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Abstract

Contrary to the cryptosystems based on number theory, the security of cryptosys-
tems based on error correcting codes appears to be resistant to the emergence of
quantum computers. Another advantage of these systems is that the encryption and
decryption are very fast, about five times faster for encryption, and 10 to 100 times
faster for decryption compared to RSA cryptosystem.

Nowadays, the interest of scientific community in code-based cryptography is
highly motivated by the latest announcement of the National Institute of Standards
and Technology (NIST). They initiated the Post-Quantum cryptography Project
which aims to define new standards for quantum resistant cryptography and fixed
the deadline for public key cryptographic algorithm submissions for November 2017.
This announcement motivates to study the security of existing schemes in order to
find out whether they are secure. This thesis thus presents several attacks which
dismantle several code-based encryption schemes.

We started by a cryptanalysis of a modified version of the Sidelnikov cryptosys-
tem proposed by Gueye and Mboup [GM13] which is based on Reed-Muller codes.
This modified scheme consists in inserting random columns in the secret generating
matrix or parity check matrix. The cryptanalysis relies on the computation of the
square of the public code. The particular nature of Reed-Muller which are defined
by means of multivariate binary polynomials, permits to predict the values of the
dimensions of the square codes and then to fully recover in polynomial time the se-
cret positions of the random columns. Our work shows that the insertion of random
columns in the Sidelnikov scheme does not bring any security improvement.

The second result is an improved cryptanalysis of several variants of the GPT
cryptosystem which is a rank-metric scheme based on Gabidulin codes. We prove
that any variant of the GPT cryptosystem which uses a right column scrambler
over the extension field as advocated by the works of Gabidulin et al. [Gab08,
GRH09, RGH11] with the goal to resist Overbeck’s structural attack [Ove08], are
actually still vulnerable to that attack. We show that by applying the Frobenius
operator appropriately on the public key, it is possible to build a Gabidulin code
having the same dimension as the original secret Gabidulin code, but with a lower
length. In particular, the code obtained by this way corrects less errors than the
secret one but its error correction capabilities are beyond the number of errors
added by a sender, and consequently an attacker is able to decrypt any ciphertext
with this degraded Gabidulin code. We also considered the case where an isometric
transformation is applied in conjunction with a right column scrambler which has its
entries in the extension field. We proved that this protection is useless both in terms
of performance and security. Consequently, our results show that all the existing
techniques aiming to hide the inherent algebraic structure of Gabidulin codes have
failed.



To finish, we studied the security of the Faure-Loidreau encryption scheme [FL05]
which is also a rank-metric scheme based on Gabidulin codes. Inspired by our prece-
dent work and, although the structure of the scheme differs considerably from the
classical setting of the GPT cryptosystem, we show that for a range of parameters,
this scheme is also vulnerable to a polynomial-time attack that recovers the private
key by applying Overbeck’s attack on an appropriate public code. As an example
we break in a few seconds parameters with 80-bit security claim.
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Résumé

Contrairement aux protocoles cryptographiques fondés sur la théorie des nombres,
les systèmes de chiffrement basés sur les codes correcteurs d’erreurs semblent résister
à l’émergence des ordinateurs quantiques. Un autre avantage de ces systèmes est que
le chiffrement et le déchiffrement sont très rapides, environ cinq fois plus rapide pour
le chiffrement, et 10 à 100 fois plus rapide pour le déchiffrement par rapport à RSA.
De nos jours, l’intérêt de la communauté scientifique pour la cryptographie basée sur
les codes est fortement motivé par la dernière annonce de la “National Institute of
Standards and Technology" (NIST), qui a récemment initié le projet intitulé “Post-
Quantum cryptography Project". Ce projet vise à définir de nouveaux standards
pour les cryptosystèmes résistants aux attaques quantiques et la date limite pour la
soumission des cryptosystèmes à clé publique est fixée pour novembre 2017. Une telle
annonce motive certainement à proposer de nouveaux protocoles cryptographiques
basés sur les codes, mais aussi à étudier profondément la sécurité des protocoles
existants afin d’écarter toute surprise en matière de sécurité.

Cette thèse suit cet ordre d’idée en étudiant la sécurité de plusieurs protocoles
cryptographiques fondés sur la théorie des codes correcteurs d’erreurs.

Nous avons commencé par l’étude de la sécurité d’une version modifiée du cryp-
tosystème de Sidelnikov, proposée par Gueye et Mboup [GM13] et basée sur les codes
de Reed-Muller. Cette modification consiste à insérer des colonnes aléatoires dans
la matrice génératrice (ou de parité) secrète. La cryptanalyse repose sur le calcul
de carrés du code public. La nature particulière des codes de Reed-Muller qui sont
définis au moyen de polynômes multivariés binaires, permet de prédire les valeurs
des dimensions des codes carrés calculés, puis permet de récupérer complètement en
temps polynomial les positions secrètes des colonnes aléatoires. Notre travail montre
que l’insertion de colonnes aléatoires dans le schéma de Sidelnikov n’apporte aucune
amélioration en matière de sécurité.

Le résultat suivant est une cryptanalyse améliorée de plusieurs variantes du cryp-
tosystème GPT qui est un schéma de chiffrement en métrique rang utilisant les codes
de Gabidulin. Nous montrons qu’en utilisant le Frobenius de façon appropriée sur
le code public, il est possible d’en extraire un code de Gabidulin ayant la même
dimension que le code de Gabidulin secret mais avec une longueur inférieure. Le
code obtenu corrige ainsi moins d’erreurs que le code secret, mais sa capacité de
correction d’erreurs dépasse le nombre d’erreurs ajoutées par l’expéditeur et par
conséquent, un attaquant est capable de déchiffrer tout texte chiffré, à l’aide de ce
code de Gabidulin dégradé. Nos résultats montrent qu’en fin de compte, toutes les
techniques existantes visant à cacher la structure algébrique des codes de Gabidulin
ont échoué.

Enfin, nous avons étudié la sécurité du système de chiffrement de Faure-Loidreau
[FL05] qui est également basé sur les codes de Gabidulin. Inspiré par les travaux
précédents et, bien que la structure de ce schéma diffère considérablement du cadre



classique du cryptosystème GPT, nous avons pu montrer que ce schéma est égale-
ment vulnérable à une attaque polynomiale qui récupère la clé privée en appliquant
l’attaque d’Overbeck sur un code public approprié. Comme exemple, nous arrivons
en quelques secondes à casser les paramètres qui ont été proposés comme ayant un
niveau de sécurité de 80 bits.
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Chapter 1

Introduction

Cryptography is the field of research in which the techniques of setting up secure
communications (in the presence of adversaries) are studied. Nowadays, it is un-
doubtedly present everywhere. Financial transactions, e-commerce and military
applications are just few examples that demonstrate the enormous importance of
cryptography in a modern world.

1.1 Motivation

Given this enormous importance of cryptography, many researchers have devoted
a great deal of time and effort to propose and analyze cryptographic systems that
can be both efficient and secure. Cryptosystems based on number theory (integer
factorization and discrete logarithm) such as RSA [RSA78] and elliptic curves cryp-
tography, have been good candidates during several decades and remain widely de-
ployed in practice since they offer a good compromise between efficiency and security.
Nevertheless, the existence of sub-exponential algorithms [BGJT14] and polynomial
quantum algorithms [Sho94, Sho97] that solve these number theory problems are
important facts that make the systems from number theory less and less attractive.

The situation is different for code based cryptography.
Code based cryptography was introduced since 1978 by McEliece [McE78] who

was the first to present a cryptosystem based on error-correcting codes. The public
key is formed with a matrix Gpub which is obtained by a product of three matrices
S, G′ and P . The security of the scheme build is based on two problems: the
difficulty of decoding a random linear code [BMvT78] and the difficulty of recovering
a decoding algorithm from a public matrix representation of a binary Goppa code.
The second assumption was reformulated in a more formal way by stating that there
is no polynomial-time algorithm that distinguishes between a random matrix and a
generating matrix of a binary Goppa code [CFS01, Sen02]. The scheme disposes of
various advantages:

• The encryption and decryption are very fast, about five times faster for encryp-
tion, and 10 to 100 times faster for decryption compared to RSA cryptosystem.
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• Contrary to the cryptosystems based on number theory, the security of this
cryptosystem appears to be resistant to the emergence of quantum computers
[Sho94, Sho97].

Although it is efficient, the McEliece cryptosystem came with a big disadvantage:
the size of the public keys is about five hundred thousand bits. Several authors have
followed the idea of McEliece by trying to solve the problem of key sizes.

Nowadays, the interest of the scientific community in code-based cryptography is
highly motivated by the latest announcement of the National Institute of Standards
and Technology (NIST). They initiated the Post-Quantum cryptography Project
which aims to define new standards for quantum resistant cryptography and fixed
the deadline for public key cryptographic algorithm submissions for November 2017
(NIST-PQcrypto Project). This announcement motivates to study the security of
existing schemes in order to find out whether they are secure. This thesis thus
presents several attacks which dismantle several code-based encryption schemes.

1.2 Previous Works

In order to solve the problem of enormous key size in the McEliece encryption
scheme, several authors proposed to replace the family of Goppa codes with another
family of codes. The first to propose such an idea is Harald Niedereiter [Nie86]
who proposed in 1986 the use of generalized Reed-Solomon codes. However, this
was shown six years later to be insecure by Sidelnikov and Shestakov [SS92]. In
1994, Sidelnikov [Sid94] also proposed the use of Reed-Muller codes, but the results
presented in [MS07, CB13] show that this variant is not secure. Several papers
also follow this idea by proposing the use of another family of codes. Janwa and
Moreno [JM96] suggested the use of Algebraic-geometry codes, but this turned out
to be insecure [FM08, CMCP14]. Monico, Rosenthal and Shokrollahi proposed and
analyzed a variant using low density parity check codes in [MRAS00]. Bernstein,
Lange and Peters [BLP10, BLP11] proposed the use of Wild Goppa codes. Srivastava
codes were proposed in [Per12] by Persichetti. In [LJ12], Londahl and Johansson
proposed the use of convolutional codes, but an efficient attack by Landais and
Tillich [LT13] was proposed on this variant only one year later. Polar codes and
subcodes of polar codes were also proposed in [SK14, HSEA14], but the variant with
polar codes was completely broken in [BCD+16].

During these last decades, several authors have proposed to consider more struc-
tured codes. The common idea is to focus on codes equipped with a non-trivial
permutation group.1 This is the case for example of Gaborit [Gab05] who proposed
to use quasi-cyclic BCH codes. His work was followed by Berger, Cayrel, Gaborit
and Otmani’s paper [BCGO09] which used quasi-cyclic alternant codes and the pa-
per of Misoczki and Barreto [MB09] who proposed quasi-dyadic Goppa codes. The
algebraic attack given in [FOPT10] succeeds in breaking most of the parameters of

1The permutation group of a code is the set of permutations leaving globally invariant the code.

2
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[BCGO09, MB09]. It makes use of the fact that the underlying codes which are alter-
nant codes come with an algebraic structure. It allows a cryptanalysis consisting in
setting up a polynomial system and then solving it with Gröbner bases techniques.
In the very specific case of [BCGO09, MB09], the quasi-cyclic and quasi-dyadic
structures allow a huge reduction of the number of variables. Recently, the attack
was further improved against [MB09] by exploiting more efficiently the underlying
Goppa structure [FOP+14, FOP+16b].

Although it does not undermine the security of the McEliece scheme, the appari-
tion of algebraic attacks [FOPT10] shows however the importance of finding a better
hiding of the structure of the codes. A possible solution would be to change the de-
scription of the scheme by inserting some randomness. Berger-Loidreau’s paper
[BL05] is probably the first attempt towards this objective. The authors suggested
to add random rows to the description of the codes. They applied this to Niederreiter
encryption scheme [Nie86] instantiated with generalised Reed-Solomon codes. The
goal was to come up with a protection against Sidelnikov and Shestakov [SS92]. But
Wieshebrink’s paper shows that component-wise product of codes [Wie10] enables
to break Berger-Loidreau’s scheme.

Another simple example would be to insert random columns in the secret matrix.
Several authors [Wie06b, GM13] have indeed proposed this technique to avoid struc-
tural attacks on similar versions of the McEliece cryptosystem. This kind of mod-
ification was proposed for the first time by Wieschebrink in [Wie06b]. Its primary
goal was to avoid the Sidelnikov-Shestakov attack [SS92] on the McEliece cryptosys-
tem using generalized Reed-Solomon codes. Although this proposal had effectively
avoided the original attack, recent studies have shown that in that case of generalized
Reed-Solomon codes, the random columns can be found through considerations of
the dimensions of component-wise product of codes [GOT12b, GOT12a, CGG+14].
This insertion of random columns in the secret matrix was also proposed by Gueye
and Mboup [GM13] in the case of Reed-Muller codes, with the aim to prevent the
key-recovery attacks of [MS07, CB13].

We emphasize that all the variants mentioned above are in Hamming metric.
Another variant proposed for the first time in 1991 consists in using codes with
another metric, namely the “rank-metric”.

The first rank-metric scheme was proposed in [GPT91] by Gabidulin, Paramonov
and Tretjakov and is now called the GPT cryptosystem. This scheme can be seen
as an analogue of the McEliece scheme public key cryptosystem based on the class
of Gabidulin codes. An important operation in the key generation of the GPT cryp-
tosystem is the “hiding” phase where the secret generator matrix G undergoes a
transformation to mask the inherent algebraic structure of the associated Gabidulin
code. This transformation is a probabilistic algorithm that adds some randomness
to its input. Originally, the authors in [GPT91] proposed to use a distortion trans-
formation that takes G and outputs the public matrix Gpub = S(G + X) where
X is a random matrix with a prescribed rank tX and S is an invertible matrix.
The presence of a distortion matrix has however an impact: the sender has to add
an error vector whose rank weight is tpub = t − tX where t is the error correction

3
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capability of the secret underlying Gabidulin code. Hence, roughly speaking, the
hiding phase publishes a degraded code in terms of error correction.

Gabidulin codes are often seen as equivalent of Reed-Solomon codes in the Ham-
ming metric and, like them, are highly structured. That is the reason why their
use in the GPT cryptosystem has been the subject of several attacks. Gibson was
the first to prove the weakness of the system through a series of successful attacks
[Gib95, Gib96]. Following these failures, the first works which modified the GPT
scheme to avoid Gibson’s attack were published in [GO01, GOHA03]. The idea is
to hide further the structure of Gabidulin code by considering isometries for the
rank metric. Consequently, a right column scrambler P is introduced which is an
invertible matrix with its entries in the base field Fq while the ambient space of the
Gabidulin code is Fnqm . But Overbeck designed in [Ove05b, Ove05a, Ove08] a more
general attack that dismantled all the existing modified GPT cryptosystems. His
approach consists in applying an operator Λi which applies i times the Frobenius op-
eration on the public generator matrix Gpub. Overbeck observed that the dimension
increases by 1 each time the Frobenius is applied. He then proved that by taking
i = n − k − 1 the codimension becomes 1 if k is the rank of Gpub (which is also
the dimension of the associated Gabidulin code). This phenomenon is a clearly dis-
tinguishing property of a Gabidulin code which cannot be encountered for instance
with a random linear code where the dimension would increase by k for each use of
the Frobenius operator.

Overbeck’s attack uses crucially two important facts, namely the column scram-
bler matrix P is defined on the based field Fq and the codimension of Λn−k−1 (Gpub)
is equal to 1. Several works then proposed to resist to this attack either by taking a
special distortion matrix so that the second property is not true as in [Loi10, RGH10],
or by taking a column scrambler matrix defined over the extension field Fqm as in
[Gab08, GRH09, RGH11].

Besides the McEliece setting used with Gabidulin codes, Faure and Loidreau
proposed in [FL05] another approach for designing rank-metric encryption scheme
based on Gabidulin codes. The structure of the scheme differs considerably from
the classical McEliece setting (there is no masking phase of the Gabidulin code
used) and it was supposed to be secure under the assumption that the problem
of the linearized polynomial reconstruction2 is intractable. This scheme follows the
works done in [AF03, AFL03] where a public-key encryption scheme is defined that
relies on the polynomial reconstruction problem which corresponds to the decoding
problem of Reed-Solomon codes. The Polynomial Reconstruction (PR) consists
of solving the following problem: given two n-tuples (z1, . . . , zn) and (y1, . . . , yn)
and parameters [n, k, w], recover all polynomials P of degree less than k such that
P (zi) = yi for at most w distinct indices i ∈ {1, . . . , n}. The public key is then a
noisy random codeword from a Reed-Solomon code where the (Hamming) weight of
the error is greater than the decoding capability of the Reed-Solomon code. However
the schemes of [AF03, AFL03] have undergone polynomial-time attacks in [Cor04,
KY04]. The authors in [FL05] proposed an analog of Augot-Finiasz scheme [AF03]

2In [FL05] the problem is termed as p-polynomial reconstruction problem.
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but in the rank-metric context. The security of [FL05] is related to the difficulty of
solving p-polynomial reconstruction corresponding actually to the decoding problem
of a Gabidulin code beyond its error-correcting capability. After Overbeck’s attack,
parameters proposed in [FL05] were updated in [Loi07, Chap. 7] in order to resist
it.

1.3 Contribution of this Thesis
This thesis presents several attacks on several code-based encryption schemes.

Our first result shows that, as in the case of Reed-Solomon codes, the component-
wise product of codes can be used to distinguish a Reed-Muller code from a random
code. As a consequence, we have shown that the modified version of the Sidelnikov
cryptosystem proposed by Gueye and Mboup [GM13] is actually insecure. This
modified scheme consists of inserting random columns in the secret generating matrix
or parity check matrix. The cryptanalysis relies on the computation of the squares
of the public code. The particular nature of Reed-Muller codes which are defined by
means of multivariate binary polynomials, permits to predict the value of dimension
of the square codes and then to fully recover in polynomial time the secret positions
of the random columns. Our work shows that the insertion of random columns in
the Sidelnikov scheme does not bring any security improvement.

This work was done in collaboration with A. Otmani and was published in the
proceedings of the conference C2SI-Berger 2015 [OTK15].

The second result was inspired by the links between generalized Reed-Solomon
codes and Gabidulin codes in rank-metric. It appears from the results of Overbeck
[Ove08] that the equivalent tool of square-code in rank-metric is the map Λi used
by Overbeck, but with i = k − 1. Overbeck used this map with i = n − k − 1 and
his attack does not succeed on the recent reparations of the GPT cryptosystem.
During our analysis of these recent variants, we were able to prove that any variant
of the GPT cryptosystem which uses a right column scrambler over the extension
field [Gab08, GRH09, RGH11] as advocated by the works of Gabidulin et al. with
the goal to resist to Overbeck’s structural attack [Ove05b, Ove08] are actually still
vulnerable to that attack. We showed that by choosing an appropriate value of i,
it is possible to build a Gabidulin code having the same dimension as the original
secret Gabidulin code but with a lower length. In particular, the code obtained by
this way corrects less errors than the secret one but its error correction capabilities
are beyond the number of errors added by a sender, and consequently an attacker is
able to decrypt any ciphertext with this degraded Gabidulin code. Our results show
that all the existing techniques aiming to hide the inherent algebraic structure of
Gabidulin codes have failed. This work was in collaboration with S. Ndjeya and
A. Otmani and is now accepted to the Journal Design, Codes and Cryptography
[OTKN16].

The third step was to study the security of the Faure-Loidreau encryption scheme
[FL05] which is also a rank-metric scheme based on Gabidulin codes. Inspired by
our precedent work, and even if the structure of the scheme differs considerably from
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the classical setting of the GPT cryptosystem, we have shown that for a range of
parameters, this scheme is also vulnerable to a polynomial-time attack that recovers
the private key by applying Overbeck’s attack on an appropriate public code. As
an example we break in a few seconds parameters with 80-bit security claim. This
result is a joint work with P. Gaborit and A. Otmani and was accepted to the
journal Design, Codes and Cryptography [GOTK16].

1.4 Structure of this Thesis
The sequel of this thesis contains five chapters organized as follows:

? Chapter 2 provides the background for the following chapters of the thesis. In
particular, we will gather some tools and notions from cryptography, coding
theory and we will close this chapter by a state-of-the-art of code-based cryp-
tography. More precisely, it will be the presentation of the McEliece encryption
scheme and some comments on its variants.

? Chapter 3 develops a cryptanalysis of the modified version given in [GM13] of
the Sidelnikov encryption scheme [Sid94] which is a McEliece-type public key
encryption scheme [McE78] based on Reed-Muller codes.

? In Chapter 4, for a good understanding of the results of the following chap-
ters, we first present some preliminaries of rank metric codes and rank-based
cryptography.

? In Chapter 5, we present a new structural attacks on the recent variants of
the GPT cryptosystem [Gab08, GRH09, RGH11, RGH10].

? Chapter 6 presents the Faure-Loidreau scheme [FL05] and the polynomial-time
attack on this scheme. The attack recovers the private key from the public
key and is based in part on the security analysis given in [Loi07, Chap. 7].
We show that by applying Overbeck’s attack on an appropriate public code
an attacker can recover the private key very efficiently, only assuming a mild
condition on the code, which was always true in all our experimentations.

? Finally, the conclusions and perspectives are given in chapter 7.

6



Chapter 2

Code Based Cryptography

Introduction
The purpose of this chapter is to present some backgrounds and evolutions of code
based cryptography. We start in section 2.1 and section 2.2 with some preliminaries
of cryptography and coding theory, before presenting the underlying cryptography
and some of its variants in section 2.3.

2.1 Cryptography Background
The concept of cryptography is very old. Basically it refers to the process of convert-
ing ordinary message (called plaintext) into unintelligible text (called ciphertext).
Despite the evolution of the means of communication, it has always been difficult to
guarantee the security of the channel through which a message is transmitted. As
soon as one wishes to communicate in a secret way, two problems arise:

• Confidentiality of the message: The sender has to ensure himself that only
the legitimate receiver will be able to read and understand the message.

• Integrity of the message: The legitimate receiver has to ensure himself that
the ciphertext has not been subject to a modification by a third-party.

In this thesis, we focus on the first point, namely the confidentiality. It can be
guaranteed by an “encryption” process, that will be followed by a “decryption” of
the legitimate recipient.

2.1.1 Encryption and Decryption

The encryption is an algorithm that allows to convert a given plaintext into a ci-
phertext that will be readable only by its legitimate recipient. This conversion is
performed by an encryption function parameterized by an encryption key. The le-
gitimate receiver can then decrypt the ciphertext by using the decryption function
if he knows the corresponding decryption key. The set of algorithms that generates
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2.1. CRYPTOGRAPHY BACKGROUND

encryption and decryption keys both with encryption and decryption algorithms is
called a cryptosystem or an encryption scheme.

Definition 2.1 (Cryptosystem). A cryptosystem or encryption scheme can be de-
fined as a tuple (P , C,K, E ,D) that satisfies the following properties:

? P is a set called the “plaintext space”.

? C is a set called the “ciphertext space”.

? Ke is a set called the “space of encryption keys”.

? Kd is a set called the “space of decryption keys”.

? E = {Eke : ke ∈ Ke} is a set of encryption functions Eke : P → C.

? D = {Dkd : kd ∈ Kd} is a set of decryption functions Dkd : C → P .

For each ke ∈ Ke , there is kd ∈ Kd such that Dkd(Eke(m)) = m for all m in P .

If the decryption key is the same as the encryption key, the scheme is called
a secret key cryptosystem since the keys must be kept secret to ensure the confi-
dentiality. Else, if the encryption key can be published without jeopardizing the
confidentiality of the decryption key, the system is called a public key cryptosystem.
All the cryptosystems mentioned in this thesis are public key cryptosystems.

2.1.2 Public Key Encryption Scheme

The first public key encryption scheme was published in 1976 by Whitfield Diffie
and Martin Hellman [DH76]. It represents any cryptosystem that uses pairs of keys:
public keys (or encryption keys) which may be disseminated widely, and private
keys (or decryption keys) which are known only to the owner. The basic concept of
public key cryptosystems is the notion of “trapdoor function”.

Definition 2.2 (One-way function). A one-way function is a function that is easy
to compute on every input, but hard to invert (given the image of a random input).

Definition 2.3 (Trapdoor function). A trapdoor function is a one-way function
with a “trapdoor” t that allows to easily invert.

8
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Figure 2.1 – Trapdoor function

Theoretically, it is easy to use a trapdoor function to instantiate a public-key
cryptosystem. Let’s suppose for example that Ft : A −→ B is a trapdoor function
with trapdoor t. Ft can be used as encryption (or public) key, t as the secret key.
One can then encrypt a message X ∈ A by computing Ft(X). By the definition of
Ft, only the legitimate receiver (the one who owns t) will be able to invert Ft(X) to
get the message.

Up to now we understand that any public key encryption scheme is based on a
difficult problem, and the security thus depends of the associated problem.

Definition 2.4 (Security level). A public key encryption scheme is said to achieve
n−bit security if an attacker would have to perform 2n operations to break it or to
solve the associated difficult problem.

A very old example of encryption scheme is the McEliece’s cryptosystem which
consists to use the theory of error-correcting codes to design a one-way function of
the form

F : Fk2 −→ Fn2
m 7−→ mG + e

where G belongs toMk,n (F2) and e ∈ Fn2 is a random binary vector with many zero
components. In the following section, we give some backgrounds of coding theory
that will allow to understand the McEliece cryptosystem and its variants.
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2.2 Error-Correcting Codes

The theory of error-correcting codes have been developed in the second half of the
twentieth century, following Shannon’s work in 1949. The goal is then to establish
clear communications (without noise and without interference). Rather than trying
to improve physically the transmission systems, Shannon had the idea of a different
approach: Subjecting the signal to a computer processing after receipt in order to
detect and correct transmission errors (see figure 2.2).

Figure 2.2 – Communication Channel

So, we are interested in the transmission of messages which are each transmitted
by a succession of signals. Each message can be written using a n−tuple (x1, ..., xn)
, xi i = 1, ..., n belonging to a set A called the alphabet. The elements of A are then
the different signals used and each n−tuple obtained is called a "word". The integer
n is the length of the words and the set of all words obtained is called a "code".
In order to have a code with specific algebraic and combinatorial structures, the
alphabet A can be chosen appropriately. Thus the alphabet will be generally a
finite field Fq. That is to say a finite field with q elements where q is a power of a
prime integer p.

Definition 2.5 (Code). Let Fq be a finite field with q elements. A code of length
n over Fq is a subset C of Fnq .

In order to measure the quantity of transmission errors introduced, we have to
use a distance.

Hamming Distance

Let A be a finite alphabet, n a non-zero integer and d : An×An −→ N the function
defined by:

d(x,y) = #{i ∈ {1, ..., n} : xi 6= yi}

with x = (x1, ..., xn) and y = (y1, ..., yn) belonging to An.

Proposition 2.1. The function d is a distance on An.

Proof. Let x = (x1, ..., xn), y = (y1, ..., yn) and z = (z1, ..., zn) belonging to An.

10
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• Let’s suppose that d(x,y) = 0. This means that for all i ∈ {1, ..., n}, xi = yi
and thus x = y.

• From the definition of d, it is clear that d(x,y) = d(y,x).

• Let E = {i ∈ {1, ..., n} : xi 6= yi}, F = {i ∈ {1, ..., n} : xi 6= zi} and
G = {i ∈ {1, ..., n} : zi 6= yi}. We have d(x,y) = #E, d(x, z) = #F and
d(z,y) = #E. Let i belonging to {1, ..., n} and not to F ∪G; we have xi = zi
and zi = yi. So xi = yi and then i /∈ E; that is to say that E ⊂ F ∪ G. This
implies that #E 6 #(F∪G) 6 #F+#G and then d(x,y) 6 d(x, z)+d(z,y).

The distance d defined above is the most used in coding theory and is called the
"Hamming distance" thanks to Richard Hamming who introduced it in 1950. From
this distance, the weight of a vector is defined by:

Definition 2.6 (Hamming weight). The Hamming weight of a word x ∈ C denoted
by w(x) or wH(x) is the distance between x and the zero word.

Different codes have different properties. One of the most important property
of a code is its minimum distance, which provides its theoretical error correction
capability.

Definition 2.7. Let C be a code over Fq. The minimum distance d of C is given
by:

d = min{d (x,y) : x,y ∈ C ,x 6= y}

and the packing radius is given by

t = bd− 1

2
c

Decoding

When a word c passes through a transmission channel, generally there are some per-
turbations and the received word is then y = c+e, where e is the error introduced.
The recipient’s objective is to decode y; that is to say, find e from y so as to recover
the original codeword c or directly the message (see Figure 2.2). In the sequel, we
will say that a received word y = c + e contains t errors if w(e) = t.

Proposition 2.2 (Unique decoding). Let C be a code of length n defined on Fq with
a packing radius t. For y ∈ Fnq , there exists at most one codeword c ∈ C such that
d(y, c) 6 t.

Proof. Let y ∈ Fnq and suppose that there exist c and c′ belonging to C such that
d(y, c) 6 t and d(y, c′) 6 t. We then have d(y, c) + d(y, c′) 6 2t 6 d− 1 and thus
d(c, c′) 6 d− 1 < d. Since d is the minimum distance, we deduce that c = c′.
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Graphically, the decoding of a word y in Fnq with a code C consists to find a
codeword c in C that is closest to y. Proposition 2.2 thus state that for y in a
ball of radius t centred on a codeword c, c is the unique solution of the decoding.
In other word, the balls of radius t centred on the codewords do not intersect (see
Figure 2.3).

Figure 2.3 – Unique decoding

2.2.1 Linear Codes

Let Fq be the finite field of q elements, n and k be two non-zero integers. Informally,
a linear code C defined on Fq is a code that satisfies the property: For all x, y in
C , and for all α belonging to Fq, x + αy belongs to C .

Definition 2.8 (Linear code). An (n, k)−linear code of length n and dimension k
on Fq is a vector subspace of Fnq of dimension k.

In the sequel, an (n, k)−code will denote an (n, k)−linear code and we will say
an (n, k, d)− code to denote an (n, k)−linear code with minimum distance d.
Remark 2.1. If C is a linear code then, the minimum distance is the minimum weight
of the non-zero codewords.

From the definition, it is clear that linear codes can be defined and represented
by matrices.

Definition 2.9 (Generator matrix ). Let C be an (n, k)−linear code on Fq. A
matrix G ∈Mk,n (Fq) is a generator matrix of C if its rows form a basis of C . That
is to say:

C = {mG, m ∈ Fkq}
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Remark 2.2. If G is a generator matrix of an (n, k)−code C on Fq and S in GLk(Fq)
then, SG is also a generator matrix of C .

Before defining the parity-check matrix of a code, we introduce the dual of a
code.

Definition 2.10. Let C be an (n, k)−code on Fq. The dual of C is the (n, n −
k)−code C ⊥ defined by:

C ⊥ = {y ∈ Fnq : xyT = 0 for all x ∈ C }

Definition 2.11 (Parity-check matrix ). A parity-check matrix of a code C is a
generator matrix of its dual.

Remark 2.3. Let G be a generator matrix of an (n, k)−code C over Fq and H a
parity check matrix of C then we have: GHT = 0. Conversely, any matrix H
belonging to Mn−k,n (Fq) of rank n − k that satisfies GHT = 0 is a parity-check
matrix of C .

Example 2.1. Consider the following matrix G with coefficients in F2 :

G =


1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


The rank of G over F2 is 4. We can say that G is a generator matrix of an

(7, 4)−code C over F2. Let H be the matrix given by:

H =

1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1


We have HGT = 0 and rank(H) = 3 = 7− 4, so H is a parity check matrix of

C .

From the previous remark, a parity-check (generator) matrix can be computed
from a generator (parity-check) matrix in polynomial time. One can also remark
that a parity check matrix of a code C is very helpful to know if a random word y
belongs to C or not. This is an important step during the decoding process and it
is achieved by computing the syndrome.

Definition 2.12 (Syndrome). Let H be a parity check matrix of an (n, k)−code C
on Fq and y belonging to Fnq . The syndrome s ∈ Fn−kq of y associated to C is given
by: sT = HyT

Remark 2.4. A word y ∈ Fnq belongs to a code C if and only if its syndrome associ-
ated to C is equal to 0.
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There is also a relationship between a parity check matrix and the minimum
distance of the associated code, that is given by the following proposition.

Proposition 2.3. Let C be an (n, k)−code with H as a parity check matrix. The
minimum distance of C is d if and only if d is the biggest integer such that any
sub-matrix constituted by d− 1 columns of H is of rank d− 1.

Proof. The proof comes from the fact that a word y ∈ Fnq belongs to C if and only
if HyT = 0.

From the previous proposition we can give a proof of the singleton bound.

Theorem 2.4 (Singleton bound). If C is a (n, k, d)−code then d 6 n− k + 1.

Proof. Let H = (u1, ...,un) be a parity check matrix of C with uti ∈ Fn−kq (i =
1, ..., n). We recall that, since the rank of H is n− k, the matrix (u1, ...,ud−1) is of
rank at most n − k. So if d − 1 > n − k then the rank of the matrix (u1, ...,ud−1)
is not d− 1. From proposition 2.3, this contradicts the fact that d is the minimum
distance of C .

Theorem 2.4 gives an upper bound of the minimum distance of a code. For fixed
values n and k, we want a code with a d as large as possible since such a code can
intrinsically correct more errors. The more d nears n− k + 1, the more the code is
optimal (i.e., may correct more errors).

Definition 2.13 (MDS Code). An (n, k, d)−code C is said to be MDS (Maximum
Distance Separable) if the singleton bound is reached. That is to say:

d = n− k + 1

The optimality of a code is an important parameter of efficiency in terms of
decoding, but it’s not the only one. A high minimum distance ensures that the code
can theoretically correct many errors, but this does not guarantee the existence of
an efficient decoding algorithm.

2.2.2 The general decoding problem

The general decoding problem is at the base of several cryptosystems based on coding
theory. The term "general" here denotes the fact that there is no information about
the structure of the given linear code. The problem can be described as follows:

Problem 2.5. Let C be an (n, k, d)−code on Fq, y ∈ Fnq and t a given integer. Find
c in C such that

d (y, c) 6 t

This problem also termed as Bounded distance decoding problem was first studied
in [BMvT78] and was proven to be NP-hard. The problem can be described by using
a generator matrix G of the code C as follows:
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Problem 2.6 (General Decoding Problem). Let G be a full-rank matrix belonging to
Mk,n (Fq) with k 6 n, y an element of Fnq and t an integer. The General Decoding
Problem GDn,k,t is to find e in Fnq and m in Fkq such that y = mG+e with w(e) 6 t.

Or by using a parity check matrix H of C as follows:

Problem 2.7 (Syndrome Decoding Problem). Let H be a full-rank matrix belonging
to Mn−k,n (Fq) with k 6 n, s an element of Fn−kq and t an integer. The Syndrome
Decoding Problem is to find e in Fnq such that s = eH t with w(e) 6 t.

The best algorithms that solve this problem are derived from information set
decoding introduced by Prange in [Pra62]. In its simplest form, the decoder tries
to find a subset of k columns of the generator matrix, that is error-free and for
which the sub-matrix composed by this subset is invertible. The message can then
be recovered by multiplying the corresponding codeword at the right by the inverse
of this sub-matrix. The algorithm has been optimized during several years (see
[LB88, Leo88, Ste88], [MMT11, BJMM12]) but the best one remains exponential on
the length of C (on average O(2n/20) operations for binary codes.

There are code families for which the later problem is no longer difficult and for
which efficient decoding algorithms are known. In the subsection that follows, we
recall some of the linear codes that are used for cryptographic purpose.

2.2.3 Examples of decodable families of codes

We have seen in the previous paragraphs that the decoding problem is difficult when
dealing with an unknown family of codes. It is not the case with structured codes.
We briefly introduce here some families of codes that can be decoded efficiently, that
is to say equipped with a polynomial decoding algorithm.

Generalized Reed-Solomon and Goppa codes.

Generalized Reed-Solomon codes, or shortly GRS codes, were introduced by Reed
and Solomon in [RS60] and represent a powerful family of codes with many appli-
cations. Ten years after, binary Goppa codes were introduced by Valery Goppa
[Gop70]. Goppa codes can be defined as subfield subcodes of GRS codes.

Definition 2.14 (Generalized Reed-Solomon codes). Let k and n be two integers
such that 1 6 k < n 6 q where q = pm is a power of a prime number p. Let
(x,y) ∈ Fnq × Fnq be a pair such that x is an n-tuple of distinct elements of Fq and
the elements yi are non-zero elements in Fq. The Generalized Reed-Solomon code
GRSk (x,y) is given by:

GRSk (x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x] , deg(f) < k} .
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The vector x is called the support of the code and y the multiplier vector. One
can easily deduce that a generator matrix of GRSk (x,y) is given by

G =


1 1 . . . 1
x1 x2 . . . xn
...

...
...

...
xk−1

1 xk−1
2 . . . xk−1

n



y1

y2 0

0
. . .

yn

 .

Proposition 2.8 ([MS86] Theorem 4, Chapter 10). The dual of a GRS code is also
a GRS code and we have

GRSk (x,y)⊥ = GRSn−k (x, z) ,

where z is a non-zero codeword of the (n, 1, n) GRS code GRSn−1 (x,y)⊥ .

We notice that a vector z with zi 6= 0 (for i = 1...n) exists since any non-zero
codeword of a (n, 1, n)−GRS code has a Hamming weight equal to n. From the
propositions 2.8 and 2.3, one can deduce that GRS codes are MDS. They are also
known to possess fast decoding algorithms that can correct efficiently up to n−k

2

errors (see for example [Gao03] or [MS86] for more details).

Definition 2.15 (Alternant codes). Let r be another non-zero integer. A p−ary
alternant code of length n is a linear code over Fp defined from a GRS code
GRSr (x,y) ⊂ Fnpm by

Ar(x,y)
def
= GRSr (x,y)⊥ ∩ Fnp .

Definition 2.16 (Binary Goppa codes). Let x ∈ Fn2m be a n − tuple of distinct
elements and g ∈ F2m [x] be a polynomial of degree t such that g(xi) 6= 0 for all
i. The binary Goppa code G (x, g) is the 2−ary alternant code At(x,y) with y

def
=

(1/g(x1), . . . , 1/g(xn)) .

As for GRS codes, Goppa codes are known to possess several decoding algorithms
that can decode up to t errors in polynomial time [Pat75, MS86, BML13].

Reed-Muller codes.

Reed-Muller codes were introduced by David Muller [Mul54] and rediscovered shortly
after with an efficient decoding algorithm by Irving Reed [Ree54].1 The scientific
community was highly interested in this family of codes and therefore discovered
many structural properties of Reed-Muller codes. Recently Kudekar, Mondelli,
Sasoglu and Urbanke proved that Reed-Muller codes achieve the capacity of the
Binary Erasure channel [KKM+17].

1Although it seems that these codes were firstly discovered by Mitani in 1951 [Mit51], they
became popular only after the article of Muller and Reed.
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Definition 2.17 (Reed-Muller code). Let F2[x1, . . . , xm] be the set of boolean poly-
nomials with m variables. Let us set {a1, . . . , an}

def
= Fm2 and n

def
= 2m. The Reed-

Muller code denoted by RM(r,m) with 0 6 r 6 m is the linear space defined
by:

RM(r,m)
def
=
{(
f(a1), . . . , f(an)

)
: f ∈ F2[x1, . . . , xm], deg f 6 r

}
We have the following theorem that gives the dimension of a Reed-Muller code:

Theorem 2.9. The dimension of RM(r,m) is equal to
r∑
i=0

(
m

i

)
.

Proof. For given integers m and r with 0 6 r 6 m, let F2[x1, . . . , xm]r be the set of
elements f of F2[x1, . . . , xm] that satisfy deg f 6 r. One can see that F2[x1, . . . , xm]r

is a F2−vector space generated by the basis

Br = {xu11 . . . xumm : ui ∈ {0, 1},
∑
i

ui 6 r}

This implies that dim (F2[x1, . . . , xm]r) =
r∑
i=0

(
m

i

)
. Furthermore, from the defini-

tion of RM(r,m), it is clear that RM(r,m) is isomorphic to F2[x1, . . . , xm]r. Hence

dim (RM(r,m)) =
r∑
i=0

(
m

i

)
.

Another nice property of the set of Reed-Muller codes is that like GRS codes
they are stable by the action of the dual.

Theorem 2.10 ([MS86] Chapter 13.).

RM(r,m)⊥ = RM(m− r − 1,m)

LDPC and MDPC codes.

Another important class of linear codes is the family of low density parity check
(LDPC) codes discovered by Gallager [Gal63]. He was motivated by the problem of
finding “random-like” codes that could be decoded near the channel capacity with
quasi-optimal performance and feasible complexity. These codes were extended in
a natural way to moderate density parity check codes in [OB09]. LDPC codes have
many applications in communication field as well as in cryptography.

Definition 2.18 (LDPC/MDPC codes). An [n, k, ω]−code is a linear code defined
by a k × n parity-check matrix (k < n) where each row has weight ω.

An LDPC code is an [n, k, ω]−code with ω = O (1), when n→∞.[Gal63]
An MDPC code is an [n, k, ω]−code with ω = O (

√
n), when n→∞.[OB09]

The theory of error correcting codes is not only a highly important tool in the
communication field, it is also applied to public key cryptography. One of the
oldest public key encryption scheme, namely the McEliece PKC [McE78], is based
on several aspects from coding theory.
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2.3 Code-Based Public-Key Encryption Schemes
In this section we give the basic notions about the McEliece [McE78] cryptosystem.

2.3.1 McEliece encryption scheme

Let G be a family of (n, k)-linear codes over Fq for which a polynomial-time algorithm
to decode t-error is available. The general version of the McEliece cryptosystem is
described as follows.

Key generation.

1. Let G′ ∈Mk,n (Fq), be a generating matrix of a t-error correcting code C ′ ∈ G

2. Pick an n×n permutation matrix P and a k×k invertible matrix S at random
over Fq.

3. Compute G = S−1G′P−1 which is another generating matrix.

The public key is (G, t) and the private key is (S,G′,P ).

Encryption. To encrypt the message m ∈ Fkq , one randomly generates e ∈ Fnq of
Hamming weight 6 t. The ciphertext is then the vector c = mG + e.

Decryption. The vector cP−1 is at a distance at most t of C . The decoding
algorithm thus allows to find the vector y

def
= mS−1. The plaintext is deduced by

computing yS.

A version of the McEliece cryptosystem that uses the parity-check matrix instead
of the generating matrix has been proposed by Niederreiter [Nie86], and has been
proved to be completely equivalent in term of security [LDW94].

2.3.2 Niederreiter encryption scheme

The Niederreiter cryptosystem is generally describes as follows.

Key generation.

1. Let H ′ ∈ Mn−k,n (Fq), be a parity check matrix of a t-error correcting code
C ′ ∈ G

2. Pick at random an n × n permutation matrix P and a (n − k) × (n − k)
non-singular matrix S over Fq.

3. Compute H = S−1H ′P−1.

The public key is (H , t) and the private key is (S,H ′,P ).
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Encryption. For a message m ∈ Fnq of Hamming weight 6 t. The cipher text is
given by c = HmT .

Decryption. Since c = S−1H ′P−1mT = S−1H ′ (mP )T and mP is a word of
weight less than or equal to t, the receiver decodes Sc to get the word y. The
associated plaintext is then yP .

2.3.3 Security of the system

The security of the McEliece cryptosystem is based on two facts: firstly the public
code is supposed to be indistinguishable from a random code. If the later supposition
is satisfied then in order to decrypt a cyphertext, one has to solve an instance of
Problem 2.7 (Syndrome decoding problem) which is known as a difficult problem. In
the usual security framework there are three levels of attacks that might jeopardize
the scheme.

? Distinguishing Attacks: an attacker has to distinguish between the public code
and a random code in order to invalidate the hypothesis of the security proofs
for the scheme. In some cases the distinguisher might lead to an efficient Key
Recovery Attack.

? Message Recovery Attacks (MRA): an attacker tries to retrieve the message
from a given ciphertext.

? Key Recovery Attacks (KRA): an adversary tries to retrieve the private key
from the public key and thus completely breaks the cryptosystem.

So the security clearly depends of the family of codes used, and the chosen param-
eters. In his original paper, McEliece proposed to use a (1024, 524, 101)−binary
Goppa code. Thus its security is based on two problems:

• The difficulty of decoding a random linear code

• The difficulty of recovering a decoding algorithm from a public matrix repre-
sentation of a binary Goppa code.

Although the second problem has never been proven NP-hard, the system has with-
stood all structural attacks until today. A distinguisher exists in the case of high
rate Goppa codes [FGO+13] but, despite of this potential vulnerability, there is no
efficient algorithm for the moment exploiting the knowledge and the properties of
the distinguisher. The system is not used in practice because of the enormous size
of the public key. Table 2.1 gives some updated parameters for an acceptable secu-
rity level and compares the associated public key sizes to RSA public key sizes (see
[BLP08, NMBB10] for more details).
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Security level (n, k) t Public Key size RSA Public key sizes
80 bits (1632, 1269) 33 460647 bits 512 bits
128 bits (2960, 2288) 56 1537536 bits 3072 bits
256 bits (6624, 5129) 115 7667855 bits 15360 bits

Table 2.1 – Parameters and key size for McEliece with Goppa codes from [BLP08]
and key size for the RSA scheme

One can remark that for the same level of security, the public key of the McEliece
cryptosystem is more than 100 times greater than the RSA public key [RSA78].
Therefore reducing the size of the keys is one of the starting points of a continuous
research interest in this field. We mention the existence of a recent compact variant
of the McEliece scheme based on quasi-dyadic Goppa codes due to Misoczki and
Barreto [MB09], variant that is not yet broken in the binary case. However, there
are several ideas for solving this problem of key sizes. The very old one consists to
replace the Goppa codes by another family of codes.

2.3.4 Some variants of the McEliece cryptosystem

The natural question with the McEliece cryptosystem is always to know the most
appropriate code family to use.

Generalized Reed-Solomon codes

This family was proposed for the first time by Niederreiter in [Nie86] but turned
out to be an insecure solution. Indeed, six years after the article was published,
Sidelnikov and Shestakov proposed a polynomial time attack against this variant
[SS92]. Nevertheless the idea of using GRS codes was reconsidered more than ten
years after by Berger and Loidreau when they proposed to consider subcodes of
GRS codes [BL05]. Unfortunately this technique was also attacked in two steps by
Wieschebrink [Wie06a, Wie09], using the square code structure.

Other attempts to repair the Niederreiter variant were proposed by Wieschebrink
[Wie06b] whose idea was to add random columns to the generator matrix. But this
variant turned out to be extremely unsecure against square code type attacks
or filtration type attacks [CGG+14]. Nevertheless GRS codes are still of high
interest for cryptography since several modified version of the McEliece scheme use
this family of codes. For example Baldi et al. [BBC+16] proposed to change the
permutation matrix, Tillich et al. [CT16] proposed to use them in a “u | u + v”
construction, Wang [Wan16] proposes to use a more general technique derived from
Wieschebrink’s idea.
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Reed-Muller codes

Reed-Muller codes were proposed by Sidelnikov’s in [Sid94] and was firstly attacked
by Minder and Shokrollahi [MS07]. In the case of Reed-Muller codes, the Key
Recovery Attack is reduced to solving the code equivalence problem:

Problem 2.11 (Permutation Code Equivalence Problem). Let G and G∗ be the
generating matrices for two [n, k] binary linear codes. Given G and G∗, find a k×k
invertible matrix S and n× n permutation matrix P such that G∗ = SGP .

Since there is only one Reed-Muller code with parameters r and m, a cryptanal-
ysis can try to solve problem 2.11 with G∗ = Gpub and G a generator matrix of
RM(r,m). Minder and Shokrollahi managed to solve this problem using a filtration
type attack based on the structure properties of the minimum weight codewords.
The complexity of their algorithm was dominated by the minimum weight codewords
searching algorithm.

Recently, Chizhov and Borodin [CB14] proposed another attack that could solve
the code equivalence problem, for some of the parameters of the Reed-Muller codes,
in polynomial time. Their idea was to use two simple operations in order to find
the first order Reed-Muller code given the rth order Reed-Muller code. Indeed they
noticed that the dual and the square code of a Reed-Muller code is still a Reed-
Muller code. So they combined these operations in order to approach theRM(1,m).
A modified version using the masking technique introduced by Wieschebrink was
proposed in [GM13] but we will prove in Chapter 3, using a square code type
attack, that this variant is insecure.

Algebraic-geometry codes

This family of codes was suggested by Janwa and Moreno [JM96]. Several articles
discuss the potential vulnerabilities of this variant and propose algorithms that could
be deployed to attack in some particular cases (codes from curves of genus at most
2) [Min07, FM08]. Nevertheless they can not be generalized and suffer in terms
of efficiency. In [CMCP14] Couvreur, Marquez-Corbella and Pellikaan proposed a
polynomial type algorithm that works on codes from curves of arbitrary genus.

LDPC codes

Monico, Rosenthal and Shokrollahi were the first ones to propose and analyze a
McEliece variant using low density parity check codes in [MRAS00]. Using the idea
of Gaborit to consider quasi-cyclic codes [Gab05] 2 the new QC-LDPC cryptosystem
was presented by Baldi and Chiaraluce in [BC07]. Both BCH codes and LDPC
codes with quasi-cyclic structure were successfully cryptanalyzed by Otmani, Tillich
and Dallot [OTD08]. In order to prevent the last attack, a modification based on

2In [Gab05] the author proposes BCH codes with quasi-cyclic structure. The idea of adding the
quasi cyclic structure became one of the main techniques for reducing the key size in the McEliece
scheme.
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increasing the weight of the codewords in the public code was proposed in [BBC08].
More details about this variant can be found in [Bal14]. The modification of [BBC08]
seems to be working for the moment since there is no other structural attacks.

MDPC codes

Moderate Density Parity-Check codes are probably the most suitable codes in a
McEliece type scheme [MTSB13]. Many cryptographic arguments are in favour of
this family of codes like efficiency, small key size when used with a quasi-cyclic
structure and the most important to our opinion the lack of algebraic structure.
Another security argument is the fact that the usual distinguisher does not work for
MDPC codes. In a recent paper, weak keys of the QC-MDPC scheme are revealed
[BDLO16]. However the authors show how to avoid vulnerable parameters.

Wild Goppa codes

This code family is a natural extension from binary Goppa codes to non-binary fields.
It was proposed by Bernstein, Lange and Peters in [BLP10] and [BLP11]. Many
of the proposed parameters were broken by Couvreur, Otmani and Tillich using
filtration type techniques when the extension is quadratic [COT14a, COT14b].

Srivastava codes

Srivastava codes were proposed in [Per12] in order to reduce the key length of the
original McEliece scheme. The author uses Quasi-Dyadic Srivastava codes and gives
another application of these types of codes for signature schemes. Even though
the parameters for the signature were broken in [FOP+16a], the parameters for the
encryption scheme are still valid.

Convolutional codes

Convolutional codes represented among the shortest term solutions since between
the proposed article by Londahl and Johansson [LJ12] and the efficient attack by
Landais and Tillich [LT13] only one year passed.

Polar codes

The first variant using Polar codes was proposed by Shrestha and Kim [SK14] while
the second one using subcodes of Polar codes was given in [HSEA14]. In [BCD+16]
the first variant was attacked using the structure of the minimum weight codewords.
The authors managed to solve the code equivalence problem for Polar codes and thus
completely break the scheme.

To conclude this chapter, we emphasise that there are code families which are
not appropriate in this context due to their structural properties, namely the GRS
codes, the Reed-Muller codes, the Polar codes ... However several classes of codes
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remain secure in a McEliece PKC such as original binary Goppa codes and MDPC
codes etc. We also point out that all these variants use hamming distance. Another
idea that is very similar to all the above variants is to use another family of codes,
but with another metric. Gabidulin was the first to introduce this idea with the GPT
cryptosystem [GPT91] that uses the rank distance. After the attacks of [Ove05b]
several variants of the system were proposed [Gab08, GRH09, RGH10, RGH11]. The
chapters 4 and 5 of this thesis will be devoted to this part of code based cryptography
which is nowadays known as rank-based cryptography. We will show that all existing
variants of the GPT cryptosystem are insecure.
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Chapter 3

Cryptanalysis of a Modified
Sidelnikov Cryptosystem

Introduction
This chapter develops a cryptanalysis of the modified version given in [GM13] of the
Sidelnikov encryption scheme [Sid94] which is a McEliece-type public key encryption
scheme [McE78] based on Reed-Muller codes. The idea of [GM13] is to add random
columns to prevent the key-recovery attacks of [MS07, CB13]. But, like Reed-
Solomon codes, Reed-Muller codes are evaluation codes and because of this, they
can be distinguished from random codes. These two families of codes share very
similar properties which facilitates the recovering of the random columns. Our
key-recovery attack is divided into two steps. The first one is an adaptation to
Reed-Muller codes of the attacks presented in [GOT12b, CGG+14] in order to find
the secret random columns. This is achieved in O(n5) operations in the binary field
where n is the block length of the codes. The second step applies [MS07, CB13] to
recover the secret permutation that hides the structure of the Reed-Muller codes.
The rest of the chapter is devoted to the description of the first step of the attack.

3.1 Preliminary Facts
We give here some definitions and properties from coding theory we need in the
chapter. Let Fq be the finite field of q elements, n and k be two non-zero integers
such that k 6 n.

Definition 3.1. Let C be a (n, k)−code over Fq and i in {1, · · · , n}. The punctured
code C i of C is obtained by puncturing (or deleting) the i−th coordinate from all
the codewords of C .

Definition 3.2 (Component-wise product). Given two vectors a = (a1, . . . , an)
and b = (b1, . . . , bn) in Fn where F is field, we denote by a ? b the component-wise
product:

a ? b
def
= (a1b1, . . . , anbn).
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Definition 3.3 (Product of codes). Let A and B be two linear codes of length n.
The star product code denoted by A ?B of A and B is the vector space spanned
by all products a ? b where a and b range over A and B respectively.

When B = A then A ?A is called the square code of A and is rather denoted
by A 2.

Let Sn be the permutations group of order n and σ belonging to Sn. From the
above definitions, the following corollary is obvious:

Corollary 3.1. For any linear code A of length n,

(A σ)2 =
(
A 2
)σ

The importance of the square code construction becomes clear when we compare
the dimensions of a code A with the dimension of its square code A 2 and one major
question is to know what one should expect. This comparison has already been made
in [GOT12b, CGG+14] in the case of generalized Reed-Solomon codes which allowed
to mount efficient attacks on several different schemes based on generalised Reed-
Solomon codes [Wie09, GOT12b, CGG+14]. The results of this chapter are based
on these comparisons in the case of Reed-Muller codes.

We recall now important facts about the dimension of product of codes.

Proposition 3.2. For any linear subspaces F ⊆ E and G ⊆ E with finite dimen-
sions:

dimF ? G 6 dimF dimG−
(

dimF ∩G
2

)
. (3.1)

Proof. Assume d def
= dimF ∩ G and let B = {b1, . . . , bd} be a basis of F ∩ G. We

complete B with vectors F = {f1, . . . , ft} so that B ∪ F is a basis of F . We do the
same for G by completing B with G = {g1, . . . , gm} so that B ∪ G is a basis of G.
A generating set of F ? G is the union of the four sets {bi ? bj : 1 6 i 6 j 6 d},
{bi ? fj : 1 6 i 6 d, 1 6 j 6 t}, {bi ? gj : 1 6 j 6 d, 1 6 j 6 m} and {fi ? gj : 1 6
j 6 t, 1 6 j 6 m}. The proof is terminated by observing the equality:

dt+ dm+ tm+

(
d+ 1

2

)
= (t+ d)(d+m)− 1

2
d(d− 1).

Corollary 3.3. For any linear subspaces F ⊆ E:

dimF ? E 6 dimF dimE −
(

dimF

2

)
.

In particular

dimE2 6

(
dimE + 1

2

)
(3.2)

In practice, the upper bound of (3.2) is generally reach with a high probability.
That means dimE2 =

(
dimE+1

2

)
. For more details, see [GOT12b, CGG+14].
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3.2 Wieschebrink’s Masking Technique

Here we present a masking technique first developed in [Wie06b] and then proposed
several times with different families of codes. It consists in inserting random columns
in the secret matrix. This technique can be used both in the McEliece cryptosystem
and the Niederreiter version.

3.2.1 Modified McEliece scheme

Key generation.

1. Choose three integers n0, k, ` with `� n0 and set n def
= n0 +`. Pick at random

a generating matrix G0 of an (n0, k)−code C that is able to decode t errors.

2. Pick randomly a matrix R inMk,` (Fq), an invertible matrix S in GLk(Fq) and
a n× n permutation matrix P .

3. Set G′ = (G0 | R) and compute G = S−1G′P−1.

The public key is (G, t) and the private key is (S,P ,G′).

Encryption. To encrypt a plaintext m ∈ Fkq , one randomly generates e ∈ Fnq of
weight less than t and computes the ciphertext c = mG + e.

Decryption. To decrypt c, one computes y = cP and let y′ be the n0 first
columns of y. The vector y′ is located within distance t from C . The decoding of
y′ provides the plaintext.

3.2.2 Modified Niederreiter scheme

Here one can apply the same principle as in the case of McEliece cryptosystem, but
here the insertion of random columns is done in the parity check matrix.

Key generation.

1. Choose three integers n0, k, t, ` with ` � n0 and set n def
= n0 + `. Pick a

random parity-check matrix H0 of an (n0, k)−code C that is able to decode t
errors.

2. Pick randomly a matrix R in M(n0−k),` (Fq), a non singular matrix S in
GLn0−k(Fq) and a n× n permutation matrix P .

3. Set H ′ = (H0 | R) and compute H = S−1H ′P−1

The public key is (H , t) and the private key is (S,H ′,P ).
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Encryption. For a plaintext m ∈ Fnq of Hamming weight less than t, the corre-
sponding ciphertext is given by c = HmT .

Decryption. Let dec(·) be the decoding algorithm of C . The symbol ⊥ stands for
a decoding failure1. The decryption of a ciphertext c is described in Algorithm 1.

Algorithm 1 Decryption of Niederreiter scheme with Wieschebrink’s masking.
u = ⊥
for all z ∈ F`q do

y = dec
(
Sc + RzT

)
if y 6= ⊥ then

u = (y, z)P , return u
end if

end for
return u

Note that it is possible for the word u to be different from the transmitted
message m. But an analysis of the meaning of the received message can eliminate
these cases and consider them as failures decoding. The complexity of this algorithm
is of order q`T (dec) where T (dec) is the time complexity of the decoding algorithm
dec(·).

Although the public code seems to be random in this description, a major prob-
lem rests on the choice of the code family to use and how to reduce the size
of the keys. Wieschebrink had proposed the use of Reed-Solomon codes but in
[GOT12b, CGG+14] an attack is presented that can recover the random secret
matrix R. Recently, the paper [GM13] suggested the use of Reed-Muller codes
along with Wieschebrink’s masking technique to propose a McEliece-type encryp-
tion scheme. In the next section, we describe how to find the random columns
of R in this case. Our attack uses the same technique as the one presented in
[GOT12b, CGG+14] for the case of Reed-Solomon codes.

3.3 Recovering the Random Columns in Polynomial
Time

In this section, we draw inspiration from [GOT12b, CGG+14] to mount an attack
on the version presented in [GM13]. But before doing so, we present some properties
of Reed-Muller codes.

3.3.1 Some Properties of Reed-Muller Codes

Let’s start by the following theorem concerning the stability of the dimension of a
Reed-Muller code when punctured.

1This may happen when for instance the number of errors is greater than t
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Theorem 3.4 ([MS86] Chapter 13). Let j be an integer in range {1, · · · , n} where
n = 2m is the length of the Reed-Muller code RM(r,m). We have:

dim (RM(r,m)j) =
r∑
i=0

(
m

i

)
= dim (RM(r,m))

The next result is really important because it allows among others to distinguish
a Reed-Muller code from a random one.

Proposition 3.5. Let r and m be two integers such that 0 6 r 6 m and 2r 6 m.
We have

RM(r,m)2 = RM(2r,m)

Proof. Let c1 =
(
f(a1), . . . , f(an)

)
and c2 =

(
g(a1), . . . , g(an)

)
be elements of

RM(r,m) with deg f 6 r and deg g 6 r. Hence, c1 ? c2 is the vector of evaluation(
fg(a1), . . . , fg(an)

)
which corresponds to polynomial fg. This means c1 ? c2 ∈

RM(2r,m). Conversely, each monomial xu11 . . . xumm with ui ∈ {0, 1} and
∑

i ui 6 2r
is the product of two polynomials of degree 6 r. This proves that a basis of
RM(2r,m) is contained in RM(r,m)2.

This proposition allows to observe that for 2r 6 m, the dimension of RM(r,m)2

is
2r∑
i=0

(
m
i

)
. For a random (n, k)−code C , we have with a high probability,

dim
(
C 2
)

= min {n,
(
k + 1

2

)
}

See [GOT12b, CGG+14] for more details. So one can distinguish a Reed-Muller code
from a random one by computing the dimension of the square code. It is supposed
that 2r 6 m but a distinguisher can also be deduce in other cases, using Theorem
2.10. In fact, when 2r > m we have

(RM(r,m)⊥)2 = RM(m− r − 1,m)2 = RM(2m− 2r − 2,m)

Since 2r > m we get 2m− 2r − 2 < m. That means

dim(RM(r,m)⊥)2 =
2m−2r−2∑

i=0

(
m

i

)
Remark 3.1. By combining Theorem 3.4 and Proposition 3.5, one can easily remark
that for an integer j in range {1, · · · , n} we have

dim (RM(r,m)j)
2 = dim

(
RM(r,m)2

)
(3.3)

Now we can state the following proposition which is the key result for the sequel
of the chapter.
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Proposition 3.6. Let G be a k × (n + `) matrix obtained by inserting ` random
columns in the generating matrix of a Reed-Muller code RM(r,m) and let C be the
code spanned by the rows of G. Assume that ` 6

(
k+1

2

)
and

∑2r
i=0

(
m
i

)
6 n.Then we

have:
2r∑
i=0

(
m

i

)
6 dim C 2 6

2r∑
i=0

(
m

i

)
+ ` (3.4)

Proof. Let D1 be the code with generating matrix G1 obtained from G by replacing
the last ` columns by all-zero columns and let D2 be the code with generating
matrix G2 obtained by replacing in G the first n columns by zero columns. Hence
G = G1 + G2 which implies D1 ⊆ C ⊆ D1 + D2. We have D1 ? D2 = 0 and the
following inclusion:

D1
2 ⊆ C 2 ⊆ D1

2 + D2
2 + D1 ?D2.

Observe we have D1 ? D2 = 0. By also remarking dim D1
2 = dimRM(2r,m) and

dim D2
2 = min

{
`,
(
k+1

2

)}
= `, one can conclude (3.4) is proven.

From the previous proof, it is obvious that the result remains true with any other
family of code. In other words, if C is a (n + `, k)−code obtained by inserting `
random redundancies in a (n, k)−code D then

dim D2 6 dim C 2 6 dim D2 + ` (3.5)

We have here inequalities but in practice, we have better than that. For Reed-Muller
codes we observed experimentally that for all parameters in [GM13], the upper born
is reached. The result is also the same when dealing with punctured Reed-Muller
Codes. So in the attack we consider that

dim C 2 = dim D2 + ` (3.6)

3.3.2 Description of the attack

It is easy for an adversary to use Equation 3.6 to identify the random columns by
computing the dimension of C 2 where C is the code generated by the public matrix
G as defined in Section 3.2. We recall that C is permuted version of a Reed-Muller
code RM(r,m) with ` random redundancies at ` random positions. We assume
that

∑2r
i=0

(
m
i

)
6 n0 where n0 = 2m and ` <

(
k+1

2

)
where k =

∑r
i=0

(
m
i

)
. We now

denote by Ci the code generated by the generating matrix Gi obtained by deleting
the i-th column of G (that is to say the punctured code of C at position i). We also
denote by I ⊂ {1, . . . , n} the set of positions that define the random columns in G.
We have the following result:

Proposition 3.7. For any i in {1, . . . , n}, two cases occur :

dim Ci
2 =


dim C 2 − 1 if i ∈ I,

dim C 2 if i /∈ I.
(3.7)
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Proof. If i belongs to I then, Ci is a Reed-Muller code RM(r,m) with `−1 random
redundancies and we have

dim Ci
2 = dimRM(r,m)2 + `− 1 = dim C 2 − 1

Else, Ci is the punctured Reed-Muller code RM(r,m)i with ` random redundancies
and then

dim Ci
2 = dimRM(r,m)i

2 + ` = dimRM(r,m)2 + ` = dim C 2

This is the way of distinguishing the random positions of the public code as-
suming that

∑2r
i=0

(
m
i

)
+ ` 6 n. The set I can then be found and once the set is

recovered, it is easy to find the secret RM(r,m) using usual attacks on Reed-Muller
code [MS07, CB13].

3.3.3 Complexity of the attack

Proposition 3.8. Let A ⊂ Fnq be a code of dimension k. The complexity of the
computation of a basis of A 2 is O(k2n2) operations in Fq.

Proof. The computation, consists first in the computation of
(
k+1

2

)
generators of

A 2. This computation costs O(k2n) operations. Then, we have to apply a Gaussian
elimination to a

(
k+1

2

)
×n matrix, which costs O(k2n2) operations. This second step

is dominant, which yields the result.

Our attack relies on the computation of the rank of n square codes so the overall
complexity for guessing the random columns is O(n5) operations in the binary field.

Conclusion
We have studied the security of the modified version of the Sidelnikov scheme [Sid94]
given in [GM13] and presented a polynomial-time method that finds the random
columns inserted in a secret matrix. This cryptanalysis uses the same approach as
[GOT12b, CGG+14] which computes the square codes. The resulting complexity
is O(n5) operations in the binary field. The last step that aims to fully break the
scheme consists of using the attacks developed in [MS07, CB13]. This shows that the
insertion of random columns in the Sidelnikov scheme does not bring any security
improvement and thus open again the problem of finding a good masking technique
for Reed-Muller codes.
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Chapter 4

Rank Metric Cryptography

Introduction
The concept of rank metric cryptography appeared in [GPT91] where the authors
propose a public key encryption scheme using codes in a rank metric framework.
They adapted McEliece’s general idea [McE78] developed for the Hamming metric
to the rank metric context. The key tool in the design is to focus on linear codes
having a fast rank-metric decoding algorithm like Gabidulin codes. In this section,
we introduce important notions about rank-metric codes and Gabidulin codes and
we recall the general principle that underlies all the existing rank-metric encryption
schemes.

4.1 Aspects of Rank Metric Codes
For any subfield K ⊆ F of a field F and for any positive integers k and n such that
k 6 n, the K-vector space spanned by b1, . . . , bk where each bi ∈ Fn is denoted by∑k

i=1 K bi. The group of invertible matrices of size n over F is denoted by GLn(F).

Definition 4.1 (Rank weight). Let A be a matrix fromMm,n (F) where m and n
are positive integers. The rank weight of A denoted by |A| is the rank of A. The
rank distance between two matrices A and B fromMm,n (F) is defined as |A−B|.

It is a well-known fact that the rank distance onMm,n (F) has the properties of
a metric. But in the context of the rank-metric codes, this rank distance is rather
defined for vectors x ∈ Fnqm . The idea is to consider the field Fqm as an Fq-vector
space and hence any vector x ∈ Fnqm as a matrix from Mm,n (Fq) by decomposing
each entry xi ∈ Fqm into an m-tuple of Fmq with respect to an arbitrary basis of
Fqm . The rank weight of x also denoted by |x| is then its rank1 viewed as a matrix
of Mm,n (Fq). Hence, it is possible to define a new metric on Fnqm that we recall
explicitly in the following.

1This rank is of course independent of the choice of the basis of Fqm since the rank of a matrix
is invariant when multiplied by an invertible matrix.
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Definition 4.2. Let us consider the finite field extension Fqm/Fq of degree m > 1.
The rank weight of a vector x = (x1, x2, ..., xn) in Fnqm denoted by |x| is the dimension
of the Fq-vector space generated by {x1, . . . , xn}

|x| = dim
n∑
i=1

Fqxi. (4.1)

The Fq−vector space
∑n

i=1 Fqxi is called the support of x.

Definition 4.3. The column rank over Fq of a matrix M fromMk,n (Fqm) is also
denoted by |M |. It represents the dimension of

∑n
i FqM i where M 1, . . . ,Mn are

the columns of M .

In practice, computing the rank weight of a given vector can be done through
the bijective mapping ΦB associated to a Fq−basis B = {b1, b2, ..., bm} of Fqm and
defined as follows:

ΦB : Fqm −→ Mm,1 (Fq)

x =
m∑
i=1

xibi 7−→ ΦB(x)
def
=


x1

x2

.

.

.
xm


ΦB can then be extended to vectors x = (x1, x2, ..., xn) ∈ Fnqm by

ΦB(x)
def
= (ΦB(x1), · · · ,ΦB(xn)) ∈Mm,n (Fq) .

And for a matrix M = (mij) ∈Mk,` (Fqm)

ΦB(M)
def
= (ΦB(mij)) ∈Mkm,` (Fq)

We then have |x| = rank(ΦB(x)) and |M | = rank(ΦB(M ))

Example 4.1. Let F25 = F2 < w >, x = (w,w,w,w,w), y = (1, w, w2, 1 + w3, w4).
We consider B = {1, w, w2, w3, w4} as an F2−basis of F25 .

|x| = rank(ΦB(w),ΦB(w),ΦB(w),ΦB(w),ΦB(w)) = rank


0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = 1.

With the same method,

|y| = rank
(
ΦB(1),ΦB(w),ΦB(w2),ΦB(1 + w3),ΦB(w4)

)
= rank


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 = 5.
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If we consider the matrix M given by:

M =

(
1 w w w 1 + w
1 w w2 1 + w3 1 + w2

)
|M | is given by the rank of the matrix

ΦB(M) =



1 0 0 0 1
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0


That is to say |M | = 4. One can also remark that the last column of M is a
F2−linear combination of the first column and the third one. Furthermore, the first
four columns of M are F2−linearly independent. Thus |M | = 4.

From the above definition we can deduce the following proposition.

Proposition 4.1. Let M be a matrix fromMk,n (Fqm) and set s = |M | with s < n.
There exist then M ∗ inMk,s (Fqm) with |M ∗| = s and T in GLn(Fq) such that:

MT = (M ∗ | 0) (4.2)

In particular for any x ∈ Fnqm such that |x| = s there exists T in GLn(Fq) for which
xT = (x∗ | 0) where x∗ ∈ Fsqm and |x∗| = s.

This permits to state the following corollary.

Corollary 4.2. For any M ∈Mk,n (Fqm) and for any m ∈ Fkqm

|mM | 6 |M | (4.3)

Proof. Suppose that |M | = s and let T in GLn(Fq) such that MT = (M ∗ | 0) with
M ∗ in Mk,s (Fqm) . We then have |mM | = |mMT | = |m(M ∗ | 0)| 6 |M ∗| 6
s.

Rank metric codes

In the sequel, a code C will be called a rank metric code if the distance used is the
rank distance. As in Hamming metric, an important parameter for a rank metric
code C is its minimum distance.
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4.1. ASPECTS OF RANK METRIC CODES

Definition 4.4 (Minimum rank distance). The minimum rank distance d of a rank
metric code C is given by:

d = min{|x| : x ∈ C ,x 6= 0}

Let C be a rank metric code of length n and dimension k defined on Fqm . H ∈
Mn−k,n (Fqm) is a parity check matrix of C . We have the following characterization:

Theorem 4.3. C has minimum rank distance d if and only if both of the following
conditions are satisfied:

1. For any matrix Y belonging to Md−1,n (Fq) such that rank(Y ) = d − 1, we
have

rank(Y H t) = d− 1

2. There exists Y 0 belonging toMd,n (Fq) with rank(Y 0) = d and for which

rank(Y 0H
t) < d

Proof. Let us suppose that the minimum distance of C is d and let c ∈ C such that
|c| = d. Then one can write c = bY 0 with Y 0 ∈ Md,n (Fq) and b ∈ Fdqm . Since
cH t = 0, we have bY 0H

t = 0 and since b 6= 0, this implies that rank(Y 0H
t) < d.

So the second point is verified. For the first point, we can use the fact that the
code does not contain a non zero word with rank norm less than d. So for any
Y ∈Md−1,n (Fq) with rank d− 1, the equation

(z1, ..., zd−1)Y H t = 0

has only a trivial solution. That is to say rank(Y H t) = d− 1, so the first point is
satisfied. It is obvious that if the first and second conditions are satisfied then the
minimum rank distance of C is d.

Maximum Rank Distance Codes

Maximum Rank Distance (MRD) codes in rank metric are the equivalents of Maxi-
mum Distance Separable (MDS) codes in hamming metric. In this sub-section, we
define and give some characterizations of MRD codes. We start with the following
proposition.

Proposition 4.4. Let C be an (n, k)−code on Fqm and d its minimum rank distance.
Assuming n 6 m we have:

d 6 n− k + 1

Proof. Let x be a non-zero codeword of C . It is obvious that |x| 6 w(x). If we
denote by dH the minimum hamming distance of C , then we have d 6 dH and from
the Singleton bound we get d 6 dH 6 n− k + 1.
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4.1. ASPECTS OF RANK METRIC CODES

We will assume in the sequel that any (n, k)− rank-metric code on Fqm satisfies
n 6 m.

Definition 4.5. A (n, k, d)−code C is a Maximum Rank Distance code if it mini-
mum rank distance satisfies

d = n− k + 1

The following proposition gives a characterization for MRD codes.

Proposition 4.5. Let C be an (n, k)−code with parity check matrix H. C is MRD
if and only if for any Y ∈Mn−k,n (Fq) of rank n− k,

rank(Y H t) = n− k

Proof. If for any Y ∈ Mn−k,n (Fq) with rank n − k we have rank(Y H t) = n − k
then, from Theorem 4.3, d > n − k + 1 and thus d = n − k + 1. Conversely, if
d = n− k + 1 then d− 1 = n− k and we get the result from Theorem 4.3.

Theorem 4.6. Let C be a (n, k)−code. C is an MRD code if and only if C ⊥ is an
MRD code.

Proof. Let C be an MRD code and H a generator matrix of C ⊥. From proposition
4.5, it follows that for any Y ∈ Mn−k,n (Fq) of rank n − k, rank(Y H t) = n − k.
This implies that for any non zero codeword h ∈ C ⊥ and for any Y ∈Mn−k,n (Fq)
of rank n− k, Y ht 6= 0. Assume that there exists h ∈ C ⊥ with rank(h) 6 k. Then

h = bX = (b1, ..., bk)X with X ∈Mk,n (Fq) and rank(X) = k.

So for any Y inMn−k,n (Fq),
Y X tbt 6= 0. (4.4)

Furthermore, for any X in Mk,n (Fq) of rank k, there exists an orthogonal matrix
Y 0 ∈ Mn−k,n (Fq) such that Y 0X

t = 0. This implies that Y 0X
tbt = 0 and that

is a contradiction with (4.4). So, C ⊥ does not contain a non-zero codeword of rank
less than (or equal to) k. We then deduce that the minimum distance of C ⊥ is k+ 1
and thus, C ⊥ is an MRD code. To finish, let’s suppose that C ⊥ is an MRD code,
then C ⊥

⊥ is also an MRD code and since C ⊥
⊥

= C , this implies that C is an MRD
code.

From this theorem we can deduce another characterization of MRD codes, using
generating matrices.

Corollary 4.7. Let C be a (n, k)−code and G a generating matrix of C . C is MRD
if and only if for any X ∈Mk,n (Fq) of rank k,

rank(XGt) = k
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4.1. ASPECTS OF RANK METRIC CODES

4.1.1 Hardness of the Rank Decoding Problem

The rank decoding problem is the equivalent of the hamming decoding problem in
the rank metric context. The search version can be defined as follows:

Definition 4.6 (Rank Decoding Problem RD). Let G be a full-rank matrix be-
longing toMk,n (Fqm) with k 6 n, y an element of Fnqm and t an integer. The Rank
Decoding Problem is to find e in Fnqm and m in Fkqm such that y = mG + e with
|e| 6 t. This problem will be denoted as the RDq,m,n,k,t problem.

The decisional version of this problem is the following:

Definition 4.7 (Decisional Rank Decoding Problem). Let G be a full-rank matrix
belonging toMk,n (Fqm) with k 6 n and t an integer. Consider y ∈ Fnqm and D1 be
the following distribution:

D1 = {xG + e,x ∈ Fkqm , e ∈ Fnqm with |e| 6 t}
The Decisional Rank Decoding Problem DRDq,m,n,k,t is to distinguish whether y
belongs to D1 or not.

The dual variant of this problem is called the Decisional Rank Syndrome Decod-
ing Problem and is equivalent to the DRD problem :

Definition 4.8 (Decisional Rank Syndrome Decoding Problem DRSD). Let H ∈
Mn−k,n (Fqm) where n and k are positive integers with k 6 n, t another integer. Let
s ∈ Fn−kqm and D2 be the following distribution:

D2 = {Het, e ∈ Fnqm with |e| 6 t}
The Decisional Rank Syndrome Decoding Problem DRSDq,m,n,k,t is to distinguish
whether s belongs to D2 or not.

These problems was recently proven to be NP-hard [GZ16]. In the following
paragraphs, we give some references about the best algorithms for solving the rank
decoding problem.

4.1.2 Algorithms for Solving the Rank Decoding Problem

Existing algorithms that solve the RDq,m,n,k,t problem can be divided in two classes:
Combinatorial algorithms and algebraic algorithms.

Combinatorial Algorithms

These algorithms consider the properties of rank metric on a combinatorial point
of view in order to recover the support or the coordinates of the error vector. The
problem being to find a word e from Fnqm with |e| 6 t such that Het = st, one
can remark that the coordinates of e are elements of an Fq−vector subspace V of
Fmq with dim V = t (V is the support of e). Let b = (b1, · · · , bt) be a basis of V
considered as a vector of length t. Thus e can be reformulated as e = bE where
E belongs toMt,n (Fq). Let Ω = (ω1, · · · , ωm) be a Fq−basis of Fqm . b can be also
represented as a m× t matrix using de mapping ΦΩ.

38



4.1. ASPECTS OF RANK METRIC CODES

Chabaud-Stern algorithm The first idea from Chabaud-Stern [CS96] is to enu-
merate all the different possible basis b of t vectors and for each b, solve the system
HEtbt = st in which the unknowns are the entries of E. One can remark that the
system is linear once b is known. The complexity of the enumeration phase is qmt
operations by testing all the representations of each basis and can be reduced to
q(m−t)(t−1) operations by testing only one representation of each basis to enumerate.
This gives a global complexity of (nt+m)3 q(m−t)(t−1) operations in Fq.

Ourivski and Johannsson algorithms The approach of [OJ02] consists to
consider the equation y = mG + e instead of Het = s, where y is the received
word, m ∈ Fkqm and e an error of rank t. It follows that(

G
y

)
=

(
Ik 0
x 1

)(
G
e

)
(4.5)

Let Ce be the code generated by
(
G
y

)
. From Eq.4.5, we thus deduce the following

inclusion:
{λe : λ ∈ F∗qm} ⊂ Ce (4.6)

The idea is then to find an element e′ = λe ∈ Ce of weight t and deduce λ by
computing the syndromes e′H t and yH t = eH t. Let Ge = (Ik+1 | R) be the
systematic generator matrix of Ce. The fact that e belongs to Ce implies that
e = e1Ge = (e1 | e1R), e1 being the vector composed by the first k+ 1 coordinates
of e and hence satisfies |e1| 6 t. Furthermore, the fact that |e| = t implies that
there exist an incomplete basis {b1, · · · , bt} of Fqm over Fq and a full rank matrix
A ∈ Mt,n (Fq) such that e = (b1, · · · , bt)A. Assume that A = (A1 | A2) with
A1 ∈Mt,k+1 (Fq). We have:

e = (e1 | e1R) = (b1, · · · , bt) (A1 | A2) (4.7)

Eq. 4.7 implies that e1 = (b1, · · · , bt)A1 and e1R = (b1, · · · , bt)A2. Combining
both equations allows to get

(b1, · · · , bt)A2 = (b1, · · · , bt)A1R (4.8)

Since it is enough to get λe for any λ ∈ F∗qm , we can choose b1 = 1. Eq. 4.8 is then
a system of n− k − 1 equations with nt+ t− 1 unknowns, namely the components
aij of the matrix A and the remaining bi ∈ Fqm , i = 2, ..., t. Let Ω = {ω1, · · · , ωm}
be an Fq− basis of Fqm . By expressing each coordinate of b and R in the basis
Ω, Eq. 4.8 can be rewritten as a quadratic system of m (n− k − 1) equations in
nt + m(t − 1) unknowns over Fq. Ourivski and Johannsson [OJ02] proposed two
strategies for solving this system. One with (k + t)3 t3q(m−t)(t−1)+2 operations in Fq
and the second with (tm)3 q(t−1)(k+1)+2 operations on Fq. The general technique
consists to guess the values of some unknowns contributing to quadratic terms and
solve the resulting linear system.
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Gaborit-Ruatta-Shreck algorithm In [GRS16], a new combinatorial algorithm
is presented. This algorithm can be seen as an adaptation to the rank metric of the
information set decoding, but in its dual version, namely the error support attack.
The idea is to guess a subspace V ′ containing the error support V and find e
by solving a linear system derives from the syndrome equations. An important
point of this algorithm is the introduction of the ratio m/n in the exponent of
the complexity. The new complexity is min{O((n − k)3m3q(t−1)b(k+1)m/nc, O((n −
k)3m3qtbkm/nc} operations on Fq. This gives a major difference in the cases n > m.

Algebraic Algorithms

The main idea for algebraic algorithms is to translate the notion of rank into an
algebraic setting. The first approach from [LdVP06] considers Eq. 4.8 together
with the syndrome equations{

(b1, ..., bt)AH t = yH t

(b1, ..., bt)A2 = (b1, · · · , bt)A1R
(4.9)

Writing Eq. 4.9 in the basis Ω gives a system ofm(2(n−k)−1) equations in nt+m(r−
1) unknowns over Fq and is solved with Gröbner basis techniques. A new setting
based on linearized polynomials was recently proposed in [GRS16] and can allow to
solve the problem in O(((t + 1)(k + 1) − 1)3) operations in Fqm with linearization
technique when the condition n > (t + 1)(k + 1) − 1 is satisfied. In general, it
is shown in [GRS16] that the RD problem can be solved by an hybrid approach
(algebraic and combinatorial) with at most t3k3qtk operations in Fq assuming that
d (t+1)(k+1)−(n+1)

t
e 6 k. Another type of algebraic modelling which can be solved with

Gröbner basis techniques can be found in [FLdP08]. But since the attack consider
algebraic systems on the base field Fq, the number of unknowns is quadratic in the
length of the code. The global complexity of Gröbner basis attacks being exponential
in the number of unknowns, it implies that the complexity is in general exponential
when dealing with cryptographic parameters.

In the following, we present a special family of MRD codes known as Gabidulin
codes.

4.1.3 Gabidulin Codes

In this section and in the sequel, for any x in Fqm and for any integer i, the quantity
xq

i is denoted by x[i]. This notation is extended to vectors x[i] = (x
[i]
1 , . . . , x

[i]
n ) and

matrices M [i] =
(
m

[i]
ij

)
. The following lemma will be useful in the sequel.

Lemma 4.8. For any A ∈ M`,s (Fqm) and B ∈ Mk,n (Fqm), and for any α and β
in Fq:

1. If ` = k and s = n then

(αA + βB)[i] = αA[i] + βB[i]
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2. If s = k then
(AB)[i] = A[i]B[i].

In particular if S is in GLn(Fqm) then S[i] also belongs to GLn(Fqm) and

(S[i])−1 =
(
S−1

)[i]

Proof. The proof of the two points comes directly from the properties of the Frobe-
nius operators (multiplicative and Fq−linear). To finish, remark that for S in
GLn(Fqm), since SS−1 = In we also have S[i]

(
S−1

)[i]
= In. This implies that

S[i] belongs to GLn(Fqm) and (S[i])−1 =
(
S−1

)[i]

We introduce now an important family of codes known for having an efficient
decoding algorithm.

Definition 4.9 (Gabidulin code). Let g ∈ Fnqm such that |g| = n. The (n, k)−Gabidulin
code denoted by Gk (g) is the code with a generator matrix G where

G =

 g
[0]
1 · · · g

[0]
n

...
...

g
[k−1]
1 · · · g

[k−1]
n

 . (4.10)

A matrix of the form (4.10) is called a q−Vandermonde matrix.

Lemma 4.9. Gabidulin codes are Maximum Rank Distance (MRD) codes.

Proof. It is sufficient to establish that for any X ∈Mk,n (Fq) of rank k, rank(GX t)
is also equal to k. For any X inMk,n (Fq), the matrix GX t is a square matrix of
the form

GX t =

 f
[0]
1 · · · f

[0]
k

...
...

f
[k−1]
1 · · · f

[k−1]
k

 .

with (f1, · · · , fk) = (g1, · · · , gn)X t. Since |g| = n then |f | = min {n, rank(X)} = k
and we deduce that rank(GX t) = k.

From this lemma we can deduce that the error correction capability of a Gabidulin
code Gk (g) is b1

2
(n− k)c. It can also be used to prove the following proposition:

Proposition 4.10. The dual of Gk (g) is the Gabidulin code Gn−k (h) where h =
y[−(n−k−1)] and y belongs to Gn−1 (g)⊥.

Proof. One can remark from (4.10) that

Gn−1 (g)⊥ ⊂ Gn−2 (g)⊥ ⊂ · · · ⊂ Gk (g)⊥ (4.11)
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Since Gn−1 (g)⊥ is an MRD code of dimension 1, it minimum distance is d = n.
Thus any non zero element of Gn−1 (g)⊥ is of rank weight n. Let y be a non zero
element of Gn−1 (g)⊥. We have for all i ∈ {0, . . . , n− 2}

n∑
j=1

yjg
[i]
j = 0.

This implies that,

∀i ∈ {0, . . . , n− 2},
n∑
j=1

y
[−1]
j g

[i−1]
j = 0

In particular,

∀i ∈ {0, . . . , n− 3},
n∑
j=1

y
[−1]
j g

[i]
j = 0

Thus, y[−1] belongs to Gn−2 (g)⊥. We can deduce by induction that for all u in
{0, . . . , n− 1},

y[−u] ∈ Gn−1−u (g)⊥

and for a given u in {0, . . . , n− 1} we have

∀i ∈ {0, . . . , u} y[−u+i] ∈ Gn−1−u+i (g)⊥ ⊂ Gn−1−u (g)⊥.

For u = n−k−1 and h = y[−u] we have h[i] ∈ Gk (g)⊥ for all i in {0, . . . , n−k−1}.
That is to say

Gk (g)⊥ = Gn−k (h)

Gabidulin codes are known to possess a fast decoding algorithm that can decode
errors of weight t provided that t 6 b1

2
(n−k)c. We end this section by an important

well-known property about Gabidulin codes.

Proposition 4.11. Let Gk (g) be a Gabidulin code of length n with generator matrix
G and T ∈ GLn(Fq). Then GT is a generator matrix of the Gabidulin code Gk (gT )

Proof. From Lemma 4.8, we have (gT )[i] = g[i]T .

4.2 Rank Metric Encryption Schemes
In this section, we recall the general principle that underlies all the existing rank
encryption metric schemes based on Gabidulin codes. During the key generation
phase, the integers k, `, n and m are chosen such that k < n 6 m and 0 6 ` � n.
It then randomly picks g ∈ Fnqm with |g| = n and defines G ∈ Mk,n (Fqm) as in
(4.10), that is to say G is a generator matrix of the Gabidulin code Gk (g). The
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error-correcting capacity of Gk (g) is denoted by t def
= b1

2
(n− k)c. An important step

in the key generation is the “hiding” phase where G undergoes a transformation to
mask the algebraic structure of Gabidulin codes. This transformation is actually
a probabilistic algorithm that adds some randomness to its input. Originally, the
authors in [GPT91] proposed to use a distortion transformation

D : Fk×nqm −→ Fk×nqm

D sends any G to
D(G) = S(G + X)

where X is a random matrix from Fk×nqm with a prescribed rank tX and S is an
invertible matrix. The public key is then Gpub = D(G) with the parameter

tpub = t− tX

While the private key is (S,G). The encryption algorithm takes as input a plaintext
m ∈ Fkqm and generates a random e ∈ Fnqm such that |e| 6 tpub in order to compute
the ciphertext

c = mGpub + e.

In the decryption step the decoding algorithm of the Gabidulin code Gk (g) is applied
to the ciphertext. This word can be decoded since the underlying codeword is
corrupted by the error vector mSX + e whose rank weight is less than t since by
Corollary 4.2 we have

|mSX| 6 tX and |mSX + e| 6 |mSX|+ |e| 6 t

However, Gibson proved [Gib95, Gib96] that the GPT encryption scheme [GPT91]
is vulnerable to a polynomial time key recovery attack. Consequently, Gabidulin
and Ourivski proposed in [GO01] a reparation by considering a more general hiding
transformation combining a distortion matrix X and a right column scrambler P .
The hidden generator matrix is more precisely of the form:

D(G) = S (X1 | G + X2)P (4.12)

where X1 ∈ Mk,` (Fqm), X2 ∈ Mk,n (Fqm) such that |X2| < t and P ∈ GLn+`(Fq).
The public generator matrix is again Gpub

def
= D(G) which constitutes the public key

with the public parameter tpub
def
= t− t2 where t2

def
= |X2|. The decryption computes

P−1 = (Q1 | Q2) where Q1 ∈ M(n+`),` (Fq) and Q2 ∈ M(n+`),n (Fq). The last n
components of cP−1 is the vector mSG + mSX2 + eQ2 and since |eQ2| 6 |e|
and |mSX2| 6 |X2|, it follows that |mSX2 + eQ2| 6 t. Applying a fast decoding
algorithm to the last n components of cP−1 allows the legitimate user to get mS
and easily m.

We now state this result about Gabidulin and Ouriviski reparation which proves
that we can always consider X2 = 0.

43



4.2. RANK METRIC ENCRYPTION SCHEMES

Proposition 4.12. Let Gpub be as in (4.12) and assume that |X2| = t2. There
exist P ∗ ∈ GLn+`(Fq), X∗ ∈ Mk,(`+t2) (Fqm) and a matrix G∗ that generates an
(n− t2, k)−Gabidulin code Gk (g∗) such that

Gpub = S (X∗ | G∗)P ∗. (4.13)

Furthermore, the error correction capability t∗ of Gk (g∗) is equal to t − 1
2
t2, and

hence t∗ > tpub.

Proof. Since |X2| = t2 then by Proposition 4.1 there exist T 2 in GLn(Fq) and X ′
2

inMk,t2 (Fqm) such that X2T 2 = (X ′
2 | 0). So by letting T =

(
I` 0
0 T 2

)
we then

have:

Gpub = S (X1 | G + X2)P = S (X1 | GT 2 + X2T 2)T−1P

= S (X1 | G′ + X2T 2)Q

where G′ = GT 2 and Q = T−1P . Note that G′ generates the (n, k)−Gabidulin
code Gk (g′) with g′ = gT 2 = (g′1, . . . , g

′
n). Let us decompose G′ as (G′1 | G′2) where

G′1 ∈Mk,t2 (Fqm) and G′2 ∈Mk,(n−t2) (Fqm) we then have:

G′ + X2T 2 = (G′1 + X ′
2 | G′2)

By settingX = (X1 | G′1 + X ′
2) we get (4.13) andG′2 generates the (n−t2, k)−Gabidulin

Gk (g′2) where g′2 = (g′t2+1, . . . , g
′
n). The error-correction capability t∗ of Gk (g′2) is

given by t∗ = 1
2
(n− t2 − k) = t− 1

2
t2 which implies t∗ > t− t2.

The first important consequence of Proposition 4.12 is the possibility for a crypt-
analysist who is able to derive (S,G∗,P ∗) from Gpub so that (4.13) is satisfied to
decipher any ciphertext c = mGpub + e with |e| 6 tpub. Thus any successful struc-
tural attack on the description (4.13) leads to a successful attack on (4.12) and
conversely since (4.13) corresponds to the special case where X2 = 0. Therefore
the security of the scheme given [GO01] is equivalent to the one of a scheme where
X2 = 0.

4.2.1 Distinguishing Properties of Gabidulin Codes

We recall important algebraic properties about Gabidulin codes. It will explain why
many attacks occur when the underlying code is a Gabidulin one. One key property
is that Gabidulin codes can be easily distinguished from random linear codes. This
singular behavior has been presicely exploited by Overbeck [Ove05b, Ove05a, Ove08]
to mount attacks.

Definition 4.10. For any integer i > 0 let Λi :Mk,n (Fqm) −→Mik,n (Fqm) be the
Fq-linear operator that maps any M fromMk,n (Fqm) to Λi(M) where by definition:

Λi(M )
def
=

M [0]

...
M [i]

 . (4.14)
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For any code G generated by a matrix G we denote by Λi(G ) the code generated
by Λi(G).

Proposition 4.13. Let g be in Fnqm with |g| = n with n 6 m. For any integers k
and i such that k 6 n and i 6 n− k − 1 we have:

Λi

(
Gk (g)

)
= Gk+i (g) . (4.15)

The importance of Λi becomes clear when one compares the dimension of the
code spanned by Λi(G) for a randomly drawn matrix G and the dimension obtained
when G generates a Gabidulin code.

Proposition 4.14. If A ⊂ Fnqm is a code generated by a random matrix from
Mk,n (Fqm) then with a high probability:

dim Λi(A ) = min
{
n, (i+ 1)k

}
(4.16)

In the case of a Gabidulin code, we get a different situation as explained by
Proposition 4.13. Thus there is property that is computable in polynomial time and
distinguishes a Gabidulin code from a random one. This can be used in a crypt-
analysis context. In fact, Overbeck [Ove08] has proven that, for a public matrix Gp

given by equation (4.12) with X2 = 0 (in particular all the entries of P belong to
Fq), it is possible (under certain conditions) to find in polynomial time an alterna-
tive decomposition of Gp of the from S∗ (X∗ | G∗)P ∗ using the operator Λi. This
decomposition allows to decrypt any ciphertext computed with Gp.

4.2.2 Overbeck’s Attack

To explain this attack, we will need the following lemma:

Lemma 4.15. Let P =

(
A 0
C D

)
where A and D are square matrices. Then P is

non singular if and only if A and D are non singular and the inverse of P is:

P−1 =

(
A−1 0

−D−1CA−1 D−1

)
Proof. It is clear that the non singularity of A or D implies the non singularity of
P . Conversely, if P is non singular, the structure of P allows to deduce that A and
D are non singular. The formula of the inverse is obvious.

Let assume that Gpub = S (X | G)P is the public generator matrix that gener-
ates Cpub with P ∈ GLn+`(Fq), X ∈ Mk,` (Fqm) and G generates a Gabidulin code
Gk (g) where |g| = n. Observe that Λi(Gpub) can be written as

Λi (Gpub) = Sext

(
Λi (X) | Λi (G)

)
P (4.17)
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where

Sext
def
=

S[0] 0
. . .

0 S[i]

 .

Since Λi (G) generates Gk+i (g) = Gn−1 (g), there exists S′ ∈ GLk(i+1)i(Fqm) such
that

S′Λi (Gpub) =

(
X∗ Gn−1

X∗∗ 0

)
P (4.18)

whereX∗ ∈M(n−1),` (Fqm), X∗∗ ∈M(k(i+1)−n+1),` (Fqm) andGn−1 ∈M(n−1),n (Fqm)
generates Gn−1 (g). Using (4.18), one can deduce that by taking i = n− k − 1

dim Λn−k−1(Cpub) = n− 1 + rank(X∗∗).

In the particular case where rank(X∗∗) = ` then dim Λi(Cpub) = n+ `− 1 and thus
dim Λi(Cpub)⊥ = 1. Furthermore, if h is a non zero vector from Gn−1 (g)⊥ and we
set h∗ = (0 | h)

(
P−1

)T then under the assumption that rank(X∗∗) = ` we have

Λn−k−1(Cpub)⊥ = Fqmh∗. (4.19)

Proposition 4.16. Let v ∈ Λn−k−1(Cpub)⊥ with v 6= 0. Any matrix T ∈ GLn+`(Fq)
that satisfies vT = (0 | h′) with h′ ∈ Fnqm is an alternative column scrambler matrix,
that is to say, there exist Z in Mk,` (Fqm) and G∗ that generates a Gabidulin code
Gk (g∗) such that

Gpub = S (Z | G∗)T .

Proof. From (4.19) there exists α ∈ Fqm such that v = αh∗ = (0 | αh)
(
P−1

)T where
h is a non zero vector of Gn−1 (g)⊥. Let T ∈ GLn+`(Fq) such that vT T = (0 | h′)
and consider the matrices A ∈M`,` (Fq) and D ∈Mn,n (Fq) so that

TP−1 =

(
A B
C D

)
.

We have then the following equalities

h̃T T = (0 | αh)
(
P−1

)T
T T = (0 | αh)

(
TP−1

)T
= (0 | h′) (4.20)

It comes out from (6.17) that hBT = 0 and hence B = 0 since |h| = n. So

we can write TP−1 =

(
A 0
C D

)
and using Lemma 4.15, PT−1 =

(
A′ 0
C ′ D′

)
.

Consequently,

GpubT
−1 = S (X | G)

(
A′ 0
C ′ D′

)
= S (Z | G∗)

where G∗ = GD′ is a generator matrix of an (n, k)−Gabidulin code. So T is an
alternative column scrambler matrix for the system.
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Overbeck’s attack is achieves with O ((n+ `)3) operations on Fqm . Furthermore,
it uses crucially two important facts: The column scrambler matrix P is defined on
the based field Fq, and the codimension of Λn−k−1 (A ) is 1. Several works propose
to resist to Overbeck’s attack either by taking special distortion matrix so that the
second property is not true as in [Loi10, RGH10], or by taking a column scrambler
matrix defined over the extension field Fqm as in [Gab08, GRH09, RGH11]. Recently
a new structural attacked appeared in [HMR15] which can be used as an alternative
to Overbeck’s attack. Especially the technique of [HMR15], consisting of looking
at the elements of rank one in an appropriate code derives from the public code,
allows to break the variants of [Loi10, RGH10]. Concerning the variants of [Gab08,
GRH09, RGH11], no structural attack have been presented up to this thesis and the
best attacks are the new generic decoding algorithms of [GRS16, HTMR16].
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Chapter 5

Cryptanalysis of Recent Variants of
the GPT Cryptosystem

Introduction

In this chapter, we study the security of the recent variants of the GPT cryptosystem
proposed in [Gab08, GRH09, RGH11, RGH10].

The variants of [Gab08, GRH09, RGH11] consist to take a column scrambler
matrix with coefficients in the extension field. We show that, it is still possible to
recover a secret Gabidulin code using precisely Overbeck’s technique. Our analysis
shows that by applying the operator Λi with i < n− k − 1, we obtain a Gabidulin
code whose error correction t∗ is indeed strictly less than the error correction of the
secret original Gabidiulin code but t∗ is strictly greater than the number of added
errors tpub. In other words, an attacker is still able to decrypt any ciphertext and
consequently, all the scheme presented in [Gab08, GRH09, RGH11] are actually not
resistant to Overbeck’s attack unlike what it was claimed by the authors. When
the attack is implemented with the recommended parameters of [GRH09, RGH11],
our experimental results show that the attack is very fast (less than one second). In
particular, our results outperform those given in [GRS16, HTMR16] which were for
a while the best attacks against the schemes of [Gab08, GRH09, RGH11]. Note that
in [GRS16, HTMR16] new generic decoding algorithms that permit to attack all
this variants are developed whereas our approach is directed towards recovering the
structure of a Gabidulin code. We will prove that all these schemes can be broken
simply with the techniques developed in [Ove08].

The other reparation from [RGH10] consists to choose an appropriate distortion
matrix X so that Overbeck’s attack fails. We will show that this variant of the GPT
cryptosystem is equivalent to insert redundancies in the public code of a general
GPT cryptosystem. We will thus show how to remove the redundancies in order to
apply Overbeck’s attack on the public code obtained. More precisely, puncturing the
public code several times at some appropriate positions allows to get a new code on
which applying the Frobenius operator appropriately allows to build an alternative
secret key.
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5.1 Gabidulin’s General Reparation

In this section, we focus on the reparation given in [Gab08]. This paper is the first
to consider a column scrambler matrix defined over the extension field. We describe
only the key generation and decryption steps of the scheme since the encryption
operation is not modified. To the best of our knowledge, no structural attack has
been mounted against this description. The author claimed that Overbeck’s attack
is not applicable. But in Proposition 5.1, we prove that it is still possible to find an
alternative private key using precisely Overbeck’s technique.

5.1.1 Description of the Scheme

The important points are Key generation and decryption.

Key generation.

1. Pick at random g from Fnqm such that |g| = n and let G be a generator matrix
of the Gabidulin code Gk (g).

2. Pick at random X ∈ Mk,` (Fqm), S in GLk(Fqm) and P in GLn+`(Fqm) such
that there exist Q11 inM`,` (Fqm), Q21 inMn,` (Fqm), Q22 inMn,n (Fq) and
Q12 inM`,n (Fqm) with |Q12| = s < t so that

P−1 =

(
Q11 Q12

Q21 Q22

)
. (5.1)

The public key is (Gpub, tpub) with tpub = t− s and

Gpub = S (X | G)P . (5.2)

Decryption. We have cP−1 = mS (X | G) + eP−1. Suppose that e = (e1 | e2)
where e1 ∈ F`qm and e2 ∈ Fnqm . We have:

eP−1 = (e1Q11 + e2Q21 | e1Q12 + e2Q22) (5.3)

It is clear that

|e1Q12 + e2Q22| 6 |e1Q12|+ |e2Q22| 6 s+ t− s.

So the plaintext m is recovered by applying the decoding algorithm only to the last
n components of cP−1.
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5.1.2 Cryptanalysis

We state our main result proving that Overbeck’s attack is still successful by con-
sidering this time the dual of Λi (Gpub) with i = n− s− k − 1.

Proposition 5.1. There exist X∗ ∈ Mk,(`+s) (Fqm), P ∗ ∈ GLn+` (Fq) and a gener-
ator matrix G∗ that defines an (n− s, k)−Gabidulin code Gk (g∗) such that

Gpub = S (X∗ | G∗)P ∗. (5.4)

Furthermore, the error correction capability t∗ of Gk (g∗) is equal to t− 1
2
s, and hence

t∗ > tpub.

The proof of this proposition requires to prove the following lemma.

Lemma 5.2. There exist P 11 in GL`+s(Fqm), P 21 inM(n−s),(`+s) (Fqm) and P 22 in
GLn−s(Fq) such that

P =

(
I` 0
0 L

)(
P 11 0
P 21 P 22

)(
I` 0
0 R

)
(5.5)

with L and R belonging to GLn(Fq).

Proof. By assumption |Q12| = s < t so there exist R in GLn(Fq) and Q′12 in
M`,s (Fqm) such that Q12R = (Q′12 | 0). We set Q22R = (Q′22 | Q′23) where Q′22

inMn,s (Fq) and Q′23 inMn,(n−s) (Fq). Note that we necessarily have |Q′23| 6 n− s

and therefore there exists L ∈ GLn(Fq) such that LQ′23 =

(
0

Q′′23

)
with Q′′23 ∈

M(n−s),(n−s) (Fq). Thus one can rewrite(
I` 0
0 L

)
P−1

(
I` 0
0 R

)
=

(
I` 0
0 L

)(
Q11 Q12

Q21 Q22

)(
I` 0
0 R

)
(5.6)

=

(
Q11 Q′12 0
LQ21 LQ′22 LQ′23

)
(5.7)

Observe that there exist Q′′11 inM(`+s),(`+s) (Fqm) and Q′′21 inM(n−s),(`+s) (Fqm) so
that we can write (

I` 0
0 L

)
P−1

(
I` 0
0 R

)
=

(
Q′′11 0
Q′′21 Q′′23

)
.

Note that Q′′23 and Q′′11 are necessarily invertible and thanks to Lemma 4.15 the
proof can be terminated.

Remark 5.1. The proof of Lemma 5.2 is still true if it is assumed that |Q12| < s,
and note that by construction s is necessarily less than or equal to `.

We are now able to give a proof of Proposition 5.1.
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Proposition 5.1. We keep the same notation as those of Lemma 5.2. Let us rewrite
GL as (G′1 | G′2) where G′1 in Mk,s (Fqm) and G′2 in Mk,(n−s) (Fqm) and set now
Y = (X | G′1). Observe that G′2 generates an (n− s, k)−Gabidulin code. We then
have

(X | G)

(
I` 0
0 L

)(
P 11 0
P 21 P 22

)
= (Y | G′2)

(
P 11 0
P 21 P 22

)
= (X∗ | G∗)

where X∗ = Y P 11 + G′2P 21 and G∗ = G′2P 22 is a generator matrix of an (n −

s, k)−Gabidulin code. Hence if we set P ∗ =

(
I` 0
0 R

)
we then have rewritten

Gpub as expected in (5.4). Lastly remark that tpub = t− s and t∗ = 1
2
(n− s− k) =

1
2
(n− k)− 1

2
s > t− s.

Form this proposition, it is clear that this variant can be broken by using Over-
beck’s attack with i = n− s− k − 1.

5.2 Gabidulin, Rashwan and Honary Variant
In [GRH09, RGH11] Gabidulin, Rashwan and Honary also proposed an other variant
where the column scrambler has its entries defined on the extension field. This
variant can be described as follows:

5.2.1 Description

We just describe the key generation and the decryption phases.

Key generation.

1. Pick at random g ∈ Fnqm such that |g| = n and let G ∈ Mk,n (Fqm) be a
generator matrix of the Gabidulin code Gk (g). Let tpub be an integer < t and
set a def

= t− tpub.

2. Pick at random S in GLk(Fqm) and P ∈ GLn(Fqm) such that

P−1 = (Q1 | Q2) (5.8)

where Q1 ∈ Mn,a (Fqm) while Q2 ∈ Mn,(n−a) (Fq) with t = 1
2
(n − k) and

tpub < t. The public key is (Gpub, tpub) with

Gpub = SGP . (5.9)

Decryption. First, we have cP−1 = mSG + eP−1 and eP−1 = (eQ1 | eQ2).
Observe that |eQ1| 6 a and |eQ2| 6 |e| 6 tpub, and since a = t − tpub we hence
have ∣∣eP−1

∣∣ 6 |eQ1|+ |eQ2| 6 t.
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5.2.2 Cryptanalysis

We now prove that Overbeck’s attack is still successful by considering for this scheme
the dual of Λi (Gpub) with i = n− a− k− 1. We first introduce the matrices Q11 ∈
Ma,a (Fqm), Q21 ∈Mn−a,a (Fqm), Q12 ∈Ma,n−a (Fq) and Q22 ∈Mn−a,n−a (Fq) such
that

P−1 =

(
Q11 Q12

Q21 Q22

)
. (5.10)

Note that |Q12| 6 a < t. Furthermore, by looking at the proof of Lemma 5.2, we
can see that this lemma and Proposition 5.1 are still true even if |Q12| 6 s. Hence,
the scheme given in [GRH09, RGH11] is nothing else but a special case of [Gab08]
where X = 0 and Q12 has all its entries in the base field Fq. We have therefore the
following corollary.

Corollary 5.3. There exist P ∗ ∈ GLn(Fq) and X ∈Mk,a (Fqm) such that

Gpub = S(X | G∗)P ∗ (5.11)

where G∗ is a generator matrix of an (n− a, k)−Gabidulin code whose error correc-
tion capability t∗ is equal to b1

2
(t+ tpub)c, and hence t∗ > tpub.

Proof. Apply Proposition 5.1 with ` = 0 and s = a. Note that the error correction
capability t∗ of the code G∗ is equal to 1

2
(n− a− k) that is to say

t∗ = t− 1

2
(t− tpub) =

1

2
(t+ tpub) > tpub.

We summarised in Table 5.1 our experimental results obtained with Magma
V2.21-6. We give the time to find an alternative column scrambler matrix for each
parameter proposed by the authors in [GRH09] and [RGH11]. In particular, our
results outperform those given in [GRS16, HTMR16].

m k t tpub Time (second)

20 10 5 4 6 1
28 14 7 3 6 1
28 14 7 4 6 1
28 14 7 5 6 1
28 14 7 6 6 1
20 10 5 4 6 1

Table 5.1 – Parameters from [GRH09, RGH11] where n = m and at least 80-bit
security.
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5.3 Discussion on a More General Column Scram-
bler

In [GRH09] the authors proposed to reinforce the security by taking a more general
column scrambler matrix of the form TP where T is an invertible matrix with
its entries in Fq and P is defined over the extension field as it is done in [Gab08,
GRH09, RGH10]. We shall consider Gabidulin’s general reparation [Gab08] since
[GRH09, RGH10] are particular cases but we emphasize that this new protection
was only defined in [GRH09, RGH10]. Assuming that P is then as in (5.1), the
public key is then of the form

Gpub = S (X | G)TP . (5.12)

The decryption of a ciphertext c starts by calculating cP−1T−1 = mS (X | G) +
eP−1T−1 where e is of rank weight tpub and s = |Q12|. The retrieving of the
original plaintext m is possible provided that tpub = t− `− s because cP−1T−1 =
mS (X | G) +eP−1T−1. Suppose that e = (e1 | e2) where e1 ∈ F`qm and e2 ∈ Fnqm ,
then we also have

eP−1T−1 = (e1Q11 + e2Q21 | e1Q12 + e2Q22)T−1. (5.13)

It is clear that |e1Q12 + e2Q22| 6 |e1Q12|+ |e2Q22| 6 s+ tpub and hence it implies
that∣∣eP−1T−1

∣∣ =
∣∣eP−1

∣∣ 6 |e1Q11 + e2Q21|+ |e1Q12 + e2Q22| 6 `+ s+ tpub.

Therefore the plaintext m is recovered by applying the decoding algorithm only
to the last n components of cP−1T−1. But in this case, the rank weight of the
last n components of eP−1T−1 is not necessarily less than or equal to tpub + s but
rather to tpub +s+`. Consequently, the decryption will always succeed if it assumed
that tpub = t − s − ` otherwise the decoding may fail. Hence, we see why this new
reparation was just proposed for the case where ` = 0 i.e. without any distortion
matrix since otherwise its deteriorates the performances of the original scheme.

We now study more precisely the security this protection might bring in for the
general scheme of [Gab08]. First, rewrite T as

T =

(
T 11 T 12

T 21 T 22

)
(5.14)

where T 11 ∈M`,` (Fq), T 21 ∈Mn,` (Fq), T 12 ∈M`,n (Fq) and T 22 ∈Mn,n (Fq). On
the other hand, by Lemma 5.2 the matrix P can be expressed as (5.5). We can find
then X1 inMk,(`+s) (Fqm) and X2 inMk,(n−s) (Fqm) such that

(X | G)TP = (X1 |X2 + G∗1)

where G∗1 generates an (n−s, k)−Gabidulin code and |X2| = |X| 6 `. From Propo-
sition 4.12 and by taking t2 = `, there exist P ∗ ∈ GLn+`(Fq), X∗ ∈ Mk,(2`+s) (Fqm)
and G∗ that generates an (n− s− `, k)−Gabidulin code such that

(X | G)TP = (X∗ | G∗)P ∗. (5.15)
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We have therefore proven the following proposition.

Proposition 5.4. Assume that Gpub = S (X | G)TP where T ∈ GLn+`(Fq) and
G has the form (5.1). Then, there exist P ∗ in GLn+`(Fq), X∗ in Mk,(2`+s) (Fqm)
and a matrix G∗ that generates an (n− s− `, k)−Gabidulin code Gk (g∗) such that

Gpub = S(X∗ | G∗)P ∗.

Furthermore, the correction capability t∗ of Gk (g∗) is greater than t − 1
2
(` + s). In

particular t∗ > tpub.

This result shows that actually this new proposed protection does not improve
the security even when applied with the scheme for which a distortion matrix X is
used. An example where this protection was used and turns out to be useless is the
scheme given in [GRH09, RGH11].

Related construction In [GP13, GP14], another variant is also proposed. This
variant consists to use a column scrambler matrix P such that

P−1 = T + Z (5.16)

T ∈ GLn+`(Fq) and Z ∈ Mn+`,n+` (Fqm) with |Z| = s. However, this last variant
was shown in [UG14] to be equivalent to the general GPT cryptosystem [GO01] and
hence not secure. The following proposition compares the variant of [GP13, GP14]
with the variant of section 5.2.

Proposition 5.5. The matrix P can be written as

P = P ∗Q

with P ∗ ∈ GLn+`(Fq) andQ−1 = (Q1 | Q2) ∈ GLn+`(Fqm) such thatQ1 ∈Mn+`,s (Fqm)
and Q2 ∈Mn+`,n+`−s (Fq).

Proof. Since P−1 = T + Z with |Z| = s, there exists R ∈ GLn+`(Fq) and Z∗ ∈
Mn+`,s (Fqm) such that Z = (Z∗ | 0)R. Letting TR−1 = (T 1 | T 2) we have:

P−1 = T + (Z∗ | 0)R =
[
TR−1 + (Z∗ | 0)

]
R = (T 1 + Z∗ | T 2)R

Taking P ∗ = R−1 and Q = (T 1 + Z∗ | T 2)−1 achieves the proof.

We understand that the scheme given in [GP13, GP14] is nothing else but a
special case of [GRH09, RGH11] this implies that this scheme is not secure and also
confirms the result of [UG14].
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5.4 The Smart Approach of the GPT Cryptosystem

In [RGH10], another way to avoid structural attacks on the GPT cryptosystem
was proposed. It consists to choose an appropriate distortion matrix X. A first
structural attack on this variant was proposed in [HMR15]. In this section, we
describe this reparation and we give a new and very simple algorithm that recovers
an alternative secret key in polynomial time. This attack is related to the attack
presented in Chapter 3 in a hamming metric context.

5.4.1 Description

The only difference is on the generation of X. The authors proposed to take X ∈
Mk,` (Fqm) that is a concatenation of a q−Vandermonde matrix X1 ∈ Mk,a (Fqm)
and a random matrix X2 ∈Mk,`−a (Fqm) with 0 < a < `.

5.4.2 Cryptanalysis

Let S ∈ GLk(Fqm), X2 ∈Mk,`−a (Fqm), b = (b1, · · · , ba) and

X1 =

 b
[0]
1 · · · b

[0]
a

...
...

b
[k−1]
1 · · · b

[k−1]
a

 . (5.17)

We have Gpub = S (X1 |X2 | G)P with P ∈ GLn+`(Fq). We start the cryptanal-
ysis by the following lemma:

Lemma 5.6. There exists P ∗ ∈ GLn+`(Fq) and G∗ ∈ Mk,n+s (Fqm) a generator
matrix of a Gabidulin code such that

Gpub = S (0 |X2 | G∗)P ∗

s being an integer verifying 0 6 s 6 a and n+ s 6 m.

Proof. Let g′ = (b | g) ∈ Fa+n
qm . Since |g′| > |g| = n, let s be an integer such

that |g′| = n + s. Clearly, we have s 6 a and |(X1 | G)| = |g′| = n + s. So
there exists a matrix Q ∈ GLn+a(Fq) such that (X1 | G)Q = (0 | G∗) where G∗ ∈
Mk,n+s (Fqm) is a generator matrix of a Gabidulin code Gk (g∗) with g′Q = (0 | g∗).
This implies that there exists a matrix R ∈ GLn+`(Fq) such that (X1 |X2 | G)R =
(0 |X2 | G∗). To finish the proof, take P ∗ = R−1P . Since g′ belongs to F`+nqm we
have |g′| = n+ s 6 m.

Let Cpub be the code generated by Gpub. We then have the following proposition:

Proposition 5.7. The code Cpub is the public code of a general GPT cryptosystem
with w = a− s redundancies.
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Proof. We have Gpub = S (0 |X2 | G∗)P ∗. Let us suppose that P ∗ =

(
Q1

Q2

)
with

Q1 ∈Mw,n+` (Fq) and Q2 ∈Mn+`−w,n+` (Fq). We have Gpub = S (X2 | G∗)Q2 and
rank(Q2) = n + ` − w. Let us suppose without loss of generality that the matrix
Q∗2 of the first n+ `− w columns of Q2 is of full rank. Let G∗pub = S (X2 | G∗)Q∗2
and X = S (X2 | G∗)Q∗∗2 where Q∗∗2 is the last w columns of Q2. Then Gpub =(
G∗pub |X

)
. One can remark to finish that G∗pub is a generator matrix of a general

GPT cryptosystem.

From the above proposition, if the w positions of redundancy are identified and
removed, a cryptanalysis can use Overbeck’s attack to build an alternative secret
key. In the sequel we show how to know that a column of Gpub can be remove or not.
By the above proof, we can remark that a set I = {i1, ..., iw} ⊂ {1, 2, ..., n+ `} can
be considered as the set of positions of redundancy if and only if by removing all the
corresponding columns in Q2, we get a square matrix of full rank. Let f = n+s−k,
Λf (Cpub) the code generated by Λf (Gpub), i ∈ {1, 2, ..., n+`} and C i

pub the punctured
code of Cpub at position i. We then have the following proposition:

Proposition 5.8. The position i can be considered as a redundancy position if and
only if

dim Λf (C
i
pub) = n+ s+ `− a

Proof. Let Qi
2 be the matrix obtained from Q2 by removing the ith column and

Gi
pub be the matrix obtained from Gpub by removing the ith column. We have:

dim Λf (C
i
pub) = rank(Λf (G

i
pub)) = rank(Λf (X2 | G∗)Qi

2)

Since X2 is a random matrix, with a high probability we have

dim Λf (C
i
pub) = min{rank(Λf (X2 | G∗)), rank(Qi

2)} = min{n+s+`−a, rank(Qi
2)}

If i can be consider as a position of redundancy we will have rank(Qi
2) = rank(Q2) =

n + s + ` − a and dim Λf (C i
pub) = n + s + ` − a. Else we will have rank(Qi

2) =
n+ s+ `− a− 1 and dim Λf (C i

pub) = n+ s+ `− a− 1.

It is easy for an adversary to use the previous proposition to identify a set I of
w positions of redundancy. To fully break the system, one can apply Overbeck’s
attack with f = n+ s− k− 1, but the value of s is not known. For the case m = n,
it is easy to see thanks to Lemma 5.6 that s is equal to 0 and in a general context
(n 6 m), one can remark from the same lemma that the integer s is the smallest
one that satisfies

rank(Λn+s−k(Gpub)) = rank(Λn+s+1−k(Gpub))

We summarise the attack in Algorithm 2.
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Algorithm 2 Key Recovery of the Smart Approach of the GPT Cryptosystem
1: s← a
2: while rank(Λn+s−k(Gpub)) = rank(Λn+s+1−k(Gpub)) do
3: s← s− 1
4: end while
5: s← s+ 1
6: w ← a− s
7: y ← n+ s+ `− a
8: f ← n+ s− k
9: Z ← {1, ..., Length(Cpub)} and J ← [ ]
10: j ← Random(Z)
11: while ]J 6= w do
12: if dim (Λn+s−k(C

j
pub)) = y then

13: J ← HorizontalJoin(J, [j])
14: Cpub ← C j

pub

15: Z ← {1, ..., Length(Cpub)}
16: j ← Random(Z)
17: else
18: Z ← Z \ {j}
19: j ← Random(Z)
20: end if
21: end while
22: return Cpub, J
23: Define Gpub as the generator matrix of Cpub

24: Apply Overbeck’s algorithm on Gpub with f = n+ s− k − 1

Complexity and Experimental Results

During the computation phase of s, the main computations are rank(Λn+s−k(Gpub))
and rank(Λn+s+1−k(Gpub)) which are computed at most a times with a complexity
O(a(n + `)3). To identify a set of w = a − s random redundancies, the main
computation is dim (Λn+s−k(C

j
pub)) (for j ∈ {1, ..., n + `}) which is done at most

n + ` times. So the complexity of this step is O((n + `)4). By considering the final
step that consists to apply Overbeck’s attack, the overall complexity is O((n+ `)4)
operations on Fqm since the complexity of this final step is O((n+ `)3) operations on
Fqm . We implemented the attack (for m 6 30 and for several values of a such that
am > 60 as proposed in [RGH10]) on Magma V2.21-6 and a secret key was always
found in less than 5 seconds. This confirms the efficiency of the approach.

Conclusion

The apparition of Overbeck’s attack prompted some authors to invent reparations
to hide more the structure of the Gabidulin codes. One trend advocated the use of
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a right column scrambler with entries in the extension field as it is done in [Gab08,
GRH09, RGH11]. Our analysis shows that these reparations aiming at resisting
Overbeck’s structural attack do fail precisely against it. By applying appropriately
Overbeck’s technique, we were able to construct a Gabidulin code that has the
same dimension as the original one but with a lower length. Hence, we obtain a
degraded Gabidulin code in terms of error correction capabilities but we prove that
the degradation does not forbid the error correction of any ciphertext. Furthermore,
when the attack is implemented, the practical results we obtained outperform those
given in [GRS16, HTMR16] which were up to our paper the best attacks against
the schemes of [Gab08, GRH09, RGH11]. We also considered in Section 5.3 the case
where an isometric transformation is applied in conjunction with a right column
scrambler which has its entries in the extension field. We proved that this protection
is useless both in terms of performance and security.

The other kind of reparation is followed by the series of works in [Loi10, RGH10]
which propose to resist to Overbeck’s attack by taking a distorsion matrix X so
that the codimension of Λn−k−1 (A ) is equal to a where a is sufficiently large to
prevent an exhaustive search. But these reparations were also cryptanalyzed in
[GRS16, HTMR16] and recently by a new approach in [HMR15]. We have also
shown that the variant of [RGH10] can be seen like a general GPT Cryptosystem
with some redundancies in the public generator matrix. By this view, one can
remove the redundancies and recover an alternative secret key in polynomial time
by using Overbeck’s attack.

Furthermore, since the attack in [HMR15] only considers column scrambler ma-
trices on the base field, one may try to avoid it by combining the reparations pro-
posed in [Loi10, RGH10] with those of [Gab08, GRH09, RGH11]. Nevertheless, our
results show that the security of [Gab08, GRH09, RGH11] can be reduced to the
one with a column scrambler with entries in the base field. Consequently, using our
results and then applying the general attack of [HMR15] may break this “patched”
scheme.

All these results put together permit to conclude that all the variants of the GPT
scheme based on Gabidulin codes do not represent a secure cryptographic solution.
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Chapter 6

q−Polynomial Reconstruction Based
Cryptosystem

Introduction

In 2005 Faure and Loidreau designed a rank-metric encryption scheme which was not
in the McEliece setting. The scheme is very efficient, with small public keys of size a
few kiloBytes and with security closely related to the q−polynomial reconstruction
problem which corresponds to the decoding problem of Gabidulin codes.

We show in this chapter that the Faure-Loidreau scheme is vulnerable to a struc-
tural polynomial-time attack that recovers the private key from the public key.
Based in part on the security analysis given in [Loi07, Chap. 7], we show that by
applying Overbeck’s attack on an appropriate public code an attacker can recover
the private key very efficiently, only assuming a mild condition on the code, which
was always true in all our experimentations.

Informally, the Faure-Loidreau encryption scheme considers three finite fields
Fq ⊂ Fqm ⊂ L. The rank weight of vectors is computed over the field Fq. The public
key is then composed of a Gabidulin code of dimension k of length n defined by a
matrix G = (gi,j) with gi,j ∈ Fqm and K = xG + z where x is some vector in Lk
and z is a vector of Ln with (rank) weight w > 1

2
(n−k). Both vectors x and z have

to be kept secret but from attacker’s point of view the private key is essentially x
since z can be deduced from it.

Our attack uses the Frobenius operator, introduced by Overbeck, which takes as
input any vector space U ⊆ Fnqm and integer i > 1 in order to construct the vector
space Λi(U) defined as

Λi(U) = U + U q + · · · + U qi .

The first step of the attack considers a basis γ1, . . . , γu of L viewed as a vector space
over Fqm of dimension u > 1 and defines the vectors vi = TrL/Fqm

(γiz). Our main
result shows that the system can be broken in polynomial time and can be stated
as follows:
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6.1. PRELIMINARY FACTS

Theorem 6.1. If the Fqm-vector space generated by v1, . . . ,vu denoted by V satisfies
the property

dim Λn−w−k−1(V ) = w (6.1)

then the private key (x, z) can be recovered from (G,K) with O(n3) operations in
the field L.

Notice that if V behaves as random code then generally the condition (6.1) holds.
We implemented our attack on parameters given in [FL05, Loi07] for 80-bit security,
which were broken in a few seconds. A necessary condition for (6.1) to be true is to
choose u(n− w − k) > w that is to say

w 6
u

u+ 1
(n− k) .

This was always the case for parameters proposed in [FL05, Loi07].

Related work. The attack presented in this chapter is very similar to the ap-
proach proposed in [LO06] where the authors seek to decode several noisy code-
words of a Gabidulin code. Let us assume that we received ` words z1, . . . ,z` from
Fnqm where each zi is written as zi = ci + ei with ci belonging to a Gabidulin
code G of dimension k and length n over Fqm and the ei’s are vectors from Fnqm .
Let us denote by E the matrix of size ` × n formed by the ei’s and let |E| be
the dimension of the Fq-vector space generated by the columns of E. The authors
show that when |E| 6 `

`+1
(n− k) then Overbeck’s technique recovers in O(n3)

operations the codewords c1, . . . , c`. It therefore provides a method that decodes
a Gabidulin code beyond the classical error-correcting limit 1

2
(n− k). This ap-

proach can be used here to attack the Faure-Loidreau scheme [FL05] because the
vectors TrL/Fqm

(γ1K), . . . ,TrL/Fqm
(γuK) can be written as c1+v1, . . . , cu+vu where

each ci = TrL/Fqm
(γix)G belongs to the Gabidulin code generated by G and the

u × n matrix V formed by v1, . . . ,vu satisfies |V | = w which in turn has to verify
w 6 u

u+1
(n− k).

Organisation. In Section 6.1 notations and important notions useful for the chap-
ter are given. In Section 6.2 we present the Faure-Loidreau scheme and in Section 6.3
we describe in full details our attack against it.

6.1 Preliminary Facts

We recall that the field Fqm can be consider as an Fq-vector space of dimension m.
The trace operator of Fqm over Fq is the Fq-linear map TrFqm/Fq : Fqm −→ Fq defined
for any x in Fqm by

TrFqm/Fq(x) = x+ xq + · · · + xq
m−1

.
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Let B = {b1, . . . , bm} be a basis of Fqm over Fq. The dual basis, or also called the
trace orthogonal basis of B is a basis B∗ = {b∗1, . . . , b∗m} of Fqm over Fq such that
for any i and j in {1 . . . ,m}

TrFqm/Fq(bib
∗
j) = δi,j

where δi,i = 1 and δi,j = 0 when i 6= j. Note that there always exits a dual basis
and furthermore it is possible to express any α from Fqm as

α =
m∑
i=1

TrFqm/Fq(αb
∗
i )bi. (6.2)

Definition 6.1 (Linearized polynomial). Any univariate polynomial f ∈ Fqm [X] of
the form

f(X) = f0X + f1X
q + · · · + fdX

qd , fd 6= 0

where 0 6 d < m is called a q−linearized polynomial (or q−polynomial) and d is its
q−degree denoted by degq(f).

The set of q−linearized polynomials f ∈ Fqm [X] such that degq(f) < k is denoted
by L<kq,m[X].

Definition 6.2 (Kernel). The kernel ker (f) of a q−polynomial f is given by

ker (f) = {X ∈ Fqm : f(X) = 0}

Theorem 6.2. The kernel of a q−polynomial f ∈ Fqm [X] is a Fq−vector subspace
of Fqm with dimension dim (ker (f)) = degq(f). Conversely, any Fq−vector subspace
V ⊂ Fqm is the kernel of a unique monic q−polynomial fV with degq(fV ) = dim V .

A proof (or further references) of this theorem can be found in [Mur14] where it
is also proven that for a given q−polynomial f , a basis of the kernel ker (f) can be
computed in polynomial time. The converse situation is also true. For a given basis
of a Fq−vector subspace V ⊂ Fqm , the unique monic q−polynomial fV with kernel
ker fV = V can be computed in polynomial time. We understand from this theorem
that finding the support V of an error e ∈ Fnqm (in rank metric) is equivalent to find
the associated monic q−polynomial fV .

In the sequel, any map h : U → V is naturally extended to vectors x ∈ Un

by h(x) = (h(x1), . . . , h(xn)). This applies in particular to the cases where h is a
polynomial or is the Frobenius (and trace) operator. For any subsets U ⊂ Fnqm and
V ⊂ Fnqm the notation U + V represents the set

U + V = {u + v | u ∈ U and v ∈ V }.

For any sub-field K ⊆ Fqm and x from Fnqm the K-vector space generated by x is
denoted by Kx. For any P ∈ GLn(K) the notation UP is used to denote the set

UP = {uP | u ∈ U}.
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For any integer i > 0 we define V qi as the set of vectors

vq
i

= (vq
i

1 , . . . , v
qi

n )

where v describes V . Note that when V is a vector space then V qi is also a linear
subspace of Fnqm .

Remark 6.1 (Gabidulin codes). Let g ∈ Fnqm such that |g| = n. The (n, k)−Gabidulin
code Gk (g) can be defined using linearized polynomials by:

Gk (g)
def
=
{(
f(g1), ..., f(gn)

)
: f ∈ L<kq,m[X]

}
g is called generator vector of Gk (g).

By Remark 6.1 and Theorem 6.2, the decoding problem for Gabidulin codes can
be easily translated in terms of q−polynomials. Informally, assume that one has to
decode a noisy codeword y = f(g) + e of a Gabidulin code Gk (g). The problem is
(given g and y) to find f and e such that y = f(g) + e. Let V be the support of e
and L the monic polynomial such that ker (L) = V . We have

L(y − f(g)) = 0 (6.3)

Thus, to decode y, it suffices to find L and f that satisfy equation (6.3). This last
problem is called the q−polynomial reconstruction problem and can be formally
described as follows:

Problem 6.3 (q−Polynomial reconstruction). Given y and g in Fnqm together with
two integers k and w, the problem is to find a non-zero q−polynomial L with
q−degree at most w and a q−polynomial f with q−degree at most k such that

L [f(g)− y] = 0

In [FL05], Faure and Loidreau proposed a rank-metric encryption scheme based
on this problem. The idea is to choose w greater than the error correction capacity
of the Gabidulin code Gk (g) , in order to avoid the easy instances of problem 6.3
which can be solved by using a decoding algorithm of Gabidulin codes. We describe
the scheme in the following section.

6.2 Faure-Loidreau Encryption Scheme

We refer the reader to [FL05] for more details about the system. In fact, the original
scheme was described using linearized polynomials. But using the links between
linearized polynomials and Gabidulin codes, the system can be described as follows:
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Key generation. Throughout this step, besides the fields Fq and Fqm , another
field L is considered where L is the extension of Fqm of degree u > 1, and three
integers k, n and w such that u < k < n and

n− k > w >

⌊
n− k

2

⌋
. (6.4)

1. Pick at random g ∈ Fnqm with |g| = n and let G ∈Mk,n (Fqm) be the generator
matrix of Gk (g) ⊂ Fnqm as in (4.10)

2. Pick at random x ∈ Lk such that {xk−u+1, . . . , xk} form a basis of L over Fqm

3. Generate randomly s ∈ Lw with |s| = w and P ∈ GLn(Fq) and then compute
z ∈ Ln defined as

z = (s | 0)P−1. (6.5)

The private key is (x,P ) and the public key is (g, k,K, tpub) where

K = xG + z and tpub =

⌊
n− w − k

2

⌋
. (6.6)

Encryption. A plaintext here is a vectorm = (m1, . . . ,mk) belonging to Fkqm such
that mi = 0 when i ∈ {k − u + 1, . . . , k}. To encrypt m, one randomly generates
α ∈ L and e ∈ Fnqm such that |e| 6 tpub. The ciphertext is the vector c ∈ Fnqm
defined by

c = mG + TrL/Fqm
(αK) + e. (6.7)

Decryption. The receiver computes first cP that is to say

cP = mGP + TrL/Fqm

(
αxGP + αzP

)
+ eP (6.8)

=
(
m + TrL/Fqm

(αx)
)
GP +

(
TrL/Fqm

(αs) | 0
)

+ eP (6.9)

Let G′ be the k × (n − w) matrix obtained by removing the first w columns of
GP and let e′ and c′ be respectively the restriction of eP and cP to the last n−w
coordinates. We then have

c′ =
(
m + TrL/Fqm

(αx)
)
G′ + e′. (6.10)

Using the fact that G′ generates a Gabidulin code of length n − w and dimension
k < n − w and since |e′| 6 |e| 6 b1

2
(n − w − k)c, it is possible to recover m′ =

m+TrL/Fqm
(αx) by applying a decoding algorithm. Since by constructionm ∈ Fkqm

is chosen so that mi = 0 when i ∈ {k − u+ 1, . . . , k} then by choosing a dual basis
{x∗k−u+1, ..., x

∗
k} of {xk−u+1, . . . , xk} the value of α can be computed as the following

k∑
i=k−u+1

m′ix
∗
i =

k∑
i=k−u+1

TrL/Fqm
(αxi)x

∗
i = α.

Once α is recovered, the plaintext m is then equal to m′ −TrL/Fqm
(αx).
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n k u w Keys sizes Transmission rate

56 28 3 16 9408 bits 44%
54 32 4 13 11664 bits 44%

Table 6.1 – Proposed parameters from [Loi07] for the Faure-Loidreau scheme

6.3 Polynomial-Time Key Recovery Attack

In this section, we show that it is possible to recover an alternative private key from
the public data K and G when the condition w 6 u

u+1
(n − k) holds. We start by

remarking that if an attacker A is able to find a matrix T ∈ GLn(Fq) and z∗ ∈ Lw
such that

zT = (z∗ | 0) and |z∗| = w

then A can fully recover x ∈ Lk by solving only the last n − w equations of the
following linear system (see Algorithm 3 for more details)

KT = xGT + (z∗ | 0). (6.11)

In the sequel, we describe a way to obtain x by finding such a matrix T . The
first step is to consider a basis γ1, . . . , γu of L viewed as a vector space over Fqm of
dimension u > 1. For any i ∈ {1, . . . , u} we set Ki = TrL/Fqm

(γiK). Lastly, let
Cpub ⊂ Fnqm be the (public) code generated by K1, . . . ,Ku and Gk (g), that is to say

Cpub = Gk (g) +
u∑
i=1

FqmKi. (6.12)

Remark 6.2. Cpub is defined by the generator matrix Gpub where

Gpub =


G
K1
...

Ku

 (6.13)

For all i ∈ {1, . . . , u} let us set vi = TrL/Fqm
(γiz) and bi =

(
TrL/Fqm

(γis) | 0
)
∈

Fnqm . By construction, we also have the equality

viP = bi. (6.14)

Lemma 6.4. Let us define B =
∑m

i=1 Fqmbi then we have

CpubP = Gk (gP ) + B.
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Proof. Set xi = TrL/Fqm
(γix) ∈ Fkqm . It is sufficient to use Proposition 4.11 and to

observe that

KiP = TrL/Fqm
(γix)GP +

(
TrL/Fqm

(γis) | 0
)

= xiGP + bi

Proposition 6.5. Let f = n − w − k − 1 and assume that dim Λf (B) = w. The
code Λf (Cpub)⊥ is then of dimension 1 generated by (0 | h)P T where h ∈ Fn−wqm and
|h| = n− w.

Furthermore, for any h̃ ∈ Λf (Cpub)⊥ with h̃ 6= 0 and for any T ∈ GLn(Fq) such
that

h̃(T−1)T = (0 | h′) (6.15)

where h′ ∈ Fn−wqm , there exists z∗ ∈ Fwqm with |z∗| = w such that zT = (z∗ | 0).

Proof. Let us decompose GP as (L | R) where L belongs toMk,w (Fqm) and R in
Mk,n−w (Fqm). Let B ∈ Mu,w (Fqm) be the matrix where the i-th row is composed
by the w first components of bi. Note that GpubP where Gpub is defined as in (6.13)
is a generator matrix of CpubP , and the following equality holds

GpubP =

(
L R
B 0

)
. (6.16)

Hence Λf (GpubP ) = Λf (Gpub)P is a generator matrix of the code Λf (CpubP ) =
Λf (Cpub)P which satisfies the equality

Λf (Gpub)P =

(
Λf (L) Λf (R)
Λf (B) 0

)
.

The fact that R generates an (n− w, k)−Gabidulin code implies that

rank (Λf (R)) = k + f = n− w − 1.

Consequently, there exists h ∈ Fn−wqm with |h| = n−w that satisfies Λf (R)hT = 0.
Furthermore, the equality dim Λf (B) = Λf (B) holds and implies that

dim Λf (Cpub)P = rank (Λf (B)) + rank (Λf (R)) = k + f + w = n− 1.

This means that (0 | h) generates actually the full space (Λf (Cpub)P )⊥ which is
equivalent to say (0 | h)P T generates Λf (Cpub)⊥.

For the second part of the proposition, let h̃ be any element from Λf (Cpub)⊥ with
h̃ 6= 0 and let T be in GLn(Fq) such that (6.15) holds for some h′ in Fn−wq . There
exists an element α in Fqm such that h̃ = (0 | αh)P T . Consider matrices A1,A2,
A3 and A4 such that A1 ∈Mw,w (Fq) and A4 ∈M(n−w),(n−w) (Fq) so that we have

T−1P =

(
A1 A2

A3 A4

)
.
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We have then the following equalities

(0 | h′) = h̃(T−1)T = (0 | αh)P T (T−1)T = (0 | αh)
(
T−1P

)T (6.17)

It follows from (6.17) that hAT
2 = 0 and hence A2 = 0 since |h| = n − w. So we

can write

T−1P =

(
A1 0
A3 A4

)
.

We deduce that P−1T =

(
A−1

1 0
−A−1

4 A3A
−1
1 A−1

4

)
=

(
A′ 0
C ′ D′

)
and consequently,

we get

zT = (s | 0)P−1T = (s | 0)

(
A′ 0
C ′ D′

)
= (sA′ | 0) .

So by letting z∗ = sA′ = sA−1
1 we have proved the proposition.

Proposition 6.5 shows that an equivalent key can be found in polynomial time
by simply using a non zero element of Λf (Cpub)⊥. We now prove our main result
stated in the introduction which shows the weakness of the system.

Theorem 6.6. If the Fqm-vector space generated by v1, . . . ,vu denoted by V satisfies
the property

dim Λn−w−k−1(V ) = w

then the private key (x, z) can be recovered from (G,K) with O(n3) operations in
the field L

Proof. Firstly, note that from (6.14) we know that V P = B. Algorithm 3 gives the
full description of the attack and provides a proof of Theorem 6.1. Indeed, the attack
consists in picking any codeword h̃ from Λn−w−k−1(Cpub)⊥ and then, by Gaussian
elimination, we transform h̃ so that there exists T ∈ GLn(Fq) for which we have

h̃(T−1)T = (0 | h′)

where h′ ∈ Fn−wqm . From Proposition 6.5 we know that T is an equivalent key that
will gives an equality of the form (6.11), and therefore it is possible by solving a linear
system to find x. Lastly, the time complexity comes from the fact the operations
involved are essentially Gaussian eliminations over square matrices with n columns
and entries in L.

An important assumption for the success of the attack is that the dimension
of Λn−w−k−1(Cpub)⊥ is 1, which was always true in all our experimentations. This
assumption is true if and only if the equality dim Λn−w−k−1(B) = w holds, which
implies to have u(n− w − k) > w, or equivalently

w 6
u

u+ 1
(n− k). (6.18)
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Assuming that B behaves as a random code then dim Λn−w−k−1(B) = w would hold
with high probability as long as (6.18) is true. The parameters proposed in [Loi07]
satisfy (6.18). Furthermore, the analysis given in [Loi07] implies to take u > 3. We
implemented the attack with Magma V2.21-6 and the secret key x was found in less
than 1 second confirming the efficiency of the approach.

Remark 6.3. Let us observe that taking w > u
u+1

(n− k) implies for tpub to be very
small since we have

tpub 6
1

2
(n− w − k) <

1

2

(
n− k
u+ 1

)
. (6.19)

For instance, with parameters proposed in [Loi07] we would have tpub 6 3. Conse-
quently the values of n, k andm have to be changed so that general decoding attacks
fail [GRS16]. Let us notice that this situation is quite similar to the counter-measures
proposed in [RGH10, Loi10] to resist to Overbeck’s attack. But the strength of this
reparation deserves a thorough analysis.

Algorithm 3 Key recovery of Faure-Loidreau scheme where the public key is (G,K)

1: {γ1, . . . , γu} ← arbitrary basis of L viewed as a linear space over Fqm
2: for all 1 6 i 6 u do
3: Ki ← TrL/Fqm

(γiK)
4: end for
5: Let Cpub ⊂ Fnqm be the code generated by Gpub . Gpub is defined as in (6.13)
6: if dim Λn−w−k−1(Cpub)⊥ = 1 then
7: Pick at random h̃ ∈ Λn−w−k−1(Cpub)⊥

8: Compute T ∈ GLn(Fq) and h′ ∈ Fn−wqm such that

h̃(T−1)T = (0 | h′)

9: K∗ ←KT . K∗ = (K∗
1, . . . ,K

∗
n) ∈ Ln

10: G∗ ← GT . G∗ = (g∗i,j) ∈Mk,n (Fqm)
11: Solve the linear system where (X1, . . . , Xk) are the unknowns

(L) :


K∗

w+1 = g∗1,w+1X1 + · · · + g∗k,w+1Xk

...
K∗

n = g∗1,nX1 + · · · + g∗k,nXk

12: z ←K − xG where x is the unique solution of (L)
13: end if
14: return (x, z)
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Table 6.2 – Bound on w with parameters taken from [Loi07] (m = n).

n k u w u
u+1

(n− k)

56 28 3 16 21
54 32 4 13 17

Conclusion
Faure and Loidreau proposed a rank-metric encryption scheme based on Gabidulin
codes related to the problem of the linearized polynomial reconstruction. We showed
that the scheme is vulnerable to a polynomial-time key recovery attack by using
Overbeck’s techniques applied on an appropriate public code.

Our attack assumes that parameters are chosen so that w 6 u
u+1

(n− k) which
was always the case in [FL05, Loi07]. We have also seen that taking w > u

u+1
(n− k)

implies to choose tpub <
1
2

(
n−k
u+1

)
which exposes further the system to general decod-

ing attacks like [GRS16]. Hence it imposes to increase the key sizes and consequently
reduces the practicability of the scheme while offering no assurance that the scheme
is still secure. The best choice from a designer’s point of view would be to take u
as small as possible but a thorough analysis has to be undertaken in light of the
connections with the reparations proposed in [RGH10, Loi10]. This point is left as
an open question in this chapter and breaking this kind of parameters would lead
arguably to a cryptanalysis of [RGH10, Loi10], and to an algorithm that decodes
Gabidulin codes beyond the bound u

u+1
(n− k).
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Chapter 7

Conclusions and Perspectives

7.1 Conclusion

In this thesis, we have studied the security of several code based encryption scheme
and mainly McEliece variants. The general idea of the McEliece cryptosystem and
its variants is to choose an appropriate private code that will be masked into a
public one. This technique opens a general security question: “is the public code
distinguishable from a random code ?”. A positive answer to that question generally
leads to successful structural attacks. That is how several variants of the McEliece
based on algebraic codes were proven to be not secured.

In Hamming metric context, one of the most powerful distinguisher is the square
code (with the component-wise product). This tool has been use to distinguish the
public code of several variants of the McEliece encryption schemes. One more, we
used this tool in Chapter 3 to distinguish the public code of the modified Sidelnikov
cryptosystem [GM13] from a random one, which proved that the system is insecure.

We emphasize that the situation is quiet the same in rank based cryptography
where the usual and powerful distinguisher is the operator Λi which applies i times
the Frobenius operation on the public generator matrix. We have also used this
distinguisher in chapters 5 and 6 of this thesis to show that all existing schemes
based on Gabidulin codes [Gab08, GRH09, RGH10, RGH11, Loi07, FL05] are ac-
tually insecure. However, besides the Gabidulin codes and inspired by the class of
MDPC/LDPC codes in Hamming metric, a new class of rank metric codes was re-
cently proposed in [GMRZ13] namely Low Rank Parity Check codes. They are the
adaptation of the MDPC/LDPC codes in the rank metric. The LRPC cryptosystem
[GMRZ13] is thus the analogue of the MDPC McEliece scheme. The main advan-
tage of the scheme is that it comes, as the MDPC PKC, with a quasi-cyclic version,
which allows to drastically reduce the key size. The LRPC scheme is therefore one of
the most promising rank-based encryption scheme since it has many security argu-
ments in its favour: compared to the Gabidulin codes, the LRPC codes have a weak
algebraic structure and thus seem much more fitted for a cryptographic purpose.
Secondly the DC-LRPC scheme is equivalent to the NTRU [HPS98] and thus ben-
efit of a quite long research experience from a cryptanalytic point of view. But the
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family of LRPC codes came with a probabilistic decoding algorithm. Furthermore,
like in Hamming metric, there is no formal proof of the indistinguishability of the
public code from a random one.

7.2 Perspectives

7.2.1 Cryptanalysis

There exist several connections between Generalized Reed-Solomon codes and Gabidulin
codes. A natural one is that both GRS and Gabidulin codes are distinguishable from
a random code as mentioned at the beginning of this thesis. When looking closely
the distinguishers, one can remark that the distinguisher for Gabidulin codes is more
general than the distinquisher used for GRS codes. A study of the connections be-
tween the two distinguishers, namely the “component-wise product of codes” and the
operator Λi is to our opinion a promising research perspective since it could allow to
find a general distinguisher for Goppa codes. We emphasise that Goppa codes are
only distinguishable for some particular parameters such as high rate Goppa codes
[FOPT10].

7.2.2 Designing

In terms of masking technique, one can remark that the properties of rank-metric
allow to see each codeword as a matrix. Exploiting this view for a masking procedure
of rank-metric codes might be interesting.

Another alternative branch of research would be to find a new masking technique
for which there is a formal proof of the indistinguishability of the public code from
a random one, or simply to find a cryptosystem whose the security is based only
on the general decoding problem, since putting away this unanswered question of
distinguishability can allow to guarantee the security of the system face to structural
attacks. Such an idea was already proposed by Alekhnovich [Ale03, Ale11] who
considered an innovative approach based on the difficulty of decoding purely random
linear codes. Even though the system proposed by Alekhnovich was not practical,
several authors were inspired by his work [DMN12, DV13, KMP14] and the recent
progress presented in [ABD+16] show the importance of developing this branch of
code based cryptography.
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