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Chapter 1 : Introduction 

1.1 General context and Motivation 

Multi-core and many-core processors are a promising solution for achieving reliability, 

high performance and low-power consumption. The use of these devices is becoming very 

attractive due to their huge processing capacity combined with their intrinsic redundancy 

capability, which make them ideal for the implementation of high-performance applications in 

scientific, safety-critical and commercial domains. 

There are several international projects that work to validate the use of multi and many-

core processors in critical-embedded system. In fact, spacecraft and avionic industries are 

interested in validating their usage for incorporating the functions of a whole system into a 

single chip, and for increasing the dependability of their applications (Villalpando, 2011), 

(CAST, 2016). For instance, the new trend in avionic systems architecture is to rely on IMA 

(Integrated Modular Avionic) instead of the classical federated architecture. The main 

difference between both architectures is that in the federated one, each system has private 

resources while in IMA the resources can be shared.  One of the most important challenges for 

IMA architectures is the integration of Commercial-off-the-shelf (COTS) multi-core processors 

(Bieber, 2012). The use of COTS multi-core processors is convenient due to budget and 

availability issues. Nevertheless, the selection of these components creates complications for 

realistic cost, effort estimation, and certification against errors (Ye, 2004). 

In fact, one of the main concerns of certification for critical-embedded systems is the 

radiation sensitivity of electronic components. This radiation may result in transient and 

permanent failures, called Single Event Effects (SEE). A representative form of SEE is the 

Single Event Upset (SEU), which deposited energy causes a single bit-flip. SEUs are critical 

since they may lead to the modification, randomly in time and location, of the content of a 

memory cell with unexpected consequences at the application level. 

The occurrence of SEE mainly depends on the device technology and the radiation 

environment where the circuit is intended to operate. Indeed, having more dense and complex 

devices implies technology scaling which increase the radiation sensitivity. For this reason, 

manufacturers are continuously searching for new methods to improve technology process in 

order to reduce SEE consequences. Silicon-On-Insulator (SOI) is a clear example of these 
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improvements made to face traditional bulk CMOS drawbacks. Radiation Hardening by Design 

(RHBD) techniques are also used to mitigate SEU effects. For instance, the implementation of 

Error Correcting Codes (ECC) and parity to protect the internal memory of the processors is 

convenient but not enough in presence of Multiple Bit Upsets (MBUs). Another well-known 

RHBD technique is the Triple Modular Redundancy (TMR) which significantly improves the 

reliability of the system. However, implementing additional hardware components and 

protection mechanisms involves the introduction of an extra area and application overhead 

which leads to more power consumption and performance degradation. It is thus essential to 

add fault tolerance to the system with the minimal overhead. 

In this context, multi-core and many-core processors are very suitable for 

implementing fault tolerant techniques based on their intrinsic redundancy capabilities. 

However, it is important to consider the following constraints.  First, the high degree of 

miniaturization of these devices makes them more sensitive to radiation. Second, the huge 

number of memory cells included in the device increments its vulnerability to radiation. Lastly, 

the complexity of the architecture in terms of multiplicity of cores, inter-core communications, 

and memory and I/O management, affect the system reliability. Therefore, the evaluation of 

the impact of the radiation on the reliability of these devices is mandatory to validate their use 

in harsh radiation environments. 

In order to evaluate the device reliability, its failure rate is required. The failure rate is 

obtained extrapolating the cross-section issued from static radiation tests to the desired 

radiation environment. Furthermore, since the failure rate of a system based on processors is 

application dependent, also dynamic radiation tests are needed to evaluate the system executing 

the target application. This dependency implies that any change in the application requires new 

tests. However, the cost of the radiation tests and the availability of the radiation facilities make 

them unfeasible. Consequently, it is mandatory to use an error-rate prediction approach to face 

these limitations. 

There are few researches in the literature that study the radiation effects on multi/many-

core processors. Among them, there are representative studies such as: reference (Stolt, 2012) 

establishes a dynamic cross-section model for a multi-core server based on a quad-core 

processor in 45nm CMOS technology. (Guertin, 2012) presents the SEE test results under 15 

and 25 MeV ions of the 49-core Maestro ITC, which is a Radiation Hardened By Design 

processor. In (Oliveira, 2014), it is evaluated the radiation sensitivity of a Graphic Processing 

Unit (GPU) designed in 28nm technology. Even though, the mentioned works present 

important results, they aim at validating specific devices and do not provide a general approach 

to be applied to any multi/many-core processor. 
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1.2 Scientific context of the thesis 

The present thesis has been developed in the context of CAPACITES project at Robust 

Integrated Systems (RIS) team of the TIMA (Techniques de l’Informatique et de la 

Microeléctronique pour l’Architecture des systèmes integrés) Laboratoire, and was supported 

in part by the French authorities through the “Investissement d’Avenir”  program 

(CAPACITES project), by the Secretaría de Educación Superior, Ciencia, Tecnología e 

Innovación del Ecuador (SENESCYT) grant 753-2012, and by the Universidad de las Fuerzas 

Armadas ESPE grant 14-006-BP-DOC-ESPE-a2.  

The project “Calcul Parallèle pour Applications Critiques en Temps et Sureté” 

(CAPACITES) involves academic and industrial partners with the aim of developing a 

hardware and software platform based on the KALRAY MPPA many-core processor to 

accomplish the requirements of critical parallel applications in terms of time response and 

reliability. The application domains considered in this project are representative of the critical 

embedded systems implementing significant computing power whose deployment is currently 

limited or impossible due to the technological choices that have been made on traditional multi-

core platforms. The application areas include space and avionics. Furthermore, among the 

intended project results one can cite:  (1) capability to certify end-to-end applications of 

semantic layers by following the main precepts of the avionics standard DO178C, and (2) Audit 

of the capacity of the layers and execution models to meet the requirements of certification of 

the aeronautics, from MPPA multi-core processor. 

1.3 Objectives and contributions 

This thesis has two main objectives: the first one is to evaluate the SEE sensitivity of 

applications implemented in multi-core and many-core processors; the second one is to predict 

the error-rate of applications implemented in multi-core and many-core processors applying 

the principles of the CEU approach. Due to the complexity of the device’s architecture, this 

work follows the hypothesis that the main contribution to the failure rate is provided by 

components not implementing protection mechanisms. 

The Code Emulating Upset (CEU) approach (Velazco, 2000), was developed at TIMA 

Laboratory in past thesis for predicting error-rates in processor-based architectures by 

combining fault-injection campaigns with radiation experiments. The approach proposed in the 

present work is suitable for injecting faults in multi and many-core processors considering the 

complexity of their architecture and the implementation of several levels of cache memories as 

well as internal shared memories. In addition, this new proposal includes memory and 

exposure-time derating-factors. During this thesis, quantitative theory is applied to two 
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experiments which are combined to predict the soft error-rate. The first one is to perform 

radiation experiments with 14 Mev neutrons in particle accelerators to emulate a harsh radiation 

environment. The second one is to perform fault injection in order to simulate the consequences 

of SEUs in the program execution.  

To validate the generality of this approach, different COTS devices were selected 

aiming at representing the most relevant technological and architectural aspects of multi and 

many-core processors. The first one was the Freescale P2041 processor manufactured in 45nm 

SOI technology which integrates four em500c processor cores. The second one was the 

Adapteva Epiphany E16G301 microprocessor manufactured in 65nm CMOS process which 

integrates 16 processor cores. The third one was the Kalray MPPA-256 many-core processor 

manufactured in 28nm TSMC CMOS technology which integrates 16 compute clusters, each 

one with 17 VLIW core processors.  The effectiveness of the approach will be determined by 

comparing the predicted error-rate with the dynamic response obtained from dynamic radiation 

tests. This comparison allows validating the relevance of the approach for predicting the error 

rate of applications implemented in multi/many-core processors. 

The main contributions to the state of art of this research are: (1) the proposal of a 

generic approach for determining the worst-case sensitivity of a multi-core processor 

implementing ECC and parity in their caches or shared memories that cannot be deactivated, 

(2) the evaluation of the dynamic response of the Freescale P2041 multi-core by implementing 

a memory-bound application, (3) the identification of the cache address tag as the source of 

erroneous results in the radiation test, (4) the worst-case sensitivity of the MPPA-256  many-

core processor, (5) an evaluation of the dynamic response of the MPPA-256 demonstrating that 

by enabling the cache memories it is possible to gain in performance of the application without 

compromising the reliability of the device, (6) an approach for predicting  the application error-

rate of multi-core and many-core processors based on CEU principles, (7) the worst-case 

sensitivity of the Epiphany E16G301 multi-core processor, (8) the comparison of the reliability 

of the studied processors taking into account technological and architectural characteristics.  

The first three contributions results were published in the IEEE Transactions on 

Nuclear Science (TNS) journal (Ramos, 2016). The second three contributions were published 

in the IEEE TNS journal (Vargas, 2017).   

In the specific context of the CAPACITES project, this thesis contributes with the task 

related to the study of the reliability of the MPPA-256 many-core processor in a harsh radiation 

environment  
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1.4 Thesis outline 

Regarding the contents of this thesis, the second chapter presents the background of 

the research describing the spatial and atmospheric radiation environments in order to introduce 

the effects of natural radiation on electronic circuits and systems. Several aspects of the 

characterization of integrated circuit to radiation are addressed. At the end of the chapter, the 

main issues related to the multi-core and many-core processors are described. 

Chapter three summarizes the state of art of the topics covered in the present thesis: (1) 

SEE sensitivity of multi and many-core processors, (2) Software-based fault injection 

techniques, and (3) error-rate prediction of processor-based architectures. At the end of the 

chapter, it is discussed the selection of the CEU approach as a base for predicting the 

application error rate of multi-core processors. 

 Chapter four defines the methodology proposed by this research. It details the 

approach for evaluating the SEE sensitivity and predicting the error rate of applications 

implemented in multi and many-core processors, as well as the tools needed to carry-out 

radiation experiments.  

Chapter five explains the selection of the platforms used for validating the approach 

and provides a description of the main characteristics of them. Two multi-core processors and 

one many-core processor are proposed. In addition, the programming model and the benchmark 

application are explained.   

Chapter six presents the experimental results of the evaluation of the approach in the 

target devices. Fault injection campaigns are performed to obtain the sensitivity to SEE of the 

application. Static radiation test with 14 Mev neutrons provide the intrinsic sensitivity of the 

multi-core or many-core processors. Dynamic tests are performed to obtain the dynamic 

response of the device and for validating the prediction approach.  At the end of the chapter, it 

is provided a comparison between the studied devices in terms of reliability. 

Finally, chapter seven summarizes the research and provides general conclusions and 

some future perspectives. 
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Chapter 2 : Background 

This chapter presents the radiation effects on electronic circuits by providing an 

overview of the spatial and atmospheric radiation environments where electronic devices and 

systems operate. The effects of the interaction of energetic particles on a semiconductor 

material are also explained with the aim of introducing the different types of single events that 

upset integrated circuits. Then, they are defined the issues related to the integrated circuit 

characterization starting by a technology overview, radiation tests, test conditions and real-life 

tests. Finally, a brief description of the generalities of the multi-core processors is provided.  

2.1 Radiation environment 

Electronic circuits and systems are exposed to natural and man-made radiation in 

spatial and atmospheric environments. During the sixties, many problems were observed in 

space electronics, although it was difficult to separate soft-failures from other forms of 

interference. In 1978, it appears the first evidences of malfunctions in electronic circuits 

embarked in spacecraft caused by the radiations of the space (May, 1979).  

 

2.1.1 Spatial radiation environment 

In the outer space, there are three main types of radiative sources that affect the Earth’s 
atmosphere:   

• Galactic and extragalactic cosmic rays 

• Radiation coming from the sun such as solar wind and solar flares 

• Earth’s magnetic field which comprises the magnetosphere and the radiation belts. 

 

Cosmic rays 

A cosmic ray is a high-energy particle that travels throughout the galaxy including the 

solar system. The sun is the origin of some of these particles, but most of them come from 

galactic and extragalactic sources and are known as Galactic Cosmic Rays (GCRs) (Wulf, 

2016). In 1912, the Austrian physicist Victor Hess made a historic balloon flight ascending up 

to 5300 meters and measuring the rate ionization in the atmosphere. He found that it increased 
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to some three times that at sea level and concluded that penetrating radiation was entering the 

atmosphere from above. He had discovered cosmic rays (CERN, 2016).  

Cosmic-ray particles that reach the top of the Earth’s atmosphere are termed primarily 

cosmic rays.  About 85 percent of GCRs are protons (nuclei of hydrogen atoms), the lightest 

and most common element in the universe, approximately 12 percent consisting of alpha 

particles (helium nuclei), and the remaining are electrons and nuclei of heavier atoms that are 

typical nucleo-synthesis end products. The energy of primary cosmic rays ranges from around 

1GeV to as much as 108 TeV.  Figure 2.1 depicts the flux of the cosmic rays particles as 

function of their energy expressed in electron volts. 

 

Figure 2.1: Energy Spectrum of Cosmic Rays (Lafebre) 

Solar wind and solar flares 

The Sun is mainly composed by hydrogen and helium that is a product of a nuclear 

fission reaction in the sun’s core. The sun losses mass in form of high speed protons and 

electrons leaking away from its out layers in all directions at speeds about 400 Km/s. This flux 

of particles and plasma is called solar wind (McConnell, 2016).   

A solar flare is defined as a sudden, rapid and intense variation in brightness observed 

on the Sun’s surface due to a blast of hot gases. It releases a lot of energy in form of 

electromagnetic radiation that involves a very broad spectrum of emissions. According to 

NASA, the amount of energy released is the equivalent of a million of 100 megaton hydrogen 

bombs exploding at the same time (Taylor, 2015). The flare ejects clouds of electrons, ions, 

and atoms through the corona of the sun into space (Barth, 2003).  These clouds can reach the 
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Earth one or two days after the event. They produce radiation across the electromagnetic 

spectrum at all wavelengths.  

Radiation belts 

The Van Allen radiation belts are two torus layers of energetic particles that are held 

in place around the magnetic field of the Earth.  The main belt extends from an altitude about 

10,000 and 60,000 kilometers above the surface. These radiation belts are mainly composed by 

energetic protons and electrons coming from solar wind and cosmic rays. The belts are situated 

in the inner region of the Earth’s magnetosphere. The outer belt is formed by energetic 

electrons, and the inner belt is formed by a combination of protons and electrons (Barth, 2003). 

Other particles like alpha particles and heavy ions are present in less quantity.  Satellites that 

orbit significant time in radiation belts must protect their electronic devices that may result 

damaged by the particles’ effects.  

Radiation belts presence had been conceived before space age but confirmed by the 

Explorer I and III missions on January 31, 1958 under Doctor James Van Allen. The inner Van 

Allen belt contains high concentration of electrons in the range of hundreds KeV and energetic 

protons with energies exceeding 100 MeV. It extends normally from an altitude of 1000 Km to 

6000 Km excluding geographical areas such as the South Atlantic Anomaly (SAA) where  the 

inner boundary  may descend approximately 200 Km above Earth’s surface. This leads to an 

increased flux of energetic particles that exposes orbiting satellites to higher levels of radiation.  

 

Figure 2.2: SSA measured by Jasson-1 (CNES/CLS) 
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The anomaly in the inner radiation belt results from the fact that the planet’s magnetic 

field is not perfectly aligned with its geographic center and poles. The magnetic field is slightly 

stronger in the north and moves around the geographic poles leaving the south Atlantic area 

closer to the inner radiation belt. The effects are not relevant on the Earth’s surface but they are 

very significant to orbiting satellites. Figure 2.2 shows the Jason-1 exposure to South Atlantic 

Anomaly effects measured on 2000-2004 period using the Doris ultra-stable oscillator 

(Lemoine, 2006).   

2.1.2 Atmospheric radiation environment 

Many forms of natural and artificial radiation are encountered in the Earth’s 

atmosphere which can be beneficial or damaging to the environment. Special attention should 

be given to ionizing radiation since it can be harmful to microelectronics in excessive amounts.    

Cosmic rays and solar particles are constantly bombarding the Earth’s atmosphere and 

thus, colliding with atoms and molecules mainly nitrogen and oxygen (Barth, 2003).  This 

interaction generates an air shower of secondary particles which products are protons, 

electrons, neutrons, heavy ions, muons and pions. Figure 2.3 illustrates the structure of an air 

shower in the atmosphere initiated by a high-energy proton. 

 

 

Figure 2.3: Particles interaction in the atmosphere (E.V. Benton ) 
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In terms of radiation effects in the atmosphere, neutron particles are the most important 

followed by heavy ions and at the end the pions which effects are almost negligible. Neutrons 

are measurable at 330 Km altitude and their density increases until reach a peak at about 20 

Km. However, below 20 Km altitude, the level of neutrons decreases, and at ground level the 

peek flux falls about 500 times. At avionic altitude neutrons are the dominant particles with 

energy above 100 MeV. Until 90’s, only neutrons which energy exceeds 100 MeV were 

considered dangerous for electronic devices. Nevertheless, with the miniaturization of 

transistors, circuits become more sensitive to low energies. Although neutrons are not ionizing 

particles, they can hit with different atoms belonging to the physic layer of an integrated circuit 

generating ions that may produce faults. Figure 2.4 shows the variation of the different 

particle’s fluxes in function of the altitude at 54o latitude. Note that near avionic altitudes the 

particle flux is maxima. 

 

Figure 2.4: Particles Flux vs Altitude (O’Brien 1978) 

2.2 Radiation effects on electronic circuits  

Both natural and artificial radiation are present on the Earth’s atmosphere, being the 

terrestrial and cosmic rays the most important sources that produce effects in microelectronics.  

The physic phenomenon can be explained as follows. When a particle passes through a piece 

of material, it has a certain probability of interacting with the nuclei or with electrons present 

in that material through the electromagnetic forces (Tavernier, 2010). Considering a very thin 

portion of matter, this probability is proportional to the thickness of the portion of matter and 

to the number of possible target particles per unit of volume in the material.  

The effects of the particle interaction depend on the physic properties of the particle 

and the target, and can be nuclear or coulombic interaction. In the nuclear case, particles can 
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interact with the nucleus either by elastic and non-elastic manner giving a part of its kinetic 

energy to the recoils. In the coulombic case, it occurs an electrostatic interaction between 

electrically charged particles.  If this interaction generates free carriers in the matter, this is 

called ionizing interaction. As the particle moves in the matter, its speed reduces until stopping 

when the entire energy is lost. 

Stopping power is the average linear rate of energy loss of a heavy charged particle in 

a medium. This quantity has fundamental significance in radiation physics and is the result of 

two phenomena that slow down the progression of the incident particle. These two interaction 

phenomena are the electronic energy loss that produces ionization in the matter, and the nuclear 

energy loss that do not produce ionization.  

The energy loss �(�) of an incident particle interacting with matter can be considered 

as the sum of ionizing energy losses and non-ionizing energy losses. The term LET (Linear 

Energy Transfer) is used in dosimetry to describe the ionizing stopping power while the term 

NIEL (Non Ionizing Energy Loss) is used to describe the non-ionizing stopping power. The 

following equation expresses the total energy loss: 

�(�) = ��
�� = ���

��	
�
������ +  ���
��	����
�� 

The radiation phenomena may cause transient, permanent and destructive effects in 

integrated circuits.  The radiation effects can be grouped in two categories: cumulative effects 

and Single Event Effects (SEEs). 

2.2.1 Cumulative effects 

Also called dose effects result from the interaction between the particles and the 

insulating of electronic circuits. The absorbed dose is defined as the ionizing energy deposited 

to matter per unit mass and is expressed in Gray. A Gray is equivalent to the absorption of one 

Joule per kilogram of material (J/Kg) (Cleland, 2005). The Gray is the SI unit for absorbed 

dose. Another unit still used is the Rad (radiation absorbed dose). One Gray equals 100 Rad. 

Note that the dose shall always be referred to the absorbing material such as Si, SiO2, GaAs, 

etc. 

Ionizing dose 

Integrated circuits can suffer ionizing damage when energy deposited in a 

semiconductor or in an insulating layer frees charge carriers. These carriers diffuse or drift to 

other locations where they may get trapped, leading to unintended concentrations of charge and 

parasitic fields. It affects mainly devices based on surface conduction such as MOSFETs (Ratti, 
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2011). Depending on the material, electrons can reach the conduction band and thus free holes 

in the valence band. In the case of silicon slightly doped, it is assumed that the generation of 

electron-hole pairs is equivalent to the density of the charge carriers in equilibrium.  The effect 

is temporary and then it will disappear.   

Non-ionizing dose (Displacement Damage) 

Incident particles displace atoms from their lattice site. The resulting defects alter the 

electronic properties of the crystal leading to circuit’s malfunction.  Significant effects of this 

non-ionizing dose include the increase of leakage current and the modification of 

semiconductor’s doping.  Displacement damage is the primary mechanism of device 

degradation for high energy neutrons irradiation, although a certain amount of atomic 

displacement may be determined by charged particles. This damage mainly affects devices on 

bulk conduction (e.g. BJTs, diodes, JFETs). 

Total dose effects  

The effects of the total dose are due to the progressive build-up of trapped charged in 

insulating layers or at Si/SiO2 interface as a consequence of ionization. Also, they are produced 

by the defects in the bulk of the devices originated from displacement events (Ratti, 2011).  

2.2.2 Single event effects  

In electronic devices, SEEs refer to all the possible effects induced by the interaction 

of a single energetic particle with a semiconductor material. This effect can be the result of a 

direct ionization of the material produced by a heavy ion or a proton, or an indirect ionization 

caused by neutrons. SEEs normally appear as transient pulses in logic circuitry or as a bit-flip 

in memory cells or registers. These effects are classified in hard errors that are non-recoverable 

errors and soft errors that may be recovered by a reset, by rewriting the information, or by a 

power cycle (Gaillard, 2011). SEEs are mainly the product of the deposition and collection of 

charge over a sensitive node or volume of the circuit. Figure 2.5 illustrates the mechanism for 

SEE production. 
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Figure 2.5: Mechanism for SEEs (Johnston. JPL) 

Single Event Transient (SET) 

The SETs, also called Analog Single Event Transients (ASETs) are principally 

transient pulses in analog circuits such as comparators, operational amplifiers, reference 

voltage circuits, etc. In combinational logic, SETs are transient pulses produced in a gate that 

can propagate in a combinatorial circuit path for being ultimately latched in a storage cell 

(Gaillard, 2011).  

Single Event Upset (SEU) 

A single event upset is a bit-flip in a memory element of a semiconductor device such 

as memories, latches and registers. These upsets are recoverable errors since they do not cause 

damage to the device. SEUs are random in nature and can be cleared with the next write 

operation in the corrupted memory location or by power cycling the device (Microsemi, 2011). 

When a single event perturbs many storage cells, a Multiple-Cell Upset (MCU) is obtained. If 

more than one bit in the same word is upset by a single event, a Multiple-Bit Upset (MBU) is 

obtained. The occurrence of this type of multiple events becomes more frequent with the device 

miniaturization. 

Single Event Functional Interrupt (SEFI) 

A Single Event Functional Interruption (SEFI) is the loss of functionality due to 

perturbation of control registers or clocks in a complex integrated circuit. The SEFI may give 

burst of errors or hangs. Functionality may be recovered by a power cycle, a reset, or a reload 

of the configuration register (Gaillard, 2011). 
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Single Event Latch-up (SEL) 

A Single Event Latch-up may be triggered by a PNPN parasitic structures in bulk 

CMOS technology. A SEL is associated with a strong increase of power supply current.  SELs 

can be destructive by overheating of the structure and localized metal fusion. This event needs 

a power cycle to be deactivated. 

Single Event Burn-out (SEB) 

Single Event Burn-out is the destruction of a power device such as IGBT or power 

MOS due to the thermal runaway resulting from the combination of a parasitic bipolar transistor 

and the avalanche mechanism.  

Single Event Gate Rupture (SEGR) 

Single Event Gate Rupture is a destructive event that results in the breakdown and 

subsequent conducting path through the oxide gate of an n-channel or p-channel power 

MOSFET transistor. An SEGR is manifested by an increase in gate leakage current and can 

lead either to the degradation or complete failure of the device (Jesd89A, 2006).  

 

2.2.3 Technological advances issues 

Regarding the consequences of SEEs in integrated circuits, the most significant issue 

is related to the technology scaling. In fact, size scaling means more than reducing the geometry 

feature size of the transistor.  It also comprises other technology advances issues such as the 

use of new materials (e.g., alternative-k dielectrics), oxide changes, material resistance, new 

interconnection structures, etc.  

Furthermore, changes in integrated circuit manufacturing lead to lower operating 

voltages, lower nodal capacitance and higher integration density. All of these factors increase 

SEU and SET sensitivity and also intensify the potential of MBU effects. Reducing the critical 

charge required to produce an upset through the variation in operating voltage and nodal 

capacitance, may produce an increase in the sensitivity of a specific circuit, since the deposited 

charge during ionization is invariant and the voltage transient produced is proportional to the 

deposited charge.  

Another characteristic of advanced devices refers to the increasingly higher clock 

speeds which impacts in the generation of SET. Operating at high speeds may have two 

consequences: a further voltage transient propagation through a multi-stage circuit without 

attenuation, and more possibilities for a transient to be latched into a storage element. 
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Process technology 

Process technology refers to the semiconductor device material and fabrication node 

(transistor’s channel length) 90nm, 45nm, 28nm, etc.  Bulk CMOS is the most popular 

semiconductor material and refers to a chip built on a standard silicon wafer.  

Manufacturers scale transistors at each node by reducing the channel length in order to 

integrate more cores in a single die. As a result, the channel may suffer the short-channel-effect 

that degrades the sub-threshold slope or turn off the characteristics of a device. Another concern 

is the transistor variability. It occurs when a bulk CMOS transistor performs differently from 

its nominal behavior which may produce random differences in terms of threshold voltage. This 

phenomenon is called random dopant fluctuation (RDF) and is caused by the vibration of the 

dopant atoms in the channel (LaPedus, 2016).  

For solving (RDF) and channel issues, manufacturers incorporated high-k/metal gate 

technology to 28 nm bulk CMOS that improves the transistor having a very robust node. 

However, problems remains with bulk CMOS since the channel region below the gate is 

depleted of mobile charge which leaves the dopant atoms ionized.  There are two main solutions 

to face bulk CMOS drawbacks. One possibility is a fully depleted transistor technology such 

as FD-SOI, and another possibility is finFET. 

Fully-depleted Silicon–On-Insulator (FD-SOI) is a planar technology which 

incorporates a thin insulating layer of Silicon dioxide (SiO2) within the substrate to suppress 

leakage. FD-SOI allows eliminating the doping and getting essentially the same electrostatic 

which means better mobility and less variability (LaPedus, 2016).  

FinFET is a non-planar or 3D-like structure where the control of the current is achieved 

by implementing a gate on each one of the three sides of a fin. This technology also solves the 

bulk CMOS problem but is very expensive. 

Despite of the advantages that this two technologies present over the conventional bulk 

CMOS to impulse device scaling, radiation effects were not well known until recent 

experimental studies that pointed out radiation behaviors specific to FD-SOI and FinFET 

architectures. Advanced SOI devices having a small sensitive volume (silicon island) should 

benefit against SEEs. In these devices, only the charges deposited in the silicon island by an 

ionizing particle may induce a single event. On the other side, in bulk devices charges deposited 

far from the active area may also be collected and produce a parasitic current pulse (Gaillardin, 

2013). 
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The work presented in (Baggio, 2005) addresses the SEU sensitivity to protons and 

neutrons of FD-SOI devices. It was found that FD-SOI has a strong improvement to SEUs 

compared to bulk technologies. The use of FD-SOI devices instead of bulk CMOS in proton 

rich environments reduces the SEU sensitivity by more than one order of magnitude without 

any risk of latch-up. Advanced SOI technologies have valuable properties to operate in harsh 

radiation environments since they can resist both total ionizing dose and SEEs. Consequently, 

they are suitable to work in space and avionic applications. 

2.3 Characterization of electronic devices to radiation 

The technology advances affect the devices’ sensitivity to radiation effects, and 

consequently its error rate and reliability.  For evaluating the sensitivity to radiation of 

electronic devices, real-life tests and accelerated radiation ground tests are commonly used.  

Both types of tests are also used to obtain the soft-error rate and reliability. In addition fault-

injection techniques are also used to evaluate the behavior of an application executing on a 

device exposed to harsh radiation environment. 

2.3.1 Cross-section 

The sensitivity of a device exposed to ionizing radiation is expressed in terms of the 

cross-section (σ). It is an effective area that quantifies the intrinsic probability that an ionizing 

particle crossing 1 cm2 area produces an event type SEE.  The following equation defines the 

cross-section as the average number of particles required to cause a SEE.  

 σ = Nev 
ϕ      (2.1) 

Where Nev is the number of detected events and ϕ is the particle fluence, that is the 

particle flux integrated over a certain period of time.  For semiconductor memories where the 

capacity is known, σ can be expressed in cm2/bit or cm2/device.  

The Device immunity to radiation is determined by its linear energy transfer threshold 

(LETth). The LETth is defined as the minimum LET to cause a SEE at a particle fluence of 107 

ions/cm2. The curve of the cross section versus LET specifies the characterization of an 

integrated circuit to SEE. Figure 2.6 illustrates a sample cross-section vs LET curve. 
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Figure 2.6: A sample Cross-section vs LET curve 

2.3.2 Error-rate 

In general, a soft error is a type of error in which a signal or datum is wrong. In a device 

memory, a soft error modifies data values or instructions. However, a soft error will not damage 

the hardware, just data that is being processed. In the spacecraft industry the SEUs are also 

called soft-errors. 

The Soft Error-Rate (SER) is the rate at which soft errors appear in a device or system 

for a given environment (Gaillard, 2011). When the environment is known, the SER can be 

expressed in Failure in Time (FIT) or in Mean Time Between Failure (MTBF). One FIT is 

equal to a failure per billion hours. The sensitivity of semiconductor memories is often given 

in FIT/Mb or FIT/device. The FIT value can be predicted by simulation or is obtained 

experimentally in radiation facilities. 

The cross-section of a device can be used to calculate the SER as follows: 

 FIT value = σ � ∅ � 10$ (2.2) 

Where  % is the device cross-section and  ∅ is the particle flux in the real environment 

expressed in n/cm2/h. For example, in New York City (NYC) where the neutron flux is about 

14 neutrons per cm2 per hour (Mukherjee, 2008),   given a device which cross-section is 2x10-

15 cm2/bit, the number of FIT/Mb is:  

 FIT
Mb = 2x10*+,  cm/

bit  ⨯ 14 n
cm/. h   ⨯  1x10$h  ⨯  1x107bit = 28  

 

(2.3) 
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2.3.3 Device reliability 

The reliability is the probability of having no failure in a semiconductor device within 

a given period of time (Shooman, 2002). The reliability is function of the failure rate. For 

electronic devices the failure rate is considered as a constant. When failure rate (λ) is constant, 

the following equation is applied. 

 9(:) = ;*< 

 
(2.4) 

Being   λ = σ ∗  ∅ , where σ is the cross-section of the device and  ∅ is the particle flux in a 

given environment. 

2.3.4 Real-life tests 

Real-life test is the most direct way to measure the Soft Error Rate (SER) in a device. 

It consists in exposing integrated circuits to natural radiation in different environments such as 

terrestrial atmosphere at different altitudes (avionic, mountains, stratospheric balloons, etc) or 

in the space. This is done with the aim of studying the effects of radiation on semiconductor 

circuits. Some interesting works are presented in (Chee, 2000), (Godhagen, 2000), (Sohn. 

2000), (Taber, 1997). 

The advantage of this method relies on the fact that devices are tested under standard 

operating conditions with normal ambient background radiation (Jesd89A, 2006). 

Consequently, they provide actual and trustworthy results.  However, it is needed a large 

amount of devices that have to be exposed for a long period of time for obtaining statistically 

significant number of soft errors. 

2.3.5 Radiation ground testing 

At ground level it can be found several means to characterize integrated circuits to 

radiation.  The radioactive sources, the particle accelerators and the laser beams can be used to 

obtain useful results in short periods of time compared with real-life test, since the radiation 

flux that they produce is several orders of magnitude greater than the one existing in the nature. 

Radioactive source 

  A simple and inexpensive means to have a preliminary idea of the sensitivity to 

radiation of a component is to use a source of Californium 252 or Americium 242.  In the case 

of Californium, alpha particles and two types of heavy ions are emitted giving a LET of 45 and 

46 MeV.cm2/mg. The main limitation of this radioactive source is the penetration depth of ions 

(about 6 to 15μm) because of their low energy compared with those found in space 

environments and particle accelerators (Peronnard, 2009). If the DUT have considerable 
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surface layers, the ions will not reach the sensitive zones even if the device is thinned. However, 

these sources of radiation may be useful to validate the test platforms and thus validate the 

logistic before do further testing in particle accelerators. 

Particle accelerators 

A particle accelerator is an apparatus that uses electric fields to propel charged particles 

to nearly light speed while increasing their energy and magnetic fields to contain them in a 

well-defined beam. The goal of this machine is to provide energetic particles to investigate the 

structure of the atomic nucleus and many aspects of particle physics (CERN, 2015).  

There are two main types of accelerators: straight line accelerators where the particle 

beam travels from one end to the other end, and circular accelerators where a beam of particles 

travels repeatedly round a loop.  Linear type accelerator like Van de Graaf as well as circular 

type accelerators like cyclotrons, are very useful for integrated circuit characterization since 

they produce ionizing particles that allows evaluating the SEE sensitivity of an electronic 

circuit.  

Laser beam 

A laser is a device that emits light through a process of optical amplification based on 

the stimulated emission of electromagnetic radiation. Laser beams are present in thousands of 

applications in daily life including electronics, medicine, industry, military, entertainment, and 

they are a key technology in fiber-optic communications (Wikipedia, 2016a). 

Laser beams are an important means for the characterization of integrated circuits since 

they allow simulating SEEs effects. As described in (Buchner, 1987), this technique permits to 

test circuits rapidly for upsets sensitivity focusing in very tiny spots of a circuit. The main 

advantage of laser beams consists in allowing the mapping of the sensitive zones of a chip. This 

cannot be done by particle accelerators since the particles reach the entire surface. However, 

lasers have two main limitations: the beam reflection by the metallization layers, which is more 

problematic in complex components multi-layers, and the fact that deposited energy by photons 

during the test has no correlation with the LET of an energetic particle (Pouget, 2001). 

2.3.6 Radiation evaluation issues 

Ken LaBel in his document “Radiation Testing and Evaluation Issues for Modern 

Integrated Circuits” presents a useful list of attributes related to the increase of functionality 

and design complexity that can affect the utilization, testing and characterization of advanced 

integrated circuits (LaBel, 2005). 
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Intelligence 

Modern integrated circuits include in their architecture embedded processors, 

microcontrollers, programmable fabric and other circuits that provide certain autonomous 

operation as well as a diversity of operating configurations that must be evaluated. This 

attribute makes difficult the selection of appropriate test and fault coverage. In addition, many 

of these devices implement protection mechanism such as error detection and correction 

(EDAC) that may affect testing and error-rate prediction. 

Flexibility and programmability 

Single events can perturb the programming capability of modern devices built-in 

embedded SRAMs or EEPROMs. When it occurs, the architecture configuration is lost or 

rearranged. This attribute can affect the approach of testing and characterization for SEEs 

depending on the storage mechanisms.   

Complexity 

Integrated circuits include a variety of different circuit types and technologies with 

different sensitivities and failure modes. This complexity affects error-rate predictions because 

an IC involves many cross-sections and LETs, test performance, test facility, test beam 

selection and other test considerations. 

Integration density 

 Integrated circuits have millions of critical nodes, feature that makes fault coverage 

and test vector selection problematic. 

Hidden circuit features 

 Circuits regularly have thousands of registers, built-in test elements, and other 

embedded circuits not identified by the manufacturer. These zones may not be accessible to the 

external user but can impact on the overall radiation response of the circuit. 

 
Multi-layer construction 

Circuits are often constructed using many levels of metal and complex packaging that 

make the SEE testing of critical nodes in radiation facilities very difficult due to beam energy 

limitations.  The multi-layer construction makes impossible the use of diagnostic tools such as 

lasers or ion-micro beams.  Additionally, the over-layers can contribute secondary particles that 

impact the radiation response of the device making difficult the error-rate prediction.  
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Power requirements 

Circuits consume and dissipate significant amounts of power.  It is important to 

consider this issue when testing in a vacuum chamber or reduced spaces. 

Speed of operation 

 The high operating frequency of modern integrated circuits requires that SEE testing 

be compatible with this feature in order to obtain conservatives error-rate estimates. If a long 

cabling is required for testing, the high operating speeds can cause major problems. 

2.3.7 Fault-injection 

To validate systems operating under harsh radiation environment, the traditional real 

life and accelerated ground tests are used. However, their high cost1 and their availability have 

boosted the use of fault-injection techniques. Fault injection is a useful technique for validating 

the dependability of devices or systems (Arlat, 1990). It provides a way to improve the coverage 

of hardware and software testing by introducing faults in a controlled manner into system’s 

hardware or code paths with the aim of observing their behavior in presence of faults. 

Numerous fault injection techniques and tools have been developed and tested. They 

can be classified into: Hardware-Based Fault Injection, Software-Based Fault Injection, 

Simulation-Based Fault Injection, Emulation- Based Fault Injection and Hybrid Fault Injection 

(Benso, 2003). 

Hardware-Based Fault Injection  

Also called Hardware-Implemented Fault Injection (HWIFI) is a technique used to 

induce faults at hardware level using external physical sources like the environment parameters, 

power supply disturbances, laser fault injections, or the modification of input pins of the circuit. 

Software-Based Fault Injection 

Also called Software-Implemented Fault Injection (SWIFI) is a technique used to 

reproduce at software level the errors than would have been produced when a fault target the 

hardware. It involves the modification of the program running on the target system to provide 

the ability to perform the fault injection.  

Simulation-Based Fault Injection 

It is a technique that consists in injecting the faults in high-level models (VHDL 

models) with the aim of evaluating the dependability of the system when the model is available. 

                                                           
1 For instance the cost of radiating heavy-ions by particle accelerators is around 650 USD per hour. 
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The main advantages of this approach are the observability and controllability that allow 

accessing most of the sensitive zones of the device. Faults can be modeled and simulated with 

a fault simulator (Kooli, 2014).  

Emulation-Based Fault Injection 

It is a technique based on the use of Field Programmable Gate Arrays (FPGAs) for 

emulating the target system with the objective of reducing the time spent during simulation-

based fault injection campaigns (Ziade, 2004). 

Hybrid Fault Injection 

It is a technique that combines the versatility of software-implemented fault injection 

with the accuracy of hardware monitoring. The aim of this approach is to totally exercise the 

system under analysis.  

 

2.4 Multi and many-core processors  

A multi-core processor is defined as a single computing component which contains two 

or more independent processing units (cores) with the aim of enhancing performance, reducing 

power consumption and providing simultaneous processing. The instruction set is similar to a 

conventional CPU instruction set, but multiple cores execute in parallel multiple instructions 

increasing the overall performance of the circuit. Multi-core processors integrate several cores 

packaged into a single integrated circuit die (Chip Multi-processor or CMP), or multiple dies 

in a single chip package. 

The based principles of current multi-core processors were developed during 1975-

2000 for parallel supercomputers, while the principles of current many-core processors, such 

as the KALRAY MPPA -256, are based on the parallel supercomputers developed during 2009-

2015. For instance, the MPPA-256 is based on shared memory nodes of the multi-core type 

connected to each other by means of specialized networks and with explicit routing. A new age 

for the supercomputers has begun from June 2016, since the first Top500 supercomputer is 

based on a many-core processor with 260 cores.  

The architecture issues comprise at least three main aspects: the memory and I/O 

management, the multiplicity of cores, and the inter-core communications (Vajda, 2011). 

Figure 2.7 illustrates a multi-core architecture with n cores, each core has two levels of private 

caches (L1, L2) and one L3 shared cache memory. 
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Figure 2.7: Architectural concept of a multi-core processor 

2.4.1 Memory and I/O management 

For accessing shared resources synchronization is needed. However, scaling 

synchronization in systems with large number of cores is very difficult.  Therefore, the memory 

and I/O controllers have an important role to manage resources. Regarding the memory 

controller, it has to maintain consistency between the memories. In general, the memory 

hierarchy models propose the use of various levels of private, shared or mixed cache memories 

in multi-core processors. For many-core processors also a  distributed memory is proposed. 

Cache memory  

A cache memory is a very fast and small-sized type of volatile memory integrated 

directly in the CPU chip used to reduce average cost in terms of time and energy to access data 

from the main memory. Cache memories hold frequently used data which can be easily 

retrieved by the processor instead of accessing the main memory. Most processors have 

independent instruction and data caches. Data cache is often organized as a hierarchy of cache 
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levels (L1, L2, L3, etc.). Most of multi-core processors have a split L1 cache for instructions 

and data, its own dedicated L2 cache, and a shared L3 or high-level cache (Wikipedia, 2016b). 

When a processor needs to read from or write to a location in the main memory, it first 

checks weather a copy of that data is in the cache producing a cache hit or a cache miss. 

Cache hit: It occurs when the processor finds the requested memory location in any 

cache line that might contain that address. In this case the processor immediately reads or writes 

the data in the cache lines which is much faster than accessing the main memory. 

Cache miss: It occurs when the processor does not find the memory location in the 

cache. In this case, the processor accesses the main memory and transfers data in blocks of 

fixed size called cache lines. A cache entry is created when a cache line is copied from the 

memory into the cache. The cache entry includes the copied data as well as the requested 

memory location that is called tag. 

Cache performance: The percentage of accesses resulting in cache hits is known as 

cache hit-rate.  It is a measure of the efficiency of the cache for a given program or algorithm. 

When a read miss occurs, it delays the execution of the program since data have to be 

transferred from main memory. Write misses do not cause such penalty because the processor 

continues executing while data is copied to main memory. 

Cache entry structure: Cache row entries usually have the following structure 

Tag Data block Flag bits 

 

The cache line (data block) contains the data fetched from the main memory. The tag 

contains part of the actual data address. The flag bits specify whether or not a cache line has 

been filled with valid data.  The quantity of main memory data that the cache can hold is the 

cache size. This size can be estimated as the number of bytes stored in each cache line times 

the number of lines stored in the cache (Wikipedia, 2016b). An effective memory address is 

split into tag, index and block offset. 

Tag Index Block offset 

 

The index describes the cache row (line) in which the data has been put in. The index 

length is  ?@A/ (B) bits for B cache rows. The block offset identifies the required data within 

the stored data block inside the cache row. The effective address is expressed in bytes, and then 

the block offset length is  ?@A/ (C) bits, where C is the number of bytes per data block. The tag 
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comprises the most significant bits of the address, which is checked to see if it is the one needed 

(Wikipedia, 2016b). 

For example, the Freescale e500mc processor implements separate 32 KB eight-way 

set associative L1 instruction and data cache with 64 bytes each line. Hence, there are 32 KB/64 

Bytes = 512 cache blocks. The number of sets is equal to the number of cache lines divided by 

the number of ways of associativity, which leads to 512 blocks /8 way = 64 sets, and hence 26 

different indices. As there are 64 bytes per cache line, then there are 26 = 64 possible offsets. 

Since the processor physical address is 36 bits wide, this implies 24+6+6 = 36, being 24 bits 

for the tag field. 

Associativity: The replacement policy decides where to copy a new entry of the main 

memory in the cache memory. If the cache is full associative, the replacement policy is free to 

choose any entry in the cache to put the copy of data. On the other side, the cache is direct 

mapped if each entry in the main memory has to be copied in one place in the cache. An N-

way associative is a middle solution where the cache implements a compromise in which each 

entry of the main memory can be placed in N places in the cache.    

The most important memory management issues are related to the bottleneck produced 

by the implementation of cache coherency protocols among large number of cores, the 

synchronization access to the same memory space, the memory bandwidth and the memory 

latency. 

2.4.2 Multiplicity of cores  

There are some scalability issues produced by the increasing number of cores in a chip, 

the most relevant comprise homogeneous and heterogeneous architectures. In homogeneous 

architectures all cores have the same instruction set architecture (ISA) and performance, while 

in heterogeneous architecture at least two cores differ on ISA and/or performance and/or 

functionality. Another difference is that in most of homogeneous architectures, there is 

implemented shared memory with full cache coherency. From a paralleling programming point 

of view, a homogeneous architecture is easier to program. On the contrast, heterogeneous 

architecture allows better partitioning of specific tasks. 

Another important scalability issue is related to the manufacturing technology level. 

Due to the nano-metric size of transistors, the quantum effects should be considered since they 

decrease the hardware reliability.  
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2.4.3 Inter-core communications  

Traditionally the inter-core communications have been achieved through a shared 

common bus.  For avoiding bottlenecks in memory and I/O accesses, they have been 

implemented various levels of local cache memories. Some general purpose multi-core 

processors use cross-bar interconnections including levels of cache memories. Other 

technologies propose multiple ring buses and, for largely number of cores the use of network-

on chip (NOC) is preferred. 

2.4.4 Software abstraction layers 

Due to the complexity of this kind of devices, the software abstraction layer model 

plays an important role to facilitate the development of programming by abstracting the 

underlying implementation and only revealing objects or actions that the developer requires. 

Figure 2.8 illustrates a classical software abstraction layer model for multi/many-core 

processors to access hardware resources. 

 

 

Figure 2.8: Software abstraction layer model 

 

The Board Support Package (BSP) access directly to the hardware resources. There 

is no abstraction of hardware capabilities and components. BSP includes the libraries to manage 

all the functionalities provided by the device.  
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The Hypervisor functions serve to isolate the operating system (OS) from the 

hardware. It acts as an OS host that allows different OSs running on the same hardware. It 

provides partitioning and manages shared resources to avoid interfering. 

The OS includes the Universal bootloader (u-boot) to start the system and the kernel 

functions to manage the resources and schedule the tasks on the cores. 

The Application Programming Interface (API) is as set of definitions, protocols and 

tools used for build applications that run on top the OS. APIs are used to facilitate the 

programming model for the user. Common APIs used in multi/many-core processors are 

POSIX, OpenMP, CUDA, OpenCL. It is important to note that one API could be defined on 

the top of another. For instance OpenMP is defined on the top of POSIX. 

During the design stage of a system, the programmer has to choose the programming 

model for its application. All the programming models include the BSP and application layer. 

The intermediate layers are optional and their utilization depends on the system design and the 

developer requirements.  

When no intermediate layer is used, the programming model is called bare-metal or 

bare-metal. This model is the most flexible and complex one since the programmer has almost 

no restriction to hardware resources and has the control of each function. However, all the 

capabilities must be programmed: the startup of the cores, the task distribution among the cores, 

the synchronization between cores and/or tasks, the access to shared resources, the coherency, 

consistency etc. 

On the other hand, when the programmer select a programming model based on an API 

such as OpenMP, developing the application is easier. Nevertheless, there are several 

restrictions in terms of hardware resources access such as read/write operations on special 

purpose registers that are reserved for OS or hypervisor.  

2.4.5 Multi-processing mode 

A multi-core processor is a flexible device that commonly is able to operate in different 

multi-processing modes. The main two modes are: Symmetric Multi-Processing mode (SMP) 

and Asymmetric Multi-Processing mode (AMP). In SMP mode, a single Operating System 

(OS) that runs on all the cores is responsible for achieving parallelism in the application. It 

dynamically distributes the tasks among the cores, manages the organization of task 

completion, and controls the shared resources as a common memory. This architecture provides 

fast performance since processes and threads are distributed among CPUs (Freescale, 2012). 
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In AMP mode, the cores run independently of each other, with or without OS. Also, 

they have their own private memory space, although there is a common infrastructure for inter-

core communications. All CPUs must cooperate to share the resources. Hence, AMP mode is 

very useful when working with embedded systems (Freescale, 2012).  

2.5 Discussion 

The effects of natural radiation have a considerable impact on electronic circuits 

especially at avionic altitudes, for space missions and other safety-critical applications. For this 

reason, aerospace and avionics require to mitigate these effects in order to guarantee the 

dependability in their applications. Mitigation techniques such as Radiation Hardening by 

Process (RHBP) and RHBD applied on devices are well known for accomplishing 

dependability requirements.  Nevertheless, the price and availability of these dedicated devices 

become a problem for many avionic and spatial projects. Consequently, industrial and 

academics are interested in using COTS devices for their applications.  

Multi-core and many-core processors offer a huge processing capacity and high 

performance by executing parallel computing. However, having more complex devices implies 

a high degree of miniaturization which makes the chip more sensitive to radiation. Despite of 

this manufacturing limitation, these devices provide a suitable solution to face reliability 

problems benefiting of the multiplicity of cores for implementing fault tolerance based on 

redundancy.  Therefore, the evaluation of the impact of radiation in the reliability of these 

devices is mandatory to validate their use in harsh radiation environments. 

In order to address this issue, this thesis proposes: 1) the evaluation of the intrinsic 

sensitivity to SEE of the multi and many-core processors by means of radiation ground testing, 

2) the evaluation of the sensitivity to SEU of applications implemented in multi and many-core 

processors by fault injection campaigns, and 3) the prediction of the application error-rate by 

combining the results issued from radiation test and fault injection.  

From the fault injection techniques presented in section 2.3.7, the SWIFI technique was 

selected as fault injection strategy since it allows running a large number of fault injection 

experiments. Moreover, it does not require dedicated complex hardware, gate-level netlist or 

RTL models that are described in hardware description languages. Consequently, it is suitable 

to evaluate COTS multi and many-cores. The next chapter will present the state of art of the 

sensitivity to SEE of multi-core and many-core processors. Several SWIFI techniques are also 

presented and compared in order to choose the fault injection approach for the evaluation of 

the application sensitivity to SEU. At the end of the chapter, they are described some 

approaches to predict the application error-rate of microprocessors. 



 

30 

 

 



 

31 

 

Chapter 3 : State of the art 

This chapter is devoted to present the state of the art of the sensitivity to SEE of multi-

core and many-core processors obtained by radiation ground testing, the software-based fault-

injection techniques applied to these devices, and the methods for predicting the application 

error-rate in mono-processors since to the author´s knowledge there are no prediction works 

dealing with multi-core processors. 

3.1 Sensitivity to SEE of multi-core and many-core processors  

In the literature, there are few works dealing with the sensitivity to single event effects 

of multi-core and many-core processors. The most relevant are presented below: 

 

In (Stolt, 2012), it is presented a significant work that establishes a dynamic cross-

section model for a multi-core server based on quad-core processors in 45nm bulk CMOS 

technology. The target device was an HP c7000 BladeSystem multi-core server designed for 

aircraft altitudes. The device was exposed to 14 MeV neutrons for simulating the effects of 

high energy neutrons present in the atmosphere at aircraft altitudes. The server is composed by 

six Intel X5570 based HP server blades and six interconnect modules.  The operating conditions 

for the tests include the selection of the operating system, the BIOS setting, the processor 

utilization, and the input/output utilization. This work estimates that the cross-section per bit 

for 45nm CMOS technology at 14 MeV neutrons is 1x10-14 cm2/bit. In addition, this work 

provides a fault handling comparison between Windows 5.2 and Linux 5.1 operating systems. 

This work defines a reliability model for a server composed by six multi-core platforms 

operating in SMP mode under operating system. The model is very useful from a system point 

of view since the total error-rate is the sum of the partial error-rates of each component of the 

electronic board containing the multi-core. However, obtained results are hard to extrapolate 

to a multi-core processors based on different technologies and configured in different multi-

processing mode. 

  

In (Guertin, 2012) are presented the SEE test results of the 49-core Maestro Interim 

Test Chip (ITC) microprocessor. Maestro is a Radiation Hardened By Design (RHBD) 

processor for space applications based on the Tilera TILE64 processor. This 90nm many-core 

is produced by the Onboard Processing Expandable Reconfigurable Architecture (OPERA) 
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program and built by the Boeing Solid State Electronics Development (SSED).  Experimental 

tests have been conducted at the Texas A/M University’s (TAMU) cyclotron facility using 15 

and 25 MeV ions. During the tests they were targeted the L1 and L2 cache memories as well 

as registers of the tile core. The main observed SEE mechanism was upsets in the L1 and L2 

caches which were handled by an effective EDAC included in the Maestro design.  

The results presented in this work are meaningful to evaluate the mitigation of errors 

provided by the design hardening techniques as well as the protection mechanisms. However, 

these results cannot be extrapolated to COTS devices which are not hardened.  

 

The work presented in (Santini, 2014) proposes a generic metric (Mean Workload 

Between Failures) to evaluate the reliability of an embedded processor devoted to execute 

safety-critical applications.  It considers both cross-section and exposure time, and  It 

demonstrates that on modern embedded processors, enabling the caches memories may provide 

benefits to critical systems since the larger exposed sensitive area may be compensated by a 

shorter exposure time of the application which results in an overall improvement in terms of 

reliability. The proposed metric is experimentally validated through extensive radiation test 

campaigns targeting a 28nm Commercial-off-the-shelf ARM-based SoC.  Radiation 

experiments were conducted at Los Alamos National Laboratory (LANL) and Los Alamos 

Neutron Science Center (LANSCE) with white neutrons source that emulates the energy 

spectrum of the atmospheric neutron flux.  The failure probability of a bare-metal application 

is decreased when L1 cache is enabled. It is shown that it is not enough to rely only upon the 

cross-section to ponder reliability.  

This approach for reliability evaluation of processors is based on the device cross-

section and the execution time of the application. The study proves that for the COTS target 

device the best choice is to enable L1 caches but not L2 ones in order to improve the 

performance of the system without compromising its reliability. 

Reference (Oliveira, 2014) presents the radiation sensitivity evaluation of cache 

memories and internal resources of a modern Graphic Processing Units (GPUs) designed in 

28nm technology node. In addition, several hardening strategies based on Duplication With 

Comparison (DWC) to reduce GPU radiation sensitivity are presented and validated through 

radiation experiments. The device under test was the NVIDIA K20 that contains a compute-

unified device architecture (CUDA)-based GPU, composed of streaming multiprocessor (SM) 

with the ability of executing several threads in parallel. The cross-section per bit of the L2 

cache and shared memories were experimentally obtained in Los Alamos facility using 14 MeV 

energy neutrons. Three different DWC strategies were designed to mitigate radiation-induced 

effects on GPU’s used in safety-critical and HPC applications. The efficiency of the proposed 

strategies was experimentally evaluated and compared with chip’s ECC protection mechanism. 
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It was demonstrated that DWC strategies can be more effective than ECC when input data are 

duplicated. 

The cross-section measurement of the 28nm technology node provides valuable 

information about the impact of the technology scaling in the sensitivity of the device.   This 

sensitivity could be extrapolated to a multi-core processor case, but it is important to consider 

the nature of each device. The GPUs are co-processors implementing small caches intended to 

accelerate computations. In turn, the CPUs tend to have large portion of cache and internal 

memories which increase substantially its SEE sensitivity. 

 

3.2 Software-based fault-injection techniques 

SWIFI is the most convenient fault injection technique for evaluating applications 

running on COTS devices since it does not require dedicated complex hardware, gate-level 

netlist or RTL models that are described in hardware description languages. All types of faults 

can be injected in accessible memory cells such as registers and memories that represent the 

most sensitive zone of the chip. The main drawback of SWIFI techniques is their intrusiveness 

since they modify the program. This fact may affect the scheduling of tasks. If timing is not a 

concern, this type of fault- injection can be considered as non-intrusive. Otherwise, the timing 

involved during the injection can disrupt the system’s operation (Ziade, 2012). Therefore, for 

critical-embedded systems a fault-injection technique with low intrusiveness is required. Some 

relevant SWIFI approaches are briefly described.  

FIAT (Fault Injection-based Automated Testing): is an automated real-time 

distributed accelerated fault-injection environment developed at Carnegie-Mellon University, 

USA. It provides facilities for defining fault classes, which are the relationship between faults 

and error patterns, and for specifying the way long errors will strike and interact with the object 

(code or data) in execution. Initial version can inject faults in user application code, data, task 

and timers. Later versions capabilities include fault injection in operating systems (Segall, 

1988). 

FTAPE (Fault Tolerance and Performance Evaluator): is a tool developed at the 

University of Illinois for comparing fault-tolerant computers. It combines a system-wide fault 

injection with a controllable workload.  This tool can inject faults as bit-flips to emulate errors 

in memory locations, user-accessible registers and disk accesses. This is done by inserting a 

special disk driver into the operating system (Tsai, 1994).  

DOCTOR:  is an integrated software fault-injection environment, developed at the 

University of Michigan, for evaluating system dependability by means of injecting various 
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types of faults: processor faults, memory faults and communications faults that can be 

permanent, transient or intermittent faults. DOCTOR can use three different trigger 

mechanisms: time-out triggered memory faults, traps for generating non-permanent faults, and 

program instruction changes during compilation for producing permanent faults (Han, 1995). 

EXFI:  is a low-cost fault-injection system for embedded microprocessors-based 

boards developed at the Politecnico di Torino, Italy. The Kernel of the EXFI system is based 

on Trace Exception Mode that exists in most microprocessors. The tool is capable to inject 

single bit-flip in memory images and user-registers of the processor. This method can be 

extended to support different fault models, specially spatial and temporal multiple bit-flip. It is 

a non-intrusive tool which does not require any change in the source code (Benso, 1998). 

MAFALDA:  (Microkernel Assessment by Fault injection Analysis and Design Aid): 

is a generic tool aiming at providing the characterization of the failure modes in presence of 

injected faults, and incorporating wrappers to improve these failure modes. This tool randomly 

performs fault injection in microkernel components and kernel-calls. It is performed by means 

of an interface to set-up and carry-out fault injections. The obtained results of experiments in 

two instances of commercial microkernels reveal their weak behavior (Rodriguez, 1999). 

BOND: Is a fault-injection tool developed at Politecnico di Torino aiming at simulating 

faulty behavior in COTS software programs of a computer system running under Windows NT 

4.0 OS. It exploits the idea of interposition agents in order to guarantee low impact in the 

execution of the program. This tool allows statistical and deterministic fault injection into 

different location such as code, data sections, heap, stack, processor register, system calls, 

without requiring any modification of either the OS or the target application (Baladini, 2000).  

CEU (Code Emulating Upsets): is a fault injection approach developed at TIMA Labs 

for processor-based electronic boards. It contains a device capable of executing instruction 

sequences and supporting asynchronous interruptions. Bit-flips are injected by software means 

concurrently with the execution of the program in response to an interruption signal assertion. 

The interruption handler targets a memory cell or accessible register which is altered XOR-ing 

it content with an appropriate mask value (Velazco, 2000). 

GOOFI (Generic Object-Oriented Fault Injection):  is a fault injection tool 

developed at the Department of Computer Engineering at Chalmers University of Technology 

in Sweden. GOOFI is a tool designed to be adaptable to several target systems and different 

fault injection techniques. Its main feature is the portability between different host platforms 

since it relies on Java programming language and SQL compatible database (Aidemark, 2001).  
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JACA:  is an open source fault injection tool developed at the State University of 

Campinas in Brazil. This tool allows injecting faults in object-oriented systems and can be 

adapted to any Java application. Using JACA, it is possible to perform low-level fault injection 

upsetting the assembly code, and high-level fault injection during runtime upsetting the 

attributes values, method parameters and return values in a Java program (Martins, 2002).  

FERRARI (Fault and ERRor Automatic Real-time Inject ion): is a fault injector, 

developed at the Texas University, based on software traps that inject errors in the system. 

Software traps are triggered either by the program counter when pointing the desired program 

location, or by a timer. This tool is able to emulate transient errors and permanent faults to 

evaluate the dependability features of complex systems (Kanawati, 2002). 

XCEPTION:  is a commercial fault injection tool for dependability analysis developed 

at the University of Coimbra, Portugal. This tool benefits of the advanced debugging and 

performance monitoring resources available in modern processors to emulate realistic faults by 

means of software. It also uses the processor’s exceptions to trigger the faults and monitor their 

impact on the behavior of the target system (Costa, 2003). 

FAUMachine: is an open source virtual machine, developed at the Friedrich 

Alexander University of Erlangen-Nuremberg in Germany that permits to install a full 

operating system (Linux, Windows, DOS, Open and NetBSD) and run them as if they were 

independent computers. This is similar to other virtual machines but it supports fault injection 

capabilities for experimentation.  FAUMachine allows fault injection in memory cells such as 

transient bit-flips, permanent stuck-at and coupling faults; faults in disk, CD/DVD such as 

transient and permanent block faults; and network faults such as transient, intermittent and 

permanent send or receive faults (Potyra, 2007). 

LFI (Library Fault Injection):  is a fault injection tool that automates the preparation 

of fault scenarios and their injection at the boundary between shared libraries and applications. 

LFI provides programmers a fast, easy and comprehensive method to test program robustness 

in presence of failures that are exposed at the interface between shared libraries and the 

applications under test (Marinescu, 2009). 

FIES: is a fault injection framework for evaluating software-based Self-tests according 

to the safety standard IEC 61508.  This virtual platform supports widely-used embedded COTS 

processors such as ARM cores. It provides feedback about the diagnostic coverage of self-test 

in early design stages. This approach also supports the simulation of faults in the control and 

execution path of an ARM processor and features an extended fault model to simulate memory 

coupling faults (Höller, 2014).   
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Table 3.1 summarizes the main characteristics of the described approaches. It can be 

seen that EXFI, BOND, CEU, JACA, XCEPTION, FAUMACHINE and FIES are low-

intrusive tools. They are thus suitable for been used to evaluate critical-embedded applications. 

Table 3.1: SWIFI tools summary 

Fault  Injection  

tools 
Technique 

 Software 

Level 
Target area 

Fault 

generation 
Intrusiveness 

FIAT Modify  kernel O S 
Memory, registers, 

communications 
Fault list High 

FTAPE 
Memory/Register 

modification 
O S Memory, registers Random High 

DOCTOR 
Fault injection 

agent 
O S 

Memory, registers, 

communications 

Probabilistic 

Past event 
High 

EXFI Trace exception O S 
Memory image, 

code,  registers 
Fault list Low 

MAFALDA 
Interception 

kernel calls 
OS Microkernel Random High 

BOND 
Interposition 

agents 
OS 

Code data sections,   

registers, function 

call parameters. 

Fault list Low 

CEU Interruptions Bare-metal Memory, registers Random Low 

GOOFI 
Pre-runtime 

Scan-chain 
Bare-metal Memory Random High 

JACA 
Computational 

reflection 
OS 

Attributes and 

methods Java 

application 

Fault pattern Low 

FERRARI System calls OS Memory process Random High 

XCEPTION Debugging OS 
Memory, data bus, 

address registers 
Fault list Low 

FAUMACHINE 
Virtualization 

kernel compilation 
OS 

Memory, disk, 

registers, network 
Random Low 

LFI 
Interception 

Library modif. 
OS Shared libraries Fault profile High 

FIES 
Dynamic 

translation 
OS Memory, registers 

Fault defined 

XML 
Low 

 

Regarding the software level, it is relevant to consider that by definition a SWIFI 

technique could not target all the sensitive zones.  In addition, if the fault-injection code runs 

on OS, there are some OS privileged functionalities that cannot be accessible by the fault-

injector. Therefore, for achieving a better effectiveness, it is preferred a bare-metal level 

technique since it could access more chip resources. Indeed, when certification of an 
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application running on critical-embedded system is required, it is commonly tested in bare-

metal (Girbal, 2015). 

 From the listed techniques, only CEU and GOOFI work at bare-metal level. The main 

difference between them is that CEU injects faults by means of interruptions at run-time, while 

GOOFI injects faults at compilation-time or by means of Scan-chain. The main disadvantage 

of GOOFI is that it does not target processor’s registers. In addition, Scan-chain fault injection 

works only for devices compatible with this feature.  

As the objective of this research is to provide an evaluation approach for multi-core 

and many-cores as much general as possible, CEU was selected as a base fault-injection 

approach. 

 

3.3 Error-rate prediction 

The estimation of the application error-rate is essential to validate the device and the 

application in terms of reliability.  The objective of this estimation is to know if the processor 

is suitable to be used in harsh radiation environments. In the literature, there are significant 

works dealing with error-rate prediction of mono-processors. However, the selection of the 

appropriate approach for multi and many-core processors depends on several technological, 

architectural, and application aspects.  

 

SER prediction based on probabilistic models  

Reference (Wang, 2008) presents an environment dependent method to estimate the 

neutron induced soft error-rate (SER) by means of the propagation of single-event transient 

pulses through the affected logic circuit. The pulsed is modeled by two parameters: the 

probability of occurrence and the probability density function of the pulse width.  In the analysis 

it was considered the entire neutron LET spectra of the terrestrial background. FIT rates were 

calculated for ISCAS85 benchmark circuits. In comparison with other SER analysis works, this 

method considers more factors such as the sensitivity region of a device, electrical masking and 

circuit technology, which influence the SER. In this probabilistic soft-error model the logic 

SER can be very responsive to aspects like circuit characterization, sensitive region calibration 

and process variation which make complex the soft-error estimation for logic circuits. 

This probabilistic model is devoted to estimate the soft error-rate in logic circuits where 

SEEs exist as SETs. The experiments provide interesting results but authors make some 

technological and probabilistic assumptions that may affect the accuracy of the model. 
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SER prediction based on the sensitivity of constituent elements 

Reference (Cabanas-Holmen, 2011) proposes an approach for predicting the single-

event error-rate of a RHBD processor based on the sensitivity of the constituent circuits. This 

bottom-up approach for single-event error-rate analysis integrates the error rate caused by 

radiation events in different type of circuits including SEU/SET sensitivity.  This analysis takes 

into account components like SET rate generated in the reset and clock trees that propagate to 

flip-flop inputs, the flip-flop SEU rate that corresponds to the intrinsic SEU sensitivity, the flip-

flop SET rate generated in gates between flip-flops, the SRAM SEU rate generated by 

uncorrectable errors, analog circuits error rate (PLL rate). All of these components are affected 

by a derating and utilization factor.  Heavy-ions radiation campaigns were performed at the 

Texas A&M University cyclotron to validate the approach on two chips: a RHBD version of 

the ARM CortexTM R4 core and a radiation hardened single-core Tilera processor. Functional 

tests confirmed expected uncorrectable SRAM errors and give some perceptions of the 

sensitivity due to SET in data path logic and clock and reset trees. Data integrity error rates 

varied more than two orders of magnitude while the recoverable error rate differed by less than 

a factor of two. The recoverable error-rate prediction was within 35% of the rate calculated 

from measured results. Finally, heavy ion testing demonstrates that the SEE performance of 

90nm RHBD tested microprocessors is very attractive for many space applications. 

This bottom-up approach provides a good estimation of the error rate of the device 

since many internal components can be targeted. However, the application of this method is 

not feasible for COTS microprocessors which design or building blocks are not available for 

end users.  

SER prediction based on the cache activity 

In (Tang, 2011), it is presented a lifetime model for the private L1 cache in 

multiprocessors which is based on the activities and the states of cache lines. This model is 

applied to characterize and predict cache’s vulnerability trend in multiprocessors. This 

experimental evaluation shows that cache vulnerable phases due to remote accesses increase 

dramatically as the number of cores increases. It is also proposed a protocol enhancement to 

prematurely invalidate cache lines in modified state for minimizing the vulnerability factor due 

to remote reads to modify cache lines as well as other phases starting with a write operation. 

The experimental results confirm the effectiveness of the proposed self-invalidation in 

improving the data cache reliability by reducing D-Dir phases due to protocol operations as 

well as reducing D-Repl. vulnerable local phases. 

In this work, the proposed model is implemented using the MV5SIM simulator. In spite 

of the effective characterization of the vulnerability of the L1 cache, this model does not take 
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into account other sensitive components such as registers and shared memories; additionally, 

it needs to be complemented with hardware sensitivity for providing error-rate prediction. 

Based on the worst-case sensitivity 

In reference (Velazco, 2000) is presented an application error-rate prediction approach 

based on SWIFI. The prediction is achieved by combining the worst-case sensitivity of the 

technology, obtained by accelerated radiation tests, with the error-rate issued from fault 

injection  τEFG =  τ��H ∗ σEIJIKL .  The Code Emulating Upset (CEU) code is responsible for 

the bit-flip injection in general purpose registers or addressable internal or external memory 

locations of microprocessor-based architectures. Bit-flips are injected randomly in location and 

time. For triggering the execution of the CEU code, it is necessary the assertion of an external 

interruption which interrupt handler pointed to the mentioned code. It is achieved by a 

dedicated test platform. Experimental results on two different boards built around the 80C51 

microcontroller and the 320C50 digital signal processor showed the capabilities of this strategy 

since the predicted results were very close related with data obtained in radiation tests.  

This approach provides an effective error-rate prediction for evaluating the sensitivity 

of an application implemented in microprocessor architectures. The main advantage of this 

approach is its applicability to any processor without a detailed architectural knowledge.  

Nevertheless, there are two limitations to be considered: 1) it is not possible to target all 

possible sensitive areas like internal flip-flops, control unit and latches inside, 2) upsets 

occurring during the instruction execution cannot be simulated. 

In (Mukherjee, 2003) is described a method for generating accurate estimates of 

processor error-rate. This method defines a structure’s architectural vulnerability factor (AVF) 

which is the probability that a fault in a particular structure will result in an error.  The error 

rate of the structure is the product of its raw error-rate, determined by the process and circuit 

technology, and the AVF. For the experiments it was instrumented an Itanium2® -like IA64 

processor simulator. This tool maps bit-level micro architectural state to some cases: 1) 

dynamically dead code, 2) pre-fetches, 3) wrong path instructions. In these cases, a fault will 

not affect correct execution, generating per structure and AVF estimations. Using an OS 

simulation front-end, Red Hat Linux 7.2 was modeled in detail. By tracing the subgroup of 

processor state bits necessary for architectural correct execution, the AVF is estimated. In 

absence of correction techniques, any fault in a memory cell that holds one of these bits would 

produce an observable error in the output of the program. Results show that per-structure AVF 

estimates should help microprocessors designers to assess the FIT rate of an entire processor 

in the design cycle. If the processor’s FIT does not fulfill the application requirements, these 
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estimates can help designers to select the suitable error detection or correction schemes to make 

specific structures less vulnerable to SEUs. 

This method provides an accurate estimation of the processor error-rate dedicated to 

system designers to make appropriate cost/reliability trade-offs. Nonetheless, the AVF is not 

easily applicable for the evaluation of COTS devices since it requires a detailed knowledge of 

the system architecture. 

In (Housanny, 2012) it is proposed a methodology to evaluate the real cache sensitivity 

of an application aiming at calculating a more accurate failure rate. This method lies on the 

monitoring of cache accesses to evaluate cache sensitivity, and requires a microprocessor 

simulator.  In this work, it was used as a target the LEON3 soft-core with several benchmarks. 

The soft error-rate (SER) is calculated by multiplying the worst-case sensitivity (SERRAW), the 

architecture derating factor (Пarch), and the software derating factor (ПSW). The (SERRAW) 

corresponds to the intrinsic sensitivity of the technology and is obtained by means of static tests 

in accelerator facilities. The (Пarch) is deduced from the analysis of the cache architecture 

(protection mechanisms and cache management policy) based on the expected errors in the 

application environment. The execution of an application in a microprocessor simulator 

combined with the use of a dedicated cache analyzer tool is performed to obtain the (ПSW). The 

validation of the results was done by means of fault injection on one implementation of the 

processor running the same programs. The identification of silent bits in the instruction cache 

gave a better estimation of the instruction cache sensitivity. The proposed approach has 

predicted all errors with a small overestimation. In addition, this methodology can be 

implemented in any cycle-accurate simulator providing cache performance information.  

This approach is able to provide a good estimation of the error rate of cache memories. 

However, advanced multi-core and many core processors also implement shared memories 

which are the largest sensitive zone of the devices. Furthermore, this approach do not consider 

register’s evaluation, which is a big limitation. 

 

3.4 Conclusion 

In the literature, it can be found very few studies regarding the sensitivity of multi-core 

and many-core processors. Due to the widespread use of these devices in embedded systems, 

it is necessary to evaluate the sensitivity of other COTS multi/many-core processors having 

different architectural models and technologies in order to give some guidelines in the selection 

of a device. 
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 Regarding the error-rate prediction, significant approaches are validated for single 

processors. Among them, the CEU approach was selected to be extended to multi-core and 

many-core processors due to the following reasons: 

• This approach can be applied to any COTS processor unlike other prediction 

approaches based on architecture and timing vulnerability factor which are not 

available in COTS components.  

• Three works have demonstrated the effectiveness of the CEU approach (Velazco, 

2000), (Rezgui, 2001), (Peronnard, 2008). 

• CEU is able to target internal and external memories and accessible processor’s 

registers of the device. 

• The prediction is based on the real sensitivity of the application and not in probabilistic 

models or cache memory usage models based on simulators. 

 

Concerning the disadvantages of the approach, the main drawback is the impossibility 

to target sensitive areas like internal flip-flops, control unit and latches. However, the 

contribution to the failure rate of these elements is very small.  

In chapter four is described the methodology and tools for evaluating the SEE 

sensitivity of multi-core and many-core processors. An approach based on CEU principles is 

proposed for predicting the application error-rate of multi/many-core processors.  
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Chapter 4 : Methodology and tools 

This chapter describes the methodology for evaluating the SEE sensitivity and 

predicting the error-rate of applications implemented on multi-core and many-core processors. 

At the beginning of the chapter a general overview of the proposed approach is provided. Then, 

the details of the approach are discussed. Finally, the description of the tools is presented. 

4.1 Overview 

The suitable metric for accomplish the evaluation of the SEE sensitivity of a system is 

the failure rate. Typically, for obtaining the failure rate of a system operating in a harsh 

radiation environment, dynamic radiation tests are performed in order to extrapolate the 

obtained results to the desired radiation environment. However, the cost and availability of 

radiation facilities are major constraints. Furthermore, due to the failure rate of a system based 

on multi/many-core processor is application dependent, it is required to apply a methodology 

to determine its effective sensitivity to radiation at lower cost. Certainly, a viable option is the 

prediction of the error rate based on the worst-case sensitivity of the device.  

The purpose of the present thesis is to propose an approach based on the CEU principles 

for predicting the application error-rate of multi-core and many-core processors by combining 

fault-injection and radiation tests. The CEU principles can be implemented in any mono-core 

processor without a deep architectural knowledge. However, for multi/many-core processors 

there are several constraints that have to be overcome due to the complexity of the devices 

mainly related to the memory management and inter-core communications. 

To validate the proposed method, it is implemented on three representative devices that 

have different manufacturing technologies, design concepts and architectural models. The 

effectiveness of the method will be determined by comparing the predicted error-rate with the 

measured one obtained from dynamic radiation tests.  

Moreover, it is important to note that the evaluation of the reliability of an application 

is a compulsory step for devices intended to be used in safety-critical applications or to operate 

in harsh environments. Therefore, the obtained failure rate is used to compute the reliability of 

the systems. 
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Finally, the design of both, fault-injection and radiation experiments is addressed using 

quantitative theory.  It is thus necessary to identify independent and dependent variables 

involved in the experiments. Independent variables are those affecting outcomes. Dependent 

variables are those that depend on independent variables: the outcomes or results of the 

influence of independent variables.   

 

4.2 Code Emulating Upsets (CEU) approach 

The CEU approach is a SWIFI fault injection and error-rate prediction approach 

developed at TIMA laboratory (Velazco, 2000) for studying the effects of upsets on the 

execution of microprocessor-based architectures. The prediction is done by combining two 

different strategies: fault injection and accelerated radiation test. Fault injection aims at 

providing the sensitivity of the application implemented in the processor, while radiation tests 

aims at obtaining the intrinsic sensitivity of the device.   

Fault injection campaigns are performed in order to calculate the CEU rate (τMNO), that 

is defined as the average number of injected faults needed to cause an error in the result of the 

application. It is required to execute the application a huge number of times in order to obtain 

enough quantity of samples for statistics. 

 τMNO = Number of errors
Number of injected faults 

(4.1) 

On the other side,  radiation tests allow to obtain the static cross-section (σSTATIC)  which 

provides the average number of particles needed to cause a bit-flip in the device memory cells. 

The σSTATIC is the worst-case sensitivity of the device and is obtained by the following equation: 

 σEIJIKL = Number of Upsets
Fluence  

Revisited (2.1)  

Combining the CEU rate and the static cross-section, it is possible to predict the error 

rate of an application implemented in a microprocessor as follows: 

 τEFG =  τ��H ∗ σEIJIKL   (4.2) 

This method lies on the injection of bit-flips randomly in location and time by using 

asynchronous interrupts during the execution time. When the asynchronous interrupt is assert, 

an interrupt handler (CEU code) is launched. This code is in charge of producing the selected 

error (SEU, MBU) in a randomly chosen memory cell (CEU target). It performs read and write 

operations in internal registers accessible via the instruction set, as well as in internal or external 

memory locations. The aim of the approach is reproducing the effects of SEU faults. 
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In order to inject a bit-flip in the CEU target, the following tasks are done by the CEU 

code: 

• Reading the content of the target memory cell. 

• Performing an XOR operation with an appropriate mask value that contains a “1” for 

the bits that are going to be flipped and “0” elsewhere. 

• Writing the corrupted value to its original location. 

Once the CEU has been injected, the processor restores the context from the stack and 

continues with the program execution. At the end of the execution, the results of the program 

are compared with a set of correct values obtained when the program executes without 

corruption in order to identify errors.  

 This approach has two limitations to be considered: (1) upsets occurring during the 

instruction execution cannot be simulated, and (2) it is not possible to target all possible 

sensitive areas such as internal flip-flops, control unit and latches inside processor’s 

architecture. In spite of these limitations, this approach was demonstrated to be very efficient 

and able to provide error rates results close to those obtained in radiation experiments (Velazco, 

2010). This can be explained by the fact that for processors implementing different levels of 

cache memories as well as internal shared memory, the target memory area comprises most of 

the total sensitive area of the device, providing a significant validity to this approach. 

When the CEU approach was designed, the goal was to simulate bit-flips in a non-

intrusive way. Therefore, the interruption was asserted by an external device. A dedicated test 

board called THESIC (Testbed for Harsh Environment Studies on Integrated Circuits) 

developed by TIMA was used to control the experiment, managing the fault-injection and 

monitoring the DUT (Device Under Test). The THESIC board was monitored by a host 

computer via Ethernet communications. Later, an updated version of the THESIC platform 

called ASTERICS (Advanced System for the Test under Radiation of Integrated Circuits and 

Systems) was developed. The objective was to implement the required analog and digital 

environment for the operation of the DUT by means of a FPGA.  

 

4.3 Error-rate prediction approach for multi-core and m any–core 
processors based on CEU principles 

Up to now, the CEU approach has been successfully applied and validated for mono-

core processors.  However, the complexity of the processors has significantly increased due to 

the manufacturing technology, device architecture, number of cores, interconnections, 
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functionalities, etc.  Therefore, it is reasonable to validate a new approach for complex devices 

such as multi/many-core processors. 

Due to the large number of functionalities and pins that complex processors implement, 

it is not further possible to use the ASTERICS platform for injecting fault in this kind of 

devices. It is thus convenient to extend the CEU approach to multi/many-core processors 

benefiting of the multiplicity of cores by using one of them as fault injector while the others 

execute the chosen application. In order to isolate the fault injector, the device has to be 

configured in AMP multi-processing mode. For performing the fault-injection, the inter-core 

interrupts2 are used.  

Considering that multi/many-core processors implement different types of memory 

cells (shared memories, cache memories, processors registers, etc), the total error rate must be 

expressed as the sum of the individual  contribution of each component. 

 τEFG =  τEFG_EYJZF[ + τEFG_LJLYF +  τEFG_ZF\ + ⋯ (4.3) 

This thesis also proposes the addition of derating factors to the contribution of shared 

and cache memories for improving the accuracy of the prediction. These factors depend on the 

memory used by the application and the exposure time to radiation of shared and cache 

memories.  

Memory utilization factor (MF) 

It is the amount of memory used by the application with respect to the total memory of 

the device. This factor is calculated considering the memory space occupied by code and data.  

 Mf =  Used memory
Available memory 

(4.4) 

 
Exposure time factor (Etf) 

 In some particular cases where the multi/many-core processor performs as a co-

processor of a development board, it is possible to need synchronization between the co-

processor and the Host processor in order to log results. This is required when the cores of the 

co-processor do not have direct access to printf functions. This synchronization is achieved by 

means of a master-slave scheme to guarantee every processor core reports detected errors. 

However, this communication model has an exposure-time loss penalty. While the 

communications are performed, it is possible to have SEUs affecting the internal memory of 

the DUT, which are not detected since at the beginning of each execution memory data are 

                                                           
2 Also called inter-processor interrupts 
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reinitialized. Even if the probability of having this condition is very low, an exposure-time loss 

factor (Etf) should be added in this case. This factor is given by the following equation: 

 Etf = 1 −  �:Y*b + �:b*Ec;�;d  
(4.5) 

where Stf*g is the synchronization time between the Host processor and the master 

core, Stg*h is the synchronization time between the master core and the slave cores, and Texec 

is the execution time of the application.  

In order to measure the time spent by the communications and synchronization 

functions, some intrusive and non-intrusive methods are available.  Profiling is a non-intrusive 

form of program analysis that allows measuring the duration of function calls (e.g. Valgrind). 

However, its use is not effective when the execution time of the functions is too small. In 

contrast, functions such as gettimeofday(), clock(), clock_gettime()  are suitable for computing 

time in functions but they are intrusive. If none of these functions is available, the time can be 

measured in terms of clock cycles using the internal timers of the processor.  

By adding these derating factors, the equation that defines the approach is the 

following: 

 τEFG =  τ��H ∗ σEIJIKL  ∗ Mf ∗ Etf (4.6) 

4.3.1 Fault Injection strategy 

Fault injection campaigns are used for simulating the consequences of SEUs in 

applications running on the multi/many-core processors. Since the fault-injection campaigns 

are experiments that can be addressed using quantitative theory, the first task is to identify the 

variables involved in the experiment.  

A previous step prior to design the experiments was to get familiar with fault-injection 

techniques in multi-core processors. On this behalf, it was performed fault-injection on systems 

configured with OS in SMP mode. The obtained results were published in (Mansour, 2014) 

and (Vargas, 2014). 

 Identification of the variables 

The independent variables are divided in two groups: the variables depending on the 

system that are fixed during the experiment, and the variables to be manipulated during the 

fault injection campaign.  

The dependent variable represents the errors produced during fault injection. The 

results can be classified in: erroneous results, exceptions and time-outs. The silent faults are 
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not errors but they are artifacts to determine the soft error-rate. Table 4.1 lists the independent 

and dependent variables for fault injection campaigns. 

Table 4.1: Independent and dependent variables in fault injection 

 Independent variables Dependent variables 

Manipulated 

during the 

experiment 

Location (Memory address/ Register) 

Errors in 

results 

Silent Faults 

(artifact) Injection Time 

Bit to be altered Erroneous 

results 

System 

dependent 

Implemented Application Exceptions 

Multi-processing mode Time-outs 

Programming Model 

 

 

• Silent fault: it occurs when the injected fault does not cause any consequence in the 

result of the program. (e.g., typical silent faults are those affecting data never used or 

data already used by the program). 

• Erroneous result: the results of the program are not the expected ones. 

• Exception: the program halts. It is primarily caused by faults injected on critical 

registers. A hang is a type of exception that crashes the system. 

• Time-out: When the program does not respond after duration equal to the worst-case 

execution time. 

 

Before starting the fault-injection campaigns, it is needed to determine the number of 

cycles required to execute the selected application. It is done in order to know the range of time 

in which the fault injection should be performed. Also, it serves to determine the time-out value. 

If the multi/many-core processor evaluated operates in stand-alone mode, the monitor functions 

of the application to determine time-outs and hangs are accomplished by the master core. For 

the other cases, when the multi/many-core processor works as a co-processor the monitor 

functions are accomplished by the host processor. 

Fault injection in memory 

In this strategy all the variables intended to be used by the application are placed, by 

software means, in a shared memory (cache or internal). In this way, the variables can be 

modified at any time by each one of the processor cores. The master core initializes the data 

that is going to be used by other cores. Once finished this step, it sends a message through an 

inter-processor interrupt, to indicate the slave cores to start the execution of the application. 
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Figure 4.1 presents a flow diagram of the memory fault-injection strategy for a quad-core 

processor. 

 

 

Figure 4.1: Memory fault-injection flow-diagram 

Once the message is received by the slave cores, they confirm the reception of the 

message and start the execution of the application. While the application is running on the slave 

cores, the master core performs the fault injection.  It randomly selects the target core, the 

injection instant (in terms of clock cycles), the address (global array index) and the bit to be 

altered. When a slave core finishes its calculation, it sends a message to the master core 

indicating that the execution was completed. The master core waits the arrival of the messages 

of each core, and then compares the obtained results with a set of correct results previously 

obtained.   

Since the programmer cannot access directly to cache memories, for simulating SEU 

faults, the fault-injection is performed in the main memory. This strategy can be applied to any 

tested application. It only requires storing all the variables of the targeted application into a 

shared memory space.   
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Fault injection in processor registers 

In this strategy, faults are injected in accessible registers belonging to the processors. 

Due to the fact that master core has no access to other cores’ registers, it can execute an indirect 

fault injection via the instruction set. The fault injector performs an inter-core interruption to 

the selected core in which the interruption handler launches a code that targets accessible 

registers allowing emulating bit-flips in the selected core as previous described. Figure 4.2 

presents a flow diagram of the register fault-injection strategy for a quad-core processor. 

 

Figure 4.2: Register fault-injection flow-diagram 

The target registers to be taken into account by this method are the General Purpose 

Registers (GPRs), the Floating Point Registers (FPRs), and accessible Special Function 

Registers (SFRs) or Special Purpose Registers (SPRs). It is important to note that modifying 

these registers may cause critical failures in the program execution. 

Intrusiveness of the strategy 

As the fault-injection strategy uses one core as fault injector, it is reasonable to think 

about the intrusiveness of the approach. For multi-cores having few cores, it is clear that a 

significant part of the sensitive area corresponding to the fault injector core is not targeted and 
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thus, should not be taken into account for the estimation of the error rate. On the other hand, 

when working with many-cores having hundreds of cores, the sensitive area corresponding to 

the fault injector is negligible. In addition, devices implementing shared memory concentrate 

most of the sensitive area outside the processor cores. Consequently, the presented fault 

injection strategy is valid to evaluate the sensitivity of a given application through the 

estimation of its error rate. 

4.4 Radiation Ground Testing 

Accelerated radiation ground tests are the fast way to obtain significant results 

concerning the sensitivity of a device in a short period of time, since the more particles hit the 

device the more SEE are observed. The reproducibility of the experiment is also another major 

advantage of this strategy. Two types of tests are considered for evaluating the sensitivity of 

the device: a static test in order to obtain the intrinsic sensitivity of the memory cells (cross-

section), and a dynamic test for evaluating the dynamic response of the application. 

Furthermore, the static cross-section is used to predict the error-rate. 

In this work, the experimental tests have been conducted with 14 MeV neutron 

radiation to simulate the effects of high energy neutrons present at avionic altitudes, since 

neutrons are the most representative particles in the Earth’s atmosphere. Reference (Miller, 

2013) discusses the relevance of using 14 MeV neutron test to characterize the SEU sensitivity 

of digital devices. Sections 3 and 6 of the JESD89A document of the JEDEC STANDARD were 

used as a base protocol for the experimental tests. 

The test plan should define the required supply voltage for the radiation test.  Due to 

the fact that soft error-rate of many devices is very sensitive to supply voltage, it is critically 

important that this parameter be accurately measured and controlled (Jesd89A, 2006). Carefully 

adjusting the supply voltage to match the test plan values, will lead to assure consistent results.  

Radiation test familiarization 

Before designing the experimental tests for multi/many-core processors, it was 

necessary to get familiar with the radiation tests. On this behalf, neutron radiation tests were 

performed on different memory devices. The obtained results from the radiation tests for a 90-

nm CMOS SRAM memory (CYPRESS CY62167EV30LL) have contributed to the validation 

of  GENEPI2 (GEnerator of NEutron Pulsed and Intense) facility for testing electronic circuits 

(Villa, 2014). In addition, the results obtained from the radiation tests of the Low Power SRAM 

memory (A-LPSRAM) manufactured by RENESAS in 150nm CMOS at low bias voltage were 

published in references (Clemente, 2015) (Clemente, 2016). 
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Confidence intervals  

Due to the scarcity of experimental data issued from accelerated radiation tests  because 

of the availability of the facility and the high cost of the experiments, it is compulsory to add 

uncertainty margins to the results. For numerous events (typically >100), the Poisson 

distribution can be used to calculate such margins. However, in this situation the most accurate 

and universal way to calculate the uncertainty margins consists in using the relationship 

between the cumulative distribution functions of the Poisson and chi squared distributions as 

described in (Autran, 2014), (Velazco, 2014). Therefore, the following equation has been 

applied: 

 1
2 χ/ j α2 , 2Nerrm < μ < 1

2 χ/ p1 − α
2 , 2(Nerr + 1)q      (4.7) 

 

Where χ/(p, n) is the quantile function of the chi-square distribution with n degrees of 

freedom, α is a parameter that defines the 100(1 − α) percent confidence interval, and Nerr is 

the number of detected errors.  

4.4.1 Identification of the variables 

Radiation tests are experiments that can be addressed using quantitative theory. 

Consequently, the first task is to identify the variables involved in the experiment. Table 4.2 

lists the independent, intervening and dependent variables for the static and dynamic test. Note 

that the dynamic test also depends on the system configuration and the implemented 

application. 

Table 4.2: Independent and dependent variables for radiation tests 

 Independent variables Intervening variable Dependent variables 

Manipulated 

(static and 

dynamic tests) 

Neutron flux 

Neutron Energy Errors 

SEU 

Distance DUT to target 

Exposure time MBU 

System 

dependent 

(dynamic test) 

Implemented Application MCU 

Multi-processing mode SEFI 

Programming Model 

 

The independent variables are divided in two groups: variables depending on the 

system (exclusive for the dynamic test), and variables to be manipulated during the radiation 

experiments. 
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The dependent variable represents the errors observed during radiation tests. They can 

be classified in single errors, multiple errors, and sequence interruption errors. It is important 

to consider that depending on the memory architecture of the multi/many-core, single and 

double errors can be corrected and detected respectively by the protection mechanisms. 

4.4.2 Static test  

The static test aims at estimating the intrinsic sensitivity to radiation of the memory 

cells of a processor (technology). The static cross-section (σSTATIC) can be obtained by means 

of radiation tests in an accelerator facility. The DUT is placed facing the center of the target 

perpendicularly to the beam axis at a distance depending on the required radiation flux. 

Typically, the method consists in writing a predefined pattern in the memory locations and 

accessible registers of the processor via the instruction set (Load and Store). Once finished the 

initialization, the DUT is irradiated and the program checks periodically the registers and 

memory locations along the radiation test to detect upset events. If an upset is detected, the 

program writes the correct pattern in the associated memory location and logs the results to an 

external host via serial or Ethernet ports.  During the static test all the sensitive zones are 

exposed to radiation at the same time which do not represents the real behavior of the circuit, 

since not all the memory resources are used simultaneously when an application is executed. 

For this reason, the static cross-section provides a worst-case estimation of the device 

sensitivity. 

If the target device implements protection mechanisms such as ECC or parity that 

cannot be deactivated, this method is not suitable as it is. It can be explained since single-bit 

errors in a word are not visible while reading memory locations because whenever they occur, 

they are corrected by either the ECC or cache invalidation mechanisms (Ramos, 2015). It is 

thus necessary to use a complementary technique based on machine-check error report for 

logging data that have been corrupted during the radiation experiments. In processors including 

machine-check error report, it is possible to enable an interrupt routine for reporting errors. 

The information about the errors is saved in some special-purpose registers of the device. By 

reading these registers, one can know the type of error occurred, address, data, as well as the 

obtained and calculated ECCs.  

 Test pattern and exposure time 

The elementary data pattern for memory circuits is a logical checkerboard, alternating 

by address and bit. A physical checkerboard is also useful if full layout information of the 

device is available (Jesd89A, 2006). All zeros and all ones is also a common pattern used during 

radiation test. However, some memories such as DRAMs usually have a favorite error failure, 



 

 

54 

 

either 0 -> 1 or 1 ->0. For this reason, for testing when there is no a priori information about  

the component, the test pattern have to balance the number of 0’s and 1’s. For this reason, the 

selected pattern for the static test was 0x55AA55AA. 

Regarding the exposure time of the device, it is important to consider that the 

probability of having an upset event during a given period of time is a stochastic process that 

follows a Poisson distribution. Thus, the waiting time between the read operations in the static 

test can be validated by analyzing the distribution of the number of events per unit of time. If 

the obtained distribution does not follow a Poisson law, the waiting time should be adjusted. 

4.4.3 Dynamic test  

The dynamic test is an approach aiming at estimating the dynamic response to radiation 

of an application running on processor. The dynamic cross section (σDYN) evaluates only the 

device memory cells used by the application. It is computed by applying equation (2.1). During 

the dynamic test, the DUT is exposed to neutron radiation for inducing SEE. It is aligned to the 

target and placed at a distance depending on the neutron flux desired. The method consists in 

the periodical execution of an application implemented in the processor while the device is 

being irradiated. In order to detect errors, at the end of each execution the results are compared 

with a set of correct values previously obtained. The experiment is launched and monitored 

using a host computer located outside the armored chamber. The communication between the 

host and the DUT is achieved by means of serial, JTAG or Ethernet communication protocols.  

When an error is detected, it is logged and transmitted to the host which stores the results.  

4.5 Neutron Radiation Facility 

The radiation ground tests were conducted at the GENEPI2 facility located at the LPSC 

(Laboratoire de Physique Subatomique et Cosmologie) in Grenoble, France. This accelerator 

was originally developed for nuclear physics experiments, and since 2014 it has been used to 

irradiate integrated circuits from different technologies. GENEPI2 is an electrostatic 

accelerator producing neutrons by impinging a deuteron beam onto a Tritium (T) target. After 

acceleration at 220 keV, deuterons (d) produce neutrons (n) by the fusion reaction d + T→n + 

4He (Villa, 2014). 

From the target, neutrons are emitted in all directions with an average energy of 14 

MeV. The Device Under Test (DUT) is set facing directly the target at a distance determined 

to adjust the neutron flux. For the radiation test campaigns, it was considered, to first 

approximation, that only neutrons emitted fully forward will impact the DUT. While the DUT 

is fully exposed to neutrons, a dedicated neutron shielding can protect the readout electronic 

platform. Figure 4.3 illustrates the Genepi2 particle accelerator layout.  
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Neutron production is monitored throughout the experiments to determine the neutron 

dose for each irradiation. An online Si detector, located within the beam pipe about 60 cm 

upstream of the target, collects the recoil particles backscattered from the target during the 

fusion reaction. In addition, a movable monitor characterizes the neutron emission forward, 

after their conversion into protons and detection in a 3-stage Si telescope. Aluminum foils are 

irradiated periodically and characterized by the LPSC low-activity laboratory LBA with 

germanium detectors thus providing an independent crosscheck under reference conditions. 

 

Figure 4.3: Genepi2 accelerator layout (Villa 2014) 

Early 2015, a fresh T target was installed, generating a maximum neutron flux of 

4.5x10s(n. cm*/. t*+). The main goals are to increase the neutron production and to improve 

the accelerator reliability. The major modification consists in replacing the current Deuterium 

ion source by a new one, based on the Electron Cyclotron Resonance (ECR) technique, 

delivering higher beam intensity. At the same time, a new monitor for the neutron production 

will be installed and commissioned. This will allow the precision on the dose measurement to 

be improved. 

4.5.1 Radiation Facility Validation 

GENEPI2 facility was validated through radiation ground testing with 15-MeV 

neutrons on a 90-nm CMOS SRAM memory (CYPRESS CY62167EV30LL). This memory 

was chosen since it was previously tested in other radiation facilities such as ASP, KVI and 

TRIUMF (Blackmore, 2003). In addition, this memory is well known thanks to reverse 

engineering and for being used in real-life SEU experimental platforms (Peronnard, 2009). 

The SRAM was set facing the center of the target at a distance of 40 cm as shown in 

Figure 4.4. The repetition rate was restricted to 3000 Hz in order to limit the neutron flux. 

Under these conditions, the estimated neutron flux was around 3 x10v n. dw*/. t*+  for 

obtaining a fluence of 1 x10x n. dw*/ within one hour of irradiation (Villa, 2014). 
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Figure 4.4: Genepi2 validation experiment (Villa 2014) 

Detected SEUs were logged as long as the SRAM was exposed. Three different patterns 

were tested: all 1’s, all 0’s and alternated. During the radiation test, more than a hundred errors 

were identified including several MBUs and MCUs which is consistent with previous works 

(Hands, 2011), (Lambert, 2005). The resulting cross-section of the device was 

1.2 x10*+y dw//bit.  

 

Figure 4.5: Neutron and proton SEU cross-section of 90-nm Cypress SRAM  CY62167EV30LL (Villa 2014) 

This result is shown in Figure 4.5 as well as the proton and neutron SEU cross-sections 

of 90-nm CYPRESS SRAMs issued from tests performed in other facilities. It can be seen a 

fairly good agreement between results from GENEPI2 and ASP. Radiation tests were 

performed on three different generations of SRAMs and no latch-up events were detected, thus 

validating the readout electronic shielding. 
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Other bulk CMOS SRAMs from another manufacturer, in 90 and 130nm technologies 

also were tested. Since the behavior of this family of devices under neutron radiation has been 

exhaustively studied and results agreed with those reported in literature (Hands, 2011) and 

(Hands, 2012), it is possible to conclude that the measurements are correct confirming the 

validity of the facility. 

4.6 Conclusion 

The methodology for studying the effects of the radiation on systems based on 

multi/many-core processors has been presented in this chapter. Two strategies for evaluating 

the SEE sensitivity of applications implemented on multi-core processors were considered. On 

one hand, an approach based on the CEU principles is proposed to predict the application error-

rate. This approach uses fault-injection at application level and a physical evaluation of the 

device exposed to radiation. For that, the CEU fault-injection strategy has been extended to a 

multi/many-core processor benefiting of the multiplicity of cores. The details of the fault 

injection strategy using one core as fault injector as well as those related to the radiation 

experiments for obtaining the worst-case sensitivity of the device are presented. On the other 

hand, a physical evaluation of the device running the selected application is achieved by means 

of the dynamic radiation test. This strategy assesses directly the impact of SEE on the 

application.  

The fact that these advanced architectures implement several levels of cache memories 

as well as internal shared memory increase significantly the sensitive area to be targeted. Thus, 

the aim of the present work is to validate the relevance of the proposed approach to predict the 

error-rate of an application implemented in the multi/many core processor combining the 

evaluation at device and application level. 

The proposed approach provides the following advantages with respect to the CEU 

approach: 

• Fault injection in processor’s registers is accomplished using inter-core interrupts. In 

this way, the simulation time is significantly reduced. 

• Fault injection in shared memories is performed directly by the fault-injector. In this 

case, it is a non-intrusive method. 

• There is no restriction for target device. All architectures are suitable for the test.  

• It is not further required the use of  external platform (Thesic/Asterics) to trigger the 

fault injection, loading memory with corresponding data, compare the outputs to the 

expected results, and monitoring the execution time.  

• It is not necessary to develop a daughter board containing the device to be tested.
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Chapter 5 : Target platforms 

This chapter presents the selected platforms to validate the proposed approach. At the 

beginning, the selection of the multi-processing mode and the hardware devices are discussed. 

Then, the development platform details and the main characteristics of the targeted device are 

described. Lastly, details about the benchmark application used for the evaluation are 

presented.  

5.1 Programming model 

The selected programming model for evaluating the proposed approach throughout this 

thesis is the bare-metal model. Despite the complexity of programming this model, it is 

preferred since it allows targeting more registers during the fault-injection campaigns. 

Moreover, the lack of OS allows the use of inter-core interrupts minimizing the injection time 

and the intrusiveness. Additionally, bare-metal provides the fault-injector the possibility to 

inject bit-flips directly in shared memory, in spite of the fact that in AMP mode each core has 

its own private memory space, since there is no hypervisor preventing this action. 

Consequently, in shared memory architectures the fault-injection is performed in an almost 

non-intrusive way, since the fault-injector reads and writes directly in the memory without 

interfering the execution of the other cores.  

As it was explained in section 2.4.4, when the developer uses the bare-metal model, it 

has to program all the system functions: the startup of the cores, the task distribution among 

the cores, the synchronization between cores and/or tasks, the access to shared resources, the 

coherency consistency etc. To manage most of these functions, a master core is needed as well 

as a shared memory space for inter-processor communications. Therefore, a Master-Slave 

scheme was implemented. The master core is defined as the fault-injector core, whereas the 

slave cores execute in parallel the tested application.   

In a general way, after a reset the master core is responsible for the booting operation 

and the configuration of the system. Then it starts up the other cores. A barrier was implemented 

to synchronize the initialization of the execution code in all the cores. In case of distributed 

algorithms, during the execution of the application the master distributes the tasks. Lastly, for 
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some devices where the processing cores do not have direct access to I/O, the master is also in 

charge of logging the results. 

The main functions of the master are summarized in the following list: 

• Booting the system. 

• Starting up the other cores. 

• Initializing global variables. 

• Distributing the tasks. 

• Synchronizing the communications by using inter-core communications. 

• Injecting faults. 

• Logging results (optional) 

5.2 Device selection 

The objective of this work is to provide a general approach for evaluating the SEE 

sensitivity and error-rate prediction of applications implemented in multi-core and many-cores. 

For accomplish this goal, it is required to target different devices aiming at representing the 

diversity of multi/many-core processors. The most relevant technological and architectural 

aspects to be considered for the selection of the device are: 

• Manufacturing technology 

• Memory architecture 

• Number of cores 

• Interconnections 

• Memory protection mechanisms 

• Performance 

• Power consumption 

• Reliability 

The first selected platform is the Freescale P2041 RDB based on the QorIQ P2041 

quad-core processor. This device was chosen due to: 

• Implementation in 45nm SOI technology  

• High performance 

• High reliability: ECC and parity in its cache memories 

• Based on the PowerPC architecture, validated in past works for aeronautics, single 

processor case (Peronnard, 2008).  

• Freescale is one of the partners of the working group Multi-core for avionics (MCFA) 
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The second one is the Parallella computer which integrates the dual core ARM A9 

processor used as host processor and the Epiphany E16G301 16-cores used as co-processor. 

The Epiphany multi-core was considered due to: 

• High-performance 

• Low power consumption 

• Affordability, allowing the general public accessing to parallel computing.  

• Co-processed architecture 

• Interconnection (NoC) 

• Open source 

• The Parallella board was considered by the NASA for DragonEye  UAS project 

The third one uses the MPPA developer  based on the Kalray MPPA-256 many-core 

processor which integrate 16 compute clusters having each one 17 VLIW cores. This many-

core processor was selected due to: 

• Implemented in CMOS 28nm technology 

• High performance 

• Huge  number of cores 

• Great configuration flexibility 

• High reliability: ECC and interleaving in shared memories / parity in cache memories 

• Exceptional power efficiency GFLOPS/W 

For a better comprehension of the selected devices, Table 5.1 illustrates an overview 

of their main characteristics. 

Table 5.1: Main features of the target devices 

 P2041 multi-core Epiphany  multi-core MPPA-256  many-core 

Manufacturing 

technology 
SOI 45 nm CMOS 65nm CMOS 28nm 

Number of cores 4 16 256 + 32 

Memory Hierarchy L1-D, L1-I,  L2 private 

L3 shared,  DDR 

SMEM 

DDR 

L1 private 

SMEM,  DDR 

Core Interconnection CCF NoC NoC 

Protection 

mechanisms 
ECC (L2/L3) 

Parity (L1) 
None 

ECC/Interleaving (Shared 

mem) 

Party (L1) 

Power consumption 18 W <2W 25W 

Performance 15000 MIPS 32 Gflops 634 Gflops 
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Concerning the manufacturing technology, it is relevant to test a SOI device since it 

was demonstrated to be less sensitive to SEE than bulk CMOS (Gasiot, 2002). In addition, the 

degree of miniaturization is also an important issue to consider since the smaller the size of 

transistor channel, the more sensitive device. Although, these features have already been tested 

for devices such as SRAM memories and single processors, it is valuable to know their impact 

in the overall sensitivity of the multi/many-core processor.  

From the memory architecture point of view, it is significant to compare the impact of 

SEE in a device implementing only cache memories, only shared memories or both of them. 

For the MPPA-256, two scenarios are considered: dynamic test cache enable and dynamic test 

cache disabled. It is done in order to know at what extent enabling the cache memories affect 

the reliability of the device.  

Regarding the interconnections, the Epiphany implements a 2D mesh NoC for 

connecting 16 processor cores, while the MPPA-256 implements a 2D mesh NoC for 

connecting the 16 computer cluster. In contrast, the P2041 has a proprietary CoreNet coherency 

Fabric (CCF) to interconnect cores. An interesting issue would be to know the contribution of 

the interconnection to the error rate.  

The number of cores of the device plays a preponderant role in its sensitivity, since the 

more cores, the more registers which typically are unprotected elements. However, having 

more cores may contribute to the reduction of the execution time when a parallel computing 

model is implemented. Less execution time leads to less exposure time to radiation of the 

application.   

Memory protection mechanisms such as ECC and parity are essential for mitigating 

SEE. However, the way they are implemented in the memory hierarchy may impact its 

effectiveness. For that, radiation tests may provide a useful feedback of this implementation.  

The power consumption is one of the most important issues in aerospace applications 

due to energy limitations. Devices with high power consumption are not good candidates for 

these applications. However, this limitation may be compensated with high performance and 

reliability. 

Regarding the performance, sometimes it is difficult to compare the performance of 

two devices if it is not express in the same units. For example, for the MPPA-256 and the 

Epiphany it its expressed in GFLOPS (Giga floating point operations per second) while for the 

P2041 it is expressed in MIPS (millions instruction per second).   
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The energy efficiency, which is the relationship between performance and power 

consumption (GFLOPS/W), can provide a better overview of the device.  Among the selected 

devices, the MPPA provides the best energy efficiency. 

5.3 Platform description 

The P2041 RDB, the Parallella computer, and the MPPA Developer platforms were 

used for evaluating the P2041 quad-core processor, Epiphany EG16301 multi-core processor, 

and MPPA-256 many-core processor respectively. The description of each platform as well as 

some details of each device, are presented in the following subsections. 

5.3.1 P2041RDB  

The Freescale P2041 RDB platform is a compact (micro-ATX) highly integrated 

reference design board featuring the quad-core P2041 device. Its maximum operating 

frequency is 1.5GHz and includes a rich input/output (I/O) mix. The board can serve as a 

reference for hardware development and its main applications are networking, control plane 

and mixed control plane in switches and routers, base station network interface, baseband cards, 

aerospace and defense, factory automation, etc. The P2014 RBD memory system supports 4 

GB of DDR3 at 1333 MHz data rate. It has 128 MB of NOR flash, a 256 KB I2C EEPROM 

and 16 MB of SPI memory. It also includes two USB 2.0 receptacles, two SATA ports and a 

SD card slot (Freescale, 2011). Figure 5.1 illustrates the components of the P2041RDB 

platform. 

 

 

Figure 5.1: P2041 RDB platform (Freescale) 
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QorIQ P2041 processor  

The QorIQ P2041communications processor is a multi-core processor based on four 

e500mc cores built in Power Architectures technology with high-performance data path 

acceleration architecture (DPAA), CoreNet fabric infrastructure, as well as network and 

peripheral bus interface required for networking. It is manufactured in 45nm SOI technology 

and includes a 10-Gigabit Ethernet Media Access controller (10GEC). This quad-core can 

operate up to 1.5 GHz and includes a three-level cache hierarchy. It has a 1 MB shared CoreNet 

Platform Cache (CPC) fronting the memory controller and a 64-bit DDR3 and DDR3L (low 

power) DRAM interface with 8-bit ECC and chip-select interleaving support. It also has five 1 

Gbps Ethernet controllers, three PCI express 2.0 controllers running at up 5Gbps, four I2C 

controllers, etc. Its SOI implementation makes this device immune to latch-up events.  Figure 

5.2 depicts the architecture of the P2041multi-core processor (Freescale, 2015a). 

 

Figure 5.2: Architecture of the P2041multi-core processor (Freescale). 

The e500mc core is a low power implementation of the resources for embedded 

processors defined by the Power ISATM. The core is a 32-bit implementation that implements 

32 32-bit general purpose registers; however it support accesses to 36-bit physical addresses. 

The core is a superscalar processor that can issue two instructions and complete two instructions 

per clock cycle. The e500mc core implements independent on-chip 32 KB L1 caches for 

instruction and data with automatic cache invalidation when a parity error is detected, and a 

unified 128 KB backside L2 cache. L1 cache is protected with parity while L2 cache is 

protected with configurable ECC or parity for the data array, and parity for the tag array.  This 
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architecture corrects single-bit errors and detects multiple-bit ones.  Figure 5.3 illustrates the 

L1 data cache organization (Freescale 2015b).  

 

Figure 5.3: L1 data cache organization (Freescale) 

The L1 instructions and data caches are organized as 64 sets of eight blocks with 64 

bytes of data in each cache line. The data cache has 1 parity bit per byte and 1 parity bit per 

tag. Each block contains contiguous words from memory that are loaded from a 16-word 

boundary (that is, physical addresses bits 30 to 35 are zero). Cache blocks are also aligned on 

page boundaries. Physical address bits PA[24:29] provide the index to select a cache set. The 

tags consists of physical address bits PA[0:23]. 

5.3.2 Adapteva Parallella 

The Parallella-16 board is a high performance computing platform credit card sized 

based on a  dual core ARM A9 processor used as host and the Adapteva  Epiphany 16-core 

used as co-processor for parallel computing. The board and the Epiphany chip are developed 

by Adapteva with the aim of providing an affordable super computer for speed up the transition 

from serial to parallel computing (Adapteva, 2009).   

The central processor on the Parallella is the Zynq-7000 SoC that combines a dual-core 

CortexTM –A9 MPCoreTM processing system with Xilinx 28nm programmable logic. The 

Epiphany co-processor is the E16G301 device with 16 CPUs. The main memory is a 1GB 32-

bit wide DDR3L SDRAM. In addition the board includes a flash memory of 128 Mb, a 

10/100/1000 Ethernet port, 2 USB 2.0 connections, a Micro SD as a primary boot source and 

main Parallella storage medium, a serial port and a HDMI port.  Figure 5.4 depicts the parallella 

architecture. 
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Figure 5.4: Parallella architecture (Adapteva) 

Epiphany Multi-core processor description 

The Epiphany is a scalable multi-core architecture with up to 4095 processors sharing 

a common 32 bits memory space. It defines a parallel computing fabric comprised of a 2D array 

of processors nodes connected by a low latency mesh network-on-chip. The E16G301 which 

is based on 3rd generation of the Epiphany multi-core IP, is a 16 core System-On-Chip 

implemented in a 65nm CMOS technology (Adapteva, 2011a). Each processor core is a 32-bit 

superscalar floating point RISC CPUs, capable of performing two floating point operations per 

clock cycle and one integer calculation per clock cycle. The device has a peak performance of 

32 Gflops (2 Gflops per core). The maximum chip power consumption is less than 2 watt. Each 

CPU has an efficient general-purpose instruction set that excels at compute intensive 

applications while being efficiently programmable in C/C++. Figure 5.5 shows an 

implementation of the E16G301 architecture. 

 

Figure 5.5: Implementation of the E16G301 Epiphany architecture (Adapteva) 
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The memory architecture of the Epiphany multi-core is based on a flat shared memory 

map. Each compute core has up to 1 MB of local memory as a unique addressable part of the 

total 32-bit address space. The core processor can access its own local memory as well as other 

processors’ memory by means of standard load/store instructions. The local memory is 

comprised of 4 independent banks, each one of 8KB for a total of 32 KB for each CPU core as 

depicted in Figure 5.6. For the particular case of the Epiphany E16G301 that implements 16-

cores, the chip has a 512 KB distributed shared memory (Adapteva, 2011b).  

 

Figure 5.6: Epiphany global address map (Adapteva) 

 

The Epiphany Network-On-Chip (eMesh) is a 2D mesh network for high speed inter-

processor communication that connects the on-chip processor nodes.  The mesh network 

efficiently handles all on-chip and off-chip communication in high throughput real-time 

applications. Each routing link can transfer up to 8 bytes of data on every clock cycle supporting 

an effective bandwidth of 64 GB/s at a mesh operating frequency of 1 Ghz. The network 

comprises three separated and orthogonal mesh structures: two networks for allocating on-chip 

and off-chip write traffic, and one network for all read traffic. Figure 5.7 shows an overview of 

the network-on-chip. 
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Figure 5.7: eMeshTM Network-On-Chip overview (Adapteva) 

Anti-latch-up Circuit 

Since the Epiphany multi-core is implemented in 65nm CMOS that does not provide a 

Latch-up protection, it was necessary to add in cascade to the board an anti-latch-up circuit for 

limiting the current supply to 1 A. The implemented circuit illustrated in Figure 5.8 works as 

follows: A pre-set potential coming from a voltage divider is applied to the positive terminal 

of comparator with the aim of determining the maximum output current of the circuit. The drop 

across the current sense resistor of 0.01 Ω is amplified by a gain of 10 using a differential 

amplifier, and connected to the negative of the comparator. Under normal working conditions, 

the current is within the permissible limits and the potential at the negative terminal is less than 

the potential at the positive one, then the comparator output is at high level which activates a 

relay through a transistor connecting the positive terminal of the power supply with the output 

of the anti-latch-up circuit. 

As the desired output current must be limited to 1A, the maximum drop across the 

resistor is 0.01V. This voltage is amplified by a factor of 10 for obtaining 100mV at the input 

of the negative terminal of the comparator. Any excess of current will cause a potential drop 

greater than 100mV after amplification. For this reason, the voltage divider output should be 

set to 100mV. This is achieved by placing a combination of 1KΩ and 49KΩ resistors.  
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Figure 5.8: Anti-latch-up circuit 

When the current drawn by the external circuit is higher than 1A, the comparator drives 

its output to low which switch off the transistor for deactivating the relay. Once the current 

peak falls down, the comparator will switch on the transistor again. The circuit thus acts like a 

switching regulator when the output requirement is more than 1A. To reduce the ripples, a 

parallel capacitor of 100uF and a series inductance of 10mH are connected at the output of the 

circuit.  

5.3.3 MPPA Developer 

The MPPA Developer is a development platform based on an Intel core I7 CPU 

operating at 3.6 GHz and running a Linux OS. The MPPA many-core is available within the 

Developer as an accelerator of the X86 Host CPU connected through 16 PCIe Gen3 lanes. In 

addition to the PCIe board and the MPPA-256 Processor, the platform includes a PCIe board 

for debug and probe. 

The MPPA Developer is delivered with a user environment and configuration 

containing Linux CentOS 7 x86 64, Eclipse 4.3 and MPPA ACCESSCORE SDK v2.5 for 

developing, optimizing and evaluating applications. The latter includes three programming 

models for developing an application: POSIX, Kalray OpenCL and Lowlevel. 

MPPA-256 Many-core processor description 

The MPPA-256 (Multi-Purpose Processing Array) is a many-core processor 

manufactured in TSMC CMOS 28HP technology. It integrates 256 Processing Engine (PE) 

cores and 32 Resource Management (RM) cores, all based on the same VLIW 32-bit/64-bit 

architecture. The processor operates between 400 MHz and 600 MHz, for a typical power 

ranging between 15 W and 25 W. Its peak floating-point performances at 600 MHz are 634 

GFLOPS and 316 GFLOPS for single and double-precision respectively (Kalray, 2016). 
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 The second version of this processor, called Bostan, is considered in this work. The 

global processor architecture is clustered with 16 compute clusters (CCs) and 2 input/output 

clusters (I/O) per device, where each cluster is built around a multi-banked local static memory 

(SMEM) of 2MB shared by the 16(PE) + 1(RM) cores in the case of the compute cluster, or by 

the 4(PE) + 4(RM) cores in the case of the I/O clusters. A wormhole switching network-on-

chip (NoC) with 32 nodes and a 2D torus topology connects the compute clusters and the I/O 

clusters. An overview of the many-core processor is illustrated in Figure 5.9. 

 

Figure 5.9: Many-core processor components (Kalray) 

The SMEM is composed of 16 independent memory banks of 16384 64-bit words, for 

a total capacity of 2MB. Each memory bank is associated with a dedicated request arbiter that 

serves 20 bus masters: the D-NoC Rx (receive) interface, the D-NoC Tx (transmit) DMA 

engine, the DSU, the resource manager (RM), and 16 PE cores. Figure 5.10 illustrates the 

compute cluster buses.  

The 16 memory banks are arranged in two sides of 8 banks, called left side and right 

side. The connections between the memory bus masters are replicated in order to provide 

independent access to the two sides. The private paths of the 16 PE cores are connected to the 

16 memory bank arbiters. Other bus masters (D-NoC Rx, D-NoC Tx, DSU, RM) have their 

own private path also connected to the 16 memory bank arbiters (Kalray, 2016). 
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Figure 5.10: Compute cluster bus masters. 

The main components of the many-core processor are covered by error protection 

mechanisms except the instruction and data cache memories of the VLIW core that are 

protected by parity. The SMEM implementation interleaves bits of 8 adjacent 64-bit words 

which allows localized errors spread as multiple single ECC (SECC) errors. SECC errors are 

detected and corrected on the fly.  

The NoC router queues (512 of 32-bit flits each) are also protected by ECC. Note that 

SECC errors are silently corrected while Double ECC (DECC) errors are detected and signaled. 

The VLIW core implements separate instruction and data cache. There is no hardware cache 

coherency mechanism between cores nor between data and instruction cache. However, to 

enforce memory coherency, several software mechanisms are available to programmers. 

The MPPA-256 many-core is embedded in a development platform containing the 

MPPA ACCESSCORE SDK version 2.5 for developing, optimizing and evaluating 

applications. The platform is based on an Intel core I7 CPU operating at 3.6 GHz and running 

a Linux OS. It includes a PCIe board MPPA-256 Bostan version and a PCIe board for debug 

and probe (Kalray, 2016). This board implements a module for controlling current and voltage 

aiming at mitigating latch-up events.  
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5.4 Benchmark application  

A standard n x n matrix multiplication (MM), which is a memory-bound application, 

was selected to be tested throughout this thesis. It was considered since the matrix 

multiplication is one of the most essential algorithms in numerical algebra as well as in 

distributed, scientific and high-performance computing (Ballard, 2012).  Concerning avionic 

applications, MM is used for image processing, filtering, adaptive control, and navigation and 

tracking. For the evaluation of the application, two scenarios are proposed. 

In the first scenario, the sequential algorithm of the matrix multiplication was used. 

This scenario was implemented in the P2041 and the Epiphany multi-cores using one core of 

the device as the master core. Each core executes independently the same matrix multiplication 

(C=AxB) and compares its results with a predefined value in order to identify errors. The size 

n of the matrix was selected depending on the memory capacity of each device in order to fill 

as much as possible the cache and shared memories, and to maintain a trade-off between the 

amount of memory used and the execution time. The matrices A, B and C were located in 

consecutive memory vectors. All the elements of the matrix A were filled up with the same 

value a. Similarly matrix B was filled up with b, thus the expected result  was  a x b x n for all 

the elements of matrix C. The matrices were filled-up with fixed values in order to simplify the 

data analysis since a known value helps to identify which bit or bits have been changed during 

the test. In this way, MBUs (Multiple Bit Upsets) and MCUs (Multiple Cell Upsets) can be 

easily detected. It is important to note that the results of the radiation experiments are totally 

independent of the input values, no matter the particle produces a bit flip in a fixed or random 

value. 

For the second scenario, each compute cluster of the MPPA-256 many-core executes 

independently a parallel algorithm of the matrix multiplication.  The source code is an 

assembler optimized version of a collaborative 256⨯256 matrix multiplication, distributed 

among the 16 processing elements (PE).  Inside each cluster, the resource manager (RM) core 

is the master of the system. The computation run repeatedly to guarantee that each cluster 

computes enough time so that all the clusters work in parallel. A, B and C are single precision 

floating-point matrices. The size of the matrix was chosen so that data and code remain in the 

local SMEM memory.  

5.5 Concluding remarks 

In this chapter, the system configuration for the evaluation of the proposed approach 

was detailed.  All the targeted devices were configured in AMP mode to isolate the fault-

injector device. In addition, a memory-bound application was chosen to be implemented in 
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bare-metal mode. This application was selected since it allows using extensively the memory 

resources.  

Three different devices grouping representative technological and architectural aspects 

of multi/many-core processor were selected to validate the approach. Details about the 

development platforms as well as the processors were described. Furthermore, the design of an 

anti-latchup circuit for protecting the Parallella board was also presented. This design is not 

specific for this board, so it can be used for protecting any circuit.  

The evaluation of the selected platforms based on the Freescale P2041 quad-core 

processor, Epiphany EG16301 multi-core processor, and Kalray MPPA-256 many-core 

processor through accelerated ground testing and fault injection is presented in the next chapter.  
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Chapter 6 : Experimental results and 
evaluation 

This chapter presents the evaluation of the P2041 quad-core processor, Epiphany multi-

core processor, and MPPA-256 many-core processor. This is accomplished by means of fault-

injection campaigns and radiation ground testing with 14 MeV neutrons. Radiations campaigns 

were performed to obtain the static cross-section of the device as well as the dynamic response. 

The results obtained during fault injection and static radiation experiments allow predicting the 

error rate of an application implemented in the concerning device.  The dynamic cross-section 

of the device is used for validating the prediction approach and for assessing the reliability of 

the device executing an application while it is exposed to radiation.  

6.1 Evaluation of the Freescale P2041 multi-core processor  

For evaluating the dynamic response of the P2041 quad-core, the sequential algorithm 

of the 80 x 80 matrix multiplication was implemented on each core. The input matrix A was 

filled up with 1’s and matrix B was filled up with 2’s, thus the expected result was 160 for all 

the elements of matrix C.  

6.1.1 Neutron radiation campaigns 

Due to the P2041 multi-core is implemented in SOI technology, it is no necessary to 

add an anti-latch-up circuit. Since the cache memories of the target device implement protection 

mechanisms that cannot be deactivated, for evaluating this device a complementary technique 

based on machine-check error report was used. This allows logging data that have been 

corrupted and corrected during the radiation experiments.  

For the experiments, the cores were configured in write shadow mode where all 

modified data in the L1 cache is written through into the L2 cache. This ensures that, if data or 

parity tags are corrupted in the L1 cache, it can be invalidated and repopulated with the valid 

data from the rest of the memory hierarchy (Freescale, 2015b). In addition, the L1, L2 and L3 

caches, as well as the machine-check error report of each core were enabled. For logging all 

the SEEs occurred during the radiation experiments, the machine-check error interrupt and the 

Cache Error Checking bits were also enabled. Errors detected by the application and by the 

machine-check-error report were considered in order to evaluate the sensitivity of the 45nm 
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SOI technology of the target device. Table 6.1 shows the sensitive zones of the multicore-

processor targeted in the radiation experiments. 

Table 6.1: Targeted sensitive zones of the P2041 multi-core processor 

Sensitive Zone Location Capacity Description 

L1 Core 0,1,2,3 32 KB/ D per core 32 KB / I per core Data/Instruction Cache 

L2 Core 0,1,2,3 128 KB per core Backside Unified Cache 

L3 Multi-core 1024 KB per chip Frontside Cache 

GPR Core 0,1,2,3 32 registers of 32 bits General Purpose Register 

FPR Core 0,1,2,3 32 registers of 64 bits Floating Point Register 

 

Experimental Setup 

Static and dynamic radiation experiments were performed on the P2041 RDB 

development board which integrates the studied multi-core processor. The device under test 

was placed facing the center of the target perpendicularly to the beam axis at a distance of 19.1 

± 0.5 cm. The neutron beam energy was 14 MeV with an estimated flux of  

1.96 x10, n. dw*/. t*+  at 500 Hz frequency with an error of  0.1 x10, n. dw*/. t*+ . For 

protecting the rest of the platform, a 5 cm thickness polypropylene block was used. 

Static Sensitivity 

The first radiation campaign was carried out for obtaining the static cross-section of 

the device. In order to simplify the interpretation of the results due to cache-coherence 

mechanisms, the self-testing application was configured so that each core reads from and writes 

to different sections of the main memory. Each section has the same size as the L2 cache. In 

the particular case of the L3 cache, only the core 0 was configured to use it, preventing other 

cores to access it. In this campaign were observed 58 SEEs within 2 hours of exposure time. 

Among them, 46 were SEUs and 12 Single Event Functional Interrupts (SEFIs). There were no 

detected errors in GPRs and FPRs. Latch-up events were not present due to the immunity of 

SOI technology process.  Table 6.2 summarizes the results of this campaign. 

 

 

 



EXPERIMENTAL RESULTS AND EVALUATION 

77 

 

Table 6.2: Results of the static radiation campaign 

SEE Type Type of error Occurrences Consequences 
SEU L1 Data cache parity 9 None 
SEU L2 Single-bit ECC 29 None 
SEFI L2 Tag parity 5 Hang 
SEU L2 Multiple-bit Tag Parity 1 None 
SEU L3 Single-bit ECC 7 None 
SEFI L3 Multiple-bit ECC 6 Hang 
SEFI Other errors 1 Hang 
Total  58  

 

For obtaining the static cross-section of the SOI technology (σh}~}��_h��) the equation 

(2.1) was applied. This experiment considers as errors all the observed SEEs no matter they 

were detected by the machine-check error report, or by the self-testing application.  

�?�;�d; = �?�� ∗ ;��@t�B;��
 =  1.96 x10, n. dw*/. t*+ * 7200 s 

σh}~}��_h�� = Number of upsets
Fluence =  58

1.41x10$ = 4.11x10*x  dw/
�;��d;          

Due to the scarcity of experimental data (58 SEEs), it is compulsory to add uncertainty 

margins to these results. For a 95% confidence interval (α = 0.05), the lower and upper limits 

for the dynamic cross-section are: 

3.12x10*x cm/
dev  < σh}~}��_h�� < 5.32x10*x cm/

dev         
 

The targeted registers and memory cells of the multicore processor expressed in bits 

represent the sum of: (1 x L3[1MB] + 4 x L2[128KB] + 4 x L1_data[32KB] + 4 x 

L1_inst[32KB] + 32 x GPR[32 bit] + 32 x FPR[64 bits]) resulting 1.47 x10sbits. Then, the 

confidence interval for the static cross-section per bit is estimated as �2.12 −
3.62� x10*+, dw//C�:. Reference (Stolt, 2012) provides the estimation of the bit cross-section 

of a 45nm CMOS technology processor (1x10*+v dw//C�:  ) for neutrons with the same 

energy. From these results, it can be seen that 45nm SOI technology is between three and five 

times less sensitive to SEEs than its CMOS counterpart. 

On the other side, the static cross section of the device (σh}~}�� ) is calculated only 

based on the errors produced during the static test. In this case, there were 12 SEFI that caused 

hangs.  Then, the σh}~}�� of the device under test is: 

σh}~}�� =  12
1.41x10$ = 8.51x10*$  dw/

�;��d; 
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which expressed with a 95% confidence interval is: 

4.40x10*$ cm/
dev  < σh}~}�� < 14.9x10*$ cm/

dev         
Errors in L1, L2 and L3 caches, both in data arrays and cache tags were detected by the 

machine-check error report. In addition, it was observed a SEFI (depicted in Table 4.6 as "Other 

errors") that produced a system hang simultaneously in all the cores. This event leads to several 

errors logged by the self-testing application running on the processors that showed data 

different from the original word (0x55AA55AA) written in the memory. From these errors, 

two types of patterns were identified. The patterns are summarized in Table 6.3 and Table 6.4. 

Table 6.3: Main memory space and details of the first pattern of errors occurred during the static test 

Core Start Address End Address Range 1 Range 2 Range 3 

0 0x10000 0x30000 0x16548 - 0x1657c 0x14cc8 - 0x14cfc 0x16ac8 - 0x16afc 

1 0x40000 0x60000 0x46048 - 0x4607c 0x463c8 - 0x463fc 0x46908 - 0x4693c 

2 0x70000 0x90000 0x76048 - 0x7607c 0x76388 - 0x763bc 0x76908 - 0x7693c 

3 0x100000 0x120000 0x106048 - 
0x10607c 

0x1063c8 - 
x1063fc 

0x106908 - 
0x10693c 

 
Table 6.3 presents the main memory space used by each core (columns 2 and 3) and 

the address ranges where the first pattern was replicated. It consists of a set of fourteen words 

with consecutive addresses containing 0xDEADBEEF as data. The second pattern constitutes 

scattered clusters of errors of four words each. In each of them, the first word contained 

0xDEADBEEF, the second one 0x20200044, the third one 0x00130000 and the last one 

0x00006000. Table 6.4 summarizes the replications of this pattern, as well as the involved 

addresses. 

 Table 6.4: Details of the second pattern of errors occurred during the static test 

Core No. Ocurrence 1st Word Address 2nd Word 

Address 

3rd Word 

Address 

4th Word 
Address 

0 

1 0x10000 0x10004 0x10008 0x10024 

2 0x16000 0x16004 0x16008 0x16024 

3 0x16200 0x16204 0x16208 0x16224 

4 0x16600 0x16604 0x16608 0x16624 

1 

5 0x42000 0x42004 0x42008 0x42024 

6 0x46380 0x46384 0x46388 0x463a4 

7 0x46440 0x46444 0x46448 0x46464 

 8 0x72000 0x72004 0x72008 0x72024 
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Core No. Ocurrence 1st Word Address 2nd Word 

Address 

3rd Word 

Address 

4th Word 
Address 

2 9 0x763c0 0x763c4 0x763c8 0x763e4 

10 0x76440 0x76444 0x76448 0x76464 

11 0x7c000 0x7c004 0x7c008 0x7c024 

3 

12 0x102000 0x102004 0x102008 0x102024 

13 0x106380 0x106384 0x106388 0x1063a4 

14 0x106440 0x106444 0x106448 0x106464 

 

Due to the fact that errors have occurred simultaneously and the observed pattern is 

repeated among the cores, it is presumed that a particle perturbed a shared resource of the chip. 

Because of the nature of these errors, it is suggested that the affected resource was a register 

belonging to the CoreNet Coherency Fabric (CCF), which is the connectivity infrastructure of 

the multi-core processor. 

Dynamic Response 

A second radiation test campaign was carried out with the device operating in AMP 

mode without OS to obtain the dynamic cross section. Two tests, each one lasting 2 hours were 

performed. Table 6.5 shows detected errors in L1, L2 and L3 cache memories. The Load 

Instruction and Instruction Fetch errors are the most critical ones since they produced processor 

hangs. Half of the observed L2 Tag parity errors lead to processor hangs. L1 Data cache parity 

errors are not critical since L1 cache is invalidated when parity fails. 

Table 6.5: Results of the dynamic radiation test of the P2041 multi-core 

SEE Type Type of error Test 1 Test 2 Consequences 

SEFI Load Instruction 1 0 Hang 

SEU L1 Data parity 19 17 None 

SEU L2 Single-bit ECC 9 20 None 

SEFI 
L2 Tag parity 

0 4 Hang 

SEU 3 1 None 

SEU Multiple L2 errors 3 1 None 

SEU L3 Single-bit ECC 3 2 None 

SEFI Instruction Fetch 0 1 Hang 

MBU Other errors 6 0 Erroneous result 

Total  44 46  

 

L2 and L3 Single-bit errors are not critical as the ECC corrects them. Summarizing, 

there were one SEFI in test 1 and five SEFIs in test 2 that caused system hangs. In addition, six 
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events in test 1 caused errors in the results of the application, but they were not detected by the 

multi-core machine-check error report. This puts in evidence that errors were produced by 

Multiple Bit Upsets (MBUs) involving not only data, but also parity information. A deeper 

analysis allowed identifying the origin and multiplicity of these events. Four of them were 

clusters of errors whereas the other two were single data errors.  

1) Clusters of Errors: three clusters of errors occurred in core 2, and one in core 1. All 

of them were very closely related and were detected in the same read cycle. Each cluster 

involves exactly 16 consecutive positions of the resulting matrix. Each matrix element was an 

integer value (4 bytes). In all cases, an incorrect result of "2" was observed instead of the 

expected "160". Considering that:  

• The e500mc processor features a set associative L1 cache memory organized as 64 sets 

of 8 blocks with 64 bytes in each cache line.  

• The L2 cache memory is organized as 256 sets of 8 blocks of 64-byte cache lines. 

• The number of consecutive corrupted addresses exactly matches the size of the cache 

line in the processor architecture. 

• The physical addresses involved in each cluster correspond to a cache block. 

Then, it is clear that the cluster of errors was produced by an upset affecting the cache 

address tag. It can be explained as follows: Upon reading the involved addresses which have 

Line Tag T stored in Set S, the cache hardware retrieves incorrect data instead of fetching the 

correct values from the main memory because a tag belonging to this set S was corrupted and 

became that precise tag T. The persistence of 2’s in these errors indicates that the cache had 

already been filled-up with the contents of matrix B. Taking into account the data address 

mapping shown in Figure 6.1 (a), any line tag comprised in the interval (0x403D6 - 0x403DC) 

(matrix B) could have become the cluster error line tag.  

Comparing the tags of the clusters of errors with each one of the tags in the previous 

interval, it was possible to detect a MBU affecting bits b1 and b2 due to their physical 

adjacency. For the three cases the tags had to be changed (from 0x403DB to 0x403DD and from 

0x403D8 to 0x403DE). These errors were not detected by the parity protection mechanisms 

since parity bit remains the same. Note that the L1 cache implements only one parity bit per 

tag. Thus, in the authors’ opinion, a particle modified two consecutive bits (MBU) belonging 

to three different tags (Multiple Cell Upset with multiplicity of three). Moreover, when 

decoding the corrupted addresses, it was possible to determine that the cache lines in Sets 0x1A, 

0x1E and 0x20 were affected. The fact that even and quasi-consecutive sets in cache were 

involved, gives clues about the possible 3-D implementation of the caches. Figure 6.1 depicts 
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the clusters of errors observed in Core 2 assuming that the particle affected the L1 cache. Two 

of them had line tag 0x403DD and the other one 0x403DE. Note that in Figure 6.1 (a), the main 

memory is illustrated by blocks of 64 Bytes. One memory address (36 bits) comprises cache 

tag (24 bits), set (6 bits) and word position (6 bits). Also note that matrices A, B and C do not 

begin exactly at the initial part of the address line that the cache refers to. 

 

 

Figure 6.1:  Clusters of errors caused by undetected tag errors.  

Finally, the cluster of errors observed in Core 1 appears in the line tag 0x203DD set 

0x1B. Following the previous analysis it is possible to verify that the particle has also changed 

the bits b1 and b2 of the line tag 0x203DB set 0x1B becoming the line tag 0x203DD. This 
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perturbation in the cache was not detected since the parity remains the same. This cluster of 

errors may have been produced by a MBU, or it was probably related to the clusters of errors 

occurred in Core 2 due to their similarities, in which case the mentioned MCU would have 

multiplicity of 4 (Ramos, 2016).  

2) Single Errors: Two separated matrix-result data were corrupted from "160" to "162" 

in Core 2, at addresses 0x403DF380 and 0x403DF480 respectively. Since the same bit b1 was 

corrupted in both addresses and the difference between them is 0x100, it is very likely that they 

constitute an MCU. Also, this distance suggests that memory interleaving probably involves 

memory blocks of 256 addresses. These events were not detected by the parity protection which 

indicates that the parity bit was corrupted as well. Note that the L1 data cache implements one-

bit-per-byte parity checking. To conclude, the occurrences of application errors and hangs are 

evidences that the ECC and Tag parity mechanisms are not enough to guarantee the immunity 

of the cache memories. 

On the other side, the errors obtained during tests 1 and 2 described in Table 4.9 were 

added in order to have the total number of errors occurred within 4 hours of irradiation with a 

fluence of 2.82�10$�. dw*/. The total number of detected SEEs was 90, and among them 12 

produced erroneous results and hangs. Then, applying equation (2.1) the dynamic cross-section 

is: 

σ��� =  12
2.82x10$ = 4.25x10*$  dw/

�;��d; 

Applying equation (4.7) for confidence level of 0.95, the confidence interval of the 

dynamic cross-section in AMP scenario without OS is: 

2.17x10*$ cm/
dev  < σ���~g�� < 7.33x10*$ cm/

dev         

6.1.2 Fault injection campaigns 

Regarding fault-injection campaigns, the standard matrix multiplication was 

independently implemented on three of the four cores (1-3) while core 0 performs as the 

monitor and fault-injector of the application.  Two types of fault-injection were performed, the 

first one targets program variables to emulate errors in cache memories, and the second one  

targets processor’s registers to simulate faults in register memory cells. 
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Fault injection in program variables 

Two fault-injection campaigns were performed. The first one aims at simulating SEUs 

in L1 Data cache memory by targeting program variables. The second one simulates SEUs in 

L2 cache memory by also targeting program variables. 

 For the first case a matrix sized of 40x40 was used, while for the second case a 80x80. 

In both cases, the matrices A, B and C were located in consecutive memory arrays. Additionally 

to these variables, the algorithm uses some internal variables to manage the loops and to store 

some intermediate results. Each variable was implemented in 32 bits. Table  6.6 summarizes 

the variables involved in the fault injection campaign. 

Table  6.6: Variables details for both scenarios 

Matrix size n Input 
variables 

Output 
variables 

Loop 
variables 

Sensitive area 

40 3200 1600 3 ~ 19 KB 

80 12800 6800 3 ~75KB 

 

Fault injection in program variables 40x40 MM 

The first fault-injection campaign considers the injection of one SEU per execution in 

program variables. The consequences of the injected SEU are classified as silent fault, 

erroneous result, exception and timeout. 

In this experiment, SEU faults were injected at instants selected within the nominal 

duration of the executed program which was 95605 clock cycles. Figure 6.2 shows a general 

overview of the first test campaign where 43104 faults were injected.  

 

Figure 6.2: Results of the first fault-injection campaign 

From the presented results, it can be calculated the application error-rate applying the 

equation (4.1) and considering as errors the result errors, time-outs and hangs. 
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���� = Number of Errors
Number of Fault Inj. =  33816

43104 = 78.45x10*/          

 

As shown in figure 6.2, the standard matrix multiplication algorithm is very sensitive 

to SEUs targeting the variables of the program, having an error rate about 78%. Very few time-

outs and exceptions, caused by a fault injected into one of the loop variables, were detected 

during this campaign. It is explained since loop variables only represent 0.06% of the sensitive 

zone. Table 6.7 shows a distribution of errors among the variables for the first test campaign.  

Table 6.7: Distribution of errors depending on the location of the targeted variable 

Targeted  Variable Runs Silent fault Result error Time-out Exception 

INPUT 28705 630 28075 0 0 

OUTPUT 14370 8659 5711 0 0 

INDEX 29 1 26 1 1 

 

Table 6.7 identifies the critical zones of the matrix multiplication algorithm. Results 

show that fault injection in the input matrices have produced 83% of the errors, while faults 

injected in the output matrix produced only 17% of the errors. Note that the input area doubles 

in size the output area but the errors generated in the input area are almost 5 times the errors 

generated in the output area.  Then, the most sensitive area of this application is the input area. 

This can be explained since input matrices have more exposure time than the output matrix 

because of math operations. The least sensitive area is the one corresponding to the internal 

variables since it has only three loop variables. However, in this zone were produced the time-

outs and exceptions that can dramatically affect the sequence of the program. 

Fault injection in program variables 80x80 MM 

A second fault-injection campaign in program variables was performed increasing the 

matrix size to 80x80 which gives 75 KB of data. This was done in order to surpass the 

dimension of L1 data cache that is 32 KB. In this way, the use of L2 cache is guaranteed. It is 

important to note that the size of the matrix was selected in order to maintain a trade-off 

between the amount of memory used and the execution time. Table 6.8 shows an overview of 

the second test campaign where 99067 faults were injected with a nominal execution time of 

758381 clock cycles.  
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Table 6.8: Results of the second fault injection campaign in program variables 

SEUs   

per run 
Runs 

Silent  

faults 

Erroneous 
results Timeouts Exceptions 

Error  

Rate (%) 

1  99069 34410 64657 1 1 65.27 

 

As shown in Table 6.8, when the size of the matrix is increased, the application error-

rate, calculated applying the equation (4.1) decreases. It shows that, even if the code of the 

application is the same, varying parameters as the matrix size may have a significant impact in 

the application’s sensitivity. An extra experiment, out of the scope of this thesis, was performed 

running the same application under Linux operating system (Vargas, 2015).  In this case, the 

fault injection campaign targeted not only program variables but also shared libraries and the 

operating system, providing an error rate about 40%. This result also shows that varying the 

configuration of the experiments may change significantly the error rate of the application. 

Figure 6.3 shows the total number of errors per execution versus the execution time. 

 

Figure 6.3: Number of errors vs execution time 

In Figure 6.3, it can be seen that the total number of propagated errors in the application 

decreases linearly with the execution time. This happens since at the beginning of the execution 

the total area of the matrices is exposed. This area reduces as the indexes of the  for loops of 

the algorithm increase until the end of the execution.  The errors in blue come from fault 

injection in the input matrices, while errors in red come from fault injection in output matrix.  
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Figure 6.4: Number of errors vs affected address  

Figure 6.4 shows the total number of errors per execution versus the addresses of the 

matrices. In this figure it is possible to see that the major density of errors belongs to the range 

of addresses of the second matrix. It can be explained since the algorithm uses nested for loops, 

where the index of the second loop is the one that repeats the size of the matrix times the number 

of the index of the first loop, which results in more exposure time of the second matrix. 

The aberrant values observed in both figures are produced by faults injected in matrix 

A. In the case of figure 6.3, aberrant values also tend to form a diagonal as the main diagonal 

produced by faults injected in matrix B, but they are much more scarce since the exposure time 

of matrix A is much more shorter than the one of  matrix B. In the same way, in figure 6.4, the 

errors produced by faults injected in memory addresses corresponding to the matrix A are 

scarce due to the short exposure time of the elements of matrix A. 

The results presented in both figures evidence that fault injection is a very useful 

strategy for analyzing the behavior of an application in presence of SEU type events. In this 

way, programmers may have the possibility to modify the programing paradigm with the aim 

of reducing the impact of SEUs in the results of the application. 

Fault injection in processor registers 

The third fault injection campaign target 32 General Purpose Registers (GPRs) and 5 

Special Purpose Registers (SPRs) which are accessible by software means. The registers are 

32-bits sized, and thus the target sensitive area is about 1Kbits. For this campaign the number 

of injected faults was considerably lower than the fault injection in variables due to the 

criticality of certain registers such as SRR0 (program counter), SRR1 (machine state register) 
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in which faults may result in synchronization loss or exceptions. Table 6.9 shows a general 

overview of the second test campaign where 500 faults were injected. 

Table 6.9: Results of fault injection in registers   

Injected faults Silent faults Erroneous 
results 

Timeouts Exceptions SER (%) 

500 437 26 24 13 12.6 

 

Results in table 6.9 show that the error-rate is about 12,6%. However, manipulating 

certain processor registers become critical because it causes several timeouts and exceptions. 

Hence, the performance of the whole system is dramatically affected.  Nevertheless, the 

occurrence of a fault in a processor register has a very low probability since its physical area 

corresponds to 0.6% of the area occupied by program variables and data. Table 6.10 presents 

the error incidence classified by type of register. 

Table 6.10: Detected errors distributed by registers 

Targeted  Registers Runs Silent 
faults 

Erroneous 
Results 

Timeouts Exceptions SER(%) 

GPR 0 to 7; GPR9 , GPR 10,  GPR12 145 128 17 0 0 12 

GPR 8 19 12 4 0 3 21 

GPR 11 16 9 4 0 3 25 

GPR 13 to 31 235 235 0 0 0 0 

SRR1 26 18 0 8 0 31 

SRR0 27 3 1 16 7 89 

LC/CRF/ XER 32 32 0 0 0 0 

 

Table 6.10 shows that the most critical register is SRR0. This register saves the context 

of the program before the interruption subroutine. 59% of injected faults in the SRR0 register 

lead to a timeout and 26% produce exceptions. This can be explained due to the fact that the 

program counter contains the next instruction to be executed after the interruption, and 

perturbing its content will cause a sequence loss.  

Another critical register is SRR1. It stores the content of the machine-state-register 

when an interruption occurs. A fault injection in this register may produce a time-out when 

processor state is performing an address translation for instruction and data memory access. On 

the other hand, the experiment proves that special registers LC (Load Context), CR (Condition 

Register) and XER (integer exception register) have no incidence in the program execution. 
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Regarding GPRs, they present different types of results depending on how often they 

are being used by the compiler in this application. In this case, it can be seen that GPR 8 and 

GPR 11 are frequently used to store data during computation.  Figure 6.5 shows the distribution 

of the consequences of the fault injection campaign in accessible registers. 

 

 

Figure 6.5: Consequences of fault injection in accessible registers 

 

6.1.3 Error rate prediction 

During the static radiation test, cache memories as well as accessible registers were 

targeted. Results show 12 errors in cache memories and no errors in tested registers. Therefore, 

the equation (4.3) is reduced to obtain the predicted error-rate as follows: 

 τEFG =  τEFG_LJLYF = τMNO ∗ σh}~}�� ∗ �� 

 

(6.1) 

From the obtained results in sections 6.1.1 and 6.1.2, the confidence interval of the 

σh}~}��  was �4.40 − 14.9�x10*$  ���
�
���
   and the τMNO was 65%. In addition, since the 80x80 

matrix multiplication occupies 75KB of data, and the size of the L2 cache is 128KB, the 

memory utilization factor (Mf) is: 

Mf =  75 KB
128 KB  = 0.59 

Then the predicted error-rate is: 

τEFG =  0.65 ∗ 8.51�10*$ ∗ 0.59 =   3.26�10*$  dw/
�;�  

Being the confidence interval for the predicted error-rate: 

τEFG =  0.65 ∗ �4.40 −  14.9��10*$ ∗ 0.59 =   �1.68 − 5.71��10*$  dw/
�;�  
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For validating the predicted error rate, it is necessary to compare this value with the 

measured one. The measured error-rate corresponds to the dynamic cross-section interval 

which is �2.17 − 7.33� x10*$ ���
���. Figure 6.6 shows the predicted and measured application 

error-rates for a 95%confidence interval.  

 

Figure 6.6: Predicted and measured application error-rates for the P2041 

In Figure 6.6, it can be seen an underestimation of the predicted error rate that can be 

explained as follows: 1) most of SPR are non-writable and thus, they were not targeted in the 

static test and fault injection campaigns, 2) the device implements ECC and parity in their cache 

memories that correct most of the detected errors either by the ECC, or by cache invalidation. 

It may affect the accuracy of the prediction.  However, the relationship between the two 

intervals suggests that the prediction approach provides an acceptable estimation of the error 

rate which can be very useful to evaluate any implemented application. 

6.2 Evaluation of the Adapteva E16G301 Epiphany microprocessor  

Unlike the other selected devices, the Epiphany multi-core does not implement 

protection mechanisms like ECC or parity in its internal memories. This fact is very interesting 

for analyzing the behavior of this device in presence of SEE. 

As it was stated in the Parallella architecture description, the dual core ARM A9 is the 

host processor and the Epiphany E16G301 multi-core is the co-processor devoted to parallel 

computing.  For inter-processor and multi-core to host communications, it was defined a shared 

memory space in the external DDR memory. Since the co-processor does not have direct access 
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to printf  function for logging results, it has to write the information in the external DDR 

memory of the board, and then the host reads this information to log it. 

For fault-injection purposes, all the variables used by the application are placed in the 

internal local memory of each processor. The variables of the program can be modified at any 

time by the fault injector core since the Epiphany architecture allows all processor cores 

accessing the whole internal memory of the chip.  

In the Epiphany, it was implemented a master-slave scheme to guarantee the 

synchronization between core processors. In addition, the master core is also synchronized with 

the host processor. The host monitors the application and logs the results. Also during the test 

campaigns, at each execution the host initializes the input matrices with predefined values and 

the output matrix with 0’s. 

For initializing each execution, the master core is waiting for a start flag from the host 

processor through a writing operation in the external memory.   In turn, slave cores are waiting 

for the start signal from the master core which writes a variable in the slave’s local memory 

space.  Once finished the calculation, each core compares the obtained results with a set of 

correct values previously obtained, and writes a flag value in a predefined location of its local 

memory for indicating to the master the end of the application.  The master core waits until all 

the cores write the end value and finally, it orders the host to log the results.  

The benchmark algorithm that was tested via the CEU fault-injection approach was a 

standard 45x45 matrix multiplication. The input matrix A was filled up with 5’s while matrix 

B was filled up with 6’s, thus the expected result was 1350 for all the elements of matrix C. 

The total number of variables used for the implementation of the matrix multiplication is 6078, 

distributed in 4050 input variables, 2025 output variables and 3 indexes for loop operations. 

Each variable was implemented in 32 bits, thus the targeted sensitive area was about 24 KB 

that perfectly fits in the 32 KB local memory. It is important to note that the local memory has 

to contain both code and data. The size of the matrix was selected so that data occupy as much 

local memory space as possible leaving enough space for the program’s code.  

6.2.1 Neutron radiation campaigns 

In order to protect the device, it is required the use of an anti-latch-up circuit when the 

multi-core processor is exposed to neutron radiation. This circuit was detailed in the Parallella 

platform description. Table 6.11 summarizes the sensitive zones of the multi-core processor. 
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Table 6.11: Sensitive zones of the Epiphany E16G301 multi-core processor 

Sensitive zone Location Capacity Description 

SRAM Processor Core 32 KB  per core Local memory 

GPR Processor  Core 64 registers of 32 bits per core General Purpose Registers 

SPR Processor Core 42 registers of 32 bits per core Special Purpose  Registers 

 

Experimental Setup 

Two radiation test campaigns were performed on the multi-core processor: one static 

and one dynamic test. The DUT was placed facing the center of the target perpendicularly to 

the beam axis at a distance of 38.5 ± 0.5 cm. The neutron beam energy was 14 MeV with an 

estimated constant flux of   7.2 x10v n. dw*/. t*+ with an error of  0.1 x10v n. dw*/. t*+.  

In the Parallella board the physical distance between the Epiphany multi-core and the 

host processor is less than one centimeter. Thus it was required to limit the neutron flux for 

avoiding particles affecting the host processor. In addition, special attention was required to 

protect the rest of the platform components from radiation. For that, the Epiphany multi-core 

was irradiated through a small hole in a 5 cm thickness polypropylene block intended to protect 

the platform.  In the presented experiments, the voltage supply was controlled by using a 

camera, available in the casemate of the accelerator facility, for monitoring voltage and current 

parameters of the power supply.  

Static Sensitivity 

To evaluate the intrinsic sensitivity of the multi-core processor, a static radiation test 

targeting the internal memory of each core was performed. The host processor was in charge 

of filling the internal memory of the multi-core with a predefined pattern using the Epiphany 

SDK Utilities E-READ and E-WRITE (Adapteva, 2013). For this reason, the whole internal 

memory of the multi-core could be targeted.  At the end of the experiment, the static cross-

section σEIJIKL was estimated to obtain the intrinsic sensitivity of the device built-in 65nm 

CMOS technology.  

The test was performed with an exposure time of 1 hour, providing a fluence around  

2.59 x10x�. dw*/. During the tests, 23 SEU and 1 MCU that produce bit-flips in the written 

pattern were detected. In addition, 2 SEFI that caused hangs in the host processor were observed 
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but not considered for the results since the DUT is only the Epiphany co-processor. Table 6.12 

summarizes the results of the static radiation campaign. Note that the subscript number 

following MCU represents the multiplicity of the upset. 

Table 6.12: Results of the static radiation test campaigns 

SEE Type Test  Consequences 

SEU 23 Bit-flip 

MCU (2) 1 Bit-flip 

Total 24  

 

Table 6.13 shows a sample of data containing a bit-flips caused by SEU and MCU in 

the local memory, and logged during the experiment. 

Table 6.13: Example of the obtained results in the static tests 

PATTERN SEE TYPE CORE ADDRESS DATA HEX DATA BIN 

0x55AA55AA 

SEU 3 0x7C84 0x55AA45AA 0b0101 0101 1010 1010 0100 0101 1010 1010 

SEU 7 0x52B4 0x55AA55AB 0b0101 0101 1010 1010 0101 0101 1010 1011 

MCU(2) 2 
0x7110 0x55AA5DAA 0b0101 0101 1011 1010 0101 1101 1010 1010 

0x7130 0x55AA5DAA 0b0101 0101 1011 1010 0101 1101 1010 1010 

 

The results from the static test allow estimating the static cross-section of the CMOS 

65nm shared memory as follows: 

σEIJIKL = ��wC @� ���
�?�;�d; =  24

2.59�10x = 9.27�10*x  dw/
�;�        

A confidence interval must be applied to this result due to the scarcity of experimental 

data. Therefore, for a 95% confidence level, the lower and upper limits for the dynamic cross-

section are: 

0.59x10*s cm/
dev  < σh}~}�� < 1.38x10*s cm/

dev         
Since the tested memory area of the multi-core processor represents 4194304 bits, the 

cross section per bit is estimated at 2.21x10*+v dw//C�: and with a 95% confidence interval 

�1.4 − 3.29� x10*+v dw//C�:. 
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Dynamic Response 

The second radiation test campaign was carried out to obtain the dynamic cross-section 

(σ[��)  of an application running in the multi-core processor. The dynamic test was performed 

with an exposure time of 1 hour providing a fluence around  2.59�10x�. dw*/. Table 6.14 

summarizes the results of the dynamic radiation campaign.  

Table 6.14: Results of the dynamic radiation test campaigns 

SEE Type Test 1 Consequences 

SEU 7 Silent faults 

SEU 11 Erroneous results 

SEFI 1 Hangs 

Total 19  

 

From the results presented in Table 6.14, only erroneous results and hangs were taken 

into account to calculate the dynamic cross-section as follows.    

σ[��JbKL = ��wC @� ���
�?�;�d; =  12

2.59�10x = 4.63�10*x  dw/
�;�         

Since the application’s logs provide information not only about errors but also about 

silent faults, the experimental application error-rate is about 63% which is coherent with the 

error rate obtained from fault injection campaigns which is 59%. Note that the value closest to 

the reality should be the one issued from fault injection due to the huge quantity of samples 

compared to the experimental one. As in the static case, it is imperative to add uncertainty 

margins to these results due to the lack of experimental data. Then, the lower and upper limits 

for the dynamic cross-section for a 95% confidence interval are: 

2.39x10*x cm/
dev  < σ��� < 8.09x10*x cm/

dev         

Table 6.15: Example of erroneous result observed during the dynamic tests 

Core 

Affected 

Zone 

Written 

Datum 

Bit altered Modified 

Datum 

Obtained  

Result 

Expected 

Result 

8 Input Matrix A 0x1 / 1 12 0x1001 / 4097 0x205A / 8282 0x5A / 90 

15 Input Matrix B 0x2 / 2 14 0x4002 / 1638 0x405A / 16474 0x5A / 90 

15 Output Matrix C N/A 0 N/A 0x5B / 91 0x5A / 90 
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In Table 6.15, it is shown a sample of some erroneous results produced by bit-flips 

affecting the input and output matrices. The bit that has flipped was easily detected since the 

initialization values of the matrices are known. Note that the erroneous results were propagated 

along the output matrix but the table shows just a sample of them. Since the device does not 

implement protection mechanisms, the erroneous results would be taken as valid results 

affecting dramatically the reliability of the multi-core. 

6.2.2 Fault injection campaigns in local memories 

Fault injection campaigns were performed in the internal memory of the device. 

Registers were not taken into account since during radiation experiments there were no events 

observed in registers. As in the P2041 case, the master plays the role of fault injector whereas 

the slave cores execute in parallel the tested application. While the application is running, the 

master core performs the fault injection.  This fault injection campaign targets 512 KB of 

internal memory of the device.  

The experiment considers the injection of one SEU per execution in the local memory 

of each processor. SEU faults were injected at instants chosen within the nominal duration of 

the executed program which was around 40376 clock cycles at 600 MHz frequency.  Table 

6.16 shows a general overview of the fault injection campaign where 119870 faults were 

injected in the local memory. 

Table 6.16: Results of the fault injection campaign 

Zone Silent Faults Erroneous Results Time-outs Exceptions 

Local memory 48849 71009 3 9 

 

From these results, it can be calculated the error rate of the internal memory applying 

the equation (4.1) and considering as errors the erroneous results, time-outs and hangs. 

���� = Number of Errors
Number of Fault Inj. =  71021

119870 = 59.24x10*/         

This result shows that 59.24% of the injected SEUs cause errors in the application.  

6.2.3 Error rate prediction for the Epiphany multi-core 

During the static radiation test, shared memories as well as accessible registers were 

targeted. Results show errors only in shared memories and no errors in tested registers. In 

addition, due to the host processor logs the results, this leads a loss of the exposure time to 
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radiation of the memory cells of the Epiphany multi-core during the dynamic test. Therefore, 

the equation (4.3) to obtain the predicted error-rate is reduced and expressed as follows: 

τh�  =  τh� _hf~¡�� = τMNO ∗ σh}~}�� ∗ Mf ∗ Etf (6.2) 

The above equation can be applied recalling the τMNO presented in sections 6.2.1 that 

was 59.24%, and the confidence interval of the σh}~}�� presented in section 6.2.2 that was 

�0.59 − 1.38�x10*s  ���
���M�� .  

The memory utilization factor (Mf) is calculated considering the local memory size of 

each core that is 32768 bytes and the memory occupied by the matrix multiplication that is 

24303bytes, which gives: 

Mf =  24303 bytes
32768 bytes  = 0.74 

Since the duration of one execution is about 27597 μs, the exposure time loos is around 

0.89% and the exposure-time loss factor (Etf) is 0.99.  Table 6.17 shows the exposure time loss 

during the dynamic test. 

Table 6.17:  Exposure time loss during the dynamic test 

Synchronization Host-Master core Synchronization Master–Slave cores 

Host 

exceeding 

time 

Waiting  start 

signal from Host 

Waiting start signal 

from Master 

Waiting ACK 

from Slaves 

Comparing Results 

time 

Total 

(us) 

225 13.48 3.55 1.1 1.44 244.57 

 

Then the predicted error-rate is: 

τEFG =  59.24�10*/ ∗ 9.27 �10*x ∗ 0.74 ∗ 0.99 =    4.02 �10*x  dw/
�;�  

Considering the previous value, the 95% confidence interval is: 

τEFG =  59.24�10*/ ∗ �0.59 − 1.38� �10*s ∗ 0.74 ∗ 0.99 =    �2.50 − 5.98� �10*x  dw/
�;�  

In order to validate the prediction approach for the studied multi-core processor, the 

predicted error-rate and the measured one, which is �2.39 − 8.09� x10*x dw//�;��d;, are 

compared.  Figure 6.7 depicts the predicted and measured error-rate intervals. 



 

 

96 

 

 

Figure 6.7: Predicted and measured application error-rates for the Epiphany 

In   Figure 6.7, it is shown that the predicted value is quite close to the measured one. 

The small underestimation of the predicted error rate may be explained due to the occurrence 

of a SEFI during the dynamic test. This SEFI probably have affected a sensitive zone that was 

not targeted during fault injection and static test. Despite of the lack of protection mechanisms, 

the Epiphany E16G301 is particularly well suited for several applications according to Table 

6.18 taken from the E16G301 Datasheet (Adapteva, 2011a). 

Table 6.18: Epiphany E16G301 main applications 

Consumer Computing 

infrastructure 

Mil/Aero Medical Communications Embedded 

Vision 

Smart-phones Super Computers Radar/Sonar Ultrasound Communication 

test bed 

Machine vision 

Speech 

recognition 

Big data analytics Extremely large 

sensor Imaging 

CT Software defined 

radio 

Autonomous 

Robots 

Face detection Software defined 

Networking 

Military Radios  Adaptive Pre-

distortion 

Automotive 

safety 

  

Furthermore, researchers at NASA Ames Research Center have published a report 

showing the use of Parallella platform, containing the E16G301, for on-board health 

management of the DragonEye Unmanned Aircraft System (UAS) (Rozier, 2015). 
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6.3 Evaluation of the Kalray MPPA-256 Many-core Processor  

The dynamic response of the MPPA-256 many-core processor was evaluated through 

the execution of a distributed Matrix Multiplication application which runs independently the 

same algorithm on each cluster of the device. The code is loaded by means of the JTAG in the 

SMEM of the I/O cluster 0. This cluster then spawns the same executable into the 16 compute 

clusters and orders them to start the execution of the program. Within each cluster, the RM core 

is the master that distributes the tasks, logs the results, and communicates with the NOC 

resources. The operation of the MPPA-256 is monitored by the host of the MPPA Developer. 

Since there are no hardware memory coherency in the compute cluster, each PE ensures 

memory coherency by software means, by updating shared data before (read coherency) and 

after the computation (write coherency). In addition, the RM calls the memory coherency 

functions when using the shared data. 

The selected application is a collaborative 256⨯256 matrix multiplication, where each 

PE of a given cluster computes  
+

+7  of the cluster result. This computation is running repeatedly 

as stated in equation (6.3) 

 ¢ = £ ¤�¥      
/,7

+
 

(6.3) 

 

A, B and C are single precision floating-point matrices. The size of the matrix was 

chosen so that data remain in the local SMEM memory. The iteration of the matrix operation 

is done to guarantee that each cluster computes enough time so that all the clusters work in 

parallel during a considerable time slice. For a 256 matrix size, it takes around 1M IO cycles 

to spawn one cluster. Since clusters are spawned one after another, cluster 15 starts execution 

around 15M IO cycles after cluster 0. 

Each compute cluster performs in AMP mode and the computational work is 

distributed evenly among the processing cores. The synchronization of the computation is done 

by events between the RM and the PE cores. The RM wakes up the 16 PEs and sends a 

notification to each one to start the computation. Then, it waits for a notification from each PE 

indicating the work was done. 

Once all PEs computations have finished, the RM core compares the result matrix with 

a static expected result matrix E, and reports any mismatch including the associated addresses 

and values. Then, the matrix C is filled up with zeros and the PEs start again the computation.  
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6.3.1 Neutron radiation campaigns 

Four radiation test campaigns were performed on the Bostan PCIe board containing the 

MPPA256 many-core processor: static test, dynamic test cache enabled, dynamic test cache 

disabled and dynamic test varying operating parameters. For these experiments, there was no 

additional anti-latch-up circuit since current and voltage levels are automatically controlled by 

the Bostan PCIe board. Table 6.19 sums up the sensitive zones of the many-core processor. 

Table 6.19: Sensitive zones of the MPPA-256 many-core processor 

Sensitive zone Location Capacity Description 

SMEM Computing Cluster 2 MB per cluster Static Shared Memory 

SMEM I/O Cluster 512 KB per cluster Static Shared Memory 

IC-CC VLIW core 8 KB per core Instruction Cache 

DC-CC VLIW core 8 KB per core Separated Data cache 

IC-IO IO VLIW core 32 KB per core Instruction Cache 

DC-IO I/O cluster 128 KB per I/O Shared Data cache 

GPR VLIW Core 64 registers of 32 bits per core General Purpose Registers 

SFR VLIW Core 51 registers of 32 bits per core System Function Registers 

 

Experimental Setup 

The device under test was decapsulated and placed facing the center of the target 

perpendicularly to the beam axis at a distance of 15.2 ± 0.5 cm. The DUT fan was placed 

laterally to cool-down the device rather than being placed on the device. Consequently, the 

computer cluster frequency was set to 100MHz to reduce power consumption. The bias voltage 

of the device was set to 0.9V. Note that only for the last test campaign the bias voltage and the 

operating frequency were changed.  The neutron beam energy was 14 MeV with an estimated 

flux of   1.2 x10, n. dw*/. t*+ at 500 Hz frequency with an error of  0.1 x10, n. dw*/. t*+. 

For protecting the rest of the platform, a 5 cm thickness polypropylene block was used. In the 

presented experiments, the power supply was controlled by means of a current-voltage 

controlling module implemented in the platform (PCIe board MPPA).   

Static Sensitivity 

To evaluate the intrinsic sensitivity of the many-core processor, a static test targeting 

the Static Shared Memories (SMEMs) of the compute clusters was performed. It was done 
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since SMEMs occupy most of the storage area of the device. To accomplish this task, an 

initialization program is loaded by means of the JTAG into all the SMEMs and is executed by 

the RM core of each compute cluster. This program writes a predefined 64-bits pattern into all 

the memory locations of the SMEMs except 3.3% of the memory that is devoted to the code 

itself.  

Once finished the initialization, a checking program is periodically loaded by means of 

the JTAG into all the SMEMs and is executed on the RM core of each compute cluster. This 

program reads each double-word of the SMEM and compares it with the predefined pattern 

along the radiation test. In the case the code finds any mismatch or detects a SECC or DECCS 

error, it is reported with a message sent to the host by the JTAG, specifying the nature of the 

error and the implicated SMEM address where it occurred. Then, the right value is written in 

the corresponding memory location. 

Note that detected SECC errors are auto-corrected in the SMEMs of the clusters and 

signaled to the processor that have performed a memory access. As a consequence, each time 

the program finishes its execution, all the SMEMs start with a fresh state that is cleared out of 

any SECC error. At the end of the experiment, the static cross-section (σEIJIKL) is obtained to 

estimate the intrinsic sensitivity of the memory cells belonging to the SMEMs built in CMOS 

28nm TSMC HP technology.  

A first radiation test campaign was devoted to obtain the static cross-section  (σE���) 

of the SMEMs belonging to the compute clusters.  In this campaign the cache memories of the 

device were disabled and the exposure time was two hours providing a fluence around  

8.64 x10x�. dw*/. During the test, 2720 Single-bit ECC (SECC) events were detected with no 

consequences to the self-test application since SMEMs implement ECC.  In addition, one SEFI 

that caused a hang was observed. Note that no latch-up events were detected during the 

experiment which means that the Bostan PCIe board effectively manages the current and 

voltage levels.  

Analyzing the SECCs addresses and considering the tri-dimensional structure of the 

device, it was possible to identify several Multiple Cell Upsets (MCU). This analysis allows 

determining that 2309 neutron particles perturbed the SMEMs of the many-core processor. 

Figure 6.8 shows the distribution of the observed bit-flips in the shared memories of the 16 

clusters.  
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Figure 6.8: Distribution of the observed bit-flips in the  SMEMs of the clusters. The axis x and z represent the 
cluster coordinates. 

 Figure 6.9 presents the SER count evolution of the MPPA during the 2 hours of test. 

It can be seen that an average of 100 bit-flips have been detected by the many-core each 5 

minutes.  Figure 6.8 and Figure 6.9 provide a temporal and spatial distribution of the bit-flips 

caused by neutron particles coming from an isotropic neutron beam. However, as temporal 

distribution is not homogeneous, the difference between the number of particles perturbing the 

device during static and dynamic tests may affect the error-rate prediction. 

 

Figure 6.9: SER count evolution of the MPPA-256 during the radiation test 

Table 6.20 summarizes the results of the static radiation campaign. Note that the 

subscript number following the MCU represents the multiplicity of the upset. 
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Table 6.20: Results of the static radiation campaign 

Detected  Error SEE Type Occurrences Bit-flip Cells 
SECC SEU 1949 1949 
SECC MCU (2) 322 644 
SECC MCU (3) 24 72 
SECC MCU (4) 8 32 
SECC MCU (5) 2 10 
SECC MCU (6) 1 6 
SECC MCU (7) 1 7 
Other error SEFI 1 1 
Total  2309 2721 

 

The results from the static test allow estimating the static cross-section of a TSMC 

CMOS 28nm memory cell as follows: 

σEIJIKL_Lb¦E = ��wC;B @� ���
�?�;�d; =  2721

8.64�10x = 3.15�10*7  dw/
�;�            

Since the tested SMEM area of the many-core processor represents 2.6x10x bits, the 

static cross-section per bit of the TSMC CMOS technology is about 1.21x10*+v(cm//bit). 

Assuming that the technology of the memory cells is similar for the different memory elements 

of the device, the cross-section of the processors’ registers can be extrapolated from the cross-

section per bit. Taking into account that there are [64 (GPRs) + 50 (SFRs)] registers containing 

32 bits each one, and [256 (PE) + 32 (RM)] core processors, the sensitivity of the registers of 

the device can be expressed as: 

σEIJIKL = 1050624 bit ∗  1.21 x 10*+v dw/
C�: =  12.71�10*$  dw/

�;�         
Dynamic Response 

As in the static test case, SECC and other errors such as data parity (DPAR) and 

instruction parity (IPAR) are reported with a message. The goal of this test is to evaluate the 

dynamic behavior of the many-core processor when no operating system is used. To do this, 

two different scenarios are considered. 

In the first scenario, the cache memories of the cores are all enabled and configured in 

write-through mode. In the second one, the cache memories are all disabled. In both cases, the 

σ���  and the average execution times were obtained. Furthermore, for the cache enabled 

scenario, additional radiation campaigns are conducted varying the device operating frequency 

and the bias voltage to do a rough but rapid characterization of voltage/frequency conditions in 

which the circuit is able to operate. 
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Dynamic Test with Cache Memories Enabled 

The second radiation test campaign was carried out to obtain the dynamic cross-section 

cache enabled (σ�§�¨©)  of an application running in the many-core processor. For this test, the 

instruction and data cache memories of the compute cluster’s cores were enabled and 

configured in write-through mode. The exposure time for this campaign was one hour 

providing a fluence about 4.32�10x(�. dw*/) . Table 6.21 summarizes the results of the 

dynamic radiation campaign.  

Table 6.21: Results of the dynamic radiation test of the MPPA-256 many-core cache enabled 

Detected Error SEE Type Occurrences Consequences 

SECC SEU 676 None 

Data cache parity SEU 36 None 

Inst.  cache parity SEU 6 None 

Register Trap SEFI 1 Hang 

Memory comparison failed SEU 2 Erroneous Result 

Total  721  
 

From Table 6.21, it is possible to identify five different types of errors. SECC and 

Instruction and Data Cache Parity errors were corrected by the ECC and parity protections. On 

the contrary, Register Trap and Memory-Comparison Failed errors are non-correctable errors 

since processor registers do not implement protection mechanisms. The Memory-Comparison 

Failed error was detected by the RM core when it identifies differences between the results of 

the application and the expected values. Table 6.22 shows an example of an erroneous result 

produced during the radiation test.  

Table 6.22: Example of an application error result occurred during the dynamic radiation test 

Cluster Address Read Value Expected Value 

14 0xed168 0x4747b37c422f1751 0x44a4f298422f1751 

14 0xed568 0xc580e9b8451cd5cc 0xc552f801451cd5cc 

14 0xed968 0xc72862ee452874c2 0xc5583ffd452874c2 

14 0xedd68 0x46b51afd452bc9da 0x453c182a452bc9da 
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In Table 6.22, it can be seen that four float values belonging to cluster 14 were 

miscalculated (most significant part of the values). The 1KB distance between them and the 

analysis of the assembly code show that this result error was caused by a corruption of the GPR 

41 when used in the main loop of the matrix multiplication. This register stores a float value 

coming  from the matrix B that will be multiplied and accumulated with 4 float values coming 

from matrix A, during the current iteration to produce the points of the result matrix C located 

in C [i] [j], C [i + 1] [j], C[i + 2] [j] and C [i + 3] [j]. The 1KB distance between corrupted 

values can be explained due to the fact that a row of A, B or C matrix contains 256 float values 

(4 bytes each one). Note that the same type of error was obtained during the fault injection 

campaign in GPRs. To determine the dynamic cross-section, only the 3 non correctable errors 

presented in table IV (1 Register trap and 2 Memory Comp. Failed) were taken into account 

(Vargas, 2017). 

  Due to the scarcity of experimental data, it is compulsory to add uncertainty margins 

to these results as explained in chapter 4 section 4.4.7. Then, for a 95% confidence interval, the 

lower and upper limits for the dynamic cross-section are: 

1.43x10*$ cm/
dev  < σ�ªN_�� < 20.29x10*$ cm/

dev         
Regarding the performance of the application when both instruction and data cache 

memories are enabled, 679 computations of the matrix multiplication were completed per 

cluster in one hour. The average computation time was around 5.30 seconds at 100 MHz 

frequency. There were no cache misses in the instruction caches, since the code is quite small 

and occupies around 400 bytes that easily fit in the PEs’ instruction caches. Concerning data 

caches, the miss rate was roughly 2.5%. Even though the 256 PEs are working all the time fully 

loaded, 30% of the execution time is spent waiting for missing data to arrive from the SMEM. 

Dynamic Test with Cache Memories Disabled 

The third radiation campaign was carried out to obtain the dynamic cross-section 

(σ�§�¨«)   with cache memories disabled. The test parameters and exposure time were the same 

as those of the second campaign. Table 6.23 summarizes the results of this dynamic radiation 

campaign. SECC errors produced in the SME’s were corrected by the ECC while Register Trap 

and Memory Comp. Failed errors remain uncorrected. Only these uncorrected errors were taken 

into account to determine the dynamic cross-section. 
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Table 6.23: Results of the dynamic radiation test of the MPPA-256 many-core cache disabled 

Type of error SEE Type Occurrences Consequences 
SECC SEU 602 None 
Register Trap SEFI 1 Hang 
Memory comparison 
failed 

SEU 1 App. result error 

Total  604  

 

Applying a similar analysis as in the previous case, the lower and upper limits for the 

dynamic cross-section are: 

0.56�10*$ dw/
�;�  < %�§�_�� < 16.72�10*$ dw/

�;�         
Regarding the performance of the application when data cache memories are disabled, 

348 computations of the matrix multiplication were completed per cluster in one hour. The 

average computation time was around 10.34 seconds at 100 MHz frequency. Comparing the 

results of the two dynamic test campaigns, it can be seen that the matrix multiplication 

algorithm performs twice as fast when cache memories were enabled, without reliability 

penalty, since the detected errors were corrected by the parity protection. Consequently, for this 

many-core processor it is convenient to enable caches memories even for critical applications. 

 

Dynamic Test Varying Operating Parameters 

A fourth radiation campaign was performed in order to observe the dynamic response 

of the many-core processor with its cache memories enabled when varying the device operating 

frequency and bias voltage. For both cases, the fluence was about 7.2 x10s(�. dw*/). Table 

5.7 summarizes the results when varying the operating frequency with a bias voltage of 0.9V. 

Table 6.24 sums up the results when varying the bias voltage with a 100 MHz frequency. 

Table 6.24: Results varying the device operating frequency 

Detected Error    100 MHz 200MHz 300MHz 

SECC 115 93 115 

Data cache parity 6 3 7 

Inst. Cache Parity 1 0 1 

Register Trap 0 0 0 

Memory Comp. Failed 0 0 1 

Total 122 96 124 
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In table Table 6.24  it can be seen that at 200MHz frequency the device is less sensitive 

to neutron radiation. On one hand, at 200MHz the execution time of the application is reduced 

compared to the one at 100MHz, which leads to a less exposure time.  On the other hand, 

executing the application at 300MHz frequency leads to more power consumption which may 

affect the neutron sensitivity of the device. 

Table 6.25: Results varying the device bias voltage 

Detected Error 0.8 V 0.9 V 1.0 V 

SECC 120 115 124 

Data cache parity 7 6 2 

Inst. Cache Parity 3 1 2 

Register Trap 0 0 0 

Memory Comp. Failed 1 0 1 

Total 131 122 129 

 

Regarding the bias voltage, in Table 6.25 it can be seen that at 0.9V there are less 

detected errors. It confirms that the device is less sensitive when operating at its nominal bias 

voltage. 

6.3.2 Fault injection campaigns in processor registers 

For this campaign, only processor registers were taken into account since there were 

no errors in SMEMs and cache memories due to the implementation of ECC, interleaving, and 

parity protection that invalidates the cache in case of errors. This experiment considers one 

SEU injection per cluster since each CC performs the application independently of the others. 

One fault is also injected per execution in the GPRs or SFRs of the processor cores (PE or RM) 

of each cluster. In order to avoid the propagation of errors to the next execution, the HOST 

resets the platform and reloads the code to the MPPA processor after each run. Hence, the 

random variables required by the fault-injector are provided by the HOST, being the random 

instant, core, register and bit additional arguments of the main function.  

While the application is running on the processing engine cores, at the injection time 

the resource manager core of each compute cluster performs the fault injection. If the target 

core is a PE, the RM core sends an inter-processor interrupt to the selected core and the latter 

performs the bit-flip in its register. The fault injection campaign targets General Purpose 

Registers (GPRs) and System Function Registers (SFRs) of the compute cluster’s cores (PEs 

or RM). Since some SFRs are non-writable by software means, only 34 of the 51 SFRs are 

targeted. Among the targeted SFRs, the most critical ones are the 8 registers saved during 
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context switching: shadow program counter (SPC), shadow program status (SPS), return 

address (RA), compute status (CS), processing status (PS), loop counter (LC), loop start address 

(LS) and loop exit address (LE). On the contrary, other registers such as processing 

identification (PI), system reserved (SR0-SR5), performance monitor (PM0-PM3) and the 

hardwired registers were not targeted. The SPC and the SPS registers serve to emulate bit-flips 

in the PC and PS registers respectively. This is done due to the fact that in the context switching 

of the interruption routine, the value of the PC and PS are saved in the shadow registers (SPC 

and SPS) and when the program flow exits from this routine, it uses the values of these registers 

to be restored in the PC and PS to continue with the current program execution. 

SEU faults were injected at instants chosen within the nominal execution time of the 

application which was around 5.3�10x clock cycles. Table 6.26 shows a general overview of 

the fault-injection campaign where 94316 faults were injected in the GPRs and accessible 

SFRs. 

Table 6.26: Results of the first fault injection campaign 

Zone Silent Faults Erroneous Results Timeouts Exceptions 

GPRs 36472 16387 6678 1996 

SFRs 22745 2034 6365        1639 

Total 59217 18421 13043 3635 

From these results, it is calculated the error rate of the registers applying the equation 

(4.1) and considering as errors the erroneous results, timeouts and hangs. 

����¡�¬ = Number of Errors
Number of Fault Inj. =  35099

94316 = 37.21x10*/          

This result shows that 37.21% of the injected SEUs in the accessible registers cause 

errors in the application.  

6.3.3 Error rate prediction for the MPPA-256 many-core 

Due to the MPPA-256 implement ECC and interleaving in its shared memories and 

parity in the processor core’s caches memories, all the events observed during radiation tests 

were corrected. Then, the prediction of the error rate is based on the contribution of processor 

registers. On one hand, the error rate issued from the fault-injection in registers is 37.21%. On 

the other hand, the  σh}~}�� from radiation experiments is 12.71x10*$  ���
�
���
. Then, applying 

the equation τh�  =  τMNO ∗  σh}~}��  the predicted application error- rate is : 
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τEFG =  37.21�10*/ ∗ 12.71�10*$ =    4.73 �10*$  dw/
�;�  

In order to validate the prediction approach for this many-core processor, the predicted 

value should be compared with the measured one. In this case, the dynamic cross-section can 

be calculated gathering the results from both dynamic tests cache enabled and disabled. 3 SEU 

and 2 SEFI in general purpose registers that cause erroneous results or hang were added. The 

average fluence during the two hours of test was of 8.64 x10x(�. dw*/). Then, the dynamic 

cross-section is:  

σ[§� =  5
8.64�10x = 5.78�10*$  dw/

�;�         
For a 95% confidence interval, the measured application cross-section is: 

σ[§� = �1.87 − 13.50 �10*$� dw/
�;�  

 

Figure 6.10: Predicted and measured application error-rates for the MPPA-256 

Figure 6.10 depicts the confidence intervals of the measured dynamic cross-section 

compared with the predicted one. Comparing the predicted and the measured error rates, it can 

be seen that the predicted value is quite close to the experimental one within the confidence 

interval. The underestimation of the predicted value can be explained since 16 SFRs, 

corresponding to the 14% of the sensitive area of the many-core, are not accessible by software 

means and thus, they were not targeted during the fault injection campaigns. 
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6.4 Overall Comparison 

This section is devoted to provide an overall comparison of the three multi/many-core 

processors evaluated in the context of this thesis. At this point, it is convenient recalling their 

main characteristics. The P2041 multi-core processor is manufactured in 45nm SOI technology 

which integrates four e500mc processor cores and implements ECC and parity in its cache 

memories. The second one is the Adapteva Epiphany E16G301 microprocessor manufactured 

in 65nm CMOS process which integrates 16 processor cores and does not implement any 

protection mechanism on its shared memories. The last one is the Kalray MPPA-256 many-

core manufactured in 28nm TSMC CMOS technology which integrates 16 compute clusters 

each one with 17 VLIW core processors (1 resource manager and 16 processing elements) and 

implements ECC and parity in its shared and cache memories.  

6.4.1 Failure-rate comparison 

For assessing the failure-rate, equations (2.2) and (2.3) are used referenced to the 

neutron flux of NYC.  Therefore, for obtaining the FIT and FIT/Mb values the following 

equations were applied: 

 FIT = σ dw/
�. �;��d; � 14 �

dw/. ℎ  ⨯  109ℎ 
 

 

FIT
Mb = % dw/

�. C�:  ⨯  14 �
dw/. ℎ  ⨯  109ℎ ⨯ 106C�: 

Table 6.27 summarizes the results obtained during the static tests for the three studied 

devices, and the calculated worst-case FIT. 

Table 6.27: Worst case error-rate of the studied devices 

DEVICE 

®¯°±°²³ 

[cm2/device] 

®¯°±°²³ 

[cm2/bit] 

SOFT ERROR 

RATE                    

[FIT] 

SOFT ERROR 

RATE               

[FIT/Mb] 

FREESCALE P2041 

quad-core 
8.51x10*$ 5.79x10*+7 119 ±40% 8 ±40% 

ADAPTEVA  

E16G301 multi-core 
9.27�10*x 2.21�10*+v 1298 ±29% 309 ±29% 

KALRAY MPPA-256 

many-core 
12.71�10*$ 4.86�10*+s 178 ±4% 0.68 ±4% 
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A similar calculation was done for obtaining the failure-rate of the application running 

on the selected devices. The results are presented in Table 6.28.  

Table 6.28: Error rate comparison of the studied applications 

DEVICE 

®´µ¶ 

[cm2/device] 

®´µ¶ 

[cm2/bit] 

SOFT ERROR 

RATE                    

[FIT dyn] 

SOFT ERROR 

RATE               

[FIT dyn /Mb] 

FREESCALE P2041 

multi-core 
4.25x10*$ 2.89x10*+7 60 ±40% 4 ±40% 

ADAPTEVA  

E16G301 multi-core 
4.63�10*x 11.03�10*+, 648 ±29% 154 ±29% 

KALRAY MPPA-256 

many-core 
5.78�10*$ 2.14�10*+s 81 ±4% 0.3 ±4% 

 

 

Figure 6.11:  Comparison of the failure-error rates 

A comparison of the failure rate for both scenarios is presented in Figure 6.11. On one 

hand, in the figure it can be seen that P2041 multi-core is the most reliable processor taking 

into account the failure rate per device. However, the difference with the MPPA-256 is not so 

ample as one could expect due to the difference in manufacturing technology (45nm SOI vs a 

28nm CMOS). On the other hand, if the FIT/Mb is considered, the reliability of the MPPA-256 
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surpasses the P2041 one. This high difference in the reliability per Mb is mainly due to the 

effective implementation of ECC and interleaving in its shared memories, as well as parity in 

its cache memories, which have detected and corrected most of the observed errors during the 

radiation test. In turn, the failure rate of the Epiphany E16G301 is ten times greater than the 

one of the P2041. This is explained by the fact that Epiphany has no protection mechanisms.  

  

6.4.2 Predicted and measured error-rate comparison 

Figure 6.12, Figure 6.13, and Figure 6.14 show a comparison between the predicted 

and the extrapolated reliability of the application implemented in the P2041 multi-core, 

Epiphany multi-core and MPPA many-core processor respectively.  The reliability curves, 

R(t) = e*¸¹ are plot from the predicted and the measured values of the dynamic cross-section 

of the devices and extrapolated at avionic altitude (35000 feet) where the neutron flux is about  

2.99 x10y n. cm*/. h*+. The considered period of time is 50000 hours which is the estimated 

average lifetime of a commercial aircraft. 

 

Figure 6.12: Predicted and extrapolated reliability of the P2041 multi-core processor 
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Figure 6.13: Predicted and extrapolated reliability of the Epiphany multi-core processor 

 

Figure 6.14: Predicted and extrapolated reliability of the MPPA many-core processor 

From the figures, it can be seen an underestimation produced by the fact that not all 

sensitive-zones could be targeted during the static radiation test and the fault-injection 

campaigns. This is explained because there are some memory-cells that cannot be accessed by 

the user and other that cannot be written by software means. The most accurate prediction is 

the one achieved for the Epiphany multi-core since this device does not implement error 

detection and correction mechanism. The results corroborate that these mechanisms may affect 

testing and error-rate prediction (LaBel, 2005). 
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Moreover, a cross comparison between the reliability curves shows that the most 

reliable device is the P2041. It confirms that the process technology plays a preponderant role 

in the device reliability.  

On the other side, as the reliability of multi/many-core processors strongly depends on 

the implemented application (software), the failure rate of the studied devices can be classified 

within the DO-178B Software Considerations in Airborne Systems and Equipment 

Certification. The DO-178B is a guideline used as de facto standard for developing avionic 

software systems (Ferrel, 2014). Table 6.29 shows the level of failure condition regarding the 

failure rate. 

Table 6.29: Failure condition levels according DO-178B 

Level Failure Condition Objectives With independence Failure rate 

A Catastrophic 66 25 10-9/h 

B Hazardous 65 14 10-7/h 

C Major 57 2 10-5/h 

D Minor 28 2 10-3/h 

E No Effect 2 0 N/A 

 

The failure conditions for avionic systems are describe as follows: 

Catastrophic: Failure may cause a crash. Error or loss of critical function required to 

safely fly and land aircraft. 

Hazardous: Failure has a large negative impact on safety or performance, or reduces 

the ability of the crew to operate the aircraft due to physical distress or a higher workload, or 

causes serious or fatal injuries among the passengers. (Safety-significant) 

Major :  Failure is significant, but has a lesser impact than a Hazardous failure (e.g. 

passenger discomfort) or significantly increases crew workload (safety related) 

Minor : Failure is noticeable, but has a lesser impact than a Major failure (e.g. 

passenger inconvenience or a routine flight plan change) 

No Effect: Failure has no impact on safety, aircraft operation, or crew workload. 

Results show that the failure rate of the P2041 multi-core and MPPA-256 many-core 

executing a matrix multiplication as application, reaches level C of the DO-178B, being the 
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devices well suited for major failure conditions of avionic applications. On the other hand, the 

Epiphany multi-core processor reaches level D, being convenient for minor failure conditions. 

 

6.5 Discussion 

Radiation experiments performed with 14 MeV neutrons and fault injection campaigns 

are useful techniques for evaluating the intrinsic sensitivity, dynamic response, and application 

sensitivity of multi-core and many-core processor.  The following is a summary of the analysis 

of the results presented in this chapter. 

P2041 multi-core processor 

Fault injection campaigns in program variables show that input matrix A and especially 

input B are much more sensitive to SEU than the output matrix due to a greater exposure time. 

Results shows the relevance of fault injection to analyze the behavior of an application in 

presence of SEUs, providing the possibility to modify the program code according to the 

obtained results for reducing the impact of faults in the results of the application. 

Thanks of using the machine check error report during the radiation tests, it was 

possible to log all the detected SEEs, even those that were corrected by the protection 

mechanisms implemented in cache memories. It allowed assessing the sensitivity to neutron 

radiation of the 45nm SOI technology. The obtained results show that 45 nm SOI technology 

is between 3 and 5 times less sensitive to neutron radiation than its CMOS counterpart. 

The analysis of the cluster of errors with the same pattern repeated simultaneously on 

all the cores during the static radiation test, suggest that a particle perturbed a shared resource 

belonging to the connectivity infrastructure (CoreNet Coherency Fabric). This fact supports the 

necessity of a deeper study of SEE consequences on inter-core communications, in spite of the 

small zone that it occupies with respect to the cache memories.  

Dynamic tests have demonstrated that parity implemented in the L1 cache memories is 

not enough to protect address tags and data arrays. The clusters of errors produced in the same 

read cycle by an MBU affecting the address tag of the L1 caches of core 1 and core 2, puts in 

evidence a possible 3-D implementation of the L1 cache memories. These results suggest that 

emerging technologies in cache implementation would potentially affect its sensitive to 

radiation.  

Regarding the error-rate prediction, it is possible to observe an underestimation 

produced by the fact that not all sensitive zones were targeted during the static test and fault 
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injection campaigns. Moreover, the protection mechanisms implemented in their cache 

memories may influence the testing and error prediction.  

Epiphany multi-core 

Results issued from the static test allow estimating the worst-case sensitivity of the 

shared memory implemented in CMOS 65nm technology. For this experiment, the neutron flux 

was reduced almost three times compared to the flux used for the P2041 experiment. This was 

done to limit the perturbations produced by neutron particles in the host processor. However, 

the applied flux is about eight orders of magnitude greater than the one at avionic altitudes 

which corresponds to almost 10 years of exposure time of the device to the neutron radiation 

at 35000 feet. Despite of the efforts for protecting the rest of components of the platform, the 

SD card containing the Linux OS was corrupted in one of the experiments. This was solved by 

replacing the tainted SD by a new one. 

Comparing the predicted error-rate with the measured one, it is possible to see that the 

proposed approach provides a good approximation. The small underestimation may be 

explained due to the fact that not all sensitive areas of the device were targeted during fault 

injection and static test. 

MPPA-256 many-core processor 

Due to the complexity of the communication architecture, it was proposed a fault-

injection campaign at cluster level for avoiding the use of NOC services which may increase 

the latency during the fault-injection process. The use of bare-metal programming model allows 

injecting faults in both RM and PE cores. However, similarly to the other devices, it was not 

possible to target all registers which leads to an underestimation in the prediction-error rate. In 

addition, the accuracy of the prediction was affected by the protection mechanisms implement 

in the shared and cache memories of the MPPA-256. 

The static radiation test shows that both the ECC and interleaving implemented in the 

SMEMs of the clusters are very effective to mitigate errors, since all the bit-flips were detected 

and corrected.  An interesting issue from this test was the multiplicity of the detected MCUs 

ranging from 2 to 7. It gives some clues about how the organization of the memory may impact 

in the propagation of errors produced by a single particle.  

  Dynamic tests have demonstrated that by enabling the cache memories it is possible 

to increase the performance of the application without compromising the reliability of the 

device, since cache memories implement an effective parity protection. On the other side, non-
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correctable errors were originated in GPRs since registers do not implement any protection 

mechanism.   

A trade-off between the execution time and power consumption aiming at minimizing 

the impact of neutron radiation was achieved at 200MHz frequency. Regarding the bias voltage, 

it can be seen that the device is less sensitive to radiation when operating at its nominal voltage 

(0.9V). Consequently, decreasing the bias voltage for reducing the power consumption of the 

device is a critical issue to be considered. 
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Chapter 7 : Conclusions and 
perspectives      

The use of multi-core and many-core processors ranging from safety-critical to 

commercial applications is rapidly increasing due to the growing demand of high performance, 

reliability and low power consumption. Moreover, their parallel computing and redundancy 

capabilities make them ideal candidates for avionics and space applications. However, the 

integration of several cores in a single integrated circuit leads to further miniaturization of 

transistors which increases their sensitivity to SEE. Although, technological and architectural 

improvements as well as software strategies have been developed to mitigate SEE, the 

implementation of additional hardware and software protections involves performance 

degradation and increase of power consumption. It is thus mandatory to evaluate the sensitivity 

to SEE of multi and many-core devices for validating their applicability in harsh environments, 

or for applications where the reliability is a concern. 

There is a rising interest of using COTS multi and many-cores for avionics and safety-

critical applications due to their low cost and time saving compared to dedicated complex 

solutions. Nevertheless, the choice of these components is still carried out in an ad hoc manner, 

which produces problems for accurate cost and reliability estimates.  Hence, the selection of 

these COTS devices should be based on the evaluation of the impact of the radiation on their 

reliability by means of the estimation of their failure rate. 

In this work it was proposed a general approach for evaluating the SEE sensitivity of 

applications implemented in multi-core and many-core processors.  This was achieved by 

applying the principles of the CEU approach developed at TIMA laboratories in previous 

works, considering the technological and architectural evolution of multi and many-core 

architectures with respect to single processors. The soft error-rate was used as a metric for such 

evaluation. The prediction of the error rate was accomplished by combining the error rate of 

the application issued from fault injection campaigns, with the worst-case sensitivity of the 

device obtained from radiation ground testing. In order to validate the prediction approach, it 

was required to compare the predicted and measured error rates. The measured result was 

obtained by exposing the targeted device to neutron radiation while executing the desired 

application. Fault injection campaigns were devoted to inject faults in memory cells and 
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accessible registers benefiting of the multiplicity of cores for using one of them as a fault 

injector while the others execute the selected application. Radiation experiments were 

conducted with 14 Mev neutrons at GENEPI2 facility. Three different COTS devices have been 

evaluated in the context of this thesis. The first one was the Freescale P2041 quad-core 

processor manufactured in 45nm SOI technology. The second one was the Kalray MPPA-256 

many-core manufactured in 28nm CMOS technology. The third one was the Adapteva 

Epiphany E16G301 microprocessor manufactured in 65nm CMOS technology. 

7.1 Concluding remarks 

Obtained results from the evaluation of the P2041 multi-core demonstrate that fault 

injection allows identifying vulnerabilities in the application, and improving the programming 

strategy for reducing the impact of faults in the results. From the static test, it was confirmed 

that SOI process technology is more robust than traditional bulk CMOS. On the other hand, 

dynamic tests have demonstrated that in spite of the parity and ECC protection mechanisms, 

there were errors in the result of the application caused by MBUs in the address tags and data 

array. Finally, results show an underestimation of the predicted error-rate, since not all sensitive 

zones were targeted during the static test and fault injection campaigns. Furthermore, the 

implementation of ECC and parity in the device’s cache memories may affect the prediction.  

From the evaluation of the Epiphany E16G301 multi-core processor, it can be seen that 

the proposed approach was effective for predicting the application error-rate.  The fact that this 

device does not implement protection mechanisms has allowed a good estimation of the error-

rate, confirming that protection mechanisms affect the testing and error-rate prediction (LaBel, 

2005). During the dynamic radiation test, input matrices were also checked to identify silent 

faults. It was done in order to obtain the experimental error-rate of the application which has a 

good correlation with the error rate obtained from fault injection.  

The evaluation of the MPPA-256 many-core processor shows that both, ECC and 

interleaving implemented in the SMEMs of the clusters are very effective to mitigate SEU type 

errors, since all the detected SEUs in the SMEMs were corrected during the static test. In 

addition, dynamic tests have demonstrated that by enabling the cache memories it is possible 

to gain in application performance without a reliability penalty, since cache memories 

implement an effective parity protection. Regarding the radiation experimental results, the 

prediction of the error-rate was based only on the registers’ contribution since they do not 

implement any protection mechanism. Despite the complexity of this many-core processor, the 

prediction of the error-rate has a small underestimation that confirms the applicability of the 

approach to these devices. The possible reasons for this underestimation are: only accessible 
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registers were targeted, communication infrastructure was not targeted, protection mechanisms 

may affect the error-rate prediction,  

The overall results presented in this thesis confirm that chip manufacturing process 

plays a preponderant role in the dependability of the device. A FIT comparison of the studied 

devices shows that the P2041 multi-core is the most reliable device since it is built in SOI 

technology. Nevertheless, the difference with the MPPA-256 built in 28nm CMOS is not so 

ample. In fact, if the FIT/Mb is considered, the MPPA-256 is the most reliable device. Both 

devices implement ECC and parity in their internal memories. However, the effectiveness of 

the MPPA-256 is greater than the efficiency of the P2041 due to the implementation of 

interleaving in its shared memories. Consequently, the selection of the appropriate device 

should be done based on the requirements of the application to be implemented (e.g., available 

memory space for code and data, number of cores working in parallel etc.), and a cost-benefit 

analysis.  

Concerning the Epiphany multi-core, it has a failure rate about 11 and 7 times greater 

than the one of the P2041 and the MPPA-256 respectively. Due to the fact that better 

manufacturing technologies as well as hardware protections increase significantly the cost of 

the device, devices such as the Epiphany E16G306 multi-core could be considered for 

embedded systems performing non-critical avionic applications. In fact,   the NASA’s report: 

“Intelligent Hardware-Enable Sensor and Software Safety and Health Management for 

Autonomous UAS” states that the Epiphany multi-core can be used for several terrestrial and 

even avionic applications.  

The fact that a many-core processor built on 28nm CMOS has a similar FIT than a 

multi-core 45nm SOI is very promising to widespread its use on embedded domain. First, 

because the mitigation techniques implemented on the device have decreased the reliability gap 

between both technologies related to miniaturization and manufacturing process (CMOS vs 

SOI). Second, it supports the possibility of using COTS devices in critical-embedded system 

due to the huge processing capability and the large internal memory capacity. Both 

characteristics allow overcoming the main problem of overhead caused by the implementation 

of hardware fault-tolerant techniques. Therefore, the use of this device makes feasible the 

implementation of software redundancy techniques to improve the system reliability by 

masking other SEEs consequences that were not mitigated by the protection mechanisms. 

Lastly, the high cost of SOI devices compared to CMOS devices boosts the use of the latter. 

For selecting the appropriate device intended to be implemented in a system operating 

in harsh radiation environment, it is imperative to evaluate the SEE sensitivity of the candidates, 

and then to establish a trade-off between costs and reliability depending on the application and 
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the operating environment. However, the evaluation based on dynamic radiation tests is costly 

in terms of time and money. For this reason, a prediction approach is required. Furthermore, 

the widespread use of multi/many-core processors in embedded systems requires a prediction 

error-rate suitable for these devices. To the author’s knowledge, this work presents for the first 

time an approach devoted to predict the error-rate of an application executing on multi/many-

core processors. In spite of the underestimation of the predicted error-rates, this approach 

provides useful results that can be considered as a preliminary validation of COTS multi/many-

cores. 

There are several aspects that make difficult the SEE testing on multi/many-core 

processors and affect the error-rate prediction. One of them is the complexity of their 

architecture which integrates different components and functions on the same chip. In the 

approach developed in this thesis, the error-rate prediction of a system is presented as the sum 

of the individual contributions of error-rate prediction by each memory-cell component. To 

obtain the individual contribution is advisable to isolate functionalities. However, this is a not 

trivial task on these kinds of devices since isolation cannot be totally accomplished. This fact 

causes difficulties for identifying the zone where faults were produced. Moreover, to improve 

the effectiveness of the prediction, it is convenient to extend this approach to other device’s 

components such as the communication infrastructure. Another aspect is the complex 

packaging and multi-layered construction of circuits which produce problems when testing in 

radiation facilities due to beam energy limitations. Finally, the implementation of error 

detection and correction mechanisms as well as the lack of experimental data (due to radiation 

facility costs and availability) also influence in the accuracy of the error-rate prediction 

approach.  

7.2 Future directions 

The current work has presented a first insight in the vast study of the sensitivity to 

radiation of multi-core and many-core processors. For continuing with this work, the following 

topics can be explored: 

• Validation of the proposed approach using different programming models: The 

programming model may substantially affect the sensitivity of the device because of 

the used resources. For this reason, it is meaningful to validate the approach using Posix 

and OpenMP.  

• Validation of a real space application: It can be done in the context of industrial and 

academic cooperation between TIMA and industrial partners such as Thales Alenia 

Space, or academics partners such as “Centre Spatial Universitaire de Grenoble”. 
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• Evaluation of the communication infrastructure: Given the increasing number of cores 

in emerging many-cores processors, the communication network are changing 

implementing NoCs and combining them with buses for interconnecting processing 

cores and clusters.  It implies having more control and data registers to be targeted by 

fault injection and radiation tests. 

• Validation of the prediction approach using heavy-ions: For considering COTS 

multi/many-cores for space application it is mandatory to expose them to heavy-ions. 

However, it is important to consider equipment and hardware constraints such as 

testing in vacuum chamber and silicon thinning of the device under test. 

• Application of redundancy techniques: This prediction approach can be combined with 

the implementation of redundant applications aiming at increasing the reliability of the 

device. 
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Résumé de la thèse en français  

i. Introduction 

Contexte général et motivation 

Les processeurs multi-cœur et many-cœur sont une solution prometteuse pour atteindre 

la fiabilité, la haute performance et la faible consommation d'énergie. L'utilisation de ces 

dispositifs devient très attrayante en raison de leur énorme capacité de traitement combinée à leur 

capacité de redondance intrinsèque, ce qui les rend idéales pour la mise en œuvre d'applications 

hautes performances dans des domaines scientifiques, commerciaux grand public, et de sûreté de 

fonctionnement.  Par conséquent, il existe plusieurs projets internationaux qui travaillent à valider 

l'utilisation de processeurs multi et many-cœur dans des systèmes embarqués critiques. En fait, 

les industries spatiales et avioniques sont intéressées à valider l’utilisation de ces dispositifs pour 

intégrer les fonctions d'un système entier dans une seule puce et pour accroître la fiabilité de leurs 

applications (CAST, 2014). Par exemple, la nouvelle tendance de l'architecture des systèmes 

avioniques s'appuie sur l’IMA (Integrated Modular Avionics) au lieu de l'architecture fédérée 

classique. La principale différence entre les deux architectures est que dans le système fédéré, 

chaque système dispose de ressources privées alors que dans l’IMA, les ressources peuvent être 

partagées. L'un des défis les plus importants pour les architectures IMA est l'intégration de 

processeurs multi-cœurs commerciaux (Bieber, 2012). L'utilisation de processeurs multi-cœurs 

Commercial-Of-The-Shelf (COTS) est pratique en raison des problèmes de budget et de 

disponibilité. Néanmoins, la sélection de ces composantes crée des complications pour un coût 

réaliste, une estimation de l'effort, et une certification contre les erreurs (Ye, 2004). 

En fait, l'une des principales préoccupations de la certification pour les systèmes critiques 

embarqués est la sensibilité au rayonnement des composants électroniques. Ce rayonnement peut 

entraîner des défaillances transitoires et permanentes, appelées Single Event Effects (SEE), qui 

sont les conséquences de l’impact d’une particule unique dans une zone sensible du circuit. Une 

forme représentative de SEE est le Single Event Upset (SEU), dont  l'énergie déposée  provoque 

le basculement d’un bit d’une cellule mémoire. Les SEU sont un problème critique à prendre en 

compte  car ils  peuvent conduire à la modification aléatoire en temps et en l'emplacement du 

contenu d'une cellule mémoire avec des conséquences inattendues au niveau de l'application. 
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L’apparition de SEE dépend principalement de la technologie du dispositif et de 

l'environnement radiatif  dans lequel le circuit est destiné à fonctionner. En effet, avoir des 

dispositifs plus denses et complexes implique une mise à l'échelle de la technologie qui augmente 

leur vulnérabilité aux effets du rayonnement naturel. Pour cette raison, les fabricants sont 

constamment à la recherche de nouvelles méthodes pour améliorer le processus de la technologie 

afin de réduire les conséquences des SEEs. Silicon-On-Insulator (SOI) est un exemple clair de 

ces améliorations faites face aux inconvénients traditionnels du bulk CMOS. Les techniques de 

type Radiation Hardened By Design (RHBD) sont également utilisées pour atténuer les effets des 

SEUs. Par exemple, la mise en œuvre de codes de correction d'erreurs (ECC) et la parité pour 

protéger la mémoire interne des processeurs est pratique mais pas suffisante en présence de 

multiple bits (MBU). Une autre technique RHBD bien connue est la Triple Modular Redundancy 

(TMR) qui améliore significativement la fiabilité du système. Cependant, la mise en œuvre de 

composants matériels et de mécanismes de protection additionnels implique l'introduction d'une 

zone supplémentaire et d'un surcout dans l’application, ce qui peut entraîner une plus grande 

consommation d'énergie et une dégradation de la  performance. Il est donc essentiel d'ajouter une 

tolérance aux fautes au système avec un minimum overhead. 

Dans ce contexte, les processeurs multi- cœur et many-cœur conviennent parfaitement  à 

la mise en œuvre de techniques de tolérance aux fautes basées sur leurs capacités de redondance 

intrinsèque. Cependant, il est important de tenir compte des contraintes suivantes. Tout d'abord, 

le degré élevé de miniaturisation de ces dispositifs les rend plus sensibles au rayonnement. 

Deuxièmement, le nombre énorme de cellules  mémoire incluses dans le dispositif accroît sa 

vulnérabilité aux rayonnements. Enfin, la complexité de l'architecture en termes de multiplicité 

de cœurs, de communication inter- cœurs, de mémoire et d'E/S, affecte la fiabilité du système. 

Par conséquent, il est obligatoire d’évaluer la sensibilité face aux SEE des processeurs 

multi/many-cœurs afin de valider leur utilisation pour les applications où la fiabilité est cruciale. 

Afin d'évaluer la fiabilité du dispositif, son taux d’erreur est nécessaire. Ce taux d’erreur 

peut être obtenu en extrapolant la section efficace issue des essais de radiation à l'environnement 

de rayonnement souhaité. En outre, étant donné que le taux d’erreur  d'un système basé sur des 

processeurs dépend de l'application, des tests de radiation dynamique sont également nécessaires 

pour évaluer le système exécutant l'application cible. Cette dépendance implique que tout 

changement dans l'application nécessite de nouveaux tests. Cependant, le coût des tests de 

radiation et la disponibilité de l'installation de rayonnement les rend  impraticables. Par 

conséquent, il est obligatoire d'utiliser une prédiction du taux d'erreur pour faire face à ces 

limitations. 

Il y a peu de recherches dans la littérature qui étudient les effets de rayonnement sur les 

processeurs multi/many-cœur. Parmi eux, il y a des études représentatives telles que: référence 
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(Stolt, 2012) établit un modèle de section transversale dynamique pour un serveur multi-cœur 

basé sur un processeur quad-cœur en technologie 45nm CMOS. (Guertin, 2012) présente les 

résultats du test SEE au-dessous de 15 et 25 MeV ions de l'ITC Maestro de 49 noyaux, qui est un 

processeur Radiation Hardened By Design. In (Oliveira, 2014), on évalue la sensibilité au 

rayonnement d'une Graphic Processing Unit (GPU) conçue en technologie 28nm. Même si les 

travaux mentionnés présentent des résultats importants, ils visent à valider des dispositifs 

spécifiques et ne fournissent pas une approche générale à appliquer à n'importe quel processeur 

multi/many-cœur. 

Contexte scientifique de la thèse  

La présente thèse a été développée dans le cadre du projet CAPACITES au sein de 

l'équipe de Systèmes Intégrés Robustes (RIS) du laboratoire TIMA (Techniques de l'Informatique 

et de la Microélectronique pour l'Architecture des systèmes intégrés), et a été soutenue en partie 

par les autorités françaises par le biais du programme «Investissement d'Avenir» (projet 

CAPACITES) (CAPES), par le Secrétariat de l'Éducation Supérieure, la Science, la Technologie 

et l'Innovation de l'Équateur (SENESCYT) bourse 753-2012 et par l'Université des Forces 

Armées ESPE bourse 14-006-BP-DOC-ESPE-a2. 

Le projet «Calcul Parallèle pour les applications critiques en temps et sécurité» 

(CAPACITES) implique des partenaires académiques et industriels dans le développement de la 

plateforme matérielle et logicielle basée sur le processeur many-cœur KALRAY MPPA pour 

répondre aux exigences des applications parallèles critiques sur le temps de réponse et la sûreté 

de fonctionnement. Les domaines d'application considérés dans ce  projet sont représentatifs des 

systèmes embarqués critiques mettant en œuvre des puissances de calcul significatives et  dont le 

déploiement est actuellement limité voire impossible en raison de choix technologiques qui ont 

été faits sur les plateformes multi-cœur traditionnelles. Les domaines d'application comprennent 

l'espace et l'avionique. De plus, parmi les résultats escomptés du projet, on peut citer: (1) la 

capacité de certification applicatives de bout en bout des couches sémantiques en suivant les 

principaux préceptes de la norme avionique DO178C, et (2) l'audit de la capacité des couches et 

de modelés d'exécution pour répondre aux exigences de certification  aéronautique, à partir des 

processeurs many-cœur MPPA. 

 

Objectifs et contributions de la thèse  

 L'objectif principal de la présente thèse est de fournir une approche de prédiction du taux 

d'erreur général et abordable pour évaluer la sensibilité des applications implémentées dans des 

processeurs multi  et many-cœur exposés à des environnements radiatifs. En raison de la 
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complexité de l'architecture du dispositif, ce travail suit l'hypothèse que la principale contribution 

au taux d'erreur est fournie par des composants ne mettant pas en œuvre des mécanismes de 

protection. 

Pour atteindre cet objectif, une extension de l'approche Code Emulating Upset (CEU) 

(Velazco, 2000) est proposée pour évaluer le taux d'erreur des applications implémentées dans 

les processeurs multi et many-cœur. L'approche CEU a été développée au laboratoire TIMA dans 

des travaux antérieurs  pour prédire les taux d'erreur dans des architectures à processeur en 

combinant des campagnes d'injection de fautes et des essais sous radiation. L'extension proposée 

de l'approche CEU est appropriée pour injecter des fautes dans des processeurs multi et many-

cœur en raison de la complexité de leur architecture et de la mise en œuvre de plusieurs niveaux 

de mémoires caches ainsi que des mémoires partagées. En outre, cette nouvelle proposition inclut 

des facteurs de déclassement de la mémoire et du temps d'exposition. Au cours de cette thèse, la 

théorie quantitative est appliquée à deux expériences qui sont combinées pour prédire le taux 

d'erreur. La première consiste à effectuer des essais sous radiation avec des neutrons de 14 Mev 

dans des accélérateurs de particules pour émuler un environnement  radiatif agressif. Le second 

consiste à effectuer l'injection de fautes afin de simuler les conséquences des SEU dans 

l'exécution du programme. 

Pour valider la généralité de cette approche, différents dispositifs COTS ont été 

sélectionnés en vue de représenter les aspects technologiques et architecturaux les plus pertinents 

des processeurs multi et many- cœur. Le premier était le processeur Freescale P2041, fabriqué en 

technologie SOI 45nm qui intègre quatre processeurs em500c. Le second a été le processeur 

Adapteva Epiphany E16G301 fabriqué en technologie CMOS 65nm qui intègre 16 processeurs. 

Le troisième était le processeur many-cœur Kalray MPPA-256 fabriqué en technologie CMOS 

28nm  qui intègre 16 clusters de calcul, chacun avec 17 processeurs VLIW. L'efficacité de 

l'approche sera déterminée en comparant le taux d'erreur prédit avec la réponse dynamique 

obtenue à partir des essais sous radiation. Cette comparaison permet de valider la pertinence de 

l'extension de l'approche CEU pour prédire le taux d'erreur des applications implémentées dans 

des processeurs multi/many-cœur. 

Les principales contributions à l'état de l'art de cette recherche sont: (1) la proposition 

d'une approche générique pour déterminer la sensibilité dans le pire des cas d'un processeur multi-

cœur implémentant ECC et parité dans leurs caches ou mémoires partagées qui ne peuvent pas 

être désactivées, (2) l'évaluation de la réponse dynamique du multi-cœur Freescale P2041 en 

implémentant une application memory bound, (3) l'identification de l’adresse cache comme 

source de résultats erronés dans le test dynamique de rayonnement, (4) la détermination de la 

sensibilité pire de cas du processeur many-cœur MPPA-256, (5) une évaluation de la réponse 

dynamique du MPPA-256 démontrant qu'en habilitant les mémoires caches, il est possible de 
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gagner en performance de l'application sans compromettre la fiabilité du processeur, (6) 

l'extension de l'approche CEU pour prédire le taux d'erreur d'applications implémentées dans des 

processeurs multi et many- cœur, (7) la sensibilité pire des cas du processeur multi-cœur 

Epiphany E16G301, (8) La fiabilité des processeurs étudiés en tenant compte des caractéristiques 

technologiques et architecturales. 

Les résultats des trois premières contributions ont été publiés dans le journal IEEE 

Transactions on Nuclear Science (TNS) (Ramos, 2016). Les trois autres contributions ont été 

publiées dans le journal IEEE TNS (Vargas, 2017). 

Dans le contexte spécifique du projet CAPACITES, cette thèse contribue à la tâche 

relative à l'étude de la fiabilité du processeur many- cœur  MPPA-256 dans un environnement 

radiatif. 

Organisation du manuscrit de thèse   

Le manuscrit de la thèse est organisé en sept chapitres. Les trois premiers passent en 

revue toute la problématique des effets des radiations sur les circuits VLSI et donnent une 

synthèse des travaux existants.  

Le premier chapitre est l’introduction de la thèse. 

Le deuxième chapitre présente le contexte de la recherche décrivant les environnements 

de rayonnement spatial et atmosphérique afin d'introduire les effets du rayonnement naturel sur 

les circuits et systèmes électroniques. Plusieurs aspects de la caractérisation du circuit intégré au 

rayonnement sont abordés. À la fin du chapitre, les principaux problèmes liés aux processeurs 

multi-cœur et  many-cœur sont décrits. 

Le chapitre trois résume l'état de l'art des thèmes abordés dans la présente thèse: (1) la 

sensibilité des processeurs multi et many-cœur, (2) les techniques d'injection de fautes et (3) la 

prédiction du taux d'erreur des architectures basées sur le processeur. À la fin du chapitre, il est 

discuté la sélection de CEU comme une approche de base pour prédire le taux d'erreur 

d’applications implémentées dans des processeurs multi-cœur. 

 Le chapitre quatre définit la méthodologie proposée par cette recherche. Il détaille 

l'extension de l'approche CEU pour l'évaluation de la sensibilité face aux SEE et la prédiction du 

taux d'erreur des applications implémentées dans les processeurs multi et many-cœur, ainsi que 

les outils nécessaires pour la réalisation des expériences de rayonnement. 

 

Le chapitre cinq explique la sélection des plates-formes utilisées pour valider l'approche 

et fournit une description des principales caractéristiques de celles-ci. Deux processeurs multi-
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cœur et un processeur many-cœur sont proposés. En outre, le modèle de programmation et 

l'application de référence sont expliqués. 

Le chapitre six présente les résultats expérimentaux de l'évaluation de l'approche dans les 

dispositifs cibles. Des campagnes d'injection de fautes sont effectuées pour obtenir la sensibilité 

face aux SEE de l'application. L'essai sous radiation statique avec des neutrons de 14 Mev fournit 

la sensibilité intrinsèque des processeurs multi-cœurs ou many-cœur. Des tests dynamiques sont 

effectués pour obtenir la réponse dynamique du dispositif et pour valider l'approche de prédiction. 

À la fin du chapitre, il est fourni une comparaison entre les dispositifs étudiés en termes de 

fiabilité. 

Enfin, le chapitre sept résume la recherche et fournit des conclusions générales et des 

perspectives futures. 

ii. Cadre théorique et travaux existants 

Chapitre 2: Cadre théorique 

Ce chapitre décrit les effets des radiations sur les circuits intégrés. Il présente un aperçu 

des environnements radiatifs spatiaux et atmosphériques où les circuits et systèmes électroniques 

fonctionnent. Les effets des particules énergétiques sur  du matériau semi-conducteur sont 

également expliqués dans le but d'introduire les différents types d'événements singuliers qui 

perturbent les circuits et systèmes intégrés. 

Les circuits et systèmes électroniques sont exposés aux rayonnements naturels et 

artificiels dans des environnements spatiaux et atmosphériques. Au cours des années soixante, de 

nombreux problèmes ont été observés dans l'électronique spatiale, bien qu'il ait été difficile de 

séparer les défaillances soft des autres formes d'interférences. En 1978, apparaissent les premières 

preuves de dysfonctionnements causés par les radiations présentes dans l’environnement spatial 

dans les circuits électroniques embarqués dans les engins spatiaux (May, 1979). 

Dans l'espace extra-atmosphérique, il existe trois principaux types de sources radiatives 

qui affectent l'atmosphère terrestre: 

• Les rayonnements cosmiques galactiques et extragalactiques 

• Les rayonnements provenant du soleil tels que le vent solaire et les éruptions solaires 

• Le champ magnétique terrestre qui comprend la magnétosphère et les ceintures de 

radiation 

De nombreuses formes de rayonnement naturel et artificiel se rencontrent dans 

l'atmosphère terrestre, ce qui peut être bénéfique ou nuire à l'environnement. Une attention 

particulière doit  être accordée aux rayonnements ionisants car ils peuvent être nocifs pour la 
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microélectronique. Les rayonnements cosmiques et les particules solaires bombardent 

constamment l'atmosphère terrestre et ainsi, entrant en collision avec les atomes d'azote et 

d'oxygène (Barth, 2003). Cette interaction génère dans l’atmosphère terrestre une « douche » de 

particules secondaires dont les produits sont des protons, des électrons, des neutrons, des ions 

lourds, des muons et des pions. 

Dans les composants électroniques, les effets d'événements singuliers (Single Event 

Effect) se réfèrent à tous les effets possibles induits par l'interaction d'une unique particule 

énergétique avec un matériau semi-conducteur. Ces effets peuvent être le résultat d'une ionisation 

directe d’un matériau produit par un ion lourd ou un proton, ou d'une ionisation indirecte causée 

par des neutrons. Les SEEs sont la conséquence des impulsions transitoires de courant générées 

suite à l’ionisation provoquée par des particules incidentes. Ces impulsions peuvent provoquer 

des erreurs suite à leur propagation dans les circuits logiques ou causer un basculement d’état 

logique d’un bit dans les cellules mémoire ou les registres. Ils peuvent aussi produire des court-

circuits masse-alimentation dans des circuits CMOS, provoquant ainsi la destruction du circuit 

(Single Event Latch-up, SEL). Les erreurs provoquées par les radiations sont classées en deux 

catégories (Gaillard, 2011) : des erreurs matérielles qui sont des erreurs non récupérables 

(destruction du circuit) et des erreurs logicielles qui peuvent être récupérées par réécriture de 

l'information ou par une réinitialisation.  

Chapitre 3: État de l'art 

Ce chapitre présente une revue de l'état de l'art des techniques SWIFI d'injection de fautes 

dans les circuits intégrés. Il décrit les principaux travaux concernant la sensibilité face aux SEEs 

des processeurs multi-cœur et many-cœur. Enfin, quelques méthodes pour prédire le taux d'erreur 

d'application des architectures à processeur sont présentées.  

L'injection de fautes est une technique utile pour valider la fiabilité des dispositifs ou 

systèmes tolérants aux fautes (Arlat, 1990). Elle permet d'améliorer la couverture des tests 

matériel ou logiciel en introduisant des fautes de manière contrôlée dans le matériel ou les 

chemins de données du code du système dans le but d'observer leur comportement en présence 

de fautes.  

Software-Implemented Fault Injection (SWIFI) est la technique d'injection de fautes la 

plus convenable pour évaluer les applications fonctionnant sur des dispositifs COTS car il ne 

nécessite pas de matériel complexe dédié, des netlists au niveau porte ou des modèles RTL qui 

sont décrits dans les langages de description matériel. Tous les types de fautes peuvent être 

injectés dans des cellules  mémoires et registres accessibles qui représentent la zone la plus 

sensible de la puce. Le principal inconvénient des techniques SWIFI est leur intrusivité car ils 

modifient le programme. Cela peut affecter la planification des tâches. Si le timing n'est pas un 
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problème, ce type d'injection de fautes peut être considéré comme non intrusif. Sinon, le moment 

impliqué lors de l'injection peut perturber le fonctionnement du système (Ziade, 2012). Par 

conséquent, pour les systèmes embarqués critiques, une technique d'injection de fautes à faible 

intrusivité est nécessaire.  

Concernant la sensibilité des processeurs multi/many-cœur, il existe trois études 

représentatives : (Stolt, 2012), (Guertin, 2012) et (Oliveira, 2014). Dans (Stolt, 2012), est établi 

un modèle de section efficace dynamique pour un serveur multi-cœur basé sur un processeur 

quadri-cœur en technologie 45nm CMOS. Dans (Guertin, 2012), sont présentés les résultats du 

test des SEE sous 15 et 25 MeV ions de l'ITC Maestro de 49 cœurs, qui est un processeur 

Radiation Hardened By Design (RHBD). Dans (Oliveira, 2014), est évaluée la sensibilité aux 

radiations d'une unité de traitement graphique (GPU) conçue en technologie 28 nm. Même si tous 

les travaux présentés ci-dessus sont intéressants, aucun d’eux ne donne des précisions sur le 

comportement dynamique et sur la fiabilité d'un multi-cœur en présence de rayonnement 

neutronique.  

Au sujet de la prédiction du taux d’erreur, dans (Velazco, 2000) est présentée une 

approche de prédiction du taux d'erreur d'application basée sur SWIFI. Cette approche repose sur 

l'injection de bit-flips aléatoirement en emplacement et en temps en utilisant les capacités d'une 

carte d'application classique capable d'exécuter des séquences d'instructions et prenant en compte 

des interruptions asynchrones. La prédiction est faite en combinant la section efficace  du 

composant, obtenue par des tests de radiation accélérés, avec le taux d'erreur issu de l'injection 

fautes. Dans (Mukherjee, 2003) est décrite une méthode pour générer des estimations précises du 

taux d'erreur des processeurs. Cette méthode définit le facteur de vulnérabilité architecturale 

(AVF) d'une structure, qui est la probabilité qu’une faute dans une structure particulière entraîne 

une erreur. Le taux d'erreur de la structure est le produit de son taux d'erreur brute (déterminé par 

la technologie des circuits) et l’AVF. (Wang, 2008) présente une méthode dépendant de 

l'environnement pour estimer le taux d'erreur induit par les neutrons, par la propagation de Single 

Event Transients (SET) à travers le circuit logique concerné. Le pulse est modélisé par deux 

paramètres: la probabilité d'occurrence et la fonction de densité de probabilité de la largeur 

d'impulsion. (Cabanas-Holmen, 2011) propose une approche pour prédire le taux d'erreur d'un 

processeur (RHBD) sur la base de la sensibilité des circuits constitutifs. L'approche bottom-up 

pour l'analyse intègre le taux d'erreur provoqué par les radiations dans différents types de circuits, 

y compris la sensibilité SEU/SET. Dans (Housanny, 2012), est proposé une méthodologie pour 

évaluer la sensibilité réelle de la mémoire cache d'une application visant à calculer un taux 

d'erreur plus précis. Cette méthode repose sur la surveillance des accès au cache pour évaluer la 

sensibilité du cache et nécessite un simulateur de microprocesseur. 
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Les  approches mentionnées ont été validées pour des processeurs individuels. Parmi 

celles-ci, l'approche CEU a été choisie pour être étendue aux processeurs multi-cœurs et many-

cœur pour les raisons suivantes: 

• Cette approche peut être appliquée à tout processeur COTS contrairement à d'autres 

approches de prédiction basées sur  le facteur de vulnérabilité architecturelle ou 

temporelle qui ne sont pas disponibles dans les composants COTS. 

• Trois travaux ont démontré l'efficacité de l'approche CEU (Velazco, 2000), (Rezgui, 

2001), (Peronnard, 2008). 

• Il est capable de cibler les mémoires internes et externes et les registres du processeur 

accessibles du dispositif. 

• La prédiction est basée sur la sensibilité réelle de l'application et non sur les modèles 

probabilistes ou des modèles d'utilisation de la mémoire cache. 

En ce qui concerne l'approche CEU, l'inconvénient principal est l'impossibilité de cibler 

des zones sensibles comme les flip-flops, l’unité de commande et des latches. Cependant, la 

contribution au taux d'erreur de ces éléments est très faible. 

iii.  Méthodologie 

Chapitre 4: Méthodologie et outils  

Ce chapitre définit la méthodologie et les outils permettant l'évaluation de la sensibilité 

face aux SEE et de prédiction du taux d'erreur des applications implémentées sur les processeurs 

multi et many-cœur. Au début du chapitre, un aperçu général de l'approche proposée est fourni. 

Ensuite, les détails de l'approche sont discutés. Enfin, la description des outils est présentée. 

Vue d’ensemble 

La mesure appropriée pour effectuer l'évaluation de la sensibilité face aux SEE d'un 

système est le taux d'erreur. Typiquement, pour obtenir le taux d’erreur d'un système fonctionnant 

dans un environnement de rayonnement rude, des essais sous radiation  dynamiques sont 

effectués pour extrapoler les résultats obtenus à l'environnement radiatif souhaité. Cependant, le 

coût et la disponibilité des installations de rayonnement constituent des contraintes majeures. En 

outre, en raison du taux d'erreur d'un système basé sur le processeur multi/many-cœur dépendant 

de l'application, il est nécessaire d'appliquer une méthodologie pour déterminer sa sensibilité 

effective au rayonnement à moindre coût. Il est certain qu'une option viable est la prédiction du 

taux d'erreur qui peut être basée sur les modèles probabilistes, les circuits constitutifs, l'analyse 

du cache et la sensibilité au pire des cas. 
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Le but de la présente thèse est l'extension de l'approche CEU à multi /many-cœur pour 

prédire le taux d'erreur d'application en combinant des campagnes d'injection de fautes et des 

essais sous radiation. Cette approche peut être implémentée dans n'importe quel processeur 

mono-cœur sans une profonde connaissance architecturale. Cependant, pour les processeurs multi 

/ many-cœur, il existe plusieurs contraintes qui doivent être surmontées en raison de la complexité 

du dispositif, principalement liée à la gestion de la mémoire et aux communications inter-cœur. 

Pour valider la méthode CEU étendue, elle est implémentée sur trois dispositifs représentatifs qui 

ont des technologies de fabrication, des notions de conception et des modèles architecturaux 

différents. L'efficacité du procédé sera déterminée en comparant le taux d'erreur prédit avec le 

mesuré obtenu à partir de tests de radiation dynamique. 

Enfin, la conception des essais à la fois d'injection de fautes et de rayonnement est traitée 

au moyen d'une théorie quantitative. La première tâche consiste à identifier les variables 

indépendantes et dépendantes impliquées dans les expériences. 

Approche d’injection de fautes CEU 

L'approche CEU considère une carte électronique à processeur qui comprend un 

dispositif capable d'exécuter un code séquentiel et de recevoir des interruptions asynchrones.  Le 

programme effectue des opérations de lecture et d'écriture dans des registres internes accessibles 

via le jeu d'instructions, ainsi que dans des emplacements de mémoire interne ou externe. Le but 

de l'approche est de reproduire, de manière non intrusive, les effets des fautes de type Single 

Event Upset (SEU). Ceci est réalisé par l’assertion des signaux d'interruption asynchrones, 

pendant le temps d'exécution, afin de lancer un gestionnaire d'interruption (CEU code) qui produit 

l'erreur sélectionnée (SEU, MBU) dans une cellule de mémoire choisie aléatoirement (CEU 

target). Pour injecter un bit-flip dans une mémoire interne ou externe ainsi que dans un registre 

à usage général, les tâches suivantes doivent être effectuées par le code CEU : 

• Lecture du contenu de la cellule mémoire. 

• Exécution d'une opération XOR avec une valeur de masque appropriée qui contient un 

"1" pour les bits qui vont être inversés et "0" ailleurs. 

• Ecriture de la valeur corrompue à son emplacement d'origine. 

Ces tâches se produiront lorsqu'une interruption est obtenue à l'instant sélectionné. A ce 

stade, le processeur arrête l'exécution du programme, enregistre le contexte, exécute le code CEU 

responsable de l'injection de la faute et enfin restaure le contexte à partir de la pile afin de 

poursuivre l'exécution du programme. Une fois le CEU injecté, les résultats du programme 

doivent être comparés à un ensemble de valeurs de référence obtenues lorsque le programme 

s'exécute sans injection de fautes. Cependant, il y a deux limites à considérer: 

• Les altérations qui se produisent pendant l'exécution ne peuvent pas être simulées. 
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• Il n'est pas possible de cibler toutes les zones sensibles possibles comme les flip-flops 

internes, l'unité de commande et les latchs à l'intérieur de l'architecture du processeur. 

 

Extension de l’approche CEU a processeurs multi-cœur et many-cœur  

Jusqu'à présent, l'approche CEU a été appliquée avec succès et validée pour les 

processeurs mono-cœur. Cependant, la complexité des processeurs a considérablement augmenté 

en raison de la technologie de fabrication, de l'architecture des dispositifs, du nombre de noyaux, 

des interconnexions, des fonctionnalités, etc. Il est donc raisonnable de valider l'utilisation de 

l'approche CEU pour des  processeurs multi/many-cœur. 

En raison du grand nombre de fonctionnalités et de pins, il n'est plus possible d'utiliser la 

plate-forme ASTERICS pour injecter des fautes dans ce type de dispositifs. Il est donc pratique 

d'étendre l'approche d'injection de fautes CEU pour des processeurs multi/many-cœur bénéficiant 

de la multiplicité de noyaux en utilisant l'un d'eux comme un injecteur de fautes tandis que les 

autres exécutent l'application choisie. Afin d'isoler l'injecteur de fautes, le dispositif doit être 

configuré en mode AMP. Pour effectuer l'injection de fautes, les interruptions inter-cœur sont 

utilisées. 

Considérant que les processeurs multi/many-cœur mettent en œuvre différents types de 

cellules  mémoires (mémoires partagées, mémoires caches, registres de processeurs, etc.), la 

prédiction du taux d'erreur total doit être exprimée comme la somme de la contribution 

individuelle de chaque composant. 

τ��� =  τ���_��	
�� + τ���_	�� + τ���_
�� + ⋯ (0.1) 

Cette thèse propose également l'ajout de facteurs de déclassement à la contribution des 

mémoires partagées et cache pour améliorer la précision de la prédiction. Ces facteurs dépendent 

de la mémoire utilisée par l'application et du temps d'exposition au rayonnement. 

Facteur d'utilisation de la mémoire (MF) 

C'est la quantité de mémoire utilisée par l'application par rapport à la mémoire totale du 

dispositif. Ce facteur est calculé compte tenu de l'espace mémoire occupé par le code et les 

données. 

Facteur temps d'exposition (Etf) 

 Dans certains cas particuliers où le processeur multi/many-cœur fonctionne comme 

coprocesseur d'une carte de développement, il est possible d'avoir besoin de synchronisation entre 
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le coprocesseur et le processeur host pour enregistrer les résultats. Ceci est nécessaire lorsque les 

cœurs du coprocesseur n'ont pas d'accès direct aux fonctions printf. Cette synchronisation est 

réalisée au moyen d'un schéma maître-esclave pour garantir que chaque noyau de processeur 

signale les erreurs détectées. Toutefois, ce modèle de communication comporte une pénalité pour 

perte de temps d'exposition. Pendant la réalisation des communications, il est possible d'avoir des 

SEUs affectant la mémoire interne du DUT, qui ne sont pas détectés puisque au début de chaque 

phase d'exécution, les données de la mémoire sont réinitialisées. Même si la probabilité d'avoir 

cette condition est très faible, un facteur de perte de temps d'exposition (Etf) devrait être ajouté 

dans ce cas. 

Modelé de programmation 

Le modèle de programmation choisi pour évaluer cette approche est le modèle nu-métal. 

Malgré la complexité de la programmation de ce modèle, il est plus adapté car il permet de cibler 

plus de registres lors des campagnes d'injection de fautes. De plus, l'absence de système 

d'exploitation permet l'utilisation d'interruptions inter-cœur minimisant le temps d'injection et 

l'intrusivité. Par ailleurs, nu-metal offre à l'injecteur de fautes la possibilité d'injecter des bit-flips 

directement dans la mémoire partagée, bien que dans le mode AMP, chaque noyau possède son 

propre espace mémoire privé, puisqu'il n'y a aucun hyperviseur empêchant cette action. Par 

conséquent, dans des architectures de mémoire partagée, l'injection de fautes est réalisée de 

manière presque non intrusive, puisque l'injecteur de fautes lit et écrit directement dans la 

mémoire sans interférer avec l'exécution des autres noyaux. 

Lorsque le développeur utilise le modèle nu-métal, il doit programmer toutes les 

fonctions du système: le démarrage des noyaux, la répartition des tâches entre les noyaux, la 

synchronisation entre les noyaux et/ou les tâches, l'accès aux ressources partagées, la cohérence, 

etc. Pour gérer la plupart de ces fonctions, un noyau maître est nécessaire ainsi qu'un espace 

mémoire partagé pour les communications entre processeurs. Par conséquent, un schéma maître-

esclave a été mis en œuvre. Le noyau maître est défini comme le noyau injecteur de fautes, alors 

que les noyaux esclaves exécutent en parallèle l'application testée. 

D'une manière générale, après une réinitialisation, le noyau maître est responsable de l'amorçage 

et de la configuration du système. Ensuite, il démarre les autres noyaux. Une barrière a été mise 

en œuvre pour synchroniser l'initialisation du code d'exécution dans tous les noyaux. Dans le cas 

d'algorithmes distribués, pendant la réalisation de l'application, le maître distribue les tâches. 

Enfin, pour certains dispositifs où les cœurs de traitement n'ont pas d'accès direct aux E/S, le 

maître est également en charge de l'enregistrement des résultats. 

  Les principales fonctions du maître sont résumées dans la liste suivante: 
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• Démarrage du système. 

• Démarrage des autres cœurs. 

• Initialisation des variables globales. 

• Distribution des tâches. 

• Synchronisation des communications en utilisant des communications inter-cœur. 

• Injection de fautes. 

• Enregistrement des résultats (facultatif) 

 

iv. Campagnes d’injection de fautes 

Des campagnes d'injection de fautes ont été effectuées dans des variables du programme 

pour simuler des SEUs perturbant les mémoires cache, les mémoires partagées et/ou dans les 

registres du processeur pour simuler des fautes dans des cellules de mémoire du registre. Les 

campagnes d'injection de fautes considèrent l'injection d'une SEU par exécution dans les variables 

du programme et registres.  Les conséquences sont classées comme suit: 

• Fautes silencieuses: elles se produisent lorsque la faute injectée n'entraîne aucune 

conséquence dans le résultat du programme. Les fautes silencieuses typiques sont celles 

affectant les données qui n'ont jamais été utilisées ou les données déjà utilisées par le 

programme. 

• Erreur de résultat: les résultats du programme ne sont pas ceux attendus. 

• Exception: le programme s'arrête. Il est principalement causé par des fautes injectées sur 

les variables de boucle ou les registres critiques. 

• Timeout: lorsque le programme ne répond pas après une durée égale au temps 

d'exécution nominal. 

 

Injection de fautes dans la mémoire 

Dans cette approche, toutes les variables destinées à être utilisées par l'application sont 

placées, par logiciel, dans une mémoire partagée (cache ou interne). De cette façon, les variables 

peuvent être modifiées à tout moment par chacun des noyaux du processeur. Le noyau principal 

initialise les données qui seront utilisées par les autres noyaux. Une fois cette étape terminée, elle 

envoie un message via une interruption inter-processeur, pour indiquer les noyaux esclaves et 

pour démarrer l'exécution de l'application.  

Une fois le message reçu par les nœuds esclaves, ils confirment la réception du message 

et démarrent l'exécution de l'application. Pendant que l'application s'exécute sur les noyaux 

esclaves, le noyau maître effectue l'injection de fautes. Il sélectionne de façon aléatoire le noyau 
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cible, l'instant d'injection (en termes de cycles d'horloge), l'adresse (index de matrice globale) et 

le bit à modifier. Lorsqu'un noyau esclave termine son calcul, il envoie un message au noyau 

maître indiquant que l'exécution a été terminée. Le noyau maître attend l'arrivée des messages de 

chaque noyau, puis compare les résultats obtenus avec un ensemble de résultats corrects 

précédemment obtenus. 

Etant donné que le programmeur ne peut pas accéder directement aux mémoires cache, 

pour simuler des SEU, l'injection de fautes est effectuée dans la mémoire principale. Cette 

stratégie peut être appliquée à toute application testée. Il suffit de stocker toutes les variables de 

l'application ciblée dans un espace mémoire partagé. 

 

Injection de fautes dans les registres du processeur 

Les fautes sont injectées dans les registres accessibles du processeur. En raison du fait 

que le nœud principal n'a pas accès aux registres des autres cœurs, il peut exécuter une injection 

de fautes indirecte via le jeu d'instructions. L'injecteur de fautes effectue une interruption au nœud 

sélectionné dans lequel le gestionnaire d'interruption lance un code qui cible des registres 

accessibles permettant l'injection de fautes comme décrit précédemment. Les registres cibles à 

prendre en compte par cette approche sont les registres à usage général (GPR), les registres à 

points flottants (FPR) et les registres de fonctions spéciales (SFR) accessibles. Il est important de 

noter que la modification de ces registres peut provoquer des pannes critiques dans l'exécution 

du programme. 

 

v. Tests sous radiations avec des neutrons 

Les essais sous radiation sont le moyen le plus rapide d'obtenir des résultats significatifs 

sur la sensibilité d'un dispositif en une courte période de temps, car plus les particules frappent le 

dispositif, plus des SEEs sont observés. La reproductibilité de l'expérience est également un autre 

avantage majeur de cette stratégie. Deux types d'essais sont envisagés pour évaluer la sensibilité 

du dispositif: un test statique pour obtenir la sensibilité intrinsèque des cellules de mémoire 

(section efficace) et un test dynamique pour évaluer la réponse dynamique de l'application. De 

plus, la section statique est utilisée pour prédire le taux d'erreur. 

Des campagnes de test sous neutrons ont été menées pour caractériser les processeurs 

multi/many-cœur, car les neutrons sont les particules les plus représentatives de l'atmosphère 

terrestre. Reference (Miller, 2013) discute de la pertinence de l'utilisation du test sous neutrons 

de 14 MeV pour caractériser la sensibilité face aux SEU des dispositifs numériques. Les sections 
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3 et 5 du document JESD89A du JEDEC STANDARD ont été utilisées comme protocole de base 

pour les essais expérimentaux. 

Le plan d'essai doit définir la tension d'alimentation requise pour l'essai de radiation. Du 

fait que le taux d'erreur de nombreux dispositifs est très sensible à la tension d'alimentation, il est 

essentiel que ce paramètre soit mesuré et contrôlé avec précision (Jesd89A, 2006). Le réglage 

minutieux de la tension d'alimentation en fonction des valeurs du plan d'essai permet d'obtenir 

des résultats cohérents. 

Logistique concernant les campagnes de test sous neutrons 
 

Les essais sous neutrons ont été réalisés dans l’accélérateur   GENEPI2 (Générateur de 

Neutrons Pulsé Intense) située au LPSC (Laboratoire de Physique Subatomique et Cosmologie) 

à Grenoble, France. Cet accélérateur a été développé à l'origine pour des expériences de physique 

nucléaire et, depuis 2014, il a été utilisé pour irradier des circuits intégrés issus de différentes 

technologies. GENEPI2 est un accélérateur électrostatique produisant des neutrons en impactant 

un faisceau de deuton sur une cible de Tritium (T). Après l'accélération à 220 keV, les deutons 

(d) produisent des neutrons (n) par la réaction de fusion d + T → n + 4He (Villa, 2014). 

De la cible, les neutrons sont émis dans toutes les directions avec une énergie moyenne 

de 14 MeV. Le dispositif sous test (DUT) est placé face à la cible à une distance déterminée pour 

ajuster le flux neutronique. Pour les campagnes d'essai de rayonnement nous avons  considéré, à 

première approximation, que seuls les neutrons émis complètement vers l'avant auront un impact 

sur le DUT. Alors que le DUT est entièrement exposé aux neutrons, un blindage neutronique 

dédié protège la plate-forme électronique de lecture. 

Début 2015, une nouvelle cible T a été installée, générant un flux neutronique maximal 

de 4.5x10�(n. cm��. ���). Les objectifs principaux sont d'augmenter la production de neutrons 

et d'améliorer la fiabilité de l'accélérateur. La modification majeure consiste à remplacer la source 

actuelle d'ions deutérium par une nouvelle, basée sur la technique de résonance par cyclotron 

électronique (ECR), délivrant une intensité de faisceau plus élevée. Un nouveau moniteur pour 

la production de neutrons est en cours d’installation et sera mis en service. Ceci permettra 

d'améliorer la précision sur la mesure de la dose. 
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vi. Dispositifs sous test 

Chapitre 5: Dispositifs ciblés 

L'objectif de ce travail est de fournir une approche générale pour l'évaluation de la 

sensibilité face aux SEEs  et la prédiction du taux d'erreur des applications implémentées en multi-

cœur et many-cœur. Pour atteindre cet objectif, il est nécessaire de cibler différents dispositifs 

visant à représenter la diversité des processeurs multi/many-cœur. Les aspects technologiques et 

architecturaux les plus importants à considérer pour le choix du dispositif sont: 

• Technologie de fabrication 

• Architecture de la mémoire 

• Nombre de cœurs 

• Interconnexions 

• Mécanismes de protection de la mémoire 

• Performance 

• Consommation d'énergie 

• Fiabilité 

 

La première plate-forme sélectionnée était la Freescale P2041 RDB basée sur le processeur 

quadri-cœur QorIQ P2041. Ce dispositif a été choisi en raison de: 

• Technologie SOI 45 nm 

• Haute performance 

• Haute fiabilité: ECC et parité dans ses mémoires cache 

• Basé sur l'architecture PowerPC, validé dans des travaux antérieurs pour l'aéronautique, 

cas de processeur unique (Peronnard, 2008) 

Le deuxième était l'ordinateur Parallella qui intègre le processeur ARM A9 dual cœur 

utilisé comme host et le 16-cœur Epiphany E16G301 utilisé comme coprocesseur. L'épiphanie 

multi-cœur a été considéré en raison de: 

• Haute performance 

• Basse consommation d’énergie 

• Abordabilité, permettant au grand public d'accéder au calcul parallèle. 

• Architecture co-traitée 

• Interconnexion (NoC) 

• Open source 
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Le troisième était une carte de développement basée sur le processeur many-cœur Kalray MPPA-

256 qui intègre 16 clusters de calcul ayant chacun 16 noyaux VLIW. Ce processeur à plusieurs 

noyaux a été sélectionné en raison de: 

• Implémenté en technologie CMOS 28nm 

• Haute performance 

• Nombre significatif de cœurs 

• Grande flexibilité de configuration 

• Haute fiabilité: ECC et interleaving dans des mémoires partagées / parité dans des 

mémoires cache 

• Efficacité énergétique exceptionnelle GFLOPS/W 

 

Application testée 

Une multiplication de matrice standard n x n (MM), qui est une application memory 

bound, a été sélectionnée pour être testée tout au long de cette recherche. Elle a été choisie car la 

multiplication matricielle est l'un des algorithmes les plus essentiels en algèbre numérique ainsi 

qu'en calcul distribué, scientifique et à haute performance (Ballard, 2012). Pour l'évaluation de 

l’application, deux scénarios sont proposés. 

Dans le premier scénario, l'algorithme séquentiel de la multiplication matricielle a été 

utilisé. Ce scénario a été implémenté dans les multi-cœurs P2041 et l’Epiphany en utilisant un 

noyau du dispositif comme noyau principal. Chaque noyau exécute indépendamment la même 

multiplication matricielle (C = AxB) et compare ses résultats avec une valeur prédéfinie afin 

d'identifier des erreurs. La taille n de la matrice a été choisie en fonction de la capacité de mémoire 

de chaque dispositif afin de remplir le plus possible le cache et les mémoires partagées et de 

maintenir un compromis entre la quantité de mémoire utilisée et le temps d'exécution. Les 

matrices A, B et C sont localisées dans des vecteurs de mémoire consécutifs. Tous les éléments 

de la matrice A ont été remplis avec la même valeur a. De même, la matrice B a été remplie de 

b, donc le résultat attendu était a x b x n pour tous les éléments de la matrice C. Les matrices ont 

été remplies de valeurs fixes afin de simplifier l'analyse des données car une valeur connue aide 

à identifier quel bit ou bits ont été modifiés au cours de l'essai. De cette façon, on peut détecter 

des Multiple-Bit Upsets (MBUs) et des Multiple-Cell Upsets (MCUs). Il est important de noter 

que les résultats des expériences de rayonnement sont totalement indépendants des valeurs 

d'entrée. Pour le second scénario, chaque cluster de calcul du many-cœur MPPA-256 exécute 

indépendamment un algorithme parallèle de multiplication matricielle. Le code source est une 

version optimisée assembleur d'une multiplication matricielle collaborative 256x256, répartie 
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entre les 16 éléments de traitement (PE). À l'intérieur de chaque cluster, le noyau du gestionnaire 

de ressources (RM) est le maître du système. Le calcul s'exécute plusieurs fois pour garantir que 

chaque cluster calcule suffisamment de temps pour que tous les clusters fonctionnent en parallèle. 

A, B et C sont des matrices à virgule flottante à précision simple. La taille de la matrice a été 

choisie de sorte que les données et le code restent dans la mémoire SMEM locale. 

 

vii. Résultats expérimentaux 

Chapitre 6: Résultats expérimentaux et évaluation des dispositifs 

Les essais sous radiation réalisés avec des neutrons à 14 MeV et les campagnes d'injection 

de fautes sont des techniques utiles pour évaluer la sensibilité intrinsèque, la réponse dynamique 

et la sensibilité d’une application implémentée dans des  processeurs multi et many-cœur. Voici 

un résumé de l'analyse des résultats présentés dans le chapitre six. 

 

Processeur multi-cœur P2041 

Les campagnes d'injection de fautes dans les variables du programme montrent que la 

matrice d'entrée A et spécialement l'entrée B sont beaucoup plus sensibles à SEU que la matrice 

de sortie en raison d'un temps d'exposition plus important. Les résultats montrent la pertinence 

de l'injection de fautes pour analyser le comportement d'une application en présence de SEU, 

offrant la possibilité de modifier le code du programme en fonction des résultats obtenus pour 

réduire l'impact des fautes dans les résultats de l'application. 

Grâce à l'utilisation de la machine check error report  lors des tests de radiation, il a été 

possible d’enregistrer tous les SEEs détectés, même ceux qui ont été corrigés par les mécanismes 

de protection mis en œuvre dans les mémoires cache. Elle a permis d'évaluer la sensibilité au 

rayonnement neutronique de la technologie SOI de 45 nm. Les résultats obtenus montrent que la 

technologie SOI de 45 nm est entre 3 et 5 fois moins sensible au rayonnement neutronique que 

sa contrepartie CMOS. 

L'analyse des clusters  d'erreurs avec le même motif répété simultanément sur tous les 

noyaux pendant l’essai sous radiation statique  suggère qu'une particule perturbait une ressource 

partagée appartenant à l'infrastructure de connectivité (CoreNet Coherency Fabric). Ce fait appuie 

la nécessité d'une étude plus approfondie des conséquences des SEEs sur les communications 

inter-cœur, en dépit de la petite zone qu'elle occupe par rapport aux mémoires cache. 

Des tests dynamiques ont démontré que la parité implémentée dans les mémoires cache 

L1 ne suffit pas à protéger les adresses cache et les tableaux de données. Les clusters d'erreurs, 

produites dans le même cycle de lecture par un MBU affectant le tag de l’adresse des caches L1 
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du noyau 1 et du noyau 2, mettent en évidence une possible implémentation 3-D des mémoires 

cache L1. Ces résultats suggèrent que les technologies émergentes dans l'implémentation du 

cache pourraient affecter potentiellement sa sensibilité au rayonnement. 

En ce qui concerne la prédiction du taux d'erreur, on peut observer une sous-estimation 

produite par le fait que toutes les zones sensibles n'ont pas été ciblées pendant le test statique et 

les campagnes d'injection de fautes. De plus, les mécanismes de protection mis en œuvre dans 

leurs antémémoires peuvent influencer les tests et la prédiction des erreurs. 

 

Epiphanie multi-cœur 

Les résultats issus du test statique permettent d'estimer la sensibilité au pire des cas de la 

mémoire partagée implémentée en technologie CMOS 65nm. Pour cette expérience, le flux de 

neutrons a été réduit presque trois fois par rapport au flux utilisé dans les essais sous radiation du 

P2041. Ceci a été fait pour limiter les perturbations produites par les particules de neutrons dans 

le processeur host. Cependant, malgré les efforts pour protéger le reste des composants de la 

plate-forme, la carte SD contenant le système d'exploitation Linux a été corrompue dans l'une des 

expériences. Cela a été résolu en remplaçant la carte SD endommagée par une nouvelle. 

En comparant le taux d'erreur prédit avec celui mesuré, on peut voir que l'approche 

proposée fournit une bonne approximation. La petite sous-estimation peut être expliquée du fait 

que toutes les zones sensibles du dispositif n'ont pas été ciblées pendant l'injection de fautes et le 

test statique. 

MPPA-256 processeur many-cœur 

En raison de la complexité de l'architecture de communication, il a été proposé une 

campagne d'injection de fautes au niveau des clusters pour éviter l'utilisation de services NOC, 

ce qui peut augmenter la latence pendant le processus d'injection de fautes. L'utilisation d'un 

modèle de programmation en carte à nue permet d'injecter des fautes dans les noyaux RM et PE. 

Cependant, de la même manière que pour les autres dispositifs, il n'était pas possible de cibler 

tous les registres ce qui conduit à une sous-estimation du taux d'erreur de prédiction. De plus, la 

précision de la prédiction a été affectée par les mécanismes de protection mis en œuvre dans les 

mémoires partagées et cache du MPPA-256. 

Le test de rayonnement statique montre que l’ECC et l'interleaving mis en œuvre dans 

les SMEM des clusters sont très efficaces pour atténuer les erreurs, puisque tous les évènements 

ont été détectés et corrigés. Une question intéressante de ce test a été la multiplicité des MCUs 

allant de 2 à 7. Il donne quelques indices sur la façon dont l'organisation de la mémoire peut avoir 

un impact sur la propagation des erreurs produites par une seule particule. 
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  Des tests dynamiques ont démontré qu'en habilitant les mémoires cache, il est possible 

d'augmenter les performances de l'application sans compromettre la fiabilité du dispositif, 

puisque les mémoires caches mettent en œuvre une protection de parité effective. D'autre part, 

les erreurs non corrigibles proviennent des GPR puisque les registres n’implémentent pas des 

mécanismes de protection. 

Un compromis entre le temps d'exécution et la consommation d'énergie visant à 

minimiser l'impact du rayonnement neutronique a été atteint à une fréquence de 200 MHz. En ce 

qui concerne la tension de polarisation, on peut voir que le dispositif est moins sensible au 

rayonnement lorsqu'il fonctionne à sa tension nominale (0,9V). Par conséquent, la diminution de 

la tension de polarisation pour réduire la consommation d'énergie du dispositif est une question 

critique à considérer. 

 

viii.  Conclusions et travaux futurs 

 

L'utilisation de processeurs multi-cœur et many- cœur allant de la sécurité critique aux 

applications commerciales augmente rapidement en raison de la demande croissante de haute 

performance, de fiabilité et de faible consommation d'énergie. De plus, leurs capacités de calcul 

parallèles et leur redondance les rendent des candidats idéaux pour les applications avioniques et 

spatiales. Cependant, l'intégration de plusieurs noyaux dans un seul circuit intégré conduit à une 

miniaturisation supplémentaire des transistors qui augmente leur sensibilité face aux SEEs. Bien 

que des améliorations technologiques et architecturales ainsi que des stratégies logicielles ont été 

mises au point pour atténuer les SEEs, la mise en œuvre de protections matérielles et logicielles 

supplémentaires implique une dégradation des performances et une augmentation de la 

consommation d'énergie. Il est donc obligatoire d'évaluer la sensibilité face aux SEEs des 

dispositifs multi-cœur pour valider leur applicabilité dans des environnements rudes ou pour des 

applications où la fiabilité est requise. 

Il y a un intérêt croissant d'utiliser COTS multi et many-cœur pour l'avionique et les 

applications critiques pour la sécurité en raison de leur faible coût et gain de temps par rapport 

aux solutions complexes dédiées. Néanmoins, le choix de ces composants est toujours effectué 

de manière ponctuelle, ce qui pose des problèmes pour des estimations précises du coût et de la 

fiabilité. Par conséquent, la sélection de ces dispositifs COTS doit être basée sur l'évaluation de 

l'impact du rayonnement sur leur fiabilité au moyen de l'estimation de leur taux d’erreur. 
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Dans ce travail, il a été proposé une approche générale pour l'évaluation de la sensibilité 

face aux SEEs des applications implémentées dans des processeurs multi. Ceci a été réalisé par 

l'extension de l'approche CEU développée dans les laboratoires TIMA dans des travaux 

antérieurs, en tenant compte de l'évolution technologique et architecturale des architectures multi  

et many-cœur par rapport aux monoprocesseurs. Le taux d'erreur a été utilisé comme mesure pour 

cette évaluation. La prédiction du taux d'erreur a été obtenue en combinant le taux d'erreur de 

l'application issue des campagnes d'injection de fautes et la sensibilité dans le pire des cas du 

dispositif obtenue à partir des essais sous radiations. Afin de valider l'approche de prédiction, il 

a été nécessaire de comparer les taux d'erreur prédits et mesurés. Le résultat mesuré a été obtenu 

en exposant le dispositif ciblé au rayonnement neutronique tout en exécutant l'application 

souhaitée. Des campagnes d'injection de fautes ont été consacrées à l'injection de fautes dans des 

cellules mémoire et des registres accessibles en bénéficiant de la multiplicité de noyaux pour 

utiliser l'un d'eux comme injecteur de fautes alors que les autres exécutent l'application 

sélectionnée. Des expériences de radiations ont été réalisées avec des neutrons de 14 Mev à 

l'installation GENEPI2. Trois dispositifs COTS différents ont été évalués dans le cadre de cette 

thèse. Le premier était le Freescale P2041 processeur quadri-cœur fabriqué en technologie 45nm 

SOI. Le second a été le Kalray MPPA-256 many-cœur fabriqué en technologie 28nm CMOS. Le 

troisième a été l’Adapteva Epiphany E16G301 microprocesseur fabriqué en technologie 65nm 

CMOS. 

 

 

Conclusions finales 

Les résultats obtenus lors de l'évaluation du multi-cœur P2041 démontrent que l'injection 

de fautes permet d'identifier les vulnérabilités dans l'application et d'améliorer la stratégie de 

programmation pour réduire l'impact des fautes dans les résultats. À partir du test statique, il a 

été confirmé que la technologie  SOI est plus robuste que la bulk CMOS traditionnelle. D'autre 

part, des tests dynamiques ont démontré qu'en dépit des mécanismes de protection parité et ECC, 

il y avait des erreurs dans le résultat de l'application causées par les MBU dans les adresses cache 

et les tableaux de données. Enfin, les résultats montrent une sous-estimation du taux d'erreur 

prédit, puisque toutes les zones sensibles n'ont pas été ciblées pendant le test statique et les 

campagnes d'injection de fautes. En outre, la mise en œuvre de ECC et la parité dans les mémoires 

cache du dispositif peuvent affecter la prédiction. 

D'après l'évaluation du processeur multi-cœur Epiphany E16G301, on peut voir que 

l'extension proposée de l'approche CEU était efficace pour prédire le taux d'erreur d'application. 

Le fait que ce dispositif n'implémente pas de mécanismes de protection a permis une bonne 
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estimation du taux d'erreur, confirmant que les mécanismes de protection affectent les essais sous 

radiation et la prédiction du taux d'erreur (LaBel, 2005). Pendant les essais sous radiation 

dynamique, les matrices d'entrée ont également été vérifiées pour identifier des fautes 

silencieuses. Cela a été fait pour obtenir le taux d'erreur expérimental de l'application qui a une 

bonne corrélation avec le taux d'erreur obtenu à partir de l'injection de fautes. 

L'évaluation du processeur many-coeur MPPA-256 montre que l’ECC et l'interleaving  

mis en œuvre dans les SMEM des clusters sont très efficaces pour atténuer les erreurs de type 

SEU, puisque toutes les SEUs détectées dans les SMEM ont été corrigées au cours du test statique. 

En outre, des tests dynamiques ont démontré qu'en habilitant les mémoires cache, il est possible 

d'augmenter la performance de l’application sans pénalité de fiabilité, puisque les mémoires 

cache mettent en œuvre une protection de parité effective. En ce qui concerne les résultats 

expérimentaux des rayonnements, la prédiction du taux d'erreur ne repose que sur la contribution 

des registres puisqu'ils n’ont pas de mécanismes de protection. Malgré la complexité de ce 

processeur à plusieurs noyaux, la prédiction du taux d'erreur a une petite sous-estimation qui 

confirme l'applicabilité de l'extension de l'approche CEU à ces dispositifs. Les raisons possibles 

de cette sous-estimation sont que seulement les registres accessibles ont été ciblés ou que 

l'infrastructure de communication n'a pas été ciblée ou que les mécanismes de protection peuvent 

influer sur la prédiction du taux d'erreur. 

Les résultats globaux présentés dans cette thèse confirment que le processus de 

fabrication de la puce joue un rôle prépondérant dans la fiabilité du dispositif. Une comparaison 

FIT des dispositifs étudiés montre que le P2041 multi-cœur est le dispositif le plus fiable puisqu'il 

est construit en technologie SOI. Néanmoins, la différence avec le MPPA-256 construit en 28nm 

CMOS n'est pas si ample. En fait, si le FIT / Mb est considéré, le MPPA-256 est le dispositif le 

plus fiable. Les deux dispositifs mettent en œuvre ECC et la parité dans leurs mémoires internes. 

Cependant, l'efficacité du MPPA-256 est supérieure à l'efficacité du P2041 du fait de 

l’implémentation de l'interleaving dans ses mémoires partagées. Par conséquent, la sélection du 

dispositif approprié doit être effectuée sur la base des exigences de l'application (par exemple, 

l'espace mémoire disponible pour le code et les données, le nombre de noyaux travaillant en 

parallèle, etc.) et une analyse coûts-bénéfice. 

En ce qui concerne l'épiphanie multi-coeur, il a un taux d'erreur environ 11 et 7 fois plus 

grand que celui des P2041 et MPPA-256 respectivement. En raison du fait que les meilleures 

technologies de fabrication ainsi que les protections matérielles augmentent considérablement le 

coût de l'appareil, des dispositifs tels que le multi-cœur Epiphany E16G306 pourraient être pris 

en compte dans des systèmes embarqués en fonction de la criticité de l'application et de 

l'environnement de travail. En fait, le rapport de la NASA: “Intelligent Hardware-Enable Sensor 
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and Software Safety and Health Management for Autonomous UAS”  affirme que l'Epiphany 

multi-cœur peut être utilisé pour plusieurs applications terrestres et même avioniques. 

Le fait qu'un processeur many-cœur construit sur 28nm CMOS a un FIT semblable à un 

multi-cœur 45nm SOI est très prometteur pour généraliser son utilisation sur le domaine des 

systèmes embarquées. Premièrement, parce que les mécanismes de protections  implémentés sur 

le dispositif many-cœur ont réduit l'écart de fiabilité entre les deux technologies liées à la 

miniaturisation et au processus de fabrication (CMOS vs SOI). Deuxièmement, il supporte la 

possibilité d'utiliser des dispositifs COTS dans un système embarqué critique en raison de la 

grande capacité de traitement et de la capacité de mémoire interne importante. Les deux 

caractéristiques permettent de surmonter le principal problème de surcharge causé par la mise en 

œuvre de techniques matérielles tolérantes aux fautes. Par conséquent, l'utilisation de ce dispositif 

rend possible la mise en œuvre de techniques de redondance software pour améliorer la fiabilité 

du système en masquant d'autres SEE, conséquences qui n'ont pas été atténuées par les 

mécanismes de protection. Enfin, le coût élevé des dispositifs SOI par rapport aux dispositifs 

CMOS augmente l'utilisation de ces derniers. 

Pour sélectionner le dispositif approprié à implémenter dans un système fonctionnant 

dans un environnement radiatif agressif, il est impératif d'évaluer la sensibilité face aux SEE des 

candidats, puis d'établir un compromis entre les coûts et la fiabilité en fonction de l'application et 

de l'environnement de travail. Cependant, l'évaluation basée sur des tests dynamiques de radiation 

est coûteuse en termes de temps et d'argent. Pour cette raison, une approche de prédiction est 

nécessaire. En outre, l'utilisation généralisée de processeurs multi/many-cœur dans des systèmes 

embarqués nécessite une approche de  prédiction du taux d'erreur ajusté à ces dispositifs. À la 

connaissance de l'auteur, ce travail présente pour la première fois une approche consacrée à la 

prédiction du taux d'erreur des applications s'exécutant sur des processeurs multi et many-cœur. 

En dépit de la sous-estimation du taux d'erreur prédit, cette extension de l'approche CEU fournit 

des résultats utiles qui peuvent être considérés comme une validation préliminaire de COTS 

multi/many-cœur. 

Plusieurs aspects rendent difficile le test des SEEs sur les processeurs multi/many-cœur 

et affectent la prédiction du taux d'erreur. L'un d'eux est la complexité de leur architecture qui 

intègre différents composants et fonctions sur la même puce. Dans l'approche développée dans 

cette thèse, la prédiction du taux d'erreur d'un système est présentée comme la somme des 

contributions individuelles de la prédiction du taux d'erreur par chaque composante a cellule-

mémoire. Pour obtenir la contribution individuelle il est conseillé d'isoler les fonctionnalités. 

Cependant, ce n'est pas une tâche banale sur ces sortes de dispositifs et l'isolement ne peut pas 

être totalement accompli. Cela crée des difficultés pour identifier la zone où les fautes ont été 

produites. De plus, pour améliorer l'efficacité de la prédiction, il est convenable d'étendre cette 
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approche à d’autres composants du dispositif tels que l'infrastructure de communication. Un autre 

aspect est l'emballage complexe et la construction multicouches de circuits qui produisent des 

problèmes lors d'essais dans des installations de rayonnement en raison de limitation d'énergie de 

faisceau. Enfin, la mise en œuvre de mécanismes de détection et de correction d'erreurs ainsi que 

la carence de données expérimentales (en raison des coûts et de la disponibilité des installations 

de rayonnement) influent également sur la précision de l'approche de prédiction du taux d'erreur. 

 

Perspectives futures 

Le présent travail a présenté un premier aperçu dans la vaste étude de la sensibilité au 

rayonnement des processeurs multi-cœur et many-cœur. Pour poursuivre ce travail, les thèmes 

suivants peuvent être explorés: 

• Validation de l'approche proposée en utilisant différents modèles de programmation: le 

modèle de programmation peut affecter notablement la sensibilité du dispositif en raison 

des ressources utilisées. Pour cette raison, il est utile de valider l'approche à l'aide de 

Posix et OpenMP. 

• Validation d'une application spatiale réelle: elle peut se faire dans le cadre de la 

coopération industrielle et académique entre TIMA et des partenaires industriels tels que 

Thales Alenia Space ou des partenaires universitaires tels que le Centre Spatial 

Universitaire de Grenoble. 

• Évaluation de l'infrastructure de communication: compte tenu du nombre croissant de 

noyaux dans les processeurs many-cœur émergents, le réseau de communication est en 

train de changer en implémentant des NoCs qui peuvent être combinés avec des 

infrastructures de type bus, pour l'interconnexion des noyaux et des clusters de traitement. 

Cela implique d'avoir plus de registres de contrôle et de données à cibler par l'injection 

de fautes et les tests sous radiation. 

• Validation de l'approche de prédiction à l'aide d'ions lourds: pour envisager des COTS 

multi/many-cœur pour des applications spatiales, il est obligatoire de les exposer à des 

ions lourds. Cependant, il est important de tenir compte des contraintes matérielles telles 

que l'essai dans la chambre à vide et l'amincissement du silicium du dispositif. 

• Application de techniques de redondance: cette approche de prédiction peut être 

combinée à la mise en œuvre d'une application redondante visant à accroître la fiabilité 

du dispositif. 



 



 Evaluation de la sensibilité face aux SEE et méthodologie pour la prédiction du taux 
d’erreurs d’applications implémentées dans des processeurs Multi-cœur et Many-cœur. 
 

Résumé - La présente thèse propose une approche de prédiction du taux d'erreur et l’évaluation de la sensibilité 
des applications implémentées dans des processeurs multi-cœur  et many-cœur exposés à des environnements 
radiatifs.  Pour valider la généralité de cette approche, différents dispositifs COTS ont été ciblé en vue de 
représenter les aspects technologiques et architecturaux les plus pertinents des processeurs multi et many-cœur. 
Le premier a été le processeur quadri-cœurs P2041 de Freescale fabriqué en technologie 45nm SOI qui met en 
œuvre ECC et la parité dans leurs mémoires cache. Le second a été le microprocesseur Adapteva E16G301 
fabriqué en technologie 65nm CMOS  qui intègre 16 cœurs et n’implémente pas des mécanismes de protection. 
Le troisième a été le processeur many-cœur Kalray MPPA-256 fabriqué en technologie CMOS 28nm TSMC qui 
intègre 16 clusters de calcul chacun avec 17 cœurs, et met en œuvre ECC dans ses mémoires statiques et parité 
dans ses mémoires caches. L'évaluation de la sensibilité face aux SEE ainsi que la prédiction du taux d’erreur  
ont été réalisée par des essais sous radiation avec des neutrons de 14 Mev dans des accélérateurs de particules 
pour émuler un environnement de rayonnement agressif, et par injection de fautes dans des mémoires cache, des 
mémoires partagées ou des registres de processeur pour simuler les conséquences des SEU dans l'exécution du 
programme. Une analyse approfondie des erreurs observées a été effectuée pour identifier les vulnérabilités dans 
les mécanismes de protection. Des zones critiques telles que les adresses tag  et les registres à usage général ont 
été principalement affectés pendant les expériences de rayonnement.  
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Evaluation of the SEE sensitivity and methodology for error rate prediction of 
applications implemented in Multi-core and Many-core processors 
 
Abstract - The present thesis proposes an error-rate prediction approach and the evaluation of the sensitivity of 
applications implemented in multi and many-core processors exposed to harsh radiation environments. To 
validate the generality of this approach, three different COTS devices were targeted aiming at representing the 
most relevant technological and architectural aspects of multi/many-core processors. The first one was the 
Freescale P2041 quad-core processor manufactured in 45nm SOI technology which implements ECC and parity 
in their cache memories. The second one was the Adapteva Epiphany E16G301 microprocessor manufactured in 
65nm CMOS process which integrates 16 processor cores and do not implement any protection mechanism. The 
third one was the Kalray MPPA-256 many-core processor manufactured in 28nm TSMC CMOS technology 
which integrates 16 compute clusters each one with 17 processor cores, and implements ECC in its static 
memories and parity in its cache memories. The SEE  sensitivity evaluation and the error-rate prediction was 
accomplished by combining radiation experiments with 14 Mev neutrons in particle accelerators to emulate a 
harsh radiation environment, and fault injection in cache memories,  shared memories or processor registers, to 
simulate the consequences of SEUs in the execution of the program. A deep analysis of the observed errors was 
carried out to identify vulnerabilities in the protection mechanisms. Critical zones such as address tag and 
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