
HAL Id: tel-01689094
https://theses.hal.science/tel-01689094v2

Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Methods for User-Centric Information Access
Applications

Paul Lagrée

To cite this version:
Paul Lagrée. Adaptive Methods for User-Centric Information Access Applications. Machine Learning
[cs.LG]. Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLS341�. �tel-01689094v2�

https://theses.hal.science/tel-01689094v2
https://hal.archives-ouvertes.fr

9 décembre 2017 — version 1.2

NNT: 2017SACLS341

Thèse de doctorat de l’
Université Paris-Saclay

Préparée à l’
Université Paris-Sud

École Doctorale — 580
Sciences et Technologies de l’Information et de la Communication (STIC)

Laboratoire de Recherche en Informatique (LRI)
Spécialité Informatique

Présentée par
M. Paul Lagrée

Intitulée
Méthodes Adaptatives pour les Applications

d’Accès à l’Information Centrées sur
l’Utilisateur

Thèse présentée et soutenue à Orsay, le 12 octobre 2017

Composition du jury :
Fabian Suchanek Professeur Télécom ParisTech, U. Paris-Saclay Président
Ludovic Denoyer Professeur UPMC U. Paris 06, LIP6 Rapporteur
Pierre Senellart Professeur École Normale Supérieure Rapporteur
Aurélien Garivier Professeur U. Paul Sabatier, IMT Examinateur
Stratis Ioannidis Prof. Assistant Northeastern University Examinateur
Themis Palpanas Professeur U. Paris Descartes, LIPADE Examinateur
Olivier Cappé Dir. de Recherche CNRS, U. Paris-Saclay, LIMSI Co-directeur
Bogdan Cautis Professeur U. Paris-Sud, U. Paris-Saclay, LRI Directeur

Paul Lagrée: Adaptive Methods for User-Centric Information Access Applications,
© Paul Lagrée, January 18, 2018

supervisors:
Professor Bogdan Cautis
Professor Olivier Cappé

location:
2, Rue Madeleine Brès, 75013 — Paris, France

S Y N T H È S E E N F R A N Ç A I S

Au cours des deux dernières décennies, la gestion des données est devenue un sujet centré
sur l’utilisateur : les utilisateurs se sont progressivement transformés de simples consom-
mateurs de contenu en producteurs et juges du contenu. Nous avons assisté à l’émergence
d’une pléthore de systèmes, en particulier sur le Web, sur lesquels les utilisateurs con-
tribuent, accèdent à l’information, évaluent et interagissent dans des environnements com-
plexes, explicitement ou implicitement. Lorsque les utilisateurs interagissent sur ces sys-
tèmes, ils laissent de nombreuses empreintes que nous nous proposons d’exploiter pour
développer de meilleures applications d’accès à l’information. Nous étudions une famille
de techniques centrées sur les utilisateurs, qui tirent parti des nombreux types de rétroac-
tion pour adapter et améliorer les services o�erts aux utilisateurs. Nous nous concen-
trons sur des applications telles que la recommandation et le marketing d’in�uence dans
lesquelles les utilisateurs génèrent des feedbacks réguliers (par ex. des clics, des likes, etc.)
et nous les intégrons dans nos algorithmes a�n de fournir des services fortement contex-
tualisés aux utilisateurs. Il est important de noter que, dans les applications considérées,
nos algorithmes doivent faire face à l’incertitude concernant soit l’utilisateur à qui ils pro-
posent le contenu, soit le contenu lui-même, et parfois les deux à la fois.

La première partie de cette thèse est consacrée à une approche de recherche à la carte
sur les médias sociaux. Le problème consiste à récupérer un ensemble de k résultats de
recherche dans un environnement social sous la contrainte que la requête peut être incom-
plète (par exemple, si le dernier terme est un pré�xe). Ce problème est abordé à travers
le prisme de la recommandation. Chaque fois que l’utilisateur met à jour sa requête, le
système met à jour l’ensemble des résultats de recherche en conséquence, a�n d’améliorer
l’expérience utilisateur sur la plate-forme sociale. Nous adoptons une interprétation de
la pertinence de l’information qui tient compte du réseau, selon laquelle l’information
produite par les utilisateurs qui sont plus proches de l’utilisateur qui fait une demande
est jugée plus pertinente. Ce modèle de recherche soulève des dé�s pour l’e�cacité et
l’e�cience de la recherche en ligne.

Dans la deuxième partie de la thèse, nous étudions une version générique de la max-
imisation de l’in�uence, dans laquelle nous voulons maximiser l’in�uence des campagnes
d’information ou de marketing en sélectionnant de manière adaptative les utilisateurs ini-
tiant la propagation de l’information parmi un petit sous-ensemble de la population. Notre
approche ne fait aucune hypothèse sur le modèle de di�usion sous-jacent ni même sur
la structure du réseau de di�usion. Notre méthode a d’importantes applications dans le
marketing d’in�uence qui vise à s’appuyer sur les in�uenceurs de réseaux sociaux pour
promouvoir des produits ou des idées.

En�n, nous abordons le problème bien connu du démarrage à froid auquel sont confron-
tés les systèmes de recommandation par une approche adaptative. Si aucune information
n’est disponible concernant l’appréciation d’un article, le système de recommandation doit
recueillir des signaux (clics, etc.) a�n d’estimer la valeur de l’article. Cependant, a�n de
minimiser les mauvaises recommandations faites aux utilisateurs, le système ne doit pas re-
cueillir ces signaux de façon négligente. Nous introduisons un algorithme dynamique qui
vise à alterner intelligemment les recommandations visant à accumuler de l’information

v

et celles s’appuyant sur les données déjà recueillies. Notre approche via les bandits multi-
bras se propose d’exploiter les informations disponibles concernant le biais d’a�chage
sous le modèle de clic dit position-based.

vi

A B S T R A C T

In the last two decades, data management has become a user-centric subject: users have
gradually transformed themselves from simple content consumers into producers and
judges of the content. We have seen the emergence of a plethora of systems, especially
on the Web, on which users contribute, access information, evaluate, and interact in com-
plex environments, either explicitly or implicitly. When users interact on these systems,
they let numerous footprints which we propose to exploit so as to develop better appli-
cations for information access. We study a family of techniques centered on users, which
take advantage of the many types of feedback to adapt and improve services provided to
users. We focus on applications like recommendation and in�uencer marketing in which
users generate discrete feedback (e.g. clicks, “likes”, reposts, etc.) and we incorporate them
in our algorithms in order to deliver strongly contextualized services. Importantly, in the
applications considered in this dissertation, our algorithms have to face uncertainty re-
garding either the user it proposes content to or the content itself, and sometimes both.

The �rst part of this dissertation is dedicated to an approach for as-you-type search
on social media. The problem consists in retrieving a set of k search results in a social-
aware environment under the constraint that the query may be incomplete (e.g., if the
last term is a pre�x). This problem is addressed through the prism of adaptive contextual
recommendation. Every time the user updates his / her query, the system updates the set of
search results accordingly, so as to improve the user experience on the social platform. We
adopt a “network-aware” interpretation of information relevance, by which information
produced by users who are closer to the user issuing a request is considered more relevant.
This query model raises challenges for e�ectiveness and e�ciency in online search.

In the second part of the dissertation, we study a generic version of in�uence maximiza-
tion, in which we want to maximize the in�uence of information or marketing campaigns
(e.g., on social media) by adaptively selecting “spread seeds” from a small subset of the
population. In�uencer marketing is a straightforward application of this, in which the
focus of a campaign is placed on precise key individuals – the in�uencers – who are typi-
cally able to reach millions of consumers through their blog or social platform’s personal
page. This represents an unprecedented tool for online marketing that we propose to im-
prove using an adaptive approach. Notably, we make no assumptions on the underlying
di�usion model and we work in a setting where neither a di�usion network nor historical
activation data are available. We choose to address this task using an approach similar to
that of multi-armed bandits.

Finally, we propose to address the cold start problem: a well-known issue faced by rec-
ommender systems when new items are introduced to the pool of items they recommend
from. If no information is available regarding the user appreciation of an item, the rec-
ommender system needs to gather feedback – e.g., clicks / non-clicks – so as to estimate
the value of the item. However, in order to minimize “bad” recommendations and to main-
tain the best user experience possible, a well-designed system should not collect feedback

vii

carelessly. We introduce a dynamic algorithm that aims to intelligently achieve the bal-
ance between “bad” recommendations – which are necessary to gather more information
so as to have a better understanding of user evaluations of items – and “good” recom-
mendations. Our multi-armed bandit approach proposes to exploit available information
regarding the display bias under the so-called position-based click model.

viii

C O N T E N T S

1 introduction 1
1.1 Objectives . 1
1.2 Summary of the contributions . 3
1.A Introduction to multi-armed bandits . 6

2 as-you-type social recommendation 13
2.1 Introduction . 14
2.2 Social-aware search background . 15

2.2.1 Notations and context . 16
2.2.2 Top-k retrieval algorithms . 16
2.2.3 Social-aware search . 18
2.2.4 Query auto-completion and as-you-type search 18
2.2.5 Social and textual relevance framework 19

2.3 The as-you-type approach . 21
2.3.1 The as-you-type search problem 21
2.3.2 Non-incremental algorithm . 22
2.3.3 Adaptations for the network-aware case 27
2.3.4 Adaptations for incremental computation 28
2.3.5 Complexity analysis . 29
2.3.6 Supernodes . 30

2.4 Experiments . 31
2.4.1 Datasets . 31
2.4.2 Experimental results: e�ectiveness 32
2.4.3 Experimental results: e�ectiveness with multiple words 36
2.4.4 Experimental results: e�ectiveness with SimRank proximity scores 37
2.4.5 Experimental results: e�ciency and scalability 38
2.4.6 Experimental results: incremental versus non-incremental TOPKS-

ASYT . 39
2.4.7 Experimental results: TOPKS-ASYT versus state-of-the-art base-

line methods . 40
2.4.8 Experimental results: supernodes 43

2.5 Conclusion . 44
3 adaptive influence maximization 45

3.1 Introduction . 46
3.2 In�uence maximization overview . 48

3.2.1 In�uence discrete-time propagation models 48
3.2.2 In�uence maximization . 50
3.2.3 E�cient in�uence computation . 52
3.2.4 Online in�uence maximization . 55

3.3 Online in�uence maximization via candidates 57
3.3.1 Setting . 57
3.3.2 The GT-UCB algorithm . 59

3.4 Analysis . 63

ix

x contents

3.4.1 Con�dence interval for the missing mass 63
3.4.2 Theoretical Guarantees . 65

3.5 Experiments . 66
3.5.1 Extracting candidates from graphs 66
3.5.2 Graph datasets . 67
3.5.3 Experiments on Twitter . 70

3.6 Exploring further online IM models . 71
3.6.1 Semi-bandit online in�uence maximization via candidates 72
3.6.2 Online in�uence maximization via rotting candidates 74

3.7 Conclusion . 76
3.A Elements of proof . 76

3.A.1 Useful lemmas . 76
3.A.2 Analysis of the waiting time of GT-UCB 77

4 adaptive multiple-item recommendation 81
4.1 Introduction . 82
4.2 Click models for search and recommendation 83
4.3 The position-based model . 85

4.3.1 Model and notations . 85
4.3.2 Lower bound on the regret . 87
4.3.3 Existing results for multiple-play bandit problems 87
4.3.4 Lower bound step by step . 88
4.3.5 Lower bound for the PBM . 89
4.3.6 Algorithms . 90

4.4 Numerical experiments . 92
4.4.1 Simulations . 92
4.4.2 Real data experiments: search advertising 93

4.5 Conclusions and extensions . 94
4.A Elements of proof . 95

4.A.1 Proof of Theorem 4.1 . 95
4.A.2 Proof of Proposition 4.2 . 99
4.A.3 Regret analysis for PBM-PIE (Theorem 4.4) 99
4.A.4 Controlling leaders and estimations 99
4.A.5 Lemmas . 103

5 final words and perspectives 105
a appendix 107

a.1 Online maximization C++ package . 107
a.2 Analysis of tweet logs . 109

a.2.1 Edge weights . 109
a.2.2 Graph reconstruction . 111
a.2.3 Why GT-UCB performs well . 112

bibliography 115

1
I N T R O D U C T I O N

In this introductory chapter, we present the objectives, the motivations and the challenges
of this dissertation. We focus on the information access aspect of the ALICIA project, and,
in particular, on adaptive recommendation in user-centric environments. We provide a
summary of the three main contributions of this dissertation, namely, (i) a method to adap-
tively propose items matching a search need of a user as he/she is typing his/her query on
social media, (ii) an approach to adaptively select users from a subpopulation of in�u-
encers who have access to a di�usion media (e.g. a social network) in order to maximize
the impact of a di�usion campaign (be it for marketing, politics, etc.), (iii) an algorithm to
sequentially select which items to display in cold-start recommendation scenarios where
the display of the page exhibits strong position bias.

The research of this thesis took place at the Laboratoire de Recherche en Informatique
(LRI) under the supervision of Bogdan Cautis and Olivier Cappé. I also had an o�ce at Télé-
com ParisTech where part of the research was done. During the 3 years of the Ph.D., I was
funded by the French research project “Adaptive Learning for Intelligent Crowdsourcing
and Information Access” (ALICIA)1.

Contents
1.1 Objectives . 1
1.2 Summary of the contributions . 3
1.A Introduction to multi-armed bandits 6

1.1 objectives

In the last two decades, data management has gradually become a user-centric subject:
users are transforming themselves from simple content consumers into producers and
judges of the content. We have seen the emergence of a plethora of systems, especially on
the Web, on which users contribute, access information, evaluate, and interact in complex
environments, either explicitly or implicitly.

The rise of user-centric applications has deeply transformed the original Web from a
static system to a gigantic dynamic and consistantly evolving medium of communication
and information. As long ago as 1999, Darcy DiNucci [33], an information architecture
consultant, introduces the term “Web 2.0” to refer to this new generation of the Web that
thoroughly opposes to the static Web 1.0. She writes:

1 Grant ANR-13-CORD-0020 provided by the French research agency.

1

2 introduction

The Web we know now, which loads into a browser window in essentially
static screenfuls, is only an embryo of the Web to come. The �rst glimmer-
ings of Web 2.0 are beginning to appear, and we are just starting to see how
that embryo might develop. The Web will be understood not as screenfuls
of text and graphics but as a transport mechanism, the ether through which
interactivity happens.

When users interact on Web 2.0 systems, they let footprints which can be exploited to
develop better applications for information access. In this dissertation, we study a family
of techniques centered on users, which take advantage of the many types of feedback to
adapt and improve services provided to them. For example, in the context of search and
recommendation, user pro�les can help to better personalize the displayed content.

Interestingly, the term Web 2.0 was popularized only 5 years after DiNucci’s paper, at
the �rst Web 2.0 Conference in 2004, and thus, Tim O’Reilly, the creator of the event, is
now often (wrongly) credited for the expression. Around these years, many �rms which
have become (or were) Web 2.0 �gureheads were launched: LinkedIn and MySpace in
2003, Facebook and Flickr in 2004, Twitter in 2006, etc. Many research challenges appeared
alongside the rise of Web 2.0, in particular with the democratization of social networks:

• large-scale data management: the enormous quantity of data produced by users on
Web 2.0 applications trans�gures the Web. For example, Facebook scaled from a
single server running on a laptop to an estimated number of 180,000 servers dis-
tributed on several data centers around the globe in 2012 [92]. The speci�c needs
of companies such as Google or Facebook to store and access these Big Data led to
the development of alternatives to relational databases, namely, the Not Only SQL

(NoSQL) databases, that accept to compromise a feature (e.g. consistency) in favor
of others (e.g. availability, speed);

• large-scale data analysis: not only do the enormous quantity of data require to scale
up storage capacities, processing and analizing data is another crucial facet in the
value creation process. The programming model MapReduce [30] is maybe the most
famous step forward in processing Big Data on large clusters, notably through the
open source implementation Hadoop [122]. More recently, Spark [124] introduced
resilient distributed datasets (RDDs) to improve e�ciency in applications that need
to access a working dataset multiple times in a loop – e.g., iterative machine learning
algorithms. In parallel, thanks to the new capabilities brought by large datasets and
the progress of computing hardware, we have seen a tremendous development of
machine learning since the beginning of the century and, in particular, that of deep
learning for computer vision tasks since 2012;

In this dissertation, we study and propose models and adaptive algorithms for user-
centric applications for information access. We focus on applications like recommendation
and in�uencer marketing in which users generate feedback and we incorporate them in
our algorithms in order to deliver strongly contextualized services.

More precisely, in every scenario we consider in this dissertation, users produce feed-
back, whether consciously or unconsciously, while they are using the application. For
example, in our applications, users will provide feedback when they type characters in
the search bar of a social network, when they “like” a post on a social platform, when they
click on an ad, etc. All these simple actions generate an enormous amount of complex data

1.2 summary of the contributions 3

that we propose to exploit for building adaptive algorithms. Importantly, we assume that
users interact in discrete time steps with the application: when a user requests a service
from the application, the algorithm uses all the historical feedback gathered heretofore
and provides content accordingly.

In every application considered in the following, the algorithm faces uncertainty regard-
ing either the user it proposes content to or the content itself, and often both. For example,
in the as-you-type application, the user’s intent is unknown and the algorithm needs to
make recommendations without being able to guarantee they satisfy the user. Conversely,
in the application to multiple-item recommendation, the algorithm faces the cold-start
problem, and thus, needs to take decisions without complete knowledge of the items it
chooses from. Speci�cally, the algorithm needs to deal with the crucial explore-exploit
tradeo� as it needs to choose between recommending seemingly best items (“exploiting”)
and cumulating more feedback to improve the items’ estimation (“exploring”).

1.2 summary of the contributions

This dissertation proposes to incorporate the many types of feedback, including complex
networked data, from user-centric applications in adaptive algorithms in order to improve
user satisfaction. During the period of the thesis, we introduced algorithms for three dif-
ferent applications which are summarized in the following.

as-you-type social-aware search (chapter 2). The �rst part of this disserta-
tion is dedicated to an approach for as-you-type search on social media. More precisely, the
problem consists in retrieving a set ofk search results in a social-aware environment under
the constraint that the query may be incomplete (e.g., if the last term is a pre�x). This prob-
lem is addressed through the prism of adaptive contextual recommendation. Every time
the user updates his / her query, the system updates the set of search results accordingly,
so as to improve the user experience on the social platform. We adopt a “network-aware”
interpretation of information relevance, by which information produced by users who are
closer to the user issuing a request is considered more relevant. This query model raises
challenges for e�ectiveness and e�ciency in online search.
Contributions. We describe TOPKS-ASYT, a memory-e�cient and incremental pre�x-
based retrieval algorithm, which also exhibits an anytime behavior, allowing to output an
answer within any chosen running-time limit, a major concern in real-time applications
such as as-you-type systems. The algorithm borrows ideas to Maniu and Cautis [88] and
introduces the following novelties to deal with the as-you-type paradigm:

1. We introduce CT-IL, a completion trie over the set of tags – the keywords on which
we search – which allows the algorithm to access the inverted lists e�ciently. This
new index structure is a combination of tries and inverted lists and is a key com-
ponent of TOPKS-ASYT to read in sorted order of relevance the possible keyword
completions and the items for which they occur.

2. A key di�erence between as-you-type search and its counterpart for fully speci-
�ed queries is that the system must adapt as the user continues modifying his/her
query. Said di�erently, the system must adjust the set of search results every time
the user issuing the query makes a modi�cation. We propose an incremental ver-
sion of TOPKS-ASYT that relies on previous computations in the current session

4 introduction

to provide subsequent answers e�ciently, instead of starting a computation from
scratch every time the user completes further the query.

3. We characterize the computational complexity for the main data structures and al-
gorithmic steps of our method.

4. Answers, albeit approximate, must be ready to be outputted at any time, and in
particular after any given time lapse. We refer to this feature as the anytime output

behavior of TOPKS-ASYT.

5. We introduce and evaluate experimentally a novel feature, denoted supernodes, which
consists in clustering users in groups of chosen size in order to speed up graph
exploration. The goal is to improve the precision of TOPKS-ASYT when the time
allocated to serve responses is greatly constrained.

We evaluate our approach through extensive experiments for several applications and
search scenarios: we consider searching for posts in micro-blogging (Twitter and Tumblr),
for businesses (Yelp), as well as for movies (Amazon) based on reviews.

The work has been presented at the ACM CIKM conference in 2015 [69] and an extended
version has been published in the ACM TIST journal in 2017 [70].

adaptive influence maximization with persistence (chapter 3). In�u-
ence maximization is the problem of �nding in�uent users / nodes in a graph so as to max-
imize the spread of information. It has many applications in advertising and marketing on
social networks. In the second part of this dissertation, we study a generic version of in-
�uence maximization, in which we want to maximize in�uence campaigns by adaptively

selecting “spread seeds” from a set of candidates, a small subset of the node population.
In�uencer marketing [15] is a straightforward application of this, in which the focus of a
campaign is placed on precise key individuals – the candidates – who are typically able
to reach millions of consumers through their blog or social platform’s personal page. This
represents an unprecedented tool for online marketing that we propose to improve using
an adaptive approach. Importantly, we make the hypothesis that, in a given campaign,
previously activated nodes remain “persistently” active throughout, and thus, do not yield
further rewards. The rationale is that users who were already activated in the ongoing
campaign – e.g., have adopted the product or endorsed a political candidate – remain ac-
tivated / commited to the cause, and thus will not be accounted for more than once in the
objective function. Notably, we make no assumptions on the underlying di�usion model
and we work in a setting where neither a di�usion network nor historical activation data
are available. We call this problem online in�uence maximization with persistence (OIMP)
and choose to address this task using an approach similar to that of multi-armed bandits.
Contributions.

1. We propose to estimate the candidates’ missing mass – the expected number of
nodes that can still be reached from a given seed candidate – by the well-known
Good-Turing estimator. We justify its strength to rapidly estimate the desired value
which proves to be key in designing an e�cient algorithm for short campaigns of
tens to hundreds steps, which is typical in the considered scenarios.

2. We describe a novel algorithm, GT-UCB, relying on upper con�dence bounds on
the missing mass. In order to derive the con�dence intervals, we take inspiration

1.2 summary of the contributions 5

from an approach introduced by Bubeck et al. [17] for rapidly discovering elements
of interest from a population, by making sequential requests to so-called experts

introduced, in which we need to deal with two important changes: (i) after selecting
a candidate, every node connected to that candidate is sampled leading to potentially
very large feedback that we need to control using the variance to obtain reasonable
bounds, (ii) in contrast to [17], the number of times nodes have been activated – a
key statistic for the Good-Turing estimator –are independent, which simpli�es the
derivation of the con�dence intervals.

3. We provide an analysis of the waiting time – the round at which the missing mass
of each candidate is smaller than a certain proportion of the initial missing mass
– of GT-UCB, by comparing it to the waiting time of an oracle policy that knows
beforehand the objective and the sampled spreads.

4. We conduct experiments to show that our approach leads to high-quality spreads on
both simulated and real datasets, even though it makes almost no assumptions on
the di�usion medium. It is orders of magnitude faster than state-of-the-art in�uence
maximization methods, making it possible to deal with large-scale online scenarios.

This work required the development of a software package coded in C++ available at
https://github.com/plagree/oim that implements state-of-the-art in�uence maximiza-
tion methods as well as OIMP algorithms. This work is currently under review for publi-
cation.

adaptive recommendation with position bias (chapter 4). The cold start
problem is a well-known issue faced by recommender systems when new items are intro-
duced to the pool of items they recommend from. If no information is available regarding
the user appreciation of an item, a recommender system needs to gather feedback – e.g.,
clicks / non-clicks – so as to estimate the value of an item. However, in order to minimize
“bad” recommendations and to maintain the best user experience possible, a well-designed
system should not collect feedback carelessly. The third part of the dissertation proposes
to solve the recommendation cold-start problem using a multiple-item bandit approach.
We introduce a dynamic algorithm that aims to intelligently achieve the balance between
“bad” recommendations – which are necessary to gather more information so as to have
a better understanding of user evaluations of items – and “good” recommendations. This
situation is a typical illustration of the explore-exploit dilemma that bandit algorithms try
to answer. Our approach proposes to exploit available information regarding the display
bias under the so-called position-based click model introduced by Craswell et al. [28]. Im-
portantly, a major concern in this context is that the system receives ambiguous feedback
from users we recommend items to. For example, when several ads are recommended to
a user on a web page, much of the content may have been simply ignored by the user if
he / she has not scrolled down until the bottom of the page.
Contributions.

1. We discuss how the position-based model di�ers from the cascade model and other
variants of click models considered in several previous works on multiple-play ban-
dits. Importantly, previous bandit approaches restrained to click models that view
users as people scrolling lists of items in a deterministic way. Consequently, the
resulting feedback are unambiguous and the algorithms are quite straightforward.

https://github.com/plagree/oim

6 introduction

Conversely, in the position-based model, the feedback received by the learning
agent are the product of two independent Bernoulli-distributed random variables
standing for the examination of the positions and the attraction of the displayed
items, leading to censored observations.

2. We provide a novel regret lower bound for the position-based model using a proof
scheme that is interesting on its own, and which can be generalized to various set-
tings.

3. We introduce two computationally e�cient algorithms: (i) PBM-UCB consists in sort-
ing optimistic indices in drecreasing order, using con�dence bounds based on Ho-
e�ding’s inequality (ii) PBM-PIE is an adapted version of PIE(l) – initially introduced
by [27] for the cascade model – based on Cherno�’s inequality. The derived con�-
dence intervals are tighter than those of PBM-UCB, and thus, PBM-PIE requires less
exploration. In practice, this leads to signi�cantly better performances for Bernoulli-
distributed rewards with low probability of success. We provide a theoretical analy-
sis of the regret incurred by these two algorithms, which is asymptotically optimal
in the case of the latter.

4. We conduct a series of experiments on two types of datasets. First, we compare our
strategies to state-of-the-art methods in the learning to rank bandit literature with
a simple synthetic problem to validate the theoretical results. Then, we evaluate the
algorithms in a search advertising scenario using a real dataset provided for KDD
Cup 2012 track 2 involving session logs of a search engine called soso.com.

This work has been presented at the NIPS conference in 2016 [71] and is a shared work
(equal contribution) with the Ph.D. student Claire Vernade. A preliminary version of this
work was presented at the Workshop on Online Advertising Systems at ICML 2016 [116].

appendix 1.a introduction to multi-armed bandits

In this dissertation, we study applications in which users produce feedback and we try
to incorporate these signals in order to improve user experience. Speci�cally, we aim to
propose adaptive and dynamic algorithms in user-centric situations: every time a user
connects to the application, the approach provides a personalized service (e.g., a recom-
mendation, a query answer, an ad, etc.) relying on all past observations. These kinds of
applications perfectly �t the multi-armed bandit framework which are sequential learn-
ing methods that simultaneouly attempt to acquire new knowledge on available options
(called “exploration”) and optimize choices based on previous decisions (called “exploita-
tion”). In this appendix, we give a short introduction to multi-armed bandits to give the
reader basic knowledge about these methods. They will prove to be key when designing
adaptive algorithms for in�uence maximization in Chapter 3 and recommendation in the
position-based model in Chapter 4. For a longer introduction to the bandit literature, we
refer the reader to the survey of Bubeck and Cesa-Bianchi [16].

A stochastic multi-armed bandit model is a collection of K distributions (called arms in
the bandit literature) ν := (ν1, . . . ,νK), where each νk is a probability distribution that is
unknown to a learning agent. The agent can interact with the model by choosing an arm
I (t) ∈ [K] := {1, . . . ,K } at each discrete step t ≥ 1. Then, it observes a variable X (t)

1.A introduction to multi-armed bandits 7

sampled from the distribution associated to the chosen arm which can be used to improve
the estimation of the unknown mean of this arm.

For the sake of simplicity, we restrain this introduction to multi-armed bandits to the
stochastic model with Bernoulli distributed random variables: the model parameters are
the arm expectations θ := (θ1, . . . ,θK), which lie inΘ = (0, 1)K and the optimal (unknown)
arm k∗ has expectation θ ∗ := maxk ∈[K] θk = θk∗ The objective of the learner is to construct
a policy (also called algorithm or strategy) π that maximizes the expected sum of rewards,
or equivalently, minimize the expected regret de�ned as follows for a horizon T :

E[R (T)] := Tθ ∗ − E

T∑
t=1

X (t)

.

Intuitively, regret corresponds to the di�erence between selecting at every step the optimal
(unknown) arm k∗, and the actual policy π . Denoting Nk (T) := ∑T

t=1 1{I (t) = k } the
number of times arm k has been chosen up to time T , regret can be rewritten

E[R (t)] =
∑
k,k∗

(θ ∗ − θk)E[Nk (T)] =
∑
k,k∗

∆kE[Nk (T)],

where ∆k := θ ∗ − θk is the expected gap to optimality.
The seminal paper of Lai and Robbins [72] provides a lower bound on the expected

regret of uniformly e�cient strategies de�ned as follows:

for any θ ∈ Θ such that there is a unique optimal arm, for all α ∈ (0, 1],R (T) = o(T α).

This suggests that there exist algorithms with sub-polynomial regret. In the case of Ber-
noulli distributed arms, the lower bound can be stated as follows.

Theorem 1.1 (Lower bound [72]). For any uniformly e�cient algorithm, we have

lim inf
T→∞

E[R (T)]
log(T) ≥

∑
k,k∗

θ ∗ − θk
d (θk ,θ ∗)

,

whered (p,q) := p log p
q + (1−p)

1−p
1−q is the Kullback-Leibler divergence between two Bernoulli

distributions.

The main di�culty of bandit problems consists in dealing with the famous so-called
explore-exploit dilemma: the agent wants to maximize its future rewards based on the
historical data gathered heretofore, but also needs to maintain exploration as the stochastic
nature of feedback may be misleading. Two di�erent points of view on the stochastic
multi-armed bandits have been considered in the literature to judiciously allocate speci�c
steps to exploration. The �rst bandit algorithm adopted the Bayesian framework and was
proposed as soon as 1933 by Thompson [111]. In short, the algorithm maintains a posterior
distribution on every arm’s parameter. At each step t , a value is sampled from each of
these distributions and the chosen arm I (t) is set to the arm whose sample is the largest.
Formally, after t steps, and given some prior distributionp (θ) on the unknown parameters,
the posterior is given by

p (θ | Ht) ∝
t∏

s=1
p (X (s) | I (s),θ) p (θ),

8 introduction

where Ht denotes the sigma �eld σ (I (1),XI (1), . . . , I (t − 1),XI (t−1)). The procedure, now
referred to as Thompson Sampling, is detailed in Algorithm 1 in the case of Bernoulli
distributed rewards. Note that in the case of Bernoulli distributed rewards, the prior is
set to a Beta distribution – the Beta distribution is the conjugate prior of the Bernoulli
distribution [32] – so as to easily update the posterior using Bayes’ rule.

Algorithm 1: Thompson Sampling
Data: α , β prior parameters of Beta distribution

1 Initialization: Sk = 0, Fk = 0,∀k ∈ [K];
2 for t = 1, . . . ,T do
3 for k = 1, . . . ,K do
4 Sample θ̃k according to Beta(Sk + α , Fk + β);
5 end
6 Choose arm I (t) ← arg maxk θ̃k and observe reward X (t);
7 if X (t) = 1 then
8 Sk ← Sk + 1;
9 else

10 Fk ← Fk + 1;
11 end
12 end

Importantly, Thompson Sampling has been shown asymptotically optimal only very
recently and simultaneously by Kaufmann et al. [64] and by Agrawal and Goyal [2].

The second perspective to tackle bandit problems follows the frequentist point of view
and is generally referred to as “optimistic”. Instead of maintaining a distribution on the
unknown parameters, an index is computed for each arm k based on past observations.
The index can be seen as a statistic well de�ned so as to control the balance between
exploration and exploitation. Agrawal [1] is the �rst to introduce a UCB-like (for Upper
Con�dence Bound) algorithm in which indices are decomposed in the sample mean and
an extra exploration term. At every step, the algorithm chooses the arm whose index is the
largest. The rationale is that, if the selected arm is the optimal one, the agent is satis�ed,
whereas the selection of a suboptimal arm is useful in better estimating the unknown
parameter, thus reducing the exploration term in subsequent steps. Many studies have
focused on improving the exploration term in order to explore suboptimal arms the mini-
mum possible2.

Auer et al. [6] introduced the UCB1 algorithm that derives the exploration term from
the Hoe�ding concentration inequality.

At each step t , UCB1 computes an index bUCB
k (t) for each arm k whose exploration

term is derived from Hoe�ding’s concentration bound. Auer et al. also provide the �rst
�nite-time analysis and obtain a logarithmic dominant term which is in line with Lai and
Robbins’ lower bound.

2 Note however that every suboptimal arm needs to be selected by the bandit algorithm a logarithmic number
of times. This is a direct consequence of Lai and Robbins’ lower bound in Theorem 1.1.

1.A introduction to multi-armed bandits 9

Algorithm 2: Optimistic algorithm – UCB1
1 Initialization: �rst K rounds, play each arm once;
2 Nk (K + 1) ← K for all k ;
3 for t = K + 1, . . . ,T do
4 for k = 1, . . . ,K do
5 bUCB

k (t) ← θ̂k (t) +
√

2 log(t)
Nk (t)

;
6 end
7 Choose arm I (t) = arg maxk bUCB

k and observe reward X (t);
8 for k = 1, . . . ,K do
9 if k = I (t) then

10 Nk (t + 1) ← Nk (t) + 1;
11 else
12 Nk (t + 1) ← Nk (t);
13 end
14 end
15 end

Several improvements on UCB1 were made until Garivier and Cappé [40] introduced
KL-UCB, the �rst asymptotically optimal UCB-like algorithm. Speci�cally, at each step t ,
KL-UCB computes the index

bKL-UCB
k (t) := sup

q∈[θ̂k (t),1)

{
q ��� Nk (t)d (θ̂k (t),q) ≤ log(t)

}

for each arm k . Then, it selects the arm with largest KL-UCB index in line 8 of Algorithm 2.
Interestingly, Thompson Sampling approaches generally lead to good empirical per-

formances, but many studies prefer using the frequentist point of view for mainly two
reasons: (i) the posterior distribution may be complicated to derive – by that, understand
it may be a “non-standard” distribution –, and thus, di�cult to sample from (we will see
an example of this in Chapter 4), (ii) in the Bayesian framework, the analysis is typically
much harder than its frequentist counterpart.

Multi-armed bandits are still a very active research area, even though the canonical
bandit setting has been solved under both Bayesian (Thompson Sampling) and frequen-
tist (KL-UCB) perspectives. Variations of the classic setting continue to interest many re-
searchers. In this dissertation, we will study in Chapter 4 a variation of the multiple-play

– several arms are selected at each step – bandit in the framework of online recommenda-
tion. In Chapter 3, we rely on the UCB approach to derive an algorithm which adaptively
selects in�uential nodes so as to maximize the expected spread of di�usion.

S

P R O D U C T I O N S

• Publications
– Paul Lagrée, Bogdan Cautis, and Hossein Vahabi. “A Network-Aware Approach

for Searching As-You-Type in Social Media.” In: Proceedings of the 24th ACM
International Conference on Information and Knowledge Management (CIKM).
2015.

– Claire Vernade, Paul Lagrée, and Olivier Cappé. “Online Inference for Multiple-
Item Display Under the Position-Based Model.” In: Workshop on Online Ad-
vertising Systems. ICML. 2016.

– Paul Lagrée, Claire Vernade, and Olivier Cappé. “Multiple-Play Bandits in the
Position-Based Model.” In: Advances in Neural Information Processing Sys-
tems 29 (NIPS). Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett. Curran Associates, Inc., 2016, pp. 1597–1605.

– Paul Lagrée, Bogdan Cautis, and Hossein Vahabi. “As-You-Type Social Aware
Search.” In: ACM Transactions on Intelligent System and Techology (TIST).
2017.

– Paul Lagrée, Olivier Cappé, Bogdan Cautis, and Silviu Maniu. “E�ective Large-
Scale Online In�uence Maximization”, In: IEEE 16th International Conference
on Data Mining (ICDM). 2017.

– Paul Lagrée, Olivier Cappé, Bogdan Cautis, and Silviu Maniu. “Algorithms for
Online In�uencer Marketing”, submitted for publication. 2017.

• Software
– oim: C++ implementation of online in�uence maximization with persistence

algorithms, and, in particular, GT-UCB, as described in “E�ective Large-Scale
Online In�uence Maximization”. The code is available at https://github.com/
plagree/oim.

11

https://github.com/plagree/oim
https://github.com/plagree/oim

2
A S -YO U -T Y P E S O C I A L R E C O M M E N D AT I O N

The �rst part of this dissertation is dedicated to an approach for as-you-type search on
social media, that is data published by users who are interconnected through a social
network. More precisely, the problem consists in retrieving a set of k search results, i.e.,
performing a search with a given pre�x, and showing the top ranked results. Interestingly,
items are displayed while the user issuing a query is still completing it. In this respect,
our approach makes information retrieval meet recommendation systems. We adopt a
“network-aware” interpretation of information relevance, by which information produced
by users who are closer to the user issuing a request is considered more relevant. This
query model raises new challenges for e�ectiveness and e�ciency in online search, even
when the intent of the user is fully speci�ed, as a complete query given as input in one
keystroke.

We describe TOPKS-ASYT, a memory-e�cient pre�x-based retrieval algorithm, which
also exhibits an anytime behavior, allowing to output the most likely answer within any
chosen running-time limit. Furthermore, we propose an incremental version of TOPKS-
ASYT that relies on the adaptive aspect of as-you-type search to speed-up computations.
At the end of this chapter, we evaluate our approach through extensive experiments for
several applications and search scenarios. We consider searching for posts in micro-blogging
(Twitter and Tumblr), for businesses (Yelp), as well as for movies (Amazon) based on re-
views.

The work has been presented at the conference CIKM in 2015 [69] and an extended
version has been published in the ACM TIST journal in 2017 [70].

Contents
2.1 Introduction . 14
2.2 Social-aware search background . 15

2.2.1 Notations and context . 16
2.2.2 Top-k retrieval algorithms . 16
2.2.3 Social-aware search . 18
2.2.4 Query auto-completion and as-you-type search 18
2.2.5 Social and textual relevance framework 19

2.3 The as-you-type approach . 21
2.3.1 The as-you-type search problem 21
2.3.2 Non-incremental algorithm 22
2.3.3 Adaptations for the network-aware case 27
2.3.4 Adaptations for incremental computation 28
2.3.5 Complexity analysis . 29

13

14 as-you-type social recommendation

2.3.6 Supernodes . 30
2.4 Experiments . 31

2.4.1 Datasets . 31
2.4.2 Experimental results: e�ectiveness 32
2.4.3 Experimental results: e�ectiveness with multiple words . . . 36
2.4.4 Experimental results: e�ectiveness with SimRank proximity

scores . 37
2.4.5 Experimental results: e�ciency and scalability 38
2.4.6 Experimental results: incremental versus non-incremental TOPKS-

ASYT . 39
2.4.7 Experimental results: TOPKS-ASYT versus state-of-the-art base-

line methods . 40
2.4.8 Experimental results: supernodes 43

2.5 Conclusion . 44

2.1 introduction

Web search is the main tool used today to access the enormous quantity of information
available on the Web, and in particular in the social media. Starting from simple text-based
search ranking algorithm, it is now an interdisciplinary topic involving data mining, ma-
chine learning, knowledge management, just to mention a few. Signi�cant improvements
have been done on how to answer keyword queries on the Web in the most e�ective
way (e.g., by exploiting the Web structure, user and contextual models, user feedback, se-
mantics, etc). However, answering information needs in social media applications (such as
Tumblr, Twitter, or Facebook) often requires a signi�cant departure from socially-agnostic
approaches, which generally assume that the data being queried is decoupled from the
users querying it.

While progress has been made in recent years to support this novel, social and network-

aware query paradigm – especially towards e�ciency and scalability – more remains to
be done in order to address information needs in real applications. In particular, providing
the most accurate answers while the user is typing her query, almost instantaneously, can
be extremely bene�cial, in order to enhance the user experience and to guide the retrieval
process.

Figure 2.1 shows an example of as-you-type search in Tumblr. A user is typing a query
as-you-type “as yo”. In the �rst part of the results (section “Search”), candidates are selected
among queries within the query log and correspond to pre�x based query auto-completion

(such as “as you are”). In the second part (section “Blogs”), search results are presented for
the partial query “as yo” (search result such as the blog “love everybody”). This suggestion
framework is referred to as as-you-type search and is the focus of this work.

In this chapter, we extend as-you-type search – a functionality by now supported in
most search applications, including Web search – to social data. In particular we extend
existing algorithms for top-k retrieval (where k is the number of results returned, typically
k = 10) over social data. Our solution, called TOPKS-ASYT (for TOP-k Social-aware search
AS-You-Type), builds on the generic network-aware search approach of [88, 105] that we
brie�y recall in the following section.

We consider a generic setting common to a plethora of social applications, where users
produce unstructured content (keywords) in relation to items, an activity we simply refer

2.2 social-aware search background 15

Figure 2.1: An as-you-type search example (“Search”: autocompletion, “Blogs”: as-you-type re-
sults).

to as social tagging. More precisely, our core application data can be modelled as follows: (i)
users form a social network, which may represent relationships such as similarity, friend-
ship, following, etc, (ii) items from a public pool of items (e.g., posts, tweets, videos, URLs,
news, or even users) are “tagged” by users with keywords, through various interactions
and data publishing scenarios, and (iii) users search for some k most relevant items by
keywords. We devise a novel index structure for TOPKS-ASYT denoted CT-IL which is
a combination of tries and inverted lists. While basic trie structures have been used in
as-you-type search scenarios in the literature (e.g., see [78] and the references therein),
ranked access over inverted lists requires an approach that performs ranked completion
more e�ciently. Therefore, we rely on a trie structure tailored for the problem at hand,
o�ering a good space-time tradeo�, namely the completion trie of [54], which is an adap-
tation of the well-known Patricia trie using priority queues. This data structure is used
as access layer over the inverted lists, allowing us to read in sorted order of relevance the
possible keyword completions and the items for which they occur. Importantly, we use the
completion trie also as a key internal component of our algorithm, in order to speed-up
the incremental computation of results.

In this as-you-type search setting, it is necessary to serve in a short (�xed) lapse of time,
after each keystroke and in social-aware manner, top-k results matching the query in its
current form, i.e., the terms t1, . . . , tr−1, and all possible completions of the term tr . This
must be ensured independently of the execution con�guration, data features, or scale. This
is why we ensure that our algorithms have also an anytime behaviour, being able to output
the most likely result based on all the preliminary information obtained until a given time
limit for the TOPKS-ASYT run is reached.

2.2 social-aware search background

We adopt a well-known generic model of social relevance for information, previously con-
sidered among others in [87, 88, 105, 123]. In short, the social bias in scores re�ects the
social proximity of the producers of content with respect to the seeker (the user issuing
a search query), where proximity is obtained by some aggregation of shortest paths (in
the social space) from the seeker towards relevant pieces of information. We depict in Fig-

16 as-you-type social recommendation

ure 2.2 a social network and the tagging activity of its users. In the following, this running
example will be used to illustrate de�nitions and algorithms.

2.2.1 Notations and context

In this chapter, we consider a social setting, in which we have a set of items (e.g. text
documents, blog posts, tweets, URLs, photos, videos, etc) that are tagged by users from a
social network. We formally state the setting in the following.

Context We assume a set of items I = {i1, . . . , im }, where each item is tagged with one

or more distinct tags from a tagging vocabulary T = {t1, t2, . . . , tl }, by users from U =

{u1, . . . ,un }. We denote our set of unique triples by Tagged(v, i, t), each such triple saying

that a user v tagged the item i with tag t .

Note that Tagged encodes many-to-many relationships: in particular, any given item can
be tagged by multiple users, and any given user can tag multiple items. We also assume
that a user will tag a given item with a given tag at most once.

While social media applications can adopt for their explicit social links either the di-
rected graph model (e.g. , Twitter or Tumblr) or the undirected one (e.g., Yelp or Face-
book), we assume in the following that users form a social similarity network, modeled
for our purposes as an undirected weighted graph G = (U ,E,σ), where nodes are users
and the σ function associates to each edge e = (u1,u2) a value in (0, 1], called the proximity

(social) score between u1 and u2. Proximity may come either from explicit social signals
(e.g., friendship links, follower/followee links), or from implicit social signals (e.g., tagging
similarity), or from combinations thereof.

To illustrate, one σ instantiation, i.e., similarity measure, we rely on in our experiments
is the Dice’s coe�cient: given two users u and v , we compare their friends (respectively
vocabulary, items) to compute a local social (respectively tag, item) similarity. For example,
denoting by Nu and Nv the set of users connected to u and v , the Dice’s social coe�cient
is computed as follows:

σDice (u,v) =
2|Nu ∪ Nv |

|Nu |+|Nv |
. (2.1)

Other similarities such as the Jaccard index or SimRank can be used to build the social
similarity network.

2.2.2 Top-k retrieval algorithms

In modern search engines, queries point to thousands (or millions) relevant matching doc-
uments. The recall is no longer an interesting metric to measure the e�ectiveness of the
engine. Instead, top-k algorithms focus on retrieving the k most relevant documents, trad-
ing recall for speedup of several orders of magnitude. The rationale is that most users will
only read the documents displayed on the �rst pages. Classic top-k retrieval algorithms are
early-termination algorithms and exploit the textual similarity. They rely on pre-computed
inverted lists which are data structures containing exact scores for each term in the entire
dataset. For example, in Figure 2.2, IL(grunge) = (i2 : 3, i1 : 2, i4 : 1, i5 : 1, i6 : 1) is the in-
verted list of the word grunge, where this means for example that item i2 has been tagged
3 times with the tag grunge.

2.2 social-aware search background 17

i3: hipster
i6: style, glasses

i2: grunge
i4: grunge, hipster
i5: stylish

i2: grunge
i4: hippie, style
i6: hippie, glasses

i1: gloomy
i2: hallow
i4: goth, street
i6: grunge

i1: hipster
i2: street, grunge
i5: hispster, hallow

i1: stylish, grunge
i2: street
i4: street, glasses i1: grunge

i2: goth, style, hippie
i4: gloomy

i1: stylish, hipster
i2: goth, street
i4: hippie, goth, style

i2: street
i3: hallow, h
i4: style
i5: grungeAlice

Bob

Carol

Danny

Eve

Frank

George

Holly

Ida

Jim

0.9

0.6

0.5

0.6

0.9

0.5

0.5

0.5

0.2

0.1

0.4

Figure 2.2: Running example: social proximity and tagging.

no random access (nra): Two famous top-k algorithms allowing for early termina-
tion are the Threshold Algorithm (TA) and the No Random Access algorithm (NRA) [38].
The former alternates sequential accesses with random accesses to the inverted lists to
compute the exact scores of the items discovered. We refer the reader to [38] for a detailed
description of the algorithm. Conversely, the NRA only performs sorted accesses to the
inverted lists, maintaining lower and upper bounds of every item found sequentially and
an upper bound of the unobserved items. When the k-th item’s lower bound is larger than
the upper bounds of unobserved items and the k + 1-th candidate item, the NRA termi-
nates. Note that the algorithm may not report the exact scores of the top-k items since it
relies on bounds to avoid reading the entire inverted lists.

Example 2.1 In our running example from Fig. 2.2, let us assume we require the top-2
item for the query Q = (style, glasses). The corresponding inverted lists are respectively

IL(glasses) = (i6 : 2, i4 : 1) and IL(style) = (i4 : 3, i2 : 1, i6 : 1).
NRA executes the following steps: at the �rst access to the inverted lists, the top item of

each list is added to the candidates. We have:

MinScore(i6) = 2,MaxScore(i6) = 5,MinScore(i4) = 3, and MaxScore(i4) = 5.

In addition, the MaxScore for unobserved items is also 5, which prevents us from stopping

the algorithm at this step.

At the second sequential access, the scores of the candidates items become

MinScore(i4) = 3,maxScore(i4) = 3,
MinScore(i6) = 2,maxScore(i6) = 3,
MinScore(i2) = 1,MaxScore(i2) = 2,

18 as-you-type social recommendation

and theMaxScore of the unobserved items is now equal to 2. NRA stops and returns items i4
and i6. Indeed, NRA reached its termination condition as the maximal scores of item i2 and
of unobserved items cannot exceed the minimal scores of the items of the answer.

The NRA algorithm is a key ingredient in social-aware top-k algorithms such as TOPKS
from Maniu and Cautis [88], as well as in the as-you-type extension TOPKS-ASYT.

2.2.3 Social-aware search

Top-k retrieval algorithms have been adapted to network-aware query models for social
applications, following the idea of biasing results by social relevance [88, 105, 123] and
even time freshness [81].

Person search represents another facet of “social search”, as the task of �nding highly
relevant persons for a given seeker and keywords. Usually, the approach used in this type
of application is to identify the most relevant users, and then to �lter them by the query
keywords [7, 97]. In this area, [29] describes the main aspects of the Unicorn system for
search over the Facebook graph, including a typeahead feature for user search. One key
di�erence w.r.t. [88, 105, 123] is that the Unicorn system does not bias results by social
proximity in the retrieval phase. Instead, it searches for items in the user environment –
her friends, her friend-of-friends, etc. – and returns documents matching the query. Then,
the resulting set of items is scored by another procedure that takes into account several
factors such as the query, the user who issued the query or data associated to the documents.
The authors propose to use a forward index that maps documents ids to some metadata to
retrieve e�ciently these data.

2.2.4 Query auto-completion and as-you-type search

As-you-type search (also known as type-ahead search) and query auto-completion are two
of the most important features in search engines today, and belong to the broader area of
instant search (see [115] for a recent tutorial on the topic). They can be seen as facets of the
same paradigm: providing accurate feedback to queries on-the-�y, i.e., as they are being
typed (possibly with each keystroke). In as-you-type search, feedback comes in the form
of the most relevant answers for the query typed so far, allowing some terms (usually, the
last one in the query sequence) to be pre�x-matched. In query auto-completion, a list of
the most relevant query candidates is to be shown for selection, possibly with results for
them. We discuss each of these two directions separately. Also, instant search shares many
challenges with exploratory search, for settings dealing with under-speci�ed, undirected,
and even interactive search tasks (see [3] and the references therein).

The problem we study here, namely top-k as-you-type search for multiple keywords,
has been considered recently in [78], which mainly di�ers from our work in the absence
of social dimension in data. There, the authors consider various adaptations of TA/NRA
top-k algorithms of [38], even in the presence of minor typing errors in the query terms
(fuzzy search), based on standard tries. A similar fuzzy interpretation for full-text search
was followed in [57], yet not in a top-k setting. The techniques of [77] rely on precom-
puted materialization of top-k results, for values of k known in advance. In [9, 10], the
goal is to �nd all the query completions leading to results as well as listing these results,
based on inverted list and su�x array adaptations; however, the search requires a full

2.2 social-aware search background 19

computation and then ranking of the results. For structured data instead of full text, type-
ahead search has been considered in [39] (XML) and in [76] (relational data). Finally, [126]
studies location-aware as-you-type search by providing location-biased answers, instead
of socially-biased ones.

Query auto-completion is the second main direction for instant response to queries
in the typing, by which some top query completions are presented to the user (see for
example [18, 106, 107, 125] and the references therein). This is done either by following
a predictive approach, or by pre-computing completion candidates and storing them in
trie structures. Probably the best known example today is the one of Google’s instant
search, which provides both query predictions (in the search box) and results for the top
prediction. In [37], the authors discuss in depth various systems choices involving index
partitioning or caching, for query auto-completion under typo-tolerant and word-order
tolerant assumptions. Query suggestion goes one step further by proposing alternative
queries, which are not necessarily completions of the input one (see for instance [58, 112]).

Several space-e�cient trie data structures for ranked (top-k) completion have been stud-
ied recently in [54], o�ering various space-time tradeo�s, and we rely in our work on one
of them, namely the completion trie. In the same spirit, data structures for the more gen-
eral problem of substring matching for top-k retrieval have been considered in [53].

2.2.5 Social and textual relevance framework

The general (not as-you-type) keyword search can be formulated as follows:

Problem 2.1 (Social-aware search). Given a seeker s , a keyword query Q = (t1, . . . , tr)
(a set of r distinct terms/keywords) and a result size k , the top-k keyword search problem is

to compute the (possibly ranked) list of the k items having the highest scores with respect to

s and the query Q .

We describe hereafter the model ingredients on which we rely to score query results
in the social media context. Note that this relevance framework was initially introduced
by [88]

We model by score(i | s, t), for a seeker s , an item i , and a tag t , the relevance of that
item for the given seeker and query term t . Generally, we assume

score(i | s, t) = h(fr(i | s, t)), (2.2)

where fr(i | s, t) is the frequency of item i for seeker s and tag t , andh is a positive monotone
function (e.g., could be based on inverse term frequency, BM25, etc).

Given a queryQ = (t1, . . . , tr), the overall score of i for seeker s andQ is simply obtained
by summing the per-tag scores:

score(i | s,Q) =
∑
tj ∈Q

score(i | s, tj). (2.3)

Note that this naturally corresponds to an OR semantics, where items that do not neces-
sarily match all the query tags may still be selected (for an AND one, each term’s score
should be non-empty).

20 as-you-type social recommendation

social relevance model. In an exclusively social interpretation, we can explicitate
the fr(i | s, t) measure by the social frequency for seeker s , item i , and one tag t , denoted
sf (i | s, t). This measure adapts the classic term frequency (tf) measure to account for the
seeker and its social proximity to relevant taggers. We consider that each tagger brings
her own weight (proximity) to an item’s score, and we de�ne social frequency as follows:

sf (i | s, t) =
∑

v ∈{v | Tagged(v,i,t)) }
σ (s,v). (2.4)

Note that, under the frequency de�nition of Eq. (2.2), we would follow a ranking approach
by which information that may match the query terms but does not score on the social
dimension (i.e., is disconnected from the seeker) is deemed entirely irrelevant.

network-aware relevance model. A more generic relevance model, which does
not solely depend on social proximity but is network-aware, is one that takes into account
textual relevance scores as well. For this, we denote by tf (t , i) the term frequency of t in
i , i.e., the number of times i was tagged with t , and IL(t) is the inverted list of items for
term t , ordered by term frequency.

The frequency score fr(i | s, t) is de�ned as a linear combination of the previously de-
scribed social relevance and the textual score, with α ∈ [0, 1], as follows:

fr(i | s, t) = α × tf (t , i) + (1 − α) × sf (i | s, t). (2.5)

This formula combines a global popularity of the item with one among people close to the
seeker. Note that Eq. 2.5 will be a key ingredient to design our network-aware relevance
model in as-you type scenarios.

remark. Interestingly, this model of triples for social data is a simple abstraction for
quite diverse types of social media. Consider Tumblr [19]: one broadcasts posts to fol-
lowers and rebroadcasts incoming posts; when doing so, the re-post is often tagged with
chosen tags or short descriptions (hashtags). We can thus see a post and all its re-posted
instances as representing one informational item, which may be tagged with various tags
by the users broadcasting it. Text appearing in a blog post can also be interpreted as tags,
provided either by the original author or by those who modi�ed it during subsequent
re-posts; it can also be exploited to uncover implicit tags, based on the co-occurrence of
tags and keywords in text. Furthermore, a post that is clicked-on in response to a Tumblr
search query can be seen as being e�ectively tagged (relevant) for that query’s terms. All
this data has obviously a social nature: e.g., besides existing follower/followee links, one
can even use similarity-based links as social proximity indicators.

Example 2.2 Getting back to our running example in Fig. 2.2, for seeker Alice, we have, for

α = 0.2, tf (glasses, i6) = 2, and

sf (i6 | Alice, glasses) = σ (Alice,Bob) + σ (Alice,Carol) = 0.9 + 0.6 = 1.5,
fr(i6 | Alice, glasses) = 0.8 × 1.5 + 0.2 × 2.

extended proximity. The model described so far takes into account only the imme-
diate neighbourhood of the seeker (the users it connects to explicitly). In order to broaden
the scope of the query and go beyond one’s vicinity in the social network, we also account

2.3 the as-you-type approach 21

for users that are indirectly connected to the seeker, following a natural interpretation that
user links and the query relevance they induce are (at least to some extent) transitive. To
this end, we denote by σ+ the resulting measure of extended proximity, which is to be com-
puted from σ for any pair of users connected by at least one path in the network. Now, σ+
can replace σ in the de�nition of social frequency in Eq. (2.4).

For example, one natural way of obtaining extended proximity scores is by (i) multiply-
ing the weights on a given path between the two users, and (ii) choosing the maximum
value over all the possible paths. Another possible de�nition for σ+ can rely on an aggre-
gation that penalizes long paths, via an exponential decay factor, in the style of the Katz
social proximity [62]. More generally, any aggregation function that is monotonically non-
increasing over a path, can be used here. Under this monotonicity assumption, one can
browse the network of users on-the-�y (at query time) and “sequentially”, i.e., visiting
them in the order of their proximity with the seeker.

Example 2.3 In Fig. 2.2, for seeker Alice, when extended proximity between two users is de-

�ned as the maximal product of scores over paths linking them, the users ranked by proximity

w.r.t. Alice are in order Bob : 0.9,Danny : 0.81,Carol : 0.6, Frank : 0.4, Eve : 0.3,George :
0.2, Ida : 0.16, Jim : 0.07,Holly : 0.01.

Hereafter, when we talk about proximity, we refer to the extended one, and, for a given
seeker s , the proximity vector of s is the list of users with non-zero proximity with respect
to it, ordered decreasingly by proximity values (we stress that this vector is not necessarily
known in advance).

2.3 the as-you-type approach

We now describe our solution TOPKS-ASYT to the social-aware as-you-type search prob-
lem. Note that TOPKS-ASYT builds on [88, 105] and deals with three systemic changes:

1. Pre�x matching: answers must be computed following a query interpretation by
which the last term in the query sequence can match tag / keyword pre�xes.

2. Incremental computation: answers must be computed incrementally, instead of start-
ing a computation from scratch. For a query representing a sequence of terms Q =
(t1, . . . , tr), we can follow an approach that exploits what has already been com-
puted in the query session so far, i.e., for the query Q ′ = (t1, . . . , tr−1, t

′
r), with t ′r

being a one character shorter pre�x of the term tr .

3. Anytime output: answers, albeit approximate, must be ready to be outputted at any
time, and in particular after any given time lapse (e.g., 50 − 100ms is generally ac-
cepted as a reasonable latency for as-you-type search).

2.3.1 The as-you-type search problem

With respect to the general keyword search problem formulated before, we consider in
this work a specialized and potentially more useful level of search service for practical
purposes, in which queries are being answered as they are typed. Instead of assuming that
the query terms are given all at once, a more realistic assumption is that input queries
are sequences of terms Q = (t1, . . . , tr), in which all terms but the last are to be matched

22 as-you-type social recommendation

exactly, whereas the last term tr is to be interpreted as a tag potentially still in the writing,
hence matched as a tag pre�x.

We extend the query model in order to deal with tag pre�xes p by de�ning an item’s
score for p as the maximal one over all possible completions of p:

sf (i | s,p) = max
t ∈{p’s completions}

sf (i | s, t) (2.6)

tf (p, i) = max
t ∈{p’s completions}

tf (t , i) (2.7)

Note that when we compute the importance of an item, we might consider two di�erent
tag completions, for the social contribution and for the popularity one.

Example 2.4 In Fig. 2.2, if Alice’s query is hipster g, as gmatches the tags gloomy, glasses,
goth and grunge, we have sf (i4 | Alice, g) as

max
t ∈{g completions}

sf (i4 | Alice, t)

= max[sf (i4 | Alice, gloomy), sf (i4 | Alice, glasses), sf (i4 | Alice, grunge), sf (i4 | Alice, goth)]
= max[0.2, 0.3, 0.81, 0.41] = 0.81.

In the social-aware retrieval setting, when social proximity determines relevance, the
data exploration must jointly consider the network (starting from the seeker and visit-
ing users in descending proximity order), the per-user/personal tagging spaces, and all
available socially-agnostic index structures such as inverted lists. It is thus important for
e�ciency to explore the social network by order of relevance/proximity to the seeker, as
to access all the necessary index structures, in a sequential manner as much as possible.
We favor such an approach here, instead of an incomplete “one dimension at a time” one,
which would �rst rely on one dimension to identify a set of candidate items, and then use
the scores for the other dimension to re-rank or �lter out some of the candidates.

2.3.2 Non-incremental algorithm

We �rst describe the TOPKS-ASYT approach for exclusively social relevance (α = 0 in
Eq. 2.5) and without incremental computation, namely when the full sequence of terms is
given in one keystroke, with the last term possibly a pre�x, as Q = (t1, . . . , tr). We follow
an early-termination approach that is “user-at-a-time”: its main loop step visits a new user
and the items that were tagged by her with query terms. Algorithm 3 gives the �ow of
TOPKS-ASYT.

main inputs. For each user u and tag t , we assume a precomputed selection over the
Tagged relation, giving the items tagged by u with t ; we call these the personal spaces (in
short, p-spaces). No particular order is assumed for the items appearing in a user list.

We also assume that, for each tag t , we have an inverted list IL(t) giving the items
i tagged by it, along with their term frequencies tf (t , i)1, and by which they are sorted
in descending order. The lists can be seen as unpersonalized indexes. A completion trie
over the set of tags represents the access layer to these lists. As in Patricia tries, a node
can represent more than one character, and the scores corresponding to the heads of the

1 Even when α = 0, although social frequency does not depend directly on tf scores, we exploit the inverted
lists and the tf scores by which they are ordered, to better estimate score bounds.

2.3 the as-you-type approach 23

[4] ε

[1] ε [2] ip

[2] h
[3] g

[2] l

[1] oomy
[2] ster [2] pie

[2] asses

[2] oth
[1] allow

[4] st

[3] y

[2] lish [3] le

[3] runge

[4] reet

(i4, 2)

(i2, 1)

(i6, 1)

(i3, 1)

(i2, 4)

(i4, 2)

(i2, 1)

(i3, 1)

(i5, 1) (i1, 2)

(i3, 1)

(i4, 1)

(i5,1)

(i1, 1)

(i4, 1)

(i6, 2)

(i4, 1)

(i2,2)

 (i4, 1)

(i2, 3)

(i1,2)

 (i4, 1)

(i5,1)

(i6,1) (i1, 2)

(i5, 1)

(i4, 3)

(i2, 1)

(i6, 1)

IL(hipster)

(i2, street, 4)

(i4, style, 3)

 (i1, stylish, 2)

(i5, stylish, 1)

(i6, style, 1)

virtual IL(st)

Figure 2.3: The CT-IL index.

lists are used for ranked completion: each leaf has the score of the current entry in the
corresponding inverted list, and each internal node has the maximal score over its children
(see example below). This index structure is denoted hereafter the CT-IL index.

Example 2.5 (CT-IL index). We give in Figure 2.3 an illustration of the main components

of CT-IL, for our running example. Each of the tags has below it the inverted list (the one of

the hipster tag is explicitly indicated). The cursor positions in the lists are in bold. By storing

the maximal score at each node (in brackets in Figure 2.3), the best (scoring) completions of

a given pre�x can be found by using a priority queue, which is initialized with the highest

node matching that pre�x. With each pop operation, either we get a completion of the pre�x,

or we advance towards one, and we insert in the queue the children of the popped node.

For comparison, we also illustrate in Figure 2.4 the CT-IL index that would allow us to

process e�ciently Alice’s top-k queries, without the need to resort to accesses in social net-

work and p-spaces. Obviously, building such an index for each potential seeker would not be

feasible.

While leaf nodes in the trie correspond to concrete inverted lists, we can see each in-
ternal node of the trie and the corresponding keyword pre�x as described by a “virtual
inverted list”, i.e., the ranked union of all inverted lists below that node. As de�ned in
Eq. (2.6-2.7), for such a union, for an item appearing in entries of several of the unioned
lists, we keep only the highest-scoring entry. In particular, for the query term tr , by IL(tr)
we refer to the virtual inverted list corresponding to this pre�x. There is a notable di�er-
ence between the concrete inverted lists and the virtual ones: in the former, entries can be
seen (stored) as pairs (item, score) (the tag is implied); in the latter, entries must be of the
form (item, taд, score), as di�erent tags (completions) may appear in such a list.

For each t ∈ {t1, . . . , tr }, we denote by top_item(t) the item present at the current
(unconsumed) position of IL(t), we use top_tf (t) as short notation for the term frequency

24 as-you-type social recommendation

[4] ε

[1] ε [2] ip

[2] h
[3] g

[2] l

[1] oomy
[2] ster [2] pie

[2] asses

[2] oth
[1] allow

[4] st

[3] y

[2] lish [3] le

[3] runge

[4] reet

(i4,0.61)

(i6,0.6)

(i2,0.2)

(i3,0.16)

(i4,0.7)

(i2,0.54)

(i2,0.4)

(i3,0.16)

(i5,0.07) (i3,0.9)

(i4,0.81)

(i1,0.08)

(i5,0.07)

(i1,0.4)

(i4,0.2)

(i6,1.5)

(i4,0.3)

(i4,0.4)

 (i2,0.21)
(i2,1.48)

(i4,0.81)

(i1,0.5)

(i6,0.4)

(i5,0.16)
(i5,0.81)

(i1,0.31)

(i6,0.9)

(i4,0.77)

(i2,0.2)

IL(hipster)

(i6, style, 0.9)

(i5, stylish, 0.81)

 (i4, style, 0.77)

(i2, street, 0.54)

(i1, stylish, 0.31)

virtual IL(st)

Figure 2.4: Alice’s personalized CT-IL index.

associated with this item, and, for IL(tr), we also denote by top_tag(tr) the tr completion
in the current entry.

Example 2.6 (Virtual lists). The virtual inverted list for the pre�x st is given in Fig. 2.3.

The top_tag(st) is street, for top_item(st) being i2, for its entry scored 4 dominates the

one scored only 2, hence with a top_tf (st) of 4. A similar one, for the “personalized” CT-IL

index for seeker Alice is given in Fig. 2.4.

candidate buffers. For each tag t ∈ {t1, . . . , tr−1}, we keep a list Dt of candidate
items i , along with a sound score range: a lower bound and an upper bound for sf (i | s, t)
(to be explained hereafter). Similarly, in the case of tr , for each completion t of tr already
encountered during the query execution in p-spaces (i.e., by triples (u, i, t) read in some
u’s p-space), we record in a Dt list the candidate items and their score ranges. Candidates
in these D-bu�ers are sorted in descending order by their score lower bounds.

An item becomes candidate and is included in D-bu�ers only when it is �rst met in a
Tagged triple matching a query term.

For uniformity of treatment, a special item ∗ denotes all the yet unseen items, and it
implicitly appears in each of the D-lists; note that, in a given Dt bu�er, ∗ represents items
which are not yet candidates, but also candidate items which may already be candidates
but appear only in other D-bu�ers (for tags other than t).

main algorithmic components. When accessing the CT-IL index, inverted list
entries are consumed in some IL(t) only when the items they refer to are candidates (they
appear in at least one bu�er Dt ′ , where t ′ may be any term in the query or completion of
the pre�x)2. We keep in lists calledCILt (for consumed IL entries) the items read (referred to

2 The rationale is that our algorithm does not make any “wild guesses”, avoiding reads that may prove to be
irrelevant and thus leading to suboptimal performance.

2.3 the as-you-type approach 25

Algorithm 3: TOPKS-ASYT (non-incremental, for α = 0)
Input: seeker s , query Q = (t1, . . . , tr)

1 forall users u do
2 σ+(s,u) = −∞;
3 end
4 forall tags t ∈ {t1, . . . , tr−1} do
5 sf (i | s, t) = 0; Dt = ∅, CILt = ∅;
6 Set IL(t) position on �rst entry;
7 end
8 Set IL(tr) position on �rst entry, σ+(s, s) = 0, C = ∅ (tr completions);
9 H ← priority queue on users; init. {s}, computed on-the-�y;

10 while H , ∅ do
11 u = extract_max(H);
12 process_p_space(u);
13 process_CT-IL;
14 if termination condition then
15 break;
16 end
17 end
18 return top-k items;

as candidates) in the inverted lists (virtual or concrete), for t being either in {t1, . . . , tr−1}
or a completion of tr for which a triple (item, t , score) was read in the virtual list of tr .
We also keep by the set C all tr completions encountered so far in p-spaces. Note that tr
completions encountered in p-spaces may not necessarily coincide with those encountered
in IL(tr).

For each t being either in {t1, . . . , tr−1} or a completion of tr already inC , we denote by
unseen_users(i, t) the maximal number of yet unvisited users who may have tagged item
i with tag t . This number is initially set to the maximal possible term frequency of t over
all items. unseen_users(i, t) then re�ects at any moment during the run of the algorithm
the di�erence between the number of taggers of i with t already visited and one of the
following values:

• tf (t , i), if this term frequency has been read already by accessing CT-IL, or otherwise

• top_tf (t), if t ∈ {t1, . . . , tr−1}, or

• top_tf (tr), if t is instead a completion of tr .

For every candidate i of a candidate list Dt , we accumulate in sf (i | s, t) the social score
(initially 0).

Each time we visit a user u having a triple (u, i, t) in her p-space (Algorithm 4), we can

1. update sf (i | s, t) by adding σ+(s,u) to it, and

2. decrement unseen_users(i, t); when this reaches 0, the social frequency sf (i | s, t) is
exact.

The maximal proximity score of yet to be visited users is denoted max_proximity. With
this proximity bound, a sound score range for candidates i in Dt bu�ers is computed and
maintained as

26 as-you-type social recommendation

• a score upper bound (maximal score) MaxScore(i | s, t), by max_proximity× unseen_users(i, t)+
sf (i | s, t).

• a score lower bound (minimal score), MinScore(i | s, t), by assuming that the cur-
rent social frequency sf (i | s, t) is the �nal one (put otherwise, all remaining taggers
u of i with t , which are yet to be encountered, have σ+(s,u) = 0).

Consuming the inverted list entries (Algorithm 5) in CT-IL, whenever top items become
candidates, allows us to keep as accurate as possible the worst-case estimation on the num-
ber of unseen taggers. When such a tuple (i, t , score) is accessed, we can do adjustments
on score estimates:

1. if i ∈ Dt , we can mark the number of unseen taggers of i with t as no longer an
estimate but an exact value; from this point on, the number of unseen users will
only change whenever new users who tagged i with t are visited,

2. by advancing to the next best item in IL(t), for t ∈ {t1, . . . , tr−1}, we can re�ne the
unseen_users(i ′, t) estimates for all candidate items i ′ for which the exact number
of users who tagged them with t is yet unknown,

3. by advancing to the next best item in IL(tr), with some t = top_tag(tr) completion
of tr , if t ∈ C , we can re�ne the estimates unseen_users(i ′, t) for all candidate items
i ′ ∈ Dt for which the exact number of users who tagged them with t is yet unknown.

Termination condition. From the per-tag Dt bu�ers, we can infer lower bounds on the
global score w.r.t. Q for a candidate item (as de�ned in Eq. (2.3)) by summing up its score
lower bounds from Dt1 , . . . ,Dtr−1 and its maximal score lower bound across all Dt lists, for
completions t of tr . Similarly, we can infer an upper bound on the global score w.r.t. Q by
summing up score upper bounds from Dt1 , . . . ,Dtr−1 and the maximal upper bound across
all Dt lists, for completions t .

After sorting the candidate items (the wildcard item included) by their global score
lower bounds, TOPKS-ASYT can terminate whenever (i) the wildcard item is not among
the top-k ones, and (ii) the score upper bounds of items not among the top-k ones are less
than the score lower bound of the kth item in this ordering (we know that the top-k can
no longer change).

As in [88], it can be shown that TOPKS-ASYT visits users who may be relevant for the
query in decreasing proximity order and, importantly, that it visits as few users as possible
(it is instance optimal for this aspect, in the case of exclusively social relevance).

Example 2.7 Revisiting our running example in Fig. 2.2, let us assume Alice requires the

top-2 items for the query Q = (style, gl) where gl is a pre�x and for α = 0. The �rst data
access steps of TOPKS-ASYT are as follows: at the �rst execution of the main loop step, we visit

Bob, get his p-space, adding i6 both to the Dstyle bu�er and to a Dglasses one. There may be

at most two other taggers of i6 with style (unseen_users(i6, style)), and at most one other

tagger of i6 with glasses (unseen_users(i6, glasses)). No reading is done in IL(style), as
its current entry gives the non-candidate item i4, but we can advance with one pop in the

virtual list of the gl pre�x, for candidate item i6. This clari�es that there is exactly one other

tagger with glasses for i6. After this read in the virtual list of gl, we have top_item(gl) = i1

2.3 the as-you-type approach 27

Algorithm 4: Subroutine process_p_space(u)
1 forall t ∈ {t1, . . . , tr−1}, triples Tagged(u, i, t) do
2 if i < Dt then
3 Add i to Dt , sf (i | s, t) ← 0;
4 unseen_users(i, t) ← top_tf (t);
5 end
6 unseen_users(i, t) ← unseen_users(i, t) − 1;
7 sf (i | s, t) ← sf (i | s, t) + σ+(s,u);
8 end
9 forall tags t completions of tr , triples Tagged(u, i, t) do

10 if t < C then
11 Add t to C , Dt = ∅;
12 end
13 if i < Dt then
14 Add i to Dt , sf (i | s, t) ← 0;
15 unseen_users(i, t) ← top_tf (t);
16 end
17 unseen_users(i, t) ← unseen_users(i, t) − 1;
18 sf (i | s, t) ← sf (i | s, t) + σ+(s,u);
19 end

(if we assume that items are also ordered by their ids). At this point max_proximity is 0.81.
Therefore, we have

MaxScore(i6 | Alice, style) = 0.81 × 2 + 0.9,
MinScore(i6 | Alice, style) = 0.9,
MaxScore(i6 | Alice, glasses) = 0.81 × 1 + 0.9,
MinScore(i6 | Alice, glasses) = 0.9.

We thus have that score(i6 |Alice,Q) is between 1.8 and 4.23.
At the second execution of the main loop step, we visit Danny, whose p-space does not

contain relevant items forQ . But a side-e�ect of this step is that max_proximity becomes 0.6,
a�ecting the upper bound scores above: score(i6 | Alice,Q) can now be estimated between 1.8
and 3.6.

At the third execution of the main loop step, we visit Carol, and �nd the relevant p-space

entries for i4 (with tag style) and i6 (with tag glasses). Now max_proximity becomes

0.4. Also, we can advance with one pop in the inverted list of style. This clari�es that

there are exactly 2 other taggers with style on i4, and now we have top_item(gl) = i1
and top_item(style) = i2. This makes score(i6 | Alice,Q) to be known precisely at 2.4,
score(i4 | Alice,Q) to be estimated between 0.6 and 0.6+3×0.4 = 1.8, and score(∗ | Alice,Q)
is at most 0.8. At this point the algorithm has reached the termination condition.

2.3.3 Adaptations for the network-aware case

We sketch in this section the necessary extensions to Algorithm 3 for arbitrary values of
α , hence for any textual-social relevance balance. When α ∈ [0, 1], at each iteration, the

28 as-you-type social recommendation

Algorithm 5: Subroutine process_CT-IL
1 while ∃t ∈ Q s.t. i = top_item(t) ∈

⋃
x Dx do

2 if t , tr then
3 tf (t , i) ← top_tf (t) (t ’s frequency in i is now known);
4 Advance IL(t) one position;
5 ∆← tf (t , i) − top_tf (t) (the top_tf drop);
6 Add i to CILt ;
7 forall items i ′ ∈ Dt \CILt do
8 unseen_users(i ′, t) ← unseen_users(i ′, t) − ∆;
9 end

10 end
11 if t = tr then
12 t ′ ← top_tag(tr) (some tr completion t ′);
13 tf (t ′, i) ← top_tf (tr) (t ′’s frequency in i known);
14 Advance IL(tr) one position;
15 ∆← tf (t ′, i) − top_tf (tr) (the top_tf drop);
16 Add i to CILt ′ or set CILt ′ to {i} if previously empty;
17 forall t ′′ ∈ C and items i ′ ∈ Dt ′′ \CILt ′′ do
18 unseen_users(i ′, t ′′) ← unseen_users(i ′, t ′′) − ∆;
19 end
20 end
21 end

algorithm can alternate between two possible execution branches: the social branch (the
one detailed in Algorithm 3) and a textual branch, which is a direct adaptation of NRA over
the CT-IL structure, reading in parallel in all the query term lists (concrete or virtual). Now,
items can become candidates even without being encountered in p-spaces, when read in
inverted lists during an execution of the textual branch. As before, each read from CT-IL is
associated with updates on score estimates such as unseen_users. For a given item i and tag
t , the maximal possible fr-score can be obtained by adding to the previously seen maximal
possible sf-score (weighted now by 1 − α) the maximal possible value of tf (t , i); the latter
may be known (if read in CT-IL), or estimated as top_tf (t) otherwise. Symmetrically, the
minimal possible value for tf (t , i) is used for lower bounds; if not known, this can be
estimated as the number of visited users who tagged i with t .

The choice between the two possible execution branches can rely on heuristics which
estimate their utility w.r.t approaching the �nal result. We mention the existing works of
Maniu and Cautis [88] and Schenkel et al. [105] who propose to guide this choice either by
estimating the maximum potential score of each branch, or by choosing the branch that
is the most likely to re�ne the score of the item outside the current top-k which has the
highest estimated score (a choice that is likely to advance the run of the algorithm closer
to termination).

2.3.4 Adaptations for incremental computation

We now describe the extension to perform the as-you-type computation incrementally, as
follows:

2.3 the as-you-type approach 29

1. when a new keyword is initiated (i.e., tr is one character), we take the following
steps in order:

a) purge all Dt bu�ers for t ∈ C , except for Dtr−1 (tr−1 is no longer a potential
pre�x, but a complete term),

b) reinitialize C to the empty set,
c) purge all CILt bu�ers for t < {t1, . . . , tr−1},
d) reinitialize the network exploration (the queue H) to start from the seeker, in

order to visit again p-spaces looking for triples for the new pre�x, tr . (This
amounts to the following changes in Algorithm 3: among its initialization
steps (1-12), steps (4-8) are removed, and steps for points (a) and (c) above
are added.)

2. when the current tr is augmented with one additional character (so tr is at least two
characters long), we take the following steps in order:

a) purge Dt bu�ers for t ∈ C s.t. t is not a tr completion
b) remove from C all ts which aren’t completions for tr ,
c) purge all CILt bu�ers for t < {t1, . . . tr−1} ∪C ,
d) resume the network exploration. (This amounts to the following changes in

Algorithm 3: among its initialization steps (1-12), steps (4-8) and (10-12) are
removed, and steps for points (a), (b), and (c) above are added.)

Note that, in the latter case, we can e�ciently do the �ltering operations by relying on a
simple trie structure for the C set and use it as the index for directly accessing the other
data structures (D-lists and CIL-lists).

2.3.5 Complexity analysis

Recall that Tagged(v, i, t) denotes the set of unique triples and consider a query Q =
(t1, . . . , tr). Let f denote the average fan-out in the CT-IL index, dr the average depth of
the trie subtree rooted at the node corresponding to tr (models the size of tr completions),
and p the average p-space size. Finally, remember that users in U are interconnected in
the similarity graph through edges E.

CT-IL is a space-e�cient trie structure for sorted access, as a node can represent a se-
quence of characters. Thus, the memory space to store the trie is reduced compared to the
trie index of [78]. Given an item i and a tag t , there corresponds a unique entry (i, tf (i, t))
in IL(t). In total, there are as many entries in inverted lists as unique pairs (i, t), leading
to a total space for the inverted lists at the leaves of CT-IL of O (|{unique (i, t)}|). The
number of inverted lists corresponds to the number of distinct tags in the vocabulary, |T |.
For example, in the case of our Yelp dataset, there are 177, 286 such lists and a simple
computation reveals that in average each would have approximately 70 entries.

For each user u, we store a p-space index containing all pairs (i, t) of u. Thus, each
triple is indexed in p-spaces exactly once. The shortest-path computations for exploring
the social graph by order of proximity is straightforwardly O (|E |+|U |log|U |).

In the run of TOPKS-ASYT, we visit one user at a time in the social graph and, in the
worst-case, we may visit the entire network, unless an event like the termination condition,

30 as-you-type social recommendation

a keystroke, or (most likely) the time limit occurs.3 While entries in inverted lists are read
at most once (see Algorithm 5), the situation is di�erent for p-spaces, as they may need
to be explored once for each new word that is added to the query (see step (1)(d) from the
previous section), leading to O (r) network explorations.

A one-character search (i.e., expansion of tr) initially costs O (f) in CT-IL, and is fol-
lowed by a sequence of variable length of sorted accesses in the trie and in the social
graph; their actual number depends on the value of α and on the overlap between p-spaces
and CT-IL. Individually, the former accesses have a direct cost of O (dr logdr). However,
compared with the compact-trie of [54], this direct cost we incur is roughly double (albeit
reduced), since our leaves are not necessarily single strings, but lists thereof, and thus a
sorted access in a priority queue most often will translate in a score update instead of a
normal pop operation.

Just like the NRA algorithm of [38], whose complexity is quadratic in the size of its
bu�ers, the bookkeeping steps are more expensive complexity-wise because score inter-
vals are maintained throughout the computation, so we cannot have bounded bu�ers for
our candidates. Whenever the p-space of some user u is visited (Algorithm 4), for a given
completed tag t ∈ Q used by u, the cost of the updates to be done on the bu�er Dt is
O (p |Dt |); an additional cost of O (p∑

t |Dt |), for t denoting tr completions, corresponds to
the tag tr still in the typing. Regarding accesses to CT-IL by Algorithm 5, the cost is of the
order O (p (|Dt |

2+|CILt | |Dt |)) for the completed tags t , and O (p∑
t (|Dt |

2+|CILt | |Dt |)) for
the completions t of tr . Overall, in the most important case for our study – exclusively
social, i.e., α = 0, for one pre�x query, i.e., r = 1 – the worst-case time complexity of our
algorithm is O (|E |+|U |log|U |+dr |U |p

∑
t (|Dt |

2+|CILt | |Dt |), for the completions t of tr .
Compared to the non-incremental version, the algorithm avoids to restart the graph

exploration from the seeker s and simply continues from the currently visited node. As
described in Section 2.3.4, the pruning of all unnecessary data structures Dt , CILt , and C
– for t denoting here the previous completions that do not match newly typed letter, can
be done e�ciently in O (f) by using a trie for the C-set, which can act as the vocabulary
index leading to the Dt and CILt bu�ers.

2.3.6 Supernodes

When visiting a user node, we need to explore its p-space – its tag contributions – by
routine process_p_space (Algorithm 4). This can be costly overall if p-spaces are saved
on disk, since many p-spaces may be loaded in main memory. In the case of time-limited
queries, when a budget is imposed (e.g., in terms of random disk accesses) and results
must be returned before budget expiration, loading p-spaces from disk becomes therefore
a core issue. In this section, we discuss a way to make p-space exploration go deeper in
the graph, under access budget constraints.

Most sequences of users visited by TOPKS-ASYT are unique to each seeker. Thus, unless
each possible sequence was materialised and cached on disk, p-spaces must be loaded one
at a time. To tackle this issue, we propose to cluster users into supernodes and apply TOPKS-
ASYT on the graph reduced to supernodes. Instead of loading one p-space at a time, several
p-spaces included in the same supernode can be loaded jointly, with the tradeo� of some
limited “o�-track” exploration.

3 It is highly likely in practice that typing latency precludes most often a computation until termination
conditions are reached.

2.4 experiments 31

Twitter Amazon Tumblr Yelp

Number of unique users 458, 117 130, 098 612, 425 29, 293
Number of unique items 1.6M 252, 891 1.4M 18, 149
Number of unique tags 550, 157 91, 352 2.3M 177, 286
Number of triples 13.9M 24.7M 11.3M 30.3M
Average number of tags per item 8.4 53.8 7.9 685.7
Average tag length 13.1 6.9 13.0 6.5

Table 2.1: Statistics on the datasets we used in our experiments.

To build N supernodes, we �rst select N random users in the graph. Each user will
correspond to the centroid of a supernode. Every remaining vertexu is then assigned to the
supernode whose centroid is the closest tou. This method has the advantage of producing
supernodes of relatively balanced sizes, which is exactly the purpose of clustering users
into supernodes. Obviously, if the cluster sizes were unbalanced, that would make TOPKS-
ASYT perform considerably worse when having to load many small supernodes. (Indeed,
in preliminary experiments, state-of-the-art community detection assigned most users to
few supernodes, letting most other supernode cardinalities far under the average number
of users per cluster; this is why we followed a di�erent user grouping.)

2.4 experiments

We evaluate in this section the e�ectiveness, scalability, and e�ciency of TOPKS-ASYT.
We used a Java implementation of our algorithms, on a low-end Intel Core i7 Linux ma-
chine with 16GB of RAM. We performed our experiments in an all-in-memory setting, for
datasets of medium size (10-30 millions of tagging triples). We describe �rst the applica-
tions and datasets we used for evaluation.

2.4.1 Datasets

We used several popular social media platforms, namely Twitter, Tumblr, Yelp, and Ama-
zon, from which we built sets of (user, item, tag) triples. Table 2.1 reports some statistics
about each dataset.

twitter. We used a collection of tweets extracted during Aug. 2012. As described in
Section 4.3.1, we see each tweet and its re-tweet instances as one item, and the authors of
the tweets/re-tweets as its taggers. We include both the text and the hashtags as tags.

amazon movies. We used a publicly available SNAP dataset of around 35 million
movie reviews, spanning a period of 18 years up to March 2013. In this social media sce-
nario, in order to build the user-item-tag triples, we simply considered the movie as the
item, the author of the review as the tagger, and the keywords appearing in the review as
the tags.

32 as-you-type social recommendation

tumblr. We extracted a collection of Tumblr posts from Oct.-Nov. 2014, following the
same interpretation on posts, taggers, and tags as in Twitter. Among the 6 di�erent types
of posts within Tumblr, we selected only the default type, which can contain text plus
images. Moreover, in the case of Tumblr, we were able to access the follower-followee
network and thus we extracted the induced follower-followee network for the selected
taggers.

yelp. Lastly, we considered a publicly available Yelp dataset, containing reviews for
businesses and the induced follower-followee network4. In this case, in order to build the
triples, we considered the business (e.g., restaurant) as the item, the author of the review
as the tagger, and the keywords appearing in the review as the tags.

For Twitter and Tumblr, to enrich the set of keywords associated to an item, we also
expand each tag by the at most 5 most common keywords associated with it by a given
user, i.e., by the tag-keyword co-occurrence. Finally, from the resulting sets of triples, we
removed those corresponding to (i) items that were not tagged by at least two users, or (ii)
users who did not tag at least two items.

To complete the data setting for our algorithm, we then constructed the user-to-user
weighted networks that are exploited in the social-aware search. For this, we �rst used
the underlying social network (when available). Speci�cally, for each user pair in Tumblr
or Yelp, we computed the Dice coe�cient corresponding to the common neighbors in the
social network. To also study situations when such a network may not be available (as
for Twitter and Amazon), exploiting a thematic proximity instead of a social one, we built
two other kinds of user similarity networks, based on the Dice coe�cient over either (i)
the item-tag pairs of the two users, or (ii) the tags of the two users. We considered the �l-
tering of “noise” links, weighted below a given cut-o� threshold. Among the resulting ten
networks, the Amazon tag similarity one was discarded due to poor connectivity coupled
with high density and thus a less discriminative nature; we therefore report next on nine
di�erent network con�gurations.

2.4.2 Experimental results: e�ectiveness

We present in this section the results we obtained in our experiments for e�ectiveness,
or “prediction power”, with the purpose of validating the underlying as-you-type query
model and the feasibility of our approach. In this framework, for all the data con�gurations
we considered for e�ectiveness purposes, we imposed wall-clock time thresholds of 50ms
per keystroke, which we see as appropriate for an interactive search experience.

To measure e�ectiveness, we followed an assumption used in recent literature, e.g.
in [88, 96], namely that a user is likely to �nd his items – belonging to him or re-published
by him – more interesting than random items from other users. For testing e�ectiveness,
we randomly select triples (u, i, t) from each dataset. For each selected triple, we consider
u as the seeker and t as the keyword issued by this user. The aim is to “get back” item i
through search. The as-you-type scenario is simulated by considering that the user issues
t one letter at a time. Note that an item may be retrieved back only if at least one user
connected to the seeker tagged it. We picked randomly 800 such triples (we denote this se-
lection as the setD), for tags having at least three letters. For each individual measurement,

4 http://www.yelp.com/dataset_challenge

2.4 experiments 33

2 4 6 8
l

0.00

0.05

0.10

0.15

0.20

0.25

0.30
P@

5

Amazon item-tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P@
5

Twitter item-tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.1

0.2

0.3

0.4

0.5

0.6

P@
5

Twitter tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.0

0.2

0.4

0.6

0.8

P@
5

Tumblr item-tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P@
5

Tumblr tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.0

0.1

0.2

0.3

0.4

0.5

P@
5

Tumblr social network

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.00

0.05

0.10

0.15

0.20

0.25

P@
5

Yelp item-tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.00

0.05

0.10

0.15

0.20

P@
5

Yelp tag

α

0

0.01

0.1

0.4

1

2 4 6 8
l

0.0

0.1

0.2

0.3

0.4

P@
5

Yelp social network

α

0

0.01

0.1

0.4

1

Figure 2.5: Impact of α on precision.

we gave as input a triple (user, item, tag) to be tested (after removing it from the dataset),
and then we observed the ranking of item when user issues a query that is a pre�x of tag.

Note that we tested e�ectiveness using single-word search for Twitter, Tumblr, and
Amazon. On the contrary, for Yelp, due to its distinct features of having many triples per
user, we did two-word search: given a query q = (w1,w2), we �rst �ltered items tagged by
w1, we then processed the remaining triples with query w2 in the same manner as we did
for Twitter and Tumblr.

We de�ne the precision P@k for our selected set D as

P@k =
#{triple | rankinд < k, triple ∈ D}

#D

Since P@k can be seen as a function of the main parameters of our system, one goal was
to understand how it is in�uenced by them. We describe now the di�erent parameters we
took into account.

• l , length of the pre�x in the query (number of characters).

• θ , the threshold used to �lter similarity links keeping only those having a score
above.

34 as-you-type social recommendation

2 4 6 8
l

0.150

0.175

0.200

0.225

0.250

0.275

0.300

P@
5

Amazon item-tag

θ
0.400

0.500

0.667

2 4 6 8
l

0.2

0.3

0.4

0.5

0.6

0.7

P@
5

Twitter item-tag

θ
0.404

0.467

0.588

2 4 6 8
l

0.2

0.3

0.4

0.5

0.6

P@
5

Twitter tag

θ
0.401

0.444

0.514

2 4 6 8
l

0.2

0.4

0.6

0.8

P@
5

Tumblr item-tag

θ
0.403

0.526

0.667

2 4 6 8
l

0.45

0.50

0.55

0.60

0.65

0.70

P@
5

Tumblr tag

θ
0.403

0.435

0.462

2 4 6 8
l

0.2

0.3

0.4

0.5

P@
5

Tumblr social network

θ
0.250

0.286

0.348

2 4 6 8
l

0.05

0.10

0.15

0.20

0.25

P@
5

Yelp item-tag

θ
0.050

0.060

0.078

2 4 6 8
l

0.00

0.05

0.10

0.15

0.20

P@
5

Yelp tag

θ
0.350

0.364

0.385

2 4 6 8
l

0.1

0.2

0.3

0.4
P@

5

Yelp social network

θ
0.200

0.286

0.333

Figure 2.6: Impact of θ on precision.

• α , the social bias (α = 0 for exclusively social score, α = 1 for exclusively textual
score).

• ηi (u), the number of items tagged by user u, a user activeness indicator (for simplic-
ity, hereafter referred to as ηi).

• ηu (i), number of users who tagged item i , an item popularity indicator (ηu).

We present next the results we obtained for this experiment. In each �gure, parameters
whose impact is not monitored are set to the following default values: α = 0 (fully social
bias), θ is assigned the lowest value of the tested dataset, ηi and ηu are associated to active
users and popular items (ηi ≥ 3 and ηu ≥ 10).

impact of α . As shown in Figure 2.5, α can have a major impact on precision. With
a fully social bias (α = 0), we obtained the best results for the four datasets and all the
available similarity networks. Moreover, typing new characters to complete the pre�x in-
creases the precision. However, the evolution for α = 0 can be quite slow, with the Tumblr
or Yelp item-tag similarity network for witness. In this case, one likely reason is that these
networks are quite rich in information, and the neighbors of the seeker are very likely to
have the searched item, with the right tag, due to the way this network was built. This can

2.4 experiments 35

2 4 6 8
l

0.2

0.3

0.4

0.5

0.6

0.7
P@

5

Amazon item-tag

ηi ≤ 9, ηu ≤ 9

ηi ≤ 9, ηu ≥ 10

ηi ≥ 10, ηu ≤ 9

ηi ≥ 10, ηu ≥ 10

2 4 6 8
l

0.0

0.2

0.4

0.6

0.8

P@
5

Twitter item-tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.0

0.2

0.4

0.6

0.8

P@
5

Twitter tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.2

0.4

0.6

0.8

1.0

P@
5

Tumblr item-tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.2

0.4

0.6

0.8

P@
5

Tumblr tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.1

0.2

0.3

0.4

0.5

P@
5

Tumblr social network

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.2

0.4

0.6

0.8

P@
5

Yelp item-tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.0

0.1

0.2

0.3

0.4

P@
5

Yelp tag

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2 4 6 8
l

0.1

0.2

0.3

0.4

P@
5

Yelp social network

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

Figure 2.7: Precision for various types of users and items.

also explain why the precision for the item-tag networks is higher in the case of Tumblr
than those for tag and social similarity networks. The precision for the social similarity
network is the lowest for Tumblr, while in the case of the Yelp dataset the best results are
obtained using the social network. Recall that the tag and item-tag networks were built
based on the same content we were testing on, whereas the social similarity network only
uses the links between users to infer distances between them. Yelp and Amazon exhibit
lower precision levels overall, unsurprisingly, since they are denser datasets (more triples
per user).

Interestingly, we obtain good precisions levels with such networks of similarity in social
links (the highest in the case of Yelp) supporting our claim for social bias. For example, in
the case of Tumblr, we can reach P@5 of around 0.82 for the item-tag similarity network,
0.7 for the tag one, and still 0.5 for the social one. This indicates that we can indeed �nd
relevant information using a content-agnostic network using TOPKS-ASYT. Importantly,
it also indicates that we can always search with the same social similarity network, even
when the content evolves rather rapidly, with the same precision guarantees.

Finally, we observe that the evolution curve for small values of α , as new characters are
added, varies depending on the similarity network. In Tumblr for example, the precision
for low values of α does not increase much using the item-tag similarity network. The

36 as-you-type social recommendation

items were found very close to the seeker and a few characters already give the �nal score
in most cases. Very likely, the average number of items per user is too low to make the
length of the pre�x have an impact (most probably, users close to the seeker would not
have several items tagged with the same pre�x, even if this pre�x is short). On the contrary,
with the social similarity network, items with a tag matching the pre�x are more likely to
be diverse around the seeker. The distribution of the searched item in the network should
thus be less concentrated around the seeker. Therefore, the number of result candidates
with a high score for short pre�xes is larger, and increasing l has more impact on the
precision. Whereas an item-tag network tends to do so by de�nition, this can be seen as a
clear consequence of the social bias that motivated our work.

impact of θ . In Figure 2.6, we illustrate the impact of θ on the quality of results. We
mention that the two highest θ values lead to 33% and 66% cuts on the total number of
edges obtained with the lowest θ value. Unsurprisingly, removing connections between
users decreases the precision. When using the similarity network �ltered by the lowest θ
value, the seeker is almost always connected to the network’s largest connected compo-
nent, and we can visit many users to retrieve back the targeted item. With higher θ values,
the connectivity for certain seekers we tested with is broken, making some of the tested
items unreachable.

impact of popularity / activeness. We show in Figure 2.7 the e�ects of item
popularity and user activity. For all similarity networks, the precision is better for popular
items (high ηu). This is to be expected, as a popular item is more likely to be found when
visiting the graph, as it is expected that it will score high since it has many taggers. Along
with item popularity, we can observe that user activeness has a di�erent e�ect in both
content-based and the social similarity networks. Active users yield a better precision
score when similarity comes from social links, whereas it is the opposite with content-
based similarity networks. Reasonably, retrieving back an item for a non-active seeker in
a content-based network is easier since his similarity with neighbors is stronger (Dice
coe�cient computed on less content).

2.4.3 Experimental results: e�ectiveness with multiple words

We describe next an additional experimental evaluation for e�ectiveness, focusing on the
case of multiple word queries, in the densest dataset (Yelp). When dealing with multi-
word queries, the score of the pre�x can have a highly disproportionate weight compared
to other terms in the query.

As we take the maximal score over all the possible completions (Eq.(2.6), (2.7)), the score
for short pre�xes is likely to be very high and render irrelevant the preceding terms. For
example, if the query is composed of two terms t 1 and t 2 , since t 2 is interpreted as a
pre�x, its length can in�uence the expectated score (for any value of α) as follows: say t 2
is a pre�x of length 2, it is very likely to be the root of many possible completions; thus
the expected value of the maximal score over all completions will likely be much larger
than the score of t 1 . Furthermore, note that short pre�xes bring little information about a
seeker’s intent.

The top row of Figure 2.8 shows the values for precision for multi-word queries in Yelp,
without correcting the score of the last term. The �rst four letters (l = 1, . . . , 4) correspond

2.4 experiments 37

2.5 5.0 7.5 10.0 12.5
l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P@
5

Yelp social network

α

0

0.01

0.1

1

2.5 5.0 7.5 10.0 12.5
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P@
20

Yelp social network

α

0

0.01

0.1

1

2.5 5.0 7.5 10.0 12.5
l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P@
5

Yelp social network (corrected)

α

0

0.01

0.1

1

2.5 5.0 7.5 10.0 12.5
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P@
20

Yelp social network (corrected)

α

0

0.01

0.1

1

Figure 2.8: Precision for multiple-word queries without (top row) and with (bottom row) correc-
tion.

to the last letters of the �rst word. The following characters (l ≥ 5) correspond to the next
word. As expected, due the e�ect described above, we can see drops in the precision when
starting a new word (l = 5) for any value of α . The precision loss is particularly observable
when measuring P@20. This motivated the following model adjustment.

To make the score of a small pre�x comparable to those of the preceding terms, we
propose to re-scale it by a data-dependent constant. Speci�cally, for each pre�x length (l ≥
1), we compute a normalizer value that maximized the precision through cross-validation.
For example, we computed the parameter N1 (i.e., the normalizer of pre�xes of length 1)
to optimize the precision of queries of the form q = (t1,p), where p is a pre�x of length 1.
Proceeding similarly for other pre�x lengths, in Yelp we obtained constantsN1 = 103,N2 =
200,N3 = 50,N4 = 20,N5 = 8 and N6 = 2.

In Figure 2.8 bottom row, with the normalized scores, we can observe that the drop of
precision seen in Figure 2.8 has almost disappeared (see the case of P@20, where we had
signi�cant drops when starting a new term, but the correction with N1 now preserves
precision).

2.4.4 Experimental results: e�ectiveness with SimRank proximity scores

We conducted similar experiments for e�ectiveness using, instead of the neighborhood-
based Dice proximity extended to shortest paths, the well-known path-based proximity
model SimRank. For space reasons and to avoid repetition, we highlight the results over
the densest dataset (Yelp), for comparison with all the initial plots for e�ectiveness. This

38 as-you-type social recommendation

2 4 6 8
l

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P@
5

Simrank simrank network

α

0

0.001

0.01

0.1

1

2 4 6 8
l

0.1

0.2

0.3

0.4

0.5

0.6

P@
5

Simrank simrank network

ηi ≤ 2, ηu ≤ 9

ηi ≤ 2, ηu ≥ 10

ηi ≥ 3, ηu ≤ 9

ηi ≥ 3, ηu ≥ 10

2.5 5.0 7.5 10.0 12.5
l

0.1

0.2

0.3

0.4

P@
5

Simrank simrank network

α

0

0.01

0.1

1

Figure 2.9: Impact of α (left), type of users / items (middle), multiple words with correction (right)
with SimRank proximity (for comparison with Figures 2.5, 2.7, and 2.8 bottom row re-
spectively).

allowed us to observe how the chosen similarity (local/single-path or global) impacts re-
sults. The SimRank model, introduced by [56], gives a recursive de�nition of the similarity
between users u and v as follows:

σ SimRank (u,v) =
c

|Nu | |Nv |

∑
u ′∈Nu,v ′∈Nv

σ SimRank (u ′,v ′) (2.8)

for some decay factor c ∈ [0, 1]. (A similar de�nition can be given for directed graphs.)
The rationale is that “two objects are considered to be similar if they are referenced by
similar objects”. Since this de�nition is recursive, the SimRank score between two users
depends on the whole graph.

In Figure 2.9, we used SimRank similarity computed on the social network instead of
the Dice’s coe�cient used before. On the left �gure, we display the impact of α on preci-
sion and observe the best results using a fully social bias. Interestingly, we have a slight
improvements using SimRank similarity as it reaches a precision P@5 of 0.45 after typing
5 letters, which is to compare to the value 0.35 observed with Dice’s coe�cient. This sup-
ports the use of path-based similarity measures that encompass the general relationships
between nodes.

On the right �gure, we observe the impact of user activeness and item popularity on
precision. Once again, results are better for popular items. Note that SimRank has no cut-
o� threshold preventing us from experimenting the impact of θ .

2.4.5 Experimental results: e�ciency and scalability

We now turn our attention to the e�ciency and scalability aspects of our solutions.NDCG@k
In Figure 2.10 top row, we display the evolution of NDCG@20 vs. time, for the densest
dataset (Yelp), for di�erent α values (where α is normalized to have similar social and
textual scores in average). The NDCG is computed w.r.t. the exact top-k that would be
obtained running the algorithm on the entire graph. Formally, the normalized discounted

cumulative gain is de�ned as follows:

De�nition 2.1 (NDCG@k). Let DORACLE = (o1, . . . ,ok) be the top-k that would be ob-

tained running the algorithm on the entire graph, sorted by decreasing score lower bounds

and DTOPKS-ASYT = (i1, . . . , ßk) the top-k obtained by TOPKS-ASYT. Finally, let rel(i) denote

2.4 experiments 39

the relevance of item i (in our experiments, it is set to k+1 minus the position of i in the oracle
topk-k Doracle). The normalized discounted cumulative gain accumulated at position k is:

NDCG@k =
DCGk

IDCGk
,where DCGk =

k∑
l=1

rel(il)
log2(l + 1) and IDCGk =

k∑
l=1

rel(ol)
log2(l + 1) .

This measure is an important indicator for the feasibility of social-aware as-you-type
search, illustrating the accuracy levels reached under “typing latency”, even when the
termination conditions are not met. In Fig. 2.10, we �xed the pre�x length size to l = 4.
The left plot is when a user searches with a random tag (not necessarily used by her pre-
viously), while the right plot follows the same selection methodology as in Section 2.4.2.
Importantly, with α corresponding to exclusively social or textual relevance, we reach the
exact top-k faster than when combining these two contributions (α = 0.5). Note also that
this trend holds even when the user searches with random tags.

In Figure 2.10 bottom row, we show the evolution of NDCG@20 vs. time in Yelp, for
di�erent pre�x lengths (the left plot is for random tags). Results shows that with lower l
values we need more time to identify the right top-k . The reason is that shorter pre�xes
can have many potential (matching) items, hence the item discrimination process evolves
more slowly. For these pre�x lengths, we only mention here that we also analyzed the
evolution of NDCG@20 when visiting a �xed number number of users, observing similar
behavior. As expected, the more users we visit the higher NDCG we reach and for longer
pre�xes it is necessary to visit more users. E.g., when l = 6, after visiting 500 users, we
reach an NDCG of 0.8 while for l = 2 the NDCG after 500 visits is 0.9.

Finally, in the experiment illustrated in Figure 2.11 we observed the time to reach the
exact top-k for di�erent dataset sizes. For that, we sorted Yelp triples chronologically and
partitioned them into �ve consecutive (20%) chunks. For each dataset we perform searches
using pre�xes of l = 2, 3, 4, 5. While the time to reach the exact top-k increases with bigger
datasets and shorter pre�xes, the algorithm scales adequately when l is more than 2. For
instance, for l = 3, the time to reach the result over the complete dataset is just twice the
time when considering only 20% of this dataset.

2.4.6 Experimental results: incremental versus non-incremental TOPKS-ASYT

We now analyze the impact of the incremental computation. In Figure 2.12, we display
the time to reach the exact top-k for both TOPKS-ASYT and its incremental counterpart.
For that, we compare the two algorithms on sequences of consecutive pre�xes, e.g. sou,
sour , sourc , and source . Let pt and pt+1 be two consecutive queries di�ering by a single
character. Whereas TOPKS-ASYT starts a new query for each new letter, the incremental
version calculates the answer for pt+1 relying on computations for pt . Obviously, the time
to reach the exact top-k for the �rst pre�x p1 is the same (the same algorithm is run). For
l = 4, the time to reach the result is already slightly smaller for the incremental version
of the algorithm. We emphasize that the �rst part of the incremental algorithm, which
consists in �ltering the previous candidate list explains the small improvement. For longer
pre�xes (l = 5, 6), the candidate list is shorter and the incremental algorithm takes full
advantage of previous computations (speed increase from ×2 for l = 5 up to ×4 for l = 6).

40 as-you-type social recommendation

0 10 20 30 40
t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
N

D
C

G
@

20
Yelp social network

α
0.0

0.5

1.0

0 10 20 30 40
t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
20

Yelp social network

α
0.0

0.5

1.0

0 10 20 30 40
t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
20

Yelp social network

l
2

4

6

0 10 20 30 40
t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
20

Yelp social network

l
2

4

6

Figure 2.10: Impact of α (top) or l (bottom) on NDCG vs time for random search (left) or personal
search (right).

2.4.7 Experimental results: TOPKS-ASYT versus state-of-the-art baseline methods

We compare TOPKS-ASYT with three di�erent baselines methods. The �rst two methods
respectively build on the state-of-the-art social top-k search TOPKS algorithm from [88]
and the type-ahead textual search algorithm NRA(Heap) of [78]5. The third method relies
on the online Yelp Search API with query-autocompletion.

topks-m: social top-k baseline. We �rst compare TOPKS-ASYT to TOPKS-M
(for TOPKS-Merge), a baseline method that follows a natural idea relying on the social
top-k state-of-the-art (such as algorithm TOPKS from [88]), but does not bene�t from CT-
IL (i.e., does not bene�t from pre�x-based retrieval). The approach of TOPKS-M works in
two stages, as follows: �rst, we load the inverted lists of all the possible completions of the
�nal term given in the query and merge them in a unique list. As a result, this step may
be very costly for short pre�xes. Once the �rst step is completed, we can directly apply
algorithm TOPKS, using pre�xes as complete words with their own inverted list.

In Figure 2.13 top row, we show the NDCG@20 of TOPKS-ASYT and TOPKS for various
budgets (50, 100, 200, 400 – each value corresponds to a color intensity, from lighter to
darker) and various α . A budget B corresponds to the maximal number of signi�cant disk
accesses we allow the algorithm to do to answer a query. In our interpretation, a signi�cant

5 This method was implemented and made available by the authors, as part of an instant-search engine called
SRCH2; its source code is available at https://github.com/SRCH2/srch2-ngn.

2.4 experiments 41

2 3 4 5
l

0

50

100

150

200

250

T
im

e
ex

ac
t

to
p-
k

(m
s)

Yelp social network

scale

20

40

60

80

100

Figure 2.11: Time to exact top-k for
di�erent dataset sizes.

3 4 5 6
l

0

10

20

30

40

50

60

70

T
im

e
ex

ac
t

to
p-
k

Yelp social network

Incremental
Not-Incremental

Figure 2.12: Incremental vs non-incremental
version.

disk access can be either a p-space exploration (visit of the next user in the algorithm) or
the loading of an inverted list. Our experiments show that the second is more costly (×12
in average), thus, we count a budget consumption of 12 for a disk access corresponding
to an entire inverted list. Similarly to Section 2.4.5, the NDCG is computed w.r.t. the exact
top-k that would be obtained by running the algorithm on the entire similarity graph
without budget restrictions.

Forα ranging from 0 to 1, we observe a similar behavior, when comparing TOPKS-ASYT
to the baseline method. Results show that the NDCG of TOPKS-M is much smaller than
the one of TOPKS-ASYT, even for relatively important budgets (e.g., B = 400). The cost
of merging inverted lists before applying TOPKS prevents the algorithm from providing
high-quality answers fast. For example, for short pre�xes (l = 3, 4), too many completions
are possible and thus the baseline loads too many inverted lists compared to the budget.
Even for a budget B = 400, TOPKS cannot catch up with the precision of TOPKS-ASYT
for a pre�x length l = 3.

topks-2d: textual search as-you-type baseline. We now compare TOPKS-
ASYT to a dimension-at-a-time approach, denoted TOPKS-2D (for TOPKS-2-Dimensions),
which processes social and textual contributions separately. First, we retrieve documents
matching the query on the textual dimension using the NRA(Heap) type-ahead baseline
from [78]. That is, we read inverted lists and build the candidate list, ignoring the social
contribution (we do not use the social graph and no p-space is explored). In a second stage,
we then explore the similarity graph to obtain the social contribution in the �nal score.

In Figure 2.13 middle row, for the same budget values and color code as before, we
show the NDCG@20 of TOPKS-ASYT and TOPKS-2D, for various values of α (α = 1
is not considered, as it is a case where TOPKS-ASYT and the baseline are virtually the
same). We can see that small values of α highly favor TOPKS-ASYT: NRA(Heap) spends
useless budget on inverted lists, since it runs without knowledge of the social scores. On
the contrary, TOPKS-ASYT bene�ts from simultaneous social and textual score computa-
tions to avoid using unnecessary inverted lists. When α increases, the textual contribution
becomes more signi�cant and the baseline method becomes more competitive, especially
for longer pre�xes that do not have many possible completions.

autocompletion+topks baseline. We complete our performance comparison
with Autocomplete+TOPKS, a baseline method that relies on the Yelp Search API for

42 as-you-type social recommendation

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0)

TOPKS-ASYT
TOPKS-M

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0.01)

TOPKS-ASYT
TOPKS-M

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 1)

TOPKS-ASYT
TOPKS-M

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0)

TOPKS-ASYT
TOPKS-2D

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0.001)

TOPKS-ASYT
TOPKS-2D

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0.01)

TOPKS-ASYT
TOPKS-2D

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0)

TOPKS-ASYT
Autocompletion + TOPKS

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 0.01)

TOPKS-ASYT
Autocompletion + TOPKS

3 4 5 6 7
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network (α = 1)

TOPKS-ASYT
Autocompletion + TOPKS

Figure 2.13: TOPKS-ASYT vs. TOPKS-M (top), TOPKS-2D (middle) or Autocompletion + TOPKS
(bottom) baselines with �xed budget.

query-autocompletion6. This baseline method proceeds as follows: we obtain a set of
queries that are predicted by Yelp to complete the current query (pre�x) the seeker is
typing, without using any social information (the service is not “personalized”). We then
use these queries to get the set of top-k results over our data, by simply running for them
the aforementioned state-of-the-art network-aware top-k algorithm TOPKS from [88]. We
give TOPKS-ASYT and the baseline the same budgets as in previous experiments and,
to avoid any potential evaluation bias in our favor, any costs from the Yelp API auto-
completion step are ignored.

In Figure 2.13 bottom row, we show the NDCG@20 of TOPKS-ASYT and Autocom-
plete+TOPKS using the same display convention as before. We can see that for all val-
ues of α , the NDCG of Autocompletion+TOPKS is signi�cantly smaller than the one of
TOPKS-ASYT. As the API does not use social information to construct autocompletions,
the �nal top-k is likely a�ected by the general query trend and this should explain the
NDCG for low values of α . Interestingly, we can however observe a similar behavior even
for high values of α (textual score).

6 https://github.com/Yelp/yelp-api-v3/blob/master/docs/api-references/autocomplete.md

2.4 experiments 43

2.4.8 Experimental results: supernodes

In Figure 2.14, we show the impact of the supernode materialization feature, for supern-
odes of average size d = 6 and d = 30. For three di�erent budgets (B = 10, 30, 50), we
run TOPKS-ASYT with the original similarity network and the supernode-reduced graph.
Similarly to the previous section, the budget corresponds to the number of signi�cant disk
accesses we allow our algorithm to do until it outputs a top-k result. For budget B = 50,
supernodes do not increase the NDCG, in particular for short pre�xes. Small pre�xes have
many completions and thus are very common. This means that most of the NDCG con-
tribution is obtained with few visited nodes. When the budget given to TOPKS-ASYT is
smaller, supernodes improve the ranking quality. For instance, with budget B = 10, very
few nodes can be visited by TOPKS-ASYT and the supernodes become a key feature. With
supernodes of 6 users (resp. 30), the algorithm aggregates p-spaces of up to 60 people (resp.
300), whereas it would visit at most 10 neighbors using the initial similarity network.

2 3 4 5 6
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
D

C
G

@
20

Yelp social network

TOPKS-ASYT
TOPKS-ASYT-SUPERNODE (d = 30)
TOPKS-ASYT-SUPERNODE (d = 6)

Figure 2.14: Impact of supernode sizes on NDCG for several pre�x lengths.

main-memory vs. secondary memory considerations. We emphasize here
that we performed our experiments in an all-in-memory setting, for datasets of medium
size (tens of millions of tagging triples), in which the advantages of our approach may
not be entirely observed. In practice, in real, large-scale applications such as Tumblr, one
can no longer assume a direct and inexpensive access to p-spaces and inverted lists, even
though some data dimensions such as the user network and the top levels of CT-IL –
e.g., the trie layer and possibly pre�xes of the inverted lists – could still reside in main
memory. In practice, with each visited user, the search might require a random access for
her personal space, hence the interest for the sequential, user-at-a-time approach. Even
when p-spaces may reside on disk, we experimentally observed that we can reach good
precision levels by retrieving a small number of them (e.g., less than 100); depending on
disk latency, serving results in, for example, under 100ms seems within reach. One way
to further alleviate such costs may be to cluster users having similar proximity vectors,
and choose the layout of p-spaces on disk based on such clusters; this is an approach we
intend to evaluate in the future, at larger scale.

44 as-you-type social recommendation

2.5 conclusion

In this chapter, we study as-you-type query search in social media through the prism of
an adaptive user-centric problem. Our aim was to retrieve the top-k ranked results, under
a network-aware query model by which information produced by users who are closer
to the seeker can be given more weight. We formalize this problem and we describe the
GT-UCB algorithm to solve it. Our solution is based on a novel trie data structure, Index,
allowing ranked access over inverted lists. In several application scenarios, we perform ex-
tensive experiments for e�ciency, e�ectiveness, and scalability, validating our techniques
and the underlying query model. As a measure of e�ciency, since as-accurate-as-possible
answers must be provided while the query is being typed, we investigate how precision
evolves with time and, in particular, under what circumstances acceptable precision levels
are met within reasonable as-you-type latency (e.g., less than 100ms). Also, as a measure
of e�ectiveness, we analyze thoroughly the “prediction power” of the results produced by
GT-UCB.

S

3
A D A P T I V E I N F L U E N C E M A X I M I Z AT I O N

In this chapter, we propose a method to maximize the spread of in�uence in a (potentially
unknown) social network over multiple consecutive rounds. More precisely, we study the
problem of sequentially selecting spread seeds in a graph under the hypothesis that pre-
viously activated nodes can still transfer information, but do not yield further rewards.
Importantly, we make no assumptions on the underlying di�usion model. We call this
problem online in�uence maximization with persistence. We describe a novel algorithm,
GT-UCB, relying on upper con�dence bounds on the so-called missing mass, that is, the
expected number of nodes that can still be reached from a given seed. We show that our
approach leads to high-quality spreads on both simulated and real datasets, despite be-
ing model-free. Moreover, it is orders of magnitude faster than state-of-the-art methods,
making it possible to deal with very large graphs.

The �rst part of this chapter is devoted to the presentation of the problem and an
overview of existing works in in�uence maximization, in both o�ine and online scenarios.
Our method is described in the second part of this chapter. Finally, we present extensions
for semi-bandit in�uence maximization and time-varying IM. This work required the devel-
opment of a software package coded in C++, available at https://github.com/plagree/
oim.

Contents
3.1 Introduction . 46
3.2 In�uence maximization overview . 48

3.2.1 In�uence discrete-time propagation models 48
3.2.2 In�uence maximization . 50
3.2.3 E�cient in�uence computation 52
3.2.4 Online in�uence maximization 55

3.3 Online in�uence maximization via candidates 57
3.3.1 Setting . 57
3.3.2 The GT-UCB algorithm . 59

3.4 Analysis . 63
3.4.1 Con�dence interval for the missing mass 63
3.4.2 Theoretical Guarantees . 65

3.5 Experiments . 66
3.5.1 Extracting candidates from graphs 66
3.5.2 Graph datasets . 67
3.5.3 Experiments on Twitter . 70

3.6 Exploring further online IM models 71

45

https://github.com/plagree/oim
https://github.com/plagree/oim

46 adaptive influence maximization

3.6.1 Semi-bandit online in�uence maximization via candidates . . 72
3.6.2 Online in�uence maximization via rotting candidates 74

3.7 Conclusion . 76
3.A Elements of proof . 76

3.A.1 Useful lemmas . 76
3.A.2 Analysis of the waiting time of GT-UCB 77

3.1 introduction

Advertising based on word-of-mouth di�usion in social media has become very impor-
tant in the digital marketing landscape. Nowadays, social value and social in�uence are
arguably the hottest concepts in the area of Web advertising and most companies that
advertise in the Web space must have a “social” strategy. For example, on widely used
platforms such as Facebook or Twitter, promoted posts are interleaved with normal posts
on user feeds. Users interact with these posts by actions such as “likes” (adoption), “shares”
or “reposts” (network di�usion). This represents an unprecedented tool in advertising, be
it with a commercial intent or not, as products, news, ideas, movies, political manifests,
tweets, etc, can propagate easily to a large audience [119, 120].

Motivated by the need for e�ective viral marketing strategies, in�uence estimation and
in�uence maximization (IM) have become important research problems, at the intersection
of data mining and social sciences [36]. In short, IM is the problem of selecting a set of
nodes from a given di�usion graph, maximizing the expected spread under an underlying
di�usion model. This problem was introduced in 2003 by the seminal work of Kempe
et al. [65], through two stochastic, discrete-time di�usion models, Linear Threshold (LT)
and Independent Cascade (IC). These models rely on di�usion graphs whose edges are
weighted by a score of in�uence. They show that selecting the set of nodes maximizing
the expected spread is NP-hard for both models, and they propose a greedy algorithm
that takes advantage of the submodularity property of the in�uence spread, but does not
scale to large graphs. A rich literature followed, focusing on computationally e�cient and
scalable algorithms to solve IM. We discuss this in more details in Section 3.2.

Importantly, all the IM studies discussed in the benchmarking study of Arora et al. [5]
have as starting point a speci�c di�usion model (IC or LT), whose graph topology and
parameters – basically the edge weights – are known. In order to infer the di�usion pa-
rameters or the underlying graph structure, or both, [34, 42–44, 46, 102] propose o�ine,

model-speci�c methods, which rely on observed information cascades1.
There are however many situations where it is unreasonable to assume the existence of

relevant historical data in the form of cascades. For such settings, online approaches, which
can learn the underlying di�usion parameters while running di�usion campaigns, have
been proposed. Bridging IM and inference, this is done by balancing between exploration
steps (of yet uncertain model aspects) and exploitation ones (of the best solution so far),
by multi-armed bandit techniques, where an agent interacts with the network to infer
in�uence probabilities [23, 113, 114, 121].

Nevertheless, all these studies on inferring di�usion networks, whether o�ine or on-
line, rely on parametric di�usion models, i.e., assume that the actual di�usion dynamics

1 In short, information cascades are time-ordered sequences of records indicating when a speci�c user was
activated or adopted a speci�c item.

3.1 introduction 47

are well captured by such a model (e.g., IC). This maintains signi�cant limitations for prac-
tical purposes. First, the more complex the model, the harder to learn in large networks,
especially in campaigns that have a relatively short timespan, making model inference
and parameter estimation very challenging within a small horizon (typically tens or hun-
dreds of spreads). Second, it is commonly agreed that the aforementioned di�usion models
represent elegant yet coarse interpretations of a reality that is much more complex and
often hard to observe fully. For examples of insights into this complex reality, the topical

or non-topical nature of an in�uence campaign, the popularity of the piece of information
being di�used, or its speci�c topic were all shown to have a signi�cant impact on hashtag
di�usions in Twitter [34, 48, 100].

our contribution. Aiming to address such limitations, we propose in this work a
large-scale approach for online and adaptive IM, in which the underlying assumptions for
the di�usion processes are kept to a minimal (if, in fact, hardly any). We argue that it can
represent a versatile tool in many practical scenarios. More precisely, we focus on social
media di�usion scenarios in which in�uence campaigns consist of multiple consecutive

trials (or rounds) spreading the same type of information from an arbitrary domain (be it
a product, idea, post, hashtag, etc).2 The goal of each campaign is to reach (or activate)
as many distinct users as possible, the objective function being the total spread. In our
setting – as in, arguably, the real-world – the campaign selects from a set of spread seed

candidates, a small subset of a potentially large and unknown population. At each round,
the learning agent picks among the candidates those from which a new di�usion process
is initiated in the network, gathers some feedback on the activations, and adapts the sub-
sequent steps of the campaign; the agent may “re-seed” certain nodes (we may want to
ask a particular node to initiate spreads several times, e.g., if it has a strong converting

impact). This perspective on in�uence campaigns naturally imposes a certain notion of
persistence, which is given the following interpretation: users that were already activated
in the ongoing campaign – e.g., have adopted the product or endorsed the political can-
didate – remain activated throughout that campaign, and thus will not be accounted for
more than once in the objective function.

We call this problem online in�uence maximization with persistence (in short, OIMP).
Our solution for it follows the multi-armed bandit idea initially employed in Lei et al. [73],
but we adopt instead a di�usion-independent perspective, whose only input are the spread
seed candidates, while the population and underlying di�usion network – which may actu-
ally be the superposition of several networks – remain unknown. In our bandit approach,
the parameters to be estimated are the values of the candidates – how good is a speci�c
candidate –, as opposed to the di�usion edge probabilities of a known graph as in [73].
Furthermore, we assume that di�erent campaigns are independent, and make the model’s
feedback more realistic: after each trial, the agent only gathers the set of activated nodes.
The rationale is that oftentimes, for a given “viral” item, we can track in applications only
when it was adopted by various users, but not why.

The multi-armed bandit algorithm we propose, called GT-UCB, relies on a famous sta-
tistical tool known as the Good-Turing estimator, �rst developed during WWII to crack the
Enigma machine, and later published by Good in a study on species discovery [45]. Our
approach is inspired by the work of Bubeck et al. [17], who proposed the use of the Good-

2 Repeated exposure, known also as the “e�ective frequency”, is a crucial concept in marketing strategies,
online or o�ine.

48 adaptive influence maximization

Turing estimator in a context where the learning agent needs to sequentially select experts
that only sample one of their potential nodes at each trial. In contrast, in OIMP, when a
candidate is selected, it may have a potentially large spread and may activate many nodes
at once. Our solution follows the well-known optimism in the face of uncertainty principle
from the bandit literature, by deriving an upper con�dence bound on the estimator for
the remaining potential for spreading information of each candidate, and by choosing in
a principled manner between explore and exploit steps.

Through our approach, we show that e�cient and e�ective in�uence maximization can
be done in a highly uncertain or under-speci�ed social environment, along with formal
guarantees on the achieved spread.

3.2 influence maximization overview

In this section, we give a general overview of the existing works in o�ine and online
in�uence maximization.

3.2.1 In�uence discrete-time propagation models

We consider a graph G = (V ,E), where V is the set of nodes, and E the set of directed
edges connecting pairs of nodes. The di�usion of information or in�uence in the graph is
a discrete process for which, at each time step t , a node is either active or inactive. Several
propagation models have been proposed in the literature. They all have in common an
initial set of nodes I ⊆ V – the seed set – that contains the initial activated nodes before
the spread of in�uence in the graph. Denoting by the random variable S (I) the spread
initiated by the seed set I , the in�uence spread function is the expected size of the spread:
σ (I) := E[|S (I) |].

We now describe two of the most commonly studied propagation models, namely, the
independent cascade (IC) and the linear threshold (LT) models.

independent cascade. The independent cascade model was initially formalized by
Kempe et al. [65] based on particle physics models [82] and marketing studies [41]. The
core idea of the IC model is to consider that an edge gets activated – di�use the informa-
tion – independently of any other edge. The IC model assumes the existence of a proba-
bility parameter p (u,v) ∈ [0, 1] on every edge (u,v) ∈ E.

De�nition 3.1 (Independent cascade). Given a graph G = (V ,E) with activation prob-

ability function p, the IC model is a discrete stochastic process starting from an initial set of

active seeds I ⊆ V and which proceeds as follows. When a node u ∈ V becomes active, it tries

to activate every unactive neighborv once, succeeding with probabilityp (u,v) independently
of the past activations. The process stops when no further activation is possible.

Example 3.1 We give an example of an IC di�usion process in Fig. 3.1. Initially, at t = 0, a
single node is seeded in Fig. 3.1a. In the example, it corresponds to the �rst use of the hashtag

#falcon9 on a social platform. At time t = 1, the seed successfully activates its one neighbor

that can be activated with probability 0.2 but fails to activate its two other neighbors. Note

that failed activations are represented by red crosses. At time t = 2, the node that has just been
activated at t = 1 activates its 2 unactive neighbors (Fig. 3.1c). Finally, at time t = 3, there is

3.2 influence maximization overview 49

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 3.1: An example of the di�usion process under the IC model. The seed node is represented in
orange while green nodes denote the nodes activated via the di�usion. The edges whose
activations succeeded are depicted in red whereas failed edge activations are denoted
by a red cross.

a single unactive neighbor and its activation fails. After t = 3, there is no new activated node

so the di�usion process stops (Fig. 3.1d).

linear threshold. The IC model is suitable for modeling situations where a single
exposure to an active neighbor su�ces to activate a node. However, it fails to incorporate
the cumulative e�ect that often arises when several neighbors are activated. For example,
when buying a new product, people may need positive feedback from several of their
friends before taking the plunge. This idea was initially introduced in social sciences by
Granovetter [49] and Schelling [104] who based their approach on node-speci�c thresholds.
Later, Kempe et al. [65] introduced the Linear Threshold model for which nodes tend to
activate monotonically with the number of their activated neighbors.

De�nition 3.2 (Linear threshold). Given a graph G = (V ,E) with weight function w ,

and such that for each node v ∈ V ,

∑
u neighbor of v w (u,v) ≤ 1, the LT model is a discrete

process starting from an initial set of active seeds I ⊆ V proceeding as follows. Each node v
chooses a random threshold θv ∈ [0, 1]. Then, at every time step t , all nodes that were active
at t − 1 remain active and each unactive node v at t − 1 becomes active if the total weight of

its active neighbors is at least θv , that is:∑
u active neighbor of v

w (u,v) ≥ θv .

50 adaptive influence maximization

Intuitively, the threshold θv represents how easily the nodev is in�uenced by its neigh-
bors.

submodularity. The IC and LT models share an important property, which will turn
out to be important when designing e�cient algorithms in the next section, namely, the
submodularity of their expected number of in�uenced nodes.

De�nition 3.3 (Submodularity). Let Ω be a �nite set. A set function f : 2Ω → R is

submodular if for every A,B ⊆ Ω with A ⊆ B and every X < B,

f (A ∪ {x }) − f (A) ≥ f (B ∪ {x }) − f (B).

Intuitively, this means that when a new element is added to a set A, f increases even
more as A is small. This is sometimes referred to as the diminishing marginal return prop-
erty. In their seminal paper, Kempe et al. [65] show that σ is submodular in both IC and
LT models.

Theorem 3.1 (Theorems 2.2 and 2.5 [65]). Under both independent cascade (IC) and

linear threshold (LT) models, the in�uence spread function σ is submodular.

3.2.2 In�uence maximization

The traditional problem of in�uence maximization (IM) is to select a set of seed nodes
I ⊆ V , under a cardinality constraint |I |= L, such that the expected spread of an in�u-
ence cascade starting from I (or the expected number of activated nodes) is maximized.
Formally:

Problem 3.1 (In�uence maximization). Denoting by the random variable S (I) the
spread initiated by the seed set I , IM aims to solve the following optimization problem:

arg max
I ⊆V , |I |=L

σ (I) = E[|S (I) |].

The statement of Problem 3.1 makes no assumption on the underlying di�usion model.
In the following, we will focus on in�uence maximization under the independent cascade
and linear threshold models.

complexity of im. Given a di�usion model – the IC or LT model – there are two
computational tasks in order to solve the IM problem:

1. computing the value of σ ({u}) for every user u ∈ V – this task is sometimes called
the in�uence computation,

2. �nding the optimal set I maximizing the expected spread as described in Prob-
lem 3.1.

The following theorem states that the computation of σ is #P-hard under both the IC
and the LT propagation models. The complexity class #P is the set of counting problems
associated to problems in NP: an NP problem tries to answer a decision problem (yes-
no question), whereas a #P problem looks for the number of solutions to the problem.
Similarly to decision problems, we can de�ne completeness and hardness for counting

3.2 influence maximization overview 51

problems: (i) a problem is #P-complete if it is in class #P and any other problem from #P
can be reduced to it in polynomial time, (ii) a problem is #P-hard if it can be reduced from
a #P-complete problem with a polynomial transformation.

Theorem 3.2 (Theorem 1 [117] and Theorem 1 [22]). Given a graph G = (V ,E) and
an initial set of seeds I (possibly a singleton), computing the in�uence spread σ (I) is #P-hard
under both the IC and LT models.

This theorem essentially says that solving the �rst task (the in�uence computation) is
hard. It turns out that the selection of the optimal set is also a di�culty a task. This can
easily be seen because the IC model contains the set cover problem as a special case and the
LT model contains the vertex cover problem as a special case which are both NP-complete.

Theorem 3.3 (Theorems 2.4 and 2.7 [65]). Given a graphG = (V ,E), solving the in�u-
ence maximization problem is NP-hard under both IC and LT models.

At this point, we know that the problem to solve is very challenging for two reasons.
There has been much research focusing on solving the �rst task, namely, the in�uence
computation. They all try to estimate the expected in�uence from every node in the graph.
We will describe several of the proposed ideas in the following section.

Interestingly, all IM methods share the same approximation method to solve the second
task. The selection of the optimal set is done by the famous Greedy algorithm for mono-
tone and submodular functions, which allows to return answers that cannot deviate too
much from the optimal set.

finding the optimal set. In Algorithm 6, we give the generic Greedy algorithm
used to select a set that greedily increases the value of the monotone and submodular
function f .

Algorithm 6: Greedy algorithm
Data: size of the returned set L, monotone and submodular set function f

1 Initialization: S = ∅;
2 for i = 1, . . . ,L do
3 Choose u = arg maxv ∈V \S f (S ∪ {v});
4 S = S ∪ {u};
5 end

Result: S

Algorithm 6 can be easily adapted to the IM problem. The submodular function f is sim-
ply replaced in Line 3 by an estimation σ̂ of the in�uence function σ . The main strength of
the Greedy algorithm is that it cannot provide too bad approximations because of the sub-
modularity of the function to optimize. More speci�cally, the algorithm provides a 1−1/e-
approximation to the optimal set S∗, which roughly corresponds to a 63%-approximation.
Note that this result – summarized in Theorem 3.4 – is very conservative, but, in practice,
the approximation given by the Greedy algorithm is usually much better for IM prob-
lems [80].

52 adaptive influence maximization

Theorem 3.4 (Greedy algorithm [93]). Let f be a monotone and submodular set func-

tion and S∗ = arg max |S |=L f (S) be the set of size L maximizing f . We denote by Ŝ the set

computed by the Greedy procedure from Algorithm 6. We have that

f (Ŝ) ≥
(
1 − 1

e

)
f (S∗).

Proof We denote S∗ := {s∗1, . . . , s∗L} and let Ŝi := {ŝ1, . . . , ŝi } be the set chosen by the Greedy

algorithm at step i ≥ 1. By de�nition, Ŝ0 := ∅.
Then, for l ∈ {0, . . . ,L − 1}, one has

f (S∗) ≤ f (S∗ ∪ Ŝl) (f is monotone)
= f (S∗ ∪ Ŝl) − f ({s∗1, . . . , s

∗
l−1} ∪ Ŝl) + f ({s∗1, . . . , s

∗
l−1} ∪ Ŝl)

= · · ·

= f (Ŝl) +
L∑
i=1

f ({s∗1, . . . , s
∗
j } ∪ Ŝl) − f ({s∗1, . . . , s

∗
j−1} ∪ Ŝl)

≤ f (Ŝl) +
L∑
i=1

f (Ŝl ∪ {s
∗
i }) − f (Ŝl) (f is submodular)

≤ f (Ŝl) +
L∑
i=1

f (Ŝl+1) − f (Ŝl) (by greedyness of the Algorithm)

= f (Ŝl) + L(f (Ŝl+1) − f (Ŝl)).

Let ∆l := f (S∗) − f (Ŝl). We obtain that

∆l+1 ≤ (1 − 1/L)∆l ,

and thus, by induction, ∆L ≤ (1 − 1/L)L∆0. By de�nition, f (∅) = 0, and thus, ∆0 = f (S∗).
Reorganizing terms concludes the proof as (1 − (1 − 1/L)L) ≥ 1 − 1/e . �

3.2.3 E�cient in�uence computation

A plethora of algorithms have been proposed to solve the in�uence computation task of
the IM problem, under speci�c di�usion models. These algorithms can be viewed as full-
information and o�ine approaches: they choose all the seeds at once, in one step, and
they have the complete di�usion con�guration, i.e., the graph topology and the in�uence
probabilities. Here, we review a few existing algorithms to solve the IM problem under
the IC and LT models.

In their original work, Kempe et al. [65] propose MC-Greedy, a simple Monte Carlo
(MC) method to estimate the in�uence function σ . Given a set of seed nodes S , we simulate
R random cascades and average the number of in�uenced nodes. Not surprisingly, the
parameter R is critical in the con�dence of the estimation of σ (S). An MC simulation
is performed before choosing each new node. More precisely, given a set Ŝk of k < L
chosen nodes, Greedy selects the node v that gives the largest marginal improvement.
Thus, for every u ∈ V , R simulations are performed to estimate σ (Ŝk ∪ {u}). Kempe et
al. [65] propose to perform the di�usion process 10, 000 times but they do not give any

3.2 influence maximization overview 53

theoretical guarantee. The time complexity of the algorithm is O (LnRm) where n is the
number of nodes and m is the number of edges. Indeed, there are L rounds, one for each
new node added to the current set. Furthermore, to select each new node, the algorithm
needs to go through all the nodes that have not been selected yet, and, for each of these
nodes, R simulations that can potentially traverse all edges are performed. In summary,
we easily see that MC-Greedy does not perform e�ciently in large-scale scenarios.

Signi�cant progress has thus been made since the foundational work of [65], for propos-
ing methods to estimate the in�uence function σ that scale to large networks with formal
guarantees on the approximation. In their benchmarking study, Arora et al. [5] classify the
di�erent approaches into several categories: (i) the most straightforward methods rely on
explicit MC simulations such as MC-Greedy [65], CELF [74] and CELF++ [47], (ii) in 2014,
a new line of research focusing on Reverse Reachable sets of nodes to estimate the node
in�uence led to algorithms such as RIS [12], TIM [110] and SSA [94], (iii) �nally, snapshots
methods, like PMC [95], generate several instancesGi of the di�usion graph and estimate
node in�uence from these samples. In the following, we explain the main ideas of these 3
categories. The reader interested in the details of the algorithms will refer to the associated
papers.

explicit mc simulations. CELF [74] and CELF++ [47] proceed similarly to MC-
Greedy, but use the submodularity of σ to reduce the number of simulations required to
estimate the node in�uences. The marginal gain of a node at a given iteration is smaller
than the marginal gain computed at the previous iteration. This allows CELF to prune
Monte Carlo simulations at subsequent rounds and speed up greatly the spread computa-
tion.

reverse reachable sets. Borgs et al. [12] introduced a new approach for in�u-
ence computation, namely, the Reverse In�uence Sampling (RIS), which led to a renew of
interest in the IM area.

De�nition 3.4 (Reverse Reachable (RR) set). Given a graph G = (V ,E), a Reverse
Reachable set R is generated by (1) selecting a nodev ∈ V at random (2) generating a random

spread – the RR set – from v on the graph where every directed edge from G is reversed.

Note that the nodes in R correspond to nodes that can reach v in a sample graph. This
de�nition proves to be key in designing e�cent IM algorithm. If we generate a set of RR
sets, in�uential nodes will likely appear in many of them. We formally state this intuition
in Lemma 3.1.

Lemma 3.1 (Observation 3.2 in [12]). GivenG = (V ,E) and an RR set R generated from

G, we have for every I ⊆ V ,

σ (I) = nP(I ∩ R , ∅).

54 adaptive influence maximization

Proof Remember that the random variable S ({s}) denotes the spread initiated by the seed

node s ∈ V . The random variable ST ({u}) denotes the same in the reverse graph, that is, it

corresponds to the set of users which in�uenced u in a spread.

σ (I) =
∑
u ∈V

P (∃s ∈ I such that u ∈ S ({s}))

=
∑
u ∈V

P
(
∃s ∈ I such that s ∈ ST ({u})

)
= nP

(
u chosen at random in V ,∃s ∈ I such that s ∈ ST ({u})

)
= nP (S ∩ R , ∅) . �

Lemma 3.1 essentially says that the expected in�uence of a set of seeds I is proportional
to the probability that it intersects a random RR set R. Thus, to �nd a set I that maximizes
the in�uence function σ , the problem can be cast to selecting the set that intersects as
many RR sets as possible. The number of RR sets generated is key in controlling the error
in the approximation of the in�uence function. Given an approximation ϵ > 0, TIM [110],
IMM [109], SSA [94] and SSA-Fix[55] successively reduced the number of required sam-
pled RR sets, but the core of the algorithm remains the same.

snapshots. The snapshots methods are similar to explicit MC methods but work at
the graph level as opposed to the node level. For example, PMC [95] – method designed
speci�cally for the IC model – generates R instances of the graphGi (called snapshots): for
each edge (u,v) ∈ E, it keeps the edge with probability p (u,v). Then, it estimates the in�u-
ence of nodes by aggregating all the snapshots. Similarly to the MC methods, the number
of simulations R controls the error of the estimation. However, the main advantage of this
approach is that the simulations are shared between all nodes, making this method much
faster than MC-Greedy for instance. Furthermore, PMC proposes an e�ective pruning
strategy to avoid unnecessary computations.

Arora et al. [5] discuss the pros and cons of the best known techniques for IM. In par-
ticular, the authors highlight that the Weighted Cascade (WC) instance of IC, where the
weights associated to a node’s incoming edges must sum to one, leads to poor performance
for otherwise rather fast IC algorithms. They conclude that PMC [95] is the state-of-the-art
method to e�ciently solve the IC optimization problem, while TIM+ [110] and IMM [109]
– later improved by [94] with SSA – are the best current algorithms for WC and LT models.
In a response paper, Lu et al. [84] examine the work and the experimental methodology
of [5] and refute several claims formulated by Arora et al.

Among the “myths” raised by [5], we experimentally veri�ed that the methods rely-
ing on the sampling of RR sets can be surprisingly slow under the WC instance of IC.
Consequently, we always used PMC in our numerical expirements under the IC model.
Conversely, similarly to [84], we observed that IMM is not slower than TIM – we actu-
ally obtain noticeable speed gains using IMM –, which refutes a claim formulated by [5].
Finally, while implementing IM algorithms, we noticed that authors use di�erent pseudo-
random number generators whose e�ciency varies signi�cantly from one to another. This
is in line with a remark formulated by [55] which reveals that the claimed speed improve-
ments of SSA are overestimated by [94] due to �aws in the expiremental setup.

3.2 influence maximization overview 55

other related works. Besides the already discussed o�ine methods for inferring
the di�usion network and its parameters, we mention here that a �rst o�ine and model-

free method for inferring the di�usion network from existing cascades has been proposed
recently in [101]. We have in common with this work the goal to devise generic, non-
parametric methods, yet in a online IM framework.

Other methods have been devised to handle the prevalent uncertainty in di�usion me-
dia, e.g., when replacing edge probability scores with ranges thereof, by solving an IM
problem whose robust outcome should provide some e�ectiveness guarantees w.r.t. all
possible instantiations of the uncertain model [24, 52].

Methods for IM that take into account more detailed information, such as topical cate-
gories, have been considered in the literature [8, 34, 118]. Interestingly, [100] experimen-
tally validates the intuition that di�erent kinds of information spread di�erently in social
networks, by relying on two complementary properties, namely stickiness and persistence.
The former can be seen as a measure of how viral the piece of information is, passing from
one individual to the next. The latter can be seen as an indicator of the extent to which
repeated exposures to that piece of information impact its adoption, and it was shown to
characterize complex contagions, of controversial information (e.g., from politics).

Finally, we also mention here some work to identify the best spreaders in social plat-
forms using a graph topology viewpoint. Kitsak et al. [66] show that the spreading in-
�uence potential of a node can be explained by indicators such as the density and the
cohesiveness. More recently, Malliaros et al. [86] found that the truss number is an even
better indicator.

3.2.4 Online in�uence maximization

In the online case, during a sequence of N (what we call hereafter the budget) consecutive
trials, L seed nodes are selected at each trial, and feedback on the achieved spread from
these seeds is collected. In the literature, we can distinguish two kinds of online in�uence
maximization: the semi-bandit IM and the online IM with persistence (OIMP).

semi-bandit im. Chronologically, the semi-bandit IM problem was introduced after
the OIMP, but, as it shares many aspects with the classic semi-bandit literature, it is some-
what easier to apprehend.

Problem 3.2 (Semi-bandit IM). Given a graph G = (V ,E), a budget of N trials, and a

number 1 ≤ L ≤ n of nodes to be activated at each trial, the objective of the semi-bandit
in�uence maximization problem is to solve the following problem:

arg max
In ⊆V , |In |=L,1≤n≤N

E

N∑
n=1
|S (In) |

.

In the formulation of Problem 3.2, two key aspects are deliberately left unspeci�ed as
they vary in the problems considered in the literature:

1. di�usion model: Semi-bandit studies such as [23, 114, 121] assume that the under-
lying di�usion model is the independent cascade model. Similarly to our work,
Vaswani et al. [113] propose a di�usion-independent framework using pairwise
reachability parameterization.

56 adaptive influence maximization

2. feedback: We can distinguish two types of feedback in the literature. The node-level
feedback assumes that the learning agent only observes the activated nodes, but
does not know which edge has been successfully activated and which has not. This
adds another challenge when trying to estimate di�usion probabilities. Conversely,
edge-level feedback assumes that the learner observes edges’ failed and successful
activations, facilitating parameter estimation.

The learning agent sequentially selects seeds from which di�usion processes are initi-
ated in the network; the obtained feedback is used to update the agent’s knowledge of
the model. By interacting with the network, the agent tries to infer in�uence probabilities.
Not surprisingly, the problem is very challenging: there is an unknown parameter on ev-
ery edge, which can be dramatic as social networks have typically up to billions of users
and trillions of connections nowadays.

To make the learning problem more tractable, Wen et al. [121] make a linear assumption
on the unknown parameters. More precisely, they assume that each edge (u,v) ∈ E has
a feature vector xu,v ∈ Rd where the dimension d is typically very small compared to
n. These feature vectors are known to the learner – they can be constructed using the
characteristics of the two connected users. The authors assume that there exists a unique

unknown feature vector θ ∗ ∈ Rd such that, for every edge (u,v) ∈ E, p (u,v) ≈ xTu,vθ
∗.

From there, the problem can be solved with a variation of the LinUCB algorithm [79].
In a recent paper, Vaswani et al. [113] propose a di�usion-independent approach to

solve the semi-bandit IM problem. They assume that, for each pair of users (u,v), the
probability p∗u,v that u activates v is given by the scalar product between a known feature
vector xu ∈ Rd – this vector is associated to the source –and an unknown vector associated
to the target θ ∗v ∈ Rd . Interestingly, the authors propose to set the known features to the
d lowest eigenvectors of the Laplacian graph. In this setting, there are |V | × d unknown
parameters, making this method still unsuitable in large-scale scenarios.

online im with persistence. The semi-bandit IM framework is suitable for sce-
narios where the marketing �rm wants to make (many) consecutive campaigns on a static
graph, and, importantly, where the goal is to convert as many users as possible at each
spread, regardless of the activated users. In particular, activating the same users at each
step is not considered an issue in the semi-bandit IM setting. However, in many real scenar-
ios, these requirements are not satis�ed. For example, nowadays, when a company releases
a new product, it often makes a marketing campaign on social platforms in order to give
the product visibility. The �rm aims at reaching as many distinct people as possible, and
may ask in�uential users – e.g., in�uential people contractually bound by a sponsorship to
the company – to post about the product. Every time an in�uential user posts something
on the social platform, he / she initiates a spread that leads to the activation of a subset of
the population. Importantly, the company’s ultimate goal is to maximize the total spread
of the campaign, that is, the number of distinct users activated over the consecutive steps.

In the IM with persistence setting, in�uence campaigns typically consist of multiple
consecutive trials spreading the same type of information (e.g., a product, an idea, etc).

Problem 3.3 (Online in�uence maximization with persistence (OIMP)). Given a

graph G = (V ,E), a budget of N trials, and a number 1 ≤ L ≤ n of nodes to be activated at

3.3 online influence maximization via candidates 57

each trial, the objective of the online in�uence maximization with persistence problem is to

solve the following problem:

arg max
In ⊆V , |In |=L,1≤n≤N

E
������

N⋃
n=1

S (In)
������
.

A key di�erence w.r.t. semi-bandit in�uence maximization studies such as [23, 113, 114,
121] is that these look for a constant optimal set of seeds, while the di�culty with OIMP is
that the seemingly best action at a given trial depends on the activations of the previous
trials (and thus the learning agent’s past decisions).

The OIMP problem was �rst introduced by Lei et al. [73]. They propose a method for the
IC model where they try to estimate the di�usion graph (the graph with its di�usion prob-
abilities). More precisely, at each step, adopting an explore-exploit strategy, they maintain
an estimation (or a con�dence bound) of the probabilities of all edges in the graph. The
estimated graph is called the uncertain in�uence graph and is given to any IM algorithm to
select a set of seed nodes. Finally, a spread is initated from this set and edge-level feedback
are used to improve probability estimations in subsequent steps.

We also mention that adaptive strategies have been studied in situations where all pa-
rameters are known – that is, situations were no learning task is necessary. The applica-
tions that rely on adaptive in�uence maximization tasks are generally time-critical, and
thus, to overcome these challenges, Salha et al. [103] recently introduced a realistic myopic

feedback model together with an approximated algorithm.

3.3 online influence maximization via candidates

3.3.1 Setting

The goal of the online in�uence maximization with persistence via candidates, the problem
we proposed in this thesis, is to successively select (or activate) a number of spread seed
nodes from a known population of candidates, in order to reach (or spread to) as many
other nodes as possible. In this section, we formally de�ne this problem.

3.3.1.1 In�uence maximization via candidates

The short timespan of campaigns makes parameter estimation very challenging within
small horizons. In other cases, the knowledge of the topology – or even the existence – of
a graph is too strong an assumption. In contrast to Lei et al. [73], we do not try to estimate
edge probabilities in some graph, but, instead, we assume the existence of a subpopulation
of users – referred to as the spread seed candidates (in short, candidates), in the following –
who are the only access to the medium of di�usion. Formally, we let [K] := {1, . . . ,K } be a
set of candidates for selection; each candidate is connected to an unknown and potentially
large base (the candidate’s support) of basic nodes, each with an unknown activation prob-
ability. For illustration, we give in Figure 3.2 an example of this setting, with 3 candidates
connected to 4, 5, and 4 basic nodes, respectively.

Now, the problem boils down to estimating the value or spread potential of the K can-
didates, which is typically much smaller than the number of parameters of the di�usion
model. The medium over which di�usion operates may remain a general di�usion graph,

58 adaptive influence maximization

pk(u)pk(u)

u

Candidates

Basic Nodes

Figure 3.2: Three candidates with associated activation probabilities pk (u).

just like in the literature, but we make no assumption on that: the di�usion may happen
in a completely unknown environment. Finally, note that by choosing K = |V | candidates,
the classic IM problem can be seen as a special instance of our setting.

We complete the formal setting by assuming the existence of K sets Ak ⊆ V of basic
nodes such that each candidate k ∈ [K] is connected to each node in Ak . We denote pk (u)
the probability for candidate k to activate the child node u ∈ Ak .

In this context, the di�usion process can be abstracted as follows.

De�nition 3.5 (In�uence process). When a candidate k ∈ [K] is selected, each basic

node u ∈ Ak is sampled for activation, according to its probability pk (u). The feedback
(or spread) for k’s selection consists of all the activated nodes, while the associated reward
consists of the newly activated ones.

remark. Limiting the IM method to working with a small subset of the entire set of
nodes may seem overly restrictive, but it allows to rapidly estimate nodes’ values. As
a motivating example, take marketing �rms that may not have knowledge of the entire
di�usion graph, only having access to a few in�uential people that can di�use information
(the candidates in our setting). Moreover, despite the fact that we model the reach of every
candidate by 1-hop links to the to-be-in�uenced nodes, these edges are just an abstraction
of the activation probability, and may represent in reality longer paths in an underlying
unknown real in�uence graph G.

3.3.1.2 Online in�uence maximization with persistence via candidates

We are now ready to formally state our online in�uence maximization with persistence
via candidates:

Problem 3.4 (OIMP via candidates). Given a set of candidates [K] := {1, . . . ,K }, a bud-
get of N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the

objective of the online in�uence maximization with persistence (OIMP) via candidates is to

solve the following optimization problem:

arg max
In ⊆[K], |In |=L,∀16n6N

E
������

⋃
16n6N

S (In)
������
.

As noticed in [73], the o�ine IM can be seen as a special instance of the online one,
where the budget is N = 1. Note that, in contrast to persistence-free online in�uence
maximization – considered, e.g., in [114, 121] – the performance criterion used in OIMP

3.3 online influence maximization via candidates 59

displays the so-called diminishing returns property: the expected number of nodes acti-
vated by successive selections of a given seed is decreasing, due to the fact that nodes that
have already been activated are discounted. We refer to the expected number of nodes
remaining to activate as the potential or missing mass of a seed. The diminishing returns
property implies that there is no static best set of seeds to be selected, but that the algo-
rithm must follow an adaptive policy, which can detect that the remaining potential of a
seed is small and switch to another seed that has been less exploited. Our solution to this
problem has to overcome challenges on two fronts: (1) it needs to estimate the potential of
nodes at each round, without knowing the di�usion model nor the activation probabilities,
and (2) it needs to identify the currently best seeds, according to their estimated potential.

Other approaches for the online IM problem rely on estimating di�usion parameters [73,
114, 121] – generally, a distribution over the in�uence probability of each edge in the graph.
However, the assumption that one can estimate accurately the di�usion parameters – and
notably the di�usion probabilities – may be overly ambitious, especially in cases where the
number of allowed trials (the budget) is rather limited. A limited trial setting is arguably
more in line with real-world campaigns: take as example political or marketing campaigns,
which only last for a few weeks.

In our approach, we work with parameters on nodes, instead of edges. More speci�cally,
these parameters represent the potentials of remaining spreads from each of the candi-
date seed nodes. We stress that these potentials can evolve as the campaign proceeds. In
this way, we can go around the dependencies on speci�c di�usion models, and further-
more, we can remove entirely the dependency on a detailed graph topology. Finally, note
that even though OIMP is not a typical bandit problem – the potentials evolve as the cam-
paign progresses –, it bears several similarities with multi-armed bandits. Indeed, an agent
needs to sequentially choose arms (called candidates in this chapter) whose potentials are
unknown, and thus, it needs to explore concurrently with the exploitation of received feed-
back. Furthermore, we rely on the optimism in face of uncertainty framework to construct
our UCB-like algorithm.

3.3.2 The GT-UCB algorithm

In this section, we describe our UCB-like algorithm, which relies on the Good-Turing es-
timator to sequentially select the seeds to activate at each round, from the available can-
didates.

3.3.2.1 Missing mass and Good-Turing estimator

Given the K candidates, the OIMP problem boils down to the following: How should we

select a candidate at each step? More precisely, a good algorithm for OIMP should aim at se-
lecting the candidate k with the largest potential for in�uencing its children Ak . However,
the true potential value of a candidate is a priori unknown to the decision maker.

We now describe our approach to estimate this value, using the concept of missing mass.
In the following, we index trials by t when referring to the time of the algorithm, and we

index trials by n when referring to the number of selections of the candidate. For example,
the t-th spread initiated by the algorithm is noted S (t) whereas then-th spread of candidate
k is noted Sk,n .

60 adaptive influence maximization

De�nition 3.6 (Missing mass Rk (t)). Consider a candidate k ∈ [K] connected to Ak
basic nodes. Let S (1), . . . , S (t) be the set of nodes that were activated during the �rst t trials
by the seeded candidates. The missing mass Rk (t) is the expected number of new nodes that

would be activated upon starting a t + 1-th cascade from k :

Rk (t) :=
∑
u ∈Ak

1

u <

t⋃
i=1

Sk (t)

pk (u),

where 1{·} denotes the indicator function.

De�nition 3.6 provides a formal way to obtain the remaining potential of a candidate
k at a given time. The optimal policy would simply select the candidate with the largest
missing mass at each time step. The di�culty is, however, that the probabilities pk (u) are
unknown. Hence, we have to design a missing mass estimator R̂k (t) instead. It is impor-
tant to stress that the missing mass is a random quantity, because of the dependency on
the spreads Sk (t), . . . , Sk (t). Furthermore, due to the diminishing returns property, the
sequence (Sk,n)n≥1 is stochastically decreasing.

Following ideas from [17], we now introduce a version of the Good-Turing statistic
originally introduced by [45], tailored to our problem of rapidly estimating the missing
mass. Denoting by nk (t) the number of times candidate k has been selected after t trials,
we let S1, . . . , Snk (t) be the nk (t) cascades sampled independently from candidate k . We
denote byUk (u, t) the binary function whose value is 1 if nodeu has been activated exactly

once by candidate k – such occurrences are called hapaxes in linguistics – and Zk (u, t) the
binary function whose value is 1 if node u has never been activated by candidate k . The
idea of the Good-Turing estimator is to estimate the missing mass as the proportion of
hapaxes in the nk (t) sampled cascades, as follows:

R̂k (t) := 1
nk (t)

∑
u ∈Ak

Uk (u, t)
∏
l,k

Zl (u, t).

Albeit simple, this estimator turns out to be quite e�ective in practice. If a candidate
is connected to a combination of both nodes having high activation probabilities and
nodes having low activation probabilities, then successive traces sampled from this candi-
date will result in multiple activations of the high-probability nodes and few of the low-
probability ones. Hence, after observing a few spreads, the candidate’s potential will be
low, a fact that will be captured by the low proportion of hapaxes. In contrast, estimators
that try to estimate each activation probability independently will require a much larger
number of trials to properly estimate the candidate’s potential.

To verify this assumption in reality, we conduct an analysis of the empirical activa-
tion probabilities from a Twitter dataset. Speci�cally, we used a collection of tweets and
re-tweets gathered via crawling in August 2012. For each original tweet, we �nd all corre-
sponding retweets, and, for each user, we compute the empirical probability of a retweet
occurring – this, in our case, is a proxy measure for in�uence probability. Speci�cally, for
every userv “in�uenced” byu, i.e.,v retweeted at least one original tweet fromu – we com-
pute the estimated di�usion probability: pu,v = ��u’s tweets retweeted by v �� /��tweets by u��.
In Fig. 3.3 (left), we show the survival function of resulting empirical probabilities in a
log-log plot. We can see that most probabilities are small – the 9th decile has value 0.045.

In Fig. 3.3 (right), we simulated the activation probabilities of a set of 50 nodes whose ac-
tivation probabilities are chosen randomly from the Twitter empirical probabilities. Most

3.3 online influence maximization via candidates 61

10−4 10−3 10−2 10−1 100

Retweet probability

10−5

10−4

10−3

10−2

10−1

100

Su
rv

iv
al

fu
nc

tio
n

0 0.025 0.05 0.075 0.1 0.125 0.15
Retweet probability

Figure 3.3: (left) Twitter empirical retweet probabilities (right) Sample of 50 empirical retweet prob-
abilities

0 10 20 30 40 50
Trial

0

5

10

15

20

25

#
Ac

tiv
at

io
ns

5 10 15 20
Trial

0

3

6

9

12

15

Va
lu

e
Missing mass
GT estimator
Bayes estimator

Figure 3.4: (left) In�uence spread against number of rounds (right) Bayesian estimator against
Good-Turing estimator.

of the sampled values are low, except a few relatively high ones. Using this sample as the
activation probabilities of an hypothetical candidate node, we observe on Fig. 3.4 (left) the
cumulative in�uence spread. The curve �rst shows a steep increase until approximately
20 rounds, where users with high probabilities of conversion have already been activated,
while remaining ones are di�cult to activate.

In Fig. 3.4 (right), we compare the Good-Turing estimator to a Bayesian estimator that
maintains a posterior (through a Beta distribution) on the unknown activation probabil-
ities, updating the posterior after each trial, similarly to [73]. In the Bayesian approach,
the missing mass can be estimated by summing over the means of the posterior distribu-
tions corresponding to nodes that have not been activated so far. On Fig. 3.4 (right), the
curves are averaged over 200 runs, and the shaded regions correspond to the 95% quantiles.
Clearly, the Good-Turing estimator is much faster than its Bayesian counterpart, in esti-
mating the actual missing mass. Varying the number of nodes – here equal to 50 –, shows
that the time needed for the Bayesian estimator to provide a reliable estimate of the miss-
ing mass is proportional to the number of nodes, whereas it grows only sub-linearly for
the Good-Turing estimator.

62 adaptive influence maximization

remark. While bearing similarities with the traditional missing mass concept, we high-
light one fundamental di�erence of our problem w.r.t. the one studied in [17], which im-
pacts both the algorithmic solution and the analysis. Since at each step, after selecting
a candidate, every node connected to that candidate is sampled, the algorithm receives
a larger feedback than in [17], whose feedback is in [0, 1]. However, on the contrary
to [17], the hapaxes of a candidate (Uk (u, t))u ∈Ak are independent. Interestingly, the quan-
tity λk := ∑

u ∈Ak
p (u), which corresponds to the expected number of basic nodes a can-

didate activates or re-activates in a cascade, will prove to be a crucial ingredient for our
problem.

3.3.2.2 Upper con�dence bounds

Following principles from the bandit literature, the GT-UCB algorithm relies on optimism

in the face of uncertainty. At each step (trial) t , the algorithm selects the highest upper-
con�dence bound on the missing mass – denoted by bk (t) – and activates (plays) the cor-
responding candidate k . This algorithm achieves robustness against the stochastic nature
of the cascades, by ensuring that candidates who “underperformed” with respect to their
potential in previous trials may still be selected later on. Consequently, GT-UCB aims to
maintain a degree of exploration of candidates, in addition to the exploitation of the best
candidates as per the feedback gathered so far.

Algorithm 7: GT-UCB (L = 1)
Data: Set of candidates [K], time budget N

1 Initialization: play each candidate k ∈ [K] once, observe the spread Sk,1, set nk = 1;
2 For each k ∈ [K]: update the rewardW =W ∪ Sk,1;
3 for t = K + 1, . . . ,N do
4 Compute bk (t) for every candidate k ;
5 Choose k (t) = arg maxk ∈[K] bk (t);
6 Play candidate k (t) and observe spread S (t);
7 Update cumulative reward:W =W ∪ S (t);
8 Update statistics of candidate k (t): nk (t) (t + 1) = nk (t) (t) + 1 and Sk,nk (t) = S (t).;
9 end

Result:W

Algorithm 7 presents the main components of GT-UCB for the case L = 1, that is, when
a single candidate is chosen at each step.

The algorithm starts by activating each candidate k ∈ [K] once, in order to initialize its
Good-Turing estimator. The main loop of GT-UCB occurs at lines 3-9. Let S (t) be the ob-
served spread at trial t , and let Sk,s be the result of the s-th di�usion initiated at candidate
k . At every step t > K , we recompute for each candidate k ∈ [K] its index bk (t), represent-
ing the upper con�dence bound on the expected reward in the next trial. The computation
of this index uses the previous samples Sk,1, . . . , Sk,nk (t) and the number of times each can-
didate k has been activated up to trial t , nk (t). Based on the result of Theorem 3.5 below

3.4 analysis 63

– whose statement and proof are delayed to Section 3.4 –, the upper con�dence bound is
set as:

bk (t) = R̂k (t) +
(
1 +
√

2
) √

λ̂k (t) log(4t)
nk (t)

+
log(4t)
3nk (t)

, (3.1)

where R̂k (t) is the Good-Turing estimator and λ̂k (t) := ∑nk (t)
s=1

|Sk,s |
nk (t)

is an estimator for the
expected spread from candidate k .

Then, in line 5, GT-UCB selects the candidate k (t) with the largest index, and initiates a
cascade from this node. The feedback S (t) is observed and is used to update the cumulative
reward setW . Note that S (t) provides only the Ids of the nodes that were activated, with
no information on how this di�usion happened in the hidden di�usion medium. Finally,
statistics associated to the chosen candidate k (t) are updated.

3.3.2.3 Extensions for the case L > 1

Algorithm 7 can be easily adapted to select L > 1 candidates at each round. Instead of
choosing the candidate maximizing the Good-Turing UCB in line 5, we can select those
having the L largest indices. Note that k (t) then becomes a set of L candidates. A di�usion
is initiated from the associated nodes and, at termination, all activations are observed.
Similarly to [113], the algorithm requires feedback to include the candidate responsible for
the activation of each node, in order to update the corresponding statistics accordingly.

If the underlying environment is a graphG whose topology is known, we propose a sim-
ple heuristic to assign activated nodes to selected candidates, by a breadth-�rst approach,
as follows: for an activated node u ∈ S (t), we assign this node to the selected candidate
reachable fromu by the shortest live path inG, where a live path corresponds to a sequence
of activated nodes from S (t).

3.4 analysis

In this section, we justify the upper con�dence bound used by GT-UCB in Eq. 3.1 and
provide a theoretical analysis of our algorithm.

3.4.1 Con�dence interval for the missing mass

In the following, to simplify the analysis and to allow for a comparison with the oracle
strategy, we assume that the candidates have non intersecting support. This means that
each candidate’s missing mass and corresponding Good-Turing estimator does not depen-
dent on other candidates. Hence, for notational e�ciency, we also omit the subscript de-
noting the candidate k . After selecting the candidates n times, the Good-Turing estimator
is simply written R̂n =

∑
u ∈A

Un (u)
n . We note that the non-interescting assumption is for

theoretical purposes only – our experiments are done with candidates which can have
intersecting supports.

The classic Good-Turing estimator is known to be slightly biased (see Theorem 1 in [90]
for example). We show in Lemma 3.2 that our missing mass estimator adds an additional
factor λ = ∑

u ∈A p (u) to this bias:

64 adaptive influence maximization

Lemma 3.2 The bias of the missing mass estimator is

E[Rn] − E[R̂n] ∈
[
−
λ

n
, 0

]
.

Proof

E[Rn] − E[R̂n] =
∑
u ∈A

[
p (u) (1 − p (u))n − n

n
p (u) (1 − p (u))n−1

]

= −
1
n

∑
u ∈A

p (u) × np (u) (1 − p (u))n−1

= −
1
n
E

∑
u ∈A

p (u)Un (u)

∈

[
−

∑
u ∈A p (u)

n
, 0

]
�

Since λ is typically very small compared to |A|, in expectation, the estimation should be
relatively accurate. However, in order to understand what may happen in the worst-case,
we need to characterize the deviation of the Good-Turing estimator:

Theorem 3.5 With probability at least 1 − δ , for λ = ∑
u ∈A p (u) and βn :=

(
1 +
√

2
)
×√

λ log(4/δ)
n + 1

3n log 4
δ , the following holds:

−βn −
λ

n
≤ Rn − R̂n ≤ βn .

Note that the additional term appearing in the left deviation corresponds to the bias of our
estimator, which leads to a non-symmetrical interval.

Proof We prove the con�dence interval in three steps:

1. Good-Turing estimator deviation,

2. missing mass deviation,

3. combination of previous two inequalities for the �nal con�dence interval.

The samples of di�erent nodes are assumed independent. This is a simpli�cation with re-

spect to the classic missing mass concentration results, which rely on negative association [89,

90]. On the other hand, since we may activate several nodes at once, we need original concen-

tration arguments to control the increments of both R̂n and Rn .

(1) Good-Turing deviations. Let Xn (u) := Un (u)
n . We have that

v :=
∑
u ∈A

E[Xn (u)
2] = 1

n2

∑
u ∈A

E[Un (u)]

=
1
n2

∑
u ∈A

np (u) (1 − p (u))n−1 ≤
λ

n
.

Moreover, clearly the following holds: Xn (u) ≤
1
n .

3.4 analysis 65

Applying Bennett’s inequality (Theorems 2.9, 2.10 in [14]) to the independent random vari-

ables {Xn (u)}u ∈A yields

P *
,
R̂n − E[R̂n] ≥

√
2λ log(1/δ)

n
+

log(1/δ)
3n

+
-
≤ δ . (3.2)

The same inequality can be derived for left deviations.

(2) Missing mass deviations. Remember that Zn (u) denotes the indicator equal to 1 if u
has never been activated up to trialn.We can rewrite themissingmass asRn =

∑
u ∈A Zn (u)p (u).

Let Yn (u) = p (u) (Zn (u)−E[Zn (u)]) and q(u) = P(Zn (u) = 1) = (1−p (u))n . For some t > 0,
we have next that

P(Rn − E[Rn] ≥ ϵ) ≤ e−tϵ
∏
u ∈A

E
[
etYn (u)

]

= etϵ
∏
u ∈A

(
q(u)etp (u) (1−q (u)) + (1 − q(u))e−tp (u)q (u)

)
≤ e−tϵ

∏
u ∈A

exp(p (u)t2/(4n))

= exp
(
−tϵ + t2/(4n)λ

)
.

The �rst inequality is well-known in exponential concentration bounds and relies onMarkov’s

inequality. The second inequality follows from [11] (Lemma 3.5)

Then, choosing t = 2nϵ
λ , we obtain

P *
,
Rn − E[Rn] ≥

√
λ log(1/δ)

n
+
-
≤ δ . (3.3)

We can proceed similarly to obtain the left deviation.

(3) Pu�ing it all together. We combine Lemma 3.2 with Eq. (3.2), (3.3), to obtain the

�nal result. Note that δ is replaced by
δ
4 to ensure that both the left and right bounds for the

Good-Turing estimator and the missing mass are veri�ed. �

3.4.2 Theoretical Guarantees

We now provide an analysis of the waiting time (de�ned below) of GT-UCB, by comparing
it to the waiting time of an oracle policy, following ideas from [17]. LetRk (t) be the missing
mass of candidate k at trial number t . This di�ers from Rk,n , which is the missing mass of
candidate k once it has been played n times.

De�nition 3.7 (Waiting time). Let λk =
∑
u ∈Ak

p (u) denote the expected number of acti-

vations obtained by the �rst call to candidate k . For α ∈ (0, 1), the waiting time TUCB (α) of
GT-UCB represents the round at which the missing mass of each candidate k is smaller than

αλk . Formally,

TUCB (α) := min{t : ∀k ∈ [K],Rk (t) ≤ αλk }.

The above de�nition can be applied to any strategy for candidate selection and, in par-
ticular, to an oracle one that knows beforehand the α value that is targeted, the sampled

66 adaptive influence maximization

spreads (Sk,s)k ∈[K],s≥1, and the individual activation probabilities pk (u),u ∈ Ak . A policy
having access to all these aspects will perform the fewest possible activations on each
candidate. We denote byT ∗(α) the waiting time of the oracle policy. We are now ready to
state the main theoretical property of the GT-UCB algorithm.

Theorem 3.6 (Waiting time). Let λmin := mink ∈[K] λk and let λmax := maxk ∈[K] λk .

Assuming that λmin ≥ 13, for any α ∈
[

13
λmin , 1

]
, if we de�ne τ ∗ := T ∗

(
α − 13

λmin

)
, with

probability at least 1 − 2K
λmax the following holds:

TUCB(α) ≤ τ
∗ + Kλmax log(4τ ∗ + 11Kλmax) + 2K .

The proof of this result is given in Section 3.A. Unsurprisingly, Theorem 3.6 says that
GT-UCB must perform slightly more activations of the candidates than the oracle policy.
With high probability – assuming that the best candidate has an initial missing mass that
is much larger than the number of candidates – the waiting time of GT-UCB is comparable
to T ∗(α ′), up to factor that is only logarithmic in the waiting time of the oracle strategy.
α ′ is smaller than α – hence T ∗(α ′) is larger than T ∗(α)– by an o�set that is inversely
proportional to the initial missing mass of the worst candidate. This essentially says that,
if we deal with large graphs, and if the candidates trigger reasonably large spreads, our
algorithm is competitive with the oracle.

3.5 experiments

We conducted experiments on two types of datasets:

1. two graphs, widely-used in the IM literature, and

2. a crawled dataset from Twitter, consisting of tweets occurring during August 2012.

All methods are implemented in C++3 and simulations are done on an Ubuntu 16.04 ma-
chine with an Intel Xeon 2.4GHz CPU 20 cores and 98GB of RAM.

3.5.1 Extracting candidates from graphs

GT-UCB does not make any assumptions about the topology of the nodes in�uenced by
the candidates. Indeed, in many settings it may be more natural to assume that the set
of candidates is given and that the activations at each trial can be observed, while the
topology of the underlying graphG remain unknown. In other settings, we may start from
an existing social network G, in which case we need to extract a set of K representative
candidates from it. Ideally, we should choose candidates that have little intersection in
their “scopes of in�uence” to avoid useless seed selections. While this may be interpreted
and performed di�erently, from one application to another, we discuss next some of the
most natural heuristics for selecting candidates which we use in our experiments.

MaxDegree. This method selects the K nodes with the highest out-degrees in G. Note
that by this criterion we may select candidates with overlapping in�uence scopes.

Greedy MaxCover. This strategy follows the well-known greedy approximation algo-
rithm for selecting a cover of the graph G. Speci�cally, the algorithm executes the follow-
ing steps K times:

3 The code is available at https://github.com/plagree/oim

https://github.com/plagree/oim

3.5 experiments 67

1. Select the node with highest out-degree

2. Remove all out-neighbors of the selected node

To limit intersections among candidate scopes even more, nodes reachable by more than
1 hops may be removed at step (2).

DivRank [91]. DivRank is a PageRank-like method relying on reinforced random
walks, with the goal of producing diverse high-ranking nodes, while maintaining the rich-
gets-richer paradigm. We adapted the original DivRank procedure by inverting the edge
directions. In doing so, we get in�uential nodes instead of prestigious ones. By selecting
the K highest scoring nodes as candidates, the diversity is naturally induced by the rein-
forcement of random walks. This ensures that the candidates are fairly scattered in the
graph and should have limited impact on each other.

IM approximated algorithms. The fourth method we tested in our experiments as-
signs uniformly at random a propagation probability to each edge of G, assuming the IC
model. Then, a state-of-the-art IM algorithm – PMC in our experiments – is executed on
G to get the set of K candidates having the highest potential spread.

3.5.2 Graph datasets

Similarly to [73], we tested our algorithm on HepPh and DBLP, two publicly available
collaboration networks, where undirected edges are drawn between authors which have
collaborated on at least one paper. HepPh is a citation graph, where a directed edge is
established when an author cited at least one paper of another author. The datasets are
summarized in Table 3.1. We emphasize that we kept the datasets relatively small to allow
for comparison with computation-heavy baselines, even though GT-UCB easily scales to
large data, as will be illustrated in Section 3.5.3.

Table 3.1: Summary of the datasets.

Dataset HepPh DBLP Twitter

of nodes 34.5K 317K 11.6M
of edges 422K 2.1M 38.4M

Di�usion models. In the work closest to ours, Lei et al. [73] compared their solution
on the Weighted Cascade instance of IC, where the in�uence probabilities on incoming
edges sum up to 1. More precisely, every edge (u,v) has weight 1/dv where dv is the
in-degree of node v . In this experimental study, and to illustrate that our approach is
di�usion-independent, we added two other di�usion scenarios to the set of experiments.
First, we included the tri-valency model (TV), which associates randomly a probability
from {0.1, 0.01, 0.001} to every edge and follows the IC propagation model. We also con-
ducted experiments under the Linear Threshold (LT) model, where the edge probabilities
are set like in the WC case and where thresholds on nodes are sampled uniformly from
[0, 1].

Baselines. We compare GT-UCB to several baselines. Random chooses a random can-
didate at each round. MaxDegree selects the node with the largest degree at each step
i , where the degree does not include previously activated nodes. Finally, EG corresponds to

68 adaptive influence maximization

100 200 300 400 500
Trial

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8
In

�u
en

ce
Sp

re
ad

×104

K

10
20
50
100
200

(a) HepPh (WC – Impact of K)

100 200 300 400 500
Trial

0.0

0.2

0.5

0.8

1.0

1.2

1.5

In
�u

en
ce

Sp
re

ad

×104

MaxCover
PMC
DivRank
MaxDegree

(b) HepPh (WC – Candidate extraction)

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0

In
�u

en
ce

Sp
re

ad

×104

K

10
20
50
100
200

(c) DBLP (WC – Impact of K)

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0
In

�u
en

ce
Sp

re
ad

×104

MaxCover
MaxDegree
PMC
DivRank

(d) DBLP (WC – Candidate extraction)

100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

In
�u

en
ce

Sp
re

ad

×105

K

10
20
50
100
200

(e) DBLP (TV – Impact of K)

100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

In
�u

en
ce

Sp
re

ad

×105

MaxCover
MaxDegree
PMC
DivRank

(f) DBLP (TV – Candidate extraction)

Figure 3.5: Impact of K and the candidate extraction criterion on in�uence spread.

the con�dence-bound explore-exploit method with exponentiated gradient update from [73];
it is the state-of-the-art method for the OIMP problem (code provided by the authors). We
use this last baseline on WC and TV weighted graphs and tune parameters in accordance
to the results of their experiments: Maximum Likelihood Estimation is adopted for graph
update and edge priors are set to Beta(1, 20). Note that EG learns parameters for the IC
model, and hence is not applicable for LT. These baselines are compared to an Oracle
that knows beforehand the di�usion model together with probabilities. At each round, it
runs an IM approximated algorithm – PMC for IC propagation, SSA for LT. Note that pre-

3.5 experiments 69

viously activated nodes are not counted when estimating the value of a node with PMC
or SSA, thus, making Oracle an adaptive strategy.

All experiments are done by �xing the trial horizon N = 500, a setting that is in line
with many real-world marketing campaigns, which are fairly short and do not aim to reach
the entire population.

GT-UCB parameters. We �rst analyze the e�ects of the di�erent possible settings for
GT-UCB. We show in Fig. 3.5b and 3.5d the impact of the candidate extraction criterion on
HepPh and DBLP under the WC model. On the HepPh network, DivRank clearly leads to
larger in�uence spreads. On DBLP under WC model, however, the extraction method has
little impact on resulting spreads. In Fig. 3.5f, DivRank is the extraction method which
performs the worst. In summary, the spread is slightly a�ected by the extraction criterion,
and di�erent datasets lead to di�erent optimal extraction routines. We note that GT-UCB
performs consistently as long as the method leads to candidates that are well spread over

100 200 300 400 500
Trial

0.0

0.5

1.0

1.5

2.0

In
�u

en
ce

Sp
re

ad

×104

Oracle
EG-CB
Random
MaxDegree
GT-UCB

(a) HepPh (WC – L = 1)

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0

In
�u

en
ce

Sp
re

ad

×104

(b) DBLP (WC – L = 1)

100 200 300 400 500
Trial

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

In
�u

en
ce

Sp
re

ad

×105

(c) DBLP (WC – L = 10)

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0

5.0

In
�u

en
ce

Sp
re

ad

×103

Oracle
EG-CB
Random
MaxDegree
GT-UCB

(d) HepPh (TV – L = 1)

100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

In
�u

en
ce

Sp
re

ad

×105

(e) DBLP (TV – L = 1)

100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
�u

en
ce

Sp
re

ad

×105

(f) DBLP (TV – L = 10)

100 200 300 400 500
Trial

0.0

0.5

1.0

1.5

2.0

In
�u

en
ce

Sp
re

ad

×104

Oracle
Random
MaxDegree
GT-UCB

(g) HepPh (LT – L = 1)

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0

5.0

In
�u

en
ce

Sp
re

ad

×104

(h) DBLP (LT – L = 1)

100 200 300 400 500
Trial

0.0

0.5

1.0

1.5

2.0

In
�u

en
ce

Sp
re

ad

×105

(i) DBLP (LT – L = 10)

Figure 3.6: Growth of spreads against the number of rounds.

70 adaptive influence maximization

the graph. In the following, for each graph, we used DivRank as candidate extraction
criterion as it performs the best in most con�gurations.

In Fig. 3.5a, 3.5c and 3.5e, we measure the impact of the number of candidates K on the
in�uence spread. We can observe that, on DBLP, a small number of candidates is su�cient
to yield high-quality results. If too many candidates (relative to the budget) are selected
(e.g. K = 200), the initialization step required by GT-UCB is too long relative to the full
budget, and hence GT-UCB does not reach its optimal spread – some candidates still have
a large missing mass at the end. On the other hand, a larger amount of candidates leads
to greater in�uence spreads on HepPh: this network is relatively small (34.5K nodes), and
thus half of the nodes are already activated after 400 trials. By having more candidates,
we are able to access parts of the network that would not be accessible otherwise.

GT-UCB vs. baselines. In Fig. 3.6, we show the growth of the spread for GT-UCB and
baselines. For each experiment, GT-UCB uses K = 50 if L = 1 and K = 100 if L = 10.
First, we can see that MaxDegree is a strong baseline in many cases, especially for WC
and LT. GT-UCB results in good quality spreads across every combination of network and
di�usion model. Interestingly, on the smaller graph HepPh, we observe an increase in the
slope of spread after initialization, particularly visible at t = 50 with WC and LT. This
corresponds to the step when GT-UCB starts to select candidates maximizing bk (t) in the
main loop. It shows that our strategy adapts well to the previous activations, and chooses
good candidates at each iteration. Interestingly, Random performs surprisingly well in
many cases, especially under TV weight assignment. However, when certain candidates
are signi�cantly better than others, it cannot adapt to select the best candidate unlike
GT-UCB. EG performs well on HepPh, especially under TV weight assignment. However,
it fails to provide competitive cumulative spreads on DBLP. We believe that EG tries to
estimate too many parameters for a horizon T = 500. After reaching this time step, less
than 10% of all nodes for WC, and 20% for TV, are activated. This implies that we have
small con�dence regarding many edge probability estimations, as most nodes are located
in parts of the graph that have never been explored.

We evaluate the execution time of the di�erent algorithms in Fig. 3.7. As expected, GT-
UCB largely outperforms EG (and Oracle). The two baselines require the execution of
an approximated IM algorithm at each round. In line with [5], we observed that SSA has
prohibitive computational cost when incoming edge weights do not sum up to 1, which is
the case with both WC and TV. Thus, both Oracle and EG run PMC on all our experiments
with IC propagation. GT-UCB is several orders of magnitude faster: it concentrates most
its running time on extracting candidates, while statistic updates and UCB computations
are negligible.

3.5.3 Experiments on Twitter

We conclude the experimental section with an evaluation of GT-UCB on the Twitter data,
introduced as a motivating example in Section 3.3.2. The interest of this experiment is to
observe actual spreads, instead of simulated ones, and data which does not have an explicit
in�uence graph attached.

From the retweeting logs, for each active useru – a user who posted more than 10 tweets
– we select users having retweeted at least one of u’s tweets. By doing so, we obtain the
set of potentially in�uenceable users associated to active users. We then apply the greedy
algorithm to select the users maximizing the corresponding set cover. These are the can-

3.6 exploring further online im models 71

100 200 300 400 500
Trial

10−1

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

Oracle
EG-CB
Random
MaxDegree
GT-UCB

Figure 3.7: DBLP (WC) – Execution time.

100 200 300 400 500
Trial

0.0

1.0

2.0

3.0

4.0

In
�u

en
ce

Sp
re

ad

×104

Random
MaxDegree
GT-UCB

100 200 300 400 500
Trial

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
In

�u
en

ce
Sp

re
ad

×105

Random
MaxDegree
GT-UCB

Figure 3.8: Twitter spread against rounds: (left) L = 1 (right) L = 10.

didates of GT-UCB and Random. MaxDegree is given the entire reconstructed network
(described in Table 3.1), that is, the network connecting active users to re-tweeters.

To test realistic spreads, at each step, once an candidate is selected by GT-UCB, a random
cascade initiated by that candidate is chosen from the logs and we record its spread. This
provides realistic, model-free spread samples to the compared algorithms. Since our data
only contains successful activations (re-tweets) and not the failed ones, we could not test
against EG, which needs both kinds of feedback.

In Fig. 3.8, we show the growth of the di�usion spread of GT-UCB against MaxDegree
and Random. Again, GT-UCB uses K = 50 if L = 1 and K = 100 if L = 10. We can see
that GT-UCB outperforms the baselines, especially when a single node is selected at each
round. We can observe that MaxDegree performs surprisingly well in both experiments.
We emphasize that it relies on the knowledge of the entire network reconstructed from
retweeting logs, whereas GT-UCB is only given a set of (few) �xed candidates.

3.6 exploring further online im models

We now extend the model considered previously in two directions. First, we adapt our
methodology with candidates to the semi-bandit IM setting of [23, 114, 121]. In the second

72 adaptive influence maximization

part of this section, we relax the in�uence stationarity assumption on the candidates in
the OIMP framework.

3.6.1 Semi-bandit online in�uence maximization via candidates

In this chapter, we introduced a novel method to maximize the expected in�uence relying
exclusively on a subset of the population, namely, the candidates. The rationale is that, ar-
guably, in real life, marketing �rms can only ask a few number of people to initiate spreads
– e.g., in�uential people with whom they are contractually bound by a sponsorship. We
now extend this idea to the semi-bandit IM setting of [23, 114, 121].

Problem 3.5 (Semi-bandit IM via candidates). Given a set of candidates [K], a budget
of N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the objective

of the semi-bandit IM via candidates is to solve the following optimization problem:

arg max
In ⊆[K], |In |=L,∀16n6N

E

N∑
n=1
|S (In) |

.

Given the K candidates, the problem boils down to the following: How should we select a

candidate at each step? As previously said in Section 3.2.4, a key di�erence w.r.t. the OIMP
setting is that the optimal set of seeds – here, chosen among candidates – is constant, and
thus, does not depend on previous actions. This is a great simpli�cation w.r.t. OIMP and
reduces the problem to estimating the value of each potential seed. We now describe our
approach to estimate and build a con�dence interval on the expected spread initiated by
each candidate independently. Note that we make the non-intersecting support assump-
tion, similarly to what we did in the OIMP missing mass bound derivation.

confidence interval. Let n be the number of times a given candidate has be se-
lected and S1, . . . , Sn be the corresponding observed spreads. We want to estimate λ :=∑
u ∈A p (u) where p (u) is the probability that the candidate activates node u. Estimating λ

by λ̂n := 1
n
∑n

i=1 |Si |, we obtain the following con�dence interval.

Proposition 3.1 Let ϵ > 0. For λ = ∑
u ∈A p (u), the following holds:

P
(
λ̂n − λ ≥ ϵ

)
≤ exp

(
−ndPoi(λ + ϵ, λ)

)
,

where dPoi(λ, λ0) := λ0 − λ + λ log λ
λ0

is the Kullback-Leibler divergence of a Poisson distribu-

tion.

Proof Let ϵ > 0 and x = λ + ϵ . For some t > 0, we have

P
(
λ̂n − λ ≥ ϵ

)
= P *

,

1
n

n∑
i=0

Si − λ ≥ ϵ+
-
≤ exp

(
−n(tx − logE[etS1])

)
.

Assuming the independence between node activations, we can upper boundφ (t) = logE[etS1]
as follows:

φ (t) =
∑
u ∈A

log(1 − p (u) + p (u)et) ≤
∑
u ∈A

p (u) (et − 1) = φPoi(t).

3.6 exploring further online im models 73

Note that φPoi(t) is the cumulant-generating function of a Poisson distribution of parameter

λ. We obtain

P
(
λ̂n − λ ≥ ϵ

)
≤ exp

(
−n(tx − φPoi(t))

)
.

We obtain the desired result by �nding the supremum of t 7→ tx − φPoi(t). �

algorithm. Using Proposition 3.1, we can build an index in the same spirit as the
KL-UCB index from Garivier and Cappé [40]. This leads to Algorithm 8.

Algorithm 8: Candidate-KLUCB (L = 1)
Data: Set of candidates [K], time budget N

1 Initialization: play each candidate k ∈ [K] once, observe the spread Sk,1, set nk = 1;
2 for t = K + 1, . . . ,N do
3 Compute bPoi

k (t) for every candidate k ;
4 Choose k (t) = arg maxk ∈[K] b

Poi
k (t);

5 Play candidate k (t) and observe spread S (t);
6 Update statistics of candidate k (t): nk (t) (t + 1) = nk (t) (t) + 1 and Sk,nk (t) = S (t);
7 end

At each round, the learning agent computes the upper-con�dence bound for each arm
k as

bPoi
k (t) := sup

q≥λ̂ (t)

{
q ��� nk (t)d

Poi
(
λ̂(t),q

)
≤ log(t)

}
.

Algorithm 8 can be easily adapted to select L > 1 candidates at each round. Instead of
choosing the candidate maximizing the KL-UCB index, we can select those having the L
largest indices. Note that k (t) then becomes a set of L candidates. A di�usion is initiated
from the associated nodes and, at termination, all activations are observed.

numerical experiments. We conducted experiments on a publicly available dataset
extracted from Facebook4. Note that this graph is relatively small – it contains 4, 039 nodes
for 88, 234 edges – since we want to compare Candidate-KLUCB to DILinUCB [113]
which requires, for each selected seed node, the computation of |V | matrix-vector prod-
ucts of dimension d , where d is the number of dimensions selected for the graph Laplacian
embedding. In addition, DILinUCB needs to select each node from the graph once in the
initialization phase, and thus, requires a much larger horizon to observe times when it can
�nally exploit the knowledge gathered during past exploration steps.

We tested DILinUCB with di�erent settings of d , and found that d = 50 provided the
best results, i.e., the best spread within the 10,000 steps horizon. Thus, we only report
experiments with d = 50. Finally, we select 75 candidates for Candidate-KLUCB using
the DivRank criterion.

In Fig. 3.9, we show the results of the simulations where Candidate-KLUCB is com-
pared to DILinUCB on a horizon T = 10, 000. On the left plot, we show the evolution of
the regret against the number of trials. Unsuprisingly, DILinUCB needs a long initializa-
tion phase before it can �nally start exploiting accumulated feedback. On the other hand,

4 http://snap.stanford.edu/data/egonets-Facebook.html

http://snap.stanford.edu/data/egonets-Facebook.html

74 adaptive influence maximization

0 2000 4000 6000 8000 10000
Trial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
gr

et
×106

DILinUCB
Candidate-KLUCB

0 2000 4000 6000 8000 10000
Trial

100

200

300

400

500

Pe
rs

te
p

re
w

ar
d

Oracle
DILinUCB
Candidate-KLUCB

Figure 3.9: Candidate-KLUCB vs DILinUCB on Facebook dataset, with horizon T = 10, 000 and
L = 10. (left) Regret against number of rounds (right) Per-step reward vs number of
rounds.

Candidate-KLUCB has approximatively the same performance all along the T steps. To
verify this assumption, we display the evolution of the average per-step reward – in prac-
tice, we compute it on the last 50 steps – gathered by the algorithms in Fig. 3.9 (right).
We can observe that Candidate-KLUCB attains its asymptotic performance very early
compared to DILinUCB.

summary. In this section, we provided a novel approach for the semi-bandit in�uence
maximization. Our algorithm, Candidate-KLUCB, has two advantages over its state-of-
the-art competitor DILinUCB: (i) it has a very short initialization step, (ii) at each step, it
selects the spread seed from a small subset of nodes which is much more realistic in many
applications such as in�uencer marketing [15], in which a marketing �rm only sponsors a
few in�uential users.

3.6.2 Online in�uence maximization via rotting candidates

In Section 3.5.1, we studied the OIMP problem under the assumption that candidates have a
constant tendency to activate their basic nodes. In certain situations, the candidates’ ability
to in�uence their basic nodes may diminish as they initiate new spreads. Intuitively, this
means that candidates generate weariness if they persist in trying to convert people they
are connected to, especially if the budget provided initially is given for a single campaign
with a unique semantics. In the following, we assume that candidates can in�uence their
basic nodes only decreasingly with the number of times they initiated spreads.

In terms of bandits, this work is in the same spirit as of Levine et al. [75] who study a
setting – which they call rotting bandits – where each arm’s value decays as a function
of the number of times it has been selected. We also mention the work of Louëdec et
al. [83] in which the authors propose to take into account the gradual obsolescence of
items to be recommended while allowing new items to be added to the pool of candidates.
Importantly, the item’s value is modelled by a decreasing function of the number of steps
since it was added to the pool of items, whereas in our work – and in that of [75]–, the
value is a function of the number of times the item has been selected.

Our variant to the OIMP via candidates framework can be written as follows:

3.6 exploring further online im models 75

Problem 3.6 (OIMP via ro�ing candidates). Given a set of candidates [K], a budget of
N trials, and a number 1 ≤ L ≤ K of candidates to be activated at each trial, the objective of

the online in�uence maximization with persistence (OIMP) via rotting candidates is to solve

the following optimization problem:

arg max
In ⊆[K], |In |=L,∀16n6N

E
������

⋃
16n6N

S (In)
������
,

and such that, the probability that, at its s-th selection, the candidate k ∈ [K] activates its
basic node u is:

ps (u) = γ (s)p (u),

where γ : N→ [0, 1] is a known non-increasing function and p (u) ∈ [0, 1].

The traditional OIMP can be seen as a special instance of the online in�uence max-
imization with persistence via rotting candidates, where the non-increasing function γ
– referred to as the weariness function in the following – is the identity. We will pursue
the same strategy by estimating the missing mass of a given candidate by an adaptation
of the Good-Turing estimator introduced for the OIMP problem. Note that the problem is
more complex in the rotting setting because hapaxes must now incorporate the round of
their activation.

As we did previously, to simplify the analysis, we assume that the candidates have non

intersecting support. Let n be the number of times a given candidate has been selected
and S1, . . . , Sn the corresponding initiated spreads. We rede�ne the missing mass in the
rotting candidate setting as Rn := ∑

u ∈A 1{u never activated}γ (n)p (u) where p (u) is the
probability that the candidate activates node u, independently of the number of spreads
initiated by the candidate. Again, the missing mass is equal to the expected number of
additional conversions at time n given the nodes previously activated. The Good-Turing
estimator adapted to the rotting setting is de�ned as follows:

R̂n =
∑
u ∈A

U
γ
n (u)

n
,

whereU γ
n (u) := ∑

i<n 1{X0 = . . . = Xi−1 = Xi+1 = . . . = Xn−1 = 0,Xi = 1}γ (n)γ (i) . In short, if
i is the round at which a hapax has been activated, we reweight it by the factor γ (n)/γ (i)
since we are interested in its contribution at the n-th round. We now justify formally this
estimator by computing its bias.

estimator bias. Lemma 3.3 shows that the estimator of the missing mass for the
rotting candidates setting is hardly biased.

Lemma 3.3 Denoting λ =
∑
u ∈A p (u), the bias of the missing mass estimator is

E[Rn] − E[R̂n] ∈
[
−γ (n)

λ

n
, 0

]
.

Proof Remember that U
γ
n (u) =

∑
i<n 1{X0 = . . . = Xi−1 = Xi+1 = . . . = Xn−1 = 0,Xi =

1}γ (n)γ (i) . We have that

E[U γ
n (u)] =

∑
i<n

pi (u)
∏
j,i

(1 − pj (u))
γ (n)

γ (i)
= pn (u)

∑
i<n

∏
j,i

(1 − pj (u)).

76 adaptive influence maximization

We now can compute the bias of the estimator:

E[Rn] − E[R̂n] = 1
n

∑
u ∈A

pn (u)

∑
i<n

∏
j<n

(1 − pj (u)) −
∑
i<n

∏
j,i

(1 − pj (u))

=
1
n

∑
u ∈A

pn (u)
∑
i<n

∏
j,i

(1 − pj (u))[1 − pi (u) − 1]

= −
1
n

∑
u ∈A

pn (u)
∑
i<n

pi (u)
∏
j,i

(1 − pj (u))

= −
1
n
E

∑
u ∈A

pn (u)Un (u)

∈

[
−

∑
u ∈A pn (u)

n
, 0

]

Note that the random variable Un (u) correspond to the hapax de�nition given in the OIMP

problem, that is,Un (u) = 1{u activated exactly once}. �

Unsurprisingly, we obtain the same bias for the case where γ is the identity function.
We omit the derivation of the con�dence intervals in this thesis.

summary. We provided an extension to the OIMP problem that models users’ weari-
ness of repeatedly seeing the same piece of information We propose a new estimator which
includes the diminishing in�uence of a candidate as the number of times it has been se-
lected grows.

3.7 conclusion

In this chapter, we proposed a di�usion-independent approach for online and adaptive
IM, whose role is to maximize the number of activated nodes in an arbitrary environment,
under the OIMP framework. We focus on scenarios in which in�uence campaigns consist
of multiple consecutive trials conveying the same piece of information. Our method re-
quires as only interfaces with the “real-world” the identi�cation of potential seeds (the
candidates) and the spread feedback (i.e., the set of activated nodes) at each trial.

Subsequent online iterations are very fast, making it possible to scale to very large
graphs, where other approaches become infeasible. The e�ciency of GT-UCB comes from
the fact that it only relies on an estimate of a single quantity for each candidate seed – its
potential or missing mass. This novel approach is shown to be very competitive on IM
benchmark tasks.

Two extensions to this line of research were considered, one for adapting our OIMP
approach via candidates to the semi-bandit in�uence maximization, one for incorporating
the possible weariness generated by candidates if they persist in trying to convert people
they are connected to.

appendix 3.a elements of proof

3.a.1 Useful lemmas

Lemma 3.4 (Bennett’s inequality – Theorem 2.9 and 2.10 [14]). Let X1, . . . ,Xn be

independent random variables with �nite variance such that Xi ≤ b for some b > 0 for all

3.A elements of proof 77

i ≤ n. Let S := ∑n
i=1 (Xi − E[Xi]) and v := ∑n

i=1 E[X 2
i]. Writing φ (u) = eu − u − 1, then for

all t > 0,

logE
[
etS

]
≤
v

b2φ (bt) ≤
vt2

2(1 − bt/3) .

This implies that, P
(
S >

√
2v log 1/δ + b

3 log 1/δ
)
≤ δ .

Lemma 3.5 (Lemma 7 – [11]). Let n ≥ 1, λ ≥ 0, p ∈ [0, 1] and q = (1 − p)n . Then,

qeλp (1−q) + (1 − q)e−λpq ≤ exp(pλ2/(4n)) (3.4)
qeλp (q−1) + (1 − q)eλpq ≤ exp(pλ2/(4n)) (3.5)

3.a.2 Analysis of the waiting time of GT-UCB

Lemma 3.6 For any s ≥ 3,

P *
,
R̂s ≤ R̂s−1 −

λ

e (s − 2) −
√

2λ
s − 1 log(1/δ) − 1

3(s − 1) log(1/δ)+
-
≤ δ .

Proof Denote by Xs (x) := Us−1 (x)
s−1 −

Us (x)
s ≤ 1

s−1 . We can rewrite R̂s−1 − R̂s =
∑

x ∈AXs (x)
and can easily verify that

v (x) := E
[
Xs (x)

2
]
= p (x) (1 − p (x))s−2

(
1

s − 1 −
1 − p (x)

s

)
≤

p (x)

s − 1 . (3.6)

Let t > 0. By applying Lemma3.4, one obtains

P *
,
R̂s−1 − R̂s ≥ E

[
R̂s−1 − R̂s

]
+

√
2λ

s − 1 log(1/δ) + 1
3(s − 1) log(1/δ)+

-
≤ δ .

We conclude remarking that E[Xs (x)] = p (x)2(1−p (x))s−2 ≤
p (x)
e (s−2) , that is, E[R̂s−1 − R̂s] ≤

λ
e (s−2) . �

Theorem 3.7 (Stopping time). Denote λmin := mink ∈[K] λk and λmax := maxk ∈[K] λk .

Assume that λmin ≥ 13. Then, for any α ∈
[

13
λmin

, 1
]
, if we de�ne τ ∗ := T ∗

(
α − 13

λmin

)
, with

probability at least 1 − 2K
λmax ,

TUCB(α) ≤ τ
∗ + Kλmax log(4τ ∗ + 11Kλmax) + 2K .

Proof Let us de�ne the following con�dence bounds:

b+k,s (t) := (1 +
√

2)
√

3λk log(2t)
s

+
log(2t)

s
,

b−k,s (t) := (1 +
√

2)
√

3λk log(2t)
s

+
log(2t)

s
+
λk
s
, and

c−k,t (t) := λ

e (s − 2) +
√

6λk log(t)
s − 1 +

log(t)
s − 1 .

78 adaptive influence maximization

Let S > 0. Using these de�nitions, we introduce the following events:

F :=
{
∀k ∈ [K],∀t > S,∀s ≤ t , R̂k,s − b

−
k,s (t) ≤ Rk,s ≤ R̂k,s + b

+
k,s (t)

}
,

G :=
{
∀k ∈ [K],∀s ≥ S, R̂k,s ≥ R̂k,s−1 − c

−
k,s (t)

}
,

E := F ∩ G.

Using Theorem 3.5, Lemma 3.6 and a union bound, one obtains P(E) ≥ 1 − 2K
S (by setting

δ ≡ 1
t 3). Indeed,

P
(
Ē
)
≤ P(F̄) + P(Ḡ) ≤ 2

K∑
k=1

∑
t>S

∑
s≤t

1
t3 = 2K

∑
t>S

1
t2 ≤

2K
S
.

In the following, we work on the event E. Recall that we want to controlTUCB (α), the time

at which every expert attains a missing mass smaller than α following Good-UCB strategy.

We aim at comparingTUCB (α) toT
∗(α), the same quantity following the omniscient strategy.

With that in mind, one can write:

TUCB (α) = min
{
t : ∀k ∈ [K],Rk,Nk (t) ≤ αλk

}
,

T ∗(α) =
K∑
k=1

T ∗k (α), where T
∗
k (α) = min {

s : Rk,s ≤ αλk
}
.

Following ideas from [17], we will controlTUCB (α) by comparing it toU (α) de�ned below,
and which replaces the missing mass by an upper bound on the estimator of the missing mass

(the Good-Turing estimator). Indeed, remind that we can control this on event F .

U (α) = min
{
t ≥ 1 : ∀k ∈ [K], R̂k,Nk (t) + b

+
k,Nk (t)

(t) ≤ αλk
}
.

Let S ′ ≥ S . On event E, one has that TUCB (α) ≤ max(S ′,U (α)). IfU (α) ≥ S ′, one has

Rk,Nk (U (α)) ≥ R̂k,Nk (U (α)) − b
−
k,Nk (U (α)) (U (α)) (we are on event F and U (α) > S ′ ≥ S)

≥ R̂k,Nk (U (α))−1 − b
−
k,Nk (U (α)) (U (α)) − c−k,Nk (U (α)) (U (α))

(where are on event G)
≥

(
αλk − b

+
k,Nk (U (α))−1(U (α))

)
− b−k,Nk (U (α)) (U (α)) − c−k,Nk (U (α)) (U (α))

The third inequality’s justi�cation is more evolved. Let t be the time such that Nk (t) =
Nk (U (α)) − 1 and Nk (t + 1) = Nk (U (α)). This implies that k is the chosen expert at time t ,
that is, the one maximizing the Good-UCB index. Moreover, since t < U (α), one knows that
this index is greater than αλk .

If Nk (U (α)) ≥ S ′ + 2, some basic maths calculations lead to

Rk,Nk (U (α)) ≥ αλk − 11
√
λk log(2U (α))

S ′
−

3 log(2U (α))

S ′
−

3λk
2S ′

We denote by λmax := maxk λk . If we take S ′ = λmax log(2U (α)), we can rewrite previous

inequality as

Rk,Nk (U (α)) ≥ αλk − 11 − 3
λmax −

3
2

3.A elements of proof 79

Thus, by de�nition of T ∗k (α), and if λ
max > 6, one gets

Nk,U (α) ≤ T
∗
k

(
α −

13
λk

)
+ S ′ + 2.

Finally, if we denote by λmin = mink λk , we obtain that

U (α) ≤ K (S ′ + 2) +T ∗
(
α −

13
λmin

)
.

We now apply Lemma 3.7. We obtain that

U (α) ≤ 2K + τ ∗ + Kλmax log (8K + 4τ ∗ + 10Kλmax)

≤ τ ∗ + Kλmax log (4τ ∗ + 11Kλmax) + 2K .

We conclude with TUCB (α) ≤ max(S ′,U (α)). �

Lemma 3.7 (Lemma 3 from [17]). Let a > 0, b ≥ 0.4, and x ≥ e , such that x ≤
a + b logx . Then one has

x ≤ a + b log(2a + 4b log(4b)).

Moreover, we add that if b ≥ 3, then x ≤ a + b log(2a + 5b).

S

4
A D A P T I V E M U L T I P L E - I T E M R E C O M M E N D AT I O N

In this chapter, we introduce a dynamic approach for adaptively learning to place items
in multi-position displays (e.g., web pages o�ering advertising spaces). The proposed ap-
proach is particularly tailored for cold start situations in which the recommender agent
(e.g. the �lm recommender system, the publicity agency, etc.) has no information on some
of the items it recommends to users. For example, when a company releases new products,
it may want to run a marketing campaign so as to give them visibility, but has no prior
knowledge on people’s response regarding them. As another example, think about �lm
recommender systems: every time a new �lm is added to the system, its evaluation by
users is unknown and we face a cold start situation. In order to answer these challenges,
we propose a multi-armed bandit approach that alternates exploration and exploitation
steps so as to maximize users’ satisfaction regarding items they are recommended.

The present work proposes to exploit available information regarding the display posi-
tion bias under the so-called position-based click model. Importantly, a major concern in
this context is that the system receives ambiguous feedback. Indeed, much of the content
may have been simply ignored by the user (e.g., the user did not scroll to the bottom of the
page, and thus did not see the ad displayed there). We �rst discuss how this model di�ers
from the cascade model and other variants of click models considered in several works
on multiple-play bandits. We then provide a novel regret lower bound for this model as
well as computationally e�cient algorithms that display good empirical and theoretical
performance.

The work has been presented at the NIPS conference in 2016 [71]. A preliminary version
of this work was presented at the Workshop on Online Advertising Systems at ICML 2016
[116].

Contents
4.1 Introduction . 82
4.2 Click models for search and recommendation 83
4.3 The position-based model . 85

4.3.1 Model and notations . 85
4.3.2 Lower bound on the regret 87
4.3.3 Existing results for multiple-play bandit problems 87
4.3.4 Lower bound step by step . 88
4.3.5 Lower bound for the PBM . 89
4.3.6 Algorithms . 90

4.4 Numerical experiments . 92
4.4.1 Simulations . 92

81

82 adaptive multiple-item recommendation

4.4.2 Real data experiments: search advertising 93
4.5 Conclusions and extensions . 94
4.A Elements of proof . 95

4.A.1 Proof of Theorem 4.1 . 95
4.A.2 Proof of Proposition 4.2 . 99
4.A.3 Regret analysis for PBM-PIE (Theorem 4.4) 99
4.A.4 Controlling leaders and estimations 99
4.A.5 Lemmas . 103

4.1 introduction

During their browsing experience, users are constantly provided – without having asked
for it – with clickable content spread over web pages. While users interact on a website,
they send clicks to the system for a very limited selection of the clickable content. Hence,
they let every unclicked item with an equivocal answer: the system does not know whether
the content was really deemed irrelevant or simply ignored. In contrast, in traditional
multi-armed bandit (MAB) models, the learner makes actions and observes at each round
the reward corresponding to the chosen action. In the so-called multiple play semi-bandit
setting, when users are presented with L items, they are assumed to provide feedback for
each of those items.

Several variants of click models have been considered in the bandit literature. The ne-
cessity for the user to provide feedback for each item has been called into question in
the context of the so-called cascade model [27, 28, 68] and its extensions such as the De-

pendent Click Model (DCM) [108]. Both models are particularly suited for search contexts,
where the user is assumed to be looking for something relative to a query and examine
sequentially items from a list. Consequently, the learner expects explicit feedback: in the
cascade model each valid observation sequence must be either all zeros or terminated by
a one, such that no ambiguity is left on the evaluation of the presented items. Conversely,
multiple clicks are allowed in the DCM thus leaving some ambiguity on the last zeros of
a sequence.

All previous click models assume that a portion of the recommendation list is explic-
itly examined by the user and hence that the learning algorithm eventually has access to
rewards corresponding to the unbiased user’s evaluation of each item. In contrast, we pro-
pose to analyze multiple-play bandits in the position-based model (PBM) [25]. In short, in
the PBM, each position in the list is also endowed with a binary examination variable [28,
99] which is equal to one only when the user paid attention to the corresponding item. But
this variable, that is independent of the user’s evaluation of the item, is not observable. It
allows to model situations where the user is not explicitly looking for speci�c content, as
in typical recommendation scenarios.

Compared to the di�erent variants of the cascade model, the PBM is challenging due
to the censoring induced by the examination variables: the learning algorithm observes
actual clicks but non-clicks are always ambiguous. Thus, combining observations made at
di�erent positions becomes a non-trivial statistical task. Some preliminary ideas on how
to address this issue appear in the supplementary material of [67]. In this work, we provide
a complete statistical study of stochastic multiple-play bandits with semi-bandit feedback
in the PBM.

4.2 click models for search and recommendation 83

We begin this chapter with a short overview of the click models proposed in search and
recommendation contexts and discuss existing multi-armed bandit studies under these
feedback. We introduce the model and notations in Section 4.3.1 and provide the lower
bound on the regret in Section 4.3.2. In Section 4.3.6, we present two optimistic algorithms,
PBM-UCB and PBM-PIE, as well as an optimal theoretical analysis of the regret of the
latter. In the last section dedicated to experiments, those policies are compared to several
benchmarks on both synthetic and realistic data.

4.2 click models for search and recommendation

In this section, we present click models introduced in the last two decades aiming at mod-
elling users’ interaction with search and recommendation systems. A survey speci�cally
dedicated to the presentation of these di�erent click models and to their parameter estima-
tion has been recently published by Chuklin et al. [25]. Here, we present a short summary
of the models related to the position-based model which is the focus of our work, and refer
the interested reader to this survey for a broader introduction to click models.

Propositions of click models have followed the rise of the Web, and, in particular, the
development of search engines in the late 90’s to access massive amounts of documents.
Initially, experiments were performed to analize the behavior of users in real situations.
For example, Joachims et al. [59] analyze the users’ decision process through eyetracking
tools and conclude that users’ clicking decisions are biased by the position, the trust in the
scoring function and the overall quality of the result set. The knowledge of these factors
has dictated the choice of results page’s design and several user models were introduced
aiming at matching the observed user behavior with collected click logs.

In the following, alongside each click model, we describe related works – if any – on the
corresponding bandit instance. The multi-armed bandit framework is particularly tailored
to face cold start situations that are inherent to products newly introduced to an existing
pool of documents / items. Indeed, the lack of knowledge regarding users’ appreciation on
these items requires that the search (or recommendation) system explore so as to gather
information on items’ value. Simultaneously, it needs to exploit cumulated observations in
order to maximize the users’ satisfaction. This problem is a typical instance of multi-armed
bandits.

cascade model. In the cascade model [28], the user scans the list from top to bottom
and clicks on the �rst relevant item. The user always examines the �rst item and contin-
ues until �nding an interesting item. More precisely, at each position, the user examines
the item displayed. If the item is relevant, he/she clicks and the session stops. Otherwise,
the user continues and examines the following position. Note that the user is considered
sati�s�ed as soon as an item in the list was clicked and the attractiveness probabilities
associated to items are the only parameters of the cascade model.

A key aspect of the cascade model is that it can only handle sessions with a single
click. Furthermore, the positions of the items are not taken into account in the reward
process because the user is assumed to continue scrolling the list as long as the items
examined so far are not relevant, but the user satisfaction is only measured by the presence
or absence of a click. In the bandit setting, this also implies that the optimal strategy in a
learning context consists in showing the most relevant items at the end of the list in order

84 adaptive multiple-item recommendation

to maximize the amount of observed feedback [68] – which is counter-intuitive in both
search and recommendation tasks.

To overcome these limitations, Combes et al. [27] introduce weights – these additional
design parameters are to be de�ned by the learner – that are attributed to positions in
the list, with a click on position l ∈ {1, . . . ,L} providing a reward wl , where the sequence
(wl)l is decreasing to enforce the ranking behavior. However, no rule is given for setting
the weights (wl)l that control the order of importance of the positions. The authors pro-
pose an algorithm based on KL-UCB [40] and prove a lower bound on the regret as well
as an asymptotically optimal upper bound. We will rely on their work to derive an asymp-
totically optimal analysis of PBM-PIE.

Importantly, all studies tackling the cascade model can easily estimate the unknown
parameters as there is no ambiguity on every click / non-click. Even though the proposed
algorithms are quite similar, some introduce small di�erences in order to simplify the
analysis.

dependent click model. Another way to address the limitations of the cascade
model is to consider the Dependent Click model (DCM) initially introduced by Guo et
al. [51]. Here, continuation probabilitiesvl are introduced for each position l : conditionally
on the event that the user e�ectively scanned the list up to position l and clicked on this
item, he/she can choose to continue with probability vl . When trying to maximize the
expected number of clicks, this framework naturally induces the necessity to rank the
items in the optimal order. Indeed, if the least relevant items are displayed at the beginning
of the list, the user scrolls down until he/she �nds the �rst relevant item in, say, position l ,
and continues with probabilityvl . Since continuation probabilities are decreasing values of
l , the user thus observes less relevant items – in expectation – than if they were displayed
at the beginning of the list.

Kveton et al. [108] study the DCM in the bandit setting and propose a variation of
the KL-UCB algorithm tailored to the DCM. The algorithm estimates item attractivity
using every click or non-click until the last clicked item. Indeed, these feedback are non-
ambiguous whereas items displayed after the last click may correspond to items that were
simply unobserved. Kveton et al. give an analysis of their algorithm that matches the lower
bound of the DCM bandit setting up to logarithmic factors.

In summary, just as in the cascade model, the learner can estimates the desired quanti-
ties restraining the used feedback to have no ambiguity on examined items.

dynamic bayesian network model. Chapelle and Zhang [20] introduce the Dy-
namic Bayesian Network model (DBN) as another extension to the cascade model. Instead
of continuation probabilities, the authors propose to introduce for each item k satisfaction

probabilities σk that add up to attraction probabilities θk : conditionally on the event that
the user scanned the list up to position l , he/she clicks on the item k in position l with
probability θk . He/she is satis�ed by the clicked item with probability σk , and, if unsatis-
�ed by the item, he/she continues scrolling to the next item with probability γ . Note that
in the DBN model, there is a unique continuation parameter that is independent of the
position. A special instance of the model with γ = 1 – referred to as the Simpli�ed DBN
model –, allows to estimate the parameters quite easily [20] without losing much predic-
tion quality. If we further assume that all satisfaction probabilities are 1, the DBN reduces

4.3 the position-based model 85

to the cascade model. The study of the DBN model in the bandit setting remains an open
question.

other click models. Many other click models have been proposed in the last decade.
We mention here the User Browsing model (UBM) by Dupret and Piwowarski [35] which
can be seen as a mix of the PBM and the cascade model. The DCM has also been extended
with the Click Chain model (CCM) by Guo et al. [51] that allows the user to stop scrolling
the list without having clicked any item nor reached the end.

4.3 the position-based model

In this section, we introduce notations that will be useful to describe formally the position-
based model in the bandit setting. Then, we provide an analysis of the PBM problem with
a lower bound of the regret which is shown to be tight with an upper bound analysis of
algorithm PBM-PIE.

4.3.1 Model and notations

We consider the binary stochastic bandit model with K Bernoulli-distributed arms. The
model parameters are the arm expectations θ = (θ1,θ2, . . . ,θK), which lie in Θ = (0, 1)K .
We will denote by B (θ) the Bernoulli distribution with parameter θ and by d (p,q) :=
p log(p/q)+ (1−p) log((1−p)/(1−q)) the Kullback-Leibler divergence from B (p) to B (q).
At each round t , the learner selects a list of L arms – referred to as an action – chosen
among the K arms which are indexed by k ∈ {1, . . . ,K }. The set of actions is denoted by
A and thus containsK ! /(K −L)! ordered lists; the action selected at time t will be denoted
A(t) = (A1(t), . . . ,AL (t)).

Figure 4.1: List of 18 recommended �lms displayed on 3 rows. Not surprisingly, independently of
its content, the higher a �lm is displayed in a webpage, the higher its chances to be
clicked. Interestingly, the �lms displayed in the middle columns receive more clicks on
average than the �lms displayed on the left and right borders. Eyetracking experiments
show that users tend to focus on the center of webpages. These observations support
the need for a model like the PBM to describe recommendation contexts.

86 adaptive multiple-item recommendation

The PBM is characterized by examination parameters (κl)1≤l ≤L , where κl is the prob-
ability that the user e�ectively observes the item in position l [28]. At round t , the se-
lection A(t) is shown to the user and the learner observes the complete feedback – as in
semi-bandit models – but the observation at position l ,Zl (t), is censored being the product
of two independent Bernoulli variables Yl (t) and Xl (t), where Yl (t) ∼ B (κl) is non null
when the user examined the item in position l – which is unknown to the learner – and
Xl (t) ∼ B (θAl (t)) represents the actual user feedback to the item shown in position l . The
learner receives a reward rA(t) =

∑L
l=1 Zl (t), where Z (t) = (X1(t)Y1(t), . . . ,XL (t)YL (t))

denotes the vector of censored observations at step t . In Fig. 4.1, we show a situation
motivating the PBM in a recommendation scenario.

In the following, we will assume, without loss of generality, that θ1 > · · · > θK and
κ1 > · · · > κL > 0, in order to simplify the notations. The fact that the sequences (θl)l and
(κl)l are decreasing implies that the optimal list is a∗ = (1, . . . ,L). Denoting by R (T) =∑T
t=1 ra∗ − rA(t) the regret incurred by the learner up to time T , one has

E[R (T)] =
T∑
t=1

L∑
l=1

κl (θa∗l − E[θAl (t)]) =
∑
a∈A

(µ∗ − µa) E[Na (T)] =
∑
a∈A

∆aE[Na (T)], (4.1)

where µa =
∑L
l=1 κlθal is the expected reward of action a, µ∗ = µa∗ is the best possible re-

ward in average, ∆a = µ
∗−µa the expected gap to optimality, and, Na (T) =

∑T
t=1 1{A(t) =

a} is the number of times action a has been chosen up to time T .
In the following, we assume that the examination parameters (κl)1≤l ≤L are known to

the learner. These can be estimated from historical data [25], using, for instance, the EM
algorithm [31] (as will be done in Section 4.4). In most scenarios, it is realistic to assume
that the content (e.g., ads in on-line advertising) is changing much more frequently than
the layout (web page design for instance) making it possible to have a good knowledge of
the click-through biases associated with the display positions.

The main statistical challenge associated with the PBM is that one needs to obtain es-
timates and con�dence bounds for the components θk of θ from the available B (κlθk)-
distributed draws corresponding to occurrences of arm k at various positions l = 1, . . . ,L
in the list. To this aim, we de�ne the following statistics: Sk,l (t) =

∑t−1
s=1 Zl (s)1{Al (s) = k },

Sk (t) =
∑L
l=1 Sk,l (t), Nk,l (t) =

∑t−1
s=1 1{Al (s) = k }, Nk (t) =

∑L
l=1 Nk,l (t). We further re-

quire bias-corrected versions of the counts Ñk,l (t) =
∑t−1

s=1 κl1{Al (s) = k } and Ñk (t) =∑L
l=1 Ñk,l (t).

Observation A time t , and conditionally on the past actionsA(1) up toA(t−1), the Fisher
information for θk is given by I (θk) =

∑L
l=1 Nk,l (t)κl/(θk (1 − κlθk)).

Proof Conditionnally to the actionsA(1) up toA(t−1), the log-likelihood of the observations
Z (1), . . . ,Z (t − 1) may be written as

t−1∑
s=

K∑
k=1

L∑
l=1

1{Al (t) = k } [Zl (t) log(κlθk) + (1 − Zl (t)) log(1 − κlθk)]

=

K∑
k=1

L∑
l=1

Sk,l (t) log(κlθk) + (Nk,l (t) − Sk,l (t)) log(1 − κlθk).

Di�erenciating twice with respect to θk and taking the expectation of (Sk,l (t))l , conditionnal
to A(1), . . . ,A(t − 1), yields the expression of I (θk) given above. �

4.3 the position-based model 87

However, we cannot estimate θk using the maximum likelihood estimator since it has no
closed form expression. Interestingly though, the simple pooled linear estimator

θ̂k (t) =
Sk (t)

Ñk (t)
, (4.2)

considered in the supplementary material to [67], is unbiased and has a (conditional) vari-
ance of υ (θk) = (

∑L
l=1 Nk,l (t)κlθk (1 − κlθk))/(

∑L
l=1 Nk,l (t)κl)

2, which is close to opti-
mal given the Cramér-Rao lower bound. Indeed, υ (θk)I (θk) is recognized as a ratio of a
weighted arithmetic mean to the corresponding weighted harmonic mean, which is known
to be larger than one, but is upper bounded by 1/(1 − θk), irrespectively of the values of
the κl ’s. Hence, if, for instance, we can assume that all θk ’s are smaller than one half, the
loss with respect to the best unbiased estimator is no more than a factor of two for the
variance. Note that despite its simplicity, θ̂k (t) cannot be written as a simple sum of con-
ditionally independent increments divided by the number of terms and will thus require
speci�c concentration results.

It can be checked that when θk gets very close to one, θ̂k (t) is no longer close to optimal.
This observation also has a Bayesian counterpart that will be discussed in Section 4.4. Nev-
ertheless, it is always preferable to the “position-debiased” estimator (∑L

l=1 Sk,l (t)/κl)/Nk,l (t)
which gets very unreliable as soon as one of the κl ’s gets very small.

4.3.2 Lower bound on the regret

In this section, we consider the fundamental asymptotic limits of learning performance for
online algorithms under the PBM. These cannot be deduced from earlier general results,
such as those of [26, 50], due to the censoring in the feedback associated to each action.
We detail a simple and general proof scheme – using the results of [63] – that applies to
the PBM, as well as to more general models.

Lower bounds on the regret rely on changes of measure: the question is how much
can we mistake the true parameters of the problem for others, when observing succes-
sive arms? With this in mind, we will subscript all expectations and probabilities by the
parameter value and indicate explicitly that the quantities µa ,a∗, µ∗,∆a , introduced in Sec-
tion 4.3.1, also depend on the parameter. For ease of notation, we will still assume that θ
is such that a∗(θ) = (1, . . . ,L).

4.3.3 Existing results for multiple-play bandit problems

Lower bounds on the regret will be proved for uniformly e�cient algorithms, in the sense
of [72]:

De�nition 4.1 An algorithm is said to be uniformly e�cient if for any bandit model

parameterized by θ and for all α ∈ (0, 1], its expected regret after T rounds is such that

EθR (T) = o(T
α).

For the multiple-play MAB, [4] obtained the following bound

lim inf
T→∞

EθR (T)

log(T) ≥
K∑

k=L+1

θL − θk
d (θk ,θL)

. (4.3)

88 adaptive multiple-item recommendation

For the “learning to rank” problem where rewards follow the weighted Cascade Model
with decreasing weights (wl)l=1, ...,L , [27] derived the following bound

lim inf
T→∞

EθR (T)

logT ≥ wL

K∑
k=L+1

θL − θk
d (θk ,θL)

.

Perhaps surprisingly, this lower bound does not show any additional term correspond-
ing to the complexity of ranking the L optimal arms. Indeed, the errors are still asymptoti-
cally dominated by the need to discriminate irrelevant arms (θk)k>L from the worst of the
relevant arms, that is, θL .

4.3.4 Lower bound step by step

step 1: computing the expected log-likelihood ratio. Denoting by Fs−1
the σ -algebra generated by the past actions and observations, we de�ne the log-likelihood
ratio for the two values θ and λ of the parameters by

`(t) :=
t∑

s=1
log p (Z (s);θ | Fs−1)

p (Z (s); λ | Fs−1)
. (4.4)

Lemma 4.1 For each position l and each item k , de�ne the local amount of information by

Il (θk , λk) := Eθ
[
log p (Zl (t);θ)

p (Zl (t); λ)
�����
Al (t) = k

]
,

and its cumulated sum over the L positions by Ia (θ , λ) := ∑L
l=1

∑K
k=1 1{al = k }Il (θk , λk). The

expected log-likelihood ratio is given by

Eθ [`(t)] =
∑
a∈A

Ia (θ , λ)Eθ [Na (t)]. (4.5)

The next proposition is adapted from Theorem 17 in Appendix B of [63] and provides
a lower bound on the expected log-likelihood ratio.

Proposition 4.1 Let B (θ) := {λ ∈ Θ ��∀l ≤ L,θl = λl and µ
∗(θ) < µ∗(λ) } be the set of

changes of measure that improve over θ without modifying the optimal arms. Assuming

that the expectation of the log-likelihood ratio may be written as in (4.5), for any uniformly

e�cient algorithm one has

∀λ ∈ B (θ), lim inf
T→∞

∑
a∈A Ia (θ , λ)Eθ [Na (T)]

log(T) ≥ 1.

step 2: variational form of the lower bound. We are now ready to obtain
the lower bound in a form similar to that originally given by [50].

Theorem 4.1 The expected regret of any uniformly e�cient algorithm satis�es

lim inf
T→∞

EθR (T)

logT ≥ f (θ), where f (θ) = inf
c�0

∑
a∈A

∆a (θ)ca , s.t. inf
λ∈B (θ)

∑
a∈A

Ia (θ , λ)ca ≥ 1.

Theorem 4.1 is a straightforward consequence of Proposition 4.1, combined with the
expression of the expected regret given in (4.1). The vector c ∈ R |A |+ , that satis�es the
inequality ∑

a∈A Ia (θ , λ)ca ≥ 1, represents the feasible values of Eθ [Na (T)]/log(T).

4.3 the position-based model 89

step 3: relaxing the constraints. The bounds mentioned in Section 4.3.3 may
be recovered from Theorem 4.1 by considering only the changes of measure that a�ect a
single suboptimal arm.

Corollary 4.1

f (θ) ≥ inf
c�0

∑
a∈A

∆a (θ)ca , s.t.

∑
a∈A

L∑
l=1

1{al = k }Il (θk ,θL)ca ≥ 1 , ∀k ∈ {L + 1, . . . ,K }.

Corollary 4.1 is obtained by restricting the constraint setB (θ) of Theorem 4.1 to∪Kk=L+1Bk (θ),
where Bk (θ) :=

{
λ ∈ Θ|∀j , k,θj = λj and µ∗(θ) < µ∗(λ)

}
.

4.3.5 Lower bound for the PBM

Theorem 4.2 For the PBM, the following lower bound holds for any uniformly e�cient

algorithm:

lim inf
T→∞

EθR (T)

logT ≥

K∑
k=L+1

min
l ∈{1, ...,L }

∆vk,l (θ)

d (κlθk ,κlθL)
, (4.6)

where vk,l := (1, . . . , l − 1,k, l , . . . ,L − 1).

Proof First, note that for the PBM one has Il (θk , λk) = d (κlθk ,κlλk). To get the expression
given in Theorem 4.2 from Corollary 4.1, we proceed as in [27] showing that the optimal

coe�cients (ca)a∈A can be non-zero only for the K − L actions that put the suboptimal arm

k in the position l that reaches the minimum of ∆vk,l (θ)/d (κlθk ,κlθL). Nevertheless, this
position does not always coincide with L, the end of the displayed list, contrary to the case of
[27] (the detailed proof is given in Section 4.A.1). �

The discrete minimization that appears in the r.h.s. of Theorem 4.2 corresponds to a
fundamental trade-o� in the PBM. When trying to discriminate a suboptimal arm k from
the L optimal ones, it is desirable to put it higher in the list to obtain more information,
as d (κlθk ,κlθL) is an increasing function of κl . On the other hand, the gap ∆vk,l (θ) is
also increasing as l gets closer to the top of the list. The fact that d (κlθk ,κlθL) is not
linear in κl (it is a strictly convex function of κl) renders the trade-o� non trivial. It is
easily checked that when (θ1 − θL) is very small, i.e. when all optimal arms are equiv-
alent, the optimal exploratory position is l = 1. In contrast, it is equal to L when the
gap (θL − θL+1) becomes very small. Note that by using that for any suboptimal a ∈ A,
∆a (θ) ≥

∑K
k=L+1

∑L
l=1 1{al = k }κl (θL − θk), one can lower bound the r.h.s. of Theorem 4.2

by κL
∑K

k=L+1(θL − θk)/d (κLθk ,κLθL), which is not tight in general.

remark. In the uncensored version of the PBM – i.e., if the Yl (t) were observed –, the
expression of Ia (θ , λ) is simpler: it is equal to ∑L

l=1
∑K

k=1 1{Al (t) = k }κld (θk , λk) and leads
to a lower bound that coincides with (4.3). The uncensored PBM is actually statistically
very close to the weighted Cascade model and can be addressed by algorithms that do not
assume knowledge of the (κl)l but only of their ordering.

90 adaptive multiple-item recommendation

4.3.6 Algorithms

In this section we introduce two algorithms for the PBM. The �rst one uses the CUCB
strategy of [21] and requires an simple upper con�dence bound for θk based on the es-
timator θ̂k (t) de�ned in (4.2). The second algorithm is based on the Parsimonious Item

Exploration – PIE(L) – scheme proposed in [27] and aims at reaching asymptotically opti-
mal performance. For this second algorithm, termed PBM-PIE, it is also necessary to use a
multi-position analog of the well-known KL-UCB index [40] that is inspired by a result of
[85]. The analysis of PBM-PIE provided below con�rms the relevance of the lower bound
derived in Section 4.3.2.

pbm-ucb. The �rst algorithm simply consists in sorting optimistic indices in decreas-
ing order and pulling the corresponding �rst L arms [21]. To derive the expression of the
required “exploration bonus” we use an upper con�dence for θ̂k (t) based on Hoe�ding’s
inequality:

UUCB
k (t ,δ) =

Sk (t)

Ñk (t)
+

√
Nk (t)

Ñk (t)

√
δ

2Ñk (t)
,

for which a coverage bound is given by the next proposition, proven in Section 4.A.2.

Proposition 4.2 Let k be any arm in {1, . . . ,K }, then for any δ > 0,

P
(
UUCB
k (t ,δ) ≤ θk

)
≤ eδ log(t)e−δ .

Following the ideas of [26], it is possible to obtain a logarithmic regret upper bound for
this algorithm.

Theorem 4.3 LetC (κ) = min1≤l ≤L[(∑L
j=1 κj)

2/l+(
∑l
j=1 κj)

2]/κ2
L and∆ = mina∈σ (a∗)\a∗ ∆a ,

where σ (a∗) denotes the permutations of the optimal action. Using PBM-UCB with δ =
(1 + ϵ) log(t) for some ϵ > 0, there exists a constant C0(ϵ) independent from the model

parameters such that the regret of PBM-UCB is bounded from above by

E[R (T)] ≤ C0(ϵ) + 16(1 + ϵ)C (κ) logT *.
,

L

∆
+

∑
k<a∗

1
κL (θL − θk)

+/
-
.

The proof of the regret upper bound of PBM-UCB is omitted in this thesis and can be
found in the original paper [71]. The presence of the term L/∆ in the above expression is
attributable to limitations of the mathematical analysis. On the other hand, the absence of
the KL-divergence terms appearing in the lower bound (4.6) is due to the use of an upper
con�dence bound based on Hoe�ding’s inequality.

pbm-pie. We adapt the PIE(l) algorithm introduced by [27] for the Cascade Model to
the PBM in Algorithm 13 below. At each round, the learner potentially explores at position
L with probability 1/2 using the following upper-con�dence bound for each arm k

Uk (t ,δ) = sup
q∈[θmin

k (t),1]

q

������

L∑
l=1

Nk,l (t)d

(
Sk,l (t)

Nk,l (t)
,κlq

)
≤ δ

, (4.7)

4.3 the position-based model 91

whereθmin
k (t) is the minimum of the convex functionϕ : q 7→ ∑L

l=1 Nk,l (t)d (Sk,l (t)/Nk,l (t),κlq).
In other positions, l = 1, . . . ,L − 1, PBM-PIE selects the arms with the largest estimates
θ̂k (t). The resulting algorithm is presented as Algorithm 13 below, denoting by L (t) the
L-largest empirical estimates, referred to as the “leaders” at round t .

Algorithm 9: PBM-PIE
Data: K , L, observation probabilities κ, ϵ > 0

1 Initialization: �rst K rounds, play each arm at every position;
2 for t = K + 1, . . . ,T do
3 Compute θ̂k (t) for all k ;
4 L (t) ← top-L ordered arms by decreasing θ̂k (t);
5 Al (t) ← Ll (t) for each position l < L;
6 B (t) ← {k |k < L (t),Uk (t , (1 + ϵ) log(T)) ≥ θ̂LL (t) (t)};
7 if B (t) = ∅ then
8 AL (t) ← LL (t);
9 else

10 With probability 1/2, select AL (t) uniformly at random from B (t), else
AL (t) ← LL (t);

11 end
12 Play action A(t) and observe feedback Z (t); Update Nk,l (t + 1) and Sk,l (t + 1);
13 end

The Uk (t ,δ) index de�ned in (4.7) aggregates observations from all positions – as in
PBM-UCB – but allows to build tighter con�dence regions as shown by the next proposi-
tion proven in Section 4.A.3.

Proposition 4.3 For all δ ≥ L + 1,

P (Uk (t ,δ) < θk) ≤ eL+1
(⌈
δ log(t)⌉δ

L

)L
e−δ .

We may now state the main result of this section that provides an upper bound on the
regret of PBM-PIE.

Theorem 4.4 Using PBM-PIE with δ = (1+ ϵ) log(t) and ϵ > 0, for any η < mink<K (θk −
θk+1)/2, there exist problem-dependent constantsC1(η),C2(ϵ,η),C3(ϵ) and β (ϵ,η) such that

E[R (T)] ≤ (1 + ϵ)2 log(T)
K∑

k=L+1

κL (θL − θk)

d (κLθk ,κL (θL − η))
+C1(η) +

C2(ϵ,η)

T β (ϵ,η)
+C3(ϵ).

The proof of this result is provided in Section 4.A.3. Comparing to the expression in (4.6),
Theorem 4.4 shows that PBM-PIE reaches asymptotically optimal performance when the
optimal exploring position is indeed located at index L. In other case, there is a gap that
is caused by the fact that the exploring position is �xed beforehand and not adapted from
the data.

Remark 4.1 It is possible to use the KL-UCB optimistic indices presented above to build a

similar policy as PBM-UCB. In practice, it has comparable performances to PBM-PIE but its

analysis is more complex and remains an open question.

92 adaptive multiple-item recommendation

We conclude this section by a quick description of two other algorithms that will be
used in the experimental section to benchmark our results.

ranked bandits (rba-klucb). The state-of-the-art algorithm for the sequential
“learning to rank” problem was proposed by [98]. It runs one bandit algorithm per posi-
tion, each one being entitled to choose the best suited arm at its rank. The underlying
bandit algorithm that runs in each position is left to the choice of the user, the better the
policy the lower the regret can be. If the bandit algorithm at position l selects an arm
already chosen at a higher position, it receives a reward of zero. Consequently, the ban-
dit algorithm operating at position l tends to focus on the estimation of l-th best arm. In
the next section, we use as benchmark the Ranked Bandits strategy using the KL-UCB
algorithm [40] as the per-position bandit.

pbm-ts. The observations Zl (t) are censored Bernoulli which results in a posterior
that does not belong to a standard family of distribution. [67] suggest a version of Thomp-
son Sampling called “Bias Corrected Multiple Play TS” (or BC-MP-TS) that approximates
the true posterior by a Beta distribution. We observed in experiments that for parameter
values close to one, this algorithm does not explore enough. In Figure 4.2, we show this
phenomenon for θ = (0.95, 0.85, 0.75, 0.65, 0.55). The true posterior for the parameter θk
at time t may be written as a product of truncated scaled beta distributions

πt (θk) ∝
∏
l

θ
αk,l (t)
k (1 − κlθk)βk,l (t),

where αk,l (t) = Sk,l (t) and βk,l (t) = Nk,l (t) − Sk,l (t). To draw from this exact posterior,
we use rejection sampling with proposal distribution Beta(αk,m (t), βk,m (t))/κm , where
m = arg max1≤l ≤L (αk,l (t) + βk,l (t)).

4.4 numerical experiments

We conducted experiments on two types of datasets:
1. an arbitrary simple problem chosen so as to verify our theoretical claims,

2. a real problem with parameters estimated on click logs from a search engine.

4.4.1 Simulations

In order to evaluate our strategies, a simple problem is considered in which K = 5, L = 3,
κ = (0.9, 0.6, 0.3) and θ = (0.45, 0.35, 0.25, 0.15, 0.05). The arm expectations are chosen
such that the asymptotic behavior can be observed after reasonable time horizon. All re-
sults are averaged based on 10, 000 independent runs of the algorithm. We present the re-
sults in Figure 4.3 where PBM-UCB, PBM-PIE and PBM-TS are compared to RBA-KLUCB.
The performance of PBM-PIE and PBM-TS are comparable, the latter even being under the
lower bound (it is a common observation, e.g. see [67], and is due to the asymptotic nature
of the lower bound). The curves con�rm our analysis for PBM-PIE and lets us conjecture
that the true Thompson Sampling policy might be asymptotically optimal. As expected,
PBM-PIE shows asymptotically optimal performance, matching the lower bound after a
large enough horizon.

4.4 numerical experiments 93

ads (K) # records min θ max θ

5 216, 565 0.016 0.077
5 68, 179 0.031 0.050
6 435, 951 0.025 0.067
6 110, 071 0.023 0.069
6 147, 214 0.004 0.148
8 122, 218 0.108 0.146
11 1, 228, 004 0.022 0.149
11 391, 951 0.022 0.084

Table 4.1: Statistics on the queries: each line corresponds to the sub-dataset associated with a
query.

4.4.2 Real data experiments: search advertising

The dataset was provided for KDD Cup 2012 track 2[60] and involves session logs of
soso.com, a search engine owned by Tencent. It consists of ads that were inserted among
search results. Each of the 150M lines from the log contains the user ID, the query typed,
an ad, a position (1, 2 or 3) at which it was displayed and a binary reward (click/no-click).
First, for every query, we excluded ads that were not displayed at least 1, 000 times at
every position. We also �ltered queries that had less than 5 ads satisfying the previous
constraints. As a result, we obtained 8 queries with at least 5 and up to 11 ads. For each
query q, we computed the matrix of the average click-through rates (CTR): Mq ∈ R

K×L ,
where K is the number of ads for the query q and L = 3 the number of positions. It is
noticeable that the SVD of each Mq matrix has a highly dominating �rst singular value,
therefore validating the low-rank assumption underlying in the PBM. In order to estimate
the parameters of the problem, we used the EM algorithm suggested by [25, 31]. Table 4.1

102 103 104 105

Round t

0

200

400

600

800

1000

1200

R
e
g
re

t
R

(T
)

Lower Bound

BC-MP-TS

PBM-TS

Figure 4.2: Average regret of PBM-TS and BC-MP-TS compared for high parameters. Shaded areas:
�rst and last deciles.

94 adaptive multiple-item recommendation

100 101 102 103 104 105

Round t

0

50

100

150

200

250

300

R
e
g
re

t
R

(T
)

Lower Bound

PBM-TS

PBM-UCB

RBA-KLUCB

PBM-PIE

Figure 4.3: Average regret of various algorithms on synthetic data under the PBM.

reports some statistics about the bandit models reconstructed for each query: number of
arms K , amount of data used to compute the parameters, minimum and maximum values
of the θ ’s for each model.

We conducted a series of 2, 000 simulations over this dataset. At the beginning of each
run, a query was randomly selected together with corresponding probabilities of scanning
positions and arm expectations. Even if rewards were still simulated, this scenario is more
realistic since the values of the parameters were extracted from a real-world dataset. We
show results for the di�erent algorithms in Figure 4.4. It is remarkable that RBA-KLUCB
performs slightly better than PBM-UCB. One can imagine that PBM-UCB does not ben-
e�t enough from position aggregations – only 3 positions are considered – to beat RBA-
KLUCB. Both of them are outperformed by PBM-TS and PBM-PIE.

4.5 conclusions and extensions

This work provides the �rst analysis of the PBM in an online context. The proof scheme
used to obtain the lower bound on the regret is interesting on its own, as it can be gen-
eralized to various other settings. The tightness of the lower bound is validated by our
analysis of PBM-PIE but it would be an interesting future contribution to provide such
guarantees for more straightforward algorithms such as PBM-TS or a “PBM-KLUCB” us-
ing the con�dence regions of PBM-PIE.

The main assumption in our work is the knowledge of the values of the (κl)l ∈[L]. In
practice, the algorithms are robust to small variations of the κ’s, but the proposal of an
algorithm that is unaware of these parameters would be an interesting step forward. In
this direction, Katariya et al. [61] study a bandit problem where, at each step, the learner
selects a pair of row and columns arms, from a rank-1 matrix, and observes the product of
their Bernoulli random variables. They make no assumption on neither row nor column
parameters. However, the study of the PBM setting without the knowlege of position pa-
rameters remains an open question today.

4.A elements of proof 95

100 101 102 103 104 105

Round t

0

200

400

600

R
e
g
re

t
R

(T
)

PBM-TS

PBM-UCB

RBA-KLUCB

PBM-KLUCB

Figure 4.4: Performance of the proposed algorithms under the PBM on real data.

appendix 4.a elements of proof

In this section, we gather most of the technical results from this chapter.

4.a.1 Proof of Theorem 4.1

4.a.1.1 Proof of Lemma 4.1

Proof Under the PBM, the conditional expectation of the log-likelihood ratio de�ned in (4.4)
writes

Eθ [`(t) |A(1), . . . ,A(t)]

= Eθ

t∑
s=1

∑
a∈A

1{A(s) = a}
L∑
l=1

log
pal (Xl (s)Yl (s);θ)
pal (Xl (s)Yl (s); λ)

������
A(1), . . . ,A(t)

=

t∑
s=1

∑
a∈A

1{A(s) = a}
L∑
l=1
E

[
log

pal (Xl (s)Yl (s);θ)
pal (Xl (s)Yl (s); λ)

�����
A(s) = a

]

=
∑
a∈A

Na (t)
L∑
l=1

K∑
k=1

1{al = k }d (κlθk ,κlλk)

=
∑
a∈A

Na (t)Ia (θ , λ),

using the notation Ia (θ , λ) =
∑L
l=1

∑K
k=1 1{al = k }d (κlθk ,κlλk). �

4.a.1.2 Details on the proof of Proposition 4.1

Lemma 4.2 Let θ = (θ1, . . . ,θK) and λ = (λ1, . . . , λK) be two bandit models such that the

distributions of all arms in θ and λ are mutually absolutely continuous. Let σ be a stopping

96 adaptive multiple-item recommendation

time with respect to (Ft) such that (σ < +∞) a.s. under both models. Let E ∈ Fσ be an event

such that 0 < Pθ (E) < 1. Then one has∑
a∈A

Ia (θ , λ)Eθ [Na (σ)] ≥ d (Pθ (E),Pλ (E)),

where Ia (θ , λ) is the conditional expectation of the log-likelihood ratio for the model of inter-

est.

The proof of this lemma directly follows from the above expressions of the log-likelihood
ratio and from the proof of Lemma 1 in Appendix A.1 of [63].

We simply recall the following technical lemma for completeness.

Lemma 4.3 Let σ be any stopping time with respect to (Ft). For every event A ∈ Fσ ,

Pλ (A) = Eθ [1{A} exp(−`(σ))].

A full proof of Lemma 4.3 can be found in the Appendix A.3 of [63] (proof of Lemma 15).

4.a.1.3 Lower bound proof (Theorem 4.1)

Proof In order to prove the simpli�ed lower bound of Theorem 4.1 we basically have two

arguments:

1. a lower bound on f (θ) can be obtained by enlarging the feasible set, that is by relaxing
some constraints;

2. Lemma 4.4 can be used to lower bound the objective function of the problem.

The constant f (θ) is de�ned by

f (θ) = inf
c�0

∑
a,a∗ (θ)

∆a (θ)ca (4.8)

s .t inf
λ∈B (θ)

∑
a∈A

Ia (θ , λ)ca ≥ 1. (4.9)

We begin by relaxing some constraints: we only allow the change of measure λ to belong to

the sets Bk (θ) :=
{
λ ∈ Θ|∀j , k,θj = λj and µ

∗(θ) < µ∗(λ)
}
de�ned in Section 4.3.2:

f (θ) = inf
c�0

∑
a,a∗ (θ)

∆a (θ)ca (4.10)

s .t ∀k < a∗(θ), ∀λ ∈ Bk (θ),
∑
a∈A

Ia (θ , λ)ca ≥ 1. (4.11)

The K − L constraints (4.11) only let one parameter move and must be true for any value

satisfying the de�nition of the corresponding set Bk (θ). In practice, for each k , the parameter

λk must be set to at least θL . Consequently, these constraints may then be rewritten

f (θ) = inf
c�0

∑
a,a∗ (θ)

∆a (θ)ca (4.12)

s .t ∀k < a∗(θ),
∑

a,a∗ (θ)

ca

L∑
l=1

1{al = k }d (κlθk ,κlθL) ≥ 1. (4.13)
�

4.A elements of proof 97

Proposition 4.4 tells us that coe�cients ca are all zeros except for actions a ∈ A which can be

written a = vk,lk where lk = arg minl ≤L
∆vk,l (θ)

d (κlθk,κlθL)
. Thus, we obtain the desired lower bound

by rewriting (4.12) as

f (θ) ≥
K∑

k=L+1
min

l ∈{1, ...,L }

∆vk,l (θ)

d (κlθk ,κlθL)
.

Proposition 4.4 Let c = {ca : a , a∗} be a solution of the linear problem (LP) in

Theorem 4.1. Coe�cients are all zeros except for actions a which can be written as a =

(1, . . . , lk − 1,k, lk , . . . ,L − 1) := vk,lk where k > L and lk = arg minl ≤L
∆vk,l (θ)

d (κlθk,κlθL)
.

Proof We denote by πk (a) the position of item k ∈ {1, . . . ,K } in action a (0 if k < a). Let lk

be the optimal position of item k > L for exploration: lk = arg minl ≤L
∆vk,l (θ)

d (κlθk,κlθL)
. Following

[27], we show by contradiction that ca > 0 implies that a can be writtenvk,lk for a well chosen
k > L. Let α , a∗ be a suboptimal action such that ∀k > L,α , vk,lk and cα > 0. We need to

show a contradiction. Let us introduce a new set of coe�cients c ′ de�ned as follows, for any

a , a∗:

c ′a =

0 if a = α

ca +
d (κπk (α)θk,κπk (α)θL)

d (κlk θk,κlk θL)
cα if ∃k > L s.t. a = vk,lk and k ∈ α

ca otherwise.

According to Lemma 4.4, these coe�cients satisfy the constraints of the LP. We now show that

these new coe�cients yield a strictly lower value to the optimization problem:

c (θ) − c ′(θ) = cα∆α (θ) −
∑

k>L:k ∈α

d (κπk (α)θk ,κπk (α)θL)

d (κlkθk ,κlkθL)
cα∆vk,lk (θ)

> cα *
,

∑
k>L:k ∈α

∆vk,πk (α) (θ) −
∑

k>L:k ∈α

d (κπk (α)θk ,κπk (α)θL)

d (κlkθk ,κlkθL)
∆vk,lk (θ)

+
-
. (4.14)

The strict inequality (4.14) is shown in Lemma 4.5. Let k > L be one of the suboptimal arms

in α . By de�nition of lk , the corresponding term of the sum in equation (4.14) is positive. Thus,

we have that c (θ) > c ′(θ) and, hence, by contradiction, we showed that ca > 0 i� a can be

written a = vk,lk for some k > L. �

Lemma 4.4 Let c be a vector of coe�cients that satisfy constraints (4.13) of the optimization

problem. Then, coe�cients c ′ as de�ned in Proposition 4.4 also satisfy the constraints:

∀k < a∗(θ),
∑

a,a∗ (θ)

c ′a

L∑
l=1

1{al = k }d (κlθk ,κlθL) ≥ 1.

Proof We use the same α as introduced in Proposition 4.4. Let us �x k < a∗(θ). Let us de�ne

L(c) =
∑

a,a∗ (θ)

ca

L∑
l=1

1{al = k }d (κlθk ,κlθL).

98 adaptive multiple-item recommendation

We have

L(c ′) − L(c) = −cα

L∑
l=1

1{αl = k }d (κlθk ,κlθL)+∑
l :αl>L

d (κlθk ,κlθL)

d (κlkθk ,κlkθL)
cα × 1{αl = k }d (κlkθk ,κlkθL).

If k < α , clearly, L(c ′) − L(c) = 0. Else, k ∈ α and we note p its position in α : p = πk (α). We

rewrite:

L(c ′) − L(c) = cαd (κpθk ,κpθL)

(
−1 +

d (κlkθk ,κlkθL)

d (κlkθk ,κlkθL)

)
= 0.

Thus, the coe�cients c ′ satisfy the constraints from Proposition 4.4. �

Lemma 4.5 Let α be as in the proof of Proposition 4.4.

∆α (θ) >
∑

k>L:k ∈α
∆vk,πk (α) (θ).

Proof Let k1, . . . ,kp be the suboptimal arms in α by increasing position. Let v (α) be the
action in A with lower regret such that it contains all the suboptimal arms of α in the same

positions. Thus,v (α) = (1, . . . ,πk1 (α)−1,k1,πk1 (α), . . . ,πk2 (α)−2,k2,πk2 (α)−1, . . . ,L−p).
By de�nition, one has that ∆α (θ) ≥ ∆v (α) (θ). In the following, we show that ∆v (α) (θ) ≥∑

k>L:k ∈α ∆vk,πk (α) (θ) for p = 2 (that is to say α contains 2 suboptimal arms k1 and k2).
For the sake of readability, we write πi instead of πki (α) in the following.

∆v (α) (θ) =
L∑
l=1

κl (θl − θ (vk1,π1)l
) +

L∑
l=1

κl (θ (vk1,π1)l
− θv (α)l)

= ∆vk1,π1
(θ) +

[
κπ2θπ2−1 + . . . + κLθL−1

]
−

[
κπ2θk2 + κπ2+1θπ2−1 + . . . + κLθL−2

]
= ∆vk1,π1

(θ) + ∆vk2,π2
(θ) +

[
κπ2 (θπ2−1 − θπ2) + . . . + κL (θL−1 − θL)

]
−

[
κπ2+1(θπ2−1 − θπ2) + . . . + κL (θL−2 − θL−1)

]
= ∆vk1,π1

(θ) + ∆vk2,π2
(θ) + R (θ).

Thus, one has to show that R (θ) = κπ2 (θπ2−1 − θπ2) + κπ2+1(2θπ2 − θπ2−1 − θπ2+1) + . . . +
κL (2θL−1 − θL−2 − θL) > 0. In fact, using that κl ≥ κl+1 for all l < L, we have

R (θ) ≥ κπ2+1(θπ2−1 − θπ2 + 2θπ2 − θπ2−1 − θπ2+1)

+ . . . + κL (2θL−1 − θL−2 − θL)

≥ κπ2+2(θπ2+1 − θπ2+2) + . . . + κL (2θL−1 − θL−2 − θL)

≥ . . .

≥ κL (θL−1 − θL)

> 0. �

4.A elements of proof 99

4.a.2 Proof of Proposition 4.2

In this section, we �x an arm k ∈ {1, . . . ,K } and obtain an upper con�dence bound for the
estimator θ̂k (t) := Sk (t)/Ñk (t). Let τi be the instant of the i-th draw of arm k (the τi are
stopping times w.r.t. Ft). We introduce the centered sequence of successive observations
from arm k

Z̄k,i =
L∑
l=1

1{Al (τi) = k }(Xl (τi)Yl (τi) − θkκl). (4.15)

Introducing the �ltration Gi = Fτi+1−1, one has E[Z̄k,i |Gi−1] = 0, and therefore, the se-
quence

Mk,n =

n∑
i=1

Z̄k,i

is a martingale with bounded increments, w.r.t. the �ltration (Gn)n . By construction, one
has

Mk,Nk (t) = Sk (t) − Ñk (t)θk = Ñk (t) (θ̂k (t) − θk).

We use the so-called peeling technique together with the maximal version of Azuma-
Hoe�ding’s inequality [13]. For any γ > 0 one has

P
(
Mk,Nk (t) < −

√
Nk (t)δ/2

)
≤

log(t)
log(1+γ)∑
i=1
P

(
Mk,Nk (t) < −

√
Nk (t)δ/2 ,Nk (t) ∈ [(1 + γ)i−1, (1 + γ)i)

)

≤

log(t)
log(1+γ)∑
i=1
P

(
∃i ∈ {1, . . . , (1 + γ)i } : Mk,i < −

√
(1 + γ)i−1δ/2

)

≤

log(t)
log(1+γ)∑
i=1

exp
(
−
δ (1 + γ)i−1

(1 + γ)i

)
=

log(t)
log(1 + γ) exp

(
−

δ

(1 + γ)

)
.

Choosing γ = 1/(δ − 1), gives

P *
,
θ̂k (t) − θk < −

√
Nk (t)δ/2
Ñk (t)

+
-
≤ δe log(t)e−δ .

4.a.3 Regret analysis for PBM-PIE (Theorem 4.4)

The proof follows the decomposition of [27]. For all t ≥ 1, we denote f (t , ϵ) = (1+ϵ) log t .

4.a.4 Controlling leaders and estimations

De�ne η0 = mink ∈{1, ...,L−1} (θk − θk+1)/2 and let η < η0. We de�ne the following set of
rounds

A = {t ≥ 1 : L (t) , (1, . . . ,L)}.

100 adaptive multiple-item recommendation

Our goal is to upper bound the expected size of A. Let us introduce the following sets
of rounds:

B = {t ≥ 1 : ∃k ∈ L (t), |θ̂k (t) − θk |≥ η},
C = {t ≥ 1 : ∃k ≤ L,Uk (t) ≤ θk },

D = {t ≥ 1 : t ∈ A \ (B ∪C),∃k ≤ L,k < L (t), |θ̂k (t) − θk |≥ η}.

We �rst show thatA ⊂ (B∪C ∪D). Let t ∈ A\ (B∪C). Let k,k ′ ∈ L (t) such that k < k ′.
Since t < B, we have that |θ̂k (t) − θk |≤ η and |θ̂k ′ (t) − θk ′ |≤ η. Since η ≤ (θk − θk ′)/2, we
conclude that θ̂k (t) ≥ θ̂k ′ (t). This proves that (L1(t), . . . ,LL (t) is an increasing sequence.
We have that LL (t) > L otherwise L (t) = (1, . . . ,L) which is a contradiction because
t ∈ A. Since LL (t) > L, there exists k ≤ L such that k < L (t). We show by contradiction
that |θ̂k (t) − θk |≥ η. Assume that |θ̂k (t) − θk |≤ η. We also have that θ̂LL (t) (t) − θLL (t) ≤ η
because LL (t) ∈ L (t) and t < B. Thus, θ̂k (t) > θ̂LL (t) (t). We have a contradiction because
this would imply that k ∈ L (t). Finally we have proven that if t ∈ A \ (B ∪C), then t ∈ D
so A ⊂ (B ∪C ∪ D).

By a union bound, we obtain

E[|A|] ≤ [|B |] + [|C |] + [|D |].

In the following, we upper bound each set of rounds individually.

controlling E[|B |] : We decompose B =
⋃K

k=1 (Bk , 1 ∪ Bk , 2) where

Bk , 1 = {t ≥ 1 : k ∈ L (t) , LL (t) , k , | θ̂k (t) − θk | ≥ η }

Bk , 2 = {t ≥ 1 : k ∈ L (t) , LL (t) = k , | θ̂k (t) − θk | ≥ η }

Let t ∈ Bk , 1 : k ∈ A (t) so E[k ∈ A (t) |t ∈ Bk , 1] = 1. Furthermore, for all t , 1{t ∈
Bk , 1 } is Ft −1 measurable. Then we can apply Lemma 4.9 (with H = Bk , 1 and c = 1).

E[|Bk , 1 |] ≤ 2 (2 + κ−2
L η−2) .

Let t ∈ Bk , 2 : k ∈ B (t) but because of the randomization of the algorithm, k ∈ A (t)

with probability 1/2, i.e. E[k ∈ A (t) |t ∈ Bk , 2] ≥ 1/2. We get

E[|Bk , 2 |] ≤ 4 (4 + κ−2
L η−2)

By union bound over k , we get E[|B |] ≤ 2K (10 + 3κ−2
L η−2) .

controlling E[|C |] : We decompose C = ⋃L
k=1 Ck where Ck = {t ≥ 1 : Uk (t) ≤

θk }
We �rst require to prove Proposition 4.3.

Proof Theorem 2 of [85] implies that

P *
,

L∑
l=1

Nk,l (t)d (
Sk,l (t)

Nk,l (t)
,κlθk) ≥ δ+

-
≤ e−δ

(⌈
δ log(t)⌉δ

L

)L
eL+1.

4.A elements of proof 101

The functionϕ : x 7→ ∑L
l=1 Nk,l (t)d

(
Sk,l (t)
Nk,l (t)

,κlx
)
is convex and non-decreasing on [θmin

k (t), 1];
the convexity is easily checked and θmin

k (t) is de�ned as the minimum of this convex func-

tion. By de�nition, we have, either, Uk (t ,δ) = 1 and then Uk (t ,δ) > θk , or, Uk (t ,δ) < 1 and

ϕ (Uk (t ,δ)) = δ , consequently

P (Uk (t ,δ) < θk) = P (ϕ (Uk (t ,δ)) ≤ ϕ (θk)) = P (δ ≤ ϕ (θk)) . �

Remember thatUk (t) = Uk (t , (1+ϵ) log(t)) = Uk (t , f (t , ϵ)). Thus, applying Proposition
4.3, we obtain for arm k ,

E[|Ck |] ≤
∞∑
t=1
P(Uk (t) ≤ θk)

≤ deL+1e +
eL+1

LL

∞∑
t= deL+1 e+1

(2 + ϵ)2L (log t)3L

t1+ϵ

≤ C3(ϵ),

for some constant C3(ϵ).

controlling E[|D |] : Decompose D as D = ⋃L
k=1 Dk where

Dk = {t ≥ 1 : t ∈ A \ (B ∪ C) , k < L (t) , | θ̂k (t) − θk | ≥ η } .

For a given k ≤ L, Dk is the set of rounds at which k is not one of the leaders, and is
not accurately estimated. Let t ∈ Dk . Since k < L (t) , we must have LL (t) > L. In turn,
since t < B , we have | θ̂ LL (t) (t) − θ LL (t) | ≤ η , so that

θ̂ LL (t) ≤ θ LL (t) + η ≤ θL + η ≤ (θL + θL+1)/2 .

Furthermore, since t < C and 1 ≤ k ≤ L, we have Uk (t) ≥ θk ≥ θL ≥ (θL +
θL+1)/2 ≥ θ̂ LL (t) . This implies that k ∈ B (t) thus E[k ∈ A (t) |t ∈ Dk] ≥ 1/ (2K) . We
apply Lemma 4.9 with H ≡ Dk and c = 1/ (2K) to get

E[|D |] ≤
L∑

k=1
E[|Dk |] ≤ 4K (4K + κ−2

L η−2) .

4.a.4.1 Regret decomposition

We decompose the regret by distinguishing rounds in A∪B and other rounds. More specif-
ically, we introduce the following sets of rounds for arm k > L:

Ek = {t ≥ 1 : t < (B ∪ C ∪ D) , L (t) = a ∗ , A (t) = vk , L } .

The set of instants at which a suboptimal action is selected now can be expressed as follows

{t ≥ 1 : A (t) , a ∗ } ⊂ (B ∪ C ∪ D) ∪ (∪k=L+1Ek) .

102 adaptive multiple-item recommendation

Using a union bound, we obtain the upper bound

E[R (T)] ≤ *
,

L∑
l =1

κ l +
-
E[|B ∪ C ∪ D |] +

K∑
k=L+1

∆vk , L (θ)E[|Ek |] .

From previous boundaries, putting it all together, there exist C 1 (η) and C 3 (ϵ) , such
that

*
,

L∑
l =1

κ l +
-
(E[|B |] + E[|C |] + E[|D |]) ≤ C 1 (η) + C 3 (ϵ) .

At this step, it su�ces to bound events Ek for all k > L.

4.a.4.2 Bounding event Ek

We proceed similarly to [40]. Let us �x an arm k > L. Let t ∈ Ek : arm k is pulled in position
L, so by construction of the algorithm, we have that k ∈ B (t) and thus Uk (t) ≥ θ̂LL (t) (t).
We �rst show that this implies thatUk (t) ≥ θL − η. Since t ∈ Ek , we know that LL (t) = L,
and since t < B, |θ̂L (t) − θL |≤ η. This leads to

Uk (t) ≥ θ̂LL (t) (t) = θ̂L (t) ≥ θL − η.

Recall that Nk,L (t) is the number of times arm k was played in position L. By denoting
d+(x ,y) = 1{x < y}d (x ,y), we have that

Nk,L (t)d
+(Sk,L (t)/Nk,L (t),κL (θL − η))

≤ Nk,L (t)d
+(Sk,L (t)/Nk,L (t),κLUk (t))

≤

L∑
l=1

Nk,l (t)d
+(Sk,l (t)/Nk,l (t),κlUk (t)) ≤ f (t , ϵ).

This implies that 1{t ∈ Ek } ≤ 1{Nk,L (t)d
+(Sk,L (t)/Nk,L (t),κL (θL − η)) ≤ f (t , ϵ)}.

Lemma 4.6 ([40], Lemma 7) Denoting by ν̂Lk,s the empirical mean of the �rst s samples of

Zk,L , we have

T∑
t=1

1{A(t) = vk,L,Nk,L (t)d
+(Sk,L (t)/Nk,L (t),κL (θL − η)) ≤ f (t , ϵ)}

≤

T∑
s=1

1{sd+(ν̂Lk,s ,κL (θL − η)) ≤ f (T , ϵ)}.

We apply Lemma 4.6 which is a direct translation of Lemma 7 from [40] to our problem.
This yields

|Ek |≤
T∑
s=1

1{sd+(ν̂Lk,s ,κL (θL − η)) ≤ f (T , ϵ)}.

Let γ > 0. We de�ne KT =
(1+γ)f (T ,ϵ)

d+ (κLθk,κL (θL−η))
. We now rewrite the last inequality splitting

the sum in two parts.

4.A elements of proof 103

T∑
s=1
P

(
sd+(ν̂Lk,s ,κL (θL − η)) ≤ f (T , ϵ)

)
≤ KT +

∞∑
s=KT+1

P(KTd
+(ν̂Lk,s ,κL (θL − η)) ≤ f (T , ϵ))

≤ KT +

∞∑
s=KT+1

P(d+(ν̂Lk,s ,κL (θL − η)) ≤ d (κLθk ,κL (θL − η))/(1 + γ))

≤ KT +
C2(γ ,η)

T β (γ ,η)
,

where last inequality comes from Lemma 4.7. Fixing γ < ϵ , we obtain the desired result,
which concludes the proof.

Lemma 4.7 For each γ > 0, there exists C2(γ ,η) > 0 and β (γ ,η) > 0 such that

∞∑
s=KT+1

P

(
d+(ν̂Lk,s ,κL (θL − η)) ≤

d (κLθk ,κL (θL − η)

1 + γ

)
≤
C2(γ ,η)

T β (γ ,η)
.

Proof If d+(ν̂Lk,s ,κL (θL − η)) ≤
d (κLθk,κL (θL−η))

1+γ , then there exists some r (γ ,η) ∈ (θk ,θL − η)

such that ν̂Lk,s > κLr (γ ,η) and

d (κLr (γ ,η),κL (θL − η)) =
d (κLθk ,κL (θL − η))

1 + γ .

Hence,

P

(
d+(ν̂k,s ,κLθL) <

d (κLθk ,κLθL)

1 + γ

)
≤ P

(
d (ν̂k,s ,κLθk) > d (κLr (γ ,η),κLθk), ν̂k,s > κLθk

)
≤ P(ν̂k,s > κLr (γ ,η)) ≤ exp(−sd (κLr (γ ,η),κLθk)).

We obtain,

∞∑
t=KT

P

(
d+(ν̂k,s ,κLθL) <

d (κLθk ,κLθL)

1 + γ

)
≤

exp(−KTd (κLr (γ ,η),κLθk))

1 − exp(−d (κLr (γ ,η),κLθk))

≤
C2(γ ,η)

T β (γ ,η)
,

for well chosen C2(γ ,η) and β (γ ,η). �

4.a.5 Lemmas

In this section, we recall two necessary concentration lemmas directly adapted from Lemma
4 and 5 in Appendix A of [27]. Although more involved from a probabilistic point of view,
these results are simpler to establish than proposition 4.2 as their adaptation to the case
of the PBM relies on a crude lower bound for Ñk (t), which is su�cient for proving Theo-
rem 4.4..

104 adaptive multiple-item recommendation

Lemma 4.8 For k ∈ {1, . . . ,K } consider the martingale Mk,n =
∑n

i=1 Z̄k,i , where Z̄k,i is
de�ned in (4.15). Consider ϕ a stopping time such that either Nk (ϕ) ≥ s or ϕ = T + 1. Then

P[|Mk,Nk (ϕ) |≥ Nk (ϕ)η,Nk (ϕ) ≥ s] ≤ 2 exp(−2sη2). (4.16)

As a consequence,

P[|θ̂k (ϕ) − θk |≥ η, ϕ ≤ T] ≤ 2 exp(−2sκ2
Lη

2). (4.17)

Proof The �rst result is a direct application of Lemma 4 of [27] as (Zl (t))t with Zl (t) =
Xl (t)Yl (t) is an independent sequence of [0, 1]-valued variables.

For the second inequality, we use the fact that Ñk (t) ≥ κLNk (t). Hence,

P[|θ̂k (ϕ) − θk |≥ η, ϕ ≤ T] ≤ P
[
|Mk,Nk (ϕ) |

κLNk (ϕ)
≥ η, ϕ ≤ T

]
.

which is upper bounded using (4.16). �

Lemma 4.9 Fix c > 0 and k ∈ {1, . . . ,K }. Consider a random set of rounds H ⊂ N, such
that, for all t , 1{t ∈ H } is Ft−1 measurable and such that for all t ∈ H , {k ∈ B (t)} is true.
Further assume, for all t , one has E[1{k ∈ A(t)}|t ∈ H] ≥ c > 0. We de�ne τs a stopping

time such that

∑τs
t=1 1{t ∈ H } ≥ s . Consider the random set Λ = {τs : s ≥ 1}. Then, for all k ,∑

t ≥0
P[t ∈ Λ, |θ̂k (t) − θk |≥ η] ≤ 2c−1(2c−1 + κ−2

L η−2)

The proof of this lemma follows that of Lemma 5 in [27] using the same lower bound
for Ñk (t) as above.

S

5
F I N A L W O R D S A N D P E R S P E C T I V E S

In this dissertation, we studied adaptive strategies that rely on the many types of feedback
generated in user-centric applications to improve recommendation, and more generally
the user experience in information access. We identi�ed three important applications in
which users constantly produce signals that can be incorporated in algorithms to deliver
better services for answering information needs.

Concretely, in Chapter 2 we developed TOPKS-ASYT, an as-you-type algorithm to search
on social media. The approach allows to improve user experimence on social platform by
providing a list of potentially interesting results to a user who is typing a query. Our al-
gorithm adaptively outputs user-centric recommendations under a network-aware query
model by which information produced by users who are closer to the seeker can be given
more weight. We introduced a novel trie data structure, Index, allowing ranked access over
inverted lists to provide answers rapidly in strongly dynamic situations as the user is typ-
ing his / her query. We gave two extensions to our algorithm: (i) we gave an incremental
version of TOPKS-ASYT that takes advantage of computations performed for previously
typed letters so as to speed up subsequent computations, (ii) we proposed an anytime ver-
sion of TOPKS-ASYT that allows to output the most likely answer within any chosen time
limit.

In Chapter 3, we proposed a di�usion-independent approach for online and adaptive
in�uence maximization. Our algorithm, called GT-UCB, maximizes the number people
reached throughout a campaign (be it in politics, marketing, etc.). Our approach sequen-
tially selects people chosen from a subset of the population and from whom spreads of dif-
fusion are initiated. It requires as only interfaces with the “real-world” the identi�cation
of potentially in�uential people and the spread feedback at each trial. Unlike its competi-
tors, GT-UCB is very fast in estimating the remaining value of each in�uencer, which is
a major concern when dealing with short campaigns of tens to hundreds of spreads. We
also described an extension that incorporates the diminuishing convertion impact as an
in�uential user keeps promoting the same piece of information to his / her followers.

In Chapter 4, we studied the position-based model (PBM) – a click model particularly
relevant in recommendation scenarios - in an online context. Through this adaptive ap-
proach, we focused on cold start situations where the recommender system has no knowl-
edge about newly introduced items. For example, after a �lm is released, recommender
systems need to gather feedback in order to evaluate properly how much users appreciate
it. We provided a lower on the regret for the PBM bandit instance. The tightness of the
lower bound was validated by the analysis of our proposed algorithm PBM-PIE.

We leave behind several interesting questions that deserve further research. In Chap-
ter 2, we introduced a parameter (which we denoted α) that allows the as-you-type system

105

106 final words and perspectives

to specify how much social bias is included in the results displayed to query users. How-
ever, choosing the appropriate value for α is di�cult because, on social platforms, some
queries are social / subjective (e.g., searching for a restaurant for which friends wrote pos-
itive reviews), whereas some others are global / objective (e.g., searching for the o�cial
page of a famous user on the social platform). Incorporating user feedback in adaptive al-
gorithms in order to learn the best value of α for each query topic is an important research
direction for improving the user experience for accessing information. In Chapter 3, we
proposed an adaptive algorithm for semi-bandit in�uence maximization which uses the
Poisson Kullback-Leibler divergence. We showed that the algorithm performs well empir-
ically by comparing our approach to the state-of-the-art algorithm. However, we have not
provided a theoretical analysis yet, which would allow us to guarantee formally its supe-
riority over competitor algorithms. In Chapter 4, even though we provided a theoretical
analysis to PBM-PIE, we let open the question of the asymptotical optimality of PBM-TS,
despite strong empirical evidences. Furthermore, our framework assumes the knowledge
of the position bias probabilities. In practice, we observed that the studied algorithms are
robust to small variations of these values, but the proposal of an algorithm that is unaware
of these parameters would be an interesting step forward. In this direction, Katariya et
al. [61] study a bandit problem where, at each step, the learner selects a pair of row and
columns arms, from a rank-1 matrix, and observes the product of their Bernoulli random
variables. They make no assumption on neither row nor column parameters. Neverthe-
less, the study of the PBM setting without the knowlege of position parameters remains
an open question today.

S

A
A P P E N D I X

a.1 online maximization c++ package

The work on online in�uence maximization with persistence presented in Chapter 3 led to
the development of a software package in C++ available at https://github.com/plagree/
oim. Note that the code is a fork of a project initially developed by Siyu Lei, Silviu Maniu
and Luyi Mo from University of Hong Kong for their paper published at KDD 2015 [73].
The source code is provided as-in under the MIT License.

compiling. The Make�le is in the main folder and requires GCC 4.9.0 (or superior) as
it uses C++14 features. The code needs Boost C++ library headers. It assumes the include
�les are present in /usr/local/include. If your Boost installation is someplace else, you
have to modify the INCLUDE_DIRS directive in Make�le. The binary library does not need
to be linked.

Compiling is as easy as:

make clean; make

The output binary is oim.

methods and usage. The program expects as input a tab delimited graph �le of the
following format:

node1 <TAB> node2 <TAB> prob

where node1 and node2 are the endpoints of a graph edge, and prob is the in�uence prob-
ability.

The following methods are supported:

1. exponentiated gradient [73], which runs as follows:
./oim -eg <graph> <alpha> <beta> <exploit> <trials> <L> [<model> <update>

<update_type> <cascades>]

2. missing mass [70], which runs as follows:
./oim -missing_mass <graph> <policy> <reduction> <trials> <L> <n_experts>

[<model> <cascades>]

107

https://github.com/plagree/oim
https://github.com/plagree/oim

108 appendix

3. real graph, which runs on the real di�usion graph – this corresponds to the Oracle:
./oim -real <graph> <exploit> <trials> <L> [<model> <samples> <cascades>]

parameters. The parameters of the implemented methods are set as follows:

• graph is the name of the graph �le,

• alpha, beta are the global prior on the edges of the graph,

• exploit can take any of the following values: 0 Random, 1 AdaptiveDegree, 2 Maxde-
gree, 3 CELF [47], 4 TIM [110], 5 SSA [94], 6 PMC [95],

• samples is the number of spreads to estimate the expected value of chosen seeds,

• trials is the number of trials N , L is the number of seeds in each trial,

• update is 1 if the graph is updated, 0 otherwise,

• update_type is the type of update: 0 local only, 1 least squares or 2 maximum like-
lihood,

• reduction can take the following values: 0 max cover, 1 highest degree, 2 DivRank,

• policy can take the following values: 0 Random, 1 GT-UCB,

• model can take the following values: 0 Linear Threshold, 1 Independent Cascade,

• cascades contains the path to the �le containing real cascades (logs).

output. The di�erent methods write on the standard output with the following for-
mat:

1. exponentiated gradient:
stage <TAB> cum spread <TAB> expected spread <TAB> tselection <TAB> tupdate

<TAB> tround <TAB> ttotal <TAB> theta <TAB> memory <TAB> k <TAB> model

<TAB> seeds

2. missing mass:
stage <TAB> cumulative spread <TAB> treduction <TAB> tselection <TAB>

tupdate <TAB> tround <TAB> ttotal <TAB> memory <TAB> k <TAB> n_experts

<TAB> n_policy <TAB> n_reduction <TAB> model <TAB> seeds

3. real graph:
stage <TAB> cumulative spread <TAB> expected spread <TAB> tround <TAB>

ttotal <TAB> k <TAB> model <TAB> seeds

A.2 analysis of tweet logs 109

a.2 analysis of tweet logs

In Chapter 3, we conducted a series of experiments on data collected in August 2012 using
Twitter streaming API. We extracted cascades in which the original author of a tweet is the
seed who initated a spread composed of all users who retweeted the post. The resulting
dataset contains 50, 537, 745 users among whom 32, 971, 976 have never been retweeted,
that is, have potentially posted on their timeline but none of their posts were retweeted1.
Not surprisingly, only 87, 940, 277 of the 726, 474, 937 total tweets have been retweeted.
Intuitively, we believe that, since most users are non-in�uential, their posts are generally
never reposted leading to all these isolated posts.

0 250 500 750 1000
Number of Retweets

101

103

105

107

109

Figure A.1: Histogram of the number of retweets

In Fig. A.1, we show the histogram of the number of retweets by posts. We observe a
power law distribution which is in line with many studies on social networks. In Table A.1,
we provide the values from Fig. A.1 for tweets that were not retweeted much (less than 10
times). We observe that a very large majority of Twitter posts is never retweeted.

a.2.1 Edge weights

In Section 3.3.2.1, we conducted an analysis of the empirical activation probabilities to
verify our claim that in�uencers (the candidates), despite being connected to many users,
can barely activate most of them. Speci�cally, for every user v “in�uenced” by u, i.e., v
retweeted at least one original tweet from u, we computed the estimated di�usion proba-
bilities by

pu,v =
��u’s tweets retweeted by v ��

��tweets by u��
.

1 Note that we only have a small portion of Twitter tra�c in August 2012. Thus, these non-in�uential users
may have actually been retweeted without appearing in our dataset.

110 appendix

Table A.1: Values from Fig. A.1 for tweets with few retweets

Number retweets Corresponding tweets

0 638M
1 76M
2 6.2M
3 1.8M
4 915K
5 545K
6 363K
7 259K
8 194K
9 152K
10 124K

We only computed these empirical di�usion probabilities when the source – the in�uencer
u in the formula above – wrote at least 10 tweets in the entire dataset.

We obtained a set of 113, 375, 255 edges that involve a total of 22, 188, 987 distinct users2.
The resulting graph is called the “empirical di�usion graph”. In Fig. A.2a, we show the edge
outdegree histogram of this reconstructed graph. We observe another power-law distribu-
tion in which most users have in�uenced almost no other users, that is, their tweets are
hardly reposted by others. Interestingly, the right outlier – we found out the correspond-
ing user is Justin Bieber – in�uenced more than 200, 000 people in our collection of tweets.
Similarly, in Fig. A.2b, we display the edge indegree histogram of the empirical di�usion
graph. We obtain a very regular power-law distribution with most values under 500 which
is not very surprising as most users are very unlikely to repost content from more than a
few tens or hundreds di�erent other users.

In Table A.2, we show the deciles of the empirical di�usion probabilities. Most proba-
bilities are (very) small – the last decile has value 0.045 –, which is in line with our initial
assumption that most nodes connected to an in�uencer have low activation probabilities.

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.0012 0.0022 0.0035 0.0052 0.0075 0.0110 0.0164 0.0256 0.0455

Table A.2: Deciles of empirical di�usion probabilities

Our algorithm, GT-UCB, is given a set of candidates (e.g., in�uential users) and has
to choose spread seeds among them at each step. Importantly, we assumed that the candi-

2 Note that around 30 edges had an empirical weight > 1 because some users retweeted several times the same
posts thus leading to these unexpected numbers. Consequently, for each of these values, we thresholded at
1.

A.2 analysis of tweet logs 111

(a) Outdegree histogram (b) Indegree histogram

Figure A.2: Degree histogram of the empirical di�usion graph.

dates’ support is non-intersecting to simplify the derivation of con�dence bounds. Further-
more, this proves to be useful to avoid activating the same users via di�erent candidates,
which yields no additional reward in the persistence setting. After having extracted the set
of candidates – e.g., using the DivRank criterion –, we computed their pairwise support
intersection to verify that they activate mostly di�erent users. Formally, we computed the
Dice and Jaccard indices for every pair of candidates to measure the similarity of their
support. We show the resulting matrices in Fig. A.3. We see that, for any two candidates
chosen among the set of in�uencers, they activated almost no users in common in our
dataset.

Figure A.3: Dice (left) and Jaccard (right) matrices for 10 candidates

a.2.2 Graph reconstruction

From the retweeting cascades, we applied the algorithm NPDC from [101] (code provided
by the authors), which is a model-free approach to infer the underlying network, based
solely on cascades. This method follows a simple yet e�ective idea, which is that, in cas-

112 appendix

0.0 2.5 5.0 7.5
Score

0.4

0.5

0.6
R

ea
l

ed
ge

ra
ti

o

Figure A.4: Evolution of the real edge ratio against NPDC score.

cades, the “footprint” of pairs of users who are truly connected in the di�usion network
should be statistically distinguishable from the one of pairs who are not connected.

For each pair of users, NPDC returns a positive score – the lower the score, the more
likely the two users are truly connected in the underlying graph. To verify the quality of
NPDC predictions, we computed the (true) edge ratio based on 500 edges and for di�erent
scores. More precisely, we sorted edges by increasing scores and computed the real edge
ration for 20 di�erent scores (e.g., the 500 edges with the lowest score, then 500 edges
whose score are around the 5th percentile, etc.). The ratio formula is given by

real edge ratio = # real edges
500 ,

where “real” edges – the ground truth – are given by Twitter API. We show the resulting
curve in Fig. A.4.

a.2.3 Why GT-UCB performs well

We counted the number of times each candidate is played when GT-UCB is run on Twit-
ter logs (experiments in Section 3.5.3). Note that we run 20 times the experiment with a
horizon of 500 steps so as to improve results consistency. We show the values obtained of
each of the 10 candidates in Table A.3.

Table A.3: Number of times each candidate has been selected after 500 steps.

Candidate 1 2 3 4 5 6 7 8 9 10

Number of plays 2, 877 2, 680 1, 747 1, 049 688 317 314 156 117 55

Interestingly, the algorithm can discard “bad” in�uencers (e.g. candidate 10) and natu-
rally focuses on “good” candidates that are very in�uential. This is of strong interest in the

A.2 analysis of tweet logs 113

area of in�uencer marketing if a marketing �rm sponsors in�uencers whose fame greatly
changes from one to another.

S

B I B L I O G R A P H Y

[1] Rajeev Agrawal. “Sample Mean Based Index Policies with O(log n) Regret for
the Multi-Armed Bandit Problem.” In: Advances in Applied Probability 27.4 (1995),
pp. 1054–1078 (cit. on p. 8).

[2] Shipra Agrawal and Navin Goyal. “Analysis of Thompson Sampling for the Multi-
armed Bandit Problem.” In: COLT. Ed. by Shie Mannor, Nathan Srebro, and Robert
C. Williamson. Vol. 23. JMLR Proceedings. 2012, pp. 39.1–39.26 (cit. on p. 8).

[3] Kumaripaba Ahukorala, Alan Medlar, Kalle Ilves, and Dorota Glowacka. “Balanc-
ing Exploration and Exploitation: Empirical Parameterization of Exploratory Search
Systems.” In: Proceedings of the 24th ACM International on Conference on Informa-

tion and Knowledge Management. CIKM ’15. Melbourne, Australia, 2015, pp. 1703–
1706 (cit. on p. 18).

[4] Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. “Asymptotically
e�cient allocation rules for the multiarmed bandit problem with multiple plays
- Part I: IID rewards.” In: Automatic Control, IEEE Transactions on 32.11 (1987),
pp. 968–976 (cit. on p. 87).

[5] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. “Debunking the Myths of In�u-
ence Maximization: An In-Depth Benchmarking Study.” In: SIGMOD. SIGMOD ’17.
ACM, 2017 (cit. on pp. 46, 53, 54, 70).

[6] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of the
Multiarmed Bandit Problem.” In: Mach. Learn. 47.2-3 (May 2002), pp. 235–256 (cit.
on p. 8).

[7] Bahman Bahmani and Ashish Goel. “Partitioned Multi-indexing: Bringing Order
to Social Search.” In: Proceedings of the 21st International Conference on World Wide

Web. WWW ’12. Lyon, France: ACM, 2012, pp. 399–408. isbn: 978-1-4503-1229-5
(cit. on p. 18).

[8] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. “Topic-aware social in-
�uence propagation models.” In: Knowl. Inf. Syst. 37.3 (2013), pp. 555–584 (cit. on
p. 55).

[9] Holger Bast, Christian W. Mortensen, and Ingmar Weber. “Output-sensitive Au-
tocompletion Search.” In: Inf. Retr. 11.4 (Aug. 2008), pp. 269–286. issn: 1386-4564
(cit. on p. 18).

[10] Holger Bast and Ingmar Weber. “Type Less, Find More: Fast Autocompletion Search
with a Succinct Index.” In: Proceedings of the 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval. SIGIR ’06. Seattle,
Washington, USA: ACM, 2006, pp. 364–371. isbn: 1-59593-369-7 (cit. on p. 18).

[11] Daniel Berend and Aryeh Kontorovich. “On the Concentration of the Missing
Mass.” In: Electronic Communications in Probability. 2013, pp. 1–7 (cit. on pp. 65,
77).

115

116 Bibliography

[12] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. “Maxi-
mizing Social In�uence in Nearly Optimal Time.” In: Proceedings of the Twenty-�fth
Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’14. 2014, pp. 946–
957 (cit. on p. 53).

[13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart.Concentration Inequalities:
A Nonasymptotic Theory of Independence. OUP Oxford, 2013 (cit. on p. 99).

[14] Stéphane Boucheron, Gábor Lugosi, Pascal Massart, and Michel Ledoux. Concen-
tration inequalities : a nonasymptotic theory of independence. Oxford U. press, 2013
(cit. on pp. 65, 76).

[15] In: In�uencerMarketing. Ed. by Duncan Brown and Nick Hayes. Oxford: Butterworth-
Heinemann, 2008 (cit. on pp. 4, 74).

[16] Sébastien Bubeck and Nicolò Cesa-Bianchi. “Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems.” In: Foundations and Trends in Ma-

chine Learning 5.1 (2012), pp. 1–122 (cit. on p. 6).
[17] Sébastien Bubeck, Damien Ernst, and Aurélien Garivier. “Optimal discovery with

probabilistic expert advice: �nite time analysis and macroscopic optimality.” In:
Journal of Machine Learning Research 14.1 (2013), pp. 601–623 (cit. on pp. 5, 47, 60,
62, 65, 78, 79).

[18] Fei Cai, Shangsong Liang, and Maarten de Rijke. “Time-sensitive Personalized
Query Auto-Completion.” In: Proceedings of the 23rd ACM International Conference

on Conference on Information and Knowledge Management. CIKM ’14. Shanghai,
China: ACM, 2014, pp. 1599–1608. isbn: 978-1-4503-2598-1 (cit. on p. 19).

[19] Yi Chang, Lei Tang, Yoshiyuki Inagaki, and Yan Liu. “What is Tumblr: A Statistical
Overview and Comparison.” In: SIGKDD Explor. Newsl. 16.1 (Sept. 2014), pp. 21–29.
issn: 1931-0145 (cit. on p. 20).

[20] Olivier Chapelle and Ya Zhang. “A Dynamic Bayesian Network Click Model for
Web Search Ranking.” In: Proceedings of the 18th International Conference on World

Wide Web. WWW ’09. 2009, pp. 1–10 (cit. on p. 84).
[21] Wei Chen, Yajun Wang, and Yang Yuan. “Combinatorial multi-armed bandit: Gen-

eral framework and applications.” In: Proc. of the 30th Int. Conf. on Machine Learn-

ing. 2013 (cit. on p. 90).
[22] Wei Chen, Yifei Yuan, and Li Zhang. “Scalable In�uence Maximization in Social

Networks Under the Linear Threshold Model.” In: Proceedings of the 2010 IEEE In-

ternational Conference on Data Mining. ICDM ’10. 2010, pp. 88–97 (cit. on p. 51).
[23] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. “Combinatorial Multi-armed

Bandit and Its Extension to Probabilistically Triggered Arms.” In: Journal of Ma-

chine Learning Research (JMLR) 17.1 (Jan. 2016), pp. 1746–1778 (cit. on pp. 46, 55,
57, 71, 72).

[24] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. “Robust In�uence
Maximization.” In: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,

2016. 2016, pp. 795–804 (cit. on p. 55).

Bibliography 117

[25] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. “Click Models for Web
Search.” In: Synthesis Lectures on Information Concepts, Retrieval, and Services 7.3
(2015), pp. 1–115 (cit. on pp. 82, 83, 86, 93).

[26] Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutière,
et al. “Combinatorial Bandits Revisited.” In: Advances in Neural Information Pro-

cessing Systems. 2015 (cit. on pp. 87, 90).
[27] Richard Combes, Stefan Magureanu, Alexandre Proutière, and Cyrille Laroche.

“Learning to rank: Regret lower bounds and e�cient algorithms.” In: Proc. of the
2015 ACM SIGMETRICS Int. Conf. on Measurement and Modeling of Computer Sys-

tems. 2015 (cit. on pp. 6, 82, 84, 88–90, 97, 99, 103, 104).
[28] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. “An experimental

comparison of click position-bias models.” In: Proc. of the Int. Conf. on Web Search

and Data Mining. ACM. 2008 (cit. on pp. 5, 82, 83, 86).
[29] Michael Curtiss et al. “Unicorn: A System for Searching the Social Graph.” In: Proc.

VLDB Endow. 6.11 (Aug. 2013), pp. 1150–1161. issn: 2150-8097 (cit. on p. 18).
[30] Je�rey Dean and Sanjay Ghemawat. “MapReduce: Simpli�ed Data Processing on

Large Clusters.” In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113 (cit. on p. 2).
[31] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood from

incomplete data via the EM algorithm.” In: Journal of the royal statistical society.
Series B (1977), pp. 1–38 (cit. on pp. 86, 93).

[32] Jay L. Devore. Probability and Statistics for Engineering and the Sciences. 8th. ISBN-
13: 978-0-538-73352-6. Brooks/Cole, 2011 (cit. on p. 8).

[33] Darcy DiNucci. “Fragmented future.” In: Print 53.4 (1999), p. 32 (cit. on p. 1).
[34] Nan Du, Le Song, Hyenkyun Woo, and Hongyuan Zha. “Uncover Topic-Sensitive

Information Di�usion Networks.” In: Proceedings of the Sixteenth International Con-
ference on Arti�cial Intelligence and Statistics, AISTATS, Scottsdale, AZ, USA, April

29 - May 1. 2013, pp. 229–237 (cit. on pp. 46, 47, 55).
[35] Georges E. Dupret and Benjamin Piwowarski. “A User Browsing Model to Pre-

dict Search Engine Click Data from Past Observations.” In: Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval. SIGIR ’08. 2008, pp. 331–338 (cit. on p. 85).
[36] David A. Easley and Jon M. Kleinberg. Networks, Crowds, and Markets - Reasoning

About a Highly Connected World. Cambridge University Press, 2010 (cit. on p. 46).
[37] Pavlos Fafalios and Yannis Tzitzikas. “Type-ahead Exploratory Search Through

Typo and Word Order Tolerant Autocompletion.” In: J. Web Eng. 14.1-2 (Mar. 2015),
pp. 80–116 (cit. on p. 19).

[38] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms
for Middleware.” In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems. PODS ’01. Santa Barbara, California,
USA: ACM, 2001, pp. 102–113. isbn: 1-58113-361-8 (cit. on pp. 17, 18, 30).

[39] Jianhua Feng and Guoliang Li. “E�cient Fuzzy Type-Ahead Search in XML Data.”
In: IEEE Transactions on Knowledge and Data Engineering 24.5 (2012), pp. 882–895.
issn: 1041-4347 (cit. on p. 19).

118 Bibliography

[40] Aurélien Garivier and Olivier Cappé. “The KL-UCB Algorithm for Bounded Stochas-
tic Bandits and Beyond.” In: Proc. of the Conf. on Learning Theory. 2011 (cit. on pp. 9,
73, 84, 90, 92, 102).

[41] Jacob Goldenberg, Barak Libai, and Eitan Muller. “Talk of the Network: A Complex
Systems Look at the Underlying Process of Word-of-Mouth.” In: Marketing Letters

12.3 (2001), pp. 211–223 (cit. on p. 48).
[42] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. “Uncovering

the Temporal Dynamics of Di�usion Networks.” In: Proceedings of the 28th Inter-

national Conference on Machine Learning, ICML, Bellevue, Washington, USA, June

28 - July 2. 2011, pp. 561–568 (cit. on p. 46).
[43] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. “Inferring Net-

works of Di�usion and In�uence.” In: ACM Trans. Knowl. Discov. Data 5.4 (Feb.
2012), 21:1–21:37 (cit. on p. 46).

[44] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. “Structure and
dynamics of information pathways in online media.” In: Sixth ACM International

Conference on Web Search and Data Mining, WSDM, Rome, Italy, February 4-8. 2013,
pp. 23–32 (cit. on p. 46).

[45] I. J. Good. “The Population Frequencies of Species and the Estimation of Population
Parameters.” In: Biometrika 40.3-4 (1953), p. 237 (cit. on pp. 47, 60).

[46] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. “Learning in�uence
probabilities in social networks.” In: Proceedings of the Third International Confer-

ence on Web Search and Web Data Mining, WSDM, New York, NY, USA, February

4-6. 2010, pp. 241–250 (cit. on p. 46).
[47] Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. “CELF++: Optimizing the Greedy

Algorithm for In�uence Maximization in Social Networks.” In: Proceedings of the
20th International Conference Companion on World Wide Web. WWW ’11. 2011,
pp. 47–48 (cit. on pp. 53, 108).

[48] Przemyslaw A. Grabowicz, Niloy Ganguly, and Krishna P. Gummadi. “Distinguish-
ing between Topical and Non-Topical Information Di�usion Mechanisms in Social
Media.” In: Proceedings of the Tenth International Conference on Web and Social Me-

dia, Cologne, Germany, May 17-20. 2016, pp. 151–160 (cit. on p. 47).
[49] M. Granovetter. “Threshold Models of Collective Behavior.” In: The American Jour-

nal of Sociology 83.6 (1978), pp. 1420–1443 (cit. on p. 49).
[50] Todd L Graves and Tze Leung Lai. “Asymptotically e�cient adaptive choice of con-

trol laws in controlled markov chains.” In: SIAM journal on control and optimization

35.3 (1997), pp. 715–743 (cit. on pp. 87, 88).
[51] Fan Guo, Chao Liu, and Yi Min Wang. “E�cient Multiple-click Models in Web

Search.” In: Proceedings of the Second ACM International Conference on Web Search

and Data Mining. WSDM ’09. New York, NY, USA, 2009, pp. 124–131 (cit. on pp. 84,
85).

[52] Xinran He and David Kempe. “Robust In�uence Maximization.” In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, USA, August 13-17. 2016, pp. 885–894 (cit. on p. 55).

Bibliography 119

[53] Wing-Kai Hon, Rahul Shah, and Je�rey Scott Vitter. “Space-E�cient Framework
for Top-k String Retrieval Problems.” In: 50th Annual IEEE Symposium on Founda-

tions of Computer Science. FOCS ’09. Atlanta, Georgia, USA, 2009, pp. 713–722 (cit.
on p. 19).

[54] Bo-June (Paul) Hsu and Giuseppe Ottaviano. “Space-e�cient Data Structures for
Top-k Completion.” In: Proceedings of the 22nd International Conference on World

Wide Web. WWW ’13. Rio de Janeiro, Brazil: International World Wide Web Con-
ferences Steering Committee, 2013, pp. 583–594. isbn: 978-1-4503-2035-1 (cit. on
pp. 15, 19, 30).

[55] Keke Huang, Sibo Wang, Glenn Bevilacqua, Xiaokui Xiao, and Laks V. S. Laksh-
manan. “Revisiting the Stop-and-stare Algorithms for In�uence Maximization.” In:
Proc. VLDB Endow. 10.9 (May 2017), pp. 913–924 (cit. on p. 54).

[56] Glen Jeh and Jennifer Widom. “SimRank: A Measure of Structural-context Similar-
ity.” In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD ’02. Edmonton, Alberta, Canada: ACM, 2002,
pp. 538–543. isbn: 1-58113-567-X. doi: 10.1145/775047.775126 (cit. on p. 38).

[57] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. “E�cient Interactive Fuzzy
Keyword Search.” In: Proceedings of the 18th International Conference onWorldWide

Web. WWW ’09. Madrid, Spain: ACM, 2009, pp. 371–380. isbn: 978-1-60558-487-4
(cit. on p. 18).

[58] Di Jiang, Kenneth Wai-Ting Leung, Jan Vosecky, and Wilfred Ng. “Personalized
Query Suggestion With Diversity Awareness.” In: IEEE 30th International Confer-

ence on Data Engineering. ICDE ’14. Chicago, IL, USA, 2014, pp. 400–411 (cit. on
p. 19).

[59] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
“Accurately Interpreting Clickthrough Data As Implicit Feedback.” In: Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval. SIGIR ’05. 2005, pp. 154–161 (cit. on p. 83).
[60] KDD Cup 2012 track 2. http://www.kddcup2012.org/ (cit. on p. 93).
[61] Sumeet Katariya, Branislav Kveton, Csaba Szepesvári, Claire Vernade, and Zheng

Wen. “Stochastic Rank-1 Bandits.” In: Proceedings of the 20th International Confer-

ence on Arti�cial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort

Lauderdale, FL, USA. 2017, pp. 392–401 (cit. on pp. 94, 106).
[62] Leo Katz. “A new status index derived from sociometric analysis.” In: Psychome-

trika 18.1 (1953), pp. 39–43. issn: 0033-3123 (cit. on p. 21).
[63] Émilie Kaufmann, Olivier Cappé, and Aurélien Garivier. “On the Complexity of

Best Arm Identi�cation in Multi-Armed Bandit Models.” In: Journal of Machine

Learning Research (2015) (cit. on pp. 87, 88, 96).
[64] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. “Thompson Sampling: An

Asymptotically Optimal Finite-Time Analysis.” In: Algorithmic Learning Theory:

23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceed-

ings. Ed. by Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, and Thomas Zeug-
mann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 199–213 (cit. on
p. 8).

http://dx.doi.org/10.1145/775047.775126

120 Bibliography

[65] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the Spread of In�uence
Through a Social Network.” In: Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and DataMining. KDD ’03. ACM, 2003, pp. 137–
146 (cit. on pp. 46, 48–53).

[66] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,
H. Eugene Stanley, and Hernán A. Makse. “Identi�cation of in�uential spreaders
in complex networks.” In: Nature Physics (2010) (cit. on p. 55).

[67] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. “Optimal Regret Analysis
of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple
Plays.” In: Proc. of the 32nd Int. Conf. on Machine Learning. 2015 (cit. on pp. 82, 87,
92).

[68] Branislav Kveton, Csaba Szepesvári, Zheng Wen, and Azin Ashkan. “Cascading
Bandits : Learning to Rank in the Cascade Model.” In: Proc. of the 32nd Int. Conf. on
Machine Learning. 2015 (cit. on pp. 82, 84).

[69] Paul Lagrée, Bogdan Cautis, and Hossein Vahabi. “A Network-Aware Approach
for Searching As-You-Type in Social Media.” In: Proceedings of the 24th ACM Inter-

national Conference on Information and Knowledge Management. CIKM ’15. 2015
(cit. on pp. 4, 13).

[70] Paul Lagrée, Bogdan Cautis, and Hossein Vahabi. “As-You-Type Social Aware Search.”
In: ACM Transactions on Intelligent Systems and Technology 8.5 (June 2017), 63:1–
63:31 (cit. on pp. 4, 13, 107).

[71] Paul Lagrée, Claire Vernade, and Olivier Cappé. “Multiple-Play Bandits in the Position-
Based Model.” In: Advances in Neural Information Processing Systems 29. Ed. by D.
D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc., 2016, pp. 1597–1605 (cit. on pp. 6, 81, 90).

[72] Tze Leung Lai and Herbert Robbins. “Asymptotically e�cient adaptive allocation
rules.” In: Advances in applied mathematics 6.1 (1985), pp. 4–22 (cit. on pp. 7, 87).

[73] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart. “Online
In�uence Maximization.” In: Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’15. 2015 (cit. on pp. 47,
57–59, 61, 67, 68, 107).

[74] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. “Cost-e�ective Outbreak Detection in Networks.” In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining. KDD ’07. 2007, pp. 420–429 (cit. on p. 53).
[75] Nir Levine, Koby Crammer, and Shie Mannor. “Rotting Bandits.” In: Working paper.

2017 (cit. on p. 74).
[76] Guoliang Li, Jianhua Feng, and Chen Li. “Supporting Search-As-You-Type Using

SQL in Databases.” In: IEEE Trans. on Knowl. and Data Eng. 25.2 (2013), pp. 461–475
(cit. on p. 19).

[77] Guoliang Li, Shengyue Ji, Chen Li, Jiannan Wang, and Jianhua Feng. “E�cient
fuzzy type-ahead search in TASTIER.” In: Proceedings of the 26th International Con-
ference on Data Engineering. ICDE ’10. Long Beach, California, USA, 2010, pp. 1105–
1108 (cit. on p. 18).

Bibliography 121

[78] Guoliang Li, Jiannan Wang, Chen Li, and Jianhua Feng. “Supporting E�cient Top-
k Queries in Type-ahead Search.” In: Proceedings of the 35th International ACM

SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’12.
Portland, Oregon, USA: ACM, 2012, pp. 355–364. isbn: 978-1-4503-1472-5 (cit. on
pp. 15, 18, 29, 40, 41).

[79] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. “A Contextual-bandit
Approach to Personalized News Article Recommendation.” In: Proceedings of the
19th International Conference on World Wide Web. WWW ’10. 2010, pp. 661–670
(cit. on p. 56).

[80] Xiang Li, J. David Smith, Thang N. Dinh, and My T. Thai. “Why approximate when
you can get the exact? Optimal Targeted Viral Marketing at Scale.” In: (2017) (cit.
on p. 51).

[81] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. “Real time personalized
search on social networks.” In: 31st IEEE International Conference on Data Engineer-
ing, ICDE. 2015 (cit. on p. 18).

[82] Thomas M. Liggett. Interacting Particle Systems. Springer Berlin Heidelberg, 1985
(cit. on p. 48).

[83] Jonathan Louëdec, Laurent Rossi, Max Chevalier, Aurélien Garivier, and Josiane
Mothe. “Algorithme de bandit et obsolescence : un modèle pour la recommanda-
tion.” Marseille, FR, 2016 (cit. on p. 74).

[84] Wei Lu, Xiaokui Xiao, Amit Goyal, Keke Huang, and Laks V.S. Lakshmanan. “Refu-
tations on “Debunking the Myths of In�uence Maximization: An In-Depth Bench-
marking Study”.” In: Working paper. 2017 (cit. on p. 54).

[85] Stefan Magureanu, Richard Combes, and Alexandre Proutière. “Lipschitz Bandits:
Regret Lower Bounds and Optimal Algorithms.” In: Proc. of the Conf. on Learning

Theory. 2014 (cit. on pp. 90, 100).
[86] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. “Lo-

cating in�uential nodes in complex networks.” In: Scienti�c Reports (2016) (cit. on
p. 55).

[87] Silviu Maniu and Bogdan Cautis. “Taagle: E�cient, Personalized Search in Collab-
orative Tagging Networks.” In: Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data. SIGMOD ’12. Scottsdale, Arizona, USA: ACM,
2012, pp. 661–664. isbn: 978-1-4503-1247-9 (cit. on p. 15).

[88] Silviu Maniu and Bogdan Cautis. “Network-aware Search in Social Tagging Ap-
plications: Instance Optimality Versus E�ciency.” In: Proceedings of the 22nd ACM
International Conference on Information & Knowledge Management. CIKM ’13. San
Francisco, California, USA: ACM, 2013, pp. 939–948. isbn: 978-1-4503-2263-8 (cit.
on pp. 3, 14, 15, 18, 19, 21, 26, 28, 32, 40, 42).

[89] David A. McAllester and Luis E. Ortiz. “Concentration Inequalities for the Missing
Mass and for Histogram Rule Error.” In: Journal of Machine Learning Research 4
(2003), pp. 895–911 (cit. on p. 64).

122 Bibliography

[90] David A. McAllester and Robert E. Schapire. “On the Convergence Rate of Good-
Turing Estimators.” In: Proceedings of the Thirteenth Annual Conference on Compu-

tational Learning Theory (COLT 2000), June 28 - July 1, 2000, Palo Alto, California.
2000, pp. 1–6 (cit. on pp. 63, 64).

[91] Qiaozhu Mei, Jian Guo, and Dragomir Radev. “DivRank: The Interplay of Prestige
and Diversity in Information Networks.” In: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. KDD ’10. 2010
(cit. on p. 67).

[92] Rich Miller. Estimate: Facebook Running 180,000 Servers. http://www.datacenterkno
wledge.com/archives/2012/08/15/estimate-facebook-running-180000-servers/ (cit. on
p. 2).

[93] G. L. Nemhauser, L. A. Wosley, and M. L. Fisher. “An analysis of approximations for
maximizing submodular set functions.” In: Mathematical programming 14 (1978),
pp. 265–294 (cit. on p. 52).

[94] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. “Stop-and-Stare: Optimal Sam-
pling Algorithms for Viral Marketing in Billion-scale Networks.” In: Proceedings of
the 2016 International Conference on Management of Data. SIGMOD ’16. 2016 (cit.
on pp. 53, 54, 108).

[95] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-Ichi Kawarabayashi. “Fast
and Accurate In�uence Maximization on Large Networks with Pruned Monte-
Carlo Simulations.” In: Proceedings of the Twenty-Eighth AAAI Conference on Ar-

ti�cial Intelligence. AAAI’14. 2015 (cit. on pp. 53, 54, 108).
[96] Marco Pennacchiotti, Fabrizio Silvestri, Hossein Vahabi, and Rossano Venturini.

“Making Your Interests Follow You on Twitter.” In: Proceedings of the 21st ACM

International Conference on Information and Knowledge Management. CIKM ’12.
Maui, Hawaii, USA: ACM, 2012, pp. 165–174. isbn: 978-1-4503-1156-4 (cit. on p. 32).

[97] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. “Fast
Shortest Path Distance Estimation in Large Networks.” In: Proceedings of the 18th
ACMConference on Information andKnowledgeManagement. CIKM ’09. Hong Kong,
China: ACM, 2009, pp. 867–876. isbn: 978-1-60558-512-3 (cit. on p. 18).

[98] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. “Learning diverse rank-
ings with multi-armed bandits.” In: Proc. of the 25th Int. Conf. on Machine learning.
ACM. 2008 (cit. on p. 92).

[99] Matthew Richardson, Ewa Dominowska, and Robert Ragno. “Predicting clicks: es-
timating the click-through rate for new ads.” In: Proc. of the 16th Int. Conf. onWorld

Wide Web. ACM. 2007 (cit. on p. 82).
[100] Daniel M. Romero, Brendan Meeder, and Jon Kleinberg. “Di�erences in the Me-

chanics of Information Di�usion Across Topics: Idioms, Political Hashtags, and
Complex Contagion on Twitter.” In: Proceedings of the 20th International Confer-

ence on World Wide Web. WWW ’11. Hyderabad, India, 2011, pp. 695–704 (cit. on
pp. 47, 55).

[101] Yu Rong, Qiankun Zhu, and Hong Cheng. “A Model-Free Approach to Infer the Dif-
fusion Network from Event Cascade.” In: Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management, CIKM 2016, Indianapo-

lis, IN, USA, October 24-28, 2016. 2016 (cit. on pp. 55, 111).

Bibliography 123

[102] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. “Prediction of Information
Di�usion Probabilities for Independent Cascade Model.” In: Knowledge-Based In-

telligent Information and Engineering Systems, 12th International Conference, KES,

Zagreb, Croatia, September 3-5, Proceedings, Part III. 2008, pp. 67–75 (cit. on p. 46).
[103] Guillaume Salha, Nikolaos Tziortziotis, and Michalis Vazirgiannis. “Adaptive Sub-

modular In�uence Maximization with Myopic Feedback.” In: arXiv preprint 1704.

06905 (2017) (cit. on p. 57).
[104] Thomas C. Schelling. Micromotives and Macrobehavior. W. W. Norton & Company,

1978 (cit. on p. 49).
[105] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neumann,

Josiane X. Parreira, and Gerhard Weikum. “E�cient Top-k Querying over Social-
tagging Networks.” In: Proceedings of the 31st Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. SIGIR ’08. Singapore,
Singapore: ACM, 2008, pp. 523–530. isbn: 978-1-60558-164-4 (cit. on pp. 14, 15, 18,
21, 28).

[106] Milad Shokouhi. “Learning to Personalize Query Auto-completion.” In: Proceedings
of the 36th International ACM SIGIR Conference on Research and Development in

Information Retrieval. SIGIR ’13. Dublin, Ireland: ACM, 2013, pp. 103–112. isbn:
978-1-4503-2034-4 (cit. on p. 19).

[107] Milad Shokouhi and Kira Radinsky. “Time-sensitive Query Auto-completion.” In:
Proceedings of the 35th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval. SIGIR ’12. Portland, Oregon, USA: ACM, 2012,
pp. 601–610. isbn: 978-1-4503-1472-5 (cit. on p. 19).

[108] Katariya Sumeet, Branislav Kveton, Csaba Szepesvári, and Zheng Wen. “DCM Ban-
dits: Learning to Rank with Multiple Clicks.” In: Proc. of the 33rd Int. Conf. on Ma-

chine Learning. 2016 (cit. on pp. 82, 84).
[109] Youze Tang, Yanchen Shi, and Xiaokui Xiao. “In�uence Maximization in Near-

Linear Time: A Martingale Approach.” In: Proceedings of the 2015 ACM SIGMOD

International Conference onManagement of Data. SIGMOD ’15. 2015, pp. 1539–1554
(cit. on p. 54).

[110] Youze Tang, Xiaokui Xiao, and Yanchen Shi. “In�uence Maximization: Near-Optimal
Time Complexity Meets Practical E�ciency.” In: International Conference on Man-

agement of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. 2014, pp. 75–
86 (cit. on pp. 53, 54, 108).

[111] William R Thompson. “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples.” In: Biometrika (1933), pp. 285–294
(cit. on p. 7).

[112] Hossein Vahabi, Margareta Ackerman, David Loker, Ricardo Baeza-Yates, and Ale-
jandro Lopez-Ortiz. “Orthogonal Query Recommendation.” In: Proceedings of the
7th ACM Conference on Recommender Systems. RecSys ’13. Hong Kong, China:
ACM, 2013, pp. 33–40. isbn: 978-1-4503-2409-0 (cit. on p. 19).

[113] S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L. Lakshmanan, and M. Schmidt.
“Di�usion Independent Semi-Bandit In�uence Maximization.” In: ICML. 2017 (cit.
on pp. 46, 55–57, 63, 73).

124 Bibliography

[114] Sharan Vaswani, V.S. Lakshmanan, and Mark Schmidt. “In�uence Maximization
with Bandits.” In: Workshop NIPS. NIPS ’15. 2015 (cit. on pp. 46, 55, 57–59, 71, 72).

[115] Ganesh Venkataraman, Abhimanyu Lad, Viet Ha-Thuc, and Dhruv Arya. “Instant
Search: A Hands-on Tutorial.” In: Proceedings of the 39th International ACM SIGIR

conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa,

Italy, July 17-21, 2016. 2016, pp. 1211–1214 (cit. on p. 18).
[116] Claire Vernade, Paul Lagrée, and Olivier Cappé. “Online Inference for Multiple-

Item Display Under the Position-Based Model.” In: Workshop on Online Advertising

Systems. ICML. 2016 (cit. on pp. 6, 81).
[117] Chi Wang, Wei Chen, and Yajun Wang. “Scalable in�uence maximization for inde-

pendent cascade model in large-scale social networks.” In: Data Mining and Knowl-

edge Discovery 25.3 (2012), pp. 545–576 (cit. on p. 51).
[118] Senzhang Wang, Xia Hu, Philip S. Yu, and Zhoujun Li. “MMRate: inferring multi-

aspect di�usion networks with multi-pattern cascades.” In: The 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD, New York,

NY, USA - August 24 - 27. 2014, pp. 1246–1255 (cit. on p. 55).
[119] D.J. Watts and P.S. Dodds. “In�uentials, networks, and public opinion formation.”

In: Journal of Consumer Research 34.4 (2007), pp. 441–458 (cit. on p. 46).
[120] Duncan J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton, New

York, 2003 (cit. on p. 46).
[121] Zheng Wen, Branislav Kveton, and Michal Valko. “In�uence Maximization with

Semi-Bandit Feedback.” In: Working paper. 2016 (cit. on pp. 46, 55–59, 71, 72).
[122] Tom White. Hadoop: The De�nitive Guide. 1st. O’Reilly Media, Inc., 2009. isbn:

0596521979, 9780596521974 (cit. on p. 2).
[123] Sihem Amer Yahia, Michael Benedikt, Laks V. S. Lakshmanan, and Julia Stoyanovich.

“E�cient Network Aware Search in Collaborative Tagging Sites.” In: Proc. VLDB
Endow. 1.1 (Aug. 2008), pp. 710–721. issn: 2150-8097 (cit. on pp. 15, 18).

[124] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. “Spark: Cluster Computing with Working Sets.” In: Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 10–10 (cit. on p. 2).

[125] Aston Zhang, Amit Goyal, Weize Kong, Hongbo Deng, Anlei Dong, Yi Chang, Carl
A. Gunter, and Jiawei Han. “adaQAC: Adaptive Query Auto-Completion via Im-
plicit Negative Feedback.” In: Proceedings of the 38th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. SIGIR ’15. Santiago,
Chile, 2015, pp. 143–152 (cit. on p. 19).

[126] Ruicheng Zhong, Ju Fan, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. “Location-
aware Instant Search.” In: Proceedings of the 21st ACM International Conference

on Information and Knowledge Management. CIKM ’12. Maui, Hawaii, USA: ACM,
2012, pp. 385–394. isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2396812 (cit.
on p. 19).

http://dx.doi.org/10.1145/2396761.2396812

colophon

This document was typeset using the typographical look-and-feel classicthesis devel-
oped by André Miede. The style was inspired by Robert Bringhurst’s seminal book on ty-
pography “The Elements of Typographic Style”. classicthesis is available for both LATEX and
LYX at

https://bitbucket.org/amiede/classicthesis/.

Université Paris-Saclay
ED STIC — 580
Université Paris Sud, Bâtiment 650 Ada Lovelace, 91405 Orsay Cedex, France.

https://bitbucket.org/amiede/classicthesis/

Title: Adaptive Methods for User-Centric Information Access Applications

Keywords: adaptive methods, online social networks, multi-armed bandits, recommendation, in�uencer mar-
keting

Abstact: When users interact on modern Web systems,
they let numerous footprints which we propose to ex-
ploit in order to develop better applications for infor-
mation access. We study a family of techniques cen-
tered on users, which take advantage of the many
types of feedback to adapt and improve services pro-
vided to users. We focus on applications like recom-
mendation and in�uencer marketing in which users
generate discrete feedback (e.g. clicks, “likes”, reposts,
etc.) that we incorporate in our algorithms in order to
deliver strongly contextualized services.
The �rst part of this dissertation is dedicated to an ap-
proach for as-you-type search on social media. The
problem consists in retrieving a set of k search re-
sults in a social-aware environment under the con-
straint that the query may be incomplete (e.g., if the
last term is a pre�x). Every time the user updates his /
her query, the system updates the set of search results
accordingly. We adopt a “network-aware” interpreta-
tion of information relevance, by which information
produced by users who are closer to the user issuing
a request is considered more relevant.
Then, we study a generic version of in�uence maxi-
mization, in which we want to maximize the in�uence

of marketing or information campaigns by adaptively
selecting “spread seeds” from a small subset of the
population. In�uencer marketing is a straightforward
application of this, in which the focus of a campaign
is placed on precise key individuals who are typically
able to reach millions of consumers. This represents
an unprecedented tool for online marketing that we
propose to improve using an adaptive approach. No-
tably, our approach makes no assumptions on the un-
derlying di�usion model and no di�usion network is
needed.
Finally, we propose to address the well-known cold
start problem faced by recommender systems with an
adaptive approach. If no information is available re-
garding the user appreciation of an item, the recom-
mender system needs to gather feedback (e.g., clicks)
so as to estimate the value of the item. However, in
order to minimize “bad” recommendations, a well-
designed system should not collect feedback care-
lessly. We introduce a dynamic algorithm that aims to
intelligently achieve the balance between “bad” and
“good” recommendations.

Titre: Méthodes Adaptatives pour les Applications d’Accès à l’Information Centrées sur
l’Utilisateur

Mots clefs: méthodes adaptives, réseaux sociaux, bandits multi-bras, recommandation, marketing d’in�uence

Résumé: Lorsque les internautes naviguent sur le Web,
ils laissent de nombreuses traces que nous nous pro-
posons d’exploiter pour améliorer les applications
d’accès à l’information. Nous étudions des techniques
centrées sur les utilisateurs qui tirent parti des nom-
breux types de rétroaction pour perfectionner les ser-
vices o�erts aux utilisateurs. Nous nous concentrons
sur des applications telles que la recommandation et le
marketing d’in�uence dans lesquelles les utilisateurs
génèrent des signaux (clics, “j’aime”, etc.) que nous in-
tégrons dans nos algorithmes a�n de fournir des ser-
vices fortement contextualisés.
La première partie de cette thèse est consacrée à une
approche interactive de la recherche d’information
sur les médias sociaux. Le problème consiste à
récupérer un ensemble de k résultats dans un réseau
social sous la contrainte que la requête peut être in-
complète (par exemple, si le dernier terme est un pré-
�xe). Chaque fois que l’utilisateur met à jour sa re-
quête, le système met à jour l’ensemble des résul-
tats de recherche en conséquence. Nous adoptons une
interprétation de la pertinence de l’information qui
tient compte du réseau, selon laquelle l’information
produite par les utilisateurs proches de l’utilisateur
faisant la requête est jugée plus pertinente.
Ensuite, nous étudions une version générique
de la maximisation de l’in�uence, dans laquelle

nous voulons maximiser l’in�uence des campagnes
d’information ou de marketing en sélectionnant de
manière adaptative les utilisateurs initiant la propa-
gation de l’information parmi un petit sous-ensemble
de la population. Notre approche ne fait aucune hy-
pothèse sur le modèle de di�usion sous-jacent ni
même sur la structure du réseau de di�usion. Notre
méthode a d’importantes applications dans le mar-
keting d’in�uence qui vise à s’appuyer sur les in-
�uenceurs de réseaux sociaux pour promouvoir des
produits ou des idées.
En�n, nous abordons le problème bien connu du
démarrage à froid auquel sont confrontés les sys-
tèmes de recommandation par une approche adapta-
tive. Si aucune information n’est disponible concer-
nant l’appréciation d’un article, le système de recom-
mandation doit recueillir des signaux (clics, etc.) a�n
d’estimer la valeur de l’article. Cependant, a�n de
minimiser les mauvaises recommandations faites aux
utilisateurs, le système ne doit pas recueillir ces sig-
naux de façon négligente. Nous introduisons un al-
gorithme dynamique qui vise à alterner intelligem-
ment les recommandations visant à accumuler de
l’information et celles s’appuyant sur les données déjà
recueillies.

	Title Page
	Dedication
	Resume
	Abstract
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Summary of the contributions
	1.A Introduction to multi-armed bandits
	Productions

	2 As-you-type social recommendation
	2.1 Introduction
	2.2 Social-aware search background
	2.2.1 Notations and context
	2.2.2 Top-k retrieval algorithms
	2.2.3 Social-aware search
	2.2.4 Query auto-completion and as-you-type search
	2.2.5 Social and textual relevance framework

	2.3 The as-you-type approach
	2.3.1 The as-you-type search problem
	2.3.2 Non-incremental algorithm
	2.3.3 Adaptations for the network-aware case
	2.3.4 Adaptations for incremental computation
	2.3.5 Complexity analysis
	2.3.6 Supernodes

	2.4 Experiments
	2.4.1 Datasets
	2.4.2 Experimental results: effectiveness
	2.4.3 Experimental results: effectiveness with multiple words
	2.4.4 Experimental results: effectiveness with SimRank proximity scores
	2.4.5 Experimental results: efficiency and scalability
	2.4.6 Experimental results: incremental versus non-incremental TOPKS-ASYT
	2.4.7 Experimental results: TOPKS-ASYT versus state-of-the-art baseline methods
	2.4.8 Experimental results: supernodes

	2.5 Conclusion

	3 Adaptive influence maximization
	3.1 Introduction
	3.2 Influence maximization overview
	3.2.1 Influence discrete-time propagation models
	3.2.2 Influence maximization
	3.2.3 Efficient influence computation
	3.2.4 Online influence maximization

	3.3 Online influence maximization via candidates
	3.3.1 Setting
	3.3.2 The GT-UCB algorithm

	3.4 Analysis
	3.4.1 Confidence interval for the missing mass
	3.4.2 Theoretical Guarantees

	3.5 Experiments
	3.5.1 Extracting candidates from graphs
	3.5.2 Graph datasets
	3.5.3 Experiments on Twitter

	3.6 Exploring further online IM models
	3.6.1 Semi-bandit online influence maximization via candidates
	3.6.2 Online influence maximization via rotting candidates

	3.7 Conclusion
	3.A Elements of proof
	3.A.1 Useful lemmas
	3.A.2 Analysis of the waiting time of GT-UCB

	4 Adaptive multiple-item recommendation
	4.1 Introduction
	4.2 Click models for search and recommendation
	4.3 The position-based model
	4.3.1 Model and notations
	4.3.2 Lower bound on the regret
	4.3.3 Existing results for multiple-play bandit problems
	4.3.4 Lower bound step by step
	4.3.5 Lower bound for the PBM
	4.3.6 Algorithms

	4.4 Numerical experiments
	4.4.1 Simulations
	4.4.2 Real data experiments: search advertising

	4.5 Conclusions and extensions
	4.A Elements of proof
	4.A.1 Proof of Theorem 4.1
	4.A.2 Proof of Proposition 4.2
	4.A.3 Regret analysis for PBM-PIE (Theorem 4.4)
	4.A.4 Controlling leaders and estimations
	4.A.5 Lemmas

	5 Final words and perspectives
	A Appendix
	A.1 Online maximization C++ package
	A.2 Analysis of tweet logs
	A.2.1 Edge weights
	A.2.2 Graph reconstruction
	A.2.3 Why GT-UCB performs well

	Bibliography
	Colophon
	Blurb

