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Résumé

L'objectif de cette thèse est de fournir des bornes d'erreur pour des problèmes aux valeurs propres linéaires et non linéaires issus du calcul de structure électronique. Nous nous intéressons en particulier au calcul de l'état fondamental basé sur la théorie de la fonctionnelle de la densité, comprenant le modèle de Kohn-Sham. Nos estimations reposent principalement sur des analyses d'erreur a posteriori. Plus précisément, nous commençons par étudier un phénomène de compensation d'erreur de discrétisation pour un problème simple, linéaire aux valeurs propres, pour lequel les solutions analytiques sont disponibles. L'étude mathématique est basée sur une analyse a priori de l'erreur sur l'énergie. Ensuite, nous présentons une analyse a posteriori pour le problème du laplacien aux valeurs propres discrétisé avec des éléments finis conformes et non conformes. Nous fournissons des bornes d'erreur garanties, calculables et efficaces, pour les valeurs propres simples de l'opérateur de Laplace et leurs vecteurs propres associés. Par la suite, nous nous concentrons sur des problèmes aux valeurs propres non linéaires. Tout d'abord, nous proposons une analyse a posteriori pour l'équation de Gross-Pitaevskii. Les bornes d'erreur obtenues sont valables sous des hypothèses qui peuvent être vérifiées numériquement. Elles peuvent être séparées en deux composantes venant respectivement de la discrétisation et de l'algorithme itératif utilisé pour résoudre le problème non linéaire aux valeurs propres. L'équilibrage de ces composantes d'erreur permet d'optimiser les ressources numériques. Deuxièmement, nous présentons une méthode de post-traitement pour le problème de Kohn-Sham, qui améliore la précision des orbitales de l'état fondamental, et qui a un faible coût de calcul pour des simulations en ondes planes. Les solutions post-traitées peuvent être utilisées soit comme solutions plus précises du problème, soit pour calculer une estimation de l'erreur de discrétisation, qui n'est alors pas garantie, mais qui est en pratique proche de l'erreur réelle.

Abstract

The objective of this thesis is to provide error bounds for linear and nonlinear eigenvalue problems arising from electronic structure calculation. We focus on ground-state calculations based on Density Functional Theory, including Kohn-Sham models. Our estimations mostly rely on a posteriori error analysis. More precisely, we start by studying a phenomenon of discretization error cancellation for a simple linear eigenvalue problem, for which analytical solutions are available. The mathematical study is based on an a priori analysis for the energy error. Then, we present an a posteriori analysis for the Laplace eigenvalue problem discretized with conforming and nonconforming finite elements. We provide guaranteed, fully computable and efficient error bounds, for simple eigenvalues of the Laplace operator and their corresponding eigenvectors. Thereafter, we focus on nonlinear eigenvalue problems. First, we provide an a posteriori analysis for the Gross-Pitaevskii equation. The error bounds are valid under assumptions that can be numerically checked, and can be separated in two components coming respectively from the discretization and the iterative algorithm used to solve the nonlinear eigenvalue problem. Balancing these error components allows to optimize the computational resources. Second, we present a post-processing method for the Kohn-Sham problem, which improves the accuracy of planewave computations of ground state orbitals at a low computational cost. The post-processed solutions can be used either as a more precise solution of the problem, or used for computing an estimation of the discretization error, which is not guaranteed, but in practice close to the real error.

Préambule

À l'échelle atomique, un système moléculaire composé de M noyaux et de N électrons peut être très bien décrit par sa fonction d'onde, une fonction à valeurs complexes dépendant de 4(M +N ) variables, trois variables d'espace et une variable de spin par particule (et de 3(M +N ) variables lorsque le spin est négligé). Connaissant la fonction d'onde, il est possible de calculer de nombreuses propriétés physiques et chimiques du système, par exemple l'énergie de dissociation, la conductivité ou la conformation spatiale. Le calcul précis et efficace de ces propriétés est un défi important dans de nombreux domaines tels que la chimie, la physique de la matière condensée ou la science des matériaux, surtout lorsque les expériences sont très coûteuses ou impossibles à réaliser.

Pour un système donné, la fonction d'onde est solution d'une équation de Schrödinger dépendante du temps, une équation aux dérivées partielles linéaire posée sur un espace de dimension 3 (N +M ) . Malgré le caractère linéaire de l'équation, la grande dimension de l'espace sur lequel l'équation est posée empêche de résoudre cette équation numériquement. En effet, la résolution de cette équation est trop coûteuse lorsque le nombre de particules dépasse un ou deux, même avec les ordinateurs et les supercalculateurs d'aujourd'hui.

Un problème plus simple mais toujours représentatif dans ce domaine est le calcul de l'état fondamental électronique du système, qui est l'état stationnaire de plus basse énergie, pour une configuration donnée des noyaux. Ce problème prend la forme d'une équation de Schrödinger indépendante du temps, qui est encore impossible à résoudre en pratique même pour les systèmes de petite taille. Dans ce cadre, l'affirmation suivante annoncée par Dirac en 1929 [START_REF] Dirac | Quantum mechanics of many-electron systems[END_REF] est encore pertinente aujourd'hui:

Pour résoudre le problème linéaire très complexe de détermination de l'état fondamental électronique du système, différentes approximations sont utilisées. Tout d'abord, le modèle est simplifié, afin d'obtenir des équations résolubles numériquement. Cela se fait généralement par une réduction drastique de la dimension du modèle, souvent contrebalancée par l'introduction d'une non-linéarité. Deuxièmement, les équations du modèle simplifié sont discrétisées, réduisant ainsi le problème à un problème en dimension finie. Troisièmement, les équations discrétisées sont résolues, éventuellement en utilisant des algorithmes itératifs avec un nombre fini d'itérations. Une question naturelle qui se pose à ce stade est la mesure de ces approximations et l'impact qu'elles ont sur le résultat final.

Pour répondre à cette question, il faut quantifier les erreurs introduites à chaque approximation. De telles estimations permettent d'obtenir une certification des simulations numériques, et donc des résultats fiables. Mais ils servent également à optimiser les paramètres utilisés pour exécuter les simulations. En effet, en quantifiant les erreurs provenant des différentes sources d'approximation (simplifications du modèle, discrétisation, algorithmes), il est possible d'évaluer les approximations ayant un plus grand impact sur le résultat et donc d'affiner uniquement les paramètres appropriés. Ainsi, équilibrer les composantes d'erreur permet d'optimiser le rapport entre le coût et la précision des calculs.

Cette thèse se concentre sur l'estimation d'erreur pour des problèmes provenant du calcul de structure électronique. Les problèmes considérés sont des problèmes aux valeurs propres linéaires et non linéaires. L'objectif principal est de fournir des bornes d'erreur calculables et garanties pour l'erreur de discrétisation de différents problèmes, ainsi qu'une séparation et un équilibrage de différentes composantes d'erreur. Par exemple, nous présentons une séparation des erreurs de discrétisation et d'algorithme pour un problème aux valeurs propres non linéaire. Nous avons également développé une méthode de post-traitement améliorant la précision des simulations numériques à un faible coût de calcul.

Cette thèse est composée de neuf chapitres, regroupés en cinq parties.

La première partie, composée de deux chapitres, est une partie introductive. Le chapitre 1 donne un aperçu des différents modèles utilisés en chimie quantique pour le calcul de structure électronique. Différentes méthodes de discrétisation ainsi que des algorithmes itératifs pour résoudre de tels problèmes sont également présentés. Ces approximations successives constituent les sources d'erreurs que nous souhaiterions contrôler. Le chapitre 2 fournit une introduction à l'estimation d'erreur, à la fois a priori et a posteriori, ainsi qu'une description des différentes contributions de cette thèse. Pour chaque contribution, les principaux résultats sont présentés.

Les quatre autres parties présentent les différentes contributions de cette thèse et peuvent être lues indépendamment. L'ordre des parties suit la complexité croissante des modèles considérés.

Dans la partie II (chapitre 3), le modèle considéré est unidimensionnel. Nous étudions une équation linéaire aux valeurs propres découlant d'un problème de minimisation, pour lequel les solutions analytiques sont disponibles. L'équation est paramétrée par une variable spatiale, modélisant la position des noyaux dans une molécule. Nous présentons une estimation d'erreur a priori pour l'énergie, à partir de laquelle nous expliquons un phénomène de compensation d'erreur de discrétisation entre différents systèmes, observé à travers des simulations numériques pour deux systèmes moléculaires simples. Il est montré que l'amélioration de convergence menant à la compensation d'erreur réside dans le préfacteur et non dans le taux de convergence de l'erreur.

La partie III se concentre sur le problème du laplacien aux valeurs propres. Dans le chapitre 4, une estimation d'erreur a posteriori pour des méthodes d'éléments finis conformes est présentée. Les bornes d'erreur sont complètement calculables et valides dans des conditions vérifiables a posteriori. L'analyse est effectuée non seulement pour la valeur propre la plus basse du laplacien, mais aussi pour d'autres valeurs propres simples. En outre, l'erreur due au solveur algébrique inexact est prise en compte, ce qui rend possible un équilibrage d'erreur entre l'erreur de discrétisation et l'erreur algébrique. Dans le chapitre 5, une extension de cette analyse au cas des éléments finis non conformes est présentée.

La partie IV (chapitre 6) expose une estimation d'erreur a posteriori pour un problème non linéaire aux valeurs propres : l'équation de Gross-Pitaevskii, qui est mathématiquement proche du modèle de Thomas-Fermi. L'équation, posée dans un cadre périodique unidimensionnel, est discrétisée en ondes planes (séries de Fourier) et résolue à l'aide d'un algorithme de point fixe (appelé SCF pour self-consistent field). Une première borne d'erreur grossière mais garantie est fournie, ce qui permet de justifier de manière garantie l'utilisation d'une deuxième borne a posteriori plus précise. L'estimateur d'erreur est ensuite décomposé en deux parties : l'une d'elles dépend principalement de la discrétisation, l'autre dépend du nombre d'itérations effectuées dans l'algorithme de point fixe. Cela permet de raffiner de manière adaptative la dimension de l'espace discret et le nombre d'itérations dans l'algorithme afin d'obtenir un bon compromis entre précision et coût de calcul.

La partie V présente une méthode de post-traitement basée sur la théorie des perturbations de Rayleigh-Schrödinger, pour les problèmes de valeurs propres linéaires et non linéaires. L'idée clé est d'effectuer un calcul complet dans une grille grossière, puis un calcul peu coûteux dans une grille plus fine, de sorte que la précision de la solution post-traitée est comparable à la précision de la solution sur la grille fine. La méthode est présentée pour la première fois pour le modèle Kohn-Sham dans le chapitre 7, avec des simulations numériques montrant l'amélioration de la précision sur l'énergie apportée par le post-traitement. Un taux de convergence théorique amélioré pour l'énergie est également annoncé. Les démonstrations de cette estimation sur l'énergie sont ensuite présentées dans le cas des opérateurs de Schrödinger linéaires dans le cadre des matrices densité dans le chapitre 8. La réduction de l'erreur sur les matrices densités est elle aussi estimée. Enfin, les démonstrations sont étendues au cas non linéaire, comprenant le modèle Kohn-Sham, dans le chapitre 9.

Preamble

At the atomic scale, a molecular system composed of M nuclei and N electrons can be very well described by its wave-function, a complex-valued function depending on 4(M + N ) variables, three space variables and one spin variable per particle (and 3(M + N ) variables when the spin is neglected). From the knowledge of the wave-function, many physical and chemical properties of the system can be computed, e.g. dissociation energies, conductivity, or spatial conformations. The accurate and efficient computation of these properties is an important challenge in many fields such as chemistry, condensed matter physics, or materials science, especially when experiments are highly expensive or practically impossible.

For a given system, the wave-function is solution to a time-dependent many-body Schrödinger equation, which is a linear partial differential equation posed on a 3 (N +M ) -dimensional space. Unlike its linear property, the huge space on which the equation is posed prevents from solving this equation numerically. Indeed, the resolution of this equation is way too costly when the number of particles exceeds one or two, even with today's computers and supercomputers.

A simpler but still representative problem in this domain is the computation of the electronic ground state of the system, which is the steady state of lowest energy, for a given configuration of the nuclei. This problem takes the form of a time-independent N -body Schrödinger equation, which is still impossible to solve in practice even for small size systems. In this framework, the following assertion announced by Dirac in 1929 [START_REF] Dirac | Quantum mechanics of many-electron systems[END_REF] is still relevant today:

To handle this very complex linear problem of finding the electronic ground-state of the system, different approximations are used. First, the model is simplified, in order to obtain tractable equations. This is usually done by a drastic dimension reduction of the model, often counterbalanced by the introduction of a nonlinearity. Second, the equations of the simplified models are discretized, reducing the problem to a finite-dimensional one. Third, the discretized equations are solved, possibly using iterative algorithms with a finite number of iterations. A natural question arising at this point is how large these approximations are and what impact they have on the final result.

To answer this question, the errors introduced at each approximation step need to be quantified. Such estimations allow to get certified, and hence reliable results in the numerical simulations. But they also serve to optimize the parameters used to run the simulations. Indeed, by quantifying the errors coming from the different sources (model simplification, discretization, algorithms), one can evaluate which approximations lead to the largest errors, and hence refine only the appropriate parameters. Thus, balancing the error components allows to optimize the ratio between the computational cost and the accuracy of the computations. This thesis focuses on the error analysis for problems arising from electronic structure calculation. The problems under consideration are linear and nonlinear eigenvalue problems. The main goal is to provide computable and guaranteed error bounds for the discretization error of different problems, as well as a separation and balancing of different error components. For example, we provide a separation of the discretization and algorithm errors for a nonlinear eigenvalue problem. We also developed a post-processing method improving the accuracy of numerical simulations at a low computational cost. This thesis is composed of nine chapters, grouped into five parts.

The first part, which is composed of two chapters, is an introductory part. Chapter 1 gives an overview of different models used in quantum chemistry for the calculation of electronic structures. Different discretization methods as well as iterative algorithms for solving such problems are also presented. These successive approximations constitute the sources of errors we aim at controlling. Chapter 2 provides an introduction to error analysis, both a priori and a posteriori together with a description of the different contributions of this thesis. For each contribution, the main results are presented.

The four other parts present the different contributions and can be read independently. The order of the parts follows the increasing complexity of the models under consideration.

In Part II (Chapter 3), the model under consideration is one-dimensional. We study a linear eigenvalue equation arising from a minimization problem, for which analytic solutions are available. The equation is parametrized by a spatial parameter, modeling the position of the nuclei in a molecule. We provide an a priori error estimation for the energy, from which we explain a phenomenon of discretization error cancellation between different systems, observed through numerical simulations for two simple molecular systems. This assesses that the convergence improvement leading to the error cancellation lies in the prefactor and not in the convergence rate of the error.

Part III focuses on the Laplace eigenvalue problem. In Chapter 4, an a posteriori error estimation for conforming finite element methods is presented. The error bounds are fully computable, and valid under a posteriori verifiable conditions. The analysis is performed not only for the lowest eigenvalue of the Laplace operator, but also for other simple eigenvalues. Moreover, inexact algebraic solvers are taken into account, leading to a possible error balance between discretization error and algebraic error. In Chapter 5, an extension to the case of nonconforming finite element methods is presented.

Part IV (Chapter 6) provides an a posteriori error estimation for a nonlinear eigenvalue problem: the Gross-Pitaevskii equation, which is mathematically close to the Thomas-Fermi model. The equation posed in a one-dimensional periodic setting is discretized using planewaves (Fourier series) and solved using a self-consistent field (fixed point) algorithm. A first coarse but guaranteed bound is provided, which allows to justify in a guaranteed manner the use of a second, more precise a posteriori bound. The error estimator is then decomposed into two parts: one of them depends mainly on the discretization, the other one on the number of iterations performed in the fixed point algorithm. This allows to refine adaptively the dimension of the discrete space and the number of iterations in the algorithm to get a good compromise between accuracy and computational cost.

Part V presents a post-processing method based on Rayleigh-Schrödinger perturbation theory, for linear and nonlinear eigenvalue problems. The key idea is to perform a full computation in a coarse grid, and then a cheap computation in a finer grid, so that the accuracy of the post-processed solution is comparable to the accuracy of the solution on the fine grid. The method is first presented for the Kohn-Sham model in Chapter 7, with numerical simulations showing the improvement of the energy accuracy brought by the post-processing. A theoretical improved convergence rate for the energy is also announced. The proofs for this estimate are then presented in the linear case of Schrödinger operators in the framework of density matrices in Chapter 8, together with the improvement on the density matrix. Finally, the proofs are extended to the nonlinear case, including the Kohn-Sham model in Chapter 9.

Part I

Introduction

Chapter 1

Electronic structure calculation

Introduction

In this thesis, we focus on ab initio methods in quantum chemistry. The main advantage of these methods is that the models under consideration contain no empirical parameters, except a few fondamental constants of physics: the reduced Planck constant , the electron mass m e , the elementary charge e, the dielectric permittivity of the vacuum ε 0 , the Boltzmann constant k B , as well as the masses and atomic numbers of the nuclei contained in the system under consideration. In the following, we will work in atomic units, which implies that = 1, e = 1, m e = 1, 4πε 0 = 1.

In this setting, the elementary length is the Bohr radius and is equal 5.29.10 -11 m. The mass unit is 9.11.10 -31 kg. The energy unit is the Hartree and is equal to 4.36.10 -18 J. Thus, the distance nucleus-electron is close to 1 for the hydrogen atom. And in general, the numbers under consideration are of order 1 or of order close to 1.

More precisely, we concentrate on the computation of the ground state electronic structure of a molecular system, i.e. the state of lowest energy of the system. In electronic structure calculation, the determination of the ground state is a standard, however challenging problem. It is needed for the computation of physical and chemical properties of the system, and is often used as an input for other problems, such as the determination of excited states.

The aim of this chapter is to give an overview of the different models used to compute the ground state of a molecular system, as well as practical resolution issues, such as discretization methods and algorithms. For a more detailed description of these models, the reader is referred to [START_REF] Szabo | Modern quantum chemistry: Introduction to advanced electronic structure theory[END_REF] and [START_REF] Helgaker | Molecular electronic-structure theory[END_REF]. Besides, a mathematical presentation of the models can be found in [START_REF] Cancès | Méthodes mathématiques en chimie quantique. Une introduction[END_REF] (in french), see also [START_REF] Cancès | Computational quantum chemistry: A primer[END_REF] (in english).

In this chapter, we start by presenting the Schrödinger model in Section 1.2. This model gives rise to a way too high-dimensional problem. There exist therefore many simplifications for this model, some of which are presented in Section 1.3. We focus particularly on Hartree-Fock and post Hartree-Fock methods, Density Functional Theory (DFT), and we mention Quantum Monte Carlo (QMC). In Section 1.4, we present the main discretization methods used in the field, which particularly apply for mean-field models, i.e. Hartree-Fock equations and Density Functional Theory models. Two other standard approximations used in the context of molecular simulation are described in Section 1.5: the supercell model, which is used to simulate molecules in a periodic framework, and pseudopotentials, which are used for different reasons, including model reduction and regularity issues. Finally, we present the algorithms used to solve numerically the equations of mean-field models in Section 1.6.

Electronic structure calculation

The Schrödinger model

Description of a molecular system

At the molecular scale, the theory of classical mechanics is no longer valid, and one has to use a quantum description of matter. A molecular system is hence not described by the collection of the positions and velocities of the particles, as it is the case in classical mechanics, but by its wave-function: a complex-valued function depending on the positions of all the particles of the system.

A priori, in a molecular system composed of M nuclei and N electrons, all particles should be treated as quantum particles. The wave-function should therefore depend on 3(N + M ) variables. However, the mass of a proton being about 1838 times the mass of an electron, the nuclei are way heavier than the electrons, and in the vast majority of the simulations, the nuclei are considered as classical particles. This approximation is called Born-Oppenheimer approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF], and comes from two successive approximations. First, the adiabatic theorem [START_REF] Born | Beweis des Adiabatensatzes[END_REF] allows to write the wave-function as a product of a nuclear wave-function and an electronic wave-function. Second, the semi-classical limit of the nuclei leads to a classical time-evolution of the nuclei, as the electrons instantaneously relax in their ground-state. For more details about this approximation, the reader is referred to [START_REF] Panati | The time-dependent Born-Oppenheimer approximation[END_REF], [START_REF] Hagedorn | Mathematical analysis of Born-Oppenheimer approximations[END_REF], [START_REF] Aizenman | On semi-classical bounds for eigenvalues of Schrödinger operators[END_REF].

Therefore, we consider a physical system composed of • M nuclei, considered as classical particles, with electric charges z 1 , z 2 , . . . , z M ∈ N * , and positions R 1 , R 2 , . . . , R M ∈ R 3 ,

• N electrons, considered as quantum particles, described by a wave-function

Ψ ∈ N i=1 L 2 (R 3 , C),
i.e. a square integrable function depending on the spatial positions (r 1 , r 2 , . . . , r N ) ∈ R 3N of the electrons. Here denotes the tensor product. Note that any function in L 2 (R 3N , C) can be approximated by functions in N i=1 L 2 (R 3 , C). Therefore, the wavefunction Ψ can also be seen as an element of L 2 (R 3N , C).

According to the Pauli principle, the electronic wave-function is an antisymmetric function with respect to the inversion of the variables of two particles. This expresses the fact that electrons are indiscernible particles, which is a postulate of quantum mechanics, and that they are fermions, a property related to the spin of these particles. Therefore, the wave-function belongs in fact to the space

H e = N i=1 L 2 (R 3 , C),
which is the antisymmetrized product space of L 2 (R 3 , C). The antisymmetric property of the wave-function reads ∀i, j = 1, 2, . . . , N, Ψ(. . . , r i , . . . , r j , . . .) = -Ψ(. . . , r j , . . . , r i , . . .).

As Ψ(. . . , r i , . . . , r i , . . .) = 0, the probability of having two electrons at the same position in space is equal to zero.

The space H e is a Hilbert space and is endowed with the inner product

∀Ψ, Φ ∈ H e , Ψ|Φ = R 3N
Ψ(r 1 , r 2 , . . . , r N ) Φ(r 1 , r 2 , . . . , r N )dr 1 dr 2 . . . dr N ,

where Ψ denotes the complex conjugate of Ψ. The corresponding norm is denoted by • . Physically, the square modulus of the wave-function |Ψ(r 1 , . . . , r N )| 2 is the probability density of finding the N electrons at the positions r 1 , r 2 to r N . Hence, the norm of the wavefunction in H e is equal to 1:

Ψ 2 = R 3N
|Ψ(r 1 , . . . , r N )| 2 dr 1 . . . dr N = 1.

An important notion on which rely several methods in electronic structure calculation is the electronic density. It is a real-valued function on R 3 whose integral over the whole space is equal to the number of electrons and which represents the distribution of the N electrons in R 3 . It is defined as

ρ(r) := N R 3(N -1)
|Ψ(r, r 2 , . . . , r N )| 2 dr 2 . . . dr N .

(1.2.1)

Note that in the following presentation of the models, we always omit the spin variables, even though the wave-function normally also depends on the spins of all the electrons, and should be an element of N i=1 L 2 (R 3 × {|+ , |-}, C), |+ and |representing respectively the spins up and down. This simplification of the notations in the equations can physically be viewed as considering only spinless or closed-shell systems. However, the numerical simulations presented hereafter for molecular systems are performed using closed-shells, hence taking into account the spin variables. This is in particular the case in Chapter 7.

Electronic time-independent Schrödinger equation

The time-independent ground-state problem corresponds to the energy minimization of the system under a specific configuration of the nuclei (R 1 , R 2 , . . . , R M ). It reads

E(R 1 , R 2 , . . . , R M ) = inf Ψ∈He, Ψ =1 Ψ, H (R 1 ,R 2 ,...,R M ) Ψ , (1.2.2)
where the Hamiltonian H (R 1 ,R 2 ,...,R M ) of the system reads

H (R 1 ,R 2 ,...,R M ) = - N j=1 1 2 ∆ r j + M α=1 z α |R α -r j | + N i,j=1 i<j 
1 |r i -r j | . (1.2.3)
The Hamiltonian is composed of three parts:

• The first part Writing the first-order optimality conditions of this energy minimization problem, one obtains the ground state eigenvalue problem proposed by Schrödinger in 1926 [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF]: Find the lowest eigenvalue E(R 1 , R 2 , . . . , R M ) and corresponding eigenfunction Ψ(R 1 , R 2 , . . . , R M ) verifying

H (R 1 ,R 2 ,...,R M ) Ψ(R 1 , R 2 , . . . , R M ) = E(R 1 , R 2 , . . . , R M )Ψ(R 1 , R 2 , . . . , R M ),
where Ψ(R 1 , R 2 , . . . , R M ) is called the ground-state wave-function, and E(R 1 , R 2 , . . . , R M ) is called the ground state energy. Here, the coefficients in H (R 1 ,R 2 ,...,R M ) are real hence the complex and real parts of the wave-function Ψ(R 1 , R 2 , . . . , R M ) are not mixed by the Hamiltonian and are both solutions to the ground state problem. We shall therefore consider only realvalued wave-functions in the following. Remark that in case of external interactions, further contributions may be added to the Hamiltonian. This is for example the case in the presence of an external magnetic field.

To obtain the molecular configuration of minimal energy, one needs to solve the so-called geometry optimization problem which corresponds to the minimization problem

inf (R 1 ,...,R M )∈R 3M E(R 1 , . . . , R M ),
where E(R 1 , . . . , R M ) is the solution to the electronic Schrödinger equation depending on the parameters (R 1 , . . . , R M ).

In the sequel, we focus only on the resolution of the electronic problem, and we forget the dependency on the nuclei. The electronic Hamiltonian will be denoted by H, and the wave-function by Ψ.

Limitations of the Schrödinger model

The electronic Schrödinger equation gives a very good approximation of the ground-state electronic structure for a large variety of systems, in which case the Schrödinger model can be considered as a reference model. For many systems, the theoretical results are indeed in very good agreement with experiments.

However, this model neglects all relativistic effects, which appear in particular in the case of heavy atoms, whose core electrons have a velocity close to the light velocity. The effect of these core electrons is to screen the nuclear charge for the valence electrons. This explains for example the color difference between gold and silver, which is not predicted without taking relativistic effects into account [START_REF] Pyykkö | Relativity and the periodic system of elements[END_REF]. In 1928, Dirac proposed an equation to include these effects [START_REF] Dirac | The quantum theory of the electron[END_REF], and Breit complemented it four years later. This was further developed in a theory called quantum electrodynamics (QED).

Note that the Born-Oppenheimer approximation can also be a limitation of the Schrödinger model. Indeed, when ground and excited electronic surfaces get very close, the adiabatic theorem does not hold any more, and therefore the Born-Oppenheimer approximation is no longer valid. In practice, it is very rarely considered as being the case, and the major part of numerical simulations are performed within this approximation.

Approximations for the electronic Schrödinger equation

For a system with N electrons, the electronic wave-function depends on 3N variables. A naive discretization with only 10 points per dimension would lead to a discretization space with 10 3N points, which grows exponentially with N and becomes untractable when N grows, even for supercomputers. In order to lower the dimensionality of the problem, different approximate models have been developed. We present here several of them.

Hartree-Fock and post Hartree-Fock methods

Hartree-Fock model

The Hartree-Fock model consists of assuming a specific form for the wave-function, and thus minimizing the energy over a smaller set of antisymmetric functions. Instead of the antisymmetrized tensor product N i=1 L 2 (R 3 , C), only determinants of three-dimensional functions are considered. These functions are called Slater determinants [START_REF] Slater | The theory of complex spectra[END_REF], and write

Ψ(x 1 , x 2 , . . . , x N ) = 1 √ N ! ψ 1 (x 1 ) ψ 2 (x 1 ) • • • ψ N (x 1 ) ψ 1 (x 2 ) ψ 2 (x 2 ) • • • ψ N (x 2 )
. . . . . . . . . . . .

ψ 1 (x N ) ψ 2 (x N ) • • • ψ N (x N )
.

(1.3.1)

The functions ψ 1 , . . . , ψ N ∈ L 2 (R 3 , R) are called orbitals, and are usually chosen orthonormal in L 2 (R 3 , R). The factor 1 √ N ! is a normalization factor. A Slater determinant with orbitals ψ 1 , . . . , ψ N is denoted by

Ψ = |ψ 1 , . . . , ψ N .
The energy minimization problem can then be written as

E 0 HF = inf Ψ∈V HF Ψ|HΨ = inf Ψ∈V HF E HF (Ψ), (1.3.2) 
where H is the electronic Hamiltonian defined in (1.2.3), V HF is the set of Slater determinants

V HF = Ψ = |ψ 1 , . . . , ψ N | ψ i ∈ H 1 (R 3 ), ψ j |ψ i = δ ij , (1.3.3) 
and E HF (Ψ) is defined below. Since V HF ⊂ N i=1 L 2 (R 3 , C), the Hartree-Fock energy is always larger or equal than the exact ground state energy. This is called the variational principle.

Still denoting by Ψ = {ψ i } the wave-function built on the orbitals ψ 1 , . . . , ψ N , the Hartree-Fock energy of a Slater determinant Ψ can be written in term of the orbitals ψ 1 , . . . , ψ N as

E HF (Ψ) = N j=1 1 2 R 3 |∇ψ j | 2 + R 3 ρ Ψ V + 1 2 R 3 R 3 ρ Ψ (x)ρ Ψ (y) |x -y| dxdy - 1 2 R 3 R 3 | N j=1 ψ j (x)ψ j (y)| 2 |x -y| dxdy,
where the electronic density is

ρ Ψ (x) = N j=1 |ψ j (x)| 2 ,
and the nuclear potential is

V (x) = M α=1 z α |R α -x| .
A proof of existence for the solutions of the Hartree-Fock problem can be found in [START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF], see also [START_REF] Lions | Solutions of Hartree-Fock equations for Coulomb systems[END_REF].

The Euler-Lagrange equations of the problem read in a strong form: Find the set of orbitals Ψ 0 = {ψ 1 , . . . , ψ N } building the Slater determinant |ψ 1 , . . . , ψ N and the Lagrange-multipliers (ε i,j ) 1≤i,j≤N such that for all j = 1, . . . , N

- 1 2 ∆ x ψ j (x) + V (x)ψ j (x) + N i=1 R 3 |ψ i (y)| 2 |x -y| dy ψ j (x) - N i=1 R 3 ψ i (y)ψ j (y) |x -y| dy ψ i (x) = N i=1 ε ij ψ i (x)
and for all i, j = 1, . . . , N, ψ j |ψ i = δ ij .

The Hartree-Fock energy being invariant by a unitary transformation on the orbitals ψ 1 to ψ N , the problem can be rewritten as Find Ψ 0 = {ψ 1 , . . . , ψ N } and (ε 1 , . . . , ε N ) ∈ R N such that:

F Ψ 0 ψ j = ε j ψ j , ∀j = 1, . . . , N (1.3.4) 
ψ j |ψ i = δ ij , ∀i, j = 1, . . . , N,
where the action of the Fock operator F Ψ with Ψ = {ψ 1 , . . . , ψ N }, for any arbitrary set of orbitals Φ = {ϕ 1 , . . . , ϕ N } is given by

F Ψ ϕ j = - 1 2 ∆ x ϕ j (x) + V (x)ϕ j (x) + N i=1 R 3 |ψ i (y)| 2 |x -y| dy ϕ j (x) - N i=1 R 3
ψ i (y)ϕ j (y) |x -y| dy ψ i (x).

Due to the dependency of the Fock operator on the orbitals ψ 1 , . . . , ψ N , this problem is a nonlinear eigenvalue problem. Hence, the linearity of the full Schrödinger problem is lost, but the dimensionality of the problem is way smaller, as one only needs to determine N threedimensional functions.

The Hartree-Fock model offers a very good compromise between simplicity and accuracy. It predicts around 90% of the total energy in general and up to 99% for some systems. However, the remaining part of the energy can hide interesting physical phenomena that cannot be predicted with the Hartree-Fock model only. For this reason, different methods have been designed to capture the last 1 to 10%. Based on a Hartree-Fock computation as an input, they are called post Hartree-Fock methods.

Post Hartree-Fock Configuration Interaction method

In the Configuration Interaction (CI) method, the wave-function is searched as a linear combination of Slater determinants

Ψ = i α i |ψ i 1 , . . . , ψ i N .
In this sum, the Slater determinants are built from well-chosen eigenfunctions of the Fock operator F Ψ 0 (1.3.4). Note that the Hartree-Fock determinant is built from the eigenfunctions of the Fock operator which correspond to the N lowest eigenvalues, while Slater determinants built from orbitals containing eigenfunctions whose eigenvalues are not in the N lowest are called excited determinants.

In a discrete basis (the discretization methods will be presented in Section 1.5), if all Slater determinants are considered, the method is called full configuration interaction (FCI), and is equivalent to a discrete version of the Schrödinger equation. But the number of determinants to consider is huge, as it is equal to N ! N , with N the number of basis functions for the discretization of one orbital.

Therefore, in practice, only a small subset of Slater determinants is considered. In general, it corresponds to all Slater determinants differing from the Hartree-Fock determinant by at most two, three or four orbitals. The methods are in this case respectively called CISD (configuration interaction single double), CISDT (configuration interaction single double triple), CISDTQ (configuration interaction single double triple quadruple). The more determinants considered in the linear combination, the more precise the method, but also the more costly. Indeed, mathematically, the problem is a linear eigenvalue problem arising from the problem of minimizing the energy Ψ|HΨ over the set of considered determinants, so the cost is cubic with respect to the number of determinants.

This method gives particularly good results when the error of the Hartree-Fock method is already very small. When several determinants have an important contribution in the linear combination, the configuration interaction method is not very accurate. In this case, one has to use a multi-configuration method (see Section 1.3.2).

An important drawback of the CI method is that it is not size-consistent: the energy of two separated systems is not necessarily equal to the sum of the energies of the two systems. For this reason, other methods such as Coupled Cluster (CC) are often preferred over the CI method.

Post Hartree-Fock Coupled Cluster

The Coupled Cluster (CC) method, which guarantees size-consistency, uses a different ansatz for the wave-function compared to the CI method. The wave-function is written as an exponential operator called cluster operator applied to the Hartree-Fock determinant. The cluster operator, which has to be determined, couples the different orbitals of the Hartree-Fock problem. Loosely speaking, the wave-function is based on a linear combination of many determinants, with coefficients related by nonlinear relations. This allows, for a fixed number of coefficients, to include more determinants than in the CI method. The resulting equations are nonlinear, but can be solved using an iterative algorithm. This is one of the reference methods to get accurate results for small to medium size molecules. A presentation of the method from a mathematical viewpoint can be found in [START_REF] Schneider | Analysis of the projected coupled cluster method in electronic structure calculation[END_REF]. An error analysis for this method has been provided in [START_REF] Rohwedder | Error estimates for the Coupled Cluster method[END_REF].

Møller-Plesset perturbation theory

The Hartree-Fock solution can also be improved by means of Rayleigh-Schrödinger perturbation theory, as in Møller-Plesset (MP) perturbation theory. In this method, the exact Hamiltonian is considered as a perturbation of the Fock operator. A perturbation parameter λ ∈ [0, 1] is introduced as well as an intermediate Hamiltonian

H(λ) = F Ψ 0 + λ(H -F Ψ 0 ),
so that H(0) is the Fock operator and H(1) is the exact Hamiltonian. Then the wave-function and the energy are written as power series depending on the perturbation parameter λ. The exact equation is then expanded up to a certain order in λ. Note that the perturbative series may not be convergent. Then, taking λ = 1 provides corrections for the wave-function and the energy. An example of perturbation theory will be presented in Section 2.5.2. The perturbative development at different orders gives the different names for the method: MP2, MP3, MP4, and so on.

Multi-configuration methods

For some molecular systems, e.g. when the ground state is quasi-degenerate, which corresponds to a case of static correlation, Hartree-Fock and post Hartree-Fock methods fail to give an accurate description of the molecule. Multi-configuration methods have been particularly developed to overcome this problem.

Instead of considering a single determinant as in the Hartree-Fock model, the wave-function is written as a linear combination of K determinants and the Schrödinger energy is directly minimized on the space

V M C = Ψ = K i=1 α i |ψ i 1 , . . . , ψ i N , (α i ) 1≤i≤K ∈ R K , ψ i j ∈ H 1 (R 3 ), ψ i k |ψ i j = δ kj , 1 ≤ j ≤ N .
This means that the orbitals are optimized at the same time as the coefficients in the linear combination. Of course, compared to the Hartree-Fock problem, the resolution of this problem is computationally more demanding. One of these methods is called MCSCF for Multi-Configuration Self Consistent Field, and was proposed in [START_REF] Hinze | Multi-configuration self-consistent-field theory[END_REF], see also [START_REF] Werner | A quadratically convergent multiconfiguration-selfconsistent field method with simultaneous optimization of orbitals and CI coefficients[END_REF].

Density Functional Theory

In Density Functional Theory (DFT), the main object of interest is not the wave-function, but the electronic density defined in (1.2.1). It was first developed by Hohenberg and Kohn in [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF], and later on by Levy and Lieb [START_REF] Lieb | Density functionals for Coulomb systems[END_REF]. Considering the electronic density which depends only on three space variables reduces the dimension of the original problem. But it requires to express the Schrödinger problem in terms of the density, which is not trivial in general.

A key idea is to reformulate the electronic Schrödinger minimization problem by grouping the wave-functions having the same electronic density, and writing the problem as a minimization over the set of densities. Formally, Of course, finding E(ρ) is as difficult as finding the exact wave-function. Therefore, in practice, the functional E(ρ) is modeled. But once this functional is given, the problem is reduced to a minimization problem over the space of densities. Moreover, the space of densities arising from admissible wave-functions, called space of N -representable densities, is explicitly known. It is:

I N = ρ, | ρ ≥ 0, R 3 ρ(r)dr = N, R 3 |ρ 1/2 (r)| 2 dr < +∞ .
Different expressions for the energy functional E(ρ) have been proposed in the past. They can be grouped into two main categories: the ones in which the energy functional depends only on the density, called orbital-free models, and the Kohn-Sham models. We present some of them in the following. For more details, an interesting review article on the subject can be found in [START_REF] Burke | Perspective on density functional theory[END_REF]. Therafter, we also introduce the Gross-Pitaevskii equation, which has a physical origin different from density functional theory, but is mathematically very close to the orbital-free models.

Orbital-free models

The first orbital-free models were inspired from the behavior of the electron gas, and proposed in 1927 independently by Thomas [START_REF] Thomas | The calculation of atomic fields[END_REF] and Fermi [START_REF] Fermi | Statistical method to determine some properties of atoms[END_REF]. In the setting described in Section 1.2.1, the electrostatic potential generated by the nuclei and felt by the electrons is

V nuc (r) = - M k=1 z k |r -R k | . (1.3.5)
In all orbital-free models, the energy functional is explicit in terms of the electronic density, and the minimization problem reads

inf F (ρ) + R 3 ρV nuc , ρ ≥ 0, √ ρ ∈ H 1 (R 3 ), R 3 ρ = N . (1.3.6) 
The expression of the functional F depends on the model under consideration. In the Thomas-Fermi model, the functional reads

F (ρ) := C TF R 3 ρ 5/3 + 1 2 R 3 R 3 ρ(x)ρ(y) |x -y| dxdy,
where the first term models the kinetic energy of the electrons, and the second terms models the interaction between electrons.

In the Thomas-Fermi-von Weizsäcker model originally introduced in [START_REF] Weizsäcker | Zur Theorie der Kernmassen[END_REF], the functional reads

F (ρ) := C W 2 R 3 |∇ √ ρ| 2 + C TF R 3 ρ 5/3 + 1 2 R 3 R 3 ρ(x)ρ(y) |x -y| dxdy.
In this expression, the first two terms model the kinetic energy of the electrons, and the third term models the electron-electron interactions.

In the Thomas-Fermi-Dirac-von Weizsäcker, the functional reads

F (ρ) := C W 2 R 3 |∇ √ ρ| 2 + C TF R 3 ρ 5/3 -C D R 3 ρ 4/3 + 1 2 R 3 R 3 ρ(x)ρ(y) |x -y| dxdy,
where the third term is called Dirac exchange functional. In atomic units, the constants for the three models are C T F = 3 5/3 π 4/3 10 , C W = 1, 1/5 or 1/9 depending on the context [START_REF] Dreizler | Density functional theory[END_REF],

and

C D = 3 4 3 π 1/3 .
Despite their simplicity, these models are not much used any more for real calculations as they lack of accuracy. However, they are interesting from a mathematical point of view, because they are scalar models, hence reasonably simple, while they keep some of the properties present in more complicated models, still in use nowadays, such as Kohn-Sham models.

Electronic structure calculation

Kohn-Sham models

In Kohn-Sham models [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF], the ground-state minimization problem can still be written as

inf F (ρ) + R 3 ρV nuc , ρ ≥ 0, √ ρ ∈ H 1 (R 3 ), R 3 ρ = N ,
but in this case, the reference system is a system of non-interacting electrons, and not the electron gas as in Thomas-Fermi type models. The functional F (ρ) is decomposed as

F (ρ) = T KS (ρ) + J(ρ) + E xc (ρ),
where the kinetic part is

T KS (ρ) = inf 1 2 N i=1 R 3 |∇ψ i | 2 , Ψ = {ψ i } 1≤i≤N ∈ (H 1 (R 3 )) N , ρ Ψ = ρ ,
the electronic density being defined as

ρ Ψ (x) := 2 N i=1 |ψ i (x)| 2 ,
and

J(ρ) = 1 2 R 3 R 3 ρ(x)ρ(y) |x -y| dxdy.
The last part is E xc (ρ) = F (ρ) -T KS (ρ) -J(ρ) called exchange-correlation functional is a correction term, which is essential to describe quantitatively, and sometimes even qualitatively, the physics and chemistry of the system. Thus, the Kohn-Sham minimization problem can be written as

inf E KS (Ψ), Ψ = {ψ i } 1≤i≤N ∈ (H 1 (R 3 )) N , (1.3.7) 
with

E KS (Ψ) := N i=1 R 3 |∇ψ i | 2 + R 3 V nuc ρ Ψ + 1 2 R 3 R 3 ρ Ψ (x)ρ Ψ (y) |x -y| dxdy + E xc (ρ Ψ ).
In this energy functional, the first term models the kinetic energy, the second term the interactions between nuclei and electrons, and the third term the interaction between electrons. The fourth term corrects the error introduced by the first three terms. Theoretically, there exists an exact exchange-correlation functional (see e.g. [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Levy | Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[END_REF][START_REF] Lieb | Density functionals for Coulomb systems[END_REF][START_REF] Valone | Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices[END_REF]), i.e. a functional depending only on the electronic density ρ Ψ such that the solution of the Kohn-Sham minimization problem is the exact ground state density of the N -body Schrödinger equation. Unfortunately, such exact exchange-correlation functional is not known, and different approximations are commonly used.

A classical exchange-correlation functional is called local density approximation (LDA) and consists in approximating the exchange-correlation functional by

R 3 e LDA xc (ρ(x)) dx,
where e LDA xc (ρ) is an approximation of the exchange-correlation energy per unit volume in a uniform electron gas with density ρ. Among these functionals can be found the Perdew-Zunger [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF] and Perdew-Wang [START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF] functionals. This Kohn-Sham LDA model is properly understood from a mathematical viewpoint [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF].

For this model, the Euler-Lagrange equations of the model read in a strong form: Find the set of orbitals Ψ 0 = {ψ 1 , . . . , ψ N } building the Slater determinant |ψ 1 , . . . , ψ N such that for all j = 1, . . . , N

- 1 2 ∆ x ψ j (x) + V nuc (x)ψ j (x) + N i=1 R 3 |ψ i (y)| 2 |x -y| dy ψ j (x) + de LDA xc dρ (ρ Ψ 0 (x))ψ j (x) = N i=1 λ ij ψ i (x)
and for all i, j = 1, . . . , N,

ψ j |ψ i = δ ij .
The Kohn-Sham energy being invariant by a unitary transformation on the orbitals ψ 1 to ψ N , exactly as the Hartree-Fock energy, the problem can be rewritten as

Find Ψ 0 = {ψ 1 , . . . , ψ N } such that: F Ψ 0 ψ j = ε j ψ j , ∀j = 1, . . . , N (1.3.8) 
ψ j |ψ i = δ ij , ∀i, j = 1, . . . , N,
where the action of the operator F Ψ with Ψ = {ψ 1 , . . . , ψ N }, for any arbitrary set of orbitals Φ = {ϕ 1 , . . . , ϕ N } is given by

F Ψ ϕ j = - 1 2 ∆ x ϕ j (x) + V nuc (x)ϕ j (x) + 1 2 R 3 ρ Ψ (y) |x -y| dy ϕ j (x) + de LDA xc dρ (ρ Ψ 0 (x))ϕ j (x).
Note that this formulation of the problem is very close to the Hartree-Fock problem. The main difference is the expression of the operator F Ψ and in particular the presence of the exchangecorrelation functional. The meaning of the orbitals is also different: in the Kohn-Sham model, the orbitals do not have a physical meaning, only the electronic density is relevant, whereas in the Hartree-Fock model, the orbitals can be used to build the wave-function of the system. In both case, the problem is a nonlinear eigenvalue problem. More accurate and complicated exchange-correlation functionals have been developed, for example generalized gradient approximations (GGA) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF], which rely not only on the electronic density but on its gradient. Among these hybrid functionals can be found Becke's functional introduced in 1993 [START_REF] Becke | Density-functional thermochemistry. III. The role of exact exchange[END_REF]. The most popular hybrid functional nowadays in chemistry is called B3LYP [START_REF] Lee | Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density[END_REF]. From a mathematical viewpoint, these problems are less understood, and many questions remain open. In any case, the Kohn-Sham models are among the most widely used nowadays, because they provide a good compromise between accuracy and computational cost.

Gross-Pitaevskii equation

Let us now mention another mean-field model arising in a different field: the Gross-Pitaevskii equation [START_REF] Pitaevskii | Bose-Einstein condensation (International series of monographs on physics[END_REF], for which a derivation is presented in [START_REF] Lieb | Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional[END_REF]. In Chapter 6, we present some results on this equation, which can be seen as a toy model for density functional theory, and in particular orbital-free models, even though it does not find its origin in the quantum chemistry domain. This equation indeed arises from modeling bosons at very low temperature. Due to the bosonic nature of the particles, the particles all fall into the same quantum state, which is the state of lowest energy of the system. This phenomenon is called Bose-Einstein condensation. For a system of N bosons, the wave-function Ψ of the system can therefore be decomposed as a product, hence there exists a complex-valued function ψ on R 3 such that

Ψ(r 1 , r 2 , . . . , r N ) = ψ(r 1 )ψ(r 2 ) . . . ψ(r N ).
Besides, the problem of minimizing the energy of the system can be expressed only in terms of ψ. This is a constrained minimization problem as in the case of orbital-free models,

inf E(ψ), ψ : R 3 → C, R 3 |ψ(r)| 2 dr = 1 ,
where the energy functional E reads

E(ψ) = 1 2 R 3 |∇ψ(r)| 2 dr + 1 2 R 3 V (r)|ψ(r)| 2 + g R 3 |ψ(r)| 4 .
The function V is an external potential, called confining potential and g ∈ R is a coupling constant. Writing the Euler-Lagrange equation of this minimization problem, one obtains the time-independent Gross-Pitaevskii equation

-∆ψ + V ψ + 4g|ψ| 2 ψ = µψ, (1.3.9) 
where µ ∈ R, called chemical potential, is the Lagrange multiplier of the constraint

R 3 |ψ(r)| 2 dr = 1.
This equation is a nonlinear eigenvalue problem, hence encloses two of the difficulties that will be treated hereafter: the nonlinearity and the eigenvalue issues. However, this problem is not too difficult for at least three reasons: the energy functional is convex, the nonlinearity is explicit and can be well handled, and only the smallest eigenvalue of the operator is sought. Therefore, one does not need to consider several eigefunctions as in the case of Kohn-Sham models. When a magnetic field is applied to the system, the equation becomes more complex, but this goes beyond the scope of this thesis.

Quantum Monte Carlo

Beyond Hartree-Fock, post Hartree-Fock, and DFT models, a third class of models used in electronic structure calculation is based on stochastic calculations, namely Quantum Monte Carlo (QMC) methods [START_REF] Hammond | Monte Carlo methods in ab initio quantum chemistry[END_REF][START_REF]Recent advances in Quantum Monte Carlo methods[END_REF][START_REF] Lester | Recent Advances in Quantum Monte Carlo Methods -Part II[END_REF]. There exist several types of QMC methods, among which the variational Monte Carlo (VMC) and the diffusion Monte Carlo (DMC). Let us briefly mention these two methods now.

In variational Monte Carlo, one considers a set of wave-functions Ψ ∈ V . The ground-state problem (1.2.2) can be written as

inf Ψ∈V E(Ψ) = inf Ψ∈V Ψ, HΨ Ψ, Ψ .
In fact, the energy can be expressed as

E(Ψ) = R 3N |Ψ(r 1 , . . . , r N )| 2 HΨ(r 1 , . . . , r N ) Ψ(r 1 , . . . , r N ) dr 1 . . . dr N R 3N |Ψ(r 1 , . . . , r N )| 2 dr 1 . . . dr N .
As the function

|Ψ(r 1 , . . . , r N )| 2 R 3N |Ψ(r 1 , . . . , r N )| 2 dr 1 . . . dr N
can be interpreted as a probability distribution, a Monte Carlo method can be used for evaluating the integral, and compute the energy for a given wave-function Ψ. Then, a minimization procedure can be applied to minimize the energy and find the ground state. The main advantage of the Monte Carlo methods comes from the ability of sampling a high-dimensional space, which is more feasible than solving a partial differential equation on the same space.

Other standard approximations

In addition to the necessary model simplifications, two approximations are very standard in the simulation of molecular systems: the supercell model, which allows to simulate molecular systems within a periodic framework, and pseudopotentials, which reduce the number of degrees of freedom in the models as well as increase regularity properties. We present these two approximations in the following.

Supercell model

The supercell model is essentially used in two different contexts: for the simulation of molecular systems with periodic boundary conditions, and for the simulation of crystals, with or without defects.

In the framework of condensed matter, the density of the system under consideration is defined on R 3 . It is therefore impossible to simulate the whole domain. In practice, the domain is truncated, or said differently, the molecular system is placed in a very large cubic box, for which side effects are negligible. In this context, the use of periodic boundary conditions corresponds to replicate the box in the three space directions, as in Figure 1.1. Generally, the computational domain, also called the supercell, is denoted by Ω and is the unit cell of a periodic lattice R. Of course, the domain Ω must be large enough so that the interactions between two consecutive unit cells are negligible, but if the domain Ω is too large, the computations become extremely expensive. For this reason, there is a trade-off between the accuracy and the computational cost of the simulations. Note that for periodic boundary conditions, the standard discretization method is planewaves (Fourier series), and is presented in Section 1.5.3.

When the system under consideration is charged, it is not possible to simulate the molecule as such, because the periodic system has infinite positive or negative charges. To overcome this problem, a uniform electron gas called jellium is added to the system, so that the total charge of the uniform gas compensates exactly the charge of the system. To compute the electronic The supercell method is also used in the context of crystals, which is very different, the simulated systems being of infinite size. Since crystals without defects are periodic, the periodic framework fits particularly well for such systems. The box used for the simulations depends on the geometry of the crystal, and usually corresponds to the unit cell of the crystal, see Figure 1.2. When the crystal has defects, it is possible to choose a larger supercell, consisting of a given (possibly large) number of unit cells. However, the electronic structure problems posed in the context of crystal are different and rely on Bloch theory [START_REF] Bloch | Über die Quantenmechanik der Elektronen in Kristallgittern[END_REF]. They require to solve equations parametrized by wavevectors k called k-points, belonging to the reciprocal space of the periodic lattice. In this thesis, we focus only on the simulation of condensed matter systems, therefore we do not describe this theory in more detail.

In this thesis, we consider the choice of the supercell as a model error, whereas it could alternatively be seen as a discretization error, as emphasized in the introduction of Chapter 3.

Pseudopotentials

Pseudopotentials model the effect of core electrons. They are very much used in solid state physics, materials science, and also for the simulation of molecular systems with heavy atoms, which have many core electrons. This approach, already proposed by Hellmann in 1935, is based on the observation that the core electrons of an atom are not much affected by the chemical environment of this atom. Therefore, the use of pseudopotentials reduces the electronic problem to a problem on the valence electrons only, modeling by a pseudopotential the effect of the core electrons. Instead of the neutral core composed with the nucleus, one considers a ionic core composed of the nucleus and the core electrons. Since the problem has to be solved only for the valence electrons, the use of pseudopotentials brings an important dimensionality reduction, and hence lowers the computational cost.

The use of pseudopotentials also increases the regularity of the wave-functions under consideration. Indeed, as the Coulombic potential is replaced by a smoother potential, the valence orbitals are more regular than in all-electron calculations. This means in particular that, for a planewave discretization (presented in Section 1.5.3), the orbitals can be represented with fewer basis functions. Moreover, some pseudopotentials incorporate relativistic effects, without using a relativistic treatment of the equations.

There exists a large variety of pseudo-potentials, for example the Kerker's pseudopotentials [START_REF] Kerker | Non-singular atomic pseudopotentials for solid state applications[END_REF], Troullier-Martins [START_REF] Troullier | A straightforward method for generating soft transferable pseudopotentials[END_REF], Goedecker pseudo-potential [START_REF] Goedecker | Separable dual-space Gaussian pseudopotentials[END_REF], norm-conserving pseudopotentials, or Vanderbilt ultrasoft pseudopotentials [START_REF] Vanderbilt | Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[END_REF]. We refer to [START_REF] Cancès | Existence of a type of optimal norm-conserving pseudopotentials for Kohn-Sham models[END_REF] for a clarification of the mathematical framework on norm-conserving pseudo-potentials.

Discretization methods

Different codes for different discretizations

The mean-field models presented in Sections 1.3.1 and 1.3.3 take the form of partial differential equations posed on continuous spaces. Numerically, only finite dimensional problems can be handled, so the equations are discretized, using in the vast majority of the cases a Galerkin approximation in a given basis set, or Taylor expansions (finite differences, see Section 1.5.6).

In the following, we present the main discretization methods: molecular orbitals, planewaves, wavelets, finite elements and finite differences.

Depending on the physical system under consideration, different methods or basis sets are better suited. For example, periodic systems such as crystals are commonly discretized with periodic basis sets. Other methods are used with Dirichlet boundary conditions. Also, the number of basis functions necessary to represent the solutions varies a lot between the different discretization methods, and plays an important role in the computational time of the simulations. Indeed, a priori, a computation done with few basis functions will be less expensive than a computation with many basis functions. However, other factors have a large influence on the computational cost, for example the time needed for computing bielectronic integrals, which are integrals depending on the product of four basis functions.

There exists a large variety of codes based on different basis sets to solve electronic structure problems numerically. These codes are based on different languages or softwares (C, C++, Fortran, Java, Matlab, Python), and they handle different problems (Hartree-Fock, post Hartree-Fock, DFT, etc.). We concentrate now on codes which can perform (but are not necessarily limited to) DFT. Many other parameters are important when considering the use of these codes, e.g. the user-friendliness, the ability to add new features, the license type, the cost and the possibility to access and modify the source code. In Table 1.1, we present different codes with their corresponding discretization method, together with the language and the license type. Note that this list is by no means exhaustive.

Beyond the computational cost of the different codes, a crucial issue is the reproducibility and the comparison of the results obtained with different codes on the same systems. In this framework, a comparison between the quantum chemistry codes Abinit and Quantum Espresso has been proposed in [START_REF] Poncé | Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron-phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo[END_REF]. More recently, a study involving many more codes has been presented in [START_REF] Lejaeghere | Reproducibility in density functional theory calculations of solids[END_REF].

Molecular orbitals

A very popular variational method in quantum chemistry relies on atomic orbitals. These basis functions have specific radial and angular dependencies and are centered at the nuclei of each atom of a molecule. Different atomic orbitals are defined for each element of the periodic table. The intuition behind such an approach is that the orbitals can be approximated locally around each nuclei as linear combinations of nuclei-centered functions. Thus, an orbital ϕ is sought as linear combination of atomic orbitals, in short LCAO, or sometimes LCAO-MO

∀x ∈ R 3 , ϕ(x) = M α=1 Nα µ=1 C α µ ξ α µ (x -R α ), (1.5.1) 
where the first sum runs over the nuclei, and the second sum runs over the basis functions for each nucleus. Here, the parameters R α denote the positions of the nuclei, the C α µ are real coefficients, and the ξ α µ are basis functions called atomic orbitals, and will be detailed in the following.

Slater-type orbitals (STO)

A first natural idea that came up to design atomic orbitals was to use hydrogen-like orbitals, which are analytically computable. A simplified version thereof is called Slater type orbitals and the basis functions are given by ξ(r, θ, ϕ) = r e -Zr n Y m (θ, ϕ) (up to normalization).

(1.5.2)

These functions are written in terms of spherical coordinates (r, θ, ϕ) and have a specific dependency in the radial part, in r e -Zr n , where ∈ N, and Z n is a constant related to the effective charge of the nucleus. The angular dependency is described by means of spherical harmonics which are denoted by Y m , m ∈ Z, -≤ m ≤ . Figure 1.3 illustrates some examples of the dependency on the radial part of such basis functions.

The main disadvantage of this Ansatz is that the bielectronic 6-dimensional integrals needed in the resolution of the Hartree-Fock (1.3.4) and problems are expensive to compute without further simplifications. Besides, the number of bielectronic integrals scales as N 4 c , where N c is the number of basis functions. Therefore, they are not much used in practice in quantum chemistry computer codes.

Gaussian type orbitals (GTO) Gaussian-type basis functions were introduced to circumvent this complexity problem. Indeed, integrals of Gaussians, products thereof and polynomials times Gaussians can be computed analytically, which is not possible for general basis functions. The computational complexity of the 6-dimensional bielectronic integrals is thus reduced to the computation of a one-dimensional integral. Note that the total number of bielectronic integrals still scales as O(N 4 c ), with N c the number of basis functions, but can be reduced in practice to O(N 2.7 c ) since the overlap of gaussians corresponding to far-away atoms is negligible. The main disadvantage of these basis functions is that their asymptotic behavior around the origin (called cusp) and towards infinity (called fall-off) is not correct, in contrast to Slater type orbitals. In consequence, many basis functions are needed to get good approximations.

Contracted Gaussians

In practice, it was however observed that only a small number of basis functions were needed. Indeed, in general, only a very few particular linear combinations of gaussian-type orbitals are sufficient to obtain good approximations. These linear combinations are called contracted gaussians and can be predefined and computed once and for all. The basis functions are given in cartesian coordinates by:

ξ(x, y, z) = N k k=1 C k x n k x y n k y z n k z e -α k r 2 , (up to normalization) (1.5.3)
where

r 2 = x 2 + y 2 + z 2 , C k are real coefficients, n k x , n k y , n k z ∈ N, and α k ∈ R + .
As one can see one basis function is already a linear combination of Gaussian type orbitals.

Contracted Gaussian type orbitals are used in many quantum chemistry codes because of the computational simplicity of bielectronic integrals, combined with a small number of basis functions. They are used in Gaussian [START_REF] Frisch | Gaussian Inc 16[END_REF], and Molpro [START_REF] Werner | Molpro: a general-purpose quantum chemistry program package[END_REF], two of the main commercial codes in computational chemistry. They are also used in academic codes, for example in Dalton [START_REF] Aidas | The Dalton quantum chemistry program system[END_REF].

Numeric atom-centered orbitals (NAO) Of course, it is possible to define other atomcentered sets of orbitals, by freely choosing the basis functions, and then compute the orbitals following (1.5.1). This allows to design orbitals with specific properties. A NAO basis set is used for example in the code FHI-Aims [START_REF] Blum | Ab initio molecular simulations with numeric atom-centered orbitals[END_REF]. In any case, the basis functions are precomputed, and once the basis set is chosen, the computations are all performed within this basis set.

As the LCAO discretization method is variational, the numerical results can be systematically improved by increasing the basis set size. However, a main drawback is that there is no straightforward way of increasing the basis to reach convergence. One can increase the number of basis functions related to each atom, but it is a priori difficult to know in advance which function to add to the basis. Numerically, this leads to convergence problems, and the accuracy of the computations is limited. This also makes the mathematical analysis of this problem very hard, and up to now, only few publications on the error analysis for atom-centered basis functions have been published [START_REF] Chen | Error estimates of some numerical atomic orbitals in molecular simulations[END_REF].

Planewaves

The planewave discretization method is a state-of-the-art method in solid state physics and materials science, and is particularly suited for periodic systems. It can also be used for molecular systems, in the context of the supercell method (see Section 1.4.1). This method is used in many codes, among which Abinit [START_REF] Gonze | First-principles computation of material properties: the ABINIT software project[END_REF], Vasp [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF], Quantum Espresso [START_REF] Giannozzi | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[END_REF], and CASTEP [START_REF] Clark | First principles methods using CASTEP[END_REF].

The simulation domain is denoted by Ω and is equipped with periodic boundary conditions. It can be a cubic box, but it is in general the unit cell of a periodic lattice R ⊂ R 3 . The orbitals are written as linear combinations of the basis functions e k defined by ∀r ∈ Ω, e k (r) := |Ω| -1/2 e ik•r , which are the Fourier modes with wavevectors k ∈ R * , where R * denotes the dual lattice of R. In this expression, |Ω| = Ω dx is the volume of the unit cell.

The kinetic energy of a basis function e k is given by 1 2 |k| 2 , where | • | denotes the Euclidean norm. Therefore, in the simulations, an energy cutoff E c > 0 is chosen and the basis set is composed of basis functions with kinetic energy smaller than E c , i.e. |k| ≤ √ 2E c . That is, for

each cutoff E c , we set N c = Ec 2 L
π and consider the finite-dimensional discretization space

     k∈R * ,|k|≤ 2π L Nc v k e k ∀k, v -k = v * k      .
Then, a Galerkin approximation of the problem is used. The resolution is hence variational, and the approximate ground-state energy is always above the exact energy. One of the main advantages of this method is that it is systematically refinable. Indeed, the family (e k ) k∈R * forms an orthonormal basis of L 2 # (Ω, C). To get closer to the exact solution, one only needs to increase the energy cut-off E c . From a mathematical point of view, it is therefore easier to analyze planewave methods than methods based on molecular orbitals. For example, convergence analysis and error estimations have been proposed for density functional theory inspired problems in [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF] and [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]. On top of that, the Laplace operator, present in many electronic structure equations, is diagonal in planewaves. This is very useful, and particularly exploited in the perturbation method proposed in Part V. As a drawback, the number of basis functions needed to represent correctly the orbitals is way larger than for molecular orbitals. Indeed, it is very difficult to reproduce the nuclear cusps with planewaves, as we need to consider very high kinetic energy cutoffs to get an accurate representation of cusps.

Wavelets

The wavelet method is also a variational method, which was developed more recently. Very popular for signal processing, it is presented in detail in [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. In the context of partial differential equations, an introduction to the theory of wavelets can be found in [START_REF] Goedecker | Wavelets and their application for the solution of partial differential equations in physics[END_REF], and a review article on the use of wavelets in DFT is [START_REF] Bhaarathi Natarajana | Wavelets for density-functional theory and post-density-functional-theory calculations[END_REF].

Let us start by introducing a wavelet basis on R. It is based on two particular functions: a mother scaling function denoted by φ and a mother wavelet denoted by ψ. A simple example of these two functions is the Haar wavelet, shown in Figure 1.5. In the literature, there exist different classes of wavelets having different properties. The electronic structure code BigDFT based on wavelets [START_REF] Mohr | Daubechies wavelets for linear scaling density functional theory[END_REF] uses for example Daubechies wavelets [START_REF] Heil | Ten lectures on Wavelets (Ingrid Daubechies)[END_REF]. The corresponding mother scaling functions and wavelet are presented in Figure 1.6. The code Madness [START_REF] Harrison | Multiresolution computational chemistry[END_REF] is also based on wavelets, and uses a multi-wavelet basis, i.e. a wavelet basis based on multiple scaling functions.

The basis functions are obtained by integer translations and dilations of the mother scaling function and the wavelet. At a given resolution level k, the basis functions φ k i and ψ k i are defined by

φ k i (x) ∝ φ(2 k x -i), ψ k i (x) ∝ ψ(2 k x -i).
With this convention, large values of k correspond to high resolutions, and therefore to large basis sets. At the resolution level k, the considered functions are expanded as a linear combination of basis functions based on both scaling functions and wavelets of different resolutions. More precisely, they are defined as BigDFT [START_REF] Mohr | Daubechies wavelets for linear scaling density functional theory[END_REF].

f k (x) = 2 k -1 i=0 c k i φ k i (x) + 2 k -1 i=0 d k i ψ k i (x),
where c k i and d k i are real coefficients, or equivalently as

f k (x) = c 0 0 φ 0 0 (x) + d 0 0 ψ 0 0 (x) + 1 i=0 d 1 i ψ 1 i (x) + 3 i=0 d 2 i ψ 2 i (x) + . . . + 2 k-1 -1 i=0 d k-1 i ψ k-1 i (x).
The two previous expressions span the same space because a scaling function at resolution level k is always a linear combination of a scaling function and a wavelet at the coarser level k-1.

For the orbitals, which are 3-dimensional functions, a tensor product of one-dimensional wavelets is used. Therefore, an orbital ϕ is represented in cartesian coordinates as

ϕ(x, y, z) = i,j,k α i,j,k f kx (x)f ky (y)f kz (z),
where α i,j,k are real coefficients.

The wavelet method is very interesting for its possible adaptivity. Indeed, the basis set can be improved in two different systematic ways. It is possible to increase the number of grid points in a uniform way, or to increase the resolution level k in given grid points, which can be independently chosen from each other. Therefore, this method appears suited for adaptivity. For example, in the code BigDFT [START_REF] Mohr | Daubechies wavelets for linear scaling density functional theory[END_REF], a two-level basis set can be used: it is possible to put in each grid point either one basis function (the scaling function), or eight (the scaling function plus seven wavelets). However, it is not possible to refine the basis at a given resolution level k > 1.

Note that the Laplace operator can be diagonally dominant if the wavelet basis is wellchosen, which may lead to nearly sparse representation of the operators, and efficient numerical schemes exploiting this sparsity.

Finite elements

The finite element method is widely used in engineering (see [START_REF] Brenner | The mathematical theory of finite element methods[END_REF] for an introduction). In this method, the simulation domain is meshed, and the basis functions are localized polynomial functions around the vertices of the mesh. They are not necessarily smooth. A classical example is the P 1 method, where the discrete space is composed of continuous functions which are polynomials of degree 1 in each cell of the mesh. The finite element method is called conforming when the finite element space is included in the continuous space in which the solution lies, non-conforming otherwise.

In quantum chemistry, this method has been developed only recently, and in particular in the context of high performance computing. A review on the subject can be found in [START_REF] Pask | Finite element methods in ab initio electronic structure calculations[END_REF]. As in the planewave method, the number of basis functions necessary to represent the solutions is very high (up to 10 5 per atom in the case of uniform meshes). But it is systematically refinable as it suffices to refine the mesh to get a more accurate solution. Moreover, the mesh can be refined in a non-uniform way, especially close to the nuclei, to capture the singularities. This is particularly used for all-electron calculations.

The locality of the basis gives a chance to deal with very large systems, by decoupling the problem in different parts in space, and solving the different parts in parallel on different computers. This method is also capable of dealing with a large variety of boundary conditions, such as Dirichlet boundary conditions and periodic boundary conditions.

In this domain, many advances have been performed by Tsuchida, see e.g. [START_REF] Tsuchida | Electronic-structure calculations based on the finiteelement method[END_REF]. A DFT code based on discontinuous Galerkin finite elements has been developed in DGDFT [START_REF] Hu | DGDFT: A massively parallel method for large scale density functional theory calculations[END_REF]. In this code, adaptive local basis functions are built at each step of the iterative algorithm used to solve the problem, leading to an accurate representation of the Kohn-Sham orbitals with a relatively small number of degrees of freedom. Note that this code is also massively parallel. Additionally, another finite element method based on higher order finite elements has been proposed in [START_REF] Motamarri | Higher-order adaptive finite-element methods for Kohn-Sham density functional theory[END_REF]. Finally, an h-p refinement procedure for DFT problems can be found in [START_REF] Marcati | hP discontinuous Galerkin finite element method for electronic structure calculation[END_REF].

Finite differences

The finite difference method is based on Taylor expansions of the solution for computing its derivatives. It is therefore quite different from all the previous discretizations based on Galerkin discretizations. More precisely, the solution is represented on a grid. Then the derivatives at stake in the considered equation are computed by finite differences on the grid. To find the ground state, the Hamiltonian matrix is then built and diagonalized. An interesting feature of this method is the sparsity of Hamiltonian matrix, which allows to use efficient sparse-matrix eigensolvers and parallel architectures.

As this method is not variational, there is no guarantee that the exact energy is below the computed energy. However, this method is systematically improvable by using finer and finer grids. There exists different codes in quantum chemistry using finite differences, e.g. Parsec [START_REF] Saad | Numerical methods for electronic structure calculations of materials[END_REF] and Octopus [START_REF] Marques | Octopus: A firstprinciples tool for excited electron-ion dynamics[END_REF]. Let us also mention [START_REF] Gygi | Real-space adaptive-coordinate electronic-structure calculations[END_REF] on finite differences for electronic structure calculations.

Algorithms for mean-field models

To compute numerically the ground state of mean-field models in a discrete basis, there exist mainly two types of methods. The first one consists of solving the Euler-Lagrange equations associated to the problem, which are nonlinear eigenvalue problems, and read respectively (1.3.4) and (1.3.8) for the Hartree-Fock and Kohn-Sham models. These methods are presented in Section 1.6.1. The second type of methods consists of minimizing the energy directly, i.e. dealing with the constrained minimization problems (1.3.2) and (1.3.7). They are presented in Section 1.6.2.

Self-Consistent Field algorithms

We consider a Galerkin discretization of the Hartree-Fock and Kohn-Sham problems (1.3.4) and (1.3.8). In both cases, the orbitals (ϕ j ) 1≤j≤N solutions to the problem are written as linear combinations of basis functions (χ µ ) 1≤µ≤N :

ϕ j = N µ=1 C µj χ µ ,
where N is the basis set size. The discrete equations can be written in this framework as

     F (D) C = SCE C T SC = I N D = CC T , (1.6.1)
where C ∈ R N ×N is the coefficient matrix, S ∈ R N ×N is the overlap matrix of the basis functions and has coefficients S µν = χ µ |χ ν , and E is the diagonal matrix of eigenvalues ε j . The second equation corresponds to the normality constraint. The matrix D defined in the third equation is called the density matrix. The matrix F (D) has elements F (D) µν = χ µ |F Φ χ ν , where Φ is constructed from the density matrix D, and the definition of F depends on the problem under consideration. Note that the expression of the matrix F (D), called Fock matrix in the Hartree-Fock case is the only difference between the Hartree-Fock and Kohn-Sham problems. However, the analysis for the algorithms are performed in many cases for the Hartree-Fock case only.

Since the matrix F (D) depends on the density matrix D itself constructed from the unknown coefficients C, this problem is a nonlinear eigenvalue problem. Such problems are usually solved by means of iterative algorithms, and in particular fixed-point algorithms, also called self-consistent field (SCF) algorithms in the physics and chemistry literature. SCF algorithms consist of solving a at each iteration a linear eigenvalue problem.

Roothan algorithm

The simplest SCF algorithm is called Roothan algorithm [START_REF] Roothaan | New developments in molecular orbital theory[END_REF]. Starting from an initial guess of the coefficient matrix C [0] verifying the constraint (C [0] ) T SC [0] = I N and corresponding density matrix

D [0] = C [0] (C [0]
) T , this algorithm consists of solving at each iteration the following linear eigenvalue problem, where the nonlinearity in the matrix F (D) is frozen with the density matrix computed at the previous iteration

       F (D [k-1] ) C [k] = SC [k] E [k] (C [k] ) T SC [k] = I N D [k] = C [k] (C [k] ) T . (1.6.2)
The algorithm stops when two consecutive iterates of the density matrix are close enough, i.e. given a tolerance ε, if

D [k] -D [k-1] ≤ ε.
The stopping criterion can also be chose on the coefficients, in which case it reads

C [k] -C [k-1] ≤ ε.
Unfortunately, this algorithm does not converge when the basis set is large. Therefore, the precision of the method is very limited. To overcome this convergence problem, alternative SCF algorithms have been proposed, and we present three of them below. For these algorithms, the stopping criterion is identical to the Roothan algorithm, therefore we do not repeat it.

Level-shifting algorithm

In the level-shifting algorithm [START_REF] Saunders | A level-shifting method for converging closed shell Hartree-Fock wave functions[END_REF], a shift parameter b ≥ 0 is chosen. One starts from an initial guess of the coefficient matrix C [0] verifying the constraint (C [0] ) T SC [0] = I N with density matrix D [0] . At each iteration of the algorithm, one solves the following linear eigenvalue problem:

       F (D [k-1] ) -bD [k-1] C [k] = SC [k] E [k] (C [k] ) T SC [k] = I N D [k] = C [k] (C [k] ) T .
(1.6.3)

Compared to the Roothan algorithm, the global convergence of the algorithm is guaranteed in the Hartree-Fock case when the shift parameter is large enough [START_REF] Cancès | On the convergence of SCF algorithms for the Hartree-Fock equations[END_REF]. But it offers only a slow speed of convergence.

Damping algorithm

To increase the convergence speed of the Roothan algorithm, another algorithm, called damping algorithm [START_REF] Zerner | A dynamical damping scheme for converging molecular scf calculations[END_REF], has been proposed. It consists, at each iteration, of taking a linear combination of previous iterates for the density matrix D [k] . More precisely, starting from an initial guess

C [0] verifying the constraint (C [0] ) T SC [0] = I N with density matrix D [0]
, one solves at each step the following problem

       F (D [k-1] ) C [k] = SC [k] E [k] (C [k] ) T SC [k] = I N D[k] = C [k] (C [k] ) T (1.6.4) 
and

D [k] = α D[k] + (1 -α)D [k-1] ,
where the damping parameter α is a chosen in [0, 1]. Note that it is also possible to mix the matrix F (D [k] ) or the eigenvectors C [k] instead of the density matrix. An analysis of this algorithm can be found in [START_REF] Cancès | On the convergence of SCF algorithms for the Hartree-Fock equations[END_REF].

Direct Inversion in the Iterative Subspace (DIIS) algorithm

Generalizing the damping algorithm, the DIIS algorithm also called Pulay mixing [START_REF] Pulay | Improved SCF convergence acceleration[END_REF] accelerates the convergence of the SCF algorithm, even though it does not always converges to a global minimum of the energy. Instead of considering a linear combination with the previous iterate only, the DIIS algorithm mixes at each iteration m previous density matrices, minimizing the least square of the residuals to determine the coefficients in the linear combination. Starting from an inital guess

C [0] verifying the constraint (C [0] ) T SC [0] = I N with density matrix D [0]
, one solves at each step the following problem

       F (D [k-1] ) C [k] = SC [k] E [k] (C [k] ) T SC [k] = I N D[k] = C [k] (C [k] ) T (1.6.5)
and

D [k] = c 0 D[k] + m-1 i=1 c i D [k-i] ,
where the c i are such that m-1 i=0 c i = 1 and minimize the norm

c 0 [F (D [k] ), D [k] ] + m-1 i=1 c i [F (D [i] ), D [i] ] 2 Chapter 2
Error analysis for linear and nonlinear eigenvalue problems

Introduction

Importance of error control

When physical phenomena are modeled with partial differential equations, analytical solutions are barely available. For example, in electronic structure calculation, only the ground state of one-electron systems can be computed exactly. Therefore, for real-case systems, many approximations are resorted to, including modeling, discretization, resolution algorithms, as presented in Chapter 1.

The main objective of error control is to quantify the impact of these different approximations on the final result, in order to evaluate the difference between the computed values of the quantities of interest, and their exact values. In quantum chemistry, these quantities of interest include ground-state energies of molecules, dissociation energies, electronic densities and band gaps. A bound on the error allows then to guaranty the results up to a given tolerance.

Error control can also be used to optimize the simulation parameters to achieve efficient calculations, by means of adaptive algorithms. For instance, when the chosen model is very coarse, it is useless to perform calculations using a very fine discretization, because the precision of the results is then limited by the model error, whatever the basis set size. Determining the error arising from each approximation allows to detect which approximation leads to the largest error. It is then possible to refine only the corresponding parameter to decrease the overall error. In order to obtain the best ratio between computational cost and efficiency, a typical strategy is to balance the errors coming from the different approximations.

To be profitable, an error bound should have different properties. First, it should be fully computable, so that the true error can really be estimated. Second, it should be fully guaranteed, i.e. the error on the quantity of interest in a certain norm should be bounded by this error bound. Otherwise, the bound can only be used as an error indicator. In some cases, the bound is valid under some assumptions, e.g. smallness assumptions, and this can restrain the applicability of the error bound. But if these assumptions are a posteriori verifiable, it is possible to guaranty that the regime in which the bound applies is reached. Third, the error bound should be sharp, that is close to the real error. Optimally, the ratio between the true error and the bound should be close to one, or at least converge to one when the error goes to zero. This is called efficiency. Fourth, the error bound should be cheap to compute. Indeed, an error bound is in practice useless if the cost of its computation is of same order or higher than solving the problem itself. Fifth, the bound should allow for error separation.

Error analysis for linear and nonlinear eigenvalue problems Indeed, adaptivity is only possible when the error bound can be separated into components depending on the different approximation parameters. In the context of finite elements, a bound is particularly useful when it can be separated in local components, so that mesh refinement can be performed non uniformly. Of course, it is not always possible to gather all these properties, and sometimes, one needs to compromise.

Different methods have been developed to control the error. The a priori analysis usually offers convergence guaranty and convergence rates of the approximate solutions to the exact one, but it cannot be used to derive proper error estimates. The a posteriori analysis is one of the main tools developed to derive error bounds. It includes residual-based a posteriori analysis, where the error is bounded by the residuals of the approximate solutions. Error estimates can also be based on cheap refinements of the approximate solutions, which is the idea of post-processing methods.

At the moment, quantum chemistry codes do not generally include error bounds, and especially no guaranteed bounds. These codes could therefore largely benefit from developments on error control. But more importantly, the computations in this domain can be extremely expensive, especially for large systems. Hence, error balance could be used to reduce the computational cost of quantum chemistry computations.

As presented in Chapter 1, we focus in this thesis on ground state calculations. In particular, we aim at considering models requiring to solve nonlinear eigenvalue problems, e.g. the Kohn-Sham model presented in Section 1.3.3. The error estimation for such problems encloses many aspects, such as the chosen discretization method, the chosen possibly iterative algorithm, the number of eigenvalues to compute, and the nonlinearity under consideration. We progressively deal with these aspects, considering first linear eigenvalue problems, and then nonlinear eigenvalue problems.

In this chapter, we provide an introduction to error control together with a presentation of the main contributions of this thesis. We first describe the different natures of error arising in numerical simulations and in particular in electronic structure calculation in Section 2.1.2. We then present the state of the art regarding the error analysis for linear and nonlinear eigenvalue problems and show how the contributions of this thesis fall in this framework in the two following subsections. We focus on a priori analysis in Section 2.1.3 and on a posteriori analysis in Section 2.1.4. In the rest of the chapter, we present in more detail the different contributions of the thesis. In Section 2.2, we focus on an a priori estimation of the discretization error cancellation between two different nuclear configurations of a system. In Section 2.3, we present our contribution for the a posteriori analysis of the Laplace eigenvalue problem, in giving first a presentation of the problem in Section 2.3.1 and presenting the results obtained in the conforming case in Section 2.3.2, and in the nonconforming case in Section 2.3.3. In Section 2.4, we present our contribution to the a posteriori error analysis as well as error balance for a nonlinear eigenvalue problem, namely the Gross-Pitaevskii equation. Finally, in Section 2.4, we concentrate on post-processing methods for the Kohn-Sham model. As our contribution in this direction is based on perturbation theory, we present this theory in Section 2.5.1. We then describe how we apply it to linear Schrödinger operators in Section 2.5.2, and to Kohn-Sham equations in Section 2.5.3. In Section 2.6, we present different existing post-processing methods for linear and nonlinear eigenvalue problems and compare them in a unified framework. In Section 2.7, we propose some perspectives of this work.

An error arising from different sources

In the context of molecular simulation, many approximations are employed to compute the value of physical observables. These approximations cause the observed errors between the computed values and their experimental (exact) values. However, a large part of these appro-ximations is not limited to quantum chemistry, and runs more generally in the context of partial differential equations modeling physical phenomena. We describe them in the following, see also the introduction of Chapter 3.

Model error

The model error encloses the difference between experimental results, or the results of a reference model considered fine enough to be exact, and the solution of the chosen model. The chosen model can for example neglect higher order phenomena, or nonlinearities. It can also arise from a dimensionality reduction, as the Hartree-Fock model derived from the Schrödinger model. In electronic structure calculation, the Schrödinger model is very often seen as a reference model, when relativistic effects are small (see Section 1.2.3). Unfortunately, we do not take the model error into account in the error estimations of this thesis. Therefore, the considered models, which are defined by partial differential equations over continuous spaces, are always considered as reference models.

Discretization error

The discretization error corresponds to the error between the exact solution of the chosen model and a discrete solution of this particular model. It corresponds to a simplification from infinitedimensional to finite-dimensional equations. Different discretization methods were presented in Section 1.5. In fact, some estimations of the discretization error have already been provided for eigenvalue problems, some of which will be presented in Sections 2.1.3 and 2.1.4. Most of them handle systematically improvable discretization methods, such as planewaves or finite elements. In this thesis, we mainly focus on the discretization error. In all Chapters 3 to 9, we consider at least the discretization error in the error estimations.

Algorithm error

To solve the discretized equations arising in mean-field models, such as the Hartree-Fock and Kohn-Sham models presented in Sections 1.3.1 and 1.3.3, iterative algorithms presented in Section 1.6 are used. In the iterative procedure, the number of iterations performed is always finite. The algorithm error therefore corresponds to the difference between the exact solution of the discrete equations and the computed solution after a given number of iterations. The algorithm error is in particular handled in Chapter 6 for the Gross-Pitaevskii equation. Note that, for some problems and especially nonconvex problems, the algorithm might not converge, so that the difference between two iterates in the algorithm could become very small, with both iterates far from the exact solution.

An algorithm error can also arise from linear algebra problems. Indeed, these problems are often solved with iterative solvers, hence never exactly. When the problems are solved up to machine precision, this error is neglected. But when the solver tolerance can be chosen, this linear algebra error can be taken into account in the error balance in order to not fully converge the linear resolution, while keeping the same overall precision. This is proposed for the Laplace eigenvalue problem in the context of conforming finite elements in Chapter 4.

Implementation error

The implementation error can be due but is not limited to bugs. Round-off errors and numerical integration errors can also be present in the computations. They are supposed to be small but can accumulate, especially for large systems. In this thesis, we do not take this error into account.

A priori analysis A posteriori analysis and adaptive computations Linear eigenvalue problems [START_REF] Babuška | Eigenvalue problems[END_REF], [START_REF] Descloux | On spectral approximation. Part II. Error estimates for the Galerkin method[END_REF] FE: [START_REF] Babuška | Eigenvalue problems[END_REF][START_REF] Beattie | Methods for computing lower bounds to eigenvalues of self-adjoint operators[END_REF][START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF][START_REF] Šebestová | Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants[END_REF][START_REF] Šebestová | Two-sided bounds of eigenvalues -local efficiency and convergence of adaptive algorithm[END_REF] including -∆u = λu [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF] [17, 18, 179] Section 2.3 also [START_REF] Chatelin | Spectral approximation of linear operators[END_REF], [START_REF] Kato | Perturbation theory for linear operators[END_REF] [174] Gross-Pitaevskii equation PW, FE: [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF] PW: [START_REF] Dusson | A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem[END_REF] -∆u + V u + u 3 = λu FE: [START_REF] Chen | Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model[END_REF] FE: [80] Section 2.4 Kohn-Sham/Hartree-Fock equations PW: [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] -∆Φ + V ρ Φ = ΛΦ FE: [START_REF] Chen | Numerical analysis of finite dimensional approximations of Kohn-Sham models[END_REF] FE: [70, 172] Section 2.5 Table 2.1 -Table of some contributions for a priori and a posteriori analysis of eigenvalue problems

Computer error

The computer error is due random hardware failures (miswritten or misread bits). It is usually neglected but is expected to have a greater importance in the futur, especially with the development of exascale architectures [START_REF] Li | System implications of memory reliability in exascale computing[END_REF]. In this thesis, we consider this error to be always negligible.

A priori analysis for eigenvalue problems

A priori analysis aims at showing the quality of the numerical solutions of a given problem. Let us denote by u the exact solution of a partial differential equation, and by u h its variational approximation in a given basis. A priori estimates take the form

|||u -u h ||| ≤ Ch k ,
where k > 0 and C > 0 are constants, |||•||| is a given norm, and h is a discretization parameter, typically the size of the mesh in finite elements, or the inverse of the cutoff in energy or momentum space in planewaves. Such an estimation guaranties that the error goes to zero as h goes to zero, at the order k. This hence justifies the quality of the numerical method. However, the constant C depends on the exact solution u, i.e. C = C(u), and is in practice uncomputable or highly overestimated. The error |||uu h ||| is therefore not bounded by a computable constant.

The a priori analysis of partial differential equations has been studied for a long time. Already in 1964, Céa proposed a priori error estimates for elliptic partial differential equations [START_REF] Cea | Approximation variationnelle des problèmes aux limites[END_REF], including the Laplace boundary problem. For linear eigenvalue problems, a priori estimates are provided in [START_REF] Descloux | On spectral approximation. Part II. Error estimates for the Galerkin method[END_REF][START_REF] Babuška | Eigenvalue problems[END_REF] for finite elements, and a review article can be found in [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF], see also [START_REF] Chatelin | Spectral approximation of linear operators[END_REF][START_REF] Kato | Perturbation theory for linear operators[END_REF]. Note that the solutions of the Laplace eigenvalue problem are explicitly known in planewaves, hence there is no need for error estimation in this case.

In this thesis, we are particularly interested in nonlinear eigenvalue problems in the context of electronic structure calculation. In this domain, a priori results are more recent. An analysis for a class of nonlinear eigenvalue problems, which can be seen as toy models for density functional theory discretized with finite elements or planewaves has been provided in [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]. For the orbital-free Thomas-Fermi-von Weizäcker model, a priori estimates can be found in [START_REF] Zhou | Finite dimensional approximations for the electronic ground state solution of a molecular system[END_REF][START_REF] Chen | Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model[END_REF]. Moreover, the Thomas-Fermi-Dirac-von Weizäcker has been studied in [START_REF] Langwallner | Existence and convergence results for the Galerkin approximation of an electronic density functional[END_REF]. For the Kohn-Sham model, the a priori analysis has been performed few years ago in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], and was later extended to the finite element case in [START_REF] Chen | Numerical analysis of finite dimensional approximations of Kohn-Sham models[END_REF]. As a summary, the left column of Table 2.1 presents these a priori references grouped by equation type.

Since the a priori error bounds are not fully computable, they do not provide guaranteed error bounds. However, they can still be seen as error indicators, and used for adaptivity. For example, knowing the convergence rate relative to two different approximation parameters, one can adapt the values of the parameters so that the convergence speed is optimal. This is for example the spirit of h-p refinement [START_REF] Guo | The h-p version of the finite element method[END_REF], where the solution can be refined both by using finer elements, or polynomials with higher degrees. This method is developed in the context of electronic structure calculation in [START_REF] Marcati | hP discontinuous Galerkin finite element method for electronic structure calculation[END_REF], see also [START_REF] Maday | h-P Finite element approximation for full-potential electronic structure calculations[END_REF].

In Chapter 3, our study is based on an a priori analysis of the energy error of the problem. However, the purpose is not to provide error estimates per se, but to show that the phenomenon of error cancellation observed between different molecular configurations is not due to the improvement of the convergence rate, but lies in the prefactor.

A posteriori analysis for eigenvalue problems

Residual-based a posteriori analysis Unlike the a priori analysis, the goal of the a posteriori analysis is to provide a computable bound on the error between the numerical approximation of the solution and the unknown exact solution. This bound should therefore be computable with the only knowledge of the approximate solution, and the parameters used for the computation of the approximate solution. In the general case, it reads |||u -

u h ||| ≤ F (h, u h ),
where |||•||| is a given norm, and F (h, u h ) is a fully computable quantity. Many a posteriori estimations are based on the computation of the residual, which represents the error of the solution with respect to the equation. In the case of an abstract nonlinear eigenvalue problem reading: find (u, λ) such that A(u)u = λu, the residual Res(u h , λ h ) relative to an approximate solution (u h , λ h ) is defined by

Res(u h , λ h ) = A(u h )u h -λ h u h .
Note that the residual of the exact solution (u, λ) is equal to zero. The main idea of residualbased a posteriori error estimation is to bound the error on the solution in a given norm by the dual norm of the residual in an appropriate Banach space. Note that if this dual norm is not well chosen, the norm of the residual might not even go to zero when the error goes to zero. An important difficulty is then to compute or estimate the dual norm of the residual in an accurate and efficient way.

One of the key results in a posteriori analysis called equilibrated fluxed has been developed by Prager and Synge in 1947 [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF]. Since then, a posteriori analysis has been an active research area. A posteriori estimation of elliptic problems can for example be found in the two books [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF][START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF].

As a reference book for eigenvalue problems, we refer to [START_REF] Babuška | Eigenvalue problems[END_REF]. Note that Galerkin discretization allows to obtain upper bounds on the eigenvalues very easily. Indeed, the Rayleigh-Ritz method guaranties that the computed eigenvalues are above the exact ones. However, lower bounds on the eigenvalues are not easy to obtain, and have been investigated for a long time. Already in 1928, Temple provided lower and upper bounds for the frequency of the gravest mode of a vibrating system [START_REF] Temple | The theory of Rayleigh's principle as applied to continuous systems[END_REF]. Then, different methods have been developed, among which Kato [START_REF] Kato | On the upper and lower bounds of eigenvalues[END_REF], Aronszajn [START_REF] Aronszajn | Approximation methods for eigenvalues of completely continuous symmetric operators[END_REF], Weinstein [START_REF] Weinstein | On the Sturm-Liouville theory and the eigenvalues of intermediate problems[END_REF]. In the context of quantum chemistry problems, Bazley proposed a study for the helium atom [START_REF] Bazley | Lower bounds for eigenvalues with application to the helium atom[END_REF] in 1960, and Bazley-Fox [START_REF] Bazley | Lower bounds for eigenvalues of Schrödinger's equation[END_REF] and Löwdin [START_REF] Lowdin | Studies in perturbation theory. X. Lower bounds to energy eigenvalues in perturbation-theory ground state[END_REF] proposed lower and upper bounds for the eigenvalues of linear eigenvalue problems. A clear introduction to these historical methods can be found in [START_REF] Plum | Guaranteed numerical bounds for eigenvalues[END_REF]. Note that these methods often include only bounds on the eigenvalues and not on the eigenfunctions.

More recently, there has been many publications related to the a posteriori estimation for eigenvalue problems, including [START_REF] Beattie | Methods for computing lower bounds to eigenvalues of self-adjoint operators[END_REF][START_REF] Luo | Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods[END_REF][START_REF] Hu | Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods[END_REF][START_REF] Hu | The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators[END_REF][START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Yang | The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes[END_REF][START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF][START_REF] Kuznetsov | Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators[END_REF][START_REF] Šebestová | Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants[END_REF][START_REF] Šebestová | Two-sided bounds of eigenvalues -local efficiency and convergence of adaptive algorithm[END_REF][START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF][START_REF] Lin | A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions[END_REF]. We refer to the introduction of Chapter 4 for more detail on the bibliography in the conforming finite element case, and to the introduction of Chapter 5 for nonconforming finite elements.

For nonlinear eigenvalue problems, there exist only few a posteriori estimations. In [START_REF] Chen | Adaptive finite element approximations for Kohn-Sham models[END_REF], the authors provide a residual-based a posteriori estimation for the Kohn-Sham model discretized with finite elements. The estimator is not fully guaranteed, but the authors use it as an error indicator to refine the mesh, and therefore obtain an accurate solution with a reasonable number of degrees of freedom. An a posteriori analysis is performed in [START_REF] Kaye | A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory[END_REF] for a linear eigenvalue problem, which is in turn numerically applied for the nonlinear Kohn-Sham problem in the context of non-polynomial basis functions in a discontinous Galerkin framework. The Hartree-Fock problem was studied in [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF], where the authors provide an a posteriori estimation based on a post-processing of the solution. Finally, in Chapter 6, we provide a guaranteed bound of the eigenfunction error for the Gross-Pitaevskii equation.

Post-processing methods

Post-processing methods can sometimes be used for a posteriori estimations. The main idea is to solve the discrete problem in a coarse grid, i.e. with a small basis set, and then to do a not-so-expensive computation in a fine grid, in order to get a more precise result than in the coarse grid, at a lower price than computing the solution on the fine grid. In the framework of eigenvalue problems, this post-processing step can be for example the resolution of a boundary problem, or the resolution of local problems. If the post-processed solution is accurate enough, it can be used as a reference solution and the error is then estimated by the difference between the post-processed solution and the approximate solution. In many cases, this error bound is not guaranteed, but it can still be used in practice as an error indicator. Let us remark that the first goal of these methods is often not to provide error bounds, but rather to offer accurate solutions at a low computational cost.

Such a method called two-grid method has been proposed in [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF] for a linear eigenvalue problem. The full problem is solved on the coarse grid, and a boundary value problem is solved on the fine grid. This method has been extended to a class of nonlinear eigenvalue problems in [START_REF] Cancès | Two-grid methods for a class of nonlinear elliptic eigenvalue problems[END_REF]. In the latter, one can choose between three different problems on the fine grid: two boundary value problems, and one linear eigenvalue problem. As previously mentioned, a post-processing method for the Hartree-Fock problem can be found in [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF]. We also present a post-processing method based on perturbation theory in Part V. Kohn already proposed a post-processing method based on perturbation theory in [START_REF] Kohn | Improvement of Rayleigh-Ritz eigenfunctions[END_REF], which improves numerically the eigenfunctions of a linear eigenvalue problem locally. In [START_REF] Dusson | A preliminary note on the post-processing of Rayleigh-Ritz eigenfunctions[END_REF], we describe this method in detail and compare it to the perturbation theory of Part V. All these post-processing methods will be compared in a unified framework in Section 2.6.

Error balance

As shown in Section 2.1.2, the overall error comes from different sources. In order to reduce the computational cost of the simulations, a possible approach is to separate the error bound obtained for example from a residual-based a posteriori analysis into several components, each H H R of them depending only on one approximation parameter. In finite elements, this consists of writing the total error as a sum of local components, and to refine only the elements with large error components. A standard procedure for finite element refinement is called Dörfler marking [START_REF] Dörfler | A convergent adaptive algorithm for Poisson's equation[END_REF]. Adaptive finite element procedures are very popular, and several have been proposed for electronic structure calculation [START_REF] Chen | Adaptive finite element approximations for Kohn-Sham models[END_REF][START_REF] Lin | A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE[END_REF]. Another adaptive strategy for the Kohn-Sham problem can be found in [START_REF] Kaye | A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory[END_REF].

It is also possible to incorporate different approximations and estimate each of them, in order to perform error balance. Some previous works take into account the errors due to the discretization and the algorithm used in the linear algebra resolution. This is for example proposed in [START_REF] Jiránek | A posteriori error estimates including algebraic error and stopping criteria for iterative solvers[END_REF] in the case of a diffusion problem. Another separation between the discretization and the iteration error is performed in [START_REF] Rannacher | Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error[END_REF] for a linear eigenvalue problem discretized with finite elements. Such separation between linear algebra and discretization error is presented for the Laplace eigenvalue problem in Chapter 4 in the case of conforming finite element methods.

Another possibility is to take into account the discretization error and the algorithm error arising in nonlinear problems, i.e. the linearization error in Newton or self-consistent schemes. This was performed in the case of a nonlinear diffusion-type problem in [START_REF] Alaoui | Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems[END_REF][START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF]. In Chapter 6, we present a separation and balance of the error coming from the discretization and the iterative algorithm used to solve the nonlinear discrete Gross-Pitaevksii equation.

Let us remark that the model error is in general very hard to tackle. In this direction, no previous work is known to the author in the context of electronic structure calculations. In the context of the simulation for crystalline solids with defects, an adaptive simulation separating the model error from the discretization error for the atomistic/continuum coupling is provided in [START_REF] Wang | A posteriori error estimation and adaptive algorithm for the Atomistic/Continuum coupling in 2D[END_REF].

Error cancellation for the discretization error

In the previous presentation of error analysis, we have focused on the error estimation for a given problem. This corresponds in the quantum chemistry context to estimate the error for a given configuration of the nuclei. However, in many cases, for example in molecular dynamics, the difference between quantities of interest, which depend on molecular configurations, are very important. And if there is an error cancellation between these quantities, less accurate computations could be adequate to get overall accurate differences. In this section, we introduce the contribution presented in Chapter 3, where we study is a discretization error cancellation between different atomic configurations.

In the following, the configurations are indexed by a parameter R, which accounts for the geometry of the molecule. In the case of the H 2 molecule, R corresponds to the distance between the two hydrogen atoms (see Figure 2.1). For each configuration, it is possible to discretize the problem (e.g. Kohn-Sham problem) in a chosen finite basis characterized by a parameter N , typically the number of basis functions. What is expected is that if we consider two configurations R 1 and R 2 with corresponding ground-state exact energies E R 1 and E R 2 , and approximate energies E R 1 ,N , E R 2 ,N , there holds

|(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| |E R 1 ,N -E R 1 | + |E R 2 ,N -E R 2 |,
that is the difference of the energy errors is way smaller than the energy errors themselves. In this contribution, we aim at characterizing this improvement. First, we perform some simulations on simple molecular systems to assess this affirmation. We therefore compute the ground state of the H 2 molecule for different atomic positions using a planewave discretization method with the code Abinit [START_REF] Gonze | First-principles computation of material properties: the ABINIT software project[END_REF] based on DFT. We also simulate a system composed of four hydrogen atoms and two oxygen atoms. We observe in both cases an improvement on the energy error, of a factor from 10 to 50 (presented in Figures 3.1 and 3.3). This improvement seems constant over the dimension of the planewave space, which suggests that the convergence rate of the energy difference is not better than the convergence rate of the energy itself, so that only the prefactor is smaller for the energy difference.

To justify this observation theoretically, we study a toy model, for which analytical solutions are available. Therefore, for two given parameters z 1 , z 2 > 0, we consider the family of problems, indexed by R ∈ (0, 1), consisting in finding the ground state

(u R , E R ) ∈ H 1 per × R of          - d 2 dx 2 - m∈Z z 1 δ m - m∈Z z 2 δ m+R u R = E R u R , 1 0 u 2 R (x)dx = 1, u R ≥ 0,
where δ a denotes the Dirac mass at point a ∈ R. For this specific problem, we can demonstrate an explicit a priori analysis for the energy when the problem is discretized with planewaves, showing that the error cancellation factor defined as

Q N = |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| (E R 1 ,N -E R 1 ) + (E R 2 ,N -E R 2 )
converges to a fixed number 0 < Q ∞ < 1 when N , the cut-off in momentum space in the planewave discretization, goes to infinity. This is presented in the following theorem, see also Theorem 3.3.2 for a detailed version.

Theorem (Asymptotic expressions of the energy error and of the error cancellation factor). For all z 1 , z 2 > 0 and R ∈ (0, 1), we have for all > 0,

E R,N -E R = α R N - α R 2N 2 + β (1) R,N N + γ R N η R,N + o 1 N 3-, (2.2.1)
where α R :=

z 2 1 u R (0) 2 +z 2 2 u R (R) 2 2π 2 , and γ R , η R,N , β (1) 
R,N can be explicitely determined and estimated.

Moreover, -α R 2N 2 + β (1) R,N N + γ R N η R,N
is of higher order than α R N , and as a consequence, we have for all z 1 , z 2 > 0 and all R 1 , R 2 ∈ (0, 1), lim

N →+∞ Q N = |α R 1 -α R 2 | α R 1 + α R 2 = z 2 1 u R 1 (0) 2 -u R 2 (0) 2 + z 2 2 u R 1 (R 1 ) 2 -u R 2 (R 2 ) 2 z 2 1 (u R 1 (0) 2 + u R 2 (0) 2 ) + z 2 2 (u R 1 (R 1 ) 2 + u R 2 (R 2 ) 2 )
. (2.2.2)

Note that the limit of Q N depends only on z 1 , z 2 and on u R

1 (0) 2 , u R 2 (0) 2 , u R 1 (R 1 ) 2 , u R 1 (R 2 ) 2 , i.e.

on the values of the densities

ρ R 1 = u 2 R 1 and ρ R 1 = u 2 R 2
at the singularities of the potential. This confirms that for this specific toy model, the energy error cancellation occurs not in the convergence rate, but only in the prefactor, which is smaller for the energy difference than for the energies themselves.

A posteriori error estimation for the Laplace eigenvalue problem

Presentation of the problem

In this section, we present the contributions of Chapters 4 and 5, which focus on the a posteriori analysis of a linear eigenvalue problem: the Laplace eigenvalue problem. We consider a domain Ω ⊂ R d , d = 2, 3 being a polygonal/polyhedral domain with a Lipschitz boundary. We denote by λ i , u i be the eigenvalues and associated eigenvectors of the Laplace operator -∆ on Ω with Dirichlet boundary conditions. The problem reads: find eigenvector and eigenvalue pairs (u k , λ k ), with u k satisfying a homogeneous Dirichlet boundary condition over ∂Ω and subject to the constraint u k = 1, where

v 2 := Ω v 2 dx such that -∆u k = λ k u k in Ω. In a weak form, (u k , λ k ) ∈ V × R + with u k = 1 and (∇u k , ∇v) = λ k (u k , v) ∀v ∈ V. (2.3.1)
The problem is discretized using finite elements, and the aim of this contribution is to provide a posteriori bounds on both an arbitrary simple Laplace eigenvalue and the associated eigenvector for conforming and nonconforming methods. We focus on the discretization error, but in the conforming case, we also account for inexact solvers in the resolution of the problem.

The provided bounds are guaranteed, fully computable, and converge with optimal speed respectively to the given exact eigenvalue and eigenvector. Moreover, the only hypothesis needed is that the approximate eigenvalue is separated from the following smaller and larger ones, i.e.

λ i-1 < λ ih < λ i+1 .
This can be checked in practice, by finding respectively upper and lower bounds of the exact eigenvalues λ i-1 and λ i+1 . Note that in the estimations, there appears no unknown (solution-, regularity-, or polynomial-degree-dependent) constant, and no convexity/regularity assumption on the computational domain/exact eigenvector(s) is needed. The computation of the bounds only requires the resolution of local Neumann problems, hence is very cheap compared to the full computation of the solution. Therefore, these error estimates seem to fulfill the properties presented in Section 2.1.1.

In the conforming and the nonconforming cases, we use a similar approach. As is very common in a posteriori analysis, our estimation relies on the use of the residual defined in the conforming case as follows.

Definition 2.3.1 (Residual and its dual norm). Let V stand for the dual of V . For any pair

(u ih , λ ih ) ∈ V × R, define the residual Res(u ih , λ ih ) ∈ V by Res(u ih , λ ih ), v V ,V := λ ih (u ih , v) -(∇u ih , ∇v) ∀v ∈ V. (2.3.2a)
Its dual norm is then

Res(u ih , λ ih ) -1 := sup v∈V, ∇v =1 Res(u ih , λ ih ), v V ,V . (2.3.2b)
The Riesz representation of the residual r (ih) ∈ V is also very useful and is defined as

(∇r (ih) , ∇v) = Res(u ih , λ ih ), v V ,V ∀v ∈ V, (2.3.3a 
)

∇r (ih) = Res(u ih , λ ih ) -1 . (2.3.3b)
The a posteriori analysis is performed in two steps. First, the dual norm of the residual Res(u ih , λ ih ) -1 is related to the error between the approximate solution u ih and the exact solution u i in L 2and H 1 -norms, i.e. to u iu ih and ∇(u iu ih ) . Once such an estimation is provided, the remaining difficulty is to estimate the dual norm of the residual Res(u ih , λ ih ) -1 . Indeed, this dual norm is in general not straightforward to compute and naively requires the resolution of problem (2.3.3a). Here, it is performed by means of equilibrated flux reconstruction, and strongly relies on [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]. Once these two elements are in order, one can assemble the estimations to get the full a posteriori estimate.

Results in the conforming case

For simplicity, we present now the results in the conforming case supposing that the eigenvalue solver is exact. This means that the approximate eigenpair (u ih , λ ih ) is solution to the following equation on the approximate finite element space V h written in weak form as

(∇u ih , ∇v h ) = λ ih (u ih , v h ) ∀v ∈ V h .
We announce the main theorems leading to the derivation of the a posteriori bound.

Generic equivalences

To estimate the errors λ ihλ i and ∇(u iu ih ) , the errors u iu ih and ∇(u iu ih ) are first evaluated in terms of the dual norm of the residual Res(u ih , λ ih ) -1 . First, the L 2 -norm of the error u iu ih is related to the gradient norm of the Riesz representation of the residual ∇r (ih) in the following lemma. Note that it can also be related to the norm of the Riesz representation r (ih) . Let i ≥ 1 and define (disregarding the left term for i = 1)

C ih := min λ i-1 1 - λ ih λ i-1 2 , λ i+1 1 - λ ih λ i+1 2 .
(2.3.4)

Lemma 2.3.2 (L 2 (Ω) bound via a quadratic residual inequality). Let (u ih , λ ih ) ∈ V × R + with u ih = 1 and (u i , u ih ) ≥ 0 be the i-th approximate eigenvector-eigenvalue pair, i ≥ 1. Let λ i be simple and let λ i-1 < λ ih when i > 1 and λ ih < λ i+1 . Then

u i -u ih ≤ α ih := √ 2 C -1 2 ih ∇r (ih) . (2.3.5) 
The assumption (u i , u ih ) ≥ 0 can actually be easily checked in practice (see Lemma 4.3.3). The second step is to relate the error on the eigenvalue λ ih -λ i with the error on the eigenvector, and then to relate the error on the eigenvector ∇(u iu ih ) to the dual norm of the residual Res(u ih , λ ih ) -1 . This is achieved in the two following theorems, which are presented and proved later on in Theorems 4.3.4 and 4.3.5.

Theorem 2.3.3 (Eigenvalue bounds). Let u ih ∈ V with u ih = 1, i ≥ 1, be arbitrary subject to u i -u ih ≤ α ih for some α ih ∈ R + and ∇u ih 2 = λ ih . Then ∇(u i -u ih ) 2 -λ i α 2 ih ≤ λ ih -λ i ≤ ∇(u i -u ih ) 2 . (2.3.6)
Note that when the algebraic solver is not exact or in the non-conforming case, λ ih is possibly different from ∇u ih 2 , and the eigenvalue λ ih has to be replaced by ∇u ih 2 in the estimation. Define

C ih := 1 if i = 1, C ih := max λ ih λ 1 -1 2 , 1 if i > 1. (2.3.7) Theorem 2.3.4 (Eigenvector bounds). Let (u ih , λ ih ) ∈ V × R + with u ih = 1, i ≥ 1, be arbitrary subject to u i -u ih ≤ α ih for some α ih ∈ R + . Then ∇(u i -u ih ) 2 ≤ Res(u ih , λ ih ) 2 -1 + (λ ih + λ i )α 2 ih , (2.3.8a) Res(u ih , λ ih ) 2 -1 ≤ ∇(u i -u ih ) 4 λ i + C ih ∇(u i -u ih ) 2 . (2.3.8b)
Up to this step, the equivalences are independent of the discretization method, and can be derived for a larger class of operators. An extension to the case of lower-bounded self-adjoint operators with compact resolvent is presented in the Appendix 5.10.1. Also, the only constants contained in the estimators depend on the exact eigenvalues. The error bounds can be therefore be estimated as soon as a (coarse) bound on the eigenvalues is available.

Dual norm of the residual estimation

In order to estimate the dual norm of the residual Res(u ih , λ ih ) -1 , we use a reconstruction method proposed in [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] for the Poisson problem, adapted here in the case of an eigenvalue problem. To motivate, note that from (2.3.1), it is straightforward that -∇u i ∈ H(div, Ω), with the weak divergence equal to λ i u i . On the discrete level, however, we have, in general, -∇u ih ∈ H(div, Ω), and a fortiori ∇•(-∇u ih ) = λ ih u ih . We thus introduce an equilibrated flux reconstruction, a vector field σ ih constructed from (u ih , λ ih ), satisfying when the algebraic solver is exact

σ ih ∈ H(div, Ω), (2.3.9a) ∇•σ ih = λ ih u ih . (2.3.9b) 
Naturally, only specific reconstructions σ ih will give tight estimates, and we present in the following a local construction relying on the solution of homogeneous Neumann (Neumann-Dirichlet close to the boundary) problems by mixed finite elements. In the nonconforming case, as u ih ∈ V , one also has to introduce a reconstruction of the eigenvector, a scalarvalued function s ih constructed from u ih and satisfying s ih ∈ V. Actually, both σ ih and s ih will be piecewise polynomials defined in standard finite element subspaces of H(div, Ω) and V , respectively. The reconstruction method is based on the resolution of local problems on patches around vertices of the mesh. We denote by T h the chosen mesh for solving the discrete problem. The set of vertices is denoted by V h , with interior vertices V int h , vertices located on the boundary V ext h , and a generic vertex a. We call T a the patch of elements of T h which share the vertex a ∈ V h , ω a the corresponding subdomain, and n ωa its outward unit normal. We will often tacitly extend functions defined on ω a by zero outside of ω a , whereas V h (ω a ) stands for the restriction of the finite element space denoted by V h to ω a . Next, ψ a for a ∈ V h stands for the piecewise affine "hat" function taking value 1 at the vertex a and zero at the other vertices. Remarkably, (ψ a ) a∈V h form a partition of unity via a∈V h ψ a = 1| Ω .

To define the reconstructed flux using problems on patches, we work with the Raviart-Thomas-Nédélec (RTN) mixed finite element spaces denoted by

V h × Q h ⊂ H(div, Ω) × L 2 (Ω).
We define by P s (K), s ≥ 0 the space of polynomials of total degree at most s on K ∈ T h , and P s (T h ) the space of piecewise polynomials on T h , without any continuity requirement. We thus have, for degree s ≥ 0,

V h := {v h ∈ H(div, Ω); v h | K ∈ [P s (K)] d + P s (K)x} and Q h := P s (T h ).
We also denote by Π Q h the L 2 (Ω)-orthogonal projection onto Q h .

We now need to assume some properties on the approximate eigenpair (u ih , λ ih ). More precisely, the pair (u ih , λ ih ) must be orthogonal to all hat functions ψ a . Second, the approximate eigenvector u ih must be a piecewise polynomial from P p (T h ), p ≥ 1. Third, the construction of the reconstructed flux σ ih must be carried out in a sufficiently rich (order p + 1) RTN space. These assumptions are precised below. Assumption 2.3.5 (Galerkin orthogonality of the residual to ψ a ). There holds

λ ih (u ih , ψ a ) ωa -(∇u ih , ∇ψ a ) ωa = Res(u ih , λ ih ), ψ a V ,V = 0 ∀a ∈ V int h .
Assumption 2.3.6 (Piecewise polynomials). There holds u ih ∈ P p (T h ), p ≥ 1, and the spaces V h × Q h are of order p + 1.

If u ih ∈ V verifies these assumptions, we can construct concretely σ ih by the following local constrained minimizations:

Definition 2.3.7 (Equilibrated flux reconstruction). Let u ih ∈ V satisfy Assumption 2.3.5. For a ∈ V h , set V a h := {v h ∈ V h (ω a ); v h •n ωa = 0 on ∂ω a }, Q a h := {q h ∈ Q h (ω a ); (q h , 1) ωa = 0}, a ∈ V int h , V a h := {v h ∈ V h (ω a ); v h •n ωa = 0 on ∂ω a \ ∂Ω}, Q a h := Q h (ω a ), a ∈ V ext h .
Then define 

σ ih := a∈V h σ a ih ∈ V h , where σ a ih ∈ V a h solve σ a ih := arg min v h ∈V a h , ∇•v h =Π Q h (ψaλ ih u ih -∇u ih •∇ψa) ψ a ∇u ih + v h ωa ∀a ∈ V h . ( 2 
(σ a ih , v h ) ωa -(p a h , ∇•v h ) ωa = -(ψ a ∇u ih , v h ) ωa ∀v h ∈ V a h , (2.3.11a) (∇•σ a ih , q h ) ωa = (ψ a λ ih u ih -∇u ih •∇ψ a , q h ) ωa ∀q h ∈ Q a h . (2.3.11b)
Under Assumption 2.3.5, this construction guaranties that ∇•σ ih = λ ih u ih , cf e.g., [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Lemma 3.5]. This is actually crucial for deriving an upper bound of Res(u ih , λ ih ) -1 .

To give a lower bound of the dual norm of the residual Res(u ih , λ ih ) -1 , we actually introduce primal conforming local residual Riesz representations. To this aim, we solve homogeneous local Neumann (Neumann-Dirichlet close to the boundary) problems on the patches ω a via conforming primal counterparts of problems (2.3.11). Note that for all a ∈ V h ,

-(ψ a ∇u ih , ∇v) ωa + (ψ a λ ih u ih -∇u ih •∇ψ a , v) ωa = Res(u ih , λ ih ), ψ a v V ,V ∀v ∈ V.
Let a ∈ V h and consider a patch ω a around the vertex a. Define 

H 1 * (ω a ) := {v ∈ H 1 (ω a ); (v, 1) ωa = 0}, a ∈ V int h , (2.3.12a) H 1 * (ω a ) := {v ∈ H 1 (ω a ); v = 0 on ∂ω a ∩ ∂Ω}, a ∈ V ext h , (2.3 
) ωa = Res(u ih , λ ih ), ψ a v h V ,V ∀v h ∈ X a h
for each a ∈ V h . Then set r ih := a∈V h ψ a r a ih .

The functions r a ih are discrete Riesz projections of the local residual with hat-weighted test functions. Note that r a ih ∈ V (when extended by zero outside of ω a ) but ψ a r a ih ∈ H 1 0 (ω a ), whence the sum r ih indeed belongs to the space V .

Using Definitions 2.3.7 and 2.3.8, an estimation for the dual norm of the residual is provided in the following Theorem, presented for the conforming case with inexact algebraic solvers in Theorem 4.4.3.

Theorem 2.3.9 (Residual equivalences). Let (u ih , λ ih ) ∈ V × R verifying Assumptions 2.3.5 and 2.3.6 be arbitrary. Let σ ih be constructed via Definition 2.3.7 and r ih via Definition 2.3.8. Then

Res(u ih , λ ih ), r ih V ,V ∇r ih ≤ Res(u ih , λ ih ) -1 ≤ ∇u ih + σ ih , (2.3.13a 
)

∇u ih + σ ih ≤ (d + 1)C st C cont,PF Res(u ih , λ ih ) -1 , (2.3.13b) 
where C st and C cont,PF are computable constants.

Final estimations

From (2.3.13) and the previous estimation (2.3.8), we can deduce estimates for the eigenvalue and the eigenvector errors. They are summarized in the following theorem, which is a simplified version of Theorems 4.5.1 and 4.5.7 in the conforming case with exact solvers.

Theorem 2.3.10 (Guaranteed lower bounds for the i-th eigenvalue and eigenvector). Let the ith eigenvalue, i ≥ 1, be simple and suppose the auxiliary bounds

λ 1 ≤ λ 1 , λ i ≤ λ i , λ i+1 ≤ λ i+1 , as well as λ i-1 ≤ λ i-1 when i > 1, for λ 1 , λ i , λ i+1 , λ i-1 > 0.
Let (u ih , λ ih ) be any element of Set

P p (T h ) ∩ V × R + verifying u ih = 1, ∇u ih 2 = λ ih ,
cih := max λ -1 2 i-1 λ ih λ i-1 -1 -1 , λ -1 2 i+1 1 - λ ih λ i+1 -1 , (2.3.15a)
with the left terms in the max disregarded for i = 1.

If (u i , u ih ) ≥ 0 is known to hold, define α ih := √ 2c ih η i,res ; if only (u ih , χ i ) > 0 holds, set α ih := √ 2(1 -u ih -Π i u ih ) -1 2 cih η i,res
, where Π i u ih stands for the L 2 (Ω)-orthogonal projection of u ih on the span of χ i . Then for the eigenvalue

λ ih -η 2 i ≤ λ i , (2.3.16)
and the eigenvector error can be bounded via

∇(u i -u ih ) ≤ η i , (2.3 
.17)

with η 2 i := η 2 i,res + λ ih + λ i α 2 ih . (2.3.18)
Note that these estimators can actually be refined under a smallness assumption on the error. On top of that, under a supplementary elliptic regularity assumption, the bounds can be optimally improved in the sense that the efficiency of the error bound goes to one when the mesh size h goes to zero. More generally, the efficiency of the estimator is shown in Theorem 4.5.7.

In these a posteriori estimators, the only uncomputable constants are the exact eigenvalues, which we aim at estimating. Luckily, we only need coarse bounds for the eigenvalues, and they can be estimated in different ways, for example using domain inclusions or other estimation methods for the eigenvalues, such as [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] in a coarse mesh. We refer to Remark 4.5.4 on this issue. Note that from a pratical point of view, it is possible to use the approximate eigenvalues as bounds for the lower and upper eigenvalues. The error bounds are not guaranteed any more, but they can still be used in practice, and numerically, the accuracy of the bounds is barely modified.

Use of inexact algebraic solvers

Up to now, we have presented results in the conforming case, supposing that the eigensolver was exact. In fact, in Chapter 4, the results are extended to take into account inexact algebraic solvers. The theory is similar, but the notations in the estimations are more involved. Also, the property ∇u ih 2 = λ ih does not hold anymore. Moreover, the reconstruction based on equilibrated fluxes takes into account the solver error, and mostly relies on [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF].

The numerical results obtained in this case are presented in Section 4.7 for a set of test problems. They show that the assumptions under which the bounds are valid are satisfied already for very coarse meshes. Moreover, the bounds are shown to be very sharp, and converge at the right speed, both for the eigenvalues and for the eigenvectors.

Results in the nonconforming case

In Chapter 5, we extend this contribution to the case of nonconforming methods, including nonconforming, discontinuous Galerkin, and mixed finite elements. The formalism is heavier since in nonconforming methods, the property ∇u ih 2 = λ ih does not hold in general. Moreover, a discrete gradient depending on the method under consideration has to be defined to allow for irregular discrete functions.

The generic equivalences presented previously in the conforming case are very similar. In the reconstruction procedure, one needs however to employ an eigenvector reconstruction on top of the equilibrated flux reconstruction. The eigenvector reconstruction requires to solve local unconstrained minimization problems. Despite their apparent complexity, the final estimates presented in Theorems 5.6.1 and Theorems 5.6.3 are similar to the bounds presented in the conforming case in Theorems 4.5.1 and Theorems 4.5.2.

The numerical results provided in Section 5.8 for the nonconforming finite element method of order one and the symmetric discontinuous Galerkin finite element method of order one show the accuracy of these a posteriori bounds.

A posteriori error estimation for the Gross-Pitaevskii equation

In the previous section, we were interested in a linear eigenvalue problem. We now turn to the study of a nonlinear eigenvalue problem: the Gross-Pitaevskii equation. We summarize here the contribution presented in Chapter 6 for the a posteriori estimation of this equation. The setting is chosen as simple as possible, within this nonlinear eigenvalue framework. The problem is 1-dimensional, whereas in density functional theory, the problems are posed in R 3 . Moreover, the Gross-Pitaevskii energy functional is convex, which is not the case of the Kohn-Sham energy. We use a periodic setting, as is common for condensed matter systems.

The aim of this contribution is twofold. First, we provide a guaranteed a posteriori estimate for this particular nonlinear problem, based on the residual of the equation. Second, we separate the error components coming from two sources of error: the discretization and the algorithm used to solve the nonlinear problem. We are then able to determine which source is responsible for the largest error, and we balance the error components in order to save some computational resources.

To start with, the considered minimization problem reads

I = inf E(v), v ∈ X, Ω v 2 = 1 , (2.4.1) 
where the Gross-Pitaevskii energy functional is

E(v) = 1 2 Ω |∇v| 2 + 1 2 Ω V v 2 + 1 4 Ω v 4 ,
and X = H 1 # (Ω) is the Sobolev space defined in the more general settings for any s ∈ R,

H s # (Ω) = {v| Ω , v ∈ H s loc (R) | v is 1-periodic} ,
provided with the norm denoted by . H s . We assume that V ∈ L p (Ω) for some p ≥ 2. The Euler-Lagrange equations of this constrained minimization problem write in a strong form: find (u, λ) ∈ X × R such that

-∆u + V u + u 3 = λu u L 2 = 1. (2.4.2) 
This nonlinear eigenvalue problem is discretized using planewaves (see Section 1.5.3). The discrete space denoted by X N is defined by

X N = Span e k : x → e 2ikπx , |k| ≤ N, k ∈ Z .
The problem is solved using a fixed point algorithm, which is not a self-consistent field algorithm, but instead inspired from the inverse power method. An initial guess for the eigenpair (u 0 N , λ 0 N ) is chosen. Then, at each iteration, the following linear boundary value problem is solved: find u k * N ∈ X N such that

Π N -∆u k * N + V u k * N + (u k-1 N ) 2 u k * N = λ k-1 N u k-1 N , (2.4.3) 
where Π N is the orthogonal projection on X N . The discrete solution u k * N is completely determined by the knowledge of (λ k-1 N , u k-1 N ). Since u k * N is a priori a non-normalized vector, we normalize it and define u k N by

u k N = u k * N u k * N L 2 . (2.4.4)
Finally, we define the approximation of the eigenvalue λ k N as a Rayleigh quotient being

λ k N = Ω (∇u k N ) 2 + Ω V (u k N ) 2 + Ω (u k N ) 4 . (2.4.5)
The approximate solution in a planewave basis with parameter N and after k iterations in the fixed-point algorithm is denoted by

(u k N , λ k N ). The residual R k N of this approximate solution is defined by R k N = -∆u k N + V u k N + (u k N ) 3 -λ k N u k N .
The a posteriori error estimation proposed in this contribution strongly relies on the a priori analysis that was performed in [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF], detailed for an improved estimation of the involved constants. The a posteriori analysis is composed of two steps. In a first step, we use arguments based on a theory developed by Caloz-Rappaz in [START_REF] Caloz | Numerical analysis for nonlinear and bifurcation problems[END_REF] to provide an upper bound of the error, which is guaranteed under a posteriori computable hypotheses. This result is presented in Lemma 6.3.1, and reads in a simplified version as Lemma 2.4.1. If the computable conditions detailed in Lemma 6.3.1 (which imply that N and k are large enough) are satisfied, there exists a unique solution (ũ, λ) to equation (2.4.2) in the ball B((u k N , λ k N ), 2γε), where γ is fully computable, and

ε = -∆u k N +V u k N +(u k N ) 3 -λ k N u k N H -1
is the dual norm of the residual and goes to zero as N and k go to infinity. Moreover,

ũ -u k N H 1 + | λ -λ k N | ≤ 2γ -∆u k N + V u k N + (u k N ) 3 -λ k N u k N H -1 (2.4.6)
and there exists a computable condition depending on ũ -

u k N H 1 , | λ -λ k N |, u k N , λ k N ,
and other computable quantities guaranteeing that (ũ, λ) is the ground state (u, λ) of (2.4.1).

This estimate guaranties that the error is bounded by a computable quantity times the dual norm of the residual. The computation of this estimate requires nevertheless to solve a linear eigenvalue problem on the discrete space. Note that compared to finite elements, the dual norm of the residual is easily computable here, since the Laplace operator is diagonal in planewaves.

As a main limitation, this bound overestimates the real error by a factor close to 2γ. Therefore, we designed another a posteriori error estimate, which is valid in the asymtotic regime, i.e. under a smallness assumption on the error. This assumption can effectively be guaranteed by Lemma 2.4.1.

Determining the higher order terms in the estimation of the H 1 -norm of the error u-u k N H 1

and neglecting them, one can show that asymtotically, the error uu k N H 1 is bounded by the dual norm of the residual plus some other terms that are computable. And in the nice case where the L ∞ -norm of the negative part of

V + 3(u k N ) 2 -λ k N -1 denoted by (V + 3(u k N ) 2 - λ k N -1) -L ∞ is
equal to zero, we have the following error estimate, valid for any α > 1 and as close to 1 as we wish as the error goes to zero:

u -u k N H 1 ≤ α R k N H -1 . (2.4.7)
Using this error bound, it is possible to estimate the error coming from the two successive approximations: the discretization with parameter N and the iterative scheme with k iterations.

To this aim, we separate this global error into two components, each of them depending mainly on one parameter associated with the above sources of error. In fact, one only needs to decompose the residual into two parts. The contribution based on the discretization corresponds to the residual relative to the numerical scheme and is defined as

R disc = -∆u k N + V u k N + (u k-1 N ) 2 u k N -u k * N -1 L 2 λ k-1 N u k-1 N . (2.4.8)
The quantity R disc H -1 measures the discretization error and depends on the finite dimension (2N + 1) of the Fourier space X N on which we solve the problem. The iteration residual is then defined such that

R k N = R disc + R iter . Hence R iter = (u k N ) 3 -(u k-1 N ) 2 u k N -λ k N u k N + u k * N -1 L 2 λ k-1 N u k-1 N .
(2.4.9)

The quantity R iter H -1 corresponds to the algorithm error and depends mainly on the finite number of iterations k. Hence, the previous error estimate can be split into two parts

u -u k N H 1 ≤ α R disc H -1 + R iter H -1 .
(2.4.10)

Initialization (u 0 N0 , 0 N0 ) One iteration k = k + 1 (u k N , k N )
Compute In this case, the error components are given by

err
err N = R disc H -1 ,
and

err k = R iter H -1 .
In the general case where

(V + 3(u k N ) 2 -λ k N -1) -L ∞ =
0, a similar estimation can be performed. The terms involved are just slightly more complicated, and are presented in Theorem 6.3.1.

Some numerical results are presented to show that the error components err N and err k numerically depend mostly respectively on N and k. An adaptive algorithm described in Figure 2.2 has also been provided, refining at each step the parameter corresponding to the largest error component, proving the concept of error balance in this context.

Note that while the sharp error estimate is not guaranteed, it can still be used as an error indicator, and the adaptive refinement can be performed. When the second bound is guaranteed, we have then a guaranteed upper bound of the error, and an adaptive strategy to spare some computational resources. This adaptive strategy is illustrated in Figure 2.3.

Post-processing for the Kohn-Sham model

Perturbation theory

In Part V, we present a post-processing method for linear and nonlinear eigenvalue problems, including Kohn-Sham models. This method consists of performing a full computation for the problem under consideration in a coarse basis, and then to compute corrections on the eigenvalues and eigenfunctions in a fine basis, at a low computational cost. These corrections are turned into corrections on the ground-state density matrix and the ground-state energy, which are both theoretically and numerically improved.

This method is based on Rayleigh-Schrödinger perturbation theory [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Let us start by introducing this theory in the case of a linear eigenvalue problem. To adopt the notations of Part V, we consider a periodic setting. The unit cell is denoted by Ω and the periodic lattice by R. Let H be a bounded below self-adjoint operator on L 2 # (Ω) with domain H 2 # (Ω) and compact resolvent. The operator H can be diagonalized in an orthonormal basis: there exists a non-decreasing sequence (λ 0 i ) i≥1 of real numbers going to infinity and an orthonormal basis

(φ 0 i ) i≥1 of L 2 # (Ω) consisting of functions of H 2 # (Ω) such that ∀i ≥ 1, H φ 0 i = λ 0 i φ 0 i . (2.5.1)
Let us now assume that we are only able to determine the eigenpairs (φ i,Nc , λ i,Nc ) i≥1 of another, simpler operator denoted by H Nc , which is also bounded below, self-adjoint on L 2 # (Ω) with domain H 2 # (Ω) and compact resolvent. The eigenpairs

(φ i,Nc , λ i,Nc ) i≥1 verify ∀i ≥ 1, H Nc φ i,Nc = λ i,Nc φ i,Nc . (2.5.2) 
In our case, N c is a planewave discretization parameter defined in Section 1.5.3. Using a Galerkin discretization of equation (2.5.1), H Nc would typically be equal to H Nc = Π Nc H Π Nc , with Π Nc the orthogonal projector on the discrete space for the L 2 # (Ω) scalar product. In standard perturbation theory, one considers the operator H (β) = H Nc + β(H -H Nc ), where β is a real parameter. Thus, for β = 0, H (0) = H Nc which is the coarse operator, and for β = 1, H (1) = H , i.e. the exact operator. Then, the eigenvectors φ 0 i (β) and eigenvalues λ 0 i (β) of the operator H (β) are expanded in terms of power series of β. We write formally

∀i ≥ 1, φ 0 i (β) = k≥0 β k φ (k) i,Nc , λ 0 i (β) = k≥0 β k λ (k) i,Nc , where λ (0) i,Nc = λ i,Nc and φ (0) i,Nc = φ i,Nc .
The equation depending of β can be written as: for all i = 1, . . . , N ,

             (H Nc + β(H -H Nc )) ∞ k=0 β k φ (k) i,Nc = ∞ k=0 β k λ (k) i,Nc ∞ k=0 β k φ (k) i,Nc ∞ k=0 β k φ (k) i,Nc 2 L 2 = ∞ k,l=0 β k+l Ω φ (k) i,Nc φ (l) i,Nc = 1.
(2.5.3) Then, separating the different orders in β and taking β = 1, we obtain the perturbed equations at different orders. Note that the series will converge only if the difference between the exact and approximate operators H -H Nc is small. In general, the perturbation equations are only developed up to few orders (one or two, four maximum). In our post-processing method, we only compute the corrections at first-order for the eigenfunctions and second-order for the eigenvalues.

For a given i ≥ 1, developing equation (2.5.3) at 0 th order, one obtains exactly the approximate equation (2.5.2). At 1 st order, the equation reads

H Nc φ (1) i,Nc + (H -H Nc )φ i,Nc = λ i,Nc φ (1) i,Nc + λ (1) i,Nc φ i,Nc .
Projecting this equation on φ i,Nc gives

φ i,Nc , H Nc φ (1) i,Nc + φ i,Nc , (H -H Nc )φ i,Nc = λ i,Nc φ i,Nc , φ (1) 
i,Nc + λ (1) i,Nc φ i,Nc , φ i,Nc . As H Nc is self-adjoint, φ i,Nc , H Nc φ (1) i,Nc = H Nc φ i,Nc , φ (1) i,Nc = λ i,Nc φ i,Nc , φ (1) 
i,Nc , from (2.5.2). Therefore, λ

i,Nc = φ i,Nc , (H -H Nc )φ i,Nc .

Note that this quantity is equal to zero if H Nc = Π Nc H Π Nc . This gives in general for φ

(1) i,Nc (H Nc -λ i,Nc )φ (1) i,Nc = ( φ i,Nc , (H -H Nc )φ i,Nc -(H -H Nc )) φ i,Nc .
Let us now project this equation on φ j,Nc for j ≥ 1. We obtain

φ j,Nc , (H Nc -λ i,Nc )φ (1) 
i,Nc = φ j,Nc , (

φ i,Nc , (H -H Nc )φ i,Nc -(H -H Nc )) φ i,Nc .
Using the self-adjointness of H Nc leads to

(λ j,Nc -λ i,Nc ) φ j,Nc , φ (1) 
i,Nc = φ j,Nc , ( φ i,Nc , (H -H Nc )φ i,Nc -(H -H Nc )) φ i,Nc .
Therefore, for i ≥ 1 such that λ i,Nc is a simple eigenvalue, the correction at first order is given by

φ (1) i,Nc = j =i φ j,Nc , ( φ i,Nc , (H -H Nc )φ i,Nc -(H -H Nc )) φ i,Nc λ j,Nc -λ i,Nc φ j,Nc . (2.5.4)
The corrected eigenfunctions at first order write

φ i,Nc = φ i,Nc + φ (1) i,Nc = φ i,Nc + j =i φ j,Nc , ( φ i,Nc , (H -H Nc )φ i,Nc -(H -H Nc )) φ i,Nc λ j,Nc -λ i,Nc φ j,Nc .
This is a classical development which can be found in many courses about perturbation theory (see e.g. [START_REF] Helgaker | Molecular electronic-structure theory[END_REF]Chapter 14]).

Application to linear Schrödinger operators

In the post-processing method proposed in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], the operator under consideration is of the form H = -1 2 ∆ + V, where V is a multiplicative potential, satisfying the following assumption:

Assumption 2.5.1. V is a R-periodic potential such that V ∈ L ∞ # (Ω) and ∇V ∈ L 3 # (Ω).
We are interested in the lowest N eigenvalues and corresponding eigenfunctions of the operator H , denoted respectively by

Λ 0 = diag(λ 0 1 , • • • , λ 0 N ) and Φ 0 = (φ 0 1 , • • • , φ 0 N ) T .
We use a planewave discretization with parameter N c . Recall that the Laplace operator is diagonal in this basis. We denote by X Nc the discrete space on which we solve the problem and Π Nc the orthogonal projection for any H s # scalar product (s ∈ R). The discrete eigenvalues and eigenfunctions denoted respectively by

Λ Nc = diag(λ 1,Nc , • • • , λ N,Nc ) and Φ Nc = (φ 1,Nc , • • • , φ N,Nc ) T are computed from the operator -1 2 Π Nc ∆Π Nc + Π Nc VΠ Nc . Luckily, the operator -1 2 ∆ + Π Nc VΠ Nc can be decomposed as         -1 2 Π Nc ∆Π Nc + Π Nc VΠ Nc 0 0 -1 2 ∆              X Nc      X ⊥ Nc X Nc X ⊥

Nc

On X ⊥ Nc , the operator -1 2 ∆ is diagonal with a smallest eigenvalue proportional to N 2 c . Therefore, as soon as the eigenvalues (λ 1,Nc , • • • , λ N,Nc ) are smaller than the lowest eigenvalue of -1 2 ∆ on X ⊥ Nc , they are also the lowest eigenvalues of the operator

H Nc = - 1 2 ∆ + Π Nc VΠ Nc .
Note that for i ≤ N , φ i,Nc ∈ X Nc and that for i > dim(X Nc ), the eigenvalues of H Nc are explicitly known and correspond to the eigenvalues of the operator -1 2 ∆. If this assumption is verified, which can be checked in practice, the corrections on the eigenfunctions defined in (2.5.4) corresponding to simple eigenvalues become in this case

φ (1) i,Nc = j =i φ j,Nc , ( φ i,Nc , (V -Π Nc VΠ Nc )φ i,Nc -(V -Π Nc VΠ Nc )) φ i,Nc λ j,Nc -λ i,Nc φ j,Nc = - j =i φ j,Nc , (V -Π Nc VΠ Nc )φ i,Nc λ j,Nc -λ i,Nc φ j,Nc = - j>dim(X Nc ) φ j,Nc , (V -Π Nc VΠ Nc )φ i,Nc λ j,Nc -λ i,Nc φ j,Nc = -(- 1 2 ∆ -λ i,Nc ) -1 (V -Π Nc VΠ Nc )φ i,Nc .
Using this last formula, the corrections can be defined even with multiple eigenvalues. In fact, in the proofs, we will only need the following assumption.

Assumption 2.5.2. There is a gap between the N th and the (N + 1) st eigenvalues of H , i.e.

g := λ 0 N +1 -λ 0 N > 0. Since -1 2 ∆φ i,Nc + Π Nc VΠ Nc φ i,Nc = λ i,Nc φ i,Nc
, the residual Res i,Nc of the eigenpair (φ i,Nc , λ i,Nc ) can be written as

Res i,Nc = - 1 2 ∆φ i,Nc + Vφ i,Nc -λ i,Nc φ i,Nc = - 1 2 ∆φ i,Nc + Π Nc VΠ Nc φ i,Nc -λ i,Nc φ i,Nc + (V -Π Nc VΠ Nc )φ i,Nc =(V -Π Nc VΠ Nc )φ i,Nc .
Therefore the post-processed eigenfunctions can be defined as

φ i,Nc = φ i,Nc -(- 1 2 ∆ -λ i,Nc ) -1 Res i,Nc . (2.5.5)
This is the formula obtained in [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. A similar development at second order gives for the eigenvalues

λ i,Nc = λ i,Nc + λ (2) i,Nc = λ i,Nc + φ (1) i,Nc |Res i,Nc = λ i,Nc -Res i,Nc | - 1 2 ∆ -λ i,Nc -1
|Res i,Nc .

(2.5.6) To compute these post-processed eigenfunctions and eigenvalues, the residual Res i,Nc has to be computed on a finer grid than the grid used for the calculations, but then, one only needs to invert a diagonal operator on a finer grid, which is very cheap.

To characterize the improvement brought by the corrections, we do not work directly on the eigenfunctions and eigenvalues, especially since we consider possible multiple eigenvalues. Instead, we consider the ground-state density matrix of the system and the ground-state energy. The density matrix is the orthogonal projector on the space spanned by the N considered eigenfunctions. Using the Dirac bra-ket notation, the exact and approximate density matrices are respectively defined by

γ 0 := N i=1 |φ 0 i φ 0 i |, γ 0,Nc = N i=1 |φ i,Nc φ i,Nc |.
In the linear case, the ground-state energy corresponds to the sum of the lowest N eigenvalues. The exact and approximate energies are respectively defined by

E 0 := Tr (H γ 0 ) = N i=1 λ 0 i , E 0,Nc = Tr (H γ 0,Nc ) = N i=1 λ i,Nc .
The traces of operators Tr will be properly introduced in Chapter 8.

It is then possible to define corrections and the density-matrix and the energy as follows (see Definition 8.3.1). Definition 2.5.3 (Perturbed density matrix, and energy). For all N c such that the corrections on the eigenfunctions and the orbitals are well-defined. The perturbed density matrix is defined as

γ Nc = γ 0,Nc + γ (1) 
Nc , with γ (1)

Nc = N i=1 |φ (1) i,Nc φ i,Nc | + N i=1 |φ i,Nc φ (1) i,Nc |, (2.5.7) 
and the perturbed energy as

E 0,Nc = N i=1 λ i,Nc = Tr (γ 0,Nc H γ Nc ). (2.5.8)
The main results of this contribution is the following theorem, which states the asymptotic improvement on the post-processed density matrix and energy. Theorem 2.5.4. Under Assumptions 2.5.1-2.5.2, there exist

C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c , (1 -∆) 1/2 ( γ Nc -γ 0 ) S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) , (2.5.9 
)

and E 0,Nc -E 0 ≤ CN -2 c E 0,Nc -E 0 . (2.5.10)
The improvement on the density matrix is provided in terms of Hilbert-Schmidt norm. In the case where all eigenvalues are simple, the quantity (1 -∆) 1/2 (γ 0,Ncγ 0 ) S 2 (L 2 # ) easily relates to the H 1 # -norm of the error between the discrete eigenfunctions and exact eigenfunctions, and

(1 -∆) 1/2 ( γ Nc -γ 0 ) S 2 (L 2 # )
to the H 1 # -norm of the error between the corrected eigenfunctions and exact eigenfunctions. This will be exposed in more detail in Chapter 8, together with the proof of this theorem. Therefore, we gain asymptotically a factor N -2 c for the energy and for the density matrix, at the price of computing N residuals on a finer basis, which requires two FFTs per eigenvalue.

Application to the Kohn-Sham model

This post-processing method can be extended to Kohn-Sham models (see Section 1.3.3) as is presented in Chapters 7 and 9. We focus on the periodic versions of the Kohn-Sham LDA model with pseudopotentials, which we do not detail here, but can be found in Chapter 7. The main goal of this section is to show how the previous post-processing method can be applied in a nonlinear case. Let N ∈ N * be the number of particles in the system. We consider an Hamiltonian H [ρ] depending on the electronic density ρ defined by

H [ρ] = - 1 2 ∆ + V ion + V coul (ρ) + V xc (ρ), (2.5.11) 
where the electronic density is defined for a set of orbitals Ψ = (ψ 1 , . . . , ψ N ) by

ρ [Ψ] (r) = 2 N i=1 |ψ i (r)| 2 .
In the Hamiltonian, V ion is called the ionic potential and contains a local and a nonlocal part, V coul denotes the Coulomb potential, and V xc the exchange-correlation potential. The corresponding energy depends nonlinearly on the orbitals Ψ and is denoted by E KS 0,Ω (Ψ). The precise definition of the energy can be found in Chapter 7.

We are looking for the lowest N eigenvalues and corresponding eigenfunctions respectively denoted by and

Λ 0 = diag(λ 0 1 , • • • , λ 0 N ) and Φ 0 = (φ 0 1 , • • • , φ 0 N ) T , verifying ∀i = 1, . . . , N, H [ρ 0 ] φ 0 i = λ 0 i φ 0 i , and ∀i, j = 1, . . . , N, φ 0 i |φ 0 j = δ ij , (2.5.12) 
where

ρ 0 = ρ [Φ 0 ] .
We denote by H 0 = H [ρ 0 ] the exact Hamiltonian. As in the previous section, it is a boundedbelow self-adjoint operator on L 2 # (Ω) with domain H 2 # (Ω) and compact resolvent. The groundstate density matrix of the system is defined by

γ 0 := N i=1 |φ 0 i φ 0 i |, (2.5.13)
and the ground-state energy by E 0 := E KS 0,Ω (Φ 0 ). This problem is discretized with planewaves. The discrete space is denoted by X Nc and the orthogonal projector on X Nc by Π Nc . The Euler equations of the discrete minimization problem can be written as: find (φ i,Nc , λ i,Nc ) i=1,...,N satisfying ∀i = 1, . . . , N, H Nc,proj φ i,Nc = λ i,Nc φ i,Nc , and ∀i, j = 1, . . . , N,

φ i,Nc |φ j,Nc = δ ij , λ 1,Nc ≤ λ 2,Nc ≤ . . . ≤ λ N,Nc .
Here we define H Nc,proj : X Nc → X Nc by

H Nc,proj = Π Nc H [ρ Nc ] Π Nc = - 1 2 Π Nc ∆Π Nc + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , (2.5.14) with ρ Nc = ρ [Φ Nc ] , Φ Nc = (φ 1,Nc , . . . , φ N,Nc )
T and where H [ρ Nc ] is defined by (2.5.11) for the approximate ground state density ρ Nc . The discrete ground-state density matrix denoted by γ 0,Nc is defined as

γ 0,Nc = N i=1 |φ i,Nc φ i,Nc |, (2.5.15) 
and the corresponding ground-state energy is defined as

E 0,Nc = E KS 0 (Φ Nc ).
As in the linear case, the eigenvalues of the Laplace operator are explicitly known on X ⊥ Nc . Therefore, as soon as λ N,Nc , the N th eigenvalue of the operator H Nc,proj defined in (2.5.14), is smaller than the lowest eigenvalue of the operator -1 2 ∆ on X ⊥ Nc , then Φ Nc is also the groundstate of the following Kohn-Sham problem

∀i = 1, . . . , N, H Nc φ i,Nc = λ i,Nc φ i,Nc , and ∀i, j = 1, . . . , N, φ i,Nc |φ j,Nc = δ ij , (2.5.16) λ 1,Nc ≤ λ 2,Nc ≤ . . . ≤ λ N,Nc
, where

H Nc = - 1 2 ∆ + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc .
Therefore the exact solution (φ 0 i , λ 0 i ) j=1,...,N satisfies

(H Nc + V ⊥ Nc + W Nc ) φ 0 i = λ 0 i φ 0 i , Ω φ 0 i φ 0 j = δ ij ,
where

V ⊥ Nc = [V ion + V coul (ρ Nc ) + V xc (ρ Nc )] -Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , (2.5.17) 
and

W Nc = [V coul (ρ 0 ) + V xc (ρ 0 )] -[V coul (ρ Nc ) + V xc (ρ Nc )], (2.5.18) 
whereas the approximate solution (φ i,Nc , λ i,Nc ) i=1,...,N satisfies (2.5.16), at least if N c is large enough. The computation of the correction using Rayleigh-Schrödinger perturbation theory can be done exactly as in (2.5.4). The corrections should therefore be defined as

φ (1) i,Nc = j =i φ j,Nc , φ i,Nc , W Nc φ i,Nc -(V ⊥ Nc + W Nc ) φ i,Nc λ j,Nc -λ i,Nc φ j,Nc .
Unfortunately, W Nc contains the exact density ρ 0 and is not computable. But the contributions containing W Nc can be shown a priori small. Hence, we neglect these terms and finally define the corrections on the eigenfunctions as φ

i,Nc = -

j =i φ j,Nc , V ⊥ Nc φ i,Nc λ j,Nc -λ i,Nc φ j,Nc .
Then, exactly as in the linear case, this can be simplified as φ

i,Nc = -(-

1 2 ∆ -λ i,Nc ) -1 V ⊥ Nc φ i,Nc = -(- 1 2 ∆ -λ i,Nc ) -1 Res i,Nc ,
where the residual Res i,Nc is defined by

Res i,Nc = - 1 2 ∆φ i,Nc + V ion + V coul (ρ Nc ) + V xc (ρ Nc ) φ i,Nc -λ i,Nc φ i,Nc .
From this definition of the corrections, one can define post-processed orbitals, ground-state density matrix, and energy as in Definition 2.5.5 below. Since the post-processed orbitals are not a priori orthonormalized, we define two sets of post-processed orbitals, the second one being the orthonormalized version of the first one. This leads to the definition of two different post-processed density matrices and energies.

Definition 2.5.5 (Perturbed eigenvectors, density matrix and energy). For all i = 1, . . . , N, we define the perturbed eigenvectors as

φ i,Nc = φ i,Nc + φ (1) 
i,Nc .

We also define orthonormal perturbed eigenvectors as an orthonormalization of ( φ i,Nc ) i=1,...,N . More precisely, for all i = 1, . . . , N, define

Φ Nc = S Nc -1/2 Φ Nc ,
where S Nc , the N × N overlap matrix of

Φ Nc = ( φ 1,Nc , . . . , φ N,Nc ), is defined as ∀i, j = 1, . . . , N, (S Nc ) i,j = φ i,Nc | φ j,Nc . (2.5.19) 
We define the perturbed density matrix as

γ Nc = N i=1 | φ i,Nc φ i,Nc | = γ 0,Nc + γ (1) Nc + N i=1 |φ (1) 
i,Nc φ

i,Nc |, (2.5.20)

where γ

Nc = N i=1 |φ (1,1) i,Nc φ i,Nc | + N i=1 |φ i,Nc φ (1) 
i,Nc |.

(2.5.21)

We also define a orthonormalized perturbed density matrix as

γ Nc = N i=1 | φ i,Nc φ i,Nc |. (2.5.22)
We define respectively the perturbed energy and the orthonormalized perturbed energy as

E 0,Nc = E KS 0,Ω ( Φ Nc ), E 0,Nc = E KS 0,Ω ( Φ Nc ). (2.5.23)
As in the linear case, we show that asymptotically, the post-processed density-matrices and energies are more precise than the approximate quantities on the coarse grid. This is presented in the following theorem, for which the proofs are presented together with Theorem 9.5.1. We gain a factor N -2 c for all considered quantities except for the energy computed from the postprocessed normalized orbitals, for which we gain a factor N -4 c . The results partly rely on the a priori estimation performed in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], which has been translated in the density matrix formalism to be used in this context. Theorem 2.5.6 (Improved convergence for the density matrix and the energy). There exist

C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c , (1 -∆) 1/2 (γ 0 -γ Nc ) S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) , (2.5.24) (1 -∆) 1/2 (γ 0 -γ Nc ) S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) , (2.5.25 
)

| E 0,Nc -E 0 | ≤ CN -2 c |E 0,Nc -E 0 |, (2.5.26) 
and

| E 0,Nc -E 0 | ≤ CN -4 c |E 0,Nc -E 0 |. (2.5.27)
Once again, the improvement on the density matrix is provided in terms of Hilbert-Schmidt norm, which can be related to H 1 -norms of the orbital error in the case of simple eigenvalues.

Together with the theoretical results, numerical results were performed with KSSOLV [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF], a Matlab toolbox for solving the Kohn-Sham equations. They are presented in Section 7.5. We observe an improvement of about a factor 10 to 50 for the energy of simple molecules, such as the alanine molecule, which contains 18 valence electrons. The cost of the post-processing is very limited, and is about 3% over the different calculations. Note that in practice, it it not possible to compute the corrections on the whole space, hence they are computed on a fine grid. Details are provided in Chapter 7.

In this contribution, the post-processing method is presented as a way to improve the accuracy of the ground-state energy and density matrix at a low computational cost. However, since the post-processed quantities are more precise than the coarse ones, they could be used as error indicators for the coarse solution. In this framework, the energy error could be estimated by the difference between the post-processed energy and the coarse energy, and respectively for the density matrix error. Thus, this method does not offer a proper guaranteed a posteriori estimation for the Kohn-Sham equations, but can still be very useful for the estimation of the energy and density-matrix errors.

A posteriori estimation and post-processing methods in a unified framework

In the previous sections, we have presented different methods for the a posteriori error estimation and post-processing of linear and nonlinear eigenvalue problems. In the following, we compare these different methods in a unified framework. This section is a preliminary version of [START_REF] Dusson | An overview of a posteriori estimation and post-processing methods for nonlinear eigenvalue problems[END_REF]. First, we relate the error estimation for the Gross-Pitaevskii equation presented in Chapter 6 to a Taylor expansion of the residual. We then present the a posteriori estimation for the Hartree-Fock problem derived in [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF]. Finally, we mention the two-grid methods proposed in [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF] for the linear case, and [START_REF] Cancès | Two-grid methods for a class of nonlinear elliptic eigenvalue problems[END_REF] for the nonlinear case, as well as post-processing methods based on perturbation theory [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF].

Generic linear and nonlinear eigenvalue problems

In order to compare the different methods more easily, we adopt the same notations for the eigenvalues problems. Let us first consider an abstract linear eigenvalue problem. Let X be a separable Hilbert space endowed with a scalar product denoted by •, • , and corresponding norm • . Let A be a bounded-below self-adjoint operator on X with domain D(A) and compact resolvent. There exists a non-decreasing sequence of real numbers (λ k ) k≥1 such that λ k → ∞ and an orthonormal basis

(u k ) k≥1 of H consisting of vectors of D(A) such that ∀k ≥ 1, A u k = λ k u k .
For simplicity, we restrict ourselves here to the problem of finding the lowest eigenvalue of the problem, even though the post-processing methods presented in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF] and the a posteriori estimation [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF] are not restricted to the lowest eigenvalue. The problem can be stated as:

Find (u, λ) ∈ X × R, such that u = 1 and Au = λu,
or written in a weak form ∀v ∈ X, Au, v = λ u, v .

We consider here a Galerkin discretization of this equation using planewaves. The approximate space X Nc is characterized by a cutoff N c in momentum space. The discrete solution

(u Nc , λ Nc ) ∈ X Nc × R satisfies u Nc = 1 and ∀v Nc ∈ X Nc , Au Nc , v Nc = λ Nc u Nc , v Nc . (2.6.1)
This problem is called linear eigenvalue problem because the operator A itself does not depend on the eigenvector. However, strictly speaking, this problem is nonlinear in the solution (u, λ).

Let us now consider an abstract nonlinear eigenvalue problem, i.e. a problem where the operator A depends on the eigenvector. We characterize this dependency by a function f . In our applications, this operator f depends on the electronic density ρ in the Hartree-Fock and Kohn-Sham problems, which is equal to u 2 in the case of only one eigenfunction. Therefore, we denote by f (u 2 ) the nonlinear part of the operator. Thus, we consider the following problem:

Find (u, λ) ∈ X × R, such that u = 1 and Au + f (u 2 )u = λu, (2.6.2) 
where A is a linear operator independent of u having the properties described in the linear case.

A Galerkin discretization of this problem writes:

Find (u Nc , λ Nc ) ∈ X Nc × R with u Nc = 1 such that ∀v Nc ∈ X Nc , A + f (u 2 Nc ) u Nc , v Nc = λ Nc u Nc , v Nc . (2.6.3)
As before, we choose to present the methods with a planewave discretization.

Some convergence results

Let us now recall some a priori results on the convergence of the eigenfunctions and eigenvalues of the problems presented above. First, under suitable and realistic hypotheses on A, there holds

u -u Nc H 1 min v Nc ∈X Nc u -v Nc H 1 .
Also, the eigenvalues converge quadratically compared to the eigenvectors, i.e.

|λ Nc -λ| A 1/2 (u -u Nc ) 2 ,
and in the case where A = -∆ + V (see e.g. [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]),

|λ Nc -λ| u -u Nc 2 H 1 .
Moreover, the L 2 -norm of the error uu Nc as well as negative Sobolev norms converge faster than the H 1 -norm of the error. Finally, the dual norm of the residual behaves like the H 1 -norm of the error, i.e.

Au Nc -λ Nc u Nc H -1 u -u Nc H 1 .
This is not trivial as the problem is an eigenvalue problem, but it was shown for the Gross-Pitaevskii equation in [START_REF] Dusson | A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem[END_REF], and for the Laplace eigenvalue problem in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF].

A posteriori estimation for the Gross-Pitaevskii equation

In the a posteriori estimation for the Gross-Pitaevskii equation presented in Chapter 6, which is nonlinear, the first error bound relies on Caloz-Rappaz theory [START_REF] Caloz | Numerical analysis for nonlinear and bifurcation problems[END_REF], with a Taylor development of the residual. The equation corresponds to (2.6.2) with A = -∆+V and f being the identity.

Let us denote the residual by

F , i.e. ∀v ∈ X, ∀µ ∈ R, F (v, µ) = Av + f (v 2 )v -µv.
For the exact eigenpair (u, λ) ∈ X × R, there holds

F (u, λ) = Au + f (u 2 )u -λu = 0.
Writing a first-order development of the residual around the coarse eigenpair (u Nc , λ Nc ) ∈ X Nc × R, where X Nc is a planewave space, gives

F (u, λ) = F (u Nc , λ Nc ) + DF (u Nc ,λ Nc ) (u -u Nc , λ -λ Nc ) + h.o.t., (2.6.4) 
where h.o.t. means higher order terms, and DF is the differential of the residual F , and is defined by

∀w ∈ X, τ ∈ R, DF (u Nc ,λ Nc ) (w, τ ) = Aw + 2f (u 2 Nc )u 2 Nc w + f (u 2 Nc )w -τ u Nc -λ Nc w 2 u Nc w
Loosely speaking, if the approximate solution (u Nc , λ Nc ) is close to the exact solution (u, λ), there holds

0 F (u Nc , λ Nc ) + DF (u Nc ,λ Nc ) (u -u Nc , λ -λ Nc ). Therefore, if DF is invertible, u -u Nc λ -λ Nc DF -1 (u Nc ,λ Nc ) F (u Nc , λ Nc ).
In order to get a guaranteed bound of the error in Chapter 6, Caloz-Rappaz theorem provides conditions ensuring that there exists an exact solution in the vicinity of the approximate solution, and that the error between the exact and approximate solution is bounded by

u -u Nc H 1 + |λ -λ Nc | ≤ 2 DF -1 (u Nc ,λ Nc ) H -1 ,H 1 F (u Nc , λ Nc ) H -1 .
The factor 2 in this estimation allows to absorb the higher order terms of the Taylor development. In the a posteriori estimation of Chapter 6, an important part of the contribution consists of showing that DF is invertible at (u Nc , λ Nc ) and to bound the norm of its inverse. Indeed, the main part of DF -1 is (∆) -1 , that is an isometry between H -1 and H 1 , and the remaining part in DF -1 is of lower order in terms of differential operator. In the refined bound presented in Section 6.3.2, the term DF -1 (u Nc ,λ Nc ) F (u Nc , λ Nc ) is directly estimated, and these lower order terms are shown to be small thanks to the first bound. Asymptotically, we obtain

u -u Nc H 1 ≤ α F (u Nc , λ Nc ) H -1 ,
where α can be taken as close to 1 as we wish when N c goes to infinity.

A posteriori estimation for the Hartree-Fock problem

The a posteriori estimation for the Hartree-Fock problem [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF] is mainly performed on the energy, but also offers a convergence rate for the orbitals. We refer to Section 1.3.1 for the description of this nonlinear eigenvalue problem. The a posteriori estimation is based on a post-processing of the coarse solution (u Nc , λ Nc ) on a fine space X N f at a cheap computational cost. Hence, this method can be seen as a two-grid method, as we will see in the following subsection. Here N f denotes the cutoff in momentum space for the fine planewave space, and

N f > N c .
The post-processed orbitals are defined from a second-order Taylor development on the energy, which corresponds to a first-order development on the residual. Indeed, translated in this formalism, neglecting the nonlinearity in the operator, the fine-grid problem writes: Find

u N f ∈ X N f such that (A -λ Nc ) |X ⊥ Nc u N f = -(A -λ Nc )u Nc in X N f .
(2.6.5)

Since the convergence of the eigenvalues is quadratic compared to the convergence of the H 1norm of the orbital error, we can neglect the dependency of the residual in the eigenvalue, and rather consider the residual as a function of u defined by:

F (u) = (A -λ Nc )u. The differential of F at u writes ∀v ∈ X, DF u (v) = (A -λ Nc )v.
Therefore, the equation (2.6.5) is equivalent to a Newton step with respect to F which can be written as: Find

u N f ∈ X N f such that ∀v N f ∈ X N f , F (u Nc ), v N f + DF u Nc (u N f -u Nc ), v N f = 0. (2.6.6)
If we consider now the nonlinear problem (2.6.3), F (u) is defined as

F (u) = (A + f (u 2 ) -λ Nc )u.
In this case, the differential DF of F at u writes

∀v ∈ X, DF u (v) = (A + 2f (u 2 )u 2 + f (u 2 ) -λ Nc )v,
and the corresponding Newton step in the fine grid reads in a strong form: Find

u N f ∈ X N f such that (A + 2f (u 2 Nc )u 2 Nc + f (u 2 Nc ) -λ Nc ) |X ⊥ Nc u N f = -(A + f (u 2 Nc ) -λ Nc )u Nc in X N f . (2.6.7)
Seen as a Newton step, this proposed post-processing naturally doubles the convergence rate of the energy and the H 1 -norm of the orbitals. Then, the difference between the postprocessed energy and the approximate energy allows to estimate the error between the exact energy and the approximate one. Compared to the previous a posteriori estimation, the bounds here are not guaranteed. Nevertheless, they converge at the right speed to the true error.

Numerically, this method requires to solve a boundary value problem. Note that the computation of DF might not be straightforward, especially since the Hartree-Fock problem is nonlinear. Moreover, in order to get a doubled convergence rate on the energy, the postprocessed eigenfunctions need to be normalized, which requires the inversion of a (relatively small) matrix.

Two-grid methods

Let us now present the two-grid methods proposed in [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF][START_REF] Cancès | Two-grid methods for a class of nonlinear elliptic eigenvalue problems[END_REF]. In two-grid methods, the goal is to compute a better approximation of a coarse solution (u Nc , λ Nc ) on a fine space X N f at a cheap computational cost. In fact, these methods can be seen as an approximate Newton step for the residual equation, hence can be compared to the post-processing of the Hartree-Fock equations presented above.

In the two-grid method for a linear eigenvalue problem presented in [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF], the eigenvalue problem (2.6.1) is solved on the coarse space X Nc , and then, the following boundary problem is solved on a fine space

X N f : Find (u N f , λ N f ) ∈ X N f × R such that ∀v N f ∈ X N f , Au N f , v N f = λ Nc u Nc , v N f . (2.6.8)
The fine eigenvalue is then defined as a Rayleigh quotient of the fine solution, i.e.

λ N f = u N f , Au N f u N f , u N f .
In [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF], the operator A is the Laplace operator, and the problem is discretized with finite elements. Note that in equation (2.6.8), the residual (Aλ Nc )u Nc does not appear explicitly. However, substracting Au Nc , v N f on both side of equation (2.6.8), we obtain

∀v N f ∈ X N f , A(u N f -u Nc ), v N f = -(A -λ Nc )u Nc , v N f , (2.6.9) 
where the residual (Aλ Nc ) is present on the right hand-side. The quantity u N fu Nc now appears as a correction on the eigenfunction u Nc . We can also decompose the residual of the fine-grid solution in different terms in order to include the fine-grid equation. We obtain

Au N f -λ N f u N f = Au N f -λ Nc u Nc + λ Nc (u Nc -u N f ) + (λ Nc -λ N f )u N f , (2.6.10)
which is very close to the first-order Taylor development of the residual (2.6.4). The dual norm of the fine residual

Au N f -λ N f u N f H -1 is composed of the residual of the equation solved on the fine grid Au N f -λ Nc u Nc H -1
, which is very small, the dual norm of the error u Ncu N f H -1 and the error on the eigenvalue |λ Ncλ N f |, which are both of higher order compared to the dual norm of the residual Au Ncλ Nc u Nc H -1 . This explains the gain in accuracy for the fine-grid solution. Indeed, if the discretization parameters are well-chosen,

u -u N f H 1 u -u Nc 2 H 1 , and |λ -λ N f | |λ -λ Nc | 2 . (2.6.11)
The cost of this method is the resolution of a boundary problem on the fine grid, i.e. (2.6.8).

In fact, the equation solved in the fine grid in this two-grid method is similar to the Newton step presented for the Hartree-Fock problem (2.6.5), except that the term -λ Nc (u N fu Nc ) is neglected. But this term is of higher order compared to A(u N fu Nc ), which explains why the improved convergence results are similar.

In the two-grid method for a nonlinear eigenvalue problem presented in [START_REF] Cancès | Two-grid methods for a class of nonlinear elliptic eigenvalue problems[END_REF], the problem solved on the coarse grid is:

Find (u Nc , λ Nc ) ∈ X Nc × R such that (A + f (u 2 Nc ))u Nc = λ Nc u Nc , u Nc L 2 = 1, on X Nc .
The operator A is -∆+V and the discretization can be finite element or a planewave methods.

Then three different problems on the fine grid X N f are proposed:

1-Solve a linear eigenvalue problem on the fine grid:

(A + f (u 2 Nc ))u N f = λ N f u N f .
2-Solve a linear boundary problem on the fine grid:

(A + f (u 2 Nc ))u N f = λ Nc u Nc .
3-Solve a linear boundary problem on the fine grid:

Au N f = -f (u 2 Nc )u Nc + λ Nc u Nc .
An error analysis is provided for the first method. If the ratio between N c and N f is wellchosen, an improvement is expected on the eigenfunction and the eigenvalue, but not as much as in the Hartree-Fock case. Let us remark that compared to (2.6.7), these equations neglect the derivative of the functional f . This might explain why the convergence rates of the eigenfunctions and the eigenvalues are not doubled.

Post-processing methods based on perturbation theory

In the perturbative method [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF], the idea is a bit different. Let us first consider the linear case.

On the coarse grid X Nc , we solve the problem (2.6.1), but we write it as a problem on the whole space with a modified operator A Nc : the problem (2.6.1) corresponds to the problem

A Nc u Nc = λ Nc u Nc , on X,
or written in the weak form as

∀v ∈ X, A Nc u Nc , v = λ Nc u Nc , v .
In the particular case presented in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF], A = -∆ + V , with V a multiplicative potential, X Nc is a planewave discretization space, and A Nc = -∆ + Π Nc V Π Nc , with Π Nc the projector on the space X Nc for any H s scalar product (s ∈ R). Then, a perturbative expansion is performed, taking the previous equation as the unperturbed equation and the equation Au = λu as the perturbed one. Denoting in this case respectively u N f and λ N f the perturbed eigenfunction and eigenvalue, we obtain at first order

(A -A Nc )u Nc + A Nc (u N f -u Nc ) = λ Nc (u N f -u Nc ) + (λ N f -λ Nc )u Nc , i.e. (A Nc -λ Nc )(u N f -u Nc ) -(λ N f -λ Nc )u Nc = -(A -λ Nc )u Nc .
It can be shown that the correction for the eigenvalue at first order is equal to zero, so that

(A Nc -λ Nc )(u N f -u Nc ) = -(A -λ Nc )u Nc .
(2.6.12)

The discretization being done in planewave, the operator (A Ncλ Nc ) is diagonal on the orthogonal complement to X Nc , and since (Aλ Nc )u Nc ∈ X ⊥ Nc , this equation can be easily solved. The corrected eigenvalue λ N f is computed with a second-order development.

If we write a development similar to (2.6.10), we obtain

Au N f -λ N f u N f = (A-λ Nc )u Nc +(A Nc -λ Nc )(u N f -u Nc )-(λ N f -λ Nc )u N f +(A-A Nc )(u N f -u Nc ).
The first two terms in the right-hand side correspond to the perturbation equation (2.6.12). The third term is of higher order as it contains the eigenvalue difference λ N fλ Nc , and the last term is small only since (A -A Nc ) does not contain the Laplace operator any more and is equal to V -Π Nc V Π Nc , so that u N fu Nc does not need to be measured in H 1 -norm. In this case, we gain a factor N -2 c both on the H 1 -norm of the eigenvectors and on the eigenvalue. The post-processing method presented in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF] in the nonlinear case is similar to the linear case. The uncomputable terms are shown to be asymptotically negligible. We refer to Chapter 9 for more details on this case. The gain on the eigenvector is similar to the linear case. This perturbation method corresponds to a Taylor development of the residual, exactly as in (2.6.6) except that here, the residual is seen as a function of A, u, and λ:

F (A, u, λ) = (A -λ)u.
Thus, the perturbation method and the two grids method are similar, in the sense that the postprocessed eigenvectors arise from a Taylor development where higher order terms are neglected. However, they are not equivalent. Indeed, the perturbation method does not require to solve a boundary value problem, since the operator to invert on the fine grid is diagonal. Moreover, the improvement of this perturbation method is limited to N c -2 by the difference in the operator V -Π Nc V Π Nc , whereas, in the two-grid case, the convergence rate of the eigenfunctions can be doubled, at least in the linear case.

The following table gives a summary of the different methods that were presented before, with their main characteristics. 

-∆u = λu K lowest Finite u -u N f H 1 u -u Nc 2 H 1 Boundary Value method [251] elements (FE) |λ -λ N f | |λ -λ Nc | 2 Problem (BVP) Nonlinear (-∆ + V + f (u 2 ))u FE or (in FE) if u -u Nc H 1 N c -σ , BVP or linear two-grid = λu 1 lowest planewaves then u -u N f H 1 N c -σ-2 + N f -σ eigenvalue method [42] (PW) |E(u) -E(u N f )| N c -2σ-4 + N f -2σ problem Linear (-∆ + V )u = λu K lowest PW if N c cutoff in momentum space, Residual perturbation u -u N f H 1 N -2 c u -u Nc H 1 computation method [49] |λ -λ N f | N -2 c |λ -λ Nc | Nonlinear (-∆ + V + V ρ Φ )φ i K lowest PW if N c cutoff in momentum space, Residual perturbation = λ i φ i u -u N f H 1 N -2 c u -u Nc H 1 computation method [50] with Φ = (φ 1 , . . . , φ K ).
Energy: 

|E(u) -E(u N f )| N -2 c |E(u) -E(u Nc )| A posteriori estimation (-∆ + V + (ρ Φ 1 |x| )φ i K lowest Any u -u N f H 1 u -u Nc 2 H 1 Resolution of for Hartree-Fock [184] = λ i φ i , |E(u) -E(u N f )| |E(u) -E(u Nc )| 2 a BVP with Φ = (φ 1 , . . . , φ K ).

Conclusion and perspectives

In this chapter, we have presented the different contributions of this thesis. We now present possible extensions of this work.

In the contribution presented in Section 2.2 and detailed in Part II, the phenomenon of discretization error cancellation is rigorously explained for an operator of the form -∆ + V , where the potential V is a sum of Dirac potentials, hence not smooth. The potentials considered in molecular simulations being often more regular, e.g. with pseudopotentials, one can wonder whether the results apply in this case. In fact, the reason for choosing Dirac potentials in the mathematical model was that explicit solutions were available, and not directly a regularity issue. Hence, we expect similar results for smoother potentials, i.e. an improved prefactor on the energy error difference but no improvement in the convergence rate. This is also what we observed on the simulations for the H 2 molecule. To go beyond the discretization error cancellation, it would be interesting to study other types of error cancellation, such as the error in the supercell size. Such estimations would allow to guaranty the accuracy of differences of quantities of interest, which are in many cases the true quantities of interest, and possibly decrease the numerical cost of the simulations at the same time.

In Part III, the a posteriori analysis for the Laplace operator leading to fully computable, guaranteed and efficient error bounds for the eigenvalues and eigenvectors is valid for any simple eigenvalue. In practice, eigenvalues are often multiple or close to degenerate, in which case our analysis does not hold anymore. However, it is possible to provide similar results for clusters of eigenvalues. This is work in progress. The proofs have to be extended within the framework of density matrices, as in Chapters 8 and 9. The resulting assumption is the existence of a gap below and above the cluster of eigenvalues. This a posteriori analysis could also be generalized by considering a more involved operator, for example an operator of the form -∆ + V , with a (possibly nonlinear) potential V , in order to get closer to a fully, computable, robust a posteriori analysis for the finite element discretization of the Kohn-Sham model. To this aim, the generic equivalence part has already been generalized to a class of boundedbelow self-adjoint operators with compact resolvent. However, the reconstruction part based on equilibrated fluxed and dealing with the nonlinearity seem quite challenging.

Concerning the Gross-Pitaevskii equation presented in Part IV, a possible extension of our contribution on the a posteriori analysis for this equation would be to add a rotating magnetic field to the system, in order to model rotating Bose-Einstein condensates. Two main difficulties arise in this case. First, the energy of the problem is not convex anymore. Second, the magnetic field introduces a coupling between the real and imaginary parts of the solution, which cannot be considered real anymore. On top of that, the problem is then 3-dimensional, whereas our a posteriori analysis of the Gross-Pitaevskii equation has been simplified in a one-dimensional case.

For the Kohn-Sham model, we have not yet proposed a guaranteed a posteriori error bound. Instead, we have proposed a post-processing method which improves the accuracy of the energy and the orbitals at a low computational cost, and can be used to derive error indicators, as presented in Section 2.5.3. In this direction, one possibility would be to modify the postprocessing method to guaranty a post-processed energy always above (or below) the exact energy. The post-processed energy could then be used as an upper (or lower) bound of the energy. This is actually work in progress, following the works of Feshbach-Schur and Löwdin. However, the non-convexity of the model has also to be dealt with. In a first step, asymptotic bounds, following the ideas of the second bound for the Gross-Pitaevskii equation presented in Chapter 6 could be derived.

A such a posteriori bound for the Kohn-Sham model could then be used to perform error separation and error balance. For the Gross-Pitaevskii equation, the computational gain ob-tained through the error balance presented in Chapter 6 is somehow limited, especially in the one-dimensional case, as the cost of the whole computation is anyway not expensive. However, solving the Kohn-Sham equations for large systems is expensive, therefore we expect a larger computational cost reduction using error balance in this case.

At this point, one should note that this separation of error and error balance procedure may complicate the computation of the forces. Indeed, when the discretization and iteration errors are balanced, the algorithm presented in Figure 2.2 stops while the self-consistent field algorithm has not fully converged. It is exactly how we intend to spare computational resources. Unfortunately, in molecular dynamics, the full convergence of the SCF cycle is used to efficiently compute the forces thanks to Hellmann-Feynman theorem. This problem also appears in the post-processing method. For the moment, Hellmann-Feynman theorem does not hold for the post-processed quantities, which slows down the computation of the forces. Therefore, it would be interesting to either derive a strategy in which Hellmann-Feynman theorem can still be applied, or develop a cheap computation of the forces in the case where the orbitals are not fully converged. Ideas in this direction can be found in [START_REF] Aviat | Truncated conjugate gradient: an optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations[END_REF].

Up to now, the numerical results have only been performed with KSSOLV [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF], a Matlab toolbox running for small molecules, mainly for a testing purpose. In the future, it would be interesting to implement guaranteed error bounds for the Kohn-Sham models in largely used quantum chemistry codes, such as Abinit [START_REF] Gonze | First-principles computation of material properties: the ABINIT software project[END_REF] in the case of planewaves. This would make guaranteed computations with error bars available for the practitioners.

This thesis focuses on two different discretization methods: the finite elements and the planewaves. In Section 1.5, we presented other discretization methods, which could be studied as well. In particular, the molecular orbitals are massively used by chemists for their good compromise between accuracy and number of basis functions. But this accuracy is limited, as no one knows which function to add to decrease the error below a certain point. Therefore, it would be great to combine the intuition of the chemists, which leads to a very good accuracy with only few basis functions with the possible automatic optimization given by an adaptive refinement procedure. Another possibility would be to focus on the wavelet method, which easily allows for adaptivity. Even though this adaptivity is in practice somehow limited, as there are only two precisions levels in one of the main wavelet codes called BigDFT [START_REF] Mohr | Daubechies wavelets for linear scaling density functional theory[END_REF], it would be already interesting to propose adaptive procedures for this specific case.

Finally, and probably further in the future, one could look at model errors, for example try to obtain error bounds for the Configuration Interaction or Coupled Cluster methods with respect to the solution of the Schrödinger equation. There already exist adaptive algorithms for these methods [START_REF] Lyakh | An adaptive coupled-cluster theory: @CC approach[END_REF][START_REF] Neese | Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis[END_REF][START_REF] Schriber | Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy[END_REF], but for the moment, the adaptive selection of the orbitals is based on a priori arguments, e.g. the smallness of the coefficients, whereas it could be based on guaranteed error bounds. However, a possibly major difficulty would be the computation or estimation of the residual. Anyway, such procedure would lead to a better selection of the orbitals, together with an error bound on the final result.

Part II

Discretization error cancellation for a linear eigenvalue problem

Chapter 3

Discretization error cancellation in electronic structure calculation: toward a quantitative study

We expose in this chapter the results of [START_REF] Cancès | Discretization error cancellation in electronic structure calculation: toward a quantitative study[END_REF]. This work was done in collaboration with Eric Cancès.

Abstract

It is often claimed that error cancellation plays an essential role in quantum chemistry and first-principle simulation for condensed matter physics and materials science. Indeed, while the energy of a large, or even medium-size, molecular system cannot be estimated numerically within chemical accuracy (typically 1 kcal/mol or 1 mHa), it is considered that the energy difference between two configurations of the same system can be computed in practice within the desired accuracy. The purpose of this paper is to initiate the quantitative study of discretization error cancellation. Discretization error is the error component due to the fact that the model used in the calculation (e.g. Kohn-Sham LDA) must be discretized in a finite basis set to be solved by a computer. We first report comprehensive numerical simulations performed with Abinit [START_REF] Gonze | ABINIT: Firstprinciples approach to material and nanosystem properties[END_REF][START_REF] Gonze | First-principles computation of material properties: the ABINIT software project[END_REF] on two simple chemical systems, the hydrogen molecule on the one hand, and a system consisting of two oxygen atoms and four hydrogen atoms on the other hand. We observe that errors on energy differences are indeed significantly smaller than errors on energies, but that these two quantities asymptotically converge at the same rate when the energy cut-off goes to infinity. We then analyze a simple one-dimensional periodic Schrödinger equation with Dirac potentials, for which analytic solutions are available. This allows us to explain the discretization error cancellation phenomenon on this test case with quantitative mathematical arguments.

Introduction

Error control is a central issue in molecular simulation. The error between the computed value of a given physical observable (e.g. the dissociation energy of a molecule) and the exact one, has several origins. First, there is always a discrepancy between the physical reality and the reference model, here the N -body Schrödinger equation, possibly supplemented with Breit terms to account for relativistic effects. However, at least for the atoms of the first three rows of the periodic table, this reference model is in excellent agreement with experimental data, and can be considered as exact in most situations of interest. The overall error is therefore the sum of the following components:

1. the model error, that is the difference between the value of the observable for the reference model, which is too complicated to solve in most cases, and the value obtained with the chosen approximate model (e.g. the Kohn-Sham LDA model), assuming that the latter can be solved exactly;

2. the discretization error, that is the difference between the value of the observable for the approximate model and the value obtained with the chosen discretization of the approximate model. Indeed, the approximate model is typically an infinite dimensional minimization problem, or a system of partial differential equations, which must be discretized to be solvable by a computer, using e.g. a Gaussian atomic basis set, or a planewave basis;

3. the algorithmic error, which is the difference between the value of the observable obtained with the exact solution of the discretized approximate model, and the value computed with the chosen algorithm. The discretized approximate models are indeed never solved exactly; they are solved numerically by iterative algorithms (e.g. SCF algorithms, Newton methods), which, in the best case scenario, only converge in the limit of an infinite number of iterations. In practice, stopping criteria are used to exit the iteration loop when the error at iteration k, measured in terms of differences between two consecutive iterates or, better, by some norm of some residual, is below a prescribed threshold. If the stopping criterion is very tight, the algorithmic error can become very small, ... or not! For instance, if the discretized approximate model is a non convex optimization problem, there is no guarantee that the numerical algorithm will converge to a global minimum.

It may converge to a local, non-global minimum, leading to a non-zero algorithmic error even in the limit of an infinitely tight stopping criterion;

4. the implementation error, which may, obviously, be due to bugs, but does not vanish in the absence of bugs, because of round-off errors: in molecular simulation packages, most operations are implemented in double precision, and the resulting round-off errors can accumulate, especially for very large systems;

5. the computer error, due to random hardware failures (miswritten or misread bits). This component of the error is usually negligible in today's standard computations, but is expected to become critical in future exascale architectures [START_REF] Li | System implications of memory reliability in exascale computing[END_REF].

Quantifying these different sources of errors is an interesting purpose for two reasons. First, guaranteed estimates on these five components of the error would allow one to supplement the computed value of the observable returned by the numerical simulation with guaranteed error bars (certification of the result). Second, they would allow one to choose the parameters of the simulation (approximate model, discretization parameters, algorithm and stopping criteria, data structures, etc.) in an optimal way in order to minimize the computational effort required to reach the target accuracy.

The construction of guaranteed error estimators for electronic structure calculation is a very challenging task. Some progress has however been made in the last few years, regarding notably the discretization and algorithmic errors for Kohn-Sham LDA calculations. A priori discretization error estimates have been constructed in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for planewave basis sets, and then in [START_REF] Chen | Numerical analysis of finite dimensional approximations of Kohn-Sham models[END_REF] for more general variational discretization methods. A posteriori error estimators of the discretization error have been proposed in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF][START_REF] Chen | Adaptive finite element approximations for Kohn-Sham models[END_REF][START_REF] Kaye | A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory[END_REF]. A combined study of both the discretization and algorithmic errors was published in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF] (see also [START_REF] Dusson | A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem[END_REF]). We also refer to [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF][START_REF] Chen | Error estimates of some numerical atomic orbitals in molecular simulations[END_REF][START_REF] Chen | Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations[END_REF][START_REF] Kutzelnigg | Rate of convergence of basis expansions in quantum chemistry[END_REF][START_REF] Lin | A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE[END_REF][START_REF] Hanrath | Wavefunction quality and error estimation of single-and multi-reference coupled-cluster and CI methods: The H4 model system[END_REF][START_REF] Kutzelnigg | Error analysis and improvements of coupled-cluster theory[END_REF][START_REF] Pernot | Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry[END_REF][START_REF] Pieniazek | Sources of error in DFT computations of C-C bond formation thermochemistries: π→σ transformations and error cancellation by DFT methods[END_REF][START_REF] Rohwedder | Error estimates for the Coupled Cluster method[END_REF] and references therein for other works on error analysis for electronic structure calculation.

In all the previous works on this topic we are aware of, the purpose was to estimate, for a given nuclear configuration R of the system, the difference between the ground state energy E R (or another observable) obtained with the continuous approximate model under consideration (e.g. Kohn-Sham LDA) and its discretized counterpart denoted by E R,N , where N is the discretization parameter. The latter is typically the number of basis functions in the basis set for local combination of atomic orbitals (LCAO) methods [START_REF] Helgaker | Molecular electronic-structure theory[END_REF], the inverse fineness of the grid or the mesh for finite difference (FD) and finite element (FE) methods [START_REF] Gygi | Real-space adaptive-coordinate electronic-structure calculations[END_REF][START_REF] Saad | Numerical methods for electronic structure calculations of materials[END_REF][START_REF] Pask | Finite element methods in ab initio electronic structure calculations[END_REF][START_REF] Motamarri | Higher-order adaptive finite-element methods for Kohn-Sham density functional theory[END_REF], the cut-off parameter in energy or momentum space for planewave (PW) discretization methods [START_REF] Gonze | ABINIT: Firstprinciples approach to material and nanosystem properties[END_REF][START_REF] Giannozzi | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[END_REF][START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF], or the inverse grid spacing and the coarse and fine region multipliers for wavelet (WL) methods [START_REF] Mohr | Daubechies wavelets for linear scaling density functional theory[END_REF]. In variational approximation methods (LCAO, FE, PW, and WL), the discretization error E R,N -E R is always nonnegative by construction. In systematically improvable methods (FD, FE, PW, and WL), this quantity goes to zero when N goes to infinity with a well-understood rate of convergence depending on the smoothness of the pseudopotential (see [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for the PW case). However, in most applications, the discretization parameters are not tight enough for the discretization error to be lower than the target accuracy, which is typically of the order of 1 kcal/mol or 1 mHa (recall that 1 mHa 0.6275 kcal/mol 27.2 meV, which corresponds to an equivalent temperature of about 316 K). It is often advocated that this is not an issue since the real quantity of interest is not the value of the energy E R for a particular nuclear configuration R, but the energy difference

E R 1 -E R 2 between two different configurations R 1 and R 2 . It is indeed expected that |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| |E R 1 ,N -E R 1 | + |E R 2 ,N -E R 2 |,
that is, the numerical error on the energy difference between the two configurations is much smaller than the sum of the discretization errors on the energies of each configuration. This expected phenomenon goes by the name of (discretization) error cancellation in the Physics and Chemistry literatures.

Obviously, for variational discretization methods, E R j ,N -E R j ≥ 0 so that both discretization errors have the same sign, leading to

|(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| = |(E R 1 ,N -E R 1 ) -(E R 2 ,N -E R 2 )| ≤ max (E R 1 ,N -E R 1 , E R 2 ,N -E R 2 ) ,
but this does not explain the magnitude of the error cancellation phenomenon. The commonly admitted qualitative argument usually raised to explain this phenomenon is that the errors The purpose of this article is to provide a quantitive analysis of discretization error cancellation for PW discretization methods. First, we report in Section 3.2 two systematic numerical studies on, respectively, the hydrogen molecule and a simple system consisting of six atoms. For these systems, we are able to perform very accurate calculations with high PW cut-offs and tight convergence criteria, which provide excellent approximations of the ground state energy E R . We then compute, for two different configurations R 1 and R 2 , the error cancellation factor

E R 1 ,N -E R 1 and E R 2 ,N -E R 2 are
0 ≤ Q N := |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| |E R 1 ,N -E R 1 | + |E R 2 ,N -E R 2 | ≤ 1.
We observe that this ratio is indeed small (typically between 10 -3 and 10 -1 depending on the system and on the configurations R 1 and R 2 ), and that it does not vary much with N . In Section 3.3, we introduce a toy model consisting of seeking the ground state of a one-dimensional linear periodic Schrödinger equation with Dirac potentials:

- d 2 dx 2 - m∈Z z 1 δ m - m∈Z z 2 δ m+R u R = E R u R , 1 0 u 2 R (x)dx = 1,
for which we can prove that the error cancellation factor Q N converges to a fixed number 0 < Q ∞ < 1 when N goes to infinity. Interestingly, it is possible to obtain a simple explicit expression of Q ∞ , which only depends on z 1 , z 2 and on u R

1 (0) 2 , u R 2 (0) 2 , u R 1 (R 1 ) 2 , u R 1 (R 2 ) 2 , i.e. on the values of the densities ρ R 1 = u 2 R 1 and ρ R 1 = u 2 R 2
at the singularities of the potential. An alternative way to estimate the error on the energy difference between two configurations R 1 and R 2 is to integrate the error on the atomic forces on a smooth path linking R 1 and R 2 . We conclude Section 3.2 by showing that the latter approach is not efficient in general.

Discretization error cancellation in planewave calculations

We present here some numerical simulations on two systems: the H 2 molecule and a system consisting of two oxygen atoms and four hydrogen atoms. The simulations are done in a cubic supercell of size 10×10×10 bohrs with the Abinit simulation package [START_REF] Gonze | ABINIT: Firstprinciples approach to material and nanosystem properties[END_REF][START_REF] Gonze | First-principles computation of material properties: the ABINIT software project[END_REF]. The chosen approximate model is the periodic Kohn-Sham LDA model [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] with the parametrization and the pseudopotential proposed in [START_REF] Goedecker | Separable dual-space Gaussian pseudopotentials[END_REF]. Note that, in this work, we consider the approximation consisting of replacing the original problem set on the whole space R 3 with a problem set on a cubic supercell with periodic boundary conditions as a model error. Alternatively, this error could be regarded as a discretization error: the supercell problem can indeed be seen as a non-consistent, non-conforming approximation of the original problem set on the whole space (see [START_REF] Cancès | Non-consistent approximations of selfadjoint eigenproblems: application to the supercell method[END_REF], in which this point of view was adopted to study the case of a local defect embedded in a perfect crystal).

For each configuration R, we compute a reference ground state energy E R taking a high energy cutoff E cut = 400 Ha. We then compute approximate energies for N = E cut varying from 5 to 105 Ha by steps of 5 Ha. The so-obtained energies are denoted by E R,N .

For two given configurations R 1 and R 2 of the same system, we compute S N , the sum of the discretization errors on the energies of the two configurations (note that E R,N -E R ≥ 0 since PW is a variational approximation method), and D N , the discretization error on the energy difference:

S N = (E R 1 ,N -E R 1 ) + (E R 2 ,N -E R 2 ) and D N = |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| ,
as well as the error cancellation factor

Q N = D N S N = |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| (E R 1 ,N -E R 1 ) + (E R 2 ,N -E R 2 ) .
The two chemical systems considered in this section are very simple. We can therefore safely assume that for each configuration, our numerical simulations provide good approximations of the Kohn-Sham ground state. Besides, very tight convergence criteria are used, so that algorithmic errors are negligible. Implementation and computer errors are not expected to be significant in this context.

Ground state potential energy surface of the H 2 molecule

In all our calculations, the H 2 molecule lies on the x axis and is centered at the origin. The parameter R is here the interatomic distance in bohrs. We numerically observe that D N is smaller than S N by a factor of 10 to 100, and that the error cancellation factor Q N is smaller when the two interatomic distances are close to each other (R 1 R 2 ). Morevoer, Q N is almost constant with respect to the cut-off energy N .

In Figure 3.1, we present detailed results for two different pairs of configurations. On the top, the configurations are rather close since the interatomic distances are R 1 = 1.464 and R 2 = 1.524 bohr. For this approximate model, the equilibrium distance is about R eq 1.464 bohrs (the experimental value is R exp eq 1.401 bohrs). The energy difference is better approximated by a factor of about 50 compared to the energies (Q N 0.02). Moreover the log-log plots of S N and D N are almost parallel, which suggests that there is no improvement in the order of convergence when considering energy differences instead of energies; only the prefactor is improved. This is confirmed by the plots of the error cancellation factor Q N , showing that this ratio does not vary much with N . On the bottom, the configurations are further apart. The interatomic distances are R 1 = 1.344 and R 2 = 1.704 bohrs. We observe a similar behavior except that the error cancellation phenomenon is less pronounced (Q N 0.1). We then compare in Table 3.1 the values of S N and D N for different pairs of configurations and for two values of N = E cut : a rather coarse energy cut-off N = 30 Ha, and a quite fine one N = 100 Ha. One configuration is kept fixed (R 1 = 1.284 bohrs), while the second one varies from R 2 = 1.344 bohrs (close configurations) to R 2 = 1.764 bohrs (distant configurations). We also report, for each pair of configurations, the minimum, maximum, and mean values of Q N over the different tested energy cutoffs 5 ≤ N ≤ 105 Ha. We also observe that 

Q N increases with R 2 -R 1 on the range R 2 = [1.344, 1.764]. R 1 R 2 S N =30 D N =30 S N =100 D M =100 min(Q N ) max(Q N ) mean(Q N ) 1.

Energy of a simple chemical reaction

In this section, we consider the energy difference between two very different configurations of a system consisting of two oxygen atoms and four hydrogen atoms. The first configuration, denoted by R 1 , corresponds to the chemical system 2 H 2 O (two water molecules) and the second one, denoted by R 2 , to the chemical system 2 H 2 + O 2 , all these molecules being in their equilibrium geometry (see Figure 3.2). The energy difference between the two configurations thus provides a rough estimate of the energy of the chemical reaction We can observe on Figure 3.3 and Table 3.2 a similar behavior as for H 2 , but with a better error cancellation factor (Q N 0.005). 

2 H 2 + O 2 -→ 2 H 2 O.
S N =30 D N =30 S N =100 D N =100 min(Q N ) max(Q N ) mean(Q N ) 1403 

Mathematical analysis of a toy model

We now present a simple one-dimensional periodic linear Schrödinger model for which the discretization error cancellation phenomenon observed in the previous section can be explained with full mathematical rigor. We denote by

L 2 per := u ∈ L 2 loc (R) u is 1 -periodic
the vector space of the 1-periodic locally square integrable real-valued functions on R, and by

H 1 per := u ∈ L 2 per u ∈ L 2
per the associated order-1 Sobolev space. For two given parameters z 1 , z 2 > 0, we consider the family of problems, indexed by R ∈ (0, 1), consisting in finding the ground state

(u R , E R ) ∈ H 1 per × R of          - d 2 dx 2 - m∈Z z 1 δ m - m∈Z z 2 δ m+R u R = E R u R , 1 0 u 2 R (x)dx = 1, u R ≥ 0, (3.3.1)
where δ a denotes the Dirac mass at point a ∈ R. A variational formulation of the problem is: find the ground state

(u R , E R ) ∈ H 1 per × R of        ∀v ∈ H 1 per , 1 0 u R (x)v (x)dx -z 1 u R (0)v(0) -z 2 u R (R)v(R) = E R 1 0 u R (x)v(x)dx, 1 0 u 2 R (x)dx = 1, u R ≥ 0. (3.3.2)
Remark 3.3.1. The ground state eigenvalue E R is negative. Indeed, using the variational characterization of the ground state energy, we get

E R = min v ∈ H 1 per \ {0} 1 0 v (x) 2 dx -z 1 v(0) 2 -z 2 v(R) 2 1 0 v 2 (x)dx < 0,
since the Rayleigh quotient is equal to -z 1z 2 < 0 for the constant test function v = 1.

Denoting by k R = √ -E R , we have u R (x) = Ae k R x + Be -k R x , ∀x ∈ [0, R], u R (x) = Ce k R x + De -k R x , ∀x ∈ [R -1, 0), (3.3.3) 
where A, B, C, and D are real-valued constants. Since the function u R is 1-periodic and continuous on R and its derivative satisfies the jump conditions u An approximate solution of the problem is obtained using the PW discretization method. Denoting by

R (m + 0) -u R (m -0) = -z 1 u R (m) and u R (m + R + 0) -u R (m + R -0) = -z 2 u R (m + R) for all m ∈ Z, the coefficients A, B, C, D solve the linear system     1 1 -1 -1 e k R R e -k R R -e k R (R-1) -e -k R (R-1) k R + z 1 -k R + z 1 -k R k R (k R -z 2 )e k R R -(k R + z 2 )e -k R R -k R e k R (R-1) k R e -k R (R-1)     M (k R )     A B C D     =     0 0 0 0     .
X N := Span    v N (x) = k∈Z, |k|≤N v k e 2πikx v k ∈ C, v -k = v k    ⊂ H 1 per , the variational approximation of problem (3.3.2) in X N consists in computing the ground state (u R,N , E R,N ) ∈ X N × R of        ∀v N ∈ X N , 1 0 u R,N v N -z 1 u R,N (0)v N (0) -z 2 u R,N (R)v N (R) = E R,N 1 0 u R,N v N , 1 0 u 2 R,N = 1, 1 0 u R,N ≥ 0.
(3.3.4) The conditions v -k = v k in the definition of X N is equivalent to imposing that the elements of X N are real-valued functions. For convenience, the discretization parameter N here corresponds to the cut-off in momentum space. As above, we consider the error cancellation factor

Q N = |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| (E R 1 ,N -E R 1 ) + (E R 2 ,N -E R 2 ) (3.3.5)
associated with the pair of configurations (R 1 , R 2 ). Note that imposing the condition 1 0 u R,N ≥ 0, we ensure that the discrete eigenfunction u R,N will approximate the positive eigenfunction u R to the continuous problem (3.3.1) and not -u R .

Theorem 3.3.2 (Asymptotic expressions of the energy error and of the error cancellation factor). For all z 1 , z 2 > 0 and R ∈ (0, 1), we have for all > 0,

E R,N -E R = α R N - α R 2N 2 + β (1) R,N N + γ R N η R,N + o 1 N 3-, (3.3.6) 
where

α R := z 2 1 u R (0) 2 + z 2 2 u R (R) 2 2π 2 , γ R := z 1 z 2 u R (0)u R (R) π 2 , η R,N := N +∞ k=N +1 cos(2πkR) k 2 , β (1) 
R,N := 2 .

z 2 1 u R (0)(u R,N (0) -u R (0)) + z 2 2 u R (R)(u R,N (R) -u R (R)) 2π
In addition

|η R,N | ≤ min 1, 2 + π 3 8 | sin(πR)|N ,
and for all > 0, there exists

C ∈ R + such that |β (1) R,N | ≤ C N 1-.
As a consequence, we have for all z 1 , z 2 > 0 and all R 1 , R 2 ∈ (0, 1), lim

N →+∞ Q N = |α R 1 -α R 2 | α R 1 + α R 2 = z 2 1 u R 1 (0) 2 -u R 2 (0) 2 + z 2 2 u R 1 (R 1 ) 2 -u R 2 (R 2 ) 2 z 2 1 (u R 1 (0) 2 + u R 2 (0) 2 ) + z 2 2 (u R 1 (R 1 ) 2 + u R 2 (R 2 ) 2 ) . (3.3.7)
The proof of the above theorem is given in Appendix. We deduce from (3.3.6) that the discretization error E R,N -E R on the energy of the configuration R is the sum of 1. a leading term α R N -1 of order 1 (in N -1 );

three terms

-1/2α R N -2 , β (1) 
R,N N -1 , and γ R N -1 η R,N which are roughly of order 2; 3. higher order terms which are roughly of order 3 and above.

The leading term α R N -1 has a very simple expression and the prefactor α R does not vary much with respect to R (see Figure 3.5). This explains the phenomenon of discretization error cancellation. Regarding the second order corrections on E R,N -E R , we have observed numerically (see Figure 3.6) that

• the terms -1 2 α R N -2 and γ R N -1 η R,N are of about the same order of magnitude in absolute values, that the former is always negative (since α R > 0), but that the latter can be either positive or negative, so that the sum of these two contributions can be either significant or negligible;

• the term β

(1)
R,N N -1 is smaller in absolute value than the other two terms, and seems to be always negative. Our numerical calculations indeed show that u R,N (0) < u R (0) and u R,N (R) < u R (R), which is not very surprising since the function u R has cusps at points x = 0 and x = R (see Figure 3.4). These inequalities have not been rigorously established though. Finally, we observe on Figure 3.7 that Q N converges to the asymptotic value Q ∞ when N goes to infinity very smoothly for large values of R, and with oscillations when R becomes close to zero. Moreover,

0 0.2 0.4 0.6 0.8 1 0 5 • 10 -2 0.1 0.15 0.2 R α R (z1, z2) = (1, 0.2) (z1, z2) = (1, 0.5) (z1, z2) = (1, 1)
Q N -Q ∞ is of order N -2 .
Remark 3.3.3. The 1D model studied in this section involves Dirac potentials, for which the exact solutions (3.3.3), as well as the lowest-order terms of the discretization error (3.3.6), can be computed explicitly. It would have been possible to use more regular potentials with explicit solutions, such as piecewise constant potentials for instance. However, the calculations would have been more tedious than for the Dirac case, and we anticipate that, qualitatively, the results would have been similar. Loosely speaking, the faster convergence of the energy difference originates from the fact that the leading term of the error depends on the nuclear configuration, but not that much. This explains why the convergence rate is not improved, while the prefactor is improved. For smoother potentials, as well as for pseudopotentials, it is expected that most of the error on the energy remains concentrated in the vicinities of the core regions, where, for different nuclear configurations, the electronic orbitals change, but not much. 

N α R N |β (1) R,N | N γ R N |ηR,N | α R 2N 2 10 1 10 2 10 -5 10 -4 10 -3 10 -2 10 -1 N |RHS-LHS| LHS | α R N -LHS| LHS 10 1 10 2 10 -6 10 -5 10 -4 10 -3 10 -2 N α R N |β (1) R,N | N γ R N |ηR,N | α R 2N 2 10 1 10 2 10 -5 10 -4 10 -3 10 -2 10 -1 N |RHS-LHS| LHS | α R N -LHS| LHS Figure 3.6 -Convergence plots of the four quantities α R N , α R 2N 2 , |β (1) 
R,N | N , and γ R N |η R,N | (left)
and plots of 

|( α R N - α R 2N 2 + β (1) R,N N + γ R N η R,N )-(E R,N -E R )| E R,N -E R and | α R N -(E R,N -E R )| E R,N -E R (right). Top: z 1 = z 2 = 1, R = 0.3. Bottom: z 1 = z 2 = 1, R = 0.09.
N Q N -Q ∞ R = 0.15 R = 0.3 R = 0.5 Figure 3.7 -Plot of Q N -Q ∞ for three values of R. Remark 3.3.4.
Note that a variant of the projected augmented wave (PAW) method [START_REF] Blöchl | Projector augmented-wave method[END_REF] was recently studied for the 1D model considered here [START_REF] Blanc | Variational projector augmented-wave method[END_REF]: it is shown that the error on the energy has two contributions, the first one scaling as r 4N 0 c N -1 , and the second one as r -p c N -(p+1) , where r c is the core radius, N 0 the number of pseudo-orbitals, p the degree of the (polynomial) pseudo-orbitals in the core region, and N the number of planewaves. However, it is not clear how to use the estimates in [START_REF] Blanc | Variational projector augmented-wave method[END_REF] to obtain estimates on energy differences. We intend to investigate this point in the future.

To conclude, let us comment on the alternative approach to estimate the error on the energy difference between two configurations consisting in integrating the error on the atomic forces along a path in the nuclear configuration space liking the two configurations. In this simple 1D setting, we have, for

R 1 < R 2 , |(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| = R 2 R 1 (F R,N -F R ) dR , where F N,R := - dE R,N dR and F R := - dE R dR .
The use of a variational method guaranties that the energy error E R,N -E R is nonnegative for all N and all R. On the other hand, the error on the force F R,N -F R does not have a constant sign (it integrates to zero on the interval [0, 1]), so that, in general,

|(E R 1 ,N -E R 2 ,N ) -(E R 1 -E R 2 )| = R 2 R 1 (F R,N -F R ) dR ≤ R 2 R 1 |F R,N -F R | dR.
The left hand-side of the above inequality can a priori be much smaller than the right hand-side. In this case, using bounds on the error on the forces would lead to a dramatic overestimation of the error on the energy difference. This is confirmed by our numerical simulations. The functions the forces converge at the same rate as the energy, i.e. in 1/N (see Figure 3.9), and that, for each value of N in the range [START_REF] Armentano | Asymptotic lower bounds for eigenvalues by nonconforming finite element methods[END_REF][START_REF] Dyson | The S Matrix in Quantum Electrodynamics[END_REF], the derivatives of the functions

(R 1 , R 2 ) → R 2 R 1 (F R,N -F R ) dR and (R 1 , R 2 ) → R 2 R 1 |F R,N -F R | dR, (3.3.8 
R → E R,N -E R and R → χ R,N := α R N - α R 2N 2 + β (1) R,N N + γ R N η R,N
agree up to very small correction terms. Nevertheless, the derivative of the fourth term in χ R,N (i.e. of γ R η R,N N -1 ) can be much larger than the derivative of the first term (i.e. of α R N -1 ). The leading term of the error on the force is therefore not in general (minus) the derivative of the leading term of the energy error. In Figure 3.10, the above functions are plotted for N = 10 (top) and N = 100 (bottom). More generally, we endow the Sobolev space

H s per := v(x) = k∈Z v k e 2iπkx v k ∈ C, v -k = v k , k∈Z (1 + (2πk) 2 ) s | v k | 2 < ∞ ,
s ∈ R, with the scalar product defined by

u|v H s per := k∈Z (1 + (2πk) 2 ) s u k v k .
Note that the above two definitions of u|v H 1 per coincide and that H 0 per = L 2 per . We also denote by Π N the orthogonal projection on X N for the L 2 per (and also H s per ) scalar product and by

Π ⊥ N = 1 -Π N .
We first recall some useful results on the convergence of (u R,N , E R,N ) to (u R , E R ).

Lemma 3.4.1. Let R ∈ (0, 1). Let (u R , E R ) be the ground state of the continuous problem (3.3.2), and (u N,R , E R,N ) be a ground state of the discretized problem (3.3.4). Then, for all > 0 and all 0 ≤ s < 3/2, there exists

C s, ∈ R + such that u R,N -u R H s per ≤ C s, N 3/2-s-.
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10 -4 10 -3 10 -2 10 -1 R | dE R,N dR - dE R dR | | dχ R,N dR | | 1 N dα R dR | | 1 2N 2 dα R dR | | 1 N dβ (1) R,N dR | | 1 N d(γ R η R,
10 -2 R | dE R,N dR - dE R dR | | dχ R,N dR | | 1 N dα R dR | | 1 2N 2 dα R dR | | 1 N dβ (1) R,N dR | | 1 N d(γ R η R,N ) dR | Figure 3.10 -Plots of the functions R → dE R,N dR - dE R,N dR and R → dχ R,N
dR , and of the derivative of each of the four components of χ R,N , for N = 10 (top) and N = 100 (bottom). The derivatives were computed numerically by centered finite differences with step size 10 -6 .

In addition, there exist

0 < c ≤ C < ∞ such that c u R,N -u R 2 H 1 per ≤ E R,N -E R ≤ C u R,N -u R 2 H 1 per , (3.4.2)
and for all > 0, there exists

C ∈ R + such that |u R,N (0) -u R (0)| + |u R,N (R) -u R (R)| ≤ C N 1-. (3.4.3)
Proof. We denote by C 0 per the space of continuous 1-periodic functions from R to R endowed with the norm defined by

∀u ∈ C 0 per , u C 0 per := max x∈R |u(x)|.
Recall that H s per is continuously embedded in C 0 per for all s > 1/2. In particular, H 1 per → C 0 per and there exists

K ∈ R + such that ∀u ∈ H 1 per , u C 0 per ≤ K u H 3/4 per ≤ K u 3/4 H 1 per u 1/4 L 2 per . (3.4.4)
In particular, the bilinear form

∀(u, v) ∈ H 1 per × H 1 per , a R (u, v) = 1 0 u v -z 1 u(0)v(0) -z 2 u(R)v(R)
is well-defined, symmetric, and continuous on H 1 per × H 1 per , and we have

∀u ∈ H 1 per , a R (u, u) ≥ u 2 H 1 per -(z 1 + z 2 )K 2 u 3/2 H 1 per u 1/2 L 2 per -u 2 L 2 per ≥ 1 2 u 2 H 1 per -1 + 27 32 (z 1 + z 2 ) 4 K 8 u 2 L 2
per , using Young's inequality. The quadratic form H 1 per u → a R (u, u) ∈ R therefore is bounded below and closed. We denote by H R the unique self-adjoint operator on L 2 per associated to a R (•, •) (see e.g. [START_REF] Reed | Methods of modern mathematical physics[END_REF]Theorem VIII.15]). Formally,

H R = - d 2 dx 2 -z 1 m∈Z δ m -z 2 m∈Z δ m+R .
The domain of H R being a subspace of H 1 per , which is itself compactly embedded in L 2 per , the spectrum of H R is purely discrete: it consists of an increasing sequence of eigenvalues of finite multiplicities going to +∞. It is easily seen that its ground state eigenvalue E R is simple. Let us denote by µ R > 0 the gap between the lowest two eigenvalues of H R . A classical calculation shows that

E R,N -E R = a R (u R,N -u R , u R,N -u R ) -E R u R,N -u R 2 L 2 per = u R,N |H R |u R,N -E R . First, since E R < 0, we have E R,N -E R ≤ a R (u R,N -u R , u R,N -u R ) ≤ M R u R,N -u R 2 H 1 per , where M R is the continuity constant of a R , which proves the second inequality in (3.4.2). Second, since u R L 2 per = u R,N L 2 per = 1, we have on the one hand E R,N -E R = u R,N |H R |u R,N -E R ≥ E R | u R,N |u R L 2 per | 2 + (E R + µ R ) 1 -| u R,N |u R L 2 per | 2 -E R = µ R 1 -| u R,N |u R L 2 per | 2 ≥ µ R 1 -u R,N |u R L 2 per = µ R 2 u R,N -u R 2 L 2 per ,
and, on the other hand,

E R,N -E R ≥ 1 2 u R,N -u R 2 H 1 per -1 + 27 32 (z 1 + z 2 ) 4 K 8 + E R u R,N -u R 2 L 2 per .
Combining the above two inequalities yields the first inequality in (3.4.2). Hence, (3.4.2) is proved.

We deduce from the min-max principle that for each

v N ∈ X N such that v N L 2 per = 1, we have E R,N -E R ≤ a R (v N , v N ) -E R = a R (v N -u R , v N -u R ) -E R v N -u R 2 L 2 per ≤ (M R -E R ) v N -u R 2 H 1 per . Since z 1 m∈Z δ m + z 2 m∈Z δ m+R ∈ H -1/2- per for all > 0, we have that u R ∈ H 3/2- per . Applying the above estimate to v N = Π N u R -1 L 2 per Π N u R , we get E R,N -E R ≤ C N 1-. Combining with (3.4.
2), we obtain (3.4.1) for s = 1. Together with (3.4.4), this implies in addition that

(u R,N ) N ∈N converges to u R in C 0 per . Since -u R,N = z 1 u R,N (0)Π N k∈Z δ m + z 2 u R,N (R)Π N k∈Z δ m+R + E R,N u R,N ,
and the right hand-side converges to

-u R in H -1/2- per for all > 0, the sequence (u R,N ) N ∈N converges to u R in H 3/2- per
for all > 0. By interpolation, we then obtain (3.4.1) for all 1 ≤ s < 3/2. We finally obtain (3.4.1) for s = 0 by a classical Aubin-Nitsche argument, and we conclude by interpolation that the result also holds true for all 0 ≤ s < 1.

To prove (3.4.3), we infer from the Sobolev embedding H

1/2+ per → C 0 per , that |u R,N (0) -u R (0)| + |u R,N (R) -u R (R)| ≤ 2 u R,N -u R C 0 per ≤ 2C u R,N -u R H 1/2+ per ,
and we conclude using (3.4.1) with s = 1/2 + .

The following lemma provides an expression of the leading term of the energy difference E R,N -E R . Lemma 3.4.2. Let z 1 , z 2 > 0. Let R ∈ (0, 1). Let (u R , E R ) be the ground state of the continuous problem (3.3.2), and (u R,N , E R,N ) be a ground state of the discretized problem (3.3.4). Then, for all > 0,

E R,N -E R = z 1 u R,N (0)(Π ⊥ N u R )(0) + z 2 u R,N (R)(Π ⊥ N u R )(R) + o 1 N 3-, (3.4.5) 
when N goes to +∞.

Proof. The variational formulation (3.3.2) with v = u R,N gives E R 1 0 u R,N u R = 1 0 u R,N u R -z 1 u R,N (0)u R (0) -z 2 u R,N (R)u R (R). The variational formulation (3.3.4) with v N = Π N u R gives E R,N 1 0 u R,N (Π N u R ) = 1 0 u R,N (Π N u R ) -z 1 u R,N (0)(Π N u R )(0) -z 2 u R,N (R)(Π N u R )(R).
Subtracting these two equalities, and noting first that

1 0 u R,N (Π N u R ) = 1 0 u R,N u R , and
second that

1 0 u R,N (Π N u R ) = 1 0 u R,N u R , since u R,N ∈ X N and

the orthogonal projection

Π N and the derivation commute, we get

(E R,N -E R ) 1 0 u R,N u R = z 1 u R,N (0)(Π ⊥ N u R )(0) + z 2 u R,N (R)(Π ⊥ N u R )(R).
Moreover, since

1 0 u 2 R = 1 0 u 2 R,N = 1, we have 1 0 u R,N u R = 1 - 1 2 u 2 R - 1 2 1 0 u R,N 2 + 1 0 u R,N u R = 1 - 1 2 u R,N -u R 2 L 2 per .
Hence,

(E R,N -E R ) 1 - 1 2 u R,N -u R 2 L 2 per = z 1 u R,N (0)(Π ⊥ N u R )(0) + z 2 u R,N (R)(Π ⊥ N u R )(R).
Using estimates (3.4.1) for s = 0 and (3.4.2), we obtain that for all > 0,

1 - 1 2 u R,N -u R 2 L 2 per = 1 + o 1 N 3-, when N → +∞.
This concludes the proof of Lemma 3.4.2.

The following lemma provides an explicit expression of the quantities

(Π ⊥ N u R )(0) and (Π ⊥ N u R )(R) appearing in (3.4.5). Lemma 3.4.3. Let z 1 , z 2 > 0.
For all R ∈ (0, 1), all N ∈ N, and all x ∈ R,

(Π ⊥ N u R )(x) = +∞ k=N +1 2 k 2 R + 4π 2 k 2 (z 1 u R (0) cos(2πkx) + z 2 u R (R) cos(2πk(x -R))) . (3.4.6) Proof. In order to estimate (Π ⊥ N u R )(x), we first need to compute the Fourier coefficients of u R ∀k ∈ Z, u R (k) := 1 0 u R (x)e -2iπkx dx. (3.4.7)
Using the periodicity of u R , we can rewrite the first equation in (3.3.1) as

-u R -z 1 u R (0) m∈Z δ m -z 2 u R (R) m∈Z δ m+R = E R u R .
Taking the Fourier transform, and using the relation

E R = -k 2 R , we obtain 4π 2 k 2 u R (k) -z 1 u R (0) -z 2 u R (R)e -2iπkR = -k 2 R u R (k).
Hence, for all k ∈ Z,

u R (k) = 1 k 2 R + 4π 2 k 2 z 1 u R (0) + z 2 u R (R)e -2iπkR . (3.4.8)
Consequently,

(Π ⊥ N u R )(x) = k∈Z, |k|>N u R (k)e 2iπkx = k∈Z, |k|>N 1 k 2 R + 4π 2 k 2 z 1 u R (0) + z 2 u R (R)e -2iπkR e 2iπkx = +∞ k=N +1 2 k 2 R + 4π 2 k 2 (z 1 u R (0) cos(2πkx) + z 2 u R (R) cos(2πk(x -R))) ,
which completes the proof of Lemma 3.4.3.

The last technical lemma we need provides an estimates of the series in (3.4.6) for x = 0 and x = R.

Lemma 3.4.4. Let R R → k R ∈ R be a positive bounded function and M = sup R∈R k 2 R . We denote by f N (R) := +∞ k=N +1 1 k 2 R + 4π 2 k 2 and g N (R) := +∞ k=N +1 cos(2πkR) k 2 R + 4π 2 k 2 . For all R ∈ R \ Z we have f N (R) = 1 4π 2 N a N + φ N (R), with a N = N +∞ k=N +1 1 k 2 , |φ N (R)| ≤ M 48π 4 N 3 , (3.4.9)
and

g N (R) = 1 4π 2 N η N,R + ψ N (R), with η N,R = N +∞ k=N +1 cos(2πkR) k 2 , |ψ N (R)| ≤ M 48π 4 N 3 . (3.4.10) Besides, a N = 1 + 1 2N + O 1 N 2 and |η N,R | ≤ min 1, 2 + π 3 8 | sin(πR)|N . (3.4.11) 
Proof. The function f N can be decomposed as

f N (R) = 1 4π 2 N a N + φ N (R),
where

φ N (R) = f N (R) - 1 4π 2 N a N = - k 2 R 4π 2 +∞ k=N +1 1 k 2 (k 2 R + 4π 2 k 2 )
.

We have on the one hand

a N = 1 + N +∞ k=N +1 1 k 2 - k k-1 dt t 2 = 1 + N +∞ k=N +1 1 k 2 1 0 1 -1 - s k -2 ds = 1 + 1 2N + O 1 N 2 ,
and on the other hand, by a sum-integral comparison,

|φ N (R)| ≤ M 4π 2 +∞ k=N +1 1 4π 2 k 4 ≤ M 48π 4 N 3 .
Thus, (3.4.9) and the first statement of (3.4.11) are proved. For N ∈ N and R ∈ R, we set

h N (R) := +∞ k=N +1 cos(2πkR) 4π 2 k 2 = 1 4π 2 N η R,N .
We have

|ψ N (R)| = |g N (R) -h N (R)| = - +∞ k=N +1 k 2 R cos(2πkR) 4π 2 k 2 (k 2 R + 4π 2 k 2 ) ≤ M +∞ k=N +1 1 16π 4 k 4 ≤ M 48π 4 N 3 .
Taking the second derivative of h N in the distribution sense and using Poisson summation formula, we obtain

h N (R) = d 2 dR 2 +∞ k=N +1 e 2iπkR + e -2iπkR 8π 2 k 2 = - 1 2   k∈Z | |k|>N e 2iπkR   = - 1 2 k∈Z e 2iπkR - N k=-N e 2iπkR = - 1 2 m∈Z δ m (R) + 1 2 sin ((2N + 1)πR) sin(πR) . Therefore, h N is smooth on R \ Z. Since it is 1-periodic, it suffices to study it on the open interval (0, 1). Since h N 1 2 + t = h N 1 2 -t for all |t| < 1 2 , we have h N 1 2
= 0, so that for all R ∈ (0, 1), and using Taylor formula with integral remainder, we get

h N (R) = h N 1 2 + R 1 2 (R -t) h N (t) dt = h N 1 2 + 1 2 R 1 2 (R -t) sin ((2N + 1)πt) sin(πt) dt = h N 1 2 + 1 2(2N + 1) 2 π 2 (-1) N - sin ((2N + 1)πR) sin(πR) - 1 2(2N + 1) 2 π 2 R 1 2 2π cos(πt) sin(πt) + (R -t)π 2 (1 + cos 2 (πt)) sin 2 (πt) sin ((2N + 1)πt) sin(πt) dt.
Since

h N 1 2 = +∞ k=N +1 (-1) k 4π 2 k 2 ≤ 1 4π 2 (N + 1) 2 ≤ 1 4π 2 N 2 ,
and since, for all R ∈ (0, 1/2),

1 2(2N + 1) 2 π 2 (-1) N - sin ((2N + 1)πR) sin(πR) ≤ 1 8π 2 N 2 1 + 1 sin(πR) ≤ 1 4π 2 N 2 sin(πR) , R 1 2 2π cos(πt) sin(πt) sin ((2N + 1)πt) sin(πt) dt ≤ 2π 1 2 R cos(πt) sin 2 (πt) dt = 2 1 sin(πR) -1 ,
and, using the inequalities 2t < sin(πt) < πt for all

0 < t < 1 2 , R 1 2 (R -t)π 2 (1 + cos 2 (πt)) sin 2 (πt) sin ((2N + 1)πt) sin(πt) dt ≤ 2π 2 1 2 R t -R sin 3 (πt) dt ≤ π 2 1 2 R 2t sin 3 (πt) dt ≤ π 2 4 1 2 R 1 t 2 dt ≤ π 2 4R ≤ π 3 4 sin(πR) ,
we finally get

|η N,R | = 4π 2 N h N (R) ≤ 1 N + 1 N sin(πR) + 1 N 1 sin(πR) -1 + π 3 8 sin(πR)N = 2 + π 3 8 1 sin(πR)N ,
which concludes the proof.

We are now ready to prove Theorem 3.3.2.

Proof of Theorem 3.3.2. Combining Lemmata 3.4.1, 3.4.2, 3.4.3 and 3.4.4, we get that for any R ∈ (0, 1),

E R,N -E R = z 1 u R,N (0)(Π ⊥ N u R )(0) + z 2 u R,N (R)(Π ⊥ N u R )(R) + o 1 N 3- (Lemma 3.4.2) = z 1 u R,N (0) (2z 1 u R (0)f N (R) + 2z 2 u R (R)g N (R)) + z 2 u R,N (R) (2z 2 u R (R)f N (R) + 2z 1 u R (0)g N (R)) + o 1 N 3- (Lemma 3.4.3) = 2z 2 1 u R,N (0)u R (0) + 2z 2 2 u R,N (R)u R (R) f N (R) + 2z 1 z 2 (u R,N (0)u R (R) + u R,N (R)u R (0)) g N (R) + o 1 N 3- = 2z 2 1 u R,N (0)u R (0) + 2z 2 2 u R,N (R)u R (R) 1 4π 2 N a N + 2z 1 z 2 (u R,N (0)u R (R) + u R,N (R)u R (0)) 1 4π 2 N η R,N + o 1 N 3- (Lemma 3.4.4) = α R N a N + β (1) R,N N a N + γ R N 2 η R,N + o 1 N 3-,
where we have used the bounds (3.4.3) and (3.4.11) to obtain the last equality. The proof of (3.3.7) easily follows.

Part III

A posteriori error estimation for the Laplace eigenvalue problem

Chapter 4

Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations

We expose in this chapter the results of [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]. This work was done in collaboration with Eric Cancès, Yvon Maday, Benjamin Stamm and Martin Vohralík.

Abstract

This paper derives a posteriori error estimates for conforming numerical approximations of the Laplace eigenvalue problem with a homogeneous Dirichlet boundary condition. In particular, upper and lower bounds for an arbitrary simple eigenvalue are given. These bounds are guaranteed, fully computable, and converge with optimal speed to the given exact eigenvalue. They are valid without restrictions on the computational mesh or on the approximate eigenvector; we only need to assume that the approximate eigenvalue is separated from the surrounding smaller and larger exact ones, which can be checked in practice. Guaranteed, fully computable, optimally convergent, and polynomial-degree robust bounds on the energy error in the approximation of the associated eigenvector are derived as well, under the same hypotheses. Remarkably, there appears no unknown (solution-, regularity-, or polynomial-degree-dependent) constant in our theory, and no convexity/regularity assumption on the computational domain/exact eigenvector(s) is needed. The multiplicative constant appearing in our estimates depends on (computable estimates of) the gaps to the surrounding exact eigenvalues. Its two improvements are presented. First, it is reduced by a fixed factor under an explicit, a posteriori calculable condition on the mesh and on the approximate eigenvector-eigenvalue pair. Second, when an elliptic regularity assumption on the corresponding source problem is satisfied with known constants, this multiplicative constant can be brought to the optimal value of one. Inexact algebraic solvers are taken into account; the estimates are valid on each iteration and can serve for the design of adaptive stopping criteria. The application of our framework to conforming finite element approximations of arbitrary polynomial degree is provided, along with a numerical illustration on a set of test problems.

Introduction

Precise numerical approximation of eigenvalues and eigenvectors is crucial in countless applications. Thus, there has been a long-standing interest in answering the question: what is the size of the errors in computed eigenvalues and eigenvectors? This question is usually tackled via a posteriori error estimates. For elliptic source problems such as the Laplace one, conclusive answers are today given by, in particular, the theory of equilibrated fluxes following Prager and Synge [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF], see Destuynder and Métivet [START_REF] Destuynder | Explicit error bounds in a conforming finite element method[END_REF], Braess et al. [START_REF] Braess | Equilibrated residual error estimates are p-robust[END_REF], Ern and Vohralík [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF], and the references therein. The structure of the Laplace eigenvalue problem appears rather richer in comparison with the elliptic source case. Recently, though, there has been an important progress in obtaining guaranteed lower bounds for the eigenvalues, especially for the first one: Luo et al. [START_REF] Luo | Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods[END_REF], Hu et al. [START_REF] Hu | Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods[END_REF][START_REF] Hu | The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators[END_REF], Carstensen and Gedicke [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF], Yang et al. [START_REF] Yang | The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes[END_REF], or Liu [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] achieve so via the lowest-order nonconforming finite element method, Kuznetsov and Repin [START_REF] Kuznetsov | Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators[END_REF] and Šebestová and Vejchodský [START_REF] Šebestová | Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants[END_REF][START_REF] Šebestová | Two-sided bounds of eigenvalues -local efficiency and convergence of adaptive algorithm[END_REF] give numerical-method-independent estimates based on flux (functional) estimates, Liu and Oishi [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF] elaborate fine a priori approximation estimates for lowest-order conforming finite elements, and, most recently, Xie et al. [START_REF] Xie | Fully computable error bounds for eigenvalue problem[END_REF] also rely on fluxes. Earlier work comprises Kato [START_REF] Kato | On the upper and lower bounds of eigenvalues[END_REF], Forsythe [START_REF] Forsythe | Asymptotic lower bounds for the fundamental frequency of convex membranes[END_REF], Weinberger [START_REF] Weinberger | Upper and lower bounds for eigenvalues by finite difference methods[END_REF], Bazley and Fox [START_REF] Bazley | Lower bounds for eigenvalues of Schrödinger's equation[END_REF], Fox and Rheinboldt [START_REF] Fox | Computational methods for determining lower bounds for eigenvalues of operators in Hilbert space[END_REF], Moler and Payne [START_REF] Moler | Bounds for eigenvalues and eigenvectors of symmetric operators[END_REF], Kuttler and Sigillito [START_REF] Kuttler | Bounding eigenvalues of elliptic operators[END_REF][START_REF] Kuttler | Estimating eigenvalues with a posteriori/a priori inequalities[END_REF], Still [START_REF] Still | Computable bounds for eigenvalues and eigenfunctions of elliptic differential operators[END_REF], Goerisch and He [START_REF] Goerisch | The determination of guaranteed bounds to eigenvalues with the use of variational methods I[END_REF], Plum [START_REF] Plum | Guaranteed numerical bounds for eigenvalues[END_REF], Behnke et al. [START_REF] Behnke | Eigenvalue inclusions via domain decomposition[END_REF], and Armentano and Durán [START_REF] Armentano | Asymptotic lower bounds for eigenvalues by nonconforming finite element methods[END_REF], see also the references therein. Sometimes, though, restrictions may apply. A condition on relative closeness to the (first) eigenvalue is necessary in [159, Remark 3.2], [224, condition (3.6)], and [225, condition (5.23)] (in these references, the bounds actually do not converge with the correct speed); solution of an auxiliary eigenvalue problem for nonconvex domains is requested [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF]; potential overestimation on adaptively generated meshes may hamper the bounds of [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF][START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF], relying on a priori estimates and employing the largest mesh element diameter; an auxiliary global flux problem needs to be solved in [START_REF] Xie | Fully computable error bounds for eigenvalue problem[END_REF]; a saturation assumption may be necessary, see the discussion in [START_REF] Hu | Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods[END_REF].

The question of precision for both eigenvalues and eigenvectors has also been investigated previously. For conforming finite elements, relying on the a priori error estimates resumed in Babuška and Osborn [START_REF] Babuška | Eigenvalue problems[END_REF] and Boffi [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF], see also the references therein, a posteriori error estimates have been obtained by Verfürth [START_REF] Verfürth | A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations[END_REF], Maday and Patera [START_REF] Maday | Numerical analysis of a posteriori finite element bounds for linear functional outputs[END_REF], Larson [START_REF] Larson | A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems[END_REF], Heuveline and Rannacher [START_REF] Heuveline | A posteriori error control for finite approximations of elliptic eigenvalue problems[END_REF], Durán et al. [START_REF] Durán | A posteriori error estimates for the finite element approximation of eigenvalue problems[END_REF], Grubišić and Ovall [START_REF] Grubišić | On estimators for eigenvalue/eigenvector approximations[END_REF], Rannacher et al. [START_REF] Rannacher | Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error[END_REF], and Šolín and Giani [START_REF] Solin | An iterative adaptive finite element method for elliptic eigenvalue problems[END_REF], see also the references therein. These estimates, though, systematically contain uncomputable terms, typically higher order on fine enough meshes. Recently, Wang et al. [START_REF] Wang | Computable upper and lower bounds on eigenfrequencies[END_REF] have applied the constitutive relation error methodology to obtain sharp fully computable estimates.

Let Ω ⊂ R d , d = 2, 3, be a polygonal/polyhedral domain with a Lipschitz boundary, and let λ i , u i be the eigenvalues and associated eigenvectors of the Laplace operator -∆ on Ω with Dirichlet boundary conditions. The purpose of the present paper is to derive guaranteed and optimally convergent a posteriori bounds on both an arbitrary separated Laplace eigenvalue and the associated eigenvector for conforming (variational) methods. Nonconforming methods including nonconforming, discontinuous Galerkin, or mixed finite elements are treated in Cancès et al. [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework[END_REF]. We describe the setting in details in §4.2. §4.3 and §4.4 then contain a collection of equivalence inequalities between respectively the i-th eigenvalue error and the square of the i-th eigenvector energy error, the i-th eigenvector energy error and dual norm of the residual, and between the dual norm of the residual and its computable estimates. These results are valid under one key assumption: λ ih needs to be confined like λ i-1 < λ ih < λ i+1 (the left inequality of course only needs to hold when i > 1), see (4.5.2) below. This can be guaranteed in many cases of practical interest by a domain inclusion argument Ω -⊆ Ω ⊆ Ω + with known smaller and larger eigenvalues λ i-1 ≤ λ i-1 (Ω -) and λ i+1 (Ω + ) ≤ λ i+1 and by requesting λ i-1 =: λ i-1 (Ω -) < λ ih < λ i+1 := λ i+1 (Ω + ). Numerical bounds λ i-1 ≥ λ i-1 (typically available during the calculation) and λ i+1 ≤ λ i+1 (obtained a on a coarse mesh by the approach of [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF][START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF]) can also be used, see Remarks 4.5.4 and 4.5.5 below. We also suppose that the approximation spaces consist of appropriate piecewise polynomials. For improved versions of our bounds, we additionally need to check the smallness of the L 2 (Ω)-norm of the Riesz representation of the residual, see the a posteriori calculable conditions (4.5.6) and (4.5.9) below. These can be always satisfied by refining the computational mesh/increasing the polynomial degree of the approximate solution. Note that no condition of Galerkin orthogonality of the residual to the finite element hat functions needs to be satisfied: the entire analysis is presented in the context of inexact algebraic solvers. Our estimates are valid on each iteration subject to the above inclusion of λ ih and can be used for efficient adaptive stopping criteria of iterative eigenvalue solvers, as promoted in, e.g., Mehrmann and Miedlar [START_REF] Mehrmann | Adaptive computation of smallest eigenvalues of selfadjoint elliptic partial differential equations[END_REF] or Carstensen and Gedicke [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF].

In §4.5, the results of §4.3- §4.4 are turned into actual a posteriori bounds. First, upper and lower bounds for the i-th eigenvalue are given in Theorems 4.5.1 and 4.5.2. For a finite element approximation with an exact algebraic solver for simplicity, we obtain

λ ih -η 2 i ≤ λ i ≤ λ ih -η2 i , (4.1.1a) with η i = m ih ∇u ih + σ ih,dis , ηi = ηi (r ih ),
being fully computable quantities. Here u ih is the approximation of the i-th exact eigenvector u i , • is the L 2 (Ω)-norm, σ ih,dis is an equilibrated flux reconstruction by mixed finite element local residual problems, and r ih is formed by conforming finite element local residual liftings. The associated eigenvector energy estimates are given next, with Theorem 4.5.7 revealing

∇(u i -u ih ) ≤ η i , η i ≤ C i ∇(u i -u ih ) , (4.1.1b)
where C i is a constant that only depends on λ 1 , λ i-1 , λ ih , λ i+1 , on the space dimension d, and on some Poincaré-Friedrichs-type constant C cont,PF together with a discrete stability constant C st , both only depending on the shape regularity of the mesh. In particular, C i is independent of the polynomial degree of u ih , leading to the polynomial-degree robustness. Moreover, a computable bound on C i is given. The constant C i , however, deteriorates for increasing eigenvalues. We distinguish three different cases. In Cases A and B of Theorems 4.5.1, 4.5.2, and 4.5.7, the multiplicative factor m ih of the estimator η i contains the factor max{(

λ ih λ i-1 -1) -1 , (1-λ ih λ i+1
) -1 } and similarly for ηi ; Case B improves the overall size of m ih under the fine-enough-mesh condition (4.5.6). The results of these two cases hold without any assumption on the convexity of the computational domain Ω and on the regularity of the weak solutions. If, additionally, elliptic regularity of the corresponding source problem is known, the interpolation and stability constants are computable (typically when d = 2 and Ω is convex), and the condition (4.5.9) holds, the factor m ih in front of the principal term ∇u ih + σ ih,dis has the optimal behavior 1 + O(h 2 ), as summarized in Case C of Theorems 4.5.1, 4.5.2, and 4.5.7.

We show how to apply the above general results to conforming finite elements of arbitrary order in §4. [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF]. Numerical experiments presented in §4.7 fully support the theoretical findings; in particular the necessary conditions hold from quite coarse meshes. We only treat here simple eigenvalues and associated eigenvectors; clustered and multiple eigenvalues will be dealt with in a forthcoming contribution. Finally, building on these results, guaranteed error bounds and fully adaptive strategies with dynamic stopping criteria may become possible for nonlinear eigenvalue problems; some of our first results in this direction are summarized in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF].

Setting

We denote by H 1 (Ω) the Sobolev space of L 2 (Ω) functions with weak gradients in [L 2 (Ω)] d and by V := H 1 0 (Ω) its zero-trace subspace. Similarly, H(div, Ω) stands for the space of [L 2 (Ω)] d functions with weak divergences in L 2 (Ω). The notations ∇ and ∇• are used respectively for the weak gradient and divergence. Moreover, for ω ⊂ Ω, (∇u, ∇v) ω stands for ω ∇u•∇v dx and (u, v) ω for ω uv dx; we also denote ∇v 2 ω := ω |∇v| 2 dx and v 2 ω := ω v 2 dx and drop the index whenever ω = Ω.

The Laplace eigenvalue problem

We consider here the problem: find eigenvector and eigenvalue pairs (u k , λ k ), with u k satisfying a homogeneous Dirichlet boundary condition over ∂Ω and subject to the constraint

u k = 1, such that -∆u k = λ k u k in Ω. In a weak form, (u k , λ k ) ∈ V × R + with u k = 1 and (∇u k , ∇v) = λ k (u k , v) ∀v ∈ V. (4.2.1)
Actually, cf. Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], Babuška and Osborn [START_REF] Babuška | Eigenvalue problems[END_REF], Boffi [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF], or Strang and Fix [START_REF] Strang | An analysis of the finite element method[END_REF], u k , k ≥ 1, form a countable orthonormal basis of L 2 (Ω) consisting of vectors from V , whereas 0 < λ 1 < λ 2 ≤ λ 3 ≤ . . . going to +∞. The smallest eigenvalue λ 1 is positive and simple and the associated eigenvector u k to each simple λ k is unique up to the sign that we fix here by the condition (u k , χ k ) > 0, where χ k ∈ L 2 (Ω) is typically a characteristic function of Ω (for k = 1) or of its subdomain (for k > 1). Note that it follows from (4.2.1) and the scaling u k = 1 that ∇u k 2 = λ k . Below, we shall often employ the Parseval identity, giving for any v ∈ L 2 (Ω)

v 2 = k≥1 (v, u k ) 2 . (4.2.2)
As (u k / √ λ k ) k≥1 form an orthonormal basis of V , for which one in particular uses that (∇u k , ∇u l ) = λ k (u k , u l ) = 0 for k = l, for any v ∈ V , we also obtain

∇v 2 = k≥1 (∇v, ∇u k ) 2 λ k = k≥1 λ k (v, u k ) 2 . (4.2.3)

Residual and its dual norm

The derivation of a posteriori error estimates usually exploits the concept of the residual and of its dual norm. We will proceed in this way as well. Let V stand for the dual of V .

Definition 4.2.1 (Residual and its dual norm). For any pair

(u ih , λ ih ) ∈ V × R, define the residual Res(u ih , λ ih ) ∈ V by Res(u ih , λ ih ), v V ,V := λ ih (u ih , v) -(∇u ih , ∇v) ∀v ∈ V. (4.2.4a)
Its dual norm is then

Res(u ih , λ ih ) -1 := sup v∈V, ∇v =1 Res(u ih , λ ih ), v V ,V . (4.2.4b)
We will also often work with the Riesz representation of the residual r (ih) ∈ V ,

(∇r (ih) , ∇v) = Res(u ih , λ ih ), v V ,V ∀v ∈ V, (4.2.5a 
)

∇r (ih) = Res(u ih , λ ih ) -1 . (4.2.5b)

Generic equivalences

In extension of some classical results, see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Babuška | Eigenvalue problems[END_REF][START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF][START_REF] Strang | An analysis of the finite element method[END_REF], we establish in this section generic equivalence results between the following three quantities: the i-th eigenvalue error ∇u ih 2 -λ i , which can potentially be negative, the square of the i-th eigenvector energy error ∇(u i -u ih ) 2 , and the square of the dual norm of the residual Res(u ih , λ ih ) 2 -1 . These equivalences may for the moment contain uncomputable terms like the eigenvalues λ i-1 , λ i , λ i+1 or the Riesz representation norm r (ih) , but all such terms will be removed later. To proceed in an abstract way allowing for inexact algebraic solvers, we rather work with the eigenvalue error given by ∇u ih 2 -λ i instead of λ ih -λ i ; of course these coincide when the discrete Rayleigh quotient link ∇u ih 2 = λ ih holds, typically upon solver convergence. A generalization to any self-adjoint operator with compact resolvent can be found in Cancès et al. [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework[END_REF].

Our first two lemmas are similar in parts to the developments in [START_REF] Kuttler | Bounding eigenvalues of elliptic operators[END_REF][START_REF] Kuznetsov | Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators[END_REF][START_REF] Šebestová | Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants[END_REF][START_REF] Šebestová | Two-sided bounds of eigenvalues -local efficiency and convergence of adaptive algorithm[END_REF], giving a computable bound on the L 2 (Ω) error u iu ih . Let i ≥ 1 and define

C ih := min 1 - λ ih λ i-1 2 , 1 - λ ih λ i+1 2 . (4.3.1)
The left term needs to be disregarded for i = 1.

Lemma 4.3.1 (L 2 (Ω) bound via a quadratic residual inequality). Let (u ih , λ ih ) ∈ V × R + with u ih = 1 and (u i , u ih ) ≥ 0 be the i-th approximate eigenvector-eigenvalue pair, i ≥ 1. Let λ i be simple and let λ i-1 < λ ih when i > 1 and λ ih < λ i+1 . Then

u i -u ih ≤ α ih := √ 2C -1 2 ih r (ih) . (4.3.2) 
Proof. Characterizations (4.2.1), (4.2.4a), and (4.2.5a) give

(r (ih) , u k ) = (∇u k , ∇r (ih) ) λ k = (λ ih (u ih , u k ) -(∇u ih , ∇u k )) λ k = λ ih λ k -1 (u ih , u k ). (4.3.3)
Consequently, the Parseval equality (4.2.2)

with v = r (ih) yields r (ih) 2 = k≥1 (r (ih) , u k ) 2 = k≥1 1 - λ ih λ k 2 (u ih , u k ) 2 . (4.3.4)
Observe that the function

x ∈ R + → 1 -λ ih x 2
reaches its minimum at x = λ ih and is decreasing on (0, λ ih ] and increasing on [λ ih , ∞). Thus the constant C ih in (4.3.1) equals

min k≥1, k =i 1 -λ ih λ k 2
. Further, employing the scalings u i = 1 and

u ih = 1, (u ih -u i , u i ) = (u ih , u i ) -u i 2 = (u ih , u i ) - u i 2 2 - u ih 2 2 = - 1 2 u i -u ih 2 . (4.3.5)
As (u i , u k ) = 0 for k ≥ 1, k = i from the orthogonality of u k , elaborating (4.3.4) further while adding and subtracting C ih (u ihu i , u i ) 2 and using (4.3.1) and (4.3.5) gives

r (ih) 2 = λ ih λ i -1 2 (u ih , u i ) 2 + k≥1, k =i 1 - λ ih λ k 2 (u ih -u i , u k ) 2 ≥ λ ih λ i -1 2 (u ih , u i ) 2 + C ih k≥1 (u ih -u i , u k ) 2 -C ih (u ih -u i , u i ) 2 (4.3.6) = λ ih λ i -1 2 (u ih , u i ) 2 + C ih u i -u ih 2 - C ih 4 u i -u ih 4 ,
where we have also employed (4.2.2) with v = u ihu i . Dropping the first (nonnegative and presumably small) term on the right-hand side and denoting e ih := u iu ih 2 , we conclude the validity of the quadratic residual inequality in e ih

C ih 4 e 2 ih -C ih e ih + r (ih) 2 ≥ 0. (4.3.7)
From the sign assumption (u i , u ih ) ≥ 0, employing u i = u ih = 1, 2 < C ih that we prefer to avoid.

e ih = u i -u ih 2 = 2 -2(u i , u ih ) ≤ 2, ( 4 
In addition to (4.3.1), define also (disregarding again the left term for i = 1) 

C ih := min λ i-1 1 - λ ih λ i-1 2 , λ i+1 1 - λ ih λ i+1 2 . ( 4 
u i -u ih ≤ α ih := √ 2 C -1 2 ih ∇r (ih) . (4.3.10) 
Proof. Developing (4.2.3) for v = r (ih) via (4.3.3) gives Recall the sign characterization

∇r (ih) 2 = k≥1 λ k (r (ih) , u k ) 2 = k≥1 λ k 1 - λ ih λ k 2 (u ih , u k ) 2 . ( 4 
(u i , χ i ) > 0 with χ i ∈ L 2 (Ω), i ≥ 1.
The sign condition (u i , u ih ) ≥ 0 necessary in Lemmas 4.3.1 and 4.3.2 is typically always satisfied; the following lemma can be used for its rigorous verification:

Lemma 4.3.3 (Sign verification). Let (u ih , λ ih ) ∈ V × R + satisfy u ih = 1, (u ih , χ i ) > 0, λ i-1 <
λ ih when i > 1 and λ ih < λ i+1 , and α ih ≤ χ i -1 (u ih , χ i ) for α ih given by (4.3.2) or (4.3.10). Then the sign condition (u i , u ih ) ≥ 0 is satisfied.

Proof. Suppose -(u i , u ih ) > 0. Then the bounds of Lemmas 4.3.1 and 4.3.2 hold for -u ih in place of u ih , i.e., u i + u ih ≤ α ih . Consequently, a contradiction follows,

(u ih , χ i ) = -(u i , χ i ) + (u i + u ih , χ i ) < (u i + u ih , χ i ) ≤ u i + u ih χ i ≤ (u ih , χ i ).

i-th eigenvalue error equivalences

We first show how to exploit the L 2 (Ω) bound for equivalence between the eigenvalue error and the eigenvector error. Theorem 4.3.4 (Eigenvalue bounds). Let u ih ∈ V with u ih = 1, i ≥ 1, be arbitrary subject to u iu ih ≤ α ih for some α ih ∈ R + . Then

∇(u i -u ih ) 2 -λ i α 2 ih ≤ ∇u ih 2 -λ i ≤ ∇(u i -u ih ) 2 . (4.3.12)
Under the additional assumption α 2 1h ≤ 2, there also holds, for the first eigenpair,

1 2 1 - λ 1 λ 2 1 - α 2 1h 4 ∇(u 1 -u 1h ) 2 ≤ ∇u 1h 2 -λ 1 . (4.3.13)
Proof. Using the weak solution characterization (4.2.1) and (4.3.5),

∇u ih 2 -λ i = ∇(u ih -u i ) 2 + 2(∇(u ih -u i ), ∇u i ) = ∇(u ih -u i ) 2 + 2λ i (u i , u ih -u i ) = ∇(u ih -u i ) 2 -λ i u i -u ih 2 . (4.3.14)
Dropping the (nonpositive and presumably small) last term, the upper bound in (4.3.12) follows; estimating it using u iu ih ≤ α ih , we arrive at the lower bound in (4.3.12).

The bound (4.3.13) only seems to hold for the first eigenpair. To prove it, we use (

4.2.2)- (4.2.3) for v = u 1 -u 1h . First, ∇(u 1 -u 1h ) 2 -λ 1 u 1 -u 1h 2 = k≥1 (λ k -λ 1 )(u 1 -u 1h , u k ) 2 = k≥2 (λ k -λ 1 )(u 1 -u 1h , u k ) 2 . (4.3.15)
Using λ k ≥ λ 2 for k ≥ 2, λ 2 > λ 1 , (4.3.5) for i = 1, and the Cauchy-Schwarz inequality,

∇(u 1 -u 1h ) 2 -λ 1 u 1 -u 1h 2 ≥ (λ 2 -λ 1 ) k≥1 (u 1 -u 1h , u k ) 2 -(λ 2 -λ 1 )(u 1 -u 1h , u 1 ) 2 = (λ 2 -λ 1 ) u 1 -u 1h 2 - λ 2 -λ 1 4 u 1 -u 1h 4 .
Using u 1u 1h ≤ α 1h and reemploying (4.2.2) for v = u 1u 1h , we arrive at, second,

∇(u 1 -u 1h ) 2 -λ 1 u 1 -u 1h 2 ≥ (λ 2 -λ 1 ) u 1 -u 1h 2 -α 2 1h λ 2 -λ 1 4 u 1 -u 1h 2 = k≥1 (λ 2 -λ 1 ) 1 - α 2 1h 4 (u 1 -u 1h , u k ) 2 .
Summing this with (4.3.15) with weights 1 2 yields

∇(u 1 -u 1h ) 2 -λ 1 u 1 -u 1h 2 ≥ k≥1 λ k -λ 1 2 + λ 2 -λ 1 2 1 - α 2 1h 4 (u 1 -u 1h , u k ) 2 .
Now notice that, using (4.2.3)

for v = u 1 -u 1h , 1 2 1 - λ 1 λ 2 1 - α 2 1h 4 ∇(u 1 -u 1h ) 2 = k≥1 λ k 2 1 - λ 1 λ 2 1 - α 2 1h 4 (u 1 -u 1h , u k ) 2 .
A simple calculation (note 1 2 ≤ 1 -

α 2 1h 4 ≤ 1) shows that λ k -λ 1 2 + λ 2 -λ 1 2 1 - α 2 1h 4 ≥ λ k 2 1 - λ 1 λ 2 1 - α 2 1h 4 k ≥ 1.
Thus

∇(u 1 -u 1h ) 2 -λ 1 u 1 -u 1h 2 ≥ 1 2 1 - λ 1 λ 2 1 - α 2 1h 4 ∇(u 1 -u 1h ) 2 ,
and (4.3.13) follows using (4.3.14).

i-th eigenvector error equivalences

We next investigate the equivalence between the eigenvector error ∇(u iu ih ) and the dual norm of the residual Res(u ih , λ ih ) -1 . Recall the definition (4.3.1) and also set

C ih := 1 if i = 1, C ih := max λ ih λ 1 -1 2 , 1 if i > 1. (4.3.16)
Furthermore, let

γ ih := ∇(u i -u ih ) 2 if λ i ≤ ∇u ih 2 is known to hold, max{ ∇(u i -u ih ) 2 , λ i α 2 ih } otherwise; (4.3.17) 
we refer to Remark 4.5.5 below for the discussion when λ i ≤ ∇u ih 2 .

Theorem 4.3.5 (Eigenvector bounds). Let (u ih , λ ih ) ∈ V × R + with u ih = 1, i ≥ 1, be arbitrary subject to u iu ih ≤ α ih for some α ih ∈ R + . Then

∇(u i -u ih ) 2 ≤ Res(u ih , λ ih ) 2 -1 + (λ ih + λ i )α 2 ih , (4.3.18a 
)

Res(u ih , λ ih ) 2 -1 ≤ λ ih -∇u ih 2 + γ ih 2 λ i + C ih ∇(u i -u ih ) 2 . ( 4 

.3.18b)

Let λ i-1 < λ ih when i > 1, λ ih < λ i+1 , and α 2 ih ≤ 2 λ 1 λ i . Then there also holds

∇(u i -u ih ) 2 ≤ C -1 ih 1 - λ i λ 1 α 2 ih 4 -1
Res(u ih , λ ih ) 

C ih λ i (u ih -u i , u i ) 2 , using (u i , u k ) = 0 for k ≥ 1, k = i, (4.3.5
), and the Cauchy-Schwarz inequality, we observe

∇r (ih) 2 ≥ λ i λ ih λ i -1 2 (u ih , u i ) 2 +C ih k≥1 λ k (u ih -u i , u k ) 2 -C ih λ i (u ih -u i , u i ) 2 = λ i λ ih λ i -1 2 (u ih , u i ) 2 + C ih ∇(u i -u ih ) 2 - C ih 4 λ i u i -u ih 4 ≥ C ih ∇(u i -u ih ) 2 - C ih 4 λ i u i -u ih 4 .
Using the Poincaré-Friedrichs inequality

u i -u ih 2 ≤ 1 λ 1 ∇(u i -u ih ) 2 , ∇r (ih) 2 ≥ C ih ∇(u i -u ih ) 2 - C ih 4 λ i λ 1 ∇(u i -u ih ) 2 α 2 ih ,
where we have also employed u iu ih ≤ α ih . Thus (4. 

= u ih = 1 give ∇r (ih) 2 ≤ λ i λ ih λ i -1 2 + C ih k≥1, k =i λ k (u ih -u i , u k ) 2 ≤ (λ ih -λ i ) 2 λ i + C ih ∇(u i -u ih ) 2 .
Using the inequalities (4.3.12) and the definition (4.3.17) of γ ih ,

|λ ih -λ i | ≤ λ ih -∇u ih 2 + | ∇u ih 2 -λ i | ≤ λ ih -∇u ih 2 + γ ih ,
so that (4.3.18b) is proven.

Finally, (4.3.18a) can be seen as in, e.g., Carstensen and Gedicke [63, Lemma 3.1] combined with u iu ih ≤ α ih .

Dual norm of the residual equivalences

We now estimate the dual residual norm Res(u ih , λ ih ) -1 , for u ih ∈ V a piecewise polynomial of degree p ≥ 1 and λ ih ∈ R. For the upper bound, following [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF][START_REF] Destuynder | Explicit error bounds in a conforming finite element method[END_REF][START_REF] Braess | Equilibrated residual error estimates are p-robust[END_REF][START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] and [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Papež | Estimating and localizing the algebraic and total numerical errors using flux reconstructions[END_REF][START_REF] Papež | Sharp algebraic and total a posteriori error bounds via a multilevel approach[END_REF] for inexact solvers, see also the references therein, we introduce an equilibrated flux reconstruction. This is a vector field σ ih constructed from the local residual of (u ih , λ ih ) by solving patchwise mixed finite element problems such that

σ ih ∈ V h ⊂ H(div, Ω), (4.4.1a) ∇•σ ih = λ ih u ih -ρ ih , λ -1 2 1
ρ ih sufficiently small. 

Meshes and discrete spaces

We first introduce some more notation. Let henceforth {T h } h be a family of matching simplicial partitions of the domain Ω, shape regular in the sense that the ratio of each element diameter to the diameter of its largest inscribed ball is uniformly bounded by a constant κ T > 0. We denote by K a generic element of T h . The set of vertices is denoted by V h , with interior vertices V int h , vertices located on the boundary V ext h , and a generic vertex a. We call T a the patch of elements of T h which share the vertex a ∈ V h , ω a the corresponding subdomain, and n ωa its outward unit normal. We often tacitly extend functions defined on ω a by zero outside of ω a , whereas V h (ω a ) stands for the restriction of the space V h to ω a . Next, ψ a for a ∈ V h stands for the piecewise affine "hat" function taking value 1 at the vertex a and zero at the other vertices. Remarkably, (ψ a ) a∈V h form a partition of unity via a∈V h ψ a = 1| Ω .

Let P s (K), s ≥ 0, stand for polynomials of total degree at most s on K ∈ T h , and P s (T h ) for piecewise polynomials on T h , without any continuity requirement. Let also V h × Q h ⊂ H(div, Ω) × L 2 (Ω) stand for the Raviart-Thomas-Nédélec (RTN) mixed finite element spaces of for degree p + 1, i.e., V h := {v h ∈ H(div, Ω); v h | K ∈ [P p+1 (K)] d + P p+1 (K)x} and Q h := P p+1 (T h ), see Brezzi and Fortin [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] or Roberts and Thomas [START_REF] Roberts | Mixed and hybrid methods[END_REF]. We also denote by Π Q h the L 2 (Ω)-orthogonal projection onto Q h .

Equilibrated flux reconstruction for inexact solvers

Let r ih ∈ P p (T h ) be a discontinuous piecewise p-degree polynomial that lifts the misfit in the Galerkin orthogonality of the residual Res(u ih , λ ih ), i.e.

Res(u ih , λ ih ), v h V ,V = λ ih (u ih , v h ) -(∇u ih , ∇v h ) = (r ih , v h ) ∀v h ∈ P p (T h ) ∩ V. (4.4.2)
A simple elementwise construction of r ih is proposed in [197, equation (5.2)]. Typically, r ih = 0 for an "exact" discrete algebraic solve that we do not suppose here. We construct σ ih in two steps. First, solve the following homogeneous local Neumann (Neumann-Dirichlet close to the boundary) discrete problems on patches ω a : Definition 4.4.1 (Equilibrated flux reconstruction). For a ∈ V h , set

V a h := {v h ∈ V h (ω a ); v h •n ωa = 0 on ∂ω a }, Q a h := {q h ∈ Q h (ω a ); (q h , 1) ωa = 0}, a ∈ V int h , V a h := {v h ∈ V h (ω a ); v h •n ωa = 0 on ∂ω a \ ∂Ω}, Q a h := Q h (ω a ), a ∈ V ext h .
Then define σ ih,dis :

= a∈V h σ a ih,dis ∈ V h , where σ a ih,dis ∈ V a h solve σ a ih,dis := arg min v h ∈V a h , ∇•v h =Π Q h (λ ih u ih ψa-∇u ih •∇ψa-r ih ψa) ψ a ∇u ih + v h ωa ∀a ∈ V h . (4.4.3) 
Note that the Euler-Lagrange equations for (4.4.3) give the standard mixed finite element formulation, cf. [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Remark 3.7

]: find σ a ih,dis ∈ V a h and p a h ∈ Q a h such that (σ a ih,dis , v h ) ωa -(p a h , ∇•v h ) ωa = -(ψ a ∇u ih , v h ) ωa ∀v h ∈ V a h , (4.4.4a) (∇•σ a ih,dis , q h ) ωa = (λ ih u ih ψ a -∇u ih •∇ψ a -r ih ψ a , q h ) ωa ∀q h ∈ Q a h . (4.4.4b)
Consequently, ∇•σ ih,dis = λ ih u ihr ih , cf., e.g., [START_REF] Papež | Sharp algebraic and total a posteriori error bounds via a multilevel approach[END_REF]Lemma 3.6]. Now, proceeding as in [START_REF] Papež | Sharp algebraic and total a posteriori error bounds via a multilevel approach[END_REF]Section 3.2], one can construct in a multilevel way a second flux reconstruction σ ih,alg ∈ V h such that ∇•σ ih,alg = r ih . Consequently, setting σ ih := σ ih,dis + σ ih,alg , (4.4.1b) follows with ρ ih = 0. Other strategies are pursued in [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Papež | Estimating and localizing the algebraic and total numerical errors using flux reconstructions[END_REF], where the algebraic residual is included differently into (4.4.3)/(4.4.4b). These approaches yield

∇•σ ih,alg = r ih -ρ ih (4.4.5)
with ρ ih = 0 and are based on precomputing some algebraic solver iterations in order to ensure that ρ ih is sufficiently small with respect to the two other contributions in (4.4.9a) below, more precisely verifying (4.4.9b).

Conforming local residual liftings

To estimate Res(u ih , λ ih ) -1 from below, we solve conforming primal counterparts of problems (4.4.4), without the term with r ih . On each patch ω a around the vertex a ∈ V h , define

H 1 * (ω a ) := {v ∈ H 1 (ω a ); (v, 1) ωa = 0}, a ∈ V int h , (4.4.6a) 
H 1 * (ω a ) := {v ∈ H 1 (ω a ); v = 0 on ∂ω a ∩ ∂Ω}, a ∈ V ext h , (4.4.6b) 
and let X a h be an arbitrary discrete subspace of H 

) ωa = Res(u ih , λ ih ), ψ a v h V ,V ∀v h ∈ X a h for each a ∈ V h . Then set r ih := a∈V h ψ a r a ih .
The functions r a ih are discrete Riesz projections of the local residual with hat-weighted test functions. As all ψ a r a ih ∈ H 1 0 (ω a ), r ih ∈ V , though r a ih ∈ V . 

Dual norm of the residual equivalences

ψ a ∇u ih + σ a ih,dis ωa ≤ C st sup v∈H 1 * (ωa); ∇v ωa =1 { Res(u ih , λ ih ), ψ a v V ,V -(r ih , ψ a v) ωa }. (4.4.8)
The constant C st > 0 again only depends on κ T , and a computable upper bound on C st is given in [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Lemma 3.23]. We can summarize the main result of this section: 

∇u ih + σ ih,dis + σ ih,alg + λ -1 2 1 ρ ih ≤ 3(d + 1)C st C cont,PF Res(u ih , λ ih ) -1 when σ ih,alg + λ -1 2 1 ρ ih ≤ (2(d + 1)C st C cont,PF ) -1 ∇u ih + σ ih,dis , (4.4.9b) Res(u ih , λ ih ), r ih V ,V ∇r ih ≤ Res(u ih , λ ih ) -1 . (4.4.9c) Proof. Fix v ∈ V with ∇v = 1.
Using definition (4.2.4a), adding and subtracting (σ ih , ∇v), and employing the Green theorem and the equilibrium (4.4.1b) yields 

Res(u ih , λ ih ), v V ,V = λ ih (u ih , v) -(∇u ih , ∇v) = (ρ ih , v) -(∇u ih + σ ih , ∇v).

Guaranteed and fully computable upper and lower bounds

We combine here the different results of the previous sections to derive the actual guaranteed and fully computable bounds for eigenvalues (in §4.5.1) and eigenvectors (in §4.5.2). A discussion of the results is provided in §4.5.3. We will sometimes use ζ (ih) ∈ V , the solution of the Laplace source problem -∆ζ

(ih) = r (ih) in Ω, ζ (ih) = 0 on ∂Ω, i.e., (∇ζ (ih) , ∇v) = (r (ih) , v) ∀v ∈ V. (4.5.1)
We also denote by V h := P 1 (T h ) ∩ V the lowest-order conforming finite element space, i.e., the span of ψ a over all a ∈ V int h , and by h the maximal diameter of all K ∈ T h .

Eigenvalues

We first tackle the upper and lower bounds for the i-th eigenvalue λ i . We discuss the necessary auxiliary bounds below in Remark 4.5.4.

Theorem 4.5.1 (Guaranteed lower bounds for the i-th eigenvalue). Let the i-th eigenvalue, i ≥ 1, be simple and suppose the auxiliary bounds

λ 1 ≤ λ 1 , λ i ≤ λ i , λ i+1 ≤ λ i+1 , as well as λ i-1 ≤ λ i-1 when i > 1, for λ 1 , λ i , λ i+1 , λ i-1 > 0. Let (u ih , λ ih ) be any element of P p (T h ) ∩ V × R + verifying u ih = 1 and the inequalities λ i-1 < λ ih when i > 1, λ ih < λ i+1 . (4.5.2) 
Let next σ ih,dis and r ih be respectively constructed following Definitions 4.4.1 and 4.4.2, let σ ih,alg ∈ V h verify (4.4.5) for an inexact solver, and define η i,res := ∇u ih + σ ih,dis + σ ih,alg + λ

-1 2 1 ρ ih .
Set

c ih := max λ ih λ i-1 -1 -1 , 1 - λ ih λ i+1 -1 , (4.5.3a 
)

cih := max λ -1 2 i-1 λ ih λ i-1 -1 -1 , λ -1 2 i+1 1 - λ ih λ i+1 -1 , (4.5.3b) 
with the left terms in the max disregarded for i = 1. Then

∇u ih 2 -η 2 i ≤ λ i , (4.5.4) 
where we distinguish the following three cases:

Case A (No smallness assumption) If (u i , u ih ) ≥ 0 is known to hold, define α ih := √ 2c ih η i,res ; if only (u ih , χ i ) > 0 holds, set α ih := √ 2(1 -u ih -Π i u ih ) -1 2 cih η i,res
, where Π i u ih stands for the L 2 (Ω)-orthogonal projection of u ih on the span of χ i . Then (4.5.4) holds with

η 2 i := η 2 i,res + λ ih + λ i α 2 ih . (4.5.5)
Case B (Improved estimates under a smallness assumption) Let (u ih , χ i ) > 0, define α ih := √ 2c ih η i,res , and request

α ih ≤ min 2λ 1 λ i 1 2 , χ i -1 (u ih , χ i ) . (4.5.6)
Then, (4.5.4) holds with

η 2 i := c 2 ih 1 - λ i λ 1 α 2 ih 4 -1 η 2 i,res . (4.5.7)
Case C (Optimal estimates under elliptic regularity assumption) Let (u ih , χ i ) > 0 and assume that the solution ζ (ih) of problem (4.5.1) belongs to the space H 1+δ (Ω), 0 < δ ≤ 1, so that the approximation and stability estimates

min v h ∈V h ∇(ζ (ih) -v h ) ≤ C I h δ |ζ (ih) | H 1+δ (Ω) , (4.5.8a 
)

|ζ (ih) | H 1+δ (Ω) ≤ C S r (ih) (4.5.8b) are satisfied. Define α ih := √ 2c ih C I C S h δ η i,res +λ -1 2 1 σ ih,alg + λ -1 2 1
ρ ih and let

α ih ≤ χ i -1 (u ih , χ i ).
(4.5.9)

Then (4.5.4) holds with η 2 i given by (4.5.5).

Theorem 4.5.2 (Improved guaranteed upper bounds for the i-th eigenvalue). Let the assumptions of Theorem 4.5.1 be satisfied, with the auxiliary bounds

λ 1 ≤ λ 1 , λ i ≤ λ i ≤ λ i , for λ 1 , λ i , λ i > 0.
Let also λ i ≤ ∇u ih 2 , see Remark 4.5.5 below. Set

c ih := 1 if i = 1, c ih := max λ ih λ 1 -1 2 , 1 if i > 1, d ih := λ 2 i c 2 ih + 4λ i Res(u ih , λ ih ), r ih 2 V ,V ∇r ih 2 + 4λ i c ih λ ih -∇u ih 2 .
Then

λ i ≤ ∇u ih 2 -η2 i , (4.5.10) 
with, in Cases A and C,

η2 i := max -λ i α 2 ih + 1 2 d ih -λ i c ih + 2 λ ih -∇u ih 2 , 0 , (4.5.11) 
and, in Case B, for i = 1 only, Remark 4.5.4 (Auxiliary bounds λ 1 , λ i , and λ i+1 ). A straightforward consequence of the min-max principle for self-adjoint operators, see, e.g., Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], is that

η2 1 := max 1 4 1 - ∇u 1h 2 λ 2 1 - α 2 1h 4 d 1h -λ 1 + 2 λ 1h -∇u 1h 2 , 0 . 
Ω ⊆ Ω + ⇒ λ k (Ω + ) ≤ λ k and Ω -⊆ Ω ⇒ λ k ≤ λ k (Ω -) for all k ≥ 1, where λ k (Ω ±
) is the k-th eigenvalue on Ω ± . We can then obtain all λ 1 , λ i , and λ i+1 necessary in Theorem 4.5.1 by this domain inclusion for Ω + with known exact eigenvalues (typically rectangular d-parallelepipeds or d-spheres, cf. [START_REF] Trefethen | Computed eigenmodes of planar regions[END_REF]). In what concerns λ i , a very precise choice is to use

λ i := ∇u ih 2 -η 2 i ,
where η 2 i was first computed with a rather rough bound λ i . For λ i+1 , if the analytic bounds are too rough to be useful, guaranteed and easily computable numerical bounds can be used from Liu and Oishi [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF] (on convex domains for d = 2), Carstensen and Gedicke [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF], or Liu [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF], typically on a coarse mesh. Finally, as a "practical gratis" strategy for λ i+1 , one may simply use λ (i+1)h computed by the linear algebra toolbox when solving for (λ ih , u ih ), see, e.g., Saad [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF] and the references therein. Then Theorems 4.5.1 and 4.5.7 no longer hold stricto sensu, but sharp bounds are still observed in practice.

Remark 4.5.5 (Auxiliary bounds λ i-1 and λ i ). When (u ih , λ ih ) is given by the conforming finite element method of Section 4.6 below, with an exact solver leading to satisfaction of (4.6.1), there holds λ i ≤ λ ih = ∇u ih 2 and similarly λ i-1 ≤ λ (i-1)h = ∇u (i-1)h 2 , leading to rather precise auxiliary bounds λ i and λ i-1 . For the first eigenvalue, there holds λ 1 ≤ ∇u 1h 2 for any u 1h ∈ H 1 0 (Ω). For the i-th eigenvalue, i > 1, we in general need to resort to the min-max principle giving We now prove Theorems 4.5.1 and 4.5.2, separately for each case:

λ i ≤ max ξ∈R i , ξ =1 ∇ i k=1 ξ k u kh 2 i k=1 ξ k u kh
Proof (Case A). 1) Lower bound of Theorem 4.5.1. If (u i , u ih ) ≥ 0 is known to hold, we can start from the L 2 (Ω) bound (4.3.10). If this is not the case but (u ih , χ i ) > 0 holds, we first inspect the proof of Lemma 4.3.2 to obtain an alternative L 2 (Ω) estimate. We have

-2(u i , u ih ) = -2(u i , u ih -Π i u ih ) -2(u i , Π i u ih ).
Note that the second term is negative by the sign assumption (u i , χ i ) > 0 on u i . So, instead of (4.3.8), as u i = 1 and u ih -Π i u ih < 1,

u i -u ih 2 ≤ 2 + 2 u ih -Π i u ih =: δ ih < 4.
Consequently, the quadratic inequality in the proof of Lemma 4.3.

2 implies u i -u ih 2 ≤ ∇r (ih) 2 C -1 ih (1 -δ ih /4) -1
. Thus, the bound (4.4.9a) and assumption (4.5.2) enable us to give a computable upper bound on the L 2 (Ω) error by the estimator α ih ; note that min{a, b} -1 2 = max{a -1 2 , b -1 2 }, linking the constant C ih of (4.3.9) with cih of (4.5.3b). Consequently, the bound in (4.5.4) follows by combining the upper bounds in (4.3.12), (4.3.18a), and once again (4.4.9a).

2) Upper bound of Theorem 4.5.2. We start from the lower bound in (4.3.12). We then need to bound ∇(u iu ih ) 2 from below, for which we use (4.3.18b). Relying on the simplifying assumption λ i ≤ ∇u ih 2 , satisfied namely in cases discussed in Remark 4.5.5, γ ih of (4.3.17) simplifies to ∇(u iu ih ) 2 . Thus (4.3.18b) forms a quadratic inequality for ∇(u iu ih ) 2 , yielding, in combination with (4.4.9c), Proof (Case B). The proof proceeds as above. Note that conditions in (4.5.6) imply that 

∇(u i -u ih ) 2 ≥ 1 2 d ih -λ i c ih + 2 λ ih -∇u ih 2 . ( 4 
α ih ≤ 2 λ 1 λ i and α ih ≤ χ i -1 (u ih , χ i )
r (ih) 2 = (∇ζ (ih) , ∇r (ih) ) = (∇(ζ (ih) -ζ ih ), ∇r (ih) ) + (r ih , ζ ih ),
where ζ ih ∈ V h is the minimizer in (4.5.8a). Employing (4.4.5), the Green theorem, the Poincaré-Friedrichs inequality

ζ ih ≤ λ -1 2 1
∇ζ ih , and stability ∇ζ ih ≤ ∇ζ (ih) ,

(r ih , ζ ih ) = -(σ ih,alg , ∇ζ ih ) + (ρ ih , ζ ih ) ≤ σ ih,alg + λ -1 2 1 ρ ih ∇ζ (ih) .
Noting that (4.5.1) gives ∇ζ (ih) ≤ λ 

r (ih) ≤ C I C S h δ Res(u ih , λ ih ) -1 + λ -1 2 1 σ ih,alg + λ -1 2 1 ρ ih .

Eigenvectors

We now summarize our estimate on the energy error in the approximation of the i-th eigenvector, as well as its efficiency and robustness:

Theorem 4.5.7 (Guaranteed and robust bound for the i-th eigenvector error). Let the assumptions of Theorem 4.5.1 be verified. Then the energy error can be bounded via

∇(u i -u ih ) ≤ η i , (4.5.14) 
where η i is defined in the Cases A and C by (4.5.5) and in Case B by (4.5.7), with appropriate α ih . Under condition (4.4.9b), all these estimators η i are efficient as 

η 2 i,res ≤ 3 2 (d + 1) 2 C 2 st C 2 cont,PF λ ih -∇u ih 2 + γ ih 2 λ i + C ih ∇(u i -u ih ) 2 . ( 4 

Comments

We collect here comments about Theorems 4.5.1, 4.5.2, and 4.5.7.

Remark 4.5.8 (Stopping criteria). The polynomial-degree-robust efficiency (4.5.15) holds under the condition (4.4.9b) only, which is a typical inexactness (stopping) criterion. For the elliptic regularity Case C, though, it appears wise to rather stop the iterations when λ

-1 2 1 σ ih,alg + λ -1 2 
1
ρ ih is comparable to the first term in α ih .

Remark 4.5.9 (Sharpness and comparison of the different bounds of Theorems 4.5.1 and 4.5.7).

The advantage of Case A is that it holds on an arbitrarily coarse mesh, provided that only the structural assumption (4.5.2) holds. It may, however, lead to a larger overestimation of the error. Case B, under the "fine enough mesh" condition (4.5.6), then significantly improves the multiplicative factor in front of the central term η i,res = ∇u ih + σ ih,dis + σ ih,alg + λ

-1 2 1
ρ ih , in limit to the factor c ih given by (4.5.3a). The bound of Case B still holds without any regularity/convexity/dimension assumption and all the quantities appearing are known. Finally, also the factor c ih is asymptotically removed in Case C, when δ > 0 and h → 0. Here, however, elliptic regularity is needed, see Remark 4.5.6.

Remark 4.5.10 (Dependence on the maximal element diameter h). The maximal element diameter h is not present at all in Cases A and B of Theorem 4.5.1 and it does not necessarily need to tend to zero in Case C: it only appears as a multiplicative factor of the principal estimator η i,res . This stands in contrast to previous guaranteed results like [ 

(u i -u ih ) 2 C ih + ∇(u i -u ih ) 2 λ i
for an exact algebraic solver in the context of the finite element method (4.6.1) below. Noting that

∇(u i -u ih ) 2 λ i ≤ 2(λ i +λ ih ) λ i
(in fact this term becomes negligible with mesh refinement/increasing the polynomial degree), we conclude that the result of Theorem 4.5.7 is fully robust with respect to the polynomial degree p of u ih : all the constants in the comparison between the error ∇(u iu ih ) and the estimate featuring ∇u ih + σ ih,dis are independent of p. Note, though, that the factor C ih given by (4.3.16) deteriorates for higher eigenvalues. Remark 4.5.12 (Error localization and mesh adaptivity). Since there holds η 2 i,res ≤ 3 K∈T h ∇u ih + σ ih,dis

2 K + σ ih,alg 2 K + λ -1 1 ρ ih 2 K
, these local contributions of the estimators of Theorems 4.5.1 and 4.5.7 can directly be used in adaptive mesh refinement based on marking strategies. This is tightly linked to Remark 4.5.10.

Application to conforming finite elements

We verify in this section the conditions of the application of our results to the conforming finite element method.

Let V h := P p (T h ) ∩ V for a given polynomial degree p ≥ 1. In the finite element method, the exact i-th eigenpair

(u ih , λ ih ) ∈ V h × R + is such that (u ih , u jh ) = δ ij , 1 ≤ i, j ≤ dim V h , and (∇u ih , ∇v h ) = λ ih (u ih , v h ) ∀v h ∈ V h , (4.6.1) 
with the signs ideally fixed by (u i , u ih ) ≥ 0, practically by (u ih , χ i ) > 0. Thus, upon verifying (4.5.2) and possibly checking (4.5.6) or (4.5.9), all the results of Theorems 4.5. 

Numerical experiments

We finally numerically illustrate the estimates of Theorems 4.5.1, 4.5.2, and 4.5.7 on three test cases in R 2 , for conforming finite elements (4.6.1) of order p = 1. We actually only use the cheaper Raviart-Thomas-Nédélec space of degree p = 1 for the flux equilibration instead of

N h ndof λ 2 -λ 1h (4.5.2)
χ1 -1 (u 1h , χ1) -α 1h (4.5.9) p+1. This still gives guaranteed bounds, see the proof of Theorem 4.4.3, and we do not observe any asymptotic loss of efficiency. The implementation was done in the FreeFem++ code [START_REF] Hecht | New development in FreeFem++[END_REF].

λ 1 =1.5π 2 λ 2 =4.5π
When we only consider one eigenvalue, it is implicitly assumed that we have chosen χ 1 = 1 for the sign characterization. We consider five test settings with an exact solver and illustrate the use of an inexact solver in a sixth one.

First eigenvalue on the unit square

We start by testing the framework on a unit square Ω = (0, 1) 2 and focus on the first eigenvalue.

The eigenvalues on a square of size H being π 2 (k 2 + l 2 )/H 2 , k, l = 1, . . . , ∞, the first and second eigenvalues are λ 1 = 2π 2 and λ 2 = 5π 2 , respectively. In consequence, we can easily choose different λ 1 ≤ λ 1 and λ 2 ≤ λ 2 for the auxiliary eigenvalue bounds and analyze the sensitivity of our results with respect to these choices. The first eigenfunction is given by u 1 (x, y) = sin(πx) sin(πy). We focus here on the refined elliptic regularity of Case C, since d = 2 and the domain is convex, with constants C S = 1 and δ = 1 given in Remark 4.5.6.

Structured mesh

We first illustrate in Table 4.1 how quickly the computable conditions (4.5.2) and (4.5.9) are satisfied under a uniform refinement of a structured mesh. We take C I = 0.493 √ 2 following Remark 4.5.6 and consider N = 3, 4, 5 subdivisions of each boundary of Ω for the two choices λ 1 = 1.5π 2 , λ 2 = 4.5π 2 and λ 1 = 0.5π 2 , λ 2 = 3π 2 , respectively. Note that the finite element space on the coarsest mesh such that all conditions are satisfied contains 25, respectively 36, degrees of freedom only. Indeed, it turns out that our conditions are rather mild.

Next, Figure 4.1 (left) illustrates the convergence of the error λ 1hλ 1 as well as of its lower and upper bounds η2

1 , η 2 1 given by Case C of Theorems 4.5.1 and 4.5.2. We also plot the eigenfunction energy error ∇(u 1u 1h ) and its upper bound η 1 of Theorem 4.5.7, Case C. The convergence rates are optimal as expected from the theory.

We present in Table 4.2 precise numbers of the lower and upper bounds

λ 1h -η 2 1 ≤ λ 1 ≤ λ 1h -η2
1 on the exact eigenvalue λ 1 , the effectivity indices of the lower and upper bounds η2

1 ≤ λ 1hλ 1 ≤ η 2 1 of the error λ 1hλ 1 , and the effectivity index of the upper bound ∇(u 1u 1h ) ≤ η 1 , given respectively by

I lb λ,eff := λ 1h -λ 1 η2 1 , I ub λ,eff := η 2 1 λ 1h -λ 1 , I ub u,eff := η 1 ∇(u 1 -u 1h ) . (4.7.1)
We observe rather sharp results, and this also for the relative size of the first eigenvalue confidence interval 

E λ,rel := 2 (λ 1h -η2 1 ) -(λ 1h -η 2 1 ) (λ 1h -η2 1 ) + (λ 1h -η 2 1 ) . ( 4 
h η 2 1 λ 1h -λ 1 η2 1 η 1 ∇(u 1 -u 1h ) 0.01 0.1 0.001 0.01 0.1 1 10 h η 2 1 λ 1h -λ 1 η2 1 η 1 ∇(u 1 -u 1h ) Figure 4.1 -[Unit square]
Error in the eigenvalue and eigenvector approximation, its lower bound (eigenvalue only), and its upper bound for the choice λ 1 = 1.5π 2 , λ 2 = 4.5π 2 ; sequence of structured (left) and unstructured but quasi-uniform (right) meshes; Case C mesh] Lower and upper bounds on the exact eigenvalue λ 1 , the effectivity indices, and size of the relative λ 1 confidence interval; λ 1 = 1.5π 2 , λ 2 = 4.5π 2 ; Case C
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Unstructured mesh

Consider now a sequence of unstructured quasi-uniform meshes, obtained by an initial partition of each boundary edge into N intervals. Conditions (4.5.2) and (4.5.9) turn here to be satisfied similarly as in Table 4.1.

The convergence plots for this case are presented in Figure 4.1 (right), showing a similar behavior as for the structured meshes. This time, we use the upper bound on C I according to [START_REF] Liu | Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements[END_REF]Eqn. (46)]:

C I = 0.493 max K∈T h 1+| cos(θ K )| sin(θ K ) ν + (α K ,θ K ) 2 h [177] K h K .
We refer to [START_REF] Liu | Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements[END_REF] for the definition of h [START_REF] Liu | Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements[END_REF] K and other notation. We observe in Table 4.3 that the results are similar to structured meshes; in particular the case of λ 1 = 0.5π 2 , λ 2 = 3π 2 is less sensitive to the unstructured mesh (not presented).

First eigenvalue on an L-shaped domain: mesh adaptivity

We next consider the L-shaped domain Ω := (-1, 1) 2 \ [0, 1]×[-1, 0], where λ 1 ≈ 9.6397238440 is known to high accuracy [START_REF] Trefethen | Computed eigenmodes of planar regions[END_REF]. Including Ω into the square Ω + = (-1, 1) 2 , cf. Remark 4.5.4, we take λ 1 = λ 1 (Ω + ) = π 2 /2, whereas λ 2 = 15.1753 from Table 1 of [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] is employed. We test here the Cases A and B within an adaptive refinement strategy. To do so, we use the local character of our estimators, see Remark 4.5.12. We employ the Dörfler marking with θ = 0.6 and the newest vertex bisection mesh refinement. then depicts an adaptively refined mesh and Table 4.5 presents more details on the errors and efficiencies.

First eigenvalue on a domain with a hole: mesh adaptivity

We next consider a domain with a polygonal hole, see Figure 4.3 (left) illustrating the mesh used at iteration 20 of our adaptive mesh refinement strategy. The lower bounds λ 1 and λ 2 on the first and second eigenvalue have been obtained once and for all before starting the adaptive algorithm following the estimates derived in [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF], on a uniform mesh with 1143 nodes. Figure 4. 3 (right) shows the interval between our lower (λ 1hη 2 1 ) and upper (λ 1h -η2 1 ) bounds on the first eigenvalue, relying on Case B of Theorems 4.5.1 and 4.5.2, whose assumptions hold starting from 2494 degrees of freedom; Table 4.6 states the numbers. Note that the interval size

(λ 1h -η2 1 ) -(λ 1h -η 2 1 ) = η 2 1 -η2 1 behaves like 1/ndof.

Higher eigenvalues

We now test the upper and lower bounds for higher eigenvalues. First we consider the unit triangle with vertices (0, 0), (1, 0), (0, 1) and a family of structured meshes. The auxiliary lower bounds are obtained by a computation on a fixed coarse mesh with 2145 triangles following [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF], which results in 4.7 provides more details on absolute numbers and efficiency. As the domain is convex (case C), we obtain excellent upper bounds for the error in all four eigenvalue/eigenvector pairs. The lower bound of the eigenvalue error (the improved eigenvalue upper bound of Theorem 4.5.2) is, however, degrading for higher eigenvalues. We now apply the same setting to the L-shaped domain where we obtain again the auxiliary lower bounds by the method presented in [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] for a coarse structured mesh with 3201 triangles resulting in 4.8 provides more details on the efficiency. We now observe that the efficiency also degrades for the upper bound of the eigenvalue and eigenvector error. Further, improved lower bounds of the eigenvalue error are not available for the considered meshes for i > 1. This appears as the resulting ηi are all equal to zero, see (4.5.11), respectively (4.5.12), so that our eigenvalue upper bound stays that of the finite element method. For all meshes and all considered eigenvalues, though, our estimates still give a rather tight guaranteed eigenvalue confidence interval and quite reasonable eigenvector effectivity indices. We can also observe by a jump of the blue curve (η 2 i ) the change between the cases A and B. The critical mesh size where this change occurs seems to degrade with increasing eigenvalues.

λ 1h -λ 1 η2 1 η 1 ∇(u 1 -u 1h ) 1/(ndof) 1/2

Inexact algebraic eigenvalue solvers

We finally consider inexact eigenvalue solvers. Since we are using FreeFem++, we rely on an algebraic eigenvalue solver based on the ARPACK package that is built in FreeFem++. Here a user-specified tolerance can be provided and we choose it in a mesh-dependent way as tol(h) = h 2 to materialize an inexact solver. We set σ ih,dis following Definition 4.4.1. In order to compute σ ih,alg in (4.4.5), we proceed as in [START_REF] Papež | Estimating and localizing the algebraic and total numerical errors using flux reconstructions[END_REF] and the references therein and first compute a second reconstructed flux σih,dis corresponding to some additional algebraic iterations (here corresponding to the tolerance h 2 /100 in ARPACK); then σ ih,alg := σih,disσ ih,dis . Figure 4.6 demonstrates that we still obtain excellent lower and upper bounds. Adaptive stopping criteria of the form (4.4.9b), leading to savings in algebraic solver iterations, are not investigated here.

Comparison with existing results

We finally compare our results with some existing ones from [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF][START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF]. In what concerns the unit square and the first eigenvalue of Section 4.7.1, our estimates appear sharper while comparing Table 4.2 with the estimates presented in [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF], see Figure 6.2 therein. For the L-shaped domain and uniformly refined meshes of Section 4.7.4 for the first eigenvalue, we also obtain better results than those presented in [64, Figure 6.4], where an efficiency issue appears; compared to the results presented in [178, Table 5.5], we observe that our lower bound λ 1hη 2 1 of the exact eigenvalue is a little less sharp, whereas the upper bound λ 1h -η2 1 is not present in [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF]. Recall also from §4.1 that our estimates are much cheaper here than those of [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF] (there is no auxiliary eigenvalue problem to solve). For adaptive meshes, we observe that our efficiency of the confidence interval for the first eigenvalue as measured in [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF] by

1 2 (η 2 1 -η2 1 )/|λ 1 -λ 1h + 1 2 (η 2 1 + η 2 1 )
| is approaching 1.086 which is much better than in [64, Figure 6.5].

To facilitate the comparisons, we finally present in Tables 4.9 and 4.10 several methods for the tests of [178, Table 5.2 (h = 1/64) and Table 5.3 (h = 1/32)]. We compare in particular the approach presented in this article, lowest-order conforming finite elements from [START_REF] Liu | Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape[END_REF], and the lowest-order Crouzeix-Raviart (CR) method presented in [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF], with explicit upper bound of the interpolation constants derived in either [START_REF] Carstensen | Guaranteed lower eigenvalue bounds for the biharmonic equation[END_REF] or [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF]. For the eigenvalue upper bounds On the convex triangle, the present approach seems to give the sharpest results, whereas on the L-shaped domain, the method based on the CR finite elements with the constant from [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] is better for the lower bound. Recall, though, that important advantages of the present theory are that it additionally gives a guaranteed control of the eigenvector error by the same estimators, is not specific to a particular scheme but yields general results that are here applied to any order conforming finite element method and extended in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework[END_REF] to basically any numerical scheme, and achieves polynomial-degree robustness. It can also be noted that the present estimators take elementwise form immediately suitable for adaptive mesh refinement. 
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Abstract

This paper develops a general framework for a posteriori error estimates in numerical approximations of the Laplace eigenvalue problem, applicable to all standard numerical methods. Guaranteed and computable upper and lower bounds on an arbitrary simple eigenvalue are given, as well as on the energy error in the approximation of the associated eigenvector. The bounds are valid under the sole condition that the approximate i-th eigenvalue lies between the exact (i -1)-th and (i + 1)-th eigenvalue, where the relative gaps are sufficiently large. We give a practical way how to check this; the precision of the resulting estimates depends on these relative gaps. Our bounds feature no unknown (solution-, regularity-, or polynomial-degreedependent) constant, are optimally convergent (efficient), and polynomial-degree robust. Under a further explicit, a posteriori, minimal resolution condition, the multiplicative constant in our estimates can be reduced by a fixed factor; moreover, when an elliptic regularity assumption is satisfied with known constants, this multiplicative constant can be brought to the optimal value of 1 with mesh refinement. Applications of our framework to nonconforming, discontinuous Galerkin, and mixed finite element approximations of arbitrary polynomial degree are provided, along with numerical illustrations.

Introduction

Precise numerical approximation of eigenvalues and eigenvectors of elliptic operators on general domains is crucial in countless applications. In addition to standard conforming Galerkin (variational) approximations, nonconforming methods such as nonconforming finite elements, discontinuous Galerkin elements, or mixed finite elements are very popular, and one naturally asks the question of the size of the error in their eigenvalue and eigenvector approximations. The issue of error control is usually tackled via the a posteriori estimates theory. Recently, powerful estimates were obtained for nonconforming approximations of the Laplace source problem, see Destuynder and Métivet [START_REF] Destuynder | Explicit error bounds for a nonconforming finite element method[END_REF], Ainsworth [START_REF] Ainsworth | Robust a posteriori error estimation for nonconforming finite element approximation[END_REF][START_REF] Ainsworth | A posteriori error estimation for discontinuous Galerkin finite element approximation[END_REF], Kim [START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF][START_REF] Kim | A posteriori error estimators for locally conservative methods of nonlinear elliptic problems[END_REF], Vohralík [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF], Carstensen and Merdon [START_REF] Carstensen | Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem[END_REF], or Ern et al. [START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF][START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF], see also the references therein. The Laplace eigenvalue problem seems to be structurally more difficult. Recently, though, guaranteed a posteriori estimates on the error in the i-th eigenvalue have been obtained in Carstensen and Gedicke [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF] and Liu [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF]. The theory of [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] applies for arbitrarily coarse meshes and gives convincing numerical results in many test cases. One could, however, comment that these results only seem to apply to the lowest-order nonconforming finite element method, the arguments used are of a priori nature that relies on an interpolation estimate, and an overestimation in presence of singularities may appear as the bounds feature the diameter of the largest mesh element, see [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF]Section 6.3]. Armentano and Durán [START_REF] Armentano | Asymptotic lower bounds for eigenvalues by nonconforming finite element methods[END_REF], Luo et al. [START_REF] Luo | Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods[END_REF], Hu et al. [START_REF] Hu | Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods[END_REF][START_REF] Hu | The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators[END_REF], or Yang et al. [START_REF] Yang | The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes[END_REF] also derived (guaranteed) eigenvalue estimates for the nonconforming finite element method, where, however, a saturation assumption may be necessary and/or the results are valid only asymptotically. Errors in both eigenvalue and eigenvector approximations in nonconforming methods have also been studied previously, although rather seldom. We refer in particular to Dari et al. [START_REF] Dari | A posteriori error estimates for nonconforming approximation of eigenvalue problems[END_REF] for nonconforming finite elements, to Giani and Hall [START_REF] Giani | An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems[END_REF] for discontinuous Galerkin elements, and to Durán et al. [START_REF] Durán | A posteriori error estimators for mixed approximations of eigenvalue problems[END_REF] and Jia et al. [START_REF] Jia | A posteriori error estimator for eigenvalue problems by mixed finite element method[END_REF] for mixed finite elements. Unfortunately, these estimates systematically contain solution-independent but unknown constants as well as solution-dependent, uncomputable terms, claimed higher order on fine enough meshes via a priori arguments.

The purpose of the present paper is to extend our conforming theory of Cancès et al. [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF] to a general framework for guaranteed and optimally convergent a posteriori bounds for both arbitrary simple i-th eigenvalue and the associated eigenvector of the Laplace eigenvalue problem. Let Ω ⊂ R d , d = 2, 3, be a polygonal/polyhedral domain with a Lipschitz boundary. Let the exact eigenvector and eigenvalue pairs (u i , λ i ) satisfy

-∆u i = λ i u i in Ω, (5.1.1) 
with the condition u i = 1, see (5.2.1) below for the precise weak formulation. We denote by (•, •) the L 2 (Ω) or [L 2 (Ω)] d scalar product over Ω and by • the associated norm and let

H 1 (T h ) := {v ∈ L 2 (Ω); v| K ∈ H 1 (K) ∀K ∈ T h } (5.1.2)
be the so-called broken Sobolev space, where the traces on mesh faces do not need to coincide. It is defined over a computational mesh T h of the domain Ω; details of the setting are given in Section 5.2. On H 1 (T h ), we generalize the usual weak gradient ∇ of H 1 (Ω) to the discrete gradient ∇ θ featuring a parameter θ ∈ {-1, 0, 1}, see (5.2.5) below. We consider here an abstract setting where the approximate eigenvector-eigenvalue pair (u ih , λ ih ) is not necessarily linked to any particular numerical method, u ih ∈ H 1 (T h ) is a piecewise polynomial possibly nonconforming in the sense that u ih ∈ H 1 0 (Ω) and not necessarily scaled to u ih = 1, λ ih ∈ R + , and the relation ∇ θ u ih 2 = λ ih typically does not hold at the discrete level in contrast to the continuous one. Concrete examples of numerical methods fitting to our setting can be found later in Section 5.7.

Our main tools are an equilibrated flux reconstruction σ ih ∈ H(div, Ω) satisfying ∇•σ ih = λ ih u ih and an eigenvector reconstruction s ih ∈ H 1 0 (Ω), both defined in Section 5.3. These are piecewise polynomials such that -σ ih and ∇s ih are as close as possible to the discrete gradient ∇ θ u ih . They are constructed over patches of mesh elements following Destuynder and Métivet [START_REF] Destuynder | Explicit error bounds in a conforming finite element method[END_REF], Braess and Schöberl [START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF], Carstensen and Merdon [START_REF] Carstensen | Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem[END_REF], and Ern and Vohralík [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF], see also the references therein. We employ them in Section 5.4 to show in particular how the dual norm of the residual of the pair (s ih , λ ih ) can be bounded in a computable way. Section 5.5 then bounds the L 2 (Ω)-norm of the Riesz representation of the residual of (s ih , λ ih ) under an assumption of elliptic regularity on the corresponding Laplace source problem. It enables later to give improved computable estimates in the considered nonconforming setting.

Our main results are collected in Section 5.6 and crucially rely on [52, Section 3], where mutual relations between the i-th eigenvalue error, the associated eigenvector energy error, and the dual norm of the residual in terms of an arbitrary pair (s ih , λ ih ) ∈ H 1 0 (Ω) × R + such that sih = 1 are given. Using sih := s ih / s ih , where s ih is the above eigenvector reconstruction, inequality (5.6.4) of Theorem 5.6.1 in particular gives

∇s ih 2 -η 2 i ≤ λ i , (5.1.3a)
where η i is an a posteriori error estimator with a typical structure

η i = m ih (λ ih u ih -s ih / λ 1 + ∇s ih + σ ih )/ s ih .
(5.1.3b) Thus (5.1.3a) gives a guaranteed and computable lower bound for the i-th exact eigenvalue λ i . An upper bound on λ i is recalled in inequality (5.6.10) of Theorem 5.6.3. Then a guaranteed and computable a posteriori estimate on the associated eigenvector energy error is given next, see in particular estimate (5.6.16) of Theorem 5.6.4 revealing

∇ θ (u i -u ih ) ≤ η i + ∇ θ (u ih -sih ) .
(5.1.3c)

The eigenvalue and eigenvector error bounds (5.1.3) are efficient (optimally convergent) in the sense that

η i + ∇ θ (u ih -sih ) ≤ C i ( ∇ θ (u i -u ih ) + consistency terms + norm of mean values of jumps of u ih ), (5.1.4) 
see inequality (5.6.17) of Theorem 5.6.4. Here C i is a generic constant that only depends on λ 1 , λ ih , on the lower bound λ i+1 of λ i+1 , possibly on the upper bound λ i-1 of λ i-1 , on the shape of Ω, and on some (broken) Poincaré-Friedrichs constants over patches of elements and a stability constant of mixed finite elements (both only depending on the shape regularity of the mesh and on the space dimension d). The constant C i is in particular independent of the polynomial degree of u ih , leading to polynomial-degree robustness. The consistency terms above may not be present, typically for nonconforming finite elements. Similarly, the jump mean values of u ih are zero in nonconforming and mixed finite elements, and this term also vanishes in our developments for the symmetric variant of the discontinuous Galerkin finite element method when the parameter θ equals 1.

The above results are valid under the condition (5.6.1), requesting λ ih to lie between computable bounds λ i+1 and λ i-1 (when i > 1) on the surrounding exact eigenvalues λ i+1 and λ i-1 , see the discussion in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Remark 5.4] for its practical verification. We also need the residual orthogonality condition of Assumption 5.3.1 in order to reconstruct the equilibrated flux. Then, for u ih a piecewise polynomial of degree p, the reconstructions s ih and σ ih are prescribed in discrete spaces of order p + 1. There is no specific condition on the fineness of the mesh in Case A of Theorems 5.6.1 and 5.6.4, but the multiplicative factor m ih in (5.1.3b) contains the relative gap of the form max{(

λ ih λ i-1 -1) -1 , (1 -λ ih λ i+1
) -1 }. Two improvements are possible. Under the computable minimal resolution criterion (5.6.6b) (satisfied for fine enough meshes), m ih is reduced by a fixed factor, see Case B of Theorems 5.6.1 and 5.6.4. If an elliptic regularity assumption on the corresponding source problem is satisfied and if the minimal resolution condition (5.6.8b) holds, the relative gap in m ih is multiplied by a power of the mesh size h, so that m ih can be brought to the optimal value of 1 in the limit of mesh size tending to zero, which we show in Case C of Theorems 5.6.1 and 5.6.4. The efficiency constant C i from (5.1.4) or (5.6.17) can be fully traced from the detailed estimates of Theorem 5.6.4; it in particular deteriorates for increasing eigenvalues.

The application of our abstract results to a given numerical method merely requires the verification of the setting and of Assumption 5.3.1. We undertake this in Section 5.7 for nonconforming finite elements, discontinuous Galerkin elements, and mixed finite elements of arbitrary polynomial degree. For mixed finite elements, elementwise postprocessings of the approximate eigenvector and of its flux need to be performed first. Numerical experiments are presented in Section 5.8 for the nonconforming and discontinuous Galerkin methods and fully support our theoretical findings for a couple of model problems. In particular, the a posteriori applicability conditions (5.6.6b) and (5.6.8b) for cases B and C are satisfied here already on very coarse meshes. Some concluding remarks and an outlook are given in Section 5.9. In particular, inexact algebraic eigenvalue solvers promoted in Mehrmann and Miedlar [START_REF] Mehrmann | Adaptive computation of smallest eigenvalues of selfadjoint elliptic partial differential equations[END_REF] or Carstensen and Gedicke [START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF] can be treated as in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF] and the references therein, allowing to generalize the present estimates to an arbitrary iterative solver step where Assumption 5.3.1 typically does not hold.

We finish our paper by two extensions. We first show in Appendix 5.10.1 that the key relations between the i-th eigenvalue error, the associated eigenvector energy error, and the dual norm of the residual, when u ih is conforming, are in fact not restricted to the Laplace operator; we extend them to the generic class of bounded-below self-adjoint operators with compact resolvent in Theorems 5.10.1 and 5.10.2. Appendix 5.10.2 then gives a further possible improvement of the first eigenvalue upper bound: from λ 1 ≤ ∇s 1h 2 of (5.6.11) in Theorem 5.6.3 to λ 1 ≤ ∇s 1h 2 -η1 of Theorem 5.10.5.

Setting

Let H 1 (Ω) be the Sobolev space of L 2 (Ω) functions with weak gradients ∇ in [L 2 (Ω)] d . We denote henceforth by V := H 1 0 (Ω) its zero-trace subspace. Later, we will also employ the space

H(div, Ω) of [L 2 (Ω)] d functions with weak divergences ∇• in L 2 (Ω).

The Laplace eigenvalue problem

The weak formulation of (5.1.1) looks for (u i , λ i ) ∈ V × R + with u i = 1 and

(∇u i , ∇v) = λ i (u i , v) ∀v ∈ V. (5.2.1)
It is well-known (see, e.g., Babuška and Osborn [START_REF] Babuška | Eigenvalue problems[END_REF] or Boffi [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF] and the references therein) that u i , i ≥ 1, form a countable orthonormal basis of L 2 (Ω) consisting of eigenvectors from V ; we assume that the sequence of eigenvalues is such that 0 < λ 1 < λ 2 ≤ . . . ≤ λ i → ∞. We will actually suppose that the eigenvalue λ i that we study is simple, which is always the case for i = 1. The associated eigenvector u i is then uniquely defined upon fixing its sign by the condition (u i , χ i ) > 0, where χ i ∈ L 2 (Ω) is typically a characteristic function of Ω (for i = 1) or of its subdomain (for i > 1). The setting for i = 1 in particular implies the Poincaré-Friedrichs inequality

v 2 ≤ 1 λ 1 ∇v 2 ∀v ∈ V. (5.2.2)

Meshes and generic piecewise polynomial spaces

We denote by T h a matching simplicial mesh in the sense of Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], shape-regular with a parameter κ T > 0: the ratio of the element diameter h K and of the diameter of the inscribed ball to K ∈ T h is bounded by κ T (uniformly for a sequence of meshes). Denote also by h the maximal element diameter over all K ∈ T h . The mesh (d -1)-dimensional faces are collected in the set E h , with interior faces E int h and boundary faces E ext h . A generic face is denoted by e, its diameter by h e , and its unit normal vector (the direction is arbitrary but fixed) by n e . We will often employ the jump operator [[•]] yielding the difference of the traces of the argument from the two mesh elements that share e ∈ E int h along n e and the actual trace for e ∈ E ext h . Similarly, the average operator { {•} } yields the mean value of the traces from adjacent mesh elements on interior faces and the actual trace on boundary faces. The set of vertices will be denoted by V h ; it is composed of interior vertices V int h and vertices located on the boundary V ext h , with a generic vertex denoted by a.

Let P q (K) stand for polynomials of total degree at most q ≥ 0 on K ∈ T h , and P q (T h ) ⊂ H 1 (T h ) for piecewise q-th order polynomials on T h . For a given q ≥ 1, we denote by V q h := P q (T h ) ∩ V the q-th order conforming finite element space. Similarly, for q ≥ 0, V q h := {v h ∈ H(div, Ω); v h | K ∈ [P q (K)] d + P q (K)x} and Q q h := P q (T h ) stand for the Raviart-Thomas-Nédélec mixed finite element spaces of order q, cf. Brezzi and Fortin [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] or Roberts and Thomas [START_REF] Roberts | Mixed and hybrid methods[END_REF]. We will also use the lowest-order broken space V 0 (T

h ) := {v h ∈ [L 2 (Ω)] d ; v h | K ∈ [P 0 (K)] d + P 0 (K)x}
, where in contrast to V q h , no normal trace continuity is imposed via the inclusion in H(div, Ω).

Broken and discrete gradients

On the broken Sobolev space H 1 (T h ) defined in (5.1.2), the usual weak gradient ∇ is not defined. We will in this paper use two successive generalizations of the notion of the weak gradient. We will first denote by

∇ h v ∈ [L 2 (Ω)] d the broken gradient of v ∈ H 1 (T h ) given by (∇ h v)| K := ∇(v| K ) ∀K ∈ T h . (5.2.3)
We will need the following generalization of (5.2.2), the so-called broken Poincaré-Friedrichs inequality, see Brenner [START_REF] Brenner | Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions[END_REF]Remark 1.1] or Vohralík [START_REF] Vohralík | On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1[END_REF]Theorem 5.4] and the references therein:

v ≤ C bF   ∇ h v 2 + e∈E int h h -1 e Π 0 e [[v]] 2 e + v, 1 2 ∂Ω   1 2 ∀v ∈ H 1 (T h ), (5.2.4) 
where Π 0 e stands for the L 2 (e)-orthogonal projection onto constants on the face e, •, • denotes the L 2 (Ω) scalar product over ∂Ω, and the constant C bF only depends on the domain Ω, the space dimension d, and the mesh shape regularity parameter κ T .

In order to prove the elliptic regularity bound of Theorem 5.5.4 below in a very general setting, we are lead to a further generalization. It is motivated by the lifting operators used in the discontinuous Galerkin finite element method, see Di Pietro and Ern [88, Section 4.3] and the references therein, but we crucially rely here on the space V 0 (T h ) of the lowest-order broken Raviart-Thomas-Nédélec polynomials defined above. Let v ∈ H 1 (T h ). For each face e ∈ E h , we define the lifting operator l e : L 2 (e) → V 0 (T e ), where T e regroups the mesh elements sharing the face e and V 0 (T e ) is the restriction of V 0 (T h ) thereon. The lifting l e ([[v]]) is prescribed by

(l e ([[v]]), v h ) Te = { {v h } }•n e , [[v]
] e for all v h ∈ V 0 (T e ). We then extend l e ([[v]]) by zero outside of T e to form an element of V 0 (T h ). For a parameter θ ∈ {-1, 0, 1}, the discrete gradient

∇ θ v ∈ [L 2 (Ω)] d is then given by ∇ θ v := ∇ h v -θ e∈E h l e ([[v]]).
(5.2.5)

We observe that ∇ θ v = ∇ h v when θ = 0 or when the jumps of v are of mean value 0, i.e., [[v]], 1 e = 0 for all e ∈ E h ; indeed, this follows from the fact that v h •n e are constants for v h ∈ V 0 (T h ). Consistently,

∇ θ v = ∇ h v = ∇v ∀v ∈ H 1 0 (Ω).
(5.2.6)

Residual and its dual norm

The derivation of a posteriori error estimates usually exploits the concept of the residual and of its dual norm. We will proceed in this way as well. Throughout the paper, it will reveal convenient to employ the residual of different pairs (w i , λ ih ) ∈ H 1 (T h ) × R, with for w i the approximate solution u ih , the eigenvector reconstruction s ih of Definition 5.3.3 below, or a generic function in V . Let V stand for the dual of V .

Definition 5.2.1 (Residual and its dual norm). For any pair

(w i , λ ih ) ∈ H 1 (T h ) × R, define the residual Res θ (w i , λ ih ) ∈ V by Res θ (w i , λ ih ), v V ,V := λ ih (w i , v) -(∇ θ w i , ∇v) ∀v ∈ V.
(5.2.7a)

Its dual norm is then Res θ (w i , λ ih ) -1 := sup v∈V, ∇v =1 Res θ (w i , λ ih ), v V ,V . (5.2.7b) 
We will also often work with the Riesz representation of the residual r w i ∈ V , given by

(∇r w i , ∇v) = Res θ (w i , λ ih ), v V ,V ∀v ∈ V.
(5.2.8a) Then ∇r w i = Res θ (w i , λ ih ) -1 .

(5.2.8b)

Eigenvector and equilibrated flux reconstructions

We introduce in this section two key reconstructions, following [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF][START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF][START_REF] Destuynder | Explicit error bounds for a nonconforming finite element method[END_REF][START_REF] Ainsworth | Robust a posteriori error estimation for nonconforming finite element approximation[END_REF][START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF][START_REF] Kim | A posteriori error estimators for locally conservative methods of nonlinear elliptic problems[END_REF][START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF][START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF][START_REF] Ainsworth | A posteriori error estimation for discontinuous Galerkin finite element approximation[END_REF][START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF][START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] and the references therein. To motivate, note that from (5.2.1), it is straightforward that -∇u i ∈ H(div, Ω), with the weak divergence equal to λ i u i . On the discrete level, however, -∇ θ u ih ∈ H(div, Ω) in general, and, a fortiori, ∇•(-∇ θ u ih ) = λ ih u ih . We will thus introduce an equilibrated flux reconstruction, a vector-valued function σ ih constructed from the given pair (u ih , λ ih ), satisfying

σ ih ∈ H(div, Ω), (5.3.1a) ∇•σ ih = λ ih u ih .
(5.3.1b)

Similarly, as we treat here cases where u ih ∈ V , possibly jumping between the mesh elements, we will employ an eigenvector reconstruction, a scalar-valued function s ih constructed from u ih and satisfying s ih ∈ V.

(5.3.2)

Actually, both σ ih and s ih will be piecewise polynomials defined in standard finite element subspaces of H(div, Ω) and V , respectively.

Orthogonality of the residual

Let ψ a for a ∈ V h stand for the piecewise affine function taking value 1 at the vertex a and zero at the other vertices. Remarkably, these functions form a partition of unity via a∈V h ψ a = 1| Ω . Denote by T a the patch of elements of T h which share the vertex a ∈ V h and by ω a the corresponding subdomain of Ω. Our key assumption will be: Assumption 5.3.1 (Orthogonality of (u ih , λ ih ) residual to ψ a ). There holds

λ ih (u ih , ψ a ) ωa -(∇ θ u ih , ∇ψ a ) ωa = Res θ (u ih , λ ih ), ψ a V ,V = 0 ∀a ∈ V int h .
Assumption 5.3.1 can typically be verified for an exact algebraic solver; Section 5.7 below shows how to check it for some standard numerical methods. Inexact solvers, where Assumption 5.3.1 does not hold, can be treated as in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF] and the references therein.

Reconstruction spaces

In practice, the approximate eigenvector u ih is a piecewise polynomial, u ih ∈ P p (T h ) for some p ≥ 1. To define the reconstructions in this setting, we will, for each vertex a ∈ V h , work with restrictions V p+1 h (ω a ) and Q p+1 h (ω a ) of the spaces from Section 5.2.2 to the patch subdomain ω a ; conversely, we will often tacitly extend functions defined on ω a by zero outside of ω a . With n ωa standing for the outward unit normal of ω a , we define

V a h := {v h ∈ V p+1 h (ω a ); v h •n ωa = 0 on ∂ω a }, Q a h := {q h ∈ Q p+1 h (ω a ); (q h , 1) ωa = 0}, a ∈ V int h , V a h := {v h ∈ V p+1 h (ω a ); v h •n ωa = 0 on ∂ω a \ ∂Ω}, Q a h := Q p+1 h (ω a ), a ∈ V ext h , W a h := P p+1 (T a ) ∩ H 1 0 (ω a ) a ∈ V h .

Equilibrated flux reconstruction

We construct σ ih satisfying (5. 

v h ∈V a h , ∇•v h =Π Q a h (ψaλ ih u ih -∇ θ u ih •∇ψa) ψ a ∇ θ u ih + v h ωa ∀a ∈ V h (5.3.3a)
and define

σ ih := a∈V h σ a ih .
(5.3.3b)

In (5.3.3a), Π Q a h stands for the L 2 (Ω)-orthogonal projection onto the local space Q a h . It is actually only needed for the simplification of Remark 5.6.10 below; otherwise, ψ a λ ih u ih -∇ θ u ih •∇ψ a is a piecewise polynomial of degree p + 1 on the patch T a , with mean value zero thanks to Assumption 5.3.1, so that 

Π Q a h (ψ a λ ih u ih -∇ θ u ih •∇ψ a ) = ψ a λ ih u ih -∇ θ u ih •
(σ a ih , v h ) ωa -(p a h , ∇•v h ) ωa = -(ψ a ∇ θ u ih , v h ) ωa ∀v h ∈ V a h , (∇•σ a ih , q h ) ωa = (ψ a λ ih u ih -∇ θ u ih •∇ψ a , q h ) ωa ∀q h ∈ Q a h .
It follows from the standard references [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Roberts | Mixed and hybrid methods[END_REF] that the discrete inf-sup condition for the pair V a h × Q a h is satisfied.

Eigenvector reconstruction

For nonconforming eigenvectors u ih , i.e., u ih is a piecewise polynomial not included in V = H 1 0 (Ω) but merely in H 1 (T h ), the eigenvector reconstruction complying with requirement (5. 

v h ∈W a h ∇ h (ψ a u ih -v h ) ωa ∀a ∈ V h (5.3.4)
and define

s ih := a∈V h s a ih .
Immediately, problems (5.3.4) are equivalently described by their Euler-Lagrange conditions; these request to find the conforming finite element approximation s a ih ∈ W a h to the homogeneous Dirichlet problem posed over the patch T a such that (∇s a ih , ∇v h ) ωa = (∇ h (ψ a u ih ), ∇v h ) ωa ∀v h ∈ W a h .

Dual norm of the residual and nonconformity bounds

We summarize here bounds on the dual norm of the residual and on nonconformity that are available from the context of source problems. They will be crucial later in Section 5.6.

Some additional notation and useful inequalities

We first need to introduce some more background. Consider a vertex a ∈ V h and on the patch domain ω a define

H 1 * (ω a ) := {v ∈ H 1 (ω a ); (v, 1) ωa = 0}, a ∈ V int h , (5.4.1a) 
H 1 * (ω a ) := {v ∈ H 1 (ω a ); v = 0 on ∂ω a ∩ ∂Ω}, a ∈ V ext h . (5.4.1b)
Then the Poincaré-Friedrichs inequality, corresponding to (5.2.2) on the patches ω a , states

v ωa ≤ C PF,ωa h ωa ∇v ωa ∀v ∈ H 1 * (ω a ), (5.4.2a) 
where C PF,ωa depends only on the mesh regularity parameter κ T and the space dimension d. Similarly, when the functions are piecewise H 1 only, we will use the inequality

v ωa ≤ C bPF,ωa h ωa   ∇ h v 2 ωa + e∈E h , a∈e h -1 e Π 0 e [[v]] 2 e   1 2 
(5.4.2b) valid for all v ∈ H 1 (T h ) such that (v, 1) ωa = 0 when a ∈ V int h , and where the constant C bPF,ωa depends only on κ T and d. Inequality (5.4.2b) may be seen as a local version of (5.2.4) on the patch domain ω a , with the mean value condition (v, 1) ωa = 0 for a ∈ V int h or appearance of boundary faces e ∈ E h ⊂ ∂ω a for a ∈ V ext h replacing the boundary term v, 1 ∂Ω from (5.2.4). Define C cont,PF := max a∈V h {1 + C PF,ωa h ωa ∇ψ a ∞,ωa } and C cont,bPF := max a∈V h {1 + C bPF,ωa h ωa ∇ψ a ∞,ωa }. The constants C cont,PF and C cont,bPF only depend on the mesh regularity parameter κ T and the space dimension d and can be fully estimated from above, see the discussion in [105, proofs of Lemmas 3.12 and 3. [START_REF] Aviat | Truncated conjugate gradient: an optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations[END_REF] 

ψ a ∇ θ u ih + σ a ih ωa ≤ C st sup v∈H 1 * (ωa); ∇v ωa =1 Res θ (u ih , λ ih ), ψ a v V ,V , (5.4.4a) 
∇ h (ψ a u ih -s a ih ) ωa ≤ C st inf v∈H 1 0 (ωa) ∇ h (ψ a u ih -v) ωa , (5.4.4b) 
where the constant C st > 0 only depends on the mesh shape regularity parameter κ T and the space dimension d. Indeed, (5. 

Dual norm of the residual and nonconformity bounds

Our a posteriori error estimates below will rely on the two following intermediate results: 

Corollary 5.
∇ θ u ih + σ ih ≤ (d + 1)C st C cont,PF Res θ (u ih , λ ih ) -1 .
(5.4.5b)

Proof. Let v ∈ V with ∇v = 1 be fixed. Using the definition of the residual (5.2.7a), the consistency of the definition of the discrete gradient (5.2.6), adding and subtracting (σ ih , ∇v), and employing the Green theorem and the equilibrium property (5.3.1b),

Res θ (s ih , λ ih ), v V ,V = λ ih (s ih , v) -(∇s ih , ∇v) = (λ ih s ih -∇•σ ih , v) -(∇s ih + σ ih , ∇v) = λ ih (s ih -u ih , v) -(∇s ih + σ ih , ∇v).
Thus, the characterization (5.2.7b) of the dual norm of the residual, the Cauchy-Schwarz inequality, and the Poincaré-Friedrichs inequality (5.2.2) yield (5.4.5a). To show (5.4.5b), let us first note that

sup v∈H 1 * (ωa); ∇v ωa =1 Res θ (u ih , λ ih ), ψ a v V ,V ≤ Res θ (u ih , λ ih ) -1,ωa sup v∈H 1 * (ωa); ∇v ωa =1 ∇(ψ a v) ωa ≤ Res θ (u ih , λ ih ) -1,ωa C cont,PF , (5.4.6) 
where Res θ (u ih , λ ih ) -1,ωa := sup v∈H 1 0 (ωa); ∇v ωa =1 Res θ (u ih , λ ih ), v V ,V , using that for any

v ∈ H 1 * (ω a ), ψ a v ∈ H 1 0 (ω a ) and (5.4.3). Since (∇ θ u ih + σ ih )| K = a∈V K (ψ a ∇ θ u ih + σ a ih )| K for any K ∈ T h ,
where V K stands for the set of the vertices of the element K, and since any simplex has d + 1 vertices,

∇ θ u ih + σ ih 2 = K∈T h a∈V K (ψ a ∇ θ u ih + σ a ih ) 2 K ≤ (d + 1) K∈T h a∈V K ψ a ∇ θ u ih + σ a ih 2 K = (d + 1) a∈V h ψ a ∇ θ u ih + σ a ih 2 ωa .
Now relying on (5.4.4a) and (5.4.6), we infer

∇ θ u ih + σ ih 2 ≤ (d + 1)C 2 st C 2 cont,PF a∈V h Res θ (u ih , λ ih ) 2 -1,ωa .
Finally, an estimate for combination of negative norms on recovering subdomains, see, for example, [77, Theorem 5.1] and the references therein, implies (5.4.5b).

Corollary 5.4.2 (Nonconformity lower bound). For (u ih , λ ih ) ∈ P p (T h ) × R + , let s ih be constructed following Definition 5.3.3. Then

∇ h (u ih -s ih ) ≤ 2(d + 1) 2 C 2 st C 2 cont,bPF ∇ h (u i -u ih ) 2 + 2d(d + 1)C 2 st C 2 cont,bPF e∈E h h -1 e Π 0 e [[u ih ]] 2 e 1 2
.

(5.4.7)

Proof. This result can be shown as in [105, Lemma 3.22 and Section 4.3.2], relying on (5.4.2b) and crucially on (5.4.4b).

Elliptic regularity bounds on the Riesz representation of the residual

An important ingredient for our estimates is a bound on r s ih of the Riesz representation r s ih ∈ V of the residual Res θ (s ih , λ ih ) given by (5.2.8a). We now derive a sharp estimate on r s ih under an elliptic regularity assumption. Let ζ (r s ih ) be the weak solution of the Laplace source problem -∆ζ (r s ih ) = r s ih in Ω and

ζ (r s ih ) = 0 on ∂Ω, i.e., ζ (r s ih ) ∈ V is such that (∇ζ (r s ih ) , ∇v) = (r s ih , v) ∀v ∈ V.
(5.5.1)

We will use an Aubin-Nitsche duality argument, see the references in [52, Section 5.1] for the conforming setting and, e.g., Antonietti et al. [START_REF] Antonietti | Discontinuous Galerkin approximation of the Laplace eigenproblem[END_REF][START_REF] Antonietti | A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods[END_REF] and the references therein for the nonconforming setting. Recalling the lowest-order H 1 0 (Ω)-and H(div, Ω)-conforming finite element spaces V 1 h and V 0 h from Section 5.2.2, and denoting Π 0 the L 2 (Ω)-orthogonal projection onto piecewise constants, let: Assumption 5.5.1 (Elliptic regularity). The solution ζ (r s ih ) of problem (5.5.1) belongs to the space H 1+δ (Ω), 0 < δ ≤ 1, so that the approximation and stability estimates

min v h ∈V 1 h ∇(ζ (r s ih ) -v h ) ≤ C I h δ |ζ (r s ih ) | H 1+δ (Ω) ,
(5.5.2a)

|ζ (r s ih ) | H 1+δ (Ω) ≤ C S r s ih (5.5.2b) 
are satisfied. Let moreover, for a suitable v h ∈ V 0 h such that ∇•v h = Π 0 (r s ih ), the approximation and stability estimates

∇ζ (r s ih ) + v h ≤ CI h δ |ζ (r s ih ) | H 1+δ (Ω) ,
(5.5.3a)

v h ≤ CS ∇ζ (r s ih ) (5.5.3b)
hold. Let finally the inverse inequality

v h •n e e ≤ C inv h -1 2 e v h K ∀K ∈ T h , ∀e ∈ E K (5.5.4)
hold for all v h ∈ V 0 h , where E K stands for the faces of the simplex K.

Remark 5.5.2 (Constants C I and C S ). Let Ω be a convex polygon in two space dimensions.

Then it is classical that ζ (r s ih ) ∈ H 2 (Ω) and |ζ (r s ih ) | H 2 (Ω) = ∆ζ (r s ih ) = r s ih , so that δ = 1 and C S = 1, see Grisvard [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 4.3.1.4]. In this situation, calculable bounds on C I can be found in Liu and Kikuchi [START_REF] Liu | Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements[END_REF] and Carstensen et al. [START_REF] Carstensen | Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods[END_REF], see also the references therein. In particular, according to [177, equation (46)] with the notation therefrom,

C I = 0.493 max K∈T h 1+| cos(θ K )| sin(θ K ) ν + (α K ,θ K ) 2 h [177] K h K
for unstructured triangular meshes and C I ≤ 0.493 √ 2 for a mesh formed by isosceles right-angled triangles.

Remark 5.5.3 (Constants CI , CS , and C inv ). As above, the ideal case is ζ (r s ih ) ∈ H 2 (Ω), which happens in particular when Ω is a convex polygon in two space dimensions. Then δ = 1 and calculable bounds on CI can be found in Mao and Shi [START_REF] Mao | Explicit error estimates for mixed and nonconforming finite elements[END_REF] and Carstensen et al. [START_REF] Carstensen | Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods[END_REF] for the choice v h as the Raviart-Thomas-Nédélec interpolate of -∇ζ (r s ih ) . In particular, following [START_REF] Carstensen | Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods[END_REF],

CI = max K∈T h max α angle of K 1/4 + 2/j 2 1,1 1 -| cos(α)| , (5.5.5) 
where j 1,1 ≈ 3.8317059702 is the first positive root of the Bessel function J 1 . This in particular gives CI = 1/4 + 2/j 2 1,1 ≈ 0.6215 for a structured mesh with isosceles right-angled triangles. For this interpolate, (5.5.3b) holds, without any regularity assumption beyond -∇ζ (r s ih ) ∈ L q (Ω), q > 2. Finally, (5.5.4) holds for any v h ∈ V 0 h and C inv only depends on the shape regularity of the mesh and on the space dimension d, as v h is from the lowest-order space. Theorem 5.5.4 (Elliptic regularity bound on r s ih ). Let (u ih , λ ih ) ∈ H 1 (T h ) ×R + and let Assumptions 5.3.1 and 5.5.1 hold. Then

r s ih ≤ λ ih λ 1 u ih -s ih + C I C S h δ Res θ (u ih , λ ih ) -1 + CI C S h δ ∇ θ (u ih -s ih ) + Π 0 (u ih -s ih ) + |θ -1|(d + 1) C inv CS √ λ 1    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
.

(5.5.6)

Proof. By the definition (5.5.1) of ζ (r s ih ) , the definition (5.2.8a) of r s ih , the definition (5.2.7a)

of Res θ (s ih , λ ih ), and the orthogonality Assumption 5.3.1,

r s ih 2 = (∇ζ (r s ih ) , ∇r s ih ) = λ ih (s ih , ζ (r s ih ) ) -(∇s ih , ∇ζ (r s ih ) ) = λ ih (s ih -u ih , ζ (r s ih ) ) + λ ih (u ih , ζ (r s ih ) ) -(∇ θ u ih , ∇ζ (r s ih ) ) -(∇ θ (s ih -u ih ), ∇ζ (r s ih ) ) = λ ih (s ih -u ih , ζ (r s ih ) ) + λ ih (u ih , ζ (r s ih ) -ζ h ) -(∇ θ u ih , ∇(ζ (r s ih ) -ζ h )) -(∇ θ (s ih -u ih ), ∇ζ (r s ih ) ),
where

ζ h ∈ V 1 h is arbitrary.
One more application of (5.2.7a), (5.2.8a) then leads to

r s ih 2 = λ ih (s ih -u ih , ζ (r s ih ) ) + (∇r u ih , ∇(ζ (r s ih ) -ζ h )) -(∇ θ (s ih -u ih ), ∇ζ (r s ih ) ) ≤ λ ih s ih -u ih ζ (r s ih ) + ∇r u ih ∇(ζ (r s ih ) -ζ h ) -(∇ θ (s ih -u ih ), ∇ζ (r s ih ) ),
where we have also employed the Cauchy-Schwarz inequality. Now the Poincaré-Friedrichs inequality (5.2.2) gives ζ (r s ih ) ≤ ∇ζ (r s ih ) / √ λ 1 and we have from (5.5.1) that ∇ζ (r s ih ) ≤ r s ih / √ λ 1 . For the second term above, we need to take the best ζ h and employ the estimates (5.5.2) to arrive at

r s ih 2 ≤ λ ih λ 1 u ih -s ih + C I C S h δ ∇r u ih r s ih -(∇ζ (r s ih ) , ∇ θ (s ih -u ih )). Let now v h ∈ V 0 h be such that ∇•v h = Π 0 (r s ih ). Definition (5.2.

5) of the discrete gradient and the fact that

v h ∈ V 0 h ⊂ V 0 (T h ) give -(v h , ∇ θ u ih ) = -(v h , ∇ h u ih ) + θ e∈E h (v h , l e ([[u ih ]])) = -(v h , ∇ h u ih ) + θ e∈E h { {v h } }•n e , [[u ih ]] e .
Thus, using that v h ∈ H(div, Ω) (so that { {v h } }•n e = v h •n e ), s ih ∈ V , and elementwise the Green theorem gives

(v h , ∇ θ (s ih -u ih )) = - K∈T h (∇•v h , s ih -u ih ) K + (θ -1) e∈E h v h •n e , [[u ih ]] e .
The last term above actually disappears when the jumps of u ih are of mean value 0, i.e., [[u ih ]], 1 e = 0 for all e ∈ E h , or when θ = 1. As v h •n e ∈ P 0 (e), we can, in general, at least replace [[u ih ]] by Π 0 e [[u ih ]] and estimate this term using the inverse inequality (5.5.4) and Cauchy-Schwarz one, as each simplex has d + 1 faces

e∈E h v h •n e , Π 0 e [[u ih ]] e ≤ e∈E h v h K∈T h ; e∈E K C inv h -1 2 e Π 0 e [[u ih ]] e ≤ (d + 1)C inv v h    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
.

Thus, for v h satisfying (5.5.3) and under the stability assumption (5.5.2b), we infer

-(∇ζ (r s ih ) , ∇ θ (s ih -u ih )) = -(∇ζ (r s ih ) + v h , ∇ θ (s ih -u ih )) + (Π 0 (r s ih ), u ih -s ih ) + (θ -1) e∈E h v h •n e , Π 0 e [[u ih ]] e = -(∇ζ (r s ih ) + v h , ∇ θ (s ih -u ih )) + (r s ih , Π 0 (u ih -s ih )) + (θ -1) e∈E h v h •n e , Π 0 e [[u ih ]] e ≤ CI C S h δ r s ih ∇ θ (u ih -s ih ) + r s ih Π 0 (u ih -s ih ) + |θ -1|(d + 1) C inv CS √ λ 1 r s ih    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
.

Combining the above estimates with the characterization (5.2.8b) of ∇r u ih finishes the proof.

Guaranteed and computable upper and lower bounds in a unified framework

We combine here the results of Sections 5.4 and 5.5 together with the key generic equivalences of [52, Section 3] to derive the actual guaranteed and computable eigenvalue and eigenvector bounds in a unified framework.

Eigenvalues

We first tackle the question of upper and lower bounds for the i-th eigenvalue λ i . We refer to [52, Remark 5.4 and 5.5] for the discussion on obtaining the auxiliary eigenvalue bounds λ 1 , λ i-1 , λ i , and λ i+1 .

Theorem 5.6.1 (Guaranteed lower bounds for the i-th eigenvalue). Let the i-th exact eigenvalue λ i , i ≥ 1, be simple and suppose the auxiliary bounds

λ 1 ≤ λ 1 , λ i ≤ λ i , λ i+1 ≤ λ i+1 , as well as λ i-1 ≤ λ i-1 when i > 1, for λ 1 , λ i , λ i+1 , λ i-1 > 0.
Let the approximate eigenvectoreigenvalue pair (u ih , λ ih ) ∈ P p (T h ) × R + verify Assumption 5.3.1, as well as the inclusion

λ i-1 < λ ih when i > 1, λ ih < λ i+1 .
(5.6.1)

Let the equilibrated flux reconstruction σ ih be given by Definition 5.3.2 and the eigenvector reconstruction s ih by Definition 5.3.3, with s ih = 0. Denote the principal estimator

η i,res := 1 s ih λ ih λ 1 u ih -s ih + ∇s ih + σ ih (5.6.2)
together with the discrete relative gaps

c ih := max λ ih λ i-1 -1 -1 , 1 - λ ih λ i+1 -1
, (5.6.3a)

cih := max λ -1 2 i-1 λ ih λ i-1 -1 -1 , λ -1 2 i+1 1 - λ ih λ i+1 -1
(5.6.3b)

and the scaled eigenvector reconstruction sih := s ih s ih . Then, the i-th eigenvalue lower bound is

∇s ih 2 -η 2 i ≤ λ i , (5.6.4)
where the complete estimator η i takes different forms in the following three cases: Case A (No smallness assumption) If the sign characterization (u i , sih ) ≥ 0 is known to hold, the lower i-th eigenvalue estimate (5.6.4) is valid with

η 2 i := (1 + (λ ih + λ i )2c 2 ih )η 2 i,res .
(5.6.5)

If only (s ih , χ i ) > 0 holds for the sign characterization function χ i of Section 5.2.1, the factor 2 in (5.6.5) needs to be replaced by 2(1sih -Π i sih ) -1 , where Π i sih stands for the L 2 (Ω)orthogonal projection of sih on the span of χ i . Case B (Improved estimates under a smallness assumption) Assume the sign characterization (s ih , χ i ) > 0 and define α ih := √ 2c ih η i,res , (5.6.6a)

where α ih is a computable bound on the L 2 (Ω) error u isih . Let the smallness assumption

α ih ≤ min 2λ 1 λ i 1 2
, χ i -1 (s ih , χ i ) (5.6.6b) hold, so that in particular λ i λ 1 α 2 ih 4 is bounded by 1 2 and tends to zero; when i = 1, taking λ 1 = λ i = λ i is possible and makes the fraction λ 1 λ i vanish. Then the lower i-th eigenvalue estimate (5.6.4) holds with

η 2 i := c 2 ih 1 - λ i λ 1 α 2 ih 4 -1 η 2 i,res .
(5.6.7)

Case C (Optimal estimates under elliptic regularity assumption) Assume the elliptic regularity of Assumption 5.5.1 together with the sign characterization (s ih , χ i ) > 0. Define the L 2 (Ω) estimators α ih of u isih by

α ih := √ 2c ih s ih λ ih λ 1 u ih -s ih + C I C S h δ ∇ θ u ih + σ ih + CI C S h δ ∇ θ (u ih -s ih ) + Π 0 (u ih -s ih ) + |θ -1|(d + 1) C inv CS λ 1    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
.

(5.6.8a)

Then, under the smallness assumption

α ih ≤ χ i -1 (s ih , χ i ),
(5.6.8b)

the lower i-th eigenvalue estimate (5.6.4) holds with η i given by

η 2 i := η 2 i,res + (λ ih + λ i )α 2 ih .
(5.6.9)

Remark 5.6.2 (Form of the complete estimator η i ). In Cases A and B above, we immediately see

η i = m ih η i,res , m ih := (1 + (λ ih + λ i )2c 2 ih ) 1 2 and m ih := c ih 1 - λ i λ 1 α 2 ih 4 - 1 2 
(up to the possible replacement of the factor 2 in Case A) (m ih is bounded by c ih √ 2 and tends to c ih in Case B). Thus the complete estimator η i indeed takes the form (5.1.3b) announced in the introduction, where in particular the key role of η i,res given by (5.6.2) and the unfavorable multiplication by the discrete relative gaps c ih or cih of (5.6.3) are obvious. In Case C, η i rather takes an additive form, with the key estimator η i,res supplemented by a term containing a multiplication by the discrete relative gap c ih , which is, though, typically of higher order.

Theorem 5.6.3 (Guaranteed upper bound for the i-th eigenvalue). For a given i ≥ 1, let the approximate eigenvectors u kh ∈ P p (T h ), 1 ≤ k ≤ i, be arbitrary, and let s kh , 1 ≤ k ≤ i, be their eigenvector reconstructions by Definition 5.3.3. Suppose that s kh , 1 ≤ k ≤ i, are linearly independent. Then

λ i ≤ max ξ∈R i , ξ =1 ∇ i k=1 ξ k s kh 2 i k=1 ξ k s kh 2 , ( 5.6.10) 
where ξ 2 = i k=1 ξ 2 k . In particular

λ 1 ≤ ∇s 1h 2 s 1h 2 = ∇s 1h 2 .
(5.6.11)

Proof of Theorem 5.6.3. The statement follows immediately from the min-max principle

λ i = min V i ⊂V, dimV i =i max v∈V i ∇v 2 v 2 .
In what concerns Theorem 5.6.1, we prove the three cases separately:

Proof of Theorem 5.6.1, Case A. It is immediate from estimate (5.4.5a) of Corollary 5.4.1 and from definition (5.6.2) of the principal estimator η i,res together with the scaling sih = s ih / s ih that the dual norm of the residual of (s ih , λ ih ) can be estimated as

Res θ (s ih , λ ih ) -1 ≤ η i,res .
(5.6.12)

If (u i , sih ) ≥ 0 is known to hold, define α ih by (5.6.6a). From [52, Lemma 3.2] in combination with (5.2.8b), we then infer the L 2 (Ω) bound

u i -sih ≤ √ 2c ih Res θ (s ih , λ ih ) -1 ≤ α ih .
(5.6.13)

Now the upper bound in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Theorem 3.4], in combination with the first bound of [52, Theorem 3.5], gives 5.6.14) and one more use of (5.6.12) proves (5.6.4) with η i given by (5.6.5). If only (s ih , χ i ) > 0 holds, we take

∇s ih 2 -λ i ≤ ∇(u i -sih ) 2 ≤ Res θ (s ih , λ ih ) 2 -1 + (λ ih + λ i )α 2 ih , ( 
α ih := √ 2(1 -sih -Π i sih ) -1 2 cih η i,res
and proceed as in [52, proof of Theorem 5.1, Case A] to find

u i -sih ≤ √ 2(1 -sih -Π i sih ) -1 2 cih Res θ (s ih , λ ih ) -1 ≤ α ih
instead of (5.6.13), and we conclude as above.

Proof of Theorem 5.6.1, Case B. The second condition in (5.6.6b) implies that assumptions of [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Lemma 3.3] are verified for sih . Thus the L 2 (Ω) bound (5.6.13) is valid for α ih given by (5.6.6a). The first condition in (5.6.6b) then allows us to use the improved estimate in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Theorem 3.5]. In combination with the upper bound in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Theorem 3.4], this gives

∇s ih 2 -λ i ≤ ∇(u i -sih ) 2 ≤ c 2 ih 1 - λ i λ 1 α 2 ih 4 -1 Res θ (s ih , λ ih ) 2 -1 , (5.6.15)
and we conclude by (5.6.12).

Proof of Theorem 5.6.1, Case C. Theorem 5.5.4 together with the bound Res θ (u ih , λ ih ) -1 ≤ ∇ θ u ih + σ ih and the scaling sih = s ih / s ih imply

r sih ≤ α ih √ 2c ih ,
where α ih is given by (5.6.8a). Next, condition (5.6.8b) implies that assumptions of [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Lemma 3.3] are verified for sih and consequently (u i , sih ) ≥ 0. Thus [52, Lemma 3.1] again gives the computable L 2 (Ω) bound

u i -sih ≤ α ih .
We then conclude as in Case A via (5.6.14).

Eigenvectors

We now turn to the estimates on the error in the approximation of the i-th exact eigenvector u i by u ih and their efficiency and robustness with respect to the polynomial degree of u ih .

Theorem 5.6.4 (Guaranteed and robust bounds for the i-th eigenvector error). Let the assumptions of Theorem 5.6.1 be verified. Then the energy eigenvector error can be bounded via

∇ θ (u i -u ih ) ≤ η i + ∇ θ (u ih -sih ) , (5.6.16)
where η i is defined in the three cases A, B, and C respectively by (5.6.5), (5.6.7), and (5.6.9). Moreover, this estimate is efficient as

η i + ∇ θ (u ih -s ih ) ≤ C i ∇ θ (u i -u ih ) + e∈E h h -1 e Π 0 e [[u ih ]] 2 e 1 2 + |1 -u ih | + λ ih -∇ θ u ih 2 ,
(5.6.17)

where the generic constants C i can be determined from the detailed estimates

• efficiency of ∇ θ (u ihsih ) :

∇ θ (u ih -sih ) ≤ ∇ θ (u ih -s ih ) + |1 -s ih | ∇s ih s ih , (5.6.18a) ∇ θ (u ih -s ih ) ≤ ∇ h (u ih -s ih ) + |θ| √ d+1C inv    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2
, (5.6.18b) together with (5.4.7), inequalities (5.6.21) and (5.6.19) below, and

∇ h (u i -u ih ) ≤ ∇ θ (u i -u ih ) + |θ| √ d+1C inv    e∈E h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
;

(5.6.18c)

• efficiency of u ihs ih (first part of η i,res ):

u ih -s ih ≤ C bF   ∇ h (u ih -s ih ) 2 + e∈E int h h -1 e Π 0 e [[u ih ]] 2 e + u ih , 1 2 ∂Ω   1 2
, (5.6.19a)

| u ih , 1 ∂Ω | ≤ h 1 2 |∂Ω| 1 2    e∈E ext h h -1 e Π 0 e [[u ih ]] 2 e    1 2 
, (5.6.19b) together with (5.4.7) and (5.6.18c);

• efficiency of ∇s ih + σ ih (second part of η i,res ):

∇s ih + σ ih ≤ ∇ θ u ih + σ ih + ∇ θ (u ih -s ih ) ,
(5.6.20a)

∇ θ u ih + σ ih ≤ (d + 1)C st C cont,PF λ ih √ λ 1 u ih -s ih (5.6.20b) + ∇ θ (u ih -s ih ) + Res θ (s ih , λ ih ) -1 , Res θ (s ih , λ ih ) -1 ≤ s ih √ λ i |λ ih -λ i | + C 1 2
ih s ih ∇(u isih ) , (5.6.20c)

C ih := 1 if i = 1, C ih := max λ ih λ 1 -1 2 , 1 if i > 1, |λ ih -λ i | ≤ ∇ θ (u i -u ih ) 2 + 2 ∇ θ (u i -u ih ) ∇ θ u ih (5.6.20d) + λ ih -∇ θ u ih 2 ,
together with ∇(u isih ) ≤ ∇ θ (u iu ih ) + ∇ θ (u ihsih ) , (5.6.18), (5.6.19), and (5.6.21) below;

• inequalities for the scaling terms:

|1 -s ih | ≤ |1 -u ih | + u ih -s ih , (5.6.21a) ∇s ih ≤ ∇ θ u ih + ∇ θ (u ih -s ih ) ,
(5.6.21b)

u ih -u ih -s ih ≤ s ih ≤ u ih + u ih -s ih ;
(5.6.21c)

• note that α ih given by (5.6.8a) only contains terms treated above (possibly with multiplicative factors).

Proof. The reliability (5.6.16) is a combination of the triangle inequality

∇ θ (u i -u ih ) ≤ ∇ θ (u i -sih ) + ∇ θ (u ih -sih )
together with the bounds ∇ θ (u isih ) = ∇(u isih ) ≤ η i shown in (5.6.14) and (5.6.15) in the proof of Theorem 5.6.1. The rest of the proof is dedicated to showing the efficiency (5.6.17).

We first examine the second term on the right-hand side of (5.6.16). The definition sih := s ih s ih and the triangle inequality give (5.6.18a), since

∇(s ih -sih ) = |1 -s ih | ∇s ih s ih .
As for the first term therein,

∇ θ (u ih -s ih ) = ∇ h (u ih -s ih ) -θ e∈E h l e ([[u ih ]]) ≤ ∇ h (u ih -s ih ) + |θ|    K∈T h e∈E K l e ([[u ih ]]) 2 K    1 2 ≤ ∇ h (u ih -s ih ) + |θ|    K∈T h (d + 1) e∈E K l e ([[u ih ]]) 2 K    1 2 = ∇ h (u ih -s ih ) + |θ|    (d + 1) e∈E h l e ([[u ih ]]) 2 Te    1 2
, a direct consequence of the definition of the discrete gradient (5.2.5), of the triangle and Cauchy-Schwarz inequalities, and of the fact that l e ([[u ih ]]) is only supported on the (1 or 2) elements in T e containing the face e. Next, the definition of the face lifting l e from Section 5.2.3, the fact that v h •n e are constants for v h ∈ V 0 (T e ), and the inverse inequality (5.5.4) give

l e ([[u ih ]]) Te = sup v h ∈V 0 (Te); v h Te =1 (l e ([[u ih ]]), v h ) Te = sup v h ∈V 0 (Te); v h Te =1 { {v h } }•n e , Π 0 e [[u ih ]] e ≤ C inv h -1 2 e Π 0 e [[u ih ]] e .
Combining the two above bounds gives (5.6.18b). Finally, (5.6.18c) follows by, using again (5.2.5),

∇ h (u i -u ih ) = ∇ θ (u i -u ih ) -θ e∈E h l e ([[u ih ]])
and proceeding as above for the liftings. Concerning the second term in (5.6.18a), the multiplicative factor ∇s ih approaches ∇ θ u ih ≈ √ λ ih as manifested in (5.6.21b), the multiplicative factor s ih is of order 1 when u ih ≈ 1 as shown in (5.6.21c), and |1s ih | is bounded in (5.6.21a) by the consistency term |1u ih | and the estimator u ihs ih efficient via (5.6.19). Thus the efficiency for the term ∇ θ (u ihsih ) as announced in (5.6.17) follows.

We now turn to the L 2 (Ω)-term u ihs ih , the first part of the estimator η i,res given by (5.6.2). Note that η i,res forms the principal part of η i in all three cases A, B, and C, and that the scaling factor 1/ s ih is of order 1, see (5.6.21c). First, (5.6.19a) is a consequence of the broken Poincaré-Friedrichs inequality (5.2.4) with v = u ihs ih and of the fact that the jumps of s ih are zero. The last term in (5.6.19a) can then still be bounded by

u ih , 1 2 ∂Ω =    e∈E ext h Π 0 e [[u ih ]], 1 e    2 ≤ h    e∈E ext h h -1 2 e Π 0 e [[u ih ]] e |e| 1 2    2 ,
so that (5.6.19b) follows by another Cauchy-Schwarz inequality. The efficiency of u ihs ih is then completed by (5.4.7) and (5.6.18c). Numerically, though, we have observed that u ih -s ih converges still one order faster than what (5.6.19) suggests, so that it becomes negligible in practice.

We now turn to the second part of the estimator η i,res of (5.6.2), ∇s ih +σ ih . To begin with, (5.6.20a) follows by the triangle inequality; the second term therein has been treated in (5.6.18). For ∇ θ u ih + σ ih , we have the crucial bound (5.4.5b). As, however, u ih ∈ H 1 0 (Ω), we need to get back from Res θ (u ih , λ ih ) -1 to Res θ (s ih , λ ih ) -1 to prove the efficiency. For this purpose, let v ∈ V with ∇v = 1 be fixed. Using the residual definition (5.2.7a), the Cauchy-Schwarz and Poincaré-Friedrichs (5.2.2) inequalities, and the dual norm definition (5.2.7b),

Res θ (u ih , λ ih ), v V ,V = λ ih (u ih , v) -(∇ θ u ih , ∇v) = λ ih (u ih -s ih , v) -(∇ θ (u ih -s ih ), ∇v) + Res θ (s ih , λ ih ), v V ,V ≤ λ ih √ λ 1 u ih -s ih + ∇ θ (u ih -s ih ) + Res θ (s ih , λ ih ) -1 ,
so that (5.6.20b) follows. We know from (5.6.18) and (5.6.19) that the first two terms herein are efficient, so that we pursue with the last one only. To start with, note that Res θ (s ih , λ ih ) -1 = s ih Res θ (s ih , λ ih ) -1 ; then (5.6.20c) follows from the proof of the second bound in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Theorem 3.5]. To finish, develop

λ ih -λ i = λ ih -∇ θ (u i -u ih + u ih ) 2 = λ ih -∇ θ (u i -u ih ) 2 -2(∇ θ (u i -u ih ), ∇ θ u ih ) -∇ θ u ih 2 ,
which proves (5.6.20d) and together with (5.6.18), (5.6.19), and (5.6.21) gives the requested efficiency.

Comments

We now give some comments on the results of Theorems 5.6.1, 5.6.3, and 5.6.4; a discussion for the conforming setting can be found in [52, Section 5.3].

Remark 5.6.5 (Vanishing consistency terms). Nonconforming finite elements (with θ = 0 in the discrete gradient (5.2.5)) are a particular example of a numerical method where both consistency terms |1u ih | and λ ih -∇ θ u ih 2 are zero and thus vanish in (5.6.17), see Section 5.7.1 below. Remark 5.6.6 (Jumps of mean value zero). A particular situation arises when [[u ih ]], 1 e = 0 for all e ∈ E h , i.e., when the jumps over the mesh faces in the eigenvector approximation vanish in mean value. Then the discrete and broken gradient coincide, i.e., ∇ θ = ∇ h (see Section 5.2.3) and all the mean value jump terms of the form h

-1 2 e Π 0 e [[u ih ]
] e of the present paper vanish, in particular in (5.6.8a) and in (5.6.17). Moreover, (5.4.7) and (5.6.19a) simplify respectively to

∇ h (u ih -s ih ) ≤ (d + 1)C st C cont,bPF ∇ h (u i -u ih ) ,
(5.6.22a) Remark 5.6.7 (Jump-free estimators for the symmetric discontinuous Galerkin method). The jump terms in the estimator α ih given by (5.6.8a) also vanish when θ = 1, which is typically the situation for the symmetric discontinuous Galerkin method of Section 5.7.2 below.

u ih -s ih ≤ (d + 1)C st C cont,bPF C bF ∇ h (u i -u ih ) , ( 5 
Remark 5.6.8 (Alternative eigenvector reconstruction and vanishing jumps for the symmetric discontinuous Galerkin method). An alternative eigenvector reconstruction to that of Definition 5.3.3 is possible in two space dimensions following [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Remark 3.11] when

∇ θ u ih , 0 -1 1 0 ∇ψ a ωa
= 0 for all a ∈ V h . This is in particular satisfied for the symmetric variant of the discontinuous Galerkin method of Section 5.7.2 below. This alternative reconstruction remarkably yields

∇ θ (u ih -s ih ) ≤ (d + 1)C st C cont,P ∇ θ (u i -u ih )
in place of (5.6.18b), (5.4.7), and (5.6.18c).

Here the constant C cont,P := max a∈V h {1 +C P,ωa h ωa ∇ψ a ∞,ωa } with C P,ωa given by (5.4.2a) where zero mean value condition (v, 1) ωa = 0 is also imposed for boundary vertices. This is an equivalent of the bound (5.6.22a), again without any jump terms. Then, all the principal estimators are efficient without any jump term, fully mimicking the situation of Remark 5.6.6.

Remark 5.6.9 (Optimal efficiency and polynomial-degree robustness). Theorem 5.6.4 shows that both estimators η i and ∇ θ (u ihsih ) are equivalent to the eigenvector energy error ∇ θ (u iu ih ) for nonconforming finite elements, see Remarks 5.6.5 and 5.6.6. A similar case can arise for the symmetric discontinuous Galerkin method, see Remark 5.6.8. Taking into account that the size of our confidence interval for the i-th eigenvalue of Theorem 5.6.1 is η 2 i , this gives a fully optimal theory with in particular polynomial-degree-robustness. In the general case, the jumps in mean values of u ih ,

{ e∈E h h -1 e Π 0 e [[u ih ]] 2 e } 1 2
, may be added to the error in the form

{ e∈E h h -1 e Π 0 e [[u i -u ih ]] 2 e } 1 2
, as typically done in discontinuous Galerkin methods, and similarly for the consistency terms, so as to still have equivalence between the eigenvector energy error and its estimate. Note, however, that the efficiency constant C i in (5.6.17) contains the discrete relative gap c ih or cih of (5.6.3) in the form these latter are included as multiplicative factors in the complete estimator η i , see Remark 5.6.2; only in Case C and when u ihs ih and consequently Π 0 (u ihs ih ) decay as h δ ∇ θ u ih + σ ih , the influence of these discrete relative gaps vanishes in the limit. Moreover, the factor C ih from (5.6.20c) deteriorates the efficiency for increasing eigenvalues, except in our mixed finite elements setting of Section 5.7.3 where it does not appear.

Remark 5.6.10 (Cheaper flux and potential reconstructions). The bound (5.6.4) for eigenvalues and the upper bound (5.6.16) for eigenvectors stay valid for cheaper (by one polynomial degree) flux and potential reconstructions, where V p h (ω a ) × Q p h (ω a ) and P p (T a ) ∩ H 1 0 (ω a ) are used in Section 5.3.2, instead of V p+1 h (ω a ) × Q p+1 h (ω a ) and P p+1 (T a ) ∩ H 1 0 (ω a ). This is often completely sufficient in practice, albeit the theoretical polynomial degree robustness (5.6.17) may be lost.

Application to common nonconforming numerical methods

We verify in this section the conditions of the application of our results to three common nonconforming numerical discretizations of the Laplace eigenvalue problem (5.2.1).

Nonconforming finite elements

Let V h be spanned by functions v h from P p (T h ), p ≥ 1, such that [[v h ]], q h e = 0 for all q h ∈ P p-1 (e) and all e ∈ E h . The nonconforming finite element method for problem (5.2.1) reads, cf. [START_REF] Dari | A posteriori error estimates for nonconforming approximation of eigenvalue problems[END_REF][START_REF] Hu | Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods[END_REF][START_REF] Hu | The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators[END_REF][START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF][START_REF] Yang | The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes[END_REF]

: find (u ih , λ ih ) ∈ V h × R + with (u ih , u jh ) = δ ij , 1 ≤ i, j ≤ dim V h , such that (∇ h u ih , ∇ h v h ) = λ ih (u ih , v h ) ∀v h ∈ V h ; (5.7.1)
the sign of the eigenvector u ih is fixed by (u ih , χ i ) > 0. As the jump mean values in the space V h are zero, ∇ θ = ∇ h follows from (5.2.5) (we can, e.g., take θ = 0). Then definition (5.7.1) directly implies Assumption 5.3.1 (take v h = ψ a ∈ V h in (5.7.1)). Thus, upon the verification/satisfaction of condition (5.6.6b) (in Case B) and of (5.6.8b) (in Case C), all the results of Theorems 5.6.1, 5.6.3, and 5.6.4 hold. We actually have clear eigenvector efficiency without jumps and consistency terms (λ ih = ∇ h u ih 2 follows by taking v h = u ih in (5.7.1)), see Remarks 5.6.5 and 5.6.6, and optimally convergent eigenvalue and eigenvector bounds, see Remark 5.6.9.

Discontinuous Galerkin finite elements

Set V h := P p (T h ), p ≥ 1, without any continuity requirement. The discontinuous Galerkin finite element method for problem (5.2.1), cf. [START_REF] Antonietti | Discontinuous Galerkin approximation of the Laplace eigenproblem[END_REF][START_REF] Giani | An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems[END_REF] and the references therein, reads: find

(u ih , λ ih ) ∈ V h × R + with (u ih , u jh ) = δ ij , 1 ≤ i, j ≤ dim V h , such that K∈T h (∇ h u ih , ∇ h v h ) K - e∈E h { { {∇ h u ih } }•n e , [[v h ]] e + θ { {∇ h v h } }•n e , [[u ih ]] e } + e∈E h νh -1 e [[u ih ]], [[v h ]] e = λ ih (u ih , v h ) ∀v h ∈ V h ; (5.7.2)
the sign of u ih is fixed by (u ih , χ i ) > 0. Here ν is a positive stabilization parameter and the parameter θ ∈ {-1, 0, 1} defines the discrete gradient (5.2.5) in Section 5.2.3 and corresponds respectively to the nonsymmetric, incomplete, and symmetric variants. The system matrix corresponding to (5.7.2) is only symmetric for θ = 1. In the other cases, we tacitly assume that the i-th eigenvalue λ ih that one computes is real. This typically happens for the first eigenvalue and more generally for all simple eigenvalues, cf. the numerical experiments in [START_REF] Antonietti | Discontinuous Galerkin approximation of the Laplace eigenproblem[END_REF]Section 7.1.2].

With the concept of the discrete gradient (5.2.5), the orthogonality of Assumption 5.3.1 is immediately satisfied. Indeed, it is enough to take v h = ψ a ∈ V h in (5.7.2) and take into account the facts that ψ a has no jumps as well as that ∇ψ a ∈ [P 0 (T h )] d ⊂ V 0 (T h ). Thus all the results of Theorems 5.6.1, 5.6.3, and 5.6.4 hold upon the satisfaction of their assumptions. Recall also that 1) for θ = 0, the broken ∇ h and discrete ∇ θ gradients coincide; 2) the jumps are here generally not of mean value zero, [[u ih ]], 1 e = 0 for e ∈ E h , so that Remark 5.6.6 does not apply here; 3) the choice θ = 1 leads to a remarkable situation where the jumps vanish from α ih given by (5.6.8a) and consequently from all three considered estimators η i in Theorem 5.6.1, see Remark 5.6.7; 4) the choice θ = 1 and the alternative eigenvector reconstruction of Remark 5.6.8 make the jumps vanish also from all the important parts in the efficiency bounds of Theorem 5.6.4.

Mixed finite elements

Let V h × Q h be any pair of of the usual mixed finite element spaces, see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Roberts | Mixed and hybrid methods[END_REF] and also Section 5.2.2 for the Raviart-Thomas-Nédélec case. The mixed finite element method for problem (5.2.1) looks for the triple σ ih ∈ V h , ūih ∈ Q h , and

λ ih ∈ R + such that (u ih , u jh ) = δ ij , 1 ≤ i, j ≤ dim Q h ,
and, cf. [START_REF] Mercier | Eigenvalue approximation by mixed and hybrid methods[END_REF][START_REF] Durán | A posteriori error estimators for mixed approximations of eigenvalue problems[END_REF][START_REF] Boffi | On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form[END_REF][START_REF] Jia | A posteriori error estimator for eigenvalue problems by mixed finite element method[END_REF] and the references therein,

(σ ih , v h ) -(ū ih , ∇•v h ) = 0 ∀v h ∈ V h , (5.7.3a) (∇•σ ih , q h ) = λ ih (ū ih , q h ) ∀q h ∈ Q h , (5.7.3b)
where the sign of the i-th eigenvector that we are interested in is fixed by (ū ih , χ i ) > 0.

The low-order eigenvector approximation ūih is typically elementwise postprocessed in mixed finite element methods. In particular, following Arnold and Brezzi [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF], Arbogast and Chen [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF], and Vohralík [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF], there exists for each pair V h × Q h a piecewise polynomial space M h such that u ih ∈ M h can be prescribed by

Π Q h (K) (u ih | K ) = ūih | K ∀K ∈ T h , (5.7.4a) Π V h (K) ((-∇ h u ih )| K ) = σ ih | K ∀K ∈ T h , (5.7.4b)
where

Π Q h (K) is the L 2 (K)-orthogonal projection onto Q h (K) and Π V h (K) is the [L 2 (K)] d - orthogonal projection onto V h (K).
Let p denote the polynomial degree of the approximation u ih resulting from (5.7.4), i.e., u ih ∈ P p (T h ) as throughout the paper. A remarkable fact is that (5.7.4) and (5.7.3a) imply

[[u ih ]], v h e = 0 ∀v h ∈ V h •n e (e), ∀e ∈ E h ,
so that in particular the zero mean-value condition, cf. Remark 5.6.6, is satisfied. Consequently, ∇ θ = ∇ h , see (5.2.5) (and we can, e.g., take θ = 0). The computed flux σ ih can typically serve directly as an equilibrated flux reconstruction in mixed finite elements, see [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Section 4.4] and the references therein. However, in the present eigenvalue case, it only follows from (5.7.3b) that ∇•σ ih = λ ih ūih , and not ∇•σ ih = λ ih u ih as requested in the equilibrium property (5.3.1b) and necessary in the proof of the upper bound (5.4.5a). We can, however, postprocess elementwise the flux σ ih as well: choose a mixed space V q h with a sufficient polynomial degree q such that M h ⊂ ∇•V q h . Denoting by n K the outward unit normal to K, define

σ ih | K := arg min v h ∈V q h (K), v h •n K =σ ih •n K on ∂K ∇•v h =λ ih u ih σ ih -v h K ∀K ∈ T h (5.7.5)
instead of (5.3.3a) of Definition 5.3.2. The well-posedness of (5.7.5) follows from (5.7.3b) and (5.7.4a). Note that σ ih is only a slight local elementwise modification of σ ih , preserving the normal component while improving the divergence.

With the just described setting, all the eigenvalue results of Section 5.6 hold true in the following sense: Corollary 5.7.1 (Eigenvalue bounds for mixed finite elements). Let λ 1 , λ i , λ i+1 , λ i-1 > 0 be the usual auxiliary bounds. Let (u ih , λ ih ) be given by (5.7.3)-(5.7.4). Construct s ih from u ih following Definition 5.3.3 and σ ih by (5.7.5). Then, the bounds (5.6.4) and (5.6.10) of respectively Theorems 5.6.1 and 5.6.3 hold true (in the three cases A, B, and C).

Concerning the eigenvectors, the guaranteed upper bounds (5.4.5a) and consequently (5.6.16) do hold even if u ih does not satisfy Assumption 5.3.1; the key is that ∇•σ ih = λ ih u ih that we have arranged in (5.7.5). For the efficiency, recall first that ∇ θ = ∇ h , so that (5.6.18b) and (5.6.18c) are redundant here. Next, the bounds (5.4.7) and (5.6.19), or more precisely their improvements (5.6.22), only exploit the construction of s ih from u ih via Definition 5.3.3 and are thus also valid. Unfortunately, (5.4.5b) and consequently (5.6.20) do not hold in general, as σ ih is not constructed from u ih by Definition 5.3.2 but via (5.7.5). In order to restore fully optimal (guaranteed, efficient, and polynomial-degree robust) eigenvector error control, we proceed as in [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF]Section 4.4], see also the references therein. Invoking the triangle inequality ∇u i + σ ih ≤ ∇ h (u iu ih ) + ∇ h u ih + σ ih , we have the following optimal simultaneous error control in ∇ h u ih and -σ ih : Corollary 5.7.2 (Eigenvector bounds for mixed finite elements). Let the assumptions of Corollary 5.7.1 be satisfied. Then, in the three cases A, B, and C of Theorem 5.6.1,

∇ h (u i -u ih ) + ∇u i + σ ih ≤ 2(η i + ∇ h (u ih -sih ) ) + ∇ h u ih + σ ih .
This bound is efficient as (5.6.22) holds together with

∇ h u ih + σ ih ≤ ∇ h (u i -u ih ) + ∇u i + σ ih .

Numerical experiments

We now numerically illustrate our estimates on two test cases in R 2 , for the nonconforming finite element method of order p = 1 and the symmetric (θ = 1) discontinuous Galerkin finite element method of order p = 1. We actually only study the first eigenpair; results for the higher eigenpairs are similar as in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]. We use the cheaper Raviart-Thomas-Nédélec space of degree p = 1 for the flux equilibration instead of p + 1, as discussed in Remark 5.6.10. This still gives guaranteed bounds and we do not observe any asymptotic loss of efficiency. The implementation was done in the FreeFem++ code [START_REF] Hecht | FreeFem++[END_REF]. If the additional elliptic regularity for the corresponding source problem of Assumption 5.5.1 holds, so that Case C of Theorems 5.6.1 and 5.6.4 can be used, we observe that the last term of (5.6.8a) vanishes in the two considered numerical methods. We consider full H 2 (Ω) regularity and use the constants C S = 1 and δ = 1 given in Remark 5.5.2 and set C I and CI following respectively Remarks 5.5.2 and 5.5.3.

Nonconforming finite element method

We test here the performance of the lowest-order (p = 1) nonconforming finite element method as described in Section 5.7.1.

Unit square

We start by testing the framework on a geometry where everything is known explicitly: the unit square Ω = (0, 1) 2 . The eigenvalues on a square of size H being π 2 (k 2 + l 2 )/H 2 , k, l ∈ N , the first and second eigenvalues are λ 1 = 2π 2 and λ 2 = 5π 2 , respectively. The first eigenfunction is given by u 1 (x, y) = 2 sin(πx) sin(πy). We can here apply the refined elliptic regularity of Case C, since d = 2 and the domain is convex. The conditions (5.6.1) and (5.6.6b), (5.6.8b) respectively, are satisfied on all the meshes considered here, using λ 1 := 1.5π 2 , λ 2 := 4.5π 2 , and λ 1 := ∇s 1h 2 following (5.6.11) as the auxiliary bounds in Theorems 5.6.1 and 5.6.4. Figure 5.1 illustrates the convergence of the energy error in the eigenfunction ∇ θ (u 1 -u 1h ) and its upper bound η 1 + ∇ θ (u 1h -s1h ) for a sequence of uniform and structured meshes (left) and a sequence of unstructured quasi-uniform meshes (right). This test confirms that the convergence rate for the upper bound is the same as the one of the error in the approximation of the eigenvector. 

h η 1 + ∇ θ (u 1h -s 1h ) (case C) η 1 + ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h ) 0.01 0.1 0.01 0.1 1 10 h η 1 + ∇ θ (u 1h -s 1h ) (case C) η 1 + ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h )
Figure 5.1 -[Unit square, nonconforming method] Error in the eigenvector approximation and its upper bound for the choice λ 1 = 1.5π 2 , λ 2 = 4.5π 2 ; sequence of structured (left) and unstructured but quasi-uniform (right) meshes We present in Tables 5.1 and 5.2 precise values of the lower and upper bounds ∇s 1h 2η 2 1 ≤ λ 1 ≤ ∇s 1h 2 on the exact eigenvalue λ 1 , the relative error and the effectivity index of the upper bound ∇ θ (u 1u 1h ) ≤ η 1 + ∇ θ (u 1h -s1h ) , given respectively by

N h ndof λ1 λ 1h ∇s 1h 2 -η 2 1 ∇s 1h 2 E λ,rel I ub u,eff 10 
E λ,rel := 2 ∇s 1h 2 -( ∇s 1h 2 -η 2 1 ) ∇s 1h 2 + ( ∇s 1h 2 -η 2 1 ) = 2 η 2 1 2 ∇s 1h 2 -η 2 1 ,
(5.8.1a)

I ub u,eff := η 1 + ∇ θ (u 1h -s1h ) ∇ θ (u 1 -u 1h ) . ( 5 

.8.1b)

We observe rather convincing results.

L-shaped domain

We next consider the L-shaped domain

Ω := (-1, 1) 2 \ [0, 1]×[-1, 0],
where λ 1 ≈ 9.6397238440 is known to high accuracy [START_REF] Trefethen | Computed eigenmodes of planar regions[END_REF]. Including Ω into the square Ω + := (-1, 1) 2 , cf. [52, Remark 5.4], we take λ 1 := λ 1 (Ω + ) = π 2 /2 and λ 2 := 15.1753 from Table 1 of [START_REF] Liu | A framework of verified eigenvalue bounds for self-adjoint differential operators[END_REF] in Theorems 5.6.1 and 5.6.4. We first consider a sequence of unstructured quasi-uniform meshes, with N elements partitioning the edges of Ω of length 2 and N/2 elements the edges of length 1. Figure 5 We finally test adaptive refinement using the local character of the eigenvector estimator for each K ∈ T h given by

1 + 2(λ 1h + ∇s 1h 2 )λ -1 2 1 - λ 1h λ 2 -2 1 s 1h 2 λ 2 1h λ 1 u 1h -s 1h 2 K + ∇s 1h + σ 1h 2 K + ∇ θ (u 1h -s1h ) 2 K ,
in case A and

1 - λ 1h λ 2 -2 1 - α 2 1h 4 -1 1 s 1h 2 λ 2 1h λ 1 u 1h -s 1h 2 K + ∇s 1h + σ 1h 2 K + ∇ θ (u 1h -s1h ) 2 K ,
in case B of Theorems 5.6.1 and 5.6.4. We employ the Dörfler marking [START_REF] Dörfler | A convergent adaptive algorithm for Poisson's equation[END_REF] with θ = 0.6 and the newest vertex bisection mesh refinement. The same lower bounds λ 1 = π 2 /2 and λ 2 = 15.1753 as for the uniform refinement have been used for the auxiliary bounds. Figure 5.2 (right) illustrates the error in the eigenvector and its bound using (5.6.16). The optimal convergence rate is indicated by dashed lines. The initial mesh is structured with 47 degrees of freedom and the conditions (5.6.1) and (5.6.6b) are both satisfied starting from 296 degrees of freedom. The transition from Case A to Case B in Theorem 5.6.1 is marked by a dotted line. Table 5.4 then presents more details of the adaptive procedure, which in particular leads to quite good effectivity indices. ndof 

η 1 + ∇ θ (u 1h -s 1h ) ∇ θ (u 1 -u 1h ) 1/(ndof)

Discontinuous Galerkin finite element method

In order to test the framework on another method, we have taken the symmetric version (θ = 1) of the discontinuous Galerkin finite element method as presented in Section 5.7.2, using piecewise affine basis functions (p = 1) and the penalty parameter ν = 10.

Unit square

We consider again first the case of the unit square Ω = (0, 1) 2 . The test case and the constants used are the same as presented in Section 5.8.1. Figure 5.3 illustrates the convergence of the energy error in the eigenfunction ∇ θ (u 1 -u 1h ) and its guaranteed and computable a posteriori estimate η 1 + ∇ θ (u 1h -s1h ) for a sequence of uniform and structured meshes (left) and a sequence of unstructured quasi-uniform meshes (right). As the auxiliary eigenvalue lower bounds, we have taken again λ 1 = 1.5π 2 and λ 2 = 4.5π 2 . This test in particular confirms that the convergence rate of our estimate is the same as the one of the error. Tables 5.5 and 5.6 reveal again more details on our estimates. 

h η 1 + ∇ θ (u 1h -s 1h ) (case C) η 1 + ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h ) 0.01 0.1 0.01 0.1 1 10 h η 1 + ∇ θ (u 1h -s 1h ) (case C) η 1 + ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h ) Figure 5.3 -[Unit square, discontinuous
Galerkin method] Error in the eigenvector approximation and its upper bound for the choice λ 1 = 1.5π 2 , λ 2 = 4.5π 2 ; sequence of structured (left) and unstructured but quasi-uniform (right) meshes 

N h ndof λ1 λ 1h ∇s 1h 2 -η 2 1 ∇s 1h 2 E λ,rel I ub u,eff 10 

L-shaped domain

We consider again as for the nonconforming method the L-shaped domain

Ω := (-1, 1) 2 \ [0, 1] × [-1
, 0] as a second test problem. As motivated in Section 5.8.1, we take λ 1 := π 2 /2 and λ 2 = 15.1753 in Theorems 5.6.1 and 5.6.4. Figure 5.4 (left) illustrates the convergence of the energy error ∇ θ (u 1 -u 1h ) and its upper bound η 1 + ∇ θ (u 1h -s 1h ) . Details are presented in Table 5.7. Again, all the theoretical results are nicely confirmed, with in particular excellent effectivity indices.

We finally test adaptive refinement as outlined in Section 5.8.1. Figure 5.4 (right) illustrates the error in the eigenvector and its bound using (5.6.16). The optimal convergence rate is indicated by dashed lines. The initial mesh is structured with 47 degrees of freedom and the conditions (5.6.1) and (5.6.6b) are all satisfied starting from 591 degrees of freedom. The transition from Case A to Case B in Theorem 5.6.1 is marked by a dotted line. ndof 

h η 1 + ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h ) 100 
η 1 + ∇ θ (u 1h -s 1h ) ∇ θ (u 1 -u 1h ) 1/(ndof) 1/2

Concluding remarks

The motivation of the present paper was to develop a general theory of eigenvalue and eigenvector a posteriori error estimates, enabling to take into account basically any numerical method. This in particular means that we need to admit the violation of the constraints u ih ∈ H 1 0 (Ω), u ih = 1, ∇ θ u ih 2 = λ ih , and λ ih ≥ λ i . Our bounds from Section 5.6 achieve this and we have seen in Section 5.7 that three common nonconforming numerical methods fit perfectly the framework. Moreover, typically, not all the above constraints are violated. Then parts of the results of Section 5.6 simplify importantly.

We have focused here for simplicity on the treatment of the case where the underlying algebraic eigenvalue solvers are exact, so that the present Assumption 5.3.1 can be satisfied. The framework is, however, built rich enough to take into account inexact solvers, following [START_REF] Papež | Estimating and localizing the algebraic and total numerical errors using flux reconstructions[END_REF][START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF] and the references therein, as we have demonstrated it in [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]. The resulting estimates are then valid on an arbitrary eigenvalue iterative solver step, enable to distinguish the different error components, and yield (local) adaptive stopping criteria. A preliminary example in the context of the Gross-Pitaevskii nonlinear eigenvalue problem is given in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF].

The approximation polynomial degree p was considered fixed here and we have only treated the case of matching simplicial meshes. Extension to variable polynomial degree and nonmatch- ing simplicial and quadrilateral meshes is straightforward following [START_REF] Dolejší | hP-adaptation driven by polynomial-degreerobust a posteriori error estimates for elliptic problems[END_REF], where also corresponding hp (mesh and polynomial degree) adaptive refinement strategies are developed. It should be rather easy to generalize them to the present eigenvalue setting.

Appendix

The current analysis was presented for the Laplace operator of (5.1.1). The generic equivalences can, however, be extended to a larger class of operators that we show in part 5.10.1 of this appendix, for a conforming approximation. We next complement in part 5.10.2 the estimate of Theorem 5.6.3 by a further possible improvement of the first eigenvalue upper bound.

Extension to a generic operator

We formulate here the results of [52, Theorems 3.4 and 3.5] for conforming approximations and any bounded-below self-adjoint operator with compact resolvent, see, e.g., Helffer [START_REF] Helffer | Spectral theory and its applications[END_REF]. This comprises for example the operator

A := -∆ + w with domain D(A) := {v ∈ H 1 0 (Ω); ∆v ∈ L 2 (Ω)}, which is self-adjoint on L 2 (Ω) whenever w ∈ L ∞ (Ω).
It appears that only the operator considered (-∆) and the norms ( • , ∇• , and • -1 ) need to be changed.

Let H be a separable Hilbert space endowed with a scalar product denoted by (•, •) H . Now let A be a bounded-below self-adjoint operator on H with domain D(A) and compact resolvent. There exists a non-decreasing sequence of real numbers (λ k ) k≥1 such that λ k → ∞ and an orthonormal basis

(u k ) k≥1 of H consisting of vectors of D(A) such that ∀k ≥ 1, A u k = λ k u k .
Making the additional assumption that the k-th eigenvalue of A is simple, that is λ k-1 < λ k < λ k+1 , the k-th eigenvector is unique up to the sign. Up to shifting the operator A by a constant c ∈ R + such that c + A is a positive definite operator, we can suppose that A is a positive definite operator, in which case (λ k ) k≥1 is a sequence of positive numbers. This enables to define an operator A 1 2 analogous to the operator |∇| in the previous case (recall that |∇v| = ∇v for v ∈ H 1 (Ω)) by its domain

D(A 1 2 ) :=    v ∈ H; k≥1 λ k |(v, u k ) H | 2 < +∞    and its expression A 1 2 : v ∈ D(A 1 2 ) → k≥1 λ k (v, u k ) H u k .
Replace now -∆ by A; for the norms, the scalar product (•, •) H of the Hilbert space H substitutes the L 2 scalar product (•, •), and naturally the norm of

• H replaces the L 2 -norm • . The energy norm ∇• is changed into A 1 2
• H , and the duality pairing

•, • V ,V becomes •, • D(A 1 2 ) ,D(A 1 2 ) . Let (w i , λ ih ) ∈ D(A 1 2 ) × R + with w i H = 1 and (w i , χ i ) H > 0 be given, for χ i ∈ H, i ≥ 1 fixed. Its residual Res θ (w i , λ ih ) ∈ D(A 1 2 ) is now defined by Res θ (w i , λ ih ), v D(A 1 2 ) ,D(A 1 2 ) := λ ih (w i , v) H -(A 1 2 w i , A 1 2 v) H ∀v ∈ D(A 1 2 ),
with the dual norm

Res θ (w i , λ ih ) D(A 1 2 
)

:= sup v∈D(A 1 2 ), A 1 2 v H =1 Res θ (w i , λ ih ), v D(A 1 2 ) ,D(A 1 2 ) 
.

The Riesz representation of the residual r

w i ∈ D(A 1 
2 ) is given by 2 ).

(A 1 2 r w i , A 1 2 v) H = Res θ (w i , λ ih ), v D(A 1 2 ) ,D(A 1 2 ) ∀v ∈ D(A 1 
Let λ i-1 < λ ih when i > 1, λ ih < λ i+1 , (5.10.1) 
and

α ih := √ 2C -1 2 ih r w i H ≤ χ i -1 H (w i , χ i ) H , (5.10.2) 
where

C ih := min 1 - λ ih λ i-1 2 , 1 - λ ih λ i+1 2 .
The generalizations of [52, Theorems 3.4 and 3.5] then read:

Theorem 5.10.1 (Eigenvalue bounds). Let (w i , λ ih ) ∈ D(A 1 
2 ) × R + with w i H = 1 and (w i , χ i ) H > 0, i ≥ 1. Let assumptions (5.10.1) and (5.10.2) be satisfied. Then

A 1 2 (u i -w i ) 2 H -λ i α 2 ih ≤ A 1 2 w i 2 H -λ i ≤ A 1 2 (u i -w i ) 2 H .
(5.10.3a)

If, moreover α 1h ≤ √ 2, then, for i = 1, 1 2 1 - λ 1 λ 2 1 - α 2 1h 4 A 1 2 (u 1 -w 1 ) 2 H ≤ A 1 2 w 1 2 H -λ 1 .
(5.10.3b)

Let

C ih := 1 if i = 1, C ih := max λ ih λ 1 -1 2 , 1 if i > 1
and

γ ih := A 1 2 (u i -w i ) 2 H if λ i ≤ A 1 2 (w i ) 2 H is known to hold, max{ A 1 2 (u i -w i ) 2 H , λ i α 2 ih } otherwise.
(5.10.4)

Then we also have:

Theorem 5.10.2 (Eigenvector bounds). Let the assumptions of Theorem 5.10.1 be satisfied. Then

A 1 2 (u i -w i ) 2 H ≤ Res θ (w i , λ ih ) 2 D(A 1 2 
)

+ (λ ih + λ i )α 2 ih ,
(5.10.5a)

Res θ (w i , λ ih ) 2 D(A 1 2 ) ≤ λ ih -A 1 2 w i 2 H + γ ih 2 λ i + C ih A 1 2 (u i -w i ) 2 H .
(5.10.5b)

If, moreover α 2 ih ≤ 2 λ 1 λ i , then A 1 2 (u i -w i ) 2 H ≤ C -1 ih 1 - λ i λ 1 α 2 ih 4 -1 Res θ (w i , λ ih ) 2 D(A 1 2 ) 
.

Further improvement of the first eigenvalue upper bound

In [52, Theorem 5.2], a further improvement of the eigenvalue upper bounds of Theorem 5.6.3 was possible. We now extend it to the present setting, for the first eigenvalue. We first need to generalize the conforming local residual lifting from [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations[END_REF]Section 4.3] to the present setting. Let for each vertex a ∈ V h , X a h be an arbitrary finite-dimensional subspace of the space H 1 * (ω a ) from ( 5 

∈ V h , define r a 1h ∈ X a h by (∇r a 1h , ∇v h ) ωa = Res θ (s 1h , λ 1h ), ψ a v h V ,V ∀v h ∈ X a h .
(5.10.6)

Then set r 1h := a∈V h ψ a r a 1h ∈ V.
The functions r a 1h are discrete Riesz representations of the local residual of the pair (s 1h , λ 1h ) with hat-weighted test functions. Note that the right-hand side in (5.10.6) does not necessarily satisfy the usually required Neumann compatibility condition (ψ a λ 1h s 1h -∇s 1h •∇ψ a , 1) ωa = 0 for a ∈ V int h , so that (5.10.6) cannot hold for a constant function v h = 1 on ω a . Assumption 5.3.1 is in particular not required for s 1h ; this does not influence the existence and uniqueness of r a 1h (the system matrix in (5.10.6) is regular). Note also that r a 1h ∈ V (when extended by zero outside of ω a ) but ψ a r a 1h ∈ H 1 0 (ω a ), whence the sum r 1h belongs to V . For this construction, we have: Lemma 5.10.4 (Lower dual residual bound). Let (u 1h , λ 1h ) ∈ P p (T h ) × R + be arbitrary. Construct s 1h by Definition 5.3.3 and r 1h by Definition 5.10.3. Then

Res θ (s 1h , λ 1h ), r 1h V ,V ∇r 1h ≤ Res θ (s 1h , λ 1h ) -1 .
Proof. The proof is trivial from (5.2.7b) and from the fact that r 1h ∈ V for Definition 5.10.3. Importantly, this bound is positive, see [START_REF] Papež | Estimating and localizing the algebraic and total numerical errors using flux reconstructions[END_REF]proof of Theorem 2].

Equipped with these tools, we can now hopefully improve the upper bound (5.6.11) in Theorem 5.6.3 (we actually only mimic the Case B of Theorem 5.6.1, the other cases can be treated similarly).

Theorem 5.10.5 (Possible improvement of the first eigenvalue upper bound). Let λ 1 , λ 2 be as in Theorem 5.6.1. Let (u 1h , λ 1h ) ∈ P p (T h ) × R + , p ≥ 1, be arbitrary. Let s 1h be constructed following Definition 5.3.3 and r 1h following Definition 5.10.3. Let (s 1h , χ 1 ) > 0 and

α 1h := √ 2 1 - λ 1h λ 2 -1 λ -1 2 2 1 s 1h λ 1h λ 1 u 1h -s 1h + ∇s 1h + σ 1h ≤ min √ 2, χ 1 -1 (s 1h , χ 1 ) , with s1h := s 1h s 1h . Then λ 1 ≤ ∇s 1h 2 -η1 ,
where

η1 := max 1 4 1 - ∇s 1h 2 λ 2 1 - α 2 1h 4 d h -λ 1 + 2 λ 1h -∇s 1h 2 , 0 , d h := λ 2 1 + 4λ 1 Res θ (s 1h , λ 1h ), r 1h 2 V ,V ∇r 1h 2 + 4λ 1 λ 1h -∇s 1h 2 .
Proof. Note first that all the assumptions of [52, Theorems 3.4 and 3.5] are satisfied. We start by the second bound in [52, Theorem 3.4] which immediately implies, using

λ 1 ≤ λ 1 , λ 2 ≤ λ 2 ,
and λ 1 ≤ ∇s 1h ,

λ 1 ≤ ∇s 1h 2 - 1 2 1 - ∇s 1h 2 λ 2 1 - α 2 1h 4 ∇(u 1 -s1h ) 2 .
Similarly, the second bound in [52, Theorem 3.5] now takes the form

Res θ (s 1h , λ 1h ) 2 -1 ≤ λ 1h -∇s 1h 2 + ∇ (u 1 -s1h ) 2 2 λ 1 + ∇(u 1 -s1h ) 2 . Denote l h := λ 1h -∇s 1h 2 , R h := Res θ (s 1h , λ 1h ), r 1h 2 
V ,V / ∇r 1h 2 , as well as

e h := ∇ (u 1 -s1h ) 2 .
Combined with Lemma 5.10.4 and 0 < λ 1 ≤ λ 1 , this last inequality implies

e 2 h + e h (λ 1 + 2l h ) -λ 1 R h -l 2 h ≥ 0.
Note that the discriminant of this quadratic inequality is the term d h and that it is non-negative. Thus

e h ≥ -(λ 1 + 2l h ) + √ d h 2
and the desired bound follows. Note finally that for this estimate to actually improve on (5.6.11), η1 needs to be positive, which follows when λ 1 R h > l 2 h and ∇s 1h 2 < λ 2 .

Introduction

Nonlinear eigenvalue problems are involved in many application fields such as nonlinear mechanics, theoretical physics and electronic structure calculations. The numerical simulation of these problems demands a lot of computational resources both due to the accuracy that is generally required in the applications which implies the use of a large number of degrees of freedom and also due to the nonlinear nature of the models that leads to iterative solution techniques with a large number of steps. The tuning of the two above ingredients involved in the approximation methods (number of degrees of freedom and number of iterations) is, most of the times and in the best cases guided both by empirical reasons and by the available volume of computing resources. From the mathematical point of view, these questions are related to the numerical analysis of the discretization approaches that allow to establish in a rigorous way the link between the discretization and solution parameters and the error between the approximate solution(s) and the exact one(s). In the frame of the numerical analysis, and related to error bounds, we can distinguish between two types of contributions: the a priori analysis and the a posteriori analysis. The a priori version allows to qualify the convergence of the approximation methods when the number of degrees of freedom and/or the amount of work necessary for the computation of the discrete solution increase. This is generally done by upper bounding the error by a constant times the best approximation given by the projection of the exact solution onto the discrete space. The above constant that appears in the a priori analysis is generally not fully known, nor actually the distance between the solution and its projection. Most of the times, the latter is evaluated from the regularity property of the solution that is at best only roughly estimated. On the contrary, the a posteriori analysis provides a (more or less) precise upper bound of the actual error after a computation has been performed. This bound involves only quantities that are or can easily be evaluated at a lower cost than the computation of the discrete solution. Note that a posteriori analysis, thanks to the notion of indicators, may tell you what to do in order to improve the accuracy, but will not tell you what to do to diminish the current error by e.g. a factor 2. On the contrary, a posteriori analysis provides a stopping criteria when the desired accuracy is reached, an a priori estimator fails to do so.

The (a priori) numerical analysis of such nonlinear eigenvalue problems is quite recent and relies on the papers [START_REF] Zhou | Finite dimensional approximations for the electronic ground state solution of a molecular system[END_REF], [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF], [START_REF] Chen | Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model[END_REF], [START_REF] Langwallner | Existence and convergence results for the Galerkin approximation of an electronic density functional[END_REF], [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], [START_REF] Chen | Convergence of adaptive finite element approximations for nonlinear eigenvalue problems[END_REF] and the references therein. These papers only consider the discretization error due to the use of a given number of degrees of freedom in order to approximate the problem of interest. For an analysis of the convergence of the iterative algorithms to solve the nonlinear eigenvalue problem (or the associated nonlinear minimization problem), the papers issued from [START_REF] Cancès | Can we outperform the DIIS approach for electronic structure calculations?[END_REF], [START_REF] Cancès | Self-consistent field algorithms for Kohn-Sham models with fractional occupation numbers[END_REF], [START_REF] Kudin | A black-box self-consistent field convergence algorithm: One step closer[END_REF] provide a priori convergence results and allow to understand the basics for the failure of some classical approaches and how to remedy.

As is standard, all these a priori approaches allow to state that, provided that you put enough computing resources, the approximation will be good. Such results are classically insufficient because the amount of required computing resources for large problems is very often out of the possibility that you can afford. This is the reason why a posteriori approaches (estimators and indicators) have been designed. As far as we know, the first paper in the direction of a posteriori estimates is [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF], where the analysis of the Hartree-Fock problem was performed and error bounds (i.e. upper and lower bounds) for the ground state energy was proposed. We refer also to the more recent contributions [START_REF] Dai | Convergence and optimal complexity of adaptive finite element eigenvalue computations[END_REF], [START_REF] Chen | Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model[END_REF], [START_REF] Dai | Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues[END_REF].

The present paper is the first of a series that aims at providing precise information on the accuracy of the approximation as a function of the number of degrees of freedom that are used and the number of iterations at which we stop the numerical process. For the sake of clarity in the tools that we use, the analysis is explained on a nonlinear equation that enters in the class of Gross-Pitaevskii equations ( [START_REF] Pitaevskii | Bose-Einstein condensation (International series of monographs on physics[END_REF]) and we focus on a one dimensional example to present both the theory and the numerical simulation that illustrate it. This allows us to propose a posteriori estimates and indicators based on residual techniques that discriminate the effect of the discretization parameter (the number of degrees of freedom) from the parameters attached to the solution procedure (i.e. the number of iterations). The interest of this indicator is to balance the complexity of the computation by tuning properly the number of iterations to the achievable best fit that the discretization allows. Note that the indicator is not used to refine locally the discretization mesh -this one being by construction uniform -however the indicator informs on the level of accuracy that is a direct consequence of the number of degrees of freedom used in the discretization and indicates also if it should be (uniformly) increased. The generalization of these tools for the more difficult problem of the Kohn-Sham problem involves a series of technical difficulties and is on its way (see [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF]). We refer to the [START_REF] Cancès | Computational quantum chemistry: A primer[END_REF] for a general presentation of the mathematical models and approaches for their simulations in computational quantum chemistry.

In this paper, we focus on the following nonlinear eigenvalue problems arising in the study of variational models of the form

I = inf E(v), v ∈ X, Ω v 2 = 1 , (6.1.1) 
where Ω is here simply the unit cell (0, 1) of a periodic lattice R of R , the energy functional E is of the form

E(v) = 1 2 Ω |∇v| 2 + 1 2 Ω V v 2 + 1 4 Ω v 4 , (6.1.2) 
and X = H 1 # (Ω) is the Sobolev space, defined in the more general settings for any s ∈ R,

H s # (Ω) = {v| Ω , v ∈ H s loc (R) | v is 1-
periodic} , provided with the norm denoted as . H s and for any k ∈ N,

C k # (Ω) = v| Ω , v ∈ C k (R) | v is 1-periodic .
Problem (6.1.1) has a unique solution (up to the sign, see e.g. [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]).

Remark 6.1.1. For simplicity, the periodic cell is considered here of size 1. But it is easy to rescale the equation if the periodic cell is different from Ω = (0, 1). The only change would be in the coefficient in front of the nonlinearity. The analysis would not be changed and is actually naturally scaled since we do take care of the various constants in our estimates.

Let us remind the following Gagliardo Nirenberg inequality

1 1 For any v ∈ H 1 (Ω) we can indeed write ∀x, y ∈ Ω, v 2 (x) ≤ v 2 (y) + 2 Ω v 2 Ω v 2 ,
from which we deduce, after integration in the y variable that

∀x ∈ Ω, v 2 (x) ≤ Ω v 2 + 2 Ω v 2 Ω v 2 ≤ √ 5 Ω v 2 Ω v 2 + Ω v 2 ,
thus the Gagliardo Nirenberg inequality; we also derive

∀x ∈ Ω, v 2 (x) ≤ Ω v 2 + 2 Ω v 2 Ω v 2 ≤ ( 1 + √ 5 2 
)

Ω v 2 + Ω v 2 ,
and the Sobolev embedding constant follows from

Ω v p ≤ v p-2 L ∞ Ω v 2 ∀v ∈ H 1 # (Ω), v 2 L ∞ (Ω) ≤ √ 5 v L 2 (Ω) v H 1 (Ω) . (6.1.3) 
In addition, for p ∈ [1, ∞], let us denote by C p the Sobolev constant such that

∀v ∈ X, v L p ≤ C p v H 1 , (6.1.4) 
which holds with

C p = ( 1+ √ 5 
2 )

1 2 -1 p .
In what follows, we shall assume that V ∈ L p (Ω) for some p ≥ 2, in addition, we assume that V is lower bounded2 . It was shown in [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF] that (6.1.1) has exactly two solutions: u and -u in X with u > 0 in Ω. From the embedding of H 1 (Ω) into C 0 (Ω) (valid because we are in one dimension), u ∈ C 0 (Ω). Moreover, E is Gâteaux differentiable on X and for any v ∈ X,

E (v) = A v v where A v = -∆ + V + v 2 . (6.1.5)
Under the previous assumptions E is twice differentiable at any v ∈ X and, by denoting E (v) the second derivative of E at v, we have for any v, w, z ∈ X,

E (v)w, z X ,X = A v w, z X ,X + 2 Ω v 2 wz = Ω ∇w.∇z + Ω V wz + 3 Ω v 2 wz. (6.1.6)
Note that A v defines a self-adjoint operator on L 2 (Ω), with form domain X (see e.g. [START_REF] Reed | Methods of modern mathematical physics[END_REF]).

The function u therefore is solution to the Euler equation

∀v ∈ X, A u u -λu, v X ,X = 0, (6.1.7) 
for some λ ∈ R (the Lagrange multiplier associated with the constraint u 2 L 2 = 1) and equation (6.1.7), complemented with the constraint u L 2 = 1, takes the form of the following nonlinear eigenvalue problem

A u u = λu u L 2 = 1, or again -∆u + V u + u 3 = λu u L 2 = 1, (6.1.8) 
which can be rewritten in a weak form as

     ∀v ∈ X, Ω ∇u • ∇v + Ω V uv + Ω u 3 v = λ Ω uv Ω u 2 = 1. (6.1.9) 
Let us remark that for any v ∈ X,

E (u)u -λu, v X ,X = 2 Ω u 3 v. (6.1.10) 
It should be noted in addition, that λ is the ground state eigenvalue of the linear operator A u . An important result is that λ is a simple eigenvalue of A u (see e.g. the Appendix of [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]).

A natural discretization in the periodic settings consists in using a Fourier basis. We denote by (X N ) N >0 the family of finite-dimensional subspaces of X defined by

X N = Span e k : x → e 2ikπx , |k| ≤ N, k ∈ Z . Remind now that, for any v ∈ L 2 (Ω), v(x) = k∈Z v k e k (x),
where v k is the k th Fourier coefficient of v:

v k := Ω v(x) e k (x) dx = Ω v(x) e -2ikπx dx.
For any real number s, we now endow the Sobolev space H s # (Ω) with the equivalent norm expressed in Fourier modes as follows

v H s = k∈Z 1 + |k| 2 s | v k | 2 1/2 , (6.1.11) 
in what follows we shall use only this definition of the H s -norm (6.1.11). We obtain that for any r ∈ R, and all v ∈ H r # (Ω), the best approximation of v in H s # (Ω) for any s ≤ r is

Π N v = k∈Z,|k|≤N v k e k . (6.1.12) 
The more regular v (the regularity being measured in terms of the Sobolev norms H r ), the faster the convergence of this truncated series to v: for any real numbers r and s with s ≤ r, we have (see e.g. [START_REF] Canuto | Spectral methods: evolution to complex geometries and applications to fluid dynamics[END_REF])

∀v ∈ H r # (Ω), v -Π N v H s ≤ 1 N r-s v H r , (6.1.13) 
and in particular for the solution u :

min { u -v N H 1 , v N ∈ X N } -→ N →+∞ 0. (6.1.14) 
Let us now consider the variational approximation of (6.1.1) consisting in solving

I N = inf E(v N ), v N ∈ X N , Ω v 2 N = 1 . (6.1.15) 
Problem (6.1.15) has at least one minimizer u N , which satisfies for some

λ N ∈ R ∀v N ∈ X N , A u N u N -λ N u N , v N X ,X = 0. (6.1.16) that is    ∀v N ∈ X N , Ω ∇u N • ∇v N + Ω V u N v N + Ω u 3 N v N = λ N Ω u N v N , Ω u 2 N = 1.
(6.1.17)

A possible algorithm used to solve the equation numerically in the space X N is the following: starting from a given pair (u 0 N , λ 0 N ), we solve at each step the linear equation

Π N -∆u k * N + V u k * N + (u k-1 N ) 2 u k * N = λ k-1 N u k-1 N . (6.1.18) 
For any k > k 0 , using (6.1.3), we deduce that

u k N L ∞ ≤ 4 √ 5 + u * N H 1 .
Let us now take v N ∈ X N , we have:

Ω ∇u * N ∇v N + Ω V u * N v N + Ω (u * N ) 3 v N -λ * N Ω u * N v N = Ω ∇u k N ∇v N + Ω V u k N v N + Ω (u k-1 N ) 2 u k N v N -λ k-1 N Ω u k-1 N v N + Ω ∇(u * N -u k N )∇v N + Ω V (u * N -u k N )v N + Ω ((u * N ) 3 -(u k N ) 3 )v N + Ω ((u k N ) 3 -(u k-1 N ) 2 u k N )v N + λ k-1 N Ω u k-1 N v N -λ * N Ω u * N v N
From (6.1.18) the second line is zero so we are left with

Ω ∇u * N ∇v N + Ω V u * N v N + Ω (u * N ) 3 v N -λ * N Ω u * N v N = Ω ∇(u * N -u k N )∇v N + Ω V (u * N -u k N )v N + Ω ((u * N ) 2 + u * N u k N + (u k N ) 2 )(u * N -u k N )v N + Ω u k N (u k N + u k-1 N )(u k N -u k-1 N )v N + (λ k-1 N -λ * N ) Ω u k-1 N v N + λ * N Ω (u k-1 N -u * N )v N .
Hence

Ω ∇u * N ∇v N + Ω V u * N v N + Ω (u * N ) 3 v N -λ * N Ω u * N v N ≤ ∇(u * N -u k N ) L 2 ∇v N L 2 + V L p u * N -u k N L ∞ v N L p + ( u * N 2 L ∞ + u * N L ∞ u k N L ∞ + u k N 2 L ∞ ) u * N -u k N L 2 v N L 2 + u k N L ∞ ( u k N L ∞ + u k-1 N L ∞ ) u k N -u k-1 N L 2 v N L 2 + |λ k-1 N -λ * N | u k-1 N L 2 v N L 2 + |λ * N | u k-1 N -u * N L 2 v N L 2 .
with 1 p + 1 p = 1 .Then from (6.1.21) and (6.1.3) we derive

Ω ∇u * N ∇v N + Ω V u * N v N + Ω (u * N ) 3 v N -λ * N Ω u * N v N ≤ ∇v N L 2 + 4 √ 5 V L p v N L p + u * N 2 L ∞ + 4 √ 5 u * N L ∞ + u * N H 1 + √ 5( + u * N H 1 ) + 2 √ 5( + u * N H 1 ) + 1 + |λ * N | v N L 2 .
We then easily deduce that the limit (u * N , λ * N ) verifies the non-linear eigenvalue equation (6.1.17).

Let us prove the last point of the lemma. We note that u N defined in (6.1.16) and u * N the limit of the sequence above are both solutions to the same nonlinear (discrete) eigenvalue problem associated with λ N (resp. λ * N ) minimum eigenvalues of

Π N A u N (resp. Π N A u * N ). Besides, by definition, λ N ≤ λ * N . We deduce (A u N -λ N )(u N -u * N ), (u N -u * N ) = λ * N -λ N + (u 2 N -(u * N ) 2 )(u * N ) 2
Moreover the constants are

M m = 1 + V L p C 2 2p + m u 2 L ∞ + |λ| (6.2.4) β = 1 2 η η + χ , η = min(λ 2 -λ, 2), χ = |λ| + 1 + 5 V 2 L p 2 (6.2.5) γ = 1 2 η η + 2χ (6.2.6)
where λ 2 > λ is the the second smallest eigenvalue of A u and p = (1p -1 ) -1 .

Proof. From (6.1.5), we have for every v ∈ X,

| (A u -λ)v, v X ,X | ≤ ∇v 2 L 2 + V L p v 2 L 2p + u 2 L ∞ v 2 L 2 + |λ| v 2 L 2 ≤ 1 + V L p C 2 2p + u 2 L ∞ + |λ| v 2 H 1 = M 1 v 2 H 1 , which is (6.2.1) with p = (1 -p -1 ) -1 . Moreover, from (6.1.6) | (E (u) -λ)v, v X ,X | ≤ | (A u -λ)v, v X ,X | + 2 u 2 L ∞ v 2 L 2 ≤ 1 + V L p C 2 2p + 3 u 2 L ∞ + |λ| v 2 H 1
, hence the upper bound in (6.2.2) with constant M 3 defined in (6.2.4).

The fact that λ, the lowest eigenvalue of A u , is simple (see the Appendix of [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]) provides the lower bound in (6.2.1). Indeed, the operator A uλ is positive over the set u ⊥ defined as

u ⊥ = v ∈ X | Ω uv = 0 , (6.2.7) 
more precisely we have, for any v ∈ X,

(A u -λ)v, v X ,X ≥ (λ 2 -λ)( v 2 L 2 -|(u, v) L 2 | 2 ) ≥ η( v 2 L 2 -|(u, v) L 2 | 2 ) ≥ 0, (6.2.8) 
with η = min(λ 2λ, 2). On the one hand for any v ∈ X,

(E (u) -λ)v, v X ,X = (A u -λ)v, v X ,X + 2 Ω u 2 v 2 ≥ η( v 2 L 2 -|(u, v) L 2 | 2 ) + 2 Ω u 2 v 2 ≥ η v 2 L 2 + 2 Ω u 2 v 2 -η Ω uv 2 ≥ η v 2 L 2 + (2 -η) Ω uv 2 ≥ η v 2 L 2 . (6.2.9) 
On the other hand for any v ∈ X,

(A u -λ)v, v X ,X ≥ ∇v 2 L 2 -V L p v 2 L ∞ -|λ| v 2 L 2 ≥ v 2 H 1 - √ 5 V L p v L 2 v H 1 -(|λ| + 1) v 2 L 2
, by using the Gagliardo-Nirenberg inequality (6.1.3). Thanks to the inequality between arithmetic and geometric means applied to v H 1 and V L p v L 2 , we deduce that

(E (u) -λ)v, v X ,X ≥ (A u -λ)v, v X ,X ≥ 1 2 v 2 H 1 -|λ| + 1 + 5 V 2 L p 2 v 2 L 2 . (6.2.10) 
and, consequently

u N -u H 1 -→ N →+∞ 0,
that is (6.2.16). It follows that there exists N 1 ∈ N such that

∀N > N 1 , N ∈ N, u N -u H 1 ≤ 1 2 and u N H 1 ≤ 2 u H 1 . (6.2.24) 
In addition,

E(u N ) -E(u) = 1 2 (A u -λ)(u N -u), (u N -u) X ,X + 1 4 Ω (u 2 N -u 2 ) 2 ≤ M 1 2 u N -u 2 H 1 + 1 4 u N -u 2 L ∞ u N + u 2 L 2
(from (6.2.1))

≤ M 1 2 + √ 5 u N -u 2 H 1 (from (6.1.3) using u L 2 (Ω) = u N L 2 (Ω) = 1).
Hence the upper bound in (6.2.17) with

C E = M 1 2 + √ 5.
From (6.1.17) with v N = u N and (6.1.9) with v = u Nu, we remark that

λ N -λ = λ N Ω u 2 N -λ Ω u 2 = Ω (∇u N ) 2 + Ω V u 2 N + Ω u 4 N - Ω (∇u) 2 + Ω V u 2 + Ω u 4 = Ω ∇(u N -u) 2 + Ω V (u N -u) 2 + 2 Ω ∇u • ∇(u N -u) +2 Ω V u(u N -u) + Ω u 4 N -u 4 = A u (u N -u), (u N -u) X ,X - Ω u 2 (u N -u) 2 + 2λ Ω u(u N -u) -2 Ω u 3 (u N -u) + Ω u 4 N -u 4 = (A u -λ)(u N -u), (u N -u) X ,X + Ω u 2 N (u N + u)(u N -u) (from (6.1.22)), (6.2.25) 
we also obtain

Ω u 2 N (u N + u)(u N -u) ≤ u 2 N (u N + u) L 2 u N -u L 2 ≤ u N 2 L ∞ u N + u L 2 u N -u L 2 ≤ √ 5 u N L 2 u N H 1 u N + u L 2 u N -u L 2 (from (6.1.3)) ≤ 4 √ 5 u H 1 u N -u L 2 (from (6.2.24)),
and from (6.2.1)

|λ N -λ| ≤ M 1 u N -u 2 H 1 + 4 √ 5 u H 1 u N -u L 2 ≤ C λ u N -u 2 H 1 + u N -u L 2 , (6.2.26) 
with

C λ = max M 1 , 4 √ 5 u H 1 .
hence, for any v ∈ X N , by decomposing v into a part in (v 1 N ) ⊥ and a part collinear to v 1

N : v = [v -(v, v 1 N )v 1 N ] + (v, v 1 N )v 1 N ≡ v ⊥ + v // B k N v, v = (-∆ + V + (u k N ) 2 -λ k N )v, v + 2 Ω (u k N ) 2 v 2 = (-∆ + V + (u k N ) 2 -λ k N )v ⊥ , v ⊥ + (-∆ + V + (u k N ) 2 -λ k N )v // , v // +2 (-∆ + V + (u k N ) 2 -λ k N )v ⊥ , v // + 2 Ω (u k N ) 2 v 2 ≥ (µ 2 N -λ k N ) v ⊥ 2 L 2 + (µ 1 N -λ k N ) v // 2 L 2 + 2 Ω (u k N ) 2 v 2 using µ 1 N ≤ λ k N ≤ µ 2
N and (6.3.14), (6.3.15)

≥ δ k N 2 v ⊥ 2 L 2 - 1 2 v // 2 L 2 + 2 Ω (v 1 N ) 2 v 2 -2 Ω (v 1 N -u k N )(v 1 N + u k N )v 2 using (6.3.11) ≥ δ k N 2 v ⊥ 2 L 2 + 3 2 v // 2 L 2 + 2 Ω (v 1 N ) 2 v 2 -[ Ω (v 1 N v)] 2 -2 Ω (v 1 N -u k N )(v 1 N + u k N )v 2 ≥ 1 2 min(δ k N , 3) v 2 L 2 + 2[ Ω (v 1 N -u k N ) 2 v 2 -2 Ω (v 1 N -u k N )v 1 N v 2 ] ≥ 1 4 min(δ k N , 3) v 2 L 2 using (6.3.11).
Moreover, for all v ∈ X N ,

(-∆ + V + 3(u k N ) 2 -λ k N )v, v ≥ ∇v 2 L 2 -(V + 3(u k N ) 2 -λ k N ) -L ∞ v 2 L 2
where

(V + 3(u k N ) 2 -λ k N ) -is the negative part of (V + 3(u k N ) 2 -λ k N ). In conclusion for all v ∈ X N , B k N v, v ≥ β k N v 2 H 1 (6.3.16) 
with β k N defined in (6.3.9), this constant being computable. Hence

B k N is elliptic over X N . Let us prove the bijectivity of DF (u k N ,λ k N ) . Let f ∈ X , µ ∈ R, we are looking for w ∈ X, τ ∈ R such that -∆w + V w + 3(u k N ) 2 w -λ k N w -τ u k N = f 2 u k N w = µ (6.3.17)
We first prove that there exists a computable constant C N > 0, such that, for any ϕ ∈ X , there exists w(ϕ)

-∆w(ϕ) + V w(ϕ) + 3(u k N ) 2 w(ϕ) -λ k N w(ϕ) = ϕ with w(ϕ) H 1 ≤ C -1 N ϕ H -1 (6.3.18)
To get this, (6.3.16) is not sufficient, it has to be extended from the discrete to the continuous from the Cauchy-Schwarz inequality since the operator on the right hand side is coercive, so that

(∇w(u k N )) 2 + V (w(u k N )) 2 + 3 (u k N ) 2 (w(u k N )) 2 -λ k N (w(u k N )) 2 ≥ 1 (∇u k N ) 2 + V (u k N ) 2 + 3 (u k N ) 4 -λ k N (u k N ) 2
which is a quantity that can be computed exactly.

From the definition of I k N in (6.3.10), we get

|τ | ≤ I k N |µ| 2 + w(f ) L 2 .
Hence, using (6.3.18),

w H 1 ≤ |τ | w(u k N ) H 1 + w(f ) H 1 ≤ I k N |µ| 2 + w(f ) L 2 w(u k N ) H 1 + w(f ) H 1 ≤ I k N |µ| 2 + C -1 N f H -1 C -1 N u k N H -1 + C -1 N f H -1 ≤ C -1 N I k N 2 |µ| + I k N C -1 N + 1 f H -1 ≤ C -1 N max I k N 2 , I k N C -1 N + 1 (|µ| + f H -1 ) (6.3.22) hence |τ | + w H 1 ≤ I k N + C -1 N max I k N 2 , I k N C -1 N + 1 (|µ| + f H -1 )
which gives an upper bound for γ.

The only thing that remains is to evaluate the Lipschitz condition L again in (6.3.3). We have ∀w ∈ X, τ ∈ R,

[DF (u k N ,λ k N ) -DF (u ,λ ) ](w, τ ) = 3[(u k N ) 2 -(u ) 2 ]w -τ (u k N -u ) -(λ k N -λ )w 2 (u k N -u )w (6.3.23)
hence, from the bounds

3[(u k N ) 2 -(u ) 2 ]ww -τ (u k N -u )w -(λ k N -λ )ww ≤ 3 √ 5 u k N -u L 2 u k N + u L 2 w H 1 w H 1 +|τ | u k N -u L 2 w L 2 + |λ k N -λ | w L 2 w L 2 and 2 (u k N -u )w ≤ 2 u k N -u L 2 w L 2 , (6.3.24) 
we easily derive that

L(α) ≤ [3 √ 5(2 + α) + 4]α. (6.3.25) 
We can now provably check if 2γL(2γ ) ≤ 1 which is the condition under which we know that there exists a unique solution (ũ, λ) to the problem (6.1.9) in the ball B((u k N , λ k N ), 2γ ) and (6.3.12) provides a first a posteriori estimate between a solution (ũ, λ) to the problem (6.1.9) and the current iterate (u k N , λ k N ). The pair (ũ, λ) is an eigenpair of the linear operator A ũ, but may not be associated with the ground state of (6.1.1). In order to complete the last statement in the Lemma, we are going to use Lemma 6.1.2. We are thus interested in the lowest eigenpair (v, µ) of the (symmetric) linear operator A ũ. Let us assume by contradiction that (v, µ) = (ũ, λ), hence, in particular we have

(ũ, v) = 0, v L 2 = ũ L 2 = 1, µ < λ. (6.3.26)
Recalling the definition of the linear, discrete eigenvalue problem (6.3.6), let us introduce the following decomposition of v :

v = w + (v -Π N v) + (v 1 N , Π N v)v 1 N , with w = Π N v -(v 1 N , Π N v)v 1 N .
Note that w is orthogonal to v 1 N . Hence

µ = A ũv, v = A ũw, w + A ũ(v -w), v + w = A u k N w, w (6.3.27) 
+ A ũw, w -A u k N w, w (6.3.28) 
+ A ũ(v -Π N v), v + Π N v (6.3.29) +2(Π N v, v 1 N ) A ũv 1 N , Π N v (6.3.30) -(v 1 N , Π N v) 2 A ũv 1 N , v 1 N (6.3.31)
In what follows we first prove that the L 2 -norm of w is (measurably) close to 1 and then use the fact that w belongs to X N and is orthogonal to

v 1 N to state that A u k N
w, w will be somehow larger than µ 2 N and the other terms in the next lines above are all (measurably) small. The contradiction will then come from the existence of a measurable gap δ k N = µ 2 Nµ 1 N as stated in (6.3.7), and the fact that λ is measurably close to λ k N hence close to µ 1 N . Before estimating µ, we first bound the four following terms:

v 1 N -ũ L 2 , ũ2 -(u k N ) 2 L ∞ , v H 1 ,
and v H 2 , which we shall use later when analysing the terms composing µ.

• Firstly, v 1 N -ũ L 2 ≤ v 1 N -u k N L 2 + u k N -ũ L 2 (6.3.32) • Secondly, ũ2 -(u k N ) 2 2 L ∞ ≤ 1 + √ 5 2 ũ2 -(u k N ) 2 2 H 1 (6.3.33) Moreover, ũ2 -(u k N ) 2 2 H 1 = Ω (ũ -u k N ) 2 (ũ + u k N ) 2 + Ω [(ũ -u k N ) (ũ + u k N ) + (ũ -u k N )(ũ + u k N ) ] 2 ≤ ũ -u k N 2 L ∞ ũ + u k N 2 L 2 + 2 ũ + u k N 2 L ∞ (ũ -u k N ) 2 L 2 +2 ũ -u k N 2 L ∞ (ũ + u k N ) 2 L 2 ≤ 5 1 + √ 5 2 ũ -u k N 2 H 1 ũ + u k N 2 H 1 ≤ 5 1 + √ 5 2 ũ -u k N 2 H 1 [ ũ -u k N H 1 + 2 u k N H 1 ] 2 Hence ũ2 -(u k N ) 2 2 L ∞ ≤ 5 1 + √ 5 2 2 ũ -u k N 2 H 1 [ ũ -u k N H 1 + 2 u k N H 1 ] 2 (6.3.34) 
• Thirdly, using that µ < λ, we derive

v 2 H 1 = µ - Ω V v 2 - Ω ũ2 v 2 + Ω v 2 + Ω (u k N ) 2 v 2 - Ω (u k N ) 2 v 2 ≤ λ k N + | λ -λ k N | + 1 -V -(u k N ) 2 L 2 v L 2 v H 1 + ũ2 -(u k N ) 2 L ∞ v 2 L 2 .
Hence

v 2 H 1 -1 -V -(u k N ) 2 L 2 v H 1 -(λ k N + | λ -λ k N | + ũ2 -(u k N ) 2 L ∞ ) ≤ 0 from which we deduce that v H 1 ≤ 1 2 1 -V -(u k N ) 2 L 2 + 1 2 1 -V -(u k N ) 2 2 L 2 + 4(λ k N + | λ -λ k N | + ũ2 -(u k N ) 2 L ∞ ) 1 2 . (6.3.35)
Hence v H 1 is measurably bounded.

• Finally, let us estimate v H 2 :

∆v 2 L 2 = Ω (µv -V v -ũ2 v) 2 ≤ µ -V -ũ2 2 L 2 1 + √ 5 2 v 2 H 1 ≤ (λ k N + | λ -λ k N | + V + (u k N ) 2 L 2 + (u k N ) 2 -ũ2 L 2 ) 2 1 + √ 5 2 v 2 H 1 Hence v 2 H 2 ≤ 1 + √ 5 2 (λ k N + | λ -λ k N | + V + (u k N ) 2 L 2 + (u k N ) 2 -ũ2 L 2 ) 2 + 2 v 2 H 1 (6.3.36) With (6.3.35), we deduce a computable estimation of v H 2 .
Note that the only noncomputable terms are ũu k N H 1 and | λλ k N | but these terms are computably bounded in (6.3.12).

Let us finish the proof starting with the estimate of the L 2 -norm of w : we write

w 2 L 2 = Π N v -(v 1 N , Π N v)v 1 N 2 L 2 = (v, Π N v) -(v, v 1 N ) 2 = 1 -v -Π N v 2 L 2 -[(v, ũ) + (v, v 1 N -ũ)] 2 = 1 -v -Π N v 2 L 2 -(v, v 1 N -ũ) 2
where we have used (6.3.26) in the last line. Hence

1 - v 2 H 1 N 2 -v 1 N -ũ 2 L 2 ≤ w 2 L 2 ≤ 1 (6.3.37) 
We are now capable of estimating each of the five terms in equation (6.3.27) -(6.3.31).

Remark 6.3.2. This approach provides some first information on the error between the exact and approximate solutions. However, as can be expected, this information is quite rough and is only used to indicate if we are in an asymptotic regime in which, the following analysis allows to propose a more accurate a posteriori error estimator. We illustrate in section 4 this feature on a series of numerical examples. In addition to this asymptotic behavior of the error, the main output from the previous analysis is to certify that the discretization u k N is indeed approximating the ground state of (6.1.1) .

More accurate a posteriori estimate

In order to get a more accurate a posteriori estimate, as is classical, we work more carefully on the residual:

R k N = F (u k N , λ k N ) X = -∆u k N + V u k N + (u k N ) 3 -λ k N u k N , (6.3.40) 
that evaluates in which sense the snapshot (u k N , λ k N ) obtained after k iterations of the algorithm (6.1.18), (6.1.19), (6.1.20) in X N fails to solve the problem (6.1.8) we look for.

As was said in the introduction to this paper, this global error between the exact and the approximated solutions stems from two main sources : (i) one is the finite dimension 2N + 1 of the Fourier space X N , i.e. the discretization of the space X , (ii) the other one is the finite number of iterations k.

In order to estimate the error coming from the two sources, the discretization parameter N and the number of iterations k, we separate the global error into two components, each of them depending mainly on one parameter associated with the above sources of error. The discretization residual is based on the numerical scheme and hence can be naturally defined as

R disc = -∆u k N + V u k N + (u k-1 N ) 2 u k N -u k * N -1 L 2 λ k-1 N u k-1 N , (6.3.41) 
the quantity R disc H -1 then measures the discretization error and depends on the finite dimension (2N + 1) of the Fourier space X N on which we solve the problem.

The iteration residual is then defined such that

R k N = R disc + R iter . Hence R iter = (u k N ) 3 -(u k-1 N ) 2 u k N -λ k N u k N + u k * N -1 L 2 λ k-1 N u k-1 N . (6.3.42) 
The quantity R iter H -1 is the iteration error and depends mainly on the finite number of iterations k.

We now relate the error in the functional space X -which is here uu k N H 1 -to the error of this specific problem expressed by an upper bound of the global residual defined previously. Besides the bounds have to be a posteriori computable.

First we express the term

Ω ∇(u -u k N )
• ∇v that appears in the right-hand side of (6.3.1) with a maximum of a posteriori computable terms (i.e. contributions involving u k N and λ k N and not u nor λ). Then we deal with the remaining terms. Finally we gather everything and get the a posteriori estimates. From (6.1.9), we can write the following equalities, at least in and on the other hand, if V belongs to H 1 , we have

| Ψu k N -u , (V + 3(u k N ) 2 )(u -Π N u) | ≤ Ψu k N -u (V + 3(u k N ) 2 ) H 1 u -Π N u H -1 ≤ 2 √ 5 Ψu k N -u H 1 V + 3(u k N ) 2 H 1 u -Π N u H -1 .
Then, by an interpolation argument in Hilbert spaces we get depending on the regularity of V for 0 ≤ s ≤ 1,

| Ψu k N -u , (V + 3(u k N ) 2 )(u -Π N u) | ≤(2 √ 5) s 2 5 1-s 4 Ψu k N -u H 1 V + 3(u k N ) 2 H s u -Π N u H -s ≤ C s N 1+s Ψu k N -u H 1 V + 3(u k N ) 2 H s u -u k N H 1 with C s = (2 √ 5) s 2 5 
1-s 4 .

For the last term, thanks to (6.3.48) and the fact that

Bν 1 N = 2(u k N ) 2 ν 1 N we have | u k N -Π N u, ν 1 N Ψu k N -u , Bν 1 N | ≤ 1 β k N u -u k N L 2 2(u k N ) 2 ν 1 N H -1 × 3 2 u k N -ν 1 N 2 L 2 + u -u k N 2 L 2
By summing up the five above bounds, we derive

| (u k N -u)( u k N -Π N u)| ≤ 1 β k N Π N R k N H -1 u k N -u L 2 + 1 β k N u -u k N 2 L ∞ u + 2u k N L 2 u -u k N L 2 + 1 β k N u -u k N L 2 2|λ k N -µ 1 N | u k N -v 1 N L 2 +|λ k N -µ 1 N | u k N -u L 2 + |λ k N -λ| u k N -v 1 N L 2 +|λ k N -λ| u k N -u L 2 + C s β k N 1 N 1+s u k N -u L 2 V + 3(u k N ) 2 H s u -u k N H 1 + 1 β k N u -u k N L 2 2(u k N ) 2 ν 1 N H -1 × 3 2 u k N -ν 1 N 2 L 2 + u -u k N 2 L 2
Finally, from (6.3.47), (6.3.49) and the above inequality, we get the following estimate :

u -u k N 2 L 2 u -u k N H 1 ≤ 1 β k N Π N R k N H -1 + √ 5 β k N u -u k N 2 H 1 u + 2u k N L 2 + 1 β k N 2|λ k N -µ 1 N | u k N -v 1 N L 2 + |λ k N -µ 1 N | u k N -u L 2 +|λ k N -λ| u k N -v 1 N L 2 + |λ k N -λ| u k N -u L 2 + C s β k N 1 N 1+s u k N -u L 2 V + 3(u k N ) 2 H s + 1 β k N 2(u k N ) 2 ν 1 N H -1 3 2 u k N -ν 1 N 2 L 2 + u -u k N 2 L 2 + 3 2 u k N -ν 1 N 2 L 2 + u k N -u 2 L 2 + 1 N 2 u k N -u H 1 . (6.3.50) 
Final step: From (6.3.45) and (6.3.50) we write that

u -u k N H 1 ≤ R k N H -1 + 1 2 |λ k N -λ| u -u k N L 2 + u k N -u 2 L 2 2u k N + u L ∞ + (V + 3(u k N ) 2 -λ k N -1) -L ∞ 1 β k N Π N R k N H -1 + √ 5 β k N u -u k N 2 H 1 u + 2u k N L 2 + 1 β k N 2|λ k N -µ 1 N | u k N -v 1 N L 2 + |λ k N -µ 1 N | u k N -u L 2 +|λ k N -λ| u k N -v 1 N L 2 + |λ k N -λ| u k N -u L 2 + C s β k N 1 N 1+s u k N -u L 2 V + 3(u k N ) 2 H s + 1 β k N 2(u k N ) 2 ν 1 N H -1 3 2 u k N -ν 1 N 2 L 2 + u -u k N 2 L 2 + 3 2 u k N -ν 1 N 2 L 2 + u k N -u 2 L 2 + 1 N 2 u k N -u H 1
Following the same lines as in the a priori analysis (see (6.2.25)) and using (6.1.20) instead of (6.1.17) we can write

λ k N -λ = (A u -λ)(u k N -u), (u k N -u) X ,X + Ω (u k N ) 2 (u k N + u)(u k N -u) = (A u -λ)(u k N -u), (u k N -u) X ,X + Ω 2(u k N ) 3 (u k N -u) - Ω (u k N ) 2 (u k N -u) 2 .
From (6.2.1) we get

|λ -λ k N | ≤ M 1 u -u k N 2 H 1 + 2 (u k N ) 3 L 2 u -u k N L 2 + u k N 2 L ∞ u -u k N 2 L 2 . (6.3.51) 
Using (6.3.51), we get

u -u k N H 1 1 - 1 2 |λ k N -λ| -u k N -u L 2 2u k N + u L ∞ -(V + 3(u k N ) 2 -λ k N -1) -L ∞ √ 5 β k N u -u k N H 1 u + 2u k N L 2 + 1 β k N |λ k N -µ 1 N | + u k N -v 1 N L 2 (M 1 u -u k N H 1 + 2 (u k N ) 3 L 2 + u k N 2 L ∞ u -u k N L 2 ) + |λ k N -λ| + u k N -u L 2 1 + 2(u k N ) 2 ν 1 N H -1 β k N + 1 N 2 + C s β k N 1 N 1+s V + 3(u k N ) 2 H s ≤ R k N H -1 + (V + 3(u k N ) 2 -λ k N -1) -L ∞ 1 β k N Π N R k N H -1 + 2 β k N |λ k N -µ 1 N | u k N -v 1 N L 2 + 3 2 u k N -ν 1 N 2 L 2 1 + 2(u k N ) 2 ν 1 N H -1 β k N Since u -u k N H 1 → N,k→∞ 0, |λ -λ k N | → N,k→∞ 0 , |λ k N -µ 1 N | → N,k→∞ 0, u k N -v 1 N L 2 → N,k→∞
0, for any α > 1 we can identify, thanks to the analysis in subsection 6.3.1, two quantities :

N α ∈ N following decoupled upper bound u -u k N H 1 ≤ α R disc H -1 + R iter H -1 1 + (V + 3(u k N ) 2 -λ k N -1) -L ∞ β k N + (V + 3(u k N ) 2 -λ k N -1) -L ∞ 2 β k N |λ k N -µ 1 N | u k N -v 1 N L 2 + 3 2 u k N -ν 1 N 2 L 2 1 + 2(u k N ) 2 ν 1 N H -1 β k N . (6.3.54) 
Thus the H 1 -error can be a posteriori bounded by fully computable terms. Note that for planewave discretization the norm H -1 is computable.

At this point, let us remark that in all the performed numerical simulations, the term

(V + 3(u k N ) 2 -λ k N -1) -L ∞ is
zero, simplifying a lot the a posteriori bounds found in the analysis. We have not found any straightforward theoretical reason for it nevertheless we think that this is an interesting enough result per se and state

Corollary 6.3.1. If (V + 3(u k N ) 2 -λ k N -1) -L ∞ = 0,
we have the following error estimate, valid for any α > 1 and as close to 1 as we wish as the error goes to zero.

u -u k N H 1 ≤ α R k N H -1 . (6.3.55) 
This error estimate can be split into two parts

u -u k N H 1 ≤ α R disc H -1 + R iter H -1 .
(6.3.56)

Numerical results

In this section we gather some numerical results that illustrate the statements proven above, in particular the a posteriori analysis of the nonlinear eigenvalue problem (6.1.9). First we provide some results on the properties of the "inverse power" method (6.1.18), (6.1.19), (6.1.20). Then we show that the numerical results are coherent with the a posteriori analysis and that the separation of the error components is relevant. We show that the crude a posteriori estimator of subsection 6.3.1 is reliable and converges but provides a much too large estimate. The strong reliability of this first estimator allows to certify the domain of validity for the second, sharper, estimator that we have presented in section 6.3.2. We also study the influence of the potential regularity on the H 1 -convergence and the effect of the variation of the nonlinearity on the convergence of the algorithm used to solve the problem.

In the next subsections 6.4.2, 6.4.3 and 6.4.4, we evaluate the a posteriori estimators found in the previous section and perform numerical simulations with a potential V given by its Fourier coefficients

V k = - 1 √ 2π 1 |k| 4 -1 4 , (6.4.1) 
from which we deduce that V ∈ L ∞ hence V ∈ L p for any p ≥ 2. The approximate potential we consider is calculated with 801 coefficients i.e. |k| ≤ 400. Hence, the first a posteriori bound obtained with Caloz-Rappaz theory appears quite crude. It could probably be improved by analyzing more carefully the constant gamma that appears in the Caloz & Rappaz bound, leading to a better rough a posteriori bound. However, an improvement of a factor 10 (that may be obtain) on this bound would not be enough compared to the finer bound obtained in section 6.3.2. Therefore we did not push this estimation any further here.

C.-R. N k err N err k err total u exact -u k N H 1 R 1 R 2 conditions

Error balance

We would now like to minimize the computational cost necessary to reach a given acceptable total error. So given a small number , we want to find N and k as small as possible such that the total error is not larger than . As the total error is less than the sum of two error components depending respectively mainly on k or N , we try to balance the two error components.

Let be the total acceptable error. The aim is to find (N, k) such that err total < . The algorithm used is the following:

1. Set N = 10 and k = 1. Choose an initial pair (u 0 N , λ 0 N ).

From

(u k-1 N , λ k-1 N ), find (u k N , λ k N )
solution of (6.1.18) and (6.1.20). -Else back to 1 with N = N + 2.

Compute err

total C-R bound N k err N err k err total u exact -u k N H 1 R 1 R
The table 6.3 shows the results of this study. Both the number of iterations and the dimension necessary to achieve a given accuracy increase when the accuracy increases.

It is interesting to note that the way k and N increase as the error decreases in the following manner k = -2.39x -0.46 while log(N ) = -0.19x + 0.09, where x is the logarithm of the acceptable error. The figure 6.1 illustrates this point. Note that N is 10 at the beginning of the error balance which explains the left part of the bottom figure.

Note that we obtain similar results for different potentials. For example, table 6.4 shows the results of the error balance with a less regular potential V with Fourier coefficients

V k = - 1 √ 2π 1 |k| 2 -1 4 . (6.4.6) 
The regularity of the potential affects the convergence of the algorithm, i.e. for N = 100, the N -error is only 3.10 -5 , but the rate between the real error and the a posteriori boundis less than 4 for acceptable errors from 10 -1 2 to 10 -4 , which shows the sharpness of the a posteriori bounds.

Conclusions

In this paper we have performed a completely new a posteriori analysis for the solution technique applied to a simple but representative nonlinear eigenvalue problem. We first propose 

N k err k err N err total u exact -u k N H 1 err total uexact-u k N H
V k = -1 √ 2π 1 |k| 4 -1 4 N k err k err N err total u exact -u k N H 1 err total uexact-u k N H 1
V k = -1 √ 2π 1 |k| 2 -1 4
a coarse estimator that allows to certify that we are indeed rather close to a solution of the nonlinear eigenvalue problem and also that this solution is the ground state, associated to the energy minimization problem (6.1.1). We propose also a refined estimator that is guaranteed only if we are close enough to the solution. We show that this refined estimator can be written as a sum of two contributions, each one dedicated to characterize the source of the main error, either due to the number of degrees of freedom used to discretize the problem or the number of iterations for the fixed point approach allowing to solve the nonlinear problem.

Note that in practice, we first adaptively refine the parameters N and k using the second a posteriori bound as an indicator. Indeed for rough parameters, the second bound is not guaranteed. However, when the solution is accurate enough, the first bound will certify that the error is below a certain quantity, which allows to use the second a posteriori bound as a guaranteed bound. The numerical simulations that have been provided show that the very precise analysis that can be done on this one dimensional example is optimal since the ratio between the error estimate and the exact error appears close to 1.

The extension of these ideas and techniques to a more complex framework of the Kohn-Sham problem is under consideration, following the techniques presented in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF].

Part V

Post-processing for the planewave approximation of linear and nonlinear Schrödinger operators

Chapter 7

A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models

We expose in this chapter the results of [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF]. This work was done in collaboration with with Eric Cancès, Yvon Maday, Benjamin Stamm and Martin Vohralík.

Abstract

In this article, we propose a post-processing of the planewave solution of the Kohn-Sham LDA model with pseudopotentials. This post-processing is based upon the fact that the exact solution can be interpreted as a perturbation of the approximate solution, allowing us to compute corrections for both the eigenfunctions and the eigenvalues of the problem in order to increase the accuracy. Indeed, this post-processing only requires the computation of the residual of the solution on a finer grid so that the additional computational cost is negligible compared to the initial cost of the planewave-based method needed to compute the approximate solution. Theoretical estimates certify an increased convergence rate in the asymptotic convergence range. Numerical results confirm the low computational cost of the post-processing and show that this procedure improves the energy accuracy of the solution even in the pre-asymptotic regime which comprises the target accuracy of practitioners.

Introduction

First-principle molecular simulation is nowadays a major tool in different fields such as chemistry, condensed matter physics and materials science. Its use is motivated by the fact that it enables one to understand and predict the properties of a molecular system, without any empirical parameter except a few fundamental constants of physics (the reduced Planck constant , the Boltzmann constant k B , the mass of the electron m e , the elementary charge e, the dielectric permittivity of the vacuum ε 0 ) and the masses and atomic numbers of the nuclei contained in the system under investigation.

At this level, matter is described as a system of interacting nuclei and electrons. Within the Born-Oppenheimer approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF] (made in almost all molecular simulations), nuclei are considered as classical point-like particles and electrons are assumed to be, at each time t, in their ground state. As a consequence, the nuclei dynamics is governed by a classical Hamiltonian

H ({R k } 1≤k≤M , {P k } 1≤k≤M ) = M k=1 |P k | 2 2m k + W (R 1 , R 2 , • • • , R M ),
where m k , R k ∈ R 3 and P k ∈ R 3 are respectively the mass, the position and the momentum of the k th nucleus, where M is the total number of nuclei and where W is an effective potential taking into account the presence of the electrons. The bottleneck in first-principle molecular simulation is the evaluation of the potential W for a given nuclear configuration which requires computing the ground state energy of the electrons in the electrostatic potential generated by the nuclei. This quantity can, in principle, be computed by solving the electronic Schrödinger equation. However, as this equation is a (linear) 3N -dimensional partial differential equation, where N is the number of electrons in the system, this cannot be done by brute force numerical methods when N exceeds two or three due to the curse of dimensionality. Different approaches have been proposed to compute the electronic ground state energy. The most popular of them can be classified in three groups: o wavefunction methods, among which the Hartree-Fock and multiconfiguration self-consistentfield (MCSCF) models (see [START_REF] Cancès | Computational quantum chemistry: A primer[END_REF] for a mathematical introduction);

o methods originating from the density functional theory (DFT), namely orbital-free and Kohn-Sham models, that are used and presented in details hereafter;

o quantum Monte Carlo methods [START_REF]Recent advances in Quantum Monte Carlo methods[END_REF][START_REF] Lester | Recent Advances in Quantum Monte Carlo Methods -Part II[END_REF].

The Kohn-Sham models [START_REF] Dreizler | Density functional theory[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] are the most popular approach to date as they offer a good compromise between accuracy and computational cost; they are among the most widely used models in physics and chemistry [START_REF] Burke | Perspective on density functional theory[END_REF].

The purpose of this article is to present a new post-processing method for periodic Kohn-Sham calculations in planewave bases, leading to a significant gain in accuracy at a very limited extra computational cost. This method is based on the observation that the exact Kohn-Sham ground state can be considered as a perturbation of the approximate Kohn-Sham ground state computed in a finite basis set, and in applying first and second-order perturbation theory to the eigenvectors and eigenvalues of the Kohn-Sham operator respectively, in order to improve their accuracies. The specific structure of the problem and the a priori error estimates in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] allow us to identify the leading terms in these first and second-order contributions, which turn out to be easy to evaluate, and discard the other terms, which are very costly or impossible to evaluate, but negligible since proven to be small.

Our approach strongly relies on the fact that the kinetic energy operator which, from a mathematical point of view, is the leading term in the Kohn-Sham Hamiltonian commutes with the orthogonal projection on the discretization space. This is not the case for atomic orbital basis sets methods, but this is the case for other discretizations such as some wavelet methods.

The extension of our approach to approximation settings that do not satisfy this commutation property requires additional theoretical investigations and is work in progress.

This article is organized as follows. We first recall in Section 7.2.1 the mathematical formulation of the Kohn-Sham models for isolated molecular systems. We then present the supercell Kohn-Sham model used in condensed phase modeling and simulation (Section 7.2.2), and the concept of pseudopotential (Section 7.2.3). The planewave discretization method for the supercell Kohn-Sham model with pseudopotential is discussed in Section 7.3.1 and the iterative algorithms used to solve the resulting Kohn-Sham equations are detailed in Section 7.3.2.

The a priori error estimates our analysis is based upon are reviewed in Section 7.3.3. We then introduce the post-processing in Section 7.4. For pedagogical reasons, we derive the expressions of the post-processed eigenfunctions and eigenvalues under the assumptions that all the eigenvalues of the Kohn-Sham operator are non-degenerate. The general case, as well as the proof of Theorem 7.4.1, which quantifies the improvement of the Kohn-Sham ground state energy obtained by the post-processing in the asymptotic regime, will be detailed in a mathematical analysis oriented paper [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. In Section 7.5, we report numerical simulations on a simple system, an alanine molecule, obtained with the KSSOLV package [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF], showing that our post-processing method leads to significant gain in accuracy (typically one order of magnitude on the energy) for a small extra cost (a few percent of the overall cost). Numerical simulations with the CO 2 and the benzene molecules were also performed and led to very similar results, and therefore are not presented in this paper.

7.2 DFT Kohn-Sham models

Introduction to Kohn-Sham models

Throughout this article, we adopt the system of atomic units for which = 1, m e = 1, e = 1, 4π 0 = 1. In this system of units, the charge of the electron is -1 and the charges of the nuclei are positive integers.

Let us first consider an isolated molecular system in vacuo, consisting of M nuclei of charges

(z 1 , • • • , z M ) ∈ (N \ {0}) M located at the positions (R 1 , • • • , R M ) ∈ (R 3
) M of the physical space, and of N electrons. The electrostatic potential generated by the nuclei and felt by the electrons is then given by

V nuc (r) = - M k=1 z k |r -R k | . (7.2.1)
In the spin-restricted Kohn-Sham model, the electronic state of a closed-shell system with an even number N = 2N of electrons is described by N Kohn-Sham orbitals

Φ = (φ 1 , • • • , φ N ) T ∈ H 1 (R 3 )
N satisfying the orthonormality conditions

R 3 φ i φ j = δ ij , ∀ i, j = 1, . . . , N.
The associated electronic density

ρ [Φ] (r) := 2 N i=1 |φ i (r)| 2
plays a key-role in DFT. The factor 2 in the above expression accounts for the spin. Indeed, in the spin-restricted Kohn-Sham model, each orbital is occupied by two electrons, one with spin up and one with spin down. The Kohn-Sham ground state is then obtained by solving

inf E KS 0 (Φ), Φ = (φ 1 , • • • , φ N ) T ∈ H 1 (R 3 ) N , R 3 
φ i φ j = δ ij , (7.2.2) 
where the Kohn-Sham energy functional reads

E KS 0 (Φ) := N i=1 R 3 |∇φ i | 2 + R 3 V nuc ρ [Φ] + 1 2 D(ρ [Φ] , ρ [Φ] ) + E xc (ρ [Φ] ). (7.2.3)
In the right-hand side of (7.2.3), the first term approximates the kinetic energy of the electrons, the second term accounts for the interactions between nuclei and electrons, and the third term is a (crude) approximation of the interaction between electrons. The bilinear form D(•, •) is in fact the Coulomb energy functional in vacuo:

D(ρ, ρ ) = R 3 R 3 ρ(r) ρ (r ) |r -r | dr dr , (7.2.4) 
so that

1 2 D(ρ [Φ] , ρ [Φ] ) is the Coulomb energy of a classical charge distribution of density ρ [Φ] .
The fourth term in the right-hand side of (7.2.3), called the exchange-correlation functional, is a correction term, which is essential to describe quantitatively, and sometimes even qualitatively, the physics and chemistry of the system. The exchange-correlation functional collects the errors made in the approximations of the kinetic energy and of the interactions between electrons by respectively the first and third terms of the Kohn-Sham functional. It follows from the Hohenberg-Kohn theorem [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Levy | Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[END_REF][START_REF] Lieb | Density functionals for Coulomb systems[END_REF][START_REF] Valone | Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices[END_REF] that there exists an exact exchange-correlation functional, that is a functional of the electronic density ρ [Φ] for which solving (7.2.2) provides the ground state electronic energy and density of the N -body electronic Schrödinger equation. Unfortunately, no mathematical expression of the exchange-correlation functional amenable to numerical simulations is known. It therefore has to be approximated in practice. The local density approximation (LDA) consists in approximating the exchange-correlation functional by

E xc (ρ [Φ] ) = R 3 e LDA xc (ρ [Φ] (r)) dr, (7.2.5) 
where e LDA xc (ρ) is an approximation of the exchange-correlation energy per unit volume in a homogeneous electron gas with density ρ.

Periodic Kohn-Sham models

In the sequel, we will focus on the periodic versions of the Kohn-Sham LDA model. In the periodic setting, the nuclear configuration is supposed to be R-periodic, where R is a discrete periodic lattice of R 3 , and the simulation domain, sometimes referred to as the supercell, no longer consists of the whole space R 3 (as in (7.2.2)-(7.2.3)) but is a unit cell, denoted here by Ω, of the periodic lattice R. Periodic boundary conditions (PBC) are imposed to the Kohn-Sham orbitals (Born-von Karman PBC) at the boundary ∂Ω of the simulation cell Ω. This is the standard method to compute condensed phase properties with a limited number of atoms in the simulation cell, hence at a moderate computational cost. In most applications in solid state physics and materials science, the periodic Kohn-Sham models are discretized in Fourier modes, more commonly referred to as planewave basis sets in the physics and chemistry literature. This is the reason why we focus on this particular discretization method in the present work.

As a consequence, the domain of integration in (7.2.3) and (7.2.5) is now Ω instead of R 3 , and the Coulomb energy is now defined as

D Ω (ρ, ρ ) = Ω Ω G Ω (r, r )ρ(r)ρ (r )drdr = Ω ρ(r )[V coul (ρ )](r )dr ,
where the Green's function G Ω and the periodic Coulomb potential V coul (ρ ) are respectively solutions to the following problems

             -∆G Ω = 4π k∈R δ k - 1 |Ω| in R 3 , G Ω R -periodic, Ω G Ω = 0, and 
           -∆V coul (ρ ) = 4π ρ - 1 |Ω| Ω ρ in R 3 , V coul (ρ ) R -periodic, Ω V coul (ρ ) = 0.
The exchange-correlation functional in this periodic setting is given by

E xc,Ω (ρ) = Ω e LDA xc (ρ(r)) dr,
and the orthonormality constraints read

Ω φ i φ j = δ ij .

Pseudopotentials

The core electrons of an atom are barely affected by the chemical environment. In pseudopotential methods, the all-electron model is replaced by a reduced model explicitly dealing with valence electrons only, while core electrons are frozen in some reference state. The valence electrons are described by valence pseudo-orbitals, and the interaction between the valence electrons and the ionic cores (an ionic core consists of a nucleus and of the associated core electrons) is modelled by a nonlocal operator called a pseudopotential, constructed once and for all from single-atom reference calculations. The reduction of dimensionality obtained by getting rid of the core electrons results in a much less computationally expensive approach since only the valence pseudo-orbitals need to be computed. In addition, pseudopotentials are constructed in such a way that the valence pseudo-orbitals oscillate much less than the valence orbitals in the core region, hence can be approximated using smaller planewave bases, or discretized on coarser grids. Lastly, pseudopotentials are used to take into account, in the nonrelativistic framework of the Kohn-Sham model, some relativistic effects which play an important role in the simulation of heavy atoms.

The resulting model for the pseudo-orbitals is similar to (7.2.2)-(7.2.3), but presents some differences:

(i) N now denotes the number of valence electron pairs;

(ii) Φ now denotes the set of the pseudo-orbitals of the valence electrons;

(iii) the nuclear potential V nuc is replaced by a pseudopotential operator V ion modelling the interaction between the valence electrons on the one hand, and the nuclei and the core electrons on the other hand.

More precisely, the pseudopotential consists of two terms: a local component V local (whose associated operator is the multiplication by the R-periodic function V local ) and a nonlocal component V nl given by

V nl φ = J j=1 Ω ξ j (r)φ(r) dr ξ j , (7.2.6) 
where ξ j are regular enough R-periodic functions and J is an integer depending on the chemical nature of the ions in the unit cell. As a consequence, the second term in the Kohn-Sham energy functional (7.2.3) is replaced by

Ω ρ [Φ] V local + 2 N i=1 φ i |V nl |φ i , (7.2.7) 
where the Dirac bra-ket notation is used to represent the non-local part of the operator V ion .

Further, a correction to the exchange-correlation energy due to the introduction of pseudpotential is done by setting

E c xc,Ω (ρ [Φ] ) = Ω e LDA xc (ρ c (r) + ρ [Φ] (r)) dr,
where ρ c ≥ 0 is a nonlinear core-correction.

To summarize, we are therefore considering the following energy functional

E KS 0,Ω (Φ) = N i=1 Ω |∇φ i | 2 + Ω V local ρ [Φ] +2 N i=1 φ i |V nl |φ i + 1 2 D Ω (ρ [Φ] , ρ [Φ] )+E c xc,Ω (ρ [Φ]
), (7.2.8) and the set of admissible states

M = Φ = (φ 1 , • • • , φ N ) T ∈ H 1 # (Ω) N Ω φ i φ j = δ ij ,
where

H 1 # (Ω) = φ ∈ H 1 loc (R 3 ) φ R -periodic is the R-periodic H 1 -space.
The ground state energy is then defined by

I KS 0 = inf E KS 0,Ω (Φ), Φ ∈ M . (7.2.9)
It can be proven that, under reasonable assumptions on V nl , V local , and E c xc,Ω (see [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]), (7.2.9) has a minimizer Φ 0 = (φ 0 1 , . . . , φ 0 N ) ∈ M (see Section 7.3.3). The first optimality conditions read

∀1 ≤ i ≤ N, H 0 φ 0 i = N j=1 λ 0 ij φ 0 j , Ω φ 0 i φ 0 j = δ ij , (7.2.10) 
where the N × N matrix Λ 0 = (λ 0 ij ), which is the Lagrange multiplier of the matrix constraint Ω φ i φ j = δ ij , is symmetric, and where the Hamiltonian H 0 is defined as follows:

H 0 = - 1 2 ∆ + V ion + V coul (ρ 0 ) + V xc (ρ 0 ), with ρ 0 = ρ [Φ 0 ] , V ion = V local + V nl ,
and where

V xc (ρ)(r) = de LDA xc dρ (ρ c (r) + ρ(r)).
Note that H 0 is the Kohn-Sham operator

H [ρ] = - 1 2 ∆ + V ion + V coul (ρ) + V xc (ρ), (7.2.11) 
in the case where ρ is the ground state density ρ 0 .

In fact, (7.2.9) has an infinity of minimizers since any unitary transform of the Kohn-Sham orbitals Φ 0 in the sense of (7.2.12) below is also a minimizer of the Kohn-Sham energy. This is a consequence of the following invariance property:

∀Φ ∈ M, ∀U ∈ U(N ), U Φ ∈ M, ρ [U Φ] = ρ [Φ] and E KS 0,Ω (U Φ) = E KS 0,Ω (Φ), (7.2.12) 
where U(N ) is the group of orthogonal matrices:

U(N ) = U ∈ R N ×N | U T U = 1 N ,
1 N denoting the identity matrix of rank N . This invariance can be exploited to diagonalize the matrix of the Lagrange multipliers of the orthonormality constraints (see e.g. [START_REF] Dreizler | Density functional theory[END_REF]), yielding the existence of a minimizer (still denoted by Φ 0 ) with the same density ρ 0 , such that

H 0 φ 0 i = 0 i φ 0 i , Ω φ 0 i φ 0 j = δ ij , (7.2.13) 
for some 0 1 ≤ 0 2 ≤ • • • ≤ 0 N . As discussed in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], it is not known whether Kohn-Sham ground states satisfy the so-called Aufbau principle, that is whether 0 1 , • • • , 0 N are the lowest N eigenvalues of the Kohn-Sham Hamiltonian H 0 . However, this property seems to be satisfied in practice for most systems, and it is always satisfied for the extended Kohn-Sham model (see [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for details). We will assume here that the molecular system under consideration does satisfy the Aufbau principle. This allows us to solve the Kohn-Sham equations using iterative algorithms such as the one described in Section 7.3.2, which implicitly rely on the Aufbau principle.

Discretization and resolution of the Kohn-Sham model

Planewave discretization

In order to approximate the solution of (7.2.9), we first discretize the variational set M using a planewave basis set. This approximation setting is the state-of-the-art method for Kohn-Sham simulations in solid state physics and materials science. Thus the computational domain Ω equipped with periodic boundary conditions can be a cubic box, or more generally the unit cell of a periodic lattice R ⊂ R 3 . The valence pseudo-orbitals are expanded in terms of the functions e k (r) := |Ω| -1/2 e ik•r , which are the Fourier modes with wavevectors k ∈ R * , where R * denotes the dual lattice of R. The lattice R * indeed consists of all wavevectors k such that e k is R-periodic. In this article, we assume for simplicity that Ω = [0, L) 3 (L > 0) but our arguments can be easily extended to the general case. In this case, R = LZ 3 and R * = 2π L Z 3 . Recall that the family (e k ) k∈R * forms an orthonormal basis of

L 2 # (Ω, C) := u ∈ L 2 loc (R 3 , C) | u is R-periodic ,
and that for all v ∈ L 2 # (Ω, C),

v(r) = k∈R * v k e k (r) with v k = (e k , v) L 2 # = |Ω| -1/2 Ω v(r)e -ik•r dr.
For each s ∈ R, we denote by

H s # (Ω) := v = k∈R * v k e k ∀k, v -k = v * k , v 2 
H s # := k∈R * (1 + |k| 2 ) s | v k | 2 < ∞
the Sobolev space of real-valued periodic distributions with regularity H s .

The kinetic energy of a basis function e k is given by 1 2 |k| 2 , where | • | denotes the Euclidean norm. We introduce some energy cutoff E c > 0 and consider all basis functions whose kinetic energy is smaller than E c , i.e. |k| ≤ √ 2E c , to define the approximation space. That is, for each cutoff E c , we set N c = Ec 2 L π and consider the finite-dimensional discretization space

X Nc :=      k∈R * ,|k|≤ 2π L Nc v k e k ∀k, v -k = v * k      ⊂ s∈R H s # (Ω).
We also denote by Π Nc , the linear operator on the space of R-periodic distributions defined by

Π Nc k∈R * v k e k = k∈R * ,|k|≤ 2π L Nc v k e k .
The operator Π Nc | H s # (Ω) (which we shall also denote by Π Nc for convenience) is in fact the orthogonal projector from H s # (Ω) to X Nc for any s ∈ R, and we denote by Π ⊥ Nc = (1 -Π Nc ) the orthogonal projector on X ⊥ Nc , the orthogonal of X Nc in H s # (Ω) (again for any s ∈ R). Finally, the variational approximation to the ground state energy in X Nc is defined as

I KS 0,Nc = inf E KS 0 (Φ Nc ) , Φ Nc ∈ M ∩ [X Nc ] N . (7.3.1)
Using once again the invariance property (7.2.12), the Euler equations of this minimization problem can be diagonalized and therefore reduced to find the pairs (φ j,Nc , j,Nc ) j=1,...,N satisfying H Nc,proj φ j,Nc = j,Nc φ j,Nc ,

Ω φ i,Nc φ j,Nc = δ ij , 1,Nc ≤ 2,Nc ≤ . . . ≤ N,Nc , (7.3.2) 
for all i, j = 1, . . . , N . Here we define H Nc,proj : X Nc → X Nc by 

H Nc,proj = Π Nc H [ρ Nc ] Π Nc = - 1 2 Π Nc ∆Π Nc + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , with ρ Nc = ρ [Φ Nc ] , Φ Nc = (φ
H Nc = - 1 2 ∆ + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc ,
and that X Nc ⊕ X ⊥ Nc is a H Nc -stable decomposition of L 2 # (Ω). More precisely, the operator H Nc can be decomposed as follows:

H Nc =         H Nc,proj 0 0 -1 2 ∆              X Nc      X ⊥ Nc X Nc X ⊥

Nc

Note that, as we are using a planewave discretization, the operator -1 2 ∆ is diagonal on X ⊥ Nc with smallest eigenvalue larger than 1 2 LNc π 2 . Thus, as soon as

N,Nc < 1 2 LN c π 2 , (7.3.3) 
N,Nc being the N th eigenvalue of the operator H Nc,proj , Φ Nc is also solution to the following eigenvalue problem

H Nc φ j,Nc = j,Nc φ j,Nc , Ω φ i,Nc φ j,Nc = δ ij , 1,Nc ≤ 2,Nc ≤ . . . ≤ N,Nc , (7.3.4) 
k,Nc being the k-th eigenvalue of H Nc . Further, the energy can then alternatively, but equivalently to (7.2.8), be obtained by

E KS 0,Ω (Φ Nc ) = 2 N i=1 j,Nc - 1 2 D Ω (ρ Nc , ρ Nc ) + E c xc (ρ Nc ) - Ω V xc (ρ Nc ) ρ Nc , (7.3.5) 
where the right-hand side only depends on the eigenvalues and the electron density [START_REF] Harris | Simplified method for calculating the energy of weakly interacting fragments[END_REF]. This energy is called double-counting energy in the following.

SCF-iterations

In order to solve the nonlinear eigenvalue problem (7.3.2), a Self-Consistent Field (SCF) procedure is employed [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF]. It consists of solving a linear eigenvalue problem at each step, at which the Hamiltonian is computed from the density found at the previous step. Moreover, a linear charge mixing is performed in order to improve the convergence of the algorithm. The algorithm can be written as follows:

1. Initialization: Take an initial guess of the orbitals Φ 

Nc = α 0 ρ(i) Nc + min(i,m) k=1 α k ρ (i-k) Nc
with appropriately chosen mixing parameters satisfying min(i,m) k=0

α k = 1.

Output: If ρ (i)

Ncρ (i-1) Nc < η , where . is a given norm, stop, else go back to step 2.

Note that several points in this algorithm need to be specified for its practical implementation. Indeed, several linear eigenvalue solvers and several charge mixing procedures are available, and different norms can be used for the convergence test. Every possible choice could be used, without affecting the results presented in the next section. The choices made for the numerical tests reported in Section 7.5 will be described there.

Smoothness assumptions and a priori results

In order to guarantee the existence of minimizers of problem (7.2.9) and to study the convergence of the solutions to the discretized problem (7.3.1) to those of the continuous problem (7.2.9), some assumptions on the data are needed. However, to avoid technicalities, these assumptions are not detailed in the present paper and the interested reader is referred to [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF].

First, under sufficient regularity assumptions, problem (7.2.9) with energy functional (7.2.8) has a minimizer Φ 0 satisfying (7.2.13). Note that the Xα exchange-correlation functional defined by e Xα xc (ρ) = -C X ρ 4/3 , where C X > 0 is a given constant, satisfies these assumptions. They are also satisfied by the exact exchange-correlation functional.

Second, the following a priori estimates hold. 

Φ Nc ∈ (X Nc ) N ∩ M Φ 0 Φ Nc -Φ 0 H 1 # ≤ r 0 , with M Φ 0 = Ψ ∈ M Ψ -Φ 0 L 2 # = min U ∈U (N ) U Ψ -Φ 0 L 2 # ,
where U(N ) is the set of all unitary transforms in R N . Besides,

Φ 0 Nc -Φ 0 H s # ≤ C s N -(2-s) c Π Nc Φ 0 -Φ 0 H 2 # , | 0 i,Nc -0 i | -----→ Nc→∞ 0, γ Φ 0 Nc -Φ 0 2 H 1 # ≤ I KS 0,Nc -I KS 0 ≤ C Φ 0 Nc -Φ 0 2 H 1 # ,
for all 0 ≤ s ≤ 2, and for some constants γ > 0, C s ≥ 0, and C ≥ 0 independent of N c , where the 0 i , 0 i,Nc , 1 ≤ i ≤ N, are the N lowest eigenvalues (counting multiplicities) of the Hamiltonians

H 0 = H ρ [Φ 0 ] and H Nc = H ρ [Φ Nc ] respectively.
Stronger results can be obtained under additional assumptions on the exchange-correlation functional. We refer to [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for the details.

A post-processing based on perturbation theory

In this section, we propose a post-processing that is based upon the fact that the exact solution of the Kohn-Sham problem can be interpreted as a perturbation of the approximate solution. We assume that the tolerance parameter η defined in the SCF-procedure is sufficiently small. Given the result of the converged SCF procedure, i.e. given the eigenfunctions Φ Nc = (φ 1,Nc , . . . , φ N,Nc ) T and eigenvalues ( j,Nc ) j=1,...,N with density ρ Nc of the discretized nonlinear eigenvalue problem in the space X Nc , it is then possible to compute corrections for both the eigenfunctions and the eigenvalues of the problem in order to increase the accuracy.

The key observation is that the exact solution (φ 0 j , 0 j ) j=1,...,N satisfies

(H Nc + V Nc + W Nc ) φ 0 j = 0 j φ 0 j , Ω φ 0 i φ 0 j = δ ij ,
where

V Nc = V ion + V coul (ρ Nc ) + V xc (ρ Nc ) -Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , W Nc = V coul (ρ 0 ) + V xc (ρ 0 ) -V coul (ρ Nc ) + V xc (ρ Nc ) .
With these definitions, we obtain that

H [ρ Nc ] = H Nc + V Nc and H 0 = H Nc + V Nc + W Nc .
We then apply the nonlinear Rayleigh-Schrödinger perturbation method (see e.g. [START_REF] Gonze | Perturbation expansion of variational principles at arbitrary order[END_REF] and [START_REF] Cancès | A mathematical perspective on density functional perturbation theory[END_REF] for a mathematical analysis) using (φ j,Nc , j,Nc ) j=1,...,N as the reference solution and (φ 0 j , 0 j ) j=1,...,N as the perturbed solution, in order to build improved approximations ( φ j,Nc , j,Nc ) j=1,...,N based upon perturbation arguments. The use of perturbation theory in this setting seems to be new.

For the sake of simplicity, we will explain the argument assuming that all the eigenvalues under consideration are simple, so that non-degenerate perturbation theory applies. The general case can be dealt with the density matrix formalism (see [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF]). Since V Nc +W Nc is a compact perturbation of the Hamiltonian H Nc , we can define for ν ∈ [0, 1] H(ν) = H Nc + ν(V Nc + W Nc ) so that H(0) = H Nc and H(1) = H 0 . Expanding the orbitals and eigenvalues in terms of powers of the perturbation parameter ν and applying Kato's regular perturbation theory results in

φ j (ν) = ∞ =0 ν φ ( ) j,Nc , j (ν) = ∞ =0 ν ( ) j,Nc
, for all j = 1, . . . , N, so that (taking ν = 1)

φ 0 j = ∞ =0 φ ( ) j,Nc , 0 j = ∞ =0 ( ) j,Nc
, for all j = 1, . . . , N, with (φ

(0) j,Nc , (0) 
j,Nc ) = (φ j,Nc , j,Nc ) being the solution of the unperturbed (ν = 0) nonlinear eigenvalue problem (7.3.4). Indeed, one can show [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF] that V Nc +W Nc is not only H Nc -bounded but that the bound tends to 0 when N c → +∞. In consequence, the convergence radii of the above series tend to infinity when N c increases, so that we can guarantee convergence for ν = 1 and N c sufficiently large.

Further, incorporating a priori results stating that the H 1 -norm of the first-order perturbation of the orbitals generated by W Nc is negligible with respect to the one generated by V Nc allows us to consider only the latter, called φ (1,1) j,Nc . Then, a simple calculation shows that the firstorder correction to the eigenfunctions (φ j,Nc ) j=1,...,N due to V Nc is well-defined provided that equation (7.3.3) is verified, and is given by (see [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF] for details)

φ (1,1) j,Nc = -(- 1 2 ∆| X ⊥

Nc

j,Nc ) -1 r j for all j = 1, . . . , N, (

where

r j = H [ρ Nc ] φ j,Nc -j,Nc φ j,Nc = (H Nc + V Nc )φ j,Nc -j,Nc φ j,Nc ∈ X ⊥ Nc ,
is the residual of the eigenvalue problem, which can also be written as

r j = - 1 2 ∆ + V ion + V coul (ρ Nc ) + V xc (ρ Nc ) -j,Nc φ j,Nc . (7.4.2) 
Note that as φ

(1,1) j,Nc ∈ X ⊥ Nc , and -(-1 2 ∆| X ⊥ Nc j,Nc ) -1 is a diagonal operator in the Fourier basis, the first-order correction to the j-th eigenvector φ

(1,1) j,Nc is easy to compute. The first order correction to the eigenvalue originating from V Nc vanishes, and the one originating from W Nc is small from a priori results. The computable part of the second order correction is (using Dirac's bra-ket notation)

(2,1)

j,Nc = (φ (1,1) j,Nc , r j ) L 2 # = -r j |(- 1 2 ∆| X ⊥ Nc -j,Nc ) -1 |r j .
Hence φ

(1,1) j,Nc and

(2,1) j,Nc are well-defined (provided that N c is large enough). We then define the post-processed solution as φ j,Nc = φ j,Nc + φ (1,1) j,Nc , j,Nc = j,Nc +

(2,1) j,Nc , and

ρ Nc = ρ [ Φ Nc ] , (7.4.3) 
with Φ Nc = ( φ 1,Nc , . . . , φ N,Nc ) T . Therefore, the post-processed ground state energy can be provided, either following (7.2.8) by Even though definitions (7.2.8) and (7.3.5) are equivalent for the discrete ground states, i.e. for the exact solutions to problem (7.3.4), the two perturbed energies computed by (7.4.4) and (7.4.5) are not equal, and lead to different numerical results. From a computational viewpoint, the time needed to compute two energies (7.4.4) and (7.4.5) is almost the same. But it seems that (7.4.4) gives better approximations for the energy than the double counting formula (7.4.5).

ĨKS 0,Nc = N i=1 Ω |∇ φ i,Nc | 2 + Ω V local ρ Nc + 2 N i=1 φ i,Nc |V nl | φ i,Nc + 1 2 D Ω ( ρ Nc , ρ Nc ) + E c xc,Ω ( ρ Nc ), (7.4 
The numerical performance of these two formulas will be discussed in Section 7.5.

From a theoretical viewpoint, we can state the following result for the perturbed energy (7.4.4).

Theorem 7.4.1 ([97]). Let I KS 0,Nc be the planewave approximation of the ground state energy be defined by (7.3.1) and ĨKS 0,Nc the post-processed approximation given by (7.4.4). Then, under sufficient regularity assumptions (see [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF]), there exists a constant C > 0, independent of N c , such that ĨKS 0,Nc -

I KS 0 ≤ C N -2 c I KS 0,Nc -I KS 0 ,
where I KS 0 is the exact ground state energy, defined in (7.2.9).

Although the above inequality might not be not optimal (some numerical results seem to show that the improvement factor is better than N -2 c ), this result clearly indicates that the perturbation method leads to a substantial improvement of the accuracy of the energy in the asymptotic regime, that is when N c goes to infinity. Note, though, that most calculations are performed in practice in the pre-asympotic regime, with moderate values of N c . It is therefore important to check numerically that the perturbation method performs well also in the preasymptotic regime, which will be done in the next section. Let us also mention that the above inequality is concerned with the energy only. Obtaining similar estimates for other properties, and in particular for atomic forces, is a difficult task, which is work in progress.

From an implementational viewpoint, the residual r j , defined in (7.4.2), which is an infinitedimensional object belonging to Π ⊥ Nc , is represented on a discrete space X Nc,res based on some E c,res ≥ E c which, in turn, corresponds to a certain N c,res ≥ N c . Further, observing that the density ρ Nc belongs to X 2Nc (corresponding to 4E c and 2N c ), the potential V coul (ρ Nc ) therefore belongs to X 2Nc as well. The post-processing requires that the potentials V ion and V xc (ρ Nc ) can be expressed in the larger space with cutoff E c,res so that full knowledge of all the modes of the residual lying in X Nc,res are accessible. In practice, it might be simpler to obtain V ion and V xc (ρ Nc ) as elements of X Nc,res directly in order to avoid too many data structures associated with different cutoffs. The computation of this residual requires additional Fast Fourier Transforms (FFT) on the finer grid corresponding to E cut,res . Indeed, applying the Hamiltonian H [ρ Nc ] to the orbitals φ j,Nc requires two additional FFT's on the fine grid for each orbital.

Numerical results

We present here some results on a small molecule as a proof of concept. The alanine molecule which has 18 valence electron pairs is considered. The computation of the planewave approximation is based on KSSOLV [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF], a Matlab toolbox for solving the Kohn-Sham equations. Troullier-Martins pseudopotentials [START_REF] Troullier | A straightforward method for generating soft transferable pseudopotentials[END_REF] are considered, in combination with the Perdew-Zunger (PZ81) LDA-functional [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF][START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF]. Note that we obtained qualitatively the same results with the CO 2 molecule as well as the benzene molecule.

In all what follows, the computed solutions are compared to a reference solution, which is a solution computed on a very fine grid with a kinetic energy cutoff E ref c of 400 atomic units (a.u.). A coarse solution (labelled "without perturbation") is computed on a grid with cutoff E c , and the post-processed approximations given by the perturbation theory are computed on a grid with fine cutoff E c,res (labelled "with perturbation") (7.4.3). Note that the components of the Kohn-Sham orbitals on the coarse grid are not modified by the post-processing. The coefficients computed through the perturbation process correspond to basis functions with wave numbers larger than E c . We denote by λ the relation between the coarse and fine cutoffs, i.e.

λ = E c,res E c .
In the following, we simulate three scenarios. In each case, we compare the errors on the energies of the solutions with perturbation computed with either formula (7.4.4) or formula (7.4.5) to the errors on the energies of the solutions without perturbation. First, we fix a coarse cutoff E c , and we vary the fine cutoff E c,res , which corresponds to varying the parameter λ. In the second case, we fix a fine cutoff E c,res and we vary the coarse cutoff E c , which also corresponds to varying the parameter λ. Finally, we fix λ and we vary simultaneously the cutoffs E c and E c,res . Thus we can observe the improvement in the energy when applying the perturbation theory in these different frameworks. This enables us to find the best compromises between accuracy and computational resources, both in time and memory.

Simulations with a constant E c

Here, we fix E c , hence the dimension of the space in which we compute the coarse solution.

We then compute the post-processed corrections in spaces of different sizes characterized by different E c,res to obtain a more accurate solution. We observe on Figure 7.1 that for all the tested E c,res , the energy of the solution with perturbative corrections is more precise than the coarse solution as the relative energy error is improved by one to two orders of magnitude, depending on the energy formula used to compute the perturbed energy. Indeed, the formula (7.4.4) gives an energy always closer to the exact energy than the formula (7.4.5) based on double counting.

The relative time increases when the parameter λ increases, as it is more expensive to compute the perturbed solution on a larger grid than on a smaller one. However, the time necessary to compute the perturbative corrections corresponds approximately to 1% to 12% of the cost to compute the coarse solution, which is indeed very little. The cost to compute the perturbed energy is a little higher for the energy based on (7.4.4) than for the double counting energy (7.4.5), but the difference in negligible compared to the total computing time. Note that the cost in memory is also higher when E c,res is large, as the perturbed solution is then computed on a larger grid.

The improvement of the solution seems to be constant for λ ≥ 3, which means that the main improvement of the post-processing is due to coefficients corresponding to planewaves with kinetic energy slightly larger than E c . We therefore conclude that it seems useless to use a large λ and hence a large E c,res , to post-process the solution as the improvement is negligible while the cost in time and memory increases. The best choice of λ seems to vary, but a good choice seems to be around 2. 

Simulations with a constant E c,res

In this case, we fix the fine grid used for the computation of the perturbed solution but we compute it from different coarse solutions obtained with different values of E c . This corresponds to a case where the limiting parameter is the memory, and so the fine grid in which we can compute the perturbed solution is fixed. It is shown on Figure 7.2 that it is possible to get the same accuracy in energy by doing a small computation on a coarse grid and then postprocessing the coarse solution on a grid with parameter E c,res . The computational cost is in this case much reduced if we compare it to a classical approach consisting of computing the solution on the grid with cutoff E c,res .

First, the computational time needed to compute the perturbed solution from the unperturbed one is once again negligible compared to the time needed to compute the coarse solution, at least for small values of the parameter λ. The cost in terms of CPU time is also negligible using either (7.4.4) or (7.4.5) for the post-processed energy computation.

Second, we observe that for E c,res = 100 a.u. and E c,res = 200 a.u., the relative energy error for the solution with perturbation is always smaller than for the solution without perturbation by a factor of about 10 to 50. When λ increases, the error becomes larger, which is expected since E c decreases. Moreover it seems that the improvement is better for E c,res = 200 than for E c,res = 100.

The post-processed energy ĨKS 0,Nc given by (7.4.4) is in this case always closer to the exact energy than the energy ĨKS,DC 0,Nc given by (7.4.5). Indeed, the energy error for ĨKS,DC 0,Nc is often 2 to 5 times larger than the energy error based on ĨKS 0,Nc . Hence, the post-processed energy ĨKS 0,Nc improves the energy error of the solution on the coarse grid by a factor 10 to 100 whereas the post-processed energy based on double counting formula (7.4.5) improves the energy error only by a factor between 4 and 12.

Moreover, it is interesting to compare the time needed to reach a given accuracy for the method with or without perturbation. For example, for λ = 3 and E c,res = 200 a.u., the time needed to compute the perturbed solution is about 2600 seconds which is 7 times less than the time needed to compute the self-consistent solution on this grid (corresponding to λ = 1), whereas the energy error ĨKS 0,Nc given by (7.4.4) is of the same order of magnitude. Hence, when the solution on the coarse grid is not too crude, the perturbation theory enables us to significantly improve the solution at very low extra cost. 

Simulations with a constant λ

In this case, we fix the proportionality constant between E c and E c,res . For different values of E c , we consider the relative energy error without or with the perturbation corrections (Figure 7.3).

For all E c greater than 20 a.u., there is an improvement in energy when performing the perturbation corrections, using one or the other energy formula. The relative energy error of the solutions with perturbation is indeed lower than for the solutions without perturbation by a factor between 2 and 100. Once again, the energy formula (7.4.4) gives better results than the formula (7.4.5). The computational time increases as E c increases and the time necessary to compute the solution with perturbation is still very small compared to the computation of the coarse solution, and is less than 3% of the total computational time for λ = 1.4 and λ = 2, and no more than 8% of the total computational time for λ = 3. The computational time is always smaller for the energy formula (7.4.5) based on double counting than for the energy formula (7.4.4).

For all the values of E c tested, the best improvement is given either by λ = 2 or λ = 1.4, which drives us into using mostly small values of λ, as the computations are also less expensive in memory.

Concerning the two possible energy formulas for computing the post-processed energy, the energy formula (7.4.4) gives better results than (7.4.5). Note that the theoretical results obtained so far are only concerned with formula (7.4.4). However the formula (7.4.5) based on double counting is a little cheaper to compute to evaluate and also leads to an improvement of the energy.

In conclusion, it seems that whenever the coarse solution is accurate enough, the use of the perturbation method to post-process the solution improves the energy by a factor typically of more than 10. Since the computational cost of this post-process is negligible, it is possible to get the same accuracy as a solution computed on a large grid by first doing a smaller computation on a coarse grid and then post-processing the coarse solution using the perturbation method. This approach is much cheaper than the computation of the solution directly on a grid of size E c,res . 

Introduction

First-principle molecular simulation is a major tool to predict the properties of matter from the atomic to the macroscopic scales. It is widely used in different fields such as chemistry, condensed matter physics, or materials science. As a main advantage, it requires no empirical parameter except a few fundamental constants of physics (the reduced Planck constant , the electron mass m e , the elementary charge e, the dielectric permittivity of the vacuum ε 0 , the Boltzmann constant k B ), as well as the masses and atomic numbers of the nuclei contained in the system under consideration.

At this scale, matter is described as a system of nuclei and electrons, whose dynamics is modeled by a time-dependent many-body Schrödinger equation. This equation, which is an evolution partial differential equation on a 3 (M +N ) -dimensional space, where M is the number of nuclei and N the number of electrons, is way too costly to be solved in practice when (M + N ) exceeds 2 or 3. Hence approximations have to be resorted to. First, in almost all molecular simulations, the nuclei, which are thousands times heavier than electrons, are considered as point-like classical particles, and the electrons are supposed to be, at each time t, in their ground-state. This is called the Born-Oppenheimer approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF].

Many different approaches have then been proposed to compute the electronic ground-state. The most popular ones can be classified into three main classes:

• wavefunction methods, among which the Hartree-Fock, post Hartree-Fock, and multireference methods (see [START_REF] Helgaker | Molecular electronic-structure theory[END_REF], and [START_REF] Cancès | Computational quantum chemistry: A primer[END_REF] for a mathematical introduction);

• density functional theory (DFT) methods, consisting of orbital-free and Kohn-Sham models;

• quantum Monte Carlo methods [START_REF]Recent advances in Quantum Monte Carlo methods[END_REF][START_REF] Lester | Recent Advances in Quantum Monte Carlo Methods -Part II[END_REF].

The Kohn-Sham models [START_REF] Dreizler | Density functional theory[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] are the most widely used in physics and chemistry, as they provide a good compromise between accuracy and computational cost. In condensed matter physics and materials science, most Kohn-Sham calculations are performed in a rectangular box Ω, called a supercell, with periodic boundary conditions (Born-von Karman PBC). The most common method to discretize the Kohn-Sham equations then is to use a variational approximation in a plane-wave (Fourier) basis. For very large systems, unfortunately, using a fine discretization basis is too expensive, while using a coarse discretization basis leads to insufficiently accurate results.

In order to limit the computational cost of the method while preserving the quality of the numerical results, several post-processing methods have been proposed. Usually, the approach is to perform a full computation in a coarse basis, for which the computational cost is not excessively high, and then to make some not-too-expensive computation in a finer basis leading to a substantial improvement in accuracy.

In [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], we introduced a new post-processing method for periodic Kohn-Sham calculations in a plane-wave basis, leading to a significant gain in accuracy at a very limited computational extracost. This approach is based on the Rayleigh-Schrödinger perturbation method, considering the exact Kohn-Sham ground-state as a perturbation of the approximate ground-state computed in a finite basis set. Theoretical estimates in the asymptotic regime for the energy were announced and illustrated by numerical simulations. These simulations showed that the accuracy on the ground-state energy could be improved by a factor of 10 to 100 at a very limited extra-cost (about 3%).

In this contribution, we focus on the linear subproblem of the Kohn-Sham model. We apply the post-processing of the plane-wave approximation of Schrödinger equations introduced in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF] and present the proof of the improved accuracy. The linear subproblem consists in computing the rank-N ground-state density matrix γ 0 of a linear Schrödinger operator H = -1 2 ∆ + V, acting on the space L 2 # (Ω) of real-valued square-integrable periodic functions on R 3 with Ω as a periodic cell. For V ∈ L 2 # (Ω), the Hamiltonian H is diagonalizable in an orthonormal basis and its eigenvalues λ 0 1 ≤ λ 0 2 ≤ • • • (counting multiplicities) form a non-decreasing sequence of real numbers that tends to +∞. Denoting by (φ 0 i ) i≥1 an orthonormal basis of associated eigenvectors, and assuming that there is a gap g := λ 0 N +1λ 0 N > 0 between the N th and the (N + 1) st eigenvalues of H , the rank-N ground-state density matrix is defined, using Dirac's bra-ket notation, as

γ 0 = N i=1 |φ 0 i φ 0 i |.
It is therefore the orthogonal projector on the N -dimensional vector subspace of L 2 # (Ω) spanned by the eigenvectors associated with the lowest N eigenvalues of H . The ground-state energy is then defined as the scalar quantity

E 0 = N i=1 λ 0 i .
Note that E 0 is not equal to the Kohn-Sham ground-state energy when H is the Kohn-Sham Hamiltonian due to nonlinear effects, called double-counting in the chemistry and physics literatures.

Our main result is summarized in Theorem 8.4.1. We show that, in the asymptotic regime where the discretization space is large enough, the convergence rates of both the post-processed ground-state density matrix (built from the post-processed eigenvectors defined in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF]) and the post-processed ground-state energy are improved. Note that we do not make any nondegeneracy assumption on the lowest N eigenvalues of H ; only the presence of a positive gap between the N th and the (N + 1) st eigenvalues of H is required. As in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], our approach strongly relies on the fact that, in plane-wave approximations, the kinetic energy operator -1 2 ∆, which is the leading term in the Hamiltonian H , commutes with the orthogonal projector on the discretization space.

In general, our approach falls into the category of two-grid methods, which have been applied to the case of a linear eigenvalue problem in [START_REF] Xu | A two-grid discretization scheme for eigenvalue problems[END_REF]. It has then been extended to a class of elliptic nonlinear eigenvalue problems in [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF]. In this paper, the nonlinear eigenvalue problem is first solved on a coarse grid, and then a linear eigenvalue problem or a boundary problem is solved on a finer grid. Other post-processing methods have been proposed for nonlinear eigenvalue problems, for example in [START_REF] Maday | Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations[END_REF] for the Hartree-Fock problem (see also the references therein). This article is organized as follows. In Section 8.2.1, we present in detail the linear subproblem of the Kohn-Sham model, as well as the characterization of γ 0 as the unique solution to some constrained optimization problem, and some other useful classical results. In Section 8.2.3, we describe the plane-wave discretization of this optimization problem. In Section 8.2.4, we translate the a priori error analysis results of [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] into the density matrix formalism. Our postprocessing method based on Rayleigh-Schrödinger perturbation theory is described in Section 8.3. In Section 8.4.1, we present the main results of this paper, i.e.an improved convergence rate on the post-processed ground-state density matrix and energy. The proofs are given in Section 8.4.2. Some numerical simulations are presented in Section 8.5. The case of the nonlinear Kohn-Sham model will be dealt with in a forthcoming paper [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF].

Post-processing for the Kohn-Sham linear subproblem

In order to simplify the notation, we consider a cubic lattice R = LZ 3 (L > 0) corresponding to the supercell Ω = [0, L) 3 , but all our arguments straightforwardly apply to the general case of a lattice with lower or no point symmetry. For 1 ≤ p ≤ ∞ and s ∈ R + , we denote by

L p # (Ω) := u ∈ L p loc (R 3 , R) | u is R-periodic , H s # (Ω) := u ∈ H s loc (R 3 , R) | u is R-periodic ,
the spaces of real-valued R-periodic L p and H s functions, and by L(L 2 # ) the vector space of the bounded linear operators on L 2 # (Ω).

Problem setting

Let N ∈ N * and V ∈ L 2 # (Ω). In Kohn-Sham models, N is the number of electrons (or of electron pairs in closed-shell models) in the simulation cell, and V is an approximation of the Kohn-Sham effective potential. Let H be the operator on

L 2 # (Ω) with domain H 2 # (Ω) defined by ∀u ∈ H 2 # (Ω), H u = - 1 2 ∆u + Vu.
It is well-known that the operator H is self-adjoint, bounded below, with compact resolvent. It can therefore be diagonalized in an orthonormal basis: there exists a non-decreasing sequence (λ 0 i ) i≥1 of real numbers and an orthonormal basis

(φ 0 i ) i≥1 of L 2 # (Ω) consisting of functions of H 2 # (Ω) such that ∀i ≥ 1, H φ 0 i = λ 0 i φ 0 i . We denote by Φ 0 = (φ 0 1 , • • • , φ 0 N ) T and Λ 0 = diag(λ 0 1 , • • • , λ 0 N ).
A key assumption for our analysis is the following: Assumption 8.2.1. There is a gap between the N th and the (N + 1) st eigenvalues of H , i.e.

g := λ 0 N +1 -λ 0 N > 0.
We denote by F :=

λ 0 N +λ 0 N +1 2 
the Fermi level. Note that, in this setting, any real number in the range (λ 0 N , λ 0 N +1 ) is an admissible Fermi level. As already mentioned in the introduction, the purpose of the linear subproblem is to compute two quantities of interest:

1. the ground-state density matrix

γ 0 := 1 (-∞, F ] (H ) = N i=1 |φ 0 i φ 0 i |;
2. the ground-state energy

E 0 := Tr (H γ 0 ) = N i=1 λ 0 i ,
where Tr denotes the trace, and will be properly introduced in Section 8.2.2.

The linear subproblem can be formulated as a variational problem in several ways. First, introducing the quadratic form

H 1 # (Ω) ψ → ψ|H |ψ := 1 2 Ω |∇ψ| 2 + Ω V |ψ| 2 ∈ R
associated with H , the energy functional E defined by

∀Ψ = (ψ 1 , . . . , ψ N ) T ∈ H 1 # (Ω) N , E(Ψ) := N i=1 ψ i |H |ψ i = N i=1 1 2 Ω |∇ψ i | 2 + Ω V |ψ i | 2 ,
(8.2.1) and the (infinite-dimensional) Stiefel manifold

M = Ψ = (ψ 1 , . . . , ψ N ) T ∈ H 1 # (Ω) N ∀i, j = 1, . . . , N, Ω ψ i ψ j = δ ij , (8.2.2) 
we have

E 0 = inf {E(Ψ), Ψ ∈ M} . (8.2.3) 
Besides, Φ 0 = (φ 0 1 , . . . , φ 0 N ) T is a minimizer of (8.2.3). Note that Φ 0 is not the unique minimizer of (8. Therefore, U Φ 0 is a minimizer of (8.2.3) for all U ∈ O(N ). In fact, under Assumption 8.2.1, the set of minimizers of (8.2.3) is exactly equal to O(N )Φ 0 . For the sake of completeness, let us recall the proof of this elementary, but key, property. Let Ψ = (ψ 1 , • • • , ψ N ) T be a critical point of (8.2.3). The first-order optimality conditions satisfied by Ψ read ∀i, j = 1, . . . , N,

H ψ i = N j=1 λ ij ψ j , Ω ψ i ψ i = δ ij .
The N × N symmetric matrix Λ = (λ ij ) i,j=1,...,N is the Lagrange multiplier of the matrix constraint Ω ψ i ψ j = δ ij . It is not diagonal in general. On the other hand, since it is symmetric, there exists

U ∈ O(N ) such that U ΛU T = diag(λ 1 , • • • , λ N ) with λ 1 ≤ λ 2 ≤ • • • ≤ λ N . Then, Φ = (φ 1 , • • • , φ N ) T := U Ψ also is a critical point of (8.2.
3) with the same energy as Ψ, and we have

∀1 ≤ i, j ≤ N, H φ i = λ i φ i , Ω φ i φ j = δ ij and E(Φ) = E(Ψ) = N i=1 λ i .
For Ψ to be a minimizer of (8.2.3), we must have λ i = λ 0 i for all 1 ≤ i ≤ N . Under Assumption 8.2.1, we have in addition Span(ψ

1 , • • • , ψ N ) = Span(φ 1 , • • • , φ N ) = Span(φ 0 1 , • • • , φ 0 N ) = Ran(γ 0 ). Therefore, there exists U ∈ O(N ) such that Ψ = U Φ 0 .
To get rid of the gauge invariance (8.2.4), it is convenient to reformulate problem (8.2.3) in terms of density matrices. Introducing the (infinite-dimensional) Grassmann manifold 

Υ = γ ∈ L(L 2 # ) γ * = γ, γ 2 = γ, Tr (γ) = N, Tr (-∆γ) < ∞ , (8.2.5) its convex hull K = γ ∈ L(L 2 # ) γ * = γ, 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (-∆γ) < ∞ , ( 8 
≤ γ ≤ 1 means ∀u ∈ L 2 # (Ω), 0 ≤ u|γu ≤ u 2 L 2 #
. The precise meanings of the terms Tr (-∆γ) and Tr (H γ), as well as the proof of the fact that γ 0 is the unique minimizer of (8.2.8) and (8.2.9), will be given in the next section.

Functional setting

We denote by • the operator norm on L(L 2 # ), the space of bounded linear operators on L 2 # (Ω). We also need to introduce the Banach space S 1 (L 2 # ) of trace-class operators on L 2 # (Ω) and the Hilbert space S 2 (L 2 # ) of Hilbert-Schmidt operators on L 2 # (Ω), respectively endowed with the norm defined by A S 1 (L 2 # ) := Tr (|A|) = Tr ( √ A * A) and the inner product defined by (A, B) S 2 (L 2 # ) := Tr (A * B). We refer to [START_REF] Reed | Methods of modern mathematical physics[END_REF]Chapter VI] for an introduction to trace-class and Hilbert-Schmidt operators. Let us just recall here the properties which will be used in the sequel:

• for any orthonormal basis (e n ) n∈N of L 2 # (Ω), we have

∀A ∈ S 1 (L 2 # ), Tr (A) = n∈N e n |Ae n , ∀A ∈ S 2 (L 2 # ), A S 2 (L 2 # ) = Tr (A * A) 1/2 = n∈N Ae n 2 L 2 # 1/2 . If A ∈ L(L 2 #
) is a positive operator, that is if for all u ∈ L 2 # (Ω), there holds that u|Au ≥ 0, then the value of the sum

Tr (A) := n∈N e n |Ae n ∈ R + ∪ {+∞} is independent of the choice of the orthonormal basis (e n ) n∈N . If A ∈ L(L 2 # ) is positive and self-adjoint, then A ∈ S 1 (L 2 # ) if and only if Tr (A) < ∞; • S 1 (L 2 # ) ⊂ S 2 (L 2 # ) ⊂ L(L 2 # ) and for all A ∈ S 1 (L 2 # ), A ≤ A S 2 (L 2 # ) ≤ A S 1 (L 2 # ) ; (8.2.10) • for all A ∈ S 1 (L 2 # ) and B ∈ L(L 2 # ), we have AB ∈ S 1 (L 2 # ), BA ∈ S 1 (L 2 # ), Tr (AB) = Tr (BA), AB S 1 (L 2 # ) ≤ A B S 1 (L 2 # ) , BA S 1 (L 2 # ) ≤ A B S 1 (L 2 # ) ; (8.2.11)
• for all A ∈ S 1 (L 2 # ), there exists a unique function ρ A ∈ L 1 # (Ω), called the density associated with the operator A, such that for all V ∈ L ∞ # (Ω),

Tr (AV ) = Ω ρ A V,
where on the left-hand side of the above equality, V ∈ L(L 2 # ) denotes the multiplication operator by the function V ;

• for all A ∈ S 2 (L 2 # ) and B ∈ L(L 2 # ), we have AB ∈ S 2 (L 2 # ), BA ∈ S 2 (L 2 # ), AB S 2 (L 2 # ) ≤ A B S 2 (L 2 # ) , BA S 2 (L 2 # ) ≤ A B S 2 (L 2 # ) ; (8.2.12) • for all A ∈ S 2 (L 2 # ) and B ∈ S 2 (L 2 # ), AB ∈ S 1 (L 2 # ), BA ∈ S 1 (L 2 # ), Tr (AB) = Tr (BA) ≤ A S 2 (L 2 # ) B S 2 (L 2 # ) . (8.2.13) 
We set

∀Ψ = (ψ 1 , • • • , ψ N ) T ∈ L 2 # (Ω) N , Ψ L 2 # := N i=1 ψ i 2 L 2 # 1/2 , ∀Ψ = (ψ 1 , • • • , ψ N ) T ∈ H 1 # (Ω) N , Ψ H 1 # := (1 -∆) 1/2 Ψ L 2 # = N i=1 ψ i 2 H 1 # 1/2
, and more generally, for any operator A on L 2 # (Ω) with domain D(A),

∀Ψ ∈ [D(A)] N , AΨ L 2 # := N i=1 Aψ i 2 L 2 # 1/2
.

Let R * = 2π L Z 3 be the dual lattice of the periodic lattice R = LZ 3 . For k ∈ R * , we denote by e k the plane-wave with wavevector k, defined by

e k : R 3 → C x → |Ω| -1/2 e ik•x ,
where |Ω| = L 3 . The family (e k ) k∈R * forms an orthonormal basis of the complex Hilbert space

L 2 # (Ω, C) := u ∈ L 2 loc (R 3 , C) | u is R-periodic , endowed with the scalar product ∀u, v ∈ L 2 # (Ω, C), u|v = Ω u(r) v(r) dr,
where u(r) denotes the complex conjugate of u(r), and for all v ∈ L 2 # (Ω, C),

v(r) = k∈R * v k e k (r) with v k = e k |v = |Ω| -1/2 Ω v(r)e -ik•r dr.
Recall that the periodic Sobolev spaces H s # (Ω) can be characterized in a simple way using Fourier series: for s ∈ R, we have

H s # (Ω) := v = k∈R * v k e k ∀ k, v -k = v k , v 2 
H s # := k∈R * (1 + |k| 2 ) s | v k | 2 < ∞ ,
where the H s # inner product is defined by

∀u, v ∈ H s # (Ω), (u, v) H s # := k∈R * (1 + |k| 2 ) s u k v k .
Let 

∃C ∈ R + such that ∀u ∈ H 1 # (Ω), |∇|γ|∇|u L 2 # ≤ C u L 2 # ,
then |∇|γ|∇| can be uniquely extended to a bounded, self-adjoint, positive operator on L 2 # (Ω), also denoted by |∇|γ|∇| for simplicity. In this case, Tr (|∇|γ|∇|) is well-defined in R + ∪ {+∞}. In view of the fact that -∆ = |∇| 2 , the notation Tr (-∆γ) := Tr (|∇|γ|∇|) is commonly used in the mathematical physics literature. Let us emphasize that Tr (-∆γ) < ∞ only means that Tr (|∇|γ|∇|) < ∞; in particular, it does not imply that the operator -∆γ is in S 1 (L 2 # ). It follows from the Hoffmann-Ostenhof inequality [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF] that for all γ ∈ K, ρ γ ≥ 0 and

√ ρ γ ∈ H 1 # (Ω) → L 6 # (Ω).
The real number Tr (H γ) can therefore be defined for all γ ∈ K as

Tr (H γ) := 1 2 Tr (-∆γ) + Ω ρ γ V.
It is known in addition (see e.g. [START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF]) that, under Assumption 8.2.1, there exist 0

< c ≤ C < ∞ such that c(1 -∆) ≤ |H -F | ≤ C(1 -∆), (8.2.14) 
where

|H -F | = -γ 0 (H -F )γ 0 + (1 -γ 0 )(H -F )(1 -γ 0
) is defined by functional calculus for self-adjoint operators, and 

∀γ ∈ K, Tr (H γ) -Tr (H γ 0 ) = |H -F | 1/2 (γ -γ 0 ) 2 S 2 (L 2 # ) . ( 8 
< c ≤ C < ∞ such that ∀γ ∈ K, c (1 -∆) 1/2 (γ -γ 0 ) 2 S 2 (L 2 # ) ≤ E(γ) -E 0 ≤ C (1 -∆) 1/2 (γ -γ 0 ) 2 S 2 (L 2 
# ) . (8.2.16) This implies in particular that γ 0 is the unique minimizer of (8.2.8) and (8.2.9).

Note that for all γ ∈ Υ, as γ 2 = γ and by the cyclicity of the trace, there also holds Tr (H γ) = Tr (γH ) = Tr (γH γ).

Discretization

In order to solve problem (8.2.3) numerically, we use a plane-wave discretization. For each k ∈ R * , the kinetic energy of the plane-wave e k is given by 1 2 |k| 2 , where | • | denotes the Euclidean norm. To construct a discretization space, we introduce some energy cut-off E c > 0 and consider all plane-waves whose kinetic energy is smaller than E c , i.e.|k| ≤ √ 2E c . For each cut-off energy E c , we set

N c = Ec 2 L π and 
X Nc :=      k∈R * ,|k|≤ 2π L Nc v k e k v -k = v k , ∀k      ⊂ s∈R H s # (Ω).
For all s ∈ R, for all r ≤ s, and for each v ∈ H s # (Ω), the best approximation of v in X Nc in any H r # -norm is

Π Nc v = k∈R * ,|k|≤ 2π L Nc v k e k .
We denote by Π ⊥ Nc = (1 -Π Nc ) the orthogonal projector on X ⊥ Nc , the orthogonal of X Nc . The variational approximation to the ground-state energy in X Nc is defined as

E 0,Nc = inf E(Ψ Nc ) , Ψ Nc ∈ M ∩ [X Nc ] N , (8.2.17) 
with E and M defined in (8.2.1) and ( 8

.2.2). Let λ 1,Nc ≤ λ 2,Nc ≤ • • • ≤ λ dim(X Nc )
,Nc be the dim(X Nc ) eigenvalues (counting multiplicites) of the Hermitian linear operator H Nc,proj : X Nc → X Nc defined as 

H Nc,proj = Π Nc H Π Nc = - 1 2 Π Nc ∆Π Nc + Π Nc VΠ Nc . ( 8 
H Nc,proj φ i,Nc = λ i,Nc φ i,Nc , Ω φ i,Nc φ j,Nc = δ ij , ∀1 ≤ i, j ≤ N,
and let Φ Nc := (φ 1,Nc , . . . , φ N,Nc ) T . Then Φ Nc is a minimizer of (8.2.17). Denoting by 

γ 0,Nc = N i=1 |φ i,Nc φ i,Nc | ( 

A priori results on the density matrices

From now on, we make the following technical assumption:

Assumption 8.2.2. V is a R-periodic potential such that V ∈ L ∞ # (Ω) and ∇V ∈ L 3 # (Ω).
The a priori error estimates established in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for the nonlinear Kohn-Sham model also hold true for the linear subproblem. In order to use these results in the present setting, it is convenient to reformulate them in terms of density matrices. As in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], we introduce

M Φ 0 := Ψ ∈ M Ψ -Φ 0 L 2 # = min U ∈O(N ) U Ψ -Φ 0 L 2 # ,
where Φ 0 = (φ 0 1 , . . . , φ 0 N ) T , (φ 0 1 , . . . , φ 0 N ) being a family of orthonormal eigenvectors of H associated with the eigenvalues λ 0 1 ≤ • • • ≤ λ 0 N fixed once and for all. Proceeding as in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF], it can be shown that, for N c large enough, (8.2.17) has a unique minimizer Φ 0 Nc = (φ 0 1,Nc , . . . , φ 0 N,Nc ) T belonging to M Φ 0 , that the set of minimizers of (8.2.17) is O(N )Φ 0 Nc , and that, consequently, all the minimizers of (8.2.17) share the same density matrix. In particular

γ 0,Nc = N i=1 |φ 0 i,Nc φ 0 i,Nc |.
We denote by

Λ 0 Nc = (λ 0 ij,Nc ) 1≤i,j≤N := ( φ 0 i,Nc |H|φ 0 j,Nc ) 1≤i,j≤N ∈ R N ×N (8.2.21)
the Lagrange multiplier matrix of the orthonormality constraints. Note that the matrix Λ 0 Nc is not diagonal in general, but that we have

E 0,Nc = Tr (Λ 0 Nc ).
The following lemma allows one to translate the a priori results of [ 

< c ≤ C < ∞ and N 0 c ∈ N, such that for all N c ≥ N 0 c , Φ 0 Nc -Φ 0 L 2 # ≤ γ 0,Nc -γ 0 S 2 (L 2 # ) ≤ √ 2 Φ 0 Nc -Φ 0 L 2 # , (8.2.22) c (1 -∆) 1/2 (Φ 0 Nc -Φ 0 ) L 2 # ≤ (1 -∆) 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (Φ 0 Nc -Φ 0 ) L 2 # . (8.2.23)
The proof is given in the Appendix.

We then immediately infer from [44, Theorem 4.2] that under Assumptions 8.2.1 and 8.2.2, there exist

C ∈ R + and N 0 c ∈ N such that for all N c ≥ N 0 c , γ 0 -γ 0,Nc S 2 (L 2 # ) ≤ CN -2 c , (8.2.24) γ 0 -γ 0,Nc S 2 (L 2 # ) ≤ CN -1 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) , (8.2.25) and Λ 0 -Λ 0 Nc F ≤ C (1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 # ) , (8.2.26) 
where . F denotes the Frobenius norm. 

H Nc =         H Nc,proj 0 0 -1 2 ∆              X Nc      X ⊥ Nc X Nc X ⊥ Nc (8.3.1)
The eigenvalues of the Laplace operator, which is diagonal in plane-wave bases, are explicitly known and its smallest eigenvalue on the invariant subspace

X ⊥ Nc is 1 2 LNc π
2 . Therefore, as soon as

λ N,Nc < 1 2 LN c π 2 , (8.3.2) 
where we recall that λ 1,Nc ≤ • • • ≤ λ N,Nc are the lowest N eigenvalues (counting multiplicities) of the operator H Nc,proj defined in (8.2.18), we have ∀j = 1, . . . , N, H Nc φ j,Nc = λ j,Nc φ j,Nc , and ∀i, j = 1, . . . , N,

Ω φ i,Nc φ j,Nc = δ ij , (8.3. 
3) and λ 1,Nc ≤ • • • ≤ λ N,Nc are also the lowest N eigenvalues (counting multiplicities) of the operator H Nc . A key observation is that that the lowest energy eigenmodes of H satisfy ∀j = 1, . . . , N, (H Nc + V ⊥ Nc ) φ 0 j = λ 0 j φ 0 j , and ∀i, j = 1, . . . , N,

Ω φ 0 i φ 0 j = δ ij , (8.3.4) where V ⊥ Nc = V -Π Nc VΠ Nc . (8.3.5)
We can therefore apply the Rayleigh-Schrödinger perturbation method [START_REF] Kato | Perturbation theory for linear operators[END_REF] using (φ j,Nc , λ j,Nc ) j=1,...,N as the reference solution and (φ 0 j , λ 0 j ) j=1,...,N as the perturbed solution, in order to build improved approximations of the orbitals and eigenvalues respectively denoted by ( φ j,Nc ) j=1,...,N and ( λ j,Nc ) j=1,...,N , as well as an improved density matrix γ Nc and improved energy E 0,Nc .

Corrections computation

More precisely, we apply first-order perturbation to the analytic family of operators H (β) = H Nc + βV ⊥ Nc , where β ∈ R is a parameter, which amounts to considering H (0) = H Nc and (8.3.3) as the unperturbed eigenvalue problem, and H (1) = H and (8.3.4) as the perturbed eigenvalue problem. Assuming that the eigenvalues are not degenerate, we obtain at first order for the eigenfunctions, and at second order for the eigenvalues,

∀ j = 1, . . . , N, φ 0 j φ 0 j,Nc + φ (1) j,Nc , λ 0 j λ j,Nc + λ (2) 
j,Nc , where φ

j,Nc = --

1 2 ∆ -λ j,Nc -1 r j ∈ X ⊥ Nc , (8.3.6) 
with r j being the residual

r j = - 1 2 ∆ + V -λ j,Nc φ j,Nc = H Nc + V ⊥ Nc -λ j,Nc φ j,Nc = V ⊥ Nc φ j,Nc , (8.3.7) 
and

λ (2) j,Nc = φ (1) j,Nc |r j = -r j | - 1 2 ∆ -λ j,Nc -1 |r j . (8.3.8)
We observe that the corrections on the eigenfunctions given in (8.3.6) are well-defined even if λ j,Nc is degenerate. We therefore define the perturbed eigenvectors, density matrix, and energy for the general case as follows.

Definition 8.3.1 (Perturbed eigenvectors, eigenvalues, density matrix, and energy). For all N c ≥ N 0 c and all j = 1, . . . , N , the perturbed eigenvectors are defined as

φ j,Nc = φ j,Nc + φ (1) 
j,Nc , the perturbed eigenvalues as λ j,Nc = λ j,Nc + λ Hence, the perturbed energy, which is defined as the sum of the perturbed eigenvalues, is not equal to the energy of the perturbed density matrix, i.e. E 0,Nc = Tr (H γ Nc ).

Remark 8.3.3. Note that the quantities φ (1) j,Nc are easily computable. Indeed, the operator -1 2 ∆λ j,Nc is diagonal in plane-wave bases, hence very easy to invert. Moreover, only two FFT's are needed to compute the residual or V ⊥ Nc φ j,Nc on a larger grid, via a product in the physical space.

Convergence improvement on the density matrix and the energy

Main results

The main results of this article are collected in the following theorem. 

c ≥ N 0 c , (1 -∆) 1/2 ( γ Nc -γ 0 ) S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) , (8.4.1) 
and Let Γ be the circle in the complex plane symmetric with respect to the real axis and containing the real numbers λ 0 1 -1 and F . There exists N 0 c ∈ N such that for all N c ≥ N 0 c , Γ encloses the lowest N eigenvalues of both the operators H and H Nc , and none of the higher ones.

E 0,Nc -E 0 ≤ CN -2 c E 0,Nc -E 0 . ( 8 
Proof. As H and H Nc are self-adjoint operators, their eigenvalues noted respectively (λ 0 i ) i∈N * and (λ i,Nc ) i∈N * (with increasing values and counting multiplicities) are real. From the gap assumption 8.2.1, and the definition of the Fermi level, we have ∀i = 1, . . . , N, λ 0 i < F , and ∀i > N, λ 0 i > F . (8.4.

3)

The plane-wave discretization being variational, there holds ∀i = 1, . . . , dim(X Nc ), λ 0 i ≤ λ i,Nc . Moreover, classical convergence results (see e. Therefore, there exists N 0 c ∈ N such that for all N c ≥ N 0 c , λ N,Nc ≤ λ N,N 0 c < F , and the eigenvalues of the Laplace operator on X ⊥ Nc are larger than λ 0 N +1 > F , so that 

∀N c ≥ N 0 c , ∀i = 1, . . . , N, λ i,Nc ≤ λ N,N 0 c < F , and ∀i > N, λ i,Nc ≥ λ 0 N +1 > F . ( 8 
Nc + γ (1) Nc γ 0,Nc =γ 0,Nc N i=1 |φ (1) i,Nc φ i,Nc | + |φ i,Nc φ (1) i,Nc | + N i=1 |φ (1) i,Nc φ i,Nc | + |φ i,Nc φ (1) i,Nc | γ 0,Nc =γ 0,Nc N i=1 |φ i,Nc φ (1) i,Nc | + N i=1 |φ (1) i,Nc φ i,Nc |γ 0,Nc = N i=1 |φ i,Nc φ (1) i,Nc | + N i=1 |φ (1) i,Nc φ i,Nc | = γ (1) Nc . Hence γ 0,Nc γ 0 + γ 0 γ 0,Nc = 2γ 0,Nc + γ (1) Nc + Q Nc γ 0,Nc + γ 0,Nc Q Nc = γ 0,Nc + γ Nc + Q Nc γ 0,Nc + γ 0,Nc Q Nc , so that (γ 0 -γ 0,Nc ) 2 = γ 0 -(γ 0,Nc γ 0 + γ 0 γ 0,Nc ) + γ 0,Nc = γ 0 -γ Nc -Q Nc γ 0,Nc -γ 0,Nc Q Nc ,
from which we deduce (8.4.10). Lemma 8.4.5. There exist C ∈ R + and N 0 c ∈ N, such that for all N c ≥ N 0 c ,

(1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) .
Proof. By cyclicity of the trace, noting that (γ 0γ 0,Nc ) is of finite rank, and using (8.2.11) and (8.2.10),

(1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 2 S 2 (L 2 # ) = Tr (γ 0 -γ 0,Nc ) 2 (1 -∆)(γ 0 -γ 0,Nc ) 2 = Tr (γ 0 -γ 0,Nc ) 2 (γ 0 -γ 0,Nc )(1 -∆)(γ 0 -γ 0,Nc ) ≤ (γ 0 -γ 0,Nc ) 2 (γ 0 -γ 0,Nc )(1 -∆)(γ 0 -γ 0,Nc ) S 1 (L 2 # ) ≤ γ 0 -γ 0,Nc 2 (γ 0 -γ 0,Nc )(1 -∆)(γ 0 -γ 0,Nc ) S 1 (L 2 # ) ≤ γ 0 -γ 0,Nc 2 S 2 (L 2 # ) (1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 # ) .
Using the a priori estimate of γ 0γ 0,Nc S 2 (L 2 # ) given in (8.2.24) finishes the proof.

We now provide an estimate for (1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) which will be useful in the proof of Lemma 8.4.7 and estimate (8.4.2). Lemma 8.4.6. There exist C ∈ R + and N 0 c ∈ N, such that for

N c ≥ N 0 c , (1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) . (8.4.11) Proof. Decomposing V ⊥ Nc γ 0,Nc as V ⊥ Nc γ 0,Nc = H (γ 0,Nc -γ 0 ) + H γ 0 -H Nc γ 0,Nc , we get (1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) ≤ (1 -∆) -1/2 H (γ 0,Nc -γ 0 ) S 2 (L 2 # ) + (1 -∆) -1/2 (H γ 0 -H Nc γ 0,Nc ) S 2 (L 2 # ) . (8.4.12)
Since (1 -∆) -1/2 H (1 -∆) -1/2 is a bounded operator (see e.g. [START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF]Lemma 1] for a proof of this classical result), there exists C ∈ R + such that for all N c ∈ N,

(1 -∆) -1/2 H (γ 0,Nc -γ 0 ) S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) . (8.4.13)
In order to bound the second term of the right-hand side of (8.4.12), we first rewrite the operator H γ 0 -H Nc γ 0,Nc as follows, denoting by λ 0 ij = λ 0 i δ ij , and using λ 0 ij,Nc defined in (8.2.21):

H γ 0 -H Nc γ 0,Nc = N i=1 λ 0 i |φ 0 i φ 0 i | - N i,j=1 λ 0 ij,Nc |φ 0 i,Nc φ 0 j,Nc | = N i=1 λ 0 i |φ 0 i φ 0 i | -|φ 0 i,Nc φ 0 i,Nc | + N i=1 λ 0 i |φ 0 i,Nc φ 0 i,Nc | - N i,j=1 λ 0 ij,Nc |φ 0 i,Nc φ 0 j,Nc | = N i=1 λ 0 i |φ 0 i φ 0 i | -|φ 0 i,Nc φ 0 i,Nc | + N i,j=1 (λ 0 ij -λ 0 ij,Nc )|φ 0 i,Nc φ 0 j,Nc |.
Using the triangle and the Cauchy-Schwarz inequality, we get 

H γ 0 -H Nc γ 0,Nc S 2 (L 2 # ) ≤ N i=1 λ 0 i |φ 0 i φ 0 i | -|φ 0 i,Nc φ 0 i,Nc | S 2 (L 2 # ) + N i,j=1 (λ 0 ij -λ 0 ij,Nc )|φ 0 i,Nc φ 0 j,Nc | S 2 (L 2 # ) ≤ N i=1 |λ 0 i | |φ 0 i φ 0 i | -|φ 0 i,Nc φ 0 i,Nc | S 2 (L 2 # ) + N i,j=1 |λ 0 ij -λ 0 ij,Nc | |φ 0 i,Nc φ 0 j,Nc | S 2 (L 2 # ) ≤ N i=1 |λ 0 i | 2 1/2 N i=1 |φ 0 i φ 0 i | -|φ 0 i,Nc φ 0 i,Nc | 2 S 2 (L 2 # ) 1/2 + Λ 0 -Λ 0 Nc F   N i,j=1 |φ 0 i,Nc φ 0 j,Nc | 2 S 2 (L 2 # )   1/2 ≤ 2 N i=1 |λ 0 i | 2 1/2 Φ 0 -Φ 0 Nc L 2 # + N Λ 0 -Λ 0 Nc F .
c ≥ N 0 c , H γ 0 -H Nc γ 0,Nc S 2 (L 2 # ) ≤ CN -1 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) +C (1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 # ) .
Since (1 -∆) -1/2 ≤ 1, this shows in particular that 

(1 -∆) -1/2 (H γ 0 -H Nc γ 0,Nc ) S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) . ( 8 
0 c ∈ N such that for all N c ≥ N 0 c , (1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) .
Proof. Using definition (8.4.8) and the fact that (z -H Nc ) -1 and γ 0,Nc commute, we obtain

(1 -∆) 1/2 Q Nc γ 0,Nc = 1 2iπ Γ (1 -∆) 1/2 (z -H ) -1 V ⊥ Nc (z -H Nc ) -1 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 dz. Since Ran(V ⊥ Nc γ 0,Nc ) ⊂ X ⊥ Nc , we have V ⊥ Nc γ 0,Nc = Π ⊥ Nc V ⊥ Nc γ 0,Nc . Observing that (z -H Nc ) -1 Π ⊥ Nc = Π ⊥ Nc z + 1 2 ∆ |X ⊥ Nc -1 Π ⊥ Nc ,
we thus obtain

(z -H Nc ) -1 V ⊥ Nc γ 0,Nc = (z -H Nc ) -1 Π ⊥ Nc V ⊥ Nc γ 0,Nc = Π ⊥ Nc z + 1 2 ∆ |X ⊥ Nc -1 V ⊥ Nc γ 0,Nc .
Therefore,

(1 -∆) 1/2 Q Nc γ 0,Nc = 1 2iπ Γ (1 -∆) 1/2 (z -H ) -1 (1 -∆) 1/2 × (1 -∆) -1/2 V ⊥ Nc (1 -∆) -1/2 Π ⊥ Nc × Π ⊥ Nc (1 -∆) 1/2 (z + 1 2 ∆) -1 (1 -∆) 1/2 Π ⊥ Nc × (1 -∆) -1/2 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 dz. (8.4.15) First, (1 -∆) -1/2 V ⊥ Nc (1 -∆) -1/2 Π ⊥ Nc = (1 -∆) -1/2 V(1 -∆) -1/2 Π ⊥ Nc = Π ⊥ Nc (1 -∆) -1/2 V(1 -∆) -1/2 ≤ Π ⊥ Nc (1 -∆) -1 (1 -∆) 1/2 V(1 -∆) -1/2 .
Since (1 -∆) 1/2 V(1 -∆) -1/2 equals the operator norm of V, considered as a multiplicative operator from H 1 # (Ω) to H 1 # (Ω), it can be shown using classical Sobolev embeddings that there exists C ∈ R + such that

(1 -∆) 1/2 V(1 -∆) -1/2 ≤ C ( V L ∞ + ∇V L 3 ) , which is bounded under Assumption 8.2.2. Since Π ⊥ Nc (1 -∆) -1 ≤ (1 + N 2 c ) -1 for all N c ∈ N, there exist C ∈ R + and N 0 c ∈ N such that for all N c ≥ N 0 c , (1 -∆) -1/2 V ⊥ Nc (1 -∆) -1/2 Π ⊥ Nc ≤ CN -2 c . (8.4.16) Finally, max z∈Γ (1 -∆) -1/2 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) = N i=1 max z∈Γ |z -λ i,Nc | -2 (1 -∆) -1/2 V ⊥ Nc φ i,Nc 2 L 2 # 1/2 ≤ max z∈Γ, i=1,...,N |z -λ i,Nc | -2 N i=1 (1 -∆) -1/2 V ⊥ Nc φ i,Nc 2 L 2 # 1/2 = max z∈Γ, i=1,...,N |z -λ i,Nc | -2 (1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) .
From the definition of the contour Γ, max z∈Γ, i=1,...,N |zλ i,Nc | -2 is bounded uniformly in N c for N c large enough. Hence, combining the above inequality with (8.4.11), we obtain that there exist

C ∈ R + and N 0 c ∈ N such that for all N c ≥ N 0 c , max z∈Γ (1 -∆) -1/2 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) . (8.4.17) 
We are now in position to estimate 

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) . We start from (8.4.15). It is classical that max z∈Γ (1 -∆) 1/2 (z -H ) -1 (1 -∆)
Π ⊥ Nc (1 -∆) 1/2 (z + 1 2 ∆) -1 (1 -∆)
0 c ∈ N such that for all N c ≥ N 0 c , (1 -∆) 1/2 γ 0,Nc Q Nc S 2 (L 2 # ) ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) .
Proof. Noting that γ 2 0,Nc = γ 0,Nc , using (8.2.13) and the cyclicity of the trace, we obtain

(1 -∆) 1/2 γ 0,Nc Q Nc S 2 (L 2 # ) ≤ (1 -∆) 1/2 γ 0,Nc S 2 (L 2 # ) γ 0,Nc Q Nc S 2 (L 2 # ) = (1 -∆) 1/2 γ 0,Nc S 2 (L 2 # ) Q Nc γ 0,Nc S 2 (L 2 #
) , since γ 0,Nc is a finite-rank orthogonal projector. Moreover, as the orbitals

(φ i,Nc ) i=1,••• ,N are bounded in H 1 # (Ω) uniformly in N c , (1 -∆) 1/2 γ 0,Nc S 2 (L 2 #
) is also bounded uniformly in N c . On top of that, noting that (1 -∆) -1/2 ≤ 1, we have If the perturbed density matrix were satisfying γ Nc ∈ K, we could deduce from (8.2.16) that the error E 0,Nc -E 0 would be non-negative and converge to zero as

Q Nc γ 0,Nc S 2 (L 2 # ) ≤ (1 -∆) -1/2 (1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ (1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 
(1-∆) 1/2 ( γ Nc -γ 0 ) 2 S 2 (L 2 # )
when N c goes to infinity, yielding an improvement factor for the energy of order N -4 c . However, as pointed out in Remark 8.3.2, γ Nc does not belong to K in general. We are going to show that the improvement factor for the energy is in fact of order N -2 c . We have E 0,Nc -E 0 = Tr (γ 0,Nc H γ Nc ) -Tr (γ 0 H γ 0 ). As Tr (γ 0 ) 2 = N and Tr (γ 0,Nc γ Nc ) = Tr (γ 2 0,Nc ) = N , the energy difference can be written as follows

E 0,Nc -E 0 = Tr (γ 0,Nc (H -F ) γ Nc ) -Tr (γ 0 (H -F )γ 0 ) = Tr ((γ 0,Nc -γ 0 )(H -F )( γ Nc -γ 0 )) + Tr (γ 0 (H -F )( γ Nc + γ 0,Nc -2γ 0 )) = Tr ((γ 0,Nc -γ 0 )(H -F )( γ Nc -γ 0 )) +2Tr (γ 0 (H -F )(γ 0,Nc -γ 0 ))+Tr γ 0 (H -F )γ (1) 
Nc .

(8.4.18)

We now estimate each of these three terms. First, noting that (H 

-F ) = -γ 0 |H -F | + (1 - γ 0 )|H -F |,
((γ 0,Nc -γ 0 )(H -F )( γ Nc -γ 0 )) | = Tr ((γ 0,Nc -γ 0 )(1 -γ 0 )|H -F |( γ Nc -γ 0 )) -Tr ((γ 0,Nc -γ 0 )γ 0 |H -F |( γ Nc -γ 0 )) ≤ |H -F | 1/2 (1 -γ 0 )(γ 0,Nc -γ 0 ) S 2 (L 2 # ) + |H -F | 1/2 γ 0 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) × H -F | 1/2 ( γ Nc -γ 0 ) S 2 (L 2 # ) ≤ 2 |H -F | 1/2 (γ 0,Nc -γ 0 ) S 2 (L 2 # ) × |H -F | 1/2 ( γ Nc -γ 0 ) S 2 (L 2 # )
. From (8.2.14) and (8.4.1), there exist C ∈ R + and N 0 c ∈ N, such that for all

N c ≥ N 0 c , |Tr ((γ 0,Nc -γ 0 )(H -F )( γ Nc -γ 0 )) | ≤ CN -2 c (1 -∆) 1/2 (γ 0,Nc -γ 0 ) 2 S 2 (L 2 # ) . (8.4.19) 
Second, noting that for all i = 1, . . . , N , φ 0 i |γ 0γ 0,Nc |φ 0 i ≥ 0, we get

|Tr (γ 0 (H -F )(γ 0,Nc -γ 0 )| = N i=1 (λ 0 i -F ) φ 0 i |γ 0,Nc -γ 0 |φ 0 i ≤ max i=1,...,N |λ 0 i -F | N i=1 φ 0 i |γ 0 -γ 0,Nc |φ 0 i = max i=1,...,N |λ 0 i -F | N -Tr (γ 0,Nc γ 0 ) = 1 2 max i=1,...,N |λ 0 i -F | γ 0 -γ 0,Nc 2 S 2 (L 2 # ) .
From (8.2.25), there exist C ∈ R + and N 0 c ∈ N, such that for all

N c ≥ N 0 c , |Tr ((γ 0,Nc -γ 0 )(H -F )( γ Nc -γ 0 )) | ≤ CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 # ) .
(8.4.20) Third, noting that for i, j = 1, . . . , N, φ

j,Nc |φ 0 i,Nc = 0, φ 0 i L 2 # = 1, φ j,Nc L 2 # (1) 
= 1, and using (8.3.9) and the Cauchy-Schwarz inequality, we get 

Tr γ 0 (H -F )γ (1) Nc = N i=1 (λ 0 i -F ) φ 0 i |γ (1) Nc |φ 0 i = 2 N i=1 N j=1 (λ 0 i -F ) φ 0 i |φ j,Nc φ (1) j,Nc |φ 0 i ≤ 2 max i=1,...,N |λ 0 i -F | N i=1 N j=1 φ 0 i |φ j,Nc φ (1) 
j,Nc |φ 0 i -φ 0 i,Nc ≤ 2 max i=1,...,N |λ 0 i -F | N i=1 φ 0 i -φ 0 i,Nc L 2 # N j=1 φ (1) j,Nc L 2 # ≤ 2N max i=1,...,N |λ 0 i -F | Φ 0 -Φ 0 Nc L 2 #   N j=1 φ (1) j,Nc 2 L 2 #   1/2
N i=1 φ (1) i,Nc 2 L 2 # = N i=1 (- 1 2 ∆ -λ i,Nc ) -1 Π ⊥ Nc V ⊥ Nc φ i,Nc 2 L 2 # ≤ max i=1,••• ,N (- 1 2 ∆ -λ i,Nc ) -1 (1 -∆) 1/2 Π ⊥ Nc 2 N i=1 (1 -∆) -1/2 V ⊥ Nc φ i,Nc 2 L 2 # ≤(1 + N 2 c ) -1 max i=1,••• ,N (- 1 2 ∆ -λ i,Nc ) -1 (1 -∆) 2 N i=1 (1 -∆) -1/2 V ⊥ Nc φ i,Nc 2 L 2 # =(1 + N 2 c ) -1 max i=1,••• ,N (- 1 2 ∆ -λ i,Nc ) -1 (1 -∆) 2 (1 -∆) -1/2 V ⊥ Nc γ 0,Nc 2 S 2 (L 2 # ) . Therefore, since max i=1,••• ,N (-1 2 ∆-λ i,Nc ) -1 (1-∆) 2 is bounded uniformly in N c , we deduce from (8.4.11) that there exist C ∈ R + and N 0 c ∈ N, such that for all N c ≥ N 0 c , N i=1 φ (1) i,Nc 2 L 2 # ≤ CN -2 c (1 -∆) 1/2 (γ 0,Nc -γ 0 ) 2 S 2 (L 2 # ) . ( 8 
0 c ∈ N, such that for all N c ≥ N 0 c , Tr γ 0 (H -F )γ (1) Nc ≤ CN -2 c (1 -∆) 1/2 (γ 0,Nc -γ 0 ) 2 S 2 (L 2 # ) . ( 8 

Numerical results

We present in this section some results to illustrate the statements of Theorem 8.4.1 for several eigenvalue clusters and potentials with different regularities. We focus mainly on the conver-gence rate improvement, and not in the low computational computational cost of the method, which has been demonstrated for the nonlinear problem of Kohn-Sham equations in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF].

In all what follows, we consider a domain Ω = [0, 10] 3 in atomic units (a.u.). The computed solutions are compared to a reference solution, which is a solution computed on a very fine grid with a kinetic energy cutoff E ref = 800 a.u. depends, which corresponds to a discretization parameter N ref 58.5, and 382323 Fourier coefficients per orbital. In each case, we denote the reference energy by E 0 and the reference density matrix by γ 0 .

The coarse solutions are computed on a grid with cutoff E c , and corresponding N c , and have energy E 0,Nc and density matrix γ 0,Nc . In order to avoid errors coming from the size of the finite grid used for the computation of the corrections, we compute the post-processed solutions in the same grid as the reference solution, i.e. on a grid with energy cutoff E ref .

Note that the components of the orbitals on the coarse grid are not modified by the post-processing. One only needs to compute the coefficients corresponding to basis functions with wave-numbers larger than E c .

The implementation is based on KSSOLV [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF], a Matlab library for solving Kohn-Sham equations. We use the linear eigenvalue resolution routine for solving (8.3.3). However, the routine has been modified in order to take into account all necessary Fourier coefficients of the potential V when solving the problem on coarse grids with energy cutoffs E c .

The tested potentials denoted by V s are defined by their Fourier coefficients as

Vs 0 = 0, and ∀k ∈ R * \{0}, Vs k = - c s |k| 2s ,
where s is a regularity parameter which varies between 1 and 2, and c s a multiplicative constant. For s > 5/4, the potential V s is smooth enough to verify Assumption 8.2.2, hence we should observe the improvement in the convergence rate given in Theorem 8.4.1. For s ≤ 5/4, the potential does not verify Assumption 8.2.2, but we can compute post-processed eigenfunctions and eigenvalues. It actually still yields an improvement on the energy and the density matrix. Note that for s = 1, this potential has the same regularity as the Coulomb potential.

For all the tested potentials, the lowest eigenvalue of the Hamiltonian -1 2 ∆+V is simple. There are gaps between the 5 th and 6 th eigenvalues and the 10 th and 11 th eigenvalues. Therefore, in the following, we present the results of the post-processing method for clusters including one, five, and ten eigenvalues. This guarantees that the gap Assumption 8.2.1 is satisfied. Let us remind that we consider the lowest eigenvalues of the Hamiltonian.

In Subsection 8.5.1, we show how the post-processing procedure decreases both the energy error E 0,Nc -E 0 and the Hilbert-Schmidt norm of the density matrix error

(1 -∆) 1/2 (γ 0,Nc - γ 0 ) S 2 (L 2 # )
in the case of a potential with regularity coefficient s = 2 and a cluster of five eigenvalues. In Subsection 8.5.2, we study the convergence rate improvement of both the energy and the density matrix for different clusters of eigenvalues, still in the case of a potential with regularity coefficient s = 2. Finally, we study in Subsection 8.5.3 the influence of the potential regularity on the convergence rate improvement for the energy and the density matrix, in the case of the cluster composed of the five lowest eigenvalues.

Convergence of the density matrix and the energy

We consider the potential V 2 with Fourier coefficients

V2 0 = 0, and ∀k ∈ R * \{0}, V2 k = - 0.01 |k| 4 .
For all energy cutoffs E c between 10 and 200 a.u. by step of 10, we compute the five lowest eigenvalues and eigenvectors of the discrete Hamiltonian. We build the discrete density matrix γ 0,Nc as in (8.2.19), and compute the discrete energy E 0,Nc (8.2.20). Then, we apply the postprocessing as described in Section 8.3 and we compute the post-processed density matrix γ Nc as well as the perturbed energy E 0,Nc . For the potential, we choose such a small multiplicative constant to better observe the asymptotic regime numerically within the range of tested cutoffs E c .

As we can see on the left part of Figure 8.1, the energy error between the post-processed energy and the reference energy E 0,Nc -E 0 is 5 to 50 times smaller than the energy error between the coarse energy and the reference energy E 0,Nc -E 0 . More precisely, the energy error is reduced by a factor of about 5 for small values of N c and up to 50 for large values of N c .

We observe a similar behavior for the density matrix error on the right part of Figure 8.1. Indeed, the Hilbert-Schmidt norm of the difference between the reference and the coarse density matrices (1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) is 5 to 50 times larger than the error between the reference and the post-processed density matrix

(1 -∆) 1/2 (γ 0 -γ Nc ) S 2 (L 2 # ) . 10 15 20 25 30 -8 -7 -6 -5 -4 -3 -2 -1 
N c

Energy error 

E0,N c -E0 E0,N c -E0 10 
-∆) 1/2 (γ 0 -γ Nc ) S 2 (L 2 # )
and

(1 -∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # )
for energy cutoffs between 10 and 200 a.u. This corresponds to values of N c between 7 and 31.

Comparison between different eigenvalue clusters

We now consider three different eigenvalue clusters composed of one, four and ten eigenvalues, with the same potential V 2 . The three corresponding gaps are respectively equal to 8.84.10 -1 , 1.80.10 -1 and 3.42.10 -1 .

For these three clusters, we compute a reference solution, and then we compute discrete solutions within cutoffs E c varying between 10 and 200 a.u. On the left of Figure 8.2, we plot the ratio between the energy error with post-processing and without post-processing 

E 0,Nc -E 0 E 0,Nc -E 0 for
1-∆) 1/2 (γ 0 -γ 0,Nc ) S 2 (L 2 # ) (1-∆) 1/2 (γ 0 -γ Nc ) S 2 (L 2 # )
behaves also like N -1.8 c in the asymptotic regime, as shown on the left of Figure 8.2.

Comparison of different regularities

Lastly, we compute the post-processing in the case of the cluster composed of the five lowest eigenvalues with four potentials having different regularity coefficients. More precisely, we consider potentials .5 , and V 2 ,, with constants c s equal to 0.01. In theory, the potentials V 2 and V 1.5 verify Assumption 8.2.2, the potential V 1.25 is just at the limit, and V 1 does not verify this assumption. However, for each of these potentials, we can compute the post-processed energy and density matrix. Numerically, we observe the same improved rate of convergence both for the energy error ratio (on the top of Figure 8.3) and for the density matrix error ratio (on the bottom of Figure 8.3) for the potentials V 2 and V 1.5 close to N -2 c , in fact about N -1.8 c . For the potentials V 1.25 and V 1 , the improvement is lower in rate, but we still observe an improvement, which is about N -1.5 c for the energy for both potentials, and about N -1.6 c for the density matrix for V 1.25 , and N -1.3 c for V 1 . Note that for these two cases, the tested E c are far from convergence, so the asymptotic regime is clearly not reached. However, testing larger values of N c is numerically costly. Thus, with a low regularity, we observe an improved convergence both for the energy and the density matrix already in the preasymptotic regime. Appendix: proof of Lemma 8.2.3

V 1 , V 1.25 , V 1 
-1.3 1 -1.6 1 -1.8 N c (1-∆) 1/2 ( γN c -γ0) S 2 (L 2 # ) (1-∆) 1/2 (γ0,N c -γ0) S 2 (L 2 # ) s = 1 s = 1.25 s = 1.5 s = 2
We start by proving (8.2.22). Denoting by M Nc the N × N overlap matrix with entries (M Nc ) i,j = φ 0 i,Nc |φ 0 j , we have

γ 0,Nc -γ 0 2 S 2 (L 2 # ) = 2   N - N i,j=1 | φ 0 j,Nc |φ 0 i | 2   = 2 N -Tr (M Nc M T Nc )
and

Φ 0 Nc -Φ 0 2 L 2 # = 2 N - N i=1 φ 0 i,Nc |φ 0 i = 2 (N -Tr (M Nc )) .
We therefore have to show that

2N -2Tr (M Nc ) ≤ 2N -2Tr (M Nc M T Nc ) ≤ 2(2N -2Tr (M Nc )).
Since Φ 0 Nc belongs to M Φ 0 , we have from [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]Lemma 4.3]

M Nc = M T Nc = (M Nc M T Nc ) 1/2 and 0 ≤ M Nc ≤ 1.
Hence, Tr (M Nc M T Nc ) = Tr (M 2 Nc ) ≤ Tr (M Nc ), from which we deduce the left inequality in (8.2.22). The right inequality in (8.2.22) holds since

2N -4Tr (M Nc ) + 2Tr (M Nc M T Nc ) = 2N -4Tr (M Nc ) + 2Tr (M 2 Nc ) = 2Tr (M Nc -I N ) 2 ≥ 0.
Let us now show (8.2.23). From [44, Theorem 4.2], there exist two constants 0

< c ≤ C < ∞ and N 0 c ∈ N such that for all N c ≥ N 0 c , c (1 -∆) 1/2 (Φ 0 Nc -Φ 0 ) 2 L 2 # ≤ E 0,Nc -E 0 ≤ C (1 -∆) 1/2 (Φ 0 Nc -Φ 0 ) 2 L 2 # .
Hence, using (8.2.16) finishes the proof.

Introduction

To determine the electronic ground-state of a system within the Born-Oppenheimer approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF], DFT Kohn-Sham models [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] are among the state-of-the-art methods, especially for their good trade-off between accuracy and computational cost. In the context of condensed matter physics and materials science, most simulations of the Kohn-Sham models are performed with periodic boundary conditions, for which a planewave (Fourier) discretization method is particularly suited (see the introduction of [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF] for more detail on the physical context). Nevertheless, this method scales cubically with respect to the number of electrons in the system, and becomes expensive for large systems.

In previous works [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF][START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], we have proposed a post-processing method to provide cheaper and still accurate results for this problem. This two-grid method consists of computing first a rough approximation of the solution to the Kohn-Sham problem in a coarse planewave basis. This solution is then corrected in a fine basis, based on first-order Rayleigh-Schrödinger perturbation theory, considering the exact Kohn-Sham ground-state as a perturbation of the approximate ground-state computed in the coarse basis. As shown in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], this method leads numerically to a substantial improvement for the ground-state energy, the improvement factor varying between 10 and 100 for small size systems such as the alanine molecule. Besides, the computational extra-cost did not exceed about 3-5% of the total computations, depending on the size of the chosen fine basis.

In this article, we focus on the theoretical improvement of this post-processing method for the Kohn-Sham problem. We provide the proofs of theoretical estimates presented in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], which partly rely on the proofs for the linear subproblem of the Kohn-Sham model presented in the first part of this contribution [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. Compared to the procedure proposed in [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], we construct here two different post-processed sets of orbitals from the ground-state orbitals of the discrete Kohn-Sham problem in the coarse basis. The first one is derived directly from first-order Rayleigh-Schrödinger perturbation theory, but is not a priori orthonormal; the second one is orthonormal. From these two sets of orbitals, we define in Lemma 9.4.1 two corresponding density matrices, which are orthogonal projectors on the space spanned by the post-processed orbitals, and two post-processed energies. Note that, since the problem is nonlinear, the corrections given by the perturbative expansion at first-order cannot be computed exactly. However, we derive that the neglected uncomputable contributions are a priori small.

The main result of this article is provided in Theorem 9.5.1. We show that, as in the linear case, the convergence rates of both the post-processed ground-state density matrices and the post-processed ground-state energies are improved within the asymptotic regime where the discretization space is large enough. On top of that, we show that the two versions of the post-processing lead to the same improvement on the density matrix error, but to different improvements on the energy. Indeed, only the post-processed energy computed from the orthonormal post-processed orbitals presents a convergence doubling compared to the density matrix error. These results are valid under the assumption that there is gap between the highest occupied orbital and the lowest unoccupied orbital, which corresponds to considering insulators. All other assumptions come from the a priori analysis for the Kohn-Sham problem and do not differ from [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]. Also, our post-processing method crucially relies on the fact that the Laplace operator, which is the leading part in the Hamiltonian, is diagonal in a planewave basis, so that it commutes with the orthogonal projector on the discretization space.

This article is organized as follows. In Section 9.2.1, we present the Kohn-Sham model in the periodic setting, and define the main quantities of interest: the ground-state orbitals (φ 0 1 , . . . , φ 0 N ), the density matrix γ 0 and the energy E 0 . In Section 9.2.2, we briefly recall the functional setting used in the following sections. In Section 9.3.1, we present the planewave discretization of this Kohn-Sham problem. In Section 9.3.2, we detail the smoothness assumptions on the potentials in the Hamiltonian and we recall a priori estimates derived in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]. We also translate these results in terms of density matrix formalism. In Section 9.4, we describe the post-processing method based on Rayleigh-Schrödinger perturbation theory, and in particular define the corrections. In Section 9.5.1, we present the main results of this paper, i.e. an improved convergence rate on the post-processed ground-state density matrices and energies. The proofs are given in Section 9.5.2.

Periodic Kohn-Sham models with pseudopotentials

Problem setting

In this article, we adopt the system of atomic units, for which = 1, m e = 1, e = 1, 4π 0 = 1. Thus, the electric charge of the electron is -1, and the charges of the nuclei are positive integers. We consider a periodic setting, therefore the nuclear configuration is supposed to be R-periodic, R being a periodic lattice with corresponding supercell Ω. To simplify the notation, we consider a cubic lattice R = LZ 3 (L > 0), which corresponds to a cubic supercell Ω = [0, L) 3 . But our arguments also apply in the more general case of a lattice with lower or no point symmetry. For 1 ≤ p ≤ ∞ and s ∈ R + , we denote by

L p # (Ω) := u ∈ L p loc (R 3 , R) | u is R-periodic , H s # (Ω) := u ∈ H s loc (R 3 , R) | u is R-periodic ,
the spaces of real-valued R-periodic L p and H s functions.

We consider a spin-restricted LDA Kohn-Sham model [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] with pseudopotentials. This method is typically used for computing condensed phase properties, when the number of atoms in the simulation cell is limited. A detailed presentation of this model employing the same notations can be found in [50, Section 2], see also [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]. We recall here only the main features of the model. Given a system with N valence electron pairs, we are considering the following energy functional

E KS 0,Ω (Ψ) = N i=1 Ω |∇ψ i | 2 + Ω V local ρ [Ψ] +2 N i=1 ψ i |V nl |ψ i + 1 2 D Ω (ρ [Ψ] , ρ [Ψ] )+E c xc,Ω (ρ [Ψ] ), (9.2.1)
where the different terms of the energy are described below. The set of admissible states is

M = Ψ = (ψ 1 , . . . , ψ N ) T ∈ H 1 # (Ω) N Ω ψ i ψ j = δ ij . (9.2.2)
The electronic density reads Under some assumptions on V nl , V local , and E c xc,Ω presented in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] and recalled in Section 9.3.2, (9.2.4) has a minimizer Φ 0 = (φ 0 1 , . . . , φ 0 N ) ∈ M. Noting that the energy is invariant under a unitary transformation of the orbitals, i.e. ∀Ψ ∈ M, ∀U ∈ U(N ), U Ψ ∈ M, ρ [U Ψ] = ρ [Ψ] and E KS 0,Ω (U Ψ) = E KS 0,Ω (Ψ), (9.2.5)

where U(N ) is the group of orthogonal matrices:

U(N ) = U ∈ R N ×N | U T U = 1 N , (9.2 

.6)

1 N denoting the identity matrix of rank N , any unitary transform of the Kohn-Sham orbitals Φ 0 in the sense of (9.2.5) is also a minimizer of the Kohn-Sham energy, and (9.2.4) has an infinity of minimizers. It is therefore possible to diagonalize the matrix of the Lagrange multipliers in the first-order optimality conditions relative to (9. Let us also define the Kohn-Sham operator for a given density ρ as

H [ρ] = - 1 2 ∆ + V ion + V coul (ρ) + V xc (ρ), (9.2.7) 
so that H = H [ρ 0 ] . The potentials V local , V coul (ρ), and V xc (ρ) being multiplicative, we use the same notations for the potentials as functions on Ω, and for the corresponding multiplicative operators.

We will suppose in the following that the system under consideration satisfies the Aufbau principle, so that λ 0 1 ≤ λ 0 2 ≤ • • • ≤ λ 0 N are the lowest N eigenvalues of the Kohn-Sham Hamiltonian H 0 . Note that, although this property seems to hold in practice for most systems, it has not been proved in general, except for the extended Kohn-Sham model (see [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] for details). Also, as in the linear case [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], we will make the following assumption: Assumption 9.2.1. There is a gap between the N th and the (N + 1) st eigenvalues of H, i.e.

g := λ 0 N +1 -λ 0 N > 0.
In this setting, the Fermi level F could be defined as any real number in the range (λ 0 N , λ 0 N +1 ). We define it as F :=

λ 0 N +λ 0 N +1 2 .
The purpose of this problem is to compute two quantities of interest:

1. the ground-state density matrix γ 0 based on the orbitals Φ 0 = (φ 0 1 , . . . , φ 0 N ) T , defined as 2. the ground-state energy defined as E 0 := E KS 0,Ω (Φ 0 ).

γ 0 := 1 (-∞, F ] (H 0 ) = N i=1 |φ 0 i φ 0 i |, (9.2 
We refer to [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF] for the definition of the operator trace Tr .

Functional setting

In this article, the functional setting is similar to [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. We denote by • the operator norm on L(L 2 # ), the space of bounded linear operators on L 2 # (Ω). We also denote by S 1 (L 2 # ) the Banach space of trace-class operators on L We denote by Π Nc the orthogonal projector on X Nc for any H s # (Ω), s ∈ R, defined as

Π Nc v = k∈R * ,|k|≤ 2π L Nc v k e k ,
and by Π ⊥ Nc = (1 -Π Nc ) the orthogonal projector on X ⊥ Nc , the orthogonal complement to X Nc . Finally, the variational approximation to the ground-state energy in X Nc is defined as

I KS 0,Nc = inf E KS 0 (Ψ Nc ) , Ψ Nc ∈ M ∩ [X Nc ] N . (9.3.1)
Using again the invariance property (9.2.5), the Euler equations of this minimization problem can be diagonalized and reduced to find the pairs (φ j,Nc , λ j,Nc ) j=1,...,N satisfying ∀j = 1, . . . , N, H Nc,proj φ j,Nc = λ j,Nc φ j,Nc , and ∀i, j = 1, . . . , N, φ i,Nc |φ j,Nc = δ ij , (9.3.2) λ 1,Nc ≤ λ 2,Nc ≤ . . . ≤ λ N,Nc , where H Nc,proj : X Nc → X Nc is defined as Finally, the ground-state energy is defined as .3.4) In order to solve the nonlinear eigenvalue problem (9.3.2), a Self-Consistent Field (SCF) procedure is employed [START_REF] Yang | KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations[END_REF]. It consists of solving a linear eigenvalue problem at each step, at which the Hamiltonian is computed from the density found at the previous step. The details of the algorithm in this setting can be found in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF] and the references therein.

H Nc,proj = Π Nc H [ρ Nc ] Π Nc = -
I KS 0,Nc = E KS 0 (Φ Nc ). ( 9 

Smoothness assumptions and a priori results

Smoothness assumptions

In order to guarantee the existence of minimizers of problem (9.2.4) and to study the convergence of the solutions to the discretized problem (9.3.1) to those of the continuous problem (9.2.4), some assumptions are needed. They are described in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] but we recall here the main hypotheses, under which the proofs of Theorem 9.5.1 will hold.

We assume for the local potential V local that, The assumptions (9.3.7), (9.3.8) and (9.3.9) are for example satisfied by the Xα exchangecorrelation functional with α = 1/3 (e Xα xc (ρ) = -C X ρ 4/3 , where C X > 0 is a given constant). The exact exchange-correlation functional also verifies these assumptions [START_REF] Dreizler | Density functional theory[END_REF]. Also, let us assume that ρ c ∈ H m-3/2-#

∃m > 3, C ≥ 0 s.t. ∀k ∈ R * , |( V local ) k | ≤ C|k| -m , ( 9 
(Ω). A priori results on the density matrices

In order to use the a priori results of [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] in the proofs of our estimates, we first show that similar a priori results hold in the density matrix formalism. To start with, let us define the solution to the discrete problem lying in the space

M Φ 0 := Ψ ∈ M Ψ -Φ 0 L 2 # = min U ∈U (N ) U Ψ -Φ 0 L 2 # ,
where U(N ) is defined in (9.2.6) and M in (9.2.2). Therefore we define Φ 0 Nc ∈ M Φ 0 such that

Φ 0 Nc -Φ 0 L 2 # = min U ∈U (N ) U Φ Nc -Φ 0 L 2 # , (9.3.13) 
where Φ Nc is a solution to (9.3.2). From the following lemma, we can write the a priori results presented in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]Theorem 4.2] in the density matrix formalism.

Lemma 9.3.1 (L 2 # and H 1 # norm equivalences). There exist c, C > 0 such that for all Ψ 0 = (ψ 0 1 , . . . , ψ 0 N ) ∈ M Φ 0 , with corresponding density matrix γ 0 Ψ = N i=1 |ψ 0 i ψ 0 i |, The proof is given in the Appendix. Note that this lemma is more general than the similar result provided in the linear case [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]Lemma 2.3], as γ 0 Ψ can be any density matrix and not only the discrete density matrix γ 0,Nc .

Ψ 0 -Φ 0 L 2 # ≤ γ 0 Ψ -γ 0 S 2 (L 2 # ) ≤ √ 2 Ψ 0 -Φ 0 L 2 # , ( 9 
Based on Lemma 9.3.1, it is possible to express the results of [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]Theorem 4.2] in terms of density matrices, and in the following, we will use some of these results stated for -m + 3/2 < s < m + 1/2 in the particular cases where s = -1, 0, 1. Thus, under assumptions (9. 

(1 -∆) -1/2 (Φ 0 Nc -Φ 0 ) L 2 # ≤ CN -2 c
(1 -∆) 1/2 (γ 0,Ncγ 0 ) S 2 (L 2 # ) , (9.3.17)

γ 0 -γ 0,Nc S 2 (L 2 # ) ≤ CN -2 c , (9.3.18) 
(1 -∆) where . F denotes the Frobenius norm.

To show that the uncomputable terms in the perturbative development, which will be defined in (9.4.6), can be neglected, some properties on the Coulomb potential, as well as on the total potential and the exchange-correlation functional are needed. From [44, (3.19)], there holds for the Coulomb multiplicative potential ∀s ∈ R, ∀ρ 1 , ρ 2 ∈ H s # (Ω),

V coul (ρ 1 ) -V coul (ρ 2 ) H s+2 # ≤ C ρ 1 -ρ 2 H s # , (9.3.21) 
from which we deduce in particular with s = 0 using Sobolev embeddings that 9.3.22) which is in particular bounded by a constant independent of N c . Moreover, under Assumptions (9.3.7)-(9.3.12), V local + V coul (ρ Nc ) + V xc (ρ Nc ) ∈ H

V coul (ρ 0 ) -V coul (ρ Nc ) L ∞ # + ∇ V coul (ρ 0 ) -V coul (ρ Nc ) L 3 # ≤ C ρ 0 -ρ Nc L 2 # , ( 

3/2+ #

(Ω), for > 0, therefore there exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c , From [44, (4.25)] and the definition of the density (9.2.3), ρ c + sρ 0 + (1s)ρ Nc is uniformly bounded in H σ # (Ω) for some σ > 3/2 uniformly in N c and s. As for all s ∈ [0, 1], ρ c + sρ 0 + (1s)ρ Nc is bounded away from zero uniformly in N c , and from (9.3.9) and (9.3.12), the quantity ρ c + sρ 0 + (1s)ρ Nc is also uniformly bounded in H σ # (Ω). Note that for all σ > 3/2 and for all 0 ≤ r ≤ σ, H σ # (Ω) is an ideal of H r # (Ω), which implies, in particular that for all r ≥ 0 and all σ > 3/2, for some constant C r,σ ≥ 0 independent of f and g. From this, we deduce that there exist C > 0 and N 0 c ∈ N such that for N c > N 0 c , 

V local + V coul (ρ Nc ) + V xc (ρ Nc ) L ∞ # + ∇ (V local + V coul (ρ Nc ) + V xc (ρ Nc )) L 3 # ≤ C, (9.3.23) and V xc (ρ 0 ) -V xc (ρ Nc ) L ∞ # + ∇ V xc (ρ 0 ) -V xc (ρ Nc ) L 3 # ≤ C. ( 9 
V xc (ρ 0 ) -V xc (ρ Nc ) H -1 # ≤ C ρ 0 -ρ Nc H -1 # . ( 9 

Post-processing of the planewave approximation

Our post-processing method strongly relies on the fact that the Laplace operator is diagonal in planewaves, so that its eigenvalues are explicitly known. Indeed, the smallest eigenvalue on X ⊥ Nc being strictly larger than 4 πNc Replacing H Nc,proj by H Nc in the equations satisfied by Φ Nc will be crucial in our analysis. Conversely, the exact solution (φ 0 j , λ 0 j ) j=1,...,N satisfies

(H Nc + V ⊥ Nc + W Nc ) φ 0 j = λ 0 j φ 0 j , Ω φ 0 i φ 0 j = δ ij , (9.4.2) 
where

V ⊥ Nc = [V ion + V coul (ρ Nc ) + V xc (ρ Nc )] -Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , (9.4.3) 
and

W Nc = [V coul (ρ 0 ) + V xc (ρ 0 )] -[V coul (ρ Nc ) + V xc (ρ Nc )]. (9.4.4)
As described in [50, Section 4], we rely on Rayleigh-Schrödinger perturbation method [START_REF] Kato | Perturbation theory for linear operators[END_REF] to define improved orbitals ( φ j,Nc , λ j,Nc ) j=1,...,N , taking (9.4.2) as the perturbed equation, and (9.4.1) as the unperturbed one. For non-degenerate eigenvalues, the corrections arising from first-order perturbation theory are ∀ j = 1, . . . , N, φ 0 j φ 0 j,Nc + φ is not computable as W Nc depends on the exact density ρ 0 . Note that the definition of φ

(1,1) j,Nc is only consistent because the residuals r j belong to X ⊥ Nc for all j = 1, . . . , N . Compared to the linear case [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], the main difference is the presence of the uncomputable potential W Nc , which leads at first order to uncomputable corrections (9.4.6). However, we will derive that these uncomputable terms are a priori small, and define the post-processed orbitals only from the computable corrections defined in (9.4.5), which are also well-defined for degenerate eigenvalues. We therefore define the perturbed orbitals, as well as density matrix and energy as follows.

Definition 9.4.1 (Perturbed eigenvectors, density matrix and energy). For all j = 1, . . . , N, we define the perturbed eigenvectors as φ j,Nc = φ j,Nc + φ We also define orthonormal perturbed eigenvectors as an orthonormalization of ( φ j,Nc ) j=1,...,N . More precisely, for all j = 1, . . . , N, define We define the perturbed energy as the energy of the perturbed eigenvectors computed with (9. Remark 9.4.3. Note that the computational cost of the corrections is limited, and similar to the linear case [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. For all j = 1, . . . , N , the operator -1 2 ∆λ j,Nc is diagonal in a planewave basis, hence trivial to invert. Each residual V ⊥ Nc φ j,Nc can be computed with only two FFT's. On top of that, to compute the orthonormalized density matrix (9.4.12) and energy (9.4.13), one needs to orthonormalize the post-processed orbitals. We refer to [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF]Section 5] for numerical results illustrating the low computational cost of the post-processing. 9.5 Convergence improvement on the density matrix and the energy

Φ Nc = S Nc -1/2 Φ Nc , ( 9 

Theorem

The improvement results on the post-processed density matrices and the energies are collected in the following theorem. Compared to the linear case [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], the results are similar except for the post-processed energy (9. 

Proof

In order to prove Theorem 9.5.1, we first provide in Section 9.5.2 a decomposition of γ 0 based on spectral projection in Lemma 9.5.2, and then, in Section 9.5.2, we provide three preliminary lemmas. In Section 9.5.2, we decompose the difference γ 0γ Nc into six parts in Lemma 9.5.6, and we then estimate each of these terms in the following lemmas 9.5.7, 9.5.8, 9.5.9, 9.5.10, 9.5.11, and 9.5.12 in order to prove estimate (9.5.1). Lemma 9.5.13 then allows to extend the proof to estimate (9.5.2). Finally, in Section 9.5.2, we provide a proof for estimates (9.5.3) and (9.5.4).

Proof. By definition of the Hilbert-Schmidt norm,

(1 -∆) -1/2 W Nc γ 0 2 S 2 (L 2 # ) = N i=1 (1 -∆) -1/2 W Nc φ 0 i 2 L 2 # = N i=1 W Nc φ 0 i 2 H -1 # .
As for all 1 ≤ i ≤ N , φ 0 i ∈ H 2 # (Ω), and for all N c ∈ N * , W Nc ∈ H -1 # (Ω), we show using (9.3.25) that there exists C ∈ R + such that for all N c ∈ N * ,

W Nc φ 0 i H -1 # ≤ C W Nc H -1 # φ 0 i H 2 # .
Therefore, as N i=1 φ 0 Finally, using (9.3.17) in (9.5.12) together with (9.5.11) allows to prove (9.5.9).

Since for all 1 ≤ i ≤ N , φ i,Nc is bounded in H 2 # (Ω) independently of N c , the proof can be easily adapted to show (9.5.10). Lemma 9.5.4 (Estimation of (1 -∆) -1/2 V ⊥ Nc γ 0,Nc ). There exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c ,

(1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) ≤ C (1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.13)

Proof. The proof is similar to the proof of estimate [START_REF] Cancès | Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework[END_REF] in [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]Lemma 4.6]. First,

(1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # ) = (1 -∆) -1/2 (H [ρ Nc ] -H Nc )γ 0,Nc S 2 (L 2 # )
.

The difference (H [ρ Nc ] -H Nc )γ 0,Nc can be decomposed as The Hilbert-Schmidt norms of (1 -∆) -1/2 H [ρ Nc ] (γ 0,Ncγ 0 ) and (1 -∆) -1/2 (Hγ 0 -H Nc γ 0,Nc ) can be estimated exactly as in the proof of [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]Lemma 4.6] using in particular the a priori estimate (9.3.20). Moreover, (1 -∆) -1/2 W Nc γ 0 can be estimated using (9.5.9). This concludes the proof of the lemma. Proof. Given the definition of S Nc in (9.4.9), noting that for all 1 ≤ i ≤ N , φ

i,Nc ∈ X ⊥ Nc , and for all 1 ≤ i, j ≤ N, φ i,Nc |φ j,Nc = δ ij , and using the Cauchy-Schwarz inequality, there holds There exists N 0 c ∈ N such that for N c ≥ N 0 c , the operator (1 -∆) 1/2 (-1 2 ∆λ i,Nc ) -1 (1 -∆) 1/2 is bounded in L(L 2 # ) for all i = 1, . . . , N independently of N c . Hence, there exist C ∈ R + and N 0 c ∈ N such that for

N c ≥ N 0 c , S Nc -1 N F ≤CN -2 c (1 -∆) -1/2 V ⊥ Nc γ 0,Nc 2 S 2 (L 2 # ) ≤CN -2 c (1 -∆) 1/2 (γ 0 -γ 0,Nc ) 2 S 2 (L 2 
# ) , from (9.5.13), which concludes the proof of the lemma.

Proof of estimates (9.5.1) and (9.5.2) Lemma 9.5.6. The density matrix difference γ 0γ Nc can be decomposed as γ 0γ Nc = (γ 0γ 0,Nc ) 2 + γ 0,Nc γ Proof. Let first remark, using (9.5.6), and γ 2 0,Nc = γ 0,Nc , that γ 0,Nc γ 0 = γ 0,Nc + γ 0,Nc γ

Nc + γ 0,Nc γ

Nc + γ 0,Nc Q Nc , γ 0 γ 0,Nc = γ 0,Nc + γ Nc + γ 0,Nc γ

(2)

Nc + γ (2) 
Nc γ 0,Nc + γ 0,Nc Q Nc + Q Nc γ 0,Nc , and thus (γ 0γ 0,Nc ) 2 = γ 0γ 0,Ncγ

Ncγ 0,Nc γ

(2)

Nc -γ (2) 
Nc γ 0,Nc -Q Nc γ 0,Ncγ 0,Nc Q Nc , from which we deduce using (9.4.10) that γ 0γ Nc = (γ 0γ 0,Nc ) 2 + γ 0,Nc γ

Nc + γ (1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.17)

Proof. The proof is identical to [48, proof of Lemma 4.5], given the a priori estimate (9.3.18).

Lemma 9.5.8 (Estimation of (1 -∆) 1/2 Q Nc γ 0,Nc ). There exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c ,

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ CN -2 c
(1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.18)

Proof. Using the definition of Q Nc given in (9.5.8), we have

(1-∆) 1/2 Q Nc γ 0,Nc = 1 2πi Γ (1-∆) 1/2 (z-H) -1 (V ⊥ Nc +W Nc ) (z -H Nc ) -1 (V ⊥ Nc +W Nc ) (z -H Nc ) -1 γ 0,Nc dz.
Therefore, using [48, (12)] two times, we show that there exists C ∈ R + such that

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ C max z∈Γ (1 -∆) 1/2 (z -H) -1 (1 -∆) 1/2 × (1 -∆) -1/2 (V ⊥ Nc + W Nc )(1 -∆) 1/2 × max z∈Γ (1 -∆) -1/2 (z -H Nc ) -1 (V ⊥ Nc + W Nc )γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) .
First, max z∈Γ (1 -∆) 1/2 (z -H) -1 (1 -∆) 1/2 is bounded, which is a classical result (see e.g. [46, Lemma 1] for a proof). Second, there exists C ∈ R + such that

(1 -∆) -1/2 (V ⊥ Nc + W Nc )(1 -∆) 1/2 = (1 -∆) -1/2 (V ⊥ Nc + W Nc )(1 -∆) 1/2 * = (1 -∆) 1/2 (V ⊥ Nc + W Nc )(1 -∆) -1/2 ≤ C (1 -∆) 1/2 V ⊥ Nc (1 -∆) -1/2 + W Nc L ∞ + ∇W Nc L 3 ≤ C (1 -∆) 1/2 V local + V coul (ρ Nc ) + V xc (ρ Nc ) (1 -∆) -1/2 + (1 -∆) 1/2 V nl (1 -∆) -1/2 + W Nc L ∞ + ∇W Nc L 3 ≤ C V local + V coul (ρ Nc ) + V xc (ρ Nc ) L ∞ # + ∇ (V local + V coul (ρ Nc ) + V xc (ρ Nc )) L 3 # + (1 -∆) 1/2 V nl (1 -∆) -1/2 + W Nc L ∞ + ∇W Nc L 3 ,
from [59, Lemma 17], which is bounded from (9.3.23), (9.3.22), (9.3.24), and the inequality

(1 -∆) 1/2 V nl (1 -∆) -1/2 ≤ J j=1 ξ j L 2 # ξ j H 1 #
. Thus, there exists C ∈ R + such that

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ C max z∈Γ (1 -∆) -1/2 (z -H Nc ) -1 (V ⊥ Nc + W Nc )γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) .
Moreover, Ran(V ⊥ Nc γ 0,Nc ) ⊂ X ⊥ Nc , and the Laplace operator and the projection Π ⊥ Nc commute. Therefore, noting that (z -H Nc ) -1 V ⊥ Nc γ 0,Nc = (z + 1 2 ∆) -1 V ⊥ Nc γ 0,Nc , we obtain

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ C (1 -∆) -1 Π ⊥ Nc max z∈Γ (1 -∆) 1/2 (z + 1 2 ∆) -1 (1 -∆) 1/2 × max z∈Γ (1 -∆) -1/2 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) + (1 -∆) -1 max z∈Γ (1 -∆) 1/2 (z -H Nc ) -1 (1 -∆) 1/2 × (1 -∆) -1/2 W Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) .
As (1 -∆) -1 and max z∈Γ (1 -∆) 1/2 (z + 1 2 ∆) -1 (1 -∆) 1/2 are bounded, noting that (1 -∆) -1 Π ⊥ Nc ≤ CN -2 c , and max z∈Γ (1 -∆) 1/2 (z -H Nc ) -1 (1 -∆) 1/2 is bounded independently of N c , we can proceed as in [48, (49)] and show that there exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c ,

(1 -∆) 1/2 Q Nc γ 0,Nc S 2 (L 2 # ) ≤ C N -2 c max z∈Γ (1 -∆) -1/2 V ⊥ Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) + max z∈Γ (1 -∆) -1/2 W Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 # ) ≤ C N -2 c (1 -∆) -1/2 V ⊥ Nc γ 0,Nc S 2 (L 2 # )
+ (1 -∆) -1/2 W Nc γ 0,Nc S 2 (L 2 # ) . We conclude by using (9.5.10) and (9.5.13). Lemma 9.5.9 (Estimation of (1 -∆) 1/2 γ 0,Nc Q Nc ). There exist C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c ,

(1 -∆) 1/2 γ 0,Nc Q Nc S 2 (L 2 # ) ≤ CN -2 c
(1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) .

Proof. The proof is similar to the proof of [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]Lemma 4.7], relying here on Lemma 9.5.8. Proof. First, by definition of γ

Nc in (9.5.7),

(1 -∆) 1/2 γ (2)
Nc γ 0,Nc = 1 2iπ Γ

(1 -∆) 1/2 (z -H Nc ) -1 W Nc (z -H Nc ) -1 γ 0,Nc dz.

Hence, using that γ 0,Nc and (z -H Nc ) -1 commute, that max z∈Γ (1 -∆) 1/2 (z -H Nc ) -1 (1 -∆) 1/2 is bounded, and proceeding as in [48, (48)], we obtain that there exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c , where we have used (9.5.10) for this last inequality. This concludes the proof of the lemma. Proof. Noting that γ 2 0,Nc = γ 0,Nc , and from [48, (10)] and [48, (12)], we obtain

(1 -∆) 1/2 γ (2) Nc γ 0,Nc S 2 (L 2 # ) ≤ C max z∈Γ (1 -∆) 1/2 (z -H Nc ) -1 (1 -∆) 1/2 × max z∈Γ (1 -∆) -1/2 W Nc γ 0,Nc (z -H Nc ) -1 S 2 (L 2 
(1 -∆) 1/2 γ 0,Nc γ (2) Nc S 2 (L 2 # ) ≤ (1 -∆) 1/2 γ 0,Nc S 2 (L 2 # ) γ 0,Nc γ (2) Nc S 2 (L 2 # ) = (1 -∆) 1/2 γ 0,Nc S 2 (L 2 # ) γ (2) 
Nc γ 0,Nc S 2 (L 2 # ) , since γ 0,Nc is an orthogonal projector of finite rank. Moreover, as the orbitals (φ i,Nc ) i=1,••• ,N are bounded in H 1 # (Ω) independently of N c , (1 -∆) 1/2 γ 0,Nc S 2 (L 2 # ) is bounded. On top of that, using [48, (12)], γ Therefore, we can use the estimate of Lemma 9.5.10 to conclude. Noting that for all j = 1, . . . , N , φ Moreover, for all j = 1, . . . , N , (1 -∆) 1/2 (-1 2 ∆λ j,Nc ) -1 (1 -∆) 1/2 is a bounded operator. Then using (9.5.13) and (9. This concludes the proof.

Combining the estimations given in Lemmas 9.5.7, 9.5.8, 9.5.9, 9.5.10, 9.5.11, and 9.5.12 in the density matrix difference decomposition of Lemma 9.5.6, we easily obtain (9.5.1). The matrix S Nc being a perturbation of 1 N , there holds at first order 1 N -S Nc -1 = S Nc -1 N + h.o.t, h.o.t. meaning higher order terms. Using (9.5.14), we can therefore conclude in particular that there exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c ,

(1 -∆) 1/2 ( γ Nc -γ Nc ) S 2 (L 2 # ) ≤ CN -2 c
(1 -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) .

Combining (9.5.1) with the estimation given in Lemma 9.5.13 allows to prove (9.5.2).

Proof of estimates (9.5.3) and (9.5.4)

We start by proving (9.5.4). Let us define Φ Nc 0 ∈ M Φ 0 by min

U ∈U (N ) U Φ Nc -Φ 0 L 2 # = Φ Nc 0 -Φ 0 L 2 # .
Since Φ Nc 0 ∈ M Φ 0 , it verifies [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]Lemma 4.7]. Combined with [44, (4.47)], we obtain that there exists C ∈ R + and N 0 c ∈ N such that for all N c ≥ N 0 c ,

E KS 0,Ω ( Φ Nc 0 ) -E KS 0,Ω (Φ 0 ) ≤ C (1 -∆) 1/2 ( Φ Nc 0 -Φ 0 ) 2 L 2 # ≤ C (1 -∆) 1/2 ( γ Nc -γ 0 ) 2 S 2 (L 2 # ) ,
from (9.3.15), and noting that the density matrix corresponding to Φ Nc 0 is γ Nc . Moreover, from the invariance property (9.2.5), there holds E KS 0,Ω ( Φ Nc 0 ) = E KS 0,Ω ( Φ Nc ). Using (9.5.2) and (9.3.16), we obtain (9.5.4).

Let us now prove (9.5.3). The same reasoning cannot be applied as the perturbed eigenvectors Φ Nc do not satisfy the constraint, i.e. Φ Nc / ∈ M. A second-order Taylor expansion on the energy gives E KS 0,Ω ( Φ Nc ) -E KS 0,Ω (Φ 0 ) = (E KS 0,Ω ) (Φ 0 ), Φ Nc -Φ 0

H -1 # ,H 1 # + 1 2 (E KS 0,Ω ) (Φ 0 )( Φ Nc -Φ 0 , Φ Nc -Φ 0 ) + h.o.t.
Noting that such a development is also valid for the energy difference E KS 0,Ω ( Φ Nc ) -E KS 0,Ω (Φ 0 ), we obtain, still up to second order E KS 0,Ω ( Φ Nc ) -E KS 0,Ω (Φ 0 ) = (E KS 0,Ω ) (Φ 0 ), Φ Nc -Φ 0

H -1 # ,H 1 # + 1 2 (E KS 0,Ω ) (Φ 0 )( Φ Nc -Φ 0 , Φ Nc -Φ 0 ) + (E KS 0,Ω ) (Φ 0 ), Φ Nc -Φ Nc H -1 # ,H 1 # + 1 2 (E KS 0,Ω ) (Φ 0 )( Φ Nc -Φ Nc , Φ Nc + Φ Nc -2Φ 0 ) + h.o.t.
=E KS 0,Ω ( Φ Nc ) -E KS 0,Ω (Φ 0 ) + (E KS 0,Ω ) (Φ 0 ), Φ Nc -Φ Nc H -1

# ,H 1 # + 1 2 (E KS 0,Ω ) (Φ 0 )( Φ Nc -Φ Nc , Φ Nc + Φ Nc -2Φ 0 ) + h.o.t.
From the continuity of (E KS 0,Ω ) (Φ 0 ) [44, (4.18), (4.47)]), and since (E KS 0,Ω ) (Φ 0 ) is bounded in H (1 -∆) 1/2 (γ 0,Ncγ 0 ) 2

S 2 (L 2 # )
≤ CN -2 c |E KS 0,Ω (Φ Nc ) -E KS 0,Ω (Φ 0 )|, (9.5.32) where C ∈ R + , from (9.5.14) and (9.3.16). Combining (9.5.30), (9.5.31) and (9.5.32), we obtain (9.5.3).

Appendix

Proof of Lemma 9.3.1. The proof of (9.3.14) is identical to the proof of [START_REF] Blanc | Variational projector augmented-wave method[END_REF] in [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. This proof indeed relies on results in [START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] which are also valid in the nonlinear case. In order to show (9.3.15), let us recall that the positive operator |H -F | defined by the functional calculus is |H-F | = -γ 0 (H-F )γ 0 +(1-γ 0 )(H-F )(1-γ 0 ), where γ 0 is the exact density matrix defined in (9.2.8). It is known (see e.g. [START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF]) that, under Assumption 9. Let Ψ 0 ∈ M Φ 0 with corresponding density matrix γ Ψ 0 = N i=1 |ψ 0 i ψ 0 i |. First, it can be shown that 

|H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 S 2 (L 2 # ) = |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 # + 2 N j=1 |λ 0 j -F | 1 2 ψ 0 j -φ 0 j 2 L 2 - N i=1 | ψ 0 i -φ 0 i |φ 0 j | 2 .
ψ 0 i |φ 0 j φ 0 j ||H -F ||ψ 0 i - N i,j=1 ψ 0 i ||H -F ||φ 0 j φ 0 j |ψ 0 i = |H -F | 1/2 Ψ 0 2 L 2 + |H -F | 1/2 Φ 0 2 S 2 (L 2 # ) -2 N i,j=1
|λ 0 j -F | ψ 0 i |φ 0 j φ 0 j |ψ 0 i .

Then, introducing the orbital error, we obtain

|H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 σ 2 = |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 + N j=1 ψ 0 j ||H -F ||φ 0 j + N j=1 φ 0 j ||H -F ||ψ 0 j -2 N i,j=1 |λ 0 j -F | ψ 0 i |φ 0 j φ 0 j |ψ 0 i = |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 + 2 N j=1 |λ 0 j -F | ψ 0 j |φ 0 j - N i=1 ψ 0 i |φ 0 j φ 0 j |ψ 0 i = |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 + 2 N j=1 |λ 0 j -F | 1 2 ψ 0 j -φ 0 j 2 L 2 - N i=1 | ψ 0 i -φ 0 i |φ 0 j | 2 .
On the one hand,

|H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 S 2 (L 2 # ) ≤ |H -F |(Ψ 0 -Φ 0 ) 2 L 2 # + N j=1 |λ 0 j -F | ψ 0 j -φ 0 j 2 L 2 # ≤ |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 # + sup i=1,...,N |λ 0 i -F | N j=1 ψ 0 j -φ 0 j 2 L 2 # ≤ |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 # + sup i=1,...,N |λ 0 i -F | min i∈N * |λ 0 i -F | N j=1 |H -F | 1/2 (ψ 0 j -φ 0 j ) 2 L 2 # ≤C |H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 # ,
where C ∈ R + . On the other hand, using the Cauchy-Schwarz inequality, and (9.3.14), 

|H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 # ≤ |H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 σ 2 + 2 N j=1 |λ 0 j -F | N i=1 | ψ 0 i -φ 0 i |φ 0 j | 2 ≤ |H -F | 1/2 (γ Ψ 0 -γ 0 ) 2
γ 0 -γ Ψ 0 2 S 2 (L 2 # ) ≤ 1 min i∈N * |λ 0 i -F | |H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 σ 2 .
Therefore, there exists C ∈ R + such that

|H -F | 1/2 (Ψ 0 -Φ 0 ) 2 L 2 ≤ C |H -F | 1/2 (γ Ψ 0 -γ 0 ) 2 S 2 (L 2 
# ) . (9.6.4)

Combining (9.6.3) and (9.6.4) with (9.6.1) finishes the proof of the lemma.
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 1 |R αr j | models the Coulomb interaction between the nuclei and the electrons. |r ir j | models the Coulomb interaction between the electrons.

  Then defining the functional of the densityE(ρ) = min Ψ,Ψ→ρ Ψ|H|Ψ ,the original problem can be written only in terms of the density as min ρ E(ρ).
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 12 Figure 1.2 -Example of a periodic lattice of a crystal
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 1314 Figure 1.3 -Radial dependency of Slater-type orbitals (STO).
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 15 Figure 1.5 -Wavelet example: Haar mother scaling function ϕ and Haar wavelet ψ.
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 16 Figure 1.6 -Wavelet example: Daubechies mother scaling function and wavelet used in BigDFT [191].
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 21 Figure 2.1 -Configurations of an H 2 molecule indexed by the parameter R.
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 23 Figure 2.3 -Illustration of the guaranteed estimation and error balance strategy.

  of the same nature and almost annihilate one another.
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 1131 Figure 3.1 -Convergence plots of the quantities S N and D N (left) and of the error cancellation factor Q N = D N /S N (right) for two different pairs of interatomic distances for the H 2 molecule. Top: R 1 = 1.464 and R 2 = 1.524 bohrs. Bottom: R 1 = 1.344 and R 2 = 1.704 bohrs.
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 32 Figure 3.2 -Graphical representation of the two atomic configurations whose energies are compared. Oxygen atoms are in green, hydrogen atoms in black.

Figure 3 . 3 -

 33 Figure 3.3 -Convergence plots of the quantities S N and D N (left) and of the error cancellation factor Q N = D N /S N (right) for the two different configurations displayed on Figure 3.2.

  The wave vector k R is the lowest positive root of the function k → det(M (k)). The coefficients (A, B, C, D) are then uniquely determined by the normalization condition u R L 2 per = 1 and the positivity of u R . Exact solutions for two different values of the triplet of parameters (z 1 , z 2 , R) are plotted in Figure 3.4. Exact solution z 1 = z 2 = 1, R = 0Exact solution z 1 = 1, z 2 = 0.5, R = 0.4
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 34 Figure 3.4 -Plot of the exact solutions of (3.3.1) for two sets of parameters.
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 35 Figure 3.5 -Plots of the function R → α R for three sets of parameters (z 1 , z 2 ).

  ) plotted in Figure3.8, are very different and the latter one is not a good approximation of the former one. Another interesting observation is the following. Numerical simulations show that
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 38 Figure 3.8 -Colorplots of the functions defined in (3.3.8). The forces were computed with centered finite difference with step size 10 -6 and the integrals with Simpson's rule with step length 10 -2 , chosen equal to the resolution of the figure.
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 39 Figure 3.9 -Convergence of the errors on the energy (in red) and on the forces (in blue).

3. 4

 4 Appendix: proof of Theorem 3.3.2 In the sequel, z 1 and z 2 are fixed positive real numbers. We endow the functional spaces L 2 per and H 1 per with their usual scalar products u|v L 2 per := 1 0 u(x)v(x) dx and u|v H 1 per := u|v L 2 per + u |v L 2 per .

.3. 11 ) 2 =

 112 Next, min k≥1, k =i λ k 1 -λ ih λ k C ih .Thus, similarly to (4.3.6)-(4.3.7), with e ih := u iu ih 2 , C ih 4 e 2 ih -C ih e ih + ∇r (ih) 2 ≥ 0. One then concludes as in Lemma 4.3.1.

  (4.4.1b) Inversely, local conforming residual liftings following [15, §5.1], [213, §4.1.1], [105, §3.3] will allow us to construct r ih ∈ X h ⊂ V leading to a lower bound on Res(u ih , λ ih ) -1 .

Theorem 4 . 4 . 3 ( 1 2 1 ρ

 44311 Residual equivalences). Let (u ih , λ ih ) ∈ P p (T h ) ∩ V × R be arbitrary. Then, for σ ih,dis of Definition 4.4.1 and r ih of Definition 4.4.2, Res(u ih , λ ih ) -1 ≤ ∇u ih + σ ih,dis + σ ih,alg + λ ih , (4.4.9a)

( 4 . 5 . 12 ) 4 . 5 . 3 (

 4512453 Remark Exact solvers). The results of Theorems 4.5.1 and 4.5.2, as well as 4.5.7 below, are presented in a general context of inexact algebraic solvers. For exact solvers, where the algebraic residual representer r ih in (4.4.2) is zero, σ ih,alg = 0, ρ ih = 0, and the condition in (4.4.9b) is void. Also, when the Rayleigh quotient link ∇u ih 2 = λ ih holds, ∇u ih 2 can be replaced by λ ih , and typically λ i := λ ih , see Remark 4.5.5 below.

  .5.13) Thus (4.5.10) with the estimator (4.5.11) follows.

-1 2 1r

 2 (ih) , the Cauchy-Schwarz inequality, estimates (4.5.8), and the characterization (4.2.5b) altogether give

Figure 4 . 2 (

 42 right) illustrates the error in the eigenvalue and the eigenvector and their bounds (4.5.4), (4.5.10), and (4.5.14). Optimal convergence rates are indicated by dashed lines. The initial mesh is structured with 22 degrees of freedom and the conditions (4.5.2) and (4.5.6) are all satisfied starting from 140 degrees of freedom. The transition from Case A to Case B in Theorems 4.5.1, 4.5.2, and 4.5.7 is marked by a dotted line.

Figure 4 .

 4 2 (left) 

λ 1 =

 1 49.2883, λ 2 = 98.4296, λ 3 = 127.937, λ 4 = 166.975, λ 5 = 196.439.

Figure 4 .

 4 Figure 4.4 gives the convergence plots for the first four eigenvalues and Table4.7 provides more details on absolute numbers and efficiency. As the domain is convex (case C), we obtain excellent upper bounds for the error in all four eigenvalue/eigenvector pairs. The lower bound of the eigenvalue error (the improved eigenvalue upper bound of Theorem 4.5.2) is, however, degrading for higher eigenvalues.
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 45 [L-shaped domain, adaptive mesh refinement] Lower and upper bounds on the first exact eigenvalue λ 1 , the effectivity indices, and the size of the relative λ 1 confidence interval; λ 1 = π 2 /2 and λ 2 = 15.1753, Case B

λ 1

 1 = 9.60692, λ 2 = 15.1695, λ 3 = 19.6932, λ 4 = 29.4166, λ 5 = 31.7363.

Figure 4 .

 4 Figure 4.5 plots the convergence of the errors the estimators whereas Table4.8 provides more details on the efficiency. We now observe that the efficiency also degrades for the upper bound of the eigenvalue and eigenvector error. Further, improved lower bounds of the eigenvalue error are not available for the considered meshes for i > 1. This appears as the resulting ηi are all equal to zero, see(4.5.11), respectively (4.5.12), so that our eigenvalue upper bound stays that of the finite element method. For all meshes and all considered eigenvalues, though, our estimates still give a rather tight guaranteed eigenvalue confidence interval and quite reasonable eigenvector effectivity indices. We can also observe by a jump of the blue curve (η 2 i ) the change between the cases A and B. The critical mesh size where this change occurs seems to degrade with increasing eigenvalues.
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 43 Figure 4.3 -[Domain with a hole, adaptive mesh refinement] Mesh of the adaptive algorithm at iteration 20 (left) and the lower and upper bounds for the exact eigenvalue λ 1 (right); Case B
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 4444 Figure 4.4 -[Triangular domain, structured meshes] Errors in the first four eigenvalue and eigenvector approximations, their lower bounds (eigenvalues only), and their upper bounds
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 22233344445 Figure 4.5 -[L-shaped domain, unstructured meshes] Error in the first four eigenvalue and eigenvector approximations, their lower bounds (eigenvalues only), and their upper bounds

  4.4a) has been shown in Braess et al.[START_REF] Braess | Equilibrated residual error estimates are p-robust[END_REF] Theorem 7] in two space dimensions and [106, Corollaries 3.3 and 3.6] in three space dimensions, whereas (5.4.4b) is proven in Ern and Vohralík[START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] Corollary 3.16] in two space dimensions and [106, Corollary 3.1] in three space dimensions. In [106, Corollaries 3.3 and 3.6], we merely need to setτ p = ψ a ∇ θ u ih , r K = ψ a (λ ih u ih + ∇•(∇ θ u ih ))| K for any simplex K in the patch T a , and r F = ψ a [[∇ θ u ih ]]•n F for any face F in the patch T a to infer (5.4.4a) for interior vertices. Similarly, to see(5.4.4b), it is enough to take τ p = ψ a u ih and r F = ψ a [[u ih ]] F in the notation of[START_REF] Ern | Stable broken H 1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions[END_REF] Corollary 3.1]. We also remark that computable upper bounds on C st are discussed in[START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] Lemma 3.23].

η 1 +

 1 ∇ θ (u 1h -s 1h ) (case B) ∇ θ (u 1 -u 1h )

Figure 5 . 4 -

 54 Figure 5.4 -[Unstructured and adaptive mesh refinement, L-shaped domain, discontinuous Galerkin method] Error in the eigenvector and its upper bound for a quasi-uniform refinement (left) and adaptive refinement (right)

  .4.1). Typically, X a h := P p+1 (T a ) ∩ H 1 * (ω a ), similarly as in Section 5.3.2. We will now solve homogeneous local Neumann (Neumann-Dirichlet close to the boundary) problems on the patches ω a via conforming primal counterparts of problems (5.3.3a): Definition 5.10.3 (Conforming local Neumann problems). For each a

Figure 6 . 1 -

 61 Figure 6.1 -Top: k evolution as the acceptable error decreases (linear fit in log-scale for the acceptable error). Bottom: N evolution as the acceptable error decreases (linear fit in loglog-scale)

  Nc = ρ [Φ (0)Nc ] , a memory parameter m ∈ N and a tolerance η > 0. 2. Iterations: For i = 1, 2, ... until convergence (a) Compute the Hamiltonian H (i-1) Nc,proj := Π Nc H [ρ (i-1) Nc ] Π Nc . (b) Solve the linear eigenvalue problem H = δ ik , for j = 1, . . . , N to obtain a set of orbitals Φ ) T , by selecting the lowest N eigenvalues

  ) T ∈ M, following the Aufbau principle.(c) Compute the new density ρ(i)Nc = ρ [Φ (i) Nc ] . (d)Charge mixing: replace the charge density ρ(i) Nc with a linear combination of previously computed charge densities, i.e., ρ (i)

Theorem 7 .

 7 3.1 ([44]). Under sufficient regularity assumptions, there exists r 0 > 0 and N 0 c such that for N c ≥ N 0 c , (7.3.1) has a unique local minimizer Φ 0 Nc in the set

  ρ Nc , ρ Nc ) + E c xc ( ρ Nc ) -Ω V xc ( ρ Nc ) ρ Nc .(7.4.5)

1 Figure 7 . 1 -

 171 Figure 7.1 -Simulations with a constant E c (alanine molecule).

1 Figure 7 . 2 -

 172 Figure 7.2 -Simulations with a constant E c,res (alanine molecule).

Figure 7 . 3 -

 73 Figure 7.3 -Simulations with a constant λ (alanine molecule).

  2.3). Indeed, denoting by O(N ) := U ∈ R N ×N | U T U = 1 N the orthogonal group in dimension N (1 N is the identity matrix of rank N ), we have ∀Ψ ∈ M, ∀U ∈ O(N ), U Ψ ∈ M, and E(U Ψ) = E(Ψ). (8.2.4)

.2. 18 )Let (φ 1 ,

 181 Nc , . . . , φ N,Nc ) be an orthonormal family of eigenvectors of H Nc,proj associated with the eigenvalues λ 1,Nc ≤ • • • ≤ λ N,Nc :

Remark 8 . 3 . 2 .

 832 , the perturbed density matrix asγ Nc = γ 0,Nc + γ Nc = Tr (γ 0,Nc H γ Nc ).(8.3.10) Note that even if we call γ Nc a density matrix, γ Nc / ∈ K in general. Indeed, γ Nc = γ Nc * and Tr ( γ Nc ) = N , but we do not have in general 0 ≤ γ Nc ≤ 1.

  g. [69, Chapter 5]) guarantee that max i=1,...,N |λ i,Ncλ 0 i | -→ Nc→+∞ 0.

  .4.4) Combining (8.4.3) and (8.4.4) concludes the proof of the lemma.

  φ
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 1181 Figure 8.1 -Left: plot of the energy errors E 0,Nc -E 0 and E 0,Nc -E 0 for energy cutoffs E c between 10 and 200 a.u. Right: plot the density matrix error (1 -∆) 1/2 (γ 0γ Nc ) S 2 (L 2

Figure 8 . 2 -

 82 Figure 8.2 -Plots of the energy error ratio (left) and the density matrix error ratio (right) for three different clusters of eigenvalues (1, 5 and 10 eigenvalues) with a potential with regularity coefficient s = 2.2.

(

  

Figure 8 . 3 -

 83 Figure 8.3 -Plots of the energy error improvement (top) and the density matrix error improvement (bottom) for four different regularities for the potential: s = 1, 1.25, 1.5, 2.

-

  Coulomb energy is defined asD Ω (ρ, ρ ) = Ω ΩG Ω (r, r )ρ(r)ρ (r )drdr = Ω ρ(r )[V coul (ρ )](r )dr , where the Green's function G Ω and the periodic Coulomb potential V coul (ρ ) are respectively solutions to the following problems∆V coul (ρ ) = 4π ρ -1 |Ω| Ω ρ in R 3 , V coul (ρ ) Rperiodic, Ω V coul (ρ ) = 0.The pseudopotential, modeling the effect of the nuclei and the core electrons (and some relativistic effects for heavy atoms) consists of two terms: a local component V local (whose associated operator is the multiplication by the R-periodic function V local ) and a nonlocal component V nl given byV nl ψ = J j=1 Ω ξ j (r)ψ(r) dr ξ j ,where ξ j are regular enough R-periodic functions and J is an integer depending on the chemical nature of the ions in the unit cell. The exchange-correlation functional based on a local density approximation is given in this periodic setting with pseudopotentials byE c xc,Ω (ρ [Ψ] ) = Ω e LDA xc (ρ c (r) + ρ [Ψ] (r)) dr,where ρ c ≥ 0 is a nonlinear core correction, and e LDA xc (ρ) is an approximation of the exchangecorrelation energy per unit volume in a homogeneous electron gas with density ρ.The ground-state energy is then the solution of the following minimization problem:I KS 0 = inf E KS 0,Ω(Ψ), Ψ ∈ M . (9.2.4)

2 . 4 )

 24 , and to show the existence of a minimizer (still denoted by Φ 0 ), such that ∀i = 1, . . . , N, H φ 0 i = λ 0 i φ 0 i , and ∀i, j = 1, . . . , N,φ 0 i |φ 0 j = δ ij , for some λ 0 1 ≤ λ 0 2 ≤ • • • ≤ λ 0 N , where the Hamiltonian H is the self-adjoint operator on L 2 # (Ω) with domain H 2 # (Ω) defined by ∀u ∈ H 2 # (Ω), Hu = -1 2 ∆u + V ion u + V coul (ρ 0 )u + V xc (ρ 0 )u, with ρ 0 = ρ [Φ 0 ] , V ion = V local + V nl ,and where V xc (ρ)(r) = de LDA xc dρ (ρ c (r) + ρ(r)).

. 8 )

 8 which belongs to the Grassmann manifoldΥ = γ ∈ L(L 2 # ) γ * = γ, γ 2 = γ, Tr (γ) = N, Tr (-∆γ) < ∞ ;

2 # 2 , which corresponds to Ψ L 2 # 1 # 2 . 9 . 3 2 Lπ

 22212932 (Ω) endowed with the norm defined by A S 1 (L 2 # ) := Tr (|A|) = Tr ( √ A * A). Also, let the Hilbert space of Hilbert-Schmidt operators S 2 (L 2 # ) on L 2 # (Ω) be endowed with the inner product defined by (A, B) S 2 (L 2 # ) := Tr (A * B). Moreover, let us define for any operator A on L 2 # (Ω) with domain D(A), ∀Ψ ∈ [D(A)] when A is the identity operator and Ψ H when A = (1 -∆) 1/Discretization and resolution of the Kohn-Sham model 9.3.1 Planewave discretization In the context of periodic boundary conditions, we discretize the Kohn-Sham problem (9.2.4) in Fourier modes, also called planewaves. We denote by R * = 2π L Z 3 the dual lattice of the periodic lattice R = LZ 3 . For k ∈ R * , we denote by e k the planewave with wavevector k and kinetic energy 1 2 |k| 2 , with | • | the Euclidean norm, defined by e k : R 3 → C x → |Ω| -1/2 e ik•x , where |Ω| = L 3 . The family (e k ) k∈R * forms an orthonormal basis of L 2 # (Ω, C) endowed with the scalar product ∀u, v ∈ L 2 # (Ω, C), u|v = Ω u(r) v(r) dr,where u(r) denotes the complex conjugate of u(r), and for all v ∈ L 2 # (Ω, C),v(r) = k∈R * v k e k (r) with v k = e k |v = |Ω| -1/2 Ω v(r)e -ik•r dr.To discretize the variational set M, we introduce some energy cutoff E c > 0 and consider all basis functions with kinetic energy smaller than E c , i.e. |k| ≤ √ 2E c . That is, for each cutoff E c , we set N c = Ec and consider the finite-dimensional discretization spaceX Nc :=      k∈R * ,|k|≤ 2π L Nc v k e k ∀k, v -k = v *

1 2 Π

 2 Nc ∆Π Nc + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc , (9.3.3) with ρ Nc = ρ [Φ Nc ] , Φ Nc = (φ 1,Nc , . . . , φ N,Nc )T and where H [ρ Nc ] is defined by (9.2.7) for the approximate ground-state density ρ Nc . The corresponding density matrix, which is independent of the chosen basis for Span(φ 1,Nc , φ 2,Nc , . . . , φ N,Nc ), is denoted by γ 0,Nc ∈ Υ, and defined asγ 0,Nc = N i=1 |φ i,Nc φ i,Nc |.

.3. 5 ) 6 )

 56 and for the functions defining the non-local potential V nl that ∀1 ≤ j ≤ J, ∀ > 0, ξ j ∈ H For example, Troullier-Martins pseudopotentials[START_REF] Troullier | A straightforward method for generating soft transferable pseudopotentials[END_REF] have Fourier coefficients ( V local ) k decreasing as |k| -m with m = 5. Moreover, for the exchange-correlation function, we assume thatthe function ρ → e LDA xc (ρ) is in C 1 ([0, +∞)) ∩ C 3 ((0, +∞)), (9.3.7) e LDA xc (0) = 0, de LDA xc dρ (0) = 0, (9.3.8) and there exists 0 < α < 1 and C ∈ R + such that ∀ρ ∈ R + \{0}, d 2 e LDA xc dρ 2 (ρ) + ρ d 3 e LDA xc dρ 3 (ρ) ≤ C(1 + ρ α-1 ). (9.3.9)

( 9 . 3 . 10 )

 9310 Under assumptions (9.3.5)-(9.3.10), (9.2.4) has a minimizer Φ 0 = (φ 0 1 , φ 0 2 , . . . , φ 0 N ) T[START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF]. For the a priori results of[START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] to be valid, some additional assumptions on the exchange-correlation function e LDA xc are needed. More precisely, we assume thate LDA xc ∈ C nm,αm ((0, +∞))wheren m = [m] + 1 and α m = m -[m] + 1/2 if 0 ≤ m -[m] ≤ 1/2, n m = [m] + 2 and α m = m -[m] -1/2 if 1/2 < m -[m] ≤ 1,(9.3.11) (where [m] denotes the integer part of m) and e LDA xc ∈ C nm,αm ([0, +∞)) or ρ c + ρ 0 > 0 in R 3 . (9.3.12)

  .3.14) c (1-∆) 1/2 (Ψ 0 -Φ 0 ) L 2 # ≤ (1-∆) 1/2 (γ 0 Ψ -γ 0 ) S 2 (L 2 # ) ≤ C (1-∆) 1/2 (Ψ 0 -Φ 0 ) L 2 # . (9.3.15) 

2 S 2 (L 2 #≤ C ( 1 - 2 S 2 (L 2 #

 2221222 3.5)-(9.3.12), there exist c, C > 0, andN 0 c ∈ N such that for N c ≥ N 0 c , c (1 -∆) 1/2 (γ 0γ 0,Nc ) ) ≤ I KS 0,Nc -I KS 0 ∆) 1/2 (γ 0γ 0,Nc ) ) ,(9.3.16) 

.3. 24 ) 1 # = 1 0d 2 e LDA xc dρ 2 ρ

 24112 Using a Taylor formula with integral remainder, there holdsV xc (ρ 0 ) -V xc (ρ Nc ) H -c + sρ 0 + (1s)ρ Nc (ρ 0ρ Nc )ds sρ 0 + (1s)ρ Nc (ρ 0ρ Nc )

d 2 e LDA xc dρ 2

 2 

  , ∀g ∈ H -r # (Ω), f g ∈ H -r # (Ω),andf g H -r # (Ω) ≤ C r,σ f H max(r,σ) # (Ω) g H -r # (Ω) ,(9.3.25) 

L 2 , 2 ,

 22 if the N th eigenvalue of the operator H Nc,proj defined in (9.3.3) verifies λ N,Nc < 2 πNc L which holds for N c large enough, the discrete solution Φ Nc is also the ground-state of the following Kohn-Sham problem ∀j = 1, . . . , N, H Nc φ j,Nc = λ j,Nc φ j,Nc , and ∀i, j = 1, . . . , N,φ i,Nc |φ j,Nc = δ ij ,(9.4.1)λ 1,Nc ≤ λ 2,Nc ≤ . . . ≤ λ N,Nc , whereH Nc = -1 2 ∆ + Π Nc V ion + V coul (ρ Nc ) + V xc (ρ Nc ) Π Nc .

1 r

 1 j ∈ X ⊥ Nc ,(9.4.5)is computable, r j ∈ X ⊥ Nc being the residualr j = -1 2 ∆ + V ion + V coul (ρ Nc ) + V xc (ρ Nc )λ j,Nc φ j,Nc = H Nc + V ⊥ Ncλ j,Nc φ j,Nc = V ⊥ Nc φ j,Nc , = -(H Ncλ j,Nc ) -1 | (φ j,Nc ) ⊥ W Nc φ j,Nc ,(9.4.6)

.4. 8 ) 9 ) 11 )

 8911 where S Nc , the N × N overlap matrix of Φ Nc = ( φ 1,Nc , . . . , φ N,Nc ), is defined as ∀i, j = 1, . . . , N, (S Nc ) i,j = φ i,Nc | φ j,Nc .(9.4.We define the perturbed density matrix asγ Nc = N i=1 | φ j,Nc φ j,Nc | = γ 0,Nc + γWe also define an orthonormalized perturbed density matrix asγ Nc = N i=1| φ i,Nc φ i,Nc |. (9.4.12)

2 . 1 )Remark 9 . 4 . 2 .

 21942 E 0,Nc = E KS 0,Ω ( Φ Nc ),and the orthonormalized perturbed energy asE Nc = E KS 0,Ω ( Φ Nc ). (9.4.13) Since the post-processed orbitals (9.4.7) are not orthonormal, γ Nc ∈ Υ does not hold in general, although γ Nc = γ Nc * . Indeed, a priori, γ Nc 2 = γ Nc and Tr ( γ Nc ) = N. On the other hand, the post-processed orbitals (9.4.8) being orthonormal, there holds γ Nc ∈ Υ.

4 . 13 )Theorem 9 . 5 . 1 (( 1 - 2 c( 1 - 2 c( 1 -

 41395112121 based on the orthonormal version of the post-processed density matrix, for which we derive a convergence doubling compared to the density matrix improvement factor of N -2 c . Improved convergence for the density matrix and the energy). There existC ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c , ∆) 1/2 (γ 0γ Nc ) S 2 (L 2 # ) ≤ CN -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 #) , (9.5.1)(1 -∆) 1/2 (γ 0γ Nc ) S 2 (L 2 # ) ≤ CN -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) ,(9.5.2)| E 0,Nc -E 0 | ≤ CN -2 c |E 0,Nc -E 0 |,(9.5.3)and| E Nc -E 0 | ≤ CN -4 c |E 0,Nc -E 0 |. (9.5.4) 

i 2 H 2 # 2 S 2 (L 2 #From ( 9 1 #≤ C ( 1 -

 2222911 (Ω) is bounded, there exists C ∈ R + such that for all N c ∈ N * , (1 -∆) -1/2 W Nc γ 0 ) ≤ C W Nc 2 .3.21) with s = -1 and (9.3.26), we derive(1 -∆) -1/2 W Nc γ 0 S 2 (L 2 # ) ≤ C ρ 0ρ Nc H -1shown in[44, (4.85)], there holds ρ 0ρ Nc H -∆) -1/2 (Φ 0 -Φ 0 Nc )

(H [ ρ

 ρ Nc ] -H Nc )γ 0,Nc = H [ρ Nc ] (γ 0,Ncγ 0 ) + H [ρ Nc ] γ 0 -H Nc γ 0,Nc = H [ρ Nc ] (γ 0,Ncγ 0 ) + Hγ 0 -H Nc γ 0,Nc -W Nc γ 0 .

Lemma 9 . 5 . 5 ( 2 c( 1 - 2 S 2

 9552122 Estimation of S Nc -1 N F .). There exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c , S Nc -1 N F ≤ CN -∆) 1/2 (γ 0γ 0,Nc )

S Nc - 1 | 2 .( 9 . 5 . 15 )

 129515 φ i,Nc | φ j,Ncδ ij | 2 = N i,j=1 | φ i,Nc |φ j,Nc + φ δ ij | 2 (by orthogonality)Using definition (9.4.5), and noting that for all j = 1, . . . , N , the operator -1 2 ∆λ j,Nc -1 is diagonal and commute with Π ⊥ Nc , we obtainS Nc -1 N F =

( 2 ) 2 )

 22 Nc + γ (Nc γ 0,Nc + Q Nc γ 0,Nc + γ 0,Nc Q Nc -N j=1 |φ (1,1) j,Nc φ (1,1) j,Nc |.

( 1 ) 2 )

 12 Nc γ 0,Nc + γ(Nc γ 0,Nc + Q Nc γ 0,Nc . Moreover, since for all i, j = 1, 2, • • • , N , φ i,Nc is orthogonal to φ (1)j,Nc , one can show as in the proof of[START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF] Lemma 4.4] that γ 0,Nc γ Nc γ 0 + γ 0 γ 0,Nc = 2γ 0,Nc + γ[START_REF] Aidas | The Dalton quantum chemistry program system[END_REF] 

( 2 )Lemma 9 . 5 . 7 (( 1 - 2 S 2 (L 2 #

 29571222 Nc γ 0,Nc + Q Nc γ 0,Nc + γ 0,Nc Q Nc -Estimation of (1 -∆) 1/2 (γ 0γ 0,Nc ) 2 ). There exist C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c , ∆) 1/2 (γ 0γ 0,Nc ) ) ≤ CN -2 c

Lemma 9 . 5 . 10 ( 2 )( 1 - 2 ) 2 c( 1 -

 951021221 Estimation of (1 -∆) 1/2 γ (Nc γ 0,Nc ). There exist C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c , ∆) 1/2 γ (Nc γ 0,Nc S 2 (L 2 # ) ≤ CN -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.19) 

# ) ≤ C max z∈Γ ( 1 -∆) - 1 / 2 W 1 S 2 ≤ CN - 2 c( 1 -

 1121221 Nc γ 0,Nc (z -H Nc ) -(L 2 # ) ≤ C (1 -∆) -1/2 W Nc γ 0,Nc S 2 (L 2 # ) ∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) ,

Lemma 9 . 5 . 11 ( 2 )( 1 - 2 )S 2 (L 2 # ) ≤ CN - 2 c( 1 -

 95112122221 Estimation of (1 -∆) 1/2 γ 0,Nc γ (Nc ). There exist C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c , ∆) 1/2 γ 0,Nc γ (Nc ∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.20) 

( 2 ) 2 ) 2 )

 222 Nc γ 0,Nc S 2 (L 2 # ) ≤ (1 -∆) -1/2 (1 -∆) 1/2 γ (Nc γ 0,Nc S 2 (L 2 # ) ≤ (1 -∆) 1/2 γ (Nc γ 0,Nc S 2 (L 2 # ) .

Lemma 9 . 5 . 12 ( 2 c( 1 -| 2 S 2 (L 2 #

 951221222 Estimation of (1 -∆) |). There exist C ∈ R + and N 0 c ∈ N, such that for N c ≥ N 0 c , | S 2 (L 2 # ) ≤ CN -∆) 1/2 (γ 0γ 0,Nc ) S 2 () , and using the Cauchy-Schwarz inequality twice, we obtain(1 -∆)

( 1 - 2 ∆ 2 ( 9 . 5 . 23 )× ( 1 -

 12295231 ∆) 1/2 (-1 λ j,Nc ) -1 (1 -∆) 1/2 ∆) -1/2 V ⊥ Nc φ

- 1 c( 1 - 2 S 2 (L 2 #

 11222 3.19), we show that there exist C ∈ R + and N 0 c ∈ N such that forN c ≥ N 0 c , ∆) 1/2 (γ 0,Ncγ 0 ) ) (9.5.27) ≤ CN -2 c (1 -∆) 1/2 (γ 0,Ncγ 0 ) S 2 (L 2 # ) . (9.5.28) 

Lemma 9 . 5 . 13 (( 1 - 2 c( 1 -- 1 ) 2 S 2 (L 2 # 2 S 2 (L 2 # 2 ≤

 951312112222222 Estimation of (1 -∆) 1/2 ( γ Ncγ Nc )). There exist C ∈ R + and N 0 c ∈ N, such that forN c ≥ N 0 c , ∆) 1/2 ( γ Ncγ Nc ) S 2 (L 2 # ) ≤ CN -∆) 1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) . (9.5.29) Proof. First, γ Ncγ Nc = N i=1 | φ i,Nc φ i,Nc | -N i=1 | φ i,Nc φ i,Nc | = N i=1 | φ i,Nc φ i,Nc | -N i=1 |S Nc -1/2 φ i,Nc S Nc -1/2 φ i,Nc | = N i=1 | φ i,Nc φ i,Nc | --1/2 ) i,k | φ k,Nc φ l,Nc |(S Nc -1/2 ) l,i = N i=1 | φ i,Nc φ i,Nc | --1/2 ) i,k (S Nc -1/2 ) l,i | φ k,Nc φ l,Nc | = N i=1 | φ i,Nc φ i,Nc |k,l | φ k,Nc φ l,Nc | = N k,l=1 (δ k,l -(S Nc -1 ) k,l )| φ k,Nc φ l,Nc |.Taking the Hilbert-Schmidt norm, we obtain(1 -∆) 1/2 ( γ Ncγ Nc ) ) =Tr ( γ Ncγ Nc )(1 -∆)( γ Ncγ Nc ) (δ k,l -(S Nc -1 ) k,l )(δ m,n -(S Nc -1 ) m,n ) × φ l,Nc |(1 -∆)| φ m,Nc φ n,Nc | φ k,Nc ,l -(S Nc -1 ) k,l )(δ m,n -(S Nc -1 ) m,n ) × φ l,Nc |(1 -∆)|φ m,Nc + φ i = 1, . . . , N , φ i,Nc ∈ X Nc and φ (1,1)i,Nc ∈ X ⊥ Nc , and the Laplace operator commutes with Π Nc and Π ⊥ Nc . Using the Cauchy-Schwarz inequality and noting that for i = 1, . . . , N , φ i,Nc and φ (1,1) i,Nc are uniformly bounded in H 1 # -norm independently of N c , there exists C ∈ R + such that (1 -∆) 1/2 ( γ Ncγ Nc ) ) ≤ C   N k,l=1 |δ k,l -(S Nc -1 ) k,l |   C 1 N -(S Nc -1 ) 2 F .

- 1 # 2 # 2 L 2 #. 2 #≤ 1 N -S Nc - 1 / 2 F ( 1 -∆) 1 / 2 Φ Nc L 2 #. ( 9 . 5 . 31 ) 2 # 2 F = 1 2 1 N

 12222112112295312211 -norm[START_REF] Cancès | Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[END_REF] Lemma 4.7], there exist C ∈ R + and N 0 c ∈ N such that for N c ≥ N 0 c ,|E KS 0,Ω ( Φ Nc )-E KS 0,Ω ( Φ Nc )| ≤ C (1-∆) 1/2 ( Φ Nc -Φ Nc ) L +C (1-∆) 1/2 ( Φ Nc -Φ Nc ) (9.5.30)Moreover, developing the expression Φ Nc -Φ Nc , we obtain(1 -∆) 1/2 ( Φ Nc -Φ Nc ) L Since there exists N 0 c ∈ N such that for N c ≥ N 0 c , (1-∆) 1/2 Φ Nc Lis bounded independently of N c , there holds at first order1 N -S Nc -1/-S Nc F + h.o.t. ≤ CN -2 c

2 . 1 ,

 21 there exist 0 < c ≤ C < ∞ such that c(1 -∆) ≤ |H -F | ≤ C(1 -∆),Moreover, as is classical (see e.g. [46, Lemma 1] for a proof) there exists C ∈ R + such that|H -F | 1/2 (1 -∆) -1/2 ≤ C and (1 -∆) 1/2 |H -F | -1/2 ≤ C.(9.6.1)

( 9 . 6 . 2 )

 962 Indeed, expressing the density matrix in terms of orbitals and noting that for all j = 1, . . . , N ,φ 0 j is an eigenvector of |H -F | with eigenvalue |λ 0 j -F | leads to |H -F | 1/2 (γ Ψ 0γ 0 ) 2 σ 2 =Tr ((γ Ψ 0γ 0 )|H -F |(γ Ψ 0γ 0 )) =Tr (γ Ψ 0 |H -F |γ Ψ 0 ) + Tr (γ 0 |H -F |γ 0 ) -Tr (γ 0 |H -F |γ Ψ 0 ) -Tr (γ Ψ 0 |H -F |γ 0 )

-φ 0 i |φ 0 j | 2 ≤ 2 ≤ 2 + 2 S 2

 22222 |H -F | 1/2 (γ Ψ 0γ 0 ) |H -F | 1/2 (γ Ψ 0γ 0 ) 2 σ 2N sup k=1,...,N |λ 0 k -F | γ 0γ Ψ 0

Table 1 .

 1 

	Discretization method Name of the code Language	License type
	Molecular orbitals (GTO)	Dalton [1]	Fortran	academic
	Molecular orbitals (GTO)	Gaussian [112]	Fortran	commercial
	Molecular orbitals (GTO)	MOLPRO [248]	Fortran	commercial
	Molecular orbitals (NAO)	FHI-Aims [27]	Fortran	academic and commercial
	Planewaves	Abinit [121]	Fortran	GPL
	Planewaves	CASTEP [78]	Fortran	academic and commercial
	Planewaves	Quantum	Fortran	GPL
		ESPRESSO [114]		
	Planewaves	VASP [153]	Fortran	academic and commercial
	Planewaves	KSSOLV [252]	Matlab	free under Matlab license
	Wavelets	BigDFT [191]	Fortran	GPL
	Wavelets	Madness [130]	C++	GPL
	Finite differences	Octopus [188]	Fortran, C	GPL
	Finite differences	PARSEC [219]	Fortran	GPL
	Finite differences	RMG [38]	C, C++	GPL
	Finite elements	RealSPACES [70]		
	Finite elements	DGDFT [142]		

1 -Different quantum chemistry codes using different discretization methods.

  tot err N , err k Error balance algorithm given an error tolerance ε.

	Discretization error too large: Increase N			Iteration error too large
	err N > 0.1err k	else	
		err tot < "		
		Return		
		(u k N , k N )		
	Figure 2.2 -No (u k N , k N ) Approximate solution: Yes Caloz-Rappaz conditions satisfied? Increase N or k	Error small enough? First guaranteed bound Adaptive refinement using second bound as indicator (if not guaranteed)	Yes No	Good approximate solution with guaranteed error bound (bound 2)

Table 2 . 2 -

 22 Comparative table of different post-processing methods.

Table 3 . 1 -

 31 Comparison of S N , D N and Q N for different atomic configurations of the H 2 molecule. Distances are in bohrs, energies in mHa.

	284 1.344	9.410 0.1985 0.09157 0.00112	0.0103	0.0340	0.0212
	1.284 1.404	9.268 0.3408 0.08990 0.00279	0.0216	0.0633	0.0413
	1.284 1.464	9.160 0.4491 0.08772 0.00497	0.0375	0.0895	0.0610
	1.284 1.524	9.065 0.5436 0.08552 0.00717	0.0544	0.1107	0.0802
	1.284 1.584	8.969 0.6394 0.08380 0.00889	0.0713	0.1285	0.0985
	1.284 1.644	8.863 0.7456 0.08274 0.00995	0.0841	0.1455	0.1151
	1.284 1.704	8.744 0.8646 0.08213 0.01056	0.0983	0.1642	0.1302
	1.284 1.764	8.615 0.9937 0.08154 0.01115	0.1072	0.1802	0.1440

Table 3 . 2

 32 

	5.726	15.12	0.0485	0.0005036 0.008986	0.004640

-Comparison of S N , D N (in mHa) and Q N for the two different configurations displayed on Figure 3.2.

  .3.8) so that C ih e ih ≤ 2 r (ih) 2 , i.e., (4.3.2). Note that inspecting more closely the quadratic inequality (4.3.7), the improved bound e ih ≤ 2 -4 -2α 2 ih ( √ 2-times better for e ih approaching zero) follows under condition r (ih)

  3.19) follows via (4.2.5b). The proof of Lemma 4.3.1 gives sup k≥1, k =i 1 -λ ih λ k 2 = C ih , recalling (4.3.16). Thus, (4.3.11) together with the Cauchy-Schwarz inequality and u i

  Definition 4.4.2 (Conforming local Neumann problems). Define r a ih ∈ X a h by (∇r a ih , ∇v h

1 * (ω a ), typically P p+1 (T a ) ∩ H 1 * (ω a ).

  Following Carstensen and Funken [61, Theorem 3.1], Braess et al.[32, §3], or [105, Lemma 3.12], there exists a constant C cont,PF only depending on the mesh regularity parameter κ T such that∇(ψ a v) ωa ≤ C cont,PF ∇v ωa ∀v ∈ H 1 * (ω a ), ∀a ∈ V h . (4.4.7) Moreover, the key result of Braess et al. [32, Theorem 7], see [106, Corollaries 3.3 and 3.6] for three space dimensions, states that the reconstructions of Definition 4.4.1 satisfy the following stability property,

  Thus, definition (4.2.4b) of the dual norm of the residual and the Cauchy-Schwarz, Poincaré-Friedrichs, and triangle inequalities yield the bound (4.4.9a). This actually also holds for V h being the cheaper RTN space of order p and not p + 1, as (4.4.1b) still holds. To prove (4.4.9b), we proceed as in[START_REF] Papež | Sharp algebraic and total a posteriori error bounds via a multilevel approach[END_REF] Theorem 7.2], while treating the weak norm Res(u ih , λ ih ) -1 as in Ciarlet and Vohralík[START_REF] Ciarlet | Robust a posteriori error control for transmission problems with sign changing coefficients using localization of dual norms[END_REF] Theorems 4.7 and 5.1]. One builds here crucially on inequali-

ties (4.4.7) and

(4.4.8) 

and relies on the choice p + 1 for V h . Finally, the bound (4.4.9c) is trivial from (4.2.4b) by taking v = r ih ∈ V . Importantly, this can further be bounded from below by a Hilbertian sum of ∇r a ih ωa , which can be seen as in

[197, 

proof of Theorem 2]. Thus, this bound is meaningful.

  2 for an arbitrary linearly independent i-tuple (u 1h , . . . , u ih ), where ξ 2 = i k=1 ξ 2 k .

Remark 4.5.6 (Constants C I and C S ). Let Ω be a convex polygon in R 2 . Then it is classical that the solution ζ (ih) of (4.5.1) belongs to H 2 (Ω) and |ζ (ih) | H 2 (Ω) = ∆ζ (ih) = r (ih) , so that δ = 1 and C S = 1, see Grisvard

[START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] Theorem 4.3.1.4]

. In this situation, calculable bounds on C I can be found in Liu and Kikuchi

[START_REF] Liu | Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements[END_REF] 

and Carstensen et al.

[START_REF] Carstensen | Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods[END_REF]

, see also Liu and Oishi

[178, §2] 

and the references therein; in particular, for a mesh formed by isosceles right-angled triangles, C I ≤ 0.493 √ 2 .

  for α ih of (4.3.10). We can thus useLemma 4.3.3 to find that (u i , u ih ) is indeed non-negative, Lemma 4.3.2 for the L 2 (Ω) bound, and the improved estimates (4.3.19) of Theorem 4.3.5 and (4.3.13) of Theorem 4.3.4. For the latter, that seems only to hold for the first eigenpair, we also employ the inequality 1 -∇u 1h 2Proof (Case C). The proof is as in Case A (with (u i , u ih ) ≥ 0), but it relies on Lemma 4.3.1 instead of Lemma 4.3.2. It additionally uses the Aubin-Nitsche trick, cf. [35, Theorem 5.4.8], [122, Theorem 4.3.1.4], or [26]. By (4.5.1), (4.2.5a), and (4.4.2)

	and (4.5.13) for i = 1.	λ 2	λ 2 ≤ 1 -λ 1

  .5.15) 

	Proof. The guaranteed error bound (4.5.14) follows as in Theorem 4.5.1 upon combining the
	upper bounds in estimates (4.3.18) or (4.3.19) together with (4.4.9a). The efficiency (4.5.15)
	is a consequence of (4.4.9b) and of (4.3.18b).

  178, Theorem 4.3], [64, Theorem 3.2], or [176, Theorem 2.1]. Remark 4.5.11 (Polynomial-degree robustness). The multiplicative factor in the parenthesis in (4.5.15) takes the form ∇

  1, 4.5.2, and 4.5.7 hold for any p ≥ 1. Note that an inexact solution of (4.6.1) in the form (4.4.2) is taken into account. Shall (4.6.1) hold, r ih in (4.4.2) vanishes and, moreover, choosing v h = u ih in (4.6.1) yields ∇u ih 2 = λ ih .

Table 4 .

 4 1 -[Unit square, structured mesh] Validation of assumptions (4.5.2) and (4.5.9)

  .7.2)

	10	
	1	
	0.1	
	0.01	
	0.001	
	0.01	0.1

Table 4 .

 4 0.1414 121 19.7392 20.2284 19.3256 19.9566 1.80 1.85 3.21e-02 1.35 20 0.0707 441 19.7392 19.8611 19.7058 19.7539 1.14 1.27 2.44e-03 1.13 40 0.0354 1681 19.7392 19.7697 19.7349 19.7404 1.04 1.14 2.79e-04 1.07 80 0.0177 6561 19.7392 19.7468 19.7384 19.7394 1.02 1.11 4.91e-05 1.05 160 0.0088 25921 19.7392 19.7411 19.7390 19.7392 1.02 1.10 1.14e-05 1.05 2 -[Unit square, structured

Table 4 .

 4 .8139 19.6366 19.7909 3.24 2.37 7.83e-03 1.54 40 0.0413 1975 19.7392 19.7573 19.7307 19.7434 1.30 1.47 6.42e-04 1.21 80 0.0230 7704 19.7392 19.7436 19.7383 19.7396 1.10 1.20 6.41e-05 1.09 160 0.0126 30666 19.7392 19.7403 19.7391 19.7393 1.07 1.12 1.04e-05 1.06

	N	h	ndof	λ1	λ 1h	λ 1h -η 2 1 λ 1h -η2 1 I lb λ,eff I ub λ,eff	E λ,rel I ub u,eff
	10 0.1698	143 19.7392 20.0336 17.9458 20.6491	-7.09 1.40e-01 2.65
	20 0.0776	523 19.7392 19		

4 illustrates whether the conditions (4.5.2) and (4.5.6) are satisfied under this adap-

Table 4 .

 4 3 -[Unit square, unstructured mesh] Lower and upper bounds on the exact eigenvalue λ 1 , the effectivity indices, and size of the relative λ 1 confidence interval; λ 1 = 1.5π 2 , λ 2 = 4.5π 2 ; Case C

	Level	h	ndof λ 2 -λ 1h (4.5.2) α 1h λ 1h /2λ 1 (4.5.6)	χ1 -1 (u 1h , χ1) -α 1h (4.5.6)
	1 0.7500	22	1.8223 (×)	2.97 (×)	-6.17 (×)
	4 0.7071	34	3.8799 ( )	0.94 ( )	-1.27 (×)
	10 0.5000	140	5.2053 ( )	0.33 ( )	0.13 ( )

Table 4 .

 4 4 -[L-shaped domain, adaptive mesh refinement] Validation of the assumptions (4.5.2) and (4.5.6) for λ 1 = π 2 /2 and λ 2 = 15.1753 tive refinement.

  Figure 4.2 -[L-shaped domain, adaptive mesh refinement] Mesh of the adaptive algorithm on step 18 (left) and error in the first eigenvalue and eigenvector approximation, its lower bound (eigenvalue only), and its upper bound (right); Cases A and B

						1/ndof
	Level ndof	λ1	λ 1h	λ 1h -η 2 1 λ 1h -η2 1 I lb λ,eff I ub λ,eff	E λ,rel I ub u,eff
	10	140 9.6397 9.9700	6.3175	9.9260 7.50 11.06 4.44e-01 3.31
	15	561 9.6397 9.7207	9.0035	9.7075 6.17 8.86 7.53e-02 2.98
	20 2188 9.6397 9.6601	9.4887	9.6566 5.88 8.43 1.75e-02 2.88
	25 8513 9.6397 9.6449	9.6019	9.6440 5.77 8.31 4.37e-03 2.75
	30 24925 9.6397 9.6415	9.6266	9.6412 5.73 8.26 1.51e-03 2.51

Table 4 .

 4 

	ndof	2494	3390	4508	5879	7602 10047 13640 18163 23494 30533
	λ 1h -η2 1 60.541 60.494 60.455 60.422 60.401 60.387 60.376 60.367 60.359 60.354
	λ 1h -η 2 1 37.223 43.710 48.428 52.058 54.275 55.680 56.799 57.719 58.436 58.910

6 -[Domain with a hole, adaptive mesh refinement] Lower and upper bounds on the exact eigenvalue λ 1 as a function of the degrees of freedom; Case B

Table 4 .

 4 

		0.0354	861 49.3480 49.4789 49.3197 49.3607	1.11 1.22 8.29e-04 1.10
	80 0.0177	3321 49.3480 49.3807 49.3442 49.3493	1.04 1.12 1.03e-04 1.06
	160 0.0088 13041 49.3480 49.3562 49.3473 49.3482	1.03 1.09 1.94e-05 1.05
	320 0.0044 51681 49.3480 49.3501 49.3478 49.3481	1.05 1.08 5.49e-06 1.04
	640 0.0022 205761 49.3480 49.3485 49.3480 49.3480	1.02 1.08 1.07e-06 1.02
	40 0.0354	861 98.6960 99.2953 97.8659 99.1171	3.36 2.39 1.27e-02 1.54
	80 0.0177	3321 98.6960 98.8457 98.6376 98.7242	1.23 1.39 8.77e-04 1.18
	160 0.0088 13041 98.6960 98.7335 98.6903 98.6985	1.07 1.15 8.29e-05 1.08
	320 0.0044 51681 98.6960 98.7054 98.6952 98.6964	1.04 1.10 1.29e-05 1.05
	640 0.0022 205761 98.6960 98.6984 98.6959 98.6961	1.03 1.08 2.54e-06 1.02
	40 0.0354	861 128.3049 129.2175 126.6899 129.2175		-2.77 2.30e-02 1.65
	80 0.0177	3321 128.3049 128.5334 128.1923 128.4923	5.56 1.49 2.34e-03 1.22
	160 0.0088 13041 128.3049 128.3620 128.2940 128.3429	3.00 1.19 3.81e-04 1.09
	320 0.0044 51681 128.3049 128.3191 128.3032 128.3139	2.70 1.12 8.30e-05 1.06
	640 0.0022 205761 128.3049 128.3084 128.3045 128.3071	2.62 1.10 1.99e-05 1.03
	40 0.0354	861 167.7833 169.3980 158.1506 169.3980		-6.97 9.48e-02 2.62
	80 0.0177	3321 167.7833 168.1858 167.2205 168.1858		-2.40 6.94e-03 1.55
	160 0.0088 13041 167.7833 167.8838 167.7437 167.8831 142.86 1.39 8.31e-04 1.18
	320 0.0044 51681 167.7833 167.8084 167.7795 167.8052	7.80 1.15 1.53e-04 1.07
	640 0.0022 205761 167.7833 167.7896 167.7827 167.7886	6.29 1.09 3.49e-05 1.02
	N	h	ndof	λi	λ ih	λ ih -η 2 i	λ ih -η2 i	I lb λ,eff	I ub λ,eff	E λ,rel	I ub u,eff
	40 0.0839	1437 9.6397 9.6955	9.1450	9.6870 6.59	9.87 5.76e-02 3.16
	80 0.0459	5674 9.6397 9.6588	9.4719	9.6559 6.52	9.78 1.92e-02 3.15
	160 0.0234 21878 9.6397 9.6467	9.5779	9.6456 6.58	9.86 7.04e-03 3.16
	320 0.0125 86810 9.6397 9.6423	9.6167	9.6419 6.63	9.93 2.62e-03 3.14
	640 0.0059 352256 9.6397 9.6407	9.6310	9.6406 6.73	9.98 9.94e-04 2.77
	40 0.0839	1437 15.1973 15.2440	14.2080 15.2440		-	22.17 1.64e-01 4.70
	80 0.0459	5674 15.1973 15.2092	14.9577 15.2092		-	21.11 4.09e-02 4.60
	160 0.0234 21878 15.1973 15.2002	15.1378 15.2002		-	20.87 1.02e-02 4.57
	320 0.0125 86810 15.1973 15.1980	15.1825 15.1980		-	20.81 2.55e-03 4.55
	640 0.0059 352256 15.1973 15.1974	15.1936 15.1974		-	20.81 6.36e-04 4.09
	40 0.0839	1437 19.7392 19.8216	18.7524 19.8216		-	12.97 1.75e-01 3.59
	80 0.0459	5674 19.7392 19.7597	19.5056 19.7597		-	12.38 4.44e-02 3.52
	160 0.0234 21878 19.7392 19.7444	19.6805 19.7444		-	12.23 1.14e-02 3.50
	320 0.0125 86810 19.7392 19.7405	19.7246 19.7405		-	12.19 2.84e-03 3.48
	640 0.0059 352256 19.7392 19.7395	19.7356 19.7395		-	12.20 7.01e-04 3.07
	40 0.0839	1437 29.5215 29.7057 -154.6818 29.7057		-1000.68		-31.53
	80 0.0459	5674 29.5215 29.5675 -10.5379 29.5675		-871.81 3.08e+00 29.51
	160 0.0234 21878 29.5215 29.5331	26.5255 29.5331		-258.67 2.59e-01 16.08
	320 0.0125 86810 29.5215 29.5244	28.8467 29.5244		-231.37 6.37e-02 15.16
	640 0.0059 352256 29.5215 29.5222	29.3595 29.5222		-225.32 1.56e-02 13.45

7 -[Triangular domain, uniform mesh refinement] Lower and upper bounds on the first four exact eigenvalues λ i , the effectivity indices, and the sizes of the relative λ i confidence intervals

Table 4 .

 4 

8 -[L-shaped domain, uniform mesh refinement] Lower and upper bounds on the first four exact eigenvalues λ i , the effectivity indices, and the sizes of the relative λ i confidence intervals

  mixed finite element approximation to the homogeneous Neumann (Neumann-Dirichlet close to the boundary) problem posed on the patch T a : find σ a ih ∈ V a h and p a h ∈ Q a h such that

∇ψ a . Imposing the divergence of σ a ih in this way and defining σ ih via (5.3.3b) leads to (5.3.1b), see, e.g.,

[START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] Lemma 3.5]

.

It is easy to verify that problems (5.3.3a) are equivalent (see

[START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] Remark 3.7]

) to the

  3.2) is obtained via local unconstrained minimizations employing the broken gradient (5.2.3): Definition 5.3.3 (Eigenvector reconstruction). Let u ih ∈ P p (T h ) be arbitrary. Prescribe s a

	W a h by solving	s a ih := arg min	ih ∈

  and Section 4.3.2]. In particular, there holds, see Carstensen and Funken [61, Theorem 3.1] or Braess et al. [32, Section 3]∇(ψ a v) ωa ≤ C cont,PF ∇v ωa ∀v ∈ H 1 * (ω a ), ∀a ∈ V h .

	(5.4.3)
	5.4.2 Stability of the equilibrated flux and eigenvector reconstructions

Recently, Costabel and McIntosh [79, Corollary 3.4], Demkowicz et al. [84, Theorem 7.1], and Demkowicz et al. [83, Theorem 6.1] have shown fundamental results on the right inverse of respectively the divergence, the normal trace, and the trace operators for polynomial data on a single (reference) tetrahedron. Therefrom, the two following key stability results for the constructions of Definitions 5.3.2 and 5.3.3 follow:

  [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF].1 (Upper and lower bounds on the dual norm of the residual). Let (u ih , λ ih ) ∈ P p (T h ) × R + satisfy Assumption 5.3.1 and let σ ih , s ih be respectively constructed following

	Definitions 5.3.2 and 5.3.3. Then			
	Res θ (s ih , λ ih ) -1 ≤	λ ih √ λ 1	u ih -s ih + ∇s ih + σ ih ,	(5.4.5a)

  .6.22b) see[START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations[END_REF] Lemma 3.22 and Section 4.3.2]. This very favorable context arises namely for nonconforming and mixed finite elements, as we will see below in Sections 5.7.1 and 5.7.3.

Table 5 .

 5 

1 -[Structured mesh, unit square, nonconforming method, case C] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = 1.5π 2 , λ 2 = 4.5π 2

  .2 

	N	h	ndof	λ1	λ 1h	∇s 1h	2 -η 2 1	∇s 1h	2	E λ,rel I ub u,eff
	10 0.1698	386 19.7392 19.6556	17.1037 19.8250 1.47e-01 3.97
	20 0.0776	1486 19.7392 19.7157	19.5482 19.7604 1.08e-02 2.58
	40 0.0413	5762 19.7392 19.7335	19.7167 19.7448 1.42e-03 2.10
	80 0.0230 22789 19.7392 19.7377	19.7353 19.7406 2.66e-04 1.93
	160 0.0126 91355 19.7392 19.7389	19.7384 19.7396 5.89e-05 1.86
	320 0.0058 366520 19.7392 19.7391	19.7390 19.7393 1.41e-05 1.84

Table 5 .

 5 2 -[Untructured mesh, unit square, nonconforming method, case C] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = 1.5π 2 , λ 2 = 4.5π 2

	N	h	ndof	λ1	λ 1h	∇s 1h	2 -η 2 1	∇s 1h	2	E λ,rel I ub u,eff
	10 0.3041	266 9.6397 9.2966		-4.1909	9.7861	-6.02
	20 0.1670	1069 9.6397 9.5155		7.8895	9.6926 2.05e-01 4.19
	40 0.0839	4148 9.6397 9.5933		9.0782	9.6578 6.19e-02 4.12
	80 0.0459 16699 9.6397 9.6227		9.4514	9.6459 2.04e-02 4.09
	160 0.0234 64991 9.6397 9.6331		9.5703	9.6420 7.46e-03 4.08
	320 0.0125 259147 9.6397 9.6372		9.6138	9.6406 2.78e-03 4.07

Table 5 . 3

 53 

-[Untructured mesh, L-shaped domain, nonconforming method] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = π 2 /2 and λ 2 = 15.1753 (left) illustrates the convergence of the energy error ∇ θ (u 1u 1h ) and its upper bound η 1 + ∇ θ (u 1h -s1h ) . Details and eigenvalue convergence results are presented in Table

5

.3. All the theoretical results are nicely confirmed.

  Figure 5.2 -[Unstructured and adaptive mesh refinement, L-shaped domain, nonconforming method] Error in the eigenvector and its upper bound for a quasi-uniform refinement (left) and adaptive refinement (right).

									1/2
	Level ndof	λ1	λ 1h	∇s 1h	2 -η 2 1	∇s 1h	2	E λ,rel I ub u,eff
	5	98 9.6397 8.9699	-29.6187	9.9072	-6.36
	10	296 9.6397 9.4403		4.8193	9.7445 6.76e-01 4.32
	15 1161 9.6397 9.5868		8.6628	9.6646 1.09e-01 3.99
	20 4860 9.6397 9.6275		9.4310	9.6457 2.25e-02 3.81
	25 20429 9.6397 9.6369		9.5925	9.6411 5.06e-03 3.62
	30 83472 9.6397 9.6390		9.6284	9.6401 1.21e-03 3.18

Table 5 . 4

 54 

-[Adaptive mesh refinement, L-shaped domain, nonconforming method] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = π 2 /2 and λ 2 = 15.1753

Table 5 . 5

 55 

-[Structured mesh, unit square, discontinuous Galerkin method, case C] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = 1.5π 2 , λ 2 = 4.5π 2

Table 5 .

 5 8 then presents more details of the adaptive procedure.

	N	h	ndof	λ1	λ 1h	∇s 1h	2 -η 2 1	∇s 1h	2	E λ,rel I ub u,eff
	10 0.1698	732 19.7392 19.9432	17.8788 19.9501 1.10e-01 3.26
	20 0.0776	2892 19.7392 19.7928	19.6264 19.7939 8.50e-03 1.91
	40 0.0413 11364 19.7392 19.7526	19.7295 19.7529 1.18e-03 1.47
	80 0.0230 45258 19.7392 19.7425	19.7381 19.7426 2.28e-04 1.31
	160 0.0126 182070 19.7392 19.7400	19.7390 19.7401 5.35e-05 1.28

Table 5 .

 5 6 -[Untructured mesh, unit square, discontinuous Galerkin method, case C] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = 1.5π 2 , λ 2 = 4.5π 2

	10	
	1	
	0.1	
	0.01	
	0.1	1

Table 5 .

 5 7 -[Untructured mesh, L-shaped domain, discontinuous Galerkin method] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = π 2 /2 and λ 2 = 15.1753

	Level ndof	λ1	λ 1h	∇s 1h	2 -η 2 1	∇s 1h	2	E λ,rel I ub u,eff
	5	186 9.6397 10.2136	-30.6026 10.3629	-7.19
	10	777 9.6397 9.8154		7.2388	9.8388 3.04e-01 3.75
	15 3453 9.6397 9.6865		9.1572	9.6902 5.66e-02 3.38
	20 14706 9.6397 9.6509		9.5335	9.6517 1.23e-02 3.23
	25 61137 9.6397 9.6425		9.6144	9.6426 2.93e-03 3.00

Table 5 .

 5 8 -[Adaptive mesh refinement, L-shaped domain, discontinuous Galerkin method] Lower and upper bounds of the exact eigenvalue λ 1 , the relative eigenvalue error, and the eigenvector effectivity index; case λ 1 = π 2 /2 and λ 2 = 15.1753

Table 6 .

 6 

		Guaranteed
	guaranteed?	bound

1 -Error components evolution with large number of iterations precise a posteriori bound of section 6.3.2. The real error is about 1000 to 100 times less than the coarse a posteriori error bound.

Table 6 .

 6 

	2	conditions Guaranteed
		guaranteed?	bound

2 -Error components evolution in large dimensional space • If err total < , then return (N, k) • Else compute err N and err k -If err k > err N then back to 2 with k = k + 1.

Table 6 .

 6 

	1

[START_REF] Ainsworth | A posteriori error estimation for discontinuous Galerkin finite element approximation[END_REF] 

-Error balance with a potential having the Fourier coefficients

Table 6 . 4 -

 64 Error balance with a potential having the Fourier coefficients

	10 4 2.6e-01 7.3e-03 2.6e-01	7.0e-02	3.63
	10 6 8.4e-02 7.3e-03 8.5e-02	2.4e-02	3.52
	10 8 2.8e-02 7.3e-03 2.9e-02	1.1e-02	2.77
	16 8 5.5e-03 2.4e-03 6.0e-03	2.8e-03	2.14
	22 10 1.8e-03 1.1e-03 2.1e-03	1.2e-03	1.79
	28 12 6.2e-04 6.0e-04 8.6e-04	6.2e-04	1.38
	38 13 1.2e-04 2.8e-04 3.1e-04	2.9e-04	1.08
	58 14 4.6e-06 9.9e-05 9.9e-05	9.9e-05	1.00
	94 16 2.0e-08 3.0e-05 3.0e-05	3.0e-05	1.00

  1,Nc , . . . , φ N,Nc ) T and where H [ρ Nc ] is defined by (7.2.11) for the approximate ground state density ρ Nc . A key observation is that H Nc,proj is the restriction to X Nc of the self-adjoint operator H Nc on L 2 # (Ω) with domain H 2 # (Ω) defined by

  us now clarify the meaning of the terms Tr (-∆γ) and Tr (H γ) appearing in (8.2.5)-(8.2.7). Let γ ∈ L(L 2 # ) be self-adjoint and positive. Since |∇| (i.e.the multiplication operator by |k| in Fourier representation) is a bounded linear operator from H s # (Ω) to H s-1 # (Ω), |∇|γ|∇| defines a bounded linear operator from H 1

# (Ω) to H -1 # (Ω). If in addition, Ran(|∇|γ|∇|) ⊂ L 2 # (Ω) and

  Nc VΠ Nc u.Since X Nc and X ⊥ Nc are invariant subspaces of H Nc , the Hamiltonian H Nc can be represented in term of H Nc,proj as follows:

	8.3 Post-processing of the plane-wave approximation
	8.3.1 A key remark		
	Let us introduce the Hamiltonian on L 2 # (Ω) with domain H 2 # (Ω) defined by
	∀u ∈ H 2 # (Ω), H Nc u = -	1 2	∆u + Π

  In order to prove Theorem 8.4.1, we first provide in Section 8.4.2 a decomposition of γ 0 based on spectral projection in Lemma 8.4.3, relying on Lemma 8.4.2 for a rigorous justification of the contour integral. In Section 8.4.2, we decompose the difference γ 0γ Nc into three parts in Lemma 8.4.4, and we then estimate each of these terms in three of the following Lemmas 8.4.5, 8.4.7, and 8.4.8, relying on an intermediary estimate presented in Lemma 8.4.6, in order to prove estimate (8.4.1). Finally, in Section 8.4.2, we provide a proof for estimate (8.4.2).

	.4.2)
	8.4.2 Proofs
	Exact density matrix in terms of approximate density matrix
	Lemma 8.4.2.

  Using(8.2.22),(8.2.25), and (8.2.26), we obtain that there exist C ∈ R + and N 0 c ∈ N such that for all N

  There exist C ∈ R + and N

	.4.14)
	Inserting (8.4.13) and (8.4.14) in (8.4.12) concludes the proof of the lemma.
	Lemma 8.4.7.

  1/2 is bounded (see e.g. [46, Lemma 1]).

	Moreover, max z∈Γ

  1/2 Π ⊥ Nc is also bounded. Using estimates (8.4.16) and (8.4.17) allows one to conclude the proof of the lemma. Lemma 8.4.8. There exist C ∈ R + and N

  # ) . Therefore, we can use the estimate of Lemma 8.4.7 to conclude. From Lemma 8.4.4, and using the estimates of Lemmas 8.4.5, 8.4.7 and 8.4.8, we easily get estimate (8.4.1).

	Proof of estimate (8.4.2)

  using the triangle and the Cauchy-Schwarz inequalities, the fact that |H -F |, γ 0 and (1γ 0 ) commute, and (8.2.13), we get |Tr

  .4.21) From (8.2.22), (8.2.25) and (8.4.21), we obtain that there exist C ∈ R + and N

  1/2 (γ 0γ 0,Nc ) S 2 (L 2 # ) ≤ CN -1 c ,(9.3.19)andΛ 0 -Λ 0 Nc F ≤ C (1 -∆) 1/2 (γ 0,Ncγ 0 ) 2

	S 2 (L 2 # ) ,	(9.3.20)

  .3.26) 

Les lois physiques sous-jacentes nécessaires à la théorie mathématique d'une grande partie de la physique et de l'ensemble de la chimie sont donc complètement connues, et la difficulté est que l'application exacte de ces lois conduit à des équations trop compliquées pour être solubles. Il est donc souhaitable que des méthodes d'approximation pratiques de l'application de la mécanique quantique soient développées, ce qui peut conduire à expliquer les principales caractéristiques des systèmes atomiques complexes sans trop de calcul.

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

This assumption that the negative part of V : denoted as V-is in L ∞ (Ω) is not crucial, it mainly allows us to simplify some estimates in what follows, in particular in section 6.3.1
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Part IV

A posteriori error estimation for a nonlinear eigenvalue problem

Chapter 6

A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem

We expose in this chapter the results of [START_REF] Dusson | A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem[END_REF]. This work was done in collaboration with Yvon Maday.

Abstract

In this paper, we provide a first full a posteriori error analysis for variational approximations of the ground state eigenvector of a nonlinear elliptic problem of the Gross-Pitaevskii type, more precisely of the form -∆u + V u + u 3 = λu, u L 2 = 1, with periodic boundary conditions in one dimension. Denoting by (u N , λ N ) the variational approximation of the ground state eigenpair (u, λ) based on a Fourier spectral approximation and (u k N , λ k N ) the approximate solution at the k th iteration of an algorithm used to solve the nonlinear problem, we first provide a precised a priori analysis of the convergence rates of uu N H 1 , uu N L 2 , |λ-λ N | and then present original a posteriori estimates in the convergence rates of u-u k N H 1 when N and k go to infinity. We introduce a residual standing for the global error

N and we divide it into two residuals characterizing respectively the error due to the discretization of the space and the finite number of iterations when solving the problem numerically. Finally, in a series of numerical tests, we illustrate numerically the performances of this a posteriori analysis.

The discrete solution u k * N is completely determined by the knowledge of (λ k-1 N , u k-1 N ). Since u k * N is a priori a non-normalized vector, we normalize it and define u k N by

Finally, we define the approximation of the eigenvalue λ k N as a Rayleigh quotient being

Remark 6.1.2. In this paper, we do not consider error relatively to numerical integration since the nonlinearity Ω (u k N ) 4 is only quartic hence easy to integrate. It is moreover possible to precompute the 4N +1 coefficients of the Fourier projection of the potential Π 2N V , and since the problem relative to it is linear, exact integation can be performed.

It should be noticed that the above algorithm corresponds to an extension of the inverse power method to this nonlinear eigenvalue problem. We can check numerically that such an algorithm converges (at least in all the simulations we have performed, possibly with a relaxation parameter -see the numerical results below). Moreover we can derive that the limit (λ N , u N ) is a good approximation of the solution to problem (6.1.7). More precisely we can prove the following lemma. Lemma 6.1.1. Let us assume that there exists u * N ∈ X N with Ω (u * N ) 2 = 1, such that the sequence (u k * N ) k≥1 converges to u * N in H 1 -norm when k goes to infinity, then

• the sequence (u k N ) k≥1 converges to u * N in H 1 -norm

• the limit (u * N , λ * N ) verifies the nonlinear eigenvalue equation (6.1.17).

In addition, if λ * N is the smallest eigenvalue of A u * N , then u * N is solution in (6.1.15) and this solution is unique if N is large enough. Remark 6.1.3. The assumption "λ * N is the smallest eigenvalue of A u * N " is needed because the inverse power method does not always converge to the lowest eigenvalue e.g. when, for a linear symmetric problem, the starting point is orthogonal to the targeted eigenvector. However, this hypothesis can be checked a posteriori by computing the first eigenvalue of the linear operator A u * N by another numerical method.

Proof. The strong convergence of u k * N to u * N implies that the limit of the L 2 -norm of u k * N is 1 and thus the sequence

Then, for any > 0, there exists k 0 ∈ N such that for any k ≥ k 0 , k ∈ N, the following assertions hold:

and

The two above lefthand sides are nonnegative. By adding up these two quantities, we deduce that

We then deduce easily that λ N = λ * N .

It is an interesting result per se, to highlight the result that is established at the end of the previous proof, and that can be stated at the continuous level : Lemma 6.1.2. Let v be an element in X such that v is an eigenvector of A v (as defined in (6.1.5)), associated with its smallest eigenvalue, then v is equal to u, the ground state of the energy E as defined in (6.1.2).

The following property will be used several times in the analysis:

In the remainder of this paper, we denote by u the unique positive solution of (6.1.1) and by u N a minimizer of the discretized problem (6.1.15) such that (u N , u) L 2 ≥ 0.

A priori analysis

The purpose of this section is to provide a precised a priori analysis for the approximation of problem (6.1.1) by (6.1.17) : we establish error bounds on u

. Actually, we follow and refine the analysis presented in the paper [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF] where the a priori analysis was done in a more general framework.

We provide this a priori analysis of (6.1.1) for two reasons. Firstly the particular form of the energy functional and the fact that the problem in one-dimensional allows to simplify the proofs and understand better the basic ingredients that will be used in the next section. Secondly, and more importantly, we need to be as precise as possible in order to provide an accurate evaluation of the various constants that are involved in the error bounds of the a posteriori analysis whenever this is possible. Lemma 6.2.1. (precised version of Lemma 1 of [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF]) If V ∈ L p (Ω),with Ω = (0, 1), there exist β > 0, M 1 , M 3 ∈ R + and γ > 0 such that for any v ∈ X and any N ∈ N,

Combining (6.2.9) with (6.2.10) we get the lower bound in (6.2.2) with the constant β defined in (6.2.5).

To prove (6.2.3) we notice from (6.1.22) and the positivity of (u,

It therefore readily follows from (6.1.7) and (6.2.8) that

We also have from (6.2.10) that

with χ defined in (6.2.5). From (6.2.11) and (6.2.12) we can write

Hence (6.2.3) with γ defined in (6.2.6).

For w ∈ X , we denote by ψ w in u ⊥ defined in (6.2.7) the unique solution to the adjoint problem

The existence and uniqueness of the solution to (6.2.13) is a straightforward consequence of (6.2.2) and the Lax-Milgram lemma that also provides the estimate,

Besides this existence and stability result, the (very) simple elliptic regularity result, that we state without proof, follows Lemma 6.2.2. Assume V ∈ L p (Ω), p ≥ 2 then, there exists a constant C = 3 4 √ 5 In addition, there exists C E ∈ R + such that for any N ∈ N,

.17)

there exists C λ ∈ R + such that for any N ∈ N,

there exist N 0 ∈ N and C H1 ∈ R + such that for any N ≥ N 0 , N ∈ N,

and there exist N 1 ∈ N and it results that these estimates are not constructive.

Proof. We have

(6.2.21) Using (6.2.3) and the fact that the second term on the right hand side is positive we get

Let us now denote by

The functional E being strongly continuous on X, we obtain

where ε tends to zero with its argument.

From the definition of Π N u the H 1 -projector of u on X N , (Π N u) N >0 converges to u in X when N goes to infinity. Denoting by u N = Π N u -1 L 2 Π N u (which is well defined, since u > 0 means that it is not with zero average, hence Π N u is never null), we thus have

as soon as N is large enough, hence

In order to evaluate the H 1 -norm of the error u Nu, we first notice that

and from (6.2.2) that

For any w N ∈ X N , using (6.1.6), (6.1.7) and (6.1.17)

By using (6.1.22) with v = u N and w = v N , (6.2.18) and (6.2.24), we obtain that for any

It then follows from (6.2.2) that for any

Then

Besides, there exists

Let u N be the orthogonal projection, for the L 2 inner product, of u N on the affine space

As

We can write the following

(from (6.2.13))

(from (6.2.33))

(from (6.1.10)).

For any ψ N ∈ X N , it therefore holds

From (6.2.29) with w N = ψ N , from (6.2.18) and (6.2.24), we obtain that for any

We deduce that

, then we obtain from (6.2.2), (6.2.24) (6.2.34) and (6.2.35) that for any

There exists N 4 ∈ N such that for any

Then we have for any

Lastly, let us introduce the operator

hence (6.2.20) with

, which concludes the proof of theorem 6.2.1.

A posteriori analysis

In this section we derive a posteriori estimates for the approximation of the problem (6.1.8), in order to quantify the error done during the iterative resolution (6.1.18), (6.1.19), (6.1.20) of the nonlinear eigenvalue problem; we introduce a residual measuring how close the approximate solution, obtained after -say -k iterations (u k N , λ k N ) is to the exact one (u, λ). We are in particular interested in deriving an accurate upper bound for the quantity

where -of course -the direct knowledge of u is not available.

Preliminaries

We start by computing a crude a posteriori error estimator that allows to define a range of discretization parameters k and N that ensures that the discrete solution

c where c is a given constant c > 0 (that may not be so small as a target accuracy level), in particular this allows to verify that the discrete solution is close to the exact ground state. To do so, we use arguments stated in [START_REF] Brezzi | Finite dimensional approximation of nonlinear problems -Part I: Branches of nonsingular solutions[END_REF] or [START_REF] Caloz | Numerical analysis for nonlinear and bifurcation problems[END_REF]. First we write the problem in an appropriate form: we define a function F being

for u = (u, λ) ∈ X ≡ X × R. Then we refer to the general theory that we recall for the sake of completeness: let F : X → X be a C 1 mapping and let v ∈ X be such that DF v ∈ L(X ; X ) is an isomorphism. We introduce

where B(v, α) is the ball in X of center v and radius α. Then, if 2γL(2γε) ≤ 1, there exists a unique u ∈ X in the ball B(v, 2γε) such that F (u) = 0 and

We shall apply this result with v = (u k N , λ k N ). In this case, because u k N L 2 = 1, the residual quantity: ε is (only) the part associated with the nonlinear eigenvalue problem for the approximate solution

An essential element in this direction is thus the differential form DF that, computed at

We will require that DF (u k N ,λ k N ) is an isomorphism. In order to check that statement, let us introduce the following linear eigenvalue problem associated with the discrete solution

The associated eigenvalues ranked in increasing order are denoted by

The existence of a gap

between the first and second eigenvalue is a well-known fact. The computation of µ 1 N and µ 2 N (that can be done with a power method) allows to provide a first coarse indicator of the convergence (in k) of the iterative algorithm since λ k N should be close to µ 1 N and u k N should be close to ±v 1 N (and we define properly

With these notations, let us introduce the quantities

with

We also define

We can now prove the following lemma:

and that N ∈ N is large enough so that C N > 0 (C N defined in (6.3.8)). Then DF is a diffeomorphism, and, with the notations in (6.3.3):

In addition, if 2γL(2γ ) ≤ 1 (where we recall ε is defined in (6.3.4)), there exists a unique (ũ, λ) in the ball B((u k N , λ k N ), 2γ ) such that F (ũ, λ) = 0 and

and there exists a computable condition depending on ũ -

guaranteeing that (ũ, λ) is the ground state (u, λ) of (6.1.1).

Proof. Let us first prove that the operator

is elliptic, which will in turn allow to prove that

is positive definite over the space (v 1 N ) ⊥ . More precisely, we have:

We first note that we have:

H 1 using (6.1.4) and (6.1.13)

The constant C N defined in (6.3.8) being computable and strictly positive for N large, we are able to determine N such that this bilinear form is elliptic. This form being clearly continuous, Lax-Milgram theorem holds and there exists a unique solution w to equation (6.3.18). It then follows that the solution to (6.3.17) is w = w(f ) + τ w(u k N ), and τ is the only value such that 2 u k N [w(f ) + τ w(u k N )] = µ, which is possible, and achieved with

due to the fact that, from (6.3.18),

which is positive from the above estimates as soon as N is large enough. Hence, if the hypotheses are satisfied, DF is an isomorphism.

Let us now get a lower bound for γ. As

• For the right-hand side in (6.3.27) we have

• For the term in (6.3.28) we write

) as the continuity constant of the operator

into its dual space. The third term of equation (6.3.29) can be bounded as follows:

• For the term in (6.3.30) we show that

• Bounding the last term in (6.3.31) is done as follows

Then gathering all the previous estimates provides a computable lower bound for µ that we call LB k N that is close to µ 2 N when N and k are large : i.e.

where ε(N, k) can be computed from the previous estimations of ((6.3.28),(6.3.29),(6.3.30), (6.3.31)) and ε(N, k) → 0 as N and k go to infinity. Then, we deduce from (6.3.7) that

Hence, as soon as the three computable quantities µ 1 Nλ k N , λ k N -λ and ε(N, k) are small enough, verified by the condition that they are, e.g., smaller than δ k N /6, we shall get that µ > λ, and the contradiction appears.
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Let us now use the fact that the maximum in the first line above is achieved for v = uu k N , the second term in the above right hand side then reads

and part of the third reads

where

By summing up the above expressions, we get

In this expression the only term in the right hand-side that is neither a posteriori computable nor small compared to the left hand-side is

. In order to bound this quantity, let us

We then define

In order to bound the second term of (6.3.47), we first state from (6.1.13) that

Let us now focus on the first term of (6.3.47).

where, in the last but one line above, we have used the fact that Ψu k N -u ∈ (v 1 N ) ⊥ . Let us bound each term of the right-hand side. For the first term we have

where

In particular, since Ψu k N -u ∈ (v 1 N ) ⊥ , we can use the fact that

and

to show that

and so

Therefore we can take

For the second term we have

For the third term we have

For the fourth term we have on the one hand

and k α ∈ N such that for any N ≥ N α , and for any k ≥ k α ,

Let us now notice that, in the limit we can choose α as close as we wish to 1 (at the price of choosing N α and k α large enough).

Let N ≥ N α and k ≥ k α such that the inequality (6.3.52) is verified. Then the following a posteriori error bound holds:

This expression shows the a posteriori relation between the error in H 1 -norm and the global residual R k N . We can now split the global residual into its two components in order to make the iteration and discretization errors explicit. From the definition of the discretization and iteration residuals (6.3.41) and (6.3.42) we write (with α > 1)

As the discretization residual R disc has been defined from the numerical scheme described in the introduction, the projection of the residue on X N is zero, that is Π N (R disc ) = 0. Then, for any α > 1, as close to 1 as we wish when the convergence is acknowledged, we have the

General framework

We first verify the convergence of the "inverse power" method (6.1.18), (6.1.19), (6.1.20) for different "strength" of the nonlinear contribution. Let us define ω ∈ R + the coefficient of nonlinearity. Equation (6.1.9) becomes

Taking this coefficient into account, the algorithm we use to solve the equation in the space X N is similar to (6.1.18), (6.1.19), (6.1.20).

This algorithm converges numerically for small values of ω. However for large values of ω the algorithm does not converge anymore. This non-convergence starts for ω in the range of 10.

In order to cope with this problem, two strategies have been considered. First the convergence is improved for larger dimension of the space X N . Hence we can increase the dimension in the numerical "exact" space and in the approximate spaces X N . Another solution is to introduce a relaxation coefficient η, 0 < η ≤ 1, such that for each k a relaxation step is added in the algorithm as we define

This improves the convergence of the algorithm. For example for N = 80 and η = 0.3 the algorithm converges in less than 100 iterations for ω up to 15 and the number of iterations required to verify the condition In all what follows, ω is fixed equal to 1. The numerical "exact solution" is computed in the space X 300 = Span {e k , |k| ≤ 300}, and the number of iterations is pushed so that the global residual defined above for this numerical "exact solution" is:

which is achieved with k max = 32.

The total error is given by the a posteriori bound (6.3.53), that is

Two error components are defined from the bound (6.3.54): the k-error and the N -error which depend respectively mainly on k and N . More precisely we define the k-error by

and the N -error by

A posteriori analysis of a nonlinear Gross-Pitaevskii-type eigenvalue problem

Let us notice that the total error is not exactly the sum of the two error components. Indeed

hence err total is a sharper estimate than the sum of the two contributions err k + err N .

With a large number of iterations

In this subsection, we compute different approximate solutions using a given large number of iterations and varying the dimension of the Fourier space X N (see table 6.1). The number of iterations is k max = 32 in our case for N between 15 and 100. Recall that this value of k max corresponds to the minimum of iterations required to complete the condition the residual is less than 10 -12 for N = 300. The eighth and ninth columns are given by

which in our case is zero) and R 2 being computed with (V + 3(u k N ) 2λ k N -1) -L ∞ = 0, we force this contribution to be e.g. equal to 1, in order to see the effect of this additional contribution in the a posteriori bound. The second to last column indicates whether or not the conditions for the first a posteriori bound are verified. When this bound is guaranteed, the corresponding error bound is given in the last column.

Let us first remark that the total error (6.4.3) (with α chosen equal to 1) is larger than u exactu k N H 1 which confirms the fact that the convergence of α to 1 is very fast, since then the total error is an upper bound for u exactu k N H 1 ). Secondly the k-error obtained is close to 5.10 -15 and almost constant which depicts the fact that the k-error is independent of N and almost zero when the algorithm has converged. The N -error is then the main component of the total error and decreases from 10 -6 to 10 -10 . The total error is very close to u exactu k N H 1 which shows that the a posteriori bounds found in the previous analysis seem to be close to optimal when the algorithm has converged.

In the last columns, we see that the error is guaranteed only for N larger than 45. Moreover the first guaranteed bound is larger than the real error by a factor between 1000 for relatively small values of N to 100 when N is large. Hence this first bound is actually much more coarse than the second a posteriori bound derived in the section 6.3.2.

In large dimension for the discretization space

In this subsection, we compute the approximate solution using a large dimension for the discretization space (N = 100) and varying the number of iterations. The number of iterations varies from 1 to 31. As in the previous subsection we remark that the total error is larger than u exactu k N H 1 . The N -error obtained is close to 10 -10 and almost constant which depicts the fact that the N -error is independent of k and almost zero when N is large. The k-error is then the main component of the total error and decreases from 10 -2 to 10 -14 . The factor between the total error and u exactu k N H 1 decreases from 1.3 to 1.0 when (V +3(u k N ) 2 -λ k N -1) -L ∞ is computed exactly and is in always less than 5 even if we take (V +3(u k N ) 2 -λ k N -1) -L ∞ = 1. Hence the estimate seems to be close to optimal. This illustrates the fact that the k-error estimator can be used as a stopping criterion for the convergence of the "inverse power" iterative technique (6.1.18), (6.1.19), (6.1.20).

The error is guaranteed for k larger than 13 and we remark as in the previous subsection that the first a posteriori bound given in the last column of the table is always worse than the Chapter 8

Post-processing of the plane-wave approximation of linear Schrödinger equations

We expose in this chapter the results of [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF]. This work was done in collaboration with with Eric Cancès, Yvon Maday, Benjamin Stamm and Martin Vohralík.

Abstract

In this article, we prove a priori error estimates for the perturbation-based post-processing of the plane-wave approximation of Schrödinger equations introduced and tested numerically in previous works [START_REF] Cancès | A perturbationmethod-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations[END_REF][START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF]. We consider here a Schrödinger operator H = -1 2 ∆ + V on L 2 (Ω), where Ω is a cubic box with periodic boundary conditions, and where V is a multiplicative operator by a regular-enough function V. The quantities of interest are, on the one hand, the ground-state energy defined as the sum of the lowest N eigenvalues of H , and, on the other hand, the ground-state density matrix, that is the spectral projector on the vector space spanned by the associated eigenvectors. Such a problem is central in first-principle molecular simulation, since it corresponds to the so-called linear subproblem in Kohn-Sham density functional theory (DFT). Interpreting the exact eigenpairs of H as perturbations of the numerical eigenpairs obtained by a variational approximation in a plane-wave (i.e. Fourier) basis, we compute first-order corrections for the eigenfunctions, which are turned into corrections on the ground-state density matrix. This allows us to increase the accuracy of both the ground-state energy and the ground-state density matrix at a low computational extra-cost. Indeed, the computation of the corrections only requires the computation of the residual of the solution in a larger plane-wave basis and two Fast Fourier Transforms per eigenvalue.

Using the Cauchy residue theorem and functional calculus for self-adjoint operators, the groundstate density matrix of H can be written as

Nc is H Nc -bounded, and we can perform a Dyson expansion of (8.4.5) at second order. We obtain

where each term of the right-hand side is well-defined.

Lemma 8.4.3 (Second order expansion of γ 0 ). There holds

where γ

Nc is the finite-rank operator defined in (8.3.9) and where

Proof. The operator H Nc being self-adjoint with compact resolvent, it can be diagonalized in an orthonormal basis. Hence, there exists a sequence (ψ k , ε k ) k≥1 with (ψ k ) k≥1 an orthonormal basis of L 2 # (Ω) consisting of functions of H 2 # (Ω) and (ε k ) k≥1 a non-decreasing sequence of real numbers such that ∀k ≥ 1,

Without loss of generality, we can choose a basis such that, in addition, for k = 1, . . . , N , ψ k = φ k,Nc and ε k = λ k,Nc . The operator H Nc can then be written as

Let us show that the expansions (8.4.6) and (8.4.7) are identical. First, we have

Let us now prove that the second term in the right hand side, that is

is in fact equal to the operator γ

Nc defined in (8.3.9). We have

j,Nc |ψ l .

As for all j = 1, . . . , N , φ j,Nc ∈ X Nc and φ

(1) j,Nc ∈ X ⊥ Nc , we have ψ k |γ

Nc |ψ l = 0 for all k, l ∈ N * such that either k, l > N , or k, l ≤ N . Moreover, for all k ≤ N and l > N , we have

and likewise

Thus, for all k, l ∈ N * , we have

On the other hand, for all k, l ∈ N * , using the Cauchy residue theorem,

Therefore, for all k, l ∈ N * , ψ k |γ (1) |ψ l = ψ k |γ

Nc |ψ l . Finally γ (1) = γ Proof. Let us first remark, from (8.4.7), and the property γ 2 0,Nc = γ 0,Nc , that γ 0,Nc γ 0 = γ 0,Nc + γ 0,Nc γ

Nc + γ 0,Nc Q Nc , γ 0 γ 0,Nc = γ 0,Nc + γ (1) Nc γ 0,Nc + Q Nc γ 0,Nc . Moreover, as for all i, j = 1, 2, . . . , N , φ i,Nc ∈ X Nc and φ Post-processing of the plane-wave approximation of nonlinear Schrödinger equations

We expose in this chapter the results of [START_REF] Dusson | Post-processing of the planewave approximation of Schrödinger equations[END_REF].

Abstract

In the first part of this article [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF], we have presented a priori estimates for the perturbationbased post-processing of the plane-wave approximation of linear Schrödinger equations. In this article, we extend the proofs of such estimates in the nonlinear case of Kohn-Sham LDA models with pseudopotentials. As in [START_REF] Cancès | A perturbationmethod-based post-processing for the planewave discretization of Kohn-Sham models[END_REF], where these a priori results were announced and tested numerically, we use a periodic setting, and the problem is discretized with planewaves (Fourier series). This post-processing method consists of performing a full computation in a coarse planewave basis, and then to compute corrections based on first-order perturbation theory in a fine basis, which numerically only requires the computation of the residuals of the ground-state orbitals in the fine basis. We show that this procedure asymptotically improves the accuracy of two quantities of interest: the ground-state density matrix, i.e. the orthogonal projector on the lowest N eigenvectors, and the ground-state energy.

Exact density matrix in terms of approximate density matrix

From [48, Lemma 4.2], whose proof is identical in the nonlinear case, relying on the gap assumption 9.2.1, there exists a contour Γ and N 0 c ∈ N, such that for all N c ≥ N 0 c , Γ contains the lowest N eigenvalues of both operators H and H Nc and none of the higher ones. Taking such a contour Γ, writing H = H Nc +V ⊥ Nc +W Nc , and using the definition of spectral projection, the density matrix defined in (9.2.8) can be decomposed as

dz.

Then using the Dyson equation twice [START_REF] Dyson | The S Matrix in Quantum Electrodynamics[END_REF][START_REF] Taylor | Quantum approach to the solid state[END_REF] to decompose the operator z -H Nc -V ⊥ Nc -W Nc -1 , we obtain Nc + γ

(2)

where γ

Nc is defined in (9.4.11), γ

and Proof. We start from (9.5.5). By definition of the spectral projection, there holds γ 0,Nc = 1 2πi Γ (z -H Nc ) -1 dz, i.e. the first term of the right hand side of (9.5.5). Following the proof of [START_REF] Cancès | Post-processing of the planewave approximation of Schrödinger equations[END_REF]Lemma 4.3], one can show that γ

(1)

From the definition of γ

Nc in (9.5.7), we get that γ

(1)

Nc corresponds to the second term of the right hand side in (9.5.5). Finally, the definition of Q Nc in (9.5.8) allows to conclude the proof of the lemma.