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Introduction
*****

Fundamental research conducted in the laboratory can sometimes be challenging
and frustrating, but one should not forget that it can also lead to great results with

outstanding repercussions on our everyday life. The two most striking examples being
the invention of transistors and lasers. The later in particular, developed in 1960 [1],
enabled the possibility of cooling and trapping neutral atoms [2–4] and opened the door
to a significant part of modern experimental atomic physics. Beside the obvious interest
in understanding the structure of matter at the atomic level, where the physical laws
are dominated by quantum mechanics, cold atoms techniques have also quickly become
mature enough for applications and instrumental developments.

Atomic sensors and quantum metrology

Indeed, compared to more conventional technologies, cold atoms offer an alternative and
often better performances concerning precision measurements and sensing [5,6]. Atomic
sensors can be regrouped into four categories:

• Atomic clocks: Their goal is to probe the transition frequency between two atomic
levels using an electromagnetic field. The time is then determined by counting the
number of oscillation periods νat

[1Hz] contained in one second, νat being the considered
atomic frequency. The oscillating field locked to the atomic transition thus acts
as a time ruler, whose graduations are represented by one oscillation period. As a
result, the higher the frequency the better the precision. A clock is characterized
by its accuracy and stability that define the precision with which we know the
spacing between the graduations and by how much these intervals fluctuates with
respect to each other. While best quartz show a short term stability on the order
of 10−13 at one second and a flicker floor in the low 10−14 after only a few seconds
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Introduction

[7], best atomic clocks now work in the 10−17 range at one second [8] and keep
integrating in the low 10−18. Their fractional uncertainty also lies in the 10−18

level [9]. These extremely precise devices begin to be interesting for fundamental
research, as they start to be able to test the stability of fundamental constants [10],
general relativity [11] and provide information regarding the exploration of dark
matter [12].

• Field sensors: As atomic energy levels are sensitive to magnetic and/or electric
fields, atoms can also be used as a field sensor. Similarly to working principle
of atomic clocks, by monitoring the frequency changes of a given transition, it is
possible to precisely measure the amplitude of the surrounding fields, after prior
calibration [13–16].

• Acceleration sensors: Being massive objects, atoms are sensitive to forces and
in particular to the inhomogeneous Earth gravitational field [17]. This gravita-
tional acceleration, and more generally any kind of accelerations, can be probed
locally with a Mach-Zehnder or Ramsey-Bordé interferometer [18, 19]. It consist
in measuring the phase difference between two spatially separated and recombined
atomic clouds, in the direction of acceleration. Indeed, during the separation the
two clouds experience different accelerations and therefore accumulate different
phases, resulting in an interference pattern. Such a gravimeter has been realized
for the first time in 1991 [20] and many times since then [21–26], and now present
better performances than conventional ballistic devices. Only the superconducting
gravimeter surpasses the best atomic ones [27] in term of short term sensitivity.

• Rotational sensors: The same principle can be applied to measure rotational ve-
locities. The spatial separation has then to take place in the plane orthogonal to
the rotation vector, and this time the phase shift between the two atomic clouds
is due to the so-called Sagnac effect [28]. The first atomic gyroscope, realized in
1991 [29], opened the way to atomic rotational sensing [30–34]. In contrast to
conventional gyroscopes [35, 36], the atomic ones present better long term stabil-
ities and constitute absolute references, meaning that they do not need specific
calibration.

So far we only considered cold but non-degenerate atomic ensembles. Thanks to
their very high phase-space density and macroscopic coherence properties [37], Bose-
Einstein condensates (BEC) are very interesting candidates for atom interferometry [19,
38, 39]. Since their first observation in 1995 [40, 41], they have known an immediate
success and have led to a large variety of fascinating experiments [42]. The more recent
development of atom chip technologies [43,44] has also greatly simplified the production
and manipulation of BEC’s, leading to a tremendous growth of on-chip interferometers in
the last decade [45–49]. One of the ultimate goals would be to combine an atomic clock
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with a set of gyroscopes and accelerometers on a chip in order to form an autonomous
inertial navigation system applied for submarines and spacecrafts [6].

In all these atom interferometers the quantity of interest is the relative phase between
two atomic ensembles, and it can only be probed through readout of the atomic state,
which is subject to a fundamental noise: the quantum projection noise (QPN). The
measurement of a coherent superposition of atomic states is performed by projecting
it onto one of its eigenstates. Similarly to a coin-tossing game, the outcome of this
measurement is subject to a statistical uncertainty, that is reduced by repeating the
process many times, either successively or in parallel. The measurement uncertainty,
called standard quantum limit (SQL) [50], then scales as 1/

√
N , where N is the number

of repetitions. This process actually limits nowadays best atomic sensors [33,51]. While
this rule cannot be overcome in the "classical" world, quantum mechanics provides some
tools to further reduce this limit and opens the path to quantum metrology [52, 53].
As a matter of fact, quantum correlations and entanglement [54, 55] can in principle
push away this limit down to the Heisenberg limit [56], for which the measurement
uncertainty scales as 1/N . This field of study has also known a tremendous success
with several implementation of atomic systems working below the standard quantum
limit with direct possible applications in atom interferometry and sensing [14, 57–63].
Here again, BEC’s appear like perfect candidates for quantum metrology, since they
inherently present non-linear interactions leading to spin squeezing [60, 61, 64–66]. This
scientific breakthrough is at the very core of the second quantum revolution [67] recently
supported by the European Union with a one billion euros flagship [68].

In the framework of developing increasingly more accurate and stable sensing devices
for industrial or fundamental applications, the combination of atom chip technologies,
Bose-Einstein condensates and entanglement protocols is not only appealing but also
genuinely realistic, and could really revolutionize the world of sensing and precision
measurement in the years to come. All of these metrological devices have several fun-
damental applications but they can also be combined in order to form an autonomous
inertial navigation system. This assembly is made possible by the recent development of
atom chip technologies. In that sense, the work presented here represents a small step
towards the development and realization of applied quantum technologies.

Trapped atom clock on a chip (TACC)

The TACC project was, in 2006 and in collaboration between the LKB and SYRTE,
initially designed to be a compact atomic clock, which interrogates Rubidium atoms
magnetically trapped in the vicinity of an atom chip. The idea was to get a robust
metrological device, working at the state of the art with a stability in the low 10−13/

√
s,

and eventually contribute to the development of chip-based inertial sensors and space
applications. The latest version of the clock exhibits a stability of 5.8 × 10−13 at one
second with 20 000 atoms and a 5 s interrogation time [69].

This set-up is however not only a competitive compact clock but also a remarkable
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Introduction

platform for fundamental studies and complex manipulations of atoms and quantum
states. For instance, it permitted in 2010 the experimental observation of an intricate
and very general quantum mechanical phenomenon, called identical spin rotation effect
(ISRE) [70]. Owing to the indistinguishability of particles, binary collisions can exchange
the internal states of the two colliding atoms and lead to a an auto-synchronization of
the atomic spins [71], resulting in extremely long coherence times (∼ 58 s) and contrast
revivals [72, 73]. This effect also enables the observation of spin waves and density-
dependent frequency shifts [74, 75]. However, since the whole process is based on the
symmetrization of the total wave-function, atoms cannot be in the same external state
and have two different internal states at the same time. This is the reason why the ISRE
cannot occur in Bose-Einstein condensates.

In this manuscript, we propose to study another very general quantum mechanical
feature that is spin squeezing [76, 77]. In 2001, a proposal suggested to use the elastic
collisions happening in a spinor BEC in order to generate an interaction-mediated spin
squeezing [78]. This process lies on the different collisional properties of the two internal
states occupied by the BEC, and in the case of 87Rb, some tricks have to be applied in
order to tune these interactions. This has been successfully achieved twice in 2010, by
using either a Feshbach resonance in an optical lattice potential [60], or a state-dependent
microwave potential in a magnetic trap on a chip [61]. Both methods showed a significant
reduction of the relative number fluctuations between the two states below the SQL, and
good enough phase coherence to actually get use of this squeezing [13,79]. Here, were pro-
pose to benefit from the inherent mean field dynamics of a dual-component BEC leading
to a spontaneous spatial separation and recombination of the two states [80–83]. During
the separation, the non-linear interaction considerably increases resulting in significant
spontaneous spin squeezing [84]. Not only this method could significantly improve the
sensitivity of BEC-based interferometers, but it also comes within the framework of
multi-particle entanglement which is a fascinating open topic in itself.

The idea here is thus to get use of our atom chip to benefit from the metrologi-
cal environment provided by TACC to observe a reduction of the phase measurement
uncertainty .

The manuscript is organized as follows:

• We begin by introducing all the concepts involved in the operation of a trapped
atom clock on a chip. The basic principles of magnetic trapping on an atom chip,
atom-field interaction and atomic clocks will be briefly reviewed. A a key element
of the study, Bose-Einstein condensates will then be theoretically described in the
regime used experimentally. Subsequently, the concept of spin squeezing for metrol-
ogy will be introduced and its implementation through inter-atomic interactions
will be tackled.

• The second chapter consists of a rapid overview of the experimental set-up including
the chip, the laser system and the interrogation signals. The temporal sequence,
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from the trapping and cooling to the interrogation and detection of the atoms will
also be presented. Some preliminary results concerning the characterization of our
Bose-Einstein condensates and their oscillation inside the trap will be exhibited
thereafter.

• The third chapter deals with the detection system. As it is our only way to probe
the atoms, great care has been devoted to its optimization and calibration. The
basics of time of flight absorption imaging and atom number estimation will be
reviewed. A newly implemented double state detection scheme, allowing the si-
multaneous detection of the two clock states with a single light pulse, will be sub-
sequently presented and characterized. Finally, the performances of the imaging
system in terms of accuracy and stability will be challenged.

• The fourth chapter is dedicated to the study of the spontaneous state-dependent
spatial dynamics occurring in a spinor Bose-Einstein condensate, and eventually
leading to spin squeezing. A theoretical model used to numerically reproduce
the experimental data will be introduced. Then, a Ramsey-type interferometric
protocol will be implemented to thoroughly study this phenomenon through two
features: the contrast and the central frequency of the interferometer. The initial
scheme will be modified in order to increase its sensitivity in the presence of sig-
nificant asymmetric population losses. The influence of several parameters such as
the trapping frequencies and atom numbers on the dynamics will also be studied.

• The fifth chapter addresses the realization of the atomic state tomography and spin
squeezing measurement. Thank to the spatial dynamics, non-linear interactions
will twist the spin noise distribution of the atomic state, resulting in a squeezed
spin state. A protocol will be implemented in order to probe the spin distribution
and exhibit a reduced atomic noise. Different sources of instability will finally be
analyzed using a clock measurement, to explain our measured squeezing parameter.
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Chapter 1. Theory of a trapped atom clock on a chip

This chapter draws up the main aspects of the TACC experiment and provides all the
theoretical tools required to explain the experimental methods and observations. It

starts by reviewing the different physical mechanisms involved in a trapped atom clock
on a chip such as magnetic trapping, Zeeman shifts, atom field interaction, atom loss
processes and so on. Some theoretical tools concerning the time evolution of an atomic
state are also developed in order to support the experimental data later on. Then the
basic principles of atomic clocks are presented making the link with the current status
of the experiment. The connection with atom interferometry is made to illustrate our
interest for spinor Bose-Einstein condensates and quantum metrology. This degenerate
state of matter is then theoretically described under the mean-field formalism and in
the case of a cigar-shaped harmonic trapping. Finally, the spontaneous state-dependent
spatial dynamics of condensed Rubidium atoms is exploited to generate spin squeezing
through the one-axis-twisting Hamiltonian.

1.1 Magnetic trapping on atom chips
Theoretically proposed [85] and experimentally realized [86] in the early eighties, the idea
of magnetic trapping for neutral atoms has become a cornerstone for nowadays ultracold
physics. Combined with the versatility of on-chip micro-circuits, it enables the precise
confinement and manipulation of atomic gases paving the way for the study of numerous
physical phenomena [43,44]. This section is a brief introduction to magnetic trapping of
neutral atoms on an atom chip. The fundamental aspects of the interaction between an
atom and a magnetic field, as well as the generation of such trapping field in the context
of the TACC experiment are presented.

1.1.1 Atom chip technology
The heart of the TACC experiment is a micro-fabricated chip, displayed on figure 1.1,
whose working principle and applications are thoroughly detailed in [44,87,88]. The most
widely used atom chip technology consist of micro-fabricated conductive wires deposited
on an insulated substrate [43, 89, 90]. The two main advantages of such a device are its
compactness and its versatility. Indeed, in the framework of lab-on-chip technologies,
it is possible to concentrate most of the tools required to interact with the atoms in
a relatively small area [91]. A good example of such versatility is the addition on top
of the "standard" trapping wires of a coplanar wave-guide whose purpose is to generate
the microwave magnetic field that interrogates the atoms. Furthermore, the currently
on-going next generation of the experiment also includes a pair of fibred Fabry-Pérot
cavities [92], increasing the possible atomic manipulations and getting closer to a lab-
on-chip realization. One of the final possible applications being the implementation of
a robust and portable inertial sensor combining an on-chip atomic clock with on-chip
gyroscopes [93, 94] and gravimeters [95, 96].
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1.1. Magnetic trapping on atom chips

(a) (b)

Figure 1.1: TACC atom chips. Micro-fabricated circuits used in the present experi-
ment (a) and new configuration with integrated fibered micro-cavities (b). Both chips
present a coplanar wave-guide, whose connectors are visible, used to generate the MW
interrogation field. The new configuration also possesses a circular structure to transport
the atoms towards a pair of optical fiber cavities, whose common bridge is visible on its
right side.

Let’s now have a look at the interaction between an atom and a static magnetic field.

1.1.2 Physical principle of magnetic trapping

A neutral atom subject to a small1 external magnetic field −→B experiences a potential
which can be written to first order as

V = −−→µ .−→B = µBgFmF‖
−→
B ‖, (1.1)

where µB is the Bohr magneton, gF is the Landé g-factor of the angular momentum state
F , and mF is the magnetic quantum number resulting from the projection of −→F onto −→B .
The trapping or repulsive nature of the potential depends on the sign of gFmF . If it is
positive, then the atoms will be attracted toward a minimum of the magnetic field and
conversely. Yet, local maxima of the magnetic field in source-free regions are forbidden
by the Maxwell equations [97]. Therefore, only "low-field seekers" (gFmF > 0) can be
trapped. Such states are represented in red on figure 1.5. This reasoning assumes an
adiabatic evolution of the atoms in the magnetic potential. Otherwise, if the atomic spin
does not adiabatically follow the local direction of the magnetic field, it can topple into
a repulsive or non trapping state and be ejected from the trap. Such spin-flip losses are
called Majorana losses [98–100]. To avoid them, magnetic field direction variations have

1The resulting potential has to be smaller than the hyperfine splitting.
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to be slower than the Larmor frequency:

| d
dt

 −→B
‖
−→
B ‖

 | << ωL = µB|gF |
~
‖
−→
B ‖. (1.2)

The left term of equation (1.2) is generally smaller than the maximum trapping frequency.
This condition gives then a higher bound on the achievable trapping frequencies [86].

1.1.3 Magnetic trap basics
The main goal is thus to create a magnetic field distribution containing a local minimum.
The two simplest ways to generate a trap are either to use a pair of coils in the anti-
Helmoltz configuration [86] or, as illustrated on figure 1.2, to combine the field of a
current carrying wire with a homogeneous bias field created by a pair of coils in the
Helmoltz configuration for instance. Such linear quadrupole traps are often used for
generating a Magneto-Optical Trap [101]. The main problem is that the magnetic field
strength vanishes at the trap center preventing condition (1.2) from being satisfied. It
can be shown that a quadratic confinement is required to get a finite magnetic field at
the trap center [102]

Figure 1.2: Principle of a quadrupole magnetic trap. The combination of the field
radiated by a current carrying wire and a homogeneous bias field results in a quadrupole
field that presents a local minimum inside which atoms can be trapped. Taken from [103].

This problem can be circumvented by using dynamic traps such as TOP2 traps [104]
or static traps involving a more complex combination of current carrying wires and static
fields such as the widely used Ioffe-Pritchard traps [85,105]. The dimple trap, presented
in figure 1.3, is a particular kind of Ioffe-Pritchard traps that is used in TACC.

It is moreover possible to theoretically predict the trapping parameters (position,
depth, frequencies) from a given geometry, currents and bias fields. Indeed, the magnetic
field generated by a rectangular wire (x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2) carrying a
DC current is derived using the Biot-Savart law [106]

2time-averaged orbiting potential.
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B0,y

B0,x

zm

(a) (b)

x y

|B|

Figure 1.3: Dimple trap. (a) Three dimensional Ioffe-Pritchard trap generated by two
crossing wires and a combination of two bias fields. The resulting field in the y-z plane
is shown. Adapted from [89]. (b) Magnetic field strength in the x-y plane.

−→
B (r) = µ0

2π

∫ x2

x1
dx′

∫ y2

y1
dy′
∫ z2

z1
dz′
−→
j × (−→r −−→r ′)
|−→r −−→r ′|3

, (1.3)

where −→j is the current density flowing through the wire and µ0 is the magnetic perme-
ability. The fields radiated by the different wires and coils are then summed and the
minimum of the norm B(r) =

√
B2
x +B2

y +B2
z is found by looking for the zeros of its

gradient |∇−→B | =
√

(∂B
∂x

)2 + (∂B
∂y

)2 + (∂B
∂z

)2. This gives access to the position of the trap
center {xm, ym, zm} corresponding to |∇−→B (xm, ym, zm)| = 0. The other trap parameters
(frequencies and axes) are found by deriving the Taylor expansion of the field around the
stationary point and diagonalizing the resulting second order Hessian matrix3 [107,108]

M =


∂2B(xm,ym,zm)

∂x2
∂B(xm,ym,zm)

∂x∂y
∂B(xm,ym,zm)

∂x∂z
∂B(xm,ym,zm)

∂y∂x
∂2B(xm,ym,zm)

∂y2
∂B(xm,ym,zm)

∂y∂z
∂B(xm,ym,zm)

∂z∂x
∂B(xm,ym,zm)

∂z∂y
∂2B(xm,ym,zm)

∂z2

 , (1.4)

The off diagonal terms correspond to a three-dimensional rotation of the trap axes. In
the eigenvectors basis, the magnetic field takes the expected harmonic the form

B(r) ≈ Bm + m

µ

(
ω2
X

(X − xm)2

2 + ω2
Y

(Y − ym)2

2 + ω2
z

(Z − zm)2

2

)
, (1.5)

3By definition the first order terms vanish at the stationary point.
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Chapter 1. Theory of a trapped atom clock on a chip

where Bm = B(xm, ym, zm) is the field at the trap bottom and 1
2π{ωX , ωY , ωZ} are the

trapping frequencies along the eigen-axes X, Y, Z.
In the case of the dimple trap and for infinitely thin wires, analytical formulas can be

found in the appendix of [87]. More details about magnetic traps associated to TACC
and the inclusion of gravity and gravitational sag can be found in [92,103].

1.1.4 A pseudo-magic trap
In the context of implementing an atomic clock with high metrological requirements,
magnetically trapped atoms may not appear like the most efficient solution. Indeed,
in the trap, the atoms will experience an unstable frequency shift, called Zeeman shift,
which depends on their internal state and position. Indeed, a magnetic field B displaces
the energy levels according to the Breit-Rabi formula [109,110]

EF,mF = − Ehfs
2(2I + 1) + µBgImFB ±

Ehfs
2

√
1 + 4mFX

2I + 1 +X2, (1.6)

where X = µB(gJ−gI)B
Ehfs

and Ehfs = Ahfs(I + 1/2), with I = 3/2 and J = 1/2. The
hyperfine energy levels for the ground state of 87Rb are displayed on figure 1.4 (a).
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Figure 1.4: Zeeman energy shifts. (a) Energy level shifts due to a static magnetic
field according to Eq. (1.6). The clock states are represented in red. (b) Frequency shift
of the clock transition defined as ∆νB = (E2,1 − E1,−1 − Ehfs)/h. The smooth region
around Bm ≈ 3.229 G is shown in the inset.

A clever choice of the clock states can nonetheless minimize this issue. As a matter
of fact, in the case of the ground state (52S1/2) of 87Rb, states |1〉 = |F = 1,mF = −1〉
and |2〉 = |F = 2,mF = 1〉 have the same magnetic moment which makes the transition
frequency insensitive to magnetic fields to first order. Only the second order Zeeman
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1.2. Atom-field interaction

shift contributes and it can be shown that there is a pseudo-magic4 field for which the
transition frequency does not depend on magnetic field fluctuations [111, 112] (cf figure
1.4 (b)). More quantitatively, around this magic field the transition frequency reads [113],

∆νB = E2,1(B)− E1,−1(B)
2π~ = νat + ∆νat + β(B(r)−Bm)2, (1.7)

where νat = 6.834682610 GHz is the non-perturbed atomic frequency, ∆νat = −4497.34
Hz is the systematic frequency shift at the magic field Bm = 3.22892 G and β = 431.3596
Hz.G−2 [103, 110]. This justifies the choice of the two clock states represented on figure
1.5.

To go a bit further, let’s now consider the spatial extension of the atomic cloud. For
instance, non-degenerate thermal clouds have a size which is related to their temperature
σi =

√
kBT
mωi

, where i = x, y, z is the spatial coordinate. This means that the Zeeman shift
is inhomogeneous over the cloud extension, hence the interest in cold atoms5. Namely,
the spatial dependence of the magnetic field combined with the action of gravity lead to
a position-dependent frequency shift [114]

∆νB(x, y, z) = βm2

µ2
B

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2 − 2gz + δB
µB
m

)2
, (1.8)

where δB = B(0) − Bm is the offset between the bottom field and the magic field,
and g is the gravitational acceleration. Besides, in trapped atomic ensembles, there is
another position-dependent frequency shift arising from atom-atom interactions. This
shift, called collisional shift, can be written in the case of thermal atoms [111,112]

∆νcoll(x, y, z) = 2~
m
n(x, y, z)[a22 − a11 − (2a12 − a22 − a11)f(x, y, z)], (1.9)

where f = n1−n2
n

is the population imbalance between the two states, aij is the s-wave
scattering length and n is the standard atomic density given by the Maxwell-Boltzmann
distribution. As it was shown in [114], these two shifts are on the same order of magnitude
and a particular value of δB can be found in order to minimize the overall frequency shift
averaged over the cloud size. This method was used to minimize the dependence of the
clock frequency on the atom temperature and magnetic field fluctuations [69]. In the case
of Bose-Einstein condensates, because of their very high densities (∼ 1019 atoms.m−3)
and small sizes, the spatial dependency of the Zeeman shift becomes negligible compared
to the collisional shift and no such optimization is possible.

1.2 Atom-field interaction
While static fields are used to trap atoms, oscillating fields are used to interrogate
them. Indeed, a significant part of our knowledge on atoms comes from the study of

4The designation of "pseudo"-magic field refers to the presence of a residual systematic shift ∆νat.
5The smaller the could, the smaller the inhomogeneity.
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Chapter 1. Theory of a trapped atom clock on a chip

its interaction with an electromagnetic field. This complex coupling leads to a large
variety of physical phenomena that can be theoretically predicted and experimentally
observed [115]. The study of such phenomena requires either a semi-classical (atom
cooling and trapping [116], manipulation of atomic clocks [117]), or fully quantum me-
chanical formalism (spontaneous emission [115], cavity quantum electrodynamics [118],
polarization-entangled photon pairs emitted in an atomic radiative cascade [119]). In
this manuscript, the semi-classical approach is powerful enough to describe most of our
experimental observations and this is why we will restrict ourselves to it.
We will thus see in this section, how we can use oscillating fields to control the atomic
state. This interaction will be described under the density matrix formalism through
the resolution of the Bloch equations. A simple analytic expression for a system without
atom losses, will be derived and used to access the temporal evolution of the density
matrix elements after arbitrarily complex interrogation sequences. The generalization
of the Bloch equations with many-body losses will also be tackled and the geometrical
representation of the atomic state on the Bloch sphere will be introduced.

1.2.1 Dipolar coupling
A two-level atom, with states |1〉 and |2〉 as depicted on figure 1.5, exposed to an oscillat-
ing magnetic field of angular frequency ω can be described by the following Hamiltonian.

Ĥ = Ĥ0 + Ĥint = ~
2

(
ωat 0
0 −ωat

)
+ ~

(
0 V12
V21 0

)
, (1.10)

in the {|1〉, |2〉} basis where

V12 = ΩR

2 e−i(ωt+φlo) + Ω∗R
2 ei(ωt+φlo) (1.11)

= ΩR cos(ωt+ φlo) (1.12)

= b1 + ib2

2 e−iωt + h.c. (1.13)

with b1 = ΩR cos(φlo) and b2 = −ΩR sin(φlo) and

ΩR = gFµB
~

B−→e .〈F ′,mF ′|
−̂→
F |F,mF 〉, (1.14)

is the one-photon Rabi frequency with −→B = Bei(ωt+φlo)−→e + c.c.. The coupling constants
and the matrix elements can be found in [110]. As ∆(mF ) = 2, the transition |1〉 ↔ |2〉
cannot be driven with a single photon transition. This is the reason why a two-photon
drive composed of a microwave and radio-frequency fields, is used. The resulting two-
photon Rabi frequency reads [120]

ΩR = ΩMWΩRF

2∆ , (1.15)
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1.2. Atom-field interaction

where ∆ ≈ 500 kHz is the detuning with respect to the intermediate state |F = 2,mF =
0〉. For the considered atomic transition, the two one-photon Rabi frequencies read6 [103]

ΩMW = gJµB
2~ BMW and ΩRF = gJµB

√
3

2~ BRF . (1.16)

This interrogation field enables us to control the internal state of the atoms and is
therefore a key element in the atomic clock operation. Let’s now have a look at the
theoretical description of such coupling between an oscillating electromagnetic field and
the atoms.

1>|

2>|

Δ

ΩMW

ΩRF

Figure 1.5: Zeeman sub-levels of the 52S1/2 manifold of 87Rb. The microwave (blue)
and radio-frequency (green) photons and the trapping levels (red) are represented. The
detuning of the interrogation fields with the intermediate state is by ∆ ≈ 500 kHz.

1.2.2 Time evolution of the atomic state
In contrast to single elementary particles, an ensemble of atoms is better described in
terms of populations and coherences using the statistical density matrix elements [121].
The temporal evolution of the system is governed by the Liouville-Von Neumann equation
[122]:

i~
dρ

dt
= [Ĥ, ρ], (1.17)

6This is only true if the two fields are perfectly circularly polarized, otherwise some corrections have
to be taken into account [16,113].
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Chapter 1. Theory of a trapped atom clock on a chip

where ρ is the density matrix:
(
ρ11 ρ12
ρ21 ρ22

)
, with ρ11 + ρ22 = 1 and ρ12 = ρ∗21. Using

the Hamiltonian (1.10), equation (1.17) leads to the following set of coupled differential
equations 

iρ̇11 = V12ρ21 − V21ρ12

iρ̇12 = V12(ρ22 − ρ11) + ρ12ωat

iρ̇21 = −V21(ρ22 − ρ11) + ρ21ωat

iρ̇22 = −V12ρ21 + V21ρ12

. (1.18)

An analytical solution of the form ρ12 = 1
2(a1(τ) + ia2(τ))e−iωt and ρ11 − ρ22 = a3(τ)

can be derived where τ is the interaction time. It is worthy to note that at this point the
length of the vector a = (a1 a2 a3)ᵀ is conserved. For arbitrary detunings, pulse durations
and Rabi frequencies, it can be shown that the temporal evolution of the atomic state
reads a1(τ)

a2(τ)
a3(τ)

 = R(b1, b2,∆, τ)

a1(0)
a2(0)
a3(0)

 , (1.19)

with R(b1, b2,∆, τ) = cos(Ωτ) + 2 b2
1

Ω2 sin2(Ωτ
2 ) −∆

Ω sin(Ωτ) + 2 b1b2
Ω2 sin2(Ωτ

2 ) − b2
Ω sin(Ωτ)− 2 b1∆

Ω2 sin2(Ωτ
2 )

∆
Ω sin(Ωτ) + 2 b1b2

Ω2 sin2(Ωτ
2 ) cos(Ωτ) + 2 b2

2
Ω2 sin2(Ωτ

2 ) b1
Ω sin(Ωτ) + 2 b2∆

Ω2 sin2(Ωτ
2 )

b2
Ω sin(Ωτ)− 2 b1∆

Ω2 sin2(Ωτ
2 ) − b1

Ω sin(Ωτ)− 2 b2∆
Ω2 sin2(Ωτ

2 ) cos(Ωτ) + 2∆2

Ω2 sin2(Ωτ
2 )


(1.20)

where Ω =
√

Ω2
R + ∆2 and ∆ = ω − ωat. With that formalism, the expression of the

population in the excited state simply reads

P2(τ) = 1
2

(
1− a3(τ)

a3(0)

)
. (1.21)

As we will see later, the form of equation (1.19) allows the quick derivation of the
populations after an arbitrary sequence of interrogation pulses and free evolution times.

1.2.3 Inclusion of atom losses
Equations (1.17) and (1.18) are however well suited only in a perfect world inside which
the atoms remain trapped forever. In practice, the duration of the experimental sequence
is limited by the atoms lifetime. Indeed, a trapped atom is subject to several loss
mechanisms: Majorana losses, collisions with background gas, spin-exchange collisions
and spin-dipole interactions. [123]. Because of the sufficiently strong magnetic fields
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1.2. Atom-field interaction

used in this experiment and according to equation (1.2), Majorana spin flips can be
safely neglected. The resulting populations decay is described by the two rate equations

dn1

dt
= −γbckn1 − γ12n1n2 − γ111n

3
1

dn2

dt
= −γbckn2 − γ12n1n2 − γ22n

2
2

(1.22)

Let’s now have a closer look at the different inelastic processes involved in our system.

One-body collisions Collisions with the background gas, whose loss rate γbck depends
on the pressure in the vacuum cell. This is why considerable efforts are constantly made
in order to improve the quality of the vacuum level and minimize the effect of this loss
channel. Note that these one-body losses are independent from the atom density.

Two-body collisions Some states, such as state |2〉 can undergo spin flip collisions. If
two atoms in |2〉 collide, the spins can be modified according to |2, 1〉+ |2, 1〉 → |2, 0〉+
|2, 2〉 because of conservation of the spin moment mF . The corresponding two-body loss
rate depends linearly on the atom density in state |2〉 with γ22 = 8.1(3) × 10−14 cm3/s
[124]. Note that this is the dominant loss process for this clock state. Atom loss through
spin-dipole interaction is much smaller [123] and will be neglected here. The same process
can happen between two atoms in a superposition of states: |1,−1〉+|2, 1〉 → |1, 0〉+|2, 0〉
with a smaller rate constant γ12 = 1.51(18)× 10−14 cm3/s [124].

Three-body recombination If three atoms collide, a molecule can be formed with
a kinetic energy usually larger than the trap depth leading to the loss of these three
atoms. The corresponding three-body decay rate γ111 = 5.8(1.9) × 10−30 cm6/s [125]
is now proportional the the density square. Our atom density is however too small to
observe this loss process which will then be neglected in the following.

Extension of the Liouville-von Neumann equation Considering the discussed
many-body losses, equation (1.17) is no longer appropriate to describe the open system,
and the system-bath interaction has now to be described by the Markovian master equa-
tion [126, 127]. The calculations performed in [128] showed that the time evolution of
the density matrix elements under many-body losses is well described by


iρ̇11 = V12ρ21 − V21ρ12 − i[γbckρ11 + Γ12ρ11ρ22]
iρ̇12 = V12(ρ22 − ρ11) + ρ12ωat − i[κ1ρ12 + κ2ρ11ρ12 + κ3ρ22ρ12]
iρ̇21 = −V21(ρ22 − ρ11) + ρ21ωat − i[κ1ρ21 + κ2ρ11ρ21 + κ3ρ22ρ21]
iρ̇22 = −V12ρ21 + V21ρ12 − i[γbckρ22 + Γ12ρ11ρ22 + Γ22ρ

2
22]

, (1.23)
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with
κ1 = 2γbck + γd

2 , κ2 = Γ12

2 , κ3 = Γ22 + Γ12

2 , (1.24)

where γd is a phenomenological decoherence rate, Γij = n0γ
thermal
ij = 2n0γ

BEC
ij is the

decay constant due to two-body collisions between states |i〉 and |j〉, n0 is the total atom
number density at t = 0. The factor 2 accounts for the different counting statistics of
condensed and non-condensed bosons [125,129]. It is moreover worth noting that system
(1.23) has been adapted to our situation for which the one-body losses, identical for the
two states, are due to collisions with the background gas. Furthermore, only state |2〉 is
sensitive to two-body losses7 and our densities are not high enough to observe three-body
losses in either state.
Equations (1.23) can be numerically solved and will be used to explain and model our
system, including spin rotations during the squeezing sequence in section 5.2.

1.2.4 Bloch sphere representation
The Bloch sphere [130] is a powerful tool to visualize the spins evolution during any
kind of interrogation sequence. It can therefore provide a nice geometrical and intuitive
interpretation of what happens during the experimental sequence. In this representation,
the individual spin vector operator ŝ is defined by:

ŝ =

ŝxŝy
ŝz

 with


ŝx = (|1〉〈2|+ |2〉〈1|)/2
ŝy = (|2〉〈1| − |1〉〈2|)/2i
ŝz = (|2〉〈2| − |1〉〈1|)/2.

(1.25)

It can be easily shown that this operator satisfies the commutation relation [ŝi, ŝj] =
iεi,j ŝk where εi,j is the Levi-Civita symbol and i, j, k refer to the spatial coordinates. It
can can therefore be considered as a spin-1

2 angular momentum operator. Let’s note here
that the expectation value of this operator is called Bloch vector and can be linked to
the density matrix elements via

sx(t) = [ρ21(t)e−iωt + ρ12(t)eiωt]/2 (≡ Re(ρ12(t)eiωt))
sy(t) = [iρ21(t)e−iωt − iρ12(t)eiωt]/2 (≡ Im(ρ12(t)eiωt))
sz(t) = [ρ22(t)− ρ11(t)]/2.

(1.26)

A second vector, called Rabi vector, is also defined to represent the interaction of such
a spin with an external field [131]

−→Ω =

 ΩR cos(φlo)
−ΩR sin(φlo)
−∆

 (1.27)

7state |1〉 being a stretched state.
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Figure 1.6: Bloch sphere. Bloch sphere representation defined by the three spin com-
ponents. The collective spin S is defined by its length and the two angles θ and φ. Its
interaction with a driving field induces rotations around the Rabi vector Ω according to
Eq. (1.28).

The rotating terms e±iωt in equation (1.26) have been added here in order to express
the Bloch vector in the rotating frame inside which the Rabi vector is stationary. The
temporal evolution of the Bloch vector is then described by

d

dt
−→s = −→Ω ×−→s . (1.28)

In that representation, an atomic state can be fully described by the two angles θ and φ
shown on figure 1.6

|ψ〉 ≡ |θ, φ〉 = sin(θ/2)e
iφ
2 |1〉+ cos(θ/2)e−

iφ
2 |2〉 (1.29)

An important feature that will be used later in the manuscript is that the z-component
of the Rabi vector is determined by the frequency difference between the local oscillator
and the atomic resonance. This means that for a non-zero detuning the Rabi vector
leaves the equator plane and prevents the spins from reaching the poles.

This reasoning can be extended to an ensemble of N two-level atoms that have
coherently interacted with a resonant field. In that case, the collective pseudo-spin is
simply defined as the sum of all the individual spins : Ŝk = ∑N

i=1 ŝk,i for k = x, y, z, and
has a well defined length |〈S〉| = N

2 .

1.3 Working principle of atomic clocks
Suggested by I. Rabi in 1945 and implemented at NIST for the first time in 1958 [132],
atomic clocks have known a spectacular development all around the world with the
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Chapter 1. Theory of a trapped atom clock on a chip

implementation of atomic fountains [133,134], optical clocks [10] ion clocks [135] or other
compact atomic clocks [69,136]. They indeed provide the so far most stable and accurate
measurement of time. Of course the expectations and goals of each of these clocks are
different but the general guideline is to increase the precision and stability of the time
measurement, either for fundamental purposes (general relativity tests [11], monitoring
fundamental constant [137], dark matter investigations [12]) or industrial developments
(satellite navigation systems [138], telecommunication, deep space navigation [139]).
In this section are presented the basic working principles of an atomic clock, including
the detailed interrogation schemes and stability estimation. Being the metrological tool
enabling the work presented in this manuscript, the current status of TACC is also briefly
addressed.

P2

δν

δP2

Δ = νLO- νat

TR

correction

2
π

2
π

interrogation

νLO

output

νLO

Local oscillator

νat

Atoms

|1>

|2>

Figure 1.7: Working principle of an atomic clock. An oscillator provides an un-
stable signal which is compared to an atomic reference using a particular interrogation
scheme. The resulting error signal is subsequently used to correct the oscillator and
greatly improve its stability.

1.3.1 Basic principle
There exist two kinds of time-measurement devices: the active clocks, where the atoms
emit a radiation at a well defined frequency (hydrogen maser [140]), and the passive
clocks, where an atomic transition is used to correct the frequency of an oscillator (atomic
fountains, optical lattice clocks and so on). The principle of a passive atomic clock is
very similar to a musician following the beats of a metronome. Indeed, as the beginner
musician tries to synchronize its rhythm with the beats of a metronome, the unstable
local oscillator is locked on the atomic frequency. More specifically, the unlocked local

14
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oscillator (laser, microwave synthesizer) provides an unstable signal while, until proven
otherwise, an unperturbed atom is an infinitely stable frequency reference [137, 141].
The link between the two is realized by the interrogation that converts their frequency
difference into a measurable quantity, the transition probability for instance. Every cycle,
by monitoring the changes in P2, one can deduce the corresponding frequency change
and correct the local oscillator frequency accordingly. That way, the output frequency
of the local oscillator is stabilized on the atomic reference.

1.3.2 Interrogation schemes
Two main interrogation schemes are currently used in atomic clocks: the Rabi [142] and
Ramsey [143,144] spectroscopy.

Rabi spectroscopy: It consists in applying a single near-resonant interrogation pulse
that will put the atoms, initially in the ground state |1〉, in a coherent superposition.
Using equation (1.20) with a(0) = (0 0 1)ᵀ, one easily finds the evolution of the population
in the excited state |2〉

P2(ΩR,∆, τ) = Ω2
R

Ω2 sin2
(

Ωτ
2

)
. (1.30)

The evolution of the transition probability P2 in the frequency and temporal domains
are displayed on figure 1.8.
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Figure 1.8: Rabi interrogation. (a) Rabi spectroscopy for a π-pulse i.e. τπ = 1
2Ω with

ΩR ≈ 2π × 3.6 Hz. (b) Temporal Rabi oscillation for various detunings. At resonance,
a π-pulse brings all the atoms in the excited state and the transition probability P2
oscillates at a frequency ΩR/2. On the other hand, in a presence of a detuning ∆, the
contrast of the oscillation decreases while its frequency increases.
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Chapter 1. Theory of a trapped atom clock on a chip

As shown on figure 1.8 (a), the width of the spectroscopy line scales as 1/τ . This
means that in order to increase the clock sensitivity and therefore its stability, the inter-
rogation pulse duration has to be increased. Unfortunately, this might give rise to some
issues. For instance, when the drive is on, the energy levels are shifted (AC Zeeman
or Stark shifts) and the frequency depends on the interrogation power which is often
hard to precisely control for long times. Furthermore, inhomogeneities of the driving
field amplitude over the atomic cloud cause dephasing and eventually an inhomogeneous
broadening of the transition line. The Ramsey interrogation scheme is a widely used
way to minimize these effects while increasing the interrogation time, and hence the
clock stability.

Ramsey spectroscopy: In this scheme, illustrated in figure 1.9, two interrogation
pulses separated by a free evolution time8 TR are applied. If the atomic ensemble is
subject to frequency inhomogeneities (differential light-shifts, collisions, and so on), then
the individual spins will rotate at different rates leading to dephasing during the free
evolution time. The detuning (identical for the two pulses) is usually set so that the
collective spin covers one quarter of the equator of the Bloch sphere and ends up aligned
with the Rabi vector. The detection pulse then converts the accumulated phase into
populations.
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Figure 1.9: Illustration of the Ramsey interrogation on the Bloch sphere. (a)
The atoms are initially prepared in |1〉. (b) A first near-resonant π

2 -pulse (called prepa-
ration pulse) is applied to put them in a coherent superposition. (c) The interrogation
fields are turned off and the spins rotate along the equator at a rate ∆, leading to an
overall accumulated phaseshift Φ = 2π

∫ TR
0 ∆dt. (d) A second π

2 -pulse (detection pulse)
is applied to close the interferometer and convert the accumulated phase into P2.

The resulting transition probability can be derived by applying equation (1.20) for
the three parts of the sequence: preparation pulse, free evolution and detection pulse,

8also called interrogation or Ramsey time
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1.3. Working principle of atomic clocks

with all the atoms starting in state |1〉 (a(0) = (0 0 1)ᵀ):a1(τ1 + TR + τ2)
a2(τ1 + TR + τ2)
a3(τ1 + TR + τ2)

 = R(ΩRcos(φlo),−ΩRsin(φlo),∆, τ2)R(0, 0,∆, TR)R(ΩR, 0,∆, τ1)a(0)

(1.31)
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Figure 1.10: Ramsey interrogation. (a) Ramsey spectroscopy for two π
2 -pulses i.e.

τπ = 1
2ΩR with ΩR ≈ 2π × 3.6 Hz and TR = 5s. The inset is a zoom of the central fringe

and the red dashed line corresponds to equation (1.33). (b) Bloch sphere representation
of the Bloch vector trajectory during a Ramsey sequence with φlo = −90◦ and Φ ≈ 90◦.
The cyan and green lines are respectfully the first and second Rabi vectors, the red line
represents the final position of the Bloch vector and the blue line corresponds to the
collective spin trajectory.

For arbitrary pulse durations, developing equation (1.31) leads to

a3 = Ω2
R

Ω2 cos(∆TR + φlo)
[

4∆2

Ω2 sin2
(

Ωτ1

2

)
sin2

(
Ωτ2

2

)
− sin(Ωτ1)sin(Ωτ2)

]

+ 2Ω2
R∆

Ω3 sin(∆TR + φlo)
[
sin(Ωτ1)sin2

(
Ωτ2

2

)
+ sin(Ωτ2)sin2

(
Ωτ1

2

)]

+ 1
Ω4 (Ω2

Rcos(Ωτ1) + ∆2)(Ω2
Rcos(Ωτ2) + ∆2)

(1.32)

In the standard case of two π
2 -pulses and close to resonance (∆ << ΩR), equation (1.32)

can be simplified a lot, and using equation (1.21) we retrieve the well known transition
probability9

P2(∆, TR) = 1
2(1 + cos(∆TR)). (1.33)

9Note that no decoherence source has been taken into account yet.
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Chapter 1. Theory of a trapped atom clock on a chip

Unlike the Rabi interrogation, the relevant time defining the width of the resonance
line corresponds to the free evolution time TR during which, in principle, no resonant
field is sent to the atoms.

In both schemes, the precision of the frequency measurement will depend on the
stability of the interrogation parameters (Rabi frequency and detuning) and the en-
vironment surrounding the atoms (spurious fields, temperature, pressure). The next
section makes the link between the clock stability and these different noise sources.

1.3.3 Clock stability and accuracy
Even though the unperturbed atomic transition is an infinitely precise and stable ref-
erence, as soon as it is coupled to a noisy environment, its energy levels start to move
degrading the accuracy and stability of the reference. The stabilized local oscillator
frequency can be written

νLO = νat[1 + ε+ y(t)], (1.34)
where νat is the unperturbed atomic frequency, ε represents the clock inaccuracy caused
by systematic shifts (DC Zeeman or Stark shift, collisions, black body radiation, Doppler
effect) and y(t) represents the clock instability sources (fluctuations of the systematics,
quantum projection noise, Dick effect). Concerning the accuracy, it is in principle always
possible to characterize the environment inside which the clock is working. For instance,
single ion clocks can now reach the low 10−18 systematic uncertainty limited by the
residual motion of the ion and thermal radiation [135]. On the other hand, the stability of
the clock can be affected by noise on both the transition probability P2 and the detuning
∆ that are usually modeled as white frequency noise leading to a clock stability after a
running time τ

σy(τ) = σνat
νat

√
Tc
τ

= 1
νat

√√√√σ2
∆ +

σ2
P2

|dP2/d∆|2

√
Tc
τ
, (1.35)

where Tc is the cycle time. The scaling as 1/νat explains why optical clocks experience
a huge interest.

While work can be done reducing all the technical sources of instability, there is a
fundamental limit called standard quantum limit10 [145] that cannot be overcome by
"classical" means. Its contribution to the clock stability reads

σy,QPN(τ) = 1
2
√
Nνat|dP2/d∆|

√
Tc
τ
. (1.36)

The presence of the slope of the spectroscopy line at the denominator shows the impor-
tance of using long interrogation times. Indeed, the narrower the line, the better the
stability.

10This feature is discussed in more details in section 1.5.1.
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1.3.4 Current status of TACC
As its name suggests, TACC was initially conceived to be a compact atomic clock. By
design, it is a passive microwave clock that locks the signal generated by one SYRTE’s
hydrogen maser on a 87Rb transition. The clock performances have been carefully ana-
lyzed for thermal atoms (80 nK) and the main instability sources have been identified [69].
As displayed on table 1.1, the clock presents a stability σy(τ) = 5.8 × 10−13τ−1/2 and
is mainly limited by atom temperature fluctuations. This leads to fluctuations of the
atomic density and magnetic potential seen by the atoms, and thus fluctuations of the
detuning via the Zeeman and collisional shifts. The next major instability source is due
to magnetic field fluctuations that directly lead to frequency noise and might actually
also be responsible for the temperature noise. The third source is due to the local os-
cillator noise that disturbs the frequency stability via the Dick effect [146]. Then comes
the quantum projection noise.

Relative frequency stability (10−13) shot-to-shot At 1s
Measured, without correction 2.0 7.2
Measured, after N correction 1.5 5.8
Atom temperature 1.0 3.9
Magnetic field 0.7 2.6
Local oscillator 0.7 2.7
Quantum projection noise 0.4 1.5
N correction 0.4 1.5
Atom loss 0.3 0.3
Detection 0.3 1.1
Total estimate 1.5 6.0

Table 1.1: TACC stability budget. adapted from [69].

While the first two terms can probably be reduced together through a better control of
the magnetic fields (more stable current sources and more stable coils position) and the
third one by a reduction of dead times (more efficient cooling, longer interrogation time,
non-destructive measurement), the fourth one is fundamental and cannot be reduced
that "easily". The next generation of this experiment will be dedicated to this purpose
using cavity quantum-electrodynamics [92].

On the other hand, this good stability compared to other similar compact clocks,
shows that TACC is also a metrological platform suitable for the discovery and study
of more general quantum phenomena. It for instance permitted the study of the spin
self-rephasing mechanism [72] that enables very long coherent times and contrast revivals
for thermal ensembles. Besides, the implementation of an atom interferometry scheme
using Bose-Einstein condensates has also been investigated recently [147].
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Chapter 1. Theory of a trapped atom clock on a chip

Keeping in mind this atom interferometry spirit, we propose here to use this device to
experimentally study the generation of spin squeezing through non-linear collisional in-
teractions in a spinor Bose-Einstein condensate [78], and hence contribute to the ongoing
development of quantum metrology. Before going into the details of spin squeezing, let’s
first have a look at the theoretical description of degenerate quantum gases.

1.4 Bose-Einstein condensation

Predicted in 1925 [148] and first observed in 1995 [40, 41], Bose-Einstein condensates
(BEC) have become the spearhead of the study of cold atoms and quantum physics
[42, 123, 149, 150]. This unusual state of matter is often compared to lasers for their
similar coherence properties. Indeed, it has been shown that they possess a well de-
fined phase that can lead to spatial interferences [37]. This combined with their very
high phase-space density makes BECs very interesting for atom interferometers, at first
sight [19, 38, 49]. In addition, this wave-particle duality associated with the second-
order coherence of condensed ensembles also led to the recent realization of the famous
Hong-Ou-Mandel [151] experiment with metastable Helium [152], reinforcing the analogy
between atomic physics and quantum optics. There is however one significant difference
between photons and atoms: the inter-particle interactions, that greatly modifies their
spatial dynamics and coherence properties. Indeed, even though condensed ensembles
usually contain less atoms than thermal clouds, their much higher density leads to en-
hanced interactions. Even if the impact of these interactions can be troublesome: higher
atom-losses, frequency noise due mean-field shifts and so on, they can also lead to very
interesting and valuable physical phenomena such as vortices [153,154], state-dependent
spatial dynamics [80,155] and number squeezing [60–62,78]. These beneficial effects can
in principle be combined to enhance the precision of atomic interferometers [55].

In this section is reviewed the theoretical description of degenerate quantum gases,
from the ideal Bose gas formalism to the interacting BEC in a cigar-shaped trap. As the
density of the condensate is involved in several physical phenomena (atom loss, collisional
shift), its expression is derived in the regime realized by our experiment.

1.4.1 Ideal Bose gas
Quantum mechanically a particle such as an atom in a gas, can be seen as a wave
characterized by its de Broglie wavelength:

λT =
√

2π~2

mkBT
, (1.37)

where ~ and kB are the Plank and Boltzman constant respectively, m is the particle
mass and T the gas temperature. At high temperatures, the De Broglie wavelength is
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1.4. Bose-Einstein condensation

much smaller than the mean inter-particle spacing n−1/3, where n is the atomic den-
sity. The system is thus governed by Boltzman statistics and can be treated classically.
As illustrated on figure 1.11, as the temperature decreases, the De Broglie wavelength
increases until it becomes comparable to the distance between two particles. The "classi-
cal" non-condensed atoms then start to macroscopically populate the ground state of the
system, increasing the probability for them to be in the same state (bosonic attraction).
The system subsequently enters a degenerate regime and the atoms start to behave as
a coherent matter-wave. For a uniform three dimensional gas, the condensation occurs
when [150]

nλ3
T > ζ(3/2) ≈ 2.612, (1.38)

where ζ is the Riemman zeta function. This transition corresponds to a critical temper-
ature

Tc = 2π~2

mkB

(
n

ζ(3/2)

)2/3

. (1.39)

n-1/3

λT

(a) (b) (c)

BEC

T >> Tc T > Tc T ≤ Tc

Figure 1.11: Bose Einstein condensation. (a) At high temperatures, the atoms
behave classically. (b) When the temperature decreases, coherence properties of the
atoms described by the de Broglie wavelength λT start to emerge. (c) When temperature
becomes smaller than the critical temperature Tc defined in Eq. 1.39, the atoms enter
the degenerate regime and a condensate forms in the ground state of the trap. While
the temperature decreases, the condensate grows until all the atoms reach the ground
state to form a pure BEC.

In the case of N non-interacting bosons trapped in a harmonic potential V (r) =
m
2 ((ωxx)2 + (ωyy)2 + (ωzz)2), the ground state of the system corresponds to having all
the particles in the lowest single particle state [149]: Φ0(r1, r2, ..., rN) = ∏N

i=1 ϕ0(ri) with
the single particle wave function

ϕ0(r) =
(
mω

π~

)(3/4)
exp[−m2~(ωxx2 + ωyy

2 + ωzz
2)], (1.40)
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where ω = 3
√
ωxωyωz is the mean trapping frequency. The density is simply n0(r) =

N |ϕ0(r)|2 and the cloud size is only fixed by the harmonic oscillator length aho =
√

~
mω

.

1.4.2 Gross-Pitaevskii equation
In the condensed regime, because of the high densities, inter-atomic interactions have to
be taken into account in the description of the system. A spinless fluid of interacting
bosons can be described by the many-body Hamiltonian [156]

H =
N∑
i

H0(pi, ri) + 1
2

N∑
i,j

Hint(ri − rj), (1.41)

where H0(p, r) = − ~2

2m∇
2 + V (r) is the free particle Hamiltonian, containing the kinetic

energy and the trapping potential, and Hint represents the atomic interactions. There
are several ways to model the atomic interactions but here we will limit ourselves to the
usual contact potential corresponding to short range s-wave collisions [149],

Hint(ri − rj) = gδ(ri − rj), (1.42)

where g = 4π~2as/m is the interaction strength with the s-wave scattering length as.
This potential is only valid in the case of many condensed atoms in a dilute gas where
the s-wave scattering length is much smaller than the inter-particle distance. In order
to find the ground state of the system, N Schrödinger equations have to be solved and
this would require too much computational efforts. Instead we will use the fact that
we are dealing with a quantum many-body system of identical particles to describe the
ensemble with a mean field approach. To do so, we re-write the Hamiltonian using
the second quantization formalism with the boson field operator Ψ̂(r, t) = ∑

i ϕi(r, t)âi
where ϕi(r, t) is the single-particle wave function and âi the corresponding annihilation
operator for the mode i,

Ĥ =
∫
drΨ̂†(r, t)H0(p, r)Ψ̂(r, t) + 1

2

∫ ∫
drdr′Ψ̂†(r, t)Ψ̂†(r′, t)gδ(r− r′)Ψ̂(r′, t)Ψ̂(r, t)

=
∫
drΨ̂†(r, t)H0(p, r)Ψ̂(r, t) + g

2

∫
drΨ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t).

(1.43)

The time evolution of the field operator is given by the Heisenberg equation of motion:

i~
∂Ψ̂(r, t)
∂t

= [Ψ̂(r, t), Ĥ]. (1.44)

That we can re-write using standard commutation relations
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1.4. Bose-Einstein condensation

i~
∂Ψ̂(r, t)
∂t

= H0(p, r)Ψ̂(r, t) + g|Ψ̂(r, t)|2Ψ̂(r, t). (1.45)

Note that as it is, this equation still requires to treat each particle individually. Now let’s
use the fact that Bose-Einstein condensation occurs when a single-particle state, typically
the ground state ϕ0(r, t), is macroscopically occupied. This means that N0 >> 1, N0
being the number of condensed atoms. In this case, [â0, â

†
0] = â0â

†
0 − â

†
0â0 = 1⇒ â0â

†
0 =

1 + â†0â0 ≈ N0. We can thus neglect the non-commutativity of the annihilation and
creation operators and treat them as ordinary numbers: â0 ≡ â†0 ≡

√
N0.

In 1947 Bogolioubov developed a theory for very low temperatures [157] in which the
condensed and thermal parts of the field operator can be separated,

Ψ̂(r, t) = ψ(r, t) + δΨ̂′(r, t). (1.46)

ψ(r, t) is a complex classical field (order parameter) which represents the condensed
part of the total field operator Ψ(r, t) and fixes the density of the condensate nc(r, t) =
|ψ(r, t)|2. δΨ̂′(r, t) is the field operator describing the remaining non-condensed particles
whose density is then nnc(r, t) = 〈Ψ′†(r, t)Ψ′(r, t)〉. It contains all the other weakly
populated excited states and can in general be treated as a perturbation. The "mean-
field" appellation lies in the fact that the total ensemble is now described as a macroscopic
mean field ψ(r, t) = 〈Ψ̂(r, t)〉 =

√
N0ϕ(r, t) fluctuating as δΨ̂′(r, t). We will moreover

place ourselves in the limit of zero temperature, for which the population in the non-
condensed modes is negligible. More details about the Bogoliubov theory can be found
in [158]. Equation (1.45) then becomes the well known Gross-Pitaevskii equation

i~
∂ψ(r, t)
∂t

=
(
− ~2

2m∇
2 + V (r, t) + g|ψ(r, t)|2

)
ψ(r, t). (1.47)

This equation, derived by Gross [159] and Pitaevskii [160] in the late 1950’s, describes the
temporal and spatial evolution of the order parameter for an ensemble of quantum de-
generate bosons. Here the macroscopic wave-function is normalized on the total number
of atoms:

N =
∫
dr|ψ(r, t)|2. (1.48)

From now on we will only consider a pure condensate, such that N is the total atom
number (≡number of condensed atoms), ϕ(r, t) is the single atom wave-function of the
ground state and ψ(r, t) is the macroscopic complex wave-function of the Bose-Einstein
condensate under the mean field approach. The stationary solution of equation (1.47)
gives the ground state of the system, and the substitution

ψ(r, t) = ψ(r)e−iµt/~, (1.49)

allows us to derive the time-independent Gross-Pitaevskii equation
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(
− ~2

2m∇
2 + V (r) + gn(r)

)
ψ(r) = µψ(r), (1.50)

where µ is the chemical potential of the system which corresponds to the energy required
to remove a particle from the atomic ensemble. The general solution of equation (1.50)
can then be found by minimizing the energy functional [149]

E[ψ] =
∫
dr
[
~2

2m |∇ψ(r)|2 + V (r)|ψ(r)|2 + g

2 |ψ(r)|4
]
. (1.51)

This can be easily done by numerical integration [161]. Unfortunately, there is no gen-
eral analytical expression for the wave function, however approximations can be made
depending on the strength of the interactions and the geometry of the trapping potential.

1.4.3 Dimensional crossover regime for a cigar-shaped trap
The ground-state properties of a trapped BEC highly depends on the shape of the trap-
ping potential. I will therefore focus on cigar-shaped traps which are used in our ex-
periment. More complete studies with other trapping geometries and the inclusion of
vortices can be found in [149,150,162–165]. In the case of elongated potentials of trans-
verse and longitudinal angular frequencies ω⊥ = √ωyωz and ωx, the relevant parameter
determining the ground state properties is defined by the ratio between the interaction
energy and the kinetic energy:

κ = Na⊥as
a2
x

= Nλas
a⊥

, (1.52)

where λ = ωx/ω⊥ is the trap aspect-ratio and a⊥ =
√

~
mω⊥

and ax =
√

~
mωx

are the
transverse and longitudinal harmonic oscillator lengths. Besides, if ω⊥ >> ωx as it is
often the case in cigar-shaped traps, then the evolution time of the transverse motion is
so much faster than the one of the longitudinal motion that the two directions can be
decoupled and the condensate wave-function factorized ψ(r) = φ⊥(r⊥)φ‖(x) in cylindrical
coordinates. This way, equation (1.50) becomes(
− ~2

2m∇
2
⊥φ⊥(r⊥) + 1

2mω
2
⊥r

2
⊥φ⊥(r⊥) + g|φ‖(x)|2|φ⊥(r⊥)|2φ⊥(r⊥)− µφ⊥(r⊥)

)
φ‖(x)

=
(
~2

2m∇
2
xφ‖(x)− 1

2mω
2
xx

2φ‖(x)
)
φ⊥(r⊥).

(1.53)

Multiplying by φ∗(r⊥) and integrating over r⊥ lead to

µφ‖(x) = − ~2

2m∇
2
xφ‖(x) + 1

2mω
2
xx

2φ‖(x) + µ⊥(nx)φ‖(x), (1.54)
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with nx = |φ‖(x)|2 and

µ⊥(nx) =
∫

2πr⊥φ∗(r⊥)
(
− ~2

2m∇
2
⊥ + 1

2mω
2
⊥r

2
⊥ + gnx|φ⊥(r⊥)|2

)
φ⊥(r⊥)dr⊥. (1.55)

Finally re-injecting into equation (1.53) yields

− ~2

2m∇
2
⊥φ⊥(r⊥) + 1

2mω
2
⊥r

2
⊥φ⊥(r⊥) + gnx|φ⊥(r⊥)|2φ⊥(r⊥) = µ⊥(nx)φ⊥(r⊥). (1.56)

Through this equation, the system is treated as an axially homogeneous condensate
with density per unit length nx(x) = |φ‖(x)|2 and local equilibrium chemical potential
µ⊥(nx). Furthermore, it has been heuristically shown that this local equilibrium chemical
potential reads [163]

µ⊥(nx) = ~ω⊥
√

1 + 4asnx(x), (1.57)

This local equilibrium chemical potential is linked to the total chemical potential
(constant) via

µ = µ⊥(nx) + V (x) = ~ω⊥ + V (L), (1.58)

where L is defined as the half length of the condensate along the x direction such that
n(L) = n(−L) = 0. Extracting nx from equation (1.58) leads to

nx(x) = 1
4as~ω⊥

(V (L)− V (x))
(
V (L)− V (x)

~ω⊥
+ 2

)
, (1.59)

where V (x) = 1
2mω

2
xx

2 but L is unknown so far. In order to estimate it, a parameter
α = 2

(
µ

~ω⊥
− 1

)
is introduced such that

L =
√
~ω⊥α
mω2

x

= a2
x

a⊥

√
α. (1.60)

Injecting the parametrized half length, we end up with

nx(x) = α

16as

1−
(

x

L(α)

)2
{α

1−
(

x

L(α)

)2
+ 4

}
. (1.61)

Now the only unknown parameter is α which can be found using the definition of the
total atom number N =

∫ L
−L nx(x)dx. After some trivial calculations we end up with

this simple equation
α3(α + 5)2 = (15κ)2, (1.62)

that can be easily solved numerically.
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Concerning the wave-function in the transverse direction, following [166], we choose
φ⊥(r⊥) = 1√

πw⊥
exp(−r2

⊥/2w2
⊥), where the Gaussian width w⊥(nx) is taken as a varia-

tional parameter satisfying equation (1.56). After some arithmetic and using the expres-
sion (1.57), we end up with the width

w⊥(nx) = a⊥(1 + 4asnx(x))1/4. (1.63)
This Gaussian transverse wave-function does not describe the real state, but allows to
get a simple analytical expression which produces results very close to the exact ones, as
as testifies the comparison with the full numerical resolution of the 3-D Gross Pitaevski
equation displayed on figure 1.13 (b).

Once we have found α, equations (1.63) and (1.60) give us the condensate width
and half length. Then the whole condensate volume can be derived using cylindrical
coordinates

V =
∫ L

−L

∫ √2w⊥(nx)

0

∫ 2π

0
rdrdθdx = 2π

∫ L

−L
w2
⊥(nx)dx. (1.64)

And finally the mean density reads

< n >= N

V
(1.65)

No approximation concerning κ has been made so far. In order the check the validity of
this general model, let’s compare it with the two extreme limits: the mean field 1D and
the Thomas-Fermi regimes.

Mean field quasi 1D regime If κ << 1, then interactions can be treated as a
perturbation and the radial ground-state is determined by the harmonic oscillator. That
is considering the transverse dynamics frozen and only investigating the low frequency
motions. That way equation (1.50) becomes [167]

~ω⊥ + 1
2~ω

2
xx

2 + g1DN |φ‖(x)|2 = µ, (1.66)

with g1D = g
2πa2
⊥
. This corresponds to fixing the radial density per unit area to its mean

value N/2πa2
⊥ and studying the evolution of the longitudinal density per unit length

|φ‖(x)|2. This leads to [161]

µ1D = ~ω⊥

1 + (3κ) 2
3

2

 and 〈n1D〉 ≈
N
√
λ

4πa3
ho(3κ)1/3 . (1.67)

Under this regime, equation (4.30) becomes α ≈ (3κ)2/3 which leads to the cloud
dimensions ((1.60) and (1.63))

L1D ≈ ax√
λ

(3κ)1/3 and w1D
⊥ ≈ a⊥. (1.68)

Injecting it into equations (1.58) and (1.64) gives the same chemical potential and mean
density as expressed in (1.67).

26



1.4. Bose-Einstein condensation

Thomas-Fermi regime If κ >> 1 then the system if governed by large density and
repulsive forces (positive scattering lengths) and it is considered as "strongly"11 interact-
ing:

Eint
Ekin

∝ N
as
aho

>> 1. (1.69)

In this case, the kinetic energy term in equation (1.50) can be neglected and the ground
state of the system is only determined by the external and chemical potentials [162]:

nTF (r) =


µTF−V (r)

g
if µ > V (r)

0 otherwise
(1.70)

The wave-function has therefore the form of an inverted parabola which is a convenient
way of differentiating between condensed and non-condensed samples. Using the nor-
malization condition (1.48) with the integration volume defined by (1.70), one finds the
well known Thomas-Fermi chemical potential and cloud dimensions along the radial and
longitudinal directions

µTF = ~ω⊥
2 (15κ)2/5 , RTF =

√
2µTF
mω2

⊥
and LTF =

√
2µTF
mω2

x

. (1.71)

Finally, using the geometric volume defined by equation (1.70), one derives the averaged
volume occupied by the atoms, as well as the averaged density

VTF = 4π
3
a3
ho√
λ

(2µTF
~ω⊥

)3/2
and 〈nTF 〉 = 3N

√
λ

4πa3
ho(15κ)3/5 . (1.72)

On the other hand, under this regime, equation (4.30) becomes α ≈ (15κ)1/5 which
leads to the cloud dimensions ((1.60) and (1.63))

LTF ≈ ax√
λ

(15κ)1/5 and wTF⊥ (x) ≈ a⊥(15κ)1/5
√

2

√
1−

(
x

L

)2
. (1.73)

Injecting it into equations (1.58) and (1.64) gives the same chemical potential and mean
density as expressed in (1.72).

Figure 1.12 compares the evolution of the effective radius12, half axial length, the
chemical potential and the averaged density as a function of the parameter κ for the cross-
over model, the 1D regime and the Thomas-Fermi approximation. The model is in good
agreement with the two usual extreme cases. Experimentally, our BEC usually contains
between 500 and 15·103 atoms meaning that κ ∈ [7 ·10−2, 2] with {ωx, ω⊥} ≈ 2π{2.9, 83}
Hz. We thus are exactly in the intermediate region represented by the reddish area on
figure 1.12 justifying the development of such a cross-over theory.

11The relation as«n−1/3 justifying the elastic binary collision to model atomic interactions is still valid
though.

12Here we compare the Gaussian width of the cross-over and 1D regime with the Thomas-Fermi radius
RT F /

√
2.
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Figure 1.12: Comparison of the model. The central radius (a), half axial length (b),
chemical potential (c) and averaged density (d) are plotted as a function of κ using the
cross-over model detailed in the text (black line), the Thomas-Fermi approximation (red
dashed line) and the mean field 1D approximation (blue dashed line). The reddish area
represents the range achieved in the experiment. For the radii, we compare the Gaussian
width of the cross-over and 1D regime with the Thomas-Fermi radius RTF/

√
2.

Figure 1.13 shows the radial and longitudinal density profiles derived with the cross-
over model and with the mean-field 1D and Thomas-Fermi approximations in the inter-
mediate regime (κ ≈ 0.7). The derived model is in relatively good agreement with the
three dimensional numerical resolution of the Gross-Pitaevskii equations13 (1.50) (black
dots).
The precise estimation of the atomic density is of primary importance since it is involved
in several physical processes that we will get to encounter in what follows (atoms lifetime
and collisional shift).

13This numerical simulation is detailed in section 4.1.1.
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Figure 1.13: Calculated density profiles. Longitudinal (a) and radial (b) density
profiles derived by the cross-over (black line), the mean-field 1D (blue dashed line) and
Thomas-Fermi (red dashed line) model, for κ ≈ 0.7. The black dots correspond to a full
three dimensional numerical resolution of equation (1.50).

1.4.4 Theoretical description of a two-component BEC
Getting closer to the experimental situation, let’s now introduce an internal degree of
freedom and derive the evolution of a two-component BEC. Following the method used
to derive equation (1.47) in the case of a bimodal BEC, one can derive the set of coupled
Gross-Pitaevskii equations for the macroscopic wave functions of the two sates ψ1,2 with
additional interaction terms [150]

i~
∂ψ1(r, t)

∂t
=
[
− ~2

2m∇
2 + V1(r, t) + g11|ψ1(r, t)|2 + g12|ψ2(r, t)|2

]
ψ1(r, t)

i~
∂ψ2(r, t)

∂t
=
[
− ~2

2m∇
2 + V2(r, t) + g22|ψ2(r, t)|2 + g12|ψ1(r, t)|2

]
ψ2(r, t),

(1.74)

where the interaction strength between states |i〉 and |j〉 reads gij = 4π~2

m
aij. This set

of equations is the starting point of the study of various physical phenomena such as
dark-bright solitons, Josephson-like oscillations, quantum state engineering [168–170] to
name a few, and the state-dependent spatial dynamics will be the one of interest here.

In the case of a homogeneous gas, it can be shown that the stability of the system is
subject to the following conditions [123]

g11 > 0, g22 > 0, and g11g22 > g2
12. (1.75)

If all the above conditions are fulfilled, then any disturbance in the atomic densities will
increase the energy of the system. On the other hand, if the the third condition is not
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fulfilled and g12 > 0, then the ground state of the system corresponds to having the two
modes spatially separated [171]. This means that if an initially pure BEC is prepared
in a coherent superposition, the two components will spatially separate. Because the
initial state is not stationary, the wave-function spatial overlap between the two states
will oscillate at a frequency that depends on the trapping geometry and the mean-
field interaction [83]. In the experimental case of a harmonically trapped spinor BEC,
no analytical treatment is available so far. Several theoretical studies are nonetheless
available to predict the spatial dynamics and the inhomogeneous phase evolution of the
two states [172–175].

As we will see in the next section, this spatial dynamics is of particular interest as
it strongly enhances a non-linear collisional interaction between the two modes of the
BEC, that can eventually lead to spin squeezing and many-particle entanglement.

1.5 Spin squeezing for metrology
Once all the technical instabilities have been reduced, the precision of atomic clocks and
interferometers reaches a level limited by the probabilistic nature of quantum systems,
called standard quantum limit [51,145]. The most efficient way to overcome this threshold
is to induce quantum correlations in the system via non-linear interactions [52], and spin-
squeezed states are one specific kind of entangled states [176, 177] that can be relevant
for metrological applications. The non-linearity can be produced by many different
mechanisms [77], and here we will focus on spin squeezing arising from collisions in a
spinor BEC [60, 61, 78, 178]. The metrological relevance of such states has already been
demonstrated in an atomic clock [57] and field sensors [13,79].

This section is therefore dedicated to the study of the spin noise distribution of an
atomic ensemble in a coherent superposition, from the usual standard quantum limit to
spin squeezing. The transition from one to the other will be then described in the frame-
work of the one-axis-twisting scheme [76]. The temporal evolution of the atomic state
will be briefly tackled as well as the physical mechanisms behind the elastic interaction
mediated spin squeezing [78], ensued from the previously approached state-dependent
spatial dynamics.

1.5.1 Standard quantum limit
After a resonant interaction pulse, the atomic state containing initially N atoms in |1〉
is converted into a so-called coherent spin state (CSS) [179]

|ψ〉CSS = (c1|1〉+ c2|2〉)⊗N , (1.76)

where |c1|2+|c2|2 = 1 and c1,2 ∈ [0; 1]. In the case of a resonant π
2 -pulse, the measurement

of such a state is subject to quantum projection noise [145], which is a fundamental
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Figure 1.14: Spin noise distribution for a coherent spin state (CSS) (a) and a spin
squeezed state (SSS) (b). The resulting uncertainty on the phase measurement ∆φ is
indicated in both cases.

noise stemming from the probabilistic nature of quantum systems. Indeed, during the
detection process, as each atom in the CSS is projected onto one of the two clock states,
the outcome is subject to a statistical uncertainty, similarly to what happens in a coin-
tossing game. More quantitatively, the fluctuation of the population difference 〈Sz〉 = 0
follows a binomial distribution 〈∆S2

z 〉 = 〈∆S2
y〉 = 〈∆S2

⊥〉 = N
4 . This defines the standard

quantum limit as the highest precision with which the atomic phase can be measured:
〈∆φ2

CSS〉 = 〈∆S2
⊥,CSS〉
|〈S〉|2 = 1

N
. Note that these fluctuations must satisfy the Heisenberg

uncertainty relation
〈∆S2

z 〉〈∆S2
y〉 ≥

〈Sx〉2

4 . (1.77)

In the case of an arbitrary population imbalance, the z-component of the spin vector
and the corresponding variance read

Sz = N
|c2|2 − |c1|2

2 and 〈∆S2
⊥〉 = N |c2|2(1− |c2|2). (1.78)

The resulting phase sensitivity is therefore maximum for equal populations in the two
states (Sz = 0) justifying the working point of atomic clocks and interferometers as
stated in section 1.3. As illustrated on figure 1.14 (a), this noise can be represented
on the Bloch sphere by considering that each individual spin is uniformly distributed
around the mean collective spin.

1.5.2 Spin squeezing
Because of the Heisenberg uncertainty relation, the spin noise distribution of the two
quadratures cannot be arbitrarily reduced while keeping the spin length constant. The
idea behind spin squeezing is thus to redistribute the noise between the two quadratures.
That way, as depicted on figure 1.14 (b), the fluctuations will be reduced along the phase
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Chapter 1. Theory of a trapped atom clock on a chip

direction and increased along the orthogonal one. This noise reduction can be quantified
with the normalized number difference variance defined as the ratio between the reduced
population variance with respect to the quantum projection noise [76]

V(Sz) =
〈∆S2

⊥,min〉
∆S2

⊥,CSS

= 4〈∆S2
⊥〉

N
for 〈Sz〉 = 0.

(1.79)

Realizing V(Sz) < 1 is referred to as number squeezing, meaning that the population
difference is measured with an enhanced precision. This parameter is nonetheless not
well suited for metrological applications such as atomic clocks and atom interferometry,
in the sense that it does not take into account the coherence of the system. This the
reason why another quantity, the squeezing parameter introduced by D. Wineland in
1992 [180], is often preferred

ξ2 = ∆φ2

∆φ2
CSS

=
〈∆S2

⊥,min〉
|〈S〉|2

|〈SCSS〉|2

〈∆S2
⊥,CSS〉

= 4
〈∆S2

⊥,min〉
C2N

for 〈Sz〉 = 0,

(1.80)

where C is the contrast of the interrogation scheme. Using this notation, a coherent spin
state at the standard quantum limit corresponds to ξ2 = 1, while a metrologically useful
spin squeezed state presents ξ2 < 1.

It is moreover possible to theoretically estimate this reduced variance. Indeed, a
geometrical reasoning done in [181] gives

〈∆Ŝ2
⊥,min〉 = 1

2〈(∆Ŝ
2
x′ + ∆Ŝ2

y′ − |∆Ŝ2
−|)〉, (1.81)

with Ŝ− = Ŝx′− iŜy′ and the x’-y’ plane corresponds to the plane orthogonal to the mean
spin direction, as illustrated on figure 1.14 (c). The spin operators are expressed as a
function of the field operators as

Ŝx = 1
2
∫
dr[Ψ̂†2(r)Ψ̂†1(r) + Ψ̂†1(r)Ψ̂†2(r)]

Ŝy = i
2
∫
dr[Ψ̂†2(r)Ψ̂†1(r)− Ψ̂†1(r)Ψ̂†2(r)]

Ŝz = 1
2
∫
dr[Ψ̂†2(r)Ψ̂†2(r)− Ψ̂†1(r)Ψ̂†1(r)].

(1.82)

The derivation of equation (1.81) lies on the possibility to estimate the dynamical evo-
lution of the field operators which is far from being a simple task and the next section
is dedicated to this purpose in the case of the one-axis-twisting scheme [76].
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1.5.3 One-axis-twisting Hamiltonian in a spinor BEC
There are many ways of achieving spin squeezing [77] and we will focus here on the
one-axis-twisting scheme realized via elastic collisional interactions in a bimodal BEC
as initially proposed in 2001 [78]. This particular way of generating spin squeezing has
already been heavily studied theoretically [78, 84, 178, 182–185] and only three times
experimentally14 [60, 61, 186] for the last two decades. Here, we will simply recall a few
results facilitating the understanding of our experimental study presented in chapter 5.
The idea is to experimentally realize the famous non-linear one-axis-twisting Hamiltonian

Figure 1.15: Effect of the one axis twisting Hamiltonian. Starting with a CSS, the
one-axis-twisting Hamiltonian induces a rotation of the spins with a velocity proportional
to Sz, resulting in a shearing of the spin noise distribution.

[76]
Ĥ = ~χŜ2

z . (1.83)

Intuitively, the effect of such Hamiltonian can be interpreted as follows. As the Ŝz
operator induces a rotation of the spins around the z-axis of the Bloch sphere, the Ŝ2

z

operator will induce a rotation of the spins around the z-axis with an angular velocity
proportional to Sz. As a result, in the laboratory reference frame, states with Sz > 0
(Sz < 0) will rotate faster (slower) than states on the equator. As illustrated on figure
1.15, in the reference frame of the Bloch vector located along the x-axis, this results
in the expected elliptic spin noise distribution. The small axis is then smaller than the
initial radius given by the quantum projection noise.

Let’s first start by assuming that a strong π
2 -pulse has quickly transferred N atoms

intially in |1〉 into a coherent superposition between |1〉 and |2〉. The generalization of
the Hamiltonian (1.43) to the case of a bimodal BEC leads to [181]

Ĥ =
∑
j∈[1,2]

∫
drΨ̂j

†
(r, t)H0(p, r)Ψ̂j(r, t)+

∑
(i,j)∈[1,2]

gij
2

∫
drΨ̂i

†
(r, t)Ψ̂j

†
(r, t)Ψ̂j(r, t)Ψ̂i(r, t).

(1.84)

14Only the first two references were successful.
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As in section 1.4.2, we will use a mean field approach to describe the system. This way,
Ψ̂j(r, t) ≈ ϕj(r, t)âj where âj is the annihilation operator for state |j〉 and ϕj(r) is the
corresponding normalized single particle wave-function. Equation (1.84) hence becomes

Ĥ = Ĥ0 + Ĥint

=
∫
drϕ∗1(r, t)H0(p, r)ϕ1(r, t)â†1â1 +

∫
drϕ∗2(r, t)H0(p, r)ϕ2(r, t)â†2â2

+ U11

2 â†1â
†
1â1â1 + U22

2 â†2â
†
2â2â2 + U12â

†
1â
†
2â2â1,

(1.85)

where Uij(t) = gij
∫
dr|ϕi(r, t)|2|ϕj(r, t)|2 and Ĥ0 represents the kinetic energy and trap-

ping potential of the non-interacting two-component BEC. Then using the commuta-
tion relations of the creation and annihilation operators and the change of variables
N̂ = â1

†â1 + â2
†â2 and Sz = 1

2(â2
†â2 − â1

†â1) the interaction Hamiltonian becomes

Ĥint = 1
4(U11(t) + U22(t))N̂ + 1

8(U11(t) + U22(t) + 2U12(t))N̂2

+ 1
2(U22(t)− U11(t))(N̂ − 1)Ŝz + 1

2(U11(t) + U22(t)− 2U12(t))Ŝz
2
.

(1.86)

The first two terms proportional to N̂ and N̂2, only correspond to atom-number-
dependent energy shifts, identical for the two states. They will therefore translate into
different overall phases for states with different total atom numbers. As there is no phase
reference in the system to which these phase-shifts can be compared to, they can safely
be neglected here. The third term proportional to Ŝz represents a rotation of the spins
around the z-axis and with an angular velocity linear in N . It will therefore convert total
atom number fluctuations into phase noise. The last term, proportional to Ŝz

2 is non
linear and corresponds to the one we were looking for. Note that these last two terms
(proportional to Ŝz) actually describe a frequency shift, called collisional shift, arising
from elastic collisions between atoms in a coherent superposition [112,129].

By identification with equation (1.83), we get

χ = 1
2~(U11(t) + U22(t)− 2U12(t))

= 1
2~

∫
dr
(
g11|ϕ1(r, t)|4 + g22|ϕ2(r, t)|4 − 2g12|ϕ1(r, t)|2|ϕ2(r, t)|2

)
.

(1.87)

As the s-wave scattering length of 87Rb are very close to each other ([a11, a12, a22] ≈
[1.025, 1, 0.974] a12 [124]), if the two modes are spatially overlapping then ϕ1 = ϕ2 and
χ ≈ 0. As the squeezing time-scale is inversely proportional χ, this means that the
interaction time required to get a squeeze state is a priori very long compared to the
coherence time and lifetimes of the system. This is where the state-dependent spatial
dynamics tackled in section 1.4.4 becomes interesting. Indeed, right after the initial
π
2 -pulse the two modes of the condensate will start to separate, leading to a decrease of
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the cross term U12 and a subsequent increase of the coefficient χ. Indeed, it was shown
in [61, 84] that reducing the wave function spatial overlap of the two BEC components
increases χ by several orders of magnitude.

In order to get the temporal evolution of the initial15 atomic state, let’s first expand
it in the Fock state basis [174]

|Ψ(t = 0)〉 = [c1|1, φ0〉+ c2|2, φ0〉]N

=
N∑

N1=0

(
N !

N1!N2!

)1/2

cN1
1 cN2

2 |N1 : φ0, N2 : φ0〉,
(1.88)

where

|N1 : φ1, N2 : φ2〉 =
[a†1,|φ1〉]

N1

√
N1!

[a†2,|φ2〉]
N2

√
N2!

|0〉. (1.89)

Then the temporal evolution of each Fock state simply reads [181]

|N1 : φ0, N2 : φ0〉 → ei
∫
Hint(t)dt/~|N1 : φ1(N1, N2; t), N2 : φ2(N1, N2; t)〉, (1.90)

where Hint(t) is given by equation (1.86) for which the operators have been replaced by
their expectation values under the mean field approximation for large atom numbers.
The temporal evolution of the single particle wave-function is given by the set of coupled
Gross-Pitaevskii equations (1.74) with ψi =

√
Niϕi. The numerical resolution of equa-

tions (1.90) and (1.74) give access to the reduced variance of the spin given by equation
(1.81).

This simple two-mode approach already gives a good intuitive understanding of the
physical mechanisms behind this elastic interaction mediated spin squeezing. More de-
tails about this theoretical study with the inclusion of decoherence and particle loss
can be found in [181, 187]. A different approach close to the experiment but without
atomic losses is also presented in [84]. Furthermore, some orders of magnitudes close to
experimental situations will be given at the beginning of chapter 5.

15Here the initial time is taken right after the first π/2-pulse.

35



2

Ch
ap

te
r

Experimental set-up and
preliminary studies

*****

2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Experimental sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Experimental characterization of our BEC . . . . . . . . . . . . . . . . . 43

2.3.1 Condensed fraction measurements . . . . . . . . . . . . . . . . . . 43
2.3.2 BEC lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Study of the cloud position inside the trap . . . . . . . . . . . . . . . . . 47

36



2.1. Experimental set-up

This chapter is dedicated to a brief overview of our experimental set-up. As this
project has been initiated in 2006, it has already been thoroughly described in

previous manuscripts [103,113,188,189]. I will therefore just recap and emphasize some
important points for the understanding of the work presented here. The different parts of
the set-up and the temporal sequence will be reviewed. The experimental realization and
characterization of a pure Bose-Einstein condensate via evaporative cooling will also be
presented. The good agreement of the population lifetimes with the recently published
values for the decay rates confirms the accuracy of the density estimation in the cross-over
regime. In addition, a residual oscillation of the atomic cloud with a fluctuating phase
will be highlighted and modeled. This study will lay the groundwork for the investigation
of the impact of an in-homogeneous Rabi frequency on the squeezing measurement

Macroscopic I

Macroscopic U

Chip

Vacuum cell

Figure 2.1: Vacuum system and chip assembly. Left: overview of the vacuum
system. Adapted from [103]. Right: Overview of the chip assembly. The chip is glued
on top of the Pyrex cell and replaces its upper wall. A macroscopic "I" and "U" shaped
wires used to generate the MOT quadrupole field are glued on top of the chip. Adapted
from [188].

2.1 Experimental set-up
The experimental set-up is composed of four main parts. Firstly, the vacuum system,
made up from standard CF40 parts (Flanges, 6-way and 4-way crosses), a spectroscopy
cell antireflective coated for 780 nm and an ion pump (Meca2000 PID 25). A titanium
sublimation pump has also been installed and is used once in a while in order to improve
the vacuum. Without atoms, the pressure given by a Bayard-Alpert pressure gauge
(Leybold IE514) reads ≈ 1.4 × 10−9 mbar. Two dispensers1 (SAES Getters) located at
the bottom of the glass cell play the role of the Rb source. With the dispenser working

1Only one is working at a time though.
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continuously with the nominal current2 of 4.17 A, the pressure rises up to ≈ 1.7× 10−9

mbar. The global assembly is illustrated on figure 2.1.

Figure 2.2: Chip layout. Base chip (left) and science chip (right) schematics. The
wires used in the experiment are labeled. The dimple and stripline, which is actually the
central wire of the coplanar waveguide, are used to generate the magnetic traps (dimple
traps), Bc2 is used the compress the MOT and Sc1 (-1) is used the generate the RF
field to perform the evaporative cooling (interrogation). The coplanar waveguide used
to radiate the MW interrogation field is represented in red. Adapted from [103].

Secondly, the atom-chip whose schematic is shown on figure 2.2. It is actually made of
two layers, the base chip and the science chip glued on top of each other. The ensemble
is glued on top of the cell and replaces its top wall [190]. Its surface is coated to reflect
780 nm light and allows the implementation of a mirror-MOT [191]. It contains DC
conductors driven by homemade low noise current sources [103] to trap the atoms, and a
co-planar wave-guide, resonant for 6.8 GHz, used to generate the interrogation microwave
field. The central wire of this wave-guide3 is also used to generate magnetic traps. Two
macroscopic wires (I and U), represented on figure 2.1 (right) and used to generate the
MOT quadrupole field [192], are glued on a hollowed copper piece on top of the chip.
This copper piece is also used to water-cool the ensemble. Three pairs of coils are placed
around the cell to generate the required bias magnetic fields. As depicted on figure 2.3,
the system is covered by a two-layer Mumetal shield to isolate the atoms from spurious
external magnetic fields.
Thirdly, the optical system whose energy diagram is represented on figure 2.4. Three
different 780 nm laser sources, including two external-cavity-diode-lasers (ECDL) [193],
are used. The Repumper, locked by saturation absorption spectroscopy [194] on the
cross over between |F ′ = 1〉 and |F ′ = 2〉, is used to pump the atoms into |F = 2〉. Part

2This particular current corresponds to a trade off between MOT loading and atoms lifetime in the
final magnetic trap.

3Also referred to as "stripline".
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of this beam is also used to offset lock a second ECDL, called Master, on the cross over
between |F ′ = 2〉 and |F ′ = 3〉. This second laser is used to pump and detect the atoms,
and inject a single diode laser (LD785-SE400), the slave. This slave is used to cool down
and push the atoms. Concerning the detection system, a small camera catches the MOT
fluorescence and two CCD cameras are used to perform absorption imaging along two
horizontal orthogonal directions x (Andor iKon M 934-BRDD) and y (PCO Sensicam
QE). More details on the detection system can be found in chapter 3 and in [188,189].

Figure 2.3: Overview of the whole apparatus. Three pairs of coils are placed around
the cell, and a holed aluminum platform called optical hat is used to support the polar-
ization plates and output collimators that bring the different laser beams to the atoms.
The ensemble is covered by a two-layer Mumetal shield to isolate them from external
magnetic fields. Taken from [103].

Fourthly, the interrogation signals. As already stated, the clock transition |1〉 → |2〉
is driven with a two-photon pulse requiring the combination of radio-frequency and
microwave signals. The RF photon at ≈ 1.8 MHz comes from a commercial synthesizer
SRS DS345, while the microwave one is generated by a homemade frequency chain [195]
which converts the 100 MHz from a stable hydrogen maser distributed at SYRTE [196]
into the required 6.834 GHz using a Non Linear Transmission Line (LPN 7100). The MW
signal is sent to the on-chip coplanar waveguide and the RF one is sent to an adjacent
wire Sc-1 represented on figure 2.2.
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Figure 2.4: Laser frequencies. Energy diagrams of the Repumper and master lasers.
Both of them are locked on a cross-over transition and the useful frequencies are achieved
thanks to Acousto-Optic Modulators (AOM) driven at the indicated frequencies. The
slave is injected by the master and works at the cooling frequency.

Figure 2.5: Experimental setup. Left: overview of the whole system. The Mumetal
shield installed on the optical table is covering the cell and the chip. Next to it, the optical
system is covered by a thermal blanket to isolate it from external thermal fluctuations.
The current sources and lasers electronics are also visible in the back. Right: Uncovered
optical system with the three lasers on the right. Each beam goes through a succession
of isolators, mirrors, λ/2-plates, cubes and AOM before being coupled to the fibers and
sent to the atoms. The saturated absorption spectroscopy is located below the orange
cardboard.
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2.2 Experimental sequence
A typical sequence whose temporal evolution is represented on figure 2.6 consists of the
following steps.
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Figure 2.6: Temporal sequence of a typical experimental cycle. The grey areas
depict amplitude changes while the red lines show relative frequency evolutions. The
full cycle typically last between 11 and 15 s depending on the interrogation time and the
MOT duration. adapted from [188].

• Magneto-Optical Trap The chip surface, used to reflect the cooling beams, is
used together with the macroscopic U that creates the quadrupole field, to generate
a mirror MOT that loads approximately 4× 106 atoms in 6 s.

• Compressed Magneto-Optical Trap The macroscopic I’s current is then ramped
to compress the MOT for 20 ms and reduce its temperature to ≈ 45µK.

• Optical Molasses To further cool down the atoms, a 4 ms optical molasses [4]
is created by turning off all the magnetic fields and increasing the detuning of the
cooling beams. At the end, we get a cloud containing between 3.5 and 4.106 atoms
at ≈ 5µK.

• Optical pumping Two very short (1.5 ms) light pulses (master pump and Rp
pump) are shone to transfer the atoms into the |1〉 state. Usually we get a 90%
transfer efficiency, that we estimate by performing a Stern-Gerlach measurement.
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Figure 2.7: Evolution of the atomic cloud during the sequence. The CMOT (45
µK), molasses (5 µK) and thermal cloud (80 nK) in a coherent superposition are imaged
after a 8 ms time of flight. These clouds come from a MOT containing approximately
4×106 atoms. The right side of the images corresponds to the chip surface. The indicated
color scale represents the atom number per pixel and is identical for the three pictures.

• First magnetic trap A first off-chip magnetic trap is created with the macroscopic
I and the central wire of the coplanar wave-guide to catch and bring the atoms closer
to the chip in 5 ms. Approximately 70% of the atoms are transferred and and their
temperature rises up to approximately 10µK.

• Evaporation trap While decreasing the macroscopic I current, the chip currents
(dimple and stripline) are ramped up for 500 ms to further compress the trap
(ωx, ωy, ωz) = 2π× (0.5, 1.2, 1.2) kHz. Then an RF knife is used to progressively
remove the hottest atoms in the trap and perform the evaporative cooling [197].
After 3.3 s, depending on the final RF frequency we get between 6.104 atoms at 80
nK, just above the condensation threshold, and 104 fully condensed atoms.

• Interrogation trap Finally, the atom are slowly (700 ms) transferred into the final
interrogation trap (ωx, ωy, ωz) = 2π× (2.9, 92, 74) Hz located 350 µm below the
chip surface. This trap is very elongated along the x-axis and this is why we talk
about a cigar-shaped trap. The slow ramp is implemented to avoid the excitation
of atomic motional modes inside the trap and especially along the longitudinal
direction [113]. Unless specified otherwise, every interrogation sequence takes place
in this trap.

• Detection After the interrogation, the two atomic states are imaged on a CCD
camera located along the slow axis of the trap (y-axis). The next chapter is dedi-
cated to the implementation and calibration of our dual state detection system.
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2.3 Experimental characterization of our BEC
As stated previously, an evaporation stage is dedicated to the cooling of the cloud and
can lead to Bose-Einstein condensation [104,197]. The idea is to tightly confine the atoms
and couple the hottest ones with an adjacent non trapping state through a RF field. This
actually corresponds to lowering the extremities of the magnetic trap and let the hottest
atoms escape. The tight confinement allows a rapid thermalization of the remaining
atoms via elastic collisions, decreasing the overall temperature of the ensemble. By clev-
erly scanning the RF frequency, the phase space density will increase, eventually leading
to Bose-Einstein condensation. The competition between elastic and inelastic collisions
imposes strong constraints on the trapping confinement and the cooling duration.
In this section is detailed the characterization of our Bose-Einstein condensates, starting
with the estimation of the condensed fraction followed by the measurement of the atoms
lifetime in the interrogation trap.

2.3.1 Condensed fraction measurements
In the case of an interacting trapped Bose gas, the condensed fraction reads [149]:

Nc

Nc +Nth

= 1− ( T
Tc

)3 − ζ(2)
ζ(3)

µ

kBTc
( T
Tc

)2[1− ( T
Tc

)3]2/5, (2.1)

where Nc is the condensed atom number, Nth is the non-condensed atom number, T is
the cloud temperature and Tc is the critical temperature of Bose-Einstein condensation
(2.5). The second term accounts for interactions whose contribution becomes significant
at low temperatures (T < Tc). Via equation (2.1), one can characterize the efficiency of
the evaporation and check the purity of the BEC.
The analysis is performed at the end of the evaporation trap (ωx, ωy, ωz) = 2π× (0.5, 1.2,
1.2) kHz with a 10 ms time of flight. The temperature is scanned via the final frequency
of the RF evaporation ramp (fev ∈ [2.2, 1.94] MHz). Moreover, the cloud is imaged along
the strong axis of the trap.

Fitting procedure: The simplest way to determine the condensed fraction is to fit the
cloud density profile with a bimodal distribution. Indeed, the shape of thermal part of
the cloud is Gaussian, whereas the BEC density profile can be well fitted with a parabola
in this direction and under the Thomas-Fermi approximation

ODGauss(y, z) = ODpeakG exp[−1
2(y − y0

σy
)2 − 1

2(z − z0

σz
)2], (2.2)

ODpara(y, z) = ODpeakP max{[1− (y − y0

Ry

)2 − (z − z0

Rz

)2], 0}, (2.3)
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σi being the spatial extension of the thermal phase and Ri being the Thomas-Fermi
radius along the i-direction. According to the study performed in section 1.4.3, in the
evaporation trap, the tight confinement makes the Thomas-Fermi approximation valid
(κ ≈ 400).

(a) Experimental data
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Figure 2.8: Condensed fraction measurement. (a) Cross section of the atomic cloud
slightly below the critical temperature, where the two phases are well distinguishable.
The experimental points (black crosses) are well fitted with a bimodal function (blue
line) obtained according to the protocol detailed in the text. The red line represents
the thermal phase used to estimate the temperature of the atomic ensemble. (b) The
condensed fraction is plotted as a function of the normalised temperature for atoms just
after the evaporation trap with a 10 ms time of flight. The red dots are experimental
data, the black line is a fit with equation (2.1) for a gas with interactions in the Thomas-
Fermi limit and the dotted line is for a gas without interactions.

However, when the condensate phase becomes larger than the thermal one, the fit
has some trouble with the small Gaussian wings which leads to a Gaussian profile con-
verging on the condensate. This can be somehow circumvented by applying the following
procedure inspired from [198]:

• The first step is to determine the size of the condensate i.e. the Thomas-Fermi
radii. To do so, we start by fitting the whole cloud with the parabolic function
(Eq. (2.3)). This will give a good first estimation of the Thomas-Fermi radii and
the position of the center of the cloud. Then we use these parameters as initial
guess for the fit using the bimodal distribution which is the sum of Eq. (2.2) and
(2.3).

• The second step is to remove the condensed part from the whole cloud using the
previous fitted parameters. Now the remaining part corresponds to the pure ther-
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2.3. Experimental characterization of our BEC

mal phase which can be fitted with the Gaussian (Eq. (2.2)). The spatial extension
of this cloud (σi) will be used to estimate the temperature of the cloud.

• The third step consists in subtracting the thermal fraction and the background
from the initial cloud. The remaining cloud is now a pure BEC which can be fitted
with Eq. (2.3).

Figure 2.8 (a) shows the atomic distribution slightly below the critical temperature. At
this temperature, the condensed parabolic phase and the thermal Gaussian wings are
clearly visible.

Temperature estimation: Now that we have access to the condensed fraction, we
need to estimate the ensemble temperature. After time of flight expansion, the temper-
ature of the cloud along the i-axis can be expressed as [149]:

kBT = mσ2
i

1
ω2
i

+ T 2
tof

, (2.4)

where σi is the cloud diameter and the time of flight Ttof = 10 ms. Furthermore, the
critical temperature below which the condensation theoretically occurs reads [149]

Tc = ~ω
kB

( N

ξ(3))1/3 ≈ 0.94~ω
kB
N1/3, (2.5)

and ω/(2π) = (ωxωyωz)/(2π) is the geometrical mean of the trap frequencies. The
condensed fraction is displayed as a function of the normalized temperature T/Tc on
figure 2.8 (b). When the condensed fraction exceeds 90%, the thermal wings become too
small to be detected by the fitting procedure and the temperature cannot be accurately
estimated anymore. The global evolution is however well reproduced by equation (2.1)
with a chemical potential µ = 6.5 kHz, which is consistent with equation 1.71 (≈ 7.6
kHz).

In order to ensure its purity, the final evaporation frequency is set such that a small
part of the BEC is cut by the RF knife. After optimization, a quasi-pure BEC containing
a maximum of 1.5× 104 atoms can be obtained.

2.3.2 BEC lifetimes

In section 1.2.3, we emphasized the possibility for one atom to leave the trap because of
inelastic collisions. We will now compare the theoretical prediction with the experimental
data. We recall that the population loss for the two states |1〉 and |2〉 can be described
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by the following rate equations:

1
N1

dN1

dt
= −γbck − γ12n2

1
N2

dN2

dt
= −γbck − γ22n2 − γ12n1.

(2.6)

Because of the relatively low densities (< 1019 m−3), we can safely neglect the effect of
three-body recombination [125].
Experimentally, we prepare a BEC in |1〉, |2〉 or in a coherent superposition, and we
measure the remaining populations in the interrogation trap, after different trapping
times. The results are displayed on figure 2.9, where the points are the experimental
data and the lines correspond to the theoretical predictions obtained with (2.6) and the
published values for the decay rates γ22 = 8.1(3)×10−14 cm3/s and γ12 = 1.51(18)×10−14

cm3/s [124]. A linear fit on the cyan curve gives the decay rate due to collision with
the background gas γbck = 0.20± 0.01 similar to the previously measured value in [113].
The rather good agreement between the two shows the good accuracy of the density
estimation using the cross-over formalism developed in section 1.4.3.
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Figure 2.9: Lifetime of our trapped BEC. Atom number remaining in the interro-
gation trap as a function of the trapping time. The plain lines are derived using the
experimental initial atom numbers and the rate equations (2.6). The density is derived
in the cross over regime presented in section 1.4.3.
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2.4 Study of the cloud position inside the trap
This section is dedicated to the study of the atomic center of mass motion of our BEC
inside the interrogation trap (ωx, ωy, ωz) = 2π× (2.9, 92, 74) Hz and along the vertical
direction. Indeed, the position of the cloud clearly fluctuates from shot-to-shot and this
could impact the squeezing measurement, as we will see on section 5.4.3. More precisely,
figure 2.10 (a) shows the evolution of the cloud’s center of mass when the trapping
duration is scanned. The sinusoidal fit gives a 74 Hz oscillation which corresponds to the
trapping frequency along the vertical direction, and a 8 µm peak-to-peak amplitude after
a 23 ms time of flight. We checked that this oscillation and the shot-to-shot fluctuations
are identical for the two clock states. The fluctuation of the distance between the two
cloud’s centers of mass is on the order of 2 µm, which corresponds to the error in the
estimation of the center of mass with a Gaussian or parabolic fit. Furthermore, as the
two states are imaged simultaneously using a detection method4 that transfers |1〉 into
|2, 0〉, the two clock states have different magnetic moments during time of flight. This
hence rules out random kicks at the trap release and magnetic noise during time of flight
as possible explanations for this position noise.

Let’s therefore first assume that the observed position fluctuations happen inside the
trap5 and try to model the data. Inside the trap, the velocity and position of the center
of mass can be described by

v0(ttrap) = V0sin(2πνzttrap + φ), (2.7)

z0(ttrap) = −A0cos(2πνzttrap + φ) + Z0, (2.8)

where ttrap is the trapping time, V0 is the amplitude of the center of mass velocity,
A0 = V0

2πνz is the oscillation amplitude, Z0 is the mean position of the center of mass
inside the trap, νz ≈ 74 Hz is the vertical trapping frequency and φ is the phase of the
oscillation. The free parameters V0 and φ can be adjusted to match the experimental
data. Then, integrating the Newton’s laws of motion, the position after time of flight
reads

z(ttof ; ttrap) = z0(ttrap) + v0(ttrap)ttof −
g

2 t
2
tof , (2.9)

where ttof is the time of flight and g is the nominal gravitational acceleration taken equal
to 9.81 m.s−2. Figure 2.10 (b) shows the temporal evolution of the cloud’s position in
the trap and during a 23 ms time of flight, for different trapping times. This simulation
can be used to reproduce the oscillation and the noise after time of flight and reverse
time to deduce what happened inside the trap.

Figure 2.10 (c) shows the numerical reconstruction of the oscillation of the cloud after
time of flight (blue) and inside the trap (red) using V0 = 550 µm/s and σ(φ) ≈ π

2 . Both
4This method is detailed in section 3.4
5This will be experimentally verified in section 5.4.3
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the noise and the oscillation match the experimental data displayed on figure 2.10 (a).
It therefore looks like the observed shot-to-shot noise is actually due to a fluctuation of
the phase of the oscillation which corresponds to a fluctuation of the cloud position at
the time when the oscillation begins. The 4 µm oscillation amplitude and 8.5 µm shot to
shot noise after 23 ms time of flight actually correspond to 0.38 µm and 0.77 µm inside
the trap. Moreover, the π

2 phase shift between the blue and red curves indicates that the
position after time of flight is mainly determined by the velocity inside the trap.

In order to check this assertion, the evolution of the shot to shot noise and the
oscillation amplitude have been plotted as a function of the time of flight on figure 2.10
(d). Concerning the noise, the small offset compared to its value at 23 ms and the linear
behavior confirm that the observed position fluctuations after time of flight are due to
velocity fluctuations inside the trap. The red linear fit gives σ(v0) ≈ 360µm/s. The
simulation represented by the plain lines is in agreement with the experimental data and
the expected evolution of the noise, considering that position and velocity fluctuations
are uncorrelated σ(z) =

√
σ(z0)2 + σ(v0)2t2tof . More quantitatively, the simulation gives

σ(z0) = 0.77 µm and σ(v0) = 367 µm/s.
Concerning the mean oscillation, velocity and position are directly correlated such

that A(ttof ) = A0 + V0ttof , leading to A0 = 0.38 µm and V0 = 174 µm/s. The fact that
this measured V0 is smaller than the programmed one (550 µm/s) is due to the phase
noise that reduces the average oscillation amplitude.

Condition Amplitude [µm] σ(z) [µm] V0 [µm/s] σ(V0) [µm/s]
After 23ms tof 4 8.5 - -
In trap 0.38 0.77 550 360

Table 2.1: Cloud position parameters.

The numerical values of the trajectory parameters are summarized in Table 2.1.
Experimentally, we identified the oscillation and the noise to appear during the transfer
between the evaporation and the interrogation trap as it was already pointed out in [113].
Considering that the evaporation and interrogation traps have different vertical positions,
the mean oscillation may be explained by a non perfectly adiabatic transfer. The origin
of the shot to shot noise remains unexplained though. A possible explanation could be
magnetic noise in a specific frequency range that is amplified by a parametric heating like
phenomenon. We also noticed that the position of the MOT has an effect on the phase
of the oscillation in the interrogation trap, but not on the amplitude. Consequently, a
fluctuation of the MOT position could somehow lead to a fluctuation of the phase of the
oscillation in the final trap, but it seems a bit strange that this initial position memory
is conserved over the whole sequence.

This experimental study and numerical simulation will be used in section 5.4.3 to
investigate the effect of this position noise on the squeezing measurement.
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Figure 2.10: Center of mass oscillation. (a) The trapping time of the interro-
gation trap is scanned and the BEC is imaged after a 23 ms time of flight. Each
point corresponds to the position averaged over 30 shots and their corresponding
error bars to its standard deviation. the red line corresponds to a sinusoidal fit:
z(t) = B + A

2 sin(2πνzt + φ). A mean oscillation is clearly visible, despite a signifi-
cant shot to shot noise (σ(z) ≈ 8.5µm). (b) To illustrate the simulation, the center of
mass trajectories inside the trap are plotted and during a 23 ms time of flight. Each
color corresponds to a different trapping time and the in-trap oscillation has been in-
creased for clarity. (c) In trap (red) and after 23 ms time of flight (blue) center of mass
oscillation after offset subtraction obtained with the simulation explained in text with
V0 = 550 µm/s and σ(φ) ≈ π

2 . Plain lines are sinusoidal fits that give after tof (in trap)
A = 4.1µm (0.38µm) and σ(z) = 8.5µm (0.8µm). (d) The same procedure is applied for
different times of flight and the evolution of the oscillation amplitude (blue points) and
standard deviation of the center of mass (red circles) are plotted. The dashed lines are
linear fit and the plain lines correspond to the numerical model explained in the text.
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3.1. Time of flight absorption imaging

In the domain of cold atoms, physicists develop increasingly sophisticated methods
to manipulate atomic states and study complex quantum systems. However at the

end of the day, our only way to observe and interpret the atoms’ response to these
manipulations is to detect them, destructively or not. The characterization and cali-
bration of the detection system is therefore a crucial step in the development of every
cold atom experiment. And this is even more true in the context of atomic clocks and
spin-squeezing-based quantum metrology since its realization is directly related to our
knowledge of the populations in the two clock states.
Keeping that in mind, our detection system must satisfy the following requirements;

• Imaging a wide range of densities: from dilute thermal clouds (∼ 1011 at.cm−3) to
BEC (∼ 1013 at.cm−3.

• Low detection noise in order to get a shot-noise limited detection system and
observe the effect of spin squeezing.

• High fidelity of the atom number estimation.

• Dual state detection within a single experimental cycle.

• Fast dynamic acquisition (< 1 s).

In this chapter we present our detection system, starting with the basics of time of
flight absorption imaging and atom number estimation. Then the accuracy of this esti-
mation is analyzed in the context of dense samples. The effective absorption cross-section
of the atoms due to non perfect polarization of the detection light is also estimated. The
main noise sources are subsequently characterized and reduced using appropriate detec-
tion parameters and a post-processing algorithm whose purpose is to minimize the effect
of optical interference and diffraction fringes. In addition, an alternative more stable
dual-state detection method, enabling the simultaneous imaging of the two clock states
with a single light pulse, is presented. The proper functioning of the whole detection
is finally analyzed by comparing the behavior of the population difference fluctuations
with the standard quantum limit.

3.1 Time of flight absorption imaging
In order to fulfill all the requirements listed above, a time of flight absorption imaging
technique [100,199] has been chosen. The absorption gives access to the spatial distribu-
tion of the atomic cloud and thus enables the direct monitoring of the state-dependent
spatial dynamics investigated in this manuscript. It moreover provides a good spatial
resolution and high signal to noise ratio in spite of the limited optical accesses and low
numerical apertures due to the presence of the atom chip. In this section, the basic prin-
ciple of the imaging technique is reviewed, as well as the estimation of the atom number
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from the acquired pictures. The experimental realization of a double state detection
scheme historically implemented on TACC is also presented.

3.1.1 Detection principle and atom number estimation

Detection beam

Vacuum cell

Atomic clouds

z

y

Chip

|1>
|2>

CCD

(a)

Image Bright Atoms
(b)

Figure 3.1: Absorption detection scheme and typical images. (a) Drawing of
the imaging set-up for the two state detection whose principle is explained on the text.
Adapted from [188]. (b) Acquired images with atoms (Image), without atoms (Bright)
and the reconstructed column density (Atoms). The two white rectangles define the
areas inside which the atom numbers are estimated and the red one is used to correct
for intensity fluctuations between Image and Bright

Following the interrogation, the standard single state detection starts by turning off
the trapping magnetic fields such that the atoms begin to fall under the action of gravity.
After 8 to 25 ms time of flight a light beam, resonant with the |F = 2〉 → |F ′ = 3〉 cycling
transition, is shone on the atoms. Because of the multiple absorption-emission cycles
and the fact that spontaneous emission is isotropic, the light intensity in the direction of
propagation y is reduced making a shadow on the CCD camera, as depicted on figure 3.1.
This attenuation is proportional to the atomic density nat according to the Beer-Lambert
law

dI = −natσ(I)Idy, (3.1)

where σ is the absorption cross section. In the case of an arbitrary intensity I and
detuning δ, it can be expressed as [110]

σ(I) = σ0

1 + I
Isat

+ ( δ
Γ/2)2 . (3.2)

where Γ is the natural linewidth of the transition, Isat = ~ωΓ/2σ0 is the saturation
intensity and σ0 = 3λ2/2π is the natural cross section of the transition for a σ± polarized
light. Estimating the atomic density from equation (3.1) requires two images: one with
atoms called Image and one without atoms called Bright. The two-dimensional atomic
column density then reads [200]:

52



3.1. Time of flight absorption imaging

n(x, z) =
∫ +∞

−∞
n(x, y, z)dy =

∫ Iimage

Ibright

1 + I
Isat

+ ( δ
Γ/2)2

Iσ0
dI (3.3)

=
1 + ( δ

Γ/2)2

σ0
ln(Ibright

Iimage
) + 1

σ0Isat
(Ibright − Iimage) (3.4)

The first term corresponds to the low intensity limit ( I
Isat

< 0.1) for which the sponta-
neous emission occurs much faster than the absorption. The number of diffused photons
per atom is then proportional to the intensity. The second term corresponds to saturated
case for which the atoms populate the excited state and diffuse photons with a constant
rate Γ/2.

However, as we do not directly measure the light intensity, we have to link it to the
number of photo-electrons acquired by the CCD camera. Let’s start with the number
of incoming photons seen by the atoms Nph = IAτ/~ω, where A is the pixel area in
the object plane and τ the pulse duration. As there are some optics (cell walls, lens)
between the atoms and the CCD camera, the received intensity is reduced by a factor
T representing the overall optical transmission. Then the photons hitting the CCD are
converted into photo-electrons with an efficiency η. These photo-electrons are subse-
quently counted in the analog-digital conversion stage with a conversion gain g. This
gives the number of photo-electrons per pixel (i,j) that we call counts

Ncounts(i, j) = Tgη
IAτ

~ω
. (3.5)

The normalized incoming detection intensity then reads:

I/Isat = 2σ0

AgηTΓτ N
∗
bright. (3.6)

According to equation (3.4) and at resonance, the number of atoms per pixel can be
expressed as a function of the number of counts:

N(i, j) = A

ασ0
ln(

N∗bright(i, j)
N
′
image(i, j)

)︸ ︷︷ ︸
NL

+ 2
gητTΓ(N∗bright(i, j)−N

′

image(i, j))︸ ︷︷ ︸
NH

. (3.7)

where α ≤ 1 accounts for non perfect polarization of the imaging light, and section 3.2.1
is dedicated to its origin and calibration.

In order to take into account the dark counts of the camera and the ambient stray
light, two additional images (Darkimage and Darkbright) are taken without the detection
light and under the same conditions as the two first images. These two background frames
are then removed from the original pictures: N ′k = Nk − Nk,dark. Furthermore, as the
light intensity can fluctuate between the two successive pictures Image and Bright, a
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region of the CCD without atoms is used to estimate this fluctuation. The Bright frame
is renormalized by a factor r derived as the ratio of the mean intensities of the two frames
integrated over the renomalization area Ar, delimited by the red rectangle on figure 3.1
(b),

N∗bright =
∑
Ar N

′
image∑

Ar N
′
bright

N
′

bright ≡ r(Ar)N
′

bright. (3.8)

The detected atom number is then: Ndet = ∑
i

∑
j N(i, j), where the sum is made inside

the two analysis areas represented by the white rectangles on figure 3.1 (b). As it appears
on equation (3.7), working at low intensities bears the advantage of measuring the atom
number without having to calibrate the camera as it only depends on the absorption
cross section and the pixel size. On the other hand, at high intensities the atom number
is directly given by the number of missing photons and does not depend on the cross
section which is not trivial to evaluate.

3.1.2 Standard double state imaging

|1,-1>

|2, 1>

(a) (b) (c) (d) (e)

Detection pulse

Push beam
Rp + Det pulse

Figure 3.2: Schematic of the double detection technique. (a) Atoms in clock states
|1〉 (blue) and |2〉 (green). (b) The trap is released and the two states fall together under
the action of gravity. (c) The detection pulse, resonant with |F = 2〉, is applied to detect
atoms in |2〉. (d) The cooling light is used to push the detected atoms away. (e) The
repumper and detection light are sent to transfer the atoms initially in |1〉 to |F = 2〉
and detect them.

As we want to investigate number squeezing, we need a way to estimate the atom
number in each clock state within the same experimental sequence. As depicted on figure
3.2, the method is threefold. First, after turning the trapping fields off, a detection pulse
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is shone to the atoms in order to detect the population in |2〉. Second, a part of the cooling
light is sent to remove the previously detected atoms in |2〉. And third, a repumper pulse
is sent together with the detection light to transfer the remaining atoms from |1〉 into
F=2 and detect them.

Technically, because of the required short time delay between the acquisition of the
two pictures, a frame transfer technique has to be used. It consists in blocking one half of
the CCD camera with a razor blade, while the other half is illuminated by the detection
pulses. The photo-electrons accumulated during the first detection phase are transferred
and stored into this dark area of the CCD. The second detection pulse can then fill again
the emptied pixels. After the acquisition of the two pictures, all the filled pixels can
finally be read out to give the Image and Bright pictures.

3.2 Detection calibration and accuracy
In order to correctly estimate the number of atoms by applying equation (3.7), one
needs to thoroughly calibrate all the involved parameters. The camera’s characteristics
have already been carefully calibrated by former Ph.D. students and all the calibration
methods and optimizations are detailed in [189]. For convenience sake, the main detection
characteristics are recalled in table 3.1.

Names Symbols Values uncertainties Units
Linewidth Γ 2π×6.0667 - MHz
Cross section σ0 0.2907 - µm2

Gain g 0.859 ±0.008 -
Efficiency η 0.972 ±0.032 -
Pixel size (in the imaging plane) ps 5.2 ±0.12 µm
Magnification - 2.51 - -
Optical transmission T 0.86 ±0.025 -
Pulse length τ 20 ±0.5 µs
Effective cross section parameter α 0.76 ±0.025 -

Table 3.1: Detection parameters. The linewidth and natural cross section have been
derived from [110], the other parameters come from [189] except the effective cross section
parameter which is measured in section 3.2.1.

These values were quickly checked and the effective cross section parameter α did not
coincide with the previously measured value of 1 [189]. The following section is thus
dedicated to its estimation. On the other hand, as we will work with quite dense samples
(BEC), we need to make sure that the time of flight is sufficiently long so that the optical
density is low enough to correctly detect all the atoms and estimate the populations.
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3.2.1 Calibration of the effective cross section
Assuming that the camera’s parameters have been well calibrated, the atom number
should not depend on the incoming light intensity, provided that it is higher than the
saturation intensity. However as depicted on figure 3.3 (a), the detected atom number
increases with I/Isat.
This feature is characteristic of a non perfectly controlled polarization. One way of
understanding this effective cross section is the following: if the polarization of the
imaging light is not perfect (σ+ in our case), then the probability for one atom to be
excited in the desired state (F = 2 → F

′ = 3) becomes lower than one. This means
that increasing the detection light intensity increases the number of atoms transferred
via the right channel, like in a repumping process. And this is the reason why we observe
a positive slope for I > Isat on figure 3.3 (a). In order to take into account this effective
cross section, we introduced a calibration parameter 0 < α < 1 in equation (3.7)
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Figure 3.3: Calibration of an effective cross section. A thermal cloud of approxi-
mately 6× 104 atoms is produced and detected after 20 ms time of flight, alternatively
with I = Isat and a variable intensity. Then the atom number is normalize over the
one measured at the saturation intensity in order to get rid of preparation fluctuations.
Initially, the cross section is taken equal to σ0 (α = 1) (a), then the least mean square
minimization described in the text is applied and the data are corrected with the α
coefficient (b).

As explained in [201], the protocol to determine α is the following. First one needs to
produce and detect a series of atomic clouds with a fixed number of atoms for different
detection intensities. Every other shot has to be realized with I = Isat in order to keep
track of the prepared atom number. The shots with the scanned intensity give the atom
numbers NH and NL (defined in equation (3.7)) while the ones with the fixed intensity
give N ref

H and N ref
L . Then two parameters have to be derived:
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ζ(α) =
NH + 1

α
NL

N ref
H + 1

α
N ref
L

and χ2(α) = 1
N2
err

∑
i

(1− ξi(α))2, (3.9)

where i refers to a single shot, N2
err = σ2(Nref )

<Nref>2 estimates the error made on the atom
number due to preparation fluctuations. Finally, α is chosen to minimize the quantity
χ2 (least mean square minimization).

After repeating this procedure many times and under different conditions (atom
numbers, temperatures, pulse lengths) we got

α = 0.76± 0.025 (3.10)
The calibrated evolution of the detected atom number as a function of the detection
intensity is displayed in figure 3.3 (b).

3.2.2 Imaging very small and dense clouds
Working with Bose-Einstein condensates implies being able to efficiently image very
dense atomic ensembles which is not straightforward. For instance, as depicted on figure
3.4, at short times of flight the BEC is dense enough to diffract the imaging light around
itself and the resulting fringes will obviously skew the atom number estimation. This
puts a strong constraint on the minimum relevant time of flight.

Figure 3.4: Optical diffraction around our BEC. Very dense atomic cloud (optical
density ≈ 2 and N ≈ 104 atoms) imaged after different indicated times of flight. Each of
the displayed pictures corresponds to an average of 20 shots taken at I = Isat. For short
TOF, the cloud is so small and dense that the imaging light is diffracted around it. As
the cloud expands while increasing the time of flight, the fringes disappear.

More quantitatively, figure 3.5 depicts the measured atom number as a function of
TOF. When the atomic density is too high, the number of atoms is not properly estimated
by equation (3.7). This is probably due to multiple emission and re-absorption of the
same photon by several atoms in the cloud, which is not taken into account by the Beer-
Lambert law. Then, as soon as the optical density is sufficiently low so that all the atoms
in the cloud are excited by the imaging light, the atom number reaches a plateau which
corresponds to the correct atom number. This restricts our minimum relevant time of
flight to 20 ms. Note that this high density issue is due to the fact that the cloud is
imaged along its strong axes (y, z).
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Figure 3.5: Optimisation of the time of flight. Mean detected atom number plotted
as a function of the TOF. The dashed line represents the time from which the optical
density is low enough to detect all the atoms.

3.3 Towards a shot noise limited detection system

Now that we can detect and estimate the population of the two clock states, let’s analyze
the stability of our detection system. Several sources of noise such as photon shot noise,
inhomogeneous illumination (optical fringes), residual stray light, dark current and so
on, can indeed deteriorate the quality of the acquired image and skew the atom number
estimation. Thanks to the low working temperature of our CCD camera (-60◦), dark
currents can safely be neglected [189]. Moreover, as background pictures are acquired
and removed from the principal images (Image and Bright) and as the atoms and the
CCD camera are well isolated from external lights, the contribution of the residual stray
light can also be neglected. Remains the inevitable photon shot noise that will be studied
at the beginning of this section, and the impact of optical fringes that actually have a
dramatic effect on the atom number stability. A numerical post-processing method
that greatly reduces the effect of this noise will be presented and its efficiency will be
challenged at the end of this part.
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3.3. Towards a shot noise limited detection system

3.3.1 Theoretical estimation of the Photon Shot Noise
This fundamental noise source stems from the probabilistic nature of the photoelectric
conversion. It can be shown that for a given incoming laser beam, a statistical probability
of the number of emitting photo-electrons gives rise to a fundamental detection noise
following the standard Poisson distribution [202] and translate into number of counts
according to

σ2(Ne−) = 〈Ne−〉 =⇒ σ2(Ncounts) = g〈Ncounts〉. (3.11)
Let’s now derive the influence of this noise on the detected atom number. From

equation (3.7) and converting the fluctuations in photoelectrons into fluctuations in
number of counts via equation (3.11), one can derive the impact of the photon shot
noise (PSN) on the detected atom number per pixel when the system is only limited by
PSN [201]:

σ2(N)PSN = gH2
(
〈N ′image〉+ 〈r〉2〈N ′bright〉+

〈N ′bright〉2σ2(r)
g

)
(3.12)

+ gL2
(

1
〈N ′image〉

+ 1
〈N ′bright〉

+ σ2(r)
g〈r〉2

)
(3.13)

+ 2gHL
(

1 + 〈r〉+
〈N ′bright〉
g〈r〉

σ2(r)
)

(3.14)

with L = A
σ0

and H = 2
gητTΓ . Here we assumed that all the random processes are

uncorrelated.
We can see that the formula takes into account the fluctuations of the renormalisation
factor defined by equation (3.8), let’s now see how significant it is. If the detection is
limited by the photon shot noise, then

δr

r
=

∑
i,j δNimage(i, j)∑

i,j < Nimage(i, j) >
−

∑
i,j δNbright(i, j)∑

i,j < Nbright(i, j) >
, (3.15)

leading to:
σ2(r) = g〈r〉2( 1∑

i,j〈Nimage(i, j)〉
+ 1∑

i,j〈Nbright(i, j)〉
). (3.16)

Experimentally 〈r〉 ≈ 1, g = 86%, each pixel has approximately 3.104 counts (I ≈ Isat)
and the renormalization area contains 105 pixels which gives σ2(r) ≈ 5.7 × 10−10. The
contribution of the renormalisation factor fluctuations to the photon shot noise is then:

σ2(N)r = H2〈Nbright〉2σ2(r) + L2σ
2(r)
〈r〉2

+ 2HL〈Nbright〉
σ2(r)
〈r〉

(3.17)

≈ 3.1× 10−4 atoms/pixel. (3.18)
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In order to check this result experimentally, we acquired 100 images with the same
parameters and averaged the calculated r. we found σ2(r) ≈ 1.2 × 10−6 leading to
σ2(N)r ≈ 6 × 10−2 atoms/pixel, which is almost 200 times higher! This shows that
the experimental fluctuations of r are not dominated by the photon shot noise. We will
nonetheless identify and get rid of this additional noise source in the next part.

For the time being, let’s neglect the fluctuations of r and derive the expression of the
atom number per pixel fluctuations due to photon shot noise:

σ(N)2
PSN = gH2(〈N ′image〉+ r2〈N ′bright〉) + gL2( 1

〈N ′image〉
+ 1
〈N ′bright〉

) + 2gHL(1 + r)

(3.19)
By misuse of language, in the following PSN will refer to equation (3.19).
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Figure 3.6: Experimental estimation of the photon shot noise. Histogram of the
fictitious atom number per pixel over an area of 75500 pixels at I = Isat, and without
any visible optical fringes. The red curve is not an adjustment but directly the expected
photon shot noise derived from equation (3.19).

One way to experimentally estimate this noise is to acquire many shots without
"real" atoms (the dispenser is off) and derive the statistics of the calculated fictitious
atom numbers. Even though we do not trap atoms, because of the PSN, the system still
measures something. This is because the number of photons will not be exactly the same
for the Image and Bright frames used to derive the fictitious atom number. Figure 3.6
shows the histogram of the calculated atom number per pixel which is in good agreement
with the theoretical prediction (3.19).
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3.3.2 Numerical fringe reconstruction
The second most important noise source is due to diffraction fringes created by any
object in the beam path between the out-coupler of the fiber and the CCD camera.
As we normalize each image by its corresponding Bright frame, this spatial modulation
should disappear at first order. Nonetheless, any slight modification of the fringe pattern
in between these two images will create artificial differences in the Bright and Image
frames and skew our populations estimation. The first things that come to mind to get
rid of this effect are isolating the camera and optical mounts from any vibrations and
minimizing the time in between the two images. However as depicted on figure 3.7 (a),
despite these efforts the final images are still affected by moving fringes.

(a) (b)

Figure 3.7: Typical image degraded by moving fringes before and after correc-
tion. Single shot atom number per pixel image without (a) and with (b) the numerical
fringes reconstruction. The red rectangle (125 × 103 pixels) corresponds to the renor-
malisation area in which the fringe pattern is reconstructed and the two white ones
correspond to the analysis areas (900 pixels) at the atoms position.

Another solution consists in removing those fringes numerically. The idea of this
bright frame reconstruction algorithm [203] is to reconstruct the fringe pattern from a
set of raw Bright frames previously stored. Each of these raw Bright frames is weighted
and their contributions are summed in order to retrieve the experimental Image frame’s
background as accurately as possible. At the end of the process, the Bright frames basis
is updated replacing the oldest frame by the new one.

More precisely, as it is illustrated on figure 3.8, the fringes will be reconstructed
inside the previous renormalisation area which should now contain the analysis areas at
the positions of the atoms. These analysis areas will be masked and the fringes will be
reconstructed around it. This means the fringes present inside these zones will not be
taken into account by the algorithm and therefore this process lies on the fact that there
is no small unexpected pattern around the atoms. Then the reconstructed Bright frames
will be used in the atom number derivation (3.7).
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(a) (b)

Figure 3.8: Principle of the numerical fringe reconstruction algorithm. (a) The
actual Image frame without atoms is reconstructed using a linear combination of Bright
frames previously stored. This reconstructed frame is then used as the current Bright
frame to derive the atom number using equation (3.7). (b) The old Bright frame is
subsequently stored inside the basis in place of the oldest one in order to keep the basis
updated. Adapted from [189].

Note that another advantage of using the bright frame reconstruction algorithm is
that it does not require the renormalisation factor (3.8) anymore. Indeed, as the Bright
frame has been directly reconstructed from the Image frames, they should present the
same background intensity. On top of that, as the reconstructed Bright picture is noise
free, even in the absence of fringes the photon shot noise can be reduced by a factor up
to
√

2.

3.3.3 Experimental study of the fringes reconstruction efficiency

If we want to perfectly reconstruct the fringe pattern, the basis would need to have
as many frames as pixels. However, we also want to treat the images dynamically
inside each experimental cycle and therefore we need to find a trade off between noise
reduction efficiency and computational time. We found an optimum of 100 pictures
which allows us to efficiently reduce the detection noise below the photon shot noise
in less than 1 s. Indeed, figure 3.9 shows the inter-pixel noise reduction induced by
the bright fringe reconstruction, which almost reaches the maximum noise reduction
of
√

2 [203]. Moreover, figure 3.10 (a) shows that the correction always reduces the
detection noise, no matter the detection intensity.

The efficiency of this method is however subject to some conditions. Indeed, as it is
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Figure 3.9: Detection noise estimation in three different cases. Histograms of
the calculated atom numbers per pixel over the same area as figure 3.6 at I = Isat
and without atoms, without fringes (clear blue), with fringes (grey) and using the fringe
reconstruction algorithm (dark blue). The standard deviation of the data without fringes
was directly derived from eq. (3.19) showing that the detection is limited by photon shot
noise in the absence of fringes. On the other hand, a Gaussian adjustment is applied in
the first and last cases giving a standard deviation of 2.1 > σPSN for the degraded data
and σPSN/

√
2 < 1.33 < σPSN after correction.

shown on figure 3.10 (b), the noise is effectively reduced only if the analysis rectangle is
small enough so that the fringes pattern inside is the same as the one around. Moreover,
we need to let "enough" space between the white and red rectangles in order to have
enough fringes to reconstruct. As stated before, the fringes inside the analysis areas are
not taken into account by the algorithm, the size of these areas thus matters. The larger
they are, the less precise the reconstruction will be.

Another way to check the fidelity of the reconstruction is to measure the resulting
renormalisation factor. Averaging over 100 shots under the same conditions as (3.18),
we find 〈δr2〉 ≈ 5.8 ± 0.1 × 10−10 which corresponds to the theoretical expectation for
photon shot noise limited detection.
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Figure 3.10: Efficiency of the fringe reconstruction algorithm versus intensity
and analysed area. (a) Series of 200 images (103 pixels) have been acquired and
analysed for different imaging intensities, without any fringe reconstruction (blue dots)
and applying the fringe reconstruction algorithm (red dots). (b) A set of 50 images
taken at I = Isat has been treated using different analyzed area sizes with (light colors)
and without (heavy colors) the reconstruction algorithm. On both graphs, the black line
corresponds to the theoretical photon shot noise calculated from (3.19) and the green
line corresponds to the maximum noise reduction of

√
2 triggered by the numerical fringe

reconstruction as explained in the text.

3.4 Implementation of the Adiabatic Rapid Passage

This second double state detection scheme was initially investigated on TACC in order
to minimize state-dependent detection efficiency due to the repumping step and reduce
technical noise arising from frequency fluctuations of the imaging laser between the
detection of the two states. This detection method allows the simultaneous detection of
the two clock states with only one detection pulse, which should reduce the noise due to
laser frequency and power fluctuations during the detection. This method, very similar
to the one described in [82], has already been investigated on our set-up by former Ph.D.
students [113, 189], but the available microwave power was limiting the efficiency of the
transfer which could not reach 100 %. Its brief description, experimental implementation
including the addition of a high power amplifier, and calibration are presented in this
section.

3.4.1 Limitations of the standard double detection
The standard double detection scheme whose principle is depicted on figure 3.2, has
several drawbacks. First of all, as the two states are detected with different light pulses,

64



3.4. Implementation of the Adiabatic Rapid Passage

the measured transition probability is sensitive to power and frequency fluctuations of
the detection laser. This effect will be highlighted later on figure 3.15. Second of all,
as it has already been pointed out in [113], this detection method can present a lower
detection efficiency for state |1〉. Indeed, in average one atom needs to scatter several
rempumping photons before reaching the imaging transition and as the repumping beam
is sent together with the detection beam, no detection photon is scattered by this atom
during the repumping process. Because the incoming light power is reduced at the center
of the cloud, the denser the atomic ensemble, the more dramatic this effect. Such state-
dependent detection efficiency is illustrated on figure 3.11 (a) in the framework of Rabi
oscillations. Another yet minor drawback is the need to push away the atoms detected
with the first detection pulse so that they are not counted twice. Besides, from a more
technical point of view, it is worth recalling that this methods requires a camera with
frame transfer, that would no longer be necessary using the ARP and the numerical
fringe reconstruction algorithm.
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Figure 3.11: Comparison of the two detection schemes in term of state detec-
tivity. Rabi oscillations between the two clock states |1〉 (black) and |2〉 (red) detected
with the two presented detection methods. In the case of the SDD (a), the oscillation
of the total atom number (blue) testifies of a state-dependent detection efficiency. The
sinusoidal fits give a detection efficiency of |1〉 lower than the one of |2〉 by a factor 0.89.
On the other hand, for the ARP (b) the total atom number (blue) remains constant and
the fits give the same detection efficiency for the two states.
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Chapter 3. Detection system

3.4.2 Principle
As depicted on figure 3.12, the idea is to first transfer all the atoms initially in |1〉 into
a non-trapping state in F = 2, namely |2, 0〉. Then the transferred cloud starts to fall
under the action gravity during approximately 1 ms. Next the atoms initially in |2〉 are
released from the trap by turning off the trapping fields and start to fall as well. Finally
the imaging light is sent to detect both states simultaneously.

|1,-1>
|2, 1>

(a) (b) (c) (d) (e)

|2, 0>

Microwave pulse

Detection pulse

Figure 3.12: Schematic of the ARP technique. (a) Atoms in clock states |1〉 (blue)
and |2〉 (green). (b) A 1.5 ms microwave pulse transfers all the atoms from |1〉 to
|F = 2,mF = 0〉 (purple). (c) The atoms initially in |1〉 fall under the action gravity
during 1 ms. (d) The trapping fields are turned off and the atoms in |2〉 begin to fall as
well. (e) After some time of flight, the two states are imaged simultaneously with the
same detection pulse.

Because of the microwave field inhomogeneity (cf sections 2.4 and 5.4.3 and [74]) and
the high dependency of this transition on the magnetic field, reaching a 100% transfer
efficiency is not trivial. A powerful solution consist in implementing an adiabatic rapid
passage (ARP) technique [204,205]. The idea is to slowly sweep the MW frequency across
resonance in order to keep the atoms in the same dressed state which will adiabatically
evolve from |1〉 to |2, 0〉. The adiabaticity is ensured by the condition

dδ

dt
<< Ω2, (3.20)

where Ω and δ denote the corresponding Rabi frequency and the detuning.
Another difficulty is that the transfer has to be fast and adiabatic at the same time.

The transfer velocity constraint has two origins: first, as the transferred atoms are not
trapped, they will start to fall as soon as they reach |2, 0〉. Therefore, if the transfer is
too slow, the cloud will be elongated or even fragmented. Second, as we want to study
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and control the evolution of the spin distribution, we want to make the transfer on a
shorter time-scale than the spin dynamics (10-100 ms). This timing constraint combined
with condition (3.20) imply a strong limit on the minimum required Rabi frequency.

On the other hand, this double state detection method bears the advantage of using
only one imaging pulse and therefore the resulting measured transition probability is
insensitive to frequency and power fluctuations of the imaging light. Moreover if the
ARP is well implemented, meaning that state |1〉 is perfectly transferred into |2, 0〉, the
two states are detected with the same maximum efficiency. Let’s note that because the
atoms are in |2, 0〉, they still need to be pumped to |2, 2〉 by the first detection photons
in order to be detected.

3.4.3 Experimental realization
As the transition |1,−1〉 → |2, 0〉 does not have the same magnetic moment, it is very
sensitive to magnetic field fluctuations. A frequency ramp is thus required in order
to have a 100% efficiency. Instead of directly ramping the MW frequency, we ramp
the Zeeman magnetic field (bias field along the x-axis) which is easier to implement
experimentally. The adiabaticity is ensured by a Blackman pulse shape for the microwave
power and a half-Blackman ramp for Bx (figure 3.13), which also minimizes off-resonance
excitations [206].
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Figure 3.13: Blackman shapes used for the microwave pulse and the Zeeman
field ramp. Temporal profiles of the microwave power after amplification (+20.4 dB)
and bottom magnetic field sweep used for achieving adiabatic rapid passage. The time
steps visible on the amplitude curve are due to the 50 µs timing resolution of the exper-
iment control.

The strong microwave field is generated by our second homebuilt microwave chain
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(the first one is used to generate the clock microwave photon). A 40 dB microwave
amplifier (GaAs FET Linear Power Amplifier KUPA 7000A) is then used to amplify the
signal in order to get a sufficiently high Rabi frequency. It is subsequently combined with
the MW interrogation signal and sent to the on-chip coplanar waveguide. The Blackman
shapes, represented on figure 3.13 have the following expressions, where τ is the pulse
duration:

VchainA = Vmin + (Vmax − Vmin)[21
50 −

1
2cos(2π

t

τ
) + 2

25cos(4π
t

τ
))] (3.21)

Bx = Bcenter + Bspan

2 −Bspan[ t
τ
− 25

42π sin(2π t
τ

) + 1
21π sin(4π t

τ
))] (3.22)

With Vmin = 0.4V, Vmax = 0.82V,Bcenter = 3.055G,Bspan = 0.1G and τ = 1.5ms. The
voltage numbers are sent to a voltage-controlled attenuator located at the output of the
chain.

3.4.4 Efficiency of the ARP
To quickly test this imaging technique, all the atoms start in |1,−1〉 and the strong MW
pulse transfers then into |2, 0〉. Then both the detection and repumper beams are sent
to detect them as if there were no ARP. This way the atoms transferred in |2, 0〉 and the
remaining ones in |1,−1〉 can be spatially discriminated. For 6000 atoms, a transfer of
99.45%± 0.94% can be achieved, whose uncertainty is related to the detection noise.

For completeness, we took 50 images of the two sates (after a resonant π
2 -pulse) using

standard double state detection, and 50 images of only state |1〉 (without interrogation
pulse) with the ARP. Then the two sets of 50 images are averaged and the first one
(two clouds) is fitted with a parabolic function in order to get the average position
and dimensions of the clouds. The second set of averaged images is subsequently fitted
with the same parabolic function but keeping the dimensions, positions and background
fixed1, only the amplitude is kept as a free parameter. As it appears clearly on figure
3.14, the fitted empty area gives an amplitude at the center of the cloud of −0.03± 0.15
atom/pixel, which is consistent with 0 and confirms that the transfer is perfect within
the detection noise. We check that the transfer has the same efficiency for our maximum
atom number (NBEC ≈ 15× 103).

3.5 Calibration using the standard quantum limit
In order to complete the characterization of our detection system, we will now check
the accuracy of our atom number estimation by comparing the measured atomic noise

1As the fit tries to minimize the difference between the sum of all the pixel of the fitting function
and the actual image, the program tends to increase the background to compensate the low amplitude.
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State 1 State 2 State 1 State 2

State 1 fit State 2 fit State 1 fit State 2 fit

(a) (b)

Figure 3.14: Characterization on the ARP efficiency. (a) 4000 atoms are prepared
in a coherent superposition and imaged with the standard double state detection method
50 times. The 50 images are averaged (upper images), and the averaged clouds are fitted
with a parabola (lower images). (b) 4000 atoms are prepared in |1〉 and imaged with
the ARP method + repumper 50 times. The "state 1" images correspond to the atoms
detected with the ARP and the "state 2" images correspond to the remaining one detected
after being re-pumped.

of a coherent superposition with the quantum projection noise. Being fundamental,
the standard quantum limit appears like a trustful quantity to calibrate the detection
system [60, 61]. Others absolute atom number calibration techniques can also be found
in [83].

3.5.1 Experimental investigation of the atomic noise

In order to evaluate the performances of our system in terms of atomic noise and check
the calibration of our detection, we used the following procedure. We prepare the atoms
in a coherent superposition by applying a resonant π/2 pulse and detect the populations
in the two states N1 and N2 directly after the pulse. Then we compute the transition
probability P2 and the population difference Sz:

P2 = N2

N1 +N2
and Sz = N2 −N1

2 . (3.23)

These two quantities are of particular interest because they offer two different repre-
sentations of the same physical feature: the atomic noise of a coherent superposition. The
standard statistical tool to study the transition probability fluctuations is the standard
deviation,
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σ(P2) =

√√√√σ2
det(N1, N2)

N
2 +

σ2
qpn

N
+ σ2

tech,P2 , (3.24)

while the variance is preferred to study the population difference fluctuations because it
scales quadratically with the total atom number N = N1 +N2,

σ2(Sz) = σ2
det(N1, N2) + σ2

qpnN + σ2
tech,SzN

2
. (3.25)

In equations (3.24) and (3.25), the first term represents the impact of the single state
detection noises σdet,i on P2 or Sz (with i = 1 and 2 for states |1〉 and |2〉) and it can be
easily shown that

σ2
det(N1, N2) =

N1
2
σ2
det,2 +N2

2
σ2
det,1

N
2 . (3.26)

In the case of an equal superposition and if the two analysis areas are roughly the
same (same number of pixels and same incoming intensity), then σ2

det(N1, N2) ≈ σ2
det

2 .
The second term is the quantum projection noise which has already been defined in
section 1.5.1. In the case of a coherent spin state and after a π

2 -pulse, we should have
σqpn = 0.5. The last term represents technical noise due to preparation noise like Rabi
frequency fluctuations or detection efficiency fluctuations between the two states because
of imaging laser power and frequency instabilities [189]. Note that the later is suppressed
with the ARP imaging technique.

3.5.2 Comparison between the different detection techniques

In this section, the two detection methods presented above are compared using the
measured atomic noise of a coherent superposition described by equation (3.24). In
order to emphasize the difference between the two techniques, the frequency noise of the
detection laser has been voluntarily degraded. For this purpose, thermal atoms (≈ 80
nK) are first prepared in a coherent superposition with a 70 ms π/2 pulse. The two
states are then detected using either the standard double detection or the adiabatic
rapid passage after a 10 ms time of flight. The atom number is controlled with the MOT
loading time.

As depicted on figure 3.15 the technical noise of the SDD method is significantly
degraded by the frequency noise of the detection laser while the ARP is unaffected.
Moreover, the difference in detection noise is explained by the different "waiting" time
between detection of the two states. More specifically, the time required to push the
detected atoms makes the time of flight slightly higher for state |1〉, and thus the cloud
bigger in the case of the standard double detection. As the number of integrated pixels
is higher, the detection noise increases.
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σ
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2
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Sum of all contributions

DD method with BFR and I = Isat

σdet = 77 atoms; σtech = 2.5 10-3

ARP method with BFR and I = Isat
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Figure 3.15: Comparison between SDD and ARP. The standard deviation of the
transition probability P2 is plotted as a function of the total detected atom number using
the double detection method (black points) or the adiabatic rapid passage (blue points).
Each point is an average of 300 shots. The black and blue lines corresponds to a fit using
equation (3.24) where σqpn is fixed to 0.5 and σdet and σtech are taken as free parameters.
The red line represents the quantum projection noise for a 50% transition probability.
The contribution of the detection noise for the two detection methods is indicated with
the dashed lines.

3.5.3 Optimum solution to investigate squeezing

Concerning the squeezing measurement, the good calibration of the atom number is
primordial. For this purpose, we will use the ARP imaging technique with the bright
frame reconstruction algorithm described in section 3.3.2.

Figure 3.16 shows the evolution of the atomic noise of a coherent superposition probed
via the transition probability (a) and the population difference (b) as a function of the
detected total atom number. The evolution of σ(P2) shows the contribution of the
detection noise (blue line) with respect to the standard quantum limit (red line). More
precisely, it indicates that our detection system is dominated by shot noise from 3000
atoms. Besides, the evolution of σ(Sz)2 is used to calibrate the atom number. According
to equation (3.25), this noise should scale linearly with the measured atom number with
a rising slope of 0.25. The fit giving a negligible quadratic part and a slope of 0.248 ±
0.008 testifies of the good calibration of our detection system. On the other hand, the
detection noise of approximately 33 atoms is, as expected, a bit below photon shot noise:
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Figure 3.16: Atomic noise on P2 and Sz versus atom number. (a) Noise on P2 as a
function of the total atom number. The black stars are experimental data, the black line
is a fit with equation (3.24), the blue line represents the detection noise and the red line
represents the quantum projection noise. (b) Variance of the population difference Sz
as a function of the total atom number. The red dashed line represents a linear fit which
yields to a slope of 0.248±0.008 and a detection noise of 32.4 ± 1.4 atoms, whereas the
blue dashed line represents a quadratic fit with a linear part of 0.23±0.03 and a quadratic
part of (1.3±2.7)×10−6.

σPSN√
2 < σdet < σPSN , with σPSN = 39 atoms for a integrated area containing 380 pixels.

All the fitted parameters are regrouped in table 3.2.

Fitted quantity σdet σqpn σtech
P2 (eq. (3.24)) 32.7 ± 1 0.495 ± 0.07 (0.6 ± 1.2) .10−3

Sz (eq. (3.25)) 33.2 ± 2 0.48 ± 0.03 (1.1 ± 2) .10−3

Sz (linear) 32.3 ± 1 0.498 ± 0.008 -

Table 3.2: Table regrouping the the fits on P2 and Sz for the three free parameters σdet,
σqpn and σtechn.
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

First observed in 1998 [80], the phase evolution of a two-component Bose-Einstein con-
densates has been experimentally investigated several times since then [81,82,155].

As already stated before, we would like to get use of the spontaneous spatial dynamics
to investigate the generation of spin squeezing arising from collisions in a Bose-Einstein
condensate. Prior to the study of the spin noise distribution, a good understanding of
the separation and its impact on the coherence of the system is necessary.

This chapter is hence dedicated to the experimental study of an interacting bimodal
BEC. Keeping in mind the quantum metrological context in which this experiment has
been designed, the coherence properties as well as the spatial dynamics of such a system
are of particular interest here. Firstly, a theoretical model is introduced to explain the
experimental data and provide some intuitive hints about the involved physical phenom-
ena. Secondly, a direct evidence of the spontaneous spatial dynamics is presented. A
Ramsey interferometric scheme is also introduced to study the coherence of the inter-
acting system. Thirdly, three different parameters (sensitivity function, contrast and
relative frequency) extracted from the interferometric measurement are analyzed. Each
of these three parameters provides valuable information on the atomic ensemble (coher-
ence, mean-field dephasing, spatial dynamics). Fourthly, different parameters such as
trapping frequencies or atom numbers are investigated in order to optimize the state-
dependent spatial dynamics in terms of contrast and time scale.

4.1 Theoretical considerations
The complete theoretical study of a two-component Bose-Einstein condensate in a har-
monic trap is not trivial and many recent publications are dedicated to this topic
[166, 171, 174, 175, 207, 208], with a particular focus on the impact of atom losses on
the coherence of the system in [173].

In this section, we introduce a numerical model initiated in [113], that we use to
reproduce the experimental data. It consists in solving the coupled Gross-Pitaevskii
equations in three dimensions and in the presence of losses, and it is very similar to the
ones developed in [83, 168, 209]. Some predictions concerning the spatial dynamics and
its impact on the atomic coherence are then inferred using our experimental conditions.

4.1.1 Numerical model
As no full analytical treatment of the interacting bimodal BEC in a harmonic trap
is available, a numerical simulation was developed to model the spatial and temporal
evolution of the two modes wave-functions, and its working principle is the following. To
the set of coupled Gross-Pitaevkii equations (1.74) developed in section 1.4.4, we add the
contribution of atomic losses and the coupling to an interrogation field of Rabi frequency
Ω and zero detuning, leading to [209]
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i~
∂ψ1(r, t)

∂t
=
[
− ~2

2m∇
2 + U1(r, t) + g11|ψ1(r, t)|2 + g12|ψ2(r, t)|2 − i~K1(r, t)

]
ψ1(r, t)

+ ~Ω
2 ψ2(r, t)

i~
∂ψ2(r, t)

∂t
=
[
− ~2

2m∇
2 + U2(r, t) + g22|ψ2(r, t)|2 + g12|ψ1(r, t)|2 − i~K2(r, t)

]
ψ2(r, t)

+ ~Ω
2 ψ1(r, t),

(4.1)

where the interaction strength between states |i〉 and |j〉 reads gij = 4π~2

m
aij. We also

added the loss terms K1(r, t) = γbck+ 1
2γ12|ψ2|2 and K2(r, t) = γbck+ 1

2γ12|ψ1|2 + 1
2γ22|ψ2|2

already defined in section 1.2.3 accounting for atom loss.
For convenience, let’s rewrite the system in a more compact form

i~
d

dt

(
ψ1(r, t)
ψ2(r, t)

)
=
(
Hkin +H1

~Ω
2

~Ω
2 Hkin +H2

)(
ψ1(r, t)
ψ2(r, t)

)
, (4.2)

where

Hkin = − ~2

2m∇
2

Hi = Ui(r, t) + gii|ψi(r, t)|2 + gij|ψj(r, t)|2 − i~Ki(r, t)
, (4.3)

and j = 2 if i = 1 and conversely.
The numerical resolution of such set of coupled equations is done in two steps. First
the ground state of the system is found,without any coupling between internal states
(Ω = 0), using an imaginary time propagation (or direct relaxation) method [210, 211].
It simply consists in redefining the time as imaginary : t → -iτ , and derive the time
evolution of the wave-functions by applying the propagator

ψ(r, t+ dt) = e−iĤdtψ(r, t). (4.4)

To illustrate the method, let’s consider a linear Hamiltonian Ĥ. By expanding the wave
function in the basis of the eingenstates of the Hamiltonian ψ(r, t) = ∑

ck|φk〉 with
Ĥ|φk〉 = Ek|φk〉, equation (4.4) becomes ψ(r, t+dt) = ∑

cke
−Ekdτ |φk〉. The contribution

of the eigenstates thus decreases exponentially with their energy meaning that the sum
converges towards the least energy state, namely the ground state.
Following this, concerning the "mean field + trapping potential" part of the Hamiltonian,
the propagator (4.4) becomes(

ψ1(r, t+ dt)
ψ2(r, t+ dt)

)
MF

=
(
e−iH1dt 0

0 e−iH2dt

)
︸ ︷︷ ︸

L(dt)

(
ψ1(r, t)
ψ2(r, t)

)
. (4.5)
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The contribution of the kinetic energy term Hkin is solved in momentum space using a
discrete Fourier transform [212]. In that space, the propagation of the kinetic energy is
simply given by (

ψ1(r, t+ dt)
ψ2(r, t+ dt)

)
Kin

=
(
e−iH̃kindt 0

0 e−iH̃kindt

)
︸ ︷︷ ︸

K(dt)

(
ψ1(r, t)
ψ2(r, t)

)
, (4.6)

where
H̃kin = ~2

2m‖k‖
2. (4.7)

Indeed, it can be shown that FFT (Hkinψ(r, t)) = ~2

2m‖k‖
2FFT (ψ(r, t)) , where ‖k‖2 =

k2
x + k2

y + k2
z is the norm of the momentum k and FFT represents the fast Fourier

transform algorithm [209,213]. For each imaginary time-step, the global propagation of
the wave-functions is then given by (split-step method)(

ψ1(r, t+ dt)
ψ2(r, t+ dt)

)
GS

= L
(
dt

2

)
.FFT−1.K (dt) .FFT.L

(
dt

2

)
.

(
ψ1(r, t)
ψ2(r, t)

)
, (4.8)

where FFT.H.U ≡ FFT (H.U) and idem for FFT−1.
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Figure 4.1: BEC ground states. Longitudinal (a) and radial (b) ground state profiles
of the one-component (black line) and two-component (blue and red lines) BEC. The
total atom number is 12× 103.

As the global evolution is not unitary, the wave-functions have to be normalized at
each time-step. Using this method, the ground-states of the one-component and two-
component BEC can be obtained, as illustrates figure 4.1. Note that, this model was
also used to derive the ground state of a single component BEC on figure 1.13 in section
1.4.3, to check the validity of the atomic density estimation in the cross-over regime.
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Second, once the ground state has been found, its time evolution is derived using the
same propagators (4.5) and (4.6) but with a real time (t ∈ R). The evolution of the
internal states is done separately through the propagator [214](

ψ1(r, t+ dt)
ψ2(r, t+ dt)

)
Int

=
(

cos(Ω
2 dt) −isin(Ω

2 dt)
−isin(Ω

2 dt) cos(Ω
2 dt)

)
︸ ︷︷ ︸

I(dt)

(
ψ1(r, t)
ψ2(r, t)

)
. (4.9)

The total propagation of the wave-function during a time-step dt is finally given by(
ψ1(r, t+ dt)
ψ2(r, t+ dt)

)
=I

(
dt

2

)
.L
(
dt

2

)
.FFT−1.K (dt) .FFT.L

(
dt

2

)
.I
(
dt

2

)
.

(
ψ1(r, t)
ψ2(r, t)

)
(4.10)

More precisely, the resolution is performed in three dimensions and the trapping
potentials are harmonic ({ωx, ωy, ωz} = 2π × {2.9, 92, 74} Hz) and identical for the two
states. Moreover, the loss terms and the s-wave scattering lengths are taken from [124].

4.1.2 Theoretical predictions
Before starting the experiment, let’s have a look at some theoretical predictions using
the previously described numerical model with our cigare-shaped trap. On figure 4.1 is
displayed the ground state of a single-component and two-component BEC. Because of
elastic interactions, the ground state of the dual-component BEC is deformed compared
to the one-component situation. Namely, state |1〉 is localized toward the borders of
the trap resulting in the double peaked distribution, while state |2〉 gets more confined
at the center. The shape of the radial component is however barely affected, only the
relative amplitudes change. This shows that the dynamics is mainly one dimensional,
which is consistent with our trapping geometry (ωx <<

√
ωyωz). In the following, we

will therefore focus on the axial dynamics.
Let’s now see how the atomic system will evolve after the application of a resonant π

2 -
pulse. Figure 4.2, shows the temporal evolution of the two longitudinal wave-functions.
The first 70 ms correspond to the application of a resonant π

2 -pulse that coherently
prepares the two-component BEC. Then state |1〉 goes toward the borders of the trap
while state |2〉 gets denser at the center. The two states briefly recombine before state
|2〉 also split and becomes localized at the periphery of the trap. This dual oscillation is
repeated in a pseudo-periodic manner.

This demixing effect can be interpreted as follows. Because the two-component’s
ground state interaction energy differs from the single component’s one, the system after
the π

2 -pulse is no longer in its least energy state. To minimize its energy, the atomic
ensemble converts its newly increased interaction energy into kinetic energy, leading to
phase separation. As the two states separate, the moving atoms experience a growing
trapping potential until it compensates their initial kinetic energy. The atoms will then
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Figure 4.2: Numerical simulation of the temporal evolution of the bimodal
BEC. The longitudinal wave-functions of the two states are represented as a function of
the trapping time. Some cross-section profiles are also displayed (|1〉 in blue and |2〉 in
red), as well as the calculated density overlap and contrast derived with eq. (4.12) and
(4.11) respectively. The first 70ms correspond to the π/2-pulse.

recombine at the center and the system will undergo a quasi-periodic oscillation. The
fact that state |2〉 also separate when state |1〉 comes back at the center of the trap is due
to atom loss. The dynamics is characterized by two quantities: the density overlap λ that
quantifies the spatial dynamics, and the contrast C that quantifies the phase coherence
of the ensemble. In the case of a standard Ramsey interferometer (π2 − TR − π

2 ), the
contrast reads [174]:

C = 2|
∫
d3rψ̂†1ψ̂2|∫

d3rψ̂†1ψ̂1 +
∫
d3rψ̂†2ψ̂2

, (4.11)

where ψ̂i is the field operator of state |i〉, whose spatial and temporal dependency have
been omitted for the sake of clarity. The relative phase and the spatial overlap of the the
two condensates is included in the crossed term. On the other hand, the density overlap
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is given by [61]

λ =
∫
d3r|ψ̂1|2|ψ̂2|2√∫

d3r|ψ̂1|4
∫
d3r|ψ̂2|4

. (4.12)

4.2 Experimental investigation of the demixing
In this part we propose another direct observation of such state-dependent dynamics in
a very elongated magnetic trap. In order to investigate this physical process in more
details, a Ramsey interferometry protocol will be implemented, giving access to the
coherence and the frequency evolution of the interacting atomic system.

4.2.1 Direct observation
A BEC of approximately 104 atoms is initially prepared in the ground state |1〉 of a cigar-
shaped trap ({ωx, ωy, ωz} = 2π×{2.9, 92, 74} Hz), and a resonant π

2 -pulse is subsequently
applied in order to place it in a coherent superposition. The two states are then imaged
after different trapping times. The spatial dynamics, displayed on figure 4.3, is only
observed in the x direction corresponding to the weakest confinement.
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Figure 4.3: Typical cloud profiles integrated along y after a 30 ms time of flight.
In this experiment a BEC of 104 atoms is produced in its ground state. A resonant π

2 -
pulse prepares them in an equal superposition of the two states and the cloud dynamics
is monitored in time. The trapping time is indicated. Adapted from [113].

First the two states are spatially superimposed. Then, because a11 > a22, state |1〉
starts to move toward the border of the trap while state |2〉 gets denser at the center. A
maximum separation of approximately 50µm after time of flight between the two peaks
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

of state |1〉 is achieved after 600 ms. Next the atoms in |1〉 go back to the center of the
trap until they superimpose again with the atoms in |2〉 after TR ≈1.1 s. The horizontal
oscillation of the center of mass is due to non perfect transfer from the evaporation trap
to the interrogation trap; even though the transferring ramp is 1 s long, the cloud is still
a bit excited which induces this oscillations along the weak axis.
One striking difference with the theoretical prediction shown on figure 4.2, is that ex-
perimentally, state |2〉 only undergoes a breathing-type oscillation but does not separate
spatially as state |1〉. The understanding of this discrepancy is still under investigation.

The limited spatial resolution of the experimental data does not allow us to perform
a precise and quantitative analysis. Nonetheless, as it can be directly linked to the wave-
function spatial overlap between the two states, the contrast of a Ramsey interferometer
becomes an appealing tool to study this demixing effect. It will moreover provide valuable
information on the evolution of the coherence and the frequency shifts of this interacting
system.
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Figure 4.4: Ramsey spectra of 12.103 condensed atoms initially. (a) Ramsey
spectrum for TR = 1.2 s, obtained by scanning the local oscillator frequency. The black
dots are experimental data, while the red line represents the a fit with eq. (4.13). (b)
Fits of Ramsey spectra obtained for different Ramsey times (colored lines).

4.2.2 Quantitative study using Ramsey interferometry
As the transition probability between two internal states depends on their spatial overlap
and drops to zero when the two states are completely separated, driving the atomic tran-
sition enables the monitoring of the overlap. The idea is therefore to use the experimental
apparatus as a Ramsey interferometer in order to get valuable insights concerning the
observed spatial dynamics (wave-function spatial overlap, coherence, frequency shift). To
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4.2. Experimental investigation of the demixing

do so, we prepare 12.103 condensed atoms in a cigar-shaped trap with trapping frequen-
cies {ωx, ωy, ωz} = 2π × {2.9, 92, 74} Hz and perform the interrogation with two 70 ms
π
2 -pulses, separated by a free evolution time TR. The Ramsey spectroscopy is performed
by scanning the RF frequency of the two-photon drive, the MW frequency being fixed
at approximately 6.8 GHz. After the interrogation, the two states are simultaneously
imaged using the adiabatic rapid passage after 23 ms time of flight and the transition
probability is derived from the measured atom numbers in the two states N1 and N2.
The fringes, displayed on figure 4.4 (a), are then obtained by plotting P2 versus the RF
frequency νRF . In order to probe the states dynamics, such spectroscopy is performed
for different free evolution times. Each of the acquired spectra is fitted with the standard
Ramsey transition probability

P2 = 1
2(1 + Ccos(2π(νRF − νR)T effR )), (4.13)

with three free parameters: the contrast of the interferometer C, the frequency of the
central fringe νR (the "R" stands for Ramsey) and an effective interrogation time between
the two interrogations pulses T effR defined in the next section. Several of these fits are
displayed on figure 4.4 (b).

Each of these three parameters is of particular interest and will be thoroughly ana-
lyzed in the next three sections. One can however directly notice the significant contrast
and Ramsey frequency dependencies with TR. Besides it is worth keeping in mind that
during the interrogation, the system undergoes state-dependent spatial dynamics and
asymmetric losses.
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Figure 4.5: Ramsey interrogation and sensitivity function. The sensitivity func-
tion derived from equation (4.15) is displayed below the time sequence of the Ramsey
interrogation to illustrate the effective interrogation time due to finite pulses duration.
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

4.3 Effective Ramsey time and sensitivity function
As illustrated on figure 4.5, because of the finite duration of the interrogation pulses,
the period during which the atoms are sensitive to phase variations is longer than the
chosen free evolution time, defined as the time between the end of the first π

2 -pulse and
the beginning of the second one.
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Figure 4.6: Effective Ramsey time measurement. Measured Ramsey time extracted
from the fit (4.13) (circles) and expected effective Ramsey time derived from equation
(4.14) (solid red line) as a function of the chosen Ramsey times TR. The line corresponds
to T effR = TR + 0.089 s. The dashed line represents a linear fit T effR = a · TR + b with
a = 1.001 ± 0.004 and b = 0.085 ± 0.007 s, in good agreement with the theoretical
prediction.

This leads to an effective Ramsey time that can be predicted using the sensitivity
function of the interferometer g(t) [215].

T effR =
∫ 2τ+TR

0
g(t)dt, (4.14)

where τ is the pulses duration, and in the case of square pulses

g(t) =


sin(π(t+τ+TR)

2τ ) for 0 < t < τ

1 for τ < t < τ + TR

sin(π(−t+2τ+TR)
2τ ) for τ + TR < t < 2τ + TR.

(4.15)
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4.4. Coherence of the Ramsey interferometer

On figure 4.6 is displayed the effective Ramsey time given by the fit (4.13) (blue
circles) and the one derived from equation (4.14) (red line). The experimental data are
in good agreement with the theoretical prediction.

This measurement will be particularly useful to compare the temporal evolution of
experimental parameters with our numerical simulation of the states dynamics.

4.4 Coherence of the Ramsey interferometer
The contrast of a clock or an interferometer reflects the spatial overlap and phase co-
herence of the atomic ensemble. Experimentally it corresponds to the visibility of the
interference fringes

C = P2,max − P2,min

P2,max + P2,min
= 2P2,max − 1, (4.16)

if the fringes are symmetric around P2 = 0.5 (∆ << ΩR). Theoretically, it is derived
with equation (4.11).

It is clear that C = 1 for two superimposed components with the same density profiles
and uniform phase. However, as we will see in this section, the spatial dynamics, atom
losses and other dephasing mechanisms modulate and deteriorate the coherence of the
system. After listing the different involved decoherence sources present in the experiment,
we will study the evolution of the interferometer’s contrast during the sequence and
compare the experimental data with the numerical model. We will also see that the
the "usual" estimation of the contrast by fitting the standard Ramsey oscillations is no
longer accurate in the presence of asymmetric losses. An experimental protocol and a
post-processing method used to circumvent this issue will be presented.

4.4.1 Decoherence sources
Before focusing on the experimental contrast evolution, let’s first have a look at the
different main decoherence sources involved in our system.

• Inhomogeneous dephasing. Position-dependent fluctuations of the atomic fre-
quency (magnetic noise) or Rabi frequency (MW inhomogeneity and fluctuation
of the atoms position), inhomogeneous collisional shifts and so on, can lead to
an inhomogeneous dephasing between the individual spins and eventually reduce
the coherence and the contrast of the system. Basically, any inhomogeneous fre-
quency shift will translate into phase noise and limit the coherence of the ensemble.
The resulting contrast loss is usually characterized by an exponential decay of the
temporal Ramsey fringes with a decoherence rate noted γd.

• Atom losses. When a trapped particle is lost, a part of the internal energy
is converted into kinetic energy which can heat the system through secondary
collisions and thus reduce the coherence of the ensemble.
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

• Two body losses. When two atoms in |2〉 collide, spin flip can occur. The
consequence is that one atom will end up in |2, 0〉 and will be lost, and the other in
|2, 2〉 which is a trapped state. If this atom remains trapped, the resulting atomic
ensemble will become a statistical mixture leading to a contrast loss. Using a Stern
and Gerlach protocol, we checked that no atom populates the |2, 2〉 state during the
Ramsey sequence, even for the highest initial atom number (1.5× 104 atoms).This
means that the kinetic energy resulting from the collision is high enough for the
atom to escape from the trap.
Besides, from what I understood, there is still an open question concerning the
impact of such losses on the coherence of the remaining atoms. One hypothesis
would be to say: as the atoms are in a coherent superposition, such collisions also
build up to an incoherent population in |1〉 arising from the projection of the initial
coherent spin state

( |1〉+|2〉√
2

)⊗N
. As we have no way of estimating or getting rid

of this incoherent population in |1〉, the contrast is hence reduced. On the other
hand, one could argue that if the atoms are independent, these losses should not
provide any information concerning the other atoms. In the same way that one
roll of dice is not affected by the previous one, and the probability to get a given
number is always 1/6. Let’s keep that uncertainty in mind for now.

• Reduced wave-function overlap. Because of the crossed term in equation
(4.11), a reduced wave-function overlap will lead to a contrast reduction. This
overlap is characterized by the density overlap λ defined in equation (4.12).

• Interaction with non-condensed atoms. If the condensate is not pure (non-
perfect evaporation or heating due to collisions) interactions between the condensed
and non-condensed parts can impact the coherence of the system. In addition, the
application of an interrogation pulse always induces the creation of quasi-particles
that do not populate the ground-state and whose effect can therefore only be
studied using a multimode model [183,216]. As we do not have such model at our
disposal, let’s just keep in mind that thermal effects can disturb the coherence and
the dynamics of the system, for later interpretation of the experimental data.

4.4.2 Contrast evolution
Experimentally, the amplitude of the oscillation of P2 displayed on figure 4.4 gives acces
to the contrast of the Ramsey interferometer through equation (4.13). The fitted contrast
is represented by the red circles on figure 4.7, as a function of the effective Ramsey time.
The first point with TR ≈ 0 s corresponds to the efficiency of a π-pulse. As the pulses
are not infinitely short compared to the spatial dynamics, the phase separation starts
during the first pulse, leading to a reduced overlap and hence a contrast reduction.
Then the contrast decreases rapidly, reflecting the inhomogeneous growth of the relative

84



4.4. Coherence of the Ramsey interferometer

Fitted contrast
Corrected contrast

orrection pulseWith c

Effective Ramsey time [s]
0 0.5 1 1.5 2 2.5 3 3.5

R
am

se
y 

co
nt

ra
st

1

0.9

0.8

0.7

0.6

0.5

0.4

Figure 4.7: Contrast of the Ramsey interferometer as a function of TR. The red
circles directly come from the fits represented on figure 4.4 and obtained with equation
(4.13). The green crosses are obtained by adding a correction pulse that places the Bloch
vector back on the equator at the end of TR (cf 4.9 (a)). The blue squares represent the
numerically corrected contrast, whose calculation is explained below and on figure 4.9
(b).

phase between the two states, until it reaches a local minimum for a Ramsey time which
coincides with the largest spatial separation observed on figure 4.3. This minimum is
therefore directly related to the spatial separation of the two states. The second part
of the oscillation corresponds to a spontaneous contrast revival due to the reduction of
the phase separation. When the two wave-functions overlap again, the contrast reaches
a maximum of 78 ± 2% for a revival time Trev = 1.2 s. Another full oscillation with a
reduced visibility is visible.

This contrast estimation, though, is not accurate in the presence of asymmetric losses.
It is actually an underestimation of the real coherence of the system and the next section
is dedicated to the study of the impact of asymmetric losses on the contrast measurement.

4.4.3 Asymmetric losses and contrast estimation
As presented in section 2.3.2, our system presents important asymmetric losses that
significantly reduce the measured contrast. As illustrated on figure 4.8, because the loss
rate of state |2〉 is higher than the one of state |1〉, during the free evolution time the
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Figure 4.8: Illustration of the contrast underestimation due to asymmetric
losses on the Bloch sphere. First, all the atoms, represented by their collective spin
in red, are prepared in |1〉 (a). Second, a first resonant π

2 -pulse puts the spins on the
equator (b). Third, the asymmetric losses make the collective spin go down below the
equator during the free evolution time (c). Finally a second π

2 -pulse is applied to close the
interferometer (d). However, because the collective spin was making an angle α1 below
the equator at the beginning of the pulse, it will not reach the north pole even though
the pulse is perfect and the ensemble is coherent. At the end of the interferometer, the
collective spin makes an angle 0 < α2 < 90◦ with the equator plane of the Bloch sphere.

collective spin slowly goes down below the equator of the Bloch sphere, such that even if
there is no dephasing, the second π

2 -pulse will not enable the collective spin to reach the
north pole of the Bloch sphere. The maximum value of P2, and therefore the contrast
C, would thus be higher if the collective spin would have been on the equator before the
second interrogation pulse. As a result, because of asymmetric losses, the contrast of the
"standard" Ramsey fringes does not give an accurate estimation of the coherence of the
system.

In order to circumvent this, we modified the standard Ramsey sequence by adding
a correction pulse at the end of the free evolution time and just before the second
interrogation pulse (cf. figure 4.9 (a)). This additional pulse has the same Rabi frequency
and frequency as the other pulses, but its duration and phase are set such that the Bloch
vector ends up on the equator of the Bloch sphere. Typically, its duration is found by
increasing the second pulse length of the standard Ramsey sequence, at resonance, until
P2 reaches a maximum. And its phase is set such that the Rabi vector of this pulse
is always orthogonal to the Bloch vector, even when the local oscillator frequency is
scanned. This is achieved by setting ϕcorr = 2πνRFTR [2π] using a phase modulation
function of a commercial MW synthesizer (Keysight-Agilent E8267D). By scanning the
RF frequency we acquire and fit Ramsey spectra for different Ramsey times and extract
the experimentally corrected contrast represented by the green crosses on figure 4.7.
This method thus enables a better measurement sensitivity (higher contrast) than the
standard Ramsey sequence in the presence of significant asymmetric losses.
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4.4. Coherence of the Ramsey interferometer

In addition, as these losses are well understood (cf figure 2.9) we should be able to
derive the angle between the collective spin vector and the equator of the Bloch sphere
and numerically compute the true contrast from a measurement without correction pulse.
The principle of this post-processing correction, illustrated on figure 4.9 (b), is the fol-
lowing.
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Figure 4.9: Scheme illustrating the corrected contrast estimation. (a) Modified
Ramsey interferometric scheme. An additional correction pulse is added after the free
evolution time in order to place the Bloch vector on the equator of the Bloch sphere.
Its phase has to be modulated the keep the Rabi vector of this pulse orthogonal to the
Bloch vector. The temporal evolution of the population difference with (plain line) and
without (dashed line) correction is indicated for ϕcorr ≈ ϕlo. (b) This scheme represents
the plane defined by the collective spin just before the second interrogation pulse and
orthogonal to the equator of the Bloch sphere.

First we need to compute the angle α1 between the equator and the Bloch vector−→
S (τ + TR) just before the second π/2-pulse, τ being the pulse duration. If we know the
averaged initial atom number and the loss rates, then we can derive P2(τ + TR) which is
directly related to α1 via equation (4.17). Then we extract P2(2τ + TR) from the top of
the central fringe of the Ramsey spectra (figure 4.4), which is linked to α2 via equation
(4.17).

α1 = sin−1
(

1/2− P2(τ + TR)
C/2

)
and α2 = sin−1

(
P2(2τ + TR)− 1/2

C/2

)
. (4.17)

The corrected transition probability, which corresponds to the transition probability
given by the second interrogation pulse if the collective spin vector would have remained
on the equator of the Bloch sphere, then reads
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P c
2 (2τ + TR) = 1

2[1 + C sin(α)], (4.18)

where α = α1 + α2 is the angle by which the second interrogation pulse has rotated the
collective spin vector (cf figure 4.9 (b)). Now if we assume that the fringes are symmetric
around P2 = 0.5 which is legitimate in the case of smal detunings (∆ << ΩR), then

C = 2P c
2 (2τ + TR)− 1 = C sin(α). (4.19)

We finally end up with one non-linear equation to solve:

sin−1
(

1− 2P2(τ + TR)
C

)
+ sin−1

(
2P2(2τ + TR)− 1

C

)
= π

2 . (4.20)

In the Bloch sphere representation considered on figure 4.9, solving this equation amounts
to finding the maximum transition probability given by a perfect π

2 -pulse (i.e. α = π
2 )

which actually corresponds to the normalized spin length |−→S | = CN/2
N/2 . This numerically

corrected contrast is represented by the blue crosses on figure 4.7 and is in perfect
agreement with the contrast measured with the correction pulse (blue squares). The
higher errorbars are due to the uncertainty of the atom number required to derive P2(τ+
TR) used in (4.20). From now on, the term "corrected contrast" will be used to refer to
the contrast that has been numerically post-corrected as described above.

4.4.4 Comparison with our numerical model
In order to verify the validity of this contrast measurement, we used the numerical model
presented in section 4.1.1 to reproduce the experimental data. In the case of the standard
Ramsey sequence, the contrast is given by equation (4.11). With the correction pulse, it
can be shown that the contrast theoretically reads

Ccorr = N1 +N2

2
√
N1N2

C

= C

2
√
P2(τ + TR)(1− P2(τ + TR))

,
(4.21)

where N1 and N2 are the atom numbers at the end of the interrogation time TR (before
the correction pulse). This actually corresponds to the Q parameter in [84].

On figure 4.10 are displayed the fitted and post-corrected experimental contrasts
and the calculated C and Ccorr derived with equation (4.11) and (4.21) respectively,
resulting from our numerical simulation. With only background losses (γbck = 0.2 s−1).
The contrast revival is as expected very good and the frequency of the oscillation is
slightly smaller than for the experimental points. With two-body and three-body losses,
the amplitude of the oscillation reduces but also its period.
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Figure 4.10: Numerical simulation of the contrast evolution. The fitted (red cir-
cles) and post-corrected (blue squares) contrasts are plotted as a function of the effective
Ramsey time. Our numerical model is used with the experimental parameters detailed at
the beginning of section 4.2.2 without losses (green dashed line) and with the many-body
losses highlighted on figure 2.9 (red and blue lines for C and Ccorr respectively). The
fast initial contrast growth corresponds to the first π

2 -pulse of 70 ms. The inset shows
the evolution of the experimental (points) and calculated, without free parameter, (line)
total atom number.

It however looks like the dynamics’ amplitude is overestimated by the calculation (larger
oscillation). More specifically the damping of the oscillation is much slower on the
calculated curve than on the experimental points. Indeed, experimental phase noise
and decoherence sources could explain why the measured contrast revivals are smaller
than the calculated ones, but it cannot explain why the measured contrast minima are
higher. Moreover, the oscillation frequency is also a bit understimated by the calculation.
By looking at the difference between the contrast Ccorr with and without many body
losses, one could think that the model underestimates the loss coefficients, or misses an
additional loss channel. The inset nonetheless shows that the total atom number decay
is well reproduced by the model.

Another possibility could be that, maybe because of the important elastic and in-
elastic collisions, a part of the remaining trapped atoms have been somehow excited
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and entered higher thermal modes that do not participate to the mean field dynamics
anymore, or at least in a different manner. It could also be possible that these higher
thermal modes act on the condensed one as a friction force that damps the spatial dynam-
ics. Theoretical works concerning the excitation of thermal modes in a spinor BEC and
their effect on its coherence properties and dynamics are currently under investigation.

4.4.5 Summary of the contrast study
To sum-up this study of the Ramsey contrast, several points are worth emphasizing:

• We observed the spatial dynamics of our spinor BEC and showed that the contrast
of a Ramsey interferometer is a good quantitative witness of the phase and spatial
dynamics.

• The detrimental effect of asymmetric losses on the contrast can be partially cir-
cumvented by applying a correction pulse before closing the interferometer. This
method is in good agreement with a numerical post-correction procedure lying on
geometrical considerations.

• The numerical simulation based on the Gross Pataevskii equations under the mean
field approximation reproduces the observed dynamics with two main differences.
The simulation predicts a splitting of state |2〉 after the first revival time, which is
not observed experimentally. And an additional damping term seems to be missing
in the model to accurately depict the measured contrast evolution.

• A better knowledge of the inelastic processes involved in a trapped spinor BEC, and
their effect on its coherence properties are necessary to understand the observed
behavior.
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4.5 Study of the Ramsey frequency under asymmet-
ric losses

Besides the contrast, the central frequency of the Ramsey fringes also provides several
valuable information concerning the atomic system. Indeed, as we will see, it gives access
to the atomic frequency that depends on the mean field interactions, the atomic densities
and the wave-function spatial overlap via the collisional shift [112]. In this section, we
will first investigate the relation between Ramsey frequency and atomic frequency and
see that the latter can be probed during the interferometric sequence. Its evolution will
then be explained by analyzing the different involved frequency shifts such as the AC
and DC Zeeman shifts and the collisional shift. Finally, we will try to understand the
effect of the state-dependent spatial dynamics on the mean field frequency shift.
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Figure 4.11: Frequency evolution as a function of the effective Ramsey time.
The Ramsey frequency νR (blue points) directly comes from the fit of the Ramsey spectra
with equation (4.13). Its behaviour is then fitted with a high order polynomial (black
line) used to derive the atomic frequency νat (red line) thanks to equation (4.23).The de-
creasing errorbars coincide with the narrowing of the Ramsey fringes when TR increases.
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4.5.1 Ramsey frequency versus atomic frequency
As displayed on figure 4.11, the Ramsey frequency νR, defined as the central frequency of
the Ramsey fringes fitted with equation (4.13), changes significantly when TR is scanned.
The full understanding of this behavior is not trivial and it will be detailed in the
following.

If the atomic frequency changes during the free evolution time, then the Ramsey
frequency does not correspond to the atomic frequency but to its average over TR. If we
assume that the pulse duration is much smaller than the other time scales of the system,
the Ramsey frequency νR reads:

νR = 1
TR

∫ TR

0
νat(t)dt. (4.22)

This equation can be inverted in order to access the atomic frequency at different TR

νat(TR) = d

dTR
(TRνR(TR)). (4.23)

As the accurate calculation of equation (4.23) requires a much higher temporal sampling
than the one used in the experiment, a 10th order polynomial fit is used to reproduce
the evolution of νR and derive νat with a sufficiently high precision. Figure 4.11 and
equation (4.23) thus enable us to follow the evolution of the atomic frequency over
the free evolution time. These two frequencies (νR and νat) are displayed on figure
4.11. Physically, the atomic frequency changes can have different origins that we will
investigate in the following.

4.5.2 AC Zeeman shift
As the two clock states are coupled by a two-photon excitation, the clock is sensitive to a
two-photon light shift. Indeed, because the two interrogation pulses dress the states, the
transition frequency during the pulses is different from the one during the free evolution
time. The detailed derivation of this shift including the coupling to all the other Zeeman
states has been performed for our experiment in [103].

In principle, if the polarization of the RF and MW fields are perfectly linear, only the
MW photon induces a light shift mainly because of the coupling with the intermediate
state |2, 0〉. However, as shown on figure 4.12 (a), Increasing the RF power does induce
a frequency shift testifying of the ellipticity of the RF field polarization with respect
to the quantization field. This ellipticity has already been highlighted in [113] and
most likely comes from the inductive coupling in the neighboring wires on the chip.
This is nonetheless not too dramatic since the RF and MW photons dress the energy
levels in opposite directions. We can thus minimize this frequency shift by adapting the
power imbalance between these two fields, conserving the two-photon Rabi frequency:
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4.5. Study of the Ramsey frequency under asymmetric losses

ΩR = ΩrfΩmw
4∆ where ∆ is the detuning between the MW photon and the intermediate

state (cf. figure 1.5). The frequency shift can be written [189]

∆νAC(TR) = ∆AC
1 + πTR

2τπ
, (4.24)

where ∆AC is the total AC Zeeman shift and τπ the duration of a π-pulse.
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Figure 4.12: Characterization of the AC Zeeman shift. Measurement performed in
the clock trap, with a thermal ensemble (no demixing) of ≈ 5× 104 atoms. (a) Relative
frequency shift induced by the RF field as a function of its power. The presence of this
frequency dependency shows that the polarization of the RF field is not perfectly linear.
The duration of the corresponding π-pulses is also indicated for a MW power of 6.5 dBm.
(b) Relative frequency shift as function of the effective Ramsey time before optimisation.
The blue points correspond to the frequency of the central fringe of Ramsey spectra and
the red line is a numerical fit using equation (4.24). The fit gives ∆AC = −1.13 ± 0.2
Hz.

There are two ways of measuring this shift. Either by measuring the Ramsey fre-
quency for different Ramsey times and use equation (4.24) to estimate ∆AC as illustrated
on figure 4.12 (b). Or by fixing the Ramsey time and measuring the frequency of the
central fringe by successively letting the MW (→ νmwR ) and RF (→ νrfR ) fields "on" during
the free evolution time, and comparing the two frequency differences with respect to the
Ramsey frequency1 (→ νR). Then the AC Zeeman shift is simply the sum of the two
shifts induced by the interrogation fields: ∆AC = (νrfR − νR) + (νmwR − νR). This shift is
measured and minimized (∆AC . 50 mHz) regularly and every time the Rabi frequency
is changed. This effect can therefore not explain the shifts observed on figure 4.11.

1with no field on during the free evolution time.
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

4.5.3 Inhomogeneous DC Zeeman shift
The second possible reason for the observed frequency shift is the inhomogeneous Zeeman
shift. Indeed, during the free evolution time, the atoms in state |1〉 go to the borders
of the trap and therefore experience a increasing frequency shift due to the growing
trapping potential

νZeeman12 = νmin + β(B(r)−Bm)2, (4.25)
with νmin = 6834678113, 59 Hz, β = 431.3596 Hz.G−2 and Bm = 3.228917 G is the so
called magic field [111, 112]. Let’s now rewrite the position-dependent magnetic field
as a function of the separation between the two states B(r) = B0 + ∆B(r), B0 being
the field at the trap bottom. The induced position-dependent frequency shift along the
longitudinal axis of the trap reads

∆νZeeman12 = 2β∆B(x)(B0 −Bm) + β∆B(x)2, (4.26)

where ∆B(x) = Bsep − Bunif = mω2
x

2µBgFmF ∆x2 and ∆x the separation between the two
states. Assuming that state |2〉 stays at the center (x = 0), the Zeeman shift due to the
spatial separation is

∆νZeeman12 = β(B0 −Bm) mω2
x

µBgFmF

∆x2 + β
m2ω4

x

µ2
Bg

2
Fm

2
F

∆x4 (4.27)

= (9.66× 10−6)
(
B0 −Bm

1G

)( ∆x
1µm

)2

+ (2.16× 10−13)
(

∆x
1µm

)4

. (4.28)

In our case, figure 4.13 (b) shows that the bottom field has to be chosen 38 mG below
the magic field in order to minimize the clock sensitivity to magnetic field fluctuations,
which is surprisingly very close to the one that minimizes the clock instability for a
thermal ensemble of atoms [196]. Besides, as the separation is smaller than 100 µm (cf.
figure 4.1), figure 4.13 (a) shows that this position-dependent shift is very small and
cannot explain the evolution of the atomic frequency. It will thus be neglected in the
following.

4.5.4 Collisional shift
The third possible origin for the observed frequency shift is the collisional shift. Indeed,
mean-field interactions shift the resonance according to [112]

νcoll = ~
m
n[α22a22 − α11a11 + (2α12a12 − α22a22 − α11a11)n1 − n2

n
], (4.29)

where n = n1 + n2, ni is the atomic density of state |i〉 and αij is the two-particle
correlation at zero separation, defined as αi,j = g

(2)
i,j (0), where [129]
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field fluctuations are greatly reduced is found 38 mG below the magic field.

g
(2)
i,j (r1, r2) =

< Ψ̂†i (r1)Ψ̂†j(r2)Ψ̂i(r2)Ψ̂j(r1) >
< Ψ̂†i (r1)Ψ̂i(r1) >< Ψ̂†j(r2)Ψ̂j(r2) >

, (4.30)

assuming that αij only depends on the distance between the colliding particles r = r1−r2.
When TR is scanned the wave-functions of the two states are distorted, which modifies
the interstate two-particle correlation at zero separation α12. In the case of overlapping
condensed atoms, αii = 1 and α12 = 1 [112, 217]. Moreover, in our case, asymmetric
losses make n and n2−n1 vary during TR and the spatial dynamics discussed previously
should make α12 oscillate below 1.

First let’s assume that there is no demixing, such that α12 = 1. As this shift depends
on the total number of atoms, we can use it to check the atom number stability during
the sequence. We thus compute νcoll in two ways. On one hand using the mean atom
number measured at each TR and our knowledge on the evolution of Sz(TR). And on the
other hand by taking the initial mean atom number measured at the first TR and using
our knowledge on the atomic density and losses to derive the temporal evolution of νcoll.
These two evolutions are displayed on figure 4.14 (a) in black dashed line and green dots
respectively.

Then we plot (solid blue line) the average of νcoll(α12 = 1) over the corresponding
Ramsey time to compare it with the experimental Ramsey frequency. The difference
between these two curves is due to the spatial separation and the modulation of α12. To
emphasize this additional shift, we plot in cyan squares νdemixing = νat − νcoll(α12 = 1)
which corresponds to the difference between the atomic frequency and the collisional
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Chapter 4. State-dependent spatial dynamics in a bimodal BEC

shift without demixing. This oscillation of νdemixing can be explained by an oscillation of
α12 via the wave-function spatial overlap. It therefore seems possible to extract α12 for
a non-perfect superposition (n2 6= n1)

α12 ≡
m

2~a12(n1 − n2)(νcoll(α12)− νcoll(α12 = 1)) + 1

= m

2~a12(n1 − n2)(νatomic − νcollshift) + 1.
(4.31)

The temporal evolution of α12 is displayed on figure 4.14 (b).
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Figure 4.14: Frequency shifts during the demixing sequence. (a) Temporal evolu-
tion of the frequency shifts during the Ramsey sequence for 1.2×103 atoms initially. The
blue circles represent νR already displayed on figure 4.4, the red diamonds νat calculated
from equation (4.23), the green dots show the expected collisional shift calculated from
equation (4.29) without demixing (α12 = 1) and the cyan squares show the difference be-
tween red and green to exhibit the frequency change originated from the state-dependent
spatial dynamics through α12. The dashed curve represents the same quantity as the
green dots but derived with the initial atom number and the measured lifetimes in order
to check the stability of the initial atom number. The blue line is the averaged of the
dashed one over the Ramsey time. (b) Temporal evolution of α12 derived with equation
(4.31). The blue line is a fit of the experimental data (black circles).
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4.6 Demixing under different experimental condi-
tions

Let’s recall at this point that the objective is to use this state-dependent spatial dynamics
in order to generate spin squeezing through the non-linear elastic interactions, enhanced
when the two modes are separated. This implies that we are looking for a large spatial
separation at half the revival time, and a high contrast revival. To minimize the contrast
deterioration due to atom loss, the dynamics also needs to be fast.
In the following, we will see how the demixing evolves when scanning the trapping
frequencies, initial atom number and the first pulse duration.

4.6.1 Influence of the trapping frequencies
Technically the main parameters controlling the dynamics are the density and the longi-
tudinal frequency [83]. Table 4.1 regroups the parameters used to generate five different
traps as well as their respective trapping frequencies and spatial positions, derived from
the magnetic field simulation used in [92]. Each of these traps has been realized experi-
mentally and optimized every time (pulses calibration and reduction of the AC Zeeman
shift). Ramsey spectra were acquired and equation (4.13) was used to extract the cor-
rected contrast ( cf. section 4.4.3).

Colour Is [A] Id [A] Bx[G] By [G] Frequencies [Hz] Position [mm]
1 0.01 3.055 6 {2.9; 92; 74} {−0.05; 0.002; 0.35}
1 0.015 3.091 6.5 {3.6; 108; 92} {−0.03; 0.002; 0.32}
1 0.02 3.128 7 {4.4; 128; 113} {−0.02; 0.001; 0.29}

1.95 0.08 3.31 13 {8.7; 128; 115} {−0.05; 0.001; 0.29}
1.95 0.01 3.01 13 {3.6; 236; 228} {−0.08; 0.001; 0.29}

Table 4.1: Trapping parameters. Stripline (Is) and dimple (Id) currents, bias fields
along x and y, and resulting trapping frequencies and trap position with respect to the
chip. The corresponding colors of figure 4.15 are also indicated. The previously used
clock trap is represented in black.

The most straightforward feature to compare them is the Ramsey contrast. On figure
4.15 is displayed the time evolution of the corrected contrast for the five traps cited above.
As expected, the tighter the longitudinal axis of the trap, the faster the dynamics but
also the smaller the spatial separation characterized by a higher contrast at half the
revival time. Furthermore, as the only significant difference between the blue and cyan
curves is the longitudinal trapping frequency, we can use them to highlight the effect of
a reduced wave-function overlap at the revival time. Indeed they correspond to the same
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fx = 2.9 Hz & n0 ≈   7.1018 atoms.m -3

fx = 3.6 Hz & n0 ≈   9.1018 atoms.m -3

fx = 4.4 Hz & n0 ≈ 12.1018 atoms.m -3

fx = 8.7 Hz & n0 ≈ 14.1018 atoms.m -3

fx = 3.6 Hz & n0 ≈ 15.1018 atoms.m -3
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Figure 4.15: Time evolution of the Ramsey contrast for different trapping
geometries. For each color, Ramsey spectra are acquired, the fitted contrast is corrected
the method described in section 4.4.3 and the effective Ramsey time is explained in
section 4.3. Each curve corresponds to a trap defined in table 4.1 and labeled by its
color. The longitudinal trapping frequencies and initial densities are indicated.

atomic density and have therefore the same atomic losses. Similarly, the red and cyan
curves have the same longitudinal trapping frequency but different densities. This shows
that for this density range, the revival time is mostly determined by the longitudinal
trapping frequency while the spatial separation is controlled by both the axial trapping
frequency and the atomic density.

Unfortunately, there is no perfect configuration for which the separation is fast and
large with a high contrast revival. In order to study the influence of other parameters,
we chose the "green" trap which appears like a trade-off between good contrast revival,
large separation and short revival time.

4.6.2 Influence of the atom number
Let’s now fix the trapping frequency and study the influence of the atom number on the
spatial dynamics. As the contrast of the interferometer is directly related to the spin
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length that intervenes in the squeezing parameter ξ2, these contrast results will be used
in the squeezing section to derive the Wineland squeezing parameter (1.80).

Clock trap
First, in the clock trap (black), we reiterated the experimental protocol described

in section 4.2.2 with different initial atom numbers. The different estimated contrasts
measured at TR/2 and TR are regrouped on figure 4.16. This measurement enables an-
other verification of the contrast estimation. Indeed, the numerically corrected contrast
is always in agreement with the one obtained with the correction pulse. Moreover, the
higher the initial atom number, the bigger the discrepancy between the raw and corrected
contrasts because of the increasing asymmetric losses.

An additional2 fixed decay rate γd = 0.05 s−1 has been added to match the first
points and guide the eye. This decoherence rate finds its justification in the presence
of experimental phase noise that has not been considered in the simulation. As we
will see in section 5.4, this noise mostly comes from fluctuations of density-dependent
frequency shift (collisional) because of atom number instabilities. It is quite clear that
the measured contrast decreases faster than the calculated one with γd and this shows
that the decoherence rate increases with the atom number, which is compatible with the
observed phase noise.

On the other hand, the faster decrease of the contrast probed at half the revival time
(at maximal separation), shows that increasing the initial density enhance the spatial
separation. Indeed intuitively, increasing the initial populations should increase the
initial interaction energy and therefore the momentum "kick" transferred to the atoms
after the first π

2 -pulse leading to a larger and faster spatial separation. This is true up to
a certain atom number, around 8000 atoms, from which the separation increases more
slowly and the contrast revival decreases more rapidly. This could mean that there is
an atomic density from which the inelastic collisions become more significant than the
elastic ones, destroying the phase coherence of the BEC.

Green trap
Now for completeness, and to deepen our understanding of this interacting system,

complete Ramsey spectra were acquired in the "green" trap ({4.4; 128; 113} Hz) for dif-
ferent initial atom numbers. On figure 4.17 are displayed the fitted and corrected con-
trasts as well as the frequency, obtained thanks to the previously detailed methods, as
a function of the effective Ramsey time. Again, when the initial density increases, the
first contrast minimum decreases more than its first revival, testifying of an increasing
spatial separation. A similar effect is visible on the frequency curves. Unfortunately,
higher initial densities also means higher two-body loss rates which are responsible for
the reduced contrast revival.

2On top of the decoherence induced by atom losses.
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Figure 4.16: Evolution of different estimations of the Ramsey contrast with
atom number. In the clock trap, several contrast evolution curves similar to figure 4.7
have been acquired for different initial atom numbers. Different contrasts are plotted as a
function of the detected atom number at the revival time: the "raw" fitted contrast (black
squares), the fitted contrast obtained with a correction pulse (red circles), the contrast
that has been post corrected with the protocol described in section 4.4.3 (blue diamonds).
The solid lines correspond to the result of the numerical resolution of the coupled Gross
Pitaevskii-equations without additional decoherence rate (green) and with γd = 0.05s−1

(red). The contrast at half the revival time is also indicated (violet) to emphasize the
increase of the spatial separation with the initial atom number.

One noticeable feature is that the calculated curves reproduce well the contrast evo-
lution for low atom numbers. We used the first evolution with 4000 atoms to adjust
the decoherence rate to γd = 0.1 s−1. Note that it is higher than the one used in the
clock trap, and this confirms that decoherence is related to the atomic density. When
the initial atom number increases, the calculated frequency of the oscillation decreases
while the experimental one remains constant. The damping of the oscillation is also
much more pronounced experimentally. This means that the damping and the frequency
of the oscillation are increased by something that depends on the initial density and is
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not taken into account in our Gross Pitaevskii simulation. Again, it could be thermal
excitations induced by the inelastic collisions that increase with the density.
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Figure 4.17: Contrast and frequency time evolution in the "green" trap for
different initial atom numbers. Ramsey spectra for different Ramsey times have
been acquired for several indicated initial atom numbers loaded in the "green" trap. The
contrast (left) and frequency (right) evolutions are plotted for the indicated initial atom
numbers. The legend is the same as on figure 4.14.
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4.6.3 Influence of the pulse duration
The effect of the Rabi frequency of the π

2 -pulses has also been studied in order to check
if it has an impact on the contrast estimation. Indeed, so far we used rather long pulses
(70 ms) implying that the dynamics starts during the first pulse and goes on during the
second one. This could thus limit the resolution of the contrast estimation. However,
reducing the pulses duration down to 6 ms did not significantly modified the contrast
curves. The only effect was an increase of the noise on the measured transition probability
that will be explained in section 5.4.3.

We also investigated the effect of the population ratio after the first pulse by varying
the first pulse duration while keeping the Rabi frequency constant. The idea was the
following: by imbalancing the populations at the beginning of the sequence, we could for
instance get equal populations at the end of the free evolution time and get an higher
contrast. Yet the maximum separation and contrast revival was found to be for equal
initial populations.

4.7 Conclusion
In this chapter we studied the state-dependent spatial dynamics occurring in a spinor
BEC. We used the contrast on a Ramsey interferometer to quantitatively study the
resulting phase evolution and quantified the impact of asymmetric losses on the contrast
estimation. The study of the Ramsey frequency highlighted the spatial dynamics through
a modification of the collisional shift. This study will be particularly useful to understand
the dynamics of the spins during the squeezing sequence in the next chapter. The study
of the influence of the trapping frequencies and atom number showed that the dynamics
can be easily controlled.

On the other hand, even though our numerical model reproduces well the experi-
mental data for a small number of atoms, there is a damping effect that increases with
the atomic density that has not been taken into account. Our best guess so far is the
interaction between the condensed phase and higher order thermal modes, but this needs
to be further investigated.

For the purpose of using this spatial dynamics to generate spin squeezing, we want
a large and fast separation with a high contrast revival. Unfortunately, because of two-
body losses, such perfect situation does not seem easy to achieve. We will therefore focus
on the clock trap for which the ratio between contrast revival and separation looks fine.
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Chapter 5. Spin squeezing in a dual component BEC

In this chapter, we present our results concerning the generation of spin squeezing
arising from the spontaneous state-dependent spatial dynamics studied in the previous

chapter. The principle of this method is recalled and recent theoretical studies are used to
estimate the achievable amount of squeezing that we can hope for. Then the experimental
sequence, implemented to probe the spin noise distribution by performing the state
tomography, is presented. We will found that because of the significant asymmetric
losses present in our system, a counter-intuitive protocol has to be applied in order to
efficiently probe the spin noise distribution. The state tomography measurement will
be subsequently presented and an atom number correlation will be studied and used to
post-correct the raw data. Finally, the stability budget of the resulting atomic clock
will be drawn up in order to estimate the technical noise sources limiting our measured
amount of squeezing.

5.1 Theoretical considerations

5.1.1 Proposal
As already introduced in section 1.5.3, the spin dynamics in this system can be well
described by the "one-axis-twisting" Hamiltonian which takes the form [76]:

Ĥ/~ = δŜz + ΩŜϕ + χŜ2
z , (5.1)

where the first term describes spin rotations along the equator of the Bloch sphere at
a detuning δ between the local oscillator and the atomic resonance. The second term
describes spin rotations around an axis Sφlo = cos(φlo)Sx - sin(φlo)Sy due to the coupling
with a driving field with Rabi frequency Ω and phase φlo. The third term, due to elastic
collisional interactions in the two-mode BEC, is responsible for the shearing of the spin
noise distribution. We also showed in section 1.5.3 that the non-linear coefficient χ reads

χ = 1
2~

∫
dr
(
g11|ϕ1(r, t)|4 + g22|ϕ2(r, t)|4 − 2g12|ϕ1(r, t)|2|ϕ2(r, t)|2

)
. (5.2)

We recall that the idea is to use the spontaneous state-dependent spatial dynamics
studied in the previous chapter to reduce the crossed term in equation (5.2) and enhance
the non linear interaction eventually leading to spin squeezing through the non-linear
Hamiltonian (5.1) [78].

5.1.2 Theoretical predictions and state of the art
The resolution of this interaction-mediated spin squeezing is quite complex and will not
be tackled here. It has nonetheless already been thoroughly investigated using different
approaches (two-modes stationary, multimode, analytical) in [84, 178, 182, 183, 187, 218].
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5.1. Theoretical considerations

It results from these theoretical studies several points that are worth mentioning here.
First of all, two parameters are used to quantify the squeezing: the first one is the
squeezing parameter ξ2 [180], that takes into account the coherence of the ensemble
described by the contrast of the clock or interferometer and the noise reduction induced
by the non-linear dynamics, and the second one is the time tbest at which the squeezing
reaches its maximum.

Without decoherence the maximum achievable squeezing is not limited and increases
with the atom number: ξ2 ∝ N−2/3. While one-body losses barely affect it, two-body and
three-body losses significantly limit the maximum achievable squeezing. More precisely,
the analytic formulas derived in [178] show that for two spatially separated symmetric
condensates in states |1〉 and |2〉, and in the limit of small losses, the best squeezing for
104 atoms in our clock trap ({ωx, ωy, ωz} = 2π×{2.9, 92, 74} Hz) is ξ2(tbest) = −17.2 dB
reached at tbest = 23 ms (the loss rates have been taken from [124]). For comparison, in
an optimized trap and for N →∞, ξ2(tbest)→ −17.5 dB for tbest = 1.8 ms.

Similar results were derived in the case of two actively separated and recombined
condensates using state-dependent microwave potentials [61, 187]. In particular, using
loss rates from [81,125], 1250 atoms and a cigar-shaped trap ({ωx, ω⊥} = 2π×{115, 500}
rad.s−1), they found ξ2 ≈ −13 dB with Trev ≈ 13 ms. Experimental instabilities however
limited the measured squeezing to ξ2 = −2.5 dB initially [61] and ξ2 = −4.3 dB after
some technical improvement [13].

On the other hand, a different group studied the obtainable squeezing relying exclu-
sively on the spontaneous spatial dynamics [84], but also neglecting atom losses. Using a
multimode analysis and a spin echo-type sequence (π2−Trev−π−Trev−

π
2 ), they show that

the tighter the trap, the better and faster the dynamics and the better the squeezing. Us-
ing a spherical trap (ωr = 2π×500 rad.s−1) and 1.5×105 atoms, they derive a maximum
squeezing ξ2 ≈ −10 dB, with Trev ≈ 13 ms. They also show that using a cigar-shaped
trap increases the non-linear interaction but also increases the revival time and decreases
the overlap leading to a smaller squeezing. Namely for {ωx, ω⊥} = 2π×{100, 500} rad.s−1

they derive ξ2 ≈ −7 dB with Trev ≈ 56 ms. This shows that much denser atomic samples
are required in order to get spin squeezing from the spontaneous spatial separation of
the dual-component BEC.

Considering our much smaller trapping frequencies and achievable atom numbers,
our long revival times, and the presence of considerable atom losses, we should expect a
significantly smaller amount of squeezing. Unfortunately, Alice Sinatra performed some
simulations using our experimental parameters, which showed that the final squeezing
value is too much dependent on the s-wave scattering lengths to allow accurate predic-
tions.
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Chapter 5. Spin squeezing in a dual component BEC

5.2 Experimental implementation
In this section, we will develop a protocol to perform the tomography of the potentially
squeezed atomic state. After presenting the principle, we will emphasize the issues arising
from the presence of significant asymmetric losses. A systematic calibration protocol used
to perform the state tomography will then be implemented. Unless specified otherwise, all
the experimental data are obtained in the clock trap {ωx, ωy, ωz} = 2π×{2.9, 92, 74} Hz,
with 9000 atoms initially. The dynamics in this trap has already been studied in chapter
4. The free evolution time is set to correspond to the first revival time TR = Trev = 1.2 s,
for which the contrast reaches 90%, and the Rabi frequency is ΩR = 2π× 3.6 Hz leading
to 70 ms π

2 -pulses.

5.2.1 Experimental sequence
The experimental sequence, illustrated on figure 5.1, is very similar to a standard clock
sequence with Ramsey interrogation.

χSz
2 ±ΩθSφ

2 Ωπ/2Sy
2

Sz

Sy

|1>

|2>

S⃗

(a)

Sz

Sy

|1>

|2>

SSx

α1

θmin

⃗

(c)

Ω⃗

Sz

Sy

|1>

|2>

S⃗

(b)

Ωθ⃗

⃗

Sz

Sy

|1>

|2>

SSx

(d)

α1

Figure 5.1: Schematic of the experimental sequence. The collective spin starts on
the south pole (a). Then a first π/2 pulse of Rabi vector Ω places the condensate in
a coherent superposition (b). Next the state dependent spatial dynamics occurs during
the free evolution time TR, leading to the shearing of the spin noise distribution (→ θ)
and the asymmetric losses induce a rotation of the spins around the y axis (→ α1) (c).
Then a second pulse of variable duration, whose Rabi vector is aligned with the Bloch
vector, is applied in order to rotate the spin distribution along itself (d). The later is
subsequently probed probed by measuring the atom numbers N1 and N2 after a 23 ms
time of flight.

After preparing a BEC of N atoms in |1〉, we apply a first near resonant π/2 pulse
which prepares the atoms in a coherent superposition between the two clock states. Its
precise frequency is determined in section 5.2.3. Then the atoms evolve freely during
TR which corresponds to one demixing-remixing period. During this free evolution time,

106



5.2. Experimental implementation

the non-linear elastic interactions shear the spin noise distribution which becomes elliptic
and makes an angle θmin with respect to Sx. At the same time, asymmetric losses make
the spins rotate around Sy by an angle α1. When the two states recombine, the collective
spin therefore ends up below the equator of the Bloch sphere. A particular combination
of detuning and phase-shift has to be found in order to align the Rabi vector −→Ωθ with
the Bloch vector −→S and rotate the spin noise distribution about its mean with a second
interrogation pulse of variable duration and perform the tomography of the squeezed
state. Section 5.2.3 is dedicated to this calibration. Finally, for each rotation angle θ the
spin noise distribution is probed by detecting the two states simultaneously using the
adiabatic rapid passage detection scheme (cf. 3.4) after a 23 ms time of flight.

We use a standard Rabi flopping measurement, that consists in applying a single
resonant interrogation pulse and scanning its duration, to calibrate the rotation angle
with the pulse duration τ (cf figure 5.2 (a)) yielding

θ[◦] = 180
τπ

τ [s]. (5.3)
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Figure 5.2: Rabi oscillations and Ramsey central fringe performed on a pure BEC
of 9,000 atoms initially. (a) Rabi flopping measurement with ΩR = 2π × 3.6 rad.s−1

(τπ = 140 ms) used to calibrate the rotation angle θ. The reduced contrast is due to
the spontaneous spatial dynamics studied in the previous chapter that occurs during the
interrogation pulse. (b) Ramsey central fringe obtained by scanning the RF frequency
νRF of the standard Ramsey sequence (θ = π/2) with TR = 1.2 s. The fit in red gives
a resonant frequency νR = 1781112.221 ± 0.004 Hz and a contrast of 85 ± 2%, which
corresponds to a corrected contrast of 90± 3%.
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Chapter 5. Spin squeezing in a dual component BEC

5.2.2 Spin trajectories and asymmetric losses
In the previous chapter, we added a correction pulse in order to place the Bloch vector
back on the equator of the Bloch sphere and counteract the geometrical effect of asym-
metric losses (cf. section 4.4.3). However, this technique was implemented at the end of
my Ph.D. and we hence used a different method to perform the tomography of the state.
Instead of placing the Bloch vector on the equator, we applied a calibrated detuning
and local oscillator phase-shift in order to place the Rabi vector of the second Ramsey
pulse out of the equator plane and align it with the spin vector. In this section we will
therefore analyze the different collective spin trajectories on the Bloch sphere relative to
the asymmetric losses and the induced detunings.

To illustrate the mechanisms, let’s first start with the simplest and naive approach
to probe the spin noise distribution. The idea is to set the local oscillator frequency to
the Ramsey frequency νR measured on figure 5.2 (b) and scan the second pulse duration,
and thus the rotation angle θ, with a ±90◦ local oscillator phase-shift φlo between the
two interrogation pulses.

Figure 5.3 shows such a measurement. As the local oscillator frequency corresponds
to the Ramsey frequency, the total phase accumulated by the atoms during the Ramsey
time φ should be close to zero. This phase reads

φ = 2π
∫ τ+TR

τ
(νRF − νat(t))dt = 2π(νRF− < νat >)TR, (5.4)

where < νat > is the mean atomic frequency over TR and corresponds the Ramsey
frequency νR.

The collective spin should therefore come back along −→S x after TR. Moreover, because
of the asymmetric losses, we expect to observe an oscillation of P2 around its value before
the second pulse P2(τ+TR), symmetric for φlo = ±90◦. The experimental data, however,
shows a marked asymmetry (blue and red points respectively). This observed asymmetry
can actually be explained with a non-zero detuning between the local oscillator and the
atomic transition at the time of the second pulse (νRF − νat(τ +TR) 6= 0). Indeed, as the
Ramsey frequency is the average of the atomic frequency over the free evolution time,
and because the atomic frequency changes during TR (cf section 4.5), the local oscillator
frequency does not match the atomic frequency at the end of the free evolution time.
This places the Rabi vector around which the spins rotate, out of the equator plane1

making the rotation axis different for φlo = ±90◦. This is illustrated on the two Bloch
spheres on figure 5.3. This detuning (νRF − νat(τ + TR) 6= 0) can be deduced from the
value of the transition probability when the second pulse is a π-pulse (θ = 180◦), and
the scheme on figure 5.4 (a):

δ = −ΩR

2π tan(β) (5.5)

1According to equation (1.27).
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Figure 5.3: Evolution of P2 in a squeezing sequence. (a) The squeezing sequence
illustrated on figure 5.1 is applied to 9000 condensed atoms with νRF = νR and for
four different local-oscillator phase-shifts. The lines come from a numerical simulation
detailed in section 1.2.3 with a detuning with respect to the atomic frequency after TR,
δ = 0.4 Hz given by eq. (5.5). The non symmetric oscillation of P2 for φlo = ±90◦ is
striking. The data for φlo = 0◦ and φlo = 180◦ are shown as references, and the black
line indicates P2(τ + TR). Spin trajectories during the sequence for φlo = +90◦ (b) and
φlo = −90◦ (c) and θ = 360◦ are represented (blue line). The Rabi vector during the
first (cyan vector) and second (green vector) pulse and the Bloch vector at the end of
the sequence are indicated.

with
β = 1

2

(
α1 − sin−1

(
2P2(3τπ/2 + TR)− 1

C

))
(5.6)

Taking the values of figure 5.3 for P2, we get δ ≈ 0.4 Hz. This calculated detuning can
now be used to model our data using the numerical resolution of the Bloch equations
(with losses) with the squeezing sequence (fig. 5.1). Without any adjustable parameter,
other than the adjunction of a decoherence term (γd = 0.05 s−1) that models the contrast
reduction due to the spatial dynamics, the simulation yielding to the plain lines on figure
5.3 confirms the previous reasoning.
On the other hand, for φlo = 0◦ (cyan) and φlo = 180◦ (magenta) the expected Rabi like
oscillation is observed with a reduced contrast consistent with the discussion of section
4.4.

Let’s now use this study to implement an experimental protocol to systematically
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Chapter 5. Spin squeezing in a dual component BEC

align the Bloch and Rabi vectors in order to perform the tomography of our so far
hypothetical squeezed state.

S(τ+TR)⃗

1

P2

0

P2(τ+TR)

α1

Ω⃗

ΩR
2||Ω||⃗

-πδ
⃗||Ω||

βα1-2β

S(3τ+TR)⃗
P2(3τ+TR)

(a)

S(τ)⃗

Sy

ϕlo

Ω(τ+TR)⃗

Ω(τ)⃗

Δϕ

Sx

S(τ+TR)⃗ ε

equator

(b)

Figure 5.4: Illustration of spin rotations on the Bloch sphere. (a) Bloch S
and Rabi Ω vectors in a plane orthogonal the equator of the Bloch sphere illustrating
equations (5.5) and (1.27). (b) Bloch S and Rabi Ω vectors before (τ) and after (τ+TR)
the free evolution time in the equator plane of the Bloch sphere. φlo is the local oscillator
phase-shift, φ is the accumulated atomic phase (5.4) and ε is the angle between the Bloch
and Rabi vector that we want to set to 0◦ or 180◦.

5.2.3 Systematic calibration protocol

As stated before, we want to align the Rabi vector −→Ω with the spin vector −→S so that
the second pulse only rotates the spin distribution around itself (meaning that the final
transition probability does not depend on the second pulse duration). The protocol used
to find the corresponding interrogation frequency and phase-shift φlo is threefold:

1◦) Find the detuning. First record the value of the transition probability right
before the second pulse of the Ramsey sequence P2(τ + TR). From this value, one can
derive the detuning so that the Rabi vector −→Ω has the same z-component as −→S . Using
the previous reasoning for β = ±α1 and assuming that the atomic frequency is constant
over the second pulse duration, the detuning between the atomic frequency at the end
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of the free evolution time νat(τ + TR) and the local oscillator reads

δ = νRF − νat(τ + TR)

= ±ΩR

2π
[2P2(τ + TR)− 1]√

C2 − [2P2(τ + TR)− 1]2
.

(5.7)
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Figure 5.5: Estimation of the atomic frequency before the second pulse. (a)
The interrogation frequency is scanned for the two indicated phase-shifts between the
two interrogation pulses while the duration of the second pulse is set to be a π-pulse.
The atomic frequency before the second pulse is indicated and corresponds to the one for
which the transition probability does not depend on the phase. (b) The phase-shift is
scanned when the local oscillator frequency matches the atomic frequency. The almost
constant transition probability validates the evaluation of νat.

2◦) Find the atomic frequency before the second pulse. As this detuning is
derived with respect to the atomic frequency before the second pulse which differs from
the measured Ramsey frequency because of the collisional shift (cf section 4.5), one needs
to estimate νat at that time. Experimentally, this frequency corresponds to the one for
which the final transition probability is equal to 1 - P2(τ + TR) and does not depend
on the phase-shift φlo when the second interrogation pulse is a π−pulse. Indeed, the
resonant2 π−pulse just symmetrizes the spin vector with respect to the equator of the
Bloch sphere. Figure 5.5 shows the experimental estimation of νat for P2(τ +TR) ≈ 0.39.
We find νR − νat ≈ 0.4 Hz which also roughly correspond to the detuning that we can
extract from figure 4.14.

2in this case δ = 0 and the Rabi vector −→Ω lies on the equator of the Bloch sphere.
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Figure 5.6: Determination of the local oscillator phase-shift. The detuning is set
so that the Rabi vector has the same z-component as the Bloch vector (δ). The local
oscillator phase-shift is scanned for two different second pulse durations: τπ (blue) and
τπ/2 (red). The local oscillator phase-shift required to align the two vectors corresponds
to the one for which P2 does not depend on the second pulse duration and equates
P2(τ + TR) ≈ 0.39 here.

3◦) Find the appropriate local oscillator phase-shift φlo. Let’s first set the in-
terrogation frequency 3 to νRF = νsqueez = νat ± δ using figure 5.5 and equation (5.7).
Now the Rabi vector has the right z-component. As shown on figure 5.6, by scanning
φlo with different second pulse durations, we will identify the right phase-shift for which
P2(2τπ/2 + TR, φlo) = P2(τπ/2 + TR).

This phase-shift can also be determined theoretically using equations (5.7) and (5.4).
Using figure 5.4 (b), one can derive the local oscillator phase-shift to apply in order to
get ε = 0 or π.

φlo = π

2 − ε+ ∆φ (5.8)

= π

2 − ε+ 2π[νat(τ + TR)− νR + δ]TR. (5.9)

Figure 5.6 gives φlo ≈ 160◦ which is consistent with φlo ≈ 163◦ calculated with
equation 5.9 and νR − νat(τ + TR) = 0.4 Hz and δ = 0.81 derived with equation 5.7.

3The frequency is identical for both pulses, and because the detuning to the resonant frequency is
much smaller than the Rabi linewidth, the transition probability after the first pulse is not affected.
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These three steps allows a systematic alignment of the Bloch and Rabi vectors and have
to be applied before each state tomography measurement. Let’s now have a look at the
squeezing measurement itself.

5.3 Spin squeezing measurement
The measurement sequence is illustrated on figure 5.1. In the following, a pure BEC
containing 9000 atoms is prepared in |1〉. A first π

2 -pulse (70 ms) places it in a coherent
superposition. During a free evolution time (1.2 s), the state-dependent spatial dynamics
discussed in the previous chapter will spatially separate the two states, leading to an
increase of the non linear interaction (5.2) and subsequently to spin squeezing. A second
interrogation pulse of duration θ is then applied with the frequency and phase-shift
previously calibrated in section 5.2.3 to rotate the spin noise distribution around itself.
The two states are then imaged using the adiabatic rapid passage imaging technique and
the population in each states N1,2 is estimated. Typically, approximately 300 shots are
acquired for each rotation angle.
Before describing our data analysis and presenting the state tomography, we propose to
study the influence of a fluctuating atom number on the population difference measured
at the end of the sequence.

5.3.1 Influence of a total atom number fluctuation
For each rotation angle, we measure a correlation between the population difference
and the detected total atom number (5.7 (b)). This section hence is dedicated to the
understanding of this correlation, justifying the post-correction applied during the data
analysis.

Atomic losses

Despite our efforts concerning the stabilization of the experiment, there is still a ≈ 3%
relative fluctuation of the initial atom number. As depicted of figure 5.7 (a), because the
losses present in our system are asymmetric, this preparation noise will directly affect
the measured population difference at the end of the sequence

Sz(TR) =
N2(N0

2 , TR)−N1(N0
2 , TR)

2 , (5.10)

where N0 is the initial atom number. Theoretically, by deriving the population difference
after the sequence with a fluctuating initial atom number, it is possible to estimate the
sensitivity of Sz with respect to this noise. On figure 5.7 (b) is displayed the slope

[
dSz
dN

]
loss

(blue line) and N
[
dSnz
dN

]
loss

(red line), N being the final atom number and Snz = Sz
N

the
normalized population difference, as a function of the initial atom number. Note that
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this initial atom number is not known experimentally. Our knowledge of the final atom
number and population decay only enables us to estimate the expected average initial
population.

Experimentally, by plotting a similar curve as the one displayed on figure 5.9 (b)
without second pulse (θ = 0◦) and for different initial atom numbers, we can extract
the slopes and compare them with the previous calculation. As expected, the larger the
initial atom number, the larger the asymmetry and the larger the impact on the final
population difference. The reduced sensitivity of Sns with respect to the initial atom
number appears clearly.
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Figure 5.7: Effect of initial atom number fluctuations on the final population
difference. (a) Population in the two states as a function of the initial atom number in a
sequence π

2 −TR. The decrease of the transition probability due to the asymmetric losses
is also indicated. The uncertainty (standard deviation) is represented by the increasing
width of the curves. (b) Sensitivity of the detected population difference with respect to
fluctuations of the detected atom number induced by initial atom number fluctuations,
as a function of the initial averaged atom number. The blue line corresponds to

[
dSz
dN

]
loss

and the red one to the normalized population difference N
[
dSnz
dN

]
loss

. The dots represent
experimental data.

Collisional shift

Without second interrogation pulse, the measurement is not sensitive to the phase that
the atoms have accumulated during the free evolution time. However, as soon as a second
pulse is applied the interferometer’s sensitivity to this atomic phase increases and reaches
its maximum for a second π/2-pulse. Indeed, using equation (1.20) under the condition of
small detunings (∆ << ΩR), we can derive the expression of the normalized population
difference as a function of the second pulse duration and detuning
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Snz (θ) ≈ C

2 cos(φ)sin(θ), (5.11)

where φ = 2π
∫ TR
0 (νlo − νat(t))dt + φlo is the overall accumulated phase during the free

evolution time. Any frequency noise will therefore impact Sns via the accumulated phase
φ.

At this point, the largest atom number dependency is the collisional shift whose
expression is recalled in the case of a pure BEC (cf. section 4.5.4)

νcoll = ~
m
n[a22 − a11 − (2α12a12 − a22 − a11)n2 − n1

n
], (5.12)

As a result, if the initial atom number fluctuates, then the density n fluctuates and
because of the asymmetric losses n2 − n1 fluctuates as well. The overall collisional shift
will therefore fluctuate during the sequence. The resulting sensitivity to final atom
number fluctuations induced by initial atom number fluctuations reads[

dSnz
dN

]
coll

= dSnz
dφ
× dφ

dN
(5.13)

= −C2 sin(φ)sin(θ)× d

dN

(
2π
∫ TR

0
νat(t)dt

)
(5.14)

= −πTRCsin(φ)sin(θ)d〈νat〉TR
dN

, (5.15)

where C is the interferometer contrast, φ is the accumulated phase close to π
2 and d〈νat〉

dN
is

the linear dependency of the Ramsey frequency4 with respect to the final atom number.
Moreover, in the squeezing sequence, the detuning is set so that the two vectors (S and
Ω) are aligned, meaning that the overall accumulated phase is k π2 where k is an odd
integer. This enables a maximum sensitivity to phase fluctuations and this is the reason
why atomic clocks also work in that configuration.

In principle, one could derive equation (5.12) for different initial atom numbers and
find out its dependency with respect to the final atom number d〈νcoll〉TR

dN
. However, as we

saw in section 4.5, the spatial dynamics impacts the evolution of the atomic frequency
in a non-trivial way via the parameter α12, and prevents us from accurately predicting
the collisional shift. We thus used the measurement performed in section 4.6.2, where
we acquired Ramsey spectra for different initial atom numbers, to fit the evolution of
the Ramsey frequency with the detected atom number. The corresponding derivative
dνR
dN

is displayed on figure 5.8 (a) (black line). This slope has also been determined
using the clock measurements detailed in the next section 5.4 (blue points). Using this
measurement, we can now derive the impact of an atom number fluctuation on the

4Indeed, we saw in section 4.5 that the Ramsey frequency corresponds to the atomic frequency
averaged over TR.
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Figure 5.8: Influence of the collisional shift on the final population difference.
(a) Dependency of the Ramsey frequency with respect to the detected atom number
after the squeezing sequence with TR = 1.2 s. The black line is obtained by calculating
the slope d<νR>TR

dN
with the measurement performed in section 4.6.2. The blue points

correspond to clock measurements whose principle is explained in section 5.4.1. The
evolution of the collisional shift derived with eq. (5.12) and α12 = 1, is also indicated
(dashed line) (b) Sum of the two contributions during the squeezing sequence. The slope
at θ = 0◦ is determined by the losses

[
dSnz
dN

]
loss

while the oscillation is governed by the
collisional shift

[
dSnz
dN

]
coll

. The slope vanishes for θ ≈ 2.5◦.

measured population difference during the squeezing sequence by calculating equation
(5.15). The total calculated slope

[
dSz
dN

]
loss

+
[
dSz
dN

]
coll

is displayed on figure 5.8 (b) (red
line).

Experimentally, for each θ we can extract the slope dSnz
dN

(θ) as it is done on figure 5.9
(b). The experimental slope is in good agreement with the calculated one. An interesting
feature is that this slope vanishes for a non zero rotation angle θ ≈ 2.5◦.

Post-processing the data for this correlation
As for each shot, we know the final atom number and its averaged correlation with the

population difference, it is possible to correct the data accordingly. This means removing
the measured slope dSz

dN
(θ) from the raw data for each rotation angle θ.

5.3.2 Data analysis
In order to link the measured atom numbers to the squeezing parameter and the spin
noise distribution, the following data analysis is performed for each rotation angle θ. The
notation X corresponds to the average of the fluctuating quantity X, and the errorbars
correspond to one standard deviation.
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Figure 5.9: (a) scheme representing the underestimation of the spin noise due to non-
zero mean population difference. C is the contrast of the Ramsey interferometer and α is
the angle the the Bloch vector makes with respect to the equator after the free evolution
time and because of the asymmetric losses. (b) Atom number correlation for θ ≈ 10◦.

• Runs whose total atom numbers N = N1 + N2 differ from their mean N by more
than 3 standard deviations are discarded. These outliers can be due to problems
during the image acquisition or the laser locks, and in practice this concerns about
1% of the data.

• The normalized population difference Snz = N2−N1
2N and the angle between the col-

lective spin and the equator of the Bloch sphere α = asin( Snz
C/2) are derived (cf.

figure 5.9 (a)), where C is the contrast of the Ramsey interferometer calculated
in the previous chapter 4.4. The population difference is normalized in order to
reduce its dependency to total atom number fluctuations.

• The correlation between population difference and total atom number is estimated
by fitting the distribution Snz vs N (cf. figure 5.9 (b)). As explained in the previous
section, since we can measure this correlation for each shot, we can legitimately
correct the data accordingly. Namely,

Snz,corr(i) = Snz (i)− sp × (N(i)−N), (5.16)

where sp = dSnz
dN

is the slope measured on figure 5.9 (b) and i represents one of the
300 shots at a given rotation angle.

• The variance of the normalized population difference times the mean atom number
Nσ2(Snz,corr) is derived. At this point, we also check that the Allan variance of
Snz,corr integrates as white frequency noise in order to be sure that there is no drift
that could worsen the results.
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• The detection noise estimated in section 3.5 is removed from the data:

∆S2
z = N

2
σ2(Snz,corr)− σ2

det(Sz) (5.17)

• Finally, the fact that the collective spin ends up below the equator of the Bloch
sphere leads to an underestimation of the spin noise by a factor cos(α)2 (figure 5.9
(a)) which has to be taken into account. ∆S2

z is then normalized by the quan-
tum projection noise N/4, leading to the final normalized variance and squeezing
parameter [180]

V2 = 4∆S2
z

Ncos(α)2 and ξ2 = 4∆S2
z

NC2cos(α)2 . (5.18)

5.3.3 Spin tomography
As the long cycle time (≈13 s) prevents us from acquiring the whole tomography in a
single run5, the complete acquisition has been stretched out over several days. Before
every measurement run, the atom number is stabilized around the target value and
the whole calibration protocol described in section 5.2.3 is applied to find the correct
detuning and phase-shift. Figure 5.10 shows the stability of the transition probability
and total atom number, ensuring a similar environment in which the full tomography
has been performed. The error bars on figure 5.10 (a) already show the ellipticity of the
spin noise distribution.
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Figure 5.10: Stability of the P2 and N during the tomography. Measured transition
probability (a) and total atom number (b) as a function of the rotation angle θ.

Figure 5.11 shows the evolution of 10log(ξ2) so that 0 dB corresponds to the standard
quantum limit. For θmin = 2.5◦, we measure a minimum noise of ξ2 = −1.3 ± 0.4 dB

5Mostly because of a drift in the atom number.
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(V2 = −2.2±0.3 dB) for a 90% contrast testifying of metrologically useful spin squeezing.
On the other hand, for θ ≈ 90◦, the long axis of the ellipse is probed and corresponds
to ξ2 ≈ 16 dB. Note that this configuration (θ ≈ 90◦) corresponds to a usual clock
measurement. We will use that feature to study the involved phase noises in the next
section (5.4). We will also see that the fact that the other noise minima at θ ≈ ±180◦
are higher than for θ = 2.5◦ can be explained by an increased phase noise.
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Figure 5.11: Spin noise tomography. 10log(ξ2) is plotted as a function of the rotation
angle θ. A minimum spin noise ξ2 = −1.3± 0.4 dB is observed for θmin = 2.5◦.

One noticeable feature is that the minimum noise is measured for a rotation angle
θmin ≈ 2.5◦ which corresponds to the one for which the slope displayed on figure 5.8
vanishes, meaning that the final population difference is, to first order, insensitive to
initial atom number fluctuations. As we will see in the next section, this is not so
surprising, since the major instability source is related to atom number fluctuations.

5.4 Technical noise analysis

As discussed in section 5.1.2, theoretically, a much higher squeezing could in principle
be achieved even in the presence of losses. The possible limitations are threefold: a
low non-linear interaction, a non-perfect spatial overlap at the revival time that reduces

119



Chapter 5. Spin squeezing in a dual component BEC

the contrast, and possible phase noises that induce noise on the measured population
difference and also reduce the contrast.
Concerning the interactions, even if it is possible that our spatial separation is not large
enough, our measured squeezing parameter is most likely limited by the large asymmetric
losses that quickly deteriorate the squeezing [178, 181]. Once again, losses are a major
limitation in our system. The exact estimation of this reduction is nonetheless not trivial
to estimate in our case because of the too high sensitivity with respect to the s-wave
scattering lengths [219].
The reduced contrast at the revival time is in great part due to asymmetric losses (cf.
figure 4.10) and only explains the difference between V2 = −2.2 dB and ξ2 = −1.3 dB.
The presence of thermal excitations could also affect the coherence of the ensemble [183].
However the impact of thermal effects on a spinor BEC is still an on-going research
topic [220].

Finally, a significant phase noise could also explain why we do not measure a bet-
ter squeezing. As what we call squeezing corresponds to a reduction of the quantum
projection noise, it is possible that this reduction is masked by another dominant noise.
Indeed, we can rewrite the squeezing parameter as a function of possible technical noises
σs

(ξ2)min = σ2(Sz)− σ2
det

σ2
QPN

= ζ2 +
∑
s σ

2
s

σ2
QPN

= −1.3 dB ≈ 0.73,
(5.19)

where ζ corresponds to the noise reduction coefficient coming from the squeezing, the last
term corresponds to all the other noise sources contributing to the population difference
fluctuations, and σ2

QPN = CN
4 cos2(α).

5.4.1 Clock measurement

To investigate this path, we will perform a clock measurement that has nothing to
do with the squeezing experiment but provides a reliable estimate of the experimental
instabilities. We will then try to explain the stability at one shot by calculating the
contribution of all the identified noise sources. In parallel, we will derive the contribution
of these noise sources to the squeezing measurement detailed previously. Once we have
identified enough instabilities to explain the short term stability of the clock, we will
know that we have found the most dominant instabilities, and we will be able to say by
how much it limits our squeezing parameter.

For that purpose, we ran our system almost as a standard clock (π2 −TR−
π
2 ) for 9000

atoms initially and with 70 ms π
2 -pulses and TR = 1.2 s. The only difference is that we

made the first pulse longer so that the spin vector ends up on the equator of the Bloch
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5.4. Technical noise analysis

sphere after the interrogation time6. This way, we can run the clock in the linear regime
(that is to say at half fringe), and convert the fluctuations of the transition probability
into frequency. To follow the central frequency, we successively take one shot on each
side of the fringe, and every twenty shots the local oscillator frequency is corrected in
order to keep the Bloch vector on the equator (P2 = 0.5) and follow the clock frequency.
This step corresponds to the feedback loop represented on figure 1.7.
The Allan deviation of the measured frequency is displayed on figure 5.12. The "corrected
data" (red points) corresponds to the raw data (blue points) corrected for atom number
fluctuations, as explained in section 5.3.1. The stability at one shot of the corrected data
reads σy(Tc) = 2.6× 10−12, while for the raw data σy(Tc) = 3.7× 10−12.
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Figure 5.12: BEC clock stability. The Allan deviation of the clock frequency is
displayed with (red points) and without (blue points) atom number correction. The
errorbars correspond to three sigma. The standard quantum limit corresponding to the
detected atom number is indicated as a reference in green.

We will now try to explain this stability at one shot by investigating all the relevant
sources of instability involved in the experiment and estimate their impact on the mea-
sured squeezing. The link between clock stability and frequency or population noise is

6This difference will be taken into account in the estimation of the technical noise involved in the
squeezing measurement.
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given by equation (1.35) in section 1.3.3. Moreover, by differentiating equation (5.11)
we can convert the frequency noise identified by the clock measurement on fluctuations
of Sz according to

σs = NπTRCsin(φ)sin(θ)σν . (5.20)

The goal of this part is thus to estimate the second term of equation (5.19).

5.4.2 Atomic losses as a statistical process
We already saw that the instability due to fluctuations of the initial atom number can be
well measured and corrected (section 5.3.1). However, this correction is not perfect and
is subject to an uncertainty related to the detection noise. Moreover, because inelastic
collisions are a statistical process and because we can only access the final atom number,
the clock frequency is subject to an additional uncertainty that we cannot correct.

Instability due to the atom number correction process
Because of a fluctuation of the detected atom numbers due to imperfect detection, the

atom number correction (5.16) induces an instability on the clock measurement [69]

σy,corr =
√

2
∣∣∣∣∣d〈νat〉dN

∣∣∣∣∣ σdetνat
≈ 1× 10−12 (5.21)

and the squeezing measurement

σcorr =
√

2N
∣∣∣∣∣dSnzdN

∣∣∣∣∣σdet (5.22)

This fluctuation is nonetheless negligible at the squeezing angle, since the corrected slope
vanishes (cf figure 5.8 (b)).

Symmetric losses
We already saw that the collisional shift significantly depends on the initial atom

number that we can only access on average using our knowledge on the density and
atomic lifetimes. More specifically, for each shot we only measure the final populations
and we therefore do not precisely know when and how many atoms have been lost during
the sequence. For instance if one atom is lost at the beginning of the Ramsey time it
will not contribute to the collisional shift, whereas if it is lost right before the second
interrogation pulse it was partly responsible for this frequency shift but will not be
detected. This effect has already been studied in our set-up for a thermal ensemble with
a density-independent loss rate [69]. As we deal here with condensed samples, we have
to take into account the effect of density-dependent losses. To first approximation, the
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5.4. Technical noise analysis

same reasoning can however be applied using the averaged loss rates

K1 ≈ γbck + 1
2γ12〈n2(t)〉

K2 ≈ γbck + 1
2γ12〈n1(t)〉+ 1

2γ22〈n2(t)〉,
(5.23)

where 〈〉 represents the temporal average over the interrogation time. The number of
trapped atoms in state |i〉 at a time t then readsNi(t) = N(TR)eKi(TR−t). Our uncertainty
concerning this number can be expressed as [69]

σNi(t) =
√
N(TR)(eKi(TR−t) − 1)eKi(TR−t). (5.24)

By integrating σNi(t) over the Ramsey time, we get the contribution of these unavoidable
frequency noise

σy,sym(1 shot) = 1
νat

dνR
dN
〈N1 +N2〉

√
〈σN1〉2 + 〈σN2〉2

N1 +N2
≈ 1.58× 10−12.

(5.25)

This noise source therefore plays a significant role in the stability budget. Further-
more, we can convert this noise into phase noise, and estimate its impact on the detected
population difference using (5.11) with C = 90% and N = 5000. This leads to(

σ2
s

σ2
QPN

)
sym loss

= 11 for θ = 90◦

(
σ2
s

σ2
QPN

)
sym loss

= 0.03 for θ = 2.5◦.
(5.26)

Asymmetric losses
As the losses are asymmetric, the population difference also fluctuates during the

free evolution time. This means that there is an additional instability coming from the
asymmetric part of the collisional shift. This time only the asymmetric part of the losses
(γ22) plays a role, meaning that the uncertainty concerning the population difference
during the Ramsey time reads

σN2,asym =
√
N(TR)(e 1

2γ22〈n2(t)〉(TR−t) − 1)e 1
2γ22〈n2(t)〉(TR−t). (5.27)

From equation (5.12), this impact the one shot clock stability with

σy,asym(1 shot) = ~
mνat

(2a12〈α12〉 − a11 − a22)〈σn2〉

≈ 1.63× 10−12.

(5.28)
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Here the density has been calculated with the model developed in section 1.4.3 and
〈α12〉 ≈ 0.91 derived from figure 4.14 (b). This frequency noise also affect the squeezing
measurement up to (

σ2
s

σ2
QPN

)
asym loss

= 23 for θ = 90◦

(
σ2
s

σ2
QPN

)
asym loss

= 0.06 for θ = 2.5◦.
(5.29)

We can already see that most all the noise observed for θ = 90◦ (16.5 dB) on figure
5.11 is explained by phase noise due to these symmetric and asymmetric losses (15 dB).

5.4.3 Impact of a noisy Rabi frequency on the squeezing mea-
surement

In section 2.4, we realized that the atomic cloud is oscillating inside the trap. On the
other hand, it has already been pointed out that because the microwave interrogation field
is radiated from the on-chip coplanar waveguide, its amplitude presents a strong spatial
dependency, especially along the vertical direction [74, 113, 196]. The space-dependent
Rabi frequency then reads

ΩR(z) = ΩR0exp
(
− z
lz

)
, (5.30)

where lz ≈ 41µm [74]. Here the origin of the z-axis has been taken at the trap bottom
such that ΩR0 corresponds to the Rabi frequency at the trap bottom. The combination
of these two features implies a fluctuation of the Rabi frequency seen by the atoms
and hence a noise on the measured population difference. Let’s first verify that the
measured position noise and oscillation (figure 2.10) happen inside the trap. We will
then re-estimate the microwave inhomogeneity and measure its impact on the squeezing
measurement.

Effect of the mean oscillation and estimation of the MW inhomogeneity
In order to experimentally check that the oscillation happens inside the trap and

measure the microwave inhomogeneity, we scanned the trapping time before applying a
single short π

2 -pulse (6 ms). This way, the atomic cloud should receive the interrogation
pulse at different positions inside the trap. The resulting mean transition probability as
well as the position of the clouds after time of flight are plotted on figure 5.13 (a). The
oscillation of P2

7 with a π
2 phase-shift with respect to the position8 confirms that the

atoms oscillate inside the trap. Here the transition probability at resonance reads
7Peak to peak amplitude ≈ 1.5% .
8Also observed on figure 2.10 (c).
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P2(ttrap, τπ/2) = sin2
(
< ΩR(t) > τπ

4

)
, (5.31)

where
< ΩR(t) >= 2ΩR0

τπ

∫ τπ/2

0
e−

z0(ttrap;t)
lz dt, (5.32)

is the Rabi frequency averaged over the pulse duration and z0(ttrap; t) = A0cos(ωz(ttrap+
t) + φ) is the position of the atoms’ center of mass inside the trap.
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Figure 5.13: Estimation of the microwave inhomogeneity. (a) The trapping time
before the application of a single π/2-pulse is scanned, and the transition probability
P2 and position of the center of mass 〈z〉 are recorded. The oscillation of P2 is fitted
with equation (5.31) where < ΩR(t) > has been roughly approximated to ΩR(τπ/2). As
explained in the text, this led to an overestimated lz = 80 ± 2µm. (b) We used the
simulation to numerically scan lz in equation (5.30) and estimated it from the fit of P2
as a function of the trapping time before the application of a π

2 -pulse. This calculation
has been realized for a high Rabi frequency (τπ = 1ms << 1

νz
(blue) to test the method

and for the experimental Rabi frequency (red).

The simulation performed in section 2.4 gives access to z0(ttrap) from the cloud posi-
tion after time of flight thanks to (2.9), and fitting the measured P2 as a function of the
trapping time with equation (5.31) will estimate the microwave inhomogeneity lz. The
only problem is that the integral of equation (5.31) cannot be easily solved analytically
unless the pulse duration is small compared to the oscillation period. The averaged Rabi
frequency is then almost constant over the pulse duration and

∫ τπ/2
0 ΩR(t)dt ≈ ΩR(τπ/2).

Experimentally, we could only achieve τπ/2 = 6 ms which is comparable to the oscillation
period ( 1

νz
≈ 13.5 ms). We can however assume that < ΩR(t) >≈ ΩR(τπ/2), fit the oscil-

lation of P2 with equation (5.31) and numerically calibrate the error on lz. Indeed, doing
so corresponds to under-sampling the cloud position which leads to an overestimation of
< ΩR(t) > and lz.
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The idea is to numerically apply this experimental sequence (ttrap− π
2 ) for different values

of lz and record the one extracted from the fit. This has been done for a short π-pulse
of 1 ms, for which the approximation is valid, and for the experimental one of 12 ms
(figure 5.13 (b)). As expected, the red line as a unitary slope whereas the blue one as a
slope of 1.7, leading to a microwave inhomogeneity lz = 48 ± 5 µm, in good agreement
with the anterior estimation [74]. Note that here we used the TACC platform as a MW
field sensor. Let’s now have a look at the impact of the shot to shot position noise on
the coupling to the atoms.

Effect of the shot-to-shot noise and impact on the transition probability
In order to check that the noise in position also happens inside the trap, we acquired

Rabi oscillations with 50 shots per pulse duration for two different Rabi frequencies.
That way, we can check wether or not the position noise has an effect on the measured
transition probability. The simulation with the previously found parameters is then
used to reproduce the experimental evolution of the noise on the transition probability,
as shown on figure 5.14. To compare the numerical data with the experimental one, we
successively added different noise sources:
First, the quantum projection noise and the detection noise (black curve) derived as

σ(P2)QPN =
√
P2(1− P2)
N1 +N2

and σ(P2)det = σdet

√
N2

1 +N2
2

(N1 +N2)2 , (5.33)

where σdet = 32 atoms is the detection noise calculated in section 3.5 and N1,2 are the
experimental populations of the two states.
Second, the contribution of the position noise and microwave inhomogeneity estimated
previously (green curve). In order to have a more intuitive picture, using equation (1.30)
in the case of small detunings (∆ << ΩR), one can write the noise of P2 due to Rabi
frequency fluctuations as a function of the pulse duration

σ(P2) ≈ τσ(ΩR)sin
(
< ΩR > τ

2

)
cos

(
< ΩR > τ

2

)
, (5.34)

where τ is the pulse duration. We also showed in section 2.4 that the in-trap shot-to-shot
position noise is σz = 0.77 µm, which leads to a relative shot-to-shot fluctuation of the
Rabi frequency

σΩR
< ΩR >

= σz
lz
≈ 1.6%. (5.35)

Third the shot to shot MW power fluctuation and the noise due to atom number
fluctuation as studied in section 5.3.1 (red curve). Indeed, by integrating the power
spectral density over the range [10−2; 105] Hz measured with a MW power-meter (Agilent
N1913A), we estimated the relative fluctuations of the RF and MW powers right before
entering the chip wires

σ(ΩRF )
ΩRF

= 1× 10−5 and σ(ΩMW )
ΩMW

= 1.3× 10−4. (5.36)
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This leads to a shot-to-shot fluctuation of ΩR0.

(b)
Experimental data
Simulation QPN + Det noise
Simulation + MW inhomogeneity
Simulation + technical noises
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Figure 5.14: Study of the atomic noise in a Rabi sequence. Rabi oscillations
are acquired for ΩR = 2π × 41.3 Hz (a) and ΩR = 2π × 3.6 Hz (b) with a BEC of
1.1× 104 atoms initially. 50 shots are taken for each pulse duration and the shot to shot
fluctuations (standard deviation) of P2 are derived (blue line). The simulation described
in the text is used to reproduce the experimental data. The quantum projection noise
and detection noise are calculated from the experimental atom numbers and detection
parameters (black line), then the microwave inhomogeneity lz = 48µm and the position
noise are taken into account (green line), and the shot to shot fluctuations of the MW
power σ(ΩR)

ΩR = 1.3× 10−4 and atom number are added to the previous noises (red line).
The offset of about 3 · 10−3 is due to detection noise.

It appears clearly on figure 5.14 (a) that for a high Rabi frequency, the noise on
the transition probability is dominated by Rabi frequency fluctuations due to position
noise and microwave inhomogeneity. The position noise hence also takes place inside the
trap. This is by the way the main reason why we use rather long interrogation pulses
for a given pulse area Ωτ . Using equation (5.34), we quickly see that Rabi fluctuations
due to position noise have to be averaged over the pulse duration in order to match the
experimental data. This means that the position noise is not due to random momentum
kicks inside the trap but probably more to a one-off kick during the transfer between
two traps. Equation (5.35) is then an upper bound of the Rabi frequency noise seen by
the atoms, and this limit is only reached in the case of very short pulses (τ << 2π/ωz).

On the other hand, for a low Rabi frequency, the dominant noise source is the atom
number fluctuations due to atomic losses. Indeed, in that case the position noise is
averaged out over the pulse duration and quickly becomes smaller than the quantum
projection noise. Note that the atomic noise is at the standard quantum limit for a
single π/2-pulse but not for several π/2-pulses (this is in agreement with the calibration
of the detection system made in section 3.5). The slow increase of the quantum projection
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Chapter 5. Spin squeezing in a dual component BEC

noise contribution (black curve) is due to the atom number decreases because of atom
losses as it appears on equation (5.33).

Now that we convinced ourselves that the position fluctuations also take place inside
the trap, let’s analyze their effect on the squeezing measurement.
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Figure 5.15: Rabi frequency relative fluctuations. Numerical calculation of the
relative Rabi frequency noise during the second pulse of the squeezing sequence (a), and
the resulting uncertainty on the rotation angle (b), for τπ = 140 ms (blue) and τπ = 12
ms (red). The minima occur every multiple of the oscillation period.

Impact on the rotation angle calibration
According to equation (5.3) θ ∝ τΩR which directly leads to

σ(θ) = τσ(ΩR). (5.37)

We saw that the Rabi frequency has two independent fluctuation origins: the combinaison
of position noise and MW inhomogeneity that averages out over the pulse duration, and
shot-to-shot fluctuation of the MW power (5.36). The averaging of the Rabi frequency
fluctuations due to position noise occurs on a timescale on the order of 1/νz which is
the oscillation period. As displayed on figure 5.15 (a), the relative averaging of the Rabi
frequency noise occurs much faster (in term of rotation angle) for a low Rabi frequency
than for a high one. This means that its contribution to the overall noise is reduced
as we already saw on figure 5.14. The error on the rotation angle is then very small
(< 0.1◦). Even in the case of the high Rabi frequency, the error on the rotation angle is
below 1◦ and around 0.1◦ for θ = θsqueezing (cf figure 5.15 (b)).

Impact on the squeezing measurement
Using the same reasoning for the squeezing sequence (π2 − TR − θ), we estimate that
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5.4. Technical noise analysis

for θ = 90◦, σ2(Sz) ≈ 16 atoms and for θ = 2.5◦, σ2(Sz) ≈ 8 atoms. This yields
(

σ2
s

σ2
QPN

)
ΩR

≈ 1.3× 10−2 for θ = 90◦

≈ 7× 10−3 for θ = 2.5◦.
(5.38)

To sum up, thanks to the long interrogation pulses, the impact of the microwave inho-
mogeneity is negligible.

5.4.4 Other phase noise sources

Local oscillator noise

As the transition frequency is only probed during the Ramsey time, which is only a
fraction of the full experimental cycle, the local oscillator noise is sampled at a frequency
1/Tc. This sampling leads to aliasing which can transmit high frequency noise towards
the low frequency domain and degrades the clock stability. This is called the Dick
effect [146]. The impact on the clock stability has already been studied in [69], and
adapting the method to our current experimental parameters, we found

σy,Dick(1 shot) = 1.2× 10−13 at 1 shot. (5.39)

Quantum projection noise

The quantum projection already discussed previously, induces unavoidable fluctuations
of the measured transition probability that impacts the clock stability as

σy,QPN(1 shot) = 1
νat
√
N |dP2

dν
|

= 3.25× 10−13 at 1 shot. (5.40)

Detection noise

Similarly to the quantum projection noise, an imperfect detection will induce noise on
the measured atom numbers and therefore on the transition probability. Its impact on
the clock stability reads

σy,det(1 shot) = σdet

νat
√

2N |dP2
dν
|

= 1.95× 10−13 at 1 shot. (5.41)
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Relative frequency stability shot-to-shot (10−12) σ2
s

σ2
QPN

(90◦) σ2
s

σ2
QPN

(2.5◦)
Measured, without correction 3.7 145 0.73
Measured, after N correction 2.6 45 0.73
Asymmetric losses 1.63 23 0.06
Symmetric losses 1.58 11 0.03
N correction 1.0 9 0
Local oscillator 0.1 0.15 4× 10−4

Quantum projection noise 0.3 - -
Detection noise 0.2 - -
Total estimate 2.5 43 0.09

Table 5.1: Stability budget of the BEC clock and impact on the squeezing
measurement. List of the dominant instability sources and their impact on the shot-
to-clock clock stability and squeezing measurement for θ ≈ 90◦ and θ = 2.5◦. The highest
contributions come from density fluctuations due to atom losses. The detection noise
had already been removed from the squeezing data.

5.4.5 Stability budget and squeezing limits
The previously derived instability sources are listed in table 5.1. The impact of the
studied noise sources on the clock stability at one shot, the squeezing measurement at
θ ≈ 90◦ (long axis) and θ = 2.5◦ (small axis) are indicated.

The good agreement between the measured clock stability and noise estimation en-
ables us to evaluate the contribution of technical noise in the measured squeezing pa-
rameter σ2

s

σ2
QPN

(2.5◦) = 0.09. This means that without this overall phase noise, we could
have gotten at least ξ2 ≈ −2 dB. Moreover, we now understand why the minimum noise
is measured for a rotation angle θ = 2.5◦ which corresponds to the ones for which the
atom number dependency is reduced (cf. figure 5.8 (b)). This means that the amount of
achievable squeezing is probably higher at a bigger rotation angle, but the noise reduction
is compensated by the atom-number-related noise.

5.5 To go a bit further

5.5.1 Attempt to get a better squeezing
Let’s now get use of the previous chapter and discuss a bit about the possible ways
to improve our squeezing parameter. As the main limitation comes from atom losses,
a possibility would be to reduce the interrogation time by compressing the trap for
instance (cf. figure 4.15). However, if we want the spatial separation to be as large as
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5.5. To go a bit further

before, we would need to significantly increase the density which would also increase
the losses and the noise associated to them. As a matter of fact, we performed the
same spin tomography measurement in a tighter trap {ωx;ωy;ωz} = 2π×{4.4; 128; 113}
(green points on figure 4.15). It turns out that both the shot-to-shot clock stability9

(σy(Tc) = 2.6 × 10−12) and the squeezing parameter (ξ2 = −1.1 ± 0.5 dB) were slightly
worse than what we obtained previously.
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Figure 5.16: Squeezing parameter versus atom number. The black points are mea-
sured in the clock trap ({2.9; 92; 74} Hz), the red point corresponds to the measurement
displayed on figure 5.11, and the green ones to the so-called green trap ({4.4; 128; 113}
Hz).

We also briefly performed the same measurement with different initial atom number,
scanned by cutting more or less deeply in the condensate at the end of the evaporation,
and the results concerning the resulting squeezing parameter are displayed on figure 5.16.
The relatively large errorbars prevent us from drawing any definitive conclusions, even
though it seems that reducing the initial atom number improves the squeezing. Actually
the number squeezing V2 is always roughly the same around -2 dB and it is only the
reduced contrast (cf. figure 4.16) that deteriorate the squeezing parameter. This is also
the reason why the green points are slightly worse than the black ones.

9With atom number correction.
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5.5.2 Implementation in an inteferometric sequence
In the context of quantum metrology, the generation of a squeezed spin state only repre-
sents the first step. Next, the interactions have to be turned off and the interferometric
sequence can start with the squeezed state as input.
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Figure 5.17: Ramsey interferometry below the standard quantum limit. The
previously described procedure is used to generate a squeezed spin state, which is then
placed back on the equator of the Bloch sphere using the correction pulse detailed in
section 4.4.3. Next, a π

2 + θmin-pulse rotates the spin noise distribution until its small
axis is aligned with the phase quadrature. After a free evolution time T , another π

2 -pulse
converts the accumulated phase into populations that can be probed with a precision
better than the SQL. The evolution of the population difference is also indicated.

The first four steps correspond to the state preparation described previously, with the
difference that the squeezed state has now to be placed back on the equator of the Bloch
sphere. This can be achieved by using a correction pulse, similar to the one described in
section 4.4.3. Then the interferometer starts by aligning the small axis of the spin noise
distribution with the phase quadrature. This consists in a π

2 + θmin rotation, and as the
Bloch vector is now on the equator, this pulse just needs a π

2 phase-shift compared to
the previous one. Finally, after a free evolution time T , a last pulse converts the phase
accumulated by the atoms into populations that will be probed during the detection with
a precision better than the standard quantum limit. As in a standard clock sequence,
the Rabi vector of this last pulse should be aligned with the Bloch vector. To do so,
one could either use another fast correction pulse to put the Bloch vector back on the
equator, or use the protocol described in section 5.2.3.

This protocol can only work if the non-linear interaction responsible for the squeezing
can be frozen during the free evolution time T . In our case, this interaction is not
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controlled by the user, we therefore cannot easily turn it off. However, it should be
possible to minimize it by further reducing the trapping confinement or by performing
the measurement in free fall for instance.

5.5.3 Perspectives
The investigation of more compressed traps, such as the blue one on figure 4.15, with
smaller atom numbers could be interesting. Indeed, we have to wait for the two states
to recombined to perform the tomography of the state, but the optimum squeezing is
supposed to occur on a faster time scale [219]. Therefore, the faster the dynamics, the
higher the contrast and the better the squeezing, assuming that the non-linearity is still
strong enough to significantly squeeze the state.

MW dressing On the other hand, we saw that asymmetric losses are responsible
for most of our troubles: phase noise, contrast reduction and complexity of the sequence.
It would thus be interesting to reduce the two-body loss rate of state |2〉. As these
collisions (|2, 1〉+ |2, 1〉 −→ |2, 0〉+ |2, 2〉) are energetically favorable because the energy
difference between these two pairs of states (|2, 1〉 ↔ |2, 2〉 and |2, 0〉 ↔ |2, 1〉) are similar.
Therefore, by shifting upward the energy of state |2, 2〉, one could in principle reduce
these losses.

Figure 5.18: Principle of microwave dressing of state |2, 2〉. Energy diagram with
an additional microwave drive with detuning ∆ with respect to |2, 2〉. This microwave
dressing induces a frequency shift δ2 proportional to the corresponding microwave power.

And such shifting could be realized using a one-photon dressing with a σ-polarized
microwave field. Of course, one would need to carefully check that this additional cou-
pling does not introduce to much noise on the clock transition. It would anyway be very
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interesting to observe a reduction of these losses and experimentally study their impact
on spin squeezing.

Gravitational sag Another path would be to induce a small asymmetry between
the trapping potential of the two states at the beginning of the sequence, in order to help
the dynamics to start. It was indeed shown in Philipp Treutlein’s group that this greatly
enhance and hasten the spatial separation [13]. In our case, this asymmetry could come
from the dependency of the quadratic Zeeman effect with respect to gravity. Indeed
this leads to a displacement of the center of the trapping potentials for the two clock
states. This displacement depends on the difference between the field at the trap bottom
and the magic field [114], and can be estimated to be on the order of ∆z = 56nm/G
×(B−Bm) [83]. Therefore, by scanning the magnetic field at the trap bottom, one could
displace the position of the two states and study its influence on the spatial dynamics.
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Conclusion
*****

In this thesis, we have reported the first observation of spontaneous spin squeezing gen-
erated by the state-dependent spatial dynamics of a spinor Bose-Einstein condensate.

Although the experiment was initially designed as a clock using thermal ensemble, we
have used the stability and versatility provided by the TACC platform to experimentally
study the coherence properties and spatial dynamics of a dual-component BEC. This
high stability enabled us to measure a reduced spin noise compared to the standard
quantum limit by V2 = −2.2 dB, that provides a metrologically useful spin squeezing
ξ2 = −1.3 dB with a 90% contrast after a 1.2 s interrogation time and for 5000 atoms.
This shows once again the extremely stable and coherent environment provided by the
atom-chip technology. We also showed that the squeezing is mainly limited by phase
noise arising from the statistical nature of atom losses, and more specifically asymmetric
losses. Not only these losses degrade the stability of the system, but they also greatly
increase the complexity of the spin manipulations. It is however not quite clear yet how
the squeezing parameter scales with the atomic density in the presence of losses. If the
non-linear interaction χ scales differently than the two-body losses, then there is a chance
to get a better squeezing by tuning the trapping frequencies and atom number.
Some work has also been carried out to improve the detection system with the robust
implementation of the Adiabatic Rapid Passage technique and optimization of the fringe
removal algorithm. This led to a shot-noise limited detection with a good accuracy of
the derived atom number. Several technical difficulties had nonetheless to be faced,
especially concerning the short lifetime of our laser sources, that we had to replace in
average every year (each of the three lasers). At some point, we were building ECDL’s
like in a line production to compensate their sudden death. To find an explanation,
ground loops and current noises were investigated several times, without much success
though. Eventually, we decided to replace the thousands of old laser diodes brought on
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E-bay several years ago by a few more expensive, yet more reliable, ones. It has been
almost a year now, and the lasers are still working...

Study of an interacting dual-component BEC
The thorough characterization of the dynamics of the BEC in terms of contrast and

relative frequency evolution, provided us a good experimental understanding of the sys-
tem and enabled us to accurately manipulate the atomic spins. However, our attempt to
model and understand the physical phenomena behind the observed dynamics was not
really a success. We concluded that the simple description given by the Gross-Pitaevskii
equations under the mean field approximation is not appropriate to describe our system.
In that sense, the inclusion of thermal excitations in the BEC, and their coupling to the
condensed part could provide a part of the solution [220]. This could also be investigated
experimentally by looking at the contrast evolution of the Ramsey interferometer, vary-
ing the final evaporation frequency. Additionally, a better understanding of the impact
of inelastic collisions and asymmetric losses on the coherence and fundamental structure
of the condensate would be of prime interest in such a system and in the more gen-
eral context of BEC based quantum metrology. Even if the work carried out here was
restricted to the case of cigar-shaped traps, it was pointed out in [84] that the spatial
separation could be more efficient in a spherical trap. In particular the contrast revival
should be higher and obtained at a shorter time. It could therefore also be interesting
to extent this study to other trapping geometries.

Towards atomic interferometers beyond the standard quantum limit
The novelty of the work developed in this manuscript lies in the relative simplicity

of the sequence leading to spin squeezing. This means that atom interferometers using
internal states labeling could in principle directly benefit from the high phase-space
density of BEC’s combined with an enhanced phase sensitivity. To do so, a preliminary
sequence consisting only in applying a resonant π

2 -pulse, waiting for the two states to
recombine and rotating the spin noise distribution to place the axis with a reduced
noise along the phase quadrature, would have to be implemented prior to the usual
interferometric scheme. However, as opposed to the squeezing obtained with a Feshbach
resonance [60] or a state-dependent potential [61], here the squeezing dynamics is not
controlled by the user. The dynamics has therefore to be frozen, either by using a free
fall interferometry technique, or by further reducing the trapping confinement in order
to sufficiently decrease the density and the resulting mean field interaction.
Let’s also mention that the spatial dynamics is only required here to enhance the very
small initial non-linear collisional interaction between the two components of 87Rb, be-
cause of the similar s-wave scattering lengths. Other atomic species, such as Na for
instance, can be relatively easily condensed and possess possible clock states with differ-
ent scattering lengths. That way, spontaneous spin squeezing could directly be observed,
without the inconveniences of spatial dynamics.
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Conclusion

On the way to an Entanglement Enhanced Trapped Atom Clock on a Chip
Still in the context of quantum metrology, the versatility of the atom chip has been

pushed one step further with the recent inclusion of a pair of fibered fabry-Perot cavities
[221] (cf. figure 5.19). The cavity machining, chip fabrication, assembly and alignment
and characterization of the cavities are thoroughly detailed and explained in Konstantin
Ott’s thesis [92].

a) b)

c) d)

Figure 5.19: New atom chip and cavities assembly. Cavity mount glued to chip. a)
shows the two resonators above the science chip wires. The view is slightly blurred by
the quartz bridge. b) side view on the bridge where the reflection in the mirror coating
is visible. c) top view of whole ensemble d) perspective view of the ensemble. Taken
from [92].

The idea is to study interesting quantum effects arising from the coupling between the
atoms and the light inside the cavity, in a metrological environment. The global system is
very similar to the previous one, with the addition of a 2D-MOT and the fiber-cavities.
The 2D-MOT with differential pumping should increase the MOT loading rate while
keeping a good vacuum in the main chamber. As shown on figure 5.19, the two cavities,
resonant for 780 nm and 1560 nm light, are glued on the same piezoelectric elements
such that they consist in one macroscopic object. The idea is to use one of them for
locking the ensemble on a 1560 nm stabilized laser, and place the atoms in the other
one, called Science cavity. This way the locking light will not be coupled to the atoms,
preventing unwanted lightshifts. This however assumes that the differential fluctuations
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of the length of the two resonators are smaller that their linewidth.
The science cavity will have several applications. The first one is to generate spin squeez-
ing with a protocol similar to the one described in [57, 59]. In a nutshell, the atomic
transitions are dressed by the light inside the cavity, and the cavity resonance is shifted
by the population difference of the atomic ensemble. By fixing a probe laser at half the
cavity linewidth, it is possible to induce correlations spin population and atomic phase,
similarly to the one-axis-twisting Hamiltonian that we studied in this manuscript. In-
deed, the induced lightshift is positive is Sz > 0 and negative if Sz < 0. In this sense,
our good understanding of spin rotations and manipulations to perform the tomography
of the atomic state will be directly applicable. This time, the squeezing is obtained with
thermal ensembles, meaning that it can directly be applied to improve our clock perfor-
mance below the standard quantum limit, as it has been done in [57]. On the other hand,
by probing the light transmitted through the cavity, one can perform a quantum non-
demolition (QND) measurement and improve the clock performances by reducing the
dead times and the Dick effect [222]. Several weak measurement schemes are available
and could be realized with this new set-up [59,223,224].

The old set-up has been dismantled about 6 months ago, to leave room for a new
improved set-up with the new chip and the 2D-MOT. We kept the old optical table and
added a new one for the 2d-MOT and cavities optics. After several baking stages, the
optical cavities present the same characteristics as before, which is very reassuring. We
however had quite some troubles with the vacuum that went down to 10− 10 mbar after
bake-out but rose up to 10−9 mbar after a few weeks and keep rising very slowly. This is
not yet perfectly understood and the current Ph.D student on the experiment, Mengzi
Huang, will probably discuss it in more details in his manuscript. Now the whole system
has been mounted and is operational. The first 3D-MOT was observed recently and
optimization steps are currently on-going to reproduce the old experimental sequence.
In parallel, we are first working on locking one cavity using a Pound-Drever-Hall [225]
lock based on a FPGA based Red-Pitaya platform, whose efficiency has been proven
very recently in the Syrte’s Strontium clock [226]. We hope to quickly be able to load
the atoms in the science cavity and start investigating its beneficial effects on the clock
stability.
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Résumé

Dans ce manuscrit, nous présentons une étude
expérimentale du phénomène de compression de
spin dans un condensat de Bose-Einstein de 87Rb,
résultant d’une interaction non-linéaire provenant
de collisions entre les deux états internes |F =
1,mF = −1 > et |F = 2,mF = 1 > de l’état
fondamental 52S1/2. Les atomes sont refroidis
dans un piège magneto-optique, puis piégés mag-
nétiquement à l’aide de notre puce à atomes jouant
le rôle de parois supérieure pour notre enceinte
à vide. La puce est aussi utilisée pour émettre
le champ radiofréquence permettant le refroidisse-
ment évaporatif conduisant à la condensation de
Bose-Einstein, ainsi que le champ micro-onde qui
réalise le transfert cohérent des atomes d’un état
interne à un autre.
L’ensemble atomique est décrit par le Hamiltonien
"one-axis-twisting" qui contient un terme quadra-
tique en la composante selon l’axe z du vecteur
de spin atomique Sz . L’amplitude de cette inter-
action non-linéaire, initialement très faible, dépend
des longueurs de diffusion des états internes con-
sidérés, et peut être grandement augmentée en
réduisant le recouvrement des fonctions d’onde.
C’est pourquoi le système est placé dans une con-
figuration particulière (grand nombre d’atomes et
piège anisotrope de type "cigare") pour laquelle les
deux états vont alterner des phases de séparation
et recombinaison spatiale. L’impact de cette dy-
namique spatiale sur l’interaction de champ moyen
et la cohérence du système est analysé expéri-
mentalement à travers l’étude du contraste et de la
fréquence centrale d’un interféromètre de Ramsey.
Théoriquement, lorsque les deux états sont sé-
parés, la distribution de spin se transforme d’une
distribution circulaire régie par le bruit de projec-
tion quantique, en une ellipse dont le petit axe
est inférieur à la limite quantique standard, sous
l’effet de l’interaction en S2

z . Ceci est vérifié ex-
périmentalement en réalisant la tomographie de
l’état atomique au moment où les deux modes in-
ternes se recombinent. Un paramètre de com-
pression de spin ξ2 = −1.3 ± 0.4 dB est ainsi
obtenu pour 5000 atomes et un contraste de 90%.
L’étude des différentes sources d’instabilités a per-
mis d’identifier les pertes atomiques comme limi-
tation principale de la compression de spin et du
contraste de l’interféromètre.
Ce travail s’inscrit dans le contexte de la métrologie
quantique et représente un pas vers la production
d’états comprimés en spin permettant la réalisa-
tion d’interféromètres atomiques fonctionnant sous
la limite quantique standard. La question de la co-
hérence d’un condensat bimodal soumis à de nom-
breuses collisions élastiques et inélastiques est
aussi adressée.

Mots Clés

Condensats de Bose-Einstein, puce atomique,
compression de spin, metrologie quantique, hor-
loge atomique, intrication.

Abstract

In this manuscript, we present an experimental
study of spin squeezing in a spinor Bose-Einstein
condensate of 87Rb, arising from a non-linear in-
teraction originating from collisions between the
two internal states |F = 1,mF = −1 > and
|F = 2,mF = 1 > of the 52S1/2 manifold.
The atoms are cooled down in a magneto-optical
trap and magnetically trapped thanks to our atom-
chip which acts as a top wall for our vacuum cell.
The chip is also used to emit the radio-frequency
field that perform the evaporative cooling leading
to Bose-Einstein condensation, and the microwave
field used to coherently transfer the atoms from one
internal state to another.
The atomic ensemble in a coherent superposition
is well described by the so-called one-axis-twisting
Hamiltonian that contains a term quadratic in the
z-component of the spin vector Sz . the strength of
this non-linear interaction, initially very weak, de-
pends on the intra- and inter-state s-wave scatter-
ing lengths, and can be greatly enhanced by re-
ducing the wave-function spatial overlap between
the two states. We therefore place the system in a
configuration (high atom number and cigar-shaped
trap) for which the two states experience sponta-
neous relative spatial separation and recombina-
tion phases. The impact of this spatial dynam-
ics on the mean field interaction and coherence
of the system is experimentally analyzed through
the study of the contrast and central frequency of a
Ramsey interferometer.
Theoretically, when the two states are separated,
the spin noise distribution evolves from a uniform
circular distribution defined by the quantum projec-
tion noise, to an elliptic one whose small axis is
smaller than the standard quantum limit, under the
action of the S2

z interaction. This is verified ex-
perimentally by performing the tomography of the
atomic state, when the two internal modes recom-
bine. A squeezing parameter ξ2 = −1.3±0.4 dB is
reached for 5000 atoms and a 90% contrast. The
study of the different instability sources highlights
the atomic-density-dependent losses as the main
limitation for both the noise reduction and the con-
trast of the interferometer.
This work has been initiated in the context of quan-
tum metrology and represents a step towards the
production of spin squeezed states enabling the
realization of atom interferometers working below
the standard quantum limit. It also addresses the
fundamental question of coherence of spinor Bose-
Einstein condensates undergoing many elastic and
inelastic collisions.

Keywords

Bose-Einstein condensates, atom-chip, spin
squeezing, quantum metrology, atomic clock,
many-particle entanglement.
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