
HAL Id: tel-01688587
https://theses.hal.science/tel-01688587v1

Submitted on 19 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrabilist approach of out-of-equilibrium
statistical physics models

Matthieu Vanicat

To cite this version:
Matthieu Vanicat. An integrabilist approach of out-of-equilibrium statistical physics models. Math-
ematical Physics [math-ph]. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAY029�.
�tel-01688587�

https://theses.hal.science/tel-01688587v1
https://hal.archives-ouvertes.fr


THÈSE
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Alpes
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Approche intégrabiliste des modèles de
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ses week-ends, surtout à Annecy.

Cela m’offre une transition pour parler de l’incroyable cadre de travail dont j’ai bénéficié.
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Preface

The aim of this thesis is to study out-of-equilibrium statistical physics from the integrable
systems point of view. Integrability is used to obtain exact results on models relevant for
non-equilibrium physics.

The theory of equilibrium statistical physics has been very successful to describe the prop-
erties of systems at thermodynamic equilibrium. Unfortunately, such a theory still eludes us
for out-of-equilibrium systems. We lack a theoretical framework and fundamental principles
(such as the entropy maximization principle for equilibrium physics) describing the behavior
of such systems. We do not know, for instance, how the Boltzmann distribution should be
modified. In the last decades, however, there have been promising attempts at constructing
generalizations of thermodynamic potentials to out-of-equilibrium systems. The framework of
large deviation theory has become very popular and appears particularly efficient to express the
out-of-equilibrium properties. It is seen as a possible unifying formalism to deal with statistical
physics systems, both in and out of equilibrium. A short introduction to out-of-equilibrium
statistical physics can be found in chapter one. We define the framework of Markov chains and
introduce the notion of a non-equilibrium stationary state (NESS) in this context. We point
out the relevance of the cumulant generating function and the large deviation function for well
chosen “dynamic” observables to describe these NESS. We explain how these quantities can be
in principle exactly computed with the help of a current-counting deformation of the Markov
matrix. We recall also the main tools and properties of the underlying framework, the large
deviation theory. The macroscopic fluctuation theory (MFT) uses the large deviation theory to
state a general framework to describe non-equilibrium diffusive systems in the thermodynamic
limit. An introduction on MFT can be found in chapter five.

In this context, the role of exactly solvable models (integrable models) is central. They can
be used as a benchmark to test the predictions of the theories, and they may also help to guess
potential fruitful developments. It thus appears important to construct these integrable out-of-
equilibrium models, and to develop methods to compute their stationary states and dynamical
properties analytically. This manuscript aims to be part of this process. We build on existing
techniques to construct several new examples of integrable out-of-equilibrium models. An
introduction to integrability in the context of Markov processes can be found in chapter two.
The key notions, such as conserved quantities, R and K-matrices, transfer matrices and Bethe
ansatz are introduced in the perspective of out-of-equilibrium statistical physics. We detail
the periodic boundary condition case as well as the open boundaries condition case. Some
techniques for solving the Yang-Baxter and reflection equations are exposed: for example,
through the quantum groups framework, and Baxterisation procedures.

To complete the process, it appears highly important to build convenient methods to solve
these integrable out-of-equilibrium models and extract exact expressions of physical quantities.
In the last few years, the matrix ansatz technique has proven to be very efficient at expressing
analytically the stationary state of one dimensional interacting particles systems. It can be
seen as a bridge making connection between the non-equilibrium stationary states and the
theory of integrable systems. It will play a key role in this manuscript. A review of the state
of the art of this method can be found in chapter three. After introducing it on the totally
asymmetric simple exclusion process (TASEP), we give its main properties and we show that
it often allows us to compute conveniently relevant physical observables, such as the particle
currents and densities. We explain how it can be used in integrable models. We compute
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exactly the stationary states of some examples in matrix product form and derive analytical
expressions for relevant physical quantities. These results allow us to test in particular cases
some predictions of the MFT.

The outline of the manuscript is as follows. The first chapter is dedicated to non-equilibrium
statistical physics. We try to present concisely the main relevant concepts. We attempt to give
a modest new perspective on the Langevin equation on the ring with a non-conservative force,
using the rooted trees expansion of the steady state of non-equilibrium Markovian processes.

The second chapter deals with integrability. We review the general theory and provide some
new results. First we give an interpretation of the transfer matrices of the periodic and open
TASEP as discrete time Markovian processes. Then we introduce new algebraic structures
to construct solutions to the Yang-Baxter equation and to the reflection equation through
Baxterisation procedures. This yields for instance the determination of integrable boundary
conditions for the multi-species asymmetric simple exclusion process (ASEP). We also show
how the coordinate Bethe ansatz can be used to find new integrable systems with two species
of particles that can react in the bulk. Finally we introduce new integrable out-of-equilibrium
models, given by the resolution of the Yang-Baxter and reflection equations: the dissipative
symmetric simple exclusion process (DiSSEP), an open boundaries 2-species TASEP and an
open boundaries multi-species symmetric simple exclusion process (multi-species SSEP).

Chapter three presents the matrix ansatz technique, which aims to express analytically non-
equilibrium stationary states. The connection with the integrable models is explored in detail
and suggests a systematic construction of a matrix product steady state in such models. It
relies on two key relations: the Zamolodchikov-Faddeev and Ghoshal-Zamolodchikov relations.
These general prescriptions are then illustrated by the analytical matrix product construction
of the stationary state of the three previously introduced integrable stochastic processes: the
DiSSEP, the 2-species TASEP and the multi-species SSEP. It allows us to compute exactly
relevant physical quantities in these models, such as particle densities and currents.

Chapter four addresses the problem of the exact computation of the cumulants of the cur-
rent in the open boundaries ASEP from a new perspective. The current-counting deformation
of the Markov matrix is studied through the quantum Knizhnik-Zamolodchikov (qKZ) equa-
tions. We provide solutions to these equations in a matrix product form. The connection
between the solutions of the qKZ equations and the Koornwinder polynomials is explored. It
yields a matrix product expression for certain Koornwinder polynomials. Moreover it suggests
an unexpected link between the theory of symmetric polynomials and the cumulant generating
function of the current in the stationary state. The latter is conjectured to be obtained as a
specific limit of symmetric Koornwinder polynomials.

The last chapter deals with the hydrodynamic limit. We show how the large system size
limit can be performed on the physical observables of the three models introduced in chapter
three. It yields the mean density and current profiles, but also, depending on the model under
consideration, the phase diagram and the relaxation rate (gap). We then present a coarse
grained description of the diffusive models studied in the manuscript, called the macroscopic
fluctuation theory. This general approach to non-equilibrium systems in the hydrodynamic
limit can in principle predict the fluctuations of the particles current and density in the sta-
tionary state. We check these predictions for models with evaporation and condensation of
particles against the exact results obtained in chapter III for the cumulant of the current in the
DiSSEP. We also propose an extension of the theory for multi-species diffusive models based
on the analytical results derived for the multi-species SSEP.
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Chapter I

Out-of-equilibrium statistical
physics

A Equilibrium versus non-equilibrium

1 Physical properties of equilibrium and non equilibrium systems

We start by presenting the properties of systems at thermodynamic equilibrium. We recall
briefly the fundamental principles of equilibrium statistical physics. This will help us to gain
some intuition about out-of-equilibrium systems and to motivate the different ideas proposed
to describe such systems.

a) Equilibrium and entropy maximization

At the macroscopic level, a classical1 physical system at thermodynamic equilibrium is roughly
defined as a system at equilibrium for any physical process we can imagine. For instance it
should be at thermal, mechanical, electrodynamical and chemical equilibrium. In other words
this is a state which does not display macroscopic currents of any physical quantities (for
example energy, momentum, charges, particles). We know that these states can be completely
characterized, or described, by a few macroscopic extensive variables such as the energy, the
volume, the number of particles (or their intensive conjugate variables such as the temperature,
the pressure, the chemical potential). An example of thermodynamic equilibrium is given by
a gas of molecules in a closed room at thermal equilibrium with its environment.

In order to have a more precise description of such states, we need to formalize a bit the
discussion. Assume that a system can be in several different configurations C and denote by C
the set of these configurations. C is sometimes called the phase space or the configuration space
of the system. For instance, if the system is a gas of molecules contained in a fixed closed room,
a configuration C could be the knowledge of the positions and velocities (plus possibly some
internal degrees of freedom) of each of the molecules constituting the gas. Another example
is the human brain, whose configurations can be simply the knowledge of all the connections
between the neurons, or can be chosen to be the knowledge of the precise chemical content of
each neuron and synapse.

These examples illustrate that a configuration C can sometimes be an effective description of
the system, which does not necessarily carry all the information about each of its microscopic
degrees of freedom. This is explained by some uncertainties we may have on the system
(what is the precise composition of a neuron?) or by some assumptions we made to simplify
the description (some internal freedom of the molecules may have negligible impact on the
behavior of the gas).

This often imposes us to only have a statistical description of the system, trying to model
an effective dynamics in this simplified configuration space. This motivates the introduction

1The discussion focuses here on classical systems but it can be transposed to quantum systems
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of a probability P(C) to observe the system in a configuration C.
If we assume, for the sake of simplicity, that the set of configurations C is finite (we can adapt

the discussion below to infinite sets), the entropy associated to the probability distribution P
is defined as2

H(P) = −
∑
C∈C
P(C) ln (P(C)) . (I.A.1)

The main features of the entropy are the following. A probability being between 0 and 1, it
is easy to see that the entropy is always non-negative. The entropy is additive: the entropy
associated to the joint probability distribution of two independent random variables is the sum
of the entropies associated to the probability distributions of each random variable. In other
words, from a physical point of view, if we have two systems that are non-interacting (far from
each other for instance), the entropy of the two systems is equal to the sum of the entropies of
each system.

The entropy can be intuitively understood as the amount of disorder (or of lack of infor-
mation) carried by the system. To gain some feeling about this statement, let us consider two
extremal cases. If the system is in configuration C with probability 1 (all the others configu-
rations having vanishing probabilities), i.e if we have a full information about the state of the
system, the entropy is equal to 0 (it is minimal). Conversely, if we don’t know anything about
the state of the system, i.e if the probabilities of each configuration are equal, the entropy is
given by ln Ω, where Ω is the number of configurations. This value is the maximum of the
entropy. Indeed if we want to maximize the entropy under the constraint

∑
C∈C P(C) = 1, we

obtain for all C ∈ C the equation

∂H(P)

∂P(C)
− λ ∂

∂P(C)

(∑
C′∈C
P(C′)

)
= 0, (I.A.2)

where λ is the Lagrange multiplier. It implies that we have for all C, lnP(C)+1+λ = 0, which
proves that the probabilities are all equal and their common value is necessarily 1/Ω (due to
the sum to 1 constraint).

This entropy is at the heart of the theory of equilibrium statistical physics. The fundamental
law can be stated as follows. A thermodynamic equilibrium is a state (i.e a probability distri-
bution) which maximizes the entropy (I.A.1) under a set of constraints [1]. These constraints
are determined by the interactions of the system with its environment (i.e the reservoirs) and
consist in imposing a fixed value for the average of certain physical observables.

They are roughly established by the following procedure3. We have first to identify the
physical quantities, which are conserved by the dynamics (for instance the energy, the particle
number, the charge) when the system is isolated, i.e disconnected from the reservoir. Then,
considering the system in contact with the reservoirs again, we have to determine which of
these physical quantities are exchanged with the reservoir. The constraints are finally written
down by imposing a fixed average value for each of these physical quantities.

For instance, let us consider a gas of particles in a closed room. If the system is completely
isolated (no particle or energy exchanges), there is no constraint and the maximization of
the entropy yields P(C) = 1/Ω. This distribution is commonly called the microcanonical
distribution.

If the system can exchange energy with the reservoir (heat bath), it imposes a fixed value
for the average energy 〈E〉 :=

∑
C∈C P(C)E(C), where E(C) denotes the energy of the system

2We give here the definition of the entropy used in probability theory. In a more physical context, this
definition often involves the Boltzmann constant k, which is set to 1 here.

3Establishing precisely the constraints (for the entropy maximization) can be delicate, particularly in systems,
which possess many conserved quantities when they are isolated (typically the integrable systems, see discussion
on quenched dynamics in subsection 2 and also chapter II). We consider in such systems Generalized Gibbs
Ensembles, see for instance [2, 3]
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in configuration C. The maximization of the entropy yields the equation

∂H(P)

∂P(C)
− λ ∂

∂P(C)

(∑
C′∈C
P(C′)

)
− β ∂

∂P(C)

(∑
C′∈C
P(C′)E(C′)

)
= 0, (I.A.3)

where λ and β are the Lagrange multipliers. This implies that

P(C) =
e−βE(C)

Z
, with Z(β) =

∑
C∈C

e−βE(C). (I.A.4)

This distribution is commonly called the canonical distribution (or also the Boltzmann or
Gibbs distribution). β is called the inverse temperature.

If the system can in addition exchange particles with the reservoir, the average number of
particles 〈N〉 :=

∑
C∈C P(C)N(C) is also fixed (N(C) denotes the number of particles in the

system in configuration C). A similar computation gives

P(C) =
e−βE(C)−µN(C)

Z
, with Z(β, µ) =

∑
C∈C

e−βE(C)−µN(C). (I.A.5)

This distribution is commonly called the grand-canonical distribution. µ is called the chemical
potential.

Z is called the partition function. It allows us to define the free energy F = − lnZ. The
free energy is closely related to the following cumulant generating function4

ln〈eνE(C)〉 = ln
∑
C∈C

eνE(C) e
−βE(C)

Z
(I.A.6)

= F (β)− F (β − ν). (I.A.7)

The free energy thus provides the fluctuations of the energy of the system (average value,
variance, and higher order cumulants) by taking successive derivative of F (β) with respect to
the inverse temperature β.

Note also that the entropy is obtained by the Legendre transform of the free energy (see
subsection b) for the definition and properties of Legendre transformation). We have indeed,
from previous computations, that

H(P) = β〈E〉 − F (β), with
∂F

∂β
(β) = 〈E〉. (I.A.8)

The intensive variable β is conjugated to the extensive variable 〈E〉. Conversely the free energy
can be obtained from the Legendre transform of the entropy.

We are now interested in the study of systems which are not at thermodynamic equilibrium.
This is the purpose of the next subsection.

b) Non equilibrium and macroscopic currents

An out-of-equilibrium system is basically a system which is not at thermodynamic equilibrium.
It can be either relaxing toward a stationary state or in a non-equilibrium stationary state
(NESS).

At the macroscopic scale, it translates into the presence of non-vanishing currents of phys-
ical quantities (such as energy, particles, charges). A schematic example of such states is given
by two particle reservoirs at different densities, connected by a pipe. The high density reservoir
will pour into the low density one, establishing a non vanishing macroscopic particle current.
In fact, we can find out-of-equilibrium systems everywhere, ranging from the traffic flow on

4We present here the case of the canonical distribution but it can be easily adapted to the grand-canonical
distribution
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a highway, to the development of the human brain, and including propagation of a fire in a
forest or dynamics of a group of fish.

Unfortunately, they is no general theory to describe these systems. We do not know what
are the relevant variables (like the temperature, pressure, chemical potential or other intensive
variables in the thermodynamic equilibrium case) to describe these states. We would like
to proceed from a fundamental law, such as an entropy maximization principle, which could
provide us some tools, such as the thermodynamic potentials, to describe accurately these
systems. We may need to enlarge the configuration space to formulate such maximization
entropy principle, considering for instance path histories instead of “static” configurations,
and using some kind of action to set the constraints imposed by the environment.

A few promising attempts have been made in the last decades. The discoveries of connec-
tions between statistical physics and large deviation theory, could provide an efficient frame-
work to develop a theory for out-of-equilibrium systems. It led for instance to the formulation
of the macroscopic fluctuation theory, which has proven to provide a powerful description of
non-equilibrium diffusive systems in the hydrodynamic limit (see chapter V).

But a lot remains to be understood. This motivates the study of particular non-equilibrium
systems, focusing on the simplest ones, to compute relevant physical quantities and try to
infer more universal properties. From this perspective exactly solvable models appear as very
powerful tools, and have been used in a wide range of different contexts and frameworks.

We present below a (non-exhaustive) list of mathematical frameworks commonly used to
describe out-of-equilibrium systems.

2 Different frameworks for out-of-equilibrium physics

Many different formalisms had been developed to describe out-of equilibrium systems. We
present here only a few of them which are widely used in the literature. We try to put, when
possible, an emphasis on the role played by integrability and exact solvability in these different
frameworks.

We stressed at the beginning of this chapter, that a system involving a huge number of
components and with uncertainties on the exact relevant microscopic content and dynamics,
is likely to be described by some effective state and some effective dynamics. This motivates
the fact of introducing a probability distribution (on the configuration set of the system) to
describe the statistical properties of the system. The next thing to do is to determine how this
probability distribution evolves with time, i.e what is the effective dynamics chosen to model
the time evolution of the system. In the thermodynamic equilibrium case, the precise choice of
this dynamics has basically no impact on the long time behavior of the system, which reaches
the Boltzmann distribution. But in the non-equilibrium case the choice of the framework used
to encode the time evolution of the probability distribution is important to model the relaxation
toward equilibrium or the non-equilibrium stationary state. The formalisms presented below
correspond to different ways to describe the system dynamics.

Langevin equation A formalism used to describe out-of-equilibrium systems is the Langevin
equation. The idea is to add some random component in the force when writing the funda-
mental law of classical mechanics. The aim is to model some uncertainties in the dynamics at
the microscopic scale. If we want for instance to describe the dynamics of a grain of pollen in
a bowl of water, we do not know precisely the positions and velocities of each of the molecules
of water, which are subject to thermal fluctuations. This will imply random collisions with the
grain of pollen and translate into some random component in the force that acts on the pollen.
This motivates the following description of the dynamics, where x, v and m are respectively
the position, the velocity and the mass of the grain of pollen, γ is a friction coefficient, F is a
force and ξ(t) is a Gaussian white noise which satisfies 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = Γδ(t− t′){

mdv
dt = −mγv + F (x) +mγξ(t)

dx
dt = v.

(I.A.9)
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For a high friction coefficient γ � 1, the acceleration can be neglected and the problem
reduces to

dx

dt
=
F (x)

mγ
+ ξ(t) (I.A.10)

It can be shown that the probability distribution of the process P(x, t) (i.e the probability
to find the particle in position x at time t) satisfies the Fokker-Planck equation [4]

∂

∂t
P(x, t) = − ∂

∂x

(
F (x)

mγ
P(x, t)

)
+

Γ

2

∂2

∂x2
P(x, t) (I.A.11)

The derivation of (I.A.11) from equation (I.A.10) is not straightforward and relies essentially
on the use of Itô calculus. We do not provide the details of the computations here. Some con-
sistency checks, on the time evolution of the average value of x for instance, can be nevertheless
easily performed.

For the sake of simplicity we can study this Fokker-Planck equation on a ring of perimeter
1, i.e imposing periodic boundary condition. The probability distribution has to be consistent
with the periodic geometry of the ring, i.e P(0, t) = P(1, t).

We are looking for the stationary state of the problem, i.e a time-independent distribution
S(x) satisfying the Fokker-Planck equation. It is straightforward to deduce that it has to solve
the following equation

Γ

2

d

dx
S(x) =

F (x)

mγ
S(x) + C, (I.A.12)

where C is a constant term.
In the case where the force is conservative, i.e

∫ 1
0 F (u)du = 0, we can define a potential

V (x) = −
∫ x

0 F (u)du such that F (x) = −dV/dx. Note that this potential fulfills the periodicity
condition V (0) = V (1) (this would not have been the case for a non-conservative force). In
this case the stationary distribution S(x) is a thermal equilibrium and is given, as expected,
by the Boltzmann distribution

S(x) =
1

Z
exp

(
−V (x)

kT

)
, (I.A.13)

with temperature given by 2kT = mγΓ.
In the case where the force is not conservative, S(x) is not the Boltzmann distribution

anymore but a non-equilibrium stationary distribution given (up to a normalization) by

S(x) =

∫ x

0
du exp

(∫ x

u

2F (y)

Γmγ
dy

)
+

∫ 1

x
du exp

(∫ 1

u

2F (y)

Γmγ
dy +

∫ x

0

2F (y)

Γmγ
dy

)
. (I.A.14)

It is indeed straightforward to check that it satisfies (I.A.12) with the constant C = Γ
2 (1 −

exp(
∫ 1

0
2F (y)
Γmγ dy)) and that it fulfills the periodicity condition S(0) = S(1). A more intuitive

construction of this solution, from a discrete periodic lattice, will be given later in this chapter.

Markov chains Another framework that has become widely used to deal with out-of-
equilibrium dynamics is Markov chain theory [5]. It models the system’s effective dynamics
using the following idea. The system has a given probability w(C → C′) to jump from a given
configuration C to another configuration C′. The main assumption is that the dynamics is
supposed to have no memory: the jump probability depends only on the starting configuration
C and on the target configuration C′ but not on the whole history of the system before arriving
in configuration C. The probability rate can also depend on the time when the jump occurs.
Note that the stochastic dynamics of the system has a convenient graphical interpretation: the
different configurations of the system are interpreted as the vertices of a graph and the jump
probabilities as the oriented edges of the graph, see for instance figures I.1 and I.3.

This description is quite general and can be used to model a wide range of systems and
dynamics in very different fields, going from social science, economy, population dynamics to
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phase space

Figure I.1: Graphical representation of a Markov chain

statistical physics, applied mathematics and including chemistry, biophysics, epidemiology and
genetics.

The advantage is that, the whole information about the stochastic dynamics of the system
can be stored in a single matrix, called the Markov matrix, which contains all the jump
probabilities. This allows to recast the time evolution of the probability distribution associated
to the system as a linear algebra problem, called the master equation, and use the linear algebra
machinery to study it.

Note that the ’no memory’ assumption can be partially relaxed (while still using the Marko-
vian formalism) by enlarging the configurations set of the system. If we want for instance the
dynamics to depend on the two last configurations of the system (instead of only the last one),
we just need to define a Markov chain on ’super configurations’, which are defined as a couple
of usual configurations of the system. This can be generalized to more complicated dynamics
with memory.

This Markov chain framework will be the one used in this manuscript. We will see that
integrability can play a key-role to study Markovian processes, because it allows us in some
particular cases to compute analytically the stationary state of the model or even to diagonalize
exactly the Markov matrix. We will focus on one dimensional interacting particle systems,
whose Markov matrices are often closely related to quantum spin chain Hamiltonians, which
allows us to use the quantum integrability machinery. In particular we will see that the non-
equilibrium stationary states of such models can be often expressed in a matrix product form,
with the help of the R-matrix, which is the key object in quantum integrability. This will be
discussed in detail in chapter II and chapter III.

Quantum systems: Lindblad equation and quenched dynamics In the last few years
the study of out-of-equilibrium quantum systems has become a very active field of research.
We present very briefly two approaches frequently used to model such systems.

The first one is the quenched dynamics. The idea can be roughly summarized as follows.
We would like to study the thermalization of the system, i.e the relaxation of the system to-
ward thermodynamic equilibrium, by pushing it far from equilibrium. This can be achieved by
choosing adequately the initial condition or by changing quickly a parameter in the Hamilito-
nian governing the dynamics. The whole system is decomposed into two subsystems: one could
be thought of as playing the role of the environment (i.e the reservoir) and the other one as
playing the role of a non-isolated system in interaction with the reservoir. The integrable spin
chains have a central role in this context. The reason is twofold. Firstly, the quantum Hamilto-
nian of such models can be diagonalized exactly using Bethe ansatz, which gives theoretically
access to the full dynamics of the system and allows us in principle to study analytically the
relaxation and equilibrium properties of the system. Secondly, an important feature of inte-
grable models is the fact that they possess a lot of conserved quantities (also called conserved
charges). They thus provide toy models to determine what are the relevant charges required
in the Boltzmann-like distribution. This led to the development of the notion of Generalized
Gibbs Ensembles [2, 3] and to the discovery of the relevance of quasi-local charges [6].

The second method is the Lindblad equation [7]. This is an equation for the density matrix
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of a statistical quantum system. This roughly corresponds to the master equation (I.B.5), which
we will encounter in the context of Markov chains. It can for instance describe a quantum
system with stochastic interactions with reservoirs. When the system is in contact with two
reservoirs at different temperatures (or at different chemical potentials), the density matrix
will converge toward a non-equilibrium stationary state (which is not given by a Boltzmann
statistics in general). Once again, the integrable quantum spin chains play a privileged role
in this context [8–15]. The key object of integrability, the R-matrix, provides an efficient
framework, through the RTT algebra (see chapter II for details) to construct the stationary
density matrix in a matrix product form.

We now come back to the case of Markov chains, which will be intensively used in this
manuscript. We define more precisely this object and present the main tools and properties
associated with it.

B Markov chains and stationary states

1 Markov chains

a) Discrete time

We introduced heuristically the concept of Markov chain in the previous section. We now
present a more formal mathematical definition.

Definition B.1. A time-homogeneous discrete time Markov process on a finite state space is
a sequence of random variables (Sn)n≥0 that take values on a finite set C and which satisfy the
following properties

∀n ∈ N, ∀C1, . . . , Cn ∈ C, P(Sn = Cn|S0 = C0, . . . , Sn−1 = Cn−1) = P(Sn = Cn|Sn−1 = Cn−1),
(I.B.1)

and
∀n ∈ N, ∀C, C′ ∈ C, P(Sn+1 = C|Sn = C′) = P(Sn = C|Sn−1 = C′). (I.B.2)

To be more explicit, Sn stands for the state of the system at time n. The set C represents
the configuration space of the system. The quantity P(Sn = C) denotes the probability for the
system to be in the configuration C at time n. To shorten the notation we introduce

Pn(C) := P(Sn = C). (I.B.3)

The conditional probability P(Sn = Cn|S0 = C0, . . . , Sn−1 = Cn−1) stands for the probability
for the system to be in configuration Cn at time n, knowing that it was in configurations
C0, C1, . . . , Cn−1 at time 0, 1, . . . , n−1 respectively (i.e knowing the whole history of the system).
The property of no memory of the Markov chain is translated by the fact that the latter
conditional probability is equal to P(Sn = Cn|Sn−1 = Cn−1) (I.B.1), which is the probability
for the system to be in configuration Cn at time n, knowing only that it was in configuration
Cn−1 at time n− 1.

The second property in the definition reflects the fact that the stochastic dynamics is time
independent. The probability for the system to be in configuration C at time n, knowing that
it was in configuration C′ at time n − 1 does not depend on the time n. This allows us to
introduce the notation

w(C′ → C) := P(Sn = C|Sn−1 = C′) (I.B.4)

which stands for the transition probability between configurations C′ and C.

Proposition B.2. The probability distribution Pn satisfies the master equation

∀n ∈ N, ∀C ∈ C, Pn+1(C) =
∑
C′∈C

w(C′ → C)Pn(C′). (I.B.5)
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Proof. We have the equality

Pn+1(C) =
∑
C′∈C

P(Sn+1 = C, Sn = C′)

=
∑
C′∈C

w(C′ → C)Pn(C′),

where P(Sn+1 = C, Sn = C′) denotes the probability that the system is in configuration C′ at
time n and in configuration C at time n+ 1.

The master equation is the key set of equations (there is one equation per configuration
C) which governs the time evolution of the probability distribution. Solving these equations
provides the probability distribution of the system at any time. This set of equations is linear
in the probabilities Pn(C) for C ∈ C, which suggests to use the linear algebra machinery to
recast and study this problem. This leads to the following definition.

Definition B.3. Let V be the finite dimensional vector space spanned by the basis {|C〉, C ∈ C}.
For all n ∈ N, we define |Pn〉 ∈ V by

|Pn〉 =
∑
C∈C

Pn(C)|C〉. (I.B.6)

We also define the Markov matrix

W =
∑
C,C′∈C

w(C′ → C)|C〉〈C′|, (I.B.7)

where 〈C′| is a vector of the dual space of V satisfying the scalar product relation 〈C′|C〉 = δC,C′.

We are now equipped to rewrite the time evolution of the probability distribution.

Proposition B.4. For all n ∈ N, we have the relation

|Pn+1〉 = W |Pn〉. (I.B.8)

This implies that
|Pn〉 = Wn|P0〉. (I.B.9)

Proof. This is a direct reformulation of the master equation (I.B.5).

Remark B.5. The transition probabilities w(C → C′) satisfy∑
C′∈C

w(C → C′) = 1,∀C ∈ C. (I.B.10)

This can be reformulated in vector form by introducing the row vector

〈Σ| =
∑
C∈C
〈C|. (I.B.11)

We have the identity 〈Σ|W = 〈Σ|, which means that the entries of each column of the Markov
matrix W sum to 1.

b) Continuous time

We would like to derive a continuous time version of the Markov process presented above. One
way to address the problem is to say that each time step of the previous process corresponds to
increase an infinitesimal amount of time, which yields the following relabelling of the probability
vector |Pndt〉 := |Pn〉. We also need to rescale the transition probabilities by introducing for
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C 6= C′ the transition rate m(C → C′) such that w(C → C′) = m(C → C′)dt. The master
equation (I.B.8) can be then recast into

|Pt+dt〉 = |Pt〉+ dtM |Pt〉, (I.B.12)

where the (continuous time) Markov matrix M is defined by

M =
∑
C,C′∈C

m(C′ → C)|C〉〈C′|, (I.B.13)

with
m(C → C) = −

∑
C′∈C
C′ 6=C

m(C → C′). (I.B.14)

This yields the following proposition

Proposition B.6. The time evolution of probability vector |Pt〉 obeys the master equation

d|Pt〉
dt

= M |Pt〉. (I.B.15)

Proof. This equation is obtained by rearranging (I.B.12) as

|Pt+dt〉 − |Pt〉
dt

= M |Pt〉 (I.B.16)

and taking the limit dt→ 0.

Remark B.7. It is easy to check that the sum of the entries of each column of the Markov
matrix M is vanishing 〈Σ|M = 0.

From a more physical perspective, a continuous time Markov process can be interpreted
as follows. During an infinitesimal time dt, the system in configuration C has a probability
m(C → C′)× dt to jump to another configuration C′.

c) Stationary state

The stationary state is particularly relevant from a physical point of view. This is the proba-
bility vector |S〉 =

∑
C∈C S(C)|C〉 which contains the probabilities to observe the system in a

given configuration after a very long time. This vector should be stable under the dynamics
(i.e the time evolution) of the process. In the discrete time case it thus satisfies W |S〉 = |S〉
whereas in the continuous time case it satisfies M |S〉 = 0. In what follows we will present the
results in the continuous time framework (because this framework will be used intensively in
this manuscript and the majority of the models studied will be defined in a continuous time
setting) but they can be easily transposed to the discrete time framework.

Definition B.8. A Markovian process is said to be irreducible if for all configurations C and
C′ there exists a sequence of configurations C1, C2, . . . , Ci which satisfies

m(C → C1)m(C1 → C2) . . .m(Ci → C′) 6= 0. (I.B.17)

In other words, the irreducibility condition can be intuitively understood as the fact that
there is a non vanishing probability to go from any configuration C to any other C′ in a finite
number of steps. We are now equipped to state the Perron-Frobenius theorem.

Theorem B.9. If M is the Markov matrix associated to a continuous time5 irreducible Marko-
vian process, then M possesses a unique eigenvector with eigenvalue equal to 0 (the stationary
state) and all others eigenvalues of M have negative real parts.

5Note that the theorem can be adapted to discrete time Markovian processes.
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The Perron-Frobenius theorem implies in particular that the convergence toward the sta-
tionary state is exponentially fast.

Nevertheless we will see that when the size of the system, i.e the number of configurations
in the phase space, tends to infinity, the behavior of the non-vanishing eigenvalue with largest
real part is crucial to determine the relaxation properties of large systems.

If this largest real part converges to a non-vanishing value, as the size of the system goes to
infinity, the system is said to be fully gapped, and the relaxation towards the stationary state
in the thermodynamic limit is exponentially fast (the system is sometimes said to be massive).

Conversely, if the largest real part converges to zero, the system is said to be gap-less. It is
then interesting to determine the rate of convergence toward zero of the real part, in function
of the system size (it provides the relaxation rates of the system in the thermodynamic limit).

Now that the existence of the stationary state is well established for irreducible Markov
chains we address the question of finding an exact expression for this steady state. To do so,
let us go back to the master equation. In the continuous time framework, we would like to
compute the vector |S〉 such that M |S〉 = 0. This can be written in components as∑

C′∈C
m(C′ → C)S(C′) = 0, ∀C ∈ C (I.B.18)

⇔
∑
C′∈C
C′ 6=C

(
m(C′ → C)S(C′)−m(C → C′)S(C)

)
= 0, ∀C ∈ C. (I.B.19)

The last equality is obtained using the fact that

m(C → C) = −
∑
C′∈C
C′ 6=C

m(C → C′). (I.B.20)

The equation (I.B.19) expresses the fact that the incoming probability flux exactly com-
pensates the outgoing probability flux (this could be viewed as the analogue of Kirchoff’s
law). Indeed, if we define the probability current from configuration C to configuration C′ as
jC→C′ = m(C → C′)S(C)−m(C′ → C)S(C′), then equation (I.B.19) can be rewritten∑

C′∈C
C′ 6=C

jC→C′ = 0, ∀C ∈ C. (I.B.21)

2 Thermodynamic equilibrium and detailed balance

One very particular way for the sums in (I.B.19) to vanish is when all the probability currents
satisfy jC→C′ = 0 independently. This corresponds to the case

m(C → C′)S(C) = m(C′ → C)S(C′), ∀C, C′ ∈ C. (I.B.22)

The latter equation is called detailed balance. It matches exactly the physical description
of a thermodynamic equilibrium given previously in this chapter, where it was stressed that
this is a state with no macroscopic currents of physical quantities (such as energy, charge,
particles) flowing in the system. In the stochastic processes context, these physical macroscopic
currents are necessarily produced at the microscopic level by probability currents between
configurations.

The previous discussion yields the more formal definition of a thermodynamic equilibrium
in the context of Markov chains.

Definition B.10. The stationary state |S〉 of a Markov process is a thermodynamic equilibrium
if the detailed balance (I.B.22) is satisfied.

Remark B.11. The detailed balance condition involves the expression of the steady state dis-
tribution and cannot be checked a priori before knowing this distribution. Nevertheless this
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detailed balance condition can be equivalently recast in a condition depending only on the tran-
sition rates m(C → C′). We have indeed for any cycle of configurations, if the detailed balance
is satisfied, C1 → C2 → · · · → Cn → C1

S(C1) =
m(C2 → C1)

m(C1 → C2)
S(C2) (I.B.23)

=
m(C2 → C1)

m(C1 → C2)

m(C3 → C2)

m(C2 → C3)
. . .

m(C1 → Cn)

m(Cn → C1)
S(C1). (I.B.24)

Hence we have

m(C1 → C2)m(C2 → C3) . . .m(Cn → C1) = m(C1 → Cn) . . .m(C3 → C2)m(C2 → C1) (I.B.25)

Conversely, if this equality (I.B.25) holds for every cycle, then the detailed balance is satisfied
(see next subsection). This can be intuitively interpreted as the equality of the probabilities to
go along the cycle in one way or in the reverse way. This sheds some light on the notion of
time reversibility which is developed below.

a) Time reversibility

We are now interested in the implications of the detailed balance condition on the time re-
versibility of the process. More precisely we would like to compare the probability P({C(t)}),
to observe a path history {C(t)}0≤t≤T in the stationary state and the probability to observe
the time reversed path {Ĉ(t)}0≤t≤T .

The first thing we need to do is to evaluate P({C(t)}). We are interested in a path starting
at t = 0 in configuration C1, exploring successively the configurations C1, C2, . . . , Cn, with the
transition from Ci to Ci+1 occurring between times ti and ti + dti (where dti is infinitesimal),
and finishing at t = T . For all 1 ≤ i ≤ n, the system is thus in configuration Ci during the
time interval [ti−1, ti] (where t0 and tn are defined as t0 = 0 and tn = T ). See figure I.2 for an
illustration of the path history.

C1

C2

C3

path {C(t)}0≤t≤T

Cn−1

Cn

0 t1 t2 t3 tn−2 tn−1 T

C1

C2

C3

path {Ĉ(t)}0≤t≤T

Cn−1

Cn

TT − t1T − t2T − t3T − tn−2T − tn−10

Figure I.2: Graphical representation of the trajectories {C(t)}0≤t≤T and {Ĉ(t)}0≤t≤T

A building block of the probability of the whole path is to compute the probability for the
system to stay in a configuration C during a time interval [t, t′]. The probability for the system
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to stay in C during the time interval [t, t+ dt] is

1− dt
∑
C′∈C
C′ 6=C

m(C → C′) = 1 + dtm(C → C) (I.B.26)

Hence the probability for the system to remain in C during [t, t′] can be obtained by multiplying
the probabilities that it stays in C on each infinitesimal intervals [t+ kdt, t+ (k + 1)dt] which
yields for dt→ 0

lim
dt→0

(1 + dtm(C → C))(t′−t)/dt = e(t′−t)m(C→C). (I.B.27)

It is then straightforward to deduce that

P({C(t)}) = S(C1)

(
n−1∏
i=1

e(ti−ti−1)m(Ci→Ci)m(Ci → Ci+1)dti

)
e(tn−tn−1)m(Cn→Cn). (I.B.28)

The time reversed path {Ĉ(t)}0≤t≤T is defined as Ĉ(t) = C(T − t). Its probability is thus given
by

P({Ĉ(t)}) = S(Cn)

(
n−1∏
i=1

e(ti−ti−1)m(Ci→Ci)m(Ci+1 → Ci)dti

)
e(tn−tn−1)m(Cn→Cn). (I.B.29)

We can then compute

P({C(t)})
P({Ĉ(t)})

=
m(Cn−1 → Cn) . . .m(C2 → C3)m(C1 → C2)

m(Cn → Cn−1) . . .m(C3 → C2)m(C2 → C1)

S(C1)

S(Cn)
= 1, (I.B.30)

where the last equality is obtained using the detailed balance condition (I.B.22) (which is thus
a key property to establish the equality of the path and time reversed path probabilities).
Conversely, it is straightforward to show that imposing time reversibility in the stationary
state implies the detailed balance (we can take for instance a path with only one jump to
prove this fact).

In conclusion the detailed balance condition is equivalent to the time reversibility of the
process in the stationary state.

b) Link with the Boltzmann distribution

The last point that remains to be explored concerning the detailed balance condition is its
link with the Boltzmann distribution. As stressed previously, when the detailed balance is
satisfied, the stationary state describes a physical system at thermodynamic equilibrium by
definition. We want to make the connection with the Boltzmann approach presented previously
in section A. The system exchanges physical quantities with a single reservoir. For the sake of
simplicity, we assume that it only exchanges energy with a reservoir at inverse temperature β
which implies that the stationary distribution should be the Boltzmann distribution

S(C) =
1

Z
e−βE(C). (I.B.31)

To make connection with the Markov process, we have to relate the relevant physical quantities,
basically the energy E(C), to the transition rates m(C → C′) defining the stochastic process.
The detailed balance implies that we must have

m(C → C′)
m(C′ → C)

=
S(C′)
S(C)

= e−β∆E , (I.B.32)

where ∆E = E(C′)− E(C).
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3 Non-equilibrium stationary states

In this section we are interested in an irreducible Markov process whose stationary state |S〉
does not satisfy the detailed balance condition, i.e there exist at least two configurations
C, C′ ∈ C such that

m(C → C′)S(C) 6= m(C′ → C)S(C′). (I.B.33)

In this case the stationary state is called non-equilibrium stationary state. In opposition to the
thermal equilibrium case, there are probability currents flowing in the system in the stationary
state and the evolution is time irreversible in the stationary state.

The steady state distribution is a priori not of Boltzmann type and cannot be obtained
easily. Nevertheless it can be expressed exactly using graph theory. We recall now the basic
ingredients.

Definition B.12. A directed graph G = (C, E) is a finite set of vertices (or nodes) C and a
set of directed edges (or arrows) E ⊂ C× C. By convention we say that the arrow (C′, C) ∈ E
is starting from C and ending at C′ (it will be sometimes denoted as C → C′).

Definition B.13. A rooted tree over the set C is a directed graph T = (C, E) such that

• the underlying undirected graph is a tree (i.e. acyclic and connected6).

• there exists a particular node r(T ) ∈ C (called the root of T ) such that all the arrows are
oriented toward r(T ) (i.e. for any vertex C ∈ C there exists a unique directed path going
from C to r(T )).

For C ∈ C, let T (C) be the set of rooted trees T over C such that r(T ) = C.

Examples of directed graphs and rooted trees are given in figure I.3 and in figure I.4
respectively.

Definition B.14. We consider a Markov matrix M over a finite configurations space C. The
M -weight of a given directed graph G = (C, E) is defined by

w(G) =
∏

(C′,C)∈E

m(C → C′), (I.B.34)

were m(C → C′) for C, C′ ∈ C are the entries of Markov matrix (see (I.B.13)).

Proposition B.15. The unique stationary measure7 |S〉 of the irreducible Markov matrix M
defined over the finite configurations space C is given by

∀C ∈ C, S(C) =
1

Z

∑
T∈T (C)

w(T ),

where Z is a normalization constant such that
∑
C∈C S(C) = 1.

Proof. We fix C′ ∈ C. For T ∈ T (C′) and C ∈ C\{C′}, let T̃ be the directed graph obtained
by adding the arrow (C, C′) to the graph T . T̃ contains exactly one directed cycle C′ → C →
· · · → C′′ → C′. Let ψ(T, C) be the graph obtained by removing the edge (C′, C′′) from T̃ .

The application

ψ : T (C′)× C\{C′} →
⋃

C∈C\{C′}

T (C) (I.B.35)

is well defined and is bijective.

6Acyclic means that there is no cycle, i.e. no sequence of consecutive different edges starting and ending at
the same vertex. Connected means that any two distinct vertices are linked by a sequence of consecutive edges.

7We recall that the stationary measure |S〉 =
∑
C∈C S(C)|C〉 is defined by the equation M |S〉 = 0, where the

Markov matrix is given in (I.B.13). Written in components it gives (I.B.19).
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We indeed observe that ψ(T, C) ∈ T (C′′) (where C′′ was introduced previously while defining
ψ(T, C)): the underlying undirected graph of ψ(T, C) is connected and acyclic and the arrows
are pointing toward C′′. Then let us prove that ψ is injective. We show that we can reconstruct
T from ψ(T, C). The root C′′ of ψ(T, C) is uniquely determined (this is the only node without
outgoing arrow). T is obtained by removing the arrow C′ → C from ψ(T, C) and then adding
the arrow C′′ → C′. Finally the sets T (C′)×C\{C′} and

⋃
C∈C\{C′} T (C) have the same cardinal

(because the second set is a disjoint union).
From the definition of the M -weight of a directed graph and of the construction of ψ(T, C),

we can see that w(T )m(C′ → C) = w(ψ(T, C))m(C′′ → C′).
We can now complete the proof of the proposition

∑
C∈C\{C′}

m(C′ → C)S(C′) =
1

Z

∑
C∈C\{C′}

m(C′ → C)

 ∑
T∈T (C′)

w(T )


=

1

Z

∑
C∈C\{C′}

∑
T∈T (C′)

w(ψ(T, C))m(r(ψ(T, C′))→ C′)

=
1

Z

∑
C′′∈C\{C′}

∑
T∈T (C′′)

w(T )m(C′′ → C′)

=
∑

C′′∈C\{C′}

m(C′′ → C′)S(C′′).

The second equality is obtained using w(T )m(C′ → C) = w(ψ(T, C))m(r(ψ(T, C′))→ C′). The
third equality is obtained using the fact that ψ is a bijective map.

Example B.16. In this example we treat the case of a three states Markov chain. This is the
simplest situation where we can find a non reversible Markov matrix (i.e for which the detailed
balance is broken). The most general Markovian dynamics on three states is illustrated in figure
I.3. We compute in this case all the quantities introduced previously. The set of rooted trees

C3 C2

C1

m(C3 → C2)

m(C2 → C3)

m(C1 → C3)
m(C3 → C1)

m(C2 → C1)

m(C1 → C2)

Figure I.3: Graphical representation of a three states Markov chain.

T (C1) contains 3 elements T1, T2 and T3 which are shown in figure I.4. The M -weight of these
trees are respectively

w(T1) = m(C2 → C1)m(C3 → C1)

w(T2) = m(C3 → C2)m(C2 → C1)

w(T3) = m(C2 → C3)m(C3 → C1).

From that we can compute∑
T∈T (C1)

w(T ) = m(C2 → C1)m(C3 → C1) +m(C2 → C1)m(C3 → C2) +m(C3 → C1)m(C2 → C3).
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C1

C2 C3

T1

C1

C2

C3

T2

C1

C3

C2

T3

Figure I.4: Elements of T (C1).

The sets T (C2) and T (C3) can be easily deduced from T (C1) by permutations of C1, C2, C3 on
the rooted trees. This leads to∑
T∈T (C2)

w(T ) = m(C1 → C2)m(C3 → C2) +m(C1 → C2)m(C3 → C1) +m(C3 → C2)m(C1 → C3).

and∑
T∈T (C3)

w(T ) = m(C2 → C3)m(C1 → C3) +m(C2 → C3)m(C1 → C2) +m(C1 → C3)m(C2 → C1).

The normalization factor is thus given by

Z = m(C2 → C1)m(C3 → C1) +m(C2 → C1)m(C3 → C2) +m(C3 → C1)m(C2 → C3)

+m(C1 → C2)m(C3 → C2) +m(C1 → C2)m(C3 → C1) +m(C3 → C2)m(C1 → C3)

+m(C2 → C3)m(C1 → C3) +m(C2 → C3)m(C1 → C2) +m(C1 → C3)m(C2 → C1).

In order to give some intuition of the proof given previously, let us show here that the formula
of the proposition gives the stationary measure in this particular case

S(C1)(m(C1 → C2) +m(C1 → C3))

= (m(C2 → C1)m(C3 → C1) +m(C2 → C1)m(C3 → C2) +m(C3 → C1)m(C2 → C3))

× 1

Z
(m(C1 → C2) +m(C1 → C3))

=
1

Z
[(m(C1 → C2)m(C3 → C2) +m(C1 → C2)m(C3 → C1) +m(C3 → C2)m(C1 → C3))m(C2 → C1)

+(m(C2 → C3)m(C1 → C3) +m(C2 → C3)m(C1 → C2) +m(C1 → C3)m(C2 → C1))m(C3 → C1)]

= m(C2 → C1)S(C2) +m(C3 → C1)S(C3).

The computations for S(C2) and S(C3) work exactly the same way.

Example B.17. To illustrate the stationary distribution formula on a system containing an
arbitrary number of configurations, we present here a ’inhomogeneous random walker’ on a
ring. The configuration space of this model can be described by L integers 1, 2, . . . , L denoting
the position of the walker on a discrete periodic lattice. We will have by convention L+ 1 ≡ 1
and 0 ≡ L. The stochastic dynamics is defined by m(i → i + 1) = pi and m(i → i − 1) = qi
for all 1 ≤ i ≤ L. All the other transition probabilities are vanishing. It intuitively means that
at each time step dt, the walker at position i has a probability pi × dt to move forward and a
probability qi × dt to move backward.
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If p1p2 . . . pL 6= q1q2 . . . qL then the system does not reach a thermodynamic equilibrium (this
can be intuitively understood as the fact that the random walker is subject to a non-conservative
force). The stationary distribution8 is thus obtained by summing the M -weight of rooted trees.
There are very few rooted trees with non vanishing M -weight. They are simply obtained by
cutting one bond of the periodic lattice. This yields the expression

S(i) =

(
L∏

k=i+1

qk

)
i∑

j=1

i−1∏
k=j

pk

×(j−1∏
k=1

qk

)
+

(
i−1∏
k=1

pk

)
L∑

j=i+1

 L∏
k=j

pk

×
 i+1∏
k=j−1

qk

 .

(I.B.36)
This can be interpreted as the discrete version of the stationary distribution (I.A.14) given in
the Langevin equation context.

From a physical point of view, this formula given in terms of rooted trees does not appear
completely satisfactory for several reasons. The first one is that it is not expressed in terms of
simple physical quantities (such as the energy in the Boltzmann distribution case). In other
words, the link between the probability rates defining the stochastic model and the relevant
physical observables of the system is not complete (even if some remarkable progress had been
made with the generalized detailed balance, see subsection 1 below).

The second reason is that it is not given together with a maximum entropy principle.
Similarly to the thermodynamic equilibrium case, we would like to know if this stationary
distribution can be obtained by maximizing an entropy under a set of physical constraints.
This would be certainly defined on an enlarged phase space containing typically the path
history instead of the static configurations. This is probably intimately linked to the first issue
mentioned and may appear as a key to build a general theory to describe non-equilibrium
stationary states.

Finally the exact formula of the stationary distribution in terms of rooted trees is often very
difficult to use for physical computations. The number of rooted trees is typically increasing
exponentially with the number of configurations of the physical system. There are indeed nn−2

trees that can be constructed from n vertices. Apart from very particular Markov processes
for which the directed graph underlying the Markov matrix is very simple (in the sense that
it contains a very small number of edges, as in example B.17), this formula is intractable for
computing physical properties in a large system.

One of the main goals of this manuscript is to investigate these non-equilibrium stationary
states in some specific cases, where they can be computed exactly in a much simpler form
than the rooted trees expansion. The idea is to shed some light on the structure of this
steady state in simple out-of-equilibrium models. In chapter III we will see a technique, called
matrix ansatz, which allows us to reduce the exponential complexity of the computation to a
polynomial complexity, in some particular cases. We hope also to get some intuition from this
method about how to relate the non-equilibrium stationary distribution to relevant physical
quantities. We will give several new examples of non-equilibrium models for which the matrix
ansatz can be efficiently used to compute the stationary state.

C Toward a description of NESS?

In this section, we review very briefly several tools that have been developed to describe out-
of-equilibrium systems.

1 Generalized detailed balance and fluctuation theorem

Even if the detailed balance does not hold for a general Markovian process, it is possible to
formulate a generalization of it that is always satisfied. For the sake of simplicity, we will

8The stationary distribution is unique thanks to the Perron-Frobenius theorem (the Markov chain is obviously
irreducible).
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consider the particular case where the system is in contact with two reservoirs at different
inverse temperatures β1 and β2 and can exchange energy with these reservoirs. The discussion
below can be adapted to the case of more than two reservoirs and of different physical quantities
(such as charges, momentum, particles) exchanged with the reservoirs. The generalized detailed
balance relation reads

m(C → C′)
m(C′ → C)

= e−β1∆E1−β2∆E2 , (I.C.1)

where ∆E1 (respectively ∆E2) stands for the energy exchanged with reservoir 1 (respectively
2) during the transition from configuration C to configuration C′. We observe that formula
(I.C.1) is a generalization of the detailed balance relation (I.B.32), which is easily recovered
when β1 = β2. Relation (I.C.1) can be physically justified by considering the system and
the two reservoirs as an isolated system, whose dynamics should reach the microcanonical
distribution. Writing the detailed balance relation for this whole system, and assuming that
the energy exchanged is small in comparison to the total energy of the reservoirs, yields the
generalized detailed balance condition (see for instance [16,17] for details).

This generalized detailed balance relation can be interpreted as the root of the fluctuation
theorem, see subsection 3.

2 Dynamic observables and deformed Markov matrix

In a system at thermodynamic equilibrium, we saw that the stationary distribution is given
by the Boltzmann distribution

S(C) ∼ e−βE(C) (I.C.2)

for a system in contact with a reservoir at inverse temperature β. It allows us to define the
free energy, which is simply the cumulant generating function of the energy observable E. This
free energy is a very efficient tool to describe the properties of the system. We would like to
build the same kind of tool to describe out-of-equilibrium systems and more particularly non-
equilibrium stationary states. By analogy with equilibrium systems, the generalized balance
condition (I.C.1) suggests to study the fluctuations of the energy exchanged with the reservoirs
and to construct the generating function of this observable.

This can be formalized as follows. We are interested in studying an observable O, whose
value O(C → C′) depends on the transition C → C′ under consideration. It can be for instance
the energy exchanged with a particular reservoir during the transition or the number of particles
injected at a particular place during the transition. We would like to compute the fluctuations
of the observable O in the stationary state. To give a precise mathematical meaning to this
idea, we first need to give a sense to the value of the observable in the stationary state. One
way to achieve that is to begin by defining the value of the observable on a whole path history.
For the path history {C(t)}0≤t≤T defined in subsection a), which explores successively the
configurations C1, . . . , Cn (with transitions occurring at times t1, . . . , tn−1), we define

OT ({C(t)}) = O(C1 → C2) + · · ·+O(Cn−1 → Cn). (I.C.3)

The value OT depends on the time evolution, or path history, of the system (which is governed
by the master equation (I.B.15)) on the interval [0, T ]. It is a random variable. We denote
by PT (O) the probability that OT = O. Our goal is to study this probability distribution in
the large time T limit. To determine the time evolution of this probability distribution, we
have to consider the more precise quantity PT (O, C), which denotes the joint probability for
the system to be in configuration C at time T and for the observable OT to be equal to O. The
value of PT (O) will be simply recovered through the relation PT (O) =

∑
C∈C PT (O, C).

Proposition C.1. The time evolution of PT (O, C) is given by

dPT (O, C)
dT

=
∑
C′∈C
C′ 6=C

m(C′ → C)PT (O −O(C′ → C), C′)−
∑
C′∈C
C′ 6=C

m(C → C′)PT (O, C). (I.C.4)
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Proof. This equation is derived similarly to what was done for (I.B.5).
This relation can be recast in a more elegant way by introducing the following generating

function.

Definition C.2. We define

P̂T (µ, C) =
∑
O

eµOPT (O, C). (I.C.5)

Proposition C.3. The generating function P̂T (µ, C) fulfills the deformed master equation

dP̂T (µ, C)
dT

=
∑
C′∈C
C′ 6=C

m(C′ → C)eµO(C′→C)PT (µ, C′)−
∑
C′∈C
C′ 6=C

m(C → C′)PT (µ, C). (I.C.6)

Proof. This is established by summing (I.C.4) over O with the factor eµO.
It can be rewritten in matrix form by introducing the following vector and deformed Markov

matrix.

Definition C.4. We define the deformed probability vector

|P̂T (µ)〉 =
∑
C∈C
P̂T (µ, C)|C〉, (I.C.7)

and the deformed Markov matrix

Mµ =
∑
C,C′∈C

mµ(C → C′)|C′〉〈C|, (I.C.8)

with mµ(C → C′) = m(C → C′)eµO(C→C′) for C′ 6= C and mµ(C → C) = −
∑
C′∈C
C′ 6=C

m(C → C′).

A straightforward computation then yields

d|P̂T (µ)〉
dT

= Mµ|P̂T (µ)〉, (I.C.9)

which provides the following formal expression

|P̂T (µ)〉 = eTM
µ |P̂0(µ)〉. (I.C.10)

We denote by E1(µ), E2(µ), . . . the eigenvalues of Mµ ordered by decreasing real part,
|Ψ1〉, |Ψ2〉, . . . the corresponding right eigenvectors, and 〈Φ1|, 〈Φ2|, . . . the corresponding left
eigenvectors.

The last equation then becomes

|P̂T (µ)〉 = 〈Φ1|P̂0(µ)〉eTE1(µ)|Ψ1〉+ 〈Φ2|P̂0(µ)〉eTE2(µ)|Ψ2〉+ . . . (I.C.11)

We now would like to deduce, from these computations, the behavior of the probability dis-
tribution PT (O) in the long time T → ∞ limit. This can be studied through the generating
function of the cumulant defined as

ET (µ) := ln

(∑
O

eµOPT (O)

)
= ln

(
〈Σ|P̂T (µ)〉

)
, (I.C.12)

where we recall that 〈Σ| =
∑
C∈C 〈C|. We observe, from (I.C.11), that ET (µ) behaves asymp-

totically as a linear function of T . Its long time limit is thus captured by the quantity

E(µ) := lim
T→∞

ET (µ)

T
= E1(µ), (I.C.13)
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which is exactly given by the largest eigenvalue of Mµ.
This cumulant generating function in the stationary state turns out to be an efficient

tool to characterize the macroscopic behavior of a physical system in the large size limit
(thermodynamic limit, see chapter V), if the observable O is correctly chosen. In particular
the singularities of this function (or of the associated large deviation function, see subsection
4) could determine the phase transitions of the model [18–20].

In this manuscript, we will be interested in interacting particles systems evolving on a one
dimensional lattice. A physical quantity of prime interest in such models is the (algebraic)
number of particles which cross a particular bond on the lattice during a transition. This
observable is indeed representative of the non-equilibrium aspects of these interacting particles
systems. It provides a quantitative way to characterize the particles current and its fluctuation
in the stationary state, through the computation of the cumulant generating function. In
chapter III and chapter IV we will address the problem of computing exactly this generating
function for particular models.

This formalism allows also to state an elegant symmetry on the fluctuations of the entropy
production, which we present in the subsection below.

3 Gallavotti-Cohen symmetry and fluctuation theorem

Having in mind the generalized balance condition (I.C.1), we now focus on the observable
defined by

O(C → C′) = ln
m(C → C′)
m(C′ → C)

. (I.C.14)

This can be interpreted as the entropy production during the transition C → C′ [21]. The
associated deformed Markov matrix Mµ can be easily computed, its entries are given, for
C′ 6= C, by

mµ(C → C′) = m(C → C′)1+µm(C′ → C)−µ. (I.C.15)

We observe that we have the equality mµ(C → C′) = m−1−µ(C′ → C) which translates into

Mµ =
(
M−1−µ)t , (I.C.16)

where ’·t’ denotes the matrix transposition. We thus deduce that the spectrum of Mµ and
of M−1−µ are identical. This proves the following equality satisfied by the largest eigenvalue
E(µ) of Mµ

E(µ) = E(−1− µ). (I.C.17)

This is known as the Gallavotti-Cohen symmetry [21–23]. We proved here the symmetry
involving the entropy production (which holds for any Markov chain) but similar relations can
also be derived for other physical observables, depending on the model under consideration.
For instance, we will encounter such a symmetry in chapter IV while studying the cumulant
generating function of the particle current for the asymmetric simple exclusion process.

The symmetry on the generating function translates into a symmetry on the large deviation
function of the entropy production (see subsection 4 for definition and details), which can be
defined as

G(s) = inf
µ

[µs− E(µ)]. (I.C.18)

Using the symmetry on the generating function E, we obtain

inf
µ

[µs− E(µ)] = inf
µ

[(−1− µ) · (−s)− s− E(−1− µ)] (I.C.19)

= inf
−1−µ

[(−1− µ) · (−s)− E(−1− µ)]− s. (I.C.20)

This yields the symmetry for the large deviation function

G(s) = G(−s)− s. (I.C.21)
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This last equality is known as the fluctuation theorem. This relation was first observed in [24]
and then proven in [25]. It tells us that the probability PT (s) to observe during time interval
[0, T ] an entropy production equal to Ts satisfies

PT (−s)
PT (s)

∼
T→∞

e−Ts (I.C.22)

This fluctuation theorem (and its generalization to other physical observables, depending
on the model under consideration) has very useful implications. It yields near equilibrium
the Einstein fluctuation-dissipation relations, the Onsager reciprocity relations and the Kubo
linear response theory, see for instance [26].

4 Large deviation functions

In the last decades, the large deviation theory has proven to be a very efficient framework to
deal with equilibrium but also non-equilibrium systems. We present briefly below the main
tools (from a statistical physicist point of view) associated to this theory. The reader is invited
to read the very useful review [27] for details.

a) Large deviation principle

The large deviation theory can be intuitively introduced as a framework to evaluate the proba-
bilities of rare events. From a mathematical point of view, it could be thought as a refinement
of the law of large numbers. From a physical point of view, the large deviation functions are
seen as possible generalizations of thermodynamic potentials in the out-of-equilibrium context.

Definition C.5. We consider (Sn) a sequence of random variables taking real values and an
interval A ⊂ R. The probability P(Sn ∈ A) is said to follow a large deviation principle if there
exists a real number GA, called the rate, such that

− lim
n→∞

1

n
lnP(Sn ∈ A) = GA. (I.C.23)

The large deviation principle roughly means that the probability P(Sn ∈ A) vanishes ex-
ponentially fast with n:

P(Sn ∈ A) ∼ e−nGA (I.C.24)

From this perspective it can be interpreted as a refinement of the law of large numbers,
which states that the properly normalized sum of independent identically distributed random
variables converges, with probability 1, to the common expectation value of the variables. Here,
we observe that if GA vanishes, the probability measure concentrates, with probability 1, in the
set A. In particular (in the case of the normalized sum of independent identically distributed
random variables) if A is chosen to be any interval containing the expectation value of the
variable, the large deviation principle provides the result of the law of large number together
with the rate of convergence of the probability measure (which explains the denomination
’refinement’). This phenomenon is illustrated in the following example.

Example C.6. We present here one of the simplest example of large deviation principle. We
consider a sequence of binary independent random variables (εk), that are equal to 1 with
probability 1/2 and equal to 0 with probability 1/2. We define

Sn =
1

n

n∑
k=1

εk. (I.C.25)

It is straightforward to establish that Sn follows the binomial distribution

P(Sn = k/n) =
1

2n

(
n
k

)
. (I.C.26)
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We fix ρ ∈ [0, 1] and we set k = bρnc. It means intuitively that for n large enough, k/n ' ρ.
We can use the Stirling’s formula to estimate the asymptotic behavior of P(Sn = k/n), when
n is large. This yields the relation

− lim
n→∞

1

n
lnP(Sn = k/n) = ln 2 + ρ ln ρ+ (1− ρ) ln(1− ρ) := G(ρ). (I.C.27)

G(ρ) is the rate function, also called large deviation function. It is a non-negative convex
function of ρ, which is minimum for ρ = 1/2 (it vanishes for this value), see figure I.5. It
allows us to recover the result of the law of large numbers: the probability measure of Sn
concentrates, as n → ∞, toward the expectation value of the variables εk, which is equal to
1/2.

Figure I.5: Plot of the large deviation function G(ρ).

b) Legendre transformation and Gärtner-Ellis theorem

We are now going to see that the large deviation function G is closely related to a quantity,
which we already encountered in this manuscript: the cumulant generating function. This
connection appears through the Legendre transformation, that we now define.

Definition C.7. If f is a convex function, its Legendre transform g is defined by

g(p) = sup
x

(px− f(x)) (I.C.28)

If f is everywhere differentiable the previous definition is equivalent to

g(p) = px∗ − f(x∗), with x∗ such that
df

dx
(x∗) = p. (I.C.29)

The inverse transform formula is given by

f(x) = sup
p

(px− g(p)), (I.C.30)

or if g is everywhere differentiable

f(x) = xp∗ − g(p∗), with p∗ such that
dg

dp
(p∗) = x. (I.C.31)
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It means that the Legendre transform is self-inverse (or involutive).
We now define a quantity which will play an important role in this manuscript, the cumulant

generating function.

Definition C.8. We consider (Sn) a sequence of real random variables and we define the
cumulant generating function of (Sn) by

E(µ) = lim
n→∞

1

n
ln

(∑
x∈Xn

enµxP(Sn = x)

)
, (I.C.32)

where Xn is the discrete9 configuration set of the random variable Sn.

It can be shown that the cumulant generating function is always convex (see for instance
[27]).

Remark C.9. This function is called cumulant generating function because we can obtain the
expectation, variance, and higher order cumulants by taking successive derivatives with respect
to the parameter µ. For instance if εk is a sequence of independent identically distributed
random variables with expectation 〈ε〉 and variance var(ε), and Sn is given by

Sn =
1

n

n∑
k=1

εk, (I.C.33)

then it is straightforward to see that
E′(0) = 〈ε〉, (I.C.34)

and
E′′(0) = var(ε). (I.C.35)

We are now equipped to state the Gärtner-Ellis theorem, which relates the cumulant gen-
erating function of a sequence of random variable to its large deviation function.

Theorem C.10. Suppose that the cumulant generating function E(µ) associated to the se-
quence of random variable (Sn) is differentiable, then (Sn) satisfies a large deviation principle

− lim
n→∞

1

n
lnP(Sn = x) = G(x), (I.C.36)

where the large deviation function G is given by the Legendre transform of E

G(x) = sup
µ

(µx− E(µ)), (I.C.37)

or equivalently

G(x) = xµ∗ − E(µ∗), with µ∗ such that
dE

dµ
(µ∗) = x. (I.C.38)

We do not give a rigorous proof of the theorem but we rather propose an argument to
convince the reader of its validity. If (Sn) satisfies a large deviation principle with large
deviation function G, then we can evaluate∑

x∈Xn

enµxP(Sn = x) ∼
∑
x∈Xn

enµxe−nG(x) =
∑
x∈Xn

en(µx−G(x)). (I.C.39)

9For the sake of simplicity, we consider here random variables Sn taking discrete values x ∈ Xn but generaliza-
tion to continuous random variables is straightforward. We consider also a stochastic process (Sn) parametrized
by a discrete variable n but the generalization to stochastic processes (St) parametrized by a continuous time t
is obvious.
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The behavior of the last sum is obtained through a saddle-point analysis, which yields the
following expression for the cumulant generating function (I.C.32)

E(µ) = sup
x

(µx−G(x)). (I.C.40)

The Legendre inverse transform formula gives the desired result.
The Gärtner-Ellis theorem provides a tool to compute large deviation functions through

cumulant generating functions. It is commonly used in out-of-equilibrium statistical physics,
especially to compute large deviation of particles current in the stationary state in interacting
particles systems.

c) Application to out-of-equilibrium statistical physics

We present briefly two relevant utilizations of the large deviation theory in the context of out-
of-equilibrium statistical physics. This description is far from being exhaustive. We chose to
focus on the applications of the theory which will be used later in this manuscript. The reader
is invited to consult the review [27] for a complete description of the role of large deviation
theory in statistical physics.

In out-of-equilibrium models, we saw previously that large deviation theory was the correct
tool to deal with the fluctuations of dynamic observables in the stationary state. It was
indeed stressed that the fluctuations of the dynamic observable were encoded in the quantity
(I.C.13), which is exactly defined as the cumulant generating function introduced in the large
deviation context (I.C.32), where the time T plays the role of the large deviation parameter.
The Legendre transformation then provides the large deviation function associated with this
observable. By analogy with equilibrium models, the cumulant generating function may be
related to a generalization of the free energy and the large deviation function may be connected
to an entropy. These large deviation functions (or cumulant generating functions) are in
general difficult to compute exactly: hence it is important to construct models for which such
computations are possible. This motivates the study of integrable systems, i.e models for
which analytical results can be derived. The next chapter is devoted to the presentation of
integrability in the context of Markov chains. In chapter III we will compute the first cumulants
of the particle current of the dissipative symmetric simple exclusion process. We will explore
in chapter IV the connection between the cumulant generating function of the current in the
asymmetric simple exclusion process and the theory of symmetric polynomials.

A second application of the large deviation theory in out-of equilibrium physics, which will
be of particular interest for us, is the macroscopic fluctuation theory. This is a theory which
aims to provide a coarse grained description of diffusive systems. The probability to observe
a path history, a time evolution, of properly defined macroscopic variables satisfies a large
deviation principle. The large deviation parameter is the size of the system. The rate function
can be heuristically interpreted as an action functional. The macroscopic fluctuation theory
provides also predictions about fluctuations of the particle current and density in the stationary
state. This theory will be presented in details in chapter V. The integrable models also play
a central role in this context because they appear as benchmarks to test the predictions of
the theory. We will indeed use in chapter V the exact results obtained in chapter III on the
dissipative symmetric simple exclusion process and respectively on the open boundaries multi-
species symmetric simple exclusion process to check the predictions for dissipative models and
respectively to extend the theory to multi-species models.
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Chapter II

Integrability

First we introduce classical integrability as motivation, then specific models that will be used
as examples throughout, before finally giving the machinery of quantum integrability.

A Introduction, motivations and formalism

1 Conserved quantities

a) Introduction and motivations

The idea behind integrability goes back to the study of classical mechanical systems. It was
observed that the conservation of the energy in certain simple systems often permits to solve
exactly the equations of motion (basically Newton’s law). This idea was precisely formulated
by Liouville [28], using the Hamiltonian formalism of the classical dynamics. In this framework
a system is described through coordinates of position qi and momentum pi (1 ≤ i ≤ n) defining
the phase space (of dimension 2n). The dynamics is encoded with the Hamiltonian H(pi, qi)
by the equations

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (II.A.1)

The time evolution of a function F (pi, qi) of the phase space is obtained by the equation

dF

dt
= {H,F}, (II.A.2)

where the Poisson bracket is defined as

{F,G} =
n∑
i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
(II.A.3)

In this framework, a conserved quantity is thus a function F satisfying {H,F} = 0.
Liouville proved the following theorem.

Theorem A.1. If the system possesses n independent1 conserved quantities Fi (1 ≤ i ≤ n),
i.e such that {H,Fi} = 0, in involution

{Fi, Fj} = 0, (II.A.4)

then the solution of the equations of motion (II.A.1) can be computed through a “quadrature”2.

1The independence has here to be understood as the linear independence of the differential forms dFi (at a
generic point)

2Note that the situation is much less clear when the phase space is infinite dimensional, in classical field
theory for instance.
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Remark A.2. The Liouville theorem is proven by performing a change of variables (pi, qi)→
(Fi, ψi). The new variables are called the action-angle variables and satisfy the equations

dFi
dt

= 0,
dψi
dt

= Ωi, (II.A.5)

where Ωi are time-independent constants. These equations are easily solved. The coordinates
ψi are constructed through the relation

ψi =
∂S

∂Fi
, (II.A.6)

where S(F, q) is defined by the quadrature

S(F, q) =

∫ q

q0

n∑
i=1

pi(F, q)dqi. (II.A.7)

Since this discovery, people have been interested in finding a systematic way to construct
Hamiltonians, H, together with the conserved quantities, Fi. This has led to the introduction
of different key concepts, like the Lax-pair and the classical r-matrix. The reader may refer
to [28] for an introduction to classical integrable systems and a lot of details.

There have been several attempts to adapt and exploit these fundamental concepts in quan-
tum mechanics and statistical physics. This has led to remarkable developments ranging from
the discovery of quantum R-matrices and of the Yang-Baxter equation [29], to the quantum
inverse scattering method [30,31], and including the quantum groups [32–34].

These works pointed out the relevance of the conserved quantities in the exact solvability
of the quantum Hamiltonians. Unfortunately, we are still lacking a quantum analogue for the
Liouville theorem.

In this manuscript, we will make an intensive use of the framework and techniques developed
to study the Hamiltonians of quantum spin chains. We will be indeed interested in Markovian
processes, defined on a one dimensional lattice, which can be studied within the quantum spin
chain framework (the Markov matrix will often be a similarity transform of quantum spin chain
Hamiltonian).

b) Markovian case

In the context of Markov matrices, a conserved quantity can be interpreted as an observable
whose average value is constant in time. To fix the ideas, let us denote by O an observable,
i.e a real valued function O(C) ∈ R of the configurations C of the system. The average value
of the observable at time t is defined by

〈O〉t =
∑
C
O(C)Pt(C), (II.A.8)

where we recall that Pt(C) denotes the probability for the system to be in configuration C
at time t. It will be convenient to reformulate that in a matrix form. We introduce a row
vector 〈Σ|, which stands for the sum of the basis row vectors, and a diagonal matrix O, which
encompasses the value of the observable O

〈Σ| =
∑
C
〈C| and O =

∑
C
O(C)|C〉〈C|. (II.A.9)

The average value of O at time t can be rewritten

〈O〉t = 〈Σ|O|Pt〉 = 〈Σ|O exp(tM)|P0〉, (II.A.10)

where we recall that M is the Markov matrix encoding the dynamics of the model (I.B.13)
and |Pt〉 is the probability distribution of the model at time t, see (I.B.15). |P0〉 is the initial
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probability distribution at time t = 0. It is then straightforward to see that, if the matrices O
and M commutes, OM = MO, then

〈O〉t = 〈Σ| exp(tM)O|P0〉 = 〈Σ|O|P0〉 = 〈O〉0, (II.A.11)

where we used the Markovian property of M , 〈Σ|M = 0, which implies 〈Σ| exp(tM) = 〈Σ|. In
other words the average value of O is conserved in time.

Remark A.3. The observable O that we studied is a ’static’ observable, i.e it depends on
the current configuration C of the system. We can adapt the discussion above to ’dynamic’
observables, i.e depending on a transition from a configuration C to a configuration C′. We
denote by O(C → C′) the value of the observable associated with this transition. The average
value of the observable is now defined as

〈O〉t =
∑
C,C′
O(C → C′)m(C → C′)Pt(C), (II.A.12)

where we recall that m(C → C′) denotes the probability rate from configuration C to configuration
C′. It can be rewritten by introducing the matrix

O =
∑
C
O(C → C′)m(C → C′)|C′〉〈C| (II.A.13)

in the form 〈Σ|O exp(tM)|P0〉. We thus have the same result as for ’static’ observables if
OM = MO: the average is constant in time.

Remark A.4. Note that when O commutes with M , they can be diagonalized in the same
basis (if they are diagonalizable). In other words they have the same eigenvectors.

By analogy with classical Newton’s dynamics, where it was shown that the presence of
conserved quantities is a key property to integrate exactly the equation of motion, we would
like to construct Markovian models with ’a lot’ of conserved observables. In other words
we would like to construct a Markov matrix together with several independent matrices that
all commute with each others. In the case of classical Newton’s dynamics the number of
independent conserved quantities required to exactly solve the equations of motion is precisely
known, it depends on the dimension of the phase space. The situation is less clear in the case
of Markovian processes. We are lacking a general theorem (as Liouville theorem) that ensures
the exact solvability of the model, i.e the exact diagonalization of its Markov matrix, if there
are enough conserved quantities.

Nevertheless we will present a framework, taken from quantum integrability, which allows
us to produce Markov matrices together with a family of commuting operators, and which
provides tools to diagonalize the Markov matrix in some specific cases.

2 Exclusion processes framework

a) The configuration space

The first thing to do, if we want to construct integrable Markov processes, is to define the con-
figuration space of the process, see chapter I. The construction of a Markov matrix commuting
with a lot of different operators is a very difficult task and requires to deal with very particular
configurations sets. This is the reason we will focus now on what is called exclusion processes
which provide a fruitful framework to construct integrable Markov processes.

These models are defined on a one dimensional lattice3 composed of L sites that are denoted
by the variable i = 1, 2, . . . , L. Particles ofN different species, labeled 1, 2, . . . , N , can evolve on
this lattice. The term “evolve” is deliberately vague because we focus here on the configuration

3Note that exclusion processes can be also defined on higher dimensional lattices but the one dimensional
case reveals to be particularly fruitful in the integrability point of view.
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space of the model, we will present the precise stochastic dynamical rules in the next subsection
b). The particles are subject to a hard core constraint (exclusion principle), i.e each site is
occupied by at most one particle. Note that this constraint could be relaxed to allow several
particles to be on the same site, see for instance the generalized exclusion processes [35–37]. A
site on the lattice can be in N +1 different states, depending on its content. More precisely for
each site i we define a local configuration variable τi ∈ {0, 1, . . . , N}, where τi = 0 if the site i
is empty and τi = s ≥ 1 if the site i is occupied by a particle of species s. The configuration
of the system on the whole lattice are thus in one to one correspondence with the L-uplets
(τ1, . . . , τL) ∈ {0, . . . , N}L. There are (N + 1)L configurations.

Following the lines of definition B.3, the goal now is to construct a vector space, with a
well chosen vector basis, in order to express the configuration probabilities and the master
equation in a concise way. To each configuration C = (τ1, . . . , τL) one can associate a basis
vector |τ1, . . . , τL〉. For such a purpose, we associate to a local configuration variable τi a basis
vector |τi〉 of CN+1.

Definition A.5. For τ = 0, 1, . . . , N , the vector |τ〉 is defined by

|τ〉 = (0, . . . , 0︸ ︷︷ ︸
τ

, 1, 0, . . . , 0︸ ︷︷ ︸
N−τ

)t, (II.A.14)

where .t denotes the usual transposition. The vectors |τ〉, for τ = 0, . . . , N constitute a canon-
ical basis of CN+1.

These vectors |τi〉 represent the building blocks of the vectors |τ1, . . . , τL〉. The construction
is inspired again by quantum spin chains, where the Hilbert space associated to the whole chain
is obtained by tensor products of the Hilbert space associated to a single spin.

Definition A.6. For 0 ≤ τ1, . . . , τL ≤ N , the vector |τ1, . . . , τL〉 is defined by

|τ1, . . . , τL〉 = |τ1〉 ⊗ |τ2〉 ⊗ · · · ⊗ |τL〉. (II.A.15)

The vectors |τ1〉 ⊗ · · · ⊗ |τL〉, for τi = 0, . . . , N constitute a canonical basis of
(
CN+1

)⊗L
.

In order for the reader to be familiar with the tensor product notation and with the con-
ventions used in this manuscript, we give the following explicit examples.

Example A.7.

a1

a2

a3

⊗
b1b2
b3

 =



a1b1
a1b2
a1b3
a2b1
a2b2
a2b3
a3b1
a3b2
a3b3


(II.A.16)

and

(
a1

a2

)
⊗
(
b1
b2

)
⊗
(
c1

c2

)
=



a1b1c1

a1b1c2

a1b2c1

a1b2c2

a2b1c1

a2b1c2

a2b2c1

a2b2c2


(II.A.17)

36



In words, the tensor product of two vectors of sizes n and m can be seen as a single vector
of size n×m obtained by multiplying each entry of the left vector by the entire right vector.
This procedure is used iteratively to construct tensor products of several vectors as a single
vector.

We now show how to use this machinery to express in a very compact form the proba-
bilities of the different configurations. We recall that the probability for the system to be in
configuration C = (τ1, . . . , τL) at time t is denoted by Pt(τ1, . . . , τL).

Definition A.8. We define a vector |Pt〉 that contains all the configuration probabilities

|Pt〉 =


Pt(0, . . . , 0, 0)
Pt(0, . . . , 0, 1)

...
Pt(N, . . . , N,N)

 =
∑

0≤τ1,...,τL≤N
Pt(τ1, . . . , τL) |τ1〉 ⊗ · · · ⊗ |τL〉. (II.A.18)

The probabilities of the configurations are stored as the coefficient of a linear expansion.
The coefficient in front of a vector |τ1〉 ⊗ · · · ⊗ |τL〉 is the probability of the corresponding
configuration. This reads formally like the expansion of the wave function of a quantum spin
chain system on the Hilbert space basis (the only difference being that the probability of a
configuration in the latter case is obtained by absolute value of the coefficient squared).

Example A.9. The simplest example we can give of such construction is the case with a single
species of particles, i.e for N = 1. The local configuration variables τi can only take two values
in such models: τi = 0, 1. We have explicitly

|0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
, (II.A.19)

which span the vector space C2. If we consider the particular case of the basis associated to
two sites, we have then

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 ,

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 ,

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

 ,

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1


(II.A.20)

corresponding to empty lattice, one particle on the second site, one particle on the first site
and the full lattice respectively.

Let us stress that, even though the exclusion condition can appear as a strong restriction
on the physical systems that can be well described within this framework, the models that
can be constructed in this category display a rich physical phenomenology and capture the
essential aspects of non-equilibrium systems [36–38]. The framework of exclusion processes
thus enjoy a two-fold interest: on physical side it provides relevant non-equilibrium models
and on mathematical side if offers a good laboratory to investigate integrability and exact
solvability.

b) Markov matrix

The configurations set of the system being settled, we are now interested in the stochastic
dynamics of the model. All the discussion of this subsection will only concern continuous time
Markov processes. Nevertheless the machinery that will be developed for the construction of
integrable continuous time processes will also provide at the end examples of integrable discrete
time processes, see (II.B.29) and (II.C.40) for instance. Once again, it is a hard problem to
build a Markov matrix together with a set of commuting operators (which is a strong hint of
exact solvability). We have thus to restrict ourself to particular class of stochastic dynamics
that has been revealed to be of great interest from the exact solvability point of view. We
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will be interested in stochastic dynamics allowing only for local configuration changes on the
lattice. The particles can only jump to their direct neighbor sites, exchange or react only
with particles on adjacent sites, and can also be created or annihilated locally on a site. The
probability rates of such changes depend only on the local configurations on the direct neighbor
sites. More precisely we are interested in dynamics encoded by a Markov matrix that can be
formally decomposed as a sum of local operators, sometimes called local jump operators, acting
non-trivially on two adjacent sites of the lattice (and trivially on the other sites):

M =
L−1∑
i=1

mi,i+1, (II.A.21)

with mi,i+1 a local jump operator acting on sites i and i+ 1

mi,i+1 = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗m⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i−1

, (II.A.22)

where m is a Markov matrix of size (N + 1)2 × (N + 1)2 acting on two adjacent sites,
i.e on the vector space CN+1 ⊗ CN+1 and 1 is the (N + 1) × (N + 1) identity matrix.
The matrix element 〈υ| ⊗ 〈υ′|m |τ〉 ⊗ |τ ′〉, with (υ, υ′) 6= (τ, τ ′), is equal to the probability
rate that the system jumps from configuration (τ1, . . . , τi−1, τ, τ

′, τi+2, . . . , τL) to configuration
(τ1, . . . , τi−1, υ, υ

′, τi+2, . . . , τL). Note that this rate depends only on the local configurations
(τ, τ ′) and (υ, υ′) and not on the states of the other sites.

This class of model can appear very restrictive at first sight but they revealed to be rich
enough to encode the essential feature of non equilibrium systems [36–38]. To fix the ideas and
show the physical relevance of this framework, we now present examples of such dynamics. The
models that we introduce will serve as recurrent examples to illustrate the different concepts
exposed throughout this manuscript. Some of them are widely known in the literature.

Example A.10. The Asymmetric Simple Exclusion Process (ASEP) [39,40] has become over
the last decade a paradigmatic model in out-of-equilibrium statistical physics [36,41,42]. It was
first introduced in the context of biology and gave rise since then to a lot of interest in different
fields. First of all it displays a very rich physical phenomenology with shock waves [43,44] and
boundary induced phase transitions [45–47]. Moreover, from the mathematical point of view,
it gave rise to a lot of work in representation theory and combinatorics with the connection
to orthogonal polynomials [48, 49], but also in integrability and probability theory with the
connection to the Kardar-Parisi-Zhang equation [50, 51].

The model describes particles of a single species that can diffuse on the lattice. During time
dt, a particle has a probability p× dt (respectively q× dt) to jump to its right (respectively left)
neighbor site, provided that it is empty (this is the exclusion constraint, there is at most one
particle per site). The asymmetry in the hopping rates mimics a driving force that tends to
push the particle in one direction rather than in the other. Note that the ASEP is sometimes
defined with a right hopping rate p normalized to 1 (it corresponds to perform a rescaling of
the time).

In the vector basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 (ordered this way), the local jump
operator m is written

m =


0 0 0 0
0 −q p 0
0 q −p 0
0 0 0 0

 . (II.A.23)

The ASEP admits two limits that are of particular interest. They are presented in the following
examples.

Example A.11. The limit p = 1 and q = 0 is called the Totally Asymmetric Simple Exclusion
Process (TASEP). This model has been widely studied in the literature because it displays
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roughly the same physical behavior as the ASEP but the computations often simplify drastically.
We will observe it in the next section for the expression of the stationary state of the model.

In the vector basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 (ordered this way), the local jump
operator m is written

m =


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 . (II.A.24)

Example A.12. The limit p = 1 and q = 1 is called the Symmetric Simple Exclusion Process
(SSEP). There is no more driving force in the bulk, the particles have the same probability rates
to jump on the left or on the right. The model thus describes particles diffusing on the lattice
with an hard-core constraint. The physics is simpler than in the ASEP case, in the sense that
the bulk dynamics tends to converge toward a thermodynamic equilibrium, because there is no
driving force. The system can only be driven out-of-equilibrium by interactions with particles
reservoirs. We will also observe that the computations of physical quantities are much simpler
than for the ASEP. The local jump operator m is written

m =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 . (II.A.25)

We observed in the previous examples that the framework is well suited to describe the
(driven) diffusion of particle with hard-core repulsion. But it is not limited to this kind of
dynamics and can for instance deal with creation/annihilation of particles or reaction between
particles. The following example is a simple illustration of this fact.

Example A.13. The Dissipative Symmetric Simple Exclusion Process (DiSSEP) describes
particles diffusing in a symmetric way with exclusion constraint (similarly to the SSEP). In
addition to that, particle pairs are allowed to condensate or evaporate from the lattice with the
same probability rate λ2. The local jump operator m is written

m =


−λ2 0 0 λ2

0 −1 1 0
0 1 −1 0
λ2 0 0 −λ2

 . (II.A.26)

We can also easily define models with several species of particles in interaction. The
following example may be thought as one of the simplest case we can imagine.

Example A.14. The 2-species TASEP is a generalization of the TASEP obtained by adding a
second species of particles. During an infinitesimal time dt, a particle of first or second species
(labeled respectively 1 and 2) can jump to the right with probability dt provided that the neighbor
site is empty. A particle of species 2 can also overtake a particle of species 1 with probability
dt. In the vector basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |0〉 ⊗ |2〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉, |1〉 ⊗ |2〉, |2〉 ⊗ |0〉,
|2〉 ⊗ |1〉, |2〉 ⊗ |2〉 (ordered this way), the local jump operator m is written

m =



· · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·
· · · −1 · · · · ·
· · · · · · · · ·
· · · · · · · 1 ·
· · · · · · −1 · ·
· · · · · · · −1 ·
· · · · · · · · ·


. (II.A.27)
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In all the models presented, we only dealt with the stochastic dynamics in the bulk of the
system, never mentioning what is happening on the extremities of the lattice. The boundary
conditions are of particular interest in out-of-equilibrium statistical physics because they can
influence the macroscopic behavior of the whole system, even if the interactions at the bound-
aries are very short range. In contrast to equilibrium statistical physics, where the boundary
effects are negligible in systems with short range interactions, the system can change phase
due to boundary effects. We will focus, in what follows, on two kinds of boundary conditions:
the periodic boundary condition and the open boundaries condition.

The periodic boundary condition describes a lattice with a ring shape. The last site L and
the first site 1 are neighbors: the first site 1 plays the role of a site L+ 1 (see figure II.1). The
Markov matrix is formally written, in this case,

M =

L∑
i=1

mi,i+1. (II.A.28)

In this equation, it is understood that L+ 1 ≡ 1.

Figure II.1: Dynamical rules of the periodic TASEP.

The open boundaries condition describes a lattice that is coupled with particle reservoirs at
its extremities: at the first site, 1, and at the last site, L. Particles of different species can be
injected, extracted or exchanged at these two extremities with a probability rate that depends
only on the content of the first (respectively last) site, and not on the local configurations on
the other sites. In this case the Markov matrix is expressed as

M = B1 +
L−1∑
i=1

mi,i+1 +BL, (II.A.29)

with
B1 = B ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

L−1

, and BL = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−1

⊗B, (II.A.30)

where B and B are Markov matrices of size (N + 1) × (N + 1) acting on a single site, i.e
on the vector space CN+1. The matrix element 〈υ|B |τ〉 (respectively 〈υ|B |τ〉), with υ 6= τ ,
is equal to the probability rate that the system jumps from configuration (τ, τ2, . . . , τL) to
configuration (υ, τ2, . . . , τL) (respectively from (τ1, . . . , τL−1, τ) to (τ1, . . . , τL−1, υ)). Note that
this rate depends only on the local configurations τ and υ and not on the states of the other
sites.
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Example A.15. In the ASEP, we can define the following dynamics at the boundaries. During
an infinitesimal time dt, a particle located on site 1 can be absorbed by the left reservoir with
probability γ× dt, and conversely the left reservoir can inject a particle on the first site, if it is
empty, with probability α× dt. Similarly on the site L, the right reservoir can inject a particle
(provided that the site is empty) with probability δ × dt and remove a particle with probability
β×dt. In the basis |0〉, |1〉 (ordered this way) the boundary local jump operators B and B thus
are written

B =

(
−α γ
α −γ

)
and B =

(
−δ β
δ −β

)
(II.A.31)

Note that these boundary local jump operators are also suitable to encode the dynamics with
the reservoirs in the case of the SSEP and of the DiSSEP.

Example A.16. In the TASEP case, the dynamics of the system at the boundaries should
not be in opposition with the dynamics in the bulk, where particles are only allowed to jump
to the right. In other words, the left reservoir can only inject particles on the lattice and the
right reservoir can only remove particle from the lattice. This translates into the fact that the
boundary rates γ and δ introduced for the ASEP are now vanishing. The boundary local jump
operators thus are written

B =

(
−α 0
α 0

)
and B =

(
0 β
0 −β

)
(II.A.32)

α 1 1 1 β

Figure II.2: Dynamical rules of the open TASEP.

We know give an example of boundary jump operators for a multi-species (i.e N > 1)
model.

Example A.17. For the 2-species TASEP, we do not want the dynamics on the boundaries
to be opposite with respect to the dynamics in the bulk (similarly to the single species TASEP).
In other words, the left reservoir can only inject particles of both species on the first site (if it
is empty) and exchange a particle of species 1 with a particle of species 2, in agreement with
the overtake rule in the bulk. Similarly the right reservoir can only remove particles from the
last site or exchange particle of species 2 with particles of species 1. An illustration of very
specific boundary local jump operators is given (in the basis |0〉, |1〉, |2〉) by

B =

 −1 · ·
1− α −α ·
α α ·

 and B =

· β β
· −β ·
· · −β

 (II.A.33)

We have presented so far the physical framework that we will be interested in throughout
this manuscript. We also introduced the main mathematical tools, which we use to define
precisely the Markov matrices encoding the stochastic dynamics of the physical systems.

We will now be interested in exactly solvable models. We saw at the beginning of this
chapter that the existence of “many” conserved quantities is a strong hint of exact solvability.
We see below a systematic way to produce Markov matrices belonging to a set of commuting
operators. This construction provides also (at least in specific cases) tools to diagonalize
exactly the Markov matrix.
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B Integrability for periodic boundary conditions

We start to present the construction of integrable Markov matrices with the case of periodic
boundary conditions. The method relies on the construction of a set of commuting operators
containing the Markov matrix. This set is conveniently generated by a transfer matrix, which
depends on a variable called spectral parameter. The Markov matrix is recovered from the
transfer matrix by taking the derivative with respect to the spectral parameter. The essential
feature of this transfer matrix is that it commutes for different values of the spectral parameter.
Similarly to the Markov matrix, which is defined in terms of local jump operators, the transfer
matrix will be defined with the help of operators, called R matrices, which also act locally.
The R matrix can be thought as a spectral parameter upgrading of the local jump operators
m. Moreover the commutation property of the transfer matrix is a direct consequence of a
local property satisfied by the R-matrices: the Yang-Baxter equation.

1 R-matrix and transfer matrix

a) R-matrix and Yang-Baxter equation

We introduce in this paragraph the key object of integrability: the R-matrix. It is the build-
ing block of the transfer matrix, which generates the Markov matrix together with a set of
commuting operators. It is also directly related to the bulk local jump operators m and thus
appears as the guarantee of the integrability of the local stochastic rules of the model.

Definition B.1. A matrix R(z, z′) of size (N + 1)2 × (N + 1)2, i.e acting on CN+1 ⊗ CN+1,
satisfies the Yang-Baxter equation if

R1,2(z1, z2)R1,3(z1, z3)R2,3(z2, z3) = R2,3(z2, z3)R1,3(z1, z3)R1,2(z1, z2). (II.B.1)

The Yang-Baxter equation states an equality between products of operators acting on the
vector space CN+1 ⊗ CN+1 ⊗ CN+1. The subscript indices indicate on which copies of CN+1

the operators are acting non trivially. For instance

R1,2(z, z′) = R(z, z′)⊗ 1, R2,3(z, z′) = 1⊗R(z, z′), . . . (II.B.2)

We would like to give a pictorial representation of the Yang-Baxter equation. The action of
the R-matrix Rij(zi, zj) can be represented graphically in figure II.3. The R-matrix is drawn

i

j

zi

zj

Figure II.3: Graphical representation of the matrix Rij(zi, zj).

as a vertex. This vertex is defined by two lines labeled i and j, which correspond to the tensor
space component numbers i and j respectively. Each line is oriented by an arrow and carry a
spectral parameter. The incoming half line (according to the arrow direction) labeled with i
stands for a vector |τ〉 of the i-th tensor space component, and can thus be in N + 1 different
states. Similarly for the incoming half line labeled with j, which stands for a vector |τ ′〉. The
out-going half lines stand for the vectors 〈υ|, respectively 〈υ′|, which belong to i-th, respectively
j-th tensor space components. When the vectors |τ〉, |τ ′〉 and 〈υ|, 〈υ′| are specified, the vertex
represents the matrix element 〈υ|i〈υ′|jRij(zi, zj)|τ〉i|τ ′〉j .
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With this graphical interpretation, we will be able to compute efficiently a matrix element
of a product of R matrices acting in different components of the tensor product. It also
provides a meaningful illustration of the Yang-Baxter equation, see figure II.4. This pictorial
representation of the R-matrix had been widely used in the context of two-dimensional vertex
models in equilibrium statistical physics [29].

z3

3

z2

2

z1

1

=

z3

3

z2

2

z1

1

time

space

Figure II.4: Graphical representation of the Yang-Baxter equation.

The Yang-Baxter equation has a nice intuitive interpretation (see figure II.4) coming from
integrable quantum field theory. In this context the R-matrix R(z1, z2) is the diffusion matrix
between two particles with rapidities z1 and z2. The integrability is the fact that the diffusion
matrix of 3 particles factorizes in this R-matrix (i.e the scattering of three particles can be de-
composed into two-particle scatterings). The Yang-Baxter equation is the consistency relation
of this factorization, which ensures the independence of the result with respect to the order of
the two-particles scatterings.

From a more algebraic side, the R-matrix can be thought as a convenient object to encode
the commutation relations of an algebra (see chapter III for instance with the Zamolodchikov-
Faddeev relation). The Yang-Baxter relation appears in this case as a consistency relation
ensuring the associativity of the algebra.

We would like now to relate the R-matrix to the bulk local jump operator m. To do so, we
need one more definition.

Definition B.2. For R(z, z′) satisfying the Yang-Baxter equation, we introduce the braided
R-matrix

Ř(z, z′) = P.R(z, z′), (II.B.3)

where P is the permutation operator in CN+1 ⊗ CN+1 that is P |τ〉 ⊗ |τ ′〉 = |τ ′〉 ⊗ |τ〉, for all
τ, τ ′ = 0, . . . , N .

Note that the braided matrix Ř(z, z′) satisfies the braided Yang-Baxter equation

Ř12(z1, z2)Ř23(z1, z3)Ř12(z2, z3) = Ř23(z2, z3)Ř12(z1, z3)Ř23(z1, z2) . (II.B.4)

We are now equipped to state one of the key points of this subsection. It provides a precise
definition of integrability for a bulk local jump operator m and relates it to the R-matrix.

Definition B.3. A bulk local jump operator m is said to be integrable if there exists an R-matrix
R(z, z′) satisfying the Yang-Baxter equation (II.B.1), a constant θ and a complex number z′

such that

m = θ
∂

∂z
Ř(z, z′)

∣∣∣∣
z=z′

. (II.B.5)

In other words, the integrable local jump operators m are obtained by taking the derivative
of a braided R-matrix with respect to a spectral parameter. Conversely, we could wonder
whether it is possible, starting from a local jump operator m, to upgrade it to a spectral
parameter dependent R-matrix. This will be partially answered in subsection c).
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We would like to stress that taking the derivative of a braided R-matrix does not provide
always a local Markovian matrix. The sum of the entries of each column of the local Markovian
matrix should indeed vanish. It is straightforward to check that if the sum of the entries of
each column of the R-matrix is equal to 1 then the derivative enjoys the sum to 0 property
(but we still have to check that the off-diagonal entries of the derivative are non-negative).
This motivates the following definition

Definition B.4. A matrix R(z, z′) acting on CN+1 ⊗ CN+1 satisfies the Markovian property
if

〈σ| ⊗ 〈σ|R(z, z′) = 〈σ| ⊗ 〈σ| (II.B.6)

where 〈σ| defined as 〈σ| =
∑N

υ=0 〈υ| stands for the sum over all the local configurations on one
site.

Note that such a R-matrix satisfies the requirement of a discrete time Markovian process,
provided that its entries are non-negative. We will see below that it can indeed be used as the
building block of discrete time Markov matrices defined on the whole lattice.

We now list a set of properties that will be always satisfied by the R-matrices we will
consider. When defining the transfer matrix below, these properties will be essential to ensure
its commutation relation and its link with the Markov matrix of the model.

Definition B.5. A matrix R(z, z′) acting on CN+1 ⊗CN+1 satisfies the regularity property if

R(z, z) = P, (II.B.7)

where P is the permutation operator.

The permutation operator P allows us to define the matrix R21(z, z′) := P.R12(z, z′).P .
We will often observe in the following that this matrix is closely related to the inverse of the
R-matrix. The following definition specifies this connection.

Definition B.6. A matrix R(z, z′) acting on CN+1 ⊗ CN+1 satisfies the unitarity property if

R12(z, z′).R21(z′, z) = 1. (II.B.8)

Note that for a braided R-matrix, it reads Ř(z, z′).Ř(z′, z) = 1.

In most of the known examples, the dependence of the R-matrix on the two spectral
parameters z and z′ is simpler than expected, in the sense that it depends only on the ratio
z/z′ or on the difference z − z′. This motivates the following definitions.

Definition B.7. A matrix R(z, z′) is said to be multiplicative in the spectral parameters if

R(z, z′) = R
( z
z′

)
. (II.B.9)

It is straightforward to simplify the properties introduced above in this case:

• The Yang-Baxter equation becomes

R1,2

(
z1

z2

)
R1,3

(
z1

z3

)
R2,3

(
z2

z3

)
= R2,3

(
z2

z3

)
R1,3

(
z1

z3

)
R1,2

(
z1

z2

)
. (II.B.10)

• The regularity property becomes R(1) = P .

• The unitarity property becomes R12(z).R21(1/z) = 1

• The Markovian property becomes 〈σ| ⊗ 〈σ|R(z) = 〈σ| ⊗ 〈σ|.

Definition B.8. A matrix R(z, z′) is said to be additive in the spectral parameters if

R(z, z′) = R(z − z′). (II.B.11)

It is straightforward to simplify the properties introduced above in this case:
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• The Yang-Baxter equation becomes

R1,2(z1−z2)R1,3(z1−z3)R2,3(z2−z3) = R2,3(z2−z3)R1,3(z1−z3)R1,2(z1−z2). (II.B.12)

• The regularity property becomes R(0) = P

• The unitarity property becomes R12(z).R21(−z) = 1

• The Markovian property becomes 〈σ| ⊗ 〈σ|R(z) = 〈σ| ⊗ 〈σ|.

We now provide examples of suchR-matrices, more particularly those related to the stochas-
tic models already introduced in this manuscript.

Example B.9. The R-matrix related to the ASEP is multiplicative in the spectral parameters
and is given by

R(z) =


1 0 0 0

0 (1−z)q
p−qz

z(p−q)
p−qz 0

0 p−q
p−qz

(1−z)p
p−qz 0

0 0 0 1

 (II.B.13)

This matrix satisfies the Yang-Baxter equation (II.B.10), the regularity, unitarity and Marko-
vian properties. The link with the bulk local jump operator (II.A.23) is given by (q− p)Ř′(1) =
m, i.e it corresponds to a value θ = q − p.

Example B.10. For the TASEP, the R matrix is obtained by taking the limit q = 0 and p = 1
on the matrix (II.B.13). It yields to the simple expression

R(z) =


1 0 0 0
0 0 z 0
0 1 1− z 0
0 0 0 1

 (II.B.14)

This matrix satisfies the Yang-Baxter equation (II.B.10), the regularity, unitarity and Marko-
vian properties. The link with the bulk local jump operator (II.A.24) is given by −Ř′(1) = m,
i.e θ = −1.

The R-matrix is graphically represented, as explained previously at the beginning of this
subsection, in figure II.5 (in the figure the missing vertices correspond to vanishing matrix
elements of the R-matrix of the TASEP). In this particular case of single species models,
i.e for N = 1, the graphical interpretation can be specified as follows. A dashed incoming
line (according to the arrow direction) denotes the vector |0〉 (or equivalently an empty site),
whereas a continuous thick line denotes the vector |1〉 (or equivalently an occupied site). In a
similar way, the out-going lines (after the crossing point) represent the states 〈0| and 〈1| on
which we are contracting the matrix R. Note that, in models where the number of particles
is conserved by the dynamics, the number of incoming continuous thick lines is equal to the
number of out-going continuous thick lines.

〈00|Rij( z1z2 )|00〉 〈10|Rij( z1z2 )|10〉 〈01|Rij( z1z2 )|10〉 〈10|Rij( z1z2 )|01〉 〈11|Rij( z1z2 )|11〉
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z2
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j
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z2
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z2
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j
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z2
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j
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1 1− z1
z2

z1
z2 1 1

Figure II.5: Non-vanishing vertices associated with the R-matrix of the TASEP.
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Example B.11. For the SSEP, the R-matrix is additive in the spectral parameters and is
given by

R(z) =


1 0 0 0
0 z

z+1
1
z+1 0

0 1
z+1

z
z+1 0

0 0 0 1

 (II.B.15)

This matrix satisfies the Yang-Baxter equation (II.B.12), the regularity, unitarity and Marko-
vian properties. The link with the bulk local jump operator (II.A.25) is given by Ř′(0) = m, i.e
θ = 1. Note that the R-matrix can be written concisely as

R(z) =
z + P

z + 1
, (II.B.16)

where P is the permutation operator. This writing leads to a straightforward generalization to
the multi-species case (see chapter III). The R-matrix of the SSEP can also be obtained from
that of the ASEP by taking the limit p = q = 1. This limit has to be carefully taken (if not we
obtain the permutation matrix) by introducing the following scaling

RSSEP (z) = lim
h→0

RASEP (ehz)|q=peh . (II.B.17)

This scaling transforms a multiplicative dependence in the spectral parameter into an additive
one, as expected.

All the previous examples were related to single species models. We provide here an example
of an R-matrix related to a multi-species model.

Example B.12. The R-matrix of the 2-species TASEP is multiplicative in the spectral param-
eter and is given by

R(z) =



1 · · · · · · · ·
· · · z · · · · ·
· · · · · · z · ·
· 1 · 1− z · · · · ·
· · · · 1 · · · ·
· · · · · · · z ·
· · 1 · · · 1− z · ·
· · · · · 1 · 1− z ·
· · · · · · · · 1


(II.B.18)

This matrix satisfies the Yang-Baxter equation (II.B.10), the regularity, unitarity and Marko-
vian properties. The link with the bulk local jump operator (II.A.27) is given by −Ř′(1) = m,
i.e θ = −1.

b) Transfer matrix

We defined previously the integrability of a local jump operator m as being the derivative of
some R-matrix. We will justify this definition in this subsection. We will indeed see that in this
case it is possible to construct a transfer matrix, which generates a set of commuting operators
including the Markov matrix. The R-matrix is the key building block of this transfer matrix
as explained in the following definition.

Definition B.13. The inhomogeneous transfer matrix is an operator acting on the whole lattice
(CN+1)⊗L and is given by

t(z|z1, z2, . . . , zL) = tr0 (R0,L(z, zL)R0,L−1(z, zL−1) . . . R0,1(z, z1)) . (II.B.19)

The parameters z1, . . . , zL are called the inhomogeneity parameters, each of them being associ-
ated to a particular site of the lattice (see figure II.6). We introduce z = (z1, . . . , zL) to shorten
the notation t(z|z) = t(z|z1, . . . , zL).
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We have introduced in the definition of the transfer matrix an auxiliary space CN+1, labeled
by 0, which gets traced out. See figure II.6 for a graphical illustration.

0

1 2 3 i. . . . . . L− 1 L

z

z1 z2 z3 zi zL−1 zL

Figure II.6: Graphical representation for t(z|z). Due to the trace in the definition of the
transfer matrix, the two double slash should be considered as linked.

Note that when theR-matrix is multiplicative in the spectral parameter, the inhomogeneous
transfer matrix is given by

t(z|z) = tr0

(
R0,L

(
z

zL

)
R0,L−1

(
z

zL−1

)
. . . R0,1

(
z

z1

))
. (II.B.20)

We now state the main property of this inhomogeneous transfer matrix.

Proposition B.14. If the matrix R(z, z′) satisfies the Yang-Baxter equation and the unitarity
property, the inhomogeneous transfer matrix satisfies the commutation relation

[t(z|z), t(z′|z)] = 0 (II.B.21)

Proof. We compute explicitly

t(z|z)t(z′|z) = tr0

(
R0,L

(
z

zL

)
. . . R0,1

(
z

z1

))
tr0′

(
R0′,L

(
z′

zL

)
. . . R0′,1

(
z′

z1

))
= tr0,0′

(
R0,L

(
z

zL

)
R0′,L

(
z′

zL

)
. . . R0,1

(
z

z1

)
R0′,1

(
z′

z1

))
= tr0,0′

(
R0,0′

( z
z′

)−1
R0,0′

( z
z′

)
×

R0,L

(
z

zL

)
R0′,L

(
z′

zL

)
. . . R0,1

(
z

z1

)
R0′,1

(
z′

z1

))
= tr0,0′

(
R0,0′

( z
z′

)−1
×

R0′,L

(
z′

zL

)
R0,L

(
z

zL

)
. . . R0′,1

(
z′

z1

)
R0,1

(
z

z1

)
R0,0′

( z
z′

))
= tr0,0′

(
R0′,L

(
z′

zL

)
R0,L

(
z

zL

)
. . . R0′,1

(
z′

z1

)
R0,1

(
z

z1

))
= t(z′|z)t(z|z).

This property tells us that, expanding the transfer matrix as a polynomial (up to an overall
normalization) in the spectral parameter provides operators which commute with each other.
The next step will be to see that the Markov matrix is one of these operators. This is the
purpose of the following proposition.

Proposition B.15. The Markov matrix is related to the transfer matrix in the following way

θ
d ln t(z)

dz

∣∣∣∣
z=1

= θt′(1)t(1)−1 =

L∑
k=1

mk,k+1 = M, (II.B.22)

where t(z) is the homogeneous transfer matrix defined as t(z) = t(z|1, 1, . . . , 1) (this is the
inhomogeneous transfer matrix where all the inhomogeneity parameters are set to 1).
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Proof. A straightforward computation yields the equality

d ln t(z)

dz

∣∣∣∣
z=1

= t(1)−1t′(1). (II.B.23)

The first step is thus to evaluate

t(1) = tr0(P0,L . . . P0,2P0,1)

= tr0(P0,1P1,L . . . P1,2)

= tr0(P0,1)P1,L . . . P1,2

= P1,L . . . P1,2.

so that t(1)−1 = P1,2 . . . P1,L. This is also possible to show that t(1) = PL,L−1 . . . PL,1, playing
with P0,L instead of P0,1. This yields the other expression t(1)−1 = PL,1 . . . PL,L−1.

We need also to calculate

t′(1) =
L∑
k=2

tr0(P0,L . . . P0,k+1R
′
0,k(1)P0,k−1 . . . P0,1) + tr0(P0,L . . . P0,2R

′
0,1(1))

=

L∑
k=2

P1,L . . . P1,k+1R
′
1,k(1)P1,k−1 . . . P1,2 + PL,L−1 . . . PL,2R

′
L,1(1).

Using the first expression of t(1)−1 that we derived for the sum over k and the second expression
of t(1)−1 for the last term in the previous equation, we obtain

θt(1)−1t′(1) = θ
L∑
k=2

Pk−1,kR
′
k−1,k(1) + θPL,1R

′
L,1(1) = M. (II.B.24)

Refinement with twist The transfer matrix defined on a periodic lattice can be modified
to ’twist’ the periodic boundary conditions. This can be intuitively understood as the fact
that the site L + 1 is not identified with site 1 anymore (usual periodic condition τL+1 = τ1)
but imposing instead for instance τL+1 ≡ τ1 + 1 modulo N , or a more complicated relation.

This twist is achieved by adding an operator T (z), that may or may not depend on a
spectral parameter z, in the expression of the transfer matrix. This twist operator T (z) has to
be carefully chosen in order not to break the integrability of the model, i.e the commutation
property of the transfer matrix. This yields the definitions below.

Definition B.16. An integrable twist operator T (z) is an invertible (N + 1)× (N + 1) matrix
that satisfies the relation

Ř(z1, z2)T (z1)⊗ T (z2) = T (z2)⊗ T (z1)Ř(z1, z2). (II.B.25)

Note that this relation is a particular (one dimensional or scalar) representation of the so called
RTT relation defined later.

Definition B.17. A twisted transfer matrix is defined as

tT (z|z) = tr0

(
R0,L

(
z

zL

)
R0,L−1

(
z

zL−1

)
. . . R0,1

(
z

z1

)
T0(z)

)
. (II.B.26)

where T (z) is an integrable twist operator.

Note that taking T (z) = 1 fulfills the relation (II.B.25) and allows us to recover the usual
expression of the non-twisted transfer matrix.
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Proposition B.18. A twisted transfer matrix defines a family of commuting operators

[tT (z|z), tT (z′|z)] = 0. (II.B.27)

Proof. This is done in a exactly similar way as for the non-twisted transfer matrix, using in
addition the exchange relation (II.B.25)

From the out-of-equilibrium physics point of view, the interest of such a twist deformation
of the transfer matrix is the possibility (often restricted by integrability) to modify the local
stochastic dynamics of the model on the particular sites 1 and L. This is formalized by the
following property.

Proposition B.19. We have the relation

θ
d ln tT (z)

dz

∣∣∣∣
z=1

= θt′T (1)tT (1)−1 =
L−1∑
k=1

mk,k+1 + TL(1)−1mL,1TL(1) + θTL(1)−1T ′L(1).

(II.B.28)

Proof. The derivation of this formula is done in a similar way as for the untwisted case.

Transfer matrix as discrete time Markov matrix We stressed in the previous para-
graphs that the transfer matrix can be used to define (through its derivative) continuous time
Markov matrices. We are now going to see that the transfer matrix (or a closely related opera-
tor) can be used itself in some particular cases to define a discrete time Markov matrix. Rather
than generic considerations, we will focus on a particular example related to the transfer matrix
of the TASEP.

From the R-matrix associated to the TASEP(II.B.14), we build the inhomogeneous periodic
transfer matrix (II.B.20). The homogeneous case (i.e. zi = 1) was studied (from the discrete
time Markovian process point of view) in [52]. We now introduce the following operator

M(z|z) = t(z|z)t(z1|z)−1 (II.B.29)

= tr0

[
R0,L

(
z

zL

)
R0,L−1

(
z

zL−1

)
. . . R0,1

(
z

z1

)]
R2,1(

z2

z1
) . . . RL,1(

zL
z1

).

Note that we have normalized t(z|z) using t(z1|z), but a different choice t(zj |z), j = 2, 3, ..., L
leads to a similar rotated matrix M(z|z). Obviously M(z|z) commutes with t(z′|z) and has
the same eigenvectors. We choose below to use the “normalized matrix” M(z|z) instead of
t(z|z) because it allows one to construct easily local jump operators. A direct computation
yields indeed that −M ′(1|1, . . . , 1), where the derivative is taken with respect to the spectral
parameter z, is the Markov matrix of the continuous time TASEP.

From expression (II.B.29) and fig. II.5 we can deduce a graphical representation for M(z|z).
The starting point is the lattice illustrated in fig. II.7 that one has to fill according to the
matrix element one wants to compute. Instead of explaining it in full generality, we take below
a concrete example.

As an example we take L = 4 and use the graphical interpretation to compute the tran-
sition rate between the initial configuration (1, 1, 1, 0) and the final configuration (1, 1, 0, 1).
The initial (resp. final) configuration fixes the form of the incoming (resp. out-going) external
lines (dashed or thick) as in fig. II.8. Then, we look for drawings of the form given in fig. II.8
where the remaining thin lines have to be replaced by thick or dashed lines in such a way that
the weights (as given in fig.II.5) of all the vertices do not vanish. The total weight of a given
possible drawing is then the product of all these weights. It is easy to see that there are only
two possible drawings, given in fig. II.9 together with their corresponding weights. Finally the
weight of 〈1101|M(z|z)|1110〉 is the sum of the weights of the possible drawings.

Using this graphical interpretation, we are able to compute all the possible rates between
any two configurations. We remark in particular that the number of particles is conserved (as
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2 3 i. . . . . . L− 1 L
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z2 z3 zi zL−1 zL

Figure II.7: Graphical representation for M(z|z). Due to the trace in the definition of the
transfer matrix, the two double slash should be considered as linked.

z2 z3 z4

2 3 4

0
z

1
z1

Figure II.8: Starting point for the computation of 〈1101|M(z|z)|1110〉.

mentioned previously each non-vanishing vertex preserves the number of particles). Therefore,
we restrict ourselves to a given sector with a fixed number of particles. We can also show that
all the rates starting from a given configuration (with at least one particle) sum to one which
proves that M(z|z) can be used as a discrete time Markov matrix. We have to impose also

0 ≤ zi
z1
≤ 1 and 0 ≤ z

zi
≤ 1 , i = 1, 2, ...L, (II.B.30)

so that the probabilities are positive and less than 1. The sector with no particles is special: its
dimension is 1 and the matrix M(z|z) is reduced to the scalar 1 +

∏L
i=1(1− z/zi). Therefore,

it cannot be considered as a Markov matrix in the empty sector. From now, we consider only
the cases with at least one particle.

z2 z3 z4

2 3 4

0
z

1
z1

(1− z
z3

) z3z1

z2 z3 z4

2 3 4

0
z

1
z1

(1− z3
z1

) zz1

Figure II.9: The two different drawings involved in the computation of the transition rate
〈1101|M(z|z)|1110〉 with their respective weights.

The Markov process given by M(z|z) can be interpreted as a discrete time process with
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sequential update. The configuration at the time t + 1 is obtained from the one at time t by
the following dynamics:

• Particle update: starting from right to left (i.e. from the site L to the site L− 1 and so
on), a particle at the site i jumps to the right on the neighboring site with a probability
1 − zi/z1 provided this site is empty. The particle does not jump with the probability
zi/z1. We remind that we are on a periodic lattice, so that the site on the right of the
site L is the site 1. Note that a particle located on site 1 does not move.

• Hole update: once the particle update is done, one performs the hole update. Contrary
to the particle update, we do not necessarily start and finish at the sites 1 or L. Let r
be the site number of a particle (we recall that we restrict ourselves to the case with at
least one particle). Starting from the site r, we go from left to right up to the site r− 1,
using periodicity and knowing that the site on the right of the site L is the site 1. A
hole at the site i jumps to the left on the neighboring site with the probability 1−z/zi−1

provided the site is occupied. The hole may stay at site i with probability z/zi−1. By
convention, we set z0 = zL.

As mentioned previously, we would like to emphasize that, due to the inhomogeneities in
the transfer matrix, the rates depend on the site where the particle or the hole is situated.
All the probabilities are positive and less than 1 thanks to (II.B.30). Let us also mention that
for the homogeneous case, the update simplifies. Indeed, the first step becomes trivial: the
particles do not move.

These rules are illustrated in figure II.10 for a chain with 4 sites in the configuration
(1, 1, 1, 0) at time t. We deduce from this figure the different possible rates between the

z3
z1

z2
z1

(1− z3
z1

) (1− z2
z1

)(1− z3
z1

)

z
z3

1− z
z3

z
z2

1− z
z2

z
z1

1− z
z1

Figure II.10: An example of sequential update corresponding to the Markov matrix M(z|z).
The first line is the configuration at time t and the third line shows the possible configurations
at time t+ 1. The second line corresponds to the intermediate configurations after the update
of the particles and the hole update still to be done. The label of the arrows provides the rate
of the corresponding change of configurations.

configurations which correspond to the entries of M(z|z). One gets

M(z|z)
(
(1, 1, 0, 1), (1, 1, 1, 0)

)
= 〈1101|M(z|z)|1110〉 =

(
1− z

z3

)
z3

z1
+

(
1− z3

z1

)
z

z1
(II.B.31)

in accordance with the calculation done previously (see figure II.9).
Justification of the sequential up-date: The sequential update described above can be easily

identified when considering the Markov matrix M(z|z) at the special point z = zj . Indeed, we
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write M(zj |z) =
(
t(zj |z)P

)(
P−1t(z1|z)−1

)
where P is the cyclic permutation. Then, from

the explicit expressions

t(zj |z) = Rj,j−1(
zj
zj−1

) · · ·Rj,1(
zj
z1

)Rj,L(
zj
zL

) · · ·Rj,j+1(
zj
zj+1

) (II.B.32)

t(z1|z)−1 = R2,1(
z2

z1
)R3,1(

z3

z1
) · · ·RL,1(

zL
z1

) (II.B.33)

it is easy to see that P−1t(z1|z)−1 corresponds to the particle update, while t(zj |z)P corre-
sponds to the hole update at z = zj .

Let us remark that such a simple sequential update is specific to the totally asymmetric
exclusion process. For the partially asymmetric case, it would be much more involved.

Some properties of the stationary state of the Markov chain defined by M(z|z) will be
investigated in chapter III.

2 How to find R-matrices?

We stressed, all along this section, that the R-matrix and the Yang-Baxter equation are the
cornerstone of integrability. The R-matrix is the building block4 of the transfer matrix. The
Yang-Baxter equation ensures the commutation property of the transfer matrix. In order
to produce integrable Markovian processes, it thus appears essential to determine R-matrix
solutions to the Yang-Baxter equation. This equation is very hard to solve because it involves
cubic relations in the entries of the R-matrix. It attracted a lot of attention over the last
decades and several solutions have been constructed in specific cases [53–57]. But we are still
lacking a general classification of the solutions of this equation.

However different methods have been developed, relying often on algebraic structures hid-
den behind the Yang-Baxter equation, and providing solutions in some particular situations.
We present three of the most commonly used below.

a) Direct resolution of the Yang-Baxter equation

We present a method developed by Baxter to compute the R-matrix of the six-vertex and
eight-vertex models. The main idea could be summarized as follows. We would like to isolate
some constraints satisfied by the entries of the R-matrix, which are implied by the Yang-
Baxter equation. In other words, the (N + 1)2× (N + 1)2 entries of the R-matrix are lying on
some manifold. The spectral parameter parametrizes the manifold: a given spectral parameter
corresponds to one point on the manifold and the manifold is spanned when the spectral
parameter varies.

Nothing is better than an example to see how it works. We reproduce briefly here the
solution of Baxter for the eight-vertex model [29] (in the Markovian case).

Let us define

R =


a 0 0 d
0 b c 0
0 c b 0
d 0 0 a

 (II.B.34)

We also introduce the matrix R′ (respectively the matrix R′′) which is equal to the matrix R
but with entries a, b, c, d replaced by a′, b′, c′, d′ (respectively by a′′, b′′, c′′, d′′). We would
like to solve the Yang-Baxter equation

R12R
′
13R

′′
23 = R′′23R

′
13R12. (II.B.35)

The matrix R intuitively corresponds to R(z1/z2) , the matrix R′ to R(z1/z3) and the matrix
R′′ to R(z2/z3) (equation (II.B.35) thus appears as some kind of generalization of (II.B.10)).

4In full generality the building block of the transfer matrix is a Lax operator satisfying the RTT relation
(II.B.83) and which can be chosen more generally than just equal to R.
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Writing equation (II.B.35) in components, we can show that it is equivalent to the following
set of equations

ac′a′′ + da′d′′ = bc′b′′ + ca′c′′ (II.B.36)

ab′c′′ + dd′b′′ = ba′c′′ + cc′b′′ (II.B.37)

cb′a′′ + bd′d′′ = ca′b′′ + bc′c′′ (II.B.38)

ad′b′′ + db′c′′ = bd′a′′ + cb′d′′ (II.B.39)

aa′d′′ + dc′a′′ = bb′d′′ + cd′a′′ (II.B.40)

da′a′′ + ac′d′′ = db′b′′ + ad′c′′ (II.B.41)

Following the lines of [29], we observe that these equations are linear in a′′, b′′, c′′, d′′. If
we want these equations to have non vanishing solutions, the determinant of any linear system
composed of four of these equations should be equal to zero. For instance the determinant of
the linear system defined by equations (II.B.36), (II.B.38), (II.B.39) and (II.B.41) is given by

(cda′b′ − abc′d′)[(a2 − b2)(c′2 − d′2) + (c2 − d2)(a′2 − b′2)] (II.B.42)

To decide which of these two factors should be equal to zero, we consider the case where a = a′,
b = b′, c = c′ and d = d′. It corresponds intuitively to the case z2 = z3 in the equation (II.B.10).
In this case, we expect from the regularity condition that R′′ = R(z2/z3) = R(1) = P so that
equation (II.B.35) becomes trivial. Indeed we observe in this case that the condition (II.B.42)
is satisfied because the first factor vanishes. For continuity reasons, this factor should thus
also vanish in the general case a 6= a′, b 6= b′, c 6= c′ and d 6= d′. This yields the condition

ab

cd
=
a′b′

c′d′
(II.B.43)

When this condition is satisfied, we can solve for a′′, b′′, c′′, d′′. Substituting back in the
remaining equations (II.B.37) and (II.B.40) yields to the unique constraint

a2 + b2 − c2 − d2

ab
=
a′2 + b′2 − c′2 − d′2

a′b′
(II.B.44)

Following Baxter’s work [29], we introduce the following quantities

∆ =
a2 + b2 − c2 − d2

2(ab+ cd)
(II.B.45)

and

Γ =
ab− cd
ab+ cd

(II.B.46)

We can also define ∆′ and Γ′ (respectively ∆′′ and Γ′′) where the parameters a, b, c, d replaced
by a′, b′, c′, d′ (respectively by a′′, b′′, c′′, d′′). We can show that the constraints (II.B.43) and
(II.B.44) are equivalent to

∆ = ∆′ and Γ = Γ′. (II.B.47)

When these constraints are satisfied, we recall that we can solve for a′′, b′′, c′′, d′′. It is then
straightforward to check that

∆ = ∆′ = ∆′′ and Γ = Γ′ = Γ′′. (II.B.48)

The equations (II.B.45) and (II.B.46) thus define the manifold on which are lying the entries
of the R-matrix. The remaining part of the work is to find a parametrization of the manifold
with the help of spectral parameters. The hard part is to determine a parametrization which
is additive or multiplicative in the spectral parameter (see the computations below). Baxter
succeeded to find one for this eight-vertex model with the help of elliptic functions.
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To simplify the computation and also to be consistent with the purpose of this manuscript,
we will be interested in the Markovian case, i.e when d = 1 − a and c = 1 − b (and same
conditions for the prime and double prime variables), so that the entries of each column of the
R-matrix sum to 1. In this particular case, the constraints (II.B.45) and (II.B.46) reduce to

∆ = Γ =
a+ b− 1

2ab− a− b+ 1
=

a′ + b′ − 1

2a′b′ − a′ − b′ + 1
=

a′′ + b′′ − 1

2a′′b′′ − a′′ − b′′ + 1
. (II.B.49)

This can be easily solved in b, b′ and b′′

b =
(∆ + 1)(a− 1)

∆(2a− 1)− 1
, (II.B.50)

and similarly b′ and b′′. The equation (II.B.35) is then solved by expressing a′′ in function of
a and a′

a′′ =
∆(2aa′ − a− a′ + 1)− a− a′ + 1

∆(2aa′ − 2a′ + 1)− 2a+ 1
. (II.B.51)

Keeping in mind that we want to find a parametrization with “multiplicative” spectral param-
eter, we would like to find a function f such that

f(a′′) =
f(a′)

f(a)
. (II.B.52)

This is achieved by the function

f : a→ a(λ− 1) + 1

a(λ+ 1)− 1
, (II.B.53)

where λ is defined by the relation

∆ =
1− λ2

1 + λ2
. (II.B.54)

We are now equipped to introduce the spectral parameters z1 = f(a), z2 = f(a′) and z3 =
f(a′′). This allows us to write R = R(z1/z2), R′ = R(z1/z3) and R′′ = R(z2/z3) where R(z) is
defined by

R(z) =


z+1

λ(z−1)+z+1 0 0 λ(z−1)
λ(z−1)+z+1

0 z−1
λ(z+1)+z−1

λ(z+1)
λ(z+1)+z−1 0

0 λ(z+1)
λ(z+1)+z−1

z−1
λ(z+1)+z−1 0

λ(z−1)
λ(z−1)+z+1 0 0 z+1

λ(z−1)+z+1

 (II.B.55)

It satisfies the Yang-Baxter equation (II.B.10), the unitarity, regularity and Markovian
properties. It is the R-matrix associated to the DiSSEP. We have indeed

2λŘ′(1) = m (II.B.56)

where m is the bulk local jump operator of the DiSSEP introduced in (II.A.26).

b) Quantum groups

Quantum groups are the theoretical algebraic framework behind the R-matrices. We will briefly
define this algebraic structure and then argue on how it can be used to generate solutions to
the Yang-Baxter equation.

We first briefly introduce the notion of Hopf algebra, starting from the basics to fix the
notations. The reader is invited to refer to [32] for details
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Definition B.20. An algebra A over the field C is a C-vector space equipped with two linear
maps µ : A⊗A → A, called the multiplication, and ι : C → A, called the unit, such that
the following consistency relations hold5

µ(a⊗ ι(z)) = µ(ι(z)⊗ a) = z · a, ∀a ∈ A, ∀z ∈ C (II.B.57)

µ(a1 ⊗ µ(a2 ⊗ a3)) = µ(µ(a1 ⊗ a2)⊗ a3), ∀a1, a2, a3 ∈ A. (II.B.58)

The last property is usually called associativity of the algebra.
An algebra is said to be commutative if µ(a1 ⊗ a2) = µ(σ(a1 ⊗ a2)), for all a1, a2 ∈ A,

where σ is the permutation operator, i.e σ(a1 ⊗ a2) = a2 ⊗ a1.
If A and B are two algebras, an homomorphism of algebras is a linear map ψ : A → B

satisfying ψ ◦ µA = µB ◦ (ψ ⊗ ψ) and ιB ◦ ψ = ιA where µA and ιA (respectively µB and ιB)
denote the multiplication and the unit in A (respectively in B).

This definition can appear a bit trivial but we put it here to stress the symmetry with the
following definition.

Definition B.21. A coalgebra A over the field C is a C-vector space equipped with two linear
maps ∆ : A → A⊗A, called the comultiplication, and ε : A → C, called the counit, such
that the following consistency relations hold6

(I⊗ ε) (∆(a)) = (ε⊗ I) (∆(a)) = a, ∀a ∈ A (II.B.59)

(I⊗∆) (∆(a)) = (∆⊗ I) (∆(a)), ∀a ∈ A. (II.B.60)

The last property is usually called coassociativity of the coalgebra.
A coalgebra is said to be cocommutative if ∆(a) = σ(∆(a)), for all a ∈ A.
If A and B are two coalgebras, an homomorphism of coalgebras is a linear map ψ : A → B

satisfying (ψ ⊗ ψ) ◦∆A = ∆B ◦ ψ and εB ◦ ψ = εA where ∆A and εA (respectively ∆B and εB)
denote the comultiplication and the counit in A (respectively in B).

Definition B.22. A Hopf algebra A over the field C is a C-vector space satisfying the following
properties

• A is simultaneously an algebra and a coalgebra (over the field C);

• the multiplication µ : A⊗A → A and the unit ι : C→ A are both homomorphisms of
coalgebras;

• the comultiplication ∆ : A → A⊗A and the counit ε : A → C are both homomorphisms
of algebras;

• there exists a linear map S : A → A, called the antipode, such that the following
relations hold

µ ◦ (S ⊗ I) (∆(a)) = µ ◦ (I⊗ S) (∆(a)) = ι ◦ ε (a), ∀a ∈ A. (II.B.61)

Example B.23. If g is a Lie algebra, we can define a Hopf structure on its universal enveloping
algebra U(g) (which is defined as the quotient of of

⊕
n≥0 g

⊗n by the ideal generated by the
relations x ⊗ y − y ⊗ x − [x, y], see for instance [32] for details). The universal enveloping
algebra is intuitively understood as the algebra generated by all the polynomial relations in
the Lie algebra generators. It is thus sufficient to give the definition of the structure maps
on the Lie algebra g solely (the definition of these maps on elements of U(g) can be deduced
immediately using the homomorphism property)

∆(g) = g ⊗ 1 + 1⊗ g, S(g) = −g, ε(g) = 0, ∀g ∈ g. (II.B.62)

Note that this defines a cocommutative Hopf algebra.

5 ’·’ in the first equation denotes the external composition law of the C-vectorial space A.
6To be fully rigorous z ⊗ a and a⊗ z are identified with z · a, for all a ∈ A and z ∈ C in the first relation
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Definition B.24. We call almost cocommutative a Hopf algebra A for which there exists an
invertible element R ∈ A⊗A satisfying

σ ◦∆(a) = R∆(a)R−1, ∀a ∈ A. (II.B.63)

If R satisfies in addition7

(∆⊗ I) (R) = R13R23, (II.B.64)

(I⊗∆) (R) = R13R12, (II.B.65)

then A is said to be quasitriangular and R is called the universal R-matrix.

Proposition B.25. If A is a quasitriangular Hopf algebra with universal R-matrix R then

R12R13R23 = R23R13R12 (II.B.66)

(ε⊗ I) (R) = (I⊗ ε) (R) = 1 (II.B.67)

(S ⊗ I) (R) = (I⊗ S−1) (R) = R−1 (II.B.68)

(S ⊗ S) (R) = R (II.B.69)

The first relation (II.B.66) of the proposition is at the root of the construction of solutions to
the Yang-Baxter equation. We sketch here the general idea in order to motivate the discussion
below. We recall that a representation π : A → End(V ) of an algebra A over a vector space V
is an homomorphism of algebras between A and the algebra of matrices acting on V , denoted
End(V ). The irreducible representations8 of the quasitriangular Hopf algebras usually depend
(at least for the well-known examples of deformation of affine Lie algebras presented briefly
below) on a spectral parameter z. If we denote by πz this irreducible representation, we can
define R(z, z′) := πz ⊗ πz′ (R). Applying the representation πz1 ⊗ πz2 ⊗ πz3 to the equality
(II.B.66) yields the Yang-Baxter relation for the matrix R(z, z′)

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2). (II.B.70)

It thus appears very important, from the integrable systems point of view, to construct
quasitriangular Hopf algebras and study their representation theory. Jimbo [33] and Drinfeld
[34] made a remarkable breakthrough in finding a whole class of examples of non-commutative
and non-cocommutative quasitriangular Hopf algebras (only very few examples were known
before their work). Their idea can be roughly summarized as follows. They discovered how
to deform the commutation relations of an affine Lie algebra ĝ, which is co-commutative Hopf
algebra, to obtain a non co-commutative Hopf algebra.

We now present very briefly one of the main deformations of an affine Lie algebra ĝ: Uq(ĝ).
Rather than general considerations we will deal with a case of particular interest: the affine
Lie algebra ŝlN+1.

We recall that ŝlN+1 is generated by ei, fi and hi, for i ∈ Z/(N + 1)Z, which are subject
to the relations

[hi, hj ] = 0, [hi, ej ] = Ci,jej , [hi, fj ] = −Ci,jfj , [ei, fj ] = δi,jhi, (II.B.71)

and the Serre relations. Ci,j = 2δi,j − δi,j−1 − δi,j+1 are the entries of the Cartan matrix and
δi,j is equal to 1 if i− j ∈ (N + 1)Z and 0 otherwise.

The algebra9 Ut1/2(ŝlN+1) is obtained by deforming these commutation relations (with
a deformation parameter t1/2). More precisely, it is generated by ei, fi and k±1

i for i ∈
7The relations hold in A⊗A⊗A, the subscript on R ∈ A ⊗A indicate on which tensor spaces it belongs,

for instance R12 = R⊗ 1, R23 = 1⊗R...
8An irreducible representation π : A → End(V ) is a representation which has no non-trivial stable subspace,

i.e subspace W 6= {0} strictly included in V such that for all a ∈ A, π(a)(W ) ⊆W .
9We use here a deformation parameter denoted by t1/2 instead the usual notation q to ease with forthcoming

computations
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Z/(N + 1)Z, which are subject to the relations

kik
−1
i = k−1

i ki = 1, [ki, kj ] = 0,

kiej = tCi,j/2ejki, kifj = t−Ci,j/2fjki, [ei, fj ] = δi,j
ki − k−1

i

t1/2 − t−1/2
,

and the Serre relations. Note that to recover the non-deformed algebra, we have to set ki = thi/2

and take the limit t→ 1.
This algebra can be endowed with a Hopf structure by defining the coproduct

∆k±1
i = k±1

i ⊗ k
±1
i , ∆ei = 1⊗ ei + ei ⊗ ki, ∆fi = fi ⊗ 1 + k−1

i ⊗ fi. (II.B.72)

This defines a non cocommutative algebra.
The algebra Ut1/2(ŝlN+1) admits finite dimensional irreducible representations depending

on a spectral parameter z and labeled by an integer l (see for instance [58, 59] for a review
in context of non-equilibrium statistical mechanics). We first need to define the associated
representation space Vl. For such a purpose we introduce

Il = {ρ = (ρ0, . . . , ρN ) ∈ NN+1 | ρ0 + · · ·+ ρN = l}. (II.B.73)

For each ρ ∈ Il we associate a vector |ρ〉 and we define

Vl =
⊕
ρ∈Il

C|ρ〉. (II.B.74)

The irreducible representation π
(l)
z : Uq(ŝlN+1)→ End(Vl) is given by

π(l)
z (ei)|ρ〉 = zδi,0

tρi/2 − t−ρi/2

t1/2 − t−1/2
|ρ− i〉 (II.B.75)

π(l)
z (fi)|ρ〉 = z−δi,0

tρi+1/2 − t−ρi+1/2

t1/2 − t−1/2
|ρ+ i〉 (II.B.76)

π(l)
z (ki)|ρ〉 = zρi+1−ρi |ρ〉, (II.B.77)

where i ∈ ZN+1 has vanishing entries except the i-th which is equal to 1 and the i+1-th which
is equal to −1 (we recall that the indices have to be understood modulo N + 1). We set by
convention |ρ± i〉 = 0 if ρ± i has some negative entry.

It allows us to define the matrix R(l),(l′)(z, z′) := π
(l)
z ⊗ π

(l′)
z′ (R). It was shown that

it depends in fact only on the ratio of the spectral parameters z and z′ : R(l),(l′)(z, z′) =
R(l),(l′)(z/z′). By taking irreducible representations of different dimension on each of the ten-
sor space components in (II.B.66), we obtain a whole class of generalized (they involve different
R-matrices) Yang-Baxter equations

R
(l),(m)
12 (z1/z2)R

(l),(n)
13 (z1/z3)R

(m),(n)
23 (z2/z3) = R

(m),(n)
23 (z2/z3)R

(l),(n)
13 (z1/z3)R

(l),(m)
12 (z1/z2).

(II.B.78)

Example B.26. We give example of such matrices in the particular case N = 1. To be
consistent with the purpose of this manuscript, the matrices are given after a similarity trans-
formation, discovered in [58], which provides them the Markovian property. For l = l′ = 1, we
have

R(1),(1)(z) =


1 0 0 0

0 1−z
t−z

z(t−1)
t−z 0

0 t−1
t−z

(1−z)t
t−z 0

0 0 0 1

 . (II.B.79)
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If we set t = p/q, we recover the R-matrix associated to the ASEP (II.B.13). For l = 1 and
l′ = 2, we have

R(1),(2)(z) =



1 0 0 0 0 0

0 t1/2−z
t3/2−z 0 z(t2−1)

t3/2−z 0 0

0 0 t−1/2−z
t3/2−z 0 z(t−1)

t3/2−z 0

0 t1/2(t−1)

t3/2−z 0 (t−1/2−z)t2
t3/2−z 0 0

0 0 t−1/2(t2−1)

t3/2−z 0 (t1/2−z)t
t3/2−z 0

0 0 0 0 0 1


. (II.B.80)

For l = 2 and l′ = 1, we have

R(2),(1)(z) =



1 0 0 0 0 0

0 t−1/2−z
t3/2−z

z(t−1)

t3/2−1
0 0 0

0 t−1/2(t2−1)

t3/2−1

t(t1/2−z
t3/2−z 0 0 0

0 0 0 t1/2−z
t3/2−z

z(t2−1)

t3/2−z 0

0 0 0 t1/2(t−1)

t3/2−z
(t−1/2−z)t2
t3/2−z 0

0 0 0 0 0 1


. (II.B.81)

Finally for l = l′ = 2, we have R(2),(2)(z) =

1 · · · · · · · ·
· 1−z

t2−z · z(t2−1)
t2−z · · · · ·

· · (1−z)(1−tz)
t(t−z)(t2−z) · z(1−z)(t−1)

(t−z)(t2−z) · z2(t−1)(t2−1)
(t−z)(t2−z) · ·

· t2−1
t2−z · (1−z)t2

t2−z · · · · ·
· · (1−z)(t+1)(t2−1)

t(t−z)(t2−z) · t3z+(1−2z)t2+z(z−2)t+z
(t−z)(t2−z) · z(1−z)(t+1)(t2−1)t

(t−z)(t2−z) · ·
· · · · · 1−z

t2−z · z(t2−1)
t2−z ·

· · (t−1)(t2−1)
(t−z)(t2−z) · (1−z)(t−1)t2

(t−z)(t2−z) · (1−z)(1−tz)t3
(t−z)(t2−z) · ·

· · · · · t2−1
t2−z · (1−z)t2

t2−z ·
· · · · · · · · 1



.

(II.B.82)

Remark B.27. Applying the representation π
(l)
z1 ⊗ π

(l)
z2 ⊗ I, where π

(l)
z is the fundamental

representation (the irreducible representation of smallest dimension) of the Hopf algebra, to
the relation (II.B.66), yields the so-called RTT relation

R
(l),(l)
12 (z1, z2)T1(z1)T2(z2) = T2(z2)T1(z1)R

(l),(l)
12 (z1, z2), (II.B.83)

where T1(z1) = π
(l)
z1 ⊗ π

(l)
z2 ⊗ I (R13) and T2(z2) = π

(l)
z1 ⊗ π

(l)
z2 ⊗ I (R23). The matrix T (z) can be

seen as a (l + 1)× (l + 1) matrix with entries living in the Hopf algebra A. The RTT relation
can be interpreted as a way to encode the commutation relations of the elements of A. If the
generators of A are correctly stored in the matrix T (z), the RTT relation is then equivalent to
the defining relations of the algebra. This provides a very elegant presentation of the algebra,
sometimes called the FRT presentation [60]. This gives also a convenient way to define the
coproduct of the algebra

∆(T (z)) = T (z)⊗̇T (z), (II.B.84)

where ’⊗̇’ denotes the usual matrix product between the matrices T (z) and T (z) but taking
tensor product of the algebraic entries. For instance(

a b
c d

)
⊗̇
(
e f
g h

)
=

(
a⊗ e+ b⊗ g a⊗ f + b⊗ h
c⊗ e+ d⊗ g c⊗ f + d⊗ h

)
(II.B.85)
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The counit is given by
ε(T (z)) = I, (II.B.86)

and the antipode is given by
S(T (z)) = T (z)−1. (II.B.87)

This presentation is often used to define the commutation relations of another deformation of a
(affine) Lie algebra g: the Yangian Y (g). The reader can for instance refer to [61] for details.

c) Baxterization

A particularly interesting technique to construct solution to the Yang-Baxter equation was
proposed by V.F.R. Jones [62] in a framework of knot theory, which is known as Baxterisation.
It allows one to obtain solutions of the YBE with spectral parameter from representations of
the braid group or quotients thereof. Important cases are the ones of the Hecke algebra, the
Temperley–Lieb algebra or the Birman–Murakami–Wenzl algebra [63, 64]. Since then, many
authors tried to generalize or produce other suitable formulae that may lead to solutions of
the Yang-Baxter equation, see e.g. [57, 65–70].

Hecke algebra In this paragraph we introduce the Hecke algebra and its Baxterisation. The
Hecke algebra has found a lot of applications in integrable systems (see below), in combinatorics
[71] and in knot theory [72].

Definition B.28. For any integer n ≥ 1, and complex ω ∈ C, Hn(ω) is the unital associative
algebra over C with generators σ1, . . . , σn−1 and subject to the relations

σiσi+1σi = σi+1σiσi+1 , i = 1, ..., n− 2 (II.B.88)

[σi , σj ] = 0 , |i− j| > 1 (II.B.89)

σiσ
−1
i = σ−1

i σi = 1 (II.B.90)

σ2
i = ωσi + 1. (II.B.91)

Remark B.29. The Hecke algebra can be seen as the quotient of the group algebra build on the
Artin’s braid group Bn by the relation (II.B.91). The Artin’s braid group, which is at the heart
of the construction of knot invariants, is indeed defined by the relations (II.B.88), (II.B.89)
and (II.B.90).

Remark B.30. The Hecke algebra appears as a deformation of the group algebra build from the
permutation group Sn. For ω = 0, the defining relations of the Hecke algebra coincide indeed
with those of the permutation group (where σi stands for the permutation of i and i+ 1). We
have in particular σ2

i = 1.

One of the most important feature of the Hecke algebra (at least in the context of integrable
systems) lies in the fact that it produces solutions to the (spectral parameter dependent)
braided Yang-Baxter equation. The construction is exposed in the following theorem

Theorem B.31. If σi satisfy the relations of Hn(ω) and t is such that ω = t−1/2 − t1/2, then

Ři(z) =
(z − 1)σi + t−1/2 − t1/2

zt−1/2 − t1/2
, (II.B.92)

satisfies the braided Yang–Baxter equation

Ři(z1)Ři+1(z1z2)Ři(z2) = Ři+1(z2)Ři(z1z2)Ři+1(z1) . (II.B.93)

Moreover the following properties hold:

– unitarity Ři(z)Ři(1/z) = 1 , (II.B.94)

– regularity Ři(1) = 1 , (II.B.95)

– locality Ři(z)Řj(z
′) = Řj(z

′)Ři(z) for |i− j| > 1 . (II.B.96)
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Proof. The regularity and locality properties are obvious.
The unitarity and the braided Yang–Baxter equation are established through a direct compu-
tation, using the relations (II.B.88) and (II.B.91).

Example B.32. We can show that the bulk local jump operator m of the ASEP (II.A.23)

provides an explicit representation of the Hecke algebra Hn(ω) with ω =
√

q
p −

√
p
q in the

tensor space End(C2)⊗n

Hn(ω) → End(C2)⊗n

σi 7→ I⊗i−1 ⊗ S ⊗ I⊗n−i−1 (II.B.97)

where S is a 4× 4 matrix (acting on C2 ⊗ C2) given by

S =
1
√
pq

(m+ q), (II.B.98)

Then the Baxterised R-matrix

Ř(z) =
(z − 1)S + t−1/2 − t1/2

zt−1/2 − t1/2
(II.B.99)

corresponding to (II.B.92) with t1/2 =
√

p
q coincides with the expression of the R-matrix of the

ASEP given in (II.B.13) (up to the multiplication by the permutation operator to obtain the
non-braided R-matrix).

This representation remains valid for the homogeneous N -species ASEP which is defined
by the bulk local jump operator m acting on CN+1 ⊗ CN+1

m =
∑

0≤i<j≤N

[(
q |j〉〈i| ⊗ |i〉〈j| − q |i〉〈i| ⊗ |j〉〈j|

)
(II.B.100)

+
(
p |i〉〈j| ⊗ |j〉〈i| − p |j〉〈j| ⊗ |i〉〈i|

)]
(II.B.101)

It provides through the Baxterisation procedure the expression of the R-matrix of the N -species
ASEP

Ř(z) =
∑

0≤i<j≤N

[((1− z)q
p− qz

|j〉〈i| ⊗ |i〉〈j|+ p− q
p− qz

|i〉〈i| ⊗ |j〉〈j|
)

(II.B.102)

+
((1− z)p
p− qz

|i〉〈j| ⊗ |j〉〈i|+ z(p− q)
p− qz

|j〉〈j| ⊗ |i〉〈i|
)]
.(II.B.103)

To summarize, the idea of the Baxterisation is to get a solution of the Yang-Baxter equation
(i.e. an R-matrix depending on a spectral parameter) from a representation of the Hecke
algebra. This idea has been intensively used and generalized to try to classify the solutions of
the Yang-Baxter equation [V1, 65–69]. We will see below some of these generalizations.

This procedure strongly motivates the study of the representations in tensor space10

of the Hecke algebra because they produce integrable models.
We present here the classification of such representations in the particular case N = 1, i.e

Hn(ω) → End(C2)⊗n

σi 7→ I⊗i−1 ⊗ S ⊗ I⊗n−i−1 (II.B.104)

where S is acting on C2⊗C2. The matrix S has thus to be invertible and to satisfy the relations

S12S23S12 = S23S12S23 (II.B.105)

S2 = ωS + 1. (II.B.106)

10Note that representation in non-tensor spaces play also a very important role, e.g. the Temperley-Lieb
algebra (which is a quotient of the Hecke algebra) produces integral loop models.
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The classification of the constant braided Yang–Baxter equation (II.B.105) for N = 1 was
done in [73] (to be precise the unbraided relation was classified there but we just need to multi-
ply the solutions on the left by the permutation matrix P to obtain the desired classification).
We just need to pick up the 4× 4 matrices satisfying also the relation (II.B.106).

The classification of [73] provides 23 solutions, up to transformations

S 7→ λ g ⊗ g S g−1 ⊗ g−1 ; S 7→ St1t2 and S 7→ P S P, (II.B.107)

where λ is a complex non-zero parameter, g is any invertible 2 × 2 matrix and P is the per-
mutation matrix. Among these solutions, only 9 are also solution to (II.B.106) and this sup-
plementary relation imposes (in general) constraints on their parameters. Using the notations
of [73], these solutions are (up to the transformations (II.B.107)):

Matrix Constraints on the parameters Value of ω

RH3,1 pq = 1, k2 = 1, s2 = 1 0

RH2,1 k2pq = 1 k2 − pq
RH2,2 k2pq = 1 k2 − pq
RH2,3 k2 = 1, p+ q = 0, 2ks+ p2 + q2 = 0 0

RH1,1 4p2q2 = 1 2(p2 − q2)

RH1,2 pq = 1 p− q
RH1,3 k4 = 1 0

RH1,4 pq = 1, k2 = 1 0

RH0,3 no constraint 0

(II.B.108)

After imposing these constraints, the previous matrices are not independent anymore: they
can be all obtained from the 7 matrices RH2,1, RH2,2, RH1,1, RH1,2, RH1,3, RH1,4, RH0,3

(subjected to the constraints given in (II.B.108)).
They are explicitly given by

RH1,1 =


sinh(θ) + ε 0 0 sinh(θ)

0 sinh(θ) cosh(θ) 0
0 cosh(θ) sinh(θ) 0

sinh(θ) 0 0 sinh(θ)− ε

 ;

RH1,2 =


a 0 0 b
0 0 a−1 0
0 a a− a−1 0
0 0 0 −a−1

 ; RH1,3 = ε


1 b −b ab
0 0 1 −a
0 1 0 a
0 0 0 1

 ;

RH2,1/H2,2 =


a 0 0 0
0 0 b−1 0
0 b a− a−1 0
0 0 0 ε aε

 ; RH1,4 =


0 0 0 a
0 0 ε 0
0 ε 0 0
a−1 0 0 0


RH0,3 = I4,

(II.B.109)

where a, b and θ are free complex parameters and ε = ±1 that are expressed in terms of p, q
and k through the change of variables:

RH1,1 : exp θ = 2p2 and q =
ε

2p
(II.B.110)

RH1,2 : a = p , q =
1

a
and k = b (II.B.111)

RH1,3 : ε = k2 , a = εkq and b = εkp (II.B.112)

RH2,1/H2,2 : a = k2 and kp = b (II.B.113)

RH1,4 : a = p. (II.B.114)
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Sn and Tn algebras Here, we introduce new braid-like algebras Sn and Tn. We produce,
as the main result of this paragraph a new Baxterisation formula that leads to R-matrices
depending genuinely on two spectral parameters. The obtained R-matrices satisfy the usual
properties of unitarity, regularity and locality. Moreover, we show that the matrix representa-
tions of Sn are determined only by the defining relations of S3. A classification thereof in terms
of 4 × 4 matrices is given together with the expressions of the corresponding R-matrices. We
also get the corresponding Hamiltonians. In the general case, a particular m×m representa-
tion is exhibited, that appears to be linked to some generalizations of the multi-species Totally
Asymmetric Simple Exclusion Process (TASEP). The results presented here are extracted from
the work [V1].

Definition B.33. For any integer n ≥ 1, Sn is the unital associative algebra over C with
generators σ1, . . . , σn−1 and subject to the relations

[σi+1 σi , σi + σi+1] = 0 , i = 1, ..., n− 2 (II.B.115)

[σi , σj ] = 0 , |i− j| > 1 (II.B.116)

where [ . , . ] stands for the commutator.

Let us stress that the definition of the algebra Sn does not need the existence of the inverse
generators σ−1

i : there are interesting realizations of this algebra where represented generators
are non-invertible (see e.g. proposition B.42 below). For n = 1, one has S1 ' C.

Relation (II.B.115) can be written equivalently as

σi σi+1 σi − σi+1 σ
2
i = σi+1 σi σi+1 − σ2

i+1 σi , (II.B.117)

which can be seen as a modification11 of the defining relations of the braid group Bn (however
without the inverse generators). This justifies the terminology we used for the algebra Sn as a
braid-like algebra. Let us also mention that Sn, like Bn, is infinite dimensional.

Proposition B.34. Let γ ∈ C be such that the generators 1 + γσi are invertible ∀i with its
inverse understood as the the following formal series:

(1 + γσi)
−1 =

∞∑
k=0

(−γ σi)k . (II.B.118)

Then, the Möbius map

mα,β,γ :
Sn → Sn
σi 7→ (α + βσi) (1 + γσi)

−1 (II.B.119)

with α, β ∈ C is an algebra homomorphism.

Proof. Remark that γ = 0 ensures the existence of at least one parameter γ such that the
condition on the invertibility of 1+γσi is fulfilled. We divide the proof into two parts, depending
on whether γ is null or not.

When γ = 0, one gets mα,β,0 = sα,β, where sα,β(σ) = α+ βσ. It is straightforward to show
that [sα,β(σi+1)sα,β(σi) , sα,β(σi) + sα,β(σi+1)] = 0. Thus sα,β is an homomorphism of Sn.

For γ 6= 0, the Möbius transformation is the composition of two maps:

mα,β,γ = sβ/γ,α−β/γ ◦ s−1
1,γ (II.B.120)

where s−1
1,γ(σ) = (1 +γ σ)−1, as given by the expansion (II.B.118). To prove that s−1

1,γ is also an
homomorphism, we start from (II.B.115) written for s1,γ(σ) and multiply this relation on the
right by s1,γ(σi)

−1 s1,γ(σi+1)−1 s1,γ(σi)
−1 and on the left by s1,γ(σi+1)−1 s1,γ(σi)

−1 s1,γ(σi+1)−1.

11Unfortunately, we cannot implement a free parameter in this relation and keep the baxterisation procedure.
Then, Sn cannot be viewed as a deformation of the braid group.
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This shows that s1,γ(σi)
−1 also verifies (II.B.115). Note that s1,γ(σ) is an invertible element

by hypothesis. Then mα,β,γ is an homomorphism since it is a composition of homomorphisms.

We also introduce another algebra Tn, defined as follows

Definition B.35. For any integer n ≥ 1, Tn is the unital associative algebra over C with
generators τ1, . . . , τn−1 and subject to the relations

[τi τi+1 , τi + τi+1] = 0 , i = 1, ..., n− 2 (II.B.121)

[τi , τj ] = 0 , |i− j| > 1. (II.B.122)

This algebra is closely related to Sn as stated in the following proposition:

Proposition B.36.

The map φ :

{
Sn → Tn
σi 7→ τn−i

is an algebra isomorphism. (II.B.123)

Proof. The isomorphism is proved by direct computations.
The following theorem contains the main result of this paragraph and justifies the intro-

duction of the algebra Sn.

Theorem B.37. If σi satisfy the relations of Sn, then

Řσi (x, y) = Σi(y)Σi(x)−1 where Σi(x) = 1− xσi (II.B.124)

satisfy the braided Yang–Baxter equation

Ři(x, y)Ři+1(x, z)Ři(y, z) = Ři+1(y, z)Ři(x, z)Ři+1(x, y) , (II.B.125)

and also the locality, unitarity and regularity properties.

Proof. The unitarity, regularity and locality properties are obvious.
To prove the braided Yang–Baxter equation (II.B.125), let us remark that, after multiplication
on the right by Σi(y) and on the left by Σi+1(y), it is equivalent to

Ai(y)Ai(x)−1Ai(z) = Ai(z)Ai(x)−1Ai(y) (II.B.126)

where Ai(x) = Σi+1(x)Σi(x). Relation (II.B.126) is equivalent to

[ Ai(x) , Ai(y) ] = 0 . (II.B.127)

Indeed, setting z = 0 in (II.B.126) leads to (II.B.127), which obviously implies (II.B.126). Let
us notice now that

Ai(x) = 1− x(σi + σi+1) + x2σi+1σi (II.B.128)

Therefore, the defining relation (II.B.115) of Sn implies relation (II.B.127) and then the braided
Yang–Baxter equation.

We want to emphasize that the Baxterisation introduced here depends separately on the two
spectral parameters. This is a new feature in comparison to the previous Baxterisations [62–64].

Theorem B.37 gives a sufficient condition to obtain the braided Yang–Baxter equation.
The following proposition proves that it is also a necessary condition.

Proposition B.38. If Řσi (x, y) given by (II.B.124) satisfies the braided Yang–Baxter equation
(II.B.125) and the locality property, then the generators σi satisfy Sn.

Proof. We have already seen that the braided Yang–Baxter equation implies (II.B.127). The
different coefficients of (II.B.127) w.r.t. x and y imply (II.B.115). The locality implies
(II.B.116) which concludes the proof.

Until now, we used the algebra Sn to get a solution of the braided Yang–Baxter equation,
but we can use similarly the algebra Tn:
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Theorem B.39. The generators τi satisfy the algebra Tn if and only if

Řτi (x, y) = Ti(x)Ti(y)−1 where Ti(x) = 1− xτi (II.B.129)

are unitary, regular and local solutions of the braided Yang–Baxter equation.

Proof. Direct consequence of theorem B.37 and proposition B.38, using the isomorphism of
proposition B.36.

Let us stress that there is a flip between the spectral parameters in definitions (II.B.124)
and (II.B.129).

We are now interested in some matrix representations of Sn and in particular the ones
useful in the context of integrable systems, i.e representations of Sn in End(Cm)⊗n.

More precisely, we look for representations of the following type

Sn → End(Cm)⊗n

σi 7→ I⊗i−1 ⊗ S ⊗ I⊗n−i−1 (II.B.130)

where I is the identity of End(Cm) and S ∈ End(Cm) ⊗ End(Cm). We use the following
notation Sj,j+1 = I⊗j−1 ⊗ S ⊗ I⊗n−j−1: the indices in Sj,j+1 label the copies of End(Cm) in
which the operator S acts non-trivially. To look for such matrix representations of Sn (n ≥ 3),
it is necessary and sufficient to find S satisfying the single relation of S3:

[S23 S12 , S12 + S23] = 0 . (II.B.131)

We give below a classification of the solutions of this equation for m = 2 and some solutions
for any m.

Before that, let us remark that proposition B.34 implies that if S is a solution of (II.B.131),
then so is mα,β,γ(S). We have loosely used the same notation for the Möbius map acting on
the algebra and the ones acting on the representation.

Using the Baxterisation introduced in theorem B.37 and the realization of Sn given by
(II.B.130), the matrix

Ř(x, y) = (I− yS)(I− xS)−1 (II.B.132)

is a solution of the braided Yang–Baxter equation

Ři,i+1(x, y)Ři+1,i+2(x, z)Ři,i+1(y, z) = Ři+1,i+2(y, z)Ři,i+1(x, z)Ři+1,i+2(x, y) , (II.B.133)

where the indices stand for the spaces on which the matrix Ř(x, y) acts non-trivially.
Similarly, one gets matrix representations for Tn. Indeed, we look for representations of

the following type

Tn → End(Cm)⊗n

τi 7→ I⊗i−1 ⊗ T ⊗ I⊗n−i−1 (II.B.134)

In this case, one has to solve the equation

[T12 T23 , T12 + T23] = 0 (II.B.135)

the associated R-matrix being now

Ř(x, y) = (I− xT )(I− yT )−1 . (II.B.136)

Relation (II.B.131) is difficult to solve in general: there are (m3)2 cubic relations in terms
of the (m2)2 entries of the matrix S. However, for m = 2, using symmetry transformations
and a direct resolution with a formal mathematical software, we are able to compute all the
solutions which are presented in the following theorem. Note that we do not impose a priori
that S is invertible and indeed some particular cases of the solutions are not, see for instance
remark B.41. It could be interesting to study if the finite dimensional representations found
by ’brute force’ computations below arise as natural quotients of the algebra Sn.
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Theorem B.40. The whole set of representations of Sn of type (II.B.130), for m = 2, is
obtained by applying the following transformations

• S 7→ S−1, when S is invertible,

• S 7→ St1t221 , where (.)t1t2 is the transposition in the space End(Cm)⊗ End(Cm),

• S 7→ Q1Q2 S Q
−1
2 Q−1

1 , where Q is any invertible element of End(Cm).

or Möbius transformation to the seven matrices below:

• two 4-parameter matrices

S(1) =


0 · · ·
b c · ·
d · 0 ·
· a · 0

 , S(2) =


0 b− c b+ c d
· 0 · a+ b
· · 0 b− a
· · · 0

 (II.B.137)

• four 3-parameter matrices

S(3) =


0 · · ·
b ab

c · ·
c · a ·
· · · 0

 , S(4) =


0 · · ·
· b · ·
· c 0 ·
· · · a

 , (II.B.138)

S(5) =


a · · ·
· b · ·
· · c ·
· · · 0

 , S(6) =


0 · · ·
b c · a
· · 0 ·
· −b b 0

 , (II.B.139)

• one 2-parameter matrix

S(7) =


−a · · ·
b 0 a ·
· · −a ·
· · · 0

 , (II.B.140)

where a, b, c, d are free complex parameters.

Proof. The proof consists in finding all the 4×4 matrices S solution of equation (II.B.131). We
use a technique introduced in [73] to classify the constant 4× 4 solutions of the Yang–Baxter
equation. Let sij (for i, j = 1, 2, 3, 4) be the entries of S. Using the transformations exposed
in the theorem B.40, we can always look for solution of the equation with s41 = 0. Indeed if S
is a solution with s41 6= 0, then S is related through a transformation to a solution Snew with
snew41 = 0. More precisely if s14 = 0 we set Snew = (S21)t and we have snew41 = 0 because the
transformation exchanges s41 and s14. If s14s41 6= 0, we set Snew = Q⊗QS Q−1 ⊗Q−1, with

Q =

(
1 0
B 1

)
. (II.B.141)

We have snew41 = s14B
4 + (s24 + s34 − s12 − s13)B3 + (s44 − s22 − s23 − s32 − s33 + s11)B2 +

(s21 + s31 − s42 − s43)B + s41. Since we are in the case s14 6= 0, it is always possible to find B
such that snew41 = 0. Therefore, without loss of generality, we can now set s41 = 0.

At this stage, we use a computer software to solve (II.B.131) with s41 = 0. Then, using the
transformations given above in theorem B.40, we select the solutions which are not related by
transformations and get the seven solutions presented in the theorem.
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Remark B.41. The solution S(4) provides the TASEP Markovian matrix as a subcase:

S(4)
∣∣∣
a=0; c=1; b=−1

=


0 · · ·
· −1 · ·
· 1 0 ·
· · · 0

 . (II.B.142)

As explained previously in this chapter, each S is an integrable Hamiltonian. Then, from
any 4× 4 integrable Hamiltonian h obtained in this classification, we can construct new ones
by action of the group of transformations generated by

h 7→ Q⊗Qh (Q⊗Q)−1 ; h 7→ ht1t2 ; h 7→ P hP ; h 7→ (α+ βh)(1 + γh)−1.(II.B.143)

These transformations are indeed symmetry transformations for the relation (II.B.131) or map
a solution of (II.B.131) to a solution of (II.B.135).

Using theorem B.37 and the previous classification theorem B.40, we get a set of solutions
to the braided Yang–Baxter equation. The braided R-matrices are easily computed using
(II.B.124). One has to keep in mind that one can construct other R-matrices from these ones
by using the symmetry transformations described previously.

As explained previously, the resolution of equation (II.B.131) is complicated and a complete
classification for any m seems impossible. However, it is still possible to find some solutions.
In the following proposition, we present particular non-trivial matrix representations for any
m:

Proposition B.42. Let Eij be the canonical basis of End(Cm) and let ρi and µi,j, 1 ≤ i <
j ≤ m be some complex numbers. We define

S =
∑

1≤i<j≤m
ρi Eii ⊗ Ejj + µi,j Eji ⊗ Eij (II.B.144)

Then, the map σi 7→ Si,i+1 is an homomorphism of algebra Sn → End
(
(Cm)⊗n

)
.

Proof. We prove by direct computations that S given by (II.B.144) verifies (II.B.131).
Remark that S is non-invertible. Obviously, the use of the transformations given in theorem

B.40 provides new representations isomorphic to (II.B.144).
There is a similar type of representation for Tn.

Proposition B.43. Let Eij be the canonical basis of End(Cm) and let ζj and νi,j, 1 ≤ i <
j ≤ m be some complex numbers. We define

T =
∑

1≤i<j≤m
ζj Eii ⊗ Ejj + νi,j Eji ⊗ Eij , (II.B.145)

Then, the map τi 7→ Ti,i+1 is an homomorphism of algebra Tn → End
(
(Cm)⊗n

)
.

Remark B.44. The representation given above, when restricted to the Markovian condition
ζj = −νij, ∀i, j, corresponds to the Markov matrix studied in [74]. Hence, the R-matrix Řζ(x, z)
constructed here provides an R-matrix for this model. Note that the T -matrix (II.B.145) does
not obey the Hecke algebra except when all ζj are equal. To deal with genuine inhomogeneous
hopping rates, the Hecke algebra is not sufficient: one needs the Tn algebra introduced in this
paper.

From S (resp. T ) given by (II.B.144) (resp. (II.B.145)), one gets an R-matrix using
Baxterisation (II.B.132) (resp. (II.B.136)). Surprisingly enough, from these two R-matrices,
we can obtain another one, as stated in the following theorem.
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Theorem B.45. Let us define the matrix

Ř(x, z) = Řρ(x, z)Řζ(x, z) , (II.B.146)

where Řρ(x, y) = (I − yS)(I − xS)−1 and Řζ(x, y) = (I − xT )(I − yT )−1 are respectively the
Baxterisations of S given by (II.B.144) and of T given by (II.B.145).

If the relations ρiνi,j = µi,jζj for 1 ≤ i < j ≤ m hold, Ř(x, z) satisfies the braided Yang–
Baxter equation and is unitary.

Proof. It is proven by direct computations.
Let us remark that the relations ρiνi,j = µi,jζj are equivalent to [T, S] = 0.
The R-matrix introduced in the theorem B.45 is a generalization of the matrix introduced

in [75] to study the multi-species totally asymmetric exclusion process with different hopping
rates. More explicitly, setting µi,j = −ρi and νi,j = −ζj , the corresponding R-matrix provided
by the theorem B.45 gives the integrable local jump operator of the multi-species totally
asymmetric exclusion process with different hopping rates:

∂Ř(x, z)

∂x

∣∣∣∣
x=z=0

= m =
∑

1≤i<j≤m
(ρi − ζj) Eii ⊗ Ejj − (ρi − ζj) Eji ⊗ Eij . (II.B.147)

It describes a Markovian model with m species of particles, where the local exchange rules are
given by

ij
ρi−ζj−−−−−→ ji, if i < j. (II.B.148)

The R-matrix was already presented in [75], but without the factorization provided by the
theorem B.45. Using the property [T, S] = 0, it can be rewritten as

Ř(x, y) = Σ(x, y) Σ(y, x)−1 with Σ(x, y) = (I− yS)(I− xT ). (II.B.149)

To conclude this paragraph, we can mention that numerous questions are still open. The
Hecke algebra has been a very useful tool in different contexts: e.g. it is the centralizer of
the quantum group Uq(glN ) [63] or it permits to construct link invariants [76]. We believe
that the algebra Sn we have introduced here should have similar fields of applications. We
think that the classification of its irreducible representations should be also interesting. The
defining relations of the algebra Sn look also very similar to the ones of the braid group: the
connections between these two algebras should also be explored.

In theorem B.45, we show that the product of two R-matrices based on Sn and Tn provides
a new R-matrix if a simple condition on the parameters holds. It would be interesting to
understand if this feature is associated to the special representation used in the theorem or if
it is still true at the algebraic level.

Finally, the list of R-matrices provided in this paragraph may be used to introduce also
new models in the context of quantum mechanics (spin chains) or 2D-statistical models (loop
or vertex models). The knowledge of their associated R-matrix may allow one to solve them
using, for example, the algebraic Bethe ansatz [77] or the matrix ansatz [42, 46] (see chapter
III).

Mn algebra

Definition B.46. For any integer n ≥ 1, Mn is the unital associative algebra over C with
generators σ1, . . . , σn−1 and subject to the relations

σiσi+1σi − σi+1σiσi+1 = λ(σ2
i+1 − σ2

i ) + µ(σi+1 − σi) , i = 1, ..., n− 2 (II.B.150)

σiσ
2
i+1 = σ2

i σi+1, σi+1σ
2
i = σ2

i+1σi (II.B.151)

[σi , σj ] = 0 , |i− j| > 1. (II.B.152)

The following theorem contains the main result of this paragraph and justifies the intro-
duction of the algebra Mn.
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Theorem B.47. If σi satisfy the relations of Mn, then

Ři(x, y) = Σi(x, y)Σi(y, x)−1 where Σi(x, y) = 1− µxy − (x+ λxy)σi (II.B.153)

satisfy the braided Yang–Baxter equation

Ři(x, y)Ři+1(x, z)Ři(y, z) = Ři+1(y, z)Ři(x, z)Ři+1(x, y) . (II.B.154)

and also the locality, unitarity and regularity properties.

Note that the inverse Σi(y, x)−1 in the definition of Ř has to be understood as the formal
series

Σi(y, x)−1 =
+∞∑
k=0

(µxy + (y + λxy)σi)
k. (II.B.155)

Proof. The first step is to establish the relation

σni σi+1σi − σi+1σiσ
n
i+1 = λ(σn+1

i+1 − σ
n+1
i ) + µ(σni+1 − σni ), (II.B.156)

for any integer n ≥ 1 This can be done by induction: the n = 1 case is nothing else but the
algebraic relation (II.B.150). Then if we assume that the relation holds for a given n ≥ 1, we
have that

σn+1
i σi+1σi = σiσi+1σiσ

n
i+1 + λ(σiσ

n+1
i+1 − σ

n+2
i ) + µ(σiσ

n
i+1 − σn+1

i )

=
[
σi+1σiσi+1 + λ(σ2

i+1 − σ2
i ) + µ(σi+1 − σi)

]
σni+1 + λ(σiσ

n+1
i+1 − σ

n+2
i ) + µ(σiσ

n
i+1 − σn+1

i )

= σi+1σiσ
n+1
i+1 + λ(σn+2

i+1 − σ
n+2
i ) + µ(σn+1

i+1 − σ
n+1
i ),

where the last equality is obtained by pushing all the powers to the left using the relations

σpi σ
q
i+1 = σp+q−1

i σi+1, σpi+1σ
q
i = σp+q−1

i+1 σi, for p, q ≥ 1. (II.B.157)

These last equations are directly derived from (II.B.151).
Equations (II.B.156) and (II.B.157) immediately imply that

σpi σ
q
i+1σ

r
i − σri+1σ

q
i σ

p
i+1 = λ(σp+q+r−1

i+1 − σp+q+r−1
i ) + µ(σp+q+r−2

i+1 − σp+q+r−2
i ), for p, q, r ≥ 1

This is equivalent to the relation

σi
1−Xσi

· σi+1

1− Y σi+1
· σi

1− Zσi
− σi+1

1− Zσi+1
· σi

1− Y σi
· σi+1

1−Xσi+1
(II.B.158)

=
λσ2

i+1 + µσi+1

(1−Xσi+1)(1− Y σi+1)(1− Zσi+1)
− λσ2

i + µσi
(1−Xσi)(1− Y σi)(1− Zσi)

.(II.B.159)

and the relation (II.B.157) can be equivalently rewritten as

σi
1−Xσi

· σi+1

1− Y σi+1
=

σi
1− Y σi

· σi+1

1−Xσi+1
. (II.B.160)

We are now ready to prove the Yang-Baxter equation. It will be convenient to write

Ři(x, y) = 1 +
(y − x)σi
Σi(y, x)

. (II.B.161)

We can then expand

Ři(x, y)Ři+1(x, z)Ři(y, z)− Ři+1(y, z)Ři(x, z)Ři+1(x, y) (II.B.162)

=(y − x)(z − x)(z − y)

[
σi

Σi(y, x)
· σi+1

Σi+1(z, x)
· σi

Σi(z, y)
− σi+1

Σi+1(z, y)
· σi

Σi(z, x)
· σi+1

Σi+1(y, x)

]
+(y − x)(z − y)

[
σi

Σi(y, x)
· σi

Σi(z, y)
− σi+1

Σi+1(z, y)
· σi+1

Σi+1(y, x)

]
+ (z − x)

[
σi+1

Σi+1(z, x)
− σi

Σi(z, x)

]
+(y − x)

[
σi

Σi(y, x)
− σi+1

Σi+1(y, x)

]
+ (z − y)

[
σi

Σi(z, y)
− σi+1

Σi+1(z, y)

]
.
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Using relation (II.B.158), we are left to prove that

(y − x)(z − x)(z − y)
λσ2

i + µσi
Σi(y, x)Σi(z, x)Σi(z, y)

(II.B.163)

= (y − x)(z − y)
σ2
i

Σi(y, x)Σi(z, y)
+ (y − x)

σi
Σi(y, x)

+ (z − y)
σi

Σi(z, y)
− (z − x)

σi
Σi(z, x)

,

as well as the same equation for σi+1. This is done by a direct computation (all the quantities
involved commute with each other).

Remark B.48. Note that contrary to Hecke and BMW algebras, the defining relations for the
Mn, Sn, Tn algebras do not imply necessarily the existence of a minimal polynomial for σi.
Moreover the Baxterisation of the latter algebras depends on two spectral parameters.

3 Diagonalization of the transfer matrix

We presented in the previous sections the construction of integrable Markov matrix. The inte-
grability was defined as the fact that the Markov matrix enters a set of commuting operators,
generated by a transfer matrix. We stressed that this strong property translates into a lot of
conserved quantities and is thus a hint for an exact solvability of the model. This also means
that the Markov matrix and the transfer matrix share common eigenvectors (these eigenvectors
are independent of the spectral parameter). This justifies the following definition.

Definition B.49. We denote by {|Ψi〉}1≤i≤2L (respectively {Ei(z)}1≤i≤2L) the eigenvectors
(respectively the eigenvalues) of the transfer matrix t(z)

t(z)|Ψi〉 = Ei(z)|Ψi〉. (II.B.164)

We thus have for the Markov matrix

M |Ψi〉 = θE′i(1)|Ψi〉. (II.B.165)

Remark B.50. We are dealing here with models defined on a periodic lattice. In practice
we will encounter a lot of systems for which the stochastic dynamics conserves the number of
particles of each species on the periodic lattice (in simple models the particles are often only
allowed to jump from site to site but not to appear or disappear). We define

N (τ) =

L∑
i=1

ni(τ), (II.B.166)

where ni(τ) is a diagonal (N + 1)× (N + 1) matrix acting non-trivially on site i (and trivially
on other sites) as diag(0, . . . , 0︸ ︷︷ ︸

τ

, 1, 0, . . . , 0︸ ︷︷ ︸
N−τ

). The operator N (τ) is constructed to count the

number of particles of species τ . Then we have for all τ, τ ′

[t(z),N (τ)] = 0, and [N (τ),N (τ ′)] = 0. (II.B.167)

The commutation properties stated just above proves that for such systems the action the trans-
fer matrix is block diagonal (one block corresponds to a fixed number of particles of each species
that we call sometimes sector) and that the diagonalization can be performed independently on
each sector.

We would like to determine the complete set of eigenvectors of the Markov matrix. Several
methods can be used to diagonalize the Markov matrix (they have been historically developed
to deal with quantum Hamiltonians). We present below two of them: the coordinate Bethe
ansatz and the algebraic Bethe ansatz and illustrate them on examples. We briefly introduce
in a second time other diagonalization techniques.

Note that we focus here on the diagonalization of the homogeneous transfer matrix (or
equivalently of the Markov matrix) but some of the methods presented below can be also
transposed to the case of inhomogeneity parameters.
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a) Coordinate Bethe ansatz

The problem of finding the eigenvectors of a Markov matrix is very similar (at least for the
models studied here) to the case of quantum Hamiltonians. Stochastic models defined on a
one dimensional lattice are indeed often related through a similarity transformation to one
dimensional quantum spin chains.

The analytical computation of the eigenvectors and eigenvalues of a quantum Hamiltonian
is a rather difficult question, that is even usually impossible to achieve. However, in [78],
H. Bethe succeeded in computing exactly the spectrum of the one-dimensional Heisenberg
quantum spin chain [79], introducing a method that is now called after him: the coordinate
Bethe ansatz (CBA). This technique can be thought as a generalized Fourier transform and
opened basically a new field of research. Since then the method had been widely used in
different contexts (quantum spin chains, quantum systems, Markovian processes). We point
out the pioneering works [80–86].

We begin to present the coordinate Bethe ansatz in systems involving a single species
of particle, i.e N = 1 in our notation (we recall that in this particular case the occupation
variables τi take only two values 0 for holes and 1 for particles). A more involved case with
two-species of particles will be studied below. We are interested in models where the stochastic
dynamics encoded in the Markov matrix conserves the number of particles. The discussion on
the block diagonal decomposition of the Markov matrix suggests the following definition.

Definition B.51. For 1 ≤ x ≤ L we introduce the vector

|{x}〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
x−1

⊗|1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
L−x

(II.B.168)

and more generally for 1 ≤ x1 < x2 < · · · < xr ≤ L we introduce the vector

|{x1, x2, . . . , xr}〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
x1−1

⊗|1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
x2−x1−1

⊗|1〉 ⊗ · · · ⊗ |1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
L−xr

.

(II.B.169)

Proposition B.52. The vectors |{x1, x2, . . . , xr}〉 define a basis of the sector with r parti-
cles (i.e of the eigenspace associated to the eigenvalue r of the operator N (1) introduced in
(II.B.166)). For each vector |Ψ〉 living in this sector (i.e satisfying N (1)|Ψ〉 = r|Ψ〉) we have
the expansion

|Ψ〉 =
∑

1≤x1<x2<···<xr≤L
a(x1, x2, . . . , xr)|{x1, x2, . . . , xr}〉. (II.B.170)

The coordinate Bethe ansatz consists in assuming the following Fourier-like decomposition
of the coefficient a(x1, x2, . . . , xr)

a(x1, x2, . . . , xr) =
∑
σ∈Sr

Aσ u
x1
σ(1)u

x2
σ(2) . . . u

xr
σ(r) (II.B.171)

Sr denotes the permutation group of the elements {1, 2, . . . , r}. The parameters u1, u2,..., ur
are called the Bethe roots and are expected to satisfy a set of polynomial algebraic relations
called the Bethe equations (see examples below). The coefficients Aσ are expected to be
determined by exchange or scattering relations Aσti = Š(uσ(i), uσ(i+1))Aσ, where ti is the
permutation i↔ i+ 1 (this last relation is sufficient to express any coefficient Aσ in function
of the coefficient AId since the permutations t1, t2, . . . , tr−1 generate the group Sr).

The example of the ASEP The ASEP is a stochastic process whose Markov matrix has
been defined in (II.A.21), with the local jump operator m given in (II.A.23). We argued
previously that it raised a lot of interest in both physical and mathematical community. On
the physical side it is one of the simplest out-of-equilibrium model that can be defined on a
ring. On a mathematical side it is integrable and give rise to exact computations. We present
the exact diagonalization of this model using CBA.
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Example B.53. As a warm-up we begin to expose the method in the sector with 1 particle.
The eigenvalue equation M |Ψ〉 = E|Ψ〉, where M is the Markov matrix encoding the dynamics
of the ASEP and |Ψ〉 =

∑L
x=1 a(x)|{x}〉, can be written in components as

Ea(x) = pa(x− 1) + qa(x+ 1)− (p+ q)a(x), for x = 1, . . . , L (II.B.172)

where we have assumed the periodicity constraints a(L + 1) = a(1) and a(0) = a(L) for this
equation to hold also for x = 1 and x = L. Plugging the Bethe ansatz a(x) = Aux in this last
equation yields

E Aux = pAux−1 + qAux+1 − (p+ q)Aux. (II.B.173)

Dividing by Aux provides the expression of the eigenvalue

E =
p

u
+ qu− (p+ q). (II.B.174)

The periodicity imposes a(x + L) = a(x) which translates into the Bethe equation uL = 1.
The Bethe equation admits L different solutions (Bethe roots) which provide for each one an
eigenvector of the Markov matrix in the sector with 1 particle. This sector being of dimension
L, we thus have diagonalized completely the Markov matrix in this subspace.

In order to get used to the Bethe ansatz and to understand the general structure we present
now the case of the 2 particles sector. This is the simplest situation where the coefficients Aσ
play an important role.

Example B.54. For 1 ≤ x1 < x2 ≤ L and x1, x2 not nearest neighbors on the ring, i.e
x2 6= x1 +1 and (x1, x2) 6= (1, L) (this particular case is studied below), the eigenvalue equation
reads

E a(x1, x2) = pa(x1−1, x2)+pa(x1, x2−1)+qa(x1 +1, x2)+qa(x1, x2 +1)−2(p+q)a(x1, x2).
(II.B.175)

where we have assumed the periodicity constraints a(x1, L + 1) = a(1, x1) and a(0, x2) =
a(x2, L). The ansatz a(x1, x2) = A12 u

x1
1 u

x2
2 + A21 u

x1
2 u

x2
1 (note that we made a slight abuse

of notation by writing for clarity and convenience A12 instead of AId and A21 instead of At1)
fulfills the eigenvalue equation provided that the eigenvalue is equal to

E = p

(
1

u1
+

1

u2

)
+ q(u1 + u2)− 2(p+ q). (II.B.176)

When x1 and x2 are close together, i.e when x2 = x1 + 1, the eigenvalue equation takes a
slightly different form

E a(x1, x2) = pa(x1 − 1, x2) + qa(x1, x2 + 1)− (p+ q)a(x1, x2). (II.B.177)

Subtracting this equation to (II.B.175) (which holds for every x1, x2 thanks to the ansatz and
the eigenvalue being fixed to (II.B.176)) yields the ’boundary’ condition

pa(x1, x1) + qa(x1 + 1, x1 + 1)− (p+ q)a(x1, x1 + 1) = 0. (II.B.178)

This latter equation is solved if the coefficients A12 and A21 satisfy

A21 = −p+ qu1u2 − (p+ q)u2

p+ qu1u2 − (p+ q)u1
A12. (II.B.179)

The periodicity constraints a(x1, L + 1) = a(1, x1) and a(0, x2) = a(x2, L) imply the Bethe
equations

uL1 =
A12

A21
= −p+ qu1u2 − (p+ q)u1

p+ qu1u2 − (p+ q)u2
(II.B.180)

and

uL2 =
A21

A12
= −p+ qu1u2 − (p+ q)u2

p+ qu1u2 − (p+ q)u1
. (II.B.181)
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The problem of diagonalizing the Markov matrix in the 2 particles sector is thus reduced to the
resolution of these two polynomial equations of degree L+ 2. This is still a hard task but this
reduction is a huge step forward because the direct diagonalization of the Markov matrix in this
sector requires to find the roots of the characteristic polynomial of degree L(L − 1)/2 (which
grows much faster than L for L large).

Although the 3 particles case could appear as a straightforward generalization of the 2
particles case, it is in fact a crucial step to check toward the validity of the ansatz for a general
sector with a given number of particles. It is indeed necessary to verify that the ’three-body
interaction’ (see details below) does not bring new constraints and factorizes into two-body
interactions.

Example B.55. For 1 ≤ x1 < x2 < x3 ≤ L far from each other, the eigenvalue equation can
be written in components as

Ea(x1, x2, x3) = p [a(x1 − 1, x2, x3) + a(x1, x2 − 1, x3) + a(x1, x2, x3 − 1)]

+q [a(x1 + 1, x2, x3) + a(x1, x2 + 1, x3) + a(x1, x2, x3 + 1)]

−3(p+ q)a(x1, x2, x3) = 0

The ansatz for the expression of a(x1, x2, x3) given by the general formula (II.B.171) contains
3! = 6 terms and imposes the following expression for the eigenvalue

E = p

(
1

u1
+

1

u2
+

1

u3

)
+ q(u1 + u2 + u3)− 3(p+ q). (II.B.182)

The two-body interaction, given by the case x2 = x1 + 1 and x3 far from x1 and x2, yields the
’boundary’ condition

pa(x1, x1, x3) + qa(x1 + 1, x1 + 1, x3)− (p+ q)a(x1, x1 + 1, x3) = 0. (II.B.183)

This equation is solved if

A213

A123
= −p+ qu1u2 − (p+ q)u2

p+ qu1u2 − (p+ q)u1
,

A132

A312
= −p+ qu1u3 − (p+ q)u1

p+ qu1u3 − (p+ q)u3
,

A321

A231
= −p+ qu2u3 − (p+ q)u3

p+ qu2u3 − (p+ q)u2
.

Once again we used the notation Aσ(1)σ(2)σ(3) instead of Aσ for σ ∈ S3. Similarly, the two-body
interaction, given by the case x3 = x2 + 1 and x1 far from x2 and x3, yields the ’boundary’
condition

pa(x1, x2, x2) + qa(x1, x2 + 1, x2 + 1)− (p+ q)a(x1, x2, x2 + 1) = 0. (II.B.184)

This equation is again solved if

A132

A123
= −p+ qu2u3 − (p+ q)u3

p+ qu2u3 − (p+ q)u2
,

A321

A312
= −p+ qu1u2 − (p+ q)u2

p+ qu1u2 − (p+ q)u1
,

A213

A231
= −p+ qu1u3 − (p+ q)u1

p+ qu1u3 − (p+ q)u3
.

The three-body interaction given by the case x2 = x1 +1 and x3 = x1 +2 yields the boundary
equation

q [a(x1 + 1, x1 + 1, x1 + 2) + a(x1, x1 + 2, x1 + 2)]

+p [a(x1, x1, x1 + 2) + a(x1, x1 + 1, x1 + 1)]− 2(p+ q)a(x1, x1 + 1, x1 + 2) = 0

This appears to be exactly the sum of the equations (II.B.183) and (II.B.184) given by the
two-body interactions and hence it does not bring any new constraint and it is automatically
fulfilled.
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The periodicity constraints a(0, x2, x3) = a(x2, x3, L) and a(x1, x2, L + 1) = a(1, x1, x2)
impose the Bethe equations

uL1 =
A123

A231
=
A123

A213
· A213

A231
=
p+ qu1u2 − (p+ q)u1

p+ qu1u2 − (p+ q)u2
· p+ qu1u3 − (p+ q)u1

p+ qu1u3 − (p+ q)u3
(II.B.185)

and similarly

uL2 =
p+ qu1u2 − (p+ q)u2

p+ qu1u2 − (p+ q)u1
· p+ qu2u3 − (p+ q)u2

p+ qu2u3 − (p+ q)u3
(II.B.186)

and

uL3 =
p+ qu1u3 − (p+ q)u3

p+ qu1u3 − (p+ q)u1
· p+ qu2u3 − (p+ q)u3

p+ qu2u3 − (p+ q)u2
. (II.B.187)

We can now move to the general case.

Proposition B.56. In the r particles sector, the eigenvectors of the Markov matrix M are
given by

|Ψ〉 =
∑

1≤x1<x2<···<xr≤L

∑
σ∈Sr

Aσ u
x1
σ(1)u

x2
σ(2) . . . u

xr
σ(r)|{x1, x2, . . . , xr}〉, (II.B.188)

where the Bethe roots u1, . . . , ur satisfy the Bethe equations

uLi = (−1)r−1
r∏
j=1
j 6=i

p+ quiuj − (p+ q)ui
p+ quiuj − (p+ q)uj

(II.B.189)

and the coefficients Aσ are determined (up to an overall normalization) by the relations

Aσ◦ti = −
p+ quσ(i)uσ(i+1) − (p+ q)uσ(i+1)

p+ quσ(i)uσ(i+1) − (p+ q)uσ(i)
Aσ. (II.B.190)

The associated eigenvalue is given by

E =
r∑
i=1

(
p

ui
+ qui − (p+ q)

)
. (II.B.191)

Proof. This can be proved by showing that the r-body interaction reduces to the sum of two-
body interactions (similarly to what was done previously for the three-body interaction). It
has been done in details for the XXZ spin chain [80] which is known to be similar, up to a
gauge transformation, to the Markov matrix of the ASEP.

We stress that the diagonalization problem has been reduced to the resolution a set of
algebraic equation of degree L+ 2(r− 1) (that has to be put in contrast with finding the roots

of the characteristic polynomial of the Markov matrix which is of degree
(
L
r

)
in this sector).

This is still a very hard task that we cannot handle in general. However, several methods have
been developed to study the Bethe equations in the thermodynamic limit [29,87–89] and allow
exact computations in this limit. Moreover this set of equations can be efficiently studied with
numerical methods.

The CBA as a tool to construct integrable models The goal of this paragraph is to
show how the CBA can be used to construct exactly solvable models. It presents the main
results of [V2]

Since the work of Bethe [78], the classification of solvable one-dimensional systems has been
the heart of a lot of researches. General methods are now known but involve huge computations
which, in general, do not permit to provide a classification of solvable models. See subsection
2 for details.
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In this section, we are interested in finding Markov matrix M such that the following
eigenvalue problem

MΨ = EΨ (II.B.192)

can be solved exactly. The Markov matrices under consideration correspond to one-dimensional
lattice gases with nearest neighbor interactions [35,38,90], and are written as follows

M =
L∑
`=1

m`,`+1 (II.B.193)

where we assume periodic boundary conditions (by convention L + 1 ≡ 1) and the indices
`, `+ 1 indicate on which sites the local operator m acts. This type of problem also appears in
the context of two-dimensional equilibrium statistical models or one-dimensional spin chains.
The archetypes of such models are respectively the 6-vertex model [29] or the Heisenberg spin
chain [79]. Here, we focus on the case where m is a 9 × 9 matrix which means that each site
may take three different values.

The cases when M commutes with some charges of the following type

N =

L∑
`=1

n` (II.B.194)

are of particular interest. In the context of out-of-equilibrium models, the number of conserved
charges corresponds to the number of conserved species of particles (one of the value is for the
empty site).

When M commutes with two different charges, the number of non vanishing elements of
m is reduced to 15 (in the context of statistical mechanics, it is called the 15-vertex model).
In out-of-equilibrium statistical physics, it corresponds to models where there are two classes
of conserved particles (such as two species ASEP).

When M commutes with only one charge, they are several possibilities depending on the
degeneracy of the eigenvalues of n. One usually takes n with three different eigenvalues: the
local jump operator m has then 19 non vanishing entries. Such solvable models have been
classified and studied previously in [57,91–94]. They correspond to out-of-equilibrium models
with only one species of particle, but where two particles can occupy the same site.

We concentrate here on Markov matrices M commuting with one charge that has one
eigenvalue degenerated twice: m has then 33 non vanishing entries. Usually, the denomina-
tion 33-vertex model is dedicated to integrable models whose R-matrix has 33 non-vanishing
entries. However, it appears that for the models solvable by CBA, when an R-matrix can be
constructed, its non-vanishing entries coincide with the ones of m, see construction in [V1,57].
Although this property has not been proven in full generality, but only checked case by case, we
will call our Markov matrices, 33-vertex Markov matrices. These models may be interpreted,
in the context of out-of-equilibrium model, as diffusing particles possessing two internal degrees
of freedom. Let us emphasize that such models have been also introduced to study mRNA
translation in [95, 96]. Therefore, we hope that the solvable models introduced here may be
helpful in this context or to describe other phenomena.

Let us remark that the three cases described above exhaust all the non trivial cases when
M possesses conserved charge(s). To fix the notations, we use the canonical basis

|0〉 =

1
0
0

 , |1〉 =

0
1
0

 and |2〉 =

0
0
1

 . (II.B.195)

The vector |0〉 will correspond to the empty site whereas |1〉 and |2〉 correspond to a particle
in different internal states. In this context, the most general Markov matrices which preserve
the number of particles are the ones which commute with the charge (II.B.194) with

n =

0 0 0
0 1 0
0 0 1

 . (II.B.196)
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Therefore the local Hamiltonian m takes the following form

m =



m11 0 0 0 0 0 0 0 0
0 m22 m23 m24 0 0 m27 0 0
0 m32 m33 m34 0 0 m37 0 0
0 m42 m43 m44 0 0 m47 0 0
0 0 0 0 m55 m56 0 m58 m59

0 0 0 0 m65 m66 0 m68 m69

0 m72 m73 m74 0 0 m77 0 0
0 0 0 0 m85 m86 0 m88 m89

0 0 0 0 m95 m96 0 m98 m99


. (II.B.197)

Note that the 15-vertex model is a sub-case of the problem studied here in opposition to the
19-vertex model that exhibits different non vanishing entries.

The goal of this paragraph consists in classifying all such models which are solvable by
Coordinate Bethe Ansatz. The main result is exposed right below. The proof is then detailed
in several parts. In a first time we perform the first step of the CBA (i.e. the nesting), which
leads to a reduced problem dealing with 4 × 4 R-matrices possessing a specific form. In a
second time we classify these R-matrices, solutions of a braided Yang–Baxter equation with
spectral parameters.

Main result : We present the final result, after gathering the different constraints that
should satisfy the parameters (the computations are detailed below). We obtain the following
classification of 33-vertex Markov matrices. The jump operator (II.B.197) is solvable by CBA
if and only if its entries obey the following constraints:

(i) We must have:

m23 +m47 = 0 ; m32 +m74 = 0 ; m27 = m34 = m43 = m72 = 0

m24 = m37 ; m42 = m73 ; m22 +m44 = m33 +m77,
(II.B.198)

(ii) The matrix

T =


t55 t56 t58 t59

t65 t66 t68 t69

t85 t86 t88 t89

t95 t96 t98 t99

 (II.B.199)

where

t55 = m55 +m11 −m22 −m44 ; t58 = m58 +m23 ; t85 = m85 +m32 ; t59 = m59

t66 = m66 +m11 −m33 −m44 ; t69 = m69 +m23 ; t96 = m96 +m32 ; t68 = m68

t88 = m88 +m11 −m22 −m77 ; t56 = m56 −m23 ; t65 = m65 −m32 ; t86 = m86

t99 = m99 +m11 −m33 −m77 ; t89 = m89 −m23 ; t98 = m98 −m32 ; t95 = m95

(II.B.200)
must be a representation of one of these three algebras:

(a) Hecke algebras

T12T23T12 −m24m42 T12 = T23T12T23 −m24m42 T23 and T 2 = µT (II.B.201)

(b) Tn algebras

T12T23T12 + T12 (T23)2 = T23T12T23 + (T12)2 T23 (II.B.202)

(c) Sn algebras

T12T23T12 + (T23)2 T12 = T23T12T23 + T23 (T12)2 (II.B.203)
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Fortunately, the 4×4 solutions to relations (II.B.201), (II.B.202) or (II.B.203) have been
classified: all the possible expressions of T can be then recovered from these classifica-
tions. For Hecke algebras, the classification of 4 × 4 matrices is given in (II.B.109) and
for Sn and Tn algebras the classification is given in theorem B.40.

We present now the proofs of this result. Constraint (i) is found while performing the first
step of the CBA whereas the constraint (ii) is obtained by solving the Yang-Baxter equation
for the reduced problem.

Coordinate Bethe ansatz : As mentioned above, we now focus on jump operators (II.B.197)
that commute with N , defined by (II.B.194) and (II.B.196). The basis (II.B.195) allows us to
introduce the following elementary states

|x1, i1;x2, i2; . . . ;xr, ir〉 = |0〉⊗x1−1 ⊗ |i1〉 ⊗ |0〉⊗x2−x1−1 ⊗ |i2〉 · · · ⊗ |ir〉 ⊗ |0〉⊗L−xr (II.B.204)

where ik = 1, 2 and xk = 1, 2, . . . , L. In words, the state |x1, i1;x2, i2; . . . ;xr, ir〉 stands for the
configuration where the particles are in positions x1, x2, . . . , xr with internal states i1, i2, . . . ir
respectively12.

Notice that |x1, i1;x2, i2; . . . ;xr, ir〉 is an eigenvector of N with eigenvalue r whatever the
values of xk’s and ik’s are. In fact, the set of states |x1, i1;x2, i2; . . . ;xr, ir〉 spans the vector
space with r particles. Therefore, an Markov matrix eigenstate Ψr in a given sector with
r particles can be written as a linear combination of the elementary states (II.B.204) with
coefficients a(x1, . . . , xr), which are complex-valued functions to be determined:

Ψr =
∑

1≤x1<···<xr≤L

∑
i1,i2,...,ir=1,2

ai1,i2,...,ir(x1, x2, . . . , xr)|x1, i1;x2, i2; . . . ;xr, ir〉. (II.B.205)

The coordinate Bethe ansatz [78] consists in assuming a plane wave decomposition for the
functions ai1,i2,...,ir(x1, x2, . . . , xr):

ai1,i2,...,ir(x1, x2, . . . , xr) =
∑
σ∈Sr

A(i1,i2,...,ir)
σ

r∏
k=1

uxkσ(k), (II.B.206)

where Sr is the permutation group of r elements. The unknowns A
(i1,i2,...,ir)
σ are functions

on the symmetric group algebra depending on the parameters u1, u2, . . . , ur called rapidities
and which are solutions of the Bethe equations determined below. To simplify the following

computations, we encompass the 2r different unknowns A
(i1,i2,...,ir)
σ for a given σ in the following

vector
Aσ =

∑
i1,i2,...,ir=1,2

A(i1,i2,...,ir)
σ |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |ir〉 (II.B.207)

where

|1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
. (II.B.208)

As usual, we project the eigenvalue problem (II.B.192) on the different elementary states,
the eigenvector having the form (II.B.205) with (II.B.206). We do not detail the calculations,
since they are similar to the nested coordinate Bethe ansatz developed in [81,82,85] based on
the ideas of [78]. The computations are divided into two main steps:

• we reduce the original eigenvalue problem with L sites allowing three different states, to
an eigenvalue problem for a system with a smaller number of sites, that allow only two
different states (this system is called the reduced problem);

• we determine (and classify) when the reduced problem is integrable.

12We remind that |0〉 stands for an empty site.
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In the following, we sketch these two steps and give the main results.
First step : Performing the CBA on the position of the particles (and not looking at their

internal states), we get a first set of constraints on the parameters of the local Hamiltonian.
This corresponds to the constraints (II.B.198) given previously. This first step allows us to
determine the energy of the state Ψr:

Er = Lm11 +
r∑

k=1

ε(uk) with ε(u) = m22 +m44 − 2m11 +
m24

u
+m42 u (II.B.209)

provided the coefficients Aσ are related by

Aσtj = Šj,j+1(uσ(j), uσ(j+1))Aσ (II.B.210)

Š(z1, z2) = −z2

z1
Λ(z1, z2) Λ(z2, z1)−1 , (II.B.211)

where tj ∈ Sr denotes the transposition (j, j + 1) and

Λ(z1, z2) = T −
(
m42 z1 +

m24

z2

)
I4. (II.B.212)

T is the 4× 4 constant matrix (II.B.199) whose entries depend on the entries of m, as stated
in (II.B.200).

Let us describe more precisely the meaning of the indices of Šj,j+1 in (II.B.210): they
indicate in which spaces the 4 × 4 matrix Š acts non trivially in the tensor product (C2)⊗r

spanned by {|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |ir〉 | ik = 1, 2}. Explicitly, we get

Šj,j+1(z1, z2) = 1⊗j−1
2 ⊗ Š(z1, z2)⊗ 1⊗L−j−1

2 . (II.B.213)

Due to the defining relations of the permutation group Sr

t2j = id, [tj , tk] = 0, |k − j| > 1, tjtj+1tj = tj+1tjtj+1,

relations (II.B.210) gives constraint on Š:

Šj,j+1(zj , zj+1)Šj,j+1(zj+1, zj) = 1 ,
[
Šj,j+1(zj , zj+1), Šk,k+1(zk, zk+1)

]
= 0

Š12(z1, z2)Š23(z1, z3)Š12(z2, z3) = Š23(z2, z3)Š12(z1, z3)Š23(z1, z2). (II.B.214)

The first two relations are trivially satisfied by (II.B.211). The third one (II.B.214), called
braided Yang–Baxter equation, holds only if supplementary constraints on the entries of T are
satisfied. We postpone the study of these constraints and suppose from now on that they are
indeed satisfied.

Because of the periodicity of the model, the rapidities uj are quantified and must obey the
first set of Bethe equations

uLj Aid = Sj+1,j(uj+1, uj) · · ·Sr,j(ur, uj)S1,j(u1, uj) · · ·Sj−1,j(uj−1, uj)Aid , j = 1, ..., r.
(II.B.215)

where

S(x, y) = PŠ(x, y) and P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (II.B.216)

This set of eigenvalue problems is the reduced problem. The matrix S is a 4× 4 matrix.
Second step (nesting) : The matrix S(x, y) is obviously regular, S(x, x) = −P , so that the

set of eigenvalue problems (II.B.215) can be recasted using a transfer matrix

t(z; {u1, ...ur}) = tr0

(
S10(u1, z) · · ·SM0(ur, z)

)
. (II.B.217)
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This is the transfer matrix introduced in (II.B.19) where the Bethe roots play the role of
inhomogeneity parameters. We recall that because of the Yang–Baxter equation (II.B.214),
the transfer matrix commute for different values of z:[

t(z; {u1, ...ur}), t(z′; {u1, ...ur})
]

= 0 . (II.B.218)

Therefore, the Bethe equations (II.B.215) reduced to

uLj Aid = −t(uj ; {u1, ...ur})Aid (II.B.219)

are compatible since we can diagonalize simultaneously all the t(uj ; {u1, ...ur}). Let us remark
that the transfer matrix (II.B.217) may be used to define a new integrable system.

To finish the computations, we should solve the reduced problem using, for example, the
Bethe ansatz once again. However, in the cases treated here, the reduced problem has no
conserved charge and the resolution becomes much harder. How to apply the Bethe ansatz
in these cases is still an open question. However, let us mention that new methods appeared
recently in order to solve similar problems where there is no conserved charge due to the
boundary conditions (generalization of the CBA [97,98], Onsager approach [99], separation of
variables [100], inhomogeneous Bethe equation [101], modified algebraic Bethe ansatz [102–
104]). A generalization of these methods may be possible to deal with the eigenvalue problem
(II.B.215). In the case of Markovian processes, the matrix ansatz developed in [46] with its link
with integrability [V3, 105] may be also helpful for the resolution of this eigenvalue problem.

Braided Yang–Baxter equation :
This part is devoted to the classification of the matrices T such that the braided Yang–

Baxter equation (II.B.214) holds. We split the problem into three subcases: i) m24m42 6= 0,
then ii) m42 = 0,m24 6= 0 and iii) m24 = 0,m42 6= 0. The case m24 = m42 = 0 is excluded
since it corresponds to an energy (II.B.209) which does not depend on the rapidities (there is
no diffusion of particles).
• Case m24m42 6= 0 By taking different expansions w.r.t. z1, z2 and z3 in (II.B.214) and

after algebraic manipulations, we find that the braided Yang–Baxter equation (II.B.214) holds
if and only if T satisfies:

T12T23T12 −m24m42T12 = T23T12T23 −m24m42T23 ,

(T12)2 T23 = T12 (T23)2 ,

(T23)2 T12 = T23 (T12)2 .

(II.B.220)

This is a particular case of the algebraMn introduced in (II.B.150). Note that these relations
come directly from the form (II.B.211) of the S-matrix, and do not depend on the size of T .
In general, classifying the solutions of equations (II.B.220) is a difficult task. However, in the
case of 4× 4 matrices treated here, it is possible to use formal mathematical software to deal
with them. Firstly, we prove that all the solutions of (II.B.220) verify

T 2 = µT . (II.B.221)

Secondly, we perform the following transformation

T = τ T̃ + ρ (II.B.222)

with ρ solution of ρ2−µρ+m24m42 = 0 and τ = ±
√
ρ2 +m24m42. The matrix T̃ satisfies the

relations of the Hecke algebra

T̃12T̃23T̃12 = T̃23T̃12T̃23 , (II.B.223)

T̃ − T̃−1 =
µ− 2ρ

τ
≡ µ̃ . (II.B.224)

The classification of the 4× 4 matrices satisfying these relations was given in (II.B.109).
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The value of µ in (II.B.221) is reconstructed from these data. Indeed, simple algebraic
manipulations show that

µ2 =
m24m42

x2(1− x2)
, ρ = µx2 , τ = xµ where x is a solution of 2x2 + µ̃ x− 1 = 0.

(II.B.225)
Finally, we remark that for any previous solutions of the Hecke algebra, the matrix Š

verifies the Yang–Baxter equation (II.B.214). Performing the change of variable

zj =
µ(1− xj) + δ(1 + xj)

2m42(1− xj)
, with δ =

√
µ2 − 4m24m42, (II.B.226)

one can verify that Š(z1, z2) depends only on the ratio
x1

x2
(up to a normalisation factor). In

fact, in terms of the variables xj , equation (II.B.211) is equivalent to the usual Baxterization
of the Hecke algebra recalled in (II.B.92).
• Case m24 = 0 and m42 6= 0. Now, the different expansions w.r.t. z1, z2 and z3 in

(II.B.214), lead to the sole relation:

T12T23T12 + T12 (T23)2 = T23T12T23 + (T12)2 T23 (II.B.227)

One recognizes in (II.B.227) the algebra T3 defined in (II.B.121). The 4× 4 solutions have
been classified in theorem B.40.
• Case m42 = 0 and m24 6= 0
This case can be deduced from the case m24 = 0,m42 6= 0 in the following way. From any

solution Š(z1, z2) to the braided Yang–Baxter equation, one can construct a new one

Σ̌(z1, z2) = Št1t2(1/z2, 1/z1) , (II.B.228)

where (.)tj denotes the transposition in space j. Then, starting from

Š(z1, z2) = −z2

z1
Λ(z1, z2) Λ(z2, z1)−1 with Λ(z1, z2) = T − m24

z2
I4 (II.B.229)

we get

Σ̌(z1, z2) = −z2

z1
Λ̄(z1, z2) Λ̄(z2, z1)−1 with Λ̄(z1, z2) = T t1t2 −m24 z1 I4 . (II.B.230)

It is clear that, up to a replacement m24 ↔ m42, Σ̌(z1, z2) corresponds to the expression of
the S-matrix (II.B.211) with m24 = 0. Therefore, any solution Š(z1, z2) of the Yang–Baxter
equation for m42 = 0 is obtained from a solution Σ̌(z1, z2) for m24 = 0 (classified in the previous
paragraph).

For the case m42 = 0, the condition on T reads

T12T23T12 + (T23)2 T12 = T23T12T23 + T23 (T12)2 (II.B.231)

which is deduced from relation (II.B.227) by transposition, as expected. One recognizes now
in (II.B.231) the defining relations of the algebra S3, see (II.B.115).

b) Algebraic Bethe ansatz

We now present another method to diagonalize the Markov matrix (or equivalently the transfer
matrix) of an integrable process. This method is called algebraic Bethe ansatz (ABA) [77,106,
107] and relies heavily on the algebraic structure associated to the integrable model. The main
idea is to use the so-called RTT relation that we recall now the key features. Once again
we treat here the simple case of single species models (i.e N = 1), but generalizations to
multi-species models have been developed through the nesting procedure [108,109].
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Definition B.57. We define a 2× 2 matrix

T (z) =

(
A(z) B(z)
C(z) D(z)

)
, (II.B.232)

with entries A(z), B(z), C(z), D(z) depending on a spectral parameter z and belonging to a non-
commutative algebra A defined with the help of a R-matrix (satisfying the braided Yang-Baxter
equation) through the relation

Ř

(
z1

z2

)
T (z1)⊗ T (z2) = T (z2)⊗ T (z1)Ř

(
z1

z2

)
. (II.B.233)

Note that the associativity of the algebra is ensured by the Yang-Baxter equation (see
chapter III for details about a similar statement).

Example B.58. For the single species ASEP, the R-matrix is defined in (II.B.13) and the
associated RTT relation is equivalent to

A(z1)A(z2) = A(z2)A(z1), B(z1)B(z2) = B(z2)B(z1),

C(z1)C(z2) = C(z2)C(z1), D(z1)D(z2) = D(z2)D(z1),

A(z1)B(z2) = f

(
z2

z1

)
B(z2)A(z1) + g

(
z1

z2

)
B(z1)A(z2),

D(z1)B(z2) = f

(
z1

z2

)
B(z2)D(z1)− g

(
z1

z2

)
B(z1)D(z2),

C(z1)A(z2) = f

(
z1

z2

)
A(z2)C(z1)− g

(
z1

z2

)
A(z1)C(z2),

C(z1)D(z2) = f

(
z2

z1

)
D(z2)C(z1) + g

(
z1

z2

)
D(z1)C(z2),

B(z1)C(z2) =
p

q
C(z2)B(z1) +

p

q

z1

z2
g

(
z1

z2

)
[A(z1)D(z2)−A(z2)D(z1)] ,

D(z1)A(z2) = A(z2)D(z1)− p

q
g

(
z1

z2

)[
C(z2)B(z1)− z1

z2
C(z1)B(z2)

]
,

with

f(z) =
p− qz
p(1− z)

, g(z) =
p− q

p(1− z)
. (II.B.234)

We stress that a representation of the RTT algebra on the vector space
(
C2
)⊗L

can always
be obtained with the help of the R-matrix.

Proposition B.59. The matrix defined by

T (z) = R0,L(z)R0,L−1(z) . . . R0,1(z), (II.B.235)

provides a representation of the RTT algebra defined in (II.B.233) on the vector space
(
C2
)⊗L

.

Proof. This is shown by direct computation using the Yang-Baxter equation and the relation
between the braided and non-braided R matrices: Ř(z) = PR(z), where P is the permutation
operator.

Note that T (z) is then seen as a 2 × 2 matrix in tensor component space labeled by 0
with entries A(z), B(z), C(z), D(z) (as defined in (II.B.232)) which are operators on the vector

space
(
C2
)⊗L

. The interest of this explicit representation relies mainly on the following fact.

Lemma B.60. The transfer matrix for a periodic model t(z) defined in (II.B.20) (with the
inhomogeneity parameters zi = 1) is obtained from the representation (II.B.235) through the
relation

t(z) = tr0T (z) = A(z) +D(z). (II.B.236)
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The idea of the ABA is to express the eigenvectors of the transfer matrix as

|Ψ〉 = B(u1)B(u2) . . . B(ur)|Ω〉, (II.B.237)

where |Ω〉 is chosen to be an eigenvector of A(z) and D(z) and to satisfy C(z)|Ω〉 = 0 (it is some-
times called the highest weight vector of the representation). The parameters u1, u2, . . . , ur
are called Bethe roots and are solution to a set of algebraic equations (the Bethe equations).
The details of the construction depend on the model under consideration. To fix the ideas on
a concrete example, we present now the case of the single species ASEP on a periodic lattice.

Proposition B.61. The eigenvectors of the transfer matrix t(z) of the ASEP in the sector
with r particles are given by

|Ψ〉 = B(u1)B(u2) . . . B(ur)|Ω〉, (II.B.238)

where B(z) is constructed from the representation (II.B.235) and

|Ω〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
L times

. (II.B.239)

The Bethe roots are solutions to the Bethe equations(
p(1− ui)
p− qui

)L
= (−1)r−1

r∏
j=1
j 6=i

pui − quj
puj − qui

. (II.B.240)

The associated eigenvalue is given by

E(z) =

r∏
j=1

pz − quj
p(z − uj)

+

(
p(1− z)
p− qz

)L r∏
j=1

puj − qz
p(uj − z)

. (II.B.241)

Proof. First note that C(z)|Ω〉 = 0 and

A(z)|Ω〉 = |Ω〉, D(z)|Ω〉 =

(
p(1− z)
p− qz

)L
|Ω〉. (II.B.242)

The next step is to compute the action of A(z) on |Ψ〉 using the commutation relation between
A(z) and B(ui)

A(z)B(ui) =
pz − qui
p(z − ui)

B(ui)A(z)− ui(p− q)
p(z − ui)

B(z)A(ui), (II.B.243)

which allows us to push A(z) completely to the right through all the B(ui). Because of the
relation B(ui)B(uj) = B(uj)B(ui) the vector A(z)|Ψ〉 is completely symmetric with respect
to the Bethe roots. This allows us to write

A(z)|Ψ〉 = A(z)B(u1) . . . B(ur)|Ω〉 (II.B.244)

=

r∏
j=1

pz − quj
p(z − uj)

|Ψ〉 −
r∑
i=1

ui(p− q)
p(z − ui)

r∏
j=1
j 6=i

pui − quj
p(ui − uj)

B(u1) . . . B(ui−1)B(z)B(ui+1) . . . B(ur)|Ω〉.

Note that the result is split between a ’wanted’ part (proportional to |Ψ〉 as expected) and an
’unwanted’ part (where a parameter ui has been replaced by z in the expression of |Ψ〉). All
the game be to cancel this last part using the action of D(z) on |Ψ〉. This can be computed
using the commutation relation between D(z) and B(ui)

D(z)B(ui) =
pui − qz
p(ui − z)

B(ui)D(z)− ui(p− q)
p(ui − z)

B(z)D(ui), (II.B.245)
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which allows us to push D(z) completely to the right through all the B(ui). This yields

D(z)|Ψ〉 = D(z)B(u1) . . . B(ur)|Ω〉 =

(
p(1− z)
p− qz

)L r∏
j=1

puj − qz
p(uj − z)

|Ψ〉 (II.B.246)

−
r∑
i=1

ui(p− q)
p(ui − z)

(
p(1− ui)
p− qui

)L r∏
j=1
j 6=i

puj − qui
p(uj − ui)

B(u1) . . . B(ui−1)B(z)B(ui+1) . . . B(ur)|Ω〉,

where we observe again a ’wanted’ part and an ’unwanted’ part. It is then direct to see that |Ψ〉
is an eigenvector of A(z)+D(z) if and only if the ’unwanted’ parts in (II.B.244) and (II.B.246)
cancel one with each other, i.e if the Bethe equations hold(

p(1− ui)
p− qui

)L
= (−1)r−1

r∏
j=1
j 6=i

pui − quj
puj − qui

. (II.B.247)

The associated eigenvalue is then given by

E(z) =

r∏
j=1

pz − quj
p(z − uj)

+

(
p(1− z)
p− qz

)L r∏
j=1

puj − qz
p(uj − z)

. (II.B.248)

Remark B.62. We recall that the Markov matrix M of the ASEP is obtained from the transfer
matrix t(z) through the relation

M = (q − p)t′(1)t(1)−1 = (q − p) d ln t(z)

dz

∣∣∣∣
z=1

. (II.B.249)

The vector |Ψ〉 is thus an eigenvector of M with eigenvalue

E = (q − p)E
′(1)

E(1)
= (q − p)2

r∑
i=1

ui
(1− ui)(p− qui)

. (II.B.250)

Remark B.63. The Bethe roots u1, . . . , ur are directly related to the ones introduced in the
coordinate Bethe ansatz through the change of variables

ui =
p(1− ũi)
p− qũi

. (II.B.251)

The parameters ũ1, . . . , ũr satisfy indeed the equations

ũLi = (−1)r−1
r∏
j=1
j 6=i

p+ qũiũj − (p+ q)ũi
p+ qũiũj − (p+ q)ũj

, (II.B.252)

which are exactly the Bethe equations obtained in the coordinate Bethe ansatz (II.B.189). The
eigenvalue of the Markov matrix is expressed in these new variables as

E =
r∑
i=1

(
p

ũi
+ qũi − (p+ q)

)
, (II.B.253)

in exact agreement with the expression derived from the coordinate Bethe ansatz (II.B.191).
The precise link between the two methods (ABA and CBA) has been investigated in [110,111].

Note that the algebraic Bethe ansatz provides also a fruitful framework to compute physical
observables, such as correlation functions. We can mention the works [112–116].
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c) Other methods

We present briefly here other methods, which have been successfully developed to diagonalize
exactly models with periodic boundary conditions.

While solving the six-vertex and eight-vertex models, Baxter noticed that the eigenvalues of
the transfer matrices satisfied some simple functional relations [29]. These functional difference
equation gave basically rise to a new angle to study the integrable models: the functional Bethe
ansatz [117]. It provides another interpretation of the Bethe equations, which appear in this
context as a necessary condition to ensure the vanishing of unwanted residues.

Baxter interpreted these functional relation at the algebraic level [29] through the construc-
tion of the Q-operator. The idea is to build an operator having convenient algebraic relations
with the transfer matrix, called the t-Q relations. In the last few years this Q-operator was un-
derstood to as being some particular transfer matrix with infinite dimensional auxiliary space.
It is constructed in a matrix product form (often with q-deformed oscillators) using infinite
dimensional representation of RTT algebras [118–120].

The deep algebraic structure carried by the integrable systems was also exploited to diago-
nalize quantum Hamiltonians through the vertex operators [121] and compute the correlation
functions [122, 123]. The connection between this approach and the matrix product method
presented in chapters III and IV, which are both related to the Knizhnik-Zamolodchikov equa-
tions, remains to be fully understood.

Another method was also introduced to diagonalize models with periodic boundary condi-
tions: the separation of variables (SoV) [124]. This method aims to give an unifying framework
for the resolution of classical and quantum integrable systems.

C Integrability for open systems

We present in this section the construction of integrable Markov matrices in the case of open
boundary conditions. Similarly to the periodic case, the method relies on the construction of
a set of commuting operators (containing the Markov matrix). This set is also generated by
a transfer matrix which commutes for different values of the spectral parameter. The Markov
matrix is again recovered by taking the derivative of this transfer matrix with respect to the
spectral parameter. The transfer matrix is build from two key operators, which act locally
on the lattice : the R-matrix, which guarantees the integrability of the bulk dynamics, and
the K-matrices, which ensure the integrability of the boundary dynamics with the reservoirs.
We have indeed already seen that the R-matrix is directly related to the bulk local jump
operator m. We will point out a similar connection between the K-matrices and the boundary
local jump operators B and B. The commutation property of the transfer matrix is a direct
consequence of two local properties: the Yang-Baxter equation, satisfied by the R-matrix, and
the reflection equation [125], satisfied by the K-matrices.

1 Reflection matrices and transfer matrix

a) K-matrices and reflection equation

The R-matrix and its properties had already been introduced in the previous section to deal
with models defined on the periodic lattice. All along this subsection, the R-matrix R(z)
stands for a matrix satisfying the Yang-Baxter equation (II.B.10), the unitarity, regularity and
Markovian properties. We will also assume that R(z) is related to a bulk local jump operator
through the relation (II.B.5).

We present here the key object to deal with the integrability of the boundary dynamics:
the K-matrix. It will be together with R(z) the building block of the transfer matrix.

Definition C.1. A matrix K(z) of size (N + 1) × (N + 1), i.e acting on CN+1, satisfies the
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reflection equation if

R1,2

(
z1

z2

)
K1(z1)R2,1(z1z2)K2(z2) = K2(z2)R1,2(z1z2)K1(z1)R2,1

(
z1

z2

)
. (II.C.1)

The reflection equation states an equality between product of operators acting in CN+1 ⊗
CN+1. We recall that the subscript indices indicate on which copies CN+1 of the tensor space
the operators are acting non-trivially. For instance

K1(z) = K(z)⊗ 1, K2(z) = 1⊗K(z). (II.C.2)

We would like to give a pictorial representation of the reflection equation. The action of
the K-matrix Ki(zi) can be represented graphically in figure II.11. The K-matrix is drawn as

1
zi

zi

i

Figure II.11: Graphical representation of the matrix Ki(zi).

the reflection of a line labeled i, which corresponds to the tensor space component number i,
on the boundary. The line is oriented by an arrow and carries a spectral parameter zi. The
incoming half line (according to the arrow direction) stands for a vector |τ〉 of the i-th tensor
space component, and can thus be in N + 1 different states. The out-going half line stands for
the vector 〈υ|, which belongs to the i-th tensor space component. When the vectors |τ〉 and
〈υ| are specified, the left-reflection diagram represents the matrix element 〈υ|K(zi)|τ〉.

For instance, in the particular case of single species models, i.e for N = 1, this graphical
interpretation can be specified as follows. A dashed line corresponds to the vector |0〉 (or equiv-
alently to an empty site), whereas a continuous thick line corresponds to |1〉 (or equivalently
to an occupied site). In a similar way, the out-going lines (after the reflection point) represent
the state of the vector with which we are contracting to the left the matrix K : dashed line
for 〈0| and continuous thick line for 〈1|. Example of such graphical representation is given
explicitly for the TASEP in fig. II.13.

As for the Yang-Baxter equation, there exists a nice intuitive interpretation for the reflec-
tion equation coming from quantum field theory (see figure II.12): the K-matrix K(z) is the
scattering matrix of a particle with rapidity z on the boundary. The integrability is the fact
that the simultaneous scattering of 2 particles on the boundary factorizes in this K-matrix (i.e
the scattering of two particles on the boundary can be decomposed into single-particle scatter-
ings on the boundary). The reflection equation is the consistency relation for this factorization,
which ensures the independence of the result with respect to the order of the different events
(scatterings between the two particles or scatterings on the boundary).

We now present the connection of the K-matrix with the boundary local jump operator B.

Definition C.2. A boundary local jump operator B is said to be integrable if there exists a
K-matrix K(z) satisfying the reflection equation (II.C.1) such that

B =
θ

2
K ′(1), (II.C.3)

where the constant θ is defined in (II.B.5).

In other words, the integrable boundary local jump operators B are obtained by taking the
derivative of a K-matrix with respect to the spectral parameter. Conversely, we could wonder
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1
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Figure II.12: Graphical representation of the reflection equation.

how is it possible, starting from a local jump operator B, to upgrade it to a spectral param-
eter dependent K-matrix. This will be partially answered with the Baxterisation procedure
presented in subsection b). We would like to stress that taking the derivative of a K-matrix
does note provide always a local Markovian matrix. The sum of the entries of each column
of the local Markovian matrix should indeed vanish. It is straightforward to check that if the
sum of the entries of each column of the K-matrix is equal to 1 then the derivative enjoys the
sum to 0 property (but we still have to check that the off-diagonal entries of the derivative are
non-negative). This motivates the following definition

Definition C.3. A matrix K(z) acting on CN+1 satisfies the Markovian property if

〈σ|K(z) = 〈σ|, (II.C.4)

where we recall that 〈σ| =
∑N

υ=0 〈υ| achieves the sum over all the local configurations on one
site.

Note that a such K-matrix satisfies the requirement of a discrete time Markovian process
(provided that its entries are non-negative). We will see below that it can indeed be used as
the building block (together with the R-matrix) of discrete time Markov matrices defined on
the whole lattice with open boundaries.

We now list a set of properties that can be satisfied by a K-matrix. The usefulness of these
properties will make sense while defining the transfer matrix below. They will be essential to
connect the transfer matrix to the Markov matrix of the model.

Definition C.4. A matrix K(z) acting on CN+1 satisfies the regularity property if

K(1) = 1. (II.C.5)

Definition C.5. A matrix K(z) acting on CN+1 satisfies the unitarity property if

K(z).K(1/z) = 1. (II.C.6)

Remark C.6. We chose to introduce all the definition with R-matrix and K-matrix which are
’multiplicative’ in the spectral parameter. We can write similar definition for matrices which
are ’additive’ in the spectral parameter. In this case a matrix K(z) satisfies the reflection
equation if

R1,2(z1 − z2)K1(z1)R2,1(z1 + z2)K2(z2) = K2(z2)R1,2(z1 + z2)K1(z1)R2,1(z1 − z2). (II.C.7)

It satisfies the regularity property if K(0) = 1 and the unitarity property if K(z).K(−z) = 1.

Up to now, we dealt only with the integrability of the left boundary local jump operator
B. We can study in a similar way the right boundary local jump operator B. This motivates
the following definitions.
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Definition C.7. A matrix K(z) of size (N + 1) × (N + 1), i.e acting on CN+1, satisfies the
reversed reflection equation if

R1,2

(
z1

z2

)−1

K1(z1)R2,1(z1z2)−1K2(z2) = K2(z2)R1,2(z1z2)−1K1(z1)R2,1

(
z1

z2

)−1

, (II.C.8)

which can be rewritten without inverse on the R-matrix using the unitarity property R2,1(z)−1 =
R1,2(1/z).

Definition C.8. A right boundary local jump operator B is said to be integrable if there exists
a K-matrix K(z) satisfying the reversed reflection equation (II.C.8) such that

B = −θ
2
K
′
(1), (II.C.9)

where the constant θ is defined in (II.B.5).

The unitarity, regularity and Markovian properties are defined for K(z) in the exact same
way as for K(z).

We now provides examples of such K-matrices, more particularly those related to the
stochastic models already introduced in this manuscript.

Example C.9. The K-matrices related to the ASEP are multiplicative in the spectral param-
eter. The matrix K(z) is given by

K(z) =

(
z(z(γ−α)+α−γ+q−p)
γz2+z(α−γ+q−p)−α

(z2−1)γ
γz2+z(α−γ+q−p)−α

(z2−1)α
γz2+z(α−γ+q−p)−α

γ−α+z(α−γ+q−p)
γz2+z(α−γ+q−p)−α

)
. (II.C.10)

It satisfies the reflection equation (II.C.1) and the unitarity, regularity and Markovian proper-
ties. It is related to the left boundary local jump operator B defined in (II.A.31) through the
relation

q − p
2

K ′(1) = B, (II.C.11)

which corresponds to a value θ = q − p. The right matrix K(z) is given by

K(z) =

(
z(z(β−δ)+δ−β+p−q)
βz2+z(δ−β+p−q)−δ

(z2−1)β
βz2+z(δ−β+p−q)−δ

(z2−1)δ
βz2+z(δ−β+p−q)−δ

β−δ+z(δ−β+p−q)
βz2+z(δ−β+p−q)−δ

)
. (II.C.12)

It satisfies the reversed reflection equation (II.C.8) and the unitarity, regularity and Markovian
properties. It is related to the right boundary local jump operator B defined in (II.A.31) through
the relation

− q − p
2

K
′
(1) = B. (II.C.13)

Example C.10. For the TASEP, it will appear convenient to introduce the parameters a and
b related to the injection/extraction rates α and β through the relations

a =
1− α
α

, b =
1− β
β

. (II.C.14)

The K-matrices can be then expressed as

K(z) =

(
z(z+a)
za+1 0
1−z2
za+1 1

)
(II.C.15)

It satisfies the reflection equation (II.C.1) and the unitarity, regularity and Markovian proper-
ties. It is connected to the left boundary local jump operator B introduced in (II.A.32) by

− 1

2
K ′(1) = B, (II.C.16)
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1/z 1/z 1/z 1/z

z z z z

(a+z)z
za+1

1−z2
za+1 0 1

〈0|K(z)|0〉 〈1|K(z)|0〉 〈0|K(z)|1〉 〈1|K(z)|1〉

Figure II.13: Graphical representation of the K-matrix of the TASEP.

which corresponds to a value θ = −1. A graphical representation of this K-matrix is given in
figure II.13.

The matrix K(z) is given by

K(z) =

(
1 z2−1

z(z+b)

0 zb+1
z(z+b)

)
(II.C.17)

It satisfies the reversed reflection equation (II.C.8) and the unitarity, regularity and Markovian
properties. It is related to the right boundary local jump operator B defined in (II.A.32) through
the relation

1

2
K
′
(1) = B. (II.C.18)

These K-matrices can be obtained from the ones of the ASEP by setting p = 1, q = 0, γ = 0
and δ = 0.

Example C.11. In the case of the SSEP, the K-matrices are additive in the spectral parameter.
The left boundary matrix K(z) reads

K(z) =

(
z(γ−α)+1
z(α+γ)+1

2zγ
z(α+γ)+1

2zα
z(α+γ)+1

z(α−γ)+1
z(α+γ)+1

)
. (II.C.19)

It satisfies the reflection equation (II.C.7) and the unitarity, regularity and Markovian proper-
ties. It is related to the left boundary local jump operator B defined in (II.A.31) through the
relation

1

2
K ′(0) = B, (II.C.20)

which corresponds to the value θ = 1. The right boundary matrix K(z) reads

K(z) =

(
z(β−δ)−1
z(β+δ)−1

2zβ
z(β+δ)−1

2zδ
z(β+δ)−1

z(δ−β)−1
z(β+δ)−1

)
(II.C.21)

It satisfies the reversed reflection equation and the unitarity, regularity and Markovian proper-
ties. It is related to the right boundary local jump operator B defined in (II.A.31) through the
relation

− 1

2
K
′
(0) = B. (II.C.22)

The K-matrices of the SSEP are obtained from the ones of the ASEP by the scaling limit

KSSEP (z) = lim
h→0

KASEP (ehz)|q=eh,p=1, (II.C.23)

and similarly for K(z). This scaling transforms a multiplicative dependence in the spectral
parameter into an additive one, as expected.
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All the previous examples were related to single species models. We provide here an example
of R-matrix related to a multi-species model.

Example C.12. A K-matrix for the 2-species TASEP is given by

K(z) =


z2 0 0

−az(z2−1)
za+1

z(a+z)
za+1 0

− z2−1
za+1 − z2−1

za+1 1

 (II.C.24)

It satisfies the reflection equation (II.C.1) and the unitarity, regularity and Markovian proper-
ties. It is connected to the left boundary local jump operator B introduced in (II.A.33) by

− 1

2
K ′(1) = B, (II.C.25)

which corresponds to a value θ = −1.

b) Transfer matrix

We defined previously the integrability of the boundary local jump operators B and B as being
the derivative of some K-matrices. This definition will make sense in this subsection. We will
indeed see that in this case it is possible to construct a transfer matrix, which generates a
set of commuting operators including the Markov matrix. The K-matrices, together with the
R-matrix, are the key building blocks of this transfer matrix as explained in the following
definition.

Definition C.13. The inhomogeneous transfer matrix for a system with open boundaries is

an operator acting on the whole lattice
(
CN+1

)⊗L
and is given by

t(z|z) = tr0

(
K̃0(z)R0,L

(
z

zL

)
. . . R0,1

(
z

z1

)
K0(z)R1,0(zz1) . . . RL,0(zzL)

)
, (II.C.26)

where13

K̃1(z) = tr0

(
K0

(
1

z

)((
R0,1(z2)t1

)−1
)t1

P0,1

)
, (II.C.27)

or equivalently

K1(z) = tr0

(
K̃0

(
1

z

)
R01

(
1

z2

)
P01

)
. (II.C.28)

Remark C.14. The matrix K̃(z) satisfies the dual reflection equation

K̃2(z2)
(
Rt121(z1z2)−1

)t1
K̃1(z1)R21

(
z2

z1

)
= R12

(
z2

z1

)
K̃1(z1)

(
Rt212(z1z2)−1

)t2
K̃2(z2).

(II.C.29)

A pictorial representation of the transfer matrix with open boundaries is given in figure
II.15.

The main feature of the inhomogeneous transfer matrix is that it generates a set of com-
muting operators. This is expressed in the following proposition

Proposition C.15. The inhomogeneous transfer matrix satisfies the commutation relation

[t(z|z), t(z′|z)] = 0. (II.C.30)

13We recall that ·ti denotes the usual matrix transposition in the i-th tensor space component
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Proof. Let us define

K0(z) = R0,L

(
z

zL

)
. . . R0,1

(
z

z1

)
K0(z)R1,0(zz1) . . . RL,0(zzL). (II.C.31)

It is straightforward to check that this dressed K-matrix satisfies the reflection equation

R0,0′

( z
z′

)
K0(z)R0′,0(zz′)K0′(z

′) = K0′(z
′)R0,0′(zz

′)K0(z)R0′,0

( z
z′

)
. (II.C.32)

We then follow the lines of [126] to compute

t(z|z)t(z′|z) = tr0

(
K̃0(z)K0(z)

)
tr0′

(
K̃0′(z

′)K0′(z
′)
)

= tr0

(
K̃0(z)t0K0(z)t0

)
tr0′

(
K̃0′(z

′)K0′(z
′)
)

= tr0,0′

(
K̃0(z)t0K̃0′(z

′)K0(z)t0K0′(z
′)
)

= tr0,0′

(
K̃0(z)t0K̃0′(z

′)×
(
R0′,0(zz′)t0

)−1 (
R0′,0(zz′)t0

)
×K0(z)t0K0′(z

′)
)

= tr0,0′

((
K̃0′(z

′)
((
R0′,0(zz′)t0

)−1
)
)t0

K̃0(z)

)t0 (
K0(z)R0′,0(zz′)K0′(z

′)
)t0)

= tr0,0′

((
K̃0′(z

′)
((
R0′,0(zz′)t0

)−1
)
)t0

K̃0(z)R0′,0

(
z′

z

))
×
(
R0,0′

( z
z′

)
K0(z)R0′,0(zz′)K0′(z

′)
))

,

where the last equality is obtained by applying the transposition ·t0 in auxiliary space 0 and
then by inserting the unitarity relation

R0′,0

(
z′

z

)
R0,0′

( z
z′

)
= 1. (II.C.33)

We observe that we are now in position to use the reflection equation (II.C.32) and respectively
the dual reflection equation (II.C.29) to exchange the positions of the matrices K0(z) and
K0′(z

′) and respectively of the matrices K̃0(z) and K̃0′(z
′). Then we repeat the whole sequence

of transformations in reverse order to finally obtain t(z′|z)t(z|z).
The previous proposition tells us that, the set of commuting operators can be obtained by

expanding the transfer matrix with respect to the spectral parameter.

Remark C.16. In the case where the R-matrix and the K-matrices are additive in the spectral
parameter, the inhomogeneous transfer matrix is defined by

t(z|z) = tr0

(
K̃0(z)R0,L(z − zL) . . . R0,1(z − z1)K0(z)R1,0(z + z1) . . . RL,0(z + zL)

)
,

(II.C.34)
with

K̃1(z) = tr0

(
K0 (−z)

((
R0,1(2z)t1

)−1
)t1

P0,1

)
, (II.C.35)

or equivalently

K1(z) = tr0

(
K̃0 (−z)R01 (−2z)P01

)
. (II.C.36)

We are now equipped to state the connection between the transfer matrix and the Markov
matrix of the model.

Proposition C.17. The Markov matrix is related to the transfer matrix in the simple following
way

θ

2
t′(1) = B1 +

L−1∑
k=1

mk,k+1 +BL = M, (II.C.37)

where the homogeneous transfer matrix is defined as t(z) = t(z|1, . . . , 1).
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Proof. Using the regularity property of the matrix R and K, we have

t′(1) = tr0(K̃0(1)P0L . . . P01 ·K ′0(1) · P10 . . . PL0)

+

L−1∑
k=1

(
tr0(K̃0(1)P0L . . . P0,k+1R

′
0k(1)P0,k−1 . . . P01 · 1 · P10 . . . PL0)

+ tr0(K̃0(1)P0L . . . P01 · 1 · P10 . . . Pk−1,0R
′
k0(1)Pk+1,0 . . . PL0)

)
+ tr0(K̃0(1)R′0L(1)P0,L−1 . . . P01 · 1 · P10 . . . PL0)

+ tr0(K̃0(1)P0L . . . P01 · 1 · P10 . . . PL−1,0R
′
L0(1))

+ tr0(K̃ ′0(1)P0L . . . P01 · 1 · P10 . . . PL0)

= tr0(K̃0(1))K ′1(1) + 2
L−1∑
k=1

tr0(K̃0(1))Ř′k,k+1(1)

− d

dz
tr0

(
K̃0

(
1

z

)
R0L

(
1

z2

)
P0L

)∣∣∣∣
z=1

= K ′1(1) + 2
L−1∑
k=1

Ř′k,k+1(1)−K ′L(1).

The last equality is obtained thanks to the regularity property of K

tr0(K̃0(1)) = K(1) = 1. (II.C.38)

The relations (II.C.3), (II.C.9) and (II.B.5) allow us to conclude the proof.

Example C.18. For the single species TASEP, the matrix K̃(z) is given by

K̃(z) =

( 1
zb+1

1
zb+1

0 zb
zb+1

)
(II.C.39)

The graphical representation for the matrix K̃ is given in fig. II.14.

1/z 1/z 1/z 1/z

z z z z

1
zb+1 0 1

zb+1
zb
zb+1

〈0|K̃(z)|0〉 〈0|K̃(z)|1〉 〈1|K̃(z)|0〉 〈1|K̃(z)|1〉

Figure II.14: Graphical representation of the K̃-matrix of the TASEP.

Transfer matrix as discrete time Markov matrix We showed in the previous paragraphs
how the transfer matrix can be used to define (through its derivative) continuous time Markov
matrix. We are now going to see on the particular case of the single species open TASEP that
the inhomogeneous transfer matrix can be used itself to define a discrete time Markov matrix.

The building blocks of the transfer matrix for the open case are the R matrix defined in
(II.B.14) and the boundary matrices K and K̃ defined in (II.C.15) and (II.C.39). They enter
the construction of the inhomogeneous open transfer matrix t(z|z) defined in (II.C.26).

We use the operator t(z|z) to define the following discrete time Markov process

|Pt+1〉 = t(z|z)|Pt〉 . (II.C.40)
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The parameters must satisfy the following constraints

0 ≤ zzi ≤ 1, 0 ≤ z

zi
≤ 1 and az, bz ≥ 0 (II.C.41)

to ensure that the entries of t(z|z) are probabilities. We can also show that the entries on each
column of t(z|z) sum to one, which guarantees the conservation of the probability |Pt〉.

We now draw diagrams to represent the action of the transfer matrix. The general picture
is displayed in fig. II.15.

z z

1/z 1/z

z1 z2 zi zL−1 zL

1 2 i L− 1 L. . . . . .

0

0

Figure II.15: Graphical representation of the transfer matrix of the open TASEP.

As an example we can compute graphically for L = 1 the transition rate 〈0|t(z|z)|1〉 between
the initial configuration (1) and the final configuration (0) (see fig. II.16). The sum of both
contributions drawn in fig. II.16 gives

〈0|t(z|z)|1〉 =
z(a+ z)(1− zz1)

(az + 1)(bz + 1)
+
zz1(1− z

z1
)

bz + 1
= (1− z2)

z(a+ z1)

(az + 1)(bz + 1)
. (II.C.42)

z z

1/z 1/z

z1

1

0

0
z1

1

0

0

z(a+z)(1−zz1)
(az+1)(bz+1)

z z

1/z 1/z

z1

1

0

0

zz1(1− z
z1

)

bz+1

Figure II.16: Graphical computation of the transition rate 〈0|t(z|z)|1〉 for L = 1. The two
different contributions are represented with their respective weights.

The transfer matrix t(z|z) defines a discrete time Markov process on the finite size lattice
with open boundaries. The corresponding stochastic dynamics can be described explicitly
using a sequential update: starting from a given configuration at time t, the configuration at
time t+ 1 is obtained by the following stochastic rules

• Initialisation:

– The left boundary is replaced by an additional site (the site 0 with inhomogeneity
parameter 1) occupied by a particle with probability 1

az+1 and unoccupied with
probability az

az+1 .
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– The right boundary is replaced by an additional site (the site L + 1 with inhomo-
geneity parameter 1) occupied by a particle with probability bz

bz+1 and unoccupied

with probability 1
bz+1 .

• Particle update: starting from right to left (from site L to site 0), a particle at site i can
jump to the right on the site i + 1 (provided that the site is empty) with probability
1− zzi and stay at the same place with probability zzi.

• Hole update: once arrived at site 0, we go the other way starting from left to right (from
site 1 to site L+ 1): a hole at site i can jump to the left on the site i− 1 (provided that
the site is occupied) with probability 1− z

zi−1
and stay at the same place with probability

z
zi−1

.

• Summation: Then we have to drop the additional sites 0 and L + 1 and to sum the
weights corresponding to the same final configuration.

An example of such sequential update is given in fig. II.17 for L = 1. From this figure we can
compute the transition rates

〈0|t(z|z)|1〉 =
az

(az + 1)(bz + 1)

[
zz1

(
1− z

z1

)
+ 1− zz1

]
+

1

(az + 1)(bz + 1)

[
(1− zz1)z2 + zz1

(
1− z

z1

)]
(II.C.43)

= (1− z2)
z(a+ z1)

(az + 1)(bz + 1)
, (II.C.44)

〈1|t(z|z)|1〉 =
z(z + b)

bz + 1
+

(1− z2)(1− zz1)

(az + 1)(bz + 1)
. (II.C.45)

The equation (II.C.44) is, of course, identical to the expression (II.C.42) derived using the
graphical representation in fig. II.16.

2 How to find K-matrices?

a) Direct resolution of the reflection equation

Written in components, the reflection equation (II.C.1) gives equations that are quadratic in
the entries of the K-matrix. In practice it is thus much simpler to solve than the Yang-Baxter
equation (which gives cubic equations in the entries of the R-matrix). However there is so far no
general method to systematically solve this reflection equation and it has to be studied case by
case. Several classification have been provided for particular models, see for instance [127,128],
and the reader can find in these references a bench of methods to help solving this reflection
equation. We present below example of solutions of the reflection equation for the DiSSEP and
for the multi-species SSEP. These K-matrices were derived with a technique that is roughly
summarized as follows: we performed elementary algebraic manipulations on the quadratic
equations (given by (II.C.1)) to obtain an equality between something depending only on the
spectral parameter z1 on the left hand side and something depending only on the spectral
parameter z2 on the right hand side (which proves that the two terms are constant).

Example C.19. The K-matrices associated to the DiSSEP are multiplicative in the spectral
parameter. The left matrix reads

K(z) =

(
(z2+1)((z2−1)(γ−α)+4zλ)
2z((z2−1)(α+γ)+2λ(z2+1))

(z2−1)((z2+1)(γ−α)+2z(α+γ))
2z((z2−1)(α+γ)+2λ(z2+1))

(z2−1)((z2+1)(α−γ)+2z(α+γ))
2z((z2−1)(α+γ)+2λ(z2+1))

(z2+1)((z2−1)(α−γ)+4zλ)
2z((z2−1)(α+γ)+2λ(z2+1))

)
(II.C.46)
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az
(az+1)(bz+1)

abz2

(az+1)(bz+1)
1

(az+1)(bz+1)
bz

(az+1)(bz+1)

zz1 1− zz1 1 (1− zz0)(1− zz1) zz0(1− zz1) zz1 1

z
z1

1− z
z1 1 1 1− z

z0
z
z0

1− z
z1

z
z1 1

Figure II.17: An example of sequential update corresponding to the Markov matrix t(z|z). The
first line is the configuration at time t. The second line represents the possible configurations
after adding the two supplementary sites corresponding to the boundaries. The third line
corresponds to the intermediate configurations after the updates of the particles. The fourth
line represents the possible configurations after the updates of the holes. The label of the arrows
provides the rate of the corresponding change of configurations. The last line represents the
final configurations at time t+ 1 after the summation step.
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which satisfies the reflection equation, the regularity, unitarity and Markovian properties. It
generates the left boundary local jump operator B through the relation

λK ′(1) = B (II.C.47)

which corresponds to a value θ = 2λ. The right matrix reads

K(z) =

(
(z2+1)((z2−1)(δ−β)+4zλ)
2z((1−z2)(β+δ)+2λ(z2+1))

(z2−1)((z2+1)(δ−β)−2z(β+δ))
2z((1−z2)(β+δ)+2λ(z2+1))

(z2−1)((z2+1)(β−δ)−2z(β+δ))
2z((1−z2)(β+δ)+2λ(z2+1))

(z2+1)((z2−1)(β−δ)+4zλ)
2z((1−z2)(β+δ)+2λ(z2+1))

)
(II.C.48)

which satisfies the reversed reflection equation, the regularity, unitarity and Markovian prop-
erties. It generates the right boundary local jump operator B as follows

− λK ′(1) = B. (II.C.49)

Example C.20. We are interested in the integrable stochastic boundaries associated to the
multi-species SSEP. The multi-species SSEP is a multi-species generalization of the SSEP,
whose bulk local jump operator m is given by m = P − I, where P is the permutation matrix
acting on CN+1⊗CN+1. A more physical description of the dynamics will be given in chapter
III. The bulk dynamic is integrable : the R-matrix is given by

R(z) =
z + P

z + 1
. (II.C.50)

It is additive in the spectral parameter and satisfies the Yang-Baxter equation (II.B.12), the
regularity, unitarity and Markovian properties. The local jump operator m can be recovered
through the relation m = Ř′(0).

The solutions of the reflection equation (associated with this R-matrix) have been classified
in [128]. We present here, without proof, classes of integrable stochastic boundaries B and
B among this classification. We divide the N + 1 species (and holes) into p distinct families
F1, . . . , Fp of non-vanishing cardinalities f1, . . . , fp at the left boundary and into q distinct
families G1, . . . , Gq of non-vanishing cardinalities g1, . . . , gq at the right boundary. We hence
have two different partitions {0, . . . , N} =

⊔p
k=1 Fk =

⊔q
k=1Gk. We define 2(N + 1) non

negative numbers α0, . . . , αN for the left boundary and β0, . . . , βN for the right boundary with
the constraints

for all 1 ≤ k ≤ p,
∑
s∈Fk

αs = 1, (II.C.51)

and
for all 1 ≤ k ≤ q,

∑
s∈Gk

βs = 1. (II.C.52)

The left boundary conditions are given by

B|s′〉 = −1

a
|s′〉+

∑
s∈Fk

αs
a
|s〉, 1 ≤ s′ ≤ N. (II.C.53)

k in (II.C.53) is such that s′ ∈ Fk. Remark that in the particular case where the family of s′

contains only one species, i.e. Fk = {s′}, we get from the constraints that αs′ = 1 and hence
B|s′〉 = 0.

In the same way, the right boundary conditions are given by

B|s′〉 = −1

b
|s′〉+

∑
s∈Gk

βs
b
|s〉, 1 ≤ s′ ≤ N, (II.C.54)

with k such that s′ ∈ Gk. Note that when we have a single family on the left and a single family
on the right, i.e. when p = q = 1, then the boundary conditions reduce to the one studied in
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details in chapter III of this manuscript. To illustrate these boundary conditions, we give some
examples in the case N = 3 for the left boundary:

B =
1

a


α0 − 1 α0 0 α0

α1 α1 − 1 0 α1

0 0 0 0
α3 α3 0 α3 − 1

 , with α0 + α1 + α3 = 1, (II.C.55)

B =
1

a


α0 − 1 α0 0 0
α1 α1 − 1 0 0
0 0 α2 − 1 α2

0 0 α3 α3 − 1

 , with α0 + α1 = 1 and α2 + α3 = 1,(II.C.56)

B =
1

a


α0 − 1 0 α0 0

0 α1 − 1 0 α1

α2 0 α2 − 1 0
0 α3 0 α3 − 1

 , with α0 + α2 = 1 and α1 + α3 = 1,(II.C.57)

B =
1

a


0 0 0 0
0 α1 − 1 α1 0
0 α2 α2 − 1 0
0 0 0 0

 , with α1 + α2 = 1, (II.C.58)

Examples of right boundaries in the case N = 3 are obtained by replacing αi by βi and a by b
in the matrices (II.C.55)-(II.C.58) above.

Coming back to the general multi-species case N ≥ 1, the K-matrices associated to the
boundary local jump operators B and B are given by

K(z) = I +
2zaB

z + a
and K(z) = I +

2zbB

z − b
. (II.C.59)

They satisfy the reflection equation, as well as the regularity, unitarity and Markovian prop-
erties. Note the similarity of these expressions with the one of the R-matrix. We have the
relations

B =
1

2
K ′(0) and B = −1

2
K
′
(0). (II.C.60)

b) Baxterization

We have seen in the previous section the construction of solutions to the Yang-Baxter equation
starting from a local jump operator satisfying specific algebraic relations. This procedure has
been extended to the reflection equation [129] through the boundary Hecke algebra [130,131],
that we now introduce.

Boundary Hecke algebra

Definition C.21. For n ≥ 1, the boundary Hecke algebra bHn(ω, ω0) is the unital associative
algebra over C with generators σ0, σ1, . . . , σn−1, where σ1, . . . , σn−1 satisfy the defining rela-
tions (II.B.88), (II.B.89), (II.B.90) and (II.B.91) of the Hecke algebra H(ω) and subject to the
additional relations

σ0σ1σ0σ1 = σ1σ0σ1σ0, (II.C.61)

σ0σi = σiσ0, i > 1, (II.C.62)

σ0σ
−1
0 = σ−1

0 σ0 = 1, (II.C.63)

σ2
0 = ω0σ0 + 1, (II.C.64)

where ω0 is a complex number not necessarily equal to ω.

95



One of the main interest of this algebra, in the context of integrable systems, is the fact
that it produces solution to the (spectral parameter dependent) braided reflection equation
through the following Baxterisation procedure.

Theorem C.22. If σi satisfy the relations of the boundary Hecke algebra, then

K0(z) =
(z2 − 1)σ0 + z(u

−1/2
0 − u1/2

0 ) + t
−1/2
0 − t1/20

z2t
−1/2
0 + z(u

−1/2
0 − u1/2

0 )− t1/20

, (II.C.65)

where t0 is such that ω0 = t
−1/2
0 − t1/20 and u0 is a free complex parameter, satisfies the braided

reflection equation

Ř1(z1/z2)K0(z1)Ř1(z1z2)K0(z2) = K0(z2)Ř1(z1z2)K0(z1)Ř1(z1/z2) . (II.C.66)

Moreover the following properties hold:

– unitarity K0(z)K0(1/z) = 1 , (II.C.67)

– regularity K0(1) = 1 , (II.C.68)

– locality K0(z)Ři(z
′) = Ři(z

′)K0(z) for i > 1 . (II.C.69)

Proof. The regularity and locality properties are obvious.
The unitarity and the braided Yang–Baxter equation are established through a direct compu-
tation, using the relations (II.C.61), (II.B.91) and (II.C.64).

Example C.23. We can show that the bulk local jump operator m (II.A.23) and the boundary
local jump operator B (II.A.31) of the ASEP provide an explicit representation of the boundary

Hecke algebra bHn(ω, ω0) with ω =
√

q
p −

√
p
q and ω0 =

√
γ
α −

√
α
γ in the tensor space

End(C2)⊗n

bHn(ω, ω0) → End(C2)⊗n

σi 7→ I⊗i−1 ⊗ S ⊗ I⊗n−i−1 (II.C.70)

σ0 7→ W ⊗ I⊗n−1 (II.C.71)

where S is a 4× 4 matrix (acting on C2 ⊗ C2) given by

S =
1
√
pq

(m+ q), (II.C.72)

and is W a 2× 2 matrix (acting on C2) given by

W =
1
√
αγ

(B + γ) (II.C.73)

Then the Baxterised K-matrix

K(z) =
(z2 − 1)W + z(u

−1/2
0 − u1/2

0 ) + t
−1/2
0 − t1/20

z2t
−1/2
0 + z(u

−1/2
0 − u1/2

0 )− t1/20

(II.C.74)

corresponding to (II.C.65), with t
1/2
0 =

√
α
γ and u0 such that u

1/2
0 −u

−1/2
0 = p−q+γ−α√

αγ , coincides

with the expression of the K-matrix of the ASEP given in (II.C.10).

Remark C.24. The Baxterization procedure presented in theorem C.22 can be extended to a
more general boundary Hecke algebra, called cyclotomic algebra, where the relation (II.C.64) is
generalized to

r∑
k=0

ak (σ0)k = 0 (II.C.75)

for some fixed r = 2, 3, . . . and a0, ... ar free parameters. For an introduction to cyclotomic
algebras, see e.g. [132]. Then, a K-matrix can be constructed as a polynomial in σ0 [133].
When r = 2, the cyclotomic Hecke algebra is just the boundary Hecke algebra.
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Generalization of the boundary algebra We present in this paragraph a generalization
of the cyclotomic Hecke algebra, introduced in [134], where the relation related to the minimal
polynomial is not required. We present also the Baxterization of this algebra given in [134].

Definition C.25. We consider a generalization of the boundary Hecke algebra, called b̃Hn(ω),
which is a unital associative algebra over C with generators σ0, σ1, . . . , σn−1, where σ1, . . . , σn−1

satisfy the defining relations (II.B.88), (II.B.89), (II.B.90) and (II.B.91) of the Hecke algebra
H(ω) and subject to the additional relations

σ0σ1σ0σ1 = σ1σ0σ1σ0, (II.C.76)

σ0σi = σiσ0, i > 1, (II.C.77)

σ0σ
−1
0 = σ−1

0 σ0 = 1. (II.C.78)

The previous algebra is the boundary Hecke algebra where the relation (II.C.64) has been
taken out. More precisely, the boundary Hecke algebra or the cyclotomic Hecke algebras are
quotients of this algebra obtained by imposing a polynomial relation (II.C.75). We present
below a Baxterisation procedure of b̃Hn(ω).

Theorem C.26. If σi satisfy the relations of b̃Hn(ω), then

K0(z) = (1− zσ0)

(
1− 1

z
σ0

)−1

, (II.C.79)

satisfies the braided reflection equation

Ř1(z1/z2)K0(z1)Ř1(z1z2)K0(z2) = K0(z2)Ř1(z1z2)K0(z1)Ř1(z1/z2) . (II.C.80)

Moreover the following properties hold:

– unitarity K0(z)K0(1/z) = 1 , (II.C.81)

– regularity K0(1) = 1 , (II.C.82)

– locality K0(z)Ři(z
′) = Ři(z

′)K0(z) for i > 1 . (II.C.83)

Proof. The unitarity, regularity and locality properties are obvious.
The braided Yang–Baxter equation will be established below with theorem C.27 and proposi-
tion C.29.

We present now another generalization of the boundary Hecke algebra, introduced in [V4],
which will be very useful to deal with the multi-species ASEP.

Theorem C.27. Let σi (i = 1, . . . , L − 1) be the generators of the Hecke algebra satisfying
(II.B.88), (II.B.91) and Ři(x) the associated braided R-matrices (II.B.92). Let us also define

K0(z) = (1− (z − 1)σ0)

(
1−

(
1

z
− 1

)
σ0

)−1

(II.C.84)

with σ0 a supplementary generator. The inverse in (II.C.84) is understood as the formal series(
1−

(
1

z
− 1

)
σ0

)−1

= z
(

1− (1− z)(σ0 + 1)
)−1

= (y + 1)

∞∑
n=0

(−y)n(σ0 + 1)n , (II.C.85)

where y = z − 1.
Then K0(x) is a solution of the braided reflection equation

Ř1(z1/z2)K0(z1)Ř1(z1z2)K0(z2) = K0(z2)Ř1(z1z2)K0(z1)Ř1(z1/z2) (II.C.86)

if and only if the supplementary generator σ0 satisfies

σ1 σ0 σ1 σ0 − σ0 σ1 σ0 σ1 = ω( σ2
0 σ1 σ0 − σ0 σ1 σ

2
0 ) . (II.C.87)
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Moreover the operator K0(z) is unitary:

K0(z)K0(1/z) = 1, (II.C.88)

and satisfies the regularity property
K0(1) = 1. (II.C.89)

We denote by bHn(ω) the algebra generated by σ0, σ1, . . . , σL−1

Proof. We multiply both sides of the braided reflection equation (II.C.86) on the left and on
the right by

z2

z1

(
1−

(
1

z2
− 1

)
σ0

)
=

1

z1
(1 + (z2 − 1)(σ0 + 1)) (II.C.90)

and use (II.B.92), (II.C.84) to get the following equivalent relation

(1 + y2(σ0 + 1)) ((z1 − z2)σ1 + ωz2)
1

z1
Ǩ(z1) ((z1z2 − 1)σ1 + ω) (1− y2σ0)

= (1− y2σ0) ((z1z2 − 1)σ1 + ω)
1

z1
Ǩ(z1) ((z1 − z2)σ1 + ωz2) (1 + y2(σ0 + 1)) (II.C.91)

where yi = zi − 1. Then, we use the expansion (II.C.85) of 1
z1
Ǩ(z1) in terms of y1. The

coefficient of y1y
3
2 in (II.C.91) provides relation (II.C.87), which proves that (II.C.86) implies

(II.C.87).

To prove the reverse implication, we use the following lemma:

Lemma C.28. Relation (II.C.87) implies, for k = 0, 1, 2, . . . ,

σ1 σ0 σ1 σ
k
0 − σk0 σ1 σ0 σ1 = ω( σk+1

0 σ1 σ0 − σ0 σ1 σ
k+1
0 ),(II.C.92)

σ1 σ
k
0 σ1 σ0 − σ0 σ1 σ

k
0 σ1 = ω( σk+1

0 σ1 σ0 − σ0 σ1 σ
k+1
0 (II.C.93)

+ σk0 σ1 σ0 − σ0 σ1 σ
k
0 ),

σ1 (σ0 + 1)k σ1 σ0 − σ0 σ1 (σ0 + 1)k σ1 = ω( (σ0 + 1)k+1 σ1 σ0

− σ0 σ1 (σ0 + 1)k+1 ) , (II.C.94)

σ1 σ0 (σ0 + 1)k σ1 σ0 − σ0 σ1 σ0 (σ0 + 1)k σ1 = ω( σ0 (σ0 + 1)k+1 σ1 σ0

− σ0 σ1 σ0 (σ0 + 1)k+1 ) .(II.C.95)

The first relation of the lemma (II.C.92) is proven by recursion using (II.C.87). Relation
(II.C.93) is proven also by recursion with (II.C.92), (II.B.88) and (II.B.91). The third and the
fourth are proven by expanding (σ0 + 1)k and using (II.C.93).

The lemma allows us to prove that

σ1K(z)σ1σ0 − σ0σ1K(z)σ1 = ω ((σ0 + 1)K(z)σ1σ0 − σ0σ1(σ0 + 1)K(z)) . (II.C.96)

Finally, by expanding (II.C.91) and by using relation (II.C.96), we prove that equation
(II.C.87) implies (II.C.86) which concludes the proof of the theorem.

The connection between the Baxterisations presented in theorems C.26 and C.27 is detailed
in the following proposition.

Proposition C.29. Assume that σ0 ∈ bHn(ω) is such that σ0 + 1 is invertible. Then the
following map is an algebra morphism

bHn(ω) → b̃Hn(ω)

σi 7→ σi, 1 ≤ i ≤ n− 1 (II.C.97)

σ0 7→ σ0(1 + σ0)−1. (II.C.98)

Moreover this map transforms the Baxterised K-matrix (II.C.84) into (II.C.79), up to a nor-
malization factor.
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Proof. This can be shown by using relation (II.C.87) for σ0 and lemma C.28.
We now present an application of this algebraic machinery to out-of-equilibrium statistical

physics. The algebra bHn(ω) is indeed at the root of integrable boundary matrices for the
multi-species ASEP. This is detailed in the following paragraph.

Integrable boundary conditions for the multi-species ASEP We wish to give explicit
solutions for integrable Markovian boundary matrices B for the multi-species ASEP. These
solutions are obtained from K-matrices obeying the braided reflection equation (II.C.86) (with
the R-matrix associated to the N -species ASEP (II.B.102) obtained from the Baxterisation
(II.B.92)) through the relation

B =
q − p

2
K ′(1). (II.C.99)

We first present the integrable Markovian boundary conditions B. We will then argue that
they belong (up to a shift and normalization) to a bHn(ω) algebra. This will provide through
the Baxterisation procedure an explicit expression of the associated K-matrices.

The integrable boundary conditions depend on two free real positive parameters (rates) α
and γ, and four positive integers s1, s2, f1 and f2, that label two special slow (s) and two
special fast (f) species, with the conditions

0 ≤ s1 ≤ s2 < f2 ≤ f1 ≤ N and f1 − f2 = s2 − s1. (II.C.100)

The four special species will be essentially created on the boundary, while the remaining species
will essentially (but not only) decay onto these four types. Any species in between s1 and s2 will
be paired with one species in between f2 and f1, allowing a transmutation (on the boundary)
between the pairs. Finally, in between s2 and f2, either nothing happens, or the species decay
to s2 and f2.

More specifically, integrability is preserved when we have the following rules and rates on
the boundary:

• Class of very slow species: for species τ with 1 ≤ τ < s1, we have:

τ
γ−→ s1 and τ

α−→ f1. (II.C.101)

• Class of slow species: for species τ with s1 ≤ τ ≤ s2, we have:

τ
α−→ τ = s1 + f1 − τ = s2 + f2 − τ. (II.C.102)

• Class of intermediate species: for species τ with s2 < τ < f2, we have the two possibilities:

1. τ
0−→ τ ′, ∀τ ′ (no decay, creation or transmutation).

2. τ
γ̃−→ s2 and τ

α−→ f2.

• Class of fast species: for species τ with f2 ≤ τ ≤ f1, we have:

τ
γ̃−→ τ = s1 + f1 − τ. (II.C.103)

• Class of very fast species: for species τ with f1 < τ ≤ N , we have:

τ
γ̃−→ s1 and τ

α̃−→ f1. (II.C.104)

We have introduced the following combination of the rates:

α̃ =
(α+ γ + q − p)α

α+ γ
, γ̃ =

(α+ γ + q − p)γ
α+ γ

. (II.C.105)

This implies that α, γ, p, q are constrained such that α̃, γ̃ are positive.
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Note that, depending on the choice of s1, s2, f2 and f1, some classes of species may not
occur: for instance if s1 = 0, there is no very slow species. In the same way, if f2 = s2 + 1,
there are no intermediate species.

Due to the second constraint in (II.C.100), the number of slow species coincides with the
number of fast species, in accordance with the pairing mentioned above. By counting the
number of possibilities for s1, s2, f1 and f2 with the constraints (II.C.100), we can deduce

that, for multi-species ASEP there exist14

(
N + 2

3

)
different integrable boundaries, each of

them depending on two real parameters.
Note that in any transition, the number of particles for the species in the very slow and

very fast classes can only decrease. It may stay constant for the slow, fast and intermediate
classes. For the four special types it may increase.

To summarize, these rates are gathered in the two following types of boundary matrices,
depending on the two possibilities for intermediate species:

B0(α, γ|s1, s2, f2, f1) = (II.C.106)

-σ
. . .

-σ

γ · · · γ -α γ̃ γ̃ · · · γ̃
-α γ̃

. . . . .
.

-α γ̃

0 · · · 0
...

...
0 · · · 0

α -γ̃

. .
. . . .

α -γ̃
α · · · α α -γ̃ α̃ · · · α̃

-σ̃
. . .

-σ̃


14We have included in the counting the two possible choices for the intermediate species when f2 > s2 + 1.
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B(α, γ|s1, s2, f2, f1) = (II.C.107)

-σ
. . .

-σ

γ · · · γ -α γ̃ γ̃ · · · γ̃
-α γ̃

. . . . .
.

-α γ̃ · · · γ̃ γ̃

-σ′

. . .

-σ′

α α · · · α -γ̃

. .
. . . .

α -γ̃
α · · · α α -γ̃ α̃ · · · α̃

-σ̃
. . .

-σ̃


We have introduced σ = α+ γ, σ̃ = α̃+ γ̃ and σ′ = α+ γ̃. The empty spaces in the matrices
above are filled with zeros, and the lines indicate the positions of the four special types of
species.

Remark C.30. We remark that the rates can be written in a more symmetric way by intro-
ducing the combination of parameters15

a = −α
γ
, c =

α+ γ

α+ γ + q − p
, (II.C.108)

which have previously appeared as the parameters of the Askey-Wilson polynomials in the con-
text of the ASEP stationary state [48]. Then

α =
ac(p− q)

(a− 1)(c− 1)
and γ = − c(p− q)

(a− 1)(c− 1)
, (II.C.109)

and the parameters α̃ and γ̃ become

α̃ =
a(p− q)

(a− 1)(c− 1)
and γ̃ = − (p− q)

(a− 1)(c− 1)
. (II.C.110)

Remark C.31. We can produce more integrable solutions using conjugation by any diagonal
invertible matrix V . Indeed, due to the invariance of the R-matrix (II.B.102) by the conju-
gation by V1V2, V K(z)V −1 is solution of the reflection equation if K(z) is also a solution.
However, the resulting conjugated matrix may not be Markovian. Nonetheless, we remark that
conjugation by the diagonal matrix diag(es1 , es2 , . . . , esN ) provides a deformed integrable bound-
ary matrix that allows one to compute the cumulants of the currents at the boundary for the
different species.

Remark C.32. We presented the integrable left boundary matrices of the multi-species ASEP
but the integrable right boundary matrices can be directly deduced from them. They are indeed

15Note that in our parameters, γ̃ corresponds to γ in the one-species ASEP. This choice avoids the presence
of a square root in a and c and in the rates appearing in the boundary matrices.
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obtained from a right reflection matrix K(z) which satisfies the reflection equation (II.C.8).
Due to the symmetry relation (for the R-matrix of the multi-species ASEP)

R21(z) = U1U2R12(z)U1U2, with U =

 1

. .
.

1

 , (II.C.111)

the matrix K(z) can be constructed from a solution K(z) of the reflection equation (II.C.1)
through the relation

K(z) = UK (1/z) U. (II.C.112)

A right boundary matrix B is obtained with the relation

B = −q − p
2

K
′
(1). (II.C.113)

Explicitly, the right boundary matrices are deduced from relation (II.C.112) and take the form

B(β, δ|s′1, s′2, f ′2, f ′1) = U B(β, δ|s′′1, s′′2, f ′′2 , f ′′1 )U (II.C.114)

where U is defined in (II.C.111). The conjugation by U implies f ′′j = N − s′j and s′′j = N − f ′j,
j = 1, 2.

Let us stress that the parameters entering B are independent from the ones used in the left
boundary B. Altogether we will have four real parameters: α, γ for the left boundary, and β, δ
for the right one. In the same way, the labels s′1, s

′
2, f
′
2, f
′
1 of the four special species in the right

boundary are independent from the four special species labels s1, s2, f2, f1 in the left boundary.
The bijection between right and left boundaries can be seen in the following identity

B(β, δ|s1, s2, f2, f1) ≡ B(δ, β|s1, s2, f2, f1)
∣∣∣
z↔z̃

(II.C.115)

where z ↔ z̃ means that we interchange β with β̃ and δ with δ̃. As in the case of left boundaries,
we use the notation

β̃ =
(β + δ + q − p)β

β + δ
and δ̃ =

(β + δ + q − p)δ
β + δ

. (II.C.116)

Example C.33. For the case N = 1, we recover the one-species ASEP. We get only one
possible choice for s1, s2, f1 and f2 given by s1 = s2 = 0 and f1 = f2 = 1. Then, in the
language used in this paragraph, the particle 0 (vacancy) is slow and the particle 1 is fast and
the rates at the boundary are given by

0
α−→ 1 and 1

γ̃−→ 0. (II.C.117)

One recovers that for the one-species ASEP, the generic boundary is integrable. The boundary
matrix has the form

B =

(
−α γ̃
α −γ̃

)
. (II.C.118)

One can use Bethe ansatz method to compute the eigenvalues and compute for example the
spectral gap [135].

Conjugation by a diagonal matrix provides the non-Markovian boundary matrix used to
compute the cumulant of the current [18]:

B(s) =

(
−α es γ̃
e−s α −γ̃

)
. (II.C.119)

It still corresponds to an integrable boundary.
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s1 = s2 = 0 s1 = s2 = 1 s1 = s2 = 0
f1 = f2 = 1 f1 = f2 = 2 s1 = s2 = 2

Type of
part.

part. 0 slow
part. 1 fast

part. 2 very fast

part. 0 very slow
part. 1 slow
part. 2 fast

part. 0 slow
part. 1 intermediate

part. 2 fast

0
α−→ 1 0

γ−→ 1 0
α−→ 2

Rates 1
γ̃−→ 0 0

α−→ 2 0
α−→ 2 1

γ̃−→ 0

2
γ̃−→ 0 1

α−→ 2 2
γ̃−→ 0 1

α−→ 2

2
α̃−→ 1 2

γ̃−→ 1 2
γ̃−→ 0

Name in [V5] L1 L2 L4 L3

Table II.1: The four integrable boundaries in the case N = 2. The last row corresponds to
the names of these boundaries in [V5].

Example C.34. For the case N = 2, we obtain the two-species ASEP. There are four possi-
bilities summarized in table II.1. We recover the boundaries found in [V5].

Example C.35. Some of the boundary matrices can be related to former studies of boundary
Hecke algebras [136, 137]. In our notation, they correspond to the matrices B(α, γ|0, s2, N −
s2, N) or B0(α, γ|0, s2, N−s2, N). Among them, some have been considered: B0(α, γ|0, 1, N−
1, N) was analyzed in [138], and for the two-species ASEP (N = 2) B0(α, γ|0, 0, 2, 2) was
studied in [139–141].

Proposition C.36. For any matrix B = B(α, β|s1, s2, f2, f1) or B = B0(α, β|s1, s2, f2, f1),
the generators

σ0 =
B + α+ γ + q − p

p− q
and σ1 = (m+ q)/

√
pq (II.C.120)

obey relation (II.C.87), where m ≡ m12 is given in (II.B.100) and B acts non trivially in space
1.

Proof. The matrices σ1 and σ0 given in (II.B.98) and (II.C.120) act on two site multi-species
ASEP configurations. For a given start state, ττ ′, we can find a subset of the particle species
S = {τ, τ ′, τ ′′, . . .} such that for any polynomial in σ1 and σ0 acting on this state, these are
the only species involved in the resulting configurations.

For all of the boundary matrices we consider, the subset S turns out to be small, and related
to the different classes of particles we introduced above: the non-diagonal part of σ1 exchanges
particles on sites 1 and 2, as allowed by bulk matrix m; the non-diagonal part of σ0 injects
and removes particles at site 1 as allowed by the boundary transitions given previously. The
idea of the proof is then to project the ‘global’ matrices σ0, σ1 down to the smaller number of
species in S. If for every starting state we can show that the resulting projected σ0, σ1 satisfy
(II.C.87), then this implies that the ‘global’ matrices also satisfy (II.C.87).

At this point, the proof decomposes into different steps:

• We remark that for any start state ττ ′, the set S falls into one of three categories:

S = {τ, τ ′, s1, s2, f1, f2}, (II.C.121)

S = {τ, s1 + f1 − τ, τ ′, s1 + f1 − τ ′}, (II.C.122)

S = {τ, s1 + f1 − τ, τ ′, s, f}, with (s, f) = (s1, f1) or (s2, f2) (II.C.123)

Note that these sets can be reduced depending on the class of the species τ and τ ′. For
instance, if τ and τ ′ are of very slow class, then S = {τ, τ ′, s1, f1}. Note also that the
ordering of the start state does not change S so τ , τ ′ are interchangeable in (II.C.123).
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• Projecting the boundary matrix, B, corresponding to σ0 down to the species in S results
in a boundary matrix of size |S| of type (II.C.106) or (II.C.107). To see this, we perform
the projection by ‘deleting’ species from B by removing the corresponding row and
column: we use the following operations which preserve the forms (II.C.106) or (II.C.107):

– Deleting any species in the very slow, intermediate, or very fast class;

– Deleting a species, τ̃ , in the slow or fast class with τ̃ 6= s1, f1 if we also delete the
species s1 + f1 − τ̃ ;

– Deleting species s1 and f1 together, if s1 = 1, f1 = N , and f1 − f2 = s2 − s1 > 0.

– Deleting species s2 and f2 together, if f2 = s2 + 1, and f1 − f2 = s2 − s1 > 0.

These operations are always sufficient to project down to any subsets S as defined above.
The projected σ0 is then obtained from the projected B through (II.C.120).

• For the local bulk matrix m (giving σ1) we can delete any number of species, preserving
the form (II.B.100).

• To complete the proof all we need to do is to verify that all boundary matrices in this
family give σ0 matrices which satisfy (II.C.87) for size 2 up to 6 (the maximum |S|). We
have done this by a direct computation with a formal mathematical software package.

To illustrate the projection on S, we consider the following boundary matrix

B =



-σ

γ -α γ̃ γ̃
-α γ̃ γ̃

-σ′

α α -γ̃
α α -γ̃ α̃

−σ̃


(II.C.124)

and give some examples of start state (τ, τ ′) and the resulting subset S and corresponding
reduced matrix. In the case where (τ, τ ′) = (0, 3), we obtain S = {0, 3, s1 = 1, s2 = 2, f1 =
5, f2 = 4} and the reduced matrix reads

-σ

γ -α γ̃
-α γ̃ γ̃

-σ′

α α -γ̃
α α -γ̃

 . (II.C.125)

In the case where (τ, τ ′) = (1, 5), we obtain S = {1, 5} and the reduced matrix reads(
-α γ̃
α -γ̃

)
. (II.C.126)

Finally, in the case where (τ, τ ′) = (2, 3), we obtain S = {2, 3, 4} and the reduced matrix reads-α γ̃ γ̃
0 -σ′ 0
α α -γ̃

 . (II.C.127)

From theorem C.27, we can now give an expression for the Baxterised K-matrices of the
multi-species ASEP.
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Proposition C.37. For any matrix B = B(α, β|s1, s2, f2, f1) or B = B0(α, β|s1, s2, f2, f1),
the Baxterised K-matrix defined by

K(z) =
(α+ γ + q − p)(1

z − 1) + q − p
(α+ γ + q − p)(z − 1) + q − p

(
1− (z − 1)σ0

1− (1
z − 1)σ0

)
, (II.C.128)

where

σ0 =
B + α+ γ + q − p

p− q
, (II.C.129)

satisfies the reflection equation, the unitarity, regularity and Markovian properties. Moreover,
the normalization factor in (II.C.128) ensures that we have the relation

B =
q − p

2
K ′(1). (II.C.130)

Proof. It is straightforward to check the unitarity and regularity properties. We deduce im-
mediately from theorem C.27 and proposition C.36 that the K-matrix satisfies the reflection
equation. The Markovian property is deduced from the fact that the sum of the entries of each
column of B is 0. The last relation is obtained by direct computation.

Remark C.38. The K-matrix given in the previous proposition can be more precisely evaluated
(the resulting expression does not contain an inverse anymore)

K(z) = 1 + k(z)
(
b0 + z b+0 +

1

z
b−0

)
, (II.C.131)

with k(z) =

(
z2 − 1

)
(α+ γ)

(γz + α) ((α+ γ)(z − 1) + (q − p)z)
. (II.C.132)

The matrices b0, b+0 and b−0 are such that B = b0 + b+0 + b−0 and are given by

b+0 =



-γ
. . .

-γ

γ · · · γ


and b−0 =


α̃ · · · α̃

-α̃
. . .

-α̃


(II.C.133)

where we draw symbolically the lines corresponding to the four special types of particles, to
indicate which part of the matrix we picked up in the boundary matrix to construct b±0 . Again,
the empty spaces are all filled with zeros. The remaining part is b0 = B − (b+0 + b−0 ), where B
is either (II.C.106) or (II.C.107). Note that the decomposition is done in such a way that each
matrix b0, b±0 is Markovian.

The expression (II.C.131) of the K-matrix can be established using the algebraic relations

b20 = − (α+ γ̃) b0 + α̃b+0 + γb−0 ,
(
b+0
)2

= −γb+0 ,
(
b−0
)2

= −α̃b−0 ,
b0b

+
0 = b+0 b0 = −αb+0 , b0b

−
0 = b−0 b0 = −γ̃b−0 ,

b+0 b
−
0 = b−0 b

+
0 = 0.

(II.C.134)

The expression (II.C.131) makes connection, in the single species case N = 1, with the Bax-
terisation of the boundary Hecke algebra (II.C.65).
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3 Diagonalization of the transfer matrix

The diagonalization of the transfer matrix in the open case is much harder than in the periodic
case. The main reason is the fact that the particles number may not be conserved by the
dynamics on the boundaries (even if the particles number is conserved by the bulk dynamics).
The situation is thus different from the periodic case where the diagonalization had been
achieved at fixed number of particles, separately in each sector (we recall that the transfer
matrix was block diagonal). The most commonly used methods in the periodic case, the
coordinate Bethe ansatz and the algebraic Bethe ansatz cannot be applied directly here.

However the coordinate Bethe ansatz had been modified successfully in some particular
cases, such as model with diagonal boundaries [89]. More recently it had been applied to the
open single species ASEP [97,142], providing partial results on the eigenvectors.

The algebraic Bethe ansatz had also been adapted successfully to diagonalize transfer ma-
trices of certain open models, such as the open XXX and XXZ spin chain, first for triangular
boundaries [102], and later for general boundaries [103, 104]. It has also been applied to the
open single species TASEP [143].

We present in the example below how the results of the algebraic Bethe ansatz for the open
XXZ spins chain can be used to compute the spectrum of the DiSSEP with open boundaries.

Example C.39. We encountered the DiSSEP several times in this manuscript, through the
presentation of its local jump operators m in (II.A.26) and B, B in (II.A.31), and then through
the associated R-matrix (II.B.55) and K-matrices (II.C.46) and (II.C.48). This proved the in-
tegrability of the model. The reader may refer to subsection 1 for details about the dynamics
and properties of the DiSSEP. The integrability of this model is also revealed through its unex-
pected connexion with the XXZ spins chain. To be more precise, let us introduce the following
quantum Hamiltonian H

H = (α− γ)σ+
1 −

α+ γ

2
(σz1 + 1) + (δ − β)σ+

L −
δ + β

2
(σzL + 1)

−λ
2 − 1

2

L−1∑
k=1

(
σxkσ

x
k+1 + σykσ

y
k+1 −

λ2 + 1

λ2 − 1
(σzkσ

z
k+1 − 1)

)
(II.C.135)

where σx,y,z,+,− are the Pauli matrices. It corresponds to the open XXZ spins chain with upper
triangular boundaries. This Hamiltonian H is conjugated to the Markov matrix M of the
DiSSEP defined as usual by

M = B1 +
L−1∑
k=1

mk,k+1 +BL. (II.C.136)

Namely, one has

H = Q1Q2 . . . QLMQ−1
1 Q−1

2 . . . Q−1
L where Q =

(
−1 1
1 1

)
. (II.C.137)

Let us also mention that the XXZ Model for particular choices of boundaries is conjugated to
the Markov matrix of the open ASEP. However, for the boundaries present in (II.C.135), the
conjugation provides non-Markovian boundaries (the sum to 0 property is not fulfilled).

We deduce from (II.C.137) that the spectrum of M is identical to the one of H. Moreover,
the eigenvalues (but not the eigenvectors) of XXZ spin chain with upper triangular boundaries
are the same that the ones for diagonal boundaries and one can use the results of [86,126,144].
Note also that for λ2 = 1, the bulk Hamiltonian becomes diagonal, and the full Hamiltonian
triangular, allowing to get its spectrum easily without Bethe ansatz, in accordance with the
results of subsection 1.

The eigenvalues of H with diagonal boundaries can be parametrized in two different ways
depending on the choice of the pseudo-vacuum:
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• For the pseudo-vacuum with all the spins up and in the notations of the present paper,
the eigenvalues of H are given by

E = −α− β − γ − δ + 4(φ− 1)2
N∑
i=1

ui
(ui − φ2)(ui − 1)

(II.C.138)

where N = 0, 1, . . . , L and ui are the Bethe roots. The Bethe roots must satisfy the
following Bethe equations

ui + aφ2

φ(aui + 1)

ui + bφ2

φ(bui + 1)

(
φ(ui − 1)

ui − φ2

)2L

=
N∏
j=1
j 6=i

φ2(φ2ui − uj)(uiuj − 1)

(ui − φ2uj)(uiuj − φ4)
(II.C.139)

where i = 1, 2, . . . , N and a and b are defined in (III.B.10).

• For the pseudo-vacuum with all the spins down, the eigenvalues of H are given by

E = 4(φ− 1)2
N∑
i=1

vi
(vi − φ2)(vi − 1)

(II.C.140)

where vi satisfy the following Bethe equations

avi + φ2

φ(vi + a)

bvi + φ2

φ(vi + b)

(
φ(vi − 1)

vi − φ2

)2L

=
N∏
j=1
j 6=i

φ2(φ2vi − vj)(vivj − 1)

(vi − φ2vj)(vivj − φ4)
. (II.C.141)

Let us stress again that, although the spectrum of the XXZ spin chain is the same for
diagonal or upper boundaries, the eigenvectors are different. For the XXZ spin chains with
upper triangular boundaries, the eigenvectors associated to the parametrization (II.C.138) and
(II.C.139) of the eigenvalues were computed only recently by algebraic Bethe ansatz in [145]
based on the previous results for the XXX spin chain [102,103]. The computation of the eigen-
vectors associated to the parametrization (II.C.140) and (II.C.141) is still an open problem.

In the past few years, other techniques had been used to tackle this diagonalization problem
of open systems. In the spirit of functional Bethe ansatz, the Off-diagonal Bethe ansatz was
developed and successfully applied to several open models [101,146].

The Baxter Q-operator idea was adapted, using matrix product expressions obtained
through infinite dimensional representations of RTT algebras, to the (current counting de-
formation) of the open ASEP, in a pioneering work [120].

New ideas also emerged to deal with these open systems. The separation of variables
method, inspired from the action-angle variables construction in classical integrable systems,
was successfully used to solve several models [100,147–149], see also [150] for an introduction.
This method could provide an unifying framework for the exact resolution of both classical
and quantum integrable systems, but a lot remains to be understood.

Finally, the q-Onsager algebra provided another point of view on the exact resolution of
open models [151,152].

All the diagonalization techniques presented in this subsection have proven to be efficient
on particular models but may appear difficult to adapt to new models. A somehow hard
analysis has to be perform each time. Moreover these methods provides the spectrum of the
model parametrized with Bethe roots, which have to satisfy the Bethe equations. We saw
previously that these Bethe equations are non-linear coupled algebraic relations, which appear
(apart from very particular cases) impossible to solve exactly. These equations can be analyzed
for large system sizes, i.e in the thermodynamic limit (see chapter V for details). They have
been studied for periodic models, introducing for instance the Bethe roots density [29,87–89],
which yields exact results for physical observables. However, for finite size systems, the exact
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computations of physical quantities cannot be performed completely, they are always expressed
in terms of Bethe roots.

In the following chapter we present an alternative method, which can be applied to inte-
grable Markovian processes: the matrix ansatz. This method provides the stationary state
of the model analytically. Its huge advantage is that it does not require to solve any Bethe
equations and gives access to exact expressions of physical observables for finite size systems.
Moreover its range of application seems to be quite large and, in some sens, quite model inde-
pendent: it seems to be possible to use it for any integrable Markovian exclusion process at the
price of solving two key relations, the Zamolodchikov-Faddeev and the Ghoshal-Zamolodchikov
relations. However this method gives only one eigenvector of the transfer matrix, the station-
ary state, and does not provide the complete spectrum and eigenvectors of the model. We do
not have access to the full dynamics of the model but only to the stationary state. Moreover
this method had been applied, so far, only on Markovian models (or on current-counting de-
formation of the Markovian models) but not on general integrable model like quantum spin
chains.
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Chapter III

Matrix ansatz for non-equilibrium
steady states

A Presentation of the method and link with integrability

The matrix ansatz (also called matrix product state) has become over the last decades an
incredibly powerful tool in a lot of different fields. In physics, this method can be roughly
described as a way to encode spatial correlations in probability distributions, and thus goes
far beyond the mean-field approximation. In mathematics such states could be interpreted
as generalized characters associated to representation of various algebras and endorse the role
of a keystone at the interplay between combinatorics, representation theory, integrability and
stochastic processes. The matrix product states were simultaneously and independently intro-
duced in the context of one dimensional Markovian systems on one side and of one dimensional
quantum Hamiltonians on the other side.

In statistical physics of classical systems, the matrix ansatz was developed to express exactly
the steady state of stochastic processes describing particles in interaction. It was used for the
first time in [46] and led to a rigorous description of phase transitions in an out-of-equilibrium
system [47,153]. This chapter will be devoted to this topic, more details and references about
the relevant literature are given in the next section.

At the same time, in quantum physics, the Density Matrix Renormalization Group (DMRG)
algorithm [154] has proven to be very efficient in computing, with a high numerical accuracy,
the ground state and low energy states of one dimensional Hamiltonian with short range
interactions [155, 156]. The convergence and validity of this algorithm has been proven to
be directly related to the existence of a matrix product expression for the eigenvectors under
consideration [157]. During the same period, on the exact result side, the ground state of several
one dimensional Hamiltonians had been analytically expressed with a matrix ansatz [158–160],
which permitted exact computation of physical quantities such as correlation lengths. More
recently, in statistical physics of open quantum systems, very interesting results have been
obtained in the context of the Lindblad equation (that describes a quantum system coupled
to reservoirs) where the density matrix has been expressed analytically in a matrix product
form [11,12,161]. These works also pointed out the link of the matrix ansatz with integrability.

We can also mention that, in integrable models, the eigenvectors obtained with the algebraic
Bethe ansatz technique can also be reformulated using matrix product states [162, 163]. It is
also important to point out that recent progress have been made in integrable models by
computing explicitly Baxter Q operator in a matrix product form [120] and [119]. In these
works the Q operator is constructed as a generalized transfer matrix with infinite dimensional
auxiliary space.

In representation theory and combinatorics, recent progress has been made in expressing
Macdonald polynomials (which form a family of multivariate polynomials, symmetric under
permutation of variables, and containing Schur, Hall-Littlewood and Jack polynomials as spe-
cializations) in a matrix product form [49]. This led in particular to explicit formulas and
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sum rules [164, 165]. This matrix product expression gave also the framework to introduce
a new family of polynomials [166], that encompasses the Macdonald polynomials. In a simi-
lar way Koornwinder polynomials1 (which form a family of multivariate Laurent polynomials,
symmetric under permutation and inversion of variables) have been expressed in some partic-
ular cases in a matrix product form [V6, 141]. All these works shed light on connections and
interplay between symmetric polynomials, representation theory of Hecke algebras, quantum
Knizhnik-Zamolodchikov equations and integrable stochastic processes. The chapter IV of this
manuscript will be devoted to this topic.

Finally, in knot theory the study of the so-called “quantum invariants” initiated by the
celebrated Jones polynomial [72] appeared as a small revolution in the field. These knot
invariants are polynomials constructed in a matrix product form using representations of the
braid group and its quotients (Hecke algebra, Birman-Murakami-Wenzl algebra,...).

In the present chapter we will focus on the role of the matrix ansatz for exact solvability in
classical non-equilibrium steady states. We will particularly investigate its link with integra-
bility. The idea of the method will be introduced on the specific example of the TASEP from
which we will draw the general framework. Some new examples will be given as an illustration.

1 General idea and example

a) General idea

In the context of exact results in out-of-equilibrium statistical physics, the matrix ansatz is
a technique introduced to express analytically the stationary distribution of certain exclusion
processes. It was first successfully used in the seminal paper [46] to compute exactly the
stationary state of the TASEP. Since this pioneering work, it has been widely used in the
context of Markovian dynamics. During the past few years the computation of the stationary
distribution of the multi-species (T)ASEP on a periodic lattice has attracted a lot of interest.
Initiated in [46] and [167] for respectively two and three species of particles, the steady state
was first expressed in the general case in a matrix product form [168–171] by reformulating a
pushing procedure. Another matrix product solution was found later by studying the interplay
between the steady state of the multi-species ASEP and the Macdonald polynomials [49]. The
connection to three dimensional integrability of the multi-species TASEP also gave rise to
another matrix product expression [172, 173]. Several works tackled particular multi-species
ASEPs with open boundaries, such as [174] for reflexive boundary conditions, or [139,175,176]
for semi-permeable boundaries and finally [V5, V7] for integrable boundaries for 2-species
TASEP. Some generalizations of the multi-species TASEP with inhomogeneous hopping rates
have been solved using a matrix ansatz on the periodic lattice [74], and also for very specific
boundary conditions [177]. We can also point out here the matrix product solution of the ABC
model on the ring with equal densities of each species [178]. In the simpler case of the multi-
species SSEP, a matrix product expression of the steady state was recently proposed [V8] for
a particular class of integrable boundary conditions. We can also mention some work related
to single species ASEP-like models with discrete time dynamics [V9, 179], or deterministic
dynamics in the bulk with stochastic boundaries [180] or with impurity [181]. A matrix product
expression of the steady state of a cellular automaton coupled with stochastic boundaries was
also recently found [182]. In [183] the steady state of an integrable two-species zero range
process, introduced in [58] was constructed in a matrix product form, generalizing the well
known factorized stationary distribution of the single species zero range process [184]. The
matrix ansatz has also been widely used to deal with reaction-diffusion stochastic models.
Several coagulation-decoagulation models were solved this way in [185] or in [186] where a
classification of such “matrix product” exactly solvable models is provided. Recently a model
with pair creation and annihilation of particles was exactly solved using a matrix ansatz in
[V10]. The reader may refer to the review [42] for more details about the use of matrix product
states in non-equilibrium steady states.

1these polynomials will be defined in details in chapter IV
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The matrix product ansatz arises as a natural generalization of the factorized distribution

S(τ1, τ2, . . . , τL) =
1

Z
f(τ1)f(τ2) . . . f(τL), (III.A.1)

where f is a real function and Z is a normalization such that the sum of the weights equals 1.

Remark A.1. Despite its apparently simple form, the distribution (III.A.1) has found many
important applications in non-equilibrium steady states. A paradigmatic example is given by
the stationary distribution of the (single species) zero range process on a ring [39]. In this
model, there are no constraints on the number of particles lying on each site of the lattice,
the particles can hop to the left (respectively right) nearest neighbor site with probability rate
qwn (respectively pwn), where n denotes the number of particles sitting on the departure site
and wn is a non-negative number, see figure III.1. The essential feature of such models is
that the hopping rates depend only on the departure site and not on the target site (in contrast
with the exclusion processes). It thus describes a system in which the interactions between
the particles have zero range. Several generalization of this model have been proposed: with
open boundaries [187], with discrete time dynamics [188, 189], with continuous mass on each
site [188, 189], with particle number constrained on each site [190], or with several species of
particles [183]. The reader may refer to the review [184] for more details.

qw3 pw3

qw2 pw2

Figure III.1: Dynamical rules of the zero range process.

This distribution (III.A.1) is that of independent and identically distributed random vari-
ables τ1, . . . , τL with probability distribution given by the (properly normalized) function f .
This framework cannot describe any correlated variables. The fundamental idea of the matrix
ansatz is to replace the real valued function f by a matrix valued function. More precisely, to
each local configuration variable τi is associated a matrix Xτi . The variable τi can take N + 1
different values 0, 1, . . . , N , hence there are N + 1 different matrices2 X0, X1, . . . , XN . This
leads to the following definition.

Definition A.2. A probability distribution S(τ1, τ2, . . . , τL), 0 ≤ τi ≤ N , is said to have a
matrix product form if there exist matrices X0, X1, . . . , XN and U and a trace operator tr
(which satisfies the cyclic property tr(AB) = tr(BA)) with non-negative values such that

S(τ1, τ2, . . . , τL) =
1

ZL
tr (UXτ1Xτ2 . . . XτL) , (III.A.2)

where the normalization ZL ensures that the sum of the probabilities gives 1. In practice, when
the model under consideration is irreducible (it implies in particular that none of the particle
species number is conserved by the dynamics, which is often the case for models with open
boundaries), ZL is equal to tr(UCL), with

C = X0 +X1 + · · ·+XN . (III.A.3)

Remark A.3. The matrix product expression above encompasses the cases of systems with
open boundaries or systems on a ring.

2Note that this could be generalized to the case where the local configuration τi takes continuous values. We
have in this case an infinity of matrices Xt, parametrized by a continuous parameter t
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For models defined on a lattice with open boundaries, the matrix U is written using a row
vector 〈〈W | and a column vector |V 〉〉 in the form U = |V 〉〉〈〈W |. The distribution then reads

S(τ1, τ2, . . . , τL) =
1

ZL
〈〈W |Xτ1Xτ2 . . . XτL |V 〉〉, (III.A.4)

where the normalization ZL is equal to 〈〈W |CL|V 〉〉, with

C = X0 +X1 + · · ·+XN . (III.A.5)

For models defined on a periodic lattice, the matrix U is taken equal to the identity matrix.
The distribution then reads

S(τ1, τ2, . . . , τL) =
1

ZL
tr (Xτ1Xτ2 . . . XτL) . (III.A.6)

In this case the normalization has often a more subtle expression if the particle number of the
species is conserved by the dynamics: we have to sum the weights of the lattice configurations
that have a given particle number of each species.

The vectors 〈〈W | and |V 〉〉 (or the trace operator tr) are needed to contract the matrix
product to get a real valued probability. We use the notation with a double bracket on the
vectors 〈〈W | and |V 〉〉 to distinguish the vector space in which they belong (the vector space
on which the matrices Xτ act linearly) from the vector space of physical configurations whose
vectors are written with a single bracket (for instance the vector |S〉).

The matrix product form of a distribution can capture correlations between the local
configuration variables through the non commutative structure of the algebra generated by
X0, . . . , XN . The order of the matrices in the product is thus very important. We stress that
this matrix product framework can thus be used to deal with systems that do not have Boltz-
mann statistics and that lie beyond the scope of the central limit theorem (which describes
uncorrelated variables). This is for instance well illustrated by the work [191] in which the
statistics of a sum of correlated variables (with matrix product distribution) was studied.

In order to express the stationary distribution of an exclusion process using this matrix
product formalism, it is of course crucial to carefully choose the matrices Xτ and the vectors
〈〈W | and |V 〉〉 (for systems with open boundaries). It turns out that the algebraic relations
that these objects must fulfill are closely related to the Markov matrix of the model. This last
point will be discussed in details in the next sections.

The matrix ansatz formulation of the steady state reveals also to be very convenient to
express the multi-point correlation functions in the stationary state. If we define the variable

ρ
(i)
s such that ρ

(i)
s = 1 if there is a particle of species s on site i and ρ

(i)
s = 0 otherwise, then

the k-point correlation function is by definition equal to the quantity 〈ρ(i1)
s1 . . . ρ

(ik)
sk 〉, where the

bracket 〈·〉 stands for the expectation value in the stationary distribution. The matrix product
structure of the steady state allows us to write concisely

〈ρ(i1)
s1 . . . ρ(ik)

sk
〉 =

1

ZL
〈〈W |Ci1−1Xs1C

i2−i1−1Xs2 . . . C
ik−ik−1−1XskC

L−ik |V 〉〉. (III.A.7)

In particular the mean density (one-point correlation function) of particle of species s at site
i reads

〈ρ(i)
s 〉 =

1

ZL
〈〈W |Ci−1XsC

L−i|V 〉〉. (III.A.8)

Note that in the single species case N = 1, that we encountered many times with the examples

of the ASEP, TASEP and SSEP along this manuscript, τi = 0, 1 and we have always ρ
(i)
1 = τi.

In this single species case, to lighten the notations, the multi-point correlation function will be
simply written 〈τi1 . . . τik〉.

We now present the example of the TASEP to fix the ideas and get used to the different
notions introduced.
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b) Historical example of the TASEP

The stationary distribution of the TASEP with open boundary conditions was analytically
expressed using a matrix product form in the pioneering work [46]. We recall that the Markov
matrix governing the stochastic dynamics of this model is given in the form

M = B1 +
L−1∑
k=1

mk,k+1 +BL (III.A.9)

where m has been introduced in (II.A.24) and B, B in (II.A.32). We reproduce hereafter some
of the results obtained in [46].

Proposition A.4. The stationary distribution of the TASEP with open boundary condition
(III.A.9) is given by the matrix product expression

S(τ1, τ2, . . . , τL) =
1

ZL
〈〈W |

L∏
i=1

(τiD + (1− τi)E) |V 〉〉, (III.A.10)

where the matrices E, D and the boundary vectors 〈〈W | and |V 〉〉 satisfy the algebraic relations

DE = D + E, 〈〈W |E =
1

α
〈〈W |, D|V 〉〉 =

1

β
|V 〉〉, (III.A.11)

and the normalization is given by ZL = 〈〈W |CL|V 〉〉, with C = D + E.

Note that in the case studied here of the single species TASEP, the local variables τi can
only take two values, 0 and 1. The expression (III.A.10) is thus completely equivalent to the
one in definition A.2 if we set X0 = E and X1 = D (we used the name E and D for the
matrices X0 and X1 to stick to the notation introduced in [46]). The proof of the proposition
A.4 will be given in subsection 2. We now recall an explicit representation of E, D, 〈〈W | and
|V 〉〉 as infinite dimensional matrices and vectors respectively. The operators E and D can be
expressed as acting linearly on a Fock space, with basis denoted by {|k〉〉}k≥0

E =

+∞∑
k=0

[
|k〉〉〈〈k|+ |k + 1〉〉〈〈k|

]
, D =

+∞∑
k=0

[
|k〉〉〈〈k|+ |k〉〉〈〈k + 1|

]
. (III.A.12)

In matrix notation it gives explicitly

E =


1 0 0 0 . . .
1 1 0 0
0 1 1 0
0 0 1 1
...

. . .

 , D =


1 1 0 0 . . .
0 1 1 0
0 0 1 1
0 0 0 1
...

. . .

 . (III.A.13)

The boundary vectors 〈〈W | and |V 〉〉 are represented as

〈〈W | =
+∞∑
k=0

(
1− α
α

)k
〈〈k|, |V 〉〉 =

+∞∑
k=0

(
1− β
β

)k
|k〉〉, (III.A.14)

or more explicitly

〈〈W | =
(

1
(

1−α
α

) (
1−α
α

)2
. . .
)
, |V 〉〉 =


1(

1−β
β

)
(

1−β
β

)2

...

 . (III.A.15)
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It is straightforward to check that the expressions (III.A.12) and (III.A.14) fulfill the algebraic
relations (III.A.11). It proves that these algebraic relations are consistent. Moreover the scalar
product 〈〈W |V 〉〉 = αβ/(α+ β − 1) is non-vanishing.

The matrix product expression of the stationary state of the open TASEP has proven to be
a very powerful tool with which to compute physical quantities and to study the macroscopic
behavior of the system. It permitted, in particular, (see chapter V) the rigorous derivation of
the phase diagram of the model. We recall here the calculation of the normalization, of the
particle current and of the particle density given in [46]. We begin by showing the efficiency
of the algebraic relations (III.A.11), to analytically compute the stationary weights, on a
particular example:

Z5 S(0, 1, 0, 1, 1) = 〈〈W |EDEDD|V 〉〉 (III.A.16)

=
1

αβ2
〈〈W |DE|V 〉〉 (III.A.17)

=
1

αβ2
〈〈W |D + E|V 〉〉 (III.A.18)

=
1

αβ2

(
1

α
+

1

β

)
〈〈W |V 〉〉. (III.A.19)

The equality between line 1 and line 2 is obtained using the action of the matrices E and D on
the boundary vectors 〈〈W | and |V 〉〉 respectively. We get the third line because of the algebraic
relation DE = D + E. The last equality is again obtained because of the relations on the
boundary vectors.

Proposition A.5. The normalization ZL is given in a closed form by

ZL =
L∑
p=1

p(2L− 1− p)!
L!(L− p)!

(
1
β

)p+1
−
(

1
α

)p+1

1
β −

1
α

〈〈W |V 〉〉. (III.A.20)

We choose to present now the detailed proof of formula (III.A.20) to illustrate the efficiency
of the algebraic relations to compute physical quantities.

Proof. Following the lines of [46], the first step is to prove the relation

Cn =
n∑
p=0

Bn,p

p∑
q=0

EqDp−q, (III.A.21)

where Bn,p is a combinatorial factor given explicitly by

Bn,p =
p(2n− 1− p)!
n!(n− p)!

. (III.A.22)

This relation is obtained by direct reordering of the matrices E and D in the product (E+D)n.
We push E to the left (respectively D to the right) because it behaves conveniently on the left
vector 〈〈W | (respectively on the right vector |V 〉〉). This can be achieved thanks to the fact
that DE = D + E. The relation (III.A.21) is proved by induction.

The case n = 1 is easily verified. Assume now that the formula (III.A.21) is established for
a given n ≥ 1. We can then compute

Cn+1 = CnC =

n∑
p=0

Bn,p

p∑
q=0

EqDp−q(E +D). (III.A.23)

It thus appears that we need to reorder the products of the form DkE. It is straightforward
to prove (by induction for instance) that

DkE = Dk +Dk−1 + · · ·+D + E. (III.A.24)
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Hence, by elementary manipulations on sums, we obtain

Cn+1 =

n+1∑
p=1

 n∑
l=p−1

Bn,l

 p∑
q=0

EqDp−q. (III.A.25)

We thus need to compute
n∑

l=p−1

Bn,l = Bn+1,p. (III.A.26)

This last equality can be readily checked using the recursive relationBn+1,p = Bn+1,p+1+Bn,p−1

and the fact that Bn,n = 1 = Bn+1,n+1. At the end we obtain

Cn+1 =
n+1∑
p=0

Bn+1,p

p∑
q=0

EqDp−q, (III.A.27)

which ends the induction proof of (III.A.21). We are now in position to contract CL with the
boundary vectors 〈〈W | and |V 〉〉. Using the fact that

〈〈W |Eq =
1

αq
〈〈W |, and Dp−q|V 〉〉 =

1

βp−q
|V 〉〉, (III.A.28)

and the formula
p∑
q=0

1

αq
1

βp−q
=

1
αp+1 − 1

βp+1

1
α −

1
β

, (III.A.29)

we establish the desired result (III.A.20).

Proposition A.6. The mean particle current between sites i and i+ 1 is given by

〈j〉 =
ZL−1

ZL
, (III.A.30)

where ZL is the normalization computed in (III.A.20). Note that the current does not depend
on the sites where it is measured, as expected from the particle conservation in the bulk.

Proof. The mean number of particles that cross the bond between sites i and i+ 1 per unit of
time is given by the sum of probabilities for configurations with a particle on site i and a hole
on site i+ 1 (i.e configurations for which it is possible that a particle jumps from site i to i+ 1
during the next transition). This has then to be multiplied by the ’rate of a jump’ which is 1.
This gives

〈j〉 =
∑

τ1,...,τi−1,τi+2,...,τL=0,1

S(τ1, . . . , τi−1, 1, 0, τi+2, . . . , τL) (III.A.31)

=
〈〈W |(E +D) . . . (E +D)DE(E +D) . . . (E +D)|V 〉〉

ZL
(III.A.32)

=
〈〈W |Ci−1DECL−i−1|V 〉〉

ZL
(III.A.33)

=
〈〈W |Ci−1(D + E)CL−i−1|V 〉〉

ZL
(III.A.34)

=
ZL−1

ZL
. (III.A.35)

Proposition A.7. The mean density of particle at site i is expressed analytically as

〈τi〉 =

L−i∑
k=1

Bk,1
ZL−k
ZL

+
Zi−1

ZL

L−i∑
k=1

BL−i,k
1

βk+1
, (III.A.36)

where the combinatorial coefficient Bn,p is given in (III.A.22).

115



Note that here and in what follows, the notation 〈·〉 stands for the expectation with respect
to the stationary distribution.

Proof.

〈τi〉 =
∑

τ1,...,τL=0,1

τiS(τ1, . . . , τL) (III.A.37)

=
∑

τ1,...,τi−1,τi+1,...,τL=0,1

S(τ1, . . . , τi−1, 1, τi+1, . . . , τL) (III.A.38)

=
〈〈W |(E +D) . . . (E +D)D(E +D) . . . (E +D)|V 〉〉

ZL
(III.A.39)

=
〈〈W |Ci−1DCL−i|V 〉〉

ZL
. (III.A.40)

The proof relies essentially on the identity

DCn =
n−1∑
k=0

Bk+1,1C
n−k +

n+1∑
k=2

Bn,k−1D
k, (III.A.41)

which can be proven by induction on n. We thus have

〈〈W |Ci−1DCL−i|V 〉〉 =

L−i−1∑
k=0

Bk+1,1〈〈W |CL−1−k|V 〉〉+

L−i+1∑
k=2

BL−i,k−1

βk
〈〈W |Ci−1|V 〉〉

(III.A.42)
from which it is easy to establish the desired result (III.A.36).

We stress that the results (III.A.20), (III.A.30) and (III.A.36) are exact and valid for any
size L of the lattice. These physical observables were computed efficiently using the matrix
product formulation of the steady state. We will see in chapter V that the analytical expressions
obtained can be studied in the thermodynamic limit (i.e in the large lattice size L limit), to
derive asymptotic expressions of the observables and compute rigorously the phase diagram
of the system. In particular we will see that the model displays boundary induced phase
transitions.

c) Pushing procedure for the open TASEP

We present here (without any proof) a combinatorial interpretation of the stationary weights of
the open single species TASEP, called the pushing procedure. This procedure is well known for
the multi-species TASEP on the ring [168] and has also been successfully applied to understand
the combinatorics of the stationary weights of the single species open TASEP in the particular
case α = β = 1. We start by presenting the method in this particular case and then we
generalize to free parameters α and β.

To shorten the notations, a configuration on the lattice can be seen as a binary string of
0 and 1 of length L. For instance the binary string 1010 corresponds to the configuration
C = (1, 0, 1, 0). The stationary weight of a given configuration is obtained by enumerating all
the possible binary strings that we get by pushing the 1’s to the right through the 0’s or by
doing nothing. For instance starting from 110 we can obtain 110, 101 and 011. Hence we have
the weight 3 for the configuration 110 which is consistent with the matrix product computation

〈〈W |DDE|V 〉〉 = 〈〈W |D(D + E)|V 〉〉 = 〈〈W |D2|V 〉〉+ 〈〈W |DE|V 〉〉 (III.A.43)

= 〈〈W |D2|V 〉〉+ 〈〈W |D|V 〉〉+ 〈〈W |E|V 〉〉 = 3〈〈W |V 〉〉, (III.A.44)

using the fact that 〈〈W |E = 〈〈W | and D|V 〉〉 = |V 〉〉 because α = β = 1.
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We give another example with the binary string 1010. We can obtain 1010, 1001, 0110,
0101 and 0011. This gives us a weight equal to 5 which is consistent with

〈〈W |DEDE|V 〉〉 = 〈〈W |(D + E)(D + E)|V 〉〉 = 〈〈W |(D2 +DE + ED + E2)|V 〉〉(III.A.45)

= 〈〈W |D2|V 〉〉+ 〈〈W |D|V 〉〉+ 〈〈W |E|V 〉〉+ 〈〈W |ED|V 〉〉+ 〈〈W |E2|V 〉〉
= 5〈〈W |V 〉〉. (III.A.46)

Pushing procedure for generic α and β We present a generalization of the pushing pro-
cedure for the cases where α and β are generic. To the best of our knowledge this generalization
was not known up to now.

In addition to the rules given above, the 1’s are now allowed to enter the binary string to
the left with a weight a = (1−α)/α (note that a = 0 when α = 1) and leave the binary string
to the right with a weight b = (1− β)/β (again b = 0 if β = 1). Note that now, starting from
a given binary string, we can access all the other binary strings of same length (by pushing
the 1’s to the right and making them enter or leave the binary string). Moreover, there are
several ways to get a binary string starting from the initial one: we choose the one with the
minimal number of 1’s leaving or entering the system. This point will be detailed at the end
of the paragraph.

Nothing is better than a concrete example to understand the procedure. From the binary
string 110, we can obtain 110, 101 and 011 with weight 1. But we can also obtain 100, 010 and
001 with weight b (by making the right most 1 leave the binary string). Making the two 1’s
leave the binary string we get 000 with weight b2. We can also make a new 1 enter the system
to obtain 111 with weight a. Summing all these contributions we end up with the stationary
weight 3 + 3b + b2 + a for the configuration 110 which is consistent with the matrix product
computation

〈〈W |DDE|V 〉〉 = 〈〈W |D2|V 〉〉+ 〈〈W |D|V 〉〉+ 〈〈W |E|V 〉〉 (III.A.47)

=
(
(1 + b)2 + (1 + b) + (1 + a)

)
〈〈W |V 〉〉 (III.A.48)

=
(
3 + 3b+ b2 + a

)
〈〈W |V 〉〉, (III.A.49)

using the fact that 〈〈W |E = 1
α〈〈W | = (1 + a)〈〈W | and D|V 〉〉 = 1

β |V 〉〉 = (1 + b)|V 〉〉.
We give another example with the configuration 1010. From this binary string we can

obtain the string 1010, 1001, 0110, 0101 and 0011 with weight 1. We can also make the right
most 1 leave the binary string to get 1000, 0100, 0010 and 0001 with weight b. Pushing the
two 1’s out of the string gives 0000 with weight b2. We can also make a new 1 appear on the
left on the string to obtain 1110, 1101, 1011 and 0111 with weight a. If two 1’s are injected
on the left we get 1111 with weight a2. The last binary string 1100 is obtained with weight ab
by making a 1 appear on the left and the right most 1 leave on the right. Summing all these
contributions gives the total stationary weight 5 + 4b+ b2 + 4a+ a2 + ab in agreement with

〈〈W |DEDE|V 〉〉 = 〈〈W |D2|V 〉〉+ 〈〈W |D|V 〉〉+ 〈〈W |E|V 〉〉+ 〈〈W |ED|V 〉〉+ 〈〈W |E2|V 〉〉
=

(
(1 + b)2 + (1 + b) + (1 + a) + (1 + a)(1 + b) + (1 + a)2

)
〈〈W |V 〉〉

=
(
5 + 4b+ b2 + 4a+ a2 + ab

)
〈〈W |V 〉〉. (III.A.50)

It is important to recall that in this procedure we always select the simplest path to go from
the starting binary string to any other binary string. Simplest path should be understood here
as the path whose weight has the minimal powers of a and b (the minimal sum of the powers of
a and b to be fully rigorous: a path of weight anbm is preferred against a path of weight an

′
bm
′

if n+m < n′+m′). For instance, it is indeed easy to see that there are several possibilities to
go from the binary string 1010 to the binary string 0110. We could first choose to make both
1’s leave the string on the right and then make two new 1’s appear on the left and push them
at the correct position, giving a weight a2b2. But we saw that it is also possible to just push
one step the left most 1 to the right, with weight 1 = a0b0. Since 0 + 0 < 2 + 2 we keep the
second path (which is manifestly the simplest path).
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2 Telescopic relations

In this subsection we will discuss the algebraic constraints that should be satisfied by the
matrices X0, X1, . . . , XN and the boundary vectors 〈〈W | and |V 〉〉 in order that the matrix
product state (III.A.4) computes correctly the stationary distribution. An efficient formalism
to present these algebraic relations is the one of the tensor product. We already encountered
this framework when defining the vector basis associated to the physical configurations on the
lattice, see chapter II. We will use it here to write the stationary distribution in a concise way.

Proposition A.8. The matrix product state defined in (III.A.4) can be recast in the form

|S〉 =
1

ZL
〈〈W |


X0

X1

...
XN

⊗

X0

X1

...
XN

⊗ · · · ⊗

X0

X1

...
XN

 |V 〉〉. (III.A.51)

Proof. This is a direct consequence of the definition of the tensor product, see for instance
example A.7. We thus have

〈〈W |


X0

X1

...
XN

⊗

X0

X1

...
XN

⊗ · · · ⊗

X0

X1

...
XN

 |V 〉〉 =


〈〈W |X0 . . . X0X0|V 〉〉
〈〈W |X0 . . . X0X1|V 〉〉

...
〈〈W |XN . . . XNXN |V 〉〉

 , (III.A.52)

in agreement with the matrix product expression III.A.4.
We are now equipped to present the root of the algebraic relations involved in the matrix

product formulation.

a) Particular example of the TASEP

We begin with the case of the single species open TASEP

Proposition A.9. The algebraic constraints stated in (III.A.11) are equivalent to the telescopic
relations:

• in the bulk

DE = D + E ⇔ m

(
E
D

)
⊗
(
E
D

)
=

(
E
D

)
⊗
(
−1
1

)
−
(
−1
1

)
⊗
(
E
D

)
(III.A.53)

• at the left boundary

〈〈W |E =
1

α
〈〈W | ⇔ 〈〈W |B

(
E
D

)
= 〈〈W |

(
−1
1

)
(III.A.54)

• at the right boundary

D|V 〉〉 =
1

β
|V 〉〉 ⇔ B

(
E
D

)
|V 〉〉 = −

(
−1
1

)
|V 〉〉 (III.A.55)

where m, B and B are defined in (II.A.24) and (II.A.32).

Proof. We compute explicitly

m

(
E
D

)
⊗
(
E
D

)
=


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0



E2

ED
DE
D2

 =


0
DE
−DE

0

 (III.A.56)
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and

(
E
D

)
⊗
(
−1
1

)
−
(
−1
1

)
⊗
(
E
D

)
=


−E
E
−D
D

−

−E
−D
E
D

 =


0

E +D
−E −D

0

 . (III.A.57)

We thus obtain the desired result (III.A.53). In the same way for the relation on the left
boundary, we compute

〈〈W |B
(
E
D

)
= 〈〈W |

(
−α 0
α 0

)(
E
D

)
= 〈〈W |

(
−αE
αE

)
=

(
−α〈〈W |E
α〈〈W |E

)
(III.A.58)

and

〈〈W |
(
−1
1

)
=

(
−〈〈W |
〈〈W |

)
, (III.A.59)

which yields the property (III.A.54). The equation (III.A.55) is derived in a very similar way.

Note that these relations are called telescopic because of their “divergence like” form. This
appellation will also make sense with the proof of the following proposition. At first sight,
it may appear a bit complicated to encode single relations in complicated tensor forms, like
(III.A.53) instead of DE = D + E. However, it allows simple generalization to other models,
as well as a nice and simple proof of the stationary measure property (see below).

Proposition A.10. The matrix product state

|S〉 =
1

ZL
〈〈W |

(
E
D

)
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉, (III.A.60)

where E, D, 〈〈W | and |V 〉〉 satisfy the telescopic relations (III.A.53), (III.A.54) and (III.A.55),
is the stationary state of the model, i.e M |S〉 = 0.

Note that this proposition is strictly equivalent to the proposition A.4. It has just been
reformulated using the tensor product formalism.
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Proof.(
B1 +

L−1∑
k=1

mk,k+1 +BL

)
〈〈W |

(
E
D

)
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉

= 〈〈W |
[
B

(
E
D

)]
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉+ 〈〈W |

(
E
D

)
⊗ · · · ⊗

(
E
D

)
⊗
[
B

(
E
D

)]
|V 〉〉

+
L−1∑
k=1

〈〈W |
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

k−1

⊗
[
m

(
E
D

)
⊗
(
E
D

)]
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

L−k−1

|V 〉〉

= 〈〈W |
(
−1
1

)
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉 − 〈〈W |

(
E
D

)
⊗ · · · ⊗

(
E
D

)
⊗
(
−1
1

)
|V 〉〉

+

L−1∑
k=1

〈〈W |
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

k−1

⊗
[(
E
D

)
⊗
(
−1
1

)
−
(
−1
1

)
⊗
(
E
D

)]
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

L−k−1

|V 〉〉

=
L∑
k=1

〈〈W |
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

k−1

⊗
(
−1
1

)
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

L−k

|V 〉〉

−
L∑
k=1

〈〈W |
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

k−1

⊗
(
−1
1

)
⊗
(
E
D

)
⊗ · · · ⊗

(
E
D

)
︸ ︷︷ ︸

L−k

|V 〉〉

= 0.

The action of the Markov matrix on the matrix product state leads to a telescopic sum.

b) General case

The previous cancellation scheme is quite general and goes far beyond the single species TASEP
case. In fact the algebraic structure defined by the telescopic relations (in the bulk and on
the boundaries) appears in all known examples of matrix product expression of the stationary
state (of continuous time Markov processes). To be more precise, we consider a stochastic
process described by the Markov matrix (II.A.29) where m is a (N + 1)2 × (N + 1)2 matrix,
while B and B are (N + 1)× (N + 1) matrices. We first introduce two key vectors.

Definition A.11. We introduce two vectors X and X

X =


X0

X1

...
XN

 , X =


X0

X1

...

XN

 . (III.A.61)

For a given bulk local jump operator m, we say that X and X satisfy the bulk telescopic relation
if we have

mX⊗X = X⊗X−X⊗X. (III.A.62)

For given boundary local jump operators B and B, we say that X and X satisfy the boundary
telescopic relations if there exist two boundary vectors 〈〈W | and |V 〉〉 such that

〈〈W |BX = 〈〈W |X, BX|V 〉〉 = −X|V 〉〉. (III.A.63)

We are now equipped to state the generalization of proposition A.10.
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Proposition A.12. If the vectors X and X satisfy the telescopic relations (III.A.62) and
(III.A.63), then the matrix product state

|S〉 =
1

ZL
〈〈W |X⊗X⊗ · · · ⊗X|V 〉〉 (III.A.64)

satisfies
M |S〉 = 0, (III.A.65)

where the Markov matrix is given by

M = B1 +
L−1∑
k=1

mk,k+1 +BL. (III.A.66)

If |S〉 is not vanishing, it thus provides the stationary state3 associated to the Markov matrix.

Proof. The property is proven using exactly the same cancellation scheme as for A.10, replacing
the vector (E,D)t by X and the vector (−1, 1)t by X.

Remark A.13. In [192] it was proven that for any Markov matrix M that can be decomposed
into the sum of operators acting locally on the lattice

M = B1 +

L−1∑
k=1

mk,k+1 +BL, (III.A.67)

it is possible to construct explicitly matrices X0, . . . , XN and X0, . . . , XN and vectors 〈〈W |
and |V 〉〉 such that the telescopic relations (III.A.62) and (III.A.63) are fulfilled. Thanks to
the previous property, we know that the stationary state is given in a matrix product form by
(III.A.64) (if it is not vanishing). In practice, the construction of the vector 〈〈W | in [192]
requires the prior knowledge of the stationary distribution of the model... Hence the result
of [192] appears more as an existence theorem (the existence of a matrix product expression of
the steady state) than as a useful tool for explicit computations of physical quantities. Indeed the
algebraic relations given by (III.A.62) and (III.A.63) satisfied by the matrices X0, . . . , XN and
X0, . . . , XN and the vectors 〈〈W | and |V 〉〉 are not sufficient to fix the value of the stationary
weights (we cannot perform in general algebraic computations as we showed in (III.A.16) for
the TASEP), the explicit representation is needed (or further algebraic relations, as we will see
below).

c) Other examples

We have already seen in the above subsection the matrix product expression of the steady state
of the open single species TASEP. We now present the case of the ASEP and of the SSEP. We
give the matrix product solution within the developed framework of telescopic relations.

Example A.14. We recall that the stochastic dynamics of the ASEP is encoded in the local
jump operators m defined in (II.A.23) and B, B defined in (II.A.31). We define the vector

X =

(
E
D

)
(III.A.68)

where the algebraic elements E and D satisfy the relation pDE − qED = (p − q)(E + D).
Similarly to the TASEP case, representation of such operators as infinite matrices exists and
will be given in chapter IV. We also introduce the vector

X =

(
q − p
p− q

)
, (III.A.69)

3If the Markov matrix is irreducible, we know that the stationary state is unique. If it is not irreducible, it
provides one or several of the stationary states.
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and the boundary vectors 〈〈W | and |V 〉〉 which satisfy

〈〈W | (αE − γD) = (p− q)〈〈W |, and (βD − δE) |V 〉〉 = (p− q)|V 〉〉. (III.A.70)

Representation of 〈〈W | and |V 〉〉 as infinite row and column vectors will also be given in chapter
IV.

Then it is easy to check that the telescopic relations (III.A.62) and (III.A.63) hold and
hence the steady state is given by (III.A.64).

Example A.15. Similar results hold for the SSEP with matrices E, D and boundary vectors
〈〈W | and |V 〉〉 that fulfill

DE − ED = E +D, 〈〈W |(αE − γD) = 〈〈W |, and (βD − δE)|V 〉〉 = |V 〉〉. (III.A.71)

We have in this case

X =

(
E
D

)
, and X =

(
−1
1

)
(III.A.72)

We will encounter in section B more complex examples where the auxiliary vector X (some-
times called hat vector) contains non scalar operators (i.e which do not commute with the
matrices Xi), in contrast to what we saw up to now in the examples.

3 Thermodynamic equilibrium case

We now make some remarks about the matrix ansatz for a system that reaches a thermody-
namic equilibrium in the long time limit. To fix the ideas we present as usual the example of
the SSEP and ASEP.

a) Some examples

Example A.16. The SSEP reaches in the long time limit a thermodynamic equilibrium if and
only if the particle densities of the two reservoirs are equal, i.e

α

α+ γ
=

δ

β + δ
. (III.A.73)

This condition can be rewritten more concisely αβ = δγ. This constraint can be derived
using the detailed balance condition (that defines rigorously a thermodynamic equilibrium in
the Markov chain context, see chapter I). We have indeed

S(0, . . . , 0) =
γ

α
S(1, 0, . . . , 0) (III.A.74)

=
γ

α
S(0, 1, 0, . . . , 0) (III.A.75)

. . . (III.A.76)

=
γ

α
S(0, . . . , 0, 1) (III.A.77)

=
γδ

αβ
S(0, . . . , 0), (III.A.78)

which proves that γδ
αβ = 1 is necessary. In this particular case the matrix product formulation

of the steady state simplifies drastically:

|S〉 =

(
1− r
r

)
⊗ · · · ⊗

(
1− r
r

)
, (III.A.79)

where r = α
α+γ = δ

β+δ . We observe that the matrices E and D can thus be chosen as scalars

in this case (E = 1− r, D = r) and the auxiliary vector X = 0. The telescopic relations read
indeed

B

(
1− r
r

)
= 0, m

(
1− r
r

)
⊗
(

1− r
r

)
= 0, B

(
1− r
r

)
= 0. (III.A.80)
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Example A.17. The ASEP reaches a thermodynamic equilibrium if and only if the parameters
α, β, γ, δ and q fulfill the constraint

γδ

αβ

(
q

p

)L−1

= 1. (III.A.81)

This can be intuitively understood as the reservoir densities compensating exactly the driving
force in the bulk. Once again this constraint can be determined using the detailed balance
condition (that must hold in a thermodynamic equilibrium). We have indeed

S(0, . . . , 0) =
γ

α
S(1, 0, . . . , 0) (III.A.82)

=
γq

αp
S(0, 1, 0, . . . , 0) (III.A.83)

. . . (III.A.84)

=
γqL−1

αpL−1
S(0, . . . , 0, 1) (III.A.85)

=
γδ

αβ

(
q

p

)L−1

S(0, . . . , 0), (III.A.86)

which proves that γδ
αβ

(
q
p

)L−1
= 1. In this particular case the stationary state can still be given

in matrix product form

|S〉 =
1

ZL
〈〈W |X⊗ · · · ⊗X|V 〉〉, (III.A.87)

with

X =

(
E
D

)
(III.A.88)

where the operators E, D and the boundary vectors 〈〈W | and |V 〉〉 satisfy

pDE = qED, 〈〈W |(αE − γD) = 0, (δE − βD)|V 〉〉 = 0. (III.A.89)

The vector X above satisfies the relations mX ⊗X = 0, 〈〈W |BX = 0 and BX|V 〉〉 = 0 which
ensure that (III.A.87) is the stationary state of the model. An explicit representation of such
matrices and vector can be found on the L + 1 dimensional vector space spanned by the basis
{|k〉〉}0≤k≤L

E =
L−1∑
k=0

|k + 1〉〉〈〈k|, D =
L−1∑
k=0

δ

β

(
q

p

)k
|k + 1〉〉〈〈k|, (III.A.90)

and
〈〈W | = 〈〈L|, |V 〉〉 = |0〉〉. (III.A.91)

In matrix notation it gives explicitly

E =



0 0 0 . . . 0

1 0 0
...

0 1 0
. . .

...
...

. . .
. . . 0

0 . . . 0 1 0


, D =



0 0 0 . . . 0

δ
β 0 0

...

0 δ
β
q
p 0

. . .
...

...
. . .

. . . 0

0 . . . 0 δ
β

(
q
p

)L−1
0


, (III.A.92)

and

〈〈W | =
(
0 . . . 0 1

)
, |V 〉〉 =


1
0
...
0

 . (III.A.93)
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It is easy to see that this representation works only when the constraint (III.A.81) is satisfied.
Indeed the relation 〈〈W |(αE − γD) = 0 is only fulfilled in this case.

Note that the matrix product state (III.A.87) can be rewritten as an inhomogeneous factor-
ized state

|S〉 =

(
1

δ
β

(
q
p

)L−1

)
⊗ · · · ⊗

(
1
δ
β
q
p

)
⊗
(

1
δ
β

)
(III.A.94)

or equivalently using the constraint (III.A.81)

|S〉 =

(
1
α
γ

)
⊗
(

1
α
γ
p
q

)
⊗ · · · ⊗

(
1

α
γ

(
p
q

)L−1

)
. (III.A.95)

The two previous examples both share the feature of having a vanishing auxiliary vector
X in the telescopic relations associated to the matrix product formulation of the steady state.
This seems to be always the case in systems that reach a thermodynamic equilibrium and
whose steady state can be written in matrix product form (although we do not have any
general proof of this fact). The relation mX ⊗ X = 0 (telescopic relation with vanishing
auxiliary vector) gave in the previous examples commutation relations of the type XiXj =

exp(−∆E/kT )XjXi where exp(−∆E/kT ) = S(...,i,j,... )
S(...,j,i,... ) is the Boltzmann factor obtained when

exchanging particles of species i and j lying on adjacent sites on the lattice (see chapter I for
details). Similar observations hold also for the relations on the boundary vectors 〈〈W | and
|V 〉〉. We will encounter this fact again in the remark below.

b) A new look on the open TASEP stationary distribution

We end up this subsection on matrix product steady states with an intriguing observation.
The stationary distribution of the single species open TASEP can be obtained as the marginal
of the Boltzmann distribution of a more complex process at thermodynamic equilibrium. To
be more precise this process is also defined on a one dimensional lattice with L sites. Each site
i of the lattice can be in three different states: τi = −, 0,+. The stochastic dynamics of the
process is defined as usual locally (on two adjacent sites in the bulk and on the single extremal
sites at the boundaries) by the following rules

Left Bulk Right

− 1−−→ 0 0+
1←→ +0 +

1−−→ 0

0
a−−→ − 0− 1←→ −0 0

b−−→ +

+− 1←→ 00

(III.A.96)

where the parameters a and b, that appeared previously in the pushing procedure of the
TASEP, are given by

a =
1− α
α

, and b =
1− β
β

. (III.A.97)

In the basis | − −〉, | − 0〉, | −+〉, |0−〉, |00〉, |0+〉, |+−〉, |+ 0〉, |+ +〉 ordered this way, the
bulk local jump operator m associated to the above dynamical rules reads

m =



· · · · · · · · ·
· −1 · 1 · · · · ·
· · · · · · · · ·
· 1 · −1 · · · · ·
· · · · −1 · 1 · ·
· · · · · −1 · 1 ·
· · · · 1 · −1 · ·
· · · · · 1 · −1 ·
· · · · · · · · ·


. (III.A.98)
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In the basis |−〉, |0〉, |+〉 ordered like this, the boundary local jump operators read

B =

−1 a ·
1 −a ·
· · ·

 , and B =

· · ·
· −b 1
· b −1

 . (III.A.99)

The stationary state of this model can be expressed in a matrix product form. We define e
and d two algebraic elements such that de = 1 and two boundary vectors 〈〈W | and |V 〉〉 such
that 〈〈W |e = a〈〈W | and d|V 〉〉 = b|V 〉〉. Representation of such algebraic objects are e = E − 1
and d = D− 1 with E, D given in (III.A.12) and 〈〈W | and |V 〉〉 are the same as the ones given
in (III.A.14). We define

X =

X−X0

X+

 =

e1
d

 . (III.A.100)

We then have

mX⊗X = m



e2

e
ed
e
1
d
de
d
d2


=



0
−e+ e

0
e− e
−1 + de
−d+ d
1− de
d− d

0


= 0. (III.A.101)

We have also

〈〈W |BX = 〈〈W |

−e+ a
e− a

0

 = 0, and BX|V 〉〉 =

 0
−b+ d
b− d

 |V 〉〉 = 0. (III.A.102)

Hence the steady state is given by

|S〉 =
1

ZL
〈〈W |X⊗ · · · ⊗X|V 〉〉. (III.A.103)

This is a thermodynamic equilibrium, the detailed balance is indeed satisfied. To prove this
statement we have to check that the identity m(C → C′)S(C) = m(C′ → C)S(C′) holds for
every allowed transition C → C′. We have for instance

S(τ1, . . . , τi−1, 0,+, τi+2, . . . , τL)− S(τ1, . . . , τi−1,+, 0, τi+2, . . . , τL)(III.A.104)

=
1

ZL
〈〈W |Xτ1 . . . Xτi−1(1d− d1)Xτi+2 . . . XτL |V 〉〉 (III.A.105)

= 0, (III.A.106)

or

S(τ1, . . . , τi−1,+,−, τi+2, . . . , τL)− S(τ1, . . . , τi−1, 0, 0, τi+2, . . . , τL)(III.A.107)

=
1

ZL
〈〈W |Xτ1 . . . Xτi−1(de− 1 · 1)Xτi+2 . . . XτL |V 〉〉 (III.A.108)

= 0, (III.A.109)

or for transitions involving the boundaries

aS(0, τ2, . . . , τL)− S(−, τ2, . . . , τL) (III.A.110)

=
1

ZL
〈〈W |(a− e)Xτ2 . . . XτL |V 〉〉 (III.A.111)

= 0. (III.A.112)
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Similar computations apply also for other allowed transitions.
From the identities E = 1 + e and D = 1 +d it is straightforward to see that the stationary

weights of the TASEP are obtained by summing several Boltzmann weights of this process.
For instance

〈〈W |DE|V 〉〉 = 〈〈W |1 · 1|V 〉〉+ 〈〈W |1 · e|V 〉〉+ 〈〈W |d · 1|V 〉〉+ 〈〈W |d · e|V 〉〉. (III.A.113)

Each of the term in the last sum is a Boltzmann weight of the ’(−, 0,+)’ process.
It would be interesting to study if the same kind of approach could be generalized to other

non-equilibrium models. This would support the fact that we need to enlarge the configura-
tion space of out-of-equilibrium systems to obtain an efficient description of their stationary
distribution. A lot remains to be understood in this direction.

4 Link with integrability

Although the matrix ansatz is often associated with integrable models because of the numerous
examples of matrix product stationary states that can be found in this class, it does not seem
to exist only in such privileged systems. There are indeed a few example of a matrix product
formulation of the steady state in models that are not known to be integrable (but are not
proven to be non-integrable...). Among them can be mentioned the ABC model on the ring with
equal densities of each particle species [178] or a two species TASEP with open boundaries [176].
However we will argue in this subsection that, for stochastic integrable models, the construction
of the steady state in a matrix product form is made easier by the use of the R and K matrices.
These key objects play indeed a central role in encoding the algebraic relations that must be
satisfied by the matrices and boundary vectors involved in the matrix ansatz.

a) Algebraic setup

The starting point of the construction is to define a vector which depends on the spectral
parameter z and that can be seen as an upgrading of the vector X

A(z) =


A0(z)
A1(z)
...

AN (z)

 (III.A.114)

The entries Ai(z) of this vector belongs to a non-commutative algebra A and have a finite
expansion with respect to the spectral parameter z:

Ai(z) =

q∑
k=−p

Gi,kz
k, with Gi,k ∈ A. (III.A.115)

We will see that the generators Gi,k and their commutation relations play a crucial role in the
matrix product construction: they are the building blocks of the matrices X0, . . . , XN involved
in the matrix ansatz. The number of components N + 1 of the vector is directly related to
the number of different possible local configurations on a single site (N different species of
particles plus the hole). The vector A(z) can be thought as a spectral parameter dependent
generalization of the vector

X =


X0

X1

...
XN

 (III.A.116)

involved in the matrix product expression of the steady state. The precise relation between
these two vectors will be given in subsection b).
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We now give examples of such vectors A(z) that are relevant in the study of the TASEP,
ASEP and SSEP. These three models will be systematically used all along this subsection to
illustrate the different notions introduced. They are indeed probably familiar to the reader
and will help to fix the ideas.

Example A.18. The specific expression of the vector A(z) that is relevant to the matrix
product formulation of the stationary state in the TASEP and in the ASEP reads [V3]

A(z) =

(
z + e
1
z + d

)
. (III.A.117)

Note that the commutation relations satisfied by the generators e and d are not the same in
the case of the TASEP and of the ASEP, see subsection b).

Example A.19. In the case of the SSEP, the vector A(z) takes the explicit form [105]

A(z) =

(
−z + E
z +D

)
. (III.A.118)

We will see in section B more examples of such vectors A(z) with a richer expansion and
a bigger number of components.

b) Zamolodchikov-Faddeev relation

The question that we address now is the one of encoding the commutation relations of the
generators entering the definition of the vector A(z). It was first noticed in [105] and then
investigated in [V3] that the Zamolodchikov-Faddeev relation play a central role in the matrix
product construction. In the same spirit as the FRT formalism (which permits to present
the commutation relations of the generators of the quantum groups out of the associated R-
matrix), this relation is a way to efficiently encode the algebraic relations required by the
matrix ansatz, with the help of the R-matrix associated to the integrable model.

Definition A.20. A Zamolodchikov-Faddeev algebra is an algebra generated by the algebraic
elements entering the definition of the vector A(z) subject to the Zamolodchikov-Faddeev (ZF)
relation4

Ř

(
z1

z2

)
A(z1)⊗A(z2) = A(z2)⊗A(z1). (III.A.119)

In words, the action of the matrix Ř induces an exchange of the spectral parameters z1 and
z2. The same kind of idea will appear again in chapter IV, when dealing with the quantum
Knizhnik-Zamolodchikov equation. This ZF relation is well-known in the context of integrable
quantum field theory. It was first introduced in [193]. It appears as a generalization of the
commutation of creation operators of bosons (which corresponds to Ř(z) = 1) or the anti-
commutation of creation operators of fermions (which corresponds to Ř(z) = −1).

Proposition A.21. The Zamolodchikov-Faddeev relation (III.A.119) defines an associative
algebra if the matrix Ř satisfies the braided Yang-Baxter equation.

Proof. The order of the spectral parameters z1, z2 and z3 in the product A(z3)⊗A(z2)⊗A(z1)
can be reversed in two different ways. We can first exchange z1 and z2, then exchange z1 and
z3 and finally exchange z2 and z3 like this

A(z3)⊗A(z2)⊗A(z1) = Ř2

(
z1

z2

)
A(z3)⊗A(z1)⊗A(z2)

= Ř2

(
z1

z2

)
Ř1

(
z1

z3

)
A(z1)⊗A(z3)⊗A(z2)

= Ř2

(
z1

z2

)
Ř1

(
z1

z3

)
Ř2

(
z2

z3

)
A(z1)⊗A(z2)⊗A(z3),

4Note that the ZF algebra is in general defined for a vector A(z) which is a Laurent series with respect to
z. We are interested in this manuscript in a vector A(z) with a finite expansion with respect to the spectral
parameter z, which thus corresponds to a subclass of the general ZF framework.

127



where we recall that Ř1 = Ř⊗ 1 and Ř2 = 1⊗ Ř.
The other way is to first exchange z2 and z3, then exchange z1 and z3 and finally exchange

z1 and z2:

A(z3)⊗A(z2)⊗A(z1) = Ř1

(
z2

z3

)
A(z2)⊗A(z3)⊗A(z1)

= Ř1

(
z2

z3

)
Ř2

(
z1

z3

)
A(z2)⊗A(z1)⊗A(z3)

= Ř1

(
z2

z3

)
Ř2

(
z1

z3

)
Ř1

(
z1

z2

)
A(z1)⊗A(z2)⊗A(z3).

The consistency between these two different ways of performing the computation (i.e the
associativity of the algebra) is ensured by the fact that Ř satisfies the braided Yang-Baxter
equation.

Remark A.22. Another consistency relation, which arises when applying the ZF relation
twice, is ensured by the unitarity (II.B.8) of the matrix Ř:

A(z2)⊗A(z1) = Ř

(
z1

z2

)
A(z1)⊗A(z2) = Ř

(
z1

z2

)
Ř

(
z2

z1

)
A(z2)⊗A(z1). (III.A.120)

Remark A.23. If there exist a vector v(z) (with scalar entries) satisfying Ř
(
z1
z2

)
v(z1) ⊗

v(z2) = v(z2) ⊗ v(z1), (i.e which is a scalar representation of the ZF algebra), then it is
possible to construct a sub-algebra of the quantum group associated with Ř that fulfills the
requirement of the ZF algebra (III.A.119). More precisely, if T(z) is a matrix (with algebraic
entries) that satisfies the RTT relation (II.B.83), then the vector defined by A(z) = T(z)v(z)
satisfies (III.A.119). More generally if we have a representation A(z)(q) of the ZF algebra on a
vector space Vq and a representation T(z)(q′) of the RTT algebra on a vector space Vq′ then we
can build a new representation T(z)(q′)A(z)(q) of the ZF algebra on the vector space Vq′ ⊗ Vq.
See chapter IV and [V3] for more details.

We now turn to a more physical interpretation of the ZF relation and shed some light on
its connection with the telescopic relation (III.A.62).

Proposition A.24. Let A(z) satisfies the ZF relation (III.A.119). Define the vectors X =
A(1) and X = θA′(1) (where θ is the proportionality coefficient involved in (II.B.5) and ·′
denotes the derivation with respect to the spectral parameter). Then we have the telescopic
relation

mX⊗X = X⊗X−X⊗X. (III.A.121)

Proof. The telescopic relation is obtained by taking the derivative with respect to z1 in the
ZF relation (III.A.119) and setting z1 = z2 = 1. We then need to apply the definition of the
vectors X and X and to use the fact that m = θŘ′(1).

This precise connection between the ZF relation and the bulk telescopic relation of the
matrix ansatz was first stated in [105] for the SSEP and in [V3] for the general case. We now
present how this framework can be applied to the TASEP, ASEP and SSEP.

Example A.25. We come back to the TASEP case. We write the ZF relation with the matrix
Ř, defined in (II.B.14), and the vector A(z), defined in (III.A.117), to determine the algebraic
constraints satisfied by the generators e and d. A direct computation yields

Ř

(
z1

z2

)
A(z1)⊗A(z2) = A(z2)⊗A(z1) ⇔


0

z2−z1
z2

(de− 1)
z1−z2
z2

(de− 1)

0

 = 0 ⇔ de = 1.

(III.A.122)
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The matrices E and D are thus given by(
E
D

)
= X = A(1) =

(
1 + e
1 + d

)
. (III.A.123)

We can then recover easily from the relation de = 1 that

DE = (1 + d)(1 + e) = 1 + e+ d+ de = 1 + e+ 1 + d = E +D, (III.A.124)

in agreement with the statement (III.A.11). This framework allows us also to recover the
expression of the hat vector

X = θA′(1) = −
(

1
−1

)
=

(
−1
1

)
, (III.A.125)

where we recall that the value of θ associated to the TASEP is −1.

Example A.26. In the ASEP case the matrix Ř is defined in (II.B.13) and the vector A(z)
in (III.A.117). A straightforward computation allows us to establish that the ZF relation is
equivalent to the relation pde − qed = p − q. The expressions of the matrices E and D are
again derived through (

E
D

)
= X = A(1) =

(
1 + e
1 + d

)
. (III.A.126)

The relation pde− qed = p− q implies immediately that

pDE− qED = (1+d)(1+e)− q(1+e)(1+d) = (p− q)(1+e+d)+pde− qed = (p− q)(E+D),
(III.A.127)

in agreement with A.14. We can also derive the expression of the hat vector

X = θA′(1) = (q − p)
(

1
−1

)
=

(
q − p
p− q

)
, (III.A.128)

where we recall that the value of θ associated to the ASEP is q − p.

Example A.27. In the SSEP case, the matrix Ř has been introduced in (II.B.15) and the vector
A(z) is given in (III.A.118). We write the ZF relation (with additive spectral parameters, in
agreement with the Yang-Baxter equation (II.B.12)), to determine the commutation relation
satisfied by the generators E and D. By direct computation we show that

Ř (z1 − z2) A(z1)⊗A(z2) = A(z2)⊗A(z1) ⇔ DE − ED = E +D, (III.A.129)

which is in agreement with A.15. We can also derive the expression of the hat vector

X = θA′(0) =

(
−1
1

)
, (III.A.130)

where we recall that the value of θ associated to the SSEP is 1.

The examples presented above should not mislead the reader to think that the ZF relation
is equivalent to the telescopic relation (III.A.62). This is the case only when the hat vector X
has scalar entries (as in the three examples presented above). But let us stress that when X is
not scalar, the ZF relation often contains far more information that the telescopic relation. In
the next section B we will encounter an example in which the telescopic relation does not give
enough information to compute efficiently the stationary weights of the model (using only the
algebraic relations, as it has been done in (III.A.16) for instance, and not using the explicit
representation of the matrices Xi). In such model some additional information given by the ZF
relations are needed to simplify the computations (for instance information telling us how to
commute an operator Xi with a hat operator Xj). Moreover, we will observe in the particular
examples of section B, that the ZF relations often provide a change of generator basis that is
very convenient for the computation of physical quantities. The reader may refer to section B
for more details.
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c) Ghoshal-Zamolodchikov relations

The previous sub-section dealt with the encoding of the commutation relations that must
be verified by the matrices X0, . . . , XN involved in the matrix ansatz. We address here the
question of the algebraic relations between the boundary vectors 〈〈W | and |V 〉〉 and the matrices
Xi. Similarly to the bulk case, where (for integrable models) the bulk telescopic relation
can be upgraded to a spectral parameter dependent relation (the ZF relation) containing
more information, the boundary telescopic relations derive also from more general relations:
the Ghoshal-Zamolodchikov (GZ) relations. They are intuitively interpreted as the boundary
counterparts of the ZF relation. They are expressed using the K matrices associated to the
integrable model under consideration.

Definition A.28. For matrices K and K satisfying the reflection equations (II.C.1) and
(II.C.8), the Ghoshal-Zamolodchikov relations read

〈〈W |
(
K(z)A

(
1

z

)
−A(z)

)
= 0,

(
K(z)A

(
1

z

)
−A(z)

)
|V 〉〉 = 0. (III.A.131)

Note that in these relations the vector |V 〉〉 (respectively 〈〈W |) is a (possibly infinite di-
mensional) column vector (row vector respectively). The entries of A(z) are (possibly infinite
dimensional) matrices acting on the vectors 〈〈W | and |V 〉〉 with the usual matrix product.

These relations appeared first in the context of quantum field theory to deal with integrable
boundaries [194]. In this context |V 〉〉 is interpreted as the vacuum state of the theory. The
relevance of these relations for integrable stochastic processes was first noticed in [105] and
then investigated in [V3].

Proposition A.29. The two Ghoshal-Zamolodchikov relations (III.A.131) are consistent with
the Zamolodchikov-Faddeev relation (III.A.119).

Proof. Starting from the quantity 〈〈W |A(z2) ⊗A(z1), there are indeed two different ways to
change z1 −→ 1/z1 and z2 −→ 1/z2. The first one is to change z2 to 1/z2 using the GZ
relation, then exchange 1/z2 and z1 using the ZF relation, and then change z1 to 1/z1 and
finally exchange 1/z1 and 1/z2:

〈〈W |A(z2)⊗A(z1) = K1(z2)〈〈W |A
(

1

z2

)
⊗A(z1)

= K1(z2)Ř(z1z2)〈〈W |A(z1)⊗A

(
1

z2

)
= K1(z2)Ř(z1z2)K1(z1)〈〈W |A

(
1

z1

)
⊗A

(
1

z2

)
= K1(z2)Ř(z1z2)K1(z1)Ř

(
z1

z2

)
〈〈W |A

(
1

z2

)
⊗A

(
1

z1

)
,

where we recall that K1(z) = K(z)⊗ 1.
The other way to perform the transformation is to first exchange z1 and z2, then change

z1 to 1/z1, then exchange 1/z1 and z2 and finally change z2 to 1/z2:

〈〈W |A(z2)⊗A(z1) = Ř

(
z1

z2

)
〈〈W |A(z1)⊗A(z2)

= Ř

(
z1

z2

)
K1(z1)〈〈W |A

(
1

z1

)
⊗A(z2)

= Ř

(
z1

z2

)
K1(z1)Ř(z1z2)〈〈W |A(z2)⊗A

(
1

z1

)
= Ř

(
z1

z2

)
K1(z1)Ř(z1z2)K1(z2)〈〈W |A

(
1

z2

)
⊗A

(
1

z1

)
.
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The consistency between these two different ways of doing the transformation is ensured by
the fact that the matrix K satisfies the reflection equation (II.C.1). Similarly there are also
two ways to transform z1 to 1/z1 and z2 to 1/z2 in the expression A(z2)⊗A(z1)|V 〉〉. The con-
sistency is again ensured by the fact that the matrix K solves the reversed reflection equation
(II.C.8).

Remark A.30. Another consistency relation, which arises when applying a GZ relation twice,
is ensured by the unitarity (II.C.6) of the matrices K and K:

〈〈W |A(z) = K(z)〈〈W |A
(

1

z

)
= K(z)K

(
1

z

)
〈〈W |A(z), (III.A.132)

and

A(z)|V 〉〉 = K(z)A

(
1

z

)
|V 〉〉 = K(z)K

(
1

z

)
A(z)|V 〉〉. (III.A.133)

We now turn to a more physical interpretation of the GZ relations and shed some light on
their connection with the boundary telescopic relations (III.A.63).

Proposition A.31. Let A(z), 〈〈W | and |V 〉〉 satisfying the GZ relations (III.A.131). Define
the vectors X = A(1) and X = θA′(1) (where θ is the proportionality coefficient involved in
(II.B.5), (II.C.3) and (II.C.9)). Then we have the telescopic relations (III.A.63):

〈〈W |BX = 〈〈W |X, BX|V 〉〉 = −X|V 〉〉. (III.A.134)

Proof. The telescopic relations are obtained by taking the derivative with respect to z in the
GZ relations (III.A.131) and setting z = 1. We then need to apply the definition of the vectors

X and X and to use the fact that B = θ
2K
′(1) and B = − θ

2K
′
(1).

We know illustrate these GZ relations on the familiar examples that are the TASEP, the
ASEP and the SSEP.

Example A.32. Coming back again to the TASEP case, we write the GZ relations with the
boundary matrices K and K defined in (II.C.15) and (II.C.17) and the vector A(z) defined in
(III.A.117) to determine the algebraic constraints between by the generators e and d and the
boundary vectors 〈〈W | and |V 〉〉. A direct computation yields

〈〈W |K(z)A

(
1

z

)
= 〈〈W |A(z) ⇔ 〈〈W |

(
(1−z2)(αe+α−1)

αz−α−z
− (1−z2)(αe+α−1)

αz−α−z

)
= 0 ⇔ 〈〈W |(αe+α−1) = 0.

(III.A.135)
In the same way

K(z)A

(
1

z

)
|V 〉〉 = A(z)|V 〉〉 ⇔

(
(z2−1)(βd+β−1)
z(βz−β+1)

− (z2−1)(βd+β−1)
z(βz−β+1)

)
|V 〉〉 = 0 ⇔ (βd+β− 1)|V 〉〉 = 0.

(III.A.136)
We can then recover easily, from the relation 〈〈W |(αe + α − 1) = 0 and having in mind the
identity E = 1 + e, that

〈〈W |E = 〈〈W |(1 + e) =
1

α
〈〈W | (III.A.137)

in agreement with the statement (III.A.11). Similarly using relation (βd + β − 1)|V 〉〉 = 0 we
can show

D|V 〉〉 = (1 + d)|V 〉〉 =
1

β
|V 〉〉 (III.A.138)

which is also in agreement with (III.A.11).
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Example A.33. In the ASEP case the matrices K and K are defined in (II.C.10) and (II.C.12)
and the vector A(z) in (III.A.117). A straightforward computation allows us to establish that
the GZ relations are equivalent to the relations

〈〈W |(αe− γd) = (γ − α+ p− q)〈〈W | (III.A.139)

and
(βd− δe)|V 〉〉 = (δ − β + p− q)|V 〉〉. (III.A.140)

Using the identities E = 1 + e and D = 1 + d these relations imply immediately that

〈〈W | (αE − γD) = (p− q)〈〈W | (III.A.141)

and
(βD − δE) |V 〉〉 = (p− q)|V 〉〉 (III.A.142)

which are in agreement with (III.A.70).

Example A.34. In the SSEP case, the matrices K and K have been introduced in (II.C.19)
and (II.C.21) and the vector A(z) is given in (III.A.118). We write the GZ relations (with
additive spectral parameters, in agreement with the reflection equation (II.C.7)), to determine
the algebraic relations satisfied by the generators E and D and the boundary vectors 〈〈W | and
|V 〉〉. By direct computation we show that

〈〈W |K(z)A(−z) = 〈〈W |A(z) ⇔ 〈〈W |(αE − γD) = 〈〈W | (III.A.143)

and
K(z)A(−z)|V 〉〉 = A(z)|V 〉〉 ⇔ (βD − δE)|V 〉〉 = |V 〉〉, (III.A.144)

in agreement with III.A.71.

5 Ground state of the transfer matrix

a) Inhomogeneous ground state

We stressed in the previous sections the direct relation between the ZF and GZ relations on one
hand, and the steady state of the Markov matrix of integrable models on the other hand. We
explained in chapter II that the Markov matrix associated to an integrable process belongs to a
family of commuting operators generated by the transfer matrix. Because of this commutation
property, the whole family of operators shares the same eigenvectors. In particular the steady
state of the Markov matrix should be an eigenvector of the transfer matrix. In order to address
this problem in full generality, we will be interested in the transfer matrix with inhomogeneity
parameters (introduced in chapter II). This motivates the following definition.

Definition A.35. For A(z), 〈〈W | and |V 〉〉 satisfying the ZF relation (III.A.119) and the GZ
relations (III.A.131), we define the inhomogeneous ground state5

|S(z1, z2, . . . , zL)〉 =
1

ZL(z1, z2, . . . , zL)
〈〈W |A(z1)⊗A(z2)⊗ · · · ⊗A(zL)|V 〉〉, (III.A.145)

where ZL(z1, z2, . . . , zL) = 〈〈W |C(z1)C(z2) . . . C(zL)|V 〉〉 with

C(z) = A0(z) +A1(z) + · · ·+AN (z). (III.A.146)

|S(z1, z2, . . . , zL)〉 is a inhomogeneous deformation of the steady state |S〉 (of the Markov
matrix obtained by taking the derivative of the transfer matrix with respect to the spectral
parameter). The following proposition clarifies this statement.

5the notation |S(z1, z2, . . . , zL)〉 should not be confused with the components S(τ1, τ2, . . . , τL) of the unde-
formed steady state. The distinction between these two objects should be clear from the context.
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Proposition A.36. |S〉 = |S(1, 1, . . . , 1)〉 is the steady state of the model, i.e M |S〉 = 0, where
M is given by (II.C.37).

Proof. This derives directly from the propositions A.24, A.31 and A.12.

Proposition A.37. The normalization ZL(z1, z2, . . . , zL) is symmetric under permutation of
variables zi ↔ zj and inversion of variable zi → 1/zi.

This property shed some light on the possible connection of ZL(z1, z2, . . . , zL) with the
theory of symmetric functions. This relation will be clarified and explored in chapter IV.

Proposition A.38. For all i = 1, . . . , L we have

t(zi|z1, . . . , zL)|S(z1, z2, . . . , zL)〉 = |S(z1, z2, . . . , zL)〉 (III.A.147)

and
t(1/zi|z1, . . . , zL)|S(z1, z2, . . . , zL)〉 = |S(z1, z2, . . . , zL)〉. (III.A.148)

The specialized transfer matrices

t(zi|z1, . . . , zL) = Ři−1,i

(
zi
zi−1

)
. . . Ř1,2

(
zi
z1

)
K1(zi)

× Ř1,2(ziz1) . . . Ři−1,i(zizi−1)Ři,i+1(zizi+1) . . . ŘL−1,L(zizL)

× KL

(
1

zi

)
ŘL−1,L

(
zi
zL

)
. . . Ři,i+1

(
zi
zi+1

)
and

t(1/zi|z1, . . . , zL) = Ři,i+1

(
zi+1

zi

)
. . . ŘL,1,L

(
zL
zi

)
KL(zi)

× ŘL−1,L

(
1

zizL

)
. . . Ři,i+1

(
1

zizi+1

)
Ři−1,i

(
1

zizi−1

)
. . . Ř1,2

(
1

ziz1

)
× K1

(
1

zi

)
Ř1,2

(
z1

zi

)
. . . Ři−1,i

(
zi−1

zi

)
are sometimes called the scattering matrices. Those matrices will appear again in chapter IV
in the context of quantum Knizhnik-Zamolodchikov equations.

Proof. Analyzing the explicit form of t(zi|z1, . . . , zL) we see that when acting on |S(z1, z2, . . . , zL)〉
it takes the inhomogeneity parameter zi and pushes it to the right through all the zj (by suc-
cessive permutation because of the ZF relation satisfied by A(z)). It then inverts zi into 1/zi
at the right boundary (because of the GZ relation). 1/zi is then pushed to the left and again
inverted at the left boundary, to finally being placed in its initial position, completing in this
manner the whole circle. More precisely

t(zi|z1, . . . , zL)|S(z1, . . . , zL)〉 = Ři−1,i

(
zi
zi−1

)
. . . Ř1,2

(
zi
z1

)
K1(zi)

×Ř1,2(ziz1) . . . Ři−1,i(zizi−1)Ři,i+1(zizi+1) . . . ŘL−1,L(zizL)

×KL

(
1

zi

)
|S(z1, . . . , zi−1, zi+1, . . . , zL, zi)〉

= Ři−1,i

(
zi
zi−1

)
. . . Ř1,2

(
zi
z1

)
K1(zi)

×|S(
1

zi
, z1, . . . , zi−1, zi+1, . . . , zL)〉

= |S(z1, . . . , zL)〉.

The proof is exactly the same for the scattering matrix t(1/zi|z1, . . . , zL) but the circle is made
the other way around.
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Remark A.39. Note that the definition A.35 and the propositions A.36, A.37 and A.38 can
be easily adapted to the periodic case (we chose not to give them explicitly here to avoid rep-
etitions). The reader may refer to subsection c) where an example of model defined on the
periodic lattice is studied in details.

Now, a question arises naturally: is the inhomogeneous ground state |S(z1, z2, . . . , zL)〉 an
eigenvector of the transfer matrix t(z|z1, . . . , zL) for a generic z? In all the models that we
have encountered so far (ASEP, TASEP, SSEP) the answer is yes, but we are still lacking
for a general proof of this fact. Indeed in all the models that we have studied, a specific
(model dependent) analysis of the degree and symmetries of the transfer matrix was needed to
prove this fact. The common way to tackle the problem is to remark that the transfer matrix
often has rational entries in the spectral parameter z. Knowing that |S(z1, z2, . . . , zL)〉 is an
eigenvector of t(z|z1, . . . , zL) for z = z±1

i and studying some symmetry of the transfer matrix
is often enough to prove by degree considerations that the inhomogeneous ground state is an
eigenvector of the transfer matrix for all z. We give below several examples.

b) Some examples

Example A.40. We begin to present the case of the ASEP defined on a lattice with open
boundaries. We have for this model

t(z|z1, . . . , zL)|S(z1, . . . , zL)〉 = λ(z|z1, . . . , zL)|S(z1, . . . , zL)〉 (III.A.149)

with

λ(z|z1, . . . , zL) = 1 + (pq)L−1

(
L∏
i=1

(1− zzi)(zi − z)
(p− qzzi)(pzi − qz)

)

× (1− z2)(δp2 + (β − δ + q − p)pqz − βq2z2)(γp2 + (α− γ + q − p)pqz − αq2z2)

(p2 − q2z2)(δz2 + (β − δ + q − p)z − β)(γz2 + (α− γ + q − p)z − α)
.

This relation is proved using the symmetry

t(z|z1, . . . , zL) = (λ(z|z1, . . . , zL)− 1) t(
p

qz
|z1, . . . , zL). (III.A.150)

More details about this symmetry relation can be found in [V3].

Example A.41. Concerning the SSEP defined on a lattice with open boundaries, the situation
is very similar. We have indeed for this model

t(z|z1, . . . , zL)|S(z1, . . . , zL)〉 = λ(z|z1, . . . , zL)|S(z1, . . . , zL)〉 (III.A.151)

with

λ(z|z1, . . . , zL) = 1+

(
L∏
i=1

(z − zi)(z + zi)

(z + 1− zi)(z + 1 + zi)

)
z((α+ γ)(z + 1)− 1)((β + δ)(z + 1)− 1)

(z + 1)((α+ γ)z + 1)((β + δ)z + 1)
.

This relation is proved using the symmetry

t(z|z1, . . . , zL) = (λ(z|z1, . . . , zL)− 1) t(−1− z|z1, . . . , zL). (III.A.152)

More details about this symmetry relation can be found in [V3].
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c) Inhomogeneous periodic TASEP

We study, in this subsection, the ground state of the periodic inhomogeneous transfer matrix.
Instead of addressing the problem in full generality (which would have been a bit redundant
with the open case), we prefer to present the method through a specific simple example: the
periodic TASEP. The inhomogeneous transfer matrix associated to the single species periodic
TASEP was introduced in chapter II. It has been proven to be itself the Markov matrix encoding
a discrete time process. We are now interested in computing the inhomogeneous ground state
of this transfer matrix (note that in this particular case the inhomogeneous ground state can be
called stationary state because the associated eigenvalue is equal to 1 thanks to the Markovian
property of the transfer matrix). The results presented here are mostly extracted from [V9]
and the reader is invited to refer to this paper for the details.

The building block of the stationary state is the following vector

v(z) =

(
z
1

)
. (III.A.153)

It satisfies the Zamolodchikov-Faddeev relation

R12(z1/z2)v1(z1)v2(z2) = v1(z1)v2(z2) . (III.A.154)

The stationary state of the process M(z|z) (defined in (II.B.29)) is constructed from

|S〉 = v1(z1)v2(z2) . . . vL(zL). (III.A.155)

Recall that the subscripts denote which component of the tensor space the vector v belongs to.
To be more precise, since the process conserves the number of particles, there are L independent
sectors (as mentioned previously we do not consider the empty sector), each corresponding to
a given number m of particles in the system. The stationary state is hence degenerate: there is
one stationary state for each sector. Moreover, the exact normalization Z(m) of the stationary
state depends on the sector we are considering. Then, each stationary state is given by the
components of |S〉 corresponding to the sector and correctly normalized.

The following calculation justifies that |S〉 given in (III.A.155) is the stationary state of
the system. Indeed, for i = 1, 2, ..., L we have

t(zi|z)|S〉 = Ri,i−1(
zi
zi−1

) . . . Ri,1(
zi
z1

)Ri,L(
zi
zL

) . . . Ri,i+1(
zi
zi+1

)v1(z1) . . . vL(zL)

= v1(z1)v2(z2) . . . vL(zL)

= |S〉,

where t(z|z) has been introduced in (II.B.20) . The first equality is obtained using the regularity
property of the R-matrix whereas the second equality is obtained using L−1 times the property
(III.A.154). Clearly, t(z|z) is a polynomial of degree less or equal to L in z. It is possible to
show (using the graphical interpretation for instance) that in the sectors where there is at
least one particle, the degree of t(z|z) is in fact at most equal to L− 1. Hence we can deduce
through interpolation arguments that in these sectors, the stationary state is given by the
corresponding components of |S〉. Note that when we take the homogeneous limit zi → 1 we
recover the uniform stationary distribution of the continuous time TASEP.

From the knowledge of the stationary distribution, we can calculate various physical quan-
tities. We shall see that some observables can be expressed as symmetric polynomials in the
inhomogeneity parameters z1, . . . , zL.

The weight of the configuration (τ1, . . . , τL) is readily obtained using (III.A.155):

S(τ1, . . . , τL) =

L∏
i=1

(δ1,τi + ziδ0,τi) . (III.A.156)
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In the sector with m particles, the normalization factor of the stationary state is obtained
by summing the weights of all the configurations with m particles

Z(m) =
∑

I⊂{1,...,L}
|I|=L−m

∏
i∈I

zi = eL−m(z1, . . . , zL) , (III.A.157)

where eL−m is the elementary symmetric homogeneous polynomial of degree L − m. The
normalization factor can be written as a Schur polynomial:

Z(m) = sA1L−m(z1, . . . , zL), where 1L−m = (1, ..., 1︸ ︷︷ ︸
L−m

, 0, ..., 0︸ ︷︷ ︸
m

). (III.A.158)

We remind the definition of the Schur polynomial (of type A) associated with a partition
λ = (λ1, . . . , λL) with λ1 ≥ · · · ≥ λL ≥ 0:

sAλ (z1, . . . , zL) =
det
(
(zj)

L−i+λi
)
i,j

det
(
zL−ij

)
i,j

. (III.A.159)

This expression of the partition function in terms of the Schur polynomial allows us to relate
the value of Z(m) in the homogeneous limit (zi → 1) with the dimension of the representation
πA(λ) of sl(L) labeled by the Young tableau [λ]. Indeed, using the Weyl character formula
(see e.g. [195,196] for a review), we obtain

sAλ (1, . . . , 1) =
∏

1≤j≤i≤L

λj − λi + i− j
i− j

= dim(πA(λ)) . (III.A.160)

In particular, we have

Z(m)
∣∣∣
z1=···=zL=1

= dim(πA(1L−m)) =

(
L
m

)
(III.A.161)

in accordance with a direct computation starting from (III.A.157).
In the sector with m particles, the particle density at site i is obtained by summing the

weights of all the configurations with m particles, one of them being at site i

〈τi〉 =
eL−m(z1, . . . , zi−1, zi+1, . . . , zL)

eL−m(z1, . . . , zL)
. (III.A.162)

We can show that
L∑
i=1

〈τi〉 = m as expected.

The higher correlation functions take also a very simple form. The correlations between
the sites i1 < i2 < · · · < i` is given by

〈τi1τi2 . . . τi`〉 =
eL−m(z1, . . . , zi1−1, zi1+1, . . . , zi2−1, zi2+1, . . . , zi`−1, zi`+1, . . . , zL)

eL−m(z1, . . . , zL)
.

(III.A.163)
For ` > m, the correlation functions vanish as expected since the number of particles is m and
the correlation functions for more than m particles has no meaning.

d) Inhomogeneous open TASEP

We now move to the case of the single species open TASEP, whose inhomogeneous transfer
matrix had been introduced in chapter II. It has been shown that this transfer matrix defines
a discrete time Markov process. The results displayed are taken from [V9].

136



The stationary state is expressed as a matrix product. Indeed, the probability of the
configuration C = (τ1, . . . , τL) can be written as

S(τ1, . . . , τL) =
1

ZL
〈〈W |

L∏
i=1

((1− τi)E(zi) + τiD(zi))|V 〉〉 , (III.A.164)

where the normalization factor is ZL = 〈〈W |C(z1) . . . C(zL)|V 〉〉, with C(z) = E(z)+D(z). We
recall that the algebraic elements E(z) and D(z) are the entries of the vector

A(z) =

(
E(z)
D(z)

)
. (III.A.165)

Using this vector, the stationary state can be written in a more compact way (III.A.145)
The vector A(z) allows us to write easily the exchange relations between E(z) and D(z)

through the ZF relation:

Ř(z1/z2)A(z1)⊗A(z2) = A(z2)⊗A(z1). (III.A.166)

Written explicitly it gives four relations
[E(z1), E(z2)] = 0

[D(z1), D(z2)] = 0

z1
z2
D(z1)E(z2) = D(z2)E(z1)

D(z1)E(z2) = z2
z2−z1 [E(z2)D(z1)− E(z1)D(z2)]

(III.A.167)

Let us remark that the third relation is implied by the fourth.
The relations between the boundary vectors 〈〈W |, |V 〉〉 and the algebraic elements E(z),

D(z) are given by the GZ relations

〈〈W |K(z)A(1/z) = 〈〈W |A(z), K̄(z)A(1/z)|V 〉〉 = A(z)|V 〉〉 . (III.A.168)

Written explicitly we obtain four relations 〈〈W |E(z) = 〈〈W | (a+z)z
za+1 E(1/z)

〈〈W |E(z) = z(a+z)
z2−1

〈〈W |(D(1/z)−D(z))
and

{
D(z)|V 〉〉 = zb+1

z(b+z)D(1/z)|V 〉〉
D(z)|V 〉〉 = bz+1

z2−1
(E(z)− E(1/z))|V 〉〉

(III.A.169)
Let us remark that for each boundary, the first relation is implied by the second one.

We now prove that the vector |S〉 is the stationary state of the transfer matrix. From
proposition A.38 we know that

t(zi|z)|S〉 = |S〉 , (III.A.170)

and also
t(1/zi|z)|S〉 = |S〉 . (III.A.171)

We show below, using the graphical representation, that the numerators of the entries of t(z|z)
are polynomials of degree less than L+ 2. Since the equation t(z|z)|S〉 = |S〉 is satisfied for 2L
different values of z (z = z1, 1/z1, . . . , zL, 1/zL), we get through interpolation arguments that
for L ≥ 3, t(z|z)|S〉 = |S〉 for all z. For L < 5 we checked by computer that this equation is
satisfied.

We use the graphical representation given in figures II.5, II.13 and II.14, interpreting the
last vertex of fig. II.5 as in fig. III.2. We can see that any matrix element 〈C′|t(z|z)|C〉 can be
decomposed into continuous thick lines that do not intersect, as illustrated in the figure III.3.

The vertices that do not enter a thick line have degree 0 in z. Thus, the total degree of
the matrix element is the sum of the degree of each thick line, plus the degree coming from
the boundaries that we look at separately. We first consider lines that are in the ’bulk’ (that
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≡

Figure III.2: Vertex with non-intersecting thick lines.

Figure III.3: Decomposition of a matrix element into thick continuous lines.

do not include a boundary). Looking at the weights of the vertices in fig. II.5, one can see
that the incoming part of a line always carry a degree 1. Moreover, a line corresponding to a
degree n must cross at least n exit lines, the first on the left being always of degree 0. This
implies that the bulk part is at most of degree L. Figure II.14 shows that the right boundary
does not change this counting. The left boundary can add at most a degree 2, as it can be
seen on figure II.13. Altogether, this leads to a total degree L+ 2.

We now construct an explicit representation of the algebraic elements E(z) and D(z). We
introduce the shift operators e and d such that de = 1, which are well known in the context
of the continuous time open TASEP since they enter the construction of the original matrix
ansatz [46]. We define

Ẽ(z) = z + e and D̃(z) = 1/z + d , (III.A.172)

and the boundary vectors such that

〈〈W̃ | e = a 〈〈W̃ | and d|Ṽ 〉〉 = b |Ṽ 〉〉 . (III.A.173)

It is readily verified that the Zamolodchikov-Faddeev relation (III.A.166) and the Ghoshal-
Zamolodchikov relations (III.A.168) are satisfied. From the results of [46] giving explicit forms

for e, d, 〈〈W̃ | and |Ṽ 〉〉, we deduce that 〈〈W̃ | and |Ṽ 〉〉 can be chosen such that 〈〈W̃ |Ṽ 〉〉 6= 0
which guarantees the non-vanishing of |S〉.

The matrix ansatz allows us to calculate the stationary probability of any given configura-
tion. Let 1 ≤ j1 < · · · < jr ≤ L be integers and C(j1, . . . , jr) be the configuration (τ1, . . . , τL)
with τi = 1 if i = jk and τi = 0 otherwise. We define the (non-normalized) weight of the word
with D(j1), . . . , D(jr) at positions j1, . . . , jr as

WL(j1, . . . , jr) = ZL × S(C(j1, . . . , jr)) (III.A.174)

= 〈〈W | . . . D(zj1) . . . D(zj2) . . . D(zjr) . . . |V 〉〉, (III.A.175)

where the dots stand for E(zi) operators.
The same quantity can be calculated using the explicit representation (III.A.172):

W̃L(j1, . . . , jr) = 〈〈W̃ | . . .
(
d+

1

zj1

)
. . .

(
d+

1

zj2

)
. . .

(
d+

1

zjr

)
. . . |Ṽ 〉〉. (III.A.176)

The weight WL(j1, . . . , jr) computed from the relations (III.A.167) and (III.A.169) is propor-

tional to the weight W̃L(j1, . . . , jr) computed using the explicit representation (thanks to the
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uniqueness of the steady-state guaranteed by the Perron-Frobenius theorem). Thus, we have

WL(j1, . . . , jr) = f(z1, . . . , zL)W̃L(j1, . . . , jr). (III.A.177)

The multiplicative coefficient is obtained by comparing the weights of the empty configuration:

f(z1, . . . , zL) =
〈〈W |E(z1) . . . E(zL)|V 〉〉

(a+ z1) . . . (a+ zL)〈〈W |V 〉〉
; (III.A.178)

f(z1, . . . , zL) is symmetric under the permutation of the zi thanks to (III.A.167) but also
under the transformation zi 7→ 1/zi thanks to (III.A.169). The group generated by these
transformations is denoted by BCL in reference to the Weyl group of the root system of the
Lie algebra sp(2L).

The expression of W̃L(j1, . . . , jr) is given by

W̃L(j1, . . . , jr) =
z1 . . . zL
zj1 . . . zjr

r∑
p=0

bp
L∑

qr−p=jr−p

1

zqr−p

qr−p−1∑
qr−p−1=jr−p−1

1

zqr−p−1

· · ·
q2−1∑
q1=j1

1

zq1

×
j1−1∏
l0=1

(
1 +

a

zl0

) j2−1∏
l1=q1+1

(
1 +

a

zl1

)
· · ·

jr−p+1−1∏
lr−p=qr−p+1

(
1 +

a

zlr−p

)
By convention when p = r in the first sum, there is no summation over the qi and the formula

reduces to br
∏j1−1
l0=1

(
1 + a

zl0

)
. We also set jr+1 = L+ 1 in the last product when p = 0. The

proof of this formula is obtained by induction on the size L, using the identity

D̃(zjr)Ẽ(zjr+1) =

(
1

zjr
+ d

)
(zjr+1 + e) =

1

zjr
(zjr+1 + e) + zjr+1

(
1

zjr+1
+ d

)
=

1

zjr
Ẽ(zjr+1) + zjr+1D̃(zjr+1) .

Another important step is to compute the normalization factor of the probability dis-
tribution. We define C(z) = E(z) + D(z) and C̃(z) = Ẽ(z) + D̃(z). The normalization
factors are thus given by ZL(z1, . . . , zL) = 〈〈W |C(z1) . . . C(zL)|V 〉〉, and Z̃L(z1, . . . , zL) =

〈〈W̃ |C̃(z1) . . . C̃(zL)|Ṽ 〉〉 for the explicit representation. Thanks to the property (III.A.177),
we have

ZL(z1, . . . , zL) = f(z1, . . . , zL)Z̃L(z1, . . . , zL). (III.A.179)

ZL and Z̃L are symmetric under BCL.
Our goal is to get an analytic expression for the normalization factor. For this purpose, for

any sequence of complex numbers u = (u1, u2, ...), we define the shifted product by

(z|u)k =

{
(z − u1)(z − u2) · · · (z − uk) , k > 0,

1 if k = 0,
(III.A.180)

We have the result (the proof can be found in [V9]):

Z̃L(z1, . . . , zL) =
det
(
(zj |v)L+2−i − (1/zj |v)L+2−i)

i,j

det
(
zL+1−i
j − (1/zj)L+1−i

)
i,j

with v = (−a,−b, 0, . . . , 0).

(III.A.181)
When a, b = 0, we recognize in the L.H.S. of equation (III.A.181), the expression of the Schur
polynomial of type C associated to the partition 1L = (1, ...., 1). We remind that the Schur
polynomial of type C associated with the partition λ = (λ1, . . . , λL) with λ1 ≥ . . . λL ≥ 0 is
defined by:

Z̃L(z1, . . . , zL)
∣∣∣
a=b=0

= sCλ (z1, . . . , zL) =
det
(
(zj)

L+1−i+λi − (1/zj)
L+1−i+λi

)
i,j

det
(
zL+1−i
j − (1/zj)L+1−i

)
i,j

. (III.A.182)
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As in the periodic case where the normalization factor is linked to the Schur polynomial of
type A and to the representation of the Lie algebra sl(L) (see (III.A.160) and (III.A.161)),
the normalization factor (III.A.182) is given in terms of the Schur polynomial of type C and
is associated to representation of the Lie algebra sp(2L). These observations will allow us to
use results of the Lie algebra theory to take the homogeneous limit zi → 1.

When a, b are arbitrary, we need to use some generalizations of the Schur polynomial, called
shifted (or factorial) Schur polynomials. A shifted Schur polynomial of type A, is defined, for
any sequence of complex numbers u = (u1, u2, ...) [197], as follows:

sAλ (z1, . . . , zL|u) =
det
(
(zj |u)L−i+λi

)
i,j

det
(
zL−ij

)
i,j

. (III.A.183)

Similarly, we define the shifted (or factorial) Schur polynomial of type C as6

sCλ (z1, . . . , zL|u) =
det
(
(zj |u)L+1−i+λi − (1/zj |u)L+1−i+λi

)
i,j

det
(
zL+1−i
j − (1/zj)L+1−i

)
i,j

. (III.A.184)

Thus, the normalization factor (III.A.181) is the shifted Schur polynomial of type C associated
to the partition 1L and to the sequence v = (−a,−b, 0, 0, . . . ). For this particular partition,
the shifted Schur polynomial of type C can be expanded on the usual type C Schur polynomials
as (the proof can be found in [V9])

Z̃L(z1, . . . , zL) = sC1L(z1, . . . , zL|v) =

L+1∑
n=1

an − bn

a− b
sC1L+1−n(z1, . . . , zL). (III.A.185)

Using the explicit representation, we can also determine the particle density at site i from
the stationary measure:

〈τi(z1, . . . , zL)〉 =

(
b+

1

zi

)
Z̃L−1(z1, . . . , zi−1, zi+1, . . . , zL)

Z̃L(z1, . . . , zL)
+

(1− ab) ×
L−i−1∑
k=0

Z̃i−1+k(z1, . . . , zi−1, zi+1, . . . , zi+k)
∣∣∣
b=0

Z̃L−i−1−k(zi+2+k, . . . , zL)
∣∣∣
a=0

Z̃L(z1, . . . , zL)
.

In the homogeneous limit zi → 1, sC
1L+1−n(1, . . . , 1) is equal to the dimension of the sp(2L)

representation associated to the partition 1L+1−n:

sC1L+1−n(1, . . . , 1) =
n

L+ 1

(
2L+ 2

L+ 1− n

)
= dim

(
πC(1L+1−n)

)
. (III.A.186)

This expression is obtained through the general formula (see [196] for instance):

dim
(
πC(λ)

)
=

∏
1≤i<j≤L

(
λi − λj + j − i

j − i
λi + λj + 2L+ 2− j − i

2L+ 2− j − i

) L∏
i=1

λi + L+ 1− i
L+ 1− i

.

(III.A.187)
Then from (III.A.185), we get

Z̃L(1, 1, ..., 1) =
gL(a)− gL(b)

a− b
with gL(x) =

L∑
n=0

n+ 1

L+ 1

(
2L+ 2
L− n

)
xn+1 (III.A.188)

in accordance with the results known for continuous time open TASEP [46]

ZL =
hL( 1

α)− hL( 1
β )

1
α −

1
β

with hL(x) =

L∑
p=1

p

2L− p

(
2L− p
L

)
xp+1. (III.A.189)

6It is easy to see that sCλ (z1, . . . , zL|u) is indeed a polynomial in the variables z1, . . . , zL.
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The equality between these two expressions is ensured by the identity

gL(x− 1) = hL(x)− 1

L

(
2L
L− 1

)
(III.A.190)

and recalling that a = 1
α − 1 and b = 1

β − 1.
In particular, when a = b = 0 (i.e. α = β = 1), ZL is equal to the dimension of the

representation 1L, which is the Catalan number CL+1 = 1
L+2

(
2L+ 2
L+ 1

)
.

The model considered here has non-diagonal boundary matrices (see (II.C.15)) and cannot
be completely diagonalized by the usual integrability methods (like CBA or ABA). In the last
few years, various specific techniques have been developed for solving such problems, based
on the functional Bethe ansatz [198–200], the coordinate Bethe ansatz [97, 98, 142, 201], the
separation of variables [100, 147, 148], the q-Onsager approach [151, 152] and the algebraic
Bethe ansatz [102,103]. Recently, a generalization [101,146,202] of the TQ relations expresses
the eigenvalues of problems in terms of solutions of a new type of Bethe equations, called
inhomogeneous Bethe equations.

In what follows, we shall find an unexpected relation between the ‘partition function’ ZL
and the Baxter Q operator appearing in the TQ-relations.

In [143], the Bethe equations corresponding to the eigenvalues and the eigenvectors of
the transfer matrix (II.C.26) associated to the open TASEP have been computed using the
modified algebraic Bethe ansatz. In this context, the eigenvalue of the transfer matrix (II.C.26)
corresponding to the stationary state Λ(z) is given by

Λ(z) = zL+1 b+ z

bz + 1

L∏
k=1

zuk − 1

uk − z
− (z2 − 1)

(bz + 1)

L∏
j=1

[
(z − zj)(z −

1

zj
)

] L∏
k=1

uk
uk − z

, (III.A.191)

where uk are called Bethe roots and are solutions of the following Bethe equations

L∏
p=1

(uj − zp)(ujzp − 1)

ujzp
= (uj + b)

L∏
k=1
k 6=j

(
uj −

1

uk

)
, for j = 1, 2, . . . , L . (III.A.192)

Let us stress that here the Bethe roots are the ones corresponding to the steady state. The
corresponding Bethe equations (III.A.192) were found in [143] not to depend on the boundary
parameter a. The Bethe roots corresponding to other states obey different Bethe equations
(see [143], or [203] for the homogeneous case) which involve parameter a. We now introduce
the following function:

Q(z) =

L∏
k=1

(
1

uk
− 1

z

)
. (III.A.193)

This function (up to a coefficient zL) is linked to the polynomial Q of Baxter [29]: its zeros
are the Bethe roots. The eigenvalue (III.A.191) can be written in terms of the Q function as
follows

Λ(z) =
z(b+ z)Q(1/z)

(bz + 1)Q(z)
− (z2 − 1)

(bz + 1)Q(z)

L∏
j=1

[
(z − zj)(

1

zzj
− 1)

]
. (III.A.194)

For the steady-state eigenvector, we know that Λ(z) = 1. Hence Q(z) satisfies

z(z + b)Q(1/z)− (1 + bz)Q(z) = (z2 − 1)

L∏
j=1

[
(z − zj)(

1

zzj
− 1)

]
. (III.A.195)

This equation, called TQ relation, allows us to compute explicitly the function Q: for a given
L, it can be shown that equation (III.A.195) has a unique solution of the form (III.A.193).
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For the model studied here, the function Q and the normalization factor Z̃(z1, . . . , zL) are
closely related. Namely, we get

Q(z) = Z̃(z1, . . . , zL)
∣∣
a→−1/z

=
L+1∑
n=1

(−1/z)n − bn

−1/z − b
sC1L+1−n(z1, . . . , zL) (III.A.196)

=
L∑
p=0

(
−1

z

)p L−p∑
n=0

bn sC1L−n−p(z1, . . . , zL) .(III.A.197)

where we have used the explicit form of Z̃ given in (III.A.185). To prove this result, we remark
that Q(x) given by (III.A.197) has the form (III.A.193) and we show that it satisfies the TQ
relation (III.A.195). We have

z(z + b)Q(1/z)− (1 + bz)Q(z) = −z
L+1∑
n=1

((−z)n − (−1/z)n) sC1L+1−n(z1, . . . , zL)

= (z2 − 1)sC1L(z1, . . . , zL|z, 1/z, 0, . . . , 0) . (III.A.198)

Finally, we readily check that sC
1L

(z1, . . . , zL|z, 1/z, 0, . . . , 0) vanishes at the points z = zj and
z = 1/zj which allows us to conclude that (III.A.198) is equal to the L.H.S. of (III.A.195).

Relation (III.A.196) means that the Bethe roots (zeros of the function Q) are linked to the
zeros of the steady-state normalization factor in the complex plane of the transition rate a.
These zeros appeared previously (for the homogeneous case) in [204–206] as Lee-Yang zeros
and allows the generalization of the Lee-Yang theory for the phase transition of non equilibrium
system. Therefore, relation (III.A.196) expresses an unexpected relation between two objects
arising from very different contexts.

B Application to integrable models: examples

The goal of this section is to provide several examples of physical systems that can be inves-
tigated using the framework presented in this chapter. These systems, comprising reaction
diffusion processes or involving several species of particles, will hopefully by their diversity
illustrate all the different notions introduced. The study conducted below will mainly concern
the matrix product construction of the steady state, taking advantage of the integrability of
the models as stressed previously. A particular attention will also be put on the exact com-
putation of physical quantities, in order to stress the efficiency and usefulness of the matrix
ansatz for physical applications.

1 A diffusive model with evaporation and condensation

We consider in this subsection a one parameter generalization of the SSEP. The model involves
a single species of particle that can diffuse on a one dimensional lattice coupled with two
reservoirs at its extremities. In the bulk the particles can jump with equal probability rate
to the left or right neighboring site provided that it is empty (exclusion constraint). The
injection and extraction rates at the boundaries are asymmetric to model the coupling with
the particle reservoirs. In addition to the usual dynamics of the SSEP, we allow the annihilation
and creation of particle pairs on two adjacent sites in the bulk, with equal probability rates
(provided again that the two target sites are empty when performing a pair creation, to respect
the exclusion constraint). This pair creation and annihilation is said to be dissipative because
it does not conserve the number of particles in the bulk. This explains the name of the model:
Dissipative Symmetric Simple Exclusion Process (DiSSEP). This model has been exactly solved
on the periodic lattice in [207]. The model with open boundaries has been defined in [V3] and
studied in details in [V10]. We present here the main results, following the lines of [V10].
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a) Presentation of the model

The precise stochastic dynamics is given as follows. During an infinitesimal time dt, a particle
in the bulk can jump to the left or to the right neighboring site with probability dt if it is
unoccupied. A pair of neighbor particles can also be annihilated with probability λ2 × dt and
be created on unoccupied neighbor sites with probability λ2× dt (see figure III.4). At the two
extremities of the lattice the dynamics is modified to take into account the interaction with
the reservoirs: at the first site (connected with the left reservoir), during time dt, a particle is
injected with probability α × dt if the site is empty and extracted with probability γ × dt if
it is occupied. The dynamics is similar at last site (connected with the right reservoir) with
injection rate δ and extraction rate β. The dynamical rules can be summarized in the following
table where 0 stands for vacancy and 1 stands for a particle. The transition rates between the
configurations are written above the arrows.

Left Bulk Right

0
α−−→ 1 01

1←→ 10 1
β−−→ 0

1
γ−−→ 0 00

λ2←→ 11 0
δ−−→ 1

(III.B.1)

The Markov matrix encoding the stochastic dynamics of the process is given as usual as
the sum of operators acting locally on the lattice:

M = B1 +
L−1∑
k=1

mk,k+1 +BL, (III.B.2)

where the local jump operators B, B and m are given by

B =

(
−α γ
α −γ

)
, m =


−λ2 0 0 λ2

0 −1 1 0
0 1 −1 0
λ2 0 0 −λ2

 , B =

(
−δ β
δ −β

)
.

(III.B.3)
We recall that we already encountered these local operators in the examples (II.A.26) and
(II.A.31) in chapter II.

α

γ

1 1 {λ2 {

λ2 β

δ

Figure III.4: Dynamical rules of the DiSSEP.

We choose the coefficient of condensation and evaporation to be λ2 and not λ for later
convenience. Let us remark that the SSEP is recovered when the creation/annihilation rate
λ2 vanishes. The limit λ2 →∞ provides a model with only condensation and evaporation.

The system is driven out of equilibrium by the boundaries. As shown in (III.B.51) and
(III.B.53), there are particle currents in the stationary state for generic boundary rates α, β, γ
and δ. We will see below (V.A.13) that these choices of rates describe particle reservoirs with
densities

ρl =
α

α+ γ
, and ρr =

δ

β + δ
. (III.B.4)

Remark B.1. The system will converge in the long time limit to a thermodynamic equilibrium
if and only if the densities of the particle reservoirs at the boundaries are both equal to 1/2.
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This translates to α = γ and β = δ. The detailed balance condition is indeed only satisfied
in this case. This can be interpreted by the fact that the system is in some way coupled to a
particle reservoir in the bulk because of the evaporation and condensation. This reservoir has
a fixed density 1/2 because the evaporation and condensation processes happen with the same
probability rate. The thermodynamic equilibrium can thus occurs if and only if the two other
particle reservoirs at the boundaries have the same density 1/2.

Remark B.2. The model displays several symmetries that are listed below:

• The evaporation/condensation probability rate is chosen to be λ2, hence all the results
should be invariant under the transformation λ→ −λ.

• The left/right symmetry of the chain is given by the transformations α↔ δ, γ ↔ β and
a change of numbering of the sites i→ L+ 1− i.

• The vacancy-particle symmetry translates into α↔ γ and δ ↔ β.

The DiSSEP defines an integrable model. We indeed saw in chapter II that there exists an
R matrix (II.B.55) satisfying the Yang Baxter equation and such that m = 2λŘ′(1). There
exist also boundary matrices K and K, introduced in (II.C.46) and (II.C.48) respectively,

satisfying the reflection equation and such that B = λK ′(1) and B = −λK ′(1). Following the
lines of chapter II, we can construct a transfer matrix

t(z) = tr0(K̃0(z)R0,L(z) . . . R0,1K0(z)R1,0(z) . . . RL,0(z)) (III.B.5)

where

K̃(z) = tr0

(
K0

(
1

z

)((
R0,1(z2)t1

)−1
)t1

P0,1

)
. (III.B.6)

This transfer matrix satisfies the key relation [t(z), t(z′)] = 0 and is directly related to the
Markov matrix M through

M = λt′(1). (III.B.7)

b) Matrix ansatz

This subsection is devoted to the construction of the steady state of the model in a matrix prod-
uct form. Following the general procedure developed in this chapter for integrable stochastic
processes, we start by introducing a vector A(z) with algebraic entries and a finite expansion
with respect to the spectral parameter z:

A(z) =

(
G1z +G2 + G3

z

−G1z +G2 − G3
z

)
. (III.B.8)

To determine the commutation relations of the generators Gi’s, we write the ZF relation

Ř

(
z1

z2

)
A(z1)⊗A(z2) = A(z2)⊗A(z1) ⇔

z2
1 − z2

2

z1z2



(
z1z2+1

)(
(λ+1)G2G1+(λ−1)G1G2

)
+

(
z2(λ−1)−z1(λ+1)

)(
G1G3−G3G1

)
z2(λ−1)−z1(λ+1)(

z1z2−1

)(
(λ+1)G2G1+(λ−1)G1G2

)
−
(
z1(λ+1)+z2(λ−1)

)(
G1G3−G3G1

)
z1(λ+1)+z2(λ−1)(

z1z2−1

)(
(λ+1)G2G1+(λ−1)G1G2

)
+

(
z1(λ+1)+z2(λ−1)

)(
G1G3−G3G1

)
−z1(λ+1)−z2(λ−1)(

z1z2+1

)(
(λ+1)G2G1+(λ−1)G1G2

)
+

(
z1(λ+1)−z2(λ−1)

)(
G1G3−G3G1

)
z1(λ+1)−z2(λ−1)


= 0.

This can be concisely and equivalently rewritten with the three following relations

[G1, G3] = 0, G2G1 = φ G1G2, and G3G2 = φ G2G3, with φ =
1− λ
1 + λ

. (III.B.9)
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The relations on the boundaries are obtained by writing the GZ relations. On the left boundary
vector we have

〈〈W |K(z)A

(
1

z

)
= 〈〈W |A(z) ⇔

〈〈W |



(
1−z4

)(
(α+γ+2λ)G1+(α+γ−2λ)G3+(α−γ)G2

)
z

(
(α+γ+2λ)z2−α−γ+2λ

)(
z4−1

)(
(α+γ+2λ)G1+(α+γ−2λ)G3+(α−γ)G2

)
z

(
(α+γ+2λ)z2−α−γ+2λ

)

 = 0.

On the right boundary the GZ relation reads

K(z)A

(
1

z

)
|V 〉〉 = A(z)|V 〉〉 ⇔

(
1−z4

)(
(β+δ+2λ)G3+(β+δ−2λ)G1+(δ−β)G2

)
z

(
(β+δ−2λ)z2−β−δ−2λ

)(
z4−1

)(
(β+δ+2λ)G3+(β+δ−2λ)G1+(δ−β)G2

)
z

(
(β+δ−2λ)z2−β−δ−2λ

)

 |V 〉〉 = 0.

These two relations are equivalent to

{
〈〈W |

(
G1 − c G2 − a G3

)
= 0 ,(

G3 − b G1 − d G2

)
|V 〉〉 = 0

with


a =

2λ− α− γ
2λ+ α+ γ

, c =
γ − α

2λ+ α+ γ
,

b =
2λ− δ − β
2λ+ δ + β

, d =
β − δ

2λ+ δ + β
.

(III.B.10)

All this construction allows us to express the steady state as the matrix product state

|S〉 =
1

ZL
〈〈W |X⊗ · · · ⊗X|V 〉〉 (III.B.11)

where

X =

(
E
D

)
:= A(1). (III.B.12)

We define also the auxiliary vector

X =

(
−H
H

)
:= 2λA′(1). (III.B.13)

We thus have the explicit relations 
E = G1 +G2 +G3,

D = G2 −G1 −G3,

H = 2λ(G3 −G1).

(III.B.14)

The commutation relations on the Gi’s (III.B.9) translates into commutation relations on the
E, D, H generators:

[D,E] = EH +HD, and [H,E] = [H,D] = λ2(D2 − E2). (III.B.15)

These relations are equivalent to the very useful telescopic relation

w

(
E
D

)
⊗
(
E
D

)
=

(
E
D

)
⊗
(
−H
H

)
−
(
−H
H

)
⊗
(
E
D

)
. (III.B.16)
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Notice here that, in contrast with the SSEP case (see [16]) where H is a scalar, the commutation
relations between H and E, D are not trivial. The action of the generators E, D and H on
the boundary vectors 〈〈W | and |V 〉〉 are obtained by direct translation of the action of the
generators Gi’s (III.B.10):

〈〈W | (αE − γD) = 〈〈W |H, and (δE − βD) |V 〉〉 = −H|V 〉〉. (III.B.17)

It is equivalent to

〈〈W |B
(
E
D

)
= 〈〈W |

(
−H
H

)
, and B

(
E
D

)
|V 〉〉 = −

(
−H
H

)
|V 〉〉. (III.B.18)

Note that the relations satisfied by the generators E, D and H are strictly equivalent to the
relations verified by the Gi’s, they just correspond to the change of basis (III.B.14). We gave
them in order to make the connection with the usual presentation of the matrix ansatz and to
make the comparison with the SSEP easier. Nevertheless we will not use the E, D, H basis in
the following and stick with the Gi’s basis because the computations will be more efficient.

The explicit representation of the boundary vectors 〈〈W | and |V 〉〉 and of the generators
Gi’s (or equivalently of the generators E, D and H) can be found in [V3]. We do not present
it here because it does not simplify the computation of the physical quantities (that can be
efficiently done using the algebraic relations (III.B.9) and (III.B.10), see next subsection) and
it does not shed any new light on the stationary distribution. Nevertheless the existence of
such explicit representation is necessary to prove the existence of the generators and boundary
vectors.

Remark B.3. As previously seen in this chapter (see subsection 5 for details), we can define
the inhomogeneous ground state

|S(z1, . . . , zL)〉 =
〈〈W |A(z1)⊗ · · · ⊗A(zL)|V 〉〉

ZL(z1, . . . , zL)
, (III.B.19)

where the normalization

ZL(z1, . . . , zL) = 〈〈W |C(z1) . . . C(z2)|V 〉〉, with C(z) = A0(z) +A1(z) +A2(z). (III.B.20)

This inhomogeneous deformation of the steady state (we recall that |S(1, . . . , 1)〉 is the steady
state) is an eigenvector of the inhomogeneous transfer matrix associated to the model

t(z|z1, . . . , zL)|S(z1, . . . , zL)〉 = λ(z|z1, . . . , zL)|S(z1, . . . , zL)〉, (III.B.21)

where the eigenvalue is equal to

λ(z|z1, . . . , zL) = 1 + φ2L (z4 − 1)(az2 + φ2)(bz2 + φ2)

(z4 − φ4)(z2 + a)(z2 + b)

L∏
i=1

((zzi)
2 − 1)(z2 − z2

i )

((zzi)2 − φ2)(z2 − (φzi)2)
.

(III.B.22)
This can be proven (see subsection 5 for details) using degree consideration and the symmetry
property on the transfer matrix

t(z|z1, . . . , zL) =
(
λ(z|z1, . . . , zL)− 1

)
t(
φ

z
|z1, . . . , zL). (III.B.23)

c) Computation of physical quantities

We now focus on the computation of physical quantities in the stationary state. We will see that
the matrix ansatz algebra, introduced to express the steady state, reveals to be very efficient in
computing correlation functions and mean values of the currents. Before studying the general
model, we focus on the case λ = 1 (φ = 0), where the calculations simplify drastically: it
corresponds to the free fermion point of the model we introduced.

For λ = 1, all the eigenvalues and the eigenvectors can be computed easily as shown in the
following proposition.
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Proposition B.4. For L ≥ 3, the 2L eigenvectors are characterized by the set ε = (ε1, ε2, . . . , εL)
with εi = ±1 and are given by

Ω(ε) = v(ε1, ε2, α, γ)⊗
(

1
ε2

)
⊗
(

1
ε3

)
⊗ · · · ⊗

(
1

εL−1

)
⊗ v(εL, εL−1, δ, β) (III.B.24)

where v(ε, ε′, µ, ν) =

(
ε′ + ν

1 + µ+ f(ε, ε′, µ+ ν)

)
and f(ε, ε′, τ) = εε′ − 1 − τ

2 (1 − ε). The corre-

sponding eigenvalues are

Λ(ε) = f(ε1, ε2, α+ γ) +
L−2∑
j=2

(εjεj+1 − 1) + f(εL, εL−1, δ + β) . (III.B.25)

Let us remark that the ASEP on a ring with Langmuir kinetics has been treated similarly
in [208].

Proof. This can be checked by a direct computation.

Corollary B.5. From the previous results, we deduce that the stationary state is

Ω(+,+, . . . ,+) =
1

ZL

(
1 + γ
1 + α

)
⊗
(

1
1

)⊗L−2

⊗
(

1 + β
1 + δ

)
(III.B.26)

where ZL = 2L−2(2+α+γ)(2+β+δ) is the normalisation such that the entries be probabilities.

Proof. We have indeed Λ(+,+, . . . ,+) = 0.
From this stationary state, we can compute the mean value of the injected current by the

left reservoir (resp. by the right reservoir)

〈jleft〉 =
α− γ

2 + α+ γ
(resp. 〈jright〉 =

δ − β
2 + δ + β

) . (III.B.27)

We see that the current has the sign of α − γ (resp. δ − β). As expected, it goes to the left
when extraction is promoted, and to the right when injection is proeminent. It vanishes for
α = γ. The lattice current in the bulk vanishes.

We can also compute easily the first excited state whose eigenvalue provides the relaxation
rate. Indeed, the greatest non vanishing eigenvalue is

G = −4 if α+ γ > 2 and β + δ > 2

G = −2− β − δ if α+ γ > 2 and β + δ < 2

G = −2− α− γ if α+ γ < 2 and β + δ > 2

G = −α− γ − β − δ if α+ γ < 2 and β + δ < 2

(III.B.28)

These results shall be generalized in the thermodynamic limit in chapter V for any λ using the
Bethe equations. The general result displayed on figure V.4 matches the above values of the
gap for λ = 1 (φ = 0).

For this particular choice of λ, it is also possible to get the generating function of the
cumulants of the current entering in the system from the left reservoir (the same result is
also obtained by symmetry for the right reservoir). For general λ, one obtains the variance in
(III.B.73). It is well established (see chapter I for instance) that this generating function is the
greatest eigenvalue of the following deformed Markov matrix

M = B1(µ) +

L−1∑
k=1

mk,k+1 +BL, (III.B.29)
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where the local jump operator B(µ) is deformed as follows

B(µ) =

(
−α γe−µ

αeµ −γ

)
. (III.B.30)

One can show by direct computation that the greatest eigenvalue is given by7

E(µ) = −2 + α+ γ

2
+

1

2

√
4 + 4αeµ + 4γe−µ + (α+ γ)2 (III.B.31)

with the eigenvector

Ω(µ) =

(
1 + γe−µ

1 + α+ E(µ)

)
⊗
(

1
1

)⊗L−2

⊗
(

1 + β
1 + δ

)
. (III.B.32)

The rate-function G(j) associated to the current is the Legendre transformation of this
generating function of the cumulants:

G(j) = µ∗j − E(µ∗) ,
d

dµ
E(µ)

∣∣∣
µ=µ∗

= j (III.B.33)

Its explicit form can be extracted from the expression of E(µ) and is given in the following
proposition

Proposition B.6.

G(j) = 1 +
α+ γ

2
−

√
1 + ∆(j) +

(
α+ γ

2

)2

+ j ln

∆(j)

2α
+
j

α

√
1 + ∆(j) +

(
α+ γ

2

)2


(III.B.34)
where

∆(j) = 2j2 +
√

4(αγ + j2 + j4) + j2(α+ γ)2 . (III.B.35)

Let us stress that (III.B.34) represents an exact result on the large deviation function of
the current on the left boundary. The function G(j) is convex and vanishes when j is equal to
the mean value of the current on the left boundary given by (III.B.27) as expected, see figure
III.5. Note that it is not Gaussian.

We now come back to the general case λ 6= 1 (φ 6= 0). We start by stating a formula, giving
the value of a general word in the generators Gi’s, that will be of prime utility to compute
correlation functions and mean values of particle currents. It thus appears as one of the main
analytical result obtained concerning the DiSSEP.

Proposition B.7. For all integers p, q, r ≥ 0 we have the equality

〈〈W |Gp1G
q
2G

r
3|V 〉〉

〈〈W |Gp+q+r2 |V 〉〉
=

p−1∏
`=0

(c φp−1−` + ad φq+r+`)

r−1∏
n=0

(d φr−1−n + bc φq+p+n)

p+q+r−1∏
k=q

(1− ab φ2k)

, (III.B.36)

Note that the value of any word in the generators Gi’s (not necessarily ordered as above)
can be easily obtained from this formula because the commutation relations among the Gi’s
are very simple (III.B.9). The reordering of the Gi’s makes appear only a power of φ.

7We recover that E(0) = 0 in agreement with the fact that at µ = 0 the greatest eigenvalue is vanishing
because of the Markovian property. Note that E(µ) depends only on the boundary rates of the left reservoir α
and γ, and not on the boundary rates of the right reservoir β and δ.
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Figure III.5: Example of large deviation function G(j) (on the plot α = 2, γ = 0.5).

Proof. In order to compute 〈〈W |Gp1G
q
2G

r
3|V 〉〉, we use a change of generators defined as follows

Li =
G1

φi
− aG3φ

i, and Rk =
G3

φk
− bG1φ

k. (III.B.37)

This is built so that Li and Rk fulfill the following relations (derived straightforwardly from
(III.B.9) and (III.B.10))

Gi2Li = L0G
i
2, RkG

k
2 = Gk2R0, [Li, G1] = [Li, G3] = [Rk, G1] = [Rk, G3] = 0

and 〈〈W |L0 = c〈〈W |G2, R0|V 〉〉 = dG2|V 〉〉. (III.B.38)

The change of generators (III.B.37) can be inverted to get

G1 =
φk+i

1− abφ2(k+i)

(
Li
φk

+ aφiRk

)
, and G3 =

φk+i

1− abφ2(k+i)

(
bφkLi +

Rk
φi

)
. (III.B.39)

We can now begin the computation

〈〈W |Gp1G
q
2G

r
3|V 〉〉 =

φq

1− abφ2q
〈〈W |

(
L0

φq
+ aRq

)
Gp−1

1 Gq2G
r
3|V 〉〉

=
1

1− abφ2q
〈〈W |cG2G

p−1
1 Gq2G

r
3|V 〉〉+

1

1− abφ2q
〈〈W |Gp−1

1 Gq2G
r
3adφ

qG2|V 〉〉

=
cφp−1 + adφq+r

1− abφ2q
〈〈W |Gp−1

1 Gq+1
2 Gr3|V 〉〉.

The first equality is obtained using (III.B.39) with i = 0 and k = q to transform the leftmost
G1. The second equality relies on the relations (III.B.38). We get the last one using (III.B.9).
This relation provides a recursion for 〈〈W |Gp1G

q
2G

r
3|V 〉〉 that we can iterate to obtain

〈〈W |Gp1G
q
2G

r
3|V 〉〉 =

(
p−1∏
l=0

cφp−1−l + adφr+q+l

1− abφ2(q+l)

)
〈〈W |Gq+p2 Gr3|V 〉〉. (III.B.40)

Performing similar computations with G3 we obtain the following recursive relation

〈〈W |Gq+p2 Gr3|V 〉〉 =
φq+p

1− abφ2(q+p)
〈〈W |Gq+p2 Gr−1

3

(
bLq+p +

R0

φq+p

)
|V 〉〉

=
dφr−1 + bcφq+p

1− abφ2(q+p)
〈〈W |Gq+p+1

2 Gr−1
3 |V 〉〉 ,
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to get

〈〈W |Gq+p2 Gr3|V 〉〉 =

(
r−1∏
n=0

dφr−1−n + bcφq+p+n

1− abφ2(q+p+n)

)
〈〈W |Gp+q+r2 |V 〉〉. (III.B.41)

Recombining (III.B.40) and (III.B.41) together, the desired result (III.B.36) is proved.
Let us stress that since G1, G2, G3 form a basis, the knowledge of all words built on them

allows us to reconstruct all words built on E and D using the two first relations of (III.B.14).
In particular, we are able to compute exactly physical observables, as it is illustrated below.

Proposition B.8. The one-point function (i.e the mean particle density) reads for 1 ≤ i ≤ L

〈τi〉 =
1

2

〈〈W |Gi−1
2 (−G1 +G2 −G3)GL−i2 |V 〉〉

〈〈W |GL2 |V 〉〉
(III.B.42)

=
1

2
− cφi−1 + adφL+i−2 + dφL−i + bcφ2L−i−1

2(1− abφ2L−2)
, (III.B.43)

the connected two-point correlation function, for 1 ≤ i < j ≤ L, is given by

〈τiτj〉c = 〈τiτj〉 − 〈τi〉〈τj〉 (III.B.44)

=
〈〈W |Ci−1DCj−i−1DCL−j |V 〉〉

〈〈W |CL|V 〉〉
− 〈〈W |C

i−1DCL−i|V 〉〉
〈〈W |CL|V 〉〉

〈〈W |Cj−1DCL−j |V 〉〉
〈〈W |CL|V 〉〉

=
φL+j−i−3(1− φ2)(1 + bφ2(L−j))(1 + aφ2(i−1))(d+ bcφL−1)(c+ adφL−1)

4(1− abφ2(L−1))2(1− abφ2(L−2))
,(III.B.45)

and the connected three-point correlation function, for 1 ≤ i < j < k ≤ L, is equal to

〈τiτjτk〉c = 〈τiτjτk〉 − 〈τi〉〈τjτk〉 − 〈τj〉〈τiτk〉 − 〈τk〉〈τiτj〉+ 2〈τi〉〈τj〉〈τk〉 (III.B.46)

= −φ
L+k−i−5(1− φ2)2(1 + bφ2(L−k))(1 + aφ2(i−1))(d+ bcφL−1)(c+ adφL−1)

8(1− abφ2(L−1))3(1− abφ2(L−2))(1− abφ2(L−3))

×
[
φL−j(d+ bcφL−3)(1 + 2aφ2(j−1) + abφ2(L−1)) (III.B.47)

+φj−1(c+ adφL−3)(1 + 2bφ2(L−j) + abφ2(L−1))
]
.

Remark that for generic i, j, k, the two- and three-point correlation functions satisfy both
a set of closed linear relations:

(1− λ2)
(
〈τi−1τj〉c + 〈τi+1τj〉c + 〈τiτj−1〉c + 〈τiτj+1〉c

)
= 4(1 + λ2)〈τiτj〉c ,(III.B.48)

(1− λ2)
(
〈τi−1τjτk〉c + 〈τi+1τjτk〉c + 〈τiτj−1τk〉c + 〈τiτj+1τk〉c + 〈τiτjτk−1〉c

+〈τiτjτk+1〉c
)

= 6(1 + λ2)〈τiτjτk〉c (III.B.49)

Proposition B.9. The mean particle lattice current between sites i and i + 1 (i.e the mean
number of particles, counted algebraically, that jump from site i to site i+ 1 per unit of time)
is given by the exact expression

〈ji→i+1
lat 〉 =

〈〈W |Ci−1 (DE − ED)CL−i−1|V 〉〉
〈〈W |CL|V 〉〉

(III.B.50)

=
1− φ

2

bcφ2L−i−2 + dφL−i−1 − adφL+i−2 − cφi−1

1− abφ2L−2
. (III.B.51)

Counting positively the pairs of particles which condensate on the lattice and negatively the
pairs which evaporate, we get for the mean evaporation-condensation current on sites i and
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i + 1 (i.e the mean number of particles, counted algebraically, that condensate on sites i and
i+ 1 per unit of time)

〈ji,i+1
cond 〉 = 2

〈〈W |Ci−1λ2
(
E2 −D2

)
CL−i−1|V 〉〉

〈〈W |CL|V 〉〉
(III.B.52)

=
(1− φ)2

1 + φ

bcφ2L−i−2 + dφL−i−1 + adφL+i−2 + cφi−1

1− abφ2L−2
. (III.B.53)

Note that the above expressions behave as expected under the three symmetries:

1. The symmetry λ→ −λ, that translates into φ→ 1/φ, a→ 1/a, c→ −c/a, b→ 1/b and
d→ −d/b, leaves them invariant.

2. The left/right symmetry, that becomes a↔ b, c↔ d and i→ L+ 1− i, changes the sign
of the lattice current, keeps the condensation current and the density invariant.

3. The particle-hole symmetry, which reads a → a, b → b, c → −c and d → −d, changes
the sign of both currents and transforms 〈ni〉 into 1− 〈ni〉.

The physical quantities computed above are not all independent. The particle conservation
law at site i reads

〈ji−1→i
lat 〉 − 〈ji→i+1

lat 〉+
1

2
〈ji−1,i
cond 〉+

1

2
〈ji,i+1
cond 〉 = 0, (III.B.54)

which can be seen on the matrix product ansatz using relations (III.B.15). From the identity
[D,E] = [D,C] one then deduces

〈ji→i+1
lat 〉 = 〈τi〉 − 〈τi+1〉, (III.B.55)

and using E2 −D2 = C2 − CD −DC one gets

〈ji,i+1
cond 〉 = 2λ2

(
1− 〈τi〉 − 〈τi+1〉

)
. (III.B.56)

From these three relations, one obtains

〈ji−1,i
cond 〉 − 〈j

i,i+1
cond 〉+ 2λ2

(
〈ji−1→i
lat 〉+ 〈ji→i+1

lat 〉
)

= 0 (III.B.57)

〈τi−1〉+ 〈τi+1〉 − 2〈τi〉+ λ2
(

2− 〈τi−1〉 − 〈τi+1〉 − 2〈τi〉
)

= 0. (III.B.58)

Remark B.10. The one point correlation function verifies a closed set of equation as for the
SSEP, in contrast with the ASEP case where the equations couple the one point function and
the two points function. This property remains valid for the higher order correlation functions
(III.B.48), which allows in principle to compute them. However, for the multi-points correlation
functions, solving this set of equation can be very hard. This points out the usefulness of the
matrix product ansatz which makes the calculations much easier.

Fluctuations of the currents As mentioned previously, there are closed linear relations
between the two- and three-point correlation functions which allow one to compute the cumu-
lant of the currents. In this section, we present the computations of the second cumulant of
the lattice current between sites i and i+ 1. Let us note that it depends on the site, because
of the evaporation-condensation process. As usual for such a purpose, we use the deformed
Markovian matrix defined as follows:

Mµ = B1 +

i−1∑
k=1

mk,k+1 +mµ
i,i+1 +

L−1∑
k=i+1

wk,k+1 +BL with mµ =


−λ2 0 0 λ2

0 −1 eµ 0
0 e−µ −1 0
λ2 0 0 −λ2

 .

(III.B.59)
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Let |Ψµ〉 be the eigenstate of Mµ with highest eigenvalue

Mµ |Ψµ〉 = E(µ) |Ψµ〉 . (III.B.60)

E(µ) is the generating function for the cumulants of the lattice current between sites i and
i+ 1. We introduce the following notation for vectors

〈{j}| =
(
〈0|+ 〈1|

)⊗(j−1)
⊗ 〈1| ⊗

(
〈0|+ 〈1|

)⊗(L−j)
(III.B.61)

〈{j, k}| =
(
〈0|+ 〈1|

)⊗(j−1)
⊗ 〈1| ⊗

(
〈0|+ 〈1|

)⊗(k−j−1)
⊗ 〈1| ⊗

(
〈0|+ 〈1|

)⊗(L−k)
(III.B.62)

...

In words, 〈{j1, j2, ..., jM}| represents configurations with one particle at site j1, j2, ..., jM ,
and anything else on the other sites. Remark that this definition applies whatever the order
on j1, ..., jM , and thus extends the one given in the above equations. By extension, we note

〈∅| =
(
〈0|+ 〈1|

)⊗L
. Then, we define the components:

Tj(µ) ≡ Tj =
〈{j}|Ψµ〉
〈∅|Ψµ〉

; Ujk(µ) ≡ Ujk =
〈{j, k}|Ψµ〉
〈∅|Ψµ〉

and Vjkl(µ) ≡ Vjkl =
〈{j, k, l}|Ψµ〉
〈∅|Ψµ〉

.

(III.B.63)
Note that by construction, U and V are symmetric, e.g. Ujk = Ukj . Now, projecting equation
(III.B.60) on 〈∅|, we get

E(µ) = (e−µ − 1)(Ti+1 − Ui,i+1) + (eµ − 1)(Ti − Ui,i+1). (III.B.64)

We also project equation (III.B.60) on 〈{j}| for j = 1, 1 < j < i and i + 1 < j < L, j = i,
j = i+ 1, and j = L. We get respectively:

E(µ)T1 = α(1− T1)− γT1 + λ2(1− T1 − T2) + T2 − T1

+(e−µ − 1)(U1,i+1 − V1,i,i+1) + (eµ − 1)(U1,i − V1,i,i+1) , (III.B.65)

E(µ)Tj = λ2(2− 2Tj − Tj+1 − Tj−1) + Tj+1 − 2Tj + Tj−1

+(e−µ − 1)(Uj,i+1 − Vj,i,i+1) + (eµ − 1)(Uj,i − Vj,i,i+1) , (III.B.66)

E(µ)Ti = λ2(2− 2Ti − Ti+1 − Ti−1) + Ti+1 − 2Ti + Ti−1

+(e−µ − 1)(Ti+1 − Ui,i+1) , (III.B.67)

E(µ)Ti+1 = λ2(2− 2Ti+1 − Ti+2 − Ti) + Ti+2 − 2Ti+1 + Ti

+(eµ − 1)(Ti − Ui,i+1) , (III.B.68)

E(µ)TL = δ(1− TL)− βTL + λ2(1− TL − TL−1) + TL−1 − TL
+(e−µ − 1)(Ui+1,L − Vi,i+1,L) + (eµ − 1)(Ui,L − Vi,i+1,L) . (III.B.69)

These equations are solved iteratively, expanding all quantities as series in µ. We set

E(µ) = E(0) + µE(1) +
µ2

2
E(2) + o(µ2) ,

Tj(µ) = T
(0)
j + µT

(1)
j + o(µ) ,

Uj,k(µ) = U
(0)
j,k + µU

(1)
j,k + o(µ) .

In the above expansions, E(0) = 0 is the greatest eigenvalue of the undeformed Markov matrix
and E(1) = 〈ji→i+1

lat 〉 is the mean value of the lattice current measured between the site i and
i+ 1, where the deformation occurs. We recall that 〈ji→i+1

lat 〉 has been computed in (III.B.51).

The value of T
(0)
j = 〈τj〉 has also been already calculated, see (III.B.43). Similarly, U

(0)
j,k is

linked to the two-points correlation function, see (III.B.45).

152



We wish to compute E(µ) up to order 2, which corresponds to the variance of the lattice
current. We get it through the expansion of (III.B.64) up to order 2:

E(1) = T
(0)
i − T (0)

i+1 , (III.B.70)

E(2) = 2
(
T

(1)
i − T (1)

i+1

)
+ T

(0)
i + T

(0)
i+1 − 2U

(0)
i,i+1 . (III.B.71)

Equation (III.B.70) just reproduces the relation (III.B.55) between the mean values of the
lattice current and of the density.

To get T
(1)
j , one considers equations (III.B.65)-(III.B.69) at first order in µ. They only

involve T
(1)
j , T

(0)
j and U

(0)
jk , and can be solved recursively in T

(1)
j . We get

 T
(1)
i+1

T
(1)
i

 =
φL

1− abφ2L−2


bφL−i−1 + φi+1−L

φ2 − 1

aφi + φ−i

φ2 − 1

bφL−i + φi−L

φ2 − 1

aφi−1 + φ1−i

φ2 − 1




i−1∑
l=0

(
aφl + φ−l

)
Il+1

L−i−1∑
l=0

(
bφl + φ−l

)
IL−l


with

Ij =
(φ+ 1)2

4φ
×


E(1) T

(0)
i + T

(0)
i+1 − U

(0)
i,i+1 , for j = i

E(1) T
(0)
i+1 − T

(0)
i + U

(0)
i,i+1 , for j = i+ 1

E(1) T
(0)
j + U

(0)
j,i+1 − U

(0)
j,i , otherwise

(III.B.72)

Plugging these values into (III.B.71), we get the analytical expression of the variance of the
lattice current:

E(2) = T
(0)
i + T

(0)
i+1 − 2U

(0)
i,i+1 (III.B.73)

+
2

1 + φ

{
φi(bφ2L−2i−1 − 1)

1− abφ2L−2

i−1∑
`=0

(aφ` + φ−`)I`+1 −
φL−i(aφ2i−1 − 1)

1− abφ2L−2

L−i−1∑
`=0

(bφ` + φ−`)IL−`

}
.

Using the explicit form of Ij , one can compute the sums in (III.B.73) to perform the thermo-
dynamic limit for E(2), see chapter V. Let us conclude this subsection by mentioning that the
higher cumulants may be computed in principle by similar methods. However, the computa-
tions become much harder and are beyond the scope of this manuscript.

Comparison with SSEP As mentioned previously the DiSSEP is a deformation of the
SSEP which can be easily recovered when taking λ = 0. This limit already reveals at the
level of the matrix product ansatz algebra: the commutation relations between E, D and H
(III.B.15) become simpler when λ = 0. We have indeed [H,E] = [H,D] = 0. Hence H can be
chosen equal to the identity. In this case we recover the well known relation [D,E] = D + E,
relevant in the construction of the steady state of the SSEP. Remark that the generators G1,
G2 and G3 in contrast “diverge” when taking the limit λ → 0 (this can be seen by inverting
the change of basis (III.B.14)).

We can also take the limit λ→ 0 at the level of the physical observables. For the one and
two points correlation function we get

lim
λ→0
〈τi〉 =

ρl (L+B − i) + ρr (i− 1 +A)

L+A+B − 1
, with A =

1

α+ γ
, B =

1

β + δ

and

lim
λ→0
〈τiτj〉c = − (i− 1 +A) (B + L− j) (ρl − ρr)2

(L+A+B − 1)2 (L+A+B − 2)
,
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which are in agreement with the known expressions for the SSEP [16,209]. For the lattice and
evaporation-condensation currents we get

lim
λ→0
〈ji→i+1
lat 〉 =

ρl − ρr
L+A+B − 1

and lim
λ→0
〈ji,i+1
cond 〉 = 0,

also in agreement with the SSEP results.
We can also take carefully the limit of the expression (III.B.73) to recover the variance of

the lattice current for the SSEP model [209]

E
(2)
SSEP =

ρl + ρr
L+A+B − 1

+
(A− 3A2 + 2A3 +B − 3B2 + 2B3)(ρl − ρr)2

3(L+A+B − 1)3(L+A+B − 2)

− (ρl − ρr)2

3(L+A+B − 1)2(L+A+B − 2)
+

ρ2
l + ρ2

r

(L+A+B − 1)(L+A+B − 2)
−

2(ρ2
l + ρlρr + ρ2

r)

3(L+A+B − 2)
.

To summarize, the DiSSEP is an integrable one parameter generalization of the SSEP,
where particles pairs are allowed to condensate and evaporate with the same probability rates.
From a physical point of view, it provides an example of exclusion process in which the lattice
current is not conserved along the lattice but depends on the place it is measured. It appears as
a toy model for which a lot of physical quantities can be exactly computed but it displays also an
interesting phenomenology, with non-trivial density profiles. From a more mathematical point
of view, it provides a simple example of matrix product expression for the stationary state,
which involves non-scalar ’hat operators’. It also points out the usefulness of the ZF and GZ
relations to select an efficient generators basis and a convenient change of parameters. It also
stresses the fact that the computations of physical observables can be achieved using only the
algebraic relations between the generators and not necessarily using an explicit representation.
We will come back to this model in chapter V to study its properties in the thermodynamic
limit.

2 An open two species TASEP

We now turn to a detailed study of another example of stochastic model that we already
encountered several times in this manuscript, through its local jump operators and its R and
K matrices. This model is called the two-species totally asymmetric exclusion process (2-
TASEP) with open boundaries and was first introduced and studied in [V5]. The integrable
boundaries associated to the two species ASEP were classified there and the matrix product
structure of the stationary state was investigated on a particular example. An explicit matrix
product representation of the steady state of the models was given in [V7] together with the
rigorous derivation a the phase diagrams and the exact computation of physical quantities.
Following the lines of [V5] and [V7], we present here the main results.

a) Presentation of the model

The model is a Markov process that enters the framework of exclusion process introduced in
chapter II. It describes two species of particles in stochastic evolution on a one-dimensional
lattice comprising L sites and coupled with two reservoirs at the boundaries. Each site i =
1, . . . , L can be in one of three states τi = 0, 1 or 2. As usual, state 0 may be considered as an
empty site or hole. State 1 is interpreted as a species of heavy, slow particles (sometimes called
second class particles). State 2 corresponds to a species of light, fast particles (sometimes
called first class particles). At each pair of nearest neighbor sites in the bulk, the exchange
rates read

1 0
1−→ 0 1 , 2 0

1−→ 0 2 , 2 1
1−→ 1 2 . (III.B.74)

(Note that several other labelling conventions for the three particle species have been employed
in the literature e.g. [169].) The sites 1 and L are in contact with boundary reservoirs and par-
ticles are exchanged at different rates at the boundaries. For generic values of these boundary
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rates, the system is not integrable (in contrast with the 1-species TASEP, which is integrable
for arbitrary boundary rates). Finding in this general case an exact solution looks hopeless.
However, in [V5], using a systematic procedure (the resolution of the reflection equation),
all possible boundary rates for the 2-species TASEP that preserve integrability were classified.
Amongst such models, some had been studied earlier: the first open two-species matrix product
solutions were derived in [210]; in [211] the boundary conditions for which the stationary state
may be expressed using the matrices D, E, A of [46] and [212] were deduced; in [175,176] the
restricted class of semi-permeable boundaries, in which second class particles can neither enter
nor leave the system was studied. In all of these cases a matrix product representation of the
stationary state was found involving the quadratic algebra used by Derrida, Evans, Hakim and
Pasquier [46] in their exact solution of the 1-species exclusion process with open boundaries.

In the present example, we construct a matrix ansatz for integrable 2-TASEP with open
boundaries that allow all species of particles to enter and leave the system. The algebraic
structures required will be much more involved than the fundamental quadratic algebra of [46].

We shall study two classes of 2-species TASEP models with the following boundary rates

left boundary right boundary

2
α−−−→ 1 2

β−−−→ 0

(M1) : 0
α−−−→ 1 1

β−−−→ 0

0
1−α−−→ 2 1

1−β−−→ 2

(III.B.75)

or

left boundary right boundary

2
α−−−→ 1 2

β−−−→ 0

(M2) : 0
α−−−→ 1 1

β−−−→ 0

0
1−α−−→ 2

(III.B.76)

Hereafter, the two different models will be denoted by (M1) and (M2). Note that in the
classification of [V5] the left boundary conditions were referred to as L2 and the right hand
boundary conditions for (M1) or (M2) were referred to as R2 and R3 respectively. It is a simple
matter to translate our results for (M2) to the case of right boundary R2 and left boundary L3.
The final case of right boundary R3 and left boundary L3 leaves the stationary state devoid of
holes and thus reduces to a one-species TASEP.

The physical interpretation of the boundary conditions is as follows. In both models (M1),
(M2) the left-hand boundary conditions correspond to a boundary reservoir containing only
first and second class particle with densities α and 1 − α respectively, with no holes. In
model (M1) the right-hand boundary conditions correspond to a reservoir containing second-
class particles and holes with densities 1−β and β respectively, with no first-class particles. In
model (M2) the right-hand boundary conditions correspond to a reservoir containing first-class
particles and holes with densities 1− β and β respectively, with no second-class particles.

1− α

α

1 1 1 1 1 β

Figure III.6: Dynamical rules of the 2-species TASEP. The empty sites stands for species 0,
circles for species 1 and bullets for species 2. On the left boundary the continuous line means
injection of bullets whereas the dashed line means injection of circles.

The 2-TASEP is a finite Markov process that reaches a unique steady-state in the long time
limit, in which each configuration has the stationary probability (or weight) S(τ1, τ2, . . . , τL).
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The column-vector |S〉 of length 3L, whose components are the probabilities S(τ1, τ2, . . . , τL),
satisfies the stationary master equation

M (3)|S〉 = 0, (III.B.77)

where M (3) is the 3L × 3L Markov matrix for the 2-TASEP system. It can be decomposed as

M (3) = B
(3)
1 +

L−1∑
`=1

m
(3)
`,`+1 +B

(3)
L , (III.B.78)

with the local bulk update operator acting on nearest neighbor sites

m(3) =



. . . . . . . . .

. . . 1 . . . . .

. . . . . . 1 . .

. . . −1 . . . . .

. . . . . . . . .

. . . . . . . 1 .

. . . . . . −1 . .

. . . . . . . −1 .

. . . . . . . . .


(III.B.79)

where the points in the matrix stand for vanishing entries. The boundary operators read

B(3) =

 −1 0 0
1− α −α 0
α α 0

 , B̂(3) =

0 β β
0 −β 1− β
0 0 −1

 , B̌(3) =

0 β β
0 −β 0
0 0 −β

 .

(III.B.80)
These operators are written as usual in the local state basis (0, 1, 2) which is the natural choice
corresponding to increasing order of priority in the update rules. We recall that in equation
(III.B.78), the subscripts indicate on which sites of the lattice the local operators act non-

trivially, and the right boundary matrix B
(3)

corresponds to B̂(3) for the processes (M1) and
B̌(3) for (M2). As a rule, the superscripts in (III.B.78) (and later in (III.B.107)) indicate the
number of possible states at a site, i.e. the number of species plus one.

The Markov matrix M (3) defines an integrable stochastic process As usual, the main objects
needed to deal with integrability are the R-matrix encoding the bulk dynamics and the K-
matrices encoding the boundaries rates.

For the 2-species TASEP, we recall that the braided R-matrix reads

Ř(3)(z) = 1 + (1− z)m(3), (III.B.81)

with the property −Ř(3)′(1) = m(3). The reader may refer to example (II.B.18) for the detailed
properties of this R-matrix. The K-matrix for the left boundary is

K(3)(z) =


z2 0 0

−az(z2−1)
za+1

z(a+z)
za+1 0

− z2−1
za+1 − z2−1

za+1 1

 (III.B.82)

and the ones for the two choices of right boundary are

K̂(3)(z) =

1 z2−1
(b+z)z

z2−1
(b+z)z

0 bz+1
(b+z)z

b(z2−1)
(b+z)z2

0 0 z−2

 and Ǩ(3)(z) =

1 z2−1
(b+z)z

z2−1
(b+z)z

0 bz+1
(b+z)z 0

0 0 bz+1
(b+z)z

 . (III.B.83)
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One obtains

− 1

2
K(3)′(1) = B ,

1

2
K̂(3)′(1) = B̂ and

1

2
Ǩ(3)′(1) = B̌(3). (III.B.84)

The reader may refer to example (II.C.24) for the detailed properties of these K matrices.
As explained in chapter II, we can construct a transfer matrix from these building blocks

t(z) = tr0

(
K̃0(z)R0,L(z) . . . R0,1(z)K0(z)R1,0(z) . . . RL,0(z)

)
, (III.B.85)

where K̃0(z) satisfies8 (II.C.28).
It generates a family of commuting operators and is linked to the Markov matrix through

− 1

2
t′(1) = M (3). (III.B.86)

b) Matrix ansatz

We are now interested in the stationary state of the model. Finding the steady state of the
Markov matrix (III.B.180) amounts to solving a linear system that grows exponentially with
the size of the lattice. Following the general method developed in this chapter for integrable
models, we will construct the stationary weights in a matrix product from i.e., the weight of
the configuration C = (τ1, . . . , τL) in the stationary state will be written as

S(τ1, . . . , τL) =
1

ZL
〈〈W |Xτ1Xτ2 · · ·XτL |V 〉〉, (III.B.87)

where ZL = 〈〈W |(X0 +X1 +X2)L|V 〉〉 is the normalization factor. This will basically allow us
to reduce the a priori exponential complexity of the steady state (see the general construction
with rooted trees in chapter I) to a polynomial computation. Following the general procedure
exposed in section A, we know that the operators X0, X1 and X2 can be constructed from

A(1) = X =

X0

X1

X2

 , (III.B.88)

where the vector A(z) satisfies the ZF and GZ relations (III.A.119) and (III.A.131) that we
recall here

Ř(3)(z1/z2)A(z1)⊗A(z2) = A(z2)⊗A(z1), (III.B.89)

〈〈W |K(3)(z) A(1/z) = 〈〈W |A(z) and K
(3)

(z)A(1/z)|V 〉〉 = A(z)|V 〉〉 , (III.B.90)

where K
(3)

(z) is K̂(3)(z) or Ǩ(3)(z) depending on the right boundary considered. For more
details about the use of these relations in the context of Markov chains see [V3] or section A.
We recall that, taking the derivative of these relations w.r.t. z1 and setting z1 = z2, we recover
the telescopic relations (III.B.173) and (III.B.179) used to prove the matrix ansatz:

m(3)X⊗X = X⊗X−X⊗X (III.B.91)

for the bulk and
〈〈W |B(3)X = 〈〈W |X, and B

(3)
X|V 〉〉 = −X|V 〉〉 (III.B.92)

for the boundaries, where X0

X1

X2

 = X = −A′(1). (III.B.93)

8Note that K̃0(z) cannot be obtained directly from (II.C.27) here because R0,1(z)t1 is not invertible.
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Remark B.11. The exchange relations among the Xi’s are obtained from these telescopic
relations (III.B.91). However, as already pointed out in section A, the generators Xi’s are
not necessarily scalars (they will not be scalars in the present case, see below). Therefore,
more relations are required to close the algebra generated by the Xi’s (the telescopic relation
(III.B.91) does not tell us how to exchange Xi with Xj for instance). A systematic way to deal
with this question [V3] is to use the relations (III.B.89) and (III.B.90).

We thus need to build explicitly the vector A(z) and the boundary vectors 〈〈W | and |V 〉〉
satisfying (III.B.89) and (III.B.90). For such a purpose, we assume the following expansion for
the vector A(z):

A(z) =

 z2 +G9z +G8 +G7/z
G6z +G5 +G4/z

G3z +G2 +G1/z + 1/z2

 , (III.B.94)

where the Gi’s belong to a non-commuting algebra.

Remark B.12. This expansion appears as arbitrary at first sight but it is empirically chosen
as follows. For a given expansion, the ZF relation (III.B.89) provides the commutation rela-
tions among the Gi’s, see for instance the algebraic relations (III.B.95) corresponding to the
specific expansion above (III.B.94). The relations on the boundary vectors 〈〈W | and |V 〉〉 are
obtained through the GZ relations (III.B.90), see for instance (III.B.98) and (III.B.99). All
these relations are in principle sufficient to fix the value of any word 〈〈W |Gi1Gi2 . . . Gik |V 〉〉 up
to a global normalization (in the same way as we were able to compute the stationary weights of
the single species open TASEP using only the algebraic relations). If the algebra generated by
the Gi’s is not rich enough (i.e if there is not enough generators in the expansion of A(z)), we
noticed that all the words of length 3 built from the Gi’s vanish9. We have observed that 9 gen-
erators (III.B.94) is the minimal choice that ensures that not all words of length 3 identically
vanish.

Now that the expansion of the vector A(z) is guessed and fixed, the algebra satisfied by
the nine generators Gi is found by writing each component of the ZF relation and identifying
the coefficients of the polynomials in z1 and z2. The generators Gi satisfy a quadratic algebra,
given by the following exchange relations:

[G1, G2] = 0,

[G1, G3] = 0, [G2, G3] = 0,

G1G4 = G5, G2G4 = G6, G3G4 = 0,

[G1, G5] = G6 −G4G2, G2G5 = G1G6, G3G5 = 0, [G4, G5] = 0,

[G1, G6] = −G4G3, [G2, G6] = −G5G3, G3G6 = 0, [G4, G6] = 0,

G1G7 = G8, G2G7 = G9, G3G7 = 1, G4G7 = 0,

[G1, G8] = G9 −G7G2, G2G8 = G1G9, G3G8 = G1, [G4, G8] = −G7G5,

[G1, G9] = 1−G7G3, [G2, G9] = G1 −G8G3, G3G9 = G2, [G4, G9] = −G7G6,

[G5, G6] = 0, (III.B.95)

G5G7 = 0, G6G7 = 0,

G5G8 = G4G9, G6G8 = G4, [G7, G8] = 0,

[G5, G9] = G4 −G8G6, G6G9 = G5, [G7, G9] = 0, [G8, G9] = 0.

Remark B.13. From the knowledge of the exchange relations for the Gi’s, the algebra gener-

9The ZF and GZ relations implies the telescopic relations and thus the relation M [3)〈〈W |X⊗X|V 〉〉 = 0. We
are hence left with two possibilities: either the matrix product state gives the correct stationary state of the
model or it is identically vanishing.
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ated by the Xi’s can be obtained using (III.B.88), i.e

X0 = 1 +G9 +G8 +G7

X1 = G6 +G5 +G4

X2 = 1 +G3 +G2 +G1

(III.B.96)

and (III.B.95). As already mentioned, to write the relations defining this algebra we need to
introduce six more generators X̄i and ¯̄Xi corresponding toX̄1

X̄2

X̄3

 = −A′(1) =

−2−G9 +G7

−G6 +G4

−G3 +G1 + 2

 ,

 ¯̄X1
¯̄X2
¯̄X3

 = A′′(1) =

2 + 2G7

2G4

2G1 + 6

 (III.B.97)

Note that these generators X̄i are not scalar. As an example, we give some of the relations
satisfied by these generators

X2X1 = X1X̄2 − X̄1X2 = X̄2X1 −X2X̄1

X3X1 = X1X̄3 − X̄1X3 = X̄3X1 −X3X̄1

. . .

2X̄2X1 = X1
¯̄X2 − ¯̄X1X2 = ¯̄X2X1 −X2

¯̄X1

2X̄3X1 = X1
¯̄X3 − ¯̄X1X3 = ¯̄X3X1 −X3

¯̄X1

. . .

The algebra generated by Xi, X̄i and ¯̄Xi is the same as the one generated by the Gi’s, written
in a different basis. We chose to present the commutation relations in the Gi basis because
they are simpler.

The action of the Gi’s on the boundary vectors is derived from the GZ relations (III.A.131).
For the left vector we have

〈〈W | (G4 − a) = 0,
〈〈W |G7 = 0,
〈〈W | (G8 − 1) = 0,
〈〈W | (a(G1 −G3)−G5) = 0,
〈〈W | (G3 +G6 +G9 −G1 − a) = 0.

(III.B.98)

For the right vector, depending on the model under consideration we have

For (M1) : For (M2) :

G3 |V 〉〉 = 0, (G3 − b) |V 〉〉 = 0,
(G2 − 1) |V 〉〉 = 0, (G5 − bG4) |V 〉〉 = 0,
(G6 − b) |V 〉〉 = 0, G6 |V 〉〉 = 0,
(b(G7 −G9) +G5) |V 〉〉 = 0, (b(b−G1) +G2 − 1) |V 〉〉 = 0,
(G1 +G4 +G7 −G9 − b) |V 〉〉 = 0, (G1 +G4 +G7 −G9 − b) |V 〉〉 = 0.

(III.B.99)

Note that the relations and generators Gi are not all independent. For instance, G3G5 = 0
and (G2 − 1) |V 〉〉 = 0 can be deduced from the other exchange and boundary relations.

We present below an explicit representation of the generators Gi’s and of the boundary
vectors 〈〈W | and |V 〉〉, that was found in [V7]. This representation is build as tensor product
of several copies of the DEHP algebra. It proves rigorously the existence of the algebraic
structure (III.B.95)-(III.B.99) and hence of the matrix product expression of the stationary
state. This representation can also be useful to perform explicit computation of physical
quantities. This fact will be illustrated with the computation of the normalization (III.B.191).

We now stress that using only the algebraic relations (III.B.95)-(III.B.99) (and not the
explicit representation of the Gi’s and boundary vectors), any expression containing X0, X1
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and X2 and placed between 〈〈W | and |V 〉〉 can be reduced to a multiple of 〈〈W |V 〉〉. Therefore,
the weights of any configuration and the partition function of the model can be in principle
calculated from these relations. A computer program allowed us to obtain this way all the
weights for systems of small sizes. We present below example of weights of configurations of
arbitrary length that can be exactly computed using only these algebraic relations. These
examples are given for the particular case α = 1/2 and β = 1 (i.e for a = 1 and b = 0) for
which the models (M1) and (M2) coincide. Indeed the computations simplify in this case
• A word containing only the letters X1 and X2 is evaluated as

〈〈W |Y (k)(X1, X2)Xp
2 |V 〉〉 =

k + 2

p+ k + 2

(
2p+ k + 1

p

)
〈〈W |V 〉〉, for p, k = 0, 1, 2, . . . ,

(III.B.100)
where Y (k)(X1, X2) is the empty word for k = 0 and is a word of length k containing only the
letters X1 and X2 and ending with X1.
• A word starting with a power of X0 on the left and followed by a combination of X1 and

X2 is calculated as

〈〈W |Xp
0 Y

(k)(X1, X2)|V 〉〉 =
2p+ 1

p+ 1

(
2p
p

)
〈〈W |V 〉〉, for p, k = 0, 1, 2, . . . , (III.B.101)

where Y (k)(X1, X2) is as above.
• The partition function is given by

ZL = 〈〈W |CL|V 〉〉 = (2L+ 1)ALAL+1〈〈W |V 〉〉, (III.B.102)

where C = X1 +X2 +X3 and AL = 1
L+1

(
2L
L

)
is the Catalan number.

Note that in principle it should be possible to obtain similar formulas for general values
of the parameters α and β. Nevertheless the computations and recursive relations given by
the algebraic relations (III.B.95)-(III.B.99) appear as much more involved and their study lies
beyond the scope of this manuscript.

c) Identification

Interesting physical quantities, such as the mean particles currents and densities of each species,
can be exactly computed using an identification, or coloring argument, formalized in [176]. The
idea is to identify two species of particles, or a species of particles with holes, to simplify the
model. The model obtained comprises a single species of particle and can thus be identified as
a single species open TASEP. All possible identifications are not consistent with the dynamics
of the 2-TASEP. For instance it is not possible to identify particles of species 2 (the fastest
particles) with holes, because the particles of species 1 behave differently with respect to holes
(that they overtake) and to particles of species 2 (that overtake them).

The 2-TASEP models (M1) and (M2) can both be mapped to the one-species TASEP model
using two possible identifications:

1. One can identify holes and species 1 to get a one-species TASEP model for which the
phase diagram is given in table (V.A.28). The boundary conditions read

left boundary right boundary

(M1) : (0, 1)
α−−−→ 2 2

1−−→ (0, 1)

(M2) : (0, 1)
α−−−→ 2 2

β−−−→ (0, 1)

(III.B.103)

2. One can identify species 1 and 2 to get another version of the one-species TASEP model.
In that case the two models (M1) and (M2) produce the same boundary conditions:

left boundary right boundary

(M1) & (M2) : 0
1−−→ (1, 2) (1, 2)

β−−−→ 0
(III.B.104)
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For the two-species TASEP, we denote by 〈j1〉, 〈j2〉 the mean particle currents in the
stationary state for the particles of species 1 and 2 respectively (〈j0〉 denotes the mean current
of holes). The currents are counted positively when particles flow from the left to the right.

In the same way, 〈ρ(i)
1 〉 and 〈ρ(i)

2 〉 denote the mean densities of particles of species 1 and 2

respectively on site i (〈ρ(i)
0 〉 denotes the density of holes).

The exclusion property ensures that

〈j0〉+ 〈j1〉+ 〈j2〉 = 0, and 〈ρ(i)
0 〉+ 〈ρ(i)

1 〉+ 〈ρ(i)
2 〉 = 1. (III.B.105)

Identification 1. allows us to compute the current 〈j2〉 and the density 〈ρ(i)
2 〉, while identi-

fication 2. yields the current 〈j1〉+ 〈j2〉 = −〈j0〉 and the density 〈ρ(i)
1 〉+ 〈ρ(i)

2 〉.
The identification procedure can be understood at the level of Markov matrices in the fol-

lowing way. We present here the case of the identification of species 1 and species 2 (but the
case of identification of holes with species 1 can be treated similarly). When doing the afore-
mentioned identification, we end up with the single species open TASEP defined in III.B.104
for both the models (M1) and (M2). The stochastic evolution rules of this single species model
can be, as usual, encoded in a Markov matrix written as the sum of local operators

M (2) = B
(2)
1 +

L−1∑
`=1

m
(2)
`,`+1 +B

(2)
L , (III.B.106)

where the local bulk Markov matrix between site ` and ` + 1 and the boundary matrices are
given by

m(2) =


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 ; B(2) =

(
−1 0
1 0

)
; B

(2)
=

(
0 β
0 −β

)
. (III.B.107)

We now define the rectangular matrix

u =

(
1 0 0
0 1 1

)
. (III.B.108)

The role of this matrix can be intuitively understood as summing the two last entries of a
vector of size 3. We have indeed(

1 0 0
0 1 1

)xy
z

 =

(
x

y + z

)
. (III.B.109)

The validity of the identification 2 lies in the following intertwining relations for the local jump
operators

u B(3) = B(2)u, u⊗ u m(3) = m(2)u⊗ u, u B
(3)

= B
(2)
. (III.B.110)

This is a rigorous way of saying that the process by the identification of species 1 and species
2 (which corresponds to summing the two last entries) is given by III.B.104. This can be
immediately upgraded to an intertwining relation on the Markov matrices. If we define U =
u⊗ · · · ⊗ u then we have

U M (3) = M (2)U. (III.B.111)

Such intertwining relation have already been used for the multi-species ASEP on the ring
[49,170,171].
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Remark B.14. Note that the relations (III.B.110) on the local jump operators can be upgraded
at the level of R and K matrices

u K(3)(z) = K(2)(z)u, u⊗u R(3)(z) = R(2)(z)u⊗u, u K
(3)

(z) = K
(2)

(z). (III.B.112)

where we have introduced the K-matrices for the single-species open TASEP

K(2)(z) =

(
z2 0

1− z2 1

)
and K

(2)
(z) =

(
1 z2−1

(b+z)z

0 bz+1
(b+z)z

)
. (III.B.113)

These reflection matrices are related to the boundary matrices through

− 1

2

d

dz
K(2)(z)

∣∣∣∣
z=1

= B(2) ,
1

2

d

dz
K

(2)
(z)

∣∣∣∣
z=1

= B
(2)
. (III.B.114)

These intertwining relations have strong implications on connection between steady states
of the two species and single species models. Define the vector X(2) = u X, where X introduced
in (III.B.88) statisfies the telescopic relations in the bulk (III.B.91) and on the boundaries
(III.B.92). Then a direct computation, using the intertwining property (III.B.110), yields

m(2)X(2) ⊗X(2) = X(2) ⊗X
(2) −X

(2) ⊗X(2) (III.B.115)

and
〈〈W |B(2)X(2) = 〈〈W |X(2)

, B
(2)

X(2)|V 〉〉 = −X
(2)|V 〉〉, (III.B.116)

where X
(2)

= u X with X defined in (III.B.93).

Remark B.15. Once again this can be promoted to spectral parameter dependent relations. If
we define A(2)(z) = u A(z) where the size three vector A(z) satisfies the ZF and GZ relation
associated to the two species model, then the size two vector A(2)(z) satisfies the ZF and GZ
relation associated to the single species model. Note that going the other direction is much
harder: finding a size three vector, that fulfill ZF and GZ relations, from a size two vector,
that satisfies these relations for the single species model, requires a more involved construction
which will be exposed when dealing with the explicit representation.

This immediately implies that the matrix product state

〈〈W |X(2) ⊗ · · · ⊗X(2)|V 〉〉 = 〈〈W |
(

X0

X1 +X2

)
⊗ · · · ⊗

(
X0

X1 +X2

)
|V 〉〉 (III.B.117)

is the (unnormalized) steady state of M (2). The Perron-Frobenius theorem tells us that the
steady state of M (2) is unique: the previous matrix product state (III.B.117) is thus equal to
the usual matrix product steady state of the single species open TASEP (constructed from
the matrices E and D, see [46]) up to a global normalization (that is easily evaluated on a
particular configuration)

〈〈W |X(2) ⊗ · · · ⊗X(2)|V 〉〉 =
〈〈W |XL

0 |V 〉〉
〈〈W |EL|V 〉〉

〈〈W |
(
E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉, (III.B.118)

where we recall that the matrices E and D satisfy

DE = D + E, 〈〈W |E = 〈〈W |, D|V 〉〉 =
1

β
|V 〉〉, (III.B.119)

because we are in the particular case α = 1. Note that we made a slight abuse of notation,
writing always 〈〈W | and |V 〉〉 for both the boundary vectors for the well-known single species
solution [46] and also for the two species model, but the reader has to be careful that they are
note equal. Nevertheless there should be hopefully no ambiguity in the relation (III.B.118),
the boundary vectors can indeed be distinguished by the matrices they are acting on.
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From (III.B.118) we deduce immediately that

〈j1〉+ 〈j2〉 =
〈〈W |(X0 +X1 +X2)i−1(X1 +X2)X0(X0 +X1 +X2)L−i−1|V 〉〉

〈〈W |(X0 +X1 +X2)L|V 〉〉

=
〈〈W |(E +D)i−1DE(E +D)L−i−1|V 〉〉

〈〈W |(E +D)L|V 〉〉

=
ZL−1(1, β)

ZL(1, β)
,

where

ZL(α, β) =
αβ

α+ β − 1

L∑
p=1

BL,k

(
1
α

)p+1 −
(

1
β

)p+1

1
α −

1
β

(III.B.120)

is the normalization of the single species open TASEP computed in (III.A.20). The combina-
torial coefficients

Bn,k =
k(2n− 1− k)!

n!(n− k)!
(III.B.121)

were defined in (III.A.22). Note that the formula of the normalization have a slight differ-
ence with the one given in (III.A.20) because we evaluate explicitly here the scalar product
〈〈W |V 〉〉 = αβ/(α + β − 1) using the representation (III.A.14). There is also a slight change
of notation with the calligraphic ZL to distinguish it from ZL the normalization of the two
species model. We precise also in the notation the injection rate α and the extraction rate β
because these parameters may vary when doing the different identification.

Thanks to (III.B.118) we can also compute

〈ρ(i)
1 + ρ

(i)
2 〉 =

〈〈W |(X0 +X1 +X2)i−1(X1 +X2)(X0 +X1 +X2)L−i|V 〉〉
〈〈W |(X0 +X1 +X2)L|V 〉〉

(III.B.122)

=
〈〈W |(E +D)i−1D(E +D)L−i|V 〉〉

〈〈W |(E +D)L|V 〉〉
(III.B.123)

=
L−i∑
k=1

Bk,1
ZL−k(1, β)

ZL(1, β)
+
Zi−1(1, β)

ZL(1, β)

L−i∑
k=1

BL−i,k
1

βk+1
. (III.B.124)

The last equality is obtained using the result (III.A.36).
We can repeat exactly the same procedure with the identification 1 (defined in III.B.104),

that we recall give access to the mean particle current 〈j2〉 and the mean particle density 〈ρ(i)
2 〉.

The mean particle current of species 2 is thus given by

〈j2〉 =
ZL−1(α, 1)

ZL(α, 1)
, for (M1) and 〈j2〉 =

ZL−1(α, β)

ZL(α, β)
, for (M2). (III.B.125)

The mean particle density of species 2 at site i is equal to

〈ρ(i)
2 〉 =

L−i+1∑
k=1

Bk,1
ZL−k(α, 1)

ZL(α, 1)
(III.B.126)

for model (M1) and

〈ρ(i)
2 〉 =

L−i∑
k=1

Bk,1
ZL−k(α, β)

ZL(α, β)
+
Zi−1(α, β)

ZL(α, β)

L−i∑
k=1

BL−i,k
1

βk+1
(III.B.127)

for model (M2).
To summarize, gathering the results obtained through both identifications, we obtain that
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• The mean particle currents are given by

〈j0〉 = −ZL−1(1, β)

ZL(1, β)
, 〈j1〉 =

ZL−1(1, β)

ZL(1, β)
− ZL−1(α, 1)

ZL(α, 1)
and 〈j2〉 =

ZL−1(α, 1)

ZL(α, 1)
. (III.B.128)

for the model (M1) and

〈j0〉 = −ZL−1(1, β)

ZL(1, β)
, 〈j1〉 =

ZL−1(1, β)

ZL(1, β)
−ZL−1(α, β)

ZL(α, β)
and 〈j2〉 =

ZL−1(α, β)

ZL(α, β)
. (III.B.129)

for the model (M2).
• The average densities of particles at site i are given by

〈ρ(i)
0 〉 = 1−

L−i∑
k=1

Bk,1
ZL−k(1, β)

ZL(1, β)
− Zi−1(1, β)

ZL(1, β)

L−i∑
k=1

BL−i,k
1

βk+1
, (III.B.130)

〈ρ(i)
1 〉 =

L−i∑
k=1

Bk,1
ZL−k(1, β)

ZL(1, β)
+
Zi−1(1, β)

ZL(1, β)

L−i∑
k=1

BL−i,k
1

βk+1
(III.B.131)

−
L−i+1∑
k=1

Bk,1
ZL−k(α, 1)

ZL(α, 1)
, (III.B.132)

〈ρ(i)
2 〉 =

L−i+1∑
k=1

Bk,1
ZL−k(α, 1)

ZL(α, 1)
. (III.B.133)

for the model (M1) and

〈ρ(i)
0 〉 = 1−

L−i∑
k=1

Bk,1
ZL−k(1, β)

ZL(1, β)
− Zi−1(1, β)

ZL(1, β)

L−i∑
k=1

BL−i,k
1

βk+1
, (III.B.134)

〈ρ(i)
1 〉 =

L−i∑
k=1

Bk,1
ZL−k(1, β)

ZL(1, β)
+
Zi−1(1, β)

ZL(1, β)

L−i∑
k=1

BL−i,k
1

βk+1
(III.B.135)

−
L−i∑
k=1

Bk,1
ZL−k(α, β)

ZL(α, β)
− Zi−1(α, β)

ZL(α, β)

L−i∑
k=1

BL−i,k
1

βk+1
, (III.B.136)

〈ρ(i)
2 〉 =

L−i∑
k=1

Bk,1
ZL−k(α, β)

ZL(α, β)
+
Zi−1(α, β)

ZL(α, β)

L−i∑
k=1

BL−i,k
1

βk+1
. (III.B.137)

for the model (M2). In chapter V we will study the large size limit of these results which will
allow us to compute the phase diagrams of both models.

In the particular case α = 1/2 and β = 1 that we studied previously, the results are much
simpler (we recall that for these specific values of α and β the models (M1) and (M2) coincide)
• The mean particle currents are given by

〈j0〉 = − L+ 2

2(2L+ 1)
, 〈j1〉 =

1

2(2L+ 1)
and 〈j2〉 =

L+ 1

2(2L+ 1)
. (III.B.138)

• The average densities of particles at site i are given by

〈ρ(i)
0 〉 =

1

AL+1

i−1∑
k=0

AkAL−k, (III.B.139)

〈ρ(i)
1 〉 =

1

AL+1

L∑
k=i

L− k + 1

L+ 2
AkAL−k, (III.B.140)

〈ρ(i)
2 〉 =

1

AL+1

L∑
k=i

k + 1

L+ 2
AkAL−k . (III.B.141)
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We just saw that densities and particle currents can be computed using the identification
method. However, we stress that the algebraic relations (III.B.95)-(III.B.99) are necessary to
compute all the individual weights and correlations between different type of particles: this
cannot be obtained from the identification procedure.

We mention finally that similar algebras, with at most nine generators, can be defined to
compute the weights of the stationary state of the other integrable 2-TASEP models found in
this manuscript (see discussion in [V5]).

We now address the problem of finding an explicit representation of the nine generators
and boundary vectors.

d) Explicit representation of the matrix ansatz algebra

This section is devoted to the construction of an explicit representation for the boundary
vectors 〈〈W | and |V 〉〉 and for the generators Gi’s (which will thus give a representation for the
matrices X0, X1 and X2).

This representation for the 2-TASEP will be constructed in terms of tensor products of
the fundamental operators A, d and e that appear in the solution of the one-species exclusion
process [46]. These operators A, d and e define a quadratic algebra and satisfy

d e = 1 , A = 1− e d , dA = 0 , A e = 0 . (III.B.142)

The relation with the operators D and E of [46] is d = D − 1, e = E − 1 and A = DE −ED.

We also define the following parameters

a =
1− α
α

and b =
1− β
β

. (III.B.143)

Finally, we shall need four commuting copies of the algebra (III.B.142), (en, dn, An), n =
1, 2, 3, 4. A simple way to achieve this is to make four-fold tensor products:

e1 = e⊗ 1⊗ 1⊗ 1,

e2 = 1⊗ e⊗ 1⊗ 1,

e3 = 1⊗ 1⊗ e⊗ 1,

e4 = 1⊗ 1⊗ 1⊗ e,

(III.B.144)

and similarly for dn and An.
We are now in a position to present explicit matrices for the 2-TASEP with open boundaries

Proposition B.16.

X0 =
(

1 + aA1A2 + e2d3

)
(1 + e4) +

(
e2 + e3 + aA1A2e3 + e1A3

)
(1 + d4),(III.B.145)

X1 = ad1A2 (1 + e4) +
(
ad1A2e3 + aA2A3

)
(1 + d4), (III.B.146)

X2 =
(
d2 + d3

)
(1 + e4) +

(
1 + d2e3 + e1d2A3

)
(1 + d4). (III.B.147)

We get the following realization for the 9 generators G

G1 = d3e4 + e1d2A3 + d2e3 + d4 ; G2 = d3 + d2e4 + d2e3d4 + e1d2A3d4 ; G3 = d2

G4 = λ(d1A2e3 +A2A3) ; G5 = λ(d1A2e4 + d1A2e3d4 +A2A3d4) ; G6 = λd1A2

G7 = λA1A2e3 + e2 ; G8 = λA1A2e4 + e2d3e4 + λA1A2e3d4 + e2d4 + e1A3 + e3

G9 = λA1A2 + e2d3 + e4 + e1A3d4 + e3d4 (III.B.148)

Proof. It can be easily checked using a symbolic calculation program [213] that the represen-
tation presented here indeed obeys the commutation relations (III.B.95). However, we give
below a more elegant proof of this fact, taking advantage of a factorization property of the
vector A(z), that is obtained using the identification procedure.
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Remark B.17. It is important to realize that the integer suffices on the left and right hand sides
of (III.B.145)–(III.B.147) are unrelated: on the left τ = 0, 1, 2 corresponds to particle species
whereas on the right n = 1, 2, 3, 4 labels the tensor product as in the example (III.B.144).

To construct the vectors 〈〈W | and |V 〉〉, we first define the elementary vectors 〈〈x| and |x〉〉
that obey

〈〈x| e = x 〈〈x| and d |x〉〉 = x |x〉〉 . (III.B.149)

It is known [46] that explicit representations of such elementary vectors exit. Here we use the
representation exposed previously in this chapter (III.A.14) where

〈〈x|y〉〉 =
1

1− xy
. (III.B.150)

Proposition B.18. The left boundary vector reads:

〈〈W |1234 = 〈〈1|1〈〈0|2〈〈0|3〈〈0|4 , (III.B.151)

where the indices indicate again which copy of the (A, d, e) algebra acts on the vector. To make
the notation less cluttered, we shall simply write 〈〈W | instead of 〈〈W |1234. Note that the left
vector is the same for the models (M1) and (M2).

The right boundary vector depends on the choice of the dynamics at the right boundary (i.e.
on the choice of the model (M1) or (M2)). We have

|V (M1)〉〉1234 = | b
a
〉〉1 |0〉〉2 |1〉〉3 |b〉〉4 for (M1) (III.B.152)

and |V (M2)〉〉1234 = |0〉〉1 |b〉〉2 |1〉〉3 |b〉〉4 for (M2). (III.B.153)

We shall simply write |V 〉〉 for the right vector, without specifying the indices and which model
we consider. This should be unambiguous from the context.

Proof. It can be checked by direct computation that the relations (III.B.98) and (III.B.99) are
indeed satisfied. However, we provide below a simpler proof of this fact using a factorization
of the vector A(z).

e) Factorized form for the representation

The expressions (III.B.145)–(III.B.147) for the Xτ ’s can be written in a factorized form which
will be useful to compute the normalization but also to prove the validity of the representation.

Definition B.19. We define the Lax operators by L(3)(z) = L(3)(z)L̃(3)(z) where

L(3)(z) =

z + λA1A2 ze1 ze2

λd1A2 λA2 0
d2 e1d2 1

 and L̃(3)(z) =

 1 e3

0 A3

d3/z 1/z

 , (III.B.154)

and L(2)(z) = L(2)(z)L̃(2)(z) where

L(2)(z) =

(
z ze4

d4 1

)
and L̃(2)(z) =

(
1

1/z

)
. (III.B.155)

Proposition B.20. The vector A(z) can be factorized as

A(z) = L(3)(z)L(2)(z) = L(3)(z)L̃(3)(z)L(2)(z)L̃(2)(z). (III.B.156)

Proof. This property can be directly check using the explicit expression of the vector A(z)
given by the expansion (III.B.94) and the explicit representation of the Gi’s (III.B.148).

As mentioned previously, we can prove the ZF and GZ relations (III.B.89) and (III.B.90)
by direct computations. However, using the factorization (III.B.156), we can split the proof of
these relations into simpler ones, involving only one or two copies of the DEHP algebra each,
instead of dealing simultaneously with the four copies.
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Proposition B.21. One can show that the following relations hold

Ř(3)(z1/z2)L(3)(z1)⊗ L(3)(z2) = L(3)(z2)⊗ L(3)(z1)Ř(3)(z1/z2), (III.B.157)

Ř(2)(z1/z2)L(2)(z1)⊗ L(2)(z2) = L(2)(z2)⊗ L(2)(z1)Ř(2)(z1/z2), (III.B.158)

Ř(3)(z1/z2)L̃(3)(z1)⊗ L̃(3)(z2) = L̃(3)(z2)⊗ L̃(3)(z1)Ř(2)(z1/z2), (III.B.159)

Ř(2)(z1/z2)L̃(2)(z1)⊗ L̃(2)(z2) = L̃(2)(z2)⊗ L̃(2)(z1), (III.B.160)

where we used the braided R-matrix for the single-species TASEP, built on the local operator
m(2) (see (III.B.107)):

Ř(2)(x) = 1 + (1− x)m(2). (III.B.161)

Proof. This is directly checked by a straightforward computation.
Note that these “generalized” RLL relations not only allow us to factorize the difficulty

to deal with the four-fold tensor space but also permit to reduce step by step the size of the
L matrices through intertwining relations involving the R matrix of the 2 species model and
of the single species model. These kind of relations are deeply inspired by the identification
procedure exposed previously.

Corollary B.22. These identities imply

Ř(3)(z1/z2)L(3)(z1)⊗ L(3)(z2) = L(3)(z2)⊗ L(3)(z1)Ř(2)(z1/z2), (III.B.162)

Ř(2)(z1/z2)L(2)(z1)⊗ L(2)(z2) = L(2)(z2)⊗ L(2)(z1). (III.B.163)

Corollary B.23. The vector A(z) satisfies the ZF relation.

Proof. Using the factorization (III.B.156) and applying the relations (III.B.162) and (III.B.163)
successively, we prove the ZF relation (III.B.89).

Proposition B.24. The following relations hold

〈〈W |123K(z)L(3)(1/z) = 〈〈W |123 L(3)(z)K(2)(z) ; 〈〈W |4K(2)(z)L(2)(1/z) = 〈〈W |4 L(2)(z)

K(z)L(3)(1/z) |V 〉〉123 = L(3)(z)K
(2)

(z) |V 〉〉123 ; K
(2)

(z)L(2)(1/z) |V 〉〉4 = L(2)(z) |V 〉〉4 ,
(III.B.164)

Finally, relations (III.B.164) imply equations (III.B.90).

Remark B.25. Note that L̃(z) can be obtained from L(z). We define the transposition in the
space of generators as follows

et = d , dt = e , At = A and 〈〈x|t = |x〉〉 (III.B.165)

Let us remark that starting from an L(3)(z) solution to the relation (III.B.157), the matrix

L
(3)

(z) = UL(3)(1/z)tU where U =

0 0 1
0 1 0
1 0 0

 (III.B.166)

is also a solution of (III.B.157). We have used the following property of the matrix R(3)(z)

U1U2R
(3)
21 (z)U1U2 = R(3)(z) . (III.B.167)

This symmetry was already pointed out in (II.C.111). Starting from the realization (III.B.154)
for L(3)(z), one gets

L
(3)

(z) =

 1 d1e2 e2

0 λA2 λe1A2

d2/z d1/z 1/z + λA1A2

 . (III.B.168)

The trivial representation for the e, d,A algebra is defined as e = d = 1 and A = 0. These

values are consistent with the relation (III.B.142) and the definition of A. In the L
(3)

(z) matrix,
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we may choose the trivial representation for the generators in the space 1 (i.e. e1 = d1 = 1
and A1 = 0). Changing the name of space 2 to space 3 and putting λ = 1, one establishes a
link with the matrix L̃(3)(z):

L
(3)

(z)
∣∣∣
e1=d1=1,A1=0,λ=1

=

 1 e3 e3

0 A3 A3

d3/z 1/z 1/z

 = L̃(3)(z)

(
1 0 0
0 1 1

)
. (III.B.169)

The procedure to choose the trivial representation to get a simpler matrix has been used previ-
ously for the periodic case in [49].

Let us remark that taking the derivative of the RLL relations w.r.t. z1 and setting z1 =
z2 = 1, we obtain generalized telescopic relations. For instance, (III.B.162) implies that

m(3)L(3) ⊗ L(3) − L(3) ⊗ L(3)m(2) = L(3)′ ⊗ L(3) − L(3) ⊗ L(3)′ . (III.B.170)

and (III.B.163) implies

m(2)L(2) ⊗ L(2) = L(2)′ ⊗ L(2) − L(2) ⊗ L(2)′ , (III.B.171)

where

L(3) := L(3)(1), L(3)′ := L(3)′(1), L(2) := L(2)(1), and L(2)′ := L(2)′(1). (III.B.172)

Remark that this generalized “hat relation” already appeared in the solution of the periodic
multi-species ASEP [171]. The present matrix L(3) provides a new solution to this relation,
adapted for the open boundaries case (see below).

Combining equations (III.B.170) and (III.B.171) yields the usual bulk relation

m(3) X⊗X = X⊗X−X⊗X, (III.B.173)

where
X = L(3)L(2), and X = −L(3)L(2)′ − L(3)′L(2) (III.B.174)

which consistent with X = A(1) and X = −A′(1).
In the same way taking the derivative of generalized GZ relations (III.B.164) w.r.t. z and

setting z = 1, we obtain generalized telescopic relations on the boundaries. The following
identities hold for L(3)

〈〈W |123

(
BL(3) − L(3)B(2)

)
= −〈〈W |123L(3)′ (III.B.175)(

BL(3) − L(3)B
(2)
)
|V 〉〉123 = L(3)′ |V 〉〉123 . (III.B.176)

Similar relations also exist for L(2)

〈〈0|4B(2)L(2) = −〈〈0|4 L(2)′ (III.B.177)

B
(2)L(2)|b〉〉4 = L(2)′ |b〉〉4 . (III.B.178)

Combining equations (III.B.175)-(III.B.178) leads us to the boundary relations

〈〈W |BX = 〈〈W |X and BX|V 〉〉 = −X|V 〉〉. (III.B.179)

In [174] a multi-species ASEP with reflective open boundaries has been studied, and an-
other solution (with vanishing hat operators) of the generalized “hat relation” (III.B.170) was
provided to construct the steady state in a matrix product form. In this model the boundary
counterparts of the “hat relation” (III.B.175)-(III.B.176) were automatically satisfied because
the boundary matrices B and B vanish.
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We recall that matrix product expression for the stationary probability vector reads

|S〉 =
1

ZL
〈〈W |X ⊗X ⊗ · · · ⊗X |V 〉〉 . (III.B.180)

The factorization X = L(3)L(2) leads to

|S〉 =
1

ZL
P(3) P(2) , (III.B.181)

where

P(3) = 〈〈W |123 L(3) ⊗ · · · ⊗ L(3) |V 〉〉123 and P(2) = 〈〈W |4 L(2) ⊗ · · · ⊗ L(2) |V 〉〉4 . (III.B.182)

Here, P(3) is a 3L × 2L matrix and P(2) is a 2L-component vector so that S is a 3L-component
vector as expected. We also remark that P(2) (up to a normalisation) is identical to the
steady-state vector of the one species TASEP with open boundaries. Therefore, we have

M (2)P(2) = 0 , (III.B.183)

where M (2) is the Markov matrix of the one-species TASEP. We also have the intertwining
relation

M (3)P(3) = P(3)M (2). (III.B.184)

Finally, thanks to the factorization property (III.B.156) of A(z) we know that

X = A(1) = L(3)L̃(3)L(2)L̃(2), (III.B.185)

with L(3) := L(3)(1), L̃(3) := L̃(3)(1), L(2) := L(2)(1) and L̃(2) := L̃(2)(1). The stationary state
can thus be further decomposed as

|S〉 =
1

ZL
P(3) P(2) =

1

ZL
P (3) P̃ (3) P (2) P̃ (2) , (III.B.186)

with

P (3) = 〈〈W |12 L
(3) ⊗ L(3) ⊗ · · · ⊗ L(3) |V 〉〉12 (III.B.187)

P̃ (3) = 〈〈W |3 L̃(3) ⊗ L̃(3) ⊗ · · · ⊗ L̃(3) |V 〉〉3 (III.B.188)

P (2) = 〈〈W |4 L(2) ⊗ L(2) ⊗ · · · ⊗ L(2) |V 〉〉4 (III.B.189)

P̃ (2) =

(
1
1

)
⊗
(

1
1

)
⊗ · · · ⊗

(
1
1

)
. (III.B.190)

Let us note that P (3) is a 3L × 3L matrix, P̃ (3) is a 3L × 2L matrix, P (2) is a 2L × 2L matrix
and P̃ (2) is a 2L-component vector with constant components.

f) Computation of the normalization from the explicit representation

We may now use the factorisation properties of the previous subsection to calculate the nor-
malisation ZL of the stationary probabilities. The results we obtain are

ZL =
a

a− b
ZL(α, 1)ZL(1, β) for (M1)

ZL = (1− ab)ZL(α, β)ZL(1, β) for (M2)

(III.B.191)

where ZL(α, β) is the partition function of the open one-species TASEP with injection rate α
and extraction rate β. Its exact expression [46] is given by

ZL(α, β) = 〈〈a|(2+e+d)L|b〉〉 = 〈〈a|(D+E)L|b〉〉 =

L∑
p=0

p (2L− p− 1)!

L!(L− p)!

(
1
α

)p+1 −
(

1
β

)p+1

1
α −

1
β

〈〈a|b〉〉 .

(III.B.192)
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From the matrix ansatz, we know that

ZL = 〈〈W | (X0 +X1 +X2)L |V 〉〉. (III.B.193)

Using the factorization (III.B.185), we obtain

X0 +X1 +X2 = (1, 1, 1) ·

X0

X1

X2

 = (1, 1, 1)L(3) L̃(3)L(2). (III.B.194)

We first compute

(1, 1, 1) · L(3) =
(

1 + a(A1 + d1)A2 + d2 , e1(1 + d2) + aA2, 1 + e2

)
. (III.B.195)

Then, from the relations 〈〈1|(A+ d) = 〈〈1| and 〈〈1|e = 〈〈1|, we deduce

〈〈1|1(1, 1, 1) · L(3) =
(

1 + aA2 + d2 , 1 + aA2 + d2, 1 + e2

)
〈〈1|1 (III.B.196)

This implies that the space 1 drops out (because neither L̃(3) nor L(2) act on it). Remarking
that(

1 + aA2 + d2 , 1 + aA2 + d2, 1 + e2

)
L̃(3) =

(
1 + aA2 + d2 , 1 + e2

) (1 1 0
0 0 1

)
L̃(3)

=
(

1 + aA2 + d2 , 1 + e2

) ( 1 A3 + e3

d3 1

)
and using (A+ e)|1〉〉 = |1〉〉 and d|1〉〉 = |1〉〉, we have(

1 A3 + e3

d3 1

)
|1〉〉3 = |1〉〉3

(
1 1
1 1

)
= |1〉〉3

(
1
1

)
(1, 1) (III.B.197)

so that space 3 also drops out. Gathering the different results, we obtainZL = 〈〈1|b/a〉〉1 〈〈0|(2 + aA2 + d2 + e2)L|0〉〉2 〈〈0|1〉〉3 〈〈0|(2 + e4 + d4)L|b〉〉4 for (M1)

ZL = 〈〈1|0〉〉1 〈〈0|(2 + aA2 + d2 + e2)L|b〉〉2 〈〈0|1〉〉3 〈〈0|(2 + e4 + d4)L|b〉〉4 for (M2).

(III.B.198)
We conclude the derivation of (III.B.191) by using (III.B.192) and by observing that

〈〈0|(2 + aA+ d+ e)L|b〉〉 =
〈〈0|b〉〉
〈〈a|b〉〉

ZL(α, β) (III.B.199)

because the operators ẽ = aA + e and d obeys the same algebraic rules as e and d, but now
〈〈0| is a left eigenvector of ẽ with eigenvalue a.

To summarize, the 2-TASEP models studied here provide the first example of integrable
multi-species open TASEP in which none the particles currents of the species vanishes in the
stationary state. The stationary state is analytically expressed in a matrix product form,
which is written using an algebra involving 9 generators. This translates into the presence
of non-scalar ’hat operators’. The telescopic relations are not sufficient to encode all the
algebraic relations satisfied by these 9 generators. These algebraic relations are provided by
the ZF and GZ relations together with a convenient change of generators basis. It allows us
to compute some physical quantities or some particular stationary weights using only these
algebraic relations. The integrable structure of the model gives a guideline to construct an
explicit representation of the matrix product algebra. A lot remains to be understood to
construct such explicit representations for general integrable multi-species open (T)ASEP.
We will come back to these 2-TASEP models in chapter V to study their properties in the
thermodynamic limit. We will be in particular interested in their phase diagrams.
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3 An open multi-species SSEP

This section is devoted to the study of diffusive multi-species open model that was introduced
recently in [V8]. The interest of this model lies in the fact that it describes a system driven
out-of-equilibrium by two reservoirs, and also in the fact that there is an arbitrary fixed number
of species. We will see that the algebraic structure of the non-equilibrium steady state provides
very convenient tools for physical quantities computations. The discussion and results exposed
here are deeply based on the content of [V8], with minor modifications. The reader is thus
encouraged to refer to this paper for details.

a) Presentation of the model

We consider a system involving N species of particles which diffuse on a one dimensional lattice
comprising L sites. Each site i can be in N + 1 different states τi = 0, . . . , N depending on its
occupancy. More precisely, we set τi = s if the site at position i carries a particle of species s,
with 1 ≤ s ≤ N , and we set τi = 0 if the site is empty. Hence a configuration of the lattice
will be denoted by a L-uplet τ = (τ1, . . . , τL) ∈ {0, . . . , N}L.

The dynamics is stochastic. During an infinitesimal time dt, in the bulk, there is a prob-
ability dt that a particle of a given species jumps to its left or right neighbor site, providing
that it is empty. There is also a probability dt that two particles of different species, located
on two adjacent sites, exchange their positions. At the left boundary, a particle of species s′

(or a hole) located on the first site can be replaced by a particle of species s with probability
dt× αs/a. A particle of species s′ can also be absorbed in the left reservoir (i.e replaced by a
hole) with probability dt× α0/a In the same way, at the right boundary, a particle of species
s′ (or a hole) located on the last site can be replaced by a particle of species s with probability
dt × βs/b. A particle of species s′ can also be absorbed in the right reservoir (i.e replaced by
a hole) with probability dt× β0/b. See figure III.7 for a graphical illustration.

αs/a

2 7 3 3 1 8 5 1 7

1 1 1 1 1 βs′/b

Figure III.7: Dynamical rules of the open multi-species SSEP.

Later on, the parameters α1, . . . , αN (respectively β1, . . . , βN ) will be interpreted as the
particles densities at the left (respectively right) reservoir. The parameter α0 (respectively β0)
is interpreted as the density of holes at the left (respectively right) reservoir. We have thus
the constraints

N∑
τ=0

ατ = 1, and
N∑
τ=0

βτ = 1. (III.B.200)

The number a (respectively b) will be seen as the distance between the left reservoir and the
first site (respectively the distance between the right reservoir and the last site), the lattice
spacing being one in the bulk.

The update rules of the stochastic process described above are summarized in the following
table where the rates of the allowed transitions are depicted above the arrows:

Left Bulk Right

τ ′
ατ/a−−−−→ τ τ ′τ

1−−→ ττ ′ τ ′
βτ/b−−−−→ τ

0 ≤ τ, τ ′ ≤ N 0 ≤ τ, τ ′ ≤ N 0 ≤ τ, τ ′ ≤ N

(III.B.201)

Let us remark that the dynamics in the bulk is symmetric between the different species of
particle and the holes: we cannot distinguish the different species of particles or even particles
and holes from the bulk dynamics. It is thus possible to relabel the species or even to interpret
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species s as holes and holes as species s (modifying accordingly the label of injection/extraction
rates). This observation led us to present the expression of physical quantities (computed
below) in the most symmetric way. Note that we already stick with this symmetry willing in
the presentation of the injection/extraction rates on the boundaries (we did note single out the
notation of ”injection/extraction“ rates for the holes: we introduced the reservoirs densities of
holes α0 and β0).

Let us stress that the injection and extraction rate of each species at the boundaries are
not the most general. The particular model presented here is motivated by the fact that it
is integrable (see discussion below). It turns out that it has a nice physical interpretation.
Taking into account the constraints (III.B.200), we are left with 2 × N free parameters. For
a generic choice of these parameters, the system will be driven out of equilibrium by the two
reservoirs.

Remark B.26. The system will reach, in the long time limit, a thermodynamic equilibrium if
and only if the reservoir densities of each species of particle are the same on the left and on
the right, namely: αs = βs, for all 1 ≤ s ≤ N (that implies also, because of (III.B.200), that
α0 = β0). The detailed balance condition is indeed satisfied only in this case.

b) Markov matrix and integrability.

In this subsection we recall briefly the mathematical formalism (exposed precisely in chapter
II) needed to write the probability density function of the model and its time evolution (master
equation) in a concise vector form. This will be also of great help to compute and express in
a simple form the stationary probability density function.

Following the discussion of chapter II, we first attach to each site of the lattice a vector space
CN+1 with basis |0〉, |1〉, . . . , |N〉, where |τ〉 = (0, . . . , 0︸ ︷︷ ︸

τ

, 1, 0, . . . , 0︸ ︷︷ ︸
N−τ

)t. The set of all configura-

tions of the lattice is thus embedded in CN+1 ⊗ · · · ⊗ CN+1︸ ︷︷ ︸
L

with natural basis |τ1〉⊗ · · ·⊗ |τL〉,

where τi = 0, 1, ..., N . We denote by Pt(τ1, . . . , τL) the probability for the system to be in
configuration (τ1, . . . , τL) at time t. These probabilities can be encompassed in a single vector

|Pt〉 =


Pt(0, . . . , 0, 0)
Pt(0, . . . , 0, 1)

...
Pt(N, . . . , N,N)

 =
∑

0≤τ1,...,τL≤N
Pt(τ1, . . . , τL) |τ1〉 ⊗ · · · ⊗ |τL〉. (III.B.202)

This allows us to write in a compact form the master equation, governing the time evolution
of the probability density

d|Pt〉
dt

= M |Pt〉, (III.B.203)

where the Markov matrix M is given by

M = B1 +

L−1∑
i=1

mi,i+1 +BL. (III.B.204)

The matrices B, B and m are the local jump operators. The indices denote the sites, or
equivalently the copies of CN+1, on which the operators act non trivially (they act as the
identity in the other copies). The matrix B encodes the dynamics at the left boundary and
acts on the first site as

B|τ ′〉 = −1

a
|τ ′〉+

∑
0≤τ≤N

αs
a
|τ〉, 0 ≤ τ ′ ≤ N, (III.B.205)
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which leads to the explicit expression

B =
1

a



α0 − 1 α0 α0 . . . . . . α0

α1 α1 − 1 α1 . . . . . . α1

α2 α2 α2 − 1 . . . . . . α2

...
...

. . .
...

αN−1 αN−1 . . . . . . αN−1 − 1 αN−1

αN αN . . . . . . αN αN − 1


. (III.B.206)

In the same way, the matrix B encodes the dynamics at the right boundary and acts on the
last site as

B|τ ′〉 = −1

b
|τ ′〉+

∑
0≤τ≤N

βs
b
|τ〉, 0 ≤ τ ′ ≤ N, (III.B.207)

which leads to the explicit expression

B =
1

b



β0 − 1 β0 β0 . . . . . . β0

β1 β1 − 1 β1 . . . . . . β1

β2 β2 β2 − 1 . . . . . . β2

...
...

. . .
...

βN−1 βN−1 . . . . . . βN−1 − 1 βN−1

βN βN . . . . . . βN βN − 1


. (III.B.208)

Finally the matrix m acts on two adjacent sites and encodes the dynamics in the bulk as

m|τ ′〉 ⊗ |τ〉 = |τ〉 ⊗ |τ ′〉 − |τ ′〉 ⊗ |τ〉. (III.B.209)

It can be expressed as m = P − 1, where P is the permutation operator, namely P |v〉 ⊗ |w〉 =
|w〉 ⊗ |v〉 if |v〉, |w〉 ∈ CN+1.

Remark B.27. The well-known SSEP model with one species of particles plus holes is re-
covered from this framework for N = 1 (one has then to identify species 1 with holes). The
present parameters are in this case related to the usual one α, β, γ and δ by α0 = γ/(α+ γ),
α1 = α/(α+ γ), β0 = β/(β + δ), β1 = δ/(β + δ), a = 1/(α+ γ) and b = 1/(β + δ). Note that
this corresponds to the change of variable already used to study the one species SSEP, see for
instance [16].

This model is integrable. We can indeed construct an R-matrix satisfying the Yang-Baxter
equation (with additive spectral parameter) (II.B.12)

R(z) =
z + P

z + 1
. (III.B.210)

It relates to the bulk local jump operator through P.R′(0) = m. It fulfills also the regularity,
unitarity and Markov conditions. We can also define two reflection matrices K and K (that
we already encountered in (II.C.59)) satisfying the reflection equations (II.C.7) and (II.C.8)
(with additive spectral parameters) respectively

K(z) = 1 +
2za

z + a
B and K(z) = 1 +

2zb

z − b
B. (III.B.211)

They satisfy also the regularity, unitarity and Markov conditions. The boundary local jump
operators can be recovered by taking the derivative K ′(0)/2 = B and −K ′(0)/2 = B.

As presented in chapter II, these objects are the building blocks of the transfer matrix
t(z) (see (II.C.34)), which generates a family of commuting operators (including the Markov
matrix).
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c) Matrix ansatz

This section is devoted to the construction of the stationary state of the model. More precisely
we want to compute the vector |S〉 which satisfies the stationary version of the master equation
(III.B.203), that is M |S〉 = 0.

Following the Leitmotiv of this chapter, the integrability of the model can be exploited to
express this vector in a matrix product form, i.e the probability to observe a configuration
(τ1, . . . , τL) in the steady state can be written as

S(τ1, . . . , τL) =
1

ZL
〈〈W |Xτ1Xτ2 . . . XτL |V 〉〉, (III.B.212)

where we recall that ZL = 〈〈W |CL|V 〉〉 is a normalization, so that the entries of |S〉 sum to 1.
We recall also the notation

C = X1 + · · ·+XN . (III.B.213)

For the matrix product state (III.B.212) to compute the stationary distribution correctly,
the operators X0, . . . , XN and the boundary vectors 〈〈W | and |V 〉〉 have to satisfy precise
algebraic relations. As presented in this chapter, these relations take their root in the ZF and
GZ relations. More precisely the matrices X0, . . . , XN are obtained through the relation

X =


X0

X1

...
XN

 = A(0) (III.B.214)

where A(z) satisfies the ZF relation Ř(z1− z2)A(z1)⊗A(z2) = A(z2)⊗A(z1). The boundary
vectors 〈〈W | and |V 〉〉 are chosen to satisfy the GZ relations 〈〈W |K(z)A(−z) = 〈〈W |A(z) and
K(z)A(−z)|V 〉〉 = A(z)|V 〉〉. The ZF relation implies the bulk telescopic relation

mX⊗X = X⊗X−X⊗X, (III.B.215)

with X = A′(0). The GZ relations provide the boundary telescopic relations

〈〈W |BX = 〈〈W |X, (III.B.216)

and
BX|V 〉〉 = −X|V 〉〉. (III.B.217)

Altogether this ensures that the vector

|S〉 =
1

ZL
〈〈W |X⊗X⊗ · · · ⊗X|V 〉〉 (III.B.218)

is the steady state of the model.
The first step is to guess an ”optimal“ (in the sense of the smallest number of generators)

expansion for the vector A(z).

Definition B.28. We define the vector

A(z) =


zλ0 +X0

zλ1 +X1

...
zλN +XN

 = zX + X, (III.B.219)

with

X =


λ0

λ1

...
λN

 = A′(0). (III.B.220)
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Now we are equipped to write explicitly the ZF relation and identify the coefficients of the
different powers of z in each components. We obtain that the following property.

Proposition B.29. The ZF relation is equivalent to the fact that the operators X1, . . . , XN

belong to a Lie algebra10. They satisfy the commutation relations

[Xτ , Xτ ′ ] = λτXτ ′ − λτ ′Xτ , 0 ≤ τ, τ ′ ≤ N, (III.B.221)

The last step is to write explicitly the GZ relations to derive the algebraic relations between
the matrices X0, . . . , XN and the boundary vectors 〈〈W | and |V 〉〉. By again collecting the
coefficients of the powers of z in each components of the GZ relations we obtain the following
properties.

Proposition B.30. The action of the operators Xτ on the left boundary vector 〈〈W | is given
by

〈〈W |
(
ατC −Xτ

)
= aλτ 〈〈W |, 0 ≤ τ ≤ N, (III.B.222)

where C is defined in (III.B.213). Note that these N relations are not all independent (the
sum of these equations is trivial), only N − 1 are necessary. In the same way the action of the
operators Xs on the right boundary vector |V 〉〉 read(

βτC −Xτ

)
|V 〉〉 = −bλτ |V 〉〉, 0 ≤ τ ≤ N. (III.B.223)

Again, only N − 1 of these equations are independent.

The computation of length-1 words 〈〈W |Xτ |V 〉〉, for 0 ≤ τ ≤ N , from the relations
(III.B.222) and (III.B.223) yields the equations

(ατ − βτ )〈〈W |C|V 〉〉 = (a+ b)λτ 〈〈W |V 〉〉, 0 ≤ τ ≤ N. (III.B.224)

These equations fix the values of the numbers λτ (up to a common factor) as

λτ = ατ − βτ , 0 ≤ τ ≤ N. (III.B.225)

These particular values of the λτ ’s solve the previous set of equations and ensure that the
length-1, 2, 3 words 〈〈W |Xτ |V 〉〉, 〈〈W |XτXτ ′ |V 〉〉, 〈〈W |XτXτ ′Xτ ′′ |V 〉〉 are completely fixed by
the algebraic relations (III.B.221), (III.B.222) and (III.B.223) (up to a global factor 〈〈W |V 〉〉),
are non vanishing and provide the correct stationary weights (this was check using formal
computation software).

Unfortunately, we were not able to find an explicit representation for the operators Xτ and
the boundary vectors 〈〈W | and |V 〉〉. However, we will show that the commutation relations
(III.B.221) and the relations on the boundary vectors (III.B.222) and (III.B.223) allow us to
compute the currents and correlation functions, see subsection d), and to prove an additivity
principle, see chapter V.

Remark B.31. Once again the matrix ansatz solution of the usual SSEP with one species
of particles and holes can be obtained for N = 1, by doing the same change of parameters as
mentioned in the remark B.27, and setting D = X1/λ1 and E = −X0/λ0 = X0/λ1. They
satisfy DE − ED = D + E and 〈〈W |(αE − γD) = 〈〈W |, (δE − βD)|V 〉〉 = −|V 〉〉.

Remark B.32. We already mentioned that the system reaches a thermodynamic equilibrium
if and only if ατ = βτ for all 0 ≤ τ ≤ N . In this case we have λτ = 0 for all 0 ≤ τ ≤ N , which
implies that the operators Xτ commute one with each other and can be chosen proportional to
the identity operator. We hence set Xτ := rτ , with r0, . . . , rN real numbers. It is straightforward
to check that rτ = ατ = βτ satisfy the boundary relations (III.B.222) and (III.B.223).

10The Lie algebra (III.B.221) is not semi-simple since there is an abelian ideal of rank N generated by the
elements λ0Xτ −λτX0 for 1 ≤ τ ≤ N . Hence it does not belongs to the well known classification of semi-simple
Lie algebras. It could be interesting to study the decomposition into solvable and semi-simple parts of this
algebra but this is beyond the scope of this manuscript.
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The steady state is given by

|S〉 =

 r0

...
rN

⊗
 r0

...
rN

⊗ · · · ⊗
 r0

...
rN

 . (III.B.226)

This shows that in the thermodynamic equilibrium, the occupation numbers τ1, . . . , τL are in-
dependent and identically distributed random variables.

d) Computation of physical quantities

The algebraic structure of the stationary state described in (III.B.221), (III.B.222) and (III.B.223)
proves very powerful in the computation of physical quantities such as the correlation functions
and the particle currents. The first step is to evaluate the normalization ZL.

Proposition B.33. Assuming that the scalar product of the boundary vectors 〈〈W |V 〉〉 = 1,
the normalization of the steady state defined by ZL = 〈〈W |CL|V 〉〉 is equal to

ZL =
Γ(a+ b+ L)

Γ(a+ b)
, (III.B.227)

where the gamma function satisfies the functional relation Γ(x+ 1) = xΓ(x).

Proof. We first remark that because of constraints (III.B.200), we have

N∑
τ=0

λτ =
N∑
τ=0

ατ −
N∑
τ=0

βτ = 1− 1 = 0. (III.B.228)

It allows us to compute

[Xτ , C] =

N∑
τ ′=0

[Xτ , Xτ ′ ] = λτ

N∑
τ ′=0

Xτ ′ −Xτ

N∑
τ ′=0

λτ ′ , (III.B.229)

and leads to the very useful relation

[Xτ , C] = λτC, or equivalently XτC = C(Xτ + λτ ). (III.B.230)

Using this equality n times we obtain

XτC
n = Cn(Xτ + nλτ ). (III.B.231)

We are now equipped to compute the normalization

ZL = 〈〈W |CL|V 〉〉 =
aλ0

α0
ZL−1 +

1

α0
〈〈W |X0C

L−1|V 〉〉

=
λ0

α0
(a+ L− 1)ZL−1 +

1

α0
〈〈W |CL−1X0|V 〉〉

=
λ0

α0
(a+ b+ L− 1)ZL−1 +

β0

α0
ZL. (III.B.232)

The first line is obtained thanks to relation (III.B.222) for τ = 0. We get the second line
through relation (III.B.231) for τ = 0 and n = L − 1. The last equality is established using
(III.B.223) for τ = 0. Finally (III.B.232) can be rearranged and leads to the recursive relation

ZL = (a+ b+ L− 1)ZL−1. (III.B.233)

Keeping in mind that Z0 = 〈〈W |V 〉〉 = 1, we can solve the previous relation and we obtain
(III.B.227).
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We now turn to the study of the mean stationary current of the particles of species s
between site i and i+ 1. It is defined by the average algebraic number of particles of species s
crossing the bound between sites i and i+ 1 per unit of time:

〈js〉 =
〈〈W |Ci−1Xs(C −Xs)C

L−i−1|V 〉〉
ZL

− 〈〈W |C
i−1(C −Xs)XsC

L−i−1|V 〉〉
ZL

. (III.B.234)

Once again the algebraic structure of the steady state allows us to derive an exact expression
for this quantity.

Proposition B.34. The analytical expression of the mean current of particle of species s
between site i and i+ 1 is given by

〈js〉 =
λs

L− 1 + a+ b
, (III.B.235)

which is independent of the site i, as expected from the conservation of the particles number
in the bulk. Note that this expression remains also valid for the mean current of holes in the
system

〈j0〉 =
λ0

L− 1 + a+ b
. (III.B.236)

We recover immediately by summing these exact expression the property given by the exclusion
constraint

〈j0〉+ 〈j1〉+ · · ·+ 〈jN 〉 = 0. (III.B.237)

Proof. We present the proof for 0 ≤ τ ≤ N , which includes the current of all the particle
species and of the holes. We have

〈jτ 〉 =
〈〈W |Ci−1[Xτ , C −Xτ ]CL−i−1|V 〉〉

ZL
=
〈〈W |Ci−1[Xτ , C]CL−i−1|V 〉〉

ZL
= λτ

ZL−1

ZL
,

where the last equality is obtained thanks to (III.B.230). Hence using (III.B.227) we get the
desired expression (III.B.235).

Remark B.35. In the thermodynamic equilibrium case, that is when λτ = 0 for all τ , all the
particles (and holes) currents vanish, as expected.

Other physical quantities of prime interest are the equal time correlation functions in the

stationary state. We recall that for a given configuration, we set ρ
(i)
τ = 1 if the site i is in

local configuration τ and ρ
(i)
τ = 0 else. The algebraic structure of the steady state, revealed by

the matrix product formulation, offers a very efficient framework to compute the equal time

multi-points correlation functions in the stationary state 〈ρ(i1)
s1 ρ

(i2)
s2 . . . ρ

(ik)
sk 〉, where 〈·〉 stands

for the expectation with respect to the stationary measure. We will compute below only the
one and two points correlation functions, which are of particular interest for a physical point
of view. In principle closed expressions for the higher order correlation functions can also be
derived using the computational techniques presented below.

The one point function 〈ρ(i)
s 〉 (respectively 〈ρ(i)

0 〉) represents the mean density of particles
of a given species s (respectively of holes) at a given site i. It can be expressed through the
matrix product formalism as

〈ρ(i)
τ 〉 =

〈〈W |Ci−1XτC
L−i|V 〉〉

ZL
, 0 ≤ τ ≤ N. (III.B.238)

Proposition B.36. Using the algebraic structure (see the proof below), it can be reduced to
the closed expression

〈ρ(i)
τ 〉 =

(b+ L− i)ατ + (a+ i− 1)βτ
a+ b+ L− 1

. (III.B.239)

Note that the density profile is the linear interpolation between the left reservoir with density
ατ located at distance a from the first site and the right reservoir with density βτ located at
distance b from the last site. We recover the Fourier law.
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Proof. The mean particle density of species s (or holes) at site i can be computed using the
algebraic structure given by the matrix product form

〈ρ(i)
τ 〉 =

〈〈W |Ci−1XτC
L−i|V 〉〉

ZL
= (L− i)λτ

ZL−1

ZL
+
〈〈W |CL−1Xτ |V 〉〉

ZL
(III.B.240)

= (b+ L− i)λτ
ZL−1

ZL
+ βτ =

(b+ L− i)ατ + (a+ i− 1)βτ
a+ b+ L− 1

. (III.B.241)

The second equality is obtained using relation (III.B.231). We use then (III.B.223) to get the
second line of the equation and the last equality is established thanks to expression (III.B.227).

The two-point correlation function can also be written in a matrix product form

〈ρ(i)
τ ρ

(j)
τ ′ 〉 =

〈〈W |Ci−1XτC
j−i−1Xτ ′C

L−j |V 〉〉
ZL

. (III.B.242)

It leads to the following proposition.

Proposition B.37. We have a factorized expression for the connected two-point function

〈ρ(i)
τ ρ

(j)
τ ′ 〉c := 〈ρ(i)

τ ρ
(j)
τ ′ 〉 − 〈ρ

(i)
τ 〉〈ρ

(j)
τ ′ 〉

= −λτλτ ′
(a+ i− 1)(b+ L− j)

(a+ b+ L− 1)2(a+ b+ L− 2)
. (III.B.243)

The formulas (III.B.239) and (III.B.243) are very similar to the ones derived for the usual
one-species SSEP [16,209] and appear as direct generalisation for the multi-species case.

Proof. For the two-point function, using again (III.B.231) and (III.B.223), we have

〈ρ(i)
τ ρ

(j)
τ ′ 〉 =

〈〈W |Ci−1XτC
j−i−1Xτ ′C

L−j |V 〉〉
ZL

(III.B.244)

= λτ ′(L− j + b)
〈〈W |Ci−1XτC

L−i−1|V 〉〉
ZL

+ βτ ′〈ρ(i)
τ 〉 (III.B.245)

Replacing L by L− 1 in the expression (III.B.239) we obtain

〈〈W |Ci−1XτC
L−i−1|V 〉〉

ZL
=

ZL−1

ZL

(b+ L− 1− i)ατ + (a+ i− 1)βτ
a+ b+ L− 2

=
ZL−1

ZL

(
〈ρ(i)
τ 〉 − λτ

i− 1 + a

(L− 1 + a+ b)(L− 2 + a+ b)

)
Substituting back in (III.B.245) leads to

〈ρ(i)
τ ρ

(j)
τ ′ 〉 = 〈ρ(i)

τ 〉〈ρ
(j)
τ ′ 〉 − λτλτ ′

(a+ i− 1)(b+ L− j)
(a+ b+ L− 1)2(a+ b+ L− 2)

, (III.B.246)

which concludes the proof.
To summarize, we introduced here an integrable multi-species open SSEP. The dynamics on

the boundaries has a simple physical interpretation: it models the interaction with a particles
reservoirs with fixed densities of each species. The stationary state of the model is given
analytically in terms of a simple matrix product expression. The generators indeed belong to a
Lie algebra, which allows us to compute exactly physical quantities using only these algebraic
relations (and without any explicit representation). We will encounter again this model in
chapter V while studying its properties in the hydrodynamic limit.

In the whole present chapter, we dealt with matrix product expressions of the steady states
of one dimensional exclusion processes. We encountered several matrix ansatz algebras and
we explained their connections to the integrable structure of the models. The matrix product
expressions allowed us to compute exactly physical quantities in the stationary state. But
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these quantities were only related to ’static’ observables (such as particles densities) or to the
average value of ’dynamic’ observables (such as particles currents). To get access to the full
statistics of these ’dynamic’ observables, we need (as explained in chapter I) to study a current
counting deformation of the Markov matrices. We are going to see in the next chapter, how
the matrix product states can be used to obtain the ground state of such deformed Markov
matrices. It will be achieved through the study of the specific example of the single species
open ASEP. As a byproduct, we will derive a matrix product expression of some symmetric
polynomials: the Koornwinder polynomials (in a particular case). This stresses, once more,
the wide range of applications of the matrix product states.
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Chapter IV

q-KZ equation and fluctuations of
the current

We saw in the previous chapter the efficiency of the matrix product states to encode exactly
the stationary state of a wide range of stochastic processes. But we already stressed that
the potential applications of such matrix product states goes far beyond the computation
of steady states associated to Markov matrices. We now present another application of the
matrix product formalism in out-of-equilibrium statistical physics. The goal is to extend the
previous matrix ansatz construction of steady states to the computation of the fluctuations of
the particles current. It was argued in chapter I that the generating function of the cumulants
of the current can be computed through the ground state of a current counting deformation of
the Markov matrix. We construct in the present chapter a further deformation of this ground
state in a matrix product form that is conjectured to converge to the ground state in some
limit. The interest of such construction lies both on the physical and mathematical side.

The physical motivation arises from the possible interpretation of the large deviation func-
tion of the current (that is obtained from the generating function through a Legendre trans-
formation, see chapter I) as a dynamical generalization of the thermodynamic potential [27]
(this large deviation function is expected to exhibit singularities at the dynamical phase tran-
sitions). It is thus important to derive the simplest expression as possible of the current
generating function.

The mathematical motivation arises from the use of matrix product states to construct
solutions to quantum deformation of the Knizhnik-Zamolodchikov equations (qKZ equations)
that were introduced in the context of representation theory of quantum affine algebra [214].
These are a set of difference equations depending on the parameters t and s for periodic systems
and also on the parameters a, b, c and d for open boundaries systems. These equations involve
a vector, whose components depends on several variables, and relate precisely the permutation
of variables in the vector with the mixing of components of the same vector. Once again
the integrability plays a central role in the setting of the qKZ equations and ensures their
consistency. It has been established that when the parameters satisfy the constraint

tk+1sr−1abcd = 1 (IV..1)

for some integers k and r, their exist solutions to the qKZ equations that are polynomial in the
variables [215–218]. The parameter k is called the rank and the parameter r is called the level
of the equation. These polynomial solutions are often related [219] to representations of the
double quantum affine algebra [220–222] and expressed in terms of Macdonald or Koornwinder
polynomials [49, 141, 216] The latter polynomials play a central role in combinatorics and
representation theory [223].

It is now well established that, in the context of stochastic processes, these qKZ equations
for special case s = 1 play a central role in the computation of the stationary states [49,75,141,
224]. This fact is deeply related (at least for stochastic interacting particles systems) to the
construction exposed in chapter III with the ZF and GZ relations [V3,105]. The main novelties
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presented in this chapter are on one hand an interplay between the parameter s involved in the
qKZ equations and a current counting deformation parameter ξ of the Markov matrix and on
the other hand the matrix product construction of the associated polynomial solutions to the
qKZ equations. On the mathematical side it leads to a matrix product construction of some
Koornwinder polynomials. On the physical side it allows to construct the ground state of the
deformed Markov matrix and gives access to the generating function of the cumulants of the
current. The qKZ equations point out once again a bridge between the theory of symmetric
polynomials and physical observables in integrable stochastic processes [225,226]. The results
presented here are mainly extracted from the work [V6].

A Current counting deformation and q-KZ equation

We focus our study on the ASEP [39,40] for two reasons. On the physical side, it has become
over the last decades a paradigmatic model in non-equilibrium statistical mechanics [36, 41].
It is an example of a physical system exhibiting a macroscopic current in a stationary regime.
Such systems, which cannot be described by the usual thermal equilibrium formalism, can be
seen as the simplest out-of-equilibrium situation one can imagine [35, 38, 90]. On the mathe-
matical side, as seen in chapter II, the ASEP enjoys the property of being integrable.

Several exact results have been obtained for the current large deviation function of the
ASEP using a deformed current-counting transition matrix [18, 120, 227–230]. The works [18,
120,227,229,230] build upon the matrix product method [46], used to compute the stationary
state of the undeformed ASEP. In this chapter we continue in this vein, relying particularly on
the integrability of the ASEP [29,126] and the connection between integrability and the matrix
product method [V3, 105]. We note also the approach of [228], in which the Bethe ansatz was
used to obtain the cumulant generating function in the thermodynamic limit.

More precisely, the integrable structure of the ASEP gives rise to a connection with Hecke
algebras, that are at the heart of the definition of Macdonald and Koornwinder polynomials
[49,141,224]. The Macdonald polynomials are associated with the periodic system, and in [49]
this connection is exploited to derive a matrix product formula for the symmetric Macdonald
polynomials. The connection between the open system and Koornwinder polynomials was first
identified in [141], then fully established in [224]. However a matrix product formula, and the
link to the general form of the Koornwinder polynomials is still lacking.

Our aim is to exploit the integrable structure of the ASEP with deformed current-counting
matrix, to make a connection to the general form of the Koornwinder polynomials. This in
turns leads to a connection between the symmetric Koornwinder polynomials and the generat-
ing function of the cumulants of the current. We do this by introducing scattering relations and
qKZ equations with a further deformation, through which we define a twice deformed ground
state vector. We give a matrix product construction of this ground state vector and of the
symmetric Koornwinder polynomial associated with it. This leads us to conjecture a beautiful
relation between the generating function of the cumulants of the current, and a certain limit
of symmetric Koornwinder polynomials.

We consider here the ASEP with only partial asymmetry, but it would be interesting also
to consider the totally asymmetric simple exclusion process (TASEP)1. The TASEP exhibits
broadly similar behaviour to the general ASEP physically, but often the involved mathematical
expressions are much simpler. The stationary state of the TASEP can be expressed in matrix
product form [46], but was also given by directly solving certain recursion relations [47]. The
results related to current fluctuations in the TASEP [229] are also much simpler than those for
the general ASEP. In our notation, the TASEP relates to the t→∞ limit of the Koornwinder
polynomials, which has been previously studied [231]. Thus it would be interesting to study
this limit in the TASEP context, and to see if any simplifications occur.

In the following subsections we recall briefly the main tools that are needed in this work: (i)
the ASEP, the current-counting deformation of the associated Markov matrix, and the link with

1That is with q = 0 in the model, as defined below.
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the generating function of cumulants of the current, (ii) the Hecke algebra and Koornwinder
polynomials, (iii) the integrable structure of the ASEP.

1 Deformed Markov matrix

a) Definition of the model and Gallavotti-Cohen symmetry

The open boundary ASEP is a stochastic model that we introduced previously through the
local jump operators (II.A.23) and (II.A.31). We recall that, in the bulk of the lattice particles
hop right one site with rate p, and left with rate q, so long as the target site is empty (the
exclusion rule). With open boundaries, particles may enter and exit at the first and last sites.
If site 1 is empty (occupied), a particle is injected (extracted) with rate α (γ). At site L,
particles are extracted with rate β and injected with rate δ. These rules are summarised in
figure IV.1.

α

γ

pq β

δ

Figure IV.1: Transition rates for the ASEP with open boundaries.

We recall that we attach to each site i a boolean variable τi ∈ {0, 1} indicating if the site
is empty (τi = 0) or occupied (τi = 1). The state of a single site is represented by a vector
|τi〉 ∈ C2, where

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
.

The state of the lattice is given by a vector |τ 〉 = |τ1, . . . , τL〉 ∈
(
C2
)⊗L

with

|τ1, . . . τL〉 = |τ1〉 ⊗ . . .⊗ |τL〉.

The ASEP transition rates are then encoded in the transition matrix M(ξ = 1), where2

M(ξ) =
√
αγB1(ξ) +

L−1∑
i=1

√
pqwi,i+1 +

√
βδBL, (IV.A.1)

and

√
αγB(ξ) =

(
−α ξ−1γ
ξα −γ

)
,

√
βδB =

(
−δ β
δ −β

)
,

√
pqw =


0 0 0 0
0 −q p 0
0 q −p 0
0 0 0 0

 .

(IV.A.2)
The indices on the matrices indicate the sites on which they act non trivially. The matrix
M(ξ) is stochastic only for ξ = 1, but the introduction of this fugacity allows the study of the
current generating function, as will be discussed below. The stochastic matrix M(ξ = 1) has
a unique eigenvector with eigenvalue 0, that is

M(1)|Ψ〉 = 0, |Ψ〉 =
∑
τ

ψτ |τ 〉.

Normalizing this vector gives the stationary distribution of the system: letting

Z = 〈1|Ψ〉, 〈1| = (1, 1)⊗L,

2The unusual normalisation is to ease the notation in later sections.
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the stationary probability of a configuration τ is

S(τ ) =
1

Z
ψτ .

If we now consider the deformed transition matrix M(ξ), then the deformed ground state
vector satisfies

M(ξ)|Ψ(ξ)〉 = Λ0(ξ)|Ψ(ξ)〉,
with Λ0(ξ)→ 0 as ξ → 1. As already stressed in chapter I, the eigenvalue Λ0(ξ) for general ξ
is an object of prime interest in the context of out-of-equilibrium statistical physics, because
of its connection to the generating function of the cumulants of the current, E(µ) = Λ0(eµ). It
has been shown recently [18,120,229,230] that the cumulants of the current for finite systems
can be extracted analytically at any order at the price of solving non-linear implicit equations.
We recall that the Legendre transformation of E(µ) provides the large deviation function of
the particle current in the stationary state,

G(j) = min
µ

(
µj − E(µ)

)
,

which is expected to be a possible generalisation of thermodynamic potential to non-equilibrium
systems [27]. In words, G(j) describes the non-typical fluctuations of the mean particle flux3.
The reader can refer to chapter I or to [18] for more details.

The eigenvalue Λ0(ξ) is invariant under the Gallavotti–Cohen symmetry [21,22]

ξ → ξ′ =
γδ

αβ

(
q

p

)L−1

ξ−1. (IV.A.3)

This translates immediately into a symmetry on the large deviation function of the particle
current.

G(j)−G(−j) = j ln

(
γδ

αβ

(
q

p

)L−1
)
. (IV.A.4)

This symmetry arises from the relation between the transition matrix and its transpose:

M(ξ′) = UGCM(ξ)TU−1
GC, (IV.A.5)

where ξ′ is as defined in (IV.A.3) and

UGC =

(
1 0

0 δ
β

(
q
p

)L−1

)
⊗

(
1 0

0 δ
β

(
q
p

)L−2

)
⊗ · · · ⊗

(
1 0

0 δ
β

)
. (IV.A.6)

The relation (IV.A.5) implies that M(ξ) and M(ξ′) have the same spectrum and thus the
largest eigenvalue is the same:

Λ0(ξ′) = Λ0(ξ).

As a further consequence of this symmetry, given a solution of the left eigenvalue problem

〈Φ(ξ)|M(ξ) = Λ(ξ)〈Φ(ξ)|.

there is a corresponding solution of the right eigenvalue problem

M(ξ′)|Ψ(ξ′)〉 = Λ(ξ)|Ψ(ξ′)〉,

with
|Ψ(ξ′)〉 = UGC|Φ(ξ)〉,

and ξ′ as defined in (IV.A.3). Note that here and in the following we use the convention
〈·|T = |·〉, where T denotes the usual transposition. We will explain in the following sections the
connection that can be made between the ground state |Ψ(ξ)〉 and the theory of Koornwinder
polynomials that we present now.

3More precisely, we recall that, if we denote by QT the algebraic number of particles exchanged between
the system and the left reservoir during the time interval [0, T ], then G(j) is characterised by P (QT /T = j) ∼
exp(−TG(j)) for large T .
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b) Integrability of the deformed Markov matrix

We recall that the ASEP is an integrable model – the deformed transition matrix M(ξ) belongs
to an infinite family of commuting matrices [126] (see also [V3,224]). The generating function
of these commuting matrices is called the transfer matrix. The key ingredients to construct
this transfer matrix are matrices Ř(z), K(z), and K(z) satisfying the braided Yang–Baxter
relation (II.B.4), the reflection equation (II.C.1) and the reversed reflection equation (II.C.8)
respectively. They also satisfy the unitarity and regularity properties.

For the open boundary ASEP the matrices are given by

Ř(z) = 1 + r(z)m, (IV.A.7)

K(x; ξ) = 1 + k(z; t
1/2
0 , u

1/2
0 )B(ξ), (IV.A.8)

K(z) = 1 + k(z−1; t
1/2
L , u

1/2
L )B, (IV.A.9)

where

r(z) =
z − 1

t−1/2z − t1/2
, k(z; t

1/2
i , u

1/2
i ) =

z2 − 1

t
−1/2
i z2 − (u

1/2
i − u−1/2

i )z − t1/2i

, (IV.A.10)

and w, B(ξ), B are written in terms of the Hecke parameters as

B(ξ) =

(
−t1/20 ξ−1t

−1/2
0

ξt
1/2
0 −t−1/2

0

)
, B =

(
−t−1/2

L t
1/2
L

t
−1/2
L −t1/2L

)
, m =


0 0 0 0

0 −t−1/2 t1/2 0

0 t−1/2 −t1/2 0
0 0 0 0

 .

(IV.A.11)
We will write K(z) for K(z; ξ), except when it is necessary to distinguish between values of
ξ. Note that the local (physical) transition matrices are obtained from (IV.A.7) – (IV.A.9)
through

√
pqw = (q − p)Ř′(1),

√
αγB(ξ) =

1

2
(q − p)K ′(1; ξ),

√
βδB = −1

2
(q − p)K ′(1),

and the Gallavotti–Cohen symmetry on the transition matrices now reads

Ři(z) = UGCŘi(z)
TU−1

GC,

K1(z; ξ′) = UGCK1(z; ξ)TU−1
GC,

KL(z) = UGCKL(z)TU−1
GC,

with ξ′ and UGC defined in (IV.A.3) and (IV.A.6) respectively.

2 Second deformation

a) Scattering matrices

Instead of the transfer matrix approach, one can define scattering matrices [141,232], although
the two methods are closely related. We first define a modified left boundary matrix

K̃(z) = K(s−1/2z), (IV.A.12)

in order to introduce the Hecke parameter s. The matrix K̃(z) satisfies deformed unitary and
reflection relations

K̃(sz)K̃
(
z−1
)

= 1,

Ř1(z2/z1)K̃1(z2)Ř1(s−1z1z2)K̃1(z1) = K̃1(z1)Ř1(s−1z1z2)K̃1(z2)Ř1(z2/z1),
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and has the Gallavotti–Cohen symmetry

K̃1(z; ξ′) = UGCK̃1(z; ξ)TU−1
GC.

For 1 ≤ i ≤ L, define the scattering matrices

Si(z) =Ři−1

(
zi−1

szi

)
. . . Ř1

(
z1

szi

)
· K̃1

(
1

zi

)
· Ř1

(
1

ziz1

)
. . . Ři−1

(
1

zizi−1

)
· Ři

(
1

zizi+1

)
. . . ŘL−1

(
1

zizL

)
·KL(zi)

· ŘL−1

(
zL
zi

)
. . . Ři

(
zi+1

zi

)
.

(IV.A.13)

Using the Yang–Baxter, reflection relations, and unitarity, we see that the scattering matrices
satisfy a deformed commutation relation

Si(. . . , szj , . . .)Sj(z1, . . . , zL) = Sj(. . . , szi, . . .)Si(z1, . . . , zL).

When s = 1, [Si(z),Sj(z)] = 0 for all i, j, and in fact in that case there is a direct relation to
the transfer matrix approach [V3, 126,224]4:

Si(z) = t(zi|z), (IV.A.14)

where t(z|z) is the usual transfer matrix with spectral parameter z and inhomogeneity param-
eters z = z1, . . . , zL (the reader may refer to chapter II for a precise definition).

At s = 1, we also have the important relations

Si(z)|s=z1=...=zL=1 = 1,
∂

∂zi
Si(z)|s=z1=...=zL=1 =

2

p− q
M(ξ). (IV.A.15)

Considering s general again, we would like to find solutions of the scattering relation

Si(z)|Ψ(. . . , zi, . . .)〉 = |Ψ(. . . , szi, . . .)〉, (IV.A.16)

where
|Ψ(z)〉 =

∑
τ

ψτ (z)|τ 〉. (IV.A.17)

Taking the derivative of (IV.A.16) with respect to zi and specialising with z1 = . . . = zL =
s = 1, this would imply

M(ξ)|Ψ(1)〉 = 0. (IV.A.18)

For ξ = 1 this is the unnormalized stationary vector of the ASEP with eigenvalue 0. For ξ 6= 1,
the ground state eigenvalue is non-zero, and so (IV.A.18) should not have a solution at this
point (that is s = 1, ξ 6= 1). However, in section D, we will discuss how there could be a
solution of (IV.A.16) for s→ 1, ξ 6= 1, and how it relates to the current-counting eigenvalue.

4Note that for s 6= 1 there is no obvious link between the scattering matrices and the usual transfer matrix,
as far as we know.
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b) q-KZ equation

It can be checked directly that sufficient conditions for a solution of the scattering relation
(IV.A.16) are

Ři(zi+1/zi)|Ψ(. . . , zi, zi+1, . . .)〉 = |Ψ(. . . , zi+1, zi, . . .)〉, 1 ≤ i ≤ L− 1, (IV.A.19)

K̃1(z−1
1 )|Ψ(z−1

1 , z2, . . .)〉 = |Ψ(sz1, z2, . . .)〉, (IV.A.20)

KL(zL)|Ψ(. . . , zL−1, zL)〉 = |Ψ(. . . , zL−1, 1/zL)〉. (IV.A.21)

Note that the Yang–Baxter, reflection, and unitary conditions ensure the consistency of this
definition. We will refer to (IV.A.19) – (IV.A.21) as the qKZ equations, although in our
notation the q has been replaced by the parameter s. These q-difference equations were first
introduced in [214] and appear as q-deformation of the KZ equations [233].

Motivated by the connection to the ASEP stationary state, we make the following definition:

Definition A.1. We call a solution

|Ψ(z; s, ξ)〉 =
∑
τ

ψτ (z; s, ξ)|τ 〉

of equations (IV.A.19) – (IV.A.21) a twice deformed inhomogeneous ground state vector, with
deformation parameters s and ξ.

As indicated at the end of the previous section, such a vector with s = ξ = 1 is the
inhomogeneous ground state vector of the open boundary ASEP, and can be constructed in
matrix product form [V3, V9] or from specialised non-symmetric Koornwinder polynomials
[224]. We will show that more general solutions exist when s and ξ obey some relations.

We define left qKZ equations

〈Φ(. . . , zi, zi+1, . . .)|Ři(zi+1/zi) = 〈Φ(. . . , zi+1, zi, . . .)|, 1 ≤ i ≤ L− 1, (IV.A.22)

〈Φ(z−1
1 , z2, . . .)|K̃1(z−1

1 ) = 〈Φ(sz1, z2, . . .)|, (IV.A.23)

〈Φ(. . . , zL−1, zL)|KL(zL) = 〈Φ(. . . , zL−1, 1/zL)|, (IV.A.24)

with
〈Φ(z)| =

∑
τ

φτ (x)〈τ |. (IV.A.25)

These would imply a solution of a left scattering equation (analogous to (IV.A.16)) with a
scattering matrix, defined by reversing the order of matrices in the definition (IV.A.13).

The Gallavotti–Cohen symmetry allows us to relate solutions of the left and right qKZ
equations.

Lemma A.2. For any vector 〈Φ(z; s, ξ)| satisfying the left qKZ equations (IV.A.22) – (IV.A.24),
the vector

|Ψ(z; s, ξ′)〉 = UGC|Φ(z; s, ξ)〉, (IV.A.26)

with
ξ′ = t−1

0 t−1
L t−(L−1)ξ−1, (IV.A.27)

is a solution to the right qKZ equations (IV.A.19) – (IV.A.21).

Proof. This is checked by transposing the left qKZ equations and using the Gallavotti–Cohen
symmetry on the Ř, K̃ and K matrices.
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B Koornwinder polynomials and link with q-KZ equation

We now introduce the symmetric and non-symmetric Koornwinder polynomials, which form
the other main theme of this chapter. The symmetric Koornwinder polynomials [234,235] are
a family of multivariate orthogonal polynomials generalising the Askey–Wilson polynomials.
The symmetric Koornwinder polynomials can be constructed from their non-symmetric coun-
terparts, which arise from the polynomial representation of the affine Hecke algebra of type
CL [222,236].

1 Non-symmetric Koornwinder polynomials

a) Hecke algebra and Noumi representation

The affine Hecke algebra of type CL is generated by elements T0, T1, . . . , TL, with parameters

t1/2, t
1/2
0 and t

1/2
L . The generators satisfy the quadratic relations,(

T0 − t1/20

)(
T0 + t

−1/2
0

)
= 0,(

Ti − t1/2
)(

Ti + t−1/2
)

= 0, 1 ≤ i ≤ L− 1,(
TL − t1/2L

)(
TL + t

−1/2
L

)
= 0,

the braid relations

T1T0T1T0 = T0T1T0T1

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ L− 2,

TLTL−1TLTL−1 = TL−1TLTL−1TL,

and otherwise commute. That is

TiTj = TjTi, |i− j| ≥ 2.

The algebra contains a family of mutually commuting elements [222,237]

Yi = Ti . . . TL−1TL . . . T0T
−1
1 . . . T−1

i−1, 1 ≤ i ≤ L. (IV.B.1)

We are interested in the representation of this algebra due to Noumi [221] (see also [222]),
acting on Laurent polynomials in z1, . . . , zL. The Noumi representation contains three addi-

tional parameters, u
1/2
0 , u

1/2
L , and s1/2, and is defined in terms of operators si acting on the xi

as
s0 : z1 → sz−1

1 , sL : zL → z−1
L , si : zi ↔ zi+1, 1 ≤ i ≤ L− 1. (IV.B.2)

The elements s0, s1, . . . sL generate the affine Weyl W group of type CL. The finite Weyl group
W0 is the subgroup generated by s1, . . . , sL.

Then in the Noumi representation, the generators of the affine Hecke algebra are given by

T±1
0 = t

±1/2
0 − t−1/2

0

(z1 − a)(z1 − b)
z1(z1 − sz−1

1 )
(1− s0),

T±1
i = t±1/2 − t1/2zi − t−1/2zi+1

(zi − zi+1)
(1− si), 1 ≤ i ≤ L− 1,

T±1
L = t

±1/2
L + t

−1/2
L

(czL − 1)(dzL − 1)

zL(zL − z−1
L )

(1− sL),

(IV.B.3)

with
a = s1/2t

1/2
0 u

1/2
0 , b = −s1/2t

1/2
0 u

−1/2
0 , c = t

1/2
L u

1/2
L , d = −t1/2L u

−1/2
L .

One can check directly that the definitions (IV.B.3) satisfy the relations of the Hecke algebra.

Formally, we define the field F = C(s1/2, t1/2, t
1/2
0 , u

1/2
0 , t

1/2
L , u

1/2
L ), and let R = F[z1, . . . , zL]
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be the ring of Laurent polynomials in L variables over F. The map sending the generators of
the Hecke algebra to the operators defined in (IV.B.3) gives a representation of the algebra on
R [222].

Later we will see that to relate the ASEP to the Noumi representation of the Hecke algebra
we should take

t1/2 =

√
p

q
, t

1/2
0 =

√
α

γ
, t

1/2
L =

√
β

δ
,

and

u
1/2
0 − u−1/2

0 =
p− q + γ − α
√
αγ

, u
1/2
L − u−1/2

L =
p− q + δ − β√

βδ
.

For the remainder of this paper we will use this parameterisation in preference to the physical
parameters of the ASEP, or the combinations a, b, c, d appearing in (IV.B.3).

b) Non-symmetric Koornwinder polynomials

Before defining the non-symmetric Koornwinder polynomials, we will introduce some notation
and definitions concerning integer vectors, λ ∈ ZL, with

λ = (λ1, . . . , λL).

We call such a vector a composition. For a given composition, λ, we write monomials

zλ = zλ11 . . . zλLL .

A partition is a composition satisfying

λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0.

We denote by λ+ the unique partition obtained from a composition λ by reordering and
changing signs so that the entries are non-negative and in decreasing order.

There are two partial orderings on compositions that will be relevant [236]. First define
the dominance order : for µ, λ ∈ ZL

µ ≤ λ ⇐⇒
j∑
i=1

(µi − λi) ≤ 0, ∀j, 1 ≤ j ≤ L.

Then µ < λ if µ ≤ λ and µ 6= λ. The second partial ordering ‘�‘ is defined as

µ � λ ⇐⇒ µ+ < λ+ or
(
µ+ = λ+ and µ ≤ λ

)
.

Then, µ ≺ λ if µ � λ and µ 6= λ.

Definition B.1. The non-symmetric Koornwinder polynomial Eλ(z), indexed by composition
λ, is the unique Laurent polynomial satisfying

YiEλ(z) = y(λ)iEλ(z), 1 ≤ i ≤ L,

Eλ(z) = zλ +
∑
λ′≺λ

cλλ′z
λ′ ,

where Yi is defined in (IV.B.1) in the Noumi representation, y(λ)i is the eigenvalue, and cλλ′

are coefficients.

The composition λ determines the eigenvalue y(λ)i [222]. The two following cases will
appear directly in this work:

• For m > 0, λ =
(
(−m)L

)
= (−m, . . . ,−m),

y(λ)i = t
−1/2
0 t

−1/2
L s−mt−(i−1). (IV.B.4)
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• For m ≥ 0, λ =
(
mL
)

= (m, . . . ,m),

y(λ)i = t
1/2
0 t

1/2
L smtL−i. (IV.B.5)

However, other non-symmetric Koornwinder polynomials will appear implicitly, and we define
the following space:

Definition B.2. For a partition λ of length L, define Rλ as the space spanned by {Eµ|µ ∈
ZL, µ+ = λ}.

2 Symmetric Koornwinder polynomials

a) Finite difference operator and symmetric Koornwinder polynomials

The symmetric Koornwinder polynomials were introduced in [234], as eigenfunctions of the
s-difference operator

D =

L∑
i=1

gi(z)(Ts,i − 1) +

L∑
i=1

gi(z
−1)(T−1

s,i − 1), (IV.B.6)

where gi(z) is defined by

gi(z) =
(1− azi)(1− bzi)(1− czi)(1− dzi)

(1− z2
i )(1− sz2

i )

L∏
j=1
j 6=i

(1− tziz−1
j )(1− tzizj)

(1− ziz−1
j )(1− zizj)

, (IV.B.7)

and Ts,i is the ith s-shift operator

Ts,if(z1, . . . , zi, . . . , zL) = f(z1, . . . , szi, . . . , zL). (IV.B.8)

Definition B.3. For a partition λ, the symmetric Koornwinder polynomial Pλ(z) is charac-
terised by the eigenvalue equation

DPλ = dλPλ, (IV.B.9)

with eigenvalue

dλ =
L∑
i=1

[
t0tLt

2L−i−1(sλi − 1) + ti−1(s−λi − 1)
]
, (IV.B.10)

and where the coefficient of xλ in Pλ is equal to 1.

b) Link with the non-symmetric polynomials

The symmetric Koornwinder polynomials are W0-invariant (that is, invariant under the ac-
tion of s1, . . . , sL, defined in (IV.B.2)), and their relation to the non-symmetric Koornwinder
polynomials was given in [222].

Theorem B.4 (Corollary 6.5 of [222]). The symmetric Koornwinder polynomial Pλ can be
characterised as the unique W0-invariant polynomial in Rλ which has the coefficient of zλ

equal to 1.

3 Link with the q-KZ equation

a) Reformulation of the q-KZ equation

We use the Noumi representation of the Hecke algebra to write the qKZ equations in component
form. To specify a lattice configuration τ we use ‘◦’ for an empty site (τi = 0), ‘•’ for a filled
site (τi = 1) and ’. . . ’ for unspecified values. Then, for example, we write ψ◦... to indicate the
weight for any configuration with the first site empty (τ1 = 0)
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Lemma B.5. The qKZ equations (IV.A.19) – (IV.A.21) for the deformed ground state vector
are equivalent to the following exchange relations on the components:

T0ψ◦... = ξ−1t
−1/2
0 ψ•..., (IV.B.11)

TLψ...• = t
−1/2
L ψ...◦, (IV.B.12)

and for 1 ≤ i ≤ L− 1,

Tiψ...◦◦... = t1/2ψ...◦◦..., (IV.B.13)

Tiψ...••... = t1/2ψ...••..., (IV.B.14)

Tiψ...•◦... = t−1/2ψ...◦•..., (IV.B.15)

where the marked sites are in positions i, i+ 1.

Proof. This can be checked directly.
Note that the parameters s and ξ both enter through (IV.B.11), with s contained within

the T0 operator.

Lemma B.6. The left qKZ equations (IV.A.22) – (IV.A.24) for a vector of form (IV.A.25)
are equivalent to the following exchange relations on the components:

T0φ◦... = ξt
1/2
0 φ•..., (IV.B.16)

TLφ...• = t
1/2
L φ...◦, (IV.B.17)

and for 1 ≤ i ≤ L− 1,

Tiφ...◦◦... = t1/2φ...◦◦..., (IV.B.18)

Tiφ...••... = t1/2φ...••..., (IV.B.19)

Tiφ...•◦... = t1/2φ...◦•..., (IV.B.20)

where the marked sites are in positions i, i+ 1.

b) Reference state

Lemma B.7. For any vector |Ψ(z; s, ξ)〉 satisfying the qKZ equations (IV.A.19) – (IV.A.21),
the empty lattice weight ψ◦...◦ (where the ’. . . ’ here stands for empty sites) is an eigenfunction
of the Yi operators (IV.B.1), satisfying

Yiψ◦...◦ = ξ−1t
−1/2
0 t

−1/2
L t−(i−1)ψ◦...◦. (IV.B.21)

Proof. This follows by direct computation with the exchange relations in Lemma B.5.
Lemma B.7 immediately suggests the following connection to the non-symmetric Koorn-

winder polynomials:

1. Taking ξ = sm, m > 0, the eigenvalue in (IV.B.21) is given by (IV.B.4), corresponding
to the non-symmetric Koornwinder polynomial labelled by the composition

(
(−m)L

)
.

2. Taking ξ = t−1
0 t−1

L t−(L−1)s−m, m ≥ 0, the eigenvalue instead corresponds to (IV.B.5),
for the composition

(
mL
)
.

Note that case 2 is obtained from case 1 by sending

ξ → t−1
0 t−1

L t−(L−1)ξ−1,
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which is exactly the Gallavotti–Cohen symmetry (IV.A.3). In section C we will give a direct
matrix product construction of the inhomogeneous ground state vector for case 1, that is
ξ = sm. To solve case 2, we will use the Gallavotti–Cohen symmetry on solutions of left
qKZ equations, which we will present next. We note that an alternative approach, as followed
in [224, 238], would be to take ψ◦...◦ as the non-symmetric Koornwinder polynomial given in
case 1 or case 2, then show that a solution of the exchange relations (IV.B.11) – (IV.B.15) can
be constructed from this reference state.

Lemma B.8. For any vector 〈Φ(z; s, ξ)| satisfying the left qKZ equations (IV.A.22) – (IV.A.24),
the empty lattice weight φ◦...◦ is an eigenfunction of the Yi operators (IV.B.1), satisfying

Yiφ◦...◦ = ξt
1/2
0 t

1/2
L tL−iφ◦...◦. (IV.B.22)

Again, the same two constraints on ξ and s appear, but with the correspondence to the
non-symmetric Koornwinder polynomials reversed: taking ξ = sm, m ≥ 0, would correspond
to the composition

(
mL
)
; taking ξ = t−1

0 t−1
L t−(L−1)s−m, m > 0, would correspond to the

composition
(
(−m)L)

)
.

C Matrix product solution to the q-KZ equation

1 Construction of the solution

a) General construction

The matrix product ansatz for the twice deformed inhomogeneous ground state vectors is
written

|Ψ(z; s, ξ)〉 = 〈〈W |SA(z1)⊗ . . .⊗ A(zL)|V 〉〉, (IV.C.1)

with

A(z) =

(
A0(z)
A1(z)

)
.

The entries A0(z), A1(z) as well as S are operators in some auxiliary algebraic space, and the
left and right vectors 〈〈W | and |V 〉〉 contract this space to give a scalar value.

Writing out (IV.C.1) gives the 2L component vector

|Ψ(z; s, ξ)〉 =


〈〈W |SA0(z1) . . . A0(zL−1)A0(zL)|V 〉〉
〈〈W |SA0(z1) . . . A0(zL−1)A1(zL)|V 〉〉
〈〈W |SA0(z1) . . . A1(zL−1)A0(zL)|V 〉〉

...
〈〈W |SA1(z1) . . . A1(zL−1)A1(zL)|V 〉〉

 ,

with entries
ψτ (z; s, ξ) = 〈〈W |SAτ1(z1) . . . AτL−1(zL−1)AτL(zL)|V 〉〉.

Lemma C.1. Sufficient conditions for a vector of form (IV.C.1) to satisfy the qKZ equations
(IV.A.19) – (IV.A.21) are the following:

Ř

(
zi+1

zi

)
A(zi)⊗ A(zi+1) = A(zi+1)⊗ A(zi), (IV.C.2)

K̃
(
z−1

1

)
〈〈W |SA

(
z−1

1

)
= 〈〈W |SA (sz1) , (IV.C.3)

K(zL)A(zL)|V 〉〉 = A
(
z−1
L

)
|V 〉〉. (IV.C.4)

Equation (IV.C.2) is the Zamolodchikov–Faddeev (ZF) algebra [193,239]. Equations (IV.C.3),
(IV.C.4) are a deformation of the Ghoshal–Zamolodchikov (GZ) relations [194]. The unde-
formed GZ relations are obtained by setting S to the identity and s = 1. The matrix product
ansatz for the open boundary ASEP can be expressed as a solution of the undeformed relations,
and solutions for related models have also been found and studied [V3,V10].
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b) Definition of the algebra

We now give an explicit construction of the qKZ solution when ξ = sm, m ≥ 1. We first define
certain algebraic objects through the relations they satisfy.

Definition C.2. We define algebraic objects5 satisfying the following relations: operators a,
a† and S:

aa† − ta†a = 1− t,
aS =

√
sSa,

Sa† =
√
sa†S.

(IV.C.5)

And paired boundary vectors 〈〈w| and |v〉〉:

〈〈w|
(
t
1/2
0 a− t−1/2

0 a†
)

= 〈〈w|
(
u

1/2
0 − u−1/2

0

)
,(

t
1/2
L a† − t−1/2

L a
)
|v〉〉 =

(
u

1/2
L − u−1/2

L

)
|v〉〉,

(IV.C.6)

and 〈〈w̃| and |ṽ〉〉:
〈〈w̃|

(
t
1/2
0 a− t−1/2

0 a†
)

= 〈〈w̃|
(
t
1/2
0 − t−1/2

0

)
,(

t
1/2
L a† − t−1/2

L a
)
|ṽ〉〉 =

(
t
1/2
L − t−1/2

L

)
|ṽ〉〉.

(IV.C.7)

Elements of this algebra have appeared in many places in the context of the ASEP. The first
algebraic relation of (IV.C.5) and the relations (IV.C.6) were first stated in [240] to study the
stationary state of the open ASEP. This work shed new light on the DEHP algebra introduced
in [46] by showing that it can be recast in a form of a q-deformed oscillator algebra by an
appropriate shift and normalisation of the generators. The representation of the algebraic
elements involved in the first relation of (IV.C.5) and in the relations (IV.C.6) were found
in [240], and permitted explicit computations. In particular the author of that work pointed
out the relevance of the parametrisation used here. More precisely the parameters κ+(α, γ) and

κ+(β, δ) defined in [240] by κ+(x, y) = 1
2x

(
y − x+ p− q +

√
(y − x+ p− q)2 + 4xy

)
play a

central role in the representation of the algebra, and are relevant in describing the phase
transitions of the system. The precise relations with the parameters used here are κ+(α, γ) =

u
1/2
0 t

−1/2
0 and κ+(β, δ) = u

1/2
L t

−1/2
L .

The other relations (IV.C.5), (IV.C.6) and (IV.C.7) appear previously in [18,120,230,241]
to compute the fluctuations of the current. We recall an infinite dimensional representation of
this algebra: |v〉〉, |ṽ〉〉, . . . are vectors of a Fock space endowed with the usual scalar product.
In this manuscript the scalar product of two vectors |x〉〉 and |y〉〉 of this Fock space is denoted
by 〈〈x| · |y〉〉. The operators a and a† are linear operators on this Fock space. Let us stress here
that the creation operator a† is not the Hermitian conjugate of the annihilation operator a (it
is a standard notation which appears often in the literature, see for instance [240]).

The representation of the algebra is defined on the Fock space Span{|k〉〉}∞k=0. The bulk
matrices are given by

a =

∞∑
k=1

(1− tk)|k − 1〉〉〈〈k|, a† =

∞∑
k=0

|k + 1〉〉〈〈k|,

S =

∞∑
k=0

sk/2|k〉〉〈〈k|.

The boundary vectors are written

〈〈w| =
∞∑
k=0

wk〈〈k|, |v〉〉 =
∞∑
k=0

vk|k〉〉,

5These are s-deformations of the usual q-bosons that we recover for q = t and s = t2.
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and

〈〈w̃| =
∞∑
k=0

w̃k〈〈k|, |ṽ〉〉 =
∞∑
k=0

ṽk|k〉〉.

As a consequence of the boundary relations, the coefficients appearing in 〈〈w|, |v〉〉 satisfy the
recursion relations

wk+1 + t
1/2
0 (u

1/2
0 − u−1/2

0 )wk − t0(1− tk)wk−1 = 0,

(t; t)k+1vk+1 + t
1/2
L (u

1/2
L − u−1/2

L )(t; t)kvk − tL(1− tk)(t; t)k−1vk−1 = 0,

with w−1 = v−1 = 0. We have used the t-Pochhammer symbol

(x; t)n =
n−1∏
k=0

(1− tkx).

The t-Pochhammer symbol can be defined for n =∞ if t < 1 :

(x; t)∞ =

∞∏
k=0

(1− tkx),

and we use the notation

(x, y, z, . . . ; t)∞ = (x; t)∞(y; t)∞(z; t)∞ . . .

The t-Hermite polynomials are given by

Hn(x, y) =
n∑
k=0

(t; t)n
(t; t)k(t; t)n−k

xkyn−k,

and satisfy the recursion relation

Hn+1(x, y)− (x+ y)Hn(x, y) + xy(1− tn)Hn−1(x, y) = 0.

Thus we find
wn = Hn(t

1/2
0 u

−1/2
0 ,−t1/20 u

1/2
0 ),

vn =
Hn(t

1/2
L u

−1/2
L ,−t1/2L u

1/2
L )

(t; t)n
.

(IV.C.8)

The coefficients w̃n, ṽn are obtained by setting ui = ti in the equation above.
To compute the normalisation factors in the qKZ solution, we will make use of the t-Mehler

formula
∞∑
n=0

Hn(x, y)Hn(w, z)
λn

(t; t)n
=

(xywzλ2; t)∞
(xwλ, xzλ, ywλ, yzλ; t)∞

.

For the normalisation, we need to compute

〈〈w|Sa|v〉〉 =
∞∑
n=0

wn

(
sn/2

)a
vn.

Using the coefficients (IV.C.8) and the t-Mehler formula gives

〈〈w|Sa|v〉〉 = (
t
1/2
0 t

1/2
L sa; t

)
∞(

t
1/2
0 u

−1/2
0 t

1/2
L u

−1/2
L sa/2,−t1/20 u

−1/2
0 t

1/2
L u

1/2
L sa/2,−t1/20 u

1/2
0 t

1/2
L u

−1/2
L sa/2, t

1/2
0 u

1/2
0 t

1/2
L u

1/2
L sa/2; t

)
∞

.

(IV.C.9)
We also need to compute 〈〈w̃|Sa|ṽ〉〉, but this is obtained from (IV.C.9) by setting ui = ti,
i = 0, L.
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c) Construction of the solutions

In the matrix product construction we will need several commuting copies (an, a
†
n, Sn) of the

algebra (a, a†, S) defined in (IV.C.5). Similarly to the construction (III.B.144), a simple way
to build these commuting copies is to define

an = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗a⊗ 1⊗ 1⊗ . . . ,

a†n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗a† ⊗ 1⊗ 1⊗ . . . ,

Sn = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗S ⊗ 1⊗ 1⊗ . . . ,

(IV.C.10)

We introduce also the corresponding boundary vectors

〈〈w|n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗〈〈w| ⊗ 1⊗ 1⊗ . . . ,

〈〈w̃|n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗〈〈w̃| ⊗ 1⊗ 1⊗ . . . ,

|v〉〉n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗|v〉〉 ⊗ 1⊗ 1⊗ . . . ,

|ṽ〉〉n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1

⊗|ṽ〉〉 ⊗ 1⊗ 1⊗ . . . ,

(IV.C.11)

The subscript indices on a, a†, S and 〈〈w|, 〈〈w̃|, |v〉〉, |ṽ〉〉 in (IV.C.10) and (IV.C.11) thus
denote the position of the operator or vector in the tensor product.

In the following, as a matter of convention, we will reserve the symbol ‘⊗’ for objects
belonging to the space of lattice configurations (see (IV.C.1) for example), and use the index
notation to denote the tensor product in the auxiliary algebraic space (see (IV.C.12),(IV.C.13)
for example). The aim is to provide a notational distinction between these two spaces and two
tensor products.

Building on these commuting copies of the algebra, we define

S(m) = (S2m−1)2m−1 × (S2m−2)2m−2 × . . .× (S3)3 × (S2)2 × S1, (IV.C.12)

A(m)(z) = L2m−1,2m−2(z) · . . . · L5,4(z) · L3,2(z) · b(z), (IV.C.13)

with

Lk+1,k(z) =

(
1 ak+1

za†k+1 z

)
·
(

1/z ak/z

a†k 1

)
, b(z) =

(
1/z + a1

z + a†1

)
. (IV.C.14)

The symbol · indicates the usual matrix product in the physical space. For example, expanding
the definition of Lk+1,k(z) gives

Lj,k(z) =

(
1/z + aja

†
k ak/z + aj

a†j + za†k a†jak + z

)
.

To lighten the notation, we will sometimes write L(z) instead of Lk+1,k(z) when there is no
ambiguity.

We also define boundary vectors

〈〈W (m)| = 〈〈w|2m−1〈〈w̃|2m−2 . . . 〈〈w|3〈〈w̃|2〈〈w|1 (IV.C.15)

|V (m)〉〉 = |v〉〉2m−1|ṽ〉〉2m−2 . . . |v〉〉3|ṽ〉〉2|v〉〉1. (IV.C.16)
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Proposition C.3. For integer m > 0 and ξ = sm,

|Ψ(m)(z; s)〉 =
1

Ω(m)
〈〈W (m)|S(m)A(m)(z1)⊗ . . .⊗ A(m)

L (zL)|V (m)〉〉, (IV.C.17)

with normalization factor
Ω(m) = 〈〈W (m)|S(m)|V (m)〉〉, (IV.C.18)

is a solution of the qKZ equations (IV.A.19) – (IV.A.21).

Note that the dependence on ξ has disappeared in the vector |Ψ(m)(z; s)〉 because of the
constraint ξ = sm.

Proof. The normalization factor Ω(m) can be chosen freely, but we must show that the choice
(IV.C.18) is non-zero. To do so, we compute Ω(m) using the infinite dimensional representation
of the algebra defined in (IV.C.5) – (IV.C.7), see subsection b). Then to prove that |Ψ(m)(z; s)〉
is a qKZ solution, it is sufficient to show that (IV.C.2), (IV.C.3), (IV.C.4) are satisfied.

By a direct computation, using the algebraic relations (IV.C.5), it can be checked that the
vector b(z) and the matrix Lk+1,k(z) satisfy the relations

Ř(zi+1/zi)b(zi)⊗ b(zi+1) = b(zi+1)⊗ b(zi),
Ř(zi+1/zi)L(zi)⊗ L(zi+1) = L(zi+1)⊗ L(zi)Ř(zi+1/zi).

These elementary exchange relations can be used successively several times to give (IV.C.2).
On the right boundary, using relations (IV.C.6), (IV.C.7) gives

K(zL)b(zL)|v〉〉1 = b(1/zL)|v〉〉1,
K(zL)Lk+1,k(zL)|v〉〉k+1|ṽ〉〉k = Lk+1,k(1/zL)K(zL)|v〉〉k+1|ṽ〉〉k.

Using these properties several times, it is straightforward to prove (IV.C.4). Finally, on the
left boundary, the vector b(z) satisfies

〈〈w|1S1 K̃(z−1
1 )
∣∣∣
ξ=s

b(z−1
1 ) = 〈〈w|1S1b(sz1),

and the matrix Lk+1,k(z) satisfies

〈〈w|k+1〈〈w̃|k(Sk+1)2a+1(Sk)
2a K̃(z−1

1 )
∣∣∣
ξ=sa+1

Lk+1,k(z
−1
1 )

= 〈〈w|k+1〈〈w̃|k(Sk+1)2a+1(Sk)
2aLk+1,k(sz1) K̃(z−1

1 )
∣∣∣
ξ=sa

.

In words, the last equation means that the parameter ξ is multiplied by a factor s when the
matrix L passes through the matrix K̃. Thus by imposing the constraint ξ = sm and applying
these relations successively, relation (IV.C.3) follows.

d) Construction of the solutions to the left qKZ equation

We now present briefly the construction of row vector solutions of the left qKZ equations
(IV.A.22) – (IV.A.24) in the matrix product form

〈Φ(z; s, ξ)| = 〈〈W |SA(z1)⊗ . . .⊗ A(zL)|V 〉〉, (IV.C.19)

with
A(z) =

(
A0(z) , A1(z)

)
. (IV.C.20)
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Lemma C.4. Sufficient conditions for a vector of form (IV.C.19) to satisfy the left qKZ
equations (IV.A.22) – (IV.A.24) are the following:

A(zi)⊗ A(zi+1)Ř

(
zi+1

zi

)
= A(zi+1)⊗ A(zi), (IV.C.21)

〈〈W |SA
(
z−1

1

)
K̃
(
z−1

1

)
= 〈〈W |SA (sz1) , (IV.C.22)

A(zL)|V 〉〉K(zL) = A
(
z−1
L

)
|V 〉〉. (IV.C.23)

We will construct a solution at ξ = sm, with m ≥ 0 an integer. We define the following
objects:

bleft(z) = (1, 1),

A(m)
left (z) = bleft(z) · L1,2(1/z) · . . . · L2m−1,2m(1/z),

S(m)
left = S1 × (S2)2 × . . .× (S2m−1)2m−1 × (S2m)2m,

〈〈W (m)
left | = 〈〈w|1〈〈w̃|2〈〈w|3 . . . 〈〈w|2m−1〈〈w̃|2m,

|V (m)
left 〉〉 = |v〉〉1|ṽ〉〉2|v〉〉3 . . . |v〉〉2m−1|ṽ〉〉2m.

(IV.C.24)

The algebraic objects are as given in Definition C.2, and L(z) is defined in (IV.C.14).

Proposition C.5. For integer m ≥ 0 and ξ = sm,

〈Φ(m)(z; s)| = 1

Ω
(m)
left

〈〈W (m)
left |S

(m)
left A

(m)
left (z1)⊗ . . .⊗ A(m)

left (zL)|V (m)
left 〉〉, (IV.C.25)

with normalization factor

Ω
(m)
left = 〈〈W (m)

left |S
(m)
left |V

(m)
left 〉〉, (IV.C.26)

is a solution of the left qKZ equations (IV.A.22) – (IV.A.24).

Proof. We give the elementary exchange relations, which imply (IV.C.21) – (IV.C.23), and
thus a solution of the left qKZ equations.

In the bulk,

bleft(zi)⊗ bleft(zi+1)Ř(zi+1/zi) = bleft(zi+1)⊗ bleft(zi),

L(1/zi)⊗ L(1/zi+1)Ř(zi+1/zi) = Ř(zi+1/zi)L(1/zi+1)⊗ L(1/zi),

from which (IV.C.21) follows. On the right boundary

bleft(zL)K(zL) = bleft(1/zL),

Lk,k+1(1/zL)K(zL)|v〉〉k|ṽ〉〉k+1 = K(zL)Lk,k+1(zL)|v〉〉k|ṽ〉〉k+1,

from which (IV.C.23) follows. On the left boundary

bleft(1/z1) K̃(z−1
1 )
∣∣∣
ξ=1

= bleft(sz1),

and

〈〈w|k〈〈w̃|k+1(Sk)
2a−1(Sk+1)2aLk,k+1(z1) K̃(z−1

1 )
∣∣∣
ξ=sa

= 〈〈w|k〈〈w̃|k+1(Sk)
2a−1(Sk+1)2a K̃(z−1

1 )
∣∣∣
ξ=sa−1

L(1/(sz1)).

With the constraint ξ = sm, these imply (IV.C.22).
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2 Computation of Koornwinder polynomials

We still need to show that the construction gives a non-zero vector. Before doing so, we
introduce some notation, then look at some examples.

Definition C.6. For a lattice configuration τ = (τ1, . . . , τL), define the composition λ(m)(τ ),
with

λ(m)(τ )i =

{
−m, τi = 0,

m, τi = 1.

The corresponding partition is λ(m)+(τ ) =
(
mL
)
.

Example C.7. With m = 1, A(1)(z) = b(z). For L = 1,

Ω(1)|Ψ(1)(z1; s)〉 = 〈〈w|1S1b(z1)|v〉〉1

=

〈〈w|1S1

(
1
z1

+ a1

)
|v〉〉1

〈〈w|1S1

(
z1 + a†1

)
|v〉〉1

 ,

which is a real valued vector of size 2. For L = 2,

Ω(1)|Ψ(1)(z1, z2; s)〉 = 〈〈w|1S1b(z1)⊗ b(z2)|v〉〉1

=


〈〈w|1S1

(
1
z1

+ a1

)(
1
z2

+ a1

)
|v〉〉1

〈〈w|1S1

(
1
z1

+ a1

)(
z2 + a†1

)
|v〉〉1

〈〈w|1S1

(
z1 + a†1

)(
1
z2

+ a1

)
|v〉〉1

〈〈w|1S1

(
z1 + a†1

)(
z2 + a†1

)
|v〉〉1

 ,

which is a real valued vector of size 4. In general,

Ω(1)|Ψ(1)(z; s)〉 = 〈〈w|1S1b(z1)⊗ . . . b(zL)|v〉〉1.

Note that the normalization Ω(1) = 〈〈w|1S1|v〉〉1 ensures that each component ψ
(1)
τ has leading

term zλ
(1)(τ ) with coefficient 1, and all other terms correspond to compositions µ with

µ+ < λ(1)+(τ ) =
(
1L
)
.

Example C.8. With m = 2,
A(2)(z) = L3,2(z) · b(z).

Then for L = 1,

Ω(2)|Ψ(2)(z1; s)〉 = 〈〈w|3〈〈w̃|2〈〈w|1 (S3)3(S2)2S1

(
L3,2(z1) · b(z1)

)
|v〉〉3|ṽ〉〉2|v〉〉1

= 〈〈w|3〈〈w̃|2 (S3)3(S2)2 L3,2(z1) |v〉〉3|ṽ〉〉2 . 〈〈w|1S1b(z1)|v〉〉1
= 〈〈w|3〈〈w̃|2 (S3)3(S2)2 L3,2(z1) |v〉〉3|ṽ〉〉2 . Ω(1)|Ψ(1)(z1; s)〉,

with

〈〈w|3〈〈w̃|2 (S3)3(S2)2 L3,2(z1) |v〉〉3|ṽ〉〉2

= 〈〈w|3〈〈w̃|2(S3)3(S2)2

(
z−1

1 + a3a
†
2 z−1

1 a2 + a3

a†3 + z1a
†
2 a†3a2 + z1

)
1

|v〉〉3|ṽ〉2.
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For L = 2,

Ω(2)|Ψ(2)(z1, z2; s)〉 = 〈〈w|3〈〈w̃|2〈〈w|1 (S3)3(S2)2S1

(
L3,2(z1) · b(z1)

)
⊗
(
L3,2(z2) · b(z2)

)
|v〉〉3|ṽ〉〉2|v〉〉1.

The matrix L3,2(z2) can be brought past b(z1) as they are in different physical spaces, and their
entries are in different auxiliary algebraic spaces. Thus we obtain

Ω(2)|Ψ(2)(z1, z2; s)〉 = 〈〈w|3〈〈w̃|2 (S3)3(S2)2 L3,2(z1)⊗L3,2(z2) |v〉〉3|ṽ〉〉2 .
(

Ω(1)|Ψ(1)(z1, z2; s)〉
)
,

where

〈〈w|3〈〈w̃|2 (S3)3(S2)2L3,2(z1)⊗ L3,2(z2) |v〉〉3|ṽ〉〉2

= 〈〈w|3〈〈w̃|2 (S3)3(S2)2

(
z−1

1 + a3a
†
2 z−1

1 a2 + a3

a†3 + z1a
†
2 a†3a2 + z1

)
⊗

(
z−1

2 + a3a
†
2 z−1

2 a2 + a3

a†3 + z2a
†
2 a†3a2 + z2

)
|v〉〉3|ṽ〉〉2,

is a real valued 4× 4 matrix The normalization factor is

Ω(2) = 〈〈w|3〈〈w̃|2〈〈w|1 (S3)3(S2)2S1 |v〉〉3|ṽ〉〉2|v〉〉1,

and it can be checked directly for L = 1, 2 that each component ψ
(2)
τ has leading term zλ

(2)(τ )

with coefficient 1, and all other terms correspond to compositions µ with

µ+ < λ(2)+(τ ) =
(
2L
)
.

We now give the general form.

Theorem C.9. The qKZ equations have a solution when ξ = sm, written recursively on m:
For m > 1

|Ψ(m)(z; s)〉 =
1

〈〈w|S2m−1|v〉〉〈〈w̃|S2m−2|ṽ〉〉
〈〈w|2m−1〈〈w̃|2m−2 (S2m−1)2m−1(S2m−2)2m−2 (IV.C.27)

L2m−1,2m−2(z1)⊗ . . .⊗ L2m−1,2m−2(zL) |v〉〉2m−1|ṽ〉〉2m−2 · |Ψ
(m−1)(z; s)〉,

with

|Ψ(1)(z; s)〉 =
1

〈〈w|S|v〉〉
〈〈w|1 S1 b(z1)⊗ . . .⊗ b(zL) |v〉〉1. (IV.C.28)

The components of the solution, ψ
(m)
τ (x; s), have leading term zλ

(m)(τ ), and all other terms
correspond to compositions µ with

µ+ < λ(m)+(τ ) =
(
mL
)
.

Proof. The recursive form (IV.C.27), (IV.C.28) is obtained by a reordering of the matrix
product form (IV.C.17), as in Example C.8.

The second part of the claim, on the degree and normalization of components of the solution,
can be proven inductively. We assume the property holds at m−1 and use (IV.C.27) to obtain
the solution at m. That is, we multiply by the ‘increment’ matrix

1

〈〈w|S2m−1|v〉〉〈〈w̃|S2m−2|ṽ〉〉
〈〈w|2m−1〈〈w̃|2m−2 (S2m−1)2m−1(S2m−2)2m−2

L2m−1,2m−2(z1)⊗ . . .⊗ L2m−1,2m−2(zL) |v〉〉2m−1|ṽ〉〉2m−2,

which is a real valued 2L×2L matrix. The following points can be deduced by writing (IV.C.27)
and the increment matrix in component form:
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• A term zµ with µ+ =
(
mL
)

can only be produced from the leading order terms of the
m − 1 solution, which correspond to the partition

(
(m− 1)L

)
, and thus we can ignore

sub-leading terms.

• The diagonal entries of the increment matrix produce the term zλ
(m)(τ ) with coefficient

1 (plus lower order terms) in ψ
(m)
τ , from the corresponding component of the m − 1

solution.

• The off-diagonal entries of the increment matrix, acting on the leading order term of a
component of the m− 1 solution, either reduces the degree or leaves it unchanged.

These points are sufficient to show that the degree and normalization properties hold at m,
assuming they hold at m− 1. As the m = 1 case was checked in Example C.7, the properties
hold for all m.

Similar results hold for the solution of the left qKZ equations at s = ξm as stated in the
following theorem.

Theorem C.10. For integer m ≥ 0 and ξ = sm, solutions of the left qKZ equations can be
constructed in matrix product form, and can be defined recursively. For m > 0

〈Φ(m)(z; s)| = 1

〈〈w|S2m−1|v〉〉〈〈w̃|S2m|ṽ〉〉
〈Φ(m−1)(z; s)| · 〈〈w|2m−1〈〈w̃|2m (S2m−1)2m−1(S2m)2m

L2m−1,2m

(
1

z1

)
⊗ . . .⊗ L2m−1,2m

(
1

zL

)
|v〉〉2m−1|ṽ〉〉2m (IV.C.29)

with
〈Φ(0)(z; s)| = 〈1| = (1, 1)⊗L (IV.C.30)

The solution is non-zero: the component of the solution, φ
(m)
τ (z; s), contains the term z−λ

(m)(τ )

with coefficient 1, and all terms correspond to compositions µ with

µ+ ≤ λ(m)+(τ ) =
(
mL
)
.

Proof. The proof of this theorem is very similar to that for Theorem C.9. We will, however,

comment briefly on the terms appearing in each component φ
(m)
τ (x), and the normalization.

To do so, we look at the normalized ‘increment matrix’ taking the m − 1 solution to the m
solution:

1

〈〈w|S2m−1|v〉〉〈〈w̃|S2m|ṽ〉〉
〈〈w|2m−1〈〈w̃|2m (S2m−1)2m−1(S2m)2m

L2m−1,2m

(
1

z1

)
⊗ . . .⊗ L2m−1,2m

(
1

zL

)
|v〉〉2m−1|ṽ〉〉2m

The diagonal entries of this matrix contain the term z−λ
(1)(τ ) with coefficient 1, which produce

the term z−λ
(m)(τ ) in φ

(m)
τ . In the top row of the increment matrix, the entry in column τ ′ has

leading term
〈〈w̃|S2ma

∑
i τ
′
i |ṽ〉〉

〈〈w̃|S2m|ṽ〉〉
z1 . . . zN , (IV.C.31)

and as a consequence, each component φ
(m)
τ contains the term z(mN ) with the same coefficient

as in (IV.C.31).

Corollary C.11. For m > 0 and ξ = t−1
0 t−1

L t−(L−1)s−m, the right qKZ equations (IV.A.19) –
(IV.A.21) have solution

|Ψ(z; s, ξ = t−1
0 t−1

L t−(L−1)s−m)〉 = UGC|Φ(m)(z; s)〉. (IV.C.32)
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Proof. This follows from Lemma A.2.
The m = 0 case is a bit special: |Ψ(z; s, ξ = t−1

0 t−1
L t−(L−1))〉 = UGC|1〉. The solution does

not depend on z and s. Imposing in addition that ξ = 1, i.e. t0tLt
L−1 = 1, gives a very simple

ASEP stationary state. Indeed the system is at thermal equilibrium in this case: written in

the usual ASEP parameters the constraint is αβ
γδ

(
p
q

)L−1
= 1.

a) Normalization and symmetric Koornwinder polynomials

We can now make the connection between solutions of the qKZ equations, and the symmetric
and non-symmetric Koornwinder polynomials.

Lemma C.12. The component ψ
(m)
◦...◦ of the vector |Ψ(m)(z, s)〉 is the non-symmetric Koorn-

winder polynomial E((−m)L). All other components can be constructed through the relations

ψ
(m)
◦...◦• = t

−1/2
L T−1

L ψ
(m)
◦...◦◦,

ψ
(m)
...•◦... = t−1/2T−1

i ψ
(m)
...◦•..., 1 ≤ i ≤ L− 1.

(IV.C.33)

The set of all components {ψ(m)
τ } forms a basis for R(mL), the space spanned by non-symmetric

Koornwinder polynomials {Eµ|µ ∈ ZL, µ+ = (mL)}.

Proof. By Theorem C.9, and Lemma B.7 with ξ = sm, ψ
(m)
◦...◦ is an eigenfunction of the Yi

operators, and is a Laurent polynomial with the required degree and normalisation. Thus by

uniqueness, we can identify ψ
(m)
◦...◦ = E((−m)L). The relations (IV.C.33) come from the exchange

relations (IV.B.15) and (IV.B.12).
The preceding parts of this lemma give the preconditions for Proposition 1 and Corollary

1 of [224], from which it follows that {ψ(m)
τ } forms a basis for R(mL).

Lemma C.13. The component φ
(m)
◦...◦ of the vector 〈Φ(m)(z, s)| is the non-symmetric Koorn-

winder polynomial E(mL). All other components can be constructed through the relations

φ
(m)
◦...◦• = t

1/2
L T−1

L φ
(m)
◦...◦◦,

φ
(m)
...•◦... = t1/2T−1

i φ
(m)
...◦•..., 1 ≤ i ≤ L− 1.

The set of all components {φ(m)
τ } forms a basis for R(mL).

Proof. This follows in the same way, with reference to Theorem C.10, and Lemmas B.8 and
B.6.

Lemma C.14. Given a solution |Ψ(z; s, ξ)〉 of the qKZ equations (IV.A.19) – (IV.A.21), the
sum of components

Z(z; s, ξ) = 〈1|Ψ(z; s, ξ)〉 (IV.C.34)

is W0 invariant.

Proof. We first note that 〈1| is a left eigenvector of Ři, KL with eigenvalue 1 (see (IV.A.7),
(IV.A.9)). Then applying 〈1| to the bulk and right boundary qKZ equations (IV.A.19),
(IV.A.21) we see that Z(z; s, ξ) is invariant under si, 1 ≤ i ≤ L, and hence is W0 invari-
ant.

Theorem C.15. The sum of components of |Ψ(m)(z; s)〉 is the symmetric Koornwinder poly-
nomial P(mL). That is

P(mL)(z) = Z(m)(z; s), (IV.C.35)

where
Z(m)(z; s) = 〈1|Ψ(m)(z; s)〉, (IV.C.36)

and |Ψ(m)(z; s)〉 is the qKZ solution with ξ = sm, constructed as in Theorem C.9.
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Proof. By Lemmas C.12 and C.14, Z(m)(z, ; s) is W0 invariant, and belongs to the space

R(mL), and from Theorem C.9, we see that it contains z(mL) with coefficient 1. The result
then follows from the characterisation of symmetric Koornwinder polynomials in [222], quoted
in Theorem B.4.

We note that Theorem C.15 implies a matrix product construction for the symmetric
Koornwinder polynomial P(mL). Direct computations from this form would be difficult, but
the structure leads to certain conjectures that we discuss in Section D. We also note that an
integral form for the polynomial P(mL) is already known [242]. The solution of the left qKZ
equation is also related to the same symmetric Koornwinder polynomial.

Theorem C.16. The sum of components of UGC|Φ(m)(z; s)〉 is proportional to the symmetric
Koornwinder polynomial P(mL). That is

P(mL)(z) ∝ Z(m)(z; s, ξ′), (IV.C.37)

where
Z(m)(z; s, ξ′) = 〈1|UGC|Φ(m)(z; s)〉, (IV.C.38)

with ξ′ = t−1
0 t−1

L t−(L−1)s−m.

Proof. Note that UGC|Φ(m)(z; s)〉 is the solution of the right qKZ equations at ξ′, and the

proof follows as in Theorem C.15. However, because of the structure of the components φ
(m)
τ

(see Theorem C.10 and (IV.C.25)), and the multiplication by matrix UGC, the coefficient of

z(mL) in Z(m)(z; s, ξ′) is not 1. Thus the identification with P(mL) can only be made up to
normalization.

D Current fluctuations conjecture

1 Quasi-classical limit

The aim of this section is to make contact between the machinery developed previously, and
the generating function of the cumulants of the current. The idea is quite simple and arises
from the following observation: the constraint ξ = sm that was imposed in order to solve
the qKZ equations, can be satisfied by setting s = ξ1/m, leaving ξ free instead of s, which
then implies s → 1 as m → ∞. It appears then natural to think that the scattering relation
(IV.A.16) may degenerate, in this s → 1 limit, to an eigenvector equation. Then as m → ∞,
the vector |Ψ(m)(z; s = ξ1/m)〉 should thus converge in some sense to an eigenvector of the
scattering matrix. To move towards this direction, we make the following conjectures.

Conjecture D.1. It is conjectured that

lim
m→∞

|Ψ(m)(z; s = ξ1/m)〉
Z(m)(z; s = ξ1/m)

= |Ψ0(z; ξ)〉, (IV.D.1)

lim
m→∞

ln(ξ)

m
ln
(
Z(m)(z; s = ξ1/m)

)
= F0(z; ξ), (IV.D.2)

with |Ψ0〉 and F0 regular functions of z.

These conjectures are supported by strong numerical evidences (up to 3 sites) and by
the fact that the matrix product construction of |Ψ(m)(z; s)〉 is similar to the one presented
in [18, 230]. In those works, the authors developed a method called the “perturbative matrix
ansatz”, which allowed them to approximate the ground state of M(ξ), at any order in the
current counting parameter ξ. Let us also mention that these kind of results have already
been observed in the context of qKZ equations of different models, and are known as the
“quasi-classical” limit [243,244].
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Note that the second part of the conjecture can be immediately rewritten in terms of
symmetric Koornwinder polynomials as

lim
m→∞

ln(ξ)

m
ln
(
P(mL)(z; s = ξ1/m)

)
= F0(z; ξ). (IV.D.3)

In the following these conjectures will be considered as facts and properties will be deduced
from them. But one has to keep in mind that the validity of the deduced results relies obviously
on the validity of these conjectures.

2 Generating function of the cumulants of the current

Proposition D.2. The function F0(z; ξ) is W0 invariant and its derivative, with respect to
any of the xi, is invariant under the Gallavotti-Cohen symmetry ξ → ξ′ = t−1

0 t−1
L t−(L−1)ξ−1.

Proof. The W0 invariance directly follows from the W0 invariance of the symmetric Koorn-
winder polynomials. The Gallavotti-Cohen symmetry follows from theorems C.15 and C.16
which give that

P(mL)(z; s = ζ1/m) = Z(m)(z; s = ζ1/m, ξ = ζ)

∝ Z(m)(z; s = ζ1/m, ξ = t−1
0 t−1

L t−(L−1)ζ−1)

with a proportionality coefficient independent of z. Taking the large m limit it translates into
the fact that F0(z; ξ′) = F0(z; ξ) + c with c a constant term independent of z, which concludes
the proof.

In the following we will specify when needed the dependence on s and ξ of the scattering
matrix Si(z; s, ξ) defined in (IV.A.13).

Proposition D.3. The vector |Ψ0(z; ξ)〉 is an eigenvector of the scattering matrices evaluated
at s = 1, with

Si(z; 1, ξ)|Ψ0(z; ξ)〉 = exp

(
zi
∂F0

∂zi
(z; ξ)

)
|Ψ0(z; ξ)〉. (IV.D.4)

Proof. Our starting point is the scattering relation (IV.A.16) applied with s = ξ1/m. We divide
by Z(m)(z; s = ξ1/m) to obtain

Si(z; s = ξ1/m, ξ)
|Ψ(m)(. . . , zi, . . . ; s = ξ1/m)〉
Z(m)(. . . , zi, . . . ; s = ξ1/m)

=
Z(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)

Z(m)(. . . , zi, . . . ; s = ξ1/m)

|Ψ(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)〉
Z(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)

.

We then have the limits

lim
m→∞

Si(z; s = ξ1/m, ξ) = Si(z; 1, ξ),

lim
m→∞

|Ψ(m)(. . . , zi, . . . ; s = ξ1/m)〉
Z(m)(. . . , zi, . . . ; s = ξ1/m)

= |Ψ0(. . . , zi, . . . ; ξ)〉,

lim
m→∞

|Ψ(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)〉
Z(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)

= |Ψ0(. . . , zi, . . . ; ξ)〉,

lim
m→∞

Z(m)(. . . , ξ1/mzi, . . . ; s = ξ1/m)

Z(m)(. . . , zi, . . . ; s = ξ1/m)
= exp

(
zi
∂F0

∂zi
(z; ξ)

)
,

which yield the desired result.
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Proposition D.4. The vector |Ψ0(1; ξ)〉 is an eigenvector of the deformed Markov matrix,
with

M(ξ)|Ψ0(1; ξ)〉 =
p− q

2

∂2F0

∂z2
i

(1; ξ)|Ψ0(1; ξ)〉. (IV.D.5)

This implies immediately the following expression for the generating function of the cumulants
of the current:

E(µ) = Λ0(eµ) =
p− q

2

∂2F0

∂z2
i

(1; eµ). (IV.D.6)

Proof. This is proven by taking the derivative of (IV.D.4) with respect to zi and then setting
z1 = · · · = zL = 1. One has to make basic use of the properties given in (IV.A.15), and notice
the fact that ∂F0

∂zi
(1; ξ) = 0 because F0 is W0 invariant.

Note that despite revealing a beautiful connection between the symmetric functions and
the fluctuations of the current, in practice, the last expression does not help to compute the
cumulants of the current because a closed expression for F0 is missing.

However a step can be made toward an exact expression of F0, using the characterization
of the symmetric Koornwinder polynomials as eigenfunctions of the finite difference operator
D defined in (IV.B.6). The eigenvalue d(mL) of this operator associated to the symmetric

Koornwinder polynomial P(mL) is given for s = ξ1/m by

d0(ξ) =
1− tL

1− t
(ξ − 1)(t0tLt

L−1 − 1/ξ). (IV.D.7)

It is straightforward to check that d0(ξ) is invariant under the Gallavotti-Cohen symmetry,
that is d0(ξ) = d0(ξ′).

In the following we will explicitly write the dependence on s of the functions gi(z; s) defined
in (IV.B.7).

Proposition D.5. We have the following characterization of the function F0:

L∑
i=1

gi(z; 1)

[
exp

(
zi
∂F0

∂zi
(z; ξ)

)
− 1

]
+

L∑
i=1

gi(z
−1; 1)

[
exp

(
−zi

∂F0

∂zi
(z; ξ)

)
− 1

]
= d0(ξ)

Proof. This follows directly from the relation (IV.B.9) applied for the symmetric Koornwinder
polynomial P(mL) and s = ξ1/m. Dividing the latter relation by P(mL)(z; s = ξ1/m) and taking
the large m limit yield the desired result.

It would be interesting to understand if this characterization of the function F0 can be
related to a Baxter t − Q relation [29]. It has been shown in [V9] that the normalisation
of the stationary state (corresponding to the case s = ξ = 1) satisfies a t − Q difference
equation. We can mention also in this context the work [120] where the authors constructed
a Baxter Q operator for the open ASEP (with current-counting deformation) and derived the
corresponding t−Q relations.
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Chapter V

Hydrodynamic limit

In the previous chapters we focused essentially on the study of systems defined on a finite size
lattice. We computed exactly physical observables in these models. A lot of efforts were put
on the comprehension of the mathematical structures related to the stochastic processes, in
particular the algebraic and combinatorial aspects of the Markov matrices and of the stationary
states. The emphasis was mainly put on the mathematical methods involved in the exact
computations rather than on the physical interpretation of the results.

This chapter focuses mainly on the physical description of the models and tries to follow
the usual purpose of statistical physics. The goal is to try to bridge the gap between the
microscopic scale and the macroscopic scale. At the microscopic scale, we know precisely
the interactions between each elementary components of the system (typically the Coulomb
interactions between atoms forming a plasma). At the macroscopic scale, we would like to
identify, for a system composed of a huge number of components, a few number of relevant
physical macroscopic observables (typically the temperature or the pressure). We would like
to infer physical laws or principles satisfied by these observables, in order to describe efficiently
the behavior of the system at this scale (typically an equation of state such as the law of ideal
gas).

In our precise case the system is composed by a big number of particles evolving on a lattice
and the microscopic dynamics is defined by the Markov matrix associated to the model. From
this stochastic dynamics defined at the particle scale, we would like to infer the macroscopic
behavior of the system. In other words, we would like to construct a simple formalism to answer
easily questions like: what is the mean particles flow (and also its fluctuations) through the
system? or is it likely to observe a high concentration of particles at some place? We can easily
see the potential wide range of applications (in population dynamics, traffic flow, biology...)
of such theory. The essential feature of such description lies in the fact the system comprises
a huge number of individual components, so that the details of the microscopic dynamics can
be averaged out at the macroscopic scale to give rise to a universal macroscopic description of
the system.

The first step, that we need to focus on, is thus to take what is commonly called the
thermodynamic limit, or the hydrodynamic limit. It consists in letting the size L of the
lattice go to infinity. We will in particular determine the behavior of the physical observables,
computed exactly for a finite size lattice in chapter III, in this limit. We will see that they give
precious hints concerning the macroscopic behavior of the system, such as transitions between
different regimes, called phase transitions (for instance a transition from fluid traffic flow to
jammed traffic flow) or such as the relaxation time toward the stationary state.

We will see in a second time that, while taking this large size L→∞ limit, we can define
macroscopic variables (that can be heuristically interpreted as local particle density or local
particle current) whose stochastic evolution follows simple laws as L → ∞. We will typically
observe large deviation principles for these macroscopic variables that are expected to be an
efficient generalization of thermodynamic potentials to non-equilibrium systems. This could
be though as a prelude toward a general theory to describe out-of-equilibrium systems.
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A Hydrodynamic limit and density profile

1 Hydrodynamic limit

a) Continuous limit of the lattice

We want to let the lattice size L go to infinity, i.e to have an infinite number of sites in
the system. We precise here the mathematical meaning of this limit. The lattice is seen as
embedded in the segment [0, 1] of the real line. The site i is located at coordinate

x =
i

L
. (V.A.1)

When the number of sites L increases and tends to infinity, the distance between two adjacent
sites, which is equal to 1/L, decreases and converges toward 0. For a given x ∈ [0, 1], it
is straightforward to check that the coordinate of the site bLxc (where b·c denotes the floor
function), which is equal to bLxc/L, converges toward x when L goes to infinity. In this
thermodynamic limit we can thus define physical quantities depending on a continuous variable
x ∈ [0, 1].

For instance we can define a function

ρτ (x) = lim
L→∞

〈ρ(bLxc)
τ 〉, (V.A.2)

which stands for the mean particle density of species τ at position x ∈ [0, 1] in the thermody-
namic limit.

We define also the limit of the two-point function

ρτ,τ ′(x, y) = lim
L→∞

〈ρ(bLxc)
τ ρ

(bLyc)
τ ′ 〉, (V.A.3)

and more generally the multi-point correlation function

ρτ (1),...,τ (k)(x1, . . . , xk) = lim
L→∞

〈ρ(bLx1c)
τ (1)

. . . ρ
(bLxkc)
τ (k)

〉. (V.A.4)

The limits of the connected correlation functions are more subtle because we might need to
rescale the function with a L-dependent factor to obtain a non-vanishing (and non-diverging)
real value when performing the large L limit. For instance for the connected two-point function
we may have

ρcτ,τ ′(x, y) = lim
L→∞

f(L)〈ρ(bLxc)
τ ρ

(bLyc)
τ ′ 〉c, (V.A.5)

where the function f depends on the model under consideration (see examples below).
Similar issues appear when defining the thermodynamic limit of the particle current on the

lattice, where the rescaling of the current may also depend on the model under consideration.
We will encounter two different classes of model in the examples below: models in which the
lattice current does not need to be rescaled and that are called ballistic, and models in which
the lattice current has to be multiplied by a factor L and that are called diffusive.

Note that in the case of a single species model, i.e for N = 1, we will lighten the notation
by writing ρ(x), ρ(x, y), ρc(x, y),... instead of ρ1(x), ρ1,1(x, y), ρc1,1(x, y),...

In what follows, we provide a detailed study of the thermodynamic limit of the models that
we encountered in chapter III: the DiSSEP, the 2-TASEP and the multi-species SSEP.

b) Limit of observables in the DiSSEP

In this subsection, we study the thermodynamic limit of the DiSSEP. Once again this work
was realized in details in [V10] and we expose hereafter the results obtained there. The
computations will be based on the exact expressions derived for a finite size lattice in chapter
III. We are interested in the case where there exists a competition between the diffusion of
particles and the evaporation/condensation of pairs. It is indeed possible that, when performing
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the thermodynamic limit in a naive way, the effect of one process completely overcomes the
other process.

In order to maintain the competition in the continuous limit, we have to scale properly
the parameters of the model. In other words, the mean time for a particle to go through the
lattice by diffusion must be comparable to the time for it to be evaporated.

In order to evaluate quantitatively this competition, let us write the time evolution of the
one-point correlation function for 1 < i < L

d〈τi〉t
dt

= 〈τi−1(1− τi)〉t + 〈(1− τi)τi+1〉t − 〈(1− τi−1)τi〉t − 〈τi(1− τi+1)〉t (V.A.6)

+λ2
(
〈(1− τi−1)(1− τi)〉t + 〈(1− τi)(1− τi+1)〉t − 〈τi−1τi〉t − 〈τiτi+1〉t

)
= 〈τi−1〉t + 〈τi+1〉t − 2〈τi〉t + λ2

(
2− 〈τi−1〉t − 〈τi+1〉t − 2〈τi〉t

)
, (V.A.7)

where 〈·〉t stands for the expectation with respect to the probability density Pt(C) whose time
evolution obeys the master equation. Note that although the two-point correlation functions
cancel when going from (V.A.6) to (V.A.7), the mean field approximation is not exact in the
sense that the connected two-point function does not vanish, see (III.B.45).

We want to take the large L limit in equation (V.A.7). For x ∈ [0 , 1], we define

ρt(x) = lim
L→∞

〈τbLxc〉L2t. (V.A.8)

Note that the time has been speeded up by a factor L2 which is necessary in diffusive systems
to observe non-trivial behavior. We obtain

∂ρt
∂t

(x) =
∂2ρt
∂x2

(x) + 2
(

lim
L→∞

L2λ2
)

(1− 2ρt(x)) (V.A.9)

We see on the previous equation that we have to take λ = λ0/L in order to have a balance
between diffusion and creation-annihilation. In this case we obtain

∂ρt
∂t

=
∂2ρt
∂x2

+ 2λ2
0(1− 2ρt) (V.A.10)

with the boundary conditions ρt(0) = ρl and ρt(1) = ρr. This equation shows that the
correlation length for this scaling is finite. Indeed, the stationary density shown in equation
V.A.13 decays as ρ(x) − 1/2 ∼ exp(−2λ0x) for x far from the boundaries. The correlation
length can thus be defined as 1/(2λ0).

Without rescaling λ w.r.t L and without speeding up the time in (V.A.8) (or for λ = λ0/L
µ

with µ < 1 and speeding up the time with a factor L2µ in (V.A.8)), the diffusive term drops
out and the density satisfies

∂ρt
∂t

= 2λ2(1− 2ρt) . (V.A.11)

In the case where λ = λ0/L
µ for µ > 1 (and keeping the definition (V.A.8) as it is), the system

becomes a pure diffusive model for large L and one gets for the density

∂ρt
∂t

=
∂2ρt
∂x2

. (V.A.12)

Thermodynamic limit of the observables We are now interested in evaluating the ther-
modynamic limit of the physical quantities computed for a finite size lattice in chapter III.
We will perform this limit in the case where there is a competition between diffusion and
evaporation/condensation, i.e when we take λ = λ0/L.

We are first interested in the one point correlation function in the continuous limit.
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Proposition A.1. The mean particle density in the thermodynamic limit is given for x ∈ [0, 1]
by the exact expression

ρ(x) = lim
L→∞

〈τbLxc〉 =
1

2
+

1

2 sinh 2λ0

(
q1e
−2λ0(x−1/2) + q2e

2λ0(x−1/2)
)
, (V.A.13)

where
q1 = (ρl + ρr − 1) sinh(λ0)− (ρr − ρl) cosh(λ0), (V.A.14)

and
q2 = (ρl + ρr − 1) sinh(λ0) + (ρr − ρl) cosh(λ0) . (V.A.15)

It is easy to check that it satisfies the stationary version of (V.A.10).

Proof. It can be directly computed from the expression (III.B.42) for a finite size lattice.
We can also compute the connected two-point correlation function in this limit. We can

see that it scales as 1
L , i.e it has weak correlations.

Proposition A.2. For x, y ∈ [0, 1], x < y, we have the following analytical expression of the
connected two-point correlation function in the thermodynamic limit

ρc(x, y) = lim
L→∞

L× 〈τbLxcτbLyc〉c =
2λ0 q1q2

(sinh 2λ0)3 sinh 2λ0(1− y) sinh 2λ0x . (V.A.16)

For λ0 << 1, this connected two-point correlation function behaves algebraically w.r.t. x
and y whereas it behaves exponentially and is short range for λ0 >> 1.

Proof. Once again this is directly evaluated from the finite size lattice expression (III.B.44).
We can also study the particle lattice current and condensation current.

Proposition A.3. The thermodynamic limit of the mean particle currents are given for x ∈
[0, 1] by

jlat(x) := lim
L→∞

L× 〈jbLxc→bLxc+1
lat 〉 =

λ0

sinh 2λ0

(
q1e
−2λ0(x−1/2) − q2e

2λ0(x−1/2)
)
, (V.A.17)

and

jcond(x) := lim
L→∞

L2 × 〈jbLxc,bLxc+1
cond 〉 =

−2λ2
0

sinh 2λ0

(
q1e
−2λ0(x−1/2) + q2e

2λ0(x−1/2)
)
. (V.A.18)

Proof. These formulas are derived from the explicit expression of the currents for a finite size
lattice (III.B.51) and (III.B.53)

Note that these expressions are consistent with the fact that when the system reaches a
thermodynamic equilibrium, that is for ρl = ρr = 1/2 (or equivalently q1 = q2 = 0), both
currents vanish.

The particle conservation law (III.B.54) becomes in the thermodynamic limit

−djlat
dx

(x) + jcond(x) = 0,

which is satisfied by the expressions above. In the same way, relations (III.B.55) and (III.B.56)
become in the thermodynamic limit:

dρ

dx
(x) + jlat(x) = 0 , jcond(x) = 2λ2

0

(
1− 2ρ(x)

)
. (V.A.19)
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Behavior of the density and the currents Depending on the values of q1 and q2 defined
in (V.A.14) and (V.A.15), the behavior of the density may change:

• the density is not monotonic when e−2λ0 < q1
q2
< e2λ0 , which implies that q1 and q2 have

the same sign. In that case, it possesses an extremum at x satisfying e4λ0(x−1/2) = q1
q2

.
The lattice current vanishes at this point.

– the density presents a maximum

ρ(x) =
1

2
−
√
q1q2

sinh(2λ0)
(V.A.20)

when q1, q2 < 0. Let us remark that in this case, the density is everywhere smaller
than 1/2. Example of such behavior can be seen on figure V.1.

The lattice current changes direction at the point x, as expected since the lattice cur-
rent goes from high density to low density. At this point, the condensation current
is minimal but positive, since the density is smaller than 1/2, so that condensation
is promoted.

– It presents a minimum

ρ(x) =
1

2
+

√
q1q2

sinh(2λ0)
(V.A.21)

when q1, q2 > 0. In this case, the density is everywhere greater than 1/2.

The condensation current is negative but maximal, so that the evaporation is min-
imal. As previously, the lattice current changes sign at x, still going from high
density to low density. Example of such behavior can be seen on figure V.2.

• The density is monotonic from ρl to ρr when q1
q2
< e−2λ0 or q1

q2
> e2λ0 . In this case, the

lattice current never vanishes. Example of such behavior can be seen on figure V.3.

The condensation current follows the same pattern, due to the relation (V.A.19). The lattice
current behaves as follows:

• it is not monotonic when e−2λ0 < − q1
q2
< e2λ0 , which implies that q1 and q2 have opposite

sign. There is an extremum at x satisfying e4λ0(x−1/2) = − q1
q2

. The condensation current
vanishes at this point.

– When q1 < 0, the lattice current presents a maximum

jlat(x) = − 2λ0

sinh(2λ0)

√
−q1q2. (V.A.22)

– When q1 > 0, it presents a minimum (see figure V.3)

jlat(x) =
2λ0

sinh(2λ0)

√
−q1q2. (V.A.23)

• The lattice current is monotonic when − q1
q2
< e−2λ0 or − q1

q2
> e2λ0 , see figures V.1 and

V.2.

We now turn to the study of the behavior of the lattice current in the large system size
limit.

Proposition A.4. The thermodynamic limit of the variance of the lattice current, computed
exactly in (III.B.73) for any size, takes the form:

E(2)(x) = 2q1 q2 λ
2
0

{
(2x− 1)

sinh
(
2λ0 (2x− 1)

)
(sinh(2λ0))3 −

cosh(2λ0) cosh
(
2λ0 (2x− 1)

)
+ 1

(sinh(2λ0))4

}

− q2
2λ0

e4λ0 x + e−4λ0 (1−x) − e4λ0 (2x−1) + 3

4 (sinh(2λ0))3 − q2
1λ0

e4λ0 (1−x) + e−4λ0 x − e4λ0 (1−2x) + 3

4 (sinh(2λ0))3

+
λ0 cosh (2λ0 x) cosh

(
2λ0 (1− x)

)
sinh(2λ0)

. (V.A.24)
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(a) Density (b) Mean value (—) and variance (· · · ) of the
lattice current

Figure V.1: Plot of the density and of the lattice current for ρl = 0.35, ρr = 0.2 and λ0 = 3.

(a) Density (b) Mean value (—) and variance (· · · ) of the
lattice current

Figure V.2: Plot of the density and of the lattice current for ρl = 1, ρr = 0.65 and λ0 = 3.
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(a) Density (b) Mean value (—) and variance (· · · ) of the
lattice current

Figure V.3: Plot of the density and of the lattice current for ρl = 1, ρr = 0.2 and λ0 = 3.

As all physical quantities of the model, the variance is invariant under the transformation
q1 ↔ q2 and x→ 1−x, which is the left-right symmetry. The particle-hole symmetry amounts
to change q1 → −q1 and q2 → −q2: it leaves E(2) invariant, transforms ρ(x) into 1− ρ(x) and
changes the sign of the currents. The symmetry λ→ −λ reads λ0 → −λ0 and q1 ↔ (−q2) and
leaves all quantities invariant.

Remark A.5. By taking the limit λ0 → 0 in the previous quantities, i.e in the limit where the
evaporation/condensation is negligible, we recover the well-known SSEP expressions [209]:

lim
λ0→0

ρ(x) = ρl(1− x) + ρrx, lim
λ0→0

ρc(x, y) = −x(1− y)(ρl − ρr)2,

lim
λ0→0

jlat(x) = ρl − ρr, lim
λ0→0

E(2)(x) = ρl + ρr −
2

3
(ρ2
l + ρlρr + ρ2

r).

We are finally interested in the study of the dynamical properties of the model: using the
Bethe equations (II.C.139) and (II.C.141), we study the approach to the stationary state at
large times for a large system. We must compute the eigenvalue, denoted by G, for the first
excited state (i.e. the one with the greatest non-vanishing eigenvalue).

We start by presenting the main results for the gap then we give the sketch of the numerical
evidences for them.

• In the case when evaporation rate λ is independent of the size of the system L, there is
a non-vanishing gap. The values of this gap depends on the boundaries parameters and
on λ. We present these different values of the gaps on Figure V.4. They are consistent
with the analytical result obtained for λ = 1, see (III.B.28).

• If the rate λ behaves as 1
Lµ for large system, the model is gapless and we get

G ∼ 1

L2µ
for 0 < µ < 1 and G ∼ 1

L2
for µ ≥ 1 . (V.A.25)

We show in figure V.5 numerical evidence for such a behavior. We plot

z(L) =
ln(GL)− ln(GL−1)

ln(L− 1)− ln(L)
(V.A.26)
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as a function of 1
L : as 1

L tends to 0, it tends to 2µ (resp. 2) for µ < 1 (resp. µ ≥ 1).
The 1

L2 behavior of the gap for µ > 1 is expected since the system becomes in this case
a diffusive model in the thermodynamic limit as discussed around equation (V.A.12).

a

b

0

G = −4(φ−1)2a
(φ2+a)(a+1)

G = −2φ−1
φ+1

(
a−1
a+1 + b−1

b+1

)
G = −4(φ−1)2b

(φ2+b)(b+1)

G = −4 (|φ|−1)2

(φ+1)2

|φ|

|φ|

Figure V.4: Value of the gap G depending on the parameters a, b and φ. The equation of the
curve is b = φ2/a. (This particular figure is drawn for φ = 1/4 (λ = 0.6) even though similar
behavior is valid for any φ).

To prove these result, we must study in detail the Bethe equations (II.C.139) and (II.C.141).
The comparison of the eigenvalues obtained by the exact diagonalisation of M or by the nu-
merical resolutions of the Bethe equations for small system (up to 10 sites), show that the
gap is obtained for N = 1 in (II.C.140) and (II.C.141) or is equal to G = −α − β − γ − δ =

−2φ−1
φ+1

(
a−1
a+1 + b−1

b+1

)
(which corresponds to N = 0 in (II.C.138) and (II.C.139)). We assume

that this behavior holds for any L then we must solve only (II.C.139) for N = 1. This Bethe
equation can be written as the vanishing of a polynomial of degree 2L + 2 w.r.t. v1. This
polynomial has two obvious roots φ and −φ which are not physical since they corresponds to a
vanishing “eigenvector”. The remaining factor is a polynomial of degree 2L w.r.t. v1 which can
be transformed, thanks to (II.C.140) (and up to a normalization), to a polynomial of degree
L w.r.t. E. Then, the Bethe equation (II.C.141) for N = 1 becomes

L∑
p=0

(1 + φ)2p Ep

4p

L−p∑
q=0

φ2q

[
ab

(
p+ q
q

)(
L− q − 2
p− 2

)
+ (a+ b)

(
p+ q − 1

q

)(
L− q − 1
p− 1

)

+

(
p+ q − 2

q

)(
L− q
p

)]
= 0 (V.A.27)

The L.H.S. of the previous equation is a factor of the characteristic polynomial of the Hamilto-
nian H (II.C.135) or of the Markov matrix M (III.B.2). It is possible now to find numerically
the roots of the polynomial (V.A.27) for large system (up to 150 sites) and pick up the largest
ones. Performing this computation for different values of λ and of the boundary parameters,
we obtain the results for the gap summarized previously, see figure V.4.
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: µ = 2.

3 : µ = 1.

◦ : µ = 0.7

+ : µ = 0.5

2 : µ = 0.4

Figure V.5: Behavior of the gap in the thermodynamic limit when λ behaves as 1
Lµ : plot

of z(L) =
ln(GL)−ln(GL−1)

ln(L−1)−ln(L) as a function of 1
L . The lines represent the values obtained from

Bethe ansatz (for 4 ≤ L ≤ 150), while the dots correspond to direct diagonalisation of H (for
4 ≤ L ≤ 10).

c) Limit of observables in 2-TASEP

We are now interested in another example that we encountered in chapter III: the open two-
species TASEP. We expressed the stationary state in a matrix product form and computed
exactly the mean particle currents and the particle densities for a finite size lattice. The goal
is now to study this model in the thermodynamic limit. The results presented here are mainly
extracted from the work [V7].

The stationary state of the exclusion process can exhibit different qualitative features and
different analytical expressions for macroscopic quantities in the infinite size limit, L → ∞.
The system is said to exhibit various phases, that depend on the values of the boundary
exchange rates. These different phases can be discriminated by the values of the currents and
by the shapes of the density profiles. More refined features, such as correlations length or even
dynamical behavior, can even lead us to define subphases (see [42] for details and references).
We stressed in chapter III that the value of the mean particle currents and the mean density
profiles can be exactly obtained, from the the study of single species open TASEP, through the
identification procedure. The first step to compute analytically the asymptotic behavior of the
particle currents and densities in the two species TASEP is thus to determine the asymptotic
behavior of these quantities in the single species TASEP.

The phase diagram of the one-species TASEP has been well-known for a long time; first
determined using a mean-field approximation [45, 153], it was rigorously established and pre-
cisely investigated after the finding of the exact solution [42, 46, 47]. The phase diagram is
determined by the behavior of the stationary current 〈j〉 and bulk density of particles in the
limit L→∞ [42]. The different phases are summarized in table (V.A.28).
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Region Phase Current j Bulk density

α < β, α < 1
2 Low-density (LD) α(1− α) α

β < α, β < 1
2 High-density (HD) β(1− β) 1− β

α > 1
2 , β >

1
2 Maximal current (MC) 1

4
1
2

(V.A.28)

We recall briefly the main steps of the asymptotic study of the particle current and density.
The goal is to take the large size limit L→∞ in the exact expression (III.A.30) and (III.A.36)
derived for a finite size lattice. These quantities are expressed in terms of the normalization
Zn (III.A.20). The key point is thus to evaluate the asymptotic behavior of this normalization.
Following the lines of [46] we first define

Rn(x) =

n+1∑
p=2

(p− 1)(2n− p)!
n!(n+ 1− p)!

xp, (V.A.29)

which is of particular interest because

Zn = 〈〈W |Cn|V 〉〉 =
Rn(1/β)−Rn(1/α)

1/β − 1/α
〈〈W |V 〉〉. (V.A.30)

An asymptotic expression of Rn(1/β), respectively of Rn(1/α), can be obtained by determining
the value of p which gives the dominant contribution to the sum (V.A.29):

Rn

(
1

β

)
'


1√

π(2β−1)2
4n

n3/2 , for β > 1
2

2√
π

4n

n1/2 , for β = 1
2

(1− 2β) 1
βn+1(1−β)n+1 , for β < 1

2 .

(V.A.31)

This provides an asymptotic expression of the normalization Zn depending on the value of α
and β. We present here the case where α ≤ β. By symmetry, the case β < α can then be
obtained by interchanging α and β in the expressions below. We have

Zn '



αβ√
π(β−α)

(
1

(2α−1)2
− 1

(2β−1)2

)
4n

n3/2 , for 1
2 < α < β,

α2
√
π(2α−1)3

4n

n3/2 , for 1
2 < α = β,

2β√
π(2β−1)

4n

n1/2 , for α = 1
2 < β,

4n, for α = β = 1
2 ,

β(1−2α)
(β−α)(1−α)

1
αn(1−αn) , for α < 1

2 and α < β,

(1−2α)2

(1−α)2
n

αn(1−αn) , for α = β < 1
2 .

(V.A.32)

We are now in position to give the asymptotic behavior of the particle current.

Proposition A.6. In the limit L→∞, the expression of the mean particle current (III.A.30)
tends to

j := lim
L→∞

〈j〉 =


1
4 , for α ≥ 1

2 , and β ≥ 1
2 ,

α(1− α), for α < 1
2 , and β > α,

β(1− β), for β < 1
2 , and α > β.

(V.A.33)
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α

β

1
2

1
2

Low-density Maximal current

High-density

j = α(1− α)

ρ = α

j = 1
4

ρ = 1
2

j = β(1− β)

ρ = 1− β

Figure V.6: Phase diagram of the single species open TASEP.

The previous proposition show that the system displays three different macroscopic behav-
ior (called phases) depending on the value of the injection/extraction rates. These phases are
represented in figure V.6.

The region where j = 1/4 is called the maximal-current phase and the region where
j = α(1−α), respectively j = β(1−β), is called the low-density phase, respectively high-density
phase. This denomination will make sense below through the computation of the asymptotic
behavior of the particle density. A careful study of the exact expression of the particle den-
sity for a finite size lattice (III.A.36) combined with the asymptotic behavior of the quantity
Rn(1/β) (V.A.31) yields [46] the shape of the particle density near the right boundary

lim
L→∞

〈τL−j〉 =



1
2 −

1
2
√
πj

+O
(

1
j3/2

)
, for α, β > 1

2 (MC)

α+O
(

exp
(
− j
ξ

))
for α < β < 1

2 (LD)

α+O
(

1
j3/2

exp
(
− j
ξ

))
for α < 1

2 < β (LD)

1− β for β < 1
2 , β < α (HD)

(V.A.34)

Note that the shape of the particle density near the left boundary can be obtained from the
previous results using the symmetry 〈τj〉 = 1− 〈τL+1−j〉|α↔β.

We stress also that on the particular line defined by α = β and α, β < 1/2, called the shock
line, the shape of the particle density is different from the one of the low and high density
phases, it is a linear interpolation between the reservoir densities α and 1− β = 1− α. More
precisely we have

lim
L→∞

〈τbLxc〉 = α+ (1− 2α)x. (V.A.35)

The phase diagrams of the (M1) and (M2) models can be determined rigorously without
having to compute exactly the steady-state probabilities. Indeed, the various phases of these
two species models can extracted from the knowledge of the one-species TASEP phase diagram,
by using the two possible identifications described in (III.B.103) and (III.B.104) and called
identification 1. and 2. respectively.

We recall that identification 1. allows us to compute the current 〈j2〉 and the density 〈ρ(i)
2 〉,

whereas identification 2. yields the current 〈j1〉 + 〈j2〉 = −〈j0〉 and the density 〈ρ(i)
1 〉 + 〈ρ(i)

2 〉.
Gathering these results, we obtain the phase diagrams depicted in figure V.7.
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α

β

1
2

1
2

IV I

III II

j2 = α(1− α)

j1 = (α− 1
2)2

j2 = 1
4

j1 = 0

j2 = α(1− α)

j1 = j
(III)
1

j2 = 1
4

j1 = −(β − 1
2)2

(a) Boundary conditions (M1)

α

β

1
2

1
2

IV I

III

II

j2 = α(1− α)

j1 = (α− 1
2)2

j2 = 1
4

j1 = 0

j2 = α(1− α)

j1 = j
(III)
1

j2 = β(1− β)

j1 = 0

(b) Boundary conditions (M2)

Figure V.7: Phase diagrams of the 2-TASEP with open boundaries for the boundary conditions

(M1) and (M2) (we have used the notation j
(III)
1 = (β − α)(1− α− β)).

Phase diagram of the (M1) model The phase diagram of the (M1) model is displayed
in Figure V.7(a). It comprises four phases. Using the identification procedure, we observe
that ρ2 behaves as the density for the one-species TASEP with boundary rates (α, 1), while
ρ1 + ρ2 behaves as the density for the one-species TASEP with boundary rates (1, β). The
values of the currents and particle densities in each phase (see fig V.7(a)) are readily found by
this identification.

Phase I: For α > 1
2 and β > 1

2 , particles of species 2 exhibit a maximal current, whereas
the current of the particles of species 1 vanishes. The bulk density of particles of species
2 and of holes is equal to 1/2, while the number of particles of species 2 in the bulk is
vanishingly small. The density profiles of particles of species 1 and 2 are characterised
by power law decays to the bulk values:

lim
L→∞

〈ρ(L−j)
2 〉 =

1

2
− 1

2
√
πj

+O
(

1

j3/2

)
and lim

L→∞
〈ρ(L−j)

1 〉 = O
(

1

j3/2

)
.

The system is similar to the one-species TASEP in its maximal current phase.

Phase II: For α > 1
2 and β < 1

2 , none of the currents j1, j2 and j0 vanishes. This is a genuine
2-TASEP phase with boundaries permeable to all the species. The two species and the
holes coexist in the bulk with non-zero bulk densities and density profiles characterised
by power-law decays:

lim
L→∞

〈ρ(L−j)
2 〉 =

1

2
− 1

2
√
πj

+O
(

1

j3/2

)
and lim

L→∞
〈ρ(L−j)

1 〉 =
1

2
− β+

1

2
√
πj

+O
(

1

j3/2

)
.

First-class particles are in their maximal current phase. Boundary effects are long-range
for species 1 and 2.

Phase III: For α < 1
2 and β < 1

2 , we obtain a ‘massive’ phase in which boundary effects are
localized: after a finite correlation length, the system reaches its bulk behaviour,

lim
L→∞

〈ρ(L−j)
2 〉 = α+O

(
1

j3/2
exp

(
−j
ξ

))
and lim

L→∞
〈ρ(L−j)

1 〉 = 1−α−β+O
(

1

j3/2
exp

(
−j
ξ

))
.
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The current of second-class particles j2 vanishes along the line α = β < 1
2 and changes

its sign across this line.

Phase IV: This phase, obtained for α < 1
2 and β > 1

2 , is massive for first-class particles but
‘massless’ (exhibiting long-range correlations characterised by power laws) for second-
class particles and holes. Here again, the two species and the holes coexist in the bulk:

lim
L→∞

〈ρ(L−j)
2 〉 = α+O

(
1

j3/2
exp

(
−j
ξ

))
and lim

L→∞
〈ρ(L−j)

1 〉 =
1

2
−α− 1

2
√
πj

+O
(

1

j3/2

)
.

Holes are in their maximal current phase j0 = −1/4.

Phase diagram of the (M2) model The phase diagram of the (M2) model also comprises
four phases, displayed in Figure V.7(b). The diagram is qualitatively different from that of the
(M1) model. Here, ρ2 behaves as the density for the one-species TASEP with boundary rates
(α, β), while ρ1 + ρ2 behaves as the density for the one-species TASEP with boundary rates
(1, β).

Phase I: For α > 1
2 and β > 1

2 , first-class particles exhibit a maximal current. This phase is
similar to Phase I of model (M1).

Phase II: This phase is obtained for β < α < 1
2 . Particles of species 2 are in their high

density phase. The density of particles of species 1 in the bulk vanishes.

lim
L→∞

〈ρ(L−j)
2 〉 = 1− β and lim

L→∞
〈ρ(L−j)

1 〉 = 0.

Phase III: For α < β < 1
2 , the two species and the holes are simultaneously present with

non-vanishing currents. The current of particles of species one j1 is strictly positive.
This phase is massive for the two classes of particles and the holes:

lim
L→∞

〈ρ(L−j)
2 〉 = α+O

(
exp

(
−j
ξ

))
and lim

L→∞
〈ρ(L−j)

1 〉 = 1− α− β +O
(

exp

(
−j
ξ

))
.

Shock Line: This line corresponds to α = β < 1
2 . The density profiles ρ1 and ρ2 display

a linear behaviour that reflect a coexistence between a low density and a high density
regions:

lim
L→∞

〈ρ(bLxc)
2 〉 = α+ x(1− 2α) and lim

L→∞
〈ρ(bLxc)

1 〉 = (1− 2α)(1− x). (V.A.36)

The density profile of particles of species 2 takes the values α and 1−α with a discontin-
uous shock between the two regions. The particles of species 1 have a plateau density of
1−2α to the left of the shock and zero density to the right shock. This means effectively
that in the stationary state in the infinite system limit only the left reservoir is active as
far as particles of species 1 are concerned.

Phase IV This phase, obtained for α < 1
2 and β > 1

2 , is similar to Phase IV of the (M1)
model.

d) Limit of observables in the multi-species SSEP

We now turn to the study of the multi-species SSEP in the thermodynamic limit. We compute
in particular the large size limit L → ∞ of the mean particle currents, of the mean particle
densities and of the two-point functions.

Proposition A.7. The thermodynamic limit of the mean particle current of species τ (0 ≤
τ ≤ N) is given by the exact expression

jτ := lim
L→∞

L× 〈jτ 〉 = λτ . (V.A.37)
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Proof. This formula is derived by a straightforward computation, starting from the expression
of the particle current on the finite size lattice (III.B.235).

Note that the formula above is valid for τ = 0 and gives the mean current of holes on the
lattice. We observed in chapter III, with the exact computations on the finite size lattice, that
the exclusion constraint implied 〈j0〉+ · · ·+ 〈jN 〉 = 0. This result is directly recovered, in the
thermodynamic limit, from the formula above

N∑
τ=0

jτ =
N∑
τ=0

λτ = 0, (V.A.38)

where the last equality is obtained using the definition (III.B.225) and the constraints (III.B.200).
Note also that we multiplied the mean particle current 〈jτ 〉 with a factor L when performing

the large size limit to obtain a finite and non vanishing value. This is characteristic of diffusive
system in contrast with bulk driven systems (that are called ballistic) where the scaling is not
needed, see for instance (V.A.33).

Proposition A.8. The thermodynamic limit of the mean particle density of species τ (0 ≤
τ ≤ N) at position x ∈ [0, 1] on the lattice is given by the exact expression

ρτ (x) := lim
L→∞

〈ρ(bLxc)
τ 〉 = ατ (1− x) + βτx. (V.A.39)

Proof. This is obtained through a direct computation, using the expression of the particle
density for a finite size lattice (III.B.239).

Note that the proposition above provides for τ = 0 the density of holes on the lattice.

The exclusion constraint that we had on the finite size lattice 〈ρ(i)
0 〉+ · · ·+ 〈ρ(i)

N 〉 = 1 is easily
observed in the thermodynamic limit

N∑
τ=0

ρτ (x) = (1− x)
N∑
τ=0

ατ + x
N∑
τ=0

βτ = (1− x) + x = 1, (V.A.40)

where we made use of the constraints (III.B.200).
We observe that the mean particle density of species τ is the linear interpolation between

the density of species τ in the left reservoir ατ and the density of species τ in the right reservoir
βτ . We have indeed ρτ (0) = ατ and ρτ (1) = βτ .

Proposition A.9. The large size limit of the connected two-point function between a particle
of species τ and a particle of species τ ′ located respectively at x and y on the lattice (with
0 ≤ x ≤ y ≤ 1) is given by the exact expression

ρτ,τ ′(x, y) := lim
L→∞

L× 〈ρ(bLxc)
τ ρ

(bLyc)
τ ′ 〉c = −λτλτ ′x(1− y). (V.A.41)

Proof. This is again obtained by direct computation starting from the formula (III.B.243) for
the finite size lattice.

Note that we multiplied the connected two-point function with a factor L when performing
the large size limit. It shows that the correlations in the system decrease algebraically as 1/L.

2 Large deviation functional of the density profile

The previous subsection was devoted to the evaluation of the physical quantities (mean particle
currents, mean particle densities, two-point function,...), that have been computed exactly for
a finite size lattice, in the thermodynamical limit. That was performed on a series of examples
studied in details on a finite size lattice in chapter III. We observed that in this large size limit,
the expressions of the physical quantities became simpler. Now we would like to push further
this study of the thermodynamic limit with a coarse-grained description of the physical models.

The idea is to define local average of the occupation variables ρ
(i)
0 , . . . , ρ

(i)
N (we recall that these
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variables define uniquely the configuration of the system). These averages will be computed
over several sites i giving rise to a coarse-grained variable. In the spirit of the law of large
number (where the average of independent identically distributed random variables converges
to the expectation with probability 1), we expect these coarse-grained variables to behave
nicely in the large size limit, typically to display a deterministic behavior. It means intuitively
that, in the thermodynamic limit, we are almost sure to observe a density profile that is equal
to a typical density profile. We will see that (on particular example) we can even get a refined
result and evaluate the probability to deviate from this typical profile. This probability is,
on the example treated below, exponentially small in the system size and will lead to a large
deviation principle. As explained in chapter I, the large deviation functional could be a generic
and powerful formalism to describe the macroscopic behavior of out-of-equilibrium statistical
physics systems.

a) Definition

The first step toward a coarse-grained description of the stationary state of the model in the
thermodynamic limit is to define precisely coarse-grained, or average, variables. In order to
formalize the problem, we split the full system which contains L = nl sites into n subsystems
(called “boxes” below) containing l sites each, see figure V.8. This leads to the following
definition.

Definition A.10. For all particle species (and holes) τ ∈ {0, . . . , N} and all box number
1 ≤ k ≤ n, we define the average variable

ρ{k}τ =
1

l

(k+1)l∑
i=kl+1

ρ(i)
τ , (V.A.42)

which corresponds to the average number of particles of species τ in the box k for a given
configuration.

We expect these variables to display some deterministic behavior in the limit l→∞ (that
is when the number of sites involved in the average goes to infinity).

Definition A.11. It will be useful to introduce the row vector ρ{k} encompassing the average
variables of each species (and holes) in the box k:

ρ{k} = (ρ
{k}
0 , . . . , ρ

{k}
N ). (V.A.43)

Note that the average variables fulfill the exclusion constraint ρ
{k}
0 + · · ·+ ρ

{k}
N = 1, for all

1 ≤ k ≤ n (this is directly derived from the exclusion constraint ρ
(i)
0 + · · · + ρ

(i)
N = 1 which

holds on every site i).

L sites

l sites

1 2 n

Figure V.8: The system of length L is divided into n boxes of length l.

The second step is to determine precisely which observable of these coarse-grained variables
is both physically relevant and simple enough to be exactly computed in the thermodynamic
limit. We are interested in evaluating the probability of observing in the stationary state a
given density profile in the limit of large system size L. A density profile is defined by a
fixed number of particles of each species (and holes) τ = 0, . . . , N in each boxes k = 1, . . . , n.
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We thus want to study the joint probability law of the average variables. This motivates the
following definition.

Definition A.12. We denote by

PL({ρ{1},ρ{2}, . . . ,ρ{n}} | α,β) (V.A.44)

the probability to find simultaneously ρ
{k}
τ × l particles of species τ in the box k for τ = 0, . . . , N

and k = 1, . . . , n. We have introduced in this notation the two row vectors of size N + 1,
encompassing the particle (and hole) densities at the two reservoirs

α = (α0, . . . , αN ) and β = (β0, . . . , βN ). (V.A.45)

For l large (and thus L large), that is when the size of the boxes used to define the coarse-
grained variables goes to infinity, we expect the joint probability PL({ρ{1},ρ{2}, . . . ,ρ{n}} |α,β)
to follow a large deviation principle

PL({ρ{1},ρ{2}, . . . ,ρ{n}} | α,β) ∼ exp
(
−LFn({ρ{1},ρ{2}, . . . ,ρ{n}} | α,β)

)
. (V.A.46)

In the limit where we have in addition the number of boxes n going also to infinity, we can
define a continuous coordinate x such that k = xL and a vector ρ(x) = ρ{k}. We obtain in
this case a large deviation functional F({ρ(x)} | α,β)

PL({ρ(x)} | α,β) ∼ exp (−LF({ρ(x)} | α,β)) . (V.A.47)

We will now study this joint probability law and show these large deviation principles on
the particular example of the multi-species SSEP that we encountered many times in this
manuscript. The results presented below are mainly taken out of the work [V8].

b) Multi-species SSEP case

We now turn to the computation of the joint probability law PL({ρ{1},ρ{2}, . . . ,ρ{n}} | α,β)
for the multi-species SSEP. This computation can be drastically simplified by using a powerful
tool: the additivity principle. This was first introduced in [245] (see also [16] for the connection
with matrix ansatz) to compute the large deviation functional of the single species open SSEP
and has then been successfully applied to compute the one of the single species open ASEP
[246, 247]. The general idea is to relate the probability of observing a given configuration of
the lattice in the stationary state with the probabilities of the subsystems that are obtained by
cutting the original system into two pieces. The difficult part lies in the correct tuning of the
injection/extraction rates that have to be introduced at the level of the cutting. We stress that
this approach is completely rigorous in the sense that the formula obtained to relate the full
system to the two subsystems is exact. The interest of this additivity principle is to reduce,
or factorize, the complexity of the computations on the full system into computations on the
subsystems that we expect to be simpler. The result that we present below holds for a finite
size lattice of any length. Note that similar ideas of additivity have also been used directly
in the thermodynamic limit to compute large deviation functionals [248] (which by analogy
with the free energy should behave as an extensive quantity). More details about that will be
presented altogether with the macroscopic fluctuation theory.

Additivity principle from matrix ansatz. In order to write an additivity principle, we
first need the following definition.

Definition A.13. We introduce the vector

ρ(u) = (1− u)α+ uβ (V.A.48)

which achieves the linear interpolation between the particle densities at the left (respectively
right) reservoir α (respectively β).
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This vector thus contains the mean particle densities at position u ∈ [0, 1] on the lattice in
the stationary state ρτ (u), that have been computed in (V.A.39).

Definition A.14. We denote by SL(τ1, . . . , τL|α,β, a, b) the probability of the configuration
(τ1, . . . , τL) in the stationary state for a system of size L with boundary parameters α, β, a
and b.

We recall that the definition of the boundary parameters and of the dynamics of the model
can be found in subsection a). Up to now the length of the lattice and the boundary parameters
were omitted in the notation S(τ1, . . . , τL) because there was no ambiguity, but this precision
will make sense when formulating the additivity principle. As already mentioned, the idea of
the additivity principle is to express the stationary weights of a system of size L in terms of
the stationary weights of the two subsystems of size L′ and L′′ (with L = L′+L′′) obtained by
cutting the original system in two parts. The results presented in this subsection are heavily
inspired by what was done in [16, 249] for the usual SSEP (with one species of particles plus
holes).

Proposition A.15. For the present model, the additivity principle reads1

SL(τ1, . . . , τL|α,β, a, b) = −Γ(a+ b+ L′)Γ(L′′ + 1)

Γ(a+ b+ L)

∮
u=1

du

2iπ

1

ua+b+L′(1− u)L′′+1
(V.A.49)

× SL′(τ1, . . . , τL′ |α,ρ(u), a, b) SL′′(τL′+1, . . . , τL|ρ(u),β, 1− b, b)

This additivity property can be rewritten using the matrix product formalism. Since the
algebraic relations (III.B.221), (III.B.222) and (III.B.223) involving the operators Xτ and the
boundary vectors 〈〈W | and |V 〉〉 depend explicitly on the boundary parameters, we need to

introduce some more notations. We denote by X̃τ (u), 〈〈W̃ (u)| and |Ṽ (u)〉〉 the operators and
boundary vectors associated to the system with parameters α and a for the left reservoir and
ρ(u) and b for the right reservoir. Namely they satisfy (III.B.221), (III.B.222) and (III.B.223)
where βτ has been replaced by (1− u)ατ + uβτ for all τ :

[X̃τ (u), X̃τ ′(u)] = λ̃τ (u)X̃τ ′(u)− λ̃τ ′(u)X̃τ (u) = u
(
λτ X̃τ ′(u)− λτ ′X̃τ (u)

)
, (V.A.50)

where
λ̃τ (u) = αs − [(1− u)ατ + uβτ ] = uλτ , (V.A.51)

and for the boundaries

〈〈W̃ (u)|
(
ατ C̃(u)− X̃τ (u)

)
= auλτ 〈〈W̃ (u)|, (V.A.52)

and (
[(1− u)ατ + uβτ ]C̃(u)− X̃τ (u)

)
|Ṽ (u)〉〉 = −buλτ |Ṽ (u)〉〉, (V.A.53)

where
C̃(u) = X̃0(u) + · · ·+ X̃N (u). (V.A.54)

In the same way we denote by X̂τ (u), 〈〈Ŵ (u)| and |V̂ (u)〉〉 the operators and boundary
vectors associated to the system with parameters ρ(u) and 1 − b for the left reservoir and β
and b for the right reservoir. Namely they satisfy (III.B.221), (III.B.222) and (III.B.223) where
ατ has been replaced by (1− u)ατ + uβτ for all τ and a has been replaced by 1− b:

[X̂τ (u), X̂τ ′(u)] = λ̂τ (u)X̂τ ′(u)− λ̂τ ′(u)X̂τ (u) = (1− u)
(
λτ X̂τ ′(u)− λτ ′X̂τ (u)

)
, (V.A.55)

where
λ̂τ (u) = [(1− u)ατ + uβτ ]− βτ = (1− u)λτ , (V.A.56)

and for the boundaries

〈〈Ŵ (u)|
(
[(1− u)ατ + uβτ ]Ĉ(u)− X̂τ (u)

)
= (1− b)(1− u)λτ 〈〈Ŵ (u)|, (V.A.57)

1The integration contour is chosen to contain the pole at u = 1 but not the pole at u = 0.
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and (
βτ Ĉ(u)− X̂τ (u)

)
|V̂ (u)〉〉 = −b(1− u)λτ |V̂ (u)〉〉, (V.A.58)

where
Ĉ(u) = X̂0(u) + · · ·+ X̂N (u). (V.A.59)

Proposition A.16. We have the formula:

〈〈W |Xτ1 . . . XτL |V 〉〉 = −
∮
u=1

du

2iπ

1

ua+b+L′(1− u)L′′+1
(V.A.60)

× 〈〈W̃ (u)|X̃τ1(u) . . . X̃τL′ (u)|Ṽ (u)〉〉 〈〈Ŵ (u)|X̂τL′+1
(u) . . . X̂τL(u)|V̂ (u)〉〉.

Proof. For i = 1, . . . , L′ we perform the change of variables

Xτi = ατiC − Lτi and X̃τi(u) = ατiC̃(u)− L̃τi(u). (V.A.61)

The new operators Lτ and L̃τ (u) behave conveniently on the left boundary

〈〈W |Lτ = aλτ 〈〈W | and 〈〈W̃ (u)|L̃τ (u) = uaλτ 〈〈W̃ (u)|. (V.A.62)

When we expand the product Xτ1 . . . XτL′ (respectively the product X̃τ1(u) . . . X̃τL′ (u)), we can

push the Lτ (respectively the L̃τ (u)) to the left through the C’s (respectively the C̃(u)’s) using
the relation [Lτ , C] = −λτC (respectively the relation [L̃τ (u), C̃(u)] = −uλτ C̃(u)). At the end
the expansion of Xτ1 . . . XτL′ involve monomials of the form λs1 . . . λskLsk+1

. . . Lsn′C
L′−n′ .

The expansion of the product X̃τ1(u) . . . X̃τL′ (u) is exactly the same but with the previous

monomial replaced by ukλs1 . . . λsk L̃sk+1
(u) . . . L̃sn′ (u)C̃(u)L

′−n′ .
In the same way for i = L′ + 1, . . . , L′ + L′′ we perform the change of variables

Xτi = βτiC −Rτi and X̂τi(u) = βτiĈ(u)− R̂τi(u). (V.A.63)

The new operators Rτ and R̂τ (u) behave conveniently on the right boundary

Rτ |V 〉〉 = −bλτ |V 〉〉 and R̂τ (u)|V̂ (u)〉〉 = −(1− u)bλτ |V̂ (u)〉〉. (V.A.64)

Following the same idea as previously, the expansion of XτL′+1
. . . XτL involve monomials of

the form λs1 . . . λskC
L′′−n′′Rsk+1

. . . Rsn′′ . The expansion of the product X̃τL′+1
(u) . . . X̃τL(u)

is exactly the same but with the previous monomial replaced by
(1− u)kλs1 . . . λskĈ(u)L

′′−n′′R̂sk+1
(u) . . . R̂sn′′ (u).

Putting all these expansions together, we see that finally it remains to prove

〈〈W |CL′+L′′−n′−n′′ |V 〉〉 = −
∮
u=1

du

2iπ

1

ua+b+L′−n′(1− u)1+L′′−n′′ (V.A.65)

× 〈〈W̃ (u)|C̃(u)L
′−n′ |Ṽ (u)〉〉〈〈Ŵ (u)|Ĉ(u)L

′′−n′′ |V̂ (u)〉〉.

This is established using result (III.B.227) and the fact that∮
u=1

du

2iπ

1

ua+b+L′−n′(1− u)1+L′′−n′′ = −(−1)L
′′−n′′

(L′′ − n′′)!
dL
′′−n′′

duL′′−n′′
1

ua+b+L′−n′

∣∣∣∣∣
u=1

(V.A.66)

= − Γ(a+ b+ L′ + L′′ − n′ − n′′)
Γ(a+ b+ L′ − n′)Γ(1 + L”− n”)

. (V.A.67)
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Large deviation functional of the density profile. We are now equipped to study the
large deviation functional of the density profile. As a warm-up, we start with the particular
case of the thermodynamic equilibrium, i.e. when α = β := r = (r0, . . . , rN ), see (III.B.226),
which is much easier than the non-equilibrium case.

Proposition A.17. In the thermodynamic equilibrium case, the large deviation functional is
given by

F({ρ(x)} | r, r) =

∫ 1

0
dx B(ρ(x), r), (V.A.68)

where

B(ρ, r) =

N∑
τ=0

ρτ ln

(
ρτ
rτ

)
(V.A.69)

We recall that r0 + · · ·+ rN = 1 and ρ0(x) + · · ·+ρN (x) = 1 for all x. Note that B(ρ(x), r)
is nothing else but the Kullback-Leibler divergence between the two discrete measure ρ(x) and
r.

Proof. In the thermodynamic equilibrium case the stationary distribution is given by (III.B.226).
Hence we can easily evaluate

PL({ρ{1},ρ{2}, . . . ,ρ{n}} | r, r) =

n∏
k=1

l!

(lρ
{k}
0 )! . . . (lρ

{k}
N )!

r
lρ
{k}
0

0 . . . r
lρ
{k}
N

N . (V.A.70)

Then using the Stirling formula we obtain

lim
l→∞
− 1

L
lnPL({ρ{1},ρ{2}, . . . ,ρ{n}} | r, r) =

1

n

n∑
k=1

N∑
τ=0

ρ{k}τ ln

(
ρ
{k}
τ

rτ

)
. (V.A.71)

The limit of large n thus gives

lim
n→∞

lim
l→∞
− 1

L
lnPL({ρ{1},ρ{2}, . . . ,ρ{n}} | r, r) =

∫ 1

0
dx

N∑
τ=0

ρτ (x) ln

(
ρτ (x)

rτ

)
, (V.A.72)

which yields the desired result.
The non-equilibrium case α 6= β is more involved.

Proposition A.18. The large deviation functional of the density profile is given by

F({ρ(x)} | α,β) =

∫ 1

0
dx
[
B(ρ(x),ρ(u(x))) + lnu′(x)

]
, (V.A.73)

where u is the monotonic solution of the differential equation

u′′(x)

(u′(x))2
+

N∑
τ=0

λτ
ρτ (x)

ρτ (u(x))
= 0 (V.A.74)

satisfying boundary conditions u(0) = 0 and u(1) = 1.

Before proving this expression, we formulate two remarks.

Remark A.19. We can deduce from this expression that the most probable density profile is
given by ρ(x) = ρ(x). The differential equation is indeed solved by the function u(x) = x in
this case because λ0 + · · ·+ λN = 0. Injecting in (V.A.73) makes the large deviation function
vanish.

Remark A.20. The thermodynamic equilibrium case can be of course recovered from the
general case. Indeed we have ρ(u) = α = β = r for all u. Moreover the differential equation
(V.A.74) reduces to u′′(x) = 0 because λs = 0 for all s in this case. It is solved by the function
u(x) = x. Injecting in (V.A.73) leads to (V.A.68) as expected.
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We now present the proof of (V.A.73)

Proof. The proof presented here follows heavily the lines of the proof written in [16, 249] for
the one species SSEP. For the sake of simplicity, we will present the proof for the case where
a+ b = 1, but the generalization to the other cases is straightforward.

We want to evaluate the probability PL({ρ{1},ρ{2}, . . . ,ρ{n}} |α,β) to find ρ
{k}
τ ×l particles

(or holes) of species τ in the box k for τ = 0, . . . , N and k = 1, . . . , n. This is done by
summing the probabilities of all the configurations satisfying these constraints. For each of
these configurations, we use the additivity principle (V.A.49) to divide the system into two
part of size L′ = kl (containing k boxes) and L′′ = (n − k)l (containing n − k boxes), for a
fixed 1 ≤ k ≤ n. We thus obtain

Pnl

(
{ρ{1}, . . . ,ρ{n}} |α,β

)
= −(kl)!((n− k)l)!

(nl)!

∮
du

2iπ

1

ukl+1(1− u)(n−k)l+1

× Pkl
(
{ρ{1}, . . . ,ρ{k}} |α,ρ(u)

)
P(n−k)l

(
{ρ{k+1}, . . . ,ρ{n}} |ρ(u),β

)
(V.A.75)

In the large l limit, evaluating the previous expression at the saddle point, we obtain the
following equation for the large deviation function

Fn
(
{ρ{1}, . . . ,ρ{n}} |α,β

)
= max

0<u<1

k

n
ln
(nu
k

)
+
n− k
n

ln

(
n(1− u)

n− k

)
+
k

n
Fk
(
{ρ{1}, . . . ,ρ{k}} |α,ρ(u)

)
+
n− k
n
Fn−k

(
{ρ{k+1}, . . . ,ρ{n}} |ρ(u),β

) (V.A.76)

We repeat n times the same procedure to obtain

Fn
(
{ρ{1}, . . . ,ρ{n}} |α,β

)
= max

0=u0<u1<···<un=1

1

n

n∑
k=1

F1

(
ρ{k} |ρ(uk−1),ρ(uk)

)
+ ln ((uk − uk−1)n)

(V.A.77)

In the large n limit, we can define the continuous variable x = k/n and a function u such
that u(x) = uk. The sequence uk being monotone, the difference uk − uk−1 is small in this
limit. Hence we have that ρ(uk−1) ' ρ(uk) and we can replace F1

(
ρ{k} |ρ(uk−1),ρ(uk)

)
by

the equilibrium value F1

(
ρ{k} |ρ(uk),ρ(uk)

)
= B

(
ρ{k} |ρ(uk)

)
. We thus obtain

F({ρ(x)} | α,β) = max
u(x)

∫ 1

0
dx
[
B(ρ(x),ρ(u(x))) + lnu′(x)

]
, (V.A.78)

where the maximum is evaluated over the increasing functions u satisfying u(0) = 0 and
u(1) = 1. The Euler-Lagrange equation associated with the maximization over u of this
functional gives the differential equation (V.A.74).

Let us stress that exact computation, from finite size lattice, of the large deviation func-
tional of the density profile has only be achieved on a few out-of-equilibrium models, including
the SSEP [245,250] and the ASEP [246,247].

B Macroscopic fluctuation theory

The computations done in the previous subsection were all about the stationary state of the
models in the large size limit. We are now interested in the study of the full dynamics of the
models in the thermodynamic limit. The idea is quite the same as for the study of the density
profile in the stationary state. We would like to introduce coarse-grained variables (such as
macroscopic particle density or current) that will depend on space and time. We expect that
all the details of the microscopic dynamics of the model will be averaged out and that these
coarse grained variables will satisfy deterministic equations depending only on a small number
of physically relevant parameters in the large size limit.
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For instance it has been proved rigorously for the ASEP with weak asymmetry, i.e p− q =
ν/L, that the macroscopic density ρ(x, t) satisfies the Burger equation with viscosity2

∂ρ

∂t
=
∂2ρ

∂x2
− 2ν

∂ρ(1− ρ)

∂x
. (V.B.1)

In the particular case of the SSEP, i.e when ν = 0, the macroscopic density satisfies the heat
equation

∂ρ

∂t
=
∂2ρ

∂x2
. (V.B.2)

These results on deterministic equations tell that the probability to observe a given time
evolution, path history, of the coarse-grained variables tends to 1 in the thermodynamic limit
if this time evolution satisfies the deterministic equation and tends to 0 otherwise. We are
now interested in a refined result. We would like to evaluate the probability of rare events,
when the temporal evolution of the macroscopic variables deviates from the typical evolution
governed by the deterministic equation. These rare events show up with an exponentially weak
probability in the system size L, giving rise to a large deviation principle. This approach is
called the macroscopic fluctuation theory (MFT) and is the whole topic of the remaining part
of this chapter. We will see that this framework gives in principle access to the fluctuations
of the particle current and density profile at the price of minimizing an action or equivalently
at the price of solving a system of non linear coupled partial differential equations (the as-
sociated Euler-Lagrange equations). The MFT has been in particular successfully applied to
characterize dynamical phase transitions, see for instance [19, 20]. For the sake of simplicity,
we start by presenting this theory on the case of single species diffusive models (the theory
was first introduced to describe this class of systems) and we show its efficiency to derive the
fluctuations of the current and density in the stationary state. The goal is to present the main
tools and techniques that are provided by this theory. We then present extensions of this
theory (to dissipative systems or to multi-species systems) that are suitable to describe the
models studied all along this manuscript: the DiSSEP and the multi-species SSEP. We will in
particular derive results about current and density fluctuations in the stationary state through
the MFT framework and check the consistency with exact computations that were done for a
finite size lattice in chapter III.

1 Single species diffusive systems

a) General idea

The macroscopic fluctuation theory (MFT) is a general approach that aims to describe out
of equilibrium diffusive particle gases in the thermodynamic limit. It was developed a few
years ago by Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim [251, 252], and has proven
to be an efficient way to compute fluctuations of the current and of the density profile. One
strength of this theory is to describe the diffusive systems through only two key parameters, the
diffusion constant D(ρ) and the conductivity σ(ρ) which depend on the local particle density
ρ. These parameters can be determined case by case from the microscopic dynamics of the
model. See [253] for a detailed review. Some validations from a microscopic point of view were
realised for exactly solvable models including the SSEP [16,245,249,250].

The first step toward this macroscopic, or hydrodynamic, description is to define coarse-
grained variables. We recall that we study here the case of systems with a single species of
particle. The framework of the MFT presented here allows to describe models with possibly
several particles on the same site (this number can have an upper bound to describe exclusion
or not) and encompasses in particular the example of the single species SSEP. We recall that

the occupation number ρ
(i)
1 is equal to the number of particles lying on site i. We introduce

2This equation can be heuristically derived by writing the time evolution of the mean particle density and
performing a mean-field approximation, i.e simplifying the two-point correlation functions that appear into the
product of two one-point functions.
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the random variables ρ(t,i) := ρ
(i)
1 (Ct). We recall also that the random variable Ct denote the

configuration of the system at time t. Its probability law satisfies the master equation of the
model. In other words ρ(t,i) is equal to the number of particle on the site i and at time t.

Definition B.1. We define, for L large, the macroscopic density of particles ρ(x, t) at time3

t and at position x ∈ [0, 1] on the lattice by

ρ(x, t) =
1

2
√
L

∑
|i−Lx|≤

√
L

ρ(L2t,i). (V.B.3)

Note that the macroscopic density ρ(x, t) is a random variable which is intuitively under-
stood as the average number of particles per site in a box of size 2

√
L (which explains the

denominator in the definition) around site Lx at time L2t.
We also need to define the macroscopic current of particles. We denote by Q(t,i→i+1) the

algebraic number of particles that have crossed the bound between sites i and i+ 1 (from left
to right) during the time interval [0, t]. It allows us to give the following definition.

Definition B.2. We introduce, for L large,

Q(x, t) =
1

2L
√
L

∑
|i−Lx|≤

√
L

Q(L2t,i→i+1). (V.B.4)

Definition B.3. The macroscopic particle current j(x, t) at time t and at position x is then
defined as

j(x, t) =
∂

∂t
Q(x, t). (V.B.5)

We mentioned that the hydrodynamic description of the model relies on two key parameters.
This motivates the following definition.

Definition B.4. We introduce the diffusion constant D(ρ) that satisfies for ρl and ρr both
close to the value ρ

lim
t→∞

〈Q(t,i→i+1)〉
t

=
D(ρ)(ρl − ρr)

L
(V.B.6)

and the conductivity σ(ρ) that satisfies for ρl = ρr = ρ

lim
t→∞

〈
(
Q(t,i→i+1)

)2〉
t

=
σ(ρ)

L
(V.B.7)

These two parameters are model dependent and has to be computed case by case from the
microscopic dynamics of the model. They have been computed exactly in particular for the
SSEP and for free random walkers (also called Brownian particles). We recall that the model
of free random walkers is defined as a particular case of the zero range process with p = q = 1
and wn = n (see remark A.1).

Proposition B.5. For the single species SSEP we have

D(ρ) = 1, σ(ρ) = 2ρ(1− ρ), (V.B.8)

and for free random walkers we have

D(ρ) = 1, σ(ρ) = 2ρ. (V.B.9)

We are now equipped to present the main result associated with MFT.

3Note that in order to do this hydrodynamic limit, we will rescale in all this section the time with a factor
L2, as usual in this context of diffusive systems.

225



Proposition B.6. The probability to observe a given path history of the macroscopic density
and current profiles {ρ(x, t), j(x, t)} during a time interval [t1, t2] satisfies the large deviation
principle

P ({ρ(x, t), j(x, t)}) ∼ exp

[
−L

∫ t2

t1

dt

∫ 1

0
dx

(j(x, t) +D(ρ(x, t))∂xρ(x, t))2

2σ(ρ(x, t))

]
, (V.B.10)

where the fields satisfy the usual conservation law

∂

∂t
ρ(x, t) = − ∂

∂x
j(x, t), (V.B.11)

and the boundary conditions

ρ(0, t) = ρl, ρ(1, t) = ρr. (V.B.12)

Remark B.7. The large deviation functional in (V.B.10) vanishes when the path history of
the current and density profiles follows the typical time evolution (which can be seen as the
Fick’s law)

j(x, t) = −D(ρ(x, t))∂xρ(x, t). (V.B.13)

Remark B.8. The large deviation functional can be heuristically interpreted as the description
of current and density profiles satisfying a Langevin-like equation{

∂tρ(x, t) = ∂xj(x, t)

j(x, t) = −D(ρ(x, t))∂xρ(x, t) +
√
σ(ρ(x, t))ξ(x, t),

(V.B.14)

where ξ(x, t) is a Gaussian white noise with 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t−
t′)/L.

Remark B.9. In the weakly asymmetric simple exclusion process (i.e the ASEP with the weak
asymmetry scaling p− q = ν/L), the large deviation functional is modified to∫ t2

t1

dt

∫ 1

0
dx

(j(x, t) +D(ρ(x, t))∂xρ(x, t)− νσ(ρ(x, t)))2

2σ(ρ(x, t))
. (V.B.15)

For the ASEP without the weak asymmetry scaling, the situation is more complicated. The
coarse grained variable ρ(x, t) converges in the large size L limit (with a ballistic scaling, i.e
time is accelerated with a factor L instead of a factor L2 in the diffusive scaling case) to the
inviscid Burger equation

∂tρ(x, t) = −(p− q)∂x
(
ρ(x, t)(1− ρ(x, t))

)
(V.B.16)

which is a well-known example of shock wave formation in partial differential equations theory.
To the best of our knowledge, a macroscopic fluctuation theory description of such model has
not yet been provided.

Note that from a physical point of view, the large deviation functional can be intuitively
understood as an action (associated to a path history of the density and current profiles, that
are the reduced phase space variables of the system in this coarse-grained description). The
probability of the path history then reads as exponential of minus an action (which makes
the physicists think to the path integral formalism in quantum mechanics). More precisely we
have the following statement.

Proposition B.10. The probability to observe at time t2 a density profile ρf (x) and a current
profile jf (x), knowing that the density and current profiles were equal to ρi(x) and ji(x), can
be written as the path integral

P
(
ρf (x), jf (x) | ρi(x), ji(x)

)
=

∫
DρDj exp

(
−L

∫ t2

t1

dt

∫ 1

0
dx

(j +D(ρ)∂xρ)2

2σ(ρ)

)
(V.B.17)
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where the functional integral is performed over fields ρ(x, t) and j(x, t) that satisfy the particles
conservation law

∂tρ = −∂xj, (V.B.18)

the boundary conditions
ρ(0, t) = ρl, ρ(1, t) = ρr, (V.B.19)

and the initial and final conditions

ρ(x, t1) = ρi(x), j(x, t1) = ji(x) and ρ(x, t2) = ρf (x), j(x, t2) = jf (x). (V.B.20)

In the large system size L → ∞, the path integral (V.B.17) can be evaluated through
a saddle point (for density and current profiles that minimize the action). This yields the
following result.

Proposition B.11. We have the large deviation principle

P
(
ρf (x), jf (x) | ρi(x), ji(x)

)
∼ exp

(
−Lmin

ρ,j

∫ t2

t1

dt

∫ 1

0
dx

(j +D(ρ)∂xρ)2

2σ(ρ)

)
, (V.B.21)

where the minimum is taken over fields ρ(x, t) and j(x, t) satisfying the constraints (V.B.18),
(V.B.19) and (V.B.20).

We thus have to minimize an action over two fields that are coupled through the equation
(V.B.18). This problem of minimization under constraints can be tackled using the Lagrange
multipliers. We introduce a third field π(x, t) that will play the role of the Lagrange multipliers.
The problem is reduced to the minimization of∫ t2

t1

dt

∫ 1

0
dx

[
(j +D(ρ)∂xρ)2

2σ(ρ)
+ (∂tρ+ ∂xj)π

]
:=

∫ t2

t1

dt

∫ 1

0
dx L(ρ, ∂xρ, ∂tρ, j, ∂xj),

(V.B.22)
over the fields ρ and j that are now considered as independent. It is now possible to write
down the Euler-Lagrange equations associated to this modified action. This yields the two
following equations.

Proposition B.12. The Euler-Lagrange equations satisfied by the optimal profiles ρ̂(x, t) and
ĵ(x, t) that minimize the action (V.B.22) are

ĵ = σ(ρ̂)∂xπ −D(ρ̂)∂xρ̂ (V.B.23)

and

∂tπ = −D(ρ̂)∂xxπ −
1

2
σ′(ρ̂)(∂xπ)2. (V.B.24)

Proof. We have indeed
d

dx
∂∂xjL = ∂jL, (V.B.25)

which can be simplified to

∂xπ =
ĵ +D(ρ̂)∂xρ̂

σ(ρ̂)
. (V.B.26)

This yields the first equation of the proposition. The second Euler-Lagrange equation is given
by

d

dt
∂∂tρL+

d

dx
∂∂xρL = ∂ρL, (V.B.27)

which leads, through an explicit computation of the partial derivatives, to

∂tπ +
d

dx

[
D(ρ̂)

ĵ +D(ρ̂)∂xρ̂

σ(ρ̂)

]
= D′(ρ̂)∂xπ −

1

2
σ′(ρ̂)(∂xπ)2. (V.B.28)

This can be simplified using the first Euler-Lagrange equation and yields the second equation
of the proposition.
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Proposition B.13. The optimal density and current profiles ρ̂ and ĵ that minimize the action
(V.B.21) are obtained by solving the following system of coupled non-linear partial differential
equations

∂tρ̂ = ∂x (D(ρ̂)∂xρ̂)− ∂x (σ(ρ̂)∂xπ) (V.B.29)

and

∂tπ = −D(ρ̂)∂xxπ −
1

2
σ′(ρ̂) (∂xπ)2 , (V.B.30)

where π is an auxiliary field and ĵ is obtained through

ĵ = σ(ρ̂)∂xπ −D(ρ̂)∂xρ̂. (V.B.31)

Proof. We just need to prove the first equation. It is obtained starting from

ĵ = σ(ρ̂)∂xπ −D(ρ̂)∂xρ̂, (V.B.32)

taking the derivative with respect to x and using the fact that ∂tρ̂ = −∂xĵ.
These equations allow us in principle to compute large deviation functionals of the current

and density profiles directly at the macroscopic scale without having to study in details the
microscopic dynamics of the model and to deal often with intractable combinatorial problems.
The microscopic dynamics of the system of completely encapsulated in the diffusion D and the
conductivity σ. The formalism presented here can in principle apply to a wide range of diffusive
systems. But in practice these coupled non-linear partial differential equations are very hard
to solve. Even for the SSEP, for which the value of D(ρ) and σ(ρ) have been computed exactly
and take a rather simple expression, the exact solutions to these coupled differential equations
are not known to the best of our knowledge. Nevertheless, we will see below that several
techniques have been developed within this MFT framework to compute explicitly current and
density fluctuations in the particular case of the stationary state.

b) Stationary state

We are now interested in what can be deduced from the large deviation principle (V.B.10) about
the properties of the stationary state of the model. It appears indeed plausible that knowing
information about the full dynamics (through this estimation of a path history probability)
may give insight on the steady state. More precisely, two quantities are of prime interest in
non-equilibrium stationary state, because they could be a generalization of the thermodynamic
potentials far from equilibrium: the large deviation function of the particle current and the
large deviation functional of the density profile. It turns out that these quantities can be in
principle obtained, for a wide range of diffusive models, using the MFT formalism.

It was shown in [251] that the large deviation functional of the density profile in the
stationary state is obtained by determining the optimal density and current profile ρ(x, t) and
j(x, t) which produces an atypical density profile starting from the stationary typical profile
ρ(x). More precisely we have the statement

Proposition B.14. The large deviation functional of the density profile can be expressed in
the MFT formalism by

F({ρ(x)}) = min
ρ(x,t),j(x,t)

∫ T

−∞
dt

∫ 1

0
dx

(j(x, t) +D(ρ(x, t))∂xρ(x, t))2

2σ(ρ(x, t))
, (V.B.33)

where the minimum is taken over the density and current profiles ρ(x, t) and j(x, t) that satisfy
the particle conservation law

∂tρ(x, t) = −∂xj(x, t), (V.B.34)

the boundary conditions
ρ(0, t) = ρl, ρ(1, t) = ρr, (V.B.35)
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and the limit conditions

ρ(x,−∞) = ρ(x), ρ(x, T ) = ρ(x). (V.B.36)

The profile ρ(x) denotes the mean density profile of the model.

Remark B.15. Note that this correspond to large deviation principle we saw previously (V.B.21)
with t1 = −∞, t2 = T , ρi(x) = ρ(x), ji(x) = j and ρf = ρ(x) (the value of jf (x) is not fixed,
we have also to minimize over this quantity).

Definition B.16. We introduce the following function

U(x) =
δF({ρ(x)})
δρ(x)

. (V.B.37)

Proposition B.17. The function U ′ has to satisfy the Hamilton-Jacobi equation∫ 1

0
dx

[(
D(ρ)ρ′

σ(ρ)
− U ′

)2

−
(
D(ρ)ρ′

σ(ρ)

)2
]
σ(ρ)

2
= 0 (V.B.38)

Proof. Following the lines of [16], we observe that the large deviation functional (V.B.33)
should not depend on the time T . We thus have that

F({ρ(x)}) = min
δρ(x),j(x)

[
F({ρ(x)− δρ(x)}) + δT

∫ 1

0
dx

(j(x) +D(ρ(x))ρ′(x))2

2σ(ρ(x))

]
. (V.B.39)

The particle conservation law imposes that δρ(x) = −δT × j′(x). The equation right above
can thus be rewritten

F({ρ(x)}) = min
j(x)

[
F({ρ(x)}) + δT

∫ 1

0
dx U(x)j′(x) + δT

∫ 1

0
dx

(j(x) +D(ρ(x))ρ′(x))2

2σ(ρ(x))

]
.

(V.B.40)
The optimal current profile ĵ(x) is obtained through the Euler-Lagrange equation

ĵ(x) +D(ρ(x))ρ′(x)

σ(ρ(x))
= U ′(x). (V.B.41)

Plugging back in (V.B.40) yields∫ 1

0
dx

[
U(x)ĵ′(x) +

σ(ρ(x))

2
U ′(x)2

]
= 0. (V.B.42)

We can integrate by part U(x)ĵ′(x) using the fact that U(0) = U(1) = 0 because of the
boundary conditions.

Solving this Hamilton-Jacobi equation gives in principle access to the large deviation func-
tional of the density profile F({ρ(x)}) through the relation (V.B.37). In practice for gen-
eral values of the diffusion D(ρ) and of the conductivity σ(ρ) we don’t know how to solve
this equation. It has only been solved for a very few models including the SSEP [16, 249],
the weakly asymmetric simple exclusion process [254, 255] and the Kipnis-Marchioro-Presutti
model [256,257].

We now turn to the study of the fluctuations of the current in the stationary state. We are
interested in the large deviation of the integrated current∫ 1

0
dx Q(x, T ) =

∫ T

0
dt

∫ 1

0
dx j(x, t) (V.B.43)

when the time T → ∞. One way to address the problem is to first study the generating
function of the cumulants of the integrated current G(τ) (the large deviation function can be
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obtained from the generating function through a Legendre transform, see chapter I). We recall
that G(τ) is defined as

G(τ) = lim
T→∞

lim
L→∞

1

LT
lnE[0,T ]

(
exp

(
τ

∫ T

0
dt

∫ 1

0
dx j(x, t)

))
(V.B.44)

where E[0,T ] denotes the expectation value with respect to the probability distribution on the
path history of current and density profiles on the time interval [0, T ]. The large deviation
principle given by the MFT (V.B.10) allows us to reduce this computation to an optimization
problem

G(τ) = lim
T→∞

1

T
sup

ρ(x,t),j(x,t)

[
τ

∫ T

0
dt

∫ 1

0
dx j(x, t)−

∫ T

0
dt

∫ 1

0
dx

(j(x, t) +D(ρ(x, t))∂xρ(x, t))2

2σ(ρ(x, t))

]
.

(V.B.45)
If some constraints are assumed on the dynamics of the model (the reader is invited to refer
to [253] for details), this is equivalent to a stationary optimization problem where the optimal
profiles can be chosen independent of time. In this case, due to the particle conservation law,
we have ∂xj = −∂tρ = 0. Hence the optimal current profile is constant in space and we have

G(τ) = sup
ρ(x),j

(
τj −

∫ 1

0
dx

(j +D(ρ(x))ρ′(x))2

2σ(ρ(x))

)
(V.B.46)

= sup
j

(
τj − inf

ρ(x)

∫ 1

0
dx

(j +D(ρ(x))ρ′(x))2

2σ(ρ(x))

)
. (V.B.47)

We recognize exactly a Legendre transformation with respect to j (see chapter I), and hence we
can identify the large deviation of the integrated current. This yields the following proposition.

Proposition B.18. The large deviation of the integrated current can be expressed as

F(j) = min
ρ(x)

∫ 1

0
dx

(j +D(ρ(x))ρ′(x))2

2σ(ρ(x))
(V.B.48)

Proposition B.19. The large deviation function of the current is given by

F(j) = j

∫ ρl

ρr

dρ
D(ρ)

σ(ρ)

[
1 +Kσ(ρ)√
1 + 2Kσ(ρ)

− 1

]
, (V.B.49)

where the constant K is fixed by the condition∫ ρl

ρr

dρ
D(ρ)√

1 + 2Kσ(ρ)
= j. (V.B.50)

The large deviation function of the particle current is thus obtained in parametric form.

Proof. We want to minimize the action

min
ρ(x)

∫ 1

0
dx

(j +D(ρ(x))ρ′(x))2

2σ(ρ(x))
(V.B.51)

over the density profile ρ(x) for a fixed current j (independent of the position x). Expanding
the square gives

min
ρ(x)

∫ 1

0
dx

[
j2

2σ(ρ(x))
+
D(ρ(x))2ρ′(x)2

2σ(ρ(x))
+
jD(ρ(x))ρ′(x)

σ(ρ(x))

]
(V.B.52)

= min
ρ(x)

∫ 1

0
dx

[
j2

2σ(ρ(x))
+
D(ρ(x))2ρ′(x)2

2σ(ρ(x))

]
−
∫ ρl

ρr

dρ
D(ρ)

σ(ρ)
(V.B.53)
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We are thus only left with the minimization of the first term in the previous sum (the second
one is now independent of the profile ρ(x)). The associated Euler-Lagrange equation reads

j2∂ρ

(
1

2σ(ρ̂)

)
+ (ρ̂′)2∂ρ

(
D(ρ̂)2

2σ(ρ̂)

)
= ∂x

(
D(ρ̂)2ρ̂′

σ(ρ̂)

)
, (V.B.54)

where ρ̂(x) is the optimal density profile. Multiplying by ρ̂′(x) leads to

∂x

(
j2

2σ(ρ̂(x))
− D(ρ̂(x))2ρ̂′(x)2

2σ(ρ̂(x))

)
= 0 (V.B.55)

Hence there exists an integration constant K such that

ρ̂′(x)2 =
j2(1 + 2Kσ(ρ̂(x)))

D(ρ̂(x))2
(V.B.56)

The constant K is fixed to satisfy the conditions ρ̂(0) = ρl and ρ̂(1) = ρr on the boundaries.
If the value of the current j does not deviate too much from the typical value j, we expect
the optimal profile to be monotone (more precisely decreasing if we assume that ρl > ρr). We
thus have

− ρ̂′(x)D(ρ̂(x))√
1 + 2Kσ(ρ̂(x))

= j. (V.B.57)

Integrating this last equation for x ranging from 0 to 1 leads to (V.B.50). Moreover, plugging
the value of ρ′(x) obtained in (V.B.57) in the action yields (V.B.49).

Remark B.20. This parametric form of the current large deviation function was obtained
in [248] with a different method by assuming an additivity principle of the large deviation
function with respect to the system size. This principle reads

FL′+L′′(j, ρl, ρr) = min
ρ

(FL′(j, ρl, ρ) + FL′′(j, ρ, ρr)), (V.B.58)

where FL(j, ρl, ρr) denotes the large deviation functional of the current in a system of size L
with reservoir densities ρl and ρr. The equivalence between these two methods suggests that the
additivity principle holds only when the optimal density profile that produces a given current
deviation is independent of time.

2 Single species systems with dissipation

a) Large deviation functional

The macroscopic fluctuation theory can be extended to a larger class of system with bulk
dissipation [258, 259]. More precisely we are interested in models describing lattice gas with
diffusive dynamics and creation/annihilation of particles in the bulk, which are driven out of
equilibrium by two reservoirs at different densities. An example of such model is the DiSSEP
that was presented and studied in details in chapter III.

We will start by presenting how the large deviation functional of the path history should
be modified to include the creation/annihilation dynamics in addition to the diffusive part
that we already encountered in the previous subsection. This will be a short summary of the
work [258], the reader is invited to study this reference for the details. We will focus on the
particular case of the DiSSEP. The MFT framework will be used to compute the variance
of the current on the lattice that will be checked against the exact value computed from the
microscopic point of view in chapter III (and whose thermodynamic limit was obtained in
subsection b)).

Let us start by briefly presenting the key ingredients of the MFT related to our model.
A detailed presentation can be found in [258, 259]. It has been shown that the microscopic
behavior of the system can be averaged in the thermodynamic limit and can be described at
the macroscopic level by a small number of relevant parameters: D(ρ), σ(ρ), A(ρ) and C(ρ).
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These parameters depend on the microscopic dynamics of the model and have to be computed
for each different model.

The two first are related to the diffusive dynamics on the lattice: D(ρ) is the diffusion
coefficient and σ(ρ) is the conductivity already introduced in the previous subsection for purely
diffusive systems. For systems with creation and annihilation, these parameters are defined
by considering the systems in which the creation/annihilation dynamics has been switched off
(leaving only the diffusive dynamics on), and applying on those reduced purely diffusive model
the same definition B.4.

Proposition B.21. For the DiSSEP, the diffusive dynamics is the same as for the SSEP and
hence the diffusion and conductivity take the values

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ). (V.B.59)

The two other parameters A(ρ) and C(ρ) are related to the creation-annihilation dynamics.
A(ρ) can be understood intuitively as the mean number of particles annihilated per site and
per unit of time when the density profile is identically flat and equal to ρ in the system whereas
C(ρ) stands for the mean number of particles created. A rigorous definition of these parameters
for general dissipative models can be found in [258]. We give the precise definition in the case
of the DiSSEP dynamics.

Definition B.22.
A(ρ)

L2
= 〈λ2τi−1τi〉ρ + 〈λ2τiτi+1〉ρ (V.B.60)

and
C(ρ)

L2
= 〈λ2(1− τi−1)(1− τi)〉ρ + 〈λ2(1− τi)(1− τi+1)〉ρ, (V.B.61)

where 〈·〉ρ denotes the expectation value with respect to the Bernoulli probability density(
1− ρ
ρ

)
⊗ · · · ⊗

(
1− ρ
ρ

)
. (V.B.62)

Note that for general dissipative processes this definition should be adapted accordingly to
the local creation/annihilation dynamics in the bulk.

Proposition B.23. For the DiSSEP, annihilation rate A(ρ) is given by

A(ρ) = 2λ2
0ρ

2 (V.B.63)

and the creation rate C(ρ) by
C(ρ) = 2λ2

0(1− ρ)2. (V.B.64)

Before stating the large deviation principle associated to dissipative models, we first need
to define the coarse-grained variable corresponding to the creation annihilation current. We
denote by K(t,i) the number of particles created minus the number of particles annihilated at
site i during the time interval [0, t]. It allows us to give the following definition.

Definition B.24. We introduce, for L large,

K(x, t) =
1

2
√
L

∑
|i−Lx|≤

√
L

K(L2t,i). (V.B.65)

Definition B.25. The macroscopic particle creation/annihilation current k(x, t) at time t and
at position x is then defined as

k(x, t) =
∂

∂t
K(x, t). (V.B.66)
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When the number of sites L goes to infinity, the probability of observing a given history of
the density profile ρ, of the lattice current j and of the creation-annihilation current k during
the time interval [0, T ], can by written as4

Proposition B.26.
P[0,T ] ({ρ, j, k}) ∼ exp

[
−LI[0,T ](ρ, j, k)

]
, (V.B.67)

with the large deviation functional

I[0,T ](ρ, j, k) =

∫ T

0
dt

∫ 1

0
dx

{
(j(x, t) +D(ρ(x, t))∂xρ(x, t))2

2σ(ρ(x, t))
+ Φ (ρ(x, t), k(x, t))

}
,

(V.B.68)
where

Φ(ρ, k) =
1

2

[
A(ρ) + C(ρ)−

√
k2 + 4A(ρ)C(ρ) + k ln

(√
k2 + 4A(ρ)C(ρ) + k

2C(ρ)

)]
. (V.B.69)

The quantities ρ, j and k are related through the conservation equation

∂tρ(x, t) = −∂xj(x, t) + k(x, t), (V.B.70)

and the value of ρ is fixed on the boundaries ρ(0, t) = ρl, ρ(1, t) = ρr.

Note that the factor 1/2 in the definition of Φ is a slight modification in comparison
to [258] due to the fact that we consider here creation-annihilation of pairs of particles instead
of creation-annihilation of single particles.

The minimum of the large deviation functional I[0,T ] is achieved when the particle currents
take their typical values, that is j(x, t) = −D(ρ(x, t))∂xρ(x, t) and k(x, t) = C(ρ(x, t)) −
A(ρ(x, t)). The typical evolution of the density profile is hence given by

∂tρ(x, t) = ∂x (D(ρ(x, t))∂xρ(x, t)) + C(ρ(x, t))−A(ρ(x, t)) (V.B.71)

which matches (V.A.10) for the DiSSEP.

b) Check with finite size lattice exact computations

Using the previous formalism and following [258], it is possible to compute the local variance
of the lattice current j in the stationary regime. Due to the fact that the dynamics of the
model does not conserve the number of particle, this current and its fluctuations depend on
the position in the system. Hence, given a function τ(x), we want to compute the generating

function of the cumulants of the integrated current
∫ T

0 dt
∫ 1

0 dx τ(x) j(x, t) for T going to
infinity. This leads to the following definition.

Definition B.27. We introduce the generating function

F({τ(x)}) = lim
T→∞

lim
L→∞

1

LT
lnE[0,T ]

(
exp

(∫ T

0
dt

∫ 1

0
dxτ(x)j(x, t)

))
. (V.B.72)

The previous expression can be simplified using (V.B.67) and a saddle point method. It
reduces to maximize a functional over the time dependent fields ρ, j and k. Assuming that
the extremum of this functional is achieved for time independent profiles, we end up with the
following expression (the reader is invited to refer to [258] for the details)

4The link with the quantities previously computed is given by the fact that in the stationary state the mean
value of j(x) is jlat(x) and the mean value of k(x) is jcond(x).
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Proposition B.28.

F({τ(x)}) = sup
ρ,j

(∫ 1

0
dxτ(x)j(x)− Î(ρ, j)

)
, (V.B.73)

with

Î(ρ, j) =

∫ 1

0
dx

(
(j(x) +D(ρ(x))∂xρ(x))2

2σ(ρ(x))
+ Φ (ρ(x), ∂xj(x))

)
. (V.B.74)

To compute the local variance of the lattice current j at the point y, it is enough to take
τ(x) = δ(x− y) and expand F({ετ}) up to order ε2. For a small perturbation ε, the fields are
expected to be close to their typical value

ρ(x) = ρ(x) + ε
f(x)

D(ρ(x))
, j(x) = −D(ρ(x))∂xρ(x) + εq(x) (V.B.75)

with the constraint f(0) = f(1) = 0 due to the boundaries. We then obtain

F({ετ}) = −εD(ρ(y))∂xρ(y) +
ε2

2
E(2)(y) (V.B.76)

with the variance of the lattice current at the point y

E(2)(y) = 2 sup
q,f

{
q(y)−

∫ 1

0
dx

(
(q(x) + f ′(x))2

2σ(ρ(x))
+

(q′(x) + U(x)f(x))2

4(A(ρ(x)) + C(ρ(x)))

)}
(V.B.77)

and U(x) = A′(ρ(x))−C′(ρ(x))
D(ρ(x)) = 4λ2

0 . We make the following change of variables to solve this
optimization problem

ϕ(x) =
q(x) + f ′(x)

σ(ρ(x))
, ψ(x) =

q′(x) + U(x)f(x)

2(A(ρ(x)) + C(ρ(x)))
, (V.B.78)

so that the Euler-Lagrange equations become for the DiSSEP:{
ψ′(x) = ϕ(x)− δ(x− y)

ϕ′(x) = 4λ2
0ψ(x).

(V.B.79)

Note that there are slight modifications in expressions (V.B.76) and (V.B.78) with respect
to [258], in accordance with the modification of Φ (see discussion after (V.B.69)).

These equations can be solved analytically and we get
ψ(x) =

θ(x ≤ y) sinh(2λ0x) cosh(2λ0(1− y)) + θ(x > y) sinh(2λ0(x− 1)) cosh(2λ0y)

sinh 2λ0

ϕ(x) =
2λ0 [θ(x ≤ y) cosh(2λ0x) cosh(2λ0(1− y)) + θ(x > y) cosh(2λ0(x− 1)) cosh(2λ0y)]

sinh 2λ0
.

(V.B.80)
The function q(x) can be also computed analytically by solving

q′′(x)− 4λ2
0q(x) = ∂x(2(A(ρ(x)) + C(ρ(x)))ψ(x))− 4λ2

0σ(ρ(x))ϕ(x) . (V.B.81)

Note that it depends on y, see for instance the expressions (V.B.80). It allows us to deduce
the expression of q(x) at the special point y (as needed in (V.B.76))

q(y) =

∫ 1

0
dx
[
σ(ρ(x))ϕ(x)2 + 2(A(ρ(x)) + C(ρ(x)))ψ(x)2

]
, (V.B.82)
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with ϕ and ψ are given above. Hence for the DiSSEP, the variance of the current lattice
computed from MFT is

E(2)(y) =

∫ 1

0
dx
[
σ(ρ(x))ϕ(x)2 + 2(A(ρ(x)) + C(ρ(x)))ψ(x)2

]
=

4λ2
0

sinh2 2λ0

[
cosh2 2λ0(1− y)

∫ 1

0
dx
(
σ(ρ(x)) + sinh2 2λ0x

)
+ cosh2 2λ0y

∫ 1

0
dx
(
σ(ρ(x)) + sinh2 2λ0(1− x)

)]
.

Using the explicit form for σ, we show that this result obtained from MFT matches perfectly
the previous result (V.A.24) computed exactly from a microscopic description of the model.

The result obtained here points out the consistency of the MFT developed in [258], for
a system with diffusion and dissipation, with exact computations performed for a finite size
lattice.

3 Multi-species diffusive systems: the multi-SSEP case

a) Large deviation functional

In this section we propose, based on the exact microscopic computations, a hydrodynamic
description of the multi-species SSEP which extends the MFT to systems with several species
of particles. We check the consistency with the exact results derived in the previous subsection
(about the large deviation functional of the density profile), the rigorous proof of the approach
remains to be done.

The first step toward the hydrodynamic description of the multi-species SSEP is to defined
coarse-grained, or average variables. In the same way as for the single species models, we

introduce the random variables ρ
(t,i)
τ := ρ

(i)
τ (Ct). We recall that the occupation number ρ

(i)
τ

is equal to 1 if the local configuration at site i is equal to τ and 0 otherwise. We recall also
that the random variable Ct denote the configuration of the system at time t. Its probability

law satisfies the master equation of the model. In other words ρ
(t,i)
τ is equal to 1 if there is a

particle (or hole) of species τ at site i and at time t and 0 otherwise.

Definition B.29. We define, for L large, the macroscopic density ρτ (x, t) of the species τ at
time5 t and at position x ∈ [0, 1] on the lattice by

ρτ (x, t) =
1

2
√
L

∑
|i−Lx|≤

√
L

ρ(L2t,i)
τ . (V.B.83)

We will also need the row vector

ρ(x, t) = (ρ0(x, t), . . . , ρN (x, t)). (V.B.84)

Note that the macroscopic density ρτ (x, t) is a random variable which is intuitively under-
stood as the average number of particles of species τ in a box of size 2

√
L (which explains the

denominator in the definition) around site Lx at time L2t.

We also need to define the macroscopic current of particles. We denote by Q
(t,i→i+1)
τ the

algebraic number of particles of species τ that have crossed the bound between sites i and i+1
(from left to right) during the time interval [0, t]. It allows us to give the following definition.

Definition B.30. We introduce, for L large,

Qτ (x, t) =
1

2L
√
L

∑
|i−Lx|≤

√
L

Q(L2t,i→i+1)
τ . (V.B.85)

5Again, in order to do this hydrodynamic limit, we will rescale in all this section the time with a factor L2,
as usual in this context of diffusive systems.
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Definition B.31. The macroscopic particle current jτ (x, t) of species τ at time t and at
position x is then defined as

jτ (x, t) =
∂

∂t
Qτ (x, t). (V.B.86)

We will also need the row vector

j(x, t) = (j0(x, t), . . . , jN (x, t)). (V.B.87)

Rate function for the multi-species SSEP. The idea of the MFT is to express the
probability to observe certain density profiles ρ(x, t) and current profiles j(x, t) during the
time interval [t1, t2] as a large deviation principle. We present now one of the main result
of this paper, which gives a new perspective on the rate function of diffusive models with
exclusion which can be seen as that of a model of free particles but with an additional exclusion
constraint.

Proposition B.32. We have the large deviation principle

P ({ρ(x, t), j(x, t)}) ∼ exp

[
−L

∫ t2

t1

dt

∫ 1

0
dx

N∑
τ=0

(jτ (x, t) + ∂xρτ (x, t))2

4ρτ (x, t)

]
, (V.B.88)

where the fields satisfy the usual conservation law

∂

∂t
ρ(x, t) = − ∂

∂x
j(x, t), (V.B.89)

the boundary conditions
ρ(0, t) = α, ρ(1, t) = β (V.B.90)

and the additional exclusion constraints

ρ0(x, t) + · · ·+ ρN (x, t) = 1, j0(x, t) + · · ·+ jN (x, t) = 0. (V.B.91)

The rate function (V.B.88) can be heuristically interpreted having in mind that, for Brow-
nian particles, the diffusion constant is D(ρ) = 1 and the conductivity is σ(ρ) = 2ρ. The
functional (V.B.88) is exactly the one that describes a model of independent Brownian par-
ticles of N different species, but on top of that we impose the exclusion constraint (V.B.91)
which translates the fact that there is at most one particle per site. We recall that in our nota-
tion the holes (empty sites) are interpreted as a species of particles. This formula is supported
by: (i) the consistency check with the large deviation functional of the density profile in the
stationary state done in the next subsection, (ii) the following remark.

Remark B.33. The well known case of the SSEP with a single species and holes can be
recovered from (V.B.88) by setting N = 1. We recall that the holes are labelled by 0 and the
particles 1. We have in this case j1(x, t) = −j0(x, t) := j(x, t) and ρ1(x, t) = 1 − ρ0(x, t) :=
ρ(x, t) due to the constraints (V.B.91). Then the rate function in (V.B.88) becomes∫ t2

t1

dt

∫ 1

0
dx

(j(x, t) + ∂xρ(x, t))2

4ρ(x, t)(1− ρ(x, t))
, (V.B.92)

which agrees with the known expression for the single species SSEP (recall that the diffusion
constant is given by D(ρ) = 1 and the conductivity by σ(ρ) = 2ρ(1− ρ)).
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b) Check with finite size lattice exact computations

Following what was done in [16], this framework allows us to express the probability to observe
at time T a density profile ρ(x) in the stationary state. We have to identify how this deviation
is produced, i.e. we have to find the optimal path ρ(x, t) such that ρ(x,−∞) = ρ(x) and
ρ(x, T ) = ρ(x):

F({ρ(x)} |α,β) = min
ρ(x,t),j(x,t)

∫ T

−∞
dt

∫ 1

0
dx

N∑
τ=0

(jτ (x, t) + ∂xρτ (x, t))2

4ρτ (x, t)
. (V.B.93)

Note that the probability to observe a deviation in the density profile ρ(x) does not depend
on the time at which this deviation occurs. It means that (V.B.93) does not depend on T .

Cutting the integration interval (−∞, T ] in (V.B.93) into two pieces (−∞, T − δT ] and
[T − δT, T ] yields

F({ρ(x)} |α,β) = min
δρ(x),j(x)

[
F({ρ(x)− δρ(x)} |α,β) + δT

∫ 1

0
dx

N∑
τ=0

(jτ (x) + ρ′τ (x))2

4ρτ (x)

]
,

(V.B.94)
where we have used the definitions ρ(x) − δρ(x) = ρ(x, T − δT ) and j(x) = j(x, T ). The
conservation law reads δρ(x) = −j′(x) × δT . The equation on the large deviation functional
(V.B.94) above suggests to introduce the following quantity.

Definition B.34. We define

Uτ (x) =
δF({ρ(x)} |α,β)

δρτ (x)
. (V.B.95)

We can write using (V.B.94) an equation satisfied by the Us(x)’s. Indeed, maximising
(V.B.94) over the current profile j(x) with the constraint (V.B.91) yields

jτ (x) = −ρ′τ (x) + 2ρτ (x)U ′τ (x)− 2ρτ (x)µ(x), (V.B.96)

with the Lagrange multiplier

µ(x) =
N∑
τ=0

ρτ (x)U ′τ (x). (V.B.97)

Using the fact that
∑N

τ=0 jτ (0)Uτ (0) =
∑N

τ=0 jτ (1)Uτ (1) = 0 (because of the boundary condi-
tions (V.B.90)), we can perform an integration by part and derive an equation satisfied by the
functions U ′τ (x).

Proposition B.35. The functions U ′τ (x) should satisfy the Hamilton-Jacobi equation

∫ 1

0
dx

 N∑
τ=0

(
ρ′τ (x)U ′τ (x)− ρτ (x)U ′τ (x)2

)
+

(
N∑
τ=0

ρτ (x)U ′τ (x)

)2
 = 0. (V.B.98)

We can check that the large deviation functional exactly computed in (V.A.73) indeed
fulfills this equation.

Proposition B.36. The function Uτ (x) obtained from the exact expression of the large devia-
tion of the density profile (V.A.73) (derived from finite size lattice computations) that is given
through direct computation by

Uτ (x) = ln

(
ρτ (x)

ρτ (u(x))

)
+ 1, (V.B.99)

where the function u satisfies (V.A.74), is a solution to the Hamilton equation (V.B.98).
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Proof. Using the constraints (V.B.91) and the expression of Uτ (x), the differential equation
(V.A.74) can be rewritten

u′′(x)

u′(x)
= −

N∑
τ=0

ρτ (x)U ′τ (x). (V.B.100)

This permits to show that

(
u′′

u′

)′
(x) =

N∑
τ=0

(
ρ′τ (x)U ′τ (x)− ρτ (x)U ′τ (x)2

)
+

(
N∑
τ=0

ρτ (x)U ′τ (x)

)2

. (V.B.101)

Then we deduce that the left hand side of (V.B.98) is equal to∫ 1

0
dx

(
u′′

u′

)′
(x) =

u′′(1)

u′(1)
− u′′(0)

u′(0)
= 0, (V.B.102)

because u′′(1) = u′′(0) = 0 thanks to (V.A.74).

Remark B.37. The computation presented above points out the consistency of the hydrody-
namic description (V.B.88) with the exact computations performed on the finite size lattice
(through matrix ansatz). This is thus a strong hint on the validity of the large deviation prin-
ciple (V.B.88) in the multi-species case.

238



Appendix A

Résumé en français

Physique statistique des systèmes hors d’équilibre

Un système physique est dit à l’équilibre thermodynamique s’il est à l’équilibre par rapport à
toutes les grandeurs physiques imaginables. Il doit par exemple être à l’équilibre mécanique,
thermique, électrodynamique, chimique. En d’autres termes c’est un système pour lequel
on n’observe aucun courant macroscopique d’aucune grandeur physique (comme un courant
d’énergie, de charge, de particules).

L’état de tels systèmes est obtenu en maximisant l’entropie sous certaines contraintes,
dictées par l’interaction du système avec son environnement (l’énergie moyenne peut être fixée
par exemple). Ce principe fondamental permet d’obtenir la célèbre distribution de Boltzmann

S(C) =
e−βE(C)

Z
, (R.1)

où S(C) désigne la probabilité que le système soit dans la configuration C et Z est la normal-
isation, appelée fonction de partition. Cela permet de définir un potentiel thermodynamique
(énergie libre) et de décrire efficacement les propriétés macroscopiques du système (transitions
de phase par exemple).

A l’opposé, un système physique est dit hors d’équilibre si il affiche des courants macro-
scopiques d’une ou plusieurs grandeurs physiques. L’archétype de tel modèle est donné par
deux réservoirs de particules de densités différentes reliés par un tuyau. Le réservoir de forte
densité se déverse dans celui de faible densité et on observe un courant de particules. Un
système peut être hors d’équilibre parce qu’il est en phase de relaxation vers l’équilibre ou
alors parce qu’il est maintenu hors d’équilibre par son environnement. On dit dans ce dernier
cas que le système est dans un état stationnaire hors d’équilibre. Ce sont ces états stationnaires
qui nous intéressent dans ce manuscrit.

Il n’existe pas de cadre général pour décrire de tels systèmes: on ne sait pas comment
généraliser le principe fondamental de maximisation de l’entropie et la distribution de Boltz-
mann. L’objectif est donc d’étudier des modèles simples et de calculer exactement dans ces
cas particuliers la distribution de l’état stationnaire, afin d’apporter un éclairage nouveau sur
la structure générale.

Le cadre utilisé pour décrire de tels systèmes est celui des châınes de Markov. Le système
peut occuper un nombre fini de configurations. Pendant un intervalle de temps infinitésimal
dt, le système se trouvant dans la configuration C a une probabilité m(C → C′)dt de sauter
dans la configuration C′. L’évolution temporelle de la distribution de probabilité du système
est dictée par l’équation mâıtresse

dPt(C)
dt

=
∑
C′ 6=C
Pt(C′)m(C′ → C)−

∑
C′ 6=C
Pt(C)m(C → C′), (R.2)

où Pt(C) désigne la probabilité que le système se trouve dans la configuration C à l’instant t.
Cette équation linéaire peut simplement se réécrire sous une forme matricielle en introduisant
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un vecteur |C〉 associé à chaque configuration C, un vecteur regroupant les probabilités de
toutes les configurations

|Pt〉 =
∑
C
Pt(C)|C〉, (R.3)

une matrice de Markov
M =

∑
C′,C

m(C → C′)|C′〉〈C|, (R.4)

où l’on définit m(C → C) =
∑
C′ 6=Cm(C → C′). L’équation mâıtresse devient

d|Pt〉
dt

= M |Pt〉. (R.5)

On s’intéresse particulièrement à l’état stationnaire associée à cette équation (son existence est
assurée par le théorème de Perron-Frobenius), on le notera |S〉: il vérifie M |S〉 = 0.

Les systèmes à l’équilibre thermodynamique sont caractérisés par la relation de bilan
détaillé

S(C)m(C → C′) = S(C′)m(C′ → C), (R.6)

qui résout de manière évidente la version stationnaire de l’équation mâıtresse. Elle permet
notamment de retrouver la distribution de Boltzmann et elle assure la réversibilité temporelle
du système dans l’état stationnaire.

Le cas des systèmes hors d’équilibre est beaucoup plus complexe. La relation de bilan
détaillé peut être généralisée mais elle ne conduit pas de manière évidente à une expres-
sion simple de la distribution stationnaire. Elle donne cependant de fructueux résultats, avec
le théorème de fluctuation (qui permet notamment de retrouver les relations de dissipation-
fluctuation d’Einstein, les relations de réciprocité d’Onsager). Elle suggère notamment l’étude
de la fonction génératrice du courant de particules dans l’état stationnaire qui semble être une
généralisation naturelle des potentiels thermodynamiques au cas hors d’équilibre.

On s’intéresse plus particulièrement dans ce manuscrit à des modèles d’exclusion. Ces
modèles sont définis sur des réseaux unidimensionnels avec un nombre fini de site L sur lequel
se déplacent des particules. Chaque site du réseau est soit vide, soit occupé par au plus une
particule (ce qui correspond à une règle d’exclusion de type Fermi). Il y a N espèces différentes
de particules. Le contenu du site i est décrit par une variable d’occupation locale τi ∈ {0 . . . N}.
τi = 0 si le site est vide, et s’il est occupé τi = 1, . . . , N suivant l’espèce de la particule qui
l’occupe. Une configuration sur le réseau est donc caractérisée par le L-uplet τ = (τ1, . . . , τL).
Le réseau peut être connecté à des réservoirs de particules au niveau du site 1 ainsi que du site
L ou alors avoir des conditions aux bords périodiques (géométrie d’anneau). On associe un
vecteur |τ〉 à chaque configuration locale τ = 0, . . . , N et on note V ' CN+1 l’espace vectoriel
engendré par ces vecteurs.

L’évolution temporelle du système est stochastique. Les particules peuvent sauter sur des
sites voisins (s’ils sont libres), réagir localement avec d’autres espèces, ou alors être créées
ou détruites, et tout cela avec des taux de probabilité donnés. La dynamique étant locale, la
matrice de Markov M peut se décomposer comme une somme d’opérateurs agissant localement
sur le réseau. Dans le cas périodique, cela donne

M =

L∑
k=1

mk,k+1, (R.7)

où m est un opérateur de saut local dans le bulk. C’est une matrice agissant sur l’espace
tensoriel V ⊗ V et qui encode la dynamique du modèle sur deux sites adjacents (une com-
posante V de l’espace tensoriel représente en quelque sorte un site du réseau). La matrice de
Markov agit elle sur l’espace tensoriel V ⊗L (qui représente les L sites du réseau). Les indices
représentent les composantes du produit tensoriel V ⊗L (i.e les sites) sur lesquels la matrice m
agit non trivialement. Plus précisément on a

mk,k+1 = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗m⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−k−1

. (R.8)

240



Pour les systèmes à bords ouverts, la matrice de Markov s’exprime comme

M = B1 +

L−1∑
k=1

mk,k+1 +BL, (R.9)

où B et B sont des matrices agissant sur V et qui encodent respectivement la dynamique avec
le réservoir de gauche et de droite. La matrice

B1 = B ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−1

(R.10)

agit sur le premier site du réseau et de manière similaire BL agit sur le dernier site du réseau.
Nous nous focalisons dans ce manuscrit sur des modèles d’exclusion qui sont exactement

solubles. Le but est de calculer exactement la distribution stationnaire de tels modèles. On
s’intéressera aussi aux fluctuations du courant de particules dans l’état stationnaire.

Les systèmes intégrables donnent un cadre idéal pour construire de manière systématique
de tels modèles d’exclusion. La procédure est détaillée dans la section suivante.

Intégrabilité

L’idée essentielle des modèles intégrables a pris naissance en mécanique classique avec l’observa-
tion que la présence de grandeurs physiques conservées (typiquement l’énergie) était très utile
à la résolution exacte des équations de Newton. Cette observation a été formalisée précisément
(dans le cadre de la mécanique analytique) avec le théorème de Liouville. Celui-ci affirme
que si un système évoluant dans un espace de phase de dimension 2n possède n grandeurs
physiques indépendantes conservées, alors ses équations du mouvement peuvent être résolues
par quadrature.

Cette idée a été transposée aux systèmes quantiques et aux châınes de Markov: dans ce
cadre une grandeur conservée est un opérateur qui commute avec l’Hamiltonien ou la matrice
de Markov. Il n’existe pas d’équivalent du théorème de Liouville dans ce cadre, assurant
que l’équation mâıtresse peut être exactement résolue s’il y a assez de grandeurs conservées.
Néanmoins leur présence est un indice fort d’une possible résolution analytique.

Pour les modèles d’exclusion, il existe un moyen systématique de générer simultanément
une matrice de Markov avec des opérateurs qui commutent avec elle (et qui commutent entre
eux deux à deux). L’ensemble de ces opérateurs et la matrice de Markov sont engendrés par
une matrice de transfert t(z), dépendant d’un paramètre spectral z. La propriété essentielle
de cette matrice de transfert est qu’elle commute pour des valeurs différentes du paramètre
spectral [t(z), t(z′)] = 0. Elle est reliée très simplement à la matrice de Markov M par une
relation du type t′(1) ∼ M . La matrice de transfert est construite à partir d’un objet clef:
la matrice Ř(z), qui apparâıt dans ce cadre comme la pierre angulaire de l’intégrabilité. Elle
agit dans l’espace tensoriel V ⊗ V . Elle est solution de la célèbre équation de Yang-Baxter
(braidée)

Ř12(z)Ř23(zz′)Ř12(z′) = Ř23(z′)Ř12(zz′)Ř23(z) . (R.11)

C’est une équation portant sur des matrices agissant dans l’espace tensoriel V ⊗ V ⊗ V . Les
indices désignent les composantes de l’espace tensoriel dans lequel les matrices agissent non
trivialement. Par exemple

Ř12(z) = Ř(z)⊗ 1, Ř23(z) = 1⊗ Ř(z). (R.12)

L’équation de Yang-Baxter est essentielle pour prouver la propriété de commutation de la ma-
trice de transfert. Dans le contexte des processus d’exclusion, la matrice Ř(z) est directement
connectée à l’opérateur de saut local m par une relation du type Ř′(1) ∼ m

Pour les systèmes aux conditions aux bords périodiques la matrice de transfert s’exprime
comme

t(z) = tr0(R0L(z) . . . R01(z)), (R.13)
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où R(z) = P.Ř(z), avec P l’opérateur de permutation sur V ⊗ V .
Pour les systèmes à bords ouverts, il est nécessaire d’introduire des matrices K(z) et K(z),

agissant sur V , qui assurent en quelque sorte l’intégrabilité des conditions aux bords. Celles-ci
doivent être solution de l’équation de réflexion

Ř12(z1/z2)K1(z1)Ř12(z1z2)K1(z2) = K1(z2)Ř12(z1z2)K1(z1)Ř12(z1/z2) , (R.14)

et d’une équation similaire pour K(z). C’est une équation portant sur des matrices agissant
sur V ⊗ V . Les indices indiquent encore une fois sur quelle composante de l’espace tensoriel
les matrices agissent non trivialement. Cette relation est essentielle pour prouver la propriété
de commutation de la matrice de transfert dans le cas ouvert. Les matrices K(z) et K(z)
sont directement connectées aux opérateurs de saut locaux B et B par des relations du type
K ′(1) ∼ B et K

′
(1) ∼ B. Pour de tels systèmes ouvert la matrice de transfert s’exprime

comme
t(z) = tr0(K̃0(z)R0L(z) . . . R01(z)K0(z)R10(z) . . . RL0(z)), (R.15)

où K̃(z) s’exprime simplement en fonction de la matrice K(z).
Il apparâıt donc très important de déterminer des solutions à l’équation de Yang-Baxter

et à l’équation de réflexion afin de découvrir de nouveaux modèles hors d’équilibre exactement
solubles. Des progrès ont été réalisés dans ce sens avec l’introduction de nouvelles structures
algébriques qui permettent de générer des solutions de ces deux équations par une procédure
de Baxtérisation. Cette procédure peut être résumée comme étant une méthode pour créer
une matrice R(z) ou une matrice K(z) à partir d’un opérateur de saut local m ou B vérifiant
des relations algébriques spécifiques, en ajoutant de manière judicieuse un paramètre spectral.
Cela a permis par exemple de proposer une classe de conditions aux bords intégrables pour la
généralisation multi-espèces de l’ASEP.

On s’intéresse dans la section suivante à une méthode permettant de calculer exactement
la distribution stationnaire des modèles intégrables hors d’équilibre.

Ansatz matriciel pour les états stationnaires hors d’équilibre

Depuis quelques décennies une technique s’est développée pour calculer analytiquement la dis-
tribution stationnaire de systèmes hors d’équilibre, appelée ansatz matriciel. Cette méthode a
été introduite pour résoudre exactement le processus d’exclusion simple totalement asymétrique
(TASEP, de l’acronyme anglais). Elle a depuis ce temps été largement utilisée pour résoudre
d’autres modèles d’exclusion.

L’idée de l’ansatz matriciel est d’exprimer la distribution stationnaire comme un produit
de matrices

S(τ1, . . . , τL) =
1

Z
〈〈W |Xτ1 . . . XτL |V 〉〉, (R.16)

avec Z une normalisation assurant que les probabilités stationnaires se somment bien à 1. Xτi

est une matrice dépendant du site i. 〈〈W | est un vecteur ligne et |V 〉〉 est un vecteur colonne
de sorte que la contraction de ce produit de matrices est un nombre réel. Cet ansatz peut se
réécrire de manière compacte sous forme vectorielle (qui nous est très utile pour la suite), en
introduisant le vecteur

X =


X0

X1

...
XN

 , (R.17)

contenant toutes les matrices. L’ansatz matriciel se réécrit alors

|S〉 = 〈〈W |X⊗ · · · ⊗X|V 〉〉. (R.18)

Les matrices X0, . . . , XN et les vecteurs 〈〈W | et |V 〉〉 doivent bien sûr satisfaire des relations
algébriques très précises pour que ce produit de matrices calcule correctement les probabilités
stationnaires.
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Dans le cas des modèles intégrables, il existe une manière systématique de déterminer ces
relations algébriques, grâce à deux relations clefs: la relation de Zamolodchikov-Faddeev

Ř

(
z1

z2

)
A(z1)⊗A(z2) = A(z2)⊗A(z1), (R.19)

et les relations de Ghoshal-Zamolodchikov

〈〈W |K(z)A

(
1

z

)
= 〈〈W |A(z), K(z)A

(
1

z

)
|V 〉〉 = A(z)|V 〉〉. (R.20)

A(z) est un vecteur dont les entrées sont des éléments d’une algèbre non commutative.
Ces relations sont à la racine des relations télescopiques dans le bulk

mX⊗X = X⊗X−X⊗X, (R.21)

et sur les bords
〈〈W |BX = 〈〈W |X, BX|V 〉〉 = −X, (R.22)

qui s’obtiennent respectivement en prenant la dérivée de la relation Zamolodchikov-Faddeev
par rapport à z1 et en imposant z1 = z2 = 1, et en prenant la dérivée des relations de Ghoshal-
Zamolodchikov par rapport à z et en imposant z = 1. Le vecteur X est donné par X = A(1)
et le vecteur X est obtenu par une relation du type X ∼ A′(1). Ces relations télescopiques
permettent de prouver très facilement que l’ansatz matriciel donne bien l’état stationnaire du
modèle (on obtient en effet une somme télescopique en agissant avec la matrice de Markov sur
l’état en produit de matrices).

Cette procédure peut être appliquée pour calculer l’état stationnaire de plusieurs nouveaux
modèles, qui ont été découvert en résolvant l’équation de Yang-Baxter et l’équation de réflexion.
L’un des modèles est une généralisation du processus d’exclusion simple symétrique (SSEP, de
l’acronyme anglais) où des paires de particules peuvent condenser ou s’évaporer. Un autre
modèle est un TASEP à deux espèces de particules avec des bords ouverts. Enfin le dernier
modèle est une généralisation multi-espèces (avec un nombre quelconque d’espèces) du SSEP
avec bords ouverts.

En résumé, les relations de Zamolodchikov-Faddeev et de Ghoshal-Zamolodchikov ont per-
mis d’introduire des ansatz matriciels avec une structure algébrique riche (avec par exemple
des opérateurs “chapeaux” non scalaires). De plus des calculs exacts de grandeurs physiques
(courants et densités de particules) ont pu être réalisés grâce à cet ansatz matriciel.

Equations qKZ et fluctuations du courant

Nous venons de voir que l’ansatz matriciel est particulièrement efficace pour calculer exacte-
ment l’état stationnaire de certains processus d’exclusion. Mais son champ d’application ne
se limite pas à cela. Nous allons voir une autre de ses applications, toujours dans le contexte
de la physique statistique hors d’équilibre. Nous considèrons le cas particulier de l’ASEP avec
bords ouverts et nous nous intéressons aux fluctuations du courant de particules dans l’état
stationnaire. La fonction génératrice des cumulants de cette observable s’obtient en déformant,
à l’aide d’un paramètre ξ, la matrice de Markov du modèle de façon à pouvoir “compter” les
particules qui sont injectées par le réservoir de gauche dans le système. La fonction génératrice
est la plus grande valeur propre de cette matrice déformée.

Nous tentons de déterminer cette plus grande valeur propre ainsi que le vecteur propre
associé (qu’on appelle le ground state) à l’aide des équations de Knizhnik-Zamolodchikov q-
déformées (équations qKZ). Ces équations peuvent être vues de manière simplifiée comme
des déformations, par un paramètre s, des relations Zamolodchikov-Faddeev et Ghoshal-
Zamolodchikov.

Le résultat essentiel est que ces équations admettent une solution polynomiale, qui s’exprime
sous forme de produit de matrices, lorsque la contrainte suivante est vérifiée:

ξ = sn, avec n ∈ N. (R.23)
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La normalisation du vecteur solution des équations qKZ dans ce cas est identifiée comme étant
un polynôme de Koornwinder associé à une partition particulière. Cela offre une expression
en produit de matrices pour ce polynôme.

De plus, nous avons conjecturé que dans la limite n→∞, le vecteur solution des équations
qKZ converge vers le ground state de la matrice de Markov déformée. Cela révèle une connexion
inédite entre les fluctuations du courant dans l’ASEP et la théorie des polynômes symétriques.

Limite hydrodynamique

Un des objectifs premiers de la physique statistique est de décrire de manière efficace le com-
portement macroscopique de systèmes physiques dans la limite où le nombre de leurs constitu-
ants tend vers l’infini. Le but est de déterminer à partir des interactions entre les constituants
élémentaires au niveau microscopique, des variables macroscopiques (telles que la température
ou la pression) ainsi que des lois physiques décrivant l’état du système (comme une équation
d’état par exemple).

Dans le cadre des processus d’exclusion, nous nous intéressons donc à la limite thermo-
dynamique, i.e lorsque le nombre de sites sur le réseau tend vers l’infini. Nous calculons
la limite thermodynamique des observables (courants et densités de particules notamment)
pour les nouveaux modèles introduits et étudiés sur le réseau de taille finie. Nous calculons
aussi de manière exacte la fonction de grande déviation des profils de densité pour le SSEP
multi-espèces, en utilisant un principe d’additivité prouvé grâce à l’ansatz matriciel.

Nous nous intéressons ensuite à une théorie développée dans les dernières années, appelée
théorie des fluctuations macroscopiques (MFT, de l’acronyme anglais), qui vise à donner un
cadre général pour décrire les systèmes diffusifs hors d’équilibre dans la limite thermody-
namique. L’idée est d’introduire des variables macroscopiques de courants et de densités de
particules (qui décrivent la valeur moyenne du courant et de la densité autour d’un point du
réseau). Par analogie avec la loi des grands nombres, ces variables sont supposées avoir un
comportement déterministe dans la limite thermodynamique. Plus précisément, il a été montré
que la probabilité d’observer une trajectoire, une évolution temporelle, de ces variables macro-
scopiques vérifie un principe de grande déviation. D’un point de vue physique, la fonction de
grande déviation peut être interprétée comme une action. Cela permet, au prix de résoudre
des équations différentielles non linéaires (qui sont des équations d’Euler-Lagrange obtenues
par minimisation de l’action), de calculer les fluctuations du courant et du profil de densité
dans l’état stationnaire.

Les résultats exacts obtenus pour le modèle avec évaporation et condensation de paires de
particules sur le réseau à taille finie ont été confrontés avec succès, dans la limite thermody-
namique, avec les prédictions de la MFT. Cela constitue la première vérification de ce type
pour les systèmes avec création et annihilation de particules dans le bulk. Enfin les résultats
obtenus pour la généralisation multi-espèces du SSEP à bords ouverts (notamment concernant
la fonction de grande déviation des profils de densités) ont permis de proposer une extension
de la MFT à ce système diffusif à plusieurs espèces de particules. Cela apporte un nouveau
point de vue sur la transcription de la contrainte d’exclusion dans la fonctionnelle de grande
déviation (action) de la MFT.
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[V2] N. Crampé, L. Frappat, E. Ragoucy, and M. Vanicat, “3-state Hamiltonians associated
to solvable 33-vertex models,” Journal of Mathematical Physics 57 no. 9, (2016)
093504, arXiv:1509.07589 [math-ph].

[V3] N. Crampe, E. Ragoucy, and M. Vanicat, “Integrable approach to simple exclusion
processes with boundaries. Review and progress,” J. Stat. Mech. (2014) P11032,
arXiv:1408.5357 [math-ph].

[V4] N. Crampe, C. Finn, E. Ragoucy, and M. Vanicat, “Integrable boundary conditions for
multi-species ASEP,” J. Phys. A: Math. Theor. 49 no. 37, (2016) 375201,
arXiv:1606.01018 [math-ph].

[V5] N. Crampe, K. Mallick, E. Ragoucy, and M. Vanicat, “Open two-species exclusion
processes with integrable boundaries,” J. Phys. A: Math. Theor. 48 no. 17, (2015)
175002, arXiv:1412.5939 [cond-mat.stat-mech].

[V6] C. Finn and M. Vanicat, “Matrix product construction for Koornwinder polynomials
and fluctuations of the current in the open ASEP,” J. Stat. Mech. (2017) 023102,
arXiv:1610.08320 [math-ph].

[V7] N. Crampe, M. Evans, K. Mallick, E. Ragoucy, and M. Vanicat, “Matrix product
solution to a 2-species TASEP with open integrable boundaries,” J. Phys. A: Math.
Theor. 49 no. 47, (2016) 475001, arXiv:1606.08148 [cond-mat.stat-mech].

[V8] M. Vanicat, “Exact solution to integrable open multi-species SSEP and macroscopic
fluctuation theory,” Journal of Statistical Physics (2017) 1–22, arXiv:1610.08388
[cond-mat.stat-mech].

[V9] N. Crampe, K. Mallick, E. Ragoucy, and M. Vanicat, “Inhomogeneous discrete-time
exclusion processes,” J. Phys. A: Math. Theor. 48 no. 48, (2015) 484002,
arXiv:1506.04874 [cond-mat.stat-mech].

[V10] N. Crampe, E. Ragoucy, V. Rittenberg, and M. Vanicat, “Integrable dissipative
exclusion process: Correlation functions and physical properties,” Phys. Rev. E 94
(Sep, 2016) 032102, arXiv:1603.06796 [cond-mat.stat-mech].

References

[1] B. Diu, B. Roulet, C. Guthmann, and D. Lederer, Eléments de physique statistique.
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Approche intégrabiliste des modèles de physique statistique hors d’équilibre.

Malgré son indéniable succès pour décrire les systèmes physiques à l’équilibre thermodynamique (grâce
à la distribution de Boltzmann, reflétant la maximisation de l’entropie, et permettant la construction
systématique de potentiels thermodynamiques), la physique statistique n’offre pas de cadre général
pour étudier les phénomènes hors d’équilibre, i.e dans lesquels on observe un courant moyen non
nul d’une grandeur physique (énergie, charge, particules...). L’objectif de la thèse est de décrire de
tels systèmes à l’aide de modèles très simples mais qui retranscrivent néanmoins les principales car-
actéristiques physiques de ceux-ci. Ces modèles sont constitués de particules se déplacant de manière
aléatoire sur un réseau unidimensionnel connecté à des réservoirs et soumises à un principe d’exclusion.
L’enjeu est de calculer exactement l’état stationnaire du modèle, notamment le courant de particules, ses
fluctuations et plus particulièrement sa fonction de grande déviation (qui pourrait jouer le rôle d’un po-
tentiel thermodynamique hors d’équilibre). Une première partie de la thèse vise à construire des modèles
dits intégrables, dans lesquels il est possible de mener à bien des calculs exacts de quantités physiques.
De nouveaux modèles hors d’équilibre sont proposés grâce à la résolution dans des cas particuliers de
l’équation de Yang-Baxter et de l’équation de réflexion. De nouvelles structures algébriques permettant
la construction de ces solutions par une procédure de Baxtérisation sont introduites. Une deuxième
partie de la thèse consiste à calculer exactement l’état stationnaire de tels modèles en utilisant l’ansatz
matriciel. Les liens entre cette technique et l’intégrabilité du modèle ont été mis en lumière au travers
de deux relations clef: la relation de Zamolodchikov-Faddeev et la relation de Ghoshal-Zamolodchikov.
L’intégrabilité a aussi été exploitée au travers des equations de Knizhnik-Zamolodchikov quantiques,
afin de calculer les fluctuations du courant, mettant en lumière des connexions avec la théorie des
polynômes symétriques (polynômes de Koornwinder en particulier). Enfin une dernière partie de la
thèse porte sur la limite hydrodynamique des modèles étudiés, i.e lorsque la maille du réseau tend vers
zéro et que le nombre de constituants du système tend vers l’infini. Les résultats exacts obtenus sur les
modèles à taille finie ont permis de vérifier les prédictions de la théorie des fluctuations macroscopiques
(concernant les fluctuations du courant et du profil de densité dans l’état stationnaire) et de l’étendre
à des modèles comprenant plusieurs espèces de particules.

Integrabilist approach of non-equilibrium statistical physics models

Although statistical physics has been very successful to describe physical systems at thermal equilibrium
(thanks to the Boltzmann distribution, which reflects the maximization of the entropy, and allows one
to construct in a systematic way thermodynamic potentials), it remains elusive to provide an efficient
framework to study phenomena that are out-of-equilibrium, i.e displaying non vanishing current of
physical quantities (energy, charge, particles...). The goal of the thesis is to describe such systems
with very simple models which retain nevertheless their main physical features. The models consist in
particles evolving randomly on a one dimensional lattice connected to reservoirs and subject to hard-
core repulsion. The challenge lies in computing exactly the stationary state of the model, especially
the particle current, its fluctuations and more precisely its large deviation function (which is expected
to play the role of an out-of-equilibrium thermodynamic potential). In the first part of the thesis we
construct models, called integrable, in which we can perform exact computations of physical quantities.
We introduce several new out-of-equilibrium models that are obtained by solving, in specific cases, the
Yang-Baxter equation and the reflection equation. We provide new algebraic structures which allow
us to construct the solutions through a Baxterisation procedure. In the second part of the thesis we
compute exactly the stationary state of these models using a matrix ansatz. We shed light on the
connection between this technique and the integrability of the model by pointing out two key relations:
the Zamolodchikov-Faddeev relation and the Ghoshal-Zamolodchikov relation. The integrability is also
exploited, through the quantum Knizhnik-Zamolodchikov equations, to compute the fluctuations of the
particles current, unrevealing connections with the theory of symmetric polynomials (the Koornwinder
polynomials in particular). Finally the last part of the thesis deals with the hydrodynamic limit of
the models, i.e when the lattice spacing tends to 0 and the number of particles tends to infinity. The
exact results obtained for a finite size system allow us to check the validity of the predictions of the
macroscopic fluctuations theory (concerning the fluctuations of the current and the density profile in
the stationary state) and to extend the theory to systems with several species of particles.
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