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Abstract 

With the increasing demand for energy that human beings are faced with, the photovoltaics 

(PV) technology which converts solar radiation into electricity has undergone increasingly 

development. Although the current PV market is mainly dominated by the crystalline Si based 

technologies, thin film PV still bears the hope to become the solution to the energy crisis in 

the future due to its much lower cost and reasonable efficiency. 

Transparent conductive materials (TCMs), mostly transparent conductive oxides (TCOs), are 

an essential component in most types of thin film solar cells as the current-collecting electrode 

on the sun-facing side of the cell. In order to improve the optical absorption (which is 

restricted by the limited absorber thickness) in thin film solar cells, the TCOs are often desired 

to be textured (with significant surface roughness) to show high values of haze factor. Haze 

factor is defined as the ratio of the diffuse transmittance/reflectance to the total 

transmittance/reflectance. The hazier a TCO is (i.e. with higher haze factor), the more light it 

scatters. As a consequence, the optical path length is increased and thus the light trapping in 

the solar cell is improved, giving rise to higher light absorption in the active layers and 

photon-to-current conversion efficiency of the solar cells. 

In this work, innovative nanocomposites of fluorine doped SnO2 (FTO) in combination with 

ZnO, S:TiO2 and Al2O3 nanoparticles have been developed using an economic and facile 2-

step process. These FTO nanocomposites exhibit 70-80% total transmittance and 10-15 Ω/sq 

sheet resistance, satisfying the basic requirements as transparent conductive oxides used in 

photovoltaics devices. By changing the nanoparticle suspension concentration, the haze factor 

of these nanocomposites can be varied, in a controlled way, from almost 0% up to 80%. The 

morphological, structural, electrical, and optical properties of these FTO nanocomposites are 

investigated in great details and are found to be closely related to the underlying nanoparticles. 

Before discussing the integration of the FTO nanocomposites into real solar cell devices, 

efforts have also been made to shed some light on the understanding of FTO/TiO2 interface 

commonly adopted in various types of emerging thin film solar cells such as dye sensitized 

solar cells (DSSCs). Finally, the hazy FTO nanocomposites have been used as transparent 

electrodes in different types of thin film solar cells and the effect of haze factor on the device 

performance has been examined.  

By properly tuning the type and concentration of the underlying nanoparticles, the properties 

of the FTO nanocomposites can be tuned to meet the electrode requirement for specific 

photovoltaic technology. Our concept of preparing TCO nanocomposite by combining TCOs 

and nanoparticles provides a general guideline to design hazy electrodes as light management 

structures in thin film photovoltaics. 

 



 

Résumé 

Avec la demande toujours croissante d'énergie à laquelle l’homme fait face, le photovolta₂que 
(PV), qui convertit le rayonnement solaire en électricité, a connu ces dernières décennies un 

développement important. Bien que le marché PV actuel soit principalement dominé par les 

technologies à base de Si cristallin, la technologie PV à base de couches minces porte toujours 

l'espoir de contribuer efficacement à l'avenir vis-à-vis de la crise énergétique en raison de son 

coût beaucoup plus faible et d'une efficacité raisonnable. 

Les matériaux transparents conducteurs (TCM), principalement des oxydes conducteurs 

transparents (TCO), sont une composante essentielle dans la plupart des types de cellules 

solaires à couches minces car ils servent d'électrode de collecte des porteurs  photo-générés 

sur la face avant de la cellule, c’est-à-dire celle face au soleil. Afin d'améliorer l'absorption 

optique (limitée par l'épaisseur de l'absorbeur) dans des cellules solaires à couches minces, 

on souhaite souvent que les TCO soient texturés (avec une rugosité de surface significative) 

de manière à bien diffuser la lumière, et ainsi de présenter des valeurs élevées de facteur de 

diffusion de la lumière. ωe dernier, que l’on peut appeler facteur de haze, est défini comme 
le rapport entre la transmittance (respectivement réflectance) diffuse et la transmittance 

(respectivement réflectance) totale. Plus ce facteur est élevé plus le TCO diffuse la lumière. 

Par voie de conséquence, la longueur du trajet optique est augmentée et ainsi le piégeage de 

la lumière dans la cellule solaire est amélioré, donnant lieu à une absorption de lumière plus 

importante dans les couches actives et augmentant potentiellement le rendement de 

conversion photovoltaïque des cellules solaires. 

Dans ce travail, des nano-composites innovants à base de SnO2 dopé au fluor (FTO) en 

combinaison avec les nanoparticules ZnO, S:TiO2 et Al2O3 ont été développés en utilisant un 

processus économique et facile constitué de deux étapes. Ces nano-composites à base de FTO 

présentent une transmittance totale de 70-80% et une résistance de 10-1η Ω/sq, satisfaisant 
ainsi aux exigences requises pour des oxydes transparents conducteurs utilisés au sein de 

dispositifs photovoltaïques. En modifiant la concentration de la suspension de nanoparticules 

le facteur de haze de ces nano-composites peut être varié, de manière contrôlée, de presque 

0% à 80%. Les propriétés morphologiques, structurales, électriques et optiques de ces nano-

composites à base de FTO sont étudiées en détail et elles apparaissent étroitement 

dépendantes des nanoparticules sous-jacentes. Avant de discuter de l'intégration des nano-

composites FTO au sein de cellules solaires, des efforts ont également été consacrés à une 

bonne compréhension de l'interface FTO/TiO2 qui est couramment présente au sein de divers 

types de cellules solaires à couches minces émergentes telles que les cellules solaires 

sensibilisées au colorant (DSSCs). Enfin, les nano-composites FTO diffusants ont été intégrés 

comme électrodes transparentes au sein de différents types de cellules solaires à couches 

minces et l'effet du facteur de haze sur la performance du dispositif a été étudié. 



 

En ajustant correctement le type et la concentration des nanoparticules sous-jacentes, les 

propriétés des nano-composites à base de FTO peuvent être variées de manière à répondre 

aux exigences d'électrodes pour une technologie photovoltaïque spécifique. Notre concept de 

préparation du TCO nano-composite en combinant les TCO et les nanoparticules propose une 

ligne directrice générale qui conduit à l’élaboration d’électrodes à caractère diffusant variableν 
permettant ainsi une bonne absorption des photons pour le photovoltaïque en couches minces. 

  



 

Zusammenfassung: 
Die steigende Bedarf der Menschheit an Energie hat zu einer Entwicklung unterschiedlicher 

photovoltaischer (PV) Technologien, die Sonnenlicht in elektrische Energie umwandeln, 

geführt. Gegenwärtig dominieren Technologien basierend auf kristallinem Silizium den PV 

Markt. Dünnschichttechnologien können in der Zukunft zur Lösung der Energiekrise durch 

ihre geringen Kosten bei geeigneten Wirkungsgraden beitragen 

Transparente leitfähige Materialien (TCM), meistens transparente leitfähige Oxide (TCO), 

sind als stromsammelnde Elektrode auf der lichtzugewandten Seite ein wesentlicher 

Bestandteil von Dünnschichtsolarzellen. Um die Lichtabsorption, die durch die Schichtdicke 

der absorbierenden Schicht begrenzt ist, zu erhöhen, ist es wünschenswert texturierte TCO 

einzusetzen, die eine nennenswerte Oberflächenrauheit und damit eine erhöhte diffuse 

Streuung (Haze) aufweisen. Der Haze-Faktor ist als das Verhältnis des diffus transmittierten 

bzw. reflektierten Lichts zum gesamten transmittierten bzw. reflektierten Licht definiert. Ein 

höherer Haze-Faktor führt daher zu einer erhöhten Streuung des Lichts und erhöht damit die 

optische Weglänge des Lichts im Absorbermaterial. In der aktiven Schicht wird damit ein 

höherer Anteil des Lichts absorbiert, was in einer höheren Stromausbeute der Solarzelle 

resultiert.  

In dieser Arbeit wurden innovative Nano-Komposite von fluor-dotiertem SnO2 (FTO) mit 

ZnO, S:TiO2 und Al2O3 Nanopartikeln über einen wirtschaftlichen und einfachen 

zweistufigen Prozess entwickelt. Die FTO Nano-Komposite weisen 70-80% Transmission 

und einen Schichtwiderstand von 10-15 Ω/sq auf und erfüllen damit die wesentlichen 

Anforderungen an ein TCO in photovoltaischen Bauteilen. Der Haze-Faktor der Nano-

Komposite kann über die Konzentration der Nanopartikel in der Lösung in kontrollierter 

Weise zwischen nahezu 0% und 80% eingestellt werden. Die morphologischen, strukturellen, 

elektrischen und optischen Eigenschaften der FTO Nano-Komposite wurden detailliert 

untersucht. Diese hängen eng mit den verwendeten Nanopartikeln zusammen. Experimente 

zum besseren Verständnis der FTO/TiO2 Grenzfläche, die in verschiedenen Typen neuer 

Dünnschichtsolarzellen, wie zum Beispiel farbstoff-sensibilisierte Solarzellen (DSSC), 

verwendet wird, werden ebenfalls in der Arbeit beschrieben. Desweiteren wurde das 

Verhalten der diffus streuenden FTO Nanokomposite und der Einfluss des Haze-Faktors als 

transparente Elektrode in verschiedenen Dünnschichtsolarzellen untersucht.  

Durch geeignete Variation des Typs und der Konzentration der Nanokomposite können die 

Eigenschaften der FTO Nanokomposite gezielt eingestellt werden, um die spezifischen 

Anforderungen an die Elektroden in unterschiedlichen Photovoltaik-Technologien zu erfüllen. 

Das Konzept der Präparation von TCO Nanokompositen durch Kombination von TCOs und 

Nanopartikeln bietet eine allgemeine Grundlage zum Design diffus streuender Elektroden für 

das Lichtmanagement in der Dünnschichtphotovoltaik.   
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UV: ultraviolet 

VB: valence band 

VBM: valence band maximum 

XRD: X-ray diffraction 

XPS: X-ray photoelectron spectroscopy 
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Symbols and physical quantities 

Chkl: texture coefficient 

dhkl: interplanar distance of (hkl) plane 

e: electron, and elementary charge of electrons 

E: electrical field 

Eb: binding energy of the photo-excited electron 

EC: the energy of conduction band maximum  

ECL: the core level energy  

EF: the Fermi energy 

EF-EV: valence band maximum energy with respect to the Fermi energy 

EFC: quasi-Fermi energy describing the occupation states in the conduction band 

EFV: quasi-Fermi energy describing the occupation states in the valence band 

EG: energy gap, or band gap 

Ekin: kinetic energy of photo-emitted electron  

EV: the energy of valence band minimum 

Eg, B1g, B2g, A1g: Raman bands 

f: Fermi distribution 

FF: fill factor 

h: hole 

h: Plank constant 

H: height of the nanoparticle agglomerate shaped as a truncated circular pyramid 

H: haze factor 

HR: haze factor in reflectance 

HT: haze factor in transmittance 

I0,hkl: diffraction intensity of (hkl) plane for ideal powder sample  

Ihkl: experimental diffraction intensity of (hkl) crystal plane 

Ip: ionization potential  

Jsc: short circuit current density 

k: wave vector (scalar quantity) 
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k: wave vector (vector quantity) 

l: angular quantum number 

L: average crystallite size 

L: lateral autocorrelation length 

m*: effective mass 

ml: magnetic quantum number 

ms: spin quantum number 

n: carrier concentration 

n: principal quantum number or refractive index (real part) 

p: momentum 

P: Power 

q: scattering vector (vector quantity) 

qh: elementary charge of holes 

r0: bottom radius of the nanoparticle agglomerate shaped as a truncated circular pyramid 

r1: upper radius of the nanoparticle agglomerate shaped as a truncated circular pyramid 

req: equivalent radius of nanoparticle agglomerates observed in AFM images 

rdiff: radius of the effective cross section ıdiff assumed as a circle 

R: relaxation calculated from reciprocal space mapping 

Rs: sheet resistance 

Rse: series resistance 

Rsh: shunt resistance 

R: reflectance 

Rdiff: diffuse reflectance 

Rtot: total reflectance 

t: film thickness 

T: temperature 

T: transmittance 

Ttot: total transmittance 

Tspec: specular transmittance 

Tdiff: diffuse transmittance 
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V: potential energy 

Voc: open circuit voltage 

wn: the width of the p-n junction in the n-type semiconductor  

wp: the width of the p-n junction in the p-type semiconductor  

Z: atomic number 

ȕL; diffraction peak broadening due to limited crystallite size 

ȕİ; diffraction peak broadening due to strain 

Ȗ: photon 

Γ: phonon 

į: roughness 

İ: permittivity 

İ0: permittivity of vacuum 

İr: relative permittivity 

İ: strain 

Ș: electrochemical potential 

Ș: conversion efficiency 

șμ ψragg’s angle 

Ȝ: wavelength  

ȝ: chemical potential, or work function 

ȝ: mobility 

ρ: resistivity 

ρ: charge density 

ıdiff: effective cross section representing the scattering of a single nanoparticle agglomerate 

σ: degree of preferred orientation 

φ: electrical potential, or electrostatic potential   

ϕB,n, ϕB,p: Schottky barrier 

Ȥe: electron affinity 

ȥ: wave function 

Ȧp: plasma frequency 

ℏ: reduced Plank constant 
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∆ECB: conduction band discontinuity/offset 

∆EVB: valence band discontinuity/offset 

∆ECL, VBMμ the energy difference between the core level and Vψε, ∆ECL, VBM =ECL-EV 

∆ș: mosaicity 

Δȟ-1: lateral correlation length from reciprocal space mapping 

∆Ȟ: Raman shift 
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Preface 

This doctoral thesis is under the framework of International Doctoral School in Functional 

Materials (IDS-FunMat: https://www.idsfunmat.u-bordeaux1.fr/). It is co-supervised by 

Professor Dr. Daniel Bellet from Institut polytechnique de Grenoble (Grenoble INP, France) 

and Professor Dr. Andreas Klein from Technische Universität Darmstadt (TU Darmstadt, 

Germany); as well co-supervised by Dr David Muñoz-Rojas (CNRS, France). The main work 

in this thesis has been conducted in two laboratories: LMGP (Laboratoire des Matériaux et 

du Génie Physique, http://www.lmgp.grenoble-inp.fr/) which is expert in deposition and 

characterization of functional thin film materials, and as well in Surface Science group 

(http://www.mawi.tu-darmstadt.de/of/of/startseite_4/index.en.jsp) in the department of 

Materials and Earth Science of TU Darmstadt which is expert in surface/interface 

characterization by photoelectron spectroscopy.  

Transparent conductive oxides (TCOs), constitute a technologically important class of 

materials widely used in thin film solar cells to transmit light and collect charge carriers. In 

addition to the basic attributes of transparency and conductivity, the TCOs are often desired 

to possess certain surface roughness (i.e. textured) in order to efficiently scatter transmitted 

light into the active materials to increase the optical path and, subsequently improve the light 

absorption and cell performance. Dr Gaël Giusti, a previous postdoc fellow in LMGP, has 

initiated the work to prepare hazy ZnO-FTO nanocomposites by growing F:SnO2 (FTO) thin 

films on glass substrates pre-spin-coated with ZnO nanoparticles (ACS Appl. Mater. 

Interfaces, 2014, 6, 14096-14107). Therefore the first goal of this thesis is to extend the 

application of the concept to not only ZnO nanoparticles but also S:TiO2 and Al2O3 

nanoparticles to prepare hazy ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. 

After a detailed study on the morphological, structural, electrical, and optical properties of 

these FTO nanocomposites, they are examined through the pre-test integration in various 

types of thin film solar cells as transparent electrodes. In parallel, as a common interface 

widely used in thin film solar cells such as dye sensitized solar cells (DSSCs), perovskite or 

quantum-dot solar cells, the interface of blocking TiO2 (b-TiO2) layer and FTO has 

nevertheless bared little attention in literature. Therefore the second goal of this thesis is to 

probe the FTO/b-TiO2 interface using mainly X-ray photoemission spectroscopy with the 

focus on the influence of the polymorph of the b-TiO2 layer. 

The organization of the thesis is the following: 

Chapter 1 starts with a general introduction on the energy shortage that today the human 

beings are faced with, and the significance of the development of photovoltaics. Then some 

basic physics of semiconductors and solar cells are introduced, which serves to aid the 

understanding of the results obtained in this thesis. Finally, the state-of-the-art related to the 

https://www.idsfunmat.u-bordeaux1.fr/
http://www.lmgp.grenoble-inp.fr/
http://www.mawi.tu-darmstadt.de/of/of/startseite_4/index.en.jsp
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transparent conductive materials (TCMs), light trapping in solar cells, as well as the interface 

of FTO/TiO2 is given. 

In Chapter 2, the preparation of FTO nanocomposites in combination with ZnO, S:TiO2, and 

Al2O3 nanoparticles, as well as the deposition of blocking TiO2 thin films are detailed 

followed by the introduction of all the characterization techniques used in this thesis. 

Chapter 3 studies and compares the morphological and structural aspects of the ZnO-FTO, 

S:TiO2-FTO, and Al2O3-FTO nanocomposites. The morphology of nanoparticle substrate 

(without FTO film) and FTO nanocomposites are analyzed in detail, followed by the 

examination of the structural characteristics for all three series of FTO nanocomposites. In 

particular, the S:TiO2-FTO nanocomposites show peculiarly strong (110) texture which is in 

accordance with the strong <110> orientation of underlying S:TiO2 nanoparticles. Therefore, 

an extensive study of growing FTO thin film on (110) rutile TiO2 single crystals has been 

conducted. The first successful growth of epitaxial FTO thin films is presented. A 

comprehensive investigation of the interplay between the growth, morphology, strain/defects, 

and electrical properties of epitaxial FTO thin films in comparison with its polycrystalline 

counterpart has been performed. In particular, in collaboration with Dr. Jean-Luc Rouvière 

(CEA INAC), an innovative new nano-beam precession electron diffraction (N-PED) has 

been used to probe the local strain distribution of the FTO/TiO2 interface. 

Chapter 4 investigates and compares the electrical and optical properties of the ZnO-FTO, 

S:TiO2-FTO, and Al2O3-FTO nanocomposites. Not only the wavelength dependent haze 

factor but also the angular resolved scattering of the three series of FTO nanocomposites are 

presented in detail. In particular, in collaboration with Dr. Martin Foldyna et al. from LPICM 

(Ecole Polytechnique, Université Paris-Saclay) an innovative angle-resolved Mueller matrix 

polarimeter (ARMMP) is used allowing us to obtain the optical microscopic and angle-

resolved images of the exact same textured region, which enables to establish a direct link 

between optical properties and surface morphologies of the FTO nanocomposites. Finally, in 

collaboration with Dr. Guy Vitrant from IMEP-LaHC (L'Institut de Microélectronique 

Electromagnétisme et Photonique et le Laboratoire d'Hyperfréquences et de Caractérisation), 

an optical model was initiated based on modelling the optical scattering of individual 

nanoparticle agglomerates, and the first preliminary results are presented. 

Chapter 5 examines in great detail the common interface of FTO and blocking TiO2 (b-TiO2) 

layer. The focus is to identify the polymorph of the b-TiO2 layer grown on FTO as a function 

of film thickness. By depositing b-TiO2 layers on FTO, Si wafers, and RuO2 substrates, a thin 

(several tens of nanometers) b-TiO2 layer deposited on FTO is proved to crystallize into 

mixed anatase and rutile polymorphs with the rutile polymorph dominating. As a consequence, 

the interface of FTO and thin b-TiO2 layer (with mixed polymorphs) is discussed together 

with the experimental evidence obtained from X-ray photoelectron spectroscopy. 

Chapter 6 summarizes the application of FTO nanocomposites as hazy transparent electrodes 

in dye sensitized solar cells in collaboration with Dr. Yann Pellegrin from Université de 
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Nantes and Daniel Langley (a precedent PhD student at LMGP), in CdTe solar cells in 

collaboration with Dr. Giray Kartopu et al. from Glyndŵr University (Wales), as well as in 

organic solar cells in collaboration with Professor Lukas Schmidt-Mende from University of 

Konstanz (Germany).  

Finally, some key points in this thesis have been selected and addressed in the general 

conclusion, as well as some future perspectives based on this doctoral thesis are suggested in 

the end. 

https://www.schmidt-mende.uni-konstanz.de/
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Chapter 1. Introduction 

1.1 Energy and Photovoltaics: Overview 

The living of mankind depends on energy (such as food, electricity etc.). Today the major 

source of energy still comes from the consumption of fossil fuels mainly in the form of oil, 

coal, and natural gas. With the explosive growing population and economy development 

worldwide, the energy consumption thus the production of the fossil fuels have been 

continuously increasing, as seen in Figure 1.1, and are expected to rise in the future.  

 

Figure 1.1: The energy consumed plotted as a function of year for oil, coal, natural gas, hydro, nuclear, 

and other renewable energy resources.1 

However, the amount of fossil fuels is limited on earth and eventually it will be used up one 

day. Furthermore, the release of CO2 waste gas accompanying burning of fossil fuels has 

caused unavoidable global warming via the greenhouse effect. As seen in Figure 1.2, despite 

the slight fluctuations, the global average surface temperature has clearly increased and is 

estimated to continue to rise in the future. For the sake of future generations of human beings 

and as well to protect the earth where we are bound to live, it becomes indispensable for us 

to develop renewable energy resources to replace fossil fuels. 

As important as it is to sustain the life cycles on the earth, the sun is also the most important 

source from which immeasurable energy can potentially be harnessed. The solar radiation can 

be converted into electricity via photovoltaics (PV) devices with an efficiency ranging from 

5 to 20 %. This is much higher than most of the other energy technologies that convert (often 

very indirectly) solar energy into useful work. Therefore, today PV is one of the most 

important and fastest growing renewable energy technologies, which is expected in the future 

to play a major role in the global energy grid. 
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Figure 1.2: Global surface temperature anomalies relative to 1951-1980 mean for annual and 5 year 

running means through 2009. Green bars are 2σ error estimate.2 

Traditionally PV technologies are divided into three generations depending on a 

compromised evaluation between efficiency and cost as summarized in Figure 1.3. 

 
Figure 1.3: Cost-efficiency analysis for first-, second-, and third-generation photovoltaic technologies 

(labeled I, II, and III, respectively). Region IIIa depicts very-high-efficiency devices that require novel 

mechanisms of device operation. Region IIIb depicts devices with moderate efficiencies and very low 

cost such as organic PV technology.3  

First generation PV is mainly based on crystalline silicon wafers and typically demonstrates 

a performance about 15-β0%. Silicon is one of the most abundant elements in the earth’s crust 
and it has a band gap (~1.1 eV) suitable for PV applications. Crystalline silicon (c-Si) cells 

are mainly classified as monocrystalline (mono c-Si), multi-crystalline (multi c-Si), and EFG 

(EFG stands for edge-defined film-fed growth, which is a non-conventional growing process 
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for Si wafers) ribbon (EFG ribbon-sheet c-Si). It is a mature technology that utilizes the 

knowledge accumulated in the electronic industry. This type of solar cell is in mass 

production and they dominate almost λ0% of today’s market share as seen in Figure 1.4. What 
one usually see on rooftops are mainly c-Si PV panels. Despite their good performance, solar 

cells based on c-Si suffer from high cost mainly related to the production of Si wafers; it is 

difficult to reduce the Si consumption per wafer (wafer thickness + kerf loss) less than 250 

ȝm.4 Also, silicon wafers are fragile thus unsuitable for flexible/curved applications. 

 
Figure 1.4: Percentage of global annual production for mono c-Si, multi c-Si, and thin film PV 

technologies from 1980 to 2015.5 

Therefore the second generation solar cells have been developed with the potential to provide 

lower cost electricity by taking advantage of the thin film technology. There are three main 

families: 1. Silicon thin film solar cells, including amorphous (a-Si), microcrystalline (ȝc-Si), 

and polycrystalline (poly-Si) silicon; 2. Cadmium telluride (CdTe);6 3. Copper indium 

selenide (CIS) and copper indium gallium diselenide (CIGS).7,8  

Silicon thin film solar cells, as the name suggests, uses Si films with different crystallinity as 

the active material. The a-Si is usually hydrogenated as a result of the deposition mechanism 

thus should be referred more precisely as hydrogenated amorphous silicon (a-Si:H). The 

presence of hydrogen in a-Si turns out crucial in providing electronic properties suitable for 

photovoltaic applications.9,10 A single junction a-Si:H solar cell in superstrate (also called p-

i-n structure) configuration is schematically shown in Figure 1.5 where the light transmit first 

into the glass and a transparent conductive oxide (TCO) before reaching the active layer. The 

intrinsic a-Si:H layer is often kept at a small thickness (around 300 nm) because when the 

film gets thicker, charges (especially holes) get trapped deep in the layer so the collection loss 
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is increased.4 However, the thin active layer also features the drawback of poor absorption. 

As a result, light trapping becomes a key aspect to be employed in amorphous silicon solar 

cells.11 For example, in the structure shown in Figure 1.5, the optical confinement is realized 

by the successive layers following the rough surface texture of the front TCO. The major 

drawback of the amorphous silicon solar cell is that it suffers from a significant performance 

degradation upon exposure to sunlight. This is known as the Staebler-Wronski effect where 

the defect density in the a-Si largely increases upon solar radiation and is reversible upon 

annealing at temperatures above 150°C.12  

 

Figure 1.5: Schematics of a single junction amorphous silicon (a-Si) solar cell in superstrate 

configuration. The intrinsic a-Si:H layer (acting as the absorber) is sandwiched between p- and n-

doped layers (providing the drift field for charge separation).  

Due to its structural disorder, the strict conservation of momentum does not hold in a-Si:H. 

Thus a-Si:H exhibits a direct band gap of around 1.7 to 1.9 eV.13 Consequently a large amount 

of the infrared light cannot be utilized (see the solar spectrum in Figure 1.6a). Therefore the 

a-Si:H solar cell is often combined with a microcrystalline silicon cell to form dual- or triple-

junction (see Figure 1.6b and c) devices to make better use of the solar spectrum and to 

achieve higher efficiencies. Microcrystalline Si (ȝc-Si) refers to a material with Si crystallites 

embedded in amorphous matrix. Compared to a-Si, the ȝc-Si suffers mildly from the photo-

induced degradation.14,15 The band gap of the ȝc-Si is situated between that of c-Si and of a-

Si depending on the fraction of amorphous silicon in the obtained material. Thus ȝc-Si is 

often the bottom cell and its exact band gap can be tuned accordingly to suit the optical 

performance of the dual- or triple-junction. Polycrystalline Si (poly-Si) is a more recent 

technology that tries to combine the advantages of c-Si with those of thin film a-Si/ȝc-Si solar 

cells. Compared to ȝc-Si, poly-Si does not contain any amorphous region or only a very small 

amount (well below 1%), and its grain size ranges from 1 ȝm to 1 mm.16 The most successful 

technique for depositing poly-Si thin films so far is the solid phase crystallization (SPC) of 

amorphous silicon.17–19 Poly-Si single junction can potentially compete in efficiency with 

state-of-the-art dual- and triple-junction of a-Si:H/ȝc-Si:H. CSG Solar has achieved 9.8% 

efficiency of a 10×10 cm2 poly-Si solar mini-module already in 2006.20 The main challenges 

that poly-Si faces include matching the different referred processing temperatures of Si and 
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glass and obtaining strong solar absorption in weakly absorbing Si of only 1-2 micron 

thickness.21  

  

 

 

Figure 1.6: (a) AM 1.5G solar spectrum where UV represents ultraviolet light. Schematic drawing of 

(b) a tandem a-Si:H/ȝc-Si:H solar cell and (c) a triple junction a-Si:H/a-SiGe:H/ȝc-Si:H solar cell. 

CdTe solar cell, along with a-Si, is the most developed and widely known thin film solar cell. 

The studies of semiconducting properties of CdTe date back to the 1950s when its direct band 

gap was determined to be ~1.5 eV, matching well the solar spectrum for the conversion to 

electricity.22–25 Because of its high absorption coefficient (~105 cm-1), a thin layer of ~2 ȝm 

is sufficient to absorb the useful part of the solar spectrum.26 As seen in Figure 1.7, a 

heterojunction can be easily formed by depositing p-type CdTe onto n-type CdS. Both CdS 

and CdTe are easy to deposit stoichiometrically at 400 – 600 °C; furthermore, both materials 

are automatically doped requiring no additional doping process. As a result, CdTe solar cells 

have low production costs and high cell efficiencies up to 16.7%.27 So far the highest record 

efficiency of CdTe solar cell has reached 22.1%.28 Other than some technical issues related 

with CdTe solar cells such as finding a reliable, moisture-resistance way of contacting the 
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rear of the cell,29–31 and implementing thin CdS layers without having a pinhole, the main 

challenges that CdTe PV technologies are facing today is the toxicity of Cd and the scarcity 

of Te.  

 
Figure 1.7: Device schematics of a superstrate CdTe solar cell. 

Another chalcogenide-based family of materials include copper indium selenide (CIS) and 

copper indium gallium diselenide (CIGS). The current module efficiencies of CIS and CIGS 

range from 7% to 16%, but efficiencies of up to 22.6% (without concentrator) have been 

achieved in the laboratory making them comparable to state-of-the-art poly-Si cells.28 

However, the CIS and CIGS are reported to be unstable under moisture in all common alloy 

compositions (indium can be replaced by gallium and selenium by sulfur to form a 5-

component alloy system).32,33 In addition, as CdTe cells, CIS and CIGS solar cells also suffer 

from the issues of toxicity of Cd and the scarcity of In. Thus considerable efforts are being 

directed to replacing the absorber CIGS layer with new materials such as copper zinc tin 

sulfur (CZTS).34,35  

Any mature solar cell technology, be it first or second generation, is likely to eventually 

evolve to the stage where costs are dominated by those of the constituent materials. The 

ultimate solution for photovoltaics therefore is to develop techniques using very low-cost 

material and potentially with very high conversion efficiency surpassing the Shockley-

Queisser limit for single junction cells of 31%.36 This has laid the foundation for the 

development of the third generation solar cells.37–39 Currently, the third generation solar cells 

are still at the pre-commercial stage and vary from technologies under demonstration to novel 

concepts still under basic research & development. They can be roughly divided into 

concentrating PV, dye-sensitized solar cells (DSSC), organic solar cells, and emerging solar 

cells (such as perovskite and quantum-dot solar cell). 

Concentrator PV refers to photovoltaic systems where optical devices (lens, mirrors) are 

integrated so as to concentrate direct solar radiation onto targeted solar cells to achieve greater 

efficiency. The sunlight concentration factor ranges from 2 to 100 suns (low- to medium 

concentration) up to 1000 suns (high concentration). Usually additional cooling systems are 

required to maintain the cells at proper temperatures. The concept of concentrating is often 
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coupled with high-efficiency cells (and likely small active area) such as single/multiple 

junction of c-Si or III-V (e.g. GaAs) semiconductor solar cells, thus the price is quite high. 

The organic based solar cells started with the hope to achieve a long term PV technology that 

is economically viable for large-scale power generation.40 The organic materials can be 

fabricated using high throughput and low temperature approaches that employ one of a variety 

of well-established printing techniques in roll-to-roll process, reducing the module related 

manufacturing costs.41 Furthermore, the use of flexible substrates in organic solar cells 

present great potential in new commercial field such as building-integrated applications or 

other portable products impossible for conventional Si-based PV techniques. Nevertheless, 

the fairly weak van der Waals forces between molecules in organic materials give rise to little 

overlap of electron wave functions from neighboring molecules. The direct consequence is 

that the transport properties of organic materials are rather poor due to the large effective 

masses and consequently small mobilities of electrons and holes. The short exciton diffusion 

length constraints the absorber layer thickness to be small for effective charge separation in 

organic solar cells of planar configuration, which, in turn, results in very poor optical 

absorption and consequently low efficiencies.42 In addition, organic solar cells in general 

suffer from the stability problem of organic materials since they are very susceptible to 

oxygen and water. Nowadays, hybrid solar cells that combine organic and more stable 

inorganic materials are under development.43  

Contrary to the dominant photovoltaics based on solid-state junctions, the photoelectric effect 

was in essence first observed when a semiconductor was dipped into an electrolyte by 

Edmond Becquerel.44 The development of photoelectrochemical (PEC) cells to convert solar 

radiation into electricity has come in the stage due to its effectiveness (similar to the natural 

photosynthesis process), simple preparation and large room for material tunability. There 

were attempts back then to develop PEC cells by dye sensitization to improve optical 

absorption below the band gap energy of the semiconductor material but results were not 

promising due to the small contact surface between the dye and the flat semiconductors.45,46 

τ’Regan and Grätzel then brought up the concept to use mesoporous nanocrystalline 
semiconductors, after which the efficiency of DSSC started to rise extensively.47–53 A typical 

DSSC employing mesoporous TiO2 layer and the I-/I3
- redox couple is illustrated in Figure 

1.8. The dye absorbs photons of sufficient energy to excite electrons from the highest 

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), 

generating electron hole pairs (step 1). The photogenerated electrons are injected into the 

conduction band of the meso-porous TiO2 layer (step 2), leaving the dye in its oxidized state. 

The oxidized dye returns to the ground state (step 3) by transferring holes to the electrolyte 

(3I-+2h+I3
-). The electrons in meso-porous TiO2 are transported to the transparent working 

electrode (step 4), typically glass substrate coated with F-doped SnO2 (FTO) film, and then 

reach the counter electrode through the external circuit (step 5). The oxidized electrolyte (I3
-) 

is then reduced to 3I- (step 6) completing the current circuit. As a technology which tolerates 

lower purity materials, easy and lower cost processing, DSSC has achieved record efficiency 
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of 13%,54 offering a promisingly economic solution to large-scale PV applications. However, 

due to the complexity of the DSSC system, research is still ongoing to realize a complete 

understanding of the working principles.55–57 Another research axis in the field of DSSCs is 

to look for solid hole transport media to replace liquid media to avoid any potential leakage 

or freezing issues. 

 

Figure 1.8: Device schematics of a dye-sensitized solar cell (DSSC).58 

Other approaches to overcome Shockley-Queisser limit include tandem cells,59 hot carrier 

solar cells,60–62 solar cells producing multiple electron-hole pairs per photon via impact 

ionization,63,64 multi-band and impurity solar cells,65 and thermophotovoltaic/thermophotonic 

cells.66 A good example is the emerging quantum dot solar cells which may potentially reach 

up to about 66% conversion efficiency by producing either higher photovoltages via miniband 

transport and hot carrier collections, or higher photocurrents via impact ionization processes. 

There are generally three different configurations usually adopted in quantum dot solar cells: 

1. quantum dot arrays where the quantum dots are ordered in 3D array with inter-spacing 

sufficiently small as to enable strong electronic coupling and formation of minibands;67,68 2. 

quantum dot sensitized nanocrystalline TiO2 solar cells which are essentially a variation of 

the DSSC;69,70 3. quantum dots dispersed in organic semiconducting polymer matrices where 

quantum dots form junctions with organic semiconducting polymers.71–73  

Progress in efficiencies of research scale PV technologies of some of the three generations 

over the last several decades is shown in Figure 1.9.28 For each type of PV technology, device 

efficiency increases steadily. It’s surely not a utopia that photovoltaics would become the real 
solution to the energy crisis in the future, particularly if low-cost and efficient technological 

solutions using abundant materials become mature at an industrial scale. 



1.1 Energy and Photovoltaics: Overview 

12 
 

 

F
ig

u
re 1

.9
: P

ro
g
ress o

f resea
rch

 sca
le p

h
o
to

vo
lta

ic d
evice efficien

cies u
n
d
er A

M
 1

.5
 sim

u
la

ted
 so

la
r illu

m
in

a
tio

n
 fo

r so
m

e o
f th

e th
ree 

g
en

era
tio

n
s o

f P
V

 tech
n

o
lo

g
ies. 28 



1.2 Basics of Semiconductors 

13 
 

1.2 Basics of Semiconductors  

1.2.1 Electronic structure of atoms 

Since atoms are the building blocks of solids as semiconductors, a quick review concerning 

the electronic structure of atoms is necessary. The modern theories of atomic and solid 

structures are developed based on the development of quantum theory. The wave-particle 

duality of electrons has inspired the Austrian physicist Erwin Schrödinger to pioneer the 

famous “Schrödinger equation” in which the electron is described by its wave function ψ. 

The one dimensional one-electron Schrödinger equation is shown in the following1: 

 
− ħβ

βm
dβȥ
dβx

+ Vȥ = Eȥ (1.1) 

where ȥ and E refer to the wave function and the total energy while - ħβ

βm
dβ

dβx
 and V refer to the 

kinetic and potential energies, respectively. 

According to Schrödinger equation, the energy of electrons in an atom is quantized. Four 

quantum numbers can be derived to describe the energy levels, or orbitals, of electrons in the 

atom. 

1) Principal quantum number n specifies the energy of an electron and the size of the orbital. 

All orbitals that have the same value of n are said to be in the same shell. For historical reasons, 

the n can also be represented by capital letters K (n=1), L (n=2), M (n=3) etc. 

2) Angular quantum number l specifies the shape of the orbital with a particular principal 

quantum number. It divides the particular shell into groups of subshells. The subshell of l=0, 

1, 2, and 3 is called as s-, p-, d-, and f-orbital, respectively. It shows the amount of orbital 

angular momentum the electron has and is a measure of the revolution of the electron about 

some axis. The value of l can be any integer from 0 to n-1. 

3) Magnetic quantum number ml describes how the orbitals arrange themselves in a 

magnetic field. To be specific, it shows how much of the orbital angular momentum is around 

an axis in the direction of the magnetic field. The value of ml can take any integer (positive, 

null or negative) with its absolute value not exceeding l. The total possible ml is 2l+1.   

4) Spin quantum number ms indicates the orientation of an electron’s spin with respect to a 
magnetic field. An electron can be either spin up (ms = +1/2) or spin down (ms = −1/2, in ħ 

units). The Pauli exclusion principle excludes the situation where two electrons in the same 

atom would have identical values for all four of their quantum numbers. To restate, if two 

electrons are in the same orbital with the same n, l, and ml, they must have opposite values of 

ms. 

                                                 
1 It is essentially time-independent Schrödinger equation. 



1.2 Basics of Semiconductors 

14 
 

1.2.2 Band structure  

Solids, as metals or semiconductors, can be viewed in a simple picture as an assembly of 

atoms ordered periodically in a finite volume. One of the most important theories in 

advancing the understanding of the properties of solids is the development of band theory. 

1.2.2.1 Free electron model 

In the most naïve picture, electrons in the solids (mainly in metals) are treated as a gas of 

freely-moving electrons where the potential interactions with the positive ion cores are 

neglected (especially its spatial dependence). If the solid is assumed to be a box with width 

a, the electrons can move freely within the box where the potential is zero. In this case, the 

one dimensional one-electron Schrödinger equation becomes:  

 
− ħβ

βm
dβȥ
dβx

= Eȥ (1.2) 

By solving the Schrödinger equation for the case of infinite square well,74,75 and by assuming 

boundary conditions, the energy of electron is expressed as  

 E = ħβ

βm kβ = ħβ

βm (
nπ
a

)
β
 (1.3) 

with k called wave vector and is defined as k=2π/Ȝ. The electron waves represent running 

waves with wavelength λ and carry momentum of p=ħk. 

For a free electron, its allowed energy is essentially continuous from zero to infinity with its 

parabolic-like dispersion relation as plotted schematically in Figure 1.10. 

 

Figure 1.10: Energy E versus wave vector k for free electrons. 

The free electron model gives good interpretations for some properties of metals such as heat 

capacity, thermal and electrical conductivity, but it fails to distinguish between metals, 

semiconductors, and insulators. It also fails to explain why the Hall coefficient can be positive 

and many other properties of solids. The reason is that the free electron model does not take 

into account the presence of the periodic lattice, which turns out to be crucial in determining 

the properties of solids.  
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1.2.2.2 Nearly free electron model 

Nearly free electron model assumes that the electrons in the solid are treated as weakly 

perturbed by the periodic potential of the ion cores. As a consequence, the electron cannot 

take on energies of any value (as a free electron does), but there appear energy values that the 

electrons are forbidden to take as shown in Figure 1.11. The energy gap appears at k=±π/a, 

where the Bragg reflection takes place. In fact, at these wave vectors with forbidden energies, 

the solution to the Schrödinger equation does not exist. The region in k-space between -π/a 

and π/a is the first Brillouin zone of the lattice. At the first Brillouin zone, the wave function 

of electrons represents a standing wave: it composes of two equal but opposite travelling 

waves. In other words, a wave travelling to the right is Bragg-reflected to travel back (to the 

left) and vice versa: it does not go anywhere. Two standing waves ȥ(+) and ȥ(−) can be 

formed and they pile up electrons at different regions. Consequently the potential energy of 

ȥ(+) is differed to that of ȥ(−) by an energy gap of EG.         

 

Figure 1.11: E versus k for an electron in a one dimensional lattice with lattice constant of a. 

The electron is assumed to be slightly perturbed by the periodic potential of the ion cores.75 

Bloch theorem 

The importance of the periodic potential applied by the crystal lattice to the wave function 

can be addressed by the Bloch theorem which states that:  

“The eigenfunctions of the wave equation for a periodic potential are the 

product of a plane wave exp (ik ⋅ r) times a function Vkሺrሻ with the periodicity 

of the crystal lattice.” 

So the solutions of the Schrödinger equation for a periodic potential takes the following form 

 ȥkሺrሻ = Vkሺrሻ exp (ik ⋅ r) (1.4) 

where Vkሺrሻ is a periodic function: Vkሺrሻ = Vkሺr + Tሻ with T being the translation vector of 

the crystal lattice. 

1.2.2.3 Tight binding approximation 

The band formation in solids may best be illustrated with the tight binding approximation, or 

the linear combination of atomic orbitals (LCAO) approximation. Such approximation 
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appears to ease the determination of energies of occupied electronic states in solids where the 

number of atoms are literally enormous. The key principle of the approximation states that 

the wave function of the solid can be made up of a linear combination (or superposition) of 

orbitals of isolated atoms. In this case, instead of unknown functions, we are left with only 

unknown coefficients in the eigen-energies. In the simplest case, imagine atom A approaches 

atom B as in Figure 1.12 with their wave functions (of 1s state) marked as ȥA and ȥB, 

respectively.  

 
Figure 1.12: The linear combination of 1s atomic orbitals of atom A (ȥA) and atom B (ȥB) resulting 

in antibonding and bonding orbitals.76 

When they are brought together, their wave functions start to overlap. Two combinations arise: 

(ȥA + ȥB) or (ȥA − ȥB). In (ȥA + ȥB), there is a certain probability that electrons appear in the 

midway of the two nucleus, composing the bonding state with lower energy; while in (ȥA - 

ȥB), the probability density vanishes midway between the two nucleus thus no extra binding 

appear, composing the anti-bonding state. When N atoms are brought together to form a solid, 

there will be a total of N orbitals formed for each of the atomic orbitals. As an example, the 

energy bands of Na calculated using the tight binding approximation are schematically shown 

in Figure 1.13.  

 
Figure 1.13: Effect of interatomic spacing on atomic energy levels and bands formation for solid Na, 

calculated using the tight binding theory. The shaded areas represent bands of energy levels formed 

by significant overlap of atomic orbitals on adjacent atoms.77 
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At the interatomic distance r0, the 1s, 2s and 2p orbitals on adjacent Na atoms do not overlap. 

Instead, they remain as discrete atomic orbitals associated with individual atoms, and thus are 

represented as thin lines. Whereas the 3s and 3p orbitals already overlap and form bands 

represented as shaded area. If the interatomic distance reduces from r0 to r’, then the 2s and 

2p orbitals would also overlap to form bands of energy levels (shaded). The 1s levels would, 

however, still be present as discrete levels at distance r’. 

One of the significant contributions of the band theory is that it makes distinction between 

metals, semiconductors, and insulators. As illustrated by the simplest band structure for 1D 

system in Figure 1.14, if the bands are partially filled the solids behave as metals; while if the 

allowed energy bands are either filled or empty, the solid behaves either as semiconductors 

with small EG or insulators with large EG. The lower band which is completely filled with 

electrons is termed as valence band (VB) while the upper band which is empty is termed 

conduction band (CB). These bands are actively involved in determining the electrical 

conductivity of the solids thus are of particular importance.  

 
Figure 1.14 Schematic band structure of metal, semiconductor, and insulator. 

Electrons in crystals no longer behave as free electrons. Instead, they respond to applied 

electric or magnetic fields as if they are endowed with an effective mass m*, which may be 

larger or smaller than the free electron mass, or even may be negative. It is defined as: 

 

1
m* = 1

ħβ
dβE
dkβ = dβE

dpβ  (1.5) 

1.2.3 Electrons and holes 

Electrons and holes are two types of charge carriers in semiconductors: the occupied states in 

the conduction band are described by electrons while the unoccupied states in the valence 

band are described by holes. Since the properties of the band can be equally well described 

in terms of occupied or unoccupied states, the holes are just as real as the electrons with the 

following properties: 

 qh = +e (1.6a) 

 mh
* = −me

* (1.6b) 

 ph = −pe (1.6c) 
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 Eh = −Ee (1.6d) 

In contrary to electrons in the conduction band, holes in the valence band can be described as 

positively charged (qh ) particles with positive effective mass (mh
* ) as well as positive 

momentum (ph) and energy (Eh). In the following discussion, when necessary, the physical 

quantities corresponding to electrons will be distinguished from those of holes using subscript 

e for electron and h for hole for clarification.   

In order to calculate the density of electrons (ne ), one needs to integrate the density of 

electrons in the energy interval dEe over the complete conduction band: 

 
ne = ∫ DeሺEeሻfeሺEeሻdEe

∞
Ec

 (1.7) 

where DeሺEeሻ is the density of states of electrons and feሺEeሻ is the Fermi-Dirac distribution 

describing the probability of electrons occupying the state with specific energy Ee. 

Density of states DeሺEeሻ 

From Heisenberg’s uncertainty principle, a phase space volume per state is of the form: 

 ሺΔxሻγሺΔpሻγ = hγ (1.8) 

If we treat the electrons as not localized, their uncertainty in position is ሺΔxሻγ = V, where V 

is the volume of the entire crystal. Thus a state in momentum space would have the volume: 

 ሺΔpሻγ = hγ

V  (1.9) 

All states with momentum < |p| fill a spherical volume of 4/γπ|p|γ(at least of such a sphere 

that is not close to a Brillouin zone extremity) thus the number of states can be obtained by 

dividing the total volume by the volume of a single state and taking into account that each 

state can be occupied by two electrons with opposite spins, we obtain the total number of 

electrons: 

 
σeሺ|p|ሻ = 8π|p|γV

γhγ  (1.10) 

The momentum |p| can be replaced with the kinetic energy of electrons (Ee,kin) according to 

the following equation:2 

 
Ee,kin = Ee − Eω = pβ

βme
* (1.11) 

where Eω is the energy of the conduction band edge, namely, the conduction band minimum. 

Finally the density of states in the conduction band per volume and per energy interval at the 

energy Ee is: 

                                                 
2 Strictly speaking, Eq (1.11) is valid only in the vicinity of the conduction band edge (Eω)  
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DeሺEeሻ = 1

V
dσe

dEe
= 4π ቆβme

*

hβ ቇγ
β ሺEe − Eωሻ1

β (1.12) 

Fermi distribution feሺEeሻ 

To know which states are actually occupied by electrons, one should consider the quantum 

statistics for electrons. The quantum statistics that applies for the distribution of particles with 

1/2 spin is the Fermi-Dirac distribution with the following form: 

 
feሺEeሻ = 1

exp [ሺEω − EFሻ/kT] + 1 (1.13) 

where EF  is the Fermi energy representing the energy at which the Fermi distribution 

feሺEFሻ =1/2 and k is the Boltzmann constant. The Fermi distribution is drawn in Figure 1.15 

for illustration. 

 

Figure 1.15: The energy bands together with the Fermi distribution function. The Fermi level EF is 

defined such that feሺEeሻ=1/2 if Ee = EF.75  

Therefore, the density of electrons in the conduction band is calculated as: 3 

 ne = σωexp ሺ− Eω − EF

kT ሻ (1.14) 

with 

 
σω = βሺβπme

*kT
hβ ሻγ/β (1.15) 

                                                 
3 Strictly speaking, Eq (1.14) is approximated only for non-degenerated semiconductors.  
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NC is called the effective density of states of the conduction band. In the similar manner, the 

density of holes in the valence band can be obtained as: 

 nh = ∫ DeሺEeሻ[1 − feሺEeሻ]dEe = σVexp ሺ− EF − EV

kT ሻEV−∞  (1.16) 

with  

 σV = βሺβπmh
*kT

hβ ሻγ/β (1.17) 

NV is the effective density of states of the valence band containing the effective mass of the 

holes mh
* at Ee = EV. 

We then obtain the important relationship: 

 
nenh = σω exp (− Eω − EF

kT ) σV exp (− EF − EV

kT )= σωσV exp (− Eω − EV

kT ) = σωσVexp ሺ− EG

kTሻ (1.18) 

The product of the electron and hole density does not depend on the position of the Fermi 

energy but on the fundamental energy gap, and consequently it cannot be influenced by 

doping. In a pure (so called intrinsic) semiconductor, the electrons in the conduction band 

originate from the valence band. Therefore the density of the electrons is equal to the density 

of holes and both are known as the intrinsic density ni: 

 nenh = ni
β = σωσVexp ሺ− EG

kTሻ (1.19) 

It follows that the Fermi level in an intrinsic semiconductor is not exactly in the middle of the 

energy gap due to the different effective density of states in the conduction and valence bands: 

 
EF = 1

β
ሺEV + Eωሻ + 1

β kTln
σV

σω
 (1.20) 

Figure 1.16 shows the energy scale for electrons with the zero point defined as the energy of 

a free electron in vacuum with both electrical potential and kinetic energy being zero.  

 
Figure 1.16: The energy scale for electrons in a semiconductor.78 



1.2 Basics of Semiconductors 

21 
 

Electron bound to the solid has an electrical potential of φ, which is usually taken as the 

reference point for discussion rather than the real zero point. As is seen, the binding energy 

of an electron in a state at the lower boundary of the conduction band is referred to as the 

electron affinity Ȥe. It is a measure of the energy change when an electron is added to a 

neutral atom to form a negative ion. While the ionization potential Ip defines the binding 

energy of an electron in a state at the higher boundary of the valence band. It is the energy 

necessary to remove an electron from the neutral atom.   

1.2.4 Doping 

For intrinsic semiconductors, the carrier concentration (electrons or holes) and the 

conductivity is low. In order to improve the conductivity, one common approach is to dope 

the semiconductors by introducing impurity atoms. Take Si as an example, pure Si has 4 

valence electrons meaning a single Si atom needs to simultaneously bond to four neighbors 

in order to be chemically stable. On the one hand, if phosphor P atoms are introduced in pure 

Si as seen in Figure 1.17a, four of the five valence electrons in P atoms form bonds with the 

four neighboring Si atoms while the fifth valence electron is not required for bonding. Due to 

the large permittivity of the semiconductor, this electron becomes weakly bound to the 

phosphor atom and can be easily donated to the conduction band by thermal energy. One P 

atom “donates” a free electron into the Si lattice enhancing the concentration of electrons and 

is thus called a donor. The Si doped with P is said to be n-doped. On the other hand, if boron 

B atoms are introduced in pure Si as in Figure 1.17b, only three electrons are available to 

occupy the bonds to the four neighboring Si atoms. The B atom will thus easily accept an 

additional electron to occupy the fourth bond, leaving behind a mobile hole in the valence 

band. Therefore ψ is termed “acceptor” enhancing the concentration of holes. The Si doped 
with B is said to be p-doped. The ionized donor and acceptor ions are consequently positively 

and negatively charged, respectively. 

 

Figure 1.17: The (a) n-doping by P atoms, and (b) p-doping by B atoms in Si illustrated by the bonding 

model. The substitution of Si by P releases a free electron resulting in positively ionized P atom while 

the substitution of Si by B releases a free hole resulting in negatively ionized B atom. 
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After doping, the semiconductor remains electrically neutral thus fulfil the charge neutrality 

equation: 

 ρ = eሺnh + nD
+ − ne − nχ

-ሻ = 0 (1.21) 

where nh and ne refer to the concentration of holes and electrons in doped semiconductors, 

respectively; while nD
+and nχ

- refer to the concentration of ionized donors and acceptors, 

respectively. 

For shallow donors and shallow acceptors, it is usually assumed that the donors (nD) and 

acceptors (nχ) are almost completely ionized at room temperature, namely, ne ≈ nD
+ ≈ nD

 

for n-doped semiconductors and nh ≈ nχ
- ≈ nχ  for p-doped semiconductors. Due to the 

change of carrier concentrations by doping, the Fermi level positions in doped semiconductor 

also change: increasing electron concentrations brings the EF closer to the conduction band 

edge while increasing hole concentrations brings the EF closer to the valence band edge, as 

shown in Figure 1.18. 

 

Figure 1.18: Schematic illustration of the different positions of Fermi energy in n- and p-doped 

semiconductors. 

For n-type semiconductors: 

 
EF = Eω − kTln

σω

ne
 (1.22) 

For p-type semiconductors: 

 
EF = EV + kTln

σV

nh
 (1.23) 

Note that in doped semiconductors, Equation 1.19 still applies.  

1.2.5 Quasi-Fermi level 

The first important process in photovoltaic conversion is the optical absorption by the 

absorber material generating free electrons and holes. This process can be visualized in the 

energy diagrams as the excitation of an electron in the valence band to the conduction band, 

which can be of direct and indirect nature as shown in Figure 1.19. In the direct absorption 

(Figure 1.19a), a photon Ȗ is absorbed by the semiconductor generating an electron and a hole 

without changing the momentum of the electron. Semiconductors enabling direct absorption 
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are said to have direct band gap. Whereas for the indirect absorption as in Figure 1.19b, the 

absorption of a photon Ȗ involves a momentum change satisfied by the absorption of an 

additional phonon Γ. Such semiconductors are said to have an indirect band gap. Due to the 

necessary involvement of phonons, semiconductors with indirect band gap usually have less 

efficient optical absorption than those with direct band gap.   

 
Figure 1.19: (a) Direct optical transition which involves only a photon Ȗ, and (b) indirect optical 

transition which involves not only the photon Ȗ but also a phonon Γ.75 

Upon illumination, additional electrons and holes are generated in the semiconductor by 

absorption of photons. Both the electron and hole densities are higher than in the dark, that is 

nenh > ni
β , which could not be achieved by doping. In this irradiated state, two Fermi 

distributions need to be used: the Fermi distribution fω with the quasi-Fermi energy EFω is 

used to describe the occupation of states in the conduction band; while the Fermi distribution 

fV with the quasi-Fermi energy EFV is used to describe the occupation of states in the valence 

band: 

 ne = σωexp ሺ− Eω − EFω

kT ሻ (1.24) 

 nh = σVexp ሺ− EFV − EV

kT ሻ (1.25) 

 nenh = σω σVexp (− Eω − EV

kT ) exp (EFω − EFV

kT ) = ni
β exp (EFω − EFV

kT ) (1.26) 

The two quasi-Fermi energies are schematically shown in Figure 1.20. It is learned that the 

quasi-Fermi energy and the electrochemical potential (Ș) holds the following relation for 

electrons and holes:4 

 EFω = Șe = ȝe − eφ (1.27) 

 EFV = −Șh = ȝh + eφ (1.28) 

                                                 
4 For more details, see chapter γ in “Physics of Solar ωells” by Peter Würfel 
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where ȝe and ȝh are the chemical potential of electrons and holes, respectively. The absolute 

value of the chemical potential ȝe for electrons is also known as the work function. It suggests 

that the quasi-Fermi energies are representative of electrochemical energies stored by 

electrons and holes upon illumination. 

 

Figure 1.20: The energy scale of electrons in a semiconductor under illumination.78 

As a matter of fact, the electrochemical energy of an electron-hole pair is equivalent to the 

chemical energy of the electron-hole pair since the electron and hole at the same location are 

in the same electrical potential: 

 EFω − EFV = Șe + Șh = ȝe + ȝh (1.29) 

The solar cell thus converts the solar energy first into chemical energy as in photosynthesis 

before further conversion to electrical energy.  

1.3 Physics of Solar Cells 

1.3.1 Basic process in solar cells  

The basic operation of a solar cell is composed of three steps: 

1) generation of the charge carriers by photon absorption in the absorber material 

2) separation of the photo-generated charge carriers 

3) collection of the photo-generated charge carriers 

Upon light absorption in a semiconductor, electrons in the valence band are excited into the 

conduction band by the absorbed photon. To be absorbed, photons must have at least the 

energy of the band gap. Those photons with energies smaller than the band gap are not 

absorbed. After electrons are excited into the conduction band in a semiconductor, they start 

to lose energy via interaction with the crystal lattice (phonons), as shown in Figure 1.21. Once 

they reach the lower edge of the conduction band, the electrons need to lose the gap energy 

in order to return to a state in the valence band, which requires either losing energy in a single 

step or generating simultaneously a large number of phonons. Both processes, however, are 
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much less probable. χs a result, the electrons may “live” up to 10-3 s in the conduction band, 

allowing the extraction of the electrons possible. On the contrary, the energy range for 

electrons is continuous in metals, the photo-excited electrons lose energy easily step by step, 

in small portions, by generating phonons. The process takes place typically in times of the 

order of 10-12 s thus metals cannot function properly as absorber materials in solar cells. 

 
Figure 1.21: (a) Excitation of an electron from the valence band to the conduction band in a 

semiconductor by absorbing a photon of energy hȞ and susbequent thermalization to the conduction 

band edge by generation of phonons with energy EΓ.(b) Excitation  of an electron in the conduction 

band of a metal by absorbing a photon of energy hȞ and susbequent loss of energy by generation of 

phonons with energy EΓ.78 

In a homogeneously exposed n-doped semiconductor as seen in Figure 1.22a, the Fermi 

energies for the conduction and valence bands, although different inside the semiconductor, 

merge into a single Fermi energy at the surface. Because of an assumed strong surface 

recombination, the concentrations of electrons and holes at the surfaces at the right and left 

do not differ from their values in the dark state, even though the semiconductor is illuminated. 

As a result, the gradients of the two Fermi energies drive electrons and holes towards both 

surfaces, where they recombine. There is no preference for the transport of electrons on one 

direction and holes in the opposite direction, and thus no current or voltage is expected in 

such symmetric structure. 

 
Figure 1.22: (a) Dispersion of the Fermi energies of a homogeneously illuminated n-type 

semiconductor with strong surface recombination on the left and on the right. (b) Distribution of the 

Fermi energies of a homogeneously illuminated p-n structure.78 

If one replaces the right half n-doping region by p-doping, an asymmetric structure results as 

seen in Figure 1.22b. The Fermi energies for the conduction and valence bands are now 
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different in the left and right sides. As a result, the electrons are driven towards left where the 

Fermi energy decreases while the holes are driven towards right where the Fermi energy 

increases (despite the small gradients of Fermi energies). However, such configuration is not 

ideal because the quasi-Fermi level difference at the two surfaces is less than the difference 

inside the semiconductor, meaning the chemical energy is not completely converted into 

electrical energy. A better structure is shown in Figure 1.23 where the absorber layer is 

sandwiched between an electron membrane (n-type material) and a hole membrane (p-type 

material). In this configuration, the injection of holes to the electron membrane is 

energetically prevented by the energy barrier in the valence band realized by choosing an n-

type semiconductor with larger band gap. In the same way, a larger band gap of the hole 

membrane on the right combined with a smaller electron affinity results in an energy barrier 

in the conduction band for electrons.  

 

Figure 1.23: The simplest picture of a solar cell structure where the absorber material is sandwiched 

between an electron membrane (n-type material) and a hole membrane (p-type material).78 

Energy band alignment (in solar cells)     

Currently the structures of many types of solar cells of key technological importance indeed 

resemble that of Figure 1.23 with absorber, electron and hole membranes being different 

materials. Furthermore, metal contacts need to be deposited in order for the solar device to 

power external load. When two different materials are made into contact, the charge transport 

at the interface is of particular importance. The proper design should be such that the energy 

positioning of the two contact materials at the interface best facilitate the charge transport. 

We introduce here very briefly the barrier formation at two different materials made into 

contact. A barrier is essentially a step in the course of the band edges in the band diagram. 

The most commonly encountered interface include metal-semiconductor and semiconductor 

heterojunction interfaces.  

1) Metal-semiconductor interface 



1.3 Physics of Solar Cells 

27 
 

The barrier occurring at the semiconductor-metal contact is often referred as Schottky barrier. 

As illustrated in Figure 1.24, when in contact with n-type semiconductor, a metal with larger 

work function would induce a depletion region at the interface. The electrons in the n-type 

semiconductor thus sees a barrier to transport into the metal. The step between the Fermi level 

of the metal and the conduction band edge of the n-type semiconductor is designated as ϕB,n. 

Similarly, for p-type semiconductor, when in contact with a metal with smaller work function, 

a hole depletion layer is formed at the interface. Thus holes see a barrier to transport into the 

metal. The step between the Fermi level of the metal and the valence band edge of the p-type 

semiconductor is designated as ϕB,p. Therefore, to form an ohmic contact (i.e. a contact 

facilitating the exchange of majority carriers), a metal with smaller work function should be 

selected to be in contact with n-type semiconductor while a metal with larger work function 

should be selected in contact with p-type semiconductor. Alternatively, the ohmic contact can 

be formed if the semiconductor is highly doped. In this case, the depletion region can be made 

so thin that the majority carriers can tunnel through.     

 
Figure 1.24: (a) Schottky barrier ϕB,n formed between metal and n-type semiconductor, (b) Schottky 

barrier ϕB,p formed between metal and p-type semiconductor.79 

(2) Semiconductor-semiconductor heterojunction 

The barriers at semiconductor heterojunction are referred as conduction band and valence 

band discontinuity/offset, denoted as ∆ECB and ∆EVB, respectively (see Figure 1.25).  

 
Figure 1.25: The band alignment of two semiconductors before and after contact.80 
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The relative arrangement of the bands at an interface is generally referred to as band alignment 

or band lineup. Different theories have been developed to predict the band alignment between 

semiconductor heterojunctions such as the electron affinity rule, charge neutrality level,81–83 

and common anion rules.84 Despite all the theories developed, no general rule exists for 

predicting the energy alignment between semiconductors. Experimental approach such as 

interface experiments carried out by X-ray photoelectron spectroscopy compose an important 

aspect to enable accurate determination of the interface alignment.85,80  

1.3.2 p-n junction  

Space charge region  

When an n-type semiconductor is brought into contact with a p-type semiconductor, the 

asymmetric concentration of mobile charges (i.e. electrons in n-type semiconductor and holes 

in p-type semiconductor) causes a diffusion current of electrons from the n-type to the p-type 

semiconductor and simultaneously of holes from the p-type to the n-type semiconductor. The 

electrons diffused into the p-type semiconductor recombine with the high concentration of 

holes and the holes diffused into the n-type semiconductor recombine with the high 

concentration of electrons. As a consequence, at the junction there are no more mobile 

electrons and holes (note electrons and holes are still moving kinetically). What remains in 

the junctions are ionized donors and acceptors with positive and negative charges, 

respectively. Therefore this region is called depletion region or space charge region. Due 

to the presence of the oppositely charged ionized atoms, an internal electrical field is formed 

which drives the electrons and holes away from the space charge region, giving rise to a drift 

current which is in opposite direction with the diffusive current. In equilibrium, the two 

currents compensate each other and no more current flows through the p-n region.  

The presence of the internal electric field inside the p-n junction means that the electrostatic 

potential is varying across the space charge region. We assume that the space charge density 

(ρ) is fully determined by the concentration of ionized dopants in the depletion region whereas 

the space charge density is zero outside the p-n region (where charge neutrality is conserved). 

This approximation is called the depletion approximation, with which the space charge 

density at the p-n region is schematically drawn in Figure 1.26a. If the widths of the p-n region 

in the n- and p-type semiconductors are denoted as wn and wp, respectively, we have: 

 ρn = enD
+ ≈ enD    for -wn < x ≤ 0 (1.30) 

 ρp = −enχ
- ≈ −enχ    for 0 ≤ x < wp (1.31) 

χccording to Poisson’s equation, we have for the one-dimensional case: 

 

dβφ
dxβ = − dE

dx = − ρ
İrİ0

 (1.32) 

where φ is the electrostatic potential, E is the electrical field, İr is the relative permittivity of 

the semiconductor and İ0 is the permittivity of the vacuum.  
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By applying proper boundary conditions and set the electrostatic potential at the boundary of 

the space charge region on the p-type semiconductor as zero, we have: 

 
Enሺxሻ = e

İrİ0
σDሺwn + xሻ for -wn < x ≤ 0 (1.33) 

 
Epሺxሻ = e

İrİ0
σχሺwp − xሻ for 0 ≤ x < wp (1.34) 

and 

 
φnሺxሻ = − e

βİrİ0
σDሺx + wnሻβ + e

βİrİ0
ሺσDwn

β + σχwp
βሻ for -wn < x ≤ 0 (1.35) 

 
φpሺxሻ = e

βİrİ0
σχሺx − wpሻβ for 0 ≤ x < wp (1.36) 

The electrostatic potential difference across the p-n junction is therefore: 

 
φ0 = φሺ−wnሻ − �(wp) = �ሺ−��ሻ = e

βİrİ0
ሺσDwn

β + σχwp
βሻ (1.37) 

The φ0  is termed as the build-in potential or diffusion potential and is an important 

characteristic of the junction. The distribution of the electric field, the electrostatic potential 

as well as the energy band alignment across the p-n junction is schematically drawn in Figure 

1.26. 

 
Figure 1.26: (a) The distribution of space charge density ρ, electric field E, and electrostatic potential 

φ across the p-n junction. (b) The energy band alignment at the p-n junction.86 

p-n junction in the dark with applied voltage  

To detail the charge current in a p-n junction, the forward direction in which the electrons 

of the n-region and holes of the p-region flow both towards the junction, should be 

distinguished from the reverse direction in which electrons and holes flow away from the 

junction. When no voltage is applied, as we have seen previously, the diffusive and drift 
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currents are in equilibrium and no net current flows inside the p-n junction. However, if a 

forward voltage is applied to the junction, the potential difference across the junction is 

reduced (smaller than the build-in potential φ0). As a result, the drift current becomes smaller 

than the diffusive current and a net diffusive current is flowing. This current is determined by 

the recombination of the diffusing minority carriers with the majority carriers, thus termed 

recombination current Jrec. On the contrary, if a reversed voltage is applied to the junction, 

the drift current becomes larger than that of diffusive current, thus a net drift current flows in 

the p-n junction. The recombination current is compensated by the so-called thermal 

generation current Jgen, which is caused by the drift of minority carriers that are present in 

the corresponding doped regions across the junction.87 The Boltzmann approximation states 

that the recombination current increases with the Boltzmann factor when a moderate forward 

voltage is applied: 

 JrecሺVሻ = JrecሺV = 0ሻexp ሺqV
kTሻ (1.38) 

Whereas the generation current is almost constant of the potential barrier across the junction 

and is determined by the availability of the thermally-generated minority carriers in the doped 

region: 

 JgenሺVሻ ≈ JgenሺV = 0ሻ (1.39) 

Since at zero applied voltage the junction is in equilibrium with no net current, J=Jrec(V=0)-

Jgen(V=0)=0. The net current density is therefore expressed as:5 

 JሺVሻ = JrecሺVሻ − JgenሺVሻ = J0[exp (qV
kT) − 1] (1.40) 

with J0 = JgenሺV=0ሻ = qni
β ቆ Dn

δnnχ
+ Dp

δpnD
ቇ  

where Dn and Dp are referred as electron and hole diffusion coefficient, respectively; and Ln 

and Lp are the minority-carrier-diffusion length for electrons and holes, respectively. This is 

known as the Shockley equation that describes the current-voltage behavior of an ideal p-n 

diode (which neglects generation and recombination in the space charge region). It is 

schematically shown in Figure 1.27.  

 
Figure 1.27: The J-V curve characteristic of a p-n junction under applied voltage.  

                                                 
5 For detailed derivations please refer to for example “The physics of Solar ωells” ψy Jenny Nelson. 
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The higher the applied forward voltage, the larger the current. However, further increasing 

the reversed voltage does not increase the net current because the concentrations of the 

minority carriers do not depend on the applied voltage. 

p-n junction under illumination 

When the p-n junction is under illumination and connected to an external load, a fraction of 

the photo-generated current will flow through the external circuit. The voltage drop at the 

load is equivalent to applying a forward voltage to the junction. Therefore the current-voltage 

behavior of a p-n junction under illumination is simply superimpose the Equation (1.40) with 

the photo-generated current (which is here assumed constant): 

 JሺVሻ = J0 [exp (qV
kT) − 1] − Jph (1.41) 

The J-V behavior of a p-n junction at dark and under illumination are both illustrated in Figure 

1.28. The superposition principle is clearly reflected: the J-V characteristic of illuminated p-

n junction is the same as the dark J-V characteristic but it is shifted down by the photo-

generated current density Jph. 

 
Figure 1.28: The J-V curve characteristic of a p-n junction in the dark and under illumination where 

the superposition principle is clearly seen.88   

1.3.3 Important solar cell parameters 

Short circuit current density Jsc 

The short-circuit current, Jsc, is defined as the current density flowing through the external 

circuit when the electrodes of the solar cell are short circuited. Since it does not depend on 

the solar cell area, thus is preferably used rather than the short circuit current Isc. 

Open circuit voltage Voc 

The open circuit voltage, Voc, is defined as the voltage when the external circuit is not 

connected. It is the maximum voltage that a solar cell can deliver. The Voc corresponds to the 

forward bias voltage, at which the dark current compensates the photo-current.  
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Fill factor FF 

The fill factor FF is defined as the ratio between the maximum power (Pmax) generated by the 

solar cell and the product of short circuit current times open circuit voltage: 

 FF = Pmax

JscVoc
 (1.42) 

Conversion efficiency η 

The conversion efficiency of a solar cell is defined as the ratio of the maximum electrical 

power and the input power (Pin): 

 
Ș = Pmax

Pin = JscVocFF
Pin  (1.43) 

The incident power of 1000 W/m2 of AM1.5 spectrum (see Figure 1.6a) is usually taken as 

the standard for measuring the solar cell efficiencies. 

1.4 Transparent Conductive Materials (TCMs)  

Transparent conductive materials (TCMs), as the name suggests, are a class of materials 

which simultaneously possess the properties of optical transmission and electrical 

conductivity. TCMs are generally in the form of thin films. They range from wide-band-gap 

semiconductors, metal films, doped organic polymers, or metal nitrides. They are widely used 

in displays, photovoltaics, transparent electronics, architectural and window glass, composing 

a technologically important family of materials.89,90 There is a huge industrial use for TCMs. 

1.4.1 Transparent Conductive Oxides (TCOs) 

Currently the most important TCMs are transparent conductive oxides (TCOs). TCOs are 

usually n- and p-type semiconductors with band gap higher than 3 eV in order to be 

transparent in the visible portion of the spectrum (approximately 1.8-3.0 eV, see Figure 1.6a 

for reference). The oxides are often extrinsically doped to render high conductivity. To date, 

the most important binary n-type TCOs are In2O3, ZnO, and SnO2.  

In2O3. Stimulated by the flat-panel display technology starting around 1970, In2O3 doped 

by Sn (ITO) becomes one of the most commonly used TCO material.91 It is currently the 

best TCO available with the lowest resistivity of 1-2 × 10-4 Ωcm.92,93 It is extensively used 

in flat-panel displays, high-definition TVs, touch screens. Sputtering a pre-doped ceramic 

target (In2O3 with ~10 wt% SnO2) is a popular method to deposit In2O3. However, 

following the expanding display market demand, the price of indium is ever-increasing 

due to its limited availability on earth. Thus significant efforts in the field of TCOs are 

devoted to develop In-free TCOs. As alternative to replace ITO, ZnO and SnO2 based TCO 

materials have therefore gained widespread attention. 

ZnO. Zinc oxide is generally prepared by DC or RF magnetron sputtering or by LPCVD. 

Among ZnO based TCOs, the most important one is Al-doped ZnO (AZO) whose 
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resistivity is reported as low as 2.4 × 10-4 Ωcm.94 Although the resistivity of AZO is not 

as low as that of ITO, it does offer significant benefits in terms of the low cost and good 

thermal and chemical stability. Engineering applications for ZnO include LEDs, lasers, 

OLEDs, OLED displays, transparent high-mobility TFTs, nanostructured devices, and 

spintronic devices.  

SnO2. Tin oxide doped with F (FTO) or Sb (ATO) was the first TCO used on an industrial 

scale, especially for low-emissivity coatings on glass.95 The resistivity of SnO2-based TCO 

is slightly higher than that of AZO with the best ones in the order of 3-4 × 10-4.96 Compared 

to In2O3 and ZnO, which are both prepared by more expensive vacuum-based sputtering 

technique, SnO2 can be prepared using cheap chemical methods such as spray pyrolysis 

with cheap raw materials as tin chlorides.97–99 Thus SnO2 are widely used as transparent 

electrodes in low-cost solar cells as dye-sensitized solar cells for instance.51 

The above-mentioned model binary TCOs can be combined to form multicomponent 

compounds whose electrical, optical, chemical and physical properties can be tuned by 

altering the chemical composition, offering schemes for designing new TCO materials 

suitable for specialized applications.100,101 An overview of the important n-type TCOs is 

summarized in Table 1.1. 

Table 1.1: Overview of important n-type TCOs102 

TCO Common deposition methods Doping element 

Resistivity 

range 

(10-4 Ωcm) 

Band gap 

(undoped) 

(eV) 

SnO2 APCVD, spray pyrolysis F, Sb, Cl 3-8 3.6 

ZnO Sputtering, PLD, LPCVD, APCVD Al, Ga, B, In, F 1-8 3.3 

In2O3 Sputtering, PLD Sn, Mo, Ti, Nb, Zr 1-3 3.7 

CdO MOCVD In, Sn 0.5-20 2.4 

TiO2 Sputtering, PLD Nb, N 9-106 3.2 

ȕ-Ga2O3 Sputtering Si, Sn 200*-106 4.9 

Cd2SnO4 Sputtering, sol-gel, spray pyrolysis self-doped 1.2-10 3.1 

Zn2SnO4 RF sputtering (annealed at 600 °C 

to form the spinel phase) 

self-doped 
100-500 3.4 

a-Zn2SnO4 RF sputtering (Ts 375-430 °C) self-doped 30-60 - 

a-ZnSnO3 RF sputtering (Ts RT-300 °C) self-doped 40-100 - 

Zn2In2O5 DC or RF sputtering self-doped 2.9 2.9 

a-IZO DC sputtering self-doped 3-5 3.1 

* Achieved for bulk material, not thin film 
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1.4.1.1 Electrical Properties 

As introduced earlier, TCOs are generally wide-band-gap semiconductors which can be very 

resistive at room temperature for truly intrinsic and stoichiometric films. In order to become 

conductive, the films should either deviate from stoichiometry to develop intrinsic doping 

such as oxygen vacancies, or more usually, suitable external impurities have to be introduced 

into the film to form extrinsic doping. For example, in ZnO, metal atoms of group IIIa such 

as B, Al, Ga, or In are usually introduced to substitute Zn site forming donor levels releasing 

free electrons. In Sn-doped In2O3, a Sn atom substitutes for an In atom and the ionized Sn 

atom (Sn4+) contributes an electron. The conductivity of a material can be related to 

microscopic parameters that describe the motion of electrons (or other types of charge carriers 

such as holes) via the following equation: 

 
conductivity = 1

resistivity = e ∙ ne ∙ ቀ eĲ
m*ቁ = e ∙ ne ∙ ȝe (1.44) 

where Ĳ is the average time between collisions, m* is the effective mass of the electrons which 

takes into account the presence of the lattice. Finally ȝe is termed the mobility of electrons 

which equals to eĲ/m*. 

Therefore, in order to improve the conductivity of TCOs films, the strategy is to improve 

either the carrier concentration ne by increasing doping concentration or to improve the 

electron mobility ȝe. However, in addition to high carrier concentration ne, heavy doping can 

result in several drawbacks: the ionized dopant atoms can act as scattering centers that reduce 

the electron mobility; phase separation may occur if the impurity concentration exceeds the 

solubility limit; finally the high electron concentration would result in decreased light 

transmission at long wavelengths (more details will be shown shortly). Thus to the extent that 

is possible, it is preferred to improve the conductivity by increasing the electron mobility ȝe. 

The overall mobility of electrons can be expressed as the combination of all the scattering 

mechanisms present in the TCO material: 

 

1
ȝe

= ∑ [(1
ȝ

)
j
]

σ

 (1.45) 

The commonly observed electron scattering mechanisms include ionized impurity scattering 

(ȝi), lattice vibration scattering (ȝl), grain boundary scattering (ȝg), neutral impurity scattering 

(ȝn), as well as other minor influencing mechanisms such as electron-electron scattering. 

Among them, the ionized impurity scattering and grain boundary scattering are generally 

believed to be the most prominent mechanisms. Minami has reported the mobility of ZnO as 

a function of carrier concentration as shown in Figure 1.29 where calculations together with 

experimental results of doped and undoped ZnO films prepared by different methods are 

presented.103 It is seen that for ZnO-based TCOs, grain boundary scattering dominates when 

the carrier concentration is in the range of 1019 - 1020 cm-3; while at relatively high carrier 

concentrations (> 2×1020 cm-3), the mobility is dominated by the ionized impurity scattering. 

Rey et al. have reported similar results for polycrystalline FTO thin films grown on glass 
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substrates by ultrasonic spray pyrolysis.104 They have concluded that extended structural 

defects as grain boundaries play the major role for thin FTO films and its relative importance 

continuously decreases; for thicker FTO films, ingrain scattering prevails, in particular the 

ionized impurity scattering.96 

 
Figure 1.29: Modeled and experimentally measured Hall mobility as a function of carrier 

concentration for doped and undoped ZnO films. Ionized impurity scattering and grain boundary 

scattering were used in the modeling.102  

1.4.1.2 Optical Properties 

In order to be sufficiently conductive, most TCOs are heavily doped to degeneracy so that the 

Fermi level is positioned above the conduction band edge, meaning that the lowest states in 

the conduction band are filled as schematically shown in Figure 1.30. With the conduction 

band being partially occupied, photons need a larger energy than the fundamental band gap 

of EG0 to excite transitions from the valence band to the unoccupied states in the conductions 

band. The required additional energy ∆EG
ψε is called the Burstein-Moss shift.106 Figure 1.31 

shows the transmission and reflection spectra of various FTO films with different F doping. 

It is clearly seen that, with increased F doping, the transmission of FTO film in the near 

infrared (IR) region is decreased. Instead, due to increased plasmonic reflection by the free 

electrons in highly doped FTO film, light reflection is increased. Although heavy doping 

improves the free carrier concentration thus the conductivity, it endangers the film 

transparency.108 The reflection by the free carriers can be characterized by the plasma 

frequency ωp, which, according to the classical Drude theory, is expressed as: 

 Ȧp = √ neβ

İr(∞)İ0m* (1.46) 

where n is the measured carrier concentration, m* is the effective mass, İr(∞) is the relative 
permittivity at infinite frequency, and İ0 is the permittivity of free space. 
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Figure 1.30: (a) Schematic band structure of a TCO with parabolic bands separated by the 

fundamental gap EG0 and with vertical optical transitions. (b) Due to heavy doping thus increased 

electron concentration, the lowest states in the conduction band are occupied resulting in the widening 

of the optical gap by the Burstein-Moss shift ∆EG
ψε.105 

 
Figure 1.31: Transmission (T) and reflection (R) spectra of FTO with different F-doping 

concentration. The crossover between the T and R curves shows the position of the plasma wavelength 

which shifts towards the visible range with increasing F-doping.107 

Essentially the crossover between the transmission and reflection curves in the IR-range in 

Figure 1.31 shows the position of the plasma wavelength. With increasing F doping, the 

plasma wavelength shift towards visible region threatening the transparency of FTO film. 

Therefore a compromise needs to be achieved between electrical and optical properties for 

TCOs. To assess the performance of TCOs in terms of the balance between electrical and 
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optical properties, the classical Haacke’s Figure of εerit (Foε) is commonly used.109 It is 

defined as:110 

 
Foε = T10

Rs
 (1.47) 

where T is the optical transmittance usually taken at wavelength of 550 nm to which human 

eye is most sensitive, and Rs refers to the sheet resistance with unit of Ω/sq. 

An overview of the transmittance plotted against sheet resistance is given in Figure 1.32 for 

different types of TCMs where the lines show the iso-values of the FoM defined by Equation 

1.47. The larger the FoM, the better the electro-optical properties of corresponding TCM, thus 

the best TCM should be located in the top left region of the graph.      

 

Figure 1.32: The plot of transmittance versus sheet resistance for different types of TCMs.111 The 

dashed lines correspond to different iso-values of Haacke’s figure of merit (in 10-3 (/sq)-1 units) 

1.4.1.3 TCOs in Photovoltaics 

In Photovoltaics devices, TCOs are often used as front and/or back electrodes which play a 

significant role in determining the maximum attainable energy conversion efficiency. In 

superstrate-type PV devices, the active layer is deposited on a transparent substrate (usually 

glass) that has been pre-deposited with a TCO film. The light enters the solar device after 

passing through the superstrate and the TCO layer. Thus the TCO serves as a transparent front 

electrode (window layer) for the device. In substrate-type PV devices, the active layer is 

usually deposited on opaque substrates (e.g., stainless steel or polyimide) followed by the 

deposition of the front TCO film. It can be challenging to deposit TCOs in substrate-type PV 

devices because the deposition process must not damage the properties of the precedent layers. 

The main function of TCOs in PV devices is to transmit light and collect charge carriers. 

Therefore the optical transmission of TCOs needs to be sufficiently high so that the active 

layers could absorb as much light and produce optimized short-circuit current density. To 

efficiently collect charge carriers, the TCOs should exhibit low resistivity - low sheet 

resistance would result in lower I2R power loss (which will impact the fill factor of PV 
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devices). As a rule-of thumb, TCMs used in solar cells usually need to exhibit a resistivity of 

the order of 10-3 Ωcm or less and an average transmittance of 80% in the visible range. In 

addition to the basic transparency and conductivity, morphological and chemical properties 

of TCOs are also important and sometimes vital to devices performances. The morphological 

features on various lengths scales on the surfaces of TCOs determine the degree of light 

scattering and thus the light trapping. In superstrate devices, sometimes large morphological 

features of TCO can result in cracks or pin-holes in the successive grown layers giving rising 

to shunting issues.11 Finally, the chemical nature of the TCO surface is also essential because 

it not only determines the electron affinity and work function which in turn influence the 

nature of the electrical contact between the TCO and the active layers, but also the types of 

elements that might diffuse into the active layers or participate in interfacial reactions.102 

Table 1.2 has listed the common TCOs that currently are widely employed in various thin 

film PV devices in both superstrate and substrate configurations.  

Table 1.2: Common TCOs currently employed in various PV devices in both superstrate and 

substrate configurations102 

Cell Type TCO in use 

Thin film Si Superstrate: FTO, AZO 

Substrate: ITO, AZO, B:ZnO  

Heterojunction with intrinsic 

thin layer (HIT) cell 
Substrate: ITO 

CdTe Superstrate: FTO, ITO 

CIGS Substrate: AZO, ITO 

Dye sensitized solar cells Superstrate: FTO 

Organic solar cell Superstrate: ITO 

1.4.1.4 p-type TCOs  

In contrary to their n-type counterparts, the p-type TCOs with superior performances are still 

currently lacking. The main difficulty to obtain highly conductive p-type TCOs is that the 

strong O 2p character makes the valence band strongly localized. As a consequence, the 

effective mass of holes becomes very large and due to the presence of deep trap levels in the 

valence band, the mobility of holes is much lower compared to that of electrons in the n-type 

TCOs (where the conduction band is mainly contributed by the extended metal s orbital with 

a spherical shape).112 In order to obtain good p-type TCO, it is essential to modify the energy 

band structure to reduce the localization effect in the valence band. In 1997, Kawazone and 

co-authors reported a p-type conductivity in the order of 1 Scm-1 for the transparent CuAlO2 

film with delafossite structure.113 They have then proposed that a modification in band 

structure can take place by mixing orbitals of appropriate counter cations that have filled 

energy levels comparable to O 2p;114 this is the so-called Chemical Modulation of the Valence 

Band (CMVB) approach. Generally, Cu1, Ag1 cations with closed d10 shells are found as the 
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proper candidates for p-type TCO. Therefore, currently the majority of p-type TCOs are Cu-

based oxides. The different types of p-type TCOs are summarized in Figure 1.33. 

 
Figure 1.33: Chart of various p-type TCOs reported so far.115 

The development of p-type TCOs has opened up a new field in opto-electronic device 

technology, the so-called “Transparent Electronics” or “Invisible Electronics”,116 where the 

two types of TCOs can be combined to form a p-n junction leading to a “functional” window 
which transmits visible portion of solar radiation yet generates electricity by the absorption 

of UV part.113 However, currently the material properties of p-type TCOs are still far behind 

the requirements for industrial application. The development of robust p-type TCOs remains 

a considerable challenge and breakthrough in material property improvement is readily 

required.117 

1.4.2 F-doped SnO2 (FTO) 

F:SnO2 is most commonly prepared by spray pyrolysis with tin chlorides as the precursors.104 

It can also be prepared by chemical vapor deposition (CVD),118,119 sputtering,120 to name a 

few. Due to the anionic radius of F being similar to O, the lattice distortion induced by F-

doping is minimized compared to other cationic doping (such as Sb, Ta etc.). Therefore, the 

FTO shares the same crystal structure as pure SnO2 which is in rutile crystal structure with a 

tetragonal unit cell (space group P42/mnm) as shown in Figure 1.34a121,122 The basic unit 
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structure is a slightly distorted octahedral composing of a Sn atom coordinated to six nearest 

O atoms. The typical surface morphology of a polycrystalline FTO is shown in Figure 1.34b 

where both grains and twins can be recognized. Compared to other crystalline TCOs, the 

presence of twin structure is fairly characteristic of FTO films.  

 
Figure 1.34: (a) Crystal structure of rutile SnO2 (P42/mnm). (b) Top: a typical SEM image showing 

the surface morphology of polycrystalline FTO film. Bottom: cross-sectional TEM image of the FTO 

film revealing the presence of [101] lamellar twins within grains.96 

The F dopant acts as electron donors. By substituting the O site, F releases one free electron 

thus increases the free electron concentration and the electrical conductivity. The state-of-the-

art resistivity of FTO is down to 3.7 × 10-4 Ωcm,96 and the mobility is reported as high as up 

to 70 cm2/Vs.102 It is also reported that the two main competing mechanisms for electron 

scattering in FTO include the grain boundary scattering and ionized impurity scattering, the 

relative weight of which depends on the sample structural properties, thickness and doping 

level.96 In general, the grain boundary scattering prevails in thin FTO films and its importance 

continuously decreases when the thickness increases; when the FTO film is thick enough, the 

ionized impurity scattering dominates, especially at high doping concentrations. The twin 

boundaries is found to play a role but less significant compared to the grain boundaries.96 

Undoped SnO2 is a direct semiconductor with calculated band gap of about 3.6 eV at Γ 

point.123,124 With increasing F-doping, the Fermi energy in FTO is raised and finally surpasses 

the conduction band edge. The widening of the optical gap by F-doping is commonly 

observed to exceed 4 eV,97,107,120,125 improving the transparency in the ultraviolet (UV) range. 

However the optical transmission of FTO films is limited in the near infrared region due to 

the plasmonic reflection. The high reflectivity in the near IR region makes FTO the most 

extensively used material as heat-reflecting coating on architectural glass. For solar cell 

applications, usually a FTO film with 80% transparency (glass substrate included) and 

simultaneously sheet resistance of 10 Ω/sq appears appropriate. Due to its easy deposition, 

FTO coating can be integrated into the glass production line, and high volume manufacturing 

of commercial FTO coated glass is currently available, which in turn makes the FTO 

economically more advantageous than other TCOs for the thin film PV applications. 
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Moreover, haze factor is also an important parameter to evaluate the FTO as a promising 

electrode used in solar cells. It is defined as the ratio of scattered transmitted/reflected light 

divided by total transmitted/reflected light. For transmitted light, high haze factor means that 

more light can be scattered into the absorber layer increasing the optical path. As a 

consequence, the optical absorption by the absorber and thus the conversion efficiency of the 

solar cell can be improved.  

1.4.3 Emerging TCMs 

The next generation of optoelectronic devices requires TCMs to be lightweight, flexible, 

cheap, and compatible with large-scale manufacturing methods, in addition to being 

conductive and transparent. The dominating TCO materials unfortunately can hardly meet the 

afore-mentioned requirement due to their high cost of raw material (scarcity of In) and 

fabrication process (vacuum-based sputtering for In2O3 and ZnO), as well as brittleness (for 

In2O3, ZnO, and SnO2). With the ever-increasing development of nanotechnology, new TCMs 

involving 1D or 2D nanostructures emerge to compete with conventional TCO materials.126 

This includes mainly metal grids and metal nanowires,127–129 as well as recently flourishing 

carbon-based materials such as carbon nanotube films,130–133 and graphene films.134–137 Some 

examples are given in Figure 1.35.  

 

 Figure 1.35 (a) A SEM image of a 93 mg/m2 Ag nanowire (AgNW) film.128 (b) A SEM image of a 

semi-transparent metal electrode (on glass) with line width of 200 nm.127 (c) A 1.7 × 1.7 ȝm2 AFM 

image of a 150 nm thick single wall nanotube (SWNT) film.130 (d) A 3.2 × 3.2 ȝm2 AFM image of 

exfoliated graphite oxide film.135 
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As shown previously in Figure 1.32, the FoM data points of emerging TCMs exhibit quite 

scattered performance. A large room still exists for improving the properties of emerging 

TCMs. 

1.5 Light trapping in solar cells  

Optical absorption, as the first step in the operation of a solar cell, is of particular importance 

especially for thin film solar cells which utilize thin absorbers ranging from hundreds of 

nanometers to several micrometers. Therefore, the concept of light trapping has been widely 

employed in the design of the structure of solar cells/modules and it is aimed for improving 

the light absorption in solar cells. It can be achieved by reducing the reflection via multiple 

reflection or using for example an anti-reflecting coating, and by increasing the optical path 

via textured surfaces/interfaces, as schematically shown in Figure 1.36. For a c-Si cell 

employing ideal texture structure, the mean light path can be enhanced by a factor of 4n2≈η0 
(with the refractive index n of Si being 3.5) compared to normal incidence on a planar surface, 

indicating the great potential of applying light management structures to optimize cell 

efficiencies. 

 
Figure 1.36: Surface texture for reducing reflection and increasing the length of optical path.78 

1.5.1 Light trapping in thin film Si solar cells 

The term “thin film silicon” refers essentially to a broad class of materials. Typical examples, 
as we have explained in section 1.1, include a-Si:H with band gap of about 1.8 eV and ȝc-

Si:H with band gap of about 1.1 eV. Thin film Si solar cells aim for cost reduction by using 

less material (with comparison to wafer-based c-Si technology). Typical absorber thickness 

is about several hundreds of nanometers for a-Si:H and several micrometers for ȝc-Si:H. The 

small thickness in thin film Si solar cells is also a direct consequence of the poorer electronic 

transport due to increased structural imperfection thus limited charge diffusion length.  

In a-Si:H, the structure disorder suppresses the formation of sharp band edge thus enables 

direct band transitions, giving rise to a high direct band gap (mobility gap, to be more precise) 

while ȝc-Si:H resembles c-Si having an indirect band gap. Thus ȝc-Si:H suffers from the poor 

absorption due to its indirect band gap just as c-Si. While for a-Si:H, although it does not 

suffer from the weak absorption of an indirect band gap, its absorption coefficient is still 
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closer to the square law of indirect semiconductors than to the square-root of direct ones. 

Consequently, as one can see in Figure 1.37a, for both a-Si:H and ȝc-Si:H, the absorption 

coefficient strongly decreases towards longer wavelengths approaching their respective band 

gap energy. Moreover, due to the higher band gap of a-Si:H, it does not utilize the solar 

spectrum as well as ȝc-Si:H. In Figure 1.37b, the total absorption is calculated for an a-Si:H 

and a ȝc-Si:H layer with typical device thickness of 300 nm and 2 ȝm, respectively, for a 

single light pass using the absorption coefficients presented in Figure 1.37a. We see that, for 

a-Si:H and ȝc-Si:H solar cells, the light trapping should be targeted in the long wavelength 

range; a maximum current density of 12 mA/cm2 and 27 mA/cm2 can be improved if ideal 

light trapping structures are employed for a-Si:H and ȝc-Si:H, respectively. The optical 

requirement of full absorption thus makes the application of light trapping in thin film silicon 

a necessity.  

  
Figure 1.37: (a) Absorption coefficient of a-Si:H (circles), ȝc-Si:H (triangles), and c-Si (dashed line). 

(b) Light trapping spectral region for a typical a-Si :H (i-layer thickness 300 nm) and a ȝc-Si:H (2 

ȝm) solar cell, with the maximum current value achievable in this region.138 

1.5.1.1 Textured TCOs 

For a-Si:H and ȝc-Si:H solar cells, the light management is most commonly achieved by 

applying textured TCO electrodes. In the ideal case, these rough layers can introduce nearly 

complete diffuse transmission or reflection of light. The textured TCOs usually function as 

front electrodes where the light penetrates into the cell. The “χsahi-U” type of FTτ is most 
widely used in research and development with pyramid shape as seen in Figure 1.38, together 

with a W-type FTO consisting of double texture with steeper facets.139,140 Both Asahi-U and 

W-type texture are developed during the deposition of FTO involving complicated 

manipulation of processing parameters.  

For ZnO-based TCOs, similar texture can also be developed during low pressure CVD 

deposition for B:ZnO as seen in Figure 1.39a. Alternatively, since ZnO is not stable against 

acids as HCl and HF, the pre-deposited (usually by sputtering) Al:ZnO film can be etched in 

diluted HCl forming crater-like texture as shown in Figure 1.39b. For example, the triple 

junction (a-Si:H/ȝc-Si:H/ȝc-Si:H) thin film Si solar cell achieving the world record efficiency 

of 13.44% was made on textured AZO prepared by this method.141 
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Figure 1.38: SEM images showing the surface morphologies of (a) Asahi-U,11 and (b) W-type 

FTOs.140  

By varying the acid concentration and etching time, the feature size of the texture can be 

varied accordingly. Further etching by HF acid can create modulated double-structure as 

shown in Figure 1.39c. However, to obtain texture by chemical etching after deposition, one 

needs to first grow very thick ZnO layer, then to consume a rather large amount of material 

to achieve desired texture structure. The complete process thus does not appear cost-effective. 

 
Figure 1.39 (a) SEM image showing surface morphology of B:ZnO with texture developed during 

deposition. (b) The crater-like surface of Al:ZnO etched in HCl acid, and (c) doubly etched in HCl 

followed by HF acids.11 

Other than directly developing the texture of TCOs, alternative approach exists where the 

substrate, usually glass, can be textured before the deposition of TCOs. The texture of glass 

can be achieved by wet chemical etching,142 or by drying etching.143–145 Depending on the 
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technique and processing parameters, the resultant texture ranges from periodic to random, 

which affects the performance of thin film solar cells in different manners.146,147 The 

difference in cell structure of a p-i-n single junction a-Si:H solar cell employing a textured 

TCO and a textured glass is schematically compared in Figure 1.40.  

 

Figure 1.40: Schematic cell structure of a p-i-n single junction a-Si:H solar cell made on (a) textured 

TCO front contact and, (b) on a textured glass substrate.144 

1.5.1.2 Light scattering by metallic nano-particles 

The approach using textured TCO/substrates that precedes the cell deposition often introduces 

rough surfaces where surface recombination and structural defects in the cell volume are 

increased. As a result, the electrical performance and reliability of the cells can be degraded. 

Therefore, different light trapping strategies are under robust development. Among them, a 

growing research interest has been to use metal nanoparticles to scatter light taking advantage 

of the localized surface plasmons.148,149 Localized surface plasmons are collective oscillations 

of the conduction electrons in metal particles. Movement of the conduction electrons upon 

excitation with incident light leads to a buildup of polarization charges on the particle surface. 

This acts as a restoring force, allowing a resonance to occur at a particular frequency (termed 

as the dipole surface plasmon resonance frequency).150 As a result, the metallic nanoparticles 

can sustain highly localized oscillations of the free carrier plasma and can yield extraordinary 

enhancement of the electromagnetic field in the vicinity of their surfaces. In contrary to the 

texturing approach where the light scattering is most efficient when the dimensions of the 

textures are comparable to the wavelength, the metal nanoparticles can strongly scatter light 

even when their sizes are much smaller than the illuminating wavelength. As illustrated in 

Figure 1.41, Au nanoparticles can be employed in both substrate and superstrate configuration 

as the plasmonic back reflector (PBR).151 

However, the scattering and absorption properties of the metal nanoparticles depend strongly 

on their material, geometry (size and shape), and on the refractive index of the surrounding 



1.5 Light trapping in solar cells 

46 
 

medium.152–154 Thus, it is essential to properly design the metal nanoparticles and the device 

structure in order to maximize the scattering and minimize absorption (termed parasitic 

absorption) over the wavelength range of interest. After various tests of placing the metal 

nanoparticles at different positions in a cell, it was observed that the near-field effects seem 

responsible for the absorption enhancement.11 Thus the particles should be placed as close as 

possible to the absorber layer since the effects are nevertheless relatively local. 

 

Figure1. 41: The Au colloids with 200 nm size as plasmonic back reflector in substrate and superstrate 

configurations with the cell structure sketched on top and SEM images of the Au nanoparticles shown 

in the bottom.151 

A trivial issue arises that it is essentially difficult to identify the advantage of plasmonic effect 

from the natural texture brought by the metal nanoparticles. In fact, experiments have been 

dedicated to compare Ag nanoparticles and a textured Ag reflector prepared (by lithography) 

with equal particle size and shape. Surprisingly, the conventional design with a textured Ag 

reflector was found more advantageous.155,156 Finally, in order to be suitable for the 

photovoltaic industry, the preparation method of metal nanoparticles should be reliable, low-

cost and scalable up to square meter sizes. Therefore, self-assembly methods have so far 

attracted much attention, among which the solid state dewetting (SSD) process involving a 

pre-deposition of a thin metal film followed by thermal treatment is most commonly 

used.157,158 However, the metal nanoparticles prepared by SSD process usually have broad 

dispersion in the particle size and shape; the lack of morphology control of the nanoparticles 

poses difficulties in realizing optimal resonant scattering. Further, the high temperature 

required during the annealing step is not compatible with the process of a-Si:H solar cells 

where the Si-H bonds are unstable at high temperatures. As a matter of fact, none of the 

structures using plasmonic effects could reach sate of the art light trapping as obtained with 

a rough textured TCO and a TCO/metal or TCO/dielectric rear reflector.  
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1.5.1.3 3-D designs 

An emerging scheme to enable highly efficient light scattering is to employ the relatively new 

3-D design involving 1D nanostructures (i.e. nanowires, nanorods, etc.). As illustrated in 

Figure 1.42, the use of radial junction where nanowires are oriented parallel to the incident 

light can efficiently trap the light by exciting sophisticated optical processes such as Fabry-

Perot resonances, optically guided modes, and optically radiated modes (i.e., diffraction 

process).159 Furthermore, the charge carrier collection can be realized over a relatively short 

path along the radial direction. The integration of nanostructures also requires little material 

consumption thus can potentially decrease the device cost.  

 

Figure 1.42: (a) The sketch of the nanowire design with the potential of increasing optical path and 

enabling fast carrier extraction.11 (b) The cross-sectional SEM image of ordered Si nanowire radial 

p-n junction array solar cell.159 

However, in all approaches with tall nanowires, uniform side wall coverage is always an 

issue.160 Overall, the fabrication of nanostructures with very high aspect ratios often involves 

one or more additional processing steps; further, fabrication of real solar cell devices on these 

structures remains very challenging. 

1.5.2 Light trapping in DSSCs   

Dye-sensitized solar cell (DSSC) is another important thin film solar cell with competing 

performance and cost. The subject of light trapping in DSSC has also been one of the major 

research streamlines.161,162 In fact, nowadays the well-acknowledged structure of an efficient 

DSSC includes an additional meso-porous TiO2 layer composing of larger TiO2 nanoparticles 

with sizes up to several hundred of nanometers.163 Such a layer functions to scatter light back 

to the cell and improve the optical absorption, since the working meso-porous TiO2 

composing of 10-25 nm nanoparticles remains transparent to the visible region of the solar 

spectrum. The additional scattering TiO2 layer with larger nanoparticles helps to utilize the 

solar spectrum more efficiently. Furthermore, in order to bring the modules to the market 

level, the price of the photoactive dye, which shares relatively important cost compared to 

other components in DSSCs, needs to be reduced further. Employing cheap light trapping 
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structures to reduce the amount of dye used in the DSSCs composes a feasible and effective 

approach.  

1.5.2.1 Textured TCO 

As in thin film silicon solar cells, using textured TCOs is also a widely employed approach 

to improve the light trapping in DSSCs. As the most commonly used TCO in DSSCs, FTO 

with high haze factor has been found to contribute positively to the cell performance.164 Chih-

Hung et al. have observed a fairly linear increase of the efficiency of the DSSC as a function 

of the haze factor of FTO as seen in Figure 1.43.165 They have observed that the efficiency of 

the DSSC increased from 8.18% to 10.1% upon increasing the haze factor of the FTO 

electrode from 2% to 17%. 

 
Figure 1.43: The conversion efficiency of DSSCs fabricated on textured FTO electrodes plotted 

against the haze factor of the FTO electrode.165 

1.5.2.2 Other approaches 

In addition to textured TCOs, different approaches have also been developed to improve the 

light trapping in DSSCs. On one hand, different nanostructures have been developed to 

function as light scatterers such as corn-like nanowires,166 rice grain shaped TiO2 

nanostructures,167 or  nest-shaped TiO2 nanostructures,168 as exemplified in Figure 1.44. On 

the other hand, following the 3-D design as discussed previously, a robust research has 

focused on developing ordered 1D structure as nanorods, nanowires or nanotubes of TiO2 to 

improve light scattering and charge transport.169,170 

As exemplified by the light trapping scenario developed in thin film Si solar cells and DSSCs, 

we comment that light trapping structure is beneficial in essentially all types of thin film solar 

cell technologies. For example, in organic-based solar cells, due to the very short carrier 

collection length, the absorber is usually limited to very small thickness. In this case, the 

employment of light trapping structures is indispensable to ensure high optical absorption and 

conversion efficiency. Moreover, even for the technologies where the optical absorption is 

not the most limiting factor in influencing the device performance (consider for example 

CdTe, CIGS technologies), the application of properly cheap optical structure would always 

benefit the technique with lower utilization of the active material, which in turn results in 

lower recombination loss and device cost.    
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Figure 1.44: (a) The surface morphology and (b) cross section of the core-like TiO2 nanowires used 

as scattering layer in DSSC.166 (c) The surface morphology and (d) cross section of the TiO2 

nanoparticle rice grain nanostructure electrode in DSSC.167 (e) The surface morphology and (f) cross 

section of the nest-shaped TiO2 nanostructure as scattering layer in DSSC.168 

1.6 The blocking TiOၷ layer in DSSCs  

In high-performance DSSCs, a compact TiO2 thin film is often deposited before the 

application of the mesoporous nanocrystalline TiO2 (nc-TiO2) layer. Historically, the 

additional TiO2 thin film deposited by the so-called TiCl4 treatment was empirically found to 

improve the DSSC performance effectively.171,172 However, the efficiency of the TiCl4 

treatment has been found to vary widely depending on the source and history of the particles 

used to make the film. In essence, it was suggested impossible to realize real optimization of 

the TiCl4 treatment, in part due to the lack of knowledge concerning the mechanism.173 As a 

result, other methods are widely developed to deposit this compact TiO2 thin film, such as 

SolGel,174–176 sputtering,177–181 spray pyrolysis,182,183 dip coating,184 ALD,185,186 and so on.  
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In the absence of the compact TiO2 thin film, the FTO (most often used TCO in DSSCs) is 

exposed to the I-/I3
- redox couple due to the intrinsic presence of holes in the meso-porous nc-

TiO2 layer. The photo-excited electrons transported from the dye to the FTO now have the 

chance to be transferred to I3
- in a back reaction that represents a loss mechanism. Whereas 

this back reaction is relatively insignificant at short circuit conditions, it is the dominant route 

to negate the photo-injected electrons from the dye at open circuit conditions and as well at 

lower light intensities.187–189 A compact TiO2 thin film to block the back transfer of the 

electrons is thus imperative to suppress the current loss and improve the cell performance. 

For this reason, this compact TiO2 thin film is often termed as blocking TiO2 (b-TiO2) layer. 

In practice, not only TiO2, thin films of other materials have also been employed to function 

as the blocking layer such as ZnO,190 SnO2,191 Nb2O5,192,193 CdO,194 HfO2,195 and so on. 

Furthermore, the b-TiO2 layer has also been found to improve the interfacial binding between 

the meso-porous nc-TiO2 layer to the FTO glass and as well to facilitate the charge 

transport.173,196 As important as it is, the b-TiO2 layer is also widely used in the emerging 

types of solar cells such as perovskite solar cells,197,198 quantum dot solar cells,199 and polymer 

solar cells.200 The structure of a perovskite solar cell employing the b-TiO2 layer is 

schematically shown in Figure 1.45 for reference. 

 
Figure 1.45: Device schematics of a perovskite solar cells employing a compact TiO2 thin film.198 

However, a number of open questions still remain concerning the nature of the junctions 

between the FTO and the b-TiO2 layer and between the b-TiO2 layer and the meso-porous nc-

TiO2 layer in the DSSC. On the one hand, when discussing the energetic alignment of DSSCs, 

clear distinguishment is barely made between the thin b-TiO2 layer and the meso-porous nc-

TiO2.201 But energy band offset is widely acknowledged to exist at the rutile and anatase TiO2 

interface which explains the outperformance of mixed anatase and rutile TiO2 nanoparticles 

in photocatalytic applications.202 While the meso-porous nc-TiO2 layer mostly used is anatase, 

it implies that the energetic alignment between the meso-porous nc-TiO2 layer and anatase b-

TiO2 layer would be different from that between the meso-porous nc-TiO2 layer and rutile b-

TiO2. Thus it is indispensable not only to clearly distinguish between the b-TiO2 layer and 

the meso-porous nc-TiO2 layer, but also to identify the crystalline polymorph of the b-TiO2 

layer, which affects the energetic alignment with nc-TiO2 layer and which is often neglected 
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in the literature.203–208 On the other hand, little efforts have been conducted to study the 

energetic alignment between the b-TiO2 layer and the FTO glass, which is important in 

understanding the transport of photo-generated electrons from the dye towards the 

photoanodes.201,209 Although studies concerning the energy levels of FTO and b-TiO2 layer 

have been reported from time to time, they are mostly based on indirect measurements thus 

the establishment of reliable data is demanding.210,211  

1.7 Scope of the Thesis   

The scope of this study composes two aspects: 

1. Search for functional FTO beyond its basic transparency and conductivity using economic 

materials and techniques. The strategy we have developed in this study is to combine FTO 

thin film by ultrasonic spray pyrolysis (a cheap, simple and scalable chemical method) with 

wide band gap semiconductor nanoparticles (ZnO, S:TiO2, and Al2O3 nanoparticles) to form 

FTO nanocomposites which exhibit controllably high haze factors without sacrificing too 

much the transparency and conductivity required for electrode application in solar cells. 

These hazy FTO nanocomposites offers great potential in improving the optical path thus the 

optical absorption, and finally the conversion efficiency of the solar cell device. The 

successful preparation of FTO nanocomposites is followed by in-depth investigations on the 

morphology and structural properties as well as electrical and optical properties. Finally, the 

applicability of these newly developed FTO nanocomposites as transparent electrodes in thin 

film photovoltaics cells has been exemplified by applying the FTO nanocomposites in real 

DSSC, CdTe, as well as organic solar cells. 

2. Study the FTO/TiO2 interface which is not only of particular importance in DSSCs, but 

also widely applied in perovskite and quantum-dot solar cells. The focus in this study is, on 

one hand, to identify the crystalline polymorph of thin TiO2 film deposited on FTO, and on 

the other hand, to probe the energetic band alignment at this interface with the help of X-ray 

photoelectron spectroscopy (XPS). 
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(45)  Gerischer, H.; Tributsch, H. Elektrochemische Untersuchungen Zur Spektralen Sensibilisierung 

von ZnO-Einkristallen. Berichte Bunsenges. Für Phys. Chem. 1968, 72 (3), 437–445. 
(46)  Gerischer, H.; Michel-Beyerle, M. E.; Rebentrost, F.; Tributsch, H. Sensitization of Charge 

Injection into Semiconductors with Large Band Gap. Electrochimica Acta 1968, 13 (6), 1509–
1515. 

(47)  τ’Regan, ψ.ν Grätzel, ε. χ δow-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized 
Colloidal TiO2 Films. Nature 1991, 353 (6346), 737–740. 

(48)  Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; 
Vlachopoulos, N.; Graetzel, M. Conversion of Light to Electricity by Cis-X2bis(β,β’-bipyridyl-



Reference 

54 
 

4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) 
on Nanocrystalline Titanium Dioxide Electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382–6390. 

(49)  Grätzel, M. Photoelectrochemical Cells. Nature 2001, 414 (6861), 338–344. 
(50)  Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. 

Rev. 2010, 110 (11), 6595–6663. 
(51)  Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Dye-Sensitized Solar Cells: A Brief Overview. 

Sol. Energy 2011, 85 (6), 1172–1178. 
(52)  Anscombe, N. Solar Cells That Mimic Plants. Nat. Photonics 2011, 5 (5), 266–267. 
(53)  Albero, J.; Atienzar, P.; Corma, A.; Garcia, H. Efficiency Records in Mesoscopic Dye-

Sensitized Solar Cells. Chem. Rec. 2015, 15 (4), 803–828. 
(54)  Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; 

Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-Sensitized Solar Cells 
with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. 
Chem. 2014, 6 (3), 242–247. 

(55)  Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. 
Rev. 1995, 95 (1), 49–68. 

(56)  Schwarzburg, K.; Willig, F. Origin of Photovoltage and Photocurrent in the Nanoporous Dye-
Sensitized Electrochemical Solar Cell. J. Phys. Chem. B 1999, 103 (28), 5743–5746. 

(57)  τ’Regan, ψ. ω.ν Durrant, J. R. Kinetic and Energetic Paradigms for Dye-Sensitized Solar Cells: 
Moving from the Ideal to the Real. Acc. Chem. Res. 2009, 42 (11), 1799–1808. 

(58)  Schwanitz, K. The TiO2/Dye/Electrolyte Interface in the Dye Sensitized Solar Cell, Technische 
Universität Darmstadt, 2008. 

(59)  Green, M. A. Solar Cells: Operating Principles, Technology, and System Applications; Prentice-
Hall series in solid state physical electronics; Prentice-Hall: Englewood Cliffs, NJ, 1982. 

(60)  Boudreaux, D. S.; Williams, F.; Nozik, A. J. Hot Carrier Injection at Semiconductor-Electrolyte 
Junctions. J. Appl. Phys. 1980, 51 (4), 2158. 

(61)  Ross, R. T. Efficiency of Hot-Carrier Solar Energy Converters. J. Appl. Phys. 1982, 53 (5), 3813. 
(62)  Nozik, A. J. Spectroscopy and Hot Electron Relaxation Dynamics in Semiconductor Quantum 

Wells and Quantum Dots. Annu. Rev. Phys. Chem. 2001, 52 (1), 193–231. 
(63)  Landsberg, P. T.; Nussbaumer, H.; Willeke, G. Band-Band Impact Ionization and Solar Cell 

Efficiency. J. Appl. Phys. 1993, 74 (2), 1451. 
(64)  Kolodinski, S.; Werner, J. H.; Wittchen, T.; Queisser, H. J. Quantum Efficiencies Exceeding 

Unity due to Impact Ionization in Silicon Solar Cells. Appl. Phys. Lett. 1993, 63 (17), 2405. 
(65)  Luque, A.; Martí, A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced 

Transitions at Intermediate Levels. Phys. Rev. Lett. 1997, 78 (26), 5014–5017. 
(66)  Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion; Springer: 

Berlin; New York, 2006. 
(67)  Self-Assembled InGaAs/GaAs Quantum Dots; Sugawara, M., Ed.; Semiconductors and 

semimetals; Acad. Press: San Diego, Calif., 1999. 
(68)  Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse 

Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. Rev. Mater. Sci. 2000, 30 (1), 
545–610. 

(69)  Moser, J. E.; Bonnôte, P.; Grätzel, M. Molecular Photovoltaics. Coord. Chem. Rev. 1998, 171, 
245–250. 

(70)  Hagfeldt, A.; Grätzel, M. Molecular Photovoltaics. Acc. Chem. Res. 2000, 33 (5), 269–277. 
(71)  Greenham, N. C.; Peng, X.; Alivisatos, A. P. Charge Separation and Transport in Conjugated-

Polymer/semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching 
and Photoconductivity. Phys. Rev. B 1996, 54 (24), 17628–17637. 

(72)  Arango, A. C.; Carter, S. A.; Brock, P. J. Charge Transfer in Photovoltaics Consisting of 
Interpenetrating Networks of Conjugated Polymer and TiO2 Nanoparticles. Appl. Phys. Lett. 
1999, 74 (12), 1698. 



Reference 

55 
 

(73)  van der Wielen, M. W. J.; Cohen Stuart, M. A.; Fleer, G. J. Controlled Nanometer-Scale Surface 
Roughening and Its Effect on the Ordering and Stability of Liquid-Crystalline Polymer Films. 
Adv. Mater. 1999, 11 (11), 918–923. 

(74)  Griffiths, D. J. Introduction to Quantum Mechanics; Prentice Hall: Englewood Cliffs, N.J, 1995. 
(75)  Kittel, C. Introduction to Solid State Physics, 8th ed.; Wiley: Hoboken, NJ, 2005. 
(76)  Harrison, W. A. Electronic Structure and the Properties of Solids: The Physics of the Chemical 

Bond, Dover ed.; Dover Publications: New York, 1989. 
(77)  West, A. R. Solid State Chemistry and Its Applications, Second edition, student edition.; John 

Wiley & Sons, Inc: Chichester, West Sussex, 2014. 
(78)  Würfel, P. Physics of Solar Cells: From Principles to New Concepts; John Wiley & Sons, 2008. 
(79)  Sharma, B. L. Metal-Semiconductor Schottky Barrier Junctions and Their Applications; 1984. 
(80)  Klein, A. Energy Band Alignment at Interfaces of Semiconducting Oxides: A Review of 

Experimental Determination Using Photoelectron Spectroscopy and Comparison with 
Theoretical Predictions by the Electron Affinity Rule, Charge Neutrality Levels, and the 
Common Anion Rule. Thin Solid Films 2012, 520 (10), 3721–3728. 

(81)  Tejedor, C.; Flores, F.; Louis, E. The Metal-Semiconductor Interface: Si (111) and Zincblende 
(110) Junctions. J. Phys. C Solid State Phys. 1977, 10 (12), 2163. 

(82)  Tejedor, C.; Flores, F. A Simple Approach to Heterojunctions. J. Phys. C Solid State Phys. 1978, 
11 (1), L19. 

(83)  Flores, F.; Tejedor, C. Energy Barriers and Interface States at Heterojunctions. J. Phys. C Solid 
State Phys. 1979, 12 (4), 731. 

(84)  McCaldin, J. O.; McGill, T. C.; Mead, C. A. Correlation for III-V and II-VI Semiconductors of 
the Au Schottky Barrier Energy with Anion Electronegativity. Phys. Rev. Lett. 1976, 36 (1), 
56–58. 

(85)  Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S. P.; Proffit, D. 
E.; Mason, T. O. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi 
Level, Work Function and Energy Band Alignment. Materials 2010, 3 (11), 4892–4914. 

(86)  Grove, A. S. Physics and Technology of Semiconductor Devices; Wiley: New York, NY, 1967. 
(87)  Kasap, S. O. Principles of Electronic Materials and Devices, 3rd ed.; McGraw-Hill: Boston, 

2006. 
(88)  Zeman, M. Solar Cell Operational Principles. https://ocw.tudelft.nl/wp-content/uploads/Solar-

Cells-R4-CH4_Solar_cell_operational_principles.pdf. 
(89)  Granqvist, C. G. Transparent Conductors as Solar Energy Materials: A Panoramic Review. Sol. 

Energy Mater. Sol. Cells 2007, 91 (17), 1529–1598. 
(90)  Ginley, D.; Hosono, H.; Paine, D. C. Handbook of Transparent Conductors; Springer Science & 

Business Media, 2010. 
(91)  White, D. L.; Feldman, M. Liquid-Crystal Light Valves. Electron. Lett. 1970, 6 (26), 837–839. 
(92)  Betz, U.; Kharrazi Olsson, M.; Marthy, J.; Escolá, M. F.; Atamny, F. Thin Films Engineering of 

Indium Tin Oxide: Large Area Flat Panel Displays Application. Surf. Coat. Technol. 2006, 200 
(20–21), 5751–5759. 

(93)  Minami, T. Transparent Conducting Oxide Semiconductors for Transparent Electrodes. 
Semicond. Sci. Technol. 2005, 20 (4), S35. 

(94)  Transparent Conductive Zinc Oxide; Ellmer, K., Klein, A., Rech, B., Eds.; Hull, R., Osgood, R. 
M., Parisi, J., Warlimont, H., Series Eds.; Springer Series in Materials Science; Springer Berlin 
Heidelberg: Berlin, Heidelberg, 2008; Vol. 104. 

(95)  Chopra, K. L.; Major, S.; Pandya, D. K. Transparent Conductors—a Status Review. Thin Solid 
Films 1983, 102 (1), 1–46. 

(96)  Rey, G.; Ternon, C.; Modreanu, M.; Mescot, X.; Consonni, V.; Bellet, D. Electron Scattering 
Mechanisms in Fluorine-Doped SnO2 Thin Films. J. Appl. Phys. 2013, 114 (18), 183713. 

(97)  Rakhshani, A. E.; Makdisi, Y.; Ramazaniyan, H. A. Electronic and Optical Properties of 
Fluorine-Doped Tin Oxide Films. J. Appl. Phys. 1998, 83 (2), 1049. 

(98)  Aouaj, M. A.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M. Comparative Study of ITO 
and FTO Thin Films Grown by Spray Pyrolysis. Mater. Res. Bull. 2009, 44 (7), 1458–1461. 



Reference 

56 
 

(99)  Ren, Y.; Zhao, G. Y.; Shen, J. Preparation of Fluorine Doped Tin Oxide Film by Ultrasonic 
Spray Pyrolysis. Mater. Sci. Forum 2011, 695, 594–597. 

(100)  Minami, T.; Sonohara, H.; Kakumu, T.; Takata, S. Highly Transparent and Conductive 
Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering. Jpn. J. Appl. Phys. 1995, 34 (Part 
2, No. 8A), L971–L974. 

(101)  Minami, T. Transparent and Conductive Multicomponent Oxide Films Prepared by 
Magnetron Sputtering. J. Vac. Sci. Technol. A 1999, 17 (4), 1765–1772. 

(102)  Handbook of Photovoltaic Science and Engineering, 2. ed., [fully  and updated].; Luque, A., 
Hegedus, S., Eds.; Wiley: Chichester, 2011. 

(103)  Minami, T. New N-Type Transparent Conducting Oxides. MRS Bull. 2000, 25 (8), 38–44. 
(104)  Germain Rey. Etude d’oxydes métalliques nano-structurés (ZnO, SnO2) pour applications 

photovoltaïques, PhD thesis: Université de Grenoble, 2012. 
(105)  Sernelius, B. E.; Berggren, K.-F.; Jin, Z.-C.; Hamberg, I.; Granqvist, C. G. Band-Gap 

Tailoring of ZnO by Means of Heavy Al Doping. Phys. Rev. B 1988, 37 (17), 10244–10248. 
(106)  Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93 (3), 632–633. 
(107)  Shanthi, E.; Banerjee, A.; Dutta, V.; Chopra, K. L. Electrical and Optical Properties of Tin 

Oxide Films Doped with F and (Sb+F). J. Appl. Phys. 1982, 53 (3), 1615–1621. 
(108)  Hamberg, I.; Granqvist, C. G. Evaporated Sn‐doped In2O3 Films: Basic Optical Properties 

and χpplications to Energy‐efficient Windows. J. χppl. Phys. 1986, 60 (11), R123–R160. 
(109)  Barnes, T. M.; Reese, M. O.; Bergeson, J. D.; Larsen, B. A.; Blackburn, J. L.; Beard, M. C.; 

Bult, J.; van de Lagemaat, J. Comparing the Fundamental Physics and Device Performance of 
Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting 
Oxides. Adv. Energy Mater. 2012, 2 (3), 353–360. 

(110)  Haacke, G. New Figure of Merit for Transparent Conductors. J. Appl. Phys. 1976, 47 (9), 
4086–4089. 

(111)  Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.-P.; Bellet, D. Metallic 
Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. 
Small 2016, 12 (44), 6052-6075. 

(112)  Nandy, S.; Banerjee, A.; Fortunato, E.; Martins, R. A Review on Cu2O and CuI-Based P-Type 
Semiconducting Transparent Oxide Materials: Promising Candidates for New Generation Oxide 
Based Electronics. Rev. Adv. Sci. Eng. 2013, 2 (4), 273–304. 

(113)  Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-Type 
Electrical Conduction in Transparent Thin Films of CuAlO2. Nature 1997, 389 (6654), 939–942. 

(114)  Kawazoe, H.; Yanagi, H.; Ueda, K.; Hosono, H. Transparent P-Type Conducting Oxides: 
Design and Fabrication of P-N Heterojunctions. MRS Bull. 2000, 25 (8), 28–36. 

(115)  Materials Science Research Trends; Olivante, L. V., Ed.; Nova Science Publishers: New York, 
2008. 

(116)  Thomas, G. Materials Science: Invisible Circuits. Nature 1997, 389 (6654), 907–908. 
(117)  Moya, X.; Muñoz-Rojas, D. Materials for Sustainable Energy Applications: Conversion, 

Storage, Transmission and Consumption; Singapore, 2016. 
(118)  Bélanger, D. Thickness Dependence of Transport Properties of Doped Polycrystalline Tin 

Oxide Films. J. Electrochem. Soc. 1985, 132 (6), 1398. 
(119)  Maruyama, T.; Tabata, K. Fluorine-Doped Tin Dioxide Thin Films Prepared by Chemical 

Vapor Deposition. J. Appl. Phys. 1990, 68 (8), 4282. 
(120)  Stjerna, B.; Olsson, E.; Granqvist, C. G. Optical and Electrical Properties of Radio Frequency 

Sputtered Tin Oxide Films Doped with Oxygen Vacancies, F, Sb, or Mo. J. Appl. Phys. 1994, 
76 (6), 3797. 

(121)  Consonni, V.; Rey, G.; Roussel, H.; Bellet, D. Thickness Effects on the Texture Development 
of Fluorine-Doped SnO2 Thin Films: The Role of Surface and Strain Energy. J. Appl. Phys. 
2012, 111 (3), 33523. 

(122)  Ferrer, F. J.; Gil-Rostra, J.; Terriza, A.; Rey, G.; Jiménez, C.; García-López, J.; Yubero, F. 
Quantification of Low Levels of Fluorine Content in Thin Films. Nucl. Instrum. Methods Phys. 
Res. Sect. B Beam Interact. Mater. At. 2012, 274, 65–69. 



Reference 

57 
 

(123)  Robertson, J. Electronic Structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C Solid 
State Phys. 1979, 12 (22), 4767. 

(124)  Mishra, K. C.; Johnson, K. H.; Schmidt, P. C. Electronic Structure of Antimony-Doped Tin 
Oxide. Phys. Rev. B 1995, 51 (20), 13972–13976. 

(125)  Martínez, A. I.; Huerta, L.; León, J. M. O.-R. de; Acosta, D.; Malik, O.; Aguilar, M. 
Physicochemical Characteristics of Fluorine Doped Tin Oxide Films. J. Phys. Appl. Phys. 2006, 
39 (23), 5091. 

(126)  Kumar, A.; Zhou, C. The Race To Replace Tin-Doped Indium Oxide: Which Material Will 
Win? ACS Nano 2010, 4 (1), 11–14. 

(127)  Kang, M.-G.; Guo, L. J. Nanoimprinted Semitransparent Metal Electrodes and Their 
Application in Organic Light-Emitting Diodes. Adv. Mater. 2007, 19 (10), 1391–1396. 

(128)  De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. 
J.; Coleman, J. N. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: 
Extremely High DC to Optical Conductivity Ratios. ACS Nano 2009, 3 (7), 1767–1774. 

(129)  Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.-P. Flexible 
Transparent Conductive Materials Based on Silver Nanowire Networks: A Review. 
Nanotechnology 2013, 24 (45), 452001. 

(130)  Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. 
R.; Tanner, D. B.; Hebard, A. F.; et al. Transparent, Conductive Carbon Nanotube Films. 
Science 2004, 305 (5688), 1273–1276. 

(131)  Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. 
R.; Baughman, R. H. Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science 
2005, 309 (5738), 1215–1219. 

(132)  Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Transparent, 
Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-
Emitting Diodes. Nano Lett. 2006, 6 (9), 1880–1886. 

(133)  Doherty, E. M.; De, S.; Lyons, P. E.; Shmeliov, A.; Nirmalraj, P. N.; Scardaci, V.; Joimel, J.; 
Blau, W. J.; Boland, J. J.; Coleman, J. N. The Spatial Uniformity and Electromechanical 
Stability of Transparent, Conductive Films of Single Walled Nanotubes. Carbon 2009, 47 (10), 
2466–2473. 

(134)  Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, 
L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; et al. Graphene-Based Liquid Crystal Device. 
Nano Lett. 2008, 8 (6), 1704–1708. 

(135)  Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-
Sensitized Solar Cells. Nano Lett. 2008, 8 (1), 323–327. 

(136)  Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene 
Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotechnol. 2008, 3 (5), 270–
274. 

(137)  Tung, V. C.; Chen, L.-M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. 
Low-Temperature Solution Processing of Graphene−ωarbon σanotube Hybrid εaterials for 
High-Performance Transparent Conductors. Nano Lett. 2009, 9 (5), 1949–1955. 

(138)  Müller, J.; Rech, B.; Springer, J.; Vanecek, M. TCO and Light Trapping in Silicon Thin Film 
Solar Cells. Sol. Energy 2004, 77 (6), 917–930. 

(139)  Taneda, N.; Oyama, T.; Sato, K. Tech. Digest PVSEC-17; 2007; Vol. 309. 
(140)  Oyama, T.; Kambe, M.; Taneda, N.; Masumo, K. Requirements for TCO Substrate in Si-

Based Thin Film Solar Cells -Toward Tandem. MRS Online Proc. Libr. 2008, 1101, KK02-01. 
(141)  Kim, S.; Chung, J.-W.; Lee, H.; Park, J.; Heo, Y.; Lee, H.-M. Remarkable Progress in Thin-

Film Silicon Solar Cells Using High-Efficiency Triple-Junction Technology. Sol. Energy Mater. 
Sol. Cells 2013, 119, 26–35. 

(142)  Neubert, S.; Ring, S.; Welker, F.; Götzendörfer, S.; Ruske, F.; Stannowski, B.; Schlatmann, 
R.; Rech, B. Very Thin, Highly-Conductive ZnO:Al Front Electrode on Textured Glass as 
Substrate for Thin-Film Silicon Solar Cells. Phys. Status Solidi RRL – Rapid Res. Lett. 2014, 8 
(1), 44–47. 



Reference 

58 
 

(143)  Hongsingthong, A.; Aino, A.; Sichanugrist, P.; Konagai, M.; Kuramochi, H.; Akiike, R.; 
Iigusa, H.; Utsumi, K.; Shibutami, T. Development of Novel Al-Doped Zinc Oxide Films 
Fabricated on Etched Glass and Their Application to Solar Cells. Jpn. J. Appl. Phys. 2012, 51, 
10NB09. 

(144)  Chakanga, K.; Siepmann, O.; Sergeev, O.; Geißendörfer, S.; von Maydell, K.; Agert, C. 
Textured Substrates for Light in-Coupling in Thin-Film Solar Cells. SPIE Newsroom 2014. 

(145)  Zhang, W.; Paetzold, U. W.; Meier, M.; Gordijn, A.; Hüpkes, J.; Merdzhanova, T. Thin-Film 
Silicon Solar Cells on Dry Etched Textured Glass. Energy Procedia 2014, 44, 151–159. 

(146)  Zeman, M.; Isabella, O.; Jäger, K.; Santbergen, R.; Solntsev, S.; Topic, M.; Krc, J. Advanced 
Light Management Approaches for Thin-Film Silicon Solar Cells. Energy Procedia 2012, 15, 
189–199. 

(147)  Sahraei, N.; Venkataraj, S.; Aberle, A. G.; Peters, M. Optimum Feature Size of Randomly 
Textured Glass Substrates for Maximum Scattering inside Thin-Film Silicon Solar Cells; 2014; 
Vol. 8981, p 89811D–1. 

(148)  Morawiec, S.; Mendes, M. J.; Filonovich, S. A.; Mateus, T.; Mirabella, S.; Águas, H.; Ferreira, 
I.; Simone, F.; Fortunato, E.; Martins, R.; et al. Broadband Photocurrent Enhancement in a-Si:H 
Solar Cells with Plasmonic Back Reflectors. Opt. Express 2014, 22 (S4), A1059. 

(149)  Sardana, S. K.; Chava, V. S. N.; Thouti, E.; Chander, N.; Kumar, S.; Reddy, S. R.; Komarala, 
V. K. Influence of Surface Plasmon Resonances of Silver Nanoparticles on Optical and 
Electrical Properties of Textured Silicon Solar Cell. Appl. Phys. Lett. 2014, 104 (7), 73903. 

(150)  Bohren, C. F. How Can a Particle Absorb More than the Light Incident on It? Am. J. Phys. 
1983, 51 (4), 323–327. 

(151)  Mendes, M. J.; Morawiec, S.; Simone, F.; Priolo, F.; Crupi, I. Colloidal Plasmonic Back 
Reflectors for Light Trapping in Solar Cells. Nanoscale 2014, 6 (9), 4796–4805. 

(152)  Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. Surface Plasmon Enhanced Silicon Solar 
Cells. J. Appl. Phys. 2007, 101 (9), 93105. 

(153)  Beck, F. J.; Polman, A.; Catchpole, K. R. Tunable Light Trapping for Solar Cells Using 
Localized Surface Plasmons. J. Appl. Phys. 2009, 105 (11), 114310. 

(154)  Catchpole, K. R.; Polman, A. Design Principles for Particle Plasmon Enhanced Solar Cells. 
Appl. Phys. Lett. 2008, 93 (19), 191113. 

(155)  Pahud, C.; Isabella, O.; Naqavi, A.; Haug, F.-J.; Zeman, M.; Herzig, H. P.; Ballif, C. 
Plasmonic Silicon Solar Cells: Impact of Material Quality and Geometry. Opt. Express 2013, 
21 (S5), A786. 

(156)  Pahud, C.; Savu, V.; Klein, M.; Vazquez-Mena, O.; Haug, F. J.; Brugger, J.; Ballif, C. Stencil-
Nanopatterned Back Reflectors for Thin-Film Amorphous Silicon N-I-P Solar Cells. IEEE J. 
Photovolt. 2013, 3 (1), 22–26. 

(157)  Beck, F. J.; Mokkapati, S.; Catchpole, K. R. Plasmonic Light-Trapping for Si Solar Cells 
Using Self-Assembled, Ag Nanoparticles. Prog. Photovolt. Res. Appl. 2010, 18 (7), 500–504. 

(158)  Morawiec, S.; Mendes, M. J.; Mirabella, S.; Simone, F.; Priolo, F.; Isodiana Crupi. Self-
Assembled Silver Nanoparticles for Plasmon-Enhanced Solar Cell Back Reflectors: Correlation 
between Structural and Optical Properties. Nanotechnology 2013, 24 (26), 265601. 

(159)  Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10 
(3), 1082–1087. 

(160)  Hsu, C.-M.; Battaglia, C.; Pahud, C.; Ruan, Z.; Haug, F.-J.; Fan, S.; Ballif, C.; Cui, Y. High-
Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector. Adv. Energy 
Mater. 2012, 2 (6), 628–633. 

(161)  Foster, S.; John, S. Light-Trapping in Dye-Sensitized Solar Cells. Energy Environ. Sci. 2013, 
6 (10), 2972–2983. 

(162)  Deepak, T. G.; Anjusree, G. S.; Thomas, S.; Arun, T. A.; Nair, S. V.; Sreekumaran Nair, A. 
A Review on Materials for Light Scattering in Dye-Sensitized Solar Cells. RSC Adv 2014, 4 
(34), 17615–17638. 

(163)  Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of Scattering Layers on 
Efficiency of Dye-Sensitized Solar Cells. Sol. Energy Mater. Sol. Cells 2006, 90 (9), 1176–1188. 



Reference 

59 
 

(164)  Otsuka, R.; Endo, T.; Takano, T.; Takemura, S.; Murakami, R.; Muramoto, R.; Madarász, J.; 
Okuya, M. Fluorine Doped Tin Oxide Film with High Haze and Transmittance Prepared for 
Dye-Sensitized Solar Cells. Jpn. J. Appl. Phys. 2015, 54 (8S1), 08KF03. 

(165)  Chih-Hung, T.; Sui-Ying, H.; Tsung-Wei, H.; Yu-Tang, T.; Yan-Fang, C.; Jhang, Y. H.; Hsieh, 
L.; Chung-Chih, W.; Yen-Shan, C.; Chieh-Wei, C.; et al. Influences of Textures in Fluorine-
Doped Tin Oxide on Characteristics of Dye-Sensitized Solar Cells. Org. Electron. 2011, 12 (12), 
2003–2011. 

(166)  Bakhshayesh, A. M.; Mohammadi, M. R.; Dadar, H.; Fray, D. J. Improved Efficiency of Dye-
Sensitized Solar Cells Aided by Corn-like TiO2 Nanowires as the Light Scattering Layer. 
Electrochimica Acta 2013, 90, 302–308. 

(167)  Zhu, P.; Nair, A. S.; Yang, S.; Peng, S.; Ramakrishna, S. Which Is a Superior Material for 
Scattering Layer in Dye-Sensitized Solar Cells—electrospun Rice Grain- or Nanofiber-Shaped 
TiO2? J. Mater. Chem. 2011, 21 (33), 12210–12212. 

(168)  Zhu, G.; Pan, L.; Yang, J.; Liu, X.; Sun, H.; Sun, Z. Electrospun Nest-Shaped TiO2 Structures 
as a Scattering Layer for Dye Sensitized Solar Cells. J. Mater. Chem. 2012, 22 (46), 24326–
24329. 

(169)  Liu, B.; Aydil, E. S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on 
Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 
131 (11), 3985–3990. 

(170)  Wu, W.-Q.; Lei, B.-X.; Rao, H.-S.; Xu, Y.-F.; Wang, Y.-F.; Su, C.-Y.; Kuang, D.-B. 
Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire Arrays on FTO Glass for 
Dye-Sensitized Solar Cells. Sci. Rep. 2013, 3. 

(171)  Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. 
Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Ceram. Soc. 
1997, 80 (12), 3157–3171. 

(172)  Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Péchy, P.; Bach, U.; Schmidt-Mende, L.; 
Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; et al. Control of Dark Current in 
Photoelectrochemical (TiO2/I−–Iγ−) and Dye-Sensitized Solar Cells. Chem. Commun. 2005, No. 
34, 4351–4353. 

(173)  τ’Regan, ψ. ω.ν Durrant, J. R.ν Sommeling, P. ε.ν ψakker, σ. J. Influence of the Tiωl4 
Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, 
Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit. J. Phys. Chem. 
C 2007, 111 (37), 14001–14010. 

(174)  Wochnik, A. S.; Handloser, M.; Durach, D.; Hartschuh, A.; Scheu, C. Increasing Crystallinity 
for Improved Electrical Conductivity of TiO2 Blocking Layers. ACS Appl. Mater. Interfaces 
2013, 5 (12), 5696–5699. 

(175)  Gu, Z.-Y.; Gao, X.-D.; Li, X.-M.; Jiang, Z.-W.; Huang, Y.-D. Nanoporous TiO2 Aerogel 
Blocking Layer with Enhanced Efficiency for Dye-Sensitized Solar Cells. J. Alloys Compd. 
2014, 590, 33–40. 

(176)  Kavan, L.; Zukalova, M.; Vik, O.; Havlicek, D. Sol–Gel Titanium Dioxide Blocking Layers 
for Dye-Sensitized Solar Cells: Electrochemical Characterization. ChemPhysChem 2014, 15 (6), 
1056–1061. 

(177)  Hattori, R.; Goto, H. Carrier Leakage Blocking Effect of High Temperature Sputtered TiO2 
Film on Dye-Sensitized Mesoporous Photoelectrode. Thin Solid Films 2007, 515 (20–21), 
8045–8049. 

(178)  Hossain, M. F.; Biswas, S.; Takahashi, T. The Effect of Sputter-Deposited TiO2 Passivating 
Layer on the Performance of Dye-Sensitized Solar Cells Based on Sol–gel Derived 
Photoelectrode. Thin Solid Films 2008, 517 (3), 1294–1300. 

(179)  Waita, S. M.; Aduda, B. O.; Mwabora, J. M.; Niklasson, G. A.; Granqvist, C. G.; Boschloo, 
G. Electrochemical Characterization of TiO2 Blocking Layers Prepared by Reactive DC 
Magnetron Sputtering. J. Electroanal. Chem. 2009, 637 (1–2), 79–83. 



Reference 

60 
 

(180)  Jeong, J.-A.; Kim, H.-K. Thickness Effect of RF Sputtered TiO2 Passivating Layer on the 
Performance of Dye-Sensitized Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95 (1), 344–
348. 

(181)  Kim, H.-J.; Jeon, J.-D.; Kim, D. Y.; Lee, J.-J.; Kwak, S.-Y. Improved Performance of Dye-
Sensitized Solar Cells with Compact TiO2 Blocking Layer Prepared Using Low-Temperature 
Reactive ICP-Assisted DC Magnetron Sputtering. J. Ind. Eng. Chem. 2012, 18 (5), 1807–1812. 

(182)  Kavan, L.; Grätzel, M. Highly Efficient Semiconducting TiO2 Photoelectrodes Prepared by 
Aerosol Pyrolysis. Electrochimica Acta 1995, 40 (5), 643–652. 

(183)  Jiang, C.; Leung, M. Y.; Koh, W. L.; Li, Y. Influences of Deposition and Post-Annealing 
Temperatures on Properties of TiO2 Blocking Layer Prepared by Spray Pyrolysis for Solid-State 
Dye-Sensitized Solar Cells. Thin Solid Films 2011, 519 (22), 7850–7854. 

(184)  Yu, H.; Zhang, S.; Zhao, H.; Will, G.; Liu, P. An Efficient and Low-Cost TiO2 Compact Layer 
for Performance Improvement of Dye-Sensitized Solar Cells. Electrochimica Acta 2009, 54 (4), 
1319–1324. 

(185)  Kim, D. H.; Woodroof, M.; Lee, K.; Parsons, G. N. Atomic Layer Deposition of High 
Performance Ultrathin TiO2 Blocking Layers for Dye-Sensitized Solar Cells. ChemSusChem 
2013, 6 (6), 1014–1020. 

(186)  Jiang, C. Y.; Koh, W. L.; Leung, M. Y.; Chiam, S. Y.; Wu, J. S.; Zhang, J. Low Temperature 
Processing Solid-State Dye Sensitized Solar Cells. Appl. Phys. Lett. 2012, 100 (11), 113901. 

(187)  Cameron, P. J.; Peter, L. M.; Hore, S. How Important Is the Back Reaction of Electrons via 
the Substrate in Dye-Sensitized Nanocrystalline Solar Cells? J. Phys. Chem. B 2005, 109 (2), 
930–936. 

(188)  Cameron, P. J.; Peter, L. M. How Does Back-Reaction at the Conducting Glass Substrate 
Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells? 
J. Phys. Chem. B 2005, 109 (15), 7392–7398. 

(189)  Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Grätzel, M. The Function of a TiO2 
Compact Layer in Dye-Sensitized Solar ωells Incorporating “Planar” τrganic Dyes. σano δett. 
2008, 8 (4), 977–981. 

(190)  Liu, Y.; Sun, X.; Tai, Q.; Hu, H.; Chen, B.; Huang, N.; Sebo, B.; Zhao, X. Efficiency 
Enhancement in Dye-Sensitized Solar Cells by Interfacial Modification of Conducting 
Glass/mesoporous TiO2 Using a Novel ZnO Compact Blocking Film. J. Power Sources 2011, 
196 (1), 475–481. 

(191)  Duong, T.-T.; Choi, H.-J.; He, Q.-J.; Le, A.-T.; Yoon, S.-G. Enhancing the Efficiency of Dye 
Sensitized Solar Cells with an SnO2 Blocking Layer Grown by Nanocluster Deposition. J. Alloys 
Compd. 2013, 561, 206–210. 

(192)  Kim, J.; Kim, J. Fabrication of Dye-Sensitized Solar Cells Using Nb2O5 Blocking Layer Made 
by Sol–Gel Method. J. Nanosci. Nanotechnol. 2011, 11 (8), 7335–7338. 

(193)  Cho, T.-Y.; Ko, K.-W.; Yoon, S.-G.; Sekhon, S. S.; Kang, M. G.; Hong, Y.-S.; Han, C.-H. 
Efficiency Enhancement of Flexible Dye-Sensitized Solar Cell with Sol–gel Formed Nb2O5 
Blocking Layer. Curr. Appl. Phys. 2013, 13 (7), 1391–1396. 

(194)  Kim, M.-H.; Kwon, Y.-U. Semiconductor CdO as a Blocking Layer Material on DSSC 
Electrode: Mechanism and Application. J. Phys. Chem. C 2009, 113 (39), 17176–17182. 

(195)  Bills, B.; Shanmugam, M.; Baroughi, M. F. Effects of Atomic Layer Deposited HfO2 Compact 
Layer on the Performance of Dye-Sensitized Solar Cells. Thin Solid Films 2011, 519 (22), 7803–
7808. 

(196)  Sommeling, P. ε.ν τ’Regan, ψ. ω.ν Haswell, R. R.ν Smit, H. J. P.ν ψakker, σ. J.ν Smits, J. J. 
T.; Kroon, J. M.; van Roosmalen, J. A. M. Influence of a TiCl4 Post-Treatment on 
Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. J. Phys. Chem. B 2006, 110 (39), 
19191–19197. 

(197)  Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar 
Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 1228604. 



Reference 

61 
 

(198)  Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. Perovskite 
Solar Cell with an Efficient TiO2 Compact Film. ACS Appl. Mater. Interfaces 2014, 6 (18), 
15959–15965. 

(199)  Kim, J.; Choi, H.; Nahm, C.; Moon, J.; Kim, C.; Nam, S.; Jung, D.-R.; Park, B. The Effect of 
a Blocking Layer on the Photovoltaic Performance in CdS Quantum-Dot-Sensitized Solar Cells. 
J. Power Sources 2011, 196 (23), 10526–10531. 

(200)  Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. High Efficiency Double 
Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO2 Nanotube Arrays. Appl. 
Phys. Lett. 2007, 91 (15), 152111. 

(201)  Peng, B.; Jungmann, G.; Jäger, C.; Haarer, D.; Schmidt, H.-W.; Thelakkat, M. Systematic 
Investigation of the Role of Compact TiO2 Layer in Solid State Dye-Sensitized TiO2 Solar Cells. 
Coord. Chem. Rev. 2004, 248 (13–14), 1479–1489. 

(202)  Li, G.; Gray, K. A. The Solid–solid Interface: Explaining the High and Unique Photocatalytic 
Reactivity of TiO2-Based Nanocomposite Materials. Chem. Phys. 2007, 339 (1–3), 173–187. 

(203)  Hart, J. N.; Menzies, D.; Cheng, Y.-B.; Simon, G. P.; Spiccia, L. TiO2 Sol–gel Blocking 
Layers for Dye-Sensitized Solar Cells. Comptes Rendus Chim. 2006, 9 (5–6), 622–626. 

(204)  Hamann, T. W.; Farha, O. K.; Hupp, J. T. Outer-Sphere Redox Couples as Shuttles in Dye-
Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via 
Atomic Layer Deposition. J. Phys. Chem. C 2008, 112 (49), 19756–19764. 

(205)  Han, C. H.; Cho, T. Y.; Bae, S. H.; Sung, Y. M.; Park, M. W. Effects of TiO2 Blocking Layer 
Formation by SolGel Method on Conversion Efficiency of Dye-Sensitized Solar Cell. In 
TENCON 2010 - 2010 IEEE Region 10 Conference; 2010; pp 2133–2136. 

(206)  Cho, T.-Y.; Yoon, S.-G.; Sekhon, S. S.; Kang, M. G.; Han, C.-H. The Effect of a Sol-Gel 
Formed TiO2 Blocking Layer on the Efficiency of Dye-Sensitized Solar Cells. Bull Korean 
Chem Soc 2011, 32 (10), 3629. 

(207)  Kim, J.-K.; Seo, H.; Son, M.-K.; Shin, I.; Choi, J.-H.; Choi, S.-W.; Kim, H.-J. The 
Optimization of TiO2 Compact Layer in Dye-Sensitized Solar Cell by the Analysis of 
Performance and Internal Impedance. Phys. Status Solidi C 2011, 8 (2), 634–636. 

(208)  Choi, H.; Nahm, C.; Kim, J.; Moon, J.; Nam, S.; Jung, D.-R.; Park, B. The Effect of TiCl4-
Treated TiO2 Compact Layer on the Performance of Dye-Sensitized Solar Cell. Curr. Appl. Phys. 
2012, 12 (3), 737–741. 

(209)  Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. Nature of Photovoltaic Action 
in Dye-Sensitized Solar Cells. J. Phys. Chem. B 2000, 104 (9), 2053–2059. 

(210)  Cameron, P. J.; Peter, L. M. Characterization of Titanium Dioxide Blocking Layers in Dye-
Sensitized Nanocrystalline Solar Cells. J. Phys. Chem. B 2003, 107 (51), 14394–14400. 

(211)  Lee, S.; Noh, J. H.; Han, H. S.; Yim, D. K.; Kim, D. H.; Lee, J.-K.; Kim, J. Y.; Jung, H. S.; 
Hong, K. S. Nb-Doped TiO2 : A New Compact Layer Material for TiO2 Dye-Sensitized Solar 
Cells. J. Phys. Chem. C 2009, 113 (16), 6878–6882. 

        



Chapter 2. Experimental Details 

62 
 

Chapter 2. Experimental Details 

2.1 Fabrication of FTO nanocomposites 

Preparation of nanoparticle suspensions 

Polycrystalline ZnO nanoparticles with average size less than 100 nm were commercially 

purchased from Sigma Aldrich (product Nr. 544906). They were weighted and dispersed in 

isopropanol (Sigma Aldrich) forming 4 suspensions of different weight concentration (wt%): 

0.5, 1.0, 1.5, and 2.0 wt%.  

The S:TiO2 nanoparticles were synthesized using the hydrothermal method as described in 

Ref. 1. The as-synthesized S:TiO2 nanoparticles showed bimodal distributions with smaller 

nanoparticles being anatase while bigger ones being rutile. The large rutile S:TiO2 

nanoparticles were separated from small anatase nanoparticles by centrifugation (2000 rpm). 

The rutile S:TiO2 nanoparticles were used in this work to prepare S:TiO2-FTO 

nanocomposites. The average sizes of S:TiO2 nanoparticles are 150-300 nm in length and 20-

40 nm in width. The S:TiO2 nanoparticles were weighted and dispersed in isopropanol 

forming 6 suspensions: 0.2, 0.5, 0.75, 1, 1.5 and 2 wt%. 

Commercial Al2O3 nanoparticles (product Nr. 44931) were purchased from Alfa Aesar, 

weighted and dispersed in isopropanol (Sigma Aldrich) forming 3 suspensions: 0.5, 1.0, and 

2.0 wt%.  

Spin coating of nanoparticle suspensions 

All nanoparticle suspensions were ultrasonicated for 5 min before being spin-coated on glass 

substrates (Corning 1737) to form nanoparticle substrates. The ultrasonication of the 

nanoparticle suspensions was intentionally employed to separate large nanoparticle 

aggregates. The spin coater used is shown in Figure 2.1.  

 
Figure 2.1: The spin coater used to spin coat the nanoparticle suspension to form nanoparticle 

substrate. 
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A single-step spin coating program was used: velocity 1500 rpm, acceleration 1500 rpm/s and 

time 200 seconds. The suspension volume used for spin-coating was fixed as 0.4 mL in total, 

which were injected separately in two times, each time with 0.2 mL. 

FTO film deposition by ultrasonic spray pyrolysis  

The ZnO, S:TiO2, and Al2O3 nanoparticle substrates prepared by spin coating were then 

coated conformally with a FTO film by ultrasonic spray pyrolysis with the setup and 

schematic shown in Figure 2.2. The resultant samples are termed ZnO-FTO, S:TiO2-FTO, 

and Al2O3-FTO nanocomposites.  

The precursor solution for FTO deposition was prepared by dissolving 0.16 M of SnCl4·5H2O 

(Sigma Aldrich) and 0.04 M of NH4F (Sigma Aldrich) in methanol (VWRTM). The precursor 

solution was placed over a piezoelectric ceramic which vibrates at its resonance frequency 

(700 kHz). Due to the strong vibration of the underlying piezo-ceramic, an aerosol was 

formed and sent to the hot substrate by compressed air (carrying gas) resulting in a constant 

flow rate of 1.25 mL/min. The growth temperature was 420 °C and the moving heating plate 

results in large area deposition.  

The resulting FTO thin film thickness is around 300 nm with deposition rate as high as 15-20 

nm/min. A bare glass substrate was positioned in the same deposition batch of 

nanocomposites resulting in the reference flat FTO.  

 

Figure 2.2: The setup of ultrasonic spray pyrolysis together with its schematics drawn for clarification. 
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2.2 Deposition of b-TiOၷ thin layers  

Thin b-TiO2 layer by SolGel method 

According to Ref. 2 and 3, the sol precursor of the blocking TiO2 (b-TiO2) layer was prepared 

by mixing titanium tetraisopropoxide (TTIP, Sigma Aldrich) with deionized water 

(Synergy®), hydrochloric acid (HCl, Sigma Aldrich), and absolute ethanol (Fisher Scientific) 

as a solvent. The TTIP concentration was 0.4 M while the TTIP/H2O/HCl molar composition 

was 1/0.82/0.13. The sol was aged at room temperature for two days before being used to 

deposit b-TiO2 layer by spin coating. A different spin coater was used as shown in Figure 2.3.  

 

Figure 2.3: The schematics of the spin coater used to deposit thin b-TiO2 film by SolGel method. 

The spin coating program composed of 3 steps: first the substrate was accelerated to 3000 

rpm with an acceleration of 5000 rpm/s and maintained for 1 s; then it was deaccelerated to 

0 rpm and maintained for 10 s; finally it was re-accelerated to 100 rpm with 100 rpm/s and 

maintained for 1η s. In each spin coating cycle, a sol solution of γ00 ȝδ was used, after which 
the film was heated in an oven at 500°C for 15 min. One spin coating cycle results in 

approximately 40 nm thick TiO2 film. By increasing the cycle number, the TiO2 film thickness 

can be increased. The thickness of resultant b-TiO2 layer after 2, 3, and 7 spin coating cycles 

is 80 nm, 120 nm, and 280 nm, respectively. 

Thin b-TiO2 layer by Aerosol Assisted Metal Organic Chemical Vapor Deposition 

(AAMOCVD) 

Thin b-TiO2 layers were also deposited by aerosol assisted metal organic chemical vapor 

deposition (AA-MOCVD), with the setup shown in Figure 2.4. The precursor used was 0.03 

M titanium oxide bis(acetylacetonate) (Stream Chemicals) dissolved in butanol (Fisher 
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Chemical). The precursor solution was placed in the burette connected with a pot. During 

deposition, the precursor solution flowed to the pot where a piezoelectric ceramic vibrated to 

form an aerosol of the precursor solution. The aerosol was then sent to the hot substrate by 

the compressed air and react to form thin TiO2 films. The substrate temperature was set at 

450°C and the deposition time was 30 min. The thickness of resultant b-TiO2 layer was 

estimated to be around 60 nm. 

 

Figure 2.4: The setup of aerosol assisted metal organic chemical vapor deposition (AAMOCVD).  

Deposition of RuO2 by magnetron sputtering 

The RuO2 substrates were deposited on quartz substrate by reactive DC magnetron sputtering 

from a 2 inch metallic Ru target with power of 10W. Two different deposition temperatures 

were chosen: room temperature and 500°C. The pressure during sputtering was 1.0 Pa with 

total gas flow of 10 sccm (7.5% O2, 92.5% Ar). The thickness of resultant RuO2 films was 

estimated to be around 60 nm on average. 

2.3 Characterization Techniques 

Techniques based on interaction with X-ray 

2.3.1 X-Ray Diffraction (θ-2θ, GIXRD, ω-scan, pole figure, RSM) 

Since the day of its discovery in 1895, X-ray has been widely used in the science community 

as an effective tool to study material properties. X-ray has relatively high energy thus can 

penetrate into materials. Its wavelength is comparable to atomic distances thus strong 
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interaction between the X-ray and the matter can be expected. Depending on the various 

interaction processes between X-ray and matter, different techniques have been developed to 

probe different aspects of information.  

X-ray diffraction (XRD) has become a very important tool to study crystalline structures of 

materials. When the X-ray is sent to a sample, it interacts with the electrons and gets scattered 

out. χt specific condition known as ψragg’s condition, these scattered X-ray photons have no 

energy loss and no phase change thus interference (constructive and destructive) would occur. 

The ψragg’s condition is expressed by a simple equation, known as Bragg’s equation: 

 βdhkl sin ș = nȜ (2.48) 

where dhkl is the interplanar distance (or d-spacing) of a specific plane identified by its Miller 

indices (hkl) inside a crystalline solid, ș is the incident angle defined as the angle between 
incident X-ray and probed (hkl) plane, also called Bragg angle, n is the diffraction order, and � is the X-ray wavelength. The Bragg’s condition is also schematically drawn in Figure 2.5 

for a better clarification. 

 

Figure β.ημ The schematic illustration of the ψragg’s condition where constructive interference of two 
beams occurs if the path difference (2dsinș) is integer multiple of the incident X-ray wavelength. 

A schematic drawing of the basic elements used in a typical X-ray diffractometer is shown in 

Figure 2.6.  

 
Figure 2.6: The basic elements used in a typical diffractometer 

χlthough the diffraction theory based on ψragg’s equation is the common principle for X-ray 

diffraction techniques, different geometries can be adopted to probe information of specific 

interest.  
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Bragg-Brentano (�-2� coupled scan) and grazing incidence XRD (detector scan)  

During the Bragg-Brentano XRD measurement, the X-ray source is fixed. The sample and 

the detector move in a ș-βș manner to satisfy the ψragg’s condition. The ș is defined as the 
angle between the X-ray incident beam and the sample surface while the βș is defined as the 
angle between the scattered and incident X-ray beam. The scattering vector q, is defined as q 

= k - k0 where k and k0 are scattered and incident X-ray wave vector, respectively. In Bragg-

Brentano configuration as one sees in Figure 2.7a, the scattering vector q is always normal to 

the sample surface, meaning that only those (hkl) planes parallel to the sample surface 

contribute to the diffraction signals when the Bragg condition is satisfied. As powerful as the 

Bragg-Brentano XRD technique is, difficulties arise when the material to be probed has small 

volume such as (ultra) thin films. The incident angle is so high in Bragg-Brentano geometry 

that the X-ray often penetrates through the top (ultra) thin film reaching the substrate. As a 

result, the diffraction patterns contain strong signals originating from the substrate and buries 

the weak signals coming from the top thin film, complicating the analysis of the top (ultra) 

thin film. In this case, a better approach would be to use the grazing incidence configuration, 

where a very small incident angle is chosen in order to reduce the penetration depth.4 As 

shown in Figure 2.7b, the X-ray source and sample are fixed to ensure a small incident angle 

(usually 0.1-η₎), only the detector moves at βș angle to collect diffraction signals. ωontrary 
to the Bragg-Brentano configuration, the scattering vector q in grazing incidence is no longer 

normal to the sample surface. While Bragg-Brentano patterns probe information of (hkl) 

planes parallel to the sample surface, grazing incidence patterns are contributed by (hkl) 

planes non-parallel to sample surface. 

 
Figure 2.7: (a) Diffraction geometry of Bragg-Brentano configuration. (b) Diffraction geometry of 

grazing incidence configuration. In both configurations, the incident (k0) and scattered wave vector 

(k) as well as scattering vector (q) are indicated, respectively.  

By comparing the experimental diffraction patterns with the powder diffraction files (PDFs), 

we can identify the phase composition. The PDF files used in this work include 00-041-1445 

for SnO2, 00-036-1451 for ZnO, 00-021-1276 for rutile TiO2, 00-021-1272 for anatase TiO2, 

and 00-043-1027 for RuO2, respectively. One can also calculate the lattice parameter of the 

sample with tetragonal structure using the following equation: 
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1
dβ = hβ + kβ

aβ + �2
cβ (2.49) 

where d is the interplanar distance which can be obtained from the ψragg’s equation with the 
peak position (βș) determined from the experimental diffraction pattern. While h, k, and l are 
the Miller indices while a and c are lattice parameters. 

Furthermore, the peak width/broadening can be used to estimate crystallite size and 

strain/defects information. In 1918 Scherrer derived an equation relating the mean crystallite 

size (L) of a powder to its diffraction peak broadening (ȕL) assuming no other effects (such 

as strain) was taken into account: 

 ȕδ = KȜ
δ cos ș (2.50) 

this is the famous Scherrer’s equation, where ȕL is the peak broadening due to crystallite 

size, K is a constant from the assumptions made in the theory and is taken as 0.9 in this study, 

δ and ș are average crystallite size and incident angle, respectively. 

However, the diffraction peak broadening may also come from the inhomogeneous strain 

present inside the samples, often called as microstrain. Homogenous strain, termed also 

macrostrain, however, would compress/expand all the crystallites by the same amount thus 

results in only shifting of the diffraction peak. The broadening due to pure strain (ȕİ) is related 

to the strain (İ) by the following equation: 

 ȕİ = ωİ tan ș (2.51) 

where C is a constant related to the assumptions made in the theory and is often taken as 4, 

and ș is the incident angle. 

Different methods, such as the Williamson-Hall method5 or Warren-Averbach method6, can 

be used to separate the peak broadening due to strain (ȕİ) from the peak broadening due to 

crystallite size (ȕL).  

In this work, Bragg-Brentano diffraction patterns were measured in the Bruker D8 Advance 

diffractometer where a Ge monochromator crystal was used to select ωu Kα1 radiation with 

well-defined wavelength of 1.5406 Å. A 1-D linear detector was used enabling a resolution 

of 0.05°. Other parameters generally used were 2.5° for Soller slits, 0.3° for divergent slit, 

and 6.8 mm for anti-scatter slit. Grazing incident XRD patterns can be measured in the same 

equipment with a different X-ray tube which produced ωu Kα radiation with a weighted 
wavelength of 1.54186 Å. Instead of using divergent beam as in Bragg-Brentano 

configuration, parallel beam was used in grazing incidence configuration and a parallel plate 

collimator was used to maximize intensities. The detector was no longer 1D linear detector 

but a scintillation counter was used which gives a resolution of 0.3°. Some of the grazing 

incidence XRD patterns in this work were collected in a RIGAKU Smartlab (5-circle) 

diffractometer. The grazing incidence angle may vary from sample to sample since it was 

determined by optimizing the intensity of a chosen (hkl) plane. 
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Rocking Curve (omega scan) and Pole Figure  

In addition to analyzing the phase composition, XRD can also be used to perform 

crystallographic texture analysis since texture is intimately related to the material properties.7 

As seen in Figure 2.8, during XRD measurement the sample can be tilted along three 

independent axesμ Ȧ (omega), φ (phi), and Ȥ (chi). The Ȧ- and Ȥ- axis lie within the sample 

surface while the φ-axis is normal to the sample surface. Rotating the sample about the Ȧ-

axis changes the incident angle ș, thus the incident angle can also be represented by Ȧ. The 
grain orientations at different directions of the sample can be probed by playing with the 

sample rotation along the three axes. 

 
Figure β.8μ The Ȧ-, φ-, and Ȥ-axis along which the sample can be titled during XRD measurement.  

A rocking curve is a plot of X-ray diffraction intensity versus Ȧ, thus often called as omega 
scan as well. In a rocking curve, the X-ray source and detector is set at a specific Bragg angle 

while the sample is tilted along Ȧ-axis during the measurement. The scattering vector is thus 

fixed. For a textured sample, the grains may be tilted with respect to each other with certain 

angles. These tilted grains can only satisfy the ψragg’s conditions when the sample is properly 

tilted. The width of a rocking curve is thus related to the distribution of grains along Ȧ-axis. 

A perfect crystal will produce a very sharp rocking curve, the width of which comes from the 

instrument broadening and the intrinsic width of the material itself. For epitaxial thin films, 

the rocking curves can also be used to study defects such as dislocation density, mosaic spread, 

curvature, misorientation, and inhomogeneity.   

In rocking curves, the setup is fixed at the ψragg’s condition for specific (hkl) planes of 
interest and by varying the Ȧ-angle, we obtain the “out-of-plane” distribution of grains 
orienting their (hkl) planes perpendicular to the scattering vector. In order to probe the “in-

plane” orientation of textured samples, the pole figure measurement should be performed. 

During the measurement of pole figures, the X-ray source and detector are fixed at specific 

Bragg reflection while the sample is rotated around both Ȥ- and φ-axis so that a plot of 

diffraction intensity of a given reflection at a large number of different angular orientation of 

the sample is obtained. A contour map of the intensity is then plotted as a function of the 

angular orientation of the sample, in which the intensity of a given reflection is proportional 
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to the number of (hkl) planes satisfying the Bragg condition. In other words, the pole figure 

essentially gives the probability of finding a given (hkl) plane normal as a function of the 

sample orientation. For an ideal polycrystalline sample with random orientation, the pole 

figure will have uniform intensity contours. Whereas for epitaxial films or single crystals, the 

diffraction signals in pole figures are concentrated in specific Ȥ- and φ-angles characterized 

by crystallographic relations.  

The rocking curves presented in this study were measured in the Siemens D5000 

diffractometer (Schulz reflection geometry). χ σi foil was used to filter ωu Kȕ radiation 
resulting in ωu Kα radiation with a weighted wavelength of 1.η418θ Å (Kα1=1.η40θ Å, 
Kαβ=1.η44γλ Å). The X-ray used was a slightly divergent point beam with diameter of 

approximately 1 mm. The detector was a scintillation counter. Other parameters used were 

2.5° for Soller slits, 0.6 mm for anti-scatter slit, and 6 mm for detector slits. The pole figures 

were measured in the same diffractometer with similar parameters except that the detector slit 

was decreased to 0.β mm. During the measurement, the sample was radially titled along Ȥ-

axis from 0₎ to λ0₎ν at each Ȥ-angle, the sample was rotated by a complete circle (360°) along 

φ-axis. 

Reciprocal Space Mapping (RSM) 

Reciprocal space mapping (RSM), as the name suggests, is a high resolution XRD technique 

to map a chosen reflection (hkl) directly in the reciprocal space.8,9 It is advantageous in its 

high precision in determining the interplanar distances, which can be used to study the strain 

information in epitaxy materials. ψesides, RSε can also be used to study the mosaicity (∆ș) 
and lateral correlation length (∆ȟ-1).  

Reciprocal Space Mappings (RSMs) were collected with a RIGAKU Smartlab equipped with 

a 9 kW rotating Cu anode source (45 kV and 200 mA). Optics used before the sample were a 

1D parabolic mirror, a Ge monochromator orientated (400) with 2 reflections, a mask of 2 mm, 

and a 1.0 mm slit. The obtained beam was a monochromatic parallel X-ray beam (ωu Kα1= 
1.5406 Å) with dimensions of about 2 mm parallel to the sample surface and 1.0 mm 

perpendicular of the sample surface. Optics used after the sample were two 1.0 mm cross, a 

10.0 mm slits, a 2.5° Soller slits, an automatic attenuator, and a punctual scintillator detector. 

During the acquisition, the sample was held with a droplet of ethanol and kept horizontal. The 

βș-Ȧ scan (step size 0.00η₎) was repeated at each Ȧ changing from -2° to +2° with a step of 

0.02°. 

2.3.2 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a very powerful experimental technique that 

allows to probe the electronic structure of materials to high precision.10,11 The main operation 

principle is based on the external photoelectric effect, that is, upon illumination of photons 

with energy higher than the ionization energy, electrons in the atoms would escape and be 

emitted from the sample. This effect was first described by Hertz in 1887,12 then explained 
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and quantified by Einstein later in 1905.13 The operation principle of XPS is schematically 

illustrated in Figure 2.9: the photoelectron escaped from the sample is sent to a hemispherical 

analyzer for analyzing the kinetic energy (Ekin) and then collected by a channeltron detector 

for intensity count.  

 
Figure 2.9: Schematics of the experimental setup of an X-ray photoelectron spectroscopy (XPS). 

During the measurement, a three-step process is usually assumed to occur: 

1) the incident X-ray photon (hȞ) is absorbed by an electron which is excited to the final 

state from its initial state.  

2) the excited electron travels to the sample surface. 

3) the electron with remaining Ekin escapes into the vacuum. 

The Ekin of the electrons is therefore given by:  

 Ekin = hȞ − Eb − μ (2.52) 

where the Eb is the binding energy of the excited electron with reference to the Fermi energy 

of the sample, and ȝ is the work function of the sample.  

By proper calibration on a clean metallic sample whose Fermi edge emission is set to zero 

binding energy (as the reference), a photoelectron spectra displaying the Eb of the sample can 

be obtained as exemplified in Figure 2.10.  

 

Figure 2.10: A schematic XP spectrum together with the corresponding energies shown in energy 

diagram for comparison.14 
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One notices that other than the sharp features as the core level (CL) peaks and valence band 

spectrum which contribute to the important chemical and electronic information, there exists 

a background intensity originating essentially from the inelastic scattering of the photo-

excited electrons. While escaping from the atom, the majority of photo-excited electrons are 

encountered with inelastic collision during which their Ekin is reduced little by little. These 

electrons are thus termed secondary electrons, to distinguish from the primary electrons which 

do not suffer from inelastic collision. The primary electrons give rise to distinct spectral 

features (e.g. peaks) mirroring (in the first order approximation) the density of states (DOS) 

of the sample, while secondary electrons have a more or less continuous energy spectrum 

down to zero kinetic energy and are mainly useful to determine the work function of the 

sample. As one sees in Figure 2.11, the inelastic mean free path of the electrons in solids is 

very small down to atomic level.15,16 Only those electrons that originate within a few 

nanometers below the sample surface can escape from the sample surface and be detected. 

Therefore, the XPS is highly surface sensitive. Furthermore, to minimize the scattering of 

electrons on their way to detector, the XPS measurements need to be performed at high 

vacuum conditions (ultrahigh vacuum required for preparing clean sample surfaces).   

 

Figure 2.11: The calculated inelastic mean free path of electrons in solids.10 

Since every element has its unique electronic structure, the XP spectrum is also unique of 

each element and every compound. In other words, the XP spectrum can serve as fingerprints 

for elemental identification. Usually the first step in evaluating the XPS data is to analyze the 

elements present in the sample by scanning a survey spectrum. Take the survey spectrum of 

SnO2 as an example (see Figure 2.12), by comparing to the reference spectra,17 each peak can 

be assigned as a particular electron state of a particular element. The identification of the 

elements thus equals to the assignment of elements to each emission line, which is marked in 

the figure. In addition to the different core level emission of the composing elements (Sn and 

O in this case), Auger electrons are also emitted (Sn MNN and O KLL emission lines) because 

of the relaxation of the excited ions. In the Auger process, an outer electron falls into the inner 

orbital vacancy, and a second electron is simultaneously emitted, carrying off the excess 

energy. Note that the binding energy is usually in reverse scale with the zero reference energy 

placed to the right. Secondly, to probe more detailed information concerning the electronic 
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properties of the sample, high resolution core level spectra of the electronic states of interest 

as well as the valence band need to be measured. However, the measurement of core level 

spectra is not trivial in that one usually obtains more than one emission line due to the multiple 

interactions taking place during the photoemission process. 

 
Figure 2.12: The survey spectrum of a magnetron sputtered SnO2 film. 

One of the most important interactions is the spin-orbit coupling, which leads to the splitting 

of the core levels (p-orbital, d-orbital, f-orbital etc.). Take Sn 3d orbital as an example (refer 

again to Figure 2.12), when an electron is emitted from Sn 3d, an unpaired electron is left 

behind with spin ms = ± 1/2. Since the Sn 3d orbital carries an angular momentum l = 2. The 

spin of the unpaired electron can be either parallel or antiparallel to l resulting in two different 

final states: one with total angular momentum j (j = l + ms) of 5/2 and the other with j = 3/2. 

The intensity ration of the two emission lines in the spectrum is determined by the degeneracy 

(2j+1) of the final state and thus equals 6:4 for Sn 3d5/2 and Sn 3d3/2. In the valence band 

spectrum, the low binding energy cutoff corresponds to the valence band maximum (VBM). 

In principle, the VBM energy with respect to the Fermi energy (EF-EV) should be extracted 

by fitting a calculated density of states to the spectrum as described by Kraut et al.18 But in 

most cases, a linear extrapolation of the leading edge is used. For both the core level position 

and the VBM energy, their determination from XP spectra is with respect to the Fermi level 

of the sample which is referenced at zero binding energy. Therefore, knowing the VBM 

effectively points out the Fermi position in the sample. Moreover, the relative energy 

difference between the core level and VBM (∆ECL, VBM= ECL-EV) is an important parameter 

constant characteristic of materials, which is often used to determine the band offset at the 

interface between two semiconductors using Kraut’s methodμ19 

 

∆EV = EV
1 − EV

β = (Eωδ
1 − ∆Eωδ, Vψε

1) − (Eωδ
β − ∆Eωδ, Vψε

β)= (Eωδ
1 − Eωδ

β) + (∆Eωδ, Vψε
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1) 
(2.53) 
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Finally, as surface sensitive as XPS is, one can determine the most reliable information at the 

interface by performing so called interface experiments in which a contact material is 

stepwise deposited until the substrate signals are completely attenuated (see Figure 2.13 for 

reference). In this way, the band edges or Fermi levels of both the substrate and film are 

monitored as a function of the film thickness, from which not only the band offset but also 

the band bending at the interface can be determined.  

 

Figure 2.13: The schematics of the interface experiment where the contact material is stepwise 

deposited on the substrate. By measuring the core level emissions of both film and substrate at each 

step, the valence band edge can be monitored as a function of film thickness, as shown by the Schottky 

barrier formation.14  

The XPS measurements performed in this study were carried out in the Darmstadt Integrated 

System for Materials Research (DAISY-MAT) which is schematically shown in Figure 2.14.  

 

Figure 2.14: The sketch of the Darmstadt Integrated System for Materials Research (DAISY-MAT) 

which enables thin film deposition and surface analysis within the same vacuum system. 
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The system combines a Physical Electronics PHI 5700 multitechnique surface analysis 

system with several thin film deposition chambers by an ultrahigh vacuum sample transfer. 

The base pressure in the spectrometer and the sample handler is 10-9 mbar. The X-ray source 

was Al-Kα with excitation energy 1486.6 eV. All measurements were calibrated with respect 

to a clean Ag sample. 

Techniques based on interaction with electrons 

2.3.3 Scanning Electron Microscopy (SEM) 

Scanning electron microscope (SEM) is a type of electron microscope that makes use of the 

interactions between the electron beam and sample to examine objects on a very fine scale, 

yielding information about topography, morphology, composition and crystallographic 

information of probed samples. 

In the scanning electron microscopes used in this study, electron beams were formed in high 

vacuum with a Schottky field emission gun (FEG) where a sufficiently high potential gradient 

was posed at the emitter to cause field electron emission by lowering the energy barrier. The 

incident primary electrons interact with the sample within a teardrop-shaped volume known 

as the interaction volume as shown in Figure 2.15, from which various signals can be detected 

to characterize the samples in question. The most common signals to probe the sample surface 

morphology are secondary electron (SE) and back scattered electron (BSE). SE refers to the 

electrons kicked out of the atom by the primary high electron beams while BSE refers to beam 

electrons that are reflected from the sample by elastic scattering. The SE signal can produce 

very high-resolution images of a sample surface while BSE images can provide information 

about the distribution of different elements in the sample due to the fact that BSE signal is 

strongly related to the atomic number (Z) of the specimen. The microscope used in this study 

for examining sample surface is FEI QUANTA FEG 250. 

 

Figure 2.15: Schematic representation of interaction volume for various electron-specimen 

interactions. Different signals are produced at different depth length. 
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Furthermore, the crystallographic orientation/texture of materials can also be probed in SEM 

by capturing the electron diffraction patterns, this is termed electron back scattered diffraction 

(EBSD) technique.20 The microscope for performing EBSD in this study is a ZEISS Ultra 

Plus. Due to the low (10-30 kV) acceleration voltage compared to transmission electron 

microscope (200 kV), the electron energy in scanning electron microscope is relatively low 

thus can probe only the surface of the sample. During the measurement, the sample was tilted 

70° from horizontal enabling even higher surface sensitivity (approximately 40 nm 

penetration depth in our setup). As schematically illustrated in Figure 2.16, when the electron 

beam interacts with the crystal lattice, low energy loss back scattered electrons are channeled 

and are subject to path differences that lead to constructive and destructive interference 

(obeying as well the ψragg’s law).21 The reference coordination system used to define the 

crystal coordination in EBSD measurement is schematically shown in the left upper inset. 

 
Figure 2.16: Electron interaction with crystalline material during the electron back scattered 

diffraction (EBSD) measurement.22 The left upper inset shows the reference coordination system: 

normal direction (ND), reference direction (RD), and transverse direction (TD). 

If a phosphor screen coupled with a CCD camera is placed a short distance in the path of the 

diffracted electrons, a diffraction pattern can be seen. This is called Kikuchi pattern after the 

first discovery by Seishi Kikuchi, which is uniquely defined by the lattice parameters of the 

particular crystal under beam, the crystal orientation, the wavelength of incident electron, and 

the proximity of the detector to the sample.22 The obtained Kikuchi pattern is then analyzed 

in specialized computer software by detecting the Kikuchi bands using an optimized Hough 

transform. With a priori information about the candidate phases under the beam, the software 

determines all possible orientations with each phase and reports the best fit as the identified 
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phase and orientation. Over the scanned region in the sample, all the data points are indexed 

(with known phase and orientation information) and stored for further analysis in OIMTM 

software.  

2.3.4 Transmission Electron Microscopy (TEM) 

As with scanning electron microscopy, transmission electron microscopy (TEM) also probes 

sample structure by making use of interaction with electrons. However, the TEM observation 

requires very thin (< 100 nm) specimens so that the electrons can transmit through for imaging 

and diffraction. Therefore, TEM is a destructive technique which requires delicate sample 

preparation. Usually the sample cross section was prepared by tripod polishing (mechanical 

polishing) followed by Ar ion milling. In cases when the target area of the sample needs to 

be precisely selected, one can apply the focused ion beam (FIB) technique to prepare TEM 

cross-section sample lamellae.23 With this technique, we prepared in this study the precise 

cross section of FTO film deposited on S:TiO2 nanoparticle agglomerates for the 0.75 wt% 

S:TiO2-FTO nanocomposite sample in a Zeiss NVision40 SEM-FIB microscope. The 

specimen preparation by FIB is schematically illustrated in Figure 2.17.  

 

Figure 2.17: The procedures showing the preparation of TEM cross section specimen by focused ion 

beam (FIB) using the microsampling technique.24 

In this study, both a conventional TEM (JEOL-2016 LaB6) employing parallel electron 

beams and a scanning TEM (TITAN Ultimate) employing convergent electron beams were 

used for sample observation. Both microscopes were operated at 200 kV. The scanning TEM 

has a high spatial resolution of about 90 pm with the convergence angle of 20 mrad. The 

different structure of conventional and scanning TEM is shown in Figure 2.18. By 

implementing the geometric phase analysis module into Gatan microscopy suite,25,26 rich 

sample information (such as strain/defects) can be well studied from scanning TEM images. 
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Furthermore, an innovative nano-beam precession electron diffraction (N-PED) technique 

was employed to probe local strain at high resolution (up to 10-4) in the TITAN Ultimate 

microscope. For N-PED, convergent electron beams were also used with the beam diameter 

of about 3 nm and the convergence angle of 1.8 mrad. When the electron beam is converged 

on the sample to a point, the diffraction pattern forms disks, in contrary to the diffraction 

points formed in conventional TEM employing parallel beams (see Figure 2.19 for 

clarification). As explained in Ref. 27, the distance between diffraction disks can be accurately 

measured by template matching, from which bi-dimensional strain can be calculated.   

 

Figure 2.18: Schematics of conventional TEM (left) and scanning TEM (right) 

 

Figure 2.19: The different shape of diffraction points formed under parallel (left) and convergent 

(right) beams. 
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Laser based techniques 

2.3.5 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is a non-destructive method to map the 3D topography of a 

sample surface by making use of the interaction between the probing tip and the sample 

surface when the two are brought sufficiently close to each other. The AFM setup used in this 

study is a Digital Instrument D3100 nanoscope. A sharp Si tip is attached to a flexible 

microcantilever. The atomic force the sample imposes to the tip deflects the cantilever thus 

changes the position of laser as detected by the photodiode, which is outputted as a voltage 

difference and fed back to a piezoelectric element (connected to the cantilever) which self-

adjusted such that the laser is situated in the center of the photodiode. The voltage difference 

compensated by the piezoelectric element is finally recorded and converted into images. In 

contact mode, as the name suggests, the tip is in contact with the sample surface; while in 

tapping mode, the tip is vibrated at a certain amplitude. The flat surface of epitaxial FTO films 

in Chapter 3 were measured in tapping mode while the rough surface of FTO nanocomposites 

were measured in contact mode. 

 

Figure 2.20: Schematic illustration of the main components of an AFM. The left inset shows the light 

micrograph of the side view of a real AFM tip (10 ȝm) on a 100 ȝm long cantilever. 

Complementary to the 2D SEM images, AFM images address the height information with 

resolution in the order of nanometers (at least), from which statistical parameters as surface 

roughness and correlation length can be easily extracted. Both contact and tapping modes 

were used to map the sample surface in this study. Further image analyses were conducted in 

Nanoscope and Gwyddion softwares.28 
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2.3.6 Raman Spectroscopy 

Raman Spectroscopy, complementary to Fourier transform infrared spectroscopy (FTIR), is 

a useful non-destructive technique to assess molecular vibrations and fingerprint material 

species. The operational principle of Raman spectroscopy is based on the inelastic scattering, 

or Raman scattering, of a monochromatic excitation source by the sample under probe. Upon 

interaction with the excitation source (usually lasers), which is essentially an oscillating 

electromagnetic wave, the sample will be polarized (electrically deformed). If the sample 

material is “polarizable”, that is, 

 

�α�q ≠ 0 (2.54) 

where α and q are polarizability and the normal coordinate of the vibration, respectively. 

The vibration is termed Raman active when Raman scattering occurs. That is to say, part of 

the incident photon energy is used to excite the vibration of the sample, thus the scattered 

photon would have lower energy compared to the incident ones. This lower frequency is 

termed as Stokes frequency while in some cases a higher frequency can be obtained termed 

as Anti-Stoke frequency (when excessive energy of excited Raman-active mode is released). 

For non Raman-active modes, a Rayleigh scattering may happen when photons of exact 

energy with the incident photons are observed. The IR-active and Raman active modes are 

schematically illustrated in Figure 2.21. 

 

Figure 2.21: The IR, Raman, and resonance Raman modes represented in energy level scale.  

These Raman shifts (∆Ȟ) can be used as a fingerprint to identify molecules and is expressed 

in the equation below:  

 
ΔȞ = 1

Ȝincident
− 1

Ȝscattered
 (2.55) 
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The Raman spectra in this study were recorded using a Jobin Yvon/Horiba Labram 

spectrometer equipped with a liquid nitrogen cooled charge-coupled device (CCD) detector. 

The measurements were conducted at room temperature in the micro-Raman mode in a 

backscattering geometry. A green Ar+ laser (514.5 nm) was focused (×100 objective) to a 1 

m2 spot on the sample surface. The laser power on the sample surface was close to 2 mW.  

For samples deposited on Si substrate, a crossed polarizer and analyser (VH) was used to 

minimize the background signals originating from the Si substrate. All Raman spectra were 

calibrated with respect to the Si spectrum measured at room temperature. 

Light based techniques 

2.3.7 Optical Microscopy 

Optical microcopy, as the name suggests, utilizes light and optical systems to visualize objects 

of small sizes that are not visible to bare human eyes. As the oldest microscope, it does not 

compete with electron based microscopes such as SEM and TEM, nor with laser based 

microscope as AFM. Nonetheless, optical microscope requires no sample preparation and 

does not suffer from charging issues; further it enables the acquisition of large-area images. 

Therefore as a first check on sample morphology on large scales, the optical microscopy 

serves as a good candidate.    

A LeikaDMLM optical microscope equipped with an OLYMPUS SC30 camera operated in 

reflective light mode was used in this study to map the surface morphology of nanoparticle 

substrates. All the images were taken with the same magnification (×200) and imageJ was 

used for image processing.29 

2.3.8 UV-Vis-NIR Spectrophotometer  

To study the optical properties, a Perkin Elmer Lambda 950 spectrophotometer was used, 

which allows the measurement of transmittance and reflectance. This spectrophotometer is 

equipped with two light sources, a deuterium arc lamp for ultraviolet (UV) light and a 

tungsten-halogen lamp for visible and infrared (IR) light. As a result, a total wavelength range 

of 250 – 2500 nm is possible with this setup. With the help of various optical elements, the 

incident light is directed to the sample and gets absorbed, reflected or transmitted. The 

transmitted and reflected light can then be collected by the two detectors equipped in the 

spectrophotometer, one photomultiplier (PM) for UV and Visible regions of the spectrum and 

an InGaAs sensor responsible for the near infrared range. The two detectors switch at 850 nm. 

As seen in Figure 2.22, two accessories can be mounted on the spectrophotometer: the 

integrating sphere (IS) with 150 mm diameter covering with spectralon, and the automated 

reflectance transmittance analyzer (ARTA). 

With the integrating sphere mounted, the total (Ttot) and specular (Tspec) transmitted light can 

be measured with the geometry shown in Figure 2.23a-b while the total (Rtot) and diffuse (Rdiff) 
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reflectance can be measured with the geometry shown in Figure 2.23c-d. If Ttot and Rtot are 

measured, the absorptance of the sample can be obtained as: 

 absorptance = 1 − Ttot − Rtot (2.56) 

However, if the sample under investigation is not homogeneous, the separately measured Ttot 

and Rtot are very likely performed in different regions. In this case, the calculated absorptance 

based on the above equation would bear relatively large measurement errors. This deserves 

particular attention since the FTO nanocomposites developed in this study show very rough 

surfaces. Therefore, a clip style center-mounted sample holder was deployed to obtain the Ttot 

and Rtot at a single measurement, the absorptance calculated from which should bear higher 

accuracy.  

 

Figure 2.22: Left: The Perkin Elmer Lambda 950 spectrophotometer equipped with integrating sphere. 

Right: the detailed automated reflectance transmittance analyzer (ARTA) module. The integrating 

sphere can be dismounted to install ARTA module for angular dependence measurements. 

 

Figure 2.23: The geometry of measuring (a) total transmittance (Ttot), (b) specular transmittance 

(Tspec), (c) total reflectance (Rtot), and (d) diffuse reflectance (Rdiff). 
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When the spectrophotometer is equipped with ARTA accessory, the angle-resolved 

measurement can be performed. The sample is mounted in the center and allowed to rotate 

independent of the detector so that the angles of incidence can be chosen arbitrarily. During 

the measurement, a monochromatic light of λ=633 nm was incident on the sample at 8°, the 

detector rotated at a step of 2.5° to collect the transmitted light at different scattered angles. 

The measurements with clip style center-mounted sample holder and ARTA accessory were 

performed in Laboratoire de Physique des Interfaces et des Couches Mince (LPICM) in école 

polytechnique in Paris with the help of Dr. Martin Foldyna.  

2.3.9 Angle-resolved Mueller matrix polarimeter (ARMMP) 

An innovative angle-resolved Mueller matrix polarimeter recently developed in école 

polytechnique (Paris, France) has allowed to obtain optical microscope and angle-resolved 

images of the exact same textured region.30 The Mueller matrix polarimeter is coupled with 

a high numerical aperture reflection microscope that operates in both real (imaging) and 

angular (conoscopic) modes and it allows measuring the complete Mueller matrices of the 

sample surfaces and the angle-resolved emerging light. The schematic drawing of the 

polarimeter is shown in Figure 2.24. 

 

Figure 2.24: Schematic drawing of the angle-resolved Mueller matrix polarimeter.31 PSG refers to 

polarization state generator while PSA refers to polarization state analyzer. 

χ light source of Ȝ=θγγ nm coupled into an optical fiber bundle was used, which illuminates 
the lenses in the telescopic configuration,32 giving a direct access to the Fourier and real 

planes. The light reflected from the surface was collected by a microscope objective 

(NA=0.95, mag ×100 and 0.3 mm working distance) and imaged using additional lenses by 

the CCD camera. The different optical states of the complete Mueller matrix were generated 
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by combining polarizers and nematic liquid crystals before and after the microscope objective. 

The setup used a patented calibration method allowing elimination of all first order errors or 

imperfections of the optical components.33,34 

Electrical measurements 

2.3.10 Four-point probe 

The sheet resistance (Rs) is an important parameter characteristic of TCO materials. It is 

defined, at least in first approximation, as the ratio of material resistivity (ρ) over the film 
thickness (t): 

 Rs = ρ
t  (2.57) 

Thus physically Rs has the unit of Ω, but the unit of Ω/□ is exclusively used. χccording to its 
relation to the resistance (R) of a bulk material of dimension l (length) × w (width) × t 

(thickness): 

 R = V
I = ρ

l
wt = ρ

t
l
w

= Rs
l
w (2.58) 

One sees that the Rs represents the resistance of a square sheet with equal length and width 

regardless of the square size, thus it is donated with the unit of “τhm per square”. The 
measurement of Rs in this study was carried out in an in-line four-point probe (LukasLab 

Probe 4 apparatus) with the geometry schematically shown in Figure 2.25.  

 

Figure 2.25: The schematic of the in-line four-point probe to measure Rs.  

A current (I) is injected via the outer probes (1 and 4) and the voltage (V) between probe 2 

and 3 is measured. Rs is then calculated according to: 

 Rs = k
V
I  (2.59) 

where k is a correction factor which depends on the sample geometry, the probe spacing (s), 

as well as the distance between the probe and the sample edge.  



Electrical measurements 

85 
 

For the FTO nanocomposite with sample size of approximately 25×25 mm2, the probe 

spacing (s=1.02 mm) is much smaller than the sample size. When the probe is placed from 

the sample edge at a distance much larger than the probe spacing, the Rs is obtained according 

to: 

 Rs = π
ln β

V
I = 4.ηγ

V
I  (2.60) 

The Rs of each sample in this study was averaged over at least five measurements in different 

locations on the sample.   

2.3.11 Hall-effect measurement 

When a current Ix is injected along x-direction in a conductor, which is simultaneously placed 

in a magnetic field of Bz along z-direction, a Lorentz force of qv×B is exerted on the moving 

electrons and forces them to move along y-direction. Consequently, an electric field is 

established along y-direction acting an electrical force on the electrons which is opposite to 

the Lorentz force. Finally, an equilibrium is established along the y-direction and a steady 

voltage can be measured. This is termed the Hall voltage VH, from which the carrier 

concentration (n) and carrier mobility (ȝ) can be determined from: 

 
n = Ixψz

eVHt 
(2.61) 

  
ȝ = 1

eRsnt 
(2.62) 

where e and t is the elemental charge and film thickness, respectively, while Rs is the sheet 

resistance of the film. 

In this study, the Hall effect measurements were performed at room temperature using a 

homemade setup operating under a magnetic field of 0.5 Tesla in the classical Van der Pauw 

configuration. 
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Chapter 3. Morphology and Structural 

Properties of FTO nanocomposites 

In Chapter 3, the surface morphology and structural properties of ZnO-FTO, S:TiO2-FTO and 

Al2O3-FTO nanocomposites are discussed in detail.  

Section 3.1 presents the surface morphology of ZnO-FTO, S:TiO2-FTO and Al2O3-FTO 

nanocomposites. Specifically, subsection 3.1.1 focuses on the surface morphology of 

nanoparticle substrates (before the deposition of FTO film, mainly using optical microscopic 

images,) and examines how the nanoparticles self-organize as agglomerates after being spin-

coated on glass substrates. In subsection 3.1.2 the surface morphology of the final 

nanocomposites after the deposition of FTO film (by ultrasonic spray pyrolysis) is examined, 

based mainly on AFM images. The concept of total surface coverage and of RMS roughness 

are introduced as a function of nanoparticle suspension concentration.  

Section 3.2 details the structural properties of ZnO-FTO, S:TiO2-FTO and Al2O3-FTO 

nanocomposites with comparison to the control FTO specific to each series. Specifically, 

subsection 3.2.1 discusses the different structural characteristics of the three series of FTO 

nanocomposites with the help of X-ray diffraction techniques. In particular, the addition of 

S:TiO2 nanoparticles is found to induce a strong (110) texture of the resulting S:TiO2-FTO 

nanocomposites. Therefore, in subsection 3.2.2, detailed structure analyses are performed on 

the as-synthesized S:TiO2 nanoparticles and on the S:TiO2 nanoparticle substrate (without 

FTO film). A strong structural similarity between S:TiO2 nanoparticle substrate and S:TiO2-

FTO nanocomposite is later revealed, implying that (110) textured FTO grains are grown on 

<110> oriented S:TiO2 nanoparticles by local epitaxy. 

Section 3.3 therefore illustrates the local epitaxy growth using both direct and indirect 

methods. Subsection 3.3.1 summarizes the direct TEM observations on the cross section of a 

0.75 wt% S:TiO2-FTO nanocomposite, which was prepared by focused ion beam (FIB). 

However, the observation turned out to be unsuccessful due to the extreme structural 

complexity of the nanocomposite. As a consequence, in subsection 3.3.2, thin (~70 nm) and 

thick (~300 nm) FTO films are deposited on commercial (110) rutile TiO2 single crystals by 

ultrasonic spray pyrolysis under the same deposition conditions as those of S:TiO2-FTO 

nanocomposites. Careful structural analyses confirmed that epitaxial FTO films were 

successfully grown on (110) rutile TiO2 single crystals, supporting the argument of local 

epitaxy taking place in S:TiO2-FTO nanocomposites. 

Finally, conclusions and future perspectives concerning the content of this chapter are 

summarized in section 3.4.  



3.1 Morphology of FTO nanocomposites 

89 
 

3.1 Morphology of FTO nanocomposites 

3.1.1 Morphology of nanoparticle substrates 

The commercial ZnO and Al2O3 nanoparticles, as well as as-synthesized S:TiO2 nanoparticles 

were suspended in isopropanol forming suspensions with various concentrations (see Chapter 

2 for details), which were then spin-coated on bare glass substrates, forming so called 

nanoparticle substrates which appear very rough. The surfaces of ZnO, S:TiO2 and Al2O3 

nanoparticle substrates prepared with 2 wt% nanoparticle suspensions are presented in Figure 

3.1, where the large-area morphology is illustrated in optical microscopic images with low 

magnification (×500) (Figure 3.1a-c) while local surface details are revealed in corresponding 

SEM images (Figure 3.1d-f) taken at higher magnification (×5000). 

 

Figure 3.1: Optical microscopic images (×500) of (a) ZnO, (b) S:TiO2 and (c) Al2O3 nanoparticle 

substrates and corresponding SEM images (×5000) of (d) ZnO, (e) S:TiO2 and (f) Al2O3 nanoparticle 

substrates. The nanoparticle substrates were prepared by spin coating 2 wt% nanoparticle 

suspensions on glass substrates (without FTO film). 

In the optical images, the nanoparticles appear bright against the glass substrate which appears 

as the black background. The nanoparticles are seen to form agglomerates with random sizes 

and they do not cover completely the glass substrate. Meanwhile, the ZnO, S:TiO2 and Al2O3 

nanoparticles seem to form variously sized agglomerates in different manners, as evidenced 

also by their corresponding SEM images. In order to reveal this, statistical analyses on either 

optical or SEM images are necessary. Although SEM images are more advantageous in 

showing surface details, they are limited by the maximum observable area thus are less 

favorable to assure statistical sufficiency. Moreover, good-quality SEM images of the 

nanoparticle substrates could barely be obtained due to sample charging induced by the 

insulating glass substrate. As a result, image analyses were finally carried out on optical 
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images (×200) using the ImageJ software.1 According to the projected area of the nanoparticle 

agglomerates, they can be categorized into 4 groupsμ “large” agglomerates with the projected 
area larger than 10 µm2, “medium” agglomerates with the projected area of η-10 µm2, “small” 
agglomerates with the projected area of 2-5 µm2 and the remaining agglomerates with the 

projected area smaller than 2 µm2. Surface coverage is defined as the ratio of the area 

occupied by the nanoparticle agglomerates divided by the total area of the image. Thus the 

surface coverage for each group of nanoparticle agglomerates and the total surface coverage 

for all the nanoparticle agglomerates can be calculated accordingly, as summarized in Figure 

3.2 plotted as a function of nanoparticle suspension concentration for ZnO, S:TiO2 and Al2O3 

nanoparticle substrates. 

   

Figure 3.2: The total surface coverage of all nanoparticle agglomerates and the surface coverage for 

the 4 groups of nanoparticle agglomerates plotted as a function of nanoparticle suspension 

concentration for ZnO, S:TiO2 and Al2O3 nanoparticle substrates. The nanoparticle agglomerates are 

categorized into 4 groups according to their projected areaμ “large” agglomerates with projected 
area larger than 10 µm2, “medium” agglomerates with projected area of 5-10 µm2, “small” 
agglomerates with projected area of 2-5 µm2 and the remaining agglomerates with projected area 

smaller than 2 µm2.  

In the optical images (×200) used for image analyses, each pixel equals to approximately 

0.318 ȝm, thus 2 ȝm2 corresponds to the square area of about 4.5 pixels which is taken as the 

resolution limit of the optical images. In other words, nanoparticles agglomerates with their 

projected area less than 2 ȝm2 approach the instrumental limit and thus cannot be accurately 

observed. Although the corresponding surface coverage is less accurate, it is still drawn in 
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Figure 3.2 for reference. Despite the limited resolution of optical images, useful information 

can still be readily obtained from Figure 3.2. On the one hand, for all three types of 

nanoparticles, the majority of the nanoparticles tend to form very small agglomerates with 

projected area less than 2 ȝm2. χlso, the nanoparticles tend to form preferably “small” 
agglomerates followed by “medium” and then “large” agglomerates when the nanoparticle 

suspension concentration increases. On the other hand, with increasing nanoparticle 

suspension concentration, the total surface coverage increases most sharply for S:TiO2 

nanoparticle substrate while it mildly increases for ZnO nanoparticle substrate; for Al2O3 

nanoparticle substrate, the total surface coverage barely increases but keeps almost constant. 

The ZnO and S:TiO2 nanoparticles tend to form both small and big agglomerates; in particular, 

S:TiO2 nanoparticles seem to form preferably bigger agglomerates. The Al2O3 nanoparticles, 

however, tend to form notably small agglomerates. 

It is thus clear that the nanoparticles self-organize into agglomerates in different manners for 

ZnO, S:TiO2 and Al2O3 nanoparticle substrates. We believe that the self-organization 

behavior of different types of nanoparticles should be related to their chemical nature, the 

initial nanoparticle size and the solvent used to suspend the nanoparticles. However, the 

complete study concerning this aspect is beyond the scope of this work and thus will not be 

covered here. 

3.1.2 Morphology of FTO nanocomposites 

A thin FTO film of about 300 nm was then deposited by ultrasonic spray pyrolysis on the 

nanoparticle substrates as detailed in Chapter 2, resulting in ZnO-FTO, S:TiO2-FTO and 

Al2O3-FTO nanocomposites. As seen in the cross-section SEM images in Figure 3.3, for all 

three series of nanocomposites, the FTO film grows in the usual columnar structure in 

accordance with Ref. 2 and 3, and covers uniformly both the bare glass region and the 

nanoparticle agglomerates.  

 

Figure 3.3: SEM cross-section image for (a) 1 wt% ZnO-FTO nanocomposite, (b) 1 wt% S:TiO2-FTO 

nanocomposite and (c) 1 wt% Al2O3-FTO nanocomposite. 

Figure 3.4 presents the surface morphology of a standard flat FTO (~300 nm), a 1 wt% ZnO-

FTO nanocomposite, a 1 wt% S:TiO2-FTO nanocomposite, and a 1 wt% Al2O3-FTO 

nanocomposite in  plane-view SEM and AFM images, respectively.  
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Figure 3.4: (a) SEM and (b) AFM ( 1 × 1 ȝm2) images of a standard flat FTO (~300 nm); (c) SEM 

image and (d) AFM ( 1 × 1 ȝm2) image of region B of a 1 wt% ZnO-FTO nanocomposite; (e) SEM 

image and (f) AFM ( 2 × 2 ȝm2) image of region B of a 1 wt% S:TiO2-FTO nanocomposite; (g) SEM 

image and (h) AFM ( 2 × 2 ȝm2) image of region B of a 1 wt% Al2O3-FTO nanocomposite. 
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A standard flat FTO refers to the FTO film deposited directly on the bare glass substrate 

(without any nanoparticles) thus is taken as the reference. The flat FTO surface is very smooth 

as seen in both SEM (Figure 3.4a) and AFM (Figure 3.4b) images. On the contrary, the 

surface of ZnO-FTO, S:TiO2-FTO and Al2O3-FTO nanocomposites is much rougher as seen 

in their SEM images. On the surface of ZnO-FTO, S:TiO2-FTO and Al2O3-FTO 

nanocomposites, two regions marked as A and B are discerned: region A is very rough 

because the FTO film is deposited on nanoparticle agglomerates while region B appears flat. 

When region B is examined further as shown in the right AFM images, different features are 

observed: in region B of ZnO-FTO nanocomposite, the FTO film is deposited on the bare 

glass region thus is as smooth as a standard flat FTO; while for S:TiO2-FTO and Al2O3-FTO 

nanocomposites, nanoparticle agglomerates are also present in region B but with much 

smaller sizes. Thus region B in S:TiO2-FTO and in Al2O3-FTO nanocomposites do not 

resemble the surface of the flat FTO, but are semi-flat with slightly higher roughness.  

Complementary to SEM images, AFM images contain the depth information thus the surface 

roughness of the FTO nanocomposites can be calculated. The random size distribution of the 

nanoparticle agglomerates poses difficulties in calculating the RMS roughness of 

nanocomposites, which depends largely on the chosen area. As a compromise between 

statistical relevance and image resolution, AFM images of 40 × 40 ȝm2 with a resolution of 

40 nm per pixel were recorded at five or more different areas on each sample and were used 

to estimate the RMS roughness and corresponding error bars. Figure 3.5 plots RMS roughness 

as a function of nanoparticle suspension concentration for ZnO-FTO, S:TiO2-FTO, and 

Al2O3-FTO nanocomposites, respectively.  

 

Figure 3.5: RMS roughness as a function of nanoparticle suspension concentration for ZnO-FTO, 

S:TiO2-FTO and Al2O3-FTO nanocomposites. 

0.0 0.4 0.8 1.2 1.6 2.0

0

50

100

150

200

250

300

350

400

450

500

550

 ZnO-FTO nanocomposite

 S:TiO
2
-FTO nanocomposite

 Al
2
O

3
-FTO nanocomposite

R
M

S
 r

o
u

g
h

n
e

s
s
 (

n
m

)

Nanoparticle suspension concentration (wt%)



3.1 Morphology of FTO nanocomposites 

94 
 

Despite relatively larger error bars for certain samples, it is safe to conclude that the roughness 

generally increases with increasing nanoparticle suspension concentration for all the three 

series of FTO nanocomposites. The roughness of ZnO-FTO nanocomposites appears 

comparable to Al2O3-FTO nanocomposites while the S:TiO2-FTO nanocomposites possess 

slightly larger RMS roughness. In AFM images, if a certain height threshold is defined, the 

nanoparticle agglomerates can be counted as “grains” using Gwyddion software.4 Thus the 

total surface area occupied by all the nanoparticle agglomerates can then be calculated. The 

total surface coverage was thus obtained from the ratio between the area occupied by all the 

nanoparticle agglomerates and the total area of the AFM image. One should not get confused 

with the total surface coverage of nanoparticle substrates discussed in the previous subsection. 

Considering that the nanoparticles have undergone extra heating/cooling processes during the 

deposition of FTO film, one may as well expect the distributions of nanoparticle agglomerates 

on the resulting FTO nanocomposites to be different from the nanoparticle substrates. Thus 

for ZnO-FTO, S:TiO2-FTO and Al2O3-FTO nanocomposites, the total surface coverage is 

plotted against the nanoparticle suspension concentration in Figure 3.6.  

 
Figure 3.6: Total surface coverage as a function of nanoparticle suspension concentration for ZnO-

FTO, S:TiO2-FTO and Al2O3-FTO nanocomposites. 

It is clear that with increasing nanoparticle suspension concentration, the total surface 

coverage of the nanoparticle agglomerates increases for ZnO-FTO and S:TiO2-FTO 

nanocomposites while it keeps almost constant for Al2O3-FTO nanocomposites. Furthermore, 

depending on their equivalent radius (req) defined as the effective radius of a circle whose 

area is equivalent to the projected area of the nanoparticle agglomerates, ZnO, S:TiO2, and 

Al2O3 nanoparticle agglomerates can be categorized into 8 groups: 60-250 nm, 250-500 nm, 

500-750 nm, 750-1000 nm, 1000-1250 nm, 1250-1500 nm, 1500-2000 nm, and 2000-5000 

nm. Similarly, the surface coverage of each group can be obtained as a function of the 
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nanoparticle suspension concentration as plotted in Figure 3.7 for ZnO-FTO, S:TiO2-FTO 

and Al2O3-FTO nanocomposites. For clarity reasons, the first 4 groups of nanoparticle 

agglomerates with req less than 1000 nm are drawn separately from those with req larger than 

1000 nm. 

 

Figure 3.7: Surface coverages of the 8 groups of nanoparticle agglomerates categorized according 

to their equivalent radius (req) for ZnO-FTO nanocomposites in (a) and (d), for S:TiO2-FTO 

nanocomposites in (b) and (e), for Al2O3-FTO nanocomposites in (c) and (f). The surface coverage of 

each group is plotted against the nanoparticle suspension concentration. 
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The nanoparticle agglomerates with req below 60 nm are out of the resolution of the AFM 

images and thus are not taken into account here. For Al2O3-FTO nanocomposites, although 

the amount of large nanoparticle agglomerates (req>1000 nm) increases with increasing 

nanoparticle suspension concentration, they nevertheless occupy a very small area. Instead, 

the majority of the nanoparticle agglomerates are small with req<1000 nm and they do not 

vary much with the nanoparticle suspension concentration. Thus the total surface coverage of 

Al2O3-FTO nanocomposites keeps almost invariant. For S:TiO2-FTO nanocomposites, when 

the concentration is increased, the nanoparticles tend to form small agglomerates with req less 

than 500 nm followed by those with req ranging 500-1000 nm. There is little chance that the 

nanoparticles form larger agglomerates with req exceeding1000 nm (especially at lower 

nanoparticle suspension concentration), which happens to be advantageous for solar cell 

applications since large feature sizes often pose technical difficulties for cell processing.5,6 

For ZnO-FTO nanocomposites, however, both small (req<1000 nm) and large (req>1000 nm) 

nanoparticle agglomerates increase significantly with increasing nanoparticle suspension 

concentration. In contrary to S:TiO2-FTO nanocomposites, the presence of significant large-

sized nanoparticle agglomerates in ZnO-FTO nanocomposites may pose some technical 

issues in terms of applications in solar cell devices. After examining the relative fraction of 

the 8 nanoparticle agglomerate groups in each series of FTO nanocomposites, we have found 

that for ZnO-FTO nanocomposites of all concentrations, about 80% of the agglomerates have 

req smaller than 1250 nm; for S:TiO2-FTO nanocomposites, more than 80% of the 

agglomerates have req smaller than 1000 nm; and for Al2O3-FTO nanocomposites, about 90% 

of the agglomerates have req smaller than 750 nm. These results suggest that for each series 

of FTO nanocomposites, despite their different surface coverage values, the agglomerates do 

share nevertheless similar feature size. 

To sum up, depending on the nanoparticle type, the way the nanoparticles form agglomerates 

varies. After spin coating, ZnO and S:TiO2 nanoparticles form both small and big 

agglomerates while Al2O3 nanoparticles form mainly small agglomerates. Two different 

regions (region A and B) exist on the FTO nanocomposites. For S:TiO2-FTO and Al2O3-FTO 

nanocomposites, other than rough region A where FTO film is deposited on big nanoparticle 

agglomerates, there exists a semi-flat region B where the FTO film is deposited on small 

nanoparticle agglomerates; however in ZnO-FTO nanocomposites, the FTO film in region B 

is deposited directly on glass and thus is as flat as a standard FTO. With increasing 

nanoparticle suspension concentration, the RMS roughness of the three series of FTO 

nanocomposites increases accordingly; however, the total surface coverage of the Al2O3-FTO 

nanocomposites keeps fairly invariant while those of ZnO-FTO and S:TiO2-FTO 

nanocomposites increase. Despite the different surface coverage of different groups of 

nanoparticle agglomerates in each series of FTO nanocomposites, they nevertheless share 

similar feature size. In real solar devices, the high surface roughness of the FTO 

nanocomposites may cause potential technical issues such as short-circuiting or non-

conformal deposition of successive layers. Therefore, the FTO nanocomposites presented in 
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this study are expected to be more suitable for solar cells which are less sensitive to TCO 

roughness. The integration of FTO nanocomposites in different solar cell technologies will 

be discussed in detail in Chapter 6.  

3.2 Structural properties of FTO nanocomposites 

3.2.1 Texture evolution of ZnO-FTO, S:TiO2-FTO and Al2O3-FTO 

nanocomposites  

Figure 3.8 presents the XRD patterns in Bragg-Brentano configuration for ZnO-FTO, S:TiO2-

FTO and Al2O3-FTO nanocomposites with varying nanoparticle suspension concentrations. 

The 8 visible diffraction peaks of FTO (PDF SnO2 00-041-1445) are marked with black 

dashed lines: (110), (101), (200), (111), (211), (310), (112), and (301). The diffraction peaks 

originating from polycrystalline ZnO (PDF 00-036-1451) and rutile S:TiO2 nanoparticles 

(rutile TiO2 PDF 00-021-1276) are marked with blue dashed lines in the corresponding 

subfigures. The Al2O3 nanoparticles used are commercial product but no discernable 

diffraction reflection can be detected thus we conclude that the Al2O3 nanoparticles are 

amorphous; or with so small coherent length that diffraction cannot be observed. For each 

FTO nanocomposite series, a standard flat FTO is simultaneously deposited serving as the 

“control” FTτ where the film is grown on bare glass substrate. The XRD pattern of 
corresponding control FTO is plotted in each nanocomposite series as the reference. All the 

three series of nanocomposites are polycrystalline. The diffraction peak intensities of the 

nanocomposites change accordingly when the nanoparticle suspension concentration is varied.  

For thin film materials, the orientations of crystal lattice are often investigated with reference 

to the substrate which are usually low roughness wafers or glass and thus considered flat. 

Therefore any two orthogonal directions inside the flat substrate surface together with the 

substrate surface normal compose the complete reference system generally used. A thin film 

material, as its name suggests, has small thickness usually in the range of nanometer, which 

is more than 5 orders of magnitude smaller compared to its length and width (in the range of 

centimeter or above). As a result, the volume probed by X-ray along the sample surface (or 

the substrate surface, to be more precise) normal is not comparable to powder samples thus 

the grains are almost never seen to have random orientations; instead, preferential orientations 

almost always exist. The distribution of crystallographic orientations of the grains in a 

polycrystalline film is termed for thin film materials as having a specific “texture”.7 
τbviously “in-plane” direction refers to the direction inside the sample surface while “out-
of-plane” direction refers to the sample normal direction. In the field of material science, it is 
widely known that the material properties strongly depend on the specific crystallographic 

orientations.8 For example, the photocatalysis properties of  sputtered TiO2 thin films depend 

largely on the preferred orientation;9 texture have been found to be critical in determining the 

gas sensing properties of SnO2 and Pd/SnO2 films;10 FTO was also found to show texture 
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dependent mobility.11 Thus texture becomes an important property characteristic of thin film 

materials. 

 

   

  

Figure 3.8: The XRD patterns in Bragg-Brentano configuration for (a) ZnO-FTO nanocomposites, (b) 

S:TiO2-FTO nanocomposites and (c) Al2O3-FTO nanocomposites. The corresponding nanoparticle 

suspension concentration for each nanocomposite is indicated. The XRD pattern of control FTO for 

each series is plotted together for reference. The diffraction peaks corresponding to the FTO film are 

marked with black dotted lines (PDF SnO2 00-041-1445) while the diffraction peaks corresponding 

to ZnO (PDF 00-036-1451) and S:TiO2 (rutile TiO2 PDF 00-021-1276 ) nanoparticles are marked 

with blue dotted lines.   
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To analyze and quantify the texture of materials, the texture coefficient Chkl for each (hkl) 

crystal plane and the degree of preferred orientation σ are often used, which can be calculated 

according to Harris’s method12 with the following equations: 

 

ωhkl =  Ihkl
I0, hkl

1
σ  ∑ Ihkl

I0, hkl
σ

 (3.63) 

and 

 
   σ = √∑ ሺωhkl − 1ሻβ

σ √σ
 (3.64) 

where N is the number of all visible diffraction peaks in XRD patterns, in our case N=8. Ihkl 

is the experimental diffraction intensity of (hkl) crystal plane while I0,hkl is the diffraction 

intensity of (hkl) plane for ideal powder sample with random orientations taken from the 

standard powder diffraction files (PDF) database. Generally speaking, for powder samples 

with random orientations, the Chkl and σ equal 1 and 0, respectively. For perfectly oriented 

samples, the Chkl is N for the textured orientation and 0 for the remaining orientations while 

σ equals √ሺσ − 1ሻ, i.e. √ሺ8 − 1ሻ=2.65 in our case. 

The Chkl for each (hkl) crystal plane of FTO and σ for the three series of nanocomposites were 

calculated and are plotted as a function of nanoparticle suspension concentration in Figure 

3.9a and Figure 3.9b, respectively. With increasing nanoparticle suspension concentration, 

the Chkl of all diffraction peaks for ZnO-FTO and Al2O3-FTO nanocomposites evolve around 

1, behaving as powder samples with random orientations. Conversely, for S:TiO2-FTO 

nanocomposites, the Chkl of most crystal planes approaches 1, except C110 which increases 

sharply with addition of S:TiO2 nanoparticles from 0.5 (control FTO) and finally saturates at 

around 5.5. A peculiarly strong (110) texture is thus observed in S:TiO2-FTO nanocomposites. 

As a result, the degree of preferred orientation σ keeps decreasing with increasing 

nanoparticle suspension concentration for ZnO-FTO and Al2O3-FTO nanocomposites while 

for S:TiO2-FTO nanocomposites σ increases gradually (except a slight drop at 0.2 wt% and 

0.5 wt% S:TiO2-FTO nanocomposites). 

One notices that the XRD patterns of corresponding control FTO are not all the same for 

ZnO-FTO, S:TiO2-FTO and Al2O3-FTO nanocomposites. To be more exact, the three control 

FTOs do not develop the same texture: the two control FTOs for ZnO-FTO and Al2O3-FTO 

nanocomposites exhibit strong (200) texture while for S:TiO2-FTO nanocomposites, the 

control FTO shows strong (101) texture. According to previous studies,3 the FTO grown in 

our lab develops growth-temperature-dependent texture: (101) texture is dominant at low 

growth temperatures, whereas (200) texture prevails at high growth temperatures. Therefore 

we speculate that the (101) texture developed in the control FTO for S:TiO2-FTO 

nanocomposites is the result of a lower growth temperature of about 20-40 °C.  
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Figure 3.9: (a) Texture coefficients Chkl of 8 crystal planes visible in the XRD patterns plotted as a 

function of nanoparticle suspension concentration for ZnO-FTO, S:TiO2-FTO and Al2O3-FTO 

nanocomposites. (b)Degreee of preferred orientation σ plotted as a function of nanoparticle 

suspension concentration for ZnO-FTO, S:TiO2-FTO and Al2O3-FTO nanocomposites. 

The decomposition of precursors for the deposition of FTO film is accompanied by severely 
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setup is a Cu plate coated with a thin layer of Ni and another thick protective layer of Ag 

paste. Along the use of the system, the acidic by-products would gradually attack and etch 

the Cu plate. After a certain number of depositions, the Cu plate will be so corroded that the 
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heating system eventually becomes less efficient; in the worst case, the Cu plate has to be re-

cleaned and re-coated. During the deposition of S:TiO2-FTO nanocomposites, the heating 

system turned out to be in a badly corroded state and the growth temperature was effectively 

lower. The system did not recover to the initial state before the end of this doctoral project, 

thus deposition of S:TiO2-FTO nanocomposites at normal deposition temperature could not 

be performed. Therefore, we address the importance of restricting the comparison of 

nanocomposites with respect to the control FTO specific to each series as in the following 

discussions.  

When FTO grains grow on top of ZnO and Al2O3 nanoparticles, the grains tend to have more 

random distributions compared to those grown on flat glass substrate. The FTO film was seen 

previously to grow in columnar structure covering the nanoparticle agglomerates conformally. 

When the columnar FTO grains are grown on flat glass surface, their axes are principally 

aligned parallel to the glass surface normal; however, FTO grains grown on top of 

nanoparticle agglomerates can be aligned with their axes parallel to any directions following 

the geometrically random shape of the nanoparticles agglomerates beneath. The situation is 

schematically illustrated in Figure 3.10 where FTO grain A is drawn to grow on top of the 

nanoparticle agglomerates grain B is drawn to grow on the bare glass region and FTO.  

 

Figure 3.10: Schematic drawing of FTO grain A grown on the flat bare glass substrate and FTO grain 

B grown on top of the nanoparticle agglomerates. The sample surface essentially refers to the glass 

substrate surface. 

When X-rays are incident on the FTO grain B, the (h1k1l1) crystal planes are parallel to the 

sample surface thus should diffract X-rays at ψragg’s condition whereas (h2k2l2) crystal 

planes do not diffract at all since they are not parallel to the sample surface. However, the 

situation gets reversed for FTO grain A: the (h1k1l1) crystal planes are no longer parallel to 

the sample surface thus do not diffract the X-rays while (h2k2l2) planes can diffract X-rays at 

ψragg’s condition because they now become parallel to the sample surface. Due to the 

geometrically random shapes of the nanoparticle agglomerates, the FTO over layer is likely 

to develop different texture than FTO film grown on bare flat glass substrate. With increasing 

nanoparticle suspension concentration, the nanoparticle agglomerates becomes geometrically 

more random (due to higher surface coverage or larger nanoparticle agglomerates), thus one 
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expects more FTO grains to exhibit random orientations. As a result, ZnO-FTO and Al2O3-

FTO nanocomposites behave more and more towards powder samples with random 

distributions when the nanoparticle suspension concentration is increased. However, for 

S:TiO2-FTO nanocomposites, with increasing S:TiO2 nanoparticle suspension concentration, 

despite the geometrical randomness brought by the nanoparticle agglomerates, the FTO film 

nevertheless grows preferentially along the <110> orientation giving rise to a strong (110) 

texture of the S:TiO2-FTO nanocomposites.  

To analyze further the (110) texture in S:TiO2-FTO nanocomposites, their (110) rocking 

curves together with the control FTO were measured and are compared to those of ZnO-FTO 

and Al2O3-FTO nanocomposites in Figure 3.11. In addition, since the control FTO of S:TiO2-

FTO nanocomposites shows dominant (101) texture, the (101) rocking curves are also 

measured for the complete series of S:TiO2-FTO nanocomposites for comparison. In the same 

manner, for ZnO-FTO and Al2O3-FTO nanocomposites, the (200) rocking curves are 

complemented for comparison. The width of a rocking curve depends upon the grain 

distributions along the sample surface normal. Thus a perfect single crystal will produce a 

very sharp rocking curve while a powder sample exhibits a broad rocking curve. In this work, 

the rocking curve width was taken as full width at half maximum (FWHM) by fitting the 

curves with Lorentzian function. The FWHM values thus obtained are summarized in a table 

accompanying the corresponding figure of rocking curves for ZnO-FTO, S:TiO2-FTO and 

Al2O3-FTO nanocomposites. As a reference, the rocking curve of (104) diffraction peak of a 

reference Al2O3 powder sample has been measured in the same diffractometer in our lab and 

the FWHM was determined to be 16.63° (inset of Figure 3.11a) . We thus set our criteria such 

that a sample is justified to be powder-like with random orientations if its rocking curve width 

exceeds 17°.  

The control FTOs of ZnO-FTO and Al2O3-FTO nanocomposites show dominant (200) texture 

but their (200) rocking curves are nevertheless as broad as (110) rocking curves exceeding 

20° suggesting that in the control FTOs of these two series of nanocomposites, both <200> 

and <110> oriented grains show as broad distributions as powder samples; similarly, in ZnO-

FTO and Al2O3-FTO nanocomposites, <200> and <110> oriented grains also show broad 

distributions with FWHMs larger than 20°. For S:TiO2-FTO nanocomposites, the control 

FTO shows dominant (101) texture but its (101) rocking curve is as broad as the (110) rocking 

curve exceeding 20°; meanwhile the (101) rocking curves of S:TiO2-FTO nanocomposites 

are also as broad as powder samples. However, for the (110) rocking curves of S:TiO2-FTO 

nanocomposites, two different components are clearly discernable: a broad bottom 

background and a sharp top peak, as exemplified by the 2 wt% S:TiO2-FTO nanocomposite 

shown in the inset of Figure 3.11b. Thus the (110) rocking curves of S:TiO2-FTO 

nanocomposites are separated as “bottom” and “top” peaks by deconvolution, the FWHε of 
each is indicated in the table, respectively.  



3.2 Structural properties of FTO nanocomposites 

103 
 

 

Figure 3.11: (a) (200) and (110) rocking curves for ZnO-FTO nanocomposites; (b) (101) and (110) 

rocking curves for S:TiO2-FTO nanocomposites; (c) (200) and (110) rocking curves for Al2O3-FTO 

nanocomposites. The FWHM of rocking curves are summarized in respective tables for each series of 

FTO nanocomposites.  
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The bottom backgrounds in S:TiO2-FTO nanocomposites of all concentrations show weak 

intensities and broad distributions (as powder samples). The top peak, on the other hand, 

becomes more intense with narrower width when the concentration increases – the 2 wt% 

S:TiO2-FTO nanocomposite shows the narrowest width of 2.51°. Due to the dominant (110) 

texture in S:TiO2-FTO nanocomposites as learned from the previous discussion, the top sharp 

peaks in the (110) rocking curves correspond to the contribution of the <110> oriented FTO 

grains while the bottom broad backgrounds originate from the otherwise oriented grains. 

Furthermore, the fact that the top peak is much more intense compared to the bottom 

background suggests that the majority of the FTO grains in S:TiO2-FTO nanocomposites are 

<110> oriented. With increasing nanoparticle suspension concentration, the portion of <110> 

oriented grains increases accordingly. 

The complementary X-ray pole figures collected on SnO2 (110), (101) and (211) peaks were 

measured on the 2 wt% S:TiO2-FTO nanocomposite as shown in Figure 3.12. The intense 

central peak in the (110) pole figure comes from the major <110> oriented FTO grains, 

confirming the preferential <110> orientation in S:TiO2-FTO nanocomposites. The (101) 

pole figure shows similar feature as the (211) pole figure: in these two pole figures, equally 

weak intensities appear at all radial (Chi) and azimuthal (Phi) angles confirming in-plane 

random distributions of FTO grains. In fact, the small amount of randomly oriented FTO 

grains contributes also in the (110) pole figure by constituting a weak background whose 

shape and intensity is similar to the (101) and (211) pole figures. 

 

Figure 3.12: The 3D X-ray pole figures of the 2 wt% S:TiO2-FTO nanocomposite collected on SnO2 

(110), (101) and (211) diffraction peaks. The radial angle (Chi) increases from 0° in the center 

towards 90° at the periphery while the azimuthal angle (Phi) changes from 0° to 360° by rotating 

along the circle. The intensities are scaled in colors as shown. In each pole figure, the height is 

normalized with respect to the highest intensity value present. 

In summary, in the polycrystalline ZnO-FTO and Al2O3-FTO nanocomposites, the addition 

of ZnO and Al2O3 nanoparticles is seen to randomize the orientation of FTO grain due to the 

geometrical randomness of the underlying nanoparticle agglomerates; as a result, the ZnO-

FTO and Al2O3-FTO nanocomposites behave as powder samples characterized by their broad 

rocking curves. However, for S:TiO2-FTO nanocomposites, the addition of S:TiO2 
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nanoparticles has induced  an orientation of the FTO grains with their (110) planes parallel to 

the glass surface; consequently, the resulting S:TiO2-FTO nanocomposites show strong (110) 

texture. With increasing S:TiO2 nanoparticle suspension concentration, the (110) texture 

becomes stronger in S:TiO2-FTO nanocomposites. It is thus clear that the S:TiO2 

nanoparticles play a decisive role in the texture of S:TiO2-FTO nanocomposites . Therefore 

in the following subsection 3.2.2, detailed structural analyses on the as-synthesized S:TiO2 

nanoparticles and the S:TiO2 nanoparticle substrate (before the deposition of FTO film) is 

presented. 

3.2.2 Structural analyses of S:TiO2 nanoparticles/substrates   

Rutile S:TiO2 nanoparticles were synthesized using the hydrothermal method,13 and are 

shown in Figure 3.13. The S:TiO2 nanoparticles show non-spherical but shuttle-like shape. 

Each individual S:TiO2 nanoparticle is a single crystal as seen in Figure 3.13b where the edge 

of a nanoparticle is presented together with its fast Fourier transform (FFT) in the inset. The 

{110} and {111} planes can thus be identified as indicated. Despite their small sizes, the 3D 

form of the S:TiO2 nanoparticles is still discernible in the SEM image as marked with a red 

circle in Figure 3.13c where a schematic drawing of a single S:TiO2 nanoparticle is also 

attached in the inset. A single rutile S:TiO2 nanoparticle is seen to be composed of a cuboid 

body whose four faces correspond to 4 equivalent {110} planes and a pyramid cap 

corresponding to 4 equivalent {111} planes. Such shuttle-like rutile TiO2 single crystals have 

been successfully synthesized in literature.14,15 The {110} planes are well known to be 

thermodynamically most stable in rutile structures due to their smallest surface energy.16,17 

Thus the largest facets in a single S:TiO2 nanoparticle are the {110} planes composing the 

cuboid body.  

 

Figure 3.13: (a) TEM diffraction pattern on S:TiO2 nanoparticles, matching well with the rutile TiO2 

crystalline phase. A bright field image showing the nanoparticle morphology is presented in the inset. 

(b) High Resolution TEM image of one edge of a single S:TiO2 nanoparticle. The inset contains the 

corresponding FFT pattern of the image. (c) A SEM image of the as-synthesized rutile S:TiO2 

nanoparticles. The two nanoparticles marked with the red circle clearly show the shuttle-like shape 

of a single S:TiO2 nanoparticle as schematically drawn in the inset.  
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As detailed in Chapter 2, the as-synthesized S:TiO2 nanoparticles were suspended in 

isopropanol with 6 weight concentrations, namely 0.2, 0.5, 0.75, 1, 1.5 and 2 wt%. The 

suspensions were spin coated on glass substrates, forming so called rough nanoparticle 

substrates on which FTO film was then deposited by ultrasonic spray pyrolysis. Due to the 

larger {110} facets, the S:TiO2 nanoparticle substrate shows interesting structural features as 

exemplified in Figure 3.14a where the XRD patterns of a 2 wt% S:TiO2 nanoparticle substrate 

are shown in both Bragg-Brentano and grazing incidence configurations. The simultaneous 

appearance of {110} planes in both Bragg-Brentano and grazing incidence XRD patterns 

reveals that not all S:TiO2 nanoparticles orient their (110) planes parallel to the glass surface. 

But the majority of nanoparticles appear to be <110> oriented thus give rise to the intense 

{110} diffraction peaks in Bragg-Brentano XRD pattern. However, the portion of non-<110> 

oriented nanoparticles is too small to contribute significant signals in Bragg-Brentano XRD 

pattern; instead they are visible only in grazing incidence XRD pattern. The same feature 

appears in the (110) rocking curve in Figure 3.14b measured on the same nanoparticle 

substrate. Two different components are clearly distinguished: a bottom peak contributed by 

the non-<110> oriented S:TiO2 nanoparticles with broad FWHM of 19.10°, and a top peak 

contributed by the <110> oriented S:TiO2 nanoparticles with sharp FWHM of 0.99°, as 

obtained by Lorentzian fitting. The intensity of bottom background is weak due to the small 

quantity of non-<110> oriented S:TiO2 nanoparticles while the top peak is intense because 

the majority of S:TiO2 nanoparticles are <110> oriented. We notice that the (110) rocking 

curve of S:TiO2-FTO nanocomposite resembles very much that of S:TiO2 nanoparticle 

substrate. 

 

Figure 3.14: (a) The Bragg-Brentano and grazing incidence (0.5°) XRD patterns of a 2 wt% S:TiO2 

nanoparticle substrate plotted in log scale. The diffraction peaks of rutile TiO2 (PDF 00-021-1276) 

are plotted for reference. (b) Corresponding (110) rocking curve of the same nanoparticle substrate 

plotted in linear scale. 

With their largest {110} facets, S:TiO2 nanoparticles would naturally tend to lie with the {110} 

planes parallel to the glass surface. Therefore, the majority of the S:TiO2 nanoparticles are 
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<110> oriented. However, due to the formation of nanoparticle agglomerates, some 

nanoparticles may be positioned such that crystal planes other than the {110} planes are 

exposed parallel to the glass surface; these nanoparticles nevertheless represent only a very 

small fraction. Complementary X-ray pole figures of the same nanoparticle substrate 

collected on the rutile TiO2 (110), (101) and (211) diffraction peaks are presented in Figure 

3.15. The intense central peak in the (110) pole figure confirms the preferential <110> 

orientation of the S:TiO2 nanoparticles; while weak intensities seen in both (101) and (211) 

pole figures at all radial (Chi) and azimuthal (Phi) angles confirm the in-plane random 

distribution of the S:TiO2 nanoparticles. Once again the pole figures of S:TiO2-FTO 

nanocomposite resemble those of corresponding S:TiO2 nanoparticle substrate. 

 

Figure 3.15: The 3D X-ray pole figures of the 2 wt% S:TiO2 nanoparticle substrate collected on the 

rutile TiO2 (110), (101) and (211) diffraction peaks. The radial angle (Chi) increases from 0° in the 

center to 90° at the periphery while the azimuthal angle (Phi) changes from 0° to 360° by rotating 

along the circle. The intensities are scaled in colors as shown. In each pole figure, the height is 

normalized with respect to the highest intensity value present. 

Following the above discussions, similar structural feature is thus observed between the 

S:TiO2-FTO nanocomposite and the S:TiO2 nanoparticle substrate: both show preferential 

<110> orientation. In fact, the S:TiO2-FTO nanocomposite can be seen to reproduce the 

structural features of the S:TiO2 nanoparticle substrate, meaning that the (110) texture of the 

nanocomposites is intimately related to the preferential <110> orientation of the S:TiO2 

nanoparticles on the glass substrate. This implies that local epitaxy takes place, in which the 

(110) textured FTO grains epitaxially grow on the <110> oriented rutile S:TiO2 nanoparticles. 

Therefore in the following section 3.3, experimental efforts are devoted to verify the observed 

local epitaxy of FTO (110) grown on <110> oriented S:TiO2 nanoparticles.  
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3.3 Proof of local epitaxial growth of FTO on rutile S:TiOၷ 
nanoparticles  

3.3.1 Direct cross sectional TEM observation 

For the direct cross sectional observation by TEM diffraction, a clear interface of FTO film 

grown on S:TiO2 nanoparticles is required. Technically we need to precisely analyze the 

region where FTO is deposited on nanoparticle agglomerates so as to observe simultaneously 

both the FTO film and the underlying S:TiO2 nanoparticle agglomerates. Due to the structural 

complexity of S:TiO2-FTO nanocomposites, focused ion beam (FIB) was employed in a 

scanning electron microscope to perform such preparation of the cross section on a 0.75 wt% 

S:TiO2-FTO nanocomposite. The TEM observations on the cross section are summarized in 

Figure 3.16. 

 

Figure 3.16: (a) TEM image of the complete cross section of a 0.75 wt% S:TiO2-FTO nanocomposite 

prepared by FIB. (b) Corresponding detailed cross sectional dark field TEM image. (c) The TEM 

diffraction patterns at different locations.  

The complete cross section of the 0.75 wt% S:TiO2-FTO nanocomposite prepared by FIB is 

shown in Figure 3.16a. The EDX spectra taken at different locations are summarized in Table 

3.1, from which the different compositions can be identified. The top layer where the EDX4 

was taken contains mainly Sn and O with no detectable Ti thus is determined to be the FTO 

film. The deposited FTO film is seen to follow in a conformal way the shape of underlying 

large S:TiO2 nanoparticle agglomerates whose height can be as high as up to 4 ȝm. The 

average thickness of the FTO film is around 300 nm (see Figure 3.16b), as expected.  
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Table 3.1: The EDX spectra taken at different locations at the cross section of a 0.75 wt% S:TiO2-

FTO nanocomposite.  

Spectra C (% atom) O (% atom) Ti (% atom) Sn (% atom) 

EDX1 - 45.64 11.39 44.14 

EDX2 - 17.40 50.36 27.17 

EDX3 - 59.64 14.49 23.34 

EDX4 13.07 54.60 - 32.88 

The EDX1-EDX3 contain Ti signal thus should be the underlying S:TiO2 nanoparticle 

agglomerates. However, in these spectra, significant Sn signals are also detected. During the 

FIB preparation, the high energy ion beam stroke the FTO film and swept the damaged pieces 

towards the glass substrate. In this way the material is removed little by little and finally the 

cross section is exposed. As a consequence, the FTO film residuals would most likely remain 

along the sweeping pathway as evidenced by the visible stripes in Figure 3.16a. In addition, 

visible holes appear in the S:TiO2 nanoparticle agglomerates. It seems that the high energy 

ion beam used during the preparation have caused damages to the S:TiO2 nanoparticle 

agglomerates. In brief, the cross section prepared by FIB seems to have undergone inevitable 

contaminations/damages, which threatens the reliability of the analyses. 

Nevertheless, in Figure 3.16c, efforts have been made to obtain TEM diffraction patterns at 

several locations. Region 1 represents a single FTO grain as evidenced from its corresponding 

diffraction pattern. However, this grain is not directly grown on S:TiO2 nanoparticles but 

instead on initial FTO grains (e.g. from primary nucleations). Thus its structural 

characteristics cannot be related to the S:TiO2 nanoparticles. Diffractions on region 2 and 3 

evidence polycrystalline FTO and S:TiO2 nanoparticles. It turns out extremely difficult to 

find a distinct interface of a single FTO grain grown on a single S:TiO2 nanoparticle. To 

conclude, due to the structural complexities of S:TiO2-FTO nanocomposites, the direct cross 

sectional TEM observations are unfortunately not successful and unable to provide any 

conclusive points. Trials on employing electron back scattered diffraction (EBSD) have been 

conducted with the hope to observe that FTO grains grown on bare glass regions develop 

different texture than those grown on S:TiO2 nanoparticle agglomerates. Unfortunately, the 

EBSD technique is extremely sensitive to surface roughness thus the experiment was again 

not successful due to the highly rough surfaces of the S:TiO2-FTO nanocomposites. Therefore, 

alternative approach is proposed as shown in the following subsection in which FTO films 

were deposited by ultrasonic spray pyrolysis on commercial (110) rutile TiO2 single crystals 

to examine the possibility of epitaxial growth.  

3.3.2 Epitaxial FTO films grown on (110) rutile TiO2 single crystals 

A thin and a thick FTO film were deposited on commercial (110) rutile TiO2 single crystals 

by ultrasonic spray pyrolysis at the same experimental conditions as the preparation of 

S:TiO2-FTO nanocomposites. The cross-sectional TEM image and corresponding XRD 

patterns are shown in Figure 3.17. The thick FTO film has about 300 nm thickness 
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comparable to that of S:TiO2-FTO nanocomposites while the thin FTO film has about 70 nm 

thickness. The only occurrence of {110} planes is seen in both 70 nm and 300 nm FTO films, 

suggesting that both films show a very strong out-of-plane <110> orientation. 

 

   

Figure 3.17: (a) Cross-sectional TEM image of the 70 nm FTO (left) and 300 nm FTO (right) 

deposited on (110) rutile TiO2 single crystals by ultrasonic spray pyrolysis. (b) Corresponding Bragg-

Brentano XRD patterns of the 70 nm and 300 nm FTO films presented in log scale. The powder 

diffraction pattern of SnO2 (PDF 00-041-1445) and rutile TiO2 (PDF 00-021-1276) are plotted for 

reference.  

The (110) rocking curves of both FTO films were successively measured as plotted in Figure 

3.18, from which FWHM (obtained by Lorentzian fitting) are determined to be 1.12° for the 

70 nm FTO film and 0.77° for the 300 nm FTO film. The rocking curve FWHM of both FTO 

films are quite narrow. In particular, for the 300 nm FTO film, its FWHM is comparable to 

the epitaxial SnO2 film (0.612°) grown by molecular beam epitaxy (MBE),18 and epitaxial 
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SnO2 film (0.5-0.57°) grown by pulsed laser deposition (PLD),19 which indicates that the 

present FTO film is of high structural quality.  

    

Figure 3.18: The (110) rocking curves for both 70 nm and 300 nm FTO films grown on (110) rutile 

TiO2 single crystals by ultrasonic spray pyrolysis. 

The ensuing X-ray pole figures of the 70 nm and 300 nm FTO films collected on (110), (101), 

(211), and (200) diffraction peaks are presented in Figure 3.19a and b, respectively. In order 

to distinguish the artifact signals coming from the TiO2 substrate due to the limited 2theta 

resolution in the diffractometer, the X-ray pole figures of the bare TiO2 single crystal were 

also measured in the exact condition as those pole figures of FTO films, and presented in 

Figure 3.19c. In the (110) pole figure, the TiO2 substrate contributes to an intense central peak 

even though the Bragg condition is designed to allow only the diffraction of the FTO (110) 

plane. This is because the 2theta position of TiO2 (110) peak is very close to that of SnO2 

(110) peak (see for example Figure 3.17b). Therefore in the FTO (110) pole figure, one cannot 

distinguish the signals contributed by the TiO2 substrate from the signals coming from the 

FTO film.  

Fortunately in the pole figures of (101), (211), and (200), the TiO2 substrate interferes 

negligibly with the signals originating from the FTO film and thus the signals in these three 

pole figures are truly representative of the FTO film. For the (101), (211), and (200) X-ray 

pole figures of the FTO film, the diffraction peaks appear only at specific radial (Chi) and 

azimuthal (Phi) angles, which is characteristic of <110> oriented single crystals. Each peak 

can thus be indexed accordingly based on the crystal structure. For clarity reasons, only (101), 

(211), and (200) pole figures of the 300 nm FTO film are indexed. In contrast, for ideal 

powder samples, there is always the possibility to find (101), (211), and (200) planes at any 

Chi- and Phi-angles, so the X-ray pole figures would show intensity at all angles. Thus a 

strong in-plane orientation is proven here, revealing that both 70 nm and 300 nm FTO films 

are epitaxially grown on the (110) rutile TiO2 single crystals.  
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Figure 3.19: 3D X-ray pole figures of (a) the 70 nm FTO film and (b) the 300 nm FTO film collected 

on the (110), (101), (211), and (200) diffraction peaks. (c) 3D X-ray pole figures on the bare (110) 

rutile TiO2 single crystal measured under the same conditions as the FTO pole figures. The radial 

(Chi) angle increases from 0° in the center towards 90° at the periphery while the azimuthal (Phi) 

angle changes from 0° to 360° by rotating along the circle. For clarity reasons, only diffraction peaks 

in the pole figures of the 300 nm FTO film are indexed. Same indexation works for the 70 nm FTO 

film. The intensities are scaled in colors for all the pole figure. In each pole figure, the height is 

normalized with respect to the highest intensity value present; a vertical line is drawn in the center to 

represent the normal direction. 
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Additionally, pole figures can also be obtained from the EBSD orientation maps using 

harmonic series expansion in the OIMTM software, as shown in 2D form in Figure 3.20 where 

the normal direction (ND) is taken as the pole while reference direction (RD) and transverse 

direction (TD) are shown schematically (refer to Figure 2.16 for more details). Unlike 

conventional XRD, EBSD is a surface sensitive technique with probing depth of about 40 nm, 

thus the electron diffraction signals are purely from the FTO film with no influence from the 

TiO2 single crystal. All the pole figures for 70 nm and 300 nm FTO films are slightly tilted 

because the film surface is not perfectly parallel to the surface of the sample holder when it’s 
glued to the holder using silver paste during sample preparation. What is worth noticing is 

that the (101), (211), and (200) pole figures show exact features as those X-ray pole figures 

in Figure 3.19. For the (110) pole figure, two additional intense peaks appear at Chi=90° 

corresponding to (1̅10) and (11̅0) planes which are not visible in Figure 3.19 because the 

maximum reliable Chi-tilt in the X-ray diffractometer is limited to 80°. The unique out-of-

plane <110> orientation in both 70 nm and 300 nm FTO films is consistently confirmed by 

the texture analyses in both electron and X-ray pole figures, confirming that both FTO films 

are epitaxially grown on (110) rutile TiO2 single crystals. 

 

Figure 3.20: 2D pole figures of (a) the 70 nm and (b) the 300 nm epitaxial FTO films recorded on the 

(110), (101), (211), and (200) diffraction peaks extracted from the EBSD orientation maps with the 

normal direction (ND) taken as the pole direction. The reference direction (RD) and transverse 

direction (TD) are schematically drawn. The intensities are scaled in colors. 

In addition, the average angular misorientations between data points can be extracted from 

the EBSD orientation maps as summarized in Figure 3.21. The misorientation angle is defined 

as the smallest rotation angle among equivalent rotations relating two objects with given 

orientations.20 In particular, the Kernel average is used, which is assigned as the average of 

the misorientation angles between a grain at the center of the Kernel and all points (6 

neighbors) at the perimeter of the Kernel. It is seen that the Kernel average misorientation in 

the epitaxial FTO film is very small ranging from 0.3° to 1.1° for the 70 nm FTO film and 

0.2° (0.2° being the instrumental limit) to 0.7° for the 300 nm FTO film. The average can be 
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calculated to be 0.56°±0.14° and 0.37°±0.09° for the 70 nm and 300 nm FTO epitaxial film, 

respectively. Instead of growing grains separated by grain boundaries as in polycrystalline 

films, the epitaxial FTO films are composed of mosaic domains with very low angles/energies 

at the boundaries.  

To sum up, epitaxial FTO films of both 70 nm and 300 nm are thus proved to be successfully 

deposited on the (110) rutile TiO2 single crystals by ultrasonic spray pyrolysis, an easy 

technique with no vacuum requirements and enabling high deposition rate up to 15-20 

nm/min. Interestingly, the epitaxial FTO films show narrow (110) rocking curves. The 

rocking curve FWHM of the 300 nm epitaxial FTO film is comparable with epitaxial SnO2 

films prepared by more sophisticated vacuum-based techniques such as MBE and PLD. The 

epitaxial FTO films are of high structural quality and compose of mosaic domains with 

average misorientation angles less than 0.6°.  

   

Figure 3.21: Statistical chart of the Kernel average misorientation calculated from EBSD orientation 

maps for (a) the 70 nm epitaxial FTO film and (b) the 300 nm epitaxial FTO film. 

3.3.3 Strain and defect structure in the epitaxial FTO films  

In heteroepitaxy systems, due to the lattice mismatch with the substrate, epitaxial films are 

usually accompanied by epitaxial strain, if not fully relaxed. It is thus important to study the 

epitaxial strain because it significantly affects optical,21 electrical,22 and magnetic properties 

in the resultant epitaxial films.23,24 According to the ICDD files, the lattice parameters for 

SnO2 are a=b=4.738 Å and c=3.187 Å while the lattice parameters for rutile TiO2 are 

a=b=4.593 Å and c=2.959 Å. Thus, the lattice mismatch is relatively large between FTO and 

rutile TiO2 single crystal with 3.1% along the [110] direction and 7.7% along the [001] 

direction, respectively. The strain commonly used is so-called material strain (İ) with 

reference to the bulk (fully relaxed) lattice parameters of the film: 

 
İ = ሺafilm − afilm

relaxሻ
afilm

relax  (3.65) 

where afilm and afilm
relax is the calculated and fully relaxed lattice parameter of the epitaxial film, 

respectively. For a fully relaxed epitaxial FTO film, İ=0%.  
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First of all, the Williamson-Hall method was used to separate the contribution of root-mean-

square (RMS) strain to the peak broadening in Bragg-Brentano XRD pattern from that of 

crystallite size:25 

 ȕ cos ș = ωİRεS sin ș +  KȜ
δ  

(3.66) 

where ȕ is the total peak broadening including both crystallite size (L) and RMS strain (İRεS) 

contributions, ș is the usual Bragg angle and Ȝ is the wavelength of X-ray source. Here L is 

equivalent to the coherence length along the sample surface normal and İRεS refers to the 

local variation of the strain. The ȕ and ș were taken as the FWHM and peak position by fitting 

the diffraction peaks with Lorentzian function. K is a constant depending on the assumptions 

associated with the modeling used (e.g. the peak shape and crystallite habit, spherical 

crystallites being the easiest case to interpret) but is anyway close to unity and often taken as 

0.9. C is another constant depending on the assumptions made concerning the nature of 

inhomogeneous strain but typically equals 4 or 5. As a first approximation, K=0.9 and C=4 

are taken in our calculations. By plotting ȕcosș against sinș for the (110), (220), (330), and 

(440) diffraction peaks of the epitaxial FTO films as seen in Figure 3.22, if a straight line is 

obtained, the İRεS and L can then be calculated from the line slope and intercept, respectively. 

 
Figure 3.22: Williamson-Hall plot of (110), (220), (330), and (440) diffraction peaks for the 70 nm 

and 300 nm epitaxial FTO films grown on (110) rutile TiO2 single crystals. The error bars come from 

the fitting of the diffraction peaks with Lorentzian functions.  

For the 300 nm epitaxial FTO film, the 4 points corresponding to {110} planes can be fitted 

with a fairly straight line within negligible error bars. Whereas for the 70 nm epitaxial FTO 

film, the point corresponding to (440) planes at the highest 2theta angle deviates strongly 

from the fitting line due to its weakest intensity (as a result of the small film thickness and 

thus limited diffraction volume). The İRεS and L for both 70 nm and 300 nm epitaxial FTO 

films are evaluated and summarized in Table 3.2. The local variation of the strain is seen very 

small with the order of magnitude of around 0.1-0.2%. However, in order to gain in-depth 

information of strain, high resolution reciprocal space mappings are necessary and were 
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measured on the epitaxial FTO film centered upon symmetric (220) and asymmetric (33β̅) 

diffraction peaks as seen in Figure 3.23. 

Table 3.2: The root-mean-square (RMS) strain İRεS (related to strain distribution) and crystallite size 

L calculated from the Williamson-Hall plot with K=0.9 and C=4. 

 εRMS (%) crystallite size L (nm) 

70 nm epitaxial FTO 0.19 47.8 

300 nm epitaxial FTO 0.12 110.9 

From reciprocal space mappings the lattice parameters a and c of the epitaxial FTO films can 

be obtained from corresponding inter-planar distances, with which the relaxation R can be 

calculated as follows: 

 
R = afilm − asubstrate

afilm
relax − asubstrate

 (3.67) 

where asubstrate is the bulk lattice parameter of the substrate. For a fully relaxed film, R=1, 

while R≠1 for strained film. 

 
Figure 3.23: Reciprocal space mappings of symmetric (220) (left) and asymmetric (33β̅) (right) 

diffraction peaks for (a) the 70 nm and (b) the 300 nm epitaxial FTO films grown on the (110) rutile 

TiO2 single crystals. The inset in the symmetric (220) scan shows the horizontal cross-section, which 

is equivalent to the (220) X-ray rocking curve.  
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As summarized in Table 3.3, the R values obtained from both symmetric and asymmetric 

mappings are very close to unity for the 70 nm and 300 nm epitaxial FTO films, suggesting 

that both epitaxial FTO films grown on (110) TiO2 single crystals are overall relaxed. 

However, the average strain İ in the FTO film is not necessarily zero. Along the [110] 

direction (cf. İ(ββ0) and İ(γγ0) in Table 3.3), the strain is essentially negligible with İ < 0.2% 

for the 70 nm epitaxial FTO and İ < 0.1% for the 300 nm epitaxial FTO; while in the [001] 

direction (cf. İ(00β̅) in Table 3.3), the strain is İ ≈ 0.19% for both epitaxial FTO films. It is 
interesting to point out that the İRεS (related to the strain distribution) obtained from the 

Williamson-Hall plot is more or less in the same magnitude as the average strain İ calculated 

from the reciprocal space mappings. The epitaxial FTO films are thus proved to be nearly 

fully relaxed with faint strain remaining in the film. 

Table 3.3: Lattice parameters, relaxation, and the associated material strain deduced from the X-

ray reciprocal space mappings for both 70 nm and 300 nm epitaxial FTO films. Here İ(ββ0) and İ(γγ0) 

are strains calculated from the inter-planar distances of (220) and (330) planes, respectively; while 

İሺ00β̅ሻ is calculated from the inter-planar distances of (00β̅) planes. 

  Lattice parameter Relaxation Strain 

70 nm 

epitaxial FTO 

RSM (220) a=4.745 Å R=1.05 İ(ββ0)=0.15% 

RSM (γγβ̅) 
a=4.741 Å R=1.02 İ(γγ0)=0.06% 

c=3.193 Å R=1.03 İ(00β̅)=0.19% 

300 nm 

epitaxial FTO 

RSM (220) a=4.741 Å R=1.02 İ(ββ0)=0.06% 

RSM (γγβ̅) 
a=4.740 Å R=1.01 İ(γγ0)=0.04% 

c=3.193 Å R=1.03 İ(00β̅)=0.19% 

Interestingly, if one extracts data along the horizontal cross section of the reciprocal space 

mapping measured upon the symmetric (220) diffraction peak, the resulting curve is 

essentially the (220) X-ray rocking curve as shown in the inset for the 70 nm and 300 nm 

FTO films, respectively. The FWHM is determined to be 1.18° and 0.74° for the 70 nm and 

300 nm epitaxial FTO films: both are consistent with their (110) rocking curve FWHM as 

discussed previously (see Figure 3.18). In reciprocal space mappings, the mosaicity spread 

(Δș) can be obtained from the scan over the asymmetric diffraction peak. This is not possible 

in the scan over the symmetric diffraction peak because the contribution to peak broadening 

due to Δș overlaps the contribution from the limited lateral correlation length (Δȟ-1); the two 

are separable only in asymmetric scan.26 For the 70 nm epitaxial FTO film, the Δș and Δȟ-1 

are estimated to be 0.87° and 8 nm while for the 300 nm epitaxial FTO film, the Δș and Δȟ-1 

are estimated as 0.46° and 10 nm, respectively. The small Δȟ-1 (sample size being 5 × 5 mm2) 

favors the presence of mosaic domain in the epitaxial FTO film. And the small Δș is 

consistent with the average Kernel misorientation, confirming the high structural quality of 

both epitaxial FTO films. Moreover, one notices that the FWHM of the (110) rocking curve 

is larger than Δș, indicating the peak broadening of the rocking curve has essentially 

combined contributions from both the mosaicity and lateral size effects. In other words, the 

out-of-plane distribution of the epitaxial FTO film from the FWHM of the X-ray rocking 
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curve is overestimated and is actually less than 0.9° for the 70 nm FTO film and less than 0.5° 

for the 300 nm FTO film.   

Complementary to the reciprocal space mapping, the local strain in the 300 nm epitaxial FTO 

film has been mapped in the transmission electron microscope using an innovative nano-beam 

precession electron diffraction (N-PED) technique where the strain distribution in the TiO2 

substrate and the epitaxial FTO film can be revealed. To enable high precision in strain 

measurement (up to 10-4), convergent electron beams were used in N-PED, thus the 

diffraction patterns consist of disks (see Figure 3.24a and b) instead of diffraction points as 

in conventional TEM with parallel electron beams (refer to Figure 3.25b). The diffraction 

disks corresponding to the rutile TiO2 substrate are sharp and clear while those corresponding 

to the epitaxial FTO film appear more blurry, indicating that the crystalline quality of the 

epitaxial film is not as good as that of the substrate. As explained in Ref.27, the distance 

between diffraction disks can be accurately measured by template matching, from which bi-

dimensional strain can be calculated. 

 

Figure 3.24: Nano-beam precession electron diffraction (N-PED) patterns of (a) the (110) rutile TiO2 

single crystal and (b) the 300 nm epitaxial FTO film. (c) The İxx, and (d) İyy strain maps of 70×70 

points (with 2.2 nm separation between points) with x pointing [1̅10] and y pointing [110] directions. 

The strain is scaled in percentage. (e) The İxx, and (f) İyy average strain profiles obtained by line 

scanning the dotted white rectangular. Distance zero refers to the interface and the 22 nm region in 

the 300 nm epitaxial FTO film is the area where most of the strain is present (shaded in grey). 

Typical strain maps near the TiO2/FTO interface are illustrated in Figure 3.24c along [1̅10] 

direction (İxx) and in Figure 3.24d along [110] direction (İyy). For İxx strain map, the averaged 

strain profile from the TiO2 substrate to the 300 nm epitaxial FTO film is illustrated in Figure 

3.24e by line scanning the area within the dotted white rectangle. The İyy strain profile is 



γ.γ Proof of local epitaxial growth of FTτ on rutile SμTiτၷ nanoparticles 

119 
 

plotted in the same manner in Figure 3.24f. The interface is defined as one sharp line and 

positioned where significant strain variations occur; the interface is at zero distance in the 

strain profiles. Since the region of the TiO2 substrate far from the interface is the reference 

material used to calibrate the diffraction patterns and to correct distortions, it is natural that 

İxx and İyy are zero in these regions. In contrast, at the interfacial region, İxx in TiO2 quickly 

falls to zero while İyy (note y-direction is the growth direction) undergoes a positive peak 

extending about 15 nm before gradually approaching to zero. In the FTO film, both İxx and 

İyy vary with distance and are most intense close to the interface. Careful examination reveals 

that İxx and İyy in the FTO film are most intense in the first 22 nm interfacial region 

approximately, after which the strain becomes negligibly small with values below 0.1%. This 

is consistent with the strain along [110] direction calculated from x-ray reciprocal space 

mappings, confirming that the epitaxial FTO film is indeed nearly relaxed. Therefore the 300 

nm FTO film must have released the large epitaxial strain, which is realized by developing 

structural defects, as confirmed by TEM imaging in Figure 3.25. 

 

Figure 3.25: (a) Cross-sectional dark-field TEM image of the 300 nm epitaxial FTO film grown on 

the (110) rutile TiO2 single crystal. (b) Selected area electron diffraction pattern at the TiO2/FTO 

interface with the [001] zone axis. (c) High angle annular dark field scanning TEM (HAADF-STEM) 

image of the TiO2/FTO interface with the dislocations marked ([001] as the zone axis). (d) Phase and 

(e) pseudo-moiré maps obtained on (110) planes. (f) Phase and (g) pseudo-moiré maps obtained on 

(1̅10) planes. The phase and pseudo-moiré maps are calculated using the GPA method.28,29 

The dark-field TEM image in Figure 3.25a demonstrates that the 300 nm epitaxial FTO film 

appears as a compact layer with many domains, slightly shifted and tilted from each other and 

separated by inclined planar defects forming 45° with respect to the sample surface. 
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Significant defects are present in regions close to the interface (region A); while less defects 

and large domains are developed in regions far from the interface (region B). The selected 

area electron diffraction pattern (obtained by parallel electron beams) at the FTO/TiO2 

interface in Figure 3.25b once again confirms that the 300 nm FTO film is epitaxially grown 

on the (110) rutile TiO2 single crystal. Further observation on the interfacial region is 

performed with high angle annular dark field scanning TEM (HAADF-STEM) image as 

shown in Figure 3.25c where the bright spots correspond to metal atom columns. Moreover, 

the phase and pseudo-moiré maps were obtained on (110) planes in Figure 3.25d-e and on 

(1̅10) planes in Figure 3.25f-g since defects such as dislocations are best visualized in these 

maps. 

In the phase images, 2π discontinuity lines end at a dislocation core, thus indicating where 

the dislocation cores are located. Note that the shape and position of the discontinuity lines 

are of no physical significance because they depend on the choice of the origin of the phase. 

In the pseudo-moiré maps, the dislocations can clearly be visualized as additional planes and 

their Burgers vectors can be calculated by drawing Burgers circuits around dislocation cores. 

As a result, various dislocations can be identified in the interfacial region as marked in Figure 

3.25c. Dislocations 1-3 appear only in the phase image of (1̅10) diffracted beam (Figure 3.25g) 

thus have Burgers vectors of 1/2[1̅1̅0] for dislocations 1, 2 and 1/2[110] for dislocation 3. 

Dislocations 4-5 appear only in the phase image of (110) diffracted beam (Figure 3.25d) thus 

have Burgers vectors of 1/2[1̅10] for dislocation 4 and 1/2[11̅0] for dislocation 5. Finally 

dislocation 6 appears in phase images of both (110) and (1̅10) diffracted beams thus has 

Burgers vector of 1/2[1̅10] + 1/2[1̅1̅0] = [1̅00]. Due to the large lattice mismatch with TiO2, 

the epitaxial FTO film must develop structural defects to release the misfit strain, which is 

primarily achieved by developing significant interfacial dislocations (e.g. dislocation 1, 2, 

and 6 seen in the 300 nm FTO film) and associated planar defects in the early stage of the 

film growth. One would thus expect significant defects to be present in the 70 nm epitaxial 

FTO film, which is confirmed in the dark-field TEM image in Figure 3.26a where a higher 

density of defects than that of the 300 nm FTO film is seen. The electron diffraction pattern 

at the interface in Figure 3.26b again confirms the epitaxial growth of the 70 nm FTO film on 

the (110) rutile TiO2 single crystal.  

When the film grows thicker, in addition to the major strain released by interfacial defects, 

further relaxation also takes place where interfacial defects may interact and additional 

defects extended into the FTO film can form (e.g. dislocation 3, 4, and 5 seen in the 300 nm 

FTO film). Such reorganization of defects mainly occurs in the first 22 nm of FTO film where 

the residual strain (and also defects) is most significant (see Figure 3.24e and f). Due to the 

readily relaxed strain, large domains with less defects can grow in regions far from the 

interface (e.g. region B in Figure 3.25a) as seen in the 300 nm epitaxial FTO film. The overall 

defects introduced by strain relaxation are however not sufficient to entirely compensate the 

epitaxial strain since creating defects require high energy cost. Thus a small average strain of 

0.1-0.2% is still experimentally observed to reside in both epitaxial FTO films. Due to more 
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relaxation taking place in the thick 300 nm FTO film, the residual strain in the 70 nm FTO 

film is seen to be slightly higher than that in the 300 nm FTO film. 

 

Figure 3.26: (a) Cross-sectional dark field TEM image of the 70 nm epitaxial FTO film grown on 

(110) rutile TiO2 single crystal where significant structural defects are present. (b) Selected area 

electron diffraction pattern at the TiO2/FTO interface with the [001] zone axis.  

3.3.4 Morphology and electrical properties of epitaxial FTO films 

The surface morphology of epitaxial FTO films are probed by AFM and compared to a 

polycrystalline FTO film deposited on glass substrate with thickness of ~300 nm, as shown 

in Figure 3.27. 

 

Figure 3.27: 1× 1 ȝm2 (upper) and 5 × 5 ȝm2 (lower) AFM images for (a) the 70 nm epitaxial FTO 

film, (b) the 300 nm epitaxial FTO film, and (c) the 300 nm polycrystalline FTO film. 

The surface of both 70 nm and 300 nm epitaxial FTO films are much smoother with rounded 

mosaic domains as opposed to the sharp grains seen in the polycrystalline FTO film, 

evidenced as well by their RMS roughness values (see Table 3.4). Particularly the epitaxial 

FTO films seem to have mosaic domains extended preferentially along the y direction. Thus 
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the lateral autocorrelation length (L) is specified in both x (Lx) and y (Ly) directions in Table 

3.4 as calculated by Gaussian fitting of the autocorrelation function (ACF) according to the 

following equation:4 

 χωFሺxሻ = įβexp ሺ− xβ δβሻ⁄  (3.68) 

where į denotes the root mean square deviation of the heights and L denotes the lateral 

autocorrelation length.  

Table 3.4: The RMS roughness and lateral correlation length along x (Lx) and y (Ly) directions 

obtained from AFM images (5 × 5 ȝm2) for the 70 nm and 300 nm epitaxial FTO films and the 300 

nm polycrystalline FTO film.  

 RMS (nm) Lx (nm) Ly (nm) 

70 nm epitaxial FTO  2.6 ± 0.2 36.0 ± 5.0 116.4 ± 8.4 

300 nm epitaxial FTO  2.5 ± 0.2 122.0 ± 12.2 212.7 ± 17.2 

300 nm polycrystalline FTO  13.2 ± 0.2 41.8 ± 0.4 34.8 ± 0.4 

For polycrystalline FTO film, the value of Ly is very close to that of Lx suggesting that the 

grains are laterally isotropic. The slight difference between the two originates from the 

anisotropic scanning speed of the AFM tip, the x-direction being the fast scanning direction 

in our case. However, for the 70 nm epitaxial FTO film, the value of Ly is more than three 

times larger than Lx while for the 300 nm epitaxial FTO film, the value of Ly is almost twice 

that of Lx, which indicates clear anisotropic lateral features on epitaxial FTO surface. Careful 

examination confirms that the y direction is equivalent to the [1̅10] crystal direction while the 

x direction is equivalent to the [001] crystal direction. The epitaxial FTO films seem to have 

anisotropic lateral growth preferentially along the [1̅10] direction, which is probably due to 

the smaller lattice mismatch along the [110] direction. Furthermore, the autocorrelation length 

for the 70 nm FTO (in both x and y directions) is apparently smaller than that of 300 nm FTO, 

suggesting that the epitaxial FTO film has undergone Volmer-Weber mode of growth which 

makes the RMS roughness of the 300 nm epitaxial FTO even slightly smaller than that of 70 

nm epitaxial FTO.  

A schematic illustration of the 300 nm epitaxial FTO film grown on (110) rutile TiO2 single 

crystal and the 300 nm polycrystalline FTO film grown on glass substrate is shown in Figure 

3.28 where the dislocations and RMS roughness are also included for reference. Unlike 

perfect single crystals, the epitaxial FTO film grows in a similar manner to a polycrystalline 

FTO, but with an epitaxial relationship with the substrate: according to the Volmer-Weber 

growth mechanism, the film initially undergoes multiple nucleation of isolated 3D islands, 

which subsequently coarsen and eventually coalesce to form larger crystallites.30 Due to the 

nearly perfect epitaxy with the TiO2 substrate, the bonding between different crystallites in 

the epitaxial FTO film is nearly perfect, resulting in mosaic domains with very small angles 

at the boundaries. 
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Figure 3.28: Left: schematic drawing (not to scale) of a 300 nm epitaxial FTO film grown on (110) 

TiO2 single crystal where planar defects are represented by dotted lines. The 22 nm in FTO where 

most of the residual defects/strain occur is shaded in grey. Right: schematic drawing (not to scale) of 

a 300 nm polycrystalline FTO film grown on glass substrate. The dislocations and RMS roughness 

are indicated in the figures for reference. 

For polycrystalline TCO films, the extended structural defects such as grain boundaries and 

twins are main electron scattering mechanisms limiting the mobility, especially at low carrier 

concentrations. Therefore, the epitaxial and single crystal TCO films have been pursued to 

achieve very high mobility. To examine the electrical properties of the epitaxially grown FTO 

films, Hall effect measurements were carried out. However, the 70 nm epitaxial FTO film 

appeared to be very resistive and no working measurement could be obtained. The Hall effect 

measurements were successful on the 300 nm epitaxial and polycrystalline FTO films, and 

the obtained mobility, carrier concentration and resistivity are compiled in Table 3.5. 

Table 3.5: The mobility, carrier concentration and resistivity extracted from Hall effect measurement 

for the 300 nm epitaxial and polycrystalline FTO films. 

 
Mobility 

(cm2/V.s) 

Carrier 

concentration (cm-3) 

Resistivity 

(Ω.cm) 

300 nm epitaxial FTO  19.6 4.01×1020 7.94×10-4 

300 nm polycrystalline FTO  19.78 5.16×1020 6.13×10-4 

Previous studies have shown that for highly doped polycrystalline FTO films with carrier 

concentration in the order of 1020 cm-3, the mobility of a 300 nm FTO film is mainly 

dominated by ionized impurity scattering.31 It was also reported for epitaxial Sb-doped SnO2 

films that the mobility is fairly temperature-independent when the carrier concentration is 

higher than 5 × 1019 cm-3, since scattering due to ionized donors becomes dominant.32 As a 

result, with carrier concentration as high as 4.01 × 1020 cm-3, the 300 nm epitaxial FTO film 

does not show higher mobility than its polycrystalline counterpart although both mobility 

values are close to state-of-the-art FTO films.33,34 The main reason is that at such high carrier 

concentrations, the FTO mobility is no longer dominated by grain boundary scattering but by 

ionized impurity scattering. Therefore even though the 300 nm epitaxial FTO film has mosaic 

domains with very low angles/low energies, the mobility is not improved further. 

On the other hand, attention should be paid on the possible influence of structural defects on 

the electrical properties of the epitaxial FTO film. It has widely been reported that dislocations 

have strong effects on the electrical properties of semiconductor thin films such as InN and 
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AlGaN.35,36 Studies on epitaxial SnO2 thin films also revealed that crystal defects such as 

misfit dislocations and antiphase boundaries strongly affect the electron concentration and 

mobility of the films.37 For example, the dislocations seen in the epitaxial FTO film may act 

as scattering centers for electrons by distorting the crystal lattice near the defects, thus 

reducing the mobility38; besides, the dislocations may create potential wells at their cores and 

electrical barriers beside the well thus decreasing the mobility.39 Although as a minor 

influence, the presence of significant structural defects as dislocations and planar defects 

somehow compensates for the grain boundary influence, thus the epitaxial FTO film cannot 

benefit from mobility improvement. As the film gets thinner, the scattering effects due to 

structural defects becomes more pronounced. On the other hand, for thinner films, the free 

mean path of electrons becomes comparable to the film thickness thus the mobility may be 

reduced to the boundary mobility limit.40 For these reasons, the 70 nm epitaxial FTO film 

ends up to be so resistive that no working Hall effect measurement was possible.  

Nevertheless, with the 300 nm epitaxial FTO film showing rather close to state-of-the-art 

mobility comparable to its polycrystalline counterpart, the mobility improvement should be 

very promising in epitaxial FTO films with lower doping concentrations where grain 

boundary scattering becomes dominant.  

3.4. Conclusions and Perspectives 

The results in this study show that depending on the nanoparticle type, the way how the 

nanoparticles form agglomerates varies. After spin coating, the ZnO and S:TiO2 nanoparticles 

form both small and big agglomerates while Al2O3 nanoparticles form mainly small 

agglomerates. On the surface of S:TiO2-FTO and Al2O3-FTO nanocomposites, there exists 

semi-flat region where the FTO film is deposited on very small nanoparticle agglomerates. 

Based on AFM image analyses, large-sized nanoparticle agglomerates are present mostly in 

ZnO-FTO nanocomposites, slightly in S:TiO2-FTO nanocomposites and very little in Al2O3-

FTO nanocomposites. Since small feature size often poses less technical problems in cell 

processing, S:TiO2-FTO and Al2O3-FTO nanocomposites may potentially be more 

advantageous to be applied in real solar cell devices. The RMS roughness of all three series 

of FTO nanocomposites increases with increasing nanoparticle suspension concentration. The 

total surface coverage of ZnO-FTO and S:TiO2-FTO nanocomposites increases by increasing 

nanoparticle suspension concentration while it stays almost invariant for Al2O3-FTO 

nanocomposites. Among each series of FTO nanocomposites, the nanoparticle agglomerates 

show similar feature size.  

Our results have also shown that by choosing the type and orientation of nanoparticles, the 

structural properties of FTO nanocomposites can be tuned accordingly. In the polycrystalline 

ZnO-FTO and Al2O3-FTO nanocomposites, the addition of ZnO and Al2O3 nanoparticles 

randomizes the orientation of FTO grains due to the geometrical randomness of the 

underlying nanoparticle agglomerates; while for S:TiO2-FTO nanocomposites, the addition 
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of S:TiO2 nanoparticles favors the FTO grain growth with <110> orientation thus the resulting 

S:TiO2-FTO nanocomposites show strong (110) texture. Further analyses reveal that the 

S:TiO2-FTO nanocomposites reproduce the structural features of the S:TiO2 nanoparticle 

substrate (which is also strongly <110> oriented), suggesting a potential local epitaxial 

growth of FTO grains on S:TiO2 nanoparticle agglomerates.   

While the structural complexity of the S:TiO2-FTO nanocomposites has not allowed a direct 

cross-sectional TEM observation to visualize the epitaxial relationship, we have successfully 

grown epitaxial FTO films on the (110) rutile TiO2 single crystals by ultrasonic spray 

pyrolysis at the same experimental conditions as the deposition of S:TiO2-FTO 

nanocomposites. We thus conclude that the strong (110) texture observed in S:TiO2-FTO 

nanocomposites is an outcome of the epitaxial growth of FTO grains on the <110> oriented 

S:TiO2 nanoparticles. The possibility to tune the FTO crystallographic texture by playing with 

the nanoparticle orientation thus opens up a new strategy to develop other properties in 

addition to the high optical haze factors of the nanocomposites. 

The resulting epitaxial FTO films show high structural quality comparable to epitaxial films 

grown by more sophisticated techniques requiring high vacuum with slow deposition rate. 

The epitaxial FTO films grow according to the Volmer-Weber growth mechanism as in 

polycrystalline FTO films except they maintain nearly perfect epitaxy with the (110) rutile 

TiO2 single crystals. Consequently, the FTO film grows into mosaic domains with narrow 

out-of-plane distribution of less than 1°. Moreover, the domains grow preferentially along the 

[110] direction, which is in accordance with the smaller lattice mismatch along this direction.  

In the FTO/TiO2 hetero-epitaxial system, the lattice mismatch between FTO and TiO2 

substrate significantly influences the defect structures in the as-grown FTO film. In the early 

stage of film growth, significant interfacial defects, as dislocations associated with planar 

defects, are developed to relax the major misfit strain; further relaxation continues to proceed 

mainly in the first 22 nm of FTO film. When the film grows thicker, the epitaxial strain is 

readily relaxed thus large domains with negligible defects are formed. As a result, the 

epitaxial FTO film overall is nearly fully relaxed with remaining small average strain of 0.1-

0.2%. 

Due to the dominant ionized impurity scattering at high carrier concentrations, the epitaxial 

FTO does not show improvement in mobility compared to standard polycrystalline FTO but 

promisingly high mobility can be expected at lower doping concentrations. With the 

possibility to grow epitaxial FTO films, the direct comparison of FTO material properties in 

polycrystalline and epitaxial form can be carried out in the same ultrasonic spray pyrolysis 

setup simply by properly choosing the substrate. Meanwhile, as easy as it is, the ultrasonic 

spray pyrolysis deposition technique shall be readdressed as a simple alternative to develop 

epitaxial materials. This would help for instance to work with specimens more suitable for 

surface and interface analysis,41 and as well to better understand the role of interfaces when 
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FTO and oxide nanoparticles (i.e. ZnO, S:TiO2 and ZnO) are combined to form FTO 

nanocomposites with versatile properties.42,43  
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Chapter 4. Electrical and Optical 

Properties of FTO nanocomposites 

With the objective of being used as efficient transparent conductive electrodes in photovoltaic 

cells, the electrical and optical properties of ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites are examined in detail in Chapter 4. 

In section 4.1, the sheet resistance (Rs) as a function of nanoparticle suspension concentration 

is studied for ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. With increasing 

nanoparticle suspension concentration, the Rs of ZnO-FTO and Al2O3-FTO nanocomposites 

increases accordingly while the Rs of S:TiO2-FTO nanocomposites decreases instead. By 

properly choosing nanoparticles, the Rs of resulting FTO nanocomposites can thus be tuned. 

In section 4.2, the optical properties of ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites are analyzed in detail. Specifically, subsection 4.2.1 introduces the total 

transmittance (Ttot) and haze factor in transmittance (HT) as a function of wavelength for ZnO-

FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites of all concentrations. Efforts have been 

made to correlate the optical properties of ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites to their surface morphologies, as detailed in Chapter 3. Then subsection 4.2.2 

presents the angle resolved scattering (ARS) of ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites measured by the commercial automated reflectance/transmittance analyzer 

(ARTA) module implemented in a UV-Vis spectrophotometer. In particular, selected ZnO-

FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites were measured with an innovative angle-

resolved Mueller matrix polarimeter (ARMMP) which enables to obtain optical microscopic 

and angle-resolved images of the exact same textured specimen area. This allows to correlate 

the optical properties directly to the surface morphologies and to validate the findings 

obtained using earlier optical characterizations.  

In section 4.3, an optical model has been initiated in collaboration with Guy Vitrant from 

IMEP-LaHC and some first results are presented. The key is to model the optical scattering 

by a single nanoparticle agglomerate, which is detailed in section 4.3.1. After the model is 

introduced in subsection 4.3.1.1, it is successfully employed in subsection 4.3.1.2 to study 

how the size of a single nanoparticle agglomerate influences the optical scattering. However, 

as is shown in section 4.3.2, the current model has not yet fully developed to properly simulate 

the more complicated optical behavior of real FTO nanocomposite samples. Nevertheless, 

trial simulations on ZnO-FTO nanocomposites have been carried out in subsection 4.3.2.1, 

from which the limitations and aspects for future improvement are identified. In parallel, 

approaches to significantly reduce the computation time need to be pursued, which is 

exemplified by the innovative H-tabulation approach in subsection 4.3.2. Finally section 4.4 

summarizes this chapter. 
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4.1 Electrical properties of FTO nanocomposites 

The Rs is plotted as a function of nanoparticle suspension concentration in Figure 4.1 for ZnO-

FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. The error bars of the three series of FTO 

nanocomposites were obtained as statistical errors from five Rs measurements at different 

locations on each sample. The Rs of the respective flat (control) FTO for each series of 

nanocomposites is also plotted as reference, in all cases being around 10 Ω/sq (which is ideal 
for PV applications1). For each series of FTO nanocomposites, the reference flat FTO was 

deposited at exactly the same conditions as the nanocomposites. Therefore for each 

nanocomposite series, the comparison of Rs should be restricted to the respective flat FTO 

reference, as in the following discussions. When the nanoparticle suspension concentration is 

increased, the Rs of ZnO-FTO nanocomposite gradually increases from 9.6 Ω/sq (flat FTO) 

to 15.1 Ω/sq (2 wt% ZnO-FTO nanocomposite) resulting in a 57% increase with respect to 

its flat FTO, similar to that reported by Giusti et al. in Ref. 2; for Al2O3-FTO nanocomposites, 

the Rs gradually increases from 10.5 Ω/sq (flat FTO) to 14.9 Ω/sq (2 wt% Al2O3-FTO 

nanocomposites) resulting in a 42% increase with respect to its flat FTO. On the contrary, 

S:TiO2-FTO nanocomposites show decreasing Rs: with the inclusion of S:TiO2 nanoparticles, 

the Rs of S:TiO2-FTO nanocomposite drops immediately from 11.7 Ω/sq (flat FTO) and 

remains at around 7-8 Ω/sq regardless the nanoparticle suspension concentration. A 

maximum 38% decrease in Rs with respect to its flat FTO is observed in the 0.5 wt% S:TiO2-

FTO nanocomposite. In terms of electrode applications in solar cells, the Rs of the FTO 

nanocomposite should be as small as possible to enable a better collection of charge carriers. 

Thus it is clear that S:TiO2-FTO nanocomposites appear more advantageous over ZnO-FTO 

and Al2O3-FTO nanocomposites concerning the obtained Rs, at least for the experimental 

conditions used here.  

 
Figure 4.1: Sheet resistance (Rs) as a function of nanoparticle suspension concentration for ZnO-

FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. Dashed lines are drawn to guide the eye. 
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As detailed in Chapter 3, the FTO film conformally covers the nanoparticle agglomerates 

with an average thickness of ~300 nm, giving rise to rough FTO nanocomposites. If only the 

FTO film is considered, the cross section of the 300 nm FTO film can be assumed to be 

constant to the first approximation. In this case, the total volume of FTO film deposited on 

FTO nanocomposites must be larger than the reference flat FTO. In other words, in FTO 

nanocomposites, the effective length of the FTO film (i.e. the total length of FTO film 

extending on the surface) is longer and increases further with increasing nanoparticle 

suspension concentration. When the current is injected into FTO nanocomposites, the charges 

would effectively encounter larger resistance based on the classical resistance law: 

 R = ρ
l
χ (4.69) 

where R and ρ is the resistance (Ω) and resistivity (Ω·m) while l and A represents the length 

(m) and cross section (m2), respectively. 

If the nanoparticles used are so resistive that the current flows through the FTO film only, the 

Rs of the resulting nanocomposite would increase when the nanoparticle suspension 

concentration increases (due to increased length l of FTO film). This is the case for ZnO-FTO 

and Al2O3-FTO nanocomposites: ZnO is a semiconductor and non-doped ZnO can be very 

resistive;3–5 while Al2O3 is an insulator.  Note that for Al2O3-FTO nanocomposites, despite 

the total surface coverage keeps invariant, the effective length of top FTO film (thus Rs) may 

still increase with increasing nanoparticle suspension concentration. 

However, for S:TiO2-FTO nanocomposites, the TiO2 nanoparticles used are doped with sulfur. 

In the literature, S:TiO2 nanoparticles were reported to be more conductive as compared to 

non-doped TiO2 nanoparticles by dielectric studies.6 In view of the low Rs values obtained 

for S:TiO2-FTO nanocomposites, we expect the S:TiO2 nanoparticle agglomerates to at least 

have resistance comparable to that of FTO film, which would in principle allow the current 

to flow through the S:TiO2 nanoparticle agglomerates. According to Equation 4.1, the 

resistance of the nanoparticle agglomerate is closely related to its shape: small ones should 

be more resistant. But if the agglomerates are too small, they bring only minor influence 

compared to the FTO. As we have learned in Chapter 3, when the S:TiO2 nanoparticle 

suspension concentration increases, both small and large agglomerates increase. Differently 

sized S:TiO2 nanoparticle agglomerates seem to compensate with each other; the overall 

effect is that the Rs of S:TiO2-FTO nanocomposites stays relatively constant at about 7-8 Ω/sq. 

In addition, the band alignment at the interface between FTO and the nanoparticles should be 

taken into account because proper energetic alignment would effectively reduce the contact 

resistance by facilitating the charge transport at the interface. Rutile TiO2 was recently found 

to have both conduction and valence band edges higher than anatase TiO2.7,8 As a result, if 

only intrinsic band alignment is considered, the conduction band edge of rutile TiO2 would 

be higher than that of FTO by 0.2 eV while the conduction band edge of anatase TiO2 is lower 

than that of FTO by 0.3 eV, as schematically shown in Figure 4.2.9 Since FTO is a degenerate 
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semiconductor with its Fermi level higher than the conduction band edge of both anatase and 

rutile TiO2, the charges would transport between FTO and rutile TiO2 without any problem. 

However the charges would encounter an energy barrier of 0.3 eV going from anatase TiO2 

to FTO although no barrier exists for the other direction. If only intrinsic band alignment is 

considered, rutile TiO2 is energetically more favorable than anatase TiO2 for charge transport 

to/from FTO. This should also hold true for the rutile S:TiO2 nanoparticles used in this study. 

Indeed, S-doping is widely employed in the field of photocatalysis as an effective approach 

to enable visible light absorption by reducing the band gap of TiO2 to about 2.8 eV.10,11 This 

band gap narrowing is attributed either to a rigid shift of the valence band upon mixing the 

sulfur states without affecting the conduction band level,12 or to the formation of impurity 

states just above the valence band.13 In both situations, the position of the conduction band 

edge of S:TiO2 is expected to be very close to that of non-doped rutile TiO2, thus maintaining 

the optimum band alignment with FTO. 

 
Figure 4.2: The proposed intrinsic band alignment between FTO with rutile/anatase TiO2 based on 

Ref.9. CBM and VBM represent the conduction band minimum and valence band maximum 

respectively. EF represents the Fermi level of FTO. 

Finally, the growth temperature is as high as 420° during the deposition of FTO film. In this 

case, local sintering between the S:TiO2 nanoparticles may take place reducing the boundaries 

(electrical barriers) present inside the nanoparticle agglomerates, which in turn improves the 

charge mobility therein and reduces Rs of the S:TiO2-FTO nanocomposites. 

4.2 Optical properties of FTO nanocomposites 

4.2.1 Optical transmission: Ttot and HT 

The total (Ttot) and diffuse transmittance (Tdiff) in the 250 nm - 2500 nm range and haze factor 

in transmittance (HT) in the 350 nm - 1500 nm range are summarized in Figure 4.3a-b for 

ZnO-FTO nanocomposites, in Figure 4.3c-d for S:TiO2-FTO nanocomposites, and in Figure 

4.3e-f for Al2O3-FTO nanocomposites. The bare glass substrate and flat FTO for each series 

of FTO nanocomposites are also plotted for comparison. For transmitted light, HT is defined 

as follows: 

 
HTሺȜሻ = Tdiff(Ȝ)

Ttot(Ȝ)  (4.70) 
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where Ttot is the sum of the specular transmittance (Tspec) and Tdiff: Ttot(Ȝ)=Tspec(Ȝ)+Tdiff(Ȝ). 

 

Figure 4.3: (a) Ttot and Tdiff in the 250 – 2500 nm range and (b) HT in the 350 – 1500 nm range plotted 

for bare glass substrate, flat FTO and ZnO-FTO nanocomposites for all 4 weight concentrations. (c) 

Ttot and Tdiff in the 250 – 2500 nm range and (d) HT in the 350 – 1500 nm range plotted for bare glass 

substrate, flat FTO and S:TiO2-FTO nanocomposites for all 6 weight concentrations. (e) Ttot and Tdiff 

in the 250 – 2500 nm range and (f) HT in the 350 – 1500 nm range plotted for bare glass substrate, 

flat FTO and Al2O3-FTO nanocomposites for all 3 weight concentrations. 

Common to ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites, HT is essentially zero 

at all wavelengths for the bare glass and their reference flat FTOs. For S:TiO2-FTO and 
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Al2O3-FTO nanocomposites, HT is highest at 350 nm then decreases monotonically until 1500 

nm. This behavior is typical for fixed size scattering centers which usually diffuse more 

effectively at shorter wavelengths, where ratios between the scatter size and the wavelength 

are larger.14 However, for ZnO-FTO nanocomposites, HT is peaked in the visible range (i.e. 

the plateau at around 525 nm) then decreases at higher wavelengths. The different HT(λ) 

behavior of ZnO-FTO nanocomposites from that of S:TiO2-FTO and Al2O3-FTO 

nanocomposites is likely related to the different nature of region B (the seemingly flat region, 

see Figure 3.4 and related discussions). As seen in chapter 3, regions B in S:TiO2-FTO and 

Al2O3-FTO nanocomposites are semi-flat composed of small nanoparticle agglomerates 

while region B in ZnO-FTO nanocomposites is equivalent to standard flat FTO. Again, by 

choosing different nanoparticles, the optical properties can be tuned and different HT(λ) 

behaviors can allow the use of  FTO nanocomposites for different applications. Compared to 

ZnO-FTO and S:TiO2-FTO nanocomposites, Al2O3-FTO nanocomposites show the least HT 

and the HT(λ) behavior is almost the same at all nanoparticle suspension concentrations. On 

the contrary, the HT of ZnO-FTO and S:TiO2-FTO nanocomposites increases significantly 

with increasing nanoparticle suspension concentration. The ZnO-FTO nanocomposites are 

most advantageous in scattering visible light. While the relatively high haze factors of S:TiO2-

FTO nanocomposites in the red and near infrared region could be used to improve the 

performance of Si-based thin film solar cells.15 

To show a more detailed comparison, Ttot, HT and absorptance at 635 nm are plotted as a 

function of nanoparticle suspension concentration for ZnO-FTO nanocomposites (Figure 

4.4a), S:TiO2-FTO nanocomposites (Figure 4.4c), and Al2O3-FTO nanocomposites (Figure 

4.4e), respectively. By increasing the nanoparticle suspension concentration HT increased 

from almost zero (reference flat FTO) up to 80.9% for ZnO-FTO nanocomposites, in good 

agreement with Giusti et al. in Ref. 2; for S:TiO2-FTO nanocomposites, HT is increased from 

almost zero (reference flat FTO) up to 60.0%; while for Al2O3-FTO nanocomposites, HT 

increased from almost zero (reference flat FTO) up to only 32.3%. Taking HT at 635 nm as 

an example, the ZnO-FTO nanocomposites show the best light scattering ability followed by 

S:TiO2-FTO nanocomposites, while Al2O3-FTO nanocomposites show the least light 

scattering ability. However, in order to work as efficient transparent conductive electrodes in 

solar cells, the improvement of light scattering in FTO nanocomposites should not come at 

the expense of the loss in total transmittance. In this respect, the Ttot at 635 nm for ZnO-FTO 

and Al2O3-FTO nanocomposites keeps more or less invariant: for ZnO-FTO nanocomposites, 

Ttot changes slightly from 81.9% of the reference flat FTO to 79.0% of the 2 wt% ZnO-FTO 

nanocomposite, while for Al2O3-FTO nanocomposites, Ttot changes almost invariantly from 

81.4% of the reference flat FTO to 79.9% of the 2 wt% Al2O3-FTO nanocomposite. However, 

for S:TiO2-FTO nanocomposites the increase in HT is accompanied by a significant drop of 

Ttot from 79.5% (reference flat FTO) down to 66.0%. The simultaneous increase in 

absorptance in S:TiO2-FTO nanocomposites suggests that the loss in Ttot is partly due to 
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improved absorption likely in the FTO film where the optical path increases with increased 

nanoparticle suspension concentration.  

 

Figure 4.4: The Ttot, HT and absorptance at 635 nm as a function of nanoparticle suspension 

concentration for (a) ZnO-FTO nanocomposites and their flat FTO, (c) S:TiO2-FTO nanocomposites 

and their flat FTO, and (e) Al2O3-FTO nanocomposites and their flat FTO. The Ttot, HT and total 

reflectance (Rtot) at 635 nm as a function of nanoparticle suspension concentration for (b) bare glass 

substrate and ZnO nanoparticle substrates, (d) bare glass substrate and S:TiO2 nanoparticle 

substrates, and (f) bare glass substrate and Al2O3 nanoparticle substrates. 

In addition, even though the energy associated to the wavelength of 635 nm is below the band 

gap energy of S:TiO2 nanoparticles, absorption by the nanoparticles is also observed. This is 
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shown in Figure 4.4d, where Ttot, HT and total reflectance (Rtot) are plotted as a function of 

nanoparticle suspension concentration for the S:TiO2 nanoparticle substrates (without FTO 

film). By increasing the nanoparticle suspension concentration, Ttot decreases accordingly 

while Rtot increases only slightly. This suggests that for the nanoparticle substrates, the 

absorption by the S:TiO2 nanoparticles mainly contribute to the loss in Ttot. Therefore, in 

S:TiO2-FTO nanocomposites the absorption by the S:TiO2 nanoparticles should also 

contribute to the loss in Ttot.  

On the contrary, the band gap of both ZnO (~3.3 eV)16 and Al2O3 (~9 eV) nanoparticles are 

higher than that of S:TiO2 (~2.8 eV) nanoparticles, thus no absorption by ZnO or Al2O3 

nanoparticles is observed in the corresponding nanoparticle substrates (see Figure 4.4b and 

Figure 4.4f). The reason why the S:TiO2 nanoparticles absorb visible light below their band 

gap is likely due to the presence of defect levels within the gap.17 For rutile TiO2, it has been 

recently reported that interstitial sulfur, which is easy to form, exhibits a higher absorption 

coefficient in the visible range than substitutional sulfur at oxygen and titanium sites.18 Thus 

absorption by S:TiO2 nanoparticles is probably caused by the defect levels induced by 

interstitial sulfur. For the S:TiO2-FTO nanocomposites, although the S-doping makes the 

TiO2 nanoparticles more conductive, it nevertheless introduces defect levels within the band 

gap leading to unwanted absorption in the visible range. Thus the choice of the nanoparticle 

is critical in maintaining a compromise between HT, Ttot and Rs in this type of nanocomposites. 

At the same time, this interdependence of properties offers flexibility of design where the 

electrical and optical properties of TCO nanocomposites may be tuned for specific 

applications. 

It is interesting to point out that the ZnO, S:TiO2 and Al2O3 nanoparticle substrates already 

show non-zero haze factor even though the values are systematically lower than those of their 

nanocomposite counterparts. This supports the idea that light scattering in this type of FTO 

nanocomposites is intimately related to the rough surface morphologies. Generally, the 

surface modulated TCOs developed are homogeneous media, thus the common approach to 

study their light scattering is by surface scattering treatment involving the surface RMS 

roughness, such as the Asahi type-U or W-textured FTO.19–21 However, for the FTO 

nanocomposites studied here, the nanoparticle agglomerates show a very broad size 

distribution, some of which have dimensionalities much higher than the FTO film thickness. 

It is thus less proper to treat the three series of FTτ nanocomposites as “homogenous media”. 
Instead, as analyzed in chapter 3, the nanoparticle agglomerates appear as “grains” in the 
AFM images, which optically act as individual scattering centers. The optical scattering of 

the FTO nanocomposites can thus be modeled as collective scattering by all the nanoparticle 

agglomerates present. Therefore the HT is expected to be closely associated with the total 

surface coverage of the nanoparticle agglomerates, as confirmed in Figure 4.5 where a fairly 

linear dependence between HT at 635 nm and the total surface coverage is observed for all 

the ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. 
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Figure 4.5: HT at 635 nm plotted as a function of the total surface coverage of the nanoparticle 

agglomerates for ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. 

4.2.2 Angle resolved scattering (ARS) with automated 

reflectance/transmittance analyzer (ARTA) module 

As important as it is, HT alone does not suffice to assess FTO nanocomposites as good light 

diffuser in solar cells. In addition to high HT, the angles at which light scattering takes place 

are also of great interest. For example, to effectively improve Si absorption, the optical texture 

should scatter light to higher transmitted angles.21 In this context, a Lambertian diffuser 

following the cosine law for angular dependence of light intensity is generally taken as the 

ideal random texture scatterer. With a commercial automated reflectance/transmittance 

analyzer (ARTA) module implemented in the UV-Vis spectrophotometry, we have examined 

the angle resolved scattering (ARS) behavior of the three series of FTO nanocomposites. 

Typically, the reference flat FTO, one FTO nanocomposite with low HT, and one other with 

high HT are selected for each series. So the chosen samples include 0.5 wt% and 2 wt% ZnO-

FTO nanocomposites, and 0.2 wt% and 2 wt% S:TiO2-FTO nanocomposites. For Al2O3-FTO 

nanocomposites, however, only the reference FTO and the 2wt% Al2O3-FTO nanocomposite 

are chosen because the HT of Al2O3-FTO nanocomposites does not vary much with 

nanoparticle suspension concentration. A monochromatic light of Ȝ=633 nm was used as 

incident light. By rotating the detector with 2.5° per step, the intensities of the scattered 

transmitted light were measured at discrete angles. The measured intensities are normalized 

to give the angular distribution function in transmittance (ADFT) in order to extract the 

relative angular dependency of the scattered light.14 The results are presented in Figure 4.6 

where the Lambertian distribution is also plotted for comparison.  

Attention should be paid to how fast the ADFT drops towards higher scattering angles. For 

reference flat FTOs in all three series of FTO nanocomposites, the intensity is most intense 

at specular direction (i.e. 0° scattering angle) and then immediately drops to almost zero at 

larger scattering angles, consistent with the HT being almost zero. Unlike its reference flat 

FTO, for 0.5 wt% ZnO-FTO nanocomposite with HT =27.6% at Ȝ=635 nm, the scattered light 
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extends to non-specular directions but becomes negligible at scattering angles higher than 50°; 

compared to ideal Lambertian distribution, the shape of its ADFT narrows towards the 

specular direction with the scattering pronounced only at angles lower than 20°. The 2 wt% 

ZnO-FTO nanocomposite shows a similar ADFT after the normalization, despite its much 

higher HT (80.9% at Ȝ=635 nm).  

 
Figure 4.6: Angular distribution function in transmittance (ADFT) plotted as a function of scattering 

angle for (a) flat FTO, 0.5 wt% and 2 wt% ZnO-FTO nanocomposites as well as that of ideal 

Lambertian diffuser, (b) flat FTO, 0.2 wt% and 2 wt% S:TiO2-FTO nanocomposites as well as that of 

ideal Lambertian diffuser, (c) flat FTO, 2 wt% Al2O3-FTO nanocomposites, and ideal Lambertian 

diffuser for comparison. The haze factor of respective sample at Ȝ=635 nm are indicated respectively. 

The incidence wavelength used during the measurement was 633 nm. 
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In the same manner, both 0.2 wt% S:TiO2-FTO nanocomposite (HT =16.8% at Ȝ=635 nm) 

and 2 wt% S:TiO2-FTO nanocomposite (HT = 60.0% at Ȝ=635 nm) show similarly narrow 

ADFT as ZnO-FTO nanocomposites. The ADFT for the 2 wt% Al2O3-FTO nanocomposite is 

even slightly narrower in that the scattered light already becomes inappreciable at scattering 

angle of 40°. The fact that the two ZnO-FTO nanocomposites with different HT scatter at 

similar angles suggests that similar feature sizes are present in both samples. As previously 

discussed in chapter 3, both ZnO-FTO nanocomposites have about 80% of the nanoparticle 

agglomerates with req less than 1250 nm. The same conclusion applies to the S:TiO2-FTO 

nanocomposites: the 0.2 wt% and 2 wt% S:TiO2-FTO nanocomposites exhibit similar ADFT 

because similar feature size are present on both samples where more than 80% of the 

nanoparticle agglomerates show req less than 1000 nm. 

Despite the different HT(λ) for ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites, 

they show nevertheless similar angular distribution function. All the three series of FTO 

nanocomposites scatter light mainly at angles lower than about 30°; they are not as effective 

as an ideal Lambertian scatter in scattering light at higher angles. As learned in Chapter 3, 

two regions exist within FTO nanocomposites, that is, rough region A and flat/semi-flat 

region B. Within the collective scattering model, region A would significantly scatter light 

while region B would either scatter light slightly (for semi-flat region in S:TiO2-FTO, and 

Al2O3-FTO nanocomposites) or would not scatter light at all (for flat region in ZnO-FTO 

nanocomposites). In fact, the presence of region B on the surface of the FTO nanocomposites 

intrinsically prevents the light from being scattered at higher angles.  

It is thus clear that the nanoparticle agglomerates are mainly responsible for the optical 

scattering in ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites via collective 

scattering. The haze factor is mostly affected by the density of scattering centers, i.e. the 

number of particle agglomerates, which is in turn proportional to the total surface coverage. 

Conversely, the angular scattering depends on the feature size of the agglomerates. These 

findings are essential for the future development to design improved optical scattering 

properties of FTO and other TCO nanocomposites tailored for photovoltaic and also other 

applications using our simple preparation method. 

4.2.3 Angle-resolved Mueller matrix polarimeter (ARMMP) 

So far, we have shown optical characterization of FTO nanocomposites by methods which 

correlate optical properties with morphological information, but measurements were not 

taken exactly in the same region or at the same scale. Therefore, we have also used an angle-

resolved Mueller matrix polarimeter (ARMMP) developed at Ecole Polytechnique (Paris, 

France) to obtain optical microscopic and angle-resolved images of the exact same textured 

region.22,23 Using this technique, obtaining a direct link between the optical behavior and the 

surface morphology is possible, allowing us to validate our conclusions. Although ARMMP 

only allows measuring the reflected light, the conclusion should be valid to the first 

approximation for transmitted light as well (since the same textured features are responsible 
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for both). The Mueller matrix polarimeter is coupled with a high numerical aperture reflection 

microscope that operates in both real (imaging) and angular (conoscopic) modes and it allows 

measuring the complete Mueller matrices of the sample surfaces and the angle-resolved 

emerging light. For our purpose, the M11 element representing the unpolarized reflected light 

intensity is chosen for the analysis of the angular scattering as shown in Figure 4.7 for flat 

FTO, 0.5 wt% and 2 wt% ZnO-FTO nanocomposites.  

 
Figure 4.7: (a) Real and (b) angular space images of reflected light for flat FTO, 0.5 wt%, and 2 wt% 

ZnO-FTO nanocomposites recorded using an angle-resolved Mueller matrix polarimeter. The 

corresponding SEM image is shown in the inset in (a) for each sample for comparison. (c) Horizontal 

cross sections of angular space images plotted for the 3 samples, with the inset showing the detailed 

light intensity scattered to higher angles. (d) The normalized angular distribution function in 

reflectance (ADFR) of the three samples. 
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The ARMMP measurements are summarized for flat FTO, 0.2 wt% and 2 wt% S:TiO2-FTO 

nanocomposites in Figure 4.8, and in Figure 4.9 for flat FTO, 1 wt% and 2 wt% Al2O3-FTO 

nanocomposites. Corresponding SEM images are placed as inset in Figure 4.7a, Figure 4.8a 

and Figure 4.9a which show surface morphologies consistent with the optical images obtained 

from the polarimeter. 

 

Figure 4.8: (a) Real and (b) angular space images of reflected light for flat FTO, 0.2 wt% and 2 wt% 

S:TiO2-FTO nanocomposites recorded using an angle-resolved Mueller matrix polarimeter. The 

corresponding SEM image is shown in the inset in (a) for each sample for comparison. (c) Horizontal 

cross sections of angular space images plotted for the 3 samples, with the inset showing the detailed 

light intensity scattered to higher angles. (d) The normalized angular distribution function in 

reflectance (ADFR) of the three samples. 
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The total surface coverage of the nanoparticle agglomerates is seen to increase with 

nanoparticle suspension concentration for ZnO-FTO and S:TiO2-FTO nanocomposites; while 

similar surface coverage is seen in 1 wt% and 2 wt% Al2O3-FTO nanocomposites. By a proper 

calibration on a known polished Si wafer, we could obtain the angle-resolved images (Figure 

4.7b for ZnO-FTO nanocomposites, Figure 4.8b for S:TiO2-FTO nanocomposites and Figure 

4.9b for Al2O3-FTO nanocomposites) showing the reflectance of the sample at all azimuths 

angles and up to 63° polar angles (limited by the numerical aperture of the objective). Note 

the angle-resolved images were measured in k-vector space instead of a direct angular space 

as is common for microscope objectives. The polar angles are marked with central dashed 

circles with the corresponding values indicated. The reflectance intensities are scaled in colors 

with higher intensities appearing in shades of red and lower intensities appearing in shades of 

blue. As seen in Figure 4.7b, for ZnO-FTO nanocomposites, all three images have a red 

central spot which represents the intense specular reflection of incident light with polar angle 

ranging from 0° to roughly 15°. The horizontal cross sections plotted in Figure 4.7c reveal 

the specular reflectance (plateau) for the three samples, where the flat FTO has the highest 

specular reflectance and the 2 wt% ZnO-FTO nanocomposite has the lowest specular 

reflectance, as expected from previous discussions. As for the light scattered at higher angles 

(>15°), an obvious red shift in color from flat FTO to the 0.5 wt% and then to the 2 wt% ZnO-

FTO nanocomposite can be observed, suggesting that an increased portion of light gets 

scattered, the absolute values of which are detailed in the inset, consistent with their 

increasing haze factors. Similar normalization is performed on the cross section curves of flat 

FTO, 0.5 wt% and 2 wt% ZnO-FTO nanocomposites to obtain angular distribution function 

in reflectance (ADFR) as shown in Figure 4.7d. The ADFR at higher scattering angles seems 

a bit noisy for the 2 wt% ZnO-FTO. The important thing, however, is to observe the ADFR 

changes as a function of the polar angle. Clearly, the shape of ADFR for 2 wt% ZnO-FTO 

resembles that of 0.2 wt% ZnO-FTO nanocomposite, evidencing that similar feature size are 

present on both samples, as consistent with the conclusions drawn from previous ARTA 

measurements. 

For S:TiO2-FTO nanocomposites, with increasing nanoparticle suspension concentration and 

total surface coverage, the specular reflectance decreases (see Figure 4.8c) and more light 

becomes scattered at higher angles, evidenced by the obvious red color shift in the angle-

resolved images (Figure 4.8b). Moreover, the ADFR of the 0.2 wt% and 2 wt% S:TiO2-FTO 

nanocomposites share the same shape (see Figure 4.8d), again revealing their similar ARS 

behavior due to comparable feature sizes. Finally for Al2O3-FTO nanocomposites, consistent 

with their similar total surface coverage, the angle-resolved images of 1 wt% and 2 wt% 

Al2O3-FTO nanocomposites (Figure 4.9b) exhibit similar color change indicating the two 

having similar distribution between specular and scattered light intensity thus similar haze 

factors. As a reference, HT of the 1 wt% Al2O3-FTO is 30.3% at 635 nm while HT of the 2 

wt% Al2O3-FTO is 32.3% at 635 nm. In the meantime, as detailed in chapter 2, both 1 wt% 

and 2 wt% Al2O3-FTO nanocomposites have about 90% of the nanoparticle agglomerates 
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with req less than 750 nm - the two share the same feature size. Therefore similar ADFR is 

observed in Figure 4.9d for 1 wt% and 2 wt% Al2O3-FTO nanocomposites. 

 

Figure 4.9: (a) Real and (b) angular space images of reflected light taken from angle-resolved Mueller 

matrix polarimeter for flat FTO, 1 wt% and 2 wt% Al2O3-FTO nanocomposites. The corresponding 

SEM image is shown in the inset in (a) for each sample for comparison. (c) Horizontal cross sections 

of angular space images plotted for the 3 samples, with the inset showing the detailed light intensity 

scattered to higher angles. (d) The normalized angular distribution function in reflectance (ADFR) of 

the three samples. 

By comparing the optical images with angle-resolved images taken at the exact same region 

by ARMMP for ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites, the higher light 

scattering of the FTO nanocomposites is clearly seen to be correlated to the higher total 
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surface coverage of the nanoparticle agglomerates, in agreement with the results discussed 

above. Meanwhile, the similar normalized ADFR observed for each series of FTO 

nanocomposites confirms again that angular scattering behavior is a function of feature size 

of nanoparticle agglomerates present on the surface of FTO nanocomposites. 

4.3 Optical simulation  

4.3.1 Optical scattering by a single nanoparticle agglomerate 

4.3.1.1 The optical model 

Due to the inhomogeneous size distribution of the nanoparticle agglomerates, the FTO 

nanocomposites deviate from the assumption of “homogeneous media” as required in the 
conventional surface scattering models. Instead, the optical scattering of the FTO 

nanocomposites is better simulated as collective scattering of all individual nanoparticle 

agglomerates present on the surface, each of which acts as an individual scattering center. 

Therefore the key is to simulate the optical scattering of a single nanoparticle agglomerate. 

Our approach is to treat the nanoparticle agglomerate as a phase object Φ: 

 Φ = exp [j ∙ βπ
Ȝ ∙ n ∙ zሺx,yሻ] (4.71) 

where z(x,y) is the height of the top surface of nanoparticle agglomerate as a function of the 

calculation coordinates x and y; while n refers to the refractive index of the nanoparticle and 

Ȝ is the wavelength. 

The transmittance in the model is therefore simulated as:24 

 T = T0 ∙ exp[−ሺαi − αtሻβįβ] ∙ Φ (4.72) 

where T0 represents the transmittance at an ideally flat surface. The exponential term takes 

into account the influence of the surface roughness į which represents the interface between 
the nanoparticle agglomerates and FTO, as well as that between the FTO and airν α is the 

parameter of wave factor defined as α/βπ=ncosș/Ȝ (n is the refractive index of respective 

optical media) which in our case can be simplified as α=βπn/Ȝ for 0° incidence angle. The 

subscripts “i” and “t” represent incident and transmitted light, respectively.  

As seen by the cross-sectional SEM image shown in Figure 4.10a (one may also refer to 

Figure 3.3), the cross section of a single nanoparticle agglomerate resembles a truncated 

circular pyramid which can be defined by three variables: r0, r1, and H. The height profile of 

several grains (marked in the AFM image in Figure 4.10b) are summarized in Figure 4.10c, 

which, to the first approximation, supports the shape assumption of truncated circular pyramid 

for the nanoparticle agglomerates. Therefore, a single nanoparticle agglomerate is idealized 

as a mathematical truncated circular pyramid and parametrized with the three variables r0, r1, 

and H. The optical scattering of a single ZnO nanoparticle agglomerate at Ȝ=θγη nm is 

modeled in Figure 4.11 as an example to illustrate the optical model. The size of the ZnO 
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nanoparticle agglomerate can be selected randomly, in this example we assume r0=600 nm, 

r1=200 nm, and H=150 nm, as shown in Figure 4.11a. 

 
Figure 4.10: (a) SEM image of a 1 wt% S:TiO2-FTO nanocomposite showing the cross section of a 

nanoparticle agglomerate (left), according to which the nanoparticle agglomerate is visualized as a 

truncated circular pyramid in the model defined by r0, r1, and H as schematically shown in the right.. 

(b) AFM image of the same nanocomposite with the height profiles of the 6 grains summarized in (c).   

The total transmission of light passing through such a ZnO nanoparticle agglomerate can then 

be obtained via Equation 4.3 and is drawn in Figure 4.11b. As expected, the transmission is 

lower at the region where the ZnO nanoparticle agglomerate is located (notice that the central 

part sinks). By performing the Fourier transform,19 the transmitted light intensity in k-space 

can be obtained as shown in Figure 4.11c where the x and y axes essentially represent the sine 

of the diffraction angle (ș), namely, kx/k0= ky/k0=sinș. In order to better visualize the 

transmitted light at different angles, a 2D-plot of the transmitted light intensity as a function 

of sinș is detailed in Figure 4.11d, which essentially corresponds to the cross section of Figure 

4.11c at kx/k0=0 (or equivalently, ky/k0=0). As can be seen in Figure 4.11d, the specular light 

(corresponding to approximately 3° in this case) is much more intense compared to the 

diffused light, meaning that when the light is scattered by such a ZnO nanoparticle 

agglomerate, it is mainly scattered in the specular direction.  
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Figure 4.11: (a) Shape profile of the simulated ZnO nanoparticle agglomerate: r0=600 nm, r1=200 

nm, and H=150 nm. (b) The corresponding total transmission profile when light passes through the 

ZnO nanoparticle agglomerate, and (c) the 3D-plot of diffraction distribution in k-space. (d) Cross 

section at kx/k0=0 (or equivalently, ky/k0=0) of the diffraction distribution. The specular 

(corresponding to approximately 3°) and diffused transmitted light are indicated, respectively. 

By proper integration, the light flux/power of specularly (Pspec) and total (Ptot) transmitted 

light can thus be calculated, respectively. The diffusely transmitted light power (Pdiff) is then 

Pdiff=Ptot-Pspec. Therefore, the HT for light passing through a single nanoparticle agglomerate 

can be expressed as: 

 
HT = Pdiff

Ptot
= ıdiff

ıtot
 (4.73) 

where ıdiff and ıtot are defined as the effective area corresponding to the diffused and total 

transmitted light power, respectively. Note ıtot here refers to the numerical window, not the 

real sample area. For an independent nanoparticle agglomerate, its optical scattering can be 

represented by ıdiff, which equals to (Pdiff/Ptot)ıtot. 

The current model considers the scattering of a single particle, meaning no interaction among 

the nanoparticle agglomerates is considered. For real FTO nanocomposites with N 

nanoparticle agglomerates present on surface, however, the value of N may become so large 

that the nanoparticle agglomerates are close enough to render interactions, especially at higher 

nanoparticle suspension concentrations (more details will be discussed in section 4.3.2). 
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Therefore the haze factor of real FTO nanocomposites is a function of not only the ıdiff of all 

N nanoparticle agglomerates, but also the interactions among nanoparticles. In the simplest 

approximation, the haze factor of FTO nanocomposite can be calculated as:  

 HT = ȕ ∙ ∑ ሺıdiffሻσ S  (4.74) 

where S refers to the real sample area, which in our case equals to the area of the AFM image 

(40 × 40 ȝm2); ȕ is the fitting parameter accounting for the interaction among nanoparticle 

agglomerates: ȕ=1, if there is only 1 nanoparticle agglomerate or the interaction is neglected. 

4.3.1.2 The size effect of a single nanoparticle agglomerate on the optical scattering  

In AFM image, the nanoparticle agglomerates are counted as grains as exemplified in an AFM 

image of a 0.5 wt% ZnO-FTO nanocomposite shown in Figure 4.12a where the grains are 

highlighted in red. The experimentally measured HT(Ȝ) curve of this 0.5 wt% ZnO-FTO 

nanocomposite is presented in Figure 4.12b.  

 
Figure 4.12 (a) An AFM image (40 × 40 ȝm2) of a 0.5 wt% ZnO-FTO nanocomposite where the 

nanocomposite agglomerates are counted as grains highlighted in red using Gwyddion software.25 (b) 

Experimentally measured HT(Ȝ) of the 0.5 wt% ZnO-FTO nanocomposite.  

As is seen in Figure 4.12a, the grains are quite diverse in size and they can roughly be 

categorized into three groups as exemplified by the selected 12 grains: big grains 1-4, medium 

grains 5-8, and small grains 9-12. By simulating HT(Ȝ) for each of the 12 grains (i.e., placing 

only one of the 12 grains in Figure 4.12a), the optical scattering of differently sized 

nanoparticle agglomerates can be studied. The results are summarized in Figure 4.13a with 

the central 1 pixel taken as the specular light and in Figure 4.13b with the central 3° (i.e. all 

pixels defined by ≤ 3°) taken as the specular light. As a compromise of the statistical 

sufficiency and computation efficiency, the numerical window and discretization step of the 

model vary for nanoparticle agglomerates of different sizes and for different wavelengths. 

Thus the number of pixels corresponding to ≤ 3° may change but is generally larger than 1 

pixel. Despite that defining the specular light as central 1 pixel is less realistic than defining 
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the specular light as central 3°, the former is nevertheless the easiest to calculate without 

significantly altering the physical meaning, thus is of great interest to be presented for 

comparison. As expected, the haze factors calculated in the case with the specular light 

defined as the central 3° are generally smaller (due to more light defined as specular) than 

that with the specular light defined as the central 1 pixel. In both cases, the size of the grain 

is seen to significantly affect HT(Ȝ). The big grains (i.e., grain 1-4) show the highest HT(Ȝ); 

in addition, significant interference fringes appear. 

 
Figure 4.13: The simulated HT(Ȝ) of differently sized ZnO nanoparticle agglomerates (grain 1-12 as 

marked in Figure 4.12a) with central 1 pixel (left) and central 3 ° (right) taken as the specular light. 
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When the grain size decreases, the fringes gradually disappear (see grain 5-8 and grain 9-12) 

and also the HT(Ȝ) decreases accordingly (notice the change of the scale for HT in Figure 4.13), 

suggesting that large grains contribute most significantly to the optical scattering in this type 

of FTO nanocomposites. Compared to the experimental HT(Ȝ) curve in Figure 4.12b, however, 

the HT(Ȝ) curve of small grains as grain 9-12 show the best similarity. Therefore a grain with 

the same sizes as grain 11 (i.e., r0=572 nm, r1=196 nm, and H=178 nm) is exemplified in 

Figure 4.14 to examine the influence of r0, r1, and H on HT(Ȝ) separately.  

  

 

 
Figure 4.14: Simulated HT(Ȝ) of a single ZnO nanoparticle agglomerate with (a) varying r0 (fixed 

r1=196 nm and H=178 nm), (b) varying r1 (fixed r0=572 nm and H=178 nm), and (c) varying H (fixed 

r0=572 nm and r1=196 nm) for central 1 pixel (left) and central 3° (right) taken as the specular light. 
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In Figure 4.14a, the r1 and H are fixed, when r0 decreases, the HT(Ȝ) is seen to shift down to 

lower magnitude but remaining the same shape. In Figure 4.14b, the r0 and H are fixed, when 

r1 decreases, the HT(Ȝ) shifts to the left with slight decrease in the magnitude but remaining 

more or less the same shape. If H is decreased while r0 and r1 remain fixed as in Figure 4.14c, 

the HT(Ȝ) varies greatly in shape. Among the three variables, r0 is seen to dominate the haze 

factors, one can thus conclude that r0 is most significant in influencing the optical scattering 

of a single nanoparticle agglomerate shaped as a truncated circular pyramid; while H and r1 

show less significance.  

4.3.2 Optical scattering of FTO nanocomposites 

4.3.2.1 Trial simulations of HT(λ) for ZnO-FTO nanocomposites  

Despite that the current model can be used to successfully assess the influence of the 

nanoparticle size on the optical scattering, it appears nevertheless oversimplified to simulate 

the optical scattering of real FTO nanocomposites. For example, as previously mentioned, the 

interaction among nanoparticle agglomerates which can be crucial in real samples, is not 

considered. Nonetheless, trial simulations using Equation 4.6 have been performed to model 

the HT(Ȝ) for the ZnO-FTO nanocomposites, with the purpose to identify the limitations of 

the model and propositions for future improvement. The simulated HT(Ȝ) of 0.5, 1, 1.5, and 2 

wt% ZnO-FTO nanocomposites are summarized and compared to experimental curves in 

Figure 4.15 where the fitting parameter ȕ used for each simulated curve is indicated 

accordingly. Common to ZnO-FTO nanocomposites of all nanoparticle suspension 

concentrations, the simulated HT(Ȝ) show large deviations at longer wavelengths. This is most 

likely due to the fact that the current model does not take into account the free carrier 

absorption by the FTO film (which gives rise to the low transmission at infrared regions).26 

For 0.5 wt% ZnO-FTO nanocomposite, the fitting parameter ȕ used to simulated HT(Ȝ) equals 

to 1, meaning that the interaction among nanoparticles is not significant thus can be neglected. 

However, for 1, 1.5, and 2wt% the fitting parameter ȕ can be smaller than 1, meaning that the 

interactions among nanoparticle agglomerates can no longer be neglected. As confirmed in 

Figure 4.16, with increasing nanoparticle suspension concentration, the density (or 

equivalently, the total surface coverage as in Chapter 3) of nanoparticle agglomerates is seen 

to increase significantly. For 0.5 wt% ZnO-FTO nanocomposite, the nanoparticle 

agglomerates are relatively sparsely distributed on the surface thus it is reasonable to assume 

negligible interaction among nanoparticle agglomerates. The simulated HT(Ȝ) using Equation 

4.6 (with fitting parameter ȕ=1) gives more or less the same order of magnitude with that of 

experimental curve in the visible range. However, in 1 wt% ZnO-FTO nanocomposite, the 

nanoparticle agglomerates become denser than that in 0.5 wt% ZnO-FTO nanocomposite. In 

1.5 wt% and particularly 2 wt% ZnO-FTO nanocomposite, the nanoparticle agglomerates 

become so dense that the interaction (such as constructive/destructive interferences) between 

them should not be neglected. To a lesser degree of significance, with increasing nanoparticle 

suspension concentration, the portion of nanoparticle agglomerates whose shape deviates 
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from the idealized truncated circular pyramid also increases accordingly. Last but not least, it 

is important to properly define the specular light as evidenced by the different HT(Ȝ) behaviors 

for the specular light defined as central 3° and that defined as central 1 pixel in Figure 4.15.  

 
Figure 4.15: The experimental and simulated HT(Ȝ) for 0.5, 1, 1.5 and 2 wt% ZnO-FTO 

nanocomposites using Equation 4.6. The fitting parameter ȕ used for each simulation is indicated 

accordingly. The simulations have been performed for both cases where the central 1 pixel and central 

3° are taken as the specular light.  

Therefore, in order for the model to simulate with better accuracy the optical scattering of 

real FTO nanocomposite samples, more physical considerations need to be included such as 

the interaction (constructive/destructive interferences) among nanoparticle agglomerates and 

the free carrier absorption by FTO at long wavelengths. On the other hand, during the trial 

simulations to model the HT(Ȝ) of ZnO-FTO nanocomposites, the calculation of scattering by 

a single nanoparticle agglomerate needs be carried out for N (usually several thousand) 

nanoparticle agglomerates as counted from the AFM images and for the whole wavelength 

range of 350-1500 nm. Consequently, the computation time for obtaining the HT(Ȝ) turns out 

very long, ranging from 3-6 hours per sample. Such long calculations provide little flexibility 

to run trial simulations with varying parameters and are thus not practical at all. New 

approaches to significantly reduce the computation time are thus to be pursued. Efforts have 

been made in this regard and an innovative so-called H-tabulation approach has been 
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developed which is able to reduce the computation time down to about 10 seconds per sample. 

However, the H-tabulation shows strict requirements as will be detailed in the following 

subsection.  

 
Figure 4.16: AFM (40 × 40 ȝm2) images of (a) 0.5 wt%, (b) 1 wt%, (c) 1.5 wt%, and (d) 2 wt% ZnO-

FTO nanocomposite. The individual nanoparticle agglomerates are counted and highlighted in red.  

4.3.2.2 Innovative approach: H-tabulation  

The innovative H-tabulation approach makes use of the functional relations between ıdiff and 

r0, r1, and H. To ease the search for functional relations, the effective radius rdiff is used, which 

is defined as the radius of the effective area assumed as a circle: 

 rdiff = √ıdiff/π (4.75) 

The rdiff is physically equivalent with ıdiff to represent the optical scattering of a single 

nanoparticle agglomerate. However, unlike ıdiff with the unit of area (ȝm2), rdiff shares the 

same length unit as that of r0, r1, and H, thus it is easier to study the functional relationship 

between rdiff and r0, r1, as well as H. In the simplest case with specular light defined as the 
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central 1 pixel, the functional dependence of rdiff on r0, r1, and H is simulated for a single ZnO 

nanoparticle agglomerate and summarized in Figure 4.17.  

  

   

  

Figure 4.17: (a) Simulated dependence of rdiff on r0 for a ZnO nanoparticle agglomerate with r1=200 

nm and H=150 nm at wavelength Ȝ of γη0 nm, 635 nm, and 1200 nm. (b) Simulated dependence of 

rdiff on r1 for a ZnO nanoparticle agglomerate with r0=600 nm and H=150 nm at wavelength Ȝ of γη0 
nm, 635 nm, and 1200 nm. (c) Simulated dependence of rdiff on H for a ZnO nanoparticle agglomerate 

with r0=600 nm and r1=200 nm at wavelength Ȝ of γη0 nm, 635 nm, and 1200 nm. The inset in (c) 

shows the detailed rdiff(H) at Ȝ=γη0 nm. The central 1 pixel is defined as the specular light. 
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For various wavelengths (Ȝ), rdiff is linearly dependent on r0 while a 2nd order polynomial 

relation is required to describe the dependence of rdiff on r1: 

 rdiffሺr0ሻ = a ∗ r0 (4.76) 

 rdiffሺr1ሻ = b + c ∗ r1 + d ∗ r1
β (4.77) 

where a, b, c, and d are polynomial coefficients. 

Evidenced by the oscillational fringes in Figure 4.17c, the dependence of rdiff on H appears 

quite complicated with the polynomial order higher than 2. For the sake of simplicity of the 

model, it is preferred not to use complicated function to describe the dependence of rdiff on H. 

Instead, according to Equation 4.8 and 4.9, for each known value of H, the rdiff can be 

expressed as: 

 rdiffሺr0, r1ሻ = q10 + q11 ∗ r0 ∗ r1 + q1β ∗ r0 ∗ r1
β (4.78) 

where only three coefficients, namely q10, q11, and q12 remain to be computed. 

If the three coefficients q10, q11, and q12 can be tabulated for a sufficiently large number of 

discretized H values, then for a nanoparticle agglomerate with known H value (as counted 

from AFM images), its ıdiff can be easily calculated via Equation 4.10 where the coefficients 

q10, q12, and q13 can be quickly found by comparing to the H-tabulate. In this manner, one 

avoids repeating the same calculation for differently sized nanoparticle agglomerates. Instead, 

the main computation time is centered on obtaining the H-table (about 5-6 hours). After 

obtaining the H-table, the calculation of HT(Ȝ) for each FTO nanocomposite sample is reduced 

down to about 10 seconds – a significant reduction in computation time in comparison to 2-6 

hours/sample with the initial program. Moreover, no additional fitting parameter is required 

in this approach, maintaining the reasonable accuracy of the simulation. As is seen in Figure 

4.18, the simulated HT(Ȝ) of ZnO-FTO nanocomposites obtained from the approach of H-

tabulation (drawn as dashed curves) is in reasonable agreement with those obtained from 

running the lengthy initial program (drawn as solid lines).  

    

Figure 4.18: The simulated HT(Ȝ) of 0.5, 1, 1.5, and 2 wt% ZnO-FTO nanocomposites using initial 

program (solid curves) and innovative H-tabulation approach (dashed curves). 
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However, as attractive as the innovative H-tabulation is, it is nevertheless restricted by the 

definition of specular light. As is seen in Figure 4.19, if the central 3° is defined as the specular 

light, the linear dependence of rdiff on r0 is no longer valid although the polynomial 

dependences of rdiff on r1 (2nd order) and H (order>2) still hold.  

 
Figure 4.19: (a) Simulated dependence of rdiff on r0 for a ZnO nanoparticle agglomerate with r1=200 

nm and H=150 nm at wavelength Ȝ of γη0 nm, 635 nm, and 1200 nm. (b) Simulated dependence of 

rdiff on r1 for a ZnO nanoparticle agglomerate with r0=600 nm and H=150 nm at wavelength Ȝ of γη0 
nm, 635 nm, and 1200 nm. (c) Simulated dependence of rdiff on H for a ZnO nanoparticle agglomerate 

with r0=600 nm and r1=200 nm at wavelength Ȝ of γη0 nm, 635 nm, and 1200 nm. The inset in (c) 

shows the detailed rdiff (H) dependence at Ȝ=γη0 nm. The central γ° is defined as the specular light. 
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In this case, Equation 4.8 and 4.10 cannot be applied thus the approach of H-tabulation can 

unfortunately not be employed. Therefore, in addition to refining the optical model by 

including more physical requirements, efforts are also required to actively search for 

approaches to reduce the computation time in the future. 

4.4 Conclusions and Perspectives 

Compared to the reference flat FTO with Rs being around 10 Ω/sq, ZnO-FTO and Al2O3-FTO 

nanocomposites show 57% and 42% increase in Rs, respectively; whereas S:TiO2-FTO 

nanocomposites show 38% decrease in Rs. Other than the better conductivity of S:TiO2 

nanoparticles, the proper intrinsic band alignment at the FTO and rutile TiO2 interface as well 

as local sintering among nanoparticles are also believed to contribute positively to the 

observed Rs decrease in S:TiO2-FTO nanocomposites. 

By changing the nanoparticle suspension concentration, the HT of ZnO-FTO and S:TiO2-FTO 

nanocomposites can be readily varied while the HT of Al2O3-FTO nanocomposites keeps 

relatively constant, as determined by the corresponding change in total surface coverage for 

each series of nanocomposites. The ZnO-FTO nanocomposites show the highest HT 

especially within the visible range; S:TiO2-FTO nanocomposites show lower HT in the visible 

range but show interestingly high haze factors in the infrared range; while Al2O3-FTO 

nanocomposites show limited HT. The different HT(λ) behavior can adapt the FTO 

nanocomposites to different applications. In terms of Ttot, ZnO-FTO and Al2O3-FTO 

nanocomposites experience negligible loss while S:TiO2-FTO nanocomposites suffer from 

significant loss in Ttot due to absorption by the S:TiO2 nanoparticles caused by defect levels 

within the bandgap. 

Other than the structural properties discussed in Chapter 3, the electrical and optical properties 

of FTO nanocomposites can as well be readily tuned by the nanoparticle type used. The high 

HT in ZnO-FTO nanocomposites accompanies nevertheless an increase in Rs despite a trivial 

compromise in Ttot while for S:TiO2-FTO nanocomposites, high HT and low Rs are 

nevertheless accompanied by loss in Ttot. Therefore, attention should be paid to choosing 

proper FTO nanocomposites to ensure a balanced combination of HT, Ttot, and Rs for 

particular photovoltaic technology. For example, Chih-Hung et al. have reported that the 

efficiency of dye sensitized solar cells (DSSCs) increased from 8.18% to 10.1% upon 

increasing the haze factor of the FTO electrode from 2% to 17% with the Ttot remaining at 

about 80%.27 Thus the whole series of ZnO-FTO nanocomposites as well as the 0.5wt% 

S:TiO2-FTO nanocomposite with 35.9% HT and 77.3% Ttot appear promising electrodes to be 

used as electrodes in DSSCs. 

The light scattering behavior of FTO nanocomposites is found to be intimately related to the 

density and size distribution of the nanoparticle agglomerates. With the help of the innovative 

angle-resolved Mueller matrix polarimeter (ARMMP), the direct interplay between surface 

morphologies and optical properties is revealed for FTO nanocomposites. We have thus 
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concluded that the haze factor is proportional to the total surface coverage of the nanoparticle 

agglomerates while the angle-resolved scattering is a function of the feature size of the 

nanoparticle agglomerate. 

An optical model based on simulating the optical scattering by a single nanoparticle 

agglomerate has been initiated and successfully employed to study how the size of the 

nanoparticle agglomerate influences the optical scattering. We have learned that for a 

nanoparticle agglomerate shaped as a truncated circular pyramid, r0 is proven to be the most 

deterministic parameter on optical scattering followed by H and r1. However, in order to 

correctly simulate the more complicated optical scattering of real FTO nanocomposite 

samples, the current model needs further refinement. More physical considerations need to 

be included such as the interaction between different nanoparticle agglomerates as well as the 

free carrier absorption by the FTO film. In parallel, approaches such as the H-tabulation also 

need to be actively searched in the future to reduce significantly the computation time and 

provides better flexibility of the model. 

These findings emphasize that there exists a large room to tune the properties of FTO 

nanocomposites by varying the underlying nanoparticle properties to meet specific electrodes 

requirements in various types of thin film solar cells. Meanwhile, the concept of preparing 

hazy electrodes by combining transparent conductive oxides and nanoparticles serves as an 

economic general guideline to design light management structures in solar cells.
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Chapter 5. FTO/TiOၷ interface in 

Photovoltaic Devices 

FTO, as a promising alternative to replace ITO, is widely used as the photoanode in dye-

sensitized solar cells (DSSCs).1 Before the deposition of the mesoporous nanocrystalline (nc-

TiO2), a continuous thin TiO2 film is often firstly deposited on FTO.2,3 Such a thin TiO2 film 

turns out to be essential in improving the performance of DSSCs, mainly by blocking the 

back transfer of electrons from the FTO electrode to triiodine (I3
-) ions in the electrolyte.4–6 

Thus this thin TiO2 film is commonly referred as blocking TiO2 (b-TiO2) layer. The b-TiO2 

layer cannot be too thick due to the small diffusion length of the charge carriers, thus its 

thickness usually ranges from a few tens to hundred of nanometers. The combination of a b-

TiO2 layer deposited on FTO substrate is also commonly used in emerging perovskite solar 

cells and quantum-dot solar cells.7,8 Thus the study of the interface of FTO/b-TiO2 composes 

an indispensable aspect in understanding the working principles of these types of solar cells. 

In Chapter 5, we will look into the interface of FTO/b-TiO2 layer where the b-TiO2 layers are 

deposited by SolGel and aerosol-assisted metal organic chemical vapor deposition (AA-

MOCVD) techniques, and examine how it is influenced by the polymorph of TiO2. 

As detailed in section 5.1, variously thick b-TiO2 layers were deposited on FTO made in 

LMGP (FTO-LMGP) and commercial FTO substrates as well as Si (100) wafers by SolGel 

method (subsection 5.1.1), and by AA-MOCVD technique (subsection 5.1.2), respectively. 

Several characterization techniques such as grazing incidence XRD, Raman and XPS were 

employed in order to identify the crystalline polymorph of the b-TiO2 layers. It was found 

that while b-TiO2 layers deposited on Si wafers crystallize into pure anatase polymorph, those 

deposited on FTO consistently crystallize into mixed anatase and rutile polymorphs. Further, 

with increasing thickness, the rutile polymorph in b-TiO2 layer weights gradually less; instead 

the anatase polymorph becomes increasingly dominant.  

In section 5.2, RuO2 (see Chapter 2 for preparation details) as a different rutile substrate, was 

chosen upon which variously thick b-TiO2 layers were deposited by the SolGel method. As 

with rutile FTO substrates, b-TiO2 layers deposited on rutile RuO2 also crystallize into mixed 

anatase and rutile polymorphs, evidencing the strong influence of the substrate on the 

polymorph of the b-TiO2 layer.  

In section 5.3, the inhomogeneous interface of FTO and b-TiO2 layer (with mixed anatase 

and rutile polymorphs) is discussed with the help of the experimental observation where the 

interface was probed directly in XPS by depositing an ultrathin b-TiO2 layer of less than 10 

nm on FTO using the SolGel method. 

Finally section 5.4 presents a summary of the main results obtained.   
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5.1 b-TiOၷ layers grown on FTO and Si substrates 

5.1.1 b-TiO2 layers deposited by the SolGel method 

Due to its simpleness and versatility, SolGel method has become one of the most common 

approaches to deposit blocking TiO2 (b-TiO2) layers not only in DSSC but also in perovskite- 

and quantum-dot sensitized solar cells.9–13 Thus a thin b-TiO2 layer of about 40 nm was 

deposited on a FTO grown at LMGP (FTO-LMGP), a TEC 15 (commercial FTO), and a Si 

(100) wafer by the SolGel method. For comparison, thick b-TiO2 layers were also deposited 

on the same substrates, i.e., a b-TiO2 layer of about 120 nm was deposited on FTO-LMGP 

and Si (100) wafer while a b-TiO2 layer of about 80 nm was deposited on TEC 15. The grazing 

incidence XRD patterns of the above-mentioned thin and thick b-TiO2 layers are summarized 

in Figure 5.1, where the diffraction peaks belonging to the FTO (PDF 00-041-1445) substrate 

are marked with dashed lines. ICDD patterns of both anatase (PDF 00-021-1272) and rutile 

(PDF 00-021-1276) TiO2 are drawn for reference.  

    
Figure 5.1: Grazing incidence XRD patterns of thin (left) and thick (right) b-TiO2 layers deposited on 

FTO-LMGP, TEC15 (commercial FTO), and Si (100) wafer. The intensities are in log scale and the 

thickness of the b-TiO2 layer is indicated accordingly. The diffraction peaks corresponding to FTO 

(PDF 00-041-1445) are indicated with dashed lines while that of Si wafer is marked directly. 

Compared to the ICDD patterns of rutile (PDF 00-021-1276) and anatase TiO2 (PDF 00-021-1272), 

the diffraction peaks of the b-TiO2 layers corresponding to rutile and anatase polymorphs are 

distinguished with blue and red squares, respectively.  

Both thin and thick b-TiO2 layers deposited on Si wafers are pure anatase, evidenced by the 

multiple diffraction peaks matching polycrystalline anatase TiO2. A peak originating from 

the Si wafer constantly appears at 2theta of approximately 51°. It is reported in literature that 
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for Si (100) wafer, a set of planes are often present between 50° and 55° in grazing incidence 

XRD measurements.14,15 For thick b-TiO2 layers deposited on FTO, be it LMGP-made or 

commercial, diffraction peaks corresponding to both anatase and rutile polymorphs appear in 

the pattern, clearly indicating that thick b-TiO2 layers deposited on FTOs are composed of 

mixed anatase and rutile polymorphs. For the thin b-TiO2 layers, however, the signals are 

fairly weak due to the small thickness of the layer and intense background signals originating 

from the FTO substrate: one peak corresponding to anatase (101) and two peaks 

corresponding to rutile (101) and (200) seemingly appear but are barely visible. Therefore the 

thin b-TiO2 layers were further examined with Raman spectroscopy as shown in Figure 5.2. 

 
Figure 5.2: Raman spectra of thin b-TiO2 layers deposited on FTO-LMGP, TEC15 (commercial FTO), 

and Si (100) wafer substrates. The thickness of the TiO2 film is indicated accordingly. While the 

Raman spectra of bare FTO-LMGP and TEC15 are plotted in grey curves for reference, the Raman 

band corresponding to Si wafer is marked directly in the figure. The typical Raman bands 

characteristic of rutile and anatase TiO2 are marked with blue and red dashed lines, respectively. 

Accordingly, the rutile and anatase polymorphs in the b-TiO2 layers are distinguished as blue and red 

squares, respectively.  

The experimentally observed Raman spectra of characteristic of anatase TiO2 usually include 

3 Eg modes at 144, 197, and 640 cm-1, 2 B1g modes at 400 and 519 cm-1, and 1 A1g mode at 

515 cm-1.16,17 For rutile TiO2, the first-order Raman spectrum shows 4 Raman-active 

fundamental modes: Eg at 447 cm-1, B1g at 143 cm-1, B2g at 826 cm-1, and A1g at 612 cm-1; 

while second-order scattering features also appear with the most prominent one being at ~237 

cm-1.18,19 However the B1g and B2g modes are often very weak or even invisible. As a result, 

usually the Eg, A1g and the second order effect at ~237 cm-1 compose the major features 

characteristic of rutile TiO2.20–22 As one can see in Figure 5.2, only pure anatase features are 

seen in the Raman spectrum of thin b-TiO2 layer deposited on Si wafer, confirming its pure 

anatase polymorph as consistent with the grazing incidence XRD pattern (Figure 5.1). For the 

thin b-TiO2 layers deposited on FTO substrates, the Eg (144 cm-1) mode characteristic of 
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anatase TiO2, as well as the Eg (447 cm-1) and A1g (515 cm-1) modes characteristic of rutile 

TiO2 are clearly visible, proving that the thin b-TiO2 layers deposited on FTO substrates, as 

their thick counterparts, also crystallize into mixed anatase and rutile polymorphs. 

Furthermore, as shown in Figure 5.3, with increasing thickness, the amount of rutile 

polymorph in the b-TiO2 layer becomes less and less dominating; instead the Raman bands 

characteristic of anatase polymorph become more and more intense.  

 

 
Figure 5.3: Raman spectra of b-TiO2 layers deposited on (a) FTO-LMGP, and on (b) TEC15 

(commercial FTO) with different thicknesses as indicated. The Raman spectra of bare FTO-LMGP 

and TEC15 are also plotted for reference. The typical Raman bands characteristic of rutile and 

anatase TiO2 are marked with blue and red dashed lines, respectively. Accordingly, the rutile and 

anatase polymorphs in the b-TiO2 layers are distinguished as blue and red squares, respectively. 

When the b-TiO2 layer is as thin as 40 nm, both the bands characteristic of anatase (Eg at 144 

cm-1) and of rutile (Eg at 447 cm-1 and A1g at 515 cm-1) polymorphs are only slightly visible. 
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While for the thicker b-TiO2 layers of around 100 nm, the Raman bands characteristic of both 

anatase and rutile polymorphs increases simultaneously in intensity and become equally 

visible. Upon further increasing the thickness of b-TiO2 layer up to about 280 nm, the 

intensity of Raman bands characteristic of anatase polymorph becomes significantly higher 

than that of rutile - the resulting Raman spectrum resembling almost that of pure anatase 

polymorph. Upon increasing the thickness of the b-TiO2 layer, the rutile polymorph weights 

gradually less; instead the anatase polymorph becomes increasingly dominant. The same 

feature is observed in the X-ray photoelectron (XP) spectra taken on the b-TiO2 layers. The 

anatase and rutile polymorphs of TiO2 are experimentally observed to show different features 

in X-ray photoelectron spectroscopy (XPS). As schematically illustrated in Figure 5.4, on the 

one hand, the valence band (VB) spectrum of rutile polymorph shows two peaks of 

approximately equal intensity while that of anatase polymorph shows only a single peak. The 

difference in the VB structure of the two polymorphs originates from their different electronic 

structures.23,24 On the other hand, according to Ref. 24, the binding energy differences 

between the core-level emission and the valence band maximum (i.e. ∆EO 1s, VBM and ∆ETi 2p, 

VBM) also differ between rutile and anatase polymorphs (the values are marked directly in 

Figure 5.4 for reference).  

 

Figure 5.4:  The O 1s and Ti 2p core level emission lines as well as valence bands of reference anatase 

and rutile TiO2 with the values of ∆EO 1s, VBM and ∆ETi 2p, VBM indicated directly.24 

Therefore, the b-TiO2 layers deposited on FTO-LMGP with various thicknesses were 

examined with XPS as summarized in Figure 5.5a; the thin and thick pure anatase b-TiO2 

layers deposited on Si wafers were also checked with XPS for comparison, as seen in Figure 

5.5b. The core level emissions of O 1s and Ti 2p3/2 as well as the VB spectrum of each b-TiO2 

layer are presented. The core level energies (or equivalently, peaks positions) and valence 

band maximum energy (EF-EV) values are also indicated in the figure (in eV). The (EF-EV) is 

determined by intersecting the linear extrapolation of the leading edge with the background 

intensity.25 Therefore the ∆EO 1s, VBM and ∆ETi 2p, VBM, which are important parameters to 

distinguish between anatase and rutile polymorphs of TiO2, can be calculated accordingly and 

are summarized in Table 5.1. 
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Figure 5.5: The XP spectra of O 1s and Ti 2p3/2 core levels as well as the valence band spectra of 

variously thick b-TiO2 layers deposited on (a) FTO-LMGP and (b) Si (100) wafer with the respective 

thickness indicated in the figure. Also indicated are core level energies of O 1s, Ti 2p3/2 and the valence 

band maximum energy (EF-EV) for each b-TiO2 layer in units of eV.  

Table 5.1: The ∆EO 1s, VBM and ∆ETi 2p, VBM of b-TiO2 layers with different thicknesses deposited on FTO-

LMGP and Si (100) wafer by SolGel method. 

 ∆EO 1s, VBM (eV) ∆ETi 2p, VBM (eV) 

40 nm b-TiO2 layer on FTO 527.3 ± 0.1  456.0 ± 0.1  

120 nm b-TiO2 layer on FTO 527.4 ± 0.1  456.1 ± 0.1  

280 nm b-TiO2 layer on FTO 527.3 ± 0.1  456.1 ± 0.1  

40 nm b-TiO2 layer on Si 527.3 ± 0.1  456.1 ± 0.1  

120 nm b-TiO2 layer on Si 527.2 ± 0.1  456.0 ± 0.1  

For the anatase b-TiO2 layers deposited on Si wafers, not only their VB spectra are 

characteristic of anatase polymorph showing a single peak, but also the ∆EO 1s, VBM and ∆ETi 

2p, VBM match the values of anatase polymorph. For b-TiO2 layers deposited on FTO substrates, 

the VB spectrum of 40 nm b-TiO2 layer exhibits two equally intense peaks characteristic of 
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rutile polymorph while the VB spectrum of 280 nm b-TiO2 layer is characteristic of anatase 

polymorph. Upon increasing the thickness, the VB spectrum of b-TiO2 layer deposited on 

FTO undergoes a gradual transition from rutile-like to anatase-like. It is interesting to note 

that the XPS is highly sensitive even to the change of relative ratio between anatase and rutile 

polymorphs of TiO2. In terms of ∆EO 1s, VBM and ∆ETi 2p, VBM, all b-TiO2 layers deposited on 

FTO show values close to those of anatase polymorph. In accordance with the Raman spectra 

discussed above, the b-TiO2 layers deposited on FTO are composed of mixed anatase and 

rutile polymorphs; furthermore, the portion of rutile polymorph dominates in thin b-TiO2 

layers while the anatase polymorph becomes dominating in thick b-TiO2 layers. For 

clarification, Table 5.2 summarizes the polymorphs of b-TiO2 layers deposited on different 

substrates with various thicknesses by the SolGel method.  

Table 5.2: The polymorphs of variously thick b-TiO2 layers deposited on FTO-LMGP, TEC15, and Si 

(100) wafer by the SolGel method. 

Substrate 40 nm b-TiO2 80 nm b-TiO2 120 nm b-TiO2 280 nm b-TiO2 

FTO-LMGP mixture 

(rutile dominant) 
- mixture 

mixture 

(anatase dominant) 

TEC15 mixture 

(rutile dominant) 
mixture - 

mixture 

(anatase dominant) 

Si (100) wafer anatase - anatase 
- 

As detailed in Chapter 2, after each spin coating cycle, the b-TiO2 film was sintered at 500 °C, 

lower than 600 °C which is widely acknowledged as the starting temperature for anatase 

transforming to rutile.26–29 The fact that b-TiO2 layers deposited on Si wafers crystallize into 

pure anatase polymorph and that thicker b-TiO2 layers deposited on FTO substrates also show 

dominating anatase polymorph have evidenced that thermodynamically the experimental 

conditions of the SolGel method favor the formation of anatase polymorph. Nonetheless, thin 

b-TiO2 layers deposited on FTO substrates still crystallize into mixed polymorphs of anatase 

and rutile. 

5.1.2 b-TiO2 layers deposited by AA-MOCVD 

As a different chemical technique than the SolGel method, aerosol-assisted metal organic 

chemical vapor deposition (AA-MOCVD), was also employed to deposit blocking TiO2 (b-

TiO2) layers (with estimated thickness of about 60 nm) on FTO-LMGP, TEC 15 (commercial 

FTO), and Si (100) substrates. The corresponding grazing incidence XRD patterns are 

summarized in Figure 5.6. For the b-TiO2 layer deposited on Si wafer, other than the peak 

(βtheta ≈ η1₎, see previous discussions for more details) originating from the Si wafer, all the 
remaining diffraction peaks match well with the anatase polymorph. For the b-TiO2 layers 

deposited on both LMGP-made and commercial FTO, two diffraction peaks corresponding 
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to (101) and (200) planes of anatase polymorph are clearly visible; in addition, one peak 

corresponding to the (200) plane of rutile polymorph also appears but with weaker intensity.  

Complementarily, these b-TiO2 layers were also examined by Raman spectroscopy as shown 

in Figure 5.7. Consistently, the b-TiO2 layer deposited on Si wafer shows Raman features of 

pure anatase polymorph. While for b-TiO2 layers deposited on FTO substrates, clear Raman 

bands of E1g (144 cm-1), B1g (400 cm-1), and A1g/B1g (515/519 cm-1) characteristic of anatase 

polymorph as well as one Raman band of A1g (612 cm-1) corresponding to rutile polymorph 

(although much less visible) can be distinguished.  

   

Figure 5.6: Grazing incidence XRD patterns of b-TiO2 layers deposited on FTO-LMGP, TEC15 

(commercial FTO), and Si (100) wafer by aerosol-assisted metal organic chemical vapor deposition 

(AA-MOCVD). The intensities are in log scale and the thickness of the b-TiO2 layer is estimated to be 

about 60 nm. The diffraction peaks corresponding to FTO (PDF 00-041-1445) are indicated with 

dashed lines while the diffraction peak originating from the Si wafer is marked directly. Compared to 

the ICDD patterns of rutile (PDF 00-021-1276) and anatase (PDF 00-021-1272) TiO2, the diffraction 

peaks of b-TiO2 layers corresponding to rutile and anatase polymorphs are distinguished with blue 

and red squares, respectively. 

In the same manner, XPS was also employed to examine the AA-MOCVD deposited b-TiO2 

layers on FTO-LMGP and Si wafer. The corresponding core level spectra of O 1s and Ti 2p3/2, 

as well as VB spectra are presented in Figure 5.8a while the values of ∆EO 1s, VBM and ∆ETi 2p, 
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VBM are summarized in Table 5.3. For the b-TiO2 layer deposited on Si wafer, the calculated 

∆EO 1s, VBM and ∆ETi 2p, VBM are close to the characteristic values of anatase polymorph but the 

VB spectrum resembles neither anatase nor rutile polymorph. For the b-TiO2 layer deposited 

on FTO-LMGP, the value of ∆EO 1s, VBM is close to that of anatase polymorph; while the value 

of ∆ETi 2p, VBM and the shape of the VB spectrum resemble neither anatase nor rutile 

polymorph. 

 

Figure 5.7: Raman spectra of ~60 nm b-TiO2 layers deposited on FTO-LMGP, TEC15 (commercial 

FTO), and Si (100) wafer substrates by AA-MOCVD. While the Raman spectra of bare FTO-LMGP 

and TEC15 are plotted in grey curves for reference, the Raman band corresponding to Si wafer is 

marked directly in the figure. The typical Raman bands characteristic of rutile and anatase TiO2 are 

marked with blue and red dashed lines, respectively. Accordingly, the rutile and anatase polymorphs 

in the b-TiO2 layers are distinguished as blue and red squares, respectively. 

Overall, the features in the XP spectra corresponding to AA-MOCVD deposited b-TiO2 layers 

are inconsistent with preceding observations from grazing incidence XRD patterns and 

Raman spectra. Indeed, in the core levels of O 1s, other than the main peaks originating from 

the Ti-O bonding, additional peaks appear at higher binding energies around 532-533 eV, 

which are widely attributed to the oxygen bonding in organic compounds.30,31 Meanwhile, in 

the survey spectra of the b-TiO2 layers shown in Figure 5.8b, intense peaks of C 1s are clearly 

visible, suggesting that high C-containing contaminations are present on the surface of the 

AA-MOCVD deposited b-TiO2 layers. It seems that the deposition residuals (such as small 

organic molecules originating from the incomplete reaction of the metal-organic precursors 

or carbon-related side products) are not completely removed from the surface of the b-TiO2 

layers. As a consequence of the surface contamination, the valence band spectra measured on 

the AA-MOCVD deposited b-TiO2 layers should contain contributions not only from the b-

TiO2 layers themselves but as well from the organic residuals, which leads to the apparent 
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VB spectra with abnormal shape and as well causes the deviations of the values of ∆EO 1s, VBM 

and ∆ETi 2p, VBM. 

 

Figure 5.8: (a) The XP spectra of O 1s and Ti 2p3/2 core levels as well as the VB spectra of b-TiO2 

layers deposited on FTO-LMGP and Si wafer by AA-MOCVD. The core level energies and the valence 

band maximum energy (EF-EV) for each b-TiO2 layer are indicated with units of eV. (b) The survey 

spectra of corresponding b-TiO2 layers. The intense C 1s core levels are marked in shaded area.  

Table 5.3: The ∆EO 1s, VMB and ∆ETi 2p, VBM of b-TiO2 layers deposited on FTO-LMGP and Si (100) wafer 

by AA-MOCVD. 

 ∆EO 1s, VBM (eV) ∆ETi 2p, VBM (eV) 

60 nm b-TiO2 layer on FTO 527.2 ± 0.1  455.8 ± 0.1  

60 nm b-TiO2 layer on Si 527.3 ± 0.1  455.9 ± 0.1  

Despite that the AA-MOCVD deposited b-TiO2 layers are somehow contaminated, the 

grazing incidence XRD and Raman spectra undoubtedly support the argument that b-TiO2 

layer deposited on Si wafer crystallizes into pure anatase polymorph while the b-TiO2 layer 

deposited on FTO substrate crystallizes into mixed anatase and rutile polymorphs. The 

deposition temperature in AA-MOCVD was 450 °C (refer to Chapter 2 for more details), also 
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lower than 600 °C. These results suggest that, similar to the SolGel method, 

thermodynamically the experimental conditions of the AA-MOCVD technique should also 

favor the formation of anatase polymorph; although b-TiO2 layer deposited on FTO substrate 

does crystallize into mixed anatase and rutile polymorphs. Nonetheless, due to the fact that 

the AA-MOCVD technique has not yet been fully optimized to get rid of the contamination 

which may pose serious threats on the accuracy of the structural characterizations, especially 

on the determination of energy levels at the FTO/b-TiO2 interface, thus the SolGel method 

was used to deposit b-TiO2 layers throughout the following studies. 

5.2 b-TiOၷ layers deposited on RuOၷ by SolGel method 

From section 5.1, we have learned that irrespective of the deposition technique used, blocking 

TiO2 (b-TiO2) layers deposited on FTO substrates do not crystallize into pure anatase 

polymorph, but consistently form mixed anatase and rutile polymorphs. The structural 

similarity between rutile FTO and rutile polymorph of TiO2 appears to favor the growth of 

rutile polymorph. Therefore, in this section, rutile RuO2 was chosen as a different substrate 

to grow b-TiO2 layer by the SolGel method with the focus on evaluating the effect of the 

crystallographic structure of the substrate on the polymorph of the obtained b-TiO2 layers. 

The RuO2 substrates were prepared by DC sputtering on quartz glass.32 Two samples were 

deposited at room temperature (RT) and two were deposited at 500 °C. On every two RuO2 

substrates prepared at the same temperature, one thin (40 nm) and one thick (120 nm) b-TiO2 

layer were deposited by SolGel method. The corresponding grazing incidence XRD patterns 

are shown in Figure 5.9. Despite the strong background signals originating from the RuO2 

substrates, diffraction peaks corresponding to both anatase and rutile polymorphs of TiO2 are 

clearly visible, particularly for the thick films. This is consistent with the Raman spectra 

measured on all b-TiO2 layers as shown in Figure 5.10. First one notices that the RuO2 

substrate prepared at 500 °C shows sharper Raman bands compared to that prepared at room 

temperature, revealing the better crystallinity of the RuO2 at higher temperature. Raman 

features of mixed anatase and rutile polymorphs are clearly observed on both the thin and 

thick b-TiO2 layers deposited on both types of RuO2 substrates. As with FTO, b-TiO2 layers 

deposited on rutile RuO2 substrates also crystallize into mixed anatase and rutile polymorphs. 

It is thus clear to conclude that the polymorph of b-TiO2 layer depends significantly on the 

substrate. The rutile structure nature of the FTO forces the b-TiO2 layer to crystallize into 

rutile polymorph due to structural similarity. When the b-TiO2 layer is very thin, the influence 

of FTO substrate dominates thus thin b-TiO2 layers are dominated by rutile polymorph; with 

the thickening of the b-TiO2 layer, however, the formation of anatase polymorph dominates. 

Interestingly, similar results have been obtained within the research community developing 

1D nanostructures (i.e. nanowires, nanorods, nanotubes etc.) to fabricate high-efficiency 

DSSCs. These groups have reported consistent difficulties in growing anatase TiO2 

nanostructures (nanowires, nanorods etc.) on FTO substrates, while rutile TiO2 nanostructures 
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can easily be prepared on FTO substrates.33,34 The reason was claimed to be the much smaller 

structure mismatch between rutile TiO2 and FTO due to their similar structures compared to 

anatase TiO2 and FTO.  

 
Figure 5.9: Grazing incidence XRD patterns of b-TiO2 layers deposited on RuO2 by the SolGel method. 

A thin (40 nm) and a thick (120 nm) b-TiO2 layer were deposited on the two RuO2 substrates prepared 

at room temperature (RT) and at 500 °C. The intensities are in log scale. The diffraction peaks 

corresponding to RuO2 (PDF 00-043-1027) are indicated with dashed lines. Compared to the ICDD 

patterns of rutile (PDF 00-021-1276) and anatase TiO2 (PDF 00-021-1272), the diffraction peaks of 

deposited b-TiO2 layers corresponding to rutile and anatase polymorphs are distinguished with blue 

and red squares, respectively. 
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Figure 5.10: Raman spectra of thin (40 nm) and thick (120 nm) b-TiO2 layers deposited by SolGel on 

RuO2 substrates sputtered (a) at room temperatures (RT) and (b) at 500 °C. The Raman spectra of 

respective bare RuO2 substrates are plotted in grey curves for references. The typical Raman bands 

characteristic of rutile and anatase TiO2 are marked with blue and red dashed lines, respectively. 

Accordingly, the rutile and anatase polymorphs in the b-TiO2 layers are distinguished as blue and red 

squares, respectively.  

5.3 Energetic alignment at FTO/b-TiOၷ interface 

As concluded from the discussion presented above, a thin blocking TiO2 (b-TiO2) layer 

deposited on FTO by SolGel method is composed of mixed anatase and rutile polymorphs, 
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implying that the interface of FTO/b-TiO2 is essentially inhomogeneous. Thus, the FTO is 

partly in contact with rutile polymorph and partly with anatase polymorph. Recently, it has 

been established, both theoretically and experimentally,23,24,35 that rutile TiO2 presents both 

the valence band maximum (VBM) and conduction band minimum (CBM) at higher energy 

than those of anatase TiO2. Accordingly, S. Li et al. proposed that the intrinsic band alignment 

between FTO and anatase/rutile TiO2 should follow the schematics shown below (Figure 4.2, 

replotted here for the sake of clarity) where a general consensus places the band gap of anatase 

and rutile TiO2 at 3.2 eV and 3.0 eV, respectively: 

 
Figure 4.2: The intrinsic band alignments between FTO and anatase/rutile TiO2 based on Ref. 36.  

As seen, when in contact with FTO, electrons flow smoothly from rutile TiO2 into FTO while 

an energy barrier of 0.3 eV exists for electrons flowing from anatase TiO2 to FTO. Therefore 

at the inhomogeneous FTO/b-TiO2 interface, the energetic alignment is advantageous for 

charge flow in regions where FTO is in contact with the rutile polymorph while energetic 

barriers exist in regions where FTO is in contact with the anatase polymorph. At the FTO/b-

TiO2 interface, the b-TiO2 layer is very thin thus rutile polymorph should dominate due to the 

leading influence of the FTO substrate. Therefore, energy alignment between FTO and rutile 

polymorph is expected to dominate at the FTO/b-TiO2 interface. 

Experimentally, the band offset (or to be more exact, average band offset, considering the 

inhomogeneous nature of the interface) can be probed by XPS on an ultra-thin (less than 10 

nm) b-TiO2 layer deposited on FTO substrate by SolGel method. The core levels of Sn 3d5/2 

and Ti 2p3/2 measured on the ultrathin b-TiO2 layer are presented in Figure 5.11 and 

determined to be 487.22 eV and 459.40 eV, respectively. According to the Kraut method,37 

in order to obtain the (EF-EV) for both FTO substrate and b-TiO2 layer, the core level positions 

of Sn 3d5/2 and Ti 2p3/2 should be subtracted by the binding energy differences ∆ESn 3d, VBM 

and ∆ETi 2p, VBM, respectively. To obtain the ∆ESn 3d, VBM, the bare FTO substrate was examined 

in XPS and the corresponding Sn 3d5/2 core level and VB spectrum are shown in Figure 5.12a. 

The asymmetry of the Sn 3d5/2 core level is mainly attributed to the screening effects caused 

by a high density of free charge carriers, as is commonly observed in highly doped degenerate 

semiconductors.38,39 The Sn 3d5/2 core emission peak is determined to be 487.19 eV, similar 

to the values reported for FTO as in Ref. 40 and highly tantalum-doped SnO2 as in Ref. 41. 

The valence band maximum (EF-EV) of the FTO substrate is determined to be 3.99 eV by 

intersecting the linear extrapolation of the leading edge with the background intensity, which 
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is in good agreement with the optical gap of 4.03 eV derived from the transmittance spectrum 

(Figure 5.12b) using the Tauc plot (Figure 5.12c).42,43  

 

Figure 5.11: The XP spectra of Sn 3d5/2 and Ti 2p3/2 core levels of the ultrathin b-TiO2 layer deposited 

on FTO substrate by SolGel method. The core level energies are indicated in the figures, respectively. 

 

Figure 5.12: (a) The XP spectrum of Sn 3d5/3 core level and the VB spectrum of the bare FTO-LMGP 

substrate with the core level and valence band maximum (EF-EV) energies indicated in the figures, 

respectively. (b) The corresponding transmittance spectrum plotted as a function of wavelength in the 

range of 250 nm – 2500 nm. (c) The Tauc plot derived from the transmittance spectrum with the 

optical bandgap determined to be 4.03 eV. 

The fundamental energy gap for SnO2 is widely reported as 3.6 eV.44 With the addition of F 

dopants, the carrier concentration increases in SnO2 with free electrons occupying partially 
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the conduction band. As a consequence, the energy needed for the electron transition in 

resultant FTO increases – an effect well known as the Burstein-Moss shift.45 For FTO, the 

widening of the gap to 4 eV and above is commonly observed.46–49 Therefore the binding 

energy difference ∆ESn 3d, VBM is determined to be 483.2 eV while ∆ETi 2p, VBM is taken as 

456.07 eV from Table 5.1. Applying the Kraut method gives the (EF-EV) of 4.02 eV for FTO 

and 3.33 eV for the ultrathin b-TiO2 layer at the interface. In other words, the valence band 

edge of the b-TiO2 layer is positioned above that of FTτ substrate by 0.θλ ≈ 0.7 eV. The 
experimentally observed 0.7 eV of VB band offset between FTO and b-TiO2 layer essentially 

situates between 0.8 eV (VB offset between FTO and pure rutile polymorph) and 0.1 eV (VB 

offset between FTO and pure anatase polymorph), revealing its averaging nature which 

results from the inhomogeneous interface of FTO/b-TiO2 (mixture). Furthermore, the close 

proximity to the VB band offset between FTO and pure rutile polymorph confirms that the 

rutile polymorph dominates in the ultra-thin b-TiO2 layer and thus dominates the band 

alignment with FTO at the interface. In other words, thanks to the dominating rutile 

polymorph at the FTO/b-TiO2 interface, the charge flow should be generally smooth from the 

b-TiO2 layer to the FTO electrode. 

Moreover, with the b-TiO2 layer composing of mixed anatase and rutile polymorphs, the 

interface between b-TiO2 layer and meso-porous nc-TiO2 layer is also inhomogeneous; 

further, the dominating polymorph in the b-TiO2 layer can vary from rutile at small layer 

thickness to anatase at large layer thickness. On the one hand, if the meso-porous nc-TiO2 

layer used in DSSC is pure anatase polymorph, an energy barrier as high as 0.5 eV has to be 

overcome between the meso-porous nc-TiO2 layer to a thin b-TiO2 layer with dominating 

rutile polymorph, as seen in Figure 5.13a. 

 

Figure 5.13: (a) The band alignment of a thin b-TiO2 layer with dominating rutile polymorph with a 

meso-porous nc-TiO2 layer of pure anatase polymorph. (b) The band alignment of a thick b-TiO2 layer 

with dominating anatase polymorph with a meso-porous nc-TiO2 layer of pure rutile polymorph. 

In view of energetic alignment, a thin b-TiO2 layer is not recommended in this case. Instead, 

if the thickness of b-TiO2 layer is increased so that the b-TiO2 layer is dominated by anatase 

polymorph, the charge transport between nc-TiO2 layer and b-TiO2 layer should become very 

smooth. To facilitate better charge transport, in combination with anatase meso-porous nc-

TiO2 layer, the b-TiO2 layer cannot be too thin but should increase in thickness till an 

optimized value is found, as widely reported in literature.50–52 The b-TiO2 layer with 
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optimized thickness likely holds the minimum energetic barrier in charge transport by 

reaching a balanced distribution between anatase and rutile polymorph. On the other hand, if 

the meso-porous nc-TiO2 layer used in DSSC is pure rutile polymorph, the charges would 

encounter an energy loss when going from the meso-porous nc-TiO2 layer to a thick b-TiO2 

layer with dominating anatase polymorph, as seen in Figure 5.13b. In this case, a thin b-TiO2 

layer with dominating rutile polymorph is best suited to guarantee smooth charge transport 

from meso-porous nc-TiO2 layer to the FTO electrode. 

5.4 Conclusions and Perspectives 

As a common interface present in DSSC, perovskite and quantum-dot solar cells, the study 

of the interface FTO/b-TiO2 composes an indispensable aspect in understanding the working 

principles of these types of solar cells. 

SolGel method and aerosol assisted metal organic chemical vapor deposition (AA-MOCVD) 

were used to deposit blocking (b-TiO2) layers. For both deposition methods, despite that the 

b-TiO2 layer deposited on Si wafer to crystallize into pure anatase polymorph, b-TiO2 layers 

deposited on rutile FTO consistently crystallize into mixed anatase and rutile polymorphs. 

Upon increasing the thickness of the b-TiO2 layers, the rutile polymorph in the b-TiO2 layers 

weights less and less; while the anatase polymorph becomes more and more dominant.  

As evidenced by the experimental fact that both thin and thick b-TiO2 layers deposited on 

rutile RuO2 substrates by SolGel method also crystallize into mixed anatase and rutile 

polymorphs, the polymorph of the b-TiO2 layer is concluded to be strongly influenced by the 

substrate. The structural similarity between rutile FTO and rutile polymorph of TiO2 favors 

the growth of rutile polymorph. As a result, the rutile polymorph tends to dominate in thin b-

TiO2 layer while the anatase polymorph tends to dominate in thick b-TiO2 layer. 

Consequently, the interface of FTO/b-TiO2 layer is proven inhomogeneous in nature with 

FTO partly in contact with anatase polymorph and partly with rutile polymorph. Thanks to 

the leading influence of the FTO substrate, rutile polymorph dominates at the interface of 

FTO/b-TiO2, which is supported by the average valence band offset of about 0.7 eV as 

observed experimentally. To best facilitate the charge transport in view of the energetic 

alignment, a thin b-TiO2 layer with dominating rutile polymorph is most advantageous in 

combination with meso-porous nc-TiO2 layer of pure rutile polymorph; while if meso-porous 

nc-TiO2 of pure anatase polymorph is used, the thickness of the b-TiO2 layer should be 

properly increased till the optimized value where the energetic barrier likely reaches a 

minimum.  

Our study highlights the importance to determine the polymorph of the b-TiO2 layer in order 

to correctly address the band alignment of the FTO/b-TiO2 interface. Since samples prepared 

under atmospheric conditions (as the ultra-thin b-TiO2 layer in this study) are usually 

contaminated by surface adsorbates, future efforts will be directed to develop in-situ 
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techniques to deposit b-TiO2 layers with clean surfaces which allows to probe the complete 

interface between FTO and b-TiO2 layer with better precision.  
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Chapter 6. Device integration 

After a detailed analysis on morphology, structural, electrical, and optical properties, FTO 

nanocomposites were finally implemented in CdTe solar cells, dye-sensitized solar cells 

(DSSC), and organic solar cells to test their applicability as transparent electrodes in real 

photovoltaic devices through several collaborations. The performance of these thin film solar 

cells fabricated on FTO nanocomposites together with technical issues that come along and 

future perspectives are discussed in detail in this chapter. 

In dye-sensitized solar cells, Chih-Hung et al. have reported that the cell efficiency increased 

from 8.18% to 10.1% upon increasing the haze factor of the FTO electrode from 2% to 17%.1 

Despite the relatively low HT for the Al2O3-FTO nanocomposites, the ZnO-FTO and S:TiO2-

FTO nanocomposites developed in this thesis show promisingly high HT that can potentially 

help to improve the performance of DSSCs. In collaboration with Dr. Yann Pellegrin from 

Université de Nantes in France and Daniel Langley (who was a PhD student at LMGP), a 

series of ZnO-FTO nanocomposites have been used as electrodes to make DSSCs. The 

detailed results are presented in section 6.1. 

As one of the most mature thin film PV techniques,2 CdTe solar cells are well known for their 

environmental threat due to the toxicity of Cd (despite CdTe is considered as a stable chemical 

compound), as well as limited availability and the rising price of Te. Thus the reduction of 

the CdTe absorber layer thickness becomes an attractive prospect with regards to material 

consumption and cost reduction in the PV module. However, the device performance with 

reduced CdTe layer thickness is significantly deteriorated due, in part, to the reduced photo-

current generation as the absorber layer thickness becomes smaller than the photon absorption 

length.3 As a consequence, light trapping structures are readily desired to be implemented in 

CdTe solar cells with reduced absorber layer thickness to compensate for the optical loss. In 

subsection 6.2, in collaboration with Dr. Giray Kartopu et al. from Glyndŵr University, we 
have implemented ZnO-FTO nanocomposites with various HT in Cd(1-x)Zn(x)S/CdTe solar 

cells with ultra-thin absorber (i.e., ranging from 1 ȝm down to 0.2 ȝm). Before this, the use 

of ZnO-FTO nanocomposites in baseline Cd(1-x)Zn(x)S/CdTe solar cells incorporating 2.25 ȝm 

absorber layer was first introduced. 

Finally in collaboration with Professor Lukas Schmidt-Mende from University of Konstanz, 

we implemented the FTO nanocomposites in organic solar cells. Due to the low value of the 

carrier collection length, the organic solar cells is restricted to very thin absorber layer, which 

in turn results in very poor optical absorption.4 Thus the use of highly hazy FTO 

nanocomposites in organic cells can be of great potential in benefitting the optical absorption 

by enabling significant light scattering. Different positioning of the nanocomposite layer are 

realized in organic solar devices and their influence on the cell performance is detailed in 

section 6.3. Finally, section 6.4 shortly concludes this chapter.  
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6.1 FTO nanocomposites in dye-sensitized solar cells (DSSCs) 

A series of ZnO-FTO nanocomposites have been used to prepare the photoanode in dye-

sensitized solar cells (DSSCs) with the complete structure shown in Figure 6.1a. First, a thin 

blocking TiO2 (b-TiO2) layer was deposited on ZnO-FTO nanocomposite by TiCl4 treatment. 

The TiCl4 treatments were performed by soaking the electrodes in 0.4 M TiCl4 aqueous 

solution at 70 °C for 40 min.5 Second, the thick meso-porous nc-TiO2 layer was deposited by 

screen-printing including a 1β ȝm layer composing of small Tiτ2 nanoparticles with diameter 

of ~ 18-β0 nm and a 4 ȝm scattering layer composing of large Tiτ2 nanoparticles with 

diameter of ~ 400 nm; The electrode with screen-printed meso-porous nc-TiO2 layer was 

sintered in oven followed by a post-TiCl4 treatment. Then they were soaked in 0.3 mM dye 

solution (Ruthenium-based dye: Z907) overnight in dark forming the half-cell, namely, the 

photoanode, which were combined with the counter electrode to form the complete cell. 

Finally the iodide/triiodide electrolyte was injected into the cell through a hole pre-drilled on 

the counter electrode. A picture of a real DSSC is presented in Figure 6.1b with an active area 

of 0.25 cm2. 

 

Figure 6.1: (a) The complete layer structure of dye-sensitized solar cells (DSSCs). (b) A picture of a 

real DSSC with an active area of 0.25 cm2. 

However, unexpected technical issues during the cell preparation were encountered. As one 

sees in Figure 6.2a, the meso-porous nc-TiO2 layer became broken before the dye soaking as 

well as after the dye soaking. The morphology examination by SEM imaging in Figure 6.2b 

reveals that, while in region B the meso-porous nc-TiO2 is present, it is completely 

delaminated in region A exposing the rough ZnO-FTO nanocomposite. It seems that the 

meso-porous nc-TiO2 layer has poor adhesion on the rough ZnO-FTO nanocomposites 

resulting in delamination of the film. Such delamination of the meso-porous nc-TiO2 layer 

also occurred on the LMGP-made flat FTO whose surface is fairly smooth and flat. 

The photoanodes experiencing the delamination problem could not be further used to be 

assembled into complete cells. Only the photoanodes with seemingly complete meso-porous 

nc-TiO2 layer were assembled with the counter electrodes to form complete DSSCs, on which 

I-V curves were measured. The results are summarized in Figure 6.3 where the open circuit 

voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and the conversion efficiency 
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(Ș) are plotted as a function of the haze factor of the ZnO-FTO nanocomposite electrode. The 

data points of zero haze factor correspond to the cell fabricated on the LMGP-made flat FTO. 

 

Figure 6.2: (a) The problematic photoanodes where the meso-porous nc-TiO2 layer peels off before 

and after dye soaking. (b) The SEM image on region A where the meso-porous nc-TiO2 layer is 

delaminated exposing the rough surface of the ZnO-FTO nanocomposite. (c) The SEM image on 

region B where the meso-porous nc-TiO2 layer still remains. 

Usually, for a standard DSSC made on commercial flat FTO (TEC15), the efficiency is 

stabilized between 8-9%. As a comparison, for the DSSCs made on the LMGP-made flat FTO 

and rough ZnO-FTO nanocomposites, there is a huge scattering of the data points and the cell 

performance is overall less good compared to the standard DSSC: the cell on the LMGP-

made flat FTO shows only 2.9% efficiency and the highest efficiency value achieved on cells 

made on ZnO-FTO nanocomposite is below 6%. As a matter of fact, however, all the cells 

show reasonably high open circuit voltage and fill factor with Voc=700 ±γ0 mV and FF≈7β%, 
both of which are comparable to the standard DSSC as well as the values reported in literature 

for DSSCs.6,7 The low efficiency is essentially caused by the low short-circuit current density 

achieved in these cells which ranges between 3-12 mA/cm2.  

 
Figure 6.3: Voc and FF (left), and Jsc and Ș (right) plotted as a function of the HT of the DSSCs 

fabricated on the LMGP-made flat FTO and rough ZnO-FTO nanocomposites. The HT refers to the 

haze factor averaged in the range 400-1100 nm. The dashed lines are drawn to guide the eyes. 

Further examination reveals that for the seemingly “survived cells” (on which the I-V curves 

were obtained), the meso-porous nc-TiO2 layer turns out to be also loosely attached to the 
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FTO electrode and can be easily scratched off when the cell is disassembled. On the contrary, 

when disassembling the standard cells, the meso-porous nc-TiO2 is well attached to the 

commercial FTO electrode and cannot be scratched off. This suggests that the poor 

attachment of the meso-porous nc-TiO2 layer on our flat FTO and rough ZnO-FTO 

nanocomposites appears even in those seemingly “survived cells”. Such poor adhesion is 

likely accompanied by defective regions where the photo-generated charges become trapped 

thus resulting in poor Jsc and Ș. When referenced to the cell prepared on the LMGP-made flat 

FTO, the performance of the DSSC made on rough ZnO-FTO nanocomposites does improve 

for some of the cells. However, the data points of Jsc and Ș are quite scattered and thus no 

clear trend of the Ș with respect to the haze factor of ZnO-FTO nanocomposite can be 

observed. The delamination issue that occurred unexpectedly during the cell fabrication 

makes it difficult to conclude properly whether or not the light scattering of our hazy ZnO-

FTO nanocomposites helps to improve the performance of DSSCs.  

In order to check the reproducibility of the poor adhesion of meso-porous nc-TiO2 layer on 

our FTO electrodes (flat and rough), a new batch of cells were fabricated on ZnO-FTO 

nanocomposites. Despite the smaller scattering of the data points, the delamination of the 

meso-porous nc-TiO2 layer was again observed. In the same manner, I-V curves were 

measured on the seemingly remaining cells and are summarized in Figure 6.4. For this new 

batch of cells, the Voc is slightly higher with Voc =750±10 mV while the fill factor remains 

fairly similar. As expected, the Jsc is still low and thus the Ș remains poor.  

 

Figure 6.4: The Voc and FF (left), as well as the  the Jsc and Ș (right) plotted as a function of the HT of 

the DSSCs made on our rough ZnO-FTO nanocomposites. The HT refers to the haze factor averaged 

in the range 400-1100 nm. The dashed lines are drawn to guide the eyes. 

Nonetheless, with the relatively small data scattering, a rough trend of increasing Ș with 

respect to increasing haze factor of the FTO nanocomposite electrode can be seen, implying 

that despite the non-standard cell performance due to the delamination issue, the increase in 

haze factor does contribute positively to the Jsc thus the efficiency of the cell. It is proven here 

that, integrating hazy FTO nanocomposite shows great potential in benefiting the 

performance of DSSCs, particularly if the delamination issue would be properly addressed.  
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6.2 FTO nanocomposites in Cdႂၶ₋ₓႃZnႂₓႃS/CdTe solar cells 

Baseline Cd(1-x)Zn(x)S/CdTe devicesμ thick absorber of β.βη ȝm 

The ZnO-FTO nanocomposites were firstly implemented in baseline Cd(1-x)Zn(x)S/CdTe 

devices incorporating thick absorber layers of 2.25 ȝm. The device structure is shown in 

Figure 6.5, where the front and back contacts were Ag paste and thermally evaporated Au, 

respectively. Different layers of the cell were successively deposited using metal organic 

chemical vapor deposition at atmospheric pressure (AP-MOCVD). The Cd, Zn, S, Te, As and 

Cl precursors were dimethylcadmium, diethylzinc, ditertiarybutylsulphide, diisopro-

pyltelluride, trisdimethylaminoarsine and tertiarybutylchloride, respectively. The depositions 

of all layers were carried out in a single chamber: a horizontal configuration was used with 

purified H2 as carrier gas and the growth temperatures were 200-420 °C. For the baseline 

process, the bulk CdTe absorber is composed of a 2 ȝm p-CdTe layer doped by As with a 

concentration of 2×1018 atoms/cm3 and a 0.25 ȝm p+-CdTe layer with increased As-doping 

of 1×1019 atoms/cm3 as the back contact layer (BCL). Such npp+ cell structure improves the 

ohmic characteristics of the Au back contact,8 possibly due to a reduction of carrier 

recombination in this region.9 The CdCl2 treatment was carried out in situ after the growth of 

the CdTe layers,10 which was followed by an anneal under H2 at 420 °C. A 0.15 ȝm thick 

Cd(1-x)Zn(x)S was deposited as the window layer due to its higher bandgap than CdS thus 

enabling better optical response. 

 

Figure 6.5: The structure of the baseline Cd(1-x)Zn(x)S/CdTe devices where BCL refers to back contact 

layer. 

The reference CdTe cells were made on commercial ITO substrates. Therefore during the 

deposition, two reference ITO (2.5 × 5.0 cm2) were placed side-by-side with one LMGP-

made flat FTO (2.5 × 2.5 cm2) and five rough ZnO-FTO nanocomposites (each with size 2.5 

× 2.5 cm2) of different haze factors as shown in Figure 6.6. The five ZnO-FTO 

nanocomposites are named A1, A2, A3, A4, and A5. Their corresponding haze factors are 

shown in Table 6.1, as well as the cell parameters obtained from the I-V data. A single cell 

has an active area of 0.25 cm2, and ideally 4 cells can be made on every flat FTO and ZnO-

FTO nanocomposites while 8 cells can be made on ITO substrate. Eliminating non-working 

cells, the parameters were averaged on the remaining cells. 



6.2 FTτ nanocomposites in ωdႂၶ₋ₓႃZnႂₓႃS/ωdTe solar cells 

187 
 

 

Figure 6.6: The positioning of the substrates during the deposition of the baseline Cd(1-x)Zn(x)S/CdTe 

devices. According to the gas flow direction, the ITO substrate placed at the inlet is designated as 

ITO-i while the ITO substrate placed to the outlet is designated as ITO-o. The FTO refers to the flat 

FTO while A1-A5 refer to the rough ZnO-FTO nanocomposites with increasing HT. The brackets 

indicates the average real thickness (in ȝm) of the Cd(1-x)Zn(x)S/CdTe stack measured by ex-situ 

profilometer. 

First of all, attention should be paid to the inhomogeneous deposition due to the directed 

precursor flow in the horizontal reactor. It is well-established that the thickness of CdTe 

reduces from the inlet to outlet side within the deposition chamber since the precursor flows 

from the inlet to outlet. Ideally the CdTe absorber should be 2.25 ȝm while the Cd(1-x)Zn(x)S 

should be 0.15 ȝm. The average real thickness (in ȝm) of the Cd(1-x)Zn(x)S/CdTe stack 

measured by ex-situ profilometer is indicated in Figure 6.6 in brackets for each substrate. A 

large variation in the absorber thickness is clearly seen between the inlet (ITO-i) and outlet 

(ITO-o) ITO devices, which explains the lower Jsc in the ITO-o device and its poorer 

performance compared to the ITO-i device. As for the devices made on flat FTO and ZnO-

FTO nanocomposites, the performances are generally varying between the two reference ITO 

devices. Both Voc and Jsc are consistent with reference ITO devices. However the fill factor 

is rather small due either to the increased series resistance (Rse) or lowered shunt resistance 

(Rsh), or both.  

Table 6.1: I-V measurements of baseline Cd(1-x)Zn(x)S/CdTe devices made on reference ITO, LMGP-

made  flat FTO, and rough ZnO-FTO nanocomposites. 

 HT* 

(%) 

η 

(%) 

Jsc  

(mA∙cm-2) 

Voc 

(mV) 

FF 

(%) 

Rse 

(Ω∙cm2) 

Rsh 

(Ω∙cm2) 

ITO-o 0 9.33±1.29 21.74±0.58 680±65 62.98±3.96 4.47±0.55 1400±282 

ITO-i 0 12.39±1.10 24.13±0.48 742±10 69.08±5.18 3.77±0.42 1278±506 

FTO 0 8.56±3.29 23.64±0.34 697±43 51.58±17.55 10.12±5.43 881±795 

A1 22 6.79±2.65 23.68±0.08 599±104 46.66±10.90 9.38±2.42 532±687 

A2 36.7 8.72±1.76 23.81±0.34 687±37 53.17±9.05 7.72±2.13 925±506 

A3 48.9 10.23±1.06 24.04±0.25 732±19 58.01±4.63 7.02±1.33 1040±426 

A4 55.0 8.62±0.41 23.62±0.78 687±37 53.15±1.18 8.35±1.13 1001±126 

A5 61.0 1.11±0.08 6.34±0.25 707±16 24.77±0.17 111.39±1.74 110±2 

* Here HT refers to the haze factor averaged from 400-1100 nm. 
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If the Ș is plotted as a function of HT for the devices made on LMGP-made flat FTO and 

rough ZnO-FTO nanocomposites as is seen in Figure 6.7, an encouragingly increasing trend 

is still visible despite the relatively large error bars. The A1 device seems to suffer slightly 

from the relatively thin absorber deposited on this substrate. When the ZnO-FTO 

nanocomposite electrode used has higher HT, the resulting device seems to suffer more 

problems of shunting. In particular, the A5 device made on the haziest ZnO-FTO 

nanocomposite has clearly experienced an unsurmountable shunting issue, which severely 

limits the FF and Jsc. Therefore, the ZnO-FTO nanocomposite with HT as high as that of A5 

device can be eliminated from further studies.  

    

Figure 6.7: The efficiency (Ș) of the baseline Cd(1-x)Zn(x)S/CdTe devices made on LMGP-made flat 

FTO and rough ZnO-FTO nanocomposites plotted as a function of HT. The red dashed line is drawn 

to guide the eyes. 

Further spectral response data were collected on these baseline devices as summarized in 

Figure 6.8 where the external quantum efficiency (EQE) of all devices are presented. 

Consistent with its lower Jsc, the ITO-o device shows smaller EQE curves in the entire UV/Vis 

region compared to the ITO-i device. The spectral response of the device fabricated on 

LMGP-made flat FTO is similar to that of ITO-o device: in particular, the downward slope 

into red region of the two matches very well. In terms of devices made on rough ZnO-FTO 

nanocomposites, they display stronger red-response reflected by their more rectangular 

curves, except device A4 which probably shows variation of Jsc between different contacts 

(i.e., solar cells) on the same device, or alternatively, an artifact of the EQE measurement. 

The best/highest EQE spectrum with a nearly flat profile belongs to device A1 despite its 

smallest absorber thickness. However, some unexpected behavior is also seen. For example, 

device A2 and device A4 show different strength of EQE despite of their absorbers being 

similarly thick and having displayed similar Jsc. 
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Nevertheless, the baseline Cd(1-x)Zn(x)S/CdTe devices fabricated on rough ZnO-FTO 

nanocomposites with thick absorber layer show generally encouraging results in improving 

optical absorption, particularly with improved red response, which gives strong indication on 

the potential of integrating them in Cd(1-x)Zn(x)S/CdTe devices with ultra-thin absorber.   

 

Figure 6.8:  The external quantum efficiency (EQE) curves for the baseline Cd(1-x)Zn(x)S/CdTe devices 

fabricated on reference ITOs, LMGP-made flat FTO and rough ZnO-FTO nanocomposites. 

Ultra-thin (0.8 ȝm) absorber devices 

The ZnO-FTO nanocomposites were then integrated in the ultra-thin Cd(1-x)Zn(x)S/CdTe 

devices with absorber thickness of 0.8 ȝm. The structure is essentially the same as the baseline 
devices. The sole difference is that the complete CdTe absorber in the ultra-thin devices was 

now highly As-doped with 1×1019 atoms/cm3 (same as the p+ layer in the baseline device). 

This information stems from previous knowledge in making ultrathin absorber devices on 

ITO.3 As learned from the baseline device, the ZnO-FTO nanocomposite with highest haze 

factor cannot produce working devices due to serious problem of shunting. Therefore, only 

four ZnO-FTO nanocomposites, i.e., A1-A4, were used to make the ultra-thin Cd(1-

x)Zn(x)S/CdTe devices. To avoid confusion, instead of A1-A4, we refer the 4 ZnO-FTO 

nanocomposites used to make ultra-thin devices as B1-B4. In the same manner, two ITO 

reference and one flat LMGP-made FTO were placed in the same batch. The I-V data 

collected on the ultra-thin Cd(1-x)Zn(x)S/CdTe devices are summarized in Table 6.2. 

First one notices that the performances of all ultra-thin devices are lowered compared to those 

of baseline devices with thicker absorbers. The ultra-thin device fabricated on LMGP-made 

flat FTO produces similar performance as devices made on reference ITO substrates. For the 
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ultra-thin devices made on ZnO-FTO nanocomposites, however, the performance varies 

largely but is generally lower than that of the device fabricated on LMGP-made flat FTO.   

Table 6.2: I-V measurements of ultra-thin Cd(1-x)Zn(x)S/CdTe devices made on reference ITO, LMGP-

made flat FTO, and ZnO-FTO nanocomposites. 

 HT* 

(%) 

η 

(%) 

Jsc  

(mA∙cm-2) 

Voc 

(mV) 

FF 

(%) 

Rse 

(Ω∙cm2) 

Rsh 

(Ω∙cm2) 

ITO-o 0 7.45±0.44 21.76±0.29 620±10 55.34±3.27 8.58±1.15 916±742 

ITO-i 0 7.11±1.27 20.28±0.92 590±80 59.15±4.76 8.25±0.14 1209±1191 

FTO 0 6.84±0.90 21.24±0.52 620±10 51.71±6.20 11.46±2.80 689±599 

B1 22 6.70±1.30 19.44±0.32 650±40 52.85±7.16 9.92±1.16 354±223 

B2 36.7 5.25±1.52 19.10±0.29 600±100 45.44±5.81 12.15±1.55 153±76 

B3 48.9 3.10±0.57 18.68±0.51 470±80 35.73±4.09 15.99±5.65 46±18 

B4 55.0 3.14±2.02 17.51±2.94 510±120 32.29±7.98 8.01±0.32 1141±723 

* Here HT refers to the haze factor averaged from 400-1100 nm. 

The EQE curves of these ultra-thin Cd(1-x)Zn(x)S/CdTe devices are presented in Figure 6.9. 

Compared to Figure 6.8, one sees that the EQE lower cutoff edge of the ultra-thin devices 

moves towards 500 nm, indicating that the window layer is no longer CdZnS but pure CdS, 

which was later understood to be caused by a mechanical failure of the reactor valve for the 

Zn precursor during deposition.  

 

Figure 6.9: The external quantum efficiency (EQE) curves for the ultra-thin Cd(1-x)Zn(x)S/CdTe devices 

fabricated on reference ITOs, LMGP-made flat FTO and rough ZnO-FTO nanocomposites. 
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Other than this, the EQE curves of devices made on ZnO-FTO nanocomposites appear not 

entirely consistent with their I-V measurements. For example, B1 device shows similar Jsc 

and cell efficiency with the device fabricated on LMGP-made flat FTO whereas its EQE curve 

appears much lower in the entire visible range. Furthermore variable EQE are observed on 

different solar cells in a single device (see B4-1 and B4-2). Despite the promising working 

baseline devices integrating hazy ZnO-FTO nanocomposites, the CdTe devices with ultra-

thin absorber implementing ZnO-FTO nanocomposites suffer from a random-like variability 

of the I-V and EQE data, which did not offer a clear trend of the device performance upon 

the haze change of the FTO nanocomposites.   

6.3 FTO nanocomposites in organic solar cells  

ZnO-FTO nanocomposites in organic solar cells 

In the organic solar cells with structure shown in Figure 6.10, two ZnO-FTO nanocomposites 

as well as a LMGP-made flat FTO and one commercial FTO (Solaronix) were used as the 

electrodes. The active area of a single cell is 0.125 cm2 and two cells were made on each FTO 

electrode. The organic cell composes of a PTB7:PC70BM bulk heterojunction active layer 

sandwiched between a PEDOT:PSS hole transporting layer (or, buffer layer) and a thin TiO2 

film (termed the hole-blocking layer). The thickness of the PEDOT:PSS/ 

PTB7:PC70BM/TiO2 assembly altogether is about 120 nm. During the cell preparation, the 

thin TiO2 film was deposited by sputtering at room temperature on the flat FTOs and ZnO-

FTO nanocomposites, followed by the spin coating of the active layer (1000 rpm, 40 sec) and 

the buffer layer (5000 rpm, 60 sec). Metallic Ag was used for both contacts. The complete 

fabrication of the solar cells was carried out in a glove box with N2 atmosphere. 

 

Figure 6.10: The schematic structure of the organic solar cells which implement the ZnO-FTO 

nanocomposites. 
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As one sees in Table 6.3, which summarizes the I-V data measured on the organic solar cells 

(two cells made on each electrode), the organic solar cell fabricated on LMGP-made flat FTO 

has achieved an average efficiency of ~5.7%, which is even slightly superior to that made on 

commercial FTO electrodes whose efficiency is ~5.0% in average.  

Table 6.3: I-V measurements of organic solar cells (with TiO2 film as the hole-blocking layer) made 

on commercial and LMGP-made flat FTOs, as well as on ZnO-FTO nanocomposites. 

 HT* 

(%) 

η 

(%) 

Jsc 

(mA∙cm-2) 

Voc 

(mV) 

FF 

(%) 

Commercial FTO 
0 4.86 12.98 690 54.5 

0 5.28 13.07 720 56.4 

LMGP-made FTO 
0 5.72 14.61 680 58.4 

0 5.65 14.98 670 56.5 

ZnO-FTO_1b 54.9 
0.77 8.79 280 31.1 

1.03 12.98 270 29.5 

ZnO-FTO_2b 57.7 
0.67 5.15 300 43.3 

1.45 12.71 290 39.8 

       * Here HT refers to the haze factor averaged from 400-1100 nm. 

However, for the cells fabricated on hazy ZnO-FTO nanocomposites, the cell performance is 

largely deteriorated with all efficiencies smaller than 1.5%. In fact, the RMS roughness of the 

two ZnO-FTO is larger than 200 nm, which essentially surpasses the organic cell active layer 

thickness (~120 nm). Thus, it is very likely that the deposition of cell layers on the rough 

ZnO-FTO nanocomposites is not ideally homogeneous, particularly at positions where large 

nanoparticle agglomerates are present. As a consequence, short-circuiting would likely occur 

especially at these large features resulting in local shunting, which leads to lower Voc and as 

well lower FF as one sees in Table 6.3. 

Therefore, the high RMS roughness of hazy ZnO-FTO nanocomposites is not compatible 

with the processing of the organic solar cells, which is highly sensitive to the TCO roughness. 

In the case of non-optimized cell preparation, it is unlikely to examine the benefits that the 

hazy electrode may potentially bring to the performance of organic solar cells by improving 

optical absorption via light scattering. Therefore, as an alternative, a different scheme to 

position the FTO nanocomposite was evaluated as schematically shown in Figure 6.11. The 

nanoparticle agglomerates were positioned on the back side of the glass substrate. And a thin 

FTO film was deposited to conformally cover the nanoparticle agglomerates in order to, on 

the one hand fix the nanoparticle agglomerates, and on the other hand maintain relatively 

small loss in Ttot. The combination of nanoparticle agglomerates covered by a thin FTO film 

on the back side is expected to maintain the function of light scattering, thus is termed back 

scattering layer in the following discussion. A flat FTO film was then deposited on the front 
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side of the glass substrate so that the subsequent cell layers would not suffer from any local 

shunting issues related to the high roughness. 

 

Figure 6.11: The alternative design (not to scale) where the scattering layer was positioned at the 

back of the glass substrate; while a flat FTO film was deposited in the front of the glass substrate. The 

back scattering layer is composed of nanoparticle agglomerates covered by a thin FTO film. Such 

configuration enables the successive cell layers in contact with the smooth FTO surface while the 

light scattering capability is maintained by the back scattering layer.  

Two series of FTO nanocomposites were prepared employing back scattering layers with one 

using ZnO nanoparticles and the other using S:TiO2 nanoparticles. As is seen in Figure 6.12, 

with the scattering layer placed on the back side, the two series of FTO nanocomposites 

indeed show high HT which vary as a function of wavelength; with increasing the nanoparticle 

concentration (as indicated in the figure), the HT increases accordingly. The “Flat FTτ_back” 
refers to the FTO electrode with an additional thin FTO film on the back side (as that of the 

back scattering layer).  

 

Figure 6.12: HT in the 400 – 1500 nm range plotted for the two series of FTO nanocomposites 

employing back scattering layers using (a) ZnO nanoparticles and (b) S:TiO2 nanoparticles. 

Compared to the HT(Ȝ) of FTO nanocomposites where the nanoparticle agglomerates are 

placed in the front (see Figure 4.3), the FTO nanocomposites employing back scattering layer 
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with ZnO nanoparticles show more or less the same magnitude for the haze factor while the 

FTO nanocomposites employing back scattering layer with S:TiO2 nanoparticles show 

relatively smaller haze values. These two series of FTO nanocomposites were then used to 

fabricate the organic solar cells with the same structure as described previously except that 

the hole-blocking layer was replaced by a BCP (bathocuproine) layer. The I-V measurements 

on the series of FTO nanocomposites employing ZnO nanoparticles in the back scattering 

layer is summarized in Table 6.4 while the other series employing S:TiO2 nanoparticles are 

summarized in Table 6.5.  

Table 6.4: I-V measurements of organic solar cells (with BCP film as the hole-blocking layer) made 

on LMGP-made flat FTO without and with a thin FTO film at the back side of the glass, as well as on 

FTO nanocomposites employing ZnO nanoparticles in the back scattering layer. 

 Working 

cells 

HT* 

(%) 

η 

(%) 

Jsc 

(mAcm-2) 

Voc 

(mV) 

FF 

(%) 

Flat FTO 5 0 4.85 11.23 720 59 

Flat FTO_back 4 4.7 5.19 11.03 730 61 

ZnO-FTO_back_1 2 22.4 4.56 10.71 720 58 

ZnO-FTO_back_2 3 38.8 4.9 10.8 720 61 

ZnO-FTO_back_3 3 47.5 5.05 10.94 730 62 

ZnO-FTO_back_4 5 63.9 5.02 10.76 730 62 

 * Here HT refers to the haze factor averaged from 400-1100 nm. 

Table 6.5: I-V measurements of organic solar cells (with BCP film as the hole-blocking layer) made 

on LMGP-made flat FTO without and with a thin FTO film at the back side of the glass, as well as on 

FTO nanocomposites employing S:TiO2 nanoparticles in the back scattering layer. 

 Working 

cells 

HT* 

(%) 

η 

(%) 

Jsc 

(mAcm-2) 

Voc 

(mV) 

FF 

(%) 

Flat FTO 5 0 4.85 11.23 720 59 

Flat FTO_back 1 5 4.75 10.85 720 59 

S:TiO2-FTO_back_1 2 11.0 4.36 10.85 710 55 

S:TiO2-FTO_back_2 3 22.6 4.14 10.64 700 55 

S:TiO2-FTO_back_3 4 32.3 4.89 11.25 720 59 

S:TiO2-FTO_back_4 - 39.4 - - - - 

 * Here HT refers to the haze factor averaged from 400-1100 nm. 

As expected, all the cells of the two series are no longer affected by the roughness of the FTO 

nanocomposites and thus functioning properly. The cells made on FTO nanocomposites 

employing back scattering layers show comparable performance to the ones made on 

reference flat FTOs. However, they do not show any clear benefit on the improvement in 
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optical absorption: no clear trend of the cell efficiency with respect to the increasing haze 

factor of the FTO nanocomposite can be observed. However, if the absorber layer thickness 

is decreased further, the benefits of using hazy FTO nanocomposites may become more 

significant (visible) in improving the optical absorption. Further studies to integrate the hazy 

FTO nanocomposites employing back scattering layers into organic solar cells with thinner 

absorber thickness are being developed. 

6.4 Conclusions and Perspectives 

Despite the delamination issue of the meso-porous nc-TiO2 layer on our LMGP-made flat 

FTO and rough ZnO-FTO nanocomposites during DSSC fabrication, a clear trend of the 

increasing Jsc and cell efficiency with respect to the increasing haze factor of the ZnO-FTO 

nanocomposite is visible. It suggests that the improved light scattering by using hazy 

electrode does contribute positively to the optical absorption in DSSCs. Further efforts should 

be made to avoid this delamination issue, after which the fabrication of the hazy FTO 

nanocomposites in DSSC appears necessary and appealing. 

In baseline Cd(1-x)Zn(x)S/CdTe devices with thick 2.25 ȝm absorber layer, implementation of 

hazy ZnO-FTO nanocomposites has clearly contributed to the higher Jsc, which is evidenced 

by EQE measurement to be caused by an improved red response. However, when used in 

Cd(1-x)Zn(x)S/CdTe devices with ultra-thin absorber of 0.8 ȝm, the cells suffered from a 

random-like variability of both I-V and EQE data that did not follow the HT variation of FTO 

nanocomposite. This may partly be due to the non-conformal deposition on the rough ZnO-

FTO nanocomposite surface in the ultra-thin devices. Better optimized process shall be 

targeted in the future to allow a more conformal deposition. 

Similarly, the high roughness of FTO nanocomposites seems indeed to have hurdled the 

conformal deposition in organic solar cells thus deteriorated the device performance by 

inducing local shunting. The alternative solution of positioning the nanocomposite layer on 

the back side of the glass substrate resulted in functional organic solar cells with reasonable 

efficiency. However, no clear improvement in optical absorption in cells employing the back 

scattering layer has so far been observed. Nevertheless, in organic solar cells with thinner 

absorbers, the improvement in optical absorption could become more significant. Thus future 

studies are oriented to integrate these hazy FTO nanocomposites in organic solar cells with 

smaller absorber thickness.  

Overall, from the first trials of integrating FTO nanocomposites in various thin film 

photovoltaic technologies, we can conclude that it is a working concept to improve the optical 

absorption by using hazy FTO nanocomposites as electrode. However, various issues remain 

to be solved before the functioning of the hazy FTO nanocomposites can be properly 

addressed. In particular, due to their high roughness, the FTO nanocomposites should be 

better suited for solar cells which are less sensitive to TCO roughness.
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General Conclusions and Perspectives 

In this thesis, we have successfully prepared ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites with tunable high haze factors using an economical and simple 2-step process: 

spin coating nanoparticle suspensions and deposition of conformal FTO film by ultrasonic 

spray pyrolysis.  

By increasing the nanoparticle suspension concentration, the haze factor in transmission (HT) 

can be increased from almost zero (reference flat FTO) up to 80.9% for ZnO-FTO 

nanocomposites, in good agreement with the work by Giusti et al. (ACS Appl. Mater. 

Interfaces, 2014, 6, 14096-14107), to 60.0% for S:TiO2-FTO nanocomposites, and to 32.3% 

for Al2O3-FTO nanocomposites. In terms of haze factor, ZnO-FTO nanocomposite is most 

superior followed by S:TiO2-FTO nanocomposite; while Al2O3-FTO nanocomposite shows 

the least light scattering. With the automated reflectance/transmittance analyzer (ARTA) 

module, the angle resolved scattering (ARS) of ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO 

nanocomposites has also been studied in detail. Compared to flat FTO, the FTO 

nanocomposites are able to scatter light at angles as high as up to 50°. However, the light 

scattering is pronounced only at angles less than about 30° meaning that the angular scattering 

of this type of FTO nanocomposite still cannot compete with the ideal Lambertian distribution. 

Moreover, for the FTO nanocomposites with different concentrations in each series, despite 

their different HT, they show similar ARS behavior.  

With the help of the innovative angle-resolved Mueller matrix polarimeter (ARMMP), we are 

able to directly relate the optical properties of the FTO nanocomposites to their surface 

morphologies. Careful examination reveals that the optical scattering behavior of this type of 

FTO nanocomposites is intimately related to the density and size distribution of the 

nanoparticle agglomerates. On one hand, the haze factor is proportional to the total surface 

coverage of the nanoparticle agglomerates. The total surface coverage is highest for ZnO-

FTO followed by S:TiO2-FTO nanocomposites while Al2O3-FTO nanocomposites show the 

lowest surface coverage, explaining their different haze factors. Moreover, for ZnO-FTO and 

S:TiO2-FTO nanocomposites, the total surface coverage increases with increasing 

nanoparticle suspension concentration, thus the HT increases; while for Al2O3-FTO 

nanocomposites, the total surface coverage barely varies thus the HT keeps almost constant. 

On the other hand, the angle resolved scattering is a function of the feature size of the 

nanoparticle agglomerates. In effect, the nanoparticle agglomerates show similar feature size 

within each series of FTO nanocomposites, explaining the similar ARS behavior among FTO 

nanocomposites with different nanoparticle suspension concentrations.  

In addition to the optical scattering, the optical transmission (Ttot) has also undergone different 

changes for ZnO-FTO, S:TiO2-FTO, and Al2O3-FTO nanocomposites. For ZnO-FTO 

nanocomposites, Ttot decreases slightly from 81.9% of the reference flat FTO to 79.0% of the 
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2 wt% ZnO-FTO nanocomposite, while for Al2O3-FTO nanocomposites, Ttot changes 

negligibly from 81.4% of the reference flat FTO to 79.9% of the 2 wt% Al2O3-FTO 

nanocomposite. However, for S:TiO2-FTO nanocomposites the increase in HT is 

accompanied by a significant drop of Ttot from 79.5% (reference flat FTO) down to 66.0% (2 

wt% S:TiO2-FTO nanocomposite). Compared to the large band gaps of ZnO (~3.3 eV) and 

Al2O3 (~9 eV) nanoparticles, the lower band gap of S:TiO2 nanoparticles (~ 2.8 eV, due to S-

doping) is mainly responsible for the Ttot loss. Moreover, the defect levels within the band 

gap introduced by S-doping also contribute to the additional absorption below the gap energy.  

An optical model based on simulating the optical scattering by a single nanoparticle 

agglomerate has been initiated, with which we have learned that the shape and dimensions of 

the nanoparticle agglomerates determine the magnitude and the wavelength dependent 

behavior of haze factor HT(Ȝ) for the type of FTO nanocomposites developed in this study. In 

particular, the significance of the nanoparticle agglomerate size in influencing the optical 

scattering has been successfully addressed. For a nanoparticle agglomerate shaped as a 

truncated circular pyramid defined by bottom radius r0, top radius r1, and height H, the optical 

scattering is dominated by r0 followed by H and r1. However, in order to properly simulate 

the more complicated scattering behavior of real FTO nanocomposite samples, future efforts 

should be devoted to refine the optical model by taking into account more physical 

requirements such as the interactions among nanoparticle agglomerates and the free carrier 

absorption by the FTO thin film. In the meantime, approaches which can effectively reduce 

the computation time need to be actively searched. 

For the polycrystalline ZnO-FTO and Al2O3-FTO nanocomposites, the addition of ZnO and 

Al2O3 nanoparticles randomizes the orientation of FTO grains due to the geometrical 

randomness of the underlying nanoparticle agglomerates. While for S:TiO2-FTO 

nanocomposites, the addition of S:TiO2 nanoparticles makes the FTO film show strong (110) 

texture due to the local epitaxial growth of FTO grains on <110> oriented S:TiO2 

nanoparticles. The possibility to tune the FTO crystallographic texture by playing with the 

nanoparticle orientation thus opens up a new strategy to develop other properties in addition 

to the high optical haze factors of the nanocomposites. In addition, we have presented the first 

successful growth of high-quality (out-of-plane distribution of <1°) epitaxial FTO films on 

(110) rutile TiO2 single crystals via ultrasonic spray pyrolysis. The epitaxial strain due to the 

lattice mismatch between FTO and TiO2 has been largely relaxed through development of 

significant structural defects as dislocations and planar defects. An innovative new nano-

beam precession electron diffraction (N-PED) technique has been employed to map the local 

strain distribution at the TiO2/FTO interface, which reveals that a further relaxation takes 

place in the first 15 nm of the epitaxial FTO film.   

Thanks to the better conductivity of S:TiO2 nanoparticles (due to the sulfur doping), S:TiO2-

FTO nanocomposites show decreased sheet resistance Rs by up to 38% in comparison to a 

reference flat FTO with Rs being around 10 Ω/sq. The proper intrinsic band alignment at the 

FTO and rutile TiO2 interface as well as local sintering among nanoparticles are believed to 
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contribute positively to the observed Rs decrease in S:TiO2-FTO nanocomposites. On the 

contrary, ZnO-FTO and Al2O3-FTO nanocomposites show increased Rs by 57% and 42%, 

respectively. 

By playing with the nanoparticle type, different compromises can be made among HT, Ttot, 

and Rs, which essentially provide a large degree of freedom to choose proper FTO 

nanocomposites with balanced properties appropriate for specific photovoltaic technologies. 

As a matter of fact, trials carried out in this study to apply FTO nanocomposites in dye-

sensitized solar cells (DSSCs), CdTe, and organic based solar cells have indicated that the 

optical scattering of the FTO nanocomposites developed in this thesis is truly beneficial in 

improving the optical absorption; however the high surface roughness of the FTO 

nanocomposites turns out to be a more limiting issue affecting the device performances. For 

example, the high roughness of the FTO nanocomposites has mostly likely caused local 

shunting in the organic solar cells which finally led to the device failure.  

Although the ultrasonication of the nanoparticle suspension before the spin coating was 

intended to break the large nanoparticle agglomerates, it turned out not sufficiently effective 

in reducing the density of large nanoparticle agglomerates. Therefore in future work, it is of 

primary importance to employ new approaches to homogenize the distribution of the 

nanoparticle agglomerates. Possible directions include: 

1) Replacing spin coating by spraying, which could result in different distribution of 

nanoparticle agglomerates.  

2) Homogenize the distribution of nanoparticle agglomerates in the suspension using 

chemical additives for instance. 

3) Alternatively, to prevent local short-circuiting or shunting, one can consider depositing a 

protective layer on top of the rough surface of FTO nanocomposites. As a matter of fact, a 

series of ZnO-FTO nanocomposites coated with a thin (~40 nm) ZnO film by spatial atomic 

layer deposition (SALD) have been prepared and sent to Dr. Giray Kartopu et al. from 

Glyndŵr University, and the test on the ultrathin CdTe devices is to be scheduled in the near 

future. 

Our understanding of the energetic alignment of the interface between FTO and blocking 

TiO2 (b-TiO2) layer (an interface commonly employed in thin film solar cells as DSSCs) has 

been advanced. Blocking TiO2 layers deposited on FTO substrates by SolGel method (one of 

the most commonly employed techniques) are seen to crystallize consistently into mixed 

rutile and anatase polymorphs. Therefore the interface of FTO/b-TiO2 is inhomogeneous with 

FTO partly in contact with anatase polymorph and partly with rutile polymorph. However, 

influenced by the rutile structure of the FTO substrate, thin b-TiO2 layers are dominated by 

rutile polymorph. Consequently, the (average) valence band offset at the interface of FTO/b-

TiO2 is expected to approach 0.8 eV which is the reported valence band offset between FTO 

and pure rutile TiO2 (S. Li et al, Phys. Status Solidi RRL – Rapid Res. Lett. 2014, 8 (6), 571–
576). It is confirmed by experimental observation in this study where an ultra-thin b-TiO2 
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layer deposited on FTO was probed by X-ray photoelectron spectroscopy, upon which a 0.7 

eV valence band offset at the FTO/b-TiO2 interface was observed. In order to probe the 

complete interface of FTO/b-TiO2 layer with higher precision, future efforts should be 

directed to develop in-situ techniques to deposit b-TiO2 layers with cleaner surfaces. 

 

 


