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Abstract

Plastic deformation of classical crystalline materials is essentially dominated by
dislocations and their mutual interactions. In nanocrystalline (nc) metals, different
grain boundary mechanisms may exist in addition to the dislocation-based mecha-
nisms. The dependency on, among others, the grain shape, grain orientation, initial
dislocation density, grain boundary structure and external conditions will promote
one or two deformation mechanisms over others. These dominant mechanisms
dictate the overall response of nc metals. The influence of microstructural features
in promoting these dominant mechanisms need to be better understood individually
and collectively. In the scope of the thesis, 3D discrete dislocation dynamics (DDD)
simulations were performed on three micron-sized single grains of same volume
but differing in aspect ratios to understand the influence of grain morphology. A
decrease in localization of plastic deformation with increasing grain aspect ratio
was observed. Due to the enhanced cross-slip mechanism, grains with higher aspect
ratio exhibit a lower strain hardening behaviour. The anisotropic plastic response
of elongated grains was quantified in terms of the magnitude of backstress on
each slip system. Further, a polycrystalline version of dislocation dynamics code
coupled with a finite element method was used to study the mechanical behaviour
of free-standing palladium thin films with columnar grains. The initial dislocation
density considered in the simulations is close to the one measured experimentally.
DDD simulations of a polycrystal with hexagonal grains properly reproduce the
strain hardening behaviour. For a heterogeneous grain size distribution of the poly-
crystal, an increase in strength with decreasing film thickness was observed. The
key element is that the probability of smaller grains with no initial dislocations is
increasing with decreasing thickness of the film. Finally, by adapting Read’s model,
the influence of a static, electrically-charged dislocation on electrical properties in
semiconductors was studied.

Key words: 3D Discrete dislocation dynamics simulations; Interfaces, grain
boundaries, twin boundaries, free surfaces; Crystal plasticity; Mechanical properties;
Dislocations and electronic properties
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Résumé

En général, la déformation plastique des matériaux cristallins est essentiellement
dominée par le mouvement des dislocations et leurs interactions mutuelles. Pour
les métaux nanocristallins (nc), les joints de grains influencent le mouvement des
dislocations de différentes façons. Ainsi, la forme des grains, l’orientation des grains,
la densité de dislocation initiale qu’il contient, la structure des joints de grains et
la nature de chargement extérieur sont autant de paramèters qui suceptibles de
faire varier la résponse du chargement mécanique du polycristal. Dans le cadre
de cette thèse, ces effets sont étudiés en réalisant des simulations de dynamique
des dislocations discrète 3D (DDD). Dans un premier temps, le rôle de la forme
du grain est étudié en réalisant des simulations du comportement en traction
uniaxiale de trois grains isolés de taille micronique de même volume, mais qui
diffèrent par leur facteur de forme. On observe une diminution de la localisation
de la déformation plastique avec l’augmentation du rapport de forme du grain.
La réponse plastique anisotrope des grains allongés a été quantifiée en terme de
contrainte interne développée sur chaque système de glissement. En outre, une
version polycristalline du code de dynamique des dislocations couplée avec des
éléments finis a été utilisée pour étudier le comportement mécanique des films
minces de palladium ayant une structure de grain colonnaire. La densité de dislo-
cations initiale prise en compte dans les simulations est proche de celle mesurée
expérimentalement. Les simulations de DDD d’un polycristal reproduisent correc-
tement le comportement d’écrouissage. L’augmentation de la résistance observée
avec la diminution de l’épaisseur du film a été atteinte en utilisant une distribution
hétérogène de la taille des grains du polycristal. Le résultat principal est que la
probabilité d’avoir des grains plus petits sans dislocations initiales augmente avec la
diminution de l’épaisseur du film. L’effet de la distribution de tailles des grains voi-
sins sur la contrainte interne développée à l’intérieur du grain central a été étudiée.
Enfin, en adaptant le modèle de Read, l’influence d’une dislocation statique électri-
quement chargée sur les propriétés électriques des semi-conducteurs a été modélisée.

Mots clés : Simulations de la dynamique des dislocations ; Interfaces, joints de
grains, surfaces libres ; plasticité ; Propriétés mécaniques et électroniques
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Introduction and Background
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0.1. Context

0.1 Context

‘Innovative’ new materials are key for commercial success of many products devel-
oped by the high-tech industry. In the present age of miniaturization, nanoscale
materials have attracted a huge attention from the industry. The reason for such
a high demand lies in the possibility of producing materials with specific ‘en-
hanced’ properties by tailoring the structure of the material at nanoscale. Magnetic
recording media, electronic semiconducting devices, LEDs, anti-reflexive coatings,
thin film solar cells and thin film batteries are few of the non-exhaustive possible
commercial applications of nanoscale materials.

A common point among the examples presented is the use of advanced thin film
depositing techniques. Controlled synthesis of materials as thin films is mastered
by many research groups all around the world. But, the real-world applications of
such thin films still requires that the response of thin films is understood completely
under the influence of external factors (stress, temperature, pressure etc.,). A
market share < 20% of thin film PV solar cells in the photo-voltaic industry
highlight the flaws in the commercial adaptation of the thin film technology due to
the lack of complete knowledge about the complex behavior of thin films.

Present-day thin film research emphasises on understanding the response
of thin film materials. During the last decade, a wide variety of mechanical
characterization techniques have been developed to study thin films experimentally
(On-chip tensile test by Sharpe and co-workers [162], Nanoindentation by Espinosa
and co-workers [56], Bulge test by de Boer and co-workers [38], Beam bending by
Florando and Nix [66]). A film is generally categorized as a thin film if the thickness
is below a few microns. Generally, thin films are polycrystals often involving only
a single grain (not always) along the thickness direction. The excellent strength
of thin films compared to their bulk counterparts, is due to the presence of high
density of interfaces with nanosized grains. In such materials, the mechanical
properties are dominated by the collective behavior of interfaces and defects.

For the development of materials with enhanced properties, a better under-
standing of microstructural features such as, dislocation density distribution, grain
size distribution, grain morphology, distribution of interfaces and their influence
on elementary deformation mechanisms is needed. Experimental investigation of
individual microstructural features is indeed a highly daunting task even with the
present-day advanced nano-fabrication techniques. Inspired by the challenge on
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providing a better understanding of deformation behavior of metallic thin films, a
systematic numerical approach has been set up and carried out during the course
of the thesis. A detailed outline of the thesis is presented in the Section 0.2.

0.2 Outline of the thesis

The main objective of the thesis is to investigate the collective influence of mi-
crostructural features of the metallic thin films on mechanical properties. Special
emphasis has been placed on studying the plastic deformation mechanisms in
non-equiaxed (columnar) grains. The thesis comprises seven chapters and each
chapters is further organized into four parts depending on the specific nature of the
topic introduced or study carried out during the course of the thesis. The outline
of the thesis is presented below.

In Part I, Chapter 1 introduces the topic of interfaces and type of interfaces
in crystalline materials. Grain boundary models developed to address interfaces in
crystalline materials are reviewed. Experimental technique which has been used
for investigation of thin films is reviewed in Chapter 2. This chapter also presents
experimental results by highlighting the microstructural features in Pd thin films.
The highlighted microstructural features are the major topic of interest in the
numerical simulations carried out in Chapter 5 and Chapter 6. Finally, Chapter
3 presents a brief introduction to numerical models at different length and time
scales, the reason behind selection of the particular numerical approach is specified.

In Part II, Chapter 4 explains the methodology of the 3D discrete dislocation
dynamics simulations used in the thesis. To harness the power of graphical
processing units (GPUs), heterogeneous parallel programming of the stress field
computation has been implemented and tested for a static dislocation setup.
The basic idea behind the implementation of dislocation interaction with grain
boundaries in dislocation dynamics code is presented. The implemented dislocation-
grain boundary model has been applied to study dislocation interaction with
coherent twin boundary in a bicrystal. Selected results of dislocation interaction
with coherent twin boundary are presented.

In Part III, Chapter 5 introduces the issues faced by phenomenological crystal
plasticity models in predicting plastic anisotropy in elongated grains (with high
aspect ratios). Inaccuracies in predicting plastic anisotropy comes from the fact that
the pileup behavior is not modelling accurately at single grain level. We perform

4



0.2. Outline of the thesis

discrete dislocation dynamics simulations on single grain of different aspect ratios
to predict the influence of grain shape on dislocation slip activity and inturn, back
stress. The influence of cross slip mechanism in such predictions is also investigated.
Discussions are followed by the proposal of a simple analytical expression to predict
changes in the magnitude of back stresses arising due to grain shape (cf. Appendix
A). Our understanding of the anisotropic plastic deformation behavior in a single
grain is now extended by performing DD simulations on a polycrystalline thin films
in Chapter 6. This chapters presents all the information about the microstructural
details which were accounted while modeling Pd thin films. Results of the 3D
DDD polycrystalline simulations are presented by addressing the most relevant
microstructural features of Pd thin films. The influence of specific microstructural
features on strain hardening capacity and ductility of Pd thin films are discussed.

In the final part [Part IV] of the thesis, dislocations in semiconducting ma-
terials and their influence on electrical properties has been studied in Chapter 7.
Implementation of Read’s electrostatic model creates a bridge between dislocations
and electronic properties of semiconductors. Possibilities of extending the present
model to study polycrystalline silicon photovoltaics are discussed.

Finally, major conclusions drawn during the course of the thesis are listed. Few
possible research directions are suggested for those who are interested in taking
advantage of the defect-based material models to study plastic deformation in
crystalline materials.
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1 Overview: Interfaces in metallic
materials

AMetallic material is said to be defective when it deviates from a perfect crys-
tal lattice. Among the different category of crystal defects, attention has

been primarily drawn towards interfaces, which are planar defects in crystalline
materials. Establishing a proper understanding of the behavior of different in-
terfaces and their influence on macroscopic properties has become a prime area
of research in the 21st century. Materials modeling at different length- and time-
scales administered a small revolution in our approach towards understanding
their multiscale behavior. However, the assumptions employed while develop-
ing/utilising a particular numerical technique should not be overlooked. For
example, the earliest 3D DDD models [microMegas] developed during the late
90s were intended to establish a better understanding of the plastic deformation
behavior in a micron-sized single grain. Where, assuming grain boundaries of
a single grain as strong obstacles to dislocations is justifiable. Such assumptions
need to be improved/modified while working with polycrystals.

First chapter of the thesis starts with a brief introduction to the concept of in-
terface. Different types of interfaces generally observed in crystalline materials
are reviewed. Dislocation-grain boundary interaction models were developed
to establish a better understanding of the materials behavior. Different models
employed in the DD community to model dislocation-grain boundary interac-
tions are presented. Advantages and disadvantages of using a particular model
are highlighted.

1.1 Interfaces in crystalline materials

In general, crystalline materials may have regions with different chemical compo-
sitions (phases), or regions of different lattice structures, or in some cases both.
Interfaces are common regions which separate the materials of different chemical
compositions (phase) or lattice structures. Based on phase and structure, interfaces
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Chapter 1. Overview: Interfaces in metallic materials

in crystals are broadly classified into three categories [130].

1. Free surfaces are interfaces between a solid phase material and a vapour
or liquid phase material.

2. Interfaces between crystals are interfaces among one or more solid phase
materials. Depending on whether the interface is in the same solid phase or
not, they are further divided into two types:

(a.) Hetero-phase interface and

(b.) Homo-phase interface

3. Interfaces within a crystal generally occur due to the change in atomic
arrangement of a previously single crystal. These type of interfaces are
generally viewed as stacking faults or anti-phase boundaries. Anti-phase
boundaries are often observed in compound materials.

1.1.1 Free surfaces in crystalline materials

Free surfaces are a special type of solid-vapour (or liquid) interfaces. The atomic
arrangement of a crystalline material abruptly ends at a free surface. As the name
indicates, free surface is a stress-free surface1. But, if an edge dislocation is placed
at a distance d from the free surface, non-zero stresses are exerted on the free
surface due to the presence of linear defects in the crystal. These defects are
repulsive if the surface is rigid; otherwise they are generally attractive. Linear
defects attracted to the free surface, may exit the crystal by leaving behind a step
on the surface. Such visible surface steps are generally referred to as slip traces.
Figure 1.1(a) and 1.1(b) shows slip traces on the surface of a Ni bicrystal which
indicate the changes in slip system activities in the two crystals with changing
misorientation2 (∆θ).

In the case of nanocrystalline materials, smaller sized grains in a polycrystal
may have very low defect density. The attractive nature of free surfaces may pull
the dislocations out these small grain once they are activated and leaving the
grain defect-free. This mechanism is called dislocation starvation [79]. In order
to maintain compatible plastic deformation in the polycrystal, new dislocations

1Stress-free surface is indicated for a surface with zero normal traction. Non-zero in-plane
surface stresses may still exists

2Misorientation indicates the change in lattice orientation between two grains in a polycrystal

8



1.1. Interfaces in crystalline materials

Figure 1.1 – Slip traces on the free surface of a bicrystal with (a) ∆θ = 0o; (b)
∆θ = 20o [122]

can nucleate from the surface steps. Atomic simulations showed that surface steps
act as favoured sites for the nucleation of dislocations in Al sample [17]. Such
surface dislocation nucleation mechanism can be incorporated as local rules in
dislocation dynamics simulations. One example of the use of dislocation nucleation
algorithm for nucleating new dislocations from free surfaces was implemented in
three-dimensional dislocation dynamic simulations to investigate size-dependent
plasticity in sub-micron FCC micropillars under torsion [156].

1.1.2 Phase boundary in crystalline materials

Phase boundaries are planar defects separating two solids in different phases. Due
to the presence of more than two phases, they are also called as hetero-phase
boundaries.

In metallic materials such as iron, along-with the chemical composition, the
lattice structure changes with temperatures. Iron shows a BCC structure for
temperature up to 912o C. The structure of iron changes from BCC to FCC for
temperatures between 912o C and 1395o C and changes back to BCC structure for
temperatures above 1395o C. Such changes of phases also depend on the presence
of impurities, such as carbon, Ni, Al etc., All the possible phase changes under
the influence of specific impurities and temperatures are graphically represented
in a phase diagram. These phase diagrams also predict the co-existence of two
phases which are generally separated by a phase boundary. Different types of phase
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boundaries exist according to their atomic arrangement at the boundary. Consider
the lattice structure of the first phase is represented by blue-coloured atoms and
the lattice structure of second phase is represented by red-coloured atoms. An
interface formed by perfect lattice match between two phases is called coherent
interface and is shown in the Figure 1.2(a)). Whereas, a semi-coherent interface is
formed when there is a partial lattice mismatch. Residual dislocations responsible
for the mismatch, are formed from the interaction of a lattice dislocation moving
towards a previously coherent interface (cf. Figure 1.2(b)). An interface with no
matching lattice is referred to as a incoherent interface. A schematic representation
of an incoherent interface is shown in Figure 1.2(c).

Figure 1.2 – Schematic representation of (a) coherent, (b) semi-coherent and (c)
incoherent interfaces, respectively [180]

1.1.3 Grain boundaries in crystalline materials

Grain boundaries separate two crystals of the same phase. They are also called
homo-phase boundaries due to the presence of only a single phase in the metallic
material.

Crystalline materials generally tend to show a highly ordered atomic arrange-
ment. If a crystalline material, on the whole, shows a single highly ordered atomic
arrangement, it is then said to be a perfect single crystal. Whereas in a polycrys-
talline material, every crystal is identified by its own preferential atomic order.
The changes in the atomic arrangement among crystals is often seen in polycrys-
tals. Grain boundaries can be viewed as the narrow defective (transition) regions
highlighting the difference in atomic arrangement among two or more adjacent
crystals as shown in Figure 1.3(b).

In a more generalized sense, the atomic arrangements of a single crystal can be
represented as a rotation of the crystal lattice about a laboratory/real frame. Such
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1.1. Interfaces in crystalline materials

a crystal rotation is generally denoted by Euler angles [21,103]. Every crystal in
a polycrystalline specimen is differentiated by the different lattice rotation they
acquire (cf. Figure 1.3(a)). In this case, a grain boundary is a two-dimensional (or)
planar defect of finite plane thickness separating two or more crystals of different
lattice orientations.

Figure 1.3 – (a) Grain boundaries in a polycrystal; (b) An example atomic arrange-
ment at triple junction [137]

1.1.4 Crystallography of a grain boundary

It has already been established that a grain boundary separates two crystals in
same phase and share a common crystal structure. A grain boundary generally
possesses nine degrees of freedom (DOF): five macroscopic DOF and four micro-
scopic DOF. The microscopic parameters result from relaxation processes and are
not independent of the macroscopic parameters. So, a grain boundary can be fully
characterised by its five independent macroscopic parameters [169].

The five independent macroscopic parameters (DOF) are:

• one DOF for the rotation angle θ between the two crystals;

11



Chapter 1. Overview: Interfaces in metallic materials

• two DOF for the rotation axis o=[uvw] defined by its direction cosines;

• two DOF for the orientation of the grain boundary plane defined by its
normal n.

These five parameters provide complete information for the transformation into
a bicrystal from a given single crystal. The first three parameters specify mutual
misorientation of the adjacent grains A and B (Figure 1.4). This misorientation is
defined by the rotation axis o=[uvw] and rotation angle θ. The final two parameters
provide information about the orientation of the grain boundary between the
misorientated grains, which is defined by the normal n.

Figure 1.4 – Crystallography of a grain boundary [118]

1.1.5 Types of grain boundaries

The changes in the crystal orientation is generally addressed by misorientation angle
(∆θ) about a common rotation axis. Depending on the measure of misorientation,
grain boundaries are segregated as low-angle grain boundaries (LAGB) when the
∆θ < 15o. On the other hand, all the grain boundaries with ∆θ > 15o are
categorized as high-angle grain boundaries (HAGB).
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The simplest categories of low angle grain boundaries are tilt and twist grain
boundaries. These grain boundaries are categorized depending on their relationship
between the rotation axis and the grain boundary normal. Tilt grain boundaries
follow the relationship of the rotation axis being perpendicular to the grain boundary
normal (o ⊥ n). Whereas, twist grain boundaries follow a parallel relationship
between the rotation axis and the grain boundary normal (o ‖ n). Figure 1.5
show a schematic view of the tilt and twist boundaries in a bicrystal. A real grain
boundary in a crystal is rarely of a pure tilt or twist nature. Generally, combination
of both tilt and twist boundaries in crystalline materials are grouped as mixed
grain boundaries.

Figure 1.5 – Schematic representation of a pure tilt and a pure twist boundary in
a bicrystal [118]

1.1.6 Twins in crystalline materials

Twin boundaries constitute a category of a special kind of grain boundaries which
are generally present inside a single crystal. Twin boundaries are formed when
the atoms on either side of the boundaries are related by a reflection of 60o/180o.
Twins often show a lowest grain boundary energy due to the attained additional
symmetry. Figure 1.6 shows a coherent twin boundary (Σ3 < 111 >) in Ni with the
lowest energy. Apart from a single coherent twin boundary (Σ3 boundary), energies
of several Σ3 boundaries having same misorientation angle but different boundary
planes are also shown. The variation in the energies of Σ3 boundaries highlight the
crucial role of the boundary plane on grain boundary properties. Similar conclusions
were drawn from the experimental and computational results for copper [61,147].
Disorientation angle alone is not sufficient to determine the grain boundary energy.
But, the general trend of energies of low angle grain boundaries (<111> twist and
<100> twist and <110> symmetric tilt) has been observed to closely align with
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Figure 1.6 – Grain boundary energy versus disorientation angle in Ni [67]

the prediction of the Read-Shockley’s dislocation-based grain boundary model.

Twins are of prime importance in nanocrystalline materials. Apart from acting
as obstacles to dislocation motion, they also impart additional ductility to the
crystalline material. Depending on the formation mechanism, twins in FCC metals
are further categorised as annealing twins, deformation twins and growth twins.
Deformation twins are formed as a consequence of plastic deformation. Such
a deformation mechanism has been observed mostly in low-symmetry crystals,
such as magnesium. Christian and Mahajan reviewed deformation twinning in
coarse-grained materials [96]. Deformation twinning in nanocrystalline materials
has been reviewed by Zhu and co-workers [204]. In contrast, growth twins are
formed during the fabrication process. Presence of growth twins in nc-Pd thin films
were suggested to be the reason behind increased ductility [189]. Recently, the two
classes of twins: growth and deformation twins in metals have been reviewed [13].

Faults in the stacking sequence of FCC crystals are often seen. Twins can also
be seen as sequence of stacking faults in a single crystal. Figure 1.7 shows the
stacking sequence in a perfect FCC crystal and a crystal twinned about the twin
plane.
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Figure 1.7 – Stacking sequence of a perfect crystal and a twinned crystal modified
from [157]

1.2 Dislocation-grain boundary interaction models

Grain boundaries (GBs) play an important role in controlling mechanical properties
of materials. When polycrystalline metals are deformed at low-temperatures, plastic
deformation is proceeded by the motion of dislocations in individual grains and also
across the boundaries between neighbouring grains. The four possible mechanisms
for slip propagation across a grain boundary as listed by Shen [163] are:

• Dislocation nucleation at GB

• Dislocation absorption by dissociation in the interface

• Dislocation transmission across interface

• Dislocation absorption and subsequent re-emission

The corresponding sketches for different mechanisms are shown in the Figure 1.8
below.
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Figure 1.8 – Sketches of possible dislocation mechanisms for slip propogration
across interface [163]

In the case of dislocation transmission, the choice of slip system is predictable
and several authors proposed criteria for predicting slip system [122,163]. Among
them, LRB criteria is widely accepted. As an extension to the LRB model, a
modified LRB models has been proposed [49]. The LRB criteria states that the
slip transfer across GB depends on:

a.) Geometry of the GB and lattice slip planes

b.) Dislocation character

c.) Stress state

whereas, the modified LRB criteria incorporates important details at the GB, such
as:

1.) Angle between lines of intersection between incoming and emitted slip plane
should be small with respect to GB.

2.) The residue left at the GB after transmission event should be small

3.) Resolved shear stress (RSS) on the slip plane of the transferred/emitted
dislocation should be significantly higher than the RSS of the GB plane.

4.) The normal compressive stress on the GB should be small

TEM and HVEM experiments on 304 stainless steel revealed that the most
frequent deformation mechanism of 60o dislocation pileup is transmission and
simultaneous reflection at the GB [49].
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Generally, a grain boundary is modelled as impenetrable by specifying very
high barrier strength to the facet (τgb = 1.e50MPa for example). Since, dislocations
can not physically attain such high stress values, they tend to stop at the facet.
This method of modeling grain boundaries accurately represents grain morphology
and thereby the pileup behavior in each grain. Chapter 5 of the thesis exclusively
addresses the importance of grain morphology on plastic deformation behavior in
single grains. Due to the impenetrable facets, dislocations piling up against the
grain boundary is shown in Figure 4.10. It should be noted that, apart from the
grain boundary labelled in Figure 4.9, all the other facets are generally Free surface
3. But for simplicity, we assume them also to be as grain boundaries in a bicrystal
setup.

1.3 Generic models for grain boundaries

As mentioned before, grain boundaries being impenetrable to dislocations in 3D
DDD simulations is a very crude assumption. Different approaches have been
followed in the DD community to address this issue. The three widely followed
GB modeling approaches are presented in the subsections below.

1.3.1 Line tension model

To essentially capture the features of dislocation transmission across grain bound-
aries, a simple line tension model has been proposed [104].

According to this model, dislocation transmission across a grain boundary occurs at
a critical stress τ cgb. An incoming dislocation b1 from Grain1 is being transmitted
into Grain2 as outgoing dislocation b2; whilst leaving a residue ∆b at the grain
boundary is shown in Figure 1.9. Such transmission events can be modelled
by placing a Frank-Read (FR) source 4 very close to the grain boundary in the
corresponding neighbouring grain. When the resolved shear stress exceeds a
critical value τ cgb, the FR source activates and behaves as if the dislocation is
being transmitted into the neighbouring grain. Few drawbacks of this model is
the necessity in physically placing a FR sources close to the GB to create residual
dislocations at GBs.

3Surface from which dislocations can escape the grain by leaving behind a step on it
4Source length corresponding to a specific critical stress value
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Figure 1.9 – Schematic view of dislocation transmission explained using de Koning’s
line tension model [202]

By assuming a very low misorientation between grain (i.e., a similar incoming
and outgoing dislocation segments without any residu at the grain boundary), one
can avoid physical representation of FR sources near GBs and can simply specify a
critical stress value for the GB. Following such a procedure 3D DDD simulations
for different critical transmission stress values were carried out to study plasticity
in polycrystalline thin films [202].

1.3.2 Dislocation array model

The idea behind dislocation-based models for grain boundary in metals was based
on possibility of finding experimental evidence of particular arrays of dislocations
constructed as a grain boundaries. Dislocation model of grain boundaries was first
suggested by Bragg and Burgers in 1940. The evidence of edge dislocation walls
lead to the first quantitative study of the grain boundary models by Read and
Shockley [188]. This model was based on a discrete description of edge dislocations
as a low angle grain boundary. Read and Shockley further tried to establish a link
between grain boundary energies and their misorientation angle for low angle grain
boundaries.

1.3.2.1 Discrete approach

Read and Shockley’s dislocation-based GB model was based on description of a
symmetric low angle tilt grain boundary as a wall of edge dislocations. Based on
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the experimental evidence, sub-grain boundaries are represented by a network of
edge dislocations on the grain boundary plane as shown in Figure 1.10. Further, a
relationship between the grain boundary misorientation angle (θ) and the spacing
(d) between the edge dislocations of Burgers vector b was established and is shown
in Equation 1.1. An extrapolation of Read and Shockley’s formula for high-angle
grain boundaries was carried out by substituting θ by sinθ (cf. Equation 1.2) [37]
leading to Equation 1.2:

d =
b

θ
(1.1)

|b|
d

= 2sin
θ

2
(1.2)

where θ is the misorientation angle, b is the Burgers vector of edge dislocations
and d is the spacing between edge dislocations in the grain boundary plane.

Figure 1.10 – (a) A low angle symmetric tilt boundary represented as a wall of
edge dislocations; (b) dislocation spacing vs misorientation angle [188]

In an asymmetric tilt grain boundaries, the grain boundary plane deviates by
an angle ψ from its symmetric position. Asymmetric twist grain boundaries require
two sets of screw dislocations to represent the grain boundary.
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Figure 1.11 – A 60o boundary showing equivalence of ψ = 0o and ψ = 45o models
and relationship to imperfect (210) surfaces [188]

Whereas, asymmetric tilt grain boundaries are represented by at least two sets
of edge dislocations. The perpendicularity condition between the Burgers vector
of the two dislocation sets should be satisfied. The spacing (d1, d2 for grain 1 and
grain 2 respectively) between edge dislocations of each set will then be:

1

d1

=
|b1|
θcosψ

, (1.3)

1

d2

=
|b2|
θsinψ

. (1.4)

Equation 1.5 was established to relate interface energy, γsymmb and misorienta-
tion angle, θ. Under the assumption of isotropic continuum elasticity theory, Read
and Shockley subdivided the energy per unit length of an edge dislocation, Ed into
the contribution of its dislocation core energy, Ec and the energy arising from the
strain fields surrounding the dislocations, Es as in Equation 1.5, leading to
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Ed = Ec + Es (1.5)

= Ec +
µb2

4π(1− ν)
ln
d

ro
, (1.6)

where µ and ν are the shear modulus and Poisson ratio of the material, ro = b is
the dislocation core radius, where b is the magnitude of Burgers vector and Ec is
the energy of the dislocation core.

The energy per unit area for a symmetric tilt boundary is obtained by sub-
stituting Equation 1.1 to account for the number of dislocations per unit length
as:

γsymmb =
θ

b

(
µb2

4π(1− ν)
ln

1

θ
+ Ec

)
(1.7)

= θ

(
Ec
b
− µb

4π(1− ν)

)
. (1.8)

The grain boundary energies predicted by Read-Shockley’s dislocation-based
model were verified against experiments. The model remained valid for misorien-
tation angles θ < 15o. For misorientation angles θ > 15o, the dislocation-based
models can no longer be applied because of the loss of identity of individual disloca-
tions when the spacing between them is infinitely small. So, grain boundaries with
misorientation angle larger than 15o are termed as high angle grain boundaries
(HAGB).

Models such as coincidence site lattice (CSL) and displacement shift complete
(DSC) lattice construct the structure of the interface on the assumption that the
atoms try to remain close to their ideal positions. At certain misorientations, a
transition plane exists on which certain atomic positions in the grain boundary
coincide with the ideal lattice positions of both the crystals. These atomic po-
sitions are termed as coincidence site and the lattice containing these sites are
termed coincidence site lattice (CSL). Grain boundary represented accordingly is
characterized by the density of coincidence sites, which is defined by the quantity
Σ. CSL model is most widely used to differentiate grain boundaries in crystals.
Experiments suggest that the CSL grain boundary of low Σ indeed consists of a
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low energy configuration. Since, CSL only exists for very special, defined angles; it
does not continuously change with misorientation. Drawback of the CSL model is
compensated by the introduction of dislocation with DSC Burgers vectors. These
dislocations are also called secondary grain boundary dislocations, as they are
confined to the grain boundary only. Because of the use of misorientation based
approach to represent grain boundaries and their interaction with dislocations
(cf. Section 4.3.7 of Chapter 4), models based on structure of interfaces are not
explained in detail. For more details about these models, a review has been carried
out by Sutton and Balluffi [169].

Read and Shockley in their model assumed grain boundaries as single or multiple
array of dislocations. A more detailed explanation of the model has already been
presented in Section 1.3.2.1 of Chapter 1. Eventhough, this model has a strong
limitation to model only low angle grain boundaries (LAGBs), considerable work has
been carried out using the model to represent GBs in 3D DDD simulations [123,167].
One advantage of using such representation of GBs is that no explicit rules are
needed to model dislocation-grain boundary interactions. The stress field of the
dislocation array acting as grain boundary will define when a subsequent dislocation-
grain boundary interaction can take place. This method is useful while working
with LAGBs in a simple bicrystal or tricrystal configurations. But, the use of this
method is highly constricted for polycrystals. Representing grain boundary as
dislocation arrays in a polycrystal will be challenging. So, such a representation of
grain boundary has been avoided in the present study.

1.3.3 Dislocation dissociation model

Nodal discritization based DD code provide an advantage of easy representation of
dissociation of a dislocation segment at the grain boundary due to the flexibility in
the number of degrees of freedom provided to each dislocation segment. Specifying
local dislocation-grain boundary rules is significantly easier when compared to that
of conventional lattice based codes. Moving ahead in similar direction, implementa-
tion of local rules for dislocation interaction with coherent twin boundary in HCP
and FCC crystals have been carried out [11,58].

In spite of these advancements, the use of a physics based numerical model to
accurately represent grain boundaries and predict materials behavior is still limited.
The use of a physics based model to predict behavior of a polycrystal is one of the
motivations of the present thesis.
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1.4 Remarks

This chapter provided a short introduction to interfaces and types of interfaces
usually seen in crystalline materials. Crystals in single-phase material which are
separated by grain boundaries were categorized mainly based on disorientation angle.
Edge dislocations were used in modeling grain boundaries of lower disorientations.
An example bicrystal simulation with the assumption of grain boundary as an
impenetrable obstacle is shown. Different generic approaches followed in the DD
community to model dislocation-grain boundary interactions are presented.
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2 Experimental investigation of thin
films

METALLIC thin films serve as excellent candidates for studying polycrystals
with grain sizes in the order of few nanometers. Experimental investiga-

tion of nanocrystalline materials would not have been possible without the ad-
vancement of different micro- and nano-fabrication techniques, except for the
use of nanoindentation which does not involve any fabrication steps (only sur-
face preparation).

This chapter presents an overview on the new on-chip tensile testing method
developed at UCL as several test results which will be simulated in this the-
sis have been obtained with this method. Various steps involved in the micro-
fabrication of thin films are presented. Along-side, important results from the
experimental observations of Pd thin films are also reviewed.

2.1 Overview: On-chip tensile testing method

The on-chip tensile testing method was developed to deform free-standing thin
films [34,78]. This nano-mechanical technique (cf. Figure 2.1) was developed at
UCL to enable characterization of mechanical properties [78] and relaxation/creep
behavior [34, 119] of free-standing thin films at a very low strain rate condition
(< 10−6s−1). The basic concept behind this method is the use of internal stress
developed during the micro-fabrication process to deform a thin film. The on-chip
test requires no external loading device; hence, it is flexible for testing thousands
of structures at the same time under different external conditions (temperature,
load etc.,). To establish an overview, the technique is now explained for fabrication
of classical structures in a sequence of five individual steps, for an application to
the testing of Pd films.

Step 1: The micro-fabrication process starts with the selection of substrate mate-
rial. The choice of (100) mono-crystalline silicon wafer (cf. Figure 2.2(a)) as
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Figure 2.1 – Schematics of on-chip tensile testing technique [33]

a substrate is influenced by the type of structure to be studied. Silicon wafers
are polished on one side; and are of 3 inches diameter and 180 µm thickness.

Step 2: On top of the substrate, a sacrificial layer is deposited as shown in Figure
2.2(b). This layer is generally removed in the later stages to perform the
tensile test. So, the material for this layer should be selected in such a
way that it does not damage the actuator and the specimen layers. Plasma
enhanced chemical vapour deposition (PECVD) was used to deposit the
silicon dioxide sacrificial layer at 300oC. The precursor gases were composed
of 100 sccm of SiH4, 700 sccm of N2O and 350 sccm of N2. The layer gets
densified during 20 minutes at 800oC to provide optimum control of etching
rate. The typical thickness of the sacrificial layers is 1 µm and compressive
stresses of about 100 MPa are internally developed.

Step 3: The material selected as the actuator layer should be mechanically stable
and also contains high level of internal tensile stresses uniformly distributed
through-out the wafer. A low pressure chemical vapour deposition (LPCVD)
of Si3N4 layer was deposited at 800oC over the sacrificial layer as shown in
Figure 2.2(c). The precursor gases were composed of 30 sccm of SiH2Cl2
and 120 sccm of NH3 at a pressure of 35 Pa in the tube. Internal tensile
stresses of 1 GPa were introduced in the layer. A layer thickness of almost
half that of the specimen thickness was used to create a strong overlap of the
two layers and to avoid premature fracture in the area.
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Step 4: Patterning is performed before (cf. Figure 2.2(d)) and after (cf. Figure
2.2(f)) deposition of the specimen (Pd) layer (cf. Figure 2.2(e)) using e-beam
evaporation. Pd is deposited on top of a thin Ti or Cr adhesion layer to
ensure a good adhesion with the underneath layers. The microstructure of
the Pd is varied by changing the deposition rates (0.3 to 10 Å/s). The Pd
films were patterned using lift-off photolithography.

Step 5: Figure 2.2(g) shows the final processing steps which allows loading of
Pd beams by releasing the structure from the constraint of the substrate by
etching the SiO2 sacrificial layer with hydrofluoric acid (HF 73%) at room
temperature.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.2 – Steps involved in the fabrication of Pd thin film

After every process step, the thickness of the actuator and sacrificial layers were
characterized by ellipsometry. Layer curvature1 and Pd thickness measurements
were performed by a profilometer. Displacement measurements were carried out

1Curvature is estimated by measuring internal stress using Stoney method
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using a field emission gun (FEG) 2. It should be noted that this section is just a
brief overview of the on-chip technique. A more comprehensive explanation about
the on-chip tensile testing technique can be obtained [32,126].

2.2 Microstructure of thin films

In contrast to the low ductility generally observed in nc materials, Pd thin films
showed an unexpectedly high strain hardening capacity [93]. In nanoscale materials,
thermally-activated grain boundary mechanisms [83, 88, 109, 117,165, 170, 196] were
believed to influence the rate sensitivity [76, 158]. The observation of no dominant
GB mechanisms [189] highlights the requirement for a more detailed analysis on
the microstructural features of the thin film. This section reviews experimental
results published on Pd thin films [31,33,93,119,189,190].

2.2.1 Stress-strain curve

The complete stress-strain response of thin film is obtained by varying the test
specimen size (cf. Figure 2.3) using the micro-fabrication technique described in
section 2.1.

Micro-tensile tests were carried out on Pd thin films of three different thickness
(80nm, 160nm and 310nm). At 0.2% offset strain, the measured yield stresses
were 450 ± 39, 690 ± 86 and 1030 ± 149 MPa for 310, 180 and 80 nm thick films
respectively.

The curves T15_2, T10_2 and T10_2 (cf. Figure 2.4) of the 80, 160 and 310
nm thick films are represented after smoothing and interpolation in Figure 2.5.
The Young’s modulus of 120 GPa, measured by nanoindentation, is represented as
the slope of the linear elastic region in the curves (black-line in the Figures 2.5 and
2.4).

In order to avoid artefacts such as obstruction of dislocation motion due to
substrate and/or passivation layer, further experiments were conducted on free-
standing and unpassivated films of 90, 200 and 480 nm thickness (cf. Figure
2.6) [119]. The major change was the use of a Ti adhesion layer which was later

2FEG is an ultra-high resolution Schottky field emission scanning electron microscope and is
ideal for studying nanoscale materials
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Figure 2.3 – Test specimen of different lengths on a substrate

Figure 2.4 – Stress-strain curves of (a) 80nm, (b) 160nm and (c) 310 nm, respectively
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Figure 2.5 – Stress-strain curves after
smoothening and interpolation, the Pd
films are covered with a few nm thick Cr
layer

Figure 2.6 – Stress-strain curves of free-
standing, unpassivated films (90, 200, 410
nm thickness)

etched away with the sacrificial layer.

2.2.2 Grain orientation distribution

Grain size changes were not observed in ACOM-TEM measurements. The lack
of evolution in grain sizes confirmed the absence of GB migrations. GB sliding
has not been observed by conventional TEM analysis. Figure 2.7(b) and Figure
2.7(c) shows the texture data with preferential grain orientation in the direction
perpendicular and parallel to the thin film respectively. A moderate fibre texture
oriented along [110] direction perpendicular to the film was observed in Pd thin
films. For this texture, a good balance of tensile strength and ductility was observed.
Experimentally, no preferential in-plane orientation was observed in these films.

2.2.3 Grain size distribution

An increase in the strength of the films with a decrease of the film thickness is
evident from Figure 2.5. Such a Hall-Petch like effect is often reported in the
literature [109, 165]. But, the general notion of a decrease in grain size with
decreasing film thickness is not observed in Pd films. The cross-section analysis of
three films revealed that the in-plane grain size does not vary with film thickness
as shown in grain width distribution of the figure 2.8. The in-plane grain size was
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Figure 2.7 – Microstructure of the as-deposited Pd film [31]

observed to be ∼30nm in all the three films. Mostly, grains were columnar in shape;
with the grain height being in-alignment with the film thickness. Hence, the reason
for the size dependent strength must be found in the thickness dimension which
will be one of the motivation for our simulations.

Figure 2.8 – Grain width distribution and grain height distribution derived from
the cross-section analysis of three film thickness [31]
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2.2.4 Density of linear defects

High density of linear defects were observed in Pd thin films. The dislocation
density in the as-deposited film measured by HRTEM was 4 ± 0.7 x 1016m−2. This
density was an average value of four grains in the same sample. Details about the
method followed to calculate density can be found in [31]. Twice the initial mean
dislocation density (7 ± 0.7 x 1016m−2) was observed in the deformed specimen
(4 hours after release). This density was an order of magnitude higher than the
densities normally seen in nanocrystalline materials. Such density changes confirm
the role of dislocation mediated plasticity in Pd films.

During the relaxation stage, a decrease by a factor of ∼2 is observed. Figure
2.9(b-d) shows a subsequent appearance and disappearance of Lomer-Cottrell lock
with time which may induce hardening in FCC crystals like Pd. This further
highlights the dislocation-based mechanisms dictating the mechanical response of
the Pd films during both pre-deformation and the slow relaxation stages [31].

Figure 2.9 – (a) Average dislocation density vs time; (b-d) Changes in the dislocation
positions with time [31]

2.2.5 Twins in thin films

Twin boundaries can serve as strong obstacles to dislocation motion and can also
enhance the dislocation storage ability. A large percentage (∼20%) of twins were
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found in the Pd films [190].

Figure 2.10 – Twin boundary thickness evolution upon relaxation [31]

Reaction of lattice dislocations with perfect coherent twin boundaries resulted
in the loss of coherency. This loss of coherency is seen as the progressive increase in
TB1 and TB2 thickness in Figure 2.10. Presence of twins was observed to increase
the dislocation storage capacity of the film.

2.3 Remarks

In this chapter, an overview of the recently developed on-chip mechanical testing
technique is presented. This technique has been extensively used to study behavior
of Pd thin films [31,33,34,119,189,190]. Ultra-high strength and moderate to high
ductility of Pd thin films were observed to arise not from GB mechanism, but from
microstructural features of the thin film, such as

• Dislocation density distribution in the thin films can be responsible for local
and global heterogeneous deformation.

• Grain morphology: Columnar grains with aspect ratios ranging from ∼3.0 in
the thinnest film to ∼16.0 in the thickest film should influence the thermally-
activated mechanisms locally in a grain.

• Grain size distribution: Evidence of no significant changes in the average
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grain size ∼ 30nm among three films highlights the relevance of grain size
distribution.

• Grain orientation distribution: Experimentally, the improved ductility was
observed in films with a preferential [110] texture.

• Presence of twins provided evidence to the high dislocation storage capacity
of nc-Pd films.

These experimental results provided quantitative understanding of deformation
in Pd thin films. But, it is still difficult to correlate a particular deformation
mechanism to the macroscopic behavior of the film. For example, the mean
dislocation density over four grains in the film provide very little information
about the plastic deformation behavior of each individual grain. Heterogeneities of
internal stresses may arise due to grain size distribution in the film. The influence of
surrounding grains with no preferential grain orientation is to be better understood.
The presence of twins contributing to the ultra high strength and ductility of Pd
films should be justified. Other questions such as influence of grain morphology
on suppressing the GB mechanisms or relevance of a preferential orientation of
the grain have not been systematically addressed. More experiments on thin films
may provide few answers, but it will be a daunting task to systematically perform
such experiments. Numerical modelling of plasticity is a powerful alternative for
probing the un-answered questions. Some of the numerical techniques developed
especially for predicting the materials behavior at nano-/meso- scale are presented
in the next Chapter 3.
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3 Numerical modeling of plasticity in
metals

DUE to the multiscale nature of metallic materials, their macroscopic behav-
ior closely depend on elementary events at atomic-scale. It has been the

goal for many researchers to develop a single concurrent multi-scale model to
explain materials behavior at different length and time scales. In an attempt
not so far away from the goal, researcher have developed different numerical
techniques based on the underlying physics of materials at different length- and
time- scales. The underlying physics in a lower-scale model is passed as a local
rule to higher-scale models in hierarchical multiscale modeling approaches.

This chapter covers different numerical techniques generally used for mod-
eling of metallic materials at different length and time scales. Starting with
an explanation of the multiscale nature of metallic materials, present-day chal-
lenges in modeling these materials are highlighted. The basic idea behind dif-
ferent numerical techniques is reviewed. Finally, the approach followed for
modeling/predicting thin films behavior is presented.

3.1 Multiscale nature of materials behavior

The reason behind the macroscopic plastic behavior of metals is mostly due to
the presence of defective regions in the material. In-fact, linear defects, such
as dislocations, were long acknowledged to be the reason behind most of the
macroscopic events observed in metallic materials. Dislocations which are the
carriers of plasticity, collectively influence the macroscopic properties such as
strength, ductility, toughness, strain hardening capacity etc..,

Material behavior is controlled by phenomena over a wide range of length and
time scales. An example explaining such an inter-connection is the observation of
localized damage due to fatigue (at length-scales < 100 microns); which is linked to
the formation of persistent slip bands at length-scale between 1-10 microns; in-turn
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has its effect due to dislocation wall formations at the sub-micron regime and the
events at atomic level are seen as the base for such macroscopic behavior.

In nanoscale materials, grain boundaries events such as GB sliding, GB rotation,
GB growth etc., are considered as the major contributors for the high strain rate
capacity. Most of the times, the GB events are initiated due to the interaction of
dislocations with grain boundaries or activation of pre-existing GB dislocations.
Incorporating such events in advanced numerical models is required to accurately
predict the materials behavior. One such attempt has been made during this thesis
to incorporate dislocation slip transmission across GBs (cf. Section 4.3.7 of Chapter
4). As pointed out in Chapter 2, experimental observations of Pd thin films show
no evidence of active GB mechanisms. In such cases, dislocation-based thermally
activated mechanisms are believed to drive plasticity in these films. Modeling
accurately the grain shape and also accounting for grain size distributions may
be vital for predicting size effects or plastic deformation behavior in such cases.
The collective behavior of these interfaces may have a pronounced influence on the
macroscopic properties of nanoscale materials.

3.2 Challenges in modeling materials behavior

Nanocrystalline materials are throwing new challenges at the materials modeling
community. Modeling the overall material behavior using large-scale atomic simu-
lations, without any doubt, would increase the chances in predicting elementary
deformation mechanism in nanocrystalline materials. Atomistic simulations are
mostly confined to studying a single deformation mechanism [170, 171]. For ex-
ample, atomic simulations were carried out to understand interaction of a screw
dislocation with a coherent twin boundary [28,81]. Recently, our colleagues have
investigated similar problem using quasicontinuum (QC) simulations [177]. The
real question is, how important are such detailed deformation mechanisms when
modeling materials with high density of interfaces? There is no single answer to
this question. But, primarily, it is very important to understand the materials
behavior under the collective influence of more than one elementary deformation
mechanism; whilst modeling the interfaces accurately. This section addresses few
of the major challenges faced by the materials modeling community.

1. Anisotropic response of the material

2. Short-range and long-range effects due to the collective behavior of defects
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3. Computational feasibility of the numerical model

3.3 Numerical modeling of polycrystals

Every numerical model has its own advantages and disadvantages. Figure 3.1 shows
different numerical techniques which can be used at different scales (length- and
time-) to model mechanical response of a material.

Figure 3.1 – Different numerical tools at different length- and time- scales [80]

The choice of the numerical model should not solely depend on the accuracy in
predicting the materials response (the ability to model the experimentally observed
trends such as, Hall-Petch effect, strain hardening), but also on the computational
efficiency. In Figure 3.2, a region (red-coloured box) is highlighted on a snapshot of
the thin film. Assuming that the material in the highlighted region is periodically
replicated in the thin film, the setup in different numerical techniques are presented.
Figure 3.2 highlights the possibilities of modeling the same problem using different
numerical approaches. The concepts behind each of these models is briefly reviewed
and the advantages or disadvantages of using a certain numerical model for modeling
thin films are highlighted in this section.
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Figure 3.2 – Different numerical models for thin film modeling (a) atomistics [161],
(b) dislocation dynamics and (c) 2D crystal plasticity model [119], respectively

3.3.1 Atomistic modeling

Atomic modeling tools such as molecular dynamics (MD) allows prediction of the
macroscopic properties of a system through the simulation of particle (atoms in
the case of metals) interactions and their evolution with time. The first molecular
dynamics simulation of liquid water was done by Rahman and Stillinger [146].

In MD simulations, initial positions and velocities of all the particles in the
systems are specified as initial conditions. The force among all the particles is
calculated by the selected inter-atomic potential. The time-dependent changes are
followed by solving a set of classical equations of motion for all the particles in the
system. The algorithm is presented as sequence of steps followed in a basic MD
code.

Step 1: Define initial positions (~ri(to)) and velocities (~vi(to))

Step 2: Force calculation at time (tn) using ~Fi = −~∇iU(~r1, ~r2, ~r3...., ~rn)

Step 3: Solving the equations of motion for all particle using mi
d2~ri
dt2

= ~Fi

Step 4: Update the positions and velocities of all the particles by implicit- or
explicit- integration schemes ~ri(tn)→ ~ri(tn+1) ~vi(tn)→ ~vi(tn+1)
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Step 5: Update the timestep (tn+1 = tn + ∆t) and proceed to Step 1 until the total
time is less than certain prescribed value.

The main advantage of this method is the use of a single interatomic potential
determining the occurrence of all the elementary deformation processes in the
material. A detailed atomic-level information can be obtained by these simulations.
The strength of the MD method lies in the ability to study processes which are
away from equilibrium (Eg: dynamic fracture, crack growth, elementary mechanism
of plastic deformation etc.,).

The limitations of the technique lies in the approximations used for deriving the
inter-atomic potential. Due to the typical time-scales (∼femtoseconds), a serious
limitation is laid on many problems involving thermally-activated processes. Like
in most of the numerical techniques defining boundary conditions and applying
artificial ensemble (NVT, NPT, NST, NVE) constraints to monitor pressure,
temperature, stress, energy inhibit the use of this technique at higher scales.

Despite the limitations, MD simulations have largely been applied to predict
behavior of crystalline materials. Thermally-activated mechanisms, such as cross-
slip are very important process during plastic deformation of crystals. A critical
review has been presented on different models for dislocation cross-slip in close-
packed crystal structures [145]. By maintaining constant temperature and constant
stress, cross-slip of screw dislocations and annihilation of screw dislocation dipoles
have been successfully studied in fcc metals such as Cu and Ni [129,148–150]. In
fact, large-scale MD simulations were performed to provide local rules for DD
models [19] and were also used for the investigation of hardening mechanisms in
metals [18].

MD simulations have been largely performed to capture elementary dislocation-
grain boundary mechanisms in nanocrystalline materials. Deformation of nanocrys-
tals using atomistic simulations has been reviewed [112,194]. Atomic simulations
have been applied to investigate the influence of parallel free surfaces on deforma-
tion mechanisms in fcc nanocrystals [170]. Simulation of Cu nanowires highlight
the events such as, dislocation nucleation from free surfaces during early stages of
plastic deformation [25].

Another review on the deformation mechanisms controlling plasticity of fcc
nanocrystals captured using atomistic simulations has been carried out [171]. In this
article, they highlighted that the inherent high stress and short time restrictions of
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atomistic method makes it impossible to determine the true rate-limiting processes.
At present, atomic simulations alone are not suited for setting up a deformation map
for nanocrystalline metals. As most of the plasticity models based on constitutive
relations, studying the influence of applied stress, grain size, strain rates and
temperatures are of prime importance while modeling nanocrystal.

3.3.2 Continuum based models

Continuum models for metallic materials are generally based on single crystal
plasticity framework. At a single grain level, plastic deformation is carried by
dislocations moving on different slip systems. Slip systems constitute a compre-
hensive set of slip planes and slip directions on which dislocation motion is highly
concentrated. The number of slip systems differ with the lattice structure of the
materials. In FCC metals, plasticity thrives on 12 densely packed {111} slip planes.
Whereas, in BCC metals, 12 {110} type and 12 {112} type slip planes with < 111 >

slip direction can be potentially active.

Figure 3.3 – Schmid law explained using a cylindrical grain deformed under tension
along the tensile axis [180]

A single crystal deformed under tension yields (cf. Figure 3.3) when the resolved
shear stress on a slip system exceeds a critical value. This is called Schmid’s law [52],
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which writes:

τc = σycosφcosλ (3.1)

where τc is the critical resolved shear stress, σy is the tensile yield strength and
M = cosφcosλ is known as Schmid factor(M).

Since there are 12 slip systems in a FCC crystal, slip occurs on the system
which first exceeds the critical value, τc. The slip system hence is known as primary
slip system and apparently has the greatest Schmid factor.

3.3.2.1 Elasto-plastic framework

The constitutive formulation of single crystal plasticity is based on multiplicative
decomposition of the deformation gradient (F = dU

dx ; where U is displacement)
into elastic (Fe) and plastic (Fp) parts [7]. The elastic distortion and rigid-body
rotation is described by the elastic part (Fe) of the deformation gradient. Fp is the
plastic part of the total deformation that is due to crystallographic slip. It should
be mentioned that the crystallographic slip, in general, includes a rotational part
(Rp) in addition to the translation part (Up).

F = Fe.Fp (3.2)

Fp = Rp.Up (3.3)

The multiplicative decomposition considers the concept of a local intermediate
(relaxed or stress-free) configuration. In Figure 3.4, the plastic deformation gradient
maps any material point from the reference configuration to the intermediate
configuration. The elastic part of the deformation gradient further maps the
material points from an intermediate configuration to the current configuration.
The decomposition of the Eulerian velocity gradient (L = Ḟ.F−1) follows:

L = Ḟ.F−1 = Ḟe.F−1
e + Fe.Ḟp.F−1

p .F−1
e = Le + Lp. (3.4)

The plastic velocity gradient is determined by accumulative slip rates on all
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Figure 3.4 – Schematic representation of reference, intermediate and current con-
figurations based on multiplicative decomposition of the deformation gradient
tensor

the active slip system as

Lp = Ḟp.F−1
p =

12∑
i=1

γ̇isi ⊗ ni, (3.5)

where si is the slip direction and ni is the slip plane normal of slip system i. The
rate of plastic shear on slip system i is denoted by γ̇i.

3.3.2.2 Constitutive equations

The constitutive behavior of the crystal is specified for both elastic and plastic
parts by the stress-strain relation. For the elastic part, the response of the crystal
is given macroscopically by:

Se = Ce : Ee (3.6)

where Ee is the elastic Green-Lagrange strain tensor and Se is the second Piola-
Kirchoff stress tensor. Ce represents the elastic moduli in the intermediate configu-
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ration, and

Ee =
1

2
(FTe .Fe − I) Se = det(Fe)F−1

e .σ.F−Te . (3.7)

At microscopic level, a power law is often used to model the plastic deformation
on each slip system:

γ̇i = γ̇io

(
|τ i|
si

)m
sign(τ i) (3.8)

where, i is the slip system index and γ̇io, τ
i,m are rate of plastic shear, critical

resolved shear stress and strain rate sensitivity coefficient, respectively. For metals
m=100, a highly non-linear relation between γ̇i and τ i exists.

3.3.2.3 Hardening rule

Dislocation slip on a particular slip system leads to hardening of the system. The
accumulation of dislocations on the slip system leads to resistance for further slip.
A higher stress level is required to continue plastic deformation on the slip system.
This is referred to as self-hardening. Consequently, a dislocation also experiences
the interaction strength due to dislocations on other slip systems. This is called as
latent hardening. Such resistance to dislocation slip is highly discrete and leads to
anisotropic behavior at single crystal level. The evolution of the shear resistances
si is defined phenomenologically in CP models by

ṡi =
12∑
j=1

H ij|γ̇j| with i = 1, ...12. (3.9)

The proportionality coefficients H ij are the hardening moduli, where H ii is the
self-hardening term and H ij (i 6= j) refers to the latent hardening effects.

The development of a single-crystal plasticity models has been well documented
[102, 154]. During this thesis, the working procedure of a Taylor assumption based
crystal plasticity code has been used to find new hotspots in the phenomenological
CP model.
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3.3.2.4 Polycrystalline behavior

To determine the properties of a polycrystalline aggregate, different approaches have
been developed. Earliest models were based on local and global assumptions made
on stress or strain tensors. Sachs proposed a model based on iso-stress formulation
[Sachs 1928]. He assumed that the locally averaged Cauchy stress of each crystal
is equal to the macroscopic Cauchy stress of the polycrystalline aggregate. With
this assumptions, every grain deforms independently and can lead to overlapping
of the grain boundaries. Whereas, Taylor’s iso-strain formulation assumed that
the local deformation is equal to the macroscopically imposed deformation of the
aggregate [173]. According to Taylor, at least five independent slip systems in
each grain should operate to maintain macroscopically compatible strain. Because
of the complete restriction placed, these models were known as fully-constrained
(FC). Taylor’s iso-strain approaches was later modified by global relaxation of some
strain components. These modifications were categorized as relaxed-constraint
(RC) Taylor models [90,101]. Even, RC Taylor models were not imparting the stress
heterogeneities which arise at single grain level. Present-day advanced models can
be classified into two types based on the employed homogenization schemes:

a.) Full-field approach b.) Mean-field approach

In a full-field approach, both long-range and short-range grain interactions
are considered and the micro-mechanical fields are resolved on a discrete grid.
For solving this heterogeneous problem using a FEM, at the discrete grid level,
equilibrium of forces is achieved and displacement compatibility is maintained
by using principle of virtual work [60]. Mesh element size in this case should be
smaller than the average grain size of the polycrystal. Whereas, in the FFT-based
method, the local mechanical response of the heterogeneous medium is calculated
as a convolution integral between Green functions associated with appropriate
fields of a linear reference homogeneous medium and the actual heterogeneity
field [113]. The FFT algorithm transforms the heterogeneous fields into Fourier
space and, in turn, gets the mechanical fields by transforming back into real space.
A comparative study shows that for an exactly similar problem, FFT-based full-field
crystal plasticity approach is more efficient than the FEM-based full-field crystal
plasticity approach [114].

In contrast, mean-field approaches deal with the complex stress heterogeneities
and continuity of displacement in polycrystal by a finite elements method (FEM).
Grain interactions in a cluster are considered in some of the mean-field approaches.
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Bi-crystal grain interactions was considered in LAMEL [181,182] and ALAMEL
models [183]. Another scheme is based on the viscoplastic self-consistent (VPSC)
formulation [115]. Based on a generalization of grain interaction (GIA) model,
a relaxed grain cluster (RGC) homogenization scheme was proposed [176]. To
move from phenomenological CP model to a more advanced physics based CP
models, dislocation based hardening rules have been incorporated into crystal
plasticity framework [4,6]. Most CP models accurately predict texture evolution
in a polycrystal but fail to capture any size-effects. In an attempt to overcome
the restriction on size-effect predictions, strain gradient crystal plasticity theories
incorporated intrinsic length scales [65, 69,140].

3.4 Purpose for modeling polycrystal using 3D DDD
simulations

Large scale molecular dynamics simulations are a viable option to study the be-
havior of metallic thin films. But, the very small time-step (∼ 10−15s) and high
computational intensity prohibit the use of MD simulations for studying behavior
of materials under the collective influence of defects. On the other hand, crystal
plasticity models can deal with complex boundary conditions and are specifically
developed to deal with anisotropic crystal deformation. Computationally, CP
simulations are far effective when compared to MD simulations. But, the phe-
nomenological rules used in a CP model should be validated against a more physics
based model or by experiments.

Defect-based models, such as dislocation dynamics can treat size effects with
the length scale involved with the dislocation sources. The advanced thermally
activated mechanisms such as cross-slip (or) climb can provide answers to rate
sensitivity arising from collective dislocation behavior. DD simulations can be
coupled with a FEM to treat stress heterogeneities and also to deal with complex
boundary conditions. With advanced hardening rules, DD simulations can predict
the behavior of metallic thin films with quite few assumptions. The methodology
of a three dimensional discrete dislocation dynamics simulations, which is the core
method used in this thesis, is provided in detail in Chapter 4.

45





PART - II

Dislocation dynamic simulations:
Methodology and Developments
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4 Methodology of discrete dislocation
dynamics simulations

THe idea of developing a 3D code to predict materials behavior at mesoscale
was first realised by Kubin, Canova, Bréchet in the early 1990s. This meso-

scale material model proved vital in explaining the plastic deformation behav-
ior of a single crystal under the collective influence of dislocations. Whereas in
a polycrystal, along with dislocations, other types of defects (e.g. grain bound-
aries) also influence the plastic reponse of the materials.

This chapter presents the methodology of three dimensional discrete dislo-
cation dynamics (DD) simulations. A polycrystalline version of the DD code
has been used during the thesis and it does not differ much from its single ver-
sion counterparts. The only major difference is the manner in which internal
stress field due to a dislocation is computed. The stress tensor calculated is al-
ways in the lab frame to ensure compatibility of the long-range stress fields due
to dislocations in the simulation volume. The different reference frames intro-
duced in the polycrystalline DD code are also explained. Developments in the
form of slip transfer mechanism across GBs and optimised stress field calcula-
tions are also incorporated in the polycrystalline DD code and are presented in
this chapter.

4.1 Introduction

The earliest dislocation dynamics code was co-developed at Onera [16] and at
Grenoble INP [62,185]. This simple lattice-based edge-screw model led to the code
Micromegas distributed by Onera and the code TRIDIS developed in Grenoble.
More than two decades after the first 3D discrete dislocation dynamics code,
the present-day 3D DDD codes are sufficiently advanced to deal with multiple
interfaces in crystalline materials. In this thesis, we use TRIDIS, the code which
was developed at Grenoble. Some of the noticeable developments in TRIDIS are:
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1. The application of the box method to treat long-range dislocation stresses in
the case of [186];

2. Implementation of the superposition method for solving a boundary value
problem; its application to advanced nano-indentation simulations [62];

3. Taking advantage of the MPI parallelism scheme to deal with dislocation-
precipitate interaction [27];

4. An easy implementation of the displacement field for modelling fatigue
induced plastic steps in 316L steel [43,63];

5. Accounting for anisotropic elastic stress field and development of the first
polycrystal version of the code [92]

Readers are directed to the following HDR thesis [64] for more comprehensive
details about the advancements of the TRIDIS code being developed and maintained
at SiMaP laboratory in Grenoble. During the course of the thesis, generic rules
for screw dislocation-grain boundary interaction have been incorporated in the
present polycrystal version of the 3D DDD code. The stress field computations
was also optimized to run on graphical processing units (GPUs). In spite of these
developments, the optimised GB interaction based polycrystalline model has not
been used for performing large scale thin film simulations. Before proceeding to the
sections presenting developments in the polycrystalline 3D DDD model, the main
idea behind the computation of the stress field due to dislocations in a confined
volume is presented.

4.2 Computation of heterogeneous stress field in a
volume containing dislocations

4.2.1 Discretization of a dislocation

In DD codes, a curved dislocation line is represented by series of discrete dislocation
segments following a general discretization scheme. Different discretization schemes
were developed to avoid restricting dislocations to a fixed set of orientations.
Earliest DD code relied solely on pure edge and pure screw segments to represent
a dislocation line. This description limited the possibility of accurately modeling
all the elastic interactions between dislocations (junction formations). A mixed

50



4.2. Computation of heterogeneous stress field in a volume containing
dislocations

character for the dislocation segment was additionally used to describe a dislocation
lines in the DD code developed [48]. More sophisticated nodal-based discretization
schemes [5, 108, 192, 200] were developed to account for complicated dislocation-
based hardening mechanisms such as multi-junctions [20], dislocation partials
and twin boundary interaction in polycrystalline Mg [58], formation of glissile
junctions [167], interaction of dislocations and irradiation defects in Zr [51].

Figure 4.1 – Edge-Screw based discretization of a curved dislocation line [27]

The DD code used in the thesis is based on Edge-Screw based discretization
scheme [16,62]. A dislocation line is divided into series of Edge and Screw segments
as shown in Figure 4.1. Each discrete segment moves on a pre-defined lattice
network with lattice spacing, xl. A heterogeneous lattice is inherently present due
to the different unit lengths of edge (<112> type with

√
6xl length) and screw

(<110> type with
√

2xl length) dislocations. The xl value is generally defined
to be 10b, where b is the magnitude of Burgers vector. But, this value can be
modified according to the size of the simulation specimen. For example, for the Pd
thin films simulations (cf. Chapter 6), xl = 0.1b has been used. In the polycrystal
version of the DD code, the lattice network corresponding to every grain is oriented
with certain Euler angles. The texture objects representing the oriented lattices of
the grains are shown in Figure 4.43. The rotated lattice network of the grain can
be referred as crystal frame and the 3D space in which the polycrystal is setup is
hereby referred as lab frame.

The family of Screw and Edge vectors of the Thompson Tetrahedron [175]
are used to describe the 12 slip systems of a FCC and DC crystal. Each of the
six Screw segments can have either Edge1 and Edge2 as glide directions with

51



Chapter 4. Methodology of discrete dislocation dynamics simulations

corresponding 111 plane normals, n. Whereas, Edge1 and Edge2 can only glide
along the corresponding Screw direction. For a given orientation of the Screw, the
two Edges are considered in such a way that the Edge1 x Edge2 = 4Screw. Such
systematic construction is necessary for the description of prismatic loops [64].

4.2.2 Internal stress field due to a dislocation

The stress field of a dislocation of finite length in an isotropic elastic framework is
obtained as the difference between the stress field of two semi-infinite dislocations
since a closed form expression for the stress field already exists for a semi-infinite
dislocation in isotropic elastic framework. If the semi-infinite dislocations with
Burgers vector b= (bx, by, bz) is placed along the z-axis, then the stress field due to
the dislocation [125] at an arbitrary point r(x,y,z) is given by:

Figure 4.2 – Notation adapted for calculating stress field of a dislocation

The difference of two semi-infinite segments then gives:

σint(r) = σ(r− r1)− σ(r− r2) (4.1)

where r1=(0, 0, z1) and r2=(0, 0, z2) points are shown in Figure 4.2.
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The symmetric second order stress tensor, σ(r) reads:

σxx(r) =
−bxy − byx
r(r − z)

− x2 (bxy − byx)(2r − z)

r3(r − z)2

σyy(r) =
bxy + byx

r(r − z)
− y2 (bxy − byx)(2r − z)

r3(r − z)2

σzz(r) =
z(bxy − byx)

r3
− 2ν(bxy − byx)

r(r − z)

σyz(r) =
y(bxy − byx)

r3
− νbx

r
+

(1− ν)bzx

r(r − z)

σxz(r) =
x(bxy − byx)

r3
+
νby
r
− (1− ν)bzy

r(r − z)

σxy(r) =
bxx− byy
r(r − z)

− xy (bxy − byx)(2r − z)

r3(r − z)2

where r =
√

(x2 + y2 + z2) and the stresses are in the units µ
4π(1−ν)

, where µ and
ν are the shear modulus and Poisson ratio of the material, respectively.

As linear elasticity is not valid in the dislocation core region, the above ex-
pression for stress field of a dislocation become singular along the dislocation line.
To address the issue, a non-singular formulation has been proposed by Cai and
co-workers [23]. Their idea relied on introducing a spread of the Burgers vector,
such as to remove the singularity of the core. Apart from singularity issues at the
dislocation core, the computational bottleneck in DD code arise mainly due to the
long-range effect of dislocation stress field (∝ 1

r
). To tackle this computational

issue, different techniques adopted in the DD community and the newly developed
GPU based method to tackle the same issue are presented in cf. Section 4.4.3. As
mentioned in Section 4.2.1, all the discrete dislocation segments move on respective
lattic networks (in crystal frame) specific to every grain. The self stress field due
to a dislocation segment is computed in the crystal frame and the stress tensor is
then transferred/rotated to the lab frame. This way, compatibility of long-range
stress field due to dislocations in the simulation volume is maintained.

4.2.3 Periodic boundary condition

Periodic boundary condition (PBC) is an elegant way to predict bulk behavior
by simulating a small region of the specimen. If a primary simulation volume
is imagined as a two dimensional square box. Periodic simulation volume are
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periodic replicas of the primary volume in the directions in which PBC is applied
(X- and Y- direction in our 2D case). Due to PBC, the dislocation segments
in the primary volume are forced to leave from one side and re-emerge from an
equivalent position on the opposite side of the box with the same velocity to ensure
conservation of dislocation fluxes (cf. Figure 4.3). A non-cubic (orthorhombic)
simulation volume is considered to avoid the self-annihilation phenomenon which
creates artificial dislocation microstructures [153]. The segments which leaves the
primary volume are also imagined in the twenty six periodically duplicated volumes
around the primary. The segments in the primary volume elastically interacts
with the segments in the duplicated volumes and vice-versa. The PBC has been
implemented in the present DD code [27,92].

Figure 4.3 – A Frank-Read source in a 2D system with periodic boundary condition

4.2.4 Superposition principle: modification to finite domain

The solution for the 3D stress field of a dislocation segment was given for a
homogeneous material in an infinite domain under the assumption of isotropic
elastic framework [39,45,125] . The use of such stress field expression for thin films
is no longer possible for two reasons:
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4.2. Computation of heterogeneous stress field in a volume containing
dislocations

1. Validity of stress field only in infinite domain

2. Anisotropic nature of a polycrystalline film

The problem involving finite domain (displacement and traction boundary condi-
tions) was addressed based on the principle of superposition [134]. According to
this principle, any finite domain problem can be calculated by superimposing the
solutions of the two sub-problems:

σ = σint + σext (4.2)

a. infinite domain sub-problem σint with dislocations and external boundary
conditions;

b. a finite domain boundary value problem σext with corrected boundary condi-
tions.

Figure 4.4 – Superposition principle used to deal with complex boundary conditions

If Figure 4.4 represents an original finite domain problem containing dislocations,
applied displacement fieldUapp on the surface δVu and traction boundary conditions
Fapp on the surface δVf . The stress field σ at every point in the volume V
can be accurately calculated by first calculating σint from the first sub-problem
containing dislocations. The classical internal stress field expression of a dislocation
in infinite domain, which is the core of all DD codes (TRIDIS), can be used in
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this case. Displacements Uint on the surface δVu and forces Fint on the surface
δVf are produced due to the dislocations in the volume V . In order to correct
the displacement and traction incompatibilities on the boundary surfaces (second
sub-problem σext), the elastic and continuum boundary value problem with no
dislocation and under an effective forces Fapp − Fint and effective displacement
Uapp − Uint on the surfaces δVf and δVu respectively is solved using a finite
element method (here with the FE code, CASTEM) [26].

The DD-FEM coupling between TRIDIS and CASTEM has been implemented
in earlier works to deal with free surfaces during nanoindentation simulations of
Cu single crystal [62]. In the present thesis, the DD-FEM coupling was further
extended to deal with polycrystalline thin films. With such an extension, it is
feasible to accurately account for the anisotropic nature of the polycrystalline
materials while performing thin film simulations (cf. Chapter 6).

4.3 Prediction of the mobility of a dislocation

4.3.1 Mobility laws for a dislocation

The velocity with which a dislocation can glide is computed by a linear mobility
law in FCC crystals. According to the mobility law, velocity of discrete dislocation
segment is linearly related with the effective stress on the segment times its Burgers
vector and inversely related to the phonon drag coefficient. Due to the constrictions
laid by the edge-screw discretization scheme, the direction of the velocity of a
dislocation segment is always perpendicular to its line direction.

v =
τeffb

B
(4.3)

where the phonon drag coefficient, B is a material and temperature dependent
parameter. At room temperature, B = 1.5× 10−5Pa.s for Cu is used as reference
to calculate the B values for which-ever material we use [142]. In the case of Pd,
B = 1.1 × 10−5Pa.s has been used. A maximum value of velocity equal to the
speed of sound (vmax = 2000m/s) is used in the simulations to ensure the segment
not to glide over large distances.

56



4.3. Prediction of the mobility of a dislocation

4.3.2 Effective stress on a dislocation

The effective stress, τeff required to move a dislocation segment is given by the
following equation

τeff = τ
′ − sign(τ

′
).τPeierls (4.4)

τ
′
= τ + τlt (4.5)

τlt =
µb

4π(1− ν)R
(1− 2ν + 3ν cos2 θ)

[
ln

(
L

2b

)
− ν cos(2θ)

]
(4.6)

where µ and ν are the shear modulus and Poisson’s ratio of the material respectively.
R being the radius of curvature, L is the length of the segment and θ is the angle
between Burgers vector, b and line direction of the dislocation.

4.3.3 Peierls stress

Dislocations generally move by breaking and making bonds at the dislocation core.
Dislocations experience certain resistance every time they move an atomic distance.
A correspondingly stress value is generally needed to overcome this lattice friction.
This stress is called Peierls stress, τPeierls.

Figure 4.5 – Dislocation motion by breaking and making bonds [36]

The Peierls stress is negligible for FCC materials showing no directionality
in the bonding (thermal energy at room temperature is way higher). In such
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cases, τPeierls of the order 10−5µ, where µ is the shear modulus of the material; are
considered. But, in BCC and DC materials, a certain sense of directionality of
bonding is observed at low temperatures. A relatively high stress is required to
overcome the lattice friction of these materials. In such cases, dislocation motion
to overcome the Peierls barrier is thermally activated and is modelled as kink-pair
mechanism. The stress, τ ′ in Equation 4.4 is generally written as the sum of
resolved shear stress, τ from Equation 4.5 and stress due to line tension, τlt in
Equation 4.6.

4.3.4 Line tension on a dislocation

Dislocation being a linear defect, carries a stress field. Because of the self stress field,
every dislocation has an energy per unit length or line tension, τlt. A dislocation
with no external force acting on it will exhibit a straight line configuration. If an
external stress applied is greater than the line tension of the dislocation, then a
dislocation bows out of the original equilibrium state and continues to do so by
Frank-Read mechanism.

Figure 4.6 – Schematics of neighbouring segments (orange color) used to find the
angle between Burgers vector and line vector; which inturn is used for line tension
calculating

Accounting for the difference in energies of a screw and edge dislocation, a
general formula (cf. Equation 4.6) for line tension has been proposed by Foreman
[68]. As shown in Figure 4.6, neighbouring segments (in orange color) are taken
into account for the calculation of θ.
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4.3.5 Peach-Koehler force

The resolved shear stress, τ (cf. Equation 4.5) on the plane is deduced by projecting
the force in the glide direction, g.

τ =
1

b
Fpk.g (4.7)

Peach and Koehler [127] derived a general expression for determining the force
acting on a dislocation segment on a slip plane. If a stress, σ is being applied on
a dislocation of Burgers vector b and line vector ζ, then the Peach-Koehler force
(Fpk) on the segment is given by

Fpk = (σ.b)× ζ (4.8)

where, σ is the sum of external applied stress σapp; σimg which accounts for the
image stresses due to dislocation segments leaving the volume through the free
surface (cf. Section 4.2.4) and total internal stresses, σint due to all the dislocation
segments in the volume. Internal stress field due to dislocations in a simulation
volume is the most important point of the dislocation dynamics codes and is
discussed in detail in the Section 4.2.2.

4.3.6 Local hardening rules

Dislocation segments moving under effective stress may encounter other dislocations
and interact with them to minimize energy. Depending on the Burgers vector
and glide plane, dislocations may annihilate, cross-slip or form a junction with
the meeting dislocation. These processes will have their influence on the strain
hardening.

Annihilation of two dislocations as shown in Figure 4.7 occurs when the dislo-
cation i detects another dislocation j of the same Burgers vector as i, but
of opposite sign. Annihilation of dislocations i and j results in a dislocation
network as shown in Figure 4.7.

Junctions are formed between dislocations m and n on different slip planes if a
simple energetic condition (Frank’s rule) in Equation 4.9 is satisfied. The
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Figure 4.7 – Annihilation: Dislocation i detects dislocation j of same Burgers vector
but opposite sign (vice-versa possible)

energetic condition reads:

b2
m + b2

n > (bm + bn)2 (4.9)

Four non-coplanar junctions which mainly contribute to the strain hardening
behavior of FCC crystals, are accounted in the present DD code.

1.Collinear junction: bm = bn are on different slip planes

2.Hirth lock : bm ⊥ bn and are on different slip planes

3.Glissile junction: resultant of bm + bn is glissile and lies on either of the
slip planes (glissile interaction is not accounted by TRIDIS. Nodal code
can tackle these types of junctions [51])

4.Lomer-Cottrell lock : resultant of bm + bn is sessile and lies on either of the
slip planes

Cross-slip of a screw dislocation segment is a thermally activated mechanism.
The cross-slip model proposed by Bonneville and co-workers [54] has been
used in the code. A probabilistic law is used to model the glide procedure
on deviate plane. At every time step, the probability for a screw dislocation
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segment to glide on its corresponding deviatoric plane is calculated using the
expression:

Pi = β
l

lo

∆t

to
exp

(
τdev − τIII

kT
Vact

)
(4.10)

where β is the normalisation coefficient which makes sure Pi ∈ [0 − 1], l
lo

is the ratio of length of the discrete screw segment to the reference length
(lo = 1µm), ∆t

to
is the ratio of time step to the reference time (to = 1s),

τdev, τIII) are the resolved shear stress on the deviate plane and the reference
stress value respectively. k, Vact and T are Boltzman constant, activation
volume and temperature respectively.

Cross-slip of a screw segment is possible if the computer generated random
number n < Pi. In the present DD code, numerical implementation of
cross-slip has been carried out [186].

Figure 4.8 – Cross-slip of a screw segment

4.3.7 Dislocation-grain boundary interaction

In addition to the local hardening rules in a grain, dislocation-grain boundary
interactions become more important when modeling polycrytals. In the present DD
model (TRIDIS), grain boundaries are considered as infinitely strong obstacles (i.e.,
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dislocations are stopped at the grain boundary) to dislocations and we employed a
similar assumption for the DD simulations carried out in Chapter 5 and Chapter 6.

4.3.7.1 3D DDD modeling of grain boundaries

In the polycrystalline DDD code, grain boundaries are modeled as facets. These
facets divide grains/crystals of different orientations. A bicrystal is modeled for
the present study. A texture object 1 represents the lattice orientation of the grain
separated by a grain boundary is shown in the Figure 4.9.

Figure 4.9 – Bicrystal with grains in differ-
ent orientations separated by grain bound-
ary; lattice orientation being represented
by a coloured texture object

Figure 4.10 – Pileup of dislocations
against a grain boundary

In polycrystals, grain of different orientations are separated by grain boundaries.
Apart from the influential long range stress field of dislocations across grain
boundaries, dislocations can also interact with grain boundaries. Especially in
nanoscale materials such as thin films, high density of interfaces will influence
the plastic deformation behavior. As a first step in understanding such materials,
grain boundaries can be assumed as strong obstacles, similar to the assumptions
used for a micron-sized single grain. But, eventually, this assumption need to be
replaced/modified with more realistic rules at grain boundaries.

1the coloured, rotated cuboid present inside each grain
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The main motivation for this study is to incorporate slip transmission as local
rule across grain boundaries in 3D DDD code (TRIDIS). Different approaches
followed in the DD community for modeling dislocation grain boundary interactions
are reviewed in Section 1.2 of Chapter 1. A new resultant dislocation loop (RDL)
method is used to model slip transmission as generic rule in TRIDIS. To take
advantage of the results from atomistic/quasicontinuum simulations performed
by several groups on dislocation-coherent twin boundary interaction [28,81,177],
a coherent twin boundary configuration in a bicrystal is setup to validate the
implementation of the RDL method. Finally, the improvements that are planned
to the RDL model are also presented.

4.3.7.2 Resultant dislocation loop (RDL) method

Dislocation slip transmission across grain boundaries can be incorporated as local
rules in conventional lattice based DD codes without dissociating a dislocation at
the grain boundary. Slip transmission across any grain boundary can be generally
modelled by placing a glissile loop of corresponding resultant Burgers vector in
the adjoining grain as shown in Figure 4.11. When a dislocation segment +b in
Grain1 carrying a resolved shear stress which is higher than a critical value τ cgb
hits a grain boundary, a resultant glissile loop is inserted at the corresponding
lattice coordinate in Grain2. The resultant loop being placed will behave as if
the dislocation segment is already transmitted across the grain boundary. One
advantage of this method is that the Burgers vector remains always conserved.
Further, a compatibility of the stress field at the grain boundary can be easily
maintained and verified.

4.3.7.3 Simulation setup for modeling slip transmission across GB

A simple bicrystal configuration had been setup to validate the RDL method
explained in the above section. Of the two grains in the bicrystals, the first grain
is rotated with Euler angles of [0.0 35.264 -135.0] and the second grain with Euler
angles of [180.0 35.264 -135.0] and the rotations are represented correspondingly
by coloured texture objects in Figure 4.12. For these set of Euler angles, (111) is
the common plane (cf. Figure 4.15) between two grains and can be addressed as
coherent twin boundary.

The three perfect screw dislocations, b1 = BA, b2 = CA and b3 = CB, on
the common plane are as shown in Figure 4.14. A schematic view of slip plane
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Figure 4.11 – Schematic view of a Glissile loop being placed at corresponding lattice
point in Grain2 (to mimic transmission) after hitting the grain boundary

Figure 4.12 – Schematic view CTB setup
with texture objects representing the lat-
tice orientation of grains

Figure 4.13 – Schematic view slip planes
corresponding to b1 in Grain1 and Grain2
of the Bicrystal
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corresponding to b1 in both the grains is shown in Figure 4.13. When a dislocation
with any of the above three Burgers vectors hits the coherent twin boundary, they
can be transmitted without leaving a residu at the twin boundary plane (CTB).
Hence, the stress field on the boundary will not have any impact if the RDL
method is correctly implemented. This configuration is used for validating the
implementation of the RDL method.

Figure 4.14 – Thompson tetrahedron rep-
resenting all the slip planes and vectors
in a FCC crystal

Figure 4.15 – Schematic view of a double
Thompson tetrahedron with (111) com-
mon slip plane

Material parameters of Ni (cf. Section 5.2.4 of Chapter 5) were chosen for all
the simulations. A strain rate dε

dt
= 100s−1 is monitored during the simulation and

the external stress tensor applied is:

σext =

 0 0 σyz
0 0 0

σyz 0 0

 (4.11)

4.3.7.4 Validation of the RDL method: Stress field at coherent twin
boundary

An initial dislocation source of Burgers vector b1 = a
2
[1− 10] is placed in Grain1.

Once the resolved shear stress on the slip plane exceeds a randomly chosen critical
transmission stress τ cgb = 250MPa, dislocation segment transmits into Grain2
via the RDL method. The step for which a dislocation segment still does not
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meet the stress criteria and only piles up against CTB is referred to as step P.
Snapshots at different simulation steps starting from the point when a dislocation
segment satisfies the stress criteria are referred to as step P+Tn, where n indicates
different simulation step proceeding the pileup (step P). Further, the stress field
corresponding to the snapshots are also presented.

Figure 4.16 – Pileup against the CTB (for
RSS<τ cgb) at step P

Figure 4.17 – Stress field on the CTB due
to pileup at step P

Figure 4.18 – Slip transmission across
CTB (for RSS>τ cgb) at step P+T1

Figure 4.19 – Stress field on the CTB after
transmission at step P+T1

By looking at the stress field at different simulations steps during transmission
it is clear that the resultant dislocation loops were placed at the right lattice
positions in Grain2. The small discrepancy in the stress field arises at the corner
of the Grains as the stress field of the discretized edge segment at the corners is
not accounted for in the present implementation of the RDL method. This error
can be minimized by accounting for the stress field of the edge segments specially
at corners of the grains. But, such an edge stress field correction is non-unique
due to the dependency not only on the dicretization scheme but also on the grain
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Figure 4.20 – Slip transmission across
CTB (for RSS>τ cgb) at step P+T2

Figure 4.21 – Stress field on the CTB after
transmission at step P+T2

Figure 4.22 – Slip transmission across
CTB (for RSS>τ cgb) at step P+T3

Figure 4.23 – Stress field on the CTB after
transmission at step P+T3
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morphology. Implementing such stress-field corrections at the corners in TRIDIS
(Edge-Screw model) is a tedious job.

Figure 4.24 – Distance between subsequent loops in a pileup (Edge and Screw
segments in red and blue colors, respectively)

The stress field of a dislocation piled up against the boundary create a back
stress on the subsequent dislocation loop approaching the primary dislocation
loop. Figure 4.24 shows the subsequent dislocation loop being stationed at certain
distance due to back stress created by the primary dislocation loop. During the
slip transmission via RDL method, the stress field created by a dislocation at the
grain boundary is cancelled and the subsequent dislocation loops are allowed to
reach the grain boundary. These event can be more clearly observed in the below
series of zoomed (near grain boundary) images in Figures 4.25, 4.26, 4.27 and 4.28.

Figure 4.25 – Slip transmission across
CTB at step P+T1

Figure 4.26 – Slip transmission across
CTB at step P+T2

4.3.7.5 Directionality tests for slip transmission

Transmission events across a grain boundary should be independent of the direction
of the Burgers vector and also the grain from which the dislocation segment interacts
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Figure 4.27 – Slip transmission across
CTB at step P+T3

Figure 4.28 – Slip transmission across
CTB at step P+T4

the common grain boundary. In order to test the directionality behavior, dislocation
source of same magnitude but different directions are placed as initial dislocation
sources in Grain1 first and then in Grain2. Four combinations of the directionality
are tested by performing different simulations. The critical transmission stress is
specified to be τ cgb = 200MPa for this case. Like in the above case, the snapshot
of the step during which dislocations only pileup against the grain boundary is
referred to as step P. All the later snapshots after transmission are referred to as
step P +Tn, where n indicates nth simulation step after pileup.

In case 1, a dislocation source of Burgers vector b(1)
1 = a

2
[1− 10] is initially placed

in Grain1. As mentioned, slip transmission event is shown at different steps in
Figure 4.29.

In case 2, a dislocation source of Burgers vector b(2)
1 = a

2
[−110] is initially placed

in Grain1. The slip transmission event is shown at different steps in Figure 4.30.

In case 3, a dislocation source of Burgers vector b(3)
1 = a

2
[1− 10] is initially placed

in Grain2. As mentioned, slip transmission event is shown at different steps in
Figure 4.31.

In case 4, a dislocation source of Burgers vector b(4)
1 = a

2
[−110] is initially placed

in Grain2. The slip transmission event is shown at different steps in Figure 4.32.

4.3.7.6 Information exchange between QC and DD

Now that the RDL method had been implemented successfully, a correct critical
transmission stress value needs to be specified for the coherent twin boundary.
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Figure 4.29 – Directionality test with initial dislocation source of Burgers vector
(b = b(1)

1 ) in Grain1

Figure 4.30 – Directionality test with initial dislocation source of Burgers vector
(b = b(2)

1 ) in Grain1
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Figure 4.31 – Directionality test with initial dislocation source of Burgers vector
(b = b(3)

1 ) in Grain2

Figure 4.32 – Directionality test with initial dislocation source of Burgers vector
(b = b(4)

1 ) in Grain2
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In general, such a critical transmission stress value is taken from literature or
by performing atomistic simulations. Instead of using atomistic simulations to
predict the critical transmission stress for a screw dislocation across a coherent
twin boundary, firstly, QC simulations were performed. A control box method has
been used to extract the resolved shear stress on the slip plane during the first
slip transmission event. For complete details about the QC simulation setup and
the method used to extract critical stress, readers are directed to the paper [177].
QC simulations predict a critical transmission stress value of τ cgb = 605MPa for a
perfect screw dislocation.

Figure 4.33 – In situ TEM image showing the absorption and emission of dislocation
across CTB in Cu [28]

A very important task apart from working with numerical materials modeling
tools at different length- and time- scales is the exchange of information between the
scales. In any hierarchical multiscale modeling approach, correction information that
needs to be transferred should be identified and then assessed if the direct use of the
information in numerical technique at different length scale is valid. In this section,
a similar kind of task had been performed for exchanging information (i.e., critical
transmission stress across coherent twin boundary) between Quasi-continuum (QC)
simulations and dislocation dynamics (DD). Experimentally, it is feasible to count
the number of dislocation loops in a pileup by looking at TEM images as shown in
Figure 4.33. Eventhough, there have not been any experiments performed during
this study, the idea is to develop a simple mathematical expression that can predict
number of dislocation loops that should be required to build the stress level in a
pileup for the first transmission event to occur. A modified pileup-based formula
(developed by Tran [177]) was used to predict the number of dislocation loops before
first slip transmission event to take place at a given critical transmission stress
value predicted by QC. A critical transmission stress τ cgb =∼ 600MPa, as predicted
by QC simulations was used in the present DD simulations. For different grain
sizes and different dislocation lengths DD simulations predict different number of
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Figure 4.34 – Bicrystal indicating the introduced general convention of the grain
size (D) and dislocation segment length (DL)

dislocation loops in a pileup (cf. Table 4.1) for initiation of the first slip transmission
event. In the table, GS indicates grain size (D) information in the first column
and DL represents dislocation length written in terms of the grain size in the first
row.

GS/DL (nm) 0.1D 0.15D 0.2D 0.3D 0.5D
D=1000 6 6 5 5 4
D=750 4 5 5 4 3
D=500 3 4 4 3 3
D=250 1 3 2 2 2

Table 4.1 – Number of loops before 1st slip transmission as predicted by DDD
simulations

The classical pileup-based formula reads:

Nclassical =
πτtransL

µb
(4.12)

The derivations for both the classical and modified pileup-based formula used for
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predicting number of dislocation loops in the pileup is presented in the paper [177]
and the formula reads:

Nmodified =
πτtrans
µb

L

[
1−

(
τ 2
a

τ 2
trans

)]
(4.13)

where N is the number of dislocation loops in pileup, b is the magnitude of Burgers
vector, µ is the Shear modulus, τa is the activation stress for the Frank-Read
source of length, L and τtrans is the critical transmission stress predicted using QC
simulations.

Figure 4.35 – Comparison of number of loops in pileup (modified pileup-based
formula Vs DDD results) [177]

The predictions of the number of dislocation loops from DD simulations are com-
pared against the predictions of the modified pileup-based formula for a dislocation
source length (DL=0.15D) in Figure 4.35. The results predicted by the modified
formula are in good agreement with the ones predicted by DDD simulations at a
critical transmission stress of τtrans = τ cgb =∼ 600MPa.

4.3.7.7 Interface padding region: finite width of CTB

So far, implementation of the RDL method had been validated for slip transmission
of only the first dislocation segment that hits the grain boundary. Figure 4.36
shows experimental evidence of subsequent events after the first transmission [99].

To model such a general behavior as slip transmission across grain boundary, a
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Figure 4.36 – In situ TEM image showing dislocation propagation across CTB in
α− Ti [99])

finite width is specified for the grain boundary as show in the Figure 4.37. The
region (coloured in orange) around the grain boundary is hereby referred to as
interface padding region (iPad).

Figure 4.37 – Schematic view highlighting the interface padding region of a general
width=iPad

Dislocation slip transmission across grain boundary is tested for different widths
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of the interface padding regions. DD simulations revealed that the number of
emitted/transmitted dislocation loops remained constant (∼ 3 or 4) for any iPad
≥ 3.xl, where xl specifies lattice spacing. Looking at the stress-strain response it
is clear that the first and second slip transmission occurred almost at the same
stress value. But, a for the third slip transmission to occur, the dislocations had to
overcome a much higher stress barrier. The higher stress barrier for the third slip
transmission is due to the pronounced contribution of backstress from the already
transmitted dislocation loops. The slip transmission as explained above can be
seen in the Figures 4.38 and Figures 4.39 in which Von Mises stress and plastic
strain are also plotted.

Figure 4.38 – Snapshots taken during first and second transmission (for iPad=10.xl)
along with the corresponding points on the stress-strain plots are also indicated

4.3.7.8 Slip transmission after subsequent cross slip events

Dislocation piled up against a grain boundary, firstly, tries to relieve the stress
concentration at the grain boundary by cross slip mechanism. If the stress still
builds up even after subsequent cross slip events, then a slip transmission across
the grain boundary may occur. Figure 4.40 highlights the occurrence of such cross
slip events inside the grain; proceeded by a transmission across grain boundary in
304 stainless steel.
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Figure 4.39 – Snapshots taken during and after the third transmission (for
iPad=10.xl) along with the corresponding points on the stress-strain plots are also
indicated

Figure 4.40 – In situ TEM image showing succession of cross slip events indicated
by directional arrow (a-e) and final transmission across grain boundary in f in
α− Ti [99])
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In DD simulations, the very first dislocation loop which comes in contact with
the grain boundary (coherent twin boundary in our case) will stay put at the grain
boundary in the parent grain. Here, parent grain is refereed to the grain in which
dislocation source is initially present. Subsequent dislocation loops in the pileup are
free to relieve the stress concentration by cross slip mechanism as shown in Figure
4.41. Figure 4.42 depicts initiation of the slip transmission into neighbouring grain
after subsequent cross slip events in the parent grain.

Figure 4.41 – First dislocation loop attached to the grain boundary; whereas the
subsequent dislocation loops (2nd and 3rd) begin cross slipped

4.3.7.9 Perspective: Improving the RDL method

The perspective directions to improve this method in the DD codes is by following
the list below.

1. Testing the RDL method for different misorientations (in bicrystal setup)

2. Improving the resultant stress field at the GB (by accounting also the stress
field of edge segments)

3. Extension of the RDL method in order to deal with 60o dislocations.

4. Implementing new rules for dislocation nucleation at GB.

5. Large scale polycrystalline simulations to test the compatibility of the RDL
method.
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Figure 4.42 – Dislocation transmission across CTB after subsequent cross slip
events in the parent grain

4.4 Numerical implementation of the DDD model

4.4.1 DDD algorithm

Except for the realisation of the polycrystal and of the rotated sub-lattice on
which dislocation microstructure evolves, most of the steps in the DD algorithm
in a polycrystal version remain similar to the single DD version. The complete
polycrystalline DD algorithm is shown in a pictographic representation in Figure
4.43. Detailed explanation of the principles involved at each step are presented in
different sections.

1. Generation of the grains/crystals geometry (grain volume, position, orienta-
tion)

2. Generation of the dislocation microstructure in each grains/crystals (For
each dislocation segment, the properties to define include xyz coordinates,
length of dislocation, Burgers vector, Glide plane, iprev connectivity and
inext connectivity (-1 pinned), grain/crystal in which the dislocation seg-
ment belongs to) After generation of the polycrystal and initial dislocation
microstructure, Start of DD STEP at time t)

3. Discretize each dislocation line into edge and screw segments

4. Compute stress field due to each discrete dislocation segment
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5. Motion of dislocation segment via Linear mobility law and Compute the
effective plastic strain developed from all the dislocations in the polycrystal

6. Local interaction between dislocations

7. Interaction between dislocations and grain boundaries (Dislocation-Grain
boundary rules) Proceed to next DD STEP at time (t+ ∆t).

4.4.2 Integration scheme

Euler forward integration scheme is used to update the position of each dislocation
segments. If dti is the position of the dislocation at time t and ∆t is the time, from
the velocity calculated using the linear mobility law, the position of the dislocation
can be updated to a new position dt+∆t

i as below:

dt+∆t
i = dti + v∆t (4.14)

Time step, ∆t should be carefully selected in order to avoid any unnecessary
artefacts, such as drastic changes in the dislocation curvature.

4.4.3 Optimized stress field calculations

Several approaches have been proposed to tackle the computational issue of long-
range stress field. The most widely used approaches are briefly presented below:

• Box method relies on the fact that the dislocation microstructure does
not change much at every step in the volume. The simulation volume is
divided into equally spaced voxels of side L. A 2D schematic is shown in
Figure 4.44. The stress field inside each voxel is assumed to remain invariant
for a short interval. Further, the coloured boxes indicate the short range
interaction among dislocations which is updated more frequently than the
interaction of dislocations in white boxes (long-range), which is updated at
prescribed intervals. More information about the speedup using box method
and the precision of stress field calculations are presented in detail in [186].
The box-method has been again reviewed and parallelized using a standard
message passing interface (MPI) [164].
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Figure 4.43 – 3D dislocation dynamics algorithm explained based on a bicrystal
geometry
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Figure 4.44 – Schematic view of the 2D box approach to segregate short- and long-
range dislocation interactions

• Fast multipole method (FMM) is currently the most widely used method
in DD simulations. It relies on Taylor series expansion to precisely account
for the long-range field of dislocations. The expression developed by LeSar
and Rickman [120] and Wang [191] were modified and implemented to further
increase the computational efficiency [5].

• DDD-FFT is a more recently developed Fast Fourier Transforms based
formulation for periodic discrete dislocation dynamics [12] to tackle the main
issues of anisotropic elasticity and elastic inhomogeneities. Conventional DD
codes which rely on a finite element method (FEM) to incorporate elastic
inhomogeneities induce a much higher computational burden in-addition to
the stress computations of DDD simulations. The main idea of the DDD-FFT
approach relies on the computation of strains and stresses in the presence
of dislocation segments in a periodic volume directly in the Fourier space.
The transformation between the real Cartesian space and Fourier space is
performed by the FFT algorithm. The coupled DDD-FFT and DCM (discrete
continuous method) [184] approach showed pronounced speedup and inherent
incorporation of long-range elastic interactions among dislocations.

In either Box method or FMM, the use of Application Program Interfaces
(APIs), such as Open Multi-Processing (OpenMP) or Message Passing Interface
(MPI) are inevitable to distribute/share the computational load among different
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processors. Whereas, the DDD-FFT approach can take advantage of the Graphical
Processing Units (GPUs) during computations [12]. During this thesis, initiative has
been taken up to offload computationally intensive stress calculations to graphical
processing units (GPUs). It should be noted that the offloading stress calculations
is in no way related to the DDD-FFT approach. Our approach is similar to
the use of any of the APIs. Low level APIs for accelerator programming, like
OpenACC [35] are still in their early developmental stage. In contrast, the parallel
computing platform (CUDA) [135] invented by NVIDIA is robust and requires
minimal resources (a CUDA-enabled GPU is the only requirement and CUDA
platform is available as open-source, unlike OpenACC) to run computations. GPUs
with 1000s of processors are essentially never used during a normal computation on
the CPU (single or multi-processor). To take advantage of these unused processors,
three important steps need to be followed:

1. Copying relevant data from CPU to GPU

2. Stress computation on GPU

3. Copying back the results from GPU to CPU

Direct implementation of these offloading steps in conventional DD codes has
been limited. The only noticeable work which took advantage of heterogeneous
parallel programming framework for performing stress calculations on GPUs is
carried in the matlab code DDLab [59]. In our Fortran-based DD code, as a first
step, GPU functions/subroutines were implemented to tackle a static DD problem
(i.e., to compute stress field of a network of dislocations on GPU). Results are
presented as different stress components calculated on a dislocation loop using the
GPU version. The Side and Top views of the initial static configuration considered
are shown in Figure 4.45.

To estimate error due to GPU computation of the stress fields, magnitude of
different stress components calculated at the centres of each segment (cf. Figure
4.45) in the dislocation loop are plotted against the stress fields computed at the
centres of each segment using a single processor version in Figure 4.50.

The correctness of the offloaded stress field calculations can now be extended
to a dynamic case and the speedup achieved can be assessed as a second step
in the development. This is a perspective development planned for the stress
computations using GPUs.
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Figure 4.45 – Side and Top views of the initial static configuration considered,
respectively

Figure 4.46 – Side and Top views of σxx component of the internal stress field
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Figure 4.47 – Side and Top views of σxy component of the internal stress field

Figure 4.48 – Side and Top views of σyy component of the internal stress field
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Figure 4.49 – Side and Top views of σzz component of the internal stress field

Figure 4.50 – Comparison of different components of stress field calculated at the
center of each segments in the dislocation loop shown in Figure 4.45
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4.4.4 Convergence of DD solution

In DD simulations, numerical error is introduced due to the discretization of the
dislocation line in space and time. Convergence of the solution is ensured by
maintaining a reasonably small time step and discretization length. A general
approach to check the time step size is to look at the evolution of the Frank-Read
source over few time steps. The dislocation structure should not abruptly change
from step to step. Discretization of dislocation line segments is generally adjusted
in such a way that the ratio of dislocation length to the discretization length is at
least 3. This value ensures a limited error arising from spatial discretization.

Figure 4.51 – (a) Activation stress of an edge dislocation as a function of the
discretization ratio (b) Activation stress as a function of the source length with
discretization ratio of 10 [155]

Convergence of two DD code (ParaDIS and microMegas), based on a different
dislocation line discretization schemes (nodal and edge-screw schemes, respec-
tively) have been compared for a Frank-Read source of edge character with length
(L=0.59µm). In Figure 4.51(a), the activation stress of a dislocation source is plot-
ted against the discretization ratios. Here, l̄ and lmax represent maximum segment
length, which is a control parameter in ParaDis and microMegas, respectively. A
better convergence is achieved for discretization ratios > 3 [155]. It has already
been mentioned that the DD code (TRIDIS) used during this thesis is based on an
Edge-Screw type discretization scheme. It was made sure that the discretization
ratio is always ≥ 3 in all the DD simulations carried in Chapter 5 and Chapter 6.
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4.5 Post-processing of DD simulation results

4.5.1 Plastic strain calculation

Plastic shear strain (γpi ) imparted by a dislocation i with Burgers vector magnitude
bi and length l moving on a slip plane is given by

dγpi =
bidA

V
(4.15)

where dA = l ×∆d is the area swept by the dislocation in the grain of volume, V
(cf. Figure 4.52).

Figure 4.52 – Swept area by a dislocation segment of length l

The increment in plastic strain (dεpi ) due to this dislocation segment i is:

dεpi =
1

2b
(bs ⊗ ns + ns ⊗ bs) dγpi (4.16)

where s is the dislocation slip system defined by its normal ns and Burgers vector
bs. In the case of dislocation microstructure with N segments, the increment in
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plastic deformation is:

dεp =
N∑
i=1

dεpi (4.17)

4.6 Conclusions

The methodology of three dimensional discrete dislocation simulation is presented.
General approach of using a non-cubic periodic simulation box to mimic the bulk
behavior of the material is presented. The superposition principle, which can be
used to solve a problem with complex boundary conditions is introduced. DD-FEM
coupling code used in the thesis has been extended to deal with anisotropy of a
polycrystal. A new method for calculating the internal stress field based on GPU
parallel programming is implemented.
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DDD simulations of plasticity in
FCC crystals
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5 Influence of grain morphology on
intragranular backstress predictions

GRAIN morphology changes plastic deformation behavior. The main objec-
tive of this chapter is to address the influence of grain shape on disloca-

tion slip activity. For this, 3D DDD simulations on single grains of different
aspect ratios are performed. Based on the results from DD simulations, further
implications to the crystal plasticity theory are addressed in the form of average
back stresses on the slip systems of interest.

5.1 Introduction

In most metallic films, size effects result from the decrease in the grain size propor-
tionally with the film thickness. Apart from this size effect, another interesting
aspects of metallic films is the possibility to understand plastic deformation in
grains of varying morphology. Depending on the deposition conditions and on the
melting temperatures of the material, the aspect ratio of the grains can vary be-
tween pancaked, equiaxed to moderately elongated in the thickness directions [139].
TEM bright field microscopy image in Figure 5.1 shows the cross-sectional view
of as-deposited 310-nm-thick Pd film with columnar grains. The influence of
grain shape on plastic deformation behavior in a single grain needs to be clearly
understood to further model the behavior of metallic thin films.

When the grain size is on the order of a few microns, plastic deformation of crys-
talline materials is mostly controlled by a limited number of elementary deformation
mechanisms. For accurately modeling macroscopic plastic deformation, incorporat-
ing if not all, at least the most dominant of the elementary deformation mechanisms
at a single grain level is vital. Additionally, grain boundaries should be properly
modeled to estimate major changes in the plastic deformation behavior arising due
to grain shape. Conventional crystal plasticity (CP) models predict/measure plastic
anisotropy of a polycrystalline specimen based on the crystallographic texture [103].
Inaccurate prediction of r-values using both Taylor full constraint [173] and Taylor
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Figure 5.1 – Cross-sectional TEM image of a 310-nm-thick Pd film [93]

relaxed constraint models [101] in electro-deposited pure Fe with sharp γ-fibre
texture is suggested to be due to the important role of needle-shape elongated
grains in the normal direction [198]. Such examples further stresses on the lack in
accuracy of CP models due to the improper treatment of grain boundaries. One
of the motivation for studying changes in plastic deformation arising from grain
morphology is due to the observation of differing grain shapes attained by Ni under
controlled process conditions [109]. Additionally, Ni also carries low stacking fault
energy. Generally, in materials with low stacking fault energy, dislocations tend to
easily dissociate into partials and interact with the GBs; thereby, activating plastic
deformation which is GB and partial dislocation mediated. Interestingly, no such
dominant GB or partial dislocation mediated mechanism had been observed in Ni
for average grain sizes as low as 30-40nm [109]. This indicates that the grain shape
has a non-negligible influence on plastic deformation behavior in a single grain.

CP models rely on generalized Schmid law for modeling plasticity at single
grain level. The generalized Schmid law accounts for the different slip resistance
term originating from the interaction among different slip systems [70]. Within
each grain of a polycrystalline material, grain boundaries act as natural obstacles
to gliding dislocations. When dislocation motion is inhibited, they generally pile up
against grain boundary. Such pile ups exert a back-stress on the dislocation sources;
thereby preventing further activation of the Frank-Read source [124]. Conventional
CP models account for such pile up behavior by introducing an average back-stress
term corresponding to each slip system. The accuracy in the prediction of plastic
anisotropy narrows down to the formulations used for predicting back-stresses
in each individual grains. The real question is, how significant is the change in
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deformation behavior of a grain with the aspect ratio of the grain? If changes are
predominant, how does CP models incorporate the right deformation behavior in
these grains? Most of the CP models were developed on the basis of dislocation
pile up theory. But, if the pile up behavior is changed by the grain shape, then so
does the back stress influenced by dislocations.

It has been established that changes in pile up behavior due to grain shape
will change the back-stress influenced by dislocations on a slip system. CPFEM
simulations were mostly used to study the evolution of grain shape and texture.
One such work has been carried out in Mg alloy [144]. To better understand the
influence of grain shape on planar anisotropy, a comparative study using CPFEM,
VPSC [115] and multisite model [41] was performed on rolled steel sheets [42].
Changes in the activity of slip systems has been observed as the most significant
effect of back stress [15]. In the last decade, simple back-stress formulations were
developed and were successfully adapted to predict plastic anisotropy of spherical
grains [86,133]. Assuming that the dislocation density gradients being normal to
the grain boundary, enriched back-stress formulations have been developed to model
resistance due to the pile up of dislocations in elongated grains [40]. Although, these
models show improved predictions of plastic anisotropy, the correctness of such
enriched back stress formulations needs to be validated, if not modified, accordingly.
One way to verify them is by rightfully accounting for the strain gradient that
develops at the grain boundary due to the pile ups.

Strain gradient crystal plasticity (SGCP) models were developed with the
same idea. These models account for both statistically stored dislocations (SSDs)
and geometrically necessary dislocations (GNDs) to describe slip resistance. One
advantage of these models is their capability to capture size effects by incorporating
only the first order strain gradient within the strengthening term [84,85]. In the
initially developed SGCP models, the back-stress formulations included only the
dislocation induced stress component of only the particular slip system [57,197].
To model intra-granular slip resistance, dislocation-density-based hardening rules
have been developed for continuum crystal plasticity to incorporate core concepts
of dislocation mechanics [6]. Such rules have been adopted to SGCP models to
determine slip system resistance and back stress based on the density of GNDs. A
full tensorial nature of dislocation induced back-stress formulation, which accounted
also for the stress contribution from all the slip systems, has been developed in
SGCP model [9].

Additionally, dislocation slip activity in a grain is significantly changed due
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to thermally activated mechanisms such as cross slip (or) climb. Dislocations
which are generally piled-up against the grain boundary, can relieve the high
stress concentration by local yielding. Such phenomenon has been experimentally
observed in plastically deformed copper single crystals [54]. When a metallic single
crystal is deformed past Stage III, the transition to a plastically non-homogeneous
material was explained as a two stage behavior [8]. Starting with a general,
uniform deformation stage during which an accumulation of statistically stored
dislocations is observed. It is followed by a local, non-uniform deformation stage
where geometrically necessary dislocations accumulate. The stresses associated
with the later exceed the local yield stress. To maintain local strain compatibility,
a dislocation array is nucleated.

The well-known two possibilities for the nucleation of a dislocation array in a
single grain are briefly described below.

1. Climb: During this process the dislocation core is shifted to a plane perpendicular
to the present slip plane. This thermally activated mechanism is mostly active
at high temperature.

2. Cross-slip: A screw dislocation can easily relieve the stress concentration due
to the pile up by changing its slip plane [54]. This thermally activated
mechanism is called cross-slip.

These two mechanisms which are active upon reaching a ‘local yield stress’;
nucleate a new dislocation array. Such mechanisms are vital for predicting the
deformation behavior of a single grain; thereby the overall macroscopic response.
Changes in the pile up behavior due to cross slip will also have an influence on back
stress. In some of the advanced SGCP models, thermally activated mechanisms
such as cross-slip and climb have also been included [53].

Full-field solutions of gradient enhanced crystal plasticity models have a huge
computational cost and are limited so far to two-dimensional analysis of poly-
crystalline aggregates or to small grain samplings [40]. In contrast, 3D discrete
dislocation dynamics (DDD) simulations demonstrate excellent capability in cap-
turing the microstructural features at single grain level. 3D DDD models not only
accurately account for the presence of grain boundaries but also are sophisticated to
deal with intragranular local yield criteria (such as cross slip). Such advanced tools
have been successfully applied to model behavior of single ice crystal [98], fatigue

96



5.2. Model and setup

behavior of FCC single crystal [44] and recently to study plastic deformation of
single crystal of Ni based superalloys [74]. Several studies based on dislocation
dynamic simulations have also been carried out to address size effects [159,193],
influence on plastic deformation due to size, aspect ratio and initial dislocation
configuration [160]. 3D DDD simulations could be the right approach to better
understand the influence of grain shape on dislocation activity in order to build
improved models at continuum scale.

The main objective of the present work is to examine the role of grain shape
on the slip system activity in a single grain using 3D discrete dislocation dynamics
simulations. The changes in the dislocation activity which is controlled via the
cross slip mechanism is also studied. This chapter is organized as follows. In
Section 5.2, following a very brief introduction to the DD model, the setup used
for the grain shape study is explained. Results produced during the present work
are reported in Section 6.4. Further implications to CP models are discussed in
Section 6.5; followed by, conclusion statements on the influence of grain shape on
slip system activity and intra-granular back stress predictions.

5.2 Model and setup

3D discrete dislocation dynamics (3D DDD) codes simulate plastic deformation
by keeping track of discretized dislocation segments which move under applied
external load. For the present study, we use TRIDIS, an edge-screw discretization
based 3D DDD code developed at SiMaP, Grenoble, France [62,185]. A detailed
explanation about the methodology of the 3D DDD code used was presented in
Chapter 4.

5.2.1 Modeling spheroidal grains

The present study has been carried out using an elastic isotropic framework to isolate
the influence of grain morphology on plastic deformation behavior. Spheroidal
grains, which closely resemble the elongated grain structure are considered. Such
elongated grains with different aspect ratios are also found in thin films (cf. Chapter
6). Even though, elongated grains with aspect ratio (AR) ≥ 10.0 are sometimes
encountered [33,93,109,198]. A clear change in dislocation slip activity was observed
in the reference simulation of spheroidal grain with AR=5.0. So, the study has
been limited to a maximum AR=5.0. Three spheroidal grains of same volume (=
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5000 µm3) but differing in aspect ratios (AR = 1.0, 2.5 and 5.0) were modeled.
For the sake of simplicity, we refer to the spheroidal grains with the names which
closely resemble their shape. Grain with aspect ratio 1.0, 2.5 and 5.0 are hereby
referred to as Sphere, Kacahuete and Cigar, respectively. The exact geometry
of the non-similar grains are presented in Figure 5.2. These generalized grain
geometries were chosen for two reasons. Firstly, the modeled geometries very
closely resemble the non-equiaxed grains generally observed in experiments. The
idea of improving the analytical expression developed for predicting back stresses in
elongated grains [40] also justifies the choice of spheroidal grain shape considered.

Figure 5.2 – Sphere (AR=1.0); Kacahuete (AR=2.5) and Cigar (AR=5.0)

5.2.2 Information imported from crystal plasticity

The first information imported from crystal plasticity is the columnar and tensile
axis of the grain.

Columnar axis:
{

0.5 0.31 −0.81
}

and Tensile axis:
{

0.12 0.9 0.42
}

The columnar and tensile axes pair correspond to Euler angles
[
134.4 14.0 58.3

]
in Bunge notation [22]. All the three spheroidal grains are rotated according to the
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Figure 5.3 – Schematic shows a.) a Cigar grain in rotated configuration inside a
cubic simulation volume in reference frame and b.) the Cigar grain with the axes
data imported from crystal plasticity

Euler angles and the schematic of a Cigar grain in rotated configuration is shown
in Figure 5.3.

The second information imported from crystal plasticity is the stress tensor
in reference frame and the corresponding principle stresses (σI = 348.25MPa,
σII = 83.61MPa and σIII = −114.04MPa) along the principle axes are shown in
Figure 5.4.

Stress tensor: (σext in MPa)=

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

317.53 82.33 −79.74

82.33 0.01 83.63

−79.74 83.63 −0.02


The orientation of the grain and the external stress applied on the grain are

chosen in such a way that the crystal plasticity models predict four highly active slip
systems with similar Schmid factors. Table 5.1 gather the slip system information
along with their Schmid factors and angle the normal to the plane makes with
respect to the long axis of the grain. The long axis is the columnar axis shown in
in Figure 5.3.

All the grain boundaries of the grain are kept impenetrable to dislocation
(i.e., only pile up at the GBs and no dislocation-grain boundary interactions are
considered). The four most active slip systems of interest are indicated in Table
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Figure 5.4 – Stress tensor imported from CP model being expressed in principle
axes

Table 5.1 – Slip system information along with Schmid factors and angle made
with respect to the long axis of the grain, respectively
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Figure 5.5 – Dislocation activity without
cross slip in Sphere

Figure 5.6 – Dislocation activity with
cross slip in Sphere

5.2. It should also be noted that for the above stress tensor and Euler angles pair,
one of the four active slip systems (Long Path in Table:5.2) is aligned parallel to
columnar axis of the grain. Two of the four most active slip systems share the
same Burgers vector and hence, screw dislocations on these systems can change
their respective glide planes by cross slip mechanism. Figure 5.5 and Figure 5.6
show the change in dislocation activity due to cross slip in a Sphere under single
slip condition. Unlike in equiaxed grains, the path a dislocation traces is different
on each slip system in non-equiaxed grains (elongated grains in our case). Different
names were proposed to indicate the non-similar paths traced by the dislocation
on the slip system (cf. Table 5.1 and Table 5.2). Along with the proposed names,
the same color coding of the slip systems is followed throughout this chapter.

Table 5.2 – Four most active slip system

A schematic view of two of the four most active slip systems (cf. Table 5.2) in
grains of different aspect ratios and different angle (angle made with respect to

101



Chapter 5. Influence of grain morphology on intragranular backstress
predictions

the long axis) are presented in Figure 5.7. The slip plane geometry remains the
same for all slip systems in Sphere (AR=1.0). In Kacahuete (AR=2.5) and Cigar
(AR=5.0), the slip plane geometry is observed to change according to the angle
which the plane normal makes with the long (columnar) axis of the grain. Such
variations in plastic deformations can give rise to huge plastic anisotropy influenced
by grain shape.

5.2.3 Selection of initial dislocation density

It is common practice in the DD community to consider the initial microstructure as
a random distribution of Frank-Read dislocation sources in the simulation volume.
We follow the same procedure to generate our initial dislocation microstructure. 132
random sources (11 on each slip system), each of length 2µm; which corresponds to
an initial density (ρinitial = 0.527× 1011m−2) are considered for all our simulations.
The choice of the dislocation length was based on the smallest dimension of the
grain with highest aspect ratio. In our case, the smallest dimension corresponds to
the Cigar grain, where D = 6.0µm. A dislocation source length of 2µm is chosen
after testing for the minimum influence of GBs on a single dislocation source placed
at the center of Cigar. In other words, the minimum length for which a dislocation
source can continue the multiplication process when placed exactly at the center of
the grain is chosen. This particular value of source length is kept the same even in
the case of grains modeled with lower aspect ratios (Sphere and Kacahuete grains).
Since the probability of initial dislocation sources being randomly placed close
to the grain boundary is higher in the case of Cigar grain, the number of initial
dislocation sources has been increased to eleven on each slip system to minimize
the effect of initial dislocation sources being placed close to the grain boundary.

Further, the influence of the initial dislocation density can be neglected by
analysing only the unloading part of the stress-strain curve during the single
loading and unloading cycle. Ten simulations of 10 different random realisations
for each grain are considered to further decrease the stochastics due to dislocation
positioning inside the grain. One of the random initial dislocation realizations in
Sphere, Kacahuete and Cigar grains with only four active slip systems highlighted
(coloured; others in white) is shown in Figure 5.8.
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Figure 5.7 – Schematics of slip systems "Long path" (LP) and "Collinear1" (CP1)
in Sphere (AR=1.0); Kachuete (AR=2.5) and Cigar (AR=5.0) grains, respectively
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Figure 5.8 – Randomized initial dislocation source realization (RR 05) in Sphere
(AR=1.0); Kacahuete (AR=2.5) and Cigar (AR=5.0) grains with only the four
most active slip systems being highlighted

5.2.4 Material parameters

The material parameters of Ni, which has a face centred cubic lattice structure,
were used for the simulation and are presented in Table 5.3.

Table 5.3 – Material parameters of Ni

5.2.5 Loading condition

All the simulations were carried out by applying an external stress, σext which
is taken as an input from CP theory (cf. Section 5.2.2). A stress increment of
∆σ = 10−3MPa at every step is applied. The stress increment is kept low enough
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to ensure quasi-static equilibrium before every loading increment.

σnewext = σoldext(1 + ∆σ) (5.1)
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Figure 5.9 – Tangential hyperbolic monitoring (change in stress increment and
stress with no.of steps)

Stress increment (∆σ) is not monotonic. It follows a tangential hyperbolic
relation. With such monitoring, a systematic decrease of stress is achieved while
approaching a prescribed plastic strain at which a load reversal is imposed. If the
prescribed plastic strain is reached at step 25, the decrease in stress increment
while approaching 25th step in a model plot is shown in Figure 5.9. After reaching
the prescribed plastic strain, the stress is decreased by a factor of 75% and the
sign of the stress increment is changed. The decrease in the stress by a factor
will prevent any overshoot of equivalent plastic strain, εpeq (if the dislocations have
not reached equilibrium) which is monitored at every simulation step. Loading is
reversed by applying a negative stress increment (∆σ = −1.10−3MPa) once the
equivalent plastic strain of εpeq = 4.10−4 is reached.

5.3 Results

The results of ten simulations with different initial random realisations in Sphere,
Kacahuete and Cigar grains are presented in average form in the sections below.
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As our focus is on the influence of grain shape on the prediction of intragranular
back stresses, only the plastic regime of the stress-strain curve is plotted. In order
to maintain consistency during the comparison of different simulations, Sphere,
Kacahuete and Cigar grains are always plotted with similar line types. In all the
simulations, loading is reversed when the equivalent plastic strain εpeq = 4.10−4 is
reached. The choice of the reversal equivalent plastic strain is made after analysing
the results from a reference simulations in a Sphere grain. The evolution of plastic
deformation on the four most active slip systems is presented by following the same
names and color coding as presented in Table 5.2.

5.3.1 Reference simulation: Spherical grain without cross
slip

When the Sphere grain is plastically deformed, CP theory, for the specific Miller
indices and stress tensor (cf. Section 5.2.2) pair, predicts similar dislocation
slip activity on the four most active slip systems (cf. Table 5.2). But, the DD
simulations predict a completely different dislocation slip activity on each slip
systems as shown in Figure 5.11.

Figure 5.10 – Snapshot of disloca-
tion slip activity on four most ac-
tive slip systems in Sphere grain
at εpeq = 4.10−4 Figure 5.11 – Different dislocation slip activity on

four most active slip systems in Sphere grain

In order to probe the origin for the heterogeneities of dislocation slip activities,
the contribution of the kinematic and the isotropic hardening parts to the overall
strain hardening behavior needs to be better understood. It is still a difficult task
to exactly distinguish the contributions of both parts to strain hardening curve
even with discrete dislocation dynamics simulations. The reason for these difficulty
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comes from the collective contributions of the short-range (σi) and long-range
stress (σd) fields of dislocations:

σ = σi + σd (5.2)

where σi is the stress required to overcome the resistance of the material (lattice
friction) and activation stress of a dislocation segment of length, L; σd is the
contribution of long-range effect of dislocations in the simulation volume.

Heterogeneities in plastic deformation in an equiaxed grain (like Sphere grain)
is an evidence of the directional nature of long-range internal stresses. Figure 5.12
(b) shows the directional nature of internal stresses during a loading-unloading
cycle.

Figure 5.12 – Schematics showing (a) Short-range and long-range contributions;
(b) Directionality of long-range interaction [43]

Looking at the DD results in multislip condition (cf. Figure 5.11) will only
complicate things. In order to first establish a better understanding of the contribu-
tions to the overall strain hardening behavior, a DD simulation on a Sphere grain
with a single dislocation source (on "Long path") at the center of the grain was
performed (cf. Figure 5.13). Analysis has been carried out only on the unloading
part of a single loading-unloading cycle. During the onset of the unloading cycle,
dislocations are in a piled up dislocation configuration. Such a pileup configuration
is the signature of kinematic hardening. So, the contribution of isotropic hard-
ening is completely nullified by analysing only the unloading part of the single
loading-unloading cycle.

During loading, plastic deformation caused by the movement of dislocations
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Figure 5.13 – Single dislocation source on "Long path" located at the center of
Sphere grain

is hindered by the interaction of dislocations with obstacles (GBs or piled up
dislocations). This creates a long-range stress field in the simulation volume and
resists further progress of dislocations of similar sign. Snapshots taken at different
steps during the DD simulation of Sphere grains are shown in Figure 5.14. But,
during unloading, this long-range interaction repels the dislocations from the
obstacles (other dislocations in the pile up) and helps to move the dislocations in
the direction of reversed strain. Dislocations are reverting (reversed plastic strain)
by the same amount of the long-range stress field (also includes external stress)
they experience.

So, the kinematic hardening slope measured from the unloading part of the
stress-strain curve will be a good measure for the average back stress on each slip
system. The formula used for measuring the slope of the unloading part is given in
Equation 5.5.

τ (s) = τ
(s)
i + τ

(s)
d (5.3)

with τ
(s)
i =

[
τfr +

µb
L

]
sign(γ(s)

p ) (5.4)

τ
(s)
d =

[
1

k1

µ

(1− ν)

]
γ(s)
p (5.5)

where the resolved shear stress on the slip system (s), τ (s) is decomposed into the
contributions of short-range τ (s)

i and long-range τ (s)
d interactions. The short-range

effect τ (s)
i is arising from the contribution of lattice friction (τfr) of the material
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Figure 5.14 – Long-range stress field due to dislocations in the pileup hindering
further activation of the initial dislocation source on "Long path" located at the
center of Sphere grain

and activation stress of the Frank-Read segment µb
L
, with µ being shear modulus,

b being the magnitude of Burgers vector and L being the length of the Frank-Read
dislocation source. The kinematic hardening due to pile up of dislocations is
evaluated as the slope (k1) of the stress-strain curve. The equation for τ (s)

d has
been modified for the present analysis to:

σd =
1

M

[
1

k1

µ

(1− ν)

]
γ(s)
p (5.6)

where M represents the Schmid factor. An example plot showing the calculation
of slope is presented in Figure 5.15. As explained in Section 5.2.5, after reaching a
prescribed equivalent plastic strain, the equivalent stress is dropped by ∼75% (this
value is not constant and can be changed). Dislocations are in a stable configuration
at this particular point. So, this point is used as one of the reference points to
calculate slope of the curve with the other reference point being at origin.
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Figure 5.15 – Kinematic hardening slope of the unloading part of the stress-strain
curve as a measure of backstress on "Long path" in Sphere grain

5.3.2 Grain shape effect on strain hardening without cross-
slip

Simulation results for the Sphere, Kacahuete and Cigar grains when the cross slip
mechanism is not active are presented to understand influence of grain shape on
plastic deformation. The cross slip mechanism is prohibited by applying a relatively
high critical cross slip stress of CS3 = 160MPa in these simulations.

The loading part of the stress-strain curves in Figure 5.16 suggests that plastic
deformation in all three grains initiates at the same value of equivalent stress
(σeq ∼ 40MPa) irrespective of the aspect ratio of the grain; owing to the dislocation
activation strength of initial dislocation sources of same length prescribed in each
grain. In the region εpeq < 1.10−4, the similarities in the stress-strain response of
Sphere, Kacahute and Cigar grains are due to the simultaneous dislocation activity
on the four slip systems sharing a high, common Schmid factor. The influence of
grain shape can be observed as change in the stress-strain reponse for the loading
part of the region εpeq > 1.10−4. The Sphere grain with an aspect ratio of 1.0
leads to more strain hardening than Kacahuete and Cigar geometries. Results
suggest that an increase in the aspect ratio of the grain tends to decrease the strain
hardening capacity. The reason for this behavior can be understood by looking at
the dislocation microstructure evolution in elongated grain (Cigar (AR=5.0)).
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Figure 5.16 – Plastic response of sphere, kacahute and cigar with no cross slip

The lower strain hardening capacity of the Cigar grain shape must be arising
from the interaction of dislocations on highly active slip systems with the dislo-
cations on the second highly active slip systems. In order to clearly observe the
mechanism responsible for the lower strain hardening in Cigar grain, we look at
the dislocation interaction on "long path" and "deviate of long path". The slip
system named "long path" is aligned parallel to the long axis of the grain and
has a Schmid factor equal to 0.368. Alternatively, the slip system named "deviate
of long path" is aligned at 21o with the long axis of the grain and has a Schmid
factor equal to 0.194 (second highest Schmid factor). Both these slip systems also
share a common Burgers vector. Information related to these two slip systems are
presented in the Tables (Table 5.2 and Table 5.4). A schematic view of centred
slip plane on "long path" (blue) and "deviate of long path" (red) is presented in
Figure 5.17.

Figure 5.18 shows the dislocation activity only on "long path" and "deviate of
long path" in Cigar grain at step 1070. Looking at the dislocation microstructure,
it is clear that the dislocations on "long path" (blue), having the highest Schmid
factors, are already activated. After a certain time, the initiation of dislocation
activity on "deviate of long path" (red) should be accompanied by a stress increment
as the Schmid factor on this slip system is almost half the highest. But, such an
increment in equivalent stress has not been observed in Cigar grain (cf. Figure
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Table 5.4 – Deviates of four most active slip system

Figure 5.17 – Schematic drawing of a slip plane of "long path" (blue) and "deviate
of long path" (red) passing through the center of the Cigar grain
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5.16). This is due to the interaction of dislocations on "deviate of long path" (red)
with already active "long path" (blue) dislocations.

Figure 5.18 – Dislocation microstructure
at step 1070 in Cigar grain

Figure 5.19 – Region of interest at step
1070 in Cigar grain

Figure 5.20 – Evolution of dislocation microstructure on "long path" and "deviate
of long path" in Cigar grain

Different simulation steps (cf. Figure 5.20) of dislocation microstructure
evolution highlight the interaction of dislocation on "long path" and "deviate of
long path". Due to the confinement of grain size along X- and Y- directions, the
dislocations on "deviate of long path" strongly interact with the dislocations on
"long path" (cf. step 1080 in Figure 5.20) and exchange neighbours mutually (cf.
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step 1090 and step 1100 in Figure 5.20). This interaction promotes dislocations
activity on "deviate of long path" (red) via single arm source (cf. step 1250
and step 1300 in Figure 5.20) without much stress increment; thereby leading
to less strain hardening, predominantly in Cigar grain which has a higher aspect
ratio than Sphere and Kacahuete grains. This type of hardening (single arm
sources) is commonly seen in DD simulations on micropillars with aspect ratios of
∼ 3 [141,178,179].

5.3.3 Influence of grain shape on cross slip

The contribution of dislocation interactions (especially the collinear interaction
among cross slip systems) leads to a decrease of strain hardening in elongated grains
(cf. Section 5.3.2). To emphasize more on the strong collinear interaction, simulation
results of Sphere, Kachuete and Cigar grains at two different critical cross slip
stresses of CS2=80MPa and CS1=32MPa were performed and are presented along-
with the results of the simulations with a critical cross slip stress of CS3=160MPa
(i.e., no cross slip) in Figure 5.21 (a).

In all the three comparative plots of Figure 5.21, a low critical cross slip
stress CS1= 32MPa is observed to decrease the strain hardening capacity. At the
macroscopic level, the critical cross slip stress itself does not show a dominant
influence when compared against the grain aspect ratio (cf. Figure 5.21). But,
this does not mean that cross slip has no influence on the dislocation activity
in the grain. The changes in the dislocation activity influenced by the cross slip
mechanism and also the aspect ratio of the grain can be analysed by plotting the
plastic deformation behavior on each slip system.

The equivalent plastic strain values extracted for the unloading part of Sphere,
Kacahuete and Cigar (cf. Figure 5.22(b)) at an equivalent stress of σeq = 50MPa for
critical cross slip cases CS1 and CS3 are shown in Figure 5.22(a). The equivalent
plastic strain is observed to be higher for grain with high aspect ratios. The
observation remains intact for the cases with and without cross slip, further
highlighting a greater dislocation storage capacity in grains with high aspect ratios.
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Figure 5.21 – Comparison of equivalent stress versus plastic strain response in (a)
Sphere, (b) Kacahuete and (c) Cigar grains, respectively at different critical cross
slip stresses (CS1, CS2 and CS3)

Figure 5.22 – (a) Comparison of equivalent plastic strain of Sphere, Kacahuete and
Cigar at equivalent stress σeq = 50MPa; (b) Extraction of equivalent plastic strain
values for Cigar grain
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5.3.4 Influence of cross slip on dislocation activity

In FCC materials, apart from pile up of dislocations on slip systems, a significant
contribution to strain hardening behavior also arise from the mutual interaction
of dislocations on different slip systems. A generalized tensor relating the mutual
interactions has been proposed [70] as,

τ ic = µb
√∑

j

aijρj (5.7)

where τ ic is the critical resolved shear stress on the slip system (i); µ is the shear
modulus; ρj is the dislocation density on slip system (j) and the coefficients aij
refers to the components of a matrix that describe the average interaction strength
between slip system (i) and slip system (j).

In FCC crystals, four major types of interactions exist, whose coefficients are
needed to describe the slip system interactions. The four types of dislocation
interactions are already presented in Section 4.3.6 of Chapter 4, but are again listed
below:

1. Glissile junction

2. Collinear interaction

3. Lomer lock

4. Hirth lock

DD simulations have been used to extract these coefficients [47,107,153]. It has
been found that simultaneous dislocation activity on the primary slip system and
its corresponding cross slip (or deviate) system is prohibited by the high strength of
collinear interaction. The self-interaction coefficient for this interaction is often large
and is close to that of a Lomer interaction [106]. Particularly in multislip conditions,
the strong collinear interaction favours dislocation activity on the slip system that
experiences the weakest global interaction within the microstructure [153]. These
observations reveal the importance of collinear interaction on slip system activity.
It is interesting to address the importance of such an interaction in elongated grains.
Recently, a new dislocation multiplication mechanism based on glissile junctions
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has been found to produce a significant contribution to the plastic deformation
within a considered size and density regime [167]. But, the strength of glissile
junction in comparison to the already known, collinear interaction is very low. In
any case, the new glide system as a consequence of the formation of glissile junction
will also change the dislocation slip activity in elongated grains. If the strength of
such an interaction is significant, like in the case of collinear interaction, it will in
turn influence the backstress experienced by dislocations. It should be noted that,
the contribution of glissile junction based new multiplication mechanism has not
been accounted for in the present study.

To emphasize only the changes in the dislocation activity influenced by both
the cross slip mechanism and the grain shape, plastic deformation behavior on the
four highly active slip systems (cf. Figure 5.2) and their corresponding deviate
systems (cf 5.4) are plotted together for two different critical cross slip stresses
equal to CS1=32MPa (cross slip value at 300K) and CS3=160MPa (no cross slip)
in the two extreme grain shape cases of Sphere and Cigar grains.

Figure 5.23 – Comparison of plastic deformation behavior on highly active slip
systems and their corresponding deviates in Sphere at CS1 and CS3, respectively

In equiaxed (Sphere) grains, with no cross slip (cf. plot CS3 in Figure 5.23),
DD simulations predict that even the slip systems with similar Schmid factors do
not plastically deform at the same rate. As reported by Madec, there is a strong
influence of collinear interaction. As the predominant plastic deformation was
found to be carried by "Collinear1" (yellow) and "deviate of Collinear1" (orange)
in both the cross slip cases of CS1 and CS3, the strong inter-dependency between
these cross slip systems is not influenced in the case of equiaxed grains. In other
words, Madec’s observation of strong collinear interaction promoting either of
the cross slip systems is not observed in equiaxed grains. So, in terms of back
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stresses developing on the primary slip system and its corresponding cross slip
system/s, one can first measure the average back stress developed on both the
systems (primary and cross slip systems). Later, the aggregate back stress on
primary and its corresponding cross slip systems can be distributed according to
the respective Schmid factors, the angle which the primary system makes with
long axis of the grain and also the angle which the deviate system makes with the
long axis of the grain triad. Alternatively, the angles made by primary system and
deviate system with the long axis of the grain can also be analysed in terms of the
area available for the dislocation to glide on respective slip systems. But, here, we
introduce the Schmid factor, primary angle and deviate angle triad, which is used
for back stress analysis in the Section 5.4.1.

Figure 5.24 – Comparison in terms of plastic deformation behavior on highly
active slip systems and their corresponding deviates in Cigars at CS1 and CS3,
respectively

A clear justification of the dependency of Schmid factors, primary and deviate
angles triad on the dislocation activity is shown in the plastic deformation behavior
of CS1 and CS3 in Figure 5.24. The first observation of the shift in the dislocation
activity of "Collinear1" (yellow) and "deviate of collinear1" (orange) when CS3
results of Sphere and Cigar grains are compared; the second observation of a change
in the dislocation activity of "Short path" (green) and "deviate of short path"
(silver) in CS3 results of Sphere and Cigar grains also highlight a systematic change
in plastic deformation behavior which may be present. Analysing such trends in
the plastic deformation coming from the grain aspect ratio will be useful to build
upon enriched back stress formulation for phenomenological CP models.
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5.4 Discussion

5.4.1 Implications for CP models: average back stress on
slip systems

DD simulation results need to be analysed in such a way that they are useful
for enhancing the formulation of continuum crystal plasticity models. Hence, the
average back stress on each slip system is determined as the slopes of the stress
strain curve. An example of measurement of the average back stress on "Long
path" (blue) in Sphere, Kacahuete and Cigar shapes is presented in the Figure
5.25.

Figure 5.25 – Variation of σeq with γp involving an unloading step to quantify back
stress whose magnitude is represented by the slope on "long path" (blue) of Sphere,
Kacahuete and Cigar grains

The average back stress values of the four active slip systems and their corre-
sponding deviates are represented for Sphere, Kacahuete and Cigar as shown in
Figure 5.26 for critical cross slip stress equal to CS3=160MPa. The four active
slip systems along with their deviates are labelled with their proposed abbreviated
names. Long path can be read as LP and the deviate of long path as dLP. Short
path follows the notation SP and its corresponding deviate as dSP. The highly active
cross slip pair follow the same abbreviations according to their names; collinear1
being CP1 and collinear2 being CP2. Along-side the abbreviated names, Schmid
factor, primary angle in degrees (angle which the slip plane makes with the long

120



5.4. Discussion

axis of the grain) and deviate angle in degrees (angle made by the corresponding
cross slip plane with long axis of the grain) are also presented.

Figure 5.26 – Average back stresses on slip system of interest in Sphere, Kacahuete
and Cigar grains at CS3; Labels are presented as abbreviation of the prescribed
new names along with the Schmid factor, primary and deviate angles triad

Figure 5.27 – Rearranged average back stresses on slip system of interest in Sphere,
Kacahuete and Cigar grains at CS3

As measured average back stress values on the four most active slip systems
and their corresponding deviates are presented in Figure 5.26. Average back stress
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systematically increase with increasing aspect ratio of the grain. In Sphere shape,
the trend in the evolution of the magnitude of back stresses decreases with an
increase of the primary angles as shown in the Figure 5.27. The measured back
stress values still were based on Schmid law in Kacahuete, but were not influenced
by the primary angles any more. They decrease with a decrease in the deviate angles.
In Cigar, a complete change in the trend of average back stresses is observed. The
dependence of Schmid factors is over-powered by the strong collinear interaction
among the primary and cross slip systems. An increase in the back stress is
only dependent on the increase of the deviate angles. The complete shift to the
dependence on only the deviate angles is highlighted in the Figure 5.27. Validating
the dependence on only the deviate angles is the dislocation microstructure of
primary and deviate system sets in Cigar at CS3 (cf. Figure 5.28). Concentration
of plastic deformation on a particular slip system is prevented in elongated grains
(Cigar) by the cross slip mechanism. This effect is strong when the primary and
deviate systems are sharing a common Schmid factor, like in the case of collinear1
(yellow) and deviate of collinear1 (orange) as shown in the Figure 5.28.

Figure 5.28 – Dislocation microstructure in Cigar grain at critical cross slip stress
of CS3=160MPa in "long path", "short path" and "collinear1" and their respective
deviates

Increase in the aspect ratio of the grain shows a systematic transition in the
back stress values from a Schmid factor and primary angles based behavior in
equiaxed grain to only deviate angles dominated behavior in elongated grains. This
trend also highlights the strong role of collinear interaction in spheroidal grain
with high aspect ratios. The strong collinear interaction also has its influence on
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the Schmid law based behavior of elongated grains. Non-Schmid type behavior,
which is presently observed in Cigar grain, is commonly evident in BCC crystals.
Plastic anisotropy in BCC crystals is mostly linked to deviation of a

2
< 111 > screw

dislocation from the (1− 10) average glide plane. Recent, DFT calculations, apart
from validating that the origin of plastic anisotropy from the screw dislocation;
were also successful in explaining the underlying physics behind the non-Schmid
behavior in BCC metals at low temperatures [50]. A modified parameter-free
Schmid law proposed can be adopted to mesoscale models to predict non-Schmid
behaviors alteast for BCC crystals.

Figure 5.29 – Average back stresses on slip system of interest in sphere, kacahuete
and cigar at CS2; Labels are presented as abbreviation of the prescribed new names
along with the Schmid factor, primary and deviate angles triad

The trend in the changes of average back stress values with an increase in the
grain aspect ratio are also observed for the critical cross slip stress, CS2=80MPa
as depicted in Figure 5.30. According to these observations, the grain aspect ratio
itself has a more dominant influence than the grain orientation on the magnitude
of the back stresses. But, this also had to be tested for various other sets of Miller
indices in order to be adapted as an enriched local rule in phenomenological crystal
plasticity models.
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Figure 5.30 – Rearranged average back stresses on slip system of interest in sphere,
kacahuete and cigar at CS2

5.4.2 Extension of the pile up model for predicting back-
stresses

Adapting the continuous-dislocation method 1, analytical expressions for dislocation
distribution and strain fields of double-ended and single-ended pile ups have been
already developed for a 1D scenario [124]. The idealized 1D analytical expression
for dislocation distribution in a pile up has been extended to a more generalized
3D case by Depres [43]. Depres’s work on the extension of the continuous pile up
model to 3D case has been reviewed in Appendix A. Further, as an extension to
Depres’s work, an analytical expression for non-equiaxed shape of dislocation pile
up has been derived in Appendix B. Back stress predictions of the formula are
compared against DD simulation results for single slip condition.

5.4.2.1 Validation of single (centred) dislocation pileup

When the shape of the grain is a cube, all the slip planes passing through the center
of the cubic grain will have an unique slip plane dimension (length of the slip plane

1continuous dislocation method assumes the pile up behavior being continuous and not discrete
inside a grain
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= side of the cube). One encounters a similar situation with a spherical grain. All
the slip planes when passing through the center of the grain will have a unique
slip plane dimension (length of the slip plane = diameter of the sphere). But, in
spheroidal grains, the dimension of each slip plane is different and will depend
on the angle between the slip plane normal and the long axis of the grain. This
angle is referred as primary angle of the slip plane. The extended pileup theory
derived in Appendix B also accounts the primary slip plane angles and can predict
magnitude of back stress in non-equiaxed shaped dislocation pileups.

In this section, the extended theory is validated against results from 12 indepen-
dent DD simulations. DD simulations were performed under the assumption that
hardening in grains of different aspect ratios (Sphere, Kacahuete, Cigar) are coming
only as the contribution from a single dislocation source at the center of the grain.
A single dislocation was placed on four different slip systems (LP, SP,CP1, CP2)
to understand how hardening in each grain is influenced with respect to the angle
between the slip plane normal and long axis of the grain.

The plastic deformation Υpu
3d before substituting V and l is

Υpu
3d =

π

6
βs

(1− ν)

µV
l3τapp

where,
βs = β√

(sinθ)2+(βcosθ)2
, is the aspect ratio of the slip plane.

µ and ν are Shear modulus and Poisson’s ratio
β is the aspect ratio of the grain
θ is the angle made by the slip plane normal with respect to the long axis of the
grain
Υpu

3d is the plastic strain developed due to pileup when a shear stress τapp is applied
on the slip plane. Substituting the volume of the grain, V , and length of the
slip plane, l, in the above expression can provide us a theoretical estimate of the
magnitude of back stress on the slip system.

In the case of single dislocation pileup, the analytical expression accurately
predicts the back stress developed in the grain when cross-slip is not activated. It
is evident from Figure 5.31(a.) that the improved formulation accurately captures
the back stress values changing with the aspect ratio of the grain and also the
primary angle. Whereas, when cross-slip is activated, the analytical formulation
tends to under- or over- estimate back stress (cf. Figure 5.31(b.)). The effect of
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Figure 5.31 – Comparison of DD (centred) results against extended pileup model
a.) without cross-slip and b.) with cross-slip

cross-slip can be accounted into the analytical formula by incorporated the area
of the deviate system along-side the primary system. This requires more rigorous
study of cross-slip at the slip system level in a single grain. This part has not been
carried out in the present study.

5.4.2.2 Validation of non-centred single dislocation pileup

It has been shown in Section 5.4.2.1 that the derived analytical expression predicts
back stresses accurately when the slip plane is centred in the grain.

Figure 5.32 – Non-centred plane with cross-slip(CS2=80MPa)

Figure 5.33 – Comparison of DD (non-centred) results against extended pileup
model
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To tackle multi-slip condition, non-centred slip planes should also be considered.
The derivation of analytical expression for a single non-centred slip plane is carried
in Section B.2.1 of Appendix B. Results from DD simulations are now compared
against the predictions of the analytical formula for a dislocation on a non-centred
slip plane inside the grain. Figure 5.32 shows that the enriched pileup based formula
slightly under- estimates the back stresses when the slip plane is non-centred. The
single dislocation pileup formula is further extended to predict back stresses during
multi-slip condition. As there is still work to be done on the multi-slip formulation,
the concerned derivation and validation procedure are presented in Appendix B.

5.5 Conclusions

The important conclusions made in the present chapter on grain shape are presented
here:

1. Increasing the aspect ratio of spheroidal grain decreases the strain hardening
capacity of the grain. The elongated grain shape enhances the dislocation
storage capacity of the grain; thereby imparting slightly more permanent
deformation in the grain.

2. Collective contribution of single arm sources and double ended FR sources to
plastic deformation was observed in grains with higher aspect ratios.

3. A decrease of the aspect ratio of the grains, which enhances the collinear
interaction among slip systems, influence the slip system activity in the grain.

4. The slip system activity and the corresponding magnitude of back stresses
changes to a non-Schmid behavior. The dependence shifts to the angle the
deviate system makes with the long axis of the grain.
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6 Collective influence of grain and
dislocation density parameters on
plasticity of thin films

SIZE effects in polycrystalline thin films are generally a consequence of a de-
crease in the average grain size with film thickness. In Pd thin films, the av-

erage in-plane grain size d =∼ 30nm remains unchanged for films of different
thicknesses [31]. One or more dominant deformation mechanisms along with
the microstructural features are believed to play an influential role in dictating
the macroscopic response of thin films. In this chapter, 3D DDD simulations
on polycrystals are performed to probe the fundamental mechanisms behind
plastic deformation behavior of Pd thin films.

6.1 Introduction

Metallic thin films are based at the core of many MEMS/NEMS devices [94,
166], flexible electronic systems [168] and in thin membrane technology. These
nanocrystalline (nc) metals present excellent strength but often suffer with the
critical issue of low ductility [128]. Enhanced strength of nc metals is attained by
controlling the grain size (Hall 1951 and Petch 1953) to be a bit larger than the
transition value around 10nm to 30nm [201]. In very small grains d < 10nm, an
inverse relationship (negative slope) is observed between strength and grain size.
The change in the Hall-Petch slope at 10nm is not abrupt and can be envisaged by
linear decrease of slope in the transition region (d = 10 - 30nm to 100 - 300nm)
(cf. Figure 6.1). The slope in the transition region is not unique and depends on
the magnitude and distribution of grain size [3].

Such changes in the Hall-Petch slope can be manifested by differing deformation
mechanisms that control plasticity. For grain sizes d > 100nm to 300nm, plastic
deformation mostly occur due to dislocation-based mechanism, such as dislocation
slip, dislocation pile up, junction formation, annihilation, forest hardening etc.,. In
contrast, very small grains d < 10nm show low strain hardening capacities due to the
confinement of grain size. In such cases, different thermally activated mechanisms
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Figure 6.1 – Model plot showing transition in deformation mechanisms when
changing the grain size

involving GB rotation [199], GB sliding [170], GB migration [88,117] and nucleation
at GBs [109,165] start to dictate the overall response of the material. In addition to
GB-based thermally activated mechanisms, dislocation-based thermally activated
mechanisms can be simultaneously present when grain size is in the transition
regime between 10-30nm to 100-300nm. Depending on the microstructure details
and external conditions (temperature, loading etc.,), either GB-based or dislocation-
based thermally activated mechanisms (sometimes both can work together) will
dictate the materials response. Thermally activated mechanisms which lead to
high rate sensitivity [158] along with with strain gradients can help in restoring
ductility [139].

Moderate to high ductility has been observed in pure Al films [34], Au films [97]
and Cu films [203] with nano-sized grains. The high rate sensitivity of these
nc metals in most of the cases is expected to be dominated by GB mechanisms
[83,109,165,170]. In contrast, moderate to high ductility (upto 12%) in Pd thin
films with growth nano-twins does not show any evidence of plasticity dominated
by grain boundary mechanisms [190]. In such cases, the ductility is believed to
be driven by thermally-activated dislocation mechanisms. Dislocation mobility
when thermally activated showed a more uniform dislocation microstructure; in-
contrast, a non-uniform microstructure was obtained in conditions where athermal
dislocation-dislocation interactions govern plastic flow [153]. Thermally activated
mechanisms can be highly influenced by the microstructural features (grain size,
grain shape, grain orientation etc.,) of thin films.

Additionally, recent experimental investigations reported significant dislocation
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accumulation in nc Pd thin films [31], nc Ni [116, 195] and Pt [190]. The initial
dislocation density in as-deposited nc Pd films is one order of magnitude higher
than the ones generally observed in nc metals [31,93]. The fine microstructure of
these films along with typical deposition processes can lead to a high density of
defects. The presence of pre-existing dislocations and growth twins will further
enhanced the dislocation storage capabilities. In addition to the reported increasing
strength with decreasing film thickness, a significant grain size distribution was
reported in these films [33]. The presence of sufficiently small and large grains in
the polycrystal will generate stress heterogeneities. Corresponding strain gradients
will influence the plastic deformation behavior as well. Plastic deformation was
reported to be affected not only by the mean grain diameter but also by the grain
size distribution [105].

Discrete dislocation dynamics (DDD) simulations demonstrate excellent capa-
bility to reproduce the strain hardening response of the material when the plastic
deformation is still mediated by collective motion of dislocations. Earlier, the use
of DD simulations to predict polycrystalline thin film behavior has been mostly
limited to two-dimensional simulations. Dependence of film thickness on the tensile
strength in free-standing passivated and unpassivated copper films was studied by
Nicola and co-workers using 2D DDD simulations [111,136]. The yield strength of
unpassivated films with sufficiently larger grains was reported to be independent of
film thickness. But, for thin unpassivated films and for films passivated on one side,
the yield strength increases with decreasing thickness. Additionally, passivated and
unpassivated film showed difference in Bauschinger effects [111]. Hartmaier and
co-workers performed 2D DD simulations to investigate the time-dependent irre-
versible deformation of a thin film constrained by a substrate. In their simulations,
both climb and glide has been together accounted. Despite the 2D limitations,
film thickness dependent transition between creep dominated and dislocation glide
dominated deformation were in good agreement with experiments [87]. Li and
co-workers introduced a dislocation-grain boundary penetration model in 2D DDD
simulations to model polycrystal behavior. It was observed that the Hall-Petch
relation still holds true for both penetrable and impenetrable GBs. The Hall-Petch
slope was observed to be dependent on the applied strain, grain misorientation
angle, grain arrangement pattern etc., [121]. Kumar and co-workers used a line
tension approach [104] to model slip transfer across tilt grain boundaries. In their
2D simulations, Bauschinger effect was observed to decrease when the dislocation
transmission across GBs was enabled [110]. Results from these 2D DD simulations
provided interesting perspectives on polycrystal behavior.
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However, 2D DD models cannot accurately capture the exact three dimensional
nature of dislocation interactions. Following a 3D approach, the plastic deformation
of a polycrystalline thin film of a FCC metal was simulated by considering the
dislocation motion in a single columnar grain. Grain boundaries were considered to
be either impenetrable obstacles or free surfaces. Further, the inverse dependence
of flow stress on film thickness was reported [187]. Such works (based on a single
grain to represent the polycrystal behavior) cannot accurately predict the plastic
deformation mechanisms as influenced by the long-range effects of dislocations. 3D
DDD codes with improved computational efficiencies make it possible to model
polycrystal behavior using 3D DDD simulations. Under the assumption that
all dislocation sources are located at grain boundaries, a new interpretation of
size-dependent plasticity of thin films based on the probability of activating grain
boundary dislocation sources was proposed using 3D DD simulations [55]. More
recently, Zhou and co-workers [202] performed 3D DD simulations to investigate
the plasticity of free-standing polycrystalline thin films. Permitting cross-slip of
dislocations and accounting for dislocation transmission across GBs using line
tension model, the yield strength of films was observed to scale inversely with
film thickness. Further, the influence of grain shape in changing the yield stress
dependence with grain size was addressed. In films with pancake-like grain, depen-
dence of yield stress on grain size gradually becomes weaker for decreasing film
thickness. In contrast, the strength of needle-like grains in films with high aspect
ratios show increased dependence on grain size [202]. For accurately predicting the
behavior of polycrystals with nano-sized grains, modeling accurately the grain size
distribution is necessary. None of the 3D DDD studies performed on polycrystals
accounted for the grain size distribution in their simulations. With this core idea
of accurately incorporating the grain size distribution in polycrystals, 3D DDD
simulations performed will be directly compared to experimental results on Pd
submicron films [31,33].

The main objective of this chapter is to address the collective influence of
grain parameters (such as grain morphology, grain orientation and grain size) and
dislocation density distribution on the overall response of polycrystalline thin films.
This chapter is organised as follows. In Section 6.2, the modeling environment
established with Gmsh [75] to generate polycrystals of different grain size distri-
butions is explained. After describing the simulation environment in Section 6.3,
results of 3D DDD simulations on polycrystals of different film thicknesses per-
formed by varying grain size distributions, grain orientations and initial dislocation
densities are presented in Section 6.4. Further discussion on the importance of
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grain size distribution in Section 6.5 is followed by conclusions on the influential
microstructural features and deformation mechanisms responsible for size effects in
Pd thin films in Section 6.6.

6.2 Modeling polycrystals

Grain morphology has been observed to influence the dislocation slip activity
in single grain (cf. Chapter 5). This emphasizes on modeling interfaces (GBs
and free surfaces) correctly in polycrystals as first priority. Details at the GBs
(like, dislocation-GB interactions) which may also influence the overall mechanical
behavior of the film will only follow later (second priority). So, the DD simulations in
this chapter were performed under the assumption that dislocation-GB interactions
have a minimal/negligible influence on the plastic deformation behavior of thin
film.

6.2.1 Generating polycrystal using Voronoi tessellation

To model a representative volume element of the highlighted region in Figure6.2(b)
with columnar grain morphology ((cf.) Figure 6.2(a)), an interface has been created
with the Voronoi tessellation-based microstructure generator available in Gmsh [75]
and DD polycrystal setup generator.

Figure 6.2 – (a.) Bright field image obtained on the cross-sectional FIB sample; (b.)
Region of interest for modeling thin film behavior being highlighted in red [31,93]

Depending on the position (X-, Y- and Z- coordinates) of the seeds in a box
and the growth rate specified, a polycrystal microstructure can be easily generated
via voronoi tessellation in Gmsh. Taking advantage of this tool, the Side and Top
views of the generated polycrystal in Gmsh are shown in Figures 6.3(a) and 6.3(b),
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respectively. Grains attained hexagonal shape owing to the positioning of seeds
and similar growth rates specified to each seed.

Figure 6.3 – (a.) Side view and (b.) Top view of the periodic (X- and Y- directions)
polycrystal microstructure generated by Gmsh using Voronoi tessellation

Then, the interface developed is invoked to replicate the generated polycrystal
as an actual 3D polycrystal that is compatible with the DD code. Figures 6.4(a)
and 6.4(b) shows the corresponding side and top views of the DDD polycrystal
where each GB is represented as a Facet. As already mentioned in Chapter 4, a
very high stress value (τfacet = 1050MPa) is given to each facet as its property.
This method is used to model GBs as infinite obstacles to dislocation motion.

Another important advantage of the created interface is the ease with which a
refined periodic mesh can be generated for any arbitrary polycrystal. The use of
refined polycrystal mesh as shown in Figures 6.5 (a) and 6.5(b) will decrease the
computational burden while solving the boundary value problem to account for
free surfaces in the simulation volume. A detailed explanation of the procedure
followed to account for free surfaces is presented in Section 6.3.6.

6.2.2 Modeling grain size distribution in polycrystals

The Gmsh-DD interface developed also provides an unique advantage to model
grain size distribution in a polycrystal. Variation of grain size in the polycrystal
was possible by modifying the initial position of seeds and also the growth rate
in Voronoi tessellation-based microstructure generator introduced in Section 6.2.1.
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Figure 6.4 – (a.) Side view and (b.) Top view of the periodic (X- and Y- directions)
polycrystal representing GBs as facets

Figures 6.6(a),(b) and 6.7(a),(b) show Side and Top views of the films with a larger
and smaller grains in the center of the film, respectively.

6.3 Simulation setup

6.3.1 Polycrystalline 3D DDD model

A polycrystal version of the 3D discrete dislocation dynamics (DDD) code has
been used for this study. In the polycrystal version of DDD code, dislocations in
each grain move on their specific rotated lattices. The orientation of the lattice in
each grain is represented by a cuboid-shaped texture object as shown in Figure
6.8. Complete details about the methodology of the 3D DDD code has already
been presented in the Chapter 4. Even though no dislocation-grain boundary
interactions were accounted for in the present study, it is worth mentioning that the
long-range stress-field of dislocations will have an influence across grain boundaries.
Due to this, the plastic deformation behavior of the polycrystal will be significantly
different when only a single grain is modeled.

135



Chapter 6. Collective influence of grain and dislocation density
parameters on plasticity of thin films

Figure 6.5 – Refined mesh created by Gmsh shown (a.) after importing to CASTEM
(snapshot of the mesh from CASTEM) and (b.) corresponding mesh viewed using
Paraview

Figure 6.6 – (a.) Side view and (b.) Top view of the polycrystal with larger grain
at the center of the film
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Figure 6.7 – (a.) Side view and (b.) Top view of the polycrystal with smaller grain
at the center of the film

Figure 6.8 – (a.) Side view and (b.) Top view of the polycrystal with cuboid-shaped
texture objects representing the lattice orientation of each grain on which respective
dislocations move

137



Chapter 6. Collective influence of grain and dislocation density
parameters on plasticity of thin films

6.3.2 Initial dislocation configuration

In 3D DDD simulations, Frank-Read sources (FRs) with different size distribu-
tions on each slip system are often used as initial dislocation topologies. Such
configurations are widely used owing to the ease of generation and also for the
sake of mathematical simplicity. For each FRs generated, its position (X-, Y-
and Z- coordinates), orientation, length, Burgers vector, glide plane and the grain
identity needs to be specified. The side and top views of the initial dislocation
configuration generated as FRs in a polycrystal are shown in the Figures 6.9(a) and
6.9(b), respectively. When working with polycrystals with nano-sized grains of very
high aspect ratios ≥ 5.0, it becomes increasingly difficult to avoid influence of GBs
during the activation of artificially pinned FRs. In such cases, directing towards a
more stochastic approach (i.e., average of many simulations with different initial
random FRs distributions) will be a computationally demanding task.

Figure 6.9 – (a.) Side view and (b.) Top view of the polycrystal with initial
dislocation configuration as Frank-Read sources of same length

Complex initial dislocation configurations obtained by the relaxation of disloca-
tion loops will not introduce artificial pinning points [131]. Administering almost a
similar approach, instead of using image forces to drive the initial FRs, a constant
external stress which is slightly higher than the activation stress of the FRs is
applied (along the loading/X- direction) until a physical evidence of the bowing
out of dislocations is observed. After which, simulation is still continued under zero
external stress until an equilibrium configuration for dislocations is reached. The
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total initial dislocation density (with FRs in the simulation volume) which was
found to be ρinitial = 9.2× 10+14m−2, rapidly increases due to the applied external
load and stabilizes based on the dislocation configuration in the polycrystal. The
total density plotted against number of simulation steps in Figure 6.10 shows
evidence of equilibrium/relaxed dislocation configuration for simulations step ≥
100.

Figure 6.10 – Total dislocation density plotted against number of steps during
relaxation test

The dislocation microstructure shown in Figure 6.11 has been extracted at
simulation step 250 (cf. highlighted in blue in Figure 6.10). Corresponding
total dislocation density ρrelaxed = 1.55 × 10+16m−2 is close to the experimental
value measured by TEM in the Pd films [31]. The dislocation topology obtained
will have a minimum density of artificially pinned sources. Further, a realistic
dislocation configuration with dislocation loops, junctions, single arm sources and
dislocations pinned at the free surfaces or GBs can be seen. Such relaxed dislocation
configurations are used as initial dislocation arrangements for all the simulations
performed during the study.

6.3.3 Identification of material parameters of Pd

Numerous control parameters pertaining to a specific material are used in discrete
dislocation dynamics codes. For Pd, the material parameters obtained from the
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Figure 6.11 – (a.) Side view and (b.) Top view of the polycrystal with relaxed dislo-
cation configuration extracted at relaxation simulation step no.250 (cf. highlighted
in Figure 6.10)

literature and the ones that need to be identified are listed in Table 6.1.

Symbol Quantity Value Source
E Young’s modulus 121000 MPa [24]
µ Shear modulus 44000 MPa [24]
ν Poisson ratio 0.39 [24]
|b| norm of Burgers vector - to be identified
γ Stacking fault energy (SFE) 180 mJ.m−2 [1]
Vact Activation volume ∼ 20.b3 [31]
B Phonon drag coefficient - to be identified
τIII critical resolved cross slip stress - to be identified

Table 6.1 – Material parameters of Pd

The norm of the Burgers vector of Pd is identified on the basis of crystallography.
In FCC metals, lattice parameter relates to norm of Burgers vector as:

|b| = ao
2
| < 110 > | =

a0√
2

where the lattice parameter ao = 0.389Å [1], <110> is the common slip direction
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in FCC and the norm of the Burgers vector becomes |b| = 2.75Å.

On the basis of copper as reference material, materials parameters of 316L
stainless steel were already identified in [43]. Following a similar approach, phonon
drag coefficient of Pd is calculated using:

BPd =

[
b
√

ρν
µ

]Pd
[
b
√

ρν
µ

]CuBCu (6.1)

where BCu = 1.5× 10−5Pa.s at 300K. Equation 6.1 is constructed based on the
proportionality relation of the phonon drag coefficient with b

√
ρν
µ

[142]. Here, ρ is
the volume mass density, µ is the shear modulus and ν is the Poisson ratio, specific
to a material. After substituting corresponding values, the phonon drag coefficient
of Pd is BPd = 2.088× 10−5Pa.s.

τIII signifies the stage where the strain hardening rate starts decreasing due to
relaxation of internal stress by the onset of thermally activated cross slip mechanism.
In DD simulations at nanoscale, this value does not have any significance as the
flow stress already has a considerably high value. Due to this, the control over
thermally activated mechanism in DD simulations is limited. This is one drawback
when working with DD simulations at nanoscale. Recently, based on results from
atomistic simulations [149], three newly identified cross-slip mechanisms, namely
surface, bulk and intersection cross-slip types were hierarchically informed into
DD simulations [91]. In any case, for the present simulations, τIII = 32MPa 1 has
been used.

All the materials parameters of Pd are presented in Table 6.1.

Table 6.2 – Material parameters of Pd

1This is the default critical cross slip stress value used for Cu at 300K in DD simulations
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The Zener ratio (cf. Equation 6.2) calculated using the elastic constants of Pd
suggests that the material is highly anisotropic.

A =
2C44

C11 − C12

= 2.45 (6.2)

where A indicates Zener ratio, C11 = 234GPa, C12 = 176GPa and C44 = 71GPa

are anisotropic elastic constants for Pd [95].

To predict correctly the anisotropic response of a polycrystal, apart from con-
sidering elastic anisotropy in FEM, the stress field of dislocations in DD simulations
should also be in the same anisotropic framework. Unlike the stress field expression
in elastic isotropic framework, a closed-form expression does not exists for the
stress field of a dislocation in an anisotropic elastic medium. DD simulations will
be at least 100 times slower when anisotropic stress field calculations are performed.
Moreover, the difference between the two formulations decreases with increasing
distance between the dislocation loops and increase in calculation point 2 [92].
So, it is justified to use the stress field expression for dislocations in isotropic
elastic framework and still estimate the anisotropic response of the polycrystal by
considering an elastic anisotropy framework only while solving the boundary value
problem using CASTEM.

6.3.4 Boundary conditions

To model the bulk behavior of the polycrystalline thin film, periodic boundary
conditions (PBC) can be invoked along X- and Y- directions. The present imple-
mentation of PBC in DD code is confined to deal only with flat surfaces in the
periodic directions. This is the main reason for modeling the specific configuration
of the polycrystal with half grains at the boundaries and full grains in the interior
of the thin film. Special care has been taken while prescribing grain identities
either for half or full grains. The grain numbering scheme employed has already
been explained with the help of a polycrystal model with four hexagonal grains
in Section ?? of Chapter 4. Further, to verify the implementation of the grain
numbering scheme, Frank-Read sources have been placed at the centres of each
of the four hexagonal grains in the model polycrystal setup used in Section ?? of
Chapter 4. Top view of the initial configuration with FRs in the model polycrystal

2the number of points on a regular 2D grid
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setup is shown in Figure 6.12.

Figure 6.12 – Top view of the initial FRs configuration in polycrystal with four
hexagonal grains

Figure 6.13 – Top view snapshots at different simulations steps showing validity of
the grain identity scheme (PBC) in DD simulations

Upon pulling in tension along the X-direction, due to PBC, dislocations leaving
a half grain from one side enters to the half grain on the opposite side as shown
in series of snapshots at different simulation steps in Figure 6.13. A color coding
scheme has been followed to indicate dislocations in different grains.

A zero traction is applied as boundary condition along Z-directions to represent
Free surfaces. Figures 6.14(b) and 6.14(c) differentiates the two types of interfaces,
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GBs and Free surfaces, modeled in the polycrystal (cf. Figure 6.14). GBs are
modelled as impenetrable to dislocations and Free surfaces are given directionality
(i.e., dislocation can move out, but can not come back into the simulation volume)

Figure 6.14 – Side view of the (a) Actual polycrystal, (b) Showing only GBs in
the polycrystal and (c) Free surfaces in the polycrystal being highlighted in orange
color

Dislocation segments which escape the simulation volume through free surfaces
will create disturbances on the free surface (i.e., non-zero traction on surface).
These errors are corrected by using a DD-FEM coupling based on Superposition
principle [134]. Before going into the details about the DD-FEM coupling used
for modeling thin films behavior, the actual problem is completely described in
Section 6.3.5.

6.3.5 Problem description: Tensile test in X-direction

The main object is to simulate an uniaxial tensile test on the polycrystal volume
in the presence of dislocations, involving thus zero traction applied on the free
surfaces (top and bottom surfaces; Z-direction). The full finite domain DD problem
that needs to be solved is presented in Figure 6.15(a). In the actual problem, a
homogeneous displacement is applied along the X-direction and is represented by
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the vector Uapp in blue color. Further, the traction boundary condition imposed
on the free surfaces is represented by the vector O in red.

Figure 6.15 – Description of the (a) Full problem; Applying superposition principle
to solve (b) DD sub-problem and (c) FE sub-problem

The closed-form expression for the stress field of a dislocation in elastic isotropic
framework in DD code (TRIDIS) is valid only in infinite domain. That is, the
use of this stress field expression while performing a tensile test on thin films will
not yield correct results. This is due to the fact that the displacement (UDD in
DD sub-problem) and force (FDD in DD sub-problem) fields generated on the
boundaries by the dislocations are not taken into account. Hence, the displacement
and force fields on the boundaries need to be accounted for by solving the full
problem.

6.3.6 The DD-FEM coupling: solving a BVP

Using the superposition principle, the Full problem is solved by decomposing into
two sub-problems.

1. In the first DD sub-problem (cf. Figure 6.15(b)), the DD code under only
externally applied displacement and no other boundary conditions is used
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to compute the stress field of the dislocation ensemble in the polycrystalline
film. As mentioned above, this sub-problem does not yield the final solution.

2. In order to correct for the errors generated while solving the DD sub-problem,
a second FE sub-problem (cf. Figure 6.15(c)) is simultaneously solved with
the corrected (respective force and displacement fields created by dislocations
on the boundary) boundary conditions.

When the solutions from the two sub-problems are superimposed, an accurate
solution for the full problem is achieved.

Apart from presence of free surfaces in the simulation volume (cf. Figure
6.14(c)), elastic anisotropic behavior of the polycrystals is also accounted for via
the DD coupling with an open source finite elements software, CASTEM. Different
stages involved while solving the boundary value problem are clearly explained in
Section 6.3.7 using an adapted DD-FEM algorithm.

6.3.7 Adapted DD-FEM algorithm

The adapted DD-FEM algorithm has been divided into four stages as shown in
Figure 6.16. The stages entitled Boundary conditions and Finite element method
are performed by the finite element software (CASTEM). The Dislocation dynamics
stage is self explanatory (solved by TRIDIS). Finally, the stage entitled Boundary
corrections is the actual coupling between DD code and CASTEM. The sequence
of steps followed while solving the BVP using superposition principle are presented
in this section.

• Boundary condition in the form of homogeneous displacement (Uapp) on
periodic X-surface of the thin film generates the loading.

• Boundary corrections are needed due to the presence of dislocations.
The dislocations in a finite simulation volume will generate heterogeneous
displacement (UDD) and force (FDD) fields on the periodic and free surfaces,
respectively. In the present adapted DD-FEM algorithm, only homogeneous
displacement fields are accounted on the periodic X- surface. For the first
few loading increments, it is reasonable to assume that the material is only
elastically deformed, allowing to skip/avoid this correction stage.
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• Finite elements sub-problem is solved with the effective boundary condi-
tions accounting for the displacement and force fields created by dislocations
on the surfaces. The solution of the FE sub-problem is a heterogeneous stress
field at the integration points. These stresses are further transferred to the
middle of each dislocation segment σext using the DD-FEM coupling.

• Dislocations generate a plastic strain by moving in the simulation volume
under the influence of the effective stress field, σint + σext at the centres of
each dislocation segment. Accumulation of plastic strain continues for ′N′

DD simulations iterations during every loading increment.

• Equilibrium configuration is generally achieved after ′N′ DD simulations
steps. If so, this is proceeded by another loading increment and the corre-
sponding stages to be followed. If equilibrium configuration is not attained,
a correction in the boundary conditions is performed to account for changes
in the dislocation configuration and the process is continued without any
loading increment.

6.3.8 Loading condition

Simulations were performed under quasi-static loading condition. In order to
explain how the loading is monitored during the simulations, the results from a
base simulation are presented. A relaxed initial dislocation configuration ρinitial =

1.55 × 10+16m−2 is considered (cf. Section 6.3.2). Figure 6.17 shows the stress
values σ11 corresponding to the externally applied displacement increments and
the Von Mises plastic strain monitored along Y1 and Y2-axes, respectively being
plotted against the number of simulations steps on X-axis. For the first loading
increment, σ11 = 495MPa, a small amount of plastic strain is accumulated in the
simulations volume. But, an equilibrium configuration has not been attained by
the dislocation ensemble in the polycrystal. This is reflected by a stress drop down
to σ11 = 475MPa and still resulting in small amounts of plastic strain. The stress
drops in DD simulations essentially arise as a consequence of dislocations motion
towards free surfaces (Image forces) during plastic deformation. After series of
stress drops (two for the first loading increment), an equilibrium configuration of
dislocation is attained and dislocations in the polycrystal cannot generate anymore
plastic strain if the external load is not increased.

At larger plastic strains, due to the increasing number of mobile dislocations, it
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Figure 6.16 – Adapted DD-FEM algorithm using superposition principle
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becomes increasingly difficult to attain an equilibrium configuration of dislocations.
More simulations steps are needed to equilibrate the system. Such an increase of
number of simulations steps to reach equilibrium can be seen for simulation steps ≥
1700. It should be noted that, equilibrium configuration of dislocations is specified
when no further contribution is made by the dislocations to the overall plastic
strain. In other words, the increment in plastic strain for the last N iterations is
almost zero (dεpl ∼ 0.0). Due to vibration of dislocations in the simulation volume,
it is never possible to arrive to the exact zero value of plastic strain increment.

Figure 6.17 – Von Mises plastic strain monitored for every stress increment during
the simulations

6.4 Results

Firstly, results from a reference simulation are presented. Details of the polycrystal
setup (grain size, grain orientation and dislocation densities) are indicated wherever
necessary. Basic comparative simulations were performed to test the influence
of different parameters in DD simulations. After analysing the basic simulations,
further simulations are carried out to directly compare the results with experiments.
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6.4.1 Reference simulation: Film with similar grain sizes
and same grain orientations

A polycrystal of 200nm thickness with similar grain size and same grain orientation
is considered as the reference case. Side and Top views of the polycrystal with
cuboid-shaped texture objects are shown in Figures 6.18(a) and 6.18(b), respectively.
Corresponding to each grain in the polycrystal, the grain sizes and columnar axis
along which each grain is aligned are color-coded and are presented in Figure
6.19. Such details are necessary while representing internal stresses contribution
of a particular grain of the polycrystal. One such analysis has been carried out
and will be presented in the discussion section of this chapter. For this reference
simulation, all the grains are rotated with the same Euler angles (corresponding to
the columnar and tensile axis).

Figure 6.18 – (a.) Side view and (b.) Top view of the polycrystal with cuboid-shaped
texture objects representing the oriented lattices of each grain

The stress-strain curve of the reference polycrystal simulation is shown in
Figure 6.20(a). A constant strain increment of ∆ε = 2.5× 10−3 has been imposed
to generate the loading. Four loading increments were needed to reach a total
equivalent strain of ε11 =1%. The stress level drops by certain value after every
loading increment. The point to which the stress drops signifies the actual resultant
stress-strain response of the material. The resulting stress-strain response after
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Figure 6.19 – Plot representing size and orientation details about each grain in the
polycrystal

highlighting the relaxed stress is shown in Figure 6.20(b). For all further analyses,
the highlighted resulting stress-strain response is only plotted.

Figure 6.20 – (a.) Stress-Strain curve (original) and (b.) Stress-Strain curve
(resultant) for the reference simulation of the polycrystal

The Top and Side views of initially relaxed dislocation configuration in the
polycrystal are shown in Figures 6.19(a) and 6.19(b), respectively. Starting with
a initial dislocation density of ρinitial ∼ 1.× 10+16m−2, the dislocation density in
the polycrystal almost quadruples and reaches a value of ρ ∼ 3.8× 10+16m−2 as
observed in Figure 6.22(b). The dislocation density has been observed to increase
at a higher rate from ε11 ≥ 6.5 × 10−3. At ε11 = 6.5 × 10−3, the corresponding
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stress value of σ11 ∼ 610MPa is identified from Figure 6.22(a). The significance of
such an abrupt increase in dislocation density and its relation with the equivalent
stress value must be analysed with more realistic simulations results (i.e., when all
the grains are not oriented exactly with the same Euler angles).

Figure 6.21 – (a.) Side view and (b.) Top view of the polycrystal with initial
relaxed dislocation microstructure

Figure 6.22 – (a) Stress-Strain curve (resultant) and (b) Evolution of total disloca-
tion density during the reference simulations of the polycrystal
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6.4.2 Basic comparative simulations

6.4.2.1 Periodic Vs Free surfaces in Z-direction

To understand the influence of the boundary conditions on the overall strain
hardening behavior, two different simulations with polycrystal setup involving four
grains were performed. In the first simulation, periodic boundary conditions (PBC)
are imposed along all three directions of the thin film. This setup would require no
coupling with a finite elements method (i.e., no image forces are accounted here).
For the second simulation, the general setup with traction boundary condition along
the Z-directions is used. Here, the free surface are accounted in the simulations
via the coupled code with CASTEM. The stress-plastic strain response of the two
simulations are presented in Figure 6.23.

Figure 6.23 – Stress-plastic strain response of two simulations with different bound-
ary conditions

Even-though a tensile test (X-direction or 11) has been performed in both
simulations, the loading schemes are quite different. For the first simulation with
PBC in all three directions, a constant strain rate (strain rate= 100s−1) has been
imposed. Parameters for loading increment have not been perfectly adjusted (i.e.,
equilibrium configuration is not achieved before every loading increment). This is
evident in the abrupt changes in the stress-strain curve. On the other hand, in the
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coupled simulation, a more dynamic approach is followed. An increment in external
load is imposed only after an equilibrium dislocation configuration is reached. As
explained in Section 6.4.1, the number of simulation iterations required to achieve
equilibrium configuration will solely depend on the internal dislocation interactions.
The resultant stress-plastic strain response is highlighted in blue.

Upon neglecting the influence of the load monitoring scheme, the strain hard-
ening response of both the simulations are observed to be quite different. This
change is mainly arising from the different boundary conditions. In the simulation
result with free surfaces in Z-direction, a stress value of σPBC+FS

11 = 750MPa was
sufficient to accumulate a plastic strain of εplvm = 5. × 10−3. To reach a similar
plastic strain, the simulation setup with PBC in all three directions required a
much higher stress value of σPBC11 = 1350MPa. This highlights the significant
influence of free surfaces on the overall response of the material.

6.4.2.2 Effect of number of grains in the films

Simulation results of a polycrystal will depend on the selected number of grains in
the representative volume element (RVE). In this section, the number of grains
in the RVE is varied and its influence on the stress-strain response is assessed.
Simulations were carried on two polycrystals, one with 4 grains and the other with
12 grains. In both cases, the same boundary conditions were applied (PBC in X-
and Y- directions and zero traction in Z- direction). Further, grain size, grain
orientation and initial dislocation density in each grain and the loading conditions
were also kept the same. The stress-strain response of two simulations is shown in
Figure 6.24(a).

The initial dislocation density in both the simulations is ρinitial = 1.×10+16m−2.
the results indicate that the two simulations with different numbers of grains in the
RVE show a relatively different strain hardening behavior. The observed variation
is expected to vanish at very high dislocation densities. The reason behind such
observations can be attributed to the change in total number of dislocation segments
in the respective RVEs, which in turn is related to difference in long-range internal
stresses. Corresponding evolution of dislocation density shown in Figure 6.24(b)
also support the previous argument.
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Figure 6.24 – (a) Stress-Strain response and (b) Dislocation density evolution of
two simulations with different numbers of grains in the RVE, respectively

6.4.2.3 Response to different loading increments

The use of high loading (strain) rates in DD simulations is a matter of debate
even today. The influence of applied strain rate on the tensile stress was studied
for a single copper grain. In DD simulations of micron-sized grains, an increase
in the strain rate is typically equivalent to an increase in average dislocation
velocity when the density of mobile dislocations is not significantly modified. As a
consequence, the effective stress governing dislocation mobility is also increased
and finally resulting in considerable changes in the dislocation arrangements. In
agreement with the above discussion, yield stress was observed not to be strain
rate sensitive at low strain rates. Since, in this regime, the dislocation mobility is
governed by athermal forest interactions [62]. Above a critical strain rate (specific
to a dislocation density), the flow stress was observed to linearly increase with
imposed strain rate [46].

In contrast, in DD simulations with nano-sized grains the dislocation mobility
has an upper limit (maximum velocity of sound in metals = 2000m.s−1) and in
most cases, dislocations move at this extreme value. This nullifies any changes
arising from higher strain rates or different loading increments. This is justified
from the simulation results at different loading increments in Figure 6.25.
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Figure 6.25 – Stress-Strain response for different loading increments

6.4.3 Strain hardening behavior of 200nm film

Incorporation of the right physics and minimal assumptions in DD codes provides
the unique advantage of allowing direct comparison with experiments. In this
section, DD simulations were performed for different initial dislocation densities to
investigate if the experimentally observed strain hardening response of the 200nm
thick Pd film can be captured. As it was already observed in Section 6.4.2.2 that
the number of grains in RVE has only a small influence on the overall response, a
polycrystal setup with four equally sized grains is considered during the simulations.
Columnar axis of all the four grains are aligned along the [110] direction which is
also the most favoured direction in experimentally observed Pd films.

The initial dislocation density ρ10 = 3.5× 10+16m−2 (cf. Figure 6.26) used in
DD simulations closely represents the experimental strain hardening response of
the 200nm thick film. Interestingly, this particular initial dislocation density value
used in DD simulations is in very close agreement with the experiments (cf. Figure
6.28).

Experimental evidence of GB-based mechanism driving plastic deformation
in Pd thin films is limited [93]. In such cases, the possibility of dislocation-
based thermally-activated mechanism dictating the strain hardening response was
highlighted [31,33,109]. Present DD results confirm the argument of almost one or
two deformation mechanisms being dominant in Pd films with average grain size
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Figure 6.26 – Strain hardening behavior (actual and resultant) of thin film with
different initial dislocation densities

∼ 30nm [119,139]. The plastic deformation mechanism in these nano-sized grains
is still dislocation-mediated.

Figure 6.27 – Evolution of dislocation density in thin film with initial dislocation
density ρexpinitial ∼ 3.5× 10+16m−2 [31]

6.4.4 Size effects in Pd thin films

6.4.4.1 Influence of grain orientation

With the assumption of having only one grain along the thickness direction of thin
film, every grain in the thin film corresponds a specific aspect ratio depending
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Figure 6.28 – Initial dislocation microstructure corresponding to ρsiminitial = ρ10 =
3.5× 10+16m−2 in 200nm thick film with four grains
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on grain size distribution. In an ideal case with no grain size distribution in the
film, the aspect ratio of each grain is also approximately (grain size is not exactly
the same!) the same. This ideal case with no grain size distribution in the film
is used for studying grain orientation influence on films of different thicknesses.
Instead of using experimental dislocation density, a lower initial dislocation density
is specified to speed-up the calculations. The initial dislocation density in the
films is scaled to ρinitial = 1.× 10+16m−2 and the corresponding initial dislocation
microstructures in 90nm, 200nm and 480nm thick films are shown in Figure 6.29.

Two extreme grain orientation cases are presented in Figures 6.30(a) and
6.32(a). The stress-strain response and the corresponding microstructure plots are
always presented side-by-side. Microstructure details presented in Figure 6.30(b)
and 6.32(b) indicate that the grains in the polycrystal have the same size and their
columnar axes are aligned along <110> and <112> directions, respectively. In
other words, polycrystals exhibit <110> and <112> textures.

When the corresponding stress-strain responses for films of different thicknesses
are compared in Figure 6.30(a) and Figure 6.32(a), it is hard to differentiate among
the curves (cf. Figure 6.30(a) and Figure 6.32(a)). So, corresponding stress-plastic
strain response and dislocation density evolution in all three films are plotted in
Figures 6.31 and 6.33, respectively.

Looking at the stress-plastic strain it is clear that when grains in the polycrystal
have a preferred orientation (in our case, either <110> or <112>), they accumulate
large amount of plastic strain. Approximately at σ11 = 1250MPa, plastic strain
of εplvm = 5. × 10−3 is accumulated in 90nm thick film in both cases. The same
is not true when the grains are randomly oriented. Figure 6.34(a) indicates that
only a plastic strain of εplvm = 2. × 10−3 is developed at approximately the same
stress value. Interestingly, when the behavior of 90nm and 200nm thick films is
compared, all the three grain orientation cases show a size effect. At any particular
value of plastic strain, corresponding stress is always higher in 90nm thick film.
But the trend is not followed by the 480nm film motivating further analysis.

6.4.4.2 Larger grain at the center of the film

Now, to understand the influence of grain size distribution and see if it has an
impact on the size effect, a polycrystal with a larger grain at the center is considered.
Figure 6.35(a) and (b) show the Top and Side views of a 200nm thick film with
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Figure 6.29 – Side and Top views of 90nm, 200nm and 480nm thick films with
respective initial dislocation microstructures
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Figure 6.30 – (a) Comparison of stress-strain (actual) response in 90nm, 200nm
and 480nm thick films (b) Corresponding microstructure details of the polycrystal
configuration (color coding followed for grains)

Figure 6.31 – (a) Comparison of stress-plastic strain response and (b) Total dis-
location density evolution in 90nm, 200nm and 480nm thick films with <110>
texture
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Figure 6.32 – (a) Comparison of stress-plastic strain response and (b) Total dis-
location density evolution in 90nm, 200nm and 480nm thick films with <112>
texture

Figure 6.33 – (a) Comparison of stress-plastic strain response in 90nm, 200nm
and 480nm thick films (b) Corresponding microstructure details of the polycrystal
configuration (color coding followed for grains)
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Figure 6.34 – (a) Comparison of stress-plastic strain response in 90nm, 200nm
and 480nm thick films (b) Corresponding microstructure details of the polycrystal
configuration with <110> texture (color coding followed for grains)

initial dislocation configuration.

Figure 6.35 – (a) Side and (b) Top views of 200nm thick film with a large grain
surrounded by small grains in the polycrystalline film

The stress-strain response is shown along with the microstructure details of
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the polycrystal in Figure 6.36(a) and 6.36(b). Unlike the case with no grain size
distribution, changes in the stress-strain response are observed for different film
thickness with grain size distribution. But, to understand the impact of a larger
grain at the center of the polycrystal, a more detailed analysis has to be carried
out.

Figure 6.36 – (a) Stress-strain response and (b) Microstructure details of polycrystal
with a large grain surrounded by small grains in the polycrystalline film

The total dislocation density evolution in each grain of the 90nm and 200nm
thick films is individually plotted in Figures 6.37 and 6.38, respectively. The
dislocation density evolutions do not look the same in both the films. In the 90nm
thick film, the dislocation density is concentrated mostly in the central larger grain
(cf. GR07(silver) in Figure 6.37). Whereas in the 200nm thick film, smaller grains
act as dislocation storage sites first before any effect on the larger grain.

To validate that the observation of 90nm film promoting dislocation con-
centration in larger grains, simulation results of polycrystal with same grain size
distribution but different texture are also analysed in Figure 6.39(b). Corresponding
microstructure is shown in Figure 6.39(a).

Like in the previous case, the dislocation activity is concentrated in the largest
grain at the center of the film. It is now evident that larger grains in the smallest
film concentrate more plastic strain. For this particular polycrystal setup, the grain
size/width of the largest grain is ∼ 45nm and that of smallest grain is ∼ 25nm.
Such variance of grain sizes in films can be addressed via aspect ratio of the grains.
Table 6.3 presents details about the minimum and maximum aspect ratios of the
grains in different films.
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Figure 6.37 – Dislocation density evolution in each grain of 90nm thick film

Figure 6.38 – Dislocation density evolution in each grain of 200nm thick film
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Figure 6.39 – (a) Microstructure details and (a) Dislocation density evolution in
each grain of 90nm thick film

Grain size (extreme) t=90nm t=200nm t=480nm
Largest grain=45nm ARmin

90 = 2.0 ARmin
200 = 4.5 ARmin

480 = 10.67
Smallest grain=25nm ARmax

90 = 3.6 ARmax
200 = 8.0 ARmax

480 = 19.2

Table 6.3 – Variation of grain aspect ratios with film thickensses

Observations made in this section further emphasize the impact of grain aspect
ratio on dislocation activity. Here, the variation of grain aspect ratio which is
inherently present in polycrystal due to grain size distribution create changes in
the dislocation density evolution/concentration between films of 90nm and 200nm
thickness, respectively.

6.4.4.3 Combined influence of grain size and dislocation density distri-
bution

Results in Section 6.4.4.2 have been useful for understanding the influential role
of grain size distribution dictating the deformation behavior in Pd thin films.
To probe further on the collective influence of grain size and dislocation density
distribution, polycrystal with few grains considerably smaller in size than their
counter-parts is modeled. The idea here is to use a cut-off value of the grain size.
Below this cut-off value, the probability of finding dislocation sources in the grain
will be very low in the thinnest film [10]. That is, in 90nm thick film, grains
with no initial dislocation sources will be accounted during the initial dislocation
density generation. The initial dislocation densities in 200nm and 480nm thick
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films are accordingly adjusted. The Side and Top views of the as generated FRs
in 90nm, 200nm and 480nm thick films are shown in Figure 6.40, respectively.
Correspondingly, the thin film microstructure is also presented in Figure 6.41(b).

The stress-strain response of the three films has been plotted along with the
experimental results of 200nm thick film (green) for reference. A clear indication
of the influence of film thickness (t=90nm and 200nm) is observed. Due to the
presence of few grains with no initial dislocation, the 90nm thick film shows an
almost elastic response (cf. closer to the slope given by the Young’s modulus). As
already mentioned, size effects are not pronounced due to two reasons:

1. Initial dislocation density was scaled to make it computationally possible to
run the simulations for few loading steps especially for the thickest film. Still,
it is clearly seen that 480nm thick film takes very long time to reach 0.5%

strain.

2. The analysis is confined to a region of low strains ε < 1.0%. The size effect
observed in experiments is highlighted as red box in Figure 6.42.

The main observation here is that considerable size effects are observed when
a polycrystal is modeled with certain grain size distribution. Different initial
dislocation densities (grain with no initial dislocation sources in 90nm thick film) in
films of different thickness can also influence the behavior of thin films accordingly.
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Figure 6.40 – Side and Top views of 90nm, 200nm and 480nm thick films with
respective initial dislocation microstructures
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Figure 6.41 – (a) Stress-strain response and (b) Microstructure details of polycrystal
with a smaller grain at the center of the film

Figure 6.42 – Experimental stress-strain response of 90nm, 200nm and 480nm thick
films with ε < 1.0% region highlighted in red
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6.5 Discussion

6.5.1 Anisotropic plastic response

Plastic deformation is generally deemed to be anisotropic. Enhancement of plastic
anisotropy in elongated/columnar grains (with high aspect ratios) will prevent
plastic strain localization in the grain and will avoid premature failure [40]. Results
from polycrystal setup with larger grain at the center are used for further anisotropic
analysis. As a reminder, it is again emphasized that all the grains in the polycrystal
setup are oriented along <110> direction (cf. Figure 6.43 (a),(c)) which is also the
dominant texture for which experimentally high ductility was observed (cf. Figure
6.43(b)).

Figure 6.43 – (a) Texture map of Pd thin film showing moderate <110> texture
(b) Polycrystal setup information and (c,d) Top and Side views of polycrystal with
coloured texture object

To measure the anisotropic response of thin films, different plastic strain
components are plotted against equivalent plastic strain (εpl11) and are shown in
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Figure 6.44. The plastic strain along the loading direction εplastic11 is comparatively
less than the εplastic12 and εplastic33 . Apparently, εplastic12 and εplastic33 components of
plastic strain are observed to contribute more to the overall plastic response in
both 90nm and 200nm thick films.

Figure 6.44 – Different plastic strain components and Von Mises plastic strain
plotted against equivalent plastic strain (εpl11) in (a) 90nm and (b) 200nm thick
films, respectively

To understand the reason for such a plastic response, a cubic grain with
columnar axis aligned along <110> direction is considered. Similar to the applied
loading in the polycrystal simulations, a strain increment is applied along X-
direction on a 1 micron cubic grain as shown in Figure 6.45. Due to elastic
anisotropic, the stresses developed along Y- and Z- directions (cf. Figure 6.46) are
sufficient to create considerable plastic strain along these directions.

Figure 6.47(a) can now be used as reference to understand the different di-
rections in the polycrystalline thin film setup. With a huge difference in grain

171



Chapter 6. Collective influence of grain and dislocation density
parameters on plasticity of thin films

Figure 6.45 – Strain tensor applied on the reference cubic grain
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Figure 6.46 – Resultant stress tensor on the reference cubic grain
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dimensions along X-/ Y- and Z- (thickness) directions, the are traced by the slip
planes which are aligned almost parallel to the columnar axis (cf. Figure 6.47(b))
are large and also contribute to the plastic strain components other than equivalent
plastic strain (εplastic11 ). The anisotropic coefficient(r)= εplastic33

εplastic22

in 90nm thick film
suggests that the plastic anisotropy is r ∼ 2.5. Such high anisotropy values will
prevent localization of plastic deformation along the smallest dimension.

Figure 6.47 – (a) A 200nm thick film with free surface highlighted in orange (b)
Direction of (111) glide planes in <110> textured single grain

6.5.2 Distribution of internal stresses

DD results clearly showed a very high impact of grain size distribution on plastic
response. Internal stress distribution influenced by the grain size distribution will
be non-negligible. To estimate a measure of heterogeneous distribution of internal
stresses,

1. Firstly, analysis is carried out on 90nm thick film with larger grain in the
center. Influence of localization of plastic deformation in the largest grain is
assessed using an internal stress map (Results from cf. Section 6.4.4.2).

2. Further, the heterogeneities in internal stresses arising due to the presence
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of grains with no initial dislocations in 90nm thick film is analysed (Results
from Section 6.4.4.3).

For both the analysis, internal stresses at ε11 = 1.0% (cf. Figures 6.48(a) and
6.48(b)) are plotted on a plane placed at half-way along the thickness direction.

Figure 6.48 – Red marker showing the point analysis point on the (a) stress-strain
curve with larger grain at center (b) smaller grain at the center of the polycrystal,
respectively

6.5.2.1 Larger grain at the center of the polycrystal

Side and Top views of the internal stress field (σa11) are shown in Figures 6.49(a) and
6.49(b). Here, a in the superscript of σa11 refers to stress field includes contribution
from all the grains. The very first observation is that in smaller grains the dislocation
concentrates mostly at the grain boundaries. This is due to the confinement of
grain size in smaller grains. Whereas in larger grain, the dislocations run freely all
over the grain and internal stresses are distributed also at the center of the grain.

To have a clearer picture of internal stress field in the largest grain, only the
stress contribution arising from the central grain (σc11) is plotted and the Side and
Top views are shown in Figure 6.50(a) and 6.50(b). The stress field from the larger
central grain is observed to be very intense and even spreads over two neighbouring
grains on the right side as shown in Figure 6.50(b). The reason for such a long
range influence is due to the fact that the low density of dislocations in smaller
grains are mostly concentrated at the grain boundary. Particularly in this case,
the stress concentration in smaller grains on the extreme right was observed not to
be mutually cancelled (i.e., no screening effect).
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Figure 6.49 – (a) Side and (b) Top views of the internal stress field contribution
from all the grains plotted on a square plane placed half-way along 90nm thick film

Figure 6.50 – (a) Side and (b) Top views of the internal stress field contribution
from only central grain plotted on a square plane placed half-way along 90nm thick
film
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Similarly, to support the above argument, the internal stress contribution
arising from the rest of the grain (σr11) is plotted. In other words, the stress
contribution from the central grain is not accounted for. Further, the Side and Top
views of the stress map are shown in Figures 6.51(a) and 6.51(b). It is observed
that the argument initiated during the analysis of internal stress field from central
grain holds true even in this case. That is, grains acting as neighbours to the
central larger grain will have an influential contribution on the stress field due to
their concentration at the grain boundaries. This further promotes deformation in
the larger grain.

Figure 6.51 – (a) Side and (b) Top views of the internal stress field contribution
from all grains except the central grain plotted on a square plane placed half-way
along 90nm thick film

6.5.2.2 Effect of the presence of a dislocation free small grain among
large grains

Internal stress field of a polycrystal with smaller grain at the center is plotted on a
plane and is shown as Side and Top views in Figures 6.52.

Analysis of the internal stress field indicates that it will be quite difficult for
the grain with no initial dislocation sources to withstand the stress concentration
at the grain boundaries. Ultimately, new dislocations should be nucleated at the
grain boundary point with high stress concentration. Such dislocation nucleations
mechanisms are required to maintain compatible deformation among different
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Figure 6.52 – (a) Side and (b) Top views of the internal stress field contribution
from all grains except the central grain plotted on a square plane placed half-way
along 90nm thick film

grains in a polycrystal [170]. Understanding such dislocation nucleation from GBs
is of interest for the materials modeling community at continuum scale. Such
studies can be performed using the line tension model [104] in DD simulations.
This work has not been carried out and is only presented to highlight a perspective
study planned.

6.6 Conclusions

Polycrystalline DD simulations provide an elegant way to study the elementary
deformation mechanisms responsible for the strain hardening response of nanocrys-
talline thin films. An interface with Gmsh software has been developed to model
not only the grain size distribution in polycrystals but also to generate the cor-
responding meshes used while solving the BVP. The simulation setup used for
performing uniaxial tensile test on Pd thin films is presented along-with the adapted
DD-FEM algorithm based on superposition principle. Major conclusions drawn
from the present study are:

• The strain hardening response and the evolution of total dislocation density
of 200nm thick film is captured using DD simulations with 4-grains in the
polycrystal. The initial dislocation density used during the DD simulations
is in close agreement with experiments. This emphasizes that the dominant
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deformation mechanism is still dislocation mediated.

• Reasonable size effects were observed from the DD results with no grain size
distribution.

• Further, considerable size effects (cf. Figure 6.53) were observed only with
the model involving grains with no initial dislocation sources in the thinnest
film.

Figure 6.53 – Comparing equivalent stress (σ11) at equivalent strain (ε11 = 1%) in
different (90nm, 200nm and 480nm) films with and without grain size distribution

• Anisotropic behavior of polycrystal is very very strong when grains are aligned
in a preferential orientation.

• Internal stress fields plotted in polycrystal with larger grain at the center also
highlight the localization of plastic deformation changes with the internal
aspect ratio specific to a grain size distribution.
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7 Modeling electrostatic dislocations

SEMICONDUCTING materials have been the corner stone to the success of the
present-day microelectronics industry. Almost all the opto-electronic de-

vices which are produced using semiconducting materials show the presence
of lattice defects, mainly dislocations. The density of dislocations in the range
107 − 1011cm−2 is considered relatively low to influence the properties. But, a
substantial decrease in the overall performance of solar cells is observed due to
the presence of dislocations [77]. This is due to the fact that the carrier lifetime,
which determines the efficiency of the solar cell, is significantly affected by the
opto-electric features carried by dislocations and other point defects.

The main objective of this chapter is to establish a link between electric prop-
erties and dislocations in semiconductors. This chapter introduces some inter-
esting electric features of dislocations in semiconducting materials. A review
of one of the earliest and most widely used electrostatic model is carried out.
Finally, implementation of Read’s model is carried put for the first time in a DD
model. This is followed by application of the electrostatic model to semiconduc-
tors.

7.1 Introduction

In the photovoltaic (PV) industry, conventional crystalline Si based technology still
has a dominant market share when compared to the newly developed/developing
thin film technology. Availability in abundance, low cost and eaze of growing Si
wafer constitute few reasons which may have restricted the industry to completely
shift towards thin film technology. Another side of the story is more lattice defects
based. Si PV wafers cut from single crystal Si cylinders are often free from lattice
defects such as dislocations. Inherent defect free nature has been found to be
clearly advantageous in terms of overall efficiency of the PV wafer. But, the
polycrystalline PV wafer does not provide the same advantage as the single crystal
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PV wafers. In polycrystalline PV wafer, dislocations are often generated from grain
boundary sources during solidification process [100]. The dislocations may leave
some residual dislocations behind during their motion away from the source. Such
residual dislocations rearrange into low-energy configurations forming sub-grain
boundaries, or often addressed in the PV research community as dislocation clusters.
A specific DD study had been carried out explaining the reason for forming such
low energy configuration.

Figure 7.1 – SEM image showing rearrangement of dislocations in Si [100]

GaN thin films produced using various vapour deposition techniques, are
impacted by different kind of dislocations, called misfit dislocations, which develop
due to lattice mismatch at the interface between the S or SiC substrate and
GaN layer. These dislocations can with eaze glide along the GaN layer and are
categorized as threading dislocations. A schematic view of GaN layer grown on Si
substrate is shown in Figure 7.2 and a TEM image of GaN with AlN buffer layer
on a Si substrate can be seen in Figure 7.3. The B, N and T in the image identify
the dislocation blocked by the AlN layer, the dislocation produced by the AlN layer
and the dislocation threading the interlayer, respectively. Dislocations produced of
any kind are observed to have detrimental effects on the electrical performance.

Alexander was among the first to address the important influence of disloca-
tions not only on the plastic deformation but also on the electric behaviour of
semiconductors [2]. To address the electrically negative charged nature carried by
dislocations, electron paramagnetic resonance (EPR) has been used to estimate the
unpaired electrons along a dislocation line in Ge [82]. Though, all EPR spectras
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Figure 7.2 – A schematic view of misfit
and threading dislocations in GaN layer
over Si substrate

Figure 7.3 – Cross-section TEM images of
GaN epilayer with AlN buffer layer with
dislocations [73]

came from dangling bond type defects, there was no evidence of 1D conduction
along the dislocation line as hypothesized by Shockley1. The recorded EPR spectra
were believed to be due to dislocation debris that are left from dislocation motion.
This was confirmed by the clear difference observed between the spectra coming
from point-defect clusters and dislocation cluster. As a conclusion, the density of
well-defined paramagnetic sites was suggested to be very low in Ge [2]. In other
words, only one in hundred or more sites along the dislocation line were occupied
by electrons yielding a very low density. Few authors argued that the lack of
paramagnetic sites is due to the defective dislocation core 2 [89] and others did
not agree that dislocations can act as electron acceptors. But, Alexander further
suggested that the dislocation core should have been predominantly reconstructive
in nature which avoid rows of dangling bonds being formed. No conclusive evidence
of electric signature carried by dislocations has been found, atleast in Ge and Si.

If reconstruction is the reason for not observing rows of dangling bonds, then
one needs to see what would be the stable structure of dislocations in Si. In diamond
cubic crystals such as Si, dislocations predominantly align along <110> direction
due to low Peierls energy in that direction. So, the basic type of dislocations were
screw and 60o dislocations because of <110> direction in (111) planes. Dislocations
in Si were observed to be dissociated into partials, which is evident from the
difference in the velocities of dislocations. The dissociation of a perfect dislocation

1Shockley’s hypothesis has been used by Read to develop an electrostatic model for dislocations
in semiconductors which is reviewed in Section 7.2 of this Chapter.

2A defective dislocation core generally contains kinks and jogs along the dislocation line
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in Si follows:

1. Screw dislocation is divided into two Shockley partials

2. 60o dislocation is divided into a 30o partial and a 90o partial

Figure 7.4 – Diamond cubic lattice struc-
ture of Si [14]

Figure 7.5 – Hexagonal wurtzute lattice
structure of GaN [14]

Whereas, GaN which shows a wurtzite crystal structure (example of hexagonal
crystal system), mostly perfect dislocations, of a-type (edge), c-type (screw) and
<a+c> type (mixed) are observed. A good evidence of these dislocations being
electrically highly charged is found experimentally [29]. With the above discussion
moving in the direction of the dislocation type, it is interesting to understand
the behavior of electrically charged perfect dislocation in GaN and maybe, in the
future, to extend the concept of electrically charged dislocation to Si or Ge. This
will be a challenging task as it requires proper treatment of dislocation characters
(Eg: 60odislocation, dislocation dissociation into partials) in DD codes. Nodal
codes such as NuMoDis [30] will serve a great deal in this aspect. In the coming
sections, a review of electrostatic model proposed by Read is reviewed and further
implemented as a post-processing tool in the DD code (TRIDIS).

7.2 Review: Read’s electrostatic model

The famous schematic view of a diamond cubic lattice [152] with and without an
extra half plane (edge dislocation) are shown below. In Figure 7.7, the row of
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atoms above the slip plane has no neighbours in the plane below. Dangling bonds
can be formed by these atoms which do not have any neighbours. These dangling
bonds are believed to be the basis for electrical effects in semiconductors.

Figure 7.6 – The diamond cubic lattic
structure [152]

Figure 7.7 – A dislocation lying on a (111)
plane at 60o to the Burgers vector [152]

Shockley was the first to put forward the concept of edge dislocation having
a one dimensional arrangement of dangling bonds in the dislocation core at the
edge of inserted half plane [188]. But, the very fist theory pertaining to electrical
properties of dislocations was proposed by Read [152]. The statistics of occupation
of dislocation states taking into account the Coulomb interactions between accepted
electrons was derived [151]. It was also found that dislocations in semiconductors
effectively scatter the charge carriers in semiconductors due to two reasons:

1. Deformation potential due to the long range distortion field around the
dislocation line

2. Electrostatic potential due to electric field around a charged dislocation
line

The dangling bonds, which act as electron acceptors along an edge dislocation,
builds a negative line charge along the dislocation line. In this model, Read
introduced a term called filling fraction, which would give an idea on whether the
acceptor site is filled by electron or not. The filling fraction in n-type germanium
was calculated by considering the straight-line array of single traps for an edge
dislocation lying on a (111) plane. The filling fraction f, which varies between [0,1]
is then given by

f =
β

α
(7.1)
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Figure 7.8 – An edge dislocation showing acceptor centres and electron trapping
sites

where α is the spacing between trapped electrons or occupied sites, and β is the
spacing between dangling bonds. The value f=0 represent that none of the acceptor
sites are filled with electrons. In contrast, f=1 represents that all the acceptor
sites are filled with electrons. Figure 7.8 shows a schematic view of every alternate
site being filled with an electron, correlating to f=0.5.

The trapped electrons are coming from an ionized donor near the edge disloca-
tions. The attached electrons build up a negative charge on the dislocation. Every
negatively charged edge dislocation should be compensated by a spatial charge
distribution of the oppposite polarity. Due to this, a positively charged cylinder
with a radius R surrounds every negatively charged dislocation. The radius of the
cylinder, R was found from the below neutrality condition:

qπR2(ND −NA) =
q

α
(7.2)

here, q is the magnitude of the electron charge and ND, NA which depend of doping
concentration, are the number of donors and acceptors, respectively. When the
contribution of carriers to space charge is negligible at low temperatures, and for
very large R compared to α, the potential, φ is given by the formula:

φ =
−q2

κα
[1− r2

R2
+ ln

R2

r2
] (7.3)
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where, q is the magnitude of the electron charge, κ is the dielectric constant, α
is the spacing between trapped electrons and α < r ≤ R is the distance from
the dislocation. For r < a, one needs to account for the discrete nature of the
charges on the dislocation line. For the region outside the space charge cylinder,
the potential φ = 0 and the potential varies with r inside the cylinder. The change
in the potential for different filling fraction values is presented in the Figure 7.9.

Figure 7.9 – Variation of electric potential with distance r inside the cylinder of
radius R for different filling fractions f

7.3 Modelling a charged dislocation

To model an electrically charged dislocation, the charges need to be distributed
along every edge dislocation line, according to the filling fraction. To efficiently
distribute charges along an edge dislocation line, we firstly divide the dislocation
line into several tranches as shown in Figure 7.10. To avoid modelling empty sites
and filled sites (occupied by electron) differently, an effective charge is calculated
depending on the number of empty and filled sites in every tranche on the dislocation
line. Each tranche is then given an effective charge at the center as shown in Figure
7.11.

Since, the potential was observed to decay exponentially when going far away
from the dislocation core (cf. Figure 7.9), the influence of each tranche charge
can be visualized as a spherical region of radius R (same as the cylinder radius as
explained by Read) around the charge.
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Figure 7.10 – Building tranches along an
edge dislocation line

Figure 7.11 – Representation of the effec-
tive charge in each tranche

Figure 7.12 – Estimated influence of tranche charge
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7.3.1 Application: charged dislocation in GaN

A straight edge dislocation with Burgers vector aligned along [-1-1 0] direction is
placed in a cubic grain of side 1000nm can be seen in Figure 7.13. The magnitude
of Burgers vectors is considered to be 4Å. The two end (pinning) points of the
Frank-Read source are placed on the opposite sides of the cube to resemble an
infinitely long dislocation. The distribution of tranche charges along the dislocation
line was carried out according to the filling fraction (f=0.65) and is shown in the
Figure 7.14.

Figure 7.13 – Infinitely long edge disloca-
tion line in a cubic grain

Figure 7.14 – Tranche charges along the
corresponding edge dislocation in Figure
7.13

7.4 Solving an electrostatic problem

After constructing a charged dislocation, the problem scales down to a simple
electrostatic boundary value problem assuming boundary conditions to be known.
The solution of the Poisson equation (cf. Equation 7.7) yields electrostatic potential,
φ for a given charge distribution, ρ. The Poisson equation in electrostatics is derived
from Gauss’s law:

∆. ~E =
ρ

εo
(7.4)

where ~E is the electric field, εo is the electric constant and ρ is the total electric
charge density (charge per unit volume).
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For a linear, isotropic and homogeneous material, in the absence of changing
magnetic field, B, the curl of electric field is zero (cf. Equation 7.6) and can be
written as

~E = −∆φ, (7.5)

∆× ~E =
∂ ~B

∂t
= 0 (7.6)

where t is the time.

Substituting Equation 7.5 in Equation 7.4, leads to:

∆2φ = − ρ

εo
. (7.7)

Instead of using a simple superposition method to find the effective electrostatic
potential due to the accumulated charge in the sample, a more general approach of
using a Poisson solver can be followed. The numerical solutions for the differential
equation 7.7 can be found by either an iterative FEM-based Poisson solver or a
direct FFT-based Poisson solver. For solving the present electrostatic problem
of a single negatively charged dislocation in a cubic grain, we use PoisFFT, a
FFT-based Poisson solver [72]. One advantage of using this particular solver is
that, the solver has been elegantly written to adapt to any possible boundary
conditions (Periodic, Dirichlet or Neumann). Another advantage is the use of
PFFT software library [143] for computing FFT [71] in parallel using message
passing interface [132].

7.4.1 Validation of the PoisFFT solver

A simple 2D electrostatic problem is setup to test/validate the applicability of the
PoisFFT solver. In the 2D problem, a point charge of 10 Cb is placed at the center
of a square surface of unit side. A unique solution is obtained by designating the
potential (φ = 0) on the border of the unit square. The solution obtained from
PoisFFT solver is shown as a 2D electric potential map in Figure 7.15.
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Figure 7.15 – Validation of the PoisFFT solver; Electric potential for a point charge
at the center of a unit square

7.5 Results and discussion

For solving the electrostatic boundary value problem, a FFT grid of size 128 has
been used. Results were also observed to be consistent for grid sizes 256 and 512.
So, these results have not been presented here. Figure 7.16 shows the FFT grid on
a cubic grains with tranche charges along the dislocation line.

Upon solving the differential equation with a Dirichlet boundary condition
(φboundary = 0), the electrostatic potential map is shown in Figure 7.17. A cut-off
value of 100nm has been used to show the 3D shape of the potential map. It
is observed that the potential which takes the shape of an elongated sphere can
be closely be manifestation with the Read’s positively charged cylindrical region
around a dislocation. A filling fraction of f=0.65 chosen in Section 7.3.1 indicates
that every sites at a distance of ∼52nm along the dislocation line is occupied
by a tranche electron. In total, 16 tranche electrons were generated on the edge
dislocation presented in this setup. For this minimum value of f, the electrostatic
potential on the boundary of the cubic grain shows a magnitude of 2.5V. This
magnitude of the electrostatic potential for f=0.65 is in close agreement with the
potential shift measured due to threading edge dislocation in GaN [29].
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Figure 7.16 – Cubic grain with tranche charges highlighting the FFT grid of size
1283

Figure 7.17 – Electrostatic potential surface around an edge dislocation in Figure
7.13 and influence of the potential on the boundary surfaces of the cubic grain
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7.6 Conclusions

This chapter presented a review of the very first and widely used electrostatic
model for a dislocation. Further, the model has been successfully implemented as a
post-processing tool in the DD code. A FFT based Poisson solver has been used to
solve the electrostatic boundary value problem with Dirichlet boundary condition.
The magnitude of potential measured on the boundary surface of a cubic grain is
in close agreement with the one observed in literature.

The electrically charged dislocation model can be also be extended to Si. In that
case, the dissociation of a perfect dislocation into partials, as depicted in Section
7.1, should be modeled in the DD codes to accurately predict the influence of a
electrically charged dislocations in Si. The easy dissociation of perfect dislocations
into partial will present some interesting views in regard to electro-plastic effects
due to dislocations (Eg: On the mobility of a dislocation) in Si. Also keeping
in mind the potential influence of electrostatic interaction among dislocations, a
systematic study need to be carried out to estimate the influence of dislocation-
dislocation interactions on the overall electrostatic potential in a single Si crystal.
Since it is now understood that both the deformation and electrostatic potentials
(cf. Section 7.2) are inherent properties of dislocations in semiconductors, the
electron scattering capabilities and the mobility of dislocations in semiconductors
needs to be addressed together. Moving in a perspective similar direction, recently,
a standard piezoelectric framework for linear elastic solids by accounting for the
presence and motion of dislocation fields had been published [172]. With this
framework, the overall impact on the piezoelectric properties was assessed in the
presence of dislocations, which follow a more continuous representation of the
overall dislocation density via Nye’s tensor [138]. An electro-mechanical coupling
needs to be established in the discrete dislocation framework to further understand
the behavior (Ex: mobility) of dislocations in semiconductors.

Due to the lack of strong experimental evidence on a dislocation being elec-
trically charged in Si, no further attempt had been made to extend the present
implementation to Si. But, preliminary work on GaN has motivated to advance
further in the direction of defects-based research in Si. The newly developed
electron holography can serve the purpose of diagonistics in Si technology and
research [174].
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8 Conclusions and perspectives

Our knowledge of crystalline materials behavior has always been limited to single
crystals. This is due to the fact that understanding the mechanics of polycrystalline
materials is challenging. The unavoidable presence of GBs and their complex
interplay with dislocations will dictate the response of polycrystalline material. One
such example is in the field of flexible electronics, where, a better understanding
of mechanics of the materials along with the knowledge of dislocations in the
materials is necessary to develop materials with enhanced properties. As a first
step in studying such materials, emphasis had been placed in the present thesis to
correctly model grain boundaries i.e., columnar shape of the grains.

In the first chapter of the thesis, different types of interfaces which are generally
found in crystalline materials are reviewed. Different dislocation-grain boundary
models proposed in the literature are revisited. Knowledge of such models will
further guide us in developing new and efficient materials modeling tools. In the
second chapter, the state-of-the-art on-chip tensile test technique developed at
UCL has been introduced. This new experimental technique has enhanced our
understanding of polycrystalline metallic films. It is technically difficult but not
impossible to conduct a detailed study on different types of GBs using this method.
The present understanding is confined to external polycrystalline parameters such as,
overall dislocation density, film thickness, grain size distribution, grain orientation
and the presence of twin in the polycrystalline material. Numerical modeling
tools such as, molecular dynamics at atomic scale and crystal plasticity models at
continuum scale always provide a useful interpretation of the materials behavior.
But, the extent to which these models can be used is limited. For example, local
rules used in phenomenological crystal plasticity based models need to be verified
or validated. To do this, the use of atomic scale simulation pose strong limitations
in predicting materials response under the collective behavior of defects and limited
feasibility in modeling complex grain boundary morphologies.

A polycrystalline version of dislocation dynamics (DD) code can bypass the
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forth mentioned limitations. An advanced polycrystalline DD model used in the
thesis has its roots from the single crystal version of the DD code. A strong
background of physics at single crystal level in the DD codes is an added advantage.
But, DD codes generally pose a critical stress field computational issue. A new
GPU optimised subroutines for stress field computation of dislocations has been
added to the polycrystalline DD code. Although, the accuracy of the GPU version
has been validated against a single crystal version, the acceleration achieved by this
method can still be optimised. In addition to the local hardening rules at single
crystal level in DD code, additional dislocation-GB interaction rules are introduced
to model slip transmission across GBs. But, this version has not been used for
addressing thin films as there is still a long way to go for creating a reasonable
GB-based DD model.

Accurate representation of GBs at continuum level is a critical issue which is
addressed in Chapter 5 of the thesis. Plastic deformation behavior of the grains
of same volumes but different aspect ratios are compared. Change in the aspect
ratio of the grain was observed to change systematically change the pileup behavior
inside the grains and thereby, the back stress developed. Back stress is quantified
by calculating the slope of the unloading part of the stress-strain curve. Results
incorporated into an analytical formulation will be useful for phenomenological
crystal plasticity models. Plastic deformation behavior in polycrystals with sub-
micron sized grains is studied in Chapter 6. GBs were assumed to be infinitely
strong obstacles to dislocations but the long-range stress field of dislocations is still
felt across GBs. This idea was used to perform first-of-the-kind DD simulations
to study the influence of grain size distribution in a polycrystal. Results show a
promising future for more polycrystalline DD simulation based studies.

Finally, the basic idea of electrically charged dislocation influencing the mobility
of charge carriers in semiconductors is addressed by implementing Read’s model
as a post-processing tool in DD code. Eventhough, the first-of-this-kind study
is limited to a static dislocation case, it opens a wide range of possibilities in
developing a discrete piezoelectric models to further study semiconductors.

The present thesis, with a good amalgamation of fundamental studies, empha-
sizes the role of grain morphology on plastic deformation behavior of polycrystalline
materials. In addition, electrostatic study carried out in the last part of the thesis is
a good starting point for addressing critical issues in flexible electronic components
in a more fundamental way.
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A Appendix: Review of Depres’s
pileup model

THE analytical expression to predict stress strain response of a single grain
for equiaxed shapes of dislocation pileups as presented by Depres [43, 44]

is reviewed in this Appendix.

A.1 Introduction

If τ (s) is assumed to be the stress required to move a single dislocation at any point
during the deformation. Depres divided the stress (τ (s)) as the sum of initial stress
(τ (s)
i ), which is the stress required to move the dislocation unaffected by other

dislocations and dislocation hardening stress (τ (s)
d ), which is the stress required

to overcome the stress field due to all other dislocations in the grain. The initial
stress (τ (s)

i ) of a single dislocation is further divided into contributions of the lattice
friction (τfr) and stress required to move a dislocation of certain length ( µb

lsource
).

The mathematical representation of the stress contributions is shown below.

The form factor (k1), which theoretically gives the slope of the hardening curve.

A.1.1 Idealised double-ended pileup

A standard integral expression to find total number of dislocations of either sign
in a pileup was derived by considering individual dislocations in the pileup to
be in equilibrium. This equilibrium state leads to a condition where the forces
produced by external stress, τapp and the one caused by interaction with the other
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dislocations to be balanced [Kubin 1982].

Figure A.1 – Double ended pileup of edge dislocations

Solving the balance equation would lead to the below equation for dislocation
density of a double ended pileup, n(x).

n(x) =
2(1− ν)τapp

µb

x√
( l

2
)2 − x2

(A.1)

where,
µ = Shear modulus
ν = Poisson’s ratio
b = Burgers vector
l = Grain size (length)
x = position of the dislocation segment (in the pileup) from the center of the grain.

Integration of the dislocation density n(x), over the grain size l, leads to the
equation for estimating the total number of dislocations (in a double ended pileup).

N = 2

∫ l
2

0

n(x)dx =
2(1− ν)lτapp

µb
(A.2)

A.1.2 Extension to 2D pileup

The total number of dislocations in the pileup is found by integrating n(x)dx,
which gives the number of dislocations in the interval [x, x+ dx], over the length of
the slip plane. Here, the length of slip plane is assumed to l in a homogenization
surface S.

The total number of dislocations in the pileup turns out to be same as in the
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Figure A.2 – Double ended pileup of edge dislocations in homogenization surface S

case of a 1D pileup.

npu2d = 2

∫ l
2

0

n(x)dx

= 2

∫ l
2

0

2(1− ν)τapp
µb

x√
( l

2
)2 − x2

dx

=
4(1− ν)τapp

µb

∫ l
2

0

x√
( l

2
)2 − x2

dx

=
2(1− ν)lτapp

µb

The total density of dislocations (ρpu2d) is given as the ratio of total length
of dislocations divided by the homogenization volume (V ). If the out-of-plane
dimension (L = 1) is a constant, then V = L.S, where, S is the homogenization
surface of the grain. in the pileup to the homogenization surface. The area swept
by the dislocations is A = L.x.n(x)dx.

The total density of dislocations (ρpu2d) in a homogenization surface S is:

ρpu2d =
1

S
npu2d

=
1

S

2(1− ν)lτapp
µb

= 2
(1− ν)

µbS
lτapp
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The average plastic deformation (Υpu
2d) of the volume V due to the dislocation

slip is:

Υpu =
bA

V

Υpu
2d = b

2
∫ l

2

0
Lxn(x)dx

S.L

=
4b

S

(1− ν)τapp
µb

∫ l
2

0

x2√
( l

2
)2 − x2

dx

=
4(1− ν)τapp

µS

πl2

16

=
π

4

(1− ν)

µS
l2τapp

A.1.3 Extension to 3D pileup

Let n(x) gives the density of dislocations in the interval [x, x+ dx] on a slip plane
in a grain of homogenization volume V . The total density of dislocations (ρpu3d) and
plastic deformation (Υpu

3d) of the grain are calculated by including the expression
for actual length of the dislocation loop, ζ(x) and actual area covered by the
dislocation loop, A(x) situated at a distance x from the source respectively.

Figure A.3 – Pileup of dislocations on a slip plane passing through the center of
the cube

Resistance to dislocation glide is influenced by the shape of the dislocation
loop. The shape of the dislocation loop, which effectively changes the area swept,
will depend on the orientation of the slip plane w.r.t columnar axis and distance of
the slip plane from the center of the grain. In this section, we start our analysis by
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assuming only a single dislocation being active on a slip plane passing through the
center of the grain. The slip plane normal is perpendicular to the vertical axis of
the grain (cf. Figure A.3).

A.1.3.1 Form 1 (line)

When the pileup on a slip plane takes the shape of a line (hypothetically), the
grain would take the shape similar to the slip plane. This shape of the dislocation
loop would lead to similar expressions as in the case of a 2D pileup [Section A.1.2].
The figure below shows the length of a loop at a distance x from source is ζ(x) = l.

Figure A.4 – Pileup of dislocations on slip plane (form-line)

The total density of dislocations in a homogenization volume V is given by

ρpu3d =
2

V

∫ l
2

0

ζ(x)n(x)dx

=
2

V

∫ l
2

0

l
2(1− ν)τapp

µb

x√
( l

2
)2 − x2

dx

=
4(1− ν)lτapp

µV b

∫ l
2

0

x√
( l

2
)2 − x2

dx

=
4

V

(1− ν)lτapp
µb

l

2

= 2
(1− ν)

µV b
l2τapp

If A(x) = lx is the area swept by the dislocation loop located at a distance x
from the source, and if only a single slip plane is active; then the total area swept
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by all dislocations in the grain is

A = 2

∫ l
2

0

A(x)n(x)dx

The plastic deformation of the grain, Υpu
3d then becomes:

Υpu
3d =

bA

V

=
2b
∫ l

2

0
A(x)n(x)dx

V

=
2b

V

∫ l
2

0

lx
2(1− ν)τapp

µb

x√
( l

2
)2 − x2

dx

=
2b

V

2(1− ν)lτapp
µb

∫ l
2

0

x2√
( l

2
)2 − x2

dx

=
4

V

(1− ν)lτapp
µ

πl2

16

=
π

4

(1− ν)

µV
l3τapp

A.1.3.2 Form 2 (square)

Figure A.5 – Pileup of dislocations on a slip plane (form-square)

If the dislocation loops which pileup on a slip plane takes the shape of a square,
the total length of the loop, at the shortest distance x from the position of the
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source (center of the plane), is ζ(x) = 8x.

The total density of dislocations in a homogenization volume V is given by

ρpu3d =
1

V

∫ l
2

0

ζ(x)n(x)dx

=
1

V

∫ l
2

0

8x
2(1− ν)τapp

µb

x√
( l

2
)2 − x2

dx

=
16

V

(1− ν)τapp
µb

∫ l
2

0

x2√
( l

2
)2 − x2

dx

=
16

V

(1− ν)τapp
µb

πl2

16

= π
(1− ν)

µV b
l2τapp

If A(x) = 4x2 is the are swept by the dislocation loop that piles up at a distance
x from the source, then the total area swept by all dislocations is A.

A =

∫ l
2

0

A(x)n(x)dx

The plastic deformation, Υpu
3d then becomes:

Υpu
3d =

bA

V

=
b
∫ l

2

0
A(x)n(x)dx

V

=
b

V

∫ l
2

0

4x2 2(1− ν)τapp
µb

x√
( l

2
)2 − x2

dx

=
8b

V

(1− ν)τapp
µb

∫ l
2

0

x3√
( l

2
)2 − x2

dx

=
8

V

(1− ν)τapp
µ

l3

12

=
2

3

(1− ν)

µV
l3τapp
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A.1.3.3 Form 3 (circle)

Similarly, when the dislocation pileup on a slip plane takes the shape of a circle,
the length of a loop piled up at a distance x from source is ζ(x) = 2πx.

Figure A.6 – Pileup of dislocations on a slip plane (form-circle)

The total density of dislocations in a homogenization volume V is given by

ρpu3d =
1

V

∫ l
2

0

ζ(x)n(x)dx

=
1

V

∫ l
2

0

2πx
2(1− ν)τapp

µb

x√
( l

2
)2 − x2

dx

=
4π

V

(1− ν)τapp
µb

∫ l
2

0

x2√
( l

2
)2 − x2

dx

=
4π

V

(1− ν)τapp
µb

πl2

16

=
π2

4

(1− ν)

µV b
l2τapp

Since A(x) = πx2 is the are swept by the dislocation loop located at a distance
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x from the source, the total area swept by all dislocations is A.

A =

∫ l
2

0

A(x)n(x)dx

The plastic deformation, Υpu
3d then becomes

Υpu
3d =

bA

V

=
b
∫ l

2

0
A(x)n(x)dx

V

=
b

V

∫ l
2

0

πx2 2(1− ν)τapp
µb

x√
( l

2
)2 − x2

dx

=
πb

V

2(1− ν)τapp
µb

∫ l
2

0

x3√
( l

2
)2 − x2

dx

=
2π

V

(1− ν)τapp
µ

l3

12

=
π

6

(1− ν)

µV
l3τapp

The expressions for total density, plastic deformation of a pileup can be ex-
pressed in a generalized form by introducing two variables k1 and k2,

Υpu = k1
(1− ν)

µV
l3τapp

ρpu = k2
(1− ν)

µbV
l2τapp

ρpu =
k2

k1

1

bl
Υapp

The variables k1 and k2 change according to the shape of the pileup. This
highlights the possibility of an unique kinematic hardening which depends on the
shape of the dislocation pileup on a slip plane. The table below confirms the same
on different shapes of dislocation loops [43].
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Form ζ(x) A(x) k1 k2

line l lx π
4

2

square 8x 4x2 2
3

π

circle 2πx πx2 π
6

π2

4

A.2 Hardening due to ’n’ similar parallel slip planes
in a grain

In reality, dislocation pileup on a single slip plane could never exist. Even if this
case is possible, the force on the leading dislocation due to the pileup will easily be
high enough for the dislocation segment to cross-slip or cross the grain boundary.
Assuming that the dislocation cross-slipped multiple times onto n parallel parallel
slip planes which are separated by a distance λ, Depres observed the kinematic
hardening to be still linear in an equiaxed cubic grain of l = Dg dimension.

Figure A.7 – Cubic grain with n parallel slip planes

Plastic deformation expression depending on the number of parallel slip planes
separated by a distance λ is

τ
(s)
d =

1

k1

µ

(1− ν)

[
1 + exp(−k λ

Dg
)

2 + (n− 2)(1− exp(−k λ
Dg

))

]
Υ(s)
p

By neglecting the exponential part when the spacing between the parallel slip
planes is large, Depres arrive to the below mentioned approximated equation which
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inversely depends on the number of parallel slip planes.

τ
(s)
d '

1

n

1

k1

µ

(1− ν)
Υ(s)
p

Plots shown in Figure A.9(b) confirm the decrease in the slope with increasing
number of similar parallel planes. The term ’similar’ refers to the slip planes having
same dimensions all over the grain (irrespective of the slip plane position from
the center of the grain and the angle made by the slip plane with respect to the
columnar axis).

Figure A.8 – Pileup of dislocations on single slip plane [43]

A.3 Conclusions

Following conclusions were drawn from the work carried out by Depres using the
3D extension of the pileup model.

• In the case of a single dislocation pileup, theoretical slopes were exactly found
to match the slopes of the work hardening curves from 3D DDD simulations.

• The hardening rate was found to be purely kinematic and linear.
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Figure A.9 – Pileup of dislocations on multiple parallel slip planes [43]

• The hardening rate only changed with the shape of the dislocation pileup.

• In the case of pileup on n similar slip plane in an equiaxed grain, the hardening
rate was found still to be linear; and inversely proportional to the number of
n active similar slip planes.
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B Appendix: Non-equiaxed shape of
dislocation pileups

THE pileup formula [43], which has been reviewed in Appendix A, consid-
ers only the cases where the shape of dislocation loops are equiaxed. The

predictions of kinematic hardening values from the formula becomes invalid
when a dislocation is present on a slip plane which is not perpendicular to the
long axis of the grain (which is generally the case). This section deals with the
extension of the work to account not only for the non-equiaxed shape of the
dislocation loops in a pileups but also the angle the slip plane normal makes
with the columnar axis (long axis in elongated grains). This model which is an
extension of the pileup model is hereby referred to as ”extended pileup model”.

B.1 Introduction

In non-equiaxed grains (cf. Figure B.5), the shape of the dislocation loop changes
from a circle (when slip plane normal is aligned parallel to the long axis of the
grain) to an ellipse (when slip plane normal is perpendicular to the long axis of the
grain) with same aspect ratio as of the non-equiaxed grain. We derive a formula
which can predict the hardening rate on any slip plane in a non-equiaxed grain
by taking into account only the aspect ratio of the grain (β) and angle (θ) a slip
plane makes with respect to the long axis of the grain. Unless mentioned, local
yielding criteria such as cross-slip are not considered in the formulations.

B.1.1 Form 4a (ellipse - longest)

Consider the pileup on a slip plane with shortest diameter l, takes the shape of
an ellipse. If the dislocation loop is assumed to have its effect felt even when it is
at a longest distance x from the source, ζ(x) is expressed in a generalized form to
account for slip plane geometry which depends on the angle the slip plane normal
makes with the long axis of the grain.
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Figure B.1 – Pileup of dislocations on a slip plane (form-ellipse longest)
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If A(x) = πab is the area swept by the dislocation loop located at a distance x
from the source, then the total area swept by all the dislocation loops on the slip
plane is A.
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B.1.2 Form 4b (ellipse - shortest)

Consider the pileup on a slip plane with shortest diameter l, takes the shape of
an ellipse. If the dislocation loop is assumed to have it’s effect felt only when it is
at a shortest distance x from the source, ζ(x) is expressed in a generalized form
to account for slip plane geometry which depends on the angle it’s normal makes
with the long axis of the grain.

Figure B.2 – Pileup of dislocations on a slip plane (form-ellipse shortest)
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with,
a = x and b = βsx are the generalized half minor and major axes respectively.
β = aspect ratio of the grain
βs = β√

(sinθ)2+(βcosθ)2
, is the aspect ratio of the slip plane.

θ = angle made by the slip plane normal with respect to the long axis of the grain.
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The total density of dislocations in a homogenization volume V is given by
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If A(x) = πab is the are swept by the dislocation loop located at a distance x
from the source, then the total area swept by all the dislocation loops on the slip
plane is A.

A =
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B.2 Extended pileup theory Vs DD simulations

The form factor table [Appendix A] for different dislocation pileup loop shapes is
now extended to a non-equiaxed shape like ellipse.

Form ζ(x) A(x) k1 k2
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(β = aspect ratio of the ellipse)

θ = angle made by the slip plane normal with respect to the long axis of the grain.

B.2.1 Single dislocation pileup (non-centred)

The configuration of dislocation pileup loop is changed when a slip plane which
is non-centred is active. Such changes are introduced by introducing a variable l′ ,
which defines the effective shortest radius of a slip plane which is at a distance z
from the center of the grain.
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If A(x) = πab is the are swept by the dislocation loop located at a distance x
from the source, then the total area swept by all the dislocation loops on the slip
plane is A.

A =
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The plastic deformation, Υpu
3d is only calculated in this case.
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Substituting z=0 in Equation B.4, we arrive to the plastic deformation equation
as in Equation B.2 which has already been validated against DD simulations in
Section 5.4.2.1 of Chapter 5.

B.3 Hardening due to ’n’ non-similar parallel slip
planes in a grain

B.3.1 Equiaxed (spherical) grain

In a spherical grain, the perimeter and area of the dislocation loop on a slip plane
changes with respect to the distance from the center of the grain. In the below
figure, the slip plane normals is at an angle of 00 with the vertical (Z) axis of the
spherical grain. To accurately calculate the average hardening rate (slope) on a
slip system (n non-similar parallel slip planes) in a spherical grain, we should also
account for.

Figure B.3 – Pileup of dislocations on multiple parallel slip plane in a spherical
grain

The total density of dislocation due to a single plane passing through the center
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of the sphere in a homogenization volume V is
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The total density of dislocations due to n non-similar parallel slip planes in a
homogenization volume V is found by changing the limits in the X-direction and
then integrating the result over the length of the spherical grain in Z-direction.
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The total plastic deformation due to a single slip plane passing through the
center of the sphere of homogenization volume V is
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Substituting the values of V =
πD3

g

6
and l = Dg in the above equation gives an

average hardening value for a single slip system located anywhere in the sphere.
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The average kinematic hardening of a sphere with hardening contribution from
a total of eleven non-similar parallel slip planes is 0.73. The average kinematic
hardening can drastically change with the cross-slip mechanism. Here, we just show
the importance of cross-slip mechanism by lowering the probability(i.e., increasing
the critical stress for cross-slip(CSCS)) with which the cross-slip can occur. A
much detailed study would be required to understand the importance of cross-slip
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mechanism on kinematic hardening.
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Figure B.4 – KH slope of Sphere @ CSCS= 32MPa(CS1),@ CSCS= 80MPa(CS2)
and analytical

B.3.2 Non-equiaxed (spheroidal) grain

In a spheroidal grain, the perimeter and area of a dislocation loop on a slip plane
changes not only with respect to the distance from the center of the grain but also
with to the orientation of the slip plane normal with respect to the long axis of the
grain.

The total density of dislocation due to a single plane passing through the center
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Figure B.5 – Parallel planes in a non-equiaxed (spheroidal/elongated grain
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β = aspect ratio of the grain
βs = β√

(sinθ)2+(βcosθ)2
, is the aspect ratio of the slip plane.

θ = angle made by the slip plane normal with respect to the long axis of the grain.
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The total density of dislocations due to n non-similar parallel slip planes in
a homogenization volume V is found by using the same formula as in the case of
ellipse shaped dislocation loops and changing the limits as below.
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The total plastic deformation due to a single slip plane passing through the
center of the spheroid of homogenization volume V is
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Substituting the values of V = πl3βs
6

and l = f1(l) (cf. Section B.1.2) in the
above equation gives an average hardening value for a single slip system located
anywhere in the spheroid.
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The average kinematic hardening on different slip systems in a spheroid with
hardening contribution from a total of eleven non-similar parallel slip planes in
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B.3. Hardening due to ’n’ non-similar parallel slip planes in a grain

each is plotted against the predictions from DD simulations.
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Figure B.6 – KH slope of Kaca @ CSCS= 32MPa(CS1),@ CSCS= 80MPa(CS2)
and analytical

Figure B.7 – KH slope of Cigar @ CSCS= 32MPa(CS1),@ CSCS= 80MPa(CS2)
and analytical
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B.4 Conclusion

• Depres’s work on pileup model had been extended to a more general case of
non-equiaxed shape of dislocation loops.

• Analytical formula so developed had been validated against results from DD
simulations for grains of aspect ratios from 1.0 to 5.0.

• Cross slip mechanism is observed to change the dislocation slip activity and
inturn back stress. This effect can be accounted in analytical formulations
by considering primary and its respective deviate systems in pairs. Wherein,
the back stress developed on the slip system pair (primary or deviate) can be
distributed according to the Schmid factors.
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