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Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY -model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.

This work is focused on the study of the two dimensional one component plasma 2dOCP a system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.

We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNY-theory but also provides alternatives to detect transitions in two-dimensional systems.

Resumen

Sistemas de muchas partículas pueden exhibir variados comportamientos dependiendo del tipo de interacción entre sus componentes. En algunas situaciones, estructuras macroscópicas altamente ordenadas pueden emerger de dichas interacciones. El problema de identificar los mecanismos que activan el orden microscópico en sistemas en dos dimensiones ha sido tema de estudios teóricos y experimentales. Hace varias décadas se demostró que sistemas bidimensionales con interacciones de alcance suficientemente corto y parámetros de orden continuos están desprovistos de orden de largo alcance (no tiene fase sólida). Por otro lado, estudios numéricos en sistemas desprovistos de orden posicional mostraron que dichos sistemas podían exhibir transiciones de fase. Esta contradicción aparente en sistemas de dos dimensiones fue explicada en la transición KT (Kosterlitz-Thouless) propuesta para el modelo XY. Desde entonces quedó en evidencia que sistemas posicionalmente isotrópicos podían mostrar transiciones de fase siempre que tuvieran orden de semi-largo alcance (OSLA). Dicho tipo de orden es asociado al orden orientacional del sistema, el cuál se pierde cuando defectos topológicos activados por fluctuaciones térmicas se dividen en pares produciendo una transición. Por otra parte, sistemas bidimensionales con orden posicional a temperatura T = 0 pueden fundirse en un escenario que incluye tres fases sólida/hexática/líquida cuyas transiciones se deben a la división en dos etapas de defectos topológicos a dos temperaturas distintas como predice la teoría KTHNY (Kosterlitz-Thouless-Halperin-Nelson-Young).

Este trabajo se enfoca en el estudio del plasma de un componente en dos dimensiones (PUC2d), un sistema clásico de N cargas puntuales idénticas interactuando mediante un potencial eléctrico e inmersas en una superficie bidimensional con fondo neutralizante. El sistema es un cristal a T = 0 que comienza a fundirse si T es suficientemente alta. Si el potencial de interacción entre partículas es logarítmico el sistema en el plano y la esfera tiene solución exacta para un valor de T especial localizado en la fase fluida. En este estudio se utiliza un formalismo analítico para determinar exactamente propiedades termodinámicas y estructurales que permiten seguir el comportamiento del PUC2d desde la phase desordenada hasta que éste cristaliza con la restricción de N no muy grande. Mediante el formalismo se encuentran interesantes conexiones con el Ensamble de Ginibre definido en la teoría de matrices aleatorias.

Se llevan a cabo simulaciones de Monte Carlo para modelar el PUC2d con interacciones de potencial inverso y condiciones de frontera periódicas en el plano. Se identifican tres fases incluyendo la fase hexática para sistemas suficientemente grandes. Mediante un análisis de talla finita y el método de Multi-Histograma se determina que la transición hexática/líquida es de primer orden débil. Finalmente, se lleva a cabo un estudio estadístico sobre arreglos (clústers) de defectos durante la fusión del cristal confirmando detalladamente la teoría KTHNY y describiendo alternativas para la detección de transiciones en dos dimensiones.

Résumé

Les systèmes de nombreuses particules peuvent présenter des comportements variés en fonction du type d'interaction entre ses composants. Dans certaines situations, des structures macroscopiques hautement ordonnées peuvent émerger de telles interactions. Le problème de l'identification des mécanismes qui activent l'ordre microscopique dans les systèmes bidimensionnels a fait l'objet d'études théoriques et expérimentales. Il y a plusieurs décennies, il a été montré que les systèmes bidimensionnels avec des interactions de paramètres d'ordre suffisamment court et d'ordre continu n'ont pas d'ordre à long portèe (ils n'ont pas de phase solide). D'autre part, des études numériques sur des systèmes sans ordre positionnel ont montré que de tels systèmes pourraient présenter des transitions de phase. Cette contradiction apparente dans les systèmes bidimensionnels a été expliquée dans la transition KT (Kosterlitz-Thouless) proposée pour le modèle XY. Depuis lors, on a commencé à observer que les systèmes sans ordre positionnel pouvaient montrer des transitions de phase quand ils avaient un ordre de demi-longue portée (ODLP). Ce type d'ordre est associé à l'ordre d'orientation du système qui est perdu lorsque les défauts topologiques activés par les fluctuations thermiques sont divisés en paires produisant une transition. D'autre part, les systèmes bidimensionnels avec ordre de position à la température T = 0 peuvent être fusionnés dans un scénario comprenant trois phases: solide / hexatique / liquide dont les transitions sont dues à la division en deux étapes de défauts topologiques à deux températures différentes (Théorie de Kosterlitz-Thouless-Halperin-Nelson-Young KTHNY).

Ce travail se concentre sur l'étude du plasma d'un composant bidimensionnel (PUC2d), un système classique de N charges ponctuelles identiques qui interagissent à travers un potentiel électrique et immergées dans une surface bidimensionnelle avec densité de charge opposée. Le système est un cristal à T = 0 qui commence à fondre si T est suffisamment élevé. Si le potentiel d'interaction entre les particules est logarithmique, alors le système dans le plan et la sphère a une solution exacte pour une valeur spéciale de T située dans la phase fluide. Dans cette étude, un formalisme analytique est utilisé pour déterminer exactement les propriétés thermodynamiques et structurelles qui permettent de suivre le comportement du PUC2d en la phase désordonnée jusqu'à ce que celui-ci cristallise avec la restriction de N pas très grand. Par le formalisme, nous trouvons des connexions intéressantes avec l'ensamble de Ginibre défini dans la théorie des matrices aléatoires.

Nous avons effectué des simulations de Monte Carlo pour modéliser le PUC2d avec des interactions potentiel en inverse de distance et des conditions aux limites périodiques dans le plan. Trois phases sont identifiées incluant la phase hexatique pour des systèmes suffisamment grands. Nous avons déterminé par l'analyse de taille finie et la méthode multi-histogramme que la transition hexatique / liquide est de premier ordre faible. Finalement, une étude statistique sur les arrangements de défauts (clusters) lors de la fusion cristalline est effectuée, confirmant en détail la théorie de KTHNY et décrivant des alternatives pour la détection de transitions en deux dimensions.

Chapter 1 Introduction

Matter in nature can exists in different states depending on the interaction between its constituents (atoms or molecules), its internal structure and the temperature. The phases, regions of the space where the physical and chemical properties are uniform, usually are classified as solid, liquid, gas and plasma. The particles in the crystalline solid are located around the nodes of a lattice where the thermal excitations are not large enough to destroy the spatial periodic arrangement of the system. The three-dimensional crystals e.g. salt or quartz are characterized by a long-range positional order. On the other hand, this long-range positional order is lost in the non-crystalline solid but atoms are yet closely packet and uniformly distributed in the space. As it occurs with the amorphous solids, the liquids have short-range positional order but particles in the fluid phase have more kinetic energy which enables them to flow collectively. As the solid, the liquid is practically incompressible with a constant volume but not fixed shape. In contrast, gases are in general compressible systems with no definite volume and shape where particles have enough kinetic energy to overcome the particle-particle interaction.

The thermodynamic process connecting different phases of a given system are known as phase transitions. Let us consider a system which follows a isothermal process involving no work. If the number of particles of the system does not change then the free energy F = E -T S satisfies ∆F ≤ 0. This means that F is minimized as the system approaches to the equilibrium. Even when there is no work, the system may interchange thermal energy (heat) with the environment.

If the system is following a freezing process, then the energy leaves the system as heat transferred to the surroundings and the entropy decreases. This reduction of the entropy may occur in the system, for example, by introducing order. Since the reduction of the entropy produces an increasing of the Helmholtz free energy, then it is compensated by corresponding decreasing of the internal energy. This competition between entropy and energy, at the end must finish in a decreasing of the F .

The opposite process is melting. In this case the heat transferred from the environment to the system rises the internal energy which at the same time tends to rise the Helmholtz energy. The minimization of F is then achieved by increasing the entropy.

One of the most important differences between the ideal gas model and real gases are phase transitions since they are absent in the ideal gas. A first description of the liquid/gas phase transition was provided by van der Waals in 1873. Later, Landau proposed a theoretical formulation in 1937 with the aim to describe and classify phase transitions [1].

There are system which exhibit ordered phases at low temperatures, an example is the ferromagnetic CHAPTER 1. INTRODUCTION 8 materials where magnetic moments at sufficiently low temperature may align spontaneously generating a long-range ferromagnetic order. The Ising model, an arrangement of spins in a d-dimensional lattice with nearest neighbouring interaction, is a model of ferromagnetism. The 2-dimensional Ising model in the square lattice was solved by Lars Onsager [2] in 1944 showing that this system has a continuous phase transition.

When the transition takes place, then occurs a symmetry breaking. At high temperature the system is in a disordered state which macroscopically looks equal everywhere with translational and rotational symmetry.

Once the magnets are aligned at the low temperature phase, the system loses this symmetry since there is a preferred direction, then a symmetry breaking occurs due to ordering.

The concept of symmetry breaking may be associated to phase transitions but it is not a rule. It was the case of the XY -model, a system of classical rotors arranged in a bidimensional square lattice with nearest neighbouring interaction. Peierls in [3] argued that long-range positional order in two-dimensions will be destroyed as well as the two-dimensional solid since the mean square deviations of the particles positions around their equilibrium positions diverges logarithmically with the system size. Later Mermin and Wagner [4] in 1966 rigorously proved that long-range positional order is not possible in two-dimensional systems with continuous degrees of freedom and sufficiently short range interactions as the XY -model. As a result, the rotors of the XY -model do not have a spontaneous alignment in a common direction at any finite temperature T > 0 and there is no symmetry breaking. Later Kosterlitz and Thouless [5] in 1973 showed that even when the XY -model does not have symmetry breaking, the model exhibited a continuous phase transition driven by a mechanism involving topological defects or vortices. It occurs that the XY -model has a quasi-long range order characterized by an asymptotic algebraic decaying of the orientational correlation function at sufficiently low temperature. If the temperature is increased until some critical value, then the thermal energy activates a vortex-unbinding mechanism which produces vortices in pairs whose proliferation destroys the quasi-long range order. This type of phase transition is known as the Kosterlitz-Thouless (KT)-transition.

Another example which shows that symmetry breaking does not necessary mean phase transition is the liquid/gas transition where both phases have in the macroscopic scale translational and rotational symmetry. Even when two-dimensional systems do not have a strict long-range order, the realization of the twodimensional solid is still possible since there are systems in two dimensions which may exhibit quasi long-range positional order. An example of these systems is the two-dimensional one-component plasma 2dOCP, a classical system of N -punctual and identical charges interacting via a repulsive potential immersed in a rigid and uniform neutralizing background. The statistical properties of this system depends on the coupling constant Γ, a parameter inversely proportional to temperature. In the weak coupling regime Γ the 2dOCP is a fluid, but it crystallizes in the strong coupling regime Γ >> 1 (see Fig. 1.1). The minimum energy configuration of the system is known as the Wigner crystal, and the corresponding Wigner crystal of the 2dOCP on the flat plane in the thermodynamic limit (N → ∞ and constant particle density) is the hexagonal lattice.

One of the first studies of phase transitions of systems with crystalline structures was done in 1930s by Wigner. Posteriorly, several observations of Wigner crystals in the laboratory were performed on macroscopic colloidal crystals in aqueous solutions e.g. Kose et al [6] in 1973, Winkle and Murray [7] in 1988. Other experiments including ion crystals [8][9][10] and electron crystals were performed in the late eighties and early nineties [11]. Jancovici [START_REF] Jancovici | Infinite susceptibility without long-range order: The two-dimensional harmonic" solid[END_REF] showed in 1967 that the bidimensional harmonic solid had an infinite generalized susceptibility at low temperature even when there is no long range order.

The work of Kosterlitz and Thouless [5] in 1973, and later Halperin, Nelson [12,13] and Young [14] in 1979 gives a description of the melting of the hexagonal crystal. This theory in the literature receives the name of KTHNY-theory of two dimensional melting. In the KTHNY-theory the crystal melts in two steps at two different critical temperatures due to the unbinding of topological defects. As the temperature of the solid increases the quasi-long range order of the two-dimensional crystal is lost because a thermal unbinding of dislocations-pairs, this lost of positional order is followed by an asymptotic algebraic decaying of the bond-orientational correlation function, then the bond-orientational order becomes quasi-long ranged. Later a second unbinding of single-dislocations in free disclinations destroys the residual orientational order and the system reach the fluid phase. The intermediate phase in between these two unbinding mechanisms is the hexatic phase.

The hexatic phase has been reported in several experimental systems [15][16][17][18][19][20][21][22][23][24][25][26][27] mainly in colloidal systems. The hexatic phase has been also identified in numerical simulations on hard and soft disk [28,29] and Coulomb systems [30,31]. Even when hexatic phase has been found by simulations and experiments, there is not the same agreement with respect the classification of the fluid/hexatic and hexatic/solid transitions. According to the KTHNY-theory these transitions are continuous and similar to a KT-transition. However, there are studies which report a weakly first order transitions instead of a KT-transition [27,28,30].

This thesis is focused in the study of Coulomb systems featuring long range interactions. In particular it is studied the two dimensional one component plasma 2dOCP on different geometries and boundary conditions. The 2dOCP on the plane with periodic boundary conditions and 1/r-Coulomb potential was studied in Ref. [30] by using Monte Carlo (MC) simulations identifying the hexatic phase. One of the purposes in this thesis is to perform numerical simulations on the 2dOCP with inverse power law interactions IPL of the form 1/r n for n = 2 and 3 which enables us to do a study of the phase transitions. Our intention is to determine if the system behaves as the KTHNY-theory predicts and classify the fluid/hexatic and hexatic/solid phase transitions since previous studies have found first order transitions instead of KT-transitions. The dependence of the critical coupling parameter with the size of the system as well as n is subject in this thesis.

Topological defects play an important role in the KTHNY-theory. These defects are particles whose number nearest neighbours is not six (they do not exist in the perfect hexagonal lattice). As it was mentioned, the mechanisms behind the two-step scenario of the KTHNY-theory include dislocations-pairs, single-dislocations and free disclinations. However, during the melting of the hexagonal crystal other structures or clusters of defects absent in the KTHNY-theory may also emerge as it occurs with the 2dOCP with IPL interactions. In this manuscript we present an statistical study of these alternative clusters of defects. The statistical study not only takes into account the size of the clusters, but also has a classification these clusters according the type of defects on the cluster as well as some topological features. We shall determine the influence of large clusters of defects during melting as well as the usual clusters of the KTHNY-theory providing alternatives to localize the hexatic phase.

Even when the 2dOCP is a very idealized classical model, the exact results on this system are rather limited. If the interaction between particles is logarithmic, then the 2dOCP is exactly solvable at a special value of the coupling parameter Γ = 2 located in the fluid phase [32] [33] [34] [35] [36]. However, the analytical solutions of the 2dOCP with logarithmic interactions are an open problem. In this thesis we shall describe a study on the 2dOCP with logarithmic interactions on the sphere and the disk inspired in previous works [37,38]. We provide some exact results on the 2dOCP with logarithmic interactions which enables to study the crossover from fluid to crystal.

Plan of the document

This manuscript is organized as follows. In the next section a theoretical background on 2dOCP with logarithmic interaction is presented. We will be focused mainly in the disk and sphere geometries. Our intention is to summarize the analytical results for the special coupling Γ = 2 and stablish the connection between the 2dOCP and the random matrix theory in particular with the Ginibre ensemble. In Chapter 3 we shall introduce the preliminary material and the basics of the monomial expansion method used to study analytically the behaviour of the two dimensional plasma for Γ > 2. In particular, it will be described the approach of [38] to obtain the partition and pair correlation function constrained to the following condition on the coupling parameter Γ = q 2 /(k B T ) = 2, 4, ..., 2n with n a positive integer. Chapters 4 and 5 will include the results of current study for 2dOCP on the sphere and disk geometries providing an outlook on possible future investigations. An overview of phase transitions in two dimensional systems will be presented in Chapter 6. The next chapter is devoted to describe the numerical methods implemented to study systems with inverse power law interactions. The results of the phase transitions of the 2dOCP with inverse power law interaction are presented in Chapter 8. The Chapter 9 is devoted to the statistical study of clusters of defects during the melting 2dOCP with IPL interactions. Finally, some perspectives and future work concerning the melting in two dimensions and open analytical problems on the 2dOCP with IPL interactions are presented at the end of the document.

Chapter 2

Theoretical background on bidimensional log-gases

The present chapter is devoted to study the statistical mechanics of the two dimensional one component plasma 2dOCP. In general, the physical features of the OCP also depends on the surface where the point charges are placed. In this chapter we shall be limited to study the 2dOCP on two geometries: the sphere and the disk. A description of the system on these geometries is presented in 2.1. The different energy contributions of the 2dOCP on the disk and the sphere are in subsection 2.1.1. The 2dOCP with logarithmic interactions becomes an exact solvable model when the coupling parameter is restricted to a very special value Γ = 2. Then, next section will be focused to summarize well known exact results on the 2dOCP. Some of these exact solutions e.g. the partition function and the n-body density functions at Γ = 2 come from the connections between Coulomb gases and the Gaussian ensembles of the random matrices theory. We shall treat in some detail these connections in subsection 2.2.1. A summary of other exact results on the excess energy will be presented at the end of the chapter.

Description of the system

The two-dimensional one component plasma 2dOCP is a system of N identical point ions of charge Q interacting exclusively via an electric potential and immersed in a rigid uniform background of opposite charged. The whole system is electro-neutral and it is imposed the condition ρ b A + N Q = 0 with ρ b the background density and A the area.

We are interested in the study of the 2dOCP on a sphere and the disk (see Fig. 2.1). In both cases the particles interact each other via logarithmic potential of the form

ν( r 1 , r 2 ) = -log | r 1 -r 2 | L (2.1)
with r 1 and r 2 their positions and L is an arbitrary parameter which defines the length scale. The solution of the Poisson equation in two dimensions is logarithmic and Eq. (2.1) is natural potential for the 2dOCP on the disk. On the other hand, it is necessary to be careful in the sphere geometry because the Coulomb potential of a punctual charge on a surface without boundaries is not defined. It occurs because the Laplacian does not have inverse in this case. However, for globally neutral configuration on the sphere it is possible to define in several ways the Coulomb potential [39] e.g. by considering a system of pseudo-charges, in other words, a point like charge plus a uniform charged background spread on the sphere with a opposite sign. In this situation the potential on the sphere is again given by Eq. (2.1) where r 12 = | r 1r 2 | is the chord distance between charges instead of the geodesic distance.

Fig. 2.1: Systems. The 2dOCP (left) on a Sphere (right) on a Disk. In both cases the R will denote the radius of the sphere or the hard disk.

Two different types of boundaries are considered for the 2dOCP on a disk: hard and soft. In the hard disk boundary, the particles are constrained to be in a circular region of radius R. On the other hand, the soft disk boundary refers to the situation where the charges are not restricted to be in circular region via a hard wall potential, but they are still confined via a radial parabolic potential generated by the background. In this document the 2dOCP on a soft disk is also referred as the Dyson Gas.

Energy contributions for the disk and sphere geometries

The energy of the 2dOCP system on a sphere or a disk is given by H ({ r, p}) = K( p 1 , . . . , p N ) + U inter ( r 1 , . . . , r N ) where K( p 1 , . . . , p N ) = 1 2m

N i=1 p 2 i
is the kinetic energy of N classical identical punctual charges with mass m and U inter ( r 1 , . . . , r N ) = U pp + U pb + U bb is the potential energy which includes all the different interactions of the 2dOCP: the energy of the particleparticle interaction U pp , the particle-background interaction U pb and the U bb background-background interaction. The term U pp is given by

U pp = Q 2 1≤i<j≤N
ν(| r i , r j |).
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The interaction between the N -particles of identical charge Q and the background contributes with an energy equals to

U bp = Q 2 N i=1 V b ( r i ) with V b ( r) = S ν ( r, r ) ρ b ( r )dS
where V b ( r) is the potential and generated by the background and ρ b ( r ) the number background density. Finally, the background-background potential is

U bb = Q 2 2 S S dSdS ρ b ( r)ρ b ( r )ν ( r, r )
which includes the energy contributions coming from self interactions of the background. By definition the canonical partition function (in two dimensions) is

Z c (A, T, N ) = 1 h 2N N ! S N 2N d 2 r 1 . . . d 2 r N d 2 p 1 . . . d 2 p N exp (-βH ({ r, p}))
with A the area and T the temperature. It may be split as follows

Z c (A, T, N ) = 1 h 2N N k=1 2 d 2 p k exp -βp 2 k /(2m) 1 N ! N k=1 S d 2 r k exp [-βU inter ( r 1 , . . . , r N )]
to evaluate the momentum integrals and obtain

Z c (A, T, N ) = 1 λ 2N B Z N,Γ with λ B = h √ 2πmk B T (2.2)
the de Broglie thermal length, and

Z N,Γ = 1 N ! N k=1 S d 2 r k exp [-βU inter ( r 1 , . . . , r N )]
the configurational partition function. The total average energy E = H ({ r, p}) is

E = - ∂ ∂β log Z c (A, T, N ) = N k B T - ∂ ∂β log Z N,Γ
where N k B T is just the energy of the ideal gas in two dimensions and

U exc = U inter ( r 1 , . . . , r N ) = - ∂ ∂β log Z N,Γ
is the excess energy, where • denotes the average over the phase space.

The two dimensional one-component plasma (2dOCP) on a sphere

For the case of the 2dOCP on a sphere the background density is ρ b = N/(4πR 2 ) with R the radius of the sphere. It is convenient to write positions in terms of the Cayley-Klein parameters

u i = cos θ i 2 exp i φ i 2 and v i = -i sin θ i 2 exp -i φ i 2 (2.3)
then the distance between charges takes the form | rr | = 2R|uvu v|. An additional simplification may be done by placing a particle in the north pole due to the symmetry of the sphere. In other words, to set θ = 0 and φ = 0 to simplify | rr | = 2R|v | = 2R sin (θ /2). As a result, the background potential takes the form

V ( r) = ρ b Sphere log 2R L sin θ 2 R 2 sin θ dφ dθ = N π 0 log 2R L sin θ 2 sin θ 2 cos θ 2 dθ
which may be evaluated by using the substitution w = 2R L sin (θ /2)

V b ( r) = N L 2 2R 2 2R/L 0 w log |w|dw = N 2 2 log 2R L -1 .
Hence, the background-background interaction takes the form

U bb = - Q 2 2 sphere ρ b dS N 2 2 log 2R L -1 = - Q 2 N 2 4 2 log 2R L -1 .
On the other hand, the background-particle energy is

U bp = Q 2 N i=1 N 2 2 log 2R L -1 = Q 2 N 2 2 2 log 2R L -1 = -2U bb
as a result

U pb + U bb = Q 2 N 2 4 log N ρ b πL 2 -1
for the sphere. (2.4) In this case, the two energy contributions coming from the different interactions of the background are just a constant as direct consequence of the rotational invariance of the sphere. Finally, the interaction potential energy of the plasma on the sphere is

U sphere inter ( r 1 , . . . , r N ) = Q 2 N 2 4 log N ρ b πL 2 -1 -Q 2 1≤i<j≤N log | r i -r j | L . (2.5) 
The two dimensional one-component plasma (2dOCP) on the Disk

For the case of the 2dOCP on a disk we have

V b ( r) = disk log | r -r | L ρ b ( r )dS = ρ b disk log | r -r | dS -N log(L)
where the background density is ρ b = N/(πR 2 ) is kept as a constant. It is advantageous to write the integral in terms of the complex positions re 

R 2 r log R r - 1 4 R r 2 + 1 4
(2.9) replacing Eqs. (2.8) and (2.9) in Eq. (2.6) it is obtained

V b (r)/Q = N 2R 2 r 2 + N log R L - 1 2 
and the particle-background interaction takes the form

U bp = Q N i=1 V b ( r i ) = N Q 2 2R 2 N i=1 r 2 i + N 2 Q 2 log R L - 1 2 .
On the other hand, the background-background is
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U bb = - Q 2 disk ρ( r)V b ( r)dS = - Q 2 ρ b 2π 0 dφ R 0 rdrV b ( r) = - Q 2 2 N πR 2 2π R 0 rdr N 2R 2 r 2 + N log R L - 1 2 = N 2 Q 2 1 8 - 1 2 log R L (2.10)
and both contributions are

U bb + U pb = ρ b πQ 2 2 N i=1 r 2 i + N 2 Q 2 1 2 log R L - 3 8
for the disk. (2.11) Summarizing, the interaction potential energy U inter = U pp + U bp + U bb of the 2dOCP on the disk are 1 .

U H inter = Q 2   f H (N ) + 1 2 N i=1 √ N R r i 2 - 1≤i<j≤N log √ N R r ij   (2.12) 
for the hard disk, where

f H (N ) = - 3 8 N 2 + N 2 log R L + N 2 2 log √ N - N 2 log N, (2.13) 
and

U S inter = Q 2   f S (N ) + 1 2 ρ b π N i=1 r 2 i - 1≤i<j≤N log r ij   (2.14)
for the soft disk, where

f S (N ) = f H (N ) - N (N -1) 2 log ρ b πN .
(2.15)

The confining potential

In the case of the hard boundary, the mobile particles are confined to a disk of radius R. However, it is possible to relax this constrain by allowing the disk to fill the plane. In this scenario, the mobile particles 1 Along the document the symbols H and S will be used to denote Hard and Soft disk cases respectively. In fact, there is not difference between Eq. (2.12) and Eq. (2.14) except the way employed to write them. For the case of the hard disk, it is advantageous to rescale the particle radial positions with the radius R as follows √ N r/R since the √ ρ b π = √ N /R is kept constant. For the case of the soft disk, there is not a confining hard wall boundary and the radial coordinate is not rescaled. Of course, both cases hard and soft, are completely equivalent in the thermodynamic limit. may go anywhere in the plane but they still remain confined by the harmonic radial potential generated by the uniformly charged background (this is the parabolic term in Eq. 2.11) and its energy contribution is

U S quad = ρ b π Q 2 2 N i=1 r 2 i = ρ b π Q 2 2 1 ZS N,Γ R 2 d 2 r 1 . . . R 2 d 2 r N exp -ρ b π Γ 2 N i=1 r 2 i 1≤i<j≤N
r i e iφir j e iφj Γ N i=1

r 2 i with ZS N,Γ (ρ b ) = R 2 d 2 r 1 . . . R 2 d 2 r N 1≤i<j≤N exp -ρ b π Γ 2 N i=1 r 2 i r i e iφi -r j e iφj Γ .
The U S quad energy may be evaluated for any coupling parameter Γ by noting that

1 ZS N,Γ (ρ b ) ∂ ∂ρ b ZS N,Γ (ρ b ) = - πΓ 2 N i=1 r 2 i ⇒ U S quad = - ρ b Q 2 Γ ∂ ∂ρ b ZS N,Γ (ρ b ).
If the variable r = √ ρ b πr is defined, then Next question is: how strong is the parabolic confining?. Let us suppose that, in average, the plasma is

N k=1 R 2 d 2 r k 1≤i<j≤N r i e iφi -r j e iφj Γ -→ 1 √ ρ b π 2N +N (N -1) Γ 2 N k=1 R 2 d 2 r k 1≤i<j≤N r i e iφi -r j e iφj Γ and ZS N,Γ (ρ b ) = 1 ρ b π N +N (N -1) Γ 4 ZS N,Γ ρ b = 1 π therefore U S quad = N Q 2 Γ 1 + (N -1) Γ 4 .

DESCRIPTION OF THE SYSTEM

confined in a circular region of radius R S N,Γ . To find such confining radius we may use the fact that the plasma tends to fill uniformly the plane as N → ∞ when the background density is kept as a constant2 . Assuming that this is the case of N -finite but still large systems then

R S N,Γ = 4 ρ b π U S quad N Q 2 = 2 1 Γρ b π (N -1) Γ 4 + 1 . (2.16)
At Γ = 0 the system is an ideal gas and the particles do not see the parabolic potential, then R S N,Γ=0 → ∞. On the other hand, weakly coupled systems Γ << 1 are partially confined because of thermal fluctuations (a particular example for N = 50 is shown in Fig. 2.2). Near the fluid phase, the confining radius Eq. (2.16) gives a modest prediction specially for large systems since the particle density tends to a constant as the system grows. Additionally, the rapid decaying of R S N,Γ to its limit value R S N,Γ→∞ = (N -1)/(ρ b π) shows that a initially weakly coupled system becomes strongly confined as Γ → 2 (see Fig. 2.3). If the system enters to the strong coupling regime, then their particles will remain near the nodes positions of the corresponding Wigner crystal and eventually the whole system is fully confined at Γ >> 1. In principle, a N -finite Wigner crystal on the soft disk is contained in the following surface

S := (x, y) : x 2 + y 2 = (R S N,Γ→∞ ) 2 ∀ N ∈ Z +
including small crystals 2 ≤ N ≤ 20 which is a surprise considering that only in the thermodynamic limit finite-size effects on the density vanish as it will be shown in Chapter 4. In absence of a hard-wall boundary, the radial potential is responsible to confine the plasma otherwise charges would escape to the infinity because of their electronic repulsion. In contrast, for the case of the 2dOCP on the sphere, there is not a confining potential coming from the different interactions with the background (see Eq. 2.4) because of the sphere symmetry but the plasma occupies a finite region since particles are constrained to live on the sphere.

The equation of state

By definition the free energy F = U -T S is related to the canonical partition function as follows

F (A, T, N ) = -k B T log (Z c (A, T, N ))
The two-dimensional pressure or surface tension is computed from the free energy as follows

P = - ∂ ∂A F (A, T, N ) = 1 β ∂ ∂A log [Z c (A, T, N )] .
Now, the de Broglie thermal length λ B does not depend on the area A(see Eq. (2.2)), then

P = k B T ∂ ∂A log Z N,Γ
which may be evaluated by defining

ri := 1 √ A r i ⇒ Z N,Γ = A N zN,Γ with zN,Γ = 1 N ! N k=1 S d 2 rk exp -βU inter ( √ A r1 , . . . , √ A rN )
then, the surface tension may be written as follows

P = k B T A 1 + A ∂ ∂A log zN,Γ .
Independently of the geometry the energy U inter for the sphere (see Eq. (2.5)) and the disk (see Eqs. (2.12) and (2.14)) may be written as follows

U inter ( r 1 , . . . , r N ) = ũ( r1 , . . . , rN ) + N 2 Q 2 4 log A πL 2 where ũ( r1 , . . . , rN ) = - Q 2 N 2 4 -Q 2 1≤i<j≤N log ri -rj L for the sphere and ũ( r1 , . . . , rN ) = Q 2   - 3 8 N 2 + N 2 2 log √ N - N 2 log N + N 2L √ π + N i=1 √ πN ri 2 - 1≤i<j≤N log √ πN rij  
for the disk (with hard or soft boundary). Therefore

zN,Γ = 1 N ! N k=1 S d 2 rk exp -β ũinter ( r1 , . . . , rN ) A -β Q 2
and the equation of state takes the form 3

P A = N k B T 1 - 1 4 Γ .
2.2 Exact results at Γ = 2

Connections between the OCP and the Gaussian ensembles of the Random matrices theory

Even when models of continuous fluids in more than one dimension are of the interest in several studies, there is a limited number of them which are analytically solvable in more than one dimension. This is the particular case of the exact statistical description of the 2dOCP is an open problem. In fact, some of the exact results on one component plasmas come from their connections with the theory of Random Matrices. This theory leads with the question to obtain the probability density function p.d.f. of the eigenvalues of matrices with elements generated randomly according to a given probability law. The set of all the orthogonal random matrices with real elements defines an ensemble known as the Gaussian Orthogonal Ensemble (GOE). Other ensembles including a particular set of random matrices have been also considered. In 1965, Ginibre [40] [41] studied a particular case of N × N complex random matrices

S ij = S (0) ij + iS (1) 
ij with random elements generated according to a Gaussian distribution but with no unitary or hermitian conditions imposed on their generation. The probability to find a given complex random matrix in (S, S + dS) is P (S)µ(dS) with

µ(dS) = i,j dS (0) ij dS (1) ij
the linear measure and P (S) = exp -Tr S † S as it was chosen by Ginibre for the set T of all the matrices generated in this way. Eventually, it is possible to diagonalize any matrix S of T by finding their eigenvectors and applying a similarity transformation ASA -1 = D with D ij = z (i) δ ij and z (j) = x j + iy j the jth-complex eigenvalue of S. It may be found that the joint probability density function j.p.d.f. associated to the eigenvectors of the matrices in this ensemble is given by

P 2 (z 1 , . . . , z N ) = C 2 N i=1 e -|zi| 2 1≤i<j≤N |z i -z j | 2
where C 2 is a normalization constant which ensures 2 . . .

2 P 2 (z 1 , . . . , z N ) N i=1 dx i dy i = 1.
3 This is essentially the same procedure used to get the virial theorem which is

P V = N k B T - 1 6 n (2) ( r 1 , r 2 ) | r 1 -r 2 | ν ( r 1 -r 2 ) d 3 r 1 d 3 r 2
for three-dimensional systems.
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A comparison with the Boltzmann factor of the Dyson Gas exp(-βU S exc ) = exp -Γf S (N )

N i=1 exp -ρ b Γ r 2 i 2 1≤i<j≤N |u i -u j | Γ
shows that the eigenvalues z 1 , . . . , z N of the random matrices in the Ginibre Ensemble GE plays an analogous role of the complex positions u 1 , . . . , u N (with u = re iφ if polar coordinates are used) of the point charges in the 2dOCP on the soft disk. Therefore, both eigenvalues and charges should obey the same statistic at least for Γ = 2 and ρ b = 1/π. The n-point correlation function for the eigenvalues is defined as

R (n) N (z 1 , . . . , z n ) = N ! (N -n)! 2 . . . 2 P 2 (z 1 , . . . , z N ) n i=1
dx i dy i may be identified with the n-body density ρ

(n)
N,Γ ( r 1 , . . . , r N ) function of the Dyson gas at 4 Γ = 2. The random matrices result is

R (n) N (z 1 , . . . , z n ) = 1 π n exp - n i=1 |z i | 2 det [K N (z i , z j )] i,j=1,...,n (2.17) 
with

K N (z i , z j ) = N -1 k=0 z i z * j k k! = N →∞ exp(z i z * j ).
It is important to mention that even when the analogy between the GE formalism and the Coulomb gas is correct at Γ = 2, it is also possible to keep partially this connection for Γ > 2 as it is described in Chapter 4 since the n-body density function of the Dyson gas inherits some of the statistical features from the GE in terms of the partition average of a function which resembles the Kernel found in the n-point correlation function of this particular ensemble of the random matrices theory. In the limit N → ∞ two results may be obtained straightforwardly from Eq. (2.17). The first one is the level density

5 σ N (z) = R (1) 
N = exp(-|z| 2 ) 1 π K N (z, z) = N →∞ 1 π (2.18)
4 For the case n = 2, the 2-point correlation function g

N,Γ ( r 1 , r 2 , φ 12 ) is defined as follows

g (2) N,Γ ( r 1 , r 2 , φ 12 ) = ρ (2) N,Γ ( r 1 , r 2 , φ 12 ) ρ (1) N,Γ ( r 1 )ρ (1) N,Γ ( r 2 ) . where ρ (1)
N,Γ ( r) is the particle density. If the system is homogeneous then ρ

(1) N,Γ ( r) = ρ b is constant, then g (2) N,Γ ( r 1 , r 2 , φ 12 ) and ρ (2) N,Γ ( r 1 , r 2 , φ 12 ) differ by a multiplicative constant g (2) N,Γ ( r 1 , r 2 , φ 12 ) = 1 ρ 2 b ρ (2) N,Γ ( r 1 , r 2 , φ 12 ).
This is not longer the case of systems far from the thermodynamic limit where finite size effects modify the density profile e.g. near the hard wall boundary of the 2dOCP on the hard disk. It occurs also in the Dyson gas because the background potential tends to confine the system in a finite region and far from the origin the translational symmetry is lost. 5 The term level density is frequently found since the random matrices theory has been used as a tool to understand the behaviour of systems in diverse branches of physics as Chaos and complexity or Nuclear physics. In particular, the random matrices theory has been used to model the energy level spacing distribution of many quantum systems whose classical counterpart is chaotic. Since the usual strategies to identify chaos in classical systems are meaningless in the quantum scale because of the absence of trajectories, then the change of statistical distribution of nearest neighbouring spacings of the energy levels (Bohigas, Giannoni and Schmit (BGS) conjecture [START_REF] Bohigas | Characterization of chaotic quantum spectra and universality of level fluctuation laws[END_REF]) has been interpreted as a signature of chaos of quantum systems.

which in the context of the 2dOCP on the soft disk corresponds to the number density of the system in its fluid phase when the background density is set as ρ b = 1/π deep in the thermodynamic limit where the plasma is spread on the real plane. The second quantity is the pair correlation function of two eigenvalues

R (n) N (z 1 , z 2 ) = N →∞ 1 π 2 [1 -exp -r 2 12 ] (2.19)
or 2-body density function on the Dyson Gas. This function depends only on the distance between charges since the plasma in the thermodynamic is invariant under translations and R

(n)

N (z 1 , z 1 ) = 0 implies that is virtually impossible to find two charges at the same position because of their mutual repelling.

There are also connections between the Coulomb repulsive gas in one dimension and the β-ensembles of the random matrix theory. In particular, the j.p.d.f of the eigenvalues {λ 1 , . . . , λ N } ∈ R of large Gaussian random matrices is

dP N,β (λ 1 , . . . , λ N ) = 1 Z N,β |∆(λ 1 , . . . , λ N )| β N k=1 exp -N λ 2 k β/4 (2.20)
which coincides with the Boltzmann-Gibbs distribution at the inverse temperature β of the 1dOCP confined by a harmonic potential where charges repel each other via a logarithmic potential (which is not the solution of the 1D Poisson equation). When the inverse temperature takes the values β = 1, 2 and 4 then Eq. (2.20) corresponds to the j.p.d.f of eigenvalues of random matrices in the Gaussian orthogonal (GOE), unitary (GUE) and Symplectic (GSE) ensembles respectively. This is commonly known as the Dyson's threefold way. The classification in these ensembles depends on the symmetries of the matrices (see Table 2.1). Since the Gaussian ensembles have restrictions on β, then there is a lot of interest in the construction of an ensemble would lead to most general values of β [43] [44]. This is also relevant for the OCP because, until now, there is not any exact result on the 2dOCP for non-integer values of the coupling parameter.

β 1 (GOE) 2 (GUE) 4 (GSE) Matrix entries Real elements Complex elements Quaternions M ij ∈ R M ij ∈ C M ij ∈ H Properties Symmetric Hermitian Self-dual M ij = M ji M ij = M * ji Table 2.1: The β-ensembles.

Exact computation of the excess energy on the Disk and Sphere geometries at Γ = 2

The two dimensional one component plasma (2dOCP) on a disk Integrals involved in the computation of the particle-background interaction and the background-background interaction of the 2dOCP on a given geometry may be solved straightforwardly as it was shown for the disk and the sphere in the previous sections. Nevertheless, the particle-particle interaction analytic evaluation in general is a challenging problem. Although the logarithmic interaction potential between particles is longranged, there is an analytical advantage because it allows to express the Boltzmann factor as the following product

exp(-βU H inter ) = exp -Γf H (N ) N i=1 exp -Γ r 2 i 2 1≤i<j≤N |z i -z j | Γ (2.21)
where Γ = Q 2 /(k B T ) and z i = r i exp(-φ i ) is the complex position of the ith-particle with r i = √ N r i /R. As a result the configurational partition function

Z N,Γ := 1 N ! Disk N dS 1 • • • dS N exp -βU H exc (2.22)
may be written as follows

Z N,Γ := exp(-Γf H (N )) N ! 1 πρ b N N j=1 2π 0 dφ j √ N 0 r j dr j exp -Γ r 2 i 2 1≤i<j≤N |z i -z j | Γ (2.23)
The difficulties in the integration especially rises from the product 1≤i<j≤N |z iz j | Γ . However, for Γ = 2 such product may be written in terms of the Vandermonde determinant det(z i-1 j ) (i,j=1,2,...,N ) as follows

1≤i<j≤N |z i -z j | 2 = det((z * j ) i-1 ) det((z j ) i-1 ). (2.24) 
Using this relationship the partition function may be found explicitly as well as the excess free energy per particle [START_REF] Sari | On the ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited[END_REF] 

F exc N = - 1 4 q 2 log(πρL 2 ) + f (T ) (2.25)
where f (T ) is a function of the temperature. On the other hand, the n-point distribution function g n (z 1 , z 2 , . . . , z N ) at Γ = 2 on the 2dOCP on the hard disk is a result of the random matrices theory [40] [41]

g n (z 1 , z 2 , . . . , z N ) = exp - n i=1 z 2 i det K N (z i z * j ) i,j=1,...,n (2.26) 
where

K N (z i z * i ) = k=1 (z i z * i ) k-1 γ(k, N ) and γ(k, N ) = N 0 exp (-t) t j-1 dt (2.27)
is the incomplete gamma function. This function in the thermodynamic

N → ∞ limit is just a factorial γ (k, N → ∞) = (k -1)!.
In particular, the one-body density function is ρ 1 (z 1 ) = ρ b a constant, and the two-body density function is

ρ 2 (z 1 , z 2 ) = ρ 2 b 1 -exp(-πρ b |z 1 -z 2 | 2 ) = ρ 2 b g(z 1 , z 2 ) which coincides with
the results of the soft disk Eqs. (2.19) and (2.18). Jancovici [START_REF] Jancovici | Exact results for the two-dimensional one-component plasma[END_REF] computed the pair correlation function near Γ = 2 in terms of n-point correlations functions g(1, 2, . . . , n) at Γ = 2

ρ 2 ρ 2 b =: g(1, 2; Γ) = g(1, 2) + (Γ -2) -g(1, 2)v(1, 2) -2ρ b [g(1, 2, 3) -g(1, 2)] v(1, 3)d3 - 1 2 ρ 2 b [g(1, 2, 3, 4) -g(1, 2)g(3, 4) -g(1, 2, 3) + 2g(1, 2)] v(3, 4)d3d4 + • • • (2.28)
This enables to compute the excess energy U exc and the excess heat capacity C exc . The excess energy per particle and the heat excess capacity per particle at Γ = 2 in the thermodynamic limit for the disk (with hard or soft boundary) are

U exc N = - 1 4 q 2 log(πρL 2 ) - 1 4 q 2 γ and C exc N = k B log 2 - π 2 24 (2.29)
where γ = 0.5772156649 . . . is the Euler-Mascheroni constant.

The two dimensional one component plasma (2dOCP) on a sphere

For the case of the sphere, it is only necessary to indicate two angles to locate a given particle on the sphere and the particle-particle interaction energy depends on the length of the joining coord between the i-th and j-th particles

r ij = 2R sin Ψ ij 2 with ψ ij = arccos 1 R 2 r i • r j . (2.30)
Then, the excess energy given by statistical average of Eq. (2.5) is

U exc = Q 2 N 2 4 2 log 2R L -1 - Q 2 2 N i=1 i<j log 2R 2 L 2 (1 -cos ψ ij ) . (2.31) 
In general the computations in the usual spherical angle variables (θ, φ) may be difficult. In particular the configurational partition function at Γ = 2 takes the form

Z N (Γ = 2) = exp(N 2 ) L 2 N R N N i=1 2π φi=0 π φj =0 sin φ i dθ i dφ i N k=1 N k<l 1 -cos ψ kl 2 .
(2.32) J.M. Caillol in [START_REF] Caillol | Exact results for a two-dimensional one-component plasma on a sphere[END_REF] noticed that it is convenient to introduce the Cayley-Klein parameters (see Eq. 2.3) because in terms of these parameters the product in the partition function integral may be written as a Vandermonde determinant as follows .33) Using this property Caillol found the following expression for the configurational partition function

N k=1 N k<l 1 -cos ψ kl 2 = N k=1 v N -1 k N i=1 i<j u i v i - u j v j . ( 2 
Z N,Γ=2 = exp( N 2 2 ) (2πL) N R N N ! N k=1 (k -1)!(N -k)! N ! (2.34)
for Γ = 2 as well as the n-point correlation function

ρ (n) N,Γ=2 (1, 2, . . . , n) = ρ n b det (u k u * k + v k v * l ) N -1 (k,l=1,...,n) (2.35)
This result for Γ = 2 suggests that system in the fluid phase becomes homogeneous and its distribution functions remain invariant by rotations applied on the sphere. Such feature may be observed directly in the pair correlation function

ρ (2) N,Γ=2 (1, 2) = ρ 2 b 1 - 1 + cos ψ 1,2 2 
N -1 (2.36)
which only depends of the relative distances of the particles involved. A plot of ρ

N,Γ=2 is shown in Fig. 2.4 for a few values of N . For a system with only two particles, the probability maximum probability configuration corresponds to locate the charges at the antipodal points of the sphere. 

Energy expansion for the Dyson Gas and the replica method

An alternative approach to find the mean energy of the 2dOCP on the soft disk (or Dyson gas) is described by Shakirov in [35]. In fact, the studies presented in [START_REF] Jancovici | Exact results for the two-dimensional one-component plasma[END_REF] and [35] give essentially the same result at the thermodynamic limit but solution provided by Shakirov works also for finite systems of size N . Basically, the idea is to compute the energy contribution

U S pp = -Q 2 1≤i<j≤N log r ij
(which differs from the average of the particle-particle energy < U S pp > with some additive constants and the background density has been set as ρ b = 1/π) by evaluating the following average

e N ( ) = 1≤i<j≤N |z i -z j | 2 .
(2.37)

For = 0 we have e N (0) = 1≤i<j≤N 1 = N (N -1)
2 and a Taylor expansion around = 0 is

e N ( ) = e N (0) + U S pp Q 2 + O( 2 ).
More explicitly the average defined in Eq. (2.37) is

e N ( ) = N (N -1) 2π N Z N,2 σ,ω∈S N sgn(σ)sgn(ω) N k=1 d 2 z k e -|z k | 2   |z 1 -z 2 | 2 1≤i<j≤N |z i -z j | 2   (2.38) 
where Z N,2 = N i=1 i! is the partition function at Γ = 2, σ∈S N is a sum over all permutations σ of the set {1, 2, . . . , N } and sgn(σ) is the sign of the permutation. If the Vandermonde determinant term 1≤i<j≤N |z iz j | 2 is expanded, then e N ( ) will include integrals of the form

2 z m z * n e -|z| 2 d 2 z = πΓ 1 + m + n 2 δ m,n
where Γ(x) is the gamma function 6 . The majority of the integrals on e N ( ) are zero because of the Kronecker delta. Removing these zero contributions of Eq. (2.38) which come from the double permutation sum, then the following result

e N ( ) = 1 π 2 0≤i<j<N 1 i!j! 2 d 2 z 1 d 2 z 2 e -|z1| 2 -|z2| 2 |z 1 -z 2 | 2 z i 1 z j 2 z * i 1 z * j 2 -z i 1 z j 2 z * j 1 z * i 2 (2.39)
is obtained. At this point, one may think in several ways to evaluate Eq. (2.39) by expanding the term |z 1z 2 | 2 . One of them consists to write

|z 1 -z 2 | 2 = |z > | 2 1 - z < z > 1 - z < z > *
in order to use the following Taylor expansion

(1 + ξ) α = ∞ n=0 Γ(α + 1) Γ(α + 1 -n)n! ξ n
which converges for |ξ| < 1 and real values of α. This is in some sense the strategy adopted to find excess energy as well as the n-body correlation functions for the soft disk in Chapter 4 at some particular integer values of the coupling parameter including 2. Eventually, a difficulty with this procedure appears in the evaluation of the integrals of Eq. (2.39) since there is a change of integrand just at the line r 1 = r 2 on the r 1 r 2 -plane due to the convergence condition of the Taylor expansion. Another way to proceed is by using the binomial theorem

|z 1 -z 2 | 2 = (z 1 -z 2 ) (z 1 -z 2 ) * = i,j=0 i j (-1) i+j z -i 1 z i 2 z * -i 1 z * j 2
as it was done in [35]. The virtual inconvenient with this approach is that is restricted by the binomial theorem to have integer values as well as the solution for e N ( ). On the other hand, the mean energy

U S pp = Q 2 ∂e N ( ) ∂ =0
requires at least to know e N ( ) for real values of near to zero. To solve this problem the author of [35] where able to interpolate the solution for e N ( ) by showing that it satisfy certain recursion relationship for N, ∈ N where the replica method [START_REF] Petkovšek | A= b, ak peters ltd[END_REF] may provide solutions at → 0 finding the following result

U S pp = ρ b = 1 π ,Γ=2 Q 2 2 N 2 2 H N - N 2 4 + 3N 4 + 1 4 + N γ 2 - Γ(N + 3/2) (N + 1)! √ π/2 3 F 2 1 N -1 N + 3/2 N + 2 N + 1 1 (2.40)
for Γ = 2 in terms of the hypergeometric function 3 F 2 and the harmonic numbers

H N = N k=1 1 k .
Chapter 3

Beyond Γ = 2: Generalities of the analytical approach

There is a limited number of models of continuous models of two-dimensional fluids which may be solved exactly by using analytical tools. Therefore, the 2dOCP becomes important because it is exactly solvable on diverse geometries [32] [33] [34] [35] [36] at least for the particular coupling Γ = 2. However a solution for the general case Γ ∈ + has not been found yet 1 . A solution for Γ = 4 is described in reference [START_REF] Šamaj | two-dimensional one-component plasma at coupling γ= 4: numerical study of pair correlations[END_REF] and posteriorly Šamaj discussed in Ref. [START_REF] Šamaj | Is the two-dimensional one-component plasma exactly solvable?[END_REF] about the possibility to solve the problem for Γ = 2. This chapter is focused on the description of the monomial method. The approach consists in the expansion of the Vandermonde determinant ∆(z 1 . . . , z n ) to the power Γ/2 in terms of monomial functions m µ (z 1 , . . . , z N ) with z i the particle's positions and µ 1 , . . . , µ N a set of integers which label each monomial function. Téllez and Forrester [37] used the strategy to expand the Helmholtz free energy of the 2dOCP on the disk (with soft and hard boundaries) and on the sphere to study finite size effects of at Γ = 4 and 6. Posteriorly, the monomial function expansion MFE was used to study the moments of the pair correlation function for the plasma on the sphere an the disk [38].

Expansion of the Vandermonde determinant to the power Γ/2

If the problem is limited to even values of the coupling parameter, then it is possible find exact solutions in terms of expansions. The Boltzmann factor of the 2dOCP on the disk or the sphere may be written as follows exp(-βU inter ) = exp (-Γf(N ))

N i=1 w(|z i |) Γ/2 1≤i<j≤N |z i -z j | Γ (3.1)
1 It is important to remark that even when the 2dOCP has not been solved yet, its one dimensional counterpart the 1dOCP was solved in the sixties Baxter [START_REF] Baxter | Statistical mechanics of a one-dimensional coulomb system with a uniform charge background[END_REF]. The one dimensional two-component plasma 1TOCP was solved by Edwards and Lenard [START_REF] Edwards | Exact statistical mechanics of a one-dimensional system with coulomb forces. ii. the method of functional integration[END_REF]. In fact, the authors of Ref. [START_REF] Edwards | Exact statistical mechanics of a one-dimensional system with coulomb forces. ii. the method of functional integration[END_REF] studied a multicomponent plasma on a line of length L. In one dimension this system is not a log-gas because the particle-particle interaction potential between to charges Q 1 and Q 2 located at x 1 and x 2 is proportional to the particles separation -2πQ 1 Q 2 |x 1x 2 | and the electroneutrality condition is imposed by putting in contact the system with an infinite reservoir.

where f(N ) is given by

f(N ) = f sphere (N ) = 1 4 N N + log N ρ b πL 2
for the 2dOCP on a sphere or by Eqs. (2.13) and (2.15) for the hard and soft disk respectively. The function w(|z|) is given by w(|z|) = (1 + |z|2 ) 1-N for the sphere, w(|z|) = exp(-|z| 2 ) for the hard disk and w(|z|) = exp(-ρ b |z| 2 ) for the soft disk. The complex variable z is the particle position in the complex plane z = ( √ N r/R) exp(iφ) for the hard disk, z = r exp(iφ) for the soft disk and z = (x + iy)/(2R) for the sphere 2 . If we are interested in the evaluation of the partition function of the 2dOCP on one of these geometries, then it is necessary to deal with the product

1≤i<j≤N |z i -z j | Γ = ∆(z 1 , . . . , z N ) Γ/2 ∆(z * 1 , . . . , z * N ) Γ/2
containing the Vandermonde determinant

∆(z 1 , . . . , z N ) = σ∈S N sgn(σ) N j=1 z σ(j)-1 j = N ! p=1 χ σ p (z 1 , . . . , z N ) which is just a sum of N ! terms of the form χ σ p (z 1 , . . . , z N ) = sgn(σ p ) N j=1 z σ p j -1 j
with S N = σ 1 , . . . , σ N ! and σ p = σ p 1 , . . . , σ p N the p-th permutation of N -elements. Since Γ/2 is assumed to be a positive integer then it is possible to use the multinomial theorem

M p=1 χ p n = i0=n i1=0 i1 i2=0 • • • i M -2 i M -1 =0 n i 1 i 1 i 2 • • • i M -2 i M -1 χ n-i1 1 χ i1-i2 2 • • • χ i M -1 M
with n = i o = Γ/2, M = N ! and i M = 0 to expand the Vandermonde to the power Γ/2

∆(z 1 , . . . , z N ) Γ/2 = N !-1 j=1 ij-1 ij =0    N ! p=1 i p-1 i p sgn(σ p ) ip-1-ip N l=1 z σ(j)-1 j ip-1-ip    = N !-1 j=1 ij-1 ij =0 N ! p=1 i p-1 i p sgn(σ p ) ip-1-ip N l=1 z K l ( i;σ l ) l = i B( i) N l=1 z K l ( i;σ l ) l (3.2)
as a polynomial of terms of the form z

K1( i;σ1) 1 . . . z K N ( i;σ N ) N with K m ( i; σ m ) = K m (i 1 , . . . , i N !-1 ; σ m ) := N ! j=1 (i j-1 -i j ) σ j m -1 , i := N !-1 j=1 ij-1 ij =0
and B( i

) := N ! p=1 i p-1 i p sgn(σ p ) ip-1-ip .
Therefore, the Boltzmann factor could be expanded as follows

exp(-βU inter ) = exp [-Γf(N )] i , i B( i )B( i) N l=1 w(|z l |) Γ/2 z * K l ( i ;σ l ) l z K l ( i;σ l ) l (3.3)
and eventually it will allow to evaluate the configurational partition function

Z N,Γ = 1 N ! N l=1 d 2 z exp [-βU inter (z 1 , . . . , z N )]
since it will include integrals of the form

z n1 z * n2 w(|z|) Γ/2 d 2 z = 2πδ n1,n2 0≤|z|≤α |z| n1+n2+1 w(|z|) Γ/2 d|z| ∀ n 1 , n 2 ∈ Z (3.4)
with α → ∞ for the Dyson gas and the sphere, and α = √ N for the disk. One of the problems on the expansion Eq. (3.2) is the large number of terms. However, it is possible to group them according the set of powers of (z 1 , . . . , z N ). For example, if N = 3 and Γ = 4 we have

∆(z 1 , z 2 , z 3 ) Γ/2 = z 2 2 z 4 1 + z 2 3 z 4 1 -2z 2 z 3 z 4 1 -2z 3 2 z 3 1 -2z 3 3 z 3 1 + 2z 2 z 2 3 z 3 1 + 2z 2 2 z 3 z 3 1 + z 4 2 z 2 1 + z 4 3 z 2 1 + 2z 2 z 3 3 z 2 1 -6z 2 2 z 2 3 z 2 1 + 2z 3 2 z 3 z 2 1 -2z 2 z 4 3 z 1 + 2z 2 2 z 3 3 z 1 + 2z 3 2 z 2 3 z 1 -2z 4 2 z 3 z 1 + z 2 2 z 4 3 -2z 3 2 z 3 3 + z 4 2 z 2 3 .
Now, if the terms are grouped according to the set of powers (4, 2, 0), (4, 1, 1), . . . , (2, 2, 2), then

∆(z 1 , z 2 , z 3 ) Γ/2 = (z 2 2 z 4 1 + z 2 3 z 4 1 + z 4 2 z 2 1 + z 4 3 z 2 1 + z 2 2 z 4 3 + z 4 2 z 2 3 ) -2(z 2 z 3 z 4 1 + z 2 z 4 3 z 1 + z 4 2 z 3 z 1 ) + • • • = m (4,2,0) (z 1 , z 2 , z 3 ) -2m (4,1,1) (z 1 , z 2 , z 3 ) + • • • = µ C (3) µ m µ (z 1 , z 2 , z 3 )
where the sum µ is over the set of powers {µ} = {(4, 2, 0), (4, 1, 1), . . . , (2, 2, 2)} called partitions, the terms {m µ (z 1 , z 2 , z 3 )} are the monomial functions and C

(3) µ are coefficients with integer values (see Table 3.1).

In general, it is possible to expand ∆(z 1 , . . . , z N ) Γ/2 for even values of Γ as follows 

∆(z 1 , . . . , z N ) Γ/2 = 1≤i<j≤N (z j -z i ) Γ/2 = µ C (N ) µ (Γ/2)m µ (z 1 , . . . , z N ). ( 3 
C (N ) µ (Γ/2) µ 1 µ 2 µ 3 1 4 2 0 -2 4 1 1 -2 3 3 0 2 3 2 1 -6 2 2 2
Table 3.1: Coefficients and partitions for N = 3 and Γ = 3.

for odd values of Γ/2. The monomial functions are categorized as symmetric or antisymmetric functions, depending on the parity of Γ/2

m µ (z 1 , . . . , z N ) = 1 i m i ! σ∈S N sign(σ) b(Γ) N i=1 z µ σ(i) i and b(Γ) = 1 if Γ/2 is odd 0 if Γ/2 is even
where σ∈S N denotes the sum over all label permutations of a given partition µ 1 , . . . , µ N , the variable m i is the frequency of the index i in such partition (one for the odd values of Γ/2). Then the Boltzmann factor may be written as follows exp(-βU inter ) = exp (-Γf(N ))

µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) µ ( i m i !) ν σ,ω∈S N N i=1 w(|z i |) Γ/2 z * µ σ(i) i z ν ω(i) i . ( 3.6) 
The Eqs. (3.3) and (3.6) are equivalent and eventually the computation of the configurational partition function will include the integrals same Eq. (3.4) in both cases. Then why not just use the multinomial theorem instead the MFE? The answer is related to the number of terms of each expansion. For the case of the multinomial expansion, the Boltzmann factor has

M(N, Γ) =   i 1   2 =   1 (N -1)! N !-1 j=1 1 + Γ 2   2
terms. On the other hand, the number of terms on the MFE depends of the dimension of the partitions set {µ} as follows

N (N, Γ) = µ σ∈S N 1 2 = [N !dim({µ})] 2 .
In practice, it is most convenient to use the MFE because N (N, Γ) << M(N, Γ) as the number of particles or the coupling parameter are increased. A simple comparison at Γ = 2 where dim({µ}) = 1 is shown in Fig. 3.1. If the Eq. (3.6) is used, then partition function may be written as follows

EXPANSION OF THE VANDERMONDE

Z N,Γ = e -Γf(N ) N ! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) µ ( i m i !) ν σ,ω∈S N N i=1 w(|z i |) Γ/2 z * µ σ(i) i z ν ω(i) i d 2 z i = e -Γf(N ) N ! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) µ ( i m i !) ν   (2π) N δ µ,ν N ! i m i ! µ N i=1 0≤|zi|≤α w(|z i |) Γ/2 |z i | 2µi+1 d|z i |   = (2π) N e -Γf(N ) N ! µ C (N ) µ (Γ/2) 2 ( i m i !) N i=1 0≤|zi|≤α w(|z i |) Γ/2 |z i | 2µi+1 d|z i | (3.7)
for the disk and sphere geometries where we have used

σ,ω∈S N N i=1 δ µ σ(i) ,ν σ(i) g(µ σ(i) , ν σ(i) ) = δ µ,ν N ! i m i ! N i=1 g(µ i , ν i ) since the delta product N i=1 δ µ σ(i) ,ν σ(i)
for a given partition µ selects only a partition ν = µ generating in combination with the double sum N ! ( i m i !) times the same result. A similar procedure may be performed for the configuration partition function by using the multinomial theorem. At some point, the role of indices n 1 and n 2 of Eq. (3.4) will be played by the functions K l ( i ; σ l ) and K l ( i ; σ l ). In the best of the cases, it may imply that the delta product would select only i = i and as consequence of assuming this, the configurational partition function would have only a sum over the set of indices i. This means, that also the expansion of Z N,Γ by using the multinomial theorem will have more terms than the one obtained by using the MFE. The price we pay for using the MFE rather than the multinomial theorem is to compute the coefficients C (N ) µ (Γ/2) (once the values of N and Γ are fixed) because there is not any analytical formula 3.1. EXPANSION OF THE VANDERMONDE DETERMINANT TO THE POWER Γ/2 33 to find them as occurs with the multinomial theorem. However, there are efficient algorithms to compute exactly these coefficients as it will be discussed later in this document.

The 2dOCP and the quantum Hall effect

Initially, the MFE method was used to study a problem in a context rather different to Coulomb gases: the Quantum Hall Effect (QHE). The purpose of this section is to describe in some detail these connections between the 2dOCP on the disk and the QHE. The Hall effect was discovered by Edwin Hall in 1879 on a set up where electrons were restricted to move in a conductor plane of finite size [START_REF] Hall | On a new action of the magnet on electric currents[END_REF]. A density current J x through the conductor is induced say in the x-direction while a magnetic field B is applied perpendicular to the plane. The deflection of particle's trajectories due to the magnetic field induces an electric field E y on the conductor which eventually balance the influence of B and stop to be deflected since F y = e(E yv x B) = 0 with v x the charges velocity. Now, the electric field E y = v x B is related to the density current J y = nev x (where n is the charge number density and e the elemental charge) via the Ohm's law which increases linearly with the magnetic field as it shown in Fig. 3.2-left. However, if the experiment is performed with a strong magnetic field and low temperature (this is the temperature of bi-dimensional electron gas in the conductor sample), then system exhibit a very special behaviour where Eq. (3.8) fails and ρ xy shows some jumps as the magnetic field is increase according to

J i = σ ij E j with (σ ij ) = σ xx σ xy -σ xy
ρ xy = 2π e 2 1 ν
resistivity in the QHE (3.9)

with ν = 1, 2, . . . a positive integer (see Fig. 3.2-right [START_REF] Klitzing | New method for high-accuracy determination of the finestructure constant based on quantized hall resistance[END_REF]). This phenomenon is called the integer QHE and it was discovered first in the laboratory by Von Klitzing, Dorda and Pepper in 1980. Two years later Tsui, Störmer, and Gossard [START_REF] Tsui | Two-dimensional magnetotransport in the extreme quantum limit[END_REF] showed that ν may also be a rational number ν = 1/5, 2/5, . . . and discovered the fractional QHE. The non-normalized wave function of a single particle living in the xy-plane under the influence of a uniform magnetic field B ẑ is

φ j (z) = z j exp -|z| 2 /(4l 2 B )
with l B = eB and z = x + iy.

The set {φ j (z) : j = 0, . . . , N -1} are eigenfunctions of the lowest Landau level. These functions tend to be localized around a ring or radius 2jl 2 B where l B is called the magnetic length. Then the wave function for an ensemble of N non-interacting fermions at zero temperature is built via the Slater determinant as follows

ψ(z 1 , . . . , z N ) = det[φ j-1 (z k )] j,k=1,...,N .
In general, the particles in the QHE interact among them not only with the magnetic field as it occurs in Ψ(z 1 , . . . , z N ). Unfortunately, the diagonalization of the Hamiltonian for the interacting case is extremely difficult by using analytical tools. Then Robert Laughlin [START_REF] Laughlin | Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations[END_REF] proposed the following trial wave function Chapter 4

Ψ m (z 1 , . . . , z N ) = det[φ j-1 (z k )] m j,
Two recent advances on the classical 2D one-component plasma with logarithmic interaction

In the previous chapter we described the monomial function expansion MFE method to reproduce a result for the partition function of the log-gas in the sphere and the disk for even values of Γ. Now our intention is to show that MFE may be used to determine exactly other parameters of the 2dOCP. In the first study is used the result of the pair-correlation function found in reference [37] to find the excess energy of the 2dOCP on the sphere as an expansion over partitions similar to the one of the partition function of Eq. (3.7) valid for even values of the coupling parameter reproducing the result of Caillol [START_REF] Caillol | A monte carlo study of the classical two-dimensional one-component plasma[END_REF] at Γ = 2. New alternative algorithms to compute the coefficients C (n) µ were developed and implemented in this study. Even when the numerical method developed originally to study the quantum Hall effect [START_REF]Diagham[END_REF] is substantially better, we consider than the ones described in our study show interesting connections with the multinomial theorem and the finite difference method.

In the second study we use the MFE approach to find the excess energy and the 2-body density function of the 2dOCP with hard and soft boundaries constrained to odd values of Γ/2. We corroborated the result of Eq. (2.40) on the soft disk found by Shakirov [35]. The N -finite expansion of the excess mean average energy U exc = U H inter (see Eq. (2.12)) was found for Γ = 2. This result is in agreement with the one found by Jancovici [START_REF] Jancovici | Exact results for the two-dimensional one-component plasma[END_REF] in the thermodynamic. In general, the pair correlation function of the 2dOCP on the soft disk for any value of Γ is unknown and the one found in the Ginibre Ensamble (GE) of the random matrix theory (RMT) is only valid at Γ = 2. As we mention briefly for the case of the OCP with logarithmic interaction in one dimension the change of the coupling parameter implies a change of ensemble say GOE, GUE or GSE. Something similar may be expected in the 2dOCP for Γ = 2, 4, . . .. The study on the Dyson gas was not focused on the problem to find the proper ensembles for two-dimensional system at odd values of Γ/2, however a direct application of the MFE approach lead us to find that the pair correlation function may be split in two terms : the first one denoted as H S µ takes into account contributions of partitions sharing only two elements, and a second term is just a partition average of the kernel determinant in the GE (see Eq. 2.17).

Finally, in the appendices sections of this manuscript we have included some additional details in the construction of H S µ (2.1) and a proof of the normalization condition for the 2-body density function (A.1) absent in arXiv:1708.035734 as well as the supplementary material cited in our study of the Dyson Gas (B).

Introduction

Coulomb systems, plasmas and electrolytes are systems of charged particles interacting according to the Coulomb's law. The one-component plasma (OCP) or jellium is the simplest model of a Coulomb system. It is a set of N identical pointlike particles of charge q embedded in a neutralizing background. The pair potential between particles is the solution of the Poisson equation. This solution is logarithmic for a system in two dimensions. The only

dimensionless coupling constant is = q 2 /(k B T )
where k B is the Boltzmann constant and T is the temperature. In general, a two dimensional OCP (2dOCP) with logarithmic interaction does not describe real (three-dimensional) charged particles confined on a surface because they interact with the usual inverse power law potential. However, this logarithmic case has been widely studied because it offers analytic solutions on diverse geometries [1][2][3][4][5][6][7][8][9][10][11] particularly for = 2. At the special coupling = 2 where the 2dOCP is in the fluid phase the distribution functions may be found exactly. In particular, the pair correlation function g(r ) is reduced to a gaussian form exp(-πρr 2 ) with ρ the density. Expansions around = 2 suggests that the pair correlation function changes from the exponential form to an oscillating one for a region with > 2. This behaviour of the pair correlation function as the coupling is stronger has been observed in Monte Carlo simulations [12,13]. For sufficient high values of (low temperatures) the 2dOCP begins to crystallize and there are several works where the freezing transition is found. For the case of the sphere Caillol et al. [12] localized the coupling parameter for melting at ≈ 140.

In the limit → ∞ the 2dOCP becomes a Wigner crystal. In particular, the spatial configuration of the charges which minimizes the energy at zero temperature for the 2dOCP on a plane is the usual hexagonal lattice. Nowadays, the corresponding Wigner crystal of the 2dOCP on a sphere or Thomson problem may be solved numerically [14] and the unsolved analytical problem has been included in the Smale's list of problems for the twenty-first century. Experimentally, the dusty plasmas are one of the ways to obtain a bidimensional Coulomb system on the plane. A plasma is an ionised gas with a low ionisation degree range frequently referred as the fourth state of matter. If the Coulomb interaction energy of the particles is much higher than the individual kinetic energy, then the particles may arrange themselves in a lattice forming a crystal. Different research groups studied these plasma crystals in the laboratory during the nineties [15,16] by confining particles of several micrometers on horizontal layers whose observation is made by illuminating such plane with HeNe laser light. There are also experimental investigations on two-dimensional spherical crystals which are formed in the surface of water droplets in oil where defects of the ideal crystal as disclinations and dislocations are observed in the laboratory [17].

The main objective of this work is to make exact computations of the energy and the entropy of the 2dOCP on a sphere at = 2 and reproduce the well known results at = 2. For now, an exact solution of the 2dOCP in the thermodynamic limit for any value of is unknown and there are discussions about the possibility to solve analytically this problem [18]. Previously, a converging series expansions of the truncated pair correlation function on the disk at = 4 was described in [19]. For the case of the sphere it is possible to implement an extension of the techniques presented in [20][21][22] where the analytical computation of the free energy is obtained by expanding the Vandermonde determinant to the power . The results of those works give the free energy for fixed values of temperature, therefore it is not straightforward to obtain the internal energy from those results. Nevertheless, in this work we will obtain the internal energy by using the relation that expresses it in terms of the pair correlation function. Once the internal energy is known, the entropy would be found straightforwardly from the free energy and the internal energy.

This document is organized as follows. In the next section a description of the system and main definitions will be done. Previously, the authors of [21] were able to obtain the partition Z N , and pair correlation function ρ (2) (θ ) constrained to the condition = q 2 /(k B T ) = 2, 4, . . . , 2n with n a positive integer for several geometries including the sphere. We will use some of these results to compute the energy and entropy under the same restriction over the coupling parameter. Section 3 summarizes the basic technique behind the computation of Z N , and ρ (2) (θ ) and defines the notation adopted until the end of the doc-123 ument. Sections 4 and 5 are devoted to describe the exact energy and entropy computations including a comparison with simulation results obtained with the Metropolis method. The analytic method described in this document is mostly based in the expansion of the Vandermonde determinant to the power using the monomial functions m μ (z 1 , . . . , z N ) as a basis where z 1 , . . . , z N are related with the particle's positions and μ labels each monomial function. Since the energy and entropy will be expressed as expansions over the symmetric and antisymmetric monomial functions, then two different techniques for computing the expansions coefficients {C (N ) μ ( /2)} are included in the Appendix section. The first technique uses the multinomial expansion theorem to find these coefficients. The second technique is based in the partial derivatives differentiation of the Vandermonde determinant to the power combined with the finite difference method (FDM) in order to obtain C

(N ) μ ( /2). Both methods give the exact value of coefficients including the one based on FDM because it uses the fact that n-order finite difference of a polynomial of order n is exact.

System Description

This work will be focused in the study of the 2dOCP on a sphere. It is a classical system of N particles with charge q on a two dimensional surface with a neutralizing background ρ b .

In principle, the Coulomb potential of a single charge on a surface without boundaries as the sphere is not defined because the Laplacian does not have inverse in this situation. In contrast, there are several ways to define the Coulomb potential of globally neutral configurations of charges on the sphere [23]. One of them assumes that the system is composed of pseudocharges. This is a punctual charge plus a uniform background of opposite charge spread on the sphere. In this situation the Coulomb interaction potential ν( r 1 , r 2 ) between two particles located at r 1 and r 2 with respect the center of the sphere is

ν( r 1 , r 2 ) = -log | r 1 -r 2 |

L

where L is an arbitrary parameter which defines the length scale. This definition will be adopted in this document. It is similar to the potential found on the flat plane but with the difference that | r 1r 2 | corresponds to the chord distance between the two points rather than the geodesic distance between them. The potential energy U of the 2dOCP is given by

U = U pp + U bp + U bb
where U pp is the particle-particle interaction energy contribution

U pp = -q 2 1≤i< j≤N log r i -r j L , ( 1 
)
the background-particle interaction contributes with an energy

U pp = q N i=1 V b ( r i ) ,
where

V b ( r ) = sphere log r -r L ρ b ( r )d S
123
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is the background potential with d S the area element of the sphere. Finally, the background also interacts with itself and contributes with an energy

U bb = - q 2 2 sphere ρ( r )V b ( r )d S .
If the background density is constant ρ b = N 4π R 2 with R the radius of the sphere, then the particle-background and background-background interactions may be computed directly from their definitions. For the sphere they are

U pb = q 2 N 2 2 2 log 2R L -1 and U bb = - q 2 N 2 4 2 log 2R L -1 .
The particle-particle interaction energy requires a detailed treatment that will be discussed in the forthcoming sections. The canonical thermal average of U pp may be computed by using the following equation

U pp = 1 2 ρ (2) ( r 1 , r 2 )ν( r 1 , r 2 )d r 1 d r 2 (2) 
where the integrations are over the sphere and ρ (2) ( r 1 , r 2 ) is the two-point correlation function. Since the partition function may be computed for even values of the coupling parameter and ρ (2) ( r 1 , r 2 ) is found by functional derivatives of the partition function, then it is possible to compute Eq. ( 2) and the excess energy.

3 Vandermonde Expansion Approach for the 2dOCP on the Sphere

The Partition Function

The canonical partition function Z c is

Z c (T, A, N ) := 2mπk B T h 2 N Z N ,
where A = 4π R 2 is the area of the sphere, m the mass of the particles, h is Planck constant and Z N , is the configurational partition function

Z N , := 1 N ! Sphere N d S 1 • • • d S N exp (-βU ) with Sphere d S i = π 0 2π 0 R 2 sin(θ )dθ dφ .
The total average energy E is the usual bidimensional ideal gas energy plus the excess energy contribution

U exc E = - ∂ log Z c (T, A, N ) ∂β = N k B T + U exc , (3) 
with

U exc = U = - ∂ log Z N , ∂β = U pp + q 2 N 2 4 log N ρ b π L 2 -1 . ( 4 
)
Now, the Coulomb potential may be written as follows [7] 

ν(θ 1 , φ 1 , θ 2 , φ 2 ) = -log 2R L |u 2 v 1 -u 1 v 2 | ,
(-βU ) = L 2R N 2 exp N 2 4 1≤i< j≤N u j v i -u i v j .
It is convenient to apply a stereographic projection from the angles (θ, φ) to the coordinates (x, y) on the plane tangent to the north pole of the sphere (see Fig. 1). If the complex variable z = x + iy is defined, then it may be written as z = 2R exp(iφ) tan θ 2 so the Boltzmann factor takes the form exp

(-βU ) = L 2R N 2 exp N 2 4 N i=1 ⎛ ⎝ 1 1 + |z i | 2 4R 2 ⎞ ⎠ (N -1) 2 1≤i< j≤N z i -z j 2R .
On the other hand, the integrals over the surfaces in the new variables are

Sphere N d S 1 • • • d S N → 2N N i=1 d r i (1 + |z i | 2 4R
2 ) 2 where d r i = dx i dy i is the area element on the projected plane. As a result, the partition function may be written as follows

Z N , = L 2R N 2 exp N 2 4 1 N ! ( 2 ) N 1≤i< j≤N z i -z j 2R N i=1 d r i 1 + |z i | 2 4R 2 (N -1) 2 

+2

.

The difficulties in the integration especially rises from the product 1≤i< j≤N z i -z j 2R

. For = 2 such product may be written in terms of the Vandermonde determinant det(z i-1 j ) (i, j=1,2,...,N ) as follows 1≤i< j≤N

z i -z j 2R 2 = 1 (2R) N det(z i-1 j ) det(z i-1 j
) and the partition function may be found explicitly. The exact solution of the problem for even values of was obtained by the authors of [20,21] where Z N , was found by using the following expansion

123 1≤i< j≤N z i -z j /2 = μ C (N ) μ ( /2)m μ (z 1 , . . . , z N ). ( 5 
)
The indices set μ := (μ 1 , . . . , μ N ) is a partition of N (N -1)/4 with the condition 

(N -1) /2 ≥ μ 1 ≥ μ 2 • • • ≥ μ N ≥
m μ (z 1 , . . . , z N ) = 1 i m i ! σ ∈S N sign(σ ) b( ) z μ 1 σ 1 • • • z μ N σ N
where the sum is over the permutations of a given partition μ 1 , . . . , μ N , the variable m i denotes the frequency of the index i in such partition (one for the odd values of /2) and b( ) is defined as

b( ) = 1 if /2 is odd 0 if /2 is even .
For integer values of /2 the coefficient C

(N )
μ ( /2) takes an integer value depending on N and μ. If the expansion given by Eq. ( 5) is used, then the partition function takes the form

Z N , = L 2R N 2 exp N 2 4 4π R 2 N 1 N ! μ C (N ) μ ( /2) 2 i m i ! N l=1 G μ l g(r 2 )
where

G μ l [g(r 2 )] := 2 ∞ 0 dr r 1+2μ l g(r 2 )withg(r 2 ) = 1 1 + r 2 2+ (N -1)/2 and r 2 = | z 2R | 2 = tan θ 2 .
The integral function G may be computed by using ∞ 0 du u p (1+u) q = p!(q-p-2)! (q-1)! . Finally, the partition function is

Z N , = L 2R N 2 exp N 2 4 4π R 2 2 (N -1) + 1 ! N Z sphere N , (6) 
where

Z sphere N , = μ C (N ) μ ( /2) 2 i m i ! N l=1 μ l ! ((N -1) /2 -μ l )!.

Density and Pair Correlation Function

If the following partition function is defined as

Z N , [ f ] := 1 N ! Sphere N d S 1 • • • d S N exp -β U + N i=1 f ( r i ) (7)
123

with f ( r ) an arbitrary function, then it is well known that density n (1) ( r ) may be found by a functional derivation of the partition function -βn (1) 

( r ) = 1 Z N , [ f ] δ Z N , [ f ] δ f ( r ) = 1 Z sphere N , [ f ] δ Z sphere N , [ f ] δ f ( r ) (8)
where

Z N , = L 2R N 2 exp N 2 4 (2π R) N 1 N ! μ C (N ) μ ( /2) 2 i m i ! N l=1 G μ l g(r 2 )e -β f ( r ) .
Similarly, the Ursell function U (2)T ( r 1 , r 2 ) = ρ (2) ( r 1 , r 2 )n (1) ( r 1 )n (1) ( r 2 ) may be found from

-β 2 U (2)T ( r 1 , r 2 ) = δ 2 ln Z N , [ f ] δ f ( r 1 )δ f ( r 2 ) ( 9 
)
where ρ (2) ( r 1 , r 2 ) is the pair correlation function. Using Eqs. ( 8) and ( 7) the density takes the form

n (1) (θ ) = ρ b [(N -1) /2 + 1]! N Z sphere N , (1 + r 2 ) (N -1) /2 μ C (N ) μ ( /2) 2 i m i ! × N l=1 μ l ! ((N -1) /2 -μ l )! N k=1 r 2μ k ((N -1) /2 -μ k )! . ( 10 
)
We are free to put one of these charges on the north pole r (0) = 0 and n (1) (θ ) = n (1) (0) = ρ b is a constant because of the sphere symmetry. Hence

1 = [(N -1) /2 + 1]! N Z sphere N , (1 + r 2 ) (N -1) /2 μ C (N ) μ ( /2) 2 i m i ! (11) 
× N l=1 μ l ! ((N -1) /2 -μ l )! N k=1 r 2μ k ((N -1) /2 -μ k )! r →0
.

Only the terms with μ N = 0 contribute to the sum of Eq. ( 11) as a consequence of the limit r → 0. Using this condition we may write

Z sphere N , = [(N -1) /2 + 1]! N μ withμ N =0 C (N ) μ ( /2) 2 i m i ! N -1 l=1 μ l ! ((N -1) /2 -μ l )! . ( 12 
)
Finally, the pair correlation function ρ (2) (r ) is computed by using Eqs. ( 9), (10) and (12). The result is the following

123 43 ρ (2) (r ) = ρ 2 b [(N -1) /2 + 1]! 2 N 2 Z sphere N , (1 + r 2 ) (N -1) /2 μ with μ N =0 C (N ) μ ( /2) 2 i m i ! × N -1 l=1 μ l ! ((N -1) /2 -μ l )! N -1 k=1 r 2μ k μ k ! ((N -1) /2 -μ k )! ( 13 
)
where r 1 was placed at the north pole of the sphere and | r 2 | = r = tan( θ 2 ).

Energy

The particle-particle interaction energy may be computed by using Eq. ( 2) with the pair correlation given by Eq. ( 13). It is suitable to set an additional polar system on the plane generated by the stereographic projection in order to evaluate Eq. ( 2), this is

U pp = 1 2 (4π R 2 ) 2π 0 dφ p ∞ 0 r p dr p 1 + r p 2R 2 2 ρ(r p )ν(r p )
where z = x + iy with the projected variables x = r p cos(φ p ) and y = r p sin(φ p ). Here r p and φ p play the role of polar coordinates in the plane of the stereographic projection. Defining r = r p 2R = tan θ 2 , then the Coulomb interaction potential between particles may be written as

ν(r ) = - 1 2 log r 2 1 + r 2 -log 2R L
which splits the interaction energy in two parts

U pp = (4π R) 2 I 1 -log 2R L I 2
reducing the problem to compute these integrals

I 1 := ∞ 0 rd r 1 + r 2 ρ (2) (r ) - 1 2 log r 1 + r 2 and I 2 := ∞ 0 rd r 1 + r 2 ρ (2) (r ).
Using Eq. ( 13) the integral I 2 takes the form

I 2 = ρ 2 b [(N -1) /2 + 1]! 2 N 2 Z sphere N , μ C (N ) μ ( /2) 2 i m i ! N -1 l=1 μ l ! ((N -1) /2 -μ l )! × N -1 k=1 1 μ k ! ((N -1) /2 -μ k )! ∞ 0 r 2μ k +1 (1 + r 2 ) (N -1) /2 . ( 14 
)
This expression may be computed by using

i m n := ∞ 0 r 2m+1 (1 + r 2 ) n d r = m!(n -m -2)! 2(n -1)!
and the density relationship Eq. (11). The result is

I 2 = N -1 2N ρ 2 b .
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On the other hand, the integral I 1 takes the form

I 1 = ρ 2 b [(N -1) /2 + 1]! 2 N 2 Z sphere N , μ C (N ) μ ( /2) 2 i m i ! N -1 l=1 μ l ! ((N -1) /2 -μ l )! × N -1 k=1 1 μ k ! ((N -1) /2 -μ k )! ∞ 0 r 2μ k +1 (1 + r 2 ) (N -1) /2 - 1 2 log r 1 + r 2 . ( 15 
)
It includes the integral

j m n := ∞ 0 r 2m+1 (1 + r 2 ) n log r 1 + r 2 d r
which may be found by using the following relationship

∂i m n ∂n = j m n + i m n (H n-m-2 -H m )
where H m = m k=1 1 k are the harmonic numbers. Additionally, the integral i m n is related with the beta function

B(x, y) = 1 0 t x-1 (1 -t) y-1 dt for Re(x), Re(y) > 0 as follows i m n = 1 2 B(m + 1, n -m -1)
. The derivative di m n dn may be found by using the property ∂ B(x,y)

∂ x = B(x, y) [ψ(x) -ψ(x + y)] where ψ(x) = ∞ 0 e -t
t -e -xt 1e -t dt for Re(x) > 0 is the digamma function. If the argument is an integer, then ψ(n) = -γ + H n-1 with γ = 0.577215664 . . . the Euler-Mascheroni constant. So the partial derivative is

∂i m n ∂n = i m n (H n-m-2 -H n-1 ), hence j m n = i m n (H m -H n-1 ) = m!(n -m -2)! 2(n -1)! (H m -H n-1 ) .
Therefore, the integral I 1 may be expressed as follows

I 1 = ρ 2 b [(N -1) /2 + 1]! 4N 2 Z sphere N , μ C (N ) μ ( /2) 2 i m i ! × N -1 l=1 μ l ! ((N -1) /2 -μ l )! (N -1)H (N -1) 2 +1 - N -1 m-1 H μ m . ( 16 
)
Finally, the particle-particle interaction energy average is (18) and the excess internal energy is

U pp = N q 2 4 ⎡ ⎣ (N -1)H (N -1) 2 +1 - N -1 m=1 H μ m N -1 -(N -1) log N ρ b π L 2 ⎤ ⎦ (17) 123 45 where N -1 m=1 H μ m N -1 = μ with μ N =0 C (N ) μ ( /2) 2 i m i ! N -1 l=1 μ l ! ((N -1) /2 -μ l )! N -1 m=1 H μ m μwithμ N =0 C (N ) μ ( /2) 2 i m i ! N -1 l=1 μ l ! ((N -1) /2 -μ l )! ,
U exc = N q 2 4 ⎡ ⎣ (N -1)H (N -1) 2 +1 - N -1 m=1 H μ m N -1 -N + log N ρ b π L 2 ⎤ ⎦ . (19)

Energy in the Thermodynamic Limit for = 2

There is only one partition for = 2 associated to one coefficient C (N ) μ (1) = 1. We are looking for partitions such that μ N = 0, then μ i = Ni and i=1 m i ! = 1 because the root partition does not repeat elements. As a result, the partition function is

Z (sphere) 2,N = N i=1 (N -i)!(i -1)! = N i=1 (i -1)! 2 . ( 20 
)
On the other hand, the average

N -1
m=1 H μ m N -1 may be expressed as follows

N -1 m=1 H μ m N -1 = N -1 m=1 H N -m = N H N -1 -(N -1)
where we have used the property n u=1 H u = (n +1)H n -n. Therefore, the particle-particle interaction energy average is

U pp = N q 2 4 N -H N -(N -1) log N ρ b π L 2
and the excess energy given by Eq. ( 4) is

U exc = N q 2 4 log N ρ b π L 2 -H N . ( 21 
)
This is just the result of [12]. The thermodynamic limit is defined by N → ∞ while the area of sphere grows proportional to the number of particles in order to hold the density ρ b = N /(4π R 2 ) as a constant. The harmonic number for large N is H N N 1 γ + log N and the excess energy per particle (see Fig. 2) is constant in this limit lim

N →∞ U exc N = - q 2 4 log(ρ b π L 2 ) + γ . ( 22 
)
It coincides with the result for the 2dOCP in the bulk in a plane obtained by Jancovici [6] who used a similar approach based on the expansion of the free energy around -2.
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C (2) μ (2 p) = (-1) μ 1 2 p μ 1 .
We also have included the derivation as a particular case for N = 2 of the method described in "Coefficients for N = 2" section in Appendix (see Eq. 45) which is equivalent to apply the binomial theorem and the orthogonality condition of the monomial functions on Eq. ( 5). In fact, the idea to use the binomial theorem to find C

(2) μ ( /2) is not new. The method described in Appendix 2 is just a generalization of this idea with the aim to find C (N ) μ ( /2) for other values of N and . Using these results for partitions and coefficients, then the partition function given by Eq. ( 12) takes the form

Z sphere N , = [ /2 + 1]! 2 μ with μ 2 =0 1 m 1 !m 2 ! /2 μ 1 2 μ 1 ! ((N -1) /2 -μ 1 )!.
There are p + 1 partitions for two particles, but only the partition μ = (μ 1 = 2 p, μ 2 = 0) satisfy the condition μ N = μ 2 = 0. The partition function for N = 2 is

Z sphere N , = 1 2 [ /2 + 1]!( /2)!.
Similarly, the harmonic numbers average defined in Eq. ( 18) is

N -1 m=1 H μ m N -1 = H /2
so the particle-particle interaction energy average takes the form

U pp N =2 = q 2 2 1 1 + /2 + log ρ b π L 2 2
123 47 Fig. 3 Exact correlation function of the 2dOCP for N = 2 given by Eq. ( 24). (left) ρ and the excess energy is

U exc | N =2 = q 2 2 1 1 + /2 -log ρ b π L 2 2 -2 . ( 23 
)
Curiously, this result coincides with the one found by derivation of the configurational partition function U exc = -

∂ log Z N , ∂β = -q 2 ∂ log Z N , ∂
where

Z N =2, = (π L 2 ) /2 2 ρ b 2-/2 exp( ) + 2 ,
even when this function should be valid only for discrete values of because it was found by assuming this condition. The pair correlation function

ρ (2) N =2 (θ ) = ρ 2 b /2 + 1 2 1 -cos θ 2 /2 (24) 
was obtained straightforwardly from Eq. ( 13). Since the Wigner crystal for N = 2 corresponds to the well known antipodal nodes configuration, then it is expected a concentration of the pair correlation function around θ = π as goes to infinity as it is shown in Fig. 3.

Energy and Pair Correlation Function for N = 3

The excess energy as well as the pair correlation function may be obtained explicitly because the coefficients for three particles with μ 3 = 0 are related with the well known coefficients for two particles without any restriction on partitions. The partitions and coefficients are given by respectively. The derivation is done in "Coefficients for N = 3 with μ N = 0" in Appendix 2. The index α is introduced in order to count partitions running from 1 to Int 4 + 1 the total number of partitions. Hence the pair correlation function of three particles takes the form

μ α 1 = + 1 -α, μ α 2 = /2 + α -1 and μ α 3 = 0 and C (3) μ ( /2) = (-1) +1-α /2 α -1 with μ α 3 = 0 123
ρ (2) N =3 (θ ) = ρ 2 b ( + 1)! 3(1 + tan 2 (θ/2)) 1 Z3, Int( /4+1) α=1 /2 α-1 2 ( i m i !) α × ( /2 + α -1)!( /2 -α + 1)! [tan (θ/2)] 2( +1-α) + ( + 1 -α)!(α -1)! [tan (θ/2)] 2( /2+α-1) ( 25 
)
where

Z3, = Int 4 +1 α=1 1 ( i m i !) α /2 α -1 2 2 + α -1 ! 2 -α + 1 !r 2( +1-α) + ( + 1 -α)!(α -1)!r 2 2 +α-1
and

( i m i !) α = 2 if /2 is even and α = Int 4 + 1 1 if /2 is odd
is the multiplicity. A plot of the pair correlation function of three particles is shown in Fig. 4.

For values of near to 2 the function ρ (2)

N =3 is practically delocalized because of high thermal excitations. As the temperature is decreased to zero → ∞ the pair correlation function is concentrated around φ = 2π/3 radians obeying to the fact that particles crystallize in a equilateral triangle and the azimuthal symmetry of the system.

The excess energy may be obtained by using Eqs. ( 18), (17), and (4) with the explicit values of partitions and coefficients for N = 3. The result is

U exc | N =3 = 3 4 q 2 2H +1 - 2 m=1 H μ m 2 + log 3 ρπ L 2 -3 123 49 with 2 m=1 H μ m 2 = 1 Z3, Int 4 +1 α=1 1 i m i ! α /2 α -1 2 × 2 + α -1 ! 2 -α + 1 !( + 1 -α)!(α -1)! .

Asymptotic Energy for N ≤ 4

The Wigner crystals for N ≤ 4 at vanishing temperature play an special role because they are equidistant configurations of the Thomson problem. Since the cases N = 2, N = 3 and N = 4 correspond to the antipodal nodes, equilateral triangle and the tetrahedron configurations respectively, then we may compute the energy of these configurations by replacing the particle positions in Eq. ( 1) and using Eq. ( 4). The excess energy at → ∞ is

lim →∞ U exc | N =2,3,4 = -(N -1) Nq 2 4 log η 2 N 4 + log N ρπ L 2 + q 2 N 2 4 log N ρ b π L 2 -1 lim →∞ U exc | N =2,3,4 = N q 2 4 (N -1) log 4 η 2 N + log N ρπ L 2 -N ( 26 
)
where η N is a geometrical factor which takes the values η 2 = 2, η 3 = √ 3 and η 4 = 8 3 . Generally, the exact excess energy value of the Wigner crystal requires the evaluation of Eq. ( 18) at zero temperature. Unfortunately, the sum included in the average

N -1 m=1 H μ m N -1
has an infinite number of terms as → ∞. However, there are terms of N -1 m=1 H μ m N -1 whose contributions are more important than others. For a general value of N it is difficult to identify the most important contributions except for N ≤ 4 where the most significant terms are generated by partitions μ close to the last partition given by

= (μ 0 -1, μ 0 -2, . . . , μ 0 -(N -1), 0) with μ 0 = 1 4 N ( + 2) if 2 is even (μ 0 , μ 0 , . . . , μ 0 , 0) with μ 0 = 1 4 N if 2 is odd .
If the term generated by the last partition is the most important, then

N -1 m=1 H μ m N -1 = 1 (N -1)H N /4 for N ≤ 4
and the excess energy takes the form

U exc | N =2,3,4 = 1 N q 2 4 (N -1) H (N -1) /2+1 -H N /4 + log N ρ b π L 2 -N .
(27) Finally, in the limit → ∞ the energy of the Wigner crystal is

U exc | N =2,3,4 = →∞ N q 2 4 (N -1) log 2 1 - 1 N + log N ρπ L 2 -1 (28) 
both expressions Eq. ( 26) and Eq. ( 28) give the same result for N ≤ 4. The asymptotic behaviour of the excess energy is shown in Fig. 5. For N > 4 Eq. ( 28) fails as it happens with N = 6 where the corresponding geometrical factor of the octahedron is is necessary to include more terms in the computation of

η 6 = 2 √ 2 because it 123 
N -1 m=1 H μ m N -1
and eventually all of them for sufficiently large number of particles.

Energy for N ≥ 4 with > 2 and Comparison with the Metropolis Method

Previous works [12] showed that Monte Carlo simulations of 2dOCP are reliable for a wide range of ∈ [0. 5,200]. This section of the document is devoted to the implementation of the usual Metropolis method in the modest situation of a few particles 2dOCP with the aim to do a comparison between the Metropolis method and the exact results described in previous sections. In order to implement the numerical algorithm we chose randomly a particle located at r on the sphere, later the particle was moved to r = Rx (γ ) Ry (β) Rz (α) r where Rx , Ry and Rz are rotations around the x, y and z axis of the Cartesian reference frame in the center of the sphere. If the kth particle is moved, then the energy change is N is concentrated around θ = 180 • because there are different ways to rotate the triangular dipyramid and the octahedron locating a particle in the north pole and another one in the south pole. As we add more particles new peaks on ρ (2) N may emerge in the strong coupling regime revealing the crystal structure of the OCP. However, as N is increased, it becomes less evident to appreciate a direct connection between the individual positions of the Wigner crystal and ρ (2) N because there are more candidates to occupy the north pole. We have also calculated the exact numerical value of excess energy for = 2, 4, . . . by using Eqs. ( 4) and (17). The excess energy tends to a 123 constant as 2 as is shown in Fig. 7. Such constant corresponds to the minimal energy of the corresponding Wigner crystal. Similarly, the excess energy per particle tends to a constant, say u , as the number of particles is increased holding the density unchanged (see Fig. 6). Although, the value of u has not been fully determined analytically at the thermodynamic limit, it is interesting to notice that the excess energy per particle at = 2 tends to

δU k = -q 2 N i=1,i =k log | r i -r k | | r i -r k | . As usual,
u 2 = -q 2 [log(ρπ L 2 )+γ ]/4 according to U exc | =2 /N = u 2 -q 2 /(8N )+ O(1/N 2 ).
In contrast, energy per particle seems to oscillate around u as N increases for sufficiently large values of . The particle-particle energy computation via Eq. ( 17) as well as the pair correlation function Eq. ( 13) require the knowledge of C (N ) μ ( /2) and partitions included in the sum. In general, it may be computational expensive even for moderate values of N or because the number of coefficients tends to increase quickly with these parameters. Fortunately, there are several algorithms for the determination of the coefficients [24][25][26][27][28] including the new methods proposed in the Appendices 1 and 2. In particular, the approach of [25] probably provides the most efficient way to compute these coefficients.

Alternatively, in Table 3 of Appendix 4, it is shown how the excess energy varies as N increases for three fixed values of = 4, 6, 8. The data shown in that table is computed with Eq. ( 19) and fitted to an ansatz of the form

U exc = q 2 (AN + B + C/N + D/N 2 ) ( 29 
)
which allow us to estimate the bulk excess energy per particle (u = Aq 2 ) and its finite size corrections. In particular, we obtain u 4 /q 2 = -0.513829, u 6 /q 2 = -0.5499 and u 8 /q 2 = -0.57. We have fixed L = 1 and ρ b = 1 in the numerical data. In Ref. [29] it is argued that the free energy F of two-dimensional Coulomb systems in a sphere is expected to have a finite-size expansion given by

β F = N C 1 + χ 12 ln N + C 2 + O(1/N ) ( 30 
)
where χ = 2 is the Euler characteristic of the sphere. From the relation E = ∂(β F)/∂β we deduce that the expected finite size expansion of U exc should indeed be of the form of Eq. ( 29). Notice the absence of a logarithmic (ln N ) finite-size correction in the internal energy E as opposed to the one appearing in the free energy (30), and in the entropy, which will be discussed in the following section.
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Entropy

Using the definition of the Hemholtz free energy F = E -T S the entropy is

S = U T + k B log Z c (T, A, N ) = S ideal + S exc
where S ideal is the entropy of the ideal bidimensional gas, and S exc the excess entropy.

Replacing the total energy Eq. ( 3) with U pp and the configurational partition function Eq. ( 6), we find

S = q=0 S ideal = N k B 1 + log A2mπk B T h 2 -k B log N ! (31) 
and

S exc = N k B N 4 + log L 2R /2 1 2 (N -1) + 1 ! + k B log Z sphere N , + k B log N ! + U exc T .

Entropy in the Thermodynamic Limit for = 2

Using Eq. ( 20) we may write

log Z sphere N , = 2 log G B (1 + N )
where G B (x) is the Barnes G-function. For the asymptotic limit N → ∞, we know

log G B (1 + N ) = ζ (-1) + N 2 log(2π) + 1 2 N 2 - 1 6 log N -3 N 2 4 + M k=1 B 2k+2 4k(k + 1)N 2k + O 1 N 2M+2
where ζ(x) is the Riemann zeta function and B the Bernoulli numbers. Using this result with the Stirling approximation for the Gamma function then the free energy, when the number of particles N → ∞, takes the form [20] -

β F = log Z N , =2 = N 2 log 2π 2 L 2 ρ b - χ 12 log(N ) + 2ζ (-1) - 1 12 - 1 180N 2 + O 1 N 4 .
This expression for the free energy also coincides with the one found by Jancovici et al. [29] where F as a function of the number of particles is

β F = C 1 N + χ 12 log(N ) + C 2 + • • • ,
where C 1 and C 2 are constants. On the other hand, the term U exc /T in the limit N → ∞, for = q 2 k B T = 2, according to Eq. ( 21) is As a result, the entropy, when N → ∞, may be written as follows

U exc T = - N k B 2 log(ρ b π L 2 ) + γ + 1 2N - 1 12N 2 + 1 120N 4 + O 1 N 6 . ( 32 
)
S = 1 + log 2mπk B T ρ b h 2 + 1 2 log(2π) -γ N k B -k B χ 12 log N + k B 2ζ (-1) - 1 3 + k B 1 24N - 1 180N 2 - 1 240N 3 + O 1 N 4 ( 33 
)
where the excess entropy is

S exc = k B 1 2 log(2π) - 1 2 γ -1 N + 1 3 log N + 2ζ (-1) - 1 3 + 1 2 log(2π) + 1 8N - 1 180N 2 - 1 144N 3 + O 1 N 4 . ( 34 
)
As a result, the total entropy, as well as the Helmholtz free energy, is a function of the form

S = B 1 N + k B χ 12 log N + B 2 + • • • , when N → ∞,
where B 1 and B 2 are constants. Moreover, the excess entropy S exc is negative for N > 2 and decreases as N → ∞ as it is shown in Fig. 10(left). However, the total entropy remains positive but lower than the entropy of the ideal gas on the sphere 0 < S ≤ S ideal . It may be attributed to the fact that several microstates are less probable as the gas is charged. For instance, the microstates where particles are close have lower probability to occur in the charged gas than in an ideal gas. The number of accessible microstates should decrease when the Coulomb interaction is introduced because there is less freedom to choose a configuration holding the total energy unchanged. The numerical exact values of the excess entropy for ≥ 2 are shown in Fig. 11. In the regime of large values of the ideal gas entropy as well as the excess entropy take negative values contradicting the third law of thermodynamics which establishes that entropy of a perfect crystal at absolute temperature is zero. This problem is inherited from the classical treatment assumed in the study of 2dOCP where the entropy diverges as T → 0 to minus infinity suggesting that quantum treatment is necessary to find its value correctly in the strong coupling regime. monomial functions basis. The excess energy was exactly computed for even values of and N = 2, . . . , 9 particles obtaining a good agreement with the numerical simulations implemented with the Metropolis Method. The analytical expression for the excess entropy for even values of was also obtained.

A pair of problems must be faced before computing the excess energy for N ≥ 4 with the approach described in this document. The first one is to find the coefficients C (N ) μ ( /2) included in the harmonic numbers average Eq. ( 18) and the second one is due to the rapid growing of the total number of partitions as the number of particles or the coupling parameter is increased. These problems are related with the practical evaluation of the expansion but not with the analytical expressions because they do not have restrictions with how large or cold the system is. A solution to the first task was to find a numerical method which allows to obtain the coefficients exactly. For this aim, we developed two different techniques based in the multinomial theorem and the difference method. They are alternatives to the numerical methods with recursion relations between coefficients. The number of terms of the expansions for the energy and other thermodynamic variables grows specially with N but significantly lower when is increased. This feature permit us to obtain numerical exact results far from = 2 at least for a few number of particles finding a stronger connection between the analytical pair correlation function and the structure of the Wigner crystals as the coupling parameter becomes larger. 

α ( μ α 1 , μ α 2 , μ α 3 ) 1 (4, 2, 0) 2 (4, 1, 1) 3 (3, 3, 0) 4 (3, 2, 1) 5 (2, 2, 2)
μ with (i = 1, . . . , N ), (α = 1, . . . , N p ) and N p (N , ) the total number of partitions. For N = 3 and = 4 the partitions are shown in Table 1.

The partition elements are obtained by adding or subtracting integers to the previous partition elements holding sum N i=1 μ α i as a constant. For instance, the second partition (4, 1, 1) may be obtained from (4, 2, 0) by a subtraction of 1 from μ 1 2 and adding 1 to μ 1 3 . Similarly, the third partition (3, 3, 0) is obtained from the first partition by subtracting 1 from μ 1 1 and adding 1 to μ 1 2 . These type of operations are usually referred as squeezing. Following the same rules, the 4th partition may be obtained from the third and the 5th from the 4th. Therefore, the partition elements for N = 3 are of the form

μ α 1 = (N -1) /2 -j 1 (α), μ α 2 = (N -1) /2 + j 1 (α) -j 2 (α) and μ α 3 = (N -1) /2 + j 2 (α)
where j i (α) are positive integers which represent the integers transferred from μ α i to μ α i+1 . In general, the partitions may be obtained from the following function

f i (N , , α) = ⎧ ⎨ ⎩ (N -i) /2 -j i if i = 1 (N -i) /2 + j i-1 -j i if i ∈ [2, N ) (N -i) /2 + j i-1 if i = N ( 35 
)
where

μ α i = f i (N , , α) only if one of the following conditions is satisfied μ α 1 ≥ μ α 2 ≥ • • • ≥ μ α 1 if /2 is even (36) or μ α 1 > μ α 2 > • • • > μ α 1 if /2 is odd (37) 
The following lines of code written in Wolfram Mathematica 9.0 shows a way to compute the partitions for N = 3 particles.

N Const = 3; (*HOLD AS A CONSTANT IN THIS CODE*) Γ = 8; (*GAMMA PARAMETER. Γ/2 MUST BE AN EVEN VALUE Γ = 4, 8, 12, . . .*) f [N -, Γ -, i -, JiM inus1 -, Ji -] := W hich[i == 1, (N -i)Γ/2 -Ji, (2 ≤ i&&i ≤ N -1), (N -i)Γ/2 + JiM inus1 -Ji, i == N, (N -i)Γ/2 + JiM inus1]; (*Eq.(35)*) p = 0 (*PARTITIONS COUNTER*) F or[j 1 = 0, j 1 ≤ 2Γ, F or[j 1 = 0, j 1 ≤ 2Γ, f [i -] := f [N Const, Γ, i, j i-1 , j i ]; If[EvenQ[Γ/2] == T rue, If[f [1] ≥ f [2]&&f [2] ≥ f [3], p + +; μ[p, 1] = f [1]; μ[p, 2] = f [2]; μ[p, 3] = f [3]], (*EQ (36)*) If[f [1] > f[2]&&f [2] > f[3], p + +; μ[p, 1] = f [1]; μ[p, 2] = f [2]; μ[p, 3] = f [3]]; ]; (*EQ (37)*) j 2 + +]; j 1 + +];
N P artitions = p; (*NUMBER OF PARTITIONS*) P rint["T here are", N P artitions, " partitions f or N = ", N Const, "and Γ = ", Γ]

F or[p = 1, p ≤ N P artitions, P rint["μ = ", T able[μ[p, i], {i, 1, N Const}]]; p + +]; 123 57 1 (2π) N 2π 0 dφ 1 e -iμ 1 θ 1 ••• 2π 0 dφ N e -iμ N θ N 1≤ j<k≤N e iθ k -e iθ j
/2 (38) with /2 and even number. The product 1≤ j<k≤N e iθ ke iθ j into the integral is a Vandermonde determinant

:= 1≤ j<k≤N e iθ k -e iθ j = σ ∈S N sgn(σ ) N j=1 e iθ j σ ( j)-1 = N ! p=1 χ σ p this is a sum of N ! terms of the form χ p := sgn(σ p ) exp[i N i=1 (σ p i -1)θ i ] with S N = {σ 1 , . . . , σ N ! } and σ p = {σ p 1 , . . . , σ p N } is the p-th permutation of N elements. It is possible to use the multinomial theorem ⎛ ⎝ M p=1 χ p ⎞ ⎠ n = n i 1 =0 i 1 i 2 =0 • • • i M-2 i M-1 =0 n i 1 i 1 i 2 • • • i M-2 i M-1 χ n-i 1 1 χ i 1 -i 2 2 • • • χ i M-1 M
in order to evaluate the integral Eq. (38) where n and M are positive integers. If M = N ! and n = /2 then

/2 = /2 i 1 =0 i 1 i 2 =0 • • • i N !-2 i N !-1 =0 n i 1 i 1 i 2 • • • i N !-2 i N !-1 N ! p=2 sgn(σ p ) i p-1 -i p exp ⎛ ⎝ i N j=1 K j ( i; σ j )θ j ⎞ ⎠ (39 
) where we have defined

K m ( i; σ m ) = K m (i 1 , . . . , i N !-1 ; σ m ) := N ! j=1 i j-1 -i j σ j m -1 ( 40 
)
with i 0 := /2, i N ! := 0, σ p m is the mth term of the permutation σ p and σ m = σ 1 m , . . . , σ N ! m .
For instance, the notation used for permutations of N = 3 particles is

σ p m = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ σ 1 1 σ 1 2 σ 1 3 σ 2 1 σ 2 2 σ 2 3 σ 3 1 σ 3 2 σ 3 3 σ 4 1 σ 4 2 σ 4 3 σ 5 1 σ 5 2 σ 5 3 σ 6 1 σ 6 2 σ 6 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (41)
It is important to note that K m ( i; σ m ) is a non-negative integer because i j ≤ i j-1 for j = 1, . . . , N ! and m = 1, . . . , N as happens with the partition elements μ = {μ m } = 123 (μ 1 , . . . , μ N ). Replacing Eq. ( 39) in Eq. ( 38) we obtain

C (N ) μ ( /2) = 1 (2π) N /2 i 1 =0 i 1 i 2 =0 • • • i N !-2 i N !-1 =0 n i 1 i 1 i 2 • • • i N !-2 i N !-1 × N ! p=2 sgn(σ p ) i p-1 -i p N j=1 2π 0 dφ j exp -i(K j -μ j )θ j .
The integration problem is solved by using 2π 0 dφ j exp -i(K j -μ j )θ j = 2πδ K j ,μ j . If the first permutation is the identity σ 1 m = m, then sgn(σ 1 ) = 1 and it is possible to write the coefficients more compactly

C (N ) μ ( /2) = N !-1 j=1 i j-1 i j =0 ⎧ ⎨ ⎩ N ! p=1 sgn(σ p ) i p-1 -i p i p-1 i p N l=1 δ K l ,μ l ⎫ ⎬ ⎭ . ( 42 
)
Now, the sum i :=

N !-1 j=1 i j-1 i j =0
of Eq. ( 42) generates a set vectors of the form i = (i 1 , . . . , i N !-1 ). At the same time, each of these indices vector i will generate a set of non-negative integer elements

K = {K m (i 1 , . . . , i N !-1 ; σ m ) : m = 1 . . . , N }. Finally, the Kronecker delta product N l=1 δ K l ,μ l collects only the K sets which are partitions K = μ. The number of i vectors generated with i is M N , = i 1 = 1 (N -1)! N !-1 j=1 (1 + /2)
and these vectors belong to the following set

J (N , ) := i = (i 1 , . . . , i N !-1 ) : i j ∈ {0} ∪ Z + with j = 1, . . . , N ! -1 ∧ /2 ≥ i 1 ≥ i 2 ≥ • • • ≥ i N !-1 ≥ 0} .
Hence,

C (N ) μ ( /2) = i∈J c( i)δ μ,K ( i,σ ) with c( i) = N ! σ =1 sgn(σ p ) i p-1 -i p i p-1 i p .
If I ⊂ J is the set of vectors i which generates a partition K = μ, then each partition has a set I μ ⊂ I of vectors i defined by

I μ := ⎧ ⎨ ⎩ i : N !-1 j=1 i j-1 -i j σ jm -1 + i N !-1 (σ N !m -1) -μ m = 0 ∀ m = 1, . . . , N ∧ 2 ≥ i 1 ≥ i 2 ≥ • • • ≥ i N !-1 ≥ 0 . ( 43 
)
such that

I (N , ) = N p (N , ) μ=1 I μ 123 59
because a set of indices i 1 , . . . , i N !-1 in I will generate a single partition and there are not two repeated partitions. As a result, the coefficients for a given number of particles N and value of gamma parameter may be computed with

C (N ) μ ( /2) = (i 1 ,...,i N !-1 )∈I μ N ! p=1 sgn(σ p ) i p-1 -i p i p i p-1 . ( 44 
)
The computation of coefficients with Eq. ( 44) requires to find the set I μ previously defined in Eq. [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF]. In other words, it is necessary to solve a set of N -equations of the form K m ( i, σ m )μ m = 0 with m = 1, . . . , N under N !-conditions of the form i j-1i j ≥ 0 with j = 1, . . . , N !, i 0 = /2 and i N ! = 0 where i = (i 1 , . . . , i N !-1 ) are unknowns. Therefore, the vector solution is not unique dim(I μ ) ≥ 1 and it is possible to find more than one vector i solution associated to a single partition μ which makes harder to find the set I μ . The next code in addition with the one written in the previous section for partitions computation is an example of the coefficients computation for N = 3 using Eq. ( 44):

cb[n -, i -] := n!/((n -i)!i!); (*BINOMIAL COEFFICIENT*) σList = P ermutations[T able[i, {i, 1, N Const}]]; σ[permutation -, i -] := σList[[permutation, i]]; (*PERMUTATIONS MATRIX EQ (41)*) i 0 = Γ/2; i N Const! = 0; (*FIRST AND LAST INDICES OF i-VECTOR*) vec = T able[F ullSimplif y[ N Const! m=1 (i m-1 -i m )(σ[m, j] -1), {j, 1, N Const}]; K[j -] := vec[[j]]; (*jth-COMPONENT OF K-VECTOR DEFINED IN EQ (40)*) ISet[μ1 -, μ2 -, μ3 -] := ( solution = Solve[Γ/2 ≥ i 1 ≥ i 2 ≥ i 3 ≥ i 4 ≥ i 5 ≥ 0 && K[1] == μ1 && K[2] == μ2 && K[3] == μ3, i 1 , i 2 , i 3 , i 4 , i 5 , Integers]; Return[{i 1 , i 2 , i 3 , i 4 , i 5 }]/.solution); (*EQ (43)*) (*COEFFICIENT FUNCTION*) coef f icient[p -] := (set = ISet[μ[p, 1], μ[p, 2], μ[p, 3]] (*FIND THE SET I µ *) ISize = Dimensions[set][[1]]; (*DIMENSION OF I µ *) iV ec[n -, j -] := W ich[j == 0, Γ/2, (1 ≤ j&&j ≤ (N Const! -1)), set[[n]][[j]], j == N Const!, 0]; (* i ∈ I µ *) P rint["I µ = ", M atrixF orm[set]]; (*PRINT THE SET I µ *) c = ISize n=1 N Const! j=1 Signature[sigmaList[[j]]] iV ec[n,j-1]-iV ec[n,j] cb[iV ec[n, j -1], iV ec[n, j]];(*EQ (44)*) Return[c]; (*RETURN THE COEFFICIENT*)); F or[p = 1, p ≤ N P artitions, P rint["μ = ", T able[μ[p, i], {i, 1, N Const}], "C = ", coef f icient[p]]; p + +];
Here the set I μ is found with the function Solve of Mathematica and the output is summarized in Table 2. Taking into account that we usually have to compute the coefficients of partitions with μ N = 0, then the technique described here may be used for the computation of the coefficients for values of far from 2. In fact, we have used Eq. ( 44) to find C (N ) μ ( /2) for N = 2, 3, 4 and 5 with values of = 4, 8, . . . , 100. In some sense the program implementation of Eq. ( 44) may be simple, since the only difficulty is to built I μ . However, the construction of I μ for large values of N is hard even numerically because it will require to handle a set of N ! inequalities with N equations. Although, this feature makes impractical the use of this technique even for N > 5, Eq. ( 44) provides a straightforward way to find analytically C (N ) μ ( /2) for N = 2 and N = 3 for any even value of when μ N = 0.

Coefficients for N = 2

The partitions are given by with α = 1, 2, . . . , N p and N p = /4 + 1 the total number of partitions. For N = 2 the vector i has only one component i 1 and the I μ set given by Eq. ( 43) takes the form

μ α 1 = 4 + α -1 and μ α 2 = 4 -α + 1 123 Table 2 Coefficients for N = 3 and = 8 μ = (μ 1 , μ 2 , μ 3 ) i = (i 1 , i 2 , i 3 , i 4 , i 5 ) dim(I μ ) C (N ) μ ( /2) (8, 4, 0) ( 4, 4, 4, 4, 4) 1 1 (8, 3, 1) ( 4, 4, 4, 4, 3) 1 -4 (8, 2, 2) ( 4, 4, 4, 4, 2) 1 6 (7, 5, 0) ( 4, 4, 4, 3, 3) 1 -4 (7, 4, 1) ( 4, 4, 4, 3, 2) 1 1 2 (7, 3, 2) ( 4, 4, 3, 3, 3), (4, 4, 4, 3, 1) 2 -8 (6, 6, 0) ( 4, 4, 4, 2, 2) 1 6 (6, 5, 1) ( 4, 3, 3, 3, 3), (4, 4, 4, 2, 1) 2 -8 (3, 3, 3, 3, 3), (4, 3, 3, 3, 2) (6, 4, 2) ( 4, 4, 3, 2, 2) 4 - 22 
(4, 4, 4, 2, 0) (3, 3, 3, 3, 2) (6, 3, 3) ( 4, 3, 3, 3, 1) 3 4 8 (4, 4, 3, 2, 1) (3, 3, 3, 2, 2) (5, 5, 2) ( 4, 3, 3, 2, 1) 3 4 8 
(4, 4, 3, 1, 1) (3, 3, 3, 2, 1), (4, 3, 2, 2, 2) (5, 4, 3) ( 4, 3, 3, 2, 0) 4 -36 (4, 4, 3, 1, 0) 
I μ := i 1 : K 1 (i 1 , σ 1 ) = μ 1 ∧ K 2 (i 1 , σ 2 ) = μ 2 with 2 ≥ i 1 ≥ 0 ∧ μ 1 ≥ μ 2 ≥ 0 with (σ p m ) = 1 2 2 1 .
The components of the K -vector are

K 1 (i 1 , σ 1 ) = i 1 = μ 1 and K 2 (i 1 , σ 2 ) = /2-i 1 = μ 2 .
From both conditions it is obtained the solution i 1 = /4 + (α -1) = μ 1 . Therefore, dim(I μ ) = 1 and the sum (i 1 ,...,i N !-1 )∈I μ of Eq. ( 44) has only one term

C (N ) μ ( /2) = 2 p=1 sgn(σ p ) i p-1 -i p i p i p-1 with i 0 = /2, i 1 = μ 1 and i 2 = 0. The final result is C (2) μ ( /2) = (-1) μ 1 /2 μ 1 . ( 45 
)
123
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This is the same formula obtained by combination of the binomial theorem and Eq. (38).

Coefficients for N = 3 with μ N = 0

The partitions and coefficients of N are connected with the previous ones of N -1 according to the properties μ α(N -1, ) j

+ /2 = μ α(N , ) j and C (N ) μ ( /2) = C (N -1) μ ( /2
) when μ N = 0. For this reason, the coefficients computation problem for N = 3 particles with μ 3 = 0 is similar to the problem for N = 2 of the previous section. In this case the partitions are given by

μ α 1 = + 1 -α, μ α 2 = /2 + α -1 and μ α 3 = 0. ( 46 
)
The number of partitions is found from the condition μ

N p 1 = μ N p 1
when /2 is an even number and μ

N p 1 + 1 = μ N p
1 when /2 is an odd number. The result is N p = Int ( /4 + 1) and the set I μ is

I μ := i : K 1 ( i, σ 1 ) = μ 1 ∧ K 2 ( i, σ 2 ) = μ 2 ∧ K 3 (i 1 , σ 3 ) = 0 with 2 ≥ i 1 ≥ i 2 ≥ . . . ≥ i 5 ≥ 0
where i = (i 1 , . . . , i 5 ). The components of the K -vector are

K 1 ( i, σ 1 ) = i 2 + i 4 , K 2 ( i, σ 2 ) = /2 + i 1 -2i 2 + 2i 3 -2i 4 + i 5 , K 3 ( i, σ 3 ) = -i 1 + i 2 -2i 3 + i 4 -i 5 ,
and the permutation matrix is given by Eq. ( 41). The solution is the following

i 1 = i 2 = i 3 = 2 and i 4 = i 5 = 2 + 1 -α. ( 47 
)
Therefore I μ has only one vector i when μ 3 = 0 as is shown in Table 2 for the particular case of = 8 and Eq. ( 44) takes the form

C (N ) μ ( /2) = 6 p=1 sgn(σ p ) i p-1 -i p i p i p-1
with i 0 = /2 and i 6 = 0. The final result is

C (3) μ ( /2) = (-1) μ 1 /2 μ 2 -/2
with μ 3 = 0.

Appendix 3: Exact Coefficients Computation via Finite Difference Method (FDM)

We know that Vandermonde determinant det(z i-1 j ) (i, j=1,2,...,N ) to the power /2 with a positive even number may be written in terms of the expansion

N (z 1 , . . . , z N ) /2 = 1≤i< j≤N z i -z j /2 = μ C (N ) μ ( /2)m μ (z 1 , . . . , z N )
123

where μ := (μ 1 , . . . , μ N ) is a partition of N (N -1) /4 with the condition (N -1) /2 ≥ μ 1 ≥ μ 2 • • • ≥ μ N ≥ 0 where m μ (z 1 , . . . , z N ) are the monomial symmetric functions m μ (z 1 , . . . , z N ) = 1 i m i ! σ ∈S N z μ 1 σ 1 • • • z μ N σ N
when /2 is even or antisymmetric functions when /2 is odd. Since N (z 1 , . . . , z N ) /2 is a polynomial with a finite number of terms whose exponents grouped in partitions μ determine completely each coefficient

C (N )
μ ( /2) for a given N and then

∂ μ 1 +•••+μ N ∂z μ 1 1 • • • δz μ N 1 N (z 1 , . . . , z N ) /2 = C (N ) μ ( /2) 1 i m i ! σ ∈S N ∂ μ 1 +•••+μ N ∂z μ 1 1 • • • δz μ N 1 z μ 1 σ 1 • • • z μ N σ N where σ ∈S N ∂ μ 1 +•••+μ N ∂z μ 1 1 • • • δz μ N 1 z μ 1 σ 1 • • • z μ N σ N = i m i ! (μ 1 ! • • • μ N !) hence C (N ) μ ( /2) = 1 μ 1 ! . . . μ N ! ∂ μ 1 +•••+μ N ∂z μ 1 1 • • • δz μ N 1 N (z 1 , • • • , z N ) /2 (48)
Finite difference method enable us to compute derivatives of functions approximately starting from the usual limit definition of derivatives

d dx f (x) = lim h→0 f (x + h) -f (x) h = 1 h f (x) h + O(h) with 1 h f (x) = f (x + h) -f (x) for forward difference. The second derivative is d dx f (x) = 2 h f (x) h 2 + O(h) where 2 h f (x) = 1 h ( 1 h f (x)) = 1 h f (x +h)-1 h f (x) = f (x +2h)-2 f (x +h)+ f (x)
. This procedure may be generalized in order to approximate the n-order derivative

d n dx n f (x) = 1 h n n i=0 (-1) i n i f (x + (n -i)h) + O(h) ( 49 
)
For a general function f (x) Eq. ( 49) give us an approximation, except in the particular case when f (x) is a polynomial of order n where Eq. ( 49) coincides with the exact result by virtue of

n i=0 (-1) i n i (x + (n -i)h) m = ⎧ ⎨ ⎩ n!h n if m = n 0 i f0 ≤ m < n a function of x and h if m > n (50)
The cases for which 0 ≤ m ≤ n are independent of the value of x since they are cancelled in the expansion. As a result, we may write

d n dx n x n = n! = 1 h n n i=0 (-1) i n i (x + (n -i)h) n 123 63
Since n! is a constant we may choose freely the value of x. If we set x = 0, then

d n dx n x n = n i=0 (-1) i n i (n -i) n Therefore, if f (x) = n i=1 c i x i then d n dx n f (x) = n i=0 (-1) i n i f (n -i) n = n!c n and ∂ n ∂ x n ∂ m ∂ y m F(x, y) = n i=0 (-1) i n i f (n -i) n m j=0 (-1) j m j g(m -j) m = n!m!c n p m
where F(x, y) := f (x)g(y) with g(y) = m i=1 p i y i another polynomial of order m. More generally we may write

∂ N ∂ x n 1 1 • • • ∂ x n N N F(x 1 , . . . , x N ) = n 1 i 1 =0 • • • n N i N =0 (-1) i 1 +•••+i N n 1 i 1 • • • n N i N f (n 1 -i 1 , . . . , n N -i N ) (51) if F(x 1 , . . . , x N ) = N i=1 f i (x i ) with f i (x i ) a polynomial function of order n i . If any function f i (x i ) of F(x 1 , . . . , x N
) would have and order n i lower than n i then Eq. ( 51) would be simply zero because of Eq. ( 50) and would give you a wrong derivative if n i > n i . Now consider the case

F(x 1 , . . . , x N ) = n 1 i 1 =0 • • • n N i N =0 c i 1 ...i N x i 1 . . . x i N where i 1 + • • • + i N = constant. We may obtain the coefficient c i 1 ...i N applying ∂ N ∂ x i 1 1 •••∂ x i N N according to (51) even when any derivative ∂ ∂ x i j j of another term say c i 1 ...i N x i 1 . . . x i N give us a wrong result if i j < i j because the restriction i 1 + • • • + i N = constant ensures the existence of at least one derivative say ∂ ∂ x i k k
with i j > i j which transform the whole term in zero. This is just the case of Eq. ( 48) because the partition elements have the constrain

μ 1 + • • • + μ N = N (N -1) /4
hence the coefficients for even values of /2 take the form

C (N ) μ ( /2) = 1 μ 1 ! . . . μ N ! μ 1 i 1 =0 • • • μ N i N =0 (-1) i 1 +•••+i N μ 1 i 1 • • • μ N i N N (μ 1 -i 1 , . . . , μ N -i N ) /2 . ( 52 
)
In principle, the coefficients computation with Eq. ( 52) does not offer remarkable implementation difficulties. Nevertheless, it is important to note that C 

123

This value may easily overflow the maximum integer value permitted by the computer. Usually, this maximum value varies with the program used to implement the coefficients computation formula as well as the architecture of the machine. Fortunately, in order to solve this problem it is possible to use multiple precision arithmetic libraries as GMP [31] included in some of our computations.

Appendix 4: Excess Energy as a Function of N

In this section, we report the excess energy U exc obtained from the exact expression, Eq. ( 19), when N increases, for three fixed values of = 4, 6, 8. As before, we have set ρ b = 1 and L = 1. A four parameter fit to an ansatz of the form

U exc = q 2 (AN + B + C/N + D/N 2 ) is proposed.
As explained in Sect. 4.5, this is the expected finite-size expansion for U exc . The fit is done with four consecutive values of N , and the convergence of the parameters A, B, C and D is observed as N increases. This allows us to obtain the bulk value of the excess internal energy and the finite size corrections (Table 3).

Table 3 Excess energy of the 2dOCP on a sphere and its fit to This article is devoted to the study of the two dimensional one component plasma 2dOCP on the hard and soft disk cases. In general, the 2dOCP refers to a system of N identical charges Q living on a two-dimensional surface S with a neutralizing background. For the case of the flat plane, two charges of the 2dOCP located at r 1 and r 2 interact with a logarithmic potential of the form

U exc = q 2 (AN + B + C/N + D/N 2 ) N U exc /q 2 Exact A B C D 4 -1.0591247 4 
ν( r 1 , r 2 ) = -log | r 1 -r 2 | L 1 68
with L an arbitrary length constant. The potential energy U inter of the 2dOCP is given by

U inter = U pp + U bp + U bb
where U pp is the particle-particle interaction energy contribution, U bp the background-particle interaction and U bb is the background-background interaction. The total average energy E is the usual bidimensional ideal gas energy plus the excess energy U exc contribution:

E = N k B T + U exc with U exc =< U inter >.
Generally, the potential energy U inter depends on the geometry of S. If a 2dOCP on a hard disk of radius R is considered, then the potential energy is the following [1]

U H inter = Q 2   f H (N ) + 1 2 N i=1 √ N R r i 2 - 1≤i<j≤N log √ N R r ij   (1) 
where

f H (N ) = - 3 8 N 2 + N 2 log R L + N 2 2 log √ N - N 2 log N. (2) 
In this situation the particles repel each other logarithmically while they are bound by an attractive quadratic potential generated by the background and eventually by the circular boundary (see Fig. 1).

Fig. 1: 2dOCP on a hard disk.

The statistical behaviour of the system depends only on a coupling parameter Γ = Q 2 /(k B T ) where k B is the Boltzmann constant and T is the temperature. For Γ → 0 the system is a two-dimensional ideal gas and fluid for moderate high values of Γ. In contrast, the system becomes a crystal for Γ → ∞ where it has a extremely high electric interaction or very low temperature. Therefore, it is expected to see a phase transition at certain large value of the coupling parameter [2,3,4,5,6]. There are several analytical studies on the 2dOCP in diverse geometries for the special coupling Γ = 2 [7,8,9,10,11,12]. In particular the excess free energy F exc per particle at Γ = 2 is

F exc N = - Q 2 4 log(ρ b πL 2 ) + Q 2 2 [1 -log(2π)] 2 69
in the thermodynamic limit which implies to keep the particle density of the background as a constant ρ b = N πR 2 as N and R tend to infinity. Previously, Jancovici [7] found that the excess parts of the energy and heat capacity C exc per particle in the thermodynamic limit at Γ = 2 are

U exc N = - Q 2 4 log(ρ b πL 2 ) - Q 2 4 γ and C exc N = k B log 2 - π 2 24 
respectively, where γ = 0.577215664 . . . is the Euler-Mascheroni constant. These results are also valid for the 2dOCP on the soft disk or Dyson gas where the infinite potential barrier at R is removed since in the thermodynamic limit the barrier is moved to the infinity. However, for a finite number particles both the soft and hard system have substantial differences. The potential energy of the 2dOCP on the soft disk is

U S inter = Q 2   f S (N ) + 1 2 ρ b π N i=1 r 2 i - 1≤i<j≤N log r ij   where f S (N ) = f H (N ) - N (N -1) 2 log ρ b πN .
(3) In ref. [8] Shakirov computed the average of the last term of Eq. ( 3) (which differs from the average of the particle-particle energy < U S pp > with some additive constants)

U S pp = -Q 2 1≤i<j≤N log r ij (4) 
by using the replica method finding the following result

U S pp = ρ b = 1 π ,Γ=2 Q 2 2 N 2 2 H N - N 2 4 + 3N 4 + 1 4 + N γ 2 - Γ(N + 3/2) (N + 1)! √ π/2 3 F 2 1 N -1 N + 3/2 N + 2 N + 1 1 ( 5 
)
for Γ = 2 in terms of the hypergeometric function 3 F 2 , the harmonic numbers

H N = N k=1 1 
k and the gamma function Γ(x) 1 . Although, analytic solutions for any value of Γ are limited, there are several studies of the 2dOCP in diverse geometries specially for positives integers values of Γ [13,14,15,16,17]. Previously, authors of [17] described a way to compute the excess energy of the 2dOCP on the sphere based on the expansion the Vandermonde determinant to the power Γ. The main purpose of this work is to obtain the excess energy of the 2dOCP on a hard and soft disk for even values of Γ. For this aim, we shall show that the approach of [17] applied on the flat geometry may be used to obtain some analytical results of the excess energy for Γ = 2, 4, 6, . . . reproducing the results by Shakirov at Γ = 2 for the Dyson Gas as well as the energy of the finite 2dOCP on the hard disk. In practice, the results for Γ = 4, 6, . . . will be limited to small systems. However, it will be shown that our analytical results are in good agreement with the ones obtained by numerical simulations.

The 2dOCP has been considered as an ideal suited model to study strongly coupled matter since it may mimic the phase transitions of real systems e.g. dusty plasmas [18,19,20,21,22,23,24] where the first observations of crystals in the laboratory were realised in the nineties [18,19]. It is well known that logarithmic Coulomb interaction between particles comes from the solution of the Poisson equation in two dimensions. However, the typical experimental setup usually confines the particles in a quasi-bidimensional arrangement.

Even when particles may be trapped in a monolayer, they do not have a logarithmic interaction potential because the experimental layer usually has a finite thickness and the electric field does not necessary live in a plane. Numerical simulations of the 2dOCP with alternative potentials non-necessarily a logarithmic one may be found in the literature. Examples of these numerical studies on systems with long-range interaction are [25,26,27] for 1/r Coulomb interaction and [28] for 1/r 3 dipolar interaction.

The main results of this work for the excess energy and 2-body density function will be summarized in the next section. The preliminary material and the basics of the monomial expansion method will be described in section 3. Although, the generalities of the method may be also found in [15,16,17] this section has been included in order to introduce the notation used along the document. The statistical average of the quadratic contribution to the energy (the quadratic sum introduced by the parabolic confining potential in Eqs. ( 1) or ( 3)) is computed in section 4. This energy contribution may be found without applying a monomial expansion even when Γ > 2. However, section 4 has been included because it shows appropriately how the technique works and several procedures described in the computation of the quadratic contribution may be extended to compute other quantities as the particle-particle interaction energy. The excess energy computation for odd values of Γ/2 is described from section 5 to section 8. In particular, the N -finite expansion of excess energy for the 2dOCP on the soft and hard disk at Γ = 2 is presented in section 7. Finally, the section 9 is devoted to the analytic determination of the 2-point density function for Γ = 2, 6, 10, . . . and a brief comparison between this function in the strong coupling regime and the structure of small Wigner crystals.

Summary of Results

The main value of a given observable g = g( r 1 . . . r N ) of the Dyson gas in the canonical ensemble is

g( r 1 . . . r N ) = 1 Z S N,Γ 1 N ! N i=1 ∞ 0 2π 0 r i dr i dφ i e -βU S
inter (r1,...,r N ) g( r 1 . . . r N )

where r 1 . . . r N with Z S N,Γ the partition function. The Boltzmann factor is

e -βU S inter (r1,...,r N ) = |∆ N (z i -z j )| Γ exp -f S (N ) -ρ b π N i=1 r 2 i with ∆ N (z i -z j ) = 1≤i<j≤N (z j -z i )
the Vandermonde determinant and z = r exp(iφ) the complex positions of the particles. The method described in this document is based on the expansion of the Vandermonde determinant to even values of Γ in terms of monomial functions m µ (z 1 , . . . , z N ) and coefficients C

(N ) µ whose labels µ are called partitions 2 . This enables to write the usual average g( r 1 . . . r N ) as an average over partitions g( r

1 . . . r N ) = G(µ 1 , . . . , µ N ) N ( 6 
)
2 In general, it is possible to use the multinomial theorem to expand |∆ N (z iz j )| Γ as a polynomial whose terms are of the form

z n 1 1 z n 2 2 . . . z n N
N with (n 1 , . . . , n N ) a set of N -integers numbers. In fact, the method described here in some sense is a factorized version of the multinomial theorem where coefficients C (N ) µ and partitions µ = (µ 1 , . . . , µ N ) are not trivially related to the coefficients of the multinomial theorem and the powers (n 1 , . . . , n N ). 4 71

where

G(µ) N := 1 µ 1 ( i mi!) C (N ) µ (Γ/2) 2 N j=1 Φ µj µ 1 ( i m i !) C (N ) µ (Γ/2) 2   N j=1 Φ µj   G(µ 1 , . . . , µ N ) (7) 
with i m i ! the multiplicity of the partition µ and Φ µj are proportional to µ i ! or related to the incomplete gamma functions depending if the system has a soft or hard boundary. Using this approach we have computed the excess energy of the Dyson gas U S exc = U S inter for odd values of Γ/2 as

U S exc = S E µ N + S U µ N . (8) 
The term E µ N in equation Eq. ( 8) is the partition average of

S E µ = Q 2    - 1≤i<j≤N i µi µj µ i -µ j + j(µ i , µ j ) 2 + 1 4 N (N -1) log(ρ b πΓ/2) + 1 Γ N + N (N -1) Γ 4 + f S (N )   
where i µi µj and j(µ i , µ j ) are functions of the partitions elements defined by Eqs. ( 36) and ( 27) respectively. The other contribution of Eq. ( 8) is the partition average of

S U µ = Q 2 ν∈Dµ R (N ) µ,ν (Γ/2)(-1) p+q+m+n 1 2 f p, q m, n
where D µ := {ν|Dim(ν ∩ µ) = N -2} corresponds to the set of all partitions ν which share N -2 elements with µ, the term R

(N ) µ,ν (Γ/2) = C (N ) ν (Γ/2)/C (N ) µ (Γ/2) if C (N )
µ (Γ/2) = 0 else 0 is a ratio between coefficients and f p,q m,n is a function of the unshared elements between µ and ν noted as (µ p , µ q ) / ∈ ν and (ν m , ν n ) / ∈ µ (see Eq. ( 42)). For Γ = 2 there is only one partition µ = λ called the root partition whose elements are λ i = Ni and S U µ N = 0 since D µ = 0. Hence the excess energy is

U S exc = Γ=2 S E λ = Q 2    f S (N ) + N (N -1) 4 [log(ρ b π) + 1] + N 2 - 1≤i<j≤N i(λ i , λ j ) |λ i -λ j | + j(λ i , λ j ) 2    .
This result coincides with the one found by Shakirov [8] plus f S (N ) and the quadratic energy contribution ρ b π i=1 r 2 i by using the replica method. In particular, the excess energy per particle at Γ = 2 is lim

N →∞ S E λ N = -0.14430392... with ρ b = 1 π which is in agreement with the result Uexc N = -Q 2 4 log(ρ b πL 2 ) -Q 2 4
γ found by Jancovici [7] in the thermodynamic limit. Similarly, the excess energy of the 2dOCP on the hard disk at Γ = 2 is

U H exc = Γ=2 H E λ = Q 2   f H (N ) + 1 2 N j=1 Φ H λj +1 Φ H λj + 1≤i<j≤N 4 Φ H λi Φ H λj J λi,λj H + J λj ,λi H - I λj ,λi H |λ i -λ j |   5 
for any number of particles. Where Φ H λj is related with the incomplete gamma function Eq. ( 13). The functions J λi,λj H and I λj ,λi H are given by Eqs. ( 25) and ( 33) respectively. The excess energy per particle for the hard disk H E λ /N is also in agreement with the result found in [7] as N → ∞. In this limit the 2dOCP in the hard or soft disk describes practically the same system because the hard boundary goes to the infinity if the background density ρ b = N/(πR 2 ) is hold as a constant as N grows. In this document it is also studied the 2-body density function

ρ (2) N,Γ ( r, r ) = N i=1 N j=1,j =i δ( r -r i )δ( r -r j )
where it was found the following result for the hard disk case

H ρ (2) N,Γ (r 1 , r2 , φ 12 ) = (ρ b π) 2 Det H k (N ) µ (z i , z j ) i,j=1,2 + H S µ N valid for odd values of Γ/2. The term Det H k (N ) µ (z i , z j ) i,j=1,2 N
corresponds to the partition average of the following functions

H k (N ) µ (z i , z j ) = N l=1 H ψ µ l (z i ) H ψ * µ l (z j )
depending on the complex particle's positions z = √ N R r exp(iφ) and partitions. It is built with the following orthogonal functions

H ψ µ l (z) = z µ l πΦ H µ l exp -|z| 2 Γ/4 . When the coupling parameter is Γ = 2 the function H k (N ) µ (z i , z j ) = H k (N )
λ (z i , z j ) coincides with the kernel of the Ginibre Ensemble [30,31]. It is remarkable to see that both excess energy and the 2-body density function for Γ > 2 partially evoke their previous expressions for Γ = 2 but in terms of partition averages of them. The second contribution H S µ of Eq. ( 2) is given by

H S µ = e -Γ 2 2 i=1 r2 i π 2 ν∈Dµ (-1) τµν R (N ) µ,ν Φ H µp Φ H µq h µp+νm µq+νn (r 1 , r2 ) cos[(ν m -µ p )φ 12 ] -h µq+νm µp+νn (r 1 , r2 ) cos[(ν m -µ q )φ 12 ]
with h b a (x, y) := x a y b + y a x b . A similar result for the 2-density function of the soft disk in terms of the rescaled complex positions u = ρ b πΓ 2 r exp(iφ) was also found S ρ

(2)

N,Γ (r 1 , r 2 , φ 12 ) = ρ b πΓ 2 2 Det S k (N ) µ (u i , u j ) i,j=1,2 + S S µ N where S k (N )
µ (u i , u j ) and S µ are given by Eqs. ( 58) and [START_REF] Deutsch | Debye thermodynamics for the two-dimensional onecomponent plasma[END_REF]. In general, the 2-body density function ρ

N,Γ ( r, r ) depends on four parameters since ( r, r ) ∈ 2 . For an homogeneous system the 2-body density function is a function of the relative distance between particles ρ (2) N,Γ (| rr |). This is not case of the 2dOCP for a finite 6 73 number of particles where the soft or hard boundary does not allow a translational symmetry. However, in this document it is shown explicitly that ρ

N,Γ depends on the radial positions of particles r 1 , r 2 and the angle difference φ 12 = φ 1φ 2 between them as it is expected because the finite system has azimuthal symmetry. A mathematical consequence of this dependency with φ 12 is the mixture of partitions contributions in S S µ , S U µ and the hard disk version of these contributions 3 . Even though the translational should be recovered in the thermodynamic limit, in the next sections it is shown that S S µ plays an important role in generation of small crystals as the coupling parameter is increased and the 2-body density function reveals Gaussian-like functions on the expected lattice positions at vanishing temperature. Finally, it was numerically tested that Wigner crystals on the soft disk are bound by a surface defined by

S := (x, y) : x 2 + y 2 = (R S N,Γ→∞ ) 2 ∀ N ∈ Z + with R S N,Γ = 2 1 Γρ b π (N -1) Γ 4 + 1 .

Partition function

Our first objective is to evaluate the configurational partition function. For the hard disk it takes the form

Z H N,Γ = 1 N ! N j=1 Disk dS j exp -βU H inter with Disk dS i = R 0 2π 0 r i dr i dφ i .
It is convenient to use the following change of variables ri =

√ N R r i keeping ρ b = N/(πR 2 ) as a constant Z H N,Γ = e -Γf H (N ) N !(ρ b π) N ZH N,Γ with ZH N,Γ = N j=1 √ N 0 2π 0 ri dr i dφ i e -Γr 2 i /2 1≤i<j≤N |z i -z j | Γ ( 9 
)
where z i = ri exp(iφ i ) are related with the particles' positions in the complex xy plane. It is possible to evaluate the partition function for even values of Γ [15,16] by using the following expansion

1≤i<j≤N (z j -z i ) Γ/2 = µ C (N ) µ (Γ/2)m µ (z 1 , . . . , z N ). ( 10 
)
The indices set

µ := (µ 1 , . . . , µ N ) is a partition of ΓN (N -1)/4 with the condition (N -1)Γ/2 ≥ µ 1 ≥ µ 2 • • • ≥ µ N ≥ 0 for even values of Γ/2 and a partition of ΓN (N -1)/4 with the condition (N -1)Γ/2 ≥ µ 1 > µ 2 • • • > µ N ≥ 0 for odd values of Γ/2.
The terms m µ (z 1 , . . . , z N ) are the monomial symmetric or antisymmetric functions, depending on the parity of Γ/2,

m µ (z 1 , . . . , z N ) = 1 i m i ! σ∈S N sign(σ) b(Γ) N i=1 z µ σ(i) i
3 Such mixture of partitions in the energy as well as the 2-body density function for the 2dOCP on the sphere never appeared since in the sphere we are always free to put one particle in the north pole because the symmetry of the system. As a result the 2-body density function depends only one parameter ρ where σ∈S N denotes the sum over all label permutations of a given partition µ 1 , . . . , µ N , the variable m i is the frequency of the index i in such partition (one for the odd values of Γ/2) and b(Γ) is defined as

b(Γ) = 1 if Γ/2 is odd 0 if Γ/2 is even .
Hence, the product 1≤i<j≤N |z iz j | Γ takes the form

1≤i<j≤N |z i -z j | Γ = µν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω) N j=1 rµ σ(j) +ν ω(j) j exp [i(µ σ(j) -ν ω(j) )φ j ]
(11) where we have defined sgn Γ (σ, ω) := [sgn(σ)sgn(ω)] b(Γ) . Replacing Eq. ( 11) into Eq. ( 9) and simplifying

Z H N,Γ = e -Γf H (N ) ρ N b µ [C (N ) µ (Γ/2)] 2 i m i ! N i=1 Φ H µi ( 12 
)
where

Φ H µi = 2 √ N 0 exp -r 2 Γ/2 rµi+1 dr = 2 Γ 2µi+1 [µ i ! -Γ(1 + µ i , N Γ/2)] (13) 
with Γ(a, x) the lower incomplete gamma function. Similarly, the partition function of the Dyson gas

Z S N,Γ = e -Γf S (N ) N ! ZS N,Γ with ZS N,Γ = N j=1 ∞ 0 2π 0 r i dr i dφ i e -ρ b πΓr 2 i /2 1≤i<j≤N |u i -u j | Γ ( 14 
)
where

u i = r i exp(iφ i ) is Z S N,Γ = e -Γf S (N ) µ [C (N ) µ (Γ/2)] 2 i m i ! N i=1 Φ S µi (15) 
where

Φ S µi = 2 ∞ 0 exp -ρ b πr 2 Γ/2 r µi+1 dr = 2 ρ b πΓ µi+1 µ i ! (16)
Finally, the statistical average of any function g = g( r 1 . . . r N ) with explicit dependence on the particles' positions will be computed in the standard form

g( r 1 . . . r N ) = 1 Z H N,Γ 1 N ! 1 (ρ b π) N N i=1 √ N 0 2π 0 ri dr i dφ i e -βU H inter (z1,...,z N ) g( r 1 . . . r N ) on the hard disk and g( r 1 . . . r N ) = 1 Z S N,Γ 1 N ! N i=1 ∞ 0 2π 0 r i dr i dφ i e -βU S
inter (u1,...,u N ) g( r 1 . . . r N ) for the Dyson gas.

4 The quadratic potential contribution

The quadratic contribution to the excess energy of the hard disk is

U H quad = Q 2 2 N i=1 √ N R r i 2 = N Q 2 2 √ N R r N 2 (17) 
or more explicitly

U H quad = N Q 2 2 1 Z H N,Γ 1 N ! e -Γf H (N ) (ρ b π) N √ N 0 2π 0 ri dr i dφ i e -Γr 2 i /2 1≤i<j≤N |z i -z j | Γ r2 N .
The integrals included in U H quad may be evaluated by using the expansion of Eq. ( 11)

U H quad = N Q 2 2Z H N,Γ e -Γf H (N ) N !(ρ b π) N µν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω)π N N -1 j=1 Φ H µ σ(j) Φ H µ σ(N )+1 N l=1 δ µ σ(l) ,ν ω(l)
where Φ H µi is given by Eq. ( 13). For odd values of Γ/2 each partition µ will not have repeated elements and the delta product N l=1 δ µ σ(l) ,ν ω(l) may be replaced by δ µ,ν N l=1 δ σ(l),ω(l) . This implies that the double sum over partitions and their permutations is zero if µ = ν or µ = ν but their permuted elements are not organized in the same way. Therefore, for non-zero contributions on the sum of permutations the sign function is sgn Γ (σ, ω) = 1 independently of the parity of Γ/2. In consequence, the sums will collect non-zero terms if µ = ν but generating (N -1)! i m i ! times the same result because partitions may repeat elements for even values of Γ/2 and the delta product. Hence

U H quad = Q 2 2 1 Z H N,Γ e -Γf H (N ) ρ N b µ 1 ( i m i !) C (N ) µ (Γ/2) 2   N j=1 Φ H µj   N j=1 Φ H µj +1 Φ H µj
If the previous result for the partition function Eq. ( 12) of the hard disk is used, then it is possible to simplify U H quad as follows

U H quad = Q 2 2 N i=1 √ N R r i 2 = Q 2 2 N j=1 Φ H µj +1 Φ H µj N (18) 
where • • • N is the average over partitions defined in Eq. ( 7). We shall adopt the notation g for statistical averages in the phase space and G N (with the sub index N ) for averages over partitions. Hereafter, our intention will be to change the average on the phase space of the excess energy U exc for its equivalent version in terms of average over partitions as we have done with U H quad in Eq. (18). The quadratic potential contribution for the Dyson Gas U S quad may be obtained by using an analogous procedure and the result is the following

U S quad = Q 2 2 ρ b π N i=1 r 2 i = Q 2 2 ρ b π N j=1 Φ S µj +1 Φ S µj N 9 76
where Φ S µ is given by Eq. ( 16). It is possible to evaluate the average on partitions for the soft case because Φ µ is proportional to the complete gamma function. Therefore Φ S µj +1 /Φ S µj is simply 2(µ j + 1)/(ρ b πΓ) and

N j=1 Φ S µj +1 /Φ S µj N = 2 N + N j=1 µ j N /(ρ b πΓ).
Since the partitions elements are built holding the sum N j=1 µ j = N j=1 λ j = N (N -1)Γ/4 as a constant with λ j = (Nj)Γ/2 the root partition, then An alternative but most standard way to compute this contribution for the Dyson gas obtaining an identical result is by using [32] 

U S quad = Q 2 2 ρ b π N i=1 r 2 i = Q 2 Γ N + N (N -1) Γ 4 (19) 
U S quad = -Q 2 ρ b Γ ∂ ∂ρ b log ZS N,Γ 10 77 
with

ZS N,Γ = (ρ b π) N (N -1)Γ/4-N N j=1 ∞ 0 2π 0 r i dr i dφ i e -Γr 2 i /2 1≤i<j≤N u i -u j Γ .
This is the Eq. ( 14) with r = √ ρ b πr and u = √ ρ b πu. Unfortunately, it is not easy to use the same trick for the quadratic contribution of the hard disk. However, it is still possible to evaluate U H quad from Eq. (18). A comparison between the quadratic energy contribution of Eq. ( 19) and numerical simulations with the Metropolis method [33] is shown in Fig. 2. given by Eq. (20). Each crystal was obtained after 10 6 MC-cycles starting at a random initial configuration.

By definition, the 2dOCP on the hard disk is completely confined in R H N = (x, y)|x 2 + y 2 ≤ R 2 . In contrast, the Dyson gas is partially bounded by the quadratic potential. In fact, U S quad is more confining as the coupling parameter is increased but U S quad cannot compress indefinitely the gas because of the repulsion among charges. It is expected that the 2dOCP on the soft disk in its crystal phase occupies in average a finite circular region R S N which depends on the number particles. Numerically, the region occupied by the crystal will have small variations due to the initial conditions used in the Metropolis simulation as well as chain of random numbers generated. We remark that the mean square radius

r S N,Γ = 2 Γρ b π (N -1) Γ 4 + 1
extracted from Eq. ( 19) in the strong coupling regime r S N,Γ→∞ = (N -1)/(2ρ b π) defines a region of area π(r S N,Γ→∞ ) 2 which tends to grow proportional to the expected area R S N at least for large number of particles. In order to find the radius R S N = R S N,Γ→∞ of the circular region R S N = (x, y)|x 2 + y 2 ≤ R 2 we may begin with an extremely crude approximation of the crystal considering it as a flat disk of charge 11 78 uniformly distributed. In this scenario the mass density would be a constant σ = dm dA = M π(R S N ) 2 with M the total mass, then

r S N,Γ ≈ 1 M Disk dmr 2 = 2πσ M R S N,Γ 0 r 3 dr as a result R S N,Γ = 2 1 Γρ b π (N -1) Γ 4 + 1 ( 20 
)
and R S N,Γ→∞ = (N -1)/(ρ b π). A plot of R S N,Γ for Γ = 1000 is shown in Fig. 3. Numerical simulations for ρ b = 1/π and Γ = 1000 show that the corresponding Wigner crystal of the Dyson gas tends to occupy a well defined portion of the plane depending only on the number of particles for a fixed value of the background density (see Fig. 4). If the background density is set as ρ b = N/(πR 2 ) then the radius of the 2dOCP on the hard disk would be R H N = N/(ρ b π). Therefore, in the strong coupling regime we have R S N,Γ→∞ < R H N thus the Wigner crystal in the hard case will never touch the hard boundary because it is completely bounded by the quadratic potential. In contrast, particles are effectively bounded by the hard frontier in the fluid phase

Γ = 2 because R S N,Γ=2 = (N + 1)/(ρ b π) > R H N .
In this situation, even the Dyson gas in the fluid phase is not necessary into the region R S N because of the thermal fluctuations.

The U pp energy contribution

We have written the excess energy contribution as

U exc = Q 2 f (N ) + U quad + U pp .
For the hard disk U pp contribution is given by

U H pp = -Q 2 1≤i<j≤N log √ N R r ij . ( 21 
) Since 1≤i<j≤N log (r ij ) = log (r 12 ) N (N -1)/2 then U H pp = - N (N -1) 2 Q 2 e -Γf H (N ) Z H N,Γ N ! 1 (ρ b π) N N i=1 √ N 0 2π 0 ri dr i dφ i e -Γr 2 i /2 log |z 1 -z 2 | 1≤i<j≤N |z i -z j | Γ .
If the Vandermonde term is expanded according to Eq. ( 11), then U H pp takes the form

U H pp = N (N -1)Q 2 e -Γf H (N ) 2Z H N,Γ N !ρ N b µν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω)2Ξ µ σ(1) ,µ σ(2) ν ω(1) ,ν ω(2) N j=3 δ µ σ(j) ,ν ω(j) Φ H µ σ(j)
where we have defined

Ξ µ1,µ2H ν1,ν2 := 1 2π 2 2 j=1 2π 0 dφ j e i(νj -µj )φj √ N 0 rµj+νj+1 j dr j e -Γr 2 j /2 (-log |z 1 -z 2 |) .
In principle, if N (N, Γ) is the number of partitions for a given value of the coupling parameter then the double sum over partitions and their corresponding permutations would have a large number of terms

µν σ,ω∈S N 1 = N (N, Γ) 2 [N (N, Γ)]! 2 .
Fortunately, a lot of these terms are zero because of the incomplete delta product N j=3 δ µ σ(j) ,ν ω(j) . In the previous computation of U H quad the complete delta product N j=1 δ µ σ(j) ,ν ω(j) selected only one partition ν for a given µ and it was ν = µ. A similar situation appears in the computation of the excess energy of the 2dOCP on the sphere [17] because the symmetry of the system enables to write the correlation function in terms of a single parameter instead of two as happens in the hard and soft disk cases. The computation of U H pp may be particularly difficult in comparison with the one done for U H quad because in the current procedure the delta product is not complete and the term Ξ µ1,µ2 ν1,ν2 for a given µ tends to select non-zero contributions of partitions ν not necessary equal to µ. In order to deal with this potential task it is possible to split in two parts the logarithmic term of Ξ µ1,µ2 ν1,ν2 as follows

-log |z 1 -z 2 | = ∞ n=1 1 n r< r> n cos [n(φ 2 -φ 1 )] -log r>
where r< = min(r 1 , r2 ) and r> = max(r 1 , r2 ). This also enable us to split the whole computation in two parts

U H pp = U H ppL + U H ppR ( 22 
)
where the sub-indices L, R denote left and right respectively evoking each contributions oflog |z 1z 2 | and we have defined The angular integrals of Ξ µ1,µ2H ν1,ν2R are proportional to Kronecker deltas which complete the product

U H ppL,R = N (N -1)Q 2 e -Γf H (N ) 2Z H N,Γ N !ρ N b µν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω)2Ξ µ σ(1) ,µ σ(2) H ν ω(1) ,ν ω(2) L,R N j=3 δ µ σ(j) ν ω(j) Φ H µ σ(j) , (23) 
N j=3 δ µ σ(j) ν ω(j)
in Eq. (23). It enables to simplify U H ppR as follows [29]

U H ppR = Q 2 1≤i<j≤N 4 J µi,µj H + J µj ,µi H Φ H µi Φ H µj N (24) 
where J µj ,µi H is given by 

J µ1,µ2 H = 2 Γ µ1 µ 1 ! Γ G(µ 2 , Γ/2, √ N ) - µ1 k=0 1 k! Γ 2 k G(µ 2 + k, Γ, √ N ) (25 
U S ppR = - Q 2 2 1≤i<j≤N j(µ i , µ j ) N + Q 2 4 N (N -1) log(ρ b πΓ/2) (26) 
with j(µ i , µ j ) given by

j(k 1 , k 2 ) = log 2 -γ + H k1 + H k2 - 1 2 k1+1 k2 l=0 (k 1 + 1) l l! 1 2 l H k1+l - 1 2 k2+1 k1 l=0 (k 2 + 1) l l! 1 2 l H k2+l ( 27 
)
where

H n = n i=1 1 
i are the Harmonic numbers and (n) l = l i=1 (n + i -1) is the Pochhammer symbol. Although, the reduction of U S ppR in terms of partition average is possible, the procedure for U S ppL is less evident because for a given partition µ it is possible to find other partition ν which may contribute in the expansion as will be pointed in the next section.

Comments about U ppL

If the angular part of the integral Ξ µ1,µ2H ν1,ν2L is evaluated, then

Ξ µ1,µ2H ν1,ν2L = δ µ1+µ2,ν1+ν2 |µ 1 -ν 1 | µ1 =ν1 Ξµ1,µ2H ν1,ν2L
where

Ξµ1,µ2H ν1,ν2L = 2 j=1 √ N 0 dr j rµj+νj+1 j exp -Γr 2 j /2 r < r > |µ1-ν1|
and the U ppL contribution for the hard disk may be written as follows

U H ppL = N (N -1)Q 2 e -Γf H (N ) Z H N,Γ N !ρ N b µν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 B H µν ( 28 
)
with

B H µν = σ,ω∈S N sgn Γ (σ, ω) δ µ σ(1) +µ σ(2) ,ν ω(1) +ν ω(2) |µ σ(1) -ν ω(1) | µ σ(1) =ν ω(1) Ξµ σ(1) ,µ σ(2) H ν ω(1) ,ν ω(2) L N j=3 δ µ σ(j) ν ω(j) Φ H µ σ(j) . (29) 
Our first task is to identify which elements of B H µν are not zero. It is expected that a lot of the matrix elements in B H µν should be zero because of the product

δ µ σ(1) +µ σ(2) ,ν σ(1) +ν σ(2) N j=3 δ µ σ(j)
ν ω(j) . For simplicity, we study the case Γ/2 = odd value where each partition µ does not have repeated elements. Defining n µ,ν := Dim ((µ 1 , . . . , µ N ) ∩ (ν 1 , . . . , ν N )) 14 81

as the number of common elements between µ and ν, then for a given partition µ only a partition ν with n µ,ν ≥ N -2 or n µ,ν = N will generate a non zero value of B H µν . Note that

N j=3 δ µ σ(j)
ν ω(j) may be replaced by 

µ i = µ j if i = j. As a result, N j=3 δ µ σ(j)
ν ω(j) is not zero only if µ and ν share N -2 or more elements placed in correct order after permutations. The possibilities for B H µν = 0 are reduced by noting that the case n µ,ν = N -1 is forbidden because partitions are obtained applying squeezing operations on the root partition and these type of operations do not allow n µ,ν = N -1. Finally, the case n µ,ν = N must be taking into account because it is possible to permute labels to give a non zero value of B H µµ . Summarizing we know that

B H µν = non zero value if n µν = N -2 or n µν = N otherwise 0 ( 30 
)
for odd values of Γ/2. The analysis is far to be trivial when the term Γ/2 adopts even values because partitions may repeat elements and a simple condition on n µν is not enough to identify the non zero contributions because the multiplicity of each partition plays and important role.

It is instructive to obtain explicitly U ppL for the simplest case Γ = 2 before to continue with arbitrary even values of Γ. In the next section, we compute U ppL and excess energy for Γ = 2 on the hard disk and the Dyson gas comparing with previous results of other authors to posteriorly work out the most general case.

Excess energy for Γ = 2

The easiest case is Γ = 2 because there is only one partition µ = ν = λ therefore we only have to find B λλ with λ the root partition. In this section B µµ (where µ is any partition) for the case Γ/2 = odd value will be computed because it contains the B λλ . Since the sign term is sgn Γ (σ, ω) = σ(1)σ(2)...σ(N ) ω( 1 with ω(1)ω(2)...ω(N ) the Levi-Civita symbol, then

B H µµ = σ,ω∈S N σ(1)σ(2)...σ(N ) ω(1)ω(2)...ω(N ) b(Γ) δ µ σ(1) +µ σ(2) ,µ ω(1) +µ ω(2) |µ σ(1) -µ ω(1) | µ σ(1) =µ ω(1) Ξµ σ(1) ,µ σ(2) H µ ω(1) ,µ ω(2) L N j=3 δ µ σ(j) µ ω(j) Φ H µ σ(j) . Now, µ i = µ j if i = j for odd values of Γ/2 then N j=3 δ µ σ(j) µ ω(j) → N j=3 δ σ(j) ω(j)
and

B H µµ = σ,ω∈S N σ(1)σ(2)σ(3)...σ(N ) ω(1)ω(2)σ(3)...σ(N ) b(Γ) L σ(1)σ(2) ω(1)ω(2) (µ) N j=3 δ σ(j) ω(j) Φ H µ σ(j) with L σ(1)σ(2) ω(1)ω(2) (µ) = δ µ σ(1) +µ σ(2) ,µ ω(1) +µ ω(2) |µ σ(1) -µ ω(1) | σ(1) =ω(1) Ξµ σ(1) ,µ σ(2) H µ ω(1) ,µ ω(2) L
The delta product gives only freedom to permute the first two indices σ(1), σ(2) or ω(1), ω(2) otherwise the result is zero, hence

B H µµ = σ∈S N σ(1)σ(2)σ(3)...σ(N ) σ(1)σ(2)σ(3)...σ(N ) b(Γ) L σ(1)σ(2) σ(1)σ(2) (µ) + σ(1)σ(2)σ(3)...σ(N ) σ(2)σ(1)σ(3)...σ(N ) b(Γ) L σ(1)σ(2) σ(2)σ(1) (µ) N j=3 Φ H µ σ(j) . (31) 15 82 
The second term of Eq. ( 31) is σ(1)σ( 2 2) ω( 1)ω (2) . Therefore

B H µµ = - σ∈S N L σ(1)σ(2) σ(2)σ(1) (µ) 1 Φ H µ σ(1) Φ H µ σ(2) N j=1 Φ H µj .
Here the sum over permutations will generate (N -2)! times the same result for a given value of (σ(1), σ(2)).

At the same time σ(1) and σ(2) will take integer values from 1 to N , therefore

B H µµ = -(N -2)!   N j=1 Φ H µj   1≤i<j≤N 1 |µ i -µ j | Ξµi,µjH µj ,µiL Φ H µi Φ H µj µi =µj for odd values of Γ/2. ( 32 
)
Where Ξµi,µjH µj ,µiL = 2 H I

(µi+µj +|µi-µj |)/2 (µi+µj -|µi-µj |)/2 with H I m n = I m,n H = 2 m Γ m+1 m! F(m, Γ/2, √ N ) - m k=0 1 k! (Γ/2) k F(n + k, Γ/2, √ N ) ( 33 
)
and F is defined by

F(a, b, c) = 2 a (2b) a+1 a! 1 -exp(-c 2 b) a k=0 1 k! c 2 b k ( 34 
)
where a is a positive integer [29]. The version of B µµ for the Dyson gas is obtained by changing Φ H µi and Ξµi,µjH µj ,µiL with Φ S µi and Ξµi,µjS µj ,µiL Hence, the B S µµ term takes the form

B S µµ = -(N -2)!   N j=1 Φ S µj   1≤i<j≤N 1 |µ i -µ j | µi =µj
B S µµ = -(N -2)!   N j=1 Φ S µj   1≤i<j≤N i(µ i , µ j ) |µ i -µ j | µi =µj for odd values of Γ/2 (35) 
where

i(k 1 , k 2 ) = i k1 k2 = I k1,k2 k 1 !k 2 ! = 1 2 k1+1 k2 l=0 (k 1 + 1) l l! 1 2 l . ( 36 
)
16 [START_REF] Muto | Crystallization of a classical two-dimensional electron system: Positional and orientational orders[END_REF] For Γ = 2 the sum of Eq. ( 28) has only one term with coefficient C

(N ) λ (Γ/2) = 1 and multiplicity i m i ! = 1 corresponding to the root partition λ, then

U H ppL = Γ=2 N (N -1)Q 2 e -Γf H (N ) Z H N,Γ=2 N !ρ N b B H λλ = -Q 2 1≤i<j≤N 1 |λ i -λ j | Ξλi,λjH λj ,λiL Φ H λi Φ H λj
where it was replaced the partition function of the hard disk and the result of Eq. (32). The U H ppR contribution and the quadratic energy contribution U H quad for Γ = 2 are obtained from Eqs. ( 18) and (24). Therefore

U H ppR = Γ=2 Q 2 1≤i<j≤N 4 J λi,λj H + J λj ,λi H Φ H λi Φ H λj and U H quad = Γ=2 Q 2 2 N j=1 Φ H λj +1 Φ H λj .
As a result, the excess energy 37). The red line is the value of U H exc /(N Q 2 ) in the thermodynamic limit obtained by Jancovici [7] and the blue solid line is the interpolation according to the ansatz of Eq. (38).

U H exc = Q 2 f S (N ) + U H quad + U H ppL + U H ppR of the hard disk for Γ = 2 is U H exc = Γ=2 Q 2   f H (N ) + 1 2 N j=1 Φ H λj +1 Φ H λj + 1≤i<j≤N 4 Φ H λi Φ H λj J λi,λj H + J λj ,λi H - I λj ,λi H |λ i -λ j |   (37) 
A plot of the excess energy for the disk at Γ = 2 is shown in Fig. 5. It is possible to propose the following expansion

U H exc = H K 1 Γ N + H K 2 Γ √ N + H K 3 Γ + H K 4 Γ /N + O(1/N 2 ) ( 38 
)
for large values of N . A fitting of Eq. ( 37) with the ansatz of Eq. (38) give us the following result

U H exc /Q 2 = Γ=2 -0.144103N +0.137482 √ N -0.178439+0.0195288/N where H K 1 Γ=2 /Q 2 = -0.
144103 is in agreement with the expected value in the thermodynamic limit lim N →∞ U H exc /(N Q 2 ) = -0.144304 . . . with ρ b = 1/π computed in [7]. Similarly, for the Dyson gas at Γ = 2 we have from Eqs. (19) and (26) the following results

U S ppR = - Q 2 2 1≤i<j≤N j(µ i , µ j ) + Q 2 4 N (N -1) log(ρ b π) and U S quad = Q 2 2 N + N (N -1) 1 2 . 17 84 
Hence, the excess energy of the Dyson Gas is

U S exc = Γ=2 Q 2    f S (N ) + N (N -1) 4 [log(ρ b π) + 1] + N 2 - 1≤i<j≤N i(λ i , λ j ) |λ i -λ j | + j(λ i , λ j ) 2    ( 39 
)
where j(λ i , λ j ) and i(λ i , λ j ) are given by Eqs. ( 27) and ( 36) respectively. A plot of the excess energy according to Eq. ( 39) is shown in Fig. 6. This result is consistent with the one found in [8] by using the replica method. In fact, the Eq. ( 39) provides the same result of the sum of the energy contributions of Q 2 f S (N ), Eq. ( 19) and Eq. ( 5) by setting the background density as ρ = 1/π. The following expansion

U S exc = S K 1 Γ N + S K 2 Γ √ N + S K 3 Γ + S K 4 Γ /N + O(1/N 2 ) ( 40 
)
has been also proposed for the soft disk obtaining

U S exc /(Q 2 ) = Γ=2 -0.144358N + 0.377118 √ N -0.109725 + 0.00157109/N + O(1/N 2 ).
Here the bulk coefficient S K 1 Γ=2 /Q 2 = -0.144358 is in agreement with the expected value in the thermodynamic limit [7]. 39), the green diamond symbols are the quadratic potential contribution given by the Eq. ( 19) plus the Shakirov's result Eq. ( 5) and the term Q 2 f S (N ). The red line is the result obtained by Jancovici for the 2dOCP on the disk in the thermodynamic limit and the blue solid line is the interpolation with the ansatz of Eq. (40). Previously, Tellez and Forrester [15] studied the N -finite expansion of the form

Coefficient βf Γ=2 B Γ=2 k Γ=2 C Γ=2 Hard disk log[ρ b /(2π 2 )]/2 √ 2 ∞ 0 log[(1 + erfy)/2]dy 1/12 0 Soft disk βf 2 0 1/12 -ζ (-1)
βF exc N,Γ = βf Γ N + B Γ √ N + k Γ log N + C Γ + D Γ /N 18 85
for the excess free energy F exc N,Γ where f Γ N , B Γ , k Γ , C Γ and D Γ are coefficients depending on Γ. These coefficients were computed exactly by Jancovici et al [34] at Γ = 2 (see Table . 1). Note that in the ansatz of Eqs. (38) and (40) for the internal energy there is not a log N term as in the free energy, because the study of [15] suggests that this term is a universal finite size correction for the free energy, independent of the temperature. Since U exc N,Γ = Q 2 ∂ Γ (βF exc N,Γ ), this log N correction is not present in U exc N,Γ . We must also remark that the coefficient associated with the √ N dependency of βF exc N,Γ=2 is zero at Γ = 2 only for the soft disk, this is S B Γ=2 = 0. However, the coefficient is activated

S B Γ > 0 at Γ > 2 since S K 2 Γ = ∂ Γ B Γ = 0.377118 . . . at Γ = 2. Similarly, H K 2
Γ > 0 ensures that H B Γ will tend to grow around Γ = 2 as the coupling parameter is increased which is consistent with the results of [15].

Excess energy of the soft disk for odd values of Γ/2

The U S ppL energy contribution for the soft disk may be found may be found by following an analogous procedure to get Eq. (28). Posteriorly, the expansion may be split in two sums

U S ppL = N (N -1)Q 2 e -Γf H (N ) Z S N,Γ N !ρ N b    µ C (N ) µ (Γ/2) 2 B S µµ + µ ν∈Dµ C (N ) µ (Γ/2)C (N ) ν (Γ/2)B S µν   
one for µ = ν where diagonal terms of the B S µν matrix are given by Eq. ( 35) and other sum for the non-zero diagonal terms of B S µν where

D µ := {ν|dim(µ ∩ ν) = N -2}
implies that µ and ν necessary differ in two elements say: (µ p , µ q ) / ∈ ν and (ν m , ν n ) / ∈ µ with (p, q, m, n) the index positions of the unshared elements. The non-zero diagonal terms of B S µν are given by [29]

B S µν p, q m, n = (-1) τµν (N -2)!   N j=1 Φ S µj   1 2 f p, q m, n for odd values of Γ 2 and dim(µ ∩ ν) = N -2 (41 
) where f p,q m,n is a function depending on the indices position of the unshared elements between partitions µ and ν f p, q m, n := The sign (-1) τµν is related with the number of transpositions required to accommodate the unshared elements of ν in the same indices positions of the unshared elements of µ or vice-versa. This sign may be computed 19 86 by using the property that any ν may be obtained by applying a minimum number of transpositions on ν.

  i µp µq + π(µq,νn) π(νm,µp) i νn νm µ p -ν m if µ p > ν m else i µq µp + π(µp,νm) π(νn,µq) i νm νn ν m -µ p   -   i µp µq + π(µq,νm) π(νn,µp) i νn νm µ p -ν n if µ p > ν n else i µq µp + π(µp,νn) π(νm,µq) i νn νm ν n -µ p   (42) 
The result is (-1) τµν ( p,q m,n ) = (-1) p+q+m+n [29]. Therefore the U S ppL energy takes the form

U S ppL = Q 2 µ C (N ) µ (Γ/2) 2 µ C (N ) µ (Γ/2) 2    - 1≤i<j≤N i µi µj µ i -µ j + ν∈Dµ C (N ) ν (Γ/2) C (N ) µ (Γ/2) (-1) τµν 1 2 f p, q m, n    .
If the notation defined in Eq. ( 7) and the result for the sign are used then

U S ppL = Q 2 - 1≤i<j≤N i µi µj µ i -µ j + ν∈Dµ R (N ) µ,ν (Γ/2)(-1) p(µ)+q(µ)+m(ν)+n(ν) 1 2 f p, q m, n N (43) 
where

R (N ) µ,ν (Γ/2) = C (N ) ν (Γ/2) C (N ) µ (Γ/2) if C (N ) µ (Γ/2) = 0 else 0.
The result of Eq. ( 43) is identical to the one obtained from

U S ppL = Q 2 1≤i<j≤N ∞ n=1 1 n min(r i , r j ) max(r i , r j ) n cos [n(φ j -φ i )] (44) 
but using an average on partitions instead of to computing it on the phase space. In theory, it is possible to use the Monte Carlo Method to evaluate the term into the brackets of Eq. ( 44) to find its thermodynamic average. However, it is more practical to evaluate the excess energy and subtract from it the contribution U S ppL . A comparison between analytical and numerical results for the U S ppL energy is shown in Fig. 7. Fig. 7: Three different energy contributions for the 2dOCP on a soft disk. Left to right: Comparison between numerical and analytical results for the U S ppL , U S pp and U S exc energy contributions on the soft disk given by Eqs. [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF], [START_REF] Sari | On the ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited[END_REF] and [START_REF] Jancovici | Exact results for the two-dimensional one-component plasma[END_REF]. Yellow symbols corresponds to analytical results and black points to the Metropolis method. The solid lines are drawn to guide the eye. Now, the particle-particle energy is U S pp = U S ppL + U S ppR with U S ppR given by Eq. ( 26). Hence, the U S ppR 20 87 contribution takes the form

U S pp =Q 2 - 1≤i<j≤N i µi µj µ i -µ j + j(µ i , µ j ) 2 + ν∈Dµ R (N ) µ,ν (Γ/2)(-1) p+q+m+n 1 2 f p, q m, n N + Q 2 4 N (N -1) log(ρ b πΓ/2) (45) 
Finally, the excess energy

U S exc = Q 2 f S (N ) + U S quad + U S pp is U S exc =Q 2 - 1≤i<j≤N i µi µj µ i -µ j + j(µ i , µ j ) 2 + ν∈Dµ R (N ) µ,ν (Γ/2)(-1) p+q+m+n 1 2 f p, q m, n N + Q 2 4 N (N -1) log(ρ b πΓ/2) + Q 2 Γ N + N (N -1) Γ 4 + Q 2 f S (N ) (46) 
with U S quad given by Eq. ( 19).

9 Pair correlation function for odd values of Γ/2

The hard disk

The probability density function of finding n particles in the differential area n j=1 dS j is given as

ρ (n) N,Γ ( r 1 , . . . , r n ) = 1 (N -n)! 1 Z N,Γ N j=n+1 R exp (-βU exc ) dS j
where R = (x, y)|x 2 + y 2 ≤ R 2 for the hard disk or the real plane R = 2 for the soft disk. This function is also known as the n-body density function and it takes the form

H ρ (n) N,Γ ( z 1 , . . . , z n ) = N ! (N -n)! (ρ b π) n Z H N,Γ e -Γ 2 2 i=1 r2 i N j=n+1 2π 0 dφ j √ N 0 rj dr j exp(-Γr 2 j /2) 1≤i<j≤N |z i -z j | Γ
for the hard disk case where

ZH N,Γ = N j=1 ∞ 0 2π 0 ri dr i dφ i e -ρ b πΓr 2 i /2 1≤i<j≤N |z i -z j | Γ
is the rescaled partition function. In order to evaluate the integrals on the n-body density function it is possible to expand the Vandermonde determinant term according to the Eq. ( 10) as it was done with the particle-particle interaction energy in previous sections. The result is the following

H ρ (n) N,Γ (z 1 , . . . , z n ) = ρ n b e -Γ 2 2 i=1 r2 i H Z N,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω) n j=1 rµ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=n+1 δ µ σ(j) ν ω(j) Φ H µ σ(j) 21 88 
with

H Z N,Γ := µ [C (N ) µ (Γ/2)] 2 i m i ! N i=1 Φ H µi = 1 N !π ZH N,Γ . (47) 
Particularly, for n = 2 we may write

H ρ (2) 
N,Γ (z 1 , z 2 ) = ρ n b e -Γ 2 2 i=1 r2 i H Z N,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 • B H µν ( 48 
)
where

• B H µν := σ,ω∈S N sgn Γ (σ, ω) 2 j=1 rµ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=3 δ µ σ(j) ν ω(j) Φ H µ σ(j) (49) 
which is practically a non integrated version of the matrix B H µν given by the equation Eq. ( 29). This matrix may be written as follows [29] •

B H µν =      (-1) τµν (N -2)! N i=1 i =p,q Φ H µi z µp 1 z µq 2 -z µq 1 z µp 2 * (z νm 1 z νn 2 -z νn 1 z νm 2 ) if µ = ν ∈ D µ else 0 (N -2)! N i=1 Φ H µi Det H K (N ) µ (z i z * j ) i,j=1,2 if µ = ν
where it was defined

H K (N ) µ (z) := N l=1 z µ l Φ H µ l .
Now, splitting the 2-body density function of the Eq. ( 48) in two parts corresponding to µ = ν and µ = ν we obtain

H ρ (2) 
N,Γ (r 1 , r2 , φ 12 ) = ρ 2 b e -Γ 2 2 i=1 r2 i Det H K (N ) µ (z i z * j ) i,j=1,2 N + ν∈Dµ (-1) τµν R (N ) µ,ν (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ) N    (50) 
valid for odd values of Γ/2. The hard disk 1-body density function H ρ

N,Γ (or simply the density function) may be found applying the same technique

H ρ (1) N,Γ (r 1 ) = ρ b e -Γ 2 r2 i N i=1 r2µi 1 Φ H µi N
.

For Γ = 2 there is only one partition µ = λ with λ i = (Ni)Γ/2. In that case D λ = 0 and the average on partitions have only one term corresponding to the root partition. Hence

H ρ (2) N,Γ=2 (r 1 , r1 , φ 12 ) = ρ 2 b e -2 i=1 r2 i Det H K (N ) λ (z i z * j ) i,j=1,2
where H K

(N ) λ (z i z * j ) = N l=1 (z i z * j ) λ l Φ H µ l 22 is related with the usual kernel H k (N )
λ (z i , z j ) of the Ginibre Ensemble (GE) but in terms of the partition µ = µ(Γ/2) as follows

H k (N ) µ (z i , z j ) = 1 π e -2 i=1 r2 i Γ/4 H K (N ) µ (z i z * j ) where H k (N ) µ (z i , z j ) = N l=1 H ψ µ l (z i ) H ψ * µ l (z j ) with H ψ µ l (z) = z µ l πΦ H µ l exp -|z| 2 Γ/4
orthogonal functions since they satisfy

|z|< √ N H ψ µ l (z) H ψ µm (z)d 2 z = δµ l , µ m .
The determinant of the kernel Det H k

(N ) µ (z i , z j ) i,j=1,2 = 1 π 2 e -2 i=1 r2 i Γ/2 Det H K (N ) µ (z i z * j ) i,j=1,2
depends only on the radial positions r1 , r2 of the particles on the disk and the difference of their angular positions

φ 12 = φ 1 -φ 2 since Det H K (N ) µ (z i z * j ) i,j=1,2 = N i=1 N j=1 1 Φ H µi Φ H µj r2µi 1 r2µj 2 -(r 1 r2 ) µi+µj cos [(µ j -µ i )(φ 1 -φ 2 )]
and it is real. Therefore H ρ

(2)

N,Γ (r 1 , r2 , φ 12 ) = (ρ b π) 2 Det H k (N ) µ (z i , z j ) i,j=1,2 N + ρ 2 b e -Γ 2 2 i=1 r2 i ν∈Dµ (-1) τµν Φ H µp Φ H µq R (N ) µ,ν (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ) N    .
It is important to remark that crystals in the hard or soft disk do not have translational symmetry except in the thermodynamic limit where the crystal is filling all the plane. This feature appears in the 2-body density function as an explicit dependence on the angle difference H ρ

N,Γ = H ρ (2) 
N,Γ (r 1 , r2 , φ 12 ) and mixture of partitions on the term

H S µ (r 1 , r2 , φ 12 ) = 1 π 2 e -Γ 2 2 i=1 r2 i ν∈Dµ (-1) τµν Φ H µp Φ H µq R (N ) µ,ν (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ).
Although, the function H S µ (r 1 , r2 , φ 12 ) is complex its average over partitions is real

H S µ N = 1 π 2 e -Γ 2 2 i=1 r2 i ν∈Dµ (-1) τµν Φ H µp Φ H µq R (N ) µ,ν Re (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 )
N . Now, it may be simplified by using (z

µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ) = f p,q m,n (r 1 , r2 , φ 12 )+f p,q m,n (r 2 , r1 , φ 21
). As a result, the 2-body density function of the hard disk for odd values of Γ/2 takes the form

H ρ (2) N,Γ (r 1 , r2 , φ 12 ) = (ρ b π) 2 Det H k (N ) µ (z i , z j ) i,j=1,2 + H S µ N (51) 23 90 
where

H k (N ) µ (z i , z j ) = N l=1 H ψ µ l (z i ) H ψ * µ l (z j )
is built with the following orthogonal functions

H ψ µ l (z) = z µ l πΦ H µ l exp -|z| 2 Γ/4 ,
the term H S µ := Re[ H S µ ] is given by

H S µ = e -Γ 2 2 i=1 r2 i π ν∈Dµ (-1) τµν R (N ) µ,ν Φ H µp Φ H µq h µp+νm µq+νn (r 1 , r2 ) cos[(ν m -µ p )φ 12 ] -h µq+νm µp+νn (r 1 , r2 ) cos[(ν m -µ q )φ 12 ]
with h b a (x, y) := x a y b +y a x b and the average over partitions is defined according to Eq. ( 7) with Φ µj replaced by Φ H µj .

The soft disk

The n-body density function of the soft disk is

S ρ (n) N,Γ (z 1 , . . . , z n ) = e -ρ b π Γ 2 n i=1 r 2 i S ZN,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω) n j=1 r µ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=n+1 δ µ σ(j) ν ω(j) Φ S µ σ(j)
where S ZN,Γ is defined in Eq. (14). It is convenient to write Φ S µi = 2 ρ b πΓ µi+1 µ i ! explicitly in terms of the partitions' elements factorial (see Eq. ( 16)) so the product N j=n+1 δ µ σ(j) ν ω(j) Φ S µ σ(j) may be written as (ρ b πΓ/2) n (2/ρ b πΓ) N (N +1)Γ/4+1 n j=1 (ρ b πΓ/2) µ σ(j) N j=n+1 δ µ σ(j) ν ω(j) µ σ(j) ! and the n-body density function takes the form

S ρ (n) N,Γ (z 1 , . . . , z n ) = (ρ b Γ/2) n e -ρ b π Γ 2 n i=1 r 2 i S Z N,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 σ,ω∈S N sgn Γ (σ, ω) n j=1 ρ b πΓ 2 µ σ(j) r µ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=n+1 δ µ σ(j) ν ω(j) µ σ(j) ! with ZN,Γ = 2 ρ b πΓ N (N +1)Γ/4+1 Z N,Γ and S Z N,Γ := µ [C (N ) µ (Γ/2)] 2 i m i ! N i=1 µ i !. ( 52 
)
The 2-body density function may be written as follows S ρ

(2)

N,Γ (z 1 , z 2 ) = ρ 2 b e -ρ b π Γ 2 2 i=1 r 2 i S Z N,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 • B S µν (53) 24 91 
where

• B S µν := Γ 2 2 σ,ω∈S N sgn Γ (σ, ω) 2 j=1 ρ b πΓ 2 µ σ(j) r µ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=3 δ µ σ(j) ν ω(j) µ σ(j) ! (54) 
as we have done with the hard case (see Eq. ( 48) and Eq. ( 49)). The delta product N j=3 δ µ σ(j) ν ω(j) in Eq. ( 54) ensures that µ σ(1) + µ σ(2) = ν σ(1) + ν σ(2) and several of the permutations (ν σ(1) , ν σ(2) ) are just squeezing operations on the partition µ. Hence,

2 j=1 ρ b πΓ 2 µ σ(j) = 2 j=1 ρ b πΓ 2 ν σ(j) = 2 j=1 ρ b πΓ 2 µ σ(j) +ν σ(j)
enable us to write the 2-body density function in terms of the dimensionless complex variable

u = ρ b πΓ 2 r exp(iφ) as follows S ρ (2) 
N,Γ (u 1 , u 2 ) = ρ 2 b e -2 i=1 |ui| 2 S Z N,Γ (N -n)! µ,ν C (N ) µ (Γ/2)C (N ) ν (Γ/2) ( i m i !) 2 • B S µν (u 1 , u 2 ) (55) where • B S µν := Γ 2 2 σ,ω∈S N sgn Γ (σ, ω) 2 j=1 |u j | µ σ(j) +ν ω(j) e i(ν ω(j) -µ σ(j) )φj N j=3 δ µ σ(j) ν ω(j) µ σ(j) !. (56) 
A similar argument may be used to write the n-body density function of the soft disk in terms of u 1 , . . . , u n . We may simplify • B S µν as it was done for • B H µν to obtain the following result

• B S µν (Γ/2) 2 =      (-1) τµν (N -2)! N i=1 i =p,q µ i ! u µp 1 u µq 2 -u µq 1 u µp 2 * (u νm 1 u νn 2 -u νn 1 u νm 2 ) if µ = ν ∈ D µ else 0 (N -2)! N i=1 µ i ! Det S K (N ) µ (u i u * j ) i,j=1,2 if µ = ν where S K (N ) µ (u i u * j ) := N l=0 (u i u * j ) µ l µ l ! . Therefore S ρ (2) 
N,Γ (r 1 , r 2 , φ 12 ) = ρ b Γ 2 2 e -(|u1| 2 +|u2| 2 ) Det S K (N ) µ (u i u * j ) i,j=1,2 N + ν∈Dµ (-1) τµν µ p !µ q ! R (N ) µ,ν h µp+νm µq+νn (|u 1 |, |u 2 |) cos[(ν m -µ p )φ 12 ] -h µq+νm µp+νn (|u 1 |, |u 2 |) cos[(ν m -µ q )φ 12 ] N   
where the average over partitions is defined according to Eq. ( 7) with Φ µj replaced by µ j !. Finally, this result may be written in a most condensed way as follows S ρ

(2)

N,Γ (r 1 , r 2 , φ 12 ) = ρ b πΓ 2 2 Det S k (N ) µ (u i , u j ) i,j=1,2 + S S µ N ( 57 
)
where

S k (N ) µ (u i , u j ) = N l=1 S ψ µ l (u i ) S ψ * µ l (u j ) and S ψ µ l (u) = u µ l √ πµ l ! exp - 1 2 |u| 2 (58) 25 92 
with S ψ µm (u) orthogonal functions

R 2 S ψ µ l (u) S ψ µm (u)d 2 z = δµ l , µ m 2 µ+1
and We have checked that Eq. ( 57) fulfills the normalization condition

S S µ = e -(|u1| 2 +|u2| 2 ) π 2 ν∈Dµ (-1) τµν R (N ) µ,ν µ p !µ q ! h µp+νm µq+νn (|u 1 |, |u 2 |) cos[(ν m -µ p )φ 12 ] -h µq+νm µp+νn (|u 1 |, |u 2 |) cos[(ν m -µ q )φ 12 ] . (59) 
2 j=1 R dS j S ρ (2) N,Γ (r 1 , r 2 , φ 12 ) = N (N -1)
which ensures that, for any measurement, it is possible to find N (N -1) pairs of particles in the total area (the real xy-plane). On the other hand, the limit

S ρ (2),II N,Γ (r, φ 12 ) := lim r1→r2=r S ρ (2) N,Γ (r 1 , r 2 , φ 12 )
is the density function related with the probability to find a particle in the differential element dS 1 = rdrdφ 1 at (r, φ 1 ) and another particle in dS 2 = rdrdφ 2 located at (r, φ 2 ) (see Fig. 8-left). Explicitly the function

S ρ (2),II N,Γ (r, φ 12 ) is S ρ (2),II N,Γ (r, φ 12 ) = ρ b Γ 2 2 e -2|u| 2    2 N m=1 N l=m+1 |u| 2(µ l +µm) µ l !µ m ! {1 -cos[(µ l -µ m )φ 12 ]} N + ν∈Dµ (-1) τµν R (N ) µ,ν µ p !µ q ! 2|u| µp+µq (cos[(ν m -µ p )φ 12 ] -cos[(ν m -µ q )φ 12 ]) N    . (60) 26 93 
Note that independently of N and Γ the probability density S ρ

(2),II N,Γ (r, 0) for φ 12 = 0 is zero because it is not possible to find in the equilibrium state two charged particles located at the same position. Similarly, the limit lim A plot of Eq. ( 60) for three particles an several values of the coupling parameter is shown in Figs. 9 and10. When the coupling parameter is Γ = 2 the function S ρ

r→∞ S ρ ( 
(2),II N,Γ (r, φ 12 ) is reduced to S ρ (2),II N,Γ=2 (r, φ 12 ) = ρ 2 b e -2|u| 2 2 N m=1 N l=m+1 |u| 2(λ l +λm) λ l !λ m ! {1 -cos[(m -l)φ 12 ]} .
In theory, if we would perform a measurement finding a particle in the position (r, φ 1 ) and another at another at (r , φ 2 ) then it is possible to rotate the system -φ 1 due to the rotational invariance. The result of several measurements yields that the first particle should be somewhere in the line {(r, φ = 0)|r ≥ 0} and the 27 94 second particle at (r , φ 2φ 1 ). Hence, it is not a surprise that plots of S ρ

(2),II N,Γ (r, φ 12 ) vanish around the line {(r, φ = 0)|r ≥ 0}. As the coupling constant is increased the plot of S ρ

(2),II N =3,Γ (r, φ 12 ) for three particles splits in two Gaussian-like functions and the location of the peaks of these Gaussian are related with the minimal energy configuration: three point charges located at the vertices of an equilateral triangle (see Fig. 8). In fact, if we set φ = 0 for one of the three particles the Wigner Crystal by a rotation, then the corresponding positions of the other two particles coincides with maximum locations of S ρ

(2),II N =3,Γ (r, φ 12 ) as Γ increases. Roughly speaking, the 2dOCP is a simplified version of the dusty plasmas realised in the laboratory. Commonly, there is more interest in the generation of dusty plasmas with large number of particles which enables measurements in the thermodynamic limit. However, monolayer plasma systems with low number of particles has been also obtained experimentally. In particular, the authors in [24] reported small plasma crystals with N ∈ (1,19). The experiment and the 2dOCP plasma have in common a radial parabolic potential which confines the micro spheres. In the laboratory the charged particles are micro spheres of diameter 9µm with charge Q = -12.3e which tend to arrange essentially in the same configurations of Fig. 8 up to an scale factor because the inter-particle repulsion for the experiment practically comes from an Yukawa potential instead of a logarithmic one. In fact, authors of [24] expected a Yukawa interaction potential since the positions of particles for small crystals are accurately modeled by simulations performed with Yukawa molecular dynamics. Previously, authors of [35] performed numerical exact expansions of the free-energy 28 95 and kinetic pressure for the 2dOCP on the hard disk with small number of particles with Γ ranged from 2 to 14 which agree reasonably well with MC-simulations. It is possible to continue an exploration of radial dependence of the 2-body density function by asking for the density function related with the probability to find a particle in the origin and another particle at (r 2 , φ 2 ). Hence, the following limit must be considered N,Γ (r 1 , r 2 , φ 12 ). This limit is simplified because lim r1→0 S S µ = 0 and the only contribution on S ρ

(2),I N,Γ (r 2 , φ 12 ) comes from the kernel's determinant

Det S k (N ) µ (u i u * j ) i,j=1,2 = e -|u1| 2 -|u2| 2 π 2 N m=1 N n=1 n =m 1 µ m !µ n ! |u 1 | 2µm |u 2 | 2µn -(|u 1 ||u 2 |) µm+µn cos [(µ n -µ m )φ 12 ] . (61) 
Now, the term (|u 1 ||u 2 |) µm+µn in the limit r 1 → 0 is always zero because µ m = µ n once a partition is selected. However, one term of the kernel's determinant may contribute lim r1→0 |u 1 | 2µm = δ µm,0 since the partitions restriction µ 1 > µ 2 > . . . > µ N implies that δ µm,0 = δ µm,µ N =0 where only partitions whose the last element is zero would contribute. Therefore

lim r1→0 Det S k (N ) µ (u i u * j ) i,j=1,2 = δ µ N ,0 N n=1 n =N 1 µ N !µ n ! |u 2 | 2µn .
As a result, the limit lim r1→0 S ρ

N,Γ (r 1 , r 2 , φ 12 ) does not depend on φ 12 and S ρ

(2),I

N,Γ (r 2 ) = ρ b π Γ 2 2 exp - ρ b πΓ 2 r 2 2 N -1 n=1 1 µ n ! ρ b πΓ 2 r 2 2 µn N -1 . ( 62 
)
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Where subscript N -1 on the average means that only partitions with µ N = 0 must be considered. Since the contribution of S S µ for this case vanishes, then there is not mixture of partitions on the average computations and the result of Eq. ( 62 Posteriorly, A is divided in ∼ N circular regions of spatial step δ ∼ r = R/ ∼ N in order to count the particles whose radial distance is between ∼ r sδ ∼ r and ∼ r s + δ ∼ r with ∼ r s = sδ ∼ r and s = 1, . . . , ∼ N to build 

ω s := r (n) i ∈ Ω(M ) : | ∼ r s -r (n) i | < 2δr ∀ n = 1, . . . , M ∧ i = 1, . . . , N .
B N,Γ = ρ b Γ 2 N m=1 N n=m+1 (µ m + µ n )! µ m !µ n ! 1 2 µm+µn N 31 98
is obtained by solving the corresponding integrals and it reduces to

B N,Γ=2 = ρ b 2N - 6 √ π(N -1)! Γ N + 1 2
for the particular case Γ = 2. A comparison between the numerical histograms and the exact probability density given by the Eq. ( 60) is shown in Fig. 13.

Concluding remarks

In this article a finite N expression for the excess energy of the 2dOCP on the hard and soft disk Eqs. ( 37) and ( 39) for Γ = 2 where obtained. Finite expansions of the excess energy of the soft disk are essentially the same found in [8] with the replica method. We have also computed the finite expansion of the excess energy at Γ = 2 for the hard-disk case Eqs. (37) testing that the result of the excess energy per particle would be in agreement with one found in [7].

The excess energy and the 2-body density functions of the 2dOCP on the soft and hard disk for odd values of Γ/2 in terms of expansions Eqs. ( 46),( 51) and ( 57) was also provided. The formulas found for the excess energy along the document for Γ = 2, 6, 8 . . . ... are in good agreement with results with the results obtained with Monte Carlo simulations. In particular, we have studied the analytical density function ρ

(2),II N,Γ (r 1 , r 2 , φ 12 ) associated to the probability to find a pair of particles located at two differential area elements dS 1 and dS 2 located at the same radius but different polar angle Eq. ( 60). The density function ρ

(2),II N,Γ (r 1 , r 2 , φ 12 ) was used to explore analytically the generation of small crystals and a comparison of the analytical results of Eq. ( 60) with histograms obtained via MC-simulations was performed finding a good agreement between them.

It may be concluded that the monomial expansion approach enable to perform exact numerical computations of some thermodynamic quantities of the 2dOCP. Unfortunately, the number of terms of this expansions grows quickly as the number of particles or the coupling parameter are increased. This feature limits drastically the practical application of the method e.g. in the analytical study with of phase transitions where the system is large as well as the typical values of the critical values of the coupling constant. Nevertheless, for systems far from the thermodynamic limit it is possible to use the monomial expansion approach to study analytically the generation of small crystals as we did along the document with the Dyson Gas. In this direction, it was found that the 2-point density function for Γ ≥ 2 not only inherited the well known kernel determinant of the Ginibre ensemble averaged under partitions, but also an additional contribution which appears only for Γ > 2 since this term is responsible to mix partitions. Both contributions contains the structural information of the system especially in the strong coupling regime.

Chapter 5

Perspectives and future work

The studies on the sphere and the disk presented in the previous chapters are continuations of the studies initiated by Gabriel Téllez and Peter Forrester in references [37] [38]. In summary, the current work was mainly focused on the determination of the exact energy and the correlations functions of the 2dOCP with logarithmic interaction at Γ > 2. We partially achieved this objective because the evaluation of the analytical relationships become difficult as the number of particles or the coupling among them are increased. For finite systems of size N , the monomial function expansion (MFE) approach may be used for Γ > 2 but not too far from Γ = 2, then the method becomes most limited to the description in fluid phase as the system grows. The number of terms on the MFE is dim C (N ) µ → ∞ for Γ → ∞. At the same time, each individual coefficient tends to grow quickly as its label µ is far from the root partition. These two features combined limit drastically the description of the system in the strong coupling regime by using the MFE method since the computational effort required to keep all the coefficients C (N ) µ cannot be performed for any machine. This cost a lot considering that the corresponding Wigner crystal in the thermodynamic limit only requires the specification of two basis vectors to generate the whole bidimensional lattice. Then, it is very suspicious the absence of a property on the MFE treatment which eventually enables an important simplification on the computations at Γ → ∞ deep in the thermodynamic limit. We consider that one of the challenge problems is to show that the excess energy per particle computed by MFE on for the disk and sphere satisfies (see section 7.3.3)

lim Γ→∞ U disk or sphere exc N Q 2 = 1 4 (m1,m2)∈Z 2 (m1,m2) =0 E 1 a 2 α 2 W m1,m2 + √ 3 2π 1 W m1,m2 exp - 4π 2 W m1,m2 3α 2 a 2 -γ + 2 log α 2 L 2 - 2π a 2 √ 3α 2 with W n1,n2 = n 2 1 + n 2 2 + n 1 n 2 and E 1 = Γ(0, x).
Despite the practical limitations of the excess energy found via the MFE approach, the limit should be satisfied since MFE does not impose any condition on N and the coupling parameter Γ (restricted to be an even number) may reach an infinite value.

Another problem concerns the N -finite expansion of the excess Hemholtz free energy around Γ = 2. The free energy includes

log Z N,Γ = ∞ n=0 (Γ -2) 2n n!Q 2n A (n) N,2 with A (n) N,Γ = ∂ n ∂β n log Z N,Γ (5.1) 
In particular, A

N,2 = log Z N,2 , A (0) 
N,Γ = U inter = -U exc (N, Γ), A (1) 
N,Γ = Var 2 (U inter ) = C exc v Q 2 /(k B Γ 2 ) and A (3) N,Γ = -[Var 3 (U inter ) + Var 2 (U inter ) U inter ] (2) 
are related to the excess contributions of the excess energy at Γ = 2, energy and heat capacity where Var n (χ) = χ nχ n is the variance of χ. Some of these coefficients have been computed in previous studies. Jacovici found A N,2 for the hard disk. Even when this problem is not new the corresponding to n > 2 and the N -finite coefficients A

(2) N,2 for the sphere and the disk have not been computed yet. For the case of the sphere, the heat capacity for the finite system may be found by using a similar procedure applied to the excess energy in the disk geometry. The computation of A (n) N,2 for a given value of N is important because of finite-size effects. For instance, if the system is finite but sufficiently large to exhibit a transition, then the critical coupling parameter say Γ c (N ) in general will depends on the system size. Typically, if the system is prepared with N 1 particles and later with N 2 particles with N 1 < N 2 the it will exhibit a shift of the critical coupling constant, where Γ c (N 1 ) < Γ c (N 2 ). This property may explain why we have seen crystallization features on the Dyson gas on small systems with a coupling parameter Γ ≤ 14 not too far from 2 (the fluid phase) considering that the OCP freezing transition was located around Γ 140 [START_REF] Caillol | A monte carlo study of the classical two-dimensional one-component plasma[END_REF].

The shifting property of the critical coupling constant on finite systems as the 2dOCP with inverse power law interaction IPL has been observed and it is expected to have the same behaviour in the log-gas. Moreover, this finite-size effect on the coupling constant may be advantageous because it would permit to enter to the strong coupling regime with a lower coupling constant. This in practice means that at some point a N -finite log gas would require less coefficients on the expansion of the form of Eq. (5.1) to compute parameters in the strong coupling regime as N is decreased.

There are alternative ways to find approximately the excess energy for the 2dOCP e.g. the well known Debye-Hückel DH approximation [START_REF] Deutsch | Debye thermodynamics for the two-dimensional onecomponent plasma[END_REF] [57] valid for the weak coupled regime (this is Γ << 1) or a most recent updated version the DH with a hole DHH of reference [START_REF] Khrapak | On the internal energy of the classical two-dimensional onecomponent-plasma[END_REF] which gives a reasonable good result at Γ = 2 very close to the Jancovici result for A

N,2 /N as well as the correct scaling with Γ but inaccurate for Γ > 2. Then, find the next orders O((Γ -2) 2 ) for the excess energy and correlation functions to estimate correctly the Γ-dependency is not only are an unsolved problem but also have attention yet even when the problem is far to be recent.

Finally, in the study Exact Energy Computation of the One Component Plasma on a Sphere for Even Values of the Coupling Parameter, J. Stat. Phys. 164 : 2 1-31 (2016) it was found the following relationship

C (N ) µ (Γ/2) = (i1,...,i N !-1 )∈Iµ N ! p=1 sgn(σ p ) ip-1-ip i p i p-1 (5.2)
to compute the coefficients of the MFE approach. It is necessary to find the set I µ for each partition in order to use Eq. (5.2). The construction of the I µ requires to solve N -linear equations under N !-conditions of the form i j-1i j ≥ 0. Right now we do not know what is the solution of this set of coupled and constrained Chapter 6

Phase transitions on two-dimensional systems

In 1966 it was rigorously proved the absence of long-range order at a finite temperature in systems of dimension d ≤ 2 with sufficiently short range interaction and continuous degrees of freedom, it is known as the Mermin-Wagner theorem [4]. For the particular case of the XY -model (a two-dimensional square lattice of planar rotors with nearest neighbouring interaction) the Mermin-Wagner theorem states that fluctuations lead to the destruction of the long-range, thus the order parameter, in this case the magnetization, vanishes even at low temperature 1 . As consequence, it was expected that no phase transition could take place in the XY -model. Posteriorly, extrapolation of high temperature expansions performed by Stanley and Kapplan [START_REF] Stanley | Possibility of a phase transition for the two-dimensional heisenberg model[END_REF] suggested that a transition could take place in the XY -model since they observed a divergence on the susceptibility as a function of the temperature. After these contradictory results it was necessary to explore alternatives of phase transitions in two-dimensional systems not necessarily associated to a spontaneous symmetry breaking since the Mermin-Wagner theorem prevents this rupture. Depending on the asymptotic behaviour of a correlation function G(x 1 , x 2 ) it is possible to classify the different states of matter as follows:

• Long-range order (LRO) state: This phase is associated to crystalline solids where particles are located in the nodes of a perfect periodic lattice and correlation functions tends to a non-zero positive constant G(x 1 , x 2 ) ∼ C = 0.

• Disorder or short range order (SRO) state: This phase is found in liquids and non-crystalline solids as glasses where particles are disordered and uniformly distributed in the space. This state is characterized by short range positional and bond-orientational correlations functions, typically with an exponential decay G(x 1 , x 2 ) ∼ exp(-κ|x 1x 2 |) → 0.

• Quasi-long range order (QLRO) state: this is an intermediate state between the LRO and SRO states. The QLRO state is positional isotropic, as it occurs in fluids, but orientationally anisotropic on a macroscopic scale as crystals where the properties of the system depends on the direction. The QLRO state is characterized by the algebraic decaying of some correlations functions G(x 1 , x 2 ) ∼ |x 1 -x 2 | -η → 0 with η a positive real number.

The QLRO state may be observed in two-dimensional system such as the XY -model. Even when fluctuations of the order parameters destroy the LRO (Mermin-Wagner theorem) it is still possible to have QLRO below some critical temperature T c . Eventually, the system enter in a disordered state for T > T c . These type of transition was initially described by Berezinskii [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems[END_REF] in 1971 and posteriorly generalized by Kosterlitz and Thouless [5] two years later including a novel feature: the topological defects, in this case vortices. This phase transition on the XY -model received the name of Berezinskii-Kosterlitz-Thouless transition (BKT-transition) but the terminology Kosterlitz-Thouless transition (KT-transition) is also used in the literature. The KTtransition also occurs in systems which may be approximated by the XY -model e.g. two-dimensional arrays of Josephson junctions and two-dimensional super fluidity. This transition driven by topological defects is also used to describe the melting of the two-dimensional crystal by considering dislocations and disclinations of the lattice as topological defects commonly known as the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory of melting in two-dimensions [13].

The KT-transition

According to the spin-wave approximation the correlations of the XY -model decay exponentially for high temperatures as a signature of short-range order. On the other hand, at low temperature, the asymptotic behaviour of these correlations decay algebraically because of a logarithmic growth of the thermal fluctuations and the systems exhibits features of quasi-long range order. This change in the behaviour of correlations functions at T >> 1 and T << 1 suggested that a phase transition should take place somewhere in between these temperature limits. Since the Mermin-Wagner theorem does not allow long-range order on the XYmodel, then an eventual transitions on the system cannot be associated to a symmetry breaking. Nowadays, we know that the XY -model has a phase transition and the question to determine the mechanism behind this transition was described first by Kosterlitz and Thouless in terms of a special type of rotors configurations known as vortices. 
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In the continuous limit the collection of rotors {φ i } i∈Z 2 located in the bi-dimensional lattice of spacing a may be approximated by a scalar function φ = φ( r) by assuming that the change of neighbouring rotors orientation is small. It occurs that the local minima φ vor ( r) of the Hamiltonian satisfies the Laplace equation, then the vectors fields configurations ∇φ( r) are vortices with vortex charge n (see Fig. 6.1). The energy of a single vortex is E 1 = πJn 2 log (L/a) with J the rotor-rotor constant, L the size of the system. The radius of vortex core (a cut-off for the energy) is usually taken as the lattice length. On the other hand, the vortex -antivortex configuration (see Fig. 6.2) is E 12 = πJn 1 n 2 log (r 12 /a) with n 1 = -n 2 and r 12 the distance between their cores. The energy of a single vortex diverges logarithmically with the system size E 1 -→ L→∞ ∞ then the energy cost to include a vortex in the thermodynamic limit is infinite. In contrast, the energy of vortex-antivortex pair is finite. However, this growing occurs generating vortex-antivortex pairs since the energy cost to include a single vortex diverges logarithmically with the system size in the thermodynamic limit.

It is also necessary to include the energy associated to the core of each vortex given by πJn. The formula for the energy may be generalized for a set of vortex-antivortex pairs as follows

H vor = -Jπ i =j n i n j log r ij a + πJ i n 2 i
where the total vorticity is ω( r) = 2π i n i δ( r-r i )ẑ and the vortex-antivortex assumption requires i n i = 0 then the flux of the vorticity or the circulation is zero for a loop c that encircle all the vortices. This condition is necessary otherwise the energy would include a term πJ ( i n i ) 2 log(L/a) which shall diverge in the thermodynamic limit.

If the vortex charge is n i = 1 and n i = -1 for a vortex and antivortex respectively, then the energy πJ i n 2 i associated to the vortices cores is an additive constant πJN and the Hamiltonian for the vortices (excluding the core energy) is just the one of a two-dimensional two-component plasma 2dTCP with logarithmic interactions

H 2dT CP = - i<j Q i Q j log r ij a 6.
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where charges Q i = √ 2πJn i , the electroneutrality condition i Q i = 0 and the core energy of each vortex would be associated to the chemical potential µ = πJ. This equation is similar to the particle-particle energy interaction of the 2dOCP where Q i = Q (see e.g. Eq. (2.5)). Although, this version of Coulomb gas includes logarithmic interactions as the systems studied in the previous Chapters, it is necessary to remark that a 2dTCP does not require to include a background to be globally neutral.

Let us now consider the case of single vortex. The entropy S = k B log(Ω) of a single vortex may be estimated by assuming that the configurations Ω namely the number of places where we can locate a vortex are Ω = L 2 /a 2 , hence S = 2k B log(L/a). Then the reduced free energy βF = β(E -T S) required to add a vortex is

βF = (πn 2 K -2) log L a -→ L→∞    ∞ if K > 2 πn 2 -∞ if K < 2 πn 2
with K = βJ the coupling constant. At high temperatures (weak coupling regime K << 1) the free energy is dominated by the entropy. On the other hand, at low temperatures (strong coupling regime K >> 1) the energy required to include the vortex is the dominating term in the free energy. For n = 1, this indicates that vortices becomes important at K KT = 2/π or T KT = Jπ/(2k B ). This is known as the Kosterlitz-Thouless criterion, which suggests that a phase transition may occurs at T KT .

K K KT

Short range order

Quasi long range order 

Generalities on the KTHNY-theory

The Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY-theory) was developed more than 30 years ago in order to explain the process of two-dimensional melting [12] [13]. The KTHNY-theory predicts the localization of topological defects responsible of a two step transition at two different temperatures in the melting process of the two-dimensional crystal. As the crystal is melt the system reach a phase called hexatic where the system still hold its original orientational order. Posteriorly, as the temperature rises there are dissociation of free dislocations which causes that system reaches an isotropic fluid phase.

In the KTHNY-Theory the transitions are mediated by topological defects on the lattice which are thermally activated. A defect emerges in the triangular lattice when a site with a number of nearest neighbours different to six occurs. An isolated defect is a defect whose nearest neighbours are not defects, and this type of defect is also called a disclination. In two dimensional crystals are considered disclinations with five or seven neighbours (see Fig. 6.4). A 5-fold disclination is obtained by removing a wedge of π/3 radians from the ideal hexagonal lattice. On the other hand, a 7-fold disclination requires to add a semi-infinite wedge of π/3 radians. The 5-fold and 7-fold isolated defects are called negative and positive disclinations respectively.

Clusters of defects with size two combining a 5-fold and 7-fold disclinations are called dislocations and clusters of four defects combining equal number of positive and negative disclinations are considered as a dislocation pair (see Fig. 6.5). As the temperature of the Wigner crystal is increased defects begin to emerge as a consequence of the thermal fluctuations. where R(θ) is a clockwise or counter-clockwise rotation matrix. Because of the rotation symmetry the first sector is selected arbitrarily, a choice is defined by taking a (1) 1 = a(sin(2π/n), cos(2π/n)) and a (1) = a(0, 1) in an orthogonal Cartesian reference axis where a is the lattice length.

Neither, disclinations or dislocations emerge spontaneously in the crystal. In fact, the first emerging of defects in the crystals starts with dislocations-pairs (quartet of defects). In this scenario the dislocationspairs emerge first, later as the temperature is increased the dislocation-pair dissociate in two separated or single dislocations and eventually a dissociation of a single dislocation (disclination pair) in two disclinations (isolated defects). Why dislocation-pairs emerge before than single dislocations? This particular order in the occurrence is due to the energy of these cluster defects configurations. The energy of a single dislocations is given by

E = a 2 o b 2 K 8π log R a + E o
where a o and b are constants related to the Burgers vector loop (a geometrical construction used to identify where a disclination occurs), K is the Young's modulus, a is the dislocation radius and E o its core energy.

In analogy with the vortices in the XY -model, a dislocation in the crystal diverges with the size length R of the system. In other words, the energy required to include a single dislocation in the crystal is infinite in the thermodynamic limit. On the other hand, the elastic energy of a pair of dislocations (with antisymmetric Burgers vectors) does not have a logarithmic divergence with the system size, then a quartet of defects may included in the crystal with a finite energy cost. This scenario keeps some analogies with the vortexantivortex pair generation in the XY -model. Fig. 6.5: Scheme for quartet of defects and dislocations in the two dimensional crystal. (left) Displacement of particles in the ideal hexagonal. In this scheme a quartet of defects is obtained by displacing the gray sites with δ r = δa(1 + cos(γ),sin(γ)) and the blue sites with -δ r where γ = π/3 and a the lattice length.

(center) A quartet of defects. (right) If δa is large enough, the quartet dissociates in two single dislocations. Green color polygons have been used for 5-fold coordinate defects and red polygons for 7-fold defects.

The Fig. 6.6 shows schematically the melting of the bidimiensional crystal in according to the KTHNYtheory. The frame proposed by the KTHNY-theory describes the melting of bidimensional solids (with positional order at vanishing temperature) as a process including two steps at temperatures T h and T l . In terms of the orientational order, the solid is characterized by long-range order. The first transition at T h is attributed to dislocation-pair unbinding which partially destroys the orientational order. This process generates the hexatic phase with quasi-long orientational order with algebraic asymptotic decaying of the orientational correlation functions. The second transition at T l destroys the residual orientational order via dissociation

T h T l
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111 of individual dislocations in free disclinations and the fluid phase take place. A short summary of some predictions of the KTHNY-theory for melting in two dimensions is shown Table 6 

Numerical methods

In this chapter we shall describe the numerical methods implemented to study of melting transitions of the 2dOCP with inverse power law (IPL) interactions. To this aim the following method were implemented: the Monte Carlo (MC) method, the Ewald Summation method, and the Multi Histogram Method (MHM) method. We start by defining the system in Section 7.1. The organization of the MC-computation as well as the trial move definition are in Section 7.2. We proceed to the description of the Ewald method summation with IPL interaction of the form 1/r n (with n a positive real number) in the next section. We will be mainly focused in the case n = 2. The Section 7.3 is devoted to the computation of the ground state of the system. We include in the Appendix C the case of logarithmic interactions since it is related with the IPL interaction in the limit n → 0. The generalities of the MHM are in Section 7.4. Finally, we present a brief description of some computational geometry tools used in the study.

The system

This is a classical system of N punctual particles with identical charge Q living in a plane region of area A (see Fig. 7.1) with a neutralizing background of uniform density charge -ρQ and particle density ρ = N/A.

The system is a two-dimensional one component plasma 2dOCP on a plane where particles repel to each other with an inverse power potential given by

v( r 1 , r 2 ) = Q 2 σ | r 1 -r 2 | n (7.1)
where σ is an arbitrary length constant and n ∈ + . Some relevant values n are n = 1 for Coulomb interactions [30], n = 3 for Dipolar interactions [22,[START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF] and the limit n → ∞ for the Hard disk model [28,29,[START_REF] Kapfer | Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions[END_REF]. We are interested in the particular cases studied the cases n = 1, 2 and 3. The electroneutrality condition is required for n ≤ 2, however no charged background is needed for n > 2 because the particleparticle interaction energy is finite. The excess energy of the system for n ≤ 2 is given by

E = U pp + U pb + U bb where U pp = Q 2 2 N i=1 N j=1 Sm σ | r ij + S m | n
is the particle-particle interaction energy,

U pb = - N Q 2 A N i=1 Sm So d r σ | r i -r + S m | n
the particle-background energy and

U bb = N 2 Q 2 2A 2 N i=1 Sm So d r So d r σ | r -r + S m | n
is the background-background energy. Where r i is the position of the i-th particle, S o is the region of the computational box and S m represents the periodic images of the system 1 . r i Fig. 7.1: The system. (left) Computational box containing N=10 identical charges and (right) some of their corresponding images.

The only relevant parameter of this system is the coupling constant Γ = Q 2 (ρπσ) n/2 /(k B T ) with k B the Boltzmann's constant and T the temperature. As the previous interpretation of Γ for the 2dOCP with logarithmic interactions, the coupling parameter for the 2dOCP with IPL interactions determines the thermodynamic behaviour of the system. Again, it is characterized by a disordered phase for small values of Γ and crystallizes in the limit Γ → ∞. Eventually, phase transitions will be located at some critical values of Γ, and in general, these critical values depend on the value of n.

In the second part of this work we look for different thermodynamic variables e.g. the energy and heat capacity as well as structural properties of the system in the equilibrium for a given set of coupling constants 1 In fact, if we consider a infinite periodic two dimensional Coulomb system built with rectangular boxes of length L, then the image boxes would be labelled with a pair of integers m = (m 1 , m 2 ). The computational box would be (0, 0) and its eight neighbouring image boxes will be indexed as (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1) and (1, -1). Therefore, if r i is the position of the i-th particle, then its corresponding image in the box (m 1 , m 2 ) would be r

(m 1 ,m 2 ) i = Sm + r i with Sm = (m 1 x + m 2 ŷ)L and the distance between particles of different boxes is | r (m 1 ,m 2 ) i -r ( m1 , m2 ) j | = |((m 1 -m1 )x + (m 2 -m2 )ŷ)L + r i -r j | = Sm +
r ij then the total particle-particle interaction energy would be Upp = 1 2 Sm N i=1 N j=1 ν Sm + r ij where Sm indicates a sum over all the vectors of the lattice except the term i = j if (m 1 , m 2 ) = (0, 0) because particles may interact with their images but not with themselves.
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114 Ξ := (Γ 1 , . . . , Γ M ) which enable us to describe the phases transitions of the system. To this aim, it was used (MC) simulations to study numerically the phase transitions of the 2dOCP on a plane with IPL interactions where the Metropolis algorithm [START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF] was implemented.

General organization of the MC computation

For each coupling constant in Ξ the following procedure was performed:

• (i) Initialization: The initial configuration for small system sizes N =1024, 2025 and 4096 was a square lattice independently of the coupling constant. The corresponding starting configurations for 8100 and 16384 are quadruplications of the equilibrated configurations for 2025 and 4096.

• (ii) Equilibration: the starting configuration chosen in the previous step in general does not coincide with one near the equilibrium of the system. Therefore, it is necessary to perform reasonable large number of MC-cycles to allow the system reach the thermodynamic equilibrium.

• (iii) Average: in this process the information concerning the configuration of the system is stored in intervals of few hundred MC-cycles to compute averages of the observables. One MC-cycle is defined as a number of trial moves equal to the number of particles of the system and the trial change of the shape of the simulation box. During simulations the trial moves were accepted or rejected according to Metropolis Hastings algorithm. The amplitude of the trial moves were chosen such that the acceptance ratio would be 30-40%.

It is convenient to allow a cell of variable shape during the simulation specially in the strong coupling regime where a crystal structure emerges. A problem may occur with a fixed simulation box because the
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115 periodic condition tends to artificially stabilise some crystal phases modifying the order parameters as well as the correlation functions. In this study we have used an oblique simulation cell (see Fig. 7.2) of variable lengths L x , L y and variable angle γ where the unit vectors â1 and â2 are given by â1 = êx and â2 = cos γ êx + sin γ êy (7.2) in Cartesian coordinates. Using this parametrization, the surface of the simulation box is given by A = L x L y sin γ. The periodic images S n are given by

S n = n 1 L x â1 + n 2 L y â2 = [R] n 1 n 2 (7.3)
with n 1 and n 2 integers and [R] a matrix defined as follows

[R] = L x L y cos γ 0 L y sin γ . (7.4)
On the other hand vectors G m of the reciprocal lattice associated to the system of periodic images S m are given by

G m = m 1 b 1 + m 2 b 2 = t [R] -1 m 1 m 2 (7.5)
where (m 1 , m 2 ) ∈ Z 2 , the basis vectors b 1 and b 2 are defined as follows

b 1 = 2π A L y sin γ -L y cos γ and b 2 = 2π A 0 L x (7.6)
and the inverse of the transpose of [R] is

t [R] -1 =      1 L x 0 - 1 L x cos γ sin γ 1 L y sin γ      . (7.7)
The set of all the vectors of the reciprocal lattice is R 2 = G m : m ∈ Z 2 . In order to keep the particle density as a constant, the shape variation of the simulation cell must preserve the area. To this aim, we define two random numbers r 1 and r 2 between 0 and 1. Once the trial move does the changes L x -→ L x and γ -→ γ the new L y is found from the surface constraint. The procedure is as follows

L x → L x = L x + (r 1 -0.5)∆L (7.8)
where ∆L is the amplitude of the trial move. Similarly, the angle change δγ is δγ = (r 2 -0.5)∆γ (7.9) where ∆γ is the amplitude of the angle variation. Then the value of γ is computed with the equations      sin γ = cos(δγ) sin γ + sin(δγ) cos γ cos γ = 1sin 2 γ (7.10)
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and the value of L y is

L y = L x sin γ L x sin γ L y (7.11)
Posteriorly, all the particle's positions are change according to

           x i = L x L x x i + 1 sin γ L y L y cos γ - L x L x cos γ y i y i = L y L y sin γ sin γ y i (7.12)
The global trial movement is accepted or rejected according to metropolis algorithm. If there are longrange interactions, then the energy contributions on the reciprocal space are computed again with the trial reciprocal vectors associated to the trial shape of the box according to Eq. (7.5).

Ewald sumations method 7.3.1 The inverse power law potential

The general idea of the Ewald method is to split the computation of the excess energy in the real and reciprocal lattice. The Ewald summation method for IPL potential with σ = 1 is described by Mazars [30].

The result is the following

U (n) exc = Q 2 2 N i=1 N j=1 Sn Γ n/2, | r ij + S n | 2 α 2 Γ(n/2)| r ij + S n | n + πQ 2 2A G∈R 2 G =0 G 2 n-2 Γ 1 -n/2, G 2 4α 2 Γ(n/2) N i=1 e i G• ri 2 - α n nΓ(n/2) N Q 2 - π A α n-2 (2 -n)Γ(n/2) N 2 Q 2 (7.13)
for any real value of n except n = 22 . The case 1/r 2 requires an special treatment which will be described in this section.

Ewald Method for n = 2

The particle-particle interaction energy is

U 2D pp = 1 2 N i=1 N j=1 j =i Q i Q j Φ 2D (r ij ) + 1 2 N i=1 Q 2 i Φ 0 2D (7.14)
where the contribution of the interaction of a charge with its periodic images is

Φ 0 = Sn =0 1 S n 2 and Φ 2D ( r) = Sn 1 r + S n 2 . Now Φ 2D ( r) = Sn ∞ 0 dt exp -r + S n 2 t = Sn α 2 0 dt exp -r + S n 2 t + Sn ∞ α 2 dt exp -r + S n 2 t (7.
15) with α an arbitrary parameter. The second integral is

∞ α 2 dt exp -r + S n 2 t = e -| r+ Sn| 2 α 2 | r + S n | 2 .
The other integral of equation Eq. ( 7.15) may be written as follows

Sn α 2 0 dt exp -r + S n 2 t = π A G∈R 2 e i G• r α 2 0 dt t exp - G 2 4α 2
where the Poisson-Jacobi identity

Sn exp -r + S n 2 t = π A G∈R 2 e i G• r exp - G 2 4α 2 (7.16)
was used, with A the area of of the cell and G the reciprocal vectors. This result is related with the exponential integral Ei(x) = -E 1 (-x).

α 2 0 dt t exp - G 2 4t = E 1 G 2 4α 2 = -γ -log G 2 4α 2 - ∞ n=1 (-1) n n!n G 2 4α 2 n therefore Sn α 2 0 dt exp -r + S n 2 t = π A G∈R 2 G =0 E 1 G 2 4α 2 + π A lim G→0 e i G• r -γ -log G 2 4α 2 .
Using this relationship equation Eq. ( 7.15) takes the form

Φ 2D ( r) = Sn e -| r+ Sn| 2 α 2 | r + S n | 2 + π A G∈R 2 G =0 e i G• r E 1 G 2 4α 2 + π A lim G→0 -γ -log G 2 4α 2 (7.17)
Computation of Φ 0

2D

In this subsection we shall compute the self contribution

Φ 0 2D = Sn =0 1 S n
to this aim, note that Eq. ( 7.15) may be written as

Φ 2D ( r) = Sn ∞ 0 dt exp -r + S n 2 t = Sn α 2 0 dt exp -r + S n 2 t + Sn e -| r+ Sn| 2 α 2 | r + S n | 2 evaluating at r = 0 Φ 2D ( r = 0) = Sn α 2 0 dt exp -S n 2 t + Sn e -| Sn| 2 α 2 | S n | 2 .
The term Φ 2D ( r = 0) has the following divergence

lim S→0 α 2 0 dt exp -|S| 2 t + 1 S 2 e -S 2 α 2 = α 2 + lim S→0 1 S 2 e -S 2 α 2 .
at S = 0. Hence, the self contribution is

Φ 0 2D = Φ 2D ( r = 0) -α 2 -lim S→0 1 S 2 e -S 2 α 2 .
If we combine this relationship with the equation Eq. ( 7.17), then

Φ 0 2D = Sn =0 e -| Sn| 2 α 2 | S n | 2 + π A G∈R 2 G =0 E 1 G 2 4α 2 + π A lim G→0 -γ -log G 2 4α 2 -α 2 . (7.18)
Particle-Particle interaction energy

The particle-particle interaction energy is given by the equation given by Eq. (7.14) may be written as

U 2D pp = (U 2D pp ) REAL + (U 2D pp ) REC + (U 2D
pp ) DIV by using Eqs. (7.17) and (7.18). The contribution over the real lattice is

(U 2D pp ) REAL = 1 2 N i=1 N j=1 Q i Q j   Sn e -| rij + Sn| 2 α 2 | r ij + S n | 2   + 1 2 N i=1 Q 2 i   Sn =0 e -| Sn| 2 α 2 | S n | 2   or (U 2D pp ) REAL = 1 2 N i=1 N j=1 Q i Q j Sn e -| rij + Sn| 2 α 2 | r ij + S n | 2
where the prime refers to the sum over the lattice including interactions between the particles and their images but with the restriction i = j if S n = 0 in order to avoid the interaction between particles with themselves. The reciprocal contributions are

(U 2D pp ) REC = 1 2 N i=1 N j=1 Q i Q j      π A G∈R 2 G =0 e i G• rij E 1 G 2 4α 2      + 1 2 N i=1 Q 2 i      π A G∈R 2 G =0 E 1 G 2 4α 2      simplifying (U 2D pp ) REC = π 2A G∈R 2 G =0 E 1 G 2 4α 2 N i=1 Q i e i G• ri 2 .
Finally, the constant and divergent terms are

(U 2D pp ) DIV = 1 2 N i=1 N j=1 Q i Q j π A lim G→0 -γ -log G 2 4α 2 + 1 2 N i=1 Q 2 i π A lim G→0 -γ -log G 2 4α 2 -α 2 or (U 2D pp ) DIV = - π 2A   N i=1 N j=1 Q i Q j   π A γ + lim G→0 log G 2 4α 2 - 1 2 N i=1 Q 2 i α 2 .
As a result, the particle-particle interaction energy is

U 2D pp = 1 2 N i=1 N j=1 Q i Q j Sn e -| rij + Sn| 2 α 2 | r ij + S n | 2 + π 2A G∈R 2 G =0 E 1 G 2 4α 2 N i=1 Q i e i G• ri 2 - π 2A   N i=1 N j=1 Q i Q j   γ -lim G→0 log G 2 4α 2 - 1 2 N i=1 Q 2 i α 2 .

Particle-Background and Background-Background interactions

The particle-background interaction energy is given by

U pb = - N Q 2 A N i=1 So d r   Sn 1 | r i -r + S n | 2   (7.19)
where the integration is done over the surface S o of the cell. Since the sum of the integrals over all S o is equivalent to a single integral over the infinite layer

So d r Sn 1 | r ij + S n | 2 = 2 d r 1 | r i -r| 2 then U pb = - N Q 2 A N i=1 2 d r 1 | r i -r| 2 = - N Q 2 A N i=1 ∞ 0 dt 2 d r exp -| r i -r| 2 t = - N Q 2 A N i=1 ∞ 0 dt π t .
(7.20) On the other hand, the the background-background interaction energy is

U bb = - N 2 Q 2 2A So d r So d r   Sn 1 | r -r + S n | 2   (7.21)
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this is

U bb = - N 2 Q 2 2A So d r   Sn So d r 1 | r -r + S n | 2   .
The term in the brackets is

Sn So d r 1 | r -r + S n | 2 = π ∞ 0 dt t therefore U bb = N 2 Q 2 π 2A ∞ 0 dt t
Finally, the contribution to the excess energy due to the background is

U pb + U bb = - N 2 Q 2 π 2A ∞ 0 dt t (7.

22)

Excess energy

There is a divergent term in the particle-particle interaction energy given by the equation ( 7. 19) which appears when the reciprocal lattice vector G goes to zero. Since G -1 has dimensions of length it is convenient to define a rescaled lattice vector g := G/ √ ρ with ρ = N/A and write the divergent term in the form

lim G→0 log G 2 4α 2 = 2 log √ ρ 2α + lim g→0 log g 2 .
The rescaled particle-particle interaction energy is

u pp = U pp N Q 2 ρ = N 2ρ N i=1 N j=1 Sn e -| rij + Sn| 2 α 2 | r ij + S n | 2 + π 2N 2 G∈R 2 G =0 E 1 G 2 4α 2 N i=1 e i G• ri 2 - π 2 γ -2 log 2α √ ρ - 1 2 α √ ρ 2 - π 2 lim g→0 log g 2
and the rescaled contributions of the background are

u pb + u bb = U pb + U bb N Q 2 ρ = - π 2 ∞ 0 dt t .
And the rescaled excess energy u exc = u pp + u pb + u bb takes the form

u exc = U exc N Q 2 ρ = N 2ρ N i=1 N j=1 Sn e -| rij + Sn| 2 α 2 | r ij + S n | 2 + π 2N 2 G∈R 2 G =0 E 1 G 2 4α 2 N i=1 e i G• ri 2 - π 2 γ -2 log 2α √ ρ - 1 2 α √ ρ 2 + LIM (7.23)
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where

LIM := - π 2 lim g→0 log g 2 + ∞ 0 dt t .
In general, LIM is not defined because both terms included in its definition are divergent. In fact, if we assume that g is proportional to t say g = ξt we may write

LIM = - π 2 2 log(ξ) - 1 0 dt t + ∞ 1 dt t = - π 2 2 log(ξ) - ∞ 1 dt t + ∞ 1 dt t = -π log(ξ)
where t = 1/t. In this way the the divergences are cancelled but also a free constant ξ is introduced. Since LIM does not have dependencies with any thermodynamic variable, then this constant will not affect the Monte Carlo simulations.

Ground state for inverse power law interaction

In this section it is provided the C M (n) for the two dimensional triangular lattice and any real positive value of the exponent n. This constant is required since it provides a reference point for the excess and free energy in simulations e.g. [START_REF] Antlanger | Crystal phases of soft spheres systems in a slab geometry[END_REF][START_REF] Mazars | The melting of the classical two-dimensional wigner crystal[END_REF][START_REF] Radloff | Freezing of the classical two-dimensional, onecomponent plasma[END_REF]. Additionally, the Madelung constant permits to find the ground state energy used in harmonic approximations as it was done in [START_REF] Travesset | Phase diagram of power law and lennard-jones systems: Crystal phases[END_REF]. The Madelung constant is defined as

C M (n) := E 0 N Q 2 ρ n/2
where E 0 is the ground state of the system. Since the triangular lattice is known as the ground state of systems with IPL interactions in two dimensions [START_REF] Antlanger | Crystal phases of soft spheres systems in a slab geometry[END_REF][START_REF] Bonsall | Some static and dynamical properties of a two-dimensional wigner crystal[END_REF], then we may use a two dimensional triangular lattice defined with one particle in an oblique primitive cell with two primitive vectors a 1 = a x and a 2 = a(x + √ 3 ŷ)/2, where a is the spatial periodicity of the lattice. With the Ewald method developped in refs. [START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF][START_REF] Mazars | Ewald methods for inverse power-law interactions in tridimensional and quasi-twodimensional systems[END_REF], the Madelung constant for two dimensional triangular lattices for n = 2 can be written as

C M (n) = 1 2Γ( n 2 ) √ 3 2 n 2     +∞ l1,l2=-∞ (l1,l2) =(0,0) Γ n 2 , α 2 a 2 w(l 1 , l 2 ) w(l 1 , l 2 ) n/2 + 2π √ 3 (n-1) +∞ n1,n2=-∞ (n1,n2) =(0,0) Γ 2-n 2 , 4π 2 3α 2 a 2 w(n 1 , n 2 ) w(n 1 , n 2 ) 1-n/2 - 2(αa) n n + 4π √ 3 (αa) (n-2) (n -2)     (7.24)
where N = 1 is the number of particles per primitive cell, ρ = 2/a 2 √ 3 is the surface density, α is the Ewald damping parameter and w(l 1 , l 2 ) = (l 2 1 + l 1 l 2 + l 2 2 ). Each summation in Eq.(7.24) converge rapidly for any real value of n = 2 ; the first one is the sum over the periodic images of the primitive cell and the second term stems from the contributions of the reciprocal wave vectors. For n ≤ 2 (long ranged interactions), a neutralizing background, to ensure electroneutrality for the cancellation of the Infrared (IR) divergences, is included in the model [START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF][START_REF] Bonsall | Some static and dynamical properties of a two-dimensional wigner crystal[END_REF][START_REF] Mazars | Ewald methods for inverse power-law interactions in tridimensional and quasi-twodimensional systems[END_REF] ; the interaction of particles with the background makes C M (n < 2) negative. For n ≥ 2 (short ranged interactions), no IR-divergence occurs and C M (n > 2) is positive. On Fig. 7.3, we show in a log-log plot the Madelung constants as function of n and in Table 7.1, we report numerical values of C M (n) for few particular exponents n.

The case n = 2 requires a special treatment. On the one hand, according to Eq.(7.24), the Madelung constant diverges as n tends to 2: lim n→2 -C M (n) = -∞ and lim n→2 + C M (n) = +∞ (see also Fig. 7.3). On the other hand, a straightforward application of the Ewald method, for n = 2, gives

C M (2) = E 0 N Q 2 ρ = √ 3 4     +∞ l1,l2=-∞ (l1,l2) =(0,0) exp -α 2 a 2 w(l 1 , l 2 ) w(l 1 , l 2 ) + 2π √ 3 +∞ n1,n2=-∞ (n1,n2) =(0,0) E 1 4π 2 3α 2 a 2 w(n 1 , n 2 ) - 2π √ 3 γ -ln(2 √ 3 α 2 a 2 ) -α 2 a 2     + C 0 (7. 25 
)
where γ is the Euler-Mascheroni constant, E 1 (x) = -Ei(-x) is the exponential integral function and C 0 is a constant. It is worthwhile to mention also that for all n, C M (n) does not depend on α and a.

The neutralizing background is necessary to cancel the logarithmic IR-divergence resulting from the long
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123 ranged nature of the interaction for n = 2, but it introduces a logarithmic ultraviolet (UV) divergence which is compensated by a contribution due to the (n 1 , n 2 ) → (0, 0) term in the reciprocal lattice sum [START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF]. On the contrary to the IR divergences, the cancellation of the UV divergence for n = 2 produces an unknown additive constant, noted C 0 in Eq. (7.25). From Eq. (7.25), we have C M (2) -C 0 = 1.623448282 . . ., thus the Madelung constant for n = 2 is finite.

To fix the constant C 0 , we propose to define the Madelung constant C M (2) as

C M (2) = 1 2 lim →0 (C M (2 -) + C M (2 + )) = lim →0 (< C M (2) > ) (7.26)
for consistency between Eqs. (7.24) and (7.25). Then, we obtain The Madelung constant of the 2D-Coulomb interactions [32,[START_REF] Radloff | Freezing of the classical two-dimensional, onecomponent plasma[END_REF][START_REF] Perram | Statistical mechanics of two-dimensional coulomb systems: I. lattice sums and simulation methodology[END_REF] may be computed by using the Ewald

C 0 = π(γ -log 2). ( 7 
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124 method or by applying the limit given by Eq. ( 7.40) to Eq. (7.24) ; with the notations used in this note, we have

C M (log) = E 0 N Q 2 = 1 4     +∞ l1,l2=-∞ (l1,l2) =(0,0) E 1 α 2 a 2 w(l 1 , l 2 ) + √ 3 2π +∞ n1,n2=-∞ (n1,n2) =(0,0) exp -4π 2 3α 2 a 2 w(n 1 , n 2 ) w(n 1 , n 2 ) -γ -2 ln(ασ) - 2π √ 3 1 α 2 a 2     . (7.29)
The numerical value obtained with Eq. (7.29) is independent of the Ewald parameter α, but it depends on a (or density) [32,[START_REF] Perram | Statistical mechanics of two-dimensional coulomb systems: I. lattice sums and simulation methodology[END_REF]. The choice πρσ 2 = 1 leads to the standard definition [32,[START_REF] Perram | Statistical mechanics of two-dimensional coulomb systems: I. lattice sums and simulation methodology[END_REF] as C M (log) = -0.374376243. As it was done recently [START_REF] Mazars | The melting of the classical two-dimensional wigner crystal[END_REF] for the Coulomb interaction (n = 1), the Madelung constants reported in this note will serve as a reference energy for the computations of the free energy in studies of the two-dimensional melting.

The ground state of the 2dOCP with logarithmic interaction

As it was mention previously the minimal energy configuration of a 2dOCP is an hexagonal lattice. But at it is expected, the value of the ground energy also depends on the particle-particle interaction. In this section, the ground energy of the 2dOCP with logarithmic interaction will be computed with the aid of Eq. (C.11). At vanishing temperature the particles are located in the nodes of the lattice and unit cell may be chosen as oblique box of defined with the vectors a 1 , a 2 and containing a single particle N = 1 located at corner r 1 = 0 of the cell (see Fig. These vectors are computed form the basis vectors of the real lattice from the conditions

a 1 • b 2 = a 2 • b 1 = 0 and a 1 • b 1 = -a 2 • b 2 = 2π. Hence, any translation in the reciprocal space G m = m 1 b 1 + m 2 b 2 is G m = π a m 1 x - 2π a √ 3 (m 1 + 2m 2 ) ŷ with m = (m 1 , m 2 ) ∈ Z 2 .
At vanishing temperature the excess energy of the 2dOCP is

U exc | T =0 = Q 2 4 Sn E 1 | S n | 2 α 2 + πQ 2 A Gm∈ 2 Gm =0 1 G 2 m exp - G 2 m 4α 2 - N Q 2 4 γ + 2 log α 2 L 2 - π 4 N Q 2 Aα 2
according to Eq. (C.11). The squared magnitude of a translation in the real an reciprocal space may be written as follows

S 2 n = a 2 W n1,n2 G 2 m = 16π 2 3a 2 W m1,m2 by defining W n1,n2 = n 2 1 + n 2 2 + n 1 n 2 .
As a result, the ground energy is given by

U exc N Q 2 T =0 = 1 4 (m1,m2)∈Z 2 (m1,m2) =0 E 1 a 2 α 2 W m1,m2 + √ 3 2π 1 W m1,m2 exp - 4π 2 W m1,m2 3α 2 a 2 -γ + 2 log α 2 L 2 - 2π a 2 √ 3α 2 
(7.30)

Generalities of the Multi-histogram method

The multiple-histogram method MHM was introduced in 1987 by Ferrenberg and Swendsen [START_REF] Ferrenberg | New monte carlo technique for studying phase transitions[END_REF]. The method is used to optimize the data analysis of data obtained from the MC-simulation. In this study, we perform a set of different MC-simulations at different temperatures say T 1 , . . . , T I M C with I M C the total number of temperatures. We use the MHM to interpolate properly data e.g. in the range T 1 ≤ T ≤ T I M C . The probability to generate a configuration with energy E is

p(E) = ρ(E) exp(-βE) Z N (E) n (7.31)
where Z is the partition function, ρ(E) is the density of states (number of configurations with energy E), N (E) the histogram associated to the energy E computed in the MC-simulation, and n is the total number of (saved) measurements in the simulations.

For a MC simulation numbered i, we have

ρ i (E) N i (E) n Z i exp(-β i E)
where ∀i,

ρ i (E) ρ(E) (7.32)
The MHM deals with the following question: What is the best estimate we can make of the true density of states, given the many estimates from the different simulations ? → weighted averages over estimates ρ α (E). If we consider a variable x from a given set of measurements {x i } with standard errors {σ i }, then best estimate x is

x = i x i /σ 2 i j 1/σ 2 j (7.33)
Assuming that measurements are independent, then each histogram should be Poissonian. Then the standard deviation of N i (E) is δN i (E) = Ni (E). Since the Poissonian variation in N i (E) is the only source of error in Equation (7.32), then the error σ i on ρ i (E) is

σ i = ∆N i (E) n i Z i exp(-β i E) = Ni (E) n i Z i exp(-β i E) (7.34)
and the variance σ 2 i is

σ 2 i = Ni (E) n 2 i Z i exp(-β i E) 2 = ρ 2 (E) Ni (E) . (7.35)
Using Eq.(7.33), the best estimate of ρ(E) from i = 1, . . . , I M C MC computations at temperatures

T i is ρ(E) = i ρ i (E) Ni (E)/ρ 2 (E) j Nj (E)/ρ 2 (E) = i ρ i (E) Ni (E) j Nj (E) = i Ni(E) ni Zi exp(-βiE) ρ(E) ni Zi exp(-β i E) j ρ(E) nj Zj exp(-β j E) = i Ni (E) j nj Zj exp(-β j E) (7.36)
where the partition function Z i 's are unknowns. The consistency between the I M C is achieved by writing

Z k = E ρ(E) exp(-β k E) = E i Ni (E) j n j Z -1 j exp((β k -β j )E) (7.37)
To compute the Z i 's, we start from an initial estimate {Z (0) i } i=1,I M C and we iterate Eq.(7.37) as k . We shall adopt the following indices notation for the MHM:

Z (m) k = E i Ni (E) j n j (Z (m-1) j ) -1 exp((β k -β j )E) . ( 7 
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• The number of the MC computation at T i is : i = 1, . . . , I M C .

• The total number of samples of the trajectory for the temperature T i is : n i .

• The energy E is is the energy for the s th sample of the computation i is s : 1 ≤ s ≤ n i Then, the consistency Eq. (7.37) with the summation over the trajectories becomes

Z (m) k = I M C i=1 ni s=1        1 I M C j=1 n j (Z (m-1) j ) -1 exp((β k -β j )E is )        . (7.39)
One of the main problems in the implementation of Eq. ( 7.39) is in the over-and under-flowing of the numerical range when computing the Z (m) k . In order to solve this task, we compute ln(Z

(m) k ) instead of Z (m) k
and extract the maximum from the logarithm by using the property ln(e x + e y ) = ln(e x (1 + e y-x )) = x + ln(1 + e y-x ). (7.40) Most explicitly, the procedure is as follows: first we write

Z (m) k = I M C i=1 ni s=1        1 I M C j=1 n j (Z (m-1) j ) -1 exp((β k -β j )E is )        = I M C i=1 ni s=1 X (m-1) k (i, s) (7.41) with X (m-1) k (i, s) = 1 I M C j=1 n j (Z (m-1) j ) -1 exp((β k -β j )E is ) = 1 I M C j=1 Y (m-1) j (i, s; k) (7.42) and Y j (i, s; k) = n j (Z (m-1) j ) -1 exp((β k -β j )E is ) (7.43)
Then, with these definitions and using Eq.( 7.40), we can write ln

Z (m) k = ln X (m-1),max k + ln I M C i=1 ni s=1 exp ln X (m-1) k (i, s) -ln X (m-1),max k . ( 7 
.44)
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A similar procedure may be used for ln

X (m-1) k (i, s) to write ln X (m-1) k (i, s) = -ln   I M C j=1 Y (m-1) j (i, s; k)   = -ln Y (m-1),max (i, s; k) -ln   I M C j=1 exp ln Y (m-1) j (i, s; k) -ln Y (m-1),max (i, s; k)   .
(7.45) The maximum are defined as ln Y (m-1),max (i, s; k) = max

j ln(n j ) -ln Z (m-1) j + (β k -β j )E is (7.46) and ln X (m-1),max k = max (i,s)   -ln Y (m-1),max (i, s; k) -ln   I M C j=1 exp ln Y (m-1) j (i, s; k) -ln Y (m-1),max (i, s; k)     .
(7.47) Summarizing, the method to compute the partition functions Z k is given below.

Algorithm for the computation of the ln [Z k ]'s.

A reference point is needed to compute exactly the Z k for a given system. In the following, we set Z I M C = 1 (ln Z I M C = 0.) knowing that an inessential additive constant is missing for the exact partition functions Z k of the system.

Step 1 : We known all ln Z (m-1) k from the (m -1) th iteration [or, we set ln Z (0) k = 0 for all k for the first iteration].

Step 2 : For each MC computation j, we compute ln Y (m-1),max (i, s; k) according Eq.(7.46) over all trajectories i and all values of energies E is .

Step 3 : For each k, we compute ln X (m-1),max k according Eq.( 7.47) over all trajectories i and all values of energies E is .

Step 4 : We compute the new value ln

Z (m) k as ln Z (m) k = ln X (m-1),max k + ln        I M C i=1 ni s=1 exp -ln(Y (m-1),max (i, s; k)) -ln(X (m-1),max k ) I M C j=1 exp ln(Y (m-1) j (i, s; k)) -ln(Y (m-1),max (i, s; k))        (7.48)
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Step 5 : Having the new estimate of ln [Z k ], we compute

∆ 2 = I M C -1 k=1 ln Z (m) k -ln Z (m-1) k 2 (7.49) • if ∆ 2 ≤ 2 ,
convergence is reached and we have an estimate of all Z k at the accuracy (= 10 -7 ) with

Z I M C = 1; • if ∆ 2 > 2 , we continue the computation from Step 1 with ln Z (m) k .
When the histograms overlap, the algorithm is convergent because of the consistency equation (7.37,7.38,7.39) ; the convergence is exponential, once the values of ln Z To have an interpolation on a large range of temperatures, we need several MC trajectories, 15 to 20 (or more). To overcome some difficulties with temperatures as in figure 7.5 (c,d), because of the dependence of the speed of convergence on (i-iii), we proceed by doing some previous computation on neighbouring temperatures ( Interpolation between the temperatures. Once the computation of ln [Z k ] is achieved with the previous algorithm, we can interpolate the results of the MC computations to any temperatures in the range of the temperatures covered by the MC computations. Then, the first computation to do is to compute the value of the partition function Z(β) for a new temperature k B T = 1/β. The basic equation is the consistency equation

Z(β) = E i Ni (E) j n j Z (cv) j -1 exp((β -β j )E) (7.50) with Z 
(cv) k the converged values of the partition function for MC computations. Again, we replace the histograms by a summation of the trajectories as

Z(β) = I M C i=1 ni s=1        1 I M C j=1 n j Z (cv) j -1 exp((β -β j )E is )        (7.51) 
and again too, to stay in the numerical range of computers, we compute ln [Z(β)] instead of Z(β) 3 There is also a dependence on the length of the trajectories ; longer the trajectories are, better is accuracy of histograms, but longer are the summations over s ( n i s=1 ...).
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-152,5 - In two dimensions the main condition of the Delaunay triangulation is the circumcircle criterion. For three points located at (x 1 , y 1 ), (x 2 , y 2 ) and (x 3 , y 3 ) the circumcircle is the circle which passes through these points.

The center and the radius of the circumcircle are

x c = - b x 2a y c = - b y 2a circumcenter (7.52) and r = 1 2|a| b 2 x + b 2 y -4ac circumradius (7.53) 
where

a = x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 b x = - x 2 1 + y 2 1 y 1 1 x 2 2 + y 2 2 y 2 1 x 2 3 + y 2 3 y 3 1 b y = x 2 1 + y 2 1 x 1 1 x 2 2 + y 2 2 x 2 1 x 2 3 + y 2 3 x 3 1 c = - x 2 1 + y 2 1 x 1 y 1 x 2 2 + y 2 2 x 2 y 2 x 2 3 + y 2 3 x 3 y 3 .
An example is in Fig. To check that a given point r i = (x i , y i ) is or not inside the circumcircle of (x 1 , y 1 ), (x 2 , y 2 ) and (x 3 , y 3 ) with center located at r c = (x c , y c ) an option is to evaluate the following determinant inCircle((x i , y i ), x 1 , x 2 , x 3 ) = clockwise(x 1 , x 2 , x 3 )

x 2 i + y 2 i x i y i 1 x 2 1 + y 2 1 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 2 3 + y 2 3 x 3 y 3 1 =      0 then (x i , y i
) is on the circurcircle border negative then (x i , y i ) is outside the circumcircle positive then (x i , y i ) is inside the circumcircle (7.54)

COMPUTATIONAL GEOMETRY TOOLS

where clockwise(x 1 , x 2 , x 3 ) is positive if (x 1 , x 2 , x 3 ) are sorted in counter-clockwise order and negative if they are sorted in clockwise order. The function clockwise(x 1 , x 2 , x 3 ) may be programme by using the the cross product between the vectors P 12 = (x 2x 1 , y 2y 1 ) and P 23 = (x 3x 2 , y 3y 2 ) if P 12 × P 23 is + k then the points clockwise(x 1 , x 2 , x 3 ) = 1 otherwise P 12 × P 23 = -k and clockwise(x 1 , x 2 , x 3 ) = -1. In order to generate the Delaunay triangulation of a given set of points, an easy but not too efficient way to proceed is as follows:

• Take three points randomly

• Check if the circumcircle is empty by using Eq. (7.54)

• If the circumcircle is empty, then a new triangle is included This procedure takes a computational time depending with the number of point as O(N 2 ). However, there are most efficient algorithms with a runtime O(N log N ) [START_REF] Bowyer | Computing dirichlet tessellations[END_REF] [START_REF] Brassard | Fundamentals of algorithmics[END_REF]. The Voronoi diagram is just the geometric dual of the Delaunay triangulation (see Fig. 7.7). The Voronoi diagram is particularly useful because it permits to identify the nearest nearest neighbours of a given point. For two-dimensional melting the construction of the Voronoi diagram enables to identify defects on the lattice since the number of nearest neighbours is different to six. The system size of the studies presented in the current document are in the interval 1024 ≤ N ≤ 16384. The computation of the Delaunay triangulation or the Voronoi diagram with algorithms with runtime O(N 2 ) or O(N log N ) will use a considerable amount of the computation time during simulations. Nevertheless, we have used the fact that the particle density of different subregions of the computational cell does not change dramatically. As a result, it is possible to do a computation in subregions which enables to reduce the computational time. An example of the Voronoi construction by using this strategy including the periodic boundary conditions is shown in Fig. 7.8 for a system of 1024 particles. BOOP of the ith-particle of the system is defined as follows

ψ m (i) = 1 N i Ni ν=1 e imθiν
where N i is the number of nearest neighbours of the ith-particle, θ iν is the angle between an arbitrary but fixed reference axis (see Fig. 7.9) and m is positive integer. The computation of φ m (i) enables to detect if the environment of ith-particle has m-fold symmetry. For instance, let us consider a particle in the center of a regular convex polygon of m edges, where their neighbours are in the vertices of the m-gon, then θ iµ = 2πν/m + θ o with θ o a constant related with rotation of the m-gon with respect the arbitrary reference axis. The evaluation of the local BOOP for this special case gives φ m (i) = exp(iθ o ) then |ψ m (i)| = 1 for the m-gon. The local BOOP is useful to have a measure of the the influence of defects on the 2dOCP on the flat plane since its Wigner crystal is an hexagonal lattice and |ψ 6 (i)| = 1 for each particle. Another useful definition is the global BOOP given by

φ m = 1 N i=1 ψ m (i).
In simulations, we are interested in the computation of the statistical average of

|φ m | = 1 N i=1 1 N i Ni ν=1 e imθiν
where the hexagonal lattice is characterized by |φ 6 | = 1. In the next chapter we shall study the behaviour of |φ m | as function of the coupling constant Γ. Typically, |φ 6 | responds during the melting of the hexagonal crystal and important information may be obtained from its dependence with the coupling constant.

Additionally, the susceptibility associated to |φ m | defined as

χ m = N |φ m | 2 + |φ m | Reference axis Θ i1 Θ i3 1 2 3 4 5 6 i
Fig. 7.9: The dashed lines corresponds to the bonds between the ith-particle (plotted in red color) and its nearest neighbours (N i = 6 in this case).

may be used to localize the critical values of Γ where transitions take place. Another useful function in the study of the structural properties of the system are the center-to-center pair distribution function

g(r) = 1 4πrρN i i =j δ (r-| r ij |) , (7.55) 
the bond orientational correlation functions

G m (r) = 1 g(r) i i =j δ (r-| r ij |) φ * m (i)φ m (j) , (7.56) 
the cross bond orientational correlation functions

G nm (r) = 1 2g(r) i i =j δ (r-| r ij |) (φ * n (i)φ m (j) + φ * m (j)φ n (i)) (7.57) 
and the center-to-center pair distribution function between defects of type a and b

g ab (r) = 1 (4πr/A) 1 N a N b i∈Na j∈N b δ (r-| r ij |) . (7.58) 
The asymptotic behaviour of this functions are also used to characterizes the positional and orientational order of the system in a given phase. For instance, the correlations functions of a system in an ordered phase have the following behaviour lim

r→∞ G m (r) = | Φ m | 2 . (7.59)
In contrast, if the system is the liquid phase, then the correlations associated to the orientational order are short-ranged lim r→∞ G m (r) = 0. (7.60)

Finally, the pair-correlation function satisfies lim r→∞ g(r) = 1 independently of the phase.

Chapter 8

Phase transitions of the one component plasma with inverse power law interactions

The absence of long-range order at finite temperature on many two-dimensional systems with continuous degrees of freedom [3] [4] brought to mind the the absence of phase transitions in the XY -model as well as twodimensional crystals in Coulomb systems. Posteriorly, numerical studies at the sixties suggested transitions in the XY -model [START_REF] Stanley | Possibility of a phase transition for the two-dimensional heisenberg model[END_REF]. The existence of two dimensional solids at low temperature were also confirmed in numerical simulations [START_REF] Alder | Phase transition in elastic disks[END_REF] in 1962. This apparent contradiction lead important efforts to understand the nature of transitions in two-dimensions. As we mention in Chapter 6.1 Kosterlitz and Thouless showed that transitions in several two-dimensional systems are due to topological charges [5]. This was the case of the classical bi-dimensional XY -model1 where vortices with logarithmic interaction play the role of topological charges. In this model, large vortices pairs bounded below some temperature T < T KT begin to unbind at T = T KT . A transition take place when these vortices pairs proliferate because thermal excitations as the temperature is increased. Posteriorly, it was developed the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory of melting in two-dimensions [13] to describe the phase transition from solid to fluid where topological defects are dislocations and disclinations in 2D crystals. In analogy with the vortices of the KT-transtion, there is a logarithmic interaction between pair of dislocations as well as pair of disclinations.

The KTHNY proposed a two-stage scenario where an intermediate phase called hexatic emerged between the solid and fluid phases due to the thermal unbinding of dislocations pairs, later these pair unbind contributing to the free disclinations proliferation in the fluid phase. The hexatic phase has been reported in several experimental systems [15]- [25] as well as numerical simulations of diverse models [START_REF] Jaster | Computer simulations of the two-dimensional melting transition using hard disks[END_REF][START_REF] Muto | Crystallization of a classical two-dimensional electron system: Positional and orientational orders[END_REF][START_REF] Lin | Computer simulations of two-dimensional melting with dipole-dipole interactions[END_REF][START_REF] Lee | Effect of the range of the potential on two-dimensional melting[END_REF][START_REF] Qi | Melting in two-dimensional yukawa systems: A brownian dynamics simulation[END_REF]. This chapter is focused on the study of the melting for the two-dimensional one component plasma (2dOCP) with inverse power law (IPL) interactions by using the Monte Carlo Method. We consider IPL interactions of the form 1/r n where n is an integer. The description of system as well as their energy contributions are in Section 7.1 of the previous chapter.

In particular, we are interested in the classification of the phase transition of the system for n = 2 and 3. To this aim, numerical simulations for different system sizes was performed for each value of n. A comparison of the numerical results with the KTHNY-theory of two dimensional melting shows that sufficiently large systems may exhibit a hexatic phase. In this study the hexatic phase has been delimited by localizing the critical coupling constants on the melting curve of the energy as well as other parameters related to the neighboring arrangement of the system e.g the bond orientational parameters. Finally, a finite size scaling analysis for each value of n showed that hexatic/liquid transitions are weakly first order.

Numerical methods

For this system, the only relevant thermodynamic parameter is Γ = Q 2 (ρπσ) n/2 /k B T commonly referred as the coupling parameter with k B the Boltzmann constant and T the temperature. The typical length L is defined as L = N/ρ where ρ is fixed for each value of n. Since periodic boundary conditions are imposed on the system, then the method of Ewald Sums described in Section 7.3 is implemented to include correctly the long-range interactions between particles. The trial moves in the Monte Carlo Method include movements of individual particles as well as variation of the box shape as it is described in Section 7.2. The Monte Carlo method enables to collect averages of the different thermodynamic properties of the system for a finite set of coupling parameter after equilibration say Ξ := (Γ 1 , Γ 2 , . . . , Γ M ). In this study the multiple histogram method MHM (see Section 7.4) was used on the data obtained from the MC-simulations for each value of n and different system sizes with the aim to do the analysis by using the finite size scaling theory. Several parameters related to the identification of neighbouring particles of a given charge as the bond orientational order parameter required implementation of some computational geometry tools described in Section 7.5. In particular, the Voronoi diagram was built for each MC-step in our simulations.

Results

Location of the critical coupling parameter

In general, the location of the different phase transitions of the 2dOCP on the plane with IPL interactions depends on n as well as N because the system is finite. According to the KTHNY-theory one should expect a two-step scenario with two critical coupling parameters say Γ l = Γ l (N, n) and Γ s = Γ s (N, n) which localize the liquid/hexatic and hexatic/crystal phase transitions respectively (see Fig. 8.1). Moreover, the region Ξ hex (N, n) = (Γ l , Γ s ) where the hexatic phase is placed depends drastically on the system size [START_REF] Mazars | The melting of the classical two-dimensional wigner crystal[END_REF] becoming too narrow and difficult to detect numerically if N is not sufficiently large. We are interested to perform simulations with a set of coupling parameters in a range including the hexatic phase. To this aim, it is convenient to have an idea where the transitions take place. An effort to locate the critical parameters is by using the following empirical formula

log Γ c (n)/ Γ = Γ o + Γ 1 log n + Γ 2 (log n) 2 + Γ ∞ (8.1)
The constant term Γ ∞ was fixed by using the result obtained in the hard-disk limit [START_REF] Challa | Finite-size effects at temperature-driven first-order transitions[END_REF][START_REF] Binder | Monte carlo tests of renormalization-group predictions for critical phenomena in ising models[END_REF] for critical surface densities. The asymptotic behaviour is Γ c (n) ∼ exp(Γ ∞ n) and the corresponding values of Γ ∞ for
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the fluid/hexatic and hexatic/solid transitions are

Γ f/h ∞ = 1 2 log π + log(ρ f /h ) and Γ h/s ∞ = 1 2 log π + log(ρ h/s )
with ρ f /h = 0.891 and ρ h/s = 0.917 values of the surface density for the hard disk [28]. The coefficients Γ o , Γ 1 and Γ 2 were fixed depending on the critical Γ c (n A plot of Eq. (8.1) is shown in Fig. 8.2. Numerical results for n = 2 have shown that transitions effectively occur near the value of Γ predicted by Eq. ( 8.1) as it will be shown later in this section. The curves of Fig. 8.2 provide an approximate value of the critical coupling parameters as function of n. The limit case n → 0 is not taken into account since it requires a comparison as well as a proper connection with a 2dOCP on the plane with logarithmic interactions. The empirical relationship given by Eq. (8.1) may be applied to locate approximately the middle point of Ξ hex (N, n). Posteriorly, this point is taken as a reference to define the set Ξ used in the simulation trying to include more points near the expected transition region. Typically, the number of coupling parameters (as well as temperatures) employed to define Ξ in our simulations was around 20 ± 5. Numerical simulations It is necessary to face some problems before to observe the hexatic phase. An usual task is related to the length of the Markov chain, since the simulation must run long enough to sample properly the phase space and avoid a computations in the transient region. In our simulations the length of the MC trajectories during the equilibration process may be estimated by multiplying the acceptance ratio 30-40%, the amplitude of the trial move and the total of MC-cycles. The length of the MC trajectories during the equilibration process was around 4000L for systems of size N = 1024 and 550L for N = 16384. The averages were computed with MC trajectories of length ∼ 2500L for systems of size N = 1024 and ∼ 300L for N = 16384.

) required Γ l (N, n) or Γ s (N, n).
Another problem concerns the system size because the finite size effects may turn difficult the distinction between first-order and second-order transitions. Moreover, if the system is to small, then it is not longer possible to see any transition. In the current study we used finite size scaling analysis in order to classify the transition by observing how some thermodynamic observables vary with the system size L. Nevertheless, it was observed relevant differences on the results between the largest size simulated for n = 2 and smaller sizes as will be described in the next section.

Thermodynamic properties of the system

In our simulations the behaviour of the excess energy as a function of the coupling parameter for n reveals a phase transitions near the critical value predicted by Eq. (8.1). In particular, the melting curve for n = 2 is shown in Fig. 8.3. Similar results for the excess energy as a function of the coupling parameter were obtained for n = 3. 
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For large value of the coupling parameter Γ >> 1 it is possible to fit the rescaled excess energy according to following equation

u exc (n) = < E > N Q 2 ρ n/2 = C 1 (n) + C 2 (n) Γ + O 1 Γ 2
valid in the frame of the harmonic approximation where C 1 (n) and C 2 (n) are parameters depending on the interaction potential power n. The harmonic approximation is represented by solid red lines in Fig. 8.3. The numerical computation of C 1 (n) and C 2 (n) for n = 1, 2 and 3 are shown in Table 8.1 where C M (n) corresponds to the Madelung constant computed in Subsection 7.3.3. The value of the parameters C 1 (n) and C 2 (n) remained practically unaffected when the system size changes. In particular, the coefficients C 1 (n) corresponding to the numerical estimation of the Madelung constant were obtained from the fitted values of the rescaled energy in the strong coupling regime. The coefficients C 1 (n) are in excellent agreement with their expected values given by Eqs. (7.24) and (7.25). The excess energy dependence with the coupling constant shows signatures of the two-step scenario predicted by the KTHNY-theory, at least for the largest size simulated N = 16384 where the melting curve for N = 16384 exhibits a weak but not negligible second step (see the inset plot in Fig. 8.3-(left)).

n C M (n) C 1 (n) C 2 (n) 1 -1.
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These two steps on the excess energy for N = 16384 may be verified on the plots for the heat capacity and the Binder's fourth cumulant respectively (see Fig. 8 The heat capacity C V was computed computed by using the variance of the energy

C V k B = 1 N ∂ E ∂T = 1 N Γ Q 2 (ρπ) n/2 2 E 2 -E 2
in order to locate where the different transitions may occur. In particular, the heat capacity for n = 2 has two peaks: a global maximum located at Γ l (16384) = 80.299 ± 0.001 and a local maximum at Γ s (16384) = 83.41 ± 0.01 for the largest size simulated. On the other hand, the Binder's fourth cumulant was computed by using

Quantity C v V L N Γ h Γ s Γ h Γ s 1024 
V L = 1 - E 4 3 E 2 2 .
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The extremum of 1 -(2/3)V L (the minima for V L ) are Γ l (16384) = 80.299 ± 0.001 and Γ s (16384) = 83.64 ± 0.01. The location of these extrema do not differ substantially from the ones found for the heat capacity. The critical values of the coupling constant extracted from the heat capacity and the Binder's fourth cumulant are in Table 8.2. 

] The finite size scaling is done in terms of the reduced temperature

(χ 6 ) (m) ~ L 1.90
γ = 1 Γ - 1 Γ c (N )
where Γ c (L) is the critical value of a given size obtained from the global maximum location of the heat capacity or the minimum values of the Binder's fourth cumulant. For N = 16384, we associate the global maximum Γ c (N ) with the critical coupling parameter of the fluid/hexatic transition Γ l (N ). The data collapse of the heat capacity is shown in Fig. 8.4 as a function of the γL 2 . From our simulations the finite size scaling of the reduced temperature with γL 2 is good for all systems sizes. A first order transition is characterized by a scaling law of the form (C v ) (m) ∼ L 2 with (C v ) (m) the value of the heat capacity at the critical point and L the linear size [START_REF] Challa | Finite-size effects at temperature-driven first-order transitions[END_REF]. We remark that the best data collapse on the heat capacity was obtained by C v /L η1 with η 1 = 1.45 instead of C v /L 2 which may be interpreted as weakness of the first order transition [START_REF] Peczak | Monte carlo study of finite-size effects at a weakly first-order phase transition[END_REF]. The melting curve may be classified as it is shown in Fig. 8.5 where the region II is defined as

R II = {Γ l < Γ < Γ s }.
It is expected that region R II will contain the melting curve corresponding to the hexatic phase but also two regions corresponding to the crystal/hexatic and hexatic/fluid transitions with critical coupling constants Γ l and Γ s respectively. We remark that the peak located at the critical coupling constant associated to the hexatic/crystal transition was only observed for N = 16384. The heat capacity and the Binder's fourth cumulant only exhibit a single peak as it occurs for N = 8100 or lower sizes. However, this does not necessarily implies the absence of the hexatic phase. In this case it is possible to identify the hexatic phase by using the MHM to rebuild the energy histograms near the transition region. The critical coupling constant for the hexatic/crystal may be estimated located by looking for double and triple peak histograms as it was done for n = 1 in reference [START_REF] Mazars | The melting of the classical two-dimensional wigner crystal[END_REF] for N ≤ 8100. An alternative to support the presence of the hexatic phase is by plotting the structure factor.

The Figs. 8.6 and 8.7 show the 6 and 12 bond order parameter and their susceptibilities as a function of
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143 the coupling constant. Note that the corresponding curves for φ 12 vs Γ begin to exhibit explicitly a two-step scenario for N = 16384 (see the inset of Fig. 8.6). The first step is located at Γ l (16384) = 80.29 in the χ 12 curve, and it corresponds to the fluid/hexatic transition. The second step is located at Γ s (16384) = 83.36 is associated to the hexatic/solid transition. The 6-fold order parameter φ 6 also exhibit a two-step scenario at N = 16384, but most weak in comparison with one found in χ 12 since susceptibility peak at the second step is smaller. The global and local maximums of χ 6 are located at Γ l (16384) = 80.28 and Γ s (16384) = 83.30. The largest peaks in the plots for the susceptibilities are associated to the fluid/hexatic phase transition and the ones corresponding to the hexatic/solid are weak but not negligible. For both susceptibilities the finite size scaling for the reduced temperature, we found that γL 2 produced the best collapse. The maximums of the susceptibilities χ 6 and χ 12 at the fluid/hexatic transition followed an scaling law of the form χ 6 ∼ L 1.90 and χ 12 ∼ L 1.95 respectively. The 6-bond orientational correlation function G 6 (r) given by equation Eq. (7.56) may be used to quantify orientational order of the system. At the strong coupling the regime Γ → ∞ this function is a constant because of the 6-fold symmetry of the hexagonal crystal. In the solid phase Γ s < Γ < ∞ the asymptotic behaviour of the 6-bond orientational correlation function tends to a non-zero constant G 6 (r) ∼ const (see Eq. 7.59). On the other hand, the KTHNY-theory predicts that orientational correlations decay algebraically
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G 6 (r) ∼ r -η6 in the hexatic phase Γ h < Γ < Γ s with η 6 a positive exponent. In general, η 6 = η 6 (Γ) depends on the coupling constant and takes the following value lim

Γ→Γ + h η 6 (Γ) = 1 4 (8.2) 
just before to start the hexatic-fluid transition. Finally, in the weak coupling regime the system is a fluid and the orientational correlation function becomes short-range G 6 (r) ∼ e -r/ξ6 with ξ 6 the correlation length. The Fig. 8.8 shows the orientational correlation function g 6 (r) dependence with the coupling parameter. The curves for Γ = 79.1618, 80.0834 and 80.2380 of Fig. 8.8 belong to the fluid phase. Since the fluid/hexatic phase transition occurs at Γ h (16384) = 80.299 according to the plots for the heat capacity and the Binder's fourth cumulant, then it is expected a change on the asymptotic behaviour of the G 6 (r) at this critical coupling constant. Note that curves for Γ = 80.2767, 80.3155 and 80.3543 of Fig. 8.8 are the only curves with algebraic decaying. The corresponding value of the exponent n 6 for the orientational correlation function at Γ = 80.3155 obtained by fitting the data with g ∼ r -η6 was η 6 (80.3155) = 0.03499. This value is small with respect the one predicted by Eq. (8.2) value near the phase transition.

We denote n i as the average number of particles with i neighbours. This quantity related to the neighbouring arrangement was computed during the MC-simulations. The dependence of n i with the coupling parameter is shown in Fig. 8.10 was built by using the MHM.

According to the KTHNY-theory the pair-dislocation unbinding destroys the positional order producing the solid/hexatic transition. Later the hexatic/fluid transition takes place when the remaining orientational order of the hexatic phase is destroyed by the dislocation unbind in disclinations. The dislocations are clusters of two disclinations or particles having 5 or 7 neighbours. The Fig. 8.9-left and right are related to the statistics of particles having 5 and 7 neighbours respectively. The quantities n 5 and n 7 includes in the statistic of particles belonging to a cluster of defects (as a dislocation-pair or a single dislocation) as well as free defects. However, it is possible to obtain information from n i in agreement with the predictions of the KTHNY-theory: (i) The plots of Fig. 8.9 suggest the existence of three phases: liquid, hexatic and solid for N = 16384. (ii) The critical coupling parameter Γ h and Γ s may be localized by the global and local peaks of the susceptibility χ ni associated to n i (see Fig. 8.10). (iii) n 5 and n 7 decreased in two stages as Γ is increased. The value of n 5 and n 7 are significantly higher in the weak coupling regime Γ < Γ h than other regions. However, the thermal fluctuations not only activate free 5-fold and 7-fold defects in the fluid phase but also other variety clusters. Posteriorly, n 5 and n 7 decreased substantially at Γ h . This sudden decreasing may be attributed to the existence of the hexatic phase Γ h < Γ < Γ s where free
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disclinations are forbidden or at least extremely unlikely. This behaviour is related to the melting curve of the energy because configurations isolated 5-fold and 7-fold defects exist in the fluid because of thermal excitations. These defects should be absent in the hexatic phase where single dislocations (and less energetic) prevail. Finally, n 5 and n 7 decreased continuously to zero at the strong coupling regime. (iv) Note that the two-melting scenario where pairs of dislocations unbind in dislocations, and dislocations unbind dislocations is supported to by the behaviour of n 5 and n 7 since their plots are very similar indicating that occurrence of defects with 5 or 7 neighbours is very close. Defects unbinding in pairs is a requirement specially in the solid and hexatic phases taking into account that the inclusion of a single dislocation in the crystal requires an energy which diverges logarithmically with the system size, then the mechanism is activated by pair of dislocations (with opposite Burgers vectors) which may emerge in the system since they cost a finite amount of energy. If the average n 5 would be significantly larger or smaller n 7 for some value of Γ in the hexatic or solid phase, then the occurrence of dislocations and later disclinations in the fluid phase would be unbalanced and the unbinding in pairs picture would not work. For finite but sufficiently large systems the global maxima of the susceptibilities and 4th-cumulants are located at larger coupling constants. This shift of the critical coupling parameter of the fluid/hexatic transition may be modelled by the following equation

Γ h (N ) = Γ T.L. h + B ρL 2
where B is a constant and Γ T.L. h = lim

N →∞ Γ h (N )
is the value of the Γ h (N ) in the thermodynamic limit. In general, the value of B depends on the variable used in the fit. The fitted lines of the global maximums of C v , V L , χ 6 . . . are shown in Fig. 8.11 where Γ (1) , . . . , Γ (9) 8.3. CONCLUDING REMARKS 146 corresponds to the cut of the fitted lines with the Γ-axis. We estimated Γ T.L. h as Γ T.L. h = 80.34 ± 0.02 by computing an average over Γ (1) , . . . , Γ (9) with N ≥ 2025.

Concluding remarks

This chapter presents an extensive MC melting study of the bidimensional Wigner's Crystal in the 2dOCP with IPL interactions. We corroborated several features of the two-stage scenario predicted by the KTHNYtheory identifying the hexatic phase by using the MHM to interpolate different susceptibilities and Binder's fourth cumulant associated to different parameters. The global and local extrema of these functions enables us to locate the where the fluid/hexatic and the hexatic/solid phase transitions occurred. If the system is not sufficiently large, then it exhibits a single global extremum and the energy melting curve, the bond-order parameters and the nearest neighbour. Evidences of the hexatic phase in this system became stronger as the system size was increased. In particular, the local extremum emerged in all the susceptibilities and 4th-cumulants curves for N = 16384 in a small range of difference in the Γ-axis (see Table 8.3). The occurrence of the local extrema may be related to the dislocation pair unbinding described in the KTHNY-theory. As Γ approaches Γ s from the left individual dislocations bind to form quartets (dislocation pairs), once Γ is larger than Γ s become less frequent and completely disappear at Γ → ∞.

An analysis of n 5 and n 7 showed that occurrence of 5-fold and 7-fold defects (grouped or not as clusters) is comparatively smaller in the hexatic phase than the fluid phase. Since the hexatic phase has a small percentage of defects including the ones which corresponds to separated dislocations, then a formation of quartets are limited by this small number of available dislocations, at least in the picture proposed by the KTHNY-theory. The situation is rather different in the fluid phase where n 5 and n 7 show a significant percentage of defects including disclinations which may bind in disclinations which are most favourable than free disclinations as the coupling between particles increases. The sudden decreased of energy at Γ h is followed with an important decreasing of defects, both events are identified by the susceptibility and 4th-cumulants as a strong global maximum.

Chapter 9

Influence of the topological defects in the two dimensional melting

In the previous chapter we studied the phase transitions of the 2dOCP with IPL interactions. We were able to identify the hexatic phase and several of the results were according the frame proposed by the KTHNYtheory. However, we found by using a finite size scaling analysis that the fluid/hexatic phase transition was weakly first order instead of a continuous Kosterlitz-Thouless (KT)-transition.

The whole picture described in the KTHNY-theory is in terms of dislocation pairs, single dislocations and disclinations. Neither single dislocations nor free disclinations emerge in the strong coupling regime since they cannot be produced via a continuous deformation on the lattice. On the other hand, quartet of defects may be generated by a continuous deformation of the lattice. However, other configurations including larger defects clusters may emerge during the melting. In the solid phase, these other alternative to group defects may be energetically less viable than the 7-fold and 5-fold quartet of defects but no necessarily forbidden.

This chapter is devoted to statistical study of quartets, disclinations and dislocations as well as other clusters of defects absent in the traditional treatment of the KTHNY-theory. Our intention is to check the defects unbinding mechanism responsible of transitions in the 2dOCP by performing a detailed statistical analysis of clusters of defects at different coupling regimes. The study confirms the picture described in the KTHNY-theory providing alternative ways to identify the hexatic phase in two-dimensional systems.

Clusters types definition

We have mentioned that one of the features of the 2dOCP with IPL interactions is the crystallization in a hexagonal lattice at the limit Γ → ∞. If the coupling among punctual charges is decreased, then the thermal fluctuations may introduce defects on the lattice. A defect was defined as a particle whose number of nearest neighbours is not six. An isolated defect is a very special defect whose nearest neighbours are not defects, in other words, a defect surrounded by sites having six neighbours. A cluster of topological defects is defined as a set of connected topological defects. The size s of a cluster is the number of defects (independently of the nature of such defects) that are grouped in the cluster (see Fig. 9.1-left). During the melting process a defect may be activated at a given site. No defects are expected at Γ → ∞. Since the fraction < n 6 > /N measures the concentration of particles having six neighbours, then

p = 1 - < n 6 (Γ) > N ∈ [0, 1]
measures the concentration of defects at a given Γ. Now, all the particles of the system are identical, then a given defect takes place at one of the N particles of the system with equal probability. Therefore p = p(Γ) corresponds to the probability to find a defect at one of the particles of the system. The concentration of defects inherits the critical features of < n 6 (Γ) >, a plot for n = 2 is shown in Fig. 9.1-right. It is possible to identify the set of defects D for a given configuration of the system by checking the number of nearest neighbours of all the N particles with the Voronoi construction. For a given configuration, all clusters of topological defects are identified and stored according their sizes. A procedure to find a s-cluster is as follows: we start by choosing at a defect in the set D in order to check the total number ν 1 of nearest neighbouring defects. If ν 1 is zero, then we have targeted a disclination or 1-cluster and the process finishes. On the other hand, if ν 1 ≥ 1, then we have temporally identify a (ν 1 + 1)-cluster which must be saved. Next step is to find the ν 2 nearest neighbouring defects of the (ν 1 +1)-cluster (the internal bonds between particles of the (ν 1 + 1)-cluster should not be take into account). At the end of the second step we have a (ν 1 + ν 2 + 1)cluster. The procedure finishes at the step J when all the neighbours of the (ν 1 + . . . ν J -1 + 1)-cluster are not defects, this is ν J = 0.

In general a cluster cannot be characterized by only specifying its size s. Relevant information of a given cluster concerns the type of defects in the arrangement as well as the set of nearest neighbouring sites which defines the boundary of the s-cluster.

Once the constituents of the s-cluster are defined e.g. a 1 defects with 5-neighbours, a 2 defects with 7neighbours, . . . with s = a 1 + a 2 + . . ., then different arrangement with a rich variety of boundaries may emerge depending on the cluster size. An effort to classify these numerous alternatives to build a s-cluster where the index i = 1, . . . , N types labels the different types of s-clusters with N types the total number of types. The notation S i refers to a particular structure where S is the number of particles in the cluster and the index i is an index which numbers the structure in the order as it was identified at first time in the MC-simulation. The indices k and l are related to the bonds in the ith-type of the s-cluster where A (s,i) k,l is the number of bonds of particles having k neighbours in the S i -cluster with other particles into the S i -cluster or its boundary. The total number of bonds N bonds is set to 12 without to lose relevant information because during melting it is extremely difficult to activate a defect with more than twelve neighbours. The main idea consist in the association of one matrix to a given type, in other words to use the matrix Ŝi to identify a S i -cluster.
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Before to start the statistical analysis of clusters the topological matrices must be computed. By default the elements of each matrix in D(s) = Ŝi |i = 1, . . . , N types are set to zero before the inspection. In general the dimension of D(s) grows very fast as s is increased, then we have imposed a restriction N types ≤ 6 trying to select the clusters types with higher frequency of occurrence. During the MC-simulation all the clusters of each configuration are identified. However, we focused the statistical analysis on the most frequent types. The Fig. 9.2 shows some of the clusters considered in the statistics.

The set D(1) only has two matrices 11 and 12 , the first one corresponding to a 1 1 -cluster is a 5-fold disclination, and the second one associated to the 1 2 -cluster is a 7-fold disclination. Next cluster size has only a type of defect D(2) = 21 associated to a single-dislocation combining 7-fold and 5-fold defects. Eventually, thermal fluctuations may activate another type of 2-cluster but with a very small frequency. Since these other types 2-clusters are extremely rare, then they practically do not affect the statistics. A similar situation occurs with quartets (4-clusters) where it is possible to find more than ten different defects, however the types listed in Fig. 9.2 are the most frequent and representative in the statistics.

The cluster statistics

A useful parameter to study the statistical features of clusters during the melting process is the total number of s-clusters η s of a given configuration. This quantity is saved during the MC-simulation in order to compute different other parameters useful in the cluster statistics analysis. If the distinction between different types of s-clusters is not considered, then the following quantity < p s (Γ) >= 1 N < sη s (Γ) > with s = 1, 2, . . . and Γ ∈ R + measures the average probability that a given particle belongs to a s-cluster activated in the system at a given value of Γ. We have numerically computed p s (Γ) for the 2dOCP with IPL interactions of the form 1/r n . The Fig. 9.3 shows p s (Γ) as a function of the cluster size for the 2dOCP with 1/r 2 interaction at different values of Γ. The set of coupling constants in Fig. 9.3 is the same used in the previous chapter and the phase transitions are located at the around the same critical values of gamma of Table 8.3. The discrete plots in Fig. 9.3 have been plotted according to the three phases identified at N = 16384: fluid phase for Γ < 80.28(2), the hexatic phase in the range 80.28(2) < Γ < 83.3 (5) and the solid phase in the range 80.3(5) < Γ < ∞.

The functions p 1 (Γ) and p 2 (Γ) also corresponds to the probability to find a dislocation and singledisclination respectively. According to our definition the function p 2 (Γ) is the probability to find a particle belonging to a 2-cluster. As a consequence, p 2 (Γ) measures the single-dislocation occurrence frequency. From Fig. 9.3 we conclude that disclinations are less frequent than single-dislocations independently of the phase. The probability to have particle belonging to a triplet is lower than the one associated to the free defects generation. In contrast, the probability to find a particle belonging to a quartet is high during the whole melting process. Note that p 4 , the probability associated to quartets occurrence has the highest value in the solid phase implying that quartets are the very first clusters configurations emerging during the melting of the hexagonal crystal. Moreover, quartets occurrence does not change too much in comparison with the dramatic frequency changes of disclinations or clusters with s > 4 which suggests that quartets are very viable arrangements of defects. Another parameter used in the current study is which measures the average probability to find a particle belonging to a S i -cluster where

p si = 1 N < η si (Γ)
p s (Γ) = dim(D(s)) i=1 p si (Γ).
The numerical computation of p s (Γ) for different types of defects has been performed at several coupling parameter during the MC-simulations. It is possible to implement the Multi-histogram method MHM to interpolate p s (Γ) among different discrete values of Γ as it was done in the previous chapter with other thermodynamic quantities. The Fig. 9.3-left shows the behaviour of p s (Γ) as a function of Γ for the 2dOCP with IPL of the form 1/r 2 . As the coupling between particles increases, the 1-clusters occurrence grows according to two-step scenario predicted by the KTHNY-theory. Additionally, the occurrence probabilities associated to 1 1 -clusters and 1 2 -clusters are close to each other along the melting process. This means that 5-fold and 7-fold disclinations practically have the same concentration while the crystal melts including the low probabilities computed in the hexatic and solid phases. This is consistent during the fluid/hexatic transitions where it is expected that disclinations are generated in pairs by dissociation of single-dislocations.

The susceptibilities and 4th-cumulants defined in the previous chapter may be used in this chapter to locate the critical value of the coupling constants where transitions occurs by considering exclusively the cluster statistics. For instance, the 4th-cumulant associated to the occurrence probability p si (Γ) given by

V c (p sj ) = 1 - p sj 4 3 p sj 2 2
responses to the two-step behaviour of p si (Γ) by changing drastically around the critical values of Γ (see . The global and local minima of V c (sn sj ) are listed in Table 9.1. Note that changes of the 4th-cumulants associated to p si (Γ) are significantly stronger than the ones found in the traditional Binder's 4th cumulant (see Fig. 8.4-right) because the probabilities p si (Γ) are most susceptible to change along the different phases of melting than the excess energy. As the hexagonal crystal melts each S i -cluster receives a corresponding response from the 4th-cumulant in the solid and hexatic regions except the 4 1 -clusters.

Note that even less representative 3 i -clusters produce important changes registered in the 4th-cumulant.

From the results of the MC-simulations we observer that quartets and specially The probability p si (Γ) for 2dOCP with 1/r 3 interactions is shown in Fig. 9.5. We have included in Fig. 9.5 several plots corresponding to the probability to find a particle belonging to a 6 i -cluster. As it occurs with quartets, the compact versions of 6-clusters as the types 6 1 , 6 2 and 6 7 grows in the solid and hexatic phases as coupling between charges is increased, but they decrease in the fluid phase. These decreasing of 6 2 -cluster and 6 7 -cluster is followed by an increment of less compact arrangements as 6 4 and 6 6 types. Let us define the following quantity

ζ s (Γ) = p s (Γ)
s ∈{1,2,4} p s (Γ) which measures the percentage of s-clusters occurrence with respect the total occurrence probability of disclination, dislocations and quartets. The Table 9 these phases. From data Table 9.2, we observe that disclinations are not representative in the solid and the hexatic phases. There is a substantial increment of disclinations at the fluid phase, this feature may occurs for the single-dislocations unbinding at the hexatic/fluid transition. On the other hand, single-dislocations are not absent at all in the solid phase since they represent around 18% of the clusters. An increment of singledislocations occurs at hexatic/fluid which may be interpreted as a consequence of the quartet dissociation mechanism in pair of dislocations. However the concentration of quartets is still important (around 65%) in the hexatic phase. This may explain the results obtained in Fig. 8.8 where in the hexatic region we found an algebraic decrease of the orientational correlation function. The second increment of the dislocations concentration at hexatic/fluid phase transition is must difficult to interpretate because it indicates that not all the quartets dissociate in the hexatic phase, then at the begining of the hexatic/fluid transition it is still possible dissociate additional quartets.

Concluding remarks

We have presented in this chapter a detailed study of the mechanism which switch on the transitions on a two-dimensional system with positional order at vanishing temperature. The current study supports the KTHNY-theory as a suitable way to explain the transitions of the 2dOCP with inverse power law interaction of the form 1/r n for n = 1, 2 and 3. The predictions of the KTHNY-theory are strictly described in terms of dislocations-pairs, single-dislocations and disclinations. In the current study is computed the concentration of 5-fold and 7-fold free defects finding that both are very close along a range of Γ including the three phases by using the MHM. This feature may support the single-dislocation unbinding mechanism at the transition (where disclinations concentration varies dramatically) but also continuously during melting. We showed that other clusters of defects as 3-clusters and 6-clusters also provide additional complementary information to the melting transition description. However, the probability related to the occurrence of these other clusters of defects is significantly smaller compared with the usual cluster of defects (1-cluster, 2-cluster and 4-cluster) of the KTHNY-theory. Moreover, if these other but less probable defects are taken into account in the statistics, then their behaviour not only does not contradict the KTHNY-theory results but also reinforces the two-step picture.

The current analysis on the clusters statistics provides evidence that 4 1 -clusters (the most compact quartet identified by the topological matrices defined by Eq. (9.1)) are viable arrangements at least for the solid and hexatic phases respectively. Cluster of type 4 1 not only has the highest probability among quartets but also show the lowest response at the 4th cumulant during the solid/hexatic transition. It was numerically identified the 4 1 -clusters as the very first emerging arrangement during melting process of the hexagonal crystal. The competition between closed-packet 4 1 , 4 2 -clusters and less compact 4 3 ,4 4 ,4 6 -clusters practically begins at the hexatic phase and becomes important at the hexatic/fluid transition producing a substantial decreasing of 4 1 , 4 2 -clusters.

Chapter 10

A study of Topological on melting in two dimensions

In this section we include a recently submitted preprint related with the statistical study of defects on the two dimensional melting described in Chapter 9.

The Topological Defects in the Two Dimensional Melting. Since the first theories on XY model by Kosterlitz and Thouless [1], the role played by topological defects has been recognized as a major component in the understanding of two dimensional systems properties and the thermodynamical stability of ordered phases [2]. In many experimental systems as electrons sheets [3], confined colloids [4,5], vortex lattice in type II superconductor [6], granular systems [7], the distribution of topological defects as described in the Kosterlitz-Thouless-Halperin-Nelson-Young theory (KTHNY) [2,[8][9][10] theory of melting permits to understand the existence of the hexatic phase. In the present work, we provide an elucidation of the first order transition found at the hexatic-liquid transition [4,[13][14][15][16][17] with a detailled statistical analysis of the topological defects and their clusters, moreover it supports the two steps mechanism of KTHNY theory.

In the KTHNY theory [2,[8][9][10] the melting of two dimensional crystals is described with a two steps mechanism based on the unbinding of topological defects. In systems with short ranged interactions [11], the 2D crystals have a quasi-long ranged positional order and long ranged orientational order; the stability of the crystal phase at finite low temperature is achieved by assuming that the sole topological defects permitted are the disclocations bound in pairs. As the temperature increases, the quasi-long ranged positional order is lost and the orientational order becomes quasi-long ranged with an algebraic decay of the correlations: the hexatic phase. The transition between the solid phase and the hexatic phase occurs with the unbinding transition of the dislocations pairs, the first step of the KTHNY theory. The solid-hexatic phase transition shares similarity with a Kosterlitz-Thouless transition [2,10]. In the hexatic phase, the dislocations (pairs of disclinations) are free. As temperature continues to increase, a second unbinding transition occurs : the pairs of disclinations unbinds and all correlations are short ranged. This second unbinding transition describes the hexatic-liquid transition, as a continuous Kosterlitz-Thouless transition [2,10]. In the isotropic liquid phase, free disclinations are observed. To describe the melting in two dimensions, an another mechanism have been proposed by Chui [12]. It describes the melting as a first order transition between the solid and liquid phases, with no hexatic phase. According this description, the growth of the grain boundaries, the topological defects arranged in linear clusters, drives the melting and makes the solid-liquid transition first order. Some recent experimental observations in colloidal systems [4,5] and numerical simulations on systems of hard and soft disks [13][14][15] and in coulomb systems [16, 17] * martial.mazars@u-psud.fr have shown anambigously that a hexatic phase exists, this rules out the melting induced by the growth of grain boundaries. Quite surprinsingly, the hexatic-liquid transition is found weakly first order and not continuous [4,14,17]. Indeed, the observation of a hexatic phase is frequently considered as a signature of the KTHNY theory [2,5,10]. In this study, we provide an explanation of the first order transition found for the hexatic-liquid transition and, with a detailled statistical analysis of the topological defects and their clusters, we show evidences for the two steps mechanism of KTHNY theory. Our studies on 2D melting are done with Monte Carlo simulations on two dimensional systems of classical point particles that interact with a repulsive inverse power law potential as V (r) = Q 2 (σ/r) n where r is the distance between the particles; the limit n → ∞ is the hard disks system. For these models and for any value of the exponent n, the ground state (T = 0K) is a two dimensional triangular lattice: each particle has six neighbors and the Voronoi tiling is achieved with regular hexagons. The results presented here are obtained with n = 1 (Coulomb interaction), n = 2 and n = 3 (Dipolar interaction). For all these interactions, we use Ewald method to avoid bias by truncations [18]. The Monte Carlo simulations are done at finite temperature T in the canonical ensemble with a variable shape of the simulation box, but at constant surface density ρ. For inverse power law interaction, the only relevant thermodynamical variable is the coupling constant

Γ = (Q 2 /k B T )(πρσ 2 ) n/2 .
The numerical simulations are performed on systems with a number of particles ranging from N = 1024 to 16384 (the linear size is defiend as L = N/ρ). For each system size, we have performed MC simulations for about 20 different values of coupling constant Γ. The analysis of data is done with the multiple histograms method 156 (MHM) [19,20] and finite size scaling theory [21][22][23][24][25]. On Fig. 1, we represent the excess internal energy computed in MC simulations and with the MHM for systems with n = 3. The structures factors shown in Fig. 1 correspond to the liquid, hexatic and solid phases [5,17,26]. For systems with n = 2 and 3, we have applied the same analysis as those done in ref. [17] for n = 1 and we reached the same conclusions as in ref. [17]. In the remaining of this letter, we focus on the statistical analysis of topological defects. The statistical analysis of the topological defects and their clusters starts with Voronoi constructions to identify all neighbors of all particles [27]. A topological defect is identified as a particle that do not have six neighbors. For a given configuration, all clusters of topological defects are identified and stored according the number of defects in the cluster, their sizes. The structure of clusters with 6 particles or less are also studied. The univocal identification of a cluster of topological defects is done with a tree-like algorithm similar to the Jarvis-Patrick clustering [28]. In summary, the algorithm for the identification of a cluster starts with a seed particle that does not have 6 neighbors, then all particles that are neighbors to the seed particle and that do not have 6 neighbors are added to the list of particles in the cluster. We iterate this addition of particles to the cluster for the newly added particles, and so on, until no new particle is added. For a given topological cluster, we note s the number of particles in the cluster and n s the total number of clusters of size s found in the configuration analyzed. For each analyzed configuration, we save n s to accumulate the av- erages in the course of the Monte Carlo simulation and to apply the multiple histograms method to observables derived from n s . We define the quantity

< p s >= < s n s > N (1) 
as the average probability that a particle of the system is in a topological cluster of size s. On Fig. 2, we show < p s > as function of s for the Monte Carlo simulations done for n = 2. For n = 1 and 3, we observe the same behaviors as those described in the following for n = 2. The majority of defects are those for which the particles have 5 or 7 neighbors [29], they correspond to the two types of disclinations considered in the KTHNY theory. The distribution of clusters according their size permits to obtain a better understanding of the influence of defects in the 2D melting. On Fig. 2, we observe clearly three different behaviors in the distribution of sizes, each one correspond to one phase. In each phase, < p s > exhibits an odd-even effect more or less marked, it results from the strong affinity that type 5 (or 7) disclinations have for type 7 (or 5). For large coupling constants, in the solid phase (curves in black), the odd-even effect is strongly marked. The clusters with an even number of particle are favored and the clusters with 4 particles are the most probable, they are the pairs of dislocations. Some clusters with a rather large number of particles (s ∼ 30) can be observed in this phase, even if their occurence is quite low (∼ 10 -7 ).

For intermediate coupling constants, in the hexatic phase, the odd-even effects on the distribution of the size of the clusters is still strongly marked, resulting from the association of disclinations. Some quite large clusters can be easily observed with a significant occurence (∼ 10 -5 ) 157 ; for instance, in our simulations for n = 2 and Γ ∼ 83, the largest cluster we have observed has s = 83. Still in the hexatic phase, the relative occurence of clusters of size 2 over the clusters of size 4 is larger than in the solid phase ; this point will be discussed in more details below.

In the liquid phase, the odd-even effects is significant only for clusters of small size. We observe also a sudden proliferation of clusters of any size for a very small variation of the coupling constant (see, for instance, the distribution for Γ = 80.71 in the hexatic phase and the one for Γ = 80.28 in the liquid phase). Since the occurence of the clusters of small size are predominant and since clusters of size 1, 2 and 4 are those considered in the KTHNY theory, it is interesting to study in more details the structure of these clusters. To achieve statistical analysis on the structure of clusters, the set of clusters of a given size s is split into subsets.

We proceed as follows. The first feature in the structure of a cluster is the distribution of the topological defects according the coordination number of the defect (i.e. the number of particles in the cluster having 4,5,7, etc.). This first feature is insufficient to find and differentiate all the different structures in a set of clusters. The second criterium we use, is to count the number of bonds between the neighbors and the distribution of these numbers according the type of the bonds. More precisely, we count the number of bonds between defects of type 5 and defects of type 7, the number of bonds between two defects of type 7, etc. until we obtain the full distribution of the bonds in the cluster. For small clusters (s ≤ 6), these two criterium are sufficient to identify univocally the structure of the cluster; this cease to be true for larger clusters (s ≥ 10 -12). We note S i a particular structure, in this notation, S is equal to the number of particles in the cluster and the index i is the numbering of the structure in the order it has been identified for the first time in our Monte Carlo simulations. We store the collection of structures. For a given configuration, the number n s (S i ) is the number of clusters of size s with the structure S i , we define

< p s (S i ) >= < s n s (S i ) > N (2) 
as the average probability that a particle of the system is in a cluster of size s with the structure S i ; obviously, one has < p s >= all i < p s (S i ) >. We perform the statistical analysis on the quantities p s and p s (S i ). In particular, we define a susceptibility for the structures as

χ(S i ) = N < p s (S i ) 2 > -< p s (S i ) > 2 (3) 
and the Binder cumulants as

U B (S i ) = 1 - < p s (S i ) 4 > 3 < p s (S i ) 2 > 2 = 2 3 -U (S i ) (4) 
All these observables are computed in Monte Carlo simulations and with the multiple histograms method. The structure S i = 2 1 maps exactly the dislocations which play a key role in the KTHNY theory. The statistical analysis of p 2 (2 1 ) permit to locate the hexatic-liquid and the solid-hexatic phase transitions. On Fig. 3, we represent the data collapse of χ(2 1 ) as a function of γL 2 with γ the reduced temperature defined as

γ = 1 Γ - 1 Γ h/l (L) (5) 
and Γ h/l (L) the location of the hexatic-liquid phase transition for the system of size L. It appears that the susceptibility χ(2 1 ) at the hexatic-liquid transition follows the scaling law χ(2 1 ; γ, L) = L x χ0 (γL 2 ) with x 1.4. The scaling of χ(2 1 ) with γL 2 is an additionnal proof that the hexatic-liquid transition is first order. The behavior of χ(2 1 ) at the hexatic-liquid transition results from the 158 unbinding of the pairs of disclinations. On Fig. 4, we show the averages < p s (S i ) > for several structures S i as functions of the reduced temperature γ. At the hexatic-liquid transition (γ = 0), we observe a sudden and significant increase of the number of free disclinations (clusters of size 1). In the solid phase, the clusters with the structure 4 1 are clearly predominants. These clusters with the structure 4 1 are the dislocations pairs taken into account in the KTHNY theory [2,10]. As the temperature increases, the occurence of clusters with structure 2 1 increases significantly as a result of the unbinding of the dislocations pairs ; simultaneously the occurence of clusters of size s = 4 with a structure different from 4 1 increases (structures 4 3 and 4 4 ). The cumulant U (2 1 ) permits to locate the solid-hexatic transition, as shown on Fig. 5. With the definition provided by Eq.( 4) for all observables examinated in this work their probability distribution are found (quasi-)Gaussian in the liquid phase (U ∼ 0) and they deviate significantly from Gaussianity in the critical hexatic phase. In summary, the statistical analysis of the topological defects, of their clusters and of the structures of the clusters done in this work with numerical methods shows that the mechanism based on the unbinding of the pair of defects in the KTHNY theory is fully verified. It confirms fully the mechanisms for the 2D melting describes in the KTHNY theory [2,10]. In the KTHNY theory, the sole clusters that can be considered analytically are the clusters with the structure 4 1 (pairs of dislocations), the structure 2 1 (dislocations or pairs of disclinations) and free disclinations (clusters of size 1). At the hexaticliquid phase transition, we observe a sudden proliferation of topological clusters with a large size (s > 10), simultaneously with the unbinding of the dislocations into two free disclinations. It is this sudden proliferation of large clusters that destroys the orientational order of the hexatic phase and makes the hexatic-liquid transition weakly first order.

Chapter 11

Perspectives and future work

In this study we have used the MHM and the finite-size analysis to classify the fluid/hexatic phase transition of the 2dOCP with IPL interactions. Nevertheless, it was not possible to perform a similar analysis for the hexatic/solid phase transition because the heat capacity, the 4th-cumulants as well as the susceptibilities exhibited a single global peak corresponding to the fluid/hexatic phase transition at Γ h when the system was not large enough. We were able to detect a second local extremum (corresponding to the hexatic/fluid transition at Γ s ) only with the data obtained with the MC-simulations of the largest size. There is interest to determine the order of the hexatic/solid transition since it is expected a continuous phase transition similar to the Kosterlitz Thouless(KT)-transition of the XY -model. To this aim, it is necessary to perform MC-simulations for other sizes, at least simulations with N = 32768 and 65536 particles.

One of the most interesting results obtained from the MC-simulations and the cluster classification in types concerns the behaviour of the 3 i and 6 i -clusters during melting. The averages probability p 3i and p 6i where consistent with the two-step scenario of the KTHNY-theory. According to the KTHNY-theory the two step scenario is a consequence of two mechanism at different two temperatures involving quartets, single-dislocations and free disclinations. Then the two natural question are: (i) what are the mechanisms behind other types of clusters e.g. 3 i and 6 i -clusters? (ii) If these other alternative mechanisms exits, then what is the influence on the order of the phase transitions? Therefore, an analytical approach which describes the statistics of these other types of clusters are an open problem.

During the first part of the manuscript we have limited the study to bidimensional log-gases. However, Coulomb systems with IPL interactions of the form 1/(r n ) with n ∈ R are important because systems with this type of interaction have more chance to be realizable in the laboratory than the log-gas which experimentally is less obvious. In the majority of the cases we do not have a perfect system in two dimensions rather a quasi-bidimensional system whose constituents are interacting with a non-logarithmic potential. Unfortunately, the 2dOCP with IPL interactions is most limited in terms of analytical solutions than its logarithmic counterpart. For example, there is not a analytic exact solution for the excess energy or the n-point correlation function of the 2dOCP with IPL interactions at some special coupling parameter as it occurs with the log-gas at Γ = 2. An exception to this panorama is the exact computation of the Madelung constant since both the log-gas and the 2dOCP crystallize in a hexagonal lattice. It is still possible to use a connection between the 2dOCP with IPL interacitons and the log-gas via the identity given by Eq. (C.1). Eventually, this connection would allow to map the results of the two-dimensional log-gas to the plasma with IPL interactions at n << 1 by some transformation on the coupling parameter Γ log of the log-gas say

Conclusions

In this thesis we have presented a study of bidimensional Coulomb systems featuring long-range interactions on different geometries, the flat plane and the sphere, with different boundary conditions. Analytical and numerical approaches were used with the aim to obtain a better understanding of the physics behind the crystallization of the two dimensional one component plasma 2dOCP.

We started with the analytic computation of different thermodynamic and structural properties of the 2dOCP with logarithmic interactions on the sphere by using an approach based on the monomial expansion of the Vandermonde determinant to the power Γ. This analytical approach enable us to find a finite-N exact expansions of the excess energy, the entropy and the pair correlation function restricted to even values of the coupling parameter Γ. Additionally, two alternative ways were developed to compute the coefficients of the monomial expansion by using the multinomial theorem and the finite difference method respectively.

The multinomial expansion was also used to compute the energy and the 2-body density function of the 2dOCP on the hard and soft disk for odd values of Γ/2. We not only corroborated the N -finite expansion of the particle-particle energy contribution of the Dyson Gas found by Shakirov [35], but also we provided an exact finite expansion for the excess energy of the 2dOCP on a disk at Γ = 2 which is in agreement with the result found by Jancovici [START_REF] Jancovici | Exact results for the two-dimensional one-component plasma[END_REF] in the thermodynamic limit.

The 2dOCP on the soft disk or Dyson gas is exactly solvable at Γ = 2 and it has some connections with the Ginibre Ensemble (GE) of the random matrices theory. We shown that such connections are not completely lost at other values of the coupling parameter, specifically for odd integer values of Γ/2 where the two-body density function may be written in terms of the kernel determinant of the GE. We computed some probability densities associated to the analytical two-body density function which enabled us to study the crossover of the Dyson gas from the fluid to crystal for small systems. The analytical results found for log-gases where confronted against the numerical results of MC-simulations with a good agreement between them.

Although the monomial expansion approach was successfully employed to obtain some analytical expressions with the aim to evaluate exactly different properties on log-gases for Γ ≥ 2, it is necessary to remark that one of the weakness of the monomial expansion method concerns the rapid growing of the number of coefficients and partitions as the number of particles or the coupling parameter are increased. This feature of the expansion limits drastically its practical application. Therefore, other features of Coulomb systems as phase transitions were studied in this document by using numerical algorithms.

The second part of this manuscript was devoted to the numerical study 2dOCP with IPL interactions in particular the phase transitions in two dimensions. The study was focused in interactions of the form 1/r n with n = 1, 2 and 3. The Ewald sumations method was employed to find the analytic expression for Madelung constant of the hexagonal crystals with n > 0. MC-simulations performed at the low coupling regime enable us to perform computations of the energy near the ground state. We used these data to interpolate the excess energy in the harmonic approximation frame in order to compute numerically the Madelung constant finding a excellent agreement with the analytical results.

Extensive MC-simulations allowed us to study the melting of the two-dimensional hexagonal crystal. We were able to identify the hexatic phase by using the structure factor as well as the melting curve of the excess energy. We also identified the critical values of Γ corresponding to the fluid/hexatic and hextitc/solid transitions by using the heat capacity, suceptibilites and the 4th-cumulant.

The study of the shifting of the critical parameters due to finite size effects is a powerful tool to classify the phase transitions. In particular, critical coupling parameter associated to the hexatic/fluid transition Γ h = Γ h (N ) depends on the system size. The asymptotic behaviour of Γ h with N was described by Γ h (N ) = Γ T.L h + B/N with B a constant and Γ T.L h the critical coupling parameter at the thermodynamic limit. This dependence was found by using data of the heat capacity, susceptibilities and 4th cumulants which enable us to compute Γ h (N ) in the limit N → ∞.

We used MHM and a finite size scaling analysis in order to classify the phase transitions of the 2dOCP with IPL interactions. We found that the hexatic/fluid phase transition was weakly first order instead of a continuous Kosterlitz Thouless (KT)-transition as the KTHNY-theory predicts.

We performed a statistical study of the different types of cluster of topological defects in the melting of the two-dimensional hexagonal crystal. A strategy based in the construction of bond topological matrices to classify the different clusters was implemented. We observed that a rich variety of these arrangements of defects including the ones considered in the KTHNY-theory could emerge as the bidimensional crystal melt. Quartets (combination of two disclinations), single-disclinations and dislocations including 7-fold and 5-fold where the most frequent configurations. However, other arrangements with lower occurrence probability as 3 i -clusters or clusters types with more than four defects also played a relevant role during melting. Surprisingly, the two step-scenario was not only confirmed with the traditional clusters of the KTHNY-theory but also by other alternative structures e.g. 3 i and 6 i -clusters.

We used the 4th-cumulant associated to the occurrence probability of several types of clusters to localize independently the critical values of the coupling parameter for the fluid/hexatic and hexatic/solid phase transitions to delimit the hexatic phase region. We found that the 4th cumulant related to the different s iclusters responded around the same values of Γ h and Γ s found in Chapter 9 still independent of the cluster type. We attribute to this collective response of different type of clusters at Γ f the weakly first order nature of the fluid/hexatic transition found in Chapter 9. Now η µν = Dim(µ ∩ ν) = η νµ and δ ηµν N -2 = 1 if ν ∈ D µ otherwise 0. Hence, it is possible to do the following replacement ν∈Dµ → µ δ ηµν N -2 and H S µ N takes the form

H S µ N = e -Γ 2 2 i=1 r2 i π 2 2 H Z N,Γ µν δ ηµν N -2 C (N ) µ (Γ/2)C (N ) ν (Γ/2)(-1) τµν N i=1 Φ H µi H g µν p, q m, n + N i=1 Φ H νi H g νµ m, n p, q since τ µν p,q m,n = τ νµ m,n
p,q counts the same number of transpositions. In general, the product

N i=1 Φ H µi = N i=1 Φ H νi if µ = ν ∈ D µ or vice-versa ν = µ ∈ D ν however the terms N i=1 Φ H µi H g µν p, q m, n = N i=1 Φ H µi Φ H µp Φ H µq (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 )
and

N i=1 Φ H νi H g νµ m, n p, q = N i=1 Φ H νi Φ H νm Φ H νn (z νm 1 z νn 2 -z νm 2 z νn 1 ) * (z µp 1 z µq 2 -z µp 2 z µq 1 )
have in common

1 Φ H µp Φ H µq N i=1 Φ H µi = 1 Φ H νm Φ H νn N
i=1 Φ H νi because µ p , µ q , ν m and ν n are just the unshared elements. Additionally, the term (z

µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ) is just the complex conjugated of (z νm 1 z νn 2 -z νm 2 z νn 1 ) * (z µp 1 z µq 2 -z µp 2 z µq 1 ) hence H S µ N = e -Γ 2 2 i=1 r2 i π 2 H Z N,Γ µν δ ηµν N -2 C (N ) µ C (N ) ν (-1) τµν N i=1 Φ H νi Φ H νm Φ H νn Re (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 )
or

H S µ N = 1 π 2 e -Γ 2 2 i=1 r2 i ν∈Dµ (-1) τµν Φ H µp Φ H µq R (N ) µ,ν Re (z µp 1 z µq 2 -z µp 2 z µq 1 ) * (z νm 1 z νn 2 -z νm 2 z νn 1 ) N A.

Normalization condition

The normalization condition of the n-body density function is

n j=1 R dS j ρ (n) N,Γ ( r 1 , . . . , r n ) = N ! (N -n)! .
It will be shown in this appendix section that ρ

N,Γ ( r 1 , r 2 ) for 2dOCP on the soft disk is correctly normalized. For n = 2 we have

2 j=1 R dS j S ρ (2) N,Γ ( r 1 , r 2 ) = 2 ρ b πΓ 2 2 j=1 2π 0 dφ j ∞ 0 |u j |d|u j | S ρ (2) N,Γ ( r 1 , r 2 ).   N j=1 Φ H µj   1≤i<j≤N 8 ΞH µi,µj R Φ H µi Φ H µj or most compactly U H ppR = Q 2 2 1≤i<j≤N 8 ΞH µi,µj R Φ H µi Φ H µj N . It is useful to write ΞH µi,µj R as follows ΞH µi,µj R = J µi,µj H + J µj ,µi H 
where it was defined

J µi,µj H := √ N 0 dy y 0 dxx 2µi+1 y 2µj +1 (-log y)e -(x 2 +y 2 )Γ/2 (B.3) hence U H ppR = Q 2 1≤i<j≤N 4 J µi,µj H + J µj ,µi H Φ H µi Φ H µj N . (B.4)
An analogous computation for the Dyson gas gives the following result This integral may be also written as follows

U S ppR = Q 2 1≤i<j≤N 4 J µi,µj S + J µj ,µi S Φ S µi Φ S
J m,n S = - 1 8 2 ρ b πΓ m+n+2 J m,n -log ρ b πΓ 2 I m,n with J m,n = ∞ 0 ∞ 0 t1<t2 t m 1 t n 2 log(t 2 ) exp(-t 1 -t 2 ) and I m,n = ∞ 0 ∞ 0 t1<t2 t m 1 t n 2 exp(-t 1 -t 2 ). (B.6)
For the Dyson gas it is advantageous to write J µi,µj S in terms of the factor

2 ρ b πΓ µi+µj +2 because the same factor is in Φ S µi Φ S µj = 2 ρ b πΓ µi+µj +2 µ i !µ j !.
Additionally, the integral I µi,µj has the following property

I µi,µj + I µj ,µi = µ i !µ j ! therefore U S ppR = - Q 2 2 1≤i<j≤N J µi,µj + J µj ,µi µ i !µ j ! -log(ρ b πΓ/2) 1≤i<j≤N 1 N .
Now, the sum J µi,µj + J µj ,µi may be written in terms of the factorial product µ i !µ j ! as

J µi,µj + J µj ,µi = k 1 !k 2 !j(k 1 , k 2 ) where j(k 1 , k 2 ) = log 2 -γ + H k1 + H k2 - 1 2 k1+1 k2 l=0 (k 1 + 1) l l! 1 2 l H k1+l - 1 2 k2+1 k1 l=0 (k 2 + 1) l l! 1 2 l H k2+l (B.7)
Where

H n = n i=1 1 
i are the Harmonic numbers and (n) l = l i=1 (n + i -1) is the Pochhammer symbol. As a result, the U ppR contribution on the Dyson gas is

U S ppR = - Q 2 2 1≤i<j≤N j(µ i , µ j ) N + Q 2 4 N (N -1) log(ρ b πΓ/2). (B.8)

Hard disk integrals

We are interested in the evaluation of the following integral

I m,n H = H I m n = √ N 0 y 2n+1 exp -y 2 Γ/2 F(m, Γ/2, y)dy where F(m, Γ/2, y) = y 0 x 2m+1 exp -x 2 Γ/2 dx = 2 m Γ m+1 Γ(m + 1) -Γ(m + 1, y 2 Γ/2)
If m is an integer then Γ(m + 1) = m!. On the other hand, the incomplete gamma function may be expanded as follows

Γ(m + 1, y 2 Γ/2) = m! exp(-y 2 Γ/2) m k=0 1 k! y 2 Γ 2 k .
As a result Now, pq pq = qp qp =qp pq =pq qp = 1 and δ µ σ(1)=p +µ σ(2)=q ,ν ω(1)=p +ν ω(2)=q = 1 as well as the other delta terms since µ p + µ q = νp + νq , therefore

I m,n H = 2 m Γ m+1 m! F(m, Γ/2, √ N ) - m k=0 1 k! (Γ/2) k F(n + k, Γ/2, √ N ) (B.
B H µν p, q m, n = (-1) τµν (N -2)!   N i=1,i =p =q Φ H µi   ΞµpµqH νmνnL |µ p -ν m | + ΞµqµpH νnνmL |µ q -ν n | - ΞµpµqH νnνmL |µ p -ν n | - ΞµqµpH νmνnL |µ q -ν m | .
Where we have used νp = ν m and νq = ν n . Now, the terms

ΞµpµqH νmνnL = H I (µp+νm+|µp-νm|)/2 (µq+νn-|µp-νm|)/2 + H I (µq+νn+|µp-νm|)/2 (µp+νm-|µp-νm|)/2
may be simplified by using the constrain µ p + µ q = ν m + ν n on the partition elements, then 

|µ p -µ n | = µ p -ν m if µ p > ν m otherwise -µ p + µ n for µ p < ν m . Hence ΞµpµqH νmνnL /|µ p -ν m | + ΞµqµpH νnνmL /|µ q -ν n | is 2 ΞµpµqH νmνnL |µ p -ν m | = 2 |µ p -
-ν m | = |µ q -ν n |, hence B H µν p, q m, n = (-1) τµν (N -2)!   N i=1,i =p =q Φ H µi   2 

B µν matrix for the soft Disk

The corresponding B µν matrix for the soft disk may found by following the same procedure described in the previous section for the hard disk. The result is 

B S µν p, q m, n = (-1) τµν (N -2)!   N i=1,i =p =q Φ S µi   2   S I ( 
Φ S µi = 1 µ p !µ q ! 2 ρ b πΓ µp+µq+2 N i=1 Φ S µi
where we have used the following property

(µ p , ν m ) + + (µ q , ν n ) -= (µ q , ν n ) + + (µ p , ν m ) -= (µ p , ν n ) + + (µ q , ν m ) -= (µ q , ν m ) + + (µ p , ν n ) -= µ p + µ q .
As a result the B S µν matrix takes the form The soft disk offers an additional advantage since it is possible to factorize the product µ p !µ q ! from I µq µp as we did before 1 µp!µq! I µq µp = i µp µq . We may also try to do the same with 1 µp!µq! I νn νm = νm!νn! µp!µq! i µp µq by writing µ p ! = ν m ! µp i=νm+1 i for the case µ p > ν m . Since µ p + µ q = ν m + ν n then µ p > ν m implies that ν n > µ q hence ν p ! = ν n ! νn i=µq+1 i therefore 1 µ p !µ q ! I νn νm = π(µ q , ν n ) π(ν m , µ q ) i νn νm for µ p > ν m ⇔ ν n > µ q with π(a, b) := Proceeding in a similar way, then the other terms are 1 µ p !µ q ! I νm νn = π(µ p , ν m ) π(ν n , µ q ) i νm νn for µ p < ν m ⇔ µ q > ν n , 1 µ p !µ q ! I νm νn = π(µ q , ν m ) π(ν n , µ p ) i νm νn for µ p > ν n ⇔ ν m > µ q and 1 µ p !µ q ! I νn νm = π(µ p , ν n ) π(ν m , µ q ) i νn νm for ν n > µ p ⇔ µ q > ν m .

B S µν p, q m, n = (-1) τµν (N -2)! 1 µ p !µ q ! N i=1 Φ S
|µ p -ν n |   or B S µν p, q m, n = (-1) τµν (N -2)! 1 µ p !µ q ! N i=1 Φ S
As a result, the B S µν matrix takes the form The under dotted B µν matrix for odd values of Γ/2

In this subsection we shall study and find the non-zero values of The under dotted symbol on Γ(0, x) = E 1 (x) and Γ(1, x) = exp(-x) to simplify the particle-particle energy as follows

U pp = U exc = 1 4 N i=1 N j=1 Q i Q j Sm E 1 (| r ij + S m | 2 α 2 )+ π 4A G =0 4 G 2 exp - G 2 4α 2 N i=1 Q i e i G• ri 2 - 1 4 N Q 2 γ + log α L 2 + E 1 ( L2 α 2 )
(C.10)

The particle-background interaction

If the charge particles of the system have a non-zero total charge, then the U pp /N diverges in the thermodynamic limit. This is the case of 2dOCP where it is required to include a background to neutralize the system. When the interaction potential is logarithmic, then the particle background potential is which comes from the Poisson-Jacobi identity.

U pb = Qσ

The background-background interaction

The energy contribution due to the interaction of the background with itself is given by As it was done for the particle-particle energy, it we may write 

U bb = σ 2 2 So d r
U bb = σ 2 2 lim
U bb = σ 2 2 A lim n→0 Ln nΓ(n/2)   π 1 (1 -n/2) 1 (1-n/2) o - 1 Ln Γ n 2 , κ 2 o L2 G δ G 2π  
The excess energy

The particle-particle and particle-background contributions are

U pb + U pb = - N Q 2 2A lim n→0 Ln nΓ(n/2)   π 1 (1 -n/2) 1 (1-n/2) o - 1 Ln Γ n 2 , κ 2 o L2 G δ G 2π   1 Ln Γ n 2 -Γ n 2 , L2 α 2 - 2 n α n
and evaluating the limit n → 0 it is obtained

U exc =    Q 2 4 N i=1 N j=1 Sm E 1 | r ij + S m | n α 2 -E 1 L2 α 2 + πQ 2 4A G =0 4 G 2 exp - G 2 4α 2 N i=1 e i G• ri 2 - N Q 2 4A E 1 L2 α 2 G δ G 2π + N 2 Q 2 4 2π A - 1 2α 2 + 1 2δ 2 o - 1 2 2 o + N Q 2 2 - γ 2 -log α 2 L2 + E 1 L2 α 2
Hence, the divergence δ -2 o → ∞ coming from the particle-particle interaction U pp is cancelled by the divergence -2 o → ∞ coming from the different interactions with the background U bb + U pb . Now, the sum

N i=1 N j=1 Sm E 1 L2 α 2 = E 1 L2 α 2 N i=1 N j=1   Sm 1   = E 1 L2 α 2   N 2 Sm -N   since N i=1 N j=1
Sm 1 does not include the diagonal terms. On the other hand, it is convenient to write the following term on the real lattice

1 A E 1 L2 α 2 G δ G 2π = E 1 L2 α 2 Sm 1.
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and the radius of the circumcircle. Le solide pour l'OCP a été conceptualisé pour la premiére fois par Wigner en 1930.

Postérieurement, plusieurs observations de cristaux de Wigner en laboratoire ont été effectuées sur des cristaux colloïdaux macroscopiques dans des solutions aqueuses, par ex.

Kose et al [6] en 1973, Winkle et Murray [7] en 1988. D'autres expériences incluant des cristaux d'ions [8][9][10] et des cristaux d'électrons ont été réalisées à la fin des années 80 et au début des années 90 [11].

Jancovici [12] a montré en 1967 que le solide harmonique bidimensionnel avait une susceptibilité généralisée infinie à basse température même lorsqu'il n'y a pas d'ordre à longue distance.

Les travaux de Kosterlitz et Thouless [5] en 1973, et plus tard Halperin, Nelson [13,14] et

Young [15] en 1979 donne une description de la fusion du cristal hexagonal bidimensionnel La phase intermédiaire entre ces deux mécanismes de dissociation est la phase hexatique.

La phase hexatique a été décrite dans plusieurs systèmes expérimentaux [16][17][18][19][20][21][22][23][24][25][26][27][28] principalement dans les systèmes colloïdaux. La phase hexatique a également été identifiée dans des simulations numériques sur disques durs et mous [29,30] et systèmes de Coulomb [31,32]. Les défauts topologiques jouent un rôle important dans la théorie de KTHNY. Si le nombre de voisins d'une particule est différent de six, alors on associe un défaut toplogique à cette particule (les défauts n'existent pas dans le réseau hexagonal parfait). Comme il a été mentionné, les mécanismes qui donnent lieu au scénario en deux étapes de la théorie de KTHNY incluent les paires de dislocations, les dislocations simples et les disclinations libres.

Cependant, lors de la fusion du cristal hexagonal, d'autres structures ou groupes de défauts absents dans la théorie de KTHNY peuvent également émerger comme cela se produit sur le OCP avec des interactions IPL. Dans ce manuscrit, nous présentons une étude statistique de ces groupes de défauts alternatifs. L'étude statistique ne prend pas seulement en compte la taille des amas, mais également une classification de ces amas en fonction du type de défauts sur le amas ainsi que de certaines caractéristiques topologiques. Nous déterminerons l'influence des grands amas de défauts lors de la fusion ainsi que les amas habituels de la théorie de KTHNY fournissant des alternatives pour localiser la phase hexatique.

Bien que l'OCP soit un modèle classique très simplifié, les résultats exacts sur ce système sont assez limités. Si l'interaction entre les particules est logarithmique, alors l'OCP est résoluble pour une valeur spéciale du paramètre de couplage Γ = 2 situé dans la phase fluide [33][34][35][36][37]. Cependant, les solutions analytiques pour l'OCP avec des interactions logarithmiques sont encore un problème ouvert. Dans cette thèse nous décrivons une étude de l'OCP avec des interactions logarithmiques sur la sphère et le disque inspiré des travaux précédents [38,39]. Nous fournissons des résultats exacts pour l'OCP avec des interactions Nous avons réalisé une étude statistique des différents types de défauts topologiques dans la fusion du cristal hexagonal bidimensionnel. Une stratégie basée sur la construction de matrices de topologie de liaison pour classer les différents amas a été implémentée. Nous avons observé qu'une riche variété de ces arrangements de défauts, parmi eux sont aussi les défauts de la théorie KTHNY, peut apparaître lorsque le cristal bidimensionnel fond. Les qarterts (combinaison de deux dislocations), les dislocations-simples et les disclinations libres avec des coordination 5 ou 7, sont les configurations plus fréquentes. Cependant, d'autres arrangements ayant une probabilité d'occurrence plus faible sous la forme de amas 3 i (où l'indice qui numérote les différents types de amas de taille 3) ou de amas avec plus de quatre défauts ont jouent également un rôle important lors de la fusion. Étonnamment, le scénario en deux étapes a été confirmé non seulement avec les groupes traditionnels de la théorie de KTHNY mais aussi avec d'autres structures alternatives, par example 3 i et 6 i -amas.

Nous avons utilisé le cumulants de Binder associe à la probabilité d'occurrence de plusieurs types de clusters pour localiser indépendamment les valeurs critiques du paramètre de couplage pour les transitions de phase fluide/hexatique et hexatique/solide afin de délimiter la région de la phase hexatique. Nous avons trouvé que le cumulant de Binder aux différentes s i -clusters permettent de déterminer les valeurs de Γ h et Γ s .

En résumé, l'analyse statistique des défauts topologiques, de leurs amas et des structures des amas faites dans ce travail avec des méthodes numériques montre que le mécanisme basé sur la dissociation des paires de défauts dans la théorie KTHNY est entièrement vérifié. Il confirme les mécanismes de fusion en deux dimensions décrits dans la théorie KTHNY.

Dans la théorie de KTHNY, les seules amas considérées analytiquement sont les amas avec la structure 4 1 (paires de dislocations), la structure 2 1 (dislocations ou paire de disclinations) et les disclinations libres (amas de taille 1). Nous avons observé une prolifération soudaine de groupes topologiques de grande taille (s > 10) à la transition de la phase hexa- Ce travail se concentre sur l'étude du plasma d'un composant bidimensionnel (PUC2d), un système classique de N charges ponctuelles identiques qui interagissent à travers un potentiel électrique et immergées dans une surface bidimensionnelle avec densité de charge opposée. Le système est un cristal à T = 0 qui commence à fondre si T est suffisamment élevé. Si le potentiel d'interaction entre les particules est logarithmique, alors le système dans le plan et la sphère a une solution exacte pour une valeur spéciale de T située dans la phase fluide. Dans cette étude, un formalisme analytique est utilisé pour déterminer exactement les propriétés thermodynamiques et structurelles qui permettent de suivre le comportement du PUC2d en la phase désordonnée jusqu'à ce que celui-ci cristallise avec la restriction de N pas très grand. Par le formalisme, nous trouvons des connexions intéressantes avec l'ensamble de Ginibre défini dans la théorie des matrices aléatoires.

Nous avons effectué des simulations de Monte Carlo pour modéliser le PUC2d avec des interactions potentiel en inverse de distance et des conditions aux limites périodiques dans le plan. Trois phases sont identifiées incluant la phase hexatique pour des systèmes suffisamment grands. Nous avons déterminé par l'analyse de taille finie et la méthode multi-histogramme que la transition hexatique / liquide est de premier ordre faible. Finalement, une étude statistique sur les arrangements de défauts (clusters) lors de la fusion cristalline est effectuée, confirmant en détail la théorie de KTHNY et décrivant des alternatives pour la détection de transitions en deux dimensions. Title: Exact results and melting mechanisms for two-dimensional systems Keywords: Exactly solvable systems, Coulomb gases, Monte Carlo simulations, phase transitions.

Abstract: Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY -model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.

This work is focused on the study of the two dimensional one component plasma 2dOCP a system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.

We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNYtheory but also provides alternatives to detect transitions in two-dimensional systems.
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 11 Fig. 1.1: Typical configurations of the 2dOCP on a soft disk of N = 100 particles as the coupling parameter is increasing. The point charges are confined by a parabolic potential and their interaction is logarithmic.
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 22 Fig. 2.2: Dyson gas confinement. The plots show some configurations of the 2dOCP on a soft disk with N = 50 particles obtained via Monte Carlo Method at several coupling parameters. The radius of the red circle is given by Eq. (2.16).
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 23 Fig. 2.3: Bound radius of the Dyson gas. (left) Bound radius vs the coupling parameter for a system with N = 50 particles. The red-dashed line is the limit Γ → ∞. (right) The bound radius defines a surface S := (x, y) : x 2 + y 2 = (R S N,Γ→∞ ) 2 ∀ N ∈ Z + which contains the Wigner crystal for the soft disk.
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 224 Fig. 2.4: Pair correlation function of the 2dOCP on a sphere at Γ = 2. The red, blue and black solid lines corresponds to the pair correlation function for N = 2, 4 and 12 respectively.
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 5 with µ := (µ 1 , . . . , µ N ) a partition of ΓN (N -1)/4 with the condition (N -1)Γ/2 ≥ µ 1 ≥ µ 2 • • • ≥ µ N ≥ 0 for even values of Γ/2 and a partition of ΓN (N -1)/4 with the condition (N -1)Γ/2 ≥ µ 1 > µ 2 • • • > µ N ≥ 0 3.1. EXPANSION OF THE VANDERMONDE DETERMINANT TO THE POWER Γ/2 31
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 31 Fig. 3.1: Number of terms. Comparison between N (N, Γ = 2) = N ! (red points) and M(N, Γ = 2) = 2 N !-1 /(N -1)! (black points).
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 32 Fig. 3.2: Resistivity in the Hall effect. (left) Classical result. (right) Experimental observation observation with strong magnetic field and low temperature [53].

  σ yy the conductivity, then the transverse resistivity ρ xy = σ -1 xy = E y /J x takes the form ρ xy = 1 ne B resistivity in the classical Hall effect (3.8)

  k=1,...,N to describe the fractional QHE in the case ν = 1 m with m = 1, 2, . . . Taking into account that plateaux on the resistivity occur when the magnetic field is B = neρ xy = nhm (see Eqs. (3.8) and (3.9)) then |Ψ m (z 1 , . . . , z N )| 2 = N i=1 e -nπ|zi| 2 m 1≤i<j≤N |z iz j | 2m is just the Boltzmann factor of the 2dOCP on the soft disk identifying Γ = 2m and ρ b = n (see Eq. (3.1)).
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 1 Fig. 1 Stereographic projection

  0 for even values of /2 and a partition of N (N -1)/4 with the condition(N -1) /2 ≥ μ 1 > μ 2 • • • > μ N ≥ 0 for odd values of /2.The terms m μ (z 1 , . . . , z N ) are the monomial symmetric or antisymmetric functions, depending on the parity of /2,
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 212 Fig. 2 Energy for = 2. (left) The solid line corresponds to the excess U exc per particle and squared charge and the solid line represents its value in the thermodynamic limit. (right) Average particle-particle interaction. In this plot we have set ρ b = 1 and L = 1

( 2 )N

 2 =2 for several values of coupling parameter. The red and black dot-dashed lines corresponds to = 2 and = 30 respectively. Intermediate values = 4, 8, . . . , 28 are represented by solid lines. (right) Density plots of ρ (2) N =2 and Wigner crystal for two particles. White color corresponds to ρ (2) N =2 (θ ) = 0 (Color figure online)
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 42 Fig. 4 Exact correlation function of the 2dOCP for N = 3. (left) ρ (2) N =3 for several values of coupling parameter. The red and black dot-dashed lines corresponds to = 2 and = 30 respectively. Intermediate values = 4, 8, . . . , 28 are represented by solid lines. (right) Density plots of ρ (2) N =3 and Wigner crystal for three particles (Color figure online)
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 56 Fig. 5 Asymptotic excess energy for N ≤ 4. The solid and dashed lines are the asymptotic behaviour of the excess energy given by Eq. (27) and the Wigner crystal energy respectively (Color figure online)

51 Fig. 7 Fig. 8

 5178 Fig. 7 Excess energy. Excess energy vs parameter. Black dots and gray error bars corresponds to Metropolis method. The exact numerical values are plot as squares (Color figure online)

Fig. 9

 9 Fig. 9 Numerical exact correlation function of the 2dOCP on the sphere for N = 4, 5, . . . , 9 particles (Color figure online)

Fig. 10

 10 Fig. 10 Entropy. (left) Excess entropy per particle. (right) Total entropy of the 2OCP for = 2. The asymptotic function of S/N (solid line) fits with the exact values (squares) even for small values of N . The entropy of the ideal gas S ideal in the sphere (dashed line) is bigger than S for N > 1
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 11 Fig. 11 Excess entropy per particle for ≥ 2. Numerical exact values of S exc /(N k B ) are represented by symbols for different values of . The solid line is only a guide of the eye

  (N ) μ ( /2) may have a large value as or N increase. For instance, the coefficient for N = 5 particles with μ = (100, 100, 100, 0) at = 100 isC (N =5)(100,100,100,0)(40) = 2042816020019820636556288572807323741663688000.

( 2 )

 2 N,Γ (θ) with θ the usual azimuthal angle of spherical coordinates. Hence, the function ρ(2)N,Γ (θ) describes rings on the sphere as the coupling constant is increased. Such rings are related with the Wigner crystal which corresponds to the solution of the Thomson problem.

2 SOFTFig. 2 :

 22 Fig.2: Quadratic potential contribution. The solid line corresponds to 2U S quad /Q 2 with ρ b = 1/π of Eq. (19) and black points to the Metropolis method.

Fig. 3 :

 3 Fig. 3: Bound radius of the Dyson gas at Γ = 1000 and ρ b = 1/π. (left) Bound radius vs the number of particles. (right) In principle, the bound radius defines a surface S := (x, y) : x 2 + y 2 = (R S N,Γ→∞ ) 2 ∀ N ∈ Z + which contains the Wigner crystal for the soft disk.
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 4 Fig.4: Dyson gas at Γ = 1000 and ρ b = 1/π for three different sizes. The radius of the dashed circles are given by Eq.(20). Each crystal was obtained after 10 6 MC-cycles starting at a random initial configuration.
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  ) for odd values of Γ/2 where a change of sub index in a given partition element means strictly a change of partition value, this is
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  )σ(3)...σ(N ) σ(2)σ(1)σ(3)...σ(N ) σ(1) because the exponent b(Γ) is one for odd values of Γ/2. On the other hand, the term (+1)L σ(1)σ(2) σ(1)σ(2) is forbidden because of the condition σ(1) = ω(1) in the definition of L σ(1)σ(
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Fig. 5 :

 5 Fig. 5: Excess energy per particle and squared charge of the hard disk for Γ = 2 and setting ρ b = 1/π. The open dots corresponds to Eq. (37). The red line is the value of U H exc /(N Q 2 ) in the thermodynamic limit obtained by Jancovici[7] and the blue solid line is the interpolation according to the ansatz of Eq.(38).

Fig. 6 :

 6 Fig.6: Excess energy per particle and squared charge of Dyson gas for Γ = 2 setting ρ b = 1/π. The black points corresponds to Eq. (39), the green diamond symbols are the quadratic potential contribution given by the Eq. (19) plus the Shakirov's result Eq. (5) and the term Q 2 f S (N ). The red line is the result obtained by Jancovici for the 2dOCP on the disk in the thermodynamic limit and the blue solid line is the interpolation with the ansatz of Eq.(40).
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  for a < b and (a, b) ∈ Z + .

Fig. 8 :

 8 Fig. 8: (left) Probability density S ρ (2),II N,Γ (r, φ 12 ). (right) Small crystals. First 14 configurations at vanishing temperature of the 2dOCP on the soft disk obtained with Metropolis method with their corresponding Delaunay triangulation. The radius of the red-dashed circles are given by Eq. (20).

Fig. 9 :

 9 Fig. 9: Analytical probability density S ρ (2),II N =3,Γ (r, φ 12 ) for three particles computed from Eq. (60). Left to right: plots of S ρ (2) N =3,Γ setting the coupling parameter as follows Γ = 2, 6, 10 and 22. The radius of the red circle on the density plots is given by Eq. (20).

Fig. 10 :

 10 Fig. 10: Analytical probability density S ρ (2),II N,Γ (r, φ 12 ) for N = 4 particles (top panel) and N = 5 (bottom panel) computed from Eq. (60). Left to right: plots of S ρ (2) N =4,Γ setting the coupling parameter as follows Γ = 2, 6, 10, and 22. For S ρ (2) N =5,Γ the coupling parameter are Γ = 2, 6, 10 and 14.
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 11 Fig. 11: Exact probability function S ρ (2),I N,Γ (r 2 ). The red, blue and black points corresponds to Γ = 2, 4 and 6 respectively.

  ) remains valid for Γ = 2, 4, 6, . . ., and not only odd values of Γ/2. A plot of this function for several values of N and Γ is shown in Fig. (11).
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 3 Numerical computation of S ρ (2),II N,Γ (r, φ 12 ) It is possible to use the data from MC-simulation to build S ρ (2) N,Γ (r 1 , r 2 , φ 12 ) as it is typically done for the radial distribution function for systems in the fluid phase or with translational symmetry.

Fig. 12 :

 12 Fig. 12: Numerical computation of S ρ (2),II N,Γ (r, φ 12 ) for N = 3, 4 and 5. Left to right: plots of H N,Γ (Ω(M )) setting the coupling parameter as follows Γ = 2, 6, 10 and 22. The radius of the red circle is given by Eq. (20) in the strong coupling regime Γ → ∞. We start by defining a circular region A of radius R where S ρ (2) N,Γ (r 1 , r 2 , φ 12 ) will be numerically computed. Since the pair correlation function is small outside the bound radius Eq. (20), then we may choose R ≈ 1.5R S N,Γ . Once the system is equilibrated M configurations c (n) = r (n) i |i = 1, . . . , N are selected from the 30 97

Fig. 13 :

 13 Fig. 13: Comparison. Left to right. Plots of H N =5,Γ (Ω(M )) for five particles and Γ = 2, 6 and 14. Histograms corresponds to MC-simulations and the surface to Eq. (60) respectively. The volume below each plot has been set to one.

  /N for the disk in the limit N → ∞. The N -finite version of A (1) N,2 for the sphere and the soft disk were computed by Caillol and Shakirov respectively and we provided A(1) 
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 61 Fig. 6.1: Isolated vortex. In the XY -model the topological defects corresponds to vortices. The vortex charge n defines sign of vorticity being negative for counter clockwise vortices (left) or positive for a counterclockwise vortex (right).

Fig. 6 . 2 :

 62 Fig. 6.2: Vortex flux. (left) A vortex-antivortex pair. (right) Vortices in the XY -model may proliferate.However, this growing occurs generating vortex-antivortex pairs since the energy cost to include a single vortex diverges logarithmically with the system size in the thermodynamic limit.
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 63 Fig. 6.3: Scheme of the KT-transition.

Fig. 6 . 4 : 2 with α = 1 ,

 6421 Fig. 6.4: Schematic view of the disclinations in the two dimensional crystal. (left) The ideal hexagonal lattice may be split in six sectors or wedges of π/3 radians. (center) A negative 5-fold disclination is obtained by removing a wedge of π/3 from the hexagonal lattice. (right) A positive 7-fold disclination. In these plots the lattice has n-fold rotational symmetry. The basis vectors of the αth-sector a (α) 1 , a (α) 2 with α = 1, . . . , n and n = 5 or 7 are rotations of the basis vectors of the basis vector of the first sector a (α) i = R((α -1)2π/n) a (1) i
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 66 Fig. 6.6: Scheme of the KT-transition.
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 72 Fig.7.2: Parametrization of the computational box for monolayers. The primitive unit vectors for systems with periodical images are â1 and â2 . Their protection on the x and y Cartesian coordinates are given by Eq. (7.2). They generate the periodical images according to Eq. (7.3).
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 73 Fig. 7.3: Representation of the Madelung constants for the two dimensional triangular lattice as function of the exponent n of the inverse power law interactions in a log-log plot. Inset : convergence rate for the definition of C M (2).

2 Fig. 7 . 4 : 2 √ 3 2 2 a 2 √ 3 .

 27423223 Fig. 7.4: Hexagonal lattice. The lattice vectors of the unit cell are given by â1 = ax and â2 = a 2 (x + √ 3ŷ)
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 38 Although the histogram Ni (E) are written explicitly in Eq.(7.38) is still possible to avoid their computations since we may use the trajectories of the I M C MC computations to compute Z (m)

  (m-1) k become close to consistency equations. The speed of the convergence depends on : (i) the 'compatibility' of the histograms (see for instance figure 7.5) ; (ii) the number of trajectories 3 and (iii) the initial values ln Z (0) k .

3 to 6

 6 trajectories), then we use the converged values of ln [Z k ] for each subgroup of temperatures to define initial values ln Z (0) k for all MC trajectories.
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 75 Fig. 7.5: Convergence of the algorithm. The system is a monolayer of point charged particles and background with Coulomb interaction (n = 1). MC : ρ = 0.16, N = 8100, Q = 14.
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 76 where it is shown the circumcircle associated to the points 1, 2 and 3. The Delaunay triangulation of a set of points D = {(x 1 , y 1 ), . . . (x N , y N )} is a triangulation of D where no point of this set falls in the interior of a circumcircle of any triangle of the triangulation.

Fig. 7 . 6 :

 76 Fig. 7.6: Delaunay Triangulation.
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 77 Fig. 7.7: Voronoi Diagram.
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 81 Fig. 8.1: Scheme of the KTHNY-transition.
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 82 Fig. 8.2: Phase diagram. The curves of this diagram were adjusted with numerical values of previous studies of systems including the 2dOCP with 1/r and 1/r 3 interactions for N = 4096.

  the following systems sizes N = 1024, 2025, 4096, 8100 and 16384 setting 2 n = 2 and 3. The number of MC-cycles included to equilibrate the system were between 7.5 × 10 5 -1.2 × 10 6 MC-cycles depending on the system size for each value of n and Γ ∈ Ξ(N, n). Particles were placed in the nodes of a square lattice to define the starting configuration for systems with N ≤ 4096. Quadruplication of the equilibrated configurations for N = 2025 and 4096 were proposed as initial configurations for N = 8100 and 16384. On the other hand, around 1 × 10 6 -2 × 10 6 MC-cycles were used to collect averages for N = 1024 and around 2 × 10 5 -6 × 10 5 MC-cycles for N = 16384.
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 83 Fig. 8.3: Melting curve of the 2dOCP with IPL iteractions. (left) Rescaled excess energy for n = 2. (right) Excess energy deep in the crystal phase for N = 1024 and n = 2. The dashed line corresponds to the Madelung constant for n = 2. The inset is a snapshot of the configuration in the strong coupling regime.
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 84 Fig. 8.4: (left) Heat capacity in reduced units and (right) Binder's fourth cumulant for n = 2. The data collapse of the heat capacity and the Binders fourth cumulant are performed by using C v /(k B L η1 ) and V L L η2 where η 1 = 1.45 and η 2 = 0.52.
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 85 Fig. 8.5: Melting curve for N = 16384 and n = 2. (left) Excess energy. The red solid line corresponds to MHM and the blue points to MC method. (rigth) Energy histograms.
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 86 Fig. 8.6: < φ 6 > and χ 6 for n = 2. (left) Susceptibility χ 6 and the 6-fold order parameter; inset: 6-fold order parameter as a function of the coupling constant. (right) Finite-size scaling. Inset: fitting of the maximums of χ 6 .

Fig. 8 . 7 :

 87 Fig. 8.7: < φ 12 > and χ 12 for n = 2. (left) Susceptibility χ 12 and the 6-fold order parameter; inset: 6-fold order parameter as a function of the coupling constant. (right) Finite-size scaling. Inset: fitting of the maximums of χ 12 . Data collapse tend to fail for N = 8100.

Fig. 8 . 8 :

 88 Fig. 8.8: Orientational correlation function G 6 (r). The red dashed corresponds to G 6 (r) ∼ r -1/4 and a = 2/( √ 3ρ) is the lattice length spacing at Γ → ∞.
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 89 Fig. 8.9: Average number of particles having i neighbours. Left to right: averaged obtained via MHM for particles with 5, 6 and 7 neighbours. The critical coupling parameters Γ h and are Γ h for N = 16384 are indicated with vertical lines.
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 810 Fig. 8.10: Suceptibilty of n i . Left to right: susceptibility associated to n 5 , n 6 and n 7 .
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 811 Fig. 8.11: Determination of lim N →∞ Γ h (N ).

Fig. 9 . 1 :

 91 Fig. 9.1: Cluster of defects. (left) A 6-cluster defect. In this case the cluster is identified by using the Voronoi construction. Particles with six neighbours are represented with a white Voronoi cell and the coloured cells corresponds to defects. (right) Probability to find defect as a function of the coupling constant. The curves were plotted by using the results on Fig. 8.9-center of the previous chapter where the vertical dashed and dot-dashed lines are located at the critical values for fluid/hexatic and hexatic/solid transitions.

Fig. 9 . 2 :

 92 Fig. 9.2: Few structures corresponding to clusters of topologycal defects.

Fig. 9 . 3 :

 93 Fig. 9.3: Average number of s-clusters per particle of the 2dOCP with 1/r 2 interaction. The plots corresponds to the largest size simulated N = 16384.

4 1 - 1 Fig. 9 . 5 :

 1195 Fig.9.5: Probability to find a particle belonging to a S i -cluster. The plots corresponds to systems with N = 16384 particles interacting via a 1/r 3 inverse power law potential.

1 FIG. 1 .

 11 FIG. 1. Excess internal energy per particle as function of the coupling constant (dipolar interaction, n = 3). The symbols in blue are averages computed in MC simulations, the other data are computed with the multiple histograms method (MHM) from the MC trajectories. The red line is the internal energy in the low temperature limit as predicted by the harmonic approximation. The structure factors shown are computed in MC simulations for N = 8100 for coupling constants in the three phases : Γ = 67.8 (liquid), Γ = 68.6 (hexatic) and Γ = 72.7 (solid).

1 FIG. 3 . 1 FIG. 4 .

 1314 FIG. 3. Finite size scaling of the susceptibility χ(21). The data are computed with MHM from the trajectories obtained in MC simulations and for n = 1.

1 FIG. 5 .

 15 FIG. 5. Cumulants U (Si) computed with the MHM for systems with n = 2 and 16384 particles. The hexatic/solid transition is found at Γ h/s = 84.06.

dxx

  2µi+1 x 2µj +1 (-log y)e -(x 2 +y 2 )ρ b πΓ/2 . (B.5)

9 )(

 9 may be written as σ(1)σ(2) ω(1)ω(2) b(Γ) L µ σ(1) ,µ σ(2) νω(1) ,ν ω(2) N j=3 δ µ σ(j)νω(j) . As a result, the sum σ,ω∈S N will generate (N -2)! times the same non-zero contribution term built from the different permutations of p and q on ( σ(1)=p,σ(2)=q ω(1)=p,ω(2)=q ) b(Γ) L pq pq ) b(Γ) L µp,µq νp,νq + ( pq qp ) b(Γ) L µq,µp νp,νq +( qp qp ) b(Γ) L µq,µp νq,νp + ( qp pq ) b(Γ) L µp,µq νq,νp

  µp,νm)+ (µq,νn)-+ S I (µq,νn)+ (µq,νm)-|µ pν m | -S I (µp,νn)+ (µq,νm)-+ S I (µq,νm)+ (µp,νn)-|µ pν n |   which may be simplified by expressing the integral and product terms as follows

  ν m if µ p > ν m else I µp µq + I νm νn ν mµ p I µp µq + I νm νn µ pν n if µ p > ν n else I µq µp + I νn νm ν nµ p .

i

  for a < b and (a, b) ∈ Z + .

  ,µp) i νn νm µ pν m if µ p > ν m else i µq µp + π(µp,νm) π(νn,µq) i νm νn ν mµ p ,µp) i νn νm µ pν n if µ p > ν n else i µq µp + π(µp,νn) π(νm,µq) i νn νm ν nµ p

2 j=1

 2 rµ σ(j) +ν ω(j) j e i(ν ω(j) -µ σ(j) )φj N j=3 δ µ σ(j) ν ω(j) Φ H µ σ(j) . (B.16) 

∪ m∈Z 2 S 2 o

 22 Smexpr ir + S mexp -L2 t by using the Eqs. (C.4) and (C.5). Now we may writeSo (m) = R 2where S (0,0) = S o is the region of the computational box. HenceU pb = Qσ lim used R 2 d r exp -| r i -r| 2 t = π. Now, the integrals are L2 with κ o := κ → 0.As a result, the particle-background energy takes the formU pb = N Qσ lim

2 d

 2 Sme | r-r + Sm| 2 te -L2 t by using the Eqs. (C.4) and (C.5). Again it is possible to bind the computations on corresponding regions of the computation box and its images in a single integral on the plane as follows r e | r-r + Sm| 2 t d r -Ae -in the variable t it is obtained
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 22 Fig. D.2: Starting set of points. (left) Random points. (right) The circumcircle of the points 10,7 and 1.
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 11 Figure 1 -Les configurations typiques de l'OCP sur un disque souple de N = 100 particules comme paramètre de couplage augmentent. Les charges ponctuelles sont confinées par un potentiel parabolique et leur interaction est logarithmique.

  est dénomée théorie KTHNY (pour Kosterlitz, Thouless, Halperin, Nelson et Young). Dans la théorie KTHNY, le cristal fond en deux étapes à deux températures critiques différentes en raison de la dissociation des défauts topologiques. À mesure que la température du solide augmente, l'ordre à quasi-long portée du cristal bidimensionnel est perdu à cause de la dissociation thermique des paires de dislocations, cette perte d'ordre positionnel est suivie d'une décroissance algébrique asymptotique de la fonction de corrélation orientation-liaison, l'ordre orientationel est à quasi-long portée. Plus tard, une seconde dissociation des dislocations en disclinations libres détruit l'ordre d'orientation résiduel et le système atteint la phase fluide.

  Même lorsque la phase hexatique a été trouvée par des simulations et des expériences, il n'y a pas le même accord en ce qui concerne la classification des transitions fluide/hexatique et hexatique/solide. Selon la théorie de KTHNY, ces transitions sont continues et similaires à une transition KT. Cependant, les études numériques et expérimentales montrent clairement que la transition hexatique/fluide est faiblement de premier ordre au lieu d'une transition KT [28, 29, 31]. Cette thèse est centrée sur l'étude des systèmes de Coulomb présentant des interactions à longue distance. En particulier, le plasma bidimensionnel à une composante OCP est étudié pour différentes géométries et conditions aux limites. L'OCP sur le plan avec des conditions aux limites périodiques et un potentiel de Coulomb 1/r a été étudié dans Ref. [31] en utilisant des simulations de Monte Carlo (MC) identifiant la phase hexatique. Un des objectifs de cette thèse est d'effectuer des simulations numériques pour l'OCP avec des interactions de puissance inverse (Inverse Power Law -IPL interaction) de la forme 1/r n pour n = 2 et 3 ce qui nous permet de faire une étude des transitions de phase. Notre intention est de déterminer si le système se comporte comme la théorie KTHNY le prédit et classifie les transitions de phase fluide/hexatique et hexatique/solide puisque les études précédentes ont trouvé des transitions de premier ordre au lieu de transitions KT. La dépendance du paramètre de couplage critique avec la taille du système ainsi que n est sujet dans cette thèse.

  logarithmiques qui permettent d'étudier le passage du fluide au cristal.Dans cette thèse, nous avons présenté une étude des systèmes de Coulomb bidimensionnels présentant des interactions à longue distance sur différentes géométries, le plan et la sphère, avec différentes conditions aux limites. Des approches analytiques et numériques ont été utilisées dans le but d'obtenir une meilleure compréhension de la physique de la solidification de l'OCP.Nous avons commencé par le calcul analytique des différentes propriétés thermodynamiques et structurelles de l'OCP avec des interactions logarithmiques sur la sphère en utilisant une approche basée sur l'expansion monomiale du déterminant de Vandermonde à la puissance Γ. Cette approche analytique nous permet de trouver des expansions exactes de de l'énergie de excèss (énergie total mois la énergie du gaz ideal), l'entropie et la fonction de corrélation de paires restreinte aux valeurs paires du paramètre de couplage Γ. De plus, deux méthodes alternatives ont été développées pour calculer les coefficients de l'expansion monomiale : en utilisant le théorème multinomial et la méthode des différences finies respectivement.L'expansion multinomiale a également été utilisée pour calculer l'énergie et la fonction de densité à 2 corps de l'OCP sur le disque dur et le disque mou pour valeurs impaires de Γ/2. Nous avons non seulement corroboré l'expansion en N -finite de l'apport en énergie particule-particule du gaz de Dyson trouvé par Shakirov[36], mais nous avons aussi fourni une expansion finie exacte de l'énergie de l'OCP sur un disque dur à Γ = 2 ce qui est en accord avec le résultat trouvé par Jancovici[40] dans la limite thermodynamique. L'OCP sur le disque mou ou le gaz de Dyson est exactement résolu à Γ = 2 et il a quelques connexions avec le ensemble de Ginibre (Ginibre Ensemble -GE) de la théorie des matrices aléatoires. Nous avons montré que ces connexions ne sont pas complètement perdues à d'autres valeurs du paramètre de couplage, en particulier pour les valeurs entières impaires de Γ/2 où la fonction de densité à deux corps peut être écrite en fonction du déterminant du noyau de le GE. Nous avons calculé quelques densités de probabilité associées à la fonction analytique de densité à deux corps, ce qui nous a permis d'étudier le passage du gaz de Dyson du fluide au cristal pour les petits systèmes. Les résultats analytiques trouvés pour les gaz-logarithmique sont confrontés aux résultats numériques des simulations MC avec un bon accord entre eux. Bien que l'approche de l'expansion monomiale ait été utilisée avec succès pour obtenir des expressions analytiques dans le but d'évaluer exactement différentes propriétés sur les gaz logarithmiques pour Γ ≥ 2, il faut remarquer que l'une des faiblesses de la méthode d'expansion monomiale est la croissance rapide du nombre de coefficients et de partitions à mesure que le nombre de particules ou le paramètre de couplage augmente. Cette caractéristique de l'expansion limite considérablement son application pratique. Par conséquent, d'autres caractéristiques des systèmes de Coulomb tell que les transitions de phase ont été étudiées dans ce document en utilisant des simulation numériques. La deuxième partie de ce manuscrit a été consacrée à l'étude numérique de l'OCP avec interactions IPL en particulier, les transitions de phase en deux dimensions. L'étude a été centrée sur les interactions de la forme 1/r n avec n = 1, 2 et 3. La méthode des sommations d'Ewald a été utilisée pour trouver l'expression analytique de la constante de Madelung des cristaux hexagonaux avec n > 0 . Les simulations MC effectuées dans le régime de couplage bas nous permettent d'effectuer des calculs de l'énergie proche de l'état fondamental. Nous avons utilisé ces données pour interpoler l'énergie dans le cadre de l'approximation harmonique afin de calculer numériquement la constante de Madelung trouvant un excellent accord avec les résultats analytiques. Des simulations de Monte Carlo nous ont permis d'étudier la fusion du cristal hexagonal bidimensionnel. Nous avons pu identifier la phase hexatique en utilisant le facteur de structure ainsi que la courbe de fusion l'excès d'énergie. Nous avons également identifié les valeurs critiques de Γ correspondant aux transitions fluide/hexatique et hexatique/solide en utilisant la capacité calorifique, les suceptibilités et les cumulants de Binder. L'étude du déplacement des paramètres critiques due aux effets de taille finie est un outil puissant pour classifier les transitions de phase. En particulier, le paramètre de couplage critique associé à la transition hexatique/fluide Γ h = Γ h (N ) dépend de la taille du système. Le comportement asymptotique de Γ h avec N a été décrit par Γ h (N ) = Γ T L h + B/N avec B une constante et Γ T L h le paramètre de couplage critique à la limite thermodynamique. Cette dépendance a été trouvée en utilisant des données de la capacité thermique, des susceptibilités et des cumulants de Binder qui nous permettent de calculer Γ h (N ) dans la limite N → ∞. Nous avons utilisé la méthode de pondération par le histogramme multiples -MHM et une étude de taille finie afin de classer les transitions de phase d'OCP avec les interactions IPL. Nous avons trouvé que la transition de phase hexatique/fluide est faiblement de premier ordre au lieu d'une transition continue de Kosterlitz Thouless (KT) comme le prédit la théorie de KTHNY.

Titre:

  Résultats exacts et mécanismes de fusion pour les systèmes bidimensionnels Mots clés: Systèmes exactement solubles, gaz de Coulomb, simulations de Monte Carlo, transitions de phase Résumé: Les systèmes de nombreuses particules peuvent présenter des comportements variés en fonction du type d'interaction entre ses composants. Dans certaines situations, des structures macroscopiques hautement ordonnées peuvent émerger de telles interactions. Le problème de l'identification des mécanismes qui activent l'ordre microscopique dans les systèmes bidimensionnels a fait l'objet d'études théoriques et expérimentales. Il y a plusieurs décennies, il a été montré que les systèmes bidimensionnels avec des interactions de paramètres d'ordre suffisamment court et d'ordre continu n'ont pas d'ordre à long portèe (ils n'ont pas de phase solide). D'autre part, des études numériques sur des systèmes sans ordre positionnel ont montré que de tels systèmes pourraient présenter des transitions de phase. Cette contradiction apparente dans les systèmes bidimensionnels a été expliquée dans la transition KT (Kosterlitz-Thouless) proposée pour le modèle XY. Depuis lors, on a commencé à observer que les systèmes sans ordre positionnel pouvaient montrer des transitions de phase quand ils avaient un ordre de demi-longue portée (ODLP). Ce type d'ordre est associé à l'ordre d'orientation du système qui est perdu lorsque les défauts topologiques activés par les fluctuations thermiques sont divisés en paires produisant une transition. D'autre part, les systèmes bidimensionnels avec ordre de position à la température T = 0 peuvent être fusionnés dans un scénario comprenant trois phases: solide / hexatique / liquide dont les transitions sont dues à la division en deux étapes de défauts topologiques à deux températures différentes (Théorie de Kosterlitz-Thouless-Halperin-Nelson-Young KTHNY).

  

  

  

  

Table 1

 1 Partitions for N = 3 and = 4

Table 1 :

 1 Coefficients of βF exc N,Γ at Γ = 2. In the table H B Γ=2 = -0.4775353 . . . and ζ(x) is the Riemann zeta function.

Table 7 .

 7 .27) On Fig.7.3, the value of C M (2) computed with this definition is represented by a red cross ; in inset of Fig.7.3, we represent the convergence rate of Eq.(7.26). The numerical value for C M (2), given in Table7.1, is computed with Eq.(7.27). As n → 0, we have C M (n) → 0, because of electroneutrality. However, with Eq.(7.1), we may recover the logaritmic interaction of the 2D-Coulomb interaction since 1: Madelung constants for two dimensional triangular lattices for several values of n. The column entitled Systems gives references for which the value of n has a peculiar interest.

		lim n→0	1 n	σ r	n	-1 = -ln	r σ	.	(7.28)
			Long ranged (n < 2)		
	n	C M (n)				Systems
	0.50	-0.964675743					
	1.00	-1.960515789			Coulomb [68, 71, 73]
	1.25	-2.985059632					
	1.50	-5.058870638					
			n = 2 (Long ranged)		
	Ewald 1.2592386844 Calogero-Moser potentials [74] [124]
			Short ranged (n > 2)		
	n	C M (n)				Systems
	2.50	7.569135690					
	3.00	4.446372550			Dipolar [26]
	6.00	2.070628274			Soft-Spheres [75]
	6.25	2.015244728			FCC/BCC [76]
	12.0	1.267695125			Soft-Spheres [67, 75]
	21.0	0.662517481			Soft-Spheres [67]
	64.0	0.030067787			Soft-Spheres [75]
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	960515789 -1.961	1.84
	2 1.259238684	1.259	3.28
	3 4.446372550	4.447	5.73

1: Coefficients for several values of n.

  .4).

		1.310					
		1.308	I					for N 16384
	Ρ E NQ 2	1.304 1.306 1.302		II				1.30559	87.5016 85.258 84.2214 83.945 83.6704 83.3976	80.549 80.3932 80.3543 80.3155 80.2767 80.238
								83.1265	80.0834
		1.298 1.300				III		1.2994	81.4168 82.5487 81.9788	79.9294 79.1681
			80	82	84	86	0	0.00175	0.0035
								H N E,

Table 8 .

 8 2: Maximum locations of C v and V L .

		78.8362	-	78.7854	-
	2025	79.7621	-	79.7621	-
	4096	80.0355	-	80.0355	-
	8100	80.1600	-	80.1610	-
	16384	80.299 ± 0.001 83.41 ± 0.01 80.299 ± 0.001 83.64 ± 0.01

Table 8 .

 8 3: Extrema locations for N = 16384.

		Γ h	Γ s	4th cumulant	Γ h	Γ s
	C v χ 6 χ 12 χ n5 χ n6 χ n7	80.294 ± 0.001 83.41 ± 0.01 80.28 ± 0.01 83.30 ± 0.01 80.29 ± 0.03 83.36 ± 0.04 80.29 ± 0.01 83.27 ± 0.01 80.29 ± 0.01 83.27 ± 0.01 80.29 ± 0.01 83.27 ± 0.04	V c (E) V (φ6) c V (φ12) c V (n5) c V (n6) c V (n7) c	80.299 ± 0.001 83.64 ± 0.01 80.22 ± 0.01 83.3 ± 0.1 80.16 ± 0.01 83.31 ± 0.07 80.38 ± 0.01 83.54 ± 0.07 80.29 ± 0.01 83.6 ± 0.1 80.38 ± 0.01 83.55 ± 0.01

  s >

	p s (Γ)	1e-06 0,0001 0,01					Γ=92.363 Γ=89.866 Γ=87.502 Γ=85.258 Γ=84.2214 Γ=83.1265 Γ=82.3035 Γ=81.4966 Γ=80.8624 Γ=80.5490 Γ=80.3932 Γ=80.3543 Γ=80.2767 Γ=80.2380 Γ=80.0834 Γ=79.9293 Γ=79.1681 Γ=78.4213 Γ=77.6884 Γ=76.9690
		1e-08	1	10	s	100	1000

Table 9 .

 9 Fig. 9.4: Statistics of the different types of s-clusters. (left) Average probability to find a particle belonging to a s i -clusters. (right) 4th-cumulant associated to p si . Both plots corresponds to the 2dOCP with 1/r 2 interaction and N = 16384. 1: Extrema locations extracted from the 4th-cumulants curves per type for N = 16384 and n = 2.

	0.01												
								0,5					
						1							
						1 1 1 2 2		0						1 1 1 1 2
	0.001 p s i (Γ)					3 3 1 3 2 3 3 3 4 4	C s j ) j n (s V	-0,5						2 3 3 1 3 2 3 3 3 4
	1e-04					4 1 4 2 4 3 4 4		-1 -1,5						4 4 1 4 2 4 3 4 4
	1e-05	78	80	82 Γ	84	86		80	81	82	Γ	83	84	85
		Cluster type		Γ h		Γ s	Cluster type		Γ h			Γ s
		1 1 1 1 2 2 3		80.417 ± 0.005 80.415 ± 0.005 84.204 ± 0.001 84.18 ± 0.01 80.415 ± 0.006 84.148 ± 0.003 80.378 ± 0.005 84.056 ± 0.005 80.41 ± 0.01 84.161 ± 0.005		4 4 1 4 2 4 3 4 4	80.32 ± 0.01 80.267 ± 0.005 No minimum 83.799 ± 0.003 80.378 ± 0.005 84.068 ± 0.005 80.387 ± 0.005 84.151 ± 0.003 80.385 ± 0.005 84.139 ± 0.005

Table 9 .

 9 .2 shows the value of ζ s (Γ) at three different values of Γ in the fluid/hexatic/solid phases to see the values of cluster concentrations at three typical values of Γ in 2: ζ s (Γ) at Γ = 78.46, 82.07 and 85.68 for N = 16384 and n = 2.

	Cluster size (s)	fluid hexatic solid
	1 (disclinations)	9.26	1.13	0.41
	2 (single-dislocations) 63.14	33.07	18.85
	4 (dislocations-pairs) 27.60	65.80	80.74
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  ν m | H I µp µq + H I νn νm if µ p > ν m otherwise H I µq µp + H I νm νn for µ p < ν m

	and B H µν	p, q m, n	= (-1) τµν (N -2)!	  i=1,i =p =q N	Φ H µi	  2	H I µ p -ν m µp µq + H I νn νm	if µ p > µ m else	H I ν m -µ p µq µp + H I νm νn	-	.
							H I µq + H I νm µp νn µ p -ν n	if µ p > µ n else	H I µp + H I νn µq νm ν n -µ p		
	An alternative way to write the matrix B H µν is defining (µ, ν) ± := (µ + ν ± |µ -ν|)/2 and taking into account that |µ p

  • B H µν is used only to avoid confusions with the previous notation B H µν and they share these properties: 1. B H µν and • B H µν have a non-zero contribution if n µν = dim(µ ∩ ν) = N . In general, B H µµ and • B H µµ are real for any partition µ.

This is correct for the case of Γ = 2 where the 2dOCP on a soft disk is a fluid and the density of the plasma in the thermodynamic limit tends to ρ b (see Eq. (2.18))

Along the document we shall use bold symbols for the gamma function as well as its incomplete versions in order avoid any confusion with the coupling parameter Γ

Here (x, y) are the stereographic projection of the spherical angle coordinates (θ, φ) on the plane tangent to the north pole of the sphere.

We shall use bold symbols for the gamma function as well as its incomplete versions in order avoid any confusion with the coupling parameter Γ. The symbols H and S will be used to denote Hard and Soft disk cases respectively.3

equations. At some point, in our previous study on the 2dOCP on the sphere we were forced to find I µ numerically. Unfortunately, this procedure was too penalizing for the computation of the coefficients set {C µ } via Eq. (5.2).

Note that the Mermin-Wagner theorem does not apply to the

2d-Ising model, a two-dimensional system of 1/2-spins located in the nodes of the square-lattice. Even when the interaction in the 2d-Ising model is limited to the nearest neighbouring interaction between spins, the degrees of freedom of each spin is not continuous as it occurs in the XY -model where individual rotors are not restricted to point only in two directions. As it was proved by Onsager[2] in 1944, there are spontaneous magnetization in the 2d-Ising model for sufficiently low temperatures as well as a continuous phase transition.

This result is related with the one of Eq. (C.11) in the limit n → 0 since the IPL and the logarithmic potential are connected in this limit by the identity Eq. (C.1). Ewald method for logarithmic interaction is in Appendix C

It is a system planar rotors arranged in a two dimensional lattice considered a special case of the Heinsenberg model. As other two-dimensional systems the XY -model does not have long-range order since the magnetization < S > goes to zero in the thermodynamic limit for any finite temperature implying that rotors cannot order along a common direction. However, correlations as < S(x)S(0) > decays algebraically or exponentially for low or high temperatures respectively.

The case n = 1 (Coulomb potential) was previously studied in[START_REF] Mazars | The melting of the classical two-dimensional wigner crystal[END_REF] with system sizes N = 1024, 2025, 4096 and 8100.
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Appendix 1: Partitions Computation

All partitions μ may be found from the first one usually called the root partition μ 1 i = (Ni) /2 where we have used the following notation for the elements μ α i of the partition 123

Appendix 2: Coefficients Computation

The Multinomial Theorem Approach

The coefficients may be computed from the following formula

Partition average of H S µ

As it will be shown later H S µ (r 1 , r2 , φ 12 ) plays an important role in crystallization but before it is necessary to point a potential trouble. Note that the product

depends explicitly on the angle difference and in general is a complex function. This may be problematic because the n-body density functions are real and the individual contributions of the sum H S µ (r 1 , r2 , φ 12 ) are complex. Since the determinant of the kernel Det k

is real, then it is necessary to proof that partition average of H S µ (r 1 , r2 , φ 12 ) is a real function to ensure that Hρ

N,Γ ∈ R as it should be. The partition average of H S µ is

(-1) τµν ( p,q m,n ) C (N ) ν (Γ/2) H g µν p, q m, n because ( i m i !) = 1 for odd values of Γ/2. Since, µ and ν are only labels to notate partitions we may write

(-1) τνµ( m,n p,q ) C (N ) µ (Γ/2) H g νµ m, n p, q    .

The normalization condition for S S µ N reads Now S S µ N only includes the partitions contributions such that ν ∈ D µ hence (ν m , ν n ) ∩ µ = 0 and (µ p , µ q ) ∩ ν = 0. It implies that Kronecker deltas compare just the unshared elements between µ and ν, then δ νm,µp = δ νm,µq = 0 and

The contribution to the normalization condition of the kernel's determinant requires to compute

where we have used the integral given by Eq. (A.1) were used. Including the radial part

and finally

N,Γ (r 1 , r 2 , φ 12 ) may be done to check that the normalization condition in the hard disk case.

Appendix B

Supplementary material B.0.1 Introduction

This supplementary material is written to include some intermediate steps which does not offer a crucial information on the results of the main document, but we consider may be useful for the interested reader. This document has been organized as follows: a more detailed procedure to obtain the term U ppR of the particle particle contribution is in section B.0.1. Some additional comments on the integrals for the 2dOCP on the hard disk are in section B.0.1. As it was mentioned in the main document, most of the elements of the matrices B µν and • B µν are zero and the non-zero elements of these matrices require that µ and ν differ only at most by two elements. Sections B.0.1 and B.0.1 have the intermediate algebra to find the non-zero entries of B µν and • B µν . In the computation of B µν and • B µν we decided to reorganize the elements of the partitions µ and ν to remove the double sums permutations on the partitions elements. This procedure simplified our computations by the cost to include a sign (-1) τµν coming from the partitions elements rearrangement. The section B.0.1 shows how to find this sign.

Computation of U ppR

This energy contribution is defined as

Replacing Eq. (B.2) into Eq. (B.1) then it is possible to complete again the delta product in order to simplify the expansion of U ppR as follows

As a result, for a given partition µ only partitions ν = µ with elements strictly organized in the same order (which implies sgn Γ (σ, ω) = 1) will give a non-zero contribution reducing the sum µν σ,ω∈S N to

where a is a positive integer. The second integral included in the energy computations is

It may be written as follows

and replacing Eq. (B.10) it is obtained In this section we shall exclude the zero terms of

for odd values of Γ/2. If the partitions included in B µν are not equal then B µν = 0 only if they share N -2 elements n µ,ν = N -2. Let us suppose that (µ p , µ q ) are the elements of µ which are not in ν, this is

Then for a given partition µ = ν the matrix B µν would be different to zero only if ν is of the form

Since ν is a permuted version of the original ν, then a permutation of the same indices of ν and ν will not have necessarily the same sign. However, it is always possible to go from ν to ν by permuting, for instance τ µν -times the labels of ν. Therefore

µν may be written as follows

or

and νω(j) =

The double sum of permutations will add a zero contribution for ω(j) = p or ω(j) = q for j ≥ 3 because of the delta product

νω(j) . Therefore, for non-zero contributions it is only possible to locate the indices (p, q) at ω(1), ω(2) and σ(1), σ(2). Consequently, the term σ(1)σ( 2

2. The case n µν = N -1 is impossible due to the restrictions on the partitions construction. Hence, for this case we may set B H µν = 0 and

4. As it will be shown later, another property of • B H µν is its dependency only with the angle difference δφ 12 = φ 1φ 2 instead of both angles φ 1 and φ 2 separately because of the rotational symmetry of the system. On the other hand, B H µν is by definition angular independent.

Hence, we must focus on pair of partitions which shares N -2 elements. If µ p , µ q , ν m , ν n are the unshared elements of µ and ν (this is (µ p , µ q ) ∩ ν = 0 and (ν m , ν n ) ∩ µ = 0), then it is expected the condition µ p + µ q = ν m + ν n as a consequence of the squeezing operations behind the construction of any partition µ or ν from the root partition. This condition may be found by remembering that

νi where we have used the fact that it is always possible to go from ν = (. . . ν m , . . . , ν n . . .) to a partition ν = (. . . ν p , . . . , ν q . . .) whose unshared elements are placed in the same positions of µ = (. . . µ p , . . . , µ q . . .) by applying τ µν transpositions on ν without to change the value of N i=1 ν i . Since (ν p , νq ) = (ν m , ν n ) and νi = µ i if i = p, q then µ p + µ q = ν m + ν n . It is convenient to write • B H µν in terms of ν by applying τ µν transpositions on the partition ν. Thus the Eq. (B.16) takes the form

where we defined

This may be simplified as follows

All the • L matrices have a dependence on φ 12 = φ 1φ 2 and φ 2 because of the restriction µ p + µ q = ν m + ν n on the unshared elements of µ and ν: 

where

Note that Eq. (B.17) for b(Γ) = 1 may be written more compactly as follows

which also implies that the product replacing explicitly

which may be written most shortly as

The sign (-1) τµν

It is necessary to determine the sign (-1) τµν to compute Eq. (B.13) or Eq. (B.14). According to

for non-zero and non diagonal values of B µν matrix the partitions µ and ν must share all the elements except two located at the positions (p, q) and (m, n). In general, the sign depends on how these positions are indexed, this is (-1) τµν = (-1) τµν ( p,q m,n ) . Let us suppose that ν ∈ D µ then these partitions may be, for instance, of the form µ = (µ 1 , µ 2 , µ p , . . . , µ q , µ N ) and ν = (µ 1 , ν m , µ 3 , . . . , ν n , . . . , µ N ).

We shall also define the following partition µ defined as µ = (µ p , µ q , µ 3 , µ 4 , . . . , µ N ) by permuting the elements of the original partition µ = (µ 1 , µ 2 , µ p , . . . , µ q , µ N ). For this aim it is necessary to move the element µ p from the pth-place to the first place by applying p -1 movements to the left. Similarly, the element µ q needs q -2 movements to occupy the second place once the µ p is in the first place. So the total of required transpositions from µ to µ is T µ = p + q -3. Similarly, if we would like to build ν = (ν m , ν n , µ 3 , µ 4 , . . . , µ N ) it is necessary to apply T ν = m + n -3 transpositions. Therefore the total number of transpositions to change the order of the original partitions µ, ν to µ and ν is T ν,µ = p + q + m + n -6. This would introduce the following change of sign (-1) Tν,µ = (-1) p+q+m+n on the computation of B H µν p,q m,n . Starting from µ we may come back to µ by reversing the T µ = p + q -3 transpositions used in the other direction µ = (µ p , µ q , µ 3 , µ 4 , . . . , µ N ) -→ Tµ µ = (µ 1 , µ 2 , . . . , µ p , . . . , µ q , . . . µ N ).

Since ν only differs from µ in the first two elements, then it is also necessary

Fortunately T µ ν = 2T µ is always an even number. Hence, if we go simultaneously from µ to µ and ν to ν, then this procedure does not affect the sign. As a result (-1) τµν ( p,q m,n ) = (-1) Tν,µ+2Tµ = (-1) p+q+m+n . (B.21)

Appendix C

Ewald method the 2dOCP on a plane with logarithmic interaction

In this appendix we shall apply the Ewald method to the 2dOCP on a plane with logarithmic interactions. The potential between two charges separated by a distance r is ν(r) = -Q 2 log(r/ L) where L is an arbitrary constant. The particle-particle interaction energy is

The Logarithmic and inverse power law are connected with the following limit

The potential function may be written as follows 

   which enables to write such terms in the reciprocal space by using the Poisson -Jacobi identity for

Therefore

a zero term contribution in the reciprocal space. On the other hand

as a result the potential Φ( r) takes the form
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By definition the self-interaction contribution Φ o is

where Φ( r = 0) may be evaluated by using Eq. (C.2)

This term may be written as

where the integrals with infinite upper bound are written in terms of incomplete gamma functions. Therefore

Now, the other two terms are

Finally, this result may be replaced in Eq. (C.7) and using Eq. (C.6) evaluated at r = 0 and to obtain the self-interaction contribution

   (C.8) where the limit terms S → 0 have removed the S m = 0 contribution in the sum of the real lattice.

Particle-particle interaction energy

Let us write the particle-particle energy as follows

where U real pp and U rec pp are the energy contributions of the terms included explicitly on the real and reciprocal lattice sums respectively. The energy contribution U div pp corresponds to the constant terms which not belong explicitly to any sum 1 . The subscript div on U div pp has been inserted in the notation to remind that such energy contribution will eventually cancel the energy divergences of the background if it is included. The real contribution is

where the prime in Sm indicates a sum over all the vectors of the lattice except the term i = j if the difference vector position r ii = r (m1,m2) ii

does not connect the ith-particle of the computational box m 1 = 0

1 For instance, in the previous relationship for the potential given by Eq. (C.6)

   the real Φ( r) real , reciprocal Φ( r) rec , and divergent Φ( r) div have been underlined in blue, gray and red color respectively.

with an image m 2 > 0. The reciprocal energy contribution is

Now, we may write

Similarly, the contribution of the divergent terms are

Finally, the particle-particle energy contribution takes the form

A special case: the binary mixture

Let us consider a bidimensional two component plasma 2dTCP with an even number of charges N = N 1 + N 2 = 2N 1 where half of them N 1 = N/2 have a positive charge Q and the other half N 2 = N/2 have a negative charge -Q. In this scenario the ith-charge may be written as Q i = (-1) i Q and the system does not require a background to be neutralized since the total charge is zero. As a result, the particle-particle energy is just the excess energy which may be written as

since the background density is σ = -N Q/A. If the result of Eq. (C.9) is used, then the excess energy U exc = U pb + U pb + U pp takes the form

As a result, the excess energy for N-identical charges with logarithmic interaction on the plane takes the form semble macroscopiquement homogène avec une symétrie de translation et de rotation. Une fois que les moment magnétiques sont alignés à la phase de basse température, le système perd cette symétrie puisqu'il y a une direction préférée, la brisure de symétrie est induite par l'ordre.

Le concept de brisure de symétrie peut être associé à des transitions de phase mais ce Un autre exemple qui montre que la brisure de symétrie n'est pas nécessairement à l'ori-