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Abstract
Cette thèse, initiée par un programme de coopération franco-britannique entre la DGA et

la DSTL, est consacrée à l’étude des phénomènes de décollement de jet au sein des tuyères
propulsives sur-détendu. L’aérothermodynamique des systèmes propulsifs (missile, avion su-
personique ou lanceur) est un des domaines de la mécanique des fluides où des progrès décisifs
restent à réaliser pour améliorer les performances des ensembles moteurs, en terme de bilan
de poussée, de stabilité, de fiabilité et de réduction de nuisances (bruit, émission de pollu-
ants, etc.). Les conditions de vols et la complexité des phénomènes caractéristiques n’étant pas
reproductibles sur bancs d’essais à l’aide des outils expérimentaux actuelles, l’utilisation de sim-
ulation numérique permettrait une étude approfondie et précise des phénomènes mis en jeu. Le
besoin d’informations concernant l’instationnarité de l’écoulement s’affirmant de plus en plus,
notamment sur les phénomènes basse fréquence dû aux décollements de jets, l’utilisation des
simulations numériques aux grandes échelles (LES) permettrait de faire face au coût prohibitif
des simulations directes (DNS).

Les tuyères sur-détendu souffrent de charges latérales, caractérisées par des forces insta-
tionnaires orthogonales à la direction de l’écoulement. Ils sont causés par le décollement de la
couche limite se développant le long de la paroi, provoquant des excursions de chocs importants,
parfois asymétrique. Ces phénomènes instationnaires ont déjà été observés expérimentalement
et numériquement. Ces instationnarités émergent d’une combinaison de phénomène complexe,
tels que les interactions choc/couche limite sur la paroi de la tuyère, les couches de mélange
décollées ou les zones de recirculation en aval du décollement, toutes produisant des modes
énergétiques à différente fréquence caractéristique et tout particulièrement dans la plage de
basse fréquence.

Capturer le phénomène de décollement est un véritable défi dû à la nécessité de résoudre
plusieurs échelles spatiales et temporelles. L’utilisation des simulations directes (DNS) ou
résolu proche paroi (WR-LES) devient difficile compte tenu des ressources en calcul numérique
actuelles. Pour parer ce problème, l’utilisation d’une stratégie de modélisation proche paroi est
nécessaire. Le modèle de paroi développé par Kawai & Larsson (2013) est intégré à la simulation
LES, combiné au modèle de viscosité de Duprat et al. (2011) afin de tenir compte des gradi-
ents de pression rencontré tout au long de la tuyère. Le développement d’un code curviligne
a également permis de réduire le coût de calcul des simulations cylindriques en utilisant un
maillage raffiné proche paroi.

Les résultats obtenus à partir des simulations modélisés (WM-LES) permettent de bien
mettre en évidence les phénomènes d’instationnarité menant au problème de charge latérale.
Le coût de calcul étant réduit de 40 fois comparé à une simulation résolu proche paroi WR-LES,
la production d’une base de donnée basse fréquence devient possible. La comparaison des calculs
modélisés aux calculs résolus et aux données expérimentales confirme la bonne implémentation
du modèle pour des simulations LES de tuyère propulsive. La caractérisation des différents
phénomènes est faite à l’aide d’analyses spectrales effectuées sur la base de donnée permettant
de mettre en avant le phénomène basse fréquence rencontré dans les tuyères sur-détendu.
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Abstract
The present thesis, sponsored by a Franco-British cooperation program between the DGA

and the DSTL, is devoted to the study of separation phenomenon in over-expanded nozzle. The
aerothermodynamic of propulsion systems (missile, supersonic aircraft or launcher) is one the
fields of fluid mechanics where important progress remains to be made in order to improve the
performance of the engine, in terms of thrust, stability, reliability and pollutant (noise reduction,
pollutant emissions, etc.). Since the flight conditions and the complexity of the characteristic
phenomena are not reproducible on experimental benches, the use of numerical simulation would
allow a thorough and precise study of the phenomena involved. The instationnarity observed
in the separation of the boundary layer is becoming a main concern nowadays, especially the
low-frequency phenomenon observed in some experiments, the use of large scale simulations
(LES) would fit perfectly the computational power allocated on supercomputer compared to
the prohibitive cost of direct simulations (DNS).

Over-expanded nozzles are known to suffer from side loads, characterized by undesired
unsteady forces orthogonal to the flow direction. They are caused by boundary-layer separation
that causes significant and asymmetrical shock excursions within the nozzle. These phenomena
have been studied experimentally and numerically. They emerge from a combination of complex
unsteady flow phenomena, not yet fully understood, such as shock/boundary-layer interactions
at the nozzle walls, detached mixing layers, and large regions of recirculating flow, all producing
energetic motions at frequencies one or two orders of magnitudes lower than the characteristic
frequency of the incoming turbulence.

Capturing the phenomenon is a real challenge due to the need to resolve at least four decades
of time scales, from the energetic scales of the incoming turbulence. This makes both direct
(DNS) and wall-resolved large-eddy simulations (WR-LES) rather impractical. Instead, a wall-
modelled LES (WM-LES) strategy is employed here, following the approach of Kawai & Larsson
(2013) together with the eddy-viscosity modification of Duprat et al. (2011) so as to account
for pressure gradients. The WM-LES is found to accurately reproduce the flow topology, as
well as the spectral content obtained by a reference WR-LES. The development of a curvilinear
code has allowed us to decrease the cost of computation of the simulations by using a stretched
mesh close to the wall.

The results obtained from the wall-modeled simulations (WM-LES) allowed us to capture
and study the phenomena of instationnarity leading to the problem of side-loads. The WM-
LES being about 40 times cheaper, the low-frequency motions may be statistically converged,
enabling the study of the very low frequencies. The comparison of the modeled simulations with
the resolved simulations and the experimental data confirms the good implementation of the
model for LES computations of over-expanded nozzle flow. The characterization of the different
phenomena is done through spectral analyses, carried out on the LES database allowing the
highlight of the low-frequency phenomenon encountered in the over-expanded nozzle flow.
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1

Introduction

1.1 Nozzle flow

The nozzle is a central element in supersonic propulsion system. It is mainly used for space
launch vehicles but also for satellite stabilization, gas turbines and supersonic propulsion.
The basic principle behind rocket propulsion is the Newtonian action-reaction principle,
“to every action, there is an equal and opposite reaction”. A rocket engine ejects mass in
one direction which creates a force in the opposite direction.

The nozzle is a system that accelerates the gases through a converging-diverging
section from a high pressure chamber (fig. 1.1). These gases are often heated during an
isobar combustion before getting expanded in the atmosphere through the nozzle. This
will deliver the effective thrust to the launcher.

The thrust, noted Fjet, produced by the nozzle can be expressed as:

Fjet = ṁue+ (pe−pa)Ae, (1.1)

where ṁ is the mass flow coming from the stagnation chamber, ue the nozzle exit velocity,
pe the nozzle exit pressure, pa the ambient pressure and Ae the nozzle exit cross section.

The thrust is made of the Newton’s second law and the force of pressure acting at
the exit of the nozzle. The nozzle exit velocity, noted ue, is governed by the nozzle
expansion ratio ε, defined as the ratio between the nozzle exit area and the throat area,
i.e. ε=Ae/At. This ratio changes along the nozzle with a converging section between the
combustion chamber and the throat, followed by a diverging section downstream of the
throat. The flow inside the nozzle follows the first and second laws of thermodynamics.
For isentropic flow, the total pressure and total temperature are conserved along the
nozzle. This conservation combined with the second law of thermodynamics and with

1
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Figure 1.1: Rocket engine diagram

the perfect gas relation gives the isentropic relations (eq. 1.2, 1.3, 1.4):

A

At
=
(
γ+ 1

2

)− γ+1
2(γ−1)

(
1 + γ−1

2 M2
) γ+1

2(γ−1)

M
, (1.2)

p

pc
=
(

1 + γ−1
2 M2

) −γ
γ−1

, (1.3)

T

Tc
=
(

1 + γ−1
2 M2

)−1
. (1.4)

The velocity is increasing along the converging section. At a specific Nozzle Pressure
Ratio (eq. 1.5), the velocity at the throat reaches the sonic state (Mthroat = 1). From
this point, the nozzle passes through several states:

• Subsonic-Subsonic, Mthroat = 1 : Choked nozzle

• Subsonic-Partially Supersonic, pa > pe : Over-expanded nozzle

• Subsonic-Supersonic, pa = pe : Ideally expanded nozzle

• Subsonic-Supersonic, pa < pe : Under-expanded nozzle
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NPR = pc
pa
, (1.5)

where, pc is the combustion chamber or total pressure and pa the ambient pressure.

In practical application, the pressure in the combustion chamber (pc) is mostly con-
stant. On the other hand, the NPR changes during the flight as the atmospheric pressure
(pa) changes. The atmospheric pressure is decreasing during the ascension of the rocket,
while the NPR is increasing (fig. 1.4). At ground level or during the engine start-up,
the rocket is usually over-expanded and passes through the ideally and under-expanded
regimes during the ascension to space. In space, all nozzles are under-expanded as a
result of the extremely low pressure.

As an example, the European rocket launcher, Ariane 5 (fig. 1.3), uses a Vulcain 2
engine with an expansion ratio of ε = 58. The flow is ideally expanded at an altitude
of 19 km. From ground level up to this altitude, the flow is over-expanded and then
under-expanded at higher altitude.

In terms of efficiency, the maximum thrust is reached when the flow is ideally ex-
panded. When the rocket is over-expanded, the flow is not fully attached but separated
from the nozzle wall. Flow separation in rocket nozzle is undesirable and can lead to
dynamic loads on the structure, which can cause damage on the nozzle. These unsteady
mechanical loads are commonly called side-loads. This phenomenon can also lead to
unwanted unsteadiness of the exhaust plume and end-up with an uncontrolled rocket.

An ideal expansion would require to adapt the contour during the rocket ascent. Due
to the mechanical complexity, engineers have not yet been successful at designing such
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adaptive devices. Most of the actual rockets use two or three stages to launch a satellite.
Each stage is designed for a certain range of altitude and avoids highly over/under-
expanded regimes. The first stage, used at the ground level, can be designed so that flow
separation is reduced at sea level. The nozzle is still running in over-expanded regime at
the startup of the engine but for a limited period of time.

1.2 Shock pattern in over-expanded nozzles

Although the operating mode of convergent-divergent nozzles is the same for all super-
sonic applications, there is, nevertheless, a wide variety of possible flows according to
the different nozzle shapes. The geometry of the nozzle has a dominant role on shock
patterns and performance. Conical nozzles were the first to be developed due to their
simplicity and ease of construction. Generally, these nozzles have a half-angle divergence
of 15◦ to 25◦. They are not used for the propulsion of recent rockets because of space lim-
itation and lack of performance. Nevertheless, they are still used for research purposes.
Curved nozzles, forming the second family of conventional nozzles, offer advantages over
conical nozzles in terms of size and performance. These nozzles can be divided into three
categories: TIC, TOC and TOP.

Truncated Ideal Contour (TIC) profile is defined by the method of characteristics
(MOC) so that the flow in the divergent section is ideally expanded. The flow at the
nozzle exit is uniform for the non-truncated version. In TIC design, the nozzle is truncated
slightly before the nozzle exit for space savings which yields a loss of performance due
to the non-uniform flow at the exit. These nozzles are often used on the second stage of
space launch system in order to save space and to reduce the weight.

Thrust Optimized Contour (TOC) nozzles are designed to deliver the maximum of
thrust for a specific NPR. These nozzles are characterized by the presence of an internal
shock that starts downstream of the throat due to the high deflection angle. More specific
shock patterns are observed in TOC nozzle flows than in TIC nozzle flow.

Thrust Optimized Parabolic (TOP) nozzles are similar to TOC nozzle in terms of
concept, except for the nozzle profile that is approximated by a parabola without signifi-
cant loss of performance. This method is frequently used nowadays for the design of first
stage nozzles. As for TOC, TOP nozzles are characterized by the presence of an internal
shock.

New nozzle concepts have been developed recently, such as aerospike engines (annular
or planar shapes). This type of nozzle has not been used for real space applications.

Depending on the evolution of the nozzle shape and the flow conditions, several shock
patterns may appear in over-expanded jet flows (fig. 1.4):
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Figure 1.4: Shock patterns in over-expanded nozzle flow; S: separation, SS: separated
shock, RS: reflected shock, TP: triple point, IS: internal shock, MS: Mach stem, RB:
recirculation bubbles, J: supersonic jet, SL: slip line.

• Regular reflection: The incident shock is reflected on the axis of the nozzle due to
high pressure ratios. The regular reflection may be observed in the plume of all
nozzle types but only during flight (not observable on ground operation).

• Mach reflection: For lower pressure ratios, the incident shock is reflected on a Mach
disk (conical nozzle), or Mach stem (planar nozzle). The Triple Point is where
the incident shock, the reflected shock and the Mach disk meet. The Mach disk is
characterized by a strong shock which creates a subsonic region downstream.

• Cap-shock pattern: When the nozzle is optimized to deliver a maximum thrust
(TOC, TOP), an internal shock appears at the throat region. The internal shock
hits the Mach disk forming complex shock patterns inside the nozzle. A subsonic
zone with large recirculation bubbles is observed downstream of the Mach disk.

A transition between different shock patterns may occur during flight which produces
high dynamic loads on the structure of the nozzle. A hysteresis effect has been observed
on many experiments (Chpoun et al. 1995, Frey & Hagemann 1998, Ben-Dor et al. 2002)
during transition between regular, Mach reflection and cap shock patterns.

At separation, the upstream boundary layer is deviated away from the wall followed
by a mixing/shear layer. Most of the time, the mixing layer downstream of the shock is
separated from the wall, i.e. Free Shock Separation (FSS). However, in specific conditions
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(NPR or nozzle contour), a different type of pattern is expected, commonly called Re-
stricted Shock Separation (RSS). The latter is characterized by a reattachment at the wall
with large recirculation bubbles downstream of the Mach disk. The transition between
FSS and RSS produces strong side-loads along the wall of the nozzle. This transition
happens when the detached shear layer from the FSS jet is close to the wall, reattaching
by a “Coanda effect”. Östlund (2002) showed that the transition creates a peak of side-
loads for a specific range of NPR. Further studies (Kwan & Stark 2002, Nguyen et al.
2003) demonstrated that the transition is subjected to an asymmetrical behavior of the
separation line which increases the unsteadiness of side-loads. Also a hysteresis effect was
observed during FSS-RSS transition, which increases the side-loads and the low frequency
tone observed in over-expanded nozzle (Frey & Hagemann 1998, Martelli et al. 2010).

• In the case of Free Shock Separation (FSS), the over-expanded jet is completely
separated from the wall. A back flow is observed between the exit and the separation
location. This recirculated flow increases the unsteadiness of the separation line
because of large structures and vortices. A mixing layer is created with Kelvin-
Helmholtz instabilities.

• The RSS patterns have been observed in the early 1970’s by Nave & Coffey (1973)
during experimental studies of the J-2S rocket engine. Among others, Chen et al.
(1994) observed similar behavior in a numerical simulation of the same configura-
tion. They captured a separated flow reattached at the nozzle wall with a large
vortex behind the Mach disk.

1.3 Over-expanded nozzle flow unsteadiness

Flow separation occurs in over-expanded nozzle when the boundary layer is subjected to
a strong adverse pressure gradient which it cannot withstand. This separation creates
an oblique shock and a mixing layer downstream of the separation. The separation
line unsteadiness is influenced by different phenomena happening inside the nozzle; the
upstream boundary layer turbulence; the mixing layer unsteadiness; the recirculation
bubbles downstream of the shock; the trailing-edge noises created by the lip at the nozzle
exit. Low-frequency shock oscillations are often seen in this type of flow (Sajben & Kroutil
1980, Bogar et al. 1983, Zaman et al. 2002). The unsteadiness of the separation has an
important effect on the side-loads and on the symmetry of the exhaust plume.

Many studies have been performed in the past on separated flow in over-expanded
nozzle to understand the influence of different flow parameters on the frequency and
amplitude of separation. Summerfield et al. (1954) started in the 1950’s with experimental
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Figure 1.5: Typical wall-pressure distribution (left) and schematic representation of
SWBLI (right); I: start of interaction, S: separation point, P: plateau point, R: reat-
tachment point, Ls: separation length.

work followed by Shmyglevsky (1957), Chapman et al. (1958), Arens & Spiegler (1963),
Schmucker (1974), Watanabe et al. (2002), Nguyen et al. (2003), Smalley et al. (2007),
Tomita et al. (2009) and Baars & Tinney (2013). Similarly, numerical studies have been
done by Chen et al. (1994), Frey & Hagemann (1998), Reijasse (2005), Xiao et al. (2007),
Ivanov et al. (2009), Wang (2009) and Olson & Lele (2013). Further studies have been
conducted by Östlund (2002) on the effect of the separation on side-loads.

1.3.1 The separation phenomenon

Flow separation under high adverse pressure gradient is a complex phenomenon involving
shock waves boundary layer interaction, known as SWBLI. Study on SWBLI started in
the 1950’s with the case of an incident oblique shock wave impinging a flat plate bound-
ary layer. At that time, the research was only experimental and focused on mean wall
pressure distribution. Figure 1.5 shows a typical wall pressure distribution along with
a schematic representation of SWBLI. The interaction zone extends from the first wall
pressure rise (I) to the point of separation (S). Chapman et al. (1958) observed, from
different experimental studies, a general form of the pressure distribution over the inter-
action zone. They formulate the so-called free interaction theory to predict the pressure
distribution and the separation length (Ls) from upstream boundary layer properties:
the skin friction coefficient (Cf ), the displacement thickness (δ?) and the incoming Mach
number (Mi).

Kistler (1964) has shown an unsteady effect of the separation phenomenon in SWBLI.
They investigated a shock-induced turbulent separation from a forward-facing step ex-
perimentally. Figure 1.6 shows a typical RMS pressure fluctuation distribution. Kistler
(1964) observed that the pressure is intermittent in the region of separation. In the in-
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Figure 1.6: Typical rms wall-pressure distribution.

teraction region, near the separation, the pressure oscillates between the mean pressure
at the beginning of the interaction (pi) and the mean pressure at the plateau (pp). They
defined an intermittency region near the separation point where the wall pressure distri-
bution can be modeled as a fraction of pi and pp using an intermittency factor εi(x) (eq.
1.6). Thus, εi can be computed from the pressure distribution.

p(x) = εi(x)pp+ (1− εi(x))pi (1.6)

In equation 1.7, Kistler (1964) expressed the mean square fluctuating pressure dis-
tribution as a combination of high- and low-frequency phenomena. The high-frequency
oscillations are generated by the incoming boundary layer fluctuations pi,rms and the
downstream shear layer oscillations pp,rms. While the low frequency oscillations are due
to the intermittency of the shock wave motion.

prms(x) = εi(x)(1− εi(x))(pp−pi)2︸ ︷︷ ︸
low frequency part

+
shear layer︷ ︸︸ ︷
εi(x)pp,rms+

boundary layer︷ ︸︸ ︷
(1− εi(x))pi,rms︸ ︷︷ ︸

high frequency part

(1.7)

1.3.2 Origins of fluctuations

Previous works on shock-wave/supersonic boundary layer interaction (SWBLI) (Dupont
et al. 2006, Piponniau et al. 2009, Touber & Sandham 2011, Hadjadj 2012, Morgan et al.
2013) suggested that the frequency range is split among four separate zones; a high-
frequency zone corresponding to the incoming turbulent boundary layer; two medium-
frequency zones, the interaction zone (IZ) with a mixing layer reattaching near the end of
the interaction and a relaxation zone downstream of the IZ; a low-frequency zone created
by the unsteady reflected shock. The Strouhal number StL, defined by many SWBLI
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Figure 1.7: Topology of shock unsteadiness in over-expanded nozzle flow (FSS).

simulations (Dupont et al. 2006, Piponniau et al. 2009, Touber & Sandham 2011), is
based on the freestream velocity u∞ and the interaction length LI , i.e. StL = f LI/u∞.
Dupont et al. (2006) captured experimentally the frequency ranges of the different SWBLI
phenomenon; the upstream turbulence of the turbulent boundary layer at StL > 10; the
mixing layer unsteadiness and the relaxation zone in the range 0.5 ≤ StL ≤ 5; the low-
frequency tone of the separation line spanning the range 0.02≤StL≤ 0.1. The conclusions
on the origin of the low frequency motion of the reflected shock is still in debate, whether
the shock motion is caused by a mechanism from the upstream or downstream flow
condition.

In the case of nozzle flow, the separation unsteadiness originates from more complex
phenomena compared to the SWBLI study. Unlike SWBLI, the boundary layer separates
completely downstream of the interaction zone, creating a mixing layer and large recir-
culation bubbles downstream. Figure 1.7 shows the topology of the different phenomena
happening in over-expanded nozzle flow.

1.3.2.1 Upstream boundary layer

In real configurations, the flow starts in the combustion chamber which creates a boundary
layer along the walls. In over-expanded nozzle flow, the boundary layer is attached to
the wall and evolves up to the separation. The boundary layer is characterized by three-
dimensional turbulent structures happening between the external free-stream and the no-
slip wall condition. The largest eddies are of the size of the boundary layer thickness, thus
the maximum energy of the boundary layer spectrum is localized at a Strouhal number of
unity, where Stδ = fδ/u∞. The energy of these large scale eddies is transferred through
a cascade to small scale eddies. The smallest eddies are then dissipated by viscosity
at the Kolmogorov scale. The transfer of energy in the inertial subrange, i.e. between
the largest and smallest eddies, can be approximated by an universal inertial subrange
equation, i.e. κ−5/3, where κ is the wave number (Pope 2000).

In DNS of SWBLI at M∞ = 1.3, Pirozzoli et al. (2010) showed that pressure spectra
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upstream of the separation are characterized by a large peak of energy above Strouhal
number in the range close to unity and by the absence of low-frequency oscillations. The
supersonic boundary layer upstream of separation is composed of a thin subsonic layer
that could propagate upstream disturbances. However, in practical application and for
high Reynolds number, the subsonic layer thickness is too small to allow perturbations
to propagate far upstream.

The state of the incoming boundary layer, i.e. the Reynolds number or the friction
coefficient, is an important factor for the location of the separation. Verma & Manisankar
(2014) observed that given the state of the boundary layer at the throat, i.e. laminar or
turbulent, the separation location could be shifted downstream or upstream.

Dussauge & Piponniau (2008) demonstrated that the superstructures of the outer
region of the boundary layer, captured by Adrian et al. (2000), could also play an im-
portant role on the unsteadiness of the separation. Those superstructures of length up
to 30δ could be advected in the low-speed recirculating area increasing lower-frequency
phenomena.

1.3.2.2 Boundary layer separation

Boundary layer separation occurs when the incoming boundary layer is subjected to a
strong adverse pressure gradient. A shear layer is created downstream of the separation
that deviates the incoming boundary layer away from the wall and creates an oblique
shock, called separated shock, which hits the internal shock at the so-called Triple Point.
The shock pattern near the separation is close to the one observed in SWBLI simulations
or in FSS experiments, commonly called “lambda shock pattern”. As observed in the
Mach reflection pattern from figure 1.4, a reflected shock arises from the triple point
that realigns the deviated flow downstream of the separated shock. Simpson (1989)
demonstrated that the shape of the nozzle could also influence the separation and its
position in the divergent section, especially for strong streamwise curved wall.

1.3.2.3 Shear layer instabilities

Due to the difference of velocity between the supersonic jet and the recirculation zone,
a shear (or mixing) layer is observed downstream of the separation. This mixing layer
can either be planar or cylindrical according to the shape of the nozzle. Instabilities in
shear layer have been observed in the past (Brown & Roshko 1974, Lasheras & Choi
1988, Lesieur 2012) and are characterized by turbulent instabilities and large coherent
structures. The eddies observed in shear layer are similar to those produced by Kelvin-
Helmholtz instability (fig. 1.8).
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Figure 1.8: Representation of Kelvin-Helmholtz instability observed downstream of the
separation over an airfoil; Extracted from Yarusevych et al. (2006).

Brown & Roshko (1974) were the first to study the Kelvin-Helmholtz instability and
showed the importance of these structures on the turbulent mixing process, i.e. heat
transfer, combustion or acoustic waves. Lesieur (2012) has shown the bi-dimensional
aspect of the vortex structures in Kelvin-Helmholtz instabilities where two types of vortex
can be described.

The primary cylindrical bi-dimensional vortices are characterized by strong vorticities.
These vortices are representative of the large-scale organization of the shear layer and
result from the difference in speed between the two fluids. These structures are convected
at an averaged speed computed by usl = (u1 +u2)/2, where u1 and u2 are the “lower” and
“upper” velocities, respectively. In nozzle flows, the “lower” velocity is the one captured
in the recirculating zone while the upper is the internal jet velocity. The size and spacing
between the structures increase with time. This process, linked to Kelvin-Helmholtz
instability, is responsible for the thickening of the shear layer.

A second type of vortices are superimposed to the primary ones and are under the
effect of the positive strain created by the spanwise vortex tubes (Lasheras & Choi 1988).
The weak perturbed vorticity existing on the braids is stretched, leading to the formation
of vortex tubes whose axes align with the direction of maximum positive strain.

The Strouhal number associated to the shear layer instability is defined based on
the thickness of the vorticity field δω where Stsl = f δω/usl. Similarly to the boundary
layer, the Stsl is close to unity inside the shear layer. Using the boundary layer Strouhal



12 1. Introduction

Figure 1.9: Representation of the recirculating area captured in a backward facing step;
Extracted from Rajasekaran (2011).

number, i.e. Stδ = fδ/u∞, the fluctuations are in the range of 0.05-0.2 as observed by
Dupont et al. (2006), Piponniau et al. (2009) and Touber & Sandham (2011).

Among the unsteady phenomena produced in the shear layer, a “flapping” phe-
nomenon is also observed. This phenomenon is characterized by an intermittent lateral
oscillation of the shear layer. Viets (1975) has made an experimental nozzle flow charac-
terized by a significant unsteadiness of the main supersonic jet. This unsteadiness arises
because the jet is close enough to the walls which produces an unstable jet and may
possibly oscillate between the two walls. This flapping has an important impact on the
symmetry of the flow.

1.3.2.4 Recirculation bubbles

Regardless of the shock pattern is FSS or RSS, a recirculation bubble is observed down-
stream of the separation. For the FSS pattern, the recirculation zone extends from the
separation to the nozzle exit and is composed of a large recirculation bubble character-
ized by low frequency oscillations. Many studies (Eaton & Johnston 1981, Kiya & Sasaki
1983, Simon et al. 2007, Boccaletto 2011) have been done to characterized recirculation
areas, also called “dead water” region. They all pointed out a cycle of expansion and
contraction of the recirculation bubble. Simon et al. (2007) showed that the latter ex-
hibits large oscillations in the low-frequency as well as in the high-frequency regimes.
Some fluctuations emanate from the large vortices, or bubbles, created between the shear
layer and the wall while the high-frequency oscillations are created by the pressure waves
emanating from the vortices of the mixing layer. Most of the energy captured in the
recirculating area, i.e. the lower frequencies, are defined by the “breathing” phenomenon
created by an imbalance state between the flow from the shear layers and the backflow
captured at the lip of the nozzle. This “breathing” phenomenon is the oscillating effect
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Figure 1.10: Parametric study of the flange width effects on lip vortices; Extracted from
Olson & Lele (2013).

coming from the backflow at the exit which perturbs the dynamic of the recirculating
bubbles. The study of Kiya & Sasaki (1983) showed that the size of the bubbles are
increased due to an accumulation of angular momentum in the recirculation zone. When
the large eddies reach a critical size, a part of the energy is released through smaller
vortices, thereby decreasing the volume of the recirculating area. This energy cycle and
the release of vortices lead to the “breathing” of the bubbles.

1.3.2.5 Lip vortex

The backflow acting in the recirculating area produces a small bubble at the nozzle lip.
This vortex is influenced by the external flow, the mixing layer and the shape of the
lip. Actually, the geometry of the lip has a major impact on the size/frequency of the
lip vortex. Ponton & Seiner (1992) and Pilinski (2002) have shown the effects of nozzle
lip thickness/shape on the trailing-edge noises for both over- and under-expanded nozzle
flow. Both frequency and amplitude of acoustic waves are increased, while decreasing
the lip thickness. Pilinski (2002) demonstrated that over a lip flange of thickness 0.1Re,
where Re is the exit radius, the effect of the length is moderate and similar to an infinite
flange. Olson (2012) found similar results in their LES of a planar over-expanded nozzle
flow.

The trailing-edge noises created by the lip are often the dominant frequency captured
in the atmosphere as it propagates downstream of the exit. The sound created by the
nozzle is assimilated to a screech emanating from these trailing-edges. The screech is
more pronounced in the case of under-expanded nozzle as the flow at the lip is mostly
supersonic increasing thereby the vorticity strength of the lip vortices. For over-expanded
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nozzle, the flow is mostly subsonic at the lip so the effect of trailing-edge is mild.

1.3.3 Side-loads

Side-loads have been observed in many nozzle flows during experiments and simulations
because of their impact on mechanical loads. The forces applying on the side of the nozzle,
i.e. Fy and Fz, are non-uniform in space and unsteady in time. Side-loads originate from:

- Asymmetrical behavior of the separation line
- Transition shock patterns, regular to Mach reflexion or FSS to RSS
- Pressure fluctuations in the separated region and in the recirculating area region
- Vortices developing in the recirculating area and at the exit lip
Finally, a two-way coupling exists between the side-loads and the mechanical deforma-

tion of the nozzle structure that could deviate the flow along the walls and could modify
the shock patterns. Side-loads are computed as follows:

~F =
∮
S

(pw−pa)~nds (1.8)

where A the surface of the nozzle, pw the wall-pressure, pa the atmospheric pressure and
~n the normal vector from the surface element s.

Side-loads are important for the lifetime and safety margin of a launcher. Nave &
Coffey (1973) and Östlund (2002) have shown that the nozzle structure is affected by
dynamical effects, i.e. turbulence and acoustic waves, which plays a dominant role in side-
loads amplification. Depending on the nozzle geometry, the following behavior happens:

• For nozzle with high angle of deflection, the asymmetrical behavior of the separation
line is reduced,

• For asymmetrical flow, the amplitude of side-loads is proportional to the asymmet-
rical surface,

• Amplitude of side-loads is reduced for high angle of deflection,

• The main tone of side-loads can reach the mechanical resonance of the nozzle struc-
ture which could lead to resonance failure.

1.3.4 Low-frequency unsteadiness

The unsteady shock-wave position in over-expanded nozzle flow contains highly ener-
getic low-frequency modes. These modes are considered dangerous for the lifespan and
reusability of the nozzle. Similarly, they can impact the stability of the downstream



1.3. Over-expanded nozzle flow unsteadiness 15

exhaust plume leading to unstable thrust. The low-frequency unsteadiness has been re-
vealed in many configurations, such as ducts (Salmon et al. 1983, Sajben et al. 1984,
Weiss et al. 2010), wind tunnels (Dupont et al. 2006) or ramps (Ganapathisubramani
et al. 2007). The identification of the origin of low-frequency modes and the physical
mechanism that drive this unsteadiness has been studied in the literature over the past
decades.

A lot of experimental work has been carried out to understand the unsteadiness of
shocks in nozzle flows. Bogar et al. (1983) were the first to capture and study the unsteady
motion of the shock in an experimental diffuser. They observed that the low-frequency
modes of transonic diffuser were inversely proportional to the shock-to-exhaust distance.
Similarly, Zaman et al. (2002) performed experimental investigations of the transonic
tones in transonic diffusers. They concluded that the low-frequency modes were stim-
ulated by the unsteadiness of the separated flow, serving as a source of perturbation.
Oppositely to the mechanism of Bogar et al. (1983), they proposed a similar mechanism
to that involved in longitudinal acoustic resonance, where the low-frequency mode corre-
sponds to the case when one-quarter wavelength is fitted within the approximate distance
from the foot of the shock to the nozzle exit. Handa et al. (2003) investigated experi-
mentally and theoretically the shock wave oscillation in transonic diffusers. Using their
theoretical solver, they proposed that the oscillations were governed by the geometrical
shape of the diffuser and the Mach number in front of the shock wave. Nevertheless,
they observed that the acoustic resonance, which was not taken into account in their
theory, is an important mechanism for determining the shock wave oscillation. Lastly,
Papamoschou & Johnson (2006) experimented the low-frequency phenomenon in planar
nozzle flow. They captured interesting flow patterns and motions when the nozzle was
considered transonic (Mj ∼ 1). In a recent review of Clemens & Narayanaswamy (2014)
on the low-frequency modes, they showed that two mechanisms, upstream and down-
stream perturbations, were at work in the low-frequency phenomenon. The upstream
perturbations coming from the turbulent boundary layer were a source of fluctuations
in weakly separated flow. They explained that the upstream momentum fluctuations
could seed the shear layer with disturbances that grow and lead to large-scale flapping.
On the contrary, for strongly separated flows, the downstream mechanism dominates as
explained by Bogar et al. (1983), Zaman et al. (2002), Handa et al. (2003).

In the field of numerical simulation of nozzle flows and its application to low-frequency
unsteadiness, very few studies can be found in literature. Most of the existing simulations
from the literature use Detached Eddy Simulations (DES) to capture the low-frequency
modes. The benefits of DES is the ability to perform simulation of over-expanded flow
at high Reynolds number. On the contrary, the thin boundary layer developing along
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the wall is computed by the RANS calculation which do not solve in detail the turbulent
aspect of the boundary layer towards separation. Thus, the unsteady phenomena linked
to the shock-wave boundary layer interaction are not correctly captured. Deck (2009)
performed a DDES of LEA TOC nozzle and studied the low-frequency oscillations of the
separation. The flow features a restricted shock separation (RSS). They found similar
pressure distributions to the actual experiment but some discrepancy has been found
for the oscillatory motion of the shock. Following the work of Deck (2009), Martelli
et al. (2016) have simulated the same nozzle geometry using the DDES approach. They
used Fourier and wavelet analysis to characterize the shock motion in the time-frequency
space. Recently, Olson & Lele (2013) performed a Large Eddy Simulation (LES) of
the planar nozzle flow from Papamoschou & Johnson (2006). They have been able to
captured in detail the separation phenomenon and the unsteadiness leading to the low-
frequency oscillations observed by Papamoschou & Johnson (2006). They concluded that
the low-frequency mechanism was driven by a feedback mechanism, similarly to the one
presented by Zaman et al. (2002). Due to high cost of computation of the LES, they
have not been able to simulate enough physical time and observed a lack of convergence
in their frequency study.

1.4 Scope of the present work

Over-expanded flow separation are characterized by complex phenomena occurring inside
of the nozzle due to the shock/BL interaction. These phenomena interact with each
others to form a highly complex system of acoustic, thermal and turbulent effects. Many
studies have been performed in the last 60 years to understand and ultimately control
the separation phenomenon. Even though, each phenomenon taken separately is highly
documented and understood, i.e. supersonic jet, mixing layer, recirculating flow, vortices
or shock patterns, the combination of all of these phenomena in a complex geometry
is still an open research area, i.e. the impact of the incoming boundary layer on the
separation, the prediction of the separation line location, the asymmetry of the exhaust
plume or the fluid-structure coupling.

In numerical studies, nozzle flows are complex to solve due to the geometry, the
presence of shock or the small boundary layer developing along the wall that needs to be
captured. In the past, LES or RANS computations have been performed on planar or
cylindrical flow but the frequency analysis of the internal flow is not fully documented
to allow better prediction of the side-loads. To the best of the author’s knowledge, no
LES has been carried on separated cylindrical nozzle flow so far. Most of the numerical
studies use either RANS or DES that do not necessarily capture the range of unsteadiness
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observed in a separated nozzle flow.
The present thesis aims to study the boundary layer separation and the low-frequency

modes inside an over-expanded nozzle (cylindrical or planar) using Large Eddy Simula-
tion.
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2

Governing equations and numerical
methods

This chapter presents the governing equations in both Cartesian and generalized curvilin-
ear form along with the numerical methods used to perform the simulations. Meanwhile,
a parallel strategy for a domain decomposition technique in an overlapping grid is devel-
oped.

2.1 Governing equations

2.1.1 Navier–Stokes equations in Cartesian form

The three-dimensional compressible Navier–Stokes equations are defined by the conser-
vation of mass, momentum and energy. In Cartesian coordinates xi = (x,y,z), they are
expressed as:

∂ρ

∂t
+ ∂ρuj
∂xj

= 0, (Continuity)

∂ρui
∂t

+ ∂ρuiuj
∂xj

=− ∂p

∂xi
+ ∂τij
∂xj

, (Momentum)

∂ρe

∂t
+ ∂(ρe+p)uj

∂xj
= ∂τijui

∂xj
− ∂q̇j
∂xj

, (Energy)

where ρ is the density, ui the velocity vector, p the pressure, T the temperature, e the
total energy, τij the viscous stress tensor and q̇i the heat diffusion flux.

The perfect gas state is considered with

p= ρrT, (2.1)

19
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The total energy is expressed as:

e= ei+K = CvT + 1
2(uu+vv+ww), (2.2)

the shear stress tensor:
τij = 2µSij +µ′′δij

∂uk
∂xk

, (2.3)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.4)

and the heat diffusion flux:
q̇j =−λ ∂T

∂xj
. (2.5)

The viscous stress tensor is composed of a viscous part and a dilatational part, where
Sij denotes the strain rate tensor and µ′′ the second viscosity. On the assumption of a
Newtonian fluid, the second viscosity can be expressed by the relation of Stokes (2.6)
where µb denotes the bulk viscosity:

µb = µ′′+ 2
3µ. (2.6)

The dynamic viscosity follows the Sutherland law:

µ(T ) = µref
T 2/3

S+T
, with S = 110.4K, (2.7)

where the constant µref depends on the fluid parameters.

The Prandtl number Pr is taken equal to 0.72, the heat capacity ratio γ = 1.4, the
viscosity constant µref = 1.456×10−6 [kg m−1s−1], the bulk viscosity µb = 0[kg m−1s−1]
and the specific gas constant r = 287[m2K−1s−2].

2.1.2 Navier–Stokes equations in generalized curvilinear form

In order to compute arbitrary geometries, the structured code has been developed in a
generalized curvilinear coordinates. This implies a transformation from a computational
space to a physical space. The code uses the computational space to perform the simu-
lation, where the mesh can be seen as a hexahedral domain. The computational space
needs additional information to reconstruct the physical space by using the mapping
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⇠
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⇠, ⌘, ⇣ ! x, y, z

Figure 2.1: Transformation between physical and computational space.

transformations:

ξ = ξ(x,y,z),

η = η(x,y,z),

ζ = ζ(x,y,z).

(2.8)

By applying the chain rule, the partial derivative of any quantity ϕ can be written as:

∂ϕ

∂x
= ξx

∂ϕ

∂ξ
+ηx

∂ϕ

∂η
+ ζx

∂ϕ

∂ζ
,

∂ϕ

∂y
= ξy

∂ϕ

∂ξ
+ηy

∂ϕ

∂η
+ ζy

∂ϕ

∂ζ
,

∂ϕ

∂z
= ξz

∂ϕ

∂ξ
+ηz

∂ϕ

∂η
+ ζz

∂ϕ

∂ζ
.

(2.9)

The terms ξi, ηi and ζi, called the metrics, can be cast in a 3× 3 matrix where
ξi = ∂ξ/∂xi. The metrics represent the transformation from physical to computational
space. The ξ, η and ζ parameters vary from 0 to Nx, Ny and Nz respectively.
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ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 (Metrics)

In general, the transformation from physical space to computational space, i.e. ξx, is
not known a priori and the physical mesh is directly described by the x, y and z space
coordinates. It is then common to use the inverse of the metrics, i.e. xξ, by numerically
deriving the physical mesh coordinates through a finite difference scheme. The relation
between the metrics and their inverse is described as follow:


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

=


xξ xη xζ

yξ yη yζ

zξ zη zζ


−1

. (2.10)

By computing the inverse of the following matrix, one can find the relation to compute
the metrics, where J is the Jacobian of the metrics (2.12). J is a representation of the
volume of each cell in the computational space.


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

= 1
J


(yηzζ −yζzη) (zηxζ − zζxη) (xηyζ −xζyη)
(yζzξ−yξzζ) (zζxξ− zξxζ) (xζyξ−xξyζ)
(yξzη−yηzξ) (zξxη− zηxξ) (xξyη−xηyξ)

 (2.11)

J = xξ(yηzζ −yζzη) +xη(yζzξ−yξzζ) +xζ(yξzη−yηzξ) (2.12)

The governing equation can be transformed from physical to computational space by
replacing each derivative by their curvilinear form (Eq. 2.9). For instance, the continuity
equation can be written as:

∂ρ

∂t
+ ξj

∂ρuj
∂ξ

+ηj
∂ρuj
∂η

+ ζj
∂ρuj
∂ζ

= 0, (2.13)

with ξi = (ξx, ξy, ξz).
Equation 2.13 is written in a non-conservative form. The strong conservative form of

this equation can be found using the metric relations and the Jacobian definition. One
can find:

J
∂ρ

∂t
+ ∂ρJξjuj

∂ξ
+ ∂ρJηjuj

∂η
+ ∂ρJζjuj

∂ζ
= 0. (2.14)

To simplify the previous equation, the term U = Jξjuj is called the contravariant
velocity. The contravariant velocities can be seen as the projection of the velocity com-
ponents on the computational space:
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U = J(ξxu+ ξyv+ ξzw),

V = J(ηxu+ηyv+ηzw),

W = J(ζxu+ ζyv+ ζzw).

(2.15)

Finally, the strong conservative form of the generalized curvilinear equations are:

J
∂ρ

∂t
+ ∂ρUj

∂ξj
= 0, (Continuity)

J
∂ρui
∂t

+ ∂ρuiUj
∂ξj

=−∂Jξ
j
i p

∂ξj
+
∂Jξkj τij

∂ξk
, (Momentum)

J
∂ρe

∂t
+ ∂(ρe+p)Uj

∂ξj
= ∂Jξki ujτij

∂ξk
−
∂Jξkj q̇j

∂ξk
, (Energy)

τij = µ

(
ξli
∂uj
∂ξl

+ ξlj
∂ui
∂ξl

)
+µ′′δijξ

l
m
∂Um
∂ξl

, (2.16)

q̇j =−λξlj
∂T

∂ξl
, (2.17)

where ξi = (ξ, η, ζ) for consistency.
The generalized form of the equations contains three times more terms than the

Cartesian ones, implying an extra computational time.
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2.1.3 Large Eddy Simulation

The approach of large-eddy simulation, or LES, is to reduce the computational cost by
ignoring the smallest length scales. The large-scale turbulence is resolved while the small
eddies are modeled by an additional term in the Navier–Stokes equations. The separation
of scale is bound by the computational grid resolution. In practice, the Kolmogorov scale
is proportional to the local Reynolds number.

L

η
∼Re3/4 (2.18)

where Re is the Reynolds number, L a characteristic length scale and η the Kolmogorov
scale.

For high Reynolds number, the number of points needed for a practical simulation can
be unfeasible with the current computational power. It is common to use a subgrid model
to compute such flows. Based on the Nyquist theorem, no scale smaller than 2∆x can
be captured. Equivalently, these high wavenumbers can be cut off by the grid resolutions
where the cutoff wavenumber is k̂c = π/∆x.

A spatial-scale filtering is introduced using the convolution product:

~ϕ=
∫
D
G(~x−~z;∆)~ϕ(~z)d3~z, (2.19)

where ~ϕ is any vector field, G the convolution filter kernel and ∆ the characteristic
cutoff length scale. The convolution filter kernel can be any filter function but is often
assimilated to a top-hat function.

The spatial-scale filter (2.19) is applied to the Navier–Stokes equations, where ϕ̃ =
ρϕ/ϕ is the Favre-averaging, ϕ′′=ϕ−ϕ̃ the Favre-fluctuation and ϕ′=ϕ−ϕ the Reynolds-
fluctuation:

∂ρ

∂t
+ ∂ρũj

∂xj
= 0, (Continuity)

∂ρũi
∂t

+ ∂ρũi ũj
∂xj

=− ∂p

∂xi
+ ∂τij
∂xj
−
∂ρu′′i u

′′
j

∂xj
, (Momentum)

∂ρ ẽ

∂t
+ ∂(ρ ẽ+p) ũj

∂xj
= ∂τij ũi

∂xj
− q̇j−

∂ρe′′u′′j
∂xj

−
∂p′u′j
∂xj

−
∂τ ′ij u

′
i

∂xj
, (Energy)

q̇j =−λ ∂T
∂xj
−λ′∂T

′

∂xj
. (2.20)

The subgrid viscous term τij can also be split up into a filtered part and a fluctuation
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part. Some of the SGS terms are negligible compared to others. For instance, the subgrid-
scale pressure terms and viscous terms are known to be relatively small compared to the
other terms. The subgrid-scale stress tensor ρu′′i u′′j and the subgrid-scale Reynolds heat
flux λ′∂T ′/∂xj which comes from the filtered equations, are known as the SubGrid-Scale
terms (or SGS).

The most common approach is to model those terms by an eddy viscosity approach
such as:

ρu′′i u
′′
j = τt = 2µtSij +µ′′t δij

∂uk
∂xk

, (2.21)

λ′
∂T ′

∂xj
= λt

∂T

∂xj
= µtCp

Prt

∂T

∂xj
. (2.22)

Many models to compute the subgrid-scale viscosity exist in literature. The WALE
model has been used because of its ability to simulate wall-bounded flow.

2.1.3.1 WALE eddy viscosity model

Due to the fact that the nozzle flow simulations are wall-bounded flow, the behavior of
µt needs to be equal to zero when there is no energy near the cutoff frequency and needs
to decrease near the wall since the slope m of the kinetic energy spectrum Ê(k̂) ∝ k̂−m

is larger in the wall than outside of the boundary layer. Using the Kolmogorov spectrum
Ê(k̂)∝ CKε2/3k̂−5/3, one can find:

µt = 2
3ρC

−3/2
K

√√√√Ê(k̂c)
k̂c

. (2.23)

The WALE model (Nicoud & Ducros 1999) has been developed to handle wall-
bounded flow and transitional problem. The form of the eddy viscosity term can be
expressed as follows:

µt = ρ(Cm∆)2 (Sdij Sdij)3/2

(Sij Sij)5/2 + (Sdij Sdij)3/2 , (2.24)

Sdij = 1
2

(∂ui
∂xj

)2
+
(
∂uj
∂xi

)2− 1
3δij

(
∂uk
∂xk

)2
, (2.25)

where Cm =
√

10.6Cs is a model constant, proportional to the LES Smagorinsky’s
constant Cs defined by Cs = 1

π

(
3CK

2

)−5/4
and Sdij an operator based on the traceless

symmetric part of the square of the velocity gradient. In a shear layer, the term Sdij S
d
ij

tends to zero near the wall to conserve the property of wall-bounded flow. The WALE
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model has the advantage of reproducing the asymptotic scaling in O(y3) of the eddy
viscosity near the wall. This model has been written in generalized curvilinear coordinates
using equation 2.9.

2.2 Numerical method

A new code has been developed to handle the curvilinear equations in 3D. The code is
based on an existing inhouse code developed by Abdellah Hadjadj and co-workers at the
Coria laboratory in Rouen. The code, called ChocWaves for Compressible High-Order
Code using Weno AdaptatiVE Stencils, is a Cartesian explicit Navier–Stokes solver with
WENO / Central scheme for space discretization and compact RK3 for time integration.
It uses the Immersed Boundary Method (IBM) to simulate a flow with complex geome-
tries. The code is fully parallelized with the MPI/OMP library and uses HDF5 library
for IO.

The version of the code developed in this thesis is a curvilinear explicit finite-difference
Navier–Stokes solver with WCNS / Central / Hybrid scheme for space discretization and
RK4 for time integration. The code uses the HDF5 library for IO and the MPI library
for parallelization. The scalability of the solver has been tested on more than 20k CPUs
and shows good scalability even for large number of nodes (sec. 2.2.4).

2.2.1 Spatial scheme

Due to the conservative form of the equations written in curvilinear coordinates, the
spatial scheme deals with issues of freestream preservation and metric cancelation. These
errors arising from the finite-difference discretization of the terms in strong-conservative
form can lead to unphysical behavior of the flow and numerical instability. Visbal &
Gaitonde (1999) have proved that using the same scheme as those employed for the fluxes
to compute the metrics can force the cancellation of the metrics. They also proposed a
new way of computing the metrics to improve the freestream preservation in general 3-D
meshes (Visbal & Gaitonde 2002). In this case, the metrics are computed as:


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

= 1
J


((yηz)ζ − (yζz)η) ((zηx)ζ − (zζx)η) ((xηy)ζ − (xζy)η)
((yζz)ξ− (yξz)ζ) ((zζx)ξ− (zξx)ζ) ((xζy)ξ− (xξy)ζ)
((yξz)η− (yηz)ξ) ((zξx)η− (zηx)ξ) ((xξy)η− (xηy)ξ)

 . (2.26)

The WENO (Weighted Essentially NonOscillatory) scheme applies a weighted averag-
ing procedure directly to the flux. It is then impossible both to evaluate the discretization
scheme used on the metrics and to force the freestream preservation. Thus, the WENO
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scheme can only be used in the non-conservative form of the Euler equations which do
not impose global conservation on the set of equations. Deng & Zhang (2000) devel-
oped a fifth-order Weighted Compact Nonlinear scheme (WCNS) where the conservative
variables are interpolated using a weighted averaging procedure similar to the WENO
scheme. In this formulation, the freestream condition can be imposed because the met-
rics are evaluated by the same numerical finite-difference scheme used in the WCNS.
Nonomura et al. (2010) compared WENO and WNCS schemes on curvilinear grid and
proved that the WCNS imposes the freestream preservation. Nonomura & Fujii (2013)
developed a compact form of the WCNS scheme to reduce the stencil and found a new
technique for freestream preservation of the WENO scheme (Nonomura et al. 2015). All
the above schemes have been validated (see chapter 3).

2.2.1.1 Convective terms

The convective terms can be discretized using different methodology, by a local conser-
vative central difference scheme, by a WCNS scheme or by a hybrid scheme.

Conservative central difference scheme
Following the work of Pirozzoli (2010), the standard central difference formulas can

be applied to the convective term by using a split form which improves the stability and
the energy preservation properties. The convective term is discretized by a conservative
finite-difference scheme:

∂ϕ

∂ξ
= Fi+1/2−Fi−1/2, (2.27)

where Fi+1/2 is the numerical flux.
The 6th-order form of the central finite-difference scheme is used to match the WCNS’s

order (5th-order). The numerical flux is computed using a generalized curvilinear Euler
equation by the following (for the x-component):

Fi+1/2 = 2
6∑
l=1

al

l−1∑
m=0

(f,g,h)j−m,l, (2.28)

(f,g,h)j,l = 1
8(fj +fj+l)(gj +gj+l)(hj +hj+l), (2.29)

where a1 = 3/4, a2 = a3 = −3/20, a4 = a5 = a6 = 1/60 and (f,g,h) represents variables
used in the curvilinear Euler equation ((f,g,h) = (ρ,~u, ~U)).

WCNS scheme
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The WCNS has been implemented into the code to take care of the freestream preser-
vation in generalized curvilinear coordinates using the work of Deng & Zhang (2000)
and Nonomura et al. (2010). The WCNS is using a 5th-order discretization with the
generalized curvilinear coordinates of the Euler’s equations.

Let us consider the Euler equations:

J
∂ ~Q

∂t
+

3∑
j=1

∂ ~Ej
∂ξj

= 0, (2.30)

where ~Q is the conservative vector ~Q= (ρ, ρu, ρv, ρw, ρe)t and ~Ej is convective terms
~Ej = (ρUj , ρuUj +J ξjx p, ρvUj +J ξjy p, ρwUj +J ξjz p, (ρe+p)Uj)t.

For consistency, the curvilinear coordinates are defined by ξi = (ξ, η, ζ).
The spatial derivative ∂E/∂ξj can be evaluated by a sixth-order midpoint to computational-

node difference scheme,

∂E

∂ξ
= 75

64
(
EWCNS
i+1/2 − E

WCNS
i−1/2

)
− 25

384
(
EWCNS
i+3/2 − E

WCNS
i−3/2

)
+ 3

640
(
EWCNS
i+5/2 − E

WCNS
i−5/2

)
,

(2.31)

where EWCNS
i+1/2 is the WCNS numerical flux calculated at a midpoint.

The WCNS weighted averaging procedure is applied to the characteristic variables
Wi, to find the left and right interpolated fluxes, QWCNS,L

i+1/2 and QWCNS,R
i+1/2 , respectively.

The transformation from conservative to primitive variables is detailed in the following
equations:

J
∂Q

∂t
+Aj

∂Q

∂ξj
= 0, (2.32)

Aj = ∂Ej
∂Q

=RΛL, (2.33)

where A is the flux Jacobian, L the left eigenvector, R the right eigenvector and Λ the
diagonal matrix with the eigenvalues of A. By definition, L = R−1. The transformation
from conservative to characteristic is defined by the following equation:

Wi,m = Li?,mQi, (2.34)

where i? denotes the Roe’s averaging procedure (Roe 1981) at the ith grid point bounded
by (i, i+ 1) and m the mth characteristic variable.

The weighted averaging procedure Wi,m⇒WWCNS,L
i+1/2,m , similar to the WENO proce-

dure, is detailed in Appendix B of Nonomura et al. (2010). Finally, the left and the right
conservative variables can be reconstructed from characteristic variables by:
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QWCNS,L
i+1/2 =

∑
m
WWCNS,L
i+1/2,m Ri?,m. (2.35)

The WCNS numerical flux EWCNS
i+1/2 from equation 2.31 can be reconstructed by the

Roe’s flux difference splitting Roe (1981):

EWCNS
i+1/2 = 1

2
(
E?
(
QWCNS,L
i+1/2

)
+ E?

(
QWCNS,R
i+1/2

)
−Ri? Λi?Li?

(
QWCNS,R
i+1/2 −QWCNS,L

i+1/2

))
,

(2.36)

where i? denotes the Roe’s averaging procedure at the ith grid point bounded by (L,R).
The left and right fluxes E

(
Q

WCNS,L/R
i+1/2

)
are computed using the interpolated metrics

from the following sixth-order Lagrange interpolation scheme:

(2.37)
(Jξx)WCNS

i+1/2 = 75
128 ((Jξx)i + (Jξx)i+1)

− 25
256 ((Jξx)i−1 + (Jξx)i+2) + 3

256 ((Jξx)i−2 + (Jξx)i+3) .

In order to preserve the freestream, the metrics are discretized by the same computational-
node to midpoint interpolation scheme (Eq. 2.31) and the same midpoint interpolation
scheme (Eq. 2.37).

Hybrid scheme
Due to the high dissipation of the shock-capturing WCNS / WENO scheme, a hybrid

scheme has been developed. The hybrid scheme acts as a switch between the WCNS
scheme and the centered difference scheme. Thus, the numerical dissipation of the WCNS
scheme can be confined in shocked regions and the centered difference can be applied in
free-shock region to ensure accuracy and stability. The hybrid scheme is defined by:

∂ϕ

∂x

Hybrid
= (1−Θ)∂ϕ

∂x

Centered
+ Θ∂ϕ

∂x

WCNS
. (2.38)

The difficulty of hybrid scheme is to locate the shock regions where high gradient of
pressure, velocity or temperature can affect the stability of the centered scheme. Ducros
et al. (1999) proposed a shock sensor based on the Jameson’s sensor (Jameson et al.
1981):

θ = (~∇·~u)2

(~∇·~u)2 + (~∇×~u)2 + ε
, (2.39)

where ε= 10−30 is a positive real number chosen to prevent numerical divergence.
The ε coefficient has been changed by Pirozzoli (2011a) to improve the original for-

mulation for wall-bounded flow. In their case, they set ε= (u∞/δ0)2. Several tests, using
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the shock tube problem (Riemann problem), have been done with this new parameter
but provide unstable results in shock region. The Ducros sensor is a coefficient varying
between 0 and 1. However, in our code, we set the coefficient Θ as a switch equal to 0 or
1 where θ0 is the limiter value (configured with a-priori test):


Θ = 1, if θ > θ0

0, otherwise
(2.40)

2.2.1.2 Viscous terms

The viscous terms in the curvilinear Navier–Stokes have been discretized by a 4th-order
central scheme. To improve the stability of the code, each derivative is separated into
two derivatives by a Laplacian operator. As an example, the first viscous term written
with a Laplacian operator, from equation 2.16, gives:

∂ (µξxJξx) ∂u
∂ξ

∂ξ
= ∂ (µξxJξx)

∂ξ

∂u

∂ξ
+µξxJξx

∂2u

∂ξ2 . (2.41)

Equations 2.42 and 2.43 show the 4th-order central scheme for the first derivative and
the second derivatives, respectively.

∂ϕ

∂ξ
= −ϕi+2 + 8(ϕi+1−ϕi−1) +ϕi−2

12 , (2.42)

∂2ϕ

∂ξ2 = −(ϕi+2 +ϕi−2) + 16(ϕi+1 +ϕi−1)−10ϕi
12 . (2.43)

Because of the high number of viscous terms to be computed, a special care has been
taken with the viscous subroutine in term of optimisation. The averaged consumption of
this routine is around 40% per iteration (sec. 2.2.4).

2.2.2 Temporal scheme

The governing equations are advanced in time by an explicit 4th-order Runge-Kutta
(RK4) method. This RK4 scheme is overly used by many for its broad stability properties.
The scheme uses four sub-integrations and two temporary arrays. A low-storage method
has been developed by Williamson (1980) to remove one temporary array. The large
amount of memory available nowadays on high performance supercomputer does not
require the integration of the low-storage method. The RK4 is described as follows,
where ∆t is the time step:
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∂F (t,~x)
∂t

=Q(t,~x), (2.44)

•Fn+1/4 = Fn+ ∆t
6 Q(Fn)

F ?1 = Fn+ ∆t
2 Q(Fn)

•Fn+2/4 = Fn+1/4 + ∆t
3 Q(F ?1 )

F ?2 = Fn+ ∆t
2 Q(F ?1 )

•Fn+3/4 = Fn+2/4 + ∆t
3 Q(F ?2 )

F ?3 = Fn+ ∆tQ(F ?2 )

•Fn+1 = Fn+3/4 + ∆t
6 Q(F ?3 )

(2.45)

2.2.3 Stability properties

The drawback of time-explicit schemes comes from the constraint applied on the time step
for stability purpose. To avoid the divergence of the temporal scheme, two parameters
have been used to compute the time step ∆t. From the von Neumann analysis, one
can find the Courant-Friedrichs-Lewy condition on the convection terms and the Fourier
condition on the viscous terms. For a first-order time advancement and a first-order
spatial discretization, the von Neumann analysis gives a critical CFL equals to unity
and a critical Fourier number of 0.5. By increasing the accuracy of the schemes, both
temporally and spatially, one can find a higher critical CFL/Fourier conditions.

For the 3D curvilinear equations, the minimal physical time step ∆t is computed by:

C∆t = 1
J

∑
i

|uξi|+
∑
i

|vηi|+
∑
i

|wζi|+c
3∑
i=1

 3∑
j=1

∣∣∣ξji ∣∣∣
+ 1

γFoJ

(
µ

Pr
+ µt
Prt

) 3∑
i=1

∣∣∣∣ξii2∣∣∣∣
 ,

(2.46)

∆t= min
(

CFL
C∆t

)
, (2.47)

where CFL is a parameter of stability depending on the numerical schemes used and Fo
the critical Fourier number.
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Core Wallclock time (µs/Nstep/Ncells) Speedup
8 (2x2x2) - -
32 (2x4x4) 21.6 0.53
64 (4x4x4) 20.3 1
128 (8x4x4) 21.8 2.2
256 (8x8x4) 23.4 4.6
512 (8x8x8) 22.9 9.0

Table 2.1: Strong scalability test of the curvilinear code.

Npt per process Wallclock time (µs/Nstep/Ncells)
163 25.9
323 22.9
483 21.1
643 20.5
803 20.1
963 20.0
1283 -

Table 2.2: Grid size per process scaling.

2.2.4 Scalability of the code

To demonstrate the performance of the code and its adaptability on large clusters, both
weak and strong scaling benchmarks have been carried out on the TGCC-Curie from the
CEA in Saclay, France. For information, the cluster uses 5040 nodes with 2 Intel octo-
core E5-2680 and 64GB of memory. To be representative, the code has been executed
with the WENO scheme, the LES model and all of the IO subroutine activated.

Table 2.1 shows the strong scalability where the total domain size is kept constant
(N = 16.7M cells) while the MPI discretization is increased. The 64 cores run is taken
as a reference. At 8 cores, the memory allocation per process is over the limit per
node, i.e. < 64GB. Because of the 3D MPI decomposition, the best efficiency, in terms
of communication, is obtained when the domain shape per process is close to a cube,
i.e. Nx/cores = Ny

/cores = Nz
/cores. From the results, it can be seen that the cubic dis-

cretization leads to the best performance.
Table 2.2 shows the scaling of the optimum grid size per process. The optimum

grid size per process finds the optimum balance between the efficiency of the code and
the memory used per process. In this test, the MPI discretization is kept constant
(Ncores = 512) and the number of points per process is increased. Again, the cube of 128
points per side overloads the node memory limitation of 64GB. The optimum grid size is
the 483 cube which gives an efficient scalability and a resonable memory allocation.
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Core Wallclock time (µs/Nstep/Ncells) Speedup
256 21.1 1.0
512 21.2 2.0
1024 21.2 4.0
2048 21.3 8.1
4096 21.4 16.2
8192 21.5 32.5
16384 23.9 72.3

Table 2.3: Weak scaling test of the curvilinear code
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Figure 2.2: Strong scaling on the TGCC-
Curie with a constant grid of 16.7 millions
cells.
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Figure 2.3: Weak scaling on the TGCC-
Curie with a constant grid size per process
of 483.

Lastly, table 2.3 shows the weak scalability where the grid size per process is constant
(483) while the number of cores is increased. The results give a linear scaling up to 8192
cores. Over 8000 cores, the cluster depends highly on internal nodes communication and
the efficiency is decreasing because of the high number of MPI communication within the
machine.

2.3 Boundary and initial conditions

2.3.1 Immersed Boundary Method

ChocWaves code uses the structured coordinate form of the equations. Any complex
geometries need to be reconstructed using the so-called, Immersed Boundary Method.
This method, originally developed by Peskin (1972), is overly used in CFD for the simu-
lation of complex fluid-structure interaction. The next lines are set to explain in details
the method and the improvement made on the interpolation. This method is a matter
of discussion because it has been used for the validation of the domain decomposition
method (sec. 2.4). This method has also been compared with the Brinkman penalization



34 2. Governing equations and numerical methods

method (BPM) on a paper published in Computers & Fluids journal (Piquet et al. 2016)
(appendix D).

With the IBM, the Cartesian grid is first decomposed into solid and fluid cells. The
solid cells are then split up into ghost and pure solid cells (the number of ghost cell
depends on the scheme used for spatial discretization). The Immersed Boundary Method
is applied only on the ghost cells. Figure 2.4 shows IBM mask distribution for a pipe
flow.

For each ghost point, corresponding image points are created in the fluid from the sur-
face of the geometry. Since the image points lie in the fluid, 3D interpolation is necessary
(cell data to point data). The tri-linear interpolation method is used to interpolate the
value in the fluid Nam & Lien (2014). For points near the wall surrounded by one or more
ghost points, simple tri-linear interpolation is not possible and will cause an ill-posedness
problem. Nam & Lien (2014) suggested an interpolation between fluid points and skin
geometry since parameters at the wall are known. For clarity, figure 2.5 is represented in
2D. It shows the interpolation method for both cases: full surrounded image point and
near wall image point.

For the 3D Bi-linear interpolation method, the generic flow variable (φ) can be calcu-
lated with:

φ(x,y,z) = C1xyz+C2xy+C3xz+C4yz+C5x+C6y+C7z+C8. (2.48)

The eight weighting coefficients, noted Ci, are evaluated from the generic variables of
the eight surrounding points by solving this algebraic system:


C1

...

C8

=


x1y1z1 x1y1 x1z1 y1z1 x1 y1 z1 1
...

x8y8z8 x8y8 x8z8 y8z8 x8 y8 z8 1


−1 

φ1

...

φ8

 . (2.49)

This 8x8 Vandermonde matrix is inverted for each ghost cell of the grid at the start
of the simulation using Lapack library. The following equation shows the Vandermonde
matrix when a point, or more, (noted B) lies in a ghost cell:


C1

...

C8

=


x1y1z1 x1y1 x1z1 y1z1 x1 y1 z1 1
...

xByBzB xByB xBzB yBzB xB yB zB 1


−1 

φ1

...

0

 . (2.50)

In isothermal case, u1,u2,u3 and T are imposed by the previous method and p is set
to zero gradient-normal. The gradient condition can be expressed as follows using the
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Figure 2.4: Immersed Boundary Method
for a pipe geometry; Black, grey and white
color represent pure solid cells, ghost cells
and fluid cells, respectively.
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Figure 2.5: Bi-linear interpolation for the
IBM demonstrating the two interpolations
method (ghost cells close to the wall).

wall-normal vector ~n= {nx,ny,nz}:

∂φ(x,y,z)
∂~n

= C1(yB zB nx+xB zB ny +xB yB nz) +C2(yB nx+xB ny)

+C3(zB nx+xB nz) +C4(yB ny + zB nz) +C5nx+C6ny +C7nz =~0. (2.51)

As a result, the corresponding Vandermonde matrix becomes:



x1y1z1 x1y1 x1z1 y1z1 x1 y1 z1 1
...

(yB zB nx+ (yB nx+ (zB nx+ (yB ny+
xB zB ny+ xB ny) xB nz) zB nz) nx ny nz 0
xB yB nz)



−1 
φ1

...

0

 . (2.52)

Once the flow variables at the image point (φi) are interpolated, the isothermal/no-slip
wall boundary conditions (equation 2.53) will determine the values of the non-conserved
variables (T,p,u,v,w) at the ghost cells. Nam & Lien (2014) proposed their method for
adiabatic wall and used conserved variables. In our case, non-conserved variables have
been used to apply the isothermal condition. In the case where wall informations are
needed, we simply impose the following parameters ~v =~0, T = Tw, ∂p

∂~n =~0.

ug =−ui, vg =−vi, wg =−wi, Tg = 2Tw−Ti, pg = pi (2.53)
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2.3.2 Initial conditions for turbulent flow

To initialize the flow field in the case of a wall-bounded turbulent flow, one can use the
so-called Klein method (M. Klein & Janicka 2003). This method generates an artificial
turbulent flow based on first- and second-order statistics. A set of autocorrelated filters
is used to smooth a random field which is then projected on the Reynolds stress tensor to
calculate the fluctuating velocity field. Temperature (Eq. 2.54) and pressure (Eq. 2.55)
fields are then computed from the fluctuating velocity field using the strong Reynolds
analogy formulation (SRA) (Touber & Sandham 2009).

T ′

〈T 〉
= (γ−1)Ma2 u′

〈u〉
, (2.54)

ρ′

〈ρ〉
=− T ′

〈T 〉
. (2.55)

The one-dimensional filter (Eq. 2.56) uses a Gaussian function similar to the auto-
correlation function in order to reconstruct an isotropic turbulent field. The use of the
exponential auto-correlation function leads to a spectrum energy-decay rate of -2 instead
of the expected -5/3 law.

For each direction, the filter sizes are calculated by NFi = 2Λi/∆xi (Touber & Sand-
ham 2009), where Λi is the integral length scale and ∆xi the grid spacing. The three-
dimensional filter is obtained by the convolution of three one-dimensional filters (Eq.
2.57).

bk =
exp

(
−π2

k2

n2

)
√∑N

j=−N exp
(
−π2

k2
n2

)2
, (2.56)

bijk = bi bj bk. (2.57)

The spatially correlated function is computed by:

Ui(x,y,z) =

 NFx∑
i′=−NFx

NFy∑
j′=−NFy

NFz∑
k′=−NFz

bijk(i′, j′,k′)Ri(x+ i′∆x,y+ j′∆y,z+k′∆z)

 ,
(2.58)

where Ri is the random fields for each i-direction.

The velocity field is then reconstructed by:

ui = 〈ui〉+
3∑
j=1

aij Uj , (2.59)
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aij =


√
R11 0 0

R21/a11
√
R22−a2

21 0
R31/a11 (R22−a21a31)/a22

√
R33−a2

31−a2
32

 , (2.60)

where Rij =
〈
u′iu
′
j

〉
is the Reynolds stress tensor given from previous simulations or

from experimental results.

2.3.3 Inlet synthetic turbulence injection

M. Klein & Janicka (2003) have proposed an algorithm for generating inflow data from
their spatial method (sec. 2.3.2). They generate a new three-dimensional spatially corre-
lated flow field at each time step with the method described in section 2.3.2. At each time
step, they discard the first y-z plane and shift the whole random data field in x-direction
with Ri(x,y,z) := Ri(x+ ∆x,y,z). This approach is easily adaptable to the code but
creates uncorrelated time signal at the inlet of the domain.

Following the work of Klein, Xie & Castro (2008) have implemented an inflow bound-
ary condition that uses an autocorrelation function in space and time. The time cor-
relation is created by an exponential function based on two weight factors. They also
improved the efficiency of the previous method of M. Klein & Janicka (2003) by generat-
ing only one set of two-dimensional random data field. The spatially correlated function
is then computed by:

Ui(y,z) =

 NFx∑
i′=−NFx

NFy∑
j′=−NFy

NFz∑
k′=−NFz

bijk(i′, j′,k′)Ri(i′∆x,y+ j′∆y,z+k′∆z)

 . (2.61)

The time correlation is applied on the random data R using:

R(t+ ∆t,y,z) =R(t,y,z) exp
(
−π∆t

2τ

)
+R?(y,z)

√√√√1− exp
(
−π∆t

τ

)
, (2.62)

where R?(y,z) is a new set of random data, τ = tL/〈u〉 the Lagrangian timescale, tL the
integral time scale and 〈u〉 the local averaged velocity.

Equation 2.62 satisfies a time correlation function of exponential form with a variance
equal to unity. The time correlation generates a spectrum energy-decay rate of -2 instead
of the expected -5/3 law (Touber & Sandham 2009).

In order to avoid repetitive pattern of the inflow data, the random numbers are
generated by the Mersenne Twister generator (Matsumoto & Nishimura 1998) using an
uniformly-distributed function. It has a very long period of 219937 that assure a fast
generation of high-quality pseudorandom integers. The method have been parallelized
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for MPI by controlling seed generation.

2.3.4 Perturbation model

In section 4.1, we enforce the transition of an incoming laminar boundary layer using
a perturbation model proposed by Rai et al. (1995) and Pirozzoli et al. (2004). To
induce laminar-to-turbulent flow transition, the wall-normal velocity component at the
wall emulates a region of blowing and suction following:

v(x,z, t) = Au∞ f(x)g(z)h(t), xa < x < xb, (2.63)

where A is the amplitude of the fluctuation applied in the range x ∈ [xa,xb].

The functions f and g are spatial correlation functions in streamwise and spanwise
direction, respectively. h is a temporal function expressed as a sum of multiple sine
function with a randomized phase offset.

f(x) = 4 sin
(
θ(1− cos(θ))/

√
27
)
, (2.64)

g(z) =
lmax∑
l=1

Zl sin(2π l(z/Lz +φl)), (2.65)

h(t) =
mmax∑
m=1

Tm sin(β t+ 2πφm), (2.66)

where φl and φm are random numbers, β the fundamental frequency of the disturbance,
Lz the spanwise length, θ = 2π(x−xa)/(xb−xa) and Zl and Tm are computed by solving∑lmax
l=1 Zl = 1, Zl = 1.25Zl+1 and ∑mmax

m=1 Tm = 1, Tm = 1.25Tm+1, respectively.

We have found that, by using the model presented in section 4.1, the amplitude of the
fluctuations was modified depending on the random number generated. Mathematically,
one can find that the rms of equations 2.65 and 2.66 are not equal to one (hrms 6= 1 and
grms 6= 1) and change depending on φl and φm.

To normalize this model, we have added a function to g and h so that their respective
rms are equal to one. This modified model has been used in section 4.2.

gmod(z) = g(z)
grms

, (2.67)

hmod(t) = h(t)
hrms

, (2.68)

where ϕrms =
√
〈ϕ′ϕ′〉 is computed at the initialization of the code.
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2.4 Domain decomposition method

2.4.1 The singularity issue

The study of shock unsteadiness in over-expanded cylindrical nozzle flow deals with cylin-
drical coordinates. To perform simulations in cylindrical coordinates, one can use a purely
cylindrical code or a generalized curvilinear code. The advantage of the generalized curvi-
linear coordinates is that the grid can be distorted in the streamwise direction and fit
the wall along the θ-direction. Nozzle flow simulation handles divergent and convergent
region where the grid changes in the streamwise direction.

On the other hand, the fully cylindrical coordinates create a singularity at the axis
centerline. The singularity arises from the terms 1/rn in the cylindrical Navier–Stokes
equations, where n= 1,2 and r is the radial direction. For example, the Laplace operator
in cylindrical coordinates is:

∇2 ≡ ∂ 2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂ 2

∂θ2 + ∂ 2

∂z2 . (2.69)

The terms using the first radial derivative and the second polar derivative are both
singular at r = 0.

The other drawback of fully cylindrical coordinates is the time-step reduction at the
axis. The volume of the cells at the axis are generally smaller than the cell along the
circumference because of the small r∆θ value near the axis.

A validation case consists in the simulation of a turbulent pipe flow with the gen-
eralized curvilinear code (sec. 3.5). The results with the fully cylindrical coordinates
are not accurate compared to the literature. To avoid the singularity issue, several nu-
merical methods have been proposed (Constantinescu & Lele 2002, Verzicco & Orlandi
1996, Mohseni & Colonius 2000). Many of these methods use pseudo spectral finite-
volume code. These methods give accurate results but require the development of pseudo
spectral methods. An alternative approach is to use a domain decomposition method.

The basic idea behind the domain decomposition (DD) methods is to split a boundary
value problem, defined on a domain Ω, into smaller boundary value problems defined on
subdomains Ωi, where ∪Ωi = Ω. The advantage of DD method is its adaptability on the
meshing of complex geometries. The domain can be split up into several subdomains
using different grids in order to avoid strongly deformed grid cells.

The connection between the subdomains depends only on the boundary conditions.
The subdomains overlap each others and interpolations are performed on the overlapping
region to feed the boundary conditions.
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2.4.2 2D domain decomposition method

For the nozzle simulations, a custom DD method has been developed. The domain Ω is a
cylinder grid containing two overlapping meshes Ω1 and Ω2, representing a Cartesian grid
and a hollow cylinder grid, respectively. Figure 2.6 shows the subdomains. The three-
dimensional mesh is created so that the cells in the streamwise direction overlap at each
i indice. The domain decomposition method is then reduced to two dimensions, r− θ.
With this method, the mesh can be curved in the streamwise direction but exclusively in
the same way for both subdomains.

The internal Cartesian grid Ω1 does not use the cylindrical coordinates and thus, the
singularity issue and the small volume cells at the axis do not appear with this method.

The code works independently for each subdomains using their own MPI communi-
cators. The method uses an initialization phase to optimize the computation (algorithm
1). At each iteration (RK-step), the overlapping ghost cells (boundary condition) are
updated by an interpolation from the other subdomain following algorithm 2. Since the
method is reduced to 2D, a simple bi-linear interpolation is used to interpolate the values.

The physical size of the internal Cartesian subdomain must be in a range RΩ1/R(x)∈
[0,
√

2/2] to actually work, where Ω1 = {(y,z) ∈ [−LΩ1
y ,LΩ1

y ]× [−LΩ1
z ,LΩ1

z ]}. We chose
the value of RΩ1/R(x) = 0.6 in order to be away from the wall and to avoid interpolation
in the boundary layer where the resolution of the internal grid is not sufficient to capture
the inner layer of the boundary layer (∆R+Ω1 � ∆R+Ω2). The internal radius of the
hollow cylinder RΩ2

i is generated so that the two subdomains overlap (RΩ2
i <RΩ1). One

cell size is subtracted to the internal radius to avoid cross-interpolation. The internal
radius of the hollow cylinder is RΩ2

i = RΩ1 −∆yΩ1 . The hollow cylinder is bounded
by Ω2 = {(r,θ) ∈ [RΩ2

i ,R(x)]× [0,2π]}. Figures 2.7, 2.8 and 2.9 explain the process of
initialization and interpolation from algorithm 1 and 2.

The turbulent pipe flow at Reτ = 220 has been used to validate the domain decom-
position method (Sec. 3.5.2).

Algorithm 1 DD method subroutine
1: procedure Initialization
2: Split MPI COMM WORLD communicator for each subdomains
3: Ω1 communicator / Ω2 communicator
4: Generate Ω1 grid / Generate Ω2 grid
5: Scan Ω2 grid for overlapping cell / Scan Ω1 grid for overlapping cell
6: Save overlapping cell indices into an array for optimization
7: Save MPI ranks
8: Share to all the matrix of communication (MPI AllGather)
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Ω2

Ω1

Figure 2.6: Representation of the domain decomposition method showing every 5th grid
line.

+ =⌦1 ⌦2

Figure 2.7: Global discretization of the DD method; Orange: overlapping ghost point
from subdomain Ω1, Yellow: overlapping ghost point from subdomain Ω2.

Algorithm 2 DD method subroutine
1: procedure Interpolation
2: Asynchronous Send/Recv to avoid deadlock state
3: if process contains overlapping cells from other process then
4: Bi-linear interpolation of the primitive variables
5: MPI Send the array to the other subdomain
6: if process contains overlapping boundary condition then
7: MPI Recv the interpolated values from the other subdomain
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Figure 2.8: Example of MPI discretization of the DD method; Orange: overlapping ghost
point from subdomain Ω1, Yellow: overlapping ghost point from subdomain Ω2.
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Figure 2.9: Example of Send/Recv request for the DD method. View from process 3.
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3

Numerical verification and validation

This chapter is dedicated to the validation and verification of the newly developed code.
The validation consists of simulating 2D and 3D test cases for the compressible Navier–
Stokes equations. First, the simulation of a vortex advection is conducted to verify the
correct implementation of the curvilinear equations (sec. 2.1.2) as well as the central
scheme (sec. 2.2.1.1); Then, the simulation of a compressible flow over a circular cylinder
is achieved in order to validate the WCNS scheme with non-orthogonal grid (sec. 2.2.1.1);
Lastly, the simulation of the well-known Poiseuille flow is conducted in order to cross-
check the implementation of the curvilinear equation for wall-bounded flow at constant
viscosity.

Some of the validation cases have been compared against experimental results or
previous numerical simulations; A simulation of a turbulent channel flow has been carried
out to confirm the ability of the code to simulate turbulent flow, while a simulation of a
pipe flow has also been made to validate the domain decomposition method implemented
for cylindrical geometries (sec. 2.4).

3.1 Vortex advection

The first test case consists in the advection of a circular, homentropic, zero circulation
vortex. This test is widely used in literature (Visbal & Gaitonde 2002, Kawai & Lele
2008). A curvilinear grid has been generated through the analytical function from Kawai
& Lele (2008) (fig. 3.1):

x(ξ,η) = xmin+ ξ

Nξ
Lx+Aξ sin(2π η

Nη
), (3.1)

y(ξ,η) = ymin+ η

Nη
Ly +Aη sin(4π ξ

Nξ
), (3.2)

45
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Figure 3.1: Grid of the vortex test case

where xmin =−12rv, Lx = 24rv, ymin =−6rv, Aξ = 0.4rv and Aη = 1.6rv.
The vortex is initialized using the same parameters as Pirozzoli (2011b):

u(x,y)
u∞

= 1− Mv

M∞

y−y0
rv

exp((1− r̂2)/2), (3.3)

v(x,y)
u∞

= Mv

M∞

x−x0
rv

exp((1− r̂2)/2), (3.4)

ρ(x,y)
ρ∞

=
(

1− γ−1
2 M2

v exp(1− r̂2)
)1/(γ−1)

, (3.5)

p(x,y)
p∞

=
(

1− γ−1
2 M2

v exp(1− r̂2)
)γ/(γ−1)

, (3.6)

where r̂ =
√

((x−x0)2 + (y−y0)2)/rv, rv is the radius of the vortex core, Mv the vortex
Mach number and M∞ the free-stream Mach number.

The number of grid points is set to Nξ = 81 and Nη = 45. Periodic boundary condition
is applied at left and right sides. The vortex and the free-steam Mach numbers are is set
to Mv = 0.5 and M∞ = 0.5, respectively. This is equivalent to a strongly compressible
vortex.

The simulations are run until tu∞/rv = 720Mv which corresponds to fifteen flow
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Figure 3.2: Comparison of centered schemes with different order of accuracy; : 2th
order, : 4th order, : 6th order, : 8th order, ·: Exact solution.

through time. Figure 3.2 shows a comparison between different order of accuracy of the
centered scheme presented in section 2.2.1. The numerical solutions for the 2th- and
the 4th-order centered schemes exhibits an oscillatory behavior while 6th- and 8th-order
centered schemes highlight better results.

Hybrid scheme has also been applied to this test case. Since the hybrid sensor was
unable to activate the WENO scheme due to the smooth solution, the result was compa-
rable to the centered solution. One can conclude that the implementation of the Euler
equations in the code is properly done as observed by the accurate results from high-order
schemes. For the next simulations, the 6th-order centred scheme will be used to discretize
the convective terms, unless otherwise specified.

3.1.0.1 Cylindrical grid

The previous test case uses an orthogonal grid. In order to validate the implementation of
the curvilinear terms, the advection of a zero circulation homentropic vortex is conducted.
At the center, the skewness angle of the cells becomes critical and boundary conditions
are difficult to apply. Periodicity along the circumference is not possible and thus, the
zero-gradient boundary condition is applied along the circumference. Periodicity is used
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Figure 3.3: Grid of the cylindrical vortex test case (left) and shifted pressure distribution
at different time step (right); : t? = 0, : t? = 5.9, : t? = 11.8.

in the θ-direction. The grid (Fig. 3.3) has been generated by:

x(ξ,η) =R
ξ

Nξ
cos(2π η

Nη
), (3.7)

y(ξ,η) =R
ξ

Nξ
sin(2π η

Nη
), (3.8)

where R is the radius of the external BC.

The flow is initialized with the same parameters from equations 3.3, 3.4, 3.5 and 3.6
with x0 = −0.6R and y0 = 0. The vortex is advected from left to right passing through
the center of the mesh (fig. 3.4).

The pressure field distribution at different time step t? = tu∞/rv is shown in figure
3.3. The x-axis is shifted for the sake of comparison, where x′ = x− tu∞+ 0.6. The
final solution shows good accuracy compared to the initial flow field. The property of the
singularity at the axis in finite-differences solver does not lead to a spurious solution of the
flow as it would do in finite-volumes code due to the infinite flux at the axis. Nonetheless,
the singularity can cause spurious oscillations due to the small volume at the center. One
can observe that the second solution (t? = 5.9) from figure 3.3 is slightly different from
the initial and final solutions due to the highly irregular mesh at the center. Thus, a
particular axis treatment near the center in finite-differences formulation is needed (sec.
2.4).
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Figure 3.4: Pressure field contour at different time step.

3.2 Compressible flow over a circular cylinder

The description of this test case can be found in Burbeau & Sagaut (2002). A circular
cylinder of radius R is placed in a viscous compressible flow at Mach 2 and Re= 100. A
detached curved shock is formed ahead of this cylinder, while a viscous wake is established
downstream. This test case can validate the implementation of the 2D viscous terms
in generalized curvilinear coordinates. Burbeau & Sagaut (2002) used a bidimensional
unstructured meshes with high-order discontinuous Galerkin method. The curvilinear
grid (Fig. 3.5) used for this simulation has been generated by:

x(ξ,η) =
(
R+ (Ra−R)

(
1 + tanh(rv(ξ/Nξ−1))/tanh(rv)

))
cos(2π η

Nη
), (3.9)

y(ξ,η) =
(
R+ (Ra−R)

(
1 + tanh(rv(ξ/Nξ−1))/tanh(rv)

))
sin(2π η

Nη
), (3.10)

where Ra = 25R is the external radius and rv = 3.0 the stretching parameter.
A stretching functions has been used along r-direction to account for the viscous effect

along the cylinder wall. The number of grid points is set to Nξ = 128 and Nη = 256,
giving 32,768 cells. The boundary layer is highly resolved in our case compared to the
unstructured mesh of Burbeau (N = 7,478). The WENO-like scheme (WCNS) is used
to account for the presence of shock waves. Periodic boundary condition is used in the
θ-direction while adiabatic no-slip condition is applied along the external cylinder.

The obtained results are quite comparable to Burbeau & Sagaut (2002). The bow
shock is well captured and gives the same angle of deflection. The solution of Burbeau
& Sagaut (2002) was made to show the robustness of their Galerking methods applied
to unstructured meshes. Figure 3.6 shows the Mach field contour extracted at a steady
state. Our code solution seems more accurate than Burbeau’s solution. The boundary
layer and the shock seem to be more resolved. The solution of Burbeau & Sagaut (2002)
has been simulated on an unstructured mesh while we have used a body-fitted mesh. The
number of cell used in the paper of Burbeau & Sagaut (2002) is lower than the one used
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Figure 3.5: Grid of the compressible flow over a circular cylinder test case

in our structured mesh which can be the source of those differences.

3.3 Poiseuille flow

The Poiseuille flow from Schlichting & Gersten (2003) is used as a test case for further
validation. The analytical solution is used as a reference solution. The laminar fully-
developed boundary layer solution in two-dimensional flow is obtained for the case of
steady flow in a channel with two parallel flat walls where the pressure gradient is equal
to:

dp

dx
= µ

d2u

dy2 . (3.11)

In our simulation, the pressure gradient is imposed by an external force, F = dp/dx.
Using the boundary condition, u= 0, one can find the following velocity profile:

u(y) =− 1
2µ

dp

dx

(
h2−y2

)
=− F2µ

(
h2−y2

)
, (3.12)

where Ly = 2h is the height of the channel.

Both velocity and temperature profiles are summarized as follows:

u(y) = um(1− y
2

h2 ), (3.13)
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Figure 3.6: Mach number contours; Left: current simulation, Right: Burbeau & Sagaut
(2002)

T (y) = Tw + (Tm−Tw)
(

1− y
4

h4

)
, (3.14)

where um =−F h
2

2µ denotes the velocity at the centre of the channel flow and Tm−Tw =

µu2
m

3λ is the rise of temperature at the centre of the channel.
In order to activate the curvilinear terms of the code, two meshes are computed (Fig.

3.7). Mesh 1 is computed in the Cartesian coordinates and mesh 2 is inclined by an angle
α following equations 3.15 and 3.16. The number of grid points is set to Nξ = 20 and
Nη = 128. The streamwise dimension is not important in this test case since the solutions
are fully-developed (one dimensional). Periodic boundary condition and isothermal no-
slip condition are applied in the streamwise and spanwise direction, respectively.

x(ξ,η) = cos(α)(ξ/NξLx−η/Nη 2h), (3.15)

y(ξ,η) = sin(α)(ξ/NξLx+η/Nη 2h). (3.16)

The flow is initialized with a uniform flow field at a velocity um and a temperature
Tw. The results from figure 3.8 are showing excellent agreement between the current
simulation and the analytical solution in terms of both velocity and temperature fields.
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Figure 3.7: Grid representation for Mesh 1 (left) and Mesh 2 (right) showing every 4th
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Figure 3.8: Streamwise velocity solution (left) and temperature solution (right) along the
spanwise direction; : Poiseuille analytical solution, •: Mesh 1, ×: Mesh 2.
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3.4 Turbulent channel flow at Reτ = 220

A turbulent channel flow at a friction Reynolds number of 220 is performed to complete
the full validation and verification of the code.

Direct Numerical Simulation of turbulent channel flow between isothermal walls is
performed. It is one of the simplest test case of turbulent flow due to the simplicity of
the geometry and the boundary conditions. Turbulent statistics can be explored to study
near-wall turbulence behavior, such as first-order statistic (φ′ = φ−〈φ〉) or second-order
statistic (〈φ′iφ′j〉).

3.4.0.1 Test case description

As in H. Foysi & Friedrich (2004), the flow is periodic in both x- (streamwise) and z-
directions (spanwise). Figure 3.9 shows the actual configuration and table 3.1 summarizes
the grid and geometry parameters.

x
z

y

Periodicity

Periodicity
qw

4πh

4
3πh

2h

Figure 3.9: Configuration of the channel flow.

Lx Ly Lz Nx Ny Nz h
4πh 2h 4/3πh 192 150 128 6.84355 mm

Table 3.1: Channel flow domain properties

This simulation uses a centred 6th-order scheme for convective terms and the 4th-
order scheme for the viscous terms. The grid is regularly spaced in the x- and z-direction
and the wall-normal direction grid is stretched in order to capture the viscous sublayer.
A grid sensitivity study has been conducted by H. Foysi & Friedrich (2004), resulting in
the parameters shown in table 3.1. Flow properties are summarized in table 3.2.

The fully-developed boundary layer is supersonic and the Mach number is set to 1.5.
The initial averaged velocity field follows a fully-developed profile extracted from H. Foysi
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Re Reτ uτ M ub Tw
3000 220 35 m/s 1.5 680 m/s 500 K

Table 3.2: Channel flow properties
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Figure 3.10: Averaged velocity profile
along the wall-normal direction; •: H. Foysi
& Friedrich (2004).
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Figure 3.11: Averaged temperature ( ),
pressure ( ) and density ( ) profile along
the wall-normal direction; •: H. Foysi &
Friedrich (2004).

& Friedrich (2004). The Klein method (sec. 2.3.2) has been used to initiate the turbulent
fluctutions. The Reynolds number and averaged parameters are calculated as:

ρm = 1
h

∫ h
0 ρdy, ub = 1

ρmh

∫ h
0 ρudy, Re= ρubh

µ
and Reτ = ρw uτ h

µw
.

Since the flow is periodic in the streamwise direction, the pressure drops because of
the wall friction. To account for the pressure drop, additional terms in the momentum
and energy equations are used as in (H. Foysi & Friedrich 2004, Taieb 2010). These terms
are applied to counteract the friction forces acting along the wall. Equation 3.17 shows
the formulation of this term added to the Momentum and Energy equation.

fx =

(
〈σ12〉

∣∣∣
y=0
− 〈σ12〉

∣∣∣
y=2h

)
2hρm

= τw
hρm

. (3.17)

3.4.0.2 Statistical results

All the statistics have been averaged over approximately 150 non-dimensional time unit
where t? = tub/Lx. Several probes are located along the spanwise direction (y) to collect
data for scatter plots.

Figure 3.10 shows the averaged velocity profile compared to the DNS of H. Foysi &
Friedrich (2004). Temperature, pressure and density profiles are shown in figure 3.11. As
expected, the pressure is constant along y-direction.

The law of the wall is represented in figure 3.12 with normalized velocity based on
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Figure 3.12: Van Driest velocity profile along the wall-normal direction; •: H. Foysi &
Friedrich (2004), : viscous sublayer and logarithmic law.

Van-Driest formulation (eq. 3.19). The wall unit normalization is based on local wall
quantities. The wall unit length y+ is given by:

y+ = ρw uτ y

µw
, (3.18)

where uτ =
√
τw/ρw is the friction velocity.

A semi-local wall normalization, y?, can also be used which depends on the local
averaged properties (eq. 3.20). Several other scaling laws have been made to normal-
ize as much as possible the law of the wall for compressible flow such as the density
normalization used by H. Foysi & Friedrich (2004).

u+
V D =

∫ u+

0

(
ρ

ρw

)
du+ (3.19)

y? = 1
〈ν〉

√
τw
〈ρ〉

(3.20)

Figure 3.13 shows contour of different instantaneous fields after 150 non-dimensional
time unit. The coherent structures of turbulence are highlighted.
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Figure 3.13: Instantaneous contours in the x-y plane at z = Lz/2; Top left: Streamwise
velocity, Top right: Temperature, Bottom left: Pressure, Bottom right: Mach number.

3.4.0.3 Scatter plots

In 1962, Morkovin studied the correlations between different fluctuating quantities (Morkovin
1962). These correlations are known as SRA for ’Strong Reynolds Analogy’. Figure 3.14
shows the scatter plots from t? ≈ 0 to t? ≈ 150 at different y+ coordinates.

At y+∼ 10, both temperature and density fluctuations are correlated with the stream-
wise velocity fluctuations. For y+ ∼ 1, fluctuations are still correlated but the slope is
reduced accordingly to equation 3.21. On the other hand, at the centerline of the channel,
the fluctuations are independent of each other and the SRA equations are no longer valid
in the outer layer. P. Huang & Bradshaw (1995) have proposed a new equation using the
total temperature to improve the correlation when the isothermal boundary condition
are used:

T ′

〈T 〉
≈

 1
Prt

(
∂〈T0〉
∂〈T 〉 −1

)
 (γ−1)Ma2 u′

〈u〉
. (3.21)

3.4.0.4 Turbulence structure

G.N. Coleman & Moser (1995) have studied the ’streaks’ structure for isothermal channel
flow. These streaks represent the vortex motion happening along the wall. Figure 3.15
shows the fluctuating velocity field at different position in the wall-normal direction.
Those streaks, predicted by G.N. Coleman & Moser (1995), can be seen in the buffer
layer of the boundary layer, where the viscous sublayer is connected to the log-law layer.

At y+ ∼ 10, the velocity fluctuations are maximum (fig. 3.17) and the streaks are
clearly visible. Vortices are convected by the flow, creating the streak motions. Figure
3.16 shows the process of streaks structure. The red values of figure 3.15 represent the
’ejection’ process and the blue one, the ’sweep’ process. In the laminar sublayer (y+ < 5),
the viscous effect is dominant compared to the convection (Re < 1) and thus, the flow is
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Figure 3.14: Scatter plots of different fluctuating quantities at different y+. Left: Tem-
perature fluctuation; Right: Density fluctuation, Top: y+ ∼ 1, Middle: y+ ∼ 10, Bottom:
y+ ∼ 200.
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Figure 3.15: Instantaneous contours of the fluctuating streamwise velocity in x-z plane
at t? ≈ 150 for different y+

dominated by the viscosity, creating a vorticity component in the velocity field. In the
streamwise direction, the flow is separated into two regions: a low speed region where
∂u′/∂y > 0 and a high speed region where ∂u′/∂y < 0. The ’streaks’ can be seen as a
rolling motion where particles are ejected from the viscous sublayer to the outer layers in
the low speed region and are swept from the outer layer to the high speed region.

Another way to characterize the streaks is the Q-criterion or the vorticity. The later
represents the spinning motion of a fluid ~ω = ~∇×~u. The Q-criterion is commonly used
to visualize the vortex streaks.

Q= 1
2 (Ωij Ωij−Sij Sij) (3.22)

The Reynolds stress along the wall-normal direction is plotted in figure 3.17. It shows
a good agreement of our DNS with the results of H. Foysi & Friedrich (2004), which gives
confidence on our newly developed code.

3.5 DNS of a turbulent pipe flow at Reτ = 220

In this section, a comparison has been made between channel and pipe flows at similar
friction Reynolds number to understand the influence of the geometry on the turbulent
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Figure 3.17: Reynolds stress tensor along y-direction along the wall-normal direction; :
〈ρ〉 ũ′′u′′/τw, : 〈ρ〉 ṽ′′v′′/τw, : 〈ρ〉 w̃′′w′′/τw, •: H. Foysi & Friedrich (2004).
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boundary layer. Also, the pipe flow simulations have been used to validate the correct
implementation of the domain decomposition method.

3.5.1 Channel vs. pipe flow

Direct Numerical Simulation of fully developed supersonic and non-swirling turbulent
pipe flow at Reτ = 210 has been done using the Immersed Boundary Method (sec. 2.3.1).
The boundary layer turbulence is initialized by the Klein method similarly to the channel
flow simulation (sec. 3.4). Comparison between channel and pipe flow will explore their
similarities and differences. Transverse curvature of the wall and compressibility effect
will be investigated through mean flow quantities and higher order statistics to reveal
their effects on the boundary layer.

Several experimental and numerical simulations have been conducted on incompress-
ible pipe flows. Over the past two decades, both DNS and LES were used to simulate pipe
flow at various diameter-based Reynolds numbers using, for the most part, cylindrical
coordinates. Eggels et al. (1994) were the first to simulate the pipe flow at ReD = 5300
in DNS. The domain was 10R in the axial direction with 96x128x256 along r,θ,z di-
rections, respectively. Orlandi & Fatica (1997) and Fukagata & Kasagi (2002) used
the data created by Eggels et al. (1994) to perform pipe flow experiment. Loulou P.
(1997) have computed the same ReD using a hybrid B-spline spectral method creating
an online database for the incompressible pipe flow simulation. Higher Reynolds num-
ber simulations have been done by Wagner et al. (2001) and Veenman (2004) reaching
ReD = 10300. Reτ = 1050 pipe flow simulation has been proposed by Satake et al. (2000).
They used 402 millions grid points with a streamwise dimension of 15R. More recently,
Wu & Moin (2008) performed a turbulent pipe flow simulations using 630 million grid
points at ReD = 44000. They used second-order finite-difference methods and validated
their results with experimental data from Princeton Superpipe at ReD = 41727.

For compressible pipe flow, only few simulations have been performed in the past. For
instance, Nieuwstadt & Bradshaw (1997) have demonstrated that high order statistics
fail to collapse data of compressible channel and pipe flow. Reynolds number effects
on pipe and channel flow have been presented by Wosnik et al. (2000). Ghosh et al.
(2010) compared the channel and pipe flow statistics. Based on the configuration of
Foysi et al. (2004), with Reτ = 245 and 〈Ma〉= 1.3, they have been able to compare their
data and highlight similarities and differences between fully-developed turbulent channel
and pipe flow. Ghosh et al. (2008) also performed DNS of pressure gradient effects in
fully developed boundary layer using nozzle and diffuser geometry.

Experiments on compressible/incompressible pipe flows have started half-century ago.
At this time, they proposed several laws of the wall, completing the theory initialized by



3.5. DNS of a turbulent pipe flow at Reτ = 220 61

Millikan. Hinze (1959) summarized these studies. Barenblatt et al. (1997) proposed a
power law with coefficients contradicting the universal logarithmic law. In 1998, Princeton
Superpipe facility performed experimental fully developed pipe flow measurements. They
collected data from ReD = 31577 to ReD = 35.2×106. For compressible and supersonic
pipe flow, no data are yet present due to the difficulty to measure precisely supersonic
flow at low Reynolds number.

3.5.1.1 Flow configurations and parameters

Table 3.3 presents the size of the computational domains, the number of grid points
and the dimensionless grid spacing for both channel and pipe flow simulation. Due
to the difficulty to express cylindrical wall units in a Cartesian grid, a space averaged
∆r+ is calculated on the first layer near the wall. Grid spacing for the pipe flow has :
∆r+

min = 0.01, ∆r+
max = 1.54 , ∆r+ = 0.74, i.e. ∆r+ = ρw∆ruτ/µw.

Flow parameters are summarized in Table 3.4. The Reynolds number, Re= ρbubh/µw,
is characterized by the bulk density, the bulk velocity (ub = 1/(ρmh)

∫ h
0 ρudy), the chan-

nel/pipe half width/radius and the viscosity at the wall. For both channel and pipe flow
simulations, the friction Reynolds number, Reτ = ρwuτR/µw, is set to 210. The results of
the channel flow are presented in the previous section. For fully-developed channel/pipe
flow, the additional force is expressed as:

ρfx|channel =−∂ 〈p〉
∂x

= 〈τw〉/h

ρfx|pipe =−∂ 〈p〉
∂x

= 2〈τw〉/R
(3.23)

The initial flow field is perturbed using the Klein method (Klein et al. 2003). Channel
flow mean profiles (Foysi et al. 2004, Case M1.5) for 〈ui〉 ,〈T 〉 ,〈p〉 ,

〈
u′iu
′
j

〉
are used to

initiate the pipe flow profile using a Cartesian to cylindrical transformation. The walls
are considered as isothermal and set to 500K.

〈v〉= sinθ 〈ur〉+ cosθ 〈uθ〉

〈w〉= cosθ 〈ur〉+ sinθ 〈uθ〉〈
v′v′

〉
= sinθ2

〈
u′ru
′
r

〉
+ 2cosθ sinθ

〈
u′ru
′
θ

〉
+ cosθ2

〈
u′θu
′
θ

〉
〈
u′v′

〉
= sinθ

〈
u′xu

′
r

〉
+ cosθ

〈
u′xu

′
θ

〉
(3.24)

Statistics are obtained after averaging in time and space (streamwise-direction) during
200 non-dimensional times (t? = tub/Lx)which is enough to allow the information to travel
200 times through the channel/pipe length at the bulk velocity.
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Lx x Ly x Lz nx x ny x nz ∆x+, ∆y+, ∆z+

Channel 4πh x 4/3πh x 2h 192 x 150 x 128 13.5, 0.79, 6.87
Pipe 4πR x 2R x 2R 192 x 540 x 540 13.5, 0.74, 0.74

Table 3.3: Computational domains and grids

Reτ Re M uτ Mτ Bq t?

Channel 211 2908 1.5 35.83 0.08 0.048 209
Pipe 210 3044 1.57 35.97 0.08 0.045 196

Table 3.4: Flow parameters for channel/pipe flows

3.5.1.2 Mean quantities

Figure 3.18 shows the Van Driest velocity profiles of both channel and pipe flows at
Reτ = 210. The Van Driest transformation, equation 3.27, accounts for the change of
density. The results show an increase of velocity in the outer layer of the pipe (y+ > 30).

u+ = 1
κ

logy+ +C+, (3.25)

u+ = Ay+n, (3.26)

u+
V D =

∫ 〈u〉+
0

(〈ρ〉/ρw)1/2 d〈u〉+ . (3.27)

One way to represent the outer layer effect is to study the overlap layer where the
universal log-law applies (Equation 3.25). For compressible flow, it has been seen that the
overlap layer can be assimilated by the power-law (Equation 3.26). A contradiction exists
in the literature whether this law can be applied or not. Barenblatt et al. (1997) were the
first to propose an incomplete power law where the power exponent and multiplicative
factor depend on the flow Reynolds number. They found that for a pipe flow at Re= 4000,
the power law was as accurate as the logarithmic law. Following their path, Zagarola
& Smits (1998) affirmed that the power law and log law were similar to characterize
the overlap layer in velocity distribution for low Reynolds number (Reτ < 5000). More
recently, McKeon et al. (2004) found a log-law validation in the inertial sublayer and
affirmed the power law legitimacy in the overlap layer (0.12Reτ < 600).

Based on the present simulation (Reτ = 210), the ability of the power law to charac-
terize the overlap layer for low Reynolds number is not evident. Looking at γ+ for the
log-law and β+ for the power-law might bring more clarifications. These two parameters
are based on the variation of the mean Van Driest profiles. In the overlap layer, these
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Figure 3.18: Velocity profiles with the Van Driest transformation; −: channel flow, −:
pipe flow.

parameters will be constant with a value of 1/κ for γ+ and n for β+ if they fit with their
respective laws.

Figure 3.19 confirms the universal log-law for channel flow since γ+ is constant in the
overlap region giving the Von Karman constant of 0.4. For the pipe flow, a slightly slope
exist in the overlap region. One can affirm that the slope for the power-law is not as
strong as the slope for the log-law and conclude by a better adaptability of the power-law
for pipe flow in the overlap layer. The adaptability of the power-law in the overlap region
is not straightforward.
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Figure 3.19: Profiles of γ+ = y+(du+/dy+) according to the log-law definition (left) and
β+ = (y+/u+)(du+/dy+) according to the power-law definition (right); Line types as in
figure 3.18.
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Figure 3.20: Averaged temperature (left) and pressure (right) along the wall-normal
direction; Line colors as in figure 3.18, •: Channel flow of Foysi et al. (2004).

Figure 3.20 shows a decrease of 10% of temperature and 2% of pressure in the central
part of the pipe compared to channel flow profile. By integrating the radial/wall-normal
mean velocity equation in both flows, the following expression is found:

〈p〉= 〈pw〉−〈ρ〉 ṽ′′ v′′, (Channel)

〈p〉= 〈pw〉−〈ρ〉 ṽ′′ v′′−

1︷ ︸︸ ︷∫ r

0

〈ρ〉 ṽ′′ v′′−〈ρ〉 w̃′′w′′
R− r

dr . (Pipe)

The decay of pressure in the core is caused by the last term of the above equation (1),
resulting from the transverse curvature terms in the cylindrical coordinates. The same
behavior for temperature can be found by integrating the total energy equation in both
cases.

3.5.1.3 Rms fluctuations profiles

Rms velocity fluctuations are investigated through non-dimensional Reynolds stress distri-
bution. The streamwise velocity fluctuations is shown in figure 3.21, R+

xx = 〈ρ〉 ũ′′u′′/(ρwu2
τ ).

Figure 3.21 describes wall-normal and span-wise Reynolds stress. Near the wall, the rms
velocity fluctuations collapse for both flows. Differences start to appear in the overlap
layer and in the core of the flow. For both streamwise and spanwise RMS velocity fluctu-
ations, a decay appears at the peak position (y+ = 30), while the opposite happens for the
wall-normal component. Furthermore, differences exist in the core of the pipe/channel
for the three components of the autocorrelated velocity fluctuation.

Figure 3.22 shows the dimensionless turbulent shear stress, R+
xy = 〈ρ〉 ũ′′ v′′/(ρwu2

τ ).
A relationship exists between different quantities such as::
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as in figure 3.18.

1− y+

Reτ
= 〈µ〉
〈µw〉

∂u+

∂y+ −
〈ρ〉 ũ′′ v′′
τw

. (3.28)

Rms pressure and temperature are shown in figure 3.23. Rms temperature fluctuations
are the same for both cases while differences appear for rms pressure fluctuations. One
can notice that, close to the wall, the rms pressure fluctuations for the pipe flow are
roughly 8.5% higher than for the channel flow.

3.5.1.4 Turbulent kinetic energy budget

Turbulent energy can be seen as a transfer (cycle) of energy between the mean kinetic
energy (K = 1/2 ũiũi), the turbulent kinetic energy (k= 1/2 ũ′′i u′′i ) and the internal energy
(ũ = Cv T̃ ). Each of these energies can be decomposed into several terms from averaged
equation (Favre averaging). Energy transfers for wall-bounded compressible turbulent
flow are summarized in figure 3.24.
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Figure 3.24: Energy transfer of compressible turbulent flow between internal, mean kinetic
and turbulent kinetic energy. The dashed lines represent the compressible terms.

The transport equation for turbulent kinetic energy (TKE) is given by:

(3.29)

∂ 〈ρ〉k
∂t

=

Pk︷ ︸︸ ︷
−〈ρ〉 ũ′′i u′′j

∂ũi
∂xj
−

εk︷ ︸︸ ︷〈
τ ′ij
∂u′′i
∂xj

〉
+

Ck1︷ ︸︸ ︷〈
p′
∂u′′j
∂xj
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 .

The different terms in the TKE equation are: (Pk): Production of k; (εk): Dissipation
of k; (Ck1): Pressure fluctuation strain; (Ck2): Viscous compressibility effect; (Ck3):
Pressure compressibility effect; (Dk): Diffusion of k; (Dt): Turbulent diffusion; (Dp′):
Pressure fluctuation diffusion and (Dτ ′): Viscous fluctuation diffusion. The terms of
TKE are scaled by ρbu3

b/h.

Figure 3.25 shows the turbulent kinetic budget with the classical term of Production
and Dissipation. The production of kinetic energy is reduced in the buffer layer compared
to the channel flow. Similarly, the dissipation and the diffusion in the pipe flow decrease
at the vicinity of the wall. At the contrary, the pressure terms are kept the same in the
boundary layer between pipe and channel flow (fig. 3.26). The compressibility effects are
kept the same between the pipe and the channel flow with a peak of energy in the buffer
layer of the boundary layer.
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Reτ Re M Mτ Tw
Pipe flow (Sec. 3.5.1) 210 3044 1.57 0.08 500
Ghosh et al. (2010) 245 3180 1.3 0.077 220

Table 3.5: Differences between the pipe flow from section 3.5.1 and Ghosh et al. (2010)
simulation.

3.5.2 Cylindrical and generalized curvilinear coordinates code
comparison

As discussed before, the results of the DNS of supersonic fully-developed pipe flow are
in agreement with the previous study of Ghosh et al. (2010). The drawback of using a
Cartesian code with cylindrical shape geometry is the number of points needed. Since
the mesh stretching is not practical, a uniform grid spacing is used. Thus, the grid
spacing at the center of the pipe is dictated by the grid spacing near the wall, i.e. for
BL requirements (∆y+ < 1). The second drawback of the Cartesian grid is the time-step
reduction. The time-step is enforced by the axis cells where the velocity is maximal.

By using a cylindrical coordinates code, one can reduce the number of points. As
discussed in section 3.5.1, the cylindrical coordinate system creates a singularity at the
axis centerline. The time-step is dictated by the cell near the axis where the veloc-
ity is maximal and the volume of the cell minimal (∆θr). A first DNS simulation has
been performed using the fully cylindrical coordinates combined with a specific boundary
condition for the axis. The obtained results were inaccurate. Thus, an alternative solu-
tion using the domain decomposition method is used to simulate cylindrical grid using
generalized curvilinear coordinate system.

This section focuses on the comparison of the DNS of supersonic fully-developed pipe
flow using the fully-cylindrical coordinates and the domain decomposition method. Those
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N/NCart 〈∆t〉/〈∆t〉Cart
Cartesian coordinates Nx x Ny x Nz = 192 x 540 x 540 - -
Cylindrical coordinates Nx x Nr x Nθ = 192 x 80 x 192 0.05 0.15

DD method Nx x (Ny x Nz, Nr x Nθ)
192 x (60 x 60 , 36 x 192) 0.04 4.3

Table 3.6: Details of computational domains and time step values.

two cases are compared to the results of Ghosh et al. (2010). The pipe flow parameters
of Ghosh et al. (2010) are a bit different from the previous pipe flow simulation (sec.
3.5.1). Table 3.5 summarizes the main differences. The next simulations (fully-cylindrical
coordinates and domain decomposition method) are done using the same parameters as
Ghosh et al. (2010).

Table 3.6 shows the details of the grid for each simulation. The number of points for
the fully cylindrical simulation and for the DD simulation is highly reduced compared to
the Cartesian simulation. For the fully cylindrical grid, the time-step is highly reduced
due to the small axis cell volume (∆θr). In the other hand, the DD method includes
both advantages, the reduced grid size and the increased time step. Grids are presented
in figure 3.27.

Figure 3.28 shows the profiles of mean velocity and temperature for each method
compared with Ghosh et al. (2010) data. On the first order statistics, i.e. time average
of the primitive variables, the solution of the fully-cylindrical method is largely underes-
timated in the inner layer of the boundary layer. In both methods, the flow is dictated
by an additional force following the same formulation as previously discussed (eq. 3.23).
In the fully-cylindrical method, the friction Reynolds number is underestimated despite
the correct additional force formulation. A second simulation has been made to conserve
the friction Reynolds number but led to an over-prediction of the centerline velocity,
i.e. over-prediction of the Reynolds number.

On the other hand, the results from the DD method are close to the solution of Ghosh.
The overlapping zone can be seen in the figure 3.28, where the two solutions from each
grid, i.e. the internal Cartesian grid Ω1 and the external hollow cylinder grid Ω2, overlap
each other. One can notice no spurious oscillations emanating from the overlapping zone
meaning that the interpolation between the two grids is satisfactory.

In figure 3.29, the second order statistics (Rii) are plotted. Again, the solution of
the fully-cylindrical method is not suitable compared to the DD method solution. The
solution of the DD method is close to Ghosh et al. (2010) and proves once again the
suitability of the DD method.

This section aimed to validate the domain decomposition method implemented to
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Figure 3.27: Grid representation for the cartesian coordinates (IBM) showing every 9th
grid-lines (left), the fully-cylindrical coordinates showing every 4th grid-lines (middle)
and the DD method showing every 3rd grid-lines (Ω1) and 4th grid-lines (Ω2) (right).
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avoid the singularity issue in cylindrical coordinate system. The solutions of the DNS
using the domain decomposition show good agreement with the previous DNS of Ghosh
et al. (2010). The connection between the two sub-domains do not produce spurious
oscillations, even for higher-order statistics.



4

Near-wall modeling for LES

A wall model need to be implemented in order to capture the low-frequency oscillation
of the separation phenomena in nozzle flow simulation with a reasonable computational
efforts. The wall model must be able to simulate high-Reynolds number boundary layer
subjected to pressure gradient. So far, DNS of wall-bounded flow has been performed in
a fully-developed state (sec. 3.4 and 3.5). In an actual nozzle flow, the boundary layer
starts developing in the combustion chamber upstream of the throat and most of the time
reaches the fully-developed state before the nozzle throat. Generally, the boundary layer
in supersonic nozzles is thin compared to the nozzle throat section.

In this chapter, a wall model has been developed and tested through a DNS of a
spatially evolving compressible boundary layer subjected to pressure gradient. First,
a comparison of an existing DNS by Pirozzoli et al. (2004) has been done to create a
developing boundary layer; then, this DNS has been used to perform a DNS of a turbulent
boundary layer under an adverse and favorable pressure gradient; lastly, the DNS of the
non-equilibrium boundary layer will be used to validate the implementation of the wall
model in a priori and a posteriori simulations.

4.1 DNS of a zero pressure gradient turbulent bound-
ary layer at Reθ = 4200

A spatially-evolving supersonic boundary layer over an adiabatic flat plate is simulated
to study freestream turbulence and to develop a suitable wall model for the nozzle sim-
ulations. This simulation follows the case of Pirozzoli et al. (2004) in terms of domain
sizes and inlet quantities.

Rai & Moin (1993) were the first to simulate a compressible growing boundary layer
at Mach 2.25. They showed the similarities of the inner layer turbulence compared to

71
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Figure 4.1: Computational domain for the DNS of the transition laminar/turbulent,
perturbation model extends from x= 4.5′′ to x= 5′′

the incompressible boundary layer results. The same simulation has been done by others.
Guo & Adams (1994) showed the influence of the compressibility on the boundary layer by
studying the terms of dilatational dissipation and pressure-dilatation correlation. Maeder
et al. (2001) studied the influence of the Mach number on the turbulence. They showed
that compressibility effects on turbulence statistics are small up to a Mach number of
5. Finally, Pirozzoli et al. (2004) showed that compressible turbulence exhibits close
similarities with the incompressible case. They exhibited the good prediction of the Van
Driest transformation compared to the incompressible velocity profile and the similarities
of the Crocco-Busemann relation to the compressible temperature profile.

An incoming laminar boundary layer at M∞ = 2.25 is evolving along an adiabatic
flat plate. At a given Reynolds number, a laminar compressible boundary layer profile is
created using the laminar boundary layer equations from White’s book (White & Corfield
2006). Both velocity and temperature profiles are used, while pressure is kept constant
along the wall-normal direction. The incoming Reynolds number is set to Re= 2.54×106

(at x = 4′′) in order to be in a turbulent state (Replate
turbulent > 2−5×106). The incoming

laminar boundary layer shifts to a turbulent flow during a transition state. In fact,
the transition might occurs: small upstream perturbations, surface roughness, ... It is
common to use a perturbation model to force the transition from laminar to turbulent.

The computational domain extends from xin = 4′′, corresponding to Rex = 2.54×106

to xout = 9′′. The normal direction extends up to 0.5′′ and the grid is stretched with
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a minimum spacing near the wall of ∆y+
min ∼ 1. The spanwise direction of the domain

is 0.175′′. The number of points is Nx×Ny ×Nz = 3584× 128× 256. The freestream
flow is set at Mach 2.25 and at a static temperature of 169K. The momentum thickness
Reynolds number post the transition is equal to Reθ = 4260 (Rex = 4.5×106).

The perturbation model is similar to the one implement by Guarini et al. (2000). The
region of perturbation extends from x= 4.5′′ to x= 5′′. The random numbers are created
by a normal/gaussian distribution using the Mersenne Twister random number generator
with a cycle of 219937− 1 to avoid repetitive patterns. The perturbation model follows
the specification of Pirozzoli et al. (2004) as follow:

v(x,z, t) = Au∞ f(x)g(z)h(t), xa < x < xb, (4.1)

where the parameters are defined in section 2.3.4.

4.1.1 The hybrid scheme

To avoid excessive numerical dissipation inherent to the WENO scheme, an hybrid strat-
egy was used to better capture the boundary layer turbulence with precision (see Sec.
2.2.1).

As it can be seen in figure 4.4, the WENO scheme underestimates the friction coeffi-
cient, while the 6th order and hybrid schemes exhibit better solutions. Note that the 6th
order centered scheme is not stable.

Figure 4.4 shows different solutions of the friction coefficient for different perturbation
amplitude (A) and frequency (f). By increasing the amplitude or the frequency of the
perturbation model, the transition zone moves upstream toward the perturbation zone.
At a certain point, the transition zone reaches the perturbation zone (blue curve).

4.1.2 Results

Statistics have been averaged in space and time during 10 characteristic time and com-
pared to the DNS data of Pirozzoli et al. (2004). In figure 4.4, the friction coefficient
Cf shows the transition zone of the boundary layer from laminar to turbulent, with
Cf = τw/(0.5ρ∞u2

∞). It points out the perturbation zone (around Rex = 3× 106), the
transitional zone (from Rex = 3.8×106 to Rex = 4.5×106) and the zone of fully turbulent
flow (downstream of Rex = 4.5×106). The friction coefficient in the turbulent zone shows
a good agreement with the theoretical law Pirozzoli et al. (2004).

For the turbulent region (Rex = 4.8× 106), the normalized Van Driest velocity is
plotted and compared to the classical log-law formulation, to the results of Pirozzoli
et al. (2004) and to a previous DNS of Gatski & Erlebacher (2002) in figure 4.6. The
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solution shows a close similarity to the theoretical log-law with constant κ = 0.41 and
C+ = 5.2. It also shows good agreement with previous DNS data.

The averaged temperature field is plotted in figure 4.7. The adiabatic wall temper-
ature is correctly captured and exhibits an overshoot of less than 2%. The theoretical
temperature profile can be computed by the Crocco–Busemann relation (Pirozzoli et al.
2004). The computed recovery temperature is of the same order of magnitude (approxi-
mately 1%). The pressure profile is given in figure 4.8. The assumption in boundary layer
theory is that the pressure is constant in the wall-normal direction, i.e. dp/dy = 0. In
turbulent boundary layer, the pressure decreases in the outer layer due to the transverse
fluctuating velocity as explained previously in section 3.5 and 3.5.1. Nevertheless, the
wall-normal pressure term in the turbulent boundary layer equations is still negligible.

Figure 4.9 shows the normal Reynolds stress components and the shear stress tensor
compared to the DNS data of Pirozzoli. Good agreement is obtained from the normal
Reynolds stress figures. However, the magnitude of the streamwise components is slightly
over-predicted in our case (approximately 8%). Pirozzoli uses the Reynolds fluctuating
field, i.e. 〈ρ〉〈u′iu′i〉. In our simulation, the Favre averaging operator, i.e. 〈ρ〉 ũ′′i u′′i has
been used. The difference between the two formulations results in an extra-term 〈ρ′u′iu′i〉
which is not negligible in the outer layer. The shear stress tensor shows a good agreement
with the results of Pirozzoli and confirms their findings on the fact that the density scaled
Reynolds stress does not exceed unity as predicted by Maeder et al. (2001). Similarly,
the total stress, i.e. dash line, is slightly constant in the inner layer as expected.

Lastly, the turbulent kinetic energy budget is displayed in figure 4.10. As in section
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Figure 4.6: Van Driest normalized velocity at Rex = 5×106; •: Pirozzoli et al. (2004), :
Gatski & Erlebacher (2002), : Log-wall with C+ = 5.5.

3.5.1, the kinetic energy equation can be written as a sum of several terms, including the
production P , the advection Dk, the dissipation ε, the viscous diffusion D, the turbulent
transport T and the pressure dilatation Ck. It shows a qualitatively converged solution
compared to Pirozzoli. However, the production term is larger than the one simulated by
Pirozzoli while the dissipation term is slightly underestimated. In the vicinity of the wall,
the dissipation is over predicted but closer to the results found by Gatski & Erlebacher
(2002).

In this test case, a spatially developing supersonic boundary layer has been simulated
and compared with the results of Pirozzoli et al. (2004). The simulation shows close
similarities with the previous DNS of Pirozzoli. It proves the accuracy of the code to
simulate turbulent boundary layers using hybrid schemes. This test case will be used in
the next simulation (sec. 4.2) in order to develop a wall-model for the nozzle simulations.
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Figure 4.10: Turbulent kinetic energy budget at Rex = 5×106; •: Pirozzoli et al. (2004).
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4.2 DNS of a turbulent boundary layer under APG
/ FPG

Nozzle flow boundary layers handle various types of pressure gradient. In the divergent
part of an over-expanded nozzle flow, the turbulent boundary layer is first subject to
a weak favorable pressure gradient (i.e. the pressure is slowly decreasing) followed by a
strong adverse pressure gradient due to pressure equalization with the atmosphere. In
order to develop a suitable wall model for the nozzle flow simulations (see Introduction),
we used the previous simulation of the supersonic/turbulent boundary layer to create a
DNS of a turbulent boundary layer under an adverse and a favorable pressure gradient.
The DNS will study the effect of adverse pressure gradient on a turbulent boundary
layer close to separation by using an adverse pressure gradient and a favorable pressure
gradient.

Numerous DNS and LES of laminar and turbulent boundary layer under APG have
been done in the past and most of them are done with incompressible and subsonic
boundary layers (Kitsios et al. 2015, Nagano et al. 1993, Na & Moin 1998, Abu-Ghannam
& Shaw 1980, Hickel & Adams 2008). In supersonic/compressible flow, studies of TBL
under weak pressure gradient are rare and most of them simulate TBL under strong APG.
The case of a supersonic turbulent boundary layer under strong APG is often assimilated
to the Shock Wave Boundary Layer Interaction (SWBLI). SWBLI studies have been done
through experiments and numerically by many researchers (see Introduction).

Several methods have been used in the literature to enforce a pressure gradient. The
farfield wall-normal boundary condition is often used to enforce a pressure gradient.
Following an experiment from Marušic & Perry (1995), where the pressure gradient is
adjusted by the height of a flexible test section ceiling, Inoue et al. (2013) attempted
to simulate the same experiment by applying a pressure boundary condition at the top
of their domain. The pressure gradient boundary condition presents some drawbacks
particularly on the wall-normal velocity field. Mellor & Gibson (1966) have developed
a farfield wall normal velocity BC to impose a pressure gradient. They control the
streamwise velocity field by using a power law, i.e. utop BC∝ xm. The wall normal velocity
is then deduced from the streamwise velocity via the boundary layer stream function
solution in the far-field region. The main drawback of all of those methods is that the
pressure gradient is propagating across the domain through the wall-normal direction.
Due to the freestream velocity, the wave is propagating inclined from the wall and thus,
a wall-normal pressure gradient exists inside the boundary layer, i.e. dp

dy 6= 0.
The simulation uses the same parameters as the DNS of section 4.1. The domain starts

at xi = 4”, i.e. Rex = 2.54× 106 and the same perturbation model between x = 4.5′′ to
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Case Lx Fpg ∝ dp/dx Note
1 6” 5×106 Unstable flow
2 7” 106 Stable flow

Table 4.1: Pressure gradient specifications for each case.

x= 5′′ is used. The inlet flow is set at Mach 2.25 and at a static temperature of 169.44K.
The same laminar boundary layer profiles are used at the inlet boundary condition.
The domain has been extended in the x-direction to have enough space to perform the
separation/reattachment phenomena of the TBL. Two simulations have been done using
different domain dimensions and different pressure gradients, table 4.1 summarizes both.
The wall-normal length has been increased to avoid reflection of the separated shock on
the boundary layer (Ly = 1”). The spanwise length is left unchanged and set to 0.175”
using periodic BC. The length of the spanwise direction will be discussed later, especially
in the recirculating zone where the large structure of turbulence can be cutoff by the
periodic boundary condition.

Due to the difficulty to predict the response of the pressure gradient to the force, a
simulation (Case 1) has been made using boundary layer informations from the previous
DNS simulation (Sec. 4.1). The amplitude of the pressure gradient is an important factor
since it can lead to a separated flow and sometimes to a strong unphysical deceleration of
the boundary layer. We have designed the amplitude of the adverse/favorable pressure
gradient using the Clauser’s parameter β from previous simulation of separated flow found
in the literature using:

β = δ?

τw

dp

dx
, (4.2)

where, δ? is the displacement thickness, τw the shear stress at the wall and dp
dx the

streamwise pressure gradient.
The first simulation (Case 1) led to the a strong separation of the boundary layer.

Figure 4.11 shows the pattern of the separated zone. The recirculating bubble created
by the separation was large enough to generate a strong separated shock upstream of
the separation accentuating the separation phenomenon which led to an instability of the
separation line. This instability has been observed on the slices, they showed that the
separation line was constantly sliding upstream of the flow and reaching the transition
zone. Despite the fact that this simulation led to an interesting flow field, we have decided
to reduce the pressure gradient (Case 2) applied on the boundary layer because of the
instability observed in Case 1. A comparison of the solution for both cases is presented in
figure 4.12. Case 1 displays the large recirculation bubble created by the strong adverse
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Figure 4.11: Temperature field contour (Case 1) (top) and associated diagram of shock
pattern (bottom).

pressure gradient. In Case 2, the boundary layer handles a moderate pressure gradient.
A weak oblique shock can be observed but does not lead to an unstable flow as in Case
1.

For our DNS, the pressure gradient is enforced by an additional force. This additional
force allows us to control the pressure gradient location and amplitude more precisely
than the wall-normal velocity BC, i.e. dp/dy = 0. An additional term is added to the
streamwise momentum equation and to the total energy equation, i.e. ρf ∝ dp/dx.

The pressure gradient is applied only in the fully-turbulent zone. The laminar and
transition zones are still computed to develop a fully-turbulent flow and can be viewed
as a buffer zone similar to the one used with synthetic turbulence boundary conditions.
Figure 4.13 shows the design of the pressure gradient applied along the x-direction. For
Case 1, the force was applied too close to the transition (x = 6.5”) which increase the
instability of the separation observed. For Case 2, we have decided to shift the force
downstream away from the transition zone.

The streamwise length was about 6” in Case 1 and was increased to 7” to enlarge
the domain of study. The pressure gradient is set as a constant Fpg in the favorable and
adverse zone. A smooth function (tanh) has been used to connect the three phases: zero,
adverse and favorable pressure gradient. The pressure gradient is decreased to a zero
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pressure gradient before the outlet to avoid over-constraint boundary condition.
The additional force is supposed to mimic the pressure gradient along the streamwise

direction. Applying Navier-Stokes equations in the freestream zone, one can isolate the
terms that the force needs to counteract:

∂ρuu

∂x
=−∂p

∂x
+Fpg. (4.3)

In this equation, the additional force is supposed to counterbalance the pressure term
and the convective term. If a constant pressure gradient is required, one could compute
the additional force by removing the convective term:

Fpg = F ′+ ∂ρuu

∂x
, (4.4)

where F ′ is a constant corresponding to the target pressure gradient, i.e. F ′ ∝ dp
dx .

Due to the difficulty in computing the convective term during the simulation, espe-
cially near shocks, we have decided to use a constant Fpg instead of a constant pressure
gradient F ′. Because of that, the pressure gradient computed by the simulation will not
be constant in the adverse and favorable zone.

Figure 4.14 shows the response of the pressure and velocity gradient fields to the
applied force (Case 2). In the APG zone (x/δin = [250 : 300]), the sum of the convective
force and the pressure terms follows the amplitude imposed by the additional force Fpg.
One can observe that the pressure gradient along the x-direction is not strictly constant
in the APG zone as predicted. Due to the deceleration of the boundary layer and the
creation of a weak separated shock (fig. 4.12), the actual force imposed in the FPG zone
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is not visible on figure 4.14 (x/δin ∼ 320). One can also notice the effect of the transition
on the pressure field at x/δin ∼ 140.

Figure 4.15 shows the friction coefficient from the statistics for the two test cases.
Due to the unstable property of Case 1, the statistics are not converged and will never
be (the shock was moving upstream to the transition area and probably to the laminar
area). This figure is still interesting because it shows the position of the separation line
for Case 1 where Cf = 0. It also shows the strong pressure gradient applied close to the
transition zone (x/δin ∼ 175). One can notice that the transition zone is not at the same
location in both cases. Case 2 uses the corrected perturbation model discussed in section
2.3.4. For the second case, the friction coefficient is close to zero but never reaches the
separation. The APG zone is located far from the transition in the fully-turbulent region.
Only the second test case will be considered.

In zero-pressure gradient boundary layer, the law of the wall is divided in two regions,
the inner and the outer region (sec. 3.4). The inner layer connect the viscous sublayer, the
buffer region and the log-law region. The limit of the inner layer is commonly defined as
0.2δ. The log-law (eq. 4.5) at zero-pressure gradient extends generally from y+ ∼ 30−50
to y+ ∼ 200 Marusic et al. (2013) and the values of κ and C+ change depending on the
simulated case Örlü et al. (2010). In compressible flow, the Van Driest transformation
(eq. 4.6) is often applied to the normalized velocity u+ in order to scale the logarithmic
law to the density/viscosity variation effect of the boundary layer.
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Figure 4.15: Friction coefficient along the
x-direction; Line types as in figure 4.13.

〈u〉+ = 1
κ

logy+ +C+, (4.5)

〈u〉+V D =
∫ 〈u〉+

0
(〈ρ〉/ρw)1/2 d〈u〉+ . (4.6)

In adverse or favorable pressure gradient, the universality of the law of the wall does
not apply and many researchers have worked on the subject to find a scaling law for
the inner part of the boundary layer. The behavior of a turbulent boundary layer under
adverse or favorable pressure gradient is still in debate among researchers. There are
different theory in the literature concerning the law of the wall for pressure gradient
boundary layer. Huang & Bradshaw (1995) proposed that the region occupied by the
log-law is slowly reduced with an adverse pressure gradient but the coefficients κ and C+

still have the same values as for a flat plate boundary layer under zero-gradient pressure.
Stratford (1959) suggested the same behavior for the log-law and proposed that beyond
the log-law region there is a so-called half-power law region where both regions are joined
smoothly. This overlap region extends from 0.15δ to y+ < 300 (Alving & Fernholz 1995).
Nagib & Chauhan (2008) proposed another theory where the log-law still holds but κ
and C+ change their values. Several studies (Nagano et al. 1993, Lee & Sung 2009)
have followed that path and suggested a functional dependence of the coefficients on the
so-called pressure gradient parameter ∆p+:

∆p+ = ν

ρu3
τ

dp

dx
. (4.7)

Lastly, Skote & Henningson (2002) considered that the pressure gradient causes a
continuous, general breakdown of the log-law and that the previous assumptions does not
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Figure 4.16: Pressure gradient parameter along the x-direction.

hold for pressure gradient boundary layer flow. Figure 4.16 shows the pressure gradient
parameter ∆p+ centered in the fully-turbulent region. The pressure gradient parameter is
positive in the adverse pressure gradient region (x/δin∼ 250) and negative in the favorable
pressure gradient region (x/δin ∼ 320). Figure 4.17 shows the Van Driest velocity for
several x-positions (x/δin = 170, 250 and 330) corresponding to different values of the
pressure gradient parameter, i.e. ∆p+ = 0, 0.0075 and −0.0025, respectively. One can
observe that the self similar solution of the velocity profile for both the adverse and
favorable pressure gradient is changing along the boundary layer. For both APG and
FPG cases, the classical log-law, i.e. κ∼ 0.41 and C+ ∼ 5.0 Örlü et al. (2010), does not
apply anymore.

For the adverse pressure gradient region, one could fit the log-law with different co-
efficients as proposed by Nagib and others (Nagib & Chauhan 2008, Nagano et al. 1993,
Lee & Sung 2009). One could also confirm that the log-law zone is reduced compared to
the zero-gradient region, i.e. y+

log-law,APG = [30 : 90] and that it extends to the half-power
law region from y+ ∼ 100. In fact, all the theory presented above could fit the velocity
profile of the adverse pressure gradient region. For the favorable pressure gradient re-
gion, a log-law can also be fitted in a region slightly shifted compared to the zero-pressure
gradient region, i.e. y+

log-law,FPG = [60 : 200].

As in section 3.5.1, the adaptability of the log-law can be confirmed by the non-
dimensional parameter γ+ = y+(du+/dy+). We seek a region where γ+ shows a plateau.
The second coefficient C+ can be deduced from γ+ at a specific y+ using the following
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Figure 4.17: Van Driest velocity along the wall-normal direction; : zero-pressure gradient
∆p+ = 0, : adverse pressure gradient ∆p+ = 0.0075, : favorable pressure gradient
∆p+ =−0.0025

relation:

C+ = u+
V D−γ

+ logy+. (4.8)

According to Brown & Joubert (1969), in a thin region around y+ ∼ 100, the velocity
profile can be fitted by the log-law with coefficients depending on the pressure gradient
parameter ∆p+. Figure 4.18 shows the γ+ parameter along the wall-normal direction for
the three x-locations, i.e. ∆p+ = 0, 0.0075 and −0.0025. κ coefficient can be deduced
from the γ+ parameter with κ= 1/γ+ in region where the γ+ parameter forms a plateau.
Zero-pressure gradient solution gives a slightly constant γ+∼ 2.423 in the range y+

log-law =
[40−150] giving κ∼ 0.413. For the APG and FPG cases, the γ+ is not strictly constant
but one can notice that the range is shifted closer to the wall (y+

log-law,min ∼ 30) for
the adverse pressure gradient and far from the wall (y+

log-law,min ∼ 100) for the favorable
pressure gradient.

Following Brown & Joubert (1969) assumptions where the log-law can be fitted in a
thin region around y+ ∼ 100, the κ+ = 1/γ+ coefficient is plotted along the x-direction at
y+ = 100 in figure 4.19 along with the second log-law coefficient C+ (eq. 4.8). Upstream
x/δin = 240, the flow is at zero-pressure gradient and both coefficients are constant and
similar to the literature (Nickels 2004, Coles 1968, So et al. 1994, Örlü et al. 2010),
i.e. κ = [0.41 : 0.54] and C+ = [4 : 6.2]. In the APG zone (x/δin = 250), κ and C+
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coefficients are reduced compared to ZPG following what has been found in literature
(Nagib & Chauhan 2008, Nickels 2004). On the contrary, both coefficients are increased
for the FPG region (x/δin = 320).

Nickels (2004) proposed a function to determine Ki and Ci from ∆p+, where the law
of the wall is expressed by u+ = 1/Ki logy+ +Ci:

Ki = κ0√
1 + ∆p+ y+

c

, (4.9)

where κ0 = 0.39 and y+
c is the thickness of the viscous sublayer computed by ∆p+(y+

c )3 +
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Figure 4.19: Log-law coefficient κ+ (left) and C+ (right) computed at y+ = 100 along
the x-direction.
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Figure 4.20: Log-law coefficients Ki (left) and Ci (right) at y+ = 100 along the pressure
parameter ∆p+ in the ZPG and APG region.

(y+
c )2−122 = 0 using the smallest positive root. It is worth noticing that those coefficients

are computed for incompressible flow at high Reynolds number Nickels (2004).

Ci is then deduced by the following equation as proposed by Nagib & Chauhan (2008):

FiCi = 1.6(exp(0.1663Bi)−1). (4.10)

Following Nickels (2004) assumptions, figure 4.20 shows the log-law coefficients Ki = κ

and Ci = C+ as a function of ∆p+ for both ZPG and APG zones. At zero-pressure
gradient, both parameters give constant values, i.e. Ki ∼ 0.41 and Ci ∼ 5.6. The change
of Ki versus ∆p+ in figure 4.20 (left) shows a pronounced correlation in the region ∆p+ =
[0.008 : 0.05]. This region corresponds to the zone where the force is constant (fig. 4.13).
One can notice that the correlation does not change whether the pressure parameter
gradient is positive or negative, i.e. d∆p+/dx > 0 or d∆p+/dx < 0.

A noticeable spreading of Ci in figure 4.20 (right) can be observed in the constant
force region. Recently, Knopp et al. (2014) observed a similar sensitivity of Ci (20%) for
different pressure parameters depending on the choice of y+

log-law. The correlation slope
is changing whether the pressure parameter gradient is positive or negative.

A modified log-law has been proposed by Mcdonald (1969) for mild pressure gradient.
It combines the log-law and the half-power law in the overlap region (Stratford 1959).

u+
mod = 1

κmod

logy+−2log

√
1 +λ∆p+y+ + 1

2 + 2(
√

1 +λ∆p+y+−1)
+C+

mod (4.11)

where λ is a coefficient found experimentally for mild pressure gradient flow (Mcdonald
1969).

The modified non-dimensional parameter γ+
mod can be deduced from the previous
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mod along the wall-normal direction;
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equation giving:

γ+
mod = y+√

1 +λ∆p+y+

du+

dy+ . (4.12)

Figure 4.21 shows the γ+
mod parameter along the wall-normal direction for the three

x-location, i.e. ∆p+ = 0, 0.0075 and −0.0025 with λ= 1. The adverse pressure gradient
case is similar to the zero-pressure gradient one. The region y+

log-law = [40− 150] gives a
slightly constant γ+

mod for both ZPG and APG. On the contrary, the modified log-law does
not apply for the favorable gradient pressure region. The previous Van Driest velocity
profile for ZPG and APG region is plotted along the modified log-law (eq. 4.11) in figure
4.22. It shows the good prediction of the modified log-law in the range y+

log-law = [30−150].
The region below the log-law, i.e. the viscous sublayer and the buffer zone, have also

different behavior whether the adverse or the favorable pressure gradient is considered.
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Figure 4.22: Van Driest velocity along the y-direction; Line types as in figure 4.17, :
Modified log-law (Mcdonald 1969).
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4.3 Near wall modeling

Near-wall modeling is required in order to reduce the computational cost of turbulent
boundary layer simulations. The near-wall modeling is also necessary when simulating
high Reynolds number flows with complex geometry. Instead of DNS, the large-eddy
simulation is used to reduce the computational resources. For wall-bounded flow, the
wall-resolved LES is strongly dependent on the Reynolds number, so a very refined grid
needs to be used close to the wall. At high Reynolds number, the cost of the wall-resolved
LES becomes prohibitive, even with the current computational power. To overcome this
limitation, it is common to use a near-wall model in order to reduce the number of points
of the grid and the time step of the simulation. Various methods have been proposed
in the literature (Grötzbach 1987, Schumann 1975, Spalding 1961, Cabot & Moin 2000,
Piomelli & Balaras 2002). Many of those strategies are case-sensitive, which means that
it has been designed for a specific case. In our case, the compressible wall-model needs
to be developed in the presence of a pressure gradient.

The approach presented in this section consists in using a relatively coarse grid on
the wall combined with a wall-model, supposed to mimic the dynamical effects of the
turbulent eddies in the near-wall layer. Schumann (1975) was the first to develop such
approach for channel flow simulations. The purpose of this method was to obtain, in both
space and time, detailed turbulent velocity and pressure fields for high-Reynolds number
flows. Grötzbach (1987) improved the model of Schumann by adapting its formulation to
wall-bounded flow. Nonetheless, these methods made the assumption of an equilibrium
boundary-layer, which is not valid for turbulent boundary layer subjected to pressure
gradient.

The effects of pressure gradient on the wall stress models have been proposed by
Manhart et al. (2008). Despite the fact that their model was adapted for streamwise
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pressure gradient, they also neglected the Reynolds stress effects, which limits the range
of validity of the model to the viscous sublayer, i.e. y+ < 5. Duprat et al. (2011) have
extended the work of Manhart et al. (2008) to extent its application up to the inertial
layer, i.e. y < 0.1δ. They proposed an analytical formulation of the streamwise velocity
taking into account both streamwise pressure gradient and Reynolds stresses effects of the
buffer layer. They validated their model with a periodic channel flow and with a periodic
arrangement of hills subjected to both favorable and adverse pressure gradients. Their
simulations yield to good results for first order statistics even when the first near-wall
point was located in the logarithmic region. They were able to reproduce flow separation
phenomenon even with a very coarse grid.

The methods presented above are for incompressible flows. Wang & Moin (2002)
have implemented a similar method but they added the energy equation to the model
in order to compute the temperature profile for compressible flow. Larsson and Kawai
(Kawai & Larsson 2012, 2013) proposed a similar technique and compared the length
scales, grid resolution and accuracy. These models are commonly called two-layers wall-
model. Nonetheless, the model presented by Larsson and Kawai has been developed for
equilibrium boundary layer only. The strategy proposed in this study is to combine the
two-layers model of Larsson and Kawai and the non-equilibrium wall model developed
by Duprat et al. (2011).

The averaged Navier–Stokes equations are used to develop the wall-model since the
filtered velocity is equivalent to the averaged velocity closer to the wall (Piomelli & Balaras
2002). This set of equations, known as the unsteady thin-boundary-layer equations or
UTBLE, can be derived from the Navier-Stokes equations:

∂ui
∂t

+ ∂uiuj
∂xj

=−1
ρ

∂p

∂xi
+ ∂

∂y

[
(ν+νt)

∂ui
∂y

]
, (4.13)

∂e

∂t
+ ∂euj

∂xj
=−uj

ρ

∂p

∂xj
+ ∂

∂y

[
(ν+νt)uj

∂uj
∂y

+Cp

(
ν

Pr
+ νt
Prt

)
∂T

∂y

]
, (4.14)

where ui, ρ and p are the filtered parameters and νt the turbulent viscosity.

Wang & Moin (2002) neglected the left-hand side terms, the advection terms, in
the vicinity of the wall. They showed that neglecting the pressure gradient term is not
adapted for non-equilibrium flow. In fact, the inclusion of the pressure term allows for
a significant improvement of the model predictions. Duprat et al. (2011) proposed to
reduce the TBLE to the terms of the right-hand side. Under these assumptions, the
simplified velocity streamwise momentum can be computed with:
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∂u

∂y
=
∂p

∂x
y+ τw

(µ+µt)
, (4.15)

where the wall-shear stress τw and the turbulent viscosity µt are the unknown variables
of the equation, Pr is the Prandlt number and Prt the turbulent Prandlt number.

Similarly, the temperature equation using adiabatic boundary conditions can be com-
puted as:

∂T

∂y
=

(µ+µt)u ∂u∂y + ∂p

∂x
yu

Cp
(
µ
Pr

+ µt
Prt

) . (4.16)

This simplified model, also called STBLE, has two unknown variables. To close the
system, one of the variables needs to be predicted. Nituch et al. (1978) and Balaras et al.
(1996) have proposed a definition of the turbulent viscosity using an ad-hoc damped
mixing-length limited to the linear and inertial region. The pressure gradient effect
on the eddy viscosity is modeled by a non-dimensional parameter α that quantifies the
preponderant effect between shear stress and streamwise pressure gradient. The turbulent
viscosity is defined by:

µt = µκy?[α+y? (1−α)3/2]β
(

1− exp
(
−y?

(1 +Aα3)

))2
, (4.17)

where κ is the Von Karman constant, α= u2
τ

u2
τ,p

the non-dimensional parameter and y? the
non-dimensional length. The constant A and β are determined through a priori tests.

The non-dimensional variables have been proposed by Manhart et al. (2008) as a
scaling for boundary layer subjected to pressure gradient. The scaling takes into account
the wall shear stress and the streamwise pressure gradient. The non-dimensional velocity
u? and length scale y? are defined by:

u? = u

uτ,p
, (4.18)

y? = ρyuτ,p
µ

, (4.19)

where uτ,p =
√

(u2
τ +u2

p) is the combined velocity with uτ =
√

(τw/ρ) the friction velocity

and up =
∣∣∣µ/ρ2 ∂p/∂x

∣∣∣1/3 the pressure gradient based velocity as proposed by Simpson
Simpson (1983).

Equations 4.15 and 4.16 are ordinary differential equations that are solved alge-
braically every time step. The STBLE model uses its own grid of length ywm. The
2 coupled ODES uses the filtered variables from the LES as a boundary condition, while
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the LES uses the predicted wall-shear stress τwwm and wall heat diffusion q̇wwm . The
wall-model is characterized by an “input-output” process that takes information from
the LES; this becomes the upper boundary condition for the STBLE model; the STBLE
is then resolved numerically to compute the wall-shear stress and the heat flux; which is
injected back into the LES.

The model allows the use of a coarser grid where the first near-wall point y1 has to
lie in the inertial layer, i.e. y < 0.1δ. Duprat et al. (2011) showed that their model was
accurate until roughly 100 wall units. They estimated that the best results are found
when the first near-wall cell lies in the buffer layer, i.e. y+

1 < 40. Kawai & Larsson (2013)
proposed a similar location for the first grid point, i.e. y+

1 > 50. They also showed that
almost all the STBLE model use the first off-wall LES nodes as a matching location to
feed the wall model, i.e. ywm = y1. Due to the poor near-wall resolution in the LES mesh,
numerical errors and subgrid modeling are expected to be large in the first grid point of
the LES. In order to reduce the resulting errors, Kawai and Larsson proposed to increase
the length ywm, i.e. ywm 6= y1. Due to the validity range of the turbulent viscosity model
(eq. 4.17), the wall-model top BC needs to lie in the inertial layer, i.e. ywm < 0.1δ.

Kawai & Larsson (2013) demonstrated, through high Reynolds number channel flow
simulations, that using the second near-wall cell was enough to improve the results. Using
the wall-model from the first grid point yielded to an overprediction of the Van Driest
velocity.

Figure 4.25 shows a representation of the STBLE near the wall using the off-set
method of Kawai and Larsson with ywm/y1 = 3. The model is validated through a priori
and a posteriori comparisons with direct numerical simulations of the evolving boundary
layer subjected to a favorable/adverse pressure gradient (sec. 4.2).

4.3.1 A priori test

The model is first validated by a priori tests using the DNS data of section 4.2. A and β
coefficients from equation 4.17 have to be determined through these a priori tests. The
DNS data along the wall-normal direction at two x-locations (ZPG and APG) are used
as inputs to feed the STBLE ODEs. The wall-shear stress and the wall temperature
computed by the wall-model are then compared to the resolved shear-wall stress and the
resolved wall temperature. The streamwise pressure gradient, ∂p/∂x, computed by the
LES and injected into the STBLE, has been averaged in z-direction to avoid spurious
fluctuations of the wall-modeled solution due to the turbulence of the pressure field. The
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Figure 4.25: Representation of the STBLE model coupling with LES compared to DNS.

pressure gradient, injected into equations 4.15 and 4.16, is computed by:

∂p

∂x
= 1
Lz

∂

∂x

∫ Lz

0
p dz. (4.20)

Figure 4.26 shows a wall-shear stress comparison over time for both zero- and adverse-
pressure gradient. For those tests, the length in wall-units y+

wm is set to 25, or equivalently
∆y+

wm = 50 for both zero and adverse pressure gradient regions. This means that the
dimensional length ywm is changed accordingly to the wall-shear stress to keep the wall
unit length constant.

0
100
200
300
400
500
600
700
800

0 100 200 300 400 500 600

τ w

t?

-300
-200
-100

0
100
200
300
400

0 100 200 300 400 500 600

τ w

t?

Figure 4.26: Wall-shear stress over time with zero-pressure gradient (left) and adverse
pressure gradient (right); −: Wall-resolved data, −: Reconstructed data using the STBLE
model.
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Pressure gradient ywm Nwm L1-error L2-error
Zero 25 50 1% 12%
Adverse 15 50 −2.5% 14%

Table 4.2: Results of the a priori test using the DNS of section 4.2.
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Figure 4.27: Van Driest velocity along the wall-normal direction with zero-pressure gra-
dient (left) and adverse pressure gradient (right); : Wall-resolved data ( : Subtracted
data), •: Reconstructed data using the STBLE model showing every 4th-grid line.

The coefficient A and β have been setup in order to reduce the L1-error on the
wall-shear stress, i.e. L1-error = 〈(τwwm− τw)/τw〉. The best choice for β is found to
be β = 0.4 which is lower than the previously chosen value of β = 0.78 from Duprat
et al. (2011) but closer to the value used by Nituch et al. (1978) of 0.5. The damping
coefficient A is fixed at 18. The values proposed in the literature are similar for the
equilibrium flow, i.e. α = 1. The damping function from equation 4.17 is expressed by
(1− exp(−y?/(1 +Aα3))). Without pressure gradient, Wang & Moin (2002), Cabot &
Moin (2000) used (1− exp(−y?/19)) and (1− exp(−y?/17)), respectively. It is similar
to the value (1− exp(−y?/19)) computed in the a priori test. For non-equilibrium flow,
Duprat et al. (2011) found a similar value of (1− exp(−y?/18)).

The Van Driest velocity is presented in figure 4.27. The averaged profile computed
by the wall-modeled simulation is similar to the DNS data profile, especially for the
zero-pressure gradient case. In the APG region, the law of the wall is slightly over-
predicted at ywm by less than 1%. Table 4.2 shows the L1- and L2-error of the wall-shear
stress prediction. The L1-error gives good results for both regions as it has been used to
determine the coefficient of the wall-model. The under-prediction of the wall-shear stress
RMS can be seen on figure 4.26, especially on the large fluctuation of the wall-shear stress
where the model cannot handle the spurious fluctuations of the inner layer turbulence.
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Lx/δin Ly/δin Lz/δin Nx Ny Nz
WM-LES 80 13 2.5 768 64 64
Kawai & Larsson (2013) 15 15 3 - - -

∆x+ ∆y+
1 ∆z+ Reθ

WM-LES 67 45 45 4260
Kawai & Larsson (2013) 613 154 368 50×103

Table 4.3: Grid requirements for the WM-LES

4.3.2 A posteriori test

In this section, a WM-LES is performed using a boundary layer configuration similar to
the DNS of section 4.2. The grid resolution and accuracy of the wall-model in Large
Eddy Simulation have been discussed by Kawai & Larsson (2012). They suggested that
the inner layer of the boundary layer in free-stream flow, i.e. y/δ < 0.1, can be modeled
by an universal law. They assumed that the first near-wall grid point must be located in
the log-layer, i.e. y+

1 > 40−50. Using the off-set method explained above, the first point
where the wall-model takes as input the instantaneous solutions from the LES should be
at least y+

wm > 50.
The grid resolution in both streamwise and spanwise directions should be, at mini-

mum, of the same wall unit length as the wall-normal grid spacing. As shown by Larsson
and Kawai, the motion of the turbulence is cut-off by the grid-spacing at the wall, so
that the LES cannot resolve turbulent eddies of size below ∆y+

1 . Kawai & Larsson (2013)
have performed a WM-LES of high Reynolds number supersonic turbulent boundary layer
from Souverein (2010). The momentum thickness Reynolds number of their WM-LES
was about 50× 103. Their model is in good agreement with the DNS solutions for the
total stresses and velocity profiles. The grid resolutions of the WM-LES was ∆x+ = 613,
∆y+ = 153 and ∆z+ = 368.

In our WM-LES, the momentum thickness Reynolds number is lower than the sim-
ulation of Kawai and Larsson, i.e. Reθ ∼ 4.3× 103. Using the same grid resolution will
end up with an under-resolved boundary layer due to the reduced size of the boundary
layer. The first grid point in wall-unit, ∆y+

1 , is set to 45. For the streamwise and span-
wise direction, the grid spacing is ∆x+ = 67 and ∆z+ = 45. The grid requirements are
summarized in table 4.3. The WM-LES uses the WALE sub-grid scale model defined in
section 2.1.3.

The transition phenomenon observed in section 4.2 cannot be simulated using the
wall-model implemented. The inlet boundary layer is then generated by a synthetic
turbulence inflow boundary condition introduced in section 2.3.3. The inlet profiles, used
by the inflow boundary condition, are extracted from the DNS in the fully-turbulent zone
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(x/δin = 200). The streamwise length Lx is similar to the previous DNS. The first part
of the streamwise length is used as a buffer for the synthetic inflow boundary condition.
The figures are taken at a specific x where the flow is fully turbulent, away from the
synthetic inlet.

As for the DNS, the WM-LES uses an additional force to impose the pressure gradient
along the streamwise direction. This force is similar to the one defined in figure 4.14. The
x-direction is normalized by the incoming turbulent boundary layer thickness δin which
is different from section 4.2 where the incoming boundary layer is laminar. The statistics
are averaged over 200 non-dimensional time unit. The wall-model is implemented using
the following algorithm,

Algorithm 3 WM-LES
1: procedure at each iteration
2: LES calculation
3: The LES solutions at a specific ywm is injected in the top STBLE BC
4: The STBLE is solved to compute τwwm and q̇wwm
5: τwwm and q̇wwm are injected back to LES through an additional force at y1.

Duprat et al. (2011) used an additional viscosity term to impose the wall-shear stress
at the wall. This corrective parameter, which can be assimilated to a viscosity, is com-
puted using the wall-shear stress computed by the LES and the wall-shear stress predicted
by the wall-modeled simulation. This method is suitable for finite volume code but can
lead to spurious results with finite difference code. Other methods exist in the literature
to impose a wall-shear stress (BC). The method implemented in this study is an addi-
tional force integrated along the wall-normal direction following equation 4.21. This force
is added to the x-momentum equation with an additional energy source computed by the
wall-modeled heat diffusion term (q̇wwm). The wall boundary condition uses the regular
no-slip condition with a fixed temperature computed by the wall-modeled heat diffusion
term.

Fx =
τwwm− τwLES

y1
. (4.21)

Figure 4.28 shows the normalized velocity profiles where the solution of the inner
layer is plotted using the previous DNS. It shows the zero-pressure gradient solutions
taken at a similar Reθ and the adverse pressure gradient profiles taken at a similar ∆p+.
The velocity has not been normalized by the Van Driest formulation, as it should be the
case in compressible flow, due to integration term along the wall-normal direction which
misses the information of the inner layer in the WM-LES. The grid resolution can be seen
in the plot at y+

1 = 22 and y+
2 = 68. These two first-points are slightly underestimated
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Figure 4.28: Normalized velocity along the wall-normal direction, zero-pressure gradient
(left) and adverse pressure gradient (right); : WM-LES, : DNS.
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Figure 4.29: Normalized velocities RMS along the wall-normal direction, zero-pressure
gradient (left) and adverse pressure gradient (right); : WM-LES, : DNS.

due to the unavoidable numerical and sub-grid modeling errors captured from the wall-
modeled simulation. For the ZPG, the outer layer is in good agreement with the DNS.
For the APG, the first part of the outer layer is well captured. The normalized velocity is
underestimated outside of the boundary layer (the friction velocity uτ is over-predicted
in the APG zone). This behavior is due to the fact that we are comparing the profile at
a similar ∆p+ and not at a comparable Reθ.

Figure 4.29 shows the velocities RMS along the wall-normal direction for both ZPG
and APG. The region in the range 100 < y+ < 500 is under predicted in all directions
with a maximum difference of 6%. This behavior can be explained by the fact that we are
cutting the most energetic part of the fluctuations, i.e. y+ < 50. The upper layer is then
unresolved due to the lack of energy from the buffer layer that has been removed by the
grid near the wall. In the APG region, the wall-modeled boundary layer is underestimated
near the wall, especially for the wall-normal and spanwise velocities. The peak of span-
wise fluctuating velocity at y+ = 3000 is due to the presence of a weak shock emanating
from the adverse pressure gradient zone.
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This section demonstrates that the wall-model implemented from Kawai & Larsson
(2013) and from Duprat et al. (2011) shows a good agreement with the previous resolved
DNS. The velocity fluctuations match the DNS profiles even with an adverse pressure
gradient, especially in the outer layer.
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5

Planar nozzle flow

The large-eddy simulation of an over-expanded planar nozzle is simulated in this section
to validate the code with complex geometry and to confirm the adaptability of the wall-
model for nozzle flow simulation. This flow case has been simulated before by Olson
& Lele (2011) reproducing a similar experiment from Johnson & Papamoschou (2010).
The results of this section highlight and explain the different phenomenon producing
the shock separation unsteadiness using spectra analysis. These phenomena, such as the
incoming turbulent boundary layer, the shocks pattern, the separated shear layer or the
recirculation bubbles downstream of the separation, interact with each others to create
complex motions of the separation line. Meanwhile, the adaptability of the wall-model
to reproduce the low-frequency unsteadiness is validated by comparing wall-resolved and
wall-modeled results.

5.1 Experimental setup

The experimental setup of Papamoschou & Johnson (2006) was first published in an
AIAA paper. Then, Papamoschou et al. (2009) and Johnson & Papamoschou (2010)
investigated the causes of the jet plume unsteadiness observed in the experiment.

The experiment uses two flexible plates forming the upper and lower walls of the
diverging section of the planar nozzle. The nozzle can be shaped using two sets of
actuators located at the end of each plate. The side-walls of the nozzle test section are
made of large optical windows in order to create a visualization of the entire internal
flowfield. The characteristics of the test section are shown in table 5.1. The test section
consists of a converging-diverging nozzle connected to a high pressure tank. The incoming
flow is regulated by a honeycomb section to laminarize the flow. The converging section
contour is fixed while the diverging section contour can be controlled by a deflection
mechanism (fig. 5.1).

101



102 5. Planar nozzle flow
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Figure 5.1: Schematic of the planar nozzle test section from Papamoschou & Johnson
(2006).

Ht (mm) Ld (mm) NPR ε
17.8 117 [1.45 : 1.9] [1.4 : 1.7]

Table 5.1: The geometrical parameters of Papamoschou et al.’s planar nozzle.

The flow visualization is captured by a spark Schlieren system with a spatial resolu-
tion of 2560x1712 pixels. To capture the dynamic of the flow, they used time-resolved
measurement probes. Four transducers were used on the upper wall to capture the static
pressure with a frequency response of 30 kHz. A fifth probe was mounted on the lower
wall. A dynamic probe was also used to measure the pressure fluctuations downstream of
the shock. The number of probes along the wall is an important factor for the upcoming
comparison with the simulation data since we are comparing a highly space-resolved wall
pressure to only four time-resolved probes in the experiment.

The separation lines location is extracted from those four probes using a tracking
procedure (Johnson & Papamoschou 2010). In the LES simulation, the wall is resolved
in time and space. Thus, the tracking system will not be used in the numerical simulation.

The versatility of the test section allowed to create different test configurations. They
studied four cases by changing the NPR and the nozzle area ratio ε (table 5.1). In terms
of unsteadiness, the third case ended up to be the most interesting one. It showed a
stronger shock amplitude combined with an asymmetric behavior of the separation line.
The third case is the one used by Olson & Lele (2011) for their LES. The NPR for this
case is set to 1.7 and the nozzle area ratio ε is equal to 1.6.
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5.2 WR-LES simulation of Olson & Lele (2011)

To achieve a feasible computation, Olson & Lele (2011) have simulated the experiment of
Johnson & Papamoschou (2010) by reducing the incoming Reynolds number by a factor
of four and by increasing the throat boundary layer thickness δt by a factor of two. To
reduce the computational cost, they have simulated only the diverging section of the
experiment where the flow is considered supersonic (Mt ∼ 1). Given the unsteady nature
of the shock boundary layer interaction in the nozzle diffuser, they have used a LES code
to elucidate the flow physics which govern the unsteadiness.

The incoming turbulent boundary layer has been generated by a synthetic boundary
condition using the method of recycling/rescaling of Lund et al. (1998). In order to create
a fully-turbulent boundary layer at the throat, the inlet is shifted upstream of the throat
to create a buffer zone for the evolving boundary layer. Their simulation is advanced
in time with a 4th-order Runge-Kutta scheme. All derivatives are computed using a
10th-order compact central differencing scheme combined to a high-wave number-biased
artificial diffusivities to smooth out sharp discontinuity.

The computational mesh is generated by a structured mesh following the nozzle area
contour defined by Papamoschou’s experiment. The nozzle contour from the experiment,
noted f(x), can be approximated by a third-order polynomial law combined with a set
of mathematical constraint used in the experiment:

f(x) = Ax3 +Bx2 +Cx+D. (5.1)

The computational mesh is generated by mapping the structured mesh along the
nozzle contour walls. The corner at the exit of the nozzle is approximated by a corner
radius which has the size of the boundary layer δ. The maximal half-angle of the divergent
is about 4◦. Olson (2012) have performed a mesh convergence study by using three
different meshes. They set up a parametric study by changing the NPR, the area ratio
ε, the flange width at the exit or the incoming Reynolds number (Olson 2012).

The boundary condition in the span-wise direction (Lz = 2Ht) is periodic which dif-
fers from the experiment that has side walls. The outlet boundary condition uses the
compressible far-field boundary condition combined to a “buffer” region near the outlet
where the grid is stretched in order to smooth out gradients and to enforce the ambient
condition.
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Figure 5.2: Schematic representation of the planar nozzle flow.

5.3 Wall-Resolved LES

The simulation of the wall-resolved planar nozzle follows the same parameters used by
Olson & Lele (2011). The mesh is generated with the nozzle contour from equations
A.2. Our wall-resolved LES is compared to the second mesh (Mesh B) of Olson & Lele
(2011). They concluded that the averaged profiles of the mesh B were identical to the
experimental results and that the flow was resolved in all directions.

All the subscripts used in this chapter are summarized in figure 5.2, where i is the
inlet, t the throat, e the nozzle exit, a the atmospherical region, c the centerline of the
nozzle, w the nozzle contour walls, d the divergent section and b the buffer section.

The exit lip, where the ambient domain (atmosphere) meets the nozzle exit, is gener-
ated by a different function than the one used by Olson (appendix A). The flange (exit
wall) is defined as an infinite wall. The experiment uses finite flanges at the exit of width
approximately 0.85Ht. Olson (2012) showed that the behavior of the shock was not very
sensitive to the flange width. The code is fully curvilinear, meaning that the mesh must
be generated by a unique function to avoid multiple domains generation. This function
must be of class C∞, or at least C2, to ensure good quality grid for the curvilinear
Navier–Stokes equations. The mesh functions (x(ξ,η,ζ), y(ξ,η,ζ), z(ξ,η,ζ)) are given in
appendix A along with the parameters used to generate the mesh. Outside of the nozzle,
the grid coarsens to form a buffer domain which models the far-field boundary condition
of the experiment. The size of the outside domain is about 20Ht. The grid quality is im-
proved by using orthogonal cells close to the wall. Figure 5.3 illustrates a representation
of the grid showing every 10th grid-line. The simulation uses the generalized curvilinear
equations with the hybrid scheme activated. The hybrid scheme switches between the
centered 6th-order scheme and the WCNS scheme. The 4th-order time scheme is used
for time-advancement. The SGS model for the LES is the WALE model developed in
section 2.1.3 and used for the wall-model simulation of section 4.3. Details of the solver
and the numerical methods associated are given in the chapter 2.
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Figure 5.3: Grid representation from the Wall-Resolved case showing every 10th grid-line.

Nξ Nη Nζ Lz/Ht Lb/Ht ∆x+
i ∆y+

i ∆z+
i Nb cells

WR-LES 896 256 320 2 2.8 30 [1 : 29] 20 73.4 M
Olson et al. (B) 768 256 256 2 3 30 [1 : 23] 20 50.3 M

Table 5.2: Grid parameters for the WR-LES of the planar nozzle flow.
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NPR ε Re Reθ δ/Ht Inlet synthetic method
WR-LES 1.7 1.6 90000 1000 0.1 Xie & Castro (2008)
Olson & Lele (2011) 1.7 1.6 90000 1100 0.11 Lund et al. (1998)

Table 5.3: Physical parameters for the WR-LES of the planar nozzle flow.

The span-wise length is two times the throat height following the setup of Olson.
Periodic boundary conditions are used in the span-wise direction. The upper and lower
walls are considered adiabatic with a no-slip condition on the velocity. For this wall-
resolved simulation, a stretching law is used in the wall-normal direction to capture the
viscous sublayer. The inlet boundary condition differs from the LES of Olson. They
used the Lund method (Lund et al. 1998) to create the synthetic turbulence at the inlet.
For our simulation, the method of Xie and Castro from section 2.3.3 has been used. The
inlet profiles, containing the averaged variables and the Reynolds stress tensor, have been
generated from the paper of Olson & Lele (2011), taken at the throat. A buffer zone,
noted Lb, is added between the inlet and the throat in order to generate an accurate
turbulent boundary layer. Table 5.3 shows the parameters compared to Olson & Lele
(2011).

The flow is initialized by the Klein method where the flow is supersonic. In the
diverging section of the nozzle, the flow variables follow the isentropic laws along the
streamwise direction. To avoid a strong pressure rise at the initialization due to the
internal shock, a tanh function has been used to smooth the transition between the
supersonic speed region and the atmospheric region. The results of the LES (probes,
slices, time-resolved lines) have been saved after a time tstart in order to reach a “steady”
state.

The figures presented in this section are normalized by the properties of the inlet
boundary layer as t? = tui,∞/δi and St= fδi/ui,∞. The streamwise direction x is centered
at the throat for convenience. All figures have been averaged using slices extracted from
the simulation during a time t? ∼ 2000.

5.3.1 Boundary-layer separation analysis

Figure 5.4 shows the time dependent boundary layer separation location for both upper
and lower walls. It also captures the unsteady motion of the shock. The separation
location xs is computed by searching the location where the near-wall velocity becomes
negative:

uw(xs(t), t)< 0, (5.2)

where uw is the z-averaged streamwise velocity at the first point near the wall.
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As it can be seen from figure 5.4, the separation location oscillates at a low frequency
with an amplitude of 20 inlet boundary layer thicknesses. One can notice the difference
of separation position between the upper and lower walls. The flow is known to be asym-
metric at this given NPR. Johnson & Papamoschou (2010) have studied the asymmetric
behavior of the separation as well as Olson & Lele (2011) who have observed the same
behavior in their LES study. Figure 5.4 has not been compared to the experiment, nor
to the WR-LES of Olson due to the different tracking systems used. The experiment
uses four time-resolved probes combined with a system to track the position of the shock.
Similarly, the LES of Olson uses the minimum value of pressure along the nozzle contour
to find the separation location.

The asymmetric behavior of the separation line is highlighted in figure 5.5 through the
ratio xtop

s /xbottom
s which shows the temporal asymmetry. The asymmetric parameter is

mostly greater than one which means that the separated jet is always on the same side of
the nozzle. This asymmetry, i.e. 4%, does not seem important but a small change in the
separation locations can lead to a highly asymmetric flow downstream of the separation.
For this run, the jet is oriented to the bottom of the nozzle. This behavior has been
reported by Johnson and Papamoschou in their experiment. They have observed that the
exhaust jet was oriented in either side during a given experiment. However, they observed
that it can change from one experiment to the next suggesting that the asymmetry is
sensitive to the startup condition. In our case, we have observed the same behavior by
changing the initialization parameters for the Klein method (different seed). In one of
our early test-case, the flow was oriented to the top wall of the nozzle (results not shown).

The velocity at which the separation line oscillates, is given by:

us = dxs
dt

, (5.3)

where xs is the space filtered separation location at the bottom wall of the nozzle.

From figure 5.5, one can notice that the two signals are anti-correlated. This figure
highlights the following patterns: When the internal shock moves downstream (us > 0),
the flow is mostly symmetric. On the contrary, when the separation line moves upstream
(us < 0), the flow is mostly asymmetric.

This behavior can be seen in the averaged Schlieren imaging shown in figure 5.6.
When the internal shock is moving downstream, both top and bottom recirculation bub-
bles are of comparable sizes however when the internal shock is going upstream, a large
recirculation bubble appears at the upper wall of the nozzle. The separated jet is then
highly asymmetric. A detailed study of the asymmetric phenomenon will be proposed
later.
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5.3.2 Comparison of profiles and boundary layer statistics

Figure 5.7 shows the longitudinal mean pressure distribution at the centerline and at the
lower wall of the nozzle. The results have been compared to the LES of Olson as well as the
experiment of Papamoschou and Johnsson. A conditional averaging has been operated
using the separation line location xs in the range of xs/δi = 0. Pressure distributions are
in good agreement compared to both the experience and the simulation. The pressure
peak in the nozzle centerline shown in figure 5.7-left at x/δi = 42 is observed in both LES.
This peak is the first Mach stem observable in the Schlieren imaging. The oscillations
behind the Mach stem correspond to the compression and expansion waves, commonly
called shock train.

At the nozzle throat, i.e. x/δi = 0, the experiment does not correlate with the LES.
This is expected, as the experience uses a converging section upstream of the throat,
while the simulations use a channel section. The pressure distribution downstream of
the throat seems to match that of the experiment indicating that the buffer zone at the
throat has a minimal effect on the flow past the throat. The NPR of the LES, based on
the throat pressure, is decreased by 4% compared to the experiment. Figure 5.11 shows
a comparison of the normalized pressure gradient using Clauser’s parameter β (equation
5.4). In the buffer layer, the flow is subjected to a favorable pressure gradient. The
results indicate that the computations are accurately capturing the pressure gradient
downstream of the throat compared to the experiment.

β = δ?

τw

dp
dx (5.4)

The range of figures 5.8 and 5.9 is limited to x/δi = 20 because of the unsteady
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Figure 5.6: z-averaged numerical “Schlieren” imaging contour |∇ρ| in the x-y plane at
different times.
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Figure 5.7: Longitudinal pressure distribution at the nozzle centerline (left) and pressure
distribution at the lower wall (right); : Total time average, : Conditional averaging
xs/δi ∼ 0, : Conditional averaging showing the maximal position xs/δi ∼ 10, − ·−:
Conditional averaging showing the minimal position xs/δi∼−10, •: WR-LES from Olson
& Lele (2011), : Experimental results from Johnson & Papamoschou (2010).

fluctuations of the separation line that affect the time averaging. The first grid point in
wall unit is displayed in figure 5.8. It shows a good resolution in y-direction, i.e. ∆y+ < 1.
The different boundary layer thicknesses are shown in figure 5.9. It points out the growing
effect of the boundary layer in the buffer zone due to the favorable pressure gradient. The
shape factor H = δ?/θ captured along the x-direction is about 2.0. Downstream of the
throat, the flow is following the isentropic relation and the boundary layer is subjected
to a moderate favorable pressure gradient (fig. 5.11), i.e. β ∼ −0.7. The discrepancy
between the simulated data and the experiment comes from the fact that before the
throat, the simulations use a buffer layer while in the experiment, the divergent region is
directly connected to the throat.

Figure 5.12 shows the Van Driest velocity profiles downstream of the throat at x/δi =
−10. As explained by Olson, the boundary layer at the throat is subjected to a non-
negligible pressure gradient, i.e. β ∼−0.7. The converged profile is thus shifted upward
from the standard log-law fit. The profiles, captured at x/δi = −10, are averaged in a
mild-pressure gradient zone, i.e. β ∼−0.2, so that the effect of the pressure gradient on
the boundary layer is moderate. The synthetic turbulence injection starts at x/δi =−28
giving 18 boundary layer thicknesses for the flow to relax to a physical boundary layer.
Xie & Castro (2008) have demonstrated that the method of synthetic injection needs at
least 10 boundary layer thicknesses to reach a fully-turbulent flow. Figure 5.10 shows
the structure of turbulence of the boundary layer in the buffer layer through the velocity
fluctuations field. The synthetic eddy structures seem to extend to x/δi ∼ 15 giving 13
boundary layer thicknesses, in agreement with the streaky structures as observed by Xie
and Castro. Past this recovery length, the velocity fluctuations exhibits more coherent
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turbulent structures as previously observed in section 3.4. The velocity profile computed
at x/δi =−10 seems to have a better fit with the standard log-law compared to Olson’s
results because of the reduced pressure gradient.

Similarly, the rms velocity profiles are displayed in figure 5.13 and compared to the
LES of Olson. The outer layer of the boundary layer, i.e. y+ > 100, has higher rms
values especially in the streamwise direction. This behavior is due to the difference of
x-location, i.e. a difference of pressure gradient, between the two profiles. The profile of
Olson is plotted at the throat where the normalized pressure gradient is −0.7; while in
the present LES, the profile is plotted at a normalized pressure gradient of −0.2. This
difference of the outer layer effect has also been observed by Spalart & Watmuff (1993).
They experimented and simulated a turbulent boundary layer subjected to a pressure
gradient. Figure 5.14 shows the present u+

rms profile compared to the results of Spalart.
It shows the same behavior of the outer layer for moderate favorable pressure gradient.
While at the throat, they showed similar behavior compared to Olson’s profile.

The present LES uses periodic boundary conditions in the spanwise direction. The as-
pect ratio of the grid, i.e. width to height at the throat, is about 3.5. The spanwise length
must be sufficiently large to capture the large-scale turbulence. A two-point correlation
based on pressure fluctuations along the spanwise direction is plotted at the throat and
shown in figure 5.15. The decay of correlation at z/Lz = 0.1 demonstrates that the length
in the spanwise direction does not impact the dynamics and the development of coherent
structure in the flow. Similarly, the spectra of the two-point correlation is shown in figure
5.16 for two streamwise locations, at the throat and in the shear layer downstream of the
separation. The range of energetic scales present in the shear layer is larger than in the
boundary layer as observed by Olson & Lele (2011). The decay of the spectra for high
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wave numbers indicates the good quality of the grid resolution for both locations.

Figure 5.17 shows the pressure force on the structure discretized into x- and y-
directions. The forces are computed as follow:

~F =
∫
S

(pw−pa) ·~nds, (5.5)

where pw is the wall pressure, pa the ambiant pressure, ds the local surface element where
the force apply, ~ni the normal vector to the surface and S the total surface of the nozzle
including the upper and lower wall.

The y- and z-direction forces are commonly called side-loads. One can observe that
the x-force fluctuates at a low frequency while the side-loads, i.e. y-force, has a broad
range of fluctuations. The two forces are anti-correlated. When the shock reaches its
downstream position, the streamwise force is maximum. As explained before, at this
position, the flow is mostly symmetric. The symmetry of the flow reduces the side loads
(fig. 5.17). When the shock is located at its upstream position, the streamwise force is
minimal, the flow is highly asymmetric and the side loads are maximum.

The direction of the resulting force, noted αF , defined in equation 5.6, is shown in
figure 5.18 along with the separation location. The direction of the force applied on
the nozzle is null when the shock is located farther downstream of the throat. On the
contrary, when the separation is at its minimal position upstream of the nozzle, the force
is highly asymmetric with an angle of about 50◦. It is interesting to note that this force
is oriented in the opposite way compared to the exhaust plume. In fact, the asymmetry
of the flow, observable in figure 5.6 at t? = 1692, creates a low-pressure area along the
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lower wall where the mixing layer is attached to the wall. At the top of the nozzle, a
large recirculation area can be seen where the pressure is of the same order than the
atmospheric pressure. While the exhaust plume is oriented to the bottom, the side-loads
are opposed to it and oriented to the top.

αF = tan−1
(
Fy
Fx

)
(5.6)
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5.3.3 Shock-wave patterns

The numerical Schlieren picture (fig. 5.6) shows interesting shock-wave patterns. The
classical shock pattern expected in divergent nozzles exhibits a lambda shock-wave struc-
ture (sec. 1). This pattern is close to the solution at t? = 1545 which consists of an
incident shock, IS, a reflected shock, RS and a Mach stem, MS (fig. 5.19). In this config-
uration, the separation of the boundary layer, due to the high adverse pressure gradient,
creates an incident shock impinging the Mach stem at the triple point TP. The reflected
shock, emanating from the triple point, realigns the incident flow to the original direction.
The Mach stem is strong shock which creates a subsonic flow behind it.

The slip line that delimits the shear layer and the recirculation zone can be seen as
a fictive wall, as proposed by many authors (Östlund 2002, Damgaard et al. 2004). The
slip line then redefines the “effective” geometry of the nozzle by displacing the “effective”
wall. The effective nozzle geometry is shorter and has a lower expansion ratio. Hunter
(2004) showed that the change of effective geometry due to the slip line is acting as a
natural “adjustment mechanism”. The area reduction coming from the effective geometry
is acting as a confinement on the flow, which reaccelerates and produces multiple shocks.
The succession of shocks is called a shock train and has been observed in many nozzle
flows (Waltrup & Billig 1973, Matsuo et al. 1999, Weiss et al. 2010). At a given NPR,
the over-expansion created by the effective geometry improves the thrust efficiency.

As discussed in section 1.3, the free interaction theory developed by Chapman can
predict the pressure distribution in the separation zone. The deflection angle of the
separated boundary layer θs corresponds to the deviation of the displacement thickness
δ? at the separation. This angle can be calculated by the Chapman theory and used
afterwards to compute the incident shock angle θi (fig. 5.19) using the oblique shock-
wave theory. The coupled system between the incident shock angle and the separation
angle is complex, unsteady and highly sensitive to any change in the flow. Figure 5.19
shows a diagram of the separation area.

Due to the unsteadiness of the shock separation, the shock moves along the x-direction
at a specific speed observed in figure 5.5. The speed of the shock is high enough to be
taken into account by the Chapman theory. The diagram in figure 5.19 is similar to the
SWBLI theory and shows the free interaction length LI . The actual Mach number for
the free interaction theory can be calculated by the relative speed of the shock:

MI =M −Mshock, (5.7)

where MI is the relative Mach number of the shock, M the Mach number in the inviscid
flow and Mshock the Mach number of the shock.
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Figure 5.19: Representation of the lambda shock pattern (left) and the separation area
(right); MS: Mach stem, IS: incident shock or separated shock, RS: reflected shock,
TP : triple point, SL: slip line, SJ : supersonic jet, s: separation location, I: interaction
location.

When the velocity of the shock is positive, i.e. the shock is moving downstream, the
relative velocity of the interaction is reduced. This reduction of speed decreases the
interaction length LI and the adverse pressure gradient across the boundary layer. Thus,
the deflection of the boundary layer becomes milder and the angle of deflection opens the
effective area of the nozzle to the atmosphere. Because of the angle reduction and the
relatively slow MI , the incident shock vanishes for compression waves. The Mach stem
expands across the wall-normal direction, delimited by the separated boundary layer.
The modified shock pattern, when the shock is moving downstream, is shown in figure
5.6 at t? = 1456 and in the diagram in figure 5.20.

5.3.4 Asymmetry of the separation line

As observed in figure 5.5, the separation is asymmetric as it moves upstream. The asym-
metry phenomenon has been studied both experimentally and numerically (Johnson &
Papamoschou 2010, Verma & Manisankar 2014, Hunter 2004). Johnson & Papamoschou
(2010) observed the asymmetric flow separation for NPR< 2.0 and attributed the flow
asymmetry to the “Coanda effect” (Wille & Fernholz 1965), whereby a jet surrounded
by or adjacent to a solid surface attaches to that surface. Hunter (2004) observed similar
asymmetric behavior in planar nozzle for NPR< 1.8 and attributed the reason to the
natural tendency of an over-expanded nozzle flow to detach and reach a more efficient
thermodynamic balance. They said that the effect was not a result of stronger shock-
wave boundary layer interactions. Verma & Manisankar (2014) observed experimentally
the asymmetric nature of the flow for NPR< 2.0. By changing the state of the upstream
boundary layer (laminar, transitional and turbulent), they suggested that the bound-
ary layer can trigger a flow asymmetry. They also confirmed the idea of Papamoschou
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Figure 5.20: Representation of the shock pattern at t? = 1456 when the shock is moving
downstream (left) and at t? = 1692 when the shock is moving upstream (right); Subscript
as in figure 5.19, CW : compression waves, RB: recirculation bubbles.

who stipulate that the proximity of the separated shear layer to the nozzle walls plays a
dominant role in initiating the asymmetry of the flow.

The flow asymmetry can be observed at t? = 1692 in figure 5.6. The diagram associated
with the instantaneous solution is shown in figure 5.20. A reattachment of the flow is
observed at the lower wall after the first shock. This shock pattern is similar to the
Restricted Shock Separation observed in Thrust Optimised Contour nozzle flow (Shimizu
et al. 2006, Frey & Hagemann 2000). However, the restricted shock separation (RSS)
is due to the internal shock originating just downstream of the throat which creates
an inverse Mach reflection at the central portion further downstream of the throat. The
restricted shock pattern is known to be mildly symmetric in TOC nozzle. On the contrary,
when the flow separates from the wall, creating a large recirculation zone downstream of
the separation, the shock pattern is commonly called Free Shock Separation (FSS). The
transition between FSS and RSS is known to be highly unsteady, generating a sudden
change in the side-loads level (Nave & Coffey 1973, Nguyen et al. 2003, Martelli et al.
2010). The FSS and RSS shock patterns are characterized in section 1.

In the present simulation, the flow seems to exhibit a FSS-like pattern at the upper
wall and a RSS-like pattern at the lower wall. When the flow is symmetric, i.e. us > 0,
the lower wall RSS pattern changes to FSS pattern. The transition between FSS and
RSS is complex and presents a hysteresis cycle (Martelli et al. 2010, Frey & Hagemann
1998) (sec. 1). The theory of Papamoschou on the origin of the asymmetry is plausible
in this simulation. The proximity of the separated shear layer to the nozzle walls can
force the shear layer to reattach to the wall using the “Coanda effect”. The reattachment
at both walls at the same time is not possible because the flow would be under-expanded
at the exit which is not physically balanced. The choice of the side is still undefined but
is known to be sensitive to the startup condition, i.e. the incoming boundary layer state
(Johnson & Papamoschou 2010, Verma & Manisankar 2014).

When the shock is moving downstream, the flow does not reattach to any wall due to
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the suction effect happening along the wall in the recirculating flow. Figure 5.26 shows the
instantaneous velocity fluctuations close to the wall when the shock is moving downstream
for both upper and lower walls. Velocity fluctuations are positive in the recirculating flow,
meaning that the flow and the shock are sucked up by the low ambient pressure. This
mild positive velocity developing along the separated flow prevents the mixing layer to
reattach to the wall. On the contrary, when the flow is moving upstream, i.e. the flow
is asymmetric, the velocity fluctuations are highly negative due to a backflow coming
from the atmosphere (fig. 5.27). One can notice that the backflow is more distinctive
on the upper wall of the nozzle where the large recirculation bubbles take place. This
“breathing” process explains the difference observed in the shock pattern whether the
shock is moving downstream or upstream.

This section was dedicated to explain the different shock patterns observed in the
simulation and the presence of the asymmetry within the nozzle. The data created with
the WR-LES does not cover a sufficiently long time sample to capture the low frequency
oscillations. As observed in figure 5.4, the number of periods simulated by the wall-
resolved computation is on the order of 3 which is not enough to create converged spectra
for unsteady analysis. The mechanism of the very low frequency shock motion will be
explained in the next section (sec. 5.4) using time-resolved data from the wall-modeled
simulation.
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5.4 Wall-Modeled LES

In the wall-modeled LES strategy, the computational mesh is generated by mapping
the same wall function as the wall-resolved LES (eq. A.2). The domain lengths are
similar to the wall-resolved case. However, the mesh size is reduced accordingly to the
grid resolution of the wall-model requirements discussed by Kawai & Larsson (2012).
The wall-modeled grid is two times coarser in both streamwise and spanwise directions
compared to the wall-resolved case. The spacing in the wall-normal direction is constant
with the first cell near-wall localized at 45 wall unit. Similarly to the wall-resolved
simulation, the grid is orthogonal close to the wall which allows us to use the wall-model
in the same way as the flat-plate simulations from section 4.3.2. Table 5.4 shows the grid
resolution and the differences with the wall-resolved simulation.

Nξ Nη Nζ Lz/Ht Lb/Ht ∆x+
i ∆y+

i ∆z+
i Nb cells

WR-LES 896 256 320 2 2.8 30 [1 : 29] 20 73.4 M
WM-LES 672 128 160 2 2.8 60 45 40 13.7 M

Table 5.4: Grid parameters for the WM-LES of the planar nozzle flow.

The nozzle walls are considered as adiabatic with a no-slip boundary condition. The
wall-model is activated on the first near-wall cells through an additional force as discussed
in section 4.3.2. The inlet boundary condition uses the method of Xie and Castro to
continuously feed the simulation with synthetic turbulence similarly to the WR-LES. The
buffer length is kept the same as in the wall-resolved case. The turbulent inflow takes
approximately 10 boundary layer thicknesses to reach equilibrium as studied in section
5.3.2. The inlet is at 28 boundary layer thicknesses upstream of the throat allowing
sufficient length for the boundary layer to develop coherent turbulent structures. The
numerical methods are similar to those applied in the wall-resolved simulation except
for the spatial discretization scheme. The WCNS is used to discretize the convective
terms instead of the hybrid scheme. The additional force is known to create spurious
fluctuations close to the wall where the centered scheme could become unstable. The
flow is started using the last solution of the wall-resolved simulation to avoid the starting
phase of the nozzle. The WR-grid solution is interpolated on the WM-grid using bi-linear
interpolations.

The grid convergence is not a necessary step in the wall-modeled case since the grid
resolution is already small compared to Kawai & Larsson (2012) grids. The first near-wall
cell is at 45 in wall units where the wall-model is known to be usable up to 150 (Kawai &
Larsson 2012), especially for high Reynolds number. In this case, the incoming Reynolds
number Reθ ∼ 1100 at the inlet is quite small compared to Larsson and Kawai simulations
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Reθ ∼ 50000. The number of points within the boundary layer is about 15-20 at the inlet
which is already low compared to previous WM-LES simulations.

In the recirculated zone, where the wall-model cannot be applied because of the low
Reynolds number flow and the recirculated flow, the wall model is turned off. Disabling
the wall-model is done using a shock sensor along each wall. At the separation, the flow is
subjected to a high pressure gradient along the streamwise direction that can be used as a
criteria to turn off the wall-model. The shock sensor detects the peak of pressure gradient
at the upper and lower wall, separately. To avoid detecting spurious pressure oscillations
caused by the incoming turbulence, the pressure gradient is averaged in the spanwise
direction. Figure 5.28 shows a representation of the shock sensor. The formulation of the
shock locator is as follows:

xloc = max
(

dpw(ξ)
dξ

)
, (5.8)

where the maximum is found along the body fitted direction ξ between the throat and
the nozzle exit, pw is the pressure at first near-wall cell and (·) is the spatial averaging in
the z-direction.

As explained in section 4.3.2, the wall-model requires information from the LES com-
putations to compute the appropriate wall-shear stress to be used in the LES. The model
needs the velocity close to the wall as an input parameter. In the nozzle flow and espe-
cially in the diverging section, the cells are not parallel to the y-direction. The grid for
the near-wall cells has been generated so that the cells are always orthogonal to the wall.
The wall-normal direction is not the Cartesian y-direction but the η-direction, normal
to the wall (fig. 5.28). The curvilinear equations use Cartesian velocity but some of
the terms use the so-called contra-variant velocity which are aligned with the grid. The
simplified thin boundary-layer equations (STBLE) model uses the parallel velocity to the
wall, noted u|| , as an input to solve the ODEs. Strong curved walls are not adapted
for the wall-model developed by Larsson and Kawai since STBLE are derived from the
Cartesian coordinates. In this case, the curvature of the wall is not an issue because of
the weak slope of the divergent (low half-angle). The effect of curvature in divergent
nozzle becomes large when the ratio δ/R′ of the boundary layer thickness to the radius
of curvature is higher than 0.01 (Neves et al. 1994). For the present LES, the ratio δ/R′

is close to zero due to the large radius of curvature of the divergent section.

The computational time for the wall-modeled simulation is 40 times shorter than the
wall-resolved simulation. This computational cost reduction is due to the combination
of the grid reduction and the time-step relaxation using the wall-model developed. This
reduction in computational time makes the capture of the very low-frequency unsteadiness
possible.
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Figure 5.28: Representation of the shock locator (left) and diagram of the wall-model
implementation in curvilinear coordinates (right).

5.4.1 Comparison to the WR-LES simulation

Figure 5.29 indicates that the low-frequency unsteadiness captured by the wall-modeled
simulation is of the same order of magnitude for the wall-resolved calculations (fig. 5.4).
The separation location xs is computed by the same method using equation 5.2. Oscilla-
tions observed in the wall-resolved simulation were about 20 boundary layer thicknesses
in magnitude. In the WR-case, a magnitude of 20δi is captured for the first 6000 time
units. After t? = 6000, the separation oscillates, in average, between 15 and 18 boundary
layers thickness. The unstable phenomenon may be related to the interpolated flow at
the beginning of the simulation. The first 6000 time units are then a stabilization/startup
phase for the flow to reach the “steady” phase.

Figure 5.30 shows the asymmetry parameter xtop
s /xbottom

s defined in section 5.3.1.
The flow is asymmetric and oriented towards the lower wall for the first 4000 time units,
as for the wall-resolved LES. After 4000 time units, the exhaust plume switches side and
faces the upper wall. As discussed in section 5.3.2 and following the observations from
Johnson & Papamoschou (2010) and Olson & Lele (2011), the asymmetry side is sensitive
to the startup condition but never changes side during the experiment/simulation. In
this case, we have captured the change of the side during the simulation. The origin of
that sudden change is still unknown but could be due to the instability of the startup
phase that happens until t? = 6000.

The velocity of the shock is plotted along with the asymmetry parameter (fig. 5.30)
to show the correlation explained in section 5.3.1. When the shock is moving upstream,
the flow is highly asymmetric; when the shock is moving downstream, the flow is mostly
symmetric.

For a better convergence of statistics, the next figures will be averaged from t? = 6000
where the flow is oriented to the upper wall.

Figure 5.31 shows a comparison of the wall-modeled simulation to the previous wall-
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Case 〈pi/pa〉 NPR 〈xs/δi〉 〈St1〉
Exp. 0.898 1.7 30 −
Olson et al. 0.86 1.63 28 0.0021
WR-LES 0.86 1.63 29 0.0019
WM-LES 0.83 1.57 31 0.0019

Table 5.5: Results of the planar WM-LES compared to WR-LES.

-15
-10
-5
0
5

10
15

0 5000 10000 15000 20000

x
s/
δ i

t?

Figure 5.29: Separation location over time;
−: Upper wall, −: Lower wall.

0.94
0.96
0.98
1.00
1.02
1.04
1.06

0 5000 10000 15000 20000
-0.10

-0.05

0.00

0.05

0.10

t?

Figure 5.30: Asymmetry parameter
xtop
s /xbottom

s ( ) and shock speed us/ui,∞
( ) over time.

resolved simulation. The average shock location is well predicted by the wall-model. The
pressure at the throat is slightly smaller in the wall-modeled case. The actual NPR of
the simulation is then reduced by 3% (tab. 5.5). The decay of pressure at the throat
is due to a stronger pressure gradient in the buffer section as observed in figure 5.32.
Wall-modeled Clauser’s pressure gradient β is 30% higher compared to the wall-resolved.
This high normalized pressure gradient is due to the under-resolved wall-shear stress, τw,
computed by the wall-model. Despite the decay of the NPR, the pressure distribution is
in good agreement with the experimental data as well as the wall-resolved simulations.

Figure 5.33 shows the normalized streamwise velocity along the wall-normal direction
at x/δi = −10. The first near-wall cells are located at y+ ∼ 20, i.e. ∆y+ ∼ 40. The
results are in good agreement with the wall-resolved case, especially in the outer layer
of the boundary layer and in the log-law region. The first near-wall point seems to be
slightly under-resolved probably due to the unavoidable numerical and sub-grid modeling
errors emanating from the wall-model as explained in section 4.3.2.

5.4.2 Side-loads generation

The normalized forces in both x- and y-direction are plotted in figure 5.34 for the overall
time sample. Table 5.6 summarizes the averaged and RMS forces for WR- and WM-LES
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Case 〈Fx〉/Fisen 〈Fy〉/Fisen Fx,rms/Fisen Fy,rms/Fisen
WR-LES 0.71 0.22 0.26 0.11
WM-LES 0.8 -0.24 0.26 0.13

Table 5.6: Averaged/rms forces of the planar WM-LES compared to WR-LES scaled by
the isentropic normal force.

simulations. As for the previous figure, the averaged forces have been averaged from
t? = 6000 to avoid the change of side that could lead to an under-predicted force value.
The change of side is clearly observable on the side-loads (Fy). As explained in section
5.3.4, when the shock is oriented towards the lower wall, the side-loads are in the opposite
direction oriented towards the upper wall due to the low pressure developing along the
attached mixing layer. As observed in the previous simulation, the force in y-direction is
noisier than the streamwise force due to the slight slope of the divergent.

The same forces are compared to the wall-resolved simulation in figure 5.35 using the
same time sample of 2000 time units. The results show a good agreement of the data,
especially on the streamwise force where the wall-modeled simulation seems to capture
the same magnitude and frequency compared to the WR-LES.

Autospectra of the forces are also shown in figure 5.36. The WR-LES spectra lacks of
low frequency resolution at Stmin ∼ 10−3. Capturing more low frequencies is expected to
improve the Fourier analysis and the quality of spectra. The wall-modeled simulation go
up to Stmin ∼ 10−5 allowing to capture lower frequencies compared to the wall-resolved
case. The second peak of energy in the streamwise force, at St = 4× 10−3, is hardly
defined in the wall-resolved computation compared to the wall-modeled solutions.

The most energetic peak in the streamwise force signal is defined as the main tone,
noted St1, of the separation line fluctuations. This tone has been captured at a similar
frequency in both the experiments and the WR-LES of Olson. The wall-modeled simula-
tion seems to capture correctly the main tone compared to the WR-LES (tab. 5.5). This
low frequency is observed in the side-loads (Fy) but seems to be less energetic compared
to the streamwise force. On the contrary, high frequency phenomena are less energetic in
the streamwise force than in the side-loads. Two high frequency peaks can be observed
in both spectra, at St ∼ 4× 10−2 and St ∼ 0.15. As explained in section 1, those two
peaks could originate from the recirculated zone and from the turbulent mixing layer
turbulence, respectively. It seems that the side-loads are highly sensitive to the high
frequency oscillations while the streamwise force is more sensitive to the main tone of the
separation line.

The autospectra of forces show some information about the different frequencies cap-
tured by the simulation but miss the boundary layer time scales, up to St = 0.5. The
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integration of the force along the surface has also reduced some of the energy contained
at higher frequencies scale. For a proper frequency analysis, a time-resolved line at the
wall has been saved during the simulations to analyze precisely the different frequencies
along the wall. Figures 5.37 and 5.38 show the normalized pre-multiplied spectra of the
fluctuating pressure field along the wall for two streamwise locations, at the throat and
at the exit of the nozzle. The normalized spectra are computed by integrating the pre-
multiplied spectra along the frequency range, so the normalized pre-multiplied spectra
integration is equal to one,

StF(φ)? = StF(φ)∫
St StF(φ)dSt (5.9)

The spectra of the incoming boundary layer shows a peak of energy at St = 1 as
expected by the definition of the Strouhal number. Some energy can be observed in the
lower frequency range. The main tone of the separation line is also captured within the
boundary layer. Physically, the subsonic part of the boundary layer is known to carry
some of the downstream acoustic waves. This upstream propagation of the acoustic waves
is highly sensitive to the low frequencies downstream of the throat. On the contrary, the
high frequencies are damped by the turbulent energy of the boundary layer.

Figure 5.38 shows the spectra at the exit of the nozzle for the upper and lower walls.
The main tone captured in the force spectra is clearly observable for both walls. One can
notice that the upper wall has more energy at St= 0.1 than the lower wall. Conversely,
the upper wall has less energy at St= 5×10−2 compared to the lower wall. As observed
before, the flow is mostly asymmetric and oriented to the upper wall. The later is highly
sensitive to the fluctuations of the attached mixing layer while the lower wall is more
receptive to the fluctuations of the recirculation zone. Thus, the St = 0.1 frequencies
from the upper wall would originate from the mixing layer confirming some work on
mixing layer downstream of a shock (Touber & Sandham 2009). While the St= 5×10−2

frequency from the lower wall could be created by the recirculation zone. Figure 5.39
shows the same spectra at the bottom wall along the streamwise direction. The main
tone is captured between x/δi = 22 and the exit of the nozzle and illustrates the feedback
phenomenon between the shock and the exit of the nozzle that drives the low frequency
phenomenon.

Figure 5.40 was obtained from the high-spatial/high-temporal resolution pressure field
at the wall. A reference point is chosen at two streamwise locations, inside the incoming
boundary layer centered at x/δi = 0 (fig. 5.40) and inside the separated region at x/δi = 52
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(fig. 5.41). The two-point correlations function in space and time is computed by,

Rp′p′ =

〈
Rϕ(x0,t0),ϕ(∆x,∆t)

〉
〈
Rϕ(x0,t0),ϕ(x0,t0)

〉 (5.10)

where ϕ= p′/prms and x0 is the centered location according to each figure.
The boundary layer correlation function shows a strong time correlation of the pressure

waves along the positive speed of sound cw which is relevant knowing that the boundary
layer turbulence waves propagate along the wall, where the no-slip condition applies.
Looking more closely at the positive wave region, a mild ridge corresponding to positive
waves propagating at the velocity of the inviscid flow u∞+ cw seems to emerge. This
ridge is related to the acoustic wave traveling outside of the boundary layer confined
between the upper and lower walls.

Conversely, in the separation region (fig. 5.41), the subsonic acoustic waves u∞− cw
seem to be strongly correlated in time for the upper wall where the shock is periodically
attached to the wall due to the asymmetry. This behavior validates the assumption
made by many (Bogar et al. 1983, Johnson & Papamoschou 2010, Olson & Lele 2013) on
the two way coupling between the shock and the nozzle exit that leads to the unsteady
oscillation of the shock. For the lower wall, where the large recirculation bubbles apply, a
ridge can be observed along the convection speed of the mixing layer u2 corresponding to
some propagating low-frequency waves inside the mixing layer. These waves are related
to the development of coherent structures in the shear-layer at the bubble interface.

Figure 5.42 shows numerical Schlieren pictures of the wall-modeled simulation for
different times. The results have to be compared with the wall-resolved simulation (fig.
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Figure 5.39: Normalized pre-multiplied
spectra of the pressure fluctuations
StF(p′/prms)? at the lower wall along the
x-direction.

−cw cwu∞ − cw

u∞
+
c w

-20 -10 0 10 20

∆x/δi

0

4

8

12

16

∆
t⋆

0.00 0.05 0.10 0.15 0.20

Figure 5.40: Space-time correlation of the
normalized pressure field in the boundary
layer centered at x/δi = 0.

−cw

cw

u∞ − cw

u∞
+
cw

u1

-20 -10 0 10

∆x/δi

0

4

8

12

16

∆
t⋆

0.80 0.85 0.90 0.95 1.00

−cw

cw

u∞ − cw

u∞
+
cw

u2

-20 -10 0 10

∆x/δi

0

4

8

12

16

∆
t⋆

0.80 0.85 0.90 0.95 1.00

Figure 5.41: Space-time correlation of the normalized pressure field in the separated zone
at the upper (left) and lower wall (right).



5.4. Wall-Modeled LES 131

5.6). Patterns of shock seem to be equivalent to the wall-resolved case except for the case
when the shock is moving downstream. At t? = 14940, the separated shock is stronger
than in the wall-resolved case resulting in a pronounced “lambda” shock pattern where
the wall-resolved calculation gives compression waves and a large Mach stem (fig. 5.6 at
t? = 1850). The compression waves observed in the wall-modeled case does not coalesce
within the viscous sublayer because of the low resolution close to the wall ∆y+ ∼ 45.
As explained by Chapman et al. (1958) in the free-interaction theory, the separation
length Ls reduces linearly with the displacement thickness δ? which is the case in the
present WM-LES due to the unresolved part of the boundary layer. In fact, separation
occurs when the viscous sublayer cannot sustain the strong adverse pressure gradient
imposed by the inviscid flow. Removing the viscous sublayer of the incoming boundary
layer results in stronger compression waves that collapse rapidly into a strong separated
shock which forms a lambda shock pattern. Despite the change in shock patterns, the
amplitude, the frequency and the asymmetric aspect of the separation are well captured
by the wall-modeled simulation.

5.4.3 Low-frequency unsteadiness

The mechanism of low frequency unsteadiness in over-expanded nozzle flow has been dis-
cussed by many researchers (Bogar et al. 1983, Wong 2006). Sajben & Kroutil (1980)
and Zaman et al. (2002) observed in their experiments that the oscillation of the separa-
tion line was consistent with the transonic resonance of the nozzle, i.e. the frequency is
inversely proportional to the length between the mean separation location 〈xs〉 and the
exit of the nozzle xe. They observed two stages of resonance for a specific range of ’jet
Mach number’, noted Mj , defined by:

Mj =
√

2
γ−1

(
NPR

γ−1
γ −1

)
. (5.11)

Those resonant tones occur for small opening angle in planar and cylindrical nozzles.
The mechanism proposed by Zaman is similar to that involved in longitudinal acoustic
resonance. The shock becomes the “source” of perturbation and can be seen as a wave
antinode while a node occurs near the nozzle exit. As for a resonant tube, where one side
is open to the atmosphere, the fundamental pressure wave corresponds to the case where
one-quarter wavelength is fitted within the distance from the foot of the shock 〈xs〉 to
the nozzle exit xe. The resonance depends also on the characteristics of the incoming
boundary layer prior to the separation as observed in the experiment of Papamoschou
by tripping the incoming boundary layer. Thus, resonant tones happen; when the length
between the separation and the shock is similar to a quarter wavelength at the speed of
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different times.
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sound; for small opening angle in either planar or cylindrical flow; for transonic jet Mach
number; for smooth nozzle walls. Zaman proposed the following correlation to compute
the resonant tone:

fr = c20−u2
e

4c0Ls,e
, (5.12)

where Ls,e is the length between the averaged separation location and the exit of the
nozzle, c0 the speed of sound within the separated boundary layer and ue the velocity at
the exit.

Despite the good prediction of Zaman’s correlation, the lack of experimental mea-
surements inside the nozzle prevents us to conclude that the proposed acoustic resonance
drives the unsteadiness. In the present planar nozzle, the jet Mach number Mj is equal
to 0.76 and the maximum half-angle of the nozzle is about 4◦ which fits the transonic
tone requirements proposed by Zaman et al. (2002). The large-scale transonic resonance
has been captured in the experiment of Papamoschou & Johnson (2006) and the LES
of Olson & Lele (2013). The resonance phenomenon is known to create odd harmonics
within their spectra. Some of the harmonic have been captured by the LES as observed
in figure 5.38. Olson & Lele (2013) concluded that the unsteady mechanism was due to
a transonic resonant tone between the shock location and the exit of the nozzle. They
found a two way coupling between the shock and the shear layer combined with a time
lag leads to the unsteady oscillation of the shock. The mechanism proposed by Olson &
Lele (2013) for the unsteady shock motion exhibits similar frequencies and length scales
as the present LES.

Figure 5.43 highlights the correlation between the effective exit area A?e, computed
using the cross-section slices localized at the exit, and the velocity separation shock us

computed by equation 5.3. It shows a time lag of approximately one-quarter wavelength
reinforcing the prediction of Olson & Lele (2013) about the resonant tone.

Similarly, figure 5.44 shows the anticorrelation between the exit pressure pe and the
separation location xs. When the shock is located at its downstream position, the pressure
is minimal because of the increased effective area. Conversely, when the shock is at its
upstream position, the pressure is maximum considering the small effective area. On these
extreme positions, the total pressure is thermodynamically unstable forcing the flow to
correct the shock position, increasing the unsteadiness of the shock. A small delay can
be observed between the shock location and the exit pressure due to the time of acoustic
waves to propagate upstream to the shock. In the paper of Olson & Lele (2013), “this
temporal phase shift”, i.e. the lag between the shock position signal and the effective
area signal, “is the amount of time it takes for pressure waves from the confined exit area
to propagate upstream to the shock”. In the present LES, we have observed that the
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Figure 5.44: Highlight of the anti-
correlation between the exit pressure pe
(−) and the separation location xs (−).

lag between the shock position signal and the effective area signal was about one-quarter
wavelength, i.e. ∆t?lag ∼ 150, confirming the resonance phenomenon observed by Zaman
et al. (2002). This lag is not due to the time for pressure waves from the confined exit area
to propagate upstream to the shock, i.e. ∆t?lag ∼ 40, but to constant change of effective
area downstream of the shock. However, the time lag due to acoustic wave propagation
increases the unsteadiness and the resonant effect of the shock separation.

The proposed mechanism for the low frequency oscillation is given below by summa-
rizing the observations from sections 5.3.3, 5.3.4 and 5.4.3 and to the feedback mechanism
of Olson & Lele (2013). Figure 5.45 shows the shock wave motion over one resonant tone
period St1 at different times.

(1) The separation shock moves downstream at us = max(us). Due to the high effective
pressure at the exit coming from the change of effective geometry / effective area (sec.
5.3.3), the flow is sucked up by the atmosphere pe > pa. A positive velocity flow is
developing along the wall preventing the “Coanda effect” to happen and forcing the
symmetric behavior of the separation lines. The relative speed of the incident shocks,
MI , is reduced because of the suction effect caused by the ambient pressure. The incident
shocks vanish for compression waves removing the ’lambda’ shock pattern for one large
internal Mach stem (fig. 5.6).

(2) At one-quarter wavelength, the exit pressure is lower than that of the ambient
pressure creating a slight back flow from the exit. This reversal flow starts to increase
the deflection angle of the mixing layer and changes the effective geometry of the nozzle.
The effective area starts to reduce with one quarter delay compared to the position of
the shock (fig 5.43). Due to the inertia of the flow, the shock is still moving towards the
exit while the back flow intensifies. At this point, the flow is mildly symmetric and a
back flow occurs on both sides of the nozzle.
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(3) The shock is at its maximal position with no velocity. The exit pressure is minimal
(fig. 5.44) increasing the back flow from the ambient pressure and the reattachment to
one side. At this time step, the mixing layer reattaches to one of the walls (upper or
lower depending on the initial condition). The effective area is decreased compared to (2)
and the flow is thermodynamically unbalanced forcing the shock wave position to adapt
to those new parameters.

(4) The shock moves upstream at us = min(us). The lower mixing layer is completely
attached to the wall and the large recirculation bubbles emerge along the upper wall.
The back flow acts only on the upper side opened to the ambient pressure. The effective
geometry of the nozzle downstream of the shock behaves as a convergent nozzle where
the subsonic flow accelerates to supersonic speed to form a series of shocks, commonly
called “shock train”.

(5) After five quarters wavelength, the shock is still moving upstream but the exit
pressure becomes higher than the atmosphere suppressing the back flow on the upper
wall. As for the one quarter wavelength time step, the effective geometry of the nozzle
starts to increase which unbalanced the total pressure at the exit.

(6) The shock is at its minimum position with no velocity. The suction effect from
the ambient pressure forces the mixing layer to move closer to the walls, increasing the
effective area. As for (3), the flow is thermodynamically unbalanced forcing the shock
wave position to move downstream. The acoustic lag due to the time it takes for pressure
waves to acoustically propagate from the back pressure up to the shock is maximal at
this position, increasing the unsteady motion of the shock.

(7) Cycle repeats to (1)
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5.5 Summary

The LES data show a quite good agreement with the experimental results and the pre-
vious LES of Olson & Lele (2011). The wall-modeled simulation indicates that the flow
physics are being captured despite the modeled viscous sublayer. The unsteady motion
of the shock is accurately represented by the LES. The low-frequency shock oscillations
phenomena have been captured using the wall-model developed in section 4.3.2.

The study on side-loads shows that they contain some energy at higher frequencies
than the transonic resonant tone. They originate from the instability of the mixing layer
and from the recirculation bubbles downstream of the separation. It is clear from the
flow cycle presented in the previous section that the angle of deflection of the separated
shear layer, which gives the effective geometry of the nozzle downstream of the shock, is
coupled to the shock wave position with a phase shift of about a quarter wavelength. This
phase shift between these two motions, i.e. moving upstream or downstream, causes the
cycle to constantly over compensate its total pressure to match the exit pressure, giving
the unsteady motion captured by the present LES. This cycle acts as a resonant tone but
it is more complex than the classical resonant tone observed in the acoustic tube. It is
a complex combination of acoustic lags, shock patterns, thermodynamic balancing and
phase shift between the shock location and the effective geometry.
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6

Cylindrical nozzle flow

In this chapter, Large Eddy Simulation of an over-expanded cylindrical nozzle flow is
performed to study the complex interaction between the turbulent boundary layer, the
internal shock wave and the separated mixing layer. The results of both wall-modeled and
wall-resolved LES aim to explain the separation unsteadiness by using spectra analysis.
Similarly to the previous chapter, the mechanism driving the shock wave instability was
identified and explained which led to a better understanding of the unsteady shock wave
motion.

6.1 Simulation setup

The same high-order schemes, LES model and wall-model, from section 5, are used in this
LES. The domain decomposition method, presented in section 2.4, is applied to a grid that
contains two overlapping meshes. Figure 6.1 shows the wall-resolved grid representation
with the two overlapping grids. The internal grid, Ω1, uses constant spacing in both y

and z directions while the external grid Ω2 is stretched in the radial direction to ensure
WR-LES grid resolution close to the wall. As presented in the Domain decomposition
method section, the overlapping limit between the two grid is set to RΩ1 = 0.6R(x).
The buffer layer between the inlet and the throat is approximately 28δi (δi: the inlet
BL thickness), allowing sufficient extent for the boundary layer to develop. The outside
domain is similar to the planar nozzle flow of length 20Ht. For convenience, all figures
presented in this chapter will use the classical wall-normal notation y equivalent to the
radius coordinates y = R− r. The angular/spanwise direction θ will be represented by
the z-direction, unless otherwise specified.

The incoming boundary layer characteristics are similar to the planar case. The
Reynolds number, based on the throat diameter Dt, is about 90000. The boundary
condition at the inlet, δi, is kept the same as for the planar case, using the method of Xie
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and Castro (sec. 2.3.3). The method has been adapted for the cylindrical coordinates r-θ.
The outlet boundary condition uses a buffer area to damp the acoustic waves combined
with far-field boundary conditions. Both wall-resolved and wall-modeled simulations are
conducted using the same boundary layer parameters compared to the planar flow.

As explained in section 3.5.1, the effect of the spanwise curvature on the turbulent
boundary layer has a marked influence on the velocity profiles. The characteristic surface-
curvature parameter δ/R (R: the radius of the pipe) is often used to compare and classify
the effects of curvature on a growing boundary layer. In the fully-developed pipe flow
from section 3.5, the δ/R parameter was equal to unity and the effect of the curvature
was strong enough to affect the first-order statistics. Several experimental and compu-
tational investigations have been carried out in the past on flat plate boundary layer,
but much less effort was devoted to boundary layer in circular geometries. Numerically,
some DNS and LES have been done with circular walls (Unger & Friedrich 1993, Eggels
et al. 1994, Xu 2003, Wu & Moin 2008) focusing mainly on the fully-developed flows.
Transverse curvature effects on growing boundary layer in pipe flows becomes important
when the characteristic surface-curvature parameter is in the range [0.25:1]. Surface-
curvature between 0 and 0.05 are known to have a weak effect on the boundary layer,
so that the classical law of the wall can apply. For a characteristic surface-curvature
parameter around 0.05, the inner region of the boundary layer is not highly influenced by
the external flow and the log-law can be used with different coefficients, i.e. κ and C+.

The ratio δ/R′, where R′ is the curvature of the wall, is close to zero due to the
high radius of curvature of the divergent section. Thus, the wall-model developed in
section 4 can be used for the present configuration as long as the transverse curvature
compared to the boundary layer thickness is low enough, i.e. δ/R′ < 0.25. In the present
study, the characteristic surface-curvature parameter is about 0.05. In the wall-model,
the coefficients A and β have to be re-computed to fit the cylindrical law of the wall.
Those two parameters are computed using a-priori test on the WR-LES, similarly to
section 4.3.1.

The comparison between the planar and the cylindrical nozzle simulations is not
relevant due to differences in geometry. Even though, the incoming boundary layer is
kept the same, the nozzle area ratio ε and the mass flow rate are different. Two options
for configuration are available; (i) the nozzle shape is kept the same (ε = 1.6) but the
pressure gradient across the boundary layer is changed; (ii) the pressure gradient follows
the planar nozzle flow but the structure of the nozzle is changed (reduced divergent angle).

We have decided to keep the structure of the nozzle similar to the planar nozzle
flow while the pressure gradient is modified. The second option was irrelevant since the
divergent section of the nozzle would have looked like a pipe flow and not to a nozzle
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(εoption 2 = 1.26).
To capture the shock separation at the same location as in the planar nozzle flow, the

NPR is adjusted according to the isentropic relation and set to 2.0, so that the isentropic
profiles between the planar and the cylindrical nozzles are the same. To perform a
proper comparison with the planar nozzle flow, the incoming boundary layer pressure is
kept constant, while the atmospheric pressure is changed to fit the present NPR.

The grid configurations for both WR- and WM-LES is shown in table A.1 and in the
appendix A. The wall-unit grid spacing is similar to the planar case. The angular spacing
in wall-unit R∆θ+ = 20 is setup to match the value of the planar nozzle flow. From the
literature (Unger & Friedrich 1993, Eggels et al. 1993, Rudman & Blackburn 1999, Xu
2003), the angular spacing in LES of pipe flow should is in the range of 15-40. The number
of points of the internal grid Ω1 is set as an odd integer, so that to have the centerline
aligned with the grid. The wall-normal r-direction is stretched in the wall-resolved case
to match the resolution near the wall, i.e. ∆y+ < 1.

As for the planar case, the WR- and WM-LES are initialized using the Klein method
(sec. 2.3.2). The results are averaged using slices extracted from the simulation during
a dimensionless time t? ∼ 4000 for the wall-resolved simulation and t? ∼ 18000 for the
wall-modeled simulation .

Nξ NΩ1
η NΩ1

ζ NΩ2
η NΩ2

ζ Lb/Ht ∆x+
i ∆y+

i R∆θ+
i Nb cells

WR-LES 896 99 99 72 512 2.8 36 [1 : 30] 20 41 M
WM-LES 672 81 81 26 256 2.8 60 45 40 8.8 M

Table 6.1: Grid parameters of the cylindrical nozzle flows.

6.2 Incoming boundary layer

The DNS of the Turbulent channel flow at Reτ = 220 and the DNS of a turbulent pipe
flow at Reτ = 220 have identified the similarities and differences between channel and
pipe flow with fully-developed boundary layer. As observed by many (Eggels et al. 1994,
Eckhardt et al. 2007, Wu & Moin 2008, Marusic et al. 2013), the effect of the transverse
curvature of the wall in a pipe flow is not negligible and differences are clearly noticeable,
even on the first-order statistics. The overlap layer where the universal log-law applies
is slightly different in the case of a fully-developed pipe flow, compared to the channel
flow, especially with the constants κ and C+. This overlaping region could be predicted
by the power-law in fully-developed pipe flow as proposed by Barenblatt et al. (1997),
Zagarola & Smits (1998) and McKeon et al. (2004).
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Figure 6.1: Grid representation from the Wall-Resolved case showing every 10th grid-line
from half of the domain in z-direction or θ-direction. Top: Internal mesh Ω1 (cartesian
coordinates), Bottom: External mesh Ω2 (cylindrical coordinates)
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In the present LES, the incoming boundary layer is not fully-developed across the
section. The incoming boundary layer thickness is about 5% of the radius at the throat.
The effect of curvature at this specific boundary layer thickness is mild compared to
fully-developed flow. Figure 6.2 shows the Van Driest velocity profiles downstream of
the inlet at x/δi = −10 for the wall-resolved simulation. The present results appear to
contradict with the latter hypothesis. The velocity in the overlap region and in the outer
layer is shifted upward compared to the planar flow but the slope of the log-law seems to
follow the planar case. It confirms the conclusions on the pipe flow where the coefficient
κ of the log-law is constant and the coefficient C is affected by the transverse curvature
effects.

Conversely, figures 6.3, 6.4 and 6.5 show the second-order statistics along the wall-
normal direction where all of the solutions pretty much coincide between the cylindrical
and the planar flow. For fully-developed pipe flow, the effect of transverse curvature can
be important on the wall-normal Reynolds stress and on the wall-normal RMS fluctua-
tions (Ghosh et al. 2010). We have observed similar behavior in our simulation of the
DNS of a turbulent pipe flow at Reτ = 220. In the present wall-resolved simulation, the
wall-normal Reynolds stress is similar to the planar nozzle flow. Second-order statistics
do not seem to be influenced by the wall curvature.

Figure 6.6 shows the wall turbulent structures at y+∼ 20. The streaks observed in the
previous chapter are again captured by the wall-resolved LES. The effect of the synthetic
boundary condition is captured from the inlet to x/δi ∼−15 corresponding to the length
of the coherent structure observed by Xie & Castro (2008) of about 10-15 δ. From the
throat, the turbulent structures seem to be affected by the favorable pressure gradient
present in the divergent section of the nozzle.
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6.3 Some statistics

Figure 6.9 shows the grid resolution near the wall in wall-unit. The first grid spacing along
the nozzle wall of the wall-resolved case satisfy the condition of ∆y+

min <∼ 1. Figure 6.10
shows the wall pressure distribution for the wall-resolved and the wall-modeled simulation.
The concordance between the two solutions shows that the wall-modeled simulation is able
to properly capture the pressure gradient effect. One can also notice a small difference
in the separated region where the wall-resolved computation is smooth while the wall-
modeled distribution is sharp. This behavior is due to the strong compression waves in
the wall-modeled simulation applying in the interaction zone upstream of the separation
point. As explained in section 5.4, the coarse grid of the wall-modeled case reduces the
length of interaction and increases the strength of the compression waves. This results
in a sharper shock with a more pronounced λ-shape pattern as observed in figure 6.27
and 6.33. The shock strength is imposed by the upstream boundary layer and the flow
deviation from the separation.

Figure 6.8 shows the Clauser’s parameter β along the x-direction. The pressure gradi-
ent is increased by 40-80% compared to the planar case. The buffer section, upstream of
the throat, is subjected to a stronger pressure gradient due to the reduced cross section of
the nozzle compared to the planar case which does not use side walls. Clauser’s parame-
ter is about 0.35 at x/δi = −10, while the planar case was about 0.2. The profiles from
figure 6.8 handles a more pronounced pressure gradient compared to the planar solution
which could explain the gap observed in the log-law (fig. 6.2).

Figure 6.11 shows the rms wall pressure distribution for the WM-LES. The prms is
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slightly reducing along the boundary layer upstream of the separation. At the separation,
i.e. x/δi = 37.1, the prms is intermittent in the interaction zone, as explained by Kistler
(1964). The pressure oscillates back and forth between the mean pressure at the start of
the interaction (pI) and the mean pressure at the plateau (pp). Using the intermittent
factor εi (eq. 1.6), the prms can be predicted by equation 1.7 from Kistler (1964). Kistler’s
function is plotted along with the present WM-LES computation (fig. 6.12), the result
indicates that the theoretical function is accurately capturing the fluctuations of the
pressure field within the interaction length.

Figure 6.13 shows the separation location for both wall-resolved and wall-modeled
simulations. The separation location is computed similarly to the planar case (eq. 5.2),
except for the velocity that is averaged in θ-direction instead of the z-direction. The
amplitude of the separation line is moderate compared to the planar nozzle. In the
cylindrical nozzle flow, the amplitudes of the separation line are about two boundary
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layer thickness order of magnitude where the planar one had 20. This is expected because
of the strong adverse pressure gradient developing upstream of the separation that acts
on the boundary layer. Figure 6.14 shows the normalized spectrum of the separation
location. The normalization of the next spectra is similar to section 5 following equation
5.9. Three peaks of energy can be extracted from this spectrum. The tone at St = 0.0067
is the most energetic one and can be assimilated to the resonant tone illustrated in Planar
nozzle flow. Equation 5.12 from Zaman et al. (2002) can be used for the present cylindrical
nozzle as it fits the requirements proposed by Zaman (mild opening angle of divergent,
low Reynolds number, subsonic Mach jet). The predicted Strouhal number of resonance
can be computed by:

St= 1−M2
e

Me

δ

4Lx,e
, (6.1)

where Me is the averaged Mach number at the nozzle exit and Lx,e the length between
the mean separation location and the nozzle exit.

The computed Strouhal number of resonance is about 0.007 which is close to the peak
of energy observed in figure 6.14. The two way coupling between the separation and the
nozzle exit seems to fit one-quarter wavelength as observed in the planar nozzle flow.

A second peak of energy can be observed around Sthrouhal number of 0.015. We
will see later in this chapter that the second peak is due to the recirculation bubbles
developing in the separated zone upstream of the nozzle exit. Above St = 0.015, the
spectrum collapses and no energy can be extracted from the high frequency range. This
is expected as the separation location is spatially averaged (in θ-direction) which removes
the high frequency oscillations from the mixing layer or from the boundary layer. For
proper time-resolved spectra, the time-resolved pressure field will be used later in this
chapter.
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6.4 Side-loads analysis

The streamwise force (Fx) and side-loads (Fy, Fz) are computed using equation 5.5. The
forces are integrated along the azimuthal direction θ from the inlet xi to the exit of the
nozzle xe. Table 6.2 shows averaged and RMS forces in each directions. The averaged
y- and z-direction forces are close to zero, which means that the exhaust plume is, in
average, mostly symmetric. The side-loads, i.e. y-direction and z-direction forces, can be
combined to form the normed vector (F~n) and the angle (ΘF ) between Fy and Fz using:

F~n =
√
F 2
y +F 2

z , (6.2)

ΘF =
(

tan−1 Fz
Fy

)
. (6.3)

Figure 6.15 shows the streamwise force and the norm of the side-loads as function
time. One can notice that the fluctuations of the streamwise force are weak compared to
the side-loads. The mild opening angle of the divergent and the small fluctuations of the
separation line result in a weak rms of the streamwise force. Figure 6.16 shows a typical
polar plot of the side-loads. One can notice the isotropic and chaotic behavior of the
fluctuating side-loads. The two side-loads vectors follow a two-dimensional Gaussian dis-
tribution. Those two vectors are uncorrelated, Gaussian distributed with equal variance,
and zero mean which fits the Rayleigh distribution:

f(x;σ) = x

σ2 exp
(
−x2/(2σ2)

)
. (6.4)

The computed side-loads probability density function, in figure 6.19, is compared with
experimental results and URANS computations from Deck & Nguyen (2004). The present
LES seems to indicate that the distribution of the side-loads amplitude follows a Rayleigh
distribution as proposed by many authors (Dumnov et al. 1996, Terhardt et al. 2001, Sé
et al. 2002, Deck & Nguyen 2004). The scale parameter σ ∼ 0.8862 fits reasonably the
prediction of the Rayleigh distribution function (< 0.1%) where the URANS computations
of Deck & Nguyen (2004) was about 2%. These correlations demonstrate that the vectors
of side-loads are not correlated. Thus, the side-loads do not have any twirling movement
and the angle of the force is acting chaotically on the structure of the nozzle. It has also
been confirmed, from the averaged vorticity field at the exit, that the exhaust plume does
not swirl or twirl around the centerline.

Figure 6.17 and 6.18 show the normalized spectrum of the streamwise force and the
side-loads, respectively. As observed in the planar case, the streamwise force is sensitive
to the low-frequency oscillations of the separation line while the side-loads seems to be
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Case 〈Fx〉/Fisen 〈F~n〉/Fisen Fx,rms/Fisen Fy,rms Fz,rms/Fisen
WR-LES 0.44 0.78 0.008 0.59 0.59
WM-LES 0.5 0.84 0.014 0.67 0.67

Table 6.2: Averaged/rms forces of the cylindrical WM-LES compared to WR-LES scaled
by the isentropic normal force.

receptive to the higher frequency ranges. The same peaks of energy observed in figure 6.14
are captured in the streamwise force spectrum. The main tone computed by the spectrum
is about St = 0.0067, similarly to the previous analysis of the separation location. The
second peak at St = 0.016 is also captured within the streamwise force. Another peak
of energy is observed in the high frequency range at St= 0.1. As observed in the planar
nozzle and according to literature (Dupont et al. 2006, Touber & Sandham 2009), the
fluctuations of about a tenth of the Strouhal number originate from the mixing layer
downstream of the separation.

A mild peak of energy is also noticeable in the low-frequency range at 0.002. This
tone originates from the outlet boundary condition reflecting some of the acoustic waves
created by the separation unsteadiness. The length between the exit of the nozzle and
the outlet boundary condition is about 200δi. Using the averaged speed of sound in the
ambient region, one can compute the time/frequency of a wave to propagate and reflect
to the outlet which ends up to a tone of about 0.002. Despite the use of a far-field
boundary condition and a sponge layer close to the outlet boundary condition, a part of
the acoustic waves created by the separation are reflected by the outlet condition creating
this mild peak of energy in the spectrum. This issue has been corrected by implementing
the NSCBC or non-reflecting BC (see appendix B).

The side-loads spectrum is plotted in figure 6.18. Similarly to the planar nozzle
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flow, the side-loads are affected by the high frequency range oscillations arising from the
separated flow downstream of the shock. The two side-loads signal have similar spectrum
along the frequency range of study. The main peak of energy is around St= 0.04 or StD ∼
1 using the Strouhal number based on the nozzle exit conditions, i.e. StD = εD/(δMe)St.
From previous studies (Tanna 1977, Bodony & Lele 2008, Bühler et al. 2014), the nozzle
lip is known to generate trailing-edge noises at StD = 1. This noise affects the exit pressure
field which propagates acoustic waves upstream through the subsonic recirculation area.
Changing the lip curvature or reducing the flange width could lead to a shifted range of
frequencies as observed by Ponton & Seiner (1992).

Based on the side-loads spectra, one can characterize and identify the origin of energy
peaks. As for the planar flow, a time-resolved line has been captured along the circular
wall and will be used for the next figures. The time-resolved line captures a large range



6.4. Side-loads analysis 153

of frequencies from Strouhal number 10−4 to 10. Figure 6.20 shows the spectra of the
normalized pressure field at the wall for different x-location. One can notice from the
spectrum at the throat that the energy is centered around St= 1, following the definition
of the Strouhal number based on the boundary layer characteristics. At the separation
location, the peak of energy is captured at St = 0.0067 similar to the peak observed in
the separation spectrum (fig. 6.14). The resonant tone is also captured at the nozzle exit
along with the recirculation bubble effect St = 0.016 and with the trailing-edge noise at
St= 0.04.

Figure 6.22 shows the frequency analysis at the wall along the x-direction. The
main tone is captured at the separation location and in a region around x/δi ∼ 45. The
latter is due to the reflected shock impinging the separated flow and the wall, creating
acoustic waves of a frequency similar to the main tone. The second peak of frequency,
i.e. St= 0.016, is captured in two specific locations, for x/δi = [40 : 45] and x/δi = [54 : 66],
i.e. the recirculating regions; the separated bubble downstream of separation and the
second recirculation bubbles upstream of the exit. The large streamwise vortices formed
in those regions are similar to the superstructures observed by many authors (Dupont
et al. 2006, Touber & Sandham 2009, Piponniau et al. 2009). They can have a length of
up to 30δ and could be a source of very low-frequency unsteadiness as observed in the
present LES.

Figure 6.21 shows the frequency analysis using z-slice at the axis of the cylinder. For
each point in the x-y plane, the Strouhal number associated with the maximum energy
from the normalized pressure field spectrum is displayed using iso-contours values of the
different phenomenons captured above. A color is associated to each phenomenon with,

• St = 0.0067, the resonant tone predicted by Zaman et al. (2002) is captured at
the separation, in the λ-shock and in the second shock train at x/δi ∼ 50. It is
interesting to notice that the second shock oscillates at the same resonant tone
compared to the first λ-shock.

• St= 0.016, the subsonic flow downstream of the separation, at x/δi∼ 60, is trapped
between the mixing layer and the wall producing small unsteady eddies oscillating
at this specific frequency. This phenomenon is strongly impacting the lateral forces
(side-loads).

• St = 0.04, the trailing-edge noises from the lip is captured at the nozzle exit and
in most of the atmosphere, as explained by Bühler et al. (2014). The frequency
at which noises are captured is similar to the vortex shedding phenomenon taking
place outside of a nozzle jet plume.
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St Phenomenon Effect on xs Effect on Fx Effect on F~n
0.0067 Resonant tone Strong Strong Weak
0.016 Recirculation bubbles Mild Mild Weak
0.04 Trailing-edge noises - Weak Strong
0.1 Mixing layer unsteadiness - Weak Mild
1 Boundary layer turbulence - - -

Table 6.3: Effects of different nozzle unsteadiness.
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Figure 6.21: WM-LES: Frequency analysis in the x-y plane showing the Strouhal number
associated with the maximal energy extracted from the normalized pressure field spectra
F(p′/prms); boundary-layer turbulence (St∼ 1), mixing layer unsteadiness (St∼ 0.1),
trailing-edge noises (St∼ 0.04), recirculation bubbles (St∼ 0.016), resonant tone (St∼
0.0067).

• St = 0.1, the mixing layer developing from the separation to the exit is observed
at this frequency as explained in section 6.4. The large 2-dimensional Kelvin-
Helmhotlz vortices impact the exit conditions, modifying the effective exit area and
the position of the separation shock.

• St = 1, upstream of the separation, the pressure fluctuations are dominant in the
range of turbulent boundary layer frequencies. The position of the shock is slightly
correlated with the upstream condition. However, the asymmetry of the separa-
tion is strongly influenced by the incoming boundary layer turbulence, particularly
observed in the planar flow (sec. 5).

6.5 Summary

Accordingly to the results, the wall-modeled LES matched with the wall-resolved sim-
ulation. The feedback mechanism proposed by Olson & Lele (2011) is validated from
the spectra analysis. The wall-modeled simulation has reduced the computational time
by a factor of 40 compared to WR-LES. This allowed us to perform a better spectra
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Figure 6.22: WM-LES: Normalized pressure fluctuations spectra StF(p′w/prms)? along
x-direction.
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Figure 6.23: WR-LES: Averaged Mach number 〈M〉 contour in the x-y plane.
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Figure 6.24: WR-LES: Averaged temperature 〈T 〉/Ta contour in the x-y plane.
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Figure 6.26: WR-LES: RMS velocity urms/ui,∞ contour in the x-y plane.
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Figure 6.27: WR-LES: Instantaneous density gradient contour ∇ρ (top) and temperature
field (top) in the x-y plane at t? = 1025.
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separation, downstream of separation and at the exit (from left to right).
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Figure 6.29: WM-LES: Averaged Mach number 〈M〉 contour in the x-y plane.
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field (top) in the x-y plane at t? = 8190.
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analysis than the WR-LES. The cycle of low-frequency oscillations has been explained
using the database created by the WM-LES. The different perturbations and their fre-
quency ranges have been captured and explained from the spectra analysis, i.e. incoming
boundary layer, the shear layer turbulence, the recirculation bubbles, the lip-vortex and
the transonic tone.
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7

Conclusion

The objective of the present thesis was to understand and explain the separation phe-
nomenon occurring in over-expanded supersonic nozzles. Experiments offer limited data
needed for a better understanding of the flow physics inside the nozzle due to difficul-
ties to measure the relevant quantities. However, the numerical simulations offer the
possibility to capture the phenomena with full detail.

To the best of the author’s knowledge, few Large Eddy Simulations have been con-
ducted on separated cylindrical nozzles flow so far. The existence of low-frequency shock
motions in over-expanded nozzle has been observed experimentally by Sajben & Kroutil
(1980) or Zaman et al. (2002). For planar nozzle flows, both experimental and numerical
studies are available but the cost of computation of the high fidelity calculation prevented
Olson & Lele (2013) to perform a time-resolved study. Olson & Lele (2013) concluded
that additional simulations of full axial over-expanded nozzles would be required to de-
termine if similar physics exist in circular nozzle flow. The present thesis focuses on both
planar and cylindrical nozzle flows based on a similar nozzle profile used by Papamoschou
& Johnson (2006). To perform a time-resolved study, time integration of the order of
104δ/u∞ was used. The development of a wall-model capability to the code allowed us
to create a database for a reasonable computational cost.

A complete code has been written from scratch to solve the full compressible Navier–
Stokes equations in a generalized curvilinear form. The code combines a new LES
model, temporal/spatial high-order schemes, a wall-model and the domain decompo-
sition method to perform cylindrical simulations. It is highly parallelizable and can be
run on massively parallel supercomputers with a good scalability. A portion of these com-
putations was performed on the TGCC Curie-CEA accessed from the European PRACE
resources and the French GENCI resources. High-fidelity calculations of the compressible
nozzle flow were performed and as a result a large database, for both planar and cylin-
drical nozzle flows is created. Rigorous analysis of this database has demonstrated the
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164 7. Conclusion

mechanism that drives the separation unsteadiness in transonic nozzles.
In both planar and cylindrical nozzle flows, the length between the separation and

the exit appears to lead the frequency of the unsteadiness. Similarly to resonators, the
length between the separation and the exit is exactly a quarter wavelength of the resonant
frequency. The feedback mechanism between the separation and the nozzle exit acts as
a two-way coupling system. The compression shock affect the boundary layer which
separates from the wall at a specific angle; the flow reaccelerates due to the change of
the effective geometry following the slip line; the effective area at the exit is changed
modifying the thermodynamic stability of the system; the altered exit flow conditions
moves the shock upstream. The time lag of the wave propagation between the separation
and the nozzle exit acts as a hysteresis phenomenon on the system which starts the low-
frequency phenomenon. The relative speed of the separated shock changes the shock
patterns, whether the separation line is moving upstream or downstream of the nozzle.

For the planar nozzle case, the amplitudes of the separation line were increased com-
pared to the cylindrical nozzle flow considering the modified pressure gradient used. A
large asymmetry was observed when the shock moves upstream towards the throat. On
the contrary, in the cylindrical nozzle case, the exhaust plume was almost symmetric.
The wall-model did not impact the amplitude nor the frequency of the separation line.
However, the shock patterns have been modified due to the low resolution near wall. The
frequency study on the WM-LES database allowed us to characterize the effects of the
different phenomena occurring during the separation. Effects of the incoming boundary
layer on the separation line are mild, confirming previous work where the separation
unsteadiness are basically driven by the downstream flow perturbations.

For small half-angle divergent nozzle, the side-loads are strongly correlated to the
separation line unsteadiness. However, the results showed that for both planar and
cylindrical the main tone of side-loads is in the frequency range of the recirculation
bubbles as well as of the lip vortices.

There is significant potential for additional research extracted from the LES database.
Further studies could be done on the impact of the unsteady separation on the side-loads
generated by more realistic nozzle geometries. Parametric studies should be conducted
to understand the sensitivity of the shock unsteadiness: to upstream conditions of the
turbulent boundary layer, i.e. boundary layer thickness or incoming Reynolds number;
or to downstream conditions, i.e. ambiant pressure or NPR. As point out by Olson &
Lele (2013), computations can become extremely costly if the turbulent boundary layer
thickness is small compared to the radius of the nozzle itself, especially in the angular
direction.



Appendix A

Nozzle flow grid

The computational mesh for both planar and cylindrical nozzle flows is generated through
a single function for each direction x(ξ,η,ζ), y(ξ,η,ζ) and z(ξ,η,ζ). The use of a single
function for the whole domain ensures the metrics to be of class C2. A function of class
C2 avoids discontinuity of the second derivative of the metrics which are used in the
viscous terms (sec. Governing equations and numerical methods).

This single function is supposed to generate the grid for the buffer layer, the divergent
of the nozzle and the ambient domain. The first near-wall cells are supposed to be
orthogonal to the wall and the atmospheric/ambient region is stretched along the ξ-
direction.

The following system of equations shows the function and the constraints used to
create the nozzle contour f . This is the solution to the Cantalever beam problem.

f(x) = Ax3 +Bx2 +Cx+D (A.1)



f(0) =Ht/2

f(Ld) = εHt/2

df(0)
dx = 0

d2f(Ld)
dx2 = 0

(A.2)

By solving this system of equations, one can find the five coefficients to generate the
nozzle contour function,

A=−(ε−1)Ht

4L3
d

(A.3)
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166 Appendix A. Nozzle flow grid

Figure A.1: 2D grid representation of the planar nozzle flow with the ambient domain.

B = 3
2

(ε−1)Ht

2L2
d

(A.4)

C = 0 (A.5)

D =Ht/2 (A.6)

A.1 Planar nozzle

The following equations are used to generate the grid shown in figures A.1 and A.2. The
grid uses classical Cartesian coordinates in the buffer region, between the inlet and the
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Figure A.2: Grid representation of the planar nozzle flow in the x-y direction showing
the exit of the nozzle.

throat of length Lb. From the throat to the outlet, the grid uses the following,

x= fstr,x fy +Lb (A.7)

y = fstr,y fx (A.8)

z = fzLz (A.9)

where,

fx = f1 fx,1 +f2 fx,2 (A.10)

fy = (1−C2 (1−f2
str,y)) (A.11)

fz = ζ

Nz
(A.12)

f1 = A

(
ξ−nb
nd

Ld

)3
+B

(
ξ−nb
nd

Ld

)2
+D (A.13)

f2 =
(
ε
Ht

2 +C1
(ξ−nb−nd+nshift)

na

)4
(A.14)

fx,1 = 1
2

[
1− tanh

(
rv

(
ξ−nb−nshift,str

nd
−1

))]
(A.15)
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fx,2 = 1
2

[
1 + tanh

(
rv

(
ξ−nb−nshift,str

nd
−1

))]
(A.16)

fstr,x =

1 +
tanh

(
rv,x (ξ−nbnd

−1)
)

tanh(rv,x)


1 +

tanh
(
rv,x ( 1

nd
−1)

)
tanh(rv,x)


(
Lb
nb

)
(A.17)

fstr,y =
tanh

(
rv,y

(
2η
Ny
−1

))
tanhrv,y

(A.18)

C2 =
[
C21 fx,1

df1
dξ +C22 fx,2

(
df2
dξ + df1

dξ |xe
)]

(A.19)

Nξ Nη Nζ Ht ε Lb/Ht Ld/Ht Lz/Ht C1
WR-LES 896 256 320 0.0178 1.6 50/17.8 117/17.8 2 20Ht

WM-LES 672 128 160 0.0178 1.6 50/17.8 117/17.8 2 9Ht

Table A.1: Grid parameters of the planar nozzle.

nb nd na nshift,str nshift rv rv,x rv,y C21 C22
WR-LES 300 506 90 20 15 60nd/nx 0.725 2.3 2/Rt 0.016/Rt
WM-LES 200 372 100 30 80 50nd/nx 0.445 − 2/Rt 0.034/Rt

Table A.2: Grid parameters of the planar nozzle.

For the wall-modeled grid, the wall-normal direction is regularly spaced following,

fstr,y =
(

2η
Ny
−1

)
(A.20)

A.2 Cylindrical nozzle

The grid distribution for the cylindrical nozzle follows the same parameters as for the
planar nozzle flow (Tab. A.1 and A.2). Figures A.3, A.4, A.5 and A.6 depict different
views of the cylindrical grid using the domain decomposition method developed in section
2.4. The external cylindrical grid uses the following set of equation,

y = [Ro+ (fx−Ro)fstr,y] cos
(

2πζ−0.5
Nζ

)
(A.21)

z = [Ro+ (fx−Ro)fstr,y] sin
(

2πζ−0.5
Nζ

)
(A.22)
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Figure A.3: Grid representation of the cylindrical nozzle showing the internal mesh Ω1
and the contour of the external mesh Ω2.
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Figure A.4: Grid representation of the planar cylindrical showing both internal Ω1 and
external Ω2 meshes; View of the ambient domain.
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Figure A.5: Grid representation of the cylindrical nozzle showing half-domain of the
external mesh Ω2 and the contour of the internal mesh Ω1.
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Figure A.6: Grid representation of the cylindrical nozzle showing half-domain of the
external mesh Ω2 and the contour of the internal mesh Ω1; View from the inlet.
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where rv,y = 2.2 for the wall-resolved simulation only,

fstr,y =
tanh

(
rv,y

η
Ny

)
tanhrv,y

(A.23)

and for the wall-modeled simulation,

fstr,y = η

Ny
(A.24)



174 Appendix A. Nozzle flow grid



Appendix B

NSCBC outflow

To remove the reflected waves captured in both planar and cylindrical nozzle flow simula-
tions, emanating from the reflecting outlet BC, the Navier-Stokes Characteristic Bound-
ary Conditions (NSCBC) have been developped. The NSCBC follows the method devel-
oped by Poinsot & Lele (1992), its modifications for three-dimensional flows by Lodato
et al. (2008) and for curvilinear grids by Landmann et al. (2010).

B.1 NSCBC method

For non-reflecting boundary condition, the streamwise waves, Lξ,i, need to be set accord-
ingly to table B.1. For a subsonic outlet, without any recirculating flow, the perfectly
non-reflecting boundary condition for the Lξ,i associated waves are Lξ,1 = 0, which corre-
sponds to the ingoing/unknown waves u−c. In the case of a perfectly non-reflecting BC,
the ingoing wave, u− c, is purely removed. Poinsot & Lele (1992) and various authors
(Rudy & Strikwerda 1980, Hagstrom & Hariharan 1988, Keller & Givoli 1989) recognized
that the perfectly non-reflecting BC can lead to an ill-posedness problem where the static
pressure p∞ is not known by the flow. Thus, the outlet pressure could drift and lead to
wrong calculations. Some authors have proposed to develop a partially non-reflecting
boundary condition which became the roots of the NSCBC methods. Poinsot & Lele
(1992) proposed a formulation based on the static pressure p∞ to obtain the amplitude
of the ingoing wave Lξ,1:

Lξ,1 =K (p−p∞) (B.1)

where K is a constant calculated by K = σ (1−M2)c/L with M the maximal mach
number at the outlet, c the speed of sound, L a characteristic length and σ a constant.
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176 Appendix B. NSCBC outflow

ξ-boundary State Inflow Outflow
min Subsonic Lξ,2-Lξ,5 Lξ,5

Supersonic Lξ,1-Lξ,5 -
max Subsonic Lξ,1-Lξ,4 Lξ,1

Supersonic Lξ,1-Lξ,5 -

Table B.1: Wave amplitude treatment for various non-reflecting boundary conditions.
Wave subscript 1 corresponds to u− c wave, 2-4 to u and 5 to u+ c.
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Figure B.1: WM-LES: Normalized pre-multiplied spectrum of the non-filtered separation
location from the time-resolved WM-LES; : original data, : with NSCBC.

B.2 WM-LES of the cylindrical nozzle flow with NSCBC

The simulation of the wall-modeled cylindrical nozzle flow has been restarted using the
NSCBC formulation at the outlet boundary condition. Probes and slices have been
gathered for a similar time of computation compared to the results of chapter 6. Figure
B.1 shows the spectrum of the separation location signal with and without NSCBC. The
resonant tone and recirculation bubbles phenomenon are captured at the same Strouhal
number using the NSCBC. However, the low-frequency tone (St∼ 0.002) observed in the
previous simulation, assimilated to the reflection of the outlet BCs, is removed by the
NSCBC boundary condition. This study confirm the good implementation of the NSCBC
with curvilinear grid. It also confirms that removing the outlet reflection issue does not
modify the main tone of the unsteadiness, nor the the frequency range of the phenomena
captured in chapter 5 and 6.
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Conference paper

A. Piquet, A. Georges-Picot, A. Hadjadj, Unsteadiness of supersonic flows in
over-expanded nozzles, 30th Int. Symp. Shock Waves (ISSW31), Tel-Aviv, Israel, 2015.
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Unsteadiness of Supersonic Flows in Over-Expanded Nozzles

A. Piquet, A. Georges-Picot, A. Hadjadj and E. Touber

Abstract The present paper presents numerical simulations of the separation phenomenon in an over-expanded
convergent-divergent nozzle. The origin of flow separation in over-expanded supersonic nozzles would be investigated
to define whether the phenomenon is due to the incoming boundary layer (upstream of the separation) or the excitation
of the ambient pressure (downstream of the nozzle exit). The energy of the recirculation flow behind the Mach disk
could lead to large unsteadiness of the shock at the separation line. Coupling this effect to an adverse gradient pressure
along the nozzle wall and to the interaction of the shock with the boundary layer, lead to complex flow structures.

1 Introduction

Optimization of nozzle by increasing expansion ratios and reducing the size of divergent has becoming a real challenge
due to the presence of flow separation and coupled complex shock structures inside the nozzle, which lead to significant
mechanical and thermal loads. The knowledge of separation phenomenon in supersonic nozzle is important to predict
the side loads and the stability of the exhaust plume. Both experimental and numerical studies have shown several shock
patterns induced flow separation, which leads to specific pressure distribution along the nozzle structure and side-loads
generation. A comprehensive review of nozzle flow separation is given by Hadjadj and Onofri [1]. Papamoschou and
Johnson [2], among others, have investigated the stability of the separation phenomenon in experimental planar nozzle.
Nevertheless, studies of the origin of shock-induced flow for canonical nozzle are not abundant in the literature. These
effects are reflected in the lateral loads subjected by the pressure field within the nozzle. These lateral loads are vital in
the mechanical stability of the nozzle. The low-frequency oscillations of the recirculation bubble and the geometrical
asymmetry of the separation line can be a source of lateral loads on the structure.

A nozzle is a device designed to transform a potential energy (high pressure, high temperature) to a kinetic energy
in order to have the maximum force at the exhaust. When the nozzle is choked (sonic condition at the throat), the
flow regime depends only on the ratio between the ambiant pressure pa and the static exit pressure pe,vac (where vac
refers to the vacuum state). In practice, there are three nozzle operating regimes depending on the pressure ratio:
the adapted (pe/pa = 1), the under-expanded (pe/pa < 1) and the over-expanded regime (pe/pa > 1). In the present
paper, the over-expanded regime will be simulated and studied. The over-expanded regime is often characterized by the
appearance of a shock wave at the exit lip of the divergent. The boundary layer faces an adverse pressure gradient (APG)
which leads to its thickening. If the pressure ratio between the exit and the atmosphere is very important (pe/pa >> 1),
the regime is called highly over-expanded. It exists a threshold value of this ratio for which the boundary layer can
no longer counteract the adverse pressure gradient effect and finally separate from the walls. The prediction of the
separation line based on pressure ratio is an known issue and considered as the main reason for the generation of lateral
loads. Depending on the nozzle profile and the flow conditions, several shock structures can appear in the supersonic
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jet. Regular reflections are characterized by the direct impact of the incident shock on the axis of the nozzle which
then, generate a reflected oblique shock (IR: Internal reflection). Mach reflections are characterized by the formation
of a Mach disk. This strong shock (subsonic downstream of the shock), often perpendicular to the jet axis, may have
a slightly concave or convex profile depending on the geometry of the nozzle or on the local flow conditions. The
point of interaction, or Triple Point (TP), between the incident shock and the Mach disk, forms a reflected shock, IR,
and a Slip Line (SL), which divides the subsonic region downstream of the Mach disk from the supersonic jet. Mach
reflections can be either direct or reverse. A direct reflection is when the angle between the slip line, from the triple
point, and the main flow is positive and an inverse reflection otherwise. Finally, the interaction of the internal shock
with the Mach disk can lead to shock structure shaped as a hat or more commonly called cap-shock pattern [3]. This
structure corresponds to the sequence of an inverse Mach reflection and direct Mach reflection, formed by the shock
from the triple point and by the shock resulting from the boundary layer separation. The main parameters that influence
the topology of shock structures are the geometry of the nozzle and the NPR. Theoretical studies conducted by Ben-
Dor [4, 5] on shock interference phenomena have shown a hysteresis effect in the transition between these two types
of reflection (direct and inverse). Similarly, the transition between a Mach reflection and cap-shock pattern in shock
structure is characterized by a hysteresis phenomenon [6].

Many studies have been conducted on the over-expanded nozzles to better understand the influence of different
parameters and operating conditions on the flow properties ??. A detailed study of jet separation phenomena and lateral
loads was conducted by Jan stlund [7]. The authors summarize exhaustively the results of numerical and experimental
work obtained on supersonic nozzles. Two phenomena were particularly studied. The first is related to the transition
from free detachment or Free Shock Separation (FSS) to Restricted Shock Separation (RSS). This transition is at
the origin of strong lateral forces. It occurs mainly in the Thrust Optimized Contour nozzles (TOC or TOP) and is
characterized by an hysteresis cycle during the pressure increase of the vacuum chamber [8]. The second phenomenon
is related to the end-effect regime [9, 10]. This occurs when, in a typical RSS flow, the recirculation bubble trapped
by the separation-reattachment reached the exit lip. The jet suddenly opens to the atmosphere and causes a rapid
increase in pressure downstream of the separation shock. This cyclic phenomenon causes significant fluctuations of the
separation line. The low frequency oscillations phenomenon can be dangerous to the engine integrity especially if they
coincide with the normal modes of the mechanical structure. If the origin of these phenomena is still poorly understood
in the case of separated flows, the literature on the subject gives two main assumptions: (i) low frequency oscillations
are the result of disturbances from the upstream [11, 12], (ii) it is a result of the downstream recirculation bubble [13]
coupled to the separation shock. This can be assimilated to a mass-spring system with a low-pass filter [14]. The second
hypothesis is the one that holds the attention of the scientific community.

2 Results and discussion

In this present paper, a Large Eddy Simulation (LES) is used to simulate the nozzle flow separation in a Thrust Opti-
mized Contour (TOC) nozzle. High-order WENO scheme based 3D numerical flow solver equipped with direct-forcing
immersed boundary method (IBM) is used for this purpose. An LES wall-model, which account for Adverse Pressure
Gradient (APG) have been developed to overcome the low-resolution of the very thin incoming boundary layer [15]. It
takes into account a large number of phenomenon occurring during the separation. The desired Nozzle Pressure Ratio
(NPR) of the simulation is achieved by a temporal increase of the inlet pressure. This transitional phase initializes
the simulation to avoid any discontinuity of pressure in the computational domain. Walls are set as adiabatic. Mesh
dimensions are Nx = 1024, Ny = 512 and Nz = 512, giving 268 million cells. The Immersed Boundary Method with
bi-linear interpolation has been used to reconstruct the surface of the nozzle from a STL file. The boundary conditions
for the outflow are similar to a far-field boundary condition with pa = 1bar.

Two simulations, at NPR of 25 and 37.9, have been performed. As the transition between the RSS regime and FSS
regime is happening for a NPR around 24 in a TOC nozzle, these simulations will be characterized by a Restricted
Shock Separation pattern (Figure 1). Moreover, figure 2 shows that the numerical and the experimental wall pressure
agree well. Thus, the wall model can correct with good accuracy the position of the separation line. The RSS pattern
does not present any asymmetrical behavior, as explained by Nguyen et al.[16], either in quasi-stationarity or in tran-
sient state, except for the End-Effect phenomenon which occurs at high NPR when the separation line reached the exit
lip of the nozzle. The stability of this flow pattern can be explained by the structure of complex shock that characterizes
it. In fact, the RSS pattern of the supersonic jet on the wall results in a lambda shock structure at the wall which is
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Fig. 1: Averaged normalized x-velocity contour and streamlines (white), TOC nozzle, NPR = 37.9

less sensitive to external fluctuations. Moreover, as the supersonic jet is attached to the wall, the subsonic downstream
flow can influence the separation line through the main recirculation zone. However, this zone is confined within a
supersonic torus, which itself based on the wall. Thus, the whole structure of the flow is very stable due to the pressure
applied from the recirculation bubble on the supersonic jet. Only the pressure applied from the recirculation bubble
directly on the shock structure can influence the position of the separation. However, as this pressure is mainly exerted
uniformly on the Mach disk (the direction of the force is parallel to the stream), oscillations of the position of the
separation line can be seen, but the asymmetries, for their part, remain very low.

Figure 3 represents the iso-contour of the Q criterion, which can be defined as a representation of coherent structure
and vortices within the flow. Although the separation line is perfectly symmetrical, we can notice that the first reat-
tachment line is not. This asymmetry may be explained by the slight asymmetry of the eddies in the recirculation zone
behind the Mach disk.

We focused the study on the large scale structures characterized by lower frequency ranges which involve high
energy, enough to influence the flow. The visualization of the averaged x-velocity fields for the two simulations (Figure
2, center) highlights the main structures of the flow: a supersonic jet (circular), which relies on the wall of the nozzle,
a recirculation bubble framed by the supersonic jet, a Mach disk and at least two small vortices trapped between the
supersonic jet and the wall. The RSS pattern, due to its complex structure, is naturally more robust to the fluctuations
of the environment than the FSS. The influence of these fluctuations is felt mainly at the exit of the nozzle between the
supersonic jet and the shock structure. Indeed, when the supersonic jet is ejected into the atmosphere, it slightly curl
up on itself under the effect of the ambient pressure which is greater than the pressure of the recirculation zone. As for
the FSS pattern, the closing of the supersonic jet near the wall influences the recirculation zone, which can lead to a
instable phenomenon of recirculation bubble. In the case of a RSS pattern, the recirculation bubble is only powered by
the main jet and is isolated from the environment by the supersonic jet. This recirculation is composed of one or two
large-scale structures (Figure 2, center). These structures appear to be the main sources of flow asymmetry in the case
of a FSS pattern.

The vortex located just behind the Mach disk (Figure 1) has an asymmetric behavior in relation to the axis of the
nozzle, which directly influences the second structure, shaped as a torus. This asymmetric behavior results from the
convex shape of the Mach disk which is not fixed in time. Therefore, the structure is mainly positioned eccentrically
toward the Triple Point (TP), represented by the interaction of the Mach disk with the Internal Shock (IS). Unlike the
torus (second recirculation bubble), easily identifiable by the two recirculating structures, the shape of this structure is
not obvious. 3D representation of an iso-pressure value (Figure 4) allows us to see that the structure do not look like
a circular bubble as one might expect, but rather as a cylindrical structure supported by the supersonic jet. The flow at
the downstream of the Mach disk is channeled through the structure, and then evacuated at its edges by the supersonic
jet.
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(a) (b)

Fig. 2: Top: instantaneous Mach number contour; Center: Averaged nomalized x-velocity contour, bottom: wall pres-
sure distributions; Left column: NPR = 25 and Right column: NPR = 37.9 in a TOC nozzle
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Fig. 3: Turbulent structures at NPR = 25; iso-Q = 10−3×Qmax, (Qmax = 1011s−2) with Q = 1
2 (Ωi j Ωi j−Si j Si j).

Fig. 4: Recirculation bubble visualization and the streamline downstream of the Mach disk, iso-P =82,000 Pa

3 Summary

In the present paper, Large Eddy Simulations (LES) have been carried out to investigate the flow separation and the
complex shock wave / boundary layer interactions associated with shock-induced unsteady flows in a Thrust Opti-
mized Contour (TOC) nozzle. Different nozzle flow regimes have been investigated by varying the Nozzle Pressure
Ratio (NPR) between RSS/FSS pattern. The computational results have been compared with the experimental data
for validation. It has been shown that the flapping of the jet associated with the nozzle-lip vortex highly influences
the low-frequency flow oscillations. This study has highlighted many interesting physical phenomena, in addition to
the improved simulated results which show good consistency with the experimental one. Three major points can be
underlined from all of these simulations:

• The condition to impose the wall-model is independent of the angular position (azimuth) in the nozzle. The direct
consequence of this imposition is a perfectly symmetrical separation line which do not happens in experiments. Fur-
thermore, this condition is said as static and does not react to the downstream conditions of the flow (atmospherical
perturbation).
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• Despite the fact that the separation line is perfectly axisymmetric, the downstream flow is not. It can be concluded
that the downstream flow drives significantly the separation line.

• The turbulent structures in the flow are relatively small in size, but of high magnitude in term of fluctuation. Our
results have significant differences in term of structures (very large scales) compared to a URANS code.
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a b s t r a c t 
This paper deals with the comparison between two methods to treat immersed boundary conditions: on 
the one hand, the Brinkman penalization method (BPM); on the other hand, the direct-forcing method 
(DFM). The penalty method treats the solid as a porous medium with a very low permeability. It provides 
a simple and efficient approach for solving the Navier–Stokes equations in complex geometries with fixed 
boundaries or in the presence of moving objects. A new approach for the penalty-operator integration is 
proposed, based on a Strang splitting between the penalization terms and the convection-diffusion terms. 
Doing so, the penalization term can be computed exactly. The momentum term can then be computed 
first and then introduced into the continuity equation in an implicit manner. The direct-forcing method 
however uses ghost-cells to reconstruct the values inside the solid boundaries by projection of the image 
points from the interface. This method is comparatively hard to implement in 3D cases and for mov- 
ing boundaries. In the present paper, the performance of both methods is assessed through a variety 
of test problems. The application concerns the unsteady transonic and supersonic fluid flows. Examples 
include a normal shock reflection off a solid wall, transonic shock/boundary layer in a viscous shock 
tube, supersonic shock/cylinder interaction, and supersonic turbulent channel flow. The obtained results 
are validated against either analytical or reference solutions. The numerical comparison shows that, with 
sufficient mesh resolution, the BPM and the DFM methods yield qualitatively similar results. In all con- 
sidered cases, the BPM is found to be a suitable and a possibly competitive method for viscous-IBM in 
terms of predictive performance, accuracy and computational cost. However, despite its simplicity, the 
method suffers from a lack of regularity in the very near-wall pressure fluctuations, especially for the 
turbulent case. This is attributed to the fact that the method requires no specific pressure condition at 
the fluid/solid interface. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

Numerical simulations of viscous flows around solid obstacles 
or within boundaries of arbitrary shape are of crucial interest in 
many engineering applications. Up to now, two main approaches 
have been followed to deal with complex geometries: body-fitted 
grid methods and immersed boundary methods. Body-fitted meth- 
ods rely on structured or unstructured grids that are generated to 
fit with complex boundaries. Therefore, to obtain accurate solu- 
tions for complex geometries, it is required to refine the mesh near 
the boundary-layer region. Nevertheless, to built a body-fitted grid, 
an expensive grid generation process has to be followed. Moreover, 

∗ Corresponding author. 
E-mail address: hadjadj@coria.fr (A. Hadjadj). 

even with simple geometries, it is still difficult to generate a mesh 
of good quality. Finally, for a given numerical scheme, the order of 
accuracy on structured or unstructured grids is always lower than 
on Cartesian grids. An alternative approach is to perform simula- 
tions on non-body conformal Cartesian grids and to impose im- 
mersed boundary conditions on the fluid. The main advantages of 
this approach are its easy implementation and the possibility to 
treat moving boundaries in a simpler manner. 

Since Peskin’s pioneering work [31] , various immersed bound- 
ary techniques have been developed, mostly for incompressible 
flows. They can be decomposed into two categories: the meth- 
ods that introduce fictitious terms in the governing equations and 
those which locally modify the structure of the background grid. 
In the first category, Peskin [31] modeled immersed boundaries as 
elastic media that exert localized forces on the fluids and hence 
modify the momentum equation. Various extensions to rigid body 
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problems have been proposed (Goldstein et al [16] , Saiki and Birin- 
gen [34] ). However, these methods used explicit-time stepping for 
such problems, which are in fact stiff. Hence the computational 
time step is small, which gives severe restrictions to the method. 
Furthermore, there is no mathematical proof of convergence for 
these methods. In contrast to this approach, the volume penal- 
ization technique, proposed by Arquis and Caltagirone [3] , mod- 
els the solid body as a porous medium with very small perme- 
ability. A rigorous error estimation was proposed by Angot et al 
[2] . Angot [1] also proved that the solution of the penalized in- 
compressible Navier–Stokes equations strongly converges towards 
the exact solution as the penalization parameter approaches zero. 
Several authors successfully applied this method to incompressible 
flows with fixed (Kevlahan and Ghidaglia [21] ) as well as moving 
obstacles (Kadoch et al [20] ). Liu and Vasilyev [24] applied the 
Brinkman penalization method to the compressible flow regime 
and Boiron et al [5] extended this approach to large Mach number 
flows. However, in these two papers, only isothermal walls have 
been considered. Another formulation of the volume penalization, 
which differs from the original idea of Angot and Caltagirone [3] , 
is proposed by Brown-Dymkoski et al [6] that takes into account 
adiabatic walls and mixed boundary conditions. 

In the second category, the direct-forcing immersed bound- 
ary method consists in using ghost cells and directly impose the 
boundary conditions on the immersed boundaries. This method 
has been introduced for incompressible flows by Mohd-Yousof [29] . 
The term of direct-forcing and the extension of the method to 
three-dimensional flows was proposed by Fadlun et al [12] . The 
bilinear interpolation (trilinear in 3D) of ghost points was intro- 
duced by Majumdar et al [27] . The method has then been suc- 
cessfully applied to turbulent flows [18] , particulate flows [39] , and 
fluid-structure interactions [35] . The extension to high-speed flows 
in the configuration of shock/obstacle interactions has been per- 
formed by Chaudhuri et al [8,10] . A general review of immersed 
boundary methods can be found in Mittal and Iaccarino [28] . 

The objective of the present paper is to compare the Brinkman 
penalization method, which is the most promising method of the 
first category, with the direct-forcing immersed boundary method, 
which is, to the best of our knowledge, the most efficient method 
of the second category. Generally, comparing different IBM algo- 
rithms is not straightforward as they differ in strategy, approach, 
computational complexity, and prediction ability. Moreover, such 
methods are strongly influenced by different selected parame- 
ters and test cases, and one wish to answer the following ques- 
tions: Which approach is better? and do one of them have advan- 
tages over the other? To our best knowledge, no such comprehen- 
sive comparison of IBM methods applied to transonic / supersonic 
regimes is available in the literature so far. In the present paper, 
several test cases are performed to examine the behavior of fluid 
solid interaction, including shock wave propagation and reflection 
off a wall, shock/cylinder interaction and shock-free turbulence. 

The paper is organized as follows: in Section 2 , the numerical 
approach, including the governing equations, the penalized equa- 
tions and the direct-forcing immersed boundary method, are pre- 
sented. The obtained results are discussed in Section 3 . Finally, 
conclusions and perspectives are drawn in Section 4 . 
2. Numerical method 
2.1. Governing equations 

Let ! ∈ R 2 be the computational domain containing N fixed 
regular obstacles ω n , n ∈ { 1 , . . . , N} , and let us set 
!s = N ⋃ 

n =1 ω n and ! f = !\ ̄!s . (1) 

Here, !̄s denotes the closed region occupied by the solid bodies 
and !f denotes the fluid domain. 

For the fluid domain, we consider the compressible Navier- 
Stokes equations, together with appropriate boundary conditions 
on the solid bodies ∂ω n and on the boundary of the computational 
domain ∂!. The system of equations reads 
∂ t Q + ∇ · F I = ∇ · F V (2) 
where Q denotes the vector of conservative variables 
Q = [ ρ, ρv , ρE] T , (3) 
F I denotes the inviscid flux tensor 
F I = [ ρv , ρv ! v + pI , (ρE + p) v ] T , (4) 
and F V the viscous flux tensor 
F V = [ 0 , τ, τv + λ∇T ] T . (5) 

Here ρ , v = [ u, v , w ] T , p , T and E denote the density, velocity, 
pressure, temperature and total energy per unit of mass of the 
fluid, respectively. λ is the thermal conductivity, I the identity ma- 
trix and 
τ = µ[ 

∇ ! v + ( ∇ ! v ) T − 2 
3 ( ∇ · v ) I ] (6) 

where µ denotes the dynamic viscosity of the fluid, which follows 
Sutherland’s law 
µ(T ) = µre f ( T 

T re f 
) 3 

2 T re f + T S 
T + T S (7) 

with µref and T ref are the reference viscosity and temperature, re- 
spectively, and T S is the Sutherland temperature. The system is 
closed by the equation of state for a calorically ideal gas 
p = (γ − 1) ρ(

E − v 2 
2 

)
(8) 

with the isentropic exponent γ = 1 . 4 for air. 
On the surface of each solid obstacle, the fluid velocity satisfies 

the no-slip condition 
v | ∂ω n = v n . (9) 
We also consider that the wall temperature on each obstacle is 
fixed and, hence we impose Dirichlet boundary conditions for the 
temperature, i.e. 
T | ∂ω n = T n . (10) 
It is worth noticing that the Neumann (or adiabatic) boundary 
condition can be easily implemented in the Direct-forcing method 
by applying the zero-gradient temperature condition at the wall 
∂ T /∂ ⃗  n = 0 ), i.e. Section 2.3.2 . However, its implementation for the 
penalization method has lacked generality, especially for compress- 
ible flows. Recently, Brown-Dymkoski et al. [6] have proposed a 
Characteristic-Based Volume Penalization (CBVP) method that can 
address this question. However, in this paper, we will just focus on 
the isothermal condition for the sake of simplicity. 
2.2. Space and time discretization 

Space discretization is made through high-order finite differ- 
ences. The inviscid fluxes are discretized using a fifth-order WENO 
scheme [19,25] . The principle relies on a convex combination of 
low-order polynomial reconstructions that yield a high-order res- 
olution in smooth regions and keep the essentially non-oscillatory 
property near the discontinuities. Upwinding is made using a Roe 
scheme [33] . 

For sake of clarity, we present here the WENO scheme for a one 
dimensional scalar equation, considering the quantity ϕ. Extension 
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to higher dimensions is straightforward and extension to the Euler 
and Navier-Stokes equations is made considering the characteristic 
variables for the reconstruction instead of the conservative ones. 
For the fifth-order WENO scheme, let us consider three third-order 
polynomial reconstructions on three different stencils 
ϕ (1) 

i + 1 2 = 1 
3 ϕ i + 5 

6 ϕ i +1 − 1 
6 ϕ i +2 

ϕ (2) 
i + 1 2 = −1 

6 ϕ i −1 + 5 
6 ϕ i + 1 

3 ϕ i +1 
ϕ (3) 

i + 1 2 = 1 
3 ϕ i −2 − 7 

6 ϕ i −1 + 11 
6 ϕ i (11) 

The fifth-order WENO reconstruction corresponds to 
ϕ i + 1 2 = w 1 ϕ (1) 

i + 1 2 + w 2 ϕ (2) 
i + 1 2 + w 3 ϕ (3) 

i + 1 2 (12) 
where the weights w j , j ∈ {1, 2, 3}, are 
w j = α j 

α1 + α2 + α3 , with α j = γ j 
(β j + ϵ) 2 (13) 

The term ϵ is set to 10 −6 to avoid divisions by zero and the coeffi- 
cients β j , j ∈ {1, 2, 3}, are the smoothness indicators of the function 
ϕ, defined by 
β1 = 13 

12 ( ϕ i − 2 ϕ i +1 + ϕ i +2 ) 2 + 1 
4 ( 3 ϕ i − 4 ϕ i +1 + ϕ i +2 ) 2 

β2 = 13 
12 ( ϕ i −1 − 2 ϕ i + ϕ i +1 ) 2 + 1 

4 ( ϕ i −1 − ϕ i +1 ) 2 
β3 = 13 

12 ( ϕ i −2 − 2 ϕ i −1 + ϕ i ) 2 + 1 
4 ( ϕ i −2 − 4 ϕ i −1 + 3 ϕ i ) 2 (14) 

The coefficients γ j , j ∈ {1, 2, 3}, are the linear weights of the 
scheme. They are the coefficients of the fifth-order scheme when 
the smoothness indicators are all equal to 1. 
γ1 = 3 

10 , γ2 = 3 
5 , γ3 = 1 

10 . (15) 
In Section 3.4 , the supersonic turbulent channel flow does not 

contains any discontinuity or shock. Thus, the generalized conser- 
vation split-centered scheme of Pirozzoli et al. [32] are used to 
gain in terms of computational efficiency and accuracy. 

Pirozzoli et al. [32] proposed an approximation of the convec- 
tive derivatives in the compressible Navier–Stokes equations of the 
form, 
∂ρ u k ϕ 

∂x k 
∣∣∣

x = x i ≈ 1 
,x 

(
ˆ f i +1 / 2 − ˆ f i −1 / 2 ) (16) 

where ˆ f i +1 / 2 denotes the numerical flux. 
This equation can be expanded into a more generalized form by 

splitting the derivative into several other terms in order to stabilize 
the centered convective scheme. 
∂ρuϕ 
∂x = κ1 ∂ρuϕ 

∂x + κ2 (u ∂ρϕ 
∂x + ρ ∂uϕ 

∂x + ϕ ∂ρu 
∂x 

)

+(1 − κ1 − 2 κ2 ) (ρu ∂ϕ 
∂x + ρϕ ∂u 

∂x + uϕ ∂ρ
∂x 

)
(17) 

One possible semi-discrete conservative approximation can be 
obtained for κ1 = κ2 = 1 / 4 [32] . Using the previous form of the 
convective derivative, the numerical flux ˆ f can be expressed by the 
following equation 
ˆ f i +1 / 2 = 2 L ∑ 

l=1 a l 
l−1 ∑ 

m =0 ( ˜ ρ, u, ϕ ) j−m,l (18) 
where the two-point, three-variable discrete averaging operator is 
defined as 
( ̃  f, g, h ) j,l = 1 

8 ( f j + f j+ l )(g j + g j+ l )(h j + h j+ l ) (19) 

The fourth order split-centered scheme is expressed by the fol- 
lowing constant, L = 2 , a 1 = 8 / 12 and a 2 = −1 / 12 . 

Viscous fluxes use a classical fourth order centered scheme. The 
formulas for the first space derivatives for a component ϕ in the 
direction x are [17] 
( ∂ x ϕ ) i = ϕ i −2 − 8 ϕ i −1 + 8 ϕ i +1 − ϕ i +2 

12,x + O (,x 4 ) (20) 
where ,x denotes the space step in the x -direction. We apply the 
same formula for the other directions. 

Time integration is made using a classical explicit third-order 
TVD Runge–Kutta scheme. Eq. (2) can be written in the form 
∂ t Q = D (Q ) (21) 
where D denotes the divergence operator. The time integration 
writes 

Q ⋆ = Q n + ,t D (Q n ) 
Q ⋆⋆ = 1 

4 [ 3 Q n + Q ⋆ + ,t D (Q ⋆ ) ] 
Q n +1 = 1 

3 [ Q n + 2 Q ⋆⋆ + 2 ,t D (Q ⋆⋆ ) ] (22) 
where ,t denotes the time step. 
2.3. Immersed boundary methods 
2.3.1. Brinkman penalization method 

The principle of the Brinkman penalization consists in consid- 
ering the solid as a porous medium with a very low permeability 
and the fluid a as medium with an infinite permeability. Denoting 
by Q η the penalized vector of the conservative quantities, by F I , η
the penalized tensor of the inviscid fluxes and by F V , η the penal- 
ized tensor of the viscous fluxes, Eq. (2) becomes 
∂ t Q η + A ∇ · F I,η + P η = ∇ · F V,η (23) 
where 
A = 

⎡ 
⎣ 1 + ( 1 

φ − 1 )χ!s 0 T 0 
0 I 0 
0 0 T 1 

⎤ 
⎦ , P η = χ!s 

η

[ 
0 

ρηv η − (ρv ) !s 
ρηE η − (ρE) !s 

] 
, 
(24) 

and 
χ!s = {1 if x ∈ !s 

0 elsewhere (25) 
where φ is the porosity and η is the permeability. 

Angot et al. [2] showed that, using a-priori estimation on the 
penalized velocity in the incompressible limit, the penalized veloc- 
ity v η converges towards the velocity in the fluid v f when η → 0 
with an order of convergence of O ( η3/4 ). The error v η - v f verifies 
an equation of Darcy inside the solid, which justifies an interpre- 
tation as a porous solid. Numerically, an order of convergence of 
O ( η) is observed. 

On the other hand, and according to Kolomenskiy et al. [22,23] , 
the penalization method is evaluated using a second-order finite- 
difference scheme applied to the penalized Poisson equation in 2D. 
The performed numerical simulations yield a second-order conver- 
gence towards the solution of the Poisson equation, given that the 
penalization parameter η is sufficiently small. Due to the regular- 
ity of the exact solution of the penalized equation and the O(η) 
behavior of the penalization error, the authors anticipate that for 
higher-order numerical methods, a second-order convergence will 
also be obtained. 
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(a) (b)

Fig. 1. Direct-forcing method: (a) Black, grey and white represent solid, ghost and fluid cells, respectively; (b) Bi-linear interpolation for IBM highlighting the specific case 
for a near-wall ghost cell 

The numerical scheme is based on a Strang splitting of the pe- 
nalization terms ( P ) on the one hand, and the convection and dif- 
fusion terms ( C ) on the other hand. 
Q n +1 = P (,t/ 2) C (,t) P (,t/ 2) Q n (26) 
Penalization terms are computed exactly for the momentum and 
energy equations. Denoting by q one of the conservative quantities 
of the momentum or energy equation, we solve, in the solid part, 
d t q = − 1 

η
( q − q !s ) (27) 

which, between t n and t n +1 = t n + ,t, has the exact solution 
q n +1 = q !s (1 − e − ,t 

η

)
+ q n e − ,t 

η (28) 
For the continuity equation, when φ is different from 1, i.e. 

when the equation is penalized, the penalization term is treated 
using a semi-implicit operator. First, the momentum equation is 
computed and then the obtained value is used to advance the mo- 
mentum term at time n + 1 in the continuity equation. 
2.3.2. Direct-forcing method 

The direct-forcing immersed boundary method uses a Cartesian 
grid which contains both fluid and solid cells. The latter are then 
split into ghost and pure solid cells. The number of ghost cell de- 
pends on the scheme used for the space discretization. The direct- 
forcing immersed boundary method is applied only on the ghost 
cells. Fig. 1 a shows a sketch of the mask distribution. 

For each ghost point, the corresponding image points are cre- 
ated in the fluid from the surface of the object. Since the image 
points is in the fluid, multi-dimensional interpolations are neces- 
sary, i.e. cell data to point data. The bi-linear method is used to in- 
terpolate the value in the fluid. In [30] , a 2D interpolation method 
is proposed, which is here presented in the 3D case. This method 
precisely reconstructs the missing information by linearly interpo- 
lating variables from the neighbor cells. For the points located near 
the wall and surrounded by one or more ghost points, a simple 
bi-linear interpolation is not possible and will cause an ill-posed 
problem. Nam and Lien [30] proposed an interpolation between 
the fluid points and the interface. Fig. 1 b shows the interpolation 
method for both cases: full surrounded image point and near-wall 
image point. 

For the 3D bi-linear interpolation method, the generic flow vari- 
able ϕ can be calculated with 
ϕ(x, y, z) = C 1 xyz + C 2 xy + C 3 xz + C 4 yz + C 5 x + C 6 y + C 7 z + C 8 

(29) 
The eight weighting coefficients, noted C i , are evaluated from 

the eight surrounding points by solving the following algebraic sys- 
tem: 
⎡ 
⎣ C 1 . . . 

C 8 
⎤ 
⎦ = 

⎡ 
⎣ x 1 y 1 z 1 x 1 y 1 x 1 z 1 y 1 z 1 x 1 y 1 z 1 1 

. . . . . . 
x 8 y 8 z 8 x 8 y 8 x 8 z 8 y 8 z 8 x 8 y 8 z 8 1 

⎤ 
⎦ 

−1 ⎡ 
⎣ ϕ 1 

. . . 
ϕ 8 

⎤ 
⎦ 
(30) 

The 8 × 8 Vandermonde matrix M V is inverted for each ghost 
cell of the grid at the beginning of the simulation. For the case 
where one of the surrounded point lies on the ghost cells, we di- 
rectly impose the value of the wall using the coordinates of the 
boundary point (see Fig. 1 b). Eq. (31) shows the Vandermonde ma- 
trix M V when a point, or more, (noted B) lies on a ghost cell. 
⎡ 
⎢ ⎢ ⎢ ⎣ 

C 1 
. . . 

C B 
. . . C 8 

⎤ 
⎥ ⎥ ⎥ ⎦ = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 y 1 z 1 x 1 y 1 x 1 z 1 y 1 z 1 x 1 y 1 z 1 1 
. . . . . . 

x B y B z B x B y B x B z B y B z B x B y B z B 1 
. . . . . . 

x 8 y 8 z 8 x 8 y 8 x 8 z 8 y 8 z 8 x 8 y 8 z 8 1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ϕ 1 
. . . 
0 
. . . 

ϕ 8 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(31) 
For the isothermal case, u, v , w and T are imposed by the previous 
method and p is such that its gradient normal to the wall is zero. 
The gradient condition can be expressed as follows using the wall- 
normal vector ⃗ n = { n x , n y , n z } : 
∂ϕ(x, y, z) 

∂ ⃗  n = C 1 (y B z B n x + x B z B n y + x B y B n z ) + C 2 (y B n x + x B n y ) 
+ C 3 (z B n x + x B n z ) + C 4 (y B n y + z B n z ) 
+ C 5 n x + C 6 n y + C 7 n z = 0 (32) 
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Fig. 2. Shock wave reflection from the end wall of a shock tube. Inviscid case. 
As a result, the corresponding Vandermonde matrix M V becomes 

M V = 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 y 1 z 1 x 1 y 1 x 1 z 1 y 1 z 1 x 1 y 1 z 1 1 
. 
. 
. . 

. 

. ( 
y B z B n x 

+ x B z B n y 
+ x B y B n z 

) (
y B n x 
+ x B n y ) (

z B n x 
+ x B n z ) (

y B n y 
+ z B n z ) n x n y n z 0 

. 

. 

. . 
. 
. 

x 8 y 8 z 8 x 8 y 8 x 8 z 8 y 8 z 8 x 8 y 8 z 8 1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Nam and Lien [30] proposed a method for adiabatic walls and 
used conservative variables. In the present case, non-conserved 
variables have been used to apply the isothermal condition. Once 
the flow variables at the image point ( ϕ i ) are interpolated, the 
isothermal/no-slip wall boundary conditions, from Eq. (33) , will 
determine the values of the primitive variables ( T , p, u, v , w ) at 
the ghost cells. For the case where wall informations are needed, 
we simply impose the following parameters ˜ v = ˜ 0 , T = T w , ∂ p 

∂ ⃗ n = ⃗  0 . 
For moving boundaries, the condition on the velocity is set to 
u g = 2 u w − u i . 
u g = −u i , v g = −v i , w g = −w i , T g = 2 T w − T i , p g = p i 

(33) 
According to Chaudhuri et al. [9] , the direct-forcing method, using a 
fifth-order WENO scheme, is found to converge towards a second- 
order of accuracy near the boundaries. 
3. Results and discussions 
3.1. Shock wave reflection from a solid wall 

In the first example, we consider an incident shock wave trav- 
eling at a Mach number, M s , in a closed shock tube. The latter is 
assumed to have isothermal walls with free slip conditions (see 
Fig. 2 ). The quiescent gas ahead of the shock is at ambient con- 
ditions (state 1), whereas the shocked gas (state 2) is defined ac- 
cording to the Rankine-Hugoniot relations: 
p 2 
p 1 = 1 + 2 γ

γ + 1 (M 2 s − 1) 
T 2 
T 1 = (1 + γ − 1 

2 M 2 s )(
2 γ

γ − 1 M 2 s − 1 ) 2 (γ − 1) 
M 2 s (γ + 1) 2 (34) 
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Fig. 3. Pressure of the reflected shock for both direct-forcing and penalization 
methods at t ⋆ . 
where p , T , M s denote the pressure, temperature, and incident 
shock Mach number, respectively. The latter is defined as 
M s = u s 

a 1 (35) 
with a 1 the sound speed in the quiescent gas and u s the velocity 
of the incident shock. After reflection, the gas in the state (3) is 
at rest ( M 3 = 0 ) and the reflected shock follows the jump relations 
from [4,15] , 
p 3 
p 2 = −2(γ − 1) + M 2 s (3 γ − 1) 

2 + M 2 s (γ − 1) 
T 3 
T 2 = p 3 

p 2 
α + p 3 

p 2 
1 + α p 3 

p 2 
(36) 

The velocity of the reflected shock u rw is given by [15] : 
u rw = 1 

M 2 s 
( 

1 + 2 (M 2 s − 1 )
α

) 
a 1 (37) 

where α = (γ + 1) / (γ − 1) and γ is the isentropic exponent. 
The computational domain has a unit length of l and the inci- 

dent shock is initially located at a normalized distance x ∗ = x/l = 
0 . 5 . In Fig. 3 , we plot the pressure at a dimensionless arrival time 
t ⋆ = l 

2 ( 1 u s + 1 
u rw ) , i.e. when the reflected shock off the wall reaches 

the initial position of the incident shock. The obtained results, in 
terms of shock intensity and arrival time, show an excellent agree- 
ment between the direct-forcing method and the exact solution. 
However, for the Brinkman penalization, the solution seems to be 
penalty-parameter φ dependent. To clarify this point, several com- 
putations are performed with different values of φ. For φ = 1 , i.e. 
without penalizing the continuity equation, a weak-shock solution 
(reduced shock speed and lower pressure plateau profile) is ob- 
tained in contrast with the theoretical prediction. However, when 
φ is decreased, the results are substantially improved, with al- 
most excellent collapses between numerical and exact solutions for 
φ = 10 −2 and lower. Note that no difference is observed between 
the solutions at φ = 10 −2 and φ = 10 −3 , the latter being recom- 
mended in [24] . Furthermore, the pressure and temperature jumps 
across the reflected shock, the shock velocity and the Mach num- 
ber at state 3, presented in Table 1 , confirm the same trends. 

We also tested the effect of the shock Mach number by varying 
M s from weak (transsonic regime) to very strong shock waves (su- 
personic regime). The same tendency is observed in terms of pres- 
sure jump across the reflected shock, p 3 / p 2 (see Table 2 ). Based on 
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Table 1 
Exact and computed flow conditions across the reflected shock for M s = 2 . 

Exact Direct-forcing Penalization 
φ = 1 φ = 10 −1 φ = 10 −2 φ = 10 −3 

p 3 
p 2 3 .333 3 .333 3 .033 3 .264 3 .332 3 .333 

(0 .0%) ( −8 . 9% ) ( −2 . 0% ) ( −0 . 03% ) (0 .0%) 
T 3 
T 2 1 .481 1 .481 1 .4273 1 .457 1 .481 1 .481 

(0 .0%) ( −3 . 64% ) ( −0 . 82% ) (0 .0%) (0 .0%) 
M 3 0 6 . 0 · 10 −6 7 . 1 · 10 −2 1 . 5 · 10 −2 2 . 0 · 10 −4 5 . 0 · 10 −5 
u rw 
a 1 1 0 .993 0 .929 0 .958 0 .972 0 .988 

Table 2 
Pressure ratios across the reflected shock, p 3 / p 2 , 
compared to their exact values for different M s . 

M s Exact Direct-forcing Penalization 
φ = 10 −2 

1 .2 1 .478 1 .478 1 .477 
(0 .0%) ( −0 . 08% ) 

2 .0 3 .332 3 .333 3 .332 
( +0 . 03% ) ( −0 . 01% ) 

5 .0 6 .6 6 .599 6 .596 
( −0 . 02% ) ( −0 . 06% ) 

y

x’

y’

2l

2l

Diaphragm

R

L

x

l

Fig. 4. Schematic representation of an inclined 2D shock tube. L and R refer to left 
and right states, respectively. 
the above observations, the parameter φ will be set to 10 −2 in the 
following cases, unless stated otherwise. 
3.2. Inclined viscous shock tube 

In the second example, we consider a two-dimensional viscous 
shock tube where the domain is inclined by an angle of 45 ° to as- 
sess the performance of the immersed boundary methods on non- 
aligned grid (see Fig. 4 ). The computational domain is a closed box 
of [0 , l √ 

2 ] × [0 , l √ 
2 ] with isothermal and no-slip boundary con- 

ditions. l is the length of the shock tube and is taken as a unit. 
At initial time, dimensionless variables are used in both sides of 
the shock tube with (p L , p R ) = (100 , 1) , (u L , u R ) = (0 , 0)(ρL , ρR ) = 
(120 , 1 . 2) , T w = 1 (for dimensionless wall temperature) and p = 
ρ/γ . The nominal Reynolds number is set to Re = 200 , and the 
dynamic viscosity follows Sutherland’s law [11] . The reference so- 
lution is computed on a twice finer grid (512 × 512) using a regu- 
lar (non-inclined) domain with fixed boundary conditions. 

Fig. 5 shows the density contours for the reference solution to- 
gether with the direct-forcing as well as the penalization solutions. 
The two IBM solutions are counter-rotated by an angle of −45 ◦
to allow direct comparison with the reference solution. Basically, 
one can find similar flow features for the three cases. A typical 
lambda-shape like bifurcated shock wave pattern is observed as a 
consequence of the stagnation pressure drop due to the presence 
of the boundary layer. When superposing the three computations 
on a single graph (see Fig. 6 ), we observe that the direct-forcing 
computation is well synchronized with the reference and the pe- 
nalization solutions. 

Further qualitative comparison are done on density and pres- 
sure distributions at a normalized distance, y/l = 0 . 05 . The result 
is plotted in Fig. 7 . The difference between the two solutions re- 
main acceptable, since the main flow features are almost retrieved. 
3.3. 2D supersonic shock/cylinder interaction 

The third example concerns a moving shock at M s = 2 . 81 in- 
teracting with a circular cylinder. Various studies [7,40–42] have 
shown that the shock/cylinder interaction, in particular the un- 
steady wake flow behind it, contains many interesting flow fea- 
tures with very complex shock structures. The flow conditions are 
fixed so that the nominal Reynolds is equal to 30 0 0. The cylinder is 
kept at a constant temperature. The flow characteristics consist of 
unsteady evolution of multiple Mach stems, triple points, reflected 
(attenuated and accelerated) shocks, slip-lines and vortices. Instan- 
taneous numerical Schlieren pictures showing the flow structures 
around the cylinder are depicted in Fig. 8 . One can clearly see that 
the essential flow characteristics are reproduced by both methods 
with very high fidelity. 

The results also exhibit two weak flow discontinuities at both 
top and bottom sides of the cylinder. It appears that this disconti- 
nuity is more enhanced for the penalization method. This is prob- 
ably due to the difficulty of the method to properly reconstruct 
the pressure field at fluid/solid interface. Nevertheless, these small 
disturbances are not seen to drastically affect the overall quality 
of the solution. The computed trajectories of the two triple points 
are depicted in Fig. 9 . The comparisons against experimental data 
[7,14] appear quite satisfactory for both methods. 
3.4. 3D supersonic turbulent channel flow at Re τ = 220 

In the last example, we consider a supersonic turbulent flow 
between two parallel planes of infinite width. The computational 
domain and the main flow parameters are taken similar to Foysi 
et al. [13] . Periodic boundary conditions are used in both stream- 
wise ( x ) and spanwise ( z ) directions. The length of the computa- 
tional domain has been set up as in Foysi et al. [13] and Taieb et al. 
[37,38] . To ensure that both stream- and spanwise lengths are suf- 
ficiently wide, the distributions of the two-point autocorrelations 
functions along x and z directions have been analyzed. The results 
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(a)

(b)

(c)

Fig. 5. 2D shock/boundary layer interaction: iso-contours of density for the reference (a), direct-forcing (b) and penalization with φ = 0 . 01 (c). Only the bottom-half of the 
computed domain is shown. 
[13,37,38] show that the flow variables are sufficiently decorrelated 
over distances L x /2 and L z /2, thus ensuring that the extents of the 
computational domain are sufficient in order to not inhibit turbu- 
lence dynamics. 

Fig. 10 presents the computational domain and Table 3 summa- 
rizes the main flow properties. The mesh contains around 3.68 mil- 
lion cells. Since this case contains no shock, centered fourth- 
order schemes are used for both convective and diffusive terms. 
The mesh spacing is constant in both x - and z -directions and is 
stretched in the wall-normal ( y ) direction so that ,y + w = 1 . For 
both methods, the number of point in the y -direction is extended 
to 156 in order to create ghost points inside the computational do- 
main. The Reynolds number, based on the friction velocity, is set 

to Re τ = u τ h/νw = 220 ( h being half the height of the channel and 
the subscript w refers to wall quantities). To ensure a balance be- 
tween the pressure drop and the shear-wall stress, a forcing term 
is added to the momentum equation and its equivalent, in terms 
of work, to the energy equation. This term is defined as 
ρ f = τw 

h = (Re τ µw ) 2 
ρw h 3 (38) 

The walls are considered as isothermal with a fixed tempera- 
ture of 500 K. As initial conditions, Klein method [26] is used to 
generate a statistically-correlated turbulent field. Turbulent statis- 
tics are averaged over approximately 10 τ , where τ = t u b /L x is a 
dimensionless time unit and u b is the bulk velocity (see Table 3 ). 
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Fig. 6. 2D shock/boundary layer interaction: shock positions for the reference computation ( black ), direct-forcing ( blue ) and penalization with φ = 0 . 01 ( red ) methods on the 
bottom-half of the walls. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Shock/boundary layer interaction in a 2D viscous shock tube: density (a) and pressure (b) profiles at y/l = 0 . 05 . 

(a) (b)

Fig. 8. 2D shock/cylinder interaction: Numerical Schlieren pictures for direct-forcing (a) and penalization method with φ = 0 . 01 (b). RS: Reflected shock, IS: incident shock, 
SL: slip line, MS: Mach stem and TP1/TP2: triple points. 
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Fig. 9. 2D shock/cylinder interaction: Comparison of triple points trajectories with 
experiments from Bryson et al. [7] and Kaca et al. [14] . 

Table 3 
Computational domain, grid size and flow properties with Re b = 
u b h/νw and u τ = √ 

τw /ρw . 
L x L y L z N x N y N z h (mm) 
4 πh 2 h 4/3 πh 192 150 128 6 .84 
L + x L + y L + z ,x + ,y + 

min ,y + max ,z + 
2765 440 922 14 .4 0 .8 5 .0 7 .2 
Re b Re τ u τ (m/s) M u b (m/s) T w (K) 
30 0 0 220 35 1 .5 680 500 

Table 4 
Turbulent channel flow: relative errors of direct-forcing and penalization meth- 
ods on the friction Reynolds number ( Re τ = 220 ) and the dissipation of the tur- 
bulent kinetic energy at the wall. 

Method Re τ relative error ε + w relative error 
direct-forcing 221 .65 +0 . 7% 0 .161 0 .0% 
penalization φ = 0 . 01 201 .78 −8 . 28% 0 .156 −3 .27% 
Table 4 shows the computed friction Reynolds number and the 

turbulent dissipation at the wall for both methods. The direct- 
forcing method gives a result with less than 1% difference, while 
the penalization method gives more than 8%. This departure is tied 
to the one on the wall friction τw , due to the fact that the penal- 
ization method, which considers the solid as mildly porous, trans- 
fers a small amount of momentum and energy through the wall. 
This effect is highlighted in Fig. 13 where the velocity gradient 
near the wall is computed differently for the direct-forcing and the 
penalization methods. We can also observe that the velocity at the 

wall is not strictly null for the penalization method, due to the 
porosity aspect imposed by the method. 

Fig. 11 shows the instantaneous iso-contours of the Q-criterion 
for the penalization method with φ = 0 . 01 . The Q-criterion is by 
definition the second invariant of the velocity-gradient tensor 
Q = 1 

2 (!i, j !i, j − S i, j S i, j ), (39) 
where S i , j and !i , j denotes the symmetric and antisymmetric 
parts of the velocity-gradient tensor, respectively. 

In Fig. 11 , we observe the coherent structures of the turbulent 
flow, colored by the streamwise vorticity (blue for the clockwise 
vortices, red for the counter-clockwise vortices). The instantaneous 
iso-Mach contours are projected on the sides of the figure. The pic- 
ture obtained by the penalization method is quasi-identical (figure 
not shown). 

The first-order statistics are shown in Fig. 12 . The direct-forcing 
and the penalization methods are slightly different in terms of 
mean quantities: Mach number, temperature and density. The no- 
slip condition for the velocity at the wall, which is imposed by the 
direct-forcing, is not enforced by the penalization method. The ve- 
locity profile for the penalization slightly shifts from the direct- 
forcing method. The same issue occurs for the near-wall tempera- 
ture field. 

Fig. 14 a compares direct-forcing and penalization methods for 
the van Driest normalized velocity. The latter is defined as 
u + V D = ∫ u + 

0 ⟨ ρ⟩ 
⟨ ρw ⟩ du + (40) 

with u + = ⟨ u ⟩ /u τ . 
For both wall laws, in the viscous sublayer and in the log-law 

region, the reference solution and the direct-forcing method match 
quite well. The normalized constant C for the log-law is set to 
6.9. It has been shown in [36] that, for supersonic fully-developed 
flows, the constant can vary significantly depending on the geom- 
etry (pipe, channel or boundary layer) or on the thermal wall con- 
dition. For the penalization method, the velocity profile is slightly 
above the reference computation. This can be explained by the dis- 
parity already noticed on the normalization factor τw . 

Using the present body-forcing method, the Favre-averaging 
and the τw normalization, the momentum equation can be rewrit- 
ten as 
1 − y + 

Re τ = ⟨ µ⟩ 
⟨ µw ⟩ ∂ ⟨ u + ⟩ 

∂y + + 〈 µ′ 
µw ∂u ′ + 

∂y + 
〉

− ⟨ ρ⟩ { u ′′ v ′′ } 
τw (41) 

where ⟨ ⟩ denotes the Reynolds averaging (in time and in x − z di- 
rections) and { } is the Favre-averaging { ϕ } = ⟨ ρ ϕ ⟩ / ⟨ ρ⟩ . The prime 
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Fig. 10. Schematic representation of the supersonic turbulent channel flow domain. 
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Fig. 11. Turbulent channel flow: Three-dimensional flow visualization of instantaneous iso-contour of the Q-criteria colored by the streamwise-vorticity component for 
penalization methods. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Turbulent channel flow: Mach number (a) and density/temperature (b) plot for the reference DNS computation [13] and both direct-forcing and penalization meth- 
ods. 
( ′ ) and the double prime ( ′ ′ ) represent the turbulent fluctuations 
with respect to Reynolds ϕ ′ = ϕ − ⟨ ϕ ⟩ and Favre-averages ϕ ′′ = 
ϕ − { ϕ } , respectively. 

Fig. 14 b shows a comparison between direct-forcing and penal- 
ization methods regarding the budget of the turbulent kinetic en- 
ergy (41) . The pressure-dilatation term is omitted from the budget 
since it is negligible for the considered range of Mach number. The 
contribution from the wall-shear stress is slightly overestimated in 
the case of the penalization method, which is again a consequence 
of the normalization by the wall shear stress ( τw ). 

The normalized turbulent stress tensor is shown in Fig. 15 with 
R + 

i j = ⟨ ρ⟩ { 
u ′′ 

i u ′′ 
j } 

/ (ρw u 2 τ ) . The results of both direct-forcing and 
penalization methods show an overestimation of the near-wall tur- 
bulence. It can be noted that the spanwise ( R + 33 ) term exhibits 
more difference than the other terms. Nevertheless, the discrep- 
ancy between both methods and the reference DNS is acceptable. 

The turbulent kinetic energy equation, k = 1 / 2 {u ′′ 
i u ′′ 

i }, is ob- 
tained by multiplying the momentum equation by the fluctuation 
velocity as : 
∂ ⟨ ρ⟩ k 

∂t = −⟨ ρ⟩ {u ′′ i u ′′ j }∂ { u i } 
∂x j ︸ ︷︷ ︸ 

P k 
−

〈
τ ′ 

i j ∂u ′′ i 
∂x j 

〉

︸ ︷︷ ︸ 
ε 

+ 〈p ′ ∂u ′′ j 
∂x j 

〉

︸ ︷︷ ︸ 
C k 1 

+ 〈u ′′ i 〉∂ 
〈
τi j 〉

∂x j ︸ ︷︷ ︸ 
C k 2 

−
〈
u ′′ j 〉∂ ⟨ p ⟩ ∂x j ︸ ︷︷ ︸ 

C k 3 
−

∂ ⟨ ρ⟩ {u j }k 
∂x j ︸ ︷︷ ︸ 

D k 
−

∂ ⟨ ρ⟩ {u ′′ j u ′′ i u ′′ i / 2 }
∂x j ︸ ︷︷ ︸ 

D t 
−

∂ 〈p ′ u ′′ j 〉
∂x j ︸ ︷︷ ︸ 
D p ′ 

+ ∂ 〈τ ′ 
i j u ′′ i 〉

∂x j ︸ ︷︷ ︸ 
D τ ′ 

(42) 
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Fig. 13. Turbulent channel flow: Normalized x -velocity profile very close to the 
wall. The nodes represent the cell centered location. The left hatched vertical box 
represents the solid part and the rest is the fluid. 

The different contributions are: ( P k ): Production of k ; ( ε): Dissi- 
pation of k ; ( C k 1 ): Pressure fluctuation strain; ( C k 2 ): Viscous com- 
pressibility effect; ( C k 3 ): Pressure compressibility effect; ( D k ): Dif- 
fusion of k ; ( D t ): Turbulent diffusion; ( D p ′ ): Pressure fluctuation 
diffusion and ( D τ ′ ): Viscous fluctuation diffusion. 

The dominant terms of the turbulent kinetic-energy equation 
are plotted in Fig. 16 a. As a result of the wall friction underestima- 
tion, the normalized terms for the penalization method are slightly 
overestimated. On the other hand, as shown in Table 4 , the turbu- 
lent dissipation at the wall is a bit lower in the case of the pe- 
nalization method. The absorption of the wall, or the porosity of 
the penalization method, is a direct consequence of the insufficient 
dissipation at the wall. 

The normalized r.m.s. pressure, p rms / ⟨ p ⟩ = √ 
⟨ p ′ p ′ ⟩ / ⟨ p ⟩ , for the 

penalization method shows a wiggling effect when approaching 
the wall. This effect is attenuated away from it (see Fig. 16 b). We 
assume that this behavior might be the result of the non-explicit 
prescription of the boundary condition (BC), since the penalization 
method does not require BCs at the interface. This will not nec- 
essarily enforce a zero-gradient pressure at the wall, unlike the 
direct-forcing method. 

4. Conclusion and perspectives 
In the present paper, we compare two popular methods for 

immersed boundary conditions: (i) the direct-forcing (DFM) and 
(ii) the Brinkman penalization (BPM) methods. Although the two 
methods are derived to handle solid-fluid problems in Cartesian 
grids, they are conceptually different in their philosophy and algo- 
rithm construction. The DFM uses ghost-cells at the solid boundary 
to reconstruct the values inside the solid, while the BPM treats the 
solid as a porous medium with a very low permeability. This ap- 
proach relies on replacing the often difficult to implement Dirichlet 
fluid boundary conditions, with a simpler to integrate source terms 
in the Navier-Stokes equations. An efficient algorithm for source 
terms integration is proposed, based on a Strang splitting between 
the penalization terms and the convection-diffusion terms. Doing 
so, the penalization term can be evaluated exactly. The momen- 
tum term can then be computed first and then introduced into 
the continuity equation in an implicit manner. The comparison is 
performed over several test-cases of compressible viscous flows, 
including one-dimensional shock reflexion off a solid wall, two- 
dimensional viscous shock tube, as well as shock/cylinder inter- 
action and three-dimensional supersonic turbulent channel flow. 
For all considered cases, an excellent agreement is observed be- 
tween the two methods and the reference solutions. In particu- 
lar, the BPM is found to be a suitable and a possibly competi- 
tive method for viscous-IBM in terms of predictive performance, 
accuracy and computational cost. However, despite its simplicity, 
the method suffers from a lack of regularity in the very near-wall 
r . m . s . pressure field, especially for the turbulent case. This behav- 
ior might be attributed to the fact that the method requires no 
specific pressure condition at the fluid/solid interface. Ongoing re- 
search will focus on the use of IBM for moving objects. For this 
purpose, the direct-forcing method seems to be much more com- 
plex to implement compared to the penalization method. In partic- 
ular, the Vandermonde matrix has to be recomputed at every time 
step requiring thereby more CPU time for the DFM. It will also be 
interesting to extend the newly proposed characteristic based vol- 
ume penalization method [6] to viscous flows including shock and 
turbulence. This method not only extends the Brinkman penaliza- 
tion to other kinds of boundary conditions like Neumann or Robin, 
but also proposes another philosophy of penalization, which seems 
promising for Dirichlet boundary conditions, i.e. isothermal walls. 
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