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Résumé de la thèse

Nombre de phénomènes physiques sont modélisés par des équations différentielles. Dans le
cadre de la théorie des systèmes, on parle de systèmes dynamiques. Parmi tous ces systèmes
dynamiques, il y en a quelques uns qui comportent des variables sur lesquels on peut agir (une
tension, une force, une pression, etc...). Ces variables sont désignées sous le nom de contrôle.
Le reste des variables, sur lesquelles on ne peut agir, sont désignées sous le nom d’état.

L’objet de la théorie du contrôle est d’étudier de construire ce contrôle de manière à donner
au système dynamique un comportement désiré établi par un cahier des charges. L’une des
propriétés recherchées pour le système dynamique est la stabilité globale asymptotique d’un
de ses points d’équilibre. Une telle propriété est en fait la somme des deux propriétés suivantes
:

• (Attractivité) Un point équilibre est dit globalement attractif si, pour toutes conditions
initiales, toutes les trajectoires du système dynamique convergent vers cet équilibre;

• (Stabilité de Lyapunov) Un point équilibre est dit stable selon Lyapunov si, plus la
condition initiale est proche du point d’équilibre, plus les trajectoires qui en résultent
s’approchent du point d’équilibre.

Ce problème s’appelle le problème de stabilisation. Cette thèse s’intéresse particulièrement
à ce problème.

L’un des moyens d’atteindre un tel objectif est de construire une loi de rétroaction, aussi
connue sous le nom de la loi de feedback. Une loi de feedback est un contrôle qui dépend
de l’état entier ou d’une partie de ce dernier. L’un des avantages de cette méthode est qu’elle
permet au contrôle de réagir lorsque le système est sujet à des perturbations. En effet, notons
que la stabilité de Lyapunov permet d’obtenir des propriétés de robustesse par rapport à des
petites perturbations. En d’autres termes, si un tel contrôle existe, alors il est capable de
rejeter des perturbations de petite amplitude.

On parle de système en boucle ouverte lorsque le contrôle ne dépend pas de l’état et
de système en boucle fermée lorsqu’il en dépend.

Il existe aujourd’hui beaucoup de travaux sur la stabilisation de systèmes linéaires de di-
mension finie, c’est-à-dire de systèmes modélisés par des équations aux dérivées ordinaires.
De nombreuses méthodes efficaces et faciles à implémenter permettent aujourd’hui de sta-
biliser beaucoup de systèmes qui apparaissent dans de nombreux domaines industriels. Pour-
tant, physiquement, il n’est pas réaliste de s’intéresser à de tels systèmes. La plupart des
phénomènes physiques sont non-linéaires. Un nombre non négligeable d’entre eux sont égale-
ment modélisés par des équations aux dérivées partielles, qui représentent une large classe de
système de dimension infinie. L’objectif de cette thèse est d’apporter des méthodes d’analyse
ou de stabilisation de systèmes non-linéaires de dimension finie ou infinie.
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Nous nous intéresserons dans un premier temps au problème des contrôle contraints. La
plupart des contrôles sont en effet sujet à des restrictions. Notons notamment l’exemple
des systèmes issus de l’électronique, qui demandent aux contrôles de ne pas dépasser un
certain voltage. De tels phénomènes, qui sont purement non-linéaire, peuvent être modélisés
notamment par ce que l’on appellera dans cette thèse une non-linéarité bornée dans un
cône. Il est désormais connu depuis longtemps que négliger de tels phénomènes peut entraîner
des instabilités pour le système en boucle fermée. Une bonne introduction à ce problème se
trouve dans [94].

Il existe alors deux manières d’aborder ce problème. La première se fait en deux étapes :
dans un premier temps, une loi de feedback est construite en ne prenant pas en compte les
limitations du contrôle; puis, dans un second temps, on analyse la stabilité asymptotique du
système en boucle fermée, lorsque la saturation agit. La deuxième manière consiste à prendre
en compte cette contrainte lors de la construction de la loi de feedback.

Dans cette thèse, nous nous intéresserons à la première démarche. Nous l’appliquerons
notamment sur des systèmes non-linéaires de dimension infinie. Nous répondrons alors à la
question suivante :

Question 1 : Étant donnée une loi de feedback stabilisante pour un système non-linéaire de
dimension infinie, sous quelles conditions le système reste-t-il globalement asymptotiquement
stable lorsque l’on modifie la loi de feedback via une nonlinéarité bornée dans un cône ?

À notre connaissance, les articles pionniers sur ce sujet sont [84] et [81]. Ces articles
utilisent la théorie des semigroupes non-linéaires pour prouver la stabilité asymptotique de
systèmes de dimension infinie avec une loi de feedback stabilisante modifiée avec une non-
linéarité bornée dans un cône. Notons que la théorie des semigroupes non-linéaires vise à
généraliser les exponentielles de matrices dans des espaces de Banach ou de Hilbert.

Dans cette thèse, nous donnerons des résultats complémentaires à ces résultats pour des
systèmes non-linéaires abstraits et nous étudierons une équation aux dérivées partielles non-
linéaire particulière, à savoir l’équation de Korteweg-de Vries, qui modélise les mouvements
de vagues dans des canaux de faible profondeur.

Cette thèse apporte également des contributions dans le domaine du problème de la sta-
bilisation par retour de sortie. Récemment, de nombreux outils pour construire des lois de
feedback ont été développés. Cependant, beaucoup d’entre eux nécessitent la connaissance de
l’état entier. Dans la pratique, les capteurs ne peuvent pas mesurer tout l’état. Cela peut être
imputé aussi bien à des coûts de production qu’à des impasses technologiques. On ne peut
avoir accès qu’à une mesure partielle de l’état, que l’on nommera sortie.

Lorsqu’une loi de feedback dépend de la sortie, on parle alors de retour de sortie. On
oppose ce terme à celui de retour d’état, qui correspond à une loi de feedback qui dépend
de l’état tout entier. Pour construire un retour de sortie, il semble naturel de ne faire inter-
venir dans la loi de feedback que la sortie. Une telle loi de feedback est alors appelée retour
de sortie statique. Cependant, la construction d’un tel contrôle exige au système de sat-
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isfaire des propriétés algébriques contraignantes, et il est donc fructueux de faire appel à un
observateur.

Dans le cadre de la théorie du contrôle, un observateur se définit comme étant un système
dynamique, dépendant de la sortie du système de contrôle, et qui est construit de manière à
faire converger son état vers celui du système à contrôler. L’existence de ce système dynamique
dépend d’une propriété d’observabilité que doit satisfaire le système de contrôle.

Une fois que l’on est capable de construire un retour d’état et un observateur, on doit
analyser le système en boucle fermées lorsque l’état de l’observateur est injecté dans la loi de
commande par retour d’état. On parle alors d’un retour de sortie dynamique, puisque la
loi de feedback dépend désormais d’une dynamique supplémentaire.

On peut désormais établir une seconde question :

Question 2 : Étant donnés un observateur et un retour d’état pour une équation de
Korteweg-de Vries, le retour de sortie dynamique qui en résulte stabilise-t-il l’origine du sys-
tème en boucle fermée?

Cette seconde question est liée au principe de séparation, qui est satisfait pour les
systèmes linéaires de contrôle à temps invariant et de dimension finie. En d’autres termes, si
un tel système est stabilisable et observable, alors un observateur et un retour d’état peuvent
être construits séparément pour construire un retour de sortie dynamique stabilisant. Notons
qu’il n’existe pas de résultats généraux pour les systèmes linéaires de contrôle de dimension
infinie. Un résultat est établi dans [26], où les opérateurs de contrôle et de sortie sont bornés.
Cela signifie que le contrôle et la sortie ne se trouvent pas au bord de l’équation aux dérivées
partielles.

Il est établi depuis longtemps déjà que le principe de séparation n’est pas satisfait pour les
systèmes non-linéaires de dimension finie. L’article [3] rassemble quelques contre-exemples.
Cependant, il existe d’autres résultats généraux permettant de construire des retours de sortie
dynamique. L’un des plus connus, prouvé dans [97], établit le résultat suivant : si le système de
contrôle satisfait une propriété d’observabilité, connue sous le nom d’observabilité complète
uniforme, and si de plus il satisfait une propriété de stabilisabilité, alors on dit que le système
de contrôle est semi-globalement stabilisable au moyen d’un retour de sortie. Cette
propriété peut se décrire de la manière suivante : si la condition initiale appartient à un
compact, un observateur dépendant de ce compact peut être construit conjointement avec un
retour d’état dans le but de rendre asymptotiquement stable l’origine du système en boucle
fermée avec un bassin d’attraction contenu dans le compact.

Cette thèse apporte un résultat pour le cas des systèmes de contrôle pour lesquels il existe
un retour d’état hybride. Une telle loi de commande est une loi de commande dynamique
qui a un comportement à la fois continu et discret. Ces commandes se sont avérées très utiles,
car il existe des restrictions pour certains systèmes de contrôle. L’une des restrictions les plus
connues est la condition de Brockett, qui établit que si un système ne satisfait pas certaines
conditions, alors il ne peut pas être stabilisé au moyen d’une loi de commande continue. La
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seule manière de stabiliser de tels systèmes consiste soit à utiliser une loi de commande à
temps variant [21, Chapitre 11], soit à utiliser une loi de commande hybride. Nous ne nous
intéresserons qu’à la seconde stratégie de commande.

De ces définitions, une troisième question s’impose :

Question 3 : Si un système de contrôle est complètement uniformément observable et s’il
existe un retour d’état hybride stabilisant pour ce système, sous quelles conditions le système
est-il semi-globalement stabilisable?

L’objectif de cette thèse est donc de répondre à ces trois questions. Le manuscrit de thèse
est divisé en quatre chapitres. Le Chapitre 1 et 2 répondent à la Question 1. Le Chapitre 3
répond à la Question 2. Enfin, le Chapitre 4 répond à la Question 3.

Voici un résumé précis des chapitres de cette thèse:

Résumé des chapitres

• Le Chapitre 1 traite des systèmes de contrôle abstraits non-linéaires. Il débute par
l’introduction de notions essentielles pour la théorie des semigroupes non-linéaires et
par l’établissement de quelques résultats connus, utiles pour le développement des ré-
sultats obtenus lors de la thèse. Deux théorèmes sont présentés : le premier concerne
le caractère bien posé d’un système de contrôle abstrait non-linéaire lorsqu’on le boucle
avec une loi de commande stabilisante saturée. Une section est également consacrée
au positionnement de nos résultats par rapport à la littérature qui traite de ce sujet.
Quelques conditions sur le système en boucle fermée et sur la non-linéarité bornée dans
un cône sont données pour prouver le caractère bien posée du système en boucle fermée
ainsi que la stabilité asymptotique de l’origine de cette dernière. Deux exemples sont
présentés. Le premier est une équation de Korteweg-de Vries linéarisée, tandis que le
second est une équation de la chaleur non-linéaire;

• Le Chapitre 2 analyse l’équation de Korteweg-de Vries, dans le cas où son contrôle est
saturé par deux types de saturation. Quelques résultats sur la stabilité de l’équation sont
donnés. Notons que nous n’avons pas cherché à appliquer ici les résultats du Chapitre
1, car la théorie de semigroupes non-linéaires exige aux non-linéarités considérés de
satisfaire des propriétés restrictives que ne satisfait pas la non-linéarité l’équation de
Korteweg-de Vries. Nous établissons deux résultats: le premier sur le caractère bien
posé du système en boucle fermée, le second sur la stabilité asymptotique de l’origine
du système en boucle fermée. Le caractère bien posé est prouvé grâce au théorème du
point fixe de Banach et quelques estimées déjà établis dans des articles, tandis que la
preuve de la stabilité asymptotique est séparée en deux cas : i) quand le contrôle agit sur
tout le domaine, une fonction de Lyapunov ainsi qu’une condition de secteur décrivant
l’entrée saturée sont utilisées pour établir la stabilité asymptotique; ii) lorsque le contrôle
est localisé, nous prouvons le résultat avec un raisonnement par l’absurde. Un schéma
numérique est donné ainsi que des simulations illustrant la stabilité asymptotique du
système non-linéaire en boucle fermée de dimension infinie;
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• Le Chapitre 3 traite du problème de stabilisation par retour de sortie pour deux équations
de Korteweg-de Vries. La première est linéaire, tandis que la seconde est non-linéaire. La
construction des retours de sortie est basée sur la méthode de backstepping, qui est in-
troduite dans le livre [85]. Cette méthode consiste à trouver une transformation bijective
qui lie un système en boucle ouverte instable à système cible dont on choisit l’origine
globalement asymptotiquement stable. Elle permet notamment de construire des re-
tours d’état et des observateurs. Le caractère bien posé de l’équation non-linéaire est
prouvé en appliquant le théorème de point-fixe de Banach, tandis que celui de l’équation
linéaire est prouvé en faisant appel à quelques résultats basiques de la théorie des semi-
groupes linéaires. La stabilité exponentielle des systèmes en boucle fermée est prouvée
avec quelques fonctions de Lyapunov. Des simulations numériques ont été faites pour
illustrer nos résultats théoriques;

• Le Chapitre 4 traite de la stabilisation semi-globale de systèmes non-linéaires de dimen-
sion finie pour lesquels il existe un retour d’état hybrid régularisant. Une hypothèse de
stabilisabilité hybride locale ainsi qu’une hypothèse d’observabilité complète uniforme
permettent de construire une loi de commande qui stabilise d’un ensemble d’équilibre
avec un retour de sortie hybride. Une propriété de timer est exploitée pour la construc-
tion explicite de telles lois de commande. Le résultat est illustré avec un système linéaire
de dimension finie sujet à des contrôles saturés à reset.
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Notation

• Let c ∈ C, Re(c) (resp. Im(c)) denotes the real part (resp. the imaginary part) of c;

• A function α : R≥0 → R≥0 is said to be a class K function if α is nonnegative, increasing
and vanishing at 0. It is said to be a class K∞ function if moreover it satisfies

lim
s→+∞

α(s) = +∞;

• A function β : R≥0×R≥0 → R≥0 is said to be a class KL function if, for each nonnegative
value s, the function r → β(r, s) is a class K function and, for every positive value r,
the function s→ β(r, s) is strictly decreasing and satisfies

lim
s→+∞

β(r, s) = 0.

• The identity operator associated to a Hilbert space Z is denoted by IZ ;

• Given a Hilbert space Z equipped with the scalar product 〈·, ·〉Z , a sequence (zn)n∈N ∈ Z
weakly converges to z if, for all z̃ ∈ Z

lim
n→+∞

〈zn, z̃〉Z = 〈z, z̃〉Z . (1)

We use the following notation
zn ⇀Z z;

• Given a positive value L, let (t, x) ∈ R≥0 × [0, L] → z(t, x) be a sufficiently smooth
function. The term zt (respectively zx) stands for the partial derivative of z with respect
to t (respectively with respect to x). Similarly, zxxx stands for the third derivative of z
with respect to x. When the function z depends only on x, z′ (respectively z′′′) denotes
the first (repectively the third) spatial derivative of z. When the function z depends
only on t, d

dtz denotes the time derivative of z;

• Let Z be a Hilbert space and let Z̃ ⊂ Z be a Hilbert space. The closure of Z̃ in Z is
denoted by closZ(Z̃) with respect to the topology of Z;

• Let Z and E be Hilbert spaces and A : E → Z a linear operator. The term Ran(A)

denotes its range;

• Given a positive value T ∈ [0,∞), the space of continuous functions on [0, T ] is denoted
by C(0, T ). Given k ∈ N?, a function f is said to be of class Ck(0, T ) if dl

dtl
f(t), where

l ∈ {1, . . . , k}, belongs to the space C(0, T );

• Let Z be a Hilbert space. Let T ∈ [0,∞]. The function f belongs to the set C(0, T ;Z)

if, for all z ∈ Z, the function

[0, T ]→ Z

t 7→ f(t, z)

is continuous;
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• Given n ∈ N, the norm of the space Rn is denoted by | · |;

• Given two Hilbert space Z and Z̃, the space of continuous linear operators from Z to Z̃
is denoted by L(Z, Z̃). When Z̃ = Z, then the notation that is used is L(Z);



Introduction

In recent decades, a great deal of effort has been dedicated to the development of tools for the
design of stabilizing feedback laws either for finite-dimensional or infinite-dimensional systems.
The general problems under consideration in this thesis are the analysis of control systems
with restrictions on the input and the design of feedback laws with partial measurement of
the state.

The restrictions on the input can be modeled with a cone-bounded nonlinearity, which is
a bounded and continuous function satisfying a sector condition. One of the most famous is
the saturation function (see [94] for a good introduction to this topic). This thesis aims at
giving some contributions to this topic in the context of infinite-dimensional systems. From
this problem, a question arises.

Question 1: Given a linear stabilizing feedback law for a nonlinear infinite-dimensional
control system, under which conditions does the system remain globally asymptotically stable
when modifying the feedback law via a cone-bounded nonlinearity?

Even for linear finite-dimensional systems, it is already known that saturating a stabilizing
feedback law can lead to catastrophic behavior for the stability of the closed-loop system.
In fact, in general, the origin of such systems is locally asymptotically stable. The global
asymptotic stability of saturated control systems can be obtained if the open-loop system
satisfies some stability conditions.

At the best of our knowledge, this topic started in [84], [81], [52] and [44]. These articles
use nonlinear semigroup theory to tackle the asymptotic stability of infinite-dimensional sys-
tems with a stabilizing feedback modified via a cone-bounded nonlinearity. In this thesis, we
aim at giving complementary results for nonlinear abstract control systems and at studying
a particular nonlinear partial differential equation, namely the Korteweg-de Vries equation,
which models waves on shallow water surfaces.

This thesis aims also at contributing in output feedback stabilization problems. In recent
decades, some tools for the design of feedback laws have been found. Some of these feedbacks
needs the full-state of the system to be known. Note that the state is referred to as the solution
to the system. Hence implementing them requires to have a measure of all the variables of
the system.

However, in most of the cases, sensors can measure only a part of the state. This partial
measurement is called the output. In this case, designing a feedback law requires sometimes to
build an observer, which is a dynamical system whose state converges to the state of the control
system. This thesis aims at contributing in this topic for two Korteweg-de Vries equations for
which there exists a stabilizing state feedback law. Hence, a second question arises.

Question 2: Given an observer and a state feedback law for a Korteweg-de Vries equation,

1



2 Introduction

does the resulting output feedback law stabilize the origin of the closed-loop system?

This question is referred to as the so-called separation principle, which applies for linear
time-invariant finite-dimensional control systems. In other words, if such a system is stabiliz-
able and observable, then an observer and a state feedback law can be designed separetely to
build a stabilizing output feedback law.

We already know that for nonlinear finite-dimensional systems, the separation principle
does not hold anymore. Note that the survey [3] collects some counter-examples. If the control
system satisfies an observability property, namely the complete uniform observability, and if
moreover it satisfies a stabilizability property, then we say that the control system is semi-
globally stabilizable by means of an output feedback. Roughly speaking, it means the following:
if the initial condition belongs to a compact set, an observer depending on this compact set
can be designed jointly with the state feedback in order to make asymptotically stable the
origin of the closed-loop system with a basin of attraction contained in the compact set. This
well-known result is provided in [97].

We aim at contributing in this topic for control systems for which there exists a hybrid state
feedback. A hybrid state feedback is a feedback law which has a mixed continuous/discrete
behavior. Such controllers are useful for some systems that cannot be stabilized by means of
a continuous feedback law. Now, a third and last question can be stated.

Question 3: If a control system is completly uniformly observable and if there exists a
stabilizing hybrid state feedback law for this system, under which conditions is this system
semi-globally stabilizable?

The manuscript is divided into four chapters. Chapters 1 and 2 tackle Question 1. Chapter
3 solves Question 2. Finally, Chapter 4 answers Question 3.

Here is the precise outline of the thesis.

Outline

• Chapter 1 deals with nonlinear abstract control systems. After an introduction to
semigroup theory and a short recall of some existing results, some conditions on the
open-loop system and on the cone-bounded nonlinearity are given in order to prove the
well-posedness and the asymptotic stability of the closed-loop system. Two illustrative
examples are provided;

• Chapter 2 tackles the case of the Korteweg-de Vries equation. Two different types of
saturated controls are considered. The well-posedness is proven applying a Banach
fixed point theorem, using some estimates of this equation and some properties of the
saturation function. The proof of the asymptotic stability of the closed-loop system
is separated in two cases: i) when the control acts on all the domain, a Lyapunov
function together with a sector condition describing the saturating input is used to
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conclude on the stability; ii) when the control is localized, we argue by contradiction.
Some numerical simulations illustrate the stability of the closed-loop nonlinear partial
differential equation;

• Chapter 3 deals with the output feedback stabilization of two Korteweg-de Vries equa-
tions. The first one is linear, the second one is nonlinear. The design of the output
feedback laws is based on the backstepping method (see [50] for a good introduction on
this topic) and the introduction of an appropriate observer. The exponential stability
of the closed-loop systems is proven with some Lyapunov functions. Some numerical
simulations are performed to illustrate our theoretical results;

• Chapter 4 is about the semi-global stabilization of nonlinear system for which there exists
a regularizing hybrid state feedback law. A local hybrid stabilizability and a complete
uniform observability are assumed to achieve the stabilization of an equilibrium set with
a hybrid output feedback law. Timer property is exploited to propose a design method
for such feedbacks. The result is illustrated for a linear system with reset saturated
control.
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Cone-bounded controllers for
m-dissipative operators
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1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

This chapter deals with systems composed by a feedback interconnection of a plant and
a cone-bounded nonlinearity. The study of such systems has received considerable attention
in recent decades (see e.g., [94], [101], or [45]). Indeed, in most of systems, the control input
has a nonlinear dynamic. Nowadays, it is well known that neglecting these nonlinearities can
lead to undesirable and even catastrophic behaviors for the stability of closed-loop system.
Without any assumption on the open-loop system, only a local stabilization result can be
obtained. A classical research line is then to analyze the basin of attraction or to obtain a
better one using anti-windup techniques in the case of saturated controls ([37] or [25]).

Tackling this kind of nonlinearities in the case of finite-dimensional systems is already a
difficult problem. However, nowadays, numerous techniques are available (see e.g., [94]) and
such systems can be analyzed with different techniques: an appropriate Lyapunov function
and a sector condition of the saturation map, as introduced in [94] or a frequency approach,
leading to the so-called Popov criterion, as reviewed in [45]. In the case of open-loop stable
finite-dimensional linear systems with a chain of integrators form, a bounded feedback law
can be designed using nested saturations (see e.g., [95], [92], [88] or [51]).

To the best of our knowledge, the study of this topic in the infinite-dimensional case has
started with [84, 81, 52]. More recently, some new results have been stated in [44, 27, 64,
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6 Chapter 1. Cone-bounded controllers for m-dissipative operators

76]. This chapter aims at contributing to the study of feedback interconnection of a system
(possibly nonlinear) and a cone-bounded nonlinearity in the framework of partial differential
equations, more precisely for abstract control systems described using semigroup theory ([72]
and [68] are good introductions to linear semigroups and nonlinear semigroups, respectively).

This chapter is organized as follows. Section 1.1 is devoted to the introduction to nonlinear
semigroup theory in Hilbert spaces and to some stability results in the infinite-dimensional
context. Section 1.2 presents the problem of stabilizing an equilibrium point with a cone-
bounded feedback law. Some existing results and some of our contributions are provided.
Finally, some concluding remarks are collected in Section 1.3.

Note that the contributions of this chapter, from Section 1.2.2 until the end of the chapter,
are based on two of our papers. The first one [64] has been published in a peer-reviewed con-
ference (European Control Conference 2015). The second one [60] is currently being reviewed
in the journal Mathematics of Control, Signals, and Systems.

1.1 Semigroup theory

1.1.1 Strongly continuous semigroups of contractions and m-dissipative op-
erators

Semigroup theory aims at generalizing matrix exponentials for operators in Hilbert spaces or
in Banach spaces. This theory allows also to solve some infinite-dimensional Cauchy problems
and some asymptotic stability problems. This section is devoted to the introduction of this
theory for systems posed in a Hilbert space1. Most of the results written below are borrowed
from [68].

All along this chapter, Z is a Hilbert space on R equipped with a scalar product 〈·, ·〉Z
and a norm ‖ · ‖Z .

Definition 1.1 (Strongly continuous semigroup of contractions)
(i) A family of bounded linear operators (W (t))t≥0 from Z to Z is said to be a strongly
continuous semigroup on Z if it satisfies the following properties

1. W (0) = IZ ;

2. W (t+ s) = W (t)W (s), ∀t, s ≥ 0;

3. limt→0+ ‖W (t)z − z‖Z = 0, ∀z ∈ Z.

(ii) A strongly continuous semigroup on Z is said to be a strongly continuous semigroup of
1This chapter does not aim at presenting the case of semigroups in Banach spaces. However, the reader

may refer to [19] or [68] for an introduction to this topic in this context.
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contractions on Z if, for all t ≥ 0

‖W (t)z −W (t)z̃‖Z ≤ ‖z − z̃‖Z , ∀z, z̃ ∈ Z. (1.1)

Remark 1.1
Given n ∈ N, consider a matrix A ∈ Rn×n. The following operator

t 7→ eAt, (1.2)

is a strongly continuous semigroup. If moreover

‖eAt‖L(Rn) ≤ 1, ∀t ≥ 0, (1.3)

then t 7→ eAt is a strongly continuous semigroup of contractions. Indeed, for all z, z̃ ∈ Rn

|eAtz − eAtz̃| =|eAt(z − z̃)|,
≤‖eAt‖L(Rn)|z − z̃|,
≤|z − z̃|,

where the linearity of the operator z 7→ eAtz, for all tR≥0, and (1.3) have been used in the
second line and the third line, respectively.

Consider an operator (possibly unbounded and nonlinear) A : D(A) ⊆ Z → Z, where
D(A) is a subset of Z defined as follows

D(A) := {z ∈ Z | Az exists}. (1.4)

The operator A is said to be closed if its graph G(A) := {(z,Az), z ∈ Z} is closed in Z × Z.
Moreover, if D(A) is dense in Z2, then we can define an adjoint A? : D(A?) ⊆ Z → Z3. The
domain D(A?) is defined by the following set

D(A?) := {z̃ ∈ Z | there exists z? ∈ Z such that 〈Az, z̃〉Z = 〈z, z?〉Z for all z ∈ D(A)}.
(1.5)

Hence, the adjoint operator A? is defined as follows

〈Az, z̃〉Z = 〈z,A?z̃〉Z , ∀(z, z̃) ∈ D(A)×D(A?). (1.6)

The following definition links operators and strongly continuous semigroups.

Definition 1.2
The infinitesimal generator A : D(A) ⊆ Z → Z of a strongly continuous semigroup (W (t))t≥0

on Z is defined by

Az = lim
t→0+

W (t)z − z
t

(1.7)

where
D(A) :=

{
z ∈ Z

∣∣∣∣ lim
t→0+

W (t)z − z
t

exists
}

(1.8)

2D(A) is said to be dense in Z if D(A) = Z
3The proof of this result is provided in [7, Chapter 2, Page 43]. It uses the so-called Hahn-Banach theorem.
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Remark 1.2
Take the same example as in Remark 1.1. Then, we have

lim
t→0+

eAtz − z
t

= Az, (1.9)

by definition of the derivative. It means that A is the infinitesimal generator of the strongly
continuous semigroup (eAt)t≥0.

Let us define the notion of dissipative operator.

Definition 1.3 (Dissipative operator)
An operator A : D(A) ⊆ Z → Z is said to be dissipative if the following holds

Re〈Az −Az̃, z − z̃〉Z ≤ 0, ∀z, z̃ ∈ D(A). (1.10)

Remark 1.3
• Note that, if A is linear, then the following inequality

Re〈Az, z〉Z ≤ 0, ∀z ∈ D(A), (1.11)

implies that A is dissipative;
• Given n ∈ N, let us take the case of the matrix A ∈ Rn×n. The dissipativity of a matrix
implies that

z>Az ≤ 0, ∀z ∈ Rn. (1.12)

This implies that all the eigenvalues of A are nonpositive. We will see that a similar result
can be obtained for infinite-dimensional linear operators.

Thanks to this definition, one can define the m-dissipative operators.

Definition 1.4 (m-dissipative operators)
A dissipative operator A : D(A) ⊆ Z → Z is said to be an m-dissipative operator if, for all
positive values λ, the following equality holds

Ran(IZ − λA) = Z. (1.13)

The condition (1.13) might be hard to check. In fact, there exists another weaker condition.
Let us state it.

Lemma 1.1 ([68], Lemma 2.13, Page 22)
A dissipative operator A : D(A) ⊆ Z → Z is an m-dissipative operator if and only if there
exists a positive value λ0 such that

Ran(IZ − λ0A) = Z. (1.14)

The following theorem gives some conditions for a linear operator to be m-dissipative. Let
us state it.
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Theorem 1.1 ([72], Corollary 4.4, Chapter 1, page 15)
Let the operator A : D(A) ⊆ Z → Z be linear with its domain dense in Z. If A is closed and
if A and A? are both dissipative, then A is an m-dissipative operator.

For linear systems, this theorem is useful, because checking whether an operator is closed
and whether this operator and its adjoint are both dissipative is easier than proving (1.14).

Let us introduce the concept of the resolvent of an operator. This term comes from the
resolvent set of an operator A : D(A) ⊆ Z → Z, which is defined as follows

ρ(A) := {λ ∈ C | IZ − λA is injective and (IZ − λA)−1 is bounded}. (1.15)

For linear operators, the spectrum of an operator A is the complement of ρ(A) in C.

Now, we are able to define the resolvent operator of an operator.

Definition 1.5 (Resolvent operator of an operator A)
Let A : D(A) ⊆ Z → Z be an operator and λ ∈ C. The resolvent operator of A is defined by

Jλ : D(Jλ)→ Z,

z 7→ (IZ − λA)−1z,
(1.16)

where D(Jλ) := Ran(IZ − λA)

The fact that D(Jλ) := Ran(IZ − λA) comes from [68, Corollary 3.7, page 20].

Remark 1.4
When A is linear, note that the resolvent of A exists if and only if λ does not belong to the
spectrum of A.

The following theorem gives a property of the resolvent operator of dissipative operators.

Theorem 1.2 ([68], Corollary 2.10, page 20)
Let Z be a Hilbert space. Let A : D(A) ⊆ Z → Z be a dissipative operator with its domain
dense in Z. Then, for any positive value λ, the resolvent (1.16) exists and satisfies the following
inequality, for all z, z̃ ∈ D(Jλ)

‖Jλz − Jλz̃‖Z ≤ ‖z − z̃‖Z . (1.17)

In other words, this means that the set defined by {λ ∈ C | Re(λ) > 0} belongs to the
resolvent set. Hence, for linear operators, this implies that the real parts of the eigenvalues
are less or equal to 0. Recall that the particular case of the matrix A ∈ Rn×n has been noticed
in Remark 1.3.

Thanks to these definitions, we are able to define operators generating semigroups of
contraction. Indeed, the following result, borrowed from [68], links nonlinear m-dissipative
operators and strongly continuous semigroups of contractions.
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Theorem 1.3 ([68], Theorem 4.20, page 103)
The infinitesimal generator A : D(A) ⊆ Z → Z of a strongly continuous semigroup of con-
tractions on Z is an m-dissipative operator. Conversely, if A is an m-dissipative operator,
then A generates a strongly continuous semigroup of contractions.

This result is crucial. Indeed, this theorem allows to state that a Cauchy problem is well-
posed and to prove that the origin of this system is Lyapunov stable. The next section is
devoted to the study of Cauchy problems in the framework of abstract nonlinear systems.

1.1.2 Cauchy Problem and Lyapunov stability

Consider the following Cauchy problem 
d

dt
z = Az,

z(0) = z0,
(1.18)

where A : D(A) ⊆ Z → Z is a (possibly nonlinear) operator. The initial condition z0 can
belong either to Z or to D(A).

An equilibrium point ze ∈ Z of (1.18) is defined as follows

Aze = 0. (1.19)

One of the aims of control theory is to study the stability of such a point. Thus, we need to
define what do we mean by stability. Here is the Lyapunov version of the stability.

Definition 1.6 (Lyapunov stability)
An equilibrium point ze ∈ Z of (1.18) is said to be Lyapunov stable in Z if, for any δ > 0,
there exists ε := ε(δ) such that the following implication holds

‖z0 − ze‖Z ≤ ε⇒ ‖z(t)− ze‖Z ≤ δ, ∀t ≥ 0, (1.20)

for any mild (or strong) solution z(t) (1.18) with the initial condition z0.

Theorem 1.3 is a sufficient condition to obtain the well-posedness of the latter Cauchy
Problem. Indeed, the following theorem allows us to obtain a well-posedness for strong and
mild solutions.

Theorem 1.4 (Well-posedness and Lyapunov stability [68], Corollary 3.7, page 53)
If A is an m-dissipative operator, then

• if z0 ∈ Z, (1.18) admits a unique mild solution z(t) ∈ C(0,∞;Z);

• if z0 ∈ D(A), (1.18) admits a unique strong solution z(t) ∈ C(0,∞;D(A)).
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Moreover, if z0 ∈ D(A), then, denoting by (W (t))t≥0 the strongly continuous semigroup of
contractions generated by A, it holds that the two functions

t 7→ ‖W (t)z0‖Z , t 7→ ‖AW (t)z0‖Z (1.21)

are non increasing. In addition, it holds that

A(0) = 0. (1.22)

Hence, we have not only well-posedness, but also Lyapunov stability of the origin, which
is an equilibrium point because of (1.22). Indeed, since (W (t))t≥0 is a strongly continuous
semigroup of contraction, then the following holds

‖W (t)z0‖Z ≤ ‖z0‖Z , ∀t ≥ 0. (1.23)

The unique solution to (1.18) is bounded by its initial condition. Hence, (1.23) not only
implies that the origin is an equilibrium, but also implies that the origin is Lyapunov stable.

Some attractivity results are needed before studying the case of abstract control sys-
tems. The next section is devoted to the presentation of some infinite-dimensional versions of
LaSalle’s Invariance Principle.

1.1.3 Asymptotic stability for abstract systems

1.1.3.1 Attractivity and asymptotic stability

If Theorem 1.4 can be applied, Lyapunov stability of the origin holds. However, in stabilization
problem, we want to make the origin of the closed-loop system globally attractive. The
definition of this property is provided just below.

Definition 1.7 (Attractivity of an equilibrium)
An equilibrium point ze ∈ Z is said to be locally attractive in Z if there exists a positive value
δ such that

‖z0 − ze‖Z ≤ δ ⇒ lim
t→+∞

‖z(t)− ze‖Z = 0, (1.24)

for any mild (or strong) solution z(t) (1.18) with the initial condition z0.

The equilibrium point ze is said to be globally attractive if δ = +∞.

The aim of the stabilization is to find a feedback law that makes an equilibrium point
of the closed-loop system locally asymptotically stable or globally asymptotically stable. The
following definition characterizes this property.

Definition 1.8 (Asymptotic stability)
Assume that (1.18) admits at least one solution and that ze ∈ Z is an equilibrium point. This
equilibrium point is said to be asymptotically stable in Z if it is Lyapunov stable and attractive.
It is said to be globally asymptotically stable if it is Lyapunov stable and globally attractive.



12 Chapter 1. Cone-bounded controllers for m-dissipative operators

Lyapunov theory exists also for infinite-dimensional systems. A lot of results for
finite-dimensional systems apply also for infinite-dimensional systems. Hence, as in the
finite-dimensional framework, proving asymptotic stability of equilibrium points of infinite-
dimensional systems reduces to finding a Lyapunov function. However, in practice, deriving
such a function might be difficult. In this case, a common technique to conclude the attrac-
tivity of an equilibrium point is to use the LaSalle’s Invariance Principle, which is given in the
next section.

1.1.3.2 LaSalle’s Invariance Principle

Before stating the LaSalle’s Invariance Principle, let us start by giving some definitions.

Definition 1.9 (Positive orbit and ω-limit set)
1. Given a strongly continuous semigroup (W (t))t≥0 over Z, the positive orbit through φ ∈ Z
is defined by O+(φ) := ∪t∈R≥0

W (t)φ;

2. The weak ω-limit set of ϕ is the (possibly empty) set defined by

ωw(ψ) := {ψ ∈ Z | there exists a sequence tn →∞ as n→∞ such that W (tn)φ ⇀ ψ as n→∞};

3. The strong ω-limit set of ψ is the (possibly empty) set defined by ω(ψ) :=⋂
τ≥0 closZ

(⋃
t≥τ W (t)ψ

)
.

A good introduction to the positive orbit and the ω-limit set for finite-dimensional systems
is [43].

These definitions allow us to define the infinite-dimensional version of LaSalle’s Invariance
Principle. This theorem is given just below.

Theorem 1.5 (LaSalle’s Invariance Principle [84], Theorem 3.1 or [38], Theorem 3)
Given a strongly continuous semigroup (W (t))t≥0 on Z and φ ∈ Z, one has

(i) If O+(φ) is precompact4 , then ω(φ) is a nonempty, invariant set of Z through (W (t))t≥0
5;

(ii) If each W (t) is sequentially weakly continuous on Z 6and O+(φ) is bounded, then ωw(φ)

is a nonempty, invariant set in Z through (W (t))t≥0.

4A subset in a topological space is said to be precompact if its closure is compact.
5A set Z̃ ⊂ Z is said to be an invariant set of Z through (W (t))≥0 if, for any w ∈ Z̃, W (t)w ∈ Z̃ for all

t ≥ 0
6A function t 7→ W is said to be sequentially weakly continuous on Z if, for every φn, φ ∈ Z such that

φn ⇀Z φ, then W (t)φn ⇀Z W (t)φ
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Note that the positive orbit has to be precompact if we want to apply the first item of
Theorem 1.5. For an m-positive operator A generating a strongly continuous semigroup of
contraction (W (t))t≥0, proving this property reduces to proving the following claim

Assumption 1 (Precompactness of the positive orbit)
The canonical embedding from D(A), equipped with the graph norm, into Z is compact.

Indeed, supposing that Assumption 1 holds and using the fact that the two functions

t 7→ ‖W (t)z0‖Z , t 7→ ‖AW (t)z0‖Z (1.25)

are non increasing, it is straightforward that the trajectory of (1.18) defined by {z(t) =

W (t)z0, t ≥ 0 and z0 ∈ D(A)} is precompact in Z.

Since all norms in finite-dimensional spaces are equivalent, note that Claim 1 holds for
every finite-dimensional systems. However, when infinite-dimensional systems are studied,
proving Claim 1 might be difficult to achieve.

1.2 Stabilization of nonlinear systems with a cone-bounded con-
troller

1.2.1 Problem statement and existing results

1.2.1.1 Problem statement

Let U be a Hilbert space on R equipped with the scalar product 〈·, ·〉U and the norm ‖·‖U . We
consider the stabilization problem of the origin of the following infinite-dimensional control
system

d

dt
z = Az +Bu (1.26)

where u in U denotes the controlled input. We assume that the origin is an equilibrium
point of (1.26) when u = 0 and that A : D(A) ⊆ Z → Z is a (possibly nonlinear and
unbounded) operator which generates a strongly continuous semigroup of contractions denoted
by (W (t))t≥0. Moreover, we suppose that B ∈ L(U,Z).

Assuming that the operator A − BB? generates a strongly continuous semigroup of con-
tractions (WI(t))t≥0 which satisfies, for all z0 ∈ Z

lim
t→+∞

‖WI(t)z0‖Z = 0 (1.27)

the aim of this chapter is to study the case where the control is given by

u = −σ(B?z), (1.28)

where σ : U → U is a mapping which is characterized by the following definition.
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Definition 1.10 (Cone-bounded nonlinearities on U)
Let σ : U → U be a continuous operator such that

1. for all u in U , Re {〈u, σ(u)〉U} = 0 implies u = 0;

2. there exists a positive value ` such that, for all u ∈ U , we have ‖σ(u)‖U ≤ `‖u‖U ;

3. for all u, v in U , we have Re{〈σ(u)− σ(v), u− v〉U} ≥ 0.

Such a function σ is called a cone-bounded nonlinearity.

Example 1.1 (Examples of cone-bounded nonlinearities)
Here are some examples of cone-bounded nonlinearities.

1. Any linear mapping σ(u) = µu, where µ is a positive value, is a cone-bounded nonlin-
earity;

2. The so-called localized saturation (as considered in e.g., [94], [46]) defined by

satloc : s ∈ R 7→ satloc(s) :=


−us if s ≤ −us,
s if − us ≤ s ≤ us,
us if s ≥ us,

(1.29)

with us a positive value, is a cone-bounded nonlinearity;

3. For any positive value us, the function s ∈ R 7→ us tanh
(
s
us

)
is a cone-bounded nonlin-

earity;

4. The function
σ̃ : s ∈ R 7→ satloc(ϕ(s)), (1.30)

where us > 1 and where ϕ is defined as follows

ϕ : s ∈ R 7→


−
√
|s| − 1− 1 if s < −1,

s if s ∈ [−1, 1],
√
s− 1 + 1 if s > 1,

(1.31)

takes values in a bounded set, but it is not globally Lipschitz because of the function
s 7→

√
s in the definition of the function ϕ. Figure 1.1 illustrates the functions s 7→ σ̃(s)

and s 7→ 2s with s ∈ [−2, 2] and us = 1.5. It is clear that this function is a cone-bounded
nonlinearity, as introduced in Definition 1.10.

The following sections of this chapter focus on the closed-loop system
d

dt
z = Az −Bσ(B?z) := Aσz,

z(0) = z0,
(1.32)
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Figure 1.1: Red line: 2s; Blue line: σ̃(s) with us = 1.5

where Aσ : D(Aσ) ⊂ Z → Z is a nonlinear operator for which we assume that D(Aσ) = D(A).
Note that z0 can belong to Z or to D(A). Some results dealing with well-posedness and
asymptotic stability will be provided.

1.2.1.2 Existing results

Some existing results can be found in the literature. In this section, we will focus in particular
on [84] and [81]. These papers study a particular cone-bounded nonlinearity, which is

satU (s) :=

 s for all ‖s‖U ≤ us,
s

‖s‖U
us for all ‖s‖U ≥ us,

(1.33)

where us is a positive value. In this section only, we will assume that

σ(s) = satU (s). (1.34)

In [84], the following properties are assumed to be satisfied

Assumption 2
1. We have σ(s) = satU (s);

2. The operator A is linear and generates a strongly continuous semigroup of contrac-
tions denoted by (W (t))t≥0;

3. The operator (λIZ −A)−1 is compact for all positive values λ;
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4. The operator B is compact;

5. For all ψ ∈ Z, the only solution to

B?W (t)ψ = 0 (1.35)

is
ψ = 0. (1.36)

Items 1., 2. and 3. allow to state the well-posedness of (1.18). Items 4. and 5. allow to
apply the weak version of LaSalle’s Invariance Principle, i.e. the second item of Theorem 1.5.
Note that the item 5. of these assumptions refers to a detectability property.

Under these assumptions, the following theorem is obtained

Theorem 1.6
Assume that Assumption 2 holds. Then, for each z0 ∈ Z, Aσ generates a strongly continuous
semigroup of contractions denoted by (WsatU (t))t≥0 and, for each z0 ∈ Z, there exists a unique
solution to (1.18) defined for all t ∈ R≥0 and given by z(t) = WsatU (t)z0. Moreover, the
following holds, for all z0 ∈ Z,

z(t) ⇀Z 0 as t→ +∞. (1.37)

Only a weak attractivity is obtained on [84]. In fact, since the paper aims at finding
result for a particular partial differential equation, i.e. a beam equation, a stronger result is
not necessary. The control operator for the partial differential equation belongs to the space
L(R, Z). Hence, another theorem which takes into account this particular case is stated in
[84].

Theorem 1.7
Under Assumption 2 and assuming moreover that U = R, then Aσ generates a strongly con-
tinuous semigroup of contraction denoted by (WsatU (t))t≥0 and, for each z0 ∈ Z, there exists
a unique mild solution to (1.18) denoted by z(t) := WsatU (t)z0. Moreover, the following holds,
for all z0 ∈ Z

lim
t→+∞

‖WsatU (t)z0‖Z = 0 (1.38)

Note that in the proof of these two results it is not used the particular form of satU , but
only the fact that it is globally Lipschitz, monotone and the property 1 of Definition 1.10.

In [81], a better result is stated. The assumptions are weaker than Assumption 2. Let us
state them

Assumption 3
1. We have σ(s) = satU (s);
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1. The operator A is linear and generates a strongly continuous of contractions de-
noted by (W (t))t≥0;

2. The operator A − BB? generates a strongly continuous of contractions denoted by
(WI(t))t≥0 that satisfies the following, for all z0 ∈ Z

lim
t→+∞

‖WI(t)z0‖Z = 0. (1.39)

Unlike Assumption 2 provided by [84], neither the operator B nor (λIZ − A)−1 are as-
sumed to be compact. Moreover, instead of assuming a detectability property as in item 5 of
Assumption 2, only a stabilizability property is assumed in [81].

A stronger result than Theorem 1.6 is stated in [81]. Here is its statement.

Theorem 1.8
Under Assumption 3, Aσ generates a strongly continuous semigroup of contractions denoted
by (WsatU (t))t≥0 and, for each z0 ∈ Z, (1.18) admits a unique solution denoted by z(t) :=

WsatU (t)z0. Moreover, the following holds, for all z0 ∈ Z

lim
t→+∞

‖WsatU (t)z0‖Z = 0. (1.40)

Unlike the proof of Theorem 1.6, the proof of this theorem uses the special structure of
satU . Moreover, the authors of [81] derive some conditions in order to obtain a similar result
for unbounded control operators. Since this chapter is devoted to the case of bounded control
operators, this result will not be discussed here.

Papers [84] and [81] have inspired a lot of researchers. Among the results derived from
these papers, [52] or [27] can be cited. Note that, even in the context of finite-dimensional
systems, these papers have inspired some researchers (see e.g., [56]).

Next section is devoted to our contributions to the topic of infinite-dimensional systems
with cone-bounded feedback laws.

1.2.2 Contributions

This section is devoted to some contributions to this topic. It is borrowed from [60]. All along
this section, we focus on the system (1.32) and assume that σ is a cone-bounded nonlinearity.
Let us recall that A, which generates a strongly continuous semigroup, can either be linear
or nonlinear. This makes our results different from the ones written in [84] and in [81]. Note
morever that B is a linear bounded operator, i.e. B ∈ L(Z,U).

This section is divided into five parts. Sections 1.2.2.1 and 1.2.2.2 state a well-posedness
and an asymptotic stability results, respectively. Sections 2.2.3.1 and 2.2.3.3 are devoted to
the proofs of these results. Finally, Section 1.2.4 is the application of these results to a linear
Korteweg-de Vries equation.
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1.2.2.1 Well-posedness

As it has been noticed at the beginning of the chapter, A is assumed to be an m-dissipative
operator. It implies that A is dissipative and that, for all positive value λ, Ran(I − λA) = Z.

Since A is dissipative, from Theorem 1.2, we have that, for all λ > 0, the operator Jλ :

D(Jλ)→ D(A) defined by
Jλ = (IZ − λA)−1

exists and is a contraction. Moreover, we have

D(Jλ) = Ran(IZ − λA).

We are now in position to state our well-posedness result.

Theorem 1.9 (Well-posedness and Lyapunov stability)
Assume that σ is a cone-bounded nonlinearity. Moreover, assume that one of the two conditions
is fullfilled:

1. σ is globally Lipschitz;

2. There exists a Banach space Z0 such that D(A) ⊆ Z0 and such that

(a) the canonic injection from Z0 to Z is compact;

(b) there exists a positive value N such that, for all z̄ ∈ Z,

sup
z∈Z
‖J1(z̄ −Bσ(B?z))‖Z0 < N (1.41)

Then, for all z0 in D(A), there exists a unique strong solution to (1.32) and the operator
Aσ generates a strongly continuous semigroup of contractions (Wσ(t))t≥0 such that the two
functions

t 7→ ‖Wσ(t)z0‖Z , t 7→ ‖AσWσ(t)z0‖Z
are non increasing.

Remark 1.5
Unlike Theorems 1.6 and 1.8, the result provided above refers to strong solutions. However,
the function (1.30) in Example 1.1 shows that a cone-bounded nonlinearity does not have to
be globally Lipschitz to ensure the well-posedness of the closed-loop system, while Theorem 1.8
needs the cone-bounded nonlinearity to be equal to satU .

Remark 1.6
If A is linear, the condition (1.41) may be reduced to the following assumption:

sup
z∈Z
‖J1(−Bσ(B?z))‖Z0 <∞. (1.42)

Indeed, in that case, (1.42) implies (1.41).
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Remark 1.7
Following Lemma 1.1, the condition (1.41) may be rewritten as the following statement: there
exists a positive value λ0 such that, for all z̄ ∈ Z,

sup
z∈Z
‖Jλ0(z̄ −Bσ(B?z))‖Z0 <∞. (1.43)

In order to make easier the reading, we let λ0 = 1 as in (1.41), without loss of generality.

Example 1.2
The condition (1.41) imposes a global bound on the mapping σ in a specific norm. As a first
illustration, consider the following linear Korteweg-de Vries (for short KdV) equation

zt(t, x) + zx(t, x) + zxxx(t, x) + 1Ω(z)u(t, x) = 0, (t, x) ∈ R≥0 × (0, L),

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x),

(1.44)

where L is a positive value, u(t, x) is the control, Ω is a nonempty subset of (0, L) and 1Ω is
defined by

1Ω(z) =

{
1 if z ∈ Ω,

0 otherwise.
(1.45)

Setting Z = L2(0, L) and U = L2(Ω), system (1.44) can be written as in (1.26) denoting

A : D(A) ⊂ L2(0, L)→ L2(0, L),

z 7→ −z′ − z′′′,
(1.46)

where
D(A) = {z ∈ H3(0, L) | z(0) = z(L) = z′(L) = 0}. (1.47)

and

B : L2(0, L)→ L2(Ω),

u 7→ 1Ω(z)u.
(1.48)

A straightforward computation, together with some integrations by parts, shows that

Re {〈Az, z〉Z} ≤ 0, z ∈ D(A),

Re {〈z̃, A?z̃〉Z} ≤ 0, z̃ ∈ D(A?).
(1.49)

Since A is a closed linear operator and D(A) is dense in Z, according to Theorems 1.1 and
1.3, these latter inequalities imply that A is the infinitesimal generator of a linear strongly
continuous semigroup of contractions on Z.

Let σ : U → U be defined by

σ(u)(x) = σ̃(u(x)), ∀x ∈ Ω,

where σ̃ : R→ R.

Therefore, one has the following proposition:
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Proposition 1.1
If σ̃ is bounded, then condition (1.42) is satisfied for (1.44).

Proof of Proposition 1.1:

Assume σ̃ is bounded by a positive value us, that is

|σ̃(u(x))| ≤ us, ∀x ∈ Ω. (1.50)

Note that if σ̃ is bounded, it implies that σ is also bounded as follows:

‖σ(u)‖Z ≤ Lus. (1.51)

To prove that (1.41) holds, we follow a strategy similar to the one used in [64] or [76]. First
note that

Z0 := H1
0 (0, L) ⊃ D(A)

embeds compactly in Z by the Rellich-Kondrachov theorem (see [7, Theorem 9.16]). This set
satisfies item (2)(a) of Theorem 1.9.

The operator A has a compact resolvent (see e.g., [23]), which implies that its spectrum
consists only of eigenvalues. Moreover, A generates a linear strongly continuous semigroup of
contractions, hence all the eigenvalues of the operator are located in the left half of the complex
plane. In particular 1 ∈ ρ(A) and J1 is invertible. Hence, there exists a unique solution Z to
the equation −(IZ −A)z(x) = −Bσ(u), where u ∈ U . This latter equation can be rewritten as
follows {

z(x) + z′(x) + z′′′′(x) = −Bσ(u),

z(0) = z(L) = z′(L) = 0.
(1.52)

The unique solution to this equation can be expressed compactly as follows

z = −J1(Bσ(u)). (1.53)

Multiplying the first line of (1.52) by z and integrating between 0 and L leads to

‖z‖2L2(0,L) +

∫ L

0
xz′dx+

∫ L

0
xz′′′dx = −

∫ L

0
Bσ(u)zdx (1.54)

Integrating by parts this latter inequality twice and using boundary condition in (1.44) lead to

‖z‖2L2(0,L) ≤ −|z
′(0)|2 −

∫ L

0
Bσ(u)xdx (1.55)

Applying Young’s inequality and using the fact that σ̃ is bounded, we obtain

‖z‖2L2(0,L) ≤ ε1Lu
2
s +

1

ε1
‖z‖2L2(0,L), (1.56)

where ε1 > 1. Hence, ‖z‖2L2(0,L) ≤
Lu2s
ε2

, with ε2 := 1− 1
ε1
.



1.2. Stabilization of nonlinear systems with a cone-bounded controller 21

Now, let us multiply the first line of (1.52) by zx and integrate between 0 and L. After
performing some integrations by parts and using the boundary conditions in (1.44), we obtain

3

2
‖z′‖2L2(0,L) =

1

2
‖z‖2L2(0,L) −

∫ L

0
zx2dx−

∫ L

0
zxBσ(u)dx

≤1

2
‖z‖2L2(0,L) +

1

2
‖z‖2L2(0,L) +

L3

2
us

Therefore, we have
‖z′‖2L2(0,L) ≤M, (1.57)

where M := L3

2 us+ Lu2s
ε2

. By the Poincaré inequality, there is an equivalence between the norm
‖z′‖L2(0,L) and ‖z‖H1

0 (0,L). Hence, using the expression (1.53), we can conclude that there
exists a positive value c such that, for all u ∈ U

‖J1(Bσ(u))‖H1
0 (0,L) ≤ c. (1.58)

Thus, if σ is bounded, the condition (1.41) is satisfied (and more precisely (1.42) in Remark
1.6) for the operator A defined in (1.46) and (1.47), and the operator B defined in (1.48). 2

Example 1.3
As a second illustration, consider the following nonlinear heat equation

zt(t, x) = zxx(t, x) + sin(z(t, x)) + u(t, x), (t, x) ∈ R≥0 × [0, 1]

z(t, 0) = z(t, 1) = 0, t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, 1].

(1.59)

Setting Z := L2(0, 1) and U = L2(0, 1), system (1.59) can be written as in (1.26) denoting

A : D(A) ⊂ L2(0, 1)→ L2(0, 1),

z 7→ z′′ + sin(z),
(1.60)

where
D(A) := {z ∈ H2(0, 1), z(0) = z(1) = 0}, (1.61)

and
B := IZ . (1.62)

In Appendix B, the operator (1.60) is proved to be m-dissipative. Therefore, it generates a
strongly continuous semigroup of contractions.

Let σ : U → U be defined by

σ(u)(x) = σ̃(u(x)), x ∈ [0, L], (1.63)

where σ̃ : R → R. Following a similar strategy than for the KdV example and using some
inequalities proved in Appendix B, the assumption given in (1.41) is satisfied as soon as σ̃ is
bounded.
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1.2.2.2 Asymptotic stability

The second result refers to the global asymptotic stability of the closed-loop system defined
by (1.32). Let (WI(t))t≥0 be the strongly continuous semigroup of contractions generated by
A−BB∗, see (1.27)

Theorem 1.10 (Global asymptotic stability)
Assume that σ is a cone-bounded nonlinearity and that, for all z0 in D(A), there exists a
unique strong solution to (1.32). Suppose also that D(Aσ) = D(A) and that the operator Aσ
generates a strongly continuous semigroup of contractions denoted by t 7→Wσ(t) such that the
two functions

t 7→ ‖Wσ(t)z0‖Z , t 7→ ‖AσWσ(t)z0‖Z

are non increasing, for all z0 ∈ D(A). Assume moreover that

1. for all z0 in D(A),
lim

t→+∞
‖WI(t)z0‖Z = 0;

2. D(A) equipped with the graph norm ‖ · ‖D(A) = ‖ · ‖Z + ‖A · ‖Z is a Banach space which
is compactly embedded in Z.

Then, the origin of the closed-loop system (1.32) is globally asymptotically stable.

Remark 1.8
Theorem 1.10 is a continuation of the work of [84] and [81]. As in Assumption 3, our result
needs only the origin to be stabilizable with the feedback law u = −B?z. However, unlike [81],
we are considering that the open-loop system is nonlinear and that the cone-bounded feedback
law is more general than satU . In [84] it is assumed the compactness of the operator B. This
implies that the weak ω-limit set is nonempty and invariant. In this work, we assume an
alternative property, that is D(A) is compactly embedded in Z, which implies that the strong
ω-limit is nonempty and invariant. Note that this property implies a stronger property for the
open-loop system than the property assumed in [84]. However, the operator B does not require
to be compact in this work, as assumed in [84].

1.2.3 Proofs of the results

1.2.3.1 Proof of Theorem 1.9: well-posedness

This section aims at proving Theorem 1.9. A Schauder fixed-point theorem will be used. Let
us recall it.

Theorem 1.11 (Schauder fixed-point theorem ([21], Theorem B.17))
Let Z be a Banach space and C ⊆ Z be a convex and compact space. Then, every continuous
mapping f : Z → C admits a fixed-point.
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The proof of Theorem 1.9 is given just below.

Proof of Theorem 1.9: First, note that D(A) = D(Aσ) and Aσ is dissipative in Z. Indeed,
for all z, z̃ ∈ D(A)

Re {〈Aσz −Aσ z̃, z − z̃〉Z} =Re {〈Az −Az̃, z − z̃〉Z}
−Re {〈Bσ(B?z)−Bσ(B?z̃), z − z̃〉Z} ,
≤−Re {〈σ(B?z)− σ(B?z̃), B?(z − z̃)〉U} ,
≤0,

(1.64)

where the dissipativity of A and the item 3 of Definition 1.10 have been used to obtain the
last two inequalities.

Now, we split our proof into two cases.

First case: item 1 holds. In this case, [82, Lemma 2.1., Part IV, page 165] implies that
Aσ is an m-dissipative operator.

From Theorem 1.3, the operator Aσ generates a strongly continuous semigroup of contrac-
tions on Z denoted by (Wσ(t))t≥0. Moreover, from Theorem 1.4, it follows that

t 7→ ‖AσWσ(t)z0‖Z (1.65)

is non increasing. From item 2 of Definition 1.10, it holds σ(0) = 0 andWσ(t)0 = 0. Therefore,
the function

t 7→ ‖Wσ(t)z0‖Z (1.66)

is a non-increasing function. This concludes the proof of Theorem 1.9 in the case where item
1 holds.

Second case: items 2a and 2b hold. Since Aσ is a dissipative operator, the operator
J̃1 = (IZ −Aσ)−1 exists and is continuous. Moreover, we have D(J̃1) = Ran(IZ −Aσ).

In the second case, in order to apply Theorem 1.4, we must show that

Z = Ran(IZ −Aσ).

The inclusion Ran(IZ −Aσ) ⊂ Z is obvious. Let us prove that

Z ⊂ Ran(IZ −Aσ).

In other words, for z̄ in Z, we must show that there exists z̃ in D(A) such that

(IZ −A)z̃ = z̄ −Bσ(B?z̃).

Let T : Z → D(A) ⊆ z0 be the mapping

T (z) = J1[z̄ −Bσ(B?z)].
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Let C be the set defined by
C = {z ∈ Z0 | ‖z‖Z0 ≤ N},

where N comes from (1.41).

By assumption (item 2a of the statement of Theorem 1.9), the canonical injection from Z0

to Z is compact. Thus, the set C is pre-compact as a subset of Z and the closure in Z of C is
compact in Z. It is moreover convex since it is a ball of radius N centered at 0. From item
2b in the statement of Theorem 1.9, we compute, for all z in D(A),

‖T (z)‖Z0 = ‖J1[z̄ −Bσ(B?z)]‖Z0
,

≤ N.

Hence, T (Z) ⊆ C. Employing Schauder fixed point theorem, it implies that there exists a
unique solution to T (z) = z and thus to (1.32). Therefore, from [48, Theorem 4], it implies
that Aσ is an m-dissipative operator. Hence, the result is obtained similarly to the first case.
It concludes the proof of Theorem 1.9. 2

1.2.3.2 Proof of Theorem 1.10: asymptotic stability

The proof of Theorem 1.10 relies on the use of an infinite-dimensional version of the LaSalle’s
Invariance Principle stated in Theorem 1.5.

Before proving it, let us prove the following lemma, that links the attractivity in D(A)

and in Z.

Lemma 1.2
Given Z a Hilbert space, let (Wσ(t))t≥0 be a strongly continuous semigroup of contractions on
Z. Let D(A) be dense in Z. Then, if for all z0 ∈ D(A), the following holds

lim
t→+∞

‖Wσ(t)z0‖Z = 0, (1.67)

we have, for all z0 ∈ Z,
lim

t→+∞
‖Wσ(t)z0‖Z = 0 (1.68)

Proof of Lemma 1.2:

Note that the proof is inspired by [52]. Pick z0 ∈ Z. Since D(A) is dense in Z, for all
positive value ε, there exists z̃0 ∈ D(A) such that

‖z0 − z̃0‖Z ≤
ε

2
. (1.69)

Since (Wσ(t))≥0 is a strongly continuous semigroup of contractions, the following holds, for
all t ≥ 0

‖Wσ(t)x0 −Wσ(t)z̃0‖Z ≤
ε

2
. (1.70)
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Moreover, with (1.67), there exists t? := t?(ε) such that, for all z̃0 ∈ D(A)

‖Wσ(t)z̃0‖Z ≤
ε

2
, ∀t ≥ t?. (1.71)

Therefore, using a triangle inequality together with (1.70) and (1.71), one is able to prove that

‖Wσ(t)z0‖Z ≤
ε

2
, ∀t ≥ t?. (1.72)

This concludes the proof of Lemma 1.2. 2

Proof of Theorem 1.10:

The proof is divided into three steps. Given z ∈ D(A), we first prove that the ω-limit set,
denoted by ω(z), is compact and invariant for the nonlinear strongly continuous semigroup of
contractions (Wσ(t))t≥0. Then we prove that, for all initial conditions in ω(z), the solution
to (1.32) converges to 0 in Z. Finally, it is proven that, for all initial conditions in D(A), the
solution to (1.32) converges to 0 in Z.

First step: Compactness and invariance of ω(z). For all Z in D(A),

‖z‖Z + ‖Aσz‖Z = ‖z‖Z + ‖Az −Bσ(B?z)‖Z ,
≥ c1‖Bσ(B?z)‖Z + ‖Az −Bσ(B?z)‖Z ,
≥ min{1, c1}‖Az‖Z ,

where the second inequality has been obtained from item 2 of Definition 1.10 and with c1 =
1

‖B‖L(U,Z)‖B?‖L(Z,U)`
. This implies, for all z in D(A),

min{1, c1}(‖z‖Z + ‖Az‖Z) ≤ (1 + c1)(‖z‖Z + ‖Aσz‖Z).

Since by assumptions, for all z in D(A), the two mappings t 7→ ‖Wσ(t)z‖Z and t 7→
‖AσWσ(t)z‖Z are nonincreasing, the former inequality implies

‖Wσ(t)z‖D(A) ≤
(1 + c1)

min{1, c1}
(‖z‖Z + ‖Aσz‖Z) , ∀t ≥ 0.

The set D(A) equipped with the graph norm is compactly embedded in Z, thus the positive
orbit O+(x) is precompact in Z. Therefore, from Theorem 1.5, for all z in D(A), ω(z) is not
empty, compact and invariant under the nonlinear semigroup (Wσ(t))t≥0, i.e.,

Wσ(t)w ∈ ω(z), ∀(w, t) ∈ ω(z)× R+. (1.73)

Second step: Asymptotic stability of the origin with initial conditions in ω(z). Let
z be in D(A). For all t ≥ 0, due to the dissipativity of the operator A,

1

2

d

dt
‖Wσ(t)z‖2Z ≤ −Re{〈σ(B?Wσ(t)z), B?Wσ(t)z〉U} ≤ 0. (1.74)
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Since C := clos {O+(x)} is compact in Z and σ is continuous, the function z ∈ C 7→
Re{〈σ(B?z), B?z〉U} ∈ R is uniformly continuous. Let

S : R≥0 → R
t 7→ S(t) := Re{〈σ(B?Wσ(t)z), B?Wσ(t)z〉U}.

(1.75)

The function t 7→Wσ(t)z is continuous since (Wσ(t))t≥0 is a strongly continuous semigroup of
contractions. Moreover, by assumption, its time derivative, i.e. the function t 7→ AσWσ(t)z, is
bounded. Therefore, the function t 7→Wσ(t)z0 is uniformly continuous. Hence, S is uniformly
continuous as a combination of two uniformly continuous functions.

From (1.74), we have, for all t ≥ 0,

1

2
‖Wσ(t)z‖2Z −

1

2
‖z‖2Z ≤ −

∫ t

0
S(s)ds. (1.76)

Or, rearranging terms, it yields, for all t ≥ 0,∫ t

0
S(s)ds ≤ 1

2
‖z‖2Z −

1

2
‖Wσ(t)z‖2Z ≤

1

2
‖z‖2Z . (1.77)

Since S takes positive values, it yields

0 ≤ lim
t→+∞

∫ t

0
S(s)ds <∞. (1.78)

From Barbălat’s Lemma, we get
lim

t→+∞
S(t) = 0. (1.79)

Thus, from the definition of ω(z),

Re{〈σ(B?w), B?w〉U} = 0 , ∀w ∈ ω(z). (1.80)

From item 1 in Definition 1.10 of the cone-bounded nonlinearity and (1.73),

B?Wσ(t)w = 0, ∀w ∈ ω(z), ∀t ≥ 0. (1.81)

Hence, it implies that for all w ∈ ω(z),

Wσ(t)w = WI(t)w , ∀t ∈ R+.

Therefore, from Assumption 1 of Theorem 1.10, we have, for all w ∈ ω(z),

lim
t→+∞

‖Wσ(t)w‖Z = 0. (1.82)

Third step: Asymptotic stability of the origin with initial conditions in D(A).

Let z ∈ D(A). The aim of this step is to prove that, for all z ∈ D(A),

lim
t→+∞

‖Wσ(t)z‖Z = 0. (1.83)
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Note that, from (1.74), the function t 7→ ‖Wσ(t)z‖2Z is non-increasing and lower-bounded.
Hence, there exists V ?

∞(z) ∈ R such that

lim
t→+∞

‖Wσ(t)z‖2X = V ?
∞(x) ≥ 0. (1.84)

Two cases may occur:

1. If V ?
∞(z) = 0, then ω(z) = {0}. It means that (1.83) holds;

2. If V ?
∞(z) 6= 0, then {0} /∈ ω(z). In this case, (1.83) does not hold.

We will argue by contradiction by assuming that the second item holds and by proving that
this case cannot occur. Thus, we assume that

V ?
∞(z) 6= 0. (1.85)

Let w ∈ ω(z). From (1.82), for all w ∈ ω(z), there exists t(w) > 0 such that

‖Wσ(t(w))w‖Z ≤
1

6
‖w‖Z . (1.86)

Since Wσ(t(w)) is a continuous operator and since {0} /∈ ω(z), there exists a positive value
ε1(w) such that, for all z̃ ∈ B(w, ε1(w)),

‖Wσ(t(w))z̃ −Wσ(t(w))w‖Z ≤
1

6
‖w‖Z . (1.87)

Therefore, for all z̃ ∈ B(w, ε1(w)),

‖Wσ(t(w))z̃‖Z ≤ ‖Wσ(t(w))z̃ −Wσ(t(w))w‖Z + ‖Wσ(t(w))w‖Z ≤
1

3
‖w‖Z . (1.88)

By reducing ε1(w) if needed, we may assume that ε1(w) ≤ 1
3‖w‖Z . Hence, for all z ∈

B(w, ε1(w)),

‖w‖Z − ‖z̃‖Z ≤ ‖z̃ − w‖Z ≤
1

3
‖w‖Z . (1.89)

Therefore, for all z̃ ∈ B(w, ε1(w)),

‖w‖Z ≤
3

2
‖z̃‖Z , (1.90)

and with (1.88), for all z̃ ∈ B(w, ε1(w)),

‖Wσ(t(w))z̃‖Z ≤
1

2
‖z̃‖Z . (1.91)

The family
⋃
{B(w, ε1(w)), w ∈ ω(z)} is a cover by open subsets of ω(z). Since ω(z) is a

compact set, we can extract a finite cover which we index as follows

ω(z) ⊂
N1⋃
i=1

{B (w1i, ε1(w1i))} , (1.92)
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where (w1i)’s are in ω(z) and for a suitable positive integer N1 and (1.91) has been used.

By considering
t? := max

i∈{1,...N1}
t(w1i), (1.93)

together with the fact that the function t 7→ ‖Wσ(t)z‖Z is non increasing for any z̃ ∈ ω(z) ⊂
D(A), we have, for all z̃ ∈ ω(z),

‖Wσ(t?)z̃‖Z ≤ ‖Wσ(t(w1i))z̃‖Z ≤
1

2
‖z̃‖Z , (1.94)

where i ∈ {1, . . . , N1} is selected such that z̃ ∈ B(w1i, ε1(w1i)) and (1.94) has been used.

Since the functions w 7→ Wσ(t?)w and V : w → V (w) = ‖w‖2Z are continuous and since
{0} /∈ ω(z), for all w ∈ ω(z), there exists ε2(w) > 0 such that, for all z̃ ∈ B(w, ε2(w)),

|V (z̃)− V (w)| ≤ 1

5
V (w),

|V (Wσ(t?)z̃)− V (Wσ(t?)w)| ≤ 1

4
V (w).

(1.95)

Therefore, with (1.94), for all z̃ ∈ B(w, ε2(w)),

V (Wσ(t?)z̃) ≤ V (Wσ(t?)w) +
1

4
V (w),

≤ 1

4
V (w) +

1

4
V (w),

≤ 1

2
V (w). (1.96)

Moreover, the first inequality in (1.95) yields for all z̃ ∈ B(w, ε2(w)),

V (w) ≤ 6

5
V (z̃). (1.97)

Finally, with (1.96), it follows, for all z̃ ∈ B(w, ε2(w)),

V (Wσ(t?)z̃) ≤ 3

5
V (z̃). (1.98)

The family
⋃{
B
(
w, ε2(w)

2

)
, w ∈ ω(z)

}
is a cover by open subsets of ω(z). Since ω(z) is a

compact set, there exists (w21, . . . , w2N2) in ω(z)N2 such that

ω(z) ⊂
N2⋃
i=1

{
B
(
w2i,

ε2(w2i)

2

)}
. (1.99)

Let us pick
ε2m := min

i
ε2(w2i). (1.100)

Note that, if we assume (1.85) holds, then it implies that there exists t1 > 0 such that, for
all t ≥ t1,

‖Wσ(t)z‖2X − V ?
∞(z) ≤ 1

3
V ?
∞(z). (1.101)
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and
‖w −Wσ(t1)z‖Z ≤

ε2m

2
, (1.102)

where w ∈ ω(z).

Since w ∈ ω(z), there exists i ∈ {1, . . . , N2} such that w ∈ B
(
w2i,

ε2(w2i)
2

)
. Therefore,

‖w2i −Wσ(t1)z‖Z ≤ ‖w2i − w‖Z + ‖w −Wσ(t1)z‖Z ,

≤ ε2(w2i)

2
+
ε2m

2
,

≤ ε2(w2i).

(1.103)

Since Wσ(t1)z ∈ B (w2i, ε2(w2i)), Equation (1.98) together with the fact that Wσ(t1 + t?)z =

Wσ(t?)Wσ(t1)z imply,

‖Wσ(t1 + t?)z‖2X = V (Wσ(t?)Wσ(t1)z) ≤ 3

5
‖Wσ(t1)z‖2Z . (1.104)

Therefore, with (1.98) and (1.101), it follows, for all t ≥ t1

‖Wσ(t+ t∗)z‖2Z − V ?
∞(z) ≤ 3

5
‖Wσ(t1)z‖2Z − V ?

∞(z)

≤ 3

5

(
V ?
∞(z) +

1

3
V ?
∞(z)

)
− V ?

∞(z)

≤ −1

3
V ?
∞(z).

(1.105)

Thus, we have

‖Wσ(t+ t?)z‖2Z ≤
2

3
V ?
∞(z) < V ?

∞(z). (1.106)

Since the function t 7→ ‖W (t)z‖2Z is nonincreasing, we obtain a contradiction with (1.84).
Therefore

V ?
∞(z) = 0.

This concludes the proof of the global attractivity of the origin. The Lyapunov stability holds
by assumption. This concludes the proof of Theorem 1.10. 2

1.2.4 Application to a linear Korteweg-de Vries equation

In this section, we illustrate Theorems 1.9 and 1.10 with the linear Korteweg-de Vries equation
as considered in Example 1.2. In addition, we run some simulations.

Let us note that B? : z ∈ Z 7→ z|Ω ∈ U . It one picks the control such that, for all
(t, x) ∈ [0,∞)× [0, L],

u(t, x) = −B?z(t, x) := −z(t, x)|Ω,
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then, the origin of (1.44) is L2(0, L)-globally asymptotically stable (see e.g., [11] or [79] for a
proof of such a result). The stabilizability assumption of Theorem 1.10 is satisfied.

Now, let us tackle the case where the feedback law is bounded with the following operator
defined, for all (t, x) ∈ R≥0 × [0, L]

σ : u ∈ U 7→ σ(u) = σ̃(u)(t, x), (1.107)

where σ̃ is the function introduced in (1.30). Due to item 4 of Example 1.1, it is a cone-bounded
nonlinearity. This particular cone-bounded nonliearity is illustrated by Figure 1.1.

The feedback law under consideration is as follows

u(z) = −Bσ(B?z) = −1Ωσ(z|Ω) = −σ(1Ωz). (1.108)

Note that with such a feedback law the results of [84] cannot be applied since the function
u ∈ U 7→ σ(u) ∈ U is not globally Lipschitz.

As stated in Example (1.2), it is known that the conditions of Theorem 1.9 are satisfied.
Therefore, Theorem 1.9 applies. Thus, the operator

Aσ : D(Aσ) = D(A) ⊂ L2(0, L)→ L2(0, L),

w 7→ −w′ − w′ − σ(1Ωz)
(1.109)

generates a strongly continuous semigroup of contractions.

Moreover, using Lemma A.1 given in Appendix A, all the items of Theorem 1.10 are
satisfied. Hence, Theorem 1.10 applies and one can conclude that the origin of (1.44) with
u = −σ (1Ωz) is globally asymptotically stable.

Using a numerical scheme inspired by [70], we perfomed some numerical simulations. We
note z the solution to (1.44) with (1.116) and z̃ the solution to

z̃t(t, x) + z̃x(t, x) + z̃xxx(t, x) + 1Ωz̃(t, x) = 0, (t, x) ∈ R≥0 × (0, L)

z̃(t, 0) = z̃(t, L) = z̃x(t, L) = 0, t ∈ R≥0

z̃(0, z) = z̃0(z).

(1.110)

This latter equation is referred to as the Korteweg-de Vries with a linear feedback law.

We pick z(0, x) = z̃(0, x) = 1 − cos(x) and L = 2π which is a critical case for the
stability of the linear Korteweg-de Vries equation as it is reviewed in [77]. Let us choose
Ω =

[
1
3L,

2
3L
]
. Figure 2.10 illustrates the solution to the system (1.44) with (1.116). We check

on the simulation the origin of this equation is attractive. Figure 1.3 illustrates the solution to
the system (1.110). It can be checked that the stabilizability assumption of Theorem (1.10) is
satisfied. Figure 1.4 illustrates the control u(t, x) = σ (1Ωz) (t, x) with respect to the time and
the space. We can check that the feedback law is bounded by the constant us = 1.5. Finally,
Figure 1.5 illustrates the time-evolution of the Lyapunov functions ‖z‖2L2(0,L) and ‖z̃‖2L2(0,L).
Note that the convergence in L2(0, L) of z̃ is faster than the convergence in L2(0, L) of z.
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Figure 1.2: Solution z(t, x) with the control
u(t, x) = σ (1Ωz) (t, x) where us = 1.5.
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1.2.5 Application to a nonlinear heat equation

In this section, we illustrate Theorems 1.9 and 1.10 with the linear nonlinear heat equation as
considered in Example 1.2.

Let us note that B? : z ∈ Z 7→ z ∈ U . Setting u(t, x) = −B?z(t, x) := −z(t, x) makes
the origin of (1.59) L2(0, 1)-globally asymptotically stable. Indeed, focus on the following
Lyapunov function

V (z) =

∫ 1

0
z(t, x)2dx. (1.111)

Its derivative along (1.59) yields

d

dt
V (z) =

∫ 1

0
z(t, x)zxx(t, x)dx+

∫ 1

0
sin(z)(t, x)z(t, x)dx−

∫ 1

0
z(t, x)2dx (1.112)

Performing some integrations by parts and using a Poincaré inequality leads to

d

dt
V (z) ≤ −

∫ 1

0
zx(t, x)2dx+

4

π2

∫ 1

0
zx(t, x)2dx−

∫ 1

0
z(t, x)2dx (1.113)

Hence, we have
d

dt
V (z) ≤ −V (z). (1.114)

Therefore, the stabilizability assumption of Theorem 1.10 is satisfied.

Now, let us tackle the case where the feedback law is bounded with the following operator
defined, for all (t, x) ∈ R+ × [0, L]

σ : u ∈ U 7→ σ(u) = σ̃(u)(t, x), (1.115)

where σ̃ is the function has been introduced in (1.30). Due to item 4 of Example 1.1, it is a
cone-bounded nonlinearity. This particular cone-bounded nonlinearity is illustrated by Figure
1.1.

The feedback law under consideration is as follows

u = −Bσ(B?z) = −σ(z). (1.116)

Note that with such a feedback law neither the results of [84], nor the ones of [81] cannot be
applied since we are considering a nonlinear operator A.

As stated in Example 1.3, it is known that the conditions of Theorem 1.9 are satisfied.
Therefore, Theorem 1.9 applies. Thus, the operator

Aσ : D(Aσ) = D(A) ⊂ L2(0, L)→ L2(0, L),

z 7→ z′′ + sin(z)− σ(z)
(1.117)

generates a strongly continuous semigroup of contractions.

Moreover, using the Lemma B.1 given in the Appendix B.2, all the items of Theorem 1.10
are satisfied. Hence, Theorem 1.10 applies and one can conclude that the origin of (1.59) with
u = −σ(z) is globally asymptotically stable.



1.3. Conclusion 33

1.3 Conclusion

In this chapter, the analysis of a stabilizing controller modified via a cone-bounded nonlinearity
has been tackled with various techniques. The well-posedness and the Lyapunov stability are
proved using a Schauder fixed-point theorem and some nonlinear semigroup results. Finally,
assuming a stabilizability property and precompactness of the trajectories of the solution, an
infinite-dimensional version of the LaSalle’s Invariance Principle has been used to conclude the
asymptotic stability of the origin. These results have been illustrated on a linear Korteweg-de
Vries equation and a nonlinear heat equation.

A future research line could be the study of the case of unbounded control operators,
which refers to boundary controls. To the best of our knowlegde, very few papers deal with
such systems in the context of cone-bounded feedback laws. Two of these papers ([44] or
[81]) focus on abstract control system and the well-posedness of the closed-loop system with
cone-bounded feedback law is assumed. Therefore, even well-posedness is an issue for this
topic. Note however that [76] tackles the well-posedness using an approach similar to Section
1.2.2.1.

The next chapter deals with a nonlinear Korteweg-de Vries equation with a saturating
distributed control. We will see that the nonlinear semigroup framework might be harder
to apply to this nonlinear partial differential equation. Hence, some other tools borrowed
from functional analysis and control theory will be presented in order to tackle the global
asymptotic stability of the origin of a Korteweg-de Vries equation with saturating distributed
control.
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In Chapter 1, a method for the analysis of the asymptotic stability of nonlinear abstract
systems with a cone-bounded controller has been provided. In order to use classical nonlin-
ear semigroup theory results, the operator describing the open-loop system without control
has been assumed to be the infinitesimal generator of a strongly continuous semigroup of
contraction.

However, proving this property for a nonlinear partial differential equation might be hard.
In fact, for a large class of nonlinear systems, applying classical nonlinear semigroup theory
might fail. In such cases, one needs to study the particular structure of the equation. This
chapter will aim at studying the nonlinear partial differential equation, namely a Korteweg-de
Vries equation, in the context of saturated controllers.

The Korteweg-de Vries equation (KdV for short) is a mathematical model of waves on
shallow water surfaces. Its controllability and stabilizability properties have been deeply
studied with no constraints on the control, as reviewed in [11, 21, 78].
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In the literature, there are some methods stabilizing the KdV equation with boundary
[16, 14, 59] or distributed controls [73, 71]. Here we focus on the distributed control case. As
proven in [73, 71, 79], a distributed localized feedback law, i.e. a feedback that acts only on a
part of the spatial domain, stabilizes globally the origin of the closed-loop system.

In this chapter, two particular cone-bounded nonlinearities will be studied. They are
referred to as saturation functions, which is a particular case of cone-bounded nonlinearities.
The interested reader can refer to [94] for an introduction to this topic for finite-dimensional
systems.

We obtain two main results. Our first main result states that the KdV equation in closed-
loop with a saturated control is well-posed. Our second main result states that the origin of
the KdV equation in closed loop with a saturated control is globally asymptotically stable.

This chapter is organized as follows. In Section 2.1, the history of the Korteweg-de Vries
is provided and some stability results of the equation without control are stated. Section 2.2
deals with the stabilization of the Korteweg-de Vries with a distributed control. Some existing
results are provided. In addition, our contributions are given together with their proofs. In
Section 2.3, some existings results and some of our results are illustrated with numerical
simulations for which we provide a numerical scheme. Section 2.4 collects some concluding
remarks and possible research lines.

The contributions of this chapter, collected from Section 2.2.2 until the end, are based on
two of our papers. The first one [61] has been published in a peer-reviewed conference (10th
IFAC Symposium on Nonlinear Control Systems). The second one [62] has been published in
the SIAM Journal on Control and Optimization.

2.1 About the Korteweg-de Vries equation

2.1.1 History

In 1834 John Scott Russell, a Scottish naval engineer, was observing the Union Canal in
Scotland when he unexpectedly witnessed a very special physical phenomenon. He saw a
particular wave traveling through this channel without losing its shape or velocity. He was
so captivated by this event that he focused his attention on these waves for several years and
asked the mathematical community to find a specific mathematical model describing them.

"I was observing the motion of a boat wich rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped - not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its
course along the channel apparently without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour,
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preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles I lost it in windings of the
channel. Such, in the month of August 1834, was my first chance interview with a singular
and beautiful phenomenon which I have called the Wave of Translation."

We have to wait until 1877 and 1895 before obtaining a model of such a phenomena. The
first model is due to Boussinesq and the second one to Korteweg and de Vries. Nowadays,
this latter model is more used to describe this phenomena than the Boussinesq model.

The original form of the Korteweg-de Vries equation is written as follows

1√
gh0

ηt + ηx +
h2

0

5
ηxxx +

3

2h0
ηηx = 0, ∀t ≥ 0, ∀x ∈ [0, Lc] (2.1)

where η stands for the height of the wave. The terms g, h0 and Lc denote the gravitational
constant the water depth and the canal length, respectively. The derivation of this equation
can be found in the Whitham’s book [98] which explains also the physical motivation of such
an equation.

The KdV equation has several connections to physical problems. Indeed, it can model a lot
of physical phenomena, as, for instance, shallow-water waves with weakly non-linear restoring
forces or ion acoustic waves in a plasma.

It has also received considerable attention in recent decades in the mathematics community.
For instance, its well-posedness and its controllability properties have been intensively studied.
Since our contributions deal with stability results, the next section is about stability properties
of a KdV equation.

2.1.2 Stability properties of the KdV equation without control

After a suitable scaling, the KdV equation becomes

zt + zx + zxxx + zzx = 0, ∀t ≥ 0, ∀x ∈ [0, L], (2.2)

where L is a positive value.

The aim of this chapter is to study the case where the boundary conditions are as follows:

z(t, 0) = z(t, L) = zx(t, L) = 0, ∀t ≥ 0. (2.3)

Hence, the Cauchy problem that will be considered is the following
zt + zx + zxxx + zzx = 0, (t, x) ∈ R≥0 × [0, L]

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L]

(2.4)

Note that the origin is an equilibrium point of this equation. We want to study the stability
of this point in the space L2(0, L).
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Before studying the stabilization problem, the case without control should be studied.
Indeed, most of the time, the control design depends crucially on the stability of the equilibrium
point for the open-loop system.

In the remaining parts of this section, an analysis of the asymptotic stability of the lin-
earized version of the equation around the origin will be provided. Then, some results for
stability of the nonlinear equation will be given.

2.1.2.1 Linearized KdV equation

The linearized version of (2.4) around the origin is given by the following equation
zt + zx + zxxx = 0,

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, x) = z0(x) ∈ L2(0, L).

(2.5)

Note that we know from Chapter 1 that there exists a unique mild solution z ∈
C(0,∞;L2(0, L)) to this equation. Moreover, applying Theorem 1.4, we know that the origin
of this equation is Lyapunov stable. However, we do not know yet if it is attractive.

Let us perform an energy analysis. Consider the energy

E(t) :=
1

2
‖z(t, ·)‖2L2(0,L). (2.6)

After performing some integrations by parts, its time derivative along (2.5) yields

d

dt
E(t) = −1

2
|zx(t, 0)|2. (2.7)

From this latter inequality, we can conclude that the energy is nonincreasing. However, we
can conclude nothing on the long-time behavior of the energy.

In fact, it depends crucially on the length L. If L belongs to a critical length set that is
defined by

N :=

{
2π

√
k2 + kl + l2

3

/
k, l ∈ N∗

}
, (2.8)

then the energy will remain equal to the initial condition.

Indeed, when L belongs to N , an additional boundary condition appears when considering
some initial conditions. Here is the statement of this result.

Theorem 2.1 ([77])
If L ∈ N defined in (2.8), then, for some initial conditions z0 ∈ L2(0, L), there exists solution
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to (2.5) which satisfies 
zt + zx + zxxx = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0,

zx(t, L) = zx(t, 0) = 0, t ≥ 0,

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L].

(2.9)

Therefore, if L ∈ N , for some initial conditions, (2.7) becomes

d

dt
E(t) = 0. (2.10)

Then, in the case where L ∈ N , we have, for all t ≥ 0

‖z(t, ·)‖L2(0,L) = ‖z0‖L2(0,L) (2.11)

Hence, for all positive values L, the origin of (2.5) is Lyapunov stable, but not attractive. A
way to stabilize the origin of (2.5) is to use a control.

Remark 2.1
As it has been mentionned, the set N defined in (2.8) has been introduced in [77]. However,
this paper did not aim at proving stability of the origin of (2.4), but aimed at proving the
controllability of the equation with a control located at the right Neumann boundary condition.
This system is given by 

zt + zx + zxxx = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0,

zx(t, L) = u(t), t ∈ R≥0,

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L]

(2.12)

where u stands for the control.

The author of [77] proved that the system is exactly controllable 1 if and only if L /∈ N .

In some cases, the linearized version of a system may have weaker property than the
nonlinear systems. As it will be noticed in the next section, this is the case of the Korteweg-
de Vries equation.

2.1.2.2 Nonlinear system

As it has been noticed in Chapter 1 (more precisely by Theorem 1.4), if an operator associated
to a partial differential equation is proved to be m-dissipative, then the Lyapunov stability of

1Given a positive value T , the system (2.12) is said to be exactly controllable in time T if, for every
z0, zT ∈ L2(0, L), there exists a control u ∈ L2(0, T ) such that the solution to (2.12) satisfies z(T, ·) = zT (·).
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the origin of this system is ensured. Hence, before studying the asymptotic stability of the
nonlinear system (2.4), we would like to see whether it is possible to apply results provided in
Chapter 1. The operator associated to (2.4) is

ANL : D(ANL) ⊂ L2(0, L)→ L2(0, L)

z 7→ −z′ − z′′′ − zz′
(2.13)

with
D(ANL) := {z ∈ H3(0, L), z(0) = z(L) = z′(L) = 0}. (2.14)

In order to apply Theorem 1.4, let us check whether the operator ANL is dissipative.

〈ANLz −ANLz̃, z − z̃〉L2(0,L) :=−
∫ L

0
(z′(x)− z̃′(x))(z(x)− z̃(x))dx

−
∫ L

0
(z′′′(x)− z̃′′′(x))(z(x)− z̃(x))dx

−
∫ L

0
(z(x)z′(x)− z̃(x)z̃′(x))(z(x)− z̃(x))dx,

(2.15)

where z, z̃ ∈ D(ANL).

However, it is difficult to determine the sign of the term∫ L

0
(z(x)z′(x)− z̃(x)z̃′(x))(z(x)− z̃(x))dx.

Hence, applying basic results of nonlinear semigroup theory might be hard for the Korteweg-
de Vries equation given in (2.4). Therefore, other mathematical tools than semigroup theory
will be used in this chapter to achieve the proof of the well-posedness and of the asymptotic
stability of a KdV equation with a saturating distributed control.

Some researchers focused on the nonlinear Korteweg-de Vries to obtain an asymptotic
stability results for the origin of the equation. It is worth to mention that there is no hope to
obtain global asymptotic stability of the origin for (2.4). Indeed, in [28], an equilibrium with
arbitrary large amplitude is built.

Recently, researchers proved the local asymptotic stability of the origin of (2.17)2. They
aimed at generalizing some results from the finite-dimensional framework to obtain similar
results for the Korteweg-de Vries equation (2.4). A result has been obtained for the particular

lengths L = 2π and L = 2π
√

7
3 , which belong to the critical lenght set (2.8). It is written just

below.

Theorem 2.2 (Local asymptotic stability of the origin with L = 2π and L = 2π
√

7
3 [20, 91])

Let us assume that L = 2π or L = 2π
√

7
3 . Then the origin is (locally) asymptotically stable

for (2.4).
2The origin of (2.17) is said to be locally asymptotically stable if there exists a positive value r such that,

for any initial condition z0 ∈ L2(0, L) satisfying ‖z0‖L2(0,L) ≤ r, the origin is Lyapunov stable and the state z
converges to 0 as t goes to infinity
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Suprisingly, the stability result for the origin of (2.4) is better than for its linearized version.

Remark 2.2
In [12] and [15], the controllability of (2.4) has been studied. The system under consideration
in these papers is 

zt + zx + zxxx + zzx = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0,

zx(t, L) = u(t), t ∈ R≥0,

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L].

(2.16)

The authors of [15] proved that, for every length L, this system is locally exactly controllable
for large time 3.

However, these results are only local. With a distributed control, it is possible to make
the origin of the closed-loop system globally asymptotically stable. Next sections will consider
the case of the Korteweg-de Vries equation with a distributed control. Two cases will be
considered: the case where the control is not saturated and the case where the control is
saturated.

2.2 Stabilization of a Korteweg-de Vries equation with a dis-
tributed control

2.2.1 Case where the control has no constraint: existing results

We suppose that (2.4) has a distributed control. Hence, it can be written as follows
zt + zx + zxxx + zzx + u = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, L],

(2.17)

If we let u(t, x) := a(x)z(t, x) in (2.17), where a is a nonnegative and measurable function on
[0, L] satisfying {

0 < a0 ≤ a(x) ≤ a1, ∀x ∈ Ω,

where Ω is a nonempty open subset of (0, L),
(2.18)

then (2.17) becomes
zt + zx + zxxx + zzx + az = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L],

(2.19)

3The system (2.16) is said to be locally exactly controllable for large time T if there exists two positive
values TM and r such that, for any positive value T satisfying T > TM and any z0, zT ∈ L2(0, L) satisfying
‖z0‖L2(0,L) ≤ r and ‖zT ‖L2(0,L) ≤ r, there exists u ∈ L2(0, T ) such that the solution to (2.16) satisfies
z(T, ·) = zT (·).
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Following [79], we get that the origin of (2.19) is globally asymptotically stabilized. More
precisely, they obtain the following results

Theorem 2.3 ([79])
The origin for (2.19) is globally asymptotically stable in L2(0, L). More precisely, there exist
a class-K∞ function α : R≥0 → R≥0 and a positive value µ such that, for any initial condition
z0 ∈ L2(0, L), the unique solution to (2.19) satisfies the following inequality

‖z(t, ·)‖L2(0,L) ≤ α(‖z0‖L2(0,L))e
−µt, ∀t ≥ 0. (2.20)

Remark 2.3
The result obtained [79] is more general than Theorem 2.3. In fact, instead of studying (2.19),
the system under consideration in [79] is the following

zt + zx + zxxx + b(z)zx + az = 0, (t, x) ∈ R≥0 × [0, L]

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L],

(2.21)

where a satisfies (2.18) and where b is defined as follows

b(0) = 0, |b(j)(µ)| ≤ C
(
1 + |µ|p−j

)
, ∀µ ∈ R, (2.22)

for j = 0 if 1 ≤ p < 2 and for j = 0, 1, 2 if p ≥ 2. Note that, according to this definition, b
can be the identity operator, in which case (2.21) would become (2.19). This means that the
results obtained in [79] hold also for (2.19). All along this chapter, the results obtained in [79]
for this equation will be discussed.

If Ω = [0, L], the result is better. Indeed, we obtain that the origin of (2.17) is globally
exponentially stable in L2(0, L). Let us give the definition of such a property.

Definition 2.1 (Global exponential stability)
The origin of (2.19) is said to be globally exponentially stable if there exist two positive values
C and µ such that, for any initial condition z0 ∈ L2(0, L), the solution to (2.19) satisfies the
following inequality

‖z(t, ·)‖L2(0,L) ≤ Ce−µt‖z0‖L2(0,L), ∀t ≥ 0. (2.23)

Taking the energy E defined by (2.6), its derivative along (2.19)

E(t) =− 1

2
|zx(t, 0)|2 −

∫ L

0
a(x)|z(t, x)|2dx

≤− a0

∫ L

0
|z(t, x)|2dx,

(2.24)

which ensures an exponential stability with respect to the L2(0, L)-norm. Note that the decay
rate can be selected as large as we want by tuning the parameter a0. Such a result is refered
to as a rapid stabilization result.
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2.2.2 Case where the control is saturated: contributions

Let us consider the KdV equation with a saturated distributed control. It is written as follows
zt + zx + zxxx + zzx + sat(az) = 0, (t, x) ∈ R≥0 × [0, L]

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0

z(0, x) = z0(x) ∈ L2(0, L), x ∈ [0, L],

(2.25)

where sat = satL2(0,L) or satloc. These two operators have been introduced in the latter
chapter (see e.g., Item 2. in Remark 1.1 and (1.33)), but let us recall them. The operator
satloc comes from the finite-dimensional theory (see e.g., [94]) and it is defined by, for all
s ∈ R

sat(s) =


−us if s ≤ −us,
s if − us ≤ s ≤ us,
us if s ≥ us,

(2.26)

for some us > 0.

As in [76] and [64], we use its extension to infinite dimension called satloc. For all suffi-
ciently smooth functions s and for all x ∈ [0, L], satloc is defined as follows

satloc(s)(x) = sat(s(x)). (2.27)

Such a saturation is called localized since its value at x depends only on the value of s at x.

In this work, we also use a saturation operator in L2(0, L), denoted by satL2(0,L), and
defined by

satL2(0,L)(s)(x) =

{
s(x) if ‖s‖L2(0,L) ≤ us,

s(x)us
‖s‖L2(0,L)

if ‖s‖L2(0,L) ≥ us.
(2.28)

Note that this definition is borrowed from [84] (see also [81] or [52]) where the saturation is
obtained from the norm of the Hilbert space of the control operator.

This saturation seems more natural when studying the stability with respect to an energy,
but it is less relevant than satloc for applications. Figure 2.1 illustrates how different these
saturations are.

Since these two operators have properties in common, we will use the notation sat all
along this chapter. However, in some cases, we get different results. Therefore, the use of a
particular saturation is specified when it is necessary.

Note that, all along this chapter, T is a positive value which refers to a time. We are now
able to state the main contributions of this chapter.

Theorem 2.4 (Well posedness)
Given a positive value T , for any initial condition z0 ∈ L2(0, L), there exists a unique mild
solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) to (2.25).
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Figure 2.1: x ∈ [0, π]. Red: satL2(0,L)(cos)(x) and us = 0.5, Blue: satloc(cos)(x) and us = 0.5,
Dotted lines: cos(x).

Theorem 2.5 (Global asymptotic stability)
Given a nonempty open subset Ω and the positive values a0 and us given by (2.18), and (2.6)
and (2.27), respectively, there exist a positive value µ? and a class K∞ function α0 : R≥0 →
R≥0 such that, for any z0 ∈ L2(0, L), the mild solution z of (2.25) satisfies

‖z(t, .)‖L2(0,L) ≤ α0(‖z0‖L2(0,L))e
−µ?t, ∀t ≥ 0. (2.29)

Moreover, in the case where Ω = [0, L] and sat = satL2(0,L) we can estimate locally the decay
rate of the solution. In other words, for all r > 0, for any initial condition z0 ∈ L2(0, L) such
that ‖z0‖L2(0,L) ≤ r, the mild solution z to (2.25) satisfies

‖z(t, .)‖L2(0,L) ≤ ‖z0‖L2(0,L)e
−µt, ∀t ≥ 0, (2.30)

where µ is defined as follows

µ := min

{
a0,

usa0

ra1

}
. (2.31)

The remaining part of this chapter is devoted to the proof of these results (see Sections
2.2.3.1 and 2.2.3.3, respectively) and to numerical simulations to illustrate Theorem 2.5 (see
Section 2.3).

2.2.3 Proofs of Theorems 2.4 and 2.5

2.2.3.1 Well-posedness

Before proving the well-posedness of (2.25), let us recall some useful results on the linear
system (2.5). To do that, consider the operator defined by

D(A) = {w ∈ H3(0, L), w(0) = w(L) = w′(L) = 0},



2.2. Stabilization of a Korteweg-de Vries equation with a distributed control 45

A : w ∈ D(A) ⊂ L2(0, L) 7−→ (−w′ − w′′′) ∈ L2(0, L).

Note that it is closed. Moreover, it can be proved that this operator and its adjoint operator
defined by

D(A?) = {w ∈ H3(0, L), w(0) = w(L) = w′(0) = 0},

A? : w ∈ D(A?) ⊂ L2(0, L) 7−→ w′ + w′′′,

are both dissipative.

Therefore, from Theorem 1.1, the operator A generates a strongly continuous semigroup
of contractions which we denote by (W (t))t≥0. We have the following theorem proven in [77]
and [11]

Theorem 2.6 (Well-posedness of (2.5), [77],[11])
Let T be any positive value.
• For any initial condition z0 ∈ D(A), there exists a unique strong solution z ∈ C(0, T ;D(A))∩
C1(0, T ;L2(0, L)) to (2.5);
• For any initial condition z0 ∈ L2(0, L), there exists a unique mild solution z ∈
C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) to (2.5). Moreover, there exists C0 > 0 such that
the solution to (2.5) satisfies

‖z‖C(0,T ;L2(0,L)) + ‖z‖L2(0,T ;H1(0,L)) ≤ C0‖z0‖L2(0,L) (2.32)

and the extra trace regularity

‖zx(., 0)‖L2(0,T ) ≤ ‖z0‖L2(0,L). (2.33)

To ease the reading, let us denote the following Banach space, for all T > 0,

B(T ) := C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

endowed with the norm

‖z‖B(T ) = sup
t∈[0,T ]

‖z(t, .)‖L2(0,L) +

(∫ T

0
‖z(t, .)‖2H1(0,L)dt

) 1
2

. (2.34)

Before studying the well-posedness of (2.25), we need a well-posedness result with a right-
hand side. Given g ∈ L1(0, T ;L2(0, L)), let us consider z the unique solution 4 to the following
nonhomogeneous problem: 

zt + zx + zxxx = g,

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, .) = z0.

(2.35)

Note that we need the following property on the saturation function, which will allow us
to state that this type of nonlinearity belongs to the space L1(0, T ;L2(0, L)).

4With g = 0, the existence and the unicity of z are ensured since A generates a strongly continuous
semigroup of contractions. The result follows applying Theorem 1.4. It follows from the semigroup theory the
existence and the unicity of z when g ∈ L1(0, T ;L2(0, L)) (see [72]).



46
Chapter 2. Global stabilization of a Korteweg-de Vries equation with saturating

distributed control

Lemma 2.1
For all (s, s̃) ∈ L2(0, L)× L2(0, L), we have

‖sat(s)− sat(s̃)‖L2(0,L) ≤ 3‖s− s̃‖L2(0,L). (2.36)

Proof of Lemma 2.1:

For sat = satL2(0,L), please refer to [84, Theorem 5.1.] for a proof. For sat = satloc, we
know from [46, Page 73] that for all (s, s̃) ∈ L2(0, L)2 and for all x ∈ [0, L],

|satloc(s(x))− satloc(s̃(x))| ≤ |s(x)− s̃(x)|.

Thus, we get
‖satloc(s)− satloc(s̃)‖L2(0,L) ≤ ‖s− s̃‖L2(0,L),

which concludes the proof of Lemma 2.1. 2

We have the following proposition borrowed from [77, Proposition 4.1].

Proposition 2.1 ([77])
If z ∈ L2(0, T ;H1(0, L)), then zzx ∈ L1(0, T ;L2(0, L)) and the map ψ1 : z ∈
L2(0, T ;H1(0, L)) 7→ zzx ∈ L1(0, T ;L2(0, L)) is continuous.

We have also the following proposition.

Proposition 2.2
Assume a : [0, L] → R satisfies (2.18). If z ∈ L2(0, T ;H1(0, L)), then sat(az) ∈
L1(0, T ;L2(0, L)) and the map ψ2 : z ∈ L2(0, T ;H1(0, L)) 7→ sat(az) ∈ L1(0, T ;L2(0, L))

is continuous.

Proof of Proposition 2.2:

Let z, z̃ ∈ L2(0, T ;H1(0, L)). We have, using Lemma 2.1 and the Hölder inequality

‖sat(az)− sat(az̃)‖L1(0,T ;L2(0,L)) ≤ 3

∫ T

0
‖a(z − z̃)‖L2(0,L)dt

≤ 3
√
La1

√
T‖(z − z̃)‖L2(0,T ;H1(0,L)) (2.37)

Plugging z = 0 in (2.37) yields sat(az) ∈ L1(0, T ;L2(0, L)) and (2.37) implies the conti-
nuity of the map ψ2. This concludes the proof of Proposition 2.2. 2

Let us study the non-homogenenous linear KdV equation with z0(x) := 0. For any
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g ∈ L1(0, T ;L2(0, L)), it is described with the following equation
zt + zx + zxxx + g = 0,

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, x) = 0.

(2.38)

It can be rewritten as follows {
ẏ = Ay + g,

z(0) = 0.
(2.39)

By standard semigroup theory (see [72]), for any positive value t and any function g ∈
L1(R≥0;L2(0, L)), the solution to (2.38) can be expressed as follows

z(t) =

∫ t

0
W (t− τ)g(τ, x)dτ. (2.40)

Finally, we have the following result borrowed from [79, Lemma 2.2]

Proposition 2.3 ([79])
There exists a positive value C1 such that for any positive value T and any function g ∈
L1(0, T ;L2(0, L)) the solution to (2.38) satisfies the following inequality,∥∥∥∥∫ t

0
W (t− τ)g(τ, x)dτ

∥∥∥∥
B(T )

≤ C1

∫ T

0
‖g(τ, .)‖L2(0,L)dτ, (2.41)

where ‖ · ‖B(T ) is given by (2.34).

2.2.3.2 Proof of Theorem 2.4

Let us begin this section with a technical lemma.

Lemma 2.2 ([102])
For any T > 0 and y, z ∈ B(T ),∫ T

0
‖(z(t, .)y(t, .))x‖L2(0,L)dt ≤ 2

√
T‖z‖B(T )‖y‖B(T ). (2.42)

The following is a local well-posedness result.

Lemma 2.3 (Local well-posedness)
Let T > 0 be given. For any z0 ∈ L2(0, L), there exists T ′ ∈ [0, T ] depending on ‖z0‖L2(0,L)

such that (2.25) admits a unique mild solution z ∈ B(T ′).

To prove this result, a fixed-point theorem will be used. Let us recall it
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Theorem 2.7 (Banach fixed-point theorem [7], Theorem 5.7.)
Let Z be a nonempty complete metric space equipped with the metric d and let Γ : Z → Z be
a strict contraction, i.e., there exists ` < 1 such that

d(Γz1,Γz2) ≤ `d(z1, z2), ∀z1, z2 ∈ Z. (2.43)

Then Γ has a unique fixed-point, z = Γz.

Proof of Lemma 2.3:

We follow the strategy of [18] and [79]. We know from (2.38), Proposition 2.1 and Proposi-
tion 2.2 that, for all z̃ ∈ L1(0, T ;L2(0, L)), there exists a unique mild solution to the following
system 

zt + zx + zxxx = −z̃z̃x − sat(az̃),

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, x) = z0(x).

(2.44)

The solution to (2.44) can be written in integral form

z(t) = W (t)z0 −
∫ t

0
W (t− τ)(z̃z̃x)(τ)dτ −

∫ t

0
W (t− τ)sat(az̃(τ, .))dτ. (2.45)

For given z0 ∈ L2(0, L), let r and T ′ be positive constants to be chosen later. We define

ST ′,r = {z̃ ∈ B(T ′), ‖z̃‖B(T ′) ≤ r}, (2.46)

which is a closed, convex and bounded subset of B(T ′). Consequently, ST ′,r is a complete
metric space in the norm topology induced from B(T ′). We define a map Γ on ST ′,r by, for
all t ∈ [0, T ′]

Γ(z̃) := W (t)z0 −
∫ t

0
W (t− τ)(z̃z̃x)(τ)dτ −

∫ t

0
W (t− τ)sat(az̃(τ, .))dτ, ∀z̃ ∈ ST ′,r. (2.47)

We aim at proving that there exists a unique fixed point to this operator. It follows from
Proposition 2.3, Lemma 2.2 and the linear estimates given in Theorem 2.6 that for every
z̃ ∈ ST ′,r, there exists a positive value C2 := C2(a1, T, L,C1) such that it holds

‖Γ(z̃)‖B(T ′) ≤ C0‖z0‖L2(0,L) + C1

∫ T

0
(‖z̃z̃x(τ, .)‖L2(0,L) + ‖sat(az̃(τ, .)‖L2(0,L))dτ

≤ C0‖z0‖L2(0,L) + 2C1

√
T ′‖z̃‖2B(T ′) + C2

√
T ′‖z̃‖B(T ′)

(2.48)

where the first line has been obtained with the linear estimates given in Theorem 2.6 and the
estimate given in Proposition 2.3 and the second line with Lemma 2.2 and Proposition 2.2.
We choose r > 0 and T ′ > 0 such that{

r = 2C0‖z0‖L2(0,L),

2C1

√
T ′r + C2

√
T ′ ≤ 1

2 ,
(2.49)

in order to obtain
‖Γ(z̃)‖B(T ′) ≤ r, ∀z̃ ∈ ST ′,r. (2.50)
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Thus, with such r and T ′, Γ maps ST ′,r to ST ′,r. Moreover, one can prove with Proposition
2.3, Lemma 2.2 and the linear estimates given in Theorem 2.6 that

‖Γ(z̃1)− Γ(z̃2)‖B(T ′) ≤
1

2
‖z̃1 − z̃2‖B(T ′), ∀z̃1, z̃2 ∈ ST ′,r. (2.51)

The existence of mild solutions to the Cauchy problem (2.25) follows by using the Theorem
2.7. 2

Before proving the global well-posedness, we need the following lemma inspired by [23] and
[18] which implies that, if there exists a solution for some T > 0, then the solution is unique.

Lemma 2.4
Let T > 0 and a : [0, L] → R satisfying (2.18). There exists C11 := C11(T, L) > 0 such that
for every z0, z̃0 ∈ L2(0, L) for which there exist mild solutions z and z̃ of

zt + zx + zxxx + zzx + sat(az) = 0,

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, x) = z0(x),

(2.52)

and 
z̃t + z̃x + z̃xxx + z̃z̃x + sat(az̃) = 0,

z̃(t, 0) = z̃(t, L) = z̃x(t, L) = 0,

z̃(0, x) = z̃0(x),

(2.53)

these solutions satisfy∫ T

0

∫ L

0
(zx(t, x)−z̃x(t, x))2dxdt ≤ eC11(1+‖z‖L2(0,T ;H1(0,L))+‖z̃‖L2(0,T ;H1(0,L)))

∫ L

0
(z0(x)−z̃0(x))2dx,

(2.54)∫ T

0

∫ L

0
(z(t, x)−z̃(t, x))2dxdt ≤ eC11(1+‖z‖L2(0,T ;H1(0,L))+‖z̃‖L2(0,T ;H1(0,L)))

∫ L

0
(z0(x)−z̃0(x))2dx.

(2.55)

Proof of Lemma 2.4:

We follow the strategy of [23] and [18]. Let us assume that for given z0, z̃0 ∈ L2(0, L), there
exist T > 0 and two different solutions z and z̃ to (2.52) and (2.53), respectively, defined on
[0, T ]× [0, L]. Then ∆ := z − y defined on [0, T ]× [0, L] is a mild solution of

∆t + ∆x + ∆xxx = −z∆x − z̃x∆− (sat(az)− sat(az̃)),

∆(t, 0) = ∆(t, L) = ∆x(t, L) = 0,

∆(0, x) = z0(x)− z̃0(x).

(2.56)

Integrating by parts in∫ L

0
2x∆(∆t + ∆x + ∆xxx + z∆x + z̃x∆ + sat(az)− sat(az̃))dx = 0, (2.57)
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and using the boundary conditions of (2.56), we readily get

d

dt

∫ L

0
x∆2dx+ 3

∫ L

0
∆2
xdx =

∫ L

0
∆2dx− 2

∫ L

0
xz∆∆xdx

+

∫ L

0
z̃∆2dx+ 4

∫ L

0
xz̃∆∆xdx−

∫ L

0
x∆(sat(az)− sat(az̃))dx. (2.58)

By the boundary conditions and the continuous Sobolev embedding H1
0 (0, L) ⊂ C([0, T ]),

there exists C3 = C3(L) > 0 such that

2

∣∣∣∣∫ L

0
xz∆∆xdx

∣∣∣∣ ≤ C3‖zx‖L2(0,L)

∫ L

0
|x∆∆x|dx. (2.59)

Thus,

2

∣∣∣∣∫ L

0
xz∆∆xdx

∣∣∣∣ ≤ 1

2

∫ L

0
∆2
xdx+

C2
3

2
‖zx‖2L2(0,L)L

∫ L

0
x∆2dx. (2.60)

Similarly,

4

∣∣∣∣∫ L

0
xz̃∆∆xdx

∣∣∣∣ ≤ 1

2

∫ L

0
∆2
xdx+ 2C2

3‖z̃x‖2L2(0,L)

∫ L

0
x∆2dx. (2.61)

Moreover, since sat is globally Lipschitz with constant 3 (as stated in Lemma 2.1) and for all
x ∈ [0, L], a(x) ≤ a1, we use a Hölder inequality to get∣∣∣∫ L0 x∆(sat(az)− sat(az̃))dx

∣∣∣ ≤ ‖x∆‖L2(0,L)‖sat(az)− sat(az̃)‖L2(0,L)

≤ 3‖a(x)∆‖L2(0,L)‖x∆‖L2(0,L)

≤ 3a1

∫ L
0 x∆2dx.

(2.62)

Note that, from [23, Lemma 16], for every φ ∈ H1(0, L) with φ(0) = 0, and every d ∈ [0, L],∫ L

0
φ2dx ≤ d2

2

∫ L

0
φ2
xdx+

1

d

∫ L

0
xφ2dx. (2.63)

Thus, from (2.63) there exists C4 > 0 such that∫ L

0
∆2dx ≤ 1

2

∫ L

0
∆2
xdx+ C4

∫ L

0
x∆2dx.

Moreover, with the boundary conditions of z and the Sobolev embeddingH1
0 (0, L) ⊂ C([0, T ]),

there exists C5 = C5(L) > 0 such that

2

∣∣∣∣∫ L

0
z̃∆2dx

∣∣∣∣ ≤ C5‖z̃x‖L2(0,L)

∫ L

0
∆2dx.

Hence, using the boundary conditions of ∆ and (2.63) with d := min{C−1/2
5 ‖zx‖−1/2

L2(0,L)
, L},

there exists C6 = C6(L) > 0 such that

2

∫ L

0
z̃∆2dx ≤ 1

2

∫ L

0
∆2
xdx+ C6(1 + ‖z̃x‖3/2L2(0,L)

)

∫ L

0
x∆2dx. (2.64)
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Finally, there exists C7 = C7(L) > 0 such that

d

dt

∫ L

0
x∆2dx+

∫ L

0
∆2
xdx ≤ C7(1 + ‖zx‖2L2(0,L) + ‖z̃x‖2L2(0,L))

∫ L

0
x∆2dx. (2.65)

In particular,

d

dt

∫ L

0
x∆2dx ≤ C7(1 + ‖zx‖2L2(0,L) + ‖z̃x‖2L2(0,L))

∫ L

0
x∆2dx. (2.66)

Using the Grönwall Lemma, the last inequality and the initial conditions of ∆, we get, for
every t ∈ [0, T ],∫ L

0
x∆2(t, x)dx ≤ eC7

(
T+‖z‖2

L2(0,T ;H1(0,L))
+‖z̃‖2

L2(0,T ;H1(0,L))

) ∫ L

0
x(z0(x)− z̃0(x))2dx, (2.67)

and thus, we obtain the existence of C8 = C8(T, L) such that∫ T

0

∫ L

0
(zx(t, x)−z̃x(t, x))2dxdt ≤ eC8

(
‖z‖2

L2(0,T ;H1(0,L))
+‖z̃‖2

L2(0,T ;H1(0,L))

) ∫ L

0
(z0(x)−z̃0(x))2dx.

(2.68)
Similarly, integrating by parts in∫ L

0
∆(∆t + ∆x + ∆xxx + z∆x + z̃x∆ + sat(az)− sat(az̃))dx = 0 (2.69)

we get, using the boundary conditions of ∆,

1

2

d

dt

∫ L

0
∆2dx+

1

2
∆2
x(t, 0) = −

∫ L

0
(z∆x − 2z̃∆x)∆dx−

∫ L

0
∆(sat(az)− sat(az̃))dx. (2.70)

Moreover,

−
∫ L

0
(z∆x − 2z̃∆x)∆ ≤

∫ L

0
∆2
xdx+

∫ L

0

(
1

2
z2 + 2z̃2

)
∆2dx, (2.71)

and ∣∣∣∣∫ L

0
∆(sat(az)− sat(az̃))dx

∣∣∣∣ ≤ 3a1

∫ L

0
∆2dx. (2.72)

Thanks to the continuous Sobolev embedding H1
0 (0, L) ⊂ C([0, L]), (2.72) and (2.71), there

exists C9 = C9(L) > 0 such that

1

2

d

dt

∫ L

0
∆2dx ≤

∫ L

0
∆2
xdx+ C9

(
‖zx‖2L2(0,L) + ‖z̃x‖2L2(0,L) + 1

)∫ L

0
∆2dx. (2.73)

Thus applying the Grönwall Lemma, we get the existence of C10 = C10(L) > 0 such that∫ L

0
(z(t, x)− z̃(t, x))2dx ≤ eC10

(
1+‖z‖2

L2(0,T ;H1(0,L))
+‖z̃‖2

L2(0,T ;H1(0,L))

) ∫ L

0
(z0(x)− z̃0(x))2dx.

(2.74)
With the use of (2.68) and (2.74), this concludes the proof of Lemma 2.4. 2

We aim at removing the smallness condition given by T ′ in Lemma 2.3, following [18].
Since we have the local well-posedness, we only need to prove the following a priori estimate
for any mild solution to (2.25).
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Lemma 2.5
For given T > 0, there exists G := G(T ) > 0 such that for any z0 ∈ L2(0, L), for any positive
value T ′ satisfying 0 < T ′ ≤ T and for any mild solution z ∈ B(T ′) to (2.25), it holds

‖z‖B(T ′) ≤ G‖z0‖L2(0,L), (2.75)

and
‖z‖L2(0,L) ≤ ‖z0‖L2(0,L). (2.76)

Proof of Lemma 2.5:

Let us fix 0 < T ′ ≤ T . We multiply the first equation in (2.25) by z and integrate on
(0, L). Using the boundary conditions in (2.25), we get the following estimates∫ L

0
zzxdx = 0,

∫ L

0
zzxxxdx =

1

2
|zx(t, 0)|2,

∫ L

0
z2zxdx = 0.

Using the fact that sat is odd, we get that

1

2

d

dt
‖z(t, .)‖2L2(0,L) ≤ −

1

2
|zx(t, 0)|2 −

∫ L

0
zsat(az)dx ≤ 0 (2.77)

which implies (2.76). Moreover, using again (2.77), there exists C12 = C12(L) > 0 such that

‖z‖L∞(0,T ′;L2(0,L) ≤ C12‖z0‖L2(0,L). (2.78)

It remains to prove a similar inequality for ‖zx‖L2(0,T ′;L2(0,L)) to achieve the proof. We multiply
(2.25) by xz, integrate on (0, L) and use the following∫ L

0
xzzxdx = −1

2
‖z‖2L2(0,L),

∫ L

0
zzxxxdx =

3

2
‖zx‖2L2(0,L),

and

−
∫ L

0
xz2zxdx =

1

3

∫ L

0
z3(t, x)dx ≤ 1

3
sup
x∈[0,L]

|z(t, x)|‖z‖2L∞(0,T ;L2(0,L))

≤
√
L

3
‖zx‖L2(0,L)‖z‖2L∞(0,T ;L2(0,L)) ≤

√
Lδ

6
‖zx‖L2(0,L) +

√
L

6δ
‖z‖4L∞(0,T ;L2(0,L)) (2.79)

where δ is chosen as δ := 3√
L
. In this way, we obtain

1

2

d

dt

∫ L

0
|x1/2z(t, .)|2dx− 1

2

∫ L

0
z2dx+

3

2

∫ L

0
|zx|2dx−

1

3

∫ L

0
|z|3dx = −

∫ L

0
xsat(az)zdx.

(2.80)
We get, using (2.79) and the fact that sat is odd, that

1

2

d

dt

∫ L

0
|x1/2z(t, .)|2dx+

∫ L

0
|zx|2dx ≤

1

2
‖z‖2L∞(0,T ;L2(0,L)) +

L

18
‖z‖4L∞(0,T ;L2(0,L)). (2.81)
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Using (2.78) and Grönwall inequality, we get the existence of a positive value C13 = C13(L) > 0

such that
‖zx‖L2(0,T ′;L2(0,L)) ≤ C13‖z0‖L2(0,L), (2.82)

which concludes the proof of Lemma 2.5. 2

Using a classical extension argument, Lemmas 2.3, 2.5 and 2.4, for any T > 0, we can
conclude that there exists a unique mild solution in B(T ) to (2.25). Indeed, with Lemma 2.3,
we know that there exists T ′ ∈ (0, T ) such that there exists a unique solution to (2.25) in
B(T ′). Moreover, Lemma 2.5 allows us to state the existence of a mild solution to (2.25) for
every T > 0: since the solution z to (2.25) is bounded by its initial condition for every T ′ > 0

belonging to [0, T ] as stated in (2.76), we know that there exists a solution to (2.25) in B(T ).
Finally, Lemma 2.4 implies that there exists a unique mild solution to (2.25) in B(T ). This
concludes the proof of Theorem 2.4.

Remark 2.4
As noticed in Remark 2.3, the authors of [79] studied the stabilization of a KdV equation more
general than the one studied in this chapter. It is given by (2.21).

The saturated version of (2.21) is
zt + zx + zxxx + b(z)zx + sat(az) = 0,

z(t, 0) = z(t, L) = zx(t, L) = 0,

z(0, x) = z0(x).

(2.83)

The strategy followed in [79] can be followed easily to prove the same result as Theorem 2.4 for
(2.83). Note that in [79], provided that the initial condition satisfies some compatibility condi-
tions, the well-posedness is proved for a solutions in C([0, T ];Hs(0, L))∩L2(0, T ;Hs+1(0, L)),
where s ∈ [0, 3]. The authors proved this result by looking at v = zt which solves an equation
equivalent to (2.21). In our case, it seems harder to prove such a result. Since the saturation
operator introduces some non-smoothness, v = zt does not solve an equation equivalent to
(2.83).

2.2.3.3 Global asymptotic stability

Let us begin by introducing the following definition.

Definition 2.2
System (2.25) is said to be semi-globally exponentially stable in L2(0, L) if for any r > 0 there
exists two constants K := K(r) > 0 and µ := µ(r) > 0 such that for any z0 ∈ L2(0, L) such
that ‖z0‖L2(0,L) ≤ r, the mild solution y = z(t, x) to (2.25) satisfies

‖z(t, .)‖L2(0,L) ≤ K‖z0‖L2(0,L)e
−µt, ∀t ≥ 0. (2.84)

Following [79], we first show that (2.25) is semi-globally exponentially stable in L2(0, L).
From this result, we will be able to prove the global uniform exponential stability of (2.25). To
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do that, we state and prove a technical lemma that allows us to bound the saturation function
with a linear function as long as the initial condition is bounded. Then we separate our proof
into two cases. The first one deals with the case Ω = [0, L] and sat = satL2(0,L), while the
second one deals with the case Ω ⊆ [0, L] whatever the saturation is. The tools to tackle these
two cases are different. The goal of the next three sections is to prove the following result

Proposition 2.4 (Semi-global exponential stability)
The system (2.25) is semi-globally exponentially stable in L2(0, L).

Moreover, if Ω = [0, L] and sat = satL2(0,L), inequality (2.84) holds with K = 1 and µ can
be estimated with (2.31) given in Theorem 2.5.

2.2.3.4 Technical Lemma

Before starting the proof of the Proposition 2.4, we will use a property already well-known
for saturated control system, namely the sector condition. If the argument of the saturation
is bounded, then the saturation can be bounded by a linear function, which allows us to pass
from nonlinear control problem to a linear one (see [46]).

Let us state and prove the following lemma.

Lemma 2.6 (Sector Condition)
Let r be a positive value, a function a : [0, L]→ R satisfying (2.18) and k(r) defined by

k(r) = min

{
us
a1r

, 1

}
, (2.85)

with us given either in (2.6) or (2.27).

(i) Given sat = satL2(0,L) and s ∈ L2(0, L) such that ‖s‖L2(0,L) ≤ r, we have(
satL2(0,L)(a(x)s(x))− k(r)a(x)s(x)

)
s(x) ≥ 0, ∀x ∈ [0, L], (2.86)

(ii) Given sat = satloc and s ∈ L∞(0, L) such that, for all x ∈ [0, L], |s(x)| ≤ r, we have(
satloc(a(x)s(x))− k(r)a(x)s(x)

)
s(x) ≥ 0, ∀x ∈ [0, L]. (2.87)

Proof of Lemma 2.6:

(i) We first prove item (i) of Lemma 2.6. Two cases may occur

1. ‖as‖L2(0,L) ≥ us;

2. ‖as‖L2(0,L) ≤ us.
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The first case implies that, for all x ∈ [0, L]

satL2(0,L)(a(x)s(x)) =
a(x)s(x)

‖as‖L2(0,L)
us.

Thus, for all x ∈ [0, L],(
satL2(0,L)(a(x)s(x))− k(r)a(x)s(x)

)
s(x) = a(x)s(x)2

(
us

‖as‖L2(0,L)
− k(r)

)
.

Since
us

‖as‖L2(0,L)
≥ us
a1‖s‖L2(0,L)

≥ us
a1r
≥ k(r),

we obtain (
satL2(0,L)(a(x)s(x))− k(r)a(x)s(x)

)
s(x) ≥ 0.

Now, let us consider the case ‖as‖L2(0,L) ≤ us. We have, for all x ∈ [0, L],

satL2(0,L)(a(x)s(x)) = a(x)s(x),

and then, for all x ∈ [0, L],

(satL2(0,L)(a(x)s(x))− k(r)a(x)s(x))s(x) = a(x)s(x)2(1− k(r)) ≥ 0.

(ii) We now deal with item (ii) of Lemma 2.6.

Let us pick x ∈ [0, L] and consider the two following cases

1. |a(x)s(x)| ≥ us;

2. |a(x)s(x)| ≤ us.

The first case implies either a(x)s(x) ≥ us or a(x)s(x) ≤ −us.

Since these two possibilities are symmetric, we just deal with the case a(x) ≥ us. We have

satloc(a(x)s(x)) = us,

and then(
satloc(a(x)s(x))− k(r)a(x)s(x)

)
s(x) = uss(x)− k(r)a(x)s2(x)

≥
(
us − k(r)a(x)r

)
s(x) ≥

(
us −

us
a1r

a(x)r

)
s(x) ≥ 0.

The second case implies that satloc(a(x)s(x)) = a(x)s(x), and then
(
satloc(a(x)s(x) −

k(r)a(x)s(x)
)
s(x) =

(
1 − k(r)

)
a(x)2s(x)2 ≥ 0. This concludes the proof of the second item

of the Lemma 2.6. 2
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2.2.3.5 Proof of Proposition 2.4 when Ω = [0, L] and sat = satL2(0,L)

Now we are able to prove Proposition 2.4 when Ω = [0, L] and sat = satL2(0,L). Let r > 0 and
z0 ∈ L2(0, L) be such that ‖z0‖L2(0,L) ≤ r.

Multiplying (2.25) by z, integrating with respect to x on (0, L) yields

1

2

d

dt

∫ L

0
|z(t, x)|2dx ≤ −

∫ L

0
satL2(0,L)(az(t, x))z(t, x)dx. (2.88)

Note that from (2.76), we get

‖z‖L2(0,L) ≤ ‖z0‖L2(0,L) ≤ r. (2.89)

Thus, using Lemma 2.6 and (2.88), it follows that

1

2

d

dt

∫ L

0
|z(t, x)|2dx ≤ −

∫ L

0
k(r)a0|z(t, x)|2dx. (2.90)

Applying the Grönwall lemma leads to

‖z(t, .)‖L2(0,L) ≤ e−µt‖z0‖L2(0,L) (2.91)

where µ is defined in the statement of Theorem 2.5. This concludes the proof of Proposition
2.4 when Ω = [0, L] and when sat = satL2(0,L).

Remark 2.5
The constant µ depends on us, r and a0. Thus, although we have proven an exponential
stability, the rapid stabilization is still an open question. Moreover, in the case a(x) = a0 = a1

for all x ∈ [0, L], which is the case where the gain is constant, we obtain that

µ = min
{
a0,

us
r

}
.

2.2.3.6 Proof of Proposition 2.4 when Ω ⊆ [0, L]

In this section, we have sat = satL2(0,L) or sat = satloc. We follow the strategy of [79] and
[11]. We use a contradiction argument. It is based on the following unique continuation result.

Theorem 2.8 ([80])
Let z ∈ L2(0, T ;H3(0, L)) be a solution of

zt + zx + zxxx + zzx = 0

such that
z(t, x) = 0, ∀t ∈ (t1, t2), ∀x ∈ Ω,

with Ω an open nonempty subset of (0, L). Then

z(t, x) = 0, ∀t ∈ (t1, t2), ∀x ∈ (0, L).
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Moreover, the following lemma will be used.

Lemma 2.7 (Aubin-Lions Lemma, [83], Corollary 4)
Let X0 ⊂ X ⊂ X1 be three Banach spaces with X0, X1 reflexive spaces. Suppose that X0 is
compactly embedded in X and X is continuously embedded in X1. Then

{h ∈ Lp(0, T ;X0) | ht ∈ Lq(0, T ;X1)}

embeds compactly in Lp(0, T ;X) for any 1 < p, q <∞.

Let us now start the proof of Proposition 2.4. Let r > 0 and z0 ∈ L2(0, L) be such that

‖z0‖L2(0,L) ≤ r. (2.92)

As in the proof of Lemma 2.5, with multiplier techniques applied to (2.25), we obtain

‖z(t, .)‖2L2(0,L) = ‖z0‖2L2(0,L) −
∫ t

0
|zx(σ, 0)|2dσ − 2

∫ t

0

∫ L

0
sat(az)zdxdσ, ∀t ∈ [0, T ] (2.93)

and
‖z‖2L2(0,T ;H1(0,L)) ≤

8T + 2L

3
‖z0‖2L2(0,L) +

TC

27
‖z0‖4L2(0,L). (2.94)

Moreover, multiplying (2.25) by (T − t)y, we obtain after performing some integrations by
parts

T‖z0‖2L2(0,L) ≤
∫ T

0

∫ L

0
|z(t, x)|2dxdt+

∫ T

0
(T − t)|zx(t, 0)|2dt+ 2

∫ T

0
(T − t)

∫ L

0
sat(az)zdxdt.

(2.95)

Note that, since sat is an odd function, (2.93) implies that, for all t ∈ [0, T ]

‖z(t, .)‖2L2(0,L) ≤ ‖z0‖2L2(0,L). (2.96)

From now on, we will separate the proof into two cases: sat = satL2(0,L) and sat = satloc.

Case 1: sat = satL2(0,L).

Using (2.76), we have,
‖z(t, .)‖L2(0,L) ≤ r,

and we can apply the first item of Lemma 2.6. The inequality (2.93) becomes

‖z(t, .)‖2L2(0,L) ≤ ‖z0‖2L2(0,L) −
∫ T

0
|zx(t, 0)|2dt− 2

∫ T

0

∫ L

0
ak(r)y2dxdt. (2.97)

Let us state a claim that will be useful in the following.
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Claim 2.1
For any T > 0 and any r > 0 there exists a positive constant C14 = C14(T, r) such that for
any solution z to (2.25) with an initial condition z0 ∈ L2(0, L) such that ‖z0‖L2(0,L) ≤ r, it
holds that

‖z0‖2L2(0,L) ≤ C14

(∫ T

0
|zx(t, 0)|2dt+ 2

∫ T

0

∫ L

0
k(r)a|z(t, x)|2dxdt

)
. (2.98)

Let us assume Claim 2.1 for the time being. Then (2.93) implies

‖z(kT, .)‖2L2(0,L) ≤ γ
k‖z0‖2L2(0,L) ∀k ≥ 0, ∀t ≥ 0, (2.99)

where γ ∈ (0, 1). From (2.96), we have ‖z(t, .)‖L2(0,L) ≤ ‖z(kT, .)‖L2(0,L) for kT ≤ t ≤ (k+1)T .
Thus we obtain, for all t ≥ 0,

‖z(t, .)‖2L2(0,L) ≤
1

γ
‖z0‖L2(0,L)e

log γ
T

t, (2.100)

which implies the global asymptotic stability of the mild solution z to (2.25), since γ ∈ (0, 1).

In order to prove Claim 2.1, since the solution to (2.25) satisfies (2.95), it is sufficient to
prove that there exists some constant C15 := C15(T, L) > 0 such that∫ T

0

∫ L

0
|z|2dxdt ≤ C15

(∫ T

0
|zx(t, 0)|2dt+ 2

∫ T

0

∫ L

0
k(r)ay2dxdt

)
(2.101)

provided that ‖z0‖L2(0,L) ≤ r. We argue by contradiction to prove the existence of such a
constant C15.

Suppose (2.101) fails to be true. Then, there exists a sequence of mild solutions {zn}n∈N ⊆
B(T ) of (2.25) with

‖zn(0, .)‖L2(0,L) ≤ r (2.102)

and such that

lim
n→+∞

‖zn‖2L2(0,T ;L2(0,L))∫ T
0 |znx (t, 0)|2dt+ 2

∫ T
0

∫ L
0 k(r)a(zn)2dxdt

= +∞. (2.103)

Note that (2.102) implies with (2.96) that

‖zn(t, .)‖L2(0,L) ≤ r, ∀t ∈ [0, T ]. (2.104)

Let λn := ‖zn‖L2(0,T ;L2(0,L)) and vn(t, x) = zn(t,x)
λn . Notice that {λn}n∈N is bounded, according

to (2.104). Hence, there exists a subsequence, that we continue to denote by {λn}n∈N such
that

λn → λ ≥ 0 as n→ +∞.

Then vn fullfills 
vnt + vnx + vnxxx + λnvnvnx +

satL2(0,L)(aλ
nvn)

λn = 0,

vn(t, 0) = vn(t, L) = vnx(t, L) = 0,

‖vn‖L2(0,T ;L2(0,L)) = 1,

(2.105)
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and, due to (2.103), we obtain∫ T

0
|vnx(t, 0)|2dt+ 2

∫ T

0

∫ L

0
ak(r)(vn)2dxdt→ 0 as n→ +∞. (2.106)

It follows from (2.95) that {vn(0, .)}n∈N is bounded in L2(0, L). Note also that from
(2.94) {vn}n∈N is bounded in L2(0, T ;H1(0, L)). Thus we see that {vnvnx}n∈N is a subset of
L2(0, T ;L1(0, L)). In fact,

‖vnvnx‖L2(0,T ;L1(0,L)) ≤ ‖vn‖C(0,T ;L2(0,L))‖vn‖L2(0,T ;H1(0,L)). (2.107)

Moreover, we have that
{

satL2(0,L)(aλ
nvn)

λn

}
n∈N

is a bounded sequence in L2(0, T ;L2(0, L)).

Indeed, from Lemma 2.1∥∥∥∥satL2(0,L)(aλ
nvn)

λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ 3‖avn‖L2(0,T ;L2(0,L)) ≤ 3a1

√
L‖vn‖L2(0,T ;H1(0,L)).

(2.108)

Thus {vnvnx}n∈N and
{

satL2(0,L)(aλ
nvn)

λn

}
n∈N

are also subsets of L2(0, T ;H−2(0, L)) since

L2(0, L) ⊂ L1(0, L) ⊂ H−1(0, L) ⊂ H−2(0, L). Combined with (2.105) it implies that
{vnt }n∈N is a bounded sequence in L2(0, T ;H−2(0, L)). Since {vn}n∈N is a bounded sequence
of L2(0, T ;H1(0, L)), then we get with Lemma 2.7 that a subsequence of {vn}n∈N also denoted
by {vn}n∈N converges strongly in L2(0, T ;L2(0, L)) to a limit v. Moreover, with the last line
of (2.105), it holds that ‖v‖L2(0,T ;L2(0,L)) = 1.

Therefore, having in mind (2.106), we get

‖vx(., 0)‖2L2(0,T )+

∫ T

0

∫ L

0
ak(r)v2dxdt ≤ lim inf

n→+∞

{
‖vnx(., 0)‖2L2(0,T ) +

∫ T

0

∫ L

0
ak(r)(vn)2dxdt

}
= 0.

(2.109)
Thus,

ak(r)v2(t, x) = 0, ∀x ∈ [0, L],∀t ∈ (0, T ), and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.110)

and therefore

v(t, x) = 0, ∀x ∈ Ω,∀t ∈ (0, T ), and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.111)

We obtain that the limit function v satisfies
vt + vx + vxxx + λvvx = 0,

v(t, 0) = v(t, L) = vx(t, L) = 0,

‖v‖L2(0,T ;L2(0,L)) = 1,

(2.112)

with λ ≥ 0. Let us consider ṽ = vt which satisfies{
ṽt + ṽx + ṽxxx + λvxṽ + λvṽx = 0,

v(t, 0) = v(t, L) = vx(t, L) = 0,
(2.113)
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with ṽ(0, .) = −v′(0, .)− v′′′(0, .)− λv(0, .)v′(0, .) ∈ H−3(0, L) and

u(t, x) = 0, ∀x ∈ Ω,∀t ∈ (0, T ), and ux(t, 0) = 0, ∀t ∈ (0, T ).

Let us recall the following result.

Lemma 2.8 ([71], Lemma 3.2)
There exists a positive value C16(T, r) > 0 such that for any solution ṽ to (2.113) where v is
solution to (2.112), it holds

‖ṽx(., 0)‖2L2(0,T ) + ‖ṽ(0, .)‖2H−3(0,L) ≥ C16‖ṽ(0, .)‖2L2(0,L). (2.114)

Applying the result of this lemma, we get v(0, .) ∈ L2(0, L) and therefore ṽ = vt ∈ B(T ).
Since v, vt ∈ L2(0, T ;H1(0, L)) and v ∈ C([0, T ];H1(0, L)), we can conclude that vvx ∈
L2(0, T ;L2(0, L)). In this way, vxxx = −vt − vx − λvvx ∈ L2(0, T ;L2(0, L)) and therefore
v ∈ L2(0, T ;H3(0, L)). Finally, using Theorem 2.8, we obtain

v(t, x) = 0, ∀x ∈ [0, L], t ∈ [0, T ].

Thus we get a contradiction with ‖v‖L2(0,T ;L2(0,L)) = 1. This concludes the proof of Claim
2.1 and also the proof of Lemma 2.4 in the case where sat = satL2(0,L).

Case 2: sat = satloc.

Following the same strategy as before, we write the following claim.

Claim 2.2
For any T > 0 and any r > 0, there exists a positive constant C17 = C17(T, r) such that for
any mild solution z to (2.25) with an initial condition z0 ∈ L2(0, L) such that ‖z0‖L2(0,L) ≤ r,
it holds that

‖z0‖2L2(0,L) ≤ C17

(∫ T

0
|zx(t, 0)|2dt+ 2

∫ T

0

∫ L

0
satloc(az(t, x))z(t, x)dtdx

)
. (2.115)

If Claim 2.2 holds, we obtain also (2.100) for a suitable choice of γ and we end the proof
of Lemma 2.4 when sat = satloc. Due to (2.95), we see that in order to prove Claim 2.2, it is
sufficient to obtain the existence of C18 > 0 such that∫ T

0

∫ L

0
|z(t, x)|2dtdx ≤ C18

(∫ T

0
|zx(t, 0)|2dt+ 2

∫ T

0

∫ L

0
satloc(az(t, x))z(t, x)dtdx

)
.

(2.116)
We argue by contradiction to prove (2.116). To this end, we assume that there exists a
sequence of mild solutions {zn}n∈N ⊆ B(T ) to (2.25) with

‖zn(0, .)‖L2(0,L) ≤ r (2.117)
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and such that

lim
n→+∞

‖zn‖2L2(0,T ;L2(0,L))∫ T
0 |znx (t, 0)|2dt+ 2

∫ T
0

∫ L
0 satloc(azn(t, x))zn(t, x)dtdx

= +∞. (2.118)

Note that (2.117) implies with (2.96) that

‖zn(t, .)‖L2(0,L) ≤ r, ∀t ∈ [0, T ]. (2.119)

Note that we have, from (2.92) and (2.94)

‖zn‖2L2(0,T ;H1(0,L)) ≤ β,

where
β :=

8T + 2L

3
r2 +

TC

27
r4.

Moreover, due to the Poincaré inequality and the left Dirichlet boundary condition of (2.25),
we obtain

sup
x∈[0,L]

|zn(t, x)| ≤
√
L‖zn(t, .)‖H1(0,L), ∀t ∈ [0, T ]. (2.120)

Thus, we see that ∫ T

0
|zn(t, x)|2dt ≤ L‖zn‖2L2(0,T ;H1(0,L)) ≤ Lβ. (2.121)

Now let us consider Ωi ⊂ [0, T ] defined as follows

Ωi =

{
t ∈ [0, T ], sup

x∈[0,L]
|z(t, x)| > i

}
. (2.122)

In the following, we will denote by Ωc
i its complement. It is defined by

Ωc
i =

{
t ∈ [0, T ], sup

x∈[0,L]
|z(t, x)| ≤ i

}
. (2.123)

Since the function t 7→ supx∈[0,L] |zn(t, x)|2 is a nonnegative function, we have∫ T

0
sup
x∈[0,L]

|zn(t, x)|2dt ≥
∫

Ωi

sup
x∈[0,L]

|zn(t, x)|2dt ≥ i2ν(Ωi), (2.124)

where ν(Ωi) denotes the Lebesgue measure of Ωi. Therefore, with (2.121), we obtain

ν(Ωi) ≤
Lβ

i2
. (2.125)

We deduce from the previous equation that

max

(
T − Lβ

i2
, 0

)
≤ ν(Ωc

i ) ≤ T. (2.126)
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Moreover, with the second item of Lemma 2.6, we have, for all i ∈ N,∫ T

0

∫ L

0
satloc(az

n)zndtdx =

∫
Ωi

∫ L

0
satloc(az

n)zndtdx+

∫
Ωci

∫ L

0
satloc(az

n)zndtdx

≥
∫

Ωci

∫ L

0
satloc(az

n)zndtdx

≥
∫

Ωci

∫ L

0
ak(i)(zn)2dtdx. (2.127)

Let λn := ‖zn‖L2(0,T ;L2(0,L)) and vn(t, x) = zn(t,x)
λn . Notice that {λn}n∈N is bounded,

according to (2.119). Hence, there exists a subsequence, that we continue to denote by {λn}n∈N
such that

λn → λ ≥ 0, as n→ +∞.

Then, vn fullfills 
vnt + vnx + vnxxx + λnvnvnx + satloc(aλnvn)

λn = 0,

vn(t, 0) = vn(t, L) = vnx(t, L) = 0,

‖vn‖L2(0,T ;L2(0,L)) = 1,

(2.128)

and, due to (2.118),∫ T

0
|vnx(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(aλ
nvn)

λn
vndtdx→ 0 as n→ +∞.

Moreover, due to (2.127), we have, for all i ∈ N,∫ T

0
|vnx(t, 0)|2dt+ 2

∫
Ωci

∫ L

0
ak(i)(vn)2dtdx→ 0 as n→ +∞. (2.129)

Note that from Lemma 2.1,∥∥∥∥satloc(aλnvn)

λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ 3a1

√
L‖vn‖L2(0,T ;H1(0,L). (2.130)

and therefore the sequence
{

satloc(aλnvn)
λn

}
n∈N

is a subset of L2(0, T ;L2(0, L)). In ad-

dition, {vnvnx}n∈N is a bounded sequence of L2(0, T ;L1(0, L)). Note that L2(0, L) ⊂
L1(0, L) ⊂ H−2(0, L), thus

{
satloc(aλnvn)

λn

}
n∈N

and {vnvnx}n∈N are bounded sequences of

L2(0, T ;H−2(0, L)). Since vnt = −vnx−vnxxx−λnvnvnx−
satloc(aλnvn)

λn , we know that {vnt }n∈N is a
subset of L2(0, T ;H−2(0, L)). Since {vn}n∈N is a subset of L2(0, T ;H1(0, L)), we obtain from
Lemma 2.7 that {vn}n∈N converges strongly to a function v in L2(0, T ;L2(0, L)). Futhermore,
with (2.129) and due to the non-negativity of k, we have, for all i ∈ N,

ak(i)v(t, x) = 0, ∀x ∈ [0, L],∀t ∈ Ωc
i , and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.131)

Thus, since for all i ∈ N, k(i) is strictly positive, we have

v(t, x) = 0, ∀x ∈ Ω,∀t ∈ Ωc
i , and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.132)
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We obtain
v(t, x) = 0, ∀x ∈ Ω,∀t ∈

⋃
i∈N

Ωc
i , and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.133)

Since, with (2.126), we know that ν
(⋃

i∈N Ωc
i

)
= T , we get that, for almost every t ∈ [0, T ],

v(t, x) = 0, ∀x ∈ Ω, and vx(t, 0) = 0. (2.134)

We obtain that v fullfills{
vt + vx + vxxx + λvvx = 0,

v(t, 0) = v(t, L) = vx(t, L) = 0, , ‖v‖L2(0,T ;L2(0,L)) = 1.
(2.135)

Thus v is a solution to a Korteweg-de Vries equation. In particular, it belongs to B(T ) and is
consequently in C(0, T ;L2(0, L)). Therefore, (2.134) becomes

v(t, x) = 0, ∀x ∈ Ω,∀t ∈ [0, T ], and vx(t, 0) = 0, ∀t ∈ (0, T ). (2.136)

We are in the same situation as (2.112). Therefore we obtain once again a contradiction.
We can conclude that Claim 2 is true. It concludes the proof of Lemma 2.4 when sat = satloc
and completes the proof of Proposition 2.4. 2

Remark 2.6
Since the strategy followed in the last section is to argue by contradiction, we cannot estimate
the exponential rate µ. However, such a proof allows us to prove the local exponential stability
of the solution whatever the saturation sat is.

2.2.3.7 Proof of Theorem 2.5

We are now in position to prove Theorem 2.5, following [79]. By Proposition 2.4, there exists
a positive value µ? such that if

‖z̃0‖L2(0,L) ≤ 1, (2.137)

then the corresponding solution z̃ to (2.25) satisfies

‖z̃(t, .)‖L2(0,L) ≤ K1‖z̃0‖L2(0,L)e
−µ?t ∀t ≥ 0, (2.138)

for some constants K1 ≥ 1 which depends only on ‖z̃0‖L2(0,L). In addition, for a given r > 0,
there exist two constants Kr > 0 and µr > 0 such that if ‖z0‖L2(0,L) ≤ r, then any mild
solution z to (2.25) satisfies

‖z(t, .)‖L2(0,L) ≤ Kr‖z0‖L2(0,L)e
−µrt ∀t ≥ 0. (2.139)

Consequently, setting Tr := µ−1
r ln(rKr), we have

‖z0‖L2(0,L) ≤ r ⇒ ‖z(tr, .)‖L2(0,L) ≤ 1.

Therefore, using (2.138), we obtain

‖z(t, .)‖L2(0,L) ≤ K1‖z(tr, .)‖L2(0,L)e
−µ?(t−Tr) ∀t ≥ Tr,

≤ K1Kr‖z0‖L2(0,L)e
µ?Tre−µ

?t ∀t ≥ 0.
(2.140)

Thus it concludes the proof of Theorem 2.5. 2
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Remark 2.7
As it has been noticed in Remark 2.4, the same result as in Theorem 2.5 can be obtained for
(2.21) following the strategy of [79]. Note that in [79], a stabilization in H3(0, L) is obtained.
The authors used a similar strategy as the one described in Remark 2.4. Hence, it seems harder
to obtain such a result for (2.83), since the saturation introduces some non-smoothness.

2.3 Simulations

2.3.1 Numerical scheme

In this section we provide some numerical simulations showing the effectiveness of our control
design. In order to discretize our KdV equation, we use a finite difference scheme inspired by
[70]. The final time is denoted Tfinal. We choose (Nx + 1) points to build a uniform spatial
discretization of the interval [0, L] and (Nt + 1) points to build a uniform time discretization
of the interval [0, Tfinal]. We pick a space step defined by dx = L/Nx and a time step
defined by dt = Tfinal/Nt. We approximate the solution to (2.25) with the following notation
z(t, x) ≈ Zij , where i denotes the time and j the space discrete variables.

Some used approximations of the derivative are given by

D−z =
Z ij −Z ij−1

dx
(2.141)

and

D+z =
Z ij+1 −Z ij

dx
. (2.142)

As in [70], we choose the numerical scheme zx(t, x) ≈ 1
2(D++D−)(Z ij) := D(Z ij) and zt(t, x) ≈

Zi+1
j −Zij
dt . For the other differentiation operator, we use zxxx(t, x) ≈ D+D+D−(Z ij).

Let us introduce a matrix notation. Let us consider the matrices D−, D+, D ∈ RNx×Nx
given by

D− =
1

dx



1 0 . . . . . . 0

−1 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . 1 0

0 . . . 0 −1 1


, D+ =

1

dx



−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
...

. . . −1 1

0 . . . . . . 0 −1


(2.143)

D :=
1

2
(D+ +D−) (2.144)

and let us define A = D+D+D− + D, and C = A + dtI where I is the identity matrix in
RNx×Nx . Note that we choose this forward difference approximation in order to obtain a
positive definite matrix C.
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Moreover, for each discrete time i, we denote Z i :=
[
Z i1 Z i2 . . . Z iNx+1

]>
.

Thus, inspired by [70], we consider a completely implicit numerical scheme for the approx-
imation of the nonlinear problem (2.25) which reads as follows:

Z i+1
j −Z ij
dt

+ (AZ i+1)j +
1

2

(
D[(Z i+1)2]

)
j

+ sat(aδZ i+1
j ) = 0, j = 1, . . . Nx,

Z i1 = Z iNx+1 = Z iNx = 0,

Z1 =
∫ xj+1

2
x
j− 1

2

z0(x)dx,

(2.145)

where xj = (j+ 1
2)dx, xj = jdx and Z1 denotes the discretized version of the initial condition

z0(x). Note that aδ is the approximation of the damping function a = a(x) and is given by
aδ = (aj)

Nx
J=1 ∈ RNx , where each components aj is defined by aj :=

∫ xj+1
2

x
j− 1

2

a(x)dx.

Since we have the nonlinearities zzx and sat(az), we use an iterative Newton fixed-point
method to solve the nonlinear system

CZ i+1 = Z i − dt1
2
D(Z i+1)2 − dtsat

(
aδZ i+1

)
.

With Niter = 5, which denotes the number of iterations of the fixed point method, we get
good approximations of the solutions. Note that for sufficiently large Niter the solutions can
be approximated with this fixed-point method.

Given Z1 satisfying (2.145), the following is the structure of the algorithm used in our
simulations.

For i = 1 : Nt

• Z i1 = Z iNx = Z iNx+1 = 0;

• Setting J(1) = Z i, for all k ∈ {1, . . . , Niter}, solve

J(k + 1) = C−1(Z i − dt1
2
D(J(k))2 − dtsat(aδJ(k)))

Set Z i+1 = J(Niter)

end

2.3.2 Simulations

In order to illustrate our theoretical results, we perform some simulations with L = 2π, for
which we know that the linearized KdV equation is not asymptotically stable. To be more
specific, letting z0(x) = 1 − cos(x) and f = 0, it holds that the energy ‖z‖2L2(0,L) of the
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linearized equation (2.5) remains constant for all t ≥ 0. Let us perform a simulation of (2.25)
with these parameters.

We first simulate our system in the case where the damping is not localized. We use the
saturation function satL2(0,L). Given a0 = 1, Tfinal = 6 and L = 2π, Figure 2.2 shows the
solution to (2.17), denoted by zw, with the unsaturated control f = a0zw and starting from z0.
Figure 2.3 illustrates the simulated solution with the same initial condition and a saturated
control f = satL2(0,L)(a0z) where us = 0.5. Figure 2.4 gives the evolution of the control
with respect to time and space. We check in Figures 2.2 and 2.3 that the solution to (2.25)
converges to 0 with the unsaturated and the saturated controls as proven in Theorem 2.5.

The evolution of the L2-energy of the solution in these two cases is given by Figure 2.5.
With ‖z0‖L2(0,L) := 3.07 and the values of us, a0 and a1, the value µ is computed numerically
following the formula (2.31) given in Theorem 2.5. It is is equal to µ = 0.3257. We deduce from
the second point of Theorem 2.5 that the energy function ‖z‖2L2(0,L) converges exponentially
to 0 with an explicit decay rate given by µ as stated in Theorem 2.5.

0

2

4

6 0
2

4
6

8

−0.5

0

0.5

1

1.5

2

2.5

x

zw(t, x)

t

Figure 2.2: Solution zw(t, x) with the control
f = a0zw where Ω = [0, L]
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Figure 2.3: Solution z(t, x) with the control
f = satL2(0,L)(a0z) where Ω = [0, L], us =

0.5

We now focus on the case where the damping is localized. We close the loop with the
saturated controller f = satloc(ay) where a is defined by a(x) = a0 = 1, for all x ∈ Ω :=[

1
3L,

2
3L
]
.

Given Tfinal = 6, Figure 2.6 shows the simulated solution of (2.17), denoted by zw, with a
localized control that is not saturated and starting from z0. Figure 2.7 illustrates the simulated
solution to (2.25) with the same initial condition, but with a localized saturated control whose
saturation level is given by us = 0.5. We check, in Figures 2.6 and 2.7, that the mild solution
to (2.25) converges to 0 as stated in Theorem 2.5. Moreover, Figure 2.8 gives the evolution of
the control with respect to the time and the space.
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Figure 2.4: Control f =

satL2(0,L)(a0z)(t, x) where Ω = [0, L],
us = 0.5
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Figure 2.5: Blue: Time evolution of the en-
ergy function ‖z‖2L2(0,L) with a saturation
us = 0.5 and a0 = 1. Red: Time evolution
of the theoretical energy ‖z0‖2L2(0,L)e

−2µt.
Dotted line: Time evolution of the solution
without saturation zw and a0 = 1.

The evolution of the L2-energy of the solution in these two last cases is given by Figure
2.9. We can see that the energy function ‖z‖2L2(0,L) converges exponentially to 0 as stated in
Proposition 2.4. However, in contrary with the case sat = satL2(0,L) and Ω = [0, L], we cannot
have an estimation of the decay rate since our proof is based on a contradiction argument.
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Figure 2.6: Solution zw(t, x) with a local-
ized feedback law without saturation
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Figure 2.7: Solution z(t, x) with a localized
feedback law saturated; us = 0.5
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Figure 2.8: Control f = satloc(az)(t, x)

where Ω =
[

1
3L,

2
3L
]
, us = 0.5
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Figure 2.9: Blue: Time evolution of the
energy function ‖z‖2L2(0,L) with a satura-
tion us = 0.5, a0 = 1 and Ω =

[
1
3L,
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]
.

Dotted line: Time evolution of the solu-
tion without saturation zw with a0 = 1 and
Ω =

[
1
3L,

2
3L
]
.

2.3.3 Further discussions

2.3.3.1 On the numerical dissipation

In order to illustrate that the origin of the linearized system (2.5) when L ∈ N is not attractive,
we performed some simulations with a numerical scheme inspired by the one presented above.
Keeping the same notation than before, it is provided here

Z i+1
j −Z ij
dt

+ (AZ i+1)j = 0, j = 1, . . . Nx,

Z i1 = Z iNx+1 = Z iNx = 0,

Z1 =
∫ xj+1

2
x
j− 1

2

z0(x)dx,

(2.146)

Since the numerical scheme is linear, studying the numerical stability of this numerical scheme
is easier than before. The system given by (2.146) being discrete, the condition to insure the
numerical scheme to be stable is the eigenvalues of the inverse of C to have real parts less or
equal to 1.

As in Section 2.3.2, let us pick L = 2π, Nx = 30 and Tfinal = 6. Recall that when L = 2π,
then L ∈ N , which implies that the origin of (2.5) is not attractive.

In this case, we compute the eigenvalues of C−1 in Matlab and we obtain that the eigen-
values which have the highest real part are

λ1
M = 0.9986 + 0.0083i, λ2

M = 0.9986− 0.0083i. (2.147)
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These eigenvalues are close to 1. It means that the origin of (2.146) is close to be marginally
stable, which implies that we are close to the continuous case. The asymptotic stability of the
origin of (2.146) is due to a numerical dissipation, which is necessary for the stability of the
numerical scheme.

We pick z0(x) = 1 − cos(x). Figure 2.10 illustrates the solution z to (2.5). We can
note that the decay rate of the solution is slower than in Figures 2.2, 2.3 and 2.6. Figure
2.11 illustrates the energy function ‖z‖2L2(0,L), where z is solution to (2.5), and the functions
t 7→ ‖z‖2L2(0,L)e

−µ1t and t 7→ ‖z‖2L2(0,L)e
−µ2t where µ1 = 0.065 and µ2 = 0.1. Therefore, we

can conclude that the origin of (2.146) is exponentially stable with a decay rate µ satisfying
µ1 ≤ µ ≤ µ2. These decay rates being very small with respect to the ones in Figure 2.5,
this is clear that this stability is due to the numerical dissipativity and not to a natural
global asymptotic stability given by the properties of the continuous system. The numerical
dissipativity is needed to ensure the stability of the numerical scheme.
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Figure 2.10: Solution z(t, x) of the lin-
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Figure 2.11: Blue: Logarithmic time evo-
lution of the energy function ‖z‖2L2(0,L)

of the linearized Korteweg-de Vries equa-
tion; Red: Logarithmic time evolution of
‖z‖2L2(0,L)e

−µ1t; Dotted red line: Logarith-
mic time evolution of ‖z‖2L2(0,L)e

−µ2t

2.3.3.2 On the saturation level

Theorem 2.5 states that, in the case where sat = satL2(0,L) and where Ω = [0, L], we have an
estimation of the decay rate of the solution, which is recalled here

µ = min

{
a0,

usa0

ra1

}
, (2.148)
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where a0 and a1 are the bounds of (2.18) and where r is the bound of the initial condition
‖z0‖L2(0,L).

Note that the case where µ = a0 is the case where ‖az0‖L2(0,L) ≤ us. Indeed, in such a
case, because of the dissipativity of the solution z to (2.25), the controller will never saturate.

The case where µ = usa0
ra1

is the case where ‖az0‖L2(0,L) ≥ us. This implies that, in the
particular case where sat = satL2(0,L) and where Ω = [0, L], the smaller the saturation level
is, the slower is the convergence to 0. In this small section, we would like to show that it is
probably the case for either sat = sat or sat = satL2(0,L), whatever is Ω by performing some
numerical simulations.

We use the same numerical scheme provided in Section 2.3.1. As in Section 2.3.2, let us
pick L = 2π, Nx = 30 and Tfinal = 6. We pick also z0(x) = 1 − cos(x). In this case, we have
‖z0‖L2(0,L) = 3.07.

We focus first on the case where sat = satL2(0,L) and where Ω = [0, L]. The gain (2.18)
is such that a(x) = a0 = a1, for all x ∈ [0, L]. In this case, as it has been noticed just
above, we can have an estimation of the decay rate of the solution. Figure 2.12 illustrates
the time evolution of the energy function ‖z‖2L2(0,L) when us = 0.1 and z is the mild solution
to (2.25), the time evolution of the theoritical energy ‖z0‖2L2(0,L)e

−µt and the time evolution
of the energy function ‖zw‖2L2(0,L) where zw is the mild solution to (2.19). In this case, we
have µ = 0.0326. Figure 2.13 illustrates the same energies with us = 1. In this case, we have
µ = 0.3257. Regarding these two figures, it is easy to see that, in the case where us = 1, the
solution is faster than in the case where us = 0.1. It seems moreover that the estimation µ is
worst in the case where us = 0.1 than in the case where us = 1.
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We focus now on the case where sat = satloc and where Ω =
[

1
3L,

2
3L
]
. Recall that the

decay rate cannot be estimated in the case where Ω 6= [0, L]. The gain (2.18) is such that
a(x) = a0 = a1, for all x ∈ Ω. Figure 2.12 illustrates the time evolution of the energy function
‖z‖2L2(0,L) when us = 0.1 and z is the solution to (2.25) and the time evolution of the energy
function ‖zw‖2L2(0,L) where zw is solution to (2.4) without saturation. Figure 2.13 illustrates
the same energies with us = 1. Regarding these two figures, it is easy to see that, in the case
where us = 1, the solution is faster than in the case where us = 0.1.
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Figure 2.14: Blue: Time evolution of the
energy function ‖z‖2L2(0,L) with a saturation
u0 = 1 and a0 = 1. Red: Time evolution
of the theoritical energy ‖z0‖2L2(0,L)e

−2µt.
Dotted line: Time evolution of the solution
without saturation zw and a0 = 1.
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2.4 Conclusion

In this chapter, we have studied the well-posedness and the asymptotic stability of a Korteweg-
de Vries equation with saturated distributed controls. The well-posedness issue has been tack-
led by using the Banach fixed-point theorem. The stability has been studied with two different
methods: in the case where the control acts on all the domain saturated with satL2(0,L), we
used a sector condition and Lyapunov theory for infinite-dimensional systems; in the case
where the control acts only on a part of the domain saturated with either satL2(0,L) or satloc,
we argued by contradiction. We have also illustrated our results with some simulations.

To conclude, let us state some questions arising in this context:

1. Can a saturated localized damping stabilize a generalized Korteweg-de Vries equation
in H3(0, L), as it has been shown to be true in the unsaturated case in [79] and [53] ?

2. Is it possible to saturate other damping terms, for instance the one suggested in [73]
and used in [66] which dissipates the H−1-norm in the unsaturated case?
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3. Another constraint than saturation can be considered. For instance the backlash studied
in [93] or the quantization [30].

4. Can we apply the same method for other nonlinear partial differential equations, for
instance the Kuramoto-Sivashinsky equation [13, 17] ?

The latter chapters were dealing with distributed controls. Applying such a control needs
to have a distributed sensor, i.e. a sensor measuring the solution at each time and at each
point of a spatial domain. Moreover, the control has to act on each point of a spatial domain,
which might be impossible in practice. To be closer to the physical problem, the control should
be located at the boundary. In such cases, we say that the control is a boundary control. The
next chapter will deal with a Korteweg-de Vries equation controlled from the boundary.
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In Chapter 2, some feedback laws for the KdV equation with a distributed controller
have been reviewed. As it has been noticed in the conclusion of Chapter 2, for some infinite-
dimensional systems, the control is located at the boundary. In this case, computing or proving
the existence of a feedback law requires to apply different techniques than the ones presented
in the latter chapters.

In this chapter, we focus on the boundary stabilization problem for two KdV equations
with a control acting on the left Dirichlet boundary condition. The backstepping method is
used in the two cases (for a good introduction to this method, the interested reader may refer
to [50]).

Some boundary feedback laws have already been designed in the literature for KdV sys-
tems. When the control acts on the right endpoint, we find [16] where a Gramian-based
method is applied, and [24] where some suitable integral transforms are used. In [89] and
[14], the authors use the backstepping method to design feedback controllers acting on the left

73
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endpoint of the interval. In the case of these two latter papers, note that the feedback law
depends on the full state.

However, in most cases, the full state of the system cannot be measured. Thus, it is more
realistic to design an output feedback control, i.e., a feedback law depending only on some
partial measurements of the state. For some systems, designing such a feedback requires to
design also an observer, which is a dynamical system chosen such that its state converges
asymptotically to the state of the control system.

For autonomous linear finite-dimensional systems, the separation principle holds. Thus,
stabilizability and observability assumptions are sufficient to ensure the stability of the closed-
loop system with a dynamic output feedback based on an observer. In other words, if there
exists a controller which asymptotically stabilizes the origin of the system and an observer
which converges asymptotically to the state of the system, the output feedback built from this
observer and this state feedback asymptotically stabilizes the origin of the system.

The aim of this chapter is to present the backstepping method for the design of a state
feedback for some Korteweg-de Vries equations and to design an observer, also based on the
backstepping method, which will allow us to construct an output feedback law. We will show
that in this particular case the separation principle holds.

This chapter is divided into three parts. Section 3.1 presents the output feedback problem
for finite-dimensional linear systems and recall some well-known results. The strategy pre-
sented in this section will be applied in the next sections. Section 3.2 explains the backstepping
method for the design of a state feedback for one of the two Korteweg-de Vries equations we
are considering and introduces our main contributions. It also provides the proof of these
contributions. Section 3.3 provides some simulations illustrating our results. Finally, Section
3.4 collects some concluding remarks.

The contributions of this chapter, from Section 3.2.2.1 until the end, are based on two of
our papers. The first one [59] has been published in a peer-reviewed conference (53rd IEEE
Conference on Decision and Control). The second one [58] has been accepted for publication
in the journal Automatica.

3.1 A short discussion on output feedback laws for finite-
dimensional linear systems

3.1.1 Static output feedback

In this section, we will present the output feedback design for linear finite-dimensional systems.
Let us consider a linear finite-dimensional system

d

dt
z = Az +Bu (3.1)
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where, given n,m ∈ N, z ∈ Rn and u ∈ Rm. The matrix A and B have appropriate dimensions.
We assume that the pair (A,B) is controllable1.

A state feedback law is a control depending on the state of the system. However, in
practice, only a partial measurement of the solution is available. It is called the output and is
given by the following algebraic relation

y = Cx, (3.2)

where y stands for the output (i.e, the measurement of the system) and where C is a matrix
of appropriate dimension. We assume that the pair (A,C) is observable 2.

Stabilizing (3.1) by means of a feedback law depending only on the measurement y requires
to find a function K in the following form

u = K(y). (3.3)

One may want to find a matrix K ∈ Rp×m such that the closed-loop system

d

dt
z = (A+BKC)z (3.4)

is globally exponentially stable. Such a feedback law is called a static output feedback, since it
does not depend on any additional dynamics.

Finding such a matrix requires the matrix A, B and C to satisfy restrictive spectrum
properties. The interested reader may refer to [55] for a precise statement of such a result.
The following gives an example of a system that cannot be stabilized by means of a static
output feedback.

Example 3.1
Focus on the following matrices

A :=

[
0 1

0 0

]
, B =

[
0

1

]
, C =

[
1 0

]
. (3.5)

It is easy to check that the pairs (A,B) and (A,C) are controllable and observable, respectively.

Given K ∈ R, the closed-loop system with a static output feedback u = KCz is given by

d

dt
z =

[
0 1

K 0

]
z (3.6)

Hence, if K is a positive value, the eigenvalues of the closed-loop system are

λ1 =
√
K and λ2 = −

√
K. (3.7)

Therefore, the origin of the closed-loop system is unstable.
1The pair (A,B) is controllable if and only if Rank

[
B AB . . . An−1B

]
= n.

2The pair (A,C) is observable if and only if Rank
[
C CA . . . CAn−1

]>
= n
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If K is a negative value, then the eigenvalues of the closed-loop system are

λ1 = j
√
K and λ2 = −j

√
K. (3.8)

Therefore, the origin of the closed-loop system is stable, but is not attractive. This means that
the origin of the system described with the matrix (3.5) cannot be stabilized by means of a
static output feedback.

In such cases, another technique should be used. The most known is the dynamic output
feedback based on an observer.

3.1.2 Output feedback based on an observer

3.1.2.1 Observer design

An observer for (3.1) is a dynamic system depending on the measurement y. It is designed
such that its state converges to the state of (3.1).

For (3.1), a well-known observer is the Luenberger observer. It is written as follows

d

dt
ẑ = Aẑ +Bu+ PC(z − ẑ), (3.9)

where ẑ ∈ Rn stands for the observer and P is a matrix of appropriate dimension, which is
called the observer gain. Denoting z̃ := ẑ − z, the matrix P ∈ Rp×n has to be designed such
that the origin of the following system

d

dt
z̃ = (A− PC)z̃, (3.10)

is globally exponentially stable.

Since the pair (A,C) is observable, then there exists a matrix P ∈ Rp×n such that the
matrix A− PC is Hurwitz 3. Hence, the origin of (3.10) is exponentially stable.

Using an observer allows us to have an estimation of the state of the plant, but also to
solve the stabilization problem of (3.1). Such a result is referred to as the Separation principle.

3.1.2.2 Separation principle

Since the pair (A,B) is controllable, there exists a matrix K ∈ Rm×p that makes exponentially
stable the origin of following closed-loop system

d

dt
z = (A−BK)z. (3.11)

3Given n ∈ N, a matrix A ∈ Rn×n is said to be Hurwitz if every eigenvalue of A has strictly negative real
part.
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Since we are able to estimate the state by using the observer (3.9), we would like to use it for
the closed -loop system as follows

d

dt
z = Az −BKẑ. (3.12)

The following theorem states that the dynamic output feedback u = Kẑ makes the origin of
the system composed by (3.12) and (3.9) globally asymptotically stable.

Theorem 3.1 (Separation principle)
Consider system (3.1). If the pairs (A,B) and (A,C) are controllable and observable, respec-
tively, then there exist a gain K ∈ Rm×n and a gain P ∈ Rp×n such that the origin of the
closed-loop system 

d

dt
z = Az −BKẑ,

d

dt
ẑ = Aẑ +Bu+ PC(z − ẑ),

(3.13)

is globally exponentially stable.

In other words, Theorem 3.1 states that, if the observer and the state feedback law are
designed separetly, then the resulting output feedback law stabilizes the origin of (3.13).

Remark 3.1
This principle is no longer true in general for linear infinite-dimensional systems and even for
nonlinear finite-dimensional systems. In the next chapter, an example of a nonlinear finite-
dimensional control system for which the separation does not hold will be provided. In the
context of abstract control systems described with linear operators, some results related to the
separation principle can be found in [26, Chapter 5, Theorem 5.3.3.]. Note however that this
separation principle holds only for bounded control and output operators.

The aim of this chapter is to follow this strategy for two Korteweg-de Vries equations con-
trolled and measured from the boundary. The state feedbacks and the observers are designed
separately with a backstepping method (a good introduction to this method is [50]). This
method will be presented in the remaining parts of this chapter.

3.2 Output feedback law for some Korteweg-de Vries equations

In this section, two Korteweg-de Vries equations will be considered. The first one is a linearized
one, which is given by 

zt + zx + zxxx = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = u(t), t ∈ R≥0,

z(t, L) = zx(t, L) = 0 t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, L],

(3.14)
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where u stands for the control. The output is given by

y1(t) = zxx(t, L). (3.15)

The second one is nonlinear and is given by
zt + zx + zxxx + zzx = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = u(t), t ∈ R≥0,

zx(t, L) = zxx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, L]

(3.16)

The output is given by
y2(t) = z(t, L). (3.17)

Note that the boundary conditions are different for the two considered Korteweg-de Vries
equations.

In [14], a state feedback law has been designed for these two partial differential equations.
We will first focus on (3.14) in order to explain the backstepping method for the design of
state feedback laws.

3.2.1 State feedback design: backstepping method

3.2.1.1 Main results

There exist different methods to design a state feedback law for boundary control partial
differential equations. The Lyapunov method, which reduces to finding a Lyapunov function,
has received considerable attention in recent decades. However, it might be hard to derive
such a function.

The backstepping method is another technique which is often used for infinite-dimensional
boundary control systems. The design is a two-steps design. First, one picks a system, which
is called the target system, with a structure similar to the control system we aim at stabilizing.
The target system is chosen such that its origin is globally asymptotically stable. The target
system and the control system we aim at stabilizing are linked with a transformation - which
can be a Volterra transformation or a Fredholm transformation. Then, one proves that this
tranformation is continuous and that its inverse exists and is also continuous. From this
property, the stability and the well-posedness of the closed-loop system is straightforward. A
nice introduction to this technique is [50].

Thanks to this method, the authors of [14] stated the following theorem:

Theorem 3.2 ([14], Theorem 1.)
(i) For any positive value λ, there exist a feedback control u = u(z(t, ·)) and a positive value
D such that the strong solution to (3.14) satisfies

‖z(t, ·)‖L2(0,L) ≤ De−λt‖z0‖L2(0,L), ∀t ≥ 0; (3.18)
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(ii) For any positive value λ, there exist a feedback control u = u(z(t, ·)) and two positive
values D and r such that the mild solution to (3.16) satisfies

‖z(t, ·)‖L2(0,L) ≤ De−λt‖z0‖L2(0,L), ∀t ≥ 0, (3.19)

provided that
‖z0‖L2(0,L) ≤ r. (3.20)

Remark 3.2
Note that the first item (i) of Theorem 3.2 is a global exponential stability result, while the
second item (ii) is a local exponential stability result. This is consistent with the facts that
(3.14) is a linear equation and that (3.16) is a nonlinear one. Note moreover that the result
provided by (i) holds for either strong or mild solutions. This comes from the fact that the
system which is considered is linear.

This method is explained in the next section for the design of the state feedback law for
(3.14).

3.2.1.2 Backstepping procedure

In the case of (3.14), the authors of [14] chose the transformation Π1 : L2(0, L) → L2(0, L)

that is defined as follows

w(t, x) := Π1(z)(t, x) := z(t, x)−
∫ L

x
k1(x, s)z(t, s)ds, (3.21)

where k1 is a kernel that will be characterized later and where w solves the following Korteweg-
de Vries equation 

wt + wx + wxxx + λw = 0, (t, x) ∈ R≥0 × [0, L],

w(t, 0) = w(t, L) = wx(t, L) = 0 t ∈ R≥0,

w(0, x) = w0(x),

(3.22)

where λ is a positive value. If one uses this transformation, the control u(t) in (3.14) becomes

u(t) :=

∫ L

0
k1(0, s)z(t, s)ds. (3.23)

Let us prove that the origin of (3.22) is globally exponentially stable. Focus on the following
Lyapunov function

V (w) :=
1

2

∫ L

0
w(t, x)2dx. (3.24)

Its derivative along (3.22) yields

d

dt
V (w) = −

∫ L

0
w(t, x)wx(t, x)dx−

∫ L

0
w(t, x)wxxx(t, x)dx− λ

∫ L

0
w(t, x)2dx. (3.25)
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Performing some integrations by parts, the latter equation becomes

d

dt
V (w) =− wx(t, 0)2 − λ

∫ L

0
w(t, x)2dx

≤− λ
∫ L

0
w(t, x)2dx

(3.26)

Hence, applying the comparison principles yields

‖w(t, ·)‖L2(0,L) ≤ e−
λ
2
t‖w0‖L2(0,L), ∀t ≥ 0. (3.27)

Therefore, proving the exponential stability of the origin of (3.14) reduces to prove that Π1

defined in (3.21) is continuous and that its inverse is also continuous. This proof is achieved
by studying the kernel k1, that is defined in the triangle T := {(x, s) ∈ R2

≥0 | x ∈ [0, L], s ∈
[x, L]}. According to [14], this kernel k1 satisfies the following partial differential equation

k1
xxx + k1

sss + k1
x + k1

s = −λk1, x, s ∈ T ,
k1(x, L) = 0, x ∈ [0, L],

k1(x, x) = 0, x ∈ [0, L],

k1
x(x, x) =

λ

3
(L− x), x ∈ [0, L].

(3.28)

Using a method of successive approximations, the authors of [14] proved that k1 exists and
is unique. Appendix C introduces the method of successive approximations and applies it to
(3.28).

Then, the authors of [14] focused on the inverse of Π1 denoted by Π1−1
: L2(0, L) →

L2(0, L) and which is given by

z(t, x) := Π1−1
(w)(t, x) = w(t, x) +

∫ L

x
l1(x, s)w(t, s)ds, (3.29)

where l1 solves the following partial differential equation

l1xxx + l1sss + l1x + l1s = λl1, (x, s) ∈ T ,
l1(x, L) = 0, x ∈ [0, L],

l1(x, x) = 0, x ∈ [0, L],

l1x(x, x) =
λ

3
(L− x), x ∈ [0, L].

(3.30)

The authors prove that there exists a unique solution to this equation. Finally, we have
Π1,Π1−1 ∈ L(L2(0, L)).

Thus, from (3.27) and using the boundedness of Π1 and Π1−1, the following holds, for any
t ≥ 0

‖z(t, ·)‖L2(0,L) ≤‖Π1−1‖L(L2(0,L),L2(0,L))‖w(t, ·)‖L2(0,L)

≤‖Π1−1‖L(L2(0,L),L2(0,L))e
−λt‖w0‖L2(0,L)

≤‖Π1−1‖L(L2(0,L),L2(0,L))‖Π1‖L(L2(0,L),L2(0,L))e
−λt‖z0‖L2(0,L).

(3.31)
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3.2.1.3 Well-posedness of (3.14)

This section is devoted to the well-posedness of (3.14). Some tools from semigroup theory will
be used.

One can state the following theorem:

Theorem 3.3 (Well-posedness of (3.14))
Assume that the control satisfies (3.23). Then, for any initial condition z0 ∈ L2(0, L), there
exists a unique mild solution to (3.14).

If morever z0 belongs to H3(0, L) and satisfies the following compatibility condition

z0(0) =

∫ L

0
k1(0, s)z0(s)ds, z0(L) = z′0(L) = 0, (3.32)

then there exists a unique strong solution z ∈ C(0,∞;H3(0, L)) to (3.14) satisfying, for all
t ≥ 0

z(t, 0) =

∫ L

0
k1(0, s)z(t, s)ds, z(t, L) = zx(t, L) = 0, (3.33)

Proof of Theorem 3.3:

This proof is inspired by [89]. Using semigroup theory, we first prove that the target
system is well-posed and then, using the continuity of Π1 and its inverses, we conclude on the
well-posedness of (3.14).

It is easy to see that (3.22) is well-posed. Indeed, one can apply the classical semigroup
theory to prove it. This system can be described by the following operator

Ã : D(Ã) ⊂ L2(0, L)→ L2(0, L)

z 7→ −z′ − z′′′ − λz,
(3.34)

where
D(Ã) = {z ∈ H3(0, L) | z(0) = z(L) = z′(L) = 0}. (3.35)

A straightforward computation, together with some integrations by parts, shows that

Re{〈Ãz, z〉Z}L2(0,L) ≤0, z ∈ D(Ã),

Re{〈z̃, Ã?z̃〉Z}L2(0,L) ≤0, z̃ ∈ D(Ã?).

Since Ã is a linear operator and D(Ã) is dense in L2(0, L), according to Theorems 1.1 and
1.3, these latter inequalities imply that A is the infinitesimal generator of a linear strongly
continuous semigroup of contractions on L2(0, L).

Note that we have
AΠ1 = Π1Ã, (3.36)
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where A is defined as follows

A : D(A) ⊂ L2(0, L)→ L2(0, L),

z 7→ −z′ − z′′,
(3.37)

where

D(A) :=

{
z ∈ H3(0, L)

∣∣∣∣z(0) =

∫ L

0
k(0, s)z(s)ds, z(L) = z′(L) = 0

}
(3.38)

Therefore, the following holds
A = Π1ÃΠ1−1

. (3.39)

Hence, since the operators Π1 and Π−1 are both bounded, then A generates also a strongly
continuous semigroup of contractions on L2(0, L). From Theorem 1.4, this implies that there
exists a unique strong solution z ∈ C(0,∞;D(A)) to the Cauchy problem (3.14). 2

3.2.2 Dynamic output feedback design for (3.14)

3.2.2.1 Main result

Following the Separation Principle strategy, we aim at finding an observer in order to design
an output feedback. Based on [50] and [85], we construct the following observer:

ẑt + ẑx + ẑxxx + p1(x)[y1(t)− ẑxx(t, L)] = 0,

ẑ(t, 0) = u(t), ẑ(t, L) = ẑx(t, L) = 0,

û(0, x) = 0,

(3.40)

where p1 : [0, L] → C3(0, L) is a function that will be characterized later. Note that this
observer has a similar form as (3.9).

Thanks to this observer, one is able to design an output feedback law for (3.14). Here is
the statement of this result.

Theorem 3.4
For any λ0 > 0, there exist an output feedback law u(t) := u(ẑ(t, x)), a function p1 = p1(x),
and a constant C > 0 such that the origin of the coupled system (3.14)-(3.40)

zt + zx + zxxx = 0,

z(t, 0) = u(t), z(t, L) = zx(t, L) = 0,

ẑt + ẑx + ẑxxx + p1(x)[zxx(t, L)− ẑxx(t, L)] = 0,

ẑ(t, 0) = u(t), ẑ(t, L) = ẑx(t, L) = 0,

(3.41)

is globally exponentially stable with a decay rate equal to λ0. In other words we have, for any
z0, ẑ0 ∈ H3(0, L) satisfying

z0 = ẑ0 = u(0), z0(L) = ẑ0(L) = z′0(L) = ẑ′0(L) = 0, (3.42)



3.2. Output feedback law for some Korteweg-de Vries equations 83

any strong solution to (3.41) satisfies, for all t ≥ 0

‖z(t, ·)− ẑ(t, ·)‖H3(0,L)+‖ẑ(t, ·)‖L2(0,L) ≤ Ce−λ0t
(
‖z0 − ẑ0‖H3(0,L) + ‖ẑ0‖L2(0,L)

)
, ∀t ≥ 0.

(3.43)

Remark 3.3
Theorem 3.4 does not deal with well-posedness of the closed-loop system. Indeed, since the
function p1 is not clearly defined at this stage, such a result cannot be yet provided. We need
more informations on the function p1 to state a well-posedness result. This result is written
in Theorem (3.5) below. The proof of this result is given in Section 3.2.2.4 below.

3.2.2.2 Regularity Result

As we said in the introduction, we consider

y1(t) = zxx(t, L) (3.44)

as a partial measurement of the solution. However, since we have the trace of the second
derivative with respect to x of z, we need a regularity stronger than in [14]. Indeed, we ask
the output y1(t) to be a continuous function. Thus we have the following lemma.

Lemma 3.1
Let us consider system 

zt + zx + zxxx = 0,

z(t, 0) = u(t), z(t, L) = 0, zx(t, L) = 0,

z(0, x) = z0(x),

(3.45)

where z0 ∈ H3(0, L) and satisfies the following compatibility condition

z0(0) = u(0), z0(L) = z′0(L) = 0, (3.46)

with u(t) ∈ H1(0, T ). Then z ∈ C([0, T ], H3(0, L)) ∩ L2(0, T ;H4(0, L)) and zxx(·, L) ∈
C([0, T ]).

Proof of Lemma 3.1

This proof is based on [33]. Let us consider the following coordinates transformation

v = zt. (3.47)

The dynamics of v can be written as follows:
vt + vxxx + vx = 0

v(t, 0) =
d

dt
u(t) ∈ L2(0, T ), v(t, L) = vx(t, L) = 0

v(0, x) = (−z′′′0 − z′0) ∈ L2(0, L)

(3.48)
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By already known well-posedness results for KdV ([33]), we get

v ∈ C([0, T ], L2(0, L)) ∩ L2(0, T ;H1(0, L))

⇒zt ∈ C([0, T ], L2(0, L)) ∩ L2(0, T ;H1(0, L))

⇒z ∈ C([0, T ], H3(0, L)) ∩ L2(0, T ;H4(0, L))

⇒zxx ∈ C([0, T ], H1(0, L)) ∩ L2(0, T ;H2(0, L))

⇒zxx ∈ C([0, T ]× [0, L])

⇒zxx(·, L) ∈ C([0, T ])

(3.49)

It concludes the proof of Lemma 3.1. 2

3.2.2.3 Observer design

The structure of the observer (3.40) is based on the finite-dimensional observer that has been
recalled in Section 3.1. Since we are dealing with an infinite-dimensional system, note however
that the gain p1 : [0, L]→ C3(0, L) is not a matrix as in the finite-dimensional case (3.9), but
a function.

In our case, we consider the error z̃ := z − ẑ, which satisfies:

{
z̃t + z̃x + z̃xxx − p1(x)z̃xx(t, L) = 0,

z̃(t, 0) = z̃(t, L) = z̃x(t, L) = 0.
(3.50)

Given a positive parameter λ, we look for a transformation Π1
o defined by:

z̃(t, x) = Π1
o(w̃(t, x)) = w̃(t, x)−

∫ L

x
p1(x, s)w̃(t, s)ds (3.51)

such that the trajectory z̃ solution to (3.50) is mapped into the trajectory w̃ = w̃(t, x), solution
to the linear system {

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = 0, w̃(t, L) = 0, w̃x(t, L) = 0,
(3.52)

which is exponentially stable with a decay rate depending on the value of λ as shown in (3.27).

Now, the key step is to find the kernel p1 = p1(x, s) such that z̃(t, x) = Π1
o(w̃(t, x)) satisfies

(3.50). By focusing on (3.95) and using the Leibniz rules, we get:
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• Differentiation along (3.52)

z̃t =w̃t(x)−
∫ L

x
p1(x, s)[−w̃s(s, t)− w̃sss(s, t)− λw̃(s, t)]ds

=w̃t(x)−
∫ L

x
(−λp1(x, s) + p1

s(x, s) + p1
sss(x, s))w̃(s, t)ds

+ p1(x, L)w̃(L, t)− p1(x, x)w̃(x, t)− p1(x, L)w̃xx(L, t)

+ p1(x, x)w̃xx(x, t)− p1
s(x, x)w̃x(x) + p1

s(x, L)w̃x(L, t)

− p1
s(x, L)w̃(L, t) + p1

s(x, x)w̃(x, t)

(3.53)

• Three differentations with respect to the variable x

z̃x(x, t) = w̃x(x, t) + p1(x, x)w̃(x, t)−
∫ L

x
p1
x(x, s)w̃(t, s)ds (3.54)

z̃xx(t, x) = w̃xx(t, x)+
d

dx
p1(x, x)w̃(t, x)+p1(x, x)w̃x(t, x)+p1

x(x, x)w̃(t, x)−
∫ L

x
p1
xx(x, s)w̃(t, s)ds

(3.55)

z̃xxx(t, x) =w̃xxx(t, x) +
d2

dx2
p1(x, x)w̃(t, x) + 2

d

dx
p1(x, x)w̃x(t, x) + p1(x, x)w̃xx(t, x)

+
d

dx
p1
x(x, x)w̃(t, x) + p1

x(x, x)w̃x(t, x) + p1
xx(x, x)w̃(t, x)−

∫ L

x
p1
xxx(x, s)w̃(t, s)ds

(3.56)

By adding (3.53), (3.54) and (3.56), we get:

z̃t + z̃x + z̃xxx − p1(x)z̃xx(L) = w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

−
∫ L

x
(−λp1(x, s) + p1

s(x, s) + p1
sss(x, s) + p1

xxx(x, s) + p1
x(x, s))w̃(t, s)ds

+ w̃x(t, x)

(
2
d

dx
p1(x, x) + p1

x(x, x) + p1
s(x, x)

)
+ w̃(t, x)

(
p1
xx(x, x) +

d2

dx2
p1(x, x) +

d

dx
p1
x(x, x) +

d

dx
p1
x(x, x)− p1

s(x, x)− λ
)

+ p1(x, L)w̃(L, t) + (p1(x, L)− p1(x))w̃xx(L, t)− p1
s(x, L)w̃x(L, t)

(3.57)

From this equation, we get four conditions:

1. Equation for (x, s) ∈ T :

p1
sss(x, s) + p1

xxx(x, s) + p1
s(x, s) + p1

x(x, s) = λp1(x, s), (3.58)

where we recall that T := {(x, s) ∈ R2
≥0 | x ∈ [0, L], s ∈ [x, L]}.
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2. First boundary condition on (x, x) for x ∈ [0, L]:

2
d

dx
p1(x, x) + p1

x(x, x) + p1
s(x, x) = 0. (3.59)

3. Second boundary condition on (x, x) for x ∈ [0, L]:

d2

dx2
p1(x, x) +

d

dx
p1
x(x, x) + p1

xx(x, x)− p1
s(x, x)− λ = 0. (3.60)

4. Appropriate choice of p1:
p1(x, L) = p1(x). (3.61)

Moreover, note also that, by setting x = 0 in (3.95), we get:

p1(0, s) = 0, ∀s ∈ [0, L]. (3.62)

In addition, we have

w̃(t, 0) = w̃(t, L) = w̃x(t, L) = 0.

Finally, the kernel p1 satisfies the following PDE:

p1
xxx(x, s) + p1

sss(x, s) + p1
s(x, s) + p1

x(x, s) = λp1(x, s), (x, s) ∈ T ,
p1(x, x) = 0, x ∈ [0, L],

p1
x(x, x) =

λ

3
x, x ∈ [0, L],

p1(0, s) = 0, s ∈ [0, L].

(3.63)

Let us make the following change of variable:

ξ = L− s, η = L− x, (3.64)

and define F (ξ, η) := p1(x, s). Hence:

Fξξξ(ξ, η) + Fηηη(ξ, η) + Fη(ξ, η) + Fξ(ξ, η) = −λF (ξ, η) (ξ, η) ∈ T
F (ξ, ξ) = 0 ξ ∈ [0, L]

Fξ(ξ, ξ) =
λ

3
(L− ξ) ξ ∈ [0, L]

F (ξ, L) = 0 ξ ∈ [0, L]

(3.65)

This PDE has already been studied in [14], where no explicit solution has been found,
but where the existence of a solution has been proved. A sketch of the proof is provided in
Appendix C. Hence, we can conclude that the kernel p1 := p1(x, s) exists. Note that the
function Π1

o defined by (3.95) is linear (by definition) and continuous (because of the existence
of p).
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3.2.2.4 Well-posedness

We are now in position to prove the well-posedness of the closed-loop system. Let us state
the theorem

Theorem 3.5
Suppose that p1 and k1 solve (3.63) and (3.28) respectively. Then, for any initial condition
z0, ẑ0 ∈ H3(0, L) satisfying the following compatibility condition

z0(0) = ẑ0(0) =

∫ L

0
k(0, s)ẑ0(s)ds, z0(L) = ẑ0(L) = 0, z′0 = ẑ′0(L) = 0, (3.66)

there exists a unique strong solution z, ẑ ∈ C(0,∞, H3(0, L)) × C(0,∞, H3(0, L)) to (3.14)-
(3.40) satisfying, for all t ≥ 0

z(t, 0) = ẑ(t, 0) =

∫ L

0
k(0, s)ẑ(t, s)ds, z(t, L) = ẑ(t, L) = 0, zx(t, L) = ẑx(t, L) = 0. (3.67)

Proof of Theorem 3.5:

By using the output feedback control

u(t) =

∫ L

0
k1(0, s)ẑ(t, s)ds, (3.68)

the transformation Π1 defined in (3.21) and its inverse, and the transformation Π1
o defined

in (3.95) and its inverse, we can see that (z̃, ẑ) are mapped into (w̃, ŵ) = (Π1
o
−1

(ũ),Π1(û))

solutions to the target systems

ŵt + ŵx + ŵxxx + λŵ = −
{
p1(x)−

∫ L

x
k1(x, s)p1(s)ds

}
w̃xx(t, L),

ŵ(0) = ŵ(L) = ŵx(L) = 0,

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃x(0) = w̃(L) = w̃x(L) = 0.

(3.69)

Note that the parameter λ is the same for the observer and the system itself, without loss of
generality.

Hence, as it has been noticed in Section 3.2.1.3, if one is able to prove the well-posedness
of this system, then the well-posedness of (3.14)-(3.40) is also proved.

Using classical semigroup, it is clear that the Cauchy problem
w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃(t, L) = w̃x(t, L) = 0,

w̃(0, x) = w̃0(x),

(3.70)
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where w̃0(x) is in D(Ã), where D(Ã) is defined in (3.35), admits a unique strong solution
w̃ ∈ C(0,∞;D(Ã)). All the derivations are similar to the ones in Section 3.2.1.3.

Applying Lemma 3.1, one obtains that w̃xx(t, L) ∈ C(0,∞). Since p1(x) ∈ C3(0, L), the
following function

f : (t, x) 7→
{
p1(x)−

∫ L

x
k1(x, s)p1(s)ds

}
w̃xx(t, L) (3.71)

belongs to the set C(0,∞;L2(0, L)). From the variation of constants formula, the following
Cauchy problem

ŵt + ŵx + ŵxxx + λŵ = −
{
p1(x)−

∫ L

x
k1(x, s)p1(s)ds

}
w̃xx(t, L),

ŵ(0) = ŵ(L) = ŵx(L) = 0

ŵ(0, x) = ŵ0(x) ∈ H3(0, L).

(3.72)

admits a unique solution w ∈ C(0,∞;D(Ã)). Using the continuity of Π1 and its inverse
together with the continuity of Π1

o and its inverse, and following a similar proof than in
Section (3.2.1.3) it concludes the proof of Theorem (3.5). 2

3.2.2.5 Stability analysis of the closed-loop system

Now, we are on position to prove Theorem 3.4. Let us provide the proof.

Proof of Theorem 3.4:

Instead of dealing directly with the controlled state u and the observer state ẑ, we consider
the evolution of the couple (z̃, ẑ) where z̃ stands for the error z̃ = z−ẑ, as introduced in Section
3.2.2.3.

Given that Π1,Π1
o are continuous maps, invertible and their inverse maps are also contin-

uous, the exponential stability of (3.69) would imply the exponential stability of the closed
loop system and therefore the proof of Theorem 3.4 will be ended.

In order to prove the exponential stability of (3.69), we use a Lyapunov argument. Let us
consider the following function,

V (ŵ, w̃, w̃t) = V1(ŵ) + V2(w̃) + V3(w̃t), (3.73)

where

V1(ŵ) =
M1

2

∫ L

0
|ŵ(t, x)|2 dx (3.74)

V2(w̃) =
M2

2

∫ L

0
|w̃(t, x)|2 dx (3.75)
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V3(w̃t) =
M2

2

∫ L

0
|w̃t(t, x)|2 dx (3.76)

with M1,M2 two positive values that have to be chosen later.

Remark 3.4
We can prove that this Lyapunov function is equivalent to the one obtained by replacing V3(w̃t)

by

Ṽ3(w̃xxx) =
M2

2

∫ L

0
|w̃xxx(t, x)|2 dx (3.77)

By this, we mean that the exponential decay of one of them implies the exponential decay of
the other one. In fact, we can prove that there exist positive constants d1, d2 such that

d1(V2(w̃) + Ṽ3(w̃xxx)) ≤ V2(w̃) + V3(w̃t) ≤ d2(V2(w̃) + Ṽ3(w̃xxx)).

Taking the time derivative of the function V (ŵ, w̃, w̃t), we get after some computations
that

d

dt
V1(ŵ) =M1

∫ L

0
ŵt(t, x)ŵ(t, x)dx

≤ (−M1λ+D2)

∫ L

0
|ŵ(t, x)|2dx+M2

1 |w̃xx(t, L)|2

= 2
(
− λ+

D2

M1

)
V1(ŵ) +M2

1 |w̃xx(t, L)|2

where D := maxx∈[0,L]

{
p1(x)−

∫ L
x k(x, s)p1(s)ds

}
.

From the same computation as in (3.27), we see that

d

dt
V2(w̃) ≤− 2λV2(w̃).

Moreover, thanks to the regularity H3(0, L), the same computation can be applied to
z = w̃t (see the proof of Lemma 3.1) to obtain

d

dt
V3(w̃t) ≤− 2λV3(w̃t)

Thus, we get:

d

dt
V (ŵ, w̃, w̃t) ≤ 2

(
− λ+

D2

M1

)
V1(ŵ) +M2

1 |w̃xx(t, L)|2 − 2λV2(w̃)− 2λV3(w̃t).

We need to find an upper bound for |w̃xx(t, L)|2. We multiply{
w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(0) = w̃(L) = w̃x(L) = 0,
(3.78)
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by xw̃xx and after some computations we get

|w̃xx(t, L)|2 ≤
(

1

L
+ L

)
‖w̃xx‖2L2(0,L) +

(
2λ+

1

L

)
‖w̃x‖2L2(0,L) +

1

L
‖w̃t‖2L2(0,L) (3.79)

and finally the existence of two positive values a and b such that

|w̃xx(t, L)|2 ≤ a‖w̃‖2L2(0,L) + b‖w̃t‖2L2(0,L) (3.80)

Remark 3.5
Here, we have used that the norm ‖f‖H3(0,L) and the norm ‖f‖L2(0,L) + ‖fxxx‖L2(0,L) are
equivalent. See also Remark 3.4.

We use the latter inequality to write:

d

dt
V (ŵ, w̃, w̃t) ≤ 2

(
− λ+

D2

M1

)
V1(ŵ) + 2a

M2
1

M2
V2(w̃) + 2b

M2
1

M2
V3(w̃t)− 2λV2(w̃)− 2λV3(w̃t).

Therefore,

d

dt
V (ŵ, w̃, w̃t) ≤ 2

(
− λ+

D2

M1

)
V1(ŵ) + 2

(
− λ+

aM2
1

M2

)
V2(w̃) + 2

(
− λ+

bM2
1

M2

)
V3(w̃t).

In this way, by tuning M1 and M2 large enough, we get for any ε > 0 that

d

dt
V (ŵ, w̃, w̃t) ≤ 2

(
− λ+ ε

)
V (ŵ, w̃, w̃t),

which gives an exponential stability with decay rate as close to λ as we want. The rapid
stabilization is achieved because the parameter λ can be chosen as large as desired.

This concludes the proof of the stability of the closed loop system with the output feedback
control law depending on a boundary measurement of the state. 2

3.2.3 Dynamic output feedback design for (3.16)

3.2.3.1 Main Result

Based on [50] and [85], where the technique provided is similar to Section 3.2.2, we design an
observer for (3.16). More precisely, we define, for some appropriate function p2 to be designed,
the following copy of the plant with a term depending on the observation error

ẑt + ẑx + ẑxxx + ẑẑx + p2(x)[y2(t)− ẑ(t, L)] = 0,

ẑ(t, 0) = u(t), ẑx(t, L) = ẑxx(t, L) = 0,

ẑ(0, x) = ẑ0(x).

(3.81)
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Our main result is the local stabilization of the KdV equation by using the output
y2(t) = z(t, L), as stated in the following theorem whose proof is given in Section 3.2.3.7.

Theorem 3.6
For any λ0 > 0, there exist an output feedback law u(t) := u(ẑ(t, x)), a function p2 = p2(x),
and two constants C > 0, r > 0 such that for any initial conditions z0, ẑ0 ∈ L2(0, L) satisfying

‖z0‖L2(0,L) ≤ r, ‖ẑ0‖L2(0,L) ≤ r, (3.82)

the mild solution to (3.16)-(3.81) satisfies, for all t ≥ 0

‖z(t, ·)− ẑ(t, ·)‖L2(0,L) + ‖ẑ(t, ·)‖L2(0,L) ≤ Ce−λ0t
(
‖z0 − ẑ0‖L2(0,L) + ‖ẑ0‖L2(0,L)

)
. (3.83)

Remark 3.6
Notice that from this theorem we get the exponential decreasing to 0 of the L2-norm of the
solution z = z(t, x) provided that the L2-norm of the initial conditions of the plant and the
observer are sufficiently small. Moreover only the mild solutions will be considered in this
section.

3.2.3.2 Control Design for the linearized system

The backstepping design applied here is based on the linear part of the equation (3.16). Thus,
we consider the control system linearized around the origin{

zt + zx + zxxx = 0,

z(t, 0) = u(t), zx(t, L) = zxx(t, L) = 0,
(3.84)

and the linear observer {
ẑt + ẑx + ẑxxx + p2(x)[y2(t)− ẑ(t, L)] = 0,

ẑ(t, 0) = u(t), ẑx(t, L) = ẑxx(t, L) = 0.
(3.85)

We follow the same strategy as in Section 3.2.2.

In [14], the following Volterra transformation is introduced

w(x) = Π2(z(x)) := z(x)−
∫ L

x
k2(x, s)ds. (3.86)

The function k2 is chosen such that z = z(t, x), solution of (3.84) with control

u(t) =

∫ L

0
k2(0, s)z(t, s)ds, (3.87)

is mapped into the trajectory w = w(t, x), solution of the linear system{
wt + wx + wxxx + λw = 0,

w(t, 0) = wx(t, L) = wxx(t, L) = 0,
(3.88)
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which is exponentially stable for λ > 0, with a decay rate at least equal to λ.

The kernel function k2 : T → R is characterized by

k2
xxx + k2

sss + k2
x + k2

s = −λk2, in T ,
k2(x, L) + kss(x, L) = 0, in [0, L],

k2(x, x) = 0, in [0, L],

k2
x(x, x) =

λ

3
(L− x), in [0, L],

(3.89)

where T := {(x, s) ∈ R2
≥0 | x ∈ [0, L], s ∈ [x, L]}. The solution k2 to (3.89) exists and belongs

to C3(T ). This is proved in [14, Section VI] by using the method of successive approximations.
Unlikely the case of heat or wave equations, we do not have an explicit solution.

In [14] it is proved that the transformation (3.86) linking (3.84) and (3.88) is invertible,
continuous and with a continuous inverse function. This proof is tackled using the successive
approximation method. Therefore, the exponential decay for w, solution to (3.88), implies
the exponential decay for the solution z controlled by (3.87). Thus, with this method, the
following theorem is proven in [14].

Theorem 3.7
For any λ > 0, there exists C > 0 such that

‖z(t, ·)‖L2(0,L) ≤ Ce−λt‖z0‖L2(0,L), ∀t ≥ 0, (3.90)

for any solution to (3.84)-(3.87).

Later, we give more details on the observer design. Let us remark that the output feedback
law is designed as

u(t) :=

∫ L

0
k2(0, s)ẑ(t, s)ds, (3.91)

where ẑ is the mild solution to (3.85).

Thus we get the following result, which can be compared to Section 3.2.2.1. The proof is
given in Section 3.2.3.4.

Theorem 3.8
For any λ0 > 0, there exists a positive value C such that for any solution to (3.84)-(3.85)-(3.91)
we have, for all t ≥ 0

‖z(t, ·)− ẑ(t, ·)‖L2(0,L) + ‖ẑ(t, ·)‖L2(0,L) ≤ Ce−λ0t
(
‖z0 − ẑ0‖L2(0,L) + ‖ẑ0‖L2(0,L)

)
. (3.92)

Remark 3.7
Notice that from Theorem 3.8, we get the exponential decrease to 0 of the L2-norm of the
solution z = z(t, x). This result is different from Section 3.2.2, where the equilibrium point 0

is exponentially stable in the domain of the operator. This is due to the fact that the output
and the boundary conditions are different.



3.2. Output feedback law for some Korteweg-de Vries equations 93

3.2.3.3 Observer design for the linearized system

The observer (3.85) is based on a Volterra transformation. It transforms the solution z̃ := z−ẑ
which fullfills the following PDE

z̃t(t, x) + z̃x(t, x) + z̃xxx(t, x)− p2(x)[z̃(t, L)] = 0, (t, x) ∈ R≥0 × [0, L]

z̃(t, 0) = z̃x(t, L) = z̃xx(t, L) = 0, t ∈ R≥0

z̃(0, x) = z0(x)− ẑ0(x) := z̃0(x), x ∈ [0, L]

(3.93)

into the following PDE 
w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0,

w̃(0, x) = w̃0(x).

(3.94)

We choose the same λ than the one used to design the controller given by (3.87). The
transformation is given by

z̃(x) := Π2
o(w̃(x)) = w̃(x)−

∫ L

x
p2(x, s)w̃(s)ds, (3.95)

where p2 is a kernel that satisfies a partial differential equation and will be defined in the
following.

In [90], a similar observer has been computed. Indeed, if we make the following change of
coordinates,

x̄ = L− x (3.96)

we obtain a Korteweg-de Vries equation similar to the one studied in [90]. Hence, we know
from this latter paper that the kernel p2 : T → R solves the following equation

p2
xxx + p2

sss + p2
x + p2

s = λp2, ∀(x, s) ∈ T ,
p2(x, x) = 0, ∀x ∈ [0, L],

p2
x(x, x) =

λ

3
(x− L), ∀x ∈ [0, L],

p2(0, s) = 0, ∀s ∈ [0, L].

(3.97)

The solution p2 to this equation exists and is unique. It belongs to the set C3(T ).

Moreover, once again following [90], we define the following observer gain, for all x ∈ [0, L]

p2(x) = p2
ss(x, L) + p2(x, L). (3.98)

As in [90], we can state that the transformation Π2
o is invertible with continuous inverse

given by

w̃(x) = Π2−1
o (z̃(x)) = z̃(x) +

∫ L

x
m(x, s)z̃(s)ds (3.99)

where m = m(x, s) is also a solution to an equation like (3.97) in the triangular domain T .
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3.2.3.4 Well-posedness and Exponential Stability of the Linear System

Preliminaries

Let us focus on the linearized version of the Korteweg-de Vries equation. The homogeneous
equation is given by 

zt + zx + zxxx = 0,

z(t, 0) = zx(t, L) = zxx(t, L) = 0,

z(0, x) = z0(x).

(3.100)

The operator associated to this linear PDE is given by:

A2 : D(A2) ⊂ L2(0, L)→ L2(0, L),

z 7→ −z′ − z′′′
(3.101)

whose domain is D(A2) := {z ∈ H3(0, L) | z(0) = z′(L) = z′′(L) = 0}. From basic
semigroup theory, it is easy to prove that A2 generates a strongly continuous semigroup of
contractions. This semigroup will be denoted by (W2(t))t≥0. We also need some results on
the non-homogeneous Korteweg-de Vries equation.

Theorem 3.9
(see [49]) Let T > 0. For any z0 ∈ L2(0, L) and any (f, h) ∈ L1(0, T ;L2(0, L)) ×H

1
3 (0, T )4,

the following Korteweg-de Vries equation
zt + zx + zxxx = f,

z(t, 0) = h(t),

zx(t, L) = zxx(t, L) = 0,

z(0, x) = z0(x),

(3.102)

admits a unique solution z ∈ B(T ). Moreover, there exists a positive value C such that the
following inequality holds:

‖z‖B(T ) ≤ C
(
‖z0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)) + ‖h‖

H
1
3 (0,T )

)
(3.103)

From this result, the following lemma can be deduced.

Lemma 3.2
Let us suppose all that the assumptions in Theorem 3.9 hold and that in addition f ∈
L2(0, T ;L1(0, L)). Then, one has the regularity

z ∈ H
1
3 (0, T ;L2(0, L)). (3.104)

4The space H
1
3 (0, T ) is defined as follows

H
1
3 (T ) :=

{
h ∈ L2(0, T )

∣∣∣∣∣ |h(t)− h(s)||t− s| 13
∈ L2((0, T )× (0, T ))

}
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Proof of Lemma 3.2:

Note that in particular, z ∈ L2(0, T ;H1(0, L)). Therefore, since zt = −zx − zxxx + f , one
has

zt ∈ L2(0, T ;H−2(0, L)).

Hence,
z ∈ H1(0, T ;H−2(0, L)).

Then, by applying the classical theory of interpolation (see [79, Theorem 2.8.] or [54] for a good
introduction to this subject), it is easy to see that z ∈ H

1
3 (0, T ;L2(0, L)), which concludes

the proof of Lemma 3.2. 2

Other result we need is the regularity of the right hand side in the observer.

Lemma 3.3
Let p2 ∈ L2(0, L). Then, given a positive value T , for every z, ẑ ∈ L2(0, T ;H1(0, L)), one has
p2(x)[z(t, L)− ẑ(t, L)] ∈ L2(0, T ;L2(0, L)).

Proof of Lemma 3.3:

Using the Agmon inequality (see [2, Lemma 13.2., page 148]), we obtain that there exists
a positive value CA such that∫ T

0
|z(t, L)− ẑ(t, L)|2dt ≤ CA

∫ T

0
‖z(t, .)− ẑ(t, .)‖2H1(0,L)dt.

Since z, ẑ ∈ L2(0, T ;H1(0, L)) and p2(x) ∈ L2(0, L), we conclude the proof. 2

Proof of Theorem 3.8 - Well-posedness:

The closed-loop system (3.84)-(3.85)-(3.91) through the transformations (3.86) and (3.95)
can be written as follows

ŵt + ŵx + ŵxxx + λŵ = −
{
p2(x)−

∫ L

x
k2(x, y)p2(y)dy

}
w̃(t, L),

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0,

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0.

(3.105)

We only have to prove that system (3.105) is well-posed (with solutions in B(T ) × B(T )

for any T > 0) and that its origin is exponentially stable. In fact, once that is done, by using
Lemma 3.2, we conclude that w̃, ŵ belong to H

1
3 (0, T ;L2(0, L)). Thus the control defined by
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(3.91) belongs to H
1
3 (0, T ), which is the desired regularity for the input. The existence of

solutions and the exponential decay for system (3.84)-(3.85)-(3.91) is obtained by the inverti-
bility of the transformations (3.86) and (3.95).

System (3.105) is in cascade form. We can apply the linear results to get w̃ and then plug
it into the equation for ŵ as a right hand side by using Theorem 3.9. Thus, we finally get ŵ.

With these results in hand we can define the continuous solution map

(z0, ẑ0) ∈ L2(0, L)2 7→ Λ(z0, ẑ0) = (z, ẑ) ∈ B(T )2 (3.106)

where B(T )2 := B(T )×B(T ) and z, ẑ ∈ B(T ) are the solutions of the linear closed loop system
(3.84)-(3.85)-(3.91).

Proof of Theorem 3.8 - Stability:

Let us focus now on the exponential stability. To do that, we consider the following
Lyapunov function

V (ŵ, w̃) := V1(ŵ) + V2(w̃) (3.107)

where

V1(ŵ) = A

∫ L

0
ŵ(t, x)2dx, (3.108)

and

V2(w̃) = B

∫ L

0
w̃(t, x)2dx. (3.109)

The positive values A and B are chosen later. After performing some integrations by parts,
we obtain

d

dt
V1(ŵ) ≤

(
−2λ+

D2

A

)
V1(ŵ) +A2L|w̃(t, L)|2, (3.110)

where

D = max
x∈[0,L]

{
p2(x)−

∫ L

x
k2(x, y)p2(y)dy

}
. (3.111)

We have also
d

dt
V2(w̃) ≤ −2λV2(w̃)−B|w̃(t, L)|2. (3.112)

Therefore, by choosing

A >
D2

2λ
(3.113)

and
B ≥ A2L, (3.114)

we get
d

dt
V (ŵ, w̃) ≤ −2µV (ŵ, w̃), (3.115)

where

µ =

(
λ− D2

2A

)
> 0. (3.116)
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Thus, we obtain the exponential decay of (w̃, ŵ) with a decay rate equal to µ. By using
the invertibility and continuity of the transformations Π and Πo, we conclude the proof of
Theorem 3.8 by getting the desired exponential decay for (z̃, ẑ).

In the next section, we will tackle the well-posedness and the exponential stability of the
nonlinear system.

3.2.3.5 Well-posedness and Exponential Stability of the Nonlinear System

Preliminaries

The following results are useful in order to prove the well-posedness of the nonlinear
Korteweg-de Vries equation.

Let us recall Proposition 2.1. Some additional informations are provided.

Proposition 3.1 (see [77])
Given a positive value T , let z ∈ L2(0, T ;H1(0, L)). Then zzx ∈ L1(0, T ;L2(0, L)) and the
map z ∈ L2(0, T ;H1(0, L)) 7→ zzx ∈ L1(0, T ;L2(0, L)) is continuous. Moreover, there exists
a positive value Ch such that, for every u, z̃ ∈ L2(0, T ;H1(0, L))

‖zzx − z̃z̃x‖L1(0,T ;L2(0,L)) ≤ Ch‖z + z̃‖L2(0,T ;H1(0,L))‖z − z̃‖L2(0,T ;H1(0,L)) (3.117)

Lemma 3.4 (see [49])
Let us note that (W2(t))t≥0 denotes the strongly continuous semigroups of contractions gen-
erated by the operator (3.101). For any positive value T , there exist two positive values
C1 := C1(T ) and C2 := C2(T ) such that

(i) For any v, v̂ ∈ B(T ),∫ T

0
‖(v(t, .)v̂(t, .))x‖L2(0,L)dt ≤ C1‖v‖B(T )‖v̂‖B(T ) (3.118)

(ii) For f ∈ L1(0, T ;L2(0, L)), let

z =

∫ t

0
W2(t− s)f(s)ds,

then

‖z‖B(T ) ≤ C2

∫ T

0
‖f(t, .)‖L2(0,L)dt. (3.119)

Moreover, one can easily prove the following lemma.
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Lemma 3.5
Given a positive value T , let z ∈ B(T ). Then zzx ∈ L2(0, T ;L1(0, L)). Moreover, for every
z ∈ B(T )

‖zzx‖L2(0,T ;L1(0,L)) ≤ ‖z‖L2(0,T ;H1(0,L))‖z‖C([0,T ];L2(0,L)) (3.120)

3.2.3.6 Proof of Theorem 3.6 - Well-posedness

We will apply the Banach fixed point theorem in order to prove the well-posedness of the
nonlinear closed-loop system.

With u defined by (3.91), and v, v̂ ∈ B(T ), the solutions to
zt + zx + zxxx = −vvx,
z(t, 0) = u(t),

zx(t, L) = zxx(t, L) = 0,

z(0, x) = z0(x),

(3.121)

and 
ẑt + ẑx + ẑxxx + p2(x)[z(t, L)− ẑ(t, L)] = −v̂v̂x,
ẑ(t, 0) = u(t),

ẑx(t, L) = ẑxx(t, L) = 0,

ẑ(0, x) = ẑ0(x),

(3.122)

can be written as follows

(z, ẑ)(t) = Λ(z0, ẑ0)(t)−
(∫ t

0
W2(t− s)v(s)vx(s)ds,

∫ t

0
W2(t− s)v̂(s)v̂x(s)ds

)
(3.123)

where Λ was introduced in (3.106) and (W2(t))t≥0 is the strongly continuous semigroup of
contractions generated by (3.101). We will be done if we prove that the map Γ defined by the
right hand-side of (3.123),

Γ(v, v̂) = Λ(z0, ẑ0)−
(∫ t

0
W2(t− s)v(s)vx(s)ds,

∫ t

0
W2(t− s)v̂(s)v̂x(s)ds

)
, (3.124)

has a fixed point.

We define, for some R > 0 to be chosen later,

SR =
{

(v, v̂) ∈ B(T )× B(T ) | ‖v‖B(T ) + ‖v̂‖B(T ) ≤ R
}
, (3.125)

which is a closed, convex and bounded subset of B(T )2. Consequently, SR is a complete metric
space in the topology induced by B(T )2. With Theorem 3.9 and previous lemmas, we have
the existence of a constant C > 0 such that for any (v, v̂) ∈ SR,

‖Γ(v, v̂)‖B(T )2 ≤ C
(
‖z0‖L2(0,L) + ‖ẑ0‖L2(0,L)

)
+ C

(
‖v‖2B(T ) + ‖v̂‖2B(T )

)
. (3.126)
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We consider r > 0 and z0, ẑ0 ∈ L2(0, L) such that

‖z0‖L2(0,L) ≤ r, and ‖ẑ0‖L2(0,L) ≤ r.

Now we select r,R as follows {
2Cr ≤ R/2,
2CR2 ≤ R/2,

(3.127)

to obtain that for any (v, v̂) ∈ SR

‖Γ(v, v̂)‖B(T )2 ≤ R. (3.128)

Thus, with such r and R, Γ maps SR into SR. Moreover, using Lemma 3.1 and Lemma 3.4,
we obtain

‖Γ(v1, v̂1)−Γ(v2, v̂2)‖B2(T ) ≤ C2Ch

(
‖v1 + v2‖B(T )‖v1− v2‖B(T ) + ‖v̂1 + v̂2‖B(T )‖v̂1− v̂2‖B(T )

)
(3.129)

and thus, choosing R such that

2RC2Ch ≤
1

2

we arrive to

‖Γ(v1, v̂1)− Γ(v2, v̂2)‖B2(T ) ≤
1

2

(
‖v1 − v2‖B(T ) + ‖v̂1 − v̂2‖B(T )

)
(3.130)

for any (v1, v̂1), (v2, v̂2) ∈ SR. By using Theorem 2.7, we obtain the existence of a unique
fixed point of the map Γ. As previously stated, this fixed point is the solution we are looking
for.

3.2.3.7 Exponential stability of the nonlinear system

The aim of this section is to prove Theorem 3.6, i.e., we have to prove the local exponential
stability of the nonlinear closed-loop system
zt(t, x) + zx(t, x) + zxxx(t, x) + z(t, x)zx(t, x) = 0, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = u(t), zx(t, L) = zxx(t, L) = 0, t ∈ R≥0

ẑt(t, x) + ẑx(t, x) + ẑxxx(t, x) + ẑ(t, x)ẑx(t, x) + p2(x)[y2(t)− ẑ(t, L)] = 0, (t, x) ∈ R≥0 × [0, L],

ẑ(t, 0) = u(t), ẑx(t, L) = ẑxx(t, L) = 0, t ∈ R≥0,
(3.131)

where

u(t) =

∫ L

0
k2(0, s)ẑ(t, s)ds, (3.132)

and
y2(t) = z(t, L). (3.133)



100 Chapter 3. Output feedback stabilization of Korteweg-de Vries equations

As before, we consider the evolution of the couple (z̃, ẑ) where z̃ stands for the error
z̃ = z− ẑ. Using Π2

o and its inverse (see (3.95) and (3.99)), we define w̃ = Π2
o
−1

(z̃). We denote
ŵ = Π2(ẑ), where Π2 is defined in (3.86). The inverse Π2−1 is given by

ẑ(x) = Π2−1
(ŵ(x)) = ŵ(x) +

∫ L

x
l2(x, s)ŵ(y)ds, (3.134)

where l2 solves the following equation

l2xxx + l2yyy + l2x + l2y = λl, (x, y) ∈ T ,
l2(x, L) + l2ss(x, L) = 0, x ∈ 0, L],

l2(x, x) = 0, x ∈ [0, L],

l2x(x, x) =
λ

3
(L− x), x ∈ [0, L].

(3.135)

The existence of such a kernel l2 has been proven in [14, see Sections IV and VI]. Thus, we
can see that (z̃, ẑ) is mapped into (w̃, ŵ) solution to the coupled target system

ŵt(t,x) + ŵx(t, x) + ŵxxx(t, x) + λŵ(t, x) =

−
{
p2(x)−

∫ L

x
k2(x, s)p2(s)ds

}
w̃(t, L)

−
(
ŵ(t, x) +

∫ L

x
l2(x, s)ŵ(t, s)ds

)
·
(
ŵx(t, x) +

∫ L

x
l2x(x, s)ŵ(t, s)ds

)
− 1

2

∫ L

x
|ẑ(t, s)|2k2

s(x, s)ds,

(3.136)

w̃t(t,x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x) =

−
(
w̃(t, x)−

∫ L

x
p(x, s)w̃(t, s)ds

)
·
(
w̃x(t, x)−

∫ L

x
px(x, s)w̃(t, s)ds

)
−
(
ŵ(t, x) +

∫ L

x
l2(x, s)ŵ(t, s)ds

)
·
(
w̃x(t, x)−

∫ L

x
px(x, s)w̃(t, s)ds

)
−
(
w̃(t, x)−

∫ L

x
p(x, s)w̃(t, s)ds

)
·
(
ŵx(t, x) +

∫ L

x
l2x(x, s)ŵ(t, s)ds

)
+

∫ L

x

[ |z̃(t, s)|2
2

+ z̃(t, s)ẑ(t, s)
]
my(x, s)ds,

(3.137)

with boundary conditions

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0, (3.138)

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0. (3.139)

As in previous section, we will prove the stability of this system by using the same Lyapunov
function (3.107). We differentiate (3.108) with respect to time as follows

d

dt
V1(ŵ) =2M1

∫ L

0
ŵt(t, x)ŵ(t, x)dx

≤
(
−2λ+

D2

M1

)
V1(ŵ) +M2

1L|w̃(t, L)|2 − 2M1

∫ L

0
ŵ(t, x)F (t, x)dx, (3.140)
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where

F (t, x) =ŵ(t, x)ŵx(t, x) + ŵ(t, x)

∫ L

x
l2x(x, s)ŵ(t, s)ds+ ŵx(t, x)

∫ L

x
l2(x, s)ŵ(t, s)ds

+

(∫ L

x
l2(x, s)ŵ(t, s)ds

)(∫ L

x
l2x(x, s)ŵ(t, s)ds

)
+

1

2

∫ L

x
|ẑ(t, s)|2k2

s(x, s)ds.

By using the same argument as in [14, 24], we can prove the existence of a positive constant
K1 = K1(‖l2‖C1(T ), ‖k2‖C1(T )) such that∣∣∣∣M1

∫ L

0
ŵ(t, x)F (t, x)dx

∣∣∣∣ ≤ K1

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

. (3.141)

Then, we estimate d
dtV2(w̃) as follows

d

dt
V2(w̃) ≤ −2λV2(w̃)− 2M2

∫ L

0
w̃(t, x)G(t, x)dx−M2|w̃(t, L)|2 (3.142)

where G = G(t, x) is the right-hand side of (3.137). We can prove the existence of a positive
constant K2 = K2(‖l‖C1(τ), ‖p‖C1(τ), ‖m‖C1(τ)) such that∣∣∣∣2M2

∫ L

0
w̃(t, x)G(t, x)dx

∣∣∣∣ ≤ K2

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|w̃(t, x)|2dx

) 3
2

. (3.143)

Therefore, for M1,M2, µ satisfying (3.113), (3.114) and (3.116), we have

d

dt
V (ŵ, w̃) ≤− 2µV (ŵ, w̃) +K1

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|w̃(t, x)|2dx

) 3
2

.

(3.144)

If there exists t0 ≥ 0 such that
‖w̃(t0, .)‖L2(0,L) ≤

µ

K2
(3.145)

and
‖ŵ(t0, .)‖L2(0,L) ≤

µ

K1 +K2
(3.146)

we can conclude
d

dt
V (ŵ, w̃) ≤ −µV (ŵ, w̃), ∀t ≥ t0. (3.147)

Thus, we get

‖w̃(t, .)‖L2(0,L) + ‖ŵ(t, .)‖L2(0,L) ≤ e−
µ
2
t
(
‖w̃0‖L2(0,L) + ‖ŵ0‖L2(0,L)

)
, ∀t ≥ 0, (3.148)

provided that

‖ŵ0‖L2(0,L) ≤
µ

K1 +K2
,

‖w̃0‖L2(0,L) ≤
µ

K2
.

(3.149)

This concludes the proof of Theorem 3.6 by getting the exponential decay of the system with
a smallness condition on the L2-norm of the initial data z0, ẑ0.
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3.3 Simulation

3.3.1 Some notation

In this section we provide some numerical simulations showing the effectiveness of our control
design. In order to discretize our KdV equation, we use a finite difference scheme inspired from
[70] and similar to the one provided in Chapter 2, Section 2.3.2. The final time for simulations
is denoted by Tfinal. We choose (Nx+ 1) points to build a uniform spatial discretization of the
interval [0, L] and (Nt+1) points to build a uniform time discretization of the interval [0, Tfinal].
Thus, the space step is ∆x = L/Nx and the time step ∆t = Tfinal/Nt. We approximate the
solution with the notation z(t, x) ≈ Zij , where i and j refer to time and space discrete variables,
respectively.

The notation for the approximations of the derivative are the same than in Chapter 2, at
the beginning of Section 2.3.2. In particular, we note

A := D+D+D− +D (3.150)

and
C := A+ dtI, (3.151)

where I is the identity matrix in RNx .

We will denote, for each discrete time i,

Z i :=
[
Z i1 Z i2 . . . Z iNx+1

]T
the plant state, and

Oi :=
[
Oi1 Oi2 . . . OiNx+1

]T
the observer state. For m = {1, 2}, the state output will be denoted by YmZ and YmO stands
for the observer output. When m = 1, we refer to (3.15) and when m = 2, we refer to (3.17).
For m = {1, 2}, the discretized controller gain Um and observer gain Pm, respectively, are
defined by

Um =
[
Km

1 Km
2 . . . Km

Nx+1

]T
and

Pm =
[
Pm1 Pm2 . . . PmNx+1

]T
.

We compute them from a successive approximations method (see [14] and Appendix C). When
m = 1, we refer to k1 and p1. When m = 2, we refer to k2 and p2.

3.3.2 Illustration of the results of Section 3.2.2

Given K1 and P 1, the following is the structure of the algorithms used in our simulations.
The first algorithm we provide is for the plant (3.16).



3.3. Simulation 103


Z i+1
j −Z ij
dt

+ (AZ i+1)j = 0, j = 1, . . . Nx,

Z i1 =
√∑Nx+1

j=1 K1
jOij , Z iNx+1 = Z iNx = 0,

Z1 =
∫ xj+1

2
x
j− 1

2

z0(x)dx,

(3.152)

The second numerical scheme we provide is for the observer (3.40)


Oi+1
j −Oij
dt

+ (AOi+1)j + P 1(Y1
Z − Y1

O) = 0, j = 1, . . . Nx,

Oi1 =
√∑Nx+1

j=1 K1
jOij , OiNx+1 = OiNx = 0,

O1 =
∫ xj+1

2
x
j− 1

2

ẑ0(x)dx,

(3.153)

where xj+ 1
2

= j + 1
2dx and xj = jdx.

In order to illustrate our theoretical results, we perform some simulations on the domain
[0, 2π]. We take Nx = 30, Nt = 167, Tfinal = 8, λ = 1, z0(x) = 1 − cos(x) and ẑ0(x) = 0.
Figure 3.1 illustrates the convergence to the origin of the solution to the closed-loop system
(3.14), (3.40) and (3.68). Figure 3.2 illustrates the L2-norm (3.14) with (3.68) and the L2-
norm of the solution to the observer (3.81) with (3.68). Finally, Figure 3.3 illustrates the
time evolution of the L2-norm of the observation error (z − ẑ) and of C(z0 − ẑ0)e−µt where
C = 2 and µ = 0.4. Note that the observation error converges to 0 in L2-norm. From the
simulations, this convergence seems to be exponential as expected.
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Figure 3.1: Solution to the closed-loop system (3.14)-(3.68)



104 Chapter 3. Output feedback stabilization of Korteweg-de Vries equations

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

t

 

 

‖z‖2
L2(0,L)

‖ẑ‖2
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Figure 3.2: Time evolution of the L2-norm of the plant (blue line) and of the observer (red
line).
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3.3.3 Illustration of the results of Section 3.2.3

Given K2 and P 2, the following is the structure of the algorithms used in our simulations.
The first algorithm we provide is for the plant (3.16).


Z i+1
j −Z ij
dt

+ (AZ i+1)j +
1

2

(
D[(Z i+1)2]

)
j

= 0, j = 1, . . . Nx,

Z i1 =
√∑Nx+1

j=1 K2
jOij , Z iNx+1 = 2Z iNx −Z

i
Nx−1 = 0,

Z1 =
∫ xj+1

2
x
j− 1

2

z0(x)dx,

(3.154)

The second numerical scheme we provide is for the observer (3.81)


Oi+1
j −Oij
dt

+ (AOi+1)j +
1

2

(
D[(Oi+1)2]

)
j

+ P 2(Y2
Z − Y2

O) = 0, j = 1, . . . Nx,

Oi1 =
√∑Nx+1

j=1 K2
jOij , OiNx+1 = 2OiNx −O

i
Nx−1 = 0,

O1 =
∫ xj+1

2
x
j− 1

2

ẑ0(x)dx,

(3.155)

For both of these equations, since we have the nonlinearities zzx and ẑẑx, we will use an
iterative fixed point method to solve the nonlinear systems

CZ i+1 = Z i − 1

2
D(Z i+1)2,

and
COi+1 = Oi − 1

2
D(Oi+1)2. (3.156)

With Niter = 5, which denotes the number of iterations of the fixed point method, we get good
approximations of the solutions. The algorithm is similar to the one provided in Chapter 2.

In order to illustrate our theoretical results, we perform some simulations on the domain
[0, 2π]. We take Nx = 30, Nt = 167, Tfinal = 10, λ = 2, u0(x) = sin(x) and û0(x) = 0.
Figure 3.4 illustrates the convergence to the origin of the solution to the closed-loop system
(3.16) and (3.81) with u given by (3.132). Figure 3.5 illustrates the L2-norm of this solution
and the L2-norm of the solution to the observer (3.81) with u given by (3.132). Finally,
Figure 3.6 illustrates the time evolution of the L2-norm of the observation error (z − ẑ) and
of (z0 − ẑ0)e−µt where µ = 0.4. Note that the observation error converges to 0 in L2-norm.
From the simulations, this convergence seems to be exponential as expected.

3.4 Conclusion

In this chapter, the infinite-dimensional backstepping technique has been introduced. This
method has been used to design a state feedback law and an observer for two Korteweg-de
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Figure 3.4: Solution to the closed-loop system (3.16) and (3.81)
with u given by (3.132).

0 2 4 6 8 10
0

5

10

15

t

 

 

‖z‖2
L2(0,L)

‖ẑ‖2
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Figure 3.5: Time evolution of the L2-norm of the plant (blue line) and of the observer (red
line).

Vries equations. The first one is linear, the second one is nonlinear. The well-posedness of
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Figure 3.6: Time evolution of the L2-norm for the observation error z−ẑ and of ‖z̃0‖2L2(0,L)e
−µt

these two equations has been tackled with semigroup theory and with the Banach-fixed point
theorem in the case of the nonlinear equation. The exponential stability of the origin of these
two systems has been proved using some Lyapunov functions. Finally, our results have been
illustrated with some numerical simulations.

It could be interesting to design another observer for the KdV equation. One which
might be useful is the high-gain observer, which is an observer for finite-dimensional systems
satisfying a special structure. This technique will be introduced in details in the next chapter.
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This chapter deals with hybrid finite-dimensional systems, i.e. finite-dimensional systems
with a mixed discrete/continuous dynamics. As it has been noticed in Chapter 3, separation
principle may fail for nonlinear finite-dimensional system. The aim of this chapter is to present
a design method for output feedback laws for nonlinear systems for which there exists a hybrid
state controller.

In recent years, many techniques for designing a stabilizing control law for nonlinear dy-
namical systems have been developed. It is now possible to achieve stabilization of equilibria
for a large class of models. However, due to Brockett’s necessary condition for stabilizability, it
is well known that some systems cannot be stabilized by a continuous controller. Some of these
systems can however be stabilized with a hybrid state feedback law, i.e. a discrete/continuous
controller (see e.g. [75], where the Brockett integrator is stabilized with a quasi optimal hybrid
control). Moreover, the use of hybrid control laws may be interesting to address performance
issues (see e.g. [74]). This explains the great interest of the control community in the synthesis
of hybrid control laws (see [35], [39, 40, 31, 99]).

The output feedback stabilization problem has also attracted the attention of numerous
researchers. Indeed, employing a state feedback law is most of the cases impossible, since the

109
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sensors can only access to partial measurements of the state. Output feedback laws may be
designed from a separation principle. More precisely, two tools are designed separately: a
stabilizing state feedback law and an asymptotic state observer. However, if this approach
is fruitful for linear systems, the separation principle does not hold in general for nonlinear
systems. For instance, there exist stabilizable and observable systems for which the global
asymptotic stabilization by output feedback is impossible ([67]). Nevertheless, from weak
stabilizability and observability assumptions, some semi-global results may be obtained (see
e.g. [97] or [42, Pages 125-172]). However, in this case the observer and the state feedback
have to be jointly designed (not separately) (see also [3] for some global results).

The aim of this chapter is to address the stabilization by hybrid output feedback law.
In [96], a local separation principle is stated. However, the construction of the observer is
not explicit. Here, from a hybrid state feedback controller and an observability property, an
algorithm is provided to build hybrid output feedback laws which stabilize semi-globally the
equilibrium plant. If moreover a robust Lyapunov function is known, the feedback law design
becomes explicit.

This chapter is organized as follows. Section 4.1 introduces an observability notion and
motivates the use of hybrid controller. Section 4.2 provides our contributions together with
the proof of our results. An illustrative example is also given. Finally, Section 4.3 collects
some concluding remarks.

The contributions of this chapter, from Section 4.2 until the end, are based on two of our
papers. The first one [65] has been published in a peer-reviewed conference (American Control
Conference 2014). The second one [63] has been published in Automatica.

4.1 Complete uniform observability and hybrid controllers

4.1.1 Complete uniform observability

4.1.1.1 Why may the separation principle fail ?

As it has been noticed in Chapter 3, the separation principle given in Theorem 3.1 is generally
not true for nonlinear finite-dimensional systems. The interested reader can refer to the
survey [3] where some examples of control systems for which the separation principle fails are
provided. Let us start this section with one of them, which is borrowed from [47].

Example 4.1
Consider the following system 

d

dt
zp1 = −zp1 + zp2z

2
p1 + u,

d

dt
zp2 = −zp2 + z2

p1 ,

(4.1)
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where z =
[
zp1 zp2

]> ∈ R2 stands for the state. We have the following output

y = zp1 . (4.2)

The feedback law u = −zp2z2
p1 stabilizes globally the origin of (4.1)1. Indeed, let us consider

the function

V (zp1 , zp2) :=
1

2
z2
p1 +

1

2

(
zp2 + z2

p1

)2
. (4.3)

It is a positive definite function and a proper function. Hence, it is a candidate Lyapunov
function.

Its derivative along the solution to (4.1) yields

d

dt
V (zp1 , zp2) =− z2

p1 +
(
−zp2 + z2

p1 − 2z2
p1

) (
zp2 + z2

p1

)
=− V (zp1 , zp2)

(4.4)

This implies the global asymptotic stability of the origin of (4.1) when using the state feedback
law u = −zp2z2

p1.

The following dynamical system

d

dt
ẑp2 = −ẑp2 + y2 (4.5)

is a converging observer for the state zp2. Indeed,

d

dt
(ẑp2 − zp2) = −(ẑp2 − zp2). (4.6)

Hence, we have
|ẑp2 − zp2 | ≤ e−t|ẑ

#
2 − z

#
p2 |, ∀t ≥ 0, (4.7)

where ẑ#
p2 := ẑp2(0) and z#

p2 := zp2(0). Therefore, the state of the observer converges to the
state zp2 of the plant (4.1). Note that zp1 does not have to be estimated, since it is already
measured.

If one uses the following output feedback law

u = −ẑp2y2 (4.8)

there exist solutions to the following closed-loop system

d

dt
zp1 = −zp1 + zp2z

2
p1 − ẑp2y

2,

d

dt
zp2 = −zp2 + z2

p1 ,

d

dt
ẑp2 = −ẑp2 + y2,

y = zp1 .

(4.9)

1The static output feedback u = −y5 stabilizes the origin of (4.1). The feedback law used in this example
has only an educational interest.
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that escape to infinity in finite time. Indeed, denoting by z̃p2(t) := zp2− ẑp2(t) := z̃#
p2e
−t, where

z̃#
p2 := z#

p2 − ẑ
#
p2 , the first line of the latter system can be written as follows

d

dt
zp1 = −zp1 + z2

p1 z̃
#
p2e
−t. (4.10)

Following [47], we know that there exists an explicit solution to this equation, which is

zp1(t) :=
2z#
p1

(2− z#
p1 z̃

#
p2)et + z#

p1 z̃p2e
−t
, (4.11)

where z#
p1 := zp1(0). From this solution, we can see that if

z#
p1 z̃

#
p2 > 2, (4.12)

then the state zp1 tends to infinity in finite time.

Finally, even if there exists a global observer and a global stabilizing state feedback for
a finite-dimensional nonlinear control system, the corresponding output feedback may not
stabilize globally the origin of the closed-loop system. Hence, the notion of observability for
nonlinear systems should be given in details.

4.1.1.2 Observability notions

In [32], the authors introduce an observer, namely the high-gain observer, that is purely
nonlinear, together with an observability notion. Let us introduce them.

Consider the following controlled system

d

dt
zp = fp(zp) + gp(zp)u , y = hp(zp) , (4.13)

where zp ∈ Rnp , y ∈ R, u ∈ U ⊂ R. Note that fp : Rnp → Rnp and gp : Rnp → Rnp ,
hp : Rnp → R are np + 1 times continuously differentiable2. The set U can be bounded (it
yields a saturated control problems). We assume that the origin of (4.13) is an equilibrium
point.

Define the C1 mapping φ : Rnp → Rnp as follows

φ(zp) =
[
hp(zp) Lfphp(zp) . . . L

np−1
fp

hp(zp)
]>

, (4.14)

where Lifphp(zp) denotes the i-th Lie derivative of hp along fp3.

The observability notion employed all along this chapter can be now stated.
2These mappings are sufficiently smooth so that the mapping φ defined in (4.14) is C1 and so that the

function B defined in (4.36) is locally Lipschitz.
3Given i ∈ N, the i-th Lie derivative of hp along fp is defined as follows

Lifphp(zp) :=
∂i

∂zip
hp(zp)fp(zp). (4.15)
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Definition 4.1 ((Global) Complete Uniform Observability ([32]))
System (4.13) is completely uniformly observable, that is

(i) The mapping φ : Rnp → φ(Rnp) = Rnp is a diffeomorphism;

(ii) System (4.13) is observable for any input u(t), i.e. on any finite time interval [0, T ],
for any measurable bounded input u(t) defined on [0, T ], the initial state is uniquely
determined on the basis of the output y(t) and the input u(t).

Remark 4.1
Note that there exist other type of observability notions for nonlinear systems. For uncontrolled
systems, one can cite [4], where some conditions for the existence of a nonlinear Luenberger
observer for nonlinear systems are derived.

Example 4.2 • The following system
d

dt
zp1 = zp2 ,

d

dt
zp2 = z2

p2 + u,

y = zp1

(4.16)

is completly uniformly observable. Indeed, since

Lfphp(zp) =
[
1 0

] [zp2
z2
p2

]
= zp2 (4.17)

then φ(zp) is defined as follows

φ(zp) :
[
zp1 zp2

]> ∈ R2 7→
[
zp1 zp2

]> ∈ R2. (4.18)

It is clear that it defines a diffeomorphism. Moreover, the item (ii) of Definition 4.1 is
also satisfied.

• The system given in Example 4.1 is not completly uniformly observable. Indeed, the
following holds

Lfphp(zp) =
[
1 0

] [−zp1 + zp2z
2
p1

−zp2 + z2
p1

]
= −zp1 + zp2z

2
p1 . (4.19)

Hence, φ(zp) is defined as follows

φ(zp) :
[
zp1 zp2

]> ∈ R2 7→ zp1 −zp1 + zp2z
2
p1 . (4.20)

It is easy to check that this function does not define a diffeomorphism in R2. Indeed, let
us focus on its jacobian matrix, which is defined as follows

Jφ(zp) :=

[
1 −1 + 2zp2
0 z2

p1

]
(4.21)
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Its determinant is given by
detJφ(zp) = z2

p1 , (4.22)

which is equal to 0 when zp1 = 0. Hence, the function zp 7→ φ(zp) does not define a diffe-
ormorphism and the system given in Example 4.1 is not completly uniformly observable.

If (4.13) satisfies the properties given by Definition (4.1) and if moreover there exists a
continuous stabilizing state feedback for (4.13), then we know from [97] that the origin of
(4.13) is semi-globally stabilizable by means of a dynamic output feedback. Let us provide the
definition of such a stability.

Definition 4.2 (Semi-global stabilizability [97])
The origin of system (4.13) is said to be semi-globally stabilizable by means of a dynamic
output feedback if, for each compact set Dp, there exist a dynamic output feedback u = θc(ẑp),
ẑp = θp(y, ẑp) and a compact set Do such that the equilibrium (0, 0) ∈ Rnp × Rnp of the
closed-loop system is asymptotically stable with basin of attraction containing Dp ×Do.

Remark 4.2
This property is different from the one provided in Definition 2.2. Indeed, the semi-global
stabilizability implies that the controller θc depends on the compact set Dp, while the semi-
global exponential stability is a property that a uncontrolled system can satisfy.

The semi-global stabilizability is satisfied if there exists a continuous stabilizing state
feedback for (4.13) and if (4.13) is completly uniformly observable. However, as it will be
noticed in the next subsection, some control systems cannot be stabilized by means of a
continuous state feedback.

4.1.2 Hybrid controllers

As it has been noticed in the introduction and in the latter section, there exist some conditions
which do not allow to stabilize systems with continuous state feedback law. One of these
conditions is the Brockett condition.

Consider the following control system

d

dt
zp = f(zp, u), (4.23)

where, for np,m ∈ N, zp ∈ Rnp and u ∈ Rm. The vector field f : Rnp × Rm → Rnp is
sufficiently smooth.

The following result gives a necessary condition for the stabilizability by means of a con-
tinuous stationary feedback law of such a system

Theorem 4.1 (Brockett’s condition [8])
If the control system (4.23) can be locally asymptotically stabilized by means of a continuous
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stationary feedback law, then the image by f of every neighborhood of
[
0 0

]> ∈ Rnp × Rm is
a neighborhood of 0 ∈ Rnp

Example 4.3
A classical system to illustrate this restriction is the Brockett’s integrator

d

dt
zp1 = u1,

d

dt
zp2 = u2,

d

dt
zp3 = zp1u2 − zp2u1

(4.24)

This system is not stabilizable by means of a continuous time-invariant feedback law. Indeed,
for every η ∈ R \ {0}, the equation 

u1 = 0,

u2 = 0,

zp1u2 − zp2u1 = η

(4.25)

where the unknown are
[
zp1 zp2 u1 u2

]> ∈ R4, has no solution. Therefore, the Brockett’s
integrator does not satisfy the Brockett’s condition and there does not exist any continuous
stationnary feedback laws that stabilize the origin of this equation.

To solve this problem, researchers in control theory derived several methods. The two
main ones are

1. Using a time-varying state feedback (see e.g., [21, Chapter 11] and [22]);

2. Using a hybrid state feedback, i.e. a feedback mixed continuous/discrete (see e.g., [74]).

In this chapter, we will focus on the second strategy. Note that a good introduction to hybrid
systems is [35]. This book provides a framework for the well-posedness and the stability of
equilibrium sets of systems mixing continuous/discrete behavior. We do not aim at presenting
this theory here.

4.2 Semi-global stabilization by an output feedback law from a
hybrid state controller

4.2.1 Main results

4.2.1.1 Assumptions

The system under consideration is (4.13). Inspired by [75] and [86], the origin, which is an
equilibrium point for (4.13), is assumed to be stabilizable by a hybrid state feedback.
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Assumption 4.1
(Persistent Flow Stabilizability) There exists a hybrid controller defined by (Fc,Jc, fc, gc, θc),
where Fc and Jc are closed sets, Fc ∪ Jc = Rnp+nc, gc : Rnp+nc → Rnc, fc : Rnp+nc → Rnc
and θc : Rnp+nc → U are continuous functions and a positive value λ in (0, 1) such that the
set {0} × [0, 1] in Rnp+nc × R is asymptotically stable for the system:

d

dt
zp =fp(zp) + gp(zp)θc(zp, zc)

d

dt
zc =fc(zp, zc)

d

dt
τ =1− τ

(zp, zc, τ) ∈ Fc × R≥0 (4.26a)


z+
p = zp
z+
c = gc(zp, zc)

τ+ = 0

(zp, zc, τ) ∈ Jc × R≥λ (4.26b)

with basin of attraction B × R≥0, where B is an open subset of Rnp+nc.

The sets Fc×R≥0 and Jc×R≥λ are called respectively the flow and jump sets associated
to the continuous and discrete dynamics. The notion of solutions and of asymptotic stability
discussed all along the chapter are borrowed from [35].

Note that the set B allows us to consider cases where the stabilizability of the origin of the
closed-loop system is only local. In the case where B := Rnp+nc , the stabilizability property
becomes global.

Remark 4.3
An important feature of the hybrid state feedback control law is that its dynamics include a timer
τ . It implies that there exists a dwell time between two consecutive jumps and consequently it
prevents the existence of Zeno solutions. In the case in which this property is not satisfied for
the state feedback, a timer can be added as presented in [10, Part V, C.]. Such a technique is
called a temporal regularization. However, in this case, only semi-global practical stabilizability
is obtained.

The problem under consideration in this chapter is to design a stabilizing output feedback
law based on this hybrid state feedback. The design presented in this chapter requires the
following complete uniform observability assumption.

Assumption 4.2 ((Global) Complete Uniform Observability)
System (4.13) is completely uniformly observable.

Remark 4.4
In [65], from a weaker observability assumption, i.e. an observability property holding for
just one control, a finite-time convergent observer and a hybrid state feedback controller has
been used to design an output feedback law. Such a strategy does not need a persistent flow



4.2. Semi-global stabilization by an output feedback law from a hybrid state
controller 117

stabilizability assumption. However only a weak stability property is obtained for the closed-
loop system.

4.2.1.2 First main result

Inspired by the approach of [97], from Assumptions 4.1 and 4.2, a semi-global output feedback
result may be obtained.

Theorem 4.2 (Semi-global asymptotic stability)
Assume Assumptions 4.1 and 4.2 hold. Assume moreover that gc satisfies that, for all (zp, zc)

in B ∩ Jc, the set
{(zp, gc(w, zc)), w ∈ Rnp} (4.27)

is a compact subset of B, then the origin of system (4.13) is semi-globally asymptotically
stabilizable by a hybrid output feedback. In other words, for all compact sets Γ contained in
Bp := {zp ∈ Rnp , (zp, 0) ∈ B}, there exist a C1 function Ψp : Rnp ×R×R→ R and a positive
real number cx such that the set {0} × [0, 1] in R2np+nc × [0, 1] is asymptotically stable for the
system 

d

dt
zp = fp(zp) + gp(zp)u

d

dt
zc = fc(z̃p, zc)

d

dt
τ = 1− τ

y = hp(zp) , u = θc(z̃p, zc)

(z̃p, zc, τ) ∈ Fc × R≥0 (4.28a)


z+
p = zp

x̂+
p = x̂p

z+
c = gc(z̃p, zc)

τ+ = 0

(z̃p, zc, τ) ∈ Jc × R≥λ. (4.28b)

where z̃p is defined by 4

z̃p = satcx(ẑp) , (4.29)

with basin of attraction containing Γ × {0} × {0} × R≥0 (which is a subset of Rnp × Rnp ×
Rnc × R≥0).

The design of the output feedback law which proves this theorem is based on a Lyapunov
inverse theorem. However, two datas miss in the output feedback law given in Theorem
4.2: the positive real number cx, the saturation level for the feedback law, and the observer
dynamics Ψp. In order to give an explicit result, the existence of a robust Lyapunov function
is assumed, in the next section.

4 Given a positive real number c, satc : Rn → Rn is the saturating vector function defined by satc(0) = 0

and satc(zp) := zpmin
{
1, c
|zp|

}
, ∀x 6= 0.
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Remark 4.5
An important feature of this theorem is that an assumption needs to be imposed on the function
gc (see equation (4.27)). This is due to a design of a set in which the solution should stay
for a suitable duration. In the particular case in which B is Rnp+nc, the previous condition is
trivially satisfied if gc is such that

|gc(w, zc)| ≤ γ(|zc|) , ∀(w, zc) ∈ Rnp+nc ∩ Jc

where γ ∈ K. Moreover, note that there is a large class of systems that satisfy such a condition.
For instance, switch systems or reset systems, as the one considered in Section 4.2.3 below.

4.2.1.3 Second main result

In this section an explicit result is introduced. It is based on the following assumption, where
it is denoted Z = [ z>p z>c τ> ]>.

Assumption 4.3 (Robust Lyapunov function)
Let B be an open subset of Rnp ×Rnc and let denote A := {0}× [0, 1] ⊂ B×R≥0. There exist
a hybrid controller defined by (Fc,Jc, fc, gc, θc), where Fc and Jc are closed sets, Fc ∪ Jc =

Rnp+nc , gc : Rnp+nc → Rnc, fc : Rnp+nc → Rnc and θc : Rnp+nc → U are continuous
functions, a positive value λ in (0, 1), positive values α1 and α2 ∈ (0, 1) and a C1 proper5

function V : B × R → R≥0 satisfying {Z ∈ B × R, V (Z) = 0} = A. For all positive real
numbers l, the level set of V defined as

Dl := {(zp, zc, τ) ∈ B × R≥0 : V (zp, zc, τ) ≤ l} , (4.30)

is a compact subset of B × R.

Moreover, there exists a positive real number εr and an increasing C0 function
ρ : [0, εr] → R+ with ρ(0) = 0 such that for all (Z, e) in Dl × Rnp such that |e| ≤ εr, the
following inequalities hold.

• If (zp + e, zc, τ) ∈ (B ∩ Fc × R≥0),

∂V

∂Z
(Z)F (Z, zp + e) ≤ −α1V (zp, zc, τ) + ρ(|e|) (4.31)

• If (zp + e, zc, τ) ∈ (B ∩ Jc × R≥λ)

V (G(Z, zp + e))− V (Z) ≤ −α2V (zp, zc, τ) + ρ(|e|), (4.32)

where F is defined by

F (Z, .) :=
[
(fp(zp) + gp(zp)θc(., zc))

> fc(., zc)
> 1− τ

]>
and G is defined by

G(Z, .) :=
[
z>p gc(., zc)

> 0
]>
.

5A map is called proper if inverse images of compact sets are compact.
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This assumption allows to obtain an explicit result.

Theorem 4.3 (Design of an output feedback law)
Under Assumptions 4.2 and 4.3, assume that the set defined by (4.27) is a compact subset of
B. Then the set {0}× [0, 1] in Rnp+nc×R is semi-globally asymptotically stabilizable. In other
words, the conclusion of Theorem 4.2 holds. Moreover cx is computed in Section 4.2.2.3 and
ψp is computed in Section 4.2.2.4 from the Lyapunov function V together with the robustness
margin εr and the positive value λ of Assumption 4.3, and from the function φ of Assumption
4.2.

Let us note that it is difficult to be more explicit since the derivations of cx and Ψp are
quite long and require several steps. This is already the case in [97]. Moreover, continuing
what has been stated in Remark 4.3, it is crucial to have a Persistent-Flow Stabilizability in
order to design explicitely our observer.

In a first step, cx is computed in (4.35) in order to force the solutions to remain in a
compact set for a certain amount of (flow) time. The function Ψp is a high-gain observer
which is tuned in Lemma 4.2. It forces the error to reach the robustness margin obtained
from Assumption 4.3 before the solution escapes the compact set.

The explicit construction of these two data and the proof that this output feedback law is
a solution to Theorem 4.3 is reported in Section 4.2.2.

4.2.2 Proofs of the main results

4.2.2.1 Proof of Theorem 4.2 from Theorem 4.3

In order to prove Theorem 4.2 from Theorem 4.3 it is sufficient to prove that Assumption
4.1 implies Assumption 4.3. This can be obtained from an inverse Lyapunov result. First,
from [35, Corollary 7.32] there exists a positive value α ∈ (0, 1) and a smooth proper function
V : B × R→ R≥0 satisfying

{Z ∈ B × R : V (Z) = 0} = A

∂V

∂Z
(Z)F (Z, zp) ≤ −V (Z), ∀(zp, zc, τ) ∈ (B ∩ Fc)× [0, λ]

V (G(Z, zp))−V (Z) ≤ −αV (Z), ∀(zp, zc, τ) ∈ (B ∩ Jc)× R≥0

(4.33)

Let l be a positive real number such that the level set Dl is a compact subset of B × R.
Consider the two functions r1 and r2 defined as

r1(s) = max
|e|≤s, (zp+e,zc,τ)∈Dl

∂V (Z)

∂Z
F (Z, zp) +

1

2
V (Z)

r2(s) = max
|e|≤s, (zp+e,zc,τ)∈Dl

V (G(Z, zp))−
(

1− 1

2
α

)
V (Z)



120
Chapter 4. Semi-global stabilization by an output feedback law from a hybrid

state controller

Since F , G are continuous and V is smooth, r1 and r2 are also continuous functions. Moreover
r1(0) < 0 and r2(0) < 0. Therefore there exist ε1

r and ε2
r such that r1(s) < 0 for all s ≤ ε1

r

and r2(s) < 0 for all s ≤ ε2
r . Let εr = min(ε1

r , ε
2
r). For all |e| ≤ εr and (zp, zc, τ) ∈ Dl it yields

the following:
• If (zp + e, zc, τ) in (B ∩ Fc × R≥0),

∂V

∂Z
(Z)F (Z, zp) ≤ −

1

2
V (Z) , ∀Z ∈ B ∩ Fc × R≥0

• If (zp + e, zc, τ) in (B ∩ Jc × R≥λ)

V (G(Z, zp))− V (Z) ≤ −1

2
αV (Z), ∀Z ∈ B ∩ Jc × R≥λ .

Hence this Lyapunov function is the same than the one introduced in Assumption 4.3 with
α1 = 1

2 and α2 = α
2 .

Consider now the increasing function ρ : [0, εr]→ [0,+∞) defined as follows6

ρ(s) ≥ max

{
max

(zp+e,zc,τ)∈(Dl4∩Fc×R≥0),|e|≤s
ν1(Z, e) , max

(zp+e,zc,τ)∈(Dl4∩Jc×R≥0),|e|≤s
ν2(Z, e)

}

where

ν1(Z, e) =

∣∣∣∣∂V∂Z (Z) (F (Z, zp + e)− F (Z, zp))
∣∣∣∣ ,

and
ν2(Z, e) = |V (G(Z, zp + e))− V (G(Z, zp))| .

With this function, Assumption 4.3 is satisfied. This ends the proof of Assumption 4.3 from
Assumption 4.1. Therefore, as soon as Theorem 4.3 is valid, Theorem 4.2 holds under As-
sumptions 4.1 and 4.2.

4.2.2.2 Construction of the output feedback law

In the next sections, we follow a similar approach to [97]. We first compute a saturation level
cx, a time of existence Tmin and a compact subset of B×R≥0 denoted by Dl4 such that, when
saturating the controller with cx, the solution starting from B × R≥0 remains in Dl4 for all
time less than Tmin. Then, with Tmin and the margin of robustness ce from Assumption 4.3,
we design an observer such that the error dynamics converges to 0 asymptotically and such
that, for all time higher than Tmin, the error dynamics belongs to the margin of robustness.
Finally, we prove the attractiveness and the stability of the closed-loop system with the output
feedback law.

6This function is well defined due to the fact that Fc and Jc are closed sets.
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4.2.2.3 Selection of cx and minimal time of existence of solutions

This section differs from the strategy employed in [97]. Indeed, since we have a hybrid dy-
namics, the solution of the closed-loop system can jump. Therefore, the computation of Tmin

becomes difficult. However, thanks to the timer dynamics, we can assert that between two
jumps the solution of the closed-loop system belongs to the flow set. This allows us to compute
Tmin and thus cx.

In the remaining part of this subsection, we consider the system defined by

d

dt
zp = fp(zp) + gp(zp)θc(ω, zc)

d

dt
zc = fc(ω, zc)

d

dt
= 1− τ
(ω, zc, τ) ∈ Fc × R≥0,

(4.34a)


z+
p = zp

z+
c = gc(ω, zc)

τ+ = 0

(ω, zc, τ) ∈ Jc × R≥λ, (4.34b)

where ω is an external perturbation function in Rnp . Such a system is not a classical hybrid
system as the ones introduced in [35] since the flow and jump sets are defined with an external
disturbance. Note that in the particular case in which ω = z̃p defined in (4.29), the solution
to system (4.34) by adding the dynamics of ẑp is also solution to system (4.28). Hence, this
implies the well-posedness of the closed-loop system as considered in [35, Chapter 2].

Two cases may be distinguished to construct the sets: i) Solution to (4.34) does not jump;
ii) Solution to (4.34) jumps at least one time. The first case is similar to the continuous case
(and thus to [97]). The second case takes into account the hybrid behavior of the system
under consideration. Under Assumption 4.3, let l1 = maxzp∈Γ,τ∈[0,λ] V (zp, 0, τ). Note that
Dl1 is a compact subset of B × R≥0 (see the notation employed in equation (4.30)). Let
l2 > l1 such that Dl2 ⊂ B × R≥0. To deal with the jump that can occur, we considerD+

l2
=⋃

(zp,zc,τ)∈Dl2
{(zp, gc(w, zc), 0), w ∈ Rnp} . Since it is assumed that the set defined in (4.27) is

a compact subset of B × R≥0, it yields that D+
l2

is also a compact subset of B × R≥0. Let l3
be such that Dl3 is a compact subset which satisfies D+

l2
⊂ Dl3 ⊂ B×R≥0. Finally, let l4 > l3

so that Dl4 is a compact subset which contains Dl3 .

With these sets in hands, the positive real number cx can be selected as

cx = max
(zp,zc,τ)∈Dl4

{|zp|} (4.35)

Let us now establish the following property for solutions to system (4.34) initiated from
Dl1 .
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Lemma 4.1 (Minimal existence time of solution in Dl4)
There exists Tmin > 0 such that for all ω in L∞loc([0,+∞);Rnp) with |ω(t)| ≤ cx for all t in
[0, Tmin], and all Z# := (z#

p , z
#
c , τ#) in Dl1 , all solutions Z(·, ·) to (4.34) with Z(0, 0) = Z#

and all (t, j) in dom(Z) 7 then Z(t, j) ∈ Dl4 for all 0 ≤ t ≤ Tmin.

Proof of Lemma 4.1:

Let V̄ the positive real number defined by

V̄ = max
Z∈Dl4 ,|ω|≤cx

∣∣∣∣∂V∂Z (Z)F (Z, ω)

∣∣∣∣ .
In the remaining part of the proof, we show that Lemma 4.1 holds with Tmin chosen as any
positive real number satisfying

Tmin < min

{
− ln(1− λ),

l2 − l1
V̄

,
l4 − l3
V̄

}
.

Let Z# be in Dl1 and let Z be a solution to system (4.34) whose initial condition is Z#. For
all (t, j) in dom(Z). To ease the notation we denote V (t, j) = V (Z(t, j)).

Let (t, j) in dom(Z) such that 0 ≤ t ≤ Tmin. To prove the lemma, we need to show that
Z(t, j) is in Dl4 . First of all, we show that j ≤ 1. Indeed, assume j ≥ 2. This implies that
there exist t0 and t1 such that 0 ≤ t0 < t1 ≤ t such that (t0, 0), (t0, 1), (t1, 1), (t1, 2) are in
dom(Z). Note that τ(t0, 1) = 0 and τ(t1, 1) = λ. Moreover, for all s in [t0, t1], (s, 1) is in
dom(Z) and d

dtτ(s, 1) = 1− τ(s, 1). Hence, integrating this equation between t0 and t1, we get
that t ≥ t1 − t0 > − ln(1− λ) ≥ Tmin. This is impossible, and therefore j ≤ 1.

So two cases may be distinguished.

j = 0 This case is illustrated by Figure 4.1. j = 0 implies that s ∈ [0, t] 7→ Z(s, 0) is a
continuous mapping with Z(0, 0) in Dl1 ⊂ Dl2 . Hence we can define t?, the largest time
in [0, t] such that Z(s, 0) is in Dl2 (i.e. t? = maxs∈[0,t],x(`,0)∈Dl2 ,∀`∈[0,s]{s}). Note that
if t? = t then this implies that z(t, 0) is in Dl2 , hence the result. Assume t? < t. This
implies that for all s in [0, t?] we have d

dtV (s, 0) = ∂V
∂Z (Z(s, 0))F (Z(s, 0), ω(s)) ≤ V̄ .

This gives V (t?, 0) ≤ V̄ t? + V (0, 0) ≤ V̄ Tmin + l1 < l2 . Hence Z(t?, 0) is in the interior
of Dl2 . It yields that there exists ε > 0 such that Z(t? + ε, 0) is in the interior of Dl2

which contradicts the fact that t? is an extremum.

j = 1 This case is illustrated by Figure 4.2. j = 1 implies that there exists t0 in [0, t] such
that (t0, 0) and (t0, 1) are in dom(Z) and (w(t0, 1), zc(t0, 1)) is in Jc. Following the first
case study, it is possible to show that Z(t0, 0) is in Dl2 . Moreover, we have zp(t0, 1) =

zp(t0, 0) and zc(t0, 1) = gc(w(t0), zc(t0, 0). This implies that Z(t0, 1) ∈ D+
l2
. Note

that [t0, t] 7→ Z(s, 1) is a continuous mapping with Z(t0, 1) in Dl3 ⊂ Dl4 . As in the
previous case, we define t?, the largest time in [t0, t] such that Z(s, 1) is in Dl4 (i.e.

7The definition of dom(Z) is borrowed from [35, Definition 2.3].
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Dl2

Dl1

Z(t0, 0)

Z(t1, 0)

Figure 4.1: Case 1: j = 0

t? = maxs∈[t0,t],Z(`,1)∈Dl4 ,∀`∈[t0,s]{s}). Note that if t? = t then this implies that Z(t, 1)

is in Dl4 , hence the result. Assume t? < t. This implies that, for all s in [t0, t
?], it holds

d
dtV (s, 1) = ∂V

∂Z (Z(s, 1))F (Z(s, 1), ω(s)) ≤ V̄ . This implies V (t?, 1) ≤ V̄ t? + V (t0, 1) ≤
V̄ Tmin + l3 < l4 . Hence Z(t?, 1) is in the interior of Dl4 and following the previous case,
we get a contradiction.

Dl2

Dl1

Z(t0, 0)
Z(t1, 0)

Z(t1, 1)

Z(t2, 1)

D+
l2

Dl4

Dl3

Figure 4.2: Case 1: j = 1. Continuous lines stand for flows. Dotted lines stand for jumps.

This concludes the proof of Lemma 4.1. 2

4.2.2.4 Construction of Ψp

In this subsection we design a high-gain observer for the system (4.13). Since only continu-
ous time dynamics are considered in this subsection, to simplify the notation, only the flow
components of the time domain are considered. The function Ψp is selected to ensure that ẑp
estimates the state zp along solutions initiated in the projection of Dl1 on Rnp that is

Πp(Dl1) = {zp ∈ Rnp ,∃(zc, τ) ∈ Rnc × R≥0 | (zp, zc, τ) ∈ Dl1}
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and as long as these solutions remain in the projection of Dl4 on Rnp that is

Πp(Dl4) = {zp ∈ Rnp ,∃(zc, τ) ∈ Rnc × R≥0 | (zp, zc, τ) ∈ Dl4}.

The estimation property has to be obtained for all input u(·) taking values in U ∩ [−ū, ū] with

ū = max
|zp|≤cx,(zc,τ)∈Πc(Dl4 )

θc(zp, zc),

where
Πc(Dl4) = {(zc, τ) ∈ Rnc+1, ∃zp ∈ Rnp | (zp, zc, τ) ∈ Dl4},

which is the projection of Dl4 on Rnc . Moreover, the observer has to be designed such that
the estimation error is smaller than the stability margin of the controller after Tmin. More
precisely, with Assumption 4.3, and letting l = l4 yields the positive real number εr and the
increasing mapping ρ. The observer has to be designed such that the set{

(zp, ẑp) ∈ R2np | |zp − ẑp| < ce
}
,

where
ce := min

{
ρ−1

(
α1l4

2

)
, ρ−1

(
α2l4

2

)
, εr

}
,

is reached after Tmin.

A possible approach to design such observer is to use high-gain observer methodology.
With Assumption 4.2, from [32, Theorem 2], setting w = φ(zp) ∈ Rnp , the system (4.13) can
be rewritten as follows:

d

dt
w = A(w) +B(w)u (4.36)

with w in Rnp and

A(w) =
∂φ(zp)

∂zp
fp(zp) =

[
w2 . . . wnp χ(w)

]>
B(w) =

∂φ(zp)

∂zp
gp(zp)

=
[
b1(w1) . . . bnp−1(w1, . . . , wnp−1) bnp(w1, . . . , wnp)

]>
.

where χ := Lfh(φ−1(w)) and bi are locally Lipschitz functions as soon as fp is smooth enough.
From there, the following lemma may be obtained.

Lemma 4.2 (Tunable observer)
Let Ψp : Rnp × R× R→ Rnp be defined by

Ψp(ẑp, y, u) =

(
∂φ

∂zp
(ẑp, u)

)−1 [
Ã(φ(ẑp)) + B̃(φ(ẑp))u+ LK[y − h(ẑp)]

]
(4.37)

where Ã : Rnp → Rnp and B̃ : Rnp → Rnp are functions

Ã(w) = [w2 ... wnp χ̃(w) ]>
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B̃(w) = [ b̃1(w1) ... b̃np−1(w1,...,wnp−1) b̃np (w1,...,wnp ) ]>

and
L = diag(`, . . . , `np) (4.38)

where ` is a positive real number larger than 1 and K = [−k1 ···−knp ]> is such that the matrix

G :=


−k1 1 0 ... 0
... 0 1

...
...

...
...
... ... 0

...
...

... 1
−knp 0 ... ... 0

 , (4.39)

is Hurwitz. Note that the functions 8 b̃i : Ri → R, i = 1, . . . , np and χ̃ : Rnp → R are such
that

1. For all w in φ(Dl4), χ̃(w) = χ(w) and b̃i(w) = bi(w) where χ and (bi)’s are defined in
(4.36);

2. χ̃ and b̃i are globally Lipschitz functions.

Moreover there exists a class KL function β such that for all solutions zp to (4.13) and all
solutions ẑp to

d

dt
ẑp = Ψp(ẑp, y, u) (4.40)

with initial condition (z#
p , ẑ

#
p ) ∈ Πp(Dl1) × Πp(Dl1), input u(·) taking value in U ∩ [−ū, ū],

and for all t such that zp(s) ∈ Πp(Dl4), where s ∈ [0, t], the following holds:

1. |zp(s)− ẑp(s)| ≤ β(|z#
p − ẑ#

p |, s), ∀s ∈ [0, t];

2. If t ≥ Tmin, |zp(s)− ẑp(s)| ≤ ce , ∀s ∈ [Tmin, t] .

Proof of Lemma 4.2:

There exists cχ such that, for all (z1, z2) ∈ (Rnp)2, |χ(z1) − χ(z2)| ≤ cχ|z1 − z2|. Note
also that from the definition of φ we have y = hp(φ(zp)) = z1. With the Lipschitz property,
the b̃i terms satisfy, for all (z1, z2) ∈ Πp(Dl4)2,|b̃i(z1)− b̃i(z2)| ≤ cbi

∑i
j=1 |z1

j − z2
j |. Moreover,

setting ŵ := φ(ẑp), it yields along the solutions to (4.40):

d

dt
ŵ = Ã(ŵ) + B̃(ŵ)u+ LK[y − ŵ1], (4.41)

As standard in high-gain observer design, let ẽ be the scaled error components:

ẽi =
ŵi − (φ(zp))i

`i−1
. (4.42)

8These functions exist from the Kirszbraun extension theorem, see e.g. [29, Definition 2.10.43] and from
the fact that φ(Dl4) is a compact subset of Rnp .
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Therefore, as soon as zp ∈ Πp(Dl4), it holds

d

dt
ẽ = `Gẽ+ ∆(ŵ, zp, u), (4.43)

where ∆(ŵ, zp, u) is obtained from χ̃ and b̃i for all i = 1, . . . , np. From the structure of
the observation error, there exists a positive real number c∆ such that for all (ẑ, zp, u) in
Rnd × Πp(Dl4) × U ∩ [−ū, ū] and for all ` > 1 |∆(ŵ, zp, u)| ≤ c∆|ẽ|. The matrix G being
Hurwitz, there exist a positive definite matrix P and a positive value d satisfying

PG + G>P ≤ −dP. (4.44)

Let U : Rnp → R≥0 be the following (Lyapunov) function U(ẽ) = ẽ>P ẽ. Its time derivative
along the solutions to the system (4.43) with (ẑ, zp, u) in Rnd × Πp(Dl4) × U ∩ [−ū, ū] and
` > 1 satisfies the following inequalities.

d

dt
U(ẽ) ≤− `dU(ẽ) + 2ẽ>P∆(ŵ, zp, u)

≤− `dU(ẽ) + 2c∆|P ẽ||ẽ|

≤ − `dU(ẽ) + 2c∆
λmax(P )

λmin(P )
U(ẽ)

(4.45)

Consider a solution zp to (4.13) and a solution ẑp to (4.40) with initial condition (z#
p , ẑ

#
p ) ∈

Πp(Dl1)2, input u(·) taking value in U ∩ [−ū, ū], and t such that zp(s) is in Πp(Dl4) for all s
in [0, t]. With Grönwall lemma, we get along this solution

U(ẽ(t)) ≤ exp

(
−
(
`d− 2c∆

λmax(P )

λmin(P )

)
t

)
U(ẽ(0)) (4.46)

Moreover, for all (zp, ŵ), it holds that

|φ(zp)− ŵ|2
λmin(P )

`2np
≤ U(ẽ) ≤ λmax(P )

`2
|φ(zp)− ŵ|2 ,

hence, for all t ≥ 0

|φ(zp(t))− ŵ(t)| ≤ exp

(
−
(
`

2
d− c∆

λmax(P )

λmin(P )

)
t

)
`np−1λmax(P )

λmin(P )
|φ(z#

p )− φ(ẑ#
p )|. (4.47)

Note that Πp(Dl4) and φ(Πp(Dl4)) are compact subsets of Rnp and that the functions φ :

Rnp → Rnp and φ−1 : Rnp → Rnp are continuous. Hence, the two class K functions ν and ν∗

can be defined as

ν(s) = max
zp∈Πp(Dl4 ),|z∗p−zp|≤s

|φ(zp)− φ(z∗p)|

ν∗(s) = max
z∈φ(Πp(Dl4 )),|w∗−w|≤s

|φ−1(w)− φ−1(w∗)| .

These functions satisfy that, for all w in φ(Πp(Dl4)) and ŵ in Rnp ,

|φ−1(w)− φ−1(ŵ)| ≤ ν∗(|w − ŵ|) , (4.48)

|w − ŵ| ≤ ν(|φ−1(w)− φ−1(ŵ)|) . (4.49)
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Let now ` > 1 be any positive real number such that

Ω(`) :=
`

2
d− c∆

λmax(P )

λmin(P )
> 0

ν
(
exp (−Ω(`)Tmin) `np−1M

)
≤ ce , (4.50)

where M := 2λmax(P )
λmin(P ) maxz∈φ(Πp(Dl1 )) |z|. We can rewrite (4.50) as follows:

exp

(
−`Tmind

2

)
exp

(
Tminc∆

λmax(P )

λmin(P )

)
`np−1 ≤ ν−1(ce)

M

Since the exponential function dominates the polynomial function, the condition (4.50) is
satisfied, for ` sufficiently large. From (4.47), (4.48) and (4.49) the first item of Lemma 4.2
holds with the function

β(s, t) = ν∗
(

exp (−Ω(`)t) `np−1λmax(P )

λmin(P )
ν(s)

)
.

The second item of Lemma 4.2 is deduced from (4.47), (4.48) and (4.50) and the fact that
(z#
p , ẑ

#
p ) ∈ Πp(Dl1)×Πp(Dl1). 2

4.2.2.5 Proof of Theorem 4.3

Consider the positive value cx obtained in (4.35) and the function Ψp obtained in (4.37). In
the first part of the proof, we show attractivity of the set {0}× [0, 1] in R2np+nc × [0, 1] along
the solutions to system (4.28) whose initial condition is in Γ̃ := Γ×{0}×R≥0 ⊂ Bp×{0}×R≥0.
The stability is shown in a second part.

Note that the hybrid system (4.28) satisfies the basic assumptions for hybrid systems [34,
Assumption 6.5.] with the flow set Foc = {(zp, ẑp, zc, τ) ∈ R2np+nc × R≥0 : F(zp, ẑp, zc, τ) ∈
Rnp × Fc × R≥0} and the jump set J oc = {(zp, ẑp, zc, τ) ∈ R2np+nc × R≥0 : F(zp, ẑp, zc, τ) ∈
Rnp × Jc × R≥λ}, where F : (zp, ẑp, zc, τ) 7→ (zp, satcx(ẑp), zc, τ).

First Part : Attractivity. Let Z# := (z#
p , z

#
c , ẑ

#
p , τ#) be in Γ̃ and consider a solution

Z = (zp, zc, ẑp, τ) to (4.28) whose initial condition is Z# and defined on its time domain
denoted dom(Z).

Note that the system (4.28) can be rewritten as the hybrid system (4.34) with ω =

satcx(ẑp) and ẑp is given with the observer (4.37).

With Lemma 4.1 and with the τ dynamics (persistent flow), we know that there ex-
ists j0 such that (Tmin, j0) is in dom(Z) and for all (t, j) in dom(Z) with t ≤ Tmin then
(zp(t, j), zc(t, j), τ(t, j)) is in Dl4 . Thus, for all (t, j) in dom(Z) with t ≤ Tmin, the control
input satisfies |u(t, j)| ≤ ū. Let domDl4 (Z) be the time domain of the solution restricted to
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the set Dl4 . With Lemma 4.2, for all (t, j) in domDl4 (Z) with t ≥ Tmin, |zp(t, j)− ẑp(t, j)| ≤ ce.
Moreover, for all (t, j) in domDl4 (Z) with t ≥ Tmin, we have |zp(t, j)| ≤ cx. It implies

|zp(t, j)− z̃p(t, j)| = |satcx(zp(t, j))− satcx(ẑp(t, j))|
≤ |zp(t, j)− ẑp(t, j)| ≤ ce .

It is now possible to show that for all (t, j) in dom(Z), Z(t, j) is in Dl4 . We will argue by
contradiction to prove this assertion. By assuming that it is false, two cases may occur.

• The solution escapes Dl4 when flowing. Hence, there exists (t0, j0) in dom(Z) such that
(zp, zc, τ)(t0, j0) is in Dl4 and for all ε > 0, there exists δ < ε such that (t0 +δ, j0) is in dom(Z)

and (zp, zc, τ)(t0 + δ, j0) is not in Dl4 . Note that this implies that (zp, zc)(t0, j0) is at the
boundary of Dl4 . Consequently, this implies V (t0, j0) = l4. Note moreover, keeping in mind
that |zp(t0, j0) − z̃p(t0, j0)| ≤ |zp(t0, j0) − ẑp(t0, j0)| ≤ ce ≤ εr we get, from Assumption 4.3,
d
dtV (t0, j0) ≤ −α1V (t0, j0) + ρ(ce) ≤ −α1l4

2 . This implies that the function s 7→ V (t0 + s, j0)

is strictly decreasing. It contradicts the existence of small ε.

• The solution escapes Dl4 when jumping. Hence, there exists (t0, j0) in dom(Z) such that
(zp, zc, τ)(t0, j0) is in Dl4 and (zp, zc, τ)(t0, j0 + 1) is not in Dl4 . Since |zp(t0, j0)− ẑp(t0, j0)| ≤
ce ≤ εr, with Assumption 4.3, it follows V (t0, j0 +1) ≤ (1−α2)V (t0, j0)+ρ(ce) ≤ (1− α2

2 )l4 <

l4. This is a contradiction with the escape of the solution from Dl4 .

Consequently, for all (t, j) in dom(Z), we have Z(t, j) is in Dl4 . Note that the timer
forces the t direction of the time domain to be unbounded. Hence, thanks to the Lemma 4.2,
limt+j→+∞ |ẑp(t, j)− zp(t, j)| = 0. We get the result employing the triangular structure of the
system with the ISS property in Dl4 (i.e. Assumption 4.3) (see e.g. [9, Theorem 3.1.]).

Second Part: Stability. To conclude the proof, let us prove the stability property. Let Sε
be defined by Sε = {(zp, zc, ẑp, τ) : V (zp, zc, τ) ≤ ε and |zp− ẑp| ≤ ε}, where ε < l1. Moreover,
let Nl be an open neighborhood of A defined as

Nl =
{

(zp, zc, ẑp, τ) | V (zp, zc, τ) <
ε

4
, β(|zp − ẑp|, 0) < min

{
ρ−1(

α1ε

4
), ρ−1(

α2ε

4
),
ε

2

} }
,

where (β, ρ) and (α1, α2) are the two functions and the two positive real numbers given in
Lemma 4.2 and Assumption 4.3. Note that N` ⊂ Sε.

Now consider Z a solution to the closed-loop system (4.28) starting from any point of
Nl with time domain denoted dom(Z). Let domSε(Z) denote the hybrid time domain of the
solution restricted to the set Sε.

Let us show that this solution Z remains in Sε. Note that ẑp(0, 0) and zp(0, 0) are in
Πp(Dl1). With Lemma 4.2, it yields that for all (t, j) in domSε(Z),

|zp(t, j)− ẑp(t, j)| ≤ β(|zp(0, 0)− ẑp(0, 0)|, 0)

≤ min
{
ρ−1(

α1ε

4
), ρ−1(

α2ε

4
),
ε

2

}
.

Moreover, (zp(t, j), zc(t, j), τ(t, j)) is in Dl1 ⊂ Dl4 , hence from the ISS inequalities that hold
in Dl4 (see Assumption 4.3), we get for all t2 > t1 and j such that (t1, j) and (t2, j) are in
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domSε(Z)

d

dt
V (zp(t, j), zc(t, j), τ(t, j) ≤ −α1V (zp(t, j), zc(t, j), τ(t, j)) +

α1ε

4

which implies with V (Z(t1, j)) ≤ ε
4

V (zp(t, j), zc(t, j), τ(t, j)) ≤ ε

4
, t ∈ [t1, t2]

Hence, it can not escape Sε by flowing since it does not reach the boundary of Sε. Moreover, for
all (t, j) in domSε(Z) such that (t, j+ 1) is in dom(Z), from the ISS inequalities of Assumption
4.3 once again, it yields, if V (Z(t, j)) ≤ ε

4 ,

V (zp(t, j + 1), zc(t, j + 1), τ(t, j + 1)) ≤ (1− α2)V (zp(t, j), zc(t, j), τ(t, j)) +
α2ε

4
<
ε

4

Hence, Z(t, j + 1) ∈ Sε.

Thus, if the initial condition Z# is in Nl, then the solution remains in Sε. Since Sε can be
made as closed as wanted from A, this proves stability of the set A and concludes the proof
of Theorem 4.2. 2

4.2.3 Example

To illustrate Theorem 4.2, the following second order system is considered:

d

dt
zp =

[
0 1

1 0

]
zp +

[
−1

0

]
satus(v), y =

[
1 0

]
zp. (4.51)

With u = satus(v), U = [−us, us] and us = 3, it is a system of the form (4.13). Note that
the set of control U is bounded and that y = xp1 . Consequently, despite the fact that the
dynamics are linear, the stabilization problem for this system is not an easy task although
recent works [100, 41] propose design methods for saturated actuator. The strategy presented
in this chapter can be also efficient for purely nonlinear systems as it is shown in [65] where it is
proven the existence of a hybrid output feedback for a chain of integrators with a nonlinearity
from a state feedback uniting a global and a local controllers. Following [57], we compute the
hybrid controller such that A = {0} × {0} × {0} × [0, 1] is locally asymptotically stable for
the FORE system 

d

dt
zp =

[
0 1

1 0

]
zp +

[
−1

0

]
satus(kzc)

d

dt
zc =

[
−2 0

0 −12

]
zc − zp

d

dt
= 1− τ

(z>p Mzc ≥ 0) and τ ∈ R≥0

(4.52a)


z+
p = zp

z+
c = 0

τ+ = 0

(z>p Mzc ≤ 0) and τ ∈ R≥λ (4.52b)
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with k = [−13 − 30], λ = 0.01, M =
[

0 −I1
−I1 0

]
and

E(PV ) =
{

(zp, zc) ∈ R4, [zp; zc]PV [zp; zc]
> ≤ 1

}
⊂ B,

where PV is the positive definite matrix defined as PV =

[
4.0560 0.6868 6.6342 0.0000
? 6.4905 0.0000 6.6342
? ? 49.4184 6.6162
? ? ? 55.9387

]
. The

matrix PV has been computed to satisfy a set of linear matrix inequalities (LMIs) given in
[57, Theorem 3.] employing the LMI solver [87]. Note that employing an equivalent continuous
feedback law uc = satus(kzc), without any reset, leads to a smaller estimation of the basin of
attraction (i.e. the matrix P cV that describes the lower approximation of the basin of attraction
has bigger eigenvalues than PV ). The set B denotes the basin of attraction and E(PV ) is a
lower approximation of this one. Moreover, letting α1 = 0.4017, α2 = 0.6078, εr = 0.0550 and
the function ρ(|e|) := 13.3418|e|, Assumption 4.3 is satisfied.

Since (4.51) satisfies the well-known Kalman observability rank condition for the pair
(C,A), Assumption 4.2 holds for the sytem (4.51). Moreover, denoting the projection E(PV )

on Rnp by Πp(E(PV )) = {zp ∈ R2 : 4.0560z2
p1 + 6.4905z2

p2 + 1.3736zp1zp2 ≤ 1} and letting
Γ = {zp ∈ R2 : 4.0560z2

p1 +6.4905z2
p2 +1.3736zp1zp2 ≤ 0.6} ⊂ Πp(E(PV )), hence, it is obtained

from Theorem 4.2 that the set {0} × {0} × [0, 1] is asymptotically stable for the sytem (4.52)
with basin of attraction containing Γ× {0} × {0} × R≥0.

Following Lemmas 4.1 and 4.2, we aim at computing all the variables. Here, from the
definition of Γ, we let l1 = 0.6 and l2 = 0.7. Due to (4.52), gc = 0 and thus D+

l2
⊂ Dl2 .

It follows that l3 = 0.8 and l4 = 0.9 are suitable values. Thus, we can compute cx :=√
P−1/2QP−1/2l4 = 0.6624 where Q = diag(1, 1, 0, 0). We check that k1 = −6 and k2 = −9

are such that G defined in Lemma 4.2 is Hurwitz. With all these parameters, we numerically
compute ce = 0.0136, Tmin = 0.01, d = 2, P = [ 0.1000 0.0077

0.0077 0.0635 ] and M = 1.2070. Then we check
that ` = 1000 satisfies (4.50). Finally we can build the observer satisfying the structure of
(4.37). Therefore we can apply Theorem 4.3 and state that closing the loop of (4.51) with
the observer of the form (4.40) and the output feedback law coming from (4.52) leads to a
semi-global stability.

With (z#
p , z

#
c , ẑ

#
p , τ#) = (0.15, 0, 0, 0, 0, 0, 0) ⊂ E(P )×[0, 1] , The time evolution of zp1 and

ẑp1 satisfying respectively (4.51) and (4.40) are given by Figure 4.3. The first figure illustrates
the convergence of the observer, the second the asymptotic stability of the closed-loop system.
Figure 4.4 illustrates the phase portrait of zp.

4.3 Conclusion

An output feedback law has been designed for SISO affine systems for which there exists
a hybrid state feedback under an observability assumption. Some special assumptions (for
instance the existence of a timer) have been useful to deal with the hybrid case. The result
has been applied to design a hybrid output feedback law from a FORE controller.
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Figure 4.3: Time evolution of zp1 (blue plain line) and ẑp1 (red dashed line).
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Figure 4.4: Phase portrait of the state zp.

Some open questions follow. Does an output feedback exist even with a less strong assump-
tion than the Assumption 4.1, such as an assumption which does not state any knowledge of
the time between two consecutive jumps ? Another technical assumption is given by (4.27).
Is it possible to weaken this assumption and obtain a similar result as the one given by The-
orem 4.2 ? In [3], some output feedback laws are presented to achieve global stabilization of
equilibrium point. Assuming stronger observability property, can such output feedback laws
be achieved for hybrid case? Moreover, designing an observer that converges in finite time
with a stability property, and thus adapting [5] for the hybrid systems case, could be also an
interesting research line.





Conclusion and perspectives

In this thesis, some stabilization problems for nonlinear dynamical systems have been intro-
duced. It contributes to the general theory of control nonlinear systems and stabilization of
equilibrium points by means of output feedback laws. Both finite and infinite-dimensional
systems have been studied. To be more specific, we tackled Questions 1, 2 and 3 collected
in the Introduction using various techniques from finite and infinite-dimensional theory of
stability and stabilization.

Answer to Question 1

In Chapter 1, nonlinear abstract control systems with a bounded linear control operators have
been studied. Assuming that

• the nonlinear operator A is m-dissipative,

• there exists a stabilizing linear feedback law,

• the positive orbit of the closed-loop system is precompact,

we proved that when modifying this feedback via a cone-bounded nonlinearity the origin
of the closed-loop system remains globally asymptotically stable. The Schauder fixed-point
theorem has been used to conclude on the well-posedness and an infinite-dimensional version
of LaSalle’s invariance principle has been applied to tackle the asymptotic stability of the
origin of the closed-loop system.

In Chapter 2, a particular nonlinear partial differential equation, namely the Korteweg-de
Vries equation, has been studied. We proved that when modifying a distributed stabilizing
feedback law with two types of saturations the origin of the closed-loop system remains globally
asymptotically stable. A numerical scheme has been provided in order to illustrate our results
and some existing results for the Korteweg-de Vries equation.

Answer to Question 2

Chapter 3 introduces the separation principle strategy for linear finite-dimensional systems.
We followed this strategy for two Korteweg-de Vries equations for which there exist state
feedback laws designed with a backtepping method. Thanks to the backstepping method and
to a Lyapunov analysis, we proved that designing observers separetely from state feedback laws
yields stabilizing output feedback laws. Some simulations have been performed to illustrate
our theoritical results.
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Answer to Question 3

Finally, in Chapter 4, the semi-global output feedback stabilization of nonlinear finite-
dimensional systems for which there exists a local regularizing hybrid controller has been
tackled. Indeed, if the system is completly uniformly observable and if there exists a regu-
larizing hybrid state feedback, then we proved that the resulting output feedback (locally)
stabilizes the closed-loop system. A high-gain observer strategy has been followed in order to
design the observer. The hybrid system theory has been used to conclude on the asymptotic
stability of the closed-loop system. An illustrative example has been provided.

Contributions of the thesis

The main contributions of this thesis are

• the study of abstract nonlinear control systems stabilized with a cone-bounded controller;

• the study of the global asymptotic stability of the Korteweg-de Vries equation with a
saturating distributed feedback law with two different types of saturation;

• the numerical scheme of the nonlinear Korteweg-de Vries equation with a saturating
distributed feedback law;

• the output feedback stabilization problem of two Korteweg-de Vries equations using the
backstepping method;

• the output feedback stabilization problem for nonlinear finite-dimensional systems for
which there exists a hybrid controller.

Tools used along the thesis

• Nonlinear semigroup theory for abstract control systems;

• Nonlinear partial differential equation theory;

• Fixed-point theorems;

• Stability analysis with Lyapunov functions for both finite and infinite-dimensional sys-
tems;

• Saturated control systems theory;

• Backstepping method for partial differential equations;

• Hybrid systems theory;

• High-gain observer theory for nonlinear finite-dimensional systems.
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Perspectives

The main remaining challenges are

• extending our results for abstract nonlinear control systems with unbounded control
operators. At the best of our knowledge, numerous problems remain open;

• studying other nonlinearities than the cone-bounded ones for a abstract control system or
a particular partial differential equation (the Korteweg-de Vries equation, for example).
The backlash nonlinearity, studied in [93], could be interesting;

• studying the influence of the saturation on the stabilizing backstepping controller de-
signed for the Korteweg-de Vries equation. Some tools from saturation control systems
could be used;

• studying the influence of the saturation on a boundary stabilizing feedback law for
hyperbolic systems (see e.g. [6]). It could be also interesting to follow in this case the
anti-windup strategy [101];

• extending the high-gain observer theory for the Korteweg-de Vries equation. In order
to be close to the finite-dimensional case, the nonlinearity should be studied at the
boundary;

• developping new observer strategies for infinite-dimensional systems. The Kazantzis-
Kravaris/Luenberger one, introduced in [4], could be interesting. In particular, it could
be used to solve some parametric estimation problems, as is has been done in the linear
finite-dimensional case in [1];

• studying the output feedback stabilization for hybrid nonlinear finite-dimensional sys-
tems. Indeed, instead of studying a continuous plant, it could be interesting to study a
hybrid plant;

• solving the output feedback stabilization for the Brockett’s integrator for which there
exists a hybrid state feedback law. The design of this state feedback law is provided in
[36].





Appendix A

Precompactness of the operator given
by the KdV equation with a
cone-bounded feedback law

This section is devoted to the proof of the precompactness of the canonical embedding from
D(Aσ) = D(A), defined in (1.47), into Z := L2(0, L). Let us state the lemma and prove it.

Lemma A.1
The canonical embedding from D(Aσ), equipped with the graph norm, into Z := L2(0, L) is
compact.

Proof of Lemma A.1: We follow the strategy of [64], [76] and [69]. Let us recall the definition
of the graph norm

‖z‖2D(Aσ) :=‖z‖2L2(0,L) + ‖Aσz‖2L2(0,L)

=

∫ L

0

(
|z(x)|2 + | − z′′′′(x)− z′(z)− σ (1Ωz) (z)|2

)
dx

=

∫ L

0

(
|z(x)|2 + |z′′′′(x) + z′(z) + σ (1Ωz) (z)|2

)
dx.

(A.1)

Note that
‖σ (1Ωz) ‖L2(0,L) ≤ 2‖z‖L2(0,L). (A.2)

From the definition of the graph norm, we get the following two inequalities

‖z‖2D(Aσ) ≥ ‖z‖
2
L2(0,L) (A.3)

and, since, for all (s, s̃) ∈ C2, it holds |s+ s̃|2 ≤ 2|s|2 + 2|s̃|2, we have

‖z‖2D(Aσ) ≥
1

2

∫ L

0
| − σ (1Ωz) (z)|2dx

+
1

2

∫ L

0
|z′′′′(x) + z′(x) + σ (1Ωz) (x)|2dx

≥1

4

∫ L

0
|z′′′′(x) + z′(x)|2dx.

(A.4)
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cone-bounded feedback law

Noticing that ‖z′′′‖2L2(0,L) = ‖z′′′ + z′ − z′‖2L2(0,L), we have

‖z′′′‖2L2(0,L) ≤ 2‖z′′′ + z′‖2L2(0,L) + 2‖z′‖2L2(0,L), (A.5)

and using that ‖z′‖2L2(0,L) = ‖z′ + z′′′ − z′′′ + zx− xz‖2L2(0,L), we obtain

‖z′‖2L2(0,L) ≤2‖z′ + z′′′‖2L2(0,L) + 2‖z′′′ − zx+ xz‖2L2(0,L)

≤2‖z′ + z′′′‖2L2(0,L) + 4‖z′′′ − xz‖2L2(0,L) + 4‖xz‖2L2(0,L)

≤2‖z′ + z′′′‖2L2(0,L) + 4‖z′′′‖2L2(0,L) − 8

∫ L

0
zz′′′′(x)z(x)dx+ 8‖xz‖2L2(0,L).

Deriving some integrations by parts, we get∫ L

0
z′′′′(x)z(x)dx =

3

2
‖z′‖2L2(0,L),

and therefore

‖z′‖2L2(0,L) ≤2‖z′ + z′′′‖2L2(0,L) + 4‖z′′′‖2L2(0,L) − 12‖z′‖2L2(0,L) + 8‖xz‖2L2(0,L). (A.6)

Hence,

13‖z′‖2L2(0,L) ≤2‖z′ + z′′′‖2L2(0,L) + 4‖z′′′‖2L2(0,L) + 8L2‖z‖2L2(0,L). (A.7)

Plugging inequality (A.5) in (A.7), we have

13‖z′‖2L2(0,L) ≤2‖z′ + z′′′‖2L2(0,L) + 4
(

2‖z′′′ + z′‖2L2(0,L) + 2‖z′‖2L2(0,L)

)
+ 8L2‖z‖2L2(0,L)

≤10‖z′ + z′′′‖2L2(0,L) + 8‖z′‖2L2(0,L) + 8L2‖z‖2L2(0,L).

Therefore,

‖z′‖2L2(0,L) ≤ 2‖z′ + z′′′‖2L2(0,L) +
8L2

5
‖z‖2L2(0,L). (A.8)

Considering Equations (A.3) and (A.4), it leads us to the following inequality, for all z ∈ D(A),

‖z′‖2L2(0,L) ≤ ∆‖z‖2D(Aσ) (A.9)

where ∆ is a term which depends only on L.

Thus, if we consider now a sequence {zn}n∈N in D(Aσ) bounded for the graph norm of
D(Aσ), we have from (A.9) that this sequence is bounded in H1

0 (0, L). Since the canonical
embedding from H1

0 (0, L) to L2(0, L) is compact, there exists a subsequence still denoted
{zn}n∈N such that zn → z in L2(0, L). Thus Z belongs to L2(0, L) which allows us to state
that D(Aσ) embedds compactly in Z. It concludes the proof of Lemma A.1. 2
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Nonlinear heat equation:
m-dissipativity and precompacity

B.1 Proof of the m-dissipativity of the nonlinear heat equation

This subsection is devoted to the proof of the following theorem.

Theorem B.1
The operator defined by (1.60) is m-dissipative

Proof of Theorem B.1:

The proof of Theorem B.1 is divided into two steps. First, the operator A is proved to be
dissipative. Secondly, we prove that, for all f ∈ L2(0, L), there exist z ∈ D(A) such that

z −Az = f. (B.1)

Let us recall that the dissipativity and the existence of z ∈ D(A) such that (B.1) holds imply
that A is an m-dissipative operator (see Definition 1.1).

First step: Dissipativity of the operator A.

Note that we have

〈Az −Az̃, z − z̃〉L2(0,1) =

∫ 1

0
(z − z̃)(z′′ − z̃′′)dx+

∫ L

0
(z − z̃)(sin(z)− sin(z̃))dx. (B.2)

Performing some integrations by parts leads to∫ L

0
(z − z̃)(z′′ − z̃′′)dx = −

∫ 1

0
(z′ − z̃′)2dz. (B.3)

Moreover, using the fact that sin is Lipschitz together with a Poincaré inequality, one has∫ L

0
(z − z̃)(sin(z)− sin(z̃))dx ≤

∫ L

0
(z − z̃)2dx ≤ 4

π2

∫ 1

0
(z′ − z̃′)2dx. (B.4)

Hence, it is easy to see that
〈Az −Az̃, z − z̃〉L2(0,1) ≤ 0. (B.5)
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Second step: Existence of z ∈ D(A) such that (B.1) holds

To prove the existence of z ∈ D(A) such that (B.1) holds, one has to prove that there
exists a solution to the following nonlinear ODE{

z − z′′ + sin(z) = f,

z(0) = z(1) = 0.
(B.6)

We aim at applying the Schauder fixed-point theorem to the following nonhomogeneous linear
ODE {

z − z′′ = − sin(z̃) + f,

z(0) = z(1) = 0,
(B.7)

where z̃ ∈ L2(0, 1). It is easy to see that there exists a unique solution to (B.7).

Focus on the map

T : L2(0, 1)→ L2(0, 1)

z̃ 7→ z = T (z̃)
(B.8)

where z = T (z̃) is the unique solution to (B.7).

We define
C := {z ∈ H1

0 (0, 1) | ‖z‖H1
0 (0,1) ≤M}. (B.9)

From the theorem of Rellich, the injection ofH1
0 (0, 1) in L2(0, 1) is compact, then C is bounded

in H1
0 (0, 1) and is relatively compact in L2(0, 1). Moreover, it is a closed subset of L2(0, 1).

Thus C is a compact subset of L2(0, 1). In order to apply the Schauder theorem, we have to
prove that T (L2(0, 1)) ⊂ C for a suitable choice of M and λ. Let us multiply the first line of
(B.7) by z and then integrate between 0 and 1. After some integrations by parts, one has

‖z‖2L2(0,1) + ‖z′‖2L2(0,1) =

∫ 1

0
fzdx−

∫ 1

0
sin(z̃)dz. (B.10)

Hence, applying Cauchy Schwarz inequality leads to

‖z′‖2L2(0,1) ≤
1

2
‖f‖2L2(0,1) +

1

2
− ‖z‖2L2(0,1) + ‖z‖2L2(0,1). (B.11)

Therefore, since ‖z′‖2L2(0,1) and ‖z‖H1
0 (0,1) are equivalent by the Poincaré inequality, one has

‖z‖H1
0 (0,1) ≤M, (B.12)

where
M :=

√
‖f‖2

L2(0,1)
+ 1.

Hence, applying Theorem 1.11, it concludes the proof of Theorem B.1. 2
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B.2 Precompacity of the nonlinear heat equation with a cone-
bounded nonlinearity

This subsection is devoted to the proof of the following lemma.

Lemma B.1
The canonical embedding from D(Aσ), equipped with the graph norm, into Z := L2(0, 1) is
compact.

Proof of Lemma B.1:

We follow the strategy of [64], [76] and [69]. Let us recall the definition of the graph norm

‖z‖2D(Aσ) :=‖z‖2L2(0,1) + ‖Aσz‖2L2(0,1)

=

∫ 1

0

(
|z(x)|2 + |z′′(x) + sin(z)(x)− σ (z) (x)|2

)
dx

(B.13)

Note that we have
‖z‖2D(Aσ) ≥ ‖z‖

2
L2(0,1) (B.14)

and

‖z‖2D(Aσ) ≥
1

4

∫ 1

0
|σ(z)(x)|2dz +

1

4

∫ 1

0
| − sin(z)(x)|2dx

+
1

4

∫ 1

0
|z′′(x) + sin(z)(x)− σ(z)(x)|2dx

≥1

8

∫ 1

0
|z′′(x)|2dx.

(B.15)

Hence,

‖z‖2D(Aσ) ≥
1

8
‖z′′‖2L2(0,1). (B.16)

Noticing that ‖z‖2L2(0,1) = ‖z − z′′ + z′′‖2L2(0,1), we have

‖z‖2L2(0,1) =‖z + z′′‖2L2(0,1) + ‖z′′‖2L2(0,1)

=‖z‖2L2(0,1) + ‖z′′‖2L2(0,1) + 2

∫ 1

0
z(x)z′′(x)dx+ ‖z′′‖L2(0,1).

(B.17)

Therefore, we have

−
∫ 1

0
z(x)z′′(x)dx = ‖z′′‖2L2(0,1). (B.18)

Performing an integration by parts, we obtain∫ 1

0
z(x)z′′(x)dx = −‖z′‖2L2(0,1). (B.19)
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Hence, using (B.16), the following inequality holds

‖z′‖2L2(0,1) ≤ 8‖z‖2D(Aσ). (B.20)

Thus, if we consider now a sequence {zn}n∈N in D(Aσ) bounded for the graph norm of D(Aσ),
we have from (A.9) that this sequence is bounded in H1

0 (0, L). Since the canonical embedding
from H1

0 (0, L) to L2(0, L) is compact, there exists a subsequence still denoted {zn}n∈N such
that zn → z in L2(0, L). Thus z belongs to L2(0, L) which allows us to state that D(Aσ)

embedds compactly in Z. It concludes the proof of Lemma B.1. 2
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Successive approximation method.
Application to the kernel existence

problem

C.1 Presentation of the method

Let us consider the following initial problem:


d

dt
z = f(t, z)

z(t0) = z0

(C.1)

By observing this problem, we can assume that:

φ(t) = z0 +

∫ t

t0

f(s, φ(s))ds (C.2)

is a solution of (C.1). In other words, the solutions of (C.1) are also solutions of (C.2).
However, we have to prove the existence of such solutions. The successive approximation
method proposes to consider a sequence of approximations that has to get closer and closer
to the solutions of (C.2). These approximations are all based on (C.2) as follows:

φ0(t) = z0

φ1(t) = z0 +

∫ t

t0

f(s, φ0(s))ds

φ2(t) = z0 +

∫ t

t0

f(s, φ1(s))ds

...

φk(t) = z0 +

∫ t

t0

f(s, φk−1(s))ds

(C.3)

If one can demonstrate that sequence of solutions (φk)∈∈N converges to some function
φ(t) that satisfies (C.2), then the argument goes, one has not only proven the existence of a
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existence problem

solution to the initial value problem, but has also constructed a formula for the solution. This
fact is based on the following theorem:

Theorem C.1
(Picard Lindlöf existence theorem) Let a and b be real positive constants, and assume that
f(t, x) : R2 → R is bounded (with least upper bound M), continuous and Lipschitz, with
Lipschitz constant K on the rectangle:

R = {(t, x) ∈ R2 | |t− t0| ≤ a, |z − z0| ≤ b} (C.4)

Then the successive approximations:

φ0(t) = z0, φk(t) = z0 +

∫ t

t0

f(s, φk−1(s))ds (C.5)

converge to the solution of the initial value problem
{
d
dtz = f(t, z), z(t0) = z0

}
on the interval:

I =

{
t ∈ R/|t− t0| ≤ α = min

(
a,

b

M

)}
(C.6)

C.2 Application of the method [14]

Let us consider the (3.28) and let us make a variable changement with the following formula

t = s− x, η = x+ s

Now, define G(η, t) := k(x, s). With the variable changement, we get

Gttη + 2Gηηη + 2Gη = −λG (t, s) ∈ T0,

G(η, 2L− η) = 0 s ∈ [L, 2L],

G(η, 0) = 0 s ∈ [0, 2L],

Gt(η, 0) =
λ

6
(η − 2L) s ∈ [0, 2L],

(C.7)

where T0 = {(η, t) | t ∈ [0, L], η ∈ [t, 2L− y]}.

Let us transform this system into an integral one. We write the equation in variables
(χ, ξ), integrate ξ between 0 and τ and use that Gt(η, 0) = λ

6 (η − 2L). Next, we integrate τ
between 0 and t and use that Gη(χ, 0) = 0. Finally, we integrate χ between η and 2L− t and
use that G(η, 2L− η) = 0. Then, we get an integral expression of (C.7) written as follows

G(η, t) = −λt
6

(2L− t− η) +
1

6

∫ 2L−t

η

∫ t

0

∫ τ

0
(2Gη + 2Gη + λG) (χ, ξ)dξdτdχ (C.8)
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We consider the following sequence of solutions

G1(η, t) = −λt
6

(2L− t− s)

G2(η, t) = −λt
6

(2L− t− η) +
1

6

∫ 2L−t

η

∫ t

0

∫ τ

0

(
2G1

ηηη + 2G1
η + λG1

)
(χ, ξ)dξdτdχ

...

Gn+1(η, t) = −λt
6

(2L− t− η) +
1

6

∫ 2L−t

η

∫ t

0

∫ τ

0

(
2Gnηηη + 2Gnη + λGn

)
(χ, ξ)dξdτdχ

(C.9)

After some computations, we get the formula

Gk(η, t) =
k∑
i=1

(
aikt

2k−1 + bikt
2k
)

[(2L− t)i − ηi] (C.10)

where the coefficients satisfy bkk = 0. By a recursive reasonment, we can state the existence of
positive constants M and B such that, for any k ≥ 1 and any (s, t) ∈ T0

|Gk(η, t)| ≤M Bk

(2k)!
(t2k+1 + t2k) (C.11)

Thanks to this formula, we get the uniform convergence of the series
∑∞

n=1G
n(η, t) and we

get a solution of our integral equation. Indeed, we can write

6(G−G1)(η, t) =6

∞∑
n=1

Gn+1(η, t)

=

∞∑
n=1

∫ 2L−t

η

∫ t

0

(
2Gnηηη + 2Gnη + λGn

)
(χ, ξ)dξdτdχ

=

∫ 2L−t

η

∫ t

0

(
2
∞∑
n=1

Gnηηη + 2
∞∑
n=1

Gnη + λ
∞∑
n=1

Gn

)
dξdτdχ

=

∫ 2L−t

η

∫ t

0

(
2Gnηηη + 2Gη + λG

)
(χ, ξ)dξdτdχ,

(C.12)

where we have used that the corresponding series
∑∞

n=1G
n
η and

∑∞
n=1G

n
ηηη are also uniformly

convergent.
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