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P: Pressure (Pa).  

P(q): Form factor (see Equation 26 for full description).  

q: Normalized total structure factor (see Equation 24 for full description).  

Q1,CO: Charge used to electrooxidize a monolayer of COads (420 µC cm-2
Pt). 

Q1,Hupd: Charge used to adsorb a monolayer of Hupd (210 µC cm-2
Pt). 

QHupd: Charge under the Hupd peaks (C).  

Qpp,CO: Charge under the ‘low-potential’ peak of the COads stripping (C).   
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QT,CO: Total COads stripping charge (C).   

Reff: Effective resistance of the system (resistance of the glassy carbon + resistance of the elec-

trolyte + resistance of the catalytic layer, Ω cm2
geo). 

Rk: Increase of the system resistance during ageing (Ω cm2
Pt). 

Rel: Resistance of the electrolyte (Ω).  

SA: Specific Activity (µA cm-2
Pt) for the ORR.  

SA0.95: Specific Activity (µA cm-2
Pt) for the ORR at E = 0.95 V vs. RHE.  

SBET: Specific surface area determined by BET (m2 g-1). 

SPt,CO: Pt specific surface area calculated from COads stripping measurements (m2 g-1
Pt). 

T: Temperature (K).  

Ts: Temperature of the synthesis (K).  

u/RT: Energy of interaction between the hydrogen atoms.  

wt. %: Weight percentage. 
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I. 1. Nowadays Challenges 

6.3 million years ago, the human – chimpanzee speciation progressively occurred 1, resulting 

in the appearance of the genus homo, which ultimately evolved in homo sapiens. The homo 

sapiens, i.e. the intelligent man, has lived from 200,000 years ago 1 (or ca. 300,000 years ago, 

according to the recent discovery of a characteristic homo sapiens skull in Morocco 2) to now-

adays but strikingly, it is only during the last three centuries that we discovered most of the 

technologies commonly used in our modern society. If the control of fire by our humans ances-

tor has been reported up to one million years ago 3, i.e. during the homo erectus era 4, the prem-

ises of metallurgy were only observed 7,000 years ago 5 (copper smelting) and the utilization 

of coal 3,500 years ago 6 for household and metalworking 7. The use of the latter to power steam 

engines was unveiled in 1712 by Tomas Newcomen 8. This discovery was the dawn of the 

industrial revolution and led to an accelerated growth in technologies (see Figure 1A) that re-

sulted in (i) an enhanced quality of live and (ii) a diminished mortality rate and, thus, a dramatic 

rise of the Earth population (see Figure 1B), from ca. one billion in 1800 10 to 7.5 billion in 

2017.  

 

 

Figure 1. (A) Schematic representation of the accelerated growth in technology that followed the dis-

covery of the steam engine and (B) Evolution of the Earth population from 1350 to nowadays. The 

changes in the world population has been established from Ref. 9. 

 

Increased population means increased consumption of goods and energy. To sustain the needs 

of the modern society, non-renewable resources as fossil fuels (coal, petroleum, natural gas, 

etc.) and key metals (cobalt, uranium, lead, platinum, etc.) were extensively consumed and are 

soon to be depleted (Figure 2). Furthermore, CO2 molecules, mostly produced by the oxidation 

of carbon atoms present in fossil fuels, contribute to the global warming (see Figure 2). Ac-

cording to the International Energy Agency 10,11, ca. 68 % of the greenhouse gas emissions arise 
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from energy (the other sources of greenhouse gas emissions being the agriculture, the industrial 

processes, etc.). In this specific domain, ca. 66 % of the CO2 production result from electricity 

production, heat production and transports.  

 

 

Figure 2. Global stock resources for several key elements and fossil fuels, for a static consumption rate 

and if the Earth consumption rate is half of the US rate – i.e. an enhancement of the quality of life in the 

developing countries. Indicators of the global warming are provided on the graph. References: A. Reller, 

University of Augsburg, T. Graedel, University of Yale and Ref. 12,13. The graphic does not take into 

consideration neither the discovery of new technologies nor a large-scale recycling of the different ele-

ments.  

 

Decreasing the CO2 emissions, along with a reduction of the human need for fossil fuels, is 

essential. To this goal, the use of renewable energies (i.e. geothermal, hydroelectric, solar, wind 

etc.) has been widely promoted but these remain intermittent, as their energy production is 

highly dependent on their environment (e.g. weather for the wind turbines and the solar panels). 

Compensation for the intermittency can be achieved by storing the excess energy in batteries 

or in chemical bonds, as achieved in the MYRTE platform, in Ajaccio, Corsica 14. The MYRTE 

platform combines an electrolyser which transforms H2O in H2 and O2 (i.e. converts the elec-

trical energy produced by solar panels into chemical energy) stored in high pressure tanks. The 

H2 and O2 can be later recombined in a fuel cell (FC) to produce electrical energy.  
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I. 2. The proton exchange membrane fuel cell 

The fuel cell discovery was ascribed to C. F. Schönbein (who first described the so-called fuel 

cell effect, i.e. the voltage of the hydrogen/oxygen chain between two platinum (Pt) foils con-

nected by acidified water and fed with H2 and O2) and Sir W. R. Grove (who first described and 

designed a complete fuel cell system) 15,16. Nowadays, fuel cells cover a wide range of systems 

and applications (portable devices, stationary power generation, transportation, etc.) and, alt-

hough some do not use H2 as a fuel or an acid solution as an electrolyte, they all present a 

similar design (see Figure 3). The latter consists of:  

 

 

Figure 3. Design of a Proton Exchange Membrane Fuel Cell (PEMFC) reprinted from Ref. 17.   

 

(i) two catalytic layers (CLs), the cathode and the anode, where the Oxygen Reduction 

Reaction (ORR) and the oxidation of a fuel (H2 or an alcohol in direct alcohol fuel 

cells) occur, respectively;  

(ii) an electronic separator, also acting as a ionic conductor between the two catalytic 

layers, either solid (in solid oxide fuel cells or molten carbonate fuel cells 18), poly-

mer-based (in proton exchange membrane fuel cells, e.g. Figure 3, or direct alcohol 

fuel cells) or liquid (in alkaline fuel cells);   

(iii) flow-field plates, which act as electronic conductor for the electrons produced/con-

sumed by the electrochemical reactions and allow distribution of gases first to the 

Gas Diffusion Layers (the GDLs, i.e. the macroporous – microporous carbon layer 

which supplies a homogeneous flux of gases and removes the water produced by the 
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electrochemical reactions, see Equation 1 – 3), and then ultimately to the catalytic 

layers. A Scanning Electron Microscope picture of a whole membrane electrode as-

sembly (MEA) sandwiched between two GDLs is displayed in Figure 4).  

 

 

Figure 4. Scanning electron micrograph of a Membrane Electrode Assembly (i.e. catalytic layers + 

membrane + gas diffusion layer). PEM = Proton Exchange Membrane, CL = catalytic layer, MPL = 

Micro-Porous Layer and GDL = Gas Diffusion Layer). Reprinted from Ref. 19.  

 

The present manuscript focuses on Proton Exchange Membrane Fuel Cell (PEMFC, see Figure 

3), a type of fuel cells which oxidizes hydrogen at the anode (as described by Equation 1), the 

electrons and protons produced by this reaction being transported to the cathode where they 

participate to the ORR (Equation 2). The global equation of the PEMFC is provided in Equa-

tion 3 (at T = 298 K).  

 

 

𝐻2 →  2𝐻+ +  2𝑒−  (𝐸𝐻+/𝐻2

𝑜

=  0 𝑉 𝑣𝑠.  𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 

−  𝑆𝐻𝐸) 

(𝐸𝑞. 1) 

 𝑂2 +  4𝐻+ +  4𝑒− →  2𝐻2𝑂  (𝐸𝑂2/𝐻2𝑂
𝑜 =  1.23 𝑉 𝑣𝑠.  𝑆𝐻𝐸) (𝐸𝑞. 2) 

 2𝐻2 +  𝑂2 →  2𝐻2𝑂  (∆𝐸 =  1.23 𝑉) (𝐸𝑞. 3) 
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I. 3. Hydrogen Oxidation Reaction 

The Hydrogen Oxidation Reaction (HOR, Equation 1) on Pt extended surfaces involves two 

different mechanisms, i.e. the Heyrovsky – Volmer sequence (HV, Equation 4 and Equation 

6) and the Tafel – Volmer sequence (TV, Equation 5 and Equation 6): 

 

 𝐻2 ↔  𝐻𝑎𝑑𝑠 + 𝐻+ +  𝑒− (𝐸𝑞. 4) 

 𝐻2  ↔  2𝐻𝑎𝑑𝑠   (𝐸𝑞. 5) 

 𝐻𝑎𝑑𝑠  ↔   𝐻+ +  𝑒− (𝐸𝑞. 6) 

 

In the HV pathway, two successive one-electron oxidations occur, the first during the chemi-

sorption (Equation 4), the second from the adsorbed hydrogen atom. By contrast, the TV path-

way consists of the H2 dissociative adsorption (Equation 5) followed by the independent oxi-

dation of the two adsorbed hydrogen atoms (Equation 6). As the two pathways are observed 

during the HOR, the global mechanism is often referred to as Tafel – Heyrovsky – Volmer 

(THV) sequence. The kinetics and the favoured pathways are highly dependent on:  

 

(i) the surface coverage (θ) by adsorbed hydrogen 20,21 and the nature of the isotherm 

being related to the latter (e.g. for 0.2 < θ < 0.8, a Frumkin 22 isotherm is observed);  

(ii) the overpotential (η). The TV pathway is predominant at low overpotential values, 

while presenting a maximal kinetic current (jmax) << the diffusion-limited current 

(jL) (see Figure 5) 23–25. At higher overpotentials, the HV pathway becomes pre-

dominant and jmax ~ jL (see Figure 5) 23–25. This potential dependence is specific to 

Pt-based electrodes, as the HOR follows only the HV pathway on Pd electrodes 

(except at potential values close to the equilibrium) 26,27.  
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Figure 5. Calculation of the kinetic current densities for the HOR on Pt at T = 291 K. Dashed and dotted 

curves represent the contributions from the TV (jTV) and HV (jHV) pathways, respectively, while jk (black 

line) represent their combined contribution determined by a dual pathway kinetic equation. The dashed-

dotted curve shows the kinetic current (jk) calculated using the Butler-Volmer equation. Reprinted from 

Ref. 24.  

 

The kinetics rate in acid electrolyte are extremely fast compared to the diffusion rate of the 

reactive species, therefore the determination of the kinetics parameters is difficult to perform 

28,29. The inverse reaction (the Hydrogen Evolution Reaction, HER, i.e. H2O → H2) is also 

driven by the THV mechanism. The nature of the hydrogen intermediate (Hads) was assessed 

by Quaino et al. 30, as the overpotentially deposited hydrogen (Hopd). The latter presents a far 

lower energy of interaction (u/RT) between the hydrogen atoms and the surface than the Hupd 

atoms 30–32 (0.338 < u/RT < 1.35 vs. u/RT ~ 11 for underpotentially deposited hydrogen, Hupd, 

on Pt), as a result of the nature of their adsorption sites 31,32.  

 

The nature of the electrocatalyst greatly impacts the kinetics of the HER, as evidenced in Figure 

6. Indeed, different metal – H bond strengths are observed, depending on the surface 33. Inter-

estingly, a too strong binding of the Hads species is as detrimental as a too weak binding (e.g. Ti 

and Pb). This is rationalized by the Sabatier principle, i.e. a catalyst should bind an adsorbate 

neither too strongly nor to weakly. 
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Figure 6. Log i0 vs. the M – H bond energy for the HER. Reprinted from Ref. 33 

 

I. 4. Oxygen Reduction Reaction 

I. 4. 1. Theoretical aspects 

The ORR (Equation 2) features sluggish kinetics and dramatic losses of operating voltage, due 

to a complex reduction mechanism. According to Equation 2, the ORR (for an O2 molecule) 

involves the consumption of four electrons and four protons, resulting in the presence of several 

intermediate steps as schematized in Figure 7.  

 

 

Figure 7. Example of a mechanism proposed for the oxygen reduction reaction, adapted from Ref. 34 k 

corresponds to the kinetic constants of the different steps.  

 

Damjanovic et al. 35–37 introduced the first mechanism of the ORR on Pt extended surfaces 

based on Rotating Ring Disk Electrode (RRDE) analysis, assuming, in acid electrolyte, a main 

pathway, i.e. O2 → H2O with a parasitic reaction, i.e. O2 → H2O2 in low purity solution (in 

alkaline media, the H2O2 could be further reduced in H2O). The rate-determining step of the 

ORR (r.d.s.) was then assumed to be the protonation of O2 (O2 → O2H) 38 if the adsorbed species 

presented a Temkin adsorption (high surface coverage, i.e. high potentials). The exact nature of 
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this first step was later described by Shao et al. 39 in alkaline media, i.e. O2 reducing into O2 

superoxide, O2
-. Until the works of Durand’s group 40–43  and Stamenkovic et al. 34, the ORR 

was mostly studied by RRDE on extended surface, using a wide range of parameters to deter-

mine the nature of the intermediate steps of the ORR 35,44, i.e. NID/IR vs. ω-1/2
 plot (ratio of the 

disk and the ring current vs. the rotation speed, ω being the rotation speed and N a geometric 

factor) or the J-S plot (which establish the mechanism based on the slope and the y-axis inter-

cept of the NID/IR vs. ω-1/2
 plot). However, as evidenced by Anastasijević et al. 45,46, RRDE plots 

cannot provide a full explanation of the ORR mechanism, but only indicate that (i) all the in-

termediate reactions are of the first order (i.e. one electron exchanged), (ii) the ORR involves 

weakly and strongly bounded species and (iii) the O2 species diffusion on the surface is negli-

gible. The study of the ORR on Pt nanoparticles (NPs) 41–43 and on different crystallite facets 

40,47 provided further insights, on the essential role of the NPs size (the decrease of the NPs 

resulted in depreciated specific activity, i.e. the so-called particle size effect 41–43,48–50) and of 

the coordination number of the facets 40,47 (as the Pt (110) surface, i.e. a fully stepped surface, 

presented an enhanced activity toward the ORR compared to Pt (111) surface). The origin of 

the H2O2 production was also evidenced, as it increased with the diminution of the NPs size. 

This is due to a different binding of the O2 (end-on conformation, i.e. one oxygen bonded, 

instead of side-on – bridged – conformation, i.e. two oxygen bonded) which favoured its pro-

duction instead of the O – O bond breaking 42. This was confirmed by Stamenkovic et al. 51 and 

Markovic et al. 52 on extended surfaces, i.e. that the rate of the H2O2 production is dependent 

on the surface availability (and, therefore, of the ability of O2 to bind in bridge side-on confor-

mation). As such, the presence of Hads, Clads or Brads (i.e. partly blocking the active sites) would 

result in an enhanced production of H2O2 
51,52. Interestingly, the O2 adsorption in side-on con-

formation is required for the O – O bond splitting (i.e. the H2O formation) 42,51,52. This suggest 

that H2O2 originates from a parallel reaction where the O2 adsorbs in end-on conformation, as 

first assumed by Damjanovic et al. 35–37 on polycrystalline surfaces. To be involved in the 4e- 

pathway as assumed by Ref. 34 (see Figure 7), the H2O2 should (i) desorb from the end-on 

conformation and (ii) re-adsorb in side-on conformation.   

 

The r.d.s. of the ORR (on platinum) is widely assumed as being the first protonation step (Equa-

tion 7), i.e.  

 

 𝑂2 +  𝐻+ +  𝑒−  ↔ 𝑂𝑂𝐻𝑎𝑑𝑠 (𝐸𝑞. 7) 
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However, the r.d.s. highly depends on the surface coverage (Temkin vs. Langmuir), on the pH, 

on the electrode potential, etc. 41,53. Due to the ORR complexity, its mechanism is often dis-

cussed using several elementary electrochemical reactions as suggested by Stephens et al. 54 

and Greeley et al. 55: 

 

 𝑂2 +  𝐻+ + 𝑒− →  𝑂𝑂𝐻𝑎𝑑𝑠 (𝐸𝑞. 8) 

 𝑂𝑂𝐻𝑎𝑑𝑠   +  𝐻+ +  𝑒− →  𝑂𝑎𝑑𝑠   + 𝐻2𝑂       (𝐸𝑞. 9) 

 𝑂𝑎𝑑𝑠   +  𝐻+ + 𝑒− →  𝑂𝐻𝑎𝑑𝑠 (𝐸𝑞. 10) 

 𝑂𝐻𝑎𝑑𝑠   + 𝐻+ +  𝑒− →  𝐻2𝑂 (𝐸𝑞. 11) 

   

An aspect steming from the works of Stephens et al. 54 and Rossmeisl et al. 56 (on H2O elec-

trolysis) is that the free energies of adsorption (ΔG) of the intermediates species (Oads, HOads 

and HOOads) are correlated to each other (see Figure 8). According to Figure 8, optimizing an 

electrocatalyst for Equation 8, which needs a strong binding of the HOOads, is detrimental to 

Equation 11, which requires a weak binding of the HOads species (the difference of ΔG between 

the HOads and the HOOads is constant and ΔGHOO* – ΔGHO*  ~ 3.2 eV 54). Consequently, an ideal 

electrocatalyst for the ORR should bind every intermediate absorbed species neither too 

strongly, nor too weakly.  

 

 

Figure 8. Theoretical plot of free energies of adsorption of HOOads (HOO*), HOads (HO*) and Oads (O*), 

ΔGHOO*, ΔGHO* and ΔGO*, respectively, as a function of ΔGOH*, for (111), (100) and (211) pure metal 

surfaces (filled squares) as well as Pt overlayers on Pt-alloy surfaces. Reprinted from Ref. 54.  
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I. 4. 2. Platinum, the ‘benchmark’ catalyst for the ORR 

Figure 9 shows that Au presents, among all the elements, the weakest binding not only for the 

O* intermediates but also for the OH* intermediates. As such, it does not present the highest 

activity for the ORR. Indeed, the optimal electrocatalyst for the ORR features a compromise 

between the adsorption strength of all the adsorbates (see Section I. 4. 1). According to Figure 

9, Pt presents the ‘closest-to-optimum’ adsorption strength.  

 

 

Figure 9. Relationship between the electrocatalyst activity for the ORR and the adsorption strength of 

the OH* and O* intermediates – the OOH* intermediate is not considered by Nørskov et al. 57. Reprinted 

from Ref. 57. 

 

Pt is considered as the ‘benchmark’ electrocatalyst for PEMFCs 58 and, more specifically, Pt 

NPs of diameter (d) ~ 2 – 3 nm (i.e. the optimal size for the ORR specific and mass activity 

49,50) supported on high surface area carbon (non-precious metal electrocatalysts, e.g. Me/N/C 

electrocatalysts 59–63 are not discussed in this manuscript). In the FCs, the catalytic layer (CL) 

is active only at the ‘three-phase boundary’, i.e. where the Pt NPs are in contact with:  

 

(i) the CL pores, as the latter have a porous network to allow the reactant transport and 

the evacuation of the products from/to the GDL; 

(ii) the carbon support, which ensures electron transport from the flow-field plates to 

the Pt NPs and vice versa; 
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(iii) the ionomer phase, as the CL is impregnated with ionomer (e.g. Nafion®) to ensure 

efficient ionic conduction, i.e. connection with the PEM. In FCs, the weight percent-

age (wt. %) of Nafion® in the catalytic layer must be carefully established as a too 

low wt. % results only in a partial coverage of the carbon support while a too high 

wt. % results in a thick Nafion® layer that limits the reactant diffusion 64, the optimal 

loading being 27 ± 6 wt. % on Vulcan XC72 65.  

 

Unfortunately, platinum is a rare and not evenly distributed (88 wt. % of the Pt resources are 

found in South Africa 66) and, therefore, expensive element. An increased consumption of Pt 

would accelerate its depletion (ca. 42 years if considering Figure 2). If all the global annual 

production of Pt was devoted to fuel cell vehicles, ca. only 10 million vehicles will be produced 

per year, i.e. 10 % of the annual automotive vehicles production 67. Increasing the Pt mass 

activity (i.e. the electrocatalytic activity normalized to a gram of Pt – MA) and the Pt specific 

activity (i.e. the electrocatalytic activity normalized to a cm2 of platinum – SA) has therefore 

been one of the key challenges of the PEMFC for the past 20 years. To this extent, lots of efforts 

have been devoted to study a wide range of Pt-based nanomaterials (e.g. Pt-based alloys 68–71, 

M@Pt core@shell NPs 72–75, multi-layered (noble and non-noble metals) core@Pt-monolayer 

shell NPs 76–80, Pt-rich nanoporous structures 81–86, preferentially oriented NPs 87–92, etc.) with 

an enhanced activity for the ORR. The mechanisms driving this activity enhancement (i.e. the 

lattice – strain effect, the ensemble effect and the effect of the structural defects) are widely 

discussed in the following sections.  

 

I. 4. 3. The d-band theory and its applications for the ORR 

Based on the d-band theory established by Hammer and Nørskov 93,94, the specific activity for 

the ORR of Pt can be tuned by alloying Pt with another element (a 3d transition metal or a rare-

earth element 55,69,70,95,96). According to Section I. 4. 1, the r.d.s. of the ORR is the first proto-

nation of the O2 molecule (see Equation 7), i.e. O2 → OOHads. Thie kinetics of this reaction 

can be rationalized using the Butler-Volmer equation (Equation 12 and Equation 13) 97–99: 

 

 𝑗𝑘 = 𝑛𝐹𝑘𝐶𝑂2
𝐶𝐻+(1 −  𝜃𝑎𝑑𝑠)𝑥 exp (−

𝛼𝐹𝐸

𝑅𝑇
) × exp (−

∆𝐺𝑎𝑑𝑠
≠

𝑅𝑇
) (𝐸𝑞. 12) 

 ∆𝐺𝑎𝑑𝑠
≠ =  ∆𝐺0

≠ −  𝛽𝑢𝜃𝑜𝑥,𝑎𝑑𝑠       (𝐸𝑞. 13) 
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where F is the faraday constant (96,485 C mol-1), k the kinetic constant of the r.d.s., n the num-

ber of exchanged electrons, CO2 the coverage by adsorbed O2 that is the partial pressure in O2, 

CH+ the concentration of H+ near the electrode, x the number of sites occupied by the OOHads, 

i.e. x = 1 or 2, α and β the symmetry factors, R the gas constants (8.314 J mol-1 K-1), E the 

electrode potential and T the termperature. θads corresponds to the total surface coverage by 

adsorbed species, i.e. dioxygen molecules and intermediate adsorbed species, θox,ads, spectator 

species and oxides formed by water splitting, θOH,ads. The Gibbs free energy of the reaction 

ΔG≠
ads, depends on ΔG≠

0, the Gibbs free energy of oxygen adsorption of a zero coverage, on u, 

the lateral interaction factor between the oxygen molecules, and on θox,ads (see Equation 13). 

As evidenced by Dubau et al. 97 on Pt3Co NPs, Equation 12 can be transformed into Equation 

14 assuming (i) θads ~ θOH,ads >> θox,ads, (ii) β = 0.5 and (iii) u/RT = 6 52.  

 

 𝑗𝑘 = 𝑛𝐹𝑘′𝐶𝑂2
𝐶𝐻+(1 − 𝜃𝑂𝐻,𝑎𝑑𝑠)𝑥 exp (−

𝛼𝐹𝐸

𝑅𝑇
) × exp(−3𝜃𝑂𝑥,𝑎𝑑𝑠) (𝐸𝑞. 14) 

 𝑘′ =  𝑘 exp (
∆𝐺0

≠

𝑅𝑇
)       (𝐸𝑞. 15) 

 

The terms (1 – θOH,ads) and exp(–3θox,ads) show that diminishing the surface coverage in oxygen 

species (and especially the OHads coverage) would result in faster kinetics for the first protona-

tion of the O2 molecule (Equation 7), i.e. that the OHads binding strength should be reduced for 

increased performances. Figure 9 shows that Pt bind the OHads ca. 0.2 – 0.3 eV too strongly. 

The binding strength can be modified by alloying Pt with another element. The alloying modi-

fies the density of states of the Pt 5d band (see Figure 10A), and its centre relative to the Fermi-

level. The change of the Pt 5d band structure in turn modifies the adsorption strength of the 

oxygen-containing ORR intermediates 100–104, leading to a volcano-plot relationship between 

the specific activity for the ORR and the chemisorption energy of oxygenated species (i.e. a too 

weak binding of the OHads species would negatively impact the kinetics of the other ORR steps, 

see Figure 10B). The modification of the Pt 5d band centre by the alloying element is due to 

(i) the strain effect 105–108, i.e. the contraction of the lattice parameter of Pt at the surface of the 

electrocatalyst (e.g. the skin/skeleton structures 109–112) and/or (ii) the ligand effect 108, i.e. the 

direct modification of the electronic structure of Pt by the neighbouring atoms of the alloying 

element.  
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Figure 10. (A) Effect of insertion of a 3d transition metal in the first subsurface layer of a Pt surface on 

the Pt density of states (reprinted from Ref. 101) and (B) Volcano-plot of the kinetic current for the ORR 

(relative to Pt) as a function of the adsorption strength of the O* intermediate. The dotted line corre-

sponds to the theoretical predictions of Rossmeisl et al. 113. Reprinted from Ref. 55.  

 

The strain and ligand effects opened the way to the synthesis of highly active materials for the 

ORR, such as 

(i)  Pt-based alloys 70,71,  

(ii) Pt-monolayers on non-noble / noble core 114,115 and  

(iii) M@Pt (M = Ni, Co, Cu) core@shell NPs 116,117  

The latter presented an higher mass activity (because of the non-noble metal core and the strain 

effect) for the ORR 73–75,118–125. The formation of nanoporosities was observed in core@shell 

NPs with an external diameter dext > 30 nm after de-alloying (see Oezaslan et al. 126) or in 

smaller NPs (dext > 10 nm) after electrochemical ageing (see Gan et al. 127,128). Nanoporosities 

imply a higher ElectroChemically active Surface Area (ECSA) for the ORR, therefore opening 

a second path for the synthesis of electrocatalysts for the ORR: the nanoporous NPs, i.e. highly 

porous NPs with a diameter of 10 – 15 nm 81,82, such as the Pt3Ni nanoframes introduced by 

Chen et al. 129. As a result of the low stability of the 3d transition metals in acid electrolyte 

97,130–132, a positive use of the ligand effect is not often observed for PtMx electrocatalysts (M, 

a 3d transition metal). Indeed, the PtM surface tends to form a skeleton structure 97,110,130,133, 

i.e. a rough Pt surface where the 3d transition metal has been oxidized.  
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Using rare-earth elements instead of 3d transition metals presents the advantage of (i) modify-

ing the electronic properties of Pt (ligand effect), (ii) obtaining an higher theoretical stability as 

the Pt – rare-earth element alloy has a negative heat of formation 55 and of (iii) contracting the 

lattice parameter of Pt by the means of a so-called kagomé layer, i.e. a contracted Pt structure 

with surface vacancies to accommodate the presence of the rare earth element 95,96,134,135. As 

summarized by Čolić and Bandarenka 136 (see Figure 11), the activity of the Pt-based alloy can 

then be enhanced either by using 3d transition metals (e.g. Ni, Co, Cu or Cr) or rare-earth ele-

ments (e.g. Tb, Y, Gd, etc.)  

 

 

Figure 11. (A) Maximal reported value for the PtMx (x = the M/Pt atomic ratio observed for the optimal 

activity) for the ORR at E = 0.9 V vs. the Reversible Hydrogen Electrode (RHE), compared to the cor-

responding Pt electrocatalyst (the stars refer to nanoparticles) as the function of the atomic radius of the 

alloying element. (B) Schematic 3D representation of the relation between the ORR activity of the elec-

trocatalyst, the radius of the alloying element and the composition of the alloy. Reprinted from Ref. 136 

 

I. 4. 4. The ‘ensemble’ effect.   

As discussed in Section I. 4. 1., the ORR activity is highly dependent on the crystallite orien-

tation. This phenomenon was first evidenced by El Kadiri et al. 40 and Markovic et al. 137 on Pt 

extended surfaces and was studied on Pt3Ni (hkl) by Stamenkovic et al. 138. On Pt3Ni (hkl) 

surfaces, the ORR specific activity varies as Pt3Ni (111) > Pt3Ni (110) > Pt3Ni (100), due to the 

modification of the 5d-band centre on the different facets. The ‘ensemble’ effect, i.e. the impact 

of the surface texturation, plays a predominant role (in addition to the strain – ligand effect) in 

the preferentially shaped electrocatalysts activity for the ORR, i.e. octahedra 88,89,139–141, trun-

cated octahedra 90, etc. These octahedral nanostructures were synthesized to replicate, at the 
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nanoscale, the phenomena observed on extended surfaces and presented an enhanced activity, 

resulting of their increased density of (111) facets. However, these nanostructures also suffered 

from a low durability, due to Ni segregation onto the NPs facets and the resulting loss in activity 

89,139. Fortunelli et al. 142 recently reported that low-coordinated – strained surface rhombi (i.e. 

four atoms arrangements in two equilateral triangles sharing one side) resulted in a decreased 

activation barrier for the O* hydration reaction (Equation 7) and thus, enhanced kinetics for 

the ORR, similarly to (111) extended surfaces. Taking advantage of these specific kind of active 

sites, ultrafine jagged nanowires were synthesized and presented an SA at 0.90 V vs. RHE of 

11.5 mA cm-2
Pt, i.e. 33 times higher than the commercial Pt/C characterized in the same study 

143. This enhancement in SA is also explained by the highly defective structure of the nanowires 

(see Section I. 4. 5.).  

 

I. 4. 5. The role of the structural defects.  

The density of steps has a notorious impact on the reactivity of Pt extended surfaces, both for 

electrooxidation (e.g. COads oxidation) and electroreduction (e.g. ORR) reactions. Lebedeva et 

al. 144–147 found that the oxidation potential of a COads layer varies as Pt (553) < Pt (554) < Pt 

(111) 147, i.e. increases with the decrease of the number of steps on stepped surfaces. This was 

ascribed to the capability of steps to nucleate OHads species from water at lower potential than 

terraces atoms 144. The impact of structural defects on Pt/C NPs on CO electrooxidation was 

discussed by Cherstiouk et al. 148 and Maillard et al. 149. It was shown that the presence of 

agglomerates (nanocrystallites interconnected by grain boundaries) causes the appearance of a 

‘pre-peak’ at E ~ 0.6 – 0.7 V vs. the Reversible Hydrogen Electrode (RHE) in COads stripping 

voltammograms, i.e. at lower potential than observed for isolated monocrystalline Pt/C NPs (E 

~ 0.8 V vs. RHE). Hitotsuyanagi et al. 150, Kuzume et al. 151, Bandarenka et al. 152 and Pohl et 

al. 153 evidenced the crucial role of steps for the ORR activity of stepped Pt surfaces. An optimal 

density of steps of n = 5 has been found for Pt [n(111) × (100)], resulting in a ca. 3-fold im-

provement in specific activity for the ORR vs. Pt(111) 150 (an optimum at n = 3 was also found 

for stepped Pt [n(111) x (111)] 151).  

 

This can be rationalized as follows: 

(i) The steps interrupt the network of adsorbed OH* and H2O*, resulting in a non-hy-

drated OH* 154 at the terrace sites adjacent to the steps, with a much weaker binding 

energy 152, a diminished surface coverage (see Equation 13) and, thus, an enhanced 

activity for the ORR; 
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(ii) High coordination sites are observed under the steps, with an enhanced activity for 

the ORR. According to Calle-Vallejo et al., 155,156 the ORR activity of a Pt catalytic 

site depends on its generalized coordination number, see Equation 16: 

 

 𝐶𝑁̅̅ ̅̅  (𝑖) =  ∑
𝑐𝑛(𝑗)

𝑐𝑛𝑚𝑎𝑥

𝑛𝑖

𝑖=1

 (𝐸𝑞. 16) 

 

where 𝐶𝑁̅̅ ̅̅  is the generalized coordination number of a Pt atom, cn(j) the coordination number 

of the first neighbours (j) of this atom and cnmax the highest coordination number observed 

among the first neighbours. An optimal activity for the ORR should be achieved for catalytic 

sites presenting a 𝐶𝑁̅̅ ̅̅  = 8.3 156, i.e. slightly higher than a Pt(111) surface (𝐶𝑁̅̅ ̅̅  = 7.5). Increasing 

the 𝐶𝑁̅̅ ̅̅  on nanomaterials is possible by (i) synthesizing concave structures (e.g. the inner cavity 

of porous hollow NPs or the interior of porosities) and (ii) increasing the density of structural 

defects (e.g. missing surface atoms, grain boundaries, etc.) that results in high coordination sites 

near the structural defects. Recently, Le Bacq et al. 157 showed that, in addition to under-coor-

dinated (𝐶𝑁̅̅ ̅̅  < 8.3) and over-coordinated (𝐶𝑁̅̅ ̅̅  > 8.3) sites, highly defective Pt surface presented 

a combination of relaxed and contracted lattice parameters, resulting in electrocatalysts active 

for both oxidation reactions (COads oxidation, alcohol oxidation reaction) and reduction reac-

tions (ORR). This topic is extensively discussed in Section IV. 3. The co-existence of relaxed 

and contracted domains onto a nanostructure surface was also recently discussed by Bu et al. 

on highly active PtPb@Pt core@shell nanoplates 87.  

 

I. 4. 6. A comparison of the different Pt-based nanostructures  

Other materials (e.g. nanostructured and mesostructured thin films 158, ultrafine nanowires 143, 

Pt-based aerogels 159–162 etc.) were also synthesized and presented tremendous activity for the 

ORR. The enhancement factor in specific and mass activity for the ORR observed for some 

relevant electrocatalysts vs. the commercial Pt/C, for the ORR at E = 0.90 V vs. RHE or E = 

0.95 V vs. RHE (both were not provided by all the authors) are presented in Figure 12, along 

with Transmission Electron Microscopy (TEM) micrographs or schematic representation of 

their nanostructures. Because of the difference between the scan rate (0.005 V s-1 75,81,84,88 or 

0.020 V s-1 111,129,138,143,158) and the potential range of the ORR measurement (0.06 – 1.05 V vs. 

RHE 75,88 vs. 0.2 – 1.05 V vs. RHE 84), the absolute values of the specific and mass activity were 

not considered as meaningful and, therefore, not provided in Figure 12.  
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Figure 12. Enhancement of the ORR kinetics vs. Pt/C for several electrocatalysts in 0.1 M HClO4, i.e. 

commercial Pt/C 49, nanoporous NiPt/C 81, dealloyed PtNi3/C 75, porous hollow PtNi/C 84, octahedral 

PtNi/C 88 and Pt ultrafine nanowires 143 (at E = 0.90 V vs. RHE, v = 0.005 V s-1
 or 0.020 V s-1 for Ref. 

143), Pt (111) and Pt3Ni (111) 138, Ni@Au@PtNi/C 111, Pt3Ni/C Nanoframes 129 and PtNi mesostructured 

thin films 158 (at E = 0.95 V vs. RHE, v = 0.020 V s-1). See references associated to each nanostructure 

for more information.  

 

I. 5. The carbon supports 

The presence of a support is essential to minimize agglomeration of Pt-based NPs and, thus 

maintain a high dispersion (a high ECSA) in real PEMFC electrodes. Several examples of non-

supported Pt-based nanostructures can be found in Ref. 158,163–166 although they are not dis-

cussed in this manuscript. The NPs supports can be (i) carbon-free (e.g. metal oxide nanotubes 

167,168 or aerogels 169,170) or (ii) carbon-based. Carbon-based supports can be classified according 

to their physical and morphological properties such as (i) the specific surface area (in m2 g-1), 

(ii) the surface of the mesopores (2 nm < dpore < 50 nm 171) and micropores (dpore < 2 nm 171), 

(iii) the average crystallite size in the graphene plane (La, in nm), the average size of the gra-

phitic domains perpendicular to the graphene plane (Lc, in nm), and (iv) the average inter-planar 
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distance between the graphene domains (d002, in nm). Items (iii) and (iv) are used to characterize 

the structure of partially graphitized carbons 172, i.e. their long-range order. Low La and Lc are 

typical of amorphous or quasi-amorphous carbon materials, whereas high La and Lc indicate 

larger crystallites and more organized materials 173.  

 

Nowadays, carbon supports are found under various morphologies (see Figure 13), including, 

but not limited to:  

(i) graphene nanosheets (Figure 13A), composed of one or several stacked graphene 

layers (i.e. sp2 bonded carbon atoms 174,175); 

(ii) carbon blacks (Figure 13B), i.e. several graphene clusters combined in near-spher-

ical particles (5 – 100 nm), connected by van der Waals bonds to form aggregates 

of diverse morphologies, organization and sizes 176–179. Their specific surface area 

ranges from SBET = 60 m2 g-1 (Acetylene Black – AB) to 1500 m2 g-1 (Black Pearl – 

BP); 

(iii) Carbon nanotubes 180,181 (Figure 13C), i.e. graphene nanosheets rolled in a tubular 

form (single walled) or several graphene nanosheets rolled and connected by van 

der Waals bonds (multi-walled) 182,183. Carbon nanotubes are usually mesoporous 

with 70 m2 g-1 < SBET < 300 m2 g-1 and La – Lc ~ 6 – 7 nm 178;  

(iv) Carbon xerogels, aerogels or cryogels (Figure 13D), i.e. highly amorphous carbon 

materials produced from resorcinol, formaldehyde and Na2CO3 
184, composed of 

covalently bonded near-spherical nodules with highly tuneable nodules and pore 

size 185–187. 

 

 
Figure 13. Scanning electron microscopy (SEM) micrographs of different carbon structures. (A) Gra-

phene nanosheets, (B) carbon black (Vulcan XC72) (C) carbon nanotubes and (D) carbon xerogel.  



Chapter I. General Introduction 

46 
 

 

The ideal carbon support for PEMFC electrocatalysts should meet several ‘antagonistic’ re-

quirements, i.e. (i) allow a high dispersion of the Pt-based NPs to avoid agglomeration i.e. a 

high specific surface area with a minimal microporous surface (where the diffusion is limited 

178) (ii) be chemically inert and pure (to avoid parasitic electrochemical reactions arising from 

heteroatoms coming from the support), (iii) have a high electronic conductivity and (iv) feature 

an adequate pore size distribution to allow efficient transport of reactants and evacuation of 

water, (v) be compatible with the ionomer (e.g. Nafion®) and (vi) be resistant to electrochemical 

corrosion 178.  

 

I. 6. Ageing of electrocatalysts for PEMFC applications.  

I. 6. 1. Electrochemical corrosion of the carbon support 

The equilibrium potential of the CO2/C couple (i.e. the potential above which carbon is ther-

modynamically oxidized) is E°CO(2)/C = 0.207 V vs. SHE. According to the Pourbaix diagram 

of carbon 176, the following reactions (Equations 17 – 18) should be observed at higher poten-

tial values (at T = 298 K).  

 

 𝐶 +  2𝐻2𝑂  →  𝐶𝑂2 + 4𝐻+ + 4𝑒−  (𝐸𝐶𝑂2/𝐶
𝑜 =  0.207 𝑉 𝑣𝑠.  𝑆𝐻𝐸) (𝐸𝑞. 17) 

 𝐶 +  𝐻2𝑂  →  𝐶𝑂 + 2𝐻+ + 2𝑒−  (𝐸𝐶𝑂2/𝐶
𝑜 =  0.518 𝑉 𝑣𝑠.  𝑆𝐻𝐸)       (𝐸𝑞. 18) 

 

The CO molecules formed by Equation 18 are not stable at potential values higher than - 0.103 

V vs. SHE and are directly oxidized into CO2. In addition to the direct CO2 formation, Kinoshita 

and Bett 188 and Donnet et al. 189 observed a second reaction pathway, occurring simultaneously 

and independently of the first one:  the formation of carbon surface oxides, which ultimately 

are transformed into CO2 (Equation 19):  

 

 𝐶  →  𝐶𝑂𝑠𝑢𝑟𝑓 →  𝐶𝑂2 (𝐸𝑞. 19) 

 

where COsurf is a CO surface oxide. The kinetics of these reactions are highly dependent on the 

physical and chemical properties of the carbon support (degree of graphitisation, presence of 

heteroelements, functionalization, etc.) and on the external conditions (temperature, electrode 

potential, etc.) 190–193. The presence of Pt NPs on the surface catalyses the electrochemical car-

bon corrosion (i.e. the carbon oxidation reaction, COR) as the COsurf formed by the carbon 
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corrosion might adsorb on the Pt surface (COsurf → COads) and be oxidized at lower potential 

than the same Pt-free carbon support  194–196. Obviously, high Pt loadings used at PEMFC cath-

odes to circumvent the sluggish ORR kinetics emphasize the catalysis of the COR by Pt. Note 

however that the Pt catalytic effect is depreciated at E > 1.0 V vs. RHE, due to the formation of 

Pt oxides 195.  

 

According to Artyushkova et al., 192 a carbon with an ‘optimal’ resistance to corrosion should 

present (i) a small % of surface oxides (i.e. a low degree functionalization – the oxygen 

functions are involved in a carbon degradation mechanism proposed by Sihvonen 197, resulting 

in a faster corrosion if the surface is highly functionalized), (ii) and a high graphitization (high 

La and Lc values). The essential role of the graphitization was recently underlined by 

Castanheira et al. 193, i.e. the disordered and amorphous domains of the high active surface area 

carbons are preferentially oxidized between E = 0.4 and 1.0 V vs. RHE while the graphitized 

domains are stable until E > 1.0 V vs. RHE. Therefore, the COR essentially occurs at the 

PEMFC cathode (that mostly operates at 0.6 V vs. RHE < E < 1.0 V vs. RHE) and is promoted 

by the extremely harsh operating conditions, i.e. pH < 1, oxidizing atmosphere (increase in the 

carbon functionalization), high temperature, etc.  

 

I. 6. 2. Ageing of the Pt-based nanoparticles 

The sintering of Pt nanoparticles occurs concomitantly to the carbon support degradation. Sev-

eral mechanisms account for this ageing (see Figure 14). First, the partial or total dissolution 

of the Pt smallest nanocrystallites (NCs) and their redeposition by electrochemical Ostwald 

ripening, resulting from the Gibbs-Thompson effect (Figure 14A) 198–201. In PEMFCs, the Pt 

redeposition can occurs into the membrane via the chemical reduction by the H2 produced at 

the anode and crossing over the membrane 199, see Figure 14B. The dissolution of the Pt NPs 

and NCs depends on several parameters such as their size 202, the potential range, the interme-

diate characterizations 203, the sweep rate 201,204,205, the atmosphere 206, the temperature and the 

pH 198. It occurs through direct oxidation into Pt2+ or by the formation of a Pt surface oxide and 

its further oxidation / reduction into Pt2+ (Pt → PtOx → Pt2+) 207. Then, the NPs coalescence / 

agglomeration, as the result of the migration of the NCs onto the carbon support (see Figure 

14C) and the NPs detachment from the carbon support, due to the corrosion of the carbon sup-

port (see Figure 14D).  
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Figure 14. Mechanisms for Pt NPs instability in PEMFC cathodes: (A) growth via electrochemical 

Ostwald ripening, i.e. dissolution of Pt NPs, production of Ptz+ ionic species (z = 2, 4) and redeposition 

of Ptz+ species onto larger Pt crystallites, (B) (in FC) dissolution of Pt NPs and precipitation in the 

ionomer phase and the proton-exchange membrane via chemical reduction by H2, (C) crystallite migra-

tion, agglomeration and possibly coalescence, (D) detachment of Pt NPs from carbon support. Reprinted 

from Ref. 199. 

 

These degradation mechanisms occur during a PEMFC cathode operation (i.e. 0.6 – 1.0 V vs. 

RHE) and, as such, the accelerated stress tests (AST, see Section II. 2. 4.) are often performed 

within this potential range 84,143. However, an upper potential of 1.0 V vs. RHE is not repre-

sentative of the highest potentials that are reached by the cathode (ca. 1.5 V vs. RHE during 

fuel starvation events 208) and, therefore, does not include a degradation mechanism observed 

at E ≥ 1.05 V vs. RHE 209,210: the place-exchange mechanism. The latter was first observed by 

Conway 211 on Au and Pt surfaces. It originates from the formation of a Pt-oxide layer onto the 

Pt surface at E > 0.85 V vs. RHE. At E ≥ 1.05 V vs. RHE, this oxide layer induces the formation 

of a place-exchanged structure 209–212 where the first layer of the Pt surface contains place-
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exchanged oxygen (i.e. oxygen atoms enter the Pt lattice to minimize the lateral repulsive in-

teractions between the Oads 
212). This results in the presence, at the NP surface, of low-coordi-

nated Pt atoms, which are prone to dissolution during the reduction of the PtOx oxides 211–213. 

 

I. 6. 3. Ageing of Pt-based electrocatalysts and the formation of hollow nanostructures: 

toward a new type of electrocatalysts 

The degradation mechanisms depicted above are also observed on PtM (M being a 3d transition 

metal) nanostructures 214–217. In addition, because of its high oxophilicity, the alloying element 

is prone to segregate at the NPs surface and, because of its low standard potential values, is 

prone to dissolve in the acidic electrolyte of a PEMFC 97,130,215–218, resulting in a diminution of 

the strain and ligand effects and, thus, of the electrocatalyst activity for the ORR. Dubau et al. 

215,216,218 first reported the formation of Pt3Co-rich core@Pt-rich shell/C, hollow PtCo/C and 

hollow Pt/C NPs from initially Pt3Co/C NPs after operation in real PEMFC operating conditions 

(Figure 15).  

 

 

Figure 15. High annular angle dark field signal of NPs acquired simultaneously with the energy electron 

losses spectra. The elemental maps were constructed using the Pt N3 (518 eV) and the Co L2,3 (780 eV) 

edges, respectively. The Pt N3 signal is shown in red, and the Co L2,3 signal is shown in green. Reprinted 

from Ref. 215.  

 

The latter were formed under specific conditions (i.e. at low current, ca. 0.24 A cm-2
geo, i.e. high 

electrode potential 216), due to the nanoscale Kirkendall effect 219–222. The nanoscale Kirkendall 

effect is a vacancy-mediated interdiffusion mechanism occurring in binary alloys or core@shell 

materials. It is driven by the different interdiffusion coefficients of the involved elements i.e. 
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the Co atoms interdiffuse to the NPs surface, whereas the Pt atoms interdiffuses more slowly to 

the NPs core, thereby causing the appearance of atomic vacancies to compensate for the ine-

quality in the atomic fluxes. Interestingly, Dubau et al. 131 disassembled the MEA after ageing 

and investigated the intrinsic electrocatalytic activity for the ORR of the different nanostruc-

tures with rotating disk electrode in liquid electrolyte. It was found that the formation of hollow 

Pt/C NPs yields an increase in SA for the ORR. Moreover, as the hollow Pt/C NPs were ob-

tained upon degradation of the fresh Pt3Co/C NPs, they are believed to be more stable than the 

latter 215,218. In practice, hollow PtM/C NPs may be synthesized using a combination of galvanic 

replacement and the nanoscale Kirkendall effect, which are very close to the processes at stake 

in a real PEMFC cathode.  

 

I. 6. 4. The Pt-rich hollow nanoparticles 

The synthesis of hollow NPs by Kirkendall effect was first evidenced by Yin et al. 219 on CoxSy, 

CoO and CoSe nanostructures at T = 455 K. The CoSe hollow nanocrystals were formed in less 

than t = 30 min upon injection of a suspension of Se in o-dichlorobenzene into a Co nanocrystals 

solution. Later, Wang et al. 223 used a combination of galvanic replacement (formation of Ni-

cores by electrodeposition and reduction of the Pt2+ ions by galvanic replacement) and Kirken-

dall effect (induced by electrochemical cycling between 0.2 and 1.05 V vs. RHE) to synthesize 

~ 5 nm hollow Pt NPs. Using galvanic replacement, non-noble metal corrosion and Kirkendall 

effect, Gonzalez et al. 224 also synthesized hollow Pt NPs, using silver NPs synthesized by the 

polyol method as a sacrificial template. Since then, the Kirkendall effect became a simple route 

to synthesize bimetallic hollow shaped NPs composed of a noble-element (e.g. platinum, gold) 

and a less-noble element (e.g. cobalt, palladium, nickel or silver) without the use of a surfactant 

such as citrate 225, poly(vinylpyrrolidone) 226, etc. The non noble element acts as the sacrificial 

template for the galvanic replacement before being etched from the nanostructure by Kirkendall 

effect, often in combination with its dissolution 224,226–230. Many parameters such as (i) the na-

ture of the sacrificial element 230, (ii) the stoichiometry between the noble and less-noble ele-

ment 84,231, (iii) the temperature of the synthesis 232 and (iv) the shape of the sacrificial template 

224 play determining roles in the morphology of the NPs and, thus, their activity for various 

electrochemical reactions. The resulting hollow structures presented an enhanced activity (with 

respect to commercial Pt/C) both for oxidation reaction (e.g. alcohol oxidation reaction) 

225,229,233 and reduction reactions (e.g. ORR) 85,231.  
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In 2012, Bae et al. 231 introduced a ‘one-pot’ method for the synthesis of hollow Pt-rich NPs 

that presented a 4-fold increase in mass activity toward commercial Pt/C. The synthesis only 

consisted of mixing the Pt and Ni (the sacrificial metal) precursors with the carbon support, 

before adding a reducing agent. The resulting electrocatalyst was acid leached and then elec-

trochemically characterized. Owing to their superior activity, their propensity to form during 

ageing test 218 and the simplicity of their synthesis process 231, the carbon supported hollow 

PtNi NPs synthesized by the ‘one-pot’ method became of major interest as an electrocatalyst 

for the ORR in PEMFC applications. During the past four years, our group 83,84,218,234, and, 

consequently, this manuscript, have focused on understanding and optimizing the ‘one-pot’ 

synthesis. Dubau et al. 83 synthesized hollow PtNi/C NPs with a 1:1 ratio between the metallic 

precursors (Pt2+:Ni2+) that presented a 3-fold increase in SA for the ORR in 0.1 M H2SO4, as-

cribed to a ca. 1.2 % contraction of the lattice parameter vs. the lattice parameter of a Pt cubic-

face-centered crystallite (aPt-Pt = 0.3924 nm). By carefully controlling the synthesis parameters 

(e.g. the addition time of the reducing agent, etc.), SA and MA enhancements up to 9-fold and 

6-fold, respectively 84, vs. Pt/C were achieved in 0.1 M HClO4 electrolyte. The decrease of the 

Pt2+:Ni2+ ratio resulted in a diminution of the shell thickness (i.e. a 1:5 Pt2+:Ni2+
 ratio resulted 

in a shell thickness eshell = 2.6 ± 0.7 nm vs. a eshell = 3.9 ± 1.0 nm for a 1:1 Pt2+:Ni2+ ratio) and 

an increase of the electrocatalyst SA and MA for the ORR at E = 0.95 V vs. RHE (SA0.95 = 141 

± 21 µA cm-2
Pt for the 1:5 ratio vs. SA0.95 = 114 ± 11 µA cm-2

Pt for the 1:1 ratio).  The NPs were 

found to be porous allowing the contribution of the inner central cavity and of the porous nano 

channel located in the shell to the total Pt specific surface area.  

 

Their activity enhancement for the ORR was, as in Dubau et al. 83, first ascribed to the strain 

effect (i.e. the contraction of the lattice parameter due to the residual Ni content of the shell). 

However, it was also found to be 3-fold and 4-fold higher in SA and MA, respectively, over 

solid PtNi/C NPs with similar crystallite size and Ni content. Thus, other effects (e.g. the struc-

tural defects 234) positively impact the activity of the porous hollow PtNi/C NPs for the ORR. 

This aspect is widely discussed in Chapter IV. Their activity was found to be stable after 

30,000 potential cycles between E = 0.6 V vs. RHE and E = 1.0 V vs. RHE at T = 298 K.   
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I. 7. Objectives of the PhD  

In Section I. I., we discussed the environment-related challenges that mankind is facing, now-

adays, i.e. depletion in fossil resources, global warming, etc. and the need for renewable sources 

of energy that resulted. The PEMFC is a promising replacement for fossil fuels engines in cars, 

but its large-scale commercialization faces several challenges i.e. hydrogen storage 235–237 and 

production 238–240, the membrane cost and fuel crossover 241,242, the electrocatalysts activity, 

cost and durability 67,243, etc. To enhance the latter, the scientific community went from classical 

Pt/C NPs (d ~ 2 – 3 nm) to Pt-based nanostructured electrocatalysts (e.g. PtNi octahedra 88, Ni-

rich@Pt-rich core@shell NPs 244, nanowires 143, nanoframes 129, nanoplates 87, etc.). These 

structures, in addition to optimize the utilization of the Pt-atoms, take advantage of: 

(i) the strain-ligand effect, i.e. the contraction of the lattice parameter induced by the pres-

ence of a 3d transition metal; 

(ii) the ensemble effect, i.e. the enhanced activity of crystallite facets such as Pt3Ni (111) 

138 or Pt (110) 47;  

(iii) the impact of the structural defects, i.e. the presence at the electrocatalyst surface, of a 

wide variety of active sites (i.e. low / high coordination, extended / contracted lattice) 

and, thus, of ‘optimal’ sites onto the NPs surface for the ORR (see Section I. 4.).  

 

The porous hollow PtNi/C NPs are in line with this philosophy. As reported by Dubau et al. 84, 

they feature a 9-fold and a 6-fold enhancement in SA and MA for the ORR, respectively, for 

the ORR, subsequent to the positive effect of which are due to several parameters:  

(i) the presence of pores yielding enhanced specific surface area (ca. 40 – 50 m2 g-1
Pt 

instead of 25 – 35 m2 g-1
Pt for hollow NPs with the same diameter / shell thickness 

but without opened porosities 84); 

(ii) the presence of non-noble metal (i.e. Ni, Co, etc.) at a ca. 15 – 20 at. %, inducing a 

contraction of the lattice parameter and, thus, a shift of the Pt 5d-band centre 

57,93,101,110. This results in a decreased chemisorption energy of oxygenated species 

(Pt binds oxygenated species ca. 0.2 – 0.3 eV too strongly) and enhances the ORR 

kinetics 54,55.  

These structural aspects alone cannot fully explain the activity enhancement for the ORR (i.e. 

the 3-fold and 4-fold enhancement in SA and MA, respectively, over solid PtNi/C NPs with 

similar crystallite size and Ni content) which are partly due to other physical parameters (e.g. 

the structural defects 155,156) that requires further investigation.  
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Little is known of the mechanisms that drive the synthesis of the hollow porous PtNi/C NPs: if 

the latter is simple (i.e. the ‘one-pot’ method), the exact contribution of the non-noble metal 

corrosion, of the galvanic replacement and of the Kirkendall effect are yet to be determined. 

The Pt2+:Ni2+ ratio has been discussed as a parameter that impacts the final morphology of the 

porous hollow PtNi/C NPs 84 but the effect of (i) the temperature of the synthesis, (ii) the nature 

of the carbon support and (iii) the nature of the non-noble metal (e.g. Co, Cu, Fe and Zn) must 

be addressed. The durability of the porous hollow PtNi/C NPs has only been investigated in (i) 

liquid electrolyte (0.1 M H2SO4 for 9,000 cycles, between E = 0.60 and 1.05 V vs. RHE 83 and 

0.1 M HClO4 for 10,000 and 30,000 cycles, between E = 0.60 and 1.00 V vs. RHE 84 at T = 293 

K) and (ii) PEMFC (5,000 cycles at T = 353 K, between E = 0.60 and 1.05 V vs. RHE 83). The 

variation of the parameters responsible for their enhanced activity (e.g. the Ni content, etc.) 

under ageing and the stability of their carbon support require further studies to be fully under-

stood.  

 

After the presentation of the different techniques and procedures used throughout this PhD 

(Chapter II), the manuscript adresses the following subjects: 

- In Chapter III, the synthesis of the hollow-porous PtNi/C NPs is discussed. The latter 

has been monitored by a combination of in operando X-ray measurements as well as 

electrochemical, physical and microscopy methods. The sequential contribution of the 

galvanic replacement and the Kirkendall effect has been evidenced, as well as the nature 

of the intermediate nanostructures formed during the synthesis.  

- In Chapter IV, the different parameters driving the morphology of the porous hollow 

Pt-based/C NPs (i.e. the nature of the sacrificial metal, the carbon support and the tem-

perature of the synthesis) are investigated. The structure/activity relationships are estab-

lished by means of electrochemical, physical and microscopy methods.  

- In Chapter V, the electrochemical stability of the NPs and of their support is discussed, 

by ageing the electrocatalysts during (i) 500 cycles between E = 1.0 and 1.5 V vs. RHE 

at T = 353 K (i.e. the operating temperature of PEMFC) to focus on the carbon support, 

(ii) 5,000 and 20,000 cycles between E = 0.6 and 1.0 V vs. RHE at T = 353 K, to follow 

the density of structural defects and the Ni-content, and thus assess their stability and 

(iii) 5,000 cycles between E = 0.6 and 1.0 or 1.1 V vs. RHE using in operando X-ray at 

T = 353 K to obtain further insights on the physical changes of the NPs and highlight 

the contribution of the place-exchange mechanism to their ageing.  
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- In Chapter VI, we present, in addition to the general conclusion of the manuscript, 

some results related to the ‘scale-up’ of the synthesis, (i.e. the increase of the amount of 

electrocatalyst produced by synthesis, from 0.385 g to 10 g). The activity and the dura-

bility tests in membrane electrode assembly and single-cell configuration is also re-

ported. This study has been performed in collaboration with the French Alternative En-

ergy and Atomic Energy Commission (CEA). 



 

 

 

Chapter II. Introduction to the Techniques 

& Experimental Section 
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II. 1. Synthesis of porous hollow PtM nanoparticles supported on carbon 

II. 1. 1. Technical aspects 

In this work, porous hollow Pt-based NPs supported on carbon were synthesized by a one-pot 

process first introduced by Bae et al. 231. In contrast to syntheses involving numerous steps and 

addition of surfactants (e.g. synthesis of hollow NPs in presence of citrate 225,245,246 or electro-

chemical formation of hollow NPs 85,223), the synthesis of the porous hollow PtM NPs only 

consists of: 

(i) the dissolution of the metal precursors in the solvent (water) in the presence of a 

carbon support (see Section II. 3. for the nature of the carbon supports). The plati-

num precursor is Pt(NH3)4Cl2·H2O (Alfa Aesar Premion 99.995 % metal basis) 

while the sacrificial metal precursors are (MCl2, i.e. Ni(II) Chloride, Alfa Aesar 

99.99 %, Zn(II) Chloride hydrate, Alfa Aesar Puratronic 99.999 %, Cu(II) Chloride 

hexahydrate, Alfa Aesar Puratronic 99.999 %, Fe(II) Chloride anhydrous Alfa Aesar 

(99.5 %), Co(II) Chloride hexahydrate, Alfa Aesar Puratronic 99.998 %); 

(ii) the drop-wise addition of a sodium borohydride (Sigma Aldrich, NaBH4, 99.99 %, 

5.5 mmol, V = 25 mL) solution at a 5 mL min-1 rate.  

The mechanisms driving the synthesis of the porous hollow NPs are extensively discussed in 

Section III. 2. In brief, the galvanic replacement (an electrochemical process in which a metal, 

often referred to as a sacrificial template, is oxidized producing the electrons that are required 

for the deposition of Ptz+ ionic species) and the nanoscale Kirkendall effect are playing a key 

role in the formation of porous hollow PtM/C NPs. The synthesis of porous hollow PtNi/C NPs 

was performed on different carbon supports (see Section IV. 5.), at different temperatures (see 

Section IV. 3.), with different sacrificial cores (see Section IV. 4.) and different molar ratios 

between the Pt precursor and the sacrificial Ni precursor (see Section I. 6. 4. and Ref. 84).  

 

A determined amount of Pt(NH3)4Cl2·H2O (nPt(II) = 0.440 mmol for a 1:3 ratio between the Pt 

precursor and the M precursor, aiming for a theoretical weight fraction in Pt of 23 wt. %) and 

of MCl2 precursor (nM(II) = 1.320 mmol, M being a 3d transition metal, i.e. Ni, Co, Cu, Zn or 

Fe) are first dissolved in 140 mL of MilliQ water (Millipore,  = 18.2 MΩ cm) and 10 mL of 

ethanol (Absolute Ethanol VWR chemicals 99.92 %, except in Chapter III) in presence of 0.3 

g of high surface area carbon. An aqueous solution of NaBH4 (Aldrich 99.99 %, 208 mg dis-

solved in 25 mL for a 1:3 ratio) is added at a 5 mL min-1 rate while the solution is magnetically 

stirred. No temperature management was used for the synthesis at room temperature, while the 
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syntheses at controlled temperature (T = 278, 293, 313, 333 and 353 K) were performed in a 

double envelope beaker with water at the adequate temperature circulating between the two 

envelopes. After t = 1 h, the solution was filtered, the powder thoroughly washed with Milli-Q 

water and dried for t = 45 min at T = 383 K. The resulting electrocatalyst was then acid leached 

under magnetic stirring in a 1 M H2SO4 solution at room temperature for t = 22 h, and filtered, 

washed and dried for t = 45 min at T = 383 K. 

 

II. 1. 2. In operando synthesis 

The mechanism of formation and growth of porous hollow PtNi/C NPs was investigated in 

operando in Section III. 2. For the Wide-Angle X-ray Scattering (WAXS) and Small-Angle 

X-ray Scattering (SAXS) measurements, the synthesis was performed in a poly (methyl meth-

acrylate) cuvette of 4.5 cm × 1.25 cm × 1.25 cm (Plastibrand), placed perpendicularly to the X-

ray beam, and used as reactor. The amount of metal precursors and the solution volume were 

adapted to the reduced volume of the reactor. For Transmission Electron Microscopy (TEM) 

images and electrochemical measurements of/on the intermediates structures formed after t = 

1, 2, 3, 4, 5, 7, 10, 20, 40 and 60 min, a volume of the synthesis solution was pipetted (10 µL 

for the TEM analysis, 10 mL for the electrochemical measurements) and (i) for the TEM anal-

ysis, deposed on a gold TEM grid and dried with a heat gun, (ii) for the electrochemical meas-

urements, immediately dried a T = 383 K during t = 45 min.  

 

II. 1. 3. Reference electrocatalysts 

A 20 wt. % Pt/Vulcan XC72 catalyst purchased from E-TEK was used as reference material 

without any treatment. The number averaged Pt NP size was 2.9 ± 0.6 nm. A solid PtNi/C 

catalyst was prepared by a modified polyol method by Ms. Sc. Raphaël Chattot. Calculated 

amounts of H2PtCl6·6H2O (Alfa Aesar, 99.9%) and NiCl2 (Alfa Aesar Puratonic, 99.9995%) 

were first dissolved in a 20 mL vial of deionised water (H2O) and ethylene glycol (EG) 

(EG:H2O = 1:1 volume ratio). Meanwhile, the appropriate amount of Vulcan XC72 was dis-

persed by sonication in a separate 20 mL vial of EG:H2O (1:1). The contents of each vial were 

then mixed with 20 mL of pure EG. The pH of the obtained mixture was adjusted to 10 by using 

a 0.5 M NaOH solution (diluted in EG:H2O 1:1). The suspension was continuously stirred while 

heating to reflux at T = 433 K for t = 3 h under argon and then cooled to room temperature 

under air over t = 12 h. The pH was then adjusted to 3 with a 0.5 M aqueous solution of H2SO4. 

After t = 24 h, the suspension was filtered and the solid phase washed with MQ-grade water 

before being dried at T = 383 K for t = 1 h. More information on the synthesis of the reference 
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PtNi/C sample can be found in Ref. 247 under the name ‘A-PtNi/C’. The PtNi/C ‘sea-sponges’ 

discussed in Section IV. 2. were synthesized by Ms. Sc. Raphaël Chattot following the protocol 

described in Ref. 247. 

 

II. 2. Synthesis of the carbon supports 

Porous hollow PtNi NPs were synthesized on seven different carbon supports (see Section IV. 

5.) mostly differing by their extent of graphitization: carbon blacks, multi-walled carbon nano-

tubes, graphene nanosheets and carbon xerogels. The carbon blacks, i.e. Vulcan XC72 (XC72 

– Cabot), YS (YS – Société du Noir d’Acétylène de l’Aubette) and Ketjenblack EC-600JD 

(KJB – Akzo Nobel) were used as purchased.  

 

II. 2. 1. Synthesis of the carbon xerogel 

The synthesis of the carbon xerogel (CX) was performed by Dr. Vaios Stergiopoulos from the 

University of Liège (Belgium), according to the procedure described in Ref. 186. Na2CO3 (SC), 

Resorcinol (R) and Formaldehyde (F) were first mixed with Milli-Q water ( = 18.2 MΩ cm). 

The molar ratios were R/F = 0.5, R/SC = 1500 and water / reactants = 5.7. The formation of the 

xerogel took place in an oven at T = 358 K for t = 72 h, followed by two drying steps under 

vacuum: (i) at T = 333 K for t = 24 h, and (ii) at T = 423 K for another t = 24 h. The dried 

xerogel was grinded in a planetary mill for t = 30 min at ω = 400 rpm, using agate balls of d = 

10 mm. The powder was then pyrolysed at T = 1073 K under N2 atmosphere, for t = 2 h. 

 

II. 2. 2. Synthesis of three-dimensional (3D) graphene nanosheets 

The 3D graphene nanosheets (GNS) were synthesized by Dr. Alexey Serov from the University 

of New Mexico (United States of America) using a modified Sacrificial Support Method (SSM) 

248–252. The SSM is a templating strategy, where the precursors are mixed with (or deposited on) 

silica and then pyrolysed, before chemical etching of silica. A Graphene Oxide (GO) was syn-

thesized by a modified Hummers method 253. The synthesized GO was exfoliated in distilled 

water ( = 15 MΩ cm) by a high power ultrasonic probe (700 kJ was delivered to 12.5 g of GO 

dispersed in 1 L of De-Ionized (DI) water for t = 3 h) followed by the addition of 25 g of silica 

sacrificial support (Cab-O-Sil ® EH-5, surface area ~ 400 m2 g-1). The colloidal mixture of GO-

SiO2 was ultrasonicated with the probe for t = 1 h (~ 300 kJ) and dried overnight at T = 358 K. 

The dry powder was ball-milled at ω = 375 rpm for t = 25 min and subjected to reduction in 7 

at. % H2 (flow rate = 100 cm3 min-1) at T = 1073 K for t = 1 h. After reduction, the GNS-SiO2 
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was additionally ball-milled at ω = 375 rpm for t = 25 min. The silica support was leached in 

40 wt. % HF for t = 24 h, followed by continuous filtration until a neutral pH was reached. The 

resulting GNS was dried overnight at T = 358 K. To obtain an oxidized surface of GNS, 5 g 

were soaked in 8 M HNO3 for t = 8 h at room temperature. The wet powder was filtrated with 

DI water until the pH reached ~ 6.5. The powder was dried at T = 358 K for t = 8 h, resulting 

in the carbon support discussed as GNS – AL. 

 

II. 2. 3. Synthesis of the carbon nanotubes 

The carbon nanotubes (CNTs) were synthesized by Dr. Alexey Serov from the University of 

New Mexico (United States of America), using the SSM 183 and the thermal decomposition of 

C2H4 on iron NPs (seeds). Fe(NO3)3·9H2O was mixed with a water colloidal suspension of a 

silica sacrificial support (Cab-O-Sil ® EH-5), dried and ball milled for t = 4 h at ω = 350 rpm 

and placed in a furnace. The amount of iron nitrate was calculated to have ~ 20 wt. % of reduced 

iron seeds on the silica support. The powder sample was further subjected to reduction at T = 

773 K in a H2 atmosphere for t = 30 min, leading to the CNTs growth at T = 1043 K in a C2H4 

atmosphere for t = 60 min. The material was removed from the furnace, leached with 40 wt. % 

HF and washed with DI water to reach a neutral pH. Concentrated nitric acid was introduced, 

resulting in CNTs with high degree of ordering and increased concentration of carbon surface 

oxides. 

 

II. 3. Electrochemical methods  

II. 3. 1. Preparation of the electrochemical cell  

Shinozaki et al. 254 have recently underlined the importance of the electrochemical half-cell 

preparation to obtain optimal performances for the ORR and state-of-the-art base voltammo-

grams. The authors reported that the SA for the ORR measured at E = 0.9 V vs. RHE is increased 

by ca. 3 on polycrystalline Pt (Pt(pc)) if the electrochemical cell was vigorously rinsed with 

MQ-grade water + boiled at least one time compared to a superficial cleaning. In this work, all 

the glassware used for the electrochemical experiments was cleaned by (i) soaking overnight in 

H2SO4/H2O2 mixture, (ii) thorough washing with Milli-Q water, (iii) boiling in Milli-Q water 

at least once and (iv) washing with fresh electrolyte prior to any electrochemical experiment. A 

perchloric acid solution (0.1 M HClO4) was chosen as electrolyte instead of a sulfuric acid 

solution to minimize strong adsorption of (bi)sulfate anions contained in sulfuric acid 255,256. 

Indeed, these ions ‘poison’ the Pt catalytic sites and diminish the activity for the ORR. A special 
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attention was given to the quality of the electrolyte, as a low-quality electrolyte results in de-

preciated SA values for the ORR 254. Thus, all the electrolyte solutions were prepared using a 

96 wt. % HClO4 (70 % Merck, Suprapur). For the experiment in alkaline electrolyte described 

in Section III. 2. 5, i.e. in 0.1 M NaOH, the electrolyte was prepared from NaOH powder, 99.99 

% Merck, Suprapur and Milli-Q water (Millipore, 18.2 MΩ cm). The electrolyte solution was 

stored at T = 278 K. The electrochemical measurements were performed with an Autolab 

PGSTAT302N potentiostat controlled by the Nova software. The temperature of the electro-

chemical cell was thermostatically controlled at T = 298 ± 1 K. A four-electrode electrochemi-

cal cell containing ca. 20 mL of electrolytic solution was used. It was composed of the following 

electrodes:  

(i) the reference electrode was a commercial RHE (Hydroflex, Gaskatel GmbH), ex-

cept for the measurements in alkaline media described in Section III. 2. 5., where 

the reference electrode was a mercury – mercury oxide (Hg/HgO) reference; 

(ii) the counter electrode (CE) was a glassy carbon plate connected to the potentiostat 

by a gold wire. This forbids any release of Ptz+ ionic species, which might have been 

produced if a Pt CE had been used; 

(iii) the fourth electrode was a platinum wire connected to the reference electrode to filter 

the high-frequency noise and to avoid any low-frequency disturbance of the electro-

chemical measurements 257; 

(iv) the working electrode (WE) was a rotating disk electrode composed of a glassy car-

bon disk (0.196 cm2, Sigradur) on which a fixed volume of the electrocatalyst sus-

pension was drop casted.  

 

II. 3. 2. Preparation of the electrocatalyst suspensions 

The electrocatalyst suspensions were composed of (i) 10 mg of the electrocatalyst powder (for 

a Pt weight fraction of 20 wt. %), (ii) 54 µL of a Nafion 5 wt. % solution (Sigma-Aldrich), i.e. 

2.36 mg, therefore achieving an ionomer / carbon mass ratio of 0.3, (iii) 3600 µL of Milli-Q 

water and (iv) 1446 µL of isopropyl alcohol (99.5% Acros Organics). The electrocatalyst inks 

were first homogenised for t = 20 s using an ultrasonic probe and then placed t = 15 min in an 

ultrasonic bath. The catalytic inks were not used more than 2 weeks after their preparation, thus 

ensuring reproducible electrocatalytic measurements as described in Ref. 258. The uniformity 

and the homogeneity of the catalytic layer are pivotal for reproducible electrocatalytic meas-

urements 259,260. Therefore, 10 µL of the electrocatalyst suspension were deposited (targeting a 

loading of 20 µg of Pt per geometrical cm2) on the working electrode while rotating at ω = 500 
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rpm and drying under a heat flux. Prior to any electrochemical measurement, the fresh working 

electrode was immersed in the deaerated electrolyte at E = 0.1 V vs. RHE.  

 

The electrochemical experiments were then performed in the following order:  

(i) 50 cyclic voltammograms (CVs) between 0.05 and 1.23 V vs. RHE at a scan rate v 

= 0.500 V s-1; 

(ii) 3 CVs between 0.05 and 1.23 V vs. RHE at v = 0.020 V s-1;  

(iii) the COads stripping in which the CO was bubbled in the electrolytic solution for t = 

6 min followed by a purge of the solution by Ar during t = 29 min at E = 0.1 V vs. 

RHE and the recording of 3 CVs at v = 0.02 V s-1 between 0.05 and 1.23 V vs. RHE;  

(iv) 6 linear sweep voltammograms (LSVs) from 0.20 to 1.05 V vs. RHE in O2-saturated 

electrolytic solution at v = 0.005 V s-1 and at different revolution rates (ω = 400, 

900, 1600 and 2500 rotation per minutes – rpm) to determine the electrocatalytic 

activity of the thin-film electrodes for the ORR.  

 

II. 3. 3. Cyclic voltammetry in Ar-saturated electrolyte 

CVs in Ar-saturated 0.1 M HClO4 were performed to achieve a better understanding of the 

surface reactivity of the different hollow electrocatalysts. CVs consists in sweeping the poten-

tial between two values (i.e. E1 → E2 → E1) at a determined scan rate while recording the 

current (i). An example of a CV on a porous hollow PtNi/C electrocatalyst with a Ni content of 

ca. 15 at. % is provided in Figure 16. Note that the current can be separated into two additive 

contributions: (i) the capacitive current resulting from the specific adsorption of Hads and OHads 

species at the surface of the electrode (e.g. Hads → H+ + e-) and (ii) the capacitive current re-

sulting of the rearrangement of ions in the double layer (Helmholtz and Gouy-Chapman layers).  
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Figure 16. (A) Cyclic voltammogram in Ar-saturated 0.1 M HClO4 of a porous hollow PtNi/C NPs (v 

= 0.02 V s-1, T = 298 ± 1 K) with a Ni content of ca. 15 at. %. (B) Zoom in the 0.05 – 0.45 V vs. RHE 

potential range showing a base CV and a CV taken after COads adsorption and purge of the electrolyte 

(CO stripping voltammogram).  

 

Due to the structural and chemical sensitivity of Pt to hydrogen 51,261,262 and oxygen adsorp-

tion/desorption and CO electrooxidation 149,263–265, CVs are a powerful tool to gain insights on 

the Pt:Ni atomic ratio, crystallographic orientation of the exposed facets, the degree of defec-

tivity of the exposed PtNi/C surfaces and their ECSA. Note that, before being probed with CV, 

all the electrocatalysts discussed in this manuscript have been acid leached, except in Section 

III. 2. According to Durst et al. 133, this treatment yields the formation of a Pt-skeleton structure 

with a 2-3 monolayer thick Pt shell covering a PtNi core; therefore, it is assumed that no Ni 

atoms are present on the surface of the hollow PtNi/C NPs. In the 0.05 V vs. RHE < E < 0.45 

V vs. RHE region, the desorption (adsorption) of H+
 from (on) the Pt surface is observed (see 

Figure 16A). According to the works of Yeager et al. 266, Clavilier et al. 267–269 and  Markovic 

et al. 47,51,256,261,270 on extended Pt surfaces. The peaks observed on the CV at 0.05 V vs. RHE 

< E < 0.45 V vs. RHE positive scan can be ascribed to the hydrogen desorption from Pt (111) 

and Pt (110) (0.05 V vs. RHE ≤ E ≤ 0.25 V vs. RHE), and Pt (111) and Pt (100) (0.25 V vs. 

RHE < E ≤ 0.40 V vs. RHE). Snyder et al. 81 and Chattot et al. 247 proposed that, on highly 

defective nanostructures, the 0.25 V vs. RHE < E ≤ 0.40 V vs. RHE shoulder results from the 

Hads adsorption on the structural defects at the surface of the electrocatalyst.  
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Assuming the charge used to adsorb/desorb a monolayer of Hupd is Q1,Hupd = 210 µC cm-2
Pt, the 

ECSA can be determined from the CVs in Ar-saturated electrolyte, by integrating the coulom-

etry required to desorb a monolayer of Hupd after subtraction of the capacitive current associated 

with the carbon support only (QHupd). As Hupd adsorption is completely supressed on a surface 

fully covered by COads, the first cycle of the COads stripping can be used to this purpose (see 

Figure 16B), and ECSA determined using Equation 20:  

 

 𝐸𝐶𝑆𝐴𝐻(𝑐𝑚2) =  
𝑄𝐻𝑢𝑝𝑑

𝑄1,𝐻𝑢𝑝𝑑
 
 (𝐸𝑞. 20) 

 

The sum of the specific and non-specific currents observed in the 0.45 V vs. RHE < E < 0.70 V 

vs. RHE potential range is proportional to the specific surface area of the electrocatalyst and 

mostly originates from the high surface area carbon support. The faradaic current at E > 0.80 V 

vs. RHE corresponds to the formation of platinum surface oxides as a result of the water disso-

ciation 212. Their reduction is observed at E ~ 0.80 V vs. RHE (see Figure 16A). Note that CVs 

in Ar-saturated electrolyte also provide essential information during ageing protocols, i.e. 

ECSA losses (diminution of the coulometry required to adsorb/desorb Hupd), possible occur-

rence of the COR, etc. An increase of the double layer capacitance (Cdl) usually translates into 

increased specific surface area and formation of carbon surface oxides (C → COsurf) while a 

diminution is representative of losses in specific surface area (severe carbon corrosion resulting 

in COsurf → CO2 and C → CO2). In that respect, the quinone / hydroquinone (Q/HQ) redox 

peaks located at ca. 0.6 V vs. RHE (oxidation) and 0.5 V vs. RHE (reduction) are particularly 

instructive 176.  

 

To limit the impact of the ohmic losses (i.e. the potential shift due to the electrolyte resistance, 

ΔE = IRel, with ΔE the potential shift and Rel the electrolyte resistance, detrimental at high-

current values), the resistance of the electrolyte was determined by electrochemical impedance 

spectroscopy (EIS) and was always found to be equal to ca. 20 Ω in acid electrolyte and ca. 25 

Ω in alkaline electrolyte. The potential values of the CVs in Ar-saturated electrolyte and of the 

COads stripping were then automatically corrected by the potentiostat by ca. 85 % of the elec-

trolyte resistance (the correction was made manually on the LSV in O2-saturated electrolyte, 

after the measurement, by 100 % of the electrolyte resistance).  
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II. 3. 4. COads stripping on the Pt-based electrocatalysts 

The COads stripping consists in (i) the adsorption of a monolayer of CO onto the electrocatalyst 

surface at 0.10 V vs. RHE, (ii) the removal of all remaining COads from the solution and (iii) 

the stripping of the COads monolayer from the surface by electrochemical means. CO is bubbled 

in an Ar-saturated solution during t = 6 min, followed by t = 29 min of Ar bubbling at 0.10 V 

vs. RHE). After the purge, the solution is CO-free and the electrode is covered by a COads mon-

olayer, which can further be oxidized by CVs between 0.05 and 1.23 V vs. RHE. It is well-

established that the electrooxidation of a COads monolayer adsorbed on Pt (also known as COads 

stripping voltammograms) provides important information on the contraction of the lattice pa-

rameter 271, the defectivity 232,234,247, the crystallite size and agglomeration degree 149,264 of Pt-

based/C NPs. The COads monolayer has been studied on monocrystalline stepped Pt surfaces 

144,146,147,272,273. The COads electrooxidation proceeds along a Langmuir-Hinshelwood mecha-

nism. Water molecules are dissociated into OHads species (Equation 20) and CO molecules are 

adsorbed (Equation 21), before recombination with the OHads species. 

 

 𝐻2𝑂(𝑙) ↔ 𝑂𝐻𝑎𝑑𝑠 +  𝐻+ +  𝑒−       (𝐸𝑞. 21) 

 𝐶𝑂(𝑔) ↔  𝐶𝑂𝑎𝑑𝑠 (𝐸𝑞. 22) 

 𝐶𝑂𝑎𝑑𝑠 +  𝑂𝐻𝑎𝑑𝑠 →  𝐶𝑂2(𝑔) +  𝐻+ +  𝑒− (𝐸𝑞. 23) 

 

The reaction onset is related to the dissociation of water molecules into OHads species from 

water (Equation 20). There are numerous evidences in the literature that this reaction is more 

facile at surface defects. According to Lebedeva et al. 144, an increase in the density of steps on 

Pt (111) surfaces yields a negative shift of both the onset and the peak potential of COads strip-

ping voltammograms in acidic electrolyte. This is explained by fast surface diffusion of COads 

molecules adsorbed on the terraces to the bottom of steps where they are oxidized. The COads 

electrooxidation mechanism on Pt surfaces introduced by Koper et al. 274 and Lebedeva et al. 

144,146,147 was extrapolated to real-life PEMFC electrocatalysts, such as isolated or agglomerated 

Pt/C NPs by Maillard et al. 149,264,265,275,276. It was shown that grain boundaries present on such 

nanostructures enable the COads electrooxidation to occur at lower potentials, therefore playing 

a similar role than the steps on monocrystalline Pt surfaces. On highly defective Pt/C electro-

catalysts, the COads stripping voltammograms either feature a ‘low-potential’ peak at E ~ 0.70 

V vs.  RHE or two electrooxidation peaks, i.e. the ‘low-potential’ peak and a ‘high-potential’ 
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peak at E ~ 0.78 V vs. RHE (see Figure 17). The nature of the two peaks is discussed in Section 

IV. 2. for porous hollow PtNi/C NPs.  

 

As it will be shown in this thesis, several characteristics of COads stripping voltammograms 

provide structural and chemical insights on the different electrocatalysts:  

(i) the position of the high-potential peak of the COads stripping (Ep,CO) depends on 

contraction of the lattice parameter induced by the transition metal (Figure 17A). A 

diminution of Ep,CO indicates an increased contraction of the lattice parameter;   

(ii) the presence of a low-potential COads stripping peak indicates that the electrocata-

lysts contains structural defects. Hence, the  ratio of the electrical charge under the 

‘low-potential’ peak to the total electrical charge of the COads stripping, Qpp,CO / 

QT,CO (Figure 17A) provides semi-quantitative information on the density of struc-

tural defects contained in the different electrocatalysts 232.  

(iii) the first moment of the potential weight of the COads stripping, µ1
CO, first introduced 

by Chattot et al. 247, combines the effect of the contraction of the lattice parameter 

and of the density of the structural defects. A diminution of µ1
CO indicates an in-

crease of the contraction of the lattice parameter and/or an increase in the surface 

density of structural defects (Figure 17A). µ1
CO is described by Equation 24; 

 

 𝜇1
𝐶𝑂 =  ∫

𝐸 × 𝐼

∫ 𝐼 × 𝑑𝐸
1

0.55

×  𝑑𝐸

1

0.55

 =  ∫
𝐸 × 𝐼

𝑄𝑇,𝐶𝑂
×  𝑑𝐸

1

0.55

     (𝐸𝑞. 24) 

 

(iv) the ECSA can be determined considering that the charge required for the 

electroxidation of a monolayer of COads is Q1,CO = 420 µC cm-2
Pt (Equation 25). 

 

 𝐸𝐶𝑆𝐴𝐶𝑂(𝑐𝑚2) =  
𝑄𝑇,𝐶𝑂

𝑄1,𝐶𝑂
     (𝐸𝑞. 25) 
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Figure 17. Parameters extracted from COads stripping measurements describing the physico-chemical 

properties of a nanostructured, low Ni atomic content porous hollow PtNi/C electrocatalyst: (A) the 

electrical charge under the COads stripping pre-peak (Qpp,CO), the total electrical charge of the COads 

stripping (QT,CO) and the position of the ‘high-potential’ peak (Ep,CO); (B) the first moment of the poten-

tial weight of the COads stripping voltammogram determined as the integral of E × I/QT,CO (µ1
CO).  

 

These parameters will be used in Chapter V to gain insights into the degradation mechanism 

of hollow Pt-based nanostructures. 

 

II. 3. 5. Oxygen reduction reaction on Pt-based electrocatalysts 

The electrocatalytic activity for the ORR of the different electrocatalysts discussed in this man-

uscript has been investigated by rotating disk electrode (RDE) measurements at a sweep rate of 

v = 0.005 V s-1. This low sweep rate allows minimizing capacitive currents associated with the 

various carbon supports and better simulates steady-state PEMFC conditions. Note however 

that low v values yields depreciated specific activities for the ORR by a factor ca. 1.5 compared 

to v = 20 mVs-1 277. This reflects the time-dependency of the surface oxides coverage: high 

sweep rate promotes low coverage with surface oxides and thus increased number of catalytic 

sites that may adsorb and dissociate oxygen molecules. In this study, the activity for the ORR 

has been determined on the positive-going potential scan between 0.20 and 1.05 V vs. RHE, i.e. 

on an oxide-free Pt surface. Since Pt surface oxides form at E > 0.80 V vs. RHE, ORR meas-

urements on the negative-going potential scan would have resulted in a much lower SA value 

(the Pt surface would have been highly oxidized) 254. The electrochemical activity of the differ-

ent electrocatalysts was determined at E = 0.90 V vs. RHE and at E = 0.95 V vs. RHE, after 

correction of the Ohmic drop in the electrolyte (determined by Electrochemical Impedance 

Spectroscopy – EIS) and of the oxygen diffusion in solution by the Koutecky-Levich equation 

(Equation 26).  
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 𝐼𝑘 =  
𝐼 ×  𝐼𝑙𝑖𝑚

𝐼𝑙𝑖𝑚 − 𝐼
     (𝐸𝑞. 26) 

 

Where I is the measured current, Ik is the kinetic current and Ilim is the diffusion-limited current. 

The kinetic current at E = 0.95 V vs. RHE is comprised between 0.1 × Ilim < Ik < 0.5 × Ilim, i.e. 

the oxygen diffusion in solution is efficiently corrected 278,279. The kinetic current at E = 0.90 

V vs. RHE is noticeably higher than 0.5 × Ilim (see Figure 18) for the porous hollow PtNi/C 

NPs, therefore resulting in non-negligible impact of the oxygen diffusion in solution and in the 

catalytic layer 278,279. The SA and the MA values were determined by dividing the kinetic cur-

rent by the ECSA and the mass of platinum deposited on the electrode (ca. 3.92 µg), respec-

tively. An example of a linear sweep voltammetry (LSV) in O2-saturated electrolyte on a porous 

hollow PtNi/C electrocatalyst, with and without the correction of the Ohmic drop and the dif-

fusion in solution is provided in Figure 18.  

 

 
Figure 18. Linear sweep voltammogram recorded in O2-saturated 0.1 M HClO4 on hollow PtNi/C NPs 

with and without the correction of the Ohmic drop and of the oxygen diffusion in solution (v = 0.005 V 

s-1, T = 298 ± 1 K, ω = 1600 rpm). 

 

II. 3. 6. Accelerated stress tests 

To assess the stability of the porous hollow PtNi/C NPs and of their carbon support, ASTs 

extrapolated from the FCCJ recommendations 208 were performed (see Figure 19). Two proto-

cols were defined and used:  

(i) a start-stop protocol, i.e. a square potential ramp between 1.0 and 1.5 V vs. RHE 

with t = 3 s at each potential, to mimic the start-up and the shutdown of a PEMFC 

(Section V. 4.); 
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(ii) A load-cycling protocol, i.e. triangular potential ramp between 0.6 and 1.0 (or 1.1) 

V vs. RHE, with a scan rate of 0.050 V s-1, to mimic the potential experienced by 

the PEMFC during its operation (Section V. 2. and V. 3.).  

All the AST were performed at T = 353 K. Dubau and Maillard 280 showed that the AST tem-

perature plays a predominant role onto the degradation of the electrocatalysts and, on commer-

cial Pt/C, that an AST at T = 353 K (in 0.1 M H2SO4) adequately reproduces the structural 

changes observed in PEMFCs. The electrochemical cell was also thoroughly washed before the 

intermediate and final characterization and the aged electrolyte (contaminated by dissolved Ptz+
 

and Niz+ species 280) was replaced by fresh electrolyte.  

 

 

Figure 19. Protocols used for the ASTs discussed in this manuscript: (A) Start-stop protocol, (B) Load-

cycling protocol. The ASTs temperature was T = 353 K.  

 

II. 3. 7. In operando ageing of porous hollow PtNi/C 

In operando WAXS measurements were performed at the ID31 beamline of the European Syn-

chrotron Radiation Facility (ESRF) in Grenoble, France, to investigate the degradation mecha-

nisms of porous hollow PtNi/C NPs. A home-made cell (see Figure 20), made of Kel-F (ho-

mopolymer of chlorotrifluoroethylene), was used to characterize a gas-diffusion electrode 

(GDE), i.e. a commercial GDL (Sigracet 25BC, SGL Carbon) coated with a suspension of po-
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rous hollow PtNi/C ink, and hot-pressed on a Nafion membrane (N115, Ionpower). The theo-

retical Pt loading was 250 µgPt cm-2
geo. The cell was designed to minimize the thickness of the 

electrolyte layer on the beam path. The GDE was connected to the potentiostat by a circular 

gold current collector (WE). The counter electrode was a circular Pt wire (CE) and the reference 

was a commercial RHE (Hydroflex, Gaskatel GmbH) connected to a Pt wire (used to avoid any 

low-frequency disturbance of the electrochemical measurements). The current collector and the 

CE were maintained out of the beam trajectory. For more information on the cell geometry and 

composition, please refer to Figure 20. The electrocatalysts were aged by a load-cycle protocol 

(see Figure 19A) during 5,000 cycles between 0.6 and 1.0 V vs. RHE or 1.1 V vs. RHE at v = 

0.050 V s-1 after 5 cycles at v = 0.020 V s-1 between 0.10 V and 1.23 V vs. RHE at a targeted 

temperature Ttheo = 353 K (a loss of ca. 10 – 20 K was assumed during the circulation of the 

electrolyte from the thermostatic bath to the electrochemical cell).  

 

 

Figure 20. Scheme of the electrochemical cell used to investigate the degradation mechanisms of porous 

hollow PtNi/C NPs by in operando WAXS and SAXS measurements: (A) front and (B) side views.   

 

II. 4. Measurement of the specific surface area of the supports 

The specific surface area of the carbon supports was determined by N2 adsorption using the 

BET equation 281. The measurements were performed by Mr. Vincent Martin (LEPMI, St Mar-

tin d’Hères, France) at T = 77 K using a Micromeritics ASAP2020 apparatus. The cell was 

emptied (at a rate of 6.7 kPa s-1) before the N2 adsorption until reaching a pressure (P) of 66.7 

Pa while increasing the temperature to T = 363 K, at a speed of 10 K min-1. The temperature 

was then increased at T = 623 K at a 10 K min-1 rate and maintained at T = 623 K during t = 4 

h to desorb any specie previously adsorbed on the surface before bringing the cell to T = 77 K 
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by immersion in liquid N2. The adsorption isotherm is then measured by injecting controlled 

volume of gaseous N2 into the cell. When P = P0 (P0 being the atmospheric pressure), N2 is 

desorbed by emptying the cell until P = 66.7 Pa. The total specific surface area was calculated 

in the relative pressure domain 0.06 < P/P0 < 0.2 using the BET equation. The microporous 

specific surface area was determined using the t-plot method 282,283.  

 

II. 5. Atomic Absorption Spectroscopy 

The M (Ni, Cu, Co, Fe and Zn) and Pt content of each electrocatalyst was established by Atomic 

Absorption Spectroscopy (AAS – PinAACle 900F, PerkinElmer). The electrocatalyst (5 ± 1 

mg) was first digested in aqua regia (HCl:HNO3 3:1 volumic ratio) made from high-purity acids 

(37 vol. % ACS Reagent Sigma Aldrich and 65 vol. % Sigma-Aldrich) for t = 72 h at T = 298 

± 1 K. The solution was then diluted sevenfold to reach the AAS range for Pt and Ni, Cu, Co, 

Fe and Zn. The metals contents were then determined using three series of three measurements. 

The wavelengths considered for Pt, Ni, Cu, Co, Fe and Zn were λ = 266.0 nm, λ = 232.0 nm, λ 

= 327.4 nm, λ = 240.7 nm, λ = 327.4 nm, λ = 248.3 nm and λ = 213.9 nm, respectively.  

 

II. 6. Electron Microscopy 

II. 6. 1. Transmission electron microscopy 

The TEM is a microscopy technique based on the wave-like properties of the electrons. The 

wavelength of an electron beam accelerated close to the light speed is extremely small, ca. λ = 

2.5 pm at 200 kV, allowing a point-to-point resolution of ca. 0.2 nm. The electrons are gener-

ated from a LaB6 single crystal or a tungsten filament, accelerated by a potential field and fo-

cused by electrostatic and electromagnetic lenses before reaching the sample. As the electrons 

considered must be transmitted through the sample, the latter is usually thinner than 100 nm. 

Variations in thickness and electronic density of the sample regions result in clearer and darker 

areas on the TEM micrographs in bright field imaging mode, thus creating a contrast between 

the NPs (high Z value, Z being the proton number) and their support (low Z value).  

 

Since the porous hollow PtM/C NPs display an irregular shape, the Feret diameter was esti-

mated for each NP, i.e. 0.5 × (dmax + dmin), from the TEM micrographs, to determine the number-

averaged NPs diameter (�̅�𝑁 – Equation 26). 200 NPs were measured to build a particle size 

distribution (PSD). For comparison purposes, the surface-averaged diameter (�̅�𝑆 – Equation 

27) and the volume-averaged diameter (�̅�𝑉 – Equation 28) were also determined:  
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 �̅�𝑁 =  
∑ 𝑛𝑖𝑑𝑖

𝑛
𝑖=1

∑ 𝑛𝑖
𝑛
𝑖=1

 (𝐸𝑞. 26) 

 �̅�𝑆 =  
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3𝑛
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 (𝐸𝑞. 27) 

 �̅�𝑉 =  
∑ 𝑛𝑖𝑑𝑖

4𝑛
𝑖=1

∑ 𝑛𝑖𝑑𝑖
3𝑛

𝑖=1

 (𝐸𝑞. 28) 

 

where ni is the number of NPs of diameter di. The bright field imaging was used with a JEOL 

2010 TEM operating at 200 kV with a point-to-point resolution of 0.19 nm. The PSD of the 

hollow Pt-based/C electrocatalysts was built from the TEM micrographs obtained at low/me-

dium magnification (× 80,000 / × 150,000). To obtain an accurate imaging of the atomic struc-

ture (e.g. deformations in the lattice parameter or presence of structural defects such as grain 

boundaries or few nanometers porosities) of the porous hollow PtNi/C NPs, high-resolution 

TEM (HR-TEM) micrographs were acquired by Dr. Jaysen Nelayah (University Paris Diderot, 

Paris, France) using a JEM-ARM 200F (JEOL) microscope equipped with a cold-field emission 

gun and an image aberration corrector (the operating voltage was 200 kV). The analysed elec-

trocatalysts were deposited onto carbon-coated lacey copper or gold grids (Agar). 

 

A scanning transmission electron microscope (STEM, i.e. the electron beam is focused on a 

fine spot and scans over the selected area) was used to analyse the chemical composition of 

single NPs before and after AST (see Section V. 2.) in energy dispersive X-ray (EDX) mode. 

The EDX mapping was obtained using a JEOL 2100F microscope operated at 200 kV and 

equipped with a retractable large angle silicon drift detector (Centurio). EDX is an analytic 

technique where the energy of the X-rays emitted by the sample upon interaction with the elec-

tron beam is analysed: it allows the determination of the nature and the chemical composition 

of the samples.  The quantitative analyses were performed on Pt L line and Ni, Co and Cu K 

lines using the K factor provided by the JEOL software. 

 

II. 6. 2. Identical Localisation TEM 

This technique, first introduced by Mayrhofer et al. 284, was used to gain insights into the mor-

phological and structural changes of the porous hollow PtNi/C NPs and of their carbon supports 

during a ‘start-stop’ protocol 203,285,286 (see Figure 19 and Section V. 4). In practice, 10 µL of 

a 10-time diluted catalytic ink (1 mg of electrocatalysts in 5.4 µL of Nafion 5 wt. % + 1446 µL 

of IPA + 3600 µL of H2O MilliQ) were deposited on a gold TEM grid. Different zones of a 
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carbon-coated lacey Au TEM grid were located and imaged (in this study, eighteen in six dif-

ferent areas) at different magnifications prior to the AST. The grid was then used as a working 

electrode in a conventional electrochemical cell and the exact same zones were imaged after 

the ‘start-stop’ procedure.  

 

II. 6. 3. Scanning Electron Microscopy  

Micrographs of the different carbon supports discussed in this manuscript (see Figure 13) were 

obtained by Scanning Electron Microscopy (SEM). The SEM pictures were acquired on a SEM 

Ultra 55 operating at an accelerating voltage of 5 kV and a working distance of ca. 5 mm.   

 

II. 7. Raman spectroscopy 

Raman spectroscopy is a non-destructive technique that provides insights into the molecular 

structure, the chemical composition and the nature of the analysed compounds. It was used to 

determine the structure of the different carbon materials used in this work 172,176,287,288. Raman 

spectroscopy is based on the inelastic scattering of monochromatic light (here, an argon LASER 

(light amplification by stimulated emission of radiation) with λ = 514 nm was operated at ~ 5 

mW). The interaction between the light and the sample results in an up-shift (down-shift) of the 

energy of the LASER photons, the shift being related to the vibrational modes of the studied 

system. Thus, the Raman patterns are plotted as a function of the frequency difference from the 

incident radiation (a Raman shift = 0 cm-1 is observed for the band resulting of the elastic scat-

tering of the monochromatic light, i.e. the Rayleigh band). The scattered radiations were col-

lected by a Peltier-cooled charge detector coupled with a camera (spectral resolution = 1 cm-1). 

The analysis was performed by Mr. Alexandre Crisci (SIMAP, Grenoble, France) with a × 50 

ULWD objective and a 100 μm confocal aperture for the sample illumination and the collection 

of the scattered photons. To compare the structure of the different carbon supports discussed in 

Section IV. 5. 1., the Raman spectra were fitted using the LabSpec software and the 4 bands 

described in Figure 21. Such fitting allowed determination of the carbon crystallite size in the 

plane of the graphene layers (La) using the Knight and White formula 289 (Equation 29):  

 

 𝐿𝑎 (𝑛𝑚) = 4.4 ×  
𝐼𝐺

𝐼𝐷1
 (𝐸𝑞. 29) 

 

where IG and ID1 stand for the integrated intensity of the G and the D1 bands, respectively (see 

Figure 21). Equation 29 was established for λ = 514 nm: the position 290,291 and the intensity 



Chapter II. Introduction to the Techniques & Experimental Section 

73 
 

292 of the D1-band are highly dependent on the laser wavelength. Furthermore, it is only valid 

for non-amorphous carbons. ID1 / IG is proportional to La
2 for amorphous carbons but no quan-

titative description of this relationship was provided in the literature 172. For the sake of clarity, 

all the Raman spectra were normalized to the intensity of the band at ~1585 cm−1, which corre-

sponds to the ideal graphite lattice band (G-band) of carbon (see Figure 21). The carbon crys-

tallite size perpendicular to the graphene layers (Lc) and the inter-planar distance (d002) were 

determined by fitting the XRD patterns (see Section II. 9.) and thereby complement the infor-

mation derived from Raman spectra.  

 

 

Figure 21. Raman spectra of Vulcan XC72 in the 1200 – 1750 cm-1 range highlighting the position of 

the theoretical vibration modes of carbon.  

 

II. 8. X-ray photoelectron spectroscopy 

X-ray Photoelectron Spectroscopy (XPS) was used in Section III. 2. 2. to determine the boron 

atomic content of the porous hollow PtNi/C electrocatalysts during their synthesis, and in Sec-

tion IV. 5. 1. to gain insights on the functionalization of the carbon surface (i.e. the atomic 

content in oxygen- and nitrogen-containing groups). The XPS patterns were obtained by irra-

diating the samples with an X-ray beam and analysing the kinetic energy of the electrons ejected 

from its first atomic layers. Each element of the sample gives rise to a characteristic set of peaks 

at kinetic energies determined by the photon energy and the respective binding energies. More-

over, the intensity of the peaks is proportional to the concentration of the element within the 

probed region of the sample (note that the depth of analysis depends on the mean inelastic free 
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path of the electrons, and is linked to the sample nature). Hence, XPS provides a qualitative and 

a quantitative analysis of the first atomic layers of a given sample. 

 

In Section III. 2. 2., the XPS measurements were acquired in an ultra-high vacuum chamber 

(Omicron, 10-8 Pa base pressure, 10-6 Pa during the measurements) equipped with a hemispher-

ical analyser (VSW H100) and a monochromatic X-ray source (Al Kα, 1486.6 eV) operating at 

270 W (13.5 kV, 20 mA). The hemispherical analyzer was working in the constant pass energy 

mode (44 eV). The angle between the sample surface and the analyser axis was 60 °. Increments 

of 0.25 eV and dwelling times of 10 s were used to record the XPS signals. The electrodes were 

prepared by depositing a non-quantified amount of catalytic powder on carbon tape, which was 

then glued onto a boron nitride block formerly covered with carbon tape. The samples were 

introduced into the XPS chamber 3 h before the measurements. The XPS patterns were analyzed 

using the CasaXPS software from CasaSoftware LTD. The reference was a partially oxidized 

Ni foil. The change of the Pt, Ni, and B contents during the synthesis were monitored by divid-

ing the integrated areas of the Pt 4f, the Ni 2p3/2 and the B1s peaks, after proper background 

subtraction, by their respective atomic sensitivity factors (4.044 for Ni, 0.159 for B, 5.575 for 

Pt). In Section IV. 5. 1., the XPS data were acquired by Dr. Yan Busby, from the University of 

Namur (Namur, Belgium) on a spectrometer ESCALAB 250Xi (Thermo Scientific) equipped 

with a 500 µm monochromatic Al Kα (1486.6 eV) X-ray beam. The atomic composition was 

evaluated on survey spectra acquired in scan mode with a pass energy of 150 eV, while the 

chemical analysis was performed by fitting high-resolution spectra acquired in scan mode with 

a pass energy of 20 eV (to obtain the lowest peak width). Shirley background was used in peak 

fitting. 

 

II. 9. X-ray diffraction 

II. 9. 1. Introduction 

The porous hollow PtNi/C NPs were analysed by X-Ray Diffraction (XRD) to determine struc-

tural parameters of interest, such as the PtNi  lattice parameter (aPt-Pt), the PtNi crystallite size 

(dXRD) and the microstrain (i.e. the shift of the lattice parameter from its average value (µε ∝ 

ΔaPt-Pt/aPt-Pt) 
293,294). In powder XRD experiments, a monochromatic X-ray beam interacts with 

the atoms of a sample, that are arranged periodically resulting in an elastic scattering (i.e. waves 

emanate from the excited structure without up-shift / down-shift as observed in the Raman pat-

terns). The waves are emitted for a wide range of 2θ angles, θ being the angle between the 
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resultant and the incident beam and often cancel each other, except for a few diffraction angles 

where they add constructively, according to the Bragg’s law (Equation 30): 

 

 2𝑑𝑖𝑑  × sin 𝜃 = 𝜆 (𝐸𝑞. 30) 

 

where did is the interplanar distance in the crystalline system and λ is the wavelength of the 

monochromatic beam. The ‘constructive interferences’ are detected, resulting in a XRD pattern. 

The lattice parameter can be derived from the Bragg law (Equation 31) and the crystallite size 

perpendicularly to a crystalline plane (dhkl, dXRD being defined as the average value of the crys-

tallite size perpendicularly to the (111), (110) and (100) crystallites planes) from the Scherrer 

equation (Equation 32):   

 

 𝑑𝑖𝑑 =  
𝑎𝑃𝑡−𝑃𝑡

√ℎ2 +  𝑘2 + 𝑙2
 (𝐸𝑞. 31) 

 𝑑ℎ𝑘𝑙 =  
0.89 ×  𝜆

𝐹𝑊𝐻𝑀 × cos 𝜃
 (𝐸𝑞. 32) 

 

where (hkl) are the Miller indices of the crystalline plane corresponding to the observed peak 

and FWHM is the broadening at half the maximum intensity of the observed peak (in radians). 

The XRD patterns of the electrocatalysts presented in Chapter IV were determined with a 

PANalytical X’Pert Pro MPD vertical goniometer/diffractometer with a diffracted-beam mon-

ochromator (Cu Kα radiation, λ = 0.15406 nm) operating at 45 kV and 40 mA. The 2θ range 

was 10 – 125° and the step size 0.033°.  

 

II. 9. 2. Wide angle X-ray scattering 

To obtain more information on the fine nanostructure of the electrocatalysts (e.g. microstrain), 

X-ray scattering (here often referred as WAXS) was also performed at the ID31 beamline of 

the ESRF. Depending of the sample, the high-energy X-ray radiation (60 keV or λ = 0.207 Å) 

was focused on: 

(i) a poly (methyl methacrylate) cuvette of 4.5 × 1.25 × 1.25 cm (Plastibrand) where 

the synthesis occurred (see Section III. 2. for the results relative to this measure-

ment); 

(ii) a Kapton capillary of d = 1 mm, containing the sample powder for the ex situ elec-

trocatalysts (Section IV.2. – IV.5.); 
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(iii) a glassy carbon electrode covered by the post-ageing electrocatalyst ink (Chapter 

V);  

(iv) the home-made cell described in Section II. 3. 7. and Figure 20 (Section V. 4.).  

The WAXS measurements were performed in collaboration with Dr. Jakub Drnec, from the 

ESRF (Grenoble, France). The X-ray beam was focused with two transfocators to a size of 4 

μm  30 μm (vertical  horizontal) at the sample position. The flux was 5  1012 photons s-1 at 

the sample position. The scattered signal was collected with Dectris Pilatus CdTe 2M detector 

positioned 300 mm behind the sample. The energy, detector distance and tilts were calibrated 

using a standard CeO2 powder and the 2D diffraction patterns were reduced to 1D curves using 

pyFAI software package 295.  

 

II. 9. 3. Pair function distribution analysis 

Pair-Function Distribution (PDF) analysis refers to the probability of finding two atoms at a 

given inter-atomic distance r 296. Hence, PDF analysis provides information on the short / me-

dium range order in crystalline structures. The PDF can be obtained from the XRD data as the 

Fourier transformed of the normalized total structure factor (q, see Equation 33).  

 

 𝑞 =  
4𝜋 × sin 𝜃

𝜆
 (𝐸𝑞. 33) 

 

PDF analysis was conducted by Dr. Pierre Bordet, from the Louis Néel Institute (Grenoble, 

France) using PDFGetX3 297. The data were considered up to qmax = 19.9 Å-1. The scattering 

associated with the poly (methyl methacrylate) cuvette and the carbon support (Section III. 2.) 

was subtracted from the data. The PDF of a CeO2 standard was used to determine the instru-

mental parameters (damping and broadening of PDF peaks due to experimental resolution), 

which were then fixed during the PDF refinements, carried out with PDFgui 298.  

 

II. 9. 4. Rietveld analysis 

The WAXS patterns were refined by Dr. Pierre Bordet, from the Louis Néel Institute (Grenoble, 

France) by the Rietveld method (a refinement method using the least square method, i.e. mini-

mization of the square of the error between the experimental and the theoretical data). This 

method allows an accurate determination of the physical parameters (aPt-Pt, µε, dXRD). The 

Rietveld refinements were carried using the Fullprof software, considering the Fm-3m structure 
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of a cubic closed-packed metal (a ~ 3.9 Å). The instrumental resolution function was deter-

mined by the refinement of the CeO2 standard sample. The Thomson-Cox-Hastings profile 

function was adopted with possibility for uniaxial anisotropic broadening from size origin. 

 

II. 9. 5. Small angle X-ray scattering 

To obtain information on the structural changes of the NPs during their synthesis (see Section 

III. 2.), small angle X-ray scattering (SAXS) was performed in collaboration with Dr. Jakub 

Drnec (ESRF, Grenoble, France). The scattered signal was collected with Dexela 2923 posi-

tioned 6 m behind the sample. A long flight tube inserted between the detector and the sample 

was used to limit the air scattering of the direct beam. The beam stop was positioned at the end 

of the flight tube, about 150 mm from the detector.  The size of the beam at the sample position 

was 4 µm × 30 µm (vertical × horizontal). The energy, detector distance and tilts were calibrated 

using a standard Ag behenate powder and the 2D diffraction patterns were reduced to 1D curves 

using pyFAI software package 295. SAXS focuses on the very low diffraction angles of the 

elastic scattering of the X-ray and provides information into the shape and composition of the 

nanostructure. As such, it is extremely useful to probe the morphological changes of the grow-

ing NPs. At small angles (for diluted solutions), the scattering intensity of spherical and identi-

cal particles, I(q), is described as (Equation 34): 

 

 𝐼(𝑞) ~ 𝑃(𝑞) (𝐸𝑞. 34) 

 

where P(q) is the form factor that describe the shape of the individual growing NPs. Here, the 

form factor is a Fourier transform of the autocorrelation function and therefore the square of 

the form factor amplitudes (Equation 35) 299: 

 

 𝑃(𝑞) = ⟨|𝐹(�⃗�)|2⟩ = ⟨|∫ 𝛥
𝑉

𝜌𝑒(−𝑖�⃗⃗�𝑟)𝑑𝑟|

2

⟩ (𝐸𝑞. 35) 

 

where Δρ is the scattering length density (SLD – i.e. the scattering power of the materials, that 

increases with (i) the density of the material and (ii) the atomic number of the atoms) difference 

between the NPs and the solvent. Since the studied nanomaterials feature an inhomogeneous 

SLD distribution, a monodisperse spherical NP with a core@shell structure was considered and 

P(q) was substituted by an analytical expression 300. This idealized model was used to fit the 

SAXS data. The SLD of the core and of the shell absolute values are arbitrary since they depend 
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on the fitting parameter, i.e. the scaling.  Technically, the in operando SAXS data were analysed 

using a SAXS utilities package. The raw images were radially integrated with the PyFAI soft-

ware package. The last SAXS pattern measured before the adjunction of the NaBH4 solution 

(i.e. the background, see Figure 22A) was subtracted from the subsequent patterns. The back-

ground-corrected patterns were fitted using SAXS utilities package and a core@shell NP model 

(Figure 22B). To avoid considering the peak at q = 0.13 nm-1 resulting from the carbon support 

(that was not eliminated by the background subtraction, therefore suggesting modifications of 

the carbon support during the first minutes of the synthesis) only the region shown in Figure 

22B was used to fit the form factor.  

 

 

Figure 22. (A) Measured SAXS pattern before the addition of the first drop of NaBH4 (background, 

black) and t = 14 min (orange, before background correction) (t is the time after the addition of the first 

drop of NaBH4. (B) Example of a fit of SAXS pattern. Dark circles: the background-corrected SAXS 

pattern at t = 14 min. orange curve: the fit using the core/shell NP model. 

 

II. 10. Membrane electrode assembly characterisation 

The porous hollow PtNi/C NPs were characterized in membrane electrode assembly (MEA) in 

collaboration with the French Alternative Energy and Atomic Energy Commission (CEA).  
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The MEA was composed of: 

(i) an anode (commercial Pt/C, 50 wt. % loading, 0.2 mg cmgeo
-2); 

(ii) a membrane (Nafion® HP 20 µm); 

(iii) a cathode (porous hollow PtNi/C – 0.20 mg cmgeo
-2 or commercial Pt/C – 0.20 mg 

cmgeo
-2). The porous hollow PtNi/C used for the MEA characterisation had a 

Pt2+:Ni2+ ratio of 1:5 and a theoretical loading of 23 wt. %.  

The electrocatalyst was deposited by a spraying method and hot pressed onto the GDL (24 BC 

(SLG) used both at the anode and cathode sides). The MEA geometric surface was 25 cm2. 

Before characterisation, the MEA was activated and conditioned at T = 353 K, with H2 (P = 1.5 

bar) at the anode and air at the cathode. The stoichiometry for H2 and air was set to 1.5 and 2 

respectively. The relative humidity (RH) was 80 % for both gases. The MEA characterization 

by polarization curves was performed at T = 353 K, with a relative humidity of 50 % both for 

the H2 (P = 1.5 bar) and the air. The MEAs were aged up to 30,000 potential cycles between 

0.6 and 1.0 V at T = 353 K and v = 0.050 V s-1 under H2/N2 atmosphere. 
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porous hollow PtNi/C nanoparticles 

 

All the results discussed in this chapter have been published in: 

Chattot, R.; Asset, T.; Drnec, J.; Bordet, P.; Dubau, L.; Maillard, F.; Drnec, J.; Dubau, L.; and 

Maillard, F. Atomic Scale Snapshots of the Growth Mechanism of Hollow PtNi/C 

Nanocatalysts for Oxygen Reduction Reaction. Nano Lett. 2017, 17 (4), 2447–2453. 

 

In this article, the author of this thesis contributed to (i) the preparation, acquisition, analysis and 

treatment of the in operando WAXS spectra, (ii) the preparation and acquisition of the in operando 

SAXS spectra, (ii) the preparation of the samples, the acquisition of the TEM micrographs and the 

determination of the particle size distribution, (iii) the synthesis of the porous hollow PtNi/C for the 

electrochemical characterisation, the electrochemical characterisation in acidic and alkaline media and 

the data analysis, (iv) the acquisition of the XPS patterns, (v) the acquisition of the EDX elemental maps 

and (vi) the preparation of the manuscript for publication.  
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III. 1. Introduction 

Knowledge of the mechanisms driving the formation of the porous hollow PtNi/C NPs 83,84,301 

and of the intermediate structures observed during their synthesis (for technical details on the 

synthesis process, please refer to Section II. 1. 1.) is fundamental to efficiently design this class 

on nanomaterials. Liang et al. 245 have first reported the synthesis of ca. 20 nm hollow Pt/C NPs 

by galvanic replacement using Co NPs as sacrificial templates. They observed a 2-fold enhance-

ment of the methanol electrooxidation kinetics relative to solid Pt/C NPs. Improved methanol 

245,302 or formic acid 303 electrooxidation kinetics was later reported on similar electrocatalytic 

materials based on Pt. More recently, Wang et al. 223 electrodeposited Ni NPs on glassy carbon, 

and deposited a controlled number of Pt-shells on their surface via galvanic replacement. Due 

to nanoscale Kirkendall effect, they obtained hollow Pt/C NPs with enhanced ORR kinetics 

relative to their solid counterpart. Using Co/C, Cu/C or Ni/C as sacrificial templates, Bae et al. 

231 and Dubau et al. 83,84,218 synthesized efficient Pt-based/C ORR electrocatalysts with enhance-

ment of the SA for the ORR by a factor of 9. However, to date, the atomic scale details of the 

mechanism and the kinetics of formation of hollow Pt-rich nanoalloys remain elusive. Moreo-

ver, the nature and the electrocatalytic activity for the ORR of the different nanostructures form-

ing during the synthesis are unknown. In this chapter, the mechanism of formation and growth 

of hollow Pt-rich nanocatalysts synthesized by a ‘one-pot’ method 83,84,231 is investigated, using 

a combination of in operando synchrotron WAXS and SAXS, TEM, HR-TEM, STEM-EDX, 

XPS and electrochemical techniques. For the technical details of the different methods, please 

refer to Chapter II.  

 

III. 2. Results and Discussion  

III. 2. 1. Wide angle X-ray scattering and energy dispersive X-ray mapping 

The porous hollow PtNi/C NPs were synthesized by a ‘one-pot’ method where all the precursors 

(Pt(NH3)4Cl2·H2O, NiCl2 and Vulcan XC72) are mixed and dissolved / dispersed in 150 mL of 

Milli-Q grade H2O (18.2 MΩ), before the drop-wise addition (in t = 5 min) of 208 mg of NaBH4 

dissolved in 25 mL of MilliQ H2O. 60 min after the addition of the first drop of NaBH4, the 

electrocatalyst was filtered, thoroughly washed, dried and acid-leached during t = 22 h in a 1 

M H2SO4 solution, resulting in the formation of porous hollow PtNi/C NPs (as schematized in 

Figure 23) 83,84,231.   
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Figure 23. Schematic representation of the initial (i.e. metal precursors + carbon in MQ-grade water) 

and final (acid leaching) steps of the synthesis of porous hollow PtNi/C NPs. 

 

The addition of NaBH4 initiates the synthesis (i.e. before adding it, Pt and Ni are at an oxidation 

state of +II, see Figure 23). According to its low standard potential (E° = – 0.82 V vs. SHE at 

pH = 7 304,305 for the BO2/BH4
- couple), NaBH4 can reduce both precursors (E°Pt2+/Pt = 1.19 V 

vs. SHE and E°Ni2+/Ni = - 0.25 V vs. SHE) but Pt2+ ions should be reduced first and then be 

followed by the reduction of Ni2+, thereby promoting the formation of a Pt-rich@Ni-rich 

core@shell and avoiding the formation of hollow NPs. However, using Pt(NH3)4
2+ salts induces 

a lower reduction potential for Pt(II) (E° (Pt(NH3)4
2+ / Pt) = 0.76 V vs. RHE), slower reduction 

kinetics and a slower decomposition in H2O 83,84 resulting in a preferential reduction of Ni atoms 

as described by Equation 36.  

 

 2𝑁𝑖(𝑎𝑞)
2+ +  𝐵𝐻4 (𝑎𝑞)

− +  𝐻2𝑂(𝑙) →  2𝑁𝑖(𝑠) +  𝐵𝑂2 (𝑎𝑞)
− +  2𝐻2(𝑔)

 (𝐸𝑞. 36) 

 

After the addition of the first drop of NaBH4, (i) the external diameter of the Ni NPs rapidly 

increases to be close to the final diameter of the hollow PtNi/C at t = 2 min (dext (2 min) = 11.1 

± 4.7 nm vs. dext (60 min) = 14.0 ± 2.9 nm, see Figure 24A) and (ii) the Ni content measured 

by STEM-EDX decreases rapidly from 94 at. % at t = 1 min to 69 at. % at t = 4 min (Figure 

24B and Figure 25B). Slower variations are monitored at t > 4 min, the final Ni content being 

49 at. % after t = 60 min. This non-monotonic variation of the Ni content reflects the occurrence 

of two sequential processes:  

(i) the galvanic replacement which is most effective in the deposition of the first Pt atoms 

on the Ni-rich/C NPs; 

(ii) the nanoscale Kirkendall effect 219,221 that allows the transformation of solid Ni-rich 

core@Pt-rich shell NPs (at t = 20 min, see Figure 25A) into hollow PtNi/C NPs.  
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Figure 24. (A) Variation of the external diameter of the NPs, approximated by counting between 100 

and 250 NPs for each discussed time and (B) variation of the Ni content of the NPs measured on indi-

vidual NPs by scanning transmission electron microscopy – energy dispersive X-ray spectroscopy.    

 

Deeper insights into the structure of the growing PtNi/C NPs were obtained using in operando 

WAXS (see Figure 25C).  Note that for the sake of comparison with classical X-ray diffraction, 

the data obtained in synchrotron (λ = 0.207 Å) were converted into Cu Kα radiation (λ = 1.5406 

Å). At t ≤ 10 min, diffraction from (i) the (002) planes of the carbon support at 2θ = 26.4°, (ii) 

Pt(111) at 2θ = 39.8° and (iii) Ni(111) at 2θ = 44.5° are visible in Figure 25C. The diffraction 

peak at 2θ = 36.6° (detected between 1 < t < 4 min, Figure 25C) was ascribed to monoclinic 

NiB3 and/or tetragonal Ni2B, 306,307 in agreement with the EDX elemental maps of Figure 25B, 

where the formation of a Ni-based shell is observed at t = 2 min. According to the WAXS 

spectra, this NixByOz shell (the exact nature of the shell is established in Section III. 2. 2.) is 

formed before Ni(111) planes appear, and disappears before Pt(111) diffraction peaks become 

visible (t ≥ 4 min 30, Figure 25C). This suggests that the NixByOz shell protects, at least to 

some extent, the metallic Ni-rich cores from the deposition of Pt2+ ions via galvanic replace-

ment. At t ≥ 10 min, the disappearance of the Ni(111) signal (see Figure 25C) suggests that the 

Ni cores are amorphized, corroded or alloyed, leaving behind a WAXS signal that is typical of 

a slightly contracted face centered cubic PtNi structure 84. A negative shift of the peaks ascribed 

to diffraction from (002) planes of the Vulcan support at 2 ~ 26° is also visible, similarly to 

what has been observed for graphite oxide (the crystalline structure of graphite is not retained 

upon insertion of oxygen, resulting in an increased interplanar distance and, thus, smaller dif-

fraction angles 176). We believe that this result signs the intercalation of boron atoms in the 

carbon black structure. 
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Figure 25. Insights into the synthesis of porous hollow PtNi/C NPs via electron and X-ray based tech-

niques. (A, B) X-ray energy dispersive spectroscopy elemental maps of the different nanostructures 

forming during the synthesis of hollow PtNi/C NPs (the Pt and Ni atoms are represented in red and 

green, respectively). (C) Wide angle X-ray scattering patterns of the different PtNi nanostructures form-

ing for 0 min < t < 60 min (t being the time after the addition of the first drop of NaBH4). The intensity 

of the X-ray patterns was normalized to the highest peak intensity measured in the 25° < 2θ < 120° range 

(C (002) from 0 ≤ t ≤ 3.5 min and Pt (111) for t < 3.5 min). 

 

These structural changes are confirmed by the experimental PDF extracted from the WAXS 

patterns (Figure 26). The first atomic coordination shells are distinguishable at t ≥ 3 min and 

the peak at 0.249 nm dominated the PDF signal for 3 min ≤ t ≤ 4 min (see Section II. 9. 3 for 

the technical details concerning the determination of the PDF from the WAXS patterns). This 

suggests the presence of Ni-rich NPs on the carbon support for t ≤ 4 min. For t ≥ 4.5 min, the 

peak at 0.271 nm becomes predominant, relevant for an enrichment of the nanostructure in 

platinum, as observed by STEM-EDX (Figure 24B and Figure 25B). At t ~ 10 min, the PDF 

signal can be fitted with a single PtNi phase with a lattice parameter of a = 0.385 nm. At longer 

times, the lattice parameter relaxes. This phenomenon agrees with the losses in nickel moni-

tored by STEM-EDX (Figure 24B and Figure 25B).  
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Figure 26. Atomic pair function distribution for 3 min ≤ t ≤ 60 min (t being the time after the addition 

of the first drop of NaBH4 and r the distance between two atoms). 

 

III. 2. 2. X-ray photoelectron spectroscopy and high-resolution TEM 

The formation of the NixByOz matrix observed by STEM-EDX and WAXS was confirmed by 

HR-TEM and XPS (see Figure 26). The amorphous shell surrounding the Ni NPs is observed 

by HR-TEM at t = 2 min (Figure 27A) and is composed of atoms with, in average, a smaller 

atomic number than Ni (as evidenced by the contrast between the Ni core, darker, and the shell, 

lighter). The evolution of the boron relative content within the NPs was followed by XPS. It is 

higher at t = 2 min (15.8 ± 5 at. %) than during the rest of the synthesis, i.e. from 9.8 ± 8.6 at. 

% at t = 20 min to 5.2 ± 15.3 at. % at t = 40 min (the boron content observed at t > 2 min is at 

the detection limit of the XPS, see the standard deviation observed on Figure 27D), therefore 

confirming the nature of the lighter element present in the NPs shell. These results are coherent 

with the affinity of boron with most of the transition metals, resulting in the spontaneous for-

mation of the transition metal borides 307–312. Nickel borides (e.g. Ni2B, Ni3B, etc., i.e. the most 

common phases formed via the reduction of Ni2+ in BH4
- containing solutions 312–314) develop 

during the synthesis according to Equation 37 and Equation 38.  

 

 
2𝑁𝑖(𝑎𝑞)

2+ +  4𝐵𝐻4 (𝑎𝑞)
− +  4𝐻2𝑂(𝑙) →  2𝑁𝑖2𝐵(𝑠) +  2𝐵𝑂2 (𝑎𝑞)

− +  2𝐻+

+ 11𝐻2(𝑔)
 

(𝐸𝑞. 37) 

 
6𝑁𝑖(𝑎𝑞)

2+ +  5𝐵𝐻4 (𝑎𝑞)
− +  6𝐻2𝑂(𝑙) →  2𝑁𝑖3𝐵(𝑠) +  3𝐵𝑂2 (𝑎𝑞)

−

+  10𝐻+ + 11𝐻2(𝑔)
  

(𝐸𝑞. 38) 
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The presence of oxygen in the NixByOz shell was also evidenced by XPS (Figure 27B and 

Figure 27C), by the ca. 5 eV positive shift of the B 1s binding energy relative to elemental 

boron 315,316 and the presence of the Ni 2p3/2 satellite peak (at 859.3 eV) in the XP spectra, that 

correspond to Ni(OH)2 or NiO. NixByOz phases (e.g. Ni(BO2)2) can be formed either by the 

reaction between the BO2
- ions produced by Equation 36, Equation 37 and Equation 38 or by 

homogenous hydrolysis of the NaBH4 solution (see Equation 39) and Ni2+, as described in 

Equation 40.  

 

 𝐵𝐻4 (𝑎𝑞)
− +  2𝐻2𝑂(𝑙) →  𝐵𝑂2 (𝑎𝑞)

− + 4𝐻2(𝑔)
 (𝐸𝑞. 39) 

 𝑁𝑖(𝑎𝑞)
2+ + 2𝐵𝑂2 (𝑎𝑞)

− → 2𝑁𝑖(𝐵𝑂2)2 (𝑠)  (𝐸𝑞. 40) 

 

 

Figure 27. (A) High-Resolution TEM image of a Ni@NixByOz nanostructure obtained after t = 2 min (t 

being the time after the addition of the first drop of NaBH4). (B) XPS peak of boron (B 1s) as a function 

of the synthesis time. (C) XPS peak of Ni as a function of the synthesis time. (D) Relative content of 

boron extracted from the analysis of XP spectra acquired on samples collected during the synthesis of 

hollow PtNi/C NPs. 
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III. 2. 3. Small Angle X-Ray Scattering 

The slow transformation of the Ni-rich@Pt-rich core@shell structure observed at t = 20 min in 

a hollow PtNi/C nanostructure at t = 60 min (see Figure 25) was supported by in operando 

SAXS. The variations of the SLD of the core and the shell are presented in Figure 28. For the 

calculation, the structure of the core@shell Ni-rich@Pt-rich (that ultimately becomes a hollow 

PtNi NP) was ascribed to a monodisperse spherical core@shell structure (the core being, at t = 

20 min, the Ni-rich core and at t = 60 min, the internal cavity observed on Figure 25). All the 

technical details concerning the fitting and the analysis are provided in Section II. 9. 5. The 

SLDshell/SLDcore ratio (i.e. the ratio of the electron density between the shell and the core) was 

plotted in Figure 28. The SLDshell/SLDcore ratio increased during the first 20 min of the synthesis, 

due to the enrichment of the shell in platinum by galvanic replacement (i.e. a heavier element 

with an increased atomic number), before flattening out (at 3.2 ± 0.5) for 20 min < t ≤ 35 min 

and steeply increase for t ≥ 35 min.  

 

 

Figure 28. Variation of the parameters extracted from the fitting of the SAXS, i.e. the scattering light 

density of the core (SLDcore), of the shell (SLDshell) and their ratio. The solid line is a fifth order polyno-

mial fit of the SLDshell/SLDcore ratio. 

 

This abrupt variation signs the diffusion of the Ni atoms contained in the core of the NPs toward 

the surface of the Pt-rich shell, due to their oxophilicity, at a rate faster than the Pt atoms diffu-

sion into the NPs. According to the Kirkendall effect 219–221, vacancies are formed into NPs to 

compensate the Ni atoms departure and condensate into voids yielding ultimately to hollow 

PtNi/C NPs. At t = 60 min, the core of the NPs is partly depleted in nickel, thus explaining the 

high values of the SLDshell/SLDcore ratio (> 5 – Figure 28). Note that the final structure of the 
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NPs is porous and that the formation of those porosities could either have occurred (i) during 

the galvanic replacement, i.e. a heterogenous nucleation of the Pt-rich shell resulting in a non-

full coverage of the Ni-core or (ii) during the acid leaching of the electrocatalyst in 1 M H2SO4 

during t = 22 h. Therefore, the diminution of SLDcore at t > 35 min can also be ascribed to 

leaching of the Ni-rich core.  

 

III. 2. 4. Electrochemical characterization of the different nanostructures.  

Carbon supported Ni-rich@Pt-rich shell 72,75,317, solid and hollow PtNi NPs 83–85,223 are ex-

tremely interesting for the oxygen reduction reaction (ORR). The surface reactivity and the 

ORR activity of the different synthesis intermediates was investigated in acidic (0.1 M HClO4) 

and alkaline (0.1 M NaOH) media and benchmarked to the performances of a commercial Pt/C 

electrocatalyst. The cyclic voltammograms (CVs) in Ar-saturated electrolyte (Figure 29A and 

Figure 29B), the linear sweep voltammetries (LSVs) in O2-saturated electrolyte (Figure 29C 

and Figure 29D) and the specific activity (i.e. the activity normalized by the active surface of 

platinum) measured at E = 0.95 V vs. RHE (in acidic medium, see Figure 29E) and E = 0.90 

V vs. RHE (in alkaline medium, see Figure 29F) are reported in Figure 29. The CVs (Figure 

29A and Figure 29B) feature the underpotential deposition of protons (in acid) and water (in 

alkaline) for 0.05 < E < 0.40 V vs. RHE and the surface oxide formation and reduction for E < 

0.60 V vs. RHE. The difference in reactivity toward the water and the protons provides evi-

dences that the surface layers are Ni-rich at t = 2 min and Pt-rich at t ≥ 7 min in agreement with 

in operando WAXS and STEM-EDX (see Figure 25).  

 

The enrichment of the surface and near surface layers in Pt translates into an increased specific 

activity for the ORR in alkaline and acidic media, as evidenced by the positive shift of the half 

wave potential and of the ORR onset (Figure 29C – Figure 29F): the Ni@NixByOz core@shell 

NPs (t = 2 min) present the worst specific activity in alkaline and acidic media, due to their Ni-

rich surface. At t ≥ 7 min, the electrocatalysts present a 2-fold enhancement in specific activity 

compared to Pt/C. Note that the electrocatalysts discussed in Figure 29F were not acid leached 

to maintain a similar structure to the ones observed by STEM-EDX (Figure 25), inducing lower 

performances for the ORR 231.  
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Figure 29. Electrochemical characterization of the different nanostructures formed during the synthesis 

of porous hollow PtNi/C NPs. (A, B) Cyclic voltammograms (in Ar-saturated 0.1 M HClO4 or 0.1 M 

NaOH at v = 0.020 V s−1 without rotation of the electrode), (C, D) positive-going linear sweep voltam-

mograms (in O2-saturated 0.1 M HClO4 or 0.1 M NaOH at a potential sweep rate v = 0.005 V s−1 and a 

rotation rate ω = 1600 rpm), and (E, F) Ohmic drop and mass-transport corrected ORR specific activity. 

All the experiments were performed at T = 298 ± 1 K. The dashed line corresponds to the value of the 

specific activity for the ORR of a reference 20 wt. % Pt/C measured in the same experimental conditions. 
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The specific activity of the synthesis intermediates in alkaline media was always lower than the 

performances of the commercial Pt/C. The latter could be improved if the electrocatalyst is first 

characterized in acidic medium before being characterized in alkaline medium (as evidenced 

on the intermediate structure at t = 60 min, see Figure 29E and Figure 29F). This phenomenon 

is rationalized by the formation of a Pt-skeleton nanostructure upon exposure of the surface to 

an acidic electrolyte 133 (i.e. an electrolyte that rapidly etches the surface nickel), resulting in an 

increased surface area and the removal of the Ni atoms and of the NixByOz residual species that 

were formed according to Equation 40 and poisoned the electrocatalytic sites.  

 

III. 3. Conclusion 

In summary, this chapter introduced a methodology based on advanced electrons, X-ray and 

electrochemistry techniques (STEM-EDX, SAXS, WAXS, XPS, HR-TEM, etc.) capable of 

identifying the formation and growth mechanisms of various nanomaterials synthesized in 

aqueous electrolyte, as the porous hollow PtNi/C NPs. The different steps may be summarized 

as follows (see Figure 30 for a graphical representation): 

(i) at t ≤ 1 min, the Ni2+ ions are preferentially reduced into solid Ni/C NPs (d ~ 3 nm) 

by NaBH4; 

(ii) Ni-rich@NixByOz core@shell NPs then form (1 min < t < 2 min after the addition 

of the first drop of the NaBH4 solution); 

(iii) the NixByOz shell acts as a sacrificial template for the deposition of Pt atoms by 

galvanic replacement (Ni atoms are oxidized and Pt2+ ions are reduced), resulting in 

an increase of the Pt at. % from 6 at. % to 31 at. % for 2 min < t < 4 min; 

(iv) from 4 min < t < 20 min, the Ni cores are corroded or alloyed with Pt. At t ~ 10 min, 

the PDF signal (Figure 26) obtained could be fitted assuming a face centred cubic 

PtNi structure. The lattice parameter relaxes;  

(v) finally, for 20 min < t < 60 min, the Ni-rich@Pt-rich core@shell NPs are trans-

formed into hollow PtNi/C NPs via the nanoscale Kirkendall, as evidenced by the 

fast increase of the SLDshell/SLDcore ratio at t ≥ 35 min and the diminution of the 

nickel content.  

These changes in morphology were correlated to the changes in ORR specific activity, i.e. the 

Ni@NixByOz/C core@shell NPs (with a Ni-rich surface and near surface layers) show a depre-

ciated ORR activity compared to commercial Pt/C, by opposition to the Ni-rich@Pt-rich/C 

core@shell NPs and the hollow PtNi/C NPs.  
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Figure 30. Schematic representation of the different steps of the synthesis of the porous hollow PtNi/C 

NPs, from the formation of the Ni NPs at t = 1 min (t being the time after the addition of the first drop 

of NaBH4) to the ‘porous hollow’ PtNi/C nanostructure obtained after acid leaching.



 

 

 

Chapter IV. Design of porous hollow PtM 

nanoparticles for the ORR 

 

All the results discussed in this chapter have been (or will be) published in: 

(1) Asset, T.; Chattot, R.; Nelayah, J.; Job, N.; Dubau, L. and Maillard, F. Structure-Activity 

Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles. 

ChemElectroChem 2016, 3 (10), 1591–1600. 

 

In this article, the contribution of the author of this thesis was (i) the synthesis of the porous hollow 

PtNi/C NPs at different temperature, (ii) the analysis of the XRD patterns, (iii) the acquisition and 
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IV. 1. Introduction to the structural properties of the porous hollow PtNi/C 

In Section I. 6. 4. and I. 7., the porous hollow PtNi/C were introduced and their activity en-

hancement for the ORR (i.e. 9-fold and 6-fold vs. Pt/C in SA0.95 and MA0.95, respectively) was 

ascribed to several parameters, i.e. (i) the Ni-induced contraction of the lattice parameter 83,84, 

(ii) the presence of structural defects 234 and (iii) the open-porous architecture 84. The present 

chapter aims at going further in the understanding of the crucial role of Ni and and of structural 

defects on the electrochemical reactivity of this class of electrocatalysts.   

 

The porous nature of the hollow PtNi/C NPs was established by Dubau et al. 84. Insights were 

provided by HR-TEM and electrochemical measurements coupled to theoretical calculations of 

the Pt specific surface area 318,319 : these studies showed that nanopores exist in the PtNi shell 

thereby providing a Pt specific surface area of ca. 40 – 50 m2 g-1
Pt despite the large dext values 

of the hollow PtNi/C NPs 84. Indeed, the Pt specific surface should only be of ca. 25 – 35 m2 g-

1 if the external surface only was active 84 (for comparison purposes, the Pt specific surface of 

Pt/C NPs with d ~ 2 – 3 nm is ca. 80 – 100 m2
 g

-1
Pt).  

 

In addition to their porous architecture, the porous hollow PtNi/C NPs also present a highly 

defective surface, as firstly evidenced by Dubau et al. 234 by HR-TEM and COads electrooxida-

tion (see Figure 31). The HR-TEM evidenced that (i) the porous hollow PtNi/C NPs are com-

posed of several PtNi nanocrystallites interconnected by grain boundaries (GBs) (highlighted 

by an orange pencil in HR-TEM images displayed in Figure 31C) and (ii) the interplanar dis-

tance between the Pt atoms columns feature extended and contracted domains 234. Structural 

disorder largely impacts the surface reactivity of the NPs (e.g. for the COads electrooxidation, 

see Section II. 3. 4.). COads stripping voltammograms measured on porous hollow PtNi/C NPs 

(see Figure 31D) feature two electrooxidation peaks: a ‘low-potential’ peak located at E ~ 0.70 

V vs. RHE and a ‘high-potential’ peak at E ~ 0.78 V vs. RHE. The ‘pre-peak’ is related to COads 

electroxidation on catalytic sites neighbouring GBs and the main ‘peak’ to COads electroxidation 

in regions that are far from GBs 149,234,264. This assignment is further discussed in the Section 

IV. 2. According to Dubau et al. 234, an increased density of structural defects results in en-

hanced kinetics for the ORR.  
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Figure 31. Morphological properties of porous hollow PtNi/C nanoparticles and its consequences in 

terms of surface reactivity. (A-C) Conventional and high-resolution transmission electron microscopy 

micrographs of the porous hollow PtNi NPs supported on XC72 (initial Pt2:Ni2+ atomic ratio of 1:3). (D) 

COads stripping voltammograms measured on the porous hollow PtNi/C electrocatalysts. The ‘pre-peak’ 

is believed to be due to COads electroxidation at the structural defects (e.g. grain boundaries, highlighted 

in orange for the sake of clarity) and the main ‘peak’ assimilated to electrooxidation of COads that cannot 

diffuse to the structural defects.  

 

In this chapter, we present our recent progresses on the synthesis and the characterization of 

porous hollow Pt-based NPs supported on carbon and provide rationale for their electrocatalytic 

activity enhancement. This chapter discusses:  

(i) the significance of the COads stripping peak multiplicity observed for the porous hol-

low PtNi/C NPs (Section IV. 2.); 

(ii) the determination of the surface density of structural defects and the nickel atomic 

content of the porous hollow PtNi/C NPs synthesized at different temperatures using 

a combination of COads stripping and X-ray based methods (Section IV. 3.) com-

pleted by ab initio calculations; 

(iii) the effect of the nature of sacrificial metal (i.e. Cu, Co, Ni, Fe and Zn) on the mor-

phology and electrocatalytic activity of the ORR of the porous hollow PtNi NPs (Sec-

tion IV. 4); 
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(iv) the effect of physical and chemical properties of the support, determined by XPS, 

Raman, SEM and N2 adsorption on the morphology and electrocatalytic activity for 

the ORR of the porous hollow PtNi NPs (Section IV. 5.);  

(v) A general conclusion onto the parameters that control the final morphology of the 

porous hollow PtNi/C NPs and a comparison of the activity for the ORR of the dif-

ferent structures synthesized by the ‘one-pot’ method (Section IV. 6.).  

 

IV. 2. The COads electrooxidation peak-multiplicity  

In Section II. 3. 4., we briefly presented the COads stripping mechanism (Equation 21 – 23) on 

extended surfaces and polycrystalline NPs. As observed on Figure 31D and Figure 32A, the 

COads stripping of porous hollow PtNi/C NPs features two main peaks. This peak multiplicity 

was observed in the literature 149 and explained by the presence of (i) polycrystalline nanostruc-

tures (e.g. Pt NPs agglomerates 149) and (ii) monocrystalline structures (e.g. monocrystalline 

NPs).  

 

 

Figure 32. Electrochemical and morphological properties of the electrocatalysts discussed in this chap-

ter. (A) COads stripping (v = 0.020 V s-1, electrolyte = Ar-saturated 0.1 M HClO4). (B) Linear sweep 

voltammetry in Tafel representation, corrected for Ohmic drop and diffusion (v = 0.005 V s-1, electrolyte 

= O2-saturated 0.1 M HClO4, ω = 1600 rpm). (C – E) TEM micrographs of (C) the commercial Pt/C, 

(D) the PtNi/C ‘sea-sponges’ and (E) the porous hollow PtNi/C NPs.  
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To better explain the CO stripping peak-multiplicity, three materials of interest has been chosen, 

i.e. (i) a commercial Pt/C electrocatalyst, composed of monocrystalline NPs (and thus with only 

one COads stripping peak at E ~ 0.78 V vs. RHE), (ii) the PtNi/C ‘sea-sponges’, i.e. a polycrys-

talline and highly defective nanostructure, without any monocrystalline NPs and thus only a 

‘low-potential’ peak for the COads electrooxidation 247 (see Figure 32A) and (iii) the porous 

hollow PtNi/C.  

 

Table 1. External diameter (dext) measured by TEM and crystallite diameter measured by X-Ray Dif-

fraction for the electrocatalysts discussed in this chapter.   

 Pt/C 
PtNi/C ‘sea-

sponges’ 

porous hollow 

PtNi/C NPs 

dext / nm 2.0 ± 0.5 61 ± 21 11.4 ± 1.9 

dXRD / nm 1.3 ± 0.2 4.5 ± 0.9 2.4 ± 0.2 

 

The physical and electrochemical properties of the porous hollow PtNi/C NPs and of the mate-

rials discussed in Figure 33A (PtNi/C ‘sea-sponges’ 247 and Pt/C) are summarized in Figure 

32 and Table 1. The PtNi/C ‘sea-sponges’ are Pt-based NPs with dext = 61 ± 21 nm, a Ni-content 

of ca. 15 at. %, an open-porous architecture and a 10-fold increase in SA for the ORR at E = 

0.95 V vs. RHE vs. commercial Pt/C (see Figure 32 and Ref. 247). All the PtNi structures present 

a pure Pt surface: the electrocatalysts were acid leached during their synthesis (t = 22 h in a 1 

M H2SO4 solution 84,232,247). The porous hollow PtNi/C NPs (Figure 32C) and the PtNi/C ‘sea-

sponges’ (Figure 32D) present a notable difference between their external diameter (dext) and 

their crystallite size (dXRD) (see Table 1). This is relevant of their polycrystalline structure, i.e. 

each nanostructure contains several nanocrystallites (NCs) interconnected by grain boundaries 

(GBs). This explains the presence of, (i) for the PtNi/C ‘sea-sponges’, a main and single peak 

at E < 0.7 V vs. RHE (i.e. the ‘low-potential’ peak) in COads stripping voltammograms and (ii) 

for the PtNi/C porous hollow NPs, a ‘low-potential’ peak at E ~ 0.7 V vs. RHE. This however 

does not explain the ‘high-potential’ peak observed at E ~ 0.78 V vs. RHE as the porous hollow 

PtNi/C NPs are, in theory, composed of polycrystalline NPs 84,232.  

 

To assess the origin of the ‘high-potential’ peak observed on porous hollow PtNi/C NPs, dif-

ferent COads coverages were achieved and the sub monolayers were stripped similarly to what 

is done for a full COads monolayer (Figure 33). To this aim, a volume (0.1 mL < V < 2 mL) of 

CO-saturated 0.1 M HClO4 solution was introduced in the electrolyte, before quickly removing 
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the CO molecules present in solution by Ar bubbling. If the two peaks were induced by two 

different structures (e.g. independent polycrystalline and monocrystalline NPs), the charge un-

der the COads stripping peaks should grow simultaneously as a function of the COads coverage 

276. This is the case in Figure 33A where a mixture of PtNi/C ‘sea-sponges’ (one CO stripping 

contribution at low potential) NPs and commercial Pt/C NPs (one CO stripping contribution at 

high potential), (see Figure 33 and Figure 32A) was used. The two peaks are clearly visible 

for COads coverage (XCO) ≥ 19 %. An interesting feature from their growth is that, if the ‘low-

potential’ peak (EU1) (ascribed to the ‘sea-sponges’) potential remain constant, the ‘high-poten-

tial’ (EU2) peak potential increases, from EU2 = 0.74 V vs. RHE to EU2 = 0.79 V vs. RHE. This 

is due to an increased coverage in COads which decreases the density of adsorption sites for the 

OHads species on the monocrystalline NPs.  COads electrooxidation (Equation 23) consequently 

proceeds at higher potentials.  

 

 

Figure 33. Changes in the COads stripping voltammograms while modifying the COads initial coverage 

(XCO) of (A) an electrocatalyst composed of 67 wt. % of PtNi/C ‘sea-sponges’ and 33 wt. % of commer-

cial Pt/C and (B) a porous hollow PtNi/C electrocatalyst. The CO was adsorbed by injecting a deter-

mined volume of a CO-saturated 0.1 M HClO4 solution. The remaining CO was removed after t = 1 min 

of adsorption, by bubbling Ar in the electrolyte (other conditions: v = 0.020 V s-1, electrolyte = Ar-

saturated 0.1 M HClO4). All the currents were normalized to the ECSA determined for the electrocata-

lyst with XCO = 100 %.  

 

Urchaga et al. 320 reported a 3-peak profile for COads stripping voltammograms measured on 

different nanostructures (cubic, octahedral, cuboctahedra NPs) in 0.5 M H2SO4. They ascribed 

the lowest potential peak (LPP), the medium potential peak (MPP) and the high potential peak 

(HPP) to COads electrooxidation on:  
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(i) well-ordered surfaces (100) and (111) containing surface defects;  

(ii) (111) facets and, at higher potential, low coordination sites; 

(iii) (100) facets.  

 

This is well in line with results reported in Figure 33A: (i) the LPP observed at EU1 = 0.69 – 

0.71 V vs. RHE, corresponds to the COads electrooxidation on highly disordered facets or NPs 

(‘sea-sponges’) while (ii) the HPP observed at EU2 = 0.74 – 0.79 V vs. RHE corresponds to the 

COads electrooxidation on commercial Pt/C. Note however that the 3rd COads electrooxidation 

peak (i.e. (100) facets) was not observed by Urchaga et al. 320 on small spherical Pt/C NPs.  

 

The COads undercoverage observed for the porous hollow NPs consists of (i) the ‘low-potential’ 

peak appearance and growth for XCO < 71 % and (ii) the appearance and potential shift (from E 

= 0.75 V vs. RHE to E = 0.78 V vs. RHE) of the ‘high-potential’ peak for XCO ≥ 71 % (see 

Figure 33B). COads adsorbs sequentially on the adsorption sites responsible for the ‘low-poten-

tial’ and the ‘high-potential’ COads stripping peaks. It means that, by opposition to an ‘agglom-

erated + non-agglomerated’ structure such as presented in Figure 33A, the COads stripping sites 

are connected (i.e. that they belong to the same NPs). According to Maillard et al. 276, the COads 

binds first on the low coordination sites (i.e. the sites that strongly bind COads) before the me-

dium / high coordination sites. Thus, we inferred from those results that, on porous hollow 

PtNi/C NPs, (i) the CO adsorbs first on sites with a medium coordination number, before (ii) 

binding to sites that weakly bind COads, i.e. the high coordination sites (e.g. concavities, etc.) 

These sites present a depreciated activity for the COads electrooxidation since they bind OHads 

weakly 156, the reaction being thus limited by the OH adsorption, i.e. Equation 21. To determine 

the nature of the different CO adsorption sites, COads was oxidized at different potentials (0.550 

V ≤ Edesor ≤ 0.740 V vs. RHE) during t = 60 s before the COads stripping (see Figure 34A), to 

obtain insights on the different peaks of the COads stripping. The COads oxidation can be divided 

into three phases:  

 

(i) for Edesor = 0.550 and 0.575 V vs. RHE, the decrease of the COads stripping lowest 

potential peak (ED1, see Figure 34B). This suggests that the low potential peak can 

be divided into two peaks, with a peak potential of ED1 = 0.680 V vs. RHE and ED2 

= 0.700 V vs. RHE; 
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(ii) for 0.600 V ≤ Edesor < 0.640 V vs. RHE, the disappearance of a COads stripping shoul-

der in the ED2 potential range; 

(iii) for Edesor ≥ 0.640 V vs. RHE the decrease and disappearance of the high potential 

peak (ED3) of the COads stripping.  

 

If considering the Hupd behaviour (see Figure 34C and Figure 34D), these phases correspond 

to (i) the decrease of the ‘low-potential’ (i.e. 0.05 V < E < 0.26 V vs. RHE) Hupd, (ii) the decrease 

of the ‘high-potential’ (i.e. 0.26 V < E < 0.40 V vs. RHE) Hupd and (iii) a global diminution and 

disappearance of the Hupd, the ‘high potential’ Hupd disappearing at E = 0.71 V vs. RHE. Ac-

cording to the works of Snyder et al. 81 and Chattot et al. 247, an enhanced Hupd in the 0.26 V < 

E < 0.40 V vs. RHE potential range is relevant for electrocatalysts presenting an important 

density of structural defects. Therefore, the peak ED2 (see Figure 34B) is representative of the 

population of structural defects (i.e. grain boundaries, etc.) that have an enhanced reactivity for 

COads electrooxidation while the peak ED1 represents the population of active sites that are con-

nected to those defects, i.e. where the COads can diffuse from the active site to the structural 

defects to be oxidized into CO2 (see Equation 22), according to the mechanism proposed by 

Lebedeva et al. 144,146,147 on extended surfaces.  
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Figure 34. Changes in the COads stripping patterns after partial COads electrooxidation of a fully covered 

surface. The electrode potential was stepped from E = 0.1 V vs. RHE to 0.550 V ≤ Edesor vs. RHE ≤ 0.740 

V during t = 60 s, then stepped back to E = 0.1 V vs. RHE and a COads stripping voltammogram was 

then immediately recorded. (A) Schematic representation of the partial COads electrooxidation protocol.  

(B) COads stripping of the porous hollow PtNi/C (the dotted line corresponds to COads stripping recorded 

on a fully covered surface). (C) Focus on the Hupd region during the first potential sweep of the COads 

stripping presented in (B) (the dotted lines correspond to a non-covered surface and a fully covered 

surface). (D) Hupd of a non-covered porous hollow PtNi/C electrocatalyst minus the Hupd presented in 

(C).  

 

The position of ED3 is independent on the potential chosen for the partial COads electrooxidation 

(see Figure 34B) demonstrating that COads cannot diffuse (or its diffusion rate is too low, i.e. 

the diffusion is impossible between the ca. 30 s between the end of the potential step at 0.550 

V ≤ Edesor vs. RHE ≤ 0.740 V and the remaining COads electrooxidation during the COads strip-

ping). To gain further insights on the COads diffusion from the high coordination sites and its 

subsequent oxidation at the structural defects, the COads monolayer was partially stripped during 

t = 60 s at E = 0.625 V vs. RHE (to remove ED1 and ED2) and the COads stripping was performed 

after 0 min ≤ t ≤ 90 min. The results are presented in Figure 35.  

 



Chapter IV. Design of porous hollow PtM nanoparticles for the ORR 

103 
 

 

Figure 35. Changes in the COads stripping patterns after partial COads electrooxidation of a fully covered 

surface. The electrode potential was stepped from E = 0.1 V vs. RHE to Edesor = 0.625 V vs. RHE during 

t = 60 s, then stepped back to E = 0.1 V vs. RHE and a COads stripping voltammogram was then recorded 

after 0 min ≤ t ≤ 90 min.  

 

ED3 shifts from ED3 = 0.767 V vs. RHE for t = 0 min after the partial COads electrooxidation to 

ED3 = 0.727 V vs. RHE after t = 90 min (for higher times, ED3 stabilize between 0.730 and 0.740 

V vs. RHE). This provides two essential informations about the COads stripping on porous hol-

low PtNi/C NPs:  

(i) the CO adsorbed onto the high coordination sites can partly diffuse to sites with a 

stronger COads binding. However, this diffusion is noticeably slow. Considering a 

crystallite size of ca. 2.5 nm (see Table 1) and that only GBs are structural defects 

favourable for a COads electrooxidation at low potential, the COads covered ca. 1.25 

nm in ca. 90 min, i.e. a diffusion rate of ~ 2 × 10-18
 cm2 s-1, i.e. 2 orders of magnitude 

lower than determined by Maillard et al. 265 on 2 nm Pt NPs (~10-16
 cm2 s-1). The 

surface diffusion of COads thus appears to be extremely difficult on highly defective 

NPs surfaces for the CO adsorbed onto the high coordination sites; 

(ii) ED3 does not diminish to ED2 or ED1 potentials, i.e. the COads adsorbed onto the high 

coordination sites does not fully diffuse to the structural defects or their neighbour-

ing sites. Therefore, some COads cannot diffuse from their initial adsorption site.  

 

Figure 36 presents the effect of the scan rate (v) on the COads stripping. The shape of the ‘low-

potential’ peak changes dramatically with the potential sweep rate. Indeed, ED2 (see Figure 

36B) shifts from potentials close to ED1 potential range at v = 0.002 V s-1
 to higher potentials) 
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for v > 0.002 V s-1
; the potential difference increasing with the increase of the scan rate. On 

stepped single crystals, Lebedeva et al. 144 observed that the CO adsorbed at the (100) or (110) 

steps had to be first converted into ‘terrace’ COads before diffusing to the steps to be oxidized. 

A similar phenomenon is observed in Figure 36: the COads on the structural defects have first 

to diffuse out of the latter before being electrooxidized, resulting in an electrooxidation at the 

same potential at v ≤ 0.005 V s-1, but at higher potentials at v > 0.005 V s-1. The charge under 

the ‘high-potential’ peak (ED3) remains roughly constant (25 % to 40 % of the charge is under 

ED3, without dependence to the scan rate) with the scan rate (see Figure 36). According to 

Figure 35, the position of the ED3 peak remain almost identical from t = 0 min to t = 5 min (ED3 

= 0.767 V vs. RHE and ED3 = 0.762 V vs. RHE, respectively) and ED3 never merge with ED1 

and ED2. This explains why no dramatic changes of the ED3 charge and position are observed.  

 

 

Figure 36. (A) Normalised COads stripping patterns voltammograms for hollow PtNi/C nanoparticles at 

different potential sweep rates, i.e. 0.002 V s-1 < v < 0.200 V s-1. (B) Focus on the COads stripping ‘low-

potential’ peak – the peaks were aligned in current and potential. All the currents were normalized by 

the charge under the peaks (QCO) – other conditions: electrolyte = Ar-saturated 0.1 M HClO4. 

 

Le Bacq et al. 157 showed that disordered Pt-based structures, such as the porous hollow PtNi/C 

NPs, are composed of a combination of low and high coordinated active sites (and contracted 

and relaxed lattices 157,234). Calle-Vallejo et al. 273 recently evidenced that the optimal general-

ized coordination number (𝐶𝑁̅̅ ̅̅  155,156) was 5.4 for the COads electrooxidation on Pt surfaces. 

Catalytic sites with a higher coordination number bind OHads species too weakly; thereby, the 
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COads electrooxidation kinetics becomes limited by OHads adsorption (Equation 21) while CO 

molecules are bound too strongly on catalytic sites with a low coordination number, thus limit-

ing the COads electrooxidation (Equation 22). Therefore, as observed by Lebedeva et al. 

144,146,147, the most active sites for the COads electroxidation on monocrystalline structures 

should be the steps with 𝐶𝑁̅̅ ̅̅  ~ 5 – 6 (as in the Pt(221) and Pt(331) surfaces 152,153,273), where the 

OH adsorbs at the top before oxidizing the COads. Here, we extrapolate this mechanism to highly 

defective polycrystalline NPs (see Figure 37). The ‘low-potential’ peak of the COads stripping 

was ascribed to the COads electrooxidation on the beneficial surface defects with a 𝐶𝑁̅̅ ̅̅  ~ 5 – 6, 

the COads being originally adsorbed on these sites (ED2, see Figure 34) or diffusing from the 

neighbouring sites (ED1, see Figure 34). The ‘high-potential’ peak (ED3) was ascribed to COads 

electroxidation ‘trapped’ in sites that presented a too high coordination number (e.g. concave 

sites, as likely observed on the inner surface of the porous hollow PtNi/C, see Figure 37) no 

sign of their presence (i.e. COads adsorbing at high potentials before adsorbing at low potentials, 

etc.) has been observed throughout this section, thus inducing that (i) their contribution to the 

COads stripping is negligible or that (ii) they also contain structural defects beneficial for the 

COads stripping and, as such, contribute to the ‘low-potential’ peak.  

 

 

Figure 37. Description of the different sites observed for COads stripping on PtNi/C porous hollow NPs 

and their associated COads stripping peak.  
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IV. 3. The porous hollow PtNi/C NPs, a highly defective structure 

IV. 3. 1. The effect of the temperature onto the PtNi/C NPs nanostructure 

In Section IV. 1., the beneficial role of the structural defects for the ORR was introduced. To 

control their density, porous hollow PtNi/C NPs were synthesized at different temperatures, i.e. 

T = 278, 293, 313, 333 and 353 K (see Figure 38). The porous hollow PtNi/C electrocatalysts 

synthesized at different temperature feature a similar Ni content (Figure 38C), similar external 

and inner diameters (Figure 38D) and are composed of 1.5 – 3.5 nm crystallites agglomerated 

to form the shell of the hollow structure (Figure 38E, Figure 38F and Table 2).  

 

 

Figure 38. Electrochemical and physico-chemical properties of the porous hollow PtNi/C electrocata-

lysts synthesized at T = 278, 293, 313, 333 and 353 K. (A) COads stripping measurements on the elec-

trocatalysts in Ar-saturated 0.1 M HClO4 at v = 0.02 V s-1. (B) Tafel plot of Ohmic drop and mass-

transport corrected linear sweep voltammograms in O2-saturated 0.1 M HClO4
 at v = 0.005 V s-1 and ω 

= 1600 rpm (T = 298 K, Pt loading = 20 µg cm-2). (C) Nickel atomic content determined by atomic 

adsorption spectroscopy (AAS). (D) External (dext) and inner (din) diameter of the porous hollow PtNi/C 

NPs synthesized at different temperatures – due to its dual morphology, i.e. agglomerates + isolated 

NPs, only the diameter of the isolated NPs was given for the electrocatalyst synthesized at T = 353 K. 

(E) HR-TEM micrograph of the electrocatalyst synthesized at T = 278 K. The grain boundaries are 

highlighted in orange. (F) HR-TEM micrograph of the electrocatalyst synthesized at T = 333 K. The 

grain boundaries are highlighted in orange. 
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Table 2. Crystallite size (dXRD) for the electrocatalysts synthesized at different temperatures.  

 T = 278 K T = 293 K T = 313 K T = 333 K T = 353 K 

dXRD / nm 1.5 ± 0.1 1.8 ± 0.1 3.2 ± 0.1 3.2 ± 0.1 3.5 ± 0.1 

 

The effect of the temperature onto the morphology of the hollow PtNi/C NPs is subtle. It is 

well-established that BH4
- ions homogeneously decompose into BO2 species in water (see Sec-

tion III. 3. and Ref. 321,322). Hence, aged NaBH4 solutions or solutions prepared at pH values < 

9 are likely to feature depreciated reducing power. The same holds true for the temperature of 

the aqueous solvent 321. Since the hydrolysis rate of the BH4
- ions is slow at low temperature 

(their half-life time is high), the nucleation of Ni/C NPs on the carbon support is favoured, 

thereby producing smaller NPs with thinner PtNi shells and, therefore, smaller PtNi crystallites 

(see Figure 38 and Table 2). Conversely, BH4
- ions decompose rapidly at higher temperatures, 

resulting in limited number of nuclei on the carbon support, thicker PtNi shells and collapsed 

and/or aggregated PtNi NPs.  

 

The SA (for the ORR) measured at E = 0.95 V vs. RHE on the porous hollow PtNi/C NPs 

synthesized at T = 333 K was 7-fold higher than that of a commercial Pt/C and 2.5-fold higher 

than that of a solid PtNi/C electrocatalyst with identical crystallite size, Ni content and lattice 

parameter (see Figure 38B and Table 3). The enhancement of the ORR kinetics was 1.7-fold 

on the best (electrocatalyst synthesized at T = 333 K) compared to the less-performing porous 

hollow NPs (electrocatalyst synthesized at T = 278 K). Interestingly, this higher ORR activity 

is correlated to a predominance of the COads stripping ‘low-potential’ peak, i.e. a higher ratio 

of the COads stripping ‘low-potential’ charge (introduced as Qpp,CO in Section II. 3. 4.) to the 

total charge of the COads stripping (QT,CO) (see Figure 38A). Some physico-chemical properties 

of a PtNi/C electrocatalyst, such as the density of structural defects, the Ni content or the Ni-

induced strain, can be determined from the COads stripping voltammograms. This is especially 

true for electrocatalysts with a low Ni content, similar crystallite size and Pt-enriched surface.  
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Table 3. Activity for the oxygen reduction reaction – corrected from the Ohmic losses and the diffusion 

in solution – at E = 0.95 V and E = 0.90 vs. RHE for the electrocatalysts synthesized at T = 278, 293, 

313, 333 and 353 K and the Pt/C and PtNi/C references. The activities were either given with respect to 

the electrochemical surface area of the electrocatalysts (specific activity, SA) or to the mass of platinum 

in the electrocatalyst (mass activity, MA). The Pt specific surface area of the electrocatalysts (SPt,CO in 

m2 gPt
-1) is also provided.  

 
SA0.95 

/ µA cmPt
-2 

MA0.95 

/ A gPt
-1 

SA0.90 

/ µA cmPt
-2 

MA0.90 

/ A gPt
-1 

SPt,CO 

/ m2 gPt
-1 

Pt/C 26 ± 3 21 ± 2 209 ± 32 166 ± 30 83 ± 7 

PtNi/C 70 ± 20 26 ± 5 575 ± 157 215 ± 41 42 ± 6 

T = 278 K 108 ± 18 60 ± 11 1000 ± 111 580 ± 72 56 ± 8 

T = 293 K 119 ± 31 62 ± 10 1328 ± 146 699 ± 110 51 ± 7 

T = 313 K 140 ± 29 53 ± 6 1247 ± 139 496 ± 40 42 ± 5 

T = 333 K 179 ± 41 77 ± 12 1677 ± 204 695 ± 89 41 ± 3 

T = 353 K 170 ± 48 62 ± 13 1498 ± 148 550 ± 50 37 ± 2 

 

According to our findings in Section IV. 2., the ‘accessibility’ of the structural defects on the 

electrocatalyst surface is proportional to the ratio of the electrical charge under the COads strip-

ping ‘low-potential’ peak (Qpp,CO) to the total charge of the COads stripping (QT,CO), as the ‘low-

potential’ peak is relevant for the COads electrooxidation from the structural defects and their 

neighbouring sites. The electrocatalysts with the highest accessibility to the structural defects 

also present the highest surface density of structural defects, as evidenced by a visible ED2 peak 

(i.e. the peak accounting for the oxidation of COads adsorbed on the structural defects, see Sec-

tion IV. 3.) for the electrocatalysts synthesized at T ≥ 333 K. A straightforward relationship 

exists between the density of the structural defects (Qpp,CO / QT,CO) and the specific activity for 

the ORR of porous hollow PtNi/C NPs (see Figure 39A). The presence of a non-noble metal 

(PtM, M = Fe, Ni, Co, etc.) in the Pt NCs also influences the COads stripping measurements. 

Recent works from van der Vliet et al. 109 and Bandarenka et al. 271 have shown that Pt3Ni skin 

surfaces and Cu/Pt near surface alloys present a lower overpotential for the COads oxidation 

than pure Pt surfaces. This trend is widely observed in the literature (PdM@PtPd/C core-shell 

323, PtCo and PtNi ribbons 324 or PtNi hollow NPs 84). 
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Figure 39. Variation of the specific activity for the ORR measured at E = 0.95 V vs. RHE on the porous 

hollow PtNi/C electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K vs. (A) the ratio of the 

electrical charge under the ‘low-potential’ peak (Qpp,CO) to the total COads stripping charge (QT,CO), (B) 

the potential of the ‘high-potential’ peak of the COads
 stripping (Ep,CO), (C) the first moment of the po-

tential weight of the COads stripping (µ1
CO).  

 

Figure 40A and Figure 40B display the changes of the position of the ‘high-potential’ peak of 

the COads stripping (Ep, CO) vs. the Ni atomic content and vs. the PtNi lattice parameter, respec-

tively. The variations of the ‘low-potential’ of the COads stripping (Epp,CO) show no direct rela-

tionship with the Ni content. In contrast, a linear relationship is observed between Ep,CO and the 

Ni content (Figure 40A). This relationship is even more linear between Ep,CO and the lattice 

parameter of the electrocatalyst (Figure 40B). In conclusion, Ep,CO appears to be a relevant 

marker to approximate the Ni content and the Ni-induced contraction of the lattice parameter 

for porous hollow PtNi/C electrocatalysts (and, therefore, the modification of the Pt 5d-band 

centre by the strain and ligand effects 105–108). 
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Figure 40. Variation of (A) the potential of the high-potential peak of the COads stripping voltammogram 

(Ep,CO) on the porous hollow PtNi/C electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K 

vs. the nickel atomic content determined by AAS and (B) potential of the ‘high-potential’ peak of the 

COads stripping (Ep,CO) vs. the lattice parameter of the electrocatalysts discussed in this work.  

 

The specific activity for the ORR of porous hollow PtNi/C NPs is thus controlled by the Ni-

induced contraction of the lattice parameter and the density of structural defects. Ep,CO and 

Qpp,CO / QT,CO consider these two aspects separately (see Figure 39A and Figure 39B). Thus, it 

is essential to use a parameter which describes their synergetic effect on the specific activity for 

the ORR (Figure 39C). The first moment of the potential weight, µ1
CO is ideally suited to this 

purpose. It was introduced by Chattot et al. 247 and determines the mean potential of the COads 

stripping weighted from the intensity of the ‘low-potential’ and ‘high-potential’ peaks, (see 

Equation 23 in Section II. 3. 4.) As shown recently, the density of structural defects in an 

electrocatalyst can also be estimated by the microstrain (µε) derived from Rietveld analysis of 

X-ray diffraction patterns 234,247. The microstrain reflects the local variation of the lattice pa-

rameter around the mean (µε
 ∝ ΔaPt-Pt/aPt-Pt).  
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Figure 41. Variation of the specific activity for the ORR measured at E = 0.95 V vs. RHE on the porous 

hollow PtNi/C electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K, vs. the microstrain 

determined by Rietveld refinement from XRD patterns (µε).  

 

According to the works of Qin et al. 293,294, grain boundaries (GBs) strongly influence the values 

of the microstrain. Thus, the electrocatalysts with the smallest nanocrystallites, i.e. with the 

highest density of GBs, present the highest microstrain value (see Figure 41 and Table 2). 

However, the ‘high-microstrain’ / ‘small-crystallites’ porous hollow PtNi/C electrocatalysts, 

which contain a high density of GBs, are also worst-performing for the ORR (at E = 0.95 V vs. 

RHE, jk = 108 ± 18 µA cmPt
-2

 for the electrocatalyst synthesized at T = 278 K and jk = 119 ± 31 

µA cmPt
-2

 for the electrocatalyst synthesized at T = 293 K, see Table 3) as a result of their small 

crystallite size (dXRD < 2 nm) and their large fraction of low coordinated atoms 49,50. As observed 

in Figure 41, the surface density of GBs (i.e. the microstrain) cannot solely explain the benefi-

cial activity of structural defects, confirming that other defects, such as vacancies, steps, etc. 

impact the specific activity for the ORR and contribute to the COads stripping ‘low-potential’ 

peak since, despite their higher density in GBs, the electrocatalysts synthesized at T = 278 K 

and T = 293 K present a depreciated COads peak at E ~ 0.7 V vs. RHE. The enhancement in 

specific activity observed for the NPs with the biggest crystallites (dXRD > 3 nm) can (in addition 

to the contribution of the structural defects) be explained in the frame of the particle size effect, 

i.e. smaller crystallites present an increased density of low coordinated atoms with a depreciated 

activity for the ORR 49,50.  
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IV. 3. 2. The multiplicity of the catalytic sites onto a porous hollow PtNi/C NPs surface 

High structural disorder and thus high values of the microstrain also imply that the lattice of 

porous hollow PtNi/C NPs comprises a mixture of domains featuring more compressed and 

more expanded lattice constant values than the average, as evidenced by Dubau et al. 234 by 

HR-TEM (see Section IV. 1). In consequence, both oxophilic and oxophobic catalytic sites co-

exist on the surface of this nanomaterial. The high structural disorder and the multiplicity of 

catalytic sites present on porous hollow PtNi/C NPs were recently rationalized by ab initio 

calculations. Le Bacq et al. 157 reproduced the highly disordered structure by introducing atomic 

vacancies into Pt(111) slabs (see Figure 42A for an example of a Pt (111) slab with 40% of 

vacancies randomly introduced). Depending on (i) the concentration and (ii) the spatial distri-

bution of atomic vacancies in the slabs, different bulk and surface arrangements were obtained. 

Large variations of (i) the in-plane and out-of-plane nearest-neighbour distances around the 

average value and (ii) of the coordination number of the surface sites were established (see 

Figure 42B and Figure 42C). Two families of catalytic sites were found:  

(i) the catalytic sites with a weaker binding of the OHads intermediates and, to a certain 

extent, enhanced ORR kinetics vs. Pt(111), i.e. with a high generalized coordination 

number 156 or a highly compressed lattice;  

(ii) the catalytic sites with a stronger binding of the OHads than Pt(111) resulting in de-

preciated ORR kinetics but enhanced kinetics for electrooxidation reactions, i.e. 

with a low generalized coordination number 156,273 and/or a highly expanded lattice.  

Le Bacq et al. 157 showed that the binding of OHads could be ca. 0.48 eV stronger or ca. 0.25 

eV weaker than on Pt (111) surface for two different active sites on the same surface (e.g. the 

surface presented in Figure 42A). They also confirmed, by electrochemical measurements, that 

the porous hollow PtNi/C NPs exhibited both families of catalytic sites and, therefore, an en-

hanced activity for electrooxidation and electroreduction reactions.  
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Figure 42. (A) Bottom and side view of a 5-layer Pt (111) slab after relaxation for 40% of vacancies 

randomly introduced. (B) Map of the inner deformation of the defective plane. (C) Deformation index 

plotted as a function of the coordination number (CN) for each atomic site of the surface displayed in 

(A). Adapted from Ref. 157. 

 

IV. 4. Extending the synthesis of hollow Pt-based/C nanostructures to other 

transition metals. 

From Section IV. 1. to IV. 3., we established the parameters driving the enhanced activity of 

the porous hollow PtNi/C NPs for the ORR. In the forthcoming sections, we aim at optimizing 

their electrocatalytic properties (stability, activity) by studying the impact of key parameters of 

the synthesis, i.e. changing the nature of the carbon support or of the sacrificial metal. For that 

purpose, the synthesis of porous hollow PtM/C NPs was performed, using Co, Cu, Fe and Zn 

precursors instead of Ni precursors: not only Ni/C NPs can act as a sacrificial template for the 

deposition of Pt-rich shells (and thus, the formation of porous hollow PtNi/C NPs) but also 

cobalt (Co) or copper (Cu) NPs (Figure 43). This is related to the propensity of these metals to 

spontaneously form borides 307–312, i.e. to protect the metal cores from oxidation and provide a 

template for Pt deposition via galvanic replacement. The standard potential of the 3d transition 

metal M appears to be the key of the synthesis of hollow Pt-based/C NPs. Indeed, if the nominal 

Pt weight fraction (20 wt. %) is achieved for the PtNi/C electrocatalyst, much lower values are 

observed for others PtM/C electrocatalysts, e.g. 1.8 wt. % and 0.2 wt. % for PtFe/C and PtZn/C 
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electrocatalysts, respectively (see Figure 43A). These results indicate that the BO2/BH4
- redox 

pair (E° = – 0.82 V vs. SHE at pH = 7 304,305) cannot reduce 3d transition metal ions with standard 

potential below – 0.4 V vs. SHE. In fact, the best sacrificial templates for the fabrication of 

hollow Pt-alloy/C NPs feature a standard potential located between – 0.4 < E° < 0.4 V vs. NHE 

325 (Table 4) i.e. easy to be reduced by BH4
- ions and easy to be oxidized by Pt2+ ions via 

galvanic replacement. Interestingly, despite featuring similar standard potential and propensity 

to form metal borides, very different Pt wt. % were obtained for PtCo/C (5.5 wt. %) and PtNi/C 

(20.0 wt. %). Such difference underlines the essential role played by the 3d transition metal in 

the Pt2+ reduction since, without an appropriate template metal, the adequate Pt loading cannot 

be reached. Since no particles of zinc or iron were observed on the PtZn/C and PtFe/C electro-

catalysts, the residual Zn and Fe at. % observed by Atomic Adsorption Spectroscopy (AAS – 

Figure 43A) were ascribed to traces of the Zn(II) and Fe(II) precursors trapped in the pores of 

the carbon support. Pronounced differences in size and distribution of the carbon-supported 

hollow NPs are observed when the nature of the sacrificial template changes (Figure 43C). 

Despite featuring similar standard potential, hollow Pt-rich/C NPs are by far larger (dext = 158 

± 76 nm, din = 138 ± 71 nm) when Co instead of Ni atoms (dext = 11.4 ± 1.9 nm, din = 6.4 ± 1.5 

nm) are used as sacrificial cores. Note also that hollow PtCu/C NPs are strongly agglomerated 

compared to hollow PtNi/C NPs (see Figure 43C). The SA and MA at E = 0.95 V vs. RHE are 

maintained for the different structures, despite their differences in size and agglomeration (see 

Figure 43B).  

 

The nature of the alloying element plays little role in the activity; indeed, this element is rapidly 

corroded upon contact with the acidic electrolyte, and the last step of the synthesis was an acid 

leaching in 1 M H2SO4 for t = 22 h 83,84. Its main uses are to provide (i) a sacrificial template 

for the deposition of Pt2+ ions and (ii) a mean to contract the Pt lattice constant (strain). How-

ever, the final reactivity of the surface will also be influenced by the high structural disorder 

generated by deposition (and alloying) of Pt ions onto (with) the M-rich/C core.The slight dif-

ferences observed in specific activity at E = 0.95 V vs. RHE can be explained by the difference 

in µ1
CO of the electrocatalysts (i.e. the density of structural defects and the non-noble metal 

induced contraction): µ1
CO

 (PtNi/C) = 718 ± 10 mV > µ1
CO (PtCu/C) = 702 ± 5 mV > µ1

CO 

(PtCo/C) = 665 ± 15 mV, i.e. the most active electrocatalyst (the porous hollow PtCo/C NPs) 

is also the electrocatalyst with the lowest µ1
CO.  
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Figure 43. Extension of the synthesis of hollow PtM/C NPs to other sacrificial metals, with M = Ni, Co, 

Cu, Zn and Fe. (A) Pt weight fraction and M content determined by Atomic Absorption Spectroscopy 

after acid leaching; (B) Specific and mass activity for the ORR at E = 0.95 V vs. RHE (SA0.95 and MA0.95, 

respectively) The measurements were performed in an O2-saturated 0.1 M HClO4 electrolyte, at a sweep 

rate v = 0.005 V s-1 and a rotation speed ω = 1600 rpm. All currents are corrected for Ohmic drop and 

mass transport. (C) TEM and STEM-EDX micrographs of the PtNi/C, PtCo/C and PtCu/C electrocata-

lysts (Pt atoms and M atoms are represented in red and green, respectively).  

 

Table 4. Standard potential of the M2+/M pair for the 3d transition metal discussed in this work.  

M E° vs. RHE (M2+/M) / V Pt weight fraction / % 

Fe - 0.44 1.8 

Co - 0.28 5.5 

Ni - 0.25 20.0 

Cu + 0.34 9.0 

Zn - 0.76 0.2 
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IV. 5. The influence of the carbon support 

IV. 5. 1. Physico-chemical properties of the carbon supports 

As mentioned in Section IV. 2. 2., porous hollow PtNi/Ca NPs were synthesized on seven dif-

ferent carbon supports differing by their physico-chemical properties such as the average crys-

tallite size in the graphene plane (La), the graphitic domains size perpendicular to the graphene 

plane (Lc), the specific surface, the morphology and the surface functionalization:  

(i) carbon blacks, i.e. Vulcan XC72 (XC72 – Cabot), Ketjenblack 600 JD (KJB – Azko 

Nobel) and YS (YS – Société du Noir d’Acétylène de l’Aubette), a graphitized car-

bon black; 

(ii) multi walled carbon nanotubes (CNT) synthesized by the sacrificial support method 

following the procedure described by Andersen et al 183;   

(iii) carbon xerogels (CX), synthesized according to the procedure described by Job et 

al. 186 with a resorcinol / formaldehyde (R/F) ratio of 0.5, a R/Na2CO3 ratio of 1500 

and a water / reactants of 5.7; 

(iv) 3D graphene nanosheets (GNS) synthesized by the sacrificial support method fol-

lowing the procedure described by Kabir et al. 248,249 and Serov et al. 250. To inves-

tigate the effect of the density of oxygen functions onto the carbon surface, GNS 

surface was functionalized by acid leaching for t = 8 h in 8 M HNO3. This carbon is 

referred to as GNS – AL.  

 

The specific surface areas (SBET) of the different carbon supports were determined by nitrogen 

adsorption-desorption using the BET equation for data treatment (see Table 5). The micropore 

(i.e. dpores < 2 nm according to the International Union of Pure and Applied Chemistry 171) sur-

face was calculated using the t-plot method 282,283.  The SBET values range from 78 ± 2 m2 g-1 

for the CNT to 1454 ± 5 m2 g-1 for the KJB. CNT and KJB supports do not present micropores, 

by opposition to the samples YS, GNS, GNS – AL, XC72 and CX. The specific surfaces ex-

cluding micropores (SBET – Smicropores) are reported in Table 5. The latter is more representative 

of the support since, because of their external diameter (dext ~ 10 – 15 nm 84), the porous hollow 

NPs cannot be formed within micropores. 

 

                                                           
aIn Section IV. 5, IV. 6 and V. 2, the porous hollow PtNi NPs were synthesized on different carbon 

supports. As such, the nature of the carbon support is indicated in the discussion. In the other sections, 

only Vulcan XC72 was used and is there referred as ‘C’. 
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Table 5. Specific surface area values of the carbon supports discussed in this work, calculated by the 

Brunauer, Emmett and Teller equation, (SBET), surface developed by micropores (Smicropores) calculated 

by the t-plot method, and difference between the two surfaces (SBET – Smicropores).  

 
SBET  

/ m2 g-1 

Smicropores 

/ m2 g-1 

SBET – Smicropores  

/ m2 g-1 

XC 72 239 ± 2 88 ± 2 151 ± 4 

CNT 78 ± 2 * 78 ± 2 

YS 115 ± 2 5 ± 2 110 ± 4 

GNS 175 ± 2 40 ± 2 135 ± 4 

GNS – AL 165 ± 2 45 ± 2 120 ± 4 

XG 548 ± 5 434 ± 5 114 ± 10 

KJB 1454 ± 5 * 1454 ± 5 

* No microporous surface area was measured on these carbon supports.  

 

The stability of a carbon support is correlated to its structural organization, i.e. the average in-

plane (the plane being defined as the graphene layer) crystallite size (La), the average size of 

the graphitic domain perpendicularly to the plane (Lc), the position of the graphite (G) band 287 

(~ 1585 – 1600 cm-1) in the Raman spectra and the interplanar distance perpendicularly to the 

plane (d002) (see Table 6 and Figure 44). The Lc and d002 values were determined from the 

analysis of XRD patterns for each carbon support, namely the graphite peak at 2θ ~ 26 – 28°, 

using the Scherrer and the Bragg laws, respectively. The La values were determined from Ra-

man spectra using the Knight and White formula (see Section II. 7.). The position of the graph-

ite band (see Table 6) shifts from v = 1597 ± 1 cm-1 for the GNS to v = 1584 ± 1 cm-1
 for the 

CNT. According to Lespade et al.287, the diminution of the G-band wavenumber corresponds 

to an increased graphitization of the carbon support because of the diminution of the D2 band 

intensity at v = 1610 cm-1 which corresponds to in-plane surface defects. The CNTs present a 

well-organized structure (ca. La = 7.0 nm and Lc = 6.3 nm), while the carbon blacks show a 

lower degree of organization in and out of the plane (see Table 6). The GNSs present a high Lc 

(ca. 12.6 nm), resulting from a structure composed of several stacked graphene layers, but a 

low La (ca. 3.8 nm) and a G-band shifted toward the D2-band (ca. 1597 cm-1), i.e. a disordered 

structure in the graphene plane. The acid leaching of the GNS produced the GNS-AL catalyst 

and had no impact on (i) the specific surface area and (ii) the degree of ordering.  
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Figure 44. (A) XRD patterns measured on the porous hollow PtNi/C NPs synthesized in this work and 

(B) Raman patterns of the various carbon supports.   

 

Table 6. In-plane crystallite size (La) and size of the graphitic domains perpendicular to the graphite 

plane (Lc), determined by Raman and XRD, respectively, for the different carbon supports discussed in 

this work.  

 
La  

/ nm 

Lc  

/ nm 

d002  

/ nm 

G-band position  

/ cm-1 

XC72 4.4 ± 0.1 1.9 ± 0.1 0.353 ± 0.001 1588 ± 1 

CNT 7.0 ± 0.1 6.3 ± 0.1 0.342 ± 0.001 1583 ± 1 

YS 3.8 ± 0.1 3.0 ± 0.1 0.348 ± 0.001 1586 ± 1 

GNS 3.8 ± 0.1 12.6 ± 0.1 0.336 ± 0.001 1597 ± 1 

GNS - AL 3.8 ± 0.1 12.6 ± 0.1 0.336 ± 0.001 1597 ± 1 

CX * * * * 

KJB 3.3 ± 0.1 1.3 ± 0.1 0.359 ± 0.001 1595 ± 1 

*No values were determined for the carbon xerogel (CX) because of its amorphous nature (see Section 

II. 7).  

 

The presence of oxygen-containing surface groups (carboxylic, carbonyl, etc.) is believed to 

increase the number of nucleation sites for the formation of NPs, as they act as anchoring sites 
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for metal precursors 326–328. Oxygen-containing surface groups also impact on the resistance of 

the carbon materials to electrochemical corrosion (increased carbon coverage by oxygen results 

in a decreased stability 192). Surface analysis was performed with XPS to (i) identify the chem-

ical groups on each substrate by peak-fitting of the C1s spectra and (ii) determine the atomic 

composition (C, O, N and contamination) by analysing the survey spectra. Atomic percentages 

associated with each chemical environment of carbon atoms are reported in Table 7. The degree 

of functionalization of the carbon supports was determined by the proportion of carbon atoms 

forming C-O, C-C=O and O-C=O bonds (i.e. the oxygen-containing surface groups) within the 

C1s spectrum. Table 7 shows that CNTs display the lowest surface functionalization (23 % of 

oxygen groups) while the highest coverage with oxygen is reached in CX (42 % of oxygen 

groups) and XC72 (38.5 % of oxygen groups) supports. The different carbon functionalization 

is a direct consequence of the synthesis process: for example, lower (32.2 at. % vs. 36.5 at. %) 

total oxygen and nitrogen percentages were found on the GNS sample compared to GNS-AL, 

i.e. the acid treatment (8 M HNO3 during t = 8 h) increases the oxygen content of the carbon 

support 326,327,329 ; more precisely, it generates 20% more carboxylic acid groups (O – C = O).  

 

Table 7. Surface composition of the different carbon substrates as derived from the XPS analysis.  

 
C-C-H 

/ at. % 

C-O, C-N 

/ at. % 

C-C=O 

/ at. % 

O-C=O 

/ at. % 

O 

/ at. % 

N 

/ at. % 

Other 

/ at. % 

XC72 55 21.5 8 9 6.5 * * 

CNT 74 7 11.5 4.5 3 * * 

YS 66 14.5 12.5 4 3 * * 

GNS 64.5 11.5 14.5 3.5 3 2.5 0.5  

GNS-AL 59 9.5 15.5 5 6.5 4 0.5 

CX 49 24 9 9 9 * * 

KJB 65.5 14.5 12 6 2 * * 

* No group of this nature was found on the associated support.  
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IV. 5. 2. Morphology and electrochemical activity of porous hollow PtNi/C catalysts   

Porous hollow PtNi/C electrocatalysts were successfully synthesized onto different carbon sup-

ports, as shown in Figure 45. Depending on the support, different external and inner diameters 

were obtained for the porous hollow NPs (Figure 45 and Table 8). The effect of the oxygen 

coverage of the carbon support on the final NPs diameter is not straightforward. In fact, differ-

ent diameters are observed for the NPs synthesized on the XC72 (PtNi/XC72) and the CX 

(PtNi/CX, dext = 12.5 ± 3.5 nm vs. dext = 23.1 ± 7.5 nm, see Table 8) two carbon supports 

presenting a similar oxygen coverage (% of oxygen groups = 38.5 vs. 42 at. %, see Table 7). 

This suggests that the relative number of O (or N) anchoring sites does not control the nuclea-

tion of the porous hollow PtNi NPs onto the different carbon supports. An interesting relation-

ship may be established when calculating the specific surface area of macro + mesopores (i.e. 

ignoring the contribution of the micropores, SBET – Smicropores) and correlating it with the external 

and inner diameters of the NPs (see Figure 45B). This can be rationalized owing to the absolute 

number of anchoring sites (i.e. the total number of oxygen functions, obtained from the product 

of the relative number of oxygen functions by the specific surface of the carbon support, mi-

cropores excluded). Indeed, KJB features a slightly lower oxygen coverage compared to the 

XC72 (oxygen groups represent 32.5 at. % of the C1s peak in KJB and 38.5 at. % of the peak 

in XC72, see Table 7) however, the specific surface of KJB is about 6 times larger than that of 

Vulcan XC72 (1454 ± 5 vs. 239 ± 2 m2 g-1, as reported in Table 5). Therefore, the absolute 

number of available anchoring sites in KJB should roughly be 5 times higher than for the XC72, 

resulting in an increased number of nucleation sites 326,327 and in the decrease of the external 

and inner NP diameters.  
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Figure 45. (A) Transmission Electron Microscopy micrographs of the porous hollow PtNi/C NPs syn-

thesized on CNT, GNS, XC72 and KJB. (B) Variation of the external and inner diameters of the porous 

hollow PtNi/C NPs as a function of the BET surface area (micropores excluded) of the different carbons 

supports. 

 

To sum up:  

(i) The diameter of the porous hollow PtNi NPs decreases with an increase of the spe-

cific surface area (micropores excluded) of the carbon support, owing to an in-

creased content in oxygen at the carbon surface acting as nucleation sites for the Ni-

rich cores (see Section III. 2.);  

(ii) Under the chosen synthesis conditions (ratio between the platinum and nickel pre-

cursors equal to 1:3, synthesis at room temperature), the smallest dext (~10 nm) was 

observed for the NPs synthesized on the KJB support. The latter presents a sensibly 

higher specific surface area (micropores excluded) than the other carbon supports 

and, thus, a larger absolute number of available oxygen groups; 

(iii) For low specific surface area carbon supports (micropores excluded, i.e. YS and 

CNT), the external diameter of the hollow PtNi NPs tends to stabilize around 30 nm 

and the inner diameter around 20 nm (see Figure 45 and Table 8).   
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Table 8. Morphological, physical and electrochemical properties of the porous hollow PtNi/C NPs synthesized on the different carbon supports, i.e. the external 

(dext) and inner (din) diameter of the NPs, the Pt weight fraction (Pt wt. %) on the carbon surface, the Ni content (Ni at. %) measured by AAS, the lattice parameter 

(aPt-Pt), the mean crystallite size (dXRD) and the first moment of the potential weight of the COads stripping voltammogram (µ1
CO).  

 

 

 

 
dext  

/ nm 

din  

/ nm 

Pt  

/ wt. % 

Ni  

/ at. % 

aPt-Pt 

/ nm 

dXRD 

/ nm 

µ1
CO 

/ mV vs. RHE 

XC72 12.5 ± 3.5 8.2 ± 3.0 18.2 ± 0.3 23.1 ± 0.5  0.384 ± 0.001 2.3 ± 0.1 718 ± 10 

CNT 25.5 ± 6.4 17.3 ± 5.2 23.3 ± 0.3 13.9 ± 0.3 0.388 ± 0.001 3.2 ± 0.1 662 ± 10 

YS 29.8 ± 12.3 21.2 ± 10.0 17.7 ± 0.3 19.2 ± 0.4 0.388 ± 0.001 2.8 ± 0.1 693 ± 5 

GNS 15.4 ± 3.4 10.2 ± 3.0 18.9 ± 0.3 15.6 ± 0.3 0.387 ± 0.001 2.8 ± 0.1 702 ± 12 

GNS - AL 16.5 ± 4.8 10.1 ± 3.2 18.4 ± 0.3 13.6 ± 0.3 0.388 ± 0.001 2.9 ± 0.1 708 ± 11 

CX 23.1 ± 7.5 15.6 ± 6.0 16.5 ± 0.3 14.8 ± 0.3 0.388 ± 0.001 3.0 ± 0.1 677 ± 11 

KJB 10.6 ± 3.4 6.7 ± 2.7 17.5 ± 0.3 27.9± 0.6 0.385 ± 0.001 2.2 ± 0.1 734 ± 15 
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The specific surface area of the carbon supports also controls the final Ni content (see Table 

8): namely, the NPs synthesized on the substrates having the highest specific surface area (KJB 

and XC72) display the highest percentage of Ni (ca. 27.9 at. % and 23.1 at. %, respectively). 

This unequivocally results from the higher number of Ni nuclei, which act as sacrificial tem-

plate for the deposition of Pt2+ ions via galvanic replacement (see Section III. 2.). Interestingly, 

porous hollow NPs synthesized on XC72 and KJB feature similar lattice parameter (aPt-Pt = 

0.384 ± 0.001 nm vs. aPt-Pt = 0.385 ± 0.001 nm), hence suggesting that the higher Ni content 

(see Table 8) measured in the PtNi/KJB is not fully alloyed to Pt. This suggests that Ni atoms 

may heterogeneously be distributed with in the PtNi lattice or that traces of Ni2+ are trapped 

within the carbon porosities. The mean lattice parameter ranges from aPt-Pt = 0.384 ± 0.001 nm 

(XC72) to aPt-Pt = 0.388 ± 0.001 nm (i.e. PtNi/CNT, PtNi/YS, PtNi/GNS-AL and PtNi/CX). 

The crystallite size ranges from dXRD = 2.2 ± 0.1 nm (PtNi/KJB) to dXRD = 3.2 ± 0.1 nm 

(PtNi/CNT). Considering that dext >> dXRD, the NP morphologies (independently of the carbon 

support) correspond to Pt-rich polycrystalline porous shells surrounding hollow cores. The elec-

trocatalysts displaying the smallest crystallites (PtNi/XC72 and PtNi/KJB) present a pro-

nounced COads stripping peak at ~ 0.78 V vs. RHE (see Figure 46): smaller NPs result in an 

increased curvature of the inner cavity and, therefore, in a higher proportion of COads molecule 

trapped onto highly coordinated Pt sites (see Section IV. 2). In addition, the smaller nanocrys-

tallites size might also results in a higher proportion of non-defective NCs facets or NPs. Ac-

cording to Section IV. 3, the highest activity should be observed for the electrocatalyst showing 

the COads stripping with the lowest first moment of the potential weight of the COads stripping 

(µ1
CO, mV vs. RHE 247). 
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Figure 46. COads stripping in Ar-saturated 0.1 M HClO4 on porous hollow PtNi/C NPs synthesized on 

different carbon supports, namely: Vulcan XC72 (XC72), carbon nanotubes (CNT), YS (YS), graphene 

nanosheets (GNS), acid leached graphene nanosheets (GNS – AL), carbon xerogels (CX) and Ket-

jenblack (KJB) – other conditions: v = 0.020 V s-1, T = 298 ± 1 K.  

 

The specific activity and the mass activity for the ORR of the different electrocatalysts at E = 

0.90 V and 0.95 V vs. RHE are shown in Figure 47. The ORR specific activities at E = 0.95 V 

vs. RHE (Figure 47A) range from 136 ± 18 µA cm-2
Pt for the porous hollow PtNi/CX electro-

catalyst to 174 ± 15 µA cm-2
Pt for the porous hollow PtNi/CNT electrocatalyst, indicating a 

mild influence of the nature of the carbon support. As expected, the electrocatalysts with the 

lowest µ1
CO values (PtNi/CNT, PtNi/YS, PtNi/GNS–AL and PtNi/GNS) feature the highest 

specific activity at 0.95 V vs. RHE (see Table 8). Despite similar µ1
CO, lower performance for 

the ORR was measured on the PtNi/CX electrocatalyst compared to the PtNi/YS and PtNi/CNT 

electrocatalysts. The mass activities at 0.95 V vs. RHE range from 40 ± 2 A g-1
Pt for PtNi/CG 

to 68 ± 7 A g-1
Pr PtNi/GNS-AL (see Figure 47A). These differences were ascribed to the vari-

ation of the Pt specific surface area (SPt, CO) which is ~ 30 m2
 g

-1
Pt for the PtNi/CNT, PtNi/YS 

and PtNi/CX, 35 ≤ SPt, CO ≤ 41 m2
 g

-1
Pt for the PtNi/GNS and PtNi/GNS-AL and more than 42 

m2 g-1
Pt for the PtNi/XC72 and PtNi/KJB (Figure 47A).  
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Figure 47. Specific activity (SA) and mass activity (MA) in O2-saturated 0.1 M HClO4 at (A) E = 0.95 

V vs. RHE and (B) E = 0.9 V vs. RHE, corrected for diffusion in solution and Ohmic drop, for the porous 

hollow PtNi/C NPs synthesized on different carbon supports – other conditions: T = 298 ± 1 K, ω = 

1600 rpm, v = 0.005 V s-1
. (C) Pt specific surface area values determined from the COads stripping meas-

urements.  
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IV. 6. Conclusions 

In summary, we have investigated the effect of several parameters (temperature, nature of the 

alloying element (Ni, Co, Cu, etc.), nature of the carbon support and ratio between the metallic 

precursors of the synthesis of porous hollow Pt-rich NPs) on the morphology and the electro-

catalytic activity of porous hollow PtNi/C NPs. Figure 48 summarizes the variations of the 

structural markers of the porous hollow Pt-rich/C NPs to each parameter investigated: 

(i) The diameter of the central cavity (the inner dimeter, din) increases with a decrease 

of the Pt2+:Ni2+
 ratio 84;  

(ii) The mean crystallite size, dXRD, diminishes with a decrease of the Pt2+:Ni2+
 ratio 84; 

(iii) The mean crystallite size, dXRD, increases with the increase of the synthesis tempera-

ture (Ts);  

(iv) The external diameter and the inner diameter of the hollow NPs are proportional to 

the BET specific surface area (see Table 5), micropores (pores with width > 2 nm 

according to the International Union of Pure and Applied Chemistry 171) excluded, 

i.e. they decrease with an increase of the absolute number of oxygen-based group on 

the electrocatalyst surface.  

 

The specific activity at E = 0.95 V vs. RHE for the various hollow Pt-rich/CNPs is summarized 

in Figure 49. It ranges from 109 ± 12 µA cm-2
Pt for the PtNi/XC72 electrocatalyst synthesized 

at T = 278 K to 190 ± 30 / 37 µA cm-2
Pt for the PtNi/XC72 electrocatalyst synthesized at T = 

333 K and the PtCo/XC72 electrocatalyst synthesized at room temperature. These comparable 

ORR activities clearly show that the one-pot synthesis used to synthesize the porous hollow 

PtNi/C NPs is robust but that the final activity mostly depends on the fine nanostructure of the 

catalyst.  
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Figure 48. Controlling the morphological properties of hollow PtNi/C NPs. The graphs display varia-

tions of the mean crystallite size (dXRD), the mean outer (dext) and the mean inner (din) diameters meas-

ured on hollow PtNi/C NPs synthesized at different temperatures (T = 278, 293, 313, 333 or 353 K), 

with different Pt2+ : Ni2+ atomic ratios (1:1, 1:3, 1:5), or supported onto different carbons: carbon black 

(XC72), Ketjenblack 600 JD (KJB), graphitized carbon (YS), carbon nanotubes (CNT), graphene 

nanosheets doped with nitrogen before (GNS) or after acid treatment in HNO3 (GNS – AL) and carbon 

xerogel (CX). The reference synthesis conditions were: initial Pt2+
 : Ni2+ atomic ratio of 1:3 and room 

temperature (RT). (A) Mean crystallite size (dXRD), (B) External (dext) and inner (din) diameter of the 

hollow Pt-based/C NPs synthesized in this work. No inner diameter is given for the commercial solid 
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Pt/C and the solid PtNi/C, as for the electrocatalyst synthesized at T = 353 K, since they present an 

agglomerated structure. (C) TEM micrographs of the hollow Pt-based/C NPs synthesized in this work 

and correlations to the synthesis parameters: the initial Pt2+: Ni2+atomic ratio in the synthesis reactor, the 

synthesis temperature Ts, the specific surface area of the support, micropores excluded (SBET – Smicropores). 

 

 

Figure 49. Specific and mass activity at E = 0.95 V vs. RHE of porous hollow PtM/C NPs. (A) Specific 

activity and (B) mass activity measured at E = 0.95 V vs. RHE (SA0.95 and MA0.95, respectively). The 

measurements were performed in an O2-saturated 0.1 M HClO4 electrolyte, at a sweep rate v = 0.005 V 

s-1 and a rotation speed ω = 1600 rpm. All currents are corrected for Ohmic drop and mass transport.  
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The enhanced electrocatalytic activity of the porous hollow Pt-based/C NPs results from (i) the 

presence of Ni in the Pt lattice (strain effect), (ii) their open porosity and (ii) their highly defec-

tive surface that leads to the presence of active sites both for electroreduction and electrooxida-

tion reactions. The COads stripping is impacted by the surface defectivity, resulting in the pres-

ence of two peaks, at E ~ 0.7 V vs. RHE and E ~ 0.78 V vs. RHE in COads stripping voltammo-

grams. These two electrooxidation peaks are ascribed to (i) the electrooxidation of COads ad-

sorbed onto and near the structural defects and (ii) the electrooxidation of the COads adsorbed 

on highly coordinated catalytic sites from which it cannot diffuses to the structural defects. The 

shape of the COads stripping (i.e. peak multiplicity, position of the peaks, ratio between the 

charge under the ‘low-potential’ and the total charge of the COads stripping, value of the first 

moment of the potential weight of the COads stripping) was found to be related not only to the 

density of structural defects, but also to the nickel content, thereby providing tools to predict 

the electrocatalytic activity for the ORR. 





 

 

 

Chapter V. Stability of the porous hollow 

PtNi/C NPs during simulated PEMFC oper-

ating conditions 

 

All the results discussed in this chapter have been (or will be) published in: 

(1) Asset, T.; Busby, Y.; Crisci, A.; Martin, V.; Stergiopoulos, V.; Serov, A.; Atanassov, P.; 

Chattot, R.; Dubau, L.; Maillard, F. and Job, N. Influence of the Carbon Support on the Mor-

phology and Stability of Porous Hollow PtNi/C electrocatalysts, to be submitted.   

 

In this article, the contribution of the author of this thesis was (i) the synthesis of the porous hollow 

PtNi/C NPs on different carbon supports, (ii) the acquisition and analysis of the SAA, of the 

electrochemical characterization and of the TEM micrographs, (iii) the analysis of the XRD patterns, of 

the XPS spectra and of the BET specific surface, (iv) the preparation of the samples for the IL-TEM 

measurments, their acquisition and analysis and (v) the preparation of the manuscript for publication.  

 

(2) Asset, T.; Chattot, R.; Drnec, J.; Bordet, P.; Job, N.; Maillard, F. and Dubau, L. Elucidating 

the Mechanisms Driving the Ageing of Porous Hollow PtNi/C Nanoparticles by the Means of 

COads Stripping, DOI: 10.1021/acsami.7b05782. 

 

In this article, the contribution of the author of this thesis was (i) the synthesis of the porous hollow 

PtNi/C NPs at different temperatures, (ii) the analysis of the XRD patterns, (iii) the acquisition and 

analysis of the SAA, of the electrochemical characterization and of the TEM micrographs, (iv) the 

preparation of the samples for the WAXS measurments and the acquisition of the WAXS patterns and 

(v) the preparation of the manuscript for publication.  

 

(3) Asset, T.; Chattot, R.; Martens, I.; Drnec, J.; Bordet, P.; Nelayah, J.; Job, N.; Maillard, F. 

and Dubau, L. In Operando Study of the Ageing of Porous Hollow PtNi/C NPs, to be submitted.  

 

In this article, the contribution of the author of this thesis was (i) the synthesis of the porous hollow 

PtNi/C NPs at different temperatures, (ii) the preparation of the membrane electrode assemblies for the 

in operando measurements, (iii) the acquision and analysis of the in operando WAXS, the in operando 

SAXS and the electrochemical characterization, (iv) the preparation of the manuscript for publication.  
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V. 1. Introduction 

The interest of an electrocatalyst for the oxygen reduction reaction (or, lato sensu, for every 

reaction occurring in harsh environmental conditions, i.e. high potential, low pH, etc.) depends 

on its electrocatalytic activity but also of its long-term stability. Several nanostructures with 

high initial activity have been widely discussed in the literature 88,89,129 but the latter shortly 

depreciates in PEMFCs conditions or during appropriate (i.e. at ca. 353 K) Accelerated Stress 

Tests (AST) 280. Therefore, investigating the stability of an electrocatalyst is essential to foresee 

its true potential for PEMFCs applications. In this chapter, we address the stability of (i) the 

porous hollow PtNi NPs and of their carbon supports during AST (see Section II. 3. 6.) that 

simulate the operating conditions of a PEMFC cathode and of (ii) the parameters that drive their 

enhanced activity for the ORR, i.e. the porous architecture, the defective structure and the Ni 

content (see Section IV. 1 to IV. 3).   

 

Pt-based NPs (i.e. PtM NPs, M being a 3d transition metal) suffer from the segregation of the 

non-noble metal induced by its chemical affinity with the highly oxidizing environment of the 

PEMFC cathode. Since any M atom reaching the surface is instantaneously corroded into Mz+, 

the difference in chemical potential between the NCs bulk and their surface is maintained. This 

causes a continuous dissolution of M associated with a decrease of strain and ligand effects 

97,130,215–218. In addition, the porous hollow Pt-based/C NPs suffer from classical degradation 

mechanisms, i.e. dissolution and redeposition of Ptz+ ions by Ostwald ripening, crystallite mi-

gration and coalescence (see Section I. 6. 2. and Ref. 198–201). Gusak et al. 330 showed by Monte-

Carlo simulation that hollow nanoparticles are not thermodynamically stable and that shrinking 

time depends on (i) the external diameter of the NPs and the shell thickness, (ii) the presence 

of an alloyed element (alloyed shell are more stable than pure shells 330) and (iii) the temperature 

(i.e. increased temperature results in decreased stability 330,331). This instability was also evi-

denced by electrochemical means: Dubau et al. 331 observed the collapse of porous hollow 

PtNi/C NPs (precursors ratio = 1:1) after 5,000 cycles between 0.60 and 1.05 V vs. RHE at T = 

353 ± 1 K. Another study from Dubau et al. 332 on porous hollow PtNi/C NPs (precursors ratio 

= 1:3), combining HR-TEM, STEM-EDX and electrochemistry showed that, after 5,000 cycles 

between 0.6 and 1.0 V vs. RHE (i.e. a different upper potential than in Ref. 331) at T = 353 ± 1 

K and with v = 0.050 V s-1:  

(i) the activity losses were mainly induced by the nickel dissolution; 

(ii) the activity enhancement factor attributed to structural defects was maintained;   



Chapter V. Stability of the porous hollow PtNi/C NPs during simulated PEMFC 

operating conditions 

133 
 

(iii) the hollow structure was maintained (thus underlining the essential role of the place-

exchange mechanism, see Section I. 6. 2. onto the NPs collapse observed in Ref. 

331).  

 

In Section V. 2., the ageing of porous hollow PtNi/C electrocatalysts is discussed, up to 20,000 

cycles between 0.6 and 1.0 V vs. RHE (T = 353 ± 1 K, v = 0.050 V s-1), with various crystallite 

size and density of structural defects (i.e. the materials from Section IV. 3.). The ageing of the 

porous hollow PtNi/C NPs was also investigated by in operando X-ray diffraction at the ID 31 

beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (Section 

V. 3.). The in operando study was performed by cycling the potential between 0.6 and 1.0 V 

vs. RHE or between 0.6 and 1.1 V vs. RHE in a liquid electrolyte cell (5,000 cycles, T = 353 ± 

1 K, v = 0.050 V s-1). Combined to EDX elemental maps and HR-TEM micrographs, these 

experiments provide a detailed picture of the structural changes of the porous hollow PtNi/C 

during ageing.  

 

The Pt-based electrocatalysts used to catalyse the ORR operate under harsh conditions, i.e. 0.6 

V vs. RHE < E < 1.0 V vs. RHE, pH ~ 1, T = 353 K, high relative humidity. These conditions 

promote the degradation of both the Pt-based nanoparticles and of the carbon support. In terms 

of kinetics, the COR (C → COsurf or C → CO2 
176) proceeds at potentials E > 0.6 V vs. RHE, 

starting preferentially on the non-graphitized domains 193 (the graphitized domains starts oxi-

dizing at ca. 1.0 V vs. RHE) and, as such, the COR kinetics depends on the carbon structure 

(carbon crystallite size both in the plane and perpendicular to the plane), on its functionalization 

192 and on the weight fraction of Pt-based NPs (the COR is catalysed by Pt 194–196). Minimizing 

the corrosion of the carbon support is essential to avoid the detachment of the Pt-based NPs and 

the carbon support losses of electronic conductivity due to (i) the amorphization of the graphitic 

domains, especially in the interconnection regions between the carbon particles 333 and (ii) the 

increase of the surface coverage of oxygen based group (e.g. quinone/hydroquinone (Q/HQ)). 

In Section V. 4., the porous hollow PtNi/C NPs synthesized on different carbon substrates (see 

Section IV. 5.) were aged following a procedure mimicking the potential variations during 

start-up/shutdown events of a PEMFC cathode 208. To this goal, a square potential ramp between 

1.0 and 1.5 V vs. RHE was used (t = 3 s at each potential, T = 353 ± 1 K, see Section II. 3. 6). 

This potential range is much more aggressive for the carbon support than the ‘load-cycling’ 

potential range (i.e. 0.6 – 1.0 or 1.1 V vs. RHE) as it results in the corrosion of both the amor-

phous and the graphitized domains of the carbon support 193.  
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V. 2. Elucidating the mechanisms driving the ageing of porous hollow PtNi/C 

nanoparticles by the means of COads stripping 

In this section, we discuss the ageing of hollow porous PtNi/C NPs using a ‘load-cycle’ proto-

col, i.e. 20,000 cycles with a linear profile between 0.6 and 1.0 V vs. RHE in 0.1 M HClO4 at v 

= 0.050 V s-1 and T = 353 ± 1 K, to gain insights onto the durability of the NPs (the stability of 

the Ni atoms and of the structural defects) without the contribution of the place-exchange mech-

anism (that occurs at E ≥ 1.05 V vs. RHE). Figure 50 and Table 9 summarize the changes of 

the electrocatalytic properties of the porous hollow PtNi/C nanoparticles synthesized at T = 

278, 293, 313, 333 and 353 K after 20,000 potential cycles with an intermediate characterisation 

after 5,000 potential cycles. 

 

 

Figure 50. (A) Ratio of the specific activity for the ORR measured at E = 0.95 V vs. RHE for the 

electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K before (SA0.95 (0k)) and after (SA0.95) 

5,000 and 20,000 potential cycles with linear profile between E  = 0.6 V vs. RHE and E = 1.0 V vs. 

RHE at v = 0.05 V s-1 and T = 353 K in Ar-saturated 0.1 M HClO4; (B – C) Background-subtracted 

COads stripping voltammograms measured before and after 5,000 and 20,000 potential cycles with linear 

profile for the porous hollow PtNi/C electrocatalysts synthesized at (B) T = 278 K and (C) T = 333 K; 

(D – E) Ohmic drop corrected polarization curves in O2 saturated 0.1 M HClO4 before and after 5,000 

and 20,000 potential cycles with linear profile for the porous hollow PtNi/C electrocatalysts synthesized 

at (D) T = 278 K and (E) T = 333 K.  
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After 20,000 potential cycles, a 30 to 40 % loss of the specific activity for the ORR at E = 0.95 

V vs. RHE is reported (Figure 50A), the most stable electrocatalyst being that synthesized at T 

= 313 K (jk = 140 ± 29 µA cmPt
-2 before ageing and 98 ± 20 µA cmPt

-2 after 20,000 potential 

cycles) and the least stable that synthesized at T = 278 K (jk = 108 ± 18 µA cmPt
-2 before ageing 

and 73 ± 13 µA cmPt
-2 after 20,000 potential cycles, see Table 9). A mass activity loss ap-

proaching 60 % is also observed for the electrocatalyst synthesized at T = 278 K after 20,000 

potential cycles (Table 9). The specific and mass activities for the ORR measured at E = 0.95 

V and 0.90 V vs. RHE after 5,000 and 20,000 potential cycles are provided in Table 9.
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Table 9. Specific and mass activities for the ORR (corrected for the Ohmic losses and oxygen diffusion in solution) measured at E = 0.95 V vs. RHE or E = 

0.90 vs. RHE for the electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K before and after 5,000 and 20,000 potential cycles between E = 0.6 V vs. 

RHE and E = 1 V vs. RHE at v = 0.05 V s-1, T = 353 K in an Ar-saturated 0.1 M HClO4 electrolyte. The electrocatalytic activities are normalized by the 

electrochemically active surface area (specific activity, SA) or by the mass of Pt (mass activity, MA).  

 

 
SA0.95 

/ µA cmPt
-2 

MA0.95 

/ A gPt
-1 

SA0.90 

/ µA cmPt
-2 

MA0.90 

/ A gPt
-1 

 0k 5k 20k 0k 5k 20k 0k 5k 20k 0k 5k 20k 

Pt/C 26 ± 3 27 ± 2 37 ± 3 21 ± 2 20 ± 2 27 ± 2 209 ± 32 183 ± 10 218 ± 15 166 ± 30 127 ± 8 159 ± 9 

T = 278 K 108 ± 18 77 ± 15 65 ± 5 60 ± 11 29 ± 2 23 ± 1 1000 ± 111 438 ± 33 341 ± 36 580 ± 72 159 ± 6 123 ± 3 

T = 293 K 119 ± 31 89 ± 9 73 ± 13 62 ± 10 38 ± 2 30 ± 3 1328 ± 146 532 ± 8 398 ± 70 699 ± 110 222 ± 37 163 ± 14 

T = 313 K 140 ± 29 115 ± 18 98 ± 20 53 ± 6 41 ± 3 32 ± 5 1247 ± 139 561 ± 24 395 ± 45 496 ± 40 227 ± 9 154 ± 30 

T = 333 K 179 ± 41 123 ± 12 120 ± 7 77 ± 12 40 ± 5 39 ± 5 1677 ± 204 687 ± 202 604 ± 143 695 ± 89 223 ± 73 195 ± 57 

T = 353 K 170 ± 48 135 ± 23 109 ± 4 62 ± 13 35 ± 1 31 ± 1 1498 ± 148 640 ± 108 517 ± 30 550 ± 50 168 ± 7 147 ± 5 
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Figure 51. Representative TEM micrographs of the porous hollow PtNi/C electrocatalysts studied in 

this work before and after 20,000 potential cycles between E = 0.6 V vs. RHE and E = 1.0 V vs. RHE 

at v = 0.05 V s-1 and T = 353 K in Ar-saturated 0.1 M HClO4 electrolyte. The particle size distributions 

have been built from the external diameters (dext) of the NPs before and after 20,000 potential cycles 

(note that the electrocatalyst synthesized at T = 353 K initially presented a partly agglomerated shape: 

only the dext of the isolated particles is provided in the particle size distribution).  
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Figure 51 shows that the hollow nanostructure is not maintained during the AST, with the no-

table exception of the electrocatalyst synthesized at T = 313 K which remains partly hollow-

shaped. The central cavity collapses, leading to the formation of 7 – 10 nm solid nanoparticles. 

The losses in ORR specific activity can be correlated to the changes of the COads stripping 

voltammograms. As observed in Figure 50B and Figure 50C for the electrocatalysts synthe-

sized at T = 278 K and T = 333 K, the losses in ORR specific activity (see Figure 50D and 

Figure 50E) are associated with a decrease in intensity of the COads stripping ‘low-potential’ 

peak (i.e. a diminution of Qpp,CO / QT,CO) and an increase in potential of the COads stripping 

peaks (i.e. an increase of Epp,CO and Ep,CO and, thus, a decrease of µ1
CO, see Figure 52). 

 

 

Figure 52. Variation of the specific activity for the ORR measured at E = 0.95 V vs. RHE for the porous 

hollow PtNi/C electrocatalysts synthesized at T = 278, 293, 313, 333 and 353 K before (Fresh) and after 

5,000 and 20,000 potential cycles with linear profile between E = 0.6 V vs. RHE and E = 1.0 V vs. RHE 

in Ar-saturated 0.1 M HClO4 at v = 0.05 V s-1 and T = 353 K vs. (A) the potential of the ‘high-potential’ 

peak in COads stripping voltammograms (Ep,CO); (B) the ratio of the electrical charge under the ‘low-

potential’ (Qpp,CO) to the total electrical charge of the COads stripping voltammogram (QT,CO); (C) the 

first moment of the potential weight of the COads stripping (µ1
CO).  

 

The average value of Ep,CO shifts from Ep,CO = 789 mV vs. RHE before ageing to Ep,CO = 802 

mV vs. RHE and Ep,CO = 812 mV vs. RHE after 5,000 and 20,000 potential cycles, respectively 

(see Figure 52). This relaxation is associated with a diminution of the Ni content of the elec-

trocatalysts synthesized at T = 278 K and T = 333 K as determined from the STEM-EDX mi-

crographs (see Figure 53). In contrast to AAS analyses, STEM-EDX analyses are performed 
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on single nanoparticles: this may account for the difference between the values reported in Fig-

ure 53 and Figure 38. The depletion in Ni and the subsequent relaxation of the lattice parame-

ter, predicted by the change of Ep,CO, (i.e. disappearance of the Ni-induced lattice parameter 

contraction) are in agreement with the literature results for PtM electrocatalysts 215,243,332,334,335.  

 

 

Figure 53. Variation of the composition measured by STEM-EDX for the electrocatalysts synthesized 

at T = 278 K and T = 333 K before and after 20,000 potential cycles between E = 0.6 V vs. RHE and E 

= 1.0 V vs. RHE at v = 0.05 V s-1, T = 353 K in an Ar-saturated 0.1 M HClO4 electrolyte.  

  



Chapter V. Stability of the porous hollow PtNi/C NPs during simulated PEMFC 

operating conditions 

140 
 

Table 10. Variation of the microstrain (µε), the mean crystallite size (dXRD) for the electrocatalysts syn-

thesized at T = 278 and 333 K before (prior to the electrochemical characterisation, i.e. ‘Fresh’) and 

after electrochemical characterisation (‘Fresh + ORR’) and after 5,000 and 20,000 potential cycles be-

tween E = 0.6 V vs. RHE and E = 1.0 V vs. RHE in Ar-saturated 0.1 M HClO4 at v = 0.05 V s-1 and T 

= 353 K.  

  µε / %% dXRD / nm 

T = 278 K 

Fresh 204 1.5 ± 0.1 

Fresh + ORR 91 3.5 ± 0.2 

5,000 16 4.2 ± 0.3 

20,000 19 3.9 ± 0.3 

T = 333 K 

Fresh 147 3.2 ± 0.1 

Fresh + ORR 81 4.0 ± 0.3 

5,000 65 5.2 ± 0.7 

20,000 44 4.6 ± 0.6 

 

The physical properties of the electrocatalysts synthesized at T = 298 K and T = 333 K after 

electrochemical characterisation (i.e. COads stripping + 6 cycles between E = 0.2 V vs. RHE 

and E = 1.0 V vs. RHE at v = 0.005 V s-1 in an O2-saturated 0.1 M HClO4 electrolyte) but before 

ageing are provided in Table 10 as ‘Fresh + ORR’. Interestingly, the electrocatalysts suffer 

dramatic structural modification after the initial electrochemical characterisation. For the elec-

trocatalyst synthesized at T = 278 K, the microstrain shifts from µε = 204 %% to µε = 91 %% 

and the crystallite size shifts from dXRD = 1.48 nm to dXRD = 3.5 nm. Castanheira et al. 203 

underlined the impact of intermediate characterizations of a Pt/HSAC electrocatalyst during its 

ageing in an Ar-saturated electrolyte, focusing on the impact of COads stripping and cyclic vol-

tammograms. They showed that intermediate characterizations intensify the degradation of the 

Pt/HSAC ECSA 203. Here, it appears that the measurement of the ORR activity in O2-saturated 

electrolyte also results in modification of the electrocatalysts morphology, likely because of the 

shift between a reductive atmosphere (CO) and an oxidant atmosphere (O2). This is confirmed 

by the changes of the COads stripping voltammograms before and after the ORR (see Figure 

54). A diminution of the contribution of the ‘low-potential’ peak of the COads stripping is ob-

served for the electrocatalyst synthesized at T = 278 K (while being less visible for the electro-
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catalyst synthesized at T = 333 K) concomitantly with a shift of the Ep,CO toward higher elec-

trode potentials accounting for the diminution of both the density of structural defects and the 

Ni content in the electrocatalyst.  

 

 

Figure 54. Variation of the COads stripping voltammograms performed in an Ar-saturated 0.1 M HClO4 

electrolyte (v = 0.020 V s-1, T = 298 K) before and after measurement of the ORR activity for the elec-

trocatalysts synthesized at (A) T = 298 K and (B) T = 333 K.  

 

Simultaneously to the increase of Ep,CO, a decrease of ratio of the Qpp,CO / QT,CO and a dramatic 

decrease of the microstrain (µε) are observed for the electrocatalysts synthesized at T = 278 K 

and T = 333 K during ageing (see Figure 52B and Table 10). This is in agreement with the 

increase of the average crystallite size (dXRD) determined from the XRD patterns during the first 

5,000 potential cycles (Table 10) resulting from Ostwald ripening and/or crystallite migra-

tion/coalescence 199. Note that the variation of the PtNi crystallite size observed between 5,000 

and 20,000 cycles (dXRD = 4.2 ± 0.3 nm at 5,000 cycles and dXRD = 3.9 ± 0.3 nm at 20,000 

cycles for the electrocatalyst synthesized at T = 278 K) remains within the error bar of the 

measurement and was thus considered as non-significant. Depending on their initial morphol-

ogy (‘nanocrystallites (NCs) < 2nm’ / ‘high-microstrain’ or ‘NCs > 3 nm / ‘low-microstrain’), 

the NPs suffer different fates. For the electrocatalysts where the density of grain boundaries 

(GBs) was the highest (i.e. the electrocatalysts synthesized at T = 278 K and T = 293 K), a 

dramatic decrease of the microstrain (see Table 10 for the electrocatalyst synthesized at T = 

278 K), of Qpp,CO / QT,CO (Figure 52B) and of the specific activity for the ORR at E = 0.95 V 

vs. RHE is noticed. However, for the electrocatalysts that presented a NCs diameter > 3 nm and 

an initial Qpp,CO / QT,CO > 0.68, i.e. the electrocatalysts where the GBs are not the main type of 

structural defects, the losses in specific activity for the ORR are far less severe. Consequently, 
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on electrocatalysts displaying initial ORR activity controlled by the density of structural de-

fects, a value of dXRD > 3 nm (and therefore, stable structural defects) is a pre-requisite to stable 

ORR activity during ageing. The morphological and structural changes of the electrocatalysts 

(i.e. µε, dXRD, aPt-Pt, etc.) slow down between 5,000 and 20,000 potential cycles (see Figure 52). 

Therefore, (i) most of the electrocatalysts degradation occurs during the 5,000 first cycles be-

tween E = 0.6 V and E = 1.0 V vs. RHE at T = 353 K and (ii) the losses in the density of 

structural defects which occurs between 5,000 and 20,000 cycles do not impact the NCs size. 

The density of GBs remains identical and other types of structural defects are likely impacted 

(such as the concavity of the internal surface during the collapsing of the nanoparticles, see 

Figure 51).  

 

Combining high resolution TEM and electrochemistry, Dubau et al. 332 recently reported that 

the depletion in Ni was the main cause of the decline in ORR activity for porous hollow and 

solid PtNi/C NPs. The electrocatalysts discussed by Dubau et al. 332 presented a dXRD > 3 nm 

234, therefore supporting the results discussed in this section, i.e. porous hollow and solid PtNi/C 

structures with a dXRD > 3 nm do not suffer dramatic losses in structural defects density during 

ageing. Most of their activity losses result from the dissolution of the Ni atoms from the PtNi 

shell (see Figure 52, Figure 53 and Ref. 332). Figure 52C shows that the first moment of the 

potential weight of the electrocatalysts discussed in this work (µ1
CO) is directly correlated to the 

changes of ORR specific activity at E = 0.95 V vs. RHE. This clearly confirms that the losses 

in ORR specific activity for the ORR are induced by the combination of the relaxation of the 

lattice parameter, i.e. the diminution of the Ni-induced lattice contraction, and a decrease of the 

density of structural defects. 

 

V. 3. In operando study of the ageing of the porous hollow PtNi/C NPs 

Porous hollow PtNi/C NPs were also aged in the electrochemical flow cell described in Section 

II. 3. 7 coupled with in operando wide angle X-ray scattering (WAXS) measurements. The 

electrocatalyst used in this section was synthesized at room temperature with a 1:3 atomic ratio 

between the metallic precursors and supported onto Vulcan XC72. The initial crystallite size 

was dXRD = 2.4 ± 0.1 nm and the electrocatalyst was aged during 5,000 potential cycles between 

0.6 and 1.0 or 1.1 V vs. RHE at v = 0.05 V s-1, both in classic four-electrode cell (see Figure 

55) and in the in operando WAXS cell. 
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Figure 55. Electrochemical properties of the porous hollow PtNi/C electrocatalyst discussed in this sec-

tion before and after 5,000 potential cycles in Ar-saturated 0.1 M HClO4 between 0.6 and 1.0 V vs. RHE 

or 1.1 V vs. RHE (v = 0.05 V s-1 and T = 353 ± 1 K). (A) COads stripping (v = 0.020 V s-1, electrolyte = 

Ar-saturated 0.1 M HClO4, T = 298 ± 1 K). (B) Linear sweep voltammograms in O2-saturated 0.1 M 

HClO4 in Tafel representation, corrected from the diffusion in solution and the Ohmic drop (v = 0.005 

V s-1, ω = 1600 rpm). 

 

The post-ageing COads stripping is highly dependent on the upper potential chosen for the age-

ing (1.0 or 1.1 V vs. RHE, see Figure 55). For Eupper = 1.0 V vs. RHE, the intensity under the 

‘low-potential’ peak decreases with respect to what was observed in Section V. 2. The electro-

catalyst suffers from a decrease of its Ni content, as evidenced by the shift of Ep,CO toward 

higher potentials (from 0.78 to 0.79 V vs. RHE). These Ni losses are more pronounced for Eupper 

= 1.1 V vs. RHE (Ep,CO = 0.80 V vs. RHE after ageing). The first moment of the potential weight 

(µ1
CO, see Equation 24) increases if Eupper = 1.0 V vs. RHE (µ1

CO
 (fresh) = 734 mV vs. RHE vs. 

µ1
CO

 (aged) = 767 mV vs. RHE) but remains nearly constant if Eupper = 1.1 V vs. RHE (µ1
CO

 

(fresh) = 734 mV vs. RHE vs. µ1
CO

 (aged) = 737 mV vs. RHE). However, the electrocatalyst 

aged up to E = 1.1 V vs. RHE presented a depreciated SA at E = 0.95 V vs. RHE compared to 

the electrocatalyst aged up to E = 1.0 V vs. RHE and the fresh electrocatalyst (SA0.95 = 92 µA 

cmPt
-2 vs. 137 and 154 µA cmPt

-2, respectively, see Table 11), by opposition to what was ob-

served in Section IV. 3, i.e. a decreased µ1
CO

 results in an increased specific activity at E = 0.95 

V vs. RHE.  
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Table 11. Physical, chemical and electrochemical properties of the hollow PtNi/C electrocatalyst used 

in the in operando WAXS measurements.  

 Fresh 0.6 – 1.0 V vs. RHE 0.6 – 1.1 V vs. RHE 

Pt  

/ wt. % 
20.3 ± 0.5 * * 

NiAAS  

/ at % 
20 ± 0.5 * * 

SPt, CO  

/ m2
 gPt

-1 
42.6 ± 5 31.6 ** 24.5 ** 

SA0.95  

/ A cmPt
-2 

154 ± 14 129 92 

SA0.90  

/ A cmPt
-2 

1287 ± 63 816 536 

MA0.95  

/ A cmPt
-2 

65.5 ± 1 40 23 

MA0.90  

/ A cmPt
-2 

546 ± 30 259 134 

* The determination of the Pt weight fraction and the Ni content from the AAS was not possible, owing 

to the extremely small amount of electrocatalyst obtained after the accelerated stress test (3.92 µg of Pt 

per electrode).  

** SPt,CO was determined using the initial Pt weight fraction on the electrode.  

 

The changes in the NPs morphology were also investigated by analyzing the electrocatalysts 

before and after the ageing in the WAXS electrochemical cell by TEM and STEM-EDX and 

HR-TEM (see Figure 56, Figure 57 and Figure 58).  
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Figure 56. TEM micrographs of the gas diffusion electrode (GDE) (A) before and after 5,000 cycles in 

Ar-saturated 0.1 M HClO4 between 0.6 and (B) 1.0 V vs. RHE or (C) 1.1 V vs. RHE. Other conditions: 

v = 0.050 V s-1 and T = 353 ± 1 K.  

 

At Eupper = 1.1 V vs. RHE, the hollow nanostructure mainly collapses after 5,000 cycles (Figure 

56C), by opposition to Eupper = 1.0 V vs. RHE (in this case, the collapse of the nanostructure 

was observed after 20,000 cycles, see Section V. 2.). This confirms that the increase of the 

upper potential of the ageing exacerbates the rate of degradation mechanisms at stake. Deeper 

insights obtained by STEM-EDX (Figure 57) show that the electrocatalyst aged between 0.6 

and 1.1 V vs. RHE presents two distinct structures: (i) porous hollow PtNi/C NPs with a slightly 

decreased Ni content (7.3 ± 0.6 at. % vs. 9.8 ± 0.8 at. % before ageing, see Figure 57C) and (ii) 

solid PtNi/C NPs with a low Ni content (3.9 ± 0.9 at. %, see Figure 57D). By opposition, the 

electrocatalyst aged between 0.6 and 1.0 V vs. RHE only contains porous hollow PtNi/C NPs 

with a Ni content of 6.3 ± 0.7 at. % (Figure 56 and Figure 57B).  
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Figure 57. EDX elemental mapping of the gas diffusion electrode (A) before and after 5,000 cycles in 

Ar-saturated 0.1 M HClO4 between 0.6 and (B) 1.0 V vs. RHE or (C - D) 1.1 V vs. RHE. Other condi-

tions: v = 0.050 V s-1 and T = 353 ± 1 K.  

 

The heterogeneity in structure observed for the electrocatalyst aged with Eupper = 1.1 V vs. RHE 

was assumed to originate from the difference in diameter (and shell thickness) of the initial 

porous hollow NPs (dext = 11.4 ± 1.9 nm), the smaller NPs collapsing while the biggest NPs 

maintained their hollow nanostructure 330. The HR-TEM micrographs indicates that the poly-

crystallinity and the hollow shape of the electrocatalysts aged with Eupper = 1.0 V vs. RHE is 
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maintained (see Figure 58B), similarly to the porous hollow NPs observed on the electrocata-

lyst aged with Eupper = 1.1 V vs. RHE. But collapsed NPs composed of only one nanocrystallite 

were also found (see Figure 58C). 

 

 

Figure 58. High resolution TEM of the gas diffusion electrode (A) before and after 5,000 cycles in Ar-

saturated 0.1 M HClO4 between 0.6 and (B) 1.0 V vs. RHE or (C) 1.1 V vs. RHE. Other conditions: v = 

0.050 V s-1 and T = 353 ± 1 K.  

 

The electrocatalyst aged between 0.6 and 1.1 V vs. RHE thus presents a dual morphology, sim-

ilarly to the nanostructures discussed by Maillard et al. 149,264, i.e. polycrystalline NPs (e.g. 

agglomerated or hollow NPs) and monocrystalline NPs (with a low Ni-content, therefore ex-

plaining the positive shift of Ep,CO). This explains the shape of its COads stripping (see Figure 

55B), i.e. close to the COads of the fresh electrocatalyst despite their different morphologies.  
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As discussed in Section IV. 2., the ‘high-potential’ peak of the COads stripping of the porous 

hollow PtNi/C results from the electrooxidation of the CO adsorbed on high-coordination sites 

from which they cannot diffuse to structural defects beneficial to the COads electrooxidation. 

Those sites are prone to disappear during the collapse of the hollow nanostructure. Therefore, 

the COads stripping of the aged electrocatalyst should be a unique ‘low-potential’ peak if the 

aged electrocatalyst was only composed of polycrystalline, highly defective NPs. Figure 58B 

shows that it is not always the case, i.e. some of the collapsed NPs are monocrystalline. On 

monocrystalline NPs, the COads cannot diffuse to the GBs (that present a highly expanded lattice 

thus nucleating OH at low potential values and facilitating the COads electrooxidation 293,294) 

and is forced to oxidize within the ‘high-potential peak’. Consequently, the ‘high-potential’ 

peak observed on the COads stripping of the porous hollow PtNi/C NPs after ageing (see Section 

V. 2. and Figure 55A) does not result of the highly coordinated sites, but of (i) the collapsed 

monocrystalline NPs formed by NCs coalescence during ageing and (ii) of the NCs facets from 

which the COads cannot diffuse to a structural defect beneficial for the COads electrooxidation.  

 

In summary, during ageing, the nature of the ‘high-potential’ peak of the COads stripping 

evolves from being representative of highly-coordinated sites to being representative of the 

monocrystalline nanostructures and defect-free facets, i.e. the nature discussed in Section V. 3. 

to the nature evidenced by Maillard et al. 149,264. Then, different nanostructures can exhibit the 

same COads stripping (Figure 55A). This result also underlines the limits of the structural inter-

pretations based on the COads stripping as the hollow porous PtNi/C NPs before and after the 

0.6 – 1.1 V vs. RHE display similar µ1
CO but not the same SA at E = 0.95 V vs. RHE.  

 

In operando WAXS provided information on the changes of the physical parameters defining 

the NPs morphology, i.e. the mean crystallite size (dXRD), the average lattice parameter (aPt-Pt) 

and the microstrain (µε). Figure 59 presents the changes of the spectra of the porous hollow 

PtNi/C electrocatalysts during in operando ageing with Eupper = 1.0 V vs. RHE (Figure 59A) 

and Eupper = 1.1 V vs. RHE (Figure 59B). The patterns were collected in three regions of the 

gas diffusion electrode (GDE): 

(i) a region constantly exposed to the synchrotron beam; 

(ii) a region exposed to the beam during ca. 1 % of the experiment time; 

(iii) a region only exposed to the beam at the beginning and at the end of the experiment.  
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The spectra and values of the parameters presented in Figure 59 and Figure 60 have been 

obtained in the ‘low-radiation’ region (exposure during ca. 1 % of the experiment time) to min-

imize the modifications induced by exposure of the electrocatalyst to the X-ray beam. The X-

ray patterns only provide mild variations of the electrocatalyst structure even if the influence of 

Eupper is shown:  

(i) for Eupper = 1.1 V vs. RHE, a diminution of 2θ is observed for the Pt (111) peak 

(4.08° before ageing vs. 4.06 ° after, see Figure 59B), the latter remaining constant 

for Eupper = 1.0 V vs. RHE; 

(ii) for Eupper = 1.1 V vs. RHE, the XRD peaks sharpen during the first 2,000 seconds, 

thereby signing an increase of the crystallite size in agreement with the coalescence 

process previously discussed (see Figure 59B).  

Further insights into the variation of the NPs structure were obtained by refining the X-ray 

patterns by the Rietveld method which allows monitoring the variations of the lattice parameter, 

the average crystallite size and the microstrain (see Figure 60).  

 

The sudden changes (i.e. the large standard deviation) of the normalized dXRD and the normal-

ized µε (Figure 60B and Figure 60C) are directly linked to in operando measurements. Indeed, 

during the measurements, gas bubbles form in the GDE or at the interface between the Kapton 

film and the GDE (see Section II. 3. 7.) modify the thickness of the electrolyte film by a few 

micrometers.  

During the 5,000 potential cycles ageing, several features were observed: 

(i) a progressive decrease of the lattice parameter, ca. – 10 % of the initial contraction 

after the 0.6 – 1.0 V vs. RHE ageing protocol and ca. – 25 % after the 0.6 – 1.1 V 

vs. RHE ageing protocol (see Figure 60A); 

(ii) a sudden and fast increase of the crystallite size ( 1.15) at the beginning of the 

ageing protocol (see Figure 60B) for Eupper = 1.1 V vs. RHE; 

(iii) a negligible diminution of the microstrain during the ageing with Eupper = 1.0 vs. 

RHE (see Figure 60B and Figure 60C), while being more important (up to ca. – 15 

% of the initial microstrain) for Eupper = 1.1 V vs. RHE.  
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Figure 59. Variations of the X-ray patterns recorded onto a porous hollow PtNi/C electrocatalyst during 

5,000 cycles in Ar-saturated 0.1 M HClO4 between (A) 0.6 and 1.0 V vs. RHE or (B) 1.1 V vs. RHE (v 

= 0.050 V s-1 and T = 353 ± 1 K).  
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Figure 60. Variations of structural parameters extracted from Rietveld refinement of XRD patterns 

measured on porous hollow PtNi/C electrocatalyst during 5,000 potential cycles in Ar-saturated 0.1 M 

HClO4 between 0.6 and 1.0 V vs. RHE or 1.1 V vs. RHE (v = 0.050 V s-1 and T = 353 ± 1 K). (A) 

Normalized variation of the contraction (vs. the lattice parameter of Pt/C) of the lattice parameter, aPt-Pt 

vs. the lattice parameter of Pt/C, in the low radiation area, (B) normalized variation of the average crys-

tallite size, dXRD and (C) normalized variation of the microstrain, µε. Since the number of potential cycles 

was kept constant, the AST between 0.6 and 1.1 V vs. RHE was 20% longer than the AST between 0.6 

and 1.0 V vs. RHE.  
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The stability of the microstrain and of the crystallite size for Eupper = 1.0 V vs. RHE confirms 

the observations of Dubau et al. 332, i.e. that the depletion in Ni is the main reason of the ORR 

activity losses for highly defective electrocatalysts (as porous hollow PtNi/C NPs) with dXRD ≥ 

3 nm. Note that the electrocatalysts did not undergo intermediate characterization during the in 

operando ageing, thus resulting in less degradation than observed in Section V. 3.  

 

The losses in Ni are ca. 3 – 4 times higher than the diminution of the lattice contraction (vs. the 

lattice parameter of Pt/C) (Figure 57 and Figure 60A):  

- ca. 40 % of Ni losses vs. a ca. 10 % decrease of the lattice contraction of the electrocat-

alysts aged between 0.6 V and 1.0 V vs. RHE  

- ca. 60 % of Ni losses (for the collapsed NPs) vs. a ca. 20 % decrease of the lattice 

contraction of the electrocatalysts aged between 0.6 V and 1.1 V vs. RHE.  

This means that part of the lattice contraction results of the structural defects (e.g. missing at-

oms, nanovoids, etc.) and not of the Ni content. For the electrocatalyst aged with Eupper = 1.0 V 

vs. RHE, the ca. 10 % decrease of the lattice contraction correspond to ca. 16 % of SA losses 

at E = 0.95 V vs. RHE (Table 11). The SA losses observed in Table 11 were aggravated because 

of the characterizations under O2 (see Section V. 2.) that were not performed during the in 

operando ageing. It is likely that most of the electrocatalytic activity losses during 5,000 cycles 

between 0.6 and 1.0 V vs. RHE at T = 353 K results from the Ni segregation and dissolution, 

therefore confirming the work of Dubau et al. 332 . However, the ageing with Eupper = 1.1 V vs. 

RHE also affects the structural defects:  the electrocatalyst suffers 40 % losses in SA0.95 while 

losing only ca. 20 % of its Ni content (but, in addition, ca. 15 % of its microstrain).  
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V. 4. Stability of the carbon supports 

In this section, the electrocatalysts were aged by the procedure mimicking the start-up/shut-

down event of a PEMFC (i.e. square potential ramp between E = 1.0 V and E = 1.5 V vs. RHE 

with t = 3 s at each potential, see Figure 19) to mainly assess the durability of the carbon support 

193. Fresh and 500-cycle aged electrocatalysts were characterized by electrochemical measure-

ments and IL-TEM (see Figure 61 to Figure 66).  

 

Base and COads stripping (Figure 61 and Figure 62) voltammograms show: 

(i) the formation of carbon surface oxides (COsurf) during the AST for the electrocata-

lysts based on KJB, XC72, GNS, GNS-AL and CX. This is illustrated by the in-

creasing charge under the Q/HQ 176 in the potential region 0.4 < E < 0.8 V vs. RHE 

(Figure 61); 

(ii) the increase of the double layer capacitance (Cdl) for the electrocatalysts supported 

on CNT and carbon blacks. This suggests larger carbon support specific surface area 

and increased oxygen content 193,336;  

(iii) the decrease of Cdl for the electrocatalysts supported on GNS, GNS-AL and CX. 

This suggests complete oxidation of carbon into CO2 
336, i.e. a decrease of the carbon 

specific surface area; 

(iv) the decrease of the electrical charge required to adsorb/desorb under-potentially de-

posited hydrogen (Hupd) or to electrooxidize a COads monolayer, due to the ECSA 

losses, especially for the electrocatalysts synthesized on GNS, GNS-AL and CX; 

(v) the decrease of the COads stripping peak intensity at E = 0.7 V vs. RHE (for the 

electrocatalysts synthesized on KJB and XC72), which is ascribed to the decrease 

of the density of structural defects 149,232,234,247.  

 



Chapter V. Stability of the porous hollow PtNi/C NPs during simulated PEMFC 

operating conditions 

154 
 

 

Figure 61. Cyclic voltammograms measured between E = 0.05 and 1.23 V vs. RHE at v = 0.020 V s-1
 

and T = 298 ± 1 K in Ar-saturated 0.1 M HClO4, normalized to the geometric surface of the electrode 

(0.196 cm2), for the porous hollow PtNi/C electrocatalysts synthesized on different carbon supports: (A) 

Vulcan XC72, (B) carbon nanotubes, (C) YS, (D) graphene nanosheets, (E) acid leached graphene 

Nanosheets, (F) carbon xerogels, (G) Ketjenblack. All the results were obtained before and after an 

accelerated stress test protocol mimicking potential variations during start-up/shutdown of a PEMFC 

cathode (500 steps at T = 353 K between 1.0 V vs. RHE (t = 3 s) and 1.5 V vs. RHE (t = 3 s)). 
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Figure 62. Electrooxidation of a COads monolayer between E = 0.05 and 1.23 V vs. RHE at v = 0.020 V 

s-1 and T = 298 ± 1 K in Ar-saturated 0.1 M HClO4, normalized by the geometric surface of the electrode 

(0.196 cm2), for the porous hollow PtNi/C electrocatalysts synthesized on different carbon supports: (A) 

Vulcan XC72, (B) carbon nanotubes, (C) YS, (D) graphene nanosheets, (E) acid leached graphene 

nanosheets, (F) carbon xerogels, (G) Ketjenblack. All the results were obtained before and after an 

accelerated stress test protocol mimicking potential variations during start-up/shutdown of a PEMFC 

cathode (500 steps at T = 353 K between 1.0 V vs. RHE (t = 3 s) and 1.5 V vs. RHE (t = 3 s)). 
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On PtNi/GNS, PtNi/GNS-AL and PtNi/CX, the COR kinetics seems to be very pronounced as 

illustrated by the decrease of (i) the double layer current, (ii) the electrical charge in the Hupd 

region and (iii) the intensity of the COads stripping peaks (i.e. a decrease of the SPt,CO, see Figure 

64), relevant for a pronounced detachment of metal NPs. This behaviour is explained by (i) the 

amorphous structure of the CX, which allows the COR to start at a potential value as low as 0.6 

V vs. RHE 193, (ii) the disordered GNS and GNS-AL crystallites in the plane (G-band position 

= 1597 ± 1 cm-1 and La = 3.8 nm, see Table 6, and (iii) the highly functionalized surface of the 

CX, GNS-AL and GNS supports 192. Since GNS and GNS-AL possess the highest size of the 

crystallite domains perpendicular to the plane (Lc = 12.6 nm), this indicates that mostly La, and 

not Lc, drives the stability of the carbon supports discussed in this work, this being explained 

by the fact that carbon essentially corrodes from the edges of the graphene planes. While a 

moderate NPs detachment is observed on PtNi/CNT (see Figure 62C), this effect is negligible 

on carbon blacks. Since the PtNi/CNT sample does not show carbon corrosion (see Figure 

61C), its NPs detachment can be ascribed to a weaker bonding of NPs due to the low surface 

functionalization (23% of oxygen groups, see Table 7). Carbon blacks show an increase of the 

Q/HQ peak and of Cdl upon cycling (Figure 61): the electrical charge at the Q/HQ peak depends 

on the specific surface area of the carbon support, given in Table 5; KJB presents 6 (14) times 

higher specific surface than XC72 (YS), resulting in a higher absolute Q/HQ value. A decrease 

of the density of structural defects (i.e. a higher charge under the peak at E = 0.8 V vs. RHE) is 

observed on the PtNi/KJB and PtNi/XC72 electrocatalysts, i.e. the electrocatalysts with the 

smallest crystallite sizes.  

 

Carbon corrosion and detachment of NPs were observed on the IL-TEM micrographs of the 

GNS, the GNS-AL and, to a lower extent, on the CX, the CNT and the KJB (Figure 63), there-

fore confirming the information derived from electrochemical measurements (Figure 61 and 

Figure 62). However, the ageing of the electrocatalysts by IL-TEM is much less aggravating 

than by electrochemistry (i.e. few particles detachment, etc. see Figure 63), this being ascribed 

to (i) the absence of characterisation before and after the ageing (see Section V. 2) and (ii) the 

fact that IL-TEM provides local information, by opposition to electrochemistry. It is then im-

portant to consider IL-TEM data qualitatively, to observe the trends in degradation (e.g. carbon 

corrosion for the GNS and GNS-AL) but not to assess quantitatively the degradation processes. 

Moreover, IL-TEM was performed at T = 353 K between 1.0 and 1.5 V vs. RHE, i.e. under 

harsh conditions for gold TEM grids; as a result, gold re-deposition was sometimes observed, 

especially on PtNi/CG (Figure 63).  
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Figure 63. IL-TEM for the porous hollow PtNi/C NPs synthesized on different carbon supports: Vulcan 

XC72, carbon nanotubes, YS, graphene nanosheets, acid leached graphene nanosheets, carbon xerogels 

and Ketjenblack before and after an accelerated stress test protocol mimicking potential variations dur-

ing start-up/shutdown of a PEMFC cathode (500 steps at T = 353 K between 1.0 V vs. RHE (t = 3 s) and 

1.5 V vs. RHE (t = 3 s)). 
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Figure 64. (A) Specific and (B) Mass activity for the ORR in O2-saturated 0.1 M HClO4 at E = 0.95 V 

vs. RHE, (C) specific and (D) mass activity in O2-saturated 0.1 M HClO4 at E = 0.90 V vs. RHE – 

corrected for diffusion in solution and Ohmic drop, T = 298 ± 1 K, ω = 1600 rpm, v = 0.005 V s-1 and 

(E) Pt specific surface area determined from the COad stripping experiments for the porous hollow 

PtNi/C NPs synthesized on different carbon supports before and after an accelerated stress test protocol 

mimicking potential variations during start-up/shutdown of a PEMFC cathode  (500 steps at T = 353 K 

between 1.0 V vs. RHE (t = 3 s) and 1.5 V vs. RHE (t = 3 s)). 
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The losses in Pt specific surface area (up to ca. 65 % for the PtNi/GNS) induced by the particle 

detachment and the carbon corrosion cannot solely explain the dramatic diminution of the ORR 

specific activity at E = 0.90 and 0.95 V vs. RHE. After ageing, the specific activity at E = 0.95 

V vs. RHE (SA0.95, Figure 64A) undergoes a 62% decrease in the PtNi/GNS and about 19% 

decrease for the PtNi/CNT. Figure 65 presents the ORR linear sweep voltammograms after 

correction of the Ohmic drop and the diffusion of oxygen in solution.  

 

The potential difference (ΔE) between the jk of the fresh electrocatalysts and the jk of the aged 

electrocatalyst is presented in Figure 66 (for – 0.1 < jk < - 1 mA cm-2
Pt). In this potential range, 

ΔE evolves linearly with jk, suggesting that the electrocatalytic losses partially result from 

Ohmic losses due to the increase of the system resistance upon ageing. The electrochemical 

system (i.e. a glassy carbon (GC) electrode covered by a catalytic film immerged in an electro-

lyte) correspond to a complex equivalent circuit that forbids the simultaneous determination of 

all the resistances (the resistance of the electrolyte, the resistance of the carbon and the re-

sistance of the glassy carbon) 333,337–340, both in nature and value.  

 

The electrolyte properties were identical before and after ageing (the electrolyte was removed 

and replaced by a fresh electrolyte and the cell was washed with MilliQ water; therefore, its 

resistance was ca. 20 Ω) and the resistance of the GC is negligible, owing to its high conduc-

tivity 333. Thus, the increase of the system resistance (related to the slope Rk, the latter being an 

arbitrary value extracted from Figure 66, see Table 12) was ascribed to the decreased electrical 

conductivity of the catalytic layer following the electrochemical amorphization of the graphitic 

regions, especially in the interconnection regions between the elementary carbon particles 333, 

and to the increase of the Q/HQ surface content (Figure 61). This degradation (i.e. the higher 

Rk) was the most important for the GNS, GNS-AL and the CX, accordingly to the results of 

Figure 65 and Figure 66, followed by the XC72, the CNT and the YS. The resistance of the 

PtNi/KJB did not increase during ageing (see Figure 66): its activity losses mainly result from 

the decrease of the density of structural defects (see Section V. 2).  
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Figure 65. Linear sweep voltammograms corrected from the Ohmic drop and from oxygen diffusion in 

solution measured at v = 0.005 V s-1 in O2-saturated 0.1 M HClO4 on porous hollow PtNi/C electrocat-

alysts synthesized on different carbons supports: (A) Vulcan XC72, (B) carbon nanotubes, (C) YS, (D) 

graphene nanosheets, (E) acid leached graphene nanosheets, (F) xerogels, (G) Ketjenblack. The kinetic 

current is normalized to the Pt ECSA. All the results were obtained before and after an accelerated stress 

test protocol mimicking potential variations during start-up/shutdown of a PEMFC cathode (500 steps 

at T = 353 K between 1.0 V vs. RHE (t = 3 s) and 1.5 V vs. RHE (t = 3 s)). 
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Figure 66. Linear fits of the difference of potential (ΔE) as a function of the kinetic current (jk) for the 

porous hollow PtNi/C electrocatalysts synthesized on (A) Vulcan XC72, (B) carbon nanotubes, (C) YS, 

(D) graphene nanosheets, (E) acid leached graphene nanosheets, (F) Xerogel and (G) Ketjenblack be-

fore and after an accelerated stress test protocol mimicking potential variations during start-up/shutdown 

of a PEMFC cathode  (500 steps at T = 353 K between 1.0 V vs. RHE (t = 3 s) and 1.5 V vs. RHE (t = 

3 s)). 
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Table 12. Slopes (Rk) determined from the fits of the curves presented in Figure 66 by a linear equation 

for the different carbon substrates and effective resistances (Reff) determined from the cyclic voltamme-

try using Equation 41.  

 
Rk  

(Ω cm2
Pt) 

Reff 

(Ω cm2
geo) 

XC72 34 575 ± 10 

CNT 34 * 

CG 10 * 

GNS 51 3500 ± 100 

GNS – AL 51 4200 ± 100 

CX 53 1800 ± 100 

KJB 2 355 ± 10 

*The cathodic Q/HQ peak was not observable, resulting in an impossibility to calculate Reff.  

 

Recently, Gribov et al. 333 proposed a method the estimate the effective resistance (Reff) of a 

carbon supported electrocatalyst based on the post-ageing CVs and, more specifically, on the 

potential shift of the Q/HQ peak, according to Equation 41.  

 

 𝑅𝑒𝑓𝑓 =  
(𝐸𝑎,𝑄𝐻𝑄 −  𝐸𝐶,𝑄𝐻𝑄) − 0,028

𝑖𝑎,𝑄𝐻𝑄 −  𝑖𝑐,𝑄𝐻𝑄
  (𝐸𝑞. 41) 

 

where Ea,QHQ and Ec,QHQ are the potential of the anodic and cathodic peak of the Q/HQ couple, 

and ia,QHQ and ic,QHQ are their respective intensity. Reff corresponds to the serial connection of 

the resistance of the GC, of the electrolyte and of the carbon support. As such, a high Reff (see 

Table 12) indicates an increase of the carbon support resistance, thus confirming the results 

obtained using Rk (i.e. highest Reff for the GNS and GNS – AL, then CX and XC72). The initial 

Reff was not calculated, as the Q/HQ peaks were not visible on the base voltammogram of the 

non-aged electrocatalysts (Figure 61).  

 

The losses in ORR specific activity measured at 0.90 V vs. RHE vary from 74 % in PtNi/GNS 

to 36 % in PtNi/YS (Figure 64). These higher losses (compared to what was measured at 0.95 

V vs. RHE) result:  

(i) from the increased contribution of the ohmic drop to the ORR kinetic current (jk); 

(ii) from an increased effect of the diffusion limitations into the catalytic layer.  
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For each catalyst, the losses in mass activity for the ORR (Figure 64B and Figure 64D) are 

more pronounced than the losses in specific activity. This relates to the dramatic losses in Pt 

specific surface area upon ageing (see Figure 64E), which are particularly marked for PtNi/CX, 

PtNi/GNS and PtNi/GNS-AL (ca. 64%, 65% and 56%, respectively). The losses in mass activ-

ity amount up to 90 % for PtNi/GNS.  

 

YS and KJB appears to be promising as support for the porous hollow PtNi/C NPs. They pre-

sent, by far, the highest durability (i.e. slight increase of the support resistance, minor decrease 

in activity, etc.). Furthermore, the NPs supported on KJB have a dext = 10.6 ± 3.4 nm, resulting 

in a SPt,CO = 45 ± 5 m2 gPt
-1 and, therefore, an increased initial mass activity compared to PtNi/YS 

(MA0.95 = 56 ± 12 A gPt
-1 vs. 40 ± 2 A gPt

-1, see Section IV. 5). The only drawback of the 

PtNi/KJB electrocatalyst is its lower initial specific activity, i.e. 138 ± 35 µA cm-2 at E = 0.95 

V vs. RHE, resulting of its small crystallite size and its low density of structural defects, there-

fore impliying that those two parameters should be improved (e.g. by performing the synthesis 

at higher temperature on KJB).  

 

V. 5. Conclusions 

In this chapter, we provided insights on the structural and electrochemical changes of the porous 

hollow PtNi/C NPs and of their support during accelerated stress tests (ASTs): 

(i) composed of 5,000 or 20,000 potential cycles in the E = 0.6 – 1.0 V vs. RHE poten-

tial range to focus on the structural changes of the porous hollow PtNi/C NPs;  

(ii) composed of 5,000 potential cycles in the E = 0.6 – 1.1 V vs. RHE potential range 

to focus on the effect of the place-exchange mechanism onto the structure of the 

porous hollow PtNi/C NPs; 

(iii) composed of 500 potential cycles in the E = 1.0 – 1.5 V vs. RHE potential range to 

focus on the degradation of the carbon support. 

 

The texture, the structure and the chemistry of the different carbon supports were crucial during 

AST. Electrochemical and IL-TEM analysis on aged electrocatalysts showed pronounced de-

tachment of NPs and degradation of the carbon support (detachment, complete and partial cor-

rosion, etc.) for the electrocatalysts supported on graphene nanosheets and on carbon xerogel 

while the electrocatalysts supported on carbon blacks reported an incomplete oxidation of the 

surface (formation of COsurf). Overall, the degradation of the carbon support resulted in losses 
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in the Pt specific surface area, mass activity and specific activity for the ORR, as the result of 

the increase of the resistance of the catalytic layers.   

 

Using the tools described in Section IV. 3. (Qpp,CO / QT,CO, Ep,CO, µ1
CO and µε), we observed 

that the losses in ORR specific activity of the porous hollow PtNi/C NPs in the ‘load-cycling’ 

protocol (20,000 potential cycles between 0.6 and 1.0 V vs. RHE at v = 50 mV s-1) resulted 

from a combination of losses in Ni-induced lattice contraction and an increase of the crystallite 

size, resulting in the diminution of the density of grain boundaries. The electrocatalysts that 

presented an initial nanocrystallite size dXRD > 3 nm presented a higher stability than the one 

with a dXRD < 2 nm. We also noticed that intermediate characterisations in O2-saturated elec-

trolyte resulted in aggravated changes of the electrocatalyst morphology. These changes in 

nanostructure were confirmed using in operando WAXS measurements. The diminution of the 

Ni content occurred gradually during the AST, while the crystallite size increased during the 

first 2,000 seconds (for an upper potential of 1.1 V vs. RHE). The structural changes were by 

far more severe when the upper potential limit reached 1.1 V vs. RHE: this is believed to arise 

from the place-exchange mechanism.



 

 

 

 

Chapter VI. General Conclusion and Per-

spectives 

  



Chapter VI. General Conclusion and Perspectives 

166 
 

The Earth depletion in fossil fuels, the global warming and the resulting need in green energies 

devices, such as proton exchange membrane fuel cells (PEMFCs), are driving forces for the 

design, synthesis and characterisation of nanostructured electrocatalysts. The ORR is the elec-

trocatalytic reaction limiting the performance of PEMFCs (the oxidation of di-hydrogen on Pt/C 

being much faster 58). Enhancement of the ORR mass activity is requested for PEMFC to be 

economically viable. During the last decade, a wide range of nanomaterials were synthesized, 

presenting 20-fold enhancement of the SA for the ORR vs. Pt/C (flat-annealed surfaces) 158, 55-

fold enhancement in SA vs. Pt/C (highly defective nanowires 143) and up to 90-fold enhance-

ment of the SA for the ORR vs. Pt/C (Pt3Ni (111) extended surfaces 138). The electrocatalytic 

activity enhancement was achieved by (i) alloying the Pt with other elements, either 3d-transi-

tion metals or rare-Earth elements, to modify the Pt 5d band centre and, therefore, the adsorption 

strength of the ORR intermediates 54,136, (ii) diminishing the number of Pt atoms that are not 

involved in the electrocatalytic reaction (e.g. core@shell and hollow nanostructures 72,85,223) and 

(iii) increasing the density of highly active facets (e.g. (111), see octahedral nanostructures 

88,89). In this work, we opened a new path to design and synthesize a novel class of nanocatalysts 

(hollow PtNi/C nanoparticles) that fulfill cost (i.e. by increasing the mass activity and, there-

fore, diminishing the amount of Pt used), performance and stability requirements of PEMFC 

cathodes. These nanomaterials can be synthesized using the galvanic replacement of a transition 

metal M by Pt, and the nanoscale Kirkendall effect. In their final form, they feature a highly 

polycrystalline metal shell (shell thickness = 2 – 3 nm) surrounding a hollow core. 

 

To establish the mechanisms driving the formation and growth of the porous hollow PtNi/C 

NPs, we used a combination of: 

(i) in operando WAXS measurements to identify the phases in presence (Pt, Ni, C and 

NixByOz) and to determine the variations of the interatomic distances. The chemical 

nature of these phases was further discussed with the help of X-ray photoelectron 

spectroscopy measurements;  

(ii) in operando SAXS measurements to follow the change of the scattering length den-

sity in the core and in the metal shell and thus provide physical evidence of the 

nanoscale Kirkendall effect 219; 

(iii) scanning TEM and Energy Dispersive X-ray maps to observe the variation of the 

composition of the nanoparticles during the synthesis; 

(iv) conventional TEM and high-resolution TEM to gather further insights into the fine 

nanostructure of the nanoparticles. 
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Our work shows that: 

(i) Ni-rich cores ca. 2 – 3 nm in size form first before being rapidly embedded into a 

NixByOz shell at t = 2 min after addition of the first drop of reducing agent (NaBH4);  

(ii) Pt atoms are deposited via galvanic replacement onto the NixByOz shell (the NixByOz 

shell acts as a template) resulting into the formation of Ni-rich core@Pt-rich shell 

structure at t = 20 min; 

(iii) Hollow PtNi/C NPs are formed between 20 < t < 60 min due to the nanoscale 

Kirkendall effect.  

 

In addition to the precise description of the formation and growth mechanism, this work also 

provides a methodology to identify the various synthesis intermediates forming during the syn-

thesis of e.g. preferentially-shaped NPs 88,90, sea-sponges, 247 or core@shell 72 NPs. Whatever 

the temperature of the synthesis, the initial Pt:M stoichiometry or the carbon support, the re-

sulting PtM/C NPs were then acid-leached during t = 22 h in 1 M H2SO4 resulting into the 

appearance of a central void with molecular accessibility.  

 

The surface reactivity and the electrocatalytic activity for the ORR of the porous hollow PtM/C 

NPs were then investigated. The best porous hollow nanocatalyst, PtNi/C NPs, achieved 6-fold 

and 9-fold enhancement in mass and specific activity for the ORR, respectively, over standard 

solid Pt/C nanocrystallites of the same size. The catalytic enhancement was 4-fold and 3-fold 

in mass and specific activity, respectively, over solid PtNi/C nanocrystallites with similar chem-

ical composition, PtNi lattice contraction and crystallite size. This enhanced catalytic perfor-

mance has been ascribed to the weakened chemisorption of oxygenated species induced by the 

contraction of the lattice parameter (the lattice parameter was ca. 0.385 nm on porous hollow 

PtNi/C NPs compared to 0.393 nm for Pt/C) and to the high density of surface structural defects. 

Density functional theory calculations by Le Bacq et al. 157 showed that the surface of hollow 

NPs is jagged and composed of domains with expanded and contracted lattice parameter (with 

respect to the average value determined by XRD). Depending on the density of atomic vacan-

cies formed within the nanoparticle during its synthesis, catalytic sites with very high and very 

low coordination numbers co-exist at the NP surface. The individual PtM nanocrystallites are 

also connected to each other via grain boundaries. 
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This high density of structural defects provides the surface with both oxophilic and oxophobic 

catalytic sites. Oxophobic catalytic sites feature, to a certain extent, the optimal properties (co-

ordination number, degree of contraction of the lattice parameter) and thus, the optimal turn-

over frequency for the ORR, being responsible for the 9-fold enhancement in specific activity 

84 , while others bind oxygenated species much more stronger and thus feature enhanced activity 

for electroooxidation reactions (COads stripping, alcohol oxidation reactions 157).  

 

The effect of the nature of the sacrificial atoms and of the carbon support was also discussed. 

The best sacrificial templates feature a standard potential comprised between – 0.4 < E° < 0.4 

V vs. NHE 325 (Ni, Cu, Co), i.e. can be reduced by BH4
- ions and be oxidized by Pt2+ ions via 

galvanic replacement. The absolute number oxygen-containing surface groups on the carbon 

support was found to control the external and inner diameter of the M-rich NPs, i.e. the increase 

of the absolute number of oxygen-containing surface groups results in a diminution of the NPs 

size.  

 

Finally, the stability of the porous hollow metal NPs and of the carbon support were investi-

gated, owing to three different ageing protocols: 

(i) potential cycling between 1.0 and 1.5 V vs. RHE to investigate the degradation of 

the carbon support during start-up/shutdown events; 

(ii) potential cycling between 0.6 and 1.0 V vs. RHE to investigate the structural and 

chemical changes of the porous hollow PtM/C NPs during load cycling; 

(iii) potential cycling between 0.6 and 1.1 V vs. RHE to gain insights on the effect of the 

place-exchange mechanism on the structural and chemical changes of the porous 

hollow PtM/C NPs.  

 

The robustness of the carbon supports was related to (i) their degree of graphitization and (ii) 

to the relative functionalization of the surface (i.e. the number of oxygen surface groups per 

carbon atom). The carbon support that presented the lowest graphitization degree and the high-

est relative functionalization suffered dramatic corrosion, which caused detachment of the hol-

low metal NPs. In contrast, highly graphitic carbon supports were only partially corroded and 

maintained a higher specific activity for the ORR (e.g. 19 % and 62 % of the initial SA0.95 were 

lost on the PtNi/CNT and the PtNi/GNS nanoparticles, respectively. An overall increase of the 

catalytic layer resistance, due to the carbon degradation of the carbon support, was also ob-

served.  
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A severe diminution of the Ni atomic content (determined by STEM-EDX elemental maps and 

the position of the COads stripping peak) was noticed during the load-cycling protocol. For the 

electrocatalysts presenting an initial crystallite size dXRD < 2 nm, collapse of the hollow 

nanostructure and the associated crystallite growth were severe and resulted in a pronounced 

diminution of structural defects, as presented in Figure 67. Electrochemical characterization 

(such as cyclic voltammograms in Ar-saturated electrolyte, COads stripping and ORR measure-

ments) accelerated the changes in structure (i.e. increase of the crystallite size, decrease of the 

concentration of structural defects, etc.). 

 

 

Figure 67. Variation of COads stripping voltammograms before and after 20,000 potential cycles be-

tween 0.6 and 1.0 V vs. RHE at T = 353 K and v = 50 mV s-1
 for porous hollow PtNi/C nanoparticles 

with a crystallite size (A) dXRD < 2 nm and (B) dXRD > 3 nm.  

 

The structural and chemical modifications of hollow PtNi/C NPs were also investigated in the 

0.6 – 1.0 V vs. RHE and the 0.6 – 1.1 V vs. RHE potential ranges using in operando WAXS, 

HR-TEM and STEM-EDX measurements. In both cases, a continuous decrease of the lattice 

parameter contraction was noticed following Ni depletion. However, the hollow nanostructure, 

the crystallite size and the concentration of structural defects were found nearly constant after 

2,000 s in the 0.6 – 1.0 V vs. RHE potential range.Conversely, the hollow nanostructure partly 

collapsed after 5,000 cycles 332, the crystallite size increased significantly (i.e. monocrystalline 

collapsed NPs were formed), the microstrain value diminished and most of the initial Ni atoms 

were dissolved after potential cycling in the 0.6 – 1.1 V vs. RHE potential range. Those phe-

nomena were ascribed to the place exchange mechanism 209,210, i.e. the faster dissolution of the 
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Pt surface atoms due to the formation of a PtO oxide layer with oxygen atoms replacing Pt 

atoms in the first two atomic layers.  

 

This story might come to an end, but many stones remain unturned. 

 

The structural defects and their activity for the oxygen reduction reaction have been thoroughly 

discussed in this manuscript, as well as physical and electrochemical markers of their density 

(microstrain value, number, position and shape of COads stripping peaks). However, they have 

been only discussed for porous hollow PtNi/C NPs and an extension to other catalytic surfaces, 

as introduced by Chattot et al. 247, is essential. The accelerated stress test performed between 

0.6 and 1.1 V vs. RHE also showed the limitation of the COads stripping as a mean to predict 

the ORR activity, inducing that the exact nature of the structural defects remains unclear. In 

this work, we showed that structural defects cause the formation of domains featuring either 

relaxed (e.g. near the grain boundaries 293,294) or contracted lattice constant, but little is known 

on how these domains impact the electronic structure of the Pt surface atoms. This may be 

investigated using density functional theory calculations 341.  

 

Another aspect to discuss is the large-scale production of porous hollow PtNi/C NPs. However, 

in the frame of a collaboration between the French Alternative Energy and Atomic Energy 

Commission (CEA) and LEPMI, the synthesis was up-scaled (up to 10 g per synthesis) without 

any modification of the morphology (see Figure 68A) and the electrocatalytic activity for the 

ORR (see Figure 68B – Figure 68D).  
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Figure 68. Electrochemical properties of porous hollow PtNi/C NPs synthesized at LEPMI or in large-

scale reactors by CEA (from ca. 350 mg to ca. 10 g), with an initial ratio Pt2+:Ni2+ of 1:5. (A) COads 

stripping voltammogram (v = 0.020 V s-1, Ar-saturated 0.1 M HClO4). (B) Ohmic drop corrected linear 

sweep voltammograms (v = 0.005 V s-1, electrolyte = O2-saturated 0.1 M HClO4, ω = 1600 rpm). Mass-

transport and Ohmic drop corrected specific activity (SA) and mass activity (MA) measured in O2-sat-

urated 0.1 M HClO4 at (C) E = 0.95 V vs. RHE and (D) E = 0.9 V vs. RHE.  

 

The porous hollow PtNi/C NPs were tested in MEA to check if their activity enhancement 

relative to Pt/C and their stability is maintained in real PEMFC conditions, where the conditions 

and limitations are quite different from liquid electrolyte 58 (i.e. coverage of the electrocatalyst 

by a solid electrolyte, diffusion of the gases to the catalytic sites, etc.). The results are presented 

in Figure 69.  
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Figure 69. Performances of MEA (anode: 50 wt. % commercial Pt/C – 0.2 mg cmgeo
-2, cathode: porous 

hollow PtNi/C or commercial Pt/C – 0.2 mg cmgeo
-2, surface of the MEA: 25 cm2) at T = 353 K, with a 

relative humidity of 50 % both for the H2 (P = 1.5 bar, stoichiometry 1.5) and the air (P = 1.5 bar, 

stoichiometry 2). (A) Beginning of life, after activation, (B) after 1,000 potential cycles between 0.6 and 

1.0 V at v = 0.050 V s-1 (C) after 10,000 potential cycles and (D) after 30,000 potential cycles. 

 

The superior activity of the porous hollow NPs is not initially maintained in MEA, i.e. the 

performances are close to the performances of a commercial Pt/C for U = 0.70 – 0.90 V and are 

depreciated at lower potential, i.e. in the diffusion-limited current area (Figure 69A). This 

lower enhancement factor is partly induced by the decreased Pt specific surface of the porous 

hollow NPs in MEA, i.e. ca. 20 m2 gPt
-1

 vs. ca. 45 m2 gPt
-1

 in RDE experiments. Optimizing the 

ink formulation and the dispersion of the porous hollow PtNi/C NPs on the carbon support is 

then essential to ensure a better activity and, therefore, a suitable activity for PEMFC applica-

tions. Figure 69B to Figure 69D shows the MEA performances after 1,000, 10,000 and 30,000 

cycles between 0.6 and 1.0 V at v = 0.050 V s-1
. An interesting feature steaming from those 

results is that, after 30,000 cycles, the porous hollow NPs presents an enhanced activity vs. 

commercial Pt/C in the 0.60 – 0.85 V potential range, i.e. that the porous hollow NPs present 
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an enhanced stability in MEA than the commercial Pt/C, resulting from lower losses in specific 

surface (see Figure 70).  

 

 

Figure 70. Evolution of the Pt specific surface (in cmPt
2 cmgeo

-2) in MEA for a commercial Pt/C cathode 

or a porous hollow PtNi/C cathode (0.20 mg cmgeo
-2). 

 

Understanding the parameters that limit the activity of the porous hollow PtNi/C NPs in MEA 

configuration (i.e. in solid electrolyte, etc.), and, lato sensu, of the ‘exotic’ Pt-based electrocat-

alysts (e.g. PtNi nanoframes 129) is essential to consider them as a suitable replacement Pt and 

Pt-based NPs (d ~ 2 – 3 nm) in PEMFC applications. Further characterizations in large single-

cell and short stack configurations are programmed, in collaboration with the CEA, for the 

porous hollow PtNi/C NPs.  
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Abstract 
This Ph.D. thesis investigates the mechanisms driving the formation, 

the enhanced activity for the oxygen reduction reaction (ORR) and the 

durability of porous hollow PtM/C nanoparticles (NPs) for proton ex-

change membrane fuel cell (PEMFC) applications. The formation and 

growth of the NPs, synthesized by a ‘one-pot’ process, were discussed 

in the light of microscopic, operando X-ray and electron-based tech-

niques, unveiling the different intermediate steps of the synthesis. The 

synthe-sis process was extended to different non-noble metals (M = Ni, 

Co, Cu, Zn and Fe) and to different carbon supports. The enhanced 

activity for the ORR resulted from (i) the contraction of the lattice pa-

rameter by the non-noble metal (the final NPs contains ca. 15 – 20 at. 

% of M), (ii) the open porosity and (iii) the density of structural defects 

at the surface of the NPs, which was semi-quantitativey estimated by 

COads stripping measurements and Rietveld analysis of wide-angle X-

ray scattering patterns. The non-noble metal was found to be annealed 

(dissolved) faster than the structural defects during the accelerated 

stress tests. 

 

Key words: Proton Exchange Membrane Fuel Cell, Porous Hollow 

PtM Nanoparticles, Oxygen Reduction Reaction.  

 

Résumé 
Cette thèse s’intéresse aux mécanismes de formation, à l’activité élec-

trocatalytique pour la réduction de l’oxygène (ORR) et à la stabilité de 

nanoparticules (NPs) creuses à base de Pt supportées sur carbone pour 

des applications en pile à combustible à membrane échangeuse de pro-

tons (PEMFC). La formation et la croissance des NPs, synthétisées par 

une méthode dite ‘one-pot’, ont été étudiées grâce à des techniques uti-

lisant les rayons X ou les électrons, nous permettant ainsi de mettre en 

évidence les différentes étapes de la synthèse. Le procédé de synthèse 

a été étendu à différents métaux non nobles (M = Ni, Co, Cu, Zn and 

Fe) et à différents supports carbonés. L’activité supérieure des NPs 

pour l’ORR résulte (i) de la contraction du paramètre de maille induit 

par la présence du métal non-noble, (ii) de leur porosité ouverte et (iii) 

de la densité de défauts structuraux à la surface des NPs (estimée de 

façon semi-quantitative via mesures COads stripping et analyse Riet-

veld de données de diffusion des rayons X aux grands angles). Les dé-

fauts structuraux sont plus stables que le métal non-noble durant les 

tests de vieillissement accéléré. 

 

Mots clés : Pile à Combustible à Membrane Echangeuse de Protons, 

Nanoparticules Creuses de PtM, Réduction de l’Oxygène.  


