In this introductory chapter, we present the objectives, the motivations and the challenges of this dissertation. We focus on the information access aspect of the ALICIA project, and, in particular, on adaptive recommendation in user-centric environments. We provide a summary of the three main contributions of this dissertation, namely, (i) a method to adaptively propose items matching a search need of a user as he/she is typing his/her query on social media, (ii) an approach to adaptively select users from a subpopulation of in uencers who have access to a di usion media (e.g. a social network) in order to maximize the impact of a di usion campaign (be it for marketing, politics, etc.), (iii) an algorithm to sequentially select which items to display in cold-start recommendation scenarios where the display of the page exhibits strong position bias.

The research of this thesis took place at the Laboratoire de Recherche en Informatique (LRI) under the supervision of Bogdan Cautis and Olivier Cappé. I also had an o ce at Télécom ParisTech where part of the research was done. During the 3 years of the Ph.D.,

S Y N T H È S E E N F R A N Ç A I S

Au cours des deux dernières décennies, la gestion des données est devenue un sujet centré sur l'utilisateur : les utilisateurs se sont progressivement transformés de simples consommateurs de contenu en producteurs et juges du contenu. Nous avons assisté à l'émergence d'une pléthore de systèmes, en particulier sur le Web, sur lesquels les utilisateurs contribuent, accèdent à l'information, évaluent et interagissent dans des environnements complexes, explicitement ou implicitement. Lorsque les utilisateurs interagissent sur ces systèmes, ils laissent de nombreuses empreintes que nous nous proposons d'exploiter pour développer de meilleures applications d'accès à l'information. Nous étudions une famille de techniques centrées sur les utilisateurs, qui tirent parti des nombreux types de rétroaction pour adapter et améliorer les services o erts aux utilisateurs. Nous nous concentrons sur des applications telles que la recommandation et le marketing d'in uence dans lesquelles les utilisateurs génèrent des feedbacks réguliers (par ex. des clics, des likes, etc.) et nous les intégrons dans nos algorithmes a n de fournir des services fortement contextualisés aux utilisateurs. Il est important de noter que, dans les applications considérées, nos algorithmes doivent faire face à l'incertitude concernant soit l'utilisateur à qui ils proposent le contenu, soit le contenu lui-même, et parfois les deux à la fois.

La première partie de cette thèse est consacrée à une approche de recherche à la carte sur les médias sociaux. Le problème consiste à récupérer un ensemble de k résultats de recherche dans un environnement social sous la contrainte que la requête peut être incomplète (par exemple, si le dernier terme est un pré xe). Ce problème est abordé à travers le prisme de la recommandation. Chaque fois que l'utilisateur met à jour sa requête, le système met à jour l'ensemble des résultats de recherche en conséquence, a n d'améliorer l'expérience utilisateur sur la plate-forme sociale. Nous adoptons une interprétation de la pertinence de l'information qui tient compte du réseau, selon laquelle l'information produite par les utilisateurs qui sont plus proches de l'utilisateur qui fait une demande est jugée plus pertinente. Ce modèle de recherche soulève des dé s pour l'e cacité et l'e cience de la recherche en ligne.

Dans la deuxième partie de la thèse, nous étudions une version générique de la maximisation de l'in uence, dans laquelle nous voulons maximiser l'in uence des campagnes d'information ou de marketing en sélectionnant de manière adaptative les utilisateurs initiant la propagation de l'information parmi un petit sous-ensemble de la population. Notre approche ne fait aucune hypothèse sur le modèle de di usion sous-jacent ni même sur la structure du réseau de di usion. Notre méthode a d'importantes applications dans le marketing d'in uence qui vise à s'appuyer sur les in uenceurs de réseaux sociaux pour promouvoir des produits ou des idées.

En n, nous abordons le problème bien connu du démarrage à froid auquel sont confrontés les systèmes de recommandation par une approche adaptative. Si aucune information n'est disponible concernant l'appréciation d'un article, le système de recommandation doit recueillir des signaux (clics, etc.) a n d'estimer la valeur de l'article. Cependant, a n de minimiser les mauvaises recommandations faites aux utilisateurs, le système ne doit pas recueillir ces signaux de façon négligente. Nous introduisons un algorithme dynamique qui vise à alterner intelligemment les recommandations visant à accumuler de l'information et celles s'appuyant sur les données déjà recueillies. Notre approche via les bandits multibras se propose d'exploiter les informations disponibles concernant le biais d'a chage sous le modèle de clic dit position-based.

vi A B S T R A C T

In the last two decades, data management has become a user-centric subject: users have gradually transformed themselves from simple content consumers into producers and judges of the content. We have seen the emergence of a plethora of systems, especially on the Web, on which users contribute, access information, evaluate, and interact in complex environments, either explicitly or implicitly. When users interact on these systems, they let numerous footprints which we propose to exploit so as to develop better applications for information access. We study a family of techniques centered on users, which take advantage of the many types of feedback to adapt and improve services provided to users. We focus on applications like recommendation and in uencer marketing in which users generate discrete feedback (e.g. clicks, "likes", reposts, etc.) and we incorporate them in our algorithms in order to deliver strongly contextualized services. Importantly, in the applications considered in this dissertation, our algorithms have to face uncertainty regarding either the user it proposes content to or the content itself, and sometimes both.

The rst part of this dissertation is dedicated to an approach for as-you-type search on social media. The problem consists in retrieving a set of k search results in a socialaware environment under the constraint that the query may be incomplete (e.g., if the last term is a pre x). This problem is addressed through the prism of adaptive contextual recommendation. Every time the user updates his / her query, the system updates the set of search results accordingly, so as to improve the user experience on the social platform. We adopt a "network-aware" interpretation of information relevance, by which information produced by users who are closer to the user issuing a request is considered more relevant. This query model raises challenges for e ectiveness and e ciency in online search.

In the second part of the dissertation, we study a generic version of in uence maximization, in which we want to maximize the in uence of information or marketing campaigns (e.g., on social media) by adaptively selecting "spread seeds" from a small subset of the population. In uencer marketing is a straightforward application of this, in which the focus of a campaign is placed on precise key individuals -the in uencers -who are typically able to reach millions of consumers through their blog or social platform's personal page. This represents an unprecedented tool for online marketing that we propose to improve using an adaptive approach. Notably, we make no assumptions on the underlying di usion model and we work in a setting where neither a di usion network nor historical activation data are available. We choose to address this task using an approach similar to that of multi-armed bandits.

Finally, we propose to address the cold start problem: a well-known issue faced by recommender systems when new items are introduced to the pool of items they recommend from. If no information is available regarding the user appreciation of an item, the recommender system needs to gather feedback -e.g., clicks / non-clicks -so as to estimate the value of the item. However, in order to minimize "bad" recommendations and to maintain the best user experience possible, a well-designed system should not collect feedback vii carelessly. We introduce a dynamic algorithm that aims to intelligently achieve the balance between "bad" recommendations -which are necessary to gather more information so as to have a better understanding of user evaluations of items -and "good" recommendations. Our multi-armed bandit approach proposes to exploit available information regarding the display bias under the so-called position-based click model.

1.1

In the last two decades, data management has gradually become a user-centric subject: users are transforming themselves from simple content consumers into producers and judges of the content. We have seen the emergence of a plethora of systems, especially on the Web, on which users contribute, access information, evaluate, and interact in complex environments, either explicitly or implicitly.

The rise of user-centric applications has deeply transformed the original Web from a static system to a gigantic dynamic and consistantly evolving medium of communication and information. As long ago as 1999, Darcy DiNucci [START_REF] Dinucci | Fragmented future[END_REF], an information architecture consultant, introduces the term "Web 2.0" to refer to this new generation of the Web that thoroughly opposes to the static Web 1.0. She writes:

The Web we know now, which loads into a browser window in essentially static screenfuls, is only an embryo of the Web to come. The rst glimmerings of Web 2.0 are beginning to appear, and we are just starting to see how that embryo might develop. The Web will be understood not as screenfuls of text and graphics but as a transport mechanism, the ether through which interactivity happens.

When users interact on Web 2.0 systems, they let footprints which can be exploited to develop better applications for information access. In this dissertation, we study a family of techniques centered on users, which take advantage of the many types of feedback to adapt and improve services provided to them. For example, in the context of search and recommendation, user pro les can help to better personalize the displayed content.

Interestingly, the term Web 2.0 was popularized only 5 years after DiNucci's paper, at the rst Web 2.0 Conference in 2004, and thus, Tim O'Reilly, the creator of the event, is now often (wrongly) credited for the expression. Around these years, many rms which have become (or were) Web 2.0 gureheads were launched: LinkedIn and MySpace in 2003, Facebook and Flickr in 2004, Twitter in 2006, etc. Many research challenges appeared alongside the rise of Web 2.0, in particular with the democratization of social networks:

• large-scale data management: the enormous quantity of data produced by users on Web 2.0 applications trans gures the Web. For example, Facebook scaled from a single server running on a laptop to an estimated number of 180,000 servers distributed on several data centers around the globe in 2012 [START_REF] Miller | Estimate: Facebook Running 180,000 Servers[END_REF]. The speci c needs of companies such as Google or Facebook to store and access these Big Data led to the development of alternatives to relational databases, namely, the Not Only SQL (NoSQL) databases, that accept to compromise a feature (e.g. consistency) in favor of others (e.g. availability, speed);

• large-scale data analysis: not only do the enormous quantity of data require to scale up storage capacities, processing and analizing data is another crucial facet in the value creation process. The programming model MapReduce [START_REF] Rey | MapReduce: Simpli ed Data Processing on Large Clusters[END_REF] is maybe the most famous step forward in processing Big Data on large clusters, notably through the open source implementation Hadoop [START_REF] White | Hadoop: The De nitive Guide. 1st[END_REF]. More recently, Spark [START_REF] Zaharia | Spark: Cluster Computing with Working Sets[END_REF] introduced resilient distributed datasets (RDDs) to improve e ciency in applications that need to access a working dataset multiple times in a loop -e.g., iterative machine learning algorithms. In parallel, thanks to the new capabilities brought by large datasets and the progress of computing hardware, we have seen a tremendous development of machine learning since the beginning of the century and, in particular, that of deep learning for computer vision tasks since 2012;

In this dissertation, we study and propose models and adaptive algorithms for usercentric applications for information access. We focus on applications like recommendation and in uencer marketing in which users generate feedback and we incorporate them in our algorithms in order to deliver strongly contextualized services.

More precisely, in every scenario we consider in this dissertation, users produce feedback, whether consciously or unconsciously, while they are using the application. For example, in our applications, users will provide feedback when they type characters in the search bar of a social network, when they "like" a post on a social platform, when they click on an ad, etc. All these simple actions generate an enormous amount of complex data that we propose to exploit for building adaptive algorithms. Importantly, we assume that users interact in discrete time steps with the application: when a user requests a service from the application, the algorithm uses all the historical feedback gathered heretofore and provides content accordingly.

In every application considered in the following, the algorithm faces uncertainty regarding either the user it proposes content to or the content itself, and often both. For example, in the as-you-type application, the user's intent is unknown and the algorithm needs to make recommendations without being able to guarantee they satisfy the user. Conversely, in the application to multiple-item recommendation, the algorithm faces the cold-start problem, and thus, needs to take decisions without complete knowledge of the items it chooses from. Speci cally, the algorithm needs to deal with the crucial explore-exploit tradeo as it needs to choose between recommending seemingly best items ("exploiting") and cumulating more feedback to improve the items' estimation ("exploring").

1.2

This dissertation proposes to incorporate the many types of feedback, including complex networked data, from user-centric applications in adaptive algorithms in order to improve user satisfaction. During the period of the thesis, we introduced algorithms for three different applications which are summarized in the following.

(

2). The rst part of this dissertation is dedicated to an approach for as-you-type search on social media. More precisely, the problem consists in retrieving a set of k search results in a social-aware environment under the constraint that the query may be incomplete (e.g., if the last term is a pre x). This problem is addressed through the prism of adaptive contextual recommendation. Every time the user updates his / her query, the system updates the set of search results accordingly, so as to improve the user experience on the social platform. We adopt a "network-aware" interpretation of information relevance, by which information produced by users who are closer to the user issuing a request is considered more relevant. This query model raises challenges for e ectiveness and e ciency in online search.

Contributions. We describe TOPKS ASYT, a memory-e cient and incremental pre xbased retrieval algorithm, which also exhibits an anytime behavior, allowing to output an answer within any chosen running-time limit, a major concern in real-time applications such as as-you-type systems. The algorithm borrows ideas to Maniu and Cautis [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF] and introduces the following novelties to deal with the as-you-type paradigm:

1. We introduce CT IL, a completion trie over the set of tags -the keywords on which we search -which allows the algorithm to access the inverted lists e ciently. This new index structure is a combination of tries and inverted lists and is a key component of TOPKS ASYT to read in sorted order of relevance the possible keyword completions and the items for which they occur.

2.

A key di erence between as-you-type search and its counterpart for fully specied queries is that the system must adapt as the user continues modifying his/her query. Said di erently, the system must adjust the set of search results every time the user issuing the query makes a modi cation. We propose an incremental version of TOPKS ASYT that relies on previous computations in the current session to provide subsequent answers e ciently, instead of starting a computation from scratch every time the user completes further the query.

3. We characterize the computational complexity for the main data structures and algorithmic steps of our method.

4. Answers, albeit approximate, must be ready to be outputted at any time, and in particular after any given time lapse. We refer to this feature as the anytime output behavior of TOPKS ASYT.

5. We introduce and evaluate experimentally a novel feature, denoted supernodes, which consists in clustering users in groups of chosen size in order to speed up graph exploration. The goal is to improve the precision of TOPKS ASYT when the time allocated to serve responses is greatly constrained.

We evaluate our approach through extensive experiments for several applications and search scenarios: we consider searching for posts in micro-blogging (Twitter and Tumblr), for businesses (Yelp), as well as for movies (Amazon) based on reviews.

The work has been presented at the ACM CIKM conference in 2015 [START_REF] Lagrée | A Network-Aware Approach for Searching As-You-Type in Social Media[END_REF] and an extended version has been published in the ACM TIST journal in 2017 [START_REF] Lagrée | As-You-Type Social Aware Search[END_REF].

(

3). In uence maximization is the problem of nding in uent users / nodes in a graph so as to maximize the spread of information. It has many applications in advertising and marketing on social networks. In the second part of this dissertation, we study a generic version of inuence maximization, in which we want to maximize in uence campaigns by adaptively selecting "spread seeds" from a set of candidates, a small subset of the node population. In uencer marketing [15] is a straightforward application of this, in which the focus of a campaign is placed on precise key individuals -the candidates -who are typically able to reach millions of consumers through their blog or social platform's personal page. This represents an unprecedented tool for online marketing that we propose to improve using an adaptive approach. Importantly, we make the hypothesis that, in a given campaign, previously activated nodes remain "persistently" active throughout, and thus, do not yield further rewards. The rationale is that users who were already activated in the ongoing campaign -e.g., have adopted the product or endorsed a political candidate -remain activated / commited to the cause, and thus will not be accounted for more than once in the objective function. Notably, we make no assumptions on the underlying di usion model and we work in a setting where neither a di usion network nor historical activation data are available. We call this problem online in uence maximization with persistence (OIMP) and choose to address this task using an approach similar to that of multi-armed bandits.

Contributions.

1. We propose to estimate the candidates' missing mass -the expected number of nodes that can still be reached from a given seed candidate -by the well-known Good-Turing estimator. We justify its strength to rapidly estimate the desired value which proves to be key in designing an e cient algorithm for short campaigns of tens to hundreds steps, which is typical in the considered scenarios.

2. We describe a novel algorithm, GT UCB, relying on upper con dence bounds on the missing mass. In order to derive the con dence intervals, we take inspiration from an approach introduced by Bubeck et al. [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF] for rapidly discovering elements of interest from a population, by making sequential requests to so-called experts introduced, in which we need to deal with two important changes: (i) after selecting a candidate, every node connected to that candidate is sampled leading to potentially very large feedback that we need to control using the variance to obtain reasonable bounds, (ii) in contrast to [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], the number of times nodes have been activated -a key statistic for the Good-Turing estimator -are independent, which simpli es the derivation of the con dence intervals.

3. We provide an analysis of the waiting time -the round at which the missing mass of each candidate is smaller than a certain proportion of the initial missing mass -of GT UCB, by comparing it to the waiting time of an oracle policy that knows beforehand the objective and the sampled spreads.

4. We conduct experiments to show that our approach leads to high-quality spreads on both simulated and real datasets, even though it makes almost no assumptions on the di usion medium. It is orders of magnitude faster than state-of-the-art in uence maximization methods, making it possible to deal with large-scale online scenarios.

This work required the development of a software package coded in C++ available at https://github.com/plagree/oim that implements state-of-the-art in uence maximization methods as well as OIMP algorithms. This work is currently under review for publication.

( 4). The cold start problem is a well-known issue faced by recommender systems when new items are introduced to the pool of items they recommend from. If no information is available regarding the user appreciation of an item, a recommender system needs to gather feedback -e.g., clicks / non-clicks -so as to estimate the value of an item. However, in order to minimize "bad" recommendations and to maintain the best user experience possible, a well-designed system should not collect feedback carelessly. The third part of the dissertation proposes to solve the recommendation cold-start problem using a multiple-item bandit approach. We introduce a dynamic algorithm that aims to intelligently achieve the balance between "bad" recommendations -which are necessary to gather more information so as to have a better understanding of user evaluations of items -and "good" recommendations. This situation is a typical illustration of the explore-exploit dilemma that bandit algorithms try to answer. Our approach proposes to exploit available information regarding the display bias under the so-called position-based click model introduced by Craswell et al. [START_REF] Craswell | An experimental comparison of click position-bias models[END_REF]. Importantly, a major concern in this context is that the system receives ambiguous feedback from users we recommend items to. For example, when several ads are recommended to a user on a web page, much of the content may have been simply ignored by the user if he / she has not scrolled down until the bottom of the page.

Contributions.

1. We discuss how the position-based model di ers from the cascade model and other variants of click models considered in several previous works on multiple-play bandits. Importantly, previous bandit approaches restrained to click models that view users as people scrolling lists of items in a deterministic way. Consequently, the resulting feedback are unambiguous and the algorithms are quite straightforward.

Conversely, in the position-based model, the feedback received by the learning agent are the product of two independent Bernoulli-distributed random variables standing for the examination of the positions and the attraction of the displayed items, leading to censored observations.

2. We provide a novel regret lower bound for the position-based model using a proof scheme that is interesting on its own, and which can be generalized to various settings.

3. We introduce two computationally e cient algorithms: (i) PBM UCB consists in sorting optimistic indices in drecreasing order, using con dence bounds based on Hoe ding's inequality (ii) PBM PIE is an adapted version of PIE(l) -initially introduced by [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] for the cascade model -based on Cherno 's inequality. The derived condence intervals are tighter than those of PBM UCB, and thus, PBM PIE requires less exploration. In practice, this leads to signi cantly better performances for Bernoullidistributed rewards with low probability of success. We provide a theoretical analysis of the regret incurred by these two algorithms, which is asymptotically optimal in the case of the latter.

4. We conduct a series of experiments on two types of datasets. First, we compare our strategies to state-of-the-art methods in the learning to rank bandit literature with a simple synthetic problem to validate the theoretical results. Then, we evaluate the algorithms in a search advertising scenario using a real dataset provided for KDD Cup 2012 track 2 involving session logs of a search engine called soso.com.

This work has been presented at the NIPS conference in 2016 [START_REF] Lagrée | Multiple-Play Bandits in the Position-Based Model[END_REF] and is a shared work (equal contribution) with the Ph.D. student Claire Vernade. A preliminary version of this work was presented at the Workshop on Online Advertising Systems at ICML 2016 [START_REF] Vernade | Online Inference for Multiple-Item Display Under the Position-Based Model[END_REF].

1.

In this dissertation, we study applications in which users produce feedback and we try to incorporate these signals in order to improve user experience. Speci cally, we aim to propose adaptive and dynamic algorithms in user-centric situations: every time a user connects to the application, the approach provides a personalized service (e.g., a recommendation, a query answer, an ad, etc.) relying on all past observations. These kinds of applications perfectly t the multi-armed bandit framework which are sequential learning methods that simultaneouly attempt to acquire new knowledge on available options (called "exploration") and optimize choices based on previous decisions (called "exploitation"). In this appendix, we give a short introduction to multi-armed bandits to give the reader basic knowledge about these methods. They will prove to be key when designing adaptive algorithms for in uence maximization in Chapter 3 and recommendation in the position-based model in Chapter 4. For a longer introduction to the bandit literature, we refer the reader to the survey of Bubeck and Cesa-Bianchi [START_REF] Bubeck | Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems[END_REF].

A stochastic multi-armed bandit model is a collection of K distributions (called arms in the bandit literature) ν := (ν 1 , . . . , ν K ), where each ν k is a probability distribution that is unknown to a learning agent. The agent can interact with the model by choosing an arm I (t ) ∈ [K] := {1, . . . , K } at each discrete step t ≥ 1. Then, it observes a variable X (t ) sampled from the distribution associated to the chosen arm which can be used to improve the estimation of the unknown mean of this arm.

For the sake of simplicity, we restrain this introduction to multi-armed bandits to the stochastic model with Bernoulli distributed random variables: the model parameters are the arm expectations θ := (θ 1 , . . . , θ K ), which lie in Θ = (0, 1) K and the optimal (unknown) arm k * has expectation

θ * := max k ∈[K ] θ k = θ k *
The objective of the learner is to construct a policy (also called algorithm or strategy) π that maximizes the expected sum of rewards, or equivalently, minimize the expected regret de ned as follows for a horizon T :

E[R(T )] := Tθ * -E       T t =1 X (t )      
.

Intuitively, regret corresponds to the di erence between selecting at every step the optimal (unknown) arm k * , and the actual policy π . Denoting N k (T ) := T t =1 1{I (t ) = k } the number of times arm k has been chosen up to time T , regret can be rewritten

E[R(t )] = k k * (θ * -θ k )E[N k (T )] = k k * ∆ k E[N k (T )],
where ∆ k := θ * -θ k is the expected gap to optimality.

The seminal paper of Lai and Robbins [START_REF] Leung | Asymptotically e cient adaptive allocation rules[END_REF] provides a lower bound on the expected regret of uniformly e cient strategies de ned as follows:

for any θ ∈ Θ such that there is a unique optimal arm, for all α ∈ (0

, 1], R(T ) = o(T α ).
This suggests that there exist algorithms with sub-polynomial regret. In the case of Bernoulli distributed arms, the lower bound can be stated as follows.

Theorem 1.1 (Lower bound [START_REF] Leung | Asymptotically e cient adaptive allocation rules[END_REF]). For any uniformly e cient algorithm, we have lim inf

T →∞ E[R(T )] log(T ) ≥ k k * θ * -θ k d (θ k , θ * ) ,
where d (p, q) := p log p q + (1-p)

1-p 1-q is the Kullback-Leibler divergence between two Bernoulli distributions.

The main di culty of bandit problems consists in dealing with the famous so-called explore-exploit dilemma: the agent wants to maximize its future rewards based on the historical data gathered heretofore, but also needs to maintain exploration as the stochastic nature of feedback may be misleading. Two di erent points of view on the stochastic multi-armed bandits have been considered in the literature to judiciously allocate speci c steps to exploration. The rst bandit algorithm adopted the Bayesian framework and was proposed as soon as 1933 by Thompson [START_REF] William R Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF]. In short, the algorithm maintains a posterior distribution on every arm's parameter. At each step t, a value is sampled from each of these distributions and the chosen arm I (t ) is set to the arm whose sample is the largest. Formally, after t steps, and given some prior distribution p(θ ) on the unknown parameters, the posterior is given by

p(θ | H t ) ∝ t s=1 p (X (s) | I (s), θ ) p(θ ),
where H t denotes the sigma eld σ (I (1), X I (1) , . . . , I (t -1), X I (t -1) ). The procedure, now referred to as T S , is detailed in Algorithm 1 in the case of Bernoulli distributed rewards. Note that in the case of Bernoulli distributed rewards, the prior is set to a Beta distribution -the Beta distribution is the conjugate prior of the Bernoulli distribution [START_REF] Jay | Probability and Statistics for Engineering and the Sciences[END_REF] -so as to easily update the posterior using Bayes' rule.

Algorithm 1: T S Data: α, β prior parameters of Beta distribution

1 Initialization: S k = 0, F k = 0, ∀k ∈ [K]; 2 for t = 1, . . . ,T do 3 for k = 1, . . . , K do 4 Sample θk according to Beta(S k + α, F k + β ); 5 end 6
Choose arm I (t ) ← arg max k θk and observe reward X (t );

7 if X (t ) = 1 then 8 S k ← S k + 1; 9 else F k ← F k + 1;
end end Importantly, T S has been shown asymptotically optimal only very recently and simultaneously by Kaufmann et al. [START_REF] Kaufmann | Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis[END_REF] and by Agrawal and Goyal [2].

The second perspective to tackle bandit problems follows the frequentist point of view and is generally referred to as "optimistic". Instead of maintaining a distribution on the unknown parameters, an index is computed for each arm k based on past observations. The index can be seen as a statistic well de ned so as to control the balance between exploration and exploitation. Agrawal [1] is the rst to introduce a UCB-like (for Upper Con dence Bound) algorithm in which indices are decomposed in the sample mean and an extra exploration term. At every step, the algorithm chooses the arm whose index is the largest. The rationale is that, if the selected arm is the optimal one, the agent is satis ed, whereas the selection of a suboptimal arm is useful in better estimating the unknown parameter, thus reducing the exploration term in subsequent steps. Many studies have focused on improving the exploration term in order to explore suboptimal arms the minimum possible 2 .

Auer et al. [START_REF] Auer | Finite-time Analysis of the Multiarmed Bandit Problem[END_REF] introduced the UCB1 algorithm that derives the exploration term from the Hoe ding concentration inequality.

At each step t, UCB1 computes an index b UCB k (t ) for each arm k whose exploration term is derived from Hoe ding's concentration bound. Auer et al. also provide the rst nite-time analysis and obtain a logarithmic dominant term which is in line with Lai and Robbins' lower bound.

Algorithm 2: Optimistic algorithm -UCB1

1 Initialization: rst K rounds, play each arm once;

2 N k (K + 1) ← K for all k; 3 for t = K + 1, . . . ,T do 4 for k = 1, . . . , K do 5 b UCB k (t ) ← θk (t ) + 2 log(t ) N k (t ) ; 6 end 7 Choose arm I (t ) = arg max k b UCB k and observe reward X (t ); 8 for k = 1, . . . , K do 9 if k = I (t ) then N k (t + 1) ← N k (t ) + 1; else N k (t + 1) ← N k (t ); end end 15 end
Several improvements on UCB1 were made until Garivier and Cappé [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF] introduced KL UCB, the rst asymptotically optimal UCB-like algorithm. Speci cally, at each step t, KL UCB computes the index

b KL-UCB k (t ) := sup q ∈[ θk (t ),1) q N k (t )d ( θk (t ), q) ≤ log(t )
for each arm k. Then, it selects the arm with largest KL-UCB index in line 8 of Algorithm 2.

Interestingly, T S approaches generally lead to good empirical performances, but many studies prefer using the frequentist point of view for mainly two reasons: (i) the posterior distribution may be complicated to derive -by that, understand it may be a "non-standard" distribution -, and thus, di cult to sample from (we will see an example of this in Chapter 4), (ii) in the Bayesian framework, the analysis is typically much harder than its frequentist counterpart.

Multi-armed bandits are still a very active research area, even though the canonical bandit setting has been solved under both Bayesian (T S ) and frequentist (KL UCB) perspectives. Variations of the classic setting continue to interest many researchers. In this dissertation, we will study in Chapter 4 a variation of the multiple-play -several arms are selected at each step -bandit in the framework of online recommendation. In Chapter 3, we rely on the UCB approach to derive an algorithm which adaptively selects in uential nodes so as to maximize the expected spread of di usion. 

S P R O D U C T I O N S

A S -Y O U -T Y P E S O C I A L R E C O M M E N D AT I O N
The rst part of this dissertation is dedicated to an approach for as-you-type search on social media, that is data published by users who are interconnected through a social network. More precisely, the problem consists in retrieving a set of k search results, i.e., performing a search with a given pre x, and showing the top ranked results. Interestingly, items are displayed while the user issuing a query is still completing it. In this respect, our approach makes information retrieval meet recommendation systems. We adopt a "network-aware" interpretation of information relevance, by which information produced by users who are closer to the user issuing a request is considered more relevant. This query model raises new challenges for e ectiveness and e ciency in online search, even when the intent of the user is fully speci ed, as a complete query given as input in one keystroke.

We describe TOPKS ASYT, a memory-e cient pre x-based retrieval algorithm, which also exhibits an anytime behavior, allowing to output the most likely answer within any chosen running-time limit. Furthermore, we propose an incremental version of TOPKS ASYT that relies on the adaptive aspect of as-you-type search to speed-up computations. At the end of this chapter, we evaluate our approach through extensive experiments for several applications and search scenarios. We consider searching for posts in micro-blogging (Twitter and Tumblr), for businesses (Yelp), as well as for movies (Amazon) based on reviews.

The work has been presented at the conference CIKM in 2015 [START_REF] Lagrée | A Network-Aware Approach for Searching As-You-Type in Social Media[END_REF] and an extended version has been published in the ACM TIST journal in 2017 [START_REF] Lagrée | As-You-Type Social Aware Search[END_REF]. 

2.1

Web search is the main tool used today to access the enormous quantity of information available on the Web, and in particular in the social media. Starting from simple text-based search ranking algorithm, it is now an interdisciplinary topic involving data mining, machine learning, knowledge management, just to mention a few. Signi cant improvements have been done on how to answer keyword queries on the Web in the most e ective way (e.g., by exploiting the Web structure, user and contextual models, user feedback, semantics, etc). However, answering information needs in social media applications (such as Tumblr, Twitter, or Facebook) often requires a signi cant departure from socially-agnostic approaches, which generally assume that the data being queried is decoupled from the users querying it.

While progress has been made in recent years to support this novel, social and networkaware query paradigm -especially towards e ciency and scalability -more remains to be done in order to address information needs in real applications. In particular, providing the most accurate answers while the user is typing her query, almost instantaneously, can be extremely bene cial, in order to enhance the user experience and to guide the retrieval process. Figure 2.1 shows an example of as-you-type search in Tumblr. A user is typing a query as-you-type "as yo". In the rst part of the results (section "Search"), candidates are selected among queries within the query log and correspond to pre x based query auto-completion (such as "as you are"). In the second part (section "Blogs"), search results are presented for the partial query "as yo" (search result such as the blog "love everybody"). This suggestion framework is referred to as as-you-type search and is the focus of this work.

In this chapter, we extend as-you-type search -a functionality by now supported in most search applications, including Web search -to social data. In particular we extend existing algorithms for top-k retrieval (where k is the number of results returned, typically k = 10) over social data. Our solution, called TOPKS ASYT (for TOP-k Social-aware search AS-You-Type), builds on the generic network-aware search approach of [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF] that we brie y recall in the following section.

We consider a generic setting common to a plethora of social applications, where users produce unstructured content (keywords) in relation to items, an activity we simply refer to as social tagging. More precisely, our core application data can be modelled as follows: (i) users form a social network, which may represent relationships such as similarity, friendship, following, etc, (ii) items from a public pool of items (e.g., posts, tweets, videos, URLs, news, or even users) are "tagged" by users with keywords, through various interactions and data publishing scenarios, and (iii) users search for some k most relevant items by keywords. We devise a novel index structure for TOPKS ASYT denoted CT IL which is a combination of tries and inverted lists. While basic trie structures have been used in as-you-type search scenarios in the literature (e.g., see [START_REF] Li | Supporting E cient Topk Queries in Type-ahead Search[END_REF] and the references therein), ranked access over inverted lists requires an approach that performs ranked completion more e ciently. Therefore, we rely on a trie structure tailored for the problem at hand, o ering a good space-time tradeo , namely the completion trie of [START_REF] Paul | Space-e cient Data Structures for Top-k Completion[END_REF], which is an adaptation of the well-known Patricia trie using priority queues. This data structure is used as access layer over the inverted lists, allowing us to read in sorted order of relevance the possible keyword completions and the items for which they occur. Importantly, we use the completion trie also as a key internal component of our algorithm, in order to speed-up the incremental computation of results.

In this as-you-type search setting, it is necessary to serve in a short ( xed) lapse of time, after each keystroke and in social-aware manner, top-k results matching the query in its current form, i.e., the terms t 1 , . . . , t r -1 , and all possible completions of the term t r . This must be ensured independently of the execution con guration, data features, or scale. This is why we ensure that our algorithms have also an anytime behaviour, being able to output the most likely result based on all the preliminary information obtained until a given time limit for the TOPKS ASYT run is reached.

2.2

We adopt a well-known generic model of social relevance for information, previously considered among others in [START_REF] Maniu | Taagle: E cient, Personalized Search in Collaborative Tagging Networks[END_REF][START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF][START_REF] Sihem Amer Yahia | E cient Network Aware Search in Collaborative Tagging Sites[END_REF]. In short, the social bias in scores re ects the social proximity of the producers of content with respect to the seeker (the user issuing a search query), where proximity is obtained by some aggregation of shortest paths (in the social space) from the seeker towards relevant pieces of information. We depict in Fig- ure 2.2 a social network and the tagging activity of its users. In the following, this running example will be used to illustrate de nitions and algorithms.

Notations and context

In this chapter, we consider a social setting, in which we have a set of items (e.g. text documents, blog posts, tweets, URLs, photos, videos, etc) that are tagged by users from a social network. We formally state the setting in the following.

Context

We assume a set of items I = {i 1 , . . . , i m }, where each item is tagged with one or more distinct tags from a tagging vocabulary T = {t 1 , t 2 , . . . , t l }, by users from U = {u 1 , . . . , u n }. We denote our set of unique triples by Tagged( , i, t ), each such triple saying that a user tagged the item i with tag t. Note that Tagged encodes many-to-many relationships: in particular, any given item can be tagged by multiple users, and any given user can tag multiple items. We also assume that a user will tag a given item with a given tag at most once.

While social media applications can adopt for their explicit social links either the directed graph model (e.g. , Twitter or Tumblr) or the undirected one (e.g., Yelp or Facebook), we assume in the following that users form a social similarity network, modeled for our purposes as an undirected weighted graph G = (U, E, σ ), where nodes are users and the σ function associates to each edge e = (u 1 , u 2 ) a value in (0, 1], called the proximity (social) score between u 1 and u 2 . Proximity may come either from explicit social signals (e.g., friendship links, follower/followee links), or from implicit social signals (e.g., tagging similarity), or from combinations thereof.

To illustrate, one σ instantiation, i.e., similarity measure, we rely on in our experiments is the Dice's coe cient: given two users u and , we compare their friends (respectively vocabulary, items) to compute a local social (respectively tag, item) similarity. For example, denoting by N u and N the set of users connected to u and , the Dice's social coe cient is computed as follows:

σ Dice (u, ) = 2|N u ∪ N | |N u |+|N | . (2.1)
Other similarities such as the Jaccard index or SimRank can be used to build the social similarity network.

Top-k retrieval algorithms

In modern search engines, queries point to thousands (or millions) relevant matching documents. The recall is no longer an interesting metric to measure the e ectiveness of the engine. Instead, top-k algorithms focus on retrieving the k most relevant documents, trading recall for speedup of several orders of magnitude. The rationale is that most users will only read the documents displayed on the rst pages. Classic top-k retrieval algorithms are early-termination algorithms and exploit the textual similarity. They rely on pre-computed inverted lists which are data structures containing exact scores for each term in the entire dataset. For example, in Figure 2.2, IL(grunge) = (i 2 : 3, i 1 : 2, i 4 : 1, i 5 : 1, i 6 : 1) is the inverted list of the word grunge, where this means for example that item i 2 has been tagged 3 times with the tag grunge. ): Two famous top-k algorithms allowing for early termination are the Threshold Algorithm (TA) and the No Random Access algorithm (NRA) [START_REF] Fagin | Optimal Aggregation Algorithms for Middleware[END_REF]. The former alternates sequential accesses with random accesses to the inverted lists to compute the exact scores of the items discovered. We refer the reader to [START_REF] Fagin | Optimal Aggregation Algorithms for Middleware[END_REF] for a detailed description of the algorithm. Conversely, the NRA only performs sorted accesses to the inverted lists, maintaining lower and upper bounds of every item found sequentially and an upper bound of the unobserved items. When the k-th item's lower bound is larger than the upper bounds of unobserved items and the k + 1-th candidate item, the NRA terminates. Note that the algorithm may not report the exact scores of the top-k items since it relies on bounds to avoid reading the entire inverted lists.

Example 2.1 In our running example from Fig. 2.2, let us assume we require the top-2 item for the query Q = (style, glasses). The corresponding inverted lists are respectively IL(glasses) = (i 6 : 2, i 4 : 1) and IL(style) = (i 4 : 3, i 2 : 1, i 6 : 1).

NRA executes the following steps: at the rst access to the inverted lists, the top item of each list is added to the candidates. We have:

M S (i 6 ) = 2, M S (i 6 ) = 5, M S (i 4 ) = 3, and M S (i 4 ) = 5.
In addition, the M S for unobserved items is also 5, which prevents us from stopping the algorithm at this step.

At the second sequential access, the scores of the candidates items become

M S (i 4 ) = 3, S (i 4 ) = 3, M S (i 6 ) = 2, S (i 6 ) = 3, M S (i 2 ) = 1, M S (i 2 ) = 2,
and the M S of the unobserved items is now equal to 2. NRA stops and returns items i 4 and i 6 . Indeed, NRA reached its termination condition as the maximal scores of item i 2 and of unobserved items cannot exceed the minimal scores of the items of the answer.

The NRA algorithm is a key ingredient in social-aware top-k algorithms such as TOPKS from Maniu and Cautis [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF], as well as in the as-you-type extension TOPKS ASYT.

Social-aware search

Top-k retrieval algorithms have been adapted to network-aware query models for social applications, following the idea of biasing results by social relevance [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF][START_REF] Sihem Amer Yahia | E cient Network Aware Search in Collaborative Tagging Sites[END_REF] and even time freshness [START_REF] Li | Real time personalized search on social networks[END_REF].

Person search represents another facet of "social search", as the task of nding highly relevant persons for a given seeker and keywords. Usually, the approach used in this type of application is to identify the most relevant users, and then to lter them by the query keywords [START_REF] Bahmani | Partitioned Multi-indexing: Bringing Order to Social Search[END_REF][START_REF] Potamias | Fast Shortest Path Distance Estimation in Large Networks[END_REF]. In this area, [START_REF] Curtiss | Unicorn: A System for Searching the Social Graph[END_REF] describes the main aspects of the Unicorn system for search over the Facebook graph, including a typeahead feature for user search. One key di erence w.r.t. [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF][START_REF] Sihem Amer Yahia | E cient Network Aware Search in Collaborative Tagging Sites[END_REF] is that the Unicorn system does not bias results by social proximity in the retrieval phase. Instead, it searches for items in the user environmenther friends, her friend-of-friends, etc. -and returns documents matching the query. Then, the resulting set of items is scored by another procedure that takes into account several factors such as the query, the user who issued the query or data associated to the documents. The authors propose to use a forward index that maps documents ids to some metadata to retrieve e ciently these data.

Query auto-completion and as-you-type search

As-you-type search (also known as type-ahead search) and query auto-completion are two of the most important features in search engines today, and belong to the broader area of instant search (see [START_REF] Venkataraman | Instant Search: A Hands-on Tutorial[END_REF] for a recent tutorial on the topic). They can be seen as facets of the same paradigm: providing accurate feedback to queries on-the-y, i.e., as they are being typed (possibly with each keystroke). In as-you-type search, feedback comes in the form of the most relevant answers for the query typed so far, allowing some terms (usually, the last one in the query sequence) to be pre x-matched. In query auto-completion, a list of the most relevant query candidates is to be shown for selection, possibly with results for them. We discuss each of these two directions separately. Also, instant search shares many challenges with exploratory search, for settings dealing with under-speci ed, undirected, and even interactive search tasks (see [3] and the references therein).

The problem we study here, namely top-k as-you-type search for multiple keywords, has been considered recently in [START_REF] Li | Supporting E cient Topk Queries in Type-ahead Search[END_REF], which mainly di ers from our work in the absence of social dimension in data. There, the authors consider various adaptations of TA/NRA top-k algorithms of [START_REF] Fagin | Optimal Aggregation Algorithms for Middleware[END_REF], even in the presence of minor typing errors in the query terms (fuzzy search), based on standard tries. A similar fuzzy interpretation for full-text search was followed in [START_REF] Ji | E cient Interactive Fuzzy Keyword Search[END_REF], yet not in a top-k setting. The techniques of [START_REF] Li | E cient fuzzy type-ahead search in TASTIER[END_REF] rely on precomputed materialization of top-k results, for values of k known in advance. In [START_REF] Bast | Output-sensitive Autocompletion Search[END_REF][START_REF] Bast | Type Less, Find More: Fast Autocompletion Search with a Succinct Index[END_REF], the goal is to nd all the query completions leading to results as well as listing these results, based on inverted list and su x array adaptations; however, the search requires a full computation and then ranking of the results. For structured data instead of full text, typeahead search has been considered in [START_REF] Feng | E cient Fuzzy Type-Ahead Search in XML Data[END_REF] (XML) and in [START_REF] Li | Supporting Search-As-You-Type Using SQL in Databases[END_REF] (relational data). Finally, [START_REF] Zhong | Locationaware Instant Search[END_REF] studies location-aware as-you-type search by providing location-biased answers, instead of socially-biased ones.

Query auto-completion is the second main direction for instant response to queries in the typing, by which some top query completions are presented to the user (see for example [START_REF] Cai | Time-sensitive Personalized Query Auto-Completion[END_REF][START_REF] Shokouhi | Learning to Personalize Query Auto-completion[END_REF][START_REF] Shokouhi | Time-sensitive Query Auto-completion[END_REF][START_REF] Zhang | adaQAC: Adaptive Query Auto-Completion via Implicit Negative Feedback[END_REF] and the references therein). This is done either by following a predictive approach, or by pre-computing completion candidates and storing them in trie structures. Probably the best known example today is the one of Google's instant search, which provides both query predictions (in the search box) and results for the top prediction. In [START_REF] Fafalios | Type-ahead Exploratory Search Through Typo and Word Order Tolerant Autocompletion[END_REF], the authors discuss in depth various systems choices involving index partitioning or caching, for query auto-completion under typo-tolerant and word-order tolerant assumptions. Query suggestion goes one step further by proposing alternative queries, which are not necessarily completions of the input one (see for instance [START_REF] Jiang | Personalized Query Suggestion With Diversity Awareness[END_REF][START_REF] Vahabi | Orthogonal Query Recommendation[END_REF]).

Several space-e cient trie data structures for ranked (top-k) completion have been studied recently in [START_REF] Paul | Space-e cient Data Structures for Top-k Completion[END_REF], o ering various space-time tradeo s, and we rely in our work on one of them, namely the completion trie. In the same spirit, data structures for the more general problem of substring matching for top-k retrieval have been considered in [START_REF] Wing-Kai Hon | Space-E cient Framework for Top-k String Retrieval Problems[END_REF].

Social and textual relevance framework

The general (not as-you-type) keyword search can be formulated as follows:

Problem 2.1 (Social-aware search). Given a seeker s, a keyword query Q = (t 1 , . . . , t r ) (a set of r distinct terms/keywords) and a result size k, the top-k keyword search problem is to compute the (possibly ranked) list of the k items having the highest scores with respect to s and the query Q.

We describe hereafter the model ingredients on which we rely to score query results in the social media context. Note that this relevance framework was initially introduced by [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF] We model by score(i | s, t ), for a seeker s, an item i, and a tag t, the relevance of that item for the given seeker and query term t. Generally, we assume

score(i | s, t ) = h(fr(i | s, t )), (2.2) 
where fr(i | s, t ) is the frequency of item i for seeker s and tag t, and h is a positive monotone function (e.g., could be based on inverse term frequency, BM25, etc). Given a query Q = (t 1 , . . . , t r ), the overall score of i for seeker s and Q is simply obtained by summing the per-tag scores:

score(i | s, Q ) = t j ∈Q score(i | s, t j ).
(2.3)

Note that this naturally corresponds to an OR semantics, where items that do not necessarily match all the query tags may still be selected (for an AND one, each term's score should be non-empty).

. In an exclusively social interpretation, we can explicitate the fr(i | s, t ) measure by the social frequency for seeker s, item i, and one tag t, denoted sf (i | s, t ). This measure adapts the classic term frequency (tf) measure to account for the seeker and its social proximity to relevant taggers. We consider that each tagger brings her own weight (proximity) to an item's score, and we de ne social frequency as follows:

sf (i | s, t ) = ∈ { | Tagged( ,i,t )) } σ (s, ).
(2.4)

Note that, under the frequency de nition of Eq. (2.2), we would follow a ranking approach by which information that may match the query terms but does not score on the social dimension (i.e., is disconnected from the seeker) is deemed entirely irrelevant.

. A more generic relevance model, which does not solely depend on social proximity but is network-aware, is one that takes into account textual relevance scores as well. For this, we denote by tf (t, i) the term frequency of t in i, i.e., the number of times i was tagged with t, and IL(t ) is the inverted list of items for term t, ordered by term frequency.

The frequency score fr(i | s, t ) is de ned as a linear combination of the previously described social relevance and the textual score, with α ∈ [0, 1], as follows:

fr(i | s, t ) = α × tf (t, i) + (1 -α ) × sf (i | s, t ). (2.5) 
This formula combines a global popularity of the item with one among people close to the seeker. Note that Eq. 2.5 will be a key ingredient to design our network-aware relevance model in as-you type scenarios.

. Interestingly, this model of triples for social data is a simple abstraction for quite diverse types of social media. Consider Tumblr [START_REF] Chang | What is Tumblr: A Statistical Overview and Comparison[END_REF]: one broadcasts posts to followers and rebroadcasts incoming posts; when doing so, the re-post is often tagged with chosen tags or short descriptions (hashtags). We can thus see a post and all its re-posted instances as representing one informational item, which may be tagged with various tags by the users broadcasting it. Text appearing in a blog post can also be interpreted as tags, provided either by the original author or by those who modi ed it during subsequent re-posts; it can also be exploited to uncover implicit tags, based on the co-occurrence of tags and keywords in text. Furthermore, a post that is clicked-on in response to a Tumblr search query can be seen as being e ectively tagged (relevant) for that query's terms. All this data has obviously a social nature: e.g., besides existing follower/followee links, one can even use similarity-based links as social proximity indicators.

Example 2.2 Getting back to our running example in Fig. 2.2, for seeker Alice, we have, for α = 0.2, tf (glasses, i 6 ) = 2, and sf (i 6 | Alice, glasses) = σ (Alice, Bob) + σ (Alice, Carol) = 0.9 + 0.6 = 1.5, fr(i 6 | Alice, glasses) = 0.8 × 1.5 + 0.2 × 2.

. The model described so far takes into account only the immediate neighbourhood of the seeker (the users it connects to explicitly). In order to broaden the scope of the query and go beyond one's vicinity in the social network, we also account for users that are indirectly connected to the seeker, following a natural interpretation that user links and the query relevance they induce are (at least to some extent) transitive. To this end, we denote by σ + the resulting measure of extended proximity, which is to be computed from σ for any pair of users connected by at least one path in the network. Now, σ + can replace σ in the de nition of social frequency in Eq. (2.4).

For example, one natural way of obtaining extended proximity scores is by (i) multiplying the weights on a given path between the two users, and (ii) choosing the maximum value over all the possible paths. Another possible de nition for σ + can rely on an aggregation that penalizes long paths, via an exponential decay factor, in the style of the Katz social proximity [START_REF] Katz | A new status index derived from sociometric analysis[END_REF]. More generally, any aggregation function that is monotonically nonincreasing over a path, can be used here. Under this monotonicity assumption, one can browse the network of users on-the-y (at query time) and "sequentially", i.e., visiting them in the order of their proximity with the seeker.

Example 2.3 In Fig. 2.2, for seeker Alice, when extended proximity between two users is dened as the maximal product of scores over paths linking them, the users ranked by proximity w.r.t. Alice are in order Bob : 0.9, Danny : 0.81, Carol : 0.6, Frank : 0.4, Eve : 0.3, George : 0.2, Ida : 0.16, Jim : 0.07, Holly : 0.01.

Hereafter, when we talk about proximity, we refer to the extended one, and, for a given seeker s, the proximity vector of s is the list of users with non-zero proximity with respect to it, ordered decreasingly by proximity values (we stress that this vector is not necessarily known in advance).

2.3

We now describe our solution TOPKS ASYT to the social-aware as-you-type search problem. Note that TOPKS ASYT builds on [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF] and deals with three systemic changes:

1. Pre x matching: answers must be computed following a query interpretation by which the last term in the query sequence can match tag / keyword pre xes.

2. Incremental computation: answers must be computed incrementally, instead of starting a computation from scratch. For a query representing a sequence of terms Q = (t 1 , . . . , t r ), we can follow an approach that exploits what has already been computed in the query session so far, i.e., for the query Q = (t 1 , . . . , t r -1 , t r ), with t r being a one character shorter pre x of the term t r .

3. Anytime output: answers, albeit approximate, must be ready to be outputted at any time, and in particular after any given time lapse (e.g., 50 -100ms is generally accepted as a reasonable latency for as-you-type search).

The as-you-type search problem

With respect to the general keyword search problem formulated before, we consider in this work a specialized and potentially more useful level of search service for practical purposes, in which queries are being answered as they are typed. Instead of assuming that the query terms are given all at once, a more realistic assumption is that input queries are sequences of terms Q = (t 1 , . . . , t r ), in which all terms but the last are to be matched exactly, whereas the last term t r is to be interpreted as a tag potentially still in the writing, hence matched as a tag pre x.

We extend the query model in order to deal with tag pre xes p by de ning an item's score for p as the maximal one over all possible completions of p:

sf (i | s, p) = max t ∈ {p's completions} sf (i | s, t ) (2.6) tf (p, i) = max t ∈ {p's completions} tf (t, i) (2.7) 
Note that when we compute the importance of an item, we might consider two di erent tag completions, for the social contribution and for the popularity one.

Example 2.4 In Fig. In the social-aware retrieval setting, when social proximity determines relevance, the data exploration must jointly consider the network (starting from the seeker and visiting users in descending proximity order), the per-user/personal tagging spaces, and all available socially-agnostic index structures such as inverted lists. It is thus important for e ciency to explore the social network by order of relevance/proximity to the seeker, as to access all the necessary index structures, in a sequential manner as much as possible. We favor such an approach here, instead of an incomplete "one dimension at a time" one, which would rst rely on one dimension to identify a set of candidate items, and then use the scores for the other dimension to re-rank or lter out some of the candidates.

Non-incremental algorithm

We rst describe the TOPKS ASYT approach for exclusively social relevance (α = 0 in Eq. 2.5) and without incremental computation, namely when the full sequence of terms is given in one keystroke, with the last term possibly a pre x, as Q = (t 1 , . . . , t r ). We follow an early-termination approach that is "user-at-a-time": its main loop step visits a new user and the items that were tagged by her with query terms. Algorithm 3 gives the ow of TOPKS ASYT.

. For each user u and tag t, we assume a precomputed selection over the Tagged relation, giving the items tagged by u with t; we call these the personal spaces (in short, p-spaces). No particular order is assumed for the items appearing in a user list.

We also assume that, for each tag t, we have an inverted list IL(t ) giving the items i tagged by it, along with their term frequencies tf (t, i) 1 , and by which they are sorted in descending order. The lists can be seen as unpersonalized indexes. A completion trie over the set of tags represents the access layer to these lists. As in Patricia tries, a node can represent more than one character, and the scores corresponding to the heads of the virtual IL(st) lists are used for ranked completion: each leaf has the score of the current entry in the corresponding inverted list, and each internal node has the maximal score over its children (see example below). This index structure is denoted hereafter the CT IL index.

Example 2.5 (CT-IL index). We give in Figure 2.3 an illustration of the main components of CT IL, for our running example. Each of the tags has below it the inverted list (the one of the hipster tag is explicitly indicated). The cursor positions in the lists are in bold. By storing the maximal score at each node (in brackets in Figure 2.3), the best (scoring) completions of a given pre x can be found by using a priority queue, which is initialized with the highest node matching that pre x. With each pop operation, either we get a completion of the pre x, or we advance towards one, and we insert in the queue the children of the popped node.

For comparison, we also illustrate in Figure 2.4 the CT IL index that would allow us to process e ciently Alice's top-k queries, without the need to resort to accesses in social network and p-spaces. Obviously, building such an index for each potential seeker would not be feasible.

While leaf nodes in the trie correspond to concrete inverted lists, we can see each internal node of the trie and the corresponding keyword pre x as described by a "virtual inverted list", i.e., the ranked union of all inverted lists below that node. As de ned in Eq. (2.6-2.7), for such a union, for an item appearing in entries of several of the unioned lists, we keep only the highest-scoring entry. In particular, for the query term t r , by IL(t r ) we refer to the virtual inverted list corresponding to this pre x. There is a notable di erence between the concrete inverted lists and the virtual ones: in the former, entries can be seen (stored) as pairs (item, score) (the tag is implied); in the latter, entries must be of the form (item, ta , score), as di erent tags (completions) may appear in such a list.

For each t ∈ {t 1 , . . . , t r }, we denote by top_item(t ) the item present at the current (unconsumed) position of IL(t ), we use top_tf (t ) as short notation for the term frequency associated with this item, and, for IL(t r ), we also denote by top_tag(t r ) the t r completion in the current entry.

Example 2.6 (Virtual lists). The virtual inverted list for the pre x st is given in Fig. 2.3.

The top_tag(st) is street, for top_item(st) being i 2 , for its entry scored 4 dominates the one scored only 2, hence with a top_tf (st) of 4. A similar one, for the "personalized" CT IL index for seeker Alice is given in Fig. 2.4.

. For each tag t ∈ {t 1 , . . . , t r -1 }, we keep a list D t of candidate items i, along with a sound score range: a lower bound and an upper bound for sf (i | s, t ) (to be explained hereafter). Similarly, in the case of t r , for each completion t of t r already encountered during the query execution in p-spaces (i.e., by triples (u, i, t ) read in some u's p-space), we record in a D t list the candidate items and their score ranges. Candidates in these D-bu ers are sorted in descending order by their score lower bounds.

An item becomes candidate and is included in D-bu ers only when it is rst met in a Tagged triple matching a query term.

For uniformity of treatment, a special item * denotes all the yet unseen items, and it implicitly appears in each of the D-lists; note that, in a given D t bu er, * represents items which are not yet candidates, but also candidate items which may already be candidates but appear only in other D-bu ers (for tags other than t).

. When accessing the CT IL index, inverted list entries are consumed in some IL(t ) only when the items they refer to are candidates (they appear in at least one bu er D t , where t may be any term in the query or completion of the pre x) 2 end end return top-k items; as candidates) in the inverted lists (virtual or concrete), for t being either in {t 1 , . . . , t r -1 } or a completion of t r for which a triple (item, t, score) was read in the virtual list of t r . We also keep by the set C all t r completions encountered so far in p-spaces. Note that t r completions encountered in p-spaces may not necessarily coincide with those encountered in IL(t r ).

For each t being either in {t 1 , . . . , t r -1 } or a completion of t r already in C, we denote by unseen_users(i, t ) the maximal number of yet unvisited users who may have tagged item i with tag t. This number is initially set to the maximal possible term frequency of t over all items. unseen_users(i, t ) then re ects at any moment during the run of the algorithm the di erence between the number of taggers of i with t already visited and one of the following values:

• tf (t, i), if this term frequency has been read already by accessing CT IL, or otherwise

• top_tf (t ), if t ∈ {t 1 , . . . , t r -1 }, or • top_tf (t r ), if t is instead a completion of t r .
For every candidate i of a candidate list D t , we accumulate in sf (i | s, t ) the social score (initially 0).

Each time we visit a user u having a triple (u, i, t ) in her p-space (Algorithm 4), we can 1. update sf (i | s, t ) by adding σ + (s, u) to it, and 2. decrement unseen_users(i, t ); when this reaches 0, the social frequency sf

(i | s, t ) is exact.
The maximal proximity score of yet to be visited users is denoted max_proximity. With this proximity bound, a sound score range for candidates i in D t bu ers is computed and maintained as • a score upper bound (maximal score) M S (i | s, t ), by max_proximity × unseen_users(i, t )+ sf (i | s, t ).

• a score lower bound (minimal score), M S (i | s, t ), by assuming that the current social frequency sf (i | s, t ) is the nal one (put otherwise, all remaining taggers u of i with t, which are yet to be encountered, have σ + (s, u) = 0).

Consuming the inverted list entries (Algorithm 5) in CT IL, whenever top items become candidates, allows us to keep as accurate as possible the worst-case estimation on the number of unseen taggers. When such a tuple (i, t, score) is accessed, we can do adjustments on score estimates:

1. if i ∈ D t , we can mark the number of unseen taggers of i with t as no longer an estimate but an exact value; from this point on, the number of unseen users will only change whenever new users who tagged i with t are visited, 2. by advancing to the next best item in IL(t ), for t ∈ {t 1 , . . . , t r -1 }, we can re ne the unseen_users(i , t ) estimates for all candidate items i for which the exact number of users who tagged them with t is yet unknown, 3. by advancing to the next best item in IL(t r ), with some t = top_tag(t r ) completion of t r , if t ∈ C, we can re ne the estimates unseen_users(i , t ) for all candidate items i ∈ D t for which the exact number of users who tagged them with t is yet unknown.

Termination condition. From the per-tag D t bu ers, we can infer lower bounds on the global score w.r.t. Q for a candidate item (as de ned in Eq. (2.3)) by summing up its score lower bounds from D t 1 , . . . , D t r -1 and its maximal score lower bound across all D t lists, for completions t of t r . Similarly, we can infer an upper bound on the global score w.r.t. Q by summing up score upper bounds from D t 1 , . . . , D t r -1 and the maximal upper bound across all D t lists, for completions t.

After sorting the candidate items (the wildcard item included) by their global score lower bounds, TOPKS ASYT can terminate whenever (i) the wildcard item is not among the top-k ones, and (ii) the score upper bounds of items not among the top-k ones are less than the score lower bound of the kth item in this ordering (we know that the top-k can no longer change).

As in [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF], it can be shown that TOPKS ASYT visits users who may be relevant for the query in decreasing proximity order and, importantly, that it visits as few users as possible (it is instance optimal for this aspect, in the case of exclusively social relevance).

Example 2.7 Revisiting our running example in Fig. 2.2, let us assume Alice requires the top-2 items for the query Q = (style, gl) where gl is a pre x and for α = 0. The rst data access steps of TOPKS ASYT are as follows: at the rst execution of the main loop step, we visit Bob, get his p-space, adding i 6 both to the D style bu er and to a D glasses one. There may be at most two other taggers of i 6 with style (unseen_users(i 6 , style)), and at most one other tagger of i 6 with glasses (unseen_users(i 6 , glasses)). No reading is done in IL(style), as its current entry gives the non-candidate item i 4 , but we can advance with one pop in the virtual list of the gl pre x, for candidate item i 6 . This clari es that there is exactly one other tagger with glasses for i 6 . After this read in the virtual list of gl, we have top_item(gl

) = i 1 Algorithm 4: Subroutine _ _ (u) 1 forall t ∈ {t 1 , . . . , t r -1 }, triples Tagged(u, i, t ) do 2 if i D t then 3 Add i to D t , sf (i | s, t ) ← 0; 4 unseen_users(i, t ) ← top_tf (t ); 5 end 6 unseen_users(i, t ) ← unseen_users(i, t ) -1; 7 sf (i | s, t ) ← sf (i | s, t ) + σ + (s, u); 8 end 9 forall tags t completions of t r , triples Tagged(u, i, t ) do if t C then Add t to C, D t = ∅; end if i D t then Add i to D t , sf (i | s, t ) ← 0; unseen_users(i, t ) ← top_tf (t ); end unseen_users(i, t ) ← unseen_users(i, t ) -1; sf (i | s, t ) ← sf (i | s, t ) + σ + (s, u);
end (if we assume that items are also ordered by their ids). At this point max_proximity is 0.81. Therefore, we have

M S (i 6 | Alice, style) = 0.81 × 2 + 0.9, M S (i 6 | Alice, style) = 0.9, M S (i 6 | Alice, glasses) = 0.81 × 1 + 0.9, M S (i 6 | Alice, glasses) = 0.9.
We thus have that score(i 6 |Alice, Q ) is between 1.8 and 4.23.

At the second execution of the main loop step, we visit Danny, whose p-space does not contain relevant items for Q. But a side-e ect of this step is that max_proximity becomes 0.6, a ecting the upper bound scores above: score(i 6 | Alice, Q ) can now be estimated between 1.8 and 3.6.

At the third execution of the main loop step, we visit Carol, and nd the relevant p-space entries for i 4 (with tag style) and i 6 (with tag glasses). Now max_proximity becomes 0.4. Also, we can advance with one pop in the inverted list of style. This clari es that there are exactly 2 other taggers with style on i 4 , and now we have top_item(gl) = i 1 and top_item(style) = i 2 . This makes score(i 6 | Alice, Q ) to be known precisely at 2.4, score(i 4 | Alice, Q ) to be estimated between 0.6 and 0.6+3×0.4 = 1.8, and score( * | Alice, Q ) is at most 0.8. At this point the algorithm has reached the termination condition.

Adaptations for the network-aware case

We sketch in this section the necessary extensions to Algorithm 3 for arbitrary values of α, hence for any textual-social relevance balance. When α ∈ [0, 1], at each iteration, the Algorithm 5: Subroutine _CT IL

1 while ∃t ∈ Q s.t. i = top_item(t ) ∈ x D x do 2 if t t r then 3 tf (t, i) ← top_tf (t ) (t's frequency in i is now known); 4 Advance IL(t ) one position; 5 ∆ ← tf (t, i) -top_tf (t ) (the top_tf drop); 6 Add i to CIL t ; 7 forall items i ∈ D t \ CIL t do 8 unseen_users(i , t ) ← unseen_users(i , t ) -∆; 9 end end if t = t r then t ← top_tag(t r ) (some t r completion t ); tf (t , i) ← top_tf (t r ) (t 's frequency in i known);
Advance IL(t r ) one position;

∆ ← tf (t , i) -top_tf (t r ) (the top_tf drop);
Add i to CIL t or set CIL t to {i} if previously empty;

forall t ∈ C and items i ∈ D t \ CIL t do unseen_users(i , t ) ← unseen_users(i , t ) -∆;
end end end algorithm can alternate between two possible execution branches: the social branch (the one detailed in Algorithm 3) and a textual branch, which is a direct adaptation of NRA over the CT IL structure, reading in parallel in all the query term lists (concrete or virtual). Now, items can become candidates even without being encountered in p-spaces, when read in inverted lists during an execution of the textual branch. As before, each read from CT IL is associated with updates on score estimates such as unseen_users. For a given item i and tag t, the maximal possible fr-score can be obtained by adding to the previously seen maximal possible sf-score (weighted now by 1 -α) the maximal possible value of tf (t, i); the latter may be known (if read in CT IL), or estimated as top_tf (t ) otherwise. Symmetrically, the minimal possible value for tf (t, i) is used for lower bounds; if not known, this can be estimated as the number of visited users who tagged i with t.

The choice between the two possible execution branches can rely on heuristics which estimate their utility w.r.t approaching the nal result. We mention the existing works of Maniu and Cautis [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF] and Schenkel et al. [START_REF] Schenkel | E cient Top-k Querying over Socialtagging Networks[END_REF] who propose to guide this choice either by estimating the maximum potential score of each branch, or by choosing the branch that is the most likely to re ne the score of the item outside the current top-k which has the highest estimated score (a choice that is likely to advance the run of the algorithm closer to termination).

Adaptations for incremental computation

We now describe the extension to perform the as-you-type computation incrementally, as follows:

1. when a new keyword is initiated (i.e., t r is one character), we take the following steps in order: a) purge all D t bu ers for t ∈ C, except for D t r -1 (t r -1 is no longer a potential pre x, but a complete term), b) reinitialize C to the empty set, c) purge all CIL t bu ers for t {t 1 , . . . , t r -1 }, d) reinitialize the network exploration (the queue H ) to start from the seeker, in order to visit again p-spaces looking for triples for the new pre x, t r . (This amounts to the following changes in Algorithm 3: among its initialization steps (1-12), steps (4-8) are removed, and steps for points (a) and (c) above are added.)

2. when the current t r is augmented with one additional character (so t r is at least two characters long), we take the following steps in order: a) purge D t bu ers for t ∈ C s.t. t is not a t r completion b) remove from C all ts which aren't completions for t r , c) purge all CIL t bu ers for t {t 1 , . . . Note that, in the latter case, we can e ciently do the ltering operations by relying on a simple trie structure for the C set and use it as the index for directly accessing the other data structures (D-lists and CIL-lists).

Complexity analysis

Recall that Tagged( , i, t ) denotes the set of unique triples and consider a query Q = (t 1 , . . . , t r ). Let f denote the average fan-out in the CT IL index, d r the average depth of the trie subtree rooted at the node corresponding to t r (models the size of t r completions), and p the average p-space size. Finally, remember that users in U are interconnected in the similarity graph through edges E.

CT IL is a space-e cient trie structure for sorted access, as a node can represent a sequence of characters. Thus, the memory space to store the trie is reduced compared to the trie index of [START_REF] Li | Supporting E cient Topk Queries in Type-ahead Search[END_REF]. Given an item i and a tag t, there corresponds a unique entry (i, tf (i, t )) in IL(t ). In total, there are as many entries in inverted lists as unique pairs (i, t ), leading to a total space for the inverted lists at the leaves of CT IL of O(|{unique (i, t )}|). The number of inverted lists corresponds to the number of distinct tags in the vocabulary, |T |. For example, in the case of our Yelp dataset, there are 177, 286 such lists and a simple computation reveals that in average each would have approximately 70 entries.

For each user u, we store a p-space index containing all pairs (i, t ) of u. Thus, each triple is indexed in p-spaces exactly once. The shortest-path computations for exploring the social graph by order of proximity is straightforwardly O(|E|+|U |log|U |).

In the run of TOPKS ASYT, we visit one user at a time in the social graph and, in the worst-case, we may visit the entire network, unless an event like the termination condition, a keystroke, or (most likely) the time limit occurs. 3 While entries in inverted lists are read at most once (see Algorithm 5), the situation is di erent for p-spaces, as they may need to be explored once for each new word that is added to the query (see step (1)(d) from the previous section), leading to O(r ) network explorations.

A one-character search (i.e., expansion of t r ) initially costs O( f ) in CT IL, and is followed by a sequence of variable length of sorted accesses in the trie and in the social graph; their actual number depends on the value of α and on the overlap between p-spaces and CT IL. Individually, the former accesses have a direct cost of O(d r log d r ). However, compared with the compact-trie of [START_REF] Paul | Space-e cient Data Structures for Top-k Completion[END_REF], this direct cost we incur is roughly double (albeit reduced), since our leaves are not necessarily single strings, but lists thereof, and thus a sorted access in a priority queue most often will translate in a score update instead of a normal pop operation.

Just like the NRA algorithm of [START_REF] Fagin | Optimal Aggregation Algorithms for Middleware[END_REF], whose complexity is quadratic in the size of its bu ers, the bookkeeping steps are more expensive complexity-wise because score intervals are maintained throughout the computation, so we cannot have bounded bu ers for our candidates. Whenever the p-space of some user u is visited (Algorithm 4), for a given completed tag t ∈ Q used by u, the cost of the updates to be done on the bu er D t is O(p|D t |); an additional cost of O(p t |D t |), for t denoting t r completions, corresponds to the tag t r still in the typing. Regarding accesses to CT IL by Algorithm 5, the cost is of the order O(p

(|D t | 2 +|CIL t ||D t |)) for the completed tags t, and O(p t (|D t | 2 +|CIL t ||D t |))
for the completions t of t r . Overall, in the most important case for our study -exclusively social, i.e., α = 0, for one pre x query, i.e., r = 1 -the worst-case time complexity of our algorithm is

O(|E|+|U |log|U |+d r |U |p t (|D t | 2 +|CIL t ||D t |), for the completions t of t r .
Compared to the non-incremental version, the algorithm avoids to restart the graph exploration from the seeker s and simply continues from the currently visited node. As described in Section 2.3.4, the pruning of all unnecessary data structures D t , CIL t , and C -for t denoting here the previous completions that do not match newly typed letter, can be done e ciently in O( f ) by using a trie for the C-set, which can act as the vocabulary index leading to the D t and CIL t bu ers.

Supernodes

When visiting a user node, we need to explore its p-space -its tag contributions -by routine _ _ (Algorithm 4). This can be costly overall if p-spaces are saved on disk, since many p-spaces may be loaded in main memory. In the case of time-limited queries, when a budget is imposed (e.g., in terms of random disk accesses) and results must be returned before budget expiration, loading p-spaces from disk becomes therefore a core issue. In this section, we discuss a way to make p-space exploration go deeper in the graph, under access budget constraints.

Most sequences of users visited by TOPKS ASYT are unique to each seeker. Thus, unless each possible sequence was materialised and cached on disk, p-spaces must be loaded one at a time. To tackle this issue, we propose to cluster users into supernodes and apply TOPKS ASYT on the graph reduced to supernodes. Instead of loading one p-space at a time, several p-spaces included in the same supernode can be loaded jointly, with the tradeo of some limited "o -track" exploration.

Twitter Amazon Tumblr Yelp

Number Average tag length 13.1 6.9 13.0 6.5

Table 2.1: Statistics on the datasets we used in our experiments.

To build N supernodes, we rst select N random users in the graph. Each user will correspond to the centroid of a supernode. Every remaining vertex u is then assigned to the supernode whose centroid is the closest to u. This method has the advantage of producing supernodes of relatively balanced sizes, which is exactly the purpose of clustering users into supernodes. Obviously, if the cluster sizes were unbalanced, that would make TOPKS ASYT perform considerably worse when having to load many small supernodes. (Indeed, in preliminary experiments, state-of-the-art community detection assigned most users to few supernodes, letting most other supernode cardinalities far under the average number of users per cluster; this is why we followed a di erent user grouping.)

2.4

We evaluate in this section the e ectiveness, scalability, and e ciency of TOPKS ASYT. We used a Java implementation of our algorithms, on a low-end Intel Core i7 Linux machine with 16GB of RAM. We performed our experiments in an all-in-memory setting, for datasets of medium size (10-30 millions of tagging triples). We describe rst the applications and datasets we used for evaluation.

Datasets

We used several popular social media platforms, namely Twitter, Tumblr, Yelp, and Amazon, from which we built sets of (user, item, tag) triples. Table 2.1 reports some statistics about each dataset.

. We used a collection of tweets extracted during Aug. 2012. As described in Section 4.3.1, we see each tweet and its re-tweet instances as one item, and the authors of the tweets/re-tweets as its taggers. We include both the text and the hashtags as tags.

. We used a publicly available SNAP dataset of around 35 million movie reviews, spanning a period of 18 years up to March 2013. In this social media scenario, in order to build the user-item-tag triples, we simply considered the movie as the item, the author of the review as the tagger, and the keywords appearing in the review as the tags.

. We extracted a collection of Tumblr posts from Oct.-Nov. 2014, following the same interpretation on posts, taggers, and tags as in Twitter. Among the 6 di erent types of posts within Tumblr, we selected only the default type, which can contain text plus images. Moreover, in the case of Tumblr, we were able to access the follower-followee network and thus we extracted the induced follower-followee network for the selected taggers.

. Lastly, we considered a publicly available Yelp dataset, containing reviews for businesses and the induced follower-followee network 4 . In this case, in order to build the triples, we considered the business (e.g., restaurant) as the item, the author of the review as the tagger, and the keywords appearing in the review as the tags.

For Twitter and Tumblr, to enrich the set of keywords associated to an item, we also expand each tag by the at most 5 most common keywords associated with it by a given user, i.e., by the tag-keyword co-occurrence. Finally, from the resulting sets of triples, we removed those corresponding to (i) items that were not tagged by at least two users, or (ii) users who did not tag at least two items.

To complete the data setting for our algorithm, we then constructed the user-to-user weighted networks that are exploited in the social-aware search. For this, we rst used the underlying social network (when available). Speci cally, for each user pair in Tumblr or Yelp, we computed the Dice coe cient corresponding to the common neighbors in the social network. To also study situations when such a network may not be available (as for Twitter and Amazon), exploiting a thematic proximity instead of a social one, we built two other kinds of user similarity networks, based on the Dice coe cient over either (i) the item-tag pairs of the two users, or (ii) the tags of the two users. We considered the ltering of "noise" links, weighted below a given cut-o threshold. Among the resulting ten networks, the Amazon tag similarity one was discarded due to poor connectivity coupled with high density and thus a less discriminative nature; we therefore report next on nine di erent network con gurations.

Experimental results: e ectiveness

We present in this section the results we obtained in our experiments for e ectiveness, or "prediction power", with the purpose of validating the underlying as-you-type query model and the feasibility of our approach. In this framework, for all the data con gurations we considered for e ectiveness purposes, we imposed wall-clock time thresholds of 50ms per keystroke, which we see as appropriate for an interactive search experience.

To measure e ectiveness, we followed an assumption used in recent literature, e.g. in [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF][START_REF] Pennacchiotti | Making Your Interests Follow You on Twitter[END_REF], namely that a user is likely to nd his items -belonging to him or re-published by him -more interesting than random items from other users. For testing e ectiveness, we randomly select triples (u, i, t ) from each dataset. For each selected triple, we consider u as the seeker and t as the keyword issued by this user. The aim is to "get back" item i through search. The as-you-type scenario is simulated by considering that the user issues t one letter at a time. Note that an item may be retrieved back only if at least one user connected to the seeker tagged it. We picked randomly 800 such triples (we denote this selection as the set D), for tags having at least three letters. For each individual measurement, we gave as input a triple (user, item, tag) to be tested (after removing it from the dataset), and then we observed the ranking of item when user issues a query that is a pre x of tag.

Note that we tested e ectiveness using single-word search for Twitter, Tumblr, and Amazon. On the contrary, for Yelp, due to its distinct features of having many triples per user, we did two-word search: given a query q = (w 1 , w 2 ), we rst ltered items tagged by w 1 , we then processed the remaining triples with query w 2 in the same manner as we did for Twitter and Tumblr.

We de ne the precision P@k for our selected set D as

P@k = #{triple | rankin < k, triple ∈ D} #D
Since P@k can be seen as a function of the main parameters of our system, one goal was to understand how it is in uenced by them. We describe now the di erent parameters we took into account.

• l, length of the pre x in the query (number of characters).

• θ , the threshold used to lter similarity links keeping only those having a score above. • α, the social bias (α = 0 for exclusively social score, α = 1 for exclusively textual score).

• η i (u), the number of items tagged by user u, a user activeness indicator (for simplicity, hereafter referred to as η i ).

• η u (i), number of users who tagged item i, an item popularity indicator (η u ).

We present next the results we obtained for this experiment. In each gure, parameters whose impact is not monitored are set to the following default values: α = 0 (fully social bias), θ is assigned the lowest value of the tested dataset, η i and η u are associated to active users and popular items (η i ≥ 3 and η u ≥ 10).

α . As shown in Figure 2.5, α can have a major impact on precision. With a fully social bias (α = 0), we obtained the best results for the four datasets and all the available similarity networks. Moreover, typing new characters to complete the pre x increases the precision. However, the evolution for α = 0 can be quite slow, with the Tumblr or Yelp item-tag similarity network for witness. In this case, one likely reason is that these networks are quite rich in information, and the neighbors of the seeker are very likely to have the searched item, with the right tag, due to the way this network was built. This can also explain why the precision for the item-tag networks is higher in the case of Tumblr than those for tag and social similarity networks. The precision for the social similarity network is the lowest for Tumblr, while in the case of the Yelp dataset the best results are obtained using the social network. Recall that the tag and item-tag networks were built based on the same content we were testing on, whereas the social similarity network only uses the links between users to infer distances between them. Yelp and Amazon exhibit lower precision levels overall, unsurprisingly, since they are denser datasets (more triples per user).

Interestingly, we obtain good precisions levels with such networks of similarity in social links (the highest in the case of Yelp) supporting our claim for social bias. For example, in the case of Tumblr, we can reach P@5 of around 0.82 for the item-tag similarity network, 0.7 for the tag one, and still 0.5 for the social one. This indicates that we can indeed nd relevant information using a content-agnostic network using TOPKS ASYT. Importantly, it also indicates that we can always search with the same social similarity network, even when the content evolves rather rapidly, with the same precision guarantees.

Finally, we observe that the evolution curve for small values of α, as new characters are added, varies depending on the similarity network. In Tumblr for example, the precision for low values of α does not increase much using the item-tag similarity network. The items were found very close to the seeker and a few characters already give the nal score in most cases. Very likely, the average number of items per user is too low to make the length of the pre x have an impact (most probably, users close to the seeker would not have several items tagged with the same pre x, even if this pre x is short). On the contrary, with the social similarity network, items with a tag matching the pre x are more likely to be diverse around the seeker. The distribution of the searched item in the network should thus be less concentrated around the seeker. Therefore, the number of result candidates with a high score for short pre xes is larger, and increasing l has more impact on the precision. Whereas an item-tag network tends to do so by de nition, this can be seen as a clear consequence of the social bias that motivated our work. θ . In Figure 2.6, we illustrate the impact of θ on the quality of results. We mention that the two highest θ values lead to 33% and 66% cuts on the total number of edges obtained with the lowest θ value. Unsurprisingly, removing connections between users decreases the precision. When using the similarity network ltered by the lowest θ value, the seeker is almost always connected to the network's largest connected component, and we can visit many users to retrieve back the targeted item. With higher θ values, the connectivity for certain seekers we tested with is broken, making some of the tested items unreachable.

/

. We show in Figure 2.7 the e ects of item popularity and user activity. For all similarity networks, the precision is better for popular items (high η u ). This is to be expected, as a popular item is more likely to be found when visiting the graph, as it is expected that it will score high since it has many taggers. Along with item popularity, we can observe that user activeness has a di erent e ect in both content-based and the social similarity networks. Active users yield a better precision score when similarity comes from social links, whereas it is the opposite with contentbased similarity networks. Reasonably, retrieving back an item for a non-active seeker in a content-based network is easier since his similarity with neighbors is stronger (Dice coe cient computed on less content).

Experimental results: e ectiveness with multiple words

We describe next an additional experimental evaluation for e ectiveness, focusing on the case of multiple word queries, in the densest dataset (Yelp). When dealing with multiword queries, the score of the pre x can have a highly disproportionate weight compared to other terms in the query.

As we take the maximal score over all the possible completions (Eq.(2.6), (2.7)), the score for short pre xes is likely to be very high and render irrelevant the preceding terms. For example, if the query is composed of two terms t 1 and t 2 , since t 2 is interpreted as a pre x, its length can in uence the expectated score (for any value of α ) as follows: say t 2 is a pre x of length 2, it is very likely to be the root of many possible completions; thus the expected value of the maximal score over all completions will likely be much larger than the score of t 1 . Furthermore, note that short pre xes bring little information about a seeker's intent.

The top row of Figure 2.8 shows the values for precision for multi-word queries in Yelp, without correcting the score of the last term. The rst four letters (l = 1, . . . , 4) correspond to the last letters of the rst word. The following characters (l ≥ 5) correspond to the next word. As expected, due the e ect described above, we can see drops in the precision when starting a new word (l = 5) for any value of α . The precision loss is particularly observable when measuring P @20. This motivated the following model adjustment.

To make the score of a small pre x comparable to those of the preceding terms, we propose to re-scale it by a data-dependent constant. Speci cally, for each pre x length (l ≥ 1), we compute a normalizer value that maximized the precision through cross-validation. For example, we computed the parameter N 1 (i.e., the normalizer of pre xes of length 1) to optimize the precision of queries of the form q = (t 1 , p), where p is a pre x of length 1. Proceeding similarly for other pre x lengths, in Yelp we obtained constants

N 1 = 10 3 , N 2 = 200, N 3 = 50, N 4 = 20, N 5 = 8 and N 6 = 2.
In Figure 2.8 bottom row, with the normalized scores, we can observe that the drop of precision seen in Figure 2.8 has almost disappeared (see the case of P@20, where we had signi cant drops when starting a new term, but the correction with N 1 now preserves precision).

Experimental results: e ectiveness with SimRank proximity scores

We conducted similar experiments for e ectiveness using, instead of the neighborhoodbased Dice proximity extended to shortest paths, the well-known path-based proximity model SimRank. For space reasons and to avoid repetition, we highlight the results over the densest dataset (Yelp), for comparison with all the initial plots for e ectiveness. This allowed us to observe how the chosen similarity (local/single-path or global) impacts results. The SimRank model, introduced by [START_REF] Jeh | SimRank: A Measure of Structural-context Similarity[END_REF], gives a recursive de nition of the similarity between users u and as follows:

σ SimRank (u, ) = c |N u ||N | u ∈N u , ∈N σ SimRank (u , ) (2.8) 
for some decay factor c ∈ [0, 1]. (A similar de nition can be given for directed graphs.)

The rationale is that "two objects are considered to be similar if they are referenced by similar objects". Since this de nition is recursive, the SimRank score between two users depends on the whole graph. In Figure 2.9, we used SimRank similarity computed on the social network instead of the Dice's coe cient used before. On the left gure, we display the impact of α on precision and observe the best results using a fully social bias. Interestingly, we have a slight improvements using SimRank similarity as it reaches a precision P@5 of 0.45 after typing 5 letters, which is to compare to the value 0.35 observed with Dice's coe cient. This supports the use of path-based similarity measures that encompass the general relationships between nodes.

On the right gure, we observe the impact of user activeness and item popularity on precision. Once again, results are better for popular items. Note that SimRank has no cuto threshold preventing us from experimenting the impact of θ .

Experimental results: e ciency and scalability

We now turn our attention to the e ciency and scalability aspects of our solutions. N DCG@k In Figure 2.10 top row, we display the evolution of NDCG@20 vs. time, for the densest dataset (Yelp), for di erent α values (where α is normalized to have similar social and textual scores in average). The NDCG is computed w.r.t. the exact top-k that would be obtained running the algorithm on the entire graph. Formally, the normalized discounted cumulative gain is de ned as follows: De nition 2.1 (NDCG@k). Let D ORACLE = (o 1 , . . . , o k ) be the top-k that would be obtained running the algorithm on the entire graph, sorted by decreasing score lower bounds and D TOPKS ASYT = (i 1 , . . . , ß k ) the top-k obtained by TOPKS ASYT. Finally, let rel(i) denote the relevance of item i (in our experiments, it is set to k +1 minus the position of i in the oracle topk-k D or acl e ). The normalized discounted cumulative gain accumulated at position k is:

N DCG@k = DCG k I DCG k , where DCG k = k l =1 rel(i l ) log 2 (l + 1)
and

IDCG k = k l =1 rel(o l ) log 2 (l + 1)
.

This measure is an important indicator for the feasibility of social-aware as-you-type search, illustrating the accuracy levels reached under "typing latency", even when the termination conditions are not met. In Fig. 2.10, we xed the pre x length size to l = 4. The left plot is when a user searches with a random tag (not necessarily used by her previously), while the right plot follows the same selection methodology as in Section 2.4.2.

Importantly, with α corresponding to exclusively social or textual relevance, we reach the exact top-k faster than when combining these two contributions (α = 0.5). Note also that this trend holds even when the user searches with random tags. In Figure 2.10 bottom row, we show the evolution of NDCG@20 vs. time in Yelp, for di erent pre x lengths (the left plot is for random tags). Results shows that with lower l values we need more time to identify the right top-k. The reason is that shorter pre xes can have many potential (matching) items, hence the item discrimination process evolves more slowly. For these pre x lengths, we only mention here that we also analyzed the evolution of NDCG@20 when visiting a xed number number of users, observing similar behavior. As expected, the more users we visit the higher NDCG we reach and for longer pre xes it is necessary to visit more users. E.g., when l = 6, after visiting 500 users, we reach an NDCG of 0.8 while for l = 2 the NDCG after 500 visits is 0.9.

Finally, in the experiment illustrated in Figure 2.11 we observed the time to reach the exact top-k for di erent dataset sizes. For that, we sorted Yelp triples chronologically and partitioned them into ve consecutive (20%) chunks. For each dataset we perform searches using pre xes of l = 2, 3, 4, 5. While the time to reach the exact top-k increases with bigger datasets and shorter pre xes, the algorithm scales adequately when l is more than 2. For instance, for l = 3, the time to reach the result over the complete dataset is just twice the time when considering only 20% of this dataset.

Experimental results: incremental versus non-incremental TOPKS ASYT

We now analyze the impact of the incremental computation. In Figure 2.12, we display the time to reach the exact top-k for both TOPKS ASYT and its incremental counterpart. For that, we compare the two algorithms on sequences of consecutive pre xes, e.g. sou, sour , sourc, and source. Let p t and p t +1 be two consecutive queries di ering by a single character. Whereas TOPKS ASYT starts a new query for each new letter, the incremental version calculates the answer for p t +1 relying on computations for p t . Obviously, the time to reach the exact top-k for the rst pre x p 1 is the same (the same algorithm is run). For l = 4, the time to reach the result is already slightly smaller for the incremental version of the algorithm. We emphasize that the rst part of the incremental algorithm, which consists in ltering the previous candidate list explains the small improvement. For longer pre xes (l = 5, 6), the candidate list is shorter and the incremental algorithm takes full advantage of previous computations (speed increase from ×2 for l = 5 up to ×4 for l = 6). 

Experimental results: TOPKS ASYT versus state-of-the-art baseline methods

We compare TOPKS ASYT with three di erent baselines methods. The rst two methods respectively build on the state-of-the-art social top-k search TOPKS algorithm from [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF] and the type-ahead textual search algorithm NRA(H ) of [START_REF] Li | Supporting E cient Topk Queries in Type-ahead Search[END_REF] 5 . The third method relies on the online Yelp Search API with query-autocompletion.

: k . We rst compare TOPKS ASYT to TOPKS M (for TOPKS-Merge), a baseline method that follows a natural idea relying on the social top-k state-of-the-art (such as algorithm TOPKS from [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF]), but does not bene t from CT IL (i.e., does not bene t from pre x-based retrieval). The approach of TOPKS M works in two stages, as follows: rst, we load the inverted lists of all the possible completions of the nal term given in the query and merge them in a unique list. As a result, this step may be very costly for short pre xes. Once the rst step is completed, we can directly apply algorithm TOPKS, using pre xes as complete words with their own inverted list.

In Figure 2.13 top row, we show the NDCG@20 of TOPKS ASYT and TOPKS for various budgets [START_REF] Todd | Asymptotically e cient adaptive choice of control laws in controlled markov chains[END_REF][START_REF] Daniel | Di erences in the Mechanics of Information Di usion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter[END_REF]200, 400 -each value corresponds to a color intensity, from lighter to darker) and various α . A budget B corresponds to the maximal number of signi cant disk accesses we allow the algorithm to do to answer a query. In our interpretation, a signi cant disk access can be either a p-space exploration (visit of the next user in the algorithm) or the loading of an inverted list. Our experiments show that the second is more costly (×12 in average), thus, we count a budget consumption of 12 for a disk access corresponding to an entire inverted list. Similarly to Section 2.4.5, the NDCG is computed w.r.t. the exact top-k that would be obtained by running the algorithm on the entire similarity graph without budget restrictions.

For α ranging from 0 to 1, we observe a similar behavior, when comparing TOPKS ASYT to the baseline method. Results show that the NDCG of TOPKS M is much smaller than the one of TOPKS ASYT, even for relatively important budgets (e.g., B = 400). The cost of merging inverted lists before applying TOPKS prevents the algorithm from providing high-quality answers fast. For example, for short pre xes (l = 3, 4), too many completions are possible and thus the baseline loads too many inverted lists compared to the budget. Even for a budget B = 400, TOPKS cannot catch up with the precision of TOPKS ASYT for a pre x length l = 3.

:

. We now compare TOPKS ASYT to a dimension-at-a-time approach, denoted TOPKS 2D (for TOPKS-2-Dimensions), which processes social and textual contributions separately. First, we retrieve documents matching the query on the textual dimension using the NRA(H ) type-ahead baseline from [START_REF] Li | Supporting E cient Topk Queries in Type-ahead Search[END_REF]. That is, we read inverted lists and build the candidate list, ignoring the social contribution (we do not use the social graph and no p-space is explored). In a second stage, we then explore the similarity graph to obtain the social contribution in the nal score.

In Figure 2.13 middle row, for the same budget values and color code as before, we show the NDCG@20 of TOPKS ASYT and TOPKS 2D, for various values of α (α = 1 is not considered, as it is a case where TOPKS ASYT and the baseline are virtually the same). We can see that small values of α highly favor TOPKS ASYT: NRA(H ) spends useless budget on inverted lists, since it runs without knowledge of the social scores. On the contrary, TOPKS ASYT bene ts from simultaneous social and textual score computations to avoid using unnecessary inverted lists. When α increases, the textual contribution becomes more signi cant and the baseline method becomes more competitive, especially for longer pre xes that do not have many possible completions.

+

. We complete our performance comparison with A +TOPKS, a baseline method that relies on the Yelp Search API for query-autocompletion 6 . This baseline method proceeds as follows: we obtain a set of queries that are predicted by Yelp to complete the current query (pre x) the seeker is typing, without using any social information (the service is not "personalized"). We then use these queries to get the set of top-k results over our data, by simply running for them the aforementioned state-of-the-art network-aware top-k algorithm TOPKS from [START_REF] Maniu | Network-aware Search in Social Tagging Applications: Instance Optimality Versus E ciency[END_REF]. We give TOPKS ASYT and the baseline the same budgets as in previous experiments and, to avoid any potential evaluation bias in our favor, any costs from the Yelp API autocompletion step are ignored. In Figure 2.13 bottom row, we show the NDCG@20 of TOPKS ASYT and A +TOPKS using the same display convention as before. We can see that for all values of α, the NDCG of A +TOPKS is signi cantly smaller than the one of TOPKS ASYT. As the API does not use social information to construct autocompletions, the nal top-k is likely a ected by the general query trend and this should explain the NDCG for low values of α. Interestingly, we can however observe a similar behavior even for high values of α (textual score).

Experimental results: supernodes

In Figure 2.14, we show the impact of the supernode materialization feature, for supernodes of average size d = 6 and d = 30. For three di erent budgets (B = 10, 30, 50), we run TOPKS ASYT with the original similarity network and the supernode-reduced graph. Similarly to the previous section, the budget corresponds to the number of signi cant disk accesses we allow our algorithm to do until it outputs a top-k result. For budget B = 50, supernodes do not increase the NDCG, in particular for short pre xes. Small pre xes have many completions and thus are very common. This means that most of the NDCG contribution is obtained with few visited nodes. When the budget given to TOPKS ASYT is smaller, supernodes improve the ranking quality. For instance, with budget B = 10, very few nodes can be visited by TOPKS ASYT and the supernodes become a key feature. With supernodes of 6 users (resp. 30), the algorithm aggregates p-spaces of up to 60 people (resp. 300), whereas it would visit at most 10 neighbors using the initial similarity network. .

. We emphasize here that we performed our experiments in an all-in-memory setting, for datasets of medium size (tens of millions of tagging triples), in which the advantages of our approach may not be entirely observed. In practice, in real, large-scale applications such as Tumblr, one can no longer assume a direct and inexpensive access to p-spaces and inverted lists, even though some data dimensions such as the user network and the top levels of CT ILe.g., the trie layer and possibly pre xes of the inverted lists -could still reside in main memory. In practice, with each visited user, the search might require a random access for her personal space, hence the interest for the sequential, user-at-a-time approach. Even when p-spaces may reside on disk, we experimentally observed that we can reach good precision levels by retrieving a small number of them (e.g., less than 100); depending on disk latency, serving results in, for example, under 100ms seems within reach. One way to further alleviate such costs may be to cluster users having similar proximity vectors, and choose the layout of p-spaces on disk based on such clusters; this is an approach we intend to evaluate in the future, at larger scale.

2.5

In this chapter, we study as-you-type query search in social media through the prism of an adaptive user-centric problem. Our aim was to retrieve the top-k ranked results, under a network-aware query model by which information produced by users who are closer to the seeker can be given more weight. We formalize this problem and we describe the GT UCB algorithm to solve it. Our solution is based on a novel trie data structure, Index, allowing ranked access over inverted lists. In several application scenarios, we perform extensive experiments for e ciency, e ectiveness, and scalability, validating our techniques and the underlying query model. As a measure of e ciency, since as-accurate-as-possible answers must be provided while the query is being typed, we investigate how precision evolves with time and, in particular, under what circumstances acceptable precision levels are met within reasonable as-you-type latency (e.g., less than 100ms). Also, as a measure of e ectiveness, we analyze thoroughly the "prediction power" of the results produced by GT UCB.

S A D A P T I V E I N F L U E N C E M A X I M I Z AT I O N
In this chapter, we propose a method to maximize the spread of in uence in a (potentially unknown) social network over multiple consecutive rounds. More precisely, we study the problem of sequentially selecting spread seeds in a graph under the hypothesis that previously activated nodes can still transfer information, but do not yield further rewards. Importantly, we make no assumptions on the underlying di usion model. We call this problem online in uence maximization with persistence. We describe a novel algorithm, GT UCB, relying on upper con dence bounds on the so-called missing mass, that is, the expected number of nodes that can still be reached from a given seed. We show that our approach leads to high-quality spreads on both simulated and real datasets, despite being model-free. Moreover, it is orders of magnitude faster than state-of-the-art methods, making it possible to deal with very large graphs.

The rst part of this chapter is devoted to the presentation of the problem and an overview of existing works in in uence maximization, in both o ine and online scenarios. Our method is described in the second part of this chapter. Finally, we present extensions for semi-bandit in uence maximization and time-varying IM. This work required the development of a software package coded in C++, available at https://github.com/plagree/ oim. 

Contents

3.1

Advertising based on word-of-mouth di usion in social media has become very important in the digital marketing landscape. Nowadays, social value and social in uence are arguably the hottest concepts in the area of Web advertising and most companies that advertise in the Web space must have a "social" strategy. For example, on widely used platforms such as Facebook or Twitter, promoted posts are interleaved with normal posts on user feeds. Users interact with these posts by actions such as "likes" (adoption), "shares" or "reposts" (network di usion). This represents an unprecedented tool in advertising, be it with a commercial intent or not, as products, news, ideas, movies, political manifests, tweets, etc, can propagate easily to a large audience [START_REF] Watts | In uentials, networks, and public opinion formation[END_REF][START_REF] Watts | Six Degrees: The Science of a Connected Age[END_REF]. Motivated by the need for e ective viral marketing strategies, in uence estimation and in uence maximization (IM) have become important research problems, at the intersection of data mining and social sciences [START_REF] Easley | Networks, Crowds, and Markets -Reasoning About a Highly Connected World[END_REF]. In short, IM is the problem of selecting a set of nodes from a given di usion graph, maximizing the expected spread under an underlying di usion model. This problem was introduced in 2003 by the seminal work of Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF], through two stochastic, discrete-time di usion models, Linear Threshold (LT) and Independent Cascade (IC). These models rely on di usion graphs whose edges are weighted by a score of in uence. They show that selecting the set of nodes maximizing the expected spread is NP-hard for both models, and they propose a greedy algorithm that takes advantage of the submodularity property of the in uence spread, but does not scale to large graphs. A rich literature followed, focusing on computationally e cient and scalable algorithms to solve IM. We discuss this in more details in Section 3.2. Importantly, all the IM studies discussed in the benchmarking study of Arora et al. [5] have as starting point a speci c di usion model (IC or LT), whose graph topology and parameters -basically the edge weights -are known. In order to infer the di usion parameters or the underlying graph structure, or both, [34, 42-44, 46, 102] propose o ine, model-speci c methods, which rely on observed information cascades 1 .

There are however many situations where it is unreasonable to assume the existence of relevant historical data in the form of cascades. For such settings, online approaches, which can learn the underlying di usion parameters while running di usion campaigns, have been proposed. Bridging IM and inference, this is done by balancing between exploration steps (of yet uncertain model aspects) and exploitation ones (of the best solution so far), by multi-armed bandit techniques, where an agent interacts with the network to infer in uence probabilities [START_REF] Chen | Combinatorial Multi-armed Bandit and Its Extension to Probabilistically Triggered Arms[END_REF][START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF].

Nevertheless, all these studies on inferring di usion networks, whether o ine or online, rely on parametric di usion models, i.e., assume that the actual di usion dynamics are well captured by such a model (e.g., IC). This maintains signi cant limitations for practical purposes. First, the more complex the model, the harder to learn in large networks, especially in campaigns that have a relatively short timespan, making model inference and parameter estimation very challenging within a small horizon (typically tens or hundreds of spreads). Second, it is commonly agreed that the aforementioned di usion models represent elegant yet coarse interpretations of a reality that is much more complex and often hard to observe fully. For examples of insights into this complex reality, the topical or non-topical nature of an in uence campaign, the popularity of the piece of information being di used, or its speci c topic were all shown to have a signi cant impact on hashtag di usions in Twitter [START_REF] Du | Uncover Topic-Sensitive Information Di usion Networks[END_REF][START_REF] Przemyslaw | Distinguishing between Topical and Non-Topical Information Di usion Mechanisms in Social Media[END_REF][START_REF] Daniel | Di erences in the Mechanics of Information Di usion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter[END_REF].

. Aiming to address such limitations, we propose in this work a large-scale approach for online and adaptive IM, in which the underlying assumptions for the di usion processes are kept to a minimal (if, in fact, hardly any). We argue that it can represent a versatile tool in many practical scenarios. More precisely, we focus on social media di usion scenarios in which in uence campaigns consist of multiple consecutive trials (or rounds) spreading the same type of information from an arbitrary domain (be it a product, idea, post, hashtag, etc). 2 The goal of each campaign is to reach (or activate) as many distinct users as possible, the objective function being the total spread. In our setting -as in, arguably, the real-world -the campaign selects from a set of spread seed candidates, a small subset of a potentially large and unknown population. At each round, the learning agent picks among the candidates those from which a new di usion process is initiated in the network, gathers some feedback on the activations, and adapts the subsequent steps of the campaign; the agent may "re-seed" certain nodes (we may want to ask a particular node to initiate spreads several times, e.g., if it has a strong converting impact). This perspective on in uence campaigns naturally imposes a certain notion of persistence, which is given the following interpretation: users that were already activated in the ongoing campaign -e.g., have adopted the product or endorsed the political candidate -remain activated throughout that campaign, and thus will not be accounted for more than once in the objective function.

We call this problem online in uence maximization with persistence (in short, OIMP). Our solution for it follows the multi-armed bandit idea initially employed in Lei et al. [START_REF] Lei | Online In uence Maximization[END_REF], but we adopt instead a di usion-independent perspective, whose only input are the spread seed candidates, while the population and underlying di usion network -which may actually be the superposition of several networks -remain unknown. In our bandit approach, the parameters to be estimated are the values of the candidates -how good is a speci c candidate -, as opposed to the di usion edge probabilities of a known graph as in [START_REF] Lei | Online In uence Maximization[END_REF]. Furthermore, we assume that di erent campaigns are independent, and make the model's feedback more realistic: after each trial, the agent only gathers the set of activated nodes. The rationale is that oftentimes, for a given "viral" item, we can track in applications only when it was adopted by various users, but not why.

The multi-armed bandit algorithm we propose, called GT UCB, relies on a famous statistical tool known as the Good-Turing estimator, rst developed during WWII to crack the Enigma machine, and later published by Good in a study on species discovery [START_REF] Good | The Population Frequencies of Species and the Estimation of Population Parameters[END_REF]. Our approach is inspired by the work of Bubeck et al. [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], who proposed the use of the Good-Turing estimator in a context where the learning agent needs to sequentially select experts that only sample one of their potential nodes at each trial. In contrast, in OIMP, when a candidate is selected, it may have a potentially large spread and may activate many nodes at once. Our solution follows the well-known optimism in the face of uncertainty principle from the bandit literature, by deriving an upper con dence bound on the estimator for the remaining potential for spreading information of each candidate, and by choosing in a principled manner between explore and exploit steps.

Through our approach, we show that e cient and e ective in uence maximization can be done in a highly uncertain or under-speci ed social environment, along with formal guarantees on the achieved spread.

3.2

In this section, we give a general overview of the existing works in o ine and online in uence maximization.

In uence discrete-time propagation models

We consider a graph G = (V , E), where V is the set of nodes, and E the set of directed edges connecting pairs of nodes. The di usion of information or in uence in the graph is a discrete process for which, at each time step t, a node is either active or inactive. Several propagation models have been proposed in the literature. They all have in common an initial set of nodes I ⊆ V -the seed set -that contains the initial activated nodes before the spread of in uence in the graph. Denoting by the random variable S (I ) the spread initiated by the seed set I , the in uence spread function is the expected size of the spread:

σ (I ) := E[|S (I )|].
We now describe two of the most commonly studied propagation models, namely, the independent cascade (IC) and the linear threshold (LT) models.

. The independent cascade model was initially formalized by Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF] based on particle physics models [START_REF] Thomas | Interacting Particle Systems[END_REF] and marketing studies [START_REF] Goldenberg | Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth[END_REF]. The core idea of the IC model is to consider that an edge gets activated -di use the information -independently of any other edge. The IC model assumes the existence of a probability parameter p(u, ) ∈ [0, 1] on every edge (u, ) ∈ E.

De nition 3.1 (Independent cascade). Given a graph G = (V , E) with activation probability function p, the IC model is a discrete stochastic process starting from an initial set of active seeds I ⊆ V and which proceeds as follows. When a node u ∈ V becomes active, it tries to activate every unactive neighbor once, succeeding with probability p(u, ) independently of the past activations. The process stops when no further activation is possible.

Example 3.1 We give an example of an IC di usion process in Fig. 3.1. Initially, at t = 0, a single node is seeded in Fig. 3.1a. In the example, it corresponds to the rst use of the hashtag #falcon9 on a social platform. At time t = 1, the seed successfully activates its one neighbor that can be activated with probability 0.2 but fails to activate its two other neighbors. Note that failed activations are represented by red crosses. At time t = 2, the node that has just been activated at t = 1 activates its 2 unactive neighbors (Fig. 3.1c). Finally, at time t = 3, there is a single unactive neighbor and its activation fails. After t = 3, there is no new activated node so the di usion process stops (Fig. 3.1d).

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3
. The IC model is suitable for modeling situations where a single exposure to an active neighbor su ces to activate a node. However, it fails to incorporate the cumulative e ect that often arises when several neighbors are activated. For example, when buying a new product, people may need positive feedback from several of their friends before taking the plunge. This idea was initially introduced in social sciences by Granovetter [START_REF] Granovetter | Threshold Models of Collective Behavior[END_REF] and Schelling [START_REF] Thomas | Micromotives and Macrobehavior[END_REF] who based their approach on node-speci c thresholds. Later, Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF] introduced the Linear Threshold model for which nodes tend to activate monotonically with the number of their activated neighbors.

De nition 3.2 (Linear threshold). Given a graph G = (V , E) with weight function w, and such that for each node ∈ V , u neighbor of w (u, ) ≤ 1, the LT model is a discrete process starting from an initial set of active seeds I ⊆ V proceeding as follows. Each node chooses a random threshold θ ∈ [0, 1]. Then, at every time step t, all nodes that were active at t -1 remain active and each unactive node at t -1 becomes active if the total weight of its active neighbors is at least θ , that is:

u active neighbor of w (u, ) ≥ θ .
Intuitively, the threshold θ represents how easily the node is in uenced by its neighbors.

. The IC and LT models share an important property, which will turn out to be important when designing e cient algorithms in the next section, namely, the submodularity of their expected number of in uenced nodes. De nition 3.3 (Submodularity). Let Ω be a nite set. A set function f : 2 Ω → R is submodular if for every A, B ⊆ Ω with A ⊆ B and every X B,

f (A ∪ {x }) -f (A) ≥ f (B ∪ {x }) -f (B).
Intuitively, this means that when a new element is added to a set A, f increases even more as A is small. This is sometimes referred to as the diminishing marginal return property. In their seminal paper, Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF] show that σ is submodular in both IC and LT models.

Theorem 3.1 (Theorems 2.2 and 2.5 [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF]). Under both independent cascade (IC) and linear threshold (LT) models, the in uence spread function σ is submodular.

In uence maximization

The traditional problem of in uence maximization (IM) is to select a set of seed nodes The statement of Problem 3.1 makes no assumption on the underlying di usion model. In the following, we will focus on in uence maximization under the independent cascade and linear threshold models.

I ⊆ V ,
. Given a di usion model -the IC or LT model -there are two computational tasks in order to solve the IM problem:

1. computing the value of σ ({u}) for every user u ∈ V -this task is sometimes called the in uence computation, 2. nding the optimal set I maximizing the expected spread as described in Problem 3.1.

The following theorem states that the computation of σ is #P-hard under both the IC and the LT propagation models. The complexity class #P is the set of counting problems associated to problems in NP: an NP problem tries to answer a decision problem (yesno question), whereas a #P problem looks for the number of solutions to the problem.

Similarly to decision problems, we can de ne completeness and hardness for counting problems: (i) a problem is #P-complete if it is in class #P and any other problem from #P can be reduced to it in polynomial time, (ii) a problem is #P-hard if it can be reduced from a #P-complete problem with a polynomial transformation.

Theorem 3.2 (Theorem 1 [START_REF] Wang | Scalable in uence maximization for independent cascade model in large-scale social networks[END_REF] and Theorem 1 [START_REF] Chen | Scalable In uence Maximization in Social Networks Under the Linear Threshold Model[END_REF]). Given a graph G = (V , E) and an initial set of seeds I (possibly a singleton), computing the in uence spread σ (I ) is #P-hard under both the IC and LT models.

This theorem essentially says that solving the rst task (the in uence computation) is hard. It turns out that the selection of the optimal set is also a di culty a task. This can easily be seen because the IC model contains the set cover problem as a special case and the LT model contains the vertex cover problem as a special case which are both NP-complete. Theorem 3.3 (Theorems 2.4 and 2.7 [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF]). Given a graph G = (V , E), solving the in uence maximization problem is NP-hard under both IC and LT models. Theorem 3.4 (Greedy algorithm [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions[END_REF]). Let f be a monotone and submodular set function and S * = arg max |S |=L f (S ) be the set of size L maximizing f . We denote by Ŝ the set computed by the G procedure from Algorithm 6. We have that

f ( Ŝ ) ≥ 1 - 1 e f (S * ).
Proof We denote S * := {s * 1 , . . . , s * L } and let Ŝi := {ŝ 1 , . . . , ŝi } be the set chosen by the G algorithm at step i ≥ 1. By de nition, Ŝ0 := ∅.

Then, for l ∈ {0, . . . , L -1}, one has

f (S * ) ≤ f (S * ∪ Ŝl ) (f is monotone) = f (S * ∪ Ŝl ) -f ({s * 1 , . . . , s * l -1 } ∪ Ŝl ) + f ({s * 1 , . . . , s * l -1 } ∪ Ŝl ) = • • • = f ( Ŝl ) + L i=1 f ({s * 1 , . . . , s * j } ∪ Ŝl ) -f ({s * 1 , . . . , s * j-1 } ∪ Ŝl ) ≤ f ( Ŝl ) + L i=1 f ( Ŝl ∪ {s * i }) -f ( Ŝl ) (f is submodular) ≤ f ( Ŝl ) + L i=1 f ( Ŝl+1 ) -f ( Ŝl ) (by greedyness of the Algorithm) = f ( Ŝl ) + L( f ( Ŝl+1 ) -f ( Ŝl )).
Let ∆ l := f (S * ) -f ( Ŝl ). We obtain that

∆ l +1 ≤ (1 -1/L)∆ l ,
and thus, by induction, ∆ L ≤ (1 -1/L) L ∆ 0 . By de nition, f (∅) = 0, and thus, ∆ 0 = f (S * ).

Reorganizing terms concludes the proof as (1

-(1 -1/L) L ) ≥ 1 -1/e.

E cient in uence computation

A plethora of algorithms have been proposed to solve the in uence computation task of the IM problem, under speci c di usion models. These algorithms can be viewed as fullinformation and o ine approaches: they choose all the seeds at once, in one step, and they have the complete di usion con guration, i.e., the graph topology and the in uence probabilities. Here, we review a few existing algorithms to solve the IM problem under the IC and LT models.

In their original work, Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF] propose MC G , a simple Monte Carlo (MC) method to estimate the in uence function σ . Given a set of seed nodes S, we simulate R random cascades and average the number of in uenced nodes. Not surprisingly, the parameter R is critical in the con dence of the estimation of σ (S ). An MC simulation is performed before choosing each new node. More precisely, given a set Ŝk of k < L chosen nodes, G selects the node that gives the largest marginal improvement. Thus, for every u ∈ V , R simulations are performed to estimate σ ( Ŝk ∪ {u}). Kempe et al. [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF] propose to perform the di usion process 10, 000 times but they do not give any theoretical guarantee. The time complexity of the algorithm is O(LnRm) where n is the number of nodes and m is the number of edges. Indeed, there are L rounds, one for each new node added to the current set. Furthermore, to select each new node, the algorithm needs to go through all the nodes that have not been selected yet, and, for each of these nodes, R simulations that can potentially traverse all edges are performed. In summary, we easily see that MC G does not perform e ciently in large-scale scenarios. Signi cant progress has thus been made since the foundational work of [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF], for proposing methods to estimate the in uence function σ that scale to large networks with formal guarantees on the approximation. In their benchmarking study, Arora et al. [5] classify the di erent approaches into several categories: (i) the most straightforward methods rely on explicit MC simulations such as MC G [START_REF] Kempe | Maximizing the Spread of In uence Through a Social Network[END_REF], CELF [START_REF] Leskovec | Cost-e ective Outbreak Detection in Networks[END_REF] and CELF++ [START_REF] Goyal | CELF++: Optimizing the Greedy Algorithm for In uence Maximization in Social Networks[END_REF], (ii) in 2014, a new line of research focusing on Reverse Reachable sets of nodes to estimate the node in uence led to algorithms such as RIS [START_REF] Borgs | Maximizing Social In uence in Nearly Optimal Time[END_REF], TIM [START_REF] Tang | In uence Maximization: Near-Optimal Time Complexity Meets Practical E ciency[END_REF] and SSA [START_REF] Nguyen | Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks[END_REF], (iii) nally, snapshots methods, like PMC [START_REF] Ohsaka | Fast and Accurate In uence Maximization on Large Networks with Pruned Monte-Carlo Simulations[END_REF], generate several instances G i of the di usion graph and estimate node in uence from these samples. In the following, we explain the main ideas of these 3 categories. The reader interested in the details of the algorithms will refer to the associated papers.

. CELF [START_REF] Leskovec | Cost-e ective Outbreak Detection in Networks[END_REF] and CELF++ [START_REF] Goyal | CELF++: Optimizing the Greedy Algorithm for In uence Maximization in Social Networks[END_REF] proceed similarly to MC G , but use the submodularity of σ to reduce the number of simulations required to estimate the node in uences. The marginal gain of a node at a given iteration is smaller than the marginal gain computed at the previous iteration. This allows CELF to prune Monte Carlo simulations at subsequent rounds and speed up greatly the spread computation.

. Borgs et al. [START_REF] Borgs | Maximizing Social In uence in Nearly Optimal Time[END_REF] introduced a new approach for in uence computation, namely, the Reverse In uence Sampling (RIS), which led to a renew of interest in the IM area.

De nition 3.4 (Reverse Reachable (RR) set). Given a graph G = (V , E), a Reverse Reachable set R is generated by (1) selecting a node ∈ V at random (2) generating a random spread -the RR set -from on the graph where every directed edge from G is reversed.

Note that the nodes in R correspond to nodes that can reach in a sample graph. This de nition proves to be key in designing e cent IM algorithm. If we generate a set of RR sets, in uential nodes will likely appear in many of them. We formally state this intuition in Lemma 3.1. Lemma 3.1 (Observation 3.2 in [START_REF] Borgs | Maximizing Social In uence in Nearly Optimal Time[END_REF]). Given G = (V , E) and an RR set R generated from G, we have for every

I ⊆ V , σ (I ) = nP(I ∩ R ∅).
Proof Remember that the random variable S ({s}) denotes the spread initiated by the seed node s ∈ V . The random variable S T ({u}) denotes the same in the reverse graph, that is, it corresponds to the set of users which in uenced u in a spread.

σ (I ) = u ∈V P (∃s ∈ I such that u ∈ S ({s})) = u ∈V P ∃s ∈ I such that s ∈ S T ({u}) = nP u chosen at random in V , ∃s ∈ I such that s ∈ S T ({u}) = nP (S ∩ R ∅) .
Lemma 3.1 essentially says that the expected in uence of a set of seeds I is proportional to the probability that it intersects a random RR set R. Thus, to nd a set I that maximizes the in uence function σ , the problem can be cast to selecting the set that intersects as many RR sets as possible. The number of RR sets generated is key in controlling the error in the approximation of the in uence function. Given an approximation ϵ > 0, TIM [START_REF] Tang | In uence Maximization: Near-Optimal Time Complexity Meets Practical E ciency[END_REF], IMM [START_REF] Tang | In uence Maximization in Near-Linear Time: A Martingale Approach[END_REF], SSA [START_REF] Nguyen | Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks[END_REF] and SSA F [START_REF] Huang | Revisiting the Stop-and-stare Algorithms for In uence Maximization[END_REF] successively reduced the number of required sampled RR sets, but the core of the algorithm remains the same.

. The snapshots methods are similar to explicit MC methods but work at the graph level as opposed to the node level. For example, PMC [START_REF] Ohsaka | Fast and Accurate In uence Maximization on Large Networks with Pruned Monte-Carlo Simulations[END_REF] -method designed speci cally for the IC model -generates R instances of the graph G i (called snapshots): for each edge (u, ) ∈ E, it keeps the edge with probability p(u, ). Then, it estimates the in uence of nodes by aggregating all the snapshots. Similarly to the MC methods, the number of simulations R controls the error of the estimation. However, the main advantage of this approach is that the simulations are shared between all nodes, making this method much faster than MC G for instance. Furthermore, PMC proposes an e ective pruning strategy to avoid unnecessary computations.

Arora et al. [5] discuss the pros and cons of the best known techniques for IM. In particular, the authors highlight that the Weighted Cascade (WC) instance of IC, where the weights associated to a node's incoming edges must sum to one, leads to poor performance for otherwise rather fast IC algorithms. They conclude that PMC [START_REF] Ohsaka | Fast and Accurate In uence Maximization on Large Networks with Pruned Monte-Carlo Simulations[END_REF] is the state-of-the-art method to e ciently solve the IC optimization problem, while TIM+ [START_REF] Tang | In uence Maximization: Near-Optimal Time Complexity Meets Practical E ciency[END_REF] and IMM [START_REF] Tang | In uence Maximization in Near-Linear Time: A Martingale Approach[END_REF] -later improved by [START_REF] Nguyen | Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks[END_REF] with SSA -are the best current algorithms for WC and LT models. In a response paper, Lu et al. [START_REF] Lu | Refutations on "Debunking the Myths of In uence Maximization: An In-Depth Benchmarking Study[END_REF] examine the work and the experimental methodology of [5] and refute several claims formulated by Arora et al.

Among the "myths" raised by [5], we experimentally veri ed that the methods relying on the sampling of RR sets can be surprisingly slow under the WC instance of IC. Consequently, we always used PMC in our numerical expirements under the IC model. Conversely, similarly to [START_REF] Lu | Refutations on "Debunking the Myths of In uence Maximization: An In-Depth Benchmarking Study[END_REF], we observed that IMM is not slower than TIM -we actually obtain noticeable speed gains using IMM -, which refutes a claim formulated by [5]. Finally, while implementing IM algorithms, we noticed that authors use di erent pseudorandom number generators whose e ciency varies signi cantly from one to another. This is in line with a remark formulated by [START_REF] Huang | Revisiting the Stop-and-stare Algorithms for In uence Maximization[END_REF] which reveals that the claimed speed improvements of SSA are overestimated by [START_REF] Nguyen | Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks[END_REF] due to aws in the expiremental setup.

. Besides the already discussed o ine methods for inferring the di usion network and its parameters, we mention here that a rst o ine and modelfree method for inferring the di usion network from existing cascades has been proposed recently in [START_REF] Rong | A Model-Free Approach to Infer the Diffusion Network from Event Cascade[END_REF]. We have in common with this work the goal to devise generic, nonparametric methods, yet in a online IM framework.

Other methods have been devised to handle the prevalent uncertainty in di usion media, e.g., when replacing edge probability scores with ranges thereof, by solving an IM problem whose robust outcome should provide some e ectiveness guarantees w.r.t. all possible instantiations of the uncertain model [START_REF] Chen | Robust In uence Maximization[END_REF][START_REF] He | Robust In uence Maximization[END_REF].

Methods for IM that take into account more detailed information, such as topical categories, have been considered in the literature [START_REF] Barbieri | Topic-aware social inuence propagation models[END_REF][START_REF] Du | Uncover Topic-Sensitive Information Di usion Networks[END_REF][START_REF] Wang | MMRate: inferring multiaspect di usion networks with multi-pattern cascades[END_REF]. Interestingly, [START_REF] Daniel | Di erences in the Mechanics of Information Di usion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter[END_REF] experimentally validates the intuition that di erent kinds of information spread di erently in social networks, by relying on two complementary properties, namely stickiness and persistence. The former can be seen as a measure of how viral the piece of information is, passing from one individual to the next. The latter can be seen as an indicator of the extent to which repeated exposures to that piece of information impact its adoption, and it was shown to characterize complex contagions, of controversial information (e.g., from politics).

Finally, we also mention here some work to identify the best spreaders in social platforms using a graph topology viewpoint. Kitsak et al. [START_REF] Kitsak | Identi cation of in uential spreaders in complex networks[END_REF] show that the spreading inuence potential of a node can be explained by indicators such as the density and the cohesiveness. More recently, Malliaros et al. [START_REF] Fragkiskos | Locating in uential nodes in complex networks[END_REF] found that the truss number is an even better indicator.

Online in uence maximization

In the online case, during a sequence of N (what we call hereafter the budget) consecutive trials, L seed nodes are selected at each trial, and feedback on the achieved spread from these seeds is collected. In the literature, we can distinguish two kinds of online in uence maximization: the semi-bandit IM and the online IM with persistence (OIMP).

. Chronologically, the semi-bandit IM problem was introduced after the OIMP, but, as it shares many aspects with the classic semi-bandit literature, it is somewhat easier to apprehend. Problem 3.2 (Semi-bandit IM). Given a graph G = (V , E), a budget of N trials, and a number 1 ≤ L ≤ n of nodes to be activated at each trial, the objective of the semi-bandit in uence maximization problem is to solve the following problem:

arg max I n ⊆V , |I n |=L,1≤n ≤N E       N n=1 |S (I n )|       .
In the formulation of Problem 3.2, two key aspects are deliberately left unspeci ed as they vary in the problems considered in the literature:

1. di usion model: Semi-bandit studies such as [START_REF] Chen | Combinatorial Multi-armed Bandit and Its Extension to Probabilistically Triggered Arms[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF] assume that the underlying di usion model is the independent cascade model. Similarly to our work, Vaswani et al. [START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF] propose a di usion-independent framework using pairwise reachability parameterization.

feedback:

We can distinguish two types of feedback in the literature. The node-level feedback assumes that the learning agent only observes the activated nodes, but does not know which edge has been successfully activated and which has not. This adds another challenge when trying to estimate di usion probabilities. Conversely, edge-level feedback assumes that the learner observes edges' failed and successful activations, facilitating parameter estimation.

The learning agent sequentially selects seeds from which di usion processes are initiated in the network; the obtained feedback is used to update the agent's knowledge of the model. By interacting with the network, the agent tries to infer in uence probabilities. Not surprisingly, the problem is very challenging: there is an unknown parameter on every edge, which can be dramatic as social networks have typically up to billions of users and trillions of connections nowadays.

To make the learning problem more tractable, Wen et al. [START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF] make a linear assumption on the unknown parameters. More precisely, they assume that each edge (u, ) ∈ E has a feature vector x u, ∈ R d where the dimension d is typically very small compared to n. These feature vectors are known to the learner -they can be constructed using the characteristics of the two connected users. The authors assume that there exists a unique unknown feature vector θ * ∈ R d such that, for every edge (u, ) ∈ E, p(u, ) ≈ x T u, θ * . From there, the problem can be solved with a variation of the L UCB algorithm [START_REF] Li | A Contextual-bandit Approach to Personalized News Article Recommendation[END_REF].

In a recent paper, Vaswani et al. [START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF] propose a di usion-independent approach to solve the semi-bandit IM problem. They assume that, for each pair of users (u, ), the probability p * u, that u activates is given by the scalar product between a known feature vector x u ∈ R d -this vector is associated to the source -and an unknown vector associated to the target θ * ∈ R d . Interestingly, the authors propose to set the known features to the d lowest eigenvectors of the Laplacian graph. In this setting, there are |V | × d unknown parameters, making this method still unsuitable in large-scale scenarios.

. The semi-bandit IM framework is suitable for scenarios where the marketing rm wants to make (many) consecutive campaigns on a static graph, and, importantly, where the goal is to convert as many users as possible at each spread, regardless of the activated users. In particular, activating the same users at each step is not considered an issue in the semi-bandit IM setting. However, in many real scenarios, these requirements are not satis ed. For example, nowadays, when a company releases a new product, it often makes a marketing campaign on social platforms in order to give the product visibility. The rm aims at reaching as many distinct people as possible, and may ask in uential users -e.g., in uential people contractually bound by a sponsorship to the company -to post about the product. Every time an in uential user posts something on the social platform, he / she initiates a spread that leads to the activation of a subset of the population. Importantly, the company's ultimate goal is to maximize the total spread of the campaign, that is, the number of distinct users activated over the consecutive steps.

In the IM with persistence setting, in uence campaigns typically consist of multiple consecutive trials spreading the same type of information (e.g., a product, an idea, etc). Problem 3.3 (Online in uence maximization with persistence (OIMP)). Given a graph G = (V , E), a budget of N trials, and a number 1 ≤ L ≤ n of nodes to be activated at each trial, the objective of the online in uence maximization with persistence problem is to solve the following problem:

arg max I n ⊆V , |I n |=L,1≤n ≤N E N n=1 S (I n ) .
A key di erence w.r.t. semi-bandit in uence maximization studies such as [START_REF] Chen | Combinatorial Multi-armed Bandit and Its Extension to Probabilistically Triggered Arms[END_REF][START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF] is that these look for a constant optimal set of seeds, while the di culty with OIMP is that the seemingly best action at a given trial depends on the activations of the previous trials (and thus the learning agent's past decisions).

The OIMP problem was rst introduced by Lei et al. [START_REF] Lei | Online In uence Maximization[END_REF]. They propose a method for the IC model where they try to estimate the di usion graph (the graph with its di usion probabilities). More precisely, at each step, adopting an explore-exploit strategy, they maintain an estimation (or a con dence bound) of the probabilities of all edges in the graph. The estimated graph is called the uncertain in uence graph and is given to any IM algorithm to select a set of seed nodes. Finally, a spread is initated from this set and edge-level feedback are used to improve probability estimations in subsequent steps.

We also mention that adaptive strategies have been studied in situations where all parameters are known -that is, situations were no learning task is necessary. The applications that rely on adaptive in uence maximization tasks are generally time-critical, and thus, to overcome these challenges, Salha et al. [START_REF] Salha | Adaptive Submodular In uence Maximization with Myopic Feedback[END_REF] recently introduced a realistic myopic feedback model together with an approximated algorithm.

3.3

Setting

The goal of the online in uence maximization with persistence via candidates, the problem we proposed in this thesis, is to successively select (or activate) a number of spread seed nodes from a known population of candidates, in order to reach (or spread to) as many other nodes as possible. In this section, we formally de ne this problem.

In uence maximization via candidates

The short timespan of campaigns makes parameter estimation very challenging within small horizons. In other cases, the knowledge of the topology -or even the existence -of a graph is too strong an assumption. In contrast to Lei et al. [START_REF] Lei | Online In uence Maximization[END_REF], we do not try to estimate edge probabilities in some graph, but, instead, we assume the existence of a subpopulation of users -referred to as the spread seed candidates (in short, candidates), in the followingwho are the only access to the medium of di usion. Formally, we let [K] := {1, . . . , K } be a set of candidates for selection; each candidate is connected to an unknown and potentially large base (the candidate's support) of basic nodes, each with an unknown activation probability. For illustration, we give in Figure 3.2 an example of this setting, with 3 candidates connected to 4, 5, and 4 basic nodes, respectively. Now, the problem boils down to estimating the value or spread potential of the K candidates, which is typically much smaller than the number of parameters of the di usion model. The medium over which di usion operates may remain a general di usion graph, just like in the literature, but we make no assumption on that: the di usion may happen in a completely unknown environment. Finally, note that by choosing K = |V | candidates, the classic IM problem can be seen as a special instance of our setting.

We complete the formal setting by assuming the existence of K sets A k ⊆ V of basic nodes such that each candidate k ∈ [K] is connected to each node in A k . We denote p k (u) the probability for candidate k to activate the child node u ∈ A k .

In this context, the di usion process can be abstracted as follows.

De nition 3.5 (In uence process). When a candidate k ∈ [K] is selected, each basic node u ∈ A k is sampled for activation, according to its probability p k (u). The feedback (or spread) for k's selection consists of all the activated nodes, while the associated reward consists of the newly activated ones.

. Limiting the IM method to working with a small subset of the entire set of nodes may seem overly restrictive, but it allows to rapidly estimate nodes' values. As a motivating example, take marketing rms that may not have knowledge of the entire di usion graph, only having access to a few in uential people that can di use information (the candidates in our setting). Moreover, despite the fact that we model the reach of every candidate by 1-hop links to the to-be-in uenced nodes, these edges are just an abstraction of the activation probability, and may represent in reality longer paths in an underlying unknown real in uence graph G.

Online in uence maximization with persistence via candidates

We are now ready to formally state our online in uence maximization with persistence via candidates: Problem 3.4 (OIMP via candidates). Given a set of candidates [K] := {1, . . . , K }, a budget of N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the objective of the online in uence maximization with persistence (OIMP) via candidates is to solve the following optimization problem:

arg max I n ⊆[K ], |I n |=L, ∀1 n N E 1 n N S (I n ) .
As noticed in [START_REF] Lei | Online In uence Maximization[END_REF], the o ine IM can be seen as a special instance of the online one, where the budget is N = 1. Note that, in contrast to persistence-free online in uence maximization -considered, e.g., in [START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF] -the performance criterion used in OIMP displays the so-called diminishing returns property: the expected number of nodes activated by successive selections of a given seed is decreasing, due to the fact that nodes that have already been activated are discounted. We refer to the expected number of nodes remaining to activate as the potential or missing mass of a seed. The diminishing returns property implies that there is no static best set of seeds to be selected, but that the algorithm must follow an adaptive policy, which can detect that the remaining potential of a seed is small and switch to another seed that has been less exploited. Our solution to this problem has to overcome challenges on two fronts: (1) it needs to estimate the potential of nodes at each round, without knowing the di usion model nor the activation probabilities, and (2) it needs to identify the currently best seeds, according to their estimated potential.

Other approaches for the online IM problem rely on estimating di usion parameters [START_REF] Lei | Online In uence Maximization[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF] -generally, a distribution over the in uence probability of each edge in the graph. However, the assumption that one can estimate accurately the di usion parameters -and notably the di usion probabilities -may be overly ambitious, especially in cases where the number of allowed trials (the budget) is rather limited. A limited trial setting is arguably more in line with real-world campaigns: take as example political or marketing campaigns, which only last for a few weeks.

In our approach, we work with parameters on nodes, instead of edges. More speci cally, these parameters represent the potentials of remaining spreads from each of the candidate seed nodes. We stress that these potentials can evolve as the campaign proceeds. In this way, we can go around the dependencies on speci c di usion models, and furthermore, we can remove entirely the dependency on a detailed graph topology. Finally, note that even though OIMP is not a typical bandit problem -the potentials evolve as the campaign progresses -, it bears several similarities with multi-armed bandits. Indeed, an agent needs to sequentially choose arms (called candidates in this chapter) whose potentials are unknown, and thus, it needs to explore concurrently with the exploitation of received feedback. Furthermore, we rely on the optimism in face of uncertainty framework to construct our UCB-like algorithm.

The GT UCB algorithm

In this section, we describe our UCB-like algorithm, which relies on the Good-Turing estimator to sequentially select the seeds to activate at each round, from the available candidates.

Missing mass and Good-Turing estimator

Given the K candidates, the OIMP problem boils down to the following: How should we select a candidate at each step? More precisely, a good algorithm for OIMP should aim at selecting the candidate k with the largest potential for in uencing its children A k . However, the true potential value of a candidate is a priori unknown to the decision maker.

We now describe our approach to estimate this value, using the concept of missing mass.

In the following, we index trials by t when referring to the time of the algorithm, and we index trials by n when referring to the number of selections of the candidate. For example, the t-th spread initiated by the algorithm is noted S (t ) whereas the n-th spread of candidate k is noted S k,n .

De nition 3.6 (Missing mass R k (t )). Consider a candidate k ∈ [K] connected to A k basic nodes. Let S (1), . . . , S (t ) be the set of nodes that were activated during the rst t trials by the seeded candidates. The missing mass R k (t ) is the expected number of new nodes that would be activated upon starting a t + 1-th cascade from k:

R k (t ) := u ∈A k 1      u t i=1 S k (t )      p k (u),
where 1{•} denotes the indicator function.

De nition 3.6 provides a formal way to obtain the remaining potential of a candidate k at a given time. The optimal policy would simply select the candidate with the largest missing mass at each time step. The di culty is, however, that the probabilities p k (u) are unknown. Hence, we have to design a missing mass estimator Rk (t ) instead. It is important to stress that the missing mass is a random quantity, because of the dependency on the spreads S k (t ), . . . , S k (t ). Furthermore, due to the diminishing returns property, the sequence (S k,n ) n ≥1 is stochastically decreasing. Following ideas from [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], we now introduce a version of the Good-Turing statistic originally introduced by [START_REF] Good | The Population Frequencies of Species and the Estimation of Population Parameters[END_REF], tailored to our problem of rapidly estimating the missing mass. Denoting by n k (t ) the number of times candidate k has been selected after t trials, we let S 1 , . . . , S n k (t ) be the n k (t ) cascades sampled independently from candidate k. We denote by U k (u, t ) the binary function whose value is 1 if node u has been activated exactly once by candidate k -such occurrences are called hapaxes in linguistics -and Z k (u, t ) the binary function whose value is 1 if node u has never been activated by candidate k. The idea of the Good-Turing estimator is to estimate the missing mass as the proportion of hapaxes in the n k (t ) sampled cascades, as follows:

Rk (t ) := 1 n k (t ) u ∈A k U k (u, t ) l k Z l (u, t ).
Albeit simple, this estimator turns out to be quite e ective in practice. If a candidate is connected to a combination of both nodes having high activation probabilities and nodes having low activation probabilities, then successive traces sampled from this candidate will result in multiple activations of the high-probability nodes and few of the lowprobability ones. Hence, after observing a few spreads, the candidate's potential will be low, a fact that will be captured by the low proportion of hapaxes. In contrast, estimators that try to estimate each activation probability independently will require a much larger number of trials to properly estimate the candidate's potential.

To verify this assumption in reality, we conduct an analysis of the empirical activation probabilities from a Twitter dataset. Speci cally, we used a collection of tweets and re-tweets gathered via crawling in August 2012. For each original tweet, we nd all corresponding retweets, and, for each user, we compute the empirical probability of a retweet occurring -this, in our case, is a proxy measure for in uence probability. Speci cally, for every user "in uenced" by u, i.e., retweeted at least one original tweet from u -we compute the estimated di usion probability: p u, = u's tweets retweeted by / tweets by u . In Fig. 3.3 (left), we show the survival function of resulting empirical probabilities in a log-log plot. We can see that most probabilities are small -the 9th decile has value 0.045.

In Fig. 3.3 (right), we simulated the activation probabilities of a set of 50 nodes whose activation probabilities are chosen randomly from the Twitter empirical probabilities. Most of the sampled values are low, except a few relatively high ones. Using this sample as the activation probabilities of an hypothetical candidate node, we observe on Fig. 3.4 (left) the cumulative in uence spread. The curve rst shows a steep increase until approximately 20 rounds, where users with high probabilities of conversion have already been activated, while remaining ones are di cult to activate. In Fig. 3.4 (right), we compare the Good-Turing estimator to a Bayesian estimator that maintains a posterior (through a Beta distribution) on the unknown activation probabilities, updating the posterior after each trial, similarly to [START_REF] Lei | Online In uence Maximization[END_REF]. In the Bayesian approach, the missing mass can be estimated by summing over the means of the posterior distributions corresponding to nodes that have not been activated so far. On Fig. 3.4 (right), the curves are averaged over 200 runs, and the shaded regions correspond to the 95% quantiles. Clearly, the Good-Turing estimator is much faster than its Bayesian counterpart, in estimating the actual missing mass. Varying the number of nodes -here equal to 50 -, shows that the time needed for the Bayesian estimator to provide a reliable estimate of the missing mass is proportional to the number of nodes, whereas it grows only sub-linearly for the Good-Turing estimator.

. While bearing similarities with the traditional missing mass concept, we highlight one fundamental di erence of our problem w.r.t. the one studied in [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], which impacts both the algorithmic solution and the analysis. Since at each step, after selecting a candidate, every node connected to that candidate is sampled, the algorithm receives a larger feedback than in [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], whose feedback is in [0, 1]. However, on the contrary to [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], the hapaxes of a candidate (U k (u, t )) u ∈A k are independent. Interestingly, the quantity λ k := u ∈A k p(u), which corresponds to the expected number of basic nodes a candidate activates or re-activates in a cascade, will prove to be a crucial ingredient for our problem.

Upper con dence bounds

Following principles from the bandit literature, the GT UCB algorithm relies on optimism in the face of uncertainty. At each step (trial) t, the algorithm selects the highest uppercon dence bound on the missing mass -denoted by b k (t ) -and activates (plays) the corresponding candidate k. This algorithm achieves robustness against the stochastic nature of the cascades, by ensuring that candidates who "underperformed" with respect to their potential in previous trials may still be selected later on. Consequently, GT UCB aims to maintain a degree of exploration of candidates, in addition to the exploitation of the best candidates as per the feedback gathered so far. The algorithm starts by activating each candidate k ∈ [K] once, in order to initialize its Good-Turing estimator. The main loop of GT UCB occurs at lines 3-9. Let S (t ) be the observed spread at trial t, and let S k,s be the result of the s-th di usion initiated at candidate k. At every step t > K, we recompute for each candidate k ∈ [K] its index b k (t ), representing the upper con dence bound on the expected reward in the next trial. The computation of this index uses the previous samples S k,1 , . . . , S k,n k (t ) and the number of times each candidate k has been activated up to trial t, n k (t ). Based on the result of Theorem 3.5 below -whose statement and proof are delayed to Section 3.4 -, the upper con dence bound is set as:

b k (t ) = Rk (t ) + 1 + √ 2 λk (t ) log(4t ) n k (t ) + log(4t ) 3n k (t ) , (3.1) 
where Rk (t ) is the Good-Turing estimator and λk (t

) := n k (t ) s=1 |S k,s | n k (t )
is an estimator for the expected spread from candidate k.

Then, in line 5, GT UCB selects the candidate k (t ) with the largest index, and initiates a cascade from this node. The feedback S (t ) is observed and is used to update the cumulative reward set W . Note that S (t ) provides only the Ids of the nodes that were activated, with no information on how this di usion happened in the hidden di usion medium. Finally, statistics associated to the chosen candidate k (t ) are updated.

Extensions for the case L > 1

Algorithm 7 can be easily adapted to select L > 1 candidates at each round. Instead of choosing the candidate maximizing the Good-Turing UCB in line 5, we can select those having the L largest indices. Note that k (t ) then becomes a set of L candidates. A di usion is initiated from the associated nodes and, at termination, all activations are observed. Similarly to [START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF], the algorithm requires feedback to include the candidate responsible for the activation of each node, in order to update the corresponding statistics accordingly.

If the underlying environment is a graph G whose topology is known, we propose a simple heuristic to assign activated nodes to selected candidates, by a breadth-rst approach, as follows: for an activated node u ∈ S (t ), we assign this node to the selected candidate reachable from u by the shortest live path in G, where a live path corresponds to a sequence of activated nodes from S (t ).

3.4

In this section, we justify the upper con dence bound used by GT UCB in Eq. 3.1 and provide a theoretical analysis of our algorithm.

Con dence interval for the missing mass

In the following, to simplify the analysis and to allow for a comparison with the oracle strategy, we assume that the candidates have non intersecting support. This means that each candidate's missing mass and corresponding Good-Turing estimator does not dependent on other candidates. Hence, for notational e ciency, we also omit the subscript denoting the candidate k. After selecting the candidates n times, the Good-Turing estimator is simply written Rn = u ∈A U n (u ) n . We note that the non-interescting assumption is for theoretical purposes only -our experiments are done with candidates which can have intersecting supports.

The classic Good-Turing estimator is known to be slightly biased (see Theorem 1 in [90] for example). We show in Lemma 3.2 that our missing mass estimator adds an additional factor λ = u ∈A p(u) to this bias: Lemma 3.2 The bias of the missing mass estimator is

E[R n ] -E[ Rn ] ∈ - λ n , 0 . Proof E[R n ] -E[ Rn ] = u ∈A p(u)(1 -p(u)) n - n n p(u)(1 -p(u)) n-1 = - 1 n u ∈A p(u) × np(u)(1 -p(u)) n-1 = - 1 n E       u ∈A p(u)U n (u)       ∈ -u ∈A p(u) n , 0 
Since λ is typically very small compared to |A|, in expectation, the estimation should be relatively accurate. However, in order to understand what may happen in the worst-case, we need to characterize the deviation of the Good-Turing estimator: Theorem 3.5 With probability at least 1 -δ , for λ = u ∈A p(u) and

β n := 1 + √ 2 × λ log(4/δ ) n + 1 3n log 4
δ , the following holds:

-β n - λ n ≤ R n -Rn ≤ β n .
Note that the additional term appearing in the left deviation corresponds to the bias of our estimator, which leads to a non-symmetrical interval.

Proof We prove the con dence interval in three steps:

1. Good-Turing estimator deviation, 2. missing mass deviation, 3. combination of previous two inequalities for the nal con dence interval.

The samples of di erent nodes are assumed independent. This is a simpli cation with respect to the classic missing mass concentration results, which rely on negative association [START_REF] Mcallester | Concentration Inequalities for the Missing Mass and for Histogram Rule Error[END_REF][START_REF] Mcallester | On the Convergence Rate of Good-Turing Estimators[END_REF]. On the other hand, since we may activate several nodes at once, we need original concentration arguments to control the increments of both Rn and R n .

(1) Good-Turing deviations. Let X n (u) := U n (u ) n . We have that

:= u ∈A E[X n (u) 2 ] = 1 n 2 u ∈A E[U n (u)] = 1 n 2 u ∈A np(u)(1 -p(u)) n-1 ≤ λ n .
Moreover, clearly the following holds:

X n (u) ≤ 1 n .
Applying Bennett's inequality (Theorems 2.9, 2.10 in [START_REF] Boucheron | Concentration inequalities : a nonasymptotic theory of independence[END_REF]) to the independent random variables {X n (u)} u ∈A yields

P Rn -E[ Rn ] ≥ 2λ log(1/δ ) n + log(1/δ ) 3n ≤ δ . (3.2)
The same inequality can be derived for left deviations.

(2) Missing mass deviations. Remember that Z n (u) denotes the indicator equal to 1 if u has never been activated up to trial n. We can rewrite the missing mass as

R n = u ∈A Z n (u)p(u). Let Y n (u) = p(u)(Z n (u) -E[Z n (u)]) and q(u) = P(Z n (u) = 1) = (1 -p(u)) n .
For some t > 0, we have next that

P(R n -E[R n ] ≥ ϵ ) ≤ e -t ϵ u ∈A E e t Y n (u ) = e t ϵ u ∈A q(u)e tp (u )(1-q (u )) + (1 -q(u))e -tp (u )q (u ) ≤ e -t ϵ u ∈A exp(p(u)t 2 /(4n)) = exp -tϵ + t 2 /(4n)λ .
The rst inequality is well-known in exponential concentration bounds and relies on Markov's inequality. The second inequality follows from [START_REF] Berend | On the Concentration of the Missing Mass[END_REF] (Lemma 3.5) Then, choosing t = 2nϵ λ , we obtain

P R n -E[R n ] ≥ λ log(1/δ ) n ≤ δ . (3.3)
We can proceed similarly to obtain the left deviation.

(3) Pu ing it all together. We combine Lemma 3.2 with Eq. (3.2), (3.3), to obtain the nal result. Note that δ is replaced by δ 4 to ensure that both the left and right bounds for the Good-Turing estimator and the missing mass are veri ed.

Theoretical Guarantees

We now provide an analysis of the waiting time (de ned below) of GT UCB, by comparing it to the waiting time of an oracle policy, following ideas from [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF]. Let R k (t ) be the missing mass of candidate k at trial number t. This di ers from R k,n , which is the missing mass of candidate k once it has been played n times.

De nition 3.7 (Waiting time). Let λ k = u ∈A k p(u) denote the expected number of activations obtained by the rst call to candidate k. For α ∈ (0, 1), the waiting time T U C B (α ) of GT UCB represents the round at which the missing mass of each candidate k is smaller than αλ k . Formally,

T U C B (α ) := min{t : ∀k ∈ [K], R k (t ) ≤ αλ k }.
The above de nition can be applied to any strategy for candidate selection and, in particular, to an oracle one that knows beforehand the α value that is targeted, the sampled spreads (S k,s ) k ∈[K ],s ≥1 , and the individual activation probabilities p k (u), u ∈ A k . A policy having access to all these aspects will perform the fewest possible activations on each candidate. We denote by T * (α ) the waiting time of the oracle policy. We are now ready to state the main theoretical property of the GT UCB algorithm. Assuming that λ min ≥ 13, for any α ∈ 13 λ min , 1 , if we de ne τ * := T * α -13 λ min , with probability at least 1 -2K λ max the following holds:

T UCB (α ) ≤ τ * + Kλ max log(4τ * + 11Kλ max ) + 2K .
The proof of this result is given in Section 3.A. Unsurprisingly, Theorem 3.6 says that GT UCB must perform slightly more activations of the candidates than the oracle policy. With high probability -assuming that the best candidate has an initial missing mass that is much larger than the number of candidates -the waiting time of GT UCB is comparable to T * (α ), up to factor that is only logarithmic in the waiting time of the oracle strategy.

α is smaller than α -hence T * (α ) is larger than T * (α )-by an o set that is inversely proportional to the initial missing mass of the worst candidate. This essentially says that, if we deal with large graphs, and if the candidates trigger reasonably large spreads, our algorithm is competitive with the oracle.

3.5

We conducted experiments on two types of datasets:

1. two graphs, widely-used in the IM literature, and 2. a crawled dataset from Twitter, consisting of tweets occurring during August 2012.

All methods are implemented in C++ 3 and simulations are done on an Ubuntu 16.04 machine with an Intel Xeon 2.4GHz CPU 20 cores and 98GB of RAM.

Extracting candidates from graphs

GT UCB does not make any assumptions about the topology of the nodes in uenced by the candidates. Indeed, in many settings it may be more natural to assume that the set of candidates is given and that the activations at each trial can be observed, while the topology of the underlying graph G remain unknown. In other settings, we may start from an existing social network G, in which case we need to extract a set of K representative candidates from it. Ideally, we should choose candidates that have little intersection in their "scopes of in uence" to avoid useless seed selections. While this may be interpreted and performed di erently, from one application to another, we discuss next some of the most natural heuristics for selecting candidates which we use in our experiments.

MaxDegree. This method selects the K nodes with the highest out-degrees in G. Note that by this criterion we may select candidates with overlapping in uence scopes.

Greedy MaxCover. This strategy follows the well-known greedy approximation algorithm for selecting a cover of the graph G. Speci cally, the algorithm executes the following steps K times:

1. Select the node with highest out-degree 2. Remove all out-neighbors of the selected node To limit intersections among candidate scopes even more, nodes reachable by more than 1 hops may be removed at step (2).

DivRank [START_REF] Mei | DivRank: The Interplay of Prestige and Diversity in Information Networks[END_REF]. D R is a P R -like method relying on reinforced random walks, with the goal of producing diverse high-ranking nodes, while maintaining the richgets-richer paradigm. We adapted the original D R procedure by inverting the edge directions. In doing so, we get in uential nodes instead of prestigious ones. By selecting the K highest scoring nodes as candidates, the diversity is naturally induced by the reinforcement of random walks. This ensures that the candidates are fairly scattered in the graph and should have limited impact on each other.

IM approximated algorithms. The fourth method we tested in our experiments assigns uniformly at random a propagation probability to each edge of G, assuming the IC model. Then, a state-of-the-art IM algorithm -PMC in our experiments -is executed on G to get the set of K candidates having the highest potential spread.

Graph datasets

Similarly to [START_REF] Lei | Online In uence Maximization[END_REF], we tested our algorithm on HepPh and DBLP, two publicly available collaboration networks, where undirected edges are drawn between authors which have collaborated on at least one paper. HepPh is a citation graph, where a directed edge is established when an author cited at least one paper of another author. The datasets are summarized in Table 3.1. We emphasize that we kept the datasets relatively small to allow for comparison with computation-heavy baselines, even though GT UCB easily scales to large data, as will be illustrated in Section 3.5.3. Di usion models. In the work closest to ours, Lei et al. [START_REF] Lei | Online In uence Maximization[END_REF] compared their solution on the Weighted Cascade instance of IC, where the in uence probabilities on incoming edges sum up to 1. More precisely, every edge (u, ) has weight 1/d where d is the in-degree of node . In this experimental study, and to illustrate that our approach is di usion-independent, we added two other di usion scenarios to the set of experiments. First, we included the tri-valency model (TV), which associates randomly a probability from {0.1, 0.01, 0.001} to every edge and follows the IC propagation model. We also conducted experiments under the Linear Threshold (LT) model, where the edge probabilities are set like in the WC case and where thresholds on nodes are sampled uniformly from [0, 1].

Baselines. We compare GT UCB to several baselines. R chooses a random candidate at each round. M D selects the node with the largest degree at each step i, where the degree does not include previously activated nodes. Finally, EG corresponds to the con dence-bound explore-exploit method with exponentiated gradient update from [START_REF] Lei | Online In uence Maximization[END_REF]; it is the state-of-the-art method for the OIMP problem (code provided by the authors). We use this last baseline on WC and TV weighted graphs and tune parameters in accordance to the results of their experiments: Maximum Likelihood Estimation is adopted for graph update and edge priors are set to Beta (1,[START_REF] Chapelle | A Dynamic Bayesian Network Click Model for Web Search Ranking[END_REF]. Note that EG learns parameters for the IC model, and hence is not applicable for LT. These baselines are compared to an O that knows beforehand the di usion model together with probabilities. At each round, it runs an IM approximated algorithm -PMC for IC propagation, SSA for LT. Note that pre-viously activated nodes are not counted when estimating the value of a node with PMC or SSA, thus, making O an adaptive strategy. All experiments are done by xing the trial horizon N = 500, a setting that is in line with many real-world marketing campaigns, which are fairly short and do not aim to reach the entire population.

GT UCB parameters. We rst analyze the e ects of the di erent possible settings for GT UCB. We show in Fig. 3.5b and 3.5d the impact of the candidate extraction criterion on HepPh and DBLP under the WC model. On the HepPh network, D R clearly leads to larger in uence spreads. On DBLP under WC model, however, the extraction method has little impact on resulting spreads. In Fig. 3.5f, D R is the extraction method which performs the worst. In summary, the spread is slightly a ected by the extraction criterion, and di erent datasets lead to di erent optimal extraction routines. We note that GT UCB performs consistently as long as the method leads to candidates that are well spread over the graph. In the following, for each graph, we used D R as candidate extraction criterion as it performs the best in most con gurations.

In Fig. 3.5a, 3.5c and 3.5e, we measure the impact of the number of candidates K on the in uence spread. We can observe that, on DBLP, a small number of candidates is su cient to yield high-quality results. If too many candidates (relative to the budget) are selected (e.g. K = 200), the initialization step required by GT UCB is too long relative to the full budget, and hence GT UCB does not reach its optimal spread -some candidates still have a large missing mass at the end. On the other hand, a larger amount of candidates leads to greater in uence spreads on HepPh: this network is relatively small (34.5K nodes), and thus half of the nodes are already activated after 400 trials. By having more candidates, we are able to access parts of the network that would not be accessible otherwise.

GT UCB vs. baselines. In Fig. 3.6, we show the growth of the spread for GT UCB and baselines. For each experiment, GT UCB uses K = 50 if L = 1 and K = 100 if L = 10. First, we can see that M D is a strong baseline in many cases, especially for WC and LT. GT UCB results in good quality spreads across every combination of network and di usion model. Interestingly, on the smaller graph HepPh, we observe an increase in the slope of spread after initialization, particularly visible at t = 50 with WC and LT. This corresponds to the step when GT UCB starts to select candidates maximizing b k (t ) in the main loop. It shows that our strategy adapts well to the previous activations, and chooses good candidates at each iteration. Interestingly, R performs surprisingly well in many cases, especially under TV weight assignment. However, when certain candidates are signi cantly better than others, it cannot adapt to select the best candidate unlike GT UCB. EG performs well on HepPh, especially under TV weight assignment. However, it fails to provide competitive cumulative spreads on DBLP. We believe that EG tries to estimate too many parameters for a horizon T = 500. After reaching this time step, less than 10% of all nodes for WC, and 20% for TV, are activated. This implies that we have small con dence regarding many edge probability estimations, as most nodes are located in parts of the graph that have never been explored.

We evaluate the execution time of the di erent algorithms in Fig. 3.7. As expected, GT UCB largely outperforms EG (and O

). The two baselines require the execution of an approximated IM algorithm at each round. In line with [5], we observed that SSA has prohibitive computational cost when incoming edge weights do not sum up to 1, which is the case with both WC and TV. Thus, both O and EG run PMC on all our experiments with IC propagation. GT UCB is several orders of magnitude faster: it concentrates most its running time on extracting candidates, while statistic updates and UCB computations are negligible.

Experiments on Twitter

We conclude the experimental section with an evaluation of GT UCB on the Twitter data, introduced as a motivating example in Section 3.3.2. The interest of this experiment is to observe actual spreads, instead of simulated ones, and data which does not have an explicit in uence graph attached.

From the retweeting logs, for each active user u -a user who posted more than 10 tweets -we select users having retweeted at least one of u's tweets. By doing so, we obtain the set of potentially in uenceable users associated to active users. We then apply the greedy algorithm to select the users maximizing the corresponding set cover. These are the can- didates of GT UCB and R . M D is given the entire reconstructed network (described in Table 3.1), that is, the network connecting active users to re-tweeters.

To test realistic spreads, at each step, once an candidate is selected by GT UCB, a random cascade initiated by that candidate is chosen from the logs and we record its spread. This provides realistic, model-free spread samples to the compared algorithms. Since our data only contains successful activations (re-tweets) and not the failed ones, we could not test against EG, which needs both kinds of feedback.

In Fig. 3.8, we show the growth of the di usion spread of GT UCB against M D and R

. Again, GT UCB uses K = 50 if L = 1 and K = 100 if L = 10. We can see that GT UCB outperforms the baselines, especially when a single node is selected at each round. We can observe that M D performs surprisingly well in both experiments. We emphasize that it relies on the knowledge of the entire network reconstructed from retweeting logs, whereas GT UCB is only given a set of (few) xed candidates.

3.6

We now extend the model considered previously in two directions. First, we adapt our methodology with candidates to the semi-bandit IM setting of [START_REF] Chen | Combinatorial Multi-armed Bandit and Its Extension to Probabilistically Triggered Arms[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF]. In the second part of this section, we relax the in uence stationarity assumption on the candidates in the OIMP framework.

Semi-bandit online in uence maximization via candidates

In this chapter, we introduced a novel method to maximize the expected in uence relying exclusively on a subset of the population, namely, the candidates. The rationale is that, arguably, in real life, marketing rms can only ask a few number of people to initiate spreads -e.g., in uential people with whom they are contractually bound by a sponsorship. We now extend this idea to the semi-bandit IM setting of [START_REF] Chen | Combinatorial Multi-armed Bandit and Its Extension to Probabilistically Triggered Arms[END_REF][START_REF] Vaswani | In uence Maximization with Bandits[END_REF][START_REF] Wen | In uence Maximization with Semi-Bandit Feedback[END_REF]. Problem 3.5 (Semi-bandit IM via candidates). Given a set of candidates [K], a budget of N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the objective of the semi-bandit IM via candidates is to solve the following optimization problem:

arg max I n ⊆[K ], |I n |=L, ∀1 n N E       N n=1 |S (I n )|       .
Given the K candidates, the problem boils down to the following: How should we select a candidate at each step? As previously said in Section 3.2.4, a key di erence w.r.t. the OIMP setting is that the optimal set of seeds -here, chosen among candidates -is constant, and thus, does not depend on previous actions. This is a great simpli cation w.r.t. OIMP and reduces the problem to estimating the value of each potential seed. We now describe our approach to estimate and build a con dence interval on the expected spread initiated by each candidate independently. Note that we make the non-intersecting support assumption, similarly to what we did in the OIMP missing mass bound derivation.

. Let n be the number of times a given candidate has be selected and S 1 , . . . , S n be the corresponding observed spreads. We want to estimate λ := u ∈A p(u) where p(u) is the probability that the candidate activates node u. Estimating λ by λn := 1 n n i=1 |S i |, we obtain the following con dence interval. Proposition 3.1 Let ϵ > 0. For λ = u ∈A p(u), the following holds:

P λn -λ ≥ ϵ ≤ exp -nd Poi (λ + ϵ, λ) , where d Poi (λ, λ 0 ) := λ 0 -λ + λ log λ λ 0 is the Kullback-Leibler divergence of a Poisson distribu- tion.
Proof Let ϵ > 0 and x = λ + ϵ. For some t > 0, we have

P λn -λ ≥ ϵ = P 1 n n i=0 S i -λ ≥ ϵ ≤ exp -n(tx -log E[e t S 1 ]) .
Assuming the independence between node activations, we can upper bound φ(t ) = log E[e t S 1 ] as follows: C KLUCB has approximatively the same performance all along the T steps. To verify this assumption, we display the evolution of the average per-step reward -in practice, we compute it on the last 50 steps -gathered by the algorithms in Fig. 3.9 (right). We can observe that C KLUCB attains its asymptotic performance very early compared to DIL UCB.

φ(t ) = u ∈A log(1 -p(u) + p(u)e t ) ≤ u ∈A p(u)(e t -1) = φ Poi (t ).
. In this section, we provided a novel approach for the semi-bandit in uence maximization. Our algorithm, C KLUCB, has two advantages over its state-ofthe-art competitor DIL UCB: (i) it has a very short initialization step, (ii) at each step, it selects the spread seed from a small subset of nodes which is much more realistic in many applications such as in uencer marketing [15], in which a marketing rm only sponsors a few in uential users.

Online in uence maximization via rotting candidates

In Section 3.5.1, we studied the OIMP problem under the assumption that candidates have a constant tendency to activate their basic nodes. In certain situations, the candidates' ability to in uence their basic nodes may diminish as they initiate new spreads. Intuitively, this means that candidates generate weariness if they persist in trying to convert people they are connected to, especially if the budget provided initially is given for a single campaign with a unique semantics. In the following, we assume that candidates can in uence their basic nodes only decreasingly with the number of times they initiated spreads.

In terms of bandits, this work is in the same spirit as of Levine et al. [START_REF] Levine | Rotting Bandits[END_REF] who study a setting -which they call rotting bandits -where each arm's value decays as a function of the number of times it has been selected. We also mention the work of Louëdec et al. [START_REF] Louëdec | Algorithme de bandit et obsolescence : un modèle pour la recommandation[END_REF] in which the authors propose to take into account the gradual obsolescence of items to be recommended while allowing new items to be added to the pool of candidates. Importantly, the item's value is modelled by a decreasing function of the number of steps since it was added to the pool of items, whereas in our work -and in that of [START_REF] Levine | Rotting Bandits[END_REF]-, the value is a function of the number of times the item has been selected.

Our variant to the OIMP via candidates framework can be written as follows:

Problem 3.6 (OIMP via ro ing candidates). Given a set of candidates [K], a budget of N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the objective of the online in uence maximization with persistence (OIMP) via rotting candidates is to solve the following optimization problem:

arg max I n ⊆[K ], |I n |=L, ∀1 n N E 1 n N S (I n ) ,
and such that, the probability that, at its s-th selection, the candidate k ∈ [K] activates its basic node u is:

p s (u) = γ (s)p(u),
where γ : N → [0, 1] is a known non-increasing function and p(u)

∈ [0, 1].
The traditional OIMP can be seen as a special instance of the online in uence maximization with persistence via rotting candidates, where the non-increasing function γ -referred to as the weariness function in the following -is the identity. We will pursue the same strategy by estimating the missing mass of a given candidate by an adaptation of the Good-Turing estimator introduced for the OIMP problem. Note that the problem is more complex in the rotting setting because hapaxes must now incorporate the round of their activation.

As we did previously, to simplify the analysis, we assume that the candidates have non intersecting support. Let n be the number of times a given candidate has been selected and S 1 , . . . , S n the corresponding initiated spreads. We rede ne the missing mass in the rotting candidate setting as R n := u ∈A 1{u never activated}γ (n)p(u) where p(u) is the probability that the candidate activates node u, independently of the number of spreads initiated by the candidate. Again, the missing mass is equal to the expected number of additional conversions at time n given the nodes previously activated. The Good-Turing estimator adapted to the rotting setting is de ned as follows:

Rn = u ∈A U γ n (u) n ,
where

U γ n (u) := i <n 1{X 0 = . . . = X i-1 = X i+1 = . . . = X n-1 = 0, X i = 1} γ (n) γ (i ) .
In short, if i is the round at which a hapax has been activated, we reweight it by the factor γ (n)/γ (i) since we are interested in its contribution at the n-th round. We now justify formally this estimator by computing its bias.

. Lemma 3.3 shows that the estimator of the missing mass for the rotting candidates setting is hardly biased. Lemma 3.3 Denoting λ = u ∈A p(u), the bias of the missing mass estimator is

E[R n ] -E[ Rn ] ∈ -γ (n) λ n , 0 . Proof Remember that U γ n (u) = i <n 1{X 0 = . . . = X i-1 = X i+1 = . . . = X n-1 = 0, X i = 1} γ (n) γ (i ) . We have that E[U γ n (u)] = i <n p i (u) j i (1 -p j (u)) γ (n) γ (i) = p n (u) i <n j i (1 -p j (u)).
We now can compute the bias of the estimator:

E[R n ] -E[ Rn ] = 1 n u ∈A p n (u)        i <n j <n (1 -p j (u)) - i <n j i (1 -p j (u))        = 1 n u ∈A p n (u) i <n j i (1 -p j (u))[1 -p i (u) -1] = - 1 n u ∈A p n (u) i <n p i (u) j i (1 -p j (u)) = - 1 n E       u ∈A p n (u)U n (u)       ∈ -u ∈A p n (u) n , 0 
Note that the random variable U n (u) correspond to the hapax de nition given in the OIMP problem, that is, U n (u) = 1{u activated exactly once}. Unsurprisingly, we obtain the same bias for the case where γ is the identity function. We omit the derivation of the con dence intervals in this thesis.

. We provided an extension to the OIMP problem that models users' weariness of repeatedly seeing the same piece of information We propose a new estimator which includes the diminishing in uence of a candidate as the number of times it has been selected grows.

3.7

In this chapter, we proposed a di usion-independent approach for online and adaptive IM, whose role is to maximize the number of activated nodes in an arbitrary environment, under the OIMP framework. We focus on scenarios in which in uence campaigns consist of multiple consecutive trials conveying the same piece of information. Our method requires as only interfaces with the "real-world" the identi cation of potential seeds (the candidates) and the spread feedback (i.e., the set of activated nodes) at each trial.

Subsequent online iterations are very fast, making it possible to scale to very large graphs, where other approaches become infeasible. The e ciency of GT UCB comes from the fact that it only relies on an estimate of a single quantity for each candidate seed -its potential or missing mass. This novel approach is shown to be very competitive on IM benchmark tasks.

Two extensions to this line of research were considered, one for adapting our OIMP approach via candidates to the semi-bandit in uence maximization, one for incorporating the possible weariness generated by candidates if they persist in trying to convert people they are connected to.

3.

.1 Useful lemmas

Lemma 3.4 (Bennett's inequality -Theorem 2.9 and 2.10 [START_REF] Boucheron | Concentration inequalities : a nonasymptotic theory of independence[END_REF]). Let X 1 , . . . , X n be independent random variables with nite variance such that X i ≤ b for some b > 0 for all

i ≤ n. Let S := n i=1 (X i -E[X i ]) and := n i=1 E[X 2 i ]. Writing φ(u) = e u -u -1, then for all t > 0, log E e t S ≤ b 2 φ(bt ) ≤ t 2 2(1 -bt/3) .
This implies that, P S > 2 log 1 /δ + b 3 log 1 /δ ≤ δ .

Lemma 3.5 (Lemma 7 - [START_REF] Berend | On the Concentration of the Missing Mass[END_REF]). Let n ≥ 1, λ ≥ 0, p ∈ [0, 1] and q = (1 -p) n . Then,

qe λp (1-q) + (1 -q)e -λpq ≤ exp(pλ 2 /(4n)) (3.4) 
qe λp (q-1) + (1 -q)e λpq ≤ exp(pλ 2 /(4n))

3. .2 Analysis of the waiting time of GT UCB Lemma 3.6 For any s ≥ 3,

P Rs ≤ Rs-1 - λ e (s -2) - 2λ s -1 log(1/δ ) - 1 3(s -1) log(1/δ ) ≤ δ . Proof Denote by X s (x ) := U s-1 (x ) s-1 -U s (x ) s ≤ 1 s-1 .
We can rewrite Rs-1 -Rs = x ∈A X s (x ) and can easily verify that

(x ) := E X s (x ) 2 = p(x )(1 -p(x )) s-2 1 s -1 - 1 -p(x ) s ≤ p(x ) s -1 . (3.6) 
Let t > 0. By applying Lemma3.4, one obtains

P Rs-1 -Rs ≥ E Rs-1 -Rs + 2λ s -1 log(1/δ ) + 1 3(s -1) log(1/δ ) ≤ δ . We conclude remarking that E[X s (x )] = p(x ) 2 (1 -p(x )) s-2 ≤ p (x ) e (s-2) , that is, E[ Rs-1 -Rs ] ≤ λ e (s-2) . Theorem 3.7 (Stopping time). Denote λ min := min k ∈[K ] λ k and λ max := max k ∈[K ] λ k .
Assume that λ min ≥ 13. Then, for any α ∈ 13 λmin , 1 , if we de ne τ * := T * α -13 λ min , with probability at least 1 -2K λ max ,

T UCB (α ) ≤ τ * + Kλ max log(4τ * + 11Kλ max ) + 2K .
Proof Let us de ne the following con dence bounds:

b + k,s (t ) := (1 + √ 2) 3λ k log(2t ) s + log(2t ) s , b - k,s (t ) := (1 + √ 2) 3λ k log(2t ) s + log(2t ) s + λ k s , and 
c - k,t (t ) := λ e (s -2) + 6λ k log(t ) s -1 + log(t ) s -1 .
Let S > 0. Using these de nitions, we introduce the following events:

F := ∀k ∈ [K], ∀t > S, ∀s ≤ t, Rk,s -b - k,s (t ) ≤ R k,s ≤ Rk,s + b + k,s (t ) , G := ∀k ∈ [K], ∀s ≥ S, Rk,s ≥ Rk,s-1 -c - k,s (t ) , E := F ∩ G.
Using Theorem 3.5, Lemma 3.6 and a union bound, one obtains P(E) ≥ 1 -2K S (by setting δ ≡ 1 t 3 ). Indeed,

P Ē ≤ P( F ) + P( Ḡ) ≤ 2 K k=1 t >S s ≤t 1 t 3 = 2K t >S 1 t 2 ≤ 2K S .
In the following, we work on the event E. Recall that we want to control T U C B (α ), the time at which every expert attains a missing mass smaller than α following Good-UCB strategy. We aim at comparing T U C B (α ) to T * (α ), the same quantity following the omniscient strategy. With that in mind, one can write:

T U C B (α ) = min t : ∀k ∈ [K], R k, N k (t ) ≤ αλ k , T * (α ) = K k=1 T * k (α ), where T * k (α ) = min s : R k,s ≤ αλ k .
Following ideas from [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], we will control T U C B (α ) by comparing it to U (α ) de ned below, and which replaces the missing mass by an upper bound on the estimator of the missing mass (the Good-Turing estimator). Indeed, remind that we can control this on event F .

U (α ) = min t ≥ 1 : ∀k ∈ [K], Rk,N k (t ) + b + k, N k (t ) (t ) ≤ αλ k .
Let S ≥ S. On event E, one has that

T U C B (α ) ≤ max(S , U (α )). If U (α ) ≥ S , one has R k, N k (U (α )) ≥ Rk,N k (U (α )) -b - k, N k (U (α )) (U (α )) (we are on event F and U (α ) > S ≥ S) ≥ Rk,N k (U (α ))-1 -b - k, N k (U (α )) (U (α )) -c - k, N k (U (α )) (U (α )) (where are on event G) ≥ αλ k -b + k, N k (U (α ))-1 (U (α )) -b - k, N k (U (α )) (U (α )) -c - k, N k (U (α )) (U (α ))
The third inequality's justi cation is more evolved. Let t be the time such that

N k (t ) = N k (U (α )) -1 and N k (t + 1) = N k (U (α )).
This implies that k is the chosen expert at time t, that is, the one maximizing the Good-UCB index. Moreover, since t < U (α ), one knows that this index is greater than αλ k .

If N k (U (α )) ≥ S + 2, some basic maths calculations lead to

R k, N k (U (α )) ≥ αλ k -11 λ k log(2U (α )) S - 3 log(2U (α )) S - 3λ k 2S
We denote by λ max := max k λ k . If we take S = λ max log(2U (α )), we can rewrite previous inequality as

R k, N k (U (α )) ≥ αλ k -11 - 3 
λ max - 3 2 
Thus, by de nition of T * k (α ), and if λ max > 6, one gets

N k,U (α ) ≤ T * k α - 13 λ k + S + 2.
Finally, if we denote by λ min = min k λ k , we obtain that

U (α ) ≤ K (S + 2) + T * α - 13 
λ min .
We now apply Lemma 3.7. We obtain that

U (α ) ≤ 2K + τ * + Kλ max log (8K + 4τ * + 10Kλ max ) ≤ τ * + Kλ max log (4τ * + 11Kλ max ) + 2K .
We conclude with T U C B (α ) ≤ max(S , U (α )). In this chapter, we introduce a dynamic approach for adaptively learning to place items in multi-position displays (e.g., web pages o ering advertising spaces). The proposed approach is particularly tailored for cold start situations in which the recommender agent (e.g. the lm recommender system, the publicity agency, etc.) has no information on some of the items it recommends to users. For example, when a company releases new products, it may want to run a marketing campaign so as to give them visibility, but has no prior knowledge on people's response regarding them. As another example, think about lm recommender systems: every time a new lm is added to the system, its evaluation by users is unknown and we face a cold start situation. In order to answer these challenges, we propose a multi-armed bandit approach that alternates exploration and exploitation steps so as to maximize users' satisfaction regarding items they are recommended. The present work proposes to exploit available information regarding the display position bias under the so-called position-based click model. Importantly, a major concern in this context is that the system receives ambiguous feedback. Indeed, much of the content may have been simply ignored by the user (e.g., the user did not scroll to the bottom of the page, and thus did not see the ad displayed there). We rst discuss how this model di ers from the cascade model and other variants of click models considered in several works on multiple-play bandits. We then provide a novel regret lower bound for this model as well as computationally e cient algorithms that display good empirical and theoretical performance.

The work has been presented at the NIPS conference in 2016 [START_REF] Lagrée | Multiple-Play Bandits in the Position-Based Model[END_REF]. A preliminary version of this work was presented at the Workshop on Online Advertising Systems at ICML 2016 [START_REF] Vernade | Online Inference for Multiple-Item Display Under the Position-Based Model[END_REF].

Contents

4.1

During their browsing experience, users are constantly provided -without having asked for it -with clickable content spread over web pages. While users interact on a website, they send clicks to the system for a very limited selection of the clickable content. Hence, they let every unclicked item with an equivocal answer: the system does not know whether the content was really deemed irrelevant or simply ignored. In contrast, in traditional multi-armed bandit (MAB) models, the learner makes actions and observes at each round the reward corresponding to the chosen action. In the so-called multiple play semi-bandit setting, when users are presented with L items, they are assumed to provide feedback for each of those items.

Several variants of click models have been considered in the bandit literature. The necessity for the user to provide feedback for each item has been called into question in the context of the so-called cascade model [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF][START_REF] Craswell | An experimental comparison of click position-bias models[END_REF][START_REF] Branislav Kveton | Cascading Bandits : Learning to Rank in the Cascade Model[END_REF] and its extensions such as the Dependent Click Model (DCM) [START_REF] Sumeet | DCM Bandits: Learning to Rank with Multiple Clicks[END_REF]. Both models are particularly suited for search contexts, where the user is assumed to be looking for something relative to a query and examine sequentially items from a list. Consequently, the learner expects explicit feedback: in the cascade model each valid observation sequence must be either all zeros or terminated by a one, such that no ambiguity is left on the evaluation of the presented items. Conversely, multiple clicks are allowed in the DCM thus leaving some ambiguity on the last zeros of a sequence.

All previous click models assume that a portion of the recommendation list is explicitly examined by the user and hence that the learning algorithm eventually has access to rewards corresponding to the unbiased user's evaluation of each item. In contrast, we propose to analyze multiple-play bandits in the position-based model (PBM) [START_REF] Chuklin | Click Models for Web Search[END_REF]. In short, in the PBM, each position in the list is also endowed with a binary examination variable [START_REF] Craswell | An experimental comparison of click position-bias models[END_REF][START_REF] Richardson | Predicting clicks: estimating the click-through rate for new ads[END_REF] which is equal to one only when the user paid attention to the corresponding item. But this variable, that is independent of the user's evaluation of the item, is not observable. It allows to model situations where the user is not explicitly looking for speci c content, as in typical recommendation scenarios.

Compared to the di erent variants of the cascade model, the PBM is challenging due to the censoring induced by the examination variables: the learning algorithm observes actual clicks but non-clicks are always ambiguous. Thus, combining observations made at di erent positions becomes a non-trivial statistical task. Some preliminary ideas on how to address this issue appear in the supplementary material of [START_REF] Komiyama | Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays[END_REF]. In this work, we provide a complete statistical study of stochastic multiple-play bandits with semi-bandit feedback in the PBM.

We begin this chapter with a short overview of the click models proposed in search and recommendation contexts and discuss existing multi-armed bandit studies under these feedback. We introduce the model and notations in Section 4.3.1 and provide the lower bound on the regret in Section 4.3.2. In Section 4.3.6, we present two optimistic algorithms, PBM UCB and PBM PIE, as well as an optimal theoretical analysis of the regret of the latter. In the last section dedicated to experiments, those policies are compared to several benchmarks on both synthetic and realistic data.

4.2

In this section, we present click models introduced in the last two decades aiming at modelling users' interaction with search and recommendation systems. A survey speci cally dedicated to the presentation of these di erent click models and to their parameter estimation has been recently published by Chuklin et al. [START_REF] Chuklin | Click Models for Web Search[END_REF]. Here, we present a short summary of the models related to the position-based model which is the focus of our work, and refer the interested reader to this survey for a broader introduction to click models.

Propositions of click models have followed the rise of the Web, and, in particular, the development of search engines in the late 90's to access massive amounts of documents. Initially, experiments were performed to analize the behavior of users in real situations. For example, Joachims et al. [START_REF] Joachims | Accurately Interpreting Clickthrough Data As Implicit Feedback[END_REF] analyze the users' decision process through eyetracking tools and conclude that users' clicking decisions are biased by the position, the trust in the scoring function and the overall quality of the result set. The knowledge of these factors has dictated the choice of results page's design and several user models were introduced aiming at matching the observed user behavior with collected click logs.

In the following, alongside each click model, we describe related works -if any -on the corresponding bandit instance. The multi-armed bandit framework is particularly tailored to face cold start situations that are inherent to products newly introduced to an existing pool of documents / items. Indeed, the lack of knowledge regarding users' appreciation on these items requires that the search (or recommendation) system explore so as to gather information on items' value. Simultaneously, it needs to exploit cumulated observations in order to maximize the users' satisfaction. This problem is a typical instance of multi-armed bandits.

. In the cascade model [START_REF] Craswell | An experimental comparison of click position-bias models[END_REF], the user scans the list from top to bottom and clicks on the rst relevant item. The user always examines the rst item and continues until nding an interesting item. More precisely, at each position, the user examines the item displayed. If the item is relevant, he/she clicks and the session stops. Otherwise, the user continues and examines the following position. Note that the user is considered sati s ed as soon as an item in the list was clicked and the attractiveness probabilities associated to items are the only parameters of the cascade model.

A key aspect of the cascade model is that it can only handle sessions with a single click. Furthermore, the positions of the items are not taken into account in the reward process because the user is assumed to continue scrolling the list as long as the items examined so far are not relevant, but the user satisfaction is only measured by the presence or absence of a click. In the bandit setting, this also implies that the optimal strategy in a learning context consists in showing the most relevant items at the end of the list in order to maximize the amount of observed feedback [START_REF] Branislav Kveton | Cascading Bandits : Learning to Rank in the Cascade Model[END_REF] -which is counter-intuitive in both search and recommendation tasks.

To overcome these limitations, Combes et al. [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] introduce weights -these additional design parameters are to be de ned by the learner -that are attributed to positions in the list, with a click on position l ∈ {1, . . . , L} providing a reward w l , where the sequence (w l ) l is decreasing to enforce the ranking behavior. However, no rule is given for setting the weights (w l ) l that control the order of importance of the positions. The authors propose an algorithm based on KL-UCB [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF] and prove a lower bound on the regret as well as an asymptotically optimal upper bound. We will rely on their work to derive an asymptotically optimal analysis of PBM PIE.

Importantly, all studies tackling the cascade model can easily estimate the unknown parameters as there is no ambiguity on every click / non-click. Even though the proposed algorithms are quite similar, some introduce small di erences in order to simplify the analysis.

. Another way to address the limitations of the cascade model is to consider the Dependent Click model (DCM) initially introduced by Guo et al. [START_REF] Guo | E cient Multiple-click Models in Web Search[END_REF]. Here, continuation probabilities l are introduced for each position l: conditionally on the event that the user e ectively scanned the list up to position l and clicked on this item, he/she can choose to continue with probability l . When trying to maximize the expected number of clicks, this framework naturally induces the necessity to rank the items in the optimal order. Indeed, if the least relevant items are displayed at the beginning of the list, the user scrolls down until he/she nds the rst relevant item in, say, position l, and continues with probability l . Since continuation probabilities are decreasing values of l, the user thus observes less relevant items -in expectation -than if they were displayed at the beginning of the list.

Kveton et al. [START_REF] Sumeet | DCM Bandits: Learning to Rank with Multiple Clicks[END_REF] study the DCM in the bandit setting and propose a variation of the KL-UCB algorithm tailored to the DCM. The algorithm estimates item attractivity using every click or non-click until the last clicked item. Indeed, these feedback are nonambiguous whereas items displayed after the last click may correspond to items that were simply unobserved. Kveton et al. give an analysis of their algorithm that matches the lower bound of the DCM bandit setting up to logarithmic factors.

In summary, just as in the cascade model, the learner can estimates the desired quantities restraining the used feedback to have no ambiguity on examined items.

. Chapelle and Zhang [START_REF] Chapelle | A Dynamic Bayesian Network Click Model for Web Search Ranking[END_REF] introduce the Dynamic Bayesian Network model (DBN) as another extension to the cascade model. Instead of continuation probabilities, the authors propose to introduce for each item k satisfaction probabilities σ k that add up to attraction probabilities θ k : conditionally on the event that the user scanned the list up to position l, he/she clicks on the item k in position l with probability θ k . He/she is satis ed by the clicked item with probability σ k , and, if unsatised by the item, he/she continues scrolling to the next item with probability γ . Note that in the DBN model, there is a unique continuation parameter that is independent of the position. A special instance of the model with γ = 1 -referred to as the Simpli ed DBN model -, allows to estimate the parameters quite easily [START_REF] Chapelle | A Dynamic Bayesian Network Click Model for Web Search Ranking[END_REF] without losing much prediction quality. If we further assume that all satisfaction probabilities are 1, the DBN reduces to the cascade model. The study of the DBN model in the bandit setting remains an open question.

. Many other click models have been proposed in the last decade. We mention here the User Browsing model (UBM) by Dupret and Piwowarski [START_REF] Dupret | A User Browsing Model to Predict Search Engine Click Data from Past Observations[END_REF] which can be seen as a mix of the PBM and the cascade model. The DCM has also been extended with the Click Chain model (CCM) by Guo et al. [START_REF] Guo | E cient Multiple-click Models in Web Search[END_REF] that allows the user to stop scrolling the list without having clicked any item nor reached the end.

4.3

In this section, we introduce notations that will be useful to describe formally the positionbased model in the bandit setting. Then, we provide an analysis of the PBM problem with a lower bound of the regret which is shown to be tight with an upper bound analysis of algorithm PBM PIE.

Model and notations

We consider the binary stochastic bandit model with K Bernoulli-distributed arms. The model parameters are the arm expectations θ = (θ 1 , θ 2 , . . . , θ K ), which lie in Θ = (0, 1) K . We will denote by B(θ ) the Bernoulli distribution with parameter θ and by d (p, q) := p log(p/q) + (1 -p) log((1 -p)/(1 -q)) the Kullback-Leibler divergence from B(p) to B(q). At each round t, the learner selects a list of L arms -referred to as an action -chosen among the K arms which are indexed by k ∈ {1, . . . , K }. The set of actions is denoted by A and thus contains K! /(K -L)! ordered lists; the action selected at time t will be denoted A(t ) = (A 1 (t ), . . . , A L (t )). The PBM is characterized by examination parameters (κ l ) 1≤l ≤L , where κ l is the probability that the user e ectively observes the item in position l [START_REF] Craswell | An experimental comparison of click position-bias models[END_REF]. At round t, the selection A(t ) is shown to the user and the learner observes the complete feedback -as in semi-bandit models -but the observation at position l, Z l (t ), is censored being the product of two independent Bernoulli variables Y l (t ) and X l (t ), where Y l (t ) ∼ B(κ l ) is non null when the user examined the item in position l -which is unknown to the learner -and X l (t ) ∼ B(θ A l (t ) ) represents the actual user feedback to the item shown in position l. The learner receives a reward r A(t ) = L l =1 Z l (t ), where Z (t ) = (X 1 (t )Y 1 (t ), . . . , X L (t )Y L (t )) denotes the vector of censored observations at step t. In Fig. 4.1, we show a situation motivating the PBM in a recommendation scenario.

In the following, we will assume, without loss of generality, that

θ 1 > • • • > θ K and κ 1 > • • • > κ L > 0,
in order to simplify the notations. The fact that the sequences (θ l ) l and (κ l ) l are decreasing implies that the optimal list is a * = (1, . . . , L). Denoting by R(T ) = T t =1 r a * -r A(t ) the regret incurred by the learner up to time T , one has

E[R(T )] = T t =1 L l =1 κ l (θ a * l -E[θ A l (t ) ]) = a ∈A (µ * -µ a ) E[N a (T )] = a ∈A ∆ a E[N a (T )], (4.1) 
where µ a = L l =1 κ l θ a l is the expected reward of action a, µ * = µ a * is the best possible reward in average, ∆ a = µ * -µ a the expected gap to optimality, and, N a (T ) = T t =1 1{A(t ) = a} is the number of times action a has been chosen up to time T .

In the following, we assume that the examination parameters (κ l ) 1≤l ≤L are known to the learner. These can be estimated from historical data [START_REF] Chuklin | Click Models for Web Search[END_REF], using, for instance, the EM algorithm [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] (as will be done in Section 4.4). In most scenarios, it is realistic to assume that the content (e.g., ads in on-line advertising) is changing much more frequently than the layout (web page design for instance) making it possible to have a good knowledge of the click-through biases associated with the display positions.

The main statistical challenge associated with the PBM is that one needs to obtain estimates and con dence bounds for the components θ k of θ from the available B(κ l θ k )distributed draws corresponding to occurrences of arm k at various positions l = 1, . . . , L in the list. To this aim, we de ne the following statistics:

S k,l (t ) = t -1 s=1 Z l (s)1{A l (s) = k }, S k (t ) = L l =1 S k,l (t ), N k,l (t ) = t -1 s=1 1{A l (s) = k}, N k (t ) = L l =1 N k,l (t ) 
. We further require bias-corrected versions of the counts Ñk,l (t ) = t -1 s=1 κ l 1{A l (s) = k } and Ñk (t ) = L l =1 Ñk,l (t ). Observation A time t, and conditionally on the past actions A(1) up to A(t -1), the Fisher information for θ k is given by

I (θ k ) = L l =1 N k,l (t )κ l /(θ k (1 -κ l θ k ))
. Proof Conditionnally to the actions A(1) up to A(t -1), the log-likelihood of the observations Z (1), . . . , Z (t -1) may be written as

t -1 s= K k=1 L l =1 1{A l (t ) = k} [Z l (t ) log(κ l θ k ) + (1 -Z l (t )) log(1 -κ l θ k )] = K k=1 L l =1 S k,l (t ) log(κ l θ k ) + (N k,l (t ) -S k,l (t )) log(1 -κ l θ k ).
Di erenciating twice with respect to θ k and taking the expectation of (S k,l (t )) l , conditionnal to A(1), . . . , A(t -1), yields the expression of I (θ k ) given above.

However, we cannot estimate θ k using the maximum likelihood estimator since it has no closed form expression. Interestingly though, the simple pooled linear estimator

θk (t ) = S k (t ) Ñk (t ) , (4.2) 
considered in the supplementary material to [START_REF] Komiyama | Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays[END_REF], is unbiased and has a (conditional) variance of υ

(θ k ) = ( L l =1 N k,l (t )κ l θ k (1 -κ l θ k ))/( L l =1 N k,l (t )κ l ) 2
, which is close to optimal given the Cramér-Rao lower bound. Indeed, υ (θ k )I (θ k ) is recognized as a ratio of a weighted arithmetic mean to the corresponding weighted harmonic mean, which is known to be larger than one, but is upper bounded by 1/(1 -θ k ), irrespectively of the values of the κ l 's. Hence, if, for instance, we can assume that all θ k 's are smaller than one half, the loss with respect to the best unbiased estimator is no more than a factor of two for the variance. Note that despite its simplicity, θk (t ) cannot be written as a simple sum of conditionally independent increments divided by the number of terms and will thus require speci c concentration results.

It can be checked that when θ k gets very close to one, θk (t ) is no longer close to optimal. This observation also has a Bayesian counterpart that will be discussed in Section 4.4. Nevertheless, it is always preferable to the "position-debiased" estimator ( L l =1 S k,l (t )/κ l )/N k,l (t ) which gets very unreliable as soon as one of the κ l 's gets very small.

Lower bound on the regret

In this section, we consider the fundamental asymptotic limits of learning performance for online algorithms under the PBM. These cannot be deduced from earlier general results, such as those of [START_REF] Combes | Combinatorial Bandits Revisited[END_REF][START_REF] Todd | Asymptotically e cient adaptive choice of control laws in controlled markov chains[END_REF], due to the censoring in the feedback associated to each action. We detail a simple and general proof scheme -using the results of [START_REF] Kaufmann | On the Complexity of Best Arm Identi cation in Multi-Armed Bandit Models[END_REF] -that applies to the PBM, as well as to more general models.

Lower bounds on the regret rely on changes of measure: the question is how much can we mistake the true parameters of the problem for others, when observing successive arms? With this in mind, we will subscript all expectations and probabilities by the parameter value and indicate explicitly that the quantities µ a , a * , µ * , ∆ a , introduced in Section 4.3.1, also depend on the parameter. For ease of notation, we will still assume that θ is such that a * (θ ) = (1, . . . , L).

Existing results for multiple-play bandit problems

Lower bounds on the regret will be proved for uniformly e cient algorithms, in the sense of [START_REF] Leung | Asymptotically e cient adaptive allocation rules[END_REF]:

De nition 4.1 An algorithm is said to be uniformly e cient if for any bandit model parameterized by θ and for all α ∈ (0, 1], its expected regret after T rounds is such that

E θ R(T ) = o(T α ).
For the multiple-play MAB, [4] obtained the following bound lim inf

T →∞ E θ R(T ) log(T ) ≥ K k=L+1 θ L -θ k d (θ k , θ L ) . (4.3) 
For the "learning to rank" problem where rewards follow the weighted Cascade Model with decreasing weights (w l ) l =1, ..., L , [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] derived the following bound lim inf

T →∞ E θ R(T ) logT ≥ w L K k=L+1 θ L -θ k d (θ k , θ L ) .
Perhaps surprisingly, this lower bound does not show any additional term corresponding to the complexity of ranking the L optimal arms. Indeed, the errors are still asymptotically dominated by the need to discriminate irrelevant arms (θ k ) k >L from the worst of the relevant arms, that is, θ L . . Denoting by F s-1 the σ -algebra generated by the past actions and observations, we de ne the log-likelihood ratio for the two values θ and λ of the parameters by 

I l (θ k , λ k ) := E θ log p(Z l (t ); θ ) p(Z l (t ); λ) A l (t ) = k ,
and its cumulated sum over the L positions by I a (θ, λ)

:= L l =1 K k =1 1{a l = k}I l (θ k , λ k ).
The expected log-likelihood ratio is given by

E θ [ (t )] = a ∈A I a (θ, λ)E θ [N a (t )]. (4.5) 
The next proposition is adapted from Theorem 17 in Appendix B of [START_REF] Kaufmann | On the Complexity of Best Arm Identi cation in Multi-Armed Bandit Models[END_REF] and provides a lower bound on the expected log-likelihood ratio. Proposition 4.1 Let B(θ ) := {λ ∈ Θ ∀l ≤ L, θ l = λ l and µ * (θ ) < µ * (λ) } be the set of changes of measure that improve over θ without modifying the optimal arms. Assuming that the expectation of the log-likelihood ratio may be written as in (4.5), for any uniformly e cient algorithm one has

∀λ ∈ B(θ ), lim inf T →∞ a ∈A I a (θ, λ)E θ [N a (T )] log(T ) ≥ 1.

2:

. We are now ready to obtain the lower bound in a form similar to that originally given by [START_REF] Todd | Asymptotically e cient adaptive choice of control laws in controlled markov chains[END_REF]. 

3:

. The bounds mentioned in Section 4.3.3 may be recovered from Theorem 4.1 by considering only the changes of measure that a ect a single suboptimal arm. lim inf

Corollary 4.1 f (θ ) ≥ inf c 0 a ∈A ∆ a (θ )c a , s.t. a ∈A L l =1 1{a l = k }I l (θ k , θ L )c a ≥ 1 , ∀k ∈ {L + 1, . . . , K }.
T →∞ E θ R(T ) logT ≥ K k=L+1 min l ∈ {1, ..., L } ∆ k,l (θ ) d (κ l θ k , κ l θ L ) , (4.6) 
where k,l := (1, . . . , l -1, k, l, . . . , L -1).

Proof First, note that for the PBM one has

I l (θ k , λ k ) = d (κ l θ k , κ l λ k ).
To get the expression given in Theorem 4.2 from Corollary 4.1, we proceed as in [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] showing that the optimal coe cients (c a ) a ∈A can be non-zero only for the K -L actions that put the suboptimal arm k in the position l that reaches the minimum of ∆ k,l (θ )/d (κ l θ k , κ l θ L ). Nevertheless, this position does not always coincide with L, the end of the displayed list, contrary to the case of [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] (the detailed proof is given in Section 4.A.1).

The discrete minimization that appears in the r.h.s. of Theorem 4.2 corresponds to a fundamental trade-o in the PBM. When trying to discriminate a suboptimal arm k from the L optimal ones, it is desirable to put it higher in the list to obtain more information, as d (κ l θ k , κ l θ L ) is an increasing function of κ l . On the other hand, the gap ∆ k,l (θ ) is also increasing as l gets closer to the top of the list. The fact that d (κ l θ k , κ l θ L ) is not linear in κ l (it is a strictly convex function of κ l ) renders the trade-o non trivial. It is easily checked that when (θ 1 -θ L ) is very small, i.e. when all optimal arms are equivalent, the optimal exploratory position is l = 1. In contrast, it is equal to L when the gap (θ L -θ L+1 ) becomes very small. Note that by using that for any suboptimal a ∈ A,

∆ a (θ ) ≥ K k=L+1 L l =1 1{a l = k}κ l (θ L -θ k ), one can lower bound the r.h.s. of Theorem 4.2 by κ L K k=L+1 (θ L -θ k )/d (κ L θ k , κ L θ L ), which is not tight in general.
. In the uncensored version of the PBM -i.e., if the Y l (t ) were observed -, the expression of

I a (θ, λ) is simpler: it is equal to L l =1 K k=1 1{A l (t ) = k }κ l d (θ k , λ k )
and leads to a lower bound that coincides with (4.3). The uncensored PBM is actually statistically very close to the weighted Cascade model and can be addressed by algorithms that do not assume knowledge of the (κ l ) l but only of their ordering.

Algorithms

In this section we introduce two algorithms for the PBM. The rst one uses the CUCB strategy of [START_REF] Chen | Combinatorial multi-armed bandit: General framework and applications[END_REF] and requires an simple upper con dence bound for θ k based on the estimator θk (t ) de ned in (4.2). The second algorithm is based on the Parsimonious Item Exploration -PIE(L) -scheme proposed in [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] and aims at reaching asymptotically optimal performance. For this second algorithm, termed PBM PIE, it is also necessary to use a multi-position analog of the well-known KL-UCB index [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF] that is inspired by a result of [START_REF] Magureanu | Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms[END_REF]. The analysis of PBM PIE provided below con rms the relevance of the lower bound derived in Section 4.3.2.

. The rst algorithm simply consists in sorting optimistic indices in decreasing order and pulling the corresponding rst L arms [START_REF] Chen | Combinatorial multi-armed bandit: General framework and applications[END_REF]. To derive the expression of the required "exploration bonus" we use an upper con dence for θk (t ) based on Hoe ding's inequality:

U U C B k (t, δ ) = S k (t ) Ñk (t ) + N k (t ) Ñk (t ) δ 2 Ñk (t ) ,
for which a coverage bound is given by the next proposition, proven in Section 4.A.2.

Proposition 4.2 Let k be any arm in {1, . . . , K }, then for any δ > 0,

P U U C B k (t, δ ) ≤ θ k ≤ eδ log(t )e -δ .
Following the ideas of [START_REF] Combes | Combinatorial Bandits Revisited[END_REF], it is possible to obtain a logarithmic regret upper bound for this algorithm.

Theorem 4.3 Let C (κ) = min 1≤l ≤L [( L j=1 κ j ) 2 /l+( l j=1 κ j ) 2 ]/κ 2
L and ∆ = min a ∈σ (a * )\a * ∆ a , where σ (a * ) denotes the permutations of the optimal action. Using PBM UCB with δ = (1 + ϵ ) log(t ) for some ϵ > 0, there exists a constant C 0 (ϵ ) independent from the model parameters such that the regret of PBM UCB is bounded from above by

E[R(T )] ≤ C 0 (ϵ ) + 16(1 + ϵ )C (κ) logT L ∆ + k a * 1 κ L (θ L -θ k ) .
The proof of the regret upper bound of PBM UCB is omitted in this thesis and can be found in the original paper [START_REF] Lagrée | Multiple-Play Bandits in the Position-Based Model[END_REF]. The presence of the term L/∆ in the above expression is attributable to limitations of the mathematical analysis. On the other hand, the absence of the KL-divergence terms appearing in the lower bound (4.6) is due to the use of an upper con dence bound based on Hoe ding's inequality.

. We adapt the PIE(l) algorithm introduced by [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] for the Cascade Model to the PBM in Algorithm 13 below. At each round, the learner potentially explores at position L with probability 1/2 using the following upper-con dence bound for each arm k

U k (t, δ ) = sup q ∈[θ min k (t ),1]      q L l =1 N k,l (t )d S k,l (t ) N k,l (t ) , κ l q ≤ δ      , (4.7) 
We conclude this section by a quick description of two other algorithms that will be used in the experimental section to benchmark our results.

(

). The state-of-the-art algorithm for the sequential "learning to rank" problem was proposed by [START_REF] Radlinski | Learning diverse rankings with multi-armed bandits[END_REF]. It runs one bandit algorithm per position, each one being entitled to choose the best suited arm at its rank. The underlying bandit algorithm that runs in each position is left to the choice of the user, the better the policy the lower the regret can be. If the bandit algorithm at position l selects an arm already chosen at a higher position, it receives a reward of zero. Consequently, the bandit algorithm operating at position l tends to focus on the estimation of l-th best arm. In the next section, we use as benchmark the Ranked Bandits strategy using the KL-UCB algorithm [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF] as the per-position bandit.

. The observations Z l (t ) are censored Bernoulli which results in a posterior that does not belong to a standard family of distribution. [START_REF] Komiyama | Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays[END_REF] suggest a version of Thompson Sampling called "Bias Corrected Multiple Play TS" (or BC-MP-TS) that approximates the true posterior by a Beta distribution. We observed in experiments that for parameter values close to one, this algorithm does not explore enough. In Figure 4.2, we show this phenomenon for θ = (0.95, 0.85, 0.75, 0.65, 0.55). The true posterior for the parameter θ k at time t may be written as a product of truncated scaled beta distributions

π t (θ k ) ∝ l θ α k,l (t ) k (1 -κ l θ k ) β k,l (t ) ,
where α k,l (t ) = S k,l (t ) and β k,l (t ) = N k,l (t ) -S k,l (t ). To draw from this exact posterior, we use rejection sampling with proposal distribution Beta(α k,m (t ), β k,m (t ))/κ m , where m = arg max 1≤l ≤L (α k,l (t ) + β k,l (t )).

4.4

We conducted experiments on two types of datasets:

1. an arbitrary simple problem chosen so as to verify our theoretical claims, 2. a real problem with parameters estimated on click logs from a search engine.

Simulations

In order to evaluate our strategies, a simple problem is considered in which K = 5, L = 3, κ = (0.9, 0.6, 0.3) and θ = (0.45, 0.35, 0.25, 0.15, 0.05). The arm expectations are chosen such that the asymptotic behavior can be observed after reasonable time horizon. All results are averaged based on 10, 000 independent runs of the algorithm. We present the results in Figure 4.3 where PBM UCB, PBM PIE and PBM TS are compared to RBA KLUCB. The performance of PBM PIE and PBM TS are comparable, the latter even being under the lower bound (it is a common observation, e.g. see [START_REF] Komiyama | Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays[END_REF], and is due to the asymptotic nature of the lower bound). The curves con rm our analysis for PBM PIE and lets us conjecture that the true Thompson Sampling policy might be asymptotically optimal. As expected, PBM PIE shows asymptotically optimal performance, matching the lower bound after a large enough horizon.

# ads (K) # records min θ max θ 

Real data experiments: search advertising

The dataset was provided for KDD Cup 2012 track 2 [START_REF]KDD Cup 2012 track 2[END_REF] and involves session logs of soso.com, a search engine owned by Tencent. It consists of ads that were inserted among search results. Each of the 150M lines from the log contains the user ID, the query typed, an ad, a position (1, 2 or 3) at which it was displayed and a binary reward (click/no-click). First, for every query, we excluded ads that were not displayed at least 1, 000 times at every position. We also ltered queries that had less than 5 ads satisfying the previous constraints. As a result, we obtained 8 queries with at least 5 and up to 11 ads. For each query q, we computed the matrix of the average click-through rates (CTR): M q ∈ R K ×L , where K is the number of ads for the query q and L = 3 the number of positions. It is noticeable that the SVD of each M q matrix has a highly dominating rst singular value, therefore validating the low-rank assumption underlying in the PBM. In order to estimate the parameters of the problem, we used the EM algorithm suggested by [START_REF] Chuklin | Click Models for Web Search[END_REF][START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Table 4.1 reports some statistics about the bandit models reconstructed for each query: number of arms K, amount of data used to compute the parameters, minimum and maximum values of the θ 's for each model.

We conducted a series of 2, 000 simulations over this dataset. At the beginning of each run, a query was randomly selected together with corresponding probabilities of scanning positions and arm expectations. Even if rewards were still simulated, this scenario is more realistic since the values of the parameters were extracted from a real-world dataset. We show results for the di erent algorithms in Figure 4.4. It is remarkable that RBA KLUCB performs slightly better than PBM UCB. One can imagine that PBM UCB does not bene t enough from position aggregations -only 3 positions are considered -to beat RBA KLUCB. Both of them are outperformed by PBM TS and PBM PIE.

4.5

This work provides the rst analysis of the PBM in an online context. The proof scheme used to obtain the lower bound on the regret is interesting on its own, as it can be generalized to various other settings. The tightness of the lower bound is validated by our analysis of PBM PIE but it would be an interesting future contribution to provide such guarantees for more straightforward algorithms such as PBM TS or a "PBM-KLUCB" using the con dence regions of PBM PIE.

The main assumption in our work is the knowledge of the values of the (κ l ) l ∈[L] . In practice, the algorithms are robust to small variations of the κ's, but the proposal of an algorithm that is unaware of these parameters would be an interesting step forward. In this direction, Katariya et al. [START_REF] Katariya | Stochastic Rank-1 Bandits[END_REF] study a bandit problem where, at each step, the learner selects a pair of row and columns arms, from a rank-1 matrix, and observes the product of their Bernoulli random variables. They make no assumption on neither row nor column parameters. However, the study of the PBM setting without the knowlege of position parameters remains an open question today. 

4.

In this section, we gather most of the technical results from this chapter. Lemma 4.2 Let θ = (θ 1 , . . . , θ K ) and λ = (λ 1 , . . . , λ K ) be two bandit models such that the distributions of all arms in θ and λ are mutually absolutely continuous. Let σ be a stopping time with respect to (F t ) such that (σ < +∞) a.s. under both models. Let E ∈ F σ be an event such that 0 < P θ (E) < 1. Then one has

= E θ       t s=1 a ∈A 1{A(s) = a} L l =1 log p a l (X l (s)Y l (s); θ ) p a l (X l (s)Y l (s); λ) A(1), . . . , A(t )       = t s=1 a ∈A 1{A(s) = a} L l =1 E log p a l (X l (s)Y l (s); θ ) p a l (X l (s)Y l (s); λ) A(s) = a = a ∈A N a (t ) L l =1 K k=1 1{a l = k}d (κ l θ k , κ l λ k ) = a ∈A N a (t )I a (θ, λ), using the notation I a (θ, λ) = L l =1 K k=1 1{a l = k }d (κ l θ k , κ l λ k ).
a ∈A I a (θ, λ)E θ [N a (σ )] ≥ d (P θ (E), P λ (E)),
where I a (θ, λ) is the conditional expectation of the log-likelihood ratio for the model of interest.

The proof of this lemma directly follows from the above expressions of the log-likelihood ratio and from the proof of Lemma 1 in Appendix A.1 of [START_REF] Kaufmann | On the Complexity of Best Arm Identi cation in Multi-Armed Bandit Models[END_REF].

We simply recall the following technical lemma for completeness.

Lemma 4.3 Let σ be any stopping time with respect to (F t ). For every event A ∈ F σ , We begin by relaxing some constraints: we only allow the change of measure λ to belong to the sets B k (θ ) := λ ∈ Θ|∀j k, θ j = λ j and µ * (θ ) < µ * (λ) de ned in Section 4.3.2:

P λ (A) = E θ [1{A} exp(- ( 
f (θ ) = inf c 0 a a * (θ ) ∆ a (θ )c a (4.10) s.t ∀k a * (θ ), ∀λ ∈ B k (θ ), a ∈A I a (θ, λ)c a ≥ 1. ( 4 

.11)

The K -L constraints (4.11) only let one parameter move and must be true for any value satisfying the de nition of the corresponding set B k (θ ). In practice, for each k, the parameter λ k must be set to at least θ L . Consequently, these constraints may then be rewritten d (κ l θ k ,κ l θ L ) . Thus, we obtain the desired lower bound by rewriting (4.12) as 

f (θ ) = inf c 0 a a * (θ ) ∆ a (θ )c a (4.12) s.t ∀k a * (θ ), a a * (θ ) c a L l =1 1{a l = k }d (κ l θ k , κ l θ L ) ≥ 1. ( 4 
f (θ ) ≥ K k=L+1 min l ∈ {1, ..., L } ∆ k,l (θ ) d (κ l θ k , κ l θ L ) .
l k = arg min l ≤L ∆ k,l (θ ) d (κ l θ k ,κ l θ L )
. Following [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF], we show by contradiction that c a > 0 implies that a can be written k,l k for a well chosen k > L. Let α a * be a suboptimal action such that ∀k > L, α k,l k and c α > 0. We need to show a contradiction. Let us introduce a new set of coe cients c de ned as follows, for any a a * :

c a =                0 if a = α c a + d (κ π k (α ) θ k ,κ π k (α ) θ L ) d (κ l k θ k ,κ l k θ L ) c α if ∃k > L s.t. a = k,l k and k ∈ α c a otherwise.
According to Lemma 4.4, these coe cients satisfy the constraints of the LP. We now show that these new coe cients yield a strictly lower value to the optimization problem:

c (θ ) -c (θ ) = c α ∆ α (θ ) - k >L:k ∈α d (κ π k (α ) θ k , κ π k (α ) θ L ) d (κ l k θ k , κ l k θ L ) c α ∆ k,l k (θ ) > c α k >L:k ∈α ∆ k, π k (α ) (θ ) - k >L:k ∈α d (κ π k (α ) θ k , κ π k (α ) θ L ) d (κ l k θ k , κ l k θ L ) ∆ k,l k (θ ) . (4.14)
The strict inequality (4.14) is shown in Lemma 4.5. Let k > L be one of the suboptimal arms in α. By de nition of l k , the corresponding term of the sum in equation (4.14) is positive. Thus, we have that c (θ ) > c (θ ) and, hence, by contradiction, we showed that c a > 0 i a can be written a = k,l k for some k > L.

Lemma 4.4 Let c be a vector of coe cients that satisfy constraints (4.13) of the optimization problem. Then, coe cients c as de ned in Proposition 4.4 also satisfy the constraints:

∀k a * (θ ), a a * (θ ) c a L l =1 1{a l = k }d (κ l θ k , κ l θ L ) ≥ 1.
Proof We use the same α as introduced in Proposition 4.4. Let us x k a * (θ ). Let us de ne

L(c) = a a * (θ ) c a L l =1 1{a l = k }d (κ l θ k , κ l θ L ).

.2 Proof of Proposition 4.2

In this section, we x an arm k ∈ {1, . . . , K } and obtain an upper con dence bound for the estimator θk (t ) := S k (t )/ Ñk (t ). Let τ i be the instant of the i-th draw of arm k (the τ i are stopping times w.r.t. F t ). We introduce the centered sequence of successive observations from arm k

Zk,i = L l =1 1{A l (τ i ) = k }(X l (τ i )Y l (τ i ) -θ k κ l ). ( 4 

.15)

Introducing the ltration G i = F τ i+1 -1 , one has E[ Zk,i |G i-1 ] = 0, and therefore, the sequence

M k,n = n i=1
Zk,i is a martingale with bounded increments, w.r.t. the ltration (G n ) n . By construction, one has

M k, N k (t ) = S k (t ) -Ñk (t )θ k = Ñk (t )( θk (t ) -θ k ).
We use the so-called peeling technique together with the maximal version of Azuma-Hoe ding's inequality [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]. For any γ > 0 one has

P M k, N k (t ) < -N k (t )δ/2 ≤ log(t ) log(1+γ ) i=1 P M k, N k (t ) < -N k (t )δ/2 , N k (t ) ∈ [(1 + γ ) i-1 , (1 + γ ) i ) ≤ log(t ) log(1+γ ) i=1 P ∃i ∈ {1, . . . , (1 + γ ) i } : M k,i < -(1 + γ ) i-1 δ/2 ≤ log(t ) log(1+γ ) i=1 exp - δ (1 + γ ) i-1 (1 + γ ) i = log(t ) log(1 + γ ) exp - δ (1 + γ ) .
Choosing γ = 1/(δ -1), gives

P θk (t ) -θ k < - N k (t )δ/2 Ñk (t ) ≤ δe log(t )e -δ .

.3 Regret analysis for PBM PIE (Theorem 4.4)

The proof follows the decomposition of [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF]. For all t ≥ 1, we denote f (t, ϵ ) = (1 +ϵ ) log t.

.4 Controlling leaders and estimations

De ne η 0 = min k ∈ {1, ..., L-1} (θ k -θ k+1 )/2 and let η < η 0 . We de ne the following set of rounds

A = {t ≥ 1 : L(t ) (1, . . . , L)}. The function ϕ : x → L l =1 N k,l (t )d S k,l (t ) 
N k,l (t ) , κ l x is convex and non-decreasing on [θ min k (t ), 1];

the convexity is easily checked and θ min k (t ) is de ned as the minimum of this convex function. By de nition, we have, either, U k (t, δ ) = 1 and then U k (t, δ ) > θ k , or, U k (t, δ ) < 1 and ϕ (U k (t, δ )) = δ , consequently

P (U k (t, δ ) < θ k ) = P (ϕ (U k (t, δ )) ≤ ϕ (θ k )) = P (δ ≤ ϕ (θ k )) . Remember that U k (t ) = U k (t, (1 +ϵ ) log(t )) = U k (t, f (t, ϵ ))
. Thus, applying Proposition 4.3, we obtain for arm k,

E[|C k |] ≤ ∞ t =1 P(U k (t ) ≤ θ k ) ≤ e L+1 + e L+1 L L ∞ t = e L+1 +1 (2 + ϵ ) 2L (log t ) 3L t 1+ϵ ≤ C 3 (ϵ ), for some constant C 3 (ϵ ). E[ | D | ]: Decompose D as D = L k =1 D k where D k = {t ≥ 1 : t ∈ A \ (B ∪ C ) , k L (t ) , | θ k (t ) -θ k | ≥ η } .
For a given k ≤ L, D k is the set of rounds at which k is not one of the leaders, and is not accurately estimated. Let t ∈ D k . Since k L (t ), we must have L L (t ) > L. In turn, since t B, we have

| θ L L (t ) (t ) -θ L L (t ) | ≤ η, so that θ L L (t ) ≤ θ L L (t ) + η ≤ θ L + η ≤ (θ L + θ L +1 ) /2. Furthermore, since t C and 1 ≤ k ≤ L, we have U k (t ) ≥ θ k ≥ θ L ≥ (θ L + θ L +1 ) /2 ≥ θ L L (t ) . This implies that k ∈ B (t ) thus E[k ∈ A (t ) |t ∈ D k ] ≥ 1/ ( 2K ). We apply Lemma 4.9 with H ≡ D k and c = 1/ ( 2K ) to get E[ | D | ] ≤ L k =1 E[ | D k | ] ≤ 4K ( 4K + κ -2 L η -2 ) .

.4.1 Regret decomposition

We decompose the regret by distinguishing rounds in A ∪ B and other rounds. More specifically, we introduce the following sets of rounds for arm k > L:

E k = {t ≥ 1 : t (B ∪ C ∪ D ) , L (t ) = a * , A (t ) = k , L } .
The set of instants at which a suboptimal action is selected now can be expressed as follows

{t ≥ 1 : A (t ) a * } ⊂ (B ∪ C ∪ D ) ∪ ( ∪ k =L +1 E k ) .
Using a union bound, we obtain the upper bound

E[R (T ) ] ≤ L l =1 κ l E[ | B ∪ C ∪ D | ] + K k =L +1 ∆ k , L (θ )E[ | E k | ].
From previous boundaries, putting it all together, there exist C 1 (η ) and C 3 (ϵ ), such that

L l =1 κ l (E[ | B | ] + E[ |C | ] + E[ | D | ] ) ≤ C 1 (η ) + C 3 (ϵ ) .
At this step, it su ces to bound events E k for all k > L.

.4.2 Bounding event E k

We proceed similarly to [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF]. Let us x an arm k > L. Let t ∈ E k : arm k is pulled in position L, so by construction of the algorithm, we have that k ∈ B(t ) and thus U k (t ) ≥ θ L L (t ) (t ). We rst show that this implies that U k (t ) ≥ θ L -η. Since t ∈ E k , we know that L L (t ) = L, and since t B, | θL (t ) -θ L |≤ η. This leads to

U k (t ) ≥ θ L L (t ) (t ) = θL (t ) ≥ θ L -η.
Recall that N k, L (t ) is the number of times arm k was played in position L. By denoting 

d + (x, ) = 1{x < }d (x, ), we have that N k, L (t )d + (S k, L (t )/N k, L (t ), κ L (θ L -η)) ≤ N k, L (t )d + (S k, L (t )/N k, L (t ), κ L U k (t )) ≤ L l =1 N k,l (t )d + (S k,l (t )/N k,l (t ), κ l U k (t )) ≤ f (t, ϵ ). This implies that 1{t ∈ E k } ≤ 1{N k, L (t )d + (S k, L (t )/N k, L (t ), κ L (θ L -η)) ≤ f (t, ϵ )}.
t =1 1{A(t ) = k, L , N k, L (t )d + (S k, L (t )/N k, L (t ), κ L (θ L -η)) ≤ f (t, ϵ )} ≤ T s=1 1{sd + ( ν L k,s , κ L (θ L -η)) ≤ f (T , ϵ )}.
We apply Lemma 4.6 which is a direct translation of Lemma 7 from [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF] to our problem. This yields

|E k |≤ T s=1 1{sd + ( ν L k,s , κ L (θ L -η)) ≤ f (T , ϵ )}.
Let γ > 0. We de ne K T = (1+γ )f (T ,ϵ )

d + (κ L θ k ,κ L (θ L -η))
. We now rewrite the last inequality splitting the sum in two parts. η) , where last inequality comes from Lemma 4.7. Fixing γ < ϵ, we obtain the desired result, which concludes the proof. Lemma 4.7 For each γ > 0, there exists C 2 (γ , η) > 0 and β (γ , η) > 0 such that η) .

≤ K T + C 2 (γ , η) T β (γ ,
∞ s=K T +1 P d + ( ν L k,s , κ L (θ L -η)) ≤ d (κ L θ k , κ L (θ L -η) 1 + γ ≤ C 2 (γ , η) T β (γ ,
Proof If d + ( ν L k,s , κ L (θ L -η)) ≤ d (κ L θ k ,κ L (θ L -η)) 1+γ
, then there exists some r (γ , η) ∈ (θ k , θ L -η) such that ν L k,s > κ L r (γ , η) and We obtain,

d (κ L r (γ , η), κ L (θ L -η)) = d (κ L θ k , κ L (θ L -η)) 1 + γ .
∞ t =K T P d + ( νk,s , κ L θ L ) < d (κ L θ k , κ L θ L ) 1 + γ ≤ exp(-K T d (κ L r (γ , η), κ L θ k )) 1 -exp(-d (κ L r (γ , η), κ L θ k )) ≤ C 2 (γ , η) T β (γ ,η) ,
for well chosen C 2 (γ , η) and β (γ , η).

.5 Lemmas

In this section, we recall two necessary concentration lemmas directly adapted from Lemma 4 and 5 in Appendix A of [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF]. Although more involved from a probabilistic point of view, these results are simpler to establish than proposition 4.2 as their adaptation to the case of the PBM relies on a crude lower bound for Ñk (t ), which is su cient for proving Theorem 4.4.. Proof The rst result is a direct application of Lemma 4 of [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] as (Z l (t )) t with Z l (t ) = X l (t )Y l (t ) is an independent sequence of [0, 1]-valued variables.

For the second inequality, we use the fact that Ñk (t ) ≥ κ L N k (t ). Hence,

P[| θk (ϕ) -θ k |≥ η, ϕ ≤ T ] ≤ P |M k, N k (ϕ ) | κ L N k (ϕ) ≥ η, ϕ ≤ T .
which is upper bounded using (4.16).

Lemma 4.9 Fix c > 0 and k ∈ {1, . . . , K }. Consider a random set of rounds H ⊂ N, such that, for all t, 1{t ∈ H } is F t -1 measurable and such that for all t ∈ H , {k ∈ B(t )} is true. Further assume, for all t, one has E[1{k ∈ A(t )}|t ∈ H ] ≥ c > 0. We de ne τ s a stopping time such that τ s t =1 1{t ∈ H } ≥ s. Consider the random set Λ = {τ s : s ≥ 1}. Then, for all k,

t ≥0 P[t ∈ Λ, | θk (t ) -θ k |≥ η] ≤ 2c -1 (2c -1 + κ -2 L η -2 )
The proof of this lemma follows that of Lemma 5 in [START_REF] Combes | Learning to rank: Regret lower bounds and e cient algorithms[END_REF] using the same lower bound for Ñk (t ) as above. In this dissertation, we studied adaptive strategies that rely on the many types of feedback generated in user-centric applications to improve recommendation, and more generally the user experience in information access. We identi ed three important applications in which users constantly produce signals that can be incorporated in algorithms to deliver better services for answering information needs.

Concretely, in Chapter 2 we developed TOPKS ASYT, an as-you-type algorithm to search on social media. The approach allows to improve user experimence on social platform by providing a list of potentially interesting results to a user who is typing a query. Our algorithm adaptively outputs user-centric recommendations under a network-aware query model by which information produced by users who are closer to the seeker can be given more weight. We introduced a novel trie data structure, Index, allowing ranked access over inverted lists to provide answers rapidly in strongly dynamic situations as the user is typing his / her query. We gave two extensions to our algorithm: (i) we gave an incremental version of TOPKS ASYT that takes advantage of computations performed for previously typed letters so as to speed up subsequent computations, (ii) we proposed an anytime version of TOPKS ASYT that allows to output the most likely answer within any chosen time limit.

In Chapter 3, we proposed a di usion-independent approach for online and adaptive in uence maximization. Our algorithm, called GT UCB, maximizes the number people reached throughout a campaign (be it in politics, marketing, etc.). Our approach sequentially selects people chosen from a subset of the population and from whom spreads of diffusion are initiated. It requires as only interfaces with the "real-world" the identi cation of potentially in uential people and the spread feedback at each trial. Unlike its competitors, GT UCB is very fast in estimating the remaining value of each in uencer, which is a major concern when dealing with short campaigns of tens to hundreds of spreads. We also described an extension that incorporates the diminuishing convertion impact as an in uential user keeps promoting the same piece of information to his / her followers.

In Chapter 4, we studied the position-based model (PBM) -a click model particularly relevant in recommendation scenarios -in an online context. Through this adaptive approach, we focused on cold start situations where the recommender system has no knowledge about newly introduced items. For example, after a lm is released, recommender systems need to gather feedback in order to evaluate properly how much users appreciate it. We provided a lower on the regret for the PBM bandit instance. The tightness of the lower bound was validated by the analysis of our proposed algorithm PBM PIE.

We leave behind several interesting questions that deserve further research. In Chapter 2, we introduced a parameter (which we denoted α) that allows the as-you-type system to specify how much social bias is included in the results displayed to query users. However, choosing the appropriate value for α is di cult because, on social platforms, some queries are social / subjective (e.g., searching for a restaurant for which friends wrote positive reviews), whereas some others are global / objective (e.g., searching for the o cial page of a famous user on the social platform). Incorporating user feedback in adaptive algorithms in order to learn the best value of α for each query topic is an important research direction for improving the user experience for accessing information. In Chapter 3, we proposed an adaptive algorithm for semi-bandit in uence maximization which uses the Poisson Kullback-Leibler divergence. We showed that the algorithm performs well empirically by comparing our approach to the state-of-the-art algorithm. However, we have not provided a theoretical analysis yet, which would allow us to guarantee formally its superiority over competitor algorithms. In Chapter 4, even though we provided a theoretical analysis to PBM PIE, we let open the question of the asymptotical optimality of PBM TS, despite strong empirical evidences. Furthermore, our framework assumes the knowledge of the position bias probabilities. In practice, we observed that the studied algorithms are robust to small variations of these values, but the proposal of an algorithm that is unaware of these parameters would be an interesting step forward. In this direction, Katariya et al. [START_REF] Katariya | Stochastic Rank-1 Bandits[END_REF] study a bandit problem where, at each step, the learner selects a pair of row and columns arms, from a rank-1 matrix, and observes the product of their Bernoulli random variables. They make no assumption on neither row nor column parameters. Nevertheless, the study of the PBM setting without the knowlege of position parameters remains an open question today. The work on online in uence maximization with persistence presented in Chapter 3 led to the development of a software package in C++ available at https://github.com/plagree/ oim. Note that the code is a fork of a project initially developed by Siyu Lei, Silviu Maniu and Luyi Mo from University of Hong Kong for their paper published at KDD 2015 [START_REF] Lei | Online In uence Maximization[END_REF].

The source code is provided as-in under the MIT License.

. The Make le is in the main folder and requires GCC 4.9.0 (or superior) as it uses C++14 features. The code needs Boost C++ library headers. It assumes the include les are present in /usr/local/include. If your Boost installation is someplace else, you have to modify the INCLUDE _ DIRS directive in Make le. The binary library does not need to be linked.

Compiling is as easy as:

# make clean; make

The output binary is oim.

. The program expects as input a tab delimited graph le of the following format: node1 <TAB> node2 <TAB> prob where node1 and node2 are the endpoints of a graph edge, and prob is the in uence probability.

The following methods are supported:

1. exponentiated gradient [START_REF] Lei | Online In uence Maximization[END_REF], which runs as follows:

./oim -eg <graph> <alpha> <beta> <exploit> <trials> <L> [<model> <update> <update _ type> <cascades>] 2. missing mass [START_REF] Lagrée | As-You-Type Social Aware Search[END_REF], which runs as follows:

./oim -missing _ mass <graph> <policy> <reduction> <trials> <L> <n _ experts> [<model> <cascades>] 3. real graph, which runs on the real di usion graph -this corresponds to the O :

./oim -real <graph> <exploit> <trials> <L> [<model> <samples> <cascades>]

. The parameters of the implemented methods are set as follows:

• graph is the name of the graph le,

• alpha, beta are the global prior on the edges of the graph,

• exploit can take any of the following values: 0 Random, 1 AdaptiveDegree, 2 Maxdegree, 3 CELF [47], 4 TIM [START_REF] Tang | In uence Maximization: Near-Optimal Time Complexity Meets Practical E ciency[END_REF], 5 SSA [START_REF] Nguyen | Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks[END_REF], 6 PMC [START_REF] Ohsaka | Fast and Accurate In uence Maximization on Large Networks with Pruned Monte-Carlo Simulations[END_REF],

• samples is the number of spreads to estimate the expected value of chosen seeds,

• trials is the number of trials N , L is the number of seeds in each trial,

• update is 1 if the graph is updated, 0 otherwise,

• update _ type is the type of update: 0 local only, 1 least squares or 2 maximum likelihood,

• reduction can take the following values: 0 max cover, 1 highest degree, 2 D R ,

• policy can take the following values: 0 Random, 1 GT UCB,

• model can take the following values: 0 Linear Threshold, 1 Independent Cascade,

• cascades contains the path to the le containing real cascades (logs).

. The di erent methods write on the standard output with the following format:

1. exponentiated gradient: In Chapter 3, we conducted a series of experiments on data collected in August 2012 using Twitter streaming API. We extracted cascades in which the original author of a tweet is the seed who initated a spread composed of all users who retweeted the post. The resulting dataset contains 50, 537, 745 users among whom 32, 971, 976 have never been retweeted, that is, have potentially posted on their timeline but none of their posts were retweeted 1 . Not surprisingly, only 87, 940, 277 of the 726, 474, 937 total tweets have been retweeted. Intuitively, we believe that, since most users are non-in uential, their posts are generally never reposted leading to all these isolated posts. We observe a power law distribution which is in line with many studies on social networks. In Table A.1, we provide the values from Fig. A.1 for tweets that were not retweeted much (less than 10 times). We observe that a very large majority of Twitter posts is never retweeted.

.

Edge weights

In Section 3.3.2.1, we conducted an analysis of the empirical activation probabilities to verify our claim that in uencers (the candidates), despite being connected to many users, can barely activate most of them. Speci cally, for every user "in uenced" by u, i.e., retweeted at least one original tweet from u, we computed the estimated di usion probabilities by p u, = u's tweets retweeted by tweets by u . We only computed these empirical di usion probabilities when the source -the in uencer u in the formula above -wrote at least 10 tweets in the entire dataset. We obtained a set of 113, 375, 255 edges that involve a total of 22, 188, 987 distinct users2 . The resulting graph is called the "empirical di usion graph". In Fig . A.2a, we show the edge outdegree histogram of this reconstructed graph. We observe another power-law distribution in which most users have in uenced almost no other users, that is, their tweets are hardly reposted by others. Interestingly, the right outlier -we found out the corresponding user is Justin Bieber -in uenced more than 200, 000 people in our collection of tweets. Similarly, in Fig. A.2b, we display the edge indegree histogram of the empirical di usion graph. We obtain a very regular power-law distribution with most values under 500 which is not very surprising as most users are very unlikely to repost content from more than a few tens or hundreds di erent other users.

In Table A.2, we show the deciles of the empirical di usion probabilities. Most probabilities are (very) small -the last decile has value 0.045 -, which is in line with our initial assumption that most nodes connected to an in uencer have low activation probabilities. Our algorithm, GT UCB, is given a set of candidates (e.g., in uential users) and has to choose spread seeds among them at each step. Importantly, we assumed that the candi- dates' support is non-intersecting to simplify the derivation of con dence bounds. Furthermore, this proves to be useful to avoid activating the same users via di erent candidates, which yields no additional reward in the persistence setting. After having extracted the set of candidates -e.g., using the D R criterion -, we computed their pairwise support intersection to verify that they activate mostly di erent users. Formally, we computed the Dice and Jaccard indices for every pair of candidates to measure the similarity of their support. We show the resulting matrices in 

Graph reconstruction

From the retweeting cascades, we applied the algorithm NPDC from [START_REF] Rong | A Model-Free Approach to Infer the Diffusion Network from Event Cascade[END_REF] (code provided by the authors), which is a model-free approach to infer the underlying network, based solely on cascades. This method follows a simple yet e ective idea, which is that, in cas- cades, the "footprint" of pairs of users who are truly connected in the di usion network should be statistically distinguishable from the one of pairs who are not connected.

For each pair of users, NPDC returns a positive score -the lower the score, the more likely the two users are truly connected in the underlying graph. To verify the quality of NPDC predictions, we computed the (true) edge ratio based on 500 edges and for di erent scores. More precisely, we sorted edges by increasing scores and computed the real edge ration for 20 di erent scores (e.g., the 500 edges with the lowest score, then 500 edges whose score are around the 5th percentile, etc.). The ratio formula is given by real edge ratio = # real edges 500 ,

where "real" edges -the ground truth -are given by Twitter API. We show the resulting curve in Fig. A.4.

.

Why GT UCB performs well

We counted the number of times each candidate is played when GT UCB is run on Twitter logs (experiments in Section 3.5.3). Note that we run 20 times the experiment with a horizon of 500 steps so as to improve results consistency. We show the values obtained of each of the 10 candidates in Table A.3. Interestingly, the algorithm can discard "bad" in uencers (e.g. candidate 10) and naturally focuses on "good" candidates that are very in uential. This is of strong interest in the area of in uencer marketing if a marketing rm sponsors in uencers whose fame greatly changes from one to another. Abstact: When users interact on modern Web systems, they let numerous footprints which we propose to exploit in order to develop better applications for information access. We study a family of techniques centered on users, which take advantage of the many types of feedback to adapt and improve services provided to users. We focus on applications like recommendation and in uencer marketing in which users generate discrete feedback (e.g. clicks, "likes", reposts, etc.) that we incorporate in our algorithms in order to deliver strongly contextualized services.

The rst part of this dissertation is dedicated to an approach for as-you-type search on social media. The problem consists in retrieving a set of k search results in a social-aware environment under the constraint that the query may be incomplete (e.g., if the last term is a pre x). Every time the user updates his / her query, the system updates the set of search results accordingly. We adopt a "network-aware" interpretation of information relevance, by which information produced by users who are closer to the user issuing a request is considered more relevant.

Then, we study a generic version of in uence maximization, in which we want to maximize the in uence of marketing or information campaigns by adaptively selecting "spread seeds" from a small subset of the population. In uencer marketing is a straightforward application of this, in which the focus of a campaign is placed on precise key individuals who are typically able to reach millions of consumers. This represents an unprecedented tool for online marketing that we propose to improve using an adaptive approach. Notably, our approach makes no assumptions on the underlying di usion model and no di usion network is needed.

Finally, we propose to address the well-known cold start problem faced by recommender systems with an adaptive approach. If no information is available regarding the user appreciation of an item, the recommender system needs to gather feedback (e.g., clicks) so as to estimate the value of the item. However, in order to minimize "bad" recommendations, a welldesigned system should not collect feedback carelessly. We introduce a dynamic algorithm that aims to intelligently achieve the balance between "bad" and "good" recommendations. La première partie de cette thèse est consacrée à une approche interactive de la recherche d'information sur les médias sociaux. Le problème consiste à récupérer un ensemble de k résultats dans un réseau social sous la contrainte que la requête peut être incomplète (par exemple, si le dernier terme est un préxe). Chaque fois que l'utilisateur met à jour sa requête, le système met à jour l'ensemble des résultats de recherche en conséquence. Nous adoptons une interprétation de la pertinence de l'information qui tient compte du réseau, selon laquelle l'information produite par les utilisateurs proches de l'utilisateur faisant la requête est jugée plus pertinente. Ensuite, nous étudions une version générique de la maximisation de l'in uence, dans laquelle nous voulons maximiser l'in uence des campagnes d'information ou de marketing en sélectionnant de manière adaptative les utilisateurs initiant la propagation de l'information parmi un petit sous-ensemble de la population. Notre approche ne fait aucune hypothèse sur le modèle de di usion sous-jacent ni même sur la structure du réseau de di usion. Notre méthode a d'importantes applications dans le marketing d'in uence qui vise à s'appuyer sur les inuenceurs de réseaux sociaux pour promouvoir des produits ou des idées. En n, nous abordons le problème bien connu du démarrage à froid auquel sont confrontés les systèmes de recommandation par une approche adaptative. Si aucune information n'est disponible concernant l'appréciation d'un article, le système de recommandation doit recueillir des signaux (clics, etc.) a n d'estimer la valeur de l'article. Cependant, a n de minimiser les mauvaises recommandations faites aux utilisateurs, le système ne doit pas recueillir ces signaux de façon négligente. Nous introduisons un algorithme dynamique qui vise à alterner intelligemment les recommandations visant à accumuler de l'information et celles s'appuyant sur les données déjà recueillies.
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 21 Figure 2.1: An as-you-type search example ("Search": autocompletion, "Blogs": as-you-type results).

  i2: street, grunge i5: hispster, hallow i1: stylish, grunge i2: street i4: street, glasses i1: grunge i2: goth, style, hippie i4: gloomy i1: stylish, hipster i2: goth, street i4: hippie, goth, style
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 22 Figure 2.2: Running example: social proximity and tagging.
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 23 Figure 2.3: The CT IL index.
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 24 Figure 2.4: Alice's personalized CT IL index.

  t r -1 } ∪ C, d) resume the network exploration. (This amounts to the following changes in Algorithm 3: among its initialization steps (1-12), steps (4-8) and (10-12) are removed, and steps for points (a), (b), and (c) above are added.)
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 25 Figure 2.5: Impact of α on precision.
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 26 Figure 2.6: Impact of θ on precision.
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 27 Figure 2.7: Precision for various types of users and items.
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 28 Figure 2.8: Precision for multiple-word queries without (top row) and with (bottom row) correction.
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 29 Figure 2.9: Impact of α (left), type of users / items (middle), multiple words with correction (right) with SimRank proximity (for comparison with Figures 2.5, 2.7, and 2.8 bottom row respectively).
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 210 Figure 2.10: Impact of α (top) or l (bottom) on NDCG vs time for random search (left) or personal search (right).
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 211 Figure 2.11: Time to exact top-k for di erent dataset sizes.
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 212 Figure 2.12: Incremental vs non-incremental version.
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 2 Figure 2.13: TOPKS ASYT vs. TOPKS-M (top), TOPKS-2D (middle) or Autocompletion + TOPKS (bottom) baselines with xed budget.
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 214 Figure 2.14: Impact of supernode sizes on NDCG for several pre x lengths.
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 31 Figure 3.1: An example of the di usion process under the IC model. The seed node is represented in orange while green nodes denote the nodes activated via the di usion. The edges whose activations succeeded are depicted in red whereas failed edge activations are denoted by a red cross.

  under a cardinality constraint |I |= L, such that the expected spread of an in uence cascade starting from I (or the expected number of activated nodes) is maximized. Formally: Problem 3.1 (In uence maximization). Denoting by the random variable S (I ) the spread initiated by the seed set I , IM aims to solve the following optimization problem: arg max I ⊆V , |I |=L σ (I ) = E[|S (I )|].
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 32 Figure 3.2: Three candidates with associated activation probabilities p k (u).
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 3334 Figure 3.3: (left) Twitter empirical retweet probabilities (right) Sample of 50 empirical retweet probabilities
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 75 GT UCB (L = 1) Data: Set of candidates [K], time budget N 1 Initialization: play each candidate k ∈ [K] once, observe the spread S k,1 , set n k = 1; 2 For each k ∈ [K]: update the reward W = W ∪ S k,1 ; 3 for t = K + 1, . . . , N do 4 Compute b k (t ) for every candidate k; Choose k (t ) = arg max k ∈[K ] b k (t );

Theorem 3 . 6 (

 36 Waiting time). Let λ min := min k ∈[K ] λ k and let λ max := max k ∈[K ] λ k .
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 35 Figure 3.5: Impact of K and the candidate extraction criterion on in uence spread.
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 536 Figure 3.6: Growth of spreads against the number of rounds.
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 3738 Figure 3.7: DBLP (WC) -Execution time.

Figure 3 .

 3 Figure 3.9: C KLUCB vs DIL UCB on Facebook dataset, with horizon T = 10, 000 and L = 10. (left) Regret against number of rounds (right) Per-step reward vs number of rounds.
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 37 Lemma 3 from [17]). Let a > 0, b ≥ 0.4, and x ≥ e, such that x ≤ a + b log x. Then one hasx ≤ a + b log(2a + 4b log(4b)).Moreover, we add that if b ≥ 3, then x ≤ a + b log(2a + 5b). S A D A P T I V E M U L T I P L E -I T E M R E C O M M E N D AT I O N

Figure 4 . 1 :

 41 Figure 4.1:List of 18 recommended lms displayed on 3 rows. Not surprisingly, independently of its content, the higher a lm is displayed in a webpage, the higher its chances to be clicked. Interestingly, the lms displayed in the middle columns receive more clicks on average than the lms displayed on the left and right borders. Eyetracking experiments show that users tend to focus on the center of webpages. These observations support the need for a model like the PBM to describe recommendation contexts.
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 34 Lower bound step by step 1:
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 4441 (s); θ | F s-1 ) p(Z (s); λ | F s-1 ). (Lemma For each position l and each item k, de ne the local amount of information by

Theorem 4 . 1

 41 The expected regret of any uniformly e cient algorithm satis es lim infT →∞ E θ R(T ) logT ≥ f (θ ), where f (θ ) = inf c 0 a ∈A ∆ a (θ )c a , s.t. inf λ ∈B (θ ) a ∈A I a (θ, λ)c a ≥ 1.Theorem 4.1 is a straightforward consequence of Proposition 4.1, combined with the expression of the expected regret given in (4.1). The vector c ∈ R | A | + , that satis es the inequality a ∈A I a (θ, λ)c a ≥ 1, represents the feasible values of E θ [N a (T )]/log(T ).

Corollary 4 .

 4 1 is obtained by restricting the constraint set B(θ ) of Theorem 4.1 to ∪ K k=L+1 B k (θ ), where B k (θ ) := λ ∈ Θ|∀j k, θ j = λ j and µ * (θ ) < µ * (λ) .
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 35 Lower bound for the PBM Theorem 4.2 For the PBM, the following lower bound holds for any uniformly e cient algorithm:
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 42 Figure 4.2: Average regret of PBM TS and BC-MP-TS compared for high parameters. Shaded areas: rst and last deciles.
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 43 Figure 4.3: Average regret of various algorithms on synthetic data under the PBM.

Figure 4 . 4 :

 44 Figure 4.4: Performance of the proposed algorithms under the PBM on real data.

4. . 1 1 Proof

 11 Proof of Theorem 4.1 4. .1.1 Proof of Lemma 4.Under the PBM, the conditional expectation of the log-likelihood ratio de ned in (4.4) writes E θ [ (t )|A(1), . . . , A(t )]

4. . 1 . 2

 12 Details on the proof of Proposition 4.1

  σ ))].A full proof of Lemma 4.3 can be found in the Appendix A.3 of[START_REF] Kaufmann | On the Complexity of Best Arm Identi cation in Multi-Armed Bandit Models[END_REF] (proof of Lemma 15).

4. . 1 . 3

 13 Lower bound proof (Theorem 4.1) Proof In order to prove the simpli ed lower bound of Theorem 4.1 we basically have two arguments: 1. a lower bound on f (θ ) can be obtained by enlarging the feasible set, that is by relaxing some constraints; 2. Lemma 4.4 can be used to lower bound the objective function of the problem. The constant f (θ ) is de ned by f (θ ) = inf c 0 a a * (θ ) ∆ a (θ )c a (4.8) s.t inf λ ∈B (θ ) a ∈A I a (θ, λ)c a ≥ 1. (4.9)

. 13 )

 13 Proposition 4.4 tells us that coe cients c a are all zeros except for actions a ∈ A which can be written a = k,l k where l k = arg min l ≤L ∆ k,l (θ )

Proposition 4 . 4

 44 Let c = {c a : a a * } be a solution of the linear problem (LP) in Theorem 4.1. Coe cients are all zeros except for actions a which can be written as a = (1, . . . , l k -1, k, l k , . . . , L -1) := k,l k where k > L and l k = arg min l ≤L ∆ k,l (θ ) d (κ l θ k ,κ l θ L ) . Proof We denote by π k (a) the position of item k ∈ {1, . . . , K } in action a (0 if k a). Let l k be the optimal position of item k > L for exploration:

Lemma 4 . 6 (

 46 [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF],Lemma 7) Denoting by ν L k,s the empirical mean of the rst s samples of Z k, L , we have

T

  

P

  sd + ( ν L k,s , κ L (θ L -η)) ≤ f (T , ϵ ) ≤ K T + ∞ s=K T +1 P(K T d + ( ν L k,s , κ L (θ L -η)) ≤ f (T , ϵ )) ≤ K T + ∞ s=K T +1 P(d + ( ν L k,s , κ L (θ L -η)) ≤ d (κ L θ k , κ L (θ L -η))/(1 + γ ))

P

  d + ( νk,s , κ L θ L ) < d (κ L θ k , κ L θ L ) 1 + γ ≤ P d ( νk,s , κ L θ k ) > d (κ L r (γ , η), κ L θ k ), νk,s > κ L θ k ≤ P( νk,s > κ L r (γ , η)) ≤ exp(-sd (κ L r (γ , η), κ L θ k )).

Lemma 4 . 8

 48 For k ∈ {1, . . . , K } consider the martingale M k,n = n i=1 Zk,i , where Zk,i is de ned in (4.15). Consider ϕ a stopping time such that either N k (ϕ) ≥ s or ϕ = T + 1. ThenP[|M k, N k (ϕ ) |≥ N k (ϕ)η, N k (ϕ) ≥ s] ≤ 2 exp(-2sη 2 ).(4.16)As a consequence,P[| θk (ϕ) -θ k |≥ η, ϕ ≤ T ] ≤ 2 exp(-2sκ 2 L η 2 ).(4.17)
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 2 Figure A.2: Degree histogram of the empirical di usion graph.

  Fig. A.3. We see that, for any two candidates chosen among the set of in uencers, they activated almost no users in common in our dataset.
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 3 Figure A.3: Dice (left) and Jaccard (right) matrices for 10 candidates
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 4 Figure A.4: Evolution of the real edge ratio against NPDC score.
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  2.2, if Alice's query is hipster g, as g matches the tags gloomy, glasses, goth and grunge, we have sf (i 4 | Alice, g) as Alice, gloomy), sf (i 4 | Alice, glasses), sf (i 4 | Alice, grunge), sf (i 4 | Alice, goth)]

	max t ∈ {g completions}	sf (i 4 | Alice, t )
	= max[sf (i 4 | = max[0.2, 0.3, 0.81, 0.41] = 0.81.

(i6, style, 0.9)

  

	virtual IL(st)
	(i5, stylish, 0.81)
	(i4, style, 0.77)
	(i2, street, 0.54)
	(i1, stylish, 0.31)
	IL(hipster)

  . We keep in lists called CIL t (for consumed IL entries) the items read (referred to Algorithm 3: TOPKS ASYT (non-incremental, for α = 0) Input: seeker s, query Q = (t 1 , . . . , t r )

	1 forall users u do 2 σ + (s, u) = -∞; 3 end 4 forall tags t ∈ {t 1 , . . . , t r -1 } do 5 sf (i | s, t ) = 0; D t = ∅, CIL t = ∅; 6 Set IL(t ) position on rst entry;
	7 end 8 Set IL(t r ) position on rst entry, σ + (s, s) = 0, C = ∅ (t r completions); 9 H ← priority queue on users; init. {s}, computed on-the-y; while H ∅ do u = _ (H ); _ _ (u); _CT IL; if termination condition then break;
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  Algorithm 7 presents the main components of GT UCB for the case L = 1, that is, when a single candidate is chosen at each step.

	9 end Result: W

6 Play candidate k (t ) and observe spread S (t ); 7 Update cumulative reward: W = W ∪ S (t ); 8 Update statistics of candidate k (t ): n k (t ) (t + 1) = n k (t ) (t ) + 1 and S k,n k (t ) = S (t ).;

Table 3 . 1 :

 31 Summary of the datasets.

	Dataset	HepPh DBLP Twitter
	# of nodes 34.5K 317K 11.6M
	# of edges 422K	2.1M 38.4M

Table 4 .

 4 1: Statistics on the queries: each line corresponds to the sub-dataset associated with a query.

	5	216, 565	0.016	0.077
	5	68, 179	0.031	0.050
	6	435, 951	0.025	0.067
	6	110, 071	0.023	0.069
	6	147, 214	0.004	0.148
	8	122, 218	0.108	0.146
	11	1, 228, 004	0.022	0.149
	11	391, 951	0.022	0.084

  Table A.1: Values from Fig. A.1 for tweets with few retweets

	Number retweets Corresponding tweets
	0	638M
	1	76M
	2	6.2M
	3	1.8M
	4	915K
	5	545K
	6	363K
	7	259K
	8	194K
	9	152K
	10	124K

Table A .

 A 3: Number of times each candidate has been selected after 500 steps.

	Candidate	1	2	3	4	5	6	7	8	9	10
	Number of plays 2, 877 2, 680 1, 747 1, 049 688 317 314 156 117 55

Grant ANR-13-CORD-0020 provided by the French research agency.

Note however that every suboptimal arm needs to be selected by the bandit algorithm a logarithmic number of times. This is a direct consequence of Lai and Robbins' lower bound in Theorem 1.1.

Even when α = 0, although social frequency does not depend directly on tf scores, we exploit the inverted lists and the tf scores by which they are ordered, to better estimate score bounds.

The rationale is that our algorithm does not make any "wild guesses", avoiding reads that may prove to be irrelevant and thus leading to suboptimal performance.

It is highly likely in practice that typing latency precludes most often a computation until termination conditions are reached.

http://www.yelp.com/dataset_challenge

This method was implemented and made available by the authors, as part of an instant-search engine called SRCH2; its source code is available at https://github.com/SRCH2/srch2-ngn.

https://github.com/Yelp/yelp-api-v3/blob/master/docs/api-references/autocomplete.md

In short, information cascades are time-ordered sequences of records indicating when a speci c user was activated or adopted a speci c item.

Repeated exposure, known also as the "e ective frequency", is a crucial concept in marketing strategies, online or o ine.

The code is available at https://github.com/plagree/oim

http://snap.stanford.edu/data/egonets-Facebook.html

Note that we only have a small portion of Twitter tra c in August

Thus, these non-in uential users may have actually been retweeted without appearing in our dataset.

Note that around

edges had an empirical weight > 1 because some users retweeted several times the same posts thus leading to these unexpected numbers. Consequently, for each of these values, we thresholded at 1.

I was funded by the French research project "Adaptive Learning for Intelligent Crowdsourcing and Information Access"

(i4, 2)
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At this point, we know that the problem to solve is very challenging for two reasons. There has been much research focusing on solving the rst task, namely, the in uence computation. They all try to estimate the expected in uence from every node in the graph. We will describe several of the proposed ideas in the following section.

Interestingly, all IM methods share the same approximation method to solve the second task. The selection of the optimal set is done by the famous G algorithm for monotone and submodular functions, which allows to return answers that cannot deviate too much from the optimal set.

. In Algorithm 6, we give the generic G algorithm used to select a set that greedily increases the value of the monotone and submodular function f . algorithm is that it cannot provide too bad approximations because of the submodularity of the function to optimize. More speci cally, the algorithm provides a 1 -1/eapproximation to the optimal set S * , which roughly corresponds to a 63%-approximation. Note that this result -summarized in Theorem 3.4 -is very conservative, but, in practice, the approximation given by the G algorithm is usually much better for IM problems [START_REF] Li | Why approximate when you can get the exact? Optimal Targeted Viral Marketing at Scale[END_REF].

Note that φ Poi (t ) is the cumulant-generating function of a Poisson distribution of parameter λ. We obtain

We obtain the desired result by nding the supremum of t → txφ Poi (t ).

. Using Proposition 3.1, we can build an index in the same spirit as the KL UCB index from Garivier and Cappé [START_REF] Garivier | The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond[END_REF]. This leads to Algorithm 8. At each round, the learning agent computes the upper-con dence bound for each arm

Algorithm 8 can be easily adapted to select L > 1 candidates at each round. Instead of choosing the candidate maximizing the KL-UCB index, we can select those having the L largest indices. Note that k (t ) then becomes a set of L candidates. A di usion is initiated from the associated nodes and, at termination, all activations are observed.

. We conducted experiments on a publicly available dataset extracted from Facebook 4 . Note that this graph is relatively small -it contains 4, 039 nodes for 88, 234 edges -since we want to compare C KLUCB to DIL UCB [START_REF] Vaswani | Di usion Independent Semi-Bandit In uence Maximization[END_REF] which requires, for each selected seed node, the computation of |V | matrix-vector products of dimension d, where d is the number of dimensions selected for the graph Laplacian embedding. In addition, DIL UCB needs to select each node from the graph once in the initialization phase, and thus, requires a much larger horizon to observe times when it can nally exploit the knowledge gathered during past exploration steps. We tested DIL UCB with di erent settings of d, and found that d = 50 provided the best results, i.e., the best spread within the 10,000 steps horizon. Thus, we only report experiments with d = 50. Finally, we select 75 candidates for C KLUCB using the DivRank criterion.

In Fig. 3.9, we show the results of the simulations where C KLUCB is compared to DIL UCB on a horizon T = 10, 000. On the left plot, we show the evolution of the regret against the number of trials. Unsuprisingly, DIL UCB needs a long initialization phase before it can nally start exploiting accumulated feedback. On the other hand, where θ min k (t ) is the minimum of the convex function ϕ : q → L l =1 N k,l (t )d (S k,l (t )/N k,l (t ), κ l q). In other positions, l = 1, . . . , L -1, PBM-PIE selects the arms with the largest estimates θk (t ). The resulting algorithm is presented as Algorithm 13 below, denoting by L(t ) the L-largest empirical estimates, referred to as the "leaders" at round t. 

We may now state the main result of this section that provides an upper bound on the regret of PBM PIE. 

The proof of this result is provided in Section 4.A.3. Comparing to the expression in (4.6), Theorem 4.4 shows that PBM-PIE reaches asymptotically optimal performance when the optimal exploring position is indeed located at index L. In other case, there is a gap that is caused by the fact that the exploring position is xed beforehand and not adapted from the data. Remark 4.1 It is possible to use the KL-UCB optimistic indices presented above to build a similar policy as PBM UCB. In practice, it has comparable performances to PBM PIE but its analysis is more complex and remains an open question.

We have

If k α, clearly, L(c ) -L(c) = 0. Else, k ∈ α and we note p its position in α: p = π k (α ). We rewrite:

Thus, the coe cients c satisfy the constraints from Proposition 4.4.

Lemma 4.5 Let α be as in the proof of Proposition 4.4.

Proof Let k 1 , . . . , k p be the suboptimal arms in α by increasing position. Let (α ) be the action in A with lower regret such that it contains all the suboptimal arms of α in the same positions. Thus,

By de nition, one has that ∆ α (θ ) ≥ ∆ (α ) (θ ). In the following, we show that

For the sake of readability, we write π i instead of π k i (α ) in the following.

Thus, one has to show that R (θ

In fact, using that κ l ≥ κ l +1 for all l < L, we have

Our goal is to upper bound the expected size of A. Let us introduce the following sets of rounds:

We have a contradiction because this would imply that k ∈ L(t ). Finally we have proven that if

By a union bound, we obtain

In the following, we upper bound each set of rounds individually.

Furthermore, for all t , 1{t ∈ B k , 1 } is F t -1 measurable. Then we can apply Lemma 4.9 (with H = B k , 1 and c = 1).