c)

σSi
12(t) =

2

g∞
γ0t
(

C10 + 2C20γ(t)
2 + C01 + 2C02γ(t)

2 + 2C11γ(t)
2
)

− 2

g∞

∫ t

0

∂g1(s)

∂s

(

C01 + 2C02γ
2(t− s) + C11γ

2(t− s)
)

γ(t− s)ds

+
2

g∞
γ0t

∫ t

0

∂g1(s)

∂s

(

C10 + 2C20γ(t− s)2 + 2C01

+4C02γ(t− s)2 + 3C11γ(t− s)2
)

ds

(3.25d)

Models response results at differents strain rates have been compared to the exper-

imental data. Results for each material are reported in figs. 3.8 to 3.10. All models

shear response is quasi-linear as observed by Rivlin [36]. Considering the NR mate-

rial, and for both presented strain rates 5% min and 20% min, the experimental data

are well approximated only for low strain levels, not to exceed 50% of deformation

by Neo-Hookean and Mooney-Rivlin potentials. Exceeding this range, the response

of the different models overestimates the experimental data. The 2nd Order Polyno-

mial hyperelastic potential is seen to underestimate the stress level along loading,

and reaches the stress level at end of loading. Considering the BIIR and NR/BIIR

materials, the prediction is of a less quality than for the NR material. Increasing the

hyperelastic potential order leads to a softening of the material response. Fosdick

& Yu model shows a good estimation of the material data with a NeoHookean po-

tential for deformation level less than 50%. The response is overestimated over this

limit. Christensen model has the ability to stiffen and approximate the stress level

at 100% of deformation, but the error is of a great value. BKZ and Simo models
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show close responses, at each strain rate. The stress level is underestimated, and

the maximum error is of about 0.4MPa.
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(a) NR 5% min NeoHookean (b) NR 20% min NeoHookean

(c) NR 5% min Mooney (d) NR 20% min Mooney

(e) NR 5% min Poly (f) NR 20% min Poly

Figure 3.8: NR monotonic shear models response, for NeoHookean, Mooney-Rivlin
and Polynomial Hyperelastic Potentials
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(a) BIIR 5% min NeoHookean (b) BIIR 20% min NeoHookean

(c) BIIR 5% min Mooney (d) BIIR 20% min Mooney

(e) BIIR 5% min Poly (f) BIIR 20% min Poly

Figure 3.9: BIIR monotonic shear models response, for NeoHookean, Mooney-Rivlin
and Polynomial Hyperelastic Potentials
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(a) NR/BIIR 5% min NeoHookean (b) NR/BIIR 20% min NeoHookean

(c) NR/BIIR 5% min Mooney (d) NR/BIIR 20% min Mooney

(e) NR/BIIR 5% min Poly (f) NR/BIIR 20% min Poly

Figure 3.10: NR/BIIR monotonic shear models response, for NeoHookean, Mooney-
Rivlin and Polynomial Hyperelastic Potentials
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3.6 Predictive capabilities of dynamic properties

3.6.1 Determination of the complex shear modulus

The determination of the complex shear modulus was introduced by [64] and is a

Fourrier transform of the governing equations. The frequency domain viscoelasticity

is defined for a kinematically small perturbation about a predeformed state. The

procedure consists on a linearized vibration solution associated with a long-term

hyperelastic material behavior. This assumes that the linear expression for the shear

stress still governs the system. Since the available experimental data in the frequency

domain are limited to moderate strains, not to exceed 30%, and the procedure is

linearized for high order strains, a simple Mooney-Rivlin hyperelastic potential leads

to sufficient results. Therefore, we used the following state of loading:

γ(s) = 0 s < 0

γ(s) = γ0 0 6 s 6 t0

γ(s) = γ0 + γae
(iωt) t0 6 s 6 t

(3.26)

with

We assume that |γa| << 1 and that the specimen has been oscillating for a very

long time so that a steady-state solution is obtained and the dynamic stress has the

form:

σ∗(ω) = G∗(ω, γ0)γ(ω) (3.27a)

G∗(ω, γ0) = Gs(ω, γ0) + iGl(ω, γ0) (3.27b)

where Gs = ℜ [G∗(ω, γ0)] and Gl = ℑ [G∗(ω, γ0)] are respectively the shear storage

and loss modulus expressed in term of the Fourrier transform of the time-dependent

shear relaxation modulus.

Taking into account only first order terms of γ(ω), calculations leads to:

σ∗,Ch
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+G0

(

1

2
+ γ2

0

)[

iω

∫

∞

0

g1(s)e
(−iωs)ds

]

γ∗(ω)
(3.28a)
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σ∗,FY
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+
G0

2

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

]

γ∗(ω)
(3.28b)

σ∗,BKZ
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+ 2G0

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

]

γ∗(ω)
(3.28c)

σ∗,Si
12 (ω, γ0) =

(

2

g∞
(C10 + C01)− 2C01

(1− g∞)

g∞

)

γ∗(ω)

− 2C01

g∞

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

]

γ∗(ω)

(3.28d)

σ∗

12(ω, γ0) is the dynamic stress component that should be additioned to the equilib-

rium static stress σEquilibrium
12 = 2(C10 +C01)γ0 component to obtain the total stress

quantity.

The determinated complex shear modulus for the considered models is then:

G∗,Ch(ω, γ0) = 2(C10 + C01)

+G0

(

1

2
+ γ2

0

)[

iω

∫

∞

0

g1(s)e
(−iωs)ds

] (3.29a)

G∗,FY (ω, γ0) = 2(C10 + C01)

+
G0

2

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

] (3.29b)

G∗,BKZ(ω, γ0) = 2(C10 + C01)

+ 2G0

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

] (3.29c)

G∗,Si(ω, γ0) =

(

2

g∞
(C10 + C01)− 2C01

(1− g∞)

g∞

)

− 2C01

g∞

[

iω

∫

∞

0

g1(s)e
(−iωs)ds

] (3.29d)

3.6.2 Complex modulus comparison results

We firstly report on the results concerning the shear storage modulus, which are

shown in figs. 3.11 to 3.13. The considered materials have shown a frequency depen-

dent dynamic behavior. Increasing frequency leads to increasing the shear storage

modulus in the frequency range. At each considered predeformation level, following

observations have been made:
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• Simo model have shown an excellent approximation of the dynamic shear stor-

age modulus with respect to frequency and predeformation. At lowest frequen-

cies, the experimental data are seen to be slightly overestimated.

• Christensen model underestimates the shear modulus at 10% of deformations

and overestimate the properties at higher predeformation: this model was not

able to predict the softening of the material occuring with increasing prede-

formation level.

• Fosdick and Yu model’s response underestimates the materials response. Even

though increasing predeformation leads to a stiffening of the model response,

the predicted data are slightly lower than the experimental data.

• The BKZ model’s response is not in an acceptable range. The predicted shear

storage modulus shows the ability to take into account the frequency effect

and the predeformation level but not the moduli level.

Interested in the shear loss factor, the frequency dependence of the compared models

is pronounced, and all models are seen to offer a good approximation of this factor

as shows figs. 3.11 to 3.13. The Simo model slightly underestimate the response,

and the maximum deviation is of about 10%. One can observe that although the

BKZ model could not predict the storage modulus, is have shown the ability to well

approximate the damping of the materials.
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(a) NR shear storage Modulus 10% predefor-
mation

(b) NR shear storage Modulus 30% predefor-
mation

(c) NR loss factor 10% predeformation (d) NR loss factor 30% predeformation

Figure 3.11: NR dynamic properties models response, for Mooney-Rivlin Hypere-
lastic Potentials
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(a) BIIR shear storage Modulus 10% prede-
formation

(b) BIIR shear storage Modulus 30% prede-
formation

(c) BIIR loss factor 10% predeformation (d) BIIR loss factor 30% predeformation

Figure 3.12: BIIR dynamic properties models response, for Mooney-Rivlin Hypere-
lastic Potentials
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(a) NR/BIIR shear storage Modulus 10%
predeformation

(b) NR/BIIR shear storage Modulus 30%
predeformation

(c) NR/BIIR loss factor 10% predeformation (d) NR/BIIR loss factor 30% predeformation

Figure 3.13: NR/BIIR dynamic properties models response, for Mooney-Rivlin Hy-
perelastic Potentials

3.7 Conclusions

Within this chapter, we propose an analysis of the predictive capabilities of some

finite strain viscoelastic models under time-strain seperability assumption, based on

experimental observations. We determined the response of four models, well adapted

for engineering applications, for monotonic uniaxial tension/simple shear motions,

shear relaxation and shear dynamic response. We have found that the choice of the

hyperelastic potential is of a major importance, since this choice defines the equi-

librium point commonly called the service point for vibration problems in industrial

context. We determined the strain-rate dependent response of the considered mod-
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els, and the major difference have been found on the transient response. For the

Christensen model, we have seen that it is more suitable to be used for mid range

deformations while, whith a good choice of hyperelastic potential, all other models

could predict the response over a wider range of deformations. In frequency domain,

models have shown the capability to take into account frequency and predeforma-

tion effects. For shear storage modulus, except BKZ model, all predicted data could

be in an acceptable range. For the damping capability governed by the estimation

of the loss factor, all models could estimate this faculty in an acceptable range. As

prospect, this analysis can be conducted with consideration to the temperature effect

which highly influences the phenomenological behavior of elastomerers in frequency

domain specially and could lead to brittle damage of the materials.

With these findings concerning the set of the hyperelastic potential and material

parameters and the fidelity observed for the Simo model reproducing to the best the

experimental data, the following chapter will be dedicated to the application on the

industrial component.
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4.1 INTRODUCTION

4.1 Introduction

The dimensioning of structures integrating a constrained hyper-viscoelastic layer re-

quires a predictive model capable of quantifying the reduction of the vibration level

[130][131][132]. The difficulty of analyzing such structures arises from the frequency

dependence of the viscoelastic material, as well as the need to carefully model forces

transmitted to the viscoelastic layer [132][133]. There are various approaches, an-

alytical or numerical, to estimate the damping induced by the application of the

passive treatment [11][134]. In the framework of this thesis, the finite element cal-

culation code ABAQUS 6.14 was used to investigate the dynamic properties of such

structure.

In that sens, this chapter is devoted to the concretization of the work explained in

the previous chapters of this report on the real model part. While in the second

chapter we conducted an experimental investigation, through monotonic tests, re-

laxation and dynamic tests, on three candidate rubber materials for the industrial

application, chapter 3 was dedicated to the finite strain viscoelastic models aiming

to carefully reproduce the experimental data with good fidelity and analyse the pre-

dictive capabilities of those models.

This chapter is organized as follows: in the first section, we present the technical

specifications and details for the Ariane 6 Launcher interstage. We develop in the

following section the strong and weak formulations of the problem, using the finite

element method and handling the previous explained constitutive models and be-

havior laws. A description of the implemented model will be aim of the section 4.3,

with the definition of the boundary conditions and the different computational steps

with respects to the industrial requirements. This will be followed by numerical sim-

ulation results as a parametric dynamic study calibrate the choice of the damping

material and the geometrical parameters.

4.2 Technical Specifications

4.2.1 Overview

The overarching aim of Ariane 6 is to provide guaranteed access to space to Europe

without requiring public sector support to exploitation. The target date for the

first flight of Ariane 6 is 2021, followed by a transition period with a progressive

phasing in of Ariane 6 and phasing out of the launch systems it will replace, so as
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the main purpose of this study is the interstage 2-3 as shown in fig. 4.2.

This Inter-Stage is of conic shape with 5.4m diameter on base, 4.4m diameter on

top and 5m height. We admit this configuration for the rest of the document. This

device is chosen to be a rubber-metal laminate used as a transmission organ between

the two stages, as well as a dynamic softener. The physical problem consists on a

dynamic oscillatory phase after a predeformation phase installed within assembly of

the parts.

4.2.3 Technical requirements

Some technical requirements are available within the public document A6 NT - 0 -

X - 11001 –ESA [137].

The inter-stage is described as a structure in interface with the 2nd stage assembly

and with the 3rd stage. The structure shall include a separation ring (to be cut by

a pyrotechnic system during the flight).

The main function of this device are:

• To transmit mechanical loads from the 2nd stage SRM to the 3rd stage of the

Launch Vehicle, during its integration and transportation to the launch pad,

before and during flight.

• To allow the correct separation between the 3rd and the 2nd stages/assemblies

through a correct behaviour of the separation system and of the involved parts

of the assembly.

• To guarantee global structure stiffness.

• To provide the necessary accessibility in order to allow pre lift-off functional

checks and operations.

• To accommodate the necessary equipment and protect them against environ-

ment

• To support the Launch Vehicle during its integration and transportation to

the launch pad, as well as during its operational life phase.

• The structure shall present interfaces able to allow the integration on the 2nd

stage once the supported equipment are integrated on the Inter-Stage.
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Figure 4.2: Ariane 6 Configurations

Within this work, we intentionally neglect the separation system as well as the

thermal protective shield.

The physical requirements are:

- Main dimensions and envelope: rear frame diameter 4.4 m, front frame diam-

eter 5 m to 5.4 m. Skirt height 5 m to 10 m depending on the upper stage

architecture
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- Mass < 2000 kg (for 5 m height skirt) 2/3 shall be assured.

- Structure primarily sized vs. mechanical fluxes of 1000 N/mm (maximal op-

erational flux) at the lower flange, but additional stiffness requirement should

become the dimensioning driver.

Environment

Based on Ariane 5 data [138], and during flight, the spacecraft is subjected to

static and dynamic loads. Such excitations may be of aerodynamic origin (e.g. wind,

gusts or buffeting at transonic velocity) or due to the propulsion systems (e.g. lon-

gitudinal acceleration, thrust buildup or tail-off transients, or structure-propulsion

coupling, etc.). Figure 4.3 shows a typical static longitudinal acceleration-time his-

tory [139] for the Launch Vehicle during its ascent flight. The highest longitudinal

acceleration occurs at the end of the solid rocket boost phase and does not exceed

4.55 g for Ariane 5. The highest static lateral acceleration may be up to 0.25 g.

For Ariane 6, we consider the highest longitudinal acceleration of about 10 g. The

Inter-Stage 2/3 have an application time of about 700s. With these considerations,

the dynamic load is converted to an equivalent quasi-static load QSL integrating

inertial effects and the dynamic magnification of the structure [140][141][142].

Figure 4.3: Typical longitudinal static acceleration
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Frequency Requirements

The operating frequency range of this device is in low-frequencies domain, of

[0− 50] Hz. To prevent dynamic coupling between the low-frequency launch vehicle

and spacecraft modes, the spacecraft should be designed with a structural stiffness

which ensures that

• The 1st fundamental lateral frequency ≥ 10 Hz

• The fundamental frequency in the longitudinal axis of a spacecraft cantilevered

at the interface must be ≥ 27 Hz

• No secondary mode should be lower than the first primary mode

• With the integration of the rubber within the structure, and for stiffness re-

quirements, the decrease of the 1st fundamental frequency value should not

exceed 20%

with "primary" defines modes associated with large effective masses.

Summary

The previous paragraphs details the technical requirements for the Inter-Stage

2/3 of Ariane 6 launcher. The main specifications to take into account are hence:

• Main dimensions and envelope: 5m height, 5.4m rear frame, 4.4m front frame

• Mass specification: ≤ 2000 Kg

• Stiffness specification: decrease of the 1st fundamental frequency value ≤ 20%

Within these specifications, in the following section we present the modeling proce-

dure and methodology, aiming to choose the adequate rubber mixture, from those

experimentally investigated in chapter 2, which offers the best damping capabilities.

We denote that all the dynamic loads specification are converted to QSL (Quasi-

Static loads).
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4.3 Numerical Model

4.3.1 Finite Elements modeling

Modeling by finite element method is often used in design of industrial parts. This

step can determine the critical areas of a complex structure and also predict its

dynamic behavior [143][144][145][146].

The finite element method consists in discretizing a solid in elements of simple ge-

ometries attached to nodes to which kinematic quantities are associated [147]. At

each node are associated variables or degrees of freedom (dof). The fields are then

approximated at all points of the elements by an interpolation based on the values

associated with the different nodes. The functions chosen must satisfy the conditions

of continuity between the various elements. In the same way, the geometry of the

real component is discretized into subdomains. This method is based on variational

formulations such that the equations of the strong formulation, valid in all points,

are verified on average over the set of elements.

4.3.2 Geometry

The proposed geometry for the assembly is shown in fig. 4.4, as a conic assembly

between up and down skirts with variable elastomer thickness and fixed metalic

thickness of 5mm.
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Figure 4.4: Proposed Inter-Stage 2/3 geometry

4.3.3 Methodology

The physical problem consists on a dynamic oscillatory phase after a predeformation

phase as illustrated in fig. 4.5.

Figure 4.5: Dynamic predeformed problem

The key element of the proposed geometry is the elastomer thickness since the

aluminium thickness is fixed to be of 5mm. This parametric study face mainly the

following constraints:
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• increasing the rubber insert thickness leads to a stiffness loss

• decreasing the rubber insert thickness leads to less damping capabilities

Hence, a compromise between these properties must be found.

Moreover, we supposed that the rubber-aluminum interaction is of perfect bonding.

No interaction properties have been set [2].

To satisfy the previously mentionned requirements (in term of mass, stiffness and

dynamic damping), we have organized our calculation steps as shown in fig. 4.6:

Geometric Assembly

Evaluate Mass Properties

Evaluate Primary modes values

Static Hyperelastic Step
Base State

Evaluation of dynamic properties

Yes

No

Elastomer Thickness

Damping factor

Yes

No

Validate model

Yes

No

Redefine

S
a
t
is
fi
e
d

S
a
t
is
fi
e
d

S
a
t
is
fi
e
d

Figure 4.6: Followed methodology
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4.3.4 Problem Formulation and procedures

We firstly denote Ω ⊂ R3 the domain occupied by our system subject to a static/dynamic

load. We consider two types of boundary conditions:

• imposed displacement on S1, where u = 0

• imposed load on S2, where σ .n = f

where n denotes the external normal to the surface.

All other borders are load-free.

The basis geometry to model the physical problem is proposed on fig. 4.7.

Figure 4.7: Inter-Stage 2/3 geometry

4.3.4.1 Natural frequencies extraction: undeformed state

For this step, we consider only the encastre boundary condition, i.e:

• imposed displacement on S1, where ud = 0

All other borders are load-free.

The mathematical eigenvalue problem is a classical field of study, and much work has

been devoted to providing eigenvalue extraction methods [148], and authors provide
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an excellent compendium on the problem [149]. The eigenvalue problems arising out

of finite element models are a particular case: they involve large but usually narrowly

banded matrices, and only a small number of eigenpairs are usually required. For

many important cases the matrices are symmetric [150].

In the absence of static load, the frequency dynamics of the structure is governed

by the system of equations:











divσ − ρω2 u = 0 on Ω

u = ud = 0 on S1

σ .n = 0 on S2 ∪ ∂Ωl1 ∪ ∂Ωl2

(4.1)

We define Cu a sufficiently regular set of functions and C∗

u = {δu ∈ Cu \ δu = 0 on S1}
the space of the kinematically admissible test functions.

The weak (variational) formulation is obtained by multiplying eq. (4.1) with δu ∈
C∗

u. After some algebric manupilations, we obtain:

∫

Ω

σ : grad(δu) dΩ − ρω2

∫

Ω

δu .u dΩ = 0 ∀ δu ∈ C∗

u (4.2)

The eigenvalue problem for natural modes of small vibration of a finite element

model is
(

ω2[M ] + ω[C] + [K]
)

{φ} = 0 (4.3)

where [M ] is the mass matrix, which is symmetric and positive definite; [C] is the

damping matrix; [K] is the stiffness matrix and φ is the eigenvector—the mode of

vibration.

Since the structure contains viscoelastic materials, some authors use a decomposition

of the stiffness matrix to become complex and frequency-dependent [151] and this

eigensystem will have complex eigenvalues and eigenvectors:

[K∗(ω)] = [Ke] + [Kv(ω)] (4.4)

where [Ke] references to the elastic part of the structure and [Kv(ω)] references to

the viscoelastic part.

In ABAQUS, this decomposition is not being used [125], and the stiffness matrix

is evaluated at each frequency. Moreover, this system is symmetrized by assuming

that [K] is symmetric and by neglecting [C] during eigenvalue extraction. The

symmetrized system has real squared eigenvalues, ω2 , and real eigenvectors only.
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In this case ω becomes an imaginary eigenvalue where ω is the circular frequency,

and the eigenvalue problem can be written as

(

−ω2 [M ] + [K]
)

{φ} = 0 (4.5)

For numerical extraction, we will make use of the subspace iteration method [152],

a classical method that was introduced into finite element applications by [150]

4.3.4.2 General Static Step: static load application

This step is used to generate the base predeformed state for the steady-state dy-

namic analysis. During this step, we only consider the time-independent elastic

properties, i.e the purely hyperelastic response. This choice is made since within

the industrial application, this softener device is subjected to static deformation

before being put into service and dynamically excited. Hence, we assume that the

system take sufficient time to relax and that the response is only of the equilibrium

hyperelastic response.

Combining the local equilibrium equations and the boundary conditions, the prob-

lem is set as:










































div(σ) = 0

σ = −p I+ 2B ∂ W
∂B

u = 0 on S1

σ .n = fs on S2

σ .n = 0 on ∂Ωl,1

σ .n = 0 on ∂Ωl,2

(4.6)

where fs is the applied static load.

4.3.4.3 Natural frequencies extraction around predeformed state

We have hitherto studied the free vibration of the structure with no predeformation

effect. We shall now show that in the case of a structure subjected to a strong field of

stress at its equilibrium, the vibratory characteristics are modified [153][154][149].

The knowledge of the vibratory state and natural frequencies around the prede-

formed state is a primary feature to judge the stability of the structure, and to

identify the critical load for buckling problems [155].

For this step, we consider the encastre boundary condition and the predeformation
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induced by application of the quasi-static load, i.e:

• imposed displacement on S1, where ud = 0

• imposed load on on S2, where f = fs

The stiffness matrix is function of the permanent stresses field applied on the equi-

librium structure, and is hence written:

[K] = [Kundeformed] + [Kσ] (4.7)

where [Kσ] is the contribution of the static load to the stiffness matrix [156]. The

problem formulation is hence modified as:

(

−ω2 [M ] + ([Kundeformed] + [Kσ])
)

{φ} = 0 (4.8)

4.3.4.4 Steady-State Dynamics step: oscillation around predeformed

state

Subspace-based method

Steady-state dynamic analysis provides the steady-state amplitude and phase of

the response of a system subjected to harmonic excitation at a given frequency [125].

Usually such analysis is done as a frequency sweep, by applying the loading at a

series of different frequencies and recording the response. In Abaqus the subspace-

based steady-state dynamic analysis procedure is used to conduct the frequency

sweep.

In a subspace-based steady-state dynamic analysis the response is based on direct

solution of the steady-state dynamic equations projected onto a subspace of modes.

The modes of the undamped, symmetric system must first be extracted using the

eigenfrequency extraction procedure. The modes will include eigenmodes and, if

activated in the eigenfrequency extraction step, residual modes. The procedure is

based on the assumption that the forced steady-state vibration can be represented

accurately by a number of modes of the undamped system that are in the range

of the excitation frequencies of interest. The number of modes extracted must be

sufficient to model the dynamic response of the system adequately. The projection

of the dynamic equilibrium equations onto a subspace of selected modes leads to a

small system of complex equations that is solved for modal amplitudes, which are
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then used to compute nodal displacements, stresses, etc...

When defining a subspace-based steady-state dynamic step, we specify the frequency

ranges of interest and the number of frequencies at which results are required in each

range (including the bounding frequencies of the range). In addition, we can specify

the type of frequency spacing (linear or logarithmic) to be used.

The subspace-based steady-state dynamic analysis procedure can be used:

• for nonsymmetric stiffness;

• when any form of damping (except modal damping) is included;

• when viscoelastic material properties must be taken into account.

While the response in this procedure is for linear vibrations, the prior response can

be nonlinear. Initial stress effects (stress stiffening) will be included in the steady-

state dynamic response if nonlinear geometric effects were included in any general

analysis step prior to the eigenfrequency extraction step preceding the subspace-

based steady-state dynamic procedure.

To summarize this, a subspace-based steady-state dynamic analysis:

1. is used to calculate the steady-state dynamic linearized response of a system

to harmonic excitation;

2. is based on projection of the steady-state dynamic equations on a subspace of

selected modes of the undamped system;

3. is a linear perturbation procedure;

4. provides a cost-effective way to include frequency-dependent effects (such as

frequency-dependent damping and viscoelastic effects) in the model;

5. allows for nonsymmetric stiffness;

6. requires that an eigenfrequency extraction procedure be performed prior to

the steady-state dynamic analysis;

7. is an alternative to direct-solution steady-state dynamic analysis, in which the

system’s response is calculated in terms of the physical degrees of freedom of

the model;

125



4.3 NUMERICAL MODEL

8. is computationally cheaper than direct-solution steady-state dynamics but

more expensive than mode-based steady-state dynamics;

9. is less accurate than direct-solution steady-state analysis, in particular if signif-

icant material damping or viscoelasticity with a high loss modulus is present;

10. is able to bias the excitation frequencies toward the values that generate a

response peak.

Steady-state dynamics problem formulation

This procedure is a perturbation procedure, where the perturbed solution is ob-

tained by linearization about the current base state. Structural and viscous damping

are included in the procedure using the structural damping and the viscoelastic pa-

rameters coefficients specified under the material definition.

The strong formulation of the problem is written:



































































div(σ) − ρ ü = f

σ = − p I+ 2B
∂ W

∂B

1

g∞
+

dev

[
∫ t

0

∂g1(s)

∂s
F−1

t (t− s)
2

g∞
B(t− s)

∂W

∂B
F−T

t (t− s) ds

]

u = 0 on S1

σ .n = fd on S2

σ .n = 0 on ∂Ωl,1

σ .n = 0 on ∂Ωl,2

(4.9)

where fd is the applied dynamic load.

The weak formulation based on the dynamic virtual work equation as written in

Abaqus is hence:

∫

Ω

ρ δu . ü dΩ +

∫

Ω

ρα δu . u̇ dΩ +

∫

Ω

δǫ : σ dΩ =

∫

∂Ω

δu . fd d∂Ω (4.10)

where u̇ and ü are the velocity and the acceleration, ρ is the density of the material.

α is a generalized damping factor of the system evaluated in ABAQUS at each

frequency step. This factor enclose damping options proposed in the solver, as

structural, Rayleigh coefficient or material internal damping.

f is the applied dynamic load.
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The discretized form of this equation is

δuN {[M ] ü + [C] u̇ + [I] − [F ] } = 0 (4.11)

where [I] defines the internal load vector enclosing the stiffness matrix, while [F ] is

the external load vector.

The discretization of such problem and the used procedure are detailed in [143][147][152].

4.3.5 Model parameters

4.3.5.1 Materials Parameters

For the assembly, two materials are used:

• Aluminium alloy for the fittings, used as linear elastic material with a struc-

tural damping of 0.002

• Rubber material to be chosen from the previously investigated materials: NR,

BIIR and NR/BIIR, as hyper-visco-elastic material.

All materials parameters are furnished in Appendix A.

4.3.5.2 Mesh controls

The geometric model have been meshed with hex-dominated elements. The mesh

elements are C3D8 (fig. 4.8a) for the aluminium and C3D8H for the elastomeric

insert; i.e Continumm 3D element, 8 nodes linear brick, and Hybrid formulation

to deal with the incompressibility constraint. These elements are general purpose

linear brick element and fully integrated (2x2x2 integration points). The structure

of the element is straightforward.

C3D8R (fig. 4.8b) are also general purpose linear brick elements with reduced inte-

gration (1 integration point),which exhibits some shortcomings:

1. The element tends to be not stiff enough

2. Stresses, strains... are most accurate in the integration points. The integration

point of the C3D8R element is located in the middle of the element. Thus,

small elements are required to capture a stress concentration at the boundary

of a structure
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3. There are 12 spurious zero energy modes leading to massive hourglassing: this

means that the correct solution is superposed by arbitrarily large displace-

ments corresponding to the zero energy modes. Thus, the displacements are

completely wrong. Since the zero energy modes do no lead to any stresses, the

stress field is still correct. In practice, the C3D8R element is not very useful

without hourglass control.

(a) C3D8 2x2x2 integration points (b) C3D8R 1 integration point

Figure 4.8: Mesh elements: C3D8 vs C3D8R

As well as several elements types, mesh quality is tested by varying the characteristic

length lc of the finite elements, as shows table 4.1. As shows fig. 4.8, increasing the

tested mesh characteristic length leads to a higher number of elements. Based on

the static response of the structure, we tested these mesh lenghts to decide on the

global seed of the structure. Figure 4.9b demonstrates that increasing the number

of elements leads to the mesh convergence, which occurs with a characteristic length

lc = 10mm.

Hence, the retained global seed is of 10 mm, and according to the rubber insert

thickness, about 2.106 to 3.106 elements are generated.

Finally, the structure is meshed with these elements using a sweep technique, and

advancing front algorithm. The classical advancing front method, which is one of

the techniques of automatic triangulation, was first described by [157] and [158].

Numerous improvements in this technique have been proposed over the years, and

a variants of this technique have been proposed to generate quadrilaterals or hexa-

hedra in two and three dimensions [159][160].
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mesh lc Number of elements

1 100 37544
2 80 54645
3 50 119592
4 20 666750
5 15 891909
6 10 2011950

Table 4.1: Tested meshes characteristic lengths

(a) Mesh characteristics (b) Mesh convergence

Figure 4.9: Mesh Properties

4.3.5.3 Elastomer thickness

In order to satisfy the technical requirements detailed above, the key element or

parameter is the elastomer thickness as shown in fig. 4.6. The conducted study

is a parametric study where this thickness is variated for the three materials and

results are compared to highlight the rubber mixture offering the desired damping

factor. Thickness have been chosen to be varied from 2 to 10 mm, and this choice

is explained in section 4.4.

All mechanical systems composed of mass, stiffness and damping elements exhibit

vibratory response when subject to time-varying disturbances. The prediction and

control of these disturbances is fundamental to the design and operation of mechan-

ical equipment.

To evaluate the structure response, we determinate the frequency response of the

system or in the Laplace domain the transfer functions H(ω) [161][162].
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4.4 Simulation results

4.4.1 Mass requirement

The mass properties of the considered model are the first criterion which indicates

the thickness range to be taken into account.

Table 4.2 resumes the obtaines mass properties with thickness of inserts from 2

to 10 mm. This first requirement leads to a first idea about the thickness range.

Comparing damped/undamped models, the rubber inserts offer a primary feature

for the modern aerospatial structures: lightness. We observed that including rubber

inserts lead to a gain of mass of about 20 to 30%.

From this table, we observe that models with 10 mm rubber thickness slightly exceed

the requirement of 2000 Kg. Nevertheless, we will hold these models within the

validation of the next requirement.

Insert Thickness 2mm 4mm 6mm 8mm 10mm

Undamped (Full Alu) 1820 Kg 2160 Kg 2500 Kg 2840 Kg 3180 Kg

Damped NR 1610 Kg 1740 Kg 1870 Kg 2000 Kg 2150 Kg

Damped BIIR 1590 Kg 1710 Kg 1830 Kg 1950 Kg 2070 Kg

Damped NR/BIIR 1600 Kg 1720 Kg 1848 Kg 1970 Kg 2090 Kg

Table 4.2: Models mass with/without rubber inserts
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4.4.2 Stiffness requirement

As mentionned in section 4.2.3, the natural frequencies are primary features to be

evaluated to ensure the system stiffness.

We found that this requirement is satisfied for all models and all inserts thicknesses:

X All 1st fundamental lateral frequencies are ≥ 10 Hz for the retained geometry

X The fundamental frequency in the longitudinal axis is ≥ 27 Hz

X All first fundamental longitudinal modes are situated in the range [45−50] Hz.

As shows figs. 4.10 and 4.11, the first lateral mode of the undamped or damped

system are of same shape. This is due to the symmetry of the problem. Moreover,

the introduction of rubber materials as inserts and the conicity of the structure leads

to a combination of compression and shear deformations modes.

Figure 4.10: 1st fundamental lateral mode shape: Undamped Alu
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Figure 4.11: 1st fundamental lateral mode shape: Damped BIIR

The second requirement for natural modes concerns the value of the first fundamen-

tal lateral mode and the deviation tolerance from the undamped system. Table 4.3

summarizes the obtained values for the first lateral natural frequencies.

The decrease of the 1st fundamental frequency value is set to not exceed 20%. The

deviation values are summarized in table 4.4. We can notice that for the NR mate-

rial, all thicknesses except 10 mm satifies this requirement while for the BIIR and

NR/BIIR mixtures, the thickness range is limited to 8 mm.

For the following step, the rubber inserts thicknesses are set to 2, 4 and 6 mm for

all mixtures.

4.4.3 Frequency extraction at predeformed state

As mentionned in section 4.3.4.4, the subspace procedure require an eigenfrequency

extraction procedure be performed prior to the steady-state dynamic analysis and
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Insert Thickness 2mm 4mm 6mm 8mm 10mm

Undamped (Full Alu) 21.47 Hz 21.3 Hz 21.4 Hz 21.71 Hz 21.56 Hz

Damped NR 19.51 Hz 18.66 Hz 18.01 Hz 17.44 Hz 16.94 Hz

Damped BIIR 19.02 Hz 18.31 Hz 17.74 Hz 17.22 Hz 16.75 Hz

Damped NR/BIIR 19.18 Hz 18.37 Hz 17.75 Hz 17.18 Hz 16.68 Hz

Table 4.3: Models fundamental lateral modes with/without rubber inserts at initial
state

Insert Thickness 2mm 4mm 6mm 8mm 10mm

Damped NR 9 % 12 % 15 % 19.66 % 21.4 %

Damped BIIR 10.6 % 14 % 17.1 % 20.68 % 22.3 %

Damped NR/BIIR 10.6 % 13.57 % 17.05 % 20.86 % 22.63 %

Table 4.4: Fundamental frequency requirement criterion

take into account the initial stress effects due to the quasi-static load application.

In the case of a structure subjected to a strong field of stress at its equilibrium,

the vibratory characteristics are modified and natural frequencies around the prede-

formed state are the criterion to judge the stability of the structure, and to identify

the critical load for buckling problem.

Increasing the static load value leads to a modification in term of values of natural

frequencies. This decrease must be not significant to ensure the stability of the as-

sembly [155][154] and it is known that if the first natural frequency value tends to

zero, then buckling occurs.

Table 4.5 summarize the values of the fundamental lateral modes with/without

rubber inserts at predeformed state. All obtained results around the predeformed

state are far away from the zero value, and this ensure no risk of buckling. This

observation secure that the applied load is sufficiently distant from the critical value

of the static load. In comparison with table 4.3, the values of fundamental lateral
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modes are observed to increase for the predeformed state. This is observed due to

the inclusion of the nonlinear geometric effects in the previous static general step.

Insert Thickness 2mm 4mm 6mm

Undamped (Full Alu) 28.46 Hz 27.96 Hz 27.42 Hz

Damped NR 26.25 Hz 25.115 Hz 24.12 Hz

Damped BIIR 25.4 Hz 24.5 Hz 23.7 Hz

Damped NR/BIIR 25.74 Hz 24.68 Hz 23.75 Hz

Table 4.5: Models fundamental lateral modes with/without rubber inserts at prede-
formed state
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4.4.4 Damping requirement

4.4.4.1 Evaluation of the damping capacity

Evaluation of the damping capacity is the main objective of this study. Many

methods can be used to evaluate the damping capacity of a structure [163][161][153].

There are two general ways by which damping measurements can be made:

• Time-Response Method

• Frequency-response methods

Within this study, we restrict our choice to the second method; i.e Frequency-

response methods.

Magnification Factor method

Consider the single degree of freedom oscillatory system with viscous damping ,

the magnification factor is

|H(ω)| = ω2
n

[(ω2
n − ω2)2 + 4ζ2ω2

nω
2]

1
2

(4.12)

where ωn is the undamped natural frequency of this single degree of freedom system.

The peak value of magnitude occurs in the denominator as:

d

dω

[

(ω2
n − ω2)2 + 4ζ2ω2

nω
2
]

= 0 (4.13)

Resulting solution of resonant frequency is

ωr =
√

1− 2ζ2 ωn (4.14)

The damping factor ζ is then:

ζ =
1√
2

√

1−
(

ωr

ωn

)2

(4.15)

Multi degree freedom system model damping can be estimated by bode plots, as

shows fig. 4.12.
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Figure 4.12: Magnification Factor method applied to a multi dof system

Bandwidth method

The bandwidth method of damping measurement is based on frequency response.

The peak magnitude is given by equation for low damping. Bandwidth (half-power)

is defined as the width of the frequency-response magnitude curve when the magni-

tude is 1/
√
2 times the peak value

ω2
n

[(ω2
n − ω2)2 + 4ζ2ω2

nω
2]

1
2

=
1

2
√
2 ζ

(4.16)

The damping ratio can be estimated, for a single degree of freedom as shows

fig. 4.13,by using bandwidth in the relation

ω2
1 ω

2
2 = 2(1− 2ζ2)ω2

n (4.17)

The term Q = 1/2ζ is often called the quality factor.

A common assumption for small values of ζ is commonly introduced:

(ω2 − ω1)
2 ∼= 4ζ2ω2

n (4.18)

and this assumption leads to

ζ =
1

2

∆ω

ωr

(4.19)

This assumption is held for higher values of ζ, as mentionned in [161].

For a multi degrees of freedom system, for the ith mode as shows fig. 4.14, the
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Figure 4.13: Bandwidth method of damping measurement applied to a single dof
system

damping ratio is given by:

ζi =
1

2

∆ωi

ωi

(4.20)

Energy evaluated damping

The damping capacity of a device is energy dissipated in a complete cycle.

∆Ψ =

∮

dǫ

dt
dǫ (4.21)

The specific damping capacity D is given by ratio of

D =
∆Ψ

Ψmax

(4.22)

The loss factor is hence defined as:

η =
∆Ψ

2πΨmax

(4.23)
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Figure 4.14: Bandwidth method of damping measurement applied to a multi dof
system

and this loss factor is approximately given as

η = 2ζ (4.24)

4.4.4.2 Steady-state dynamic response

The dynamic response of the structure is estimated for the three considered mate-

rials as well as for the three retained thicknesses: 2, 4 and 6 mm.

These results were evaluated in term of normalized transfer functions H(ω) vs nor-

malized frequency (by value of first natural frequency ωr) as well as acceleration

quantities at top of the structure, indicating the inertance of the system I(ω).

Thickness 2 mm

The normalized transfer function of the damped system is illustrated in fig. 4.15.

The analysis of this curve demonstrates that all elastomeric materials exhibit slightly

the same damping properties. Moreover, we conclude that damping occurs with a

good factor of about ζ = 0.3 which is considered of a high value.

With concern to the magnitude of the acceleration quantities on top of structure,

which is plotted in fig. 4.16, the NR mixture offers the lowest values of these quan-
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tities, while the BIIR shows the highest. Nevertheless, the acceleration quantities

of damped models are of high values of about 150 g while those of the undamped

structure are 3 to 5 times higher depending on frequency of interest.

Figure 4.15: Transfert function with 2 mm thickness of rubber insert

Figure 4.16: Acceleration quantity with 2 mm thickness of rubber insert at node
2465
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Thickness 4 mm

The normalized transfer function of the damped system is illustrated in fig. 4.17.

Since the frequency is normalized by the 1st resonance frequency value, peaks of the

first vibration mode are in the same region. The analysis of this curve demonstrates

that the NR mixture offers the best attenuation of the peak of the curve, as well as

the best enlargement of the vibration bell. The NR/BIIR mixture offers an almost

similar response. The BIIR mixture, although experimentally exhibit the highest

loss factor in the sample scale, offer a slightly lower value of damping according to

this curve. Meanwhile, the damping factor obtained within this elastomer thickness

is of about ζ = 0.7 which is the highest value obtained within this analysis.

With concern to the magnitude of the acceleration quantities at top plotted in

fig. 4.18, the three materials exhibit slightly the same response over the frequency

range, with peaks at the resonance frequencies. Meanwhile, this thickness offers

the lowest acceleration quantities, from 5 to 13 g at first resonance frequency, with

comparison to the other models.

Figure 4.17: Transfert function with 4 mm thickness of rubber insert
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Figure 4.18: Acceleration quantity with 4 mm thickness of rubber insert at node
2465

Thickness 6 mm

The normalized transfer function of the damped system is illustrated in fig. 4.19.

The analysis of this curve demonstrates that the NR and NR/BIIR mixtures offer a

good attenuation of the peak of the undamped curve, playing the well know role of

isolators. The BIIR mixture exhibit a good damping capability with a large mode

bell. The obtained factor is of about ζ = 0.5.

With concern to the magnitude of the acceleration quantities plotted in fig. 4.20,

both NR and NR/BIIR exhibit highly monotonic accelerations with increasing fre-

quencies while BIIR preserves the same response as for 4 mm thick with an acceler-

ation value of 10 g for the first longitudinal natural frequency.
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Figure 4.19: Transfert function with 6 mm thickness of rubber insert

Figure 4.20: Acceleration quantity with 6 mm thickness of rubber insert at node
2465

Choice of thickness

According to the analysis made within the previous paragraph mainly with in-

terest to the acceleration quantities, we can retain the thickness of 4 mm. The

acceleration quantities are of acceptable values and respect a fundamental criterion

of design: to not exceed 10 g far from resonance frequencies of structure at low

frequencies.
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This focus made on acceleration quantities is related to the great interest to this pa-

rameter within aerospatial structures, being sollicitated dynamically for short times

at different conditions and cycles [138].

To conclude on the choice of rubber mixture to be retained for the industrial applica-

tion, we graphically illustrate the acceleration quantities of the damped/undamped

models with a 4 mm thickness, along path from top (application load side) to bottom

(encastre side). This illustration is made at a fixed frequency corresponding to the

fundamental frequency of each model. Figure 4.21 shows that at fixed frequency, NR

and NR/BIIR mixtures offers a low damping in term of acceleration in comparison

with undamped structure. These mixtures offers best damping capabilities within

higher thicknesses. Meanwhile, the BIIR mixture shows very low acceleration quan-

tities, valued of about half of those with concern to undamped model, from top to

bottom of the system. The first part of the curve being with concern to the metallic

part, we notice an increase of acceleration quantities till a value of 8 g and a rapid

decrease along path, crossing the viscoelastic layer. The BIIR plays the key role in

this phenomenon and offers the best damping capabilities.

Figure 4.21: Acceleration quantity along path with 4 mm thickness of rubber insert
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4.5 Conclusion

This chapter describes the modeling methodology adopted in the finite element

code ABAQUS aiming to dimension an industrial component which integrate a

constrained hyper-viscoelastic layer. To this end, we conducted a parametric study

in order to satisfy some industrial criterions and requirements.

• The methodlogy adopted for this parametric study and the satisfaction of

the two first requirements of mass and stiffness, has bounded the elastomer

thickness to only three values.

• The elastic structure as well as the viscoelastic inserts are modeled by linear

solid elements with no locking or hourglass problems. The mesh parameters

are well suited for this analysis.

• Elastomeric inserts offers an acceptable stiffness to the system with a highly

light structure

• The damping capabilities from a sample point of view highly differ from those

of structure point.

• Not as intuitively predicted, increasing rubber insert thickness does not leed

to a more damping capability

A compromise solution have been found leading to the satisfaction of all technical

requirements. This solution is not really the expected one. BIIR and NR/BIIR

mixtures are seen to offer the highest material loss factor level while the NR offers

the lowers angle. Neverthelless, this last mixture have shown the best damping

capabilities with the median thickness of 4 mm.
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This manuscript addresses two types of difficulty classically encountered for the

design of elastomeric devices:

• On the one hand, a behavioral problem (i.e. we are only interested in the

material) to select the adapted materials for the application, with the choice

of efficient testing procedures in order to characterize the behavior of an elas-

tomeric material

• On the other hand, a difficulty which can be described as numerical, in the

sense that it resides more in the organization of calculations than in the be-

havior of materials

• Finally, a compromise is given in the case of a problem presenting both these

difficulties simultaneously, under technical requirements and industrial con-

straints

In that sense, an experimental database have been built in first place to understand

the behavior of the rubber-like materials used for the intended industrial applica-

tion. The selected elastomeric materials are widely used in industry either for their

stiffness like natural rubber or for their isolator behavior as bromobutyl and the mix-

ture of bromobutyl/natural rubber. This database have been constructed through

quasi-static and dynamic tests. Quasi-static experiments englobe uniaxial tension

and quad-shear tests, at different strain rates. Aiming to determine the long-term

hyperlastic response, multistep tests have been adopted with sufficient relaxation

times so time-dependent quantities vanish. A common phenomena observed dur-

ing monotonic tests is the Mullins Effect, known to be a softening effect occuring

for first cycles of cyclic tests. This phenomena is irrelevant for our investigation

since for the industrial application, it is recommanded to sufficiently load-unload

material so the stable loop is reached. Relaxation tests were conducted in order
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to identify the viscoelastic parameters of the tested materials. This behavior have

been observed to be time dependent none deformation dependent i.e time-strain

separable. This experimental observation is of great interest since it is frequently

introduced in the formulation of finite strain viscoelasticity constitutive models and

affords a large theoretical simplicity. The dynamic experiments were conducted to

evaluate the frequecy dependent materials parameters, primary variables to be con-

sidered for the dynamic response. We have intentionally avoided the Payne Effect

and this is justified by the constant dynamic loading amplitude for the industrial

application. Moreover, frequency and temperature dependence were evaluated and

discussed within the second chapter and a coupled temperature-frequency depen-

dence is highlighted leading to estimate the dynamic behavior over a wide range of

frequency. In addition, a great interest have been devoted to the influence of static

predeformation on the dynamic response, focusing on the mounting point of the

system. This work leads us to draw conclusions about materials properties and a

comparison of the different response is naturally fonded.

In second place, we made interest in modeling the mechanical behavior of rubber-

like materials. In order to be as predictive as possible, the behavior laws must best

approximate the results observed experimentally. To this end, the third chapter

is dedicated to the analysis of the predictive capabilities of the hyper-viscoelastic

models. Although in litterature models are issued following different frameworks,

the focus herein have been bevoted to single integral-based models under the previ-

ously justified separability assumption and four models have been considered within

these criterions. Moreover, the chosen models do not require a special identification

procedure and all parameters have been identified using Abaqus Evaluate Module.

In first place, we made interest to the purely hyperelastic behavior of these materi-

als. The choice of the hyperelastic potential is of great importance to reproduce the

experimental data with good fidelity. This leads us to consider three hyperelastic

potentials of polynomial construction: NeoHookean, Mooney-Rivlin and a 2nd order

polynomial commonly known as generalize Mooney potential. Within this choice,

we could draw conclusions in the following part concerning the rate dependent be-

havior of elastomeric materials. This investigation leads to draw conclusions for

time domain and frequency domain, with focus on the capability of the considered

models to predict dynamic properties in term of storage modulus and loss factor

with respect to the predeformation levels. This analysis made us justify the use

of ABAQUS for the numerical simulations conducted in the following part since

the Simo model, implemented in this finite element software have given the most
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suitable predictive capabilities for our application.

The second difficulty addressed in this manuscript concerns the numerical simula-

tion and the work on a geometrical launcher configuration. This work started by

the definition of the technical requirements and the different industrial constraints.

The analysis of these dependencies leads us to define a parameteric study following a

specific requirements algorithm describing the modeling methodology adopted in the

finite element code ABAQUS for the study of structures with viscoelastic materials

inserts. This modeling approach introduces a coupling between the predeformation

effects and the viscoelastic dissipative effects. This study revealed that the thickness

of the elastomeric insert is the primary feature on which the dynamic response of

the structure hold on. The idea which come naturally to mind that increasing the

thickness increases the damping capability does not stand for our case. Paradoxi-

cally, at the material level, we have found that the bromobutyl mixture offers the

highest damping capability while at system level, the natural rubber offers the best

filtering of the acceleration quantities. The compromised solution found to lead to

the satisfaction of all technical requirements is hence to consider a mid-thick natural

rubber mixture, offering a good stiffness as well as damping capabilities.

Following these findings, and as a prospect to this difficulty is added the requirement

to develop simplified numerical models: in fact, given the number of elastomeric

devices in a launcher configuration, one can not afford to finely model each of these

elements to simulate the vibratory behavior during launch. Moreover, the finite

element model of an industrial structure can reach millions of degrees of freedom.

Reduced or simplified structure model have the advantage of being a model with few

degrees of freedom that can be integrated, without excessively increasing the number

of degrees of freedom, into a finite element model of an industrial structure. An

interesting future work imposes that this reduced or simplified structure modeling

methodology must be analytical or semi-analytical so that it is sufficiently handy

for a parametric analysis. Analytical or semi-analytical methods are related to the

Ritz method, with some kinematic hypotheses, which involve projecting the state

matrices of the model into a subspace defined from a reduced number of basic

vector.
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Appendix A

Identified Hyperelastic Parameters

This appendix summerizes hyperelastic parameters identified with the Abaqus 6.14

"Evaluate" module.



APPENDIX A: IDENTIFIED HYPERELASTIC PARAMETERS

Model Parameters Equation

Mooney-Rivlin
C10 = 0.224434819

C01 = −7.175494879E − 02
1.33

Poly N=2

C10 = 0.308734742

C01 = 7.092035111E − 02

C20 = 5.655083805E − 03

C11 = −1.641920286E − 02

C02 = −3.081416959E − 03

1.32

R-Poly N=6

C10 = 0.204778110

C20 = −9.635936917E − 03

C30 = 9.191905207E − 04

C40 = −4.348677257E − 05

C50 = 1.107154360E − 06

C60 = −1.106589992E − 08

1.34

NeoHookean C10 = 0.186320587 1.36

Yeoh

C10 = 0.187319431

C20 = −2.239423283E − 03

C30 = 8.132003494E − 05

1.35

Ogden N=3

µ1 = 0.121208583

α1 = 2.49438466

µ2 = 1.721434390E − 03

α2 = 5.44782947

µ3 = 0.309994144

α3 = −7.130978464E − 02

1.37

Arruda Boyce

µ = 0.318671316

µ0 = 0.328168844

λm = 4.59117146

1.39

Van der Walls

µ = 0.431171188

λm = 7.73158389

a = 0.293830246

β = 0.338485094

1.40

Table A.1: Identified Parameters of the NR Material
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Model Parameters Equation

Mooney-Rivlin
C10 = 7.911448022E − 02

C01 = 8.734172589E − 03
1.33

Poly N=2

C10 = 6.801980842E − 02

C01 = 3.874614985E − 02

C20 = 1.554222984E − 03

C11 = −3.086784051E − 03

C02 = −9.069058754E − 03

1.32

R-Poly N=6

C10 = 0.101004182

C20 = −7.883413601E − 03

C30 = 8.108056492E − 04

C40 = −4.026437366E − 05

C50 = 9.754164863E − 07

C60 = −9.022385489E − 09

1.34

NeoHookean C10 = 8.239229043E − 02 1.36

Yeoh

C10 = 9.060825199E − 02

C20 = −1.651455576E − 03

C30 = 4.045174346E − 05

1.35

Ogden N=3

µ1 = 0.202742001

α1 = −0.498379489

µ2 = 2.461782680E − 02

α2 = 3.56596575

µ3 = −1.057016458E − 02

α3 = −7.12655115

1.37

Arruda Boyce

µ = 0.163655756

µ0 = 0.163959700

λm = 18.0002016

1.39

Van der Walls

µ = 0.203731542

λm = 8.27155661

a = 0.339657433

β = 0.314264338

1.40

Table A.2: Identified Parameters of the BIIR Material
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Model Parameters Equation

Mooney-Rivlin
C10 = 5.366176089E − 02

C01 = 3.440673261E − 03
1.33

Poly N=2

C10 = 4.092754545E − 02

C01 = 3.616489797E − 02

C20 = 1.494335510E − 03

C11 = −4.778964862E − 03

C02 = −1.401512780E − 03

1.32

R-Poly N=6

C10 = 7.165792981E − 02

C20 = −5.730427873E − 03

C30 = 5.737951042E − 04

C40 = −2.869417701E − 05

C50 = 7.067761409E − 07

C60 = −6.647049591E − 09

1.34

NeoHookean C10 = 5.330246889E − 02 1.36

Yeoh

C10 = 6.071222868E − 02

C20 = −1.136220127E − 03

C30 = 2.804902539E − 05

1.35

Ogden N=3

µ1 = 1.963491606E − 02

α1 = 3.12942804

µ2 = 7.709297579E − 07

α2 = 8.81373439

µ3 = 0.132665521

α3 = −0.548874927

1.37

Arruda Boyce

µ = 9.887982287E − 02

µ0 = 0.100302014

λm = 6.53152085

1.39

Van der Walls

µ = 0.155913420

λm = 7.29873228

a = 0.370971033

β = 0.500779936

1.40

Table A.3: Identified Parameters of the NR/BIIR Material
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Identified Prony series

gi τi [s]

7.54942E-03 1.74110E-02

3.51810E-02 598.66

4.72695E-02 6835.5

Table B.1: Prony Series Parameters: NR

gi τi [s]

8.57115E-03 2.82821E-02

7.44958E-02 233.23

6.93801E-02 1376.9

9.77678E-02 7517.2

Table B.2: Prony Series Parameters: BIIR

gi τi [s]

2.41146E-02 1.63421E-02

0.13609 490.45

0.13980 6124.5

Table B.3: Prony Series Parameters: NR/BIIR
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