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Introduction

General context

Control system theory has first been built for analog controllers. In this context, it was
relevant to use a continuous framework to design a control feedback function. Nowadays,
digital technologies are supplanting analog solutions due to several advantages (cost, noise
resistance, integration...). ZOH1 maintains a control signal constant between periodic
triggers given by a digital clock. Periodic controllers are also referred as time-triggered
because the update only depends on time. A continuous time system is usually discretized
in time domain and the synthesis of a digital controller is done through discrete time
framework. Many methods have been developed to design a controller for discrete systems
(see for instance [Ogata, 1987]). Nevertheless, a discretized model is not always available
for nonlinear continuous systems. A typical procedure consists in designing the controller
in the continuous time domain, and use a discrete time version with a sufficiently small
sampling period. However, digital components can be incompatible with too high sampling
rate, then desirable closed-loop performances can not be achieved. Another disadvantage
of discrete-time control is the amount of communication required to perform closed-loop
control in case of networked control systems (NCS), for example when the controller and/or
the actuator are connected through a network. In that case, periodic control framework
requires a constant communication bandwidth to update the informations periodically.
One solution to decrease the bandwidth consumption is to increase the sampling period,
however performances can decrease and a bottleneck is facing when the sampling period
is too high for the dynamics of the system.

Instead of sampling a signal equidistantly in time, it is possible to sample depending on
the signal’s level. Such a concept is close to the concept of Riemann and Lebesgues integral
and was discussed in [Åström and Bernhardsson, 2002; Marchand, 2008]. A comparison of
a continuous signal sampled with these two different approaches is depicted in Figure 1.
The latter one can result in a moderation of update of the control signal to achieve the same
performance as the time-triggered system [Åström and Bernhardsson, 2002]. Event-based
(or event-triggered) control aims to improve the periodic sampling scheme by proposing a
method in which updates are triggered by an event function. With classical time-triggered
approaches, the control law is computed and the control signal is updated at a fixed
sampling period whether this is really necessary or not. Conversely, event-based procedures
do not require these periodic computations and updates, but call for resources only when
they are strictly necessary. In other words, time-triggered controllers decide how to actuate
periodically, while event-triggered controllers decide not only how but also when to actuate.
As a consequence, event-based control refers to a set of two functions:

1Zero Order Hold
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time time

time-triggered sampling event-triggered sampling

Figure 1: Comparison of sampling mechanisms. Dotted line shows the continuous signal,
the time-triggered and the event-triggered sampled signals are represented in solid red and
blue lines respectively.

1. A feedback function

2. An event function which will indicate if the control signal needs to be updated.

However, implementing a continuous event function and feedback is difficult as most of
electronic nowadays relies on digital component. One solution is to check the event con-
dition periodically, this has been called PETC2 in [Heemels et al., 2008]. In this case, the
sensors are sampled at every discrete instants ti = i × Ts, with i ∈ N and Ts ∈ R+ the
sampling period, and a criterion is evaluated to check if the controller will be also up-
dated. Approaches which consider a continuous event function will be referred as CETC3.
Figure 2 depicts several usual controller forms.

Thesis contributions

The main theoretical results of the thesis are the following:

• The first contribution concerns the extension of an event-based controller proposed
in [Marchand et al., 2013] to discrete time linear systems. This contribution has been
published in [Boisseau et al., 2015].

• The second contribution is to provide a theoretical framework to design a novel and
innovative event-switched controller for discrete linear systems with disturbances.
This contribution has been published in [Boisseau et al., 2016].

2Periodic Event-Triggered Controller
3Continuous Event-Triggered Controller
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Figure 2: Different schemes of control. Dotted lines show a trigger signal.
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The main practical results of the thesis are the following:

• Discrete event-based control of a gyroscope actuator;

• Event-switched approach for human control of quadcopter in a constrained environ-
ment.

Publications

The following contributions have been published during this thesis:

• International conferences

– “Event-based speed control on a sensor-less miniature thruster" T. Rahari-
jaona, L. Dola, B. Boisseau, JJ. Martinez-Molina, N. Marchand, F. Ruffier.
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), July 2014, Besançon, France.

– “Event-based LQR with integral action" S. Durand, B. Boisseau, JJ. Martinez-
Molina, N. Marchand, T. Raharijaona. IEEE conference on Emerging Technol-
ogy and Factory Automation (ETFA), September 2014, Barcelona, Spain.

– “Attitude control of a gyroscope actuator using event-based discrete-time ap-
proach" B. Boisseau, S. Durand, JJ. Martinez-Molina, T. Raharijaona, N. Marc-
hand. International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP), June 2015, Krakow, Poland. Best paper award

• Journal paper

– “Event-switched control design with guaranteed performances" B. Boisseau, JJ.
Martinez-Molina, T. Raharijaona, S. Durand, N. Marchand. International Jour-
nal of Robust and Nonlinear Control. Accepted in September 2016 - To appear

Thesis outline

This thesis is organized in four main parts. The first chapter is dedicated to introduce
the concepts used in the manuscript. The second chapter establishes the context of the
present work in event-based control through an analysis of the literature. The third chapter
details the design of a discrete event-based controller and its implementation on a real-
time system. The fourth chapter introduces event-switched approach, which contains the
main theoretical result of this thesis. Chapter five presents several quadcopters used as
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experimental platforms which have been developed during my PhD. Chapter six shows the
application of the event-switched approach for collision avoidance between an aerial vehicle
and a static environment. Finally chapter seven draws the conclusions and presents further
ideas for future work.





Chapter 1

Background and definitions

Nomenclature

R denotes the set of real numbers while R+ denotes the set of positive real numbers. N
denotes the set of positive integers, and Z is used for the set of integers. AT ∈ Rm×n

denotes the transpose of the matrix A ∈ Rn×m. The absolute value of x is denoted |x|.
ẋ denotes the time derivative of x. The union of sets is denoted ∪, and ∩ denotes the
intersection of sets. The empty set is denoted ∅.

Definitions

Definition 1.1
A set S is said to be convex if by taking any two points in S, the obtained line belongs to
S. Figure 1.1 depicts a non-convex and a convex 2-dimensional sets. This condition can
be expressed by:

αx1 + (1− α)x2 ∈ S, ∀α ∈ [0, 1] and ∀x1, x2 ∈ S

Definition 1.2
The convex hull of a set S, denoted by conv(S), is the smallest convex set that contains S.

Definition 1.3
The Minkowski sum of A ⊂ Rn and B ⊂ Rn, which will be denoted A ⊕ B, is defined as
follows: A⊕ B = {a+ b | a ∈ A, b ∈ B}.

Definition 1.4
The relative complement of A ⊂ Rn in B ⊂ Rn, which will be denoted B\A, is defined
as follows: B\A = {x ∈ B|x /∈ A}. Obviously (A ∪ B) \A = B and (A ∩ B) \A =
(A ∩ B) \B = ∅.

7
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non-convex set convex set

Figure 1.1: Non-convex and Convex 2-dimensional sets.

Definition 1.5
The p-norm of a vector x ∈ Rn is defined as:

‖x‖p =
(

n∑
i=1
|xi|p

) 1
p

The 2-norm is also called the euclidean norm and will be denoted ‖x‖ =
√
xTx.

Stability definitions

The aim of this section is to briefly introduce the concept of stability which is widely spread
in control systems theory and will be used in the next chapters. Details and proofs are
not provided here but can be found in standard books (e.g. [Khalil, 2002], [Astrom and
Murray, 2008]).

Consider the following system:

ẋ(t) = f(x(t), u(t)) (1.1)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm represents the control input,
and f : D 7→ Rn represents a locally Lipschitz function, with D ⊆ Rn.

An autonomous system will denote any system without input:

ẋ(t) = f(x(t)) (1.2)

where x(t) ∈ Rn denotes the state of the system, and f : D 7→ Rn represents a locally
Lipschitz function, with D ⊆ Rn.
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Equilibrium

Definition 1.6
xe is an equilibrium point for continuous time autonomous system (1.2) if f(xe) = 0.

The concept of stability of an equilibrium point xe of system (1.2) determines if solutions
nearby xe remain close, get closer or move further away.

If an equilibrium point xe exists, it is always possible to perform a coordinate change
x̃(t) = x(t)−xe so that the origin is an equilibrium for the new system. Therefore, stability
of the origin will be discussed in the sequel without loss of generality.

Lyapunov stability

Definition 1.7
The equilibrium point xe = 0 is a stable equilibrium point for system (1.2) if for each
ε > 0, there exist δ > 0 such that:

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ 0

Theorem 1.1 (From [Khalil, 2002])
If x = 0 is an equilibrium point, Lyapunov theory states that the origin is stable for sys-
tem (1.2) if a continuously differentiable function V : D 7→ R, with 0 ∈ D ⊆ Rn exists such
that all the following conditions are satisfied:

V (0) = 0
V (x) > 0, ∀x ∈ (D\{0})
V̇ (x) ≤ 0, ∀x ∈ D

V can be seen as an energy function of the system, if the energy is always decreasing,
then the origin can be considered as stable.

In the sequel, a system will be called stable if the origin is a stable equilibrium point
for this system.

Asymptotic stability

The equilibrium point x = 0 of system (1.2) is said to be asymptotically stable if for any
initial condition near the origin, the solution of the system will converge exactly to the
origin.
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Figure 1.2: Stability illustration.

Theorem 1.2 (From [Khalil, 2002])
The equilibrium point x = 0 is asymptotically stable for (1.2) if a continuously differentiable
function V : D 7→ R, with 0 ∈ D ⊆ Rn exists such that all the conditions of Theorem 1.1
are satisfied, and moreover:

V̇ (x) < 0, ∀x ∈ (D\{0})

Lyapunov’s theory has been first designed to handle the problem of stability regarding
motion (see [Lyapunov, 1992] for an english translation). The concept of stability is more
intuitive for mechanical systems, as depicted in Figure 1.2 for a marble on a surface. If the
friction is not considered, then the stable equilibrium is not asymptotically stable, however
if the friction is taken into account, the equilibrium point is asymptotically stable.

Global asymptotic stability

When an equilibrium point xe is asymptotically stable for system (1.2), the domain (or
basin) of attraction defines all the initial conditions which will make solutions of sys-
tem (1.2) converge to xe. An equilibrium point is said globally asymptotically stable for
system (1.2) if for any initial condition in Rn, the solution will converge to xe. In other
words, when the basin of attraction is Rn.

Theorem 1.3 (From [Khalil, 2002])
The equilibrium point x = 0 is said globally asymptotically stable for system (1.2) if a
continuously differentiable function V : Rn 7→ R exists such that the following conditions



Background and definitions 11

are satisfied:

V (0) = 0
V (x) > 0, ∀x 6= 0
‖x‖ → ∞ =⇒ V (x)→∞
V̇ (x) ≤ 0, ∀x 6= 0

The stable equilibrium point in Figure 1.2 is globally asymptotically stable if there is
friction.

Linear systems

Continuous LTI1: Given an initial condition x(0), a continuous LTI system is fully
described by the following state space representation:

ẋ = Ax(t) +Bu(t)
y = Cx(t) +Du(t)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rq×m, and where x(t) ∈ Rn is the state vector,
u(t) ∈ Rm is the input vector, and y ∈ Rq is the output vector. This system will be referred
as an autonomous system if B = 0 and D = 0.

The origin of an autonomous continuous LTI system ẋ = Ax(t) is globally asymptot-
ically stable if and only if the matrix A is Hurwitz, meaning that all the eigenvalues of
A have a strictly negative real part. Moreover, according to Lyapunov’s theory, an au-
tonomous continuous LTI system is stable if and only if there exists a strictly positive
definite matrix P such that: ATP + PA < 0. A Lyapunov function of the system is
desscribed by: V = xTPx.

Discrete LTI: Given an initial condition x0, a discrete LTI system is fully described
by the following state space representation:

xk+1 = Axk +Buk

yk = Cxk +Duk

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rq×m, and where xk ∈ Rn is the state vector,
uk ∈ Rm is the input vector, and yk ∈ Rq is the output vector. This system will be referred
as an autonomous system if B = 0 and D = 0.

The origin of an autonomous discrete LTI system is globally asymptotically stable if
and only if all the eigenvalues of A are strictly contained in the unit circle. Moreover, an

1Linear Time Invariant
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autonomous discrete LTI system is stable if there exists a strictly positive definite matrix
P such that: ATPA− P < 0.

Discrete disturbed LTI: We consider now a discrete LTI system subject to a exoge-
nous unknown disturbance wk ∈ Rv:

xk+1 = Axk + Ewk

yk = Cxk

with E ∈ Rn×v. Obviously this system does not converge to the origin if wk is not equal
to 0. Rather than studying the convergence to a point, convergence to a set will be of
interest.

Definition 1.8 (From [Blanchini, 1999])
A set S ⊆ Rn is said to be a RPI2 set for a discrete time autonomous system xk+1 =
f(xk, wk), if for any initial condition x0 in S and any disturbances wk in W, xk will belong
to S for all instants k ∈ N+.

Definition 1.9 (From [Blanchini, 1994])
A discrete time autonomous system xk+1 = f(xk, wk) is said to be Uniformly Ultimately
Bounded (UB) to the set S ⊆ Rn if for all initial conditions x0 ∈ Rn and any disturbances
wk in W, there exists a positive instant T (x0) such that xk remains in S for all k ≥ T (x0).

Definition 1.10 (From [Rakovic et al., 2005])
A set S ⊆ Rn is said to be the mRPI3 set for a discrete time autonomous system xk+1 =
f(xk, wk) if S is a RPI set for this system, and if S is included in all possible closed RPI
sets for this system.

2Robustly Positively Invariant
3minimal Robustly Positively Invariant
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This chapter aims to determine the current challenges in event-based control and the
proposed solutions by analyzing the literature. Designing an event-based control loop is
often done in two consecutive steps:

• Find a feedback function which makes the system stable.

• Compute an event function which guarantees the performances of the event-triggered
system.

Methods to find a state feedback gain for the system are well-known and will not be detailed
here.

2.1 Event-based PID controllers

For SISO1 systems, PID2 controllers are widespread in industry. The implementation is
well-known, the tuning is intuitive and some systematic methods can be performed (see

1Single Input Single Output
2Proportional Integral Derivative

13
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[Ziegler and Nichols, 1942] for a well-known tuning rule or [Skogestad, 2001] for a more
recent one). In [Årzén, 1999], an event-based PID controller and simulation results are
presented. Each time the difference between the current error (between the output and
a given reference) and the error at the last event reaches a certain threshold, the control
signal is computed and updated. The comparison between error and threshold is checked
in a PETC fashion, which makes it more realistic for implementation purpose. However
the integral part can lead to important overshoot. To overcome this issue, an exponential
forgetting factor is proposed in [Durand and Marchand, 2009]. Simulations show that it is
possible to stabilize a system with less update compared to a time-triggered PID. Even if
it is not possible to achieve asymptotic stability, [Sandee et al., 2005] shows the practical
stability of the event-based PID. In [Sánchez et al., 2009] some other event conditions have
been investigated and compared on a real-time system, the comparison has been conducted
by using some performances indicators which will be introduced and used in the sequel.

However, for high order or MIMO3 systems, this approach is hardly extensible. Several
techniques are presented in the sequel, which can be extended to a more general class of
systems.

2.2 Lyapunov derived techniques

2.2.1 Lyapunov sampling

To guarantee the stability, the event function should trigger an event when the performance
of the system is not satisfactory. One way to quantify the performances is to consider a
Lyapunov function of the system. A Lyapunov function can be seen as a function of
the energy of the system. Hence its value should decrease over time for a stable system.
The method called Lyapunov sampling, ensures that a Lyapunov function of the event-
triggered system is decreasing, and so the stability of the system. In [Velasco et al., 2009]
it is proposed to trigger an event (and so to enforce an update of the control signal) based
on some level crossing of the state x with some contour curves build upon a Lyapunov
function V (x). Figure 2.1 depicts this mechanism for a 2 dimensional system. Each time
the trajectory of the state x crosses a sampling curve from the outside to the inside, an
event is triggered and the control signal is updated. Usually the Lyapunov function is
described by a quadratic function of the state, then the contour curves are ellispoids of
constant energy in the phase plan. The contour curves are built upon the relation:

V (xi+1) = ηV (xi) (2.1)

with i ∈ N, 0 < η < 1, the subscript denotes the discrete event update instant.
3Multi Input Multi Output
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Figure 2.1: Lyapunov sampling principle for a second order system. Everytime the state’s
trajectory is crossing a sampling curve, a control update is triggered.

The value of η has to be calculated in order to guarantee to never stop triggering
events. The event-based system is ensured to be stable only if an infinite number of events
occurs, which means that the Lyapunov function should always be decreasing. However,
calculating a lower bound on the η value requires heavy offline computation, because a non-
convex optimization has to be solved even for linear systems. An extension of this method
has been proposed in [Durand et al., 2011]. It provides an event condition which does not
require offline computation, the event condition is constructed and checked online. The
main difference with the work presented in [Velasco et al., 2009] is that the parameter η
in (2.1) is not fixed anymore but is adapted over time. Practical experimentation on a DC
servo-motor leads to a reduction of about 90% of samples compared to the time-triggered
implementation while achieving almost the same performances.

However, the main issue is that the time between two events keeps reducing as the state
converges to the origin. A challenge when designing a CETC is to ensure that the resulting
system is stable but also implementable. The minimum time between two events has to be
bounded. This value is also called MSI4. If this value is not bounded, Zeno phenomenon is
not guaranteed to be avoided. Zeno phenomenon consists in an accumulation of an infinite
number of events in a finite time, therefore the implementation on a digital controller can
not be done because the sampling rate is limited. If a strictly positive lower bound on the
MSI exists for the event-triggered system, then it is possible to check the event condition
periodically. Stability is necessarily ensured if the sampling period is lower than the MSI
time bound.

4Minimum Sampling Interval
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2.2.2 Lyapunov derivative approach

In [Marchand et al., 2013], a CETC mechanism is proposed for nonlinear systems affine on
the control of the form:

ẋ = f(x) + g(x)u
A stabilizing controller u = k(x) is found by extension of a seminal method proposed
in [Sontag, 1989]. Given a Lyapunov function V , the event function is built to compare
the derivative of the Lyapunov function if the control is held constant versus if the control
is updated. An event is triggered as soon as ˙̄V ≤ σV̇ , where V̄ denotes the value of the
Lyapunov function if the control is kept constant, and 0 < σ < 1 is a degree of freedom
to tune the performances of the resulting event-based system. The event function forces
an update whereas holding the control value does not guarantee a sufficient rate of decay
of the Lyapunov function. The event-triggered system is proved to have a lower bounded
MSI for a set of initial conditions. Moreover the control is ensured to be continuous at
the origin. Time delay for this class of systems has been considered in [Durand et al.,
2014b]. An extension for linear systems is proposed in [Durand et al., 2014a] where the
strategy is tested on a real-time platform, and where the continuous feedback is designed
using optimal control theory.

Chapter 3 proposes an extension of this method for discrete time linear systems.

2.3 Input-to-State stability approach

In [Tabuada, 2007], a CETC scheme is proposed for nonlinear systems of the form:

ẋ = f(x, u) (2.2)

where x ∈ Rn represents the state of the system, u ∈ Rm represents the control input, and
a function f : Rn × Rm 7→ Rn.

To construct a stable event mechanism for the nonlinear system (2.2), a feedback con-
troller u = k(x) which renders the closed-loop system ISS5 is needed. Moreover, the control
feedback function k is required to be Lipschitz at the origin. Unlike the above method in
Section 2.2.2, the event function does not depend only on the current value of the state,
but also on its past value. More specifically, an update of the controller is triggered based
on the value of the euclidean norm of the error e between the actual state and its value at
the last event. In other words, an event is triggered when the state has evolved “too much”
since the last actuation. The event condition is built such that the resulting event-triggered
system is ISS. With this approach, it is also possible to consider a (small constant) delay
in the actuation chain. The resulting event-based system is ensured to have a lower bound

5Input to State Stable
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on the inter event time for any bounded initial condition, which makes this system immune
to Zeno phenomenon.

2.4 Ultimate bound approach

In [Heemels et al., 2008], the PETC mechanism for perturbed linear systems is introduced
as well as the notion of uniform and non-uniform mechanisms. In the uniform mechanism,
the event can only be triggered periodically, whereas in the non-uniform case, the event is
triggered as soon as the event-condition is satisfied and a minimum time has passed since
the last event. The latter is like CETC with a minimum time interval between events.
Note that Zeno phenomenon can not happen in both cases because a MSI between events
is considered in the design. The event condition is described in a geometric form, an event
is triggered if the state does not belong to a given set. The non-uniform mechanism is
supposed to detect the exact crossing of the state with the boundary of a set. Stability
analysis is done using a PWL6 and an impulsive model of the continuous plant along with
the event-based controller. The resulting event-based system is shown to be ultimately
bounded in a closed set. Another method based on ultimate bound is also proposed
in [Grüne et al., 2010], where an event condition based on the set membership of the state
ensures that the resulting event-based system’s state will stay in a given set.

Chapter 4 presents a novel method based on RPI set and ultimate bound to derive an
event condition for discrete time perturbed LTI systems which ensure the same nominal
performances as a state-feedback controller (in term of mRPI set). The main difference
with the existing event-based control method, is that the control signal is not kept constant
between events but is rather switched to the equilibrium value (which is 0 for a stabilization
around the origin). It can be seen as a car going in a straight line, if the vehicle goes straight
enough (e.g. there is no disturbances), there is no need to steer the wheels, but if the car
moves away from the trajectory, the wheels will be controlled to bring back the vehicle to
the trajectory.

2.5 Self-triggering

All the aforementioned methods require to check an event function periodically or contin-
uously. With self-triggered control, the next update is scheduled only depending on the
actual state value and the model knowledge. In [Velasco et al., 2009], by extension of
Lyapunov sampling presented in Section 2.2.1, a trigger mechanism is built by approxi-
mating the time needed for the state to reach the next sampling curve. Another method

6PieceWise Linear
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of self-triggered control for polynomial and state-dependent homogeneous systems based
on ISS property is detailed in [Anta and Tabuada, 2010].
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Discrete time event-based controller
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In this chapter it is proposed to design a periodic event-triggered control for a linear
discrete time system. This work was published in [Boisseau et al., 2015]. The aim is to
ensure the stability of the discrete LTI system while updating the control less often than
with time-triggered control. Event mechanism designed here is an extension of the work
in [Durand et al., 2014a] for the discrete-time domain. In [Durand et al., 2014a] an event-
mechanism is designed to be checked continuously, while the implementation is periodic.
The hypothesis behind is that the sampling period of the system is shorter than the MSI of
the event-triggered system. Conversely, it is proposed here to consider the periodic nature
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of the controller by designing a discrete event-function. Simulation results will be shown
and an implementation on a real-time system will be performed and discussed as well.

Let consider a discrete LTI system:

xk+1 = Axk +Buk (3.1)

where k ∈ N, x ∈ Rn denotes the state, u ∈ Rm the control input, A ∈ Rn×n, and
B ∈ Rn×m. The pair (A,B) is assumed to be controllable, and the state to be fully
measured, the second assumption will be relaxed later.

We aim to design an event-based feedback which stabilizes the system while it does not
necessarily need to update the control signal every sampling instant. The work presented
in [Marchand et al., 2013; Durand et al., 2014a] will be extended to design a feedback law
and an event-function for the discrete system (3.1). By designing an event-based control
for a discrete time system, we do not have to prove that a lower bound exist for the MSI
(introduced in the previous chapter), as the event-function is not checked continuously.

First we will design a discrete time feedback law which stabilizes the system using an
optimal controller in the sense that it minimizes a LQ1 cost function. LQ optimal control
focuses on stabilizing a system and minimizing a cost function J expressed by:

J =
N∑
k=0

(
xk

TQxk + uk
TRuk

)
(3.2)

The first term in (3.2) corresponds to the energy of the states xk, while the second term
corresponds to the energy of the control uk. The term N ∈ N refers to the horizon.
Q ∈ Rn×n and R ∈ Rm×m are tunable positive definite matrices to weight the importance
of the minimization of the states or the control energy cost. The control signal stabilizing
the system and minimizing J for an infinite horizon is defined as follows:

uk = −Kxk (3.3)

with K =
(
R +BTPB

)−1
BTPA (3.4)

where P is a solution of the DARE2:

P = Q+ AT
(
P − PB

(
R +BTPB

)−1
BTP

)
A (3.5)

System (3.1) with control input (3.3) becomes:

xk+1 = (A−BK)xk (3.6)
1Linear Quadratic
2Discrete Algebraic Riccati Equation
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3.1 Event function design

The event-based control signal is defined as follows:

uk =
−Kxk if ξ(x?k) ≥ 0
uk−1 otherwise

(3.7)

The event-function ξ : Rn 7→ R will be constructed to select the most appropriate update
behavior. The event-triggered system consists in solution of (3.1) given controller (3.7),
the trajectory of the state is described by:

x?k+1 =
(A−BK)x?k if ξ(x?k) ≥ 0
Ax?k −BKx?i otherwise

(3.8)

where x? ∈ Rn denotes the state of the event-triggered system. The positive integer
i ∈ {0, k − 1} denotes the value of k at the last event.

To assess if a control signal update is necessary, a quantitative comparison between both
update policies will be performed. The convergence speed of each will be evaluated. P
in (3.5) defines a Lyapunov function V (xk) = xTkPxk for system (3.6). The event-function
ξ will be designed such that V is a Lyapunov function for event-based system (3.8).

At each time step V (x?k) is evaluated. We forecast the decrease of the Lyapunov function
(i.e. the difference between two successive instants) if the control signal is held (∆H(x?k))
or if an event occurs and the control signal is updated (∆E(x?k)) by using model (3.8):

∆H(x?k) = (Ax?k −BKx?i )T P (Ax?k −BKx?i )− V (x?k) (3.9)
∆E(x?k) = ((A−BK)x?k)

T P ((A−BK)x?k)− V (x?k) (3.10)

Then, an event is triggered and the control signal updated as soon as:

ξ(x?k) ≥ 0 (3.11)
with ξ(x?k) = ∆H(x?k)− σ ·∆E(x?k) (3.12)

where 0 < σ ≤ 1 is a degree of freedom to tune the performances of the event-based system.

We want to prove that V is a Lyapunov function for system (3.8). Let consider the
difference of V between two successive instants, expressed by:

∆V (x?k) = V (Ax?k +Buk)− V (x?k) =
∆E(x?k) if ξ(x?k) ≥ 0

∆H(x?k) otherwise
(3.13)

Two cases arise from (3.13):
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• If the control is updated, then ∆V (x?k) = ∆E(x?k) is strictly negative, as V is a
Lyapunov function for system (3.6).

• If the control is not updated, then ∆V (x?k) = ∆H(x?k). And because ξ(x?k) < 0,
∆H(x?k) < σ∆E(x?k) < 0.

It results that ∆V (x?k) is upper bounded by σ∆E(x?k). As ∆E(x?k) is always negative and σ
is strictly positive, the value of V (x?k) is then monotonically decreasing along the trajectory
of x?, meaning that V is a Lyapunov function for system (3.8). Moreover if σ = 1, the
upper bound for ∆V (x?k) will be ∆E(x?k), meaning that the control is kept constant only
if it results in a better convergence of the Lyapunov function V .

3.2 A simple example

Let consider a double integrator with a sampling time Ts = 10−2 s. The discrete time
model is given by discrete time system (3.1) with:

A =
[
1 0.01
0 1

]
B =

[
0

0.01

]

Using the weighting matrices:

Q = diag
([

100 1
])

and R = 0.01 (3.14)

and solving the DARE (3.5), leads to the following state-feedback gain:

K =
[
30.29 8.35

]
(3.15)

This state-feedback can be seen as a Proportional Derivative (PD) controller as the second
state corresponds to the time-derivative of the first one.

Given the state feedback K, three updates policy will be compared:

1. A time-triggered policy which consists in updating the controller periodically at the
sampling time Ts.

2. A policy which trigger an update as soon as the error is changing too fast.

3. The policy described in Section 3.1.
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The second policy will be called SOD3 and corresponds to the mechanism described
in [Årzén, 1999]. Given the current error ek, the error at the last update ei, and a threshold
µ, an update is triggered as soon as |ek − ei| > µ.

The third policy will be tested for several values of σ in order to compare the different
results.

Initial state is set to x0 =
[
1 0

]T
for all the simulations.

3.2.1 Performance indexes

Several performance indicators introduced in [Sánchez et al., 2009] will be used:

• The number (Nb) of of updates required to perform the test bench.

• The IAE4 index, which gives information about the reference tracking performances,
and is defined as follows:

IAE =
n∑
k=0

∣∣∣ek∣∣∣ · Ts (3.16)

• By analogy, the IAU5 index gives information about the control effort, and is defined
as follows:

IAU =
n∑
k=0

∣∣∣uk∣∣∣ · Ts (3.17)

3.2.2 Simulation results

Figure 3.1 shows the simulation results for the different updating mechanisms. During this
simulation σ and µ have been set to 0.2 and 0.01 respectively. Figure 3.2 shows a zoom
between 1.5 and 3.5s.

This simulation shows that while the presented approach needs less updates, it also
performs better in term of convergence speed to the reference. The SOD policy does not
permit to converge exactly but leads to a periodic oscillation around the reference. Ta-
ble 3.3 shows performance indicators obtained after the simulation. The proposed approach
obtains a smaller IAE value at the price of an increased IAU. The number of updates is se-
riously limited while achieving better performances in term of energy contained in the error
signal. The SOD approach has the greatest IAE index, certainly due to the constant oscil-
lations around the equilibrium. The time-triggered mechanism obtains the minimal IAU

3Send-On-Delta
4Integral Absolute Error
5Integral Absolute control signal
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Nb IAE IAU
Time-triggered 1000 0.445 7.56
Event-based
σ = 0.2 43 0.327 11.87
σ = 0.9 66 0.364 9.998
σ = 1 377 0.381 9.102
Send on Delta
µ = 1 · 10−2 139 0.499 17.06
µ = 1 · 10−3 218 0.448 8.32

Figure 3.3: Performance indexes for different update mechanisms.

value which means that the periodically update policy consumes less energy to stabilize
the system.

Even if simulation results are very encouraging, some limitations were not considered:

• The value of the control signal is changing very fast with the proposed policy, however
an actuator would have a limited bandwidth.

• Bounds on the control signal have not been considered, however due to physical
limitations, bounds on the control signal can not be neglected.

• Disturbances and/or model uncertainties would certainly decrease the performances
of the proposed policy.

The proposed method will be implemented and tested on a MIMO real-time system in
the sequel.

3.3 Implementation on a real-time system

The experimental platform in the present work is depicted in Figure 3.4. This is a gyro-
scope M750p from ECP6 systems, where classical LQ optimal control has been previously
investigated in [Martinez and Khennouf, 2011].

6Educational Control Products
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Body A
Body B
Body C
Body D

Encoder 1

Encoder 2

Motor 1

Motor 2

a) b)

Figure 3.4: a) ECP gyroscope (model M750p), its actuators and sensors
b) CAD model of the gyroscope and illustration of the relative angles

3.3.1 Description of the system

The gyroscope consists of 4 (rigid) rotating masses. Each of the 4 rigid bodies has an
angular position θp relative to its rotating gimbal axis p, with p = {1, 2, 3, 4}. One can
refer to Figure 3.4 for a representation of these angles. More precisely, a high inertia brass
rotor (body D) is suspended in an assembly with four angular degrees of freedom. The
rotor spin torque is provided by a DC motor (motor 1) whose angular position is defined
as θ1. The first transverse gimbal assembly (body C) is driven by another motor (motor
2) to effect motion about axis 2. The relative position between bodies C and B is noted
as θ2. The subsequent gimbal assembly, body B, rotates with respect to body A around
axis 3. The relative angle between body B and A (θ3) is measured by encoder 1. Similarly,
body A rotates around a vertical axes. The relative angle (θ4) is measured by encoder 2.
Two manual brakes may be used to lock the relative position between either bodies A and
B or body A and the base frame, in order to reduce the system degrees of freedom.

3.3.2 Angular positions and torques

The gyroscope is assumed to be symmetric and the center of all rigid bodies (A, B, C and
D) lies at the center of body D (the rotor). As a result, only the rotational dynamics need
to be taken into account. The following norms are applied hereafter:

• The angular position θ1 of the rotor (body D) is not of importance: only the angular
velocity ω1 = θ̇1 is considered.
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KA 0.067 kg.m2

IB 0.012 kg.m2

JB 0.018 kg.m2

KB 0.030 kg.m2

IC 0.0092 kg.m2

JC 0.023 kg.m2

KC 0.022 kg.m2

ID 0.015 kg.m2

JD 0.027 kg.m2

Table 3.1: Mechanical constants of the gyroscope actuator.

• The angular position θ2 of the rotor drum (body C) is set to 0 if the rotor drum
(body C) is perpendicular to the inner gimbal (body B).

• The angular position θ3 of the inner gimbal (body B) is 0 if the inner gimbal (body
B) is perpendicular to the outer gimbal (body A).

• Since the outer gimbal (body A) is able to rotate freely and the gyroscope is assumed
to be symmetric, θ4 can be reset to θ4 = 0 at any angular position of the outer gimbal
(body A).

The angular position of the 4 rigid bodies in the gyroscope can be controlled with the 2
internal torques T1 and T2, provided by DC motors. T1 rotates the D body around its axis
(flying wheel driver) while T2 rotates the C body around the second axis (longitudinal).

3.3.3 Dynamic model

The gyroscope is a complex nonlinear system. However, for a constant angular velocity
ω1, it can be modelled as a multivariable linear system. Thus, considering small variations
around the operating point defined by the angular speed ω1 = Ω and the angles θp = 0 for
p = 2 to 4, gives:

ω̇2 = JDΩ
IC + ID

ω4 + T2

IC + ID

ω̇3 = − T1

JB + JC

ω̇4 = − JDΩ
ID +KA +KB +KC

ω2

(3.18)

The numerical values of the inertia of the four bodies are presented in Table 3.1. The
(fixed) angular velocity for ω1 is Ω = 42 rad/s.
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The actuators are limited to:

|T1| ≤ 0.2Nm
|T2| ≤ 3.0Nm (3.19)

and the angles are limited to:

|θp| ≤ 20◦ for p = 2 to 4 (3.20)

A state-space representation of system (3.18) in the continuous-time domain is obtained
in the form:

ẋ = Acx(t) +Bcu(t)
y(t) = Cx(t) (3.21)

where state, input, disturbance and output vectors are respectively defined by:

x :=
(
θ3 θ4 ω2 ω3 ω4

)T
u :=

(
T1 T2

)T
y :=

(
θ3 θ4

)T (3.22)

and where:

Ac =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 JDΩ

IC+ID

0 0 0 0 0
0 0 − JDΩ

ID+KA+KB+KC
0 0

 ,

Bc =


0 0
0 0
0 1

IC+ID

− 1
JB+JC

0
0 0

 , C =
[
1 0 0 0 0
0 1 0 0 0

]
(3.23)

The discretization of system (3.23) with sampling time Ts is computed as follows:

A = eAcTs ,
B =

(∫ Ts
0 eAcτdτ

)
Bc

(3.24)

The resulting discrete-time state space representation is given by:

xk+1 = Axk +B(uk + dk), (3.25)
yk = Cxk with k ∈ N (3.26)

where the subscript k in xk denotes the kth sample of the state: xk = x(k · Ts).
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3.3.4 Time-triggered control design

Let us define the cost function:

J =
∞∑
k=0

(
xTkQxk + uTkRuk

)
(3.27)

Q = diag
([

10 70 1 0 1
])

R =
[
3 0
0 0.02

]
(3.28)

By solving the DARE (3.5), a stabilizing state-feedback gain K is computed such that the
cost function J is minimized:

K =
[
−1.66 0 0 −0.37 0

0 −8.77 1.28 0 −0.85

]
(3.29)

The system (3.25) with the control uk = −Kxk is asymptotically stable for all k ∈ N.

3.3.5 Introducing a reference signal

We want to stabilize the output around a slow varying reference rk =
[
θ3 θ4

]T
. At the

steady state, the state will be xss = Nxrk and the control will be uss = Nurk.

xss = Axss +Buss (3.30)
Nxrk = ANxrk +BNurk (3.31)
yss = rk = CNxrk (3.32)

Nx and Nu can be computed by solving:[
A− I B
C 0

]
·
[
Nx

Nu

]
=
[
0
I

]
(3.33)

In this example Nx = [1 1 0 0 0]T . The DC gain is infinite for both of the control
input, in consequence Nu = 0.

Let define the tracking error between the state and the reference ek = xk − xss. By
using the control:

uk = −Kek (3.34)

the dynamics of e can be expressed as:

ek+1 = xk+1 −Nxrk+1 = Axk +Buk −Nxrk+1 (3.35)
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because of the slow varying hypothesis of the reference:
ek+1 = Axk +Buk −Nxrk (3.36)
ek+1 = A(ek + xss)−BKek − xss (3.37)
ek+1 = (A−BK)ek + (A− I) · xss (3.38)

From (3.30) and since Nu = 0: xss = Axss, therefore:
ek+1 = (A−BK)ek (3.39)

If the eigenvalues of A − BK are located inside the unit circle, the tracking error will
stabilize around 0, so the state x will converge to the reference r. Moreover V is a Lyapunov
function for system (3.39).

3.3.6 Observer design

In the previous section, a state-feedback was designed under the assumption that the state
was available at any time. However, this is not the case in practice as only θ3 and θ4 can
be measured. To overcome this issue, an observer will be designed in order to estimate the
state vector.

A Luenberger observer consists in a simulation of the system given the control input
plus a correction term depending on the estimation error. The dynamics of the estimated
state can be expressed as follows:

x̂k+1 = Ax̂k +Buk + L · (yk − ŷk) (3.40)
ŷk = Cx̂k (3.41)

where x̂ ∈ Rn denotes the estimated state, L ∈ Rn×p denotes the observer matrix gain.

Let us define the observer error as ôk = xk − x̂k, its dynamics is described by:
ôk+1 = (A− LC) ôk (3.42)

L is computed such that the eigenvalues of A − LC are located inside the unit circle. In
consequence, x̂k will converge to xk.

Using the control uk = −Kx̂k in system (3.25) leads to:
xk+1 = (A−BK)xk −BKôk (3.43)

As ô will converge to zero, and because A−BK is Hurwitz, x will also converge to zero.

Remark 3.1
The dynamics of the observation error (3.42) does not depend on the control uk.

Remark 3.2
Introducing a reference signal as explained in Section 3.3.5 can be extended to the case
where uk = −Kêk with êk = x̂k − xss.
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3.3.7 Disturbance cancellation

We designed a state feedback and an observer without considering any disturbances in the
model, however this is likely not to be the case. Disturbances d1 and d2 will be included
in the model (3.18):

ω̇2 = JDΩ
IC + ID

ω4 + 1
IC + ID

(T2 + d2)

ω̇3 = − 1
JB + JC

(T1 + d1)

ω̇4 = − JDΩ
ID +KA +KB +KC

ω2

(3.44)

Let define the augmented state vector:

x̄ =
[
x
d

]
(3.45)

where d = [d1 d2]T . By considering constant disturbances (dk+1 = dk), the dynamics of
x̄ can be described by:

x̄k+1 = Āx̄k + B̄uk (3.46)
yk = C̄x̄k (3.47)

where:

Ā =
[
A B
0 I

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
(3.48)

where I and 0 denote identity and zero matrices of appropriate dimension. An observer is
designed as described in Section 3.3.6 to obtain ˆ̄x =

[
x̂ d̂

]T
, an estimation of x̄. Therefore

the following control:
uk = −Kx̂k − d̂k (3.49)

will stabilize system (3.44) and cancel the disturbances d.

3.3.8 Event function

A periodic event-based controller will be used as described in Section 3.1:

uk =
−Kêk − d̂k if ξ(êk) ≥ 0
uk−1 otherwise

(3.50)

where êk = x̂k − xss and with the event-function:
ξ(êk) = ∆H(êk)− σ ·∆E(êk) (3.51)

We recall that ∆H(êk) and ∆E(êk) denote respectively the decrease of V if the control is
kept constant or updated.
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Nb IAE IAU
Time-based LQR strategy without dry friction cancellation 1000 1.29 2.01

σ = 0.9 176 1.48 2.03Event-based LQR strategy without dry friction cancellation
σ = 0.4 129 1.91 2.36

Time-based LQR strategy with dry friction cancellation 1000 0.46 2.08
σ = 0.9 421 0.46 2.04Event-based LQR strategy with dry friction cancellation
σ = 0.4 246 0.53 2.17

Table 3.2: Performance indexes obtained with different control strategies

3.4 Real-time experimental results

3.4.1 Scenario

We propose to control the system such that θ3 and θ4 track a given sinus reference. The
frequency of the references will be chosen to be “slow enough” because of the slow varying
reference hypothesis (see Section 3.3.5). In this example the sinus will have a frequency
f = 0.1 Hz. Prior to this, ω1 is stabilized around a constant value to satisfy the assumption
of linear form (3.23). The computation and the real-time control are done with a computer
running xPC Target and Matlab/Simulink.

3.4.2 Obtained results

Figure 3.5 shows the experimental results for the time-triggered control without distur-
bances rejection. Plot 1) illustrates the setpoint and the measured angle θ3, while plot
2) shows the applied control torque T1. Plots 3) and 4) show θ4, the setpoint and the
control torque T2. Figure 3.5a and Figure 3.5b compare the results for a time-triggered
controller without and with disturbance rejection respectively. Figure 3.6 illustrates the
event-triggered system output with disturbances rejection for σ = 0.4 (in Figure 3.6a) and
σ = 0.9 (in Figure 3.6b). The extra plot 5) indicates when the control input signal is
updated, ’0’ means the control is held and ’1’ means the control is updated. Figure 3.7
shows the disturbances estimation in the time-triggered case, the top plot shows d̂1 while
the bottom one depicts d̂2.

The performance indexes obtained for the experimental results are reported in Table 3.2
and discussed in the sequel.
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Figure 3.5: Experimental results: time-triggered strategy
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Figure 3.6: Experimental results: event-triggered strategy with disturbances rejection
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Figure 3.7: Experimental results: disturbances estimation

3.5 Discussion

The performances for the event-triggered strategy with σ = 0.9 are almost equal to the
time-triggered case with about 58% less control updates. θ3 and θ4 look similar in the
time-triggered case (Figure 3.5b) and the event-triggered case (Figure 3.6b). Nevertheless,
the control input changes more abruptly in the event-triggered case. The smaller σ is,
the lower the frequency of updates is, with a higher IAE and IAU performances indexes.
Tuning σ is a trade off between the energy in the error signal and the number of updates.

The importance of the disturbance observer is highlighted by comparing Fig. 3.5a
and 3.5b, it can be noticed that the tracking of θ3 is really better when using the dis-
turbances cancellation. Moreover this difference is also visible in Table 3.2, IAE index is
three times higher when the dry friction cancellation is not used.
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The main goal of this chapter is to provide a systematic method dedicated to discrete
disturbed LTI systems which limit the number of control updates while keeping the same
performances as the time-triggered system. The mRPI set of a disturbed system gives a
way to quantify its nominal performances, as it describes the minimal region in which the
states of the system will stay once inside.

Let us consider the following discrete-time linear time-invariant system:

xk+1 = Axk +Buk + Ewk (4.1)

where A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×f , and k ∈ N. xk ∈ Rn denotes the current
state of the system, xk+1 is the successor state, uk ∈ Rm denotes the control input, and
wk ∈ W denotes the unknown bounded disturbances. W is assumed to be a compact convex
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polytope in Rf defined by p vertices Wi as follows: W ∆= conv {Wi} for i = {1, ..., p}. The
set W is taken to include the origin, and rank(E) is assumed to be greater than or equal
to n: the set EW therefore also includes the origin. It is also assumed that the matrix
pair (A, B) is stabilizable using the linear discrete-time state feedback:

uk = −Kxk (4.2)

where K ∈ Rn×m is the state-feedback matrix. The dynamics of the closed-loop system
can therefore be described by the following equation:

xk+1 = (A−BK)︸ ︷︷ ︸
ACL

xk + Ewk (4.3)

where all the eigenvalues of the closed-loop matrix ACL are assumed to be located inside
the unit circle. In what follows, the system dynamics (4.3) will be referred to as the
time-triggered system.

The first problem here is how to find an approximation for the mRPI set describing all
possible trajectories of the system’s state, starting at the origin (in the case of null stabi-
lization) in the presence of bounded disturbances. S1 will denote the nominal performance
set of a system. Since no means of computing an exact mRPI have yet been found when the
system’s dynamics are not nilpotent, a polyhedral approximation for the mRPI set will be
used to characterize what has been called the nominal performance of the time-triggered
system.

4.1 Polyhedral RPI sets for characterizing
nominal performances

Polyhedral RPI sets for linear systems can be computed using methods such as those
developed in [Kofman et al., 2007], [Seron et al., 2008] and [Martinez et al., 2009]. These
methods are very useful for computing RPI sets in polyhedral form, especially in the case
of stable systems where the eigenvalues of the matrix ACL are real values. A systematic
method to obtain polyhedral approximations for the mRPI set is presented in [Rakovic
et al., 2005]. Polyhedral invariant set computations have many advantages over traditional
ultimate-bound methods of computation based on the use of quadratic Lyapunov functions,
as discussed in [Haimovich et al., 2008] and [Martinez, 2015]. In particular, these methods
may be less conservative (i.e., they give smaller sets) than ellipsoids describing quadratic
Lyapunov functions.

A refined polyhedral approximation for the mRPI set can be obtained by implementing
a sequence of outer approximations of the mRPI set, as described in [Olaru et al., 2010] and
[Martinez, 2015]. This method consists in building a sequence of RPI sets recursively, based
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on the Minkowski sum between the image of a RPI set given by the linear transformation
ACL and the polyhedral set EW . This gives:

Φ(s+ 1) = ACLΦ(s)⊕ EW , Φ(0) = Ψ (4.4)

where ACL is a stable matrix (all its eigenvalues are located inside the unit circle) and
EW is a polyhedral set which includes all the disturbance trajectories. Φ(s) is the linear
transformation. Ψ ∈ Rn is a polyhedral describing an initial RPI set estimation of the
state trajectories, which can be computed using the method presented in [Martinez, 2015].
Therefore, [Olaru et al., 2010] states that for any δ > 0, there exists s∗ ∈ N such that the
following relation is true:

Ω∞ ⊆ Φ(s∗ + 1) ⊆ Φ(s∗) ⊆ Ψ (4.5)

where Ω∞ denotes the exact mRPI set. Then, Φ(s∗)→ Ω∞ as s∗ →∞, that is:

Ω∞ ⊆ Φ(s∗) ⊆ Ω∞ ⊕ Bnp (ε) (4.6)

where Bnp (ε) denotes a n-dimensional ball with the radius ε with respect to the p-norm.

Remark 4.1
The initial set Ψ in the set recursion (4.4) can in fact be any RPI set for system (4.3).

4.2 Event-switched system

Let S2 be some set in Rn. Let now define the following event-switched control law:

uk =
0m if xk ∈ S2

−Kxk otherwise
(4.7)

where 0m denotes the m-dimensional null vector. In the sequel, an event-switched sys-
tem will refer to a system of the form (4.1) with a control input as in (4.7). It is given by
the following closed-loop equation:

xk+1 =
Axk + Ewk if xk ∈ S2

(A−BK)xk + Ewk otherwise
(4.8)

Remark 4.2
For the sake of simplicity, the case of stabilization around the origin is studied here. In
the general case, the control law will also depend on the a priori control input ueq and the
state vector xeq both required at equilibrium, for instance:

ūk = ueq −K (xk − xeq)
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and the event-switched control would be:

ūk =
ueq if xk ∈ S2

ueq −K (xk − xeq) otherwise

The signals ueq and xeq can be computed at the plant level at all times. These signals can
be desired path-planning or reference model signals, for example.

Problem statement: Given the plant model (4.1), a state feedback (4.2) and a RPI set
S1 for the time-triggered state-feedback loop (4.3), find an event condition (i.e. a condition
based on a set S2) and an event-switched mechanism (4.7) such that the set S1 is a RPI
set for both the time-triggered system (4.3) and the event-switched system (4.8).

In this chapter, the event-switched mechanism is assumed to be given a priori. The aim
is to set the event condition giving the event-triggered system (4.8) the same performances
as the time-triggered system (4.3) (in terms of RPI set). The event condition makes the
mechanism to switch from the open loop system to the system controlled by a state feedback
law.

In what follows, the performances are given by the following four indicators:

• The bound δx on the 2-norm of the state x;

• The bound δu on the 2-norm of the control input u;

• The bound δd on the 2-norm of the changing rate of the control input: ∆u = uk+1−uk;

• The number of communications required between the controller and the actuator.

The first index reflects the ability of the controller to stabilize the system, the second one
indicates the cost in terms of the control power, the third one reflects the changes in the
control input, which are usually to the aging of the actuator, and the fourth one denotes
the cost in terms of the communication between the controller block and the actuator.

4.3 Event-set computation

Given a RPI set approximation S1 for system (4.3), the aim is now to compute a set S
such that:

xk ∈ S =⇒ xk+1 ∈ S1, with xk+1 = Axk + Ewk (4.9)

Definition 4.1
A set S is said to be an event-set for system (4.1) if and only if it satisfies condition (4.9)
for a given set S1.
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The following method is developed here for computing the set of maximum volumes
meeting (4.9), denoted S?2 . That is, S?2 contains all the possible sets which also satisfy the
condition (4.9).

The set S1 is taken to be a polyhedral set with a given half-space representation, that
is:

S1 , {x ∈ Rn : Hx ≤ P} (4.10)

where H ∈ Rl×n and P ∈ Rl.

Condition (4.9) can be translated into a family of inequalities which can be used to find
all the possible values of xk, via the matrices H̄ and P̄i, satisfying the following condition:

xk+1 ∈ S1 ⇔ Hxk+1 ≤ P (4.11)
H (Axk + EWi) ≤ P (4.12)
HA︸︷︷︸
H̄

xk ≤ P −HEWi︸ ︷︷ ︸
P̄i

(4.13)

where Wi denotes the ith vertex of the polyhedron W .

Therefore, by defining the set:

S?2 , {x ∈ Rn : H̄x ≤ P̄i, for i = {1, ..., p}} (4.14)

Then the set S?2 will include all the event-sets.

xk ∈ S?2 =⇒ xk+1 ∈ S1, with xk+1 = Axk + Ewk (4.15)

This is possible because S1 and W are convex and compact sets including the origin.

Remark 4.3
Please note that:

• S?2 is a convex set because it can be described by the intersection between a finite
number of hyperplanes in (4.14).

• S?2 is possibly empty if the inequalities in (4.14) have no solution.

• S?2 is not necessarily included in S1. In this particular case, S?2\S1 can be reached
one time step before entering S1.

• Any set included in S?2 is an event-set for system (4.1) and the set S1.
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4.3.1 Reducing the complexity of the event-set

In order to apply the event-switched control (4.7), it is necessary to verify at each sampling
time if the state of the system is inside the set S2. If this set is polyhedral, then the
computational complexity to check the inclusion condition, xk ∈ S2, depends on the order
of the system and the number of hyperplanes describing the set.

An alternative strategy might be to use an ellipsoidal set. This allows to check a simpler
inclusion condition, xk ∈ S2, where:

S2 , {x ∈ Rn : xTMx ≤ c} (4.16)

where M ∈ Rn×n, and c ∈ R.

The advantage of using an ellipsoidal set is that the complexity of the inclusion condi-
tion’s evaluation only depends on the order n of the system, whereas a polyhedral set can
be described by an arbitrary number of hyperplanes.

4.4 Event-switched control design with guaranteed
performances

4.4.1 Main results

Since stabilization at a point for the time-triggered system (4.1) without perturbation is
considered, we assume the very classical property for the pair (A,B):

Assumption 4.1
The pair (A,B) of system (4.1) is stabilizable.

Let state three assumptions that enable to guaranty that, if there is a robustly positively
invariant set for the time-triggered system, it will still be a robustly positively invariant
set in the proposed event-switched framework. In other words, with the proposed event-
switched control approach, the system will remain in the same RPI set as the time-triggered
system if it starts in it. In addition we also want to guarantee that the property of ultimate
boundedness is kept for the event-switched system. This will ensure that for any initial
condition, the state of the event-triggered system joins the RPI set in finite number of time
steps. For this, the following assumptions are sufficient:

Assumption 4.2
The set S2 is an event-set for system (4.1) and a given set S1.
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Assumption 4.3
S1 is a RPI set for system (4.1) with the stabilizing control input (4.2) and unknown
bounded disturbances wk.

Assumption 4.4
System (4.1) subjected to the stabilizing control (4.2) and bounded disturbances wk is UB
to the set S1.

With the above assumptions, one can state the main result of this chapter:

Theorem 4.1
Under Assumptions 4.1, 4.2 and 4.3, S1 is a RPI set for system (4.1) subject to the event-
switched control input (4.7).

Proof. It must now be proved that the set S1 satisfies Definition 1.8 for system (4.1) with
the event-switched control input (4.7). The dynamics of this system were described in
equation (4.8), which is recalled here:

xk+1 =
Axk + Ewk if xk ∈ S2

(A−BK)xk + Ewk otherwise

Let us assume the existence of an arbitrary state xk in S1. As far as the dynamics of
system (4.8) are concerned, there are two possible cases:

• xk ∈ S2, which means that xk+1 will also be in S1 because the set S2 meets the
condition (4.9) from Assumption 4.2.

• xk /∈ S2, which means that xk+1 will still be in S1 because it is a RPI set for the
associated dynamics resulting from Assumption 4.3.

This proves that S1 is a RPI set for system (4.8), because for any x0 in S1, xk will be in
S1 for all values of k ∈ N.

Theorem 4.2
Under Assumptions 4.1, 4.2, and 4.4, system (4.1) with the event-switched control in-
put (4.7) is UB within S1.

Proof. It now has to be proved that for any initial state x0, there exists K(x0) ∈ N such
that xk will be in S1 for all k ≥ K(x0). When dealing with system (4.8), there are two
possible cases:

• x0 ∈ S2 means that xk will join S1 in K(x0) = 1 time step resulting from (4.9).
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• x0 /∈ S2, based on Assumption 4.4, xk will join S1 in a finite number of time steps,
namely K(x0).

Once xk is in S1, i.e. once k is greater than or equal to K(x0), there are again two
possibilities:

• xk ∈ S2, which means that xk+1 = Axk+Ewk will be in S1, for all k ≥ K(x0) because
the set S2 satisfies condition (4.9) based on Assumption 4.2.

• xk /∈ S2, which means that xk+1 = (A−BK)xk+Ewk will be in S1, for all k ≥ K(x0),
based on Assumption 4.4.

Therefore, there exists K(x0) such that, for any x0 ∈ Rn, xk will be in S1 for all k ≥ K(x0).
This means that system (4.8) is UB within S1, based on Definition 1.9.

Remark 4.4
These theorems will still hold if S2 is an empty, non-polytopic or non-convex set.

4.4.2 Analytic discussion of performances

In this section, it is assumed that S1 is a RPI set for system (4.1), S2 is an event-set
for system (4.1) and S1. It is also assumed that the initial state x0 of system (4.1) is in
the RPI set S1. In order to assess the performances of the present strategy and compare
them with those obtained with a classical approach, an upper bound is calculated for
the 2-norm of i) the state x, ii) the control input u, and iii) the changing rate of the
control ∆u. In what follows, these indicators will be denoted δx, δu, and δd, respectively.
In addition, the superscripts es and tt will refer to the event-switched and time-triggered
systems, respectively. Variables without any superscript will be taken to refer to both the
time-triggered and the event-switched systems.

4.4.2.1 Maintaining the state performances

Preserving the bound δx on the maximal 2-norm of the state results directly from The-
orem 4.1: the fact that the systems (4.1) under time-triggered control (4.2) and event-
switched control (4.7) have the same RPI set means that the maximum 2-norm of the
state will be bounded by the radius of the smallest 2-norm ball containing the RPI set.

‖x‖2 ≤ δx, with δx , min{γ | S1 ⊆ Bn2 (γ)} (4.17)
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4.4.2.2 Maintaining the control signal performances

Maintaining the amplitude Maintaining the bound δu also results from Theorem 4.1.
In the time-triggered case, the controller (4.3) is linear, and the control input u is therefore
bounded in a set U which is the projection of the set S1 in the control space by the linear
matrix mapping −K. In the event-switched case, the non-linear controller (4.7) can switch
between two modes. In one mode, when x /∈ S2, the control input u = −Kx is obviously
bounded in the set U . In the other mode, when x ∈ S2, the control input signal is 0m,
which is in U because S1 includes the origin, and the mapping between S1 and U is linear.

u ∈ U , with U , −K · S1 (4.18)

It follows directly that:

‖u‖2 ≤ δu, with δu , min{γ | U ⊆ Bn2 (γ)} (4.19)

Maintaining the changing rate The changing rate of the control input is:

∆uk = uk+1 − uk (4.20)

In the case of the time-triggered system, this gives:

∆uttk = uttk+1 − uttk (4.21)
∆uttk = −Kxttk+1 − (−Kxk) (4.22)
∆uttk = −K ((ACL − In)xk + Ewk) (4.23)

It follows that:

∆uttk ∈ Dtt, ∀k ∈ N (4.24)
with Dtt , −K ((ACL − In)S1 ⊕ EW) (4.25)

The bound of the 2-norm of the changing control input rate in the time-triggered system
is therefore: ∥∥∥∆uktt∥∥∥2

≤ δd
tt, with δdtt , min{γ | Dtt ⊆ Bn2 (γ)} (4.26)

In the case of the event-switched system, several possibilities have to be considered:

uesk =
0m if xk ∈ S2

−Kxk otherwise
(4.27)

uesk+1 =


0m if xesk+1 ∈ S2

−K (Axk + Ewk) if xesk+1 /∈ S2 and xk ∈ S2

−K (ACL · xk + Ewk) if xesk+1 /∈ S2 and xk /∈ S2

(4.28)
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Therefore:

∆uesk = uesk+1 − uesk =


0m if xesk+1 ∈ S2 and xk ∈ S2

Kxk if xesk+1 ∈ S2 and xk /∈ S2

−K (Axk + Ewk) if xesk+1 /∈ S2 and xk ∈ S2

−K ((ACL − In)xk + Ewk) if xesk+1 /∈ S2 and xk /∈ S2

(4.29)

It follows that:

∆uesk ∈ Des, ∀k ∈ N (4.30)
with Des , 0m ∪K · S1 ∪ −K (A · S2 ⊕ E · W) ∪ Dtt (4.31)

Note that the expression for Des can be simplified because the origin is included in S1:

Des = K · S1 ∪ −K · (A · S2 ⊕ E · W) ∪ Dtt (4.32)

and since (A · S2 ⊕ E · W) is included in S1, in view of condition (4.9), this means that
min{γ | −K ·(A · S2 ⊕ E · W) ⊆ Bn2 (γ)} ≤ min{γ | Dtt ⊆ Bn2 (γ)}. The bound of the 2-norm
of the changing control input rate in the event-switched system is therefore:

‖∆uesk ‖2 ≤ δesd , with δesd , max
(
δttd , min{γ |K · S1 ⊆ Bn2 (γ)}

)
(4.33)

Therefore, if δttd ≥ ‖K · S1‖2, then δesd = δttd . In other words, the 2-norm of the changing
control input rate has the same least upper bound in both the time-triggered and the event-
switched system if δttd ≥ min{γ |K · S1 ⊆ Bn2 (γ)}

Remark 4.5
If S1 is the mRPI set and the event-set S2 is the largest set S?2 satisfying condition (4.9),
then (A · S2 ⊕ E · W) = S1 and the set Des becomes:

Des = K · S1 ∪ −K · S1 ∪ Des (4.34)

In addition, if the bound of the disturbance is symmetric, then S1 will also be symmetric,
and therefore:

Des = K · S1 ∪ Dtt (4.35)

4.4.3 Observer based approach

The above approach involves checking the value of the state vector at each time step k in
order to check whether or not the state of the system belongs to the event-set S2. Depending
on the result, it is then decided whether or not to apply a control signal without detracting
from the performances of the scheme. However, it is assumed throughout this strategy that
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all the state information is available. When the state of system (4.1) cannot be completely
measured and only the output yk is available, the complete system is modeled as follows:

xk+1 = Axk +Buk + Ewk

yk = Cxk (4.36)

One possible solution here is to construct a Luenberger observer (assuming that the matrix
pair (A,C) is observable):

x̂k+1 = Ax̂k +Buk + L
[
yk − Cx̂k

]
(4.37)

where x̂ is the observed state, and L the observer gain. The challenge here is then to find
how to use the event-switched method presented above in the case of system (4.36)-(4.37)
ensuring accurate performances.

The observation error ek = xk − x̂k has the following dynamics:

ek+1 = (A− LC) ek + Ewk (4.38)

Let Se denotes a RPI set in the observation error space, it is a set in which the observation
error will be bounded once the observer has converged. The observed state actually has
the following dynamics:

x̂k+1 = (A−BK) x̂k + LCek (4.39)
where the term ek may be considered as a disturbance bounded in a RPI set Se. A RPI
set for system (4.39) can be computed with the method presented in Section 4.1, and will
be denoted Ŝ1. Lastly, an event-set S2 can be found as described in Section 4.3 in the
observed state space, where the complete system with an observer can be in an open-loop
configuration when the observed state is in S2, while still ensuring that Ŝ1 is a RPI set for
system (4.39).

4.4.4 Proposed algorithm

In the present chapter, a new approach to designing event-switched control is presented.
With the present event-switched control approach, the system does not have to be
controlled between events, and efficient performances can still be obtained even in the
presence of bounded disturbances. A switching condition is checked periodically in order
to determine whether ot not a dynamic control input has to be applied. Figure 4.1 presents
the overall control strategy.

The first step in the present method consists in finding the nominal performances
of the controlled system subjected to bounded disturbances. The nominal performances
correspond to a RPI set for the system. We take S1 to denote this set. Note that as
S1 is a RPI set, once the state has entered this set, it will remain there. In order to be
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Figure 4.1: Event-switched control strategy for a plant with an exogenous disturbance w.
The switching condition is used to determine whether an action has to be performed by
the controller or not.

less conservative, S1 can be approximated as the mRPI set. The second step consists in
finding an event-set S2. When the state of the system is located inside S2, the control
input will switch off and the system will run in the (possibly unstable) open-loop mode.
Whenever the state no longer belongs to S2, the control input switches on again. Figure 4.2
illustrates the whole process in the case of a 2-dimensional system (in order to simplify the
spatial representation). It is worth noting that the event-set S2 is not included in S1 in
this particular example, S2\S1 can only be reached one time step before joining S1. Three
different cases arise here:

1: When the state does not belong to both the nominal performance set S1 and the event-
set S2, the linear control input is applied to the system and the state will join either S1
or S2 after a finite number of time steps.

2: When the state belongs to S1 but not to S2, the linear control input is applied. At the
next time step, the state will remain in S1 and can join S2 ∩ S1.

3: When the state belongs to S2, the control input is switched off, and only the equilibrium
value ueq is applied to the control input (or 0m in the null stabilization case). Due to
the mathematical properties of S2, the state will belong to S1 at the next time step (and
can also continue to belong to S2 ∩ S1).

Lastly, designing an event-switched control strategy with the approach presented here
can be done using a systematic method. Given any stabilizable system (4.1):

• Find a linear state-feedback K such that the eigenvalues of A − BK are inside the
unit circle.

• Compute an approximation for the mRPI set of the system. See [Rakovic et al., 2005]
for an efficient method.
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Figure 4.2: Geometrical interpretation of the event-switched control strategy illustrating
three different possible state trajectories of the event-switched system. S1 is a RPI set and
S2 is the event-set. It is worth noting that S2 is not included in S1.

• Compute the event-set S?2 as explained in Section 4.3.

• Take any set S2 ⊆ S?2 as an event-set.

All these steps are performed to compute an event condition which ensures efficient per-
formances. This event condition can be checked online as described in Algorithm 1.

Algorithm 1 Applying the event-switched control ONLINE
Require: event-set S2
At each time step:
if x ∈ S2 then

Apply open-loop control u = 0
else

Apply closed-loop control u = −K · x
end if

We recall that the event-set S2 is computed offline, then the inclusion condition checked
at each sampling time is very simple to implement on practical applications. The com-
putational effort required for this step depends on the dimension and the topology of the
event-set. If the event-set is a polyhedron, the complexity is related to the number of ver-
tices describing the set. To be more precise, it will consist in verifying as many inequalities
as the polyhedron has faces. If the set is an ellipsoid, then the complexity is quadratic in the
order of the system. The use of an ellipsoidal event-set was discussed in Section 4.3.1, the
results obtained with an implementation of this method will be illustrated in Section 4.5.3.

The cost of the offline computation is highly related to the considered system. The
time required for this computation is given in Section 4.5 for a given example.
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4.5 Simulation of the event-switched approach

In this section, the event-switched control approach presented above is applied to the
following academic example:

xk+1 =
[
1 0.65
0 1

]
︸ ︷︷ ︸

A

xk +
[
0.211
0.65

]
︸ ︷︷ ︸

B

(uk + wk) (4.40)

Note that in this particular case, the disturbance matrix E is taken to be equal to B.

A stabilizing static state-feedback gain was found using the LQ optimal control method
with identity weighting matrices of suitable dimension.

uk = −
[
0.575 1.217

]
︸ ︷︷ ︸

K

xk (4.41)

The dynamics of the linear discrete time-triggered closed-loop system are therefore:

xk+1 = ACLxk +Bwk (4.42)

with ACL , A−BK =
[

0.879 0.393
−0.374 0.209

]

It can be noticed that the poles (0.54±0.19 · i) of the closed-loop system are located inside
the unit circle. The system is therefore stable, whereas the open-loop system is unstable.
During the simulation, w will be bounded in the set W = [−1; +1].

Both classical time-triggered closed-loop system (4.42) and system (4.40) subjected to
switched control input (4.7) are simulated in parallel, in order to compare the performances
of these two systems when the same disturbance is applied. The results of the simulation
during the first 10 time steps (in order to clearly show the trajectory of the system) are
presented in Figure 4.3. The nominal performance set S1 is an approximation of the mRPI
set obtained via the algorithm given in [Kolmanovsky and Gilbert, 1998]. The set S?2 is
obtained as described in Section 4.3. In our implementation using MATLAB and the MPT
toolbox [Herceg et al., 2013], the time required to compute these two sets was approximately
0.8 seconds. These sets, as well as the system trajectories, are plotted in Figure 4.3a. The
control inputs are also presented with respect to the time steps in Figure 4.3b. It can be
seen that the control signal is 0 when the system trajectory is in the set S?2 at time steps
3, 4, 5, 7 and 8.

In order to test the accuracy of the mRPI set approximation, the discrete time sys-
tem (4.42) was simulated with the disturbance reaching the bounds. The results obtained,
which are presented in Figure 4.4, clearly show that the mRPI set approximation is sat-
isfactory, since the state x still belongs to the set S1 with the worst disturbance scenario,
and is located very near the vertices.
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Figure 4.3: Simulation of the time-triggered system (in red) and the event-switched system
(in blue) with the same disturbances and initial condition (x1 = x2 = 2) during 10 time
steps. When the state of the event-switched system is in S?2 (green set), open-loop control
is applied. The set S1 (yellow) describes a RPI set for both the time-triggered and the
event-switched systems.
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Figure 4.4: Worst disturbance scenario for mRPI approximation (S1) verification.
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In the rest of this section, the simulation was run for N = 107 periods of time in order to
have a sufficiently good distribution of the disturbances and reliable performance indexes,
as described in the next section.

4.5.1 Performance indexes

The following performance indexes are used to assess the efficiency of the process:

• The maximum 2-norm of the state: max (‖x‖2), which is bounded by δx in (4.17);

• The maximum 2-norm of the control input: max (‖u‖2), which is bounded by δu
in (4.19);

• The maximum 2-norm of the rate of variation of the control input: max (‖∆u‖2),
which is bounded by δd in (4.24) and (4.33);

• The percentage time spent in the closed loop: %c (this index also gives the rate of
data bus use between the controller and the actuator in the case of networked control
systems). The maximum value is 100% (in the case of time-triggered control), and the
aim is to reduce this percentage with the event-switched control strategy presented
here.

In this particular example, the bound δd on ‖∆u‖2 is the same in the case of both the
time-triggered and the event-switched system because δttd ≥ min{γ |K · S1 ⊆ Bn2 (γ)}, refer
to Section 4.4.2.2 for further details.

The bound values are given in Table 4.1. The performance indexes obtained in the
simulations are given in Tables 4.2-4.3 and discussed below. Note that the case of event-
switching strategy with E? will be introduced later in Section 4.5.3.

δx δu δd
1.87 1.57 1.97

Table 4.1: Theoretical bounds on performance indexes.

%c max(‖x‖2) ≤ δx max(‖u‖2) ≤ δu max(‖∆U‖2) ≤ δd
Time-triggered strategy 100 1.69 1.48 1.92
Event-switching strategy with S?2 48.31 1.71 1.57 1.95
Event-switching strategy with E? 49.66 1.70 1.52 1.95

Table 4.2: Performance indexes obtained with uniformly distributed disturbances.
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%c max(‖x‖2) ≤ δx max(‖u‖2) ≤ δu max(‖∆U‖2) ≤ δd
Time-triggered strategy 100 1.58 1.42 1.79
Event-switching strategy with S?2 39.62 1.64 1.55 1.90
Event-switching strategy with E? 39.44 1.64 1.52 1.90

Table 4.3: Performance indexes obtained with truncated normally distributed disturbances.

4.5.2 Results

Figure 4.5 shows the results of the simulation when a uniformly distributed disturbance is
applied. The simulated reachable set denoted Sx after 107 time steps starting at the origin
in the case of the time-triggered system can be seen in Figure 4.5a, and in the case of the
event-switched system, in Figure 4.5b. Sx is the convex hull where the state remains during
the simulation. It can also be noted from Figure 4.5b that the state continues to stay in
S1 throughout the simulation, as Sx is included in S1. This is the expected behavior of the
present event-switched control method as S1 is a RPI set for both the time-triggered and
the event-switched systems.

The performance indexes introduced in Section 4.5.1 are presented in Tables 4.2 and 4.3
in the case of uniform and truncated normal disturbance distributions, respectively. The
results show that the 2-norms of the state are bounded as predicted by δx, as explained
in Section 4.4.2.1. This can also be seen with a geometrical interpretation, as Sx is included
in S1. The control input and the changing rate of the control input are also bounded by
δu and δd, respectively. However, it can be seen that in the event-switched case, the
reachable set Sx is slightly larger than the one obtained using the time-triggered control.
This difference may be attributable to the random nature of the disturbances and their
impact on the bound of the reachable set Sx: see for instance probabilistic invariant sets
for linear systems [Kofman et al., 2012]. It is recalled, however, that the state trajectories
occurring in the worst disturbance scenario, which are shown in Figure 4.4a, belong to the
boundaries of the set S1 in both cases.

It is also worth considering the frequency domain of the state and the control input in
the above simulation. Figure 4.6 shows the power spectral density (PSD) of the control
input u, and the states x1 and x2 (where xT = [x1 x2]). It can be noted that the magnitude
of these values is generally greater in the case of the event-switched control system than
with the classical approach. However, the overall shape is similar in both cases. It can be
seen from Figure 4.6a that the magnitude of the control input is greater at high frequencies
in the case of the event-switched method. But in x1 in Figure 4.6b and x2 in Figure 4.6c,
lower values were obtained at high frequencies in the case of the event-switched strategy.
This is a particularly noteworthy result of the simulation: applying unstable dynamics to
some events can result in less energy in the high frequency domain of the state.
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Figure 4.5: Comparison between time-triggered and event-switched systems subjected to
the same uniformly distributed disturbances. S1 is an approximation for the mRPI set
computed offline, as mentioned in Section 4.1, and Sx is the reachable set from the origin
after 107 periods of time.
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Figure 4.6: Power spectral density comparison between time-triggered and event-switched
systems.
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4.5.3 Reducing computation complexity

To use the switching mechanism (4.7), one has to check at each time instant whether the
state belongs to S?2 = {x ∈ Rn : Rx ≤ Q} with R ∈ Rf×n and Q ∈ Rf . For this purpose,
one only needs to check whether the state meets the condition imposed in the set definition:
Rx ≤ Q. In the above example, the set S?2 is a polyhedron defined by the intersection
between 20 half-spaces, which means calculating 2× 20 = 40 multiplications, 20 additions
and checking 20 inequalities at each time step.

To simplify the control algorithm, another event-set can be defined inside S?2 , such as
the largest ellipse inscribed in S?2 . In the above example, this would reduce the number of
operations to 6 multiplications, 3 additions and 1 inequality per time step. In return, this
means that the resulting event-switched system would switch to open-loop dynamics less
frequently as the volume of the event-set is smaller.

Computing the largest ellipsoid in a polyhedron is a convex optimization problem, as
stated in [Boyd and Vandenberghe, 2004, Section 8.4.1]. Let define the ellipse E? as follows:

E? ∆= {Tx+ d |‖ x ‖≤ 1} , with T a symmetric matrix (4.43)

In order to maximize the volume of E?, the constraint which has to be met is that every
element of E? has to satisfy the inequality defining S?2 . This could be written as follows:

maximize
T,d

log(detT )

subject to ‖ TR ‖ +Rd ≤ Q, and T symmetric
(4.44)

E? can also be defined in a more popular form than (4.43), as follows:

E? ∆= {(x− d)TS(x− d) ≤ 1}, with S = T−2 (4.45)

The event-set E? thus obtained is presented in Figure 4.7. A simulation was run with the
event-set denoted E?, and the results obtained are presented in Tables 4.2 and 4.3. As
expected, the total amount of time during which the plant was allowed to be in the open-
loop mode was shorter than with the event-set S?2 . However, the difference amounted to
only about 1%, which means that the advantages of the present method were not greatly
decreased. The performance indexes obtained were almost the same as in Section 4.5.2.
Choosing the set where the system is allowed to be in the open loop mode therefore amounts
to making a trade-off between the complexity of the event conditions and the performances.
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5.1 Objectives

The aim of this chapter is to present the different parts involved in an experimental ap-
plication of the event-switched approach that will be presented in the next chapter. This
chapter is also dedicated to detail the technical developments done during this PhD.
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5.2 Quadcopter

A quadcopter platform has been chosen for our experiments for its agility and for the few
components required to build such a platform. This type of platform has been widely
studied thus it has the benefit of hindsight in the sense that trusted model and controller
can be found in the literature. Furthermore quadcopter belongs to the class of Vertical Take
Off and Landing (VTOL) aircraft which means that the necessary space for maneuvers is
limited to small spaces.

A quadcopter is typically made of several parts, that is:

• A rigid structure,

• A flight controller board,

• A power source (battery),

• A receiver,

• Four motors with propellers eventually with ESC1.

Two opposite rotors are spinning clockwise and the other two are spinning anticlockwise,
as shown on Figure 5.1, in order to obtain zero torque when all the rotors are at the
same speed. The usual way for a person to pilot a quadcopter with a remote control is
to command the attitude and the thrust of the UAV2. The control is achieved by the
differential control of each rotor’s speed. Thus torques can be created around each axis
and the total thrust can be controlled.

5.2.1 Euler formalism

This section introduces the Euler formalism which will be used in the sequel. Let define
{~x, ~y, ~z} as unit vectors along each axis. A direct orthonormal inertial frame will be denoted
{I} for which the unit vectors are denoted by {~i1,~i2,~i3}. A second frame denoted by {B}
is attached to the quadrotor such that the origin corresponds to its center of gravity. Unit
vectors of {B} will be denoted {~b1,~b2,~b3}. These vectors are the axis of frame {B} with
respect to the frame {I}. The axes of the body frame {B} are defined as follows: the x axis
is between the motors 1 and 2, the y axis is between the motors 2 and 3, and the z axis is
pointing from the bottom up. A rotation matrix R ∈ SO(3) will describe the orientation of
the body frame {B} relatively to the inertial frame {I}. Thus, by construction: ~b1 = R~i1,
~b2 = R~i2, and ~b3 = R~i3.

1Electronic Speed Controller
2Unmanned Aerial Vehicle
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Figure 5.1: Schematic view of a quadcopter, motors 1 and 3 are spinning clockwise at the
speed ω1 and ω3 respectively, while motors 2 and 4 are spinning anticlockwise at the speed
ω2 and ω4 respectively.

Figure 5.2: The Euler angles φ, θ, and ψ are defined as the three angles transforming the
inertial frame into the body frame by a combination of three successive rotations.

The orientation of the frame {B} with respect to the frame {I} is fully described by the
rotation matrix R. Any orientation of the frame {B} can be reached by rotating the frame
{I} three times by the angle φ (roll), θ (pitch), and ψ (yaw). However these angles are
different, depending on the convention used to construct the rotation matrix R. Here, the
Z-Y-X intrinsic Tait–Bryan angles convention will be used. Intrinsic rotation means that
rotations are applied sequentially around the axis of the rotated frame, as opposed to the
extrinsic convention where each rotation is applied around the axis of the inertial frame.
The frame {I} is obtained after three rotations of the frame {B}. Firstly {B} is rotated
around its axis z by an angle ψ, this results in an intermediate frame {F}. Secondly this
frame is rotated around the axis y of {F} by an angle θ, the resulting frame is denoted {G}.
This new frame is then rotated around the axis z of {G} by an angle φ. This sequence
of rotation applied to the inertial frame {I} gives the body frame {B} as illustrated in
Figure 5.2.
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Given the previously presented convention, the rotation matrixR is expressed as follows:

R = Rz(ψ) ·Ry(θ) ·Rx(φ) (5.1)

R =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Rz(ψ)

·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


︸ ︷︷ ︸

Ry(θ)

·

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


︸ ︷︷ ︸

Rx(φ)

(5.2)

R =

cosψ · cos θ cosψ · sin θ · sinφ− sinψ · cosφ cosψ · sin θ · cosφ+ sinψ · sinφ
sinψ · cos θ sinψ · sin θ · sinφ+ cosψ · cosφ sinψ · sin θ · cosφ− cosψ · sinφ
− sin θ cos θ · sinφ cos θ · cosφ


(5.3)

Remark 5.1
Note that every intrinsic rotation has an extrinsic equivalent. For example, the X-Y-Z
extrinsic rotation is equivalent to the Z-Y-X intrinsic convention used here.

Rotation speed vector of the body frame {B} denoted
[
p q r

]T
is related to the

angular speed of the Euler angles
[
φ̇ θ̇ ψ̇

]T
.

pq
r

 =

φ̇0
0

+Rx(φ)

0
θ̇
0

+Rx(φ) ·Ry(θ)

0
0
ψ̇

 (5.4)

pq
r

 = J−1

φ̇θ̇
ψ̇

 (5.5)

Inverting the matrix J−1 allows to deduce the derivative of the Euler angles from the
angular rotation speed of the body frame:

φ̇θ̇
ψ̇

 = J

pq
r

 (5.6)

J =


1 sin(φ)tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 (5.7)

Note that J is not defined when the pitch angle θ is equal to 90◦. Furthermore, when
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the angles φ and θ are small enough the following approximation can be made:

J ≈

1 0 0
0 1 0
0 0 1

 (5.8)

Remark 5.2
The quaternion formulation can also be used (see e.g. [Altmann, 2005, Chapter 12]).
Rotation is represented by a complex vector instead of a real matrix. The singularity of
which rotation matrix suffers is avoided. However, this formulation will not be studied
here.

5.2.2 Quadcopter modeling

In this section a physical model of a quadcopter is presented inspired by different models
found in the literature (e.g. [Hamel et al., 2002], [Pounds et al., 2010], [Bouabdallah et al.,
2004]).

As detailed in [Mahony et al., 2012], considering the quadcopter as a rigid body we can
write:

v = ξ̇ (5.9)
mv̇ = −mg~i3 + F (5.10)
Ṙ = RΩ× (5.11)
IΩ̇ = −Ω× IΩ + τ (5.12)

where ξ =
[
x y z

]T
denotes the position of the quadrotor center of gravity in the inertial

frame {I}, and v =
[
vx vy vz

]T
its speed. m denotes the mass of the UAV, g the gravity

constant, I ∈ R3 the constant inertia matrix, Ω =
[
p q r

]T
the angular velocity of the

body frame {B} with respect to {I}. F expresses all the non conservative forces acting on
the UAV and τ all the moments introduced by the rotors. The term −Ω× IΩ denotes the
gyroscopic effect due to the rotation of the rigid body.

Ω× denotes the skew-symmetric matrix, such that Ω×h = Ω× h for any vector h ∈ R3

where × stands for the vector cross product:

Ω× =

 0 p −q
−p 0 r
q −r 0

 (5.13)
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5.2.2.1 Forces acting on the UAV

The major nonconservative force acting on the robot is due to the total thrust TΣ generated
by the rotation of the propellers. TΣ can be expressed as the sum of the thrust Ti of all
the individual rotors i:

TΣ =
4∑
i=1

Ti ·~b3 (5.14)

Ti = cTω
2
i (5.15)

where ωi is the rotation speed of the rotor i and cT > 0 is a constant depending upon the
air density and the rotor geometry.

However because of the speed of the UAV, an apparent wind alters the shape of the
propeller. As a result the thrust generated by the propeller is not orthogonal to the hub of
the rotor. This is called the flapping effect, and it has been widely studied for helicopter
(e.g. [Prouty, 1986], [Johnson, 1994]) or more recently for quadrotor [Hoffmann et al.,
2007]. The force for each rotor can be modeled by applying a rotation matrix Rflap_i to
the equation 5.15:

Fi = Rflap_iTi ·~b3 (5.16)
where Rflap_i depends on the direction of the propellers, the angular velocity and the speed
of the UAV. Approximation of this matrix can be found in [Prouty, 1986].

In the sequel the flapping effect will not be considered, therefore we will always consider
Rflap = I3. As a result the forces acting on the UAV can be written as:

F = RTΣ ·~b3 = R
4∑
i=1

(
cTω

2
i ·~b3

)
(5.17)

5.2.2.2 Moments acting on the UAV

The rotors are spinning and produce a thrust, due to the distance l between the center of
the UAV and the propeller, a resulting moment is produced around x and y axis of the
body frame {B}:

τx = l̄ · cT
(
ω2

2 + ω2
3 − ω2

1 − ω2
4

)
(5.18)

τy = l̄ · cT
(
ω2

3 + ω2
4 − ω2

1 − ω2
2

)
(5.19)

where:
l̄ = l

√
2

2 (5.20)

Please remark that the flapping effect has been ignored.
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A moment around z axis of the body frame {B} is produced due to the drag of the
propellers and is modeled as:

τz = cQ
(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
(5.21)

where cQ > 0 is the constant drag coefficient of the rotors.

Therefore, all the moments can be written in a matrix form:

τ =

τxτy
τz

 =

−l̄ · cT l̄ · cT l̄ · cT −l̄ · cT
−l̄ · cT −l̄ · cT l̄ · cT l̄ · cT
cQ −cQ cQ −cQ

 ·

ω2

1
ω2

2
ω2

3
ω2

4

 (5.22)

Combining the equations (5.17) and (5.22) in a matrix form gives the relation which
links the thrust T and the moments τ to the speed of each motor:


T
τx
τy
τz

 =


cT cT cT cT
−l̄ · cT l̄ · cT l̄ · cT −l̄ · cT
−l̄ · cT −l̄ · cT l̄ · cT l̄ · cT
cQ −cQ cQ −cQ


︸ ︷︷ ︸

Γ

·


ω2

1
ω2

2
ω2

3
ω2

4

 (5.23)

5.3 Flying arena and experimental setup

Our goal is now to perform an automatic flight of a quadcopter, in other words our aim is
to replace the pilot with a controller. As depicted in Figure 5.3a, a human pilot is using
visual feedback to decide how to act on the remote control in real-time. Two kinds of
control modes are widely spread:

• Angle mode where the desired angles φ?, θ?, the angular rotation speed of the yaw
ψ̇? and the desired thrust T ? are directly mapped to the position of the stick.

• Acrobatic mode where the user controls the desired thrust T ? and the UAV angle
rate of change

(
φ̇? θ̇? ψ̇?

)T
.

In the sequel, Angle mode is assumed to be used.

A motion capture system from Vicon3 will be used to get the position and the orien-
tation of the UAV in order to compute which setpoints have to be sent to the quadcopter

3www.vicon.com
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Position
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Pilot
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(a) To perform a flight, the human pilot is getting a visual feedback and act on the remote control
accordingly.

Position

Attitude reference
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Positio
n

Attitude reference

xPCTarget

Thrust reference

Thrust reference
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(b) The Vicon system is used as a visual feedback to perform an automatic flight, a controller is
running in real-time on a ground station to calculate which control input has to be sent to the
UAV.

Figure 5.3: Schematic view of the control process of a human piloted UAV and an automatic
flight system using Vicon system.

as depicted on Figure 5.3b. The room MOCA (which stands for MOtion Capture Area)
at GIPSA-Lab shown in Figure 5.4, is fully equipped to perform real-time control of mul-
ticopters. In this room, a volume of 5.6m x 6.6m x 2.9m is available as a total flying
area.

5.3.1 Position sensor

To retrieve the real-time position of a multicopter in real-time, the roomMOCA is equipped
with 12 Vicon cameras which are able to compute in real-time the position and the orien-
tation of any object. The cameras emit modulated infrared light. Markers have to be fixed
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Figure 5.4: MOCA flying arena at GIPSA-lab.

on the object (at least 3 markers in a non symmetrical configuration). After a calibration
process, the reflection of the markers permits to retrieve the position and the orientation
of the object at a maximum sampling frequency of 500 Hz. A dedicated platform performs
the computation and sends the results through the network.

5.3.2 Control toolchain

Real-time control of the quadcopter is done using a ground station running xPC Target.
This computer receives the information from the Vicon system through UDP packets,
computes the corresponding control Λ? =

(
φ? θ? ψ̇?

)T
and sends it to an emitter via

UDP packets. This framework is depicted in Figure 5.3b.

The emitter receives UDP packets from the ground station and sends a radio signal
compatible DSM2, which is a proprietary wireless communication protocol popular among
the hobbyist. This standard uses a 2.4 GHz band radio link. The emitter has first to be bind
with a particular receiver, the bind procedure is launched by sending a specific UDP packet
to the emitter. Once the binding is done, a simplex communication channel is effective
between the real-time controller and the UAV. Simplex means that the communication
can only occur in one direction, in other words the UAV can not send informations through
this radio link. The emitter has been developed in GIPSA-Lab by Julien Minet, research
engineer.
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5.3.3 Onboard control

Once the UAV’s receiver gets the setpoint Λ? sent by the ground station, the FCB4 has to
control the motors in order to achieve the desired orientation and thrust.

The FCB gets on board an IMU5 to reconstruct in real-time the attitude of the UAV.
The IMU consists in an accelerometer to detect orientation and acceleration, and a gyro-
scope to detect rotation in space. Eventually, a magnetometer would be also used to get the
direction of the magnetic north. Usually an extended Kalman filter or a complementary
filter is used to reconstruct the attitude with the data received from the IMU. Given the
estimation of the orientation, a controller is used to compute the desired torques around
each axis.

Different control approaches can be found in the literature. The most common one
among the hobbyist community is to use two PI control-loops. The inner PI is used to
control the rotational speed, while the outer loop gives angular speed reference to the inner
loop from the error between the desired angles and the estimated angles. Inverting the
matrix Γ in (5.23) relates the rotation speed of the rotors to the thrust and the torques.

The FCB will be considered as a black box system whose inputs are the setpoints
transmitted by the UAV’s receiver and the output are the drone angles. We will refer as
flight controller the onboard program running on the FCB.

5.4 Quadcopter setup

Different UAVs have been used and developed during my thesis. This section aims to
describe all the different platforms I have used and contributed to.

5.4.1 The X4-MaG platform

The X4-MaG is a platform which has been developed jointly between GIPSA-Lab and
the biorobotics research team of ISM (Institut des Sciences du Mouvement) during the
PhD work of Augustin Mannecy [Manecy, 2015]. This platform offers a high modularity.
Different levels of complexity can be handled, depending on the chosen hardware setup.
Three dedicated electronic boards can be jointly used:

• A Nanowii, which is an arduino compatible board largely used as a FCB;
4Flight Controller Board
5Inertial Measurement Unit
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• A RCB6, a specific electronic board developed in the biorobotics lab by Marc Boyron,
research engineer. This component aims at performing a close-loop control of the
motor speed;

• A Gumstix Overo AirSTORM board, which is a powerful board running an embedded
linux operating system and providing WiFi connectivity.

With these three components, three different configurations can be used:

• Nanowii only: This is the basic configuration where the Nanowii is directly con-
nected to the ESC. The attitude reconstruction and the attitude control are directly
computed on this board.

• Nanowii and RCB: The attitude reconstruction and control are still computed on the
Nanowii which sends motor speed references to the RCB. The speed of the motors
is measured by Hall effect sensors and a controller is implemented on the RCB to
achieve the required speed.

• Nanowii, RCB and Gumstix: The Nanowii sends the IMU informations to the Gum-
stix, which performs the computation of the attitude reconstruction and control.
Then, the Gumstix sends motor speed references to the RCB.

A specific open-source toolbox called RT-MaG has been developed to easily program the
Gumstix and also to generate real-time code for the ground station. C code is produced
from a Simulink diagram, and the compilation is done directly on the Gumstix, which
avoids the setup of a cross compilation toolchain. A Quarc toolbox is used to run real-time
code on the ground station. The ground station is used to send the position information
received from the Vicon system to the UAV, and also to visualize and log the data sent
by the Gumstix. Communication between all the boards are done with serial protocol, the
built-in receiver of the Nanowii is using DSM2 protocol while the Gumstix use standard
WiFi.

The main weaknesses of X4-MaG platform are:

• The complexity of having an onboard computer. On one hand, it offers a great
computing power, on the other hand, it is more subject to bug. While it offers a
high level of abstraction for programming from a Simulink diagram, it also requires
a sophisticated compilation toolchain which can be more complicated to set up.

• The complexity of having three different boards communicating.
6Rotors Control Board
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(a) 3D printed frame. (b) Flight controller board.

Figure 5.5: 3D printed frame of the flexbot quadrotor and the flight controller board.

I have contributed to debug and develop some parts of the toolbox RT-MaG, the RCB
firmware, to robustify the communication link between the different boards, and I have
performed several flying test indoor.

5.4.2 The Flexbot platform

Flexbot platform comes from a crowdfunding project which has developed open source
hardware multicopters controllable with a smartphone.

The frame is 3D printed and the CAD model are open source. The frame of the
quadcopter is shown on Figure 5.5a

The flight controller board features an ATMega32u4 processor, an IMU sensor
(MPU6050), a magnetometer (HMCL5883L) and a barometer (BMP085). The motors
are directly connected to the card as some transistors are mounted to run the DC motors.
The board can be programmed with arduino, and the default firmware is based on Multi-
Wii. A bluetooth low energy module is also mounted and communicate through a serial
bus with the processor. Figure 5.5b shows the flight controller board.

An application for smartphone is provided to control the multicopter with bluetooth
protocol. The data received by the flight controller board is organized with MSP7. As
the flexbot is not compatible with DSM2 protocol, a specific emitter had to be developed
for the MOCA room in order to communicate between the ground station and the plat-
form. It consists in an arduino MEGA, an Ethernet shield and a bluetooth shield. The
arduino board is connected to the same local network as the ground station which packs
the command to fulfill the MSP and sends them through UDP to the IP adress of the

7Multiwii Serial Protocol
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arduino board at a specific port. The arduino board runs an UDP server which listens to
the communication, pair the bluetooth device and relay the data received by UDP to the
flexbot’s bluetooth receiver.

This solution has been found to be reliable, but was only possible because the bluetooth
module of the Flexbot and the arduino shield were both the same. However, Flexbot
changed its bluetooth module after the first batch, the bluetooth shield was then not able
to be paired with the flight controller board anymore. To overcome this issue, a Raspberry
Pi and a bluetooth dongle have been used. The communication protocol had to be reverse
engined, an embedded program has been developed to run an UDP server, and to send the
data through bluetooth protocol.

The main weaknesses of the Flexbot platform are:

• The lack of robustness of the 3D printed frame which makes it really easy to break;

• The lack of closed-loop control of the motors which means that the thrust is decreas-
ing with the battery’s voltage.

5.4.3 The AVE platform

The AVE (Aerial Vehicle efficient) quadcopter has been developped in GIPSA-Lab using
commercial off-the-shelf components excepting the frame. As shown in Figure 5.6, the
robot is equipped with a 3D printed structure, the span of the frame is 25cm. The frame
has been designed by Josué Colmenares-Vazquez, PhD student at GIPSA-Lab. The total
weight is 306g including the 2S battery. The flight autonomy is about 10 min in normal
use.

A Crius AIOP FCB has been used for this robot. This board features a microcon-
troller (ATMega 2560), a Motion Processing Unit (MPU6050), a 3 axis magnetometer
(HMC5883L), and an altimeter (MS5611). The board can be programmed with arduino,
and the default firmware is based on MultiWii. A DSM2 radio receiver is connected to
the PWM8 input of the board. Motors are controlled through Afro 12A Electronic Speed
Controllers (ESC) which are connected to the PWM outputs of the FCB. As detailled
latter in Section 5.4.6, the ESCs perform a closed-loop control of the motor’s speed.

5.4.4 The Inductrix platform

The Inductrix UAV shown in Figure 5.7 is a commercial quadcopter for hobbyists developed
by Blade R©. It features a FCB, and 4 brushed motors. Communication is done via DSM

8Pulse Width Modulation
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Figure 5.6: Experimental AVE platform.

protocol and the power is delivered by a 1S battery. The main advantage of this drone is
its small size and the robustness of its frame. Due to the limited weight (about 27g with
the battery), the impact in case of a crash does not damage the UAV heavily, and the
propellers are also protected by the frame. The motors are directly connected to the FCB
with connectors, therefore the replacement is easy in case of failure. However, the main
disadvantages are the autonomy (around 5 minutes) and the lack of closed-loop control
of the motors, which means that the speed of the motors drop with the battery state of
charge. Moreover the FCB is proprietary which means that there is no possibility to upload
custom code and it is not possible to know how the attitude control is performed onboard.

Figure 5.7: Inductrix quadcopter.
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Figure 5.8: Emax frame of the TACO Platform.

5.4.5 The TACO platform

The TACO9 platform is build on a commercial platform sold by Emax R© shown on Fig-
ure 5.8. This is a carbon and glass fiber frame made of different parts with are assembled
with screws and locknuts. The total weight of this frame is about 185g, the length of
the arm where are mounted the motors are 25cm. To connect the ESC to the battery, a
power distribution board is used to ease the cable management. The FCB is a Naze32
which features a STM32F103CBT6 32-bit ARM Cortex M3 processor, a MPU6500 IMU
accelerometer and gyroscope and a MHC5983 magnetometer. The standard version of
Betaflight is used as the flight controller. LittleBee 20A ESC are used in conjuction with
XNOVA motors. The UAV is powered by a 3S battery and gives a flight autonomy around
10 minutes. The complete quadrotor mass is around 500g. While X4-MaG uses a dedicated
processor to control the speed of the motors, this task is handled by the ESCs on TACO
as detailled latter in Section 5.4.6.

5.4.6 Motor control

A common problem experienced with quadcopters is the time-variant thrust response due
to a drop of the battery voltage. In other words for a same command received by the
flight controller, the resulting thrust given by the motors will depend on the battery state
of charge. This time-variant response of the quadcopter requires a high integrator gain
in the position controller which results in adding too much phase. For the Flexbot and
the Inductrix, the DC motors are controlled directly by the FCB through some transistors.
But for AVE and TACO drones, as more power is required for the motors, ESCs are used in
order to provide the necessary amount of power and to handle the 3-phases of the motors.
However, most of the ESCs do not achieve closed-loop control of the motor speed, and are
then sensible to the voltage drop of the battery. BLHeli is an open source project intended
to replace the official firmware of different ESCs. The main advantage is that it provides

9Thrust Active COntrol
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a sensorless closed-loop control mode of the motor speed. Therefore, the rotation speed
should not be impacted by the battery’s state of charge. Several adjustable parameters
are available, however finding the good values for our setup is quite difficult without any
objective measurement. For this reason, a test bench for the couple motor/ESC has been
build in order to quantify the effect of the different tuning parameters.

5.4.6.1 Test bench setup

The only data needed is the speed of the motor in order to measure the response time and
to check if the closed-loop control is able to reject a voltage drop. A Hall effect sensor is
used to measure the speed. For the considered model of the motor, the poles are directly
visible by the sensor. If it would not be the case, some magnets can be glued around
the motor to trigger the sensor. An arduino Uno has been programmed to compute the
frequency given by the hall sensor effect, this frequency is then sent over USB to a PC
periodically. The whole setup is depicted on Figure 5.9.

The PC sends several setpoints through USB to another arduino card which generate
the PPM10 signal for the ESC: 1ms pulses translate to zero throttle, 2ms pulses are full
throttle. Figure 5.10 shows the input profile send to the ESC: the first part (from 0 to
10 seconds) consists in an ascending and descending ramp, the second part (from 10 to
20 seconds) tests several step responses, the third part (from 20 to 22 seconds) consists
in a high frequency reference, and during the last part, the voltage of the power supply is
dropped by 1 Volt. A Labview real-time software has been built to send, receive and save
the different data.

5.4.6.2 Results

18 configurations of control parameters have been tested. Figure 5.11 shows the measured
speed of the motor for 4 different tuning parameters. It can be seen that the response to
the ramp input is close for all the closed-loop parameters. To determine the best values
for the proportional gain (Kp) and the integral gain (Ki), two important behaviors will
be considered: the rejection of a voltage drop and the step response. Figure 5.12 shows a
detailed zoom around two regions of interest:

• It can be seen clearly on Figure 5.12a that a voltage drop of 1 Volt (near 24 s) results
in a speed drop of about 15 Hz for the open-loop control, whereas all the closed-loop
responses are less impacted and tend to recover the speed drop. Note that as the
drop was manually applied to the power supply, it is not synchronized between all
the experiments.

10Pulse Position Modulation
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Figure 5.9: Setup of the test bench for the couple ESC/motor.
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Figure 5.10: Profile input for the tuning of the motor control loop.
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Figure 5.11: Measured speed for different tuning parameters.

• Figure 5.12b shows the response to a step input, at t = 11s the PPM signal input
of the ESC goes from 1.29 ms (29 % full speed) to 1.49 ms (49 % full speed). Note
that the open-loop response has not been plotted because it does not converge to the
same value.

The parameters which have been found to give the best performances in terms of both
disturbance rejection and step response are Kp = 3, and Ki = 3. A high value of Ki tends
to provide faster disturbance rejection but it leads to an important overshoot of the step
response if the proportional gain Kp is not high enough.

5.5 Platform choice

To conduct the experiments, the following requirements have to be met:

• Safety is an important requirement as the MOCA room is small and the experimental
part will be demonstrated beyond people;

• The platform should be “crashproof”, this is an important requirement as crashes
are more likely to occur during development.

The characteristics of each platform are reported in Table 5.1. It has been chosen to
conduct the experiments with the Inductrix platform as this UAV has a small mass (27g),
therefore the impact will carry less energy. Due to the well designed frame, this UAV is
also resistant to crash. However as the motors are not speed controlled, the performances
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Figure 5.12: Tuning of the ESC’s gain.

Inductrix AVE X4-MaG Flexbot TACO
Battery 1S 45C 150mAh 2S 2400mAh 2S 2400mAh 1S 25C 350mAh 3S

Autonomy 5 minutes 10 minutes 10 minutes 8 minutes 10 minutes
Motors Brushed Brushless Brushless Brushed Brushless

T-motors T-motors X-NOVA 2205
Closed-loop motors control × X X × X

Flight controller proprietary Multiwii Custom Multiwii Betaflight
Size cm cm cm cm cm

Mass (w/ battery) 27g 300g 350g 40g 500g
Safety XXXXX XX X XXXX X

Crash robustness XXXXX XX XXXX XX XXXX

Table 5.1: Comparison of the different platforms.
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depend on the state of charge of the battery. We do not intend to change the FCB firmware,
therefore the proprietary FCB is not an issue in the present case.
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Application of the event-switched
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6.1 Objectives

In this chapter the event-switched method introduced in Chapter 4 will be used with the
Inductrix platform presented in Section 5.4.4. While allowing a person to remotely control
an UAV, we want several objectives to be met: the first one is to ease the maneuverability
of the vehicle by providing an assistance to the pilot. Usually the attitude and the thrust
of the quadcopter are controlled via the remote controller. However this method requires
an experienced pilot as the first flights can be challenging for a beginner. Rather than
the angles, controlling the speed of the robot seems more intuitive for a user. A speed

77
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controller will be introduced later in Section 6.3 to achieve this goal. The second objective
is to avoid a collision between the vehicle and the environment. The quadcopter will be
modeled as a point in the space. The environment will be defined such that the UAV
should remain in an origin centered square of 1.5m × 1.5m. This square will be called
virtual limits or virtual walls. The height will not be constrained, only a 2-dimensional
problem (in the horizontal plan) will be addressed here. Collision avoidance encompasses
two problematics:

• How to detect an obstacle;

• How and when to take the UAV control over the pilot.

Obstacle detection can be done using onboard sensors. In [Achtelik et al., 2009] collision
avoidance detection has been performed with a laser sensor and a stereo camera to achieve
autonomous flight. Both measures of the sensors are merged to deliver an estimation of
the position using an extended Kalman filter. A simultaneous localization and mapping
(SLAM) algorithm is run on a ground station and a LQ controller brings the quadcopter to a
safe trajectory if necessary. Generating this trajectory is a path planing problem. Artificial
Potential Field (APF) method introduced in [Khatib, 1986] is a widely used method for
path planning, it consists in assigning a potential function to the space, and simulating
the robot reacting to the potential field. The robot is attracted to the target which has
the lowest potential, while obstacles reject the vehicle. The space is discretized and an
optimal problem is solved. A gradient based method has been proposed in [Khatib, 1986]
to generate a trajectory. However this method can suffer from local minima, that is when
the virtual forces sum up to zero while the target is not reached. Heuristic optimization
method has been used in [Rathbun et al., 2002] to generate an optimal trajectory while
avoiding local minima. A survey of different techniques for path planing can be found in
[Goerzen et al., 2009].

Obstacle detection will not be discussed here, sensing will be done with the Vicon
system. It is assumed that the positions of any element are known in real-time. Therefore
sensing can be considered as perfect here because of the accuracy and precision of the
measures. The origin will be considered as the target point when a collision is about to
occur. Due to the convexity of the environment, the minimum distance trajectory to reach
this target will be considered as safe, therefore a path planing method will not be necessary.
Two different tasks have to be performed on the ground station as illustrated on Figure 6.1:
1/ the first one is to design a controller which determines how to act on the quadcopter to
avoid a collision, 2/ and the second one is to design an event condition to check when it is
necessary to act on the quadcopter in order to avoid a collision.

Event-based control gives a framework to design a stabilizing function and a trigger
function. The event-switched approach presented in Chapter 4 will be used to design the
trigger condition. When a collision is about to occur, the UAV will intend to go back to
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Figure 6.1: Schematic view of the collision avoidance approach used here.

the origin. To achieve this task, a PID controller introduced in the sequel will be used
as a stabilizing control input. Event-switched approach aims at closing the control-loop
only when a state constraint is about to be violated, while allowing open-loop otherwise.
User inputs will be modeled as bounded unknown disturbances. The model of the robot
will be considered as the open-loop dynamics. The event-switched approach gives all the
initial conditions which guarantee that the constraints will not be violated considering the
quadcopter dynamics and the worst possible user inputs.

6.2 Preliminar steps

6.2.1 Position controller design

The low level controller implemented on the FCB is able to stabilize the attitude of the
vehicle. However, it can not perform position control because the IMU drift is too large
to allow the acceleration double-integration to be successful. The position controller is
implemented on the ground station and uses the position measure from the Vicon system.

Once an event is triggered, a control signal which brings the UAV to a safe position
will be applied. The position controller is built upon a simplified model of the drone. It
is assumed that the dynamics of the attitude controller is negligible beyond the dynamics
of the position. In other words, the desired angles are considered to be reached quickly
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enough. The obtained model of the system is then:∑−→
F = mξ̈ (6.1)

R · T −m · −→g = mξ̈ (6.2)

with:

R =

cosψ · cos θ cosψ · sin θ · sinφ− sinψ · cosφ cosψ · sin θ · cosφ+ sinψ · sinφ
sinψ · cos θ sinψ · sin θ · sinφ+ cosψ · cosφ sinψ · sin θ · cosφ− cosψ · sinφ
− sin θ cos θ · sinφ cos θ · cosφ


(6.3)

Recall that T , φ, θ, and ψ are respectively, the total thrust, the roll, the pitch and the yaw
angle.

Our aim is now to find the setpoints
(
φ? θ? T ?

)
which are related to the desired

accelerations along each axis:
(
ẍ? ÿ? z̈?

)
.

From (6.2) =⇒ m · ẍ = T · (cosψ · sin θ · cosφ+ sinψ · sinφ) (6.4)
(6.2) =⇒ m · ÿ = T · (sinψ · sin θ · cosφ− cosψ · sinφ) (6.5)
(6.2) =⇒ m · z̈ = T · cos θ · cosφ−m · g (6.6)

From (6.6) =⇒ T · cos θ · cosφ = m · z̈ +m · g (6.7)

(6.4) · sinψ − (6.5) · cosψ ⇐⇒ T · sinφ = m · (ẍ · sinψ − ÿ · cosψ) (6.8)
(6.8)
(6.7) =⇒ φ = tan−1

(
cos θ · ẍ · sinψ − ÿ · cosψ

z̈ + g

)
(6.9)

(6.4) · cosψ + (6.5) · sinψ ⇐⇒ T · sin θ = m · ẍ · cosψ + ÿ · sinψ
cosφ (6.10)

(6.10)
(6.7) =⇒ θ = tan−1

(
ẍ · cosψ + ÿ · sinψ

z̈ + g

)
(6.11)

(6.6) =⇒ T = m · (g + z̈)
cos θ · cosφ (6.12)
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Thus the desired accelerations
(
ẍ? ÿ? z̈?

)T
can be considered as virtual inputs and are

related to the following setpoints:

φ? = tan−1
(

cos θ · ẍ
? · sinψ − ÿ? · cosψ

z̈? + g

)
(6.13)

θ? = tan−1
(
ẍ? · cosψ + ÿ? · sinψ

z̈? + g

)
(6.14)

T ? = m · (g + z̈?)
cos θ · cosφ (6.15)

The dynamics of the position along each axis can be considered as a double integrator,
where the inputs

(
ẍ? ÿ? z̈?

)T
are transformed to angles values from the nonlinear rela-

tionships (6.13)-(6.15). By neglecting the attitude dynamics, the rotational speed of the
yaw angle ψ̇ is considered as a control input signal. Therefore the yaw’s dynamics can be
considered as an integrator.

For the implementation on the Inductrix platform introduced in Section 5.4.4, the
angles and thrust setpoints need to be converted to 10 bits unsigned integers in order to
be transmitted through the emitter. The maximum command for the angles φ? and θ? on
the Inductrix UAV corresponds to π

6 rad = 30 deg and the minimum to −π
6 rad. An angle

α bounded between π
6 and −π

6 radians will be converted to a 10 bits unsigned integer a as
follows:

a = 512 + 512α · 6
π

(6.16)

To identify the scaling factor for the thrust, a simple procedure is used: the thrust command
is increased until hover is reached, the thrust integer command needed to hover will be
denoted bh. Giving bh and the mass of the Inductrix m, the thrust T ? in Newton can be
converted to a 10 bits unsigned integer b as follows:

b = T ?
bh
mg

(6.17)

bh has been found to be about 600 with a fully charged battery. We recall that since the
speed of the motors are not subject to a closed-loop control on the Inductrix platform,
this value will decrease with the state of charge of the battery. The maximum thrust the
quadcopter can produce will be denoted T̄ and can be approximated as follows:

T̄ = 1023mg
bh

= 0.452N (6.18)

From the bounds of the angles φ, θ, and the thrust T , bounds of the control inputs(
ẍ? ÿ? z̈?

)T
can be deduced. The symbol ¯̈x will denote the higher bounds of the accel-

eration along x axis, while ẍ will denote the lower bound. Same kind of notations will be
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Proportional gain Integral gain Derivative gain
x and y position 4.35 0.43 1

z position 4.5 0.8 2.2
ψ angle 1.3 0.1 0

Table 6.1: Tuning of the different discrete controllers used for the position control. Sam-
pling time Ts = 10ms.

used for the accelerations along y and z axis.

¯̈x =
T̄ · sin

(
π
6

)
m

= 8.37m · s−2, ẍ = −¯̈x = −8.37m · s−2 (6.19)

¯̈y =
T̄ · sin

(
π
6

)
m

= 8.37m · s−2, ÿ = −¯̈y = −8.37m · s−2 (6.20)

¯̈z = T̄

m
− g = 6.92m · s−2, z̈ = −g = −9.81m · s−2 (6.21)

6.2.2 Position controller implementation

Standard PID discrete controllers will be implemented to stabilize the position along each
axis, and a PI controller will stabilize the yaw angle. The controllers will run on the ground
station as depicted on Figure 6.2 at the frequency of 100Hz. Faster sampling could have
been done up to 500Hz with the Vicon system, but was not necessary due to the limited
dynamics of the model. Dynamics along x and y axis will be considered to be the same in
the sequel, therefore the same controller structure and gains will be used. Considering a
slow varying reference x?k, the virtual control input ẍ will be computed as follows:

ẍ?k = Kp(x?k − xk) +Kd(−ẋk) +Ki

k∑
p=0

(x?p − xp)Ts (6.22)

where Kp represents the proportional gain, Kd the derivative gain and Ki the integral
gain. The same structure will also be used for the controller along the z axis. Tuning of
the gains was done by try and error until satisfactory performances were achieved. The
different gains are summarized in Table 6.1.

Step response along x axis is plotted in Figure 6.3. Please note that cancellation of the
steady state error was not targeted during the tuning, the controller needs only to bring
the UAV in the origin neighborhood. We are more interested in the transient response
rather than the steady state, because an event function will trigger this controller to bring
back the UAV to the origin, and will give back the control to the pilot before reaching the
target. A special procedure for take off and landing has been considered: it consists in
generating a ramp reference instead of a step along z axis (this is equivalent to bound the
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Figure 6.3: Experimental step response along x axis in closed-loop.
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Figure 6.4: Experimental response to special procedures0 designed for take off and landing.

time derivative of the reference input z?). Measured response is plotted in Figure 6.4. The
integral gain has to compensate the decreasing battery state of charge, therefore it leads
to an overshoot when applying a step input.

6.2.3 Identification

The controller along z axis is needed to keep the quadricopter at a constant height, while
the controllers along x and y are needed to bring the quadcopter near the origin to avoid
a collision. In order to apply the event-switched method, a discrete LTI model of the
closed-loop system is needed. The obtained model will reflect the dynamics of the physical
platform, in addition to the attitude and position controller. Identification will be per-
formed along x axis. The dynamics along y axis will be considered similar to the x axis.
The altitude will be regulated around a constant height (z? = 0.8m), the quadcopter will
be placed at x = 1m and y = 0m before closing the control loop.

A model can be built from the response of the system when the PID controller (6.22)
is applied with a setpoint x? = 0. The experimental response is shown in Figure 6.5. The
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Figure 6.5: Identification of the closed-loop system. Measured data are plotted in black
and the corresponding model response in dashed blue.

following continuous autonomous second order system has been obtained:

Ẋ(t) = Āc ·X(t) (6.23)

where X =
(
x ẋ

)T
, and with Āc =

(
0 1

−3.374 −2.091

)

Considering a sampling time of Ts = 0.01s, the discrete time closed-loop dynamics is
described by:

Xk+1 = Ā ·Xk (6.24)

with Ā =
(

0.9998 0.009896
−0.03339 0.9791

)
. This model is stable and represents the dynamics of the

UAV when a stabilizing control to the origin is applied.

A double integrator will be considered as an open-loop model. Considering a sampling
time of Ts = 0.01s, the model is described as follows:

Xk+1 = A ·Xk +B · uk (6.25)

where uk denotes the unknown but bounded user input (considered as a perturbation here),

and with A =
(

1 0.01
0 1

)
and B =

(
0

0.01

)
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6.3 User assistance

Usually the user directly controls the angles φ and θ with the remote control. However, it
can be challenging for a beginner to achieve a stable flight. To assist the user to pilot the
quadcopter, speed controllers will be used on the horizontal plane (x, y). Thus the user
will control the speed with the remote controller rather than the pitch and the roll angles.
The right stick of the remote control will be mapped to speed setpoint v?x and v?y along
the x and the y axis of the body frame. As dynamics for speed can be considered as a
simple integrator, a PI controller will be used. Implementing the controllers in the body
frame is important because the integral part should compensate a steady-state error due
to a mechanical disturbance. To transform the speed from the inertial frame to the body
frame, only the horizontal plane (x, y) will be considered, thus only the rotation matrix

Rz(ψ) =
(

cosψ − sinψ
sinψ cosψ

)
is needed. Speed of the UAV in the inertial frame, denoted by

vx = ẋ and vy = ẏ, will be estimated by applying a first order filter on the position given
by the Vicon system:

v̂x(t) = s

1 + 0.06sx(t) (6.26)

where s denotes the Laplace variable and v̂x the estimation of the speed along x axis
of the inertial frame. Direct approximation of the derivative from measurements (using
backward Euler approximation) can also be computed, however it is very sensible to noise.
Filter (6.26) has been tuned to attenuate the noise of the obtained time-derivative with an
admissible delay. Estimated speed in the body frame along x and y axis will be denoted
v̂Bx and v̂By respectively and can be computed as follows:

(
v̂Bx (t)
v̂By (t)

)
= Rz(ψ)T

(
v̂x(t)
v̂y(t)

)
(6.27)

The PI controllers will provide acceleration setpoints in the body frame which need to
be transformed in the inertial frame. Schematic view of the control implementation is
depicted in Figure 6.6.

The left stick will be mapped to the setpoint ψ?, thus the user can directly control the
cap of the UAV.

PI controllers have been tuned manually until satisfactory performances were achieved.
Important focus has been given on steady state error as it is primordial to stop any motion
when the user is putting the stick to the center. Response to a step for the speed around
x axis is shown in Figure 6.7. The yaw angle ψ was regulated around 0, therefore speed
was the same between inertial and body frames.
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6.4 Event-switching for constrained states

6.4.1 Problem statement

The objective is to avoid a collision between the vehicle and the environment while a pilot
is controlling the robot. Event-switched method introduced in Chapter 4 will be used to
switch between the user inputs and a collision avoidance program, which consists in a PID
controller which brings the robot near the origin. Controller introduced in Section 6.2.2
will be used with the setpoint x? set to 0. The quadcopter will be modeled as a point in
the space. Only a 2-dimensional problem will be addressed here. The environment will be
defined such that the UAV should remain in an origin centered square of 1.5m × 1.5m.
This square will be called virtual limits or virtual walls. Due to the symmetry of the
problem, and because the dynamics along x and y axes will be considered similar, only the
constraints and the dynamics along x axis will be considered in the sequel.

Given a set X ∈ R2, the discrete LTI autonomous model (6.24) and the model (6.25)
depending on the unknown user input uk, the aim is to design an event-set S ∈ R2 such
that the state trajectory of the switched system:

Xk+1 =
AXk +Buk if Xk ∈ S
ĀXk otherwise

(6.28)

is constrained in the set X . This set will define all the specified constraints. In the following,
the design of the constraint set X and the event-set S will be detailed. Thereafter, they
will be implemented in the event-switched control strategy.

6.4.2 Definition of the constraint set

Virtual limits define the set which represents the bounds on the position:

V = {X ∈ R2 : HvX ≤ Pv} (6.29)

with Hv and Pv describing the virtual limits

Hv =
(

1 0
−1 0

)
and Pv =

(
0.75
0.75

)
(6.30)

If the trajectory of the vehicle is constrained in V , the position of the robot will be bounded
between [−0.75; +0.75]cm. This could be enough to describe the constraint set. However,
we propose to also consider the validity domain X̄ of model (6.24). This autonomous
model represents the dynamics of the quadcopter when the PID control input introduced
in Section 6.2.2 is applied to stabilize the vehicle near the origin. Because of the actuator
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saturation, this model is valid only inside a specific region X̄ ∈ R2 of the state-space. If
integral gain is neglected in the PID controller (6.22), the stabilizing input can be expressed
in a state-feedback form: ẍ?k = −K ·Xk, with K =

(
4.35 1

)
. Then the input constraint

set Ū = {ẍ?k ∈ R : ẍ ≤ ẍ? ≤ ¯̈x} can be projected in the state space, the resulting set is
expressed by: X̄ = {X ∈ R2 : ẍ ≤ −KX ≤ ¯̈x}.

The constraint set X is defined such that both the validity domain and the virtual
limits are considered:

X = X̄ ∩ V (6.31)

Given P a positive invariant set for system (6.24), event-switched approach provides
a systematic way to design an event-set S such that the states of switched system (6.28)
remains in P .

The aim is to constrain the states of system (6.28) in X , however this set is not nec-
essarily positive invariant for this system. While it has been chosen to consider the mRPI
set in Chapter 4, we will not consider disturbance for the stable dynamic, and we propose
here to consider the MPI1 set in X instead. Methods to compute MPI set for discrete
time linear systems are well known and the reader can refer to [Kerrigan, 2000] for further
details. Figure 6.8 shows the MPI set P of system (6.24) included in the constraint set X .
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Figure 6.8: Constraint set X is represented in red, and the MPI set P in yellow.
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6.4.3 Event-set design

The second step is to design the event-set S dependent on the set P and the open-loop dy-
namics (6.25). The control input u given by the pilot is considered as a bounded stochastic
disturbance as the user input is not known in advance. In Chapter 4 it is proposed to
design an event-set S such that:

Xk ∈ S =⇒ Xk+1 ∈ P (6.32)
with Xk+1 = A ·Xk +B · uk

For robustness purpose we rather choose to design S such that:

Xk ∈ S =⇒ Xk+h ∈ P , ∀h ∈ N and 1 ≤ h ≤ p (6.33)

with Xk+h = Ah ·Xk +
h−1∑
k=0

Ah−1−m ·B · uk and h ≥ 1, h ∈ N

Here, p = 10 has been chosen. It means that the state will stay in the set P even if the
control law is switched 10 sampling time later.

After computation, the event-set S is represented by 136 inequalities which define all
the vertex of S. As discussed in Chapter 4 it can be time consuming to check in real-time
if the state belongs to S. Consequently, to reduce the complexity, the polyhedral set is
approximated by the biggest ellipsoidal set E :

{
x ∈ R2 : xTQx ≤ 1

}
included in S. The

value of Q has been found by solving a convex optimization problem (see Section 4.5.3 for
details):

Q =
(

5.8938 2.3197
2.3197 1.1998

)

Control input ẍ? will be switched between the position controller ẍ?k = −KXk and the
user input ẍ?k = uk. When the position controller is used, the dynamics can be modeled as
an autonomous system. The resulting switched system is expressed as follows:

Xk+1 =
AXk +Buk if Xk ∈ E
ĀXk otherwise

(6.34)

The control inputs ẍ? and ÿ? will both be switched to the position controller every time
an event is triggered (when the state leave the set E) along any axis x or y. The MPI set
P , the polyhedral event-set S, and the ellipsoidal event-set E are depicted in Figure 6.9.

Computation time

The inclusion condition Xk ∈ S will be checked on the ground station, therefore we should
not be limited by the computational power. However, for further development it is inter-
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Figure 6.9: The MPI set P is represented in yellow, the event-set S in green, and its
ellipsoidal approximation E in red stripes.

esting to check if the inclusion condition could be performed onboard and how long does
it takes.

On the Naze32 FCB, the CPU is running at 72MHz. 7 cycles are needed to perform
an integer 32bits multiplication (4 for loading operands, 2 to store result, 1 for the mul-
tiplication itself), and 47 cycles are needed for a floating point multiplication. Using the
condition based on the event set S leads to 272 multiplications, 136 additions, 136 compar-
isons. 3808 clock cycles = 52.9µs are needed to check the state inclusion in S with integer
operations and 14688 clock cycles = 204µs with floating point unit operations.

Using the condition based on the event set E leads to 6 multiplications, 3 additions,
1 comparison. 70 clock cycles = 972ns are needed to check the state inclusion in E with
integer operations and 310 clock cycles = 4.31µs with floating point unit operations. Using
the event-set E rather than S reduces by 98% the execution time of the event condition.
It can be noticed that the floating point operations are more time consuming due to the
fact that the Naze32 does not include a floating point unit.

6.5 Experimental results

Implementation has been done on the ground station, the same event-set was used for
the x and the y axis. The quadcopter was stabilized at a constant height (z? = 0.8m).
While a human pilot was moving the sticks of the remote control randomly, event-switched
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Figure 6.10: Altitude of the UAV.

control should prevent a collision between the UAV and the virtual limits. An experiment
of 20 seconds has been conducted. The altitude of the UAV is shown in Figure 6.10, the
height was regulated around 0.8m with less than 6% error. Trajectory of the UAV in the
horizontal plane is shown in Figure 6.11, one can observe that the quadcopter does not
collide with the virtual limits. Position along x and y axis are plotted in Figure 6.12a, the
measured speed is shown in Figure 6.12b. The recorded user input expressed in the inertial
frame is shown in Figure 6.12c, the estimated speed in 6.12b. Figure 6.12d shows when
the control input is switched between the position controller and the user input, when the
event is ’1’ the pilot can not control the UAV. Trajectory of the states X and Y in the
state space are depicted in Figure 6.13a and 6.13b respectively, an event is triggered when
the state does not belong to E . A stabilizing control is then applied, which brings back
the states in E . It can be noticed that the state does not leave P as intended.

While this experiment shows that our approach works as intended, there are some
known issues, sometimes the UAV can collide with the virtual limits. A recording of the
trajectory in the horizontal place during such an “accident” is shown in Figure 6.14. It
can be seen that the state X leaves the set P , despite the fact that the stabilizing control
−Kxk has been applied to the system.

This behavior can be explained by several hypotheses:

• Communication fault between the ground station and the FCB has occurred, there-
fore the correct stabilizing input could not be transmitted to the robot;

• The closed-loop model is not good enough, therefore the set P is not positive invariant
for the real system;

• The open-loop model is not good enough, therefore the event condition does not
guarantee the positive invariance of the set P for the switched system.

The first one can be solved by including more robustness delay in (6.33). For the second
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Figure 6.11: Trajectory of the UAV in the (x, y) plane.

one, some robustness can be obtained by the addition of a bounded disturbance in the
closed-loop model. For the third one increasing the bounds on the user input to compute
the positive invariant set will also increase the robustness. Of course, the best way to
solve the second and the third issues is to build a better closed-loop and open-loop model.
Position dynamics along x and the y axis of the inertial frame were modeled using the
same equations, it would be better to consider dynamics in the body frame using separate
models for both axes. Finally, a big issue which has been experienced is the performances
dependence of the battery state of charge. This issue renders the real system time variant.
Integrator gains had to be kept high to overcome this problem, however it was at the
expense of the phase margin.

6.6 Improving identification

We propose to identify an open-loop model of the UAV in the body frame. This model
will reflect the dynamics of the mechanic system and the attitude controller implemented
on the FCB. While hovering at a constant height, a PRBS2 is applied to the inputs ẍ? and
ÿ?. The position of the UAV is recorded to construct a nonparametric model. A PRBS
provides a richer frequency content than a step input, therefore the identification is better
to model the high frequency dynamics. To limit the duration of the experiment, a sampling
frequency of 20 Hz has been chosen and the parameter p of the PRBS which describes the

2Pseudo Random Binary Sequence
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Figure 6.12: Recorded data of a flight using event-switched approach to keep the quad-
copter in a 1.5m square.
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Figure 6.13: An event is triggered once any of the state X or Y leave the event-set E (in
green).
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the quadcopter and the virtual limit.
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flatness of the frequency spectrum has been set to 2. It means that the identification signal
will have less power in higher frequencies. The number of registers of the PRBS will be set
to 8, therefore the experiments should last at least (28 − 1)/40 = 6.38s. The amplitude of
the PRBS has been set to 1.2m · s−2.

We aim to model a second order system around each axis, the input of the MIMO model
will be the accelerations setpoint ẍ?B and ÿ?B expressed in the body frame, and the output
will be the accelerations along x and y axis in the body frame. Vicon system will record
the position of the UAV, and an estimation of the acceleration in the body frame will be
computed offline. This acceleration will be respectively denoted ˆ̈xB and ˆ̈yB along x and y
axis of the body frame. The PRBS inputs for both input signals are shown in Figure 6.16.
A 4th order ARMAX model with 2 inputs has been used to fit the recorded data, the
simulation of the identified model and the measured output is plotted in Figure 6.17. This
model can be converted into the following discrete time state-space model:

Mk+1 = AmMk +Bmck (6.35)(
ẍBk
ÿBk

)
=
(

1 0 0 0
0 1 0 0

)
Mk (6.36)

with Am =


1.546 0.001395 1 0

0.005295 1.612 0 1
−0.6784 3.485 · 10−5 0 0
0.00175 −0.7307 0 0

 and Bm =


0.02257 −0.001995
0.001802 0.02586
0.04878 −0.004107
0.004597 0.04363


where Mk represents the state of the system, and ck =

(
ẍ?B ÿ?B

)T
= RT

z (ψ)
(
ẍ?k ÿ?k

)T
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Figure 6.16: PRBS inputs for identification.

the control input. This system can be augmented to model the position dynamics, the
resulting model would be an 8th order model.

For further development, we propose to use this model to design a better controller and
to design the event set.

6.7 Summary

In this chapter, event-switched approach has been used to design an event condition which
switches between the user input (considered as unknown bounded disturbances) and a
controller to constrain the position of the UAV inside virtual limits. Firstly, a stabilizing
controller which brings back the robot near the origin of the inertial frame {I} has been
designed, secondly a closed-loop model has been identified, and finally the event condition
has been computed. This approach has been tested on a real-time platform with a user
moving the sticks of the remote control randomly. While most of the time the user input is
switched off and the UAV is brought near the origin of the inertial frame to avoid a collision,
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Figure 6.17: Identification data and simulation of the identified model. Estimated acceler-
ation of the quadcopter along x and y axis of the body frame are represented in red, and
the response of the identified model is plotted in dashed blue line.
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there were some cases where the user input was switched off but the states constrained
were still violated. This behavior could be explained if the identified model and the open-
loop model were not accurate enough. As a consequence, we have proposed to improve the
identification part.





Chapter 7

Conclusions and perspectives

7.1 Conclusions

This thesis proposes two event-based design methods ensuring different performances. The
first one aims to guarantee a minimum rate of convergence of a Lyapunov function while the
second one ensures a priori specified state constraint. Experiments have been conducted
to demonstrate the benefits and limitations of each technique. In the sequel, the thesis
contributions are summarized:

I An event-based controller is proposed for discrete LTI system in Chapter 3. This is an
extension of the work presented in [Durand et al., 2014a] in the discrete time domain.
The event condition, which is checked periodically, is based on a Lyapunov function
Vk. The basic idea is to compare the rate of decay of Vk if the control is updated or
not. The stability of the event-triggered system is ensured, and furthermore the rate
of convergence of the Lyapunov function can be bounded. Simulations have shown
the efficiency of the proposed techniques compared to a time-triggered controller and
a Send-On-Delta controller proposed in [Årzén, 1999].

II The previous approach has been tested on a real-time system. The aim was to stabilize
two angles of a gyroscope actuator around a given reference. To implement a state-
feedback controller, an observer has been designed to estimate the whole state vector.
Furthermore, disturbances have also been introduced into the observer design to be
able to cancel their effects. The event-based controller has been implemented as well
as a classical time-triggered controller. Results have shown that the number of control
updates has been significantly reduced (more than 50%), moreover the disturbance
cancellation improves the reference tracking significantly.

III A new event-based controller has been introduced in Chapter 4. Event-switched tech-
nique aims to keep the ultimate bound of a disturbed discrete LTI system while reduc-
ing the number of control updates. This approach consists in applying time-triggered
control if the state is too far from the origin, while opening the control loop otherwise
rather than holding the last control input signal value. A region of the state-space
is computed which corresponds to all the initial conditions which guarantee that the
event-switched system will be bounded in a specified set.
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IV Event-switched method has been applied to avoid collision between a human piloted
quadcopter and virtual limits in Chapter 6. A switching condition between user and
stabilizing input has been designed which guarantee specified state constraints. Event-
switched approach was used to design a high level monitoring collision detection which
ensures that the specified constraints are not violated. Real-time implementation has
been done on a ground station with a Vicon localization system, and while most of
the time the UAV does not collide with the virtual limits, there were some cases when
a collision has been experienced.

Event-based control strategies have shown some encouraging results to reduce the num-
ber of control updates while keeping some performances. Performance specifications will
determine which event-based method will be necessary. If stability is only of interest,
methods based on Lyapunov derivative techniques are well adapted. However, if pratical
stability needs to be achieved while ensuring some state constrains, event-switched method
can be used.

7.2 Perspectives

The first method presented in Chapter 3 could be improved to consider delay in the system
as in [Durand, 2013]. Also including bounded disturbances would be a great amelioration
to extend this technique to a wider class of systems. Another improvement would be to
reduce the number of communications required between the sensors and the observer by
considering the stability of the observation error instead of the system state.

Results for event-switched method introduced in Chapter 4 could be improved by con-
sidering inter-sample behavior in case of the application on continuous LTI systems. An-
other idea would be to use a Lyapunov based technique when the state is outside a RPI
set, and uses the event-switched approach when the state has reached this set. This way,
instead of sampling as fast as possible when the state is not in the event-set, control signal
updates would be required only when a Lyapunov function of the system is not converging
fast enough.

While event-switched approach demonstrates its ability to keep the UAV away of the
virtual limits most of the time, there is still room for improvement. Collision has happened
sometimes and could be explained by several factors. As the design of the event condition
depends strongly on the model, improving it would certainly improves performances.

To simplify the design, it has been decided to consider similar dynamics along x and
y axis, and the event condition has been designed in the inertial frame. For improvement
we advise to implement the event condition in the body frame, by considering a different
model of the quadcopter along the axis x and y of the body frame. It has been proposed
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to identify the response of the robot to acceleration inputs rather than the position of the
UAV when closed-loop control is applied. Furthermore, a MIMO model has been identified
which considers the coupling between the inputs. PRBS control inputs have been used to
properly identify the dynamics of the system in a wider frequency range. However, using
a higher order model increases the complexity of the event-based control design. A good
balance has to be found between complexity and accuracy of the model.

Event-switched technique is not adapted when the constraints set is not convex, im-
provement can be done to avoid this limitation. Rather than using the absolute position
of the quadcopter and the obstacle, the relative distance between each object can be con-
sidered. Also, instead of returning to the origin of the inertial frame when a collision is
about to occur, including a path planning method would be necessary to generate a safe
trajectory consisting in a set of waypoints the UAV has to visit sequentially.

A Vicon motion tracking system has been used to implement the collision avoidance,
using onboard sensors to perform odometry and obstacle detection would allow to achieve
autonomous flight. Besides the technical implementation, the main difficulty would be
to deal with the uncertainty of the measurements, however it can be easily included in
the design of the event function. Similarly, implementing the position controller and the
event function on the FCB would be a great step forward to achieve autonomous flight,
as a ground station would not be required. Also, using another platform which implement
closed-loop control of the motors speed would lead to better results as the dynamics would
not be dependent on the battery state of charge.
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Commande événementielle : application aux systèmes robotiques

Résumé — La théorie du contrôle a d’abord été conçue pour des contrôleurs
analogiques. Dans ce contexte, il était pertinent d’utiliser un environnement continu pour
concevoir une boucle de rétroaction. Les technologies analogiques ont été remplacées par
des technologies numériques en raison de plusieurs avantages (coût, résistance au bruit,
intégration, ...). Le signal de commande est maintenu constant entre les déclenchements
ordonnés par une horloge périodique. Le principal inconvénient des contrôleurs périodiques
est la bande passante constante requise pour effectuer un contrôle en boucle fermée dans
le cas des systèmes commandés en réseau. Pour diminuer le nombre d’informations
échangées il est possible d’augmenter la période d’échantillonnage, cependant une limite
est imposée par la dynamique du système considéré. Dans ce contexte, la commande
événementielle vise à compléter la commande périodique en proposant une méthode où les
mises à jour du signal de commande sont déclenchées seulement en cas de nécessité. Dans
cette thèse, deux contrôleurs évènementiels sont présentés ainsi que des essais sur des
dispositifs expérimentaux. La première méthode est basée sur une fonction de Lyapunov
et garantit une certaine vitesse de convergence des solutions du système commandé par
événement. Des expériences ont été menées sur une plateforme expérimentale temps-réel.
La politique de mise à jour proposée montre une réduction significative du nombre de
mises à jour du signal de commande tout en assurant des performances satisfaisantes. La
seconde méthode appelée event-switched est dédiée aux systèmes à temps discret sujet
à des perturbations bornées. Cette approche est basée sur la théorie des ensembles et
en particulier sur la propriété d’invariance. Cette méthode a ensuite été adaptée pour
un problème d’évitement de collision entre un drone commandé par un pilote et un
environnement statique. Les résultats, après mise en œuvre sur un système temps-réel,
sont présentés et discutés.

Mots clés : Commande événementielle, robotique, drone, UAV, ensembles in-
variants.

GIPSA-Lab, 11 rue des Mathématiques
38400 Saint-Martin d’Hères, France



Event-based control: application to robotic systems

Abstract — Control system theory has first been built for analog controllers. In
this context, it was relevant to use a continuous framework to design a control feedback
function. Nowadays, digital technologies are supplanting analog solutions due to several
advantages (cost, noise resistance, integration...). Signal is held constant between periodic
triggers given by a digital clock. Periodic controllers are also referred as time-triggered
because the update is only dependent on time. The main disadvantage of time triggered
control is the amount of communication required to perform closed-loop control in case
of networked control systems, for example when the controller and/or the actuator
are connected through a network. In that case, periodic control framework requires a
constant communication bandwidth to update the informations periodically. One solution
to decrease the bandwidth consumption is to increase the sampling period, however
performances can decrease and a bottleneck is facing when the sampling period is not
adapted for the dynamics of the system. In that context, event-based (or event-triggered)
control aims to improve the periodic sampling scheme by proposing a method in which
updates are triggered by an event function. With classical time-triggered approaches,
the control law is computed and the control signal is updated at a fixed sampling
period whether this is really necessary or not. Conversely, event-based procedures do
not require these periodic computations and updates, but call for resources only when
they are strictly necessary. In this thesis, two event-based controllers for discrete time
systems are presented and experiments on real-time platforms have been performed.
The first method is based on a Lyapunov function and guarantees a certain speed of
convergence of the event-based system solution. Experiments have been performed on a
real-time gyroscope platform. The proposed update policy shows a significant reduction
of the number of control update, while ensuring satisfactory performances. The second
method called event-switched control is dedicated to discrete time systems subject to
bounded disturbances. This approach is based on set theory and guarantees practical
stability of the system solution. This method has been adapted to a problem of collision
avoidance between a remotely piloted aerial vehicle and a static environment. Real-time
implementation results are shown and the obtained performances are discussed.

Keywords: Event-based control, robotics, drone, UAV, invariant sets.
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