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Recently, Wireless Sensor Networks (WSNs) have emerged as one of the most exciting fields. However, the common challenge of all sensor network applications remains the vulnerability of sensor nodes due to their characteristics and also the nature of the data generated which are of large volume, heterogeneous, and distributed. On the other hand, the need to process and extract knowledge from these large quantities of data motivated us to explore Data mining techniques and develop new approaches to improve the detection accuracy, the quality of information, the reduction of data size, and the extraction of knowledge from WSN datasets to help decision making. However, the classical Data mining methods are not directly applicable to WSNs due to their constraints. It is therefore necessary to satisfy the following objectives: an efficient solution offering a good adaptation of Data mining methods to the analysis of huge and continuously arriving data from WSNs, by taking into account the constraints of the sensor nodes which allows to extract knowledge in order to make better decisions. The contributions of this thesis focus mainly on the study of several distributed algorithms which can deal with the nature of sensed data and the resource constraints of sensor nodes based on the Data mining algorithms by first using the local computation at each node and then exchange messages with its neighbors, in order to reach consensus on a global model. The different results obtained show that the proposed approaches reduce the energy consumption and the communication cost considerably which extends the network lifetime. The results also indicate that boundary. ......

the proposed approaches are extremely efficient in terms of model computation, latency, reduction of data size, adaptability, and event detection.
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Les réseaux de capteurs sans fil (RCSFs) déterminent un axe de recherche en plein essor, puisqu'ils sont utilisés aujourd'hui dans de nombreuses applications qui diffèrent par leurs objectifs et leurs contraintes individuelles. Toutefois, le dénominateur commun de toutes les applications de réseaux de capteurs reste la vulnérabilité des noeuds capteurs en raison de leurs caractéristiques et aussi de la nature des données générées. En effet, les RCSFs génèrent une grande masse de données en continue à des vitesses élevées, hétérogènes et provenant 

INTRODUCTION

Wireless Sensor Networks form an emerging technology of networks that can revolutionize and improve our everyday lives. WSNs comprise large numbers of small wireless devices deployed over a physical environment that actively cooperate in order to accomplish one or more tasks. The sensor nodes compromise a set of sensors which can measure large and diverse information, such as light, temperature, motion, humidity, pressure, and many others, for a better understanding of the environment. The benefits of the WSNs such as low cost, easy deployment, high fidelity sensing, and self-organization allow their use in various applications including environmental monitoring [START_REF] Sharma | Wireless sensor networks for environmental monitoring[END_REF], habitat tracking [4],

health monitoring [START_REF] Jafari | Wireless sensor networks for health monitoring[END_REF], and military surveillance [START_REF] Djurivsić | A survey of military applications of wireless sensor networks[END_REF]. These applications have the ability to generate a large amount of measurements and normally involve sending large sensed data to a base station for post analysis. The collected data could sometimes be locally processed before being sent in the network, and could involve intermediate sensor nodes for further processing of the data. Finally, the sensory data are integrated centrally at the base station to conclude the status of the observed environment at the base station. The base station performs an efficient detection based on traditional processing methods. These conventional approaches, however, suffer from many limitations due to resource constraints of the sensor nodes. The computational power and speed of the base station can create a processing blockage and can cause a failure of the total system if the base station fails. In addition, relaying all sensed data of geographically dispersed sensor nodes to a centralized base station is generally ineffective as it requires a significant communication overhead leading to resource depletion and reduction of lifetime of the network.

Motivations

The field of wireless sensor networks has become a focus of intensive research in recent years and various theoretical and practical questions have been addressed.

The purpose of WSNs is not just the reliable transmission of sensed data from the environment to the base station, but also the detection and the prediction of events from large sets of sensed data, such as forest fire detection. Most of the current methods focus on solving the problem of managing the resources efficiently for a small WSN, with studies conducted on simulation. Interpreting global events from large volume, heterogeneous, and distributed datasets, motivated us to explore the Data mining techniques and to develop new approaches to improve the detection accuracy, the quality of information, the reduction of data size, and extraction of knowledge from WSN datasets for decision making. In addition, to improve the various performances and operations of the WSN. Data mining techniques are traditionally designed to efficiently process static datasets, and to compute their representing model. However, these Data mining approaches despite handling large datasets, and could not be adapted to the distributed nature of the WSNs.

Further, online, real-time, and distributed data pro cessing are therefore required taking into account the resource constraints of sensor nodes.

Distributed Data mining algorithms offer an alternative approach to address the problem of processing data using distributed resources. It pays careful attention to distributed resources of data, computing, energy and communication in order to use them in an optimal solution. Distributed Data mining methods provide solutions to these constraints by placing aspects of the Data mining process such as data aggregation, and modeling into individual sensors, as well as clusters of sensors. These activities and the placement in the sensor network vary according to the type of Data mining techniques such as classification, prediction, association rules and clustering.

The main motivation for this thesis is how Data mining techniques can be used to address different issues of WSNs, focused in particular on the tradeoff between dynamic topology, data accuracy, event detection, latency, energy efficiency and network load in data collection tasks. This thesis also investigates a reduction of the amount of data transmitted over the network to eliminate redundancies and to extend WSN applications lifetime.

Problem statement

Given a distributed wireless sensor network system consisting of resource constrained sensor nodes i.e., with limited processing power, limited energy resource, small storage memory, with dynamic neighbors, organized as a huge network (up to thousands of sensor nodes), and with random deployment. Each node is tasked with processing local data using a distributed Data mining algorithm and updating the system regarding its acquired information, and local decision along with all other nodes in the system. This research aims to achieve many goals coherently, by exploiting the relationships within a large and continuously arriving sensor dataset in a WSN, discovering the hidden relationships between them, reducing the redundancies and data size, and achieving also the energy efficiency, event detection and global knowledge extraction capabilities. This research needs to develop some new distributed algorithms and Data mining techniques which can allow to model, to predict and to evaluate measurements and states of wireless sensor networks, and to detect useful information that exists in the physical environment in order to help decision making. Therefore, our research aims at answering the following questions :

• It is possible to develop a new method that is distributed, consuming less resources, producing high quality results, and that has low complexity ?

• It is possible to develop adaptive Data mining algorithms to address the dynamically changing requirements of a WSN and address the challenges corresponding to energy efficiency, event detection accuracy, and logical topology ?

• It is possible to update Data mining techniques for extracting useful knowledge and patterns in real-time from the data of all nodes, and to be executed in the system with all nodes participating in a collaborative distributed computation with efficient use of computational power, energy, and communication ?

• It is possible to process huge, heterogeneous, geographically distributed datasets and to reduce redundancy while efficiently using the sensor nodes' resources ?

Objectives

The ultimate objective of this thesis is to develop decision making systems by means of Data mining techniques and wireless sensor networks in order to improve

WSNs operations and extract useful information and knowledge for the end-users.

This thesis is open for various application domains and has been achieved with the following objectives :

• Design of an energy-efficient communication algorithm for wireless sensor networks by exploiting local information and cooperative decision of sensor nodes that can adapt to the dynamicity of the network in the case of a node failure, for example.

• Design of an efficient data reduction technique which can represent the information without redundancies within fewer subsets in order to reduce al a r g ea m o u n to fs e n s e dd a t a .

• Development of an energy-efficient distributed clustering technique to analyze large, heterogeneous and distributed datasets based on the spatial correlation without any required assumptions during data collection for WSNs.

• Improvement of a WSN topology based on sensor node constraints that can handle the scalable network, data aggregation and communication by dividing the network into different hierarchical levels.

• Development of energy-efficient adaptive classification techniques for event detection in which the sensors are able to ensure a local computation which create the possibility of training, uses predictors in a distributed way and achieves coherently the objectives of low complexity, high accuracy, and low latency.

Contributions

Our work aims to overcome the challenges imposed by the WSN and the Data mining techniques through data management while extracting useful information for decision making in real life applications. In addition, we favor the distributed processing applied on local data and based on low complexity algorithms and adaptable Data mining techniques for the extension of the network lifetime, event detection, data collection and their reduction. Those are the pillars of interest of this thesis that analyzes the existing research and proposes efficient solutions and improved algorithms. The specific contributions of the thesis are:

• An e wg e n e r i ce ffi c i e n ta l g o r i t h m ,c a l l e dLeast Polar-angle Connected Node (LPCN),isproposedtofindtheboundaryv erticesofaconnectedEuclidean graph (data points), which can be used to design and analyze WSN systems and reduce sensed data in combination with distributed Data mining algorithms. In addition, based on this algorithm, we have proposed a new distributed solution called D-LPCN for boundary nodes detection in WSN, optimizing energy consumption, computational power, and communication bandwidth and monitoring the boundaries of strategic and sensitive sites.

We have shown the effectiveness and the low complexity of these algorithms compared to the existing methods. We have also shown that the D-LPCN algorithm can provide the highest communication savings which extends the network lifetime, the adaptability to any topology architecture and fault tolerance.

• A new approach that addresses the data collection, within huge data volumes generated from the WSN is proposed. the similarity between datasets generated by neighboring nodes, by merging the overlapping contours and deleting included or identical contours, and then sending to the higher level within the tree topology. The objective is to detect similarities between nearby sensor nodes, and to integrate their captured data into one record while preserving information integrity. At the last level, the base station merges the received contours to obtain the global view of the network. Our experimental results indicate that the proposed approach is flexible, energy saving, appropriate for the aggregation of large datasets arising at different nodes, and that it reduces the original size of the datasets compared to the existing methods.

• A high spatio-temporal resolution for a forest fire danger monitoring WSN application using the distributed classification Data mining WSN model is proposed. In this kind of time critical applications, the event must be detected early with high accuracy and low latency in order to reduce the threats and damages. The idea is to partition the node set into clusters of sensors so that each node periodically acquires temperature, light, humidity and smoke data to individually detect fires using prediction algorithms. Once afi r ei sd e t e c t e d ,t h ec o r r e s p o n d i n gn o d ew i l ls e n da na l e r tt oi t sc l u s t e rhead. The cluster-head confirms the alert by receiving alerts from the sensors located at short distance area. This alert will then be routed via gateways and other cluster-heads to the sink in order to inform the firefighters. Using Data mining techniques in the process of pattern discovery in large data sets this is not often so easy. We have focused on a comparative analysis of various Data mining techniques in terms of energy consumption, processing time, and accuracy before to select a suitable algorithm, most appropriate for a particular application of fire detection. In comparison to its best rivals in the literature, extensive simulation results show that our approach provides af a s tr e a c t i o nt of o r e s tfi r e sr e d u c i n ga tt h es a m et i m et h eo v e r a l le n e r g y consumption of the network.

These contributions can be applied to WSN design and deployment for online distributed Data mining in WSN applications by an efficient use of resources.

Furthermore, this research provides a foundation for future investigation of huge and heterogeneous data processing for environmental monitoring.

Outline of Thesis

This manuscript is structured in two main parts: the first concerns the state of the art and the second describes our contributions. 

Publications

During this study, the following seven international peer reviewed publications have been produced that include international journal and conference proceedings. given to the resource constraints of the sensor nodes. In particular, we focus on the energy constraint to design appropriate methods which maximize the network lifetime. In addition, we will give a general view of the Data mining context and explain some important techniques. Following the description of both the WSN and Data mining contexts, we will present a classification of existing Data mining methods that enable the extraction of knowledge from continuous and rapid WSN datasets. In our work, we will focus on distributed techniques which are suitable to the nature of WSNs. A review of the foundations of each of these fields is presented below.

Wireless Sensor Networks

Rapid improvements in wireless communication and electronic technologies have enabled the development of tiny, low-cost, low-power, multi-functional devices, network communications. These nodes usually take more responsibility than the base station node or the gateway.

4. Power Unit : One of the most important components of a sensor node is the power unit. It is a source of energy which is produced by tiny batteries.

These batteries allow to feed the different units to perform their tasks. The requirement in a WSN is that the size of the battery should be as small as possible and the energy will be efficient, for example, if two small AA sized batteries of 1.2V each are employed as energy source.

Standards and simulators for WSNs

Wireless sensor standards have been developed in order to build large low cost products to facilitate the development of different applications for WSNs. These standards present the functions and protocols necessary for sensor nodes to interface with a variety of networks. For this goal, a lot of efforts have been made to build standards such as IEEE 802.15.4 [START_REF] Gutierrez | Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (lr-wpans)[END_REF], ZigBee [START_REF] Alliance | Zigbee 2007 specification[END_REF], Wibree [START_REF] Yick | Wireless sensor network survey[END_REF],

WirelessHART [START_REF] Rawat | Wireless sensor networks: a survey on recent developments and potential synergies[END_REF]. The following paragraphs describe the standards used in this thesis in more detail. • Two addressing modes: 16 bit short and 64 bit IEEE addressing.

• Data rates of 250 kbps (worldwide), 40 kbps, and 20 kbps.

• CSMA-CA is a protocol which deals with transmissions after a collision has occurred.

• Automatic network establishment by the coordinator.

• Fully handshaking proto col for transfer reliability.

• Some 16 channels in the 2.4 GHz band, 10 channels in the 915 MHz band, and 1 channel in the 868 MHz band.

• Power management to ensure a low power consumption.

The ZigBee Standard :

The ZigBee standard is maintained by the ZigBee Alliance [START_REF] Alliance | Zigbee 2007 specification[END_REF]. The ZigBee standard is developed on top of the IEEE 802.15.4 standard and defines the network and application layers.

It is a simple, low-cost, and low-power wireless communication technology used in many distributed applications. The ZigBee protocol provides mesh networking capabilities for 802.15.4 applications. In addition, it is able to deploy hundreds to thousands of devices together with different roles such as coordinator, router or end-device which is very important in WSNs.

There are many simulators in the literature to develop, simulate, and validate the proposed algorithms in WSNs, we can cite CupCarbon [START_REF] Mehdi | Cupcarbon: A multiagent and discrete event wireless sensor network design and simulation tool[END_REF], Tossim [14],

Contiki OS [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF], NS-2 [START_REF] Issariyakul | Introduction to network simulator NS2[END_REF], Castalia [START_REF] Fortino | Modeling and evaluation of the building management framework based on the castalia wsn simulator[END_REF], ...,etc. In the following, we describe some of these simulators which are used in our work.

CupCarbon [START_REF] Persepteur | Cupcarbon simulator[END_REF]isaSmartCityandInternetofThingssimulator. Itsobjective is to design, visualize, debug and validate distributed algorithms for monitoring, environmental data collection, and to create environmental scenarios, generally within educational and scientific projects. CupCarbon offers two simulation environments. The first simulation environment is a multi-agent environment [START_REF] Mehdi | Cupcarbon: A multiagent and discrete event wireless sensor network design and simulation tool[END_REF],

which enables the design of mobility scenarios and the generation of events such as fires and gas as well as the simulation of mobiles such as vehicles and flying objects [START_REF] Lounis | A cupcarbon tool for simulating destructive insect movements[END_REF]. The second simulation environment represents a discrete event simulation of wireless sensor networks which takes into account the scenario designed on the basis of the first environment. It allows to generate code for a real Arduino/XBee platform from the simulation.

Tossim is a discrete event simulator for TinyOS sensor networks [14]. It can simulate the behavior of a sensor within a WSN and upload programs ready to be integrated directly into TelosB [START_REF][END_REF]sensornodes. Inthesameway ,Contiki-OS [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF] is an open source and portable operating system designed specifically for resource limited devices such as sensor nodes. It brings the benefits of both events and thread execution models. It also supports a full TCP/IP stack via uIP and the programming abstraction "Protothreads".

Advantages of WSNs

Wireless sensor nodes offer numerous advantages over conventional wired sensors [START_REF] Patil | Overview of issues and challenges in wireless sensor networks[END_REF]. Sensor nodes can reduce delays in deployment and be used in many areas especially harsh and hostile environments where wired networks cannot be deployed. The availability of low-cost, reliability, accuracy, flexibility, wireless communication of sensor nodes have allowed their use in a wide range of diverse applications. In the following, a list of the advantages of WSNs is presented [START_REF] Gupta | Overview of wireless sensor networks: A survey[END_REF][START_REF] Patil | Overview of issues and challenges in wireless sensor networks[END_REF][START_REF] Indu | Wireless sensor networks: Issues & challenges[END_REF].

1. Monitoring improvement : WSNs can be deployed without fixed infrastructure, and are able to monitor any type of appliances in which to minimize human effort and working time. This is beneficial in terms of cost and delay to monitor the environment.

Easy deployment and scalability :

A WSN can include hundreds or thousands of nodes which can be deployed in remote or hard environments.

The sensor nodes are very small in size which allows to deploy them in any area to collect information that could not have been possible otherwise.

3. Self-organization : When sensor nodes are deployed to monitor a target area, they have the ability to organize themselves in a network, to discover the neighbor nodes and to build a network using multi-hop broadcast in a small amount of time.

Flexible network architectures :

A WSN is flexible in random situations, when an additional node is needed, which can join the network without any problem and thus provide applications with high reliability.

Improvement of accuracy and low latency :

In WSNs, the closely located sensor nodes can sense and collect data of the same event which wild to detect behaviors of animals, the impact of climate changes, or the conditions of a levee.

Military Applications :

Sensor network research was initially driven by military applications [START_REF] Gupta | Overview of wireless sensor networks: A survey[END_REF]f o re n e m yt r a c k i n g ,s u r v e i l l a n c e ,c o n t r o l , communications, and reconnaissance. and can be integrated into many devices to interact with each other and the external network via the internet, which allows end-users to manage home devices locally and remotely more easily.

Challenges of WSNs

The various range of WSN applications which are described in Section 2.2.4 gives rise to a number of interesting challenges due to the limited resources of the sensor node devices. For instance, nodes have to guarantee a longterm operation.

Some other applications might require high data accuracy and reliability. These challenges request a higher cycle of node activity and a higher computing power.

However, each sensor node in a WSN must confront the limitations in processing, storage, energy capabilities within single entities in order to assure efficient solutions. In the following, we describe the most relevant challenges in WSNs. 3. Random Deployment : Deployment [START_REF] Gupta | Design issues and challenges in wireless sensor networks[END_REF] is the implementation of a WSN in a real world location which can be either manual or random. In the case of an inaccessible or hostile region, sensors are dropped randomly from a helicopter or in some locations sensors are placed according to some topology.

In these conditions, the sensor nodes must autonomously organize themselves into a communication network before they start to perform a sensing task.

Several deployment issues must be taken into account to minimize energy consumption, minimize data loss and assure self-organization of the sensor nodes without human intervention.

Dynamic Environment :

The network is more vulnerable due to node failures, damages, additions, or energy depletion which cause frequent changes to the topology. The network connectivity can be disrupted frequently due to noise or error. Therefore, the maintenance of this connectivity is a challenge to be taken into account.

5. Data Aggregation : Consists in collecting the sensed data from multiple sensors and to transmit them to the base station for post processing. The data generated from sensors are sometimes redundant and huge which consumes high energy for transmitting them to the base station. So, we must take this constraint into account during data collection and transmission in order to assure high quality of information, reduce energy consumption, and eliminate redundant data.

6. Interpreting Data and Formation of Knowledge : The main challenges for data interpretation and knowledge extraction are to apply or to develop new methods able to make prediction and to extract hidden knowledge from the sensed data without being influenced by noisy or missing data, and outliers. The wrong interpretation of data can easily lead users not to understand the system. Therefore, it is necessary to develop methods that can convert the sensed data into usable knowledge [START_REF] Stankovic | Realistic applications for wireless sensor networks[END_REF].

7. Distributed Management : The large-scale and resource constraints of WSNs cause various difficulties for centralized algorithms, which are implemented at the base station to assure network management tasks such as routing or topology. If the base station fails, then the entire network will collapse. However, the reliability of the sensor nodes can be increased by using a distributed management. In distributed control, sensor nodes must collaborate with their neighbors to process the data and take decisions locally by themselves without any global knowledge. This method will not necessary lead to optimal algorithms [START_REF] Gupta | Design issues and challenges in wireless sensor networks[END_REF], but in comparison to centralized methods, they may be more energy-efficient, lead to better collection of data, assure a higher self-organization.

8. Heterogeneity : There are two types of WSN networks, homogeneous and heterogeneous [START_REF] Patil | Overview of issues and challenges in wireless sensor networks[END_REF]. In homogeneous networks, all nodes have the same capacity in terms of battery, storage, and processing unit. In heterogeneous networks, the nodes are not identical and do not have the same capability i.e., some nodes have more energy than others. The advantage here is an extension of the network lifetime which, beyond, can be increased significantly by forming cluster-heads which have the highest energy within their groups and which collect data from less powerful nodes.

Consequently, a WSN should be of heterogeneous nature, for routing, clustering, localization, and target tracking in the aim of maximizing the lifetime of the network.

Mobility :

The nodes in a WSN can move from one location to another [START_REF] Das | Coordination based motion control in mobile wireless sensor network[END_REF]. This movement of nodes gives the ability to sense, compute, and communicate like static nodes and to help in self-organization, data collection, and energy efficiency within the network. The mobility is addressed in some WSN applications such as localization of the nodes.

Then, the proposed solutions should be adaptive to dynamic networks with appropriate algorithms which take into account the nodes leaving and joining the network.

10. Scalability : The increase in the number of sensor nodes in the network causes many changes in node density, network size and topology. If the number of sensor nodes deployed in the sensing area is of important order, the challenge is to keep the network functioning appropriately.

Data mining

In recent years, Data mining has attracted a great attention in processing of data, due to the wide availability of enormous amounts of data, the imminent need to develop powerful means for analysis, and the interpretation of such data in order to extract interesting knowledge that could help in decision making. This

• Step 4: Data integration : is used where multiple data sources may be combined.

• Step 5: Data selection : is used to retrieve data relevant to the analysis task from the database.

• Step 6: Data transformation : is used to transform or consolidate data into appropriate forms by performing summary or aggregation operations.

• Step 7: Data mining : is an essential process where intelligent methods are applied in order to extract data patterns from datasets, including classification rules or trees, regression, and clustering. The user can significantly help the Data mining techniques by correctly performing the preceding steps.

• Step 8: Pattern evaluation : allows to identify the truly interesting patterns representing knowledge based on some interesting measures. This step can also involve visualization of the extracted models.

• Step 9: Knowledge presentation : are visualization and knowledge representation techniques which are used to present the mined knowledge to the users. This knowledge is used to understand a system and to predict the actions, or simply for documenting and reporting a system to interested parties. This process also includes checking for resolving potential conflicts with previously obtained (or extracted) knowledge.

The Data mining step presents the interesting patterns to the user which may be stored as new knowledge. Note that according to this view, Data mining is only one step in the entire process, albeit an essential one because it uncovers hidden patterns for evaluation.

In the following, we discuss the general Data mining techniques and functionalities, with a focus on the Data mining techniques related to our area of research.

Classification and Prediction

Classification and prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict future data trends which can provide a better understanding of the large data.

Classification is defined as the process of discovering a model that describes and distinguishes the data classes [START_REF] Sorot | Data mining techniques and research challenges and issues[END_REF]. Neighbor (KNN), ..., etc. [START_REF] Balabin | Gasoline classification using near infrared (nir) spectroscopy data: comparison of multivariate techniques[END_REF].

Prediction can be viewed as a type of classification which can explain one thing based on the relationship between other things. The difference is that prediction means predicting a future state rather than a present state. In addition, predicted values are usually continuous whereas classifications are discrete [START_REF] Han | Data mining: concepts and techniques[END_REF]. Among the prediction techniques, we can cite the regression method [START_REF] Han | Data mining: concepts and techniques[END_REF].

Clustering

Similar to classification, clustering is the organization of data in classes. However, unlike classification, in clustering, class labels are unknown and it is up to the clustering algorithm to discover acceptable classes. Clustering is also called unsupervised classification, because the classification is not dictated by given class labels. The main aim of the clustering methods is to group the data objects according to some measure of similarity, so that the data objects in one group or cluster are highly similar to one another while being very different from the data objects belonging to the remaining clusters. In other words, the aim is to minimize the intra-class distance and maximize the inter-class distance [START_REF] Han | Data mining: concepts and techniques[END_REF]a s shown in Figure 2.6. The similarity or dissimilarity between data objects based Frequent patterns are patterns that occur frequently in datasets [START_REF] Han | Data mining: concepts and techniques[END_REF]. There are many types of frequent patterns, including itemsets, subsequences, and substructures. A frequent itemset typically refers to a set of items that frequently appear together in a transactional dataset. The aim of mining frequent patterns is to discover interesting associations and correlations within data. Association rules study the frequency of items occurring together in transactional datasets based on at h r e s h o l dc a l l e dsupport, and identify the frequent itemsets. Another threshold called confidence is used to identify the accuracy of association rules, which represents the conditional probability that an item appears in a transaction when another item appears. The association rules have to satisfy the minimum support and the minimum confidence. Many techniques for frequent itemset mining are proposed in the literature which are divided into three major approaches : Apriori algorithm [START_REF] Agrawal | F astalgorithmsforminingassociationrules[END_REF], frequent-pattern growth [START_REF] Han | Mining frequent patterns without candidate generation[END_REF], and vertical data format [START_REF] Zaki | Charm: An efficient algorithm for closed itemset mining[END_REF].

Data mining techniques for WSNs

WSNs are an emerging area of research applied in many application domains.

These applications require real-time monitoring and generate huge volumes of dynamic, geographically distributed and heterogeneous data. The collected data can be of potentially large quantity, redundant, of high dimensionality, and of distributed nature. For these reasons, Data mining algorithms play an important role for data management and decision making. Therefore, these data must be analyzed and transformed to usable information efficiently. In this section, we would like to survey some previous works related to this topic. We select some of them to introduce and categorize them by Data mining tasks that are applied in different applications of WSN to mine sensed data. We note that these categories do not cover all the aspects in WSNs, but they are fundamental to all other works in the field. In addition, we also present the challenges and the limitations of Data mining techniques applied to WSNs.

Challenges of Data mining in WSNs

Sensor nodes generate high speed arriving data that need to be processed in real time by Data mining algorithms. Due to the nature of sensor data and their specific characteristics, conventional Data mining techniques are not directly applicable to WSNs. Table 2.1 shows the global differences between traditional and WSN data processing [START_REF] Mahmood | Data mining techniques for wireless sensor networks: A survey[END_REF]. As we can see from The main challenge of Data mining techniques for WSNs is to satisfy the mining accuracy requirements with a minimum resource consumption of sensor nodes.

• Energy efficiency : Sensor nodes consume a huge percentage of their energy by sending and/or receiving datasets [START_REF] Cantoni | Challenges for data mining in distributed sensor networks[END_REF]. Therefore, a local processing of sensed data or the use of efficient data aggregation techniques are crucial to assure the operability of the WSN. The energy issue has been the main motivating research challenge in data processing in WSNs where most of the proposed techniques in the literature have addressed this issue.

• Communication efficiency : The exchange of data is limited by the lack of bandwidth or unreliable connection. Then an appropriate data aggregation technique is important to reduce the communication overhead.

• Processing power : Sensor nodes have limited processing capacity to perform large computational tasks. Therefore, the selected Data mining techniques must be of low complexity according to the processing capability of a sensor node. We note that most of the research studies done in this area have used simulation techniques due to the limitations of the documentation of processors of sensor nodes.

• Memory size : As mentioned above, the traditional Data mining techniques process data which are stored in a large memory. However, limited availability of memory on sensor nodes makes these techniques unsuitable for WSNs, and we have to find the best processing techniques to solve this issue.

Huge and fast collected data :

In many WSN applications, data arrive with higher speed than we are able to process them. In addition, the spatial and temporal nature of sensor data play an important role in these applications. These reasons cause many challenges for the Data mining techniques to process sensed data. Therefore, we must use Data mining techniques which can cope with continuous, rapid, and changing data streams. To deal with these challenges, researchers have mo dified the classical Data mining techniques and also proposed new Data mining algorithms to handle the data generated from sensor nodes. In the following section, we will provide a general view of these techniques.

Taxonomy of Data mining techniques for WSNs

In this section, different classification schemes for existing approaches designed for Data mining techniques in WSNs are presented. The first classification is

given by [START_REF] Mahmood | Data mining techniques for wireless sensor networks: A survey[END_REF]. As shown in deal with large-scale data from WSNs. We must also define a role for each node based on its capacities and reduce the size of the data to be transmitted in order to maximize the lifetime of the network. Consequently, we can help to improve the WSN lifetime, to deal with large amounts of data obtained from WSNs, and to extract a maximum information and knowledge from the environment.

However, in centralized approaches, a WSN generates a huge amount of data, and communication can create a loss of communication bandwidth and bottlenecks.

In our research, we take into account the data processing in terms of processing time, energy consumption, storage and communication and their impact on the choice of Data mining algorithms. In addition to all criteria of WSNs, we take into account the nature and the type of WSN applications in order to decide on the architecture for choosing the Data mining algorithm.

In the following, we present a sampling of two important topics of distributed Data mining algorithms for WSNs which are presented on data and node clustering and data classification.

Classification

Classification is one of the most important tasks in WSNs. The objective of this technique is to develop energy efficient distributed classification algorithms for large-scale WSNs. These techniques are able to train classifiers which are a good optimization in decision-making processes and transmit the results to the base station. This greatly reduces the communication and improves energy efficiency.

However, we must choose the best classification or prediction accuracy, and the most appropriate for a particular WSN application, and cope to large quantities of sensed data. This kind of analysis provides an opportunity for Data mining researchers to develop more advanced methods for handling some of the specific issues related to sensed data. Table 2.3 shows and discusses already existing distributed classification algorithms for WSNs. Works well in homogeneous networks.

LEACH [START_REF] Heinzelman | Energyefficient communication protocol for wireless microsensor networks[END_REF] Clustering Hierarchy nodes for aggregating data.

Generates clusters based on the size of the sensor network.

A drawback in this protocol is the prior knowledge of the topology of the network.

CODA [START_REF] Lee | Data aggregation for wireless sensor networks using self-organizing map[END_REF] Cluster based self organizing. Data Aggregation.

Aims to aggregate sensor data in clusters. The nodes are trained to have the ability to classify the sensor data.

Increases the quality of data and reduces data traffic, and is energy-conserving.

Conclusion

In this chapter, we have introduced the background of the Data mining techniques in the context of WSNs. First, we have presented the architecture of WSNs.

Second, the hardware platforms, operating systems, wireless advantages, challenges and applications of the WSN are described. We have also described some 

Introduction

The improvement of information technology has led to the continuous, rapid and huge collection of data. Knowledge discovery is a relevant process to identify valid, interesting and potentially valuable patterns in data [START_REF] Xia | Border: efficient computation of boundary points[END_REF]. The urgent need for efficient analysis tools to discover information from these data led to develop many 

LPCN

Finding the polygon hull (contour) in a connected Euclidean graph can be considered as the problem of finding a concave hull, with the exception that at any iteration a vertex can be chosen only if it is connected to the vertex chosen at the previous iteration. One of the methods that can be used for this kind of problems is Jarvis' algorithm [START_REF] Jarvis | On the identification of the convex hull of a finite set of points in the plane[END_REF] which allows to find the convex hull and which must be adapted because it does not take into account the connections of the vertices (data points). In this work, we propose a new algorithm allowing to find the boundary vertices of a connected Euclidean graph, where we try to find a set of vertices allowing to represent the geometric shape of the graph in the form of a polygon hull, i.e., a simple polygon formed by edges of the graph such that all vertices of the graph are either on the polygon or surrounded by it. More precisely, we are looking for a closed cycle of minimum length in the graph such that all vertices are either on or surrounded by that cycle.

Related work

In the literature, there are many useful algorithms allowing to find either a convex or a polygon (concave) hull for a given set of points in the plane. Table 3.1

summarizes the major approaches found in the literature regarding convex or concave hull determination algorithms, also, in terms of time complexity and dimensionality, where n is the total number of points, k the maximum degree of a point, h the number of points on the convex hull, d the dimension of the considered space, and where r is a number that depends on the dimension d of the considered space, which is equal to d 2 for a 3-dimensional space. 

X O(n log n) 2D Jarvis [59] X O(nh) 2D Quick-hull [61] X O(n 2 ) 2D Incremental [62] X O(n (d+1)/2 ) Multidimensional TORCH [63] X O(n log n) 2D NICP [64] X O(n + n log n) 2D Requires the Quick-hull algo- rithm. Mei [65] X O(n log n) 2D GPU-

LPCN algorithm

In this section, we will present the proposed LPCN algorithm. The problem of the boundary detection can be formulated as follows. Given an undirected graph G =( V, E), where V = {v 0 ,v 1 ,...,v n-1 } is the set of vertices of G and E = {e 0 ,...,e m-1 } its set of edges, the objective is to determine a smallest closed The pseudo-code of the LPCN algorithm is given by Algorithm 1. First, it starts from a vertex having the minimum x-coordinate which is always part of the solution (lines 2 and 3). In each iteration of the repeat loop section that starts from line 7, the algorithm will search for the next vertex v min of the polygon hull that will follow the currently found vertex v c of the current polygon hull. This is done by calculating the angles formed by the edge {v c ,v p } and all edges {{v c ,v}/v 2 A}, where v p is the previously found vertex and A is the set of neighbors of v 2 A of v c which verify the condition that each edge {v c ,v} with v element of A does not intersect the currently found polygon hull.

Simulation results

Let us consider a graph with n vertices, and a boundary of h vertices, and let k denote the maximum degree of G.T h e nt h ec o m p l e x i t yo ft h eL P C Na l g o r i t h mi s O(kh 2 ), since in each iteration we are searching for an intersection with the edges of the polygon found in previous iterations, i.e., we have to include a factor of h.

D-LPCN

In this section, we present a new distributed algorithm called D-LPCN which allows to find the boundary nodes of a WSN in order to make a network operating efficiently taking into account the limited resources and the need to exchange information with minimum communication. As energy consumption is a limiting factor for the lifetime of a sensor node, the communication between nodes has to be minimized. To overcome this limitation, we propose in this solution to activate the sensing units of the whole network, to activate the radio module of the network's boundary nodes to ensure the communication between them, and to keep the radio module of the other nodes asleep periodically (duty cycling) in order to preserve their energy. Indeed, if all sensor nodes of the inner region participate actively in communication, an important size of data transmitted between nodes leads to an important energy consumption, and thus to an important reduction of the network's lifetime.

The proposed algorithm is based on the localization information of the nodes that only need to communicate with their one-hop neighbor nodes. Many existing methods can be used for the location information. Traditionally, a GPS receiver is the main device used to localize sensor nodes [START_REF] Xu | Localization of wireless sensor networks with a mobile beacon[END_REF], especially when high accuracy is needed. However, it is very energy consuming. Many other localization techniques have been presented in the literature, such as TOA, TDOA, RSSI, AOA, HIRLOC, SERLOC, and ADLA [START_REF] Alrajeh | Localization techniques in wireless sensor networks[END_REF]w h i c hu s et h epo w e ro ft h er e c e i v e ds i g n a l si no r d e rt o determine the location. Other methods use hybrid sensor nodes where only some sensor nodes are equipped with GPS, called anchor nodes [START_REF] Laouid | A distributed localization protocol for wireless sensor networks[END_REF]orbeaconnodes [START_REF] Xu | Localization of wireless sensor networks with a mobile beacon[END_REF].

These nodes will be used to determine the location of other un-localized nodes.

The accuracy of these methods depends on the number of anchor nodes.

Related Work

In order to find the boundary nodes of a wireless sensor network several methods have been developed as [4, [START_REF] Dinh | Topological boundary detection in wireless sensor networks[END_REF][START_REF] Zhang | Detecting coverage boundary nodes in wireless sensor networks[END_REF][START_REF] Kröller | Deterministic boundary recognition and topology extraction for large sensor networks[END_REF][START_REF] Funke | Hole detection or: how much geometry hides in connectivity?[END_REF][START_REF] Luthy | Perimeter detection in wireless sensor networks[END_REF][START_REF] Sahoo | Boundary node selection and target detection in wireless sensor network[END_REF][START_REF] Huang | An improved connectivity-based boundary detection algorithm in wireless sensor networks[END_REF][START_REF] Shukla | Angle based double boundary detection in wireless sensor networks[END_REF][START_REF] Lara-Alvarez | Detecting the boundary of sensor networks from limited cyclic information[END_REF][START_REF] Sahoo | Target tracking and boundary node selection algorithms of wireless sensor networks for internet services[END_REF][START_REF] Chu | Location-free boundary detection in mobile wireless sensor networks with a distributed approach[END_REF][START_REF]Decentralized boundary detection without location information in wireless sensor networks[END_REF][START_REF] Das | Sensor localization and obstacle boundary detection algorithm in wsn[END_REF][START_REF] Zhao | The detection of boundary nodes and coverage holes in wireless sensor networks[END_REF][START_REF] Senouci | Detecting boundary nodes in wsn[END_REF][START_REF] Khan | Hop-based approach for holes and boundary detection in wireless sensor networks[END_REF][START_REF] Khedr | Perimeter discovery in wireless sensor networks[END_REF][START_REF] Kundu | Event boundary detection and gathering in wireless sensor networks[END_REF]. They can be classified into three categories: geometrical, statistical, and topological. The geometrical methods [START_REF] Zhang | Detecting coverage boundary nodes in wireless sensor networks[END_REF][START_REF] Funke | Hole detection or: how much geometry hides in connectivity?[END_REF][START_REF] Chu | Location-free boundary detection in mobile wireless sensor networks with a distributed approach[END_REF] are the most accurate because they use the location information of each node to determine the boundary node. Statistical methods make assumptions on the probability distribution of the node deployment, and identify the boundary nodes based on statistical properties under certain network conditions. The topological methods [START_REF] Dinh | Topological boundary detection in wireless sensor networks[END_REF][START_REF] Kröller | Deterministic boundary recognition and topology extraction for large sensor networks[END_REF][START_REF] Jing | Boundary detection method for largescale coverage holes in wireless sensor network based on minimum critical threshold constraint[END_REF] use the connectivity information to determine the boundary nodes [START_REF] Huang | An improved connectivity-based boundary detection algorithm in wireless sensor networks[END_REF]. These methods allow the exchange of connectivity information among neighbor nodes, and they detect the boundary nodes without any information on their location. Generally, they outperform the statistical methods [4, [START_REF] Huang | An improved connectivity-based boundary detection algorithm in wireless sensor networks[END_REF][START_REF] Huang | Recognizing boundaries in wireless sensor networks based on local connectivity information[END_REF].

We have observed that some of these algorithms work with planar networks or that they do not take into account the crossings between edges which can lead to blocking situations arising from specific subgraphs or to cycles producing an infinite loop. We have illustrated these situations as part of our work in [START_REF] Bounceur | Finding a polygon hull in wireless sensor networks[END_REF]an d shown how to avoid them. We have also observed that in general they do not give the optimal boundary in terms of the number of nodes. 

D-LPCN Algorithm

In this section, we will present the main steps of the proposed distributed algorithm for the discovery of the boundary nodes in a WSN. First, we introduce some definitions and primitives. Then, we present our Start-node algorithm allowing to launch the proposed D-LPCN algorithm, which will be presented thereafter. 

Definitions and Primitives

We assume that the communication b etween two sensor no des is symmetrical.

In this case, a WSN can be modeled as an undirected graph G =( S, E), where S = {s 1 ,s 2 ,...,s n } is the set of sensor nodes, n =| S | their total number and E the set of communication links. The link between two nodes can be defined as follows: The neighbor nodes N (s i )o fag i v e nn od es i are the nodes that communicate with it.

e ij = 8 
N (s i )={s j /e ij =1,j =1, ..., n and j 6 = i}

(3.2)
For a b etter understanding of the prop osed algorithm, we define in Table 3.3 some message primitives and their definitions and in Table 3.4 the functions used in the algorithm. Note, that the proposed algorithm works in the case of bidirectional communication in order to obtain the optimal boundary nodes and every node knows its location in space in terms of (x, y)c oo r d i n a t e s . 

Determining the Starting Node

In this section, we will present a distributed algorithm that allows to determine a node with minimum x-coordinate in a network. This algorithm is based on the Minimum Finding algorithm presented in [START_REF] Santoro | Design and analysis of distributed algorithms[END_REF][START_REF] Lynch | Distributed algorithms.M o r g a n K a u f m a n n[END_REF]w h i c hr e l i e so nt h et r e ebased broadcast algorithm. The aim of this algorithm is to determine the starting node of the D-LPCN algorithm which will be presented in Section 3.3.2.T h e principle of the Start-node algorithm can be described as follows. First, each node of the network determines locally its x-coordinate and assigns it to the variable

x min assumed to represent the minimum x-coordinate of the network. Then, it will broadcast it and wait for other x min values coming from its neighbors. If a received value x min is less than its local x min value then this one will be updated and broadcasted again. This process is repeated by each node as long as a received value is less than its local x min value. After a certain time t max ,t h e r ew i l lbeo n l y one sensor node that has not received a value that is less than its local x min value.

This node is at the extreme left of the network. It will be considered as the starting node of the D-LPCN algorithm. The pseudo-code of this process is given by Algorithm 2,w h e r et 0 is the time of the first execution of the algorithm, which can correspond to the first powering-on of a sensor node, t c the current local time of a sensor node, and t max the maximally tolerated running time of the algorithm from the first execution to the current time of a sensor node. x =r e a d ( ) ;

7: if (x<x min ) then 8:
first node = FALSE;

9:

x min = x; t c =g e t C u r r e n t T i m e ( ) ;

13: until (t ct 0 >t max )

Calculating the time complexity of this MinFind algorithm will help to set the value of t max .T od ot h i s ,l e tu sc o n s i d e ral i n e a rn e t w o r kw i t hn nodes representing the worst case. The node with minimum x-coordinate, which is on the extreme left, will send only 1 message and will receive only 1 message. However, the node which is on the extreme right will receive n -1m e s s a g e sa n dw i l ls e n dn -1 messages to send the received and assumed x min coordinate, because it is the node with the largest x-coordinate, and thus, each of the other nodes, except the extreme left one, has at least one node on its left.Therefore, these nodes will systematically send a message to broadcast the newly received x min . Altogether,

• Step 8 (lines 28 to 23): The reception of an "SN" message by a node means that this node has been selected as a boundary node by its previous boundary neighbor node. This node will then restart the process of finding the next boundary node by broadcasting a "CS" message.

Finally, Algorithm 3 stops when the first boundary node is selected a second time with an "SN" message. This algorithm, as it is presented, will continue to determine the boundary nodes continually. If we want to add the stop condition, we have just to add the following code after line 28:

if (first node) then STOP; end if
To b etter explain how this algorithm works, we will use the example of Next, each neighbor node S2,S3,S4andS7, which receives the "AC" message, sends a "CS" message (Steps 5 and 6 ) to the boundary node S1 (cf. send(c id+"|"+"AC", *); send(c id+"|"+"CS"+"|"+c coord, id); CupCarbon [START_REF] Mehdi | Cupcarbon: A multiagent and discrete event wireless sensor network design and simulation tool[END_REF], Tossim [14], and Contiki OS [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF]. We use the Contiki simulator in our work because it is able to accurately measure the energy consumed by real sensor nodes when executing the D-LPCN algorithm. This option is done using the Powertrace tool [START_REF] Dunkels | Powertrace: Networklevel power profiling for low-power wireless networks[END_REF]. to 28.6µJ for the reception of one byte. To profile the power consumed by the sensor nodes, we have used the Powertrace tool [START_REF] Dunkels | Powertrace: Networklevel power profiling for low-power wireless networks[END_REF]w h i c he s t i m a t e st h ee n e r g y consumption with an accuracy very close to the real one. Experiments in [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF] show that the energy consumption obtained by the Powertrace tool are very close with 94% to the energy consumption of a real device. Powertrace calculates the power consumption of the local node based on the monitoring of the power state.

Then, this value is encapsulated according to different activities like reception or transmission of packets, computation, idleness,..., etc. The energy consumption is computed in mW as follows:

E = Energest V alue ⇥ Current ⇥ V oltage RT IMER SECOND ⇥ Runtime (3.3)
where Energest V alue is the difference between the number of ticks in two time Overall, we can conclude that the distributed version is more useful than the centralized one. The calculations that are done in each sensor node are not energy consuming. The energy consumption is significantly improved by reducing the communications between sensor nodes. According to [START_REF] Mao | Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking[END_REF], the energy required for transmitting a single bit could be used to execute 1000 to 2000 instructions.

The complexity of the centralized version is equal to O(ln 2 )w h e r en is the total number of sensor nodes, l the number of messages sent in multiple hops from the node s i to the sink or from the sink to any other node. The square comes from the exchanged messages that can be done in both directions. However, the complexity of the distributed algorithm is O(kh), where k is the maximum degree of the network and h the number of the boundary nodes. This complexity can be further improved by increasing the number of starting nodes. If this number is equal to m then the new complexity is given by O(kh/m).

Other variants

The D-LPCN algorithm can be implemented with some minor modifications allowing to increase the speed of the algorithm which can be very useful in the case of applications where this parameter is important. We propose to start the algorithm from several starting nodes instead of just one, which all have to be boundary nodes. As shown by Figure 3.20,t h en e t w o r ki sd i v i d e di n t ot w op a r t s and two starting nodes are chosen (S 1 and S 9 ). The algorithm stops when all starting nodes have been visited twice. The same process can be duplicated.

Finally, it is possible to choose any number of starting nodes. However, we may end up with situations where the algorithm stops without finding the final boundary nodes.

Another variant of the D-LPCN algorithm starts with a boundary node from which two other boundary nodes will be chosen. As shown by Figure 3.21,t h e first one is chosen using the minimum polar angle (in a clockwise direction) and the second one is chosen using the maximum polar angle (which also represents the node with the minimum angle in the anticlockwise direction).

improve the speed of finding the boundary nodes. However, as the stopping condition is based on visiting the starting node twice, it is possible to get such a situation for all starting nodes without finding the final boundary nodes.

Conclusion

In and send data from sensor nodes of the network to the base station (BS). Then these data will be further processed to provide all kinds of service or strategic analysis for the users. The difference between such enormous data transmissions and the limited energy with bandwidth constraints on sensors motivates the need to combine all data into a high-quality but small set by using data aggregation or data clustering in WSNs [START_REF] Rajagopalan | Data-aggregation techniques in sensor networks: A survey[END_REF].

One simple way to process the data collected from the sensors is to perform a post analysis on the centralized task in the base station. However, the transmission of all these redundant data to the base station, which can be obtained by traditional algorithms, increases the energy consumption, the communication costs, and the computational complexity. Therefore, the application of distributed techniques is required. Many distributed Data mining techniques are proposed to deal with this problem such as distributed association rules [START_REF] Mahmood | Data mining techniques for wireless sensor networks: A survey[END_REF][START_REF] Das | A novel association rule mining mechanism in wireless sensor networks[END_REF]anddistributed classification [START_REF] Fasolo | In-network aggregation techniques for wireless sensor networks: a survey[END_REF][START_REF] Saoudi | I n t e l l i g e n td a t a mining techniques for emergency detection in wireless sensor networks[END_REF][START_REF] Saoudi | Data mining techniques applied to wireless sensor networks for early forest fire detection[END_REF]. However, only few studies concern distributed clustering for the analysis of large, heterogeneous and distributed datasets in WSNs [START_REF] Yeo | Data correlation-based clustering in sensor networks[END_REF][START_REF] Guo | Real time clustering of sensory data in wireless sensor networks[END_REF],

which motivate us to search for a new approach using clustering algorithms and information sharing with single-hop neighbors only in order to process and analyze the dataset more accurately and efficiently.

In this chapter, we propose a new distributed data clustering approach for WSNs, in which the network is flexible and self-organized forming a tree topology.

Rather than communicating each individual sensor measurement to a central node for analysis, each sensor node will cluster its local dataset using the hierarchical agglomerative clustering to get the clusters´contours. Then it can send the local results representing the boundary points of its clusters rather than the whole dataset to its parent (cluster-head). Moreover, each intermediate sensor node (parent) merges the collected contours from its child nodes. This aggregation is repeated by each cluster-head in the tree topology of the network until the base station is reached to build global results. Using this approach, our distributed data clustering technique can minimize communication overhead, which is a major source of energy consumption for sensor nodes, and also avoid to process the redundant data due to their spatial correlation [START_REF] Ma | Distributed clustering-based aggregation algorithm for spatial correlated sensor networks[END_REF].

This chapter is organized as follows: the next section discusses related work on data clustering in WSNs. Section 4.3 presents and discusses the proposed approach. Section 4.4 presents the implementation and the discussion of our experimental results. Finally, we conclude the chapter with Section 4.5.

Related Work

There is already a substantial body of research related to clustering in sensor networks. Most of these studies are focused on clustering sensor nodes such as LEACH [START_REF] Heinzelman | Energyefficient communication protocol for wireless microsensor networks[END_REF], HEED [START_REF] Younis | Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks[END_REF], TBC [START_REF] Satapathy | Treepsi: tree based energy efficient protocol for sensor information[END_REF], PEDAP [START_REF] Liu | An energy-aware routing protocol in wireless sensor networks[END_REF], and HEEC [START_REF] Rajeshwari | Hierarchical energy efficient clustering algorithm for wsn[END_REF], and all leads to high communication and high energy consumption especially when the number of nodes is relatively high.

A distributed K-Mean clustering (DKC) method for WSN is proposed in [START_REF] Zou | A data-aggregation scheme for wsn based on optimal weight allocation[END_REF][START_REF] Bendechache | Efficient large scale clustering based on data partitioning[END_REF][START_REF] Le-Khac | Knowledge map: Toward an e wa p p r o a c hs u p p o r t i n gt h ek n o w l e d g em a n a g e m e n ti nd i s t r i b u t e dd a t a mining[END_REF]. The authors develop a network data aggregation mechanism based on adaptive weighted allocation of WSN. First, the sink extracts randomly k records from the data in the WSN. Then each node will divide local data into k clusters according to these centroids and send them to the parent nodes. When the parent nodes receive the information from all the sub-nodes, they will combine the local information with the cluster information and continue to transmit it to an upper node, until the sink has received all the information from sub-nodes. Then the sink combines the information of k clusters and recalculates the mean value of each cluster for a number of iterations until the centroids of k global clusters will be created. To measure the accuracy of data, the feature of weight is introduced.

The DKC algorithm is mainly used to process the testing of data at bottom nodes in order to reduce the data redundancy. However, it may generate data loss in the process of iteration which decreases the accuracy of global clustering results.

Proposed Approach

In this section, we will present the main steps of the proposed distributed data clustering approach in a hierarchical WSN topology. First, we introduce some definitions and primitives. Then we present an algorithm to find the tree topology which is necessary for the aggregation of a clustered dataset realized by the AGNES algorithm [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] where the contours of clusters are found using the LPCN algorithm [START_REF] Lalem | Lpcn: Least polar-angle connected node algorithm to find the polygon hull in a connected Euclidean graph[END_REF]. Both these algorithms will also be reviewed.

To obtain the appropriate tree topology of a WSN, we use a self organization of the nodes achieved by the modified BSF algorithm in a distributed computing system. The main goal of this step is to improve the WSN lifetime by a reduction of the communication between the sub-clusters. Figure 4.1 gives an overview of the proposed approach which operates in three main steps. The first step, called the parallel step, is executed in parallel without communication between the sensor nodes, where the local clustering is performed using the Hierarchical Agglomerative Clustering (HAC) algorithm [START_REF] Willett | Recent trends in hierarchic document clustering: a critical review[END_REF]. Each sensor node s i executes the AGNES algorithm on its local dataset to produce m i local clusters. Once all local clusters determined, their contours are determined using the LPCN algorithm.

These contours will be used as representatives of their corresponding clusters.

The second step consists in sending the contours from each sensor node to its cluster-head located on the previous level of the tree topology. This also allows to check whether there are any overlapping contours (clusters) to reduce. In the third step, the cluster-heads of a sub-tree attempt to merge overlapping contours of their group. The cluster-heads are elected among the nodes of each group forming the tree topology. Therefore, each cluster-head generates new contours (new clusters).

The second and third steps are repeated to merge clusters until we reach the root node (base station) which will contain the global models. The sub-cluster aggregation is done following a tree structure and the global results are located at the top level of the tree (base station). As in all clustering algorithms, the variability in cluster shapes and in densities causes a problem for their detection.

Therefore, we will show in Section 4.4 that the LPCN algorithm can efficiently detect the contours of separated clusters having any shape. Moreover, the AGNES algorithm can dynamically determine the number of the clusters without an a priori knowledge of the dataset or an estimation of the number of clusters. In the following sections, we will describe the main features and requirements of these algorithms.

Definitions and Primitives

The approach presented is based on the distributed computing system inherent to the WSN, which can be modeled by an undirected graph G =( S, E), S = {s 1 ,s 2 ,...,s n } representing the set of sensor nodes, n =| S | their total number and E the set of communication links. We assume that the communication between two sensor nodes is symmetrical. Then the link between two nodes can be defined by a 0 -1v e c t o re of length n⇥(n-1)
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as follows:

e ij = 8 < : 1 if node s i communicates with node s j 0 otherwise (4.1)
The neighbor nodes N (s i )o fag i v e nn od es i are the nodes that communicate with it.

N (s i )={s j /e ij =1,j =1, ..., n and j 6 = i} (4.2)

We also assume that the sensor no des are randomly distributed in the area to be monitored which is mapped into a two dimensional space. Furthermore, each sensor node s i has a unique identifier given by ID s i and it can monitor its residual energy level given by E s i .

For a b etter understanding of the prop osed approach, we define in Table 4.1 some primitives and in Table 4.2 the functions used in the proposed approach. 

Tree Topology

Building a tree topology rooted at a sink node (base station) for dataset collection is a fundamental method for dataset aggregation in wireless sensor networks.

However, due to the nature of the sensor networks, the tree topology should be formed in a distributed way. To build this topology, nodes are based on the quality of signal (RSSI) to identify the minimum-hop distance to the sink, and also on The distributed BFS algorithm can be started by an arbitrary node (in our case: the sink) of the network, which becomes the root node of a tree. The main steps of the modified BFS algorithm are described as follows:

•

Step 1 (lines 1 to 3):I n i t i a l i z a t i o n .

• Step 2 (lines 4 to 6):I ft h ec u r r e n tn o d ei sas i n kn o d es 0 than it starts the algorithm by broadcasting the "START" message to its neighbors.

• Step 3 (lines 9 to 10):T h en o d ei sw a i t i n gt or e c e i v eam e s s a g e .

•

Step 4 (lines 11 to 15): The node which receives the "START" message updates its parent and sends the NEW message to its neighbors except its parent.

•

Step 5 (lines 17 to 27): For all received "NEW" messages, the node s i calculates the maximum performance of the sender based on signal strength (RSSI) and the residual energy of N (s i )( l i n e2 3 ) . T h et r a n s m i t t e rn o d ei s accepted to be parent if it has the maximum performance among the nodes located at the previous level l.T h i sc a l c u l a t i o ni sd o n ed u r i n gac e r t a i nt i m e t ∆ in order to ensure that all "NEW" messages are received.

• Step 6 (lines 28 to 32): When the time t ∆ is over, the node will send a "CHILD" message to its parent found previously (line 22) and it sends an "ACK" message to other nodes. In addition, it sends on its turn the "NEW" message in order to find its children.

• Step 7 (lines 33 to 35): When the node receives a "CHILD" message, it saves the ID of the transmitter in its list of children.

• Step 8 (lines 36 to 38): When the node receives n -1" A C K "m e s s a g e si t sends the "DONE" message to its parent. Notice, that n -1m e a n st h a ta l l neighbor nodes have their parents or n -1isequalto0,i.e,thereisjustone neighbor (its parent).

• Step 9 (lines 39 to 44): The reception of the message "DONE" from all children of a node means that his sub-tree is built. Then this node will send the message "DONE" to its parent.

Finally, this algorithm stops when the root node (sink) has received all "DONE" messages from its neighbors.

In the following, we will explain in more details the design of each phase described above.

Local Models

The local clusters are highly dependent on the clustering techniques used by their corresponding nodes. In this work, we use the HAC algorithm [START_REF] Lung | Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach[END_REF]i no r d e r to cluster the dataset located at each sensor node. Our goal is to provide an efficient clustering without the global knowledge of the data in the network by reversing the clustering approach from down to up. Our work is based on the HAC algorithm because it is a flexible solution to process the different datasets without requirements, and it is a conceptually and mathematically simple algorithm.

The next step consists in sending all local clusters to the cluster-heads. As the whole dataset is very large, this operation will increase the communication which saturates and reduces very quickly the lifetime of the network. Hence, sending the whole original dataset to the base station should be avoided. In our approach, we only send the clusters' representatives, which constitutes a small part of the original dataset. Any cluster consists of an internal dataset and of boundary points. Therefore, we can use the LPCN algorithm to find the polygon hull of a connected Euclidean graph [START_REF] Bounceur | Finding a polygon hull in wireless sensor networks[END_REF][START_REF] Lalem | Lpcn: Least polar-angle connected node algorithm to find the polygon hull in a connected Euclidean graph[END_REF]. This is an efficient algorithm for constructing boundaries, able to accurately detect the shape of a wide range of different point distributions and densities with a reasonable time complexity of O(kh 2 ), where k is the maximum degree of the graph and h the number of the nodes on the polygon hull.

In the following, we present the algorithm used in HAC Clustering combined with the LPCN algorithm in order to realize the local phase at each sensor node.

HAC Clustering

The first step of the HAC algorithm [START_REF] Lung | Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach[END_REF]c o n s i s t si nf o r m i n gt h ec l u s t e r sa n dt h e second in joining two clusters based on their similarity. The algorithm is repeated until all clusters are joined into a single cluster. The dissimilarity between clusters is expressed as the distance between two clusters which can be computed using the Euclidean distance between two objects.

The degree of similarity between two clusters is computed with different methods [START_REF] Bouguettaya | Efficient agglomerative hierarchical clustering[END_REF]:

• Single LINKage (SLINK) [START_REF] Bouguettaya | Efficient agglomerative hierarchical clustering[END_REF], also called the nearest neighbor method, which is given by the minimum distance between two objects contained in • Complete LINKage (CLINK) [START_REF] Nielsen | Introduction to HPC with MPI for Data Science[END_REF], also called the farthest neighbor method which is given by the maximum distance between two objects contained in the clusters.

• Un-weighted Pair-Group Method using arithmetic Averages (UPGMA) [START_REF] Azad | Pareto-optimal clustering scheme using data aggregation for wireless sensor networks[END_REF] is given by the average distance between two objects contained in the clusters.

For the HAC algorithm, we use AGglomerative NESting (AGNES) [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF]which starts with the definition of each object as a single cluster, then joining two clusters at a time until the stopping criterion is accomplished or until we get a single cluster containing all objects. In our case, we fixed a certain distance as stopping criterion in order to obtain separate clusters allowing the LPCN algorithm to determine the contours.

The following Algorithm 5 shows the main steps of the AGNES algorithm :

1: Input: n objects 2: Output: k clusters 3:
Step 1: Label the objects with numbers 1 to n.E a c ho b j e c tr e p r e s e n t sa cluster.

4:

Step 2: Compute the distance d(r, s)b e t w e e no b j e c t sra n dsw i t hr, s = 1, 2,...,n;l e tD =(d(r, s)) denote the similarity matrix.

5:

Step 3: Find most similar clusters r, s, by minimizing d(r, s)w i t h i nD. 

Global Models

The global model phase is divided into two main parts (cf. our model depicted in Figure 4.1). At each step, sub-global models are generated during the sending of the contours within a sub-tree (from children to parents). This step is executed in a distributed way. Each cluster-head in a sub-tree collects the contours of the local clusters of its children and merges them using the corresponding technique. This will allow the identification of overlapping contours (clusters). Therefore, each cluster-head generates new contours (new clusters). The merge procedure will continue until there are no overlapping contours in the cluster-head. Then the node sends its local contours to its parent (a cluster-head of the previous level) which repeats to merge clusters until we reach the root node (sink) to get the global models of the whole network. The root node will then contain the global clusters (see Figure 4.1). Two cases may occur when running the merge procedure:

crossing or inclusion contours. In the crossing case, we found two contours that have at least two edges which intersect. Then we take the smallest x-coordinate among the two contours and we apply again the LPCN algorithm. The result of this procedure is a new contour which envelopes the two previous contours. In the second case, the algorithm tests the inclusion of clusters to merge. The inner contour will be removed and the bigger one will be saved. The merge procedure will continue until there are no crossings or including contours. When the merge procedure finishes at each cluster-head, only the representative points for the new merged cluster are selected to be sent rather than all the points in the original clusters. This allows to save energy and to reduce communication time.

Experimental Results

In this section, we give a brief description of the simulator and the platform we used to simulate and to implement the proposed approach. In particular, we will present some simulation results in terms of energy consumption and execution time. The remainder is then divided into two main parts. The first part is dedicated to the validation of the proposed approach. The second is on the evaluation of our approach within a real platform (TelosB) in terms of energy consumption and execution time.

Validation

Following the general structure of the approach illustrated in • The time needed to transmit a packet from the source node to the destination depends on the node capacities. We adopt the transmission time from the 802.15.4 frame which can be calculated using the formula (4.3) [START_REF] Liang | Performance analysis of the ieee 802.15. 4b a s e de c gm o n i t o r i n gn e t w o r k[END_REF]:

T = T Bo + T Frame (x)+T TA + T ACK + T IFS (x)( 4 . 3 )
where T Bo is the duration of the channel access, T Frame (x) is the transmission time for a payload of x bytes, T TA is the time to receive a response (turnaround time), T ACK is the transmission time for an acknowledgment and T IFS (x) is the IFS time, which is the time to process data received from the physical layer.

• The communication energy cost (E c )istheenergyconsumedbytransmission (E tx )a n dr e c e p t i o n( E rx ). It can computed as in [START_REF] Razzaque | Energy-efficient sensing in wireless sensor networks using compressed sensing[END_REF]:

E c = E tx + E rx E tx = V dc ⇤ I tx ⇤ P b ⇤ T b E rx = V dc ⇤ I rx ⇤ P b ⇤ T b
where I tx and I rx are the current consumptions in the transmission and the reception mode, respectively, P b is the bit length of the packet, T b is the transmission or reception time of a single bit and V dc is the used voltage.

• The computational energy consumption (E comp )o fas e n s o rn o d ei n c l u d e s the MCU active mode and other modes (e.g., standby/idle/sleep) which is computed as in [START_REF] Razzaque | Energy-efficient sensing in wireless sensor networks using compressed sensing[END_REF]:

E comp = V dc ⇤ I mcu active ⇤ T mcu active + V dc ⇤ I mcu sleep ⇤ T mcu sleep (4.4)
where I mcu active and I mcu sleep are the MCU active and sleep mode currents, respectively. T mcu active and T mcu sleep are the MCU active and sleep mode durations, respectively, and V dc is the used voltage. In our case, we assume that the sleep mode duration is equal to 0.

to the network lifetime and the size of the data to be transmitted. In the next chapter, we will propose distributed Data mining techniques applied to a WSN for forest fire detection.

FIVE

DATA MINING TECHNIQUES FOR FIRE DETECTION USING WSNS

Introduction

Accurate and timely event detection is an important part in many WSN applications, such as forest fire and environmental pollution. In this kind of time critical applications, the event must be detected early in order to reduce the sensor node can be deployed in the forest and collect data such as temperature or humidity, and deliver these data to the base station (sink node) where they can be processed and analyzed automatically without requiring operations performed by humans. Data sets are growing rapidly because there is a need to monitor a forest as long as possible over time. Since classical algorithms are not designed for the processing of heterogeneous, geographically distributed and complex data collected from the environment, new algorithms have emerged to deal with this problem in the data management. In addition, the design and deployment of sensor networks create many challenges due to their large size (up to thousands of sensor nodes), random deployment, lossy communication environment, limited battery power, limited processing unit, small memory, and high failure rate. Energy consumption is a particularly limiting factor for the lifetime of a node in a WSN. Therefore, processing and communication should be minimized and there is a permanent need to balance the power consumption on all nodes, based on their residual energy.

Data mining techniques are a suitable solution to be integrated into the sensor nodes in order to solve the above limitations, e.g., to reduce the size and to improve the quality of the collected data in an intelligent way.

Data mining is a process of extracting hidden patterns from large data sets and a critical component of the knowledge discovery process [START_REF] Maksimović | Comparative analysis of data mining techniques applied to wireless sensor network data for fire detection[END_REF]. This process needs to coordinate predictive analysis and decision support systems in real-time.

The purpose of this study was to develop a resource efficient online distributed Data mining approach for WSNs. The approach must minimize inter-node communications and optimize local computation and energy efficiency without compromising fire application requirements. The objectives were to address the data. Another objective was to develop a new high spatio-temporal resolution version of forest fire detection.

In this chapter, we use Data mining techniques to process the sensing data within the sensor nodes by taking into account their limited computing and storage capabilities. We are interested in techniques which can find and describe structural patterns in data as a tool to help to explain the data and to make prediction from them. Classification is one of the popular Data mining techniques [START_REF] Ngai | Application of data mining techniques in customer relationship management: A literature review and classification[END_REF]t h a t consists in predicting the probability of a new instance to belong to a predefined class using the set of attributes describing this instance. We have already presented part of this work in [START_REF] Saoudi | Data mining techniques applied to wireless sensor networks for early forest fire detection[END_REF].

To this aim, we prop ose a new approach based on Data mining techniques and a clustered architecture. We consider a WSN deployed to monitor forest fire and alert fire in real-time. The sensor nodes continuously measure weather parameters and feed into the Data mining model, which triggers fire alarm when fire is detected. Our approach does not tolerate offline data analysis. Therefore, the data streaming has to be processed on the fly and in real-time using the distributed Data mining WSN model. Each sensor node can individually decide whether there is a fire or not using a model of Data mining technique created through learning from real historical data in offline mode. When a fire is detected online, the corresponding node sends an alert through its cluster-head, which will pass through gateways and other cluster-heads until it reaches the sink in order to inform the firefighters.

This chapter is organized as follows. In Section 5.2,r e l a t e dw o r ki sp r e s e n t e d .

The design of our approach will be discussed in Section 5.3.T h e n S e c t i o n 5.4 exhibits and discusses the obtained results and, finally, Section 5.5 concludes the chapter.

nodes where the data from sensor and cameras is collected and processed at a base station. However, our proposed approach considers a clustered deployment strategy where the distances between neighboring sensor nodes are rather short.

In this way, our goal is to detect forest fire in a more rapid way and to send the related information to a base station as fast as possible.

In [START_REF] Hartung | Firewxnet: A multitiered portable wireless system for monitoring weather conditions in wildland fire environments[END_REF], the authors study the behavior of forest fires rather than fire detection. They developed a multi-tiered portable wireless system for monitoring environmental conditions, especially for forest fires. The system is comprised of sensor nodes, web-cams, and base stations, which are capable of long distance communication of up to ten kilometers range. The sensor nodes measure the temperature, relative humidity, wind speed and direction of fire. Web-cams provide continuous visual data of the fire zone to the base station. The main drawback of the above reviewed systems is that they all assume resource-rich nodes that are equipped with long range radio. However, our proposed system considers a clustered deployment strategy with rather short distances between neighboring sensor nodes allowing to detect forest fire more quickly and to send the related information to a base station as rapidly as possible.

The authors of [START_REF] Soliman | A smart forest-fire early detection sensory system: Another approach of utilizing wireless sensor and neural networks[END_REF] combine a WSN with an artificial neural network (ANN)

for forest fire detection. The system they propose collects data from a region via a WSN by sensors, such as temperature, light and smoke. All readings are transmitted (after being transformed into information and then into knowledge)

to an already trained ANN situated at the central processing unit (base station).

This ANN uses the received information to test whether some part of it belongs to the fire class for fire detection. This method suffers from high energy consumption and high response time due to the routing of all data to the base station.

The authors of [START_REF] Hefeeda | Forest fire modeling and early detection using wireless sensor networks[END_REF] present a WSN for forest fire detection which is based on the Fire Weather Index (FWI) system, one of the most compressive rating systems for forest fire danger in the USA. This system determines the risk of propagation of a fire according to several index parameters. In this study, weather data are collected by the sensor nodes, and the data collected at the center are analyzed according to FWI. A distributed algorithm is used to minimize the error estimation for spread direction of forest fire.

In [START_REF] Singh | Forest fire detection through wireless sensor network using type-2 fuzzy system[END_REF][START_REF] Khanna | Fire detection mechanism using fuzzy logic[END_REF][START_REF] Bolourchi | Forest fire detection in wireless sensor networks using fuzzy logic[END_REF][START_REF] Demin | A forest fire prediction system based on rechargeable wireless sensor networks[END_REF], the authors propose an intelligent method to make a decision using a fuzzy logic system in WSNs for forest fire prediction. This technique allows to describe the fire event in ways that sensor nodes would be able to understand.

It uses linguistic variables whose values are not numbers but sentences or words in anaturalorcodifiedlanguage. F uzzylogicisbasedonruleswhic hareconditional statements in the form of if-then. However, in our work, we use real data-gathering from the environment in the two cases that a fire is present or not, and fuzzy logic cannot really be used when parameters of a fire are numbers.

In [START_REF] Maksimović | Comparative analysis of data mining techniques applied to wireless sensor network data for fire detection[END_REF], the authors present a comparative analysis of various DM techniques on WSN fire detection data using the WEKA tool. The goal was to see which of them has the best classification accuracy of fuzzy logic generated data and which is the most appropriate for a particular application of fire detection. In our system, we use real sensing data and we simulate under conditions close to reality. [158] presents an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in Wireless Sensor Networks (WSNs). They propose the advantages and disadvantages of each algorithm and provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for specific applications such as fire detection.

In [START_REF] Bahrepour | Use of ai techniques for residential fire detection in wireless sensor networks[END_REF], the authors present a guideline for choosing the most optimal sensor combinations for accurate residential fire detection. Additionally, the applicability of a Feed Forward Neural Network (FFNN) and a Naïve Bayes Classifier is investigated and results are analyzed in terms of detection rate and computational complexity. This study considers and handles a single aspect of forest fire detection. In our proposed approach, we use multiple parameters. We aim at an efficient energy consumption for early fire detection, to include a comparison of some DM techniques, to incorporate environmental conditions and to make use of the simulator, which offers an environment close to reality, to validate our approach.

In [START_REF] Yu | Real-time forest fire detection with wireless sensor networks[END_REF], the authors present a method which applies neural network techniques for in-network data processing in the context of environmental sensing applications of Wireless Sensor Networks in order to detect forest fire. The sensor nodes are organized into clusters. Sensor nodes can measure environmental temperature, relative humidity and smoke. Each sensor node sends the sensing data and its GPS coordinates to the corresponding cluster-head. The cluster-head computes the weather index using a neural network method and sends the weather index to the manager node via the sink. The manager node provides two types of information to users: the report for an abnormal event and the danger rate of forest fire.

In [START_REF] Aslan | A framework for use of wireless sensor networks in forest fire detection and monitoring[END_REF], the authors present a framework for forest fire detection, which includes a clustered network architecture for the deployment of sensor nodes, as well as an interaction protocol of intra-and inter-clusters. They develop a simulator to perform simulation tests in order to examine the proposed system protocols and components. In the end, their system manages to provide effective and efficient operation that consumes less energy without disturbing the rapid reaction capability. In this study, the fire detection is done on a cluster-head level. In our approach, we suppose that every node in the WSN contains all the required functions. In this way, communication overhead between neighboring nodes is avoided and each sensor node can detect fire locally by itself. This allows to reduce the energy consumption and to improve the performance of the WSN.

A Data mining Approach for Intelligent

Forest Fire Detection

In this section, we describe our proposition for fire detection based on WSN and Data mining techniques. We first introduce some assumptions and primitives and then identify the important design features that a wireless sensor network should possess, as well as the various Data mining techniques used in order to be able to successfully monitor a forest and to detect fires.

• Early Detection and Accurate Localization: An early detection and an accurate localization of forest fire are necessary for a rapid intervention of firefighting personnel at the correct place.

• Energy efficiency: The deployment of a WSN for fire detection should consume energy very efficiently because the replacement of batteries may be too costly, impractical or even not possible. The energy consumption should also be balanced among nodes in order to maximize the lifetime of the WSN.

• DM techniques comparison: The aim is to study and to compare some techniques of Data mining applied to detect fire in terms of precision, response time and energy consumption.

Assumptions and Primitives

In our proposed approach, we consider a WSN with one base station and hundreds of multi-sensor nodes. More precisely, there are n sensor nodes in the WSN, denoted by s i ,16 i 6 n, and identified by a unique identifier id i .W ea s s u m e that any two sensor nodes can directly exchange messages if the Euclidean distance between them is not greater than their communication range R c . Hence, the set of neighbor nodes N (s i )o fag i v e nn od es i can be defined as follows:

N (s i )={s j : dist(s i ,s j ) <= R c ,j=1, ..., n and j 6 = i}.

Fires can differ in size and shape which can influence the possibility to detect them. Therefore, it is necessary to find the optimum size of the target area coverage by a single node. For simplicity, we assume that a planar area can be covered by sensor nodes if their Euclidean distance is not greater than the sensing range R s .Af o r e s tfi r ef can be seen as a function f (x 1 ,x 2 ,..,x m ), where the variables x i represent m attributes such as temperature, humidity,... each of them being sensed by a sensor unit in the node. We also assume that e i is the current remaining energy level of the node s i and r h i is the risk level of season h,16 h 6 4, of the node s i . Each cluster-head has its specific fire threshold FT{low, medium, high} and a i is the number of received alerts from each of its member nodes for the specified period.

Main Phases

In this subsection we describe the proposed architecture for forest fire detection.

Alargen um berofsensornodesarerandomlydeplo y edintheforest. Thesesensor nodes are organized as clusters so that each node has a corresponding cluster-head.

Each sensor node can measure environmental temperature, relative humidity, smoke and light. Consequently, the communication overhead between neighboring nodes is avoided and each sensor node can detect fire locally by itself. Each sensor node predicts the fire using a Data mining technique and sends the alert containing its id i to the corresponding cluster-head. The cluster-head calculates the danger rate and sends the id i and damage rate to the sink via the gateway node. The sink detects the location of fire using the stored coordinate that corresponds to the received id i for possible actions, such as alerting local residents or fire-fighting personal, and stores the alert in the server for the sake of statistical analysis.

The proposed approach can be divided into three main phases : a clustered network architecture, route discovery to the sink, fire detection and routing alerts to the sink. These phases are the following:

1. Clustering: this phase consists in subdividing the set of sensor nodes into clusters in order to obtain more efficient network processing and data fusion.

Cluster-heads can be used as the important points in the network to achieve data processing, and to provide cooperation and coordination. We will show that this network architecture is appropriate for both early fire detection and energy conservation.

2. Routing: this phase consists in building routing tables in cluster-heads and gateway nodes within the clustered network. The aim is to maximize the lifetime, to ensure the efficient performance of the network and to route the alert from a fire detecting node to the sink as rapidly as possible.

3. Fire Detection: this phase consists in applying Data mining techniques at the member node level in order to detect fire. The Data mining technique is learned in offline mode in order to create a model from historical fire data.

Using the model obtained from classifier learning, the fire will be detected in online mode.

The Techniques Used in Detail

In this section we explain in more detail the design of each of the phases described above.

Clustering Step

An efficient functioning of a WSN depends on the topology of the network. An architecture based on a clustered topology provides important advantages for forest fire detection. Hence, it is possible to benefit from rapid detection of fire danger, to maximize the lifetime of the network, to achieve connectivity and faulttolerance.

To ensure the maximum lifetime of a WSN, it is necessary to perform a good energy management in order to cope with depletion of sensor nodes. The objective of connectivity is to guarantee that the most important nodes of the network can communicate with other nodes that are located in their clusters. We also grant particular attention to low computational complexity and high accuracy. These properties are achieved by Data mining techniques that efficiently detect the fire with as minimal computation as possible.

We have chosen a distributed clustering algorithm [START_REF] Younis | Node clustering in wireless sensor networks: recent developments and deployment challenges[END_REF]whic hisbasedonlyon neighborhood information, as preferable for WSNs, and which can be described as follows :

1. Each node s i broadcasts the information to its neighbors N (s i ).

2. Each node decides to be cluster-head or not according to its local topology information.

3. The node selected as a cluster-head broadcasts its status to its neighbors and invites them to join his cluster.

4. If a node receives at least two messages to join two different clusters then it declares itself as a gateway, otherwise it declares itself as a member node.

The selection as cluster-head (CH) is based on weight (given by the residual energy e i and a few parameters such as the node degree |N (s i )|). The node having the highest weight within this neighborhood is declared as a cluster-head. The gateway nodes in the cluster are used to relay data among cluster-heads. The member nodes just treat the fire detection and send alerts to the corresponding cluster-head.

It is necessary to re-select a new cluster-head among nodes in order not to overload a few nodes with respect to others. There are several studies for clusterhead rotation in [START_REF] Younis | Node clustering in wireless sensor networks: recent developments and deployment challenges[END_REF]. The best way is to use the remaining battery power for triggering the clustering algorithm at local regions. When the battery level of the cluster-head is below a specified threshold then it broadcasts a message to its neighbors to select a new cluster-head among them.

Routing Step

Several routing algorithms have been presented in the literature [START_REF] Singh | R o u t i n gp r o t o c o l si nw i r e l e s s sensor networks-a survey[END_REF]. For our work, we adapt an algorithm based on the cluster network to maximize the lifetime, to provide a best performance of the network and to allow the routing of an alert from the node to the sink as rapidly as possible.

After applying the clustering algorithm, each node is declared as a cluster-head or as a gateway including a routing table. At the beginning, the routing table is empty. When the sink propagates the discovery route message which contains its id i ,t h ec o n c e r n e dg a t e w a y sw i l lr e c e i v et h em e s s a g ea n ds a v et h ei d e n t i fi e ro ft h e sink in their routing table. Each gateway node of the sink forwards the discovery route message which contains their identifiers to the next cluster-heads except the sink. When the cluster-heads receive the discovery route message, they save the gateway identifier in the routing table in chronological order. In the same way, each cluster-head forwards the discovery message to the next gateway with the exception of the previous one. As soon as all cluster-heads and gateways have received a discovery message, they are ready to route the message to the sink.

With this technique, the cluster-heads and gateways can use multiple paths to route messages to the sink in the network. These multi-path communications are aimed to improve the reliability, fault-tolerance and performance of the network.

For that, the first recorded node is established as the active communication routing node, while the others are stored for future need, e.g., when the current active node is broken or fails. This also allows to use the other nodes for routing data.

DM Step

Our work is based on the measurement of real data by sensors (temperature, humidity, light and smoke) and a prediction of fire using classification techniques of Data mining at the member node level, discarding normal values and transmitting only abnormal values to the cluster-head. This process reduces the number of exchanged messages, removes redundancy, improves the system speed and decreases the potential network traffic, extends network lifetime and thus makes early fire detection possible. Also observe, that the rate of sensing data varies according to year seasons: The sensing rate is high in summer, average in spring and autumn and low in winter. In order to reduce sensing energy consumption, we use an intelligent method which is based on the risk level r h i of the node i.T h e node computes its r h i for each season h according to the number of fires detected in the season of the previous year. According to [144], in summer, between June 21, 2015 and August 21, 2015, there have been 956 forest fires with 743 fires between 7a ma n d9p ma n d2 1 3fi r e sb e t w e e n9p ma n d7a m . I nt h i sc a s e ,t h er a t ef o r sensing data p i for the next summer is computed as follows :

p i = r h i /t (5.1)
where t is the number of hours in a day when a fire is detected. In our example, 743 fires are detected on the 92 summer days in the period of 14 hours a day. The rate for the sensing of node i in this period is : p i =(743/92)/14 ' 0.58 fire/h or 1fi r ei n1h o u ra n d4 5m i n u t e s . T h e r e f o r e ,t h es e n s o rn o d ed e c l a r e da sm e m b e r turns periodically on and off its radio and its multiple sensors according to p i .O n the other hand, the node can sense within the determinate period of 20 minutes every 1.25h.

There are many classification/predictive methods and in this study, we will focus on three particular ones.

Naïve Bayes Classifier This method uses Bayesian statistics and Bayes' theorem to find the probability of each instance to belong to a specific class.

The training data contain attributes and

P (x i /C k )= 1 q 2πσ 2 C k e - (x i -µ C k ) 2 2σ 2 C k (5.4)
Consequently, a fire is detected if the probability of the F ire class P (F ire|x 1 ,x 2 ,...,x m ) is greater than the probability of the N onF ire class P (Non|x 1 ,x 2 ,...,x m ). In case, that these two probabilities are equal, we cannot distinguish the presence or absence of fire. The solution is to launch another classifier in order to detect the fire. Compute damage rate and combine the predictions from the sensors.

9:

Send alert to gateway using routing table Inform fire-fighting personal 17: end if According to the algorithm 6,w h e nafi r ei sd e t e c t e db ym e m b e rn o d e s ,t h e y send the alert message to their respective cluster-head. This will reduce the processing cost of all data by the cluster-head and also reduce the communication between the member nodes and their cluster-head. Therefore, the energy consumption is reduced. In addition, the cluster-heads can apply smart scheduling and adaptive transmissions to reduce the overhead on most sensor nodes near the sink. When cluster-heads receive an alert from their members, they compute the number of the received alerts a i from each of their members and they use a fire threshold FT to determine the current risk level of fire. Then a cluster-head will send one alert to the sink via its gateway using its routing table .   The risk level of fire is determined by comparing a i with FT.T h ec l u s t e r -h e a d sends one alert to the sink containing the id i of the corresponding node and the risk level of fire (low, medium, high). Note, that a i is re-initialized whenever the member nodes are in sleeping mode. This way, the energy consumption is further reduced.

with battery and multi-sensor devices, which are used to collect data such as temperature, humidity, light and smoke, i.e., TMP36, 808H5V5, GL5537 IDR and MQ-135, respectively. The MAC protocol used in the simulation is 802.15.4 as implemented in the CupCarbon simulator.

To estimate the energy consumption of the proposed approach, we compute the energy consumption in transmission/reception, sensing and computation. First, to estimate the transmission/reception energy consumption, we use the energy model of the TelosB sensor node. Its energy consumption is estimated as 59, 2µJ to transmit one byte and as 28, 6µJ to receive one byte [START_REF] Wander | Energy analysis of public-key cryptography for wireless sensor networks[END_REF]. We have used the Super Alkaline AALR6 battery which is a portable energy source with a capacity of 9580 Joules. Second, to estimate the sensing energy consumption, we use the data given in the following Table [START_REF] Razzaque | Energy-efficient sensing in wireless sensor networks using compressed sensing[END_REF]. Finally, to estimate the computational energy, we use the energy model of the TelosB sensor no de. The energy consumed in computing 1 time clo ck at 4 mhz is 1.2 nJ on the TelosB [START_REF] Meulenaer | On the energy cost of communication and cryptography in wireless sensor networks[END_REF].

The details of the general simulation parameters are depicted in Table 5.2.

Figure 5.4 shows the comparison between the energy consumption with our proposition, which respects the environment conditions, and simple sensing. The energy consumption with simple sensing remains at similar levels because the rate of sensing is fixed to one threshold throughout the year. With our proposition, however, the energy consumption changes depending on the season because our approach adapts the rate of sensing to the history of the number of fires detected in each season of the last year. We note that energy consumption in summer is According to the result obtained in Table 5.3, we notice that the NB classifier achieves 80.8% of precision and detects 100% of fire which is shown by the value of recall but there are some false alerts. It is clearly better to have a false alert rather than not to detect a true fire.

Table 5.3 also shows that both Artificial Neural Network (ANN) and Naïve Bayes classifiers (NB) have low computational complexity which explains the rapidity of fire detection. Moreover, they consume less energy than K-Nearest Neighbors (KNN) which needs to compute the distance between the new sensing instance and each instance in the training data and to chose the K smallest distances which causes the high computational effort and the high energy consumption. It can be seen that the ANN classifier shows better prediction on larger training data sets than KNN while in case of small data sets, KNN gives quite good results and provides higher classification accuracy than NB. We also notice that ANN and KNN provide higher classification accuracy than NB because NB has one false alert. In case of fire detection and for precautionary measures, we can tolerate the sending of a false alert by NB. In other applications, it is up to the user to choose the criteria for selecting the classifiers that are most appropriate for this application in terms of energy consumption, precision and time of response.

Conclusions

In this work, a new approach for predicting forest fire has been proposed, which is based on Data mining techniques and wireless sensor networks. Our approach takes into account all characteristics of a WSN that regards low energy capacity, 

Summary

This research has investigated the possibilities of employing distributed Data mining techniques for WSNs to extract useful information and to help in decision making. The aim is to use the individual data processing capabilities of the sensor nodes by implementing distributed algorithms and distributed Data mining approaches in order to make efficient WSN applications.

In Chapter 2, we have presented a general view of the existing Data mining techniques in the context of WSNs. We have presented the architecture of WSNs.

In addition, we have described the hardware platforms, operating systems, wireless advantages, challenges and applications of WSNs. As the energy is a major limiting factor in a WSN, we have described some strategies for its conservation that can make a WSN efficient. Following the WSN description, Data mining techniques, specifically those relevant to the WSN field are also reviewed. Finally, we have analyzed and presented the different classifications of the existing methods with a focus on distributed Data mining techniques related to our research area.

In Chapter 3,w eha v eresolv edtheproblemofboundarypoin tdetectionwhic h can help the distributed Data mining techniques reduce a huge volume of data generated by sensor nodes, and improve the WSN operations. We have divided this chapter into two main sections. In the first section, we have proposed the LPCN algorithm allowing to find the boundary points for a set of data points.

We have compared this algorithm with the existing algorithms in the literature.

This algorithm can be useful in many real applications, especially Data mining applied for WSN applications, since it can be used to detect the shape of the extracting clusters in a set of sensed data, to detect anomalies, classification, and medical imaging. Finally, we have presented the implementation and the results obtained from the CupCarbon simulator. In the second section, we have proposed on the distributed, large, and heterogeneous data as well as to greatly minimize the quantity of data that has to be transmitted by using the LPCN algorithm for which it is quite efficient in terms of energy consumption. In contrast to the other clustering algorithms, the AGNES algorithm used does not require prior knowledge of the number of clusters within the dataset. Then our results show the effectiveness of our approach in terms of the quantity of clusters generated and the computational time. Finally, our approach clearly outperforms the existing methods with respect to the network lifetime and the size of the data to be transmitted.

In Chapter 5,aneweventdetectionapproachwasproposedforpredictingforest fire, which is based on machine learning techniques and wireless sensor networks.

As the approach is based on sensed data, and tries to learn the relationship between sensor data and event detection capability, different types of techniques available to process datasets using machine learning (classification). Here, modeling of sensors in WSN is done with features/attributes of a dataset, the output classes or variables as the application events, and sensor measurements modeled with instances of dataset. An extensive experimental evaluation with several collected datasets show, that proposed the proposed approach allows learning from historical data, and meets the operational/functional WSN challenges such as energy efficiency, and event detection (prediction accuracy). As reiterated before, due to resource constraints on WSNs and its sensor nodes, there is a need to select the best classifier to be implemented for the data of sensor nodes in a distributed way for fire detection. A node detects fire locally by itself, then it discards normal values and transmits only abnormal values to the sink for fire localization and information to the firefighters. Applying Data mining techniques reduces the size of data, deletes redundancy, improves the WSN speed and decreases the network

  d'emplacements répartis. Par ailleurs, la nécessité de traiter et d'extraire des connaissances à partir de ces grandes quantités de données nous ont motivé à explorer l'une des techniques conçues pour traiter efficacement ces ensembles de données et fournir leurs modèles de représentation. Cependant, parmi les techniques utilisées pour la gestion des données, nous pouvons utiliser les techniques de Data mining. Néanmoins, ces méthodes ne sont pas directement applicables aux RCSFs à cause des contraintes des noeuds capteurs. Il faut donc répondre à un double objectif : l'efficacité d'une solution tout en offrant une bonne adaptation des méthodes de Data mining classiques pour l'analyse de grosses masses de données des RCSFs en prenant en compte les contraintes des noeuds capteurs, et aussi l'extraction d'un maximum de connaissances afin de prendre des décisions meilleures. Les contributions de cette thèse portent principalement sur l'étude de plusieurs algorithmes distribués qui répondent à la nature des données et aux contraintes de ressources des noeuds capteurs en se basant sur les techniques de Data mining. Chaque noeud favorise un traitement local des techniques de Data vi consensus sur un modèle global. Les différents résultats obtenus montrent que les approches proposées réduisent considérablement la consommation d'énergie et les coûts de communication, ce qui étend la durée de vie du réseau. Les résultats obtenus indiquent aussi que les approches proposées sont extrêmement efficaces en termes de calcul du modèle, de latence, de réduction de la taille des données, d'adaptabilité et de détection des événements.

Figure 1 .

 1 1 proposes an approach of reading this thesis and indicates the different connections between the chapters. There are 6 chapters, which include Introduction, Background, Boundary Detection, Distributed data clustering approach in WSNs, Data mining with the LPCN algorithm in order to cope with a huge and redundant sensed dataset. In Chapter five,w ep r e s e n tan e wa p p r o a c ht oe v a l u a t epe r f o r m a n c ea n dw e analyze the Data mining techniques in WSNs. For these reasons, we have proposed the case study for distributed Data mining techniques for forest fire detection in WSNs. In Chapter six,w ec o n c l u d et h i st h e s i sa n do u t l i n et h ed i r e c t i o n sf o rf u t u r e research in distributed Data mining for resource constrained systems such as WSNs.

  The classification uses given class labels to order the objects in the data collection. This approach makes use of a training dataset, in which all objects are already associated with known class labels, to build a model which can be used to predict the classes of future data instances which have unknown class labels. A variety of data classification techniques are developed in the literature such as Decision Tree (DT), Naïve Bayesian (NB), Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearest
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 35 On-line Data mining techniques : A WSN is deployed through thousands of nodes in an environment. Then data are geographically distributed, arrive continuously, and are able to be scale. Most of the Data mining techniques analyze data in an off-line way which is not compatible with the requirement of handling distributed data streams. Therefore, the challenge is how to process distributed data streams in an on-line way.4. Data delivery latency : Real-time processing and delivery are very important in most WSN applications. Therefore, reducing the latency of response is very important. The sensed data or alerts generated by the sensor nodes have to be delivered to the end-user with a smallest possible latency.The major challenge of Data mining techniques for sensor networks is to guarantee a small latency by taking into account the presence of constraints and limitations of connectivity. The processed data need to be delivered via am u l t i -h o pc o m m u n i c a t i o nw i t hl a t e n c yr e q u i r e m e n t s ,b u ts i m u l t a n e o u s l y in the aim to maximize the network lifetime. Dynamic Network Topology : WSNs are able to have a dynamic network topology in potentially harsh, uncertain, heterogenic, and dynamic environments. The topology is variable because sensor nodes may move among different locations over time which increases the complexity of designing appropriate Data mining techniques for WSNs.

Figure 2 .

 2 7,t h eh i g h e s tl e v e lc l a s s i fi c a t i o ni sb a s e do n the general Data mining classes used such as frequent pattern mining, sequential base station. In this context, the distributed Data mining techniques can likely play a major role. The major objective of such distributed approaches is to develop algorithms which can perform some local computation on its own data, limit the messages and communication energy of sensor nodes with nearby nodes while transferring data to the base station to compute a global model. In more detail, Data mining techniques have to be used off-line with distributed and online data processing, real-time analysis for decision making, knowledge extraction, and adaptation to the dynamic nature of WSNs data. Also, we must split the data processing into smaller parts executed at multiple levels and in parallel to

  strategies and constraints to take into account for energy conservation which can make an efficient WSN. Following the WSN description, we have the reviewed Data mining techniques, specifically those relevant to the WSN field. Finally, we have analyzed the different classifications of existing Data mining methods with a focus on distributed techniques based on the context of WSN. In the next chapter, at w on e ws o l u t i o n sa r ep r o po s e d . T h efi r s to n ea l l o w st od e t e c tbo u n d a r ypo i n t s in datasets. The second one consist of distributed algorithm which allows to detect boundary nodes in the WSNs. CHAPTER THREE BOUNDARY DETECTION ALGORITHMS

  Intersecting edges: we require that two edges of the polygon hull must not intersect outside the endpoint corresponding to the next vertex v i+1 chosen by the algorithm. As an example, Figure3.2(a) shows that accepting the intersecting edges {A, B} and {E, F} of the polygon hull will lead to non-visited vertices on the polygon hull, which are I , J and G. However, if this intersection is considered then, as shown by Figure 3.2(b), all the vertices of the polygon hull are visited (i.e., A, B, C, D, E, G, H, I, J). In addition, since the next chosen point is B, this intersection must not consider the endpoint B of the edge {D, B}.T h a ti st o say, if we have two edges {A, B} and {C, D} and if the intersection with B results in one of the vertices A, B, C or D then it will not be considered as an intersection. This situation is justified by Figures 3.2(c) and (d). In the first one, if we accept the normal intersection {B, C}\{D, B} = {B},thealgorithmwillchooseavertex which is different from B.T h e n ,i tw i l lc h o o s et h en e x tv e r t e xC, which will lead to an infinite loop B, C and D. However, if we consider intersection without the endpoints of the edges, then when the algorithm comes back to B,n oi n t e r s e c t i o n is detected and the algorithm will choose vertex A as shown by Figure 3.2(d).
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 3 hop neighbors and h max the maximum hop-count of a node as given by the user. We added some observations on the communication overhead in the last column. We have compared our algorithm with only those for which the energy consumption is provided in their paper. Another comparison based on the energy consumption is presented in Section 3.3.3.
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 1 if the node s i communicates with s j

Algorithm 2 1 :

 21 MinFind :T h ep s e u d o -c o d eo fd e t e r m i n i n gt h es t a r t i n gn o d e . first node = TRUE; 2: t 0 =g e t C u r r e n t T i m e ( ) ; 3: x min = getX(); 4: send(x min ,* ) ;

Figure 3 .

 3 Figure 3.7 which represents a WSN with eight sensor nodes. Let us consider the set S = {S1,S2,...,S8} of these nodes and the set B of the boundary nodes, which initially is empty. First, after the initialization (Step 1 ), we run Algorithm 2 (Step 2 ). The only node which will be considered as the starting node is S1, and thus the boundary set is updated to boundary set = {S1}. Next, the node S1b r o a d c a s t sa n" A C "m e s s a g et oi t sn e i g h b o r sN (S1) = {S2,S3,S4,S7} (Step 3 ) to ask for their coordinates (cf.Figure 3.7(a)) while the other nodes are waiting for the receipt of messages (Step 4 ).

Figure 3 . 7 (Algorithm 3 5 :

 3735 Figure 3.7(e).

  (p coord, c coord, n coord, boundary set); id+"|"+"AC", *); 33: end if 34: until false Simulation To validate the proposed D-LPCN algorithm, we have used three simulators:

Figure 3 .

 3 Figure 3.13 shows the evolution of the energy consumption of a boundary node S 1 as a function of the number of its neighbors including two boundary neighbor nodes and other non-boundary neighbor nodes. We consider the case where this

  this chapter, we have examined the problem of boundary point detection which can help the distributed Data mining techniques to reduce a huge volume of data generated by sensor nodes, and improve the WSN operations by reducing the different resource constraints and extending its lifetime. We have divided the chapter into two main sections. In the first section, we have proposed the LPCN algorithm allowing to find the boundary points for a set of data points. The main idea of this algorithm is to choose in each iteration and for each boundary vertex its nearest polar angle vertex with respect to the vertex found in the previous iteration. Its complexity is O(kh 2 )w h e r ek is the maximum degree of the graph and h the number of vertices on the polygon hull. The LPCN algorithm is useful in Data mining applied for WSN applications, since it can be used to represent a subset of sensed data that have possibly overlapping classes, to detect the shape of the extracting clusters in a set of sensed data, to detect anomalies, classification, hereby reducing the transmitted data which extends the lifetime of WSNs. In the second section, we have proposed the D-LPCN algorithm for finding a minimal set of connected boundary nodes in a WSN. The main advantages of this algorithm are that it works with any type of network, planar or nonplanar, relies exclusively on the nodes of the boundary and their neighbors, works with any topology even disconnected (i.e., with many connected sub-networks) and with any density of the network. In the case of a disconnected network, it can determine the boundary nodes of each connected component. Furthermore, it takes into account any blocking situation, which it is able to overcome. Its complexity is O(kh)w h e r ek is the maximum degree of a sensor node in the network and h the number of boundary nodes of the network. This complexity is reduced compared to the LPCN algorithm by the mean of the distribution method. The proposed algorithm has been implemented using real sensor nodes based on the TelosB and Arduino/XBee platforms. We have shown that the distributed version is less energy consuming than the centralized one. This is due to the important number of messages that are exchanged between the sink and the nodes in the centralized version, while in the distributed version only the boundary nodes and their neighbors are communicating. On the basis of our results, we may even conclude that the energy consumption is reduced with respect to the energy consumption of the existing algorithms. The simulation results also indicate that the proposed algorithm can be applied to very large sensor networks and it is quite optimal in terms of energy consumption. CHAPTER FOUR AD I S T R I B U T E DD A T AC L U S T E R I N GA P P R O A C H 4.1 Introduction Wireless Sensor Networks consist of a distributed autonomous system of sensor nodes that have limited capacities [109]. These sensor nodes are responsible to cooperatively monitor physical or environmental conditions. They have no fixed or predefined topology, thus allowing an autonomous self-organization based on the communication between them [110]. The possibility of self-organization in WSNs favors distributed approaches which allow the sensor nodes, or clusters of them, to perform localized sensing and processing [109]. This self-organization is still a challenge which requires the development of new methods allowing to collect

  send(a,b,e) send the message a to the sensor node having the identifier b, or in a broadcast (b = ⇤) or except the sensor node having the identifier e getNumberOfNeighbors() returns the number of neighbors of the node read() waits to receive messages getCurrentTime() gets the current time length(l) gets the size of liste l

  their residual energy which allows to label nodes with less energy as leaves. Hence, we modify the Breadth-First Search (BFS) algorithm to construct an efficient tree topology for WSNs, so that clusters which are subtrees are also formed with energy and quality of signal considerations of the nodes. The algorithm can work with mobile sensor nodes and it can recover from network failures. It achieves the self-organization of sensor nodes into a multi-hop network, reduces transmission distances, since parent nodes are chosen by the highest known signal to the root, and increases the lifetime of the network, as parent nodes are chosen also by the highest residual energy.

  the clusters. For example, for two clusters A and B with object a in A and object b in B: d(A, B)=min a2A,b2B d(a, b), d(a, b)r e p r e s e n t i n gt h e Euclidean distance between a and b.

6 : 7 :

 67 Step 4: Join r and s into a single new cluster c.C o m p u t e d(c, k)f o ra l l clusters k 6 = r, s.D e l e t et h er o wa n dc o l u m nf o rc l u s t e r sr and s from D and add a new column and a new row for the new cluster c. Step 5: Repeat steps 3 and 4 until the stopping criterion is satisfied. The structure of the AGNES clustering result is hierarchical in the sense that the more we are on a higher level, the bigger and more general are the clusters. The result of the algorithm represents a dendrogram. The AGNES clustering algorithm does not require the number of clusters being specified at the beginning. To find the contours enveloping the clusters of data found by the AGNES algorithm, we use the LPCN algorithm which has been presented in a previous chapter (cf. 3.2).

  Figure 4.3 illustrates the AGNES clustering results after application to the dataset of one sensor node where bold points represent the centers of the clusters.

  threats and damages. In this chapter, we propose a new WSN system for early forest fire detection, which is based on the integration of Data mining techniques into sensor nodes. Forest fires are a fatal threat in the world: it is reported that over 8388 forest fires have been counted in the Mediterranean region in France between January 2010 and October 2015[144]. Forest fires can be deadly threats to the environment and human life. In some of these fires, large areas of forests of more than 21 954.61 hectares have been destroyed [144]a n dm a n yp e o p l eo r animals have died. Therefore, the monitoring and early detection of forest fires is an invaluable tool for the prevention or reduction of damage to the environment and the protection of human lives.Number of detection and monitoring technologies and systems have beenproposed to detect fire, e.g. : systems employing charge-coupled device optical cameras and infrared detectors, satellite monitoring and images[START_REF] Hartung | Firewxnet: A multitiered portable wireless system for monitoring weather conditions in wildland fire environments[END_REF][START_REF] Lloret | A wireless sensor network deployment for rural and forest fire detection and verification[END_REF]a n d Wireless Sensor Networks[START_REF] Aslan | A framework for use of wireless sensor networks in forest fire detection and monitoring[END_REF][START_REF] Hefeeda | Forest fire modeling and early detection using wireless sensor networks[END_REF][START_REF] Soliman | A smart forest-fire early detection sensory system: Another approach of utilizing wireless sensor and neural networks[END_REF].Wireless sensor network technology has been put forward in the literature as as u i t a b l ec a n d i d a t ef o rf o r e s tfi r ed e t e c t i o na n dm o n i t o r i n g . I t sl o wc o s t ,s e l fconfiguring and rapid deployment features makes it an ideal candidate. A WSN is usually composed of a few sinks and a large quantity of small sensor nodes, which are able to sense, process and communicate data [109]. To detect fire, a

As k y l

  i n ea p p r o a c hf o re a r l yf o r e s tfi r ed e t e c t i o ni sp r o p o s e di n[ 157]. Skyline is built using greater values, e.g., sensor readings in a two-dimensional attribute space (large temperature and high wind speed). Only data on skyline are sent to as i n kt ob eu s e df o rfi r ed e t e c t i o n . T h es i n kp r o c e s s e st h ed a t aa c c o r d i n gt ot h e proposed algorithm and eventually detects fire.

P

  x i and are split into two classes C k (Fire, Non), k 2{ 1, 2}. The learning of Gaussian naïve Bayes algorithm relies on the computation of the mean µ k and the variance σ 2 k of each attribute x i in each class C k .T ofi n dt h ep r o b a b i l i t yo fan e ws e n s i n gi n s t a n c eI(x 1 ,x 2 ,...,x m )tobelongto a specific class C k ,t h ef o l l o w i n gf o r m u l ai sa p p l i e d: P (C k |x 1 ,x 2 ,...,x m )= P (C k ) Q m i=1 P (x i /C k ) evidence ((x i /N on)( 5 . 3 )

  computing limitation, low memory capacity of sensor nodes, and environmental conditions which can affect fire detection and the performance of a WSN. Our work is based on measuring and combining real data from different sensors (temperature, humidity, light and smoke) and on selecting the best classifier applied to data for fire detection. A node detects fire locally by itself, then it discards normal values and transmits only abnormal values to the sink for fire localization and information to the firefighters. The obtained results show that applying different CHAPTER SIX CONCLUSIONS In recent years, the field of Data mining techniques in WSNs has seen considerable research interest. The development of resource efficient WSNs has been the central focus of most research in this field. The advancement of WSNs has allowedto deploy wireless sensors to address many distributed monitoring application challenges. As a result, WSN applications are increasingly generating a continued and large volume of data which should be processed efficiently. However, WSNs raise difficult issues and challenges for the research community, since application requirements such as accuracy, lifetime, latency, are very often in conflict with the limited computational, memory, communication and energy resources of the network. This thesis has investigated how Data mining techniques could be used to address some of these issues, and focused in particular on the tradeoff between data accuracy, energy efficiency, and network load in data collection tasks. It also presents some of the challenging areas of WSNs and distributed Data mining techniques. This chapter summarizes the main results of the thesis, and opens the topic to further research directions.

  the D-LPCN algorithm for finding a minimal set of connected boundary nodes in a WSN. The main advantages of this algorithm when compared with the existing algorithms are that it works with any type of network, planar or non-planar, relies exclusively on the nodes of the boundary and their neighbors, works with any topology even disconnected (i.e., with many connected sub-networks) and with any density of the network. In the case of a disconnected network, it can determine the boundary nodes of each connected component. Furthermore, it takes into account any blocking situation, which it is able to overcome. Its complexity is reduced when compared with the LPCN algorithm by the mean of the distribution method.The proposed algorithm is validated using the CupCarbon, Tossim and Contiki simulators. It has also been implemented using real sensor nodes based on the TelosB and Arduino/XBee platforms. We have estimated the energy consumption of each node and we have found that the consumption of the network depends on the number of the boundary nodes and their neighbors. The simulation resultsshow that the proposed algorithm is less energy consuming than the existing algorithms and its distributed version is less energy consuming than the centralized version. The simulation results also indicate that the proposed algorithm can be applied to very large sensor networks and it is quite optimal in terms of energy consumption.In Chapter 4,w eh a v ep r o p o s e dan e wd i s t r i b u t e dd a t ac l u s t e r i n ga p p r o a c h (DCCA) for a hierarchical wireless sensor network topology for addressing WSN challenges, aggregating spacial and huge datasets, and reducing the amount of data in the network data. Our approach is focused on the processing power of the unsupervised, online, distributed methods by maximizing parallelism and minimizing communications and to reduce the size of the data to be exchanged among the nodes of the network. The proposed approach organizes the network in atreetopologyusingthemodifiedBSFalgorithmandbasedonthereceivedsignal strength indication estimates the best neighbors and the residual energy of nodes in order to build an efficient network with maximum lifetime. A hierarchical agglomerative clustering algorithm together with the LPCN algorithm remain embedded within the individual nodes to analyze the locally generated data by its heterogeneous sensors in order to compute the local models. This phase is computed in parallel by all the leaf nodes. The local results represent the contours of clusters and are transmitted to the cluster-heads in the tree topology which merge them to build the global clusters. This process is repeated at each level of the tree until to reach the base station which creates the global model of the network. The proposed approach is validated using the Contiki simulator and real sensor nodes based on the TelosB platform. Experimental results indicate that the local models which represent only the contours of clusters are small size datasets representing 0.5% to 5% of the total size of the original dataset, which are exchanged through the network and allow to save energy and maximize the lifetime of the network. Experimental results have also highlighted the capability of the proposed approach in the WSN to produce very good clustering results

  The most critical design issue at this stage is the data collection among multiple sensor nodes. Existing redundant data at this collection lead to huge packet size which overheads the network and depletes the energy thus reducing the lifetime of the network. Hence, it is essential for sensor networks to be able to detect and clean redundantly transmitted data from the nodes to the sink. This contribution introduces ah i e r a r c h i c a ld a t aa g g r e g a t i o nm o d e lt oa c h i e v et h i sg o a l . T h r e el a y e r so f

processing are introduced: the node level (local model), the aggregation level (sub-global model), and the base station (global model). These algorithms aim to optimize the volume of data transmitted by saving energy consumption and reducing communication on the network level. At the first level, the AGNES data clustering algorithm combined with the LPCN algorithm allow to avoid each sensor node to send its whole dataset to the base station. At the second level, a sensor node (cluster-head) collects the contours from its associated nodes where a new part of the merging aggregation techniques is explored. At this level, our approach identifies
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	Characteristics	Traditional data	WSN data
	Processing architecture Centralized	Distributed Data
	Data type	Static	Dynamic
	Memory usage	Unlimited	Restricted
	Processing time	Unlimited	Restricted
	Computational power	High	Weak
	Energy	No constraints	Limited
	Data flow	Stationary	Continuous
	Data length	Bounded	Unbounded
	Response time	Non-real-time	Real time
	Update speed	Low	High
	1. Resource Constraint : The sensor nodes have low resources in terms of
	power, memory, communication bandwidth, and computational capability.

.1,t r a d i t i o n a lD a t am i n i n g techniques are highly computational, executed in centralized nature and designed for analyzing static datasets. The data is collected at the central computer which has no resource constraints. In comparison with the central computer, sensor nodes have limited storage and processing capabilities, and it is impossible to store the entire WSN data or to run highly complex algorithms. These characteristics of collected data and the special design of sensor nodes make classical Data mining techniques challenging. Therefore, it is necessary to develop Data mining techniques which can process and analyze sensed data in multi-level, locally in nodes, and on-line manner. In the following, we discuss the different challenges addressing the development of Data mining techniques for WSNs. Table 2.1: Difference between traditional and sensed data processing.

Table 2 . 3 :

 23 Literature on classification techniques in WSNs. and to find data correlations among the nodes. Table2.4 shows and discusses already existing distributed clustering algorithms for managing data, lowering the communication overhead, enabling improved traffic control, and improving energy efficiency and network stability.

	Name	Techniques Used Objective in WSNs	Issues
				Offers better accuracy
			Aims to construct a	and energy consumption.
	HDT [40] Decision tree	spanning tree, encompasses all	Requires synchronization in every time step which is
			the nodes in the system.	expensive to deploy large
				WSNs.
	IDS [41]	K-nearest neighbor	Intrusion detection system	High detection rate and speed. But has also a high false positive rate.
				Energy consumption
	Online learning [42]	SVM (support vector machine)	Incremental classification	decreases when the SVM is trained incrementally. But its computational
				complexity is very high.
	EEA [43]	Neural network (ANN)	Detection mechanism of energy exhaustion attacks	Increases the lifetime of sensor nodes.
			Realized uniform	
	BN-LEACH [44]	Realizes Bayesian network model	distribution of cluster heads that is not to extend the guaranteed in LEACH	Increases the lifetime of sensor nodes.
			network lifetime.	
	Clustering			
	In the literature, clustering algorithms are addressed by node clustering or data
	clustering. Node clustering consists in creating efficient communication topologies
	by organizing sensor nodes into clusters. This method is required for large number

of sensor nodes to resolve the energy constraint and to aggregate collected data.

Clustering also consists in aggregating data in order to summarize the overall transmitted data

  of sensed data that have possibly overlapping classes, to detect shape of the extracting clusters in a set of sensed data, to detect anomalies, to make classification, and to reduce the transmitted data which extends the lifetime of the WSNs. The knowledge of these points is also useful to resolve real problematics of many applications which can be modeled as a connected Euclidean graph, like detecting boundaries of WSNs, drawing contours in medical and biological images, localizing of interest event or region,..., etc.[START_REF] Cadenas | Preconditioning 2d integer data for fast convex hull computations[END_REF][START_REF] Fan | Rigid registration of 3-d medical image using convex hull matching[END_REF][START_REF] Jayaram | Convex hulls in image processing: A scoping review[END_REF][START_REF] Li | A survey of recent advances in visual feature detection[END_REF][START_REF] Sheeba | Convex hull based detection of overlapping red blood cells in peripheral blood smear images[END_REF] This chapter is organized into two sections. The first section is destinated to present an efficient algorithm called Least Polar-angle Connected Node (LPCN)

	[57]a l l o w i n gt ofi n dt h eb o u n d a r yv e r t i c e so fac o n n e c t e dE u c l i d e a ng r a p h . T h i s
	algorithm will be used in our next contribution in order to reduce huge transmitted
	data which are generated by WSNs (cf. 4). The second section is devoted to
	present a new distributed algorithm called Distributed Least Polar-angle Connected
	Node (D-LPCN) [58] which aims to find the boundary of a WSN in order to help
	decision making with respect to low complexity and low energy consumption. In
	addition, we will review related work and present the simulation results of both
	algorithms.

Data mining techniques such as data classification, association rule, and clustering, as well as data cleaning and preparation techniques to improve the quality of the data by removing anomalies and noises. In this chapter, we examine the problem of boundary points detection. Boundary points are data points that are located at the margin of a group of distributed data. This situation is modeled as the problem of finding a polygon hull in a connected Euclidean graph, which represents a set of connected vertices that envelops the whole data points. Boundary points are useful in Data mining applied for WSN applications, since they can be used to represent a subset
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 31 Comparison with existing algorithms.

	Algorithm	Convex hull Concave hull	Complexity	Dimension	Observations
	Graham [60]				

Table 3

 3 

.2 summarizes 8 boundary determination algorithms in terms of message complexity (number of exchanged messages per node) and accuracy which represents the percentage of the real boundary nodes, where n is the number of nodes, n b is the number of the boundary nodes, k is the number of nodes which execute simultaneously local computation, d is the maximum degree of the network, h the size of the table of
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 32 Comparison of D-LPCN with existing algorithms.

	Algorithm	Message complexity	Accuracy	Observations
	ABBD [89]	O(n/k + n b /k)=n um berofrounds O(kd 3 ) = number of messages per round	' 88%	Communication overhead.
	EBDG [99]	O(dh max )	' 92%	Requires a dense network.
	LVP [83]	O(nd )	' 100%	Computation overhead.
	PDiscovery [98] O(ndh )	' 95%	Communication overhead.
	DBD [92]	O(n(d 3 + d 2 + d))	' 90%	Requires 3-hop neighbors' information.
	DBNS [91]	O(n/k)=n um berofrounds O(kd )=n um berofmessagesperround	' 100%	Required to remove redundant nodes to form ac o m p l e t ebo u n d a r y .
				Depends on the
	Hop-based [97] O(ndh max )	3% to 99%	list of x-hop neighbors.
				Communication overhead.
				Communication and energy
	D-LPCN	O(dn b + n)	=100%	are reduced. Only the boundary nodes and
				their neighbors are used.
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 33 Message primitives and their definitions

		Primitive Definition
		AC	ask for coordinates
		CS	send coordinates
		SN	select a node
	Table 3.4: Functions of the D-LPCN algorithm
	Function	Definition
	getId()	returns the node identifier
	getCoord()	returns the node coordinates (x, y)

getNumberOfNeighbors() returns the number of neighbors of the node send(a, b) sends the message a to the sensor node having the identifier b, or in a broadcast (b = ⇤) read() waiting for receipt of messages
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 41 Primitives and their definitions

	Primitive name Definition
	START	start to construct tree message(ID s 0 root node)
	NEW	parent message(ID s i , E s i , ID s 0 ,l e v e l )
	CHILD	child message(ID s i )
	ACK	refuse parent message(ID s i )
	DONE	confirm tree construction message(ID s i )

Table 4 . 2 :

 42 Functions of the prop osed approach

1 :

 1 Input Create a local model in each sensor 2: Sense environment according to p i 3: Classify each new reading according to the local model 4: if member node && fire is detected then

	5:	Send alert to cluster-head
	6: end if
	7: if cluster-head && receive alerts then
	8:	

  10: end if 11: if gateway && receive alerts then Route alert to other cluster-head using routing table 13: end if 14: if base-station && receive alerts then

	12:	
	15:	Localize fire
	16:	

Table 5 . 1 :

 51 Sensing energy of sensors

	Type of sensor Energy consumption
	Temp erature	270 µJ
	Humidity	72 µJ
	Light	0.123 µJ
	Smoke	225 µJ
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try to design a better network topology for the purpose of extending the network lifetime rather than clustering sensor data for future analytical purposes. Our work is different from clustering sensor nodes as we focus on the clustering of sensed data to aggregate them according to their similarity. Another strategy to aggregate data is based on techniques employing compressed sensing, as is the case in [START_REF] Masiero | Data acquisition through joint compressive sensing and principal component analysis[END_REF][START_REF] Li | Error-bounded data compression using data, temporal and spatial correlations in wireless sensor networks[END_REF][START_REF] Xu | Adaptive hierarchical data aggregation using compressive sensing (a-hdacs) for non-smooth data field[END_REF][START_REF] Morell | Data aggregation and principal component analysis in wsns[END_REF][START_REF] Houari | Dimensionality reduction in data mining: A copula approach[END_REF].

Let us review next the data aggregation strategies based on data clustering techniques that are related to our work.

The authors of [START_REF] Yeo | Data correlation-based clustering in sensor networks[END_REF]ha v eproposedadatacorrelation-basedclusteringsc heme (DCC) based on the similarity of sensor data along a spatial suppression scheme in order to reduce the data size. The network is organized as clusters of sensor nodes which have similar measurements. Spatial suppression is performed at a clusterhead which computes the difference between sensor reading and representative value. If a cluster-head has redundant data, it will remove them except for the node identification. The results show that DCC reduces 40% of the data size through suppression and extends the network lifetime by 20% to 30%. However, ac l u s t e r -h e a dn e e d sm o r ee n e r g yt oc o l l e c ts i m i l a rd a t aa n da l s ot oc o m m u n i c a t e with several nodes. DCC is ineffective due to a higher rate of cluster-head creation with low percentage of similar data.

In [START_REF] Ma | Distributed, hierarchical clustering and summarization in sensor networks[END_REF]128], distributed, hierarchical clustering (DHC) and summarization algorithms (DHCS) for online data analysis and mining are proposed in wireless sensor networks. These methods cluster sensor nodes based on their current data values as well as their geographical proximity, and they compute a summary for each cluster based on a dissimilarity metric called expansion and the dissimilarity between two clusters based on a cluster distribution feature (CDF). Initially, each node considers itself as a cluster and treats its data by computing the cluster data range which is the smallest closed region in the data space to finally calculate the spherical cluster data range represented by the tuple (Center, Radius). Then similar adjacent clusters are merged into larger clusters round by round. In each round, each cluster will try to combine with its most similar adjacent cluster simultaneously. Two clusters can be merged only if both consider one another as the most similar neighbor. These methods terminate when no merging happens any more. However, in DHCS [START_REF] Ma | Distributed, hierarchical clustering and summarization in sensor networks[END_REF], a merging operation can only happen between two clusters which have been resolved in DHC [128]. However, these methods do not to take into account the energy consumption of the nodes.

The authors of [START_REF] Harb | An analysis of variance-based methods for data aggregation in periodic sensor networks[END_REF]h a v ep r o p o s e dat w o -l e v e ld a t aa g g r e g a t i o nt e c h n i q u e based on a clustering architecture in which data are sent periodically from nodes to their cluster-heads. The first level of data aggregation is applied at the node itself to eliminate redundancy from the collected raw data. At the second level, nodes generate redundant datasets based on the variance study with three different Anova tests in order to eliminate duplication before sending them to the sink.

The authors of [START_REF] Guo | Real time clustering of sensory data in wireless sensor networks[END_REF]h a v ep r o p o s e dad i s t r i b u t e da l g o r i t h mf o rc l u s t e r i n g sensory data called H-cluster. This algorithm aims to summarize the input dataset as a set of cluster features. The authors used HilbertMap to map d-dimensional sensory data into a two-dimensional area covered by a sensor network. H-cluster has two phases: the first phase consists in merging grid features with local cluster features at each destination node. The second phase is designed to combine the connected local clusters to global clusters. This method suffers from a high rate of data loss and a decrease in energy efficiency as soon as the WSN size increases.

The authors of [46]h a v ep r o p o s e dac o m m u n i c a t i o n -e ffi c i e n td i s t r i b u t e d

algorithm for clustering sensory data. This method is based on the distributed version of the K-Mean clustering algorithm to send summarized data to the base station. The sensor network is organized as clusters and cluster-heads will only communicate with the base station. Initially, the base station transmits current center locations to cluster-heads. A cluster-head collects data from its sensor nodes and sends them to the base station including count and vector sum of its local data points as well as the sum of the squared distance from each local point to its center. When the base station receives data, it updates the cluster mean, and the algorithm continues until the function convergence is met. The cluster-heads require high memory and high computation power for the summarization of data before their transmission to the base station. Also, the algorithm requires multiple rounds of message exchanging between cluster-heads and the base station which t c =g e t C u r r e n t T i m e ( ) ; 

Related work

In this section, we summarize the various studies which have been proposed regarding the detection of forest fires.

The authors of [START_REF] Alkhatib | A review on forest fire detection techniques[END_REF] present a brief overview of detection techniques and monitoring systems for forest fire. They summarize all the methods used for forest fire detection into three main methods which are authorities' techniques, satellite systems, optical cameras, each method being presented with its own advantages and disadvantages. The authorities' techniques are based on the probability of human observation for forest fires, but it is the most expensive proposition to solve this problem. The satellite system is based on images gathered by satellites used for forest fire detection, but it suffers from serious limitations due to a weakness in rapid and accurate surveillance of forest areas. The optical cameras use a digital camera to gather the image for early recognition and forest fire detection, but the difficulty of this method is the processing of landscape images due to the large number of dynamic events that can appear under different illumination conditions, depending on weather, distance and time of the day. WSNs are based on a number of sensor types to sense different parameters of fire and to detect it. This solution can provide all information of the environment at any moment accurately by establishing many kinds of sensors to measure different parameters, it can cover any area size even in scalable networks and it can be deployed anywhere even in inaccessible regions. It is for these reasons that we adopt WSNs for our approach in order to benefit from their advantages.

The authors of [START_REF] Lloret | A wireless sensor network deployment for rural and forest fire detection and verification[END_REF] propose a combination of a Wireless Local Area Network (WLAN) and sensor-node technology for fire detection. The system is comprised of multi-sensor nodes and IP cameras in a wireless mesh network in order to detect and verify a fire in rural and forest areas of Spain. When a fire is detected by a wireless multi-sensor node, an alert generated by the node is propagated to a central server on which a software application runs for selecting the closest wireless camera(s). Then real-time images from the zone are streamed to the sink.

In this study, the sensor nodes are deployed with a large distance between the Data mining techniques can reduce the size of data, delete redundancy, improve the WSN speed and decrease the network traffic which extends the lifetime of the network and guarantees a short time of decision for fire detection as early as possible. In the next chapter, we will conclude our report of the thesis with a conclusion, a discussion, and some perspectives. traffic to extend the lifetime of the network to allow for a short time of decision and fire detection as early as possible.

In Chapter 6,w ep r e s e n tas y n t h e s i so ft h er e a l i z e dw o r ka n dt h er e s u l t s obtained during this thesis, and we conclude with some perspectives for our future work. There are several techniques discussed in the literature such as association rule, prediction, and more machine learning which are adopted for WSN requirements.

Future work

Combining more than one Data mining technique at different levels and exploring their potential in a distributed way is recommended.

Adaptation to mobile nodes: This study considers stationary WSN nodes to perform the distributed Data mining methods. With the advancement of WSN applications such as the sensor nodes used for monitoring animal movement, the use of mobile networks will be necessary. Therefore, we recommend to extend the proposed approaches to mobile nodes.

Another promising direction for further extension is an improvement of the proposed solutions. In the LPCN algorithm, we could consider its use with many other data clustering algorithm in order to detect the best solution for reducing the data size. In the D-LPCN algorithm, we are looking to improve our method to find the starting node respecting a low energy and a low complexity. In addition, we want to use this algorithm in other WSN applications to detect holes in a WSN, to route messages efficiently using only the boundary nodes, and to detect intrusion by using Data mining techniques in the boundary nodes. In our proposed data aggregation approach (DCCA), we intend to explore the various local data clustering techniques in order to guarantee an efficient clustering of large and distributed datasets. In addition, we want to use a prefix filtering algorithm to eliminate outliers and missing values in oder to improve the quality of the results (local and global models).

Conception d'un réseau de capteurs sans fil pour des prises de décision à base de méthodes du Data mining

Résumé

Les éseau de apteu s sa s fil RCSFs déte i e t u a e de e he he e plei esso , puis u'ils so t utilisés aujou d'hui da s de o euses applications qui diffèrent par leurs objectifs et leurs contraintes individuelles. Toutefois, le dénominateur commun de toutes les applications de réseaux de capteurs reste la vulnérabilité des noeuds capteurs en raison de leurs caractéristiques et aussi de la nature des données générées. En effet, les RCSFs génèrent une grande masse de données en continue à des vitesses élevées, hétérogènes et p ove a t d'e pla e e ts épa tis. Pa ailleu s, la é essité de t aite et d'e t ai e des o aissa es à pa tir de ces g a des ua tités de do ées ous o t otivé à e plo e l'u e des te h i ues o çues pou t aite effi a e e t es ensembles de données et fournir leurs modèles de représentation. Cependant, parmi les techniques utilisées pour la gestion des données, nous pouvons utiliser les techniques de Data mining. Néanmoins, ces méthodes ne sont pas directement applicables aux RCSFs à cause des contraintes des noeuds capteurs. Il faut donc répondre à un double o je tif : l'effi a ité d'u e solutio tout e offrant une bonne adaptation des méthodes de Data mining classiques pour l'a al se de g osses asses de do ées des RCSFs e p e a t e o pte les o t ai tes des oeuds apteu s, et aussi l'e t a tio du a i u de o aissa es afi de p e d e des dé isio s meilleures. Les contributions de cette thèse po te t p i ipale e t su l'étude de plusieu s algo ith es dist i ués ui épo de t à la atu e des do ées et au contraintes de ressources des noeuds capteurs en se basant sur les techniques de Data mining. Chaque noeud favorise un traitement local des techniques de Data mining et ensuite échange ses informations avec ses voisins, pour parvenir à un consensus sur un modèle global. Les différents résultats obtenus montrent que les approches proposées réduisent o sidé a le e t la o so atio d'é e gie et les oûts de o u i atio , e ui éte d la du ée de vie du éseau. Les résultats obtenus indiquent aussi que les approches proposées sont extrêmement efficaces en termes de calcul du modèle, de latence, de rédu tio de la taille des do ées, d'adapta ilité et de déte tio des évé e e ts.

Mots clés : Réseau de capteurs sans fils, Data mining, clustering, algorithmes distribués.

Conception of a wireless sensor network for decision making based on Data mining methods

Abstract

Recently, Wireless Sensor Networks (WSNs) have emerged as one of the most exciting fields. However, the common challenge of all sensor network applications remains the vulnerability of sensor nodes due to their characteristics and also the nature of the data generated which are of large volume, heterogeneous, and distributed. On the other hand, the need to process and extract knowledge from these large quantities of data motivated us to explore Data mining techniques and develop new approaches to improve the detection accuracy, the quality of information, the reduction of data size, and the extraction of knowledge from WSN datasets to help decision making. However, the classical Data mining methods are not directly applicable to WSNs due to their constraints. It is therefore necessary to satisfy the following objectives: an efficient solution offering a good adaptation of Data mining methods to the analysis of huge and continuously arriving data from WSNs, by taking into account the constraints of the sensor nodes which allows to extract knowledge in order to make better decisions. The contributions of this thesis focus mainly on the study of several distributed algorithms which can deal with the nature of sensed data and the resource constraints of sensor nodes based on the Data mining algorithms by first using the local computation at each node and then exchange messages with its neighbors, in order to reach consensus on a global model. The different results obtained show that the proposed approaches reduce the energy consumption and the communication cost considerably which extends the network lifetime. The results also indicate that the proposed approaches are extremely efficient in terms of model computation, latency, reduction of data size, adaptability, and event detection. Keywords : Wireless Sensor Networks, Data mining, clustering, distribued algorithms.