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No me puedo olvidar de los amigos de Valparaíso que me apoyaban un montón, asi esten lejos. Empezamos con el Cecio, que pasó un par de meses en Grenoble y cuyo buen humor es contagioso. Con él, aprendí a tener paciencia -parece que no tenemos los mismos horarios ! Gracias weon, fuiste mas que un amigo, un compadre ! Andrei pasó solamente un par de dias en Grenoble, seguramente por flojera, pero pudimos discutir seguido por Facebook et esas conversaciones siempre me ponian de buen humor -sobre todo cuando no tenian sentido. Muchas gracias por jugar conmigo ! Gracias tambien al Pato por ser tan raro como yo y mas ñoño que yo, lo que es complicado ! Espero que podamos colaborar alguna vez.

Mes amis de Paris ont été également un rouage essentiel dans le bon déroulement de cette thèse. Pierre Lissy, que j'ai rencontré au Chili, s'est révélé être un excellent ami, à la radicalité qui frôle le manque de diplomatie. Il m'a aussi beaucoup soutenu pendant la thèse, et j'ai eu l'honneur de travailler avec lui, parfois. Ludovick Gagnon, rencontré aussi au Chili, a su accueillir mes blagues nulles avec philosophie, n'hésitant pas à décortiquer chacune d'entre elles. Je n'aurais pas pu imaginer plus bizarre qu'Iván Moyano, chevauchant un vélocipède, ce qui apporte une sorte de réconfort intérieur. N'oublions pas mes amis de l'ENS, Manon (un bon Résumé de la thèse Nombre de phénomènes physiques sont modélisés par des équations différentielles. Dans le cadre de la théorie des systèmes, on parle de systèmes dynamiques. Parmi tous ces systèmes dynamiques, il y en a quelques uns qui comportent des variables sur lesquels on peut agir (une tension, une force, une pression, etc...). Ces variables sont désignées sous le nom de contrôle. Le reste des variables, sur lesquelles on ne peut agir, sont désignées sous le nom d'état.

L'objet de la théorie du contrôle est d'étudier de construire ce contrôle de manière à donner au système dynamique un comportement désiré établi par un cahier des charges. L'une des propriétés recherchées pour le système dynamique est la stabilité globale asymptotique d'un de ses points d'équilibre. Une telle propriété est en fait la somme des deux propriétés suivantes :

• (Attractivité) Un point équilibre est dit globalement attractif si, pour toutes conditions initiales, toutes les trajectoires du système dynamique convergent vers cet équilibre;

• (Stabilité de Lyapunov) Un point équilibre est dit stable selon Lyapunov si, plus la condition initiale est proche du point d'équilibre, plus les trajectoires qui en résultent s'approchent du point d'équilibre.

Ce problème s'appelle le problème de stabilisation. Cette thèse s'intéresse particulièrement à ce problème.

L'un des moyens d'atteindre un tel objectif est de construire une loi de rétroaction, aussi connue sous le nom de la loi de feedback. Une loi de feedback est un contrôle qui dépend de l'état entier ou d'une partie de ce dernier. L'un des avantages de cette méthode est qu'elle permet au contrôle de réagir lorsque le système est sujet à des perturbations. En effet, notons que la stabilité de Lyapunov permet d'obtenir des propriétés de robustesse par rapport à des petites perturbations. En d'autres termes, si un tel contrôle existe, alors il est capable de rejeter des perturbations de petite amplitude.

On parle de système en boucle ouverte lorsque le contrôle ne dépend pas de l'état et de système en boucle fermée lorsqu'il en dépend.

Il existe aujourd'hui beaucoup de travaux sur la stabilisation de systèmes linéaires de dimension finie, c'est-à-dire de systèmes modélisés par des équations aux dérivées ordinaires. De nombreuses méthodes efficaces et faciles à implémenter permettent aujourd'hui de stabiliser beaucoup de systèmes qui apparaissent dans de nombreux domaines industriels. Pourtant, physiquement, il n'est pas réaliste de s'intéresser à de tels systèmes. La plupart des phénomènes physiques sont non-linéaires. Un nombre non négligeable d'entre eux sont également modélisés par des équations aux dérivées partielles, qui représentent une large classe de système de dimension infinie. L'objectif de cette thèse est d'apporter des méthodes d'analyse ou de stabilisation de systèmes non-linéaires de dimension finie ou infinie. viii Nous nous intéresserons dans un premier temps au problème des contrôle contraints. La plupart des contrôles sont en effet sujet à des restrictions. Notons notamment l'exemple des systèmes issus de l'électronique, qui demandent aux contrôles de ne pas dépasser un certain voltage. De tels phénomènes, qui sont purement non-linéaire, peuvent être modélisés notamment par ce que l'on appellera dans cette thèse une non-linéarité bornée dans un cône. Il est désormais connu depuis longtemps que négliger de tels phénomènes peut entraîner des instabilités pour le système en boucle fermée. Une bonne introduction à ce problème se trouve dans [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF].

Il existe alors deux manières d'aborder ce problème. La première se fait en deux étapes : dans un premier temps, une loi de feedback est construite en ne prenant pas en compte les limitations du contrôle; puis, dans un second temps, on analyse la stabilité asymptotique du système en boucle fermée, lorsque la saturation agit. La deuxième manière consiste à prendre en compte cette contrainte lors de la construction de la loi de feedback.

Dans cette thèse, nous nous intéresserons à la première démarche. Nous l'appliquerons notamment sur des systèmes non-linéaires de dimension infinie. Nous répondrons alors à la question suivante : Question 1 : Étant donnée une loi de feedback stabilisante pour un système non-linéaire de dimension infinie, sous quelles conditions le système reste-t-il globalement asymptotiquement stable lorsque l'on modifie la loi de feedback via une nonlinéarité bornée dans un cône ? À notre connaissance, les articles pionniers sur ce sujet sont [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] et [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. Ces articles utilisent la théorie des semigroupes non-linéaires pour prouver la stabilité asymptotique de systèmes de dimension infinie avec une loi de feedback stabilisante modifiée avec une nonlinéarité bornée dans un cône. Notons que la théorie des semigroupes non-linéaires vise à généraliser les exponentielles de matrices dans des espaces de Banach ou de Hilbert.

Dans cette thèse, nous donnerons des résultats complémentaires à ces résultats pour des systèmes non-linéaires abstraits et nous étudierons une équation aux dérivées partielles nonlinéaire particulière, à savoir l'équation de Korteweg-de Vries, qui modélise les mouvements de vagues dans des canaux de faible profondeur.

Cette thèse apporte également des contributions dans le domaine du problème de la stabilisation par retour de sortie. Récemment, de nombreux outils pour construire des lois de feedback ont été développés. Cependant, beaucoup d'entre eux nécessitent la connaissance de l'état entier. Dans la pratique, les capteurs ne peuvent pas mesurer tout l'état. Cela peut être imputé aussi bien à des coûts de production qu'à des impasses technologiques. On ne peut avoir accès qu'à une mesure partielle de l'état, que l'on nommera sortie.

Lorsqu'une loi de feedback dépend de la sortie, on parle alors de retour de sortie. On oppose ce terme à celui de retour d'état, qui correspond à une loi de feedback qui dépend de l'état tout entier. Pour construire un retour de sortie, il semble naturel de ne faire intervenir dans la loi de feedback que la sortie. Une telle loi de feedback est alors appelée retour de sortie statique. Cependant, la construction d'un tel contrôle exige au système de sat-ix isfaire des propriétés algébriques contraignantes, et il est donc fructueux de faire appel à un observateur.

Dans le cadre de la théorie du contrôle, un observateur se définit comme étant un système dynamique, dépendant de la sortie du système de contrôle, et qui est construit de manière à faire converger son état vers celui du système à contrôler. L'existence de ce système dynamique dépend d'une propriété d'observabilité que doit satisfaire le système de contrôle.

Une fois que l'on est capable de construire un retour d'état et un observateur, on doit analyser le système en boucle fermées lorsque l'état de l'observateur est injecté dans la loi de commande par retour d'état. On parle alors d'un retour de sortie dynamique, puisque la loi de feedback dépend désormais d'une dynamique supplémentaire.

On peut désormais établir une seconde question : Question 2 : Étant donnés un observateur et un retour d'état pour une équation de Korteweg-de Vries, le retour de sortie dynamique qui en résulte stabilise-t-il l'origine du système en boucle fermée?

Cette seconde question est liée au principe de séparation, qui est satisfait pour les systèmes linéaires de contrôle à temps invariant et de dimension finie. En d'autres termes, si un tel système est stabilisable et observable, alors un observateur et un retour d'état peuvent être construits séparément pour construire un retour de sortie dynamique stabilisant. Notons qu'il n'existe pas de résultats généraux pour les systèmes linéaires de contrôle de dimension infinie. Un résultat est établi dans [START_REF] Curtain | An Introduction to Infinite-Dimensional Systems Theory[END_REF], où les opérateurs de contrôle et de sortie sont bornés. Cela signifie que le contrôle et la sortie ne se trouvent pas au bord de l'équation aux dérivées partielles.

Il est établi depuis longtemps déjà que le principe de séparation n'est pas satisfait pour les systèmes non-linéaires de dimension finie. L'article [3] rassemble quelques contre-exemples. Cependant, il existe d'autres résultats généraux permettant de construire des retours de sortie dynamique. L'un des plus connus, prouvé dans [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF], établit le résultat suivant : si le système de contrôle satisfait une propriété d'observabilité, connue sous le nom d'observabilité complète uniforme, and si de plus il satisfait une propriété de stabilisabilité, alors on dit que le système de contrôle est semi-globalement stabilisable au moyen d'un retour de sortie. Cette propriété peut se décrire de la manière suivante : si la condition initiale appartient à un compact, un observateur dépendant de ce compact peut être construit conjointement avec un retour d'état dans le but de rendre asymptotiquement stable l'origine du système en boucle fermée avec un bassin d'attraction contenu dans le compact.

Cette thèse apporte un résultat pour le cas des systèmes de contrôle pour lesquels il existe un retour d'état hybride. Une telle loi de commande est une loi de commande dynamique qui a un comportement à la fois continu et discret. Ces commandes se sont avérées très utiles, car il existe des restrictions pour certains systèmes de contrôle. L'une des restrictions les plus connues est la condition de Brockett, qui établit que si un système ne satisfait pas certaines conditions, alors il ne peut pas être stabilisé au moyen d'une loi de commande continue. La x seule manière de stabiliser de tels systèmes consiste soit à utiliser une loi de commande à temps variant [START_REF] Coron | Control and Nonlinearity[END_REF]Chapitre 11], soit à utiliser une loi de commande hybride. Nous ne nous intéresserons qu'à la seconde stratégie de commande.

De ces définitions, une troisième question s'impose : Question 3 : Si un système de contrôle est complètement uniformément observable et s'il existe un retour d'état hybride stabilisant pour ce système, sous quelles conditions le système est-il semi-globalement stabilisable? L'objectif de cette thèse est donc de répondre à ces trois questions. Le manuscrit de thèse est divisé en quatre chapitres. Le Chapitre 1 et 2 répondent à la Question 1. Le Chapitre 3 répond à la Question 2. Enfin, le Chapitre 4 répond à la Question 3.

Voici un résumé précis des chapitres de cette thèse:

Résumé des chapitres

• Le Chapitre 1 traite des systèmes de contrôle abstraits non-linéaires. Il débute par l'introduction de notions essentielles pour la théorie des semigroupes non-linéaires et par l'établissement de quelques résultats connus, utiles pour le développement des résultats obtenus lors de la thèse. Deux théorèmes sont présentés : le premier concerne le caractère bien posé d'un système de contrôle abstrait non-linéaire lorsqu'on le boucle avec une loi de commande stabilisante saturée. Une section est également consacrée au positionnement de nos résultats par rapport à la littérature qui traite de ce sujet.

Quelques conditions sur le système en boucle fermée et sur la non-linéarité bornée dans un cône sont données pour prouver le caractère bien posée du système en boucle fermée ainsi que la stabilité asymptotique de l'origine de cette dernière. Deux exemples sont présentés. Le premier est une équation de Korteweg-de Vries linéarisée, tandis que le second est une équation de la chaleur non-linéaire;

• Le Chapitre 2 analyse l'équation de Korteweg-de Vries, dans le cas où son contrôle est saturé par deux types de saturation. Quelques résultats sur la stabilité de l'équation sont donnés. Notons que nous n'avons pas cherché à appliquer ici les résultats du Chapitre 1, car la théorie de semigroupes non-linéaires exige aux non-linéarités considérés de satisfaire des propriétés restrictives que ne satisfait pas la non-linéarité l'équation de Korteweg-de Vries. Nous établissons deux résultats: le premier sur le caractère bien posé du système en boucle fermée, le second sur la stabilité asymptotique de l'origine du système en boucle fermée. Le caractère bien posé est prouvé grâce au théorème du point fixe de Banach et quelques estimées déjà établis dans des articles, tandis que la preuve de la stabilité asymptotique est séparée en deux cas : i) quand le contrôle agit sur tout le domaine, une fonction de Lyapunov ainsi qu'une condition de secteur décrivant l'entrée saturée sont utilisées pour établir la stabilité asymptotique; ii) lorsque le contrôle est localisé, nous prouvons le résultat avec un raisonnement par l'absurde. Un schéma numérique est donné ainsi que des simulations illustrant la stabilité asymptotique du système non-linéaire en boucle fermée de dimension infinie; xi • Le Chapitre 3 traite du problème de stabilisation par retour de sortie pour deux équations de Korteweg-de Vries. La première est linéaire, tandis que la seconde est non-linéaire. La construction des retours de sortie est basée sur la méthode de backstepping, qui est introduite dans le livre [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF]. Cette méthode consiste à trouver une transformation bijective qui lie un système en boucle ouverte instable à système cible dont on choisit l'origine globalement asymptotiquement stable. Elle permet notamment de construire des retours d'état et des observateurs. Le caractère bien posé de l'équation non-linéaire est prouvé en appliquant le théorème de point-fixe de Banach, tandis que celui de l'équation linéaire est prouvé en faisant appel à quelques résultats basiques de la théorie des semigroupes linéaires. La stabilité exponentielle des systèmes en boucle fermée est prouvée avec quelques fonctions de Lyapunov. Des simulations numériques ont été faites pour illustrer nos résultats théoriques;

• Le Chapitre 4 traite de la stabilisation semi-globale de systèmes non-linéaires de dimension finie pour lesquels il existe un retour d'état hybrid régularisant. Une hypothèse de stabilisabilité hybride locale ainsi qu'une hypothèse d'observabilité complète uniforme permettent de construire une loi de commande qui stabilise d'un ensemble d'équilibre avec un retour de sortie hybride. Une propriété de timer est exploitée pour la construction explicite de telles lois de commande. Le résultat est illustré avec un système linéaire de dimension finie sujet à des contrôles saturés à reset. • The identity operator associated to a Hilbert space Z is denoted by I Z ;

Contents

• Given a Hilbert space Z equipped with the scalar product

•, • Z , a sequence (z n ) n∈N ∈ Z weakly converges to z if, for all z ∈ Z lim n→+∞ z n , z Z = z, z Z . (1) 
We use the following notation z n Z z;

• Given a positive value L, let (t, x) ∈ R ≥0 × [0, L] → z(t, x) be a sufficiently smooth function. The term z t (respectively z x ) stands for the partial derivative of z with respect to t (respectively with respect to x). Similarly, z xxx stands for the third derivative of z with respect to x. When the function z depends only on x, z (respectively z ) denotes the first (repectively the third) spatial derivative of z. When the function z depends only on t, d dt z denotes the time derivative of z; • Let Z be a Hilbert space and let Z ⊂ Z be a Hilbert space. The closure of Z in Z is denoted by clos Z ( Z) with respect to the topology of Z;

• Let Z and E be Hilbert spaces and A : E → Z a linear operator. The term Ran(A) denotes its range;

• Given a positive value T ∈ [0, ∞), the space of continuous functions on [0, T ] is denoted by C(0, T ). Given k ∈ N , a function f is said to be of class C k (0, T ) if d l dt l f (t)
, where l ∈ {1, . . . , k}, belongs to the space C(0, T );

• Let Z be a Hilbert space. Let T ∈ [0, ∞]. The function f belongs to the set C(0, T ; Z)
if, for all z ∈ Z, the function

[0, T ] → Z t → f (t, z)
is continuous;

Introduction

In recent decades, a great deal of effort has been dedicated to the development of tools for the design of stabilizing feedback laws either for finite-dimensional or infinite-dimensional systems.

The general problems under consideration in this thesis are the analysis of control systems with restrictions on the input and the design of feedback laws with partial measurement of the state.

The restrictions on the input can be modeled with a cone-bounded nonlinearity, which is a bounded and continuous function satisfying a sector condition. One of the most famous is the saturation function (see [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] for a good introduction to this topic). This thesis aims at giving some contributions to this topic in the context of infinite-dimensional systems. From this problem, a question arises.

Question 1: Given a linear stabilizing feedback law for a nonlinear infinite-dimensional control system, under which conditions does the system remain globally asymptotically stable when modifying the feedback law via a cone-bounded nonlinearity?

Even for linear finite-dimensional systems, it is already known that saturating a stabilizing feedback law can lead to catastrophic behavior for the stability of the closed-loop system. In fact, in general, the origin of such systems is locally asymptotically stable. The global asymptotic stability of saturated control systems can be obtained if the open-loop system satisfies some stability conditions.

At the best of our knowledge, this topic started in [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF], [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] and [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF]. These articles use nonlinear semigroup theory to tackle the asymptotic stability of infinite-dimensional systems with a stabilizing feedback modified via a cone-bounded nonlinearity. In this thesis, we aim at giving complementary results for nonlinear abstract control systems and at studying a particular nonlinear partial differential equation, namely the Korteweg-de Vries equation, which models waves on shallow water surfaces. This thesis aims also at contributing in output feedback stabilization problems. In recent decades, some tools for the design of feedback laws have been found. Some of these feedbacks needs the full-state of the system to be known. Note that the state is referred to as the solution to the system. Hence implementing them requires to have a measure of all the variables of the system. However, in most of the cases, sensors can measure only a part of the state. This partial measurement is called the output. In this case, designing a feedback law requires sometimes to build an observer, which is a dynamical system whose state converges to the state of the control system. This thesis aims at contributing in this topic for two Korteweg-de Vries equations for which there exists a stabilizing state feedback law. Hence, a second question arises.

Question 2: Given an observer and a state feedback law for a Korteweg-de Vries equation,
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does the resulting output feedback law stabilize the origin of the closed-loop system?

This question is referred to as the so-called separation principle, which applies for linear time-invariant finite-dimensional control systems. In other words, if such a system is stabilizable and observable, then an observer and a state feedback law can be designed separetely to build a stabilizing output feedback law.

We already know that for nonlinear finite-dimensional systems, the separation principle does not hold anymore. Note that the survey [3] collects some counter-examples. If the control system satisfies an observability property, namely the complete uniform observability, and if moreover it satisfies a stabilizability property, then we say that the control system is semiglobally stabilizable by means of an output feedback. Roughly speaking, it means the following: if the initial condition belongs to a compact set, an observer depending on this compact set can be designed jointly with the state feedback in order to make asymptotically stable the origin of the closed-loop system with a basin of attraction contained in the compact set. This well-known result is provided in [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF].

We aim at contributing in this topic for control systems for which there exists a hybrid state feedback. A hybrid state feedback is a feedback law which has a mixed continuous/discrete behavior. Such controllers are useful for some systems that cannot be stabilized by means of a continuous feedback law. Now, a third and last question can be stated.

Question 3: If a control system is completly uniformly observable and if there exists a stabilizing hybrid state feedback law for this system, under which conditions is this system semi-globally stabilizable?

The manuscript is divided into four chapters. Chapters 1 and 2 tackle Question 1. Chapter 3 solves Question 2. Finally, Chapter 4 answers Question 3.

Here is the precise outline of the thesis.

Outline

• Chapter 1 deals with nonlinear abstract control systems. After an introduction to semigroup theory and a short recall of some existing results, some conditions on the open-loop system and on the cone-bounded nonlinearity are given in order to prove the well-posedness and the asymptotic stability of the closed-loop system. Two illustrative examples are provided;

• Chapter 2 tackles the case of the Korteweg-de Vries equation. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability; ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation;

• Chapter 3 deals with the output feedback stabilization of two Korteweg-de Vries equations. The first one is linear, the second one is nonlinear. The design of the output feedback laws is based on the backstepping method (see [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF] for a good introduction on this topic) and the introduction of an appropriate observer. The exponential stability of the closed-loop systems is proven with some Lyapunov functions. Some numerical simulations are performed to illustrate our theoretical results;

• Chapter 4 is about the semi-global stabilization of nonlinear system for which there exists a regularizing hybrid state feedback law. A local hybrid stabilizability and a complete uniform observability are assumed to achieve the stabilization of an equilibrium set with a hybrid output feedback law. Timer property is exploited to propose a design method for such feedbacks. The result is illustrated for a linear system with reset saturated control. This chapter deals with systems composed by a feedback interconnection of a plant and a cone-bounded nonlinearity. The study of such systems has received considerable attention in recent decades (see e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF], or [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]). Indeed, in most of systems, the control input has a nonlinear dynamic. Nowadays, it is well known that neglecting these nonlinearities can lead to undesirable and even catastrophic behaviors for the stability of closed-loop system. Without any assumption on the open-loop system, only a local stabilization result can be obtained. A classical research line is then to analyze the basin of attraction or to obtain a better one using anti-windup techniques in the case of saturated controls ( [START_REF] Grimm | Antiwindup for stable linear systems with input saturations: an LMI-based synthesis[END_REF] or [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]).

List of Related Publications

Tackling this kind of nonlinearities in the case of finite-dimensional systems is already a difficult problem. However, nowadays, numerous techniques are available (see e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]) and such systems can be analyzed with different techniques: an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] or a frequency approach, leading to the so-called Popov criterion, as reviewed in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]. In the case of open-loop stable finite-dimensional linear systems with a chain of integrators form, a bounded feedback law can be designed using nested saturations (see e.g., [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF], [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF], [START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF] or [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF]).

To the best of our knowledge, the study of this topic in the infinite-dimensional case has started with [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF][START_REF] Seidman | A note on stabilization with saturating feedback[END_REF][START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]. More recently, some new results have been stated in [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF][START_REF] Daafouz | Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line[END_REF][START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF][START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] Chapter 1. Cone-bounded controllers for m-dissipative operators 76]. This chapter aims at contributing to the study of feedback interconnection of a system (possibly nonlinear) and a cone-bounded nonlinearity in the framework of partial differential equations, more precisely for abstract control systems described using semigroup theory ( [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and [START_REF] Miyadera | Nonlinear semigroups[END_REF] are good introductions to linear semigroups and nonlinear semigroups, respectively). This chapter is organized as follows. Section 1.1 is devoted to the introduction to nonlinear semigroup theory in Hilbert spaces and to some stability results in the infinite-dimensional context. Section 1.2 presents the problem of stabilizing an equilibrium point with a conebounded feedback law. Some existing results and some of our contributions are provided. Finally, some concluding remarks are collected in Section 1.3.

Note that the contributions of this chapter, from Section 1.2.2 until the end of the chapter, are based on two of our papers. The first one [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF] has been published in a peer-reviewed conference (European Control Conference 2015). The second one [START_REF] Marx | Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces[END_REF] is currently being reviewed in the journal Mathematics of Control, Signals, and Systems.

Semigroup theory

Strongly continuous semigroups of contractions and m-dissipative operators

Semigroup theory aims at generalizing matrix exponentials for operators in Hilbert spaces or in Banach spaces. This theory allows also to solve some infinite-dimensional Cauchy problems and some asymptotic stability problems. This section is devoted to the introduction of this theory for systems posed in a Hilbert space 1 . Most of the results written below are borrowed from [START_REF] Miyadera | Nonlinear semigroups[END_REF].

All along this chapter, Z is a Hilbert space on R equipped with a scalar product •, • Z and a norm • Z . Definition 1.1 (Strongly continuous semigroup of contractions) (i) A family of bounded linear operators (W (t)) t≥0 from Z to Z is said to be a strongly continuous semigroup on Z if it satisfies the following properties

1. W (0) = I Z ; 2. W (t + s) = W (t)W (s), ∀t, s ≥ 0; 3. lim t→0 + W (t)z -z Z = 0, ∀z ∈ Z.
(ii) A strongly continuous semigroup on Z is said to be a strongly continuous semigroup of contractions on Z if, for all t ≥ 0

W (t)z -W (t)z Z ≤ z -z Z , ∀z, z ∈ Z.
(1.1)

Remark 1.1 Given n ∈ N, consider a matrix A ∈ R n×n . The following operator t → e At , (1.2) 
is a strongly continuous semigroup. If moreover

e At L(R n ) ≤ 1, ∀t ≥ 0, (1.3) 
then t → e At is a strongly continuous semigroup of contractions. Indeed, for all z,

z ∈ R n |e At z -e At z| =|e At (z -z)|, ≤ e At L(R n ) |z -z|, ≤|z -z|,
where the linearity of the operator z → e At z, for all tR ≥0 , and (1.3) have been used in the second line and the third line, respectively.

Consider an operator (possibly unbounded and nonlinear)

A : D(A) ⊆ Z → Z, where D(A) is a subset of Z defined as follows D(A) := {z ∈ Z | Az exists}.
(1.4)

The operator A is said to be closed if its graph G(A) (1.5) Hence, the adjoint operator A is defined as follows

:= {(z, Az), z ∈ Z} is closed in Z × Z. Moreover, if D(A) is dense in Z 2 ,
Az, z Z = z, A z Z , ∀(z, z) ∈ D(A) × D(A ).
(1.6)

The following definition links operators and strongly continuous semigroups.

Definition 1.2

The infinitesimal generator A : D(A) ⊆ Z → Z of a strongly continuous semigroup (W (t)) t≥0 on Z is defined by

Az = lim t→0 + W (t)z -z t (1.7)
where

D(A) := z ∈ Z lim t→0 + W (t)z -z t exists (1.8)
Chapter 1. Cone-bounded controllers for m-dissipative operators Remark 1.2 Take the same example as in Remark 1.1. Then, we have

lim t→0 + e At z -z t = Az, (1.9) 
by definition of the derivative. It means that A is the infinitesimal generator of the strongly continuous semigroup (e At ) t≥0 .

Let us define the notion of dissipative operator.

Definition 1.3 (Dissipative operator)

An operator A :

D(A) ⊆ Z → Z is said to be dissipative if the following holds R e Az -Az, z -z Z ≤ 0, ∀z, z ∈ D(A).
(1.10)

Remark 1.3 • Note that, if A is linear, then the following inequality R e Az, z Z ≤ 0, ∀z ∈ D(A), (1.11) 
implies that A is dissipative;

• Given n ∈ N, let us take the case of the matrix A ∈ R n×n . The dissipativity of a matrix implies that z Az ≤ 0, ∀z ∈ R n .

(1.12)

This implies that all the eigenvalues of A are nonpositive. We will see that a similar result can be obtained for infinite-dimensional linear operators.

Thanks to this definition, one can define the m-dissipative operators.

Definition 1.4 (m-dissipative operators)

A dissipative operator A : D(A) ⊆ Z → Z is said to be an m-dissipative operator if, for all positive values λ, the following equality holds

Ran(I Z -λA) = Z. (1.13) 
The condition (1.13) might be hard to check. In fact, there exists another weaker condition. Let us state it. 

Ran(I Z -λ 0 A) = Z.
(1.14)

The following theorem gives some conditions for a linear operator to be m-dissipative. Let us state it. For linear systems, this theorem is useful, because checking whether an operator is closed and whether this operator and its adjoint are both dissipative is easier than proving (1.14).

Let us introduce the concept of the resolvent of an operator. This term comes from the resolvent set of an operator A : D(A) ⊆ Z → Z, which is defined as follows

ρ(A) := {λ ∈ C | I Z -λA is injective and (I Z -λA) -1 is bounded}. (1.15)
For linear operators, the spectrum of an operator A is the complement of ρ(A) in C.

Now, we are able to define the resolvent operator of an operator.

Definition 1.5 (Resolvent operator of an operator A)

Let A : D(A) ⊆ Z → Z be an operator and λ ∈ C. The resolvent operator of A is defined by

J λ : D(J λ ) → Z, z → (I Z -λA) -1 z, (1.16) 
where D(J λ ) := Ran(I Z -λA)

The fact that D(J λ ) := Ran(I Z -λA) comes from [68, Corollary 3.7, page 20].

Remark 1.4

When A is linear, note that the resolvent of A exists if and only if λ does not belong to the spectrum of A.

The following theorem gives a property of the resolvent operator of dissipative operators. Let Z be a Hilbert space. Let A : D(A) ⊆ Z → Z be a dissipative operator with its domain dense in Z. Then, for any positive value λ, the resolvent (1.16) exists and satisfies the following inequality, for all z, z ∈ D(J λ )

J λ z -J λ z Z ≤ z -z Z .
(1.17)

In other words, this means that the set defined by {λ ∈ C | R e (λ) > 0} belongs to the resolvent set. Hence, for linear operators, this implies that the real parts of the eigenvalues are less or equal to 0. Recall that the particular case of the matrix A ∈ R n×n has been noticed in Remark 1.3.

Thanks to these definitions, we are able to define operators generating semigroups of contraction. Indeed, the following result, borrowed from [START_REF] Miyadera | Nonlinear semigroups[END_REF], links nonlinear m-dissipative operators and strongly continuous semigroups of contractions. This result is crucial. Indeed, this theorem allows to state that a Cauchy problem is wellposed and to prove that the origin of this system is Lyapunov stable. The next section is devoted to the study of Cauchy problems in the framework of abstract nonlinear systems.

Cauchy Problem and Lyapunov stability

Consider the following Cauchy problem

   d dt z = Az, z(0) = z 0 , (1.18) 
where A : D(A) ⊆ Z → Z is a (possibly nonlinear) operator. The initial condition z 0 can belong either to Z or to D(A).

An equilibrium point z e ∈ Z of (1.18) is defined as follows

Az e = 0. (1.19)
One of the aims of control theory is to study the stability of such a point. Thus, we need to define what do we mean by stability. Here is the Lyapunov version of the stability.

Definition 1.6 (Lyapunov stability)

An equilibrium point z e ∈ Z of (1.18) is said to be Lyapunov stable in Z if, for any δ > 0, there exists ε := ε(δ) such that the following implication holds

z 0 -z e Z ≤ ε ⇒ z(t) -z e Z ≤ δ, ∀t ≥ 0, (1.20) 
for any mild (or strong) solution z(t) (1.18) with the initial condition z 0 .

Theorem 1.3 is a sufficient condition to obtain the well-posedness of the latter Cauchy Problem. Indeed, the following theorem allows us to obtain a well-posedness for strong and mild solutions. • if z 0 ∈ Z, (1.18) admits a unique mild solution z(t) ∈ C(0, ∞; Z); (1.18) admits a unique strong solution z(t) ∈ C(0, ∞; D(A)).

• if z 0 ∈ D(A),
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Moreover, if z 0 ∈ D(A), then, denoting by (W (t)) t≥0 the strongly continuous semigroup of contractions generated by A, it holds that the two functions

t → W (t)z 0 Z , t → AW (t)z 0 Z (1.21)
are non increasing. In addition, it holds that

A(0) = 0. (1.22)
Hence, we have not only well-posedness, but also Lyapunov stability of the origin, which is an equilibrium point because of (1.22). Indeed, since (W (t)) t≥0 is a strongly continuous semigroup of contraction, then the following holds

W (t)z 0 Z ≤ z 0 Z , ∀t ≥ 0.
(1.23)

The unique solution to (1.18) is bounded by its initial condition. Hence, (1.23) not only implies that the origin is an equilibrium, but also implies that the origin is Lyapunov stable.

Some attractivity results are needed before studying the case of abstract control systems. The next section is devoted to the presentation of some infinite-dimensional versions of LaSalle's Invariance Principle.

Asymptotic stability for abstract systems

Attractivity and asymptotic stability

If Theorem 1.4 can be applied, Lyapunov stability of the origin holds. However, in stabilization problem, we want to make the origin of the closed-loop system globally attractive. The definition of this property is provided just below. Definition 1.7 (Attractivity of an equilibrium) An equilibrium point z e ∈ Z is said to be locally attractive in Z if there exists a positive value δ such that

z 0 -z e Z ≤ δ ⇒ lim t→+∞ z(t) -z e Z = 0, (1.24) 
for any mild (or strong) solution z(t) (1.18) with the initial condition z 0 .

The equilibrium point z e is said to be globally attractive if δ = +∞.

The aim of the stabilization is to find a feedback law that makes an equilibrium point of the closed-loop system locally asymptotically stable or globally asymptotically stable. The following definition characterizes this property. Definition 1.8 (Asymptotic stability) Assume that (1.18) admits at least one solution and that z e ∈ Z is an equilibrium point. This equilibrium point is said to be asymptotically stable in Z if it is Lyapunov stable and attractive. It is said to be globally asymptotically stable if it is Lyapunov stable and globally attractive.

Lyapunov theory exists also for infinite-dimensional systems. A lot of results for finite-dimensional systems apply also for infinite-dimensional systems. Hence, as in the finite-dimensional framework, proving asymptotic stability of equilibrium points of infinitedimensional systems reduces to finding a Lyapunov function. However, in practice, deriving such a function might be difficult. In this case, a common technique to conclude the attractivity of an equilibrium point is to use the LaSalle's Invariance Principle, which is given in the next section.

LaSalle's Invariance Principle

Before stating the LaSalle's Invariance Principle, let us start by giving some definitions. Definition 1.9 (Positive orbit and ω-limit set) 1. Given a strongly continuous semigroup (W (t)) t≥0 over Z, the positive orbit through φ ∈ Z is defined by O + (φ) := ∪ t∈R ≥0 W (t)φ;

2. The weak ω-limit set of ϕ is the (possibly empty) set defined by

ω w (ψ) := {ψ ∈ Z | there exists a sequence t n → ∞ as n → ∞ such that W (t n )φ ψ as n → ∞};
3.

The strong ω-limit set of ψ is the (possibly empty) set defined by ω(ψ) := τ ≥0 clos Z t≥τ W (t)ψ .

A good introduction to the positive orbit and the ω-limit set for finite-dimensional systems is [START_REF] Isidori | Nonlinear control systems[END_REF].

These definitions allow us to define the infinite-dimensional version of LaSalle's Invariance Principle. This theorem is given just below.

Theorem 1.5 (LaSalle's Invariance Principle [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF], Theorem 3.1 or [START_REF] Hale | Dynamical systems and stability[END_REF], Theorem 3) Given a strongly continuous semigroup (W (t)) t≥0 on Z and φ ∈ Z, one has

(i) If O + (φ) is precompact 4 , then ω(φ) is a nonempty, invariant set of Z through (W (t)) t≥0 5 ;
(ii) If each W (t) is sequentially weakly continuous on Z6 and O + (φ) is bounded, then ω w (φ) is a nonempty, invariant set in Z through (W (t)) t≥0 .

Note that the positive orbit has to be precompact if we want to apply the first item of Theorem 1.5. For an m-positive operator A generating a strongly continuous semigroup of contraction (W (t)) t≥0 , proving this property reduces to proving the following claim Assumption 1 (Precompactness of the positive orbit) The canonical embedding from D(A), equipped with the graph norm, into Z is compact.

Indeed, supposing that Assumption 1 holds and using the fact that the two functions

t → W (t)z 0 Z , t → AW (t)z 0 Z (1.25)
are non increasing, it is straightforward that the trajectory of (1.18) defined by {z(t) = W (t)z 0 , t ≥ 0 and z 0 ∈ D(A)} is precompact in Z.

Since all norms in finite-dimensional spaces are equivalent, note that Claim 1 holds for every finite-dimensional systems. However, when infinite-dimensional systems are studied, proving Claim 1 might be difficult to achieve. where u in U denotes the controlled input. We assume that the origin is an equilibrium point of (1.26) when u = 0 and that A : D(A) ⊆ Z → Z is a (possibly nonlinear and unbounded) operator which generates a strongly continuous semigroup of contractions denoted by (W (t)) t≥0 . Moreover, we suppose that B ∈ L(U, Z).

Assuming that the operator A -BB generates a strongly continuous semigroup of contractions (W I (t)) t≥0 which satisfies, for all z 0 ∈ Z

lim t→+∞ W I (t)z 0 Z = 0 (1.27)
the aim of this chapter is to study the case where the control is given by

u = -σ(B z), (1.28) 
where σ : U → U is a mapping which is characterized by the following definition.

Definition 1.10 (Cone-bounded nonlinearities on U ) Let σ : U → U be a continuous operator such that 1. for all u in U , R e { u, σ(u) U } = 0 implies u = 0;

2. there exists a positive value such that, for all u ∈ U , we have σ(u) U ≤ u U ;

3. for all u, v in U , we have

R e { σ(u) -σ(v), u -v U } ≥ 0.
Such a function σ is called a cone-bounded nonlinearity.

Example 1.1 (Examples of cone-bounded nonlinearities)

Here are some examples of cone-bounded nonlinearities.

1. Any linear mapping σ(u) = µu, where µ is a positive value, is a cone-bounded nonlinearity;

2. The so-called localized saturation (as considered in e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Khalil | Nonlinear Systems Second Edition[END_REF]) defined by

sat loc : s ∈ R → sat loc (s) :=      -u s if s ≤ -u s , s if -u s ≤ s ≤ u s , u s if s ≥ u s , (1.29) 
with u s a positive value, is a cone-bounded nonlinearity;

3. For any positive value u s , the function s ∈ R → u s tanh s us is a cone-bounded nonlinearity;

The function

σ : s ∈ R → sat loc (ϕ(s)), (1.30) 
where u s > 1 and where ϕ is defined as follows

ϕ : s ∈ R →      -|s| -1 -1 if s < -1, s if s ∈ [-1, 1], √ s -1 + 1 if s > 1, (1.31) 
takes values in a bounded set, but it is not globally Lipschitz because of the function s → √ s in the definition of the function ϕ. where A σ : D(A σ ) ⊂ Z → Z is a nonlinear operator for which we assume that D(A σ ) = D(A). Note that z 0 can belong to Z or to D(A). Some results dealing with well-posedness and asymptotic stability will be provided.

Existing results

Some existing results can be found in the literature. In this section, we will focus in particular on [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] and [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. These papers study a particular cone-bounded nonlinearity, which is

sat U (s) :=    s for all s U ≤ u s , s s U u s for all s U ≥ u s , (1.33) 
where u s is a positive value. In this section only, we will assume that σ(s) = sat U (s).

(1.34)

In [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF], the following properties are assumed to be satisfied Under these assumptions, the following theorem is obtained Theorem 1.6 Assume that Assumption 2 holds. Then, for each z 0 ∈ Z, A σ generates a strongly continuous semigroup of contractions denoted by (W sat U (t)) t≥0 and, for each z 0 ∈ Z, there exists a unique solution to (1.18) defined for all t ∈ R ≥0 and given by z(t) = W sat U (t)z 0 . Moreover, the following holds, for all z 0 ∈ Z, z(t) Z 0 as t → +∞.

(1.37)

Only a weak attractivity is obtained on [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF]. In fact, since the paper aims at finding result for a particular partial differential equation, i.e. a beam equation, a stronger result is not necessary. The control operator for the partial differential equation belongs to the space L(R, Z). Hence, another theorem which takes into account this particular case is stated in [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF].

Theorem 1.7 Under Assumption 2 and assuming moreover that U = R, then A σ generates a strongly continuous semigroup of contraction denoted by (W sat U (t)) t≥0 and, for each z 0 ∈ Z, there exists a unique mild solution to (1.18) denoted by z(t) := W sat U (t)z 0 . Moreover, the following holds, for all

z 0 ∈ Z lim t→+∞ W sat U (t)z 0 Z = 0 (1.38)
Note that in the proof of these two results it is not used the particular form of sat U , but only the fact that it is globally Lipschitz, monotone and the property 1 of Definition 1.10.

In [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], a better result is stated. The assumptions are weaker than Assumption 2. Let us state them Assumption 3 1. We have σ(s) = sat U (s); 1. The operator A is linear and generates a strongly continuous of contractions denoted by (W (t)) t≥0 ; 2. The operator A -BB generates a strongly continuous of contractions denoted by (W I (t)) t≥0 that satisfies the following, for all z 0 ∈ Z lim t→+∞ W I (t)z 0 Z = 0.

(1.39)

Unlike Assumption 2 provided by [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF], neither the operator B nor (λI Z -A) -1 are assumed to be compact. Moreover, instead of assuming a detectability property as in item 5 of Assumption 2, only a stabilizability property is assumed in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF].

A stronger result than Theorem 1.6 is stated in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. Here is its statement.

Theorem 1.8 Under Assumption 3, A σ generates a strongly continuous semigroup of contractions denoted by (W sat U (t)) t≥0 and, for each z 0 ∈ Z, (1.18) admits a unique solution denoted by z(t) := W sat U (t)z 0 . Moreover, the following holds, for all z 0 ∈ Z

lim t→+∞ W sat U (t)z 0 Z = 0. (1.40) 
Unlike the proof of Theorem 1.6, the proof of this theorem uses the special structure of sat U . Moreover, the authors of [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] derive some conditions in order to obtain a similar result for unbounded control operators. Since this chapter is devoted to the case of bounded control operators, this result will not be discussed here.

Papers [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] and [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] have inspired a lot of researchers. Among the results derived from these papers, [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] or [START_REF] Daafouz | Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line[END_REF] can be cited. Note that, even in the context of finite-dimensional systems, these papers have inspired some researchers (see e.g., [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]).

Next section is devoted to our contributions to the topic of infinite-dimensional systems with cone-bounded feedback laws.

Contributions

This section is devoted to some contributions to this topic. It is borrowed from [START_REF] Marx | Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces[END_REF]. All along this section, we focus on the system (1.32) and assume that σ is a cone-bounded nonlinearity. Let us recall that A, which generates a strongly continuous semigroup, can either be linear or nonlinear. This makes our results different from the ones written in [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] and in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. Note morever that B is a linear bounded operator, i.e. B ∈ L(Z, U ).

This section is divided into five parts. Sections 1.2.2.1 and 1.2.2.2 state a well-posedness and an asymptotic stability results, respectively. Sections 2.2.3.1 and 2.2.3.3 are devoted to the proofs of these results. Finally, Section 1.2.4 is the application of these results to a linear Korteweg-de Vries equation. 

.2.1 Well-posedness

As it has been noticed at the beginning of the chapter, A is assumed to be an m-dissipative operator. It implies that A is dissipative and that, for all positive value λ, Ran(I -λA) = Z.

Since A is dissipative, from Theorem 1.2, we have that, for all λ > 0, the operator J λ : D(J λ ) → D(A) defined by

J λ = (I Z -λA) -1
exists and is a contraction. Moreover, we have

D(J λ ) = Ran(I Z -λA).
We are now in position to state our well-posedness result.

Theorem 1.9 (Well-posedness and Lyapunov stability) Assume that σ is a cone-bounded nonlinearity. Moreover, assume that one of the two conditions is fullfilled:

1. σ is globally Lipschitz;

2. There exists a Banach space Z 0 such that D(A) ⊆ Z 0 and such that (a) the canonic injection from Z 0 to Z is compact;

(b) there exists a positive value N such that, for all z ∈ Z,

sup z∈Z J 1 (z -Bσ(B z)) Z 0 < N (1.41)
Then, for all z 0 in D(A), there exists a unique strong solution to (1.32) and the operator A σ generates a strongly continuous semigroup of contractions (W σ (t)) t≥0 such that the two functions t → W σ (t)z 0 Z , t → A σ W σ (t)z 0 Z are non increasing.

Remark 1.5

Unlike Theorems 1.6 and 1.8, the result provided above refers to strong solutions. However, the function (1.30) in Example 1.1 shows that a cone-bounded nonlinearity does not have to be globally Lipschitz to ensure the well-posedness of the closed-loop system, while Theorem 1.8 needs the cone-bounded nonlinearity to be equal to sat U .

Remark 1.6

If A is linear, the condition (1.41) may be reduced to the following assumption:

sup z∈Z J 1 (-Bσ(B z)) Z 0 < ∞. (1.42)
Indeed, in that case, (1.42) implies (1.41).
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Remark 1.7 Following Lemma 1.1, the condition (1.41) may be rewritten as the following statement: there exists a positive value λ 0 such that, for all z ∈ Z,

sup z∈Z J λ 0 (z -Bσ(B z)) Z 0 < ∞. (1.43)
In order to make easier the reading, we let λ 0 = 1 as in (1.41), without loss of generality.

Example 1.2

The condition (1.41) imposes a global bound on the mapping σ in a specific norm. As a first illustration, consider the following linear Korteweg-de Vries (for short KdV) equation

     z t (t, x) + z x (t, x) + z xxx (t, x) + 1 Ω (z)u(t, x) = 0, (t, x) ∈ R ≥0 × (0, L), z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 , z(0, x) = z 0 (x), (1.44) 
where L is a positive value, u(t, x) is the control, Ω is a nonempty subset of (0, L) and 1 Ω is defined by

1 Ω (z) = 1 if z ∈ Ω, 0 otherwise. (1.45) 
Setting Z = L 2 (0, L) and U = L 2 (Ω), system (1.44) can be written as in (1.26) denoting

A : D(A) ⊂ L 2 (0, L) → L 2 (0, L), z → -z -z , (1.46) 
where

D(A) = {z ∈ H 3 (0, L) | z(0) = z(L) = z (L) = 0}. (1.47)
and

B : L 2 (0, L) → L 2 (Ω), u → 1 Ω (z)u. (1.48) 
A straightforward computation, together with some integrations by parts, shows that

R e { Az, z Z } ≤ 0, z ∈ D(A), R e { z, A z Z } ≤ 0, z ∈ D(A ). (1.49)
Since A is a closed linear operator and D(A) is dense in Z, according to Theorems 1.1 and 1.3, these latter inequalities imply that A is the infinitesimal generator of a linear strongly continuous semigroup of contractions on Z.

Let σ : U → U be defined by

σ(u)(x) = σ(u(x)), ∀x ∈ Ω,
where σ : R → R.

Therefore, one has the following proposition: Assume σ is bounded by a positive value u s , that is

|σ(u(x))| ≤ u s , ∀x ∈ Ω. (1.50)
Note that if σ is bounded, it implies that σ is also bounded as follows:

σ(u) Z ≤ Lu s . (1.51)
To prove that (1.41) holds, we follow a strategy similar to the one used in [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF] or [START_REF] Prieur | Wave Equation with Cone-Bounded Control Laws[END_REF]. First note that Z 0 := H 1 0 (0, L) ⊃ D(A) embeds compactly in Z by the Rellich-Kondrachov theorem (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 9.16]). This set satisfies item (2)(a) of Theorem 1.9.

The operator A has a compact resolvent (see e.g., [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]), which implies that its spectrum consists only of eigenvalues. Moreover, A generates a linear strongly continuous semigroup of contractions, hence all the eigenvalues of the operator are located in the left half of the complex plane. In particular 1 ∈ ρ(A) and J 1 is invertible. Hence, there exists a unique solution Z to the equation -(I Z -A)z(x) = -Bσ(u), where u ∈ U . This latter equation can be rewritten as follows z(x) + z (x) + z (x) = -Bσ(u),

z(0) = z(L) = z (L) = 0. (1.52)
The unique solution to this equation can be expressed compactly as follows

z = -J 1 (Bσ(u)). (1.53)
Multiplying the first line of (1.52) by z and integrating between 0 and L leads to

z 2 L 2 (0,L) + L 0 xz dx + L 0 xz dx = - L 0 Bσ(u)zdx (1.54)
Integrating by parts this latter inequality twice and using boundary condition in (1.44) lead to

z 2 L 2 (0,L) ≤ -|z (0)| 2 - L 0 Bσ(u)xdx (1.55)
Applying Young's inequality and using the fact that σ is bounded, we obtain

z 2 L 2 (0,L) ≤ ε 1 Lu 2 s + 1 ε 1 z 2 L 2 (0,L) , (1.56) 
where

ε 1 > 1. Hence, z 2 L 2 (0,L) ≤ Lu 2 s ε 2 , with ε 2 := 1 -1 ε 1 .
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Now, let us multiply the first line of (1.52) by zx and integrate between 0 and L. After performing some integrations by parts and using the boundary conditions in (1.44), we obtain

3 2 z 2 L 2 (0,L) = 1 2 z 2 L 2 (0,L) - L 0 zx 2 dx - L 0 zxBσ(u)dx ≤ 1 2 z 2 L 2 (0,L) + 1 2 z 2 L 2 (0,L) + L 3 2 u s Therefore, we have z 2 L 2 (0,L) ≤ M, (1.57) 
where

M := L 3 2 u s + Lu 2 s ε 2 .
By the Poincaré inequality, there is an equivalence between the norm z L 2 (0,L) and z H 1 0 (0,L) . Hence, using the expression (1.53), we can conclude that there exists a positive value c such that, for all u ∈ U J 1 (Bσ(u)) 

H 1 0 (0,L) ≤ c. ( 1 
     z t (t, x) = z xx (t, x) + sin(z(t, x)) + u(t, x), (t, x) ∈ R ≥0 × [0, 1] z(t, 0) = z(t, 1) = 0, t ∈ R ≥0 , z(0, x) = z 0 (x), x ∈ [0, 1].
(1.59)

Setting Z := L 2 (0, 1) and U = L 2 (0, 1), system (1.59) can be written as in (1.26) denoting

A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1), z → z + sin(z), (1.60) 
where

D(A) := {z ∈ H 2 (0, 1), z(0) = z(1) = 0}, (1.61) 
and B := I Z .

(1.62)

In Appendix B, the operator (1.60) is proved to be m-dissipative. Therefore, it generates a strongly continuous semigroup of contractions.

Let σ : U → U be defined by

σ(u)(x) = σ(u(x)), x ∈ [0, L], (1.63) 
where σ : R → R. Following a similar strategy than for the KdV example and using some inequalities proved in Appendix B, the assumption given in (1.41) is satisfied as soon as σ is bounded.

Asymptotic stability

The second result refers to the global asymptotic stability of the closed-loop system defined by (1.32). Let (W I (t)) t≥0 be the strongly continuous semigroup of contractions generated by A -BB * , see (1.27)

Theorem 1.10 (Global asymptotic stability) Assume that σ is a cone-bounded nonlinearity and that, for all z 0 in D(A), there exists a unique strong solution to (1.32). Suppose also that D(A σ ) = D(A) and that the operator A σ generates a strongly continuous semigroup of contractions denoted by t → W σ (t) such that the two functions

t → W σ (t)z 0 Z , t → A σ W σ (t)z 0 Z
are non increasing, for all z 0 ∈ D(A). Assume moreover that 1. for all z 0 in D(A),

lim t→+∞ W I (t)z 0 Z = 0; 2. D(A) equipped with the graph norm • D(A) = • Z + A • Z is a Banach space which is compactly embedded in Z.
Then, the origin of the closed-loop system (1.32) is globally asymptotically stable.

Remark 1.8 Theorem 1.10 is a continuation of the work of [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] and [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. As in Assumption 3, our result needs only the origin to be stabilizable with the feedback law u = -B z. However, unlike [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], we are considering that the open-loop system is nonlinear and that the cone-bounded feedback law is more general than sat U . In [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] it is assumed the compactness of the operator B. This implies that the weak ω-limit set is nonempty and invariant. In this work, we assume an alternative property, that is D(A) is compactly embedded in Z, which implies that the strong ω-limit is nonempty and invariant. Note that this property implies a stronger property for the open-loop system than the property assumed in [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF]. However, the operator B does not require to be compact in this work, as assumed in [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF].

Proofs of the results

Proof of Theorem 1.9: well-posedness

This section aims at proving Theorem 1.9. A Schauder fixed-point theorem will be used. Let us recall it.

Theorem 1.11 (Schauder fixed-point theorem ( [START_REF] Coron | Control and Nonlinearity[END_REF], Theorem B.17))

Let Z be a Banach space and C ⊆ Z be a convex and compact space. Then, every continuous mapping f : Z → C admits a fixed-point.

The proof of Theorem 1.9 is given just below.

Proof of Theorem 1.9: First, note that

D(A) = D(A σ ) and A σ is dissipative in Z. Indeed, for all z, z ∈ D(A) R e { A σ z -A σ z, z -z Z } =R e { Az -Az, z -z Z } -R e { Bσ(B z) -Bσ(B z), z -z Z } , ≤ -R e { σ(B z) -σ(B z), B (z -z) U } , ≤0, (1.64) 
where the dissipativity of A and the item 3 of Definition 1.10 have been used to obtain the last two inequalities. Now, we split our proof into two cases.

First case: item 1 holds. In this case, [82, Lemma 2.1., Part IV, page 165] implies that A σ is an m-dissipative operator.

From Theorem 1.3, the operator A σ generates a strongly continuous semigroup of contractions on Z denoted by (W σ (t)) t≥0 . Moreover, from Theorem 1.4, it follows that

t → A σ W σ (t)z 0 Z (1.65)
is non increasing. From item 2 of Definition 1.10, it holds σ(0) = 0 and W σ (t)0 = 0. Therefore, the function

t → W σ (t)z 0 Z (1.66)
is a non-increasing function. This concludes the proof of Theorem 1.9 in the case where item 1 holds.

Second case: items 2a and 2b hold. Since A σ is a dissipative operator, the operator J1 = (I Z -A σ ) -1 exists and is continuous. Moreover, we have D( J1 ) = Ran(I Z -A σ ).

In the second case, in order to apply Theorem 1.4, we must show that

Z = Ran(I Z -A σ ).

The inclusion Ran(I

Z -A σ ) ⊂ Z is obvious. Let us prove that Z ⊂ Ran(I Z -A σ ).
In other words, for z in Z, we must show that there exists z in D(A) such that

(I Z -A)z = z -Bσ(B z).
Let T : Z → D(A) ⊆ z 0 be the mapping

T (z) = J 1 [z -Bσ(B z)].

Chapter 1. Cone-bounded controllers for m-dissipative operators

Let C be the set defined by

C = {z ∈ Z 0 | z Z 0 ≤ N },
where N comes from (1.41).

By assumption (item 2a of the statement of Theorem 1.9), the canonical injection from Z 0 to Z is compact. Thus, the set C is pre-compact as a subset of Z and the closure in Z of C is compact in Z. It is moreover convex since it is a ball of radius N centered at 0. From item 2b in the statement of Theorem 1.9, we compute, for all z in D(A),

T (z) Z 0 = J 1 [z -Bσ(B z)] Z 0 , ≤ N.
Hence, T (Z) ⊆ C. Employing Schauder fixed point theorem, it implies that there exists a unique solution to T (z) = z and thus to (1.32). Therefore, from [START_REF] Komura | Nonlinear semi-groups in Hilbert space[END_REF]Theorem 4], it implies that A σ is an m-dissipative operator. Hence, the result is obtained similarly to the first case. It concludes the proof of Theorem 1.9. Before proving it, let us prove the following lemma, that links the attractivity in D(A) and in Z.

Lemma 1.2

Given Z a Hilbert space, let (W σ (t)) t≥0 be a strongly continuous semigroup of contractions on Z. Let D(A) be dense in Z. Then, if for all z 0 ∈ D(A), the following holds

lim t→+∞ W σ (t)z 0 Z = 0, (1.67) 
we have, for all z 0 ∈ Z,

lim t→+∞ W σ (t)z 0 Z = 0 (1.68) Proof of Lemma 1.2:
Note that the proof is inspired by [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]. Pick z 0 ∈ Z. Since D(A) is dense in Z, for all positive value ε, there exists z0 ∈ D(A) such that

z 0 -z0 Z ≤ ε 2 . (1.69)
Since (W σ (t)) ≥0 is a strongly continuous semigroup of contractions, the following holds, for all t ≥ 0

W σ (t)x 0 -W σ (t)z 0 Z ≤ ε 2 . (1.70)
Moreover, with (1.67), there exists t := t (ε) such that, for all z0 ∈ D(A)

W σ (t)z 0 Z ≤ ε 2 , ∀t ≥ t . (1.71)
Therefore, using a triangle inequality together with (1.70) and (1.71), one is able to prove that

W σ (t)z 0 Z ≤ ε 2 , ∀t ≥ t . (1.72)
This concludes the proof of Lemma 1.2. 2

Proof of Theorem 1.10:

The proof is divided into three steps. Given z ∈ D(A), we first prove that the ω-limit set, denoted by ω(z), is compact and invariant for the nonlinear strongly continuous semigroup of contractions (W σ (t)) t≥0 . Then we prove that, for all initial conditions in ω(z), the solution to (1.32) converges to 0 in Z. Finally, it is proven that, for all initial conditions in D(A), the solution to (1.32) converges to 0 in Z.

First step: Compactness and invariance of ω(z). For all Z in

D(A), z Z + A σ z Z = z Z + Az -Bσ(B z) Z , ≥ c 1 Bσ(B z) Z + Az -Bσ(B z) Z , ≥ min{1, c 1 } Az Z ,
where the second inequality has been obtained from item 2 of Definition 1.10 and with c 1 =

1 B L(U,Z) B L(Z,U )
. This implies, for all z in D(A),

min{1, c 1 }( z Z + Az Z ) ≤ (1 + c 1 )( z Z + A σ z Z ).
Since by assumptions, for all z in D(A), the two mappings t → W σ (t)z Z and t → A σ W σ (t)z Z are nonincreasing, the former inequality implies

W σ (t)z D(A) ≤ (1 + c 1 ) min{1, c 1 } ( z Z + A σ z Z ) , ∀t ≥ 0.
The set D(A) equipped with the graph norm is compactly embedded in Z, thus the positive orbit O + (x) is precompact in Z. Therefore, from Theorem 1.5, for all z in D(A), ω(z) is not empty, compact and invariant under the nonlinear semigroup (W σ (t)) t≥0 , i.e.,

W σ (t)w ∈ ω(z), ∀(w, t) ∈ ω(z) × R + . (1.73)
Second step: Asymptotic stability of the origin with initial conditions in ω(z). Let z be in D(A). For all t ≥ 0, due to the dissipativity of the operator A,

1 2 d dt W σ (t)z 2 Z ≤ -R e { σ(B W σ (t)z), B W σ (t)z U } ≤ 0. (1.74) Since C := clos {O + (x)} is compact in Z and σ is continuous, the function z ∈ C → R e { σ(B z), B z U } ∈ R is uniformly continuous. Let S : R ≥0 → R t → S(t) := R e { σ(B W σ (t)z), B W σ (t)z U }. (1.75)
The function t → W σ (t)z is continuous since (W σ (t)) t≥0 is a strongly continuous semigroup of contractions. Moreover, by assumption, its time derivative, i.e. the function t → A σ W σ (t)z, is bounded. Therefore, the function t → W σ (t)z 0 is uniformly continuous. Hence, S is uniformly continuous as a combination of two uniformly continuous functions.

From (1.74), we have, for all t ≥ 0,

1 2 W σ (t)z 2 Z - 1 2 z 2 Z ≤ - t 0 S(s)ds. (1.76)
Or, rearranging terms, it yields, for all t ≥ 0,

t 0 S(s)ds ≤ 1 2 z 2 Z - 1 2 W σ (t)z 2 Z ≤ 1 2 z 2 Z . (1.77)
Since S takes positive values, it yields

0 ≤ lim t→+∞ t 0 S(s)ds < ∞. (1.78) 
From Barbălat's Lemma, we get lim t→+∞ S(t) = 0.

(1.79)

Thus, from the definition of ω(z),

R e { σ(B w), B w U } = 0 , ∀w ∈ ω(z). (1.80) 
From item 1 in Definition 1.10 of the cone-bounded nonlinearity and (1.73),

B W σ (t)w = 0, ∀w ∈ ω(z), ∀t ≥ 0. (1.81)
Hence, it implies that for all w ∈ ω(z),

W σ (t)w = W I (t)w , ∀t ∈ R + .
Therefore, from Assumption 1 of Theorem 1.10, we have, for all w ∈ ω(z),

lim t→+∞ W σ (t)w Z = 0. (1.82)
Third step: Asymptotic stability of the origin with initial conditions in D(A).

Let z ∈ D(A). The aim of this step is to prove that, for all z ∈ D(A),

lim t→+∞ W σ (t)z Z = 0. (1.83)
Note that, from (1.74), the function t → W σ (t)z 2 Z is non-increasing and lower-bounded. Hence, there exists

V ∞ (z) ∈ R such that lim t→+∞ W σ (t)z 2 X = V ∞ (x) ≥ 0. (1.84)
Two cases may occur:

1. If V ∞ (z) = 0, then ω(z) = {0}. It means that (1.83) holds; 2. If V ∞ (z) = 0, then {0} / ∈ ω(z).
In this case, (1.83) does not hold.

We will argue by contradiction by assuming that the second item holds and by proving that this case cannot occur. Thus, we assume that

V ∞ (z) = 0. (1.85)
Let w ∈ ω(z). From (1.82), for all w ∈ ω(z), there exists t(w) > 0 such that

W σ (t(w))w Z ≤ 1 6 w Z . (1.86) 
Since W σ (t(w)) is a continuous operator and since {0} / ∈ ω(z), there exists a positive value ε 1 (w) such that, for all z ∈ B(w, ε 1 (w)),

W σ (t(w))z -W σ (t(w))w Z ≤ 1 6 w Z . (1.87)
Therefore, for all z ∈ B(w, ε 1 (w)),

W σ (t(w))z Z ≤ W σ (t(w))z -W σ (t(w))w Z + W σ (t(w))w Z ≤ 1 3 w Z . (1.88) 
By reducing ε 1 (w) if needed, we may assume that ε 1 (w) ≤ 1 3 w Z . Hence, for all z ∈ B(w, ε 1 (w)),

w Z -z Z ≤ z -w Z ≤ 1 3 w Z . (1.89) 
Therefore, for all z ∈ B(w, ε 1 (w)),

w Z ≤ 3 2 z Z , (1.90) 
and with (1.88), for all z ∈ B(w, ε 1 (w)),

W σ (t(w))z Z ≤ 1 2 z Z . (1.91)
The family {B(w, ε 1 (w)), w ∈ ω(z)} is a cover by open subsets of ω(z). Since ω(z) is a compact set, we can extract a finite cover which we index as follows

ω(z) ⊂ N 1 i=1 {B (w 1i , ε 1 (w 1i ))} , (1.92) 
where (w 1i )'s are in ω(z) and for a suitable positive integer N 1 and (1.91) has been used.

By considering

t := max i∈{1,...N 1 } t(w 1i ), (1.93) 
together with the fact that the function t → W σ (t)z Z is non increasing for any z ∈ ω(z) ⊂ D(A), we have, for all z ∈ ω(z),

W σ (t )z Z ≤ W σ (t(w 1i ))z Z ≤ 1 2 z Z , (1.94) 
where i ∈ {1, . . . , N 1 } is selected such that z ∈ B(w 1i , ε 1 (w 1i )) and (1.94) has been used.

Since the functions w → W σ (t )w and V : w → V (w) = w 2 Z are continuous and since {0} /

∈ ω(z), for all w ∈ ω(z), there exists ε 2 (w) > 0 such that, for all z ∈ B(w, ε 2 (w)),

|V (z) -V (w)| ≤ 1 5 V (w), |V (W σ (t )z) -V (W σ (t )w)| ≤ 1 4 V (w).
(1.95)

Therefore, with (1.94), for all z ∈ B(w, ε 2 (w)),

V (W σ (t )z) ≤ V (W σ (t )w) + 1 4 V (w), ≤ 1 4 V (w) + 1 4 V (w), ≤ 1 2 V (w). (1.96)
Moreover, the first inequality in (1.95) yields for all z ∈ B(w, ε 2 (w)),

V (w) ≤ 6 5 V (z). (1.97)
Finally, with (1.96), it follows, for all z ∈ B(w, ε 2 (w)),

V (W σ (t )z) ≤ 3 5 V (z). (1.98) 
The family

B w, ε 2 (w) 2 , w ∈ ω(z) is a cover by open subsets of ω(z). Since ω(z) is a compact set, there exists (w 21 , . . . , w 2N 2 ) in ω(z) N 2 such that ω(z) ⊂ N 2 i=1 B w 2i , ε 2 (w 2i ) 2 . (1.99) Let us pick ε 2m := min i ε 2 (w 2i ). (1.100)
Note that, if we assume (1.85) holds, then it implies that there exists t 1 > 0 such that, for all t ≥ t 1 , 

W σ (t)z 2 X -V ∞ (z) ≤ 1 3 V ∞ (z). (1.
-W σ (t 1 )z Z ≤ ε 2m 2 , (1.102) 
where w ∈ ω(z).

Since w ∈ ω(z), there exists i ∈ {1, . . . , N 2 } such that w ∈ B w 2i , ε 2 (w 2i )
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. Therefore,

w 2i -W σ (t 1 )z Z ≤ w 2i -w Z + w -W σ (t 1 )z Z , ≤ ε 2 (w 2i ) 2 + ε 2m 2 , ≤ ε 2 (w 2i ). (1.103) Since W σ (t 1 )z ∈ B (w 2i , ε 2 (w 2i )), Equation (1.98) together with the fact that W σ (t 1 + t )z = W σ (t )W σ (t 1 )z imply, W σ (t 1 + t )z 2 X = V (W σ (t )W σ (t 1 )z) ≤ 3 5 W σ (t 1 )z 2 Z . (1.104)
Therefore, with (1.98) and (1.101), it follows, for all t ≥ t 1

W σ (t + t * )z 2 Z -V ∞ (z) ≤ 3 5 W σ (t 1 )z 2 Z -V ∞ (z) ≤ 3 5 V ∞ (z) + 1 3 V ∞ (z) -V ∞ (z) ≤ - 1 3 V ∞ (z).
(1.105) Thus, we have

W σ (t + t )z 2 Z ≤ 2 3 V ∞ (z) < V ∞ (z). (1.106) Since the function t → W (t)z 2 Z is nonincreasing, we obtain a contradiction with (1.84). Therefore V ∞ (z) = 0.
This concludes the proof of the global attractivity of the origin. The Lyapunov stability holds by assumption. This concludes the proof of Theorem 1.10. 2

Application to a linear Korteweg-de Vries equation

In this section, we illustrate Theorems 1.9 and 1.10 with the linear Korteweg-de Vries equation as considered in Example 1.2. In addition, we run some simulations.

Let us note that B : z ∈ Z → z| Ω ∈ U . It one picks the control such that, for all

(t, x) ∈ [0, ∞) × [0, L], u(t, x) = -B z(t, x) := -z(t, x)| Ω ,
Chapter 1. Cone-bounded controllers for m-dissipative operators then, the origin of (1.44) is L 2 (0, L)-globally asymptotically stable (see e.g., [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF] or [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] for a proof of such a result). The stabilizability assumption of Theorem 1.10 is satisfied. Now, let us tackle the case where the feedback law is bounded with the following operator defined, for all

(t, x) ∈ R ≥0 × [0, L] σ : u ∈ U → σ(u) = σ(u)(t, x), (1.107) 
where σ is the function introduced in (1.30). Due to item 4 of Example 1.1, it is a cone-bounded nonlinearity. This particular cone-bounded nonliearity is illustrated by Figure 1.1.

The feedback law under consideration is as follows

u(z) = -Bσ(B z) = -1 Ω σ(z| Ω ) = -σ(1 Ω z). (1.108)
Note that with such a feedback law the results of [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] cannot be applied since the function

u ∈ U → σ(u) ∈ U is not globally Lipschitz.
As stated in Example (1.2), it is known that the conditions of Theorem 1.9 are satisfied. Therefore, Theorem 1.9 applies. Thus, the operator

A σ : D(A σ ) = D(A) ⊂ L 2 (0, L) → L 2 (0, L), w → -w -w -σ(1 Ω z) (1.109)
generates a strongly continuous semigroup of contractions.

Moreover, using Lemma A.1 given in Appendix A, all the items of Theorem 1.10 are satisfied. Hence, Theorem 1.10 applies and one can conclude that the origin of (1.44) with u = -σ (1 Ω z) is globally asymptotically stable.

Using a numerical scheme inspired by [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF], we perfomed some numerical simulations. We note z the solution to (1.44) with (1.116) and z the solution to

     zt (t, x) + zx (t, x) + zxxx (t, x) + 1 Ω z(t, x) = 0, (t, x) ∈ R ≥0 × (0, L) z(t, 0) = z(t, L) = zx (t, L) = 0, t ∈ R ≥0 z(0, z) = z0 (z).
(1.110) This latter equation is referred to as the Korteweg-de Vries with a linear feedback law.

We pick z(0, x) = z(0, x) = 1 -cos(x) and L = 2π which is a critical case for the stability of the linear Korteweg-de Vries equation as it is reviewed in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]. Let us choose Ω = 1 3 L, 2 3 L . Figure 2.10 illustrates the solution to the system (1.44) with (1.116). We check on the simulation the origin of this equation is attractive. Figure 1.3 illustrates the solution to the system (1.110). It can be checked that the stabilizability assumption of Theorem (1.10) is satisfied. Figure 1.4 illustrates the control u(t, x) = σ (1 Ω z) (t, x) with respect to the time and the space. We can check that the feedback law is bounded by the constant u s = 1.5. Finally, Figure 1.5 illustrates the time-evolution of the Lyapunov functions z 2 L 2 (0,L) and z 2 L 2 (0,L) . Note that the convergence in L 2 (0, L) of z is faster than the convergence in L 2 (0, L) of z. x

z(t, x) t Figure 1.3: Solution z(t, x) with the control u(t, x) = σ (1 Ω z) (t,
x) where u s = 1.5. 

: Control u(t, x) = σ (1 Ω z) (t, x)
where u s = 1.5. 

Application to a nonlinear heat equation

In this section, we illustrate Theorems 1.9 and 1.10 with the linear nonlinear heat equation as considered in Example 1.2.

Let us note that B : z ∈ Z → z ∈ U . Setting u(t, x) = -B z(t, x) := -z(t, x) makes the origin of (1.59) L 2 (0, 1)-globally asymptotically stable. Indeed, focus on the following Lyapunov function

V (z) = 1 0 z(t, x) 2 dx.
(1.111)

Its derivative along (1.59) yields d dt V (z) = 1 0 z(t, x)z xx (t, x)dx + 1 0 sin(z)(t, x)z(t, x)dx - 1 0 z(t, x) 2 dx (1.112)
Performing some integrations by parts and using a Poincaré inequality leads to

d dt V (z) ≤ - 1 0 z x (t, x) 2 dx + 4 π 2 1 0 z x (t, x) 2 dx - 1 0 z(t, x) 2 dx (1.113) Hence, we have d dt V (z) ≤ -V (z). (1.114) 
Therefore, the stabilizability assumption of Theorem 1.10 is satisfied. Now, let us tackle the case where the feedback law is bounded with the following operator defined, for all

(t, x) ∈ R + × [0, L] σ : u ∈ U → σ(u) = σ(u)(t, x), (1.115)
where σ is the function has been introduced in (1.30). Due to item 4 of Example 1.1, it is a cone-bounded nonlinearity. This particular cone-bounded nonlinearity is illustrated by Figure 1.1.

The feedback law under consideration is as follows

u = -Bσ(B z) = -σ(z). (1.116)
Note that with such a feedback law neither the results of [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF], nor the ones of [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] cannot be applied since we are considering a nonlinear operator A.

As stated in Example 1.3, it is known that the conditions of Theorem 1.9 are satisfied. Therefore, Theorem 1.9 applies. Thus, the operator

A σ : D(A σ ) = D(A) ⊂ L 2 (0, L) → L 2 (0, L), z → z + sin(z) -σ(z) (1.117)
generates a strongly continuous semigroup of contractions.

Moreover, using the Lemma B.1 given in the Appendix B.2, all the items of Theorem 1.10 are satisfied. Hence, Theorem 1.10 applies and one can conclude that the origin of (1.59) with u = -σ(z) is globally asymptotically stable.
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Conclusion

In this chapter, the analysis of a stabilizing controller modified via a cone-bounded nonlinearity has been tackled with various techniques. The well-posedness and the Lyapunov stability are proved using a Schauder fixed-point theorem and some nonlinear semigroup results. Finally, assuming a stabilizability property and precompactness of the trajectories of the solution, an infinite-dimensional version of the LaSalle's Invariance Principle has been used to conclude the asymptotic stability of the origin. These results have been illustrated on a linear Korteweg-de Vries equation and a nonlinear heat equation.

A future research line could be the study of the case of unbounded control operators, which refers to boundary controls. To the best of our knowlegde, very few papers deal with such systems in the context of cone-bounded feedback laws. Two of these papers ( [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF] or [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]) focus on abstract control system and the well-posedness of the closed-loop system with cone-bounded feedback law is assumed. Therefore, even well-posedness is an issue for this topic. Note however that [START_REF] Prieur | Wave Equation with Cone-Bounded Control Laws[END_REF] tackles the well-posedness using an approach similar to Section 1.2.2.1.

The next chapter deals with a nonlinear Korteweg-de Vries equation with a saturating distributed control. We will see that the nonlinear semigroup framework might be harder to apply to this nonlinear partial differential equation. Hence, some other tools borrowed from functional analysis and control theory will be presented in order to tackle the global asymptotic stability of the origin of a Korteweg-de Vries equation with saturating distributed control.

Chapter 2

Global stabilization of a Korteweg-de

Vries equation with saturating distributed control In Chapter 1, a method for the analysis of the asymptotic stability of nonlinear abstract systems with a cone-bounded controller has been provided. In order to use classical nonlinear semigroup theory results, the operator describing the open-loop system without control has been assumed to be the infinitesimal generator of a strongly continuous semigroup of contraction.

However, proving this property for a nonlinear partial differential equation might be hard. In fact, for a large class of nonlinear systems, applying classical nonlinear semigroup theory might fail. In such cases, one needs to study the particular structure of the equation. This chapter will aim at studying the nonlinear partial differential equation, namely a Korteweg-de Vries equation, in the context of saturated controllers.

The Korteweg-de Vries equation (KdV for short) is a mathematical model of waves on shallow water surfaces. Its controllability and stabilizability properties have been deeply studied with no constraints on the control, as reviewed in [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF][START_REF] Coron | Control and Nonlinearity[END_REF][START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF].

Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating distributed control

In the literature, there are some methods stabilizing the KdV equation with boundary [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF][START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF][START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF] or distributed controls [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF]. Here we focus on the distributed control case. As proven in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], a distributed localized feedback law, i.e. a feedback that acts only on a part of the spatial domain, stabilizes globally the origin of the closed-loop system.

In this chapter, two particular cone-bounded nonlinearities will be studied. They are referred to as saturation functions, which is a particular case of cone-bounded nonlinearities. The interested reader can refer to [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] for an introduction to this topic for finite-dimensional systems.

We obtain two main results. Our first main result states that the KdV equation in closedloop with a saturated control is well-posed. Our second main result states that the origin of the KdV equation in closed loop with a saturated control is globally asymptotically stable. This chapter is organized as follows. In Section 2.1, the history of the Korteweg-de Vries is provided and some stability results of the equation without control are stated. Section 2.2 deals with the stabilization of the Korteweg-de Vries with a distributed control. Some existing results are provided. In addition, our contributions are given together with their proofs. In Section 2.3, some existings results and some of our results are illustrated with numerical simulations for which we provide a numerical scheme. Section 2.4 collects some concluding remarks and possible research lines.

The contributions of this chapter, collected from Section 2.2.2 until the end, are based on two of our papers. The first one [START_REF] Marx | Global stabilization of a Kortewegde Vries equation with a distributed control saturated in L 2 -norm[END_REF] has been published in a peer-reviewed conference (10th IFAC Symposium on Nonlinear Control Systems). The second one [START_REF] Marx | Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF] has been published in the SIAM Journal on Control and Optimization.

About the Korteweg-de Vries equation

History

In 1834 John Scott Russell, a Scottish naval engineer, was observing the Union Canal in Scotland when he unexpectedly witnessed a very special physical phenomenon. He saw a particular wave traveling through this channel without losing its shape or velocity. He was so captivated by this event that he focused his attention on these waves for several years and asked the mathematical community to find a specific mathematical model describing them.

"I was observing the motion of a boat wich rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped -not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in windings of the channel. Such, in the month of August 1834, was my first chance interview with a singular and beautiful phenomenon which I have called the Wave of Translation."

We have to wait until 1877 and 1895 before obtaining a model of such a phenomena. The first model is due to Boussinesq and the second one to Korteweg and de Vries. Nowadays, this latter model is more used to describe this phenomena than the Boussinesq model.

The original form of the Korteweg-de Vries equation is written as follows

1 √ gh 0 η t + η x + h 2 0 5 η xxx + 3 2h 0 ηη x = 0, ∀t ≥ 0, ∀x ∈ [0, L c ] (2.1)
where η stands for the height of the wave. The terms g, h 0 and L c denote the gravitational constant the water depth and the canal length, respectively. The derivation of this equation can be found in the Whitham's book [START_REF] Whitham | Linear and nonlinear waves[END_REF] which explains also the physical motivation of such an equation.

The KdV equation has several connections to physical problems. Indeed, it can model a lot of physical phenomena, as, for instance, shallow-water waves with weakly non-linear restoring forces or ion acoustic waves in a plasma.

It has also received considerable attention in recent decades in the mathematics community. For instance, its well-posedness and its controllability properties have been intensively studied. Since our contributions deal with stability results, the next section is about stability properties of a KdV equation.

Stability properties of the KdV equation without control

After a suitable scaling, the KdV equation becomes

z t + z x + z xxx + zz x = 0, ∀t ≥ 0, ∀x ∈ [0, L], (2.2) 
where L is a positive value.

The aim of this chapter is to study the case where the boundary conditions are as follows:

z(t, 0) = z(t, L) = z x (t, L) = 0, ∀t ≥ 0. (2.3)
Hence, the Cauchy problem that will be considered is the following

     z t + z x + z xxx + zz x = 0, (t, x) ∈ R ≥0 × [0, L] z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L] (2.4)
Note that the origin is an equilibrium point of this equation. We want to study the stability of this point in the space L 2 (0, L). distributed control Before studying the stabilization problem, the case without control should be studied. Indeed, most of the time, the control design depends crucially on the stability of the equilibrium point for the open-loop system.

In the remaining parts of this section, an analysis of the asymptotic stability of the linearized version of the equation around the origin will be provided. Then, some results for stability of the nonlinear equation will be given.

Linearized KdV equation

The linearized version of (2.4) around the origin is given by the following equation

   z t + z x + z xxx = 0, z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, x) = z 0 (x) ∈ L 2 (0, L).
(2.5) Note that we know from Chapter 1 that there exists a unique mild solution z ∈ C(0, ∞; L 2 (0, L)) to this equation. Moreover, applying Theorem 1.4, we know that the origin of this equation is Lyapunov stable. However, we do not know yet if it is attractive.

Let us perform an energy analysis. Consider the energy

E(t) := 1 2 z(t, •) 2 L 2 (0,L) . (2.6)
After performing some integrations by parts, its time derivative along (2.5) yields

d dt E(t) = - 1 2 |z x (t, 0)| 2 . (2.7)
From this latter inequality, we can conclude that the energy is nonincreasing. However, we can conclude nothing on the long-time behavior of the energy.

In fact, it depends crucially on the length L. If L belongs to a critical length set that is defined by

N := 2π k 2 + kl + l 2 3 k, l ∈ N * , (2.8) 
then the energy will remain equal to the initial condition.

Indeed, when L belongs to N , an additional boundary condition appears when considering some initial conditions. Here is the statement of this result.

Theorem 2.1 ([77])

If L ∈ N defined in (2.8), then, for some initial conditions z 0 ∈ L2 (0, L), there exists solution to (2.5) which satisfies

           z t + z x + z xxx = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = z(t, L) = 0, t ∈ R ≥0 , z x (t, L) = z x (t, 0) = 0, t ≥ 0, z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L].
(2.9) Therefore, if L ∈ N , for some initial conditions, (2.7) becomes

d dt E(t) = 0. (2.10)
Then, in the case where L ∈ N , we have, for all t ≥ 0

z(t, •) L 2 (0,L) = z 0 L 2 (0,L) (2.11)
Hence, for all positive values L, the origin of (2.5) is Lyapunov stable, but not attractive. A way to stabilize the origin of (2.5) is to use a control.

Remark 2.1

As it has been mentionned, the set N defined in (2.8) has been introduced in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]. However, this paper did not aim at proving stability of the origin of (2.4), but aimed at proving the controllability of the equation with a control located at the right Neumann boundary condition. This system is given by

           z t + z x + z xxx = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = z(t, L) = 0, t ∈ R ≥0 , z x (t, L) = u(t), t ∈ R ≥0 , z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L] (2.12)
where u stands for the control.

The author of [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] proved that the system is exactly controllable1 if and only if L / ∈ N .

In some cases, the linearized version of a system may have weaker property than the nonlinear systems. As it will be noticed in the next section, this is the case of the Kortewegde Vries equation.

Nonlinear system

As it has been noticed in Chapter 1 (more precisely by Theorem 1.4), if an operator associated to a partial differential equation is proved to be m-dissipative, then the Lyapunov stability of the origin of this system is ensured. Hence, before studying the asymptotic stability of the nonlinear system (2.4), we would like to see whether it is possible to apply results provided in Chapter 1. The operator associated to (2.4) is

A NL : D(A NL ) ⊂ L 2 (0, L) → L 2 (0, L) z → -z -z -zz (2.13) with D(A NL ) := {z ∈ H 3 (0, L), z(0) = z(L) = z (L) = 0}. (2.14)
In order to apply Theorem 1.4, let us check whether the operator A NL is dissipative.

A NL z -A NL z, z -z L 2 (0,L) := - L 0 (z (x) -z (x))(z(x) -z(x))dx - L 0 (z (x) -z (x))(z(x) -z(x))dx - L 0 (z(x)z (x) -z(x)z (x))(z(x) -z(x))dx, (2.15) 
where z, z ∈ D(A NL ).

However, it is difficult to determine the sign of the term

L 0 (z(x)z (x) -z(x)z (x))(z(x) -z(x))dx.
Hence, applying basic results of nonlinear semigroup theory might be hard for the Kortewegde Vries equation given in (2.4). Therefore, other mathematical tools than semigroup theory will be used in this chapter to achieve the proof of the well-posedness and of the asymptotic stability of a KdV equation with a saturating distributed control.

Some researchers focused on the nonlinear Korteweg-de Vries to obtain an asymptotic stability results for the origin of the equation. It is worth to mention that there is no hope to obtain global asymptotic stability of the origin for (2.4). Indeed, in [START_REF] Germanovitch Doronin | An example of non-decreasing solution for the KdV equation posed on a bounded interval[END_REF], an equilibrium with arbitrary large amplitude is built.

Recently, researchers proved the local asymptotic stability of the origin of (2.17) 2 . They aimed at generalizing some results from the finite-dimensional framework to obtain similar results for the Korteweg-de Vries equation (2.4). A result has been obtained for the particular lengths L = 2π and L = 2π 7 3 , which belong to the critical lenght set (2.8). It is written just below.

Theorem 2.2 (Local asymptotic stability of the origin with L = 2π and L = 2π 7 3 [START_REF] Chu | Asymptotic stability of a nonlinear Korteweg-de Vries equation with a critical length[END_REF][START_REF] Tang | Local asymptotic stability of a KdV equation with a two-dimensional center manifold[END_REF]) Let us assume that L = 2π or L = 2π 7 3 . Then the origin is (locally) asymptotically stable for (2.4).
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Suprisingly, the stability result for the origin of (2.4) is better than for its linearized version.

Remark 2.2

In [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF] and [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF], the controllability of (2.4) has been studied. The system under consideration in these papers is

           z t + z x + z xxx + zz x = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = z(t, L) = 0, t ∈ R ≥0 , z x (t, L) = u(t), t ∈ R ≥0 , z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L].
(2.16)

The authors of [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF] proved that, for every length L, this system is locally exactly controllable for large time 3 .

However, these results are only local. With a distributed control, it is possible to make the origin of the closed-loop system globally asymptotically stable. Next sections will consider the case of the Korteweg-de Vries equation with a distributed control. Two cases will be considered: the case where the control is not saturated and the case where the control is saturated.

Stabilization of a Korteweg-de Vries equation with a distributed control

Case where the control has no constraint: existing results

We suppose that (2.4) has a distributed control. Hence, it can be written as follows

   z t + z x + z xxx + zz x + u = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 , z(0, x) = z 0 (x), x ∈ [0, L], (2.17) 
If we let u(t, x) := a(x)z(t, x) in (2.17), where a is a nonnegative and measurable function on

[0, L] satisfying 0 < a 0 ≤ a(x) ≤ a 1 , ∀x ∈ Ω,
where Ω is a nonempty open subset of (0, L), (2.18) then (2.17) becomes

   z t + z x + z xxx + zz x + az = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 , z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L], (2.19) 
Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating distributed control

Following [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], we get that the origin of (2. [START_REF] Chitour | Controllability of partial differential equations[END_REF]) is globally asymptotically stabilized. More precisely, they obtain the following results

Theorem 2.3 ([79])

The origin for (2. [START_REF] Chitour | Controllability of partial differential equations[END_REF]) is globally asymptotically stable in L 2 (0, L). More precisely, there exist a class-K ∞ function α : R ≥0 → R ≥0 and a positive value µ such that, for any initial condition z 0 ∈ L 2 (0, L), the unique solution to (2.19) satisfies the following inequality

z(t, •) L 2 (0,L) ≤ α( z 0 L 2 (0,L) )e -µt , ∀t ≥ 0. (2.20) Remark 2.3
The result obtained [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] is more general than Theorem 2.3. In fact, instead of studying (2.19), the system under consideration in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] is the following

     z t + z x + z xxx + b(z)z x + az = 0, (t, x) ∈ R ≥0 × [0, L] z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L], (2.21) 
where a satisfies (2.18) and where b is defined as follows

b(0) = 0, |b (j) (µ)| ≤ C 1 + |µ| p-j , ∀µ ∈ R, (2.22) 
for j = 0 if 1 ≤ p < 2 and for j = 0, 1, 2 if p ≥ 2. Note that, according to this definition, b can be the identity operator, in which case (2.21) would become (2.19). This means that the results obtained in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] hold also for (2.19). All along this chapter, the results obtained in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] for this equation will be discussed.

If Ω = [0, L], the result is better. Indeed, we obtain that the origin of (2.17) is globally exponentially stable in L 2 (0, L). Let us give the definition of such a property.

Definition 2.1 (Global exponential stability)

The origin of (2. [START_REF] Chitour | Controllability of partial differential equations[END_REF]) is said to be globally exponentially stable if there exist two positive values C and µ such that, for any initial condition z 0 ∈ L 2 (0, L), the solution to (2.19) satisfies the following inequality

z(t, •) L 2 (0,L) ≤ Ce -µt z 0 L 2 (0,L) , ∀t ≥ 0. (2.23)
Taking the energy E defined by (2.6), its derivative along (2. [START_REF] Chitour | Controllability of partial differential equations[END_REF])

E(t) = - 1 2 |z x (t, 0)| 2 - L 0 a(x)|z(t, x)| 2 dx ≤ -a 0 L 0 |z(t, x)| 2 dx, (2.24) 
which ensures an exponential stability with respect to the L 2 (0, L)-norm. Note that the decay rate can be selected as large as we want by tuning the parameter a 0 . Such a result is refered to as a rapid stabilization result. 

   z t + z x + z xxx + zz x + sat(az) = 0, (t, x) ∈ R ≥0 × [0, L] z(t, 0) = z(t, L) = z x (t, L) = 0, t ∈ R ≥0 z(0, x) = z 0 (x) ∈ L 2 (0, L), x ∈ [0, L], (2.25) 
where sat = sat L 2 (0,L) or sat loc . These two operators have been introduced in the latter chapter (see e.g., Item 2. in Remark 1.1 and (1.33)), but let us recall them. The operator sat loc comes from the finite-dimensional theory (see e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]) and it is defined by, for all

s ∈ R sat(s) =    -u s if s ≤ -u s , s if -u s ≤ s ≤ u s , u s if s ≥ u s , (2.26) 
for some u s > 0.

As in [START_REF] Prieur | Wave Equation with Cone-Bounded Control Laws[END_REF] and [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], we use its extension to infinite dimension called sat loc . For all sufficiently smooth functions s and for all x ∈ [0, L], sat loc is defined as follows

sat loc (s)(x) = sat(s(x)).
(2.27) Such a saturation is called localized since its value at x depends only on the value of s at x.

In this work, we also use a saturation operator in L 2 (0, L), denoted by sat L 2 (0,L) , and defined by

sat L 2 (0,L) (s)(x) = s(x) if s L 2 (0,L) ≤ u s , s(x)us s L 2 (0,L) if s L 2 (0,L) ≥ u s . (2.28)
Note that this definition is borrowed from [START_REF] Slemrod | Feedback Stabilization of a linear control System in Hilbert space with an a priori bounded control[END_REF] (see also [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] or [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]) where the saturation is obtained from the norm of the Hilbert space of the control operator.

Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating distributed control
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Theorem 2.5 (Global asymptotic stability)

Given a nonempty open subset Ω and the positive values a 0 and u s given by (2.18), and (2.6) and (2.27), respectively, there exist a positive value µ and a class K ∞ function α 0 : R ≥0 → R ≥0 such that, for any z 0 ∈ L 2 (0, L), the mild solution z of (2.25) satisfies

z(t, .) L 2 (0,L) ≤ α 0 ( z 0 L 2 (0,L) )e -µ t , ∀t ≥ 0. (2.29)
Moreover, in the case where Ω = [0, L] and sat = sat L 2 (0,L) we can estimate locally the decay rate of the solution. In other words, for all r > 0, for any initial condition z 0 ∈ L 2 (0, L) such that z 0 L 2 (0,L) ≤ r, the mild solution z to (2.25) satisfies

z(t, .) L 2 (0,L) ≤ z 0 L 2 (0,L) e -µt , ∀t ≥ 0, (2.30) 
where µ is defined as follows µ := min a 0 , u s a 0 ra 1 .

(2.31)

The remaining part of this chapter is devoted to the proof of these results (see Sections 2.2.3.1 and 2.2.3.3, respectively) and to numerical simulations to illustrate Theorem 2.5 (see Section 2.3).

Proofs of Theorems 2.4 and 2.5

Well-posedness

Before proving the well-posedness of (2.25), let us recall some useful results on the linear system (2.5). To do that, consider the operator defined by

D(A) = {w ∈ H 3 (0, L), w(0) = w(L) = w (L) = 0},
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A : w ∈ D(A) ⊂ L 2 (0, L) -→ (-w -w ) ∈ L 2 (0, L).
Note that it is closed. Moreover, it can be proved that this operator and its adjoint operator defined by

D(A ) = {w ∈ H 3 (0, L), w(0) = w(L) = w (0) = 0}, A : w ∈ D(A ) ⊂ L 2 (0, L) -→ w + w , are both dissipative.
Therefore, from Theorem 1.1, the operator A generates a strongly continuous semigroup of contractions which we denote by (W (t)) t≥0 . We have the following theorem proven in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF] Theorem 2.6 (Well-posedness of (2.5), [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]) Let T be any positive value.

• For any initial condition z 0 ∈ D(A), there exists a unique strong solution z ∈ C(0, T ; D(A))∩ C 1 (0, T ; L 2 (0, L)) to (2.5); • For any initial condition z 0 ∈ L 2 (0, L), there exists a unique mild solution z ∈ C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) to (2.5). Moreover, there exists C 0 > 0 such that the solution to (2.5) satisfies

z C(0,T ;L 2 (0,L)) + z L 2 (0,T ;H 1 (0,L)) ≤ C 0 z 0 L 2 (0,L) (2.32)
and the extra trace regularity

z x (., 0) L 2 (0,T ) ≤ z 0 L 2 (0,L) . (2.33)
To ease the reading, let us denote the following Banach space, for all T > 0,

B(T ) := C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L))
endowed with the norm

z B(T ) = sup t∈[0,T ] z(t, .) L 2 (0,L) + T 0 z(t, .) 2 H 1 (0,L) dt 1 2
.

(2.34)

Before studying the well-posedness of (2.25), we need a well-posedness result with a righthand side. Given g ∈ L 1 (0, T ; L 2 (0, L)), let us consider z the unique solution 4 to the following nonhomogeneous problem:

   z t + z x + z xxx = g, z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, .) = z 0 . (2.35)
Note that we need the following property on the saturation function, which will allow us to state that this type of nonlinearity belongs to the space L 1 (0, T ; L 2 (0, L)). distributed control Lemma 2.1 For all (s, s) ∈ L 2 (0, L) × L 2 (0, L), we have

sat(s) -sat(s) L 2 (0,L) ≤ 3 s -s L 2 (0,L) .
(2.36)

Proof of Lemma 2.1:

For sat = sat L 2 (0,L) , please refer to [84, Theorem 5.1.] for a proof. For sat = sat loc , we know from [START_REF] Khalil | Nonlinear Systems Second Edition[END_REF]Page 73] that for all (s, s) ∈ L 2 (0, L) 2 and for all x ∈ [0, L],

|sat loc (s(x)) -sat loc (s(x))| ≤ |s(x) -s(x)|.
Thus, we get

sat loc (s) -sat loc (s) L 2 (0,L) ≤ s -s L 2 (0,L) ,
which concludes the proof of Lemma 2.1. 2

We have the following proposition borrowed from [77, Proposition 4.1].

Proposition 2.1 ([77]) If z ∈ L 2 (0, T ; H 1 (0, L)), then zz x ∈ L 1 (0, T ; L 2 (0, L)) and the map ψ 1 : z ∈ L 2 (0, T ; H 1 (0, L)) → zz x ∈ L 1 (0, T ; L 2 (0, L)) is continuous.
We have also the following proposition.

Proposition 2.2 Assume a : [0, L] → R satisfies (2.18). If z ∈ L 2 (0, T ; H 1 (0, L)), then sat(az) ∈ L 1 (0, T ; L 2 (0, L)) and the map ψ 2 : z ∈ L 2 (0, T ; H 1 (0, L)) → sat(az) ∈ L 1 (0, T ; L 2 (0, L)) is continuous. Proof of Proposition 2.2: Let z, z ∈ L 2 (0, T ; H 1 (0, L)).
We have, using Lemma 2.1 and the Hölder inequality

sat(az) -sat(az) L 1 (0,T ;L 2 (0,L)) ≤ 3 T 0 a(z -z) L 2 (0,L) dt ≤ 3 √ La 1 √ T (z -z) L 2 (0,T ;H 1 (0,L)) (2.37)
Plugging z = 0 in (2.37) yields sat(az) ∈ L 1 (0, T ; L 2 (0, L)) and (2.37) implies the continuity of the map ψ 2 . This concludes the proof of Proposition 2.2.

2
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     z t + z x + z xxx + g = 0, z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, x) = 0.
(2.38)

It can be rewritten as follows ẏ = Ay + g, z(0) = 0.

(2.39)

By standard semigroup theory (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), for any positive value t and any function g ∈ L 1 (R ≥0 ; L 2 (0, L)), the solution to (2.38) can be expressed as follows

z(t) = t 0 W (t -τ )g(τ, x)dτ. (2.40)
Finally, we have the following result borrowed from [79, Lemma 2.2]

Proposition 2.3 ([79])

There exists a positive value C 1 such that for any positive value T and any function g ∈ L 1 (0, T ; L 2 (0, L)) the solution to (2.38) satisfies the following inequality,

t 0 W (t -τ )g(τ, x)dτ B(T ) ≤ C 1 T 0 g(τ, .) L 2 (0,L) dτ, (2.41) 
where • B(T ) is given by (2.34).

Proof of Theorem 2.4

Let us begin this section with a technical lemma.

Lemma 2.2 ([102])

For any T > 0 and y, z ∈ B(T ),

T 0 (z(t, .)y(t, .)) x L 2 (0,L) dt ≤ 2 √ T z B(T ) y B(T ) . (2.42)
The following is a local well-posedness result.

Lemma 2.3 (Local well-posedness)

Let T > 0 be given. For any z 0 ∈ L 2 (0, L), there exists T ∈ [0, T ] depending on z 0 L 2 (0,L) such that (2.25) admits a unique mild solution z ∈ B(T ).

To prove this result, a fixed-point theorem will be used. Let us recall it distributed control Theorem 2.7 (Banach fixed-point theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], Theorem 5.7.) Let Z be a nonempty complete metric space equipped with the metric d and let Γ : Z → Z be a strict contraction, i.e., there exists < 1 such that

d(Γz 1 , Γz 2 ) ≤ d(z 1 , z 2 ), ∀z 1 , z 2 ∈ Z. (2.43)
Then Γ has a unique fixed-point, z = Γz.

Proof of Lemma 2.3:

We follow the strategy of [START_REF] Chapouly | Global controllability of a nonlinear Korteweg-de Vries equation[END_REF] and [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF]. We know from (2.38), Proposition 2.1 and Proposition 2.2 that, for all z ∈ L 1 (0, T ; L 2 (0, L)), there exists a unique mild solution to the following system   

z t + z x + z xxx = -z zx -sat(az), z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, x) = z 0 (x).
(2.44)

The solution to (2.44) can be written in integral form

z(t) = W (t)z 0 - t 0 W (t -τ )(z zx )(τ )dτ - t 0 W (t -τ )sat(az(τ, .))dτ. (2.45) 
For given z 0 ∈ L 2 (0, L), let r and T be positive constants to be chosen later. We define

S T ,r = {z ∈ B(T ), z B(T ) ≤ r}, (2.46) 
which is a closed, convex and bounded subset of B(T ). Consequently, S T ,r is a complete metric space in the norm topology induced from B(T ). We define a map Γ on S T ,r by, for all t ∈ [0, T ]

Γ(z) := W (t)z 0 - t 0 W (t -τ )(z zx )(τ )dτ - t 0 W (t -τ )sat(az(τ, .))dτ, ∀z ∈ S T ,r . (2.47)
We aim at proving that there exists a unique fixed point to this operator. It follows from Proposition 2.3, Lemma 2.2 and the linear estimates given in Theorem 2.6 that for every z ∈ S T ,r , there exists a positive value C 2 := C 2 (a 1 , T, L, C 1 ) such that it holds

Γ(z) B(T ) ≤ C 0 z 0 L 2 (0,L) + C 1 T 0 ( z zx (τ, .) L 2 (0,L) + sat(az(τ, .) L 2 (0,L) )dτ ≤ C 0 z 0 L 2 (0,L) + 2C 1 √ T z 2 B(T ) + C 2 √ T z B(T ) (2.48)
where the first line has been obtained with the linear estimates given in Theorem 2.6 and the estimate given in Proposition 2.3 and the second line with Lemma 2.2 and Proposition 2.2. We choose r > 0 and T > 0 such that

r = 2C 0 z 0 L 2 (0,L) , 2C 1 √ T r + C 2 √ T ≤ 1 2 , (2.49) 
in order to obtain Γ(z) B(T ) ≤ r, ∀z ∈ S T ,r .

(2.50)
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Thus, with such r and T , Γ maps S T ,r to S T ,r . Moreover, one can prove with Proposition 2.3, Lemma 2.2 and the linear estimates given in Theorem 2.6 that

Γ(z 1 ) -Γ(z 2 ) B(T ) ≤ 1 2 z1 -z2 B(T ) , ∀z 1 , z2 ∈ S T ,r . (2.51) 
The existence of mild solutions to the Cauchy problem (2.25) follows by using the Theorem 2.7. 2

Before proving the global well-posedness, we need the following lemma inspired by [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] and [START_REF] Chapouly | Global controllability of a nonlinear Korteweg-de Vries equation[END_REF] which implies that, if there exists a solution for some T > 0, then the solution is unique.

Lemma 2.4

Let T > 0 and a : [0, L] → R satisfying (2.18). There exists C 11 := C 11 (T, L) > 0 such that for every z 0 , z0 ∈ L 2 (0, L) for which there exist mild solutions z and z of

   z t + z x + z xxx + zz x + sat(az) = 0, z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, x) = z 0 (x), (2.52 
)

and    zt + zx + zxxx + z zx + sat(az) = 0, z(t, 0) = z(t, L) = zx (t, L) = 0, z(0, x) = z0 (x), (2.53) 
these solutions satisfy

T 0 L 0 (z x (t, x)-z x (t, x)) 2 dxdt ≤ e C 11 (1+ z L 2 (0,T ;H 1 (0,L)) + z L 2 (0,T ;H 1 (0,L)) ) L 0 (z 0 (x)-z 0 (x)) 2 dx, (2.54) 
T 0 L 0 (z(t, x)-z(t, x)) 2 dxdt ≤ e C 11 (1+ z L 2 (0,T ;H 1 (0,L)) + z L 2 (0,T ;H 1 (0,L)) ) L 0 (z 0 (x)-z 0 (x)) 2 dx.
(2.55)

Proof of Lemma 2.4:

We follow the strategy of [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] and [START_REF] Chapouly | Global controllability of a nonlinear Korteweg-de Vries equation[END_REF]. Let us assume that for given z 0 , z0 ∈ L 2 (0, L), there exist T > 0 and two different solutions z and z to (2.52) and (2.53), respectively, defined on By the boundary conditions and the continuous Sobolev embedding H 1 0 (0, L) ⊂ C([0, T ]), there exists

[0, T ] × [0, L]. Then ∆ := z -y defined on [0, T ] × [0, L] is a mild solution of    ∆ t + ∆ x + ∆ xxx = -z∆ x -zx ∆ -(sat(az) -sat(az)), ∆(t, 0) = ∆(t, L) = ∆ x (t, L) = 0, ∆(0, x) = z 0 (x) -z0 (x).
C 3 = C 3 (L) > 0 such that 2 L 0 xz∆∆ x dx ≤ C 3 z x L 2 (0,L) L 0 |x∆∆ x |dx.
(2.59) Thus,

2 L 0 xz∆∆ x dx ≤ 1 2 L 0 ∆ 2 x dx + C 2 3 2 z x 2 L 2 (0,L) L L 0 x∆ 2 dx. (2.60)
Similarly,

4 L 0 xz∆∆ x dx ≤ 1 2 L 0 ∆ 2 x dx + 2C 2 3 zx 2 L 2 (0,L) L 0 x∆ 2 dx. (2.61)
Moreover, since sat is globally Lipschitz with constant 3 (as stated in Lemma 2.1) and for all x ∈ [0, L], a(x) ≤ a 1 , we use a Hölder inequality to get

L 0 x∆(sat(az) -sat(az))dx ≤ x∆ L 2 (0,L) sat(az) -sat(az) L 2 (0,L) ≤ 3 a(x)∆ L 2 (0,L) x∆ L 2 (0,L) ≤ 3a 1 L 0 x∆ 2 dx.
(2.62)

Note that, from [23, Lemma 16], for every φ ∈ H 1 (0, L) with φ(0) = 0, and every d ∈ [0, L],

L 0 φ 2 dx ≤ d 2 2 L 0 φ 2 x dx + 1 d L 0 xφ 2 dx. (2.63) 
Thus, from (2.63) there exists

C 4 > 0 such that L 0 ∆ 2 dx ≤ 1 2 L 0 ∆ 2 x dx + C 4 L 0 x∆ 2 dx.
Moreover, with the boundary conditions of z and the Sobolev embedding

H 1 0 (0, L) ⊂ C([0, T ]), there exists C 5 = C 5 (L) > 0 such that 2 L 0 z∆ 2 dx ≤ C 5 zx L 2 (0,L) L 0 ∆ 2 dx.
Hence, using the boundary conditions of ∆ and (2.63) with d := min{C

-1/2 5 z x -1/2 L 2 (0,L) , L}, there exists C 6 = C 6 (L) > 0 such that 2 L 0 z∆ 2 dx ≤ 1 2 L 0 ∆ 2 x dx + C 6 (1 + zx 3/2 L 2 (0,L) ) L 0 x∆ 2 dx.
(2.64)
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Finally, there exists

C 7 = C 7 (L) > 0 such that d dt L 0 x∆ 2 dx + L 0 ∆ 2 x dx ≤ C 7 (1 + z x 2 L 2 (0,L) + zx 2 L 2 (0,L) ) L 0 x∆ 2 dx. (2.65)
In particular,

d dt L 0 x∆ 2 dx ≤ C 7 (1 + z x 2 L 2 (0,L) + zx 2 L 2 (0,L) ) L 0 x∆ 2 dx.
(2.66)

Using the Grönwall Lemma, the last inequality and the initial conditions of ∆, we get, for every t ∈ [0, T ],

L 0 x∆ 2 (t, x)dx ≤ e C 7 T + z 2 L 2 (0,T ;H 1 (0,L)) + z 2 L 2 (0,T ;H 1 (0,L)) L 0 x(z 0 (x) -z0 (x)) 2 dx, (2.67) 
and thus, we obtain the existence of

C 8 = C 8 (T, L) such that T 0 L 0 (z x (t, x)-zx (t, x)) 2 dxdt ≤ e C 8 z 2 L 2 (0,T ;H 1 (0,L)) + z 2 L 2 (0,T ;H 1 (0,L)) L 0 (z 0 (x)-z0 (x)) 2 dx.
(2.68) Similarly, integrating by parts in

L 0 ∆(∆ t + ∆ x + ∆ xxx + z∆ x + zx ∆ + sat(az) -sat(az))dx = 0 (2.69)
we get, using the boundary conditions of ∆, 1 2

d dt L 0 ∆ 2 dx + 1 2 ∆ 2 x (t, 0) = - L 0 (z∆ x -2z∆ x )∆dx - L 0 ∆(sat(az) -sat(az))dx. (2.70)
Moreover,

- L 0 (z∆ x -2z∆ x )∆ ≤ L 0 ∆ 2 x dx + L 0 1 2 z 2 + 2z 2 ∆ 2 dx, (2.71) 
and

L 0 ∆(sat(az) -sat(az))dx ≤ 3a 1 L 0 ∆ 2 dx. (2.72) 
Thanks to the continuous Sobolev embedding H 1 0 (0, L) ⊂ C([0, L]), (2.72) and (2.71), there exists

C 9 = C 9 (L) > 0 such that 1 2 d dt L 0 ∆ 2 dx ≤ L 0 ∆ 2 x dx + C 9 z x 2 L 2 (0,L) + zx 2 L 2 (0,L) + 1 L 0 ∆ 2 dx. (2.73)
Thus applying the Grönwall Lemma, we get the existence of

C 10 = C 10 (L) > 0 such that L 0 (z(t, x) -z(t, x)) 2 dx ≤ e C 10 1+ z 2 L 2 (0,T ;H 1 (0,L)) + z 2 L 2 (0,T ;H 1 (0,L)) L 0 (z 0 (x) -z0 (x)) 2 dx.
(2.74) With the use of (2.68) and (2.74), this concludes the proof of Lemma 2.4.

2

We aim at removing the smallness condition given by T in Lemma 2.3, following [START_REF] Chapouly | Global controllability of a nonlinear Korteweg-de Vries equation[END_REF]. Since we have the local well-posedness, we only need to prove the following a priori estimate for any mild solution to (2.25). distributed control Lemma 2.5 For given T > 0, there exists G := G(T ) > 0 such that for any z 0 ∈ L 2 (0, L), for any positive value T satisfying 0 < T ≤ T and for any mild solution z ∈ B(T ) to (2.25), it holds

z B(T ) ≤ G z 0 L 2 (0,L) , (2.75 
)

and z L 2 (0,L) ≤ z 0 L 2 (0,L) . (2.76)
Proof of Lemma 2.5:

Let us fix 0 < T ≤ T . We multiply the first equation in (2.25) by z and integrate on (0, L). Using the boundary conditions in (2.25), we get the following estimates

L 0 zz x dx = 0, L 0 zz xxx dx = 1 2 |z x (t, 0)| 2 , L 0 z 2 z x dx = 0.
Using the fact that sat is odd, we get that

1 2 d dt z(t, .) 2 L 2 (0,L) ≤ - 1 2 |z x (t, 0)| 2 - L 0 zsat(az)dx ≤ 0 (2.77)
which implies (2.76). Moreover, using again (2.77), there exists

C 12 = C 12 (L) > 0 such that z L ∞ (0,T ;L 2 (0,L) ≤ C 12 z 0 L 2 (0,L) .
(2.78)

It remains to prove a similar inequality for z x L 2 (0,T ;L 2 (0,L)) to achieve the proof. We multiply (2.25) by xz, integrate on (0, L) and use the following

L 0 xzz x dx = - 1 2 z 2 L 2 (0,L) , L 0 zz xxx dx = 3 2 z x 2 L 2 (0,L) ,
and

- L 0 xz 2 z x dx = 1 3 L 0 z 3 (t, x)dx ≤ 1 3 sup x∈[0,L] |z(t, x)| z 2 L ∞ (0,T ;L 2 (0,L)) ≤ √ L 3 z x L 2 (0,L) z 2 L ∞ (0,T ;L 2 (0,L)) ≤ √ Lδ 6 z x L 2 (0,L) + √ L 6δ z 4 L ∞ (0,T ;L 2 (0,L)) (2.79)
where δ is chosen as δ := 3 √ L . In this way, we obtain

1 2 d dt L 0 |x 1/2 z(t, .)| 2 dx - 1 2 L 0 z 2 dx + 3 2 L 0 |z x | 2 dx - 1 3 L 0 |z| 3 dx = - L 0 xsat(az)zdx.
(2.80) We get, using (2.79) and the fact that sat is odd, that

1 2 d dt L 0 |x 1/2 z(t, .)| 2 dx + L 0 |z x | 2 dx ≤ 1 2 z 2 L ∞ (0,T ;L 2 (0,L)) + L 18 z 4 L ∞ (0,T ;L 2 (0,L)) . (2.81)
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Using (2.78) and Grönwall inequality, we get the existence of a positive value

C 13 = C 13 (L) > 0 such that z x L 2 (0,T ;L 2 (0,L)) ≤ C 13 z 0 L 2 (0,L) , (2.82) 
which concludes the proof of Lemma 2.5. 2

Using a classical extension argument, Lemmas 2.3, 2.5 and 2.4, for any T > 0, we can conclude that there exists a unique mild solution in B(T ) to (2.25). Indeed, with Lemma 2.3, we know that there exists T ∈ (0, T ) such that there exists a unique solution to (2.25) in B(T ). Moreover, Lemma 2.5 allows us to state the existence of a mild solution to (2.25) for every T > 0: since the solution z to (2.25) is bounded by its initial condition for every T > 0 belonging to [0, T ] as stated in (2.76), we know that there exists a solution to (2.25) in B(T ). Finally, Lemma 2.4 implies that there exists a unique mild solution to (2.25) in B(T ). This concludes the proof of Theorem 2.4.

Remark 2.4

As noticed in Remark 2.3, the authors of [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] studied the stabilization of a KdV equation more general than the one studied in this chapter. It is given by (2.21).

The saturated version of (2.21) is

     z t + z x + z xxx + b(z)z x + sat(az) = 0, z(t, 0) = z(t, L) = z x (t, L) = 0, z(0, x) = z 0 (x).
(2.83)

The strategy followed in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] can be followed easily to prove the same result as Theorem 2.4 for (2.83). Note that in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], provided that the initial condition satisfies some compatibility conditions, the well-posedness is proved for a solutions in C([0, T ]; H s (0, L)) ∩ L 2 (0, T ; H s+1 (0, L)), where s ∈ [0, 3]. The authors proved this result by looking at v = z t which solves an equation equivalent to (2.21). In our case, it seems harder to prove such a result. Since the saturation operator introduces some non-smoothness, v = z t does not solve an equation equivalent to (2.83).

Global asymptotic stability

Let us begin by introducing the following definition. Definition 2.2 System (2.25) is said to be semi-globally exponentially stable in L 2 (0, L) if for any r > 0 there exists two constants K := K(r) > 0 and µ := µ(r) > 0 such that for any z 0 ∈ L 2 (0, L) such that z 0 L 2 (0,L) ≤ r, the mild solution y = z(t, x) to (2.25) satisfies z(t, .) L 2 (0,L) ≤ K z 0 L 2 (0,L) e -µt , ∀t ≥ 0.

(2.84)

Following [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], we first show that (2.25) is semi-globally exponentially stable in L 2 (0, L). From this result, we will be able to prove the global uniform exponential stability of (2.25). To distributed control do that, we state and prove a technical lemma that allows us to bound the saturation function with a linear function as long as the initial condition is bounded. Then we separate our proof into two cases. The first one deals with the case Ω = [0, L] and sat = sat L 2 (0,L) , while the second one deals with the case Ω ⊆ [0, L] whatever the saturation is. The tools to tackle these two cases are different. The goal of the next three sections is to prove the following result Proposition 2.4 (Semi-global exponential stability)

The system (2.25) is semi-globally exponentially stable in L 2 (0, L).

Moreover, if Ω = [0, L] and sat = sat L 2 (0,L) , inequality (2.84) holds with K = 1 and µ can be estimated with (2.31) given in Theorem 2.5.

Technical Lemma

Before starting the proof of the Proposition 2.4, we will use a property already well-known for saturated control system, namely the sector condition. If the argument of the saturation is bounded, then the saturation can be bounded by a linear function, which allows us to pass from nonlinear control problem to a linear one (see [START_REF] Khalil | Nonlinear Systems Second Edition[END_REF]).

Let us state and prove the following lemma. 

k(r) = min u s a 1 r , 1 , (2.85) 
with u s given either in (2.6) or (2.27).

(i) Given sat = sat L 2 (0,L) and s ∈ L 2 (0, L) such that s L 2 (0,L) ≤ r, we have

sat L 2 (0,L) (a(x)s(x)) -k(r)a(x)s(x) s(x) ≥ 0, ∀x ∈ [0, L], (2.86) 
(ii) Given sat = sat loc and s ∈ L ∞ (0, L) such that, for all x ∈ [0, L], |s(x)| ≤ r, we have

sat loc (a(x)s(x)) -k(r)a(x)s(x) s(x) ≥ 0, ∀x ∈ [0, L]. (2.87)
Proof of Lemma 2.6:

(i) We first prove item (i) of Lemma 2.6. Two cases may occur 1. as L 2 (0,L) ≥ u s ;

2. as L 2 (0,L) ≤ u s .
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The first case implies that, for all x ∈ [0, L]

sat L 2 (0,L) (a(x)s(x)) = a(x)s(x) as L 2 (0,L) u s .
Thus, for all x ∈ [0, L],

sat L 2 (0,L) (a(x)s(x)) -k(r)a(x)s(x) s(x) = a(x)s(x) 2 u s as L 2 (0,L) -k(r) . Since u s as L 2 (0,L) ≥ u s a 1 s L 2 (0,L) ≥ u s a 1 r ≥ k(r), we obtain sat L 2 (0,L) (a(x)s(x)) -k(r)a(x)s(x) s(x) ≥ 0.
Now, let us consider the case as L 2 (0,L) ≤ u s . We have, for all x ∈ [0, L],

sat L 2 (0,L) (a(x)s(x)) = a(x)s(x),
and then, for all x ∈ [0, L],

(sat L 2 (0,L) (a(x)s(x)) -k(r)a(x)s(x))s(x) = a(x)s(x) 2 (1 -k(r)) ≥ 0.
(ii) We now deal with item (ii) of Lemma 2.6.

Let us pick x ∈ [0, L] and consider the two following cases

1. |a(x)s(x)| ≥ u s ; 2. |a(x)s(x)| ≤ u s .
The first case implies either a(x)s(x) ≥ u s or a(x)s(x) ≤ -u s .

Since these two possibilities are symmetric, we just deal with the case a(x) ≥ u s . We have

sat loc (a(x)s(x)) = u s ,
and then

sat loc (a(x)s(x)) -k(r)a(x)s(x) s(x) = u s s(x) -k(r)a(x)s 2 (x) ≥ u s -k(r)a(x)r s(x) ≥ u s - u s a 1 r a(x)r s(x) ≥ 0.
The second case implies that sat loc (a(x)s(x)) = a(x)s(x), and then sat loc (a(x)s(x) - Now we are able to prove Proposition 2.4 when Ω = [0, L] and sat = sat L 2 (0,L) . Let r > 0 and z 0 ∈ L 2 (0, L) be such that z 0 L 2 (0,L) ≤ r.

k(r)a(x)s(x) s(x) = 1 -k(r) a(x) 2 s(x) 2 ≥ 0.
Multiplying (2.25) by z, integrating with respect to x on (0, L) yields

1 2 d dt L 0 |z(t, x)| 2 dx ≤ - L 0 sat L 2 (0,L) (az(t, x))z(t, x)dx. (2.88)
Note that from (2.76), we get

z L 2 (0,L) ≤ z 0 L 2 (0,L) ≤ r.
(2.89) Thus, using Lemma 2.6 and (2.88), it follows that

1 2 d dt L 0 |z(t, x)| 2 dx ≤ - L 0 k(r)a 0 |z(t, x)| 2 dx. (2.90)
Applying the Grönwall lemma leads to

z(t, .) L 2 (0,L) ≤ e -µt z 0 L 2 (0,L) (2.91) 
where µ is defined in the statement of Theorem 2.5. This concludes the proof of Proposition 2.4 when Ω = [0, L] and when sat = sat L 2 (0,L) .

Remark 2.5

The constant µ depends on u s , r and a 0 . Thus, although we have proven an exponential stability, the rapid stabilization is still an open question. Moreover, in the case a(x) = a 0 = a 1 for all x ∈ [0, L], which is the case where the gain is constant, we obtain that µ = min a 0 , u s r .

Proof of Proposition 2.4 when Ω ⊆ [0, L]

In this section, we have sat = sat L 2 (0,L) or sat = sat loc . We follow the strategy of [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] and [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. We use a contradiction argument. It is based on the following unique continuation result.

Theorem 2.8 ([80])

Let z ∈ L 2 (0, T ; H 3 (0, L)) be a solution of

z t + z x + z xxx + zz x = 0 such that z(t, x) = 0, ∀t ∈ (t 1 , t 2 ), ∀x ∈ Ω,
with Ω an open nonempty subset of (0, L). Then z(t, x) = 0, ∀t ∈ (t 1 , t 2 ), ∀x ∈ (0, L).
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Moreover, the following lemma will be used.

Lemma 2.7 (Aubin-Lions Lemma, [START_REF] Simon | Compact sets in the space L p (0, T, B)[END_REF], Corollary 4) Let X 0 ⊂ X ⊂ X 1 be three Banach spaces with X 0 , X 1 reflexive spaces. Suppose that X 0 is compactly embedded in X and X is continuously embedded in X 1 . Then

{h ∈ L p (0, T ; X 0 ) | h t ∈ L q (0, T ; X 1 )}
embeds compactly in L p (0, T ; X) for any 1 < p, q < ∞.

Let us now start the proof of Proposition 2.4. Let r > 0 and z 0 ∈ L 2 (0, L) be such that

z 0 L 2 (0,L) ≤ r. (2.92)
As in the proof of Lemma 2.5, with multiplier techniques applied to (2.25), we obtain

z(t, .) 2 L 2 (0,L) = z 0 2 L 2 (0,L) - t 0 |z x (σ, 0)| 2 dσ -2 t 0 L 0 sat(az)zdxdσ, ∀t ∈ [0, T ] (2.93)
and

z 2 L 2 (0,T ;H 1 (0,L)) ≤ 8T + 2L 3 z 0 2 L 2 (0,L) + T C 27 z 0 4 L 2 (0,L) . (2.94) 
Moreover, multiplying (2.25) by (T -t)y, we obtain after performing some integrations by parts

T z 0 2 L 2 (0,L) ≤ T 0 L 0 |z(t, x)| 2 dxdt + T 0 (T -t)|z x (t, 0)| 2 dt + 2 T 0 (T -t) L 0 sat(az)zdxdt.
(2.95)

Note that, since sat is an odd function, (2.93) implies that, for all t ∈ [0, T ]

z(t, .) 2 L 2 (0,L) ≤ z 0 2 L 2 (0,L) . (2.96) 
From now on, we will separate the proof into two cases: sat = sat L 2 (0,L) and sat = sat loc .

Case 1: sat = sat L 2 (0,L) .

Using (2.76), we have, z(t, .) L 2 (0,L) ≤ r, and we can apply the first item of Lemma 2.6. The inequality (2.93) becomes

z(t, .) 2 L 2 (0,L) ≤ z 0 2 L 2 (0,L) - T 0 |z x (t, 0)| 2 dt -2 T 0 L 0 ak(r)y 2 dxdt. (2.97)
Let us state a claim that will be useful in the following. distributed control Claim 2.1 For any T > 0 and any r > 0 there exists a positive constant C 14 = C 14 (T, r) such that for any solution z to (2.25) with an initial condition z 0 ∈ L 2 (0, L) such that z 0 L 2 (0,L) ≤ r, it holds that

z 0 2 L 2 (0,L) ≤ C 14 T 0 |z x (t, 0)| 2 dt + 2 T 0 L 0 k(r)a|z(t, x)| 2 dxdt . (2.98)
Let us assume Claim 2.1 for the time being. Then (2.93) implies

z(kT, .) 2 L 2 (0,L) ≤ γ k z 0 2 L 2 (0,L) ∀k ≥ 0, ∀t ≥ 0, (2.99) 
where γ ∈ (0, 1). From (2.96), we have z(t, .) L 2 (0,L) ≤ z(kT, .) L 2 (0,L) for kT ≤ t ≤ (k+1)T .

Thus we obtain, for all t ≥ 0,

z(t, .) 2 L 2 (0,L) ≤ 1 γ z 0 L 2 (0,L) e log γ T t , (2.100) 
which implies the global asymptotic stability of the mild solution z to (2.25), since γ ∈ (0, 1).

In order to prove Claim 2.1, since the solution to (2.25) satisfies (2.95), it is sufficient to prove that there exists some constant

C 15 := C 15 (T, L) > 0 such that T 0 L 0 |z| 2 dxdt ≤ C 15 T 0 |z x (t, 0)| 2 dt + 2 T 0 L 0 k(r)ay 2 dxdt (2.101)
provided that z 0 L 2 (0,L) ≤ r. We argue by contradiction to prove the existence of such a constant C 15 .

Suppose (2.101) fails to be true. Then, there exists a sequence of mild solutions {z n } n∈N ⊆ B(T ) of (2.25) with z n (0, .) L 2 (0,L) ≤ r (2.102)

and such that

lim n→+∞ z n 2 L 2 (0,T ;L 2 (0,L)) T 0 |z n x (t, 0)| 2 dt + 2 T 0 L 0 k(r)a(z n ) 2 dxdt = +∞. (2.103)
Note that (2.102) implies with (2.96) that

z n (t, .) L 2 (0,L) ≤ r, ∀t ∈ [0, T ]. (2.104) Let λ n := z n L 2 (0,T ;L 2 (0,L)) and v n (t, x) = z n (t,x) λ n .
Notice that {λ n } n∈N is bounded, according to (2.104). Hence, there exists a subsequence, that we continue to denote by {λ n } n∈N such that λ n → λ ≥ 0 as n → +∞.

Then v n fullfills      v n t + v n x + v n xxx + λ n v n v n x + sat L 2 (0,L) (aλ n v n ) λ n = 0, v n (t, 0) = v n (t, L) = v n x (t, L) = 0, v n L 2 (0,T ;L 2 (0,L)) = 1,
(2.105)
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and, due to (2.103), we obtain

T 0 |v n x (t, 0)| 2 dt + 2 T 0 L 0 ak(r)(v n ) 2 dxdt → 0 as n → +∞. (2.106)
It follows from (2.95) that {v n (0, .)} n∈N is bounded in L 2 (0, L). Note also that from (2.94) {v n } n∈N is bounded in L 2 (0, T ; H 1 (0, L)). Thus we see that {v n v n

x } n∈N is a subset of L 2 (0, T ; L 1 (0, L)). In fact,

v n v n x L 2 (0,T ;L 1 (0,L)) ≤ v n C(0,T ;L 2 (0,L)) v n L 2 (0,T ;H 1 (0,L)) .
(2.107)

Moreover, we have that

sat L 2 (0,L) (aλ n v n ) λ n n∈N is a bounded sequence in L 2 (0, T ; L 2 (0, L)).
Indeed, from Lemma 2.1

sat L 2 (0,L) (aλ n v n ) λ n L 2 (0,T ;L 2 (0,L)) ≤ 3 av n L 2 (0,T ;L 2 (0,L)) ≤ 3a 1 √ L v n L 2 (0,T ;H 1 (0,L)) .
(2.108)

Thus {v n v n x } n∈N and sat L 2 (0,L) (aλ n v n ) λ n n∈N are also subsets of L 2 (0, T ; H -2 (0, L)) since L 2 (0, L) ⊂ L 1 (0, L) ⊂ H -1 (0, L) ⊂ H -2 (0, L).
Combined with (2.105) it implies that {v n t } n∈N is a bounded sequence in L 2 (0, T ; H -2 (0, L)). Since {v n } n∈N is a bounded sequence of L 2 (0, T ; H 1 (0, L)), then we get with Lemma 2.7 that a subsequence of {v n } n∈N also denoted by {v n } n∈N converges strongly in L 2 (0, T ; L 2 (0, L)) to a limit v. Moreover, with the last line of (2.105), it holds that v L 2 (0,T ;L 2 (0,L)) = 1.

Therefore, having in mind (2.106), we get

v x (., 0) 2 L 2 (0,T ) + T 0 L 0 ak(r)v 2 dxdt ≤ lim inf n→+∞ v n x (., 0) 2 L 2 (0,T ) + T 0 L 0 ak(r)(v n ) 2 dxdt = 0.
(2.109) Thus, ak(r)v 2 (t, x) = 0, ∀x ∈ [0, L], ∀t ∈ (0, T ), and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.110) and therefore v(t, x) = 0, ∀x ∈ Ω, ∀t ∈ (0, T ), and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.111)

We obtain that the limit function v satisfies

   v t + v x + v xxx + λvv x = 0, v(t, 0) = v(t, L) = v x (t, L) = 0, v L 2 (0,T ;L 2 (0,L)) = 1, (2.112) 
with λ ≥ 0. Let us consider ṽ = v t which satisfies ṽt + ṽx + ṽxxx + λv x ṽ + λvṽ

x = 0, v(t, 0) = v(t, L) = v x (t, L) = 0, (2.113) 
Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating distributed control with ṽ(0, .) = -v (0, .) -v (0, .) -λv(0, .)v (0, .) ∈ H -3 (0, L) and u(t, x) = 0, ∀x ∈ Ω, ∀t ∈ (0, T ), and u x (t, 0) = 0, ∀t ∈ (0, T ).

Let us recall the following result.

Lemma 2.8 ([71], Lemma 3.2)

There exists a positive value C 16 (T, r) > 0 such that for any solution ṽ to (2.113) where v is solution to (2.112), it holds ṽx (., 0) 2 L 2 (0,T ) + ṽ(0, .) 2 H -3 (0,L) ≥ C 16 ṽ(0, .) 2 L 2 (0,L) .

(2.114)

Applying the result of this lemma, we get v(0, .) ∈ L 2 (0, L) and therefore ṽ = v t ∈ B(T ). Since v, v t ∈ L 2 (0, T ; H 1 (0, L)) and v ∈ C([0, T ]; H 1 (0, L)), we can conclude that vv x ∈ L 2 (0, T ; L 2 (0, L)). In this way, v xxx = -v t -v x -λvv x ∈ L 2 (0, T ; L 2 (0, L)) and therefore v ∈ L 2 (0, T ; H 3 (0, L)). Finally, using Theorem 2.8, we obtain

v(t, x) = 0, ∀x ∈ [0, L], t ∈ [0, T ].
Thus we get a contradiction with v L 2 (0,T ;L 2 (0,L)) = 1. This concludes the proof of Claim 2.1 and also the proof of Lemma 2.4 in the case where sat = sat L 2 (0,L) .

Case 2: sat = sat loc .

Following the same strategy as before, we write the following claim.

Claim 2.2

For any T > 0 and any r > 0, there exists a positive constant C 17 = C 17 (T, r) such that for any mild solution z to (2.25) with an initial condition z 0 ∈ L 2 (0, L) such that z 0 L 2 (0,L) ≤ r, it holds that

z 0 2 L 2 (0,L) ≤ C 17 T 0 |z x (t, 0)| 2 dt + 2 T 0 L 0 sat loc (az(t, x))z(t, x)dtdx .
(2.115) If Claim 2.2 holds, we obtain also (2.100) for a suitable choice of γ and we end the proof of Lemma 2.4 when sat = sat loc . Due to (2.95), we see that in order to prove Claim 2.2, it is sufficient to obtain the existence of C 18 > 0 such that

T 0 L 0 |z(t, x)| 2 dtdx ≤ C 18 T 0 |z x (t, 0)| 2 dt + 2 T 0 L 0 sat loc (az(t, x))z(t, x)dtdx .
(2.116) We argue by contradiction to prove (2.116). To this end, we assume that there exists a sequence of mild solutions {z n } n∈N ⊆ B(T ) to (2.25) with 

z n (0, .) L 2 (0,L) ≤ r (2.
z n 2 L 2 (0,T ;H 1 (0,L)) ≤ β,
where

β := 8T + 2L 3 r 2 + T C 27 r 4 .
Moreover, due to the Poincaré inequality and the left Dirichlet boundary condition of (2.25), we obtain sup

x∈[0,L] |z n (t, x)| ≤ √ L z n (t, .) H 1 (0,L) , ∀t ∈ [0, T ]. (2.120) 
Thus, we see that

T 0 |z n (t, x)| 2 dt ≤ L z n 2 L 2 (0,T ;H 1 (0,L)) ≤ Lβ. (2.121) 
Now let us consider Ω i ⊂ [0, T ] defined as follows

Ω i = t ∈ [0, T ], sup x∈[0,L] |z(t, x)| > i .
(2.122)

In the following, we will denote by Ω c i its complement. It is defined by

Ω c i = t ∈ [0, T ], sup x∈[0,L] |z(t, x)| ≤ i . (2.123) Since the function t → sup x∈[0,L] |z n (t, x)| 2 is a nonnegative function, we have T 0 sup x∈[0,L] |z n (t, x)| 2 dt ≥ Ω i sup x∈[0,L] |z n (t, x)| 2 dt ≥ i 2 ν(Ω i ), (2.124) 
where ν(Ω i ) denotes the Lebesgue measure of Ω i . Therefore, with (2.121), we obtain

ν(Ω i ) ≤ Lβ i 2 .
(2.125)

We deduce from the previous equation that

max T - Lβ i 2 , 0 ≤ ν(Ω c i ) ≤ T.
(2.126)
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Moreover, with the second item of Lemma 2.6, we have, for all i ∈ N,

T 0 L 0 sat loc (az n )z n dtdx = Ω i L 0 sat loc (az n )z n dtdx + Ω c i L 0 sat loc (az n )z n dtdx ≥ Ω c i L 0 sat loc (az n )z n dtdx ≥ Ω c i L 0 ak(i)(z n ) 2 dtdx. (2.127) Let λ n := z n L 2 (0,T ;L 2 (0,L)) and v n (t, x) = z n (t,x)
λ n . Notice that {λ n } n∈N is bounded, according to (2.119). Hence, there exists a subsequence, that we continue to denote by {λ n } n∈N such that λ n → λ ≥ 0, as n → +∞.

Then, v n fullfills      v n t + v n x + v n xxx + λ n v n v n x + satloc(aλ n v n ) λ n = 0, v n (t, 0) = v n (t, L) = v n x (t, L) = 0, v n L 2 (0,T ;L 2 (0,L)) = 1, (2.128) 
and, due to (2.118),

T 0 |v n x (t, 0)| 2 dt + 2 T 0 L 0 sat loc (aλ n v n ) λ n v n dtdx → 0 as n → +∞.
Moreover, due to (2.127), we have, for all i ∈ N,

T 0 |v n x (t, 0)| 2 dt + 2 Ω c i L 0 ak(i)(v n ) 2 dtdx → 0 as n → +∞. (2.129)
Note that from Lemma 2.1,

sat loc (aλ n v n ) λ n L 2 (0,T ;L 2 (0,L)) ≤ 3a 1 √ L v n L 2 (0,T ;H 1 (0,L) . (2.130)
and therefore the sequence satloc(aλ n v n )

λ n n∈N is a subset of L 2 (0, T ; L 2 (0, L)). In ad- dition, {v n v n x } n∈N is a bounded sequence of L 2 (0, T ; L 1 (0, L)). Note that L 2 (0, L) ⊂ L 1 (0, L) ⊂ H -2 (0, L), thus satloc(aλ n v n ) λ n n∈N and {v n v n x } n∈N are bounded sequences of L 2 (0, T ; H -2 (0, L)). Since v n t = -v n x -v n xxx -λ n v n v n x -satloc(aλ n v n ) λ n
, we know that {v n t } n∈N is a subset of L 2 (0, T ; H -2 (0, L)). Since {v n } n∈N is a subset of L 2 (0, T ; H 1 (0, L)), we obtain from Lemma 2.7 that {v n } n∈N converges strongly to a function v in L 2 (0, T ; L 2 (0, L)). Futhermore, with (2.129) and due to the non-negativity of k, we have, for all i ∈ N,

ak(i)v(t, x) = 0, ∀x ∈ [0, L], ∀t ∈ Ω c
i , and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.131) Thus, since for all i ∈ N, k(i) is strictly positive, we have v(t, x) = 0, ∀x ∈ Ω, ∀t ∈ Ω c i , and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.132)
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We obtain v(t, x) = 0, ∀x ∈ Ω, ∀t ∈ i∈N Ω c i , and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.133) Since, with (2.126), we know that ν i∈N Ω c i = T , we get that, for almost every t ∈ [0, T ], v(t, x) = 0, ∀x ∈ Ω, and v x (t, 0) = 0.

(2.134)

We obtain that v fullfills

v t + v x + v xxx + λvv x = 0, v(t, 0) = v(t, L) = v x (t, L) = 0, , v L 2 (0,T ;L 2 (0,L)) = 1. (2.135)
Thus v is a solution to a Korteweg-de Vries equation. In particular, it belongs to B(T ) and is consequently in C(0, T ; L 2 (0, L)). Therefore, (2.134) becomes v(t, x) = 0, ∀x ∈ Ω, ∀t ∈ [0, T ], and v x (t, 0) = 0, ∀t ∈ (0, T ).

(2.136)

We are in the same situation as (2.112). Therefore we obtain once again a contradiction. We can conclude that Claim 2 is true. It concludes the proof of Lemma 2.4 when sat = sat loc and completes the proof of Proposition 2.4. 2

Remark 2.6 Since the strategy followed in the last section is to argue by contradiction, we cannot estimate the exponential rate µ. However, such a proof allows us to prove the local exponential stability of the solution whatever the saturation sat is.

Proof of Theorem 2.5

We are now in position to prove Theorem 2.5, following [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF]. By Proposition 2.4, there exists a positive value µ such that if

z0 L 2 (0,L) ≤ 1, (2.137) 
then the corresponding solution z to (2.25) satisfies

z(t, .) L 2 (0,L) ≤ K 1 z0 L 2 (0,L) e -µ t ∀t ≥ 0, (2.138) 
for some constants K 1 ≥ 1 which depends only on z0 L 2 (0,L) . In addition, for a given r > 0, there exist two constants K r > 0 and µ r > 0 such that if z 0 L 2 (0,L) ≤ r, then any mild solution z to (2.25) satisfies

z(t, .) L 2 (0,L) ≤ K r z 0 L 2 (0,L) e -µrt ∀t ≥ 0. (2.139)
Consequently, setting T r := µ -1 r ln(rK r ), we have

z 0 L 2 (0,L) ≤ r ⇒ z(t r , .) L 2 (0,L) ≤ 1.
Therefore, using (2.138), we obtain As it has been noticed in Remark 2.4, the same result as in Theorem 2.5 can be obtained for (2.21) following the strategy of [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF]. Note that in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], a stabilization in H 3 (0, L) is obtained. The authors used a similar strategy as the one described in Remark 2.4. Hence, it seems harder to obtain such a result for (2.83), since the saturation introduces some non-smoothness.

z(t, .) L 2 (0,L) ≤ K 1 z(t r , .) L 2 (0,L) e -µ (t-Tr) ∀t ≥ T r , ≤ K 1 K r z 0 L 2 (0,L) e µ

Simulations

Numerical scheme

In this section we provide some numerical simulations showing the effectiveness of our control design. In order to discretize our KdV equation, we use a finite difference scheme inspired by [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF]. The final time is denoted T final . We choose (N x + 1) points to build a uniform spatial discretization of the interval [0, L] and (N t + 1) points to build a uniform time discretization of the interval [0, T f inal ]. We pick a space step defined by dx = L/N x and a time step defined by dt = T f inal /N t . We approximate the solution to (2.25) with the following notation z(t, x) ≈ Z i j , where i denotes the time and j the space discrete variables. Some used approximations of the derivative are given by

D -z = Z i j -Z i j-1 dx (2.141) 
and

D + z = Z i j+1 -Z i j dx . ( 2 

.142)

As in [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF], we choose the numerical scheme z x (t, x)

≈ 1 2 (D + +D -)(Z i j ) := D(Z i j ) and z t (t, x) ≈ Z i+1 j -Z i j dt
. For the other differentiation operator, we use

z xxx (t, x) ≈ D + D + D -(Z i j ).
Let us introduce a matrix notation. Let us consider the matrices D -, D + , D ∈ R Nx×Nx given by

D -= 1 dx          1 0 . . . . . . 0 -1 1 . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . 1 0 0 . . . 0 -1 1          , D + = 1 dx          -1 1 0 . . . 0 0 -1 1 . . . . . . . . . . . . . . . . . . 0 . . . . . . -1 1 0 . . . . . . 0 -1         
(2.143) Moreover, for each discrete time i, we denote

D := 1 2 (D + + D -) (2 
Z i := Z i 1 Z i 2 . . . Z i N x+1
.

Thus, inspired by [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF], we consider a completely implicit numerical scheme for the approximation of the nonlinear problem (2.25) which reads as follows:

         Z i+1 j -Z i j dt + (AZ i+1 ) j + 1 2 D[(Z i+1 ) 2 ] j + sat(a δ Z i+1 j ) = 0, j = 1, . . . N x , Z i 1 = Z i Nx+1 = Z i Nx = 0, Z 1 = x j+ 1 2 x j-1 2 z 0 (x)dx,
(2.145) where x j = (j + 1 2 )dx, x j = jdx and Z 1 denotes the discretized version of the initial condition z 0 (x). Note that a δ is the approximation of the damping function a = a(x) and is given by

a δ = (a j ) Nx J=1 ∈ R Nx
, where each components a j is defined by a j :=

x j+ 1 2

x j-1 2 a(x)dx.

Since we have the nonlinearities zz x and sat(az), we use an iterative Newton fixed-point method to solve the nonlinear system

CZ i+1 = Z i -dt 1 2 D(Z i+1 ) 2 -dtsat a δ Z i+1 .
With N iter = 5, which denotes the number of iterations of the fixed point method, we get good approximations of the solutions. Note that for sufficiently large N iter the solutions can be approximated with this fixed-point method.

Given Z 1 satisfying (2.145), the following is the structure of the algorithm used in our simulations.

For i = 1 : N t • Z i 1 = Z i Nx = Z i Nx+1 = 0;
• Setting J(1) = Z i , for all k ∈ {1, . . . , N iter }, solve

J(k + 1) = C -1 (Z i -dt 1 2 D(J(k)) 2 -dtsat(a δ J(k))) Set Z i+1 = J(N iter ) end 2.

Simulations

In order to illustrate our theoretical results, we perform some simulations with L = 2π, for which we know that the linearized KdV equation is not asymptotically stable. To be more specific, letting z 0 (x) = 1 -cos(x) and f = 0, it holds that the energy z 2 L 2 (0,L) of the distributed control linearized equation (2.5) remains constant for all t ≥ 0. Let us perform a simulation of (2.25) with these parameters.

We first simulate our system in the case where the damping is not localized. We use the saturation function sat L 2 (0,L) . Given a 0 = 1, T f inal = 6 and L = 2π, Figure 2.2 shows the solution to (2.17), denoted by z w , with the unsaturated control f = a 0 z w and starting from z 0 . Figure 2.3 illustrates the simulated solution with the same initial condition and a saturated control f = sat L 2 (0,L) (a 0 z) where u s = 0.5. Figure 2.4 gives the evolution of the control with respect to time and space. We check in Figures 2.2 and 2.3 that the solution to (2.25) converges to 0 with the unsaturated and the saturated controls as proven in Theorem 2.5.

The evolution of the L 2 -energy of the solution in these two cases is given by Figure 2.5. With z 0 L 2 (0,L) := 3.07 and the values of u s , a 0 and a 1 , the value µ is computed numerically following the formula (2.31) given in Theorem 2.5. It is is equal to µ = 0.3257. We deduce from the second point of Theorem 2.5 that the energy function z 2 L 2 (0,L) converges exponentially to 0 with an explicit decay rate given by µ as stated in Theorem 2.5. We now focus on the case where the damping is localized. We close the loop with the saturated controller f = sat loc (ay) where a is defined by a(x) = a 0 = 1, for all x ∈ Ω := 1 3 L, 2 3 L .

Given T final = 6, Figure 2.6 shows the simulated solution of (2.17), denoted by z w , with a localized control that is not saturated and starting from z 0 . Figure 2.7 illustrates the simulated solution to (2.25) with the same initial condition, but with a localized saturated control whose saturation level is given by u s = 0.5. We check, in Figures 2.6 and 2.7, that the mild solution to (2.25) converges to 0 as stated in Theorem 2.5. Moreover, Figure 2.8 gives the evolution of the control with respect to the time and the space. The evolution of the L 2 -energy of the solution in these two last cases is given by Figure 2.9. We can see that the energy function z 2 L 2 (0,L) converges exponentially to 0 as stated in Proposition 2.4. However, in contrary with the case sat = sat L 2 (0,L) and Ω = [0, L], we cannot have an estimation of the decay rate since our proof is based on a contradiction argument. L 2 (0,L) with a saturation u s = 0.5, a 0 = 1 and Ω = 1 3 L, 2 3 L . Dotted line: Time evolution of the solution without saturation z w with a 0 = 1 and Ω = 1 3 L, 2 3 L .

Further discussions

On the numerical dissipation

In order to illustrate that the origin of the linearized system (2.5) when L ∈ N is not attractive, we performed some simulations with a numerical scheme inspired by the one presented above. Keeping the same notation than before, it is provided here

         Z i+1 j -Z i j dt + (AZ i+1 ) j = 0, j = 1, . . . N x , Z i 1 = Z i Nx+1 = Z i Nx = 0, Z 1 = x j+ 1 2 x j-1 2 z 0 (x)dx, (2.146)
Since the numerical scheme is linear, studying the numerical stability of this numerical scheme is easier than before. The system given by (2.146) being discrete, the condition to insure the numerical scheme to be stable is the eigenvalues of the inverse of C to have real parts less or equal to 1.

As in Section 2.3.2, let us pick L = 2π, N x = 30 and T final = 6. Recall that when L = 2π, then L ∈ N , which implies that the origin of (2.5) is not attractive.

In this case, we compute the eigenvalues of C -1 in M atlab and we obtain that the eigenvalues which have the highest real part are λ 1 M = 0.9986 + 0.0083i, λ 2 M = 0.9986 -0.0083i.

(2.147)

These eigenvalues are close to 1. It means that the origin of (2.146) is close to be marginally stable, which implies that we are close to the continuous case. The asymptotic stability of the origin of (2.146) is due to a numerical dissipation, which is necessary for the stability of the numerical scheme.

We pick z 0 (x) = 1 -cos(x). Figure 2.10 illustrates the solution z to (2.5). We can note that the decay rate of the solution is slower than in Figures 2.2, 2.3 and 2.6. Figure 2.11 illustrates the energy function z 2 L 2 (0,L) , where z is solution to (2.5), and the functions t → z 2 L 2 (0,L) e -µ 1 t and t → z 2 L 2 (0,L) e -µ 2 t where µ 1 = 0.065 and µ 2 = 0.1. Therefore, we can conclude that the origin of (2.146) is exponentially stable with a decay rate µ satisfying µ 1 ≤ µ ≤ µ 2 . These decay rates being very small with respect to the ones in Figure 2.5, this is clear that this stability is due to the numerical dissipativity and not to a natural global asymptotic stability given by the properties of the continuous system. The numerical dissipativity is needed to ensure the stability of the numerical scheme. where a 0 and a 1 are the bounds of (2.18) and where r is the bound of the initial condition z 0 L 2 (0,L) .

t E log( z 2 L 2 (0,L) ) log( z 0 2 L 2 (0,L) e -µ 1 t ) log( z 0 2 L 2 (0,L) e -µ 2 t )
Note that the case where µ = a 0 is the case where az 0 L 2 (0,L) ≤ u s . Indeed, in such a case, because of the dissipativity of the solution z to (2.25), the controller will never saturate.

The case where µ = usa 0 ra 1 is the case where az 0 L 2 (0,L) ≥ u s . This implies that, in the particular case where sat = sat L 2 (0,L) and where Ω = [0, L], the smaller the saturation level is, the slower is the convergence to 0. In this small section, we would like to show that it is probably the case for either sat = sat or sat = sat L 2 (0,L) , whatever is Ω by performing some numerical simulations. We use the same numerical scheme provided in Section 2.3.1. As in Section 2.3.2, let us pick L = 2π, N x = 30 and T final = 6. We pick also z 0 (x) = 1 -cos(x). In this case, we have z 0 L 2 (0,L) = 3.07.

We focus first on the case where sat = sat L 2 (0,L) and where Ω = [0, L]. The gain (2.18) is such that a(x) = a 0 = a 1 , for all x ∈ [0, L]. In this case, as it has been noticed just above, we can have an estimation of the decay rate of the solution. Figure 2.12 illustrates the time evolution of the energy function z 2 L 2 (0,L) when u s = 0.1 and z is the mild solution to (2.25), the time evolution of the theoritical energy z 0 2 L 2 (0,L) e -µt and the time evolution of the energy function z w 2 L 2 (0,L) where z w is the mild solution to (2.19). In this case, we have µ = 0.0326. Figure 2.13 illustrates the same energies with u s = 1. In this case, we have µ = 0.3257. Regarding these two figures, it is easy to see that, in the case where u s = 1, the solution is faster than in the case where u s = 0.1. It seems moreover that the estimation µ is worst in the case where u s = 0.1 than in the case where u s = 1. We focus now on the case where sat = sat loc and where Ω = 1 3 L, 2 3 L . Recall that the decay rate cannot be estimated in the case where Ω = [0, L]. The gain (2.18) is such that a(x) = a 0 = a 1 , for all x ∈ Ω. Figure 2.12 illustrates the time evolution of the energy function z 2 L 2 (0,L) when u s = 0.1 and z is the solution to (2.25) and the time evolution of the energy function z w 2 L 2 (0,L) where z w is solution to (2.4) without saturation. Figure 2.13 illustrates the same energies with u s = 1. Regarding these two figures, it is easy to see that, in the case where u s = 1, the solution is faster than in the case where u s = 0.1. 

Conclusion

In this chapter, we have studied the well-posedness and the asymptotic stability of a Kortewegde Vries equation with saturated distributed controls. The well-posedness issue has been tackled by using the Banach fixed-point theorem. The stability has been studied with two different methods: in the case where the control acts on all the domain saturated with sat L 2 (0,L) , we used a sector condition and Lyapunov theory for infinite-dimensional systems; in the case where the control acts only on a part of the domain saturated with either sat L 2 (0,L) or sat loc , we argued by contradiction. We have also illustrated our results with some simulations.

To conclude, let us state some questions arising in this context:

1. Can a saturated localized damping stabilize a generalized Korteweg-de Vries equation in H 3 (0, L), as it has been shown to be true in the unsaturated case in [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] and [START_REF] Linares | On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping[END_REF] ?

2. Is it possible to saturate other damping terms, for instance the one suggested in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] and used in [START_REF] Massarolo | On the uniform decay for the Korteweg-de Vries equation with weak damping[END_REF] which dissipates the H -1 -norm in the unsaturated case? Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating distributed control 3. Another constraint than saturation can be considered. For instance the backlash studied in [START_REF] Tarbouriech | Stability analysis and stabilization of systems with input backlash[END_REF] or the quantization [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF].

4. Can we apply the same method for other nonlinear partial differential equations, for instance the Kuramoto-Sivashinsky equation [START_REF] Cerpa | Null Controllability and stabilization of the linear Kuramoto-Sivashinsky equation[END_REF][START_REF] Cerpa | On the control of the linear Kuramoto-Sivashinsky equation[END_REF] ?

The latter chapters were dealing with distributed controls. Applying such a control needs to have a distributed sensor, i.e. a sensor measuring the solution at each time and at each point of a spatial domain. Moreover, the control has to act on each point of a spatial domain, which might be impossible in practice. To be closer to the physical problem, the control should be located at the boundary. In such cases, we say that the control is a boundary control. The next chapter will deal with a Korteweg-de Vries equation controlled from the boundary.

Chapter 3

Output feedback stabilization of Korteweg-de Vries equations In Chapter 2, some feedback laws for the KdV equation with a distributed controller have been reviewed. As it has been noticed in the conclusion of Chapter 2, for some infinitedimensional systems, the control is located at the boundary. In this case, computing or proving the existence of a feedback law requires to apply different techniques than the ones presented in the latter chapters.

In this chapter, we focus on the boundary stabilization problem for two KdV equations with a control acting on the left Dirichlet boundary condition. The backstepping method is used in the two cases (for a good introduction to this method, the interested reader may refer to [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF]). Some boundary feedback laws have already been designed in the literature for KdV systems. When the control acts on the right endpoint, we find [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] where a Gramian-based method is applied, and [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF] where some suitable integral transforms are used. In [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries Systems with Anti-diffusion[END_REF] and [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], the authors use the backstepping method to design feedback controllers acting on the left 74 Chapter 3. Output feedback stabilization of Korteweg-de Vries equations endpoint of the interval. In the case of these two latter papers, note that the feedback law depends on the full state.

However, in most cases, the full state of the system cannot be measured. Thus, it is more realistic to design an output feedback control, i.e., a feedback law depending only on some partial measurements of the state. For some systems, designing such a feedback requires to design also an observer, which is a dynamical system chosen such that its state converges asymptotically to the state of the control system.

For autonomous linear finite-dimensional systems, the separation principle holds. Thus, stabilizability and observability assumptions are sufficient to ensure the stability of the closedloop system with a dynamic output feedback based on an observer. In other words, if there exists a controller which asymptotically stabilizes the origin of the system and an observer which converges asymptotically to the state of the system, the output feedback built from this observer and this state feedback asymptotically stabilizes the origin of the system. The aim of this chapter is to present the backstepping method for the design of a state feedback for some Korteweg-de Vries equations and to design an observer, also based on the backstepping method, which will allow us to construct an output feedback law. We will show that in this particular case the separation principle holds. This chapter is divided into three parts. Section 3.1 presents the output feedback problem for finite-dimensional linear systems and recall some well-known results. The strategy presented in this section will be applied in the next sections. Section 3.2 explains the backstepping method for the design of a state feedback for one of the two Korteweg-de Vries equations we are considering and introduces our main contributions. It also provides the proof of these contributions. Section 3.3 provides some simulations illustrating our results. Finally, Section 3.4 collects some concluding remarks.

The contributions of this chapter, from Section 3.2.2.1 until the end, are based on two of our papers. The first one [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF] has been published in a peer-reviewed conference (53rd IEEE Conference on Decision and Control). The second one [START_REF] Marx | Output Feedback Control of the Korteweg-de Vries Equation[END_REF] has been accepted for publication in the journal Automatica.

3.1 A short discussion on output feedback laws for finitedimensional linear systems

Static output feedback

In this section, we will present the output feedback design for linear finite-dimensional systems.

Let us consider a linear finite-dimensional system

d dt z = Az + Bu (3.1)
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where, given n, m ∈ N, z ∈ R n and u ∈ R m . The matrix A and B have appropriate dimensions. We assume that the pair (A, B) is controllable 1 .

A state feedback law is a control depending on the state of the system. However, in practice, only a partial measurement of the solution is available. It is called the output and is given by the following algebraic relation

y = Cx, (3.2) 
where y stands for the output (i.e, the measurement of the system) and where C is a matrix of appropriate dimension. We assume that the pair (A, C) is observable 2 .

Stabilizing (3.1) by means of a feedback law depending only on the measurement y requires to find a function K in the following form u = K(y).

(3.3)

One may want to find a matrix K ∈ R p×m such that the closed-loop system

d dt z = (A + BKC)z (3.4)
is globally exponentially stable. Such a feedback law is called a static output feedback, since it does not depend on any additional dynamics.

Finding such a matrix requires the matrix A, B and C to satisfy restrictive spectrum properties. The interested reader may refer to [START_REF] Liu | Eigenstructure Assignment for Control System Design[END_REF] for a precise statement of such a result. The following gives an example of a system that cannot be stabilized by means of a static output feedback.

Example 3.1 Focus on the following matrices

A := 0 1 0 0 , B = 0 1 , C = 1 0 . (3.5)
It is easy to check that the pairs (A, B) and (A, C) are controllable and observable, respectively.

Given K ∈ R, the closed-loop system with a static output feedback u = KCz is given by

d dt z = 0 1 K 0 z (3.6)
Hence, if K is a positive value, the eigenvalues of the closed-loop system are

λ 1 = √ K and λ 2 = - √ K. (3.7)
Therefore, the origin of the closed-loop system is unstable. If K is a negative value, then the eigenvalues of the closed-loop system are

λ 1 = j √ K and λ 2 = -j √ K. (3.8)
Therefore, the origin of the closed-loop system is stable, but is not attractive. This means that the origin of the system described with the matrix (3.5) cannot be stabilized by means of a static output feedback.

In such cases, another technique should be used. The most known is the dynamic output feedback based on an observer.

Output feedback based on an observer

Observer design

An observer for (3.1) is a dynamic system depending on the measurement y. It is designed such that its state converges to the state of (3.1).

For (3.1), a well-known observer is the Luenberger observer. It is written as follows

d dt ẑ = Aẑ + Bu + P C(z -ẑ), (3.9) 
where ẑ ∈ R n stands for the observer and P is a matrix of appropriate dimension, which is called the observer gain. Denoting z := ẑ -z, the matrix P ∈ R p×n has to be designed such that the origin of the following system

d dt z = (A -P C)z, (3.10) 
is globally exponentially stable.

Since the pair (A, C) is observable, then there exists a matrix P ∈ R p×n such that the matrix A -P C is Hurwitz3 . Hence, the origin of (3.10) is exponentially stable.

Using an observer allows us to have an estimation of the state of the plant, but also to solve the stabilization problem of (3.1). Such a result is referred to as the Separation principle.

Separation principle

Since the pair (A, B) is controllable, there exists a matrix K ∈ R m×p that makes exponentially stable the origin of following closed-loop system

d dt z = (A -BK)z. (3.11)
Since we are able to estimate the state by using the observer (3.9), we would like to use it for the closed -loop system as follows

d dt z = Az -BK ẑ.
(3.12)

The following theorem states that the dynamic output feedback u = K ẑ makes the origin of the system composed by (3.12) and (3.9) globally asymptotically stable.

Theorem 3.1 (Separation principle) Consider system (3.1). If the pairs (A, B) and (A, C) are controllable and observable, respectively, then there exist a gain K ∈ R m×n and a gain P ∈ R p×n such that the origin of the closed-loop system

     d dt z = Az -BK ẑ, d dt ẑ = Aẑ + Bu + P C(z -ẑ), (3.13) 
is globally exponentially stable.

In other words, Theorem 3.1 states that, if the observer and the state feedback law are designed separetly, then the resulting output feedback law stabilizes the origin of (3.13).

Remark 3.1

This principle is no longer true in general for linear infinite-dimensional systems and even for nonlinear finite-dimensional systems. In the next chapter, an example of a nonlinear finitedimensional control system for which the separation does not hold will be provided. In the context of abstract control systems described with linear operators, some results related to the separation principle can be found in [START_REF] Curtain | An Introduction to Infinite-Dimensional Systems Theory[END_REF]Chapter 5,Theorem 5.3.3.]. Note however that this separation principle holds only for bounded control and output operators.

The aim of this chapter is to follow this strategy for two Korteweg-de Vries equations controlled and measured from the boundary. The state feedbacks and the observers are designed separately with a backstepping method (a good introduction to this method is [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF]). This method will be presented in the remaining parts of this chapter.

Output feedback law for some Korteweg-de Vries equations

In this section, two Korteweg-de Vries equations will be considered. The first one is a linearized one, which is given by

           z t + z x + z xxx = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = u(t), t ∈ R ≥0 , z(t, L) = z x (t, L) = 0 t ∈ R ≥0 , z(0, x) = z 0 (x), x ∈ [0, L], (3.14)
where u stands for the control. The output is given by y 1 (t) = z xx (t, L).

(3.15)

The second one is nonlinear and is given by

           z t + z x + z xxx + zz x = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = u(t), t ∈ R ≥0 , z x (t, L) = z xx (t, L) = 0, t ∈ R ≥0 , z(0, x) = z 0 (x), x ∈ [0, L] (3.16)
The output is given by y 2 (t) = z(t, L).

(3.17)

Note that the boundary conditions are different for the two considered Korteweg-de Vries equations.

In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], a state feedback law has been designed for these two partial differential equations. We will first focus on (3.14) in order to explain the backstepping method for the design of state feedback laws.

State feedback design: backstepping method

Main results

There exist different methods to design a state feedback law for boundary control partial differential equations. The Lyapunov method, which reduces to finding a Lyapunov function, has received considerable attention in recent decades. However, it might be hard to derive such a function.

The backstepping method is another technique which is often used for infinite-dimensional boundary control systems. The design is a two-steps design. First, one picks a system, which is called the target system, with a structure similar to the control system we aim at stabilizing. The target system is chosen such that its origin is globally asymptotically stable. The target system and the control system we aim at stabilizing are linked with a transformation -which can be a Volterra transformation or a Fredholm transformation. Then, one proves that this tranformation is continuous and that its inverse exists and is also continuous. From this property, the stability and the well-posedness of the closed-loop system is straightforward. A nice introduction to this technique is [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF].

Thanks to this method, the authors of [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] stated the following theorem: 

z(t, •) L 2 (0,L) ≤ De -λt z 0 L 2 (0,L) , ∀t ≥ 0, (3.19) 
provided that z 0 L 2 (0,L) ≤ r.

(3.20)

Remark 3.2

Note that the first item (i) of Theorem 3.2 is a global exponential stability result, while the second item (ii) is a local exponential stability result. This is consistent with the facts that (3.14) is a linear equation and that (3. 16) is a nonlinear one. Note moreover that the result provided by (i) holds for either strong or mild solutions. This comes from the fact that the system which is considered is linear.

This method is explained in the next section for the design of the state feedback law for (3.14).

Backstepping procedure

In the case of (3.14), the authors of [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] chose the transformation Π 1 : L 2 (0, L) → L 2 (0, L) that is defined as follows

w(t, x) := Π 1 (z)(t, x) := z(t, x) - L x k 1 (x, s)z(t, s)ds, (3.21)
where k 1 is a kernel that will be characterized later and where w solves the following Kortewegde Vries equation

     w t + w x + w xxx + λw = 0, (t, x) ∈ R ≥0 × [0, L], w(t, 0) = w(t, L) = w x (t, L) = 0 t ∈ R ≥0 , w(0, x) = w 0 (x), (3.22) 
where λ is a positive value. If one uses this transformation, the control u(t) in (3. 

d dt V (w) = - L 0 w(t, x)w x (t, x)dx - L 0 w(t, x)w xxx (t, x)dx -λ L 0 w(t, x) 2 dx. (3.25)
Performing some integrations by parts, the latter equation becomes

d dt V (w) = -w x (t, 0) 2 -λ L 0 w(t, x) 2 dx ≤ -λ L 0 w(t, x) 2 dx (3.26)
Hence, applying the comparison principles yields

w(t, •) L 2 (0,L) ≤ e -λ 2 t w 0 L 2 (0,L) , ∀t ≥ 0. (3.27)
Therefore, proving the exponential stability of the origin of (3.14) reduces to prove that Π 1 defined in (3.21) is continuous and that its inverse is also continuous. This proof is achieved by studying the kernel k 1 , that is defined in the triangle

T := {(x, s) ∈ R 2 ≥0 | x ∈ [0, L], s ∈ [x, L]}.
According to [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], this kernel k 1 satisfies the following partial differential equation

             k 1 xxx + k 1 sss + k 1 x + k 1 s = -λk 1 , x, s ∈ T , k 1 (x, L) = 0, x ∈ [0, L], k 1 (x, x) = 0, x ∈ [0, L], k 1 x (x, x) = λ 3 (L -x), x ∈ [0, L]. (3.28) 
Using a method of successive approximations, the authors of [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] proved that k 1 exists and is unique. Appendix C introduces the method of successive approximations and applies it to (3.28).

Then, the authors of [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] focused on the inverse of Π 1 denoted by Π 1 -1 : L 2 (0, L) → L 2 (0, L) and which is given by

z(t, x) := Π 1 -1 (w)(t, x) = w(t, x) + L x l 1 (x, s)w(t, s)ds, (3.29) 
where l 1 solves the following partial differential equation

             l 1 xxx + l 1 sss + l 1 x + l 1 s = λl 1 , (x, s) ∈ T , l 1 (x, L) = 0, x ∈ [0, L], l 1 (x, x) = 0, x ∈ [0, L], l 1 x (x, x) = λ 3 (L -x), x ∈ [0, L]. (3.30) 
The authors prove that there exists a unique solution to this equation. Finally, we have

Π 1 , Π 1 -1 ∈ L(L 2 (0, L)).
Thus, from (3.27) and using the boundedness of Π 1 and Π 1 -1 , the following holds, for any t ≥ 0

z(t, •) L 2 (0,L) ≤ Π 1 -1 L(L 2 (0,L),L 2 (0,L)) w(t, •) L 2 (0,L) ≤ Π 1 -1 L(L 2 (0,L),L 2 (0,L)) e -λt w 0 L 2 (0,L) ≤ Π 1 -1 L(L 2 (0,L),L 2 (0,L)) Π 1 L(L 2 (0,L),L 2 (0,L)) e -λt z 0 L 2 (0,L) . (3.31) 
3.2. Output feedback law for some Korteweg-de Vries equations 81 3.2.1.3 Well-posedness of (3.14) This section is devoted to the well-posedness of (3.14). Some tools from semigroup theory will be used.

One can state the following theorem:

Theorem 3.3 (Well-posedness of (3.14))
Assume that the control satisfies (3.23). Then, for any initial condition z 0 ∈ L 2 (0, L), there exists a unique mild solution to (3.14).

If morever z 0 belongs to H 3 (0, L) and satisfies the following compatibility condition

z 0 (0) = L 0 k 1 (0, s)z 0 (s)ds, z 0 (L) = z 0 (L) = 0, (3.32) 
then there exists a unique strong solution z ∈ C(0, ∞;

H 3 (0, L)) to (3.14) satisfying, for all t ≥ 0 z(t, 0) = L 0 k 1 (0, s)z(t, s)ds, z(t, L) = z x (t, L) = 0, (3.33) 
Proof of Theorem 3.3:

This proof is inspired by [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries Systems with Anti-diffusion[END_REF]. Using semigroup theory, we first prove that the target system is well-posed and then, using the continuity of Π 1 and its inverses, we conclude on the well-posedness of (3.14).

It is easy to see that (3.22) is well-posed. Indeed, one can apply the classical semigroup theory to prove it. This system can be described by the following operator

à : D( Ã) ⊂ L 2 (0, L) → L 2 (0, L) z → -z -z -λz, (3.34) 
where

D( Ã) = {z ∈ H 3 (0, L) | z(0) = z(L) = z (L) = 0}. (3.35) 
A straightforward computation, together with some integrations by parts, shows that

R e { Ãz, z Z } L 2 (0,L) ≤0, z ∈ D( Ã), R e { z, Ã z Z } L 2 (0,L) ≤0, z ∈ D( Ã ).
Since à is a linear operator and D( Ã) is dense in L 2 (0, L), according to Theorems 1.1 and 1.3, these latter inequalities imply that A is the infinitesimal generator of a linear strongly continuous semigroup of contractions on L 2 (0, L).

Note that we have

AΠ 1 = Π 1 Ã, (3.36) 
where A is defined as follows

A : D(A) ⊂ L 2 (0, L) → L 2 (0, L), z → -z -z , (3.37) 
where

D(A) := z ∈ H 3 (0, L) z(0) = L 0 k(0, s)z(s)ds, z(L) = z (L) = 0 (3.38)
Therefore, the following holds

A = Π 1 ÃΠ 1 -1 . (3.39) 
Hence, since the operators Π 1 and Π -1 are both bounded, then A generates also a strongly continuous semigroup of contractions on L 2 (0, L). From Theorem 1.4, this implies that there exists a unique strong solution z ∈ C(0, ∞; D(A)) to the Cauchy problem (3.14). 2

3.2.2 Dynamic output feedback design for (3.14)

Main result

Following the Separation Principle strategy, we aim at finding an observer in order to design an output feedback. Based on [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF] and [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], we construct the following observer:

     ẑt + ẑx + ẑxxx + p 1 (x)[y 1 (t) -ẑxx (t, L)] = 0, ẑ(t, 0) = u(t), ẑ(t, L) = ẑx (t, L) = 0, û(0, x) = 0, (3.40) 
where p 1 : [0, L] → C 3 (0, L) is a function that will be characterized later. Note that this observer has a similar form as (3.9).

Thanks to this observer, one is able to design an output feedback law for (3.14). Here is the statement of this result.

Theorem 3.4

For any λ 0 > 0, there exist an output feedback law u(t) := u(ẑ(t, x)), a function p 1 = p 1 (x), and a constant C > 0 such that the origin of the coupled system (3.14)-(3.40)

           z t + z x + z xxx = 0, z(t, 0) = u(t), z(t, L) = z x (t, L) = 0, ẑt + ẑx + ẑxxx + p 1 (x)[z xx (t, L) -ẑxx (t, L)] = 0, ẑ(t, 0) = u(t), ẑ(t, L) = ẑx (t, L) = 0, (3.41)
is globally exponentially stable with a decay rate equal to λ 0 . In other words we have, for any z 0 , ẑ0 ∈ H 3 (0, L) satisfying

z 0 = ẑ0 = u(0), z 0 (L) = ẑ0 (L) = z 0 (L) = ẑ 0 (L) = 0, (3.42) 
any strong solution to (3.41) satisfies, for all t ≥ 0

z(t, •) -ẑ(t, •) H 3 (0,L) + ẑ(t, •) L 2 (0,L) ≤ Ce -λ 0 t z 0 -ẑ0 H 3 (0,L) + ẑ0 L 2 (0,L) , ∀t ≥ 0. (3.43) 
Remark 3.3 Theorem 3.4 does not deal with well-posedness of the closed-loop system. Indeed, since the function p 1 is not clearly defined at this stage, such a result cannot be yet provided. We need more informations on the function p 1 to state a well-posedness result. This result is written in Theorem (3.5) below. The proof of this result is given in Section 3.2.2.4 below.

Regularity Result

As we said in the introduction, we consider

y 1 (t) = z xx (t, L) (3.44) 
as a partial measurement of the solution. However, since we have the trace of the second derivative with respect to x of z, we need a regularity stronger than in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF]. Indeed, we ask the output y 1 (t) to be a continuous function. Thus we have the following lemma.

Lemma 3.1 Let us consider system      z t + z x + z xxx = 0, z(t, 0) = u(t), z(t, L) = 0, z x (t, L) = 0, z(0, x) = z 0 (x), (3.45) 
where z 0 ∈ H 3 (0, L) and satisfies the following compatibility condition

z 0 (0) = u(0), z 0 (L) = z 0 (L) = 0, (3.46) 
with u(t) ∈ H 1 (0, T ). Then z ∈ C([0, T ], H 3 (0, L)) ∩ L 2 (0, T ; H 4 (0, L)) and z xx (•, L) ∈ C([0, T ]).

Proof of Lemma 3.1

This proof is based on [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]. Let us consider the following coordinates transformation

v = z t . (3.47) 
The dynamics of v can be written as follows:

         v t + v xxx + v x = 0 v(t, 0) = d dt u(t) ∈ L 2 (0, T ), v(t, L) = v x (t, L) = 0 v(0, x) = (-z 0 -z 0 ) ∈ L 2 (0, L) (3.48) 
By already known well-posedness results for KdV ( [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]), we get

v ∈ C([0, T ], L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) ⇒z t ∈ C([0, T ], L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) ⇒z ∈ C([0, T ], H 3 (0, L)) ∩ L 2 (0, T ; H 4 (0, L)) ⇒z xx ∈ C([0, T ], H 1 (0, L)) ∩ L 2 (0, T ; H 2 (0, L)) ⇒z xx ∈ C([0, T ] × [0, L]) ⇒z xx (•, L) ∈ C([0, T ]) (3.49) 
It concludes the proof of Lemma 3.1. 2

Observer design

The structure of the observer (3.40) is based on the finite-dimensional observer that has been recalled in Section 3.1. Since we are dealing with an infinite-dimensional system, note however that the gain p 1 : [0, L] → C 3 (0, L) is not a matrix as in the finite-dimensional case (3.9), but a function.

In our case, we consider the error z := z -ẑ, which satisfies:

zt + zx + zxxx -p 1 (x)z xx (t, L) = 0, z(t, 0) = z(t, L) = zx (t, L) = 0. (3.50) 
Given a positive parameter λ, we look for a transformation Π 1 o defined by:

z(t, x) = Π 1 o ( w(t, x)) = w(t, x) - L x p 1 (x, s) w(t, s)ds (3.51) 
such that the trajectory z solution to (3.50) is mapped into the trajectory w = w(t, x), solution to the linear system wt + wx + wxxx + λ w = 0, w(t, 0) = 0, w(t, L) = 0, wx (t, L) = 0,

which is exponentially stable with a decay rate depending on the value of λ as shown in (3.27). Now, the key step is to find the kernel p 1 = p 1 (x, s) such that z(t, x) = Π 1 o ( w(t, x)) satisfies (3.50). By focusing on (3.95) and using the Leibniz rules, we get:

• Differentiation along (3.52) zt = wt (x) - L x p 1 (x, s)[-ws (s, t) -wsss (s, t) -λ w(s, t)]ds = wt (x) - L x (-λp 1 (x, s) + p 1 s (x, s) + p 1 sss (x, s)) w(s, t)ds + p 1 (x, L) w(L, t) -p 1 (x, x) w(x, t) -p 1 (x, L) wxx (L, t) + p 1 (x, x) wxx (x, t) -p 1 s (x, x) wx (x) + p 1 s (x, L) wx (L, t) -p 1 s (x, L) w(L, t) + p 1 s (x, x) w(x, t) (3.53) 
• Three differentations with respect to the variable

x zx (x, t) = wx (x, t) + p 1 (x, x) w(x, t) - L x p 1 x (x, s) w(t, s)ds (3.54) zxx (t, x) = wxx (t, x)+ d dx p 1 (x, x) w(t, x)+p 1 (x, x) wx (t, x)+p 1 x (x, x) w(t, x)- L x p 1 xx (x, s) w(t, s)ds (3.55) zxxx (t, x) = wxxx (t, x) + d 2 dx 2 p 1 (x, x) w(t, x) + 2 d dx p 1 (x, x) wx (t, x) + p 1 (x, x) wxx (t, x) + d dx p 1 x (x, x) w(t, x) + p 1 x (x, x) wx (t, x) + p 1 xx (x, x) w(t, x) - L x p 1 xxx (x, s) w(t, s)ds (3.56) 
By adding (3.53), (3.54) and (3.56), we get:

zt + zx + zxxx -p 1 (x)z xx (L) = wt (t, x) + wx (t, x) + wxxx (t, x) + λ w(t, x) - L x (-λp 1 (x, s) + p 1 s (x, s) + p 1 sss (x, s) + p 1 xxx (x, s) + p 1 x (x, s)) w(t, s)ds + wx (t, x) 2 d dx p 1 (x, x) + p 1 x (x, x) + p 1 s (x, x) + w(t, x) p 1 xx (x, x) + d 2 dx 2 p 1 (x, x) + d dx p 1 x (x, x) + d dx p 1 x (x, x) -p 1 s (x, x) -λ + p 1 (x, L) w(L, t) + (p 1 (x, L) -p 1 (x)) wxx (L, t) -p 1 s (x, L) wx (L, t) (3.57) 
From this equation, we get four conditions:

1. Equation for (x, s) ∈ T :

p 1 sss (x, s) + p 1 xxx (x, s) + p 1 s (x, s) + p 1 x (x, s) = λp 1 (x, s), (3.58) 
where we recall that

T := {(x, s) ∈ R 2 ≥0 | x ∈ [0, L], s ∈ [x, L]}.
2. First boundary condition on (x, x) for x ∈ [0, L]:

2 d dx p 1 (x, x) + p 1 x (x, x) + p 1 s (x, x) = 0. (3.59) 
3. Second boundary condition on (x, x) for x ∈ [0, L]:

d 2 dx 2 p 1 (x, x) + d dx p 1 x (x, x) + p 1 xx (x, x) -p 1 s (x, x) -λ = 0. (3.60) 
4. Appropriate choice of p 1 :

p 1 (x, L) = p 1 (x). (3.61) 
Moreover, note also that, by setting x = 0 in (3.95), we get:

p 1 (0, s) = 0, ∀s ∈ [0, L]. (3.62) 
In addition, we have

w(t, 0) = w(t, L) = wx (t, L) = 0.
Finally, the kernel p 1 satisfies the following PDE:

             p 1 xxx (x, s) + p 1 sss (x, s) + p 1 s (x, s) + p 1 x (x, s) = λp 1 (x, s), (x, s) ∈ T , p 1 (x, x) = 0, x ∈ [0, L], p 1 x (x, x) = λ 3 x, x ∈ [0, L], p 1 (0, s) = 0, s ∈ [0, L]. (3.63) 
Let us make the following change of variable:

ξ = L -s, η = L -x, (3.64) 
and define F (ξ, η) := p 1 (x, s). Hence:

             F ξξξ (ξ, η) + F ηηη (ξ, η) + F η (ξ, η) + F ξ (ξ, η) = -λF (ξ, η) (ξ, η) ∈ T F (ξ, ξ) = 0 ξ ∈ [0, L] F ξ (ξ, ξ) = λ 3 (L -ξ) ξ ∈ [0, L] F (ξ, L) = 0 ξ ∈ [0, L] (3.65) 
This PDE has already been studied in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], where no explicit solution has been found, but where the existence of a solution has been proved. A sketch of the proof is provided in Appendix C. Hence, we can conclude that the kernel p 1 := p 1 (x, s) exists. Note that the function Π 1 o defined by (3.95) is linear (by definition) and continuous (because of the existence of p).

Well-posedness

We are now in position to prove the well-posedness of the closed-loop system. Let us state the theorem Theorem 3.5 Suppose that p 1 and k 1 solve (3.63) and (3.28) respectively. Then, for any initial condition z 0 , ẑ0 ∈ H 3 (0, L) satisfying the following compatibility condition

z 0 (0) = ẑ0 (0) = L 0 k(0, s)ẑ 0 (s)ds, z 0 (L) = ẑ0 (L) = 0, z 0 = ẑ 0 (L) = 0, (3.66) 
there exists a unique strong solution z, ẑ ∈ C(0, ∞,

H 3 (0, L)) × C(0, ∞, H 3 (0, L)) to (3.14)- (3.40) satisfying, for all t ≥ 0 z(t, 0) = ẑ(t, 0) = L 0 k(0, s)ẑ(t, s)ds, z(t, L) = ẑ(t, L) = 0, z x (t, L) = ẑx (t, L) = 0. (3.67)
Proof of Theorem 3.5:

By using the output feedback control

u(t) = L 0 k 1 (0, s)ẑ(t, s)ds, (3.68) 
the transformation Π 1 defined in (3.21) and its inverse, and the transformation Π 1 o defined in (3.95) and its inverse, we can see that (z, ẑ) are mapped into ( w, ŵ) = (Π

1 o -1 (ũ), Π 1 (û))
solutions to the target systems

               ŵt + ŵx + ŵxxx + λ ŵ = -p 1 (x) - L x k 1 (x, s)p 1 (s)ds wxx (t, L), ŵ(0) = ŵ(L) = ŵx (L) = 0, wt + wx + wxxx + λ w = 0, wx (0) = w(L) = wx (L) = 0. (3.69)
Note that the parameter λ is the same for the observer and the system itself, without loss of generality.

Hence, as it has been noticed in Section 3.2.1.3, if one is able to prove the well-posedness of this system, then the well-posedness of (3.14)-(3.40) is also proved.

Using classical semigroup, it is clear that the Cauchy problem

     wt + wx + wxxx + λ w = 0, w(t, 0) = w(t, L) = wx (t, L) = 0, w(0, x) = w0 (x), (3.70) 
where w0 (x) is in D( Ã), where D( Ã) is defined in (3.35), admits a unique strong solution w ∈ C(0, ∞; D( Ã)). All the derivations are similar to the ones in Section 3.2.1.3. Applying Lemma 3.1, one obtains that wxx (t, L) ∈ C(0, ∞). Since p 1 (x) ∈ C 3 (0, L), the following function

f : (t, x) → p 1 (x) - L x k 1 (x, s)p 1 (s)ds wxx (t, L) (3.71) 
belongs to the set C(0, ∞; L 2 (0, L)). From the variation of constants formula, the following Cauchy problem

         ŵt + ŵx + ŵxxx + λ ŵ = -p 1 (x) - L x k 1 (x, s)p 1 (s)ds wxx (t, L), ŵ(0) = ŵ(L) = ŵx (L) = 0 ŵ(0, x) = ŵ0 (x) ∈ H 3 (0, L). (3.72) 
admits a unique solution w ∈ C(0, ∞; D( Ã)). Using the continuity of Π 1 and its inverse together with the continuity of Π 1 o and its inverse, and following a similar proof than in Section (3.2.1.3) it concludes the proof of Theorem (3.5). 2

Stability analysis of the closed-loop system

Now, we are on position to prove Theorem 3.4. Let us provide the proof.

Proof of Theorem 3.4:

Instead of dealing directly with the controlled state u and the observer state ẑ, we consider the evolution of the couple (z, ẑ) where z stands for the error z = z-ẑ, as introduced in Section 3.2.2.3.

Given that Π 1 , Π 1 o are continuous maps, invertible and their inverse maps are also continuous, the exponential stability of (3.69) would imply the exponential stability of the closed loop system and therefore the proof of Theorem 3.4 will be ended.

In order to prove the exponential stability of (3.69), we use a Lyapunov argument. Let us consider the following function,

V ( ŵ, w, wt ) = V 1 ( ŵ) + V 2 ( w) + V 3 ( wt ), (3.73) 
where

V 1 ( ŵ) = M 1 2 L 0 | ŵ(t, x)| 2 dx (3.74) V 2 ( w) = M 2 2 L 0 | w(t, x)| 2 dx (3.75)
by x wxx and after some computations we get

| wxx (t, L)| 2 ≤ 1 L + L wxx 2 L 2 (0,L) + 2λ + 1 L wx 2 L 2 (0,L) + 1 L wt 2 L 2 (0,L) (3.79) 
and finally the existence of two positive values a and b such that

| wxx (t, L)| 2 ≤ a w 2 L 2 (0,L) + b wt 2 L 2 (0,L) (3.80) 
Remark 3.5

Here, we have used that the norm f H 3 (0,L) and the norm f L 2 (0,L) + f xxx L 2 (0,L) are equivalent. See also Remark 3.4.

We use the latter inequality to write:

d dt V ( ŵ, w, wt ) ≤ 2 -λ + D 2 M 1 V 1 ( ŵ) + 2a M 2 1 M 2 V 2 ( w) + 2b M 2 1 M 2 V 3 ( wt ) -2λV 2 ( w) -2λV 3 ( wt ).
Therefore,

d dt V ( ŵ, w, wt ) ≤ 2 -λ + D 2 M 1 V 1 ( ŵ) + 2 -λ + aM 2 1 M 2 V 2 ( w) + 2 -λ + bM 2 1 M 2 V 3 ( wt ).
In this way, by tuning M 1 and M 2 large enough, we get for any ε > 0 that

d dt V ( ŵ, w, wt ) ≤ 2 -λ + ε V ( ŵ, w, wt ),
which gives an exponential stability with decay rate as close to λ as we want. The rapid stabilization is achieved because the parameter λ can be chosen as large as desired.

This concludes the proof of the stability of the closed loop system with the output feedback control law depending on a boundary measurement of the state. 

Main Result

Based on [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF] and [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], where the technique provided is similar to Section 3.2.2, we design an observer for (3.16). More precisely, we define, for some appropriate function p 2 to be designed, the following copy of the plant with a term depending on the observation error

     ẑt + ẑx + ẑxxx + ẑ ẑx + p 2 (x)[y 2 (t) -ẑ(t, L)] = 0, ẑ(t, 0) = u(t), ẑx (t, L) = ẑxx (t, L) = 0, ẑ(0, x) = ẑ0 (x). (3.81) 
Our main result is the local stabilization of the KdV equation by using the output y 2 (t) = z(t, L), as stated in the following theorem whose proof is given in Section 3.2.3.7.

Theorem 3.6

For any λ 0 > 0, there exist an output feedback law u(t) := u(ẑ(t, x)), a function p 2 = p 2 (x), and two constants C > 0, r > 0 such that for any initial conditions z 0 , ẑ0 ∈ L 2 (0, L) satisfying

z 0 L 2 (0,L) ≤ r, ẑ0 L 2 (0,L) ≤ r, (3.82) 
the mild solution to (3.16)-(3.81) satisfies, for all t ≥ 0

z(t, •) -ẑ(t, •) L 2 (0,L) + ẑ(t, •) L 2 (0,L) ≤ Ce -λ 0 t z 0 -ẑ0 L 2 (0,L) + ẑ0 L 2 (0,L) . (3.83) Remark 3.6
Notice that from this theorem we get the exponential decreasing to 0 of the L 2 -norm of the solution z = z(t, x) provided that the L 2 -norm of the initial conditions of the plant and the observer are sufficiently small. Moreover only the mild solutions will be considered in this section.

Control Design for the linearized system

The backstepping design applied here is based on the linear part of the equation (3.16). Thus, we consider the control system linearized around the origin

z t + z x + z xxx = 0, z(t, 0) = u(t), z x (t, L) = z xx (t, L) = 0, (3.84) 
and the linear observer

ẑt + ẑx + ẑxxx + p 2 (x)[y 2 (t) -ẑ(t, L)] = 0, ẑ(t, 0) = u(t), ẑx (t, L) = ẑxx (t, L) = 0. (3.85) 
We follow the same strategy as in Section 3.2.2.

In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], the following Volterra transformation is introduced

w(x) = Π 2 (z(x)) := z(x) - L x k 2 (x, s)ds. (3.86) 
The function k 2 is chosen such that z = z(t, x), solution of (3.84) with control

u(t) = L 0 k 2 (0, s)z(t, s)ds, (3.87) 
is mapped into the trajectory w = w(t, x), solution of the linear system

w t + w x + w xxx + λw = 0, w(t, 0) = w x (t, L) = w xx (t, L) = 0, (3.88) 
which is exponentially stable for λ > 0, with a decay rate at least equal to λ.

The kernel function k 2 : T → R is characterized by

             k 2 xxx + k 2 sss + k 2 x + k 2 s = -λk 2 , in T , k 2 (x, L) + k ss (x, L) = 0, in [0, L], k 2 (x, x) = 0, in [0, L], k 2 x (x, x) = λ 3 (L -x), in [0, L], (3.89) 
where

T := {(x, s) ∈ R 2 ≥0 | x ∈ [0, L], s ∈ [x, L]}.
The solution k 2 to (3.89) exists and belongs to C 3 (T ). This is proved in [14, Section VI] by using the method of successive approximations. Unlikely the case of heat or wave equations, we do not have an explicit solution.

In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] it is proved that the transformation (3.86) linking (3.84) and (3.88) is invertible, continuous and with a continuous inverse function. This proof is tackled using the successive approximation method. Therefore, the exponential decay for w, solution to (3.88), implies the exponential decay for the solution z controlled by (3.87). Thus, with this method, the following theorem is proven in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF].

Theorem 3.7

For any λ > 0, there exists C > 0 such that

z(t, •) L 2 (0,L) ≤ Ce -λt z 0 L 2 (0,L) , ∀t ≥ 0, (3.90) 
for any solution to (3.84)-(3.87).

Later, we give more details on the observer design. Let us remark that the output feedback law is designed as

u(t) := L 0 k 2 (0, s)ẑ(t, s)ds, (3.91) 
where ẑ is the mild solution to (3.85).

Thus we get the following result, which can be compared to Section 3.2.2.1. The proof is given in Section 3.2.3.4.

Theorem 3.8

For any λ 0 > 0, there exists a positive value C such that for any solution to (3.84)-(3.85)-(3.91) we have, for all t ≥ 0

z(t, •) -ẑ(t, •) L 2 (0,L) + ẑ(t, •) L 2 (0,L) ≤ Ce -λ 0 t z 0 -ẑ0 L 2 (0,L) + ẑ0 L 2 (0,L) . (3.92) Remark 3.7
Notice that from Theorem 3.8, we get the exponential decrease to 0 of the L 2 -norm of the solution z = z(t, x). This result is different from Section 3.2.2, where the equilibrium point 0 is exponentially stable in the domain of the operator. This is due to the fact that the output and the boundary conditions are different. 

     zt (t, x) + zx (t, x) + zxxx (t, x) -p 2 (x)[z(t, L)] = 0, (t, x) ∈ R ≥0 × [0, L] z(t, 0) = zx (t, L) = zxx (t, L) = 0, t ∈ R ≥0 z(0, x) = z 0 (x) -ẑ0 (x) := z0 (x), x ∈ [0, L] (3.93) into the following PDE      wt + wx + wxxx + λ w = 0, w(t, 0) = wx (t, L) = wxx (t, L) = 0, w(0, x) = w0 (x). (3.94) 
We choose the same λ than the one used to design the controller given by (3.87). The transformation is given by

z(x) := Π 2 o ( w(x)) = w(x) - L x p 2 (x, s) w(s)ds, (3.95) 
where p 2 is a kernel that satisfies a partial differential equation and will be defined in the following.

In [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries with Antidiffusion by Boundary Feedback with Non-collocated Observation[END_REF], a similar observer has been computed. Indeed, if we make the following change of coordinates,

x = L -x (3.96) 
we obtain a Korteweg-de Vries equation similar to the one studied in [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries with Antidiffusion by Boundary Feedback with Non-collocated Observation[END_REF]. Hence, we know from this latter paper that the kernel p 2 : T → R solves the following equation

             p 2 xxx + p 2 sss + p 2 x + p 2 s = λp 2 , ∀(x, s) ∈ T , p 2 (x, x) = 0, ∀x ∈ [0, L], p 2 x (x, x) = λ 3 (x -L), ∀x ∈ [0, L], p 2 (0, s) = 0, ∀s ∈ [0, L]. (3.97) 
The solution p 2 to this equation exists and is unique. It belongs to the set C 3 (T ).

Moreover, once again following [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries with Antidiffusion by Boundary Feedback with Non-collocated Observation[END_REF], we define the following observer gain, for all x ∈ [0, L] p 2 (x) = p 2 ss (x, L) + p 2 (x, L).

(3.98)

As in [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries with Antidiffusion by Boundary Feedback with Non-collocated Observation[END_REF], we can state that the transformation Π 2 o is invertible with continuous inverse given by

w(x) = Π 2 -1 o (z(x)) = z(x) + L x m(x, s)z(s)ds (3.99) 
where m = m(x, s) is also a solution to an equation like (3.97) in the triangular domain T .

Well-posedness and Exponential Stability of the Linear System

Preliminaries

Let us focus on the linearized version of the Korteweg-de Vries equation. The homogeneous equation is given by     

z t + z x + z xxx = 0, z(t, 0) = z x (t, L) = z xx (t, L) = 0, z(0, x) = z 0 (x).
(3.100)

The operator associated to this linear PDE is given by:

A 2 : D(A 2 ) ⊂ L 2 (0, L) → L 2 (0, L), z → -z -z (3.101) whose domain is D(A 2 ) := {z ∈ H 3 (0, L) | z(0) = z (L) = z (L) = 0}.
From basic semigroup theory, it is easy to prove that A 2 generates a strongly continuous semigroup of contractions. This semigroup will be denoted by (W 2 (t)) t≥0 . We also need some results on the non-homogeneous Korteweg-de Vries equation.

Theorem 3.9 (see [START_REF] Kramer | Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain[END_REF]) Let T > 0. For any z 0 ∈ L 2 (0, L) and any (f, h) ∈ L 1 (0, T ; L 2 (0, L)) × H 1 3 (0, T ) 4 , the following Korteweg-de Vries equation

           z t + z x + z xxx = f, z(t, 0) = h(t), z x (t, L) = z xx (t, L) = 0, z(0, x) = z 0 (x), (3.102)
admits a unique solution z ∈ B(T ). Moreover, there exists a positive value C such that the following inequality holds:

z B(T ) ≤ C z 0 L 2 (0,L) + f L 1 (0,T ;L 2 (0,L)) + h H 1 3 (0,T ) (3.103)
From this result, the following lemma can be deduced.

Lemma 3.2

Let us suppose all that the assumptions in Theorem 3.9 hold and that in addition f ∈ L 2 (0, T ; L 1 (0, L)). Then, one has the regularity z ∈ H 1 3 (0, T ; L 2 (0, L)).

(3.104) 4 The space H 1 3 (0, T ) is defined as follows

H 1 3 (T ) := h ∈ L 2 (0, T ) |h(t) -h(s)| |t -s| 1 3
∈ L 2 ((0, T ) × (0, T ))
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Proof of Lemma 3.2:

Note that in particular, z ∈ L 2 (0, T ; H 1 (0, L)). Therefore, since z t = -z x -z xxx + f , one has z t ∈ L 2 (0, T ; H -2 (0, L)).

Hence, z ∈ H 1 (0, T ; H -2 (0, L)).

Then, by applying the classical theory of interpolation (see [START_REF] Rosier | Global Stabilization of the Generalized Korteweg-de Vries Equation Posed on a Finite Domain[END_REF]Theorem 2.8.] or [START_REF] Lions | Non-homogeneous Boundary Value Problems and Applications[END_REF] for a good introduction to this subject), it is easy to see that z ∈ H 1 3 (0, T ; L 2 (0, L)), which concludes the proof of Lemma 3.2.

2

Other result we need is the regularity of the right hand side in the observer.

Lemma 3.3

Let p 2 ∈ L 2 (0, L). Then, given a positive value T , for every z, ẑ ∈ L 2 (0, T ; H 1 (0, L)), one has

p 2 (x)[z(t, L) -ẑ(t, L)] ∈ L 2 (0, T ; L 2 (0, L)).
Proof of Lemma 3.3:

Using the Agmon inequality (see [2, Lemma 13.2., page 148]), we obtain that there exists a positive value C A such that

T 0 |z(t, L) -ẑ(t, L)| 2 dt ≤ C A T 0 z(t, .) -ẑ(t, .) 2 H 1 (0,L) dt.
Since z, ẑ ∈ L 2 (0, T ; H 1 (0, L)) and p 2 (x) ∈ L 2 (0, L), we conclude the proof. 2

Proof of Theorem 3.8 -Well-posedness:

The closed-loop system (3. We only have to prove that system (3.105) is well-posed (with solutions in B(T ) × B(T ) for any T > 0) and that its origin is exponentially stable. In fact, once that is done, by using Lemma 3.2, we conclude that w, ŵ belong to H System (3.105) is in cascade form. We can apply the linear results to get w and then plug it into the equation for ŵ as a right hand side by using Theorem 3.9. Thus, we finally get ŵ.

               ŵt + ŵx + ŵxxx + λ ŵ = -p 2 (x) -
With these results in hand we can define the continuous solution map Proof of Theorem 3.8 -Stability:

(z 0 , ẑ0 ) ∈ L 2 (0, L) 2 → Λ(z 0 , ẑ0 ) = (z, ẑ) ∈ B(T ) 2
Let us focus now on the exponential stability. To do that, we consider the following Lyapunov function

V ( ŵ, w) := V 1 ( ŵ) + V 2 ( w) (3.107) where V 1 ( ŵ) = A L 0 ŵ(t, x) 2 dx, (3.108) 
and

V 2 ( w) = B L 0 w(t, x) 2 dx. (3.109)
The positive values A and B are chosen later. After performing some integrations by parts, we obtain

d dt V 1 ( ŵ) ≤ -2λ + D 2 A V 1 ( ŵ) + A 2 L| w(t, L)| 2 , (3.110) 
where Thus, we obtain the exponential decay of ( w, ŵ) with a decay rate equal to µ. By using the invertibility and continuity of the transformations Π and Π o , we conclude the proof of Theorem 3.8 by getting the desired exponential decay for (z, ẑ).

D = max x∈[0,L] p 2 (x) - L x k 2 (x,
In the next section, we will tackle the well-posedness and the exponential stability of the nonlinear system.

Well-posedness and Exponential Stability of the Nonlinear System Preliminaries

The following results are useful in order to prove the well-posedness of the nonlinear Korteweg-de Vries equation.

Let us recall Proposition 2.1. Some additional informations are provided. Proposition 3.1 (see [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]) Given a positive value T , let z ∈ L 2 (0, T ; H 1 (0, L)). Then zz x ∈ L 1 (0, T ; L 2 (0, L)) and the map z ∈ L 2 (0, T ; H 1 (0, L)) → zz x ∈ L 1 (0, T ; L 2 (0, L)) is continuous. Moreover, there exists a positive value C h such that, for every u, z ∈ L 2 (0, T ; H 1 (0, L)) zz x -z zx L 1 (0,T ;L 2 (0,L)) ≤ C h z + z L 2 (0,T ;H 1 (0,L)) z -z L 2 (0,T ;H 1 (0,L))

(3.117) Lemma 3.4 (see [START_REF] Kramer | Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain[END_REF]) Let us note that (W 2 (t)) t≥0 denotes the strongly continuous semigroups of contractions generated by the operator (3.101). For any positive value T , there exist two positive values

C 1 := C 1 (T ) and C 2 := C 2 (T ) such that (i) For any v, v ∈ B(T ), T 0 (v(t, .)v(t, .)) x L 2 (0,L) dt ≤ C 1 v B(T ) v B(T ) (3.118) (ii) For f ∈ L 1 (0, T ; L 2 (0, L)), let z = t 0 W 2 (t -s)f (s)ds, then z B(T ) ≤ C 2 T 0 f (t, .) L 2 (0,L) dt. (3.119)
Moreover, one can easily prove the following lemma. We will apply the Banach fixed point theorem in order to prove the well-posedness of the nonlinear closed-loop system.

With u defined by (3.91), and v, v ∈ B(T ), the solutions to

           z t + z x + z xxx = -vv x , z(t, 0) = u(t), z x (t, L) = z xx (t, L) = 0, z(0, x) = z 0 (x), (3.121) 
and

           ẑt + ẑx + ẑxxx + p 2 (x)[z(t, L) -ẑ(t, L)] = -vv x , ẑ(t, 0) = u(t), ẑx (t, L) = ẑxx (t, L) = 0, ẑ(0, x) = ẑ0 (x), (3.122) 
can be written as follows

(z, ẑ)(t) = Λ(z 0 , ẑ0 )(t) - t 0 W 2 (t -s)v(s)v x (s)ds, t 0 W 2 (t -s)v(s)v x (s)ds (3.123)
where Λ was introduced in (3.106) and (W 2 (t)) t≥0 is the strongly continuous semigroup of contractions generated by (3.101). We will be done if we prove that the map Γ defined by the right hand-side of (3.123),

Γ(v, v) = Λ(z 0 , ẑ0 ) - t 0 W 2 (t -s)v(s)v x (s)ds, t 0 W 2 (t -s)v(s)v x (s)ds , (3.124) 
has a fixed point.

We define, for some R > 0 to be chosen later,

S R = (v, v) ∈ B(T ) × B(T ) | v B(T ) + v B(T ) ≤ R , (3.125) 
which is a closed, convex and bounded subset of B(T ) 2 . Consequently, S R is a complete metric space in the topology induced by B(T ) 2 . With Theorem 3.9 and previous lemmas, we have the existence of a constant C > 0 such that for any (v, v) ∈ S R ,

Γ(v, v) B(T ) 2 ≤ C z 0 L 2 (0,L) + ẑ0 L 2 (0,L) + C v 2 B(T ) + v 2 B(T ) . (3.126) 
We consider r > 0 and z 0 , ẑ0 ∈ L 2 (0, L) such that z 0 L 2 (0,L) ≤ r, and ẑ0 L 2 (0,L) ≤ r.

Now we select r, R as follows 2Cr ≤ R/2,

2CR 2 ≤ R/2, (3.127) 
to obtain that for any

(v, v) ∈ S R Γ(v, v) B(T ) 2 ≤ R. (3.128)
Thus, with such r and R, Γ maps S R into S R . Moreover, using Lemma 3.1 and Lemma 3.4, we obtain

Γ(v 1 , v1 ) -Γ(v 2 , v2 ) B 2 (T ) ≤ C 2 C h v 1 + v 2 B(T ) v 1 -v 2 B(T ) + v1 + v2 B(T ) v1 -v2 B(T ) (3.129) and thus, choosing R such that 2RC 2 C h ≤ 1 2 we arrive to Γ(v 1 , v1 ) -Γ(v 2 , v2 ) B 2 (T ) ≤ 1 2 v 1 -v 2 B(T ) + v1 -v2 B(T ) (3.130) 
for any (v 1 , v1 ), (v 2 , v2 ) ∈ S R . By using Theorem 2.7, we obtain the existence of a unique fixed point of the map Γ. As previously stated, this fixed point is the solution we are looking for.

Exponential stability of the nonlinear system

The aim of this section is to prove Theorem 3.6, i.e., we have to prove the local exponential stability of the nonlinear closed-loop system As before, we consider the evolution of the couple (z, ẑ) where z stands for the error z = z -ẑ. Using Π 2 o and its inverse (see (3.95) and (3.99)), we define w = Π 2 o -1 (z). We denote ŵ = Π 2 (ẑ), where Π 2 is defined in (3.86). The inverse Π 2 -1 is given by

           z t (t, x) + z x (t, x) + z xxx (t, x) + z(t, x)z x (t, x) = 0, (t, x) ∈ R ≥0 × [0, L], z(t, 0) = u(t), z x (t, L) = z xx (t, L) = 0, t ∈ R ≥0 ẑt (t, x) + ẑx (t, x) + ẑxxx (t, x) + ẑ(t, x)ẑ x (t, x) + p 2 (x)[y 2 (t) -ẑ(t, L)] = 0, (t, x) ∈ R ≥0 × [0, L], ẑ(t, 0) = u(t), ẑx (t, L) = ẑxx (t, L) = 0, t ∈ R ≥0 , (3. 
ẑ(x) = Π 2 -1 ( ŵ(x)) = ŵ(x) + L x l 2 (x, s) ŵ(y)ds, (3.134) 
where l 2 solves the following equation

             l 2 xxx + l 2 yyy + l 2 x + l 2 y = λl, (x, y) ∈ T , l 2 (x, L) + l 2 ss (x, L) = 0, x ∈ 0, L], l 2 (x, x) = 0, x ∈ [0, L], l 2 x (x, x) = λ 3 (L -x), x ∈ [0, L].
(3.135)

The existence of such a kernel l 2 has been proven in [14, As in previous section, we will prove the stability of this system by using the same Lyapunov function (3.107). We differentiate (3.108) with respect to time as follows By using the same argument as in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF][START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF], we can prove the existence of a positive constant

d dt V 1 ( ŵ) =2M 1 L 0 ŵt (t, x) ŵ(t, x)dx ≤ -2λ + D 2 M 1 V 1 ( ŵ) + M 2 1 L| w(t, L)| 2 -2M 1 L 0 ŵ(t,
K 1 = K 1 ( l 2 C 1 (T ) , k 2 C 1 (T ) ) such that M 1 L 0 ŵ(t, x)F (t, x)dx ≤ K 1 L 0 | ŵ(t, x)| 2 dx 3 2
.

(3.141)

Then, we estimate d dt V 2 ( w) as follows

d dt V 2 ( w) ≤ -2λV 2 ( w) -2M 2 L 0 w(t, x)G(t, x)dx -M 2 | w(t, L)| 2 (3.142)
where G = G(t, x) is the right-hand side of (3.137). We can prove the existence of a positive constant 

K 2 = K 2 ( l C 1 (τ ) , p C 1 (τ ) , m C 1 (τ ) ) such that 2M 2 L 0 w(t, x)G(t, x)dx ≤ K 2 L 0 | ŵ(t, x)| 2 dx 3 2 + K 2 L 0 | w(t, x)| 2 dx
+ K 2 L 0 | ŵ(t, x)| 2 dx 3 2 + K 2 L 0 | w(t, x)| 2 dx 3 2 . ( 3 
w(t, .) L 2 (0,L) + ŵ(t, .) L 2 (0,L) ≤ e -µ 2 t w0 L 2 (0,L) + ŵ0 L 2 (0,L) , ∀t ≥ 0, (3.148) provided that ŵ0 L 2 (0,L) ≤ µ K 1 + K 2 , w0 L 2 (0,L) ≤ µ K 2 .
(3.149)

This concludes the proof of Theorem 3.6 by getting the exponential decay of the system with a smallness condition on the L 2 -norm of the initial data z 0 , ẑ0 .

Chapter 3. Output feedback stabilization of Korteweg-de Vries equations

Simulation

Some notation

In this section we provide some numerical simulations showing the effectiveness of our control design. In order to discretize our KdV equation, we use a finite difference scheme inspired from [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF] and similar to the one provided in Chapter 2, Section 2.3.2. The final time for simulations is denoted by T final . We choose (N x + 1) points to build a uniform spatial discretization of the interval [0, L] and (N t +1) points to build a uniform time discretization of the interval [0, T final ]. Thus, the space step is ∆x = L/N x and the time step ∆t = T final /N t . We approximate the solution with the notation z(t, x) ≈ Z i j , where i and j refer to time and space discrete variables, respectively.

The notation for the approximations of the derivative are the same than in Chapter 2, at the beginning of Section 2.3.2. In particular, we note

A := D + D + D -+ D (3.150) and C := A + dtI, (3.151) 
where I is the identity matrix in R Nx .

We will denote, for each discrete time i,

Z i := Z i 1 Z i 2 . . . Z i Nx+1 T
the plant state, and

O i := O i 1 O i 2 . . . O i Nx+1 T
the observer state. For m = {1, 2}, the state output will be denoted by Y m Z and Y m O stands for the observer output. When m = 1, we refer to (3.15) and when m = 2, we refer to (3.17). For m = {1, 2}, the discretized controller gain U m and observer gain P m , respectively, are defined by We compute them from a successive approximations method (see [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF] and Appendix C). When m = 1, we refer to k 1 and p 1 . When m = 2, we refer to k 2 and p 2 .

U m = K m 1 K m 2 . . . K m

Illustration of the results of Section 3.2.2

Given K 1 and P 1 , the following is the structure of the algorithms used in our simulations.

The first algorithm we provide is for the plant (3.16).
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           Z i+1 j -Z i j dt + (AZ i+1 ) j = 0, j = 1, . . . N x , Z i 1 = Nx+1 j=1 K 1 j O i j , Z i Nx+1 = Z i Nx = 0, Z 1 = x j+ 1 2 x j-1 2 z 0 (x)dx, (3.152)
The second numerical scheme we provide is for the observer (3.40)

           O i+1 j -O i j dt + (AO i+1 ) j + P 1 (Y 1 Z -Y 1 O ) = 0, j = 1, . . . N x , O i 1 = Nx+1 j=1 K 1 j O i j , O i Nx+1 = O i Nx = 0, O 1 = x j+ 1 2 x j-1 2 ẑ0 (x)dx, (3.153)
where x j+ 1 2 = j + 1 2 dx and x j = jdx.

In order to illustrate our theoretical results, we perform some simulations on the domain [0, 2π]. We take N x = 30, N t = 167, T final = 8, λ = 1, z 0 (x) = 1 -cos(x) and ẑ0 (x) = 0. Given K 2 and P 2 , the following is the structure of the algorithms used in our simulations. The first algorithm we provide is for the plant (3.16).

           Z i+1 j -Z i j dt + (AZ i+1 ) j + 1 2 D[(Z i+1 ) 2 ] j = 0, j = 1, . . . N x , Z i 1 = Nx+1 j=1 K 2 j O i j , Z i Nx+1 = 2Z i Nx -Z i Nx-1 = 0, Z 1 = x j+ 1 2 x j-1 2 z 0 (x)dx, (3.154)
The second numerical scheme we provide is for the observer (3.81)

           O i+1 j -O i j dt + (AO i+1 ) j + 1 2 D[(O i+1 ) 2 ] j + P 2 (Y 2 Z -Y 2 O ) = 0, j = 1, . . . N x , O i 1 = Nx+1 j=1 K 2 j O i j , O i Nx+1 = 2O i Nx -O i Nx-1 = 0, O 1 = x j+ 1 2 x j-1 2 ẑ0 (x)dx, (3.155)
For both of these equations, since we have the nonlinearities zz x and ẑ ẑx , we will use an iterative fixed point method to solve the nonlinear systems

CZ i+1 = Z i - 1 2 D(Z i+1 ) 2 ,
and

CO i+1 = O i - 1 2 D(O i+1 ) 2 . (3.156)
With N iter = 5, which denotes the number of iterations of the fixed point method, we get good approximations of the solutions. The algorithm is similar to the one provided in Chapter 2.

In order to illustrate our theoretical results, we perform some simulations on the domain [0, 2π]. We take N x = 30, N t = 167, T final = 10, λ = 2, u 0 (x) = sin(x) and û0 (x) = 0. Figure 3.4 illustrates the convergence to the origin of the solution to the closed-loop system (3.16) and (3.81) with u given by (3.132). Figure 3.5 illustrates the L 2 -norm of this solution and the L 2 -norm of the solution to the observer (3.81) with u given by (3.132). Finally, Figure 3.6 illustrates the time evolution of the L 2 -norm of the observation error (z -ẑ) and of (z 0 -ẑ0 )e -µt where µ = 0.4. Note that the observation error converges to 0 in L 2 -norm. From the simulations, this convergence seems to be exponential as expected.

Conclusion

In this chapter, the infinite-dimensional backstepping technique has been introduced. This method has been used to design a state feedback law and an observer for two Korteweg-de these two equations has been tackled with semigroup theory and with the Banach-fixed point theorem in the case of the nonlinear equation. The exponential stability of the origin of these two systems has been proved using some Lyapunov functions. Finally, our results have been illustrated with some numerical simulations.

It could be interesting to design another observer for the KdV equation. One which might be useful is the high-gain observer, which is an observer for finite-dimensional systems satisfying a special structure. This technique will be introduced in details in the next chapter. This chapter deals with hybrid finite-dimensional systems, i.e. finite-dimensional systems with a mixed discrete/continuous dynamics. As it has been noticed in Chapter 3, separation principle may fail for nonlinear finite-dimensional system. The aim of this chapter is to present a design method for output feedback laws for nonlinear systems for which there exists a hybrid state controller.

In recent years, many techniques for designing a stabilizing control law for nonlinear dynamical systems have been developed. It is now possible to achieve stabilization of equilibria for a large class of models. However, due to Brockett's necessary condition for stabilizability, it is well known that some systems cannot be stabilized by a continuous controller. Some of these systems can however be stabilized with a hybrid state feedback law, i.e. a discrete/continuous controller (see e.g. [START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF], where the Brockett integrator is stabilized with a quasi optimal hybrid control). Moreover, the use of hybrid control laws may be interesting to address performance issues (see e.g. [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF]). This explains the great interest of the control community in the synthesis of hybrid control laws (see [START_REF] Goebel | Hybrid Dynamical Systems[END_REF], [START_REF] Hespanha | Lyapunov Conditions for Input-to-State Stability for Impulsive Systems[END_REF][START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF][START_REF] Fichera | Using Luenberger observers and dwell-time logic for feedback hybrid loops in continuous-time control systems[END_REF][START_REF] Yuan | Analysis and synthesis of linear hybrid systems with statetriggered jumps[END_REF]).

The output feedback stabilization problem has also attracted the attention of numerous researchers. Indeed, employing a state feedback law is most of the cases impossible, since the 110 Chapter 4. Semi-global stabilization by an output feedback law from a hybrid state controller sensors can only access to partial measurements of the state. Output feedback laws may be designed from a separation principle. More precisely, two tools are designed separately: a stabilizing state feedback law and an asymptotic state observer. However, if this approach is fruitful for linear systems, the separation principle does not hold in general for nonlinear systems. For instance, there exist stabilizable and observable systems for which the global asymptotic stabilization by output feedback is impossible ( [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF]). Nevertheless, from weak stabilizability and observability assumptions, some semi-global results may be obtained (see e.g. [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF] or [START_REF] Isidori | Nonlinear control systems[END_REF]). However, in this case the observer and the state feedback have to be jointly designed (not separately) (see also [3] for some global results).

The aim of this chapter is to address the stabilization by hybrid output feedback law. In [START_REF] Teel | Observer-based hybrid feedback: a local separation principle[END_REF], a local separation principle is stated. However, the construction of the observer is not explicit. Here, from a hybrid state feedback controller and an observability property, an algorithm is provided to build hybrid output feedback laws which stabilize semi-globally the equilibrium plant. If moreover a robust Lyapunov function is known, the feedback law design becomes explicit. This chapter is organized as follows. Section 4.1 introduces an observability notion and motivates the use of hybrid controller. Section 4.2 provides our contributions together with the proof of our results. An illustrative example is also given. Finally, Section 4.3 collects some concluding remarks.

The contributions of this chapter, from Section 4.2 until the end, are based on two of our papers. The first one [START_REF] Marx | Using a high-gain observer for a hybrid output feedback: finite-time and asymptotic cases for SISO affine systems[END_REF] has been published in a peer-reviewed conference (American Control Conference 2014). The second one [START_REF] Marx | Semi-global stabilization by an output feedback law from a hybrid state controller[END_REF] has been published in Automatica. As it has been noticed in Chapter 3, the separation principle given in Theorem 3.1 is generally not true for nonlinear finite-dimensional systems. The interested reader can refer to the survey [3] where some examples of control systems for which the separation principle fails are provided. Let us start this section with one of them, which is borrowed from [START_REF] Kokotovic | The joy of feedback: nonlinear and adaptive[END_REF]. The feedback law u = -z p 2 z 2 p 1 stabilizes globally the origin of (4.1)1 . Indeed, let us consider the function

Complete uniform observability and hybrid controllers

     d dt z p 1 = -z p 1 + z p 2 z 2 p 1 + u, d dt z p 2 = -z p 2 + z 2 p 1 , (4.1 
V (z p 1 , z p 2 ) := 1 2 z 2 p 1 + 1 2 z p 2 + z 2 p 1 2 . (4.3)
It is a positive definite function and a proper function. Hence, it is a candidate Lyapunov function.

Its derivative along the solution to (4.1) yields

d dt V (z p 1 , z p 2 ) = -z 2 p 1 + -z p 2 + z 2 p 1 -2z 2 p 1 z p 2 + z 2 p 1 = -V (z p 1 , z p 2 ) (4.4)
This implies the global asymptotic stability of the origin of (4.1) when using the state feedback law u = -z p 2 z 2 p 1 .

The following dynamical system

d dt ẑp 2 = -ẑ p 2 + y 2 (4.5)
is a converging observer for the state z p 2 . Indeed,

d dt (ẑ p 2 -z p 2 ) = -(ẑ p 2 -z p 2 ). (4.6) 
Hence, we have

|ẑ p 2 -z p 2 | ≤ e -t |ẑ # 2 -z # p 2 |, ∀t ≥ 0, (4.7) 
where ẑ# p 2 := ẑp 2 (0) and z # p 2 := z p 2 (0). Therefore, the state of the observer converges to the state z p 2 of the plant (4.1). Note that z p 1 does not have to be estimated, since it is already measured.

If one uses the following output feedback law

u = -ẑ p 2 y 2 (4.8)
there exist solutions to the following closed-loop system Following [START_REF] Kokotovic | The joy of feedback: nonlinear and adaptive[END_REF], we know that there exists an explicit solution to this equation, which is

                   d dt z p 1 = -z p 1 + z p 2 z 2 p 1 -ẑp 2 y 2 , d dt z p 2 = -z p 2 + z 2 p 1 , d dt ẑp 2 = -ẑ p 2 + y 2 , y = z p 1 . ( 4 
z p 1 (t) := 2z # p 1 (2 -z # p 1 z# p 2 )e t + z # p 1 zp 2 e -t , (4.11) 
where z # p 1 := z p 1 (0). From this solution, we can see that if

z # p 1 z# p 2 > 2, (4.12) 
then the state z p 1 tends to infinity in finite time.

Finally, even if there exists a global observer and a global stabilizing state feedback for a finite-dimensional nonlinear control system, the corresponding output feedback may not stabilize globally the origin of the closed-loop system. Hence, the notion of observability for nonlinear systems should be given in details.

Observability notions

In [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF], the authors introduce an observer, namely the high-gain observer, that is purely nonlinear, together with an observability notion. Let us introduce them.

Consider the following controlled system

d dt z p = f p (z p ) + g p (z p )u , y = h p (z p ) , (4.13) 
where z p ∈ R np , y ∈ R, u ∈ U ⊂ R. Note that f p : R np → R np and g p : R np → R np , h p : R np → R are n p + 1 times continuously differentiable 2 . The set U can be bounded (it yields a saturated control problems). We assume that the origin of (4.13) is an equilibrium point.

Define the C 1 mapping φ : R np → R np as follows

φ(z p ) = h p (z p ) L fp h p (z p ) . . . L np-1 fp h p (z p ) , (4.14) 
where L i fp h p (z p ) denotes the i-th Lie derivative of h p along f p 3 .

The observability notion employed all along this chapter can be now stated.

2 These mappings are sufficiently smooth so that the mapping φ defined in (4.14) is C 1 and so that the function B defined in (4.36) is locally Lipschitz.

3 Given i ∈ N, the i-th Lie derivative of hp along fp is defined as follows for any measurable bounded input u(t) defined on [0, T ], the initial state is uniquely determined on the basis of the output y(t) and the input u(t).

L i fp hp(zp) := ∂ i ∂z i p hp ( 

Remark 4.1

Note that there exist other type of observability notions for nonlinear systems. For uncontrolled systems, one can cite [4], where some conditions for the existence of a nonlinear Luenberger observer for nonlinear systems are derived.

Example 4.2 • The following system

           d dt z p 1 = z p 2 , d dt z p 2 = z 2 p 2 + u, y = z p 1 (4.16)
is completly uniformly observable. Indeed, since

L fp h p (z p ) = 1 0 z p 2 z 2 p 2 = z p 2 (4.17)
then φ(z p ) is defined as follows

φ(z p ) : z p 1 z p 2 ∈ R 2 → z p 1 z p 2 ∈ R 2 . (4.18)
It is clear that it defines a diffeomorphism. Moreover, the item (ii) of Definition 4.1 is also satisfied.

• The system given in Example 4.1 is not completly uniformly observable. Indeed, the following holds

L fp h p (z p ) = 1 0 -z p 1 + z p 2 z 2 p 1 -z p 2 + z 2 p 1 = -z p 1 + z p 2 z 2 p 1 . (4.19) 
Hence, φ(z p ) is defined as follows which is equal to 0 when z p 1 = 0. Hence, the function z p → φ(z p ) does not define a diffeormorphism and the system given in Example 4.1 is not completly uniformly observable.

φ(z p ) : z p 1 z p 2 ∈ R 2 → z p 1 -z p 1 + z p 2 z 2 p 1 . ( 4 
If (4.13) satisfies the properties given by Definition (4.1) and if moreover there exists a continuous stabilizing state feedback for (4.13), then we know from [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF] that the origin of (4.13) is semi-globally stabilizable by means of a dynamic output feedback. Let us provide the definition of such a stability. Definition 4.2 (Semi-global stabilizability [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]) The origin of system (4.13) is said to be semi-globally stabilizable by means of a dynamic output feedback if, for each compact set D p , there exist a dynamic output feedback u = θ c (ẑ p ), ẑp = θ p (y, ẑp ) and a compact set D o such that the equilibrium (0, 0) ∈ R np × R np of the closed-loop system is asymptotically stable with basin of attraction containing D p × D o .

Remark 4.2

This property is different from the one provided in Definition 2.2. Indeed, the semi-global stabilizability implies that the controller θ c depends on the compact set D p , while the semiglobal exponential stability is a property that a uncontrolled system can satisfy.

The semi-global stabilizability is satisfied if there exists a continuous stabilizing state feedback for (4.13) and if (4.13) is completly uniformly observable. However, as it will be noticed in the next subsection, some control systems cannot be stabilized by means of a continuous state feedback.

Hybrid controllers

As it has been noticed in the introduction and in the latter section, there exist some conditions which do not allow to stabilize systems with continuous state feedback law. One of these conditions is the Brockett condition.

Consider the following control system

d dt z p = f (z p , u), (4.23) 
where, for n p , m ∈ N, z p ∈ R np and u ∈ R m . The vector field f : R np × R m → R np is sufficiently smooth.

The following result gives a necessary condition for the stabilizability by means of a continuous stationary feedback law of such a system Theorem 4.1 (Brockett's condition [START_REF] Brockett | Differential Geometric Control Theory[END_REF]) If the control system (4.23) can be locally asymptotically stabilized by means of a continuous 

             d dt z p 1 = u 1 , d dt z p 2 = u 2 , d dt z p 3 = z p 1 u 2 -z p 2 u 1 (4.24)
This system is not stabilizable by means of a continuous time-invariant feedback law. Indeed, for every η ∈ R \ {0}, the equation

     u 1 = 0, u 2 = 0, z p 1 u 2 -z p 2 u 1 = η (4.25)
where the unknown are z p 1 z p 2 u 1 u 2 ∈ R 4 , has no solution. Therefore, the Brockett's integrator does not satisfy the Brockett's condition and there does not exist any continuous stationnary feedback laws that stabilize the origin of this equation.

To solve this problem, researchers in control theory derived several methods. The two main ones are 1. Using a time-varying state feedback (see e.g., [START_REF] Coron | Control and Nonlinearity[END_REF]Chapter 11] and [START_REF] Coron | On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law[END_REF]); 2. Using a hybrid state feedback, i.e. a feedback mixed continuous/discrete (see e.g., [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF]).

In this chapter, we will focus on the second strategy. Note that a good introduction to hybrid systems is [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]. This book provides a framework for the well-posedness and the stability of equilibrium sets of systems mixing continuous/discrete behavior. We do not aim at presenting this theory here. 

Assumptions

The system under consideration is (4.13). Inspired by [START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF] and [START_REF] Sontag | Stability and stabilization: discontinuities and the effect of disturbances[END_REF], the origin, which is an equilibrium point for (4.13), is assumed to be stabilizable by a hybrid state feedback. state controller Remark 4.5 An important feature of this theorem is that an assumption needs to be imposed on the function g c (see equation (4.27)). This is due to a design of a set in which the solution should stay for a suitable duration. In the particular case in which B is R np+nc , the previous condition is trivially satisfied if g c is such that

|g c (w, z c )| ≤ γ(|z c |) , ∀(w, z c ) ∈ R np+nc ∩ J c
where γ ∈ K. Moreover, note that there is a large class of systems that satisfy such a condition. For instance, switch systems or reset systems, as the one considered in Section 4.2.3 below.

Second main result

In this section an explicit result is introduced. It is based on the following assumption, where it is denoted Z = [ z p z c τ ] . 

V : B × R → R ≥0 satisfying {Z ∈ B × R, V (Z) = 0} = A.
For all positive real numbers l, the level set of V defined as

D l := {(z p , z c , τ ) ∈ B × R ≥0 : V (z p , z c , τ ) ≤ l} , (4.30) 
is a compact subset of B × R.

Moreover, there exists a positive real number ε r and an increasing C 0 function ρ : [0, ε r ] → R + with ρ(0) = 0 such that for all (Z, e) in D l × R np such that |e| ≤ ε r , the following inequalities hold.

• If (z p + e, z c , τ ) ∈ (B ∩ F c × R ≥0 ), ∂V ∂Z (Z)F (Z, z p + e) ≤ -α 1 V (z p , z c , τ ) + ρ(|e|) (4.31) • If (z p + e, z c , τ ) ∈ (B ∩ J c × R ≥λ ) V (G(Z, z p + e)) -V (Z) ≤ -α 2 V (z p , z c , τ ) + ρ(|e|), (4.32) 
where F is defined by

F (Z, .) := (f p (z p ) + g p (z p )θ c (., z c )) f c (., z c ) 1 -τ
and G is defined by G(Z, .) := z p g c (., z c ) 0 .
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This assumption allows to obtain an explicit result. Let us note that it is difficult to be more explicit since the derivations of c x and Ψ p are quite long and require several steps. This is already the case in [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]. Moreover, continuing what has been stated in Remark 4.3, it is crucial to have a Persistent-Flow Stabilizability in order to design explicitely our observer.

In a first step, c x is computed in (4.35) in order to force the solutions to remain in a compact set for a certain amount of (flow) time. The function Ψ p is a high-gain observer which is tuned in Lemma 4.2. It forces the error to reach the robustness margin obtained from Assumption 4.3 before the solution escapes the compact set.

The explicit construction of these two data and the proof that this output feedback law is a solution to Theorem 4.3 is reported in Section 4.2.2.

Proofs of the main results

Proof of Theorem 4.2 from Theorem 4.3

In order to prove Theorem 4.2 from Theorem 4.3 it is sufficient to prove that Assumption 4.1 implies Assumption 4.3. This can be obtained from an inverse Lyapunov result. First, from [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]Corollary 7.32] there exists a positive value α ∈ (0, 1) and a smooth proper function

V : B × R → R ≥0 satisfying {Z ∈ B × R : V (Z) = 0} = A ∂V ∂Z (Z)F (Z, z p ) ≤ -V (Z), ∀(z p , z c , τ ) ∈ (B ∩ F c ) × [0, λ] V (G(Z, z p ))-V (Z) ≤ -αV (Z), ∀(z p , z c , τ ) ∈ (B ∩ J c ) × R ≥0 (4.33)
Let l be a positive real number such that the level set D l is a compact subset of B × R. Consider the two functions r 1 and r 2 defined as

r 1 (s) = max |e|≤s, (zp+e,zc,τ )∈D l ∂V (Z) ∂Z F (Z, z p ) + 1 2 V (Z) r 2 (s) = max |e|≤s, (zp+e,zc,τ )∈D l V (G(Z, z p )) -1 - 1 2 α V (Z)
Since F , G are continuous and V is smooth, r 1 and r 2 are also continuous functions. Moreover r 1 (0) < 0 and r 2 (0) < 0. Therefore there exist ε 1 r and ε 2 r such that r 1 (s) < 0 for all s ≤ ε 1 r and r 2 (s) < 0 for all s ≤ ε 2 r . Let ε r = min(ε 1 r , ε 2 r ). For all |e| ≤ ε r and (z p , z c , τ ) ∈ D l it yields the following:

• If (z p + e, z c , τ ) in (B ∩ F c × R ≥0 ), ∂V ∂Z (Z)F (Z, z p ) ≤ - 1 2 V (Z) , ∀Z ∈ B ∩ F c × R ≥0 • If (z p + e, z c , τ ) in (B ∩ J c × R ≥λ ) V (G(Z, z p )) -V (Z) ≤ - 1 2 αV (Z), ∀Z ∈ B ∩ J c × R ≥λ .
Hence this Lyapunov function is the same than the one introduced in Assumption 4.3 with

α 1 = 1 2 and α 2 = α 2 .
Consider now the increasing function ρ : [0, ε r ] → [0, +∞) defined as follows6 

ρ(s) ≥ max max 

Construction of the output feedback law

In the next sections, we follow a similar approach to [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]. We first compute a saturation level c x , a time of existence T min and a compact subset of B × R ≥0 denoted by D l 4 such that, when saturating the controller with c x , the solution starting from B × R ≥0 remains in D l 4 for all time less than T min . Then, with T min and the margin of robustness c e from Assumption 4.3, we design an observer such that the error dynamics converges to 0 asymptotically and such that, for all time higher than T min , the error dynamics belongs to the margin of robustness. Finally, we prove the attractiveness and the stability of the closed-loop system with the output feedback law. This section differs from the strategy employed in [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]. Indeed, since we have a hybrid dynamics, the solution of the closed-loop system can jump. Therefore, the computation of T min becomes difficult. However, thanks to the timer dynamics, we can assert that between two jumps the solution of the closed-loop system belongs to the flow set. This allows us to compute T min and thus c x .

In the remaining part of this subsection, we consider the system defined by

             d dt z p = f p (z p ) + g p (z p )θ c (ω, z c ) d dt z c = f c (ω, z c ) d dt = 1 -τ (ω, z c , τ ) ∈ F c × R ≥0 , (4.34a) 
     z + p = z p z + c = g c (ω, z c ) τ + = 0 (ω, z c , τ ) ∈ J c × R ≥λ , (4.34b) 
where ω is an external perturbation function in R np . Such a system is not a classical hybrid system as the ones introduced in [START_REF] Goebel | Hybrid Dynamical Systems[END_REF] since the flow and jump sets are defined with an external disturbance. Note that in the particular case in which ω = zp defined in (4.29), the solution to system (4.34) by adding the dynamics of ẑp is also solution to system (4.28). Hence, this implies the well-posedness of the closed-loop system as considered in [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]Chapter 2].

Two cases may be distinguished to construct the sets: i) Solution to (4.34) does not jump; ii) Solution to (4.34) jumps at least one time. The first case is similar to the continuous case (and thus to [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]). The second case takes into account the hybrid behavior of the system under consideration. Under Assumption 4.3, let l 1 = max zp∈Γ,τ ∈[0,λ] V (z p , 0, τ ). Note that D l 1 is a compact subset of B × R ≥0 (see the notation employed in equation (4.30)). Let l 2 > l 1 such that D l 2 ⊂ B × R ≥0 . To deal with the jump that can occur, we considerD + l 2 = (zp,zc,τ )∈D l 2 {(z p , g c (w, z c ), 0), w ∈ R np } . Since it is assumed that the set defined in (4.27) is a compact subset of B × R ≥0 , it yields that D + l 2 is also a compact subset of B × R ≥0 . Let l 3 be such that D l 3 is a compact subset which satisfies D + l 2 ⊂ D l 3 ⊂ B × R ≥0 . Finally, let l 4 > l 3 so that D l 4 is a compact subset which contains D l 3 .

With these sets in hands, the positive real number c x can be selected as Let us now establish the following property for solutions to system (4.34) initiated from D l 1 . ))F (Z(s, 1), ω(s)) ≤ V . This implies V (t , 1) ≤ V t + V (t 0 , 1) ≤ V T min + l 3 < l 4 . Hence Z(t , 1) is in the interior of D l 4 and following the previous case, we get a contradiction. where χ := L f h(φ -1 (w)) and b i are locally Lipschitz functions as soon as f p is smooth enough. From there, the following lemma may be obtained. 

Semi

Proof of Lemma 4.2:

There exists c χ such that, for all (z 1 , z 2 ) ∈ (R np First Part : Attractivity. Let Z # := (z # p , z # c , ẑ# p , τ # ) be in Γ and consider a solution Z = (z p , z c , ẑp , τ ) to (4.28) whose initial condition is Z # and defined on its time domain denoted dom(Z). Note that the system (4.28) can be rewritten as the hybrid system (4.34) with ω = sat cx (ẑ p ) and ẑp is given with the observer (4.37).

With Lemma 4.1 and with the τ dynamics (persistent flow), we know that there exists j 0 such that (T min , j 0 ) is in dom(Z) and for all (t, j) in dom(Z) with t ≤ T min then (z p (t, j), z c (t, j), τ (t, j)) is in D l 4 . Thus, for all (t, j) in dom(Z) with t ≤ T min , the control input satisfies |u(t, j)| ≤ ū. Let dom D l 4 (Z) be the time domain of the solution restricted to state controller with k = [-13 -30], λ = 0.01, M = 0 -I 1 -I 1 0 and E(P V ) = (z p , z c ) ∈ R 4 , [z p ; z c ]P V [z p ; z c ] ≤ 1 ⊂ B, where P V is the positive definite matrix defined as P V = 4.0560 0.6868 6.6342 0.0000 6.4905 0.0000 6.6342 49.4184 6.6162 55.9387

. The matrix P V has been computed to satisfy a set of linear matrix inequalities (LMIs) given in [START_REF] Loquen | Stability analysis for reset systems with input saturation[END_REF]Theorem 3.] employing the LMI solver [START_REF] Jos | Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones[END_REF]. Note that employing an equivalent continuous feedback law u c = sat us (kz c ), without any reset, leads to a smaller estimation of the basin of attraction (i.e. the matrix P c V that describes the lower approximation of the basin of attraction has bigger eigenvalues than P V ). The set B denotes the basin of attraction and E(P V ) is a lower approximation of this one. Moreover, letting α 1 = 0.4017, α 2 = 0.6078, ε r = 0.0550 and the function ρ(|e|) := 13.3418|e|, Assumption 4.3 is satisfied. Since (4.51) satisfies the well-known Kalman observability rank condition for the pair (C, A), Assumption 4.2 holds for the sytem (4.51). Moreover, denoting the projection E(P V ) on R np by Π p (E(P V )) = {z p ∈ R 2 : 4.0560z 2 p 1 + 6.4905z 2 p 2 + 1.3736z p 1 z p 2 ≤ 1} and letting Γ = {z p ∈ R 2 : 4.0560z 2 p 1 +6.4905z 2 p 2 +1.3736z p 1 z p 2 ≤ 0.6} ⊂ Π p (E(P V )), hence, it is obtained from Theorem 4.2 that the set {0} × {0} × [0, 1] is asymptotically stable for the sytem (4.52) with basin of attraction containing Γ × {0} × {0} × R ≥0 . Following Lemmas 4.1 and 4.2, we aim at computing all the variables. Here, from the definition of Γ, we let l 1 = 0.6 and l 2 = 0.7. Due to (4.52), g c = 0 and thus D + l 2 ⊂ D l 2 . It follows that l 3 = 0.8 and l 4 = 0.9 are suitable values. Thus, we can compute c x := P -1/2 QP -1/2 l 4 = 0.6624 where Q = diag(1, 1, 0, 0). We check that k 1 = -6 and k 2 = -9 are such that G defined in Lemma 4.2 is Hurwitz. With all these parameters, we numerically compute c e = 0.0136, T min = 0.01, d = 2, P = [ 0.1000 0.0077 0.0077 0.0635 ] and M = 1.2070. Then we check that = 1000 satisfies (4.50). Finally we can build the observer satisfying the structure of (4.37). Therefore we can apply Theorem 4.3 and state that closing the loop of (4.51) with the observer of the form (4.40) and the output feedback law coming from (4.52) leads to a semi-global stability.

With (z # p , z # c , ẑ# p , τ # ) = (0.15, 0, 0, 0, 0, 0, 0) ⊂ E(P )×[0, 1] , The time evolution of z p 1 and ẑp 1 satisfying respectively (4.51) and (4. 

Conclusion

An output feedback law has been designed for SISO affine systems for which there exists a hybrid state feedback under an observability assumption. Some special assumptions (for instance the existence of a timer) have been useful to deal with the hybrid case. The result has been applied to design a hybrid output feedback law from a FORE controller. Some open questions follow. Does an output feedback exist even with a less strong assumption than the Assumption 4.1, such as an assumption which does not state any knowledge of the time between two consecutive jumps ? Another technical assumption is given by (4.27). Is it possible to weaken this assumption and obtain a similar result as the one given by Theorem 4.2 ? In [3], some output feedback laws are presented to achieve global stabilization of equilibrium point. Assuming stronger observability property, can such output feedback laws be achieved for hybrid case? Moreover, designing an observer that converges in finite time with a stability property, and thus adapting [START_REF] Andrieu | Homogeneity in the bi-limit as a tool for observer and feedback design[END_REF] for the hybrid systems case, could be also an interesting research line.

Conclusion and perspectives

In this thesis, some stabilization problems for nonlinear dynamical systems have been introduced. It contributes to the general theory of control nonlinear systems and stabilization of equilibrium points by means of output feedback laws. Both finite and infinite-dimensional systems have been studied. To be more specific, we tackled Questions 1, 2 and 3 collected in the Introduction using various techniques from finite and infinite-dimensional theory of stability and stabilization.

Answer to Question 1

In Chapter 1, nonlinear abstract control systems with a bounded linear control operators have been studied. Assuming that • the nonlinear operator A is m-dissipative,

• there exists a stabilizing linear feedback law,

• the positive orbit of the closed-loop system is precompact, we proved that when modifying this feedback via a cone-bounded nonlinearity the origin of the closed-loop system remains globally asymptotically stable. The Schauder fixed-point theorem has been used to conclude on the well-posedness and an infinite-dimensional version of LaSalle's invariance principle has been applied to tackle the asymptotic stability of the origin of the closed-loop system.

In Chapter 2, a particular nonlinear partial differential equation, namely the Korteweg-de Vries equation, has been studied. We proved that when modifying a distributed stabilizing feedback law with two types of saturations the origin of the closed-loop system remains globally asymptotically stable. A numerical scheme has been provided in order to illustrate our results and some existing results for the Korteweg-de Vries equation.

Answer to Question 2

Chapter 3 introduces the separation principle strategy for linear finite-dimensional systems. We followed this strategy for two Korteweg-de Vries equations for which there exist state feedback laws designed with a backtepping method. Thanks to the backstepping method and to a Lyapunov analysis, we proved that designing observers separetely from state feedback laws yields stabilizing output feedback laws. Some simulations have been performed to illustrate our theoritical results. Finally, in Chapter 4, the semi-global output feedback stabilization of nonlinear finitedimensional systems for which there exists a local regularizing hybrid controller has been tackled. Indeed, if the system is completly uniformly observable and if there exists a regularizing hybrid state feedback, then we proved that the resulting output feedback (locally) stabilizes the closed-loop system. A high-gain observer strategy has been followed in order to design the observer. The hybrid system theory has been used to conclude on the asymptotic stability of the closed-loop system. An illustrative example has been provided.

Contributions of the thesis

The main contributions of this thesis are

• the study of abstract nonlinear control systems stabilized with a cone-bounded controller;

• the study of the global asymptotic stability of the Korteweg-de Vries equation with a saturating distributed feedback law with two different types of saturation;

• the numerical scheme of the nonlinear Korteweg-de Vries equation with a saturating distributed feedback law;

• the output feedback stabilization problem of two Korteweg-de Vries equations using the backstepping method;

• the output feedback stabilization problem for nonlinear finite-dimensional systems for which there exists a hybrid controller.

Tools used along the thesis

• Nonlinear semigroup theory for abstract control systems;

• Nonlinear partial differential equation theory;

• Fixed-point theorems;

• Stability analysis with Lyapunov functions for both finite and infinite-dimensional systems;

• Saturated control systems theory;

• Backstepping method for partial differential equations;

• Hybrid systems theory;

• High-gain observer theory for nonlinear finite-dimensional systems.
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B.2 Precompacity of the nonlinear heat equation with a conebounded nonlinearity

This subsection is devoted to the proof of the following lemma.

Lemma B.1

The canonical embedding from D(A σ ), equipped with the graph norm, into Z := L 2 (0, 1) is compact.

Proof of Lemma B.1:

We follow the strategy of [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], [START_REF] Prieur | Wave Equation with Cone-Bounded Control Laws[END_REF] and [START_REF] Novel | Feedback Stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]. Let us recall the definition of the graph norm Performing an integration by parts, we obtain After some computations, we get the formula

G k (η, t) = k i=1 a i k t 2k-1 + b i k t 2k [(2L -t) i -η i ] (C.10)
where the coefficients satisfy b k k = 0. By a recursive reasonment, we can state the existence of positive constants M and B such that, for any k ≥ 1 and any (s, t) ∈ T 0

|G k (η, t)| ≤ M B k (2k)! (t 2k+1 + t 2k ) (C.11)
Thanks to this formula, we get the uniform convergence of the series ∞ n=1 G n (η, t) and we get a solution of our integral equation. Indeed, we can write 6(G -G 1 )(η, t) =6 where we have used that the corresponding series ∞ n=1 G n η and ∞ n=1 G n ηηη are also uniformly convergent.

  then we can define an adjoint A : D(A ) ⊆ Z → Z 3 . The domain D(A ) is defined by the following set D(A ) := {z ∈ Z | there exists z ∈ Z such that Az, z Z = z, z Z for all z ∈ D(A)}.

Lemma 1 . 1 (

 11 [START_REF] Miyadera | Nonlinear semigroups[END_REF], Lemma 2.13, Page 22) A dissipative operator A : D(A) ⊆ Z → Z is an m-dissipative operator if and only if there exists a positive value λ 0 such that

Theorem 1 . 1 (

 11 [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Corollary 4.4, Chapter 1, page 15) Let the operator A : D(A) ⊆ Z → Z be linear with its domain dense in Z. If A is closed and if A and A are both dissipative, then A is an m-dissipative operator.

Theorem 1 . 3 (

 13 [START_REF] Miyadera | Nonlinear semigroups[END_REF], Theorem 4.20, page 103) The infinitesimal generator A : D(A) ⊆ Z → Z of a strongly continuous semigroup of contractions on Z is an m-dissipative operator. Conversely, if A is an m-dissipative operator, then A generates a strongly continuous semigroup of contractions.

Theorem 1 . 4 (

 14 Well-posedness and Lyapunov stability [68], Corollary 3.7, page 53) If A is an m-dissipative operator, then
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 11211 Figure 1.1: Red line: 2s; Blue line: σ(s) with u s = 1.5

Chapter 1 .

 1 Cone-bounded controllers for m-dissipative operators 1.2

Chapter 1 .

 1 Cone-bounded controllers for m-dissipative operators Proposition 1.1 If σ is bounded, then condition (1.42) is satisfied for (1.44). Proof of Proposition 1.1:

2 1. 2 . 3 . 2

 2232 Proof of Theorem 1.10: asymptotic stability The proof of Theorem 1.10 relies on the use of an infinite-dimensional version of the LaSalle's Invariance Principle stated in Theorem 1.5.

Figure 1 . 2 :

 12 Figure 1.2: Solution z(t, x) with the control u(t, x) = σ (1 Ω z) (t, x) where u s = 1.5.

Figure 1 .

 1 Figure 1.4: Control u(t, x) = σ (1 Ω z) (t, x) where u s = 1.5.

4

 4 Figure 1.4: Control u(t, x) = σ (1 Ω z) (t, x) where u s = 1.5.

Figure 1 . 5 : 2 L 2

 1522 Figure 1.5: Time-evolution of the Lyapunov functions z 2 L 2 (0,L) and z 2 L 2 (0,L)

  t + ∆ x + ∆ xxx + z∆ x + zx ∆ + sat(az) -sat(az))dx = 0, (2.57) distributed control and using the boundary conditions of (2.56), we readily get (az) -sat(az))dx.(2.58) 

Lemma 2 . 6 (

 26 Sector Condition)Let r be a positive value, a function a : [0, L] → R satisfying (2.18) and k(r) defined by

  .144) and let us define A = D + D + D -+ D, and C = A + dtI where I is the identity matrix in R Nx×Nx . Note that we choose this forward difference approximation in order to obtain a positive definite matrix C.
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 2223 Figure 2.2: Solution z w (t, x) with the control f = a 0 z w where Ω = [0, L]

  Figure 2.4: Control f = sat L 2 (0,L) (a 0 z)(t, x) where Ω = [0, L], u s = 0.5
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 2522 Figure 2.5: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u s = 0.5 and a 0 = 1. Red: Time evolution of the theoretical energy z 0 2 L 2 (0,L) e -2µt . Dotted line: Time evolution of the solution without saturation z w and a 0 = 1.

Figure 2 . 6 :Figure 2 . 7 :Figure 2 . 8 :

 262728 Figure 2.6: Solution z w (t, x) with a localized feedback law without saturation

Figure 2 . 9 :

 29 Figure 2.9: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u s = 0.5, a 0 = 1 and Ω = 1 3 L, 2 3 L . Dotted line: Time evolution of the solution without saturation z w with a 0 = 1 and Ω = 1 3 L, 2 3 L .

Figure 2 . 10 :

 210 Figure 2.10: Solution z(t, x) of the linearized Korteweg-de Vries equation.

Figure 2 . 2 L 2

 222 Figure 2.11: Blue: Logarithmic time evolution of the energy function z 2 L 2 (0,L) of the linearized Korteweg-de Vries equation; Red: Logarithmic time evolution of z 2 L 2 (0,L) e -µ 1 t ; Dotted red line: Logarithmic time evolution of z 2 L 2 (0,L) e -µ 2 t

Figure 2 . 12 : 2 L 2

 21222 Figure 2.12: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u 0 = 0.1 and a 0 = 1. Red: Time evolution of the theoritical energy z 0 2 L 2 (0,L) e -2µt . Dotted line: Time evolution of the solution without saturation z w and a 0 = 1.

Figure 2 . 13 : 2 L 2

 21322 Figure 2.13: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u 0 = 1 and a 0 = 1. Red: Time evolution of the theoritical energy z 0 2 L 2 (0,L) e -2µt . Dotted line: Time evolution of the solution without saturation z w and a 0 = 1.

Figure 2 . 14 : 2 L 2

 21422 Figure 2.14: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u 0 = 1 and a 0 = 1. Red: Time evolution of the theoritical energy z 0 2 L 2 (0,L) e -2µt . Dotted line: Time evolution of the solution without saturation z w and a 0 = 1.

Figure 2 . 15 :

 215 Figure 2.15: Blue: Time evolution of the energy function z 2 L 2 (0,L) with a saturation u 0 = 1, a 0 = 1 and Ω = 1 3 L, 2 3 L . Dotted line: Time evolution of the solution without saturation z w with a 0 = 1 and Ω = 1 3 L, 2 3 L .

Theorem 3 . 2 (

 32 [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF], Theorem 1.) (i) For any positive value λ, there exist a feedback control u = u(z(t, •)) and a positive value D such that the strong solution to (3.14) satisfies z(t, •) L 2 (0,L) ≤ De -λt z 0 L 2 (0,L) , ∀t ≥ 0;(3.18)(ii) For any positive value λ, there exist a feedback control u = u(z(t, •)) and two positive values D and r such that the mild solution to (3.16) satisfies

k 1

 1 (0, s)z(t, s)ds.(3.23) Let us prove that the origin of (3.22) is globally exponentially stable. Focus on the following Lyapunov function

2

 2 

3. 2 . 3

 23 Dynamic output feedback design for(3.16) 

3. 2 .

 2 Output feedback law for some Korteweg-de Vries equations 93 3.2.3.3 Observer design for the linearized system The observer (3.85) is based on a Volterra transformation. It transforms the solution z := z -ẑ which fullfills the following PDE

  84)-(3.85)-(3.91) through the transformations (3.86) and (3.95) can be written as follows

L x k 2

 2 (x, y)p 2 (y)dy w(t, L), ŵ(t, 0) = ŵx (t, L) = ŵxx (t, L) = 0, wt + wx + wxxx + λ w = 0, w(t, 0) = wx (t, L) = wxx (t, L) = 0. (3.105)

1 3 96 Chapter 3 . 1 3

 19631 (0, T ; L 2 (0, L)). Thus the control defined by Output feedback stabilization of Korteweg-de Vries equations (3.91) belongs to H (0, T ), which is the desired regularity for the input. The existence of solutions and the exponential decay for system (3.84)-(3.85)-(3.91) is obtained by the invertibility of the transformations (3.86) and (3.95).

  T ) 2 := B(T ) × B(T ) and z, ẑ ∈ B(T ) are the solutions of the linear closed loop system (3.84)-(3.85)-(3.91).

Lemma 3. 5

 5 Given a positive value T , let z ∈ B(T ). Then zz x ∈ L 2 (0, T ; L 1 (0, L)). Moreover, for every z ∈ B(T )zz x L 2 (0,T ;L 1 (0,L)) ≤ z L 2 (0,T ;H 1 (0,L)) z C([0,T ];L 2 (0,L)) (3.120) 3.2.3.6 Proof of Theorem 3.6 -Well-posedness

k 2

 2 (0, s)ẑ(t, s)ds, (3.132) and y 2 (t) = z(t, L). (3.133)

3 2 . 1 L 0 |

 3210 (3.143) Therefore, for M 1 , M 2 , µ satisfying (3.113), (3.114) and (3.116), we haved dt V ( ŵ, w) ≤ -2µV ( ŵ, w) + K ŵ(t, x)| 2 dx 3 2

Figure 3 .

 3 1 illustrates the convergence to the origin of the solution to the closed-loop system (3.14), (3.40) and (3.68).Figure 3.2 illustrates the L 2 -norm (3.14) with (3.68) and the L 2norm of the solution to the observer (3.81) with (3.68). Finally, Figure 3.3 illustrates the time evolution of the L 2 -norm of the observation error (z -ẑ) and of C(z 0 -ẑ0 )e -µt where C = 2 and µ = 0.4. Note that the observation error converges to 0 in L 2 -norm. From the simulations, this convergence seems to be exponential as expected.
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 3132 Figure 3.1: Solution to the closed-loop system (3.14)-(3.68)

2 L 2

 22 (0,L) e -µt

Figure 3 . 3 : 2 L 2 ( 3

 33223 Figure 3.3: Time evolution of the L 2 -norm for the observation error z -ẑ and of C z0 2 L 2 (0,L) e -µt

Figure 3 . 4 :

 34 Figure 3.4: Solution to the closed-loop system (3.16) and (3.81)with u given by (3.132).

Figure 3 . 5 : 2 L 2

 3522 Figure 3.5: Time evolution of the L 2 -norm of the plant (blue line) and of the observer (red line).

Figure 3 . 6 : 2 L 2

 3622 Figure 3.6: Time evolution of the L 2 -norm for the observation error z-ẑ and of z0 2 L 2 (0,L) e -µt

4. 1 . 1

 11 Complete uniform observability 4.1.1.1 Why may the separation principle fail ?

Example 4. 1

 1 Consider the following system

4. 2

 2 Semi-global stabilization by an output feedback law from a hybrid state controller 4.2.1 Main results

Assumption 4 . 3 (

 43 Robust Lyapunov function) Let B be an open subset of R np × R nc and let denote A := {0} × [0, 1] ⊂ B × R ≥0 . There exist a hybrid controller defined by (F c , J c , f c , g c , θ c ), where F c and J c are closed sets, F c ∪ J c = R np+nc , g c : R np+nc → R nc , f c : R np+nc → R nc and θ c : R np+nc → U are continuous functions, a positive value λ in (0, 1), positive values α 1 and α 2 ∈ (0, 1) and a C 1 proper 5 function

(

  zp+e,zc,τ )∈(D l 4 ∩Fc×R ≥0 ),|e|≤s ν 1 (Z, e) , max (zp+e,zc,τ )∈(D l 4 ∩Jc×R ≥0 ),|e|≤s ν 2 (Z, e) where ν 1 (Z, e) = ∂V ∂Z (Z) (F (Z, z p + e) -F (Z, z p )) , and ν 2 (Z, e) = |V (G(Z, z p + e)) -V (G(Z, z p ))| . With this function, Assumption 4.3 is satisfied. This ends the proof of Assumption 4.3 from Assumption 4.1. Therefore, as soon as Theorem 4.3 is valid, Theorem 4.2 holds under Assumptions 4.1 and 4.2.
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 422224 Figure 4.2: Case 1: j = 1. Continuous lines stand for flows. Dotted lines stand for jumps.

Lemma 4 . 2 ( 1 Ã

 421 Tunable observer)Let Ψ p : R np × R × R → R np be defined by Ψ p (ẑ p , y, u) = ∂φ ∂z p (ẑ p , u)-(φ(ẑ p )) + B(φ(ẑ p ))u + LK[y -h(ẑ p )] (4.37)where à : R np → R np and B : R np → R np are functionsÃ(w) = [ w 2 ... wn p χ(w) ]4.2. Semi-global stabilization by an output feedback law from a hybrid state controller 125 B(w) = [ b1 (w 1 ) ... bnp-1 (w 1 ,...,w np-1 ) bnp (w 1 ,...,wn p ) ] andL = diag( , . . . , np ) (4.38)where is a positive real number larger than 1 and K = [ -k 1•••-kn p ] is such that the matrix is Hurwitz. Note that the functions 8 bi : R i → R, i = 1, . . . , n p and χ : R np → R are such that 1. For all w in φ(D l 4 ), χ(w) = χ(w) and bi (w) = b i (w) where χ and (b i )'s are defined in (4.36); 2. χ and bi are globally Lipschitz functions. Moreover there exists a class KL function β such that for all solutions z p to (4.13) and all solutions ẑp to d dt ẑp = Ψ p (ẑ p , y, u) (4.40) with initial condition (z # p , ẑ# p ) ∈ Π p (D l 1 ) × Π p (D l 1 ), input u(•) taking value in U ∩ [-ū, ū], and for all t such that z p (s) ∈ Π p (D l 4 ), where s ∈ [0, t], the following holds: 1. |z p (s) -ẑp (s)| ≤ β(|z # p -ẑ# p |, s), ∀s ∈ [0, t]; 2. If t ≥ T min , |z p (s) -ẑp (s)| ≤ c e , ∀s ∈ [T min , t] .

) 2 , 4 . 2 4. 2 . 2 . 5 3

 2422253 |χ(z 1 ) -χ(z 2 )| ≤ c χ |z 1 -z 2 |.Note also that from the definition of φ we have y = h p (φ(z p )) = z 1 . With the Lipschitz property, the bi terms satisfy, for all (z 1 , z2 ) ∈ Π p (D l 4 ) 2 ,| bi (z 1 ) -bi (z 2 )| ≤ c b i i j=1 |z 1 j -z 2 j |.Moreover, setting ŵ := φ(ẑ p ), it yields along the solutions to (4.40):d dt ŵ = Ã( ŵ) + B( ŵ)u + LK[y -ŵ1 ],(4.41)As standard in high-gain observer design, let ẽ be the scaled error components: Semi-global stabilization by an output feedback law from a hybrid state controller Therefore, as soon as z p ∈ Π p (D l 4 ), it holdsd dt ẽ = Gẽ + ∆( ŵ, z p , u),(4.43)where ∆( ŵ, z p , u) is obtained from χ and bi for all i = 1, . . . , n p . From the structure of the observation error, there exists a positive real number c ∆ such that for all (ẑ, z p , u) inR n d × Π p (D l 4 ) × U ∩ [-ū,ū] and for all > 1 |∆( ŵ, z p , u)| ≤ c ∆ |ẽ|. The matrix G being Hurwitz, there exist a positive definite matrix P and a positive value d satisfying P G + G P ≤ -dP. (4.44) Let U : R np → R ≥0 be the following (Lyapunov) function U (ẽ) = ẽ P ẽ. Its time derivative along the solutions to the system (4.43) with (ẑ,z p , u) in R n d × Π p (D l 4 ) × U ∩ [-ū, ū]and > 1 satisfies the following inequalities.d dt U (ẽ) ≤ -dU (ẽ) + 2ẽ P ∆( ŵ, z p , u) ≤ -dU (ẽ) + 2c ∆ |P ẽ||ẽ| ≤ -dU (ẽ) + 2c ∆ λ max (P ) λ min (P ) U (ẽ) (4.45)Consider a solution z p to (4.13) and a solution ẑp to (4.40) with initial condition(z # p , ẑ# p ) ∈ Π p (D l 1 ) 2 , input u(•) taking value in U ∩ [-ū, ū], and t such that z p (s) is in Π p (D l 4 ) for all s in [0, t].With Grönwall lemma, we get along this solutionU (ẽ(t)) ≤ exp -d -2c ∆ λ max (P ) λ min (P ) t U (ẽ(0)) (4.46)Moreover, for all (z p , ŵ), it holds that|φ(z p ) -ŵ| 2 λ min (P ) 2np ≤ U (ẽ) ≤ λ max (P ) 2 |φ(z p ) -ŵ| 2 ,hence, for all t ≥ 0|φ(z p (t)) -ŵ(t)| ≤ exp -2 d -c ∆ λ max (P ) λ min (P ) t np-1 λ max (P ) λ min (P ) |φ(z # p ) -φ(ẑ # p )|. (4.47)Note that Π p (D l 4 ) and φ(Π p (D l 4 )) are compact subsets of R np and that the functions φ :R np → R np and φ -1 : R np → R np are continuous. Hence, the two class K functions ν and ν * can be defined asν(s) = max zp∈Πp(D l 4 ),|z * p -zp|≤s |φ(z p ) -φ(z * p )| ν * (s) = max z∈φ(Πp(D l 4 )),|w * -w|≤s |φ -1 (w) -φ -1 (w * )| .These functions satisfy that, for all w in φ(Π p (D l 4 )) and ŵ in R np ,|φ -1 (w) -φ -1 ( ŵ)| ≤ ν * (|w -ŵ|) , (4.48) |w -ŵ| ≤ ν(|φ -1 (w) -φ -1 ( ŵ)|) . (4.49)4.2. Semi-global stabilization by an output feedback law from a hybrid state controller 127Let now > 1 be any positive real number such thatΩ( ) := 2 d -c ∆ λ max (P ) λ min (P ) > 0 ν exp (-Ω( )T min ) np-1 M ≤ c e ,(4.50)where M := 2 λmax(P ) λ min (P ) max z∈φ(Πp(D l 1 )) |z|. We can rewrite (4.50) as follows:exp -T min d 2 exp T min c ∆ λ max (P ) λ min (P ) np-1 ≤ ν -1 (c e ) MSince the exponential function dominates the polynomial function, the condition (4.50) is satisfied, for sufficiently large. From (4.47), (4.48) and (4.49) the first item of Lemma 4.2 holds with the function β(s, t) = ν * exp (-Ω( )t) np-1 λ max (P ) λ min (P ) ν(s) . The second item of Lemma 4.2 is deduced from (4.47), (4.48) and (4.50) and the fact that(z # p , ẑ# p ) ∈ Π p (D l 1 ) × Π p (D l 1 ). Proof of Theorem 4.Consider the positive value c x obtained in (4.35) and the function Ψ p obtained in (4.37). In the first part of the proof, we show attractivity of the set {0} × [0, 1] in R 2np+nc × [0, 1] along the solutions to system (4.28) whose initial condition is in Γ := Γ×{0}×R ≥0 ⊂ B p ×{0}×R ≥0 . The stability is shown in a second part.Note that the hybrid system (4.28) satisfies the basic assumptions for hybrid systems [34, Assumption 6.5.] with the flow set F o c = {(z p , ẑp , z c , τ ) ∈ R 2np+nc × R ≥0 : F(z p , ẑp , z c , τ ) ∈ R np × F c × R ≥0 } and the jump set J o c = {(z p , ẑp , z c , τ ) ∈ R 2np+nc × R ≥0 : F(z p , ẑp , z c , τ ) ∈ R np × J c × R ≥λ }, where F : (z p , ẑp , z c , τ ) → (z p , sat cx (ẑ p ), z c , τ ).

  [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] are given by Figure4.3. The first figure illustrates the convergence of the observer, the second the asymptotic stability of the closed-loop system.

Figure 4 .

 4 4 illustrates the phase portrait of z p .

Figure 4 . 3 :

 43 Figure 4.3: Time evolution of z p 1 (blue plain line) and ẑp 1 (red dashed line).

  State phase of the closed-loop system

Figure 4 . 4 :

 44 Figure 4.4: Phase portrait of the state z p .

z 2 D 2 L 2 1 0Note that we have z 2 D(Aσ) ≥ z 2 L 2 (Noticing that z 2 L 2 2 L 2 (0, 1 ) = z + z 2 L 2 (0, 1 ) + z 2 L 2 (0, 1 ) = z 2 L 2 (0, 1 ) + z 2 L 2 (

 22212222222122122122122 (Aσ) := z 2 L 2 (0,1) + A σ z (0,1) = |z(x)| 2 + |z (x) + sin(z)(x) -σ (z) (x)| 2 dx (B.13) ) + sin(z)(x) -σ(z)(x)| 2 dx (0,1) = z -z + z 2 L 2 (0,1) , we have z z (x)dx + z L 2 (0,1) .

  η + λG (χ, ξ)dξdτ dχ, (C.12)

  

  Semigroup theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Stabilization of nonlinear systems with a cone-bounded controller . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≥0 ×R ≥0 → R ≥0 is said to be a class KL function if, for each nonnegative value s, the function r → β(r, s) is a class K function and, for every positive value r, the function s → β(r, s) is strictly decreasing and satisfies lim
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  .9) Chapter 4. Semi-global stabilization by an output feedback law from a hybrid state controller that escape to infinity in finite time. Indeed, denoting by zp 2 (t) := z p 2 -ẑp 2 (t) := z# p 2 e -t , where z# p 2 := z # p 2 -ẑ# p 2 , the first line of the latter system can be written as follows d dt z p 1 = -z p 1 + z 2

	p 1	z# p 2 e -t .	(4.10)
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	Example 4.3
	A classical system to illustrate this restriction is the Brockett's integrator

  Theorem 4.3 (Design of an output feedback law) Under Assumptions 4.2 and 4.3, assume that the set defined by (4.27) is a compact subset of B. Then the set {0} × [0, 1] in R np+nc × R is semi-globally asymptotically stabilizable. In other words, the conclusion of Theorem 4.2 holds. Moreover c x is computed in Section 4.2.2.3 and ψ p is computed in Section 4.2.2.4 from the Lyapunov function V together with the robustness margin ε r and the positive value λ of Assumption 4.3, and from the function φ of Assumption 4.2.

  4.2. Semi-global stabilization by an output feedback law from a hybrid state controller 121 4.2.2.3 Selection of c x and minimal time of existence of solutions

  -global stabilization by an output feedback law from a hybrid state controller 123 Figure 4.1: Case 1: j = 0 t = max s∈[t 0 ,t],Z( ,1)∈D l 4 ,∀ ∈[t 0 ,s] {s}). Note that if t = t then this implies that Z(t, 1) is in D l 4 , hence the result. Assume t < t. This implies that, for all s in [t 0 , t ], it holds

	D l1
	Z(t 1 , 0)
	Z(t 0 , 0)
	D l2

d dt V (s, 1) = ∂V ∂Z (Z(s, 1

D(A) is said to be dense in Z if D(A) = Z

The proof of this result is provided in[START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] Chapter 2, Page 

[START_REF] Isidori | Nonlinear control systems[END_REF]. It uses the so-called Hahn-Banach theorem.

A subset in a topological space is said to be precompact if its closure is compact.

A set Z ⊂ Z is said to be an invariant set of Z through (W (t)) ≥0 if, for any w ∈ Z, W (t)w ∈ Z for all t ≥ 0

A function t → W is said to be sequentially weakly continuous on Z if, for every φn, φ ∈ Z such that φn Z φ, then W (t)φn Z W (t)φ

Given a positive value T , the system (2.12) is said to be exactly controllable in time T if, for every z0, zT ∈ L

(0, L), there exists a control u ∈ L 2 (0, T ) such that the solution to (2.12) satisfies z(T, •) = zT (•).

The origin of (2.17) is said to be locally asymptotically stable if there exists a positive value r such that, for any initial condition z0 ∈ L 2 (0, L) satisfying z0 L 2 (0,L) ≤ r, the origin is Lyapunov stable and the state z converges to 0 as t goes to infinity

The system(2.16) is said to be locally exactly controllable for large time T if there exists two positive values TM and r such that, for any positive value T satisfying T > TM and any z0, zT ∈ L 2 (0, L) satisfying z0 L 2 (0,L) ≤ r and zT L 2 (0,L) ≤ r, there exists u ∈ L 2 (0, T ) such that the solution to (2.16) satisfies z(T, •) = zT (•).

This saturation seems more natural when studying the stability with respect to an energy, but it is less relevant than sat loc for applications. Figure2.1 illustrates how different these saturations are.Since these two operators have properties in common, we will use the notation sat all along this chapter. However, in some cases, we get different results. Therefore, the use of a particular saturation is specified when it is necessary.Note that, all along this chapter, T is a positive value which refers to a time. We are now able to state the main contributions of this chapter.Theorem 2.4 (Well posedness)Given a positive value T , for any initial condition z 0 ∈ L 2 (0, L), there exists a unique mild solution z ∈ C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) to (2.25).

With g = 0, the existence and the unicity of z are ensured since A generates a strongly continuous semigroup of contractions. The result follows applying Theorem 1.4. It follows from the semigroup theory the existence and the unicity of z when g ∈ L 1 (0, T ; L 2 (0, L)) (see[START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Given n ∈ N, a matrix A ∈ R n×n is said to be Hurwitz if every eigenvalue of A has strictly negative real part.

The static output feedback u = -y 5 stabilizes the origin of (4.1). The feedback law used in this example has only an educational interest.

Given a positive real number c, satc : R n → R n is the saturating vector function defined by satc(0) = 0 and satc(zp) := zp min 1, c |zp| , ∀x = 0.

A map is called proper if inverse images of compact sets are compact.

This function is well defined due to the fact that Fc and Jc are closed sets.

The definition of dom(Z) is borrowed from[START_REF] Goebel | Hybrid Dynamical Systems[END_REF] Definition 2.3].

These functions exist from the Kirszbraun extension theorem, see e.g. [29, Definition 2.10.43] and from the fact that φ(D l 4 ) is a compact subset of R np .

Remerciements

with M 1 , M 2 two positive values that have to be chosen later.

Remark 3.4

We can prove that this Lyapunov function is equivalent to the one obtained by replacing V 3 ( wt ) by

By this, we mean that the exponential decay of one of them implies the exponential decay of the other one. In fact, we can prove that there exist positive constants d 1 , d 2 such that

Taking the time derivative of the function V ( ŵ, w, wt ), we get after some computations that

where D := max x∈[0,L] p 1 (x) -L x k(x, s)p 1 (s)ds .

From the same computation as in (3.27), we see that

Moreover, thanks to the regularity H 3 (0, L), the same computation can be applied to z = wt (see the proof of Lemma 3.1) to obtain

Thus, we get:

We need to find an upper bound for | wxx (t, L)| 2 . We multiply wt + wx + wxxx + λ w = 0, w(0) = w(L) = wx (L) = 0, (3.78)

Chapter 4. Semi-global stabilization by an output feedback law from a hybrid state controller Assumption 4.1 (Persistent Flow Stabilizability) There exists a hybrid controller defined by (F c , J c , f c , g c , θ c ), where F c and J c are closed sets, F c ∪ J c = R np+nc , g c : R np+nc → R nc , f c : R np+nc → R nc and θ c : R np+nc → U are continuous functions and a positive value λ in (0, 1) such that the set {0} × [0, 1] in R np+nc × R is asymptotically stable for the system:

The sets F c × R ≥0 and J c × R ≥λ are called respectively the flow and jump sets associated to the continuous and discrete dynamics. The notion of solutions and of asymptotic stability discussed all along the chapter are borrowed from [START_REF] Goebel | Hybrid Dynamical Systems[END_REF].

Note that the set B allows us to consider cases where the stabilizability of the origin of the closed-loop system is only local. In the case where B := R np+nc , the stabilizability property becomes global.

Remark 4.3

An important feature of the hybrid state feedback control law is that its dynamics include a timer τ . It implies that there exists a dwell time between two consecutive jumps and consequently it prevents the existence of Zeno solutions. In the case in which this property is not satisfied for the state feedback, a timer can be added as presented in [START_REF] Cai | Smooth Lyapunov Functions for Hybrid Systems Part II : (Pre)Asymptotically Stable Compact Sets[END_REF]Part V,C.]. Such a technique is called a temporal regularization. However, in this case, only semi-global practical stabilizability is obtained.

The problem under consideration in this chapter is to design a stabilizing output feedback law based on this hybrid state feedback. The design presented in this chapter requires the following complete uniform observability assumption. Assumption 4.2 ((Global) Complete Uniform Observability) System (4.13) is completely uniformly observable.

Remark 4.4

In [START_REF] Marx | Using a high-gain observer for a hybrid output feedback: finite-time and asymptotic cases for SISO affine systems[END_REF], from a weaker observability assumption, i.e. an observability property holding for just one control, a finite-time convergent observer and a hybrid state feedback controller has been used to design an output feedback law. Such a strategy does not need a persistent flow 4.2. Semi-global stabilization by an output feedback law from a hybrid state controller 117

stabilizability assumption. However only a weak stability property is obtained for the closedloop system.

First main result

Inspired by the approach of [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF], from Assumptions 4. 

where zp is defined by

with basin of attraction containing

The design of the output feedback law which proves this theorem is based on a Lyapunov inverse theorem. However, two datas miss in the output feedback law given in Theorem 4.2: the positive real number c x , the saturation level for the feedback law, and the observer dynamics Ψ p . In order to give an explicit result, the existence of a robust Lyapunov function is assumed, in the next section. There exists T min > 0 such that for all ω in L ∞ loc ([0, +∞); R np ) with |ω(t)| ≤ c x for all t in [0, T min ], and all Z # := (z # p , z # c , τ # ) in D l 1 , all solutions Z(•, •) to (4.34) with Z(0, 0) = Z # and all (t, j) in dom(Z) 7 then Z(t, j) ∈ D l 4 for all 0 ≤ t ≤ T min .

Proof of Lemma 4.1:

Let V the positive real number defined by

In the remaining part of the proof, we show that Lemma 4.1 holds with T min chosen as any positive real number satisfying

Let Z # be in D l 1 and let Z be a solution to system (4.34) whose initial condition is Z # . For all (t, j) in dom(Z). To ease the notation we denote V (t, j) = V (Z(t, j)).

Let (t, j) in dom(Z) such that 0 ≤ t ≤ T min . To prove the lemma, we need to show that Z(t, j) is in D l 4 . First of all, we show that j ≤ 1. Indeed, assume j ≥ 2. This implies that there exist t 0 and t 1 such that 0 ≤ t 0 < t 1 ≤ t such that (t 0 , 0), (t 0 , 1), (t 1 , 1), (t 1 , 2) are in dom(Z). Note that τ (t 0 , 1) = 0 and τ (t 1 , 1) = λ. Moreover, for all s in [t 0 , t 1 ], (s, 1) is in dom(Z) and d dt τ (s, 1) = 1 -τ (s, 1). Hence, integrating this equation between t 0 and t 1 , we get that t ≥ t 1 -t 0 > -ln(1 -λ) ≥ T min . This is impossible, and therefore j ≤ 1.

So two cases may be distinguished.

which contradicts the fact that t is an extremum. j = 1 This case is illustrated by Figure 4.2. j = 1 implies that there exists t 0 in [0, t] such that (t 0 , 0) and (t 0 , 1) are in dom(Z) and (w(t 0 , 1), z c (t 0 , 1)) is in J c . Following the first case study, it is possible to show that Z(t 0 , 0) is in D l 2 . Moreover, we have z p (t 0 , 1) = z p (t 0 , 0) and z c (t 0 , 1) = g c (w(t 0 ), z c (t 0 , 0). This implies that Z(t 0 , 1) 

It is now possible to show that for all (t, j) in dom(Z), Z(t, j) is in D l 4 . We will argue by contradiction to prove this assertion. By assuming that it is false, two cases may occur.

• The solution escapes D l 4 when flowing. Hence, there exists (t 0 , j 0 ) in dom(Z) such that (z p , z c , τ )(t 0 , j 0 ) is in D l 4 and for all ε > 0, there exists δ < ε such that (t 0 + δ, j 0 ) is in dom(Z) and (z p , z c , τ )(t 0 + δ, j 0 ) is not in D l 4 . Note that this implies that (z p , z c )(t 0 , j 0 ) is at the boundary of D l 4 . Consequently, this implies V (t 0 , j 0 ) = l 4 . Note moreover, keeping in mind that |z p (t 0 , j 0 ) -zp (t 0 , j 0 )| ≤ |z p (t 0 , j 0 ) -ẑp (t 0 , j 0 )| ≤ c e ≤ ε r we get, from Assumption 4.3,

2 . This implies that the function s → V (t 0 + s, j 0 ) is strictly decreasing. It contradicts the existence of small ε.

• The solution escapes D l 4 when jumping. Hence, there exists (t 0 , j 0 ) in dom(Z) such that

2 )l 4 < l 4 . This is a contradiction with the escape of the solution from D l 4 .

Consequently, for all (t, j) in dom(Z), we have Z(t, j) is in D l 4 . Note that the timer forces the t direction of the time domain to be unbounded. Hence, thanks to the Lemma 4.2, lim t+j→+∞ |ẑ p (t, j) -z p (t, j)| = 0. We get the result employing the triangular structure of the system with the ISS property in D l 4 (i.e. Assumption 4.3) (see e.g. [9, Theorem 3.1.]).

Second Part: Stability. To conclude the proof, let us prove the stability property. Let S ε be defined by S ε = {(z p , z c , ẑp , τ ) : V (z p , z c , τ ) ≤ ε and |z p -ẑp | ≤ ε}, where ε < l 1 . Moreover, let N l be an open neighborhood of A defined as Let us show that this solution Z remains in S ε . Note that ẑp (0, 0) and z p (0, 0) are in Π p (D l 1 ). With Lemma 4.2, it yields that for all (t, j) in dom Sε (Z),

Moreover, (z p (t, j), z c (t, j), τ (t, j)) is in 

Hence, it can not escape S ε by flowing since it does not reach the boundary of S ε . Moreover, for all (t, j) in dom Sε (Z) such that (t, j + 1) is in dom(Z), from the ISS inequalities of Assumption 4.3 once again, it yields, if

Thus, if the initial condition Z # is in N l , then the solution remains in S ε . Since S ε can be made as closed as wanted from A, this proves stability of the set A and concludes the proof of Theorem 4.2. 2

Example

To illustrate Theorem 4.2, the following second order system is considered:

With u = sat us (v), U = [-u s , u s ] and u s = 3, it is a system of the form (4.13). Note that the set of control U is bounded and that y = x p 1 . Consequently, despite the fact that the dynamics are linear, the stabilization problem for this system is not an easy task although recent works [START_REF] Yuan | Switching control of linear systems subject to asymmetric actuator saturation[END_REF][START_REF] Hu | Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions[END_REF] propose design methods for saturated actuator. The strategy presented in this chapter can be also efficient for purely nonlinear systems as it is shown in [START_REF] Marx | Using a high-gain observer for a hybrid output feedback: finite-time and asymptotic cases for SISO affine systems[END_REF] where it is proven the existence of a hybrid output feedback for a chain of integrators with a nonlinearity from a state feedback uniting a global and a local controllers. Following [START_REF] Loquen | Stability analysis for reset systems with input saturation[END_REF], we compute the hybrid controller such that A = {0} × {0} × {0} × [0, 1] is locally asymptotically stable for the FORE system

Perspectives

The main remaining challenges are

• extending our results for abstract nonlinear control systems with unbounded control operators. At the best of our knowledge, numerous problems remain open;

• studying other nonlinearities than the cone-bounded ones for a abstract control system or a particular partial differential equation (the Korteweg-de Vries equation, for example).

The backlash nonlinearity, studied in [START_REF] Tarbouriech | Stability analysis and stabilization of systems with input backlash[END_REF], could be interesting;

• studying the influence of the saturation on the stabilizing backstepping controller designed for the Korteweg-de Vries equation. Some tools from saturation control systems could be used;

• studying the influence of the saturation on a boundary stabilizing feedback law for hyperbolic systems (see e.g. [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]). It could be also interesting to follow in this case the anti-windup strategy [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF];

• extending the high-gain observer theory for the Korteweg-de Vries equation. In order to be close to the finite-dimensional case, the nonlinearity should be studied at the boundary;

• developping new observer strategies for infinite-dimensional systems. The Kazantzis-Kravaris/Luenberger one, introduced in [4], could be interesting. In particular, it could be used to solve some parametric estimation problems, as is has been done in the linear finite-dimensional case in [1];

• studying the output feedback stabilization for hybrid nonlinear finite-dimensional systems. Indeed, instead of studying a continuous plant, it could be interesting to study a hybrid plant;

• solving the output feedback stabilization for the Brockett's integrator for which there exists a hybrid state feedback law. The design of this state feedback law is provided in [START_REF] Goebel | Smooth patchy control Lyapunov functions[END_REF].

Appendix A

Precompactness of the operator given by the KdV equation with a cone-bounded feedback law

This section is devoted to the proof of the precompactness of the canonical embedding from D(A σ ) = D(A), defined in (1.47), into Z := L 2 (0, L). Let us state the lemma and prove it.

Lemma A.1

The canonical embedding from D(A σ ), equipped with the graph norm, into

Proof of Lemma A.1: We follow the strategy of [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], [START_REF] Prieur | Wave Equation with Cone-Bounded Control Laws[END_REF] and [START_REF] Novel | Feedback Stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]. Let us recall the definition of the graph norm

From the definition of the graph norm, we get the following two inequalities

and, since, for all (s, s) ∈ C 2 , it holds |s + s| 2 ≤ 2|s| 2 + 2|s| 2 , we have

Appendix A. Precompactness of the operator given by the KdV equation with a cone-bounded feedback law

Deriving some integrations by parts, we get

and therefore

Hence,

Plugging inequality (A.5) in (A.7), we have

Therefore,

Considering Equations (A.3) and (A.4), it leads us to the following inequality, for all z ∈ D(A),

where ∆ is a term which depends only on L.

Thus, if we consider now a sequence {z n } n∈N in D(A σ ) bounded for the graph norm of D(A σ ), we have from (A.9) that this sequence is bounded in H 1 0 (0, L). Since the canonical embedding from H 1 0 (0, L) to L 2 (0, L) is compact, there exists a subsequence still denoted {z n } n∈N such that z n → z in L 2 (0, L). Thus Z belongs to L 2 (0, L) which allows us to state that D(A σ ) embedds compactly in Z. It concludes the proof of Lemma A.1.

Appendix B

Nonlinear heat equation: m-dissipativity and precompacity The proof of Theorem B.1 is divided into two steps. First, the operator A is proved to be dissipative. Secondly, we prove that, for all f ∈ L 2 (0, L), there exist z ∈ D(A) such that

Let us recall that the dissipativity and the existence of z ∈ D(A) such that (B.1) holds imply that A is an m-dissipative operator (see Definition 1.1).

First step: Dissipativity of the operator A.

Note that we have

Performing some integrations by parts leads to

Moreover, using the fact that sin is Lipschitz together with a Poincaré inequality, one has

Hence, it is easy to see that Az -Az, z -z L 2 (0,1) ≤ 0. where z ∈ L 2 (0, 1). It is easy to see that there exists a unique solution to (B.7).

Focus on the map

where z = T (z) is the unique solution to (B.7).

We define

From the theorem of Rellich, the injection of H 1 0 (0, 1) in L 2 (0, 1) is compact, then C is bounded in H 1 0 (0, 1) and is relatively compact in L 2 (0, 1). Moreover, it is a closed subset of L 2 (0, 1). Thus C is a compact subset of L 2 (0, 1). In order to apply the Schauder theorem, we have to prove that T (L 2 (0, 1)) ⊂ C for a suitable choice of M and λ. Let us multiply the first line of (B.7) by z and then integrate between 0 and 1. After some integrations by parts, one has

Hence, applying Cauchy Schwarz inequality leads to Thus, if we consider now a sequence {z n } n∈N in D(A σ ) bounded for the graph norm of D(A σ ), we have from (A.9) that this sequence is bounded in H 1 0 (0, L). Since the canonical embedding from H 1 0 (0, L) to L 2 (0, L) is compact, there exists a subsequence still denoted {z n } n∈N such that z n → z in L 2 (0, L). Thus z belongs to L 2 (0, L) which allows us to state that D(A σ ) embedds compactly in Z. It concludes the proof of Lemma B.1.

Appendix C

Successive approximation method. Application to the kernel existence problem

C.1 Presentation of the method

Let us consider the following initial problem:

By observing this problem, we can assume that:

is a solution of (C.1). In other words, the solutions of (C.1) are also solutions of (C.2). However, we have to prove the existence of such solutions. The successive approximation method proposes to consider a sequence of approximations that has to get closer and closer to the solutions of (C.2). These approximations are all based on (C.2) as follows: Let us transform this system into an integral one. We write the equation in variables (χ, ξ), integrate ξ between 0 and τ and use that G t (η, 0) = λ 6 (η -2L). Next, we integrate τ between 0 and t and use that G η (χ, 0) = 0. Finally, we integrate χ between η and 2L -t and use that G(η, 2L -η) = 0. Then, we get an integral expression of (C. C.2. Application of the method [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries Equation from the left Dirichlet boundary condition[END_REF]